]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-mips.c
MIPS16: Handle non-extensible instructions correctly
[thirdparty/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946 \f
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018 /* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether in the 32-bit
1155 instruction mode, whether the branch is unconditional, whether it is
1156 compact, whether there is no delay-slot instruction available to fill
1157 in, whether it stores the link address implicitly in $ra, whether
1158 relaxation of out-of-range 32-bit branches to a sequence of
1159 instructions is enabled, and whether the displacement of a branch is
1160 too large to fit as an immediate argument of a 16-bit and a 32-bit
1161 branch, respectively. */
1162 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, \
1163 uncond, compact, link, nods, \
1164 relax32, toofar16, toofar32) \
1165 (0x40000000 \
1166 | ((type) & 0xff) \
1167 | (((at) & 0x1f) << 8) \
1168 | ((insn32) ? 0x2000 : 0) \
1169 | ((uncond) ? 0x4000 : 0) \
1170 | ((compact) ? 0x8000 : 0) \
1171 | ((link) ? 0x10000 : 0) \
1172 | ((nods) ? 0x20000 : 0) \
1173 | ((relax32) ? 0x40000 : 0) \
1174 | ((toofar16) ? 0x80000 : 0) \
1175 | ((toofar32) ? 0x100000 : 0))
1176 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1177 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1178 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1179 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1180 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x4000) != 0)
1181 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x8000) != 0)
1182 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x10000) != 0)
1183 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x20000) != 0)
1184 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x40000) != 0)
1185
1186 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x80000) != 0)
1187 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x80000)
1188 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x80000)
1189 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x100000) != 0)
1190 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x100000)
1191 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x100000)
1192
1193 /* Sign-extend 16-bit value X. */
1194 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1195
1196 /* Is the given value a sign-extended 32-bit value? */
1197 #define IS_SEXT_32BIT_NUM(x) \
1198 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1199 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1200
1201 /* Is the given value a sign-extended 16-bit value? */
1202 #define IS_SEXT_16BIT_NUM(x) \
1203 (((x) &~ (offsetT) 0x7fff) == 0 \
1204 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1205
1206 /* Is the given value a sign-extended 12-bit value? */
1207 #define IS_SEXT_12BIT_NUM(x) \
1208 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1209
1210 /* Is the given value a sign-extended 9-bit value? */
1211 #define IS_SEXT_9BIT_NUM(x) \
1212 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1213
1214 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1215 #define IS_ZEXT_32BIT_NUM(x) \
1216 (((x) &~ (offsetT) 0xffffffff) == 0 \
1217 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1218
1219 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1220 SHIFT places. */
1221 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1222 (((STRUCT) >> (SHIFT)) & (MASK))
1223
1224 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1225 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1226 (!(MICROMIPS) \
1227 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1228 : EXTRACT_BITS ((INSN).insn_opcode, \
1229 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1230 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1231 EXTRACT_BITS ((INSN).insn_opcode, \
1232 MIPS16OP_MASK_##FIELD, \
1233 MIPS16OP_SH_##FIELD)
1234
1235 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1236 #define MIPS16_EXTEND (0xf000U << 16)
1237 \f
1238 /* Whether or not we are emitting a branch-likely macro. */
1239 static bfd_boolean emit_branch_likely_macro = FALSE;
1240
1241 /* Global variables used when generating relaxable macros. See the
1242 comment above RELAX_ENCODE for more details about how relaxation
1243 is used. */
1244 static struct {
1245 /* 0 if we're not emitting a relaxable macro.
1246 1 if we're emitting the first of the two relaxation alternatives.
1247 2 if we're emitting the second alternative. */
1248 int sequence;
1249
1250 /* The first relaxable fixup in the current frag. (In other words,
1251 the first fixup that refers to relaxable code.) */
1252 fixS *first_fixup;
1253
1254 /* sizes[0] says how many bytes of the first alternative are stored in
1255 the current frag. Likewise sizes[1] for the second alternative. */
1256 unsigned int sizes[2];
1257
1258 /* The symbol on which the choice of sequence depends. */
1259 symbolS *symbol;
1260 } mips_relax;
1261 \f
1262 /* Global variables used to decide whether a macro needs a warning. */
1263 static struct {
1264 /* True if the macro is in a branch delay slot. */
1265 bfd_boolean delay_slot_p;
1266
1267 /* Set to the length in bytes required if the macro is in a delay slot
1268 that requires a specific length of instruction, otherwise zero. */
1269 unsigned int delay_slot_length;
1270
1271 /* For relaxable macros, sizes[0] is the length of the first alternative
1272 in bytes and sizes[1] is the length of the second alternative.
1273 For non-relaxable macros, both elements give the length of the
1274 macro in bytes. */
1275 unsigned int sizes[2];
1276
1277 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1278 instruction of the first alternative in bytes and first_insn_sizes[1]
1279 is the length of the first instruction of the second alternative.
1280 For non-relaxable macros, both elements give the length of the first
1281 instruction in bytes.
1282
1283 Set to zero if we haven't yet seen the first instruction. */
1284 unsigned int first_insn_sizes[2];
1285
1286 /* For relaxable macros, insns[0] is the number of instructions for the
1287 first alternative and insns[1] is the number of instructions for the
1288 second alternative.
1289
1290 For non-relaxable macros, both elements give the number of
1291 instructions for the macro. */
1292 unsigned int insns[2];
1293
1294 /* The first variant frag for this macro. */
1295 fragS *first_frag;
1296 } mips_macro_warning;
1297 \f
1298 /* Prototypes for static functions. */
1299
1300 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1301
1302 static void append_insn
1303 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1304 bfd_boolean expansionp);
1305 static void mips_no_prev_insn (void);
1306 static void macro_build (expressionS *, const char *, const char *, ...);
1307 static void mips16_macro_build
1308 (expressionS *, const char *, const char *, va_list *);
1309 static void load_register (int, expressionS *, int);
1310 static void macro_start (void);
1311 static void macro_end (void);
1312 static void macro (struct mips_cl_insn *ip, char *str);
1313 static void mips16_macro (struct mips_cl_insn * ip);
1314 static void mips_ip (char *str, struct mips_cl_insn * ip);
1315 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1316 static void mips16_immed
1317 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1318 unsigned int, unsigned long *);
1319 static size_t my_getSmallExpression
1320 (expressionS *, bfd_reloc_code_real_type *, char *);
1321 static void my_getExpression (expressionS *, char *);
1322 static void s_align (int);
1323 static void s_change_sec (int);
1324 static void s_change_section (int);
1325 static void s_cons (int);
1326 static void s_float_cons (int);
1327 static void s_mips_globl (int);
1328 static void s_option (int);
1329 static void s_mipsset (int);
1330 static void s_abicalls (int);
1331 static void s_cpload (int);
1332 static void s_cpsetup (int);
1333 static void s_cplocal (int);
1334 static void s_cprestore (int);
1335 static void s_cpreturn (int);
1336 static void s_dtprelword (int);
1337 static void s_dtpreldword (int);
1338 static void s_tprelword (int);
1339 static void s_tpreldword (int);
1340 static void s_gpvalue (int);
1341 static void s_gpword (int);
1342 static void s_gpdword (int);
1343 static void s_ehword (int);
1344 static void s_cpadd (int);
1345 static void s_insn (int);
1346 static void s_nan (int);
1347 static void s_module (int);
1348 static void s_mips_ent (int);
1349 static void s_mips_end (int);
1350 static void s_mips_frame (int);
1351 static void s_mips_mask (int reg_type);
1352 static void s_mips_stab (int);
1353 static void s_mips_weakext (int);
1354 static void s_mips_file (int);
1355 static void s_mips_loc (int);
1356 static bfd_boolean pic_need_relax (symbolS *, asection *);
1357 static int relaxed_branch_length (fragS *, asection *, int);
1358 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1359 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1360 static void file_mips_check_options (void);
1361
1362 /* Table and functions used to map between CPU/ISA names, and
1363 ISA levels, and CPU numbers. */
1364
1365 struct mips_cpu_info
1366 {
1367 const char *name; /* CPU or ISA name. */
1368 int flags; /* MIPS_CPU_* flags. */
1369 int ase; /* Set of ASEs implemented by the CPU. */
1370 int isa; /* ISA level. */
1371 int cpu; /* CPU number (default CPU if ISA). */
1372 };
1373
1374 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1375
1376 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1377 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1378 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1379 \f
1380 /* Command-line options. */
1381 const char *md_shortopts = "O::g::G:";
1382
1383 enum options
1384 {
1385 OPTION_MARCH = OPTION_MD_BASE,
1386 OPTION_MTUNE,
1387 OPTION_MIPS1,
1388 OPTION_MIPS2,
1389 OPTION_MIPS3,
1390 OPTION_MIPS4,
1391 OPTION_MIPS5,
1392 OPTION_MIPS32,
1393 OPTION_MIPS64,
1394 OPTION_MIPS32R2,
1395 OPTION_MIPS32R3,
1396 OPTION_MIPS32R5,
1397 OPTION_MIPS32R6,
1398 OPTION_MIPS64R2,
1399 OPTION_MIPS64R3,
1400 OPTION_MIPS64R5,
1401 OPTION_MIPS64R6,
1402 OPTION_MIPS16,
1403 OPTION_NO_MIPS16,
1404 OPTION_MIPS3D,
1405 OPTION_NO_MIPS3D,
1406 OPTION_MDMX,
1407 OPTION_NO_MDMX,
1408 OPTION_DSP,
1409 OPTION_NO_DSP,
1410 OPTION_MT,
1411 OPTION_NO_MT,
1412 OPTION_VIRT,
1413 OPTION_NO_VIRT,
1414 OPTION_MSA,
1415 OPTION_NO_MSA,
1416 OPTION_SMARTMIPS,
1417 OPTION_NO_SMARTMIPS,
1418 OPTION_DSPR2,
1419 OPTION_NO_DSPR2,
1420 OPTION_DSPR3,
1421 OPTION_NO_DSPR3,
1422 OPTION_EVA,
1423 OPTION_NO_EVA,
1424 OPTION_XPA,
1425 OPTION_NO_XPA,
1426 OPTION_MICROMIPS,
1427 OPTION_NO_MICROMIPS,
1428 OPTION_MCU,
1429 OPTION_NO_MCU,
1430 OPTION_COMPAT_ARCH_BASE,
1431 OPTION_M4650,
1432 OPTION_NO_M4650,
1433 OPTION_M4010,
1434 OPTION_NO_M4010,
1435 OPTION_M4100,
1436 OPTION_NO_M4100,
1437 OPTION_M3900,
1438 OPTION_NO_M3900,
1439 OPTION_M7000_HILO_FIX,
1440 OPTION_MNO_7000_HILO_FIX,
1441 OPTION_FIX_24K,
1442 OPTION_NO_FIX_24K,
1443 OPTION_FIX_RM7000,
1444 OPTION_NO_FIX_RM7000,
1445 OPTION_FIX_LOONGSON2F_JUMP,
1446 OPTION_NO_FIX_LOONGSON2F_JUMP,
1447 OPTION_FIX_LOONGSON2F_NOP,
1448 OPTION_NO_FIX_LOONGSON2F_NOP,
1449 OPTION_FIX_VR4120,
1450 OPTION_NO_FIX_VR4120,
1451 OPTION_FIX_VR4130,
1452 OPTION_NO_FIX_VR4130,
1453 OPTION_FIX_CN63XXP1,
1454 OPTION_NO_FIX_CN63XXP1,
1455 OPTION_TRAP,
1456 OPTION_BREAK,
1457 OPTION_EB,
1458 OPTION_EL,
1459 OPTION_FP32,
1460 OPTION_GP32,
1461 OPTION_CONSTRUCT_FLOATS,
1462 OPTION_NO_CONSTRUCT_FLOATS,
1463 OPTION_FP64,
1464 OPTION_FPXX,
1465 OPTION_GP64,
1466 OPTION_RELAX_BRANCH,
1467 OPTION_NO_RELAX_BRANCH,
1468 OPTION_INSN32,
1469 OPTION_NO_INSN32,
1470 OPTION_MSHARED,
1471 OPTION_MNO_SHARED,
1472 OPTION_MSYM32,
1473 OPTION_MNO_SYM32,
1474 OPTION_SOFT_FLOAT,
1475 OPTION_HARD_FLOAT,
1476 OPTION_SINGLE_FLOAT,
1477 OPTION_DOUBLE_FLOAT,
1478 OPTION_32,
1479 OPTION_CALL_SHARED,
1480 OPTION_CALL_NONPIC,
1481 OPTION_NON_SHARED,
1482 OPTION_XGOT,
1483 OPTION_MABI,
1484 OPTION_N32,
1485 OPTION_64,
1486 OPTION_MDEBUG,
1487 OPTION_NO_MDEBUG,
1488 OPTION_PDR,
1489 OPTION_NO_PDR,
1490 OPTION_MVXWORKS_PIC,
1491 OPTION_NAN,
1492 OPTION_ODD_SPREG,
1493 OPTION_NO_ODD_SPREG,
1494 OPTION_END_OF_ENUM
1495 };
1496
1497 struct option md_longopts[] =
1498 {
1499 /* Options which specify architecture. */
1500 {"march", required_argument, NULL, OPTION_MARCH},
1501 {"mtune", required_argument, NULL, OPTION_MTUNE},
1502 {"mips0", no_argument, NULL, OPTION_MIPS1},
1503 {"mips1", no_argument, NULL, OPTION_MIPS1},
1504 {"mips2", no_argument, NULL, OPTION_MIPS2},
1505 {"mips3", no_argument, NULL, OPTION_MIPS3},
1506 {"mips4", no_argument, NULL, OPTION_MIPS4},
1507 {"mips5", no_argument, NULL, OPTION_MIPS5},
1508 {"mips32", no_argument, NULL, OPTION_MIPS32},
1509 {"mips64", no_argument, NULL, OPTION_MIPS64},
1510 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1511 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1512 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1513 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1514 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1515 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1516 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1517 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1518
1519 /* Options which specify Application Specific Extensions (ASEs). */
1520 {"mips16", no_argument, NULL, OPTION_MIPS16},
1521 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1522 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1523 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1524 {"mdmx", no_argument, NULL, OPTION_MDMX},
1525 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1526 {"mdsp", no_argument, NULL, OPTION_DSP},
1527 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1528 {"mmt", no_argument, NULL, OPTION_MT},
1529 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1530 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1531 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1532 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1533 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1534 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1535 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1536 {"meva", no_argument, NULL, OPTION_EVA},
1537 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1538 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1539 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1540 {"mmcu", no_argument, NULL, OPTION_MCU},
1541 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1542 {"mvirt", no_argument, NULL, OPTION_VIRT},
1543 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1544 {"mmsa", no_argument, NULL, OPTION_MSA},
1545 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1546 {"mxpa", no_argument, NULL, OPTION_XPA},
1547 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1548
1549 /* Old-style architecture options. Don't add more of these. */
1550 {"m4650", no_argument, NULL, OPTION_M4650},
1551 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1552 {"m4010", no_argument, NULL, OPTION_M4010},
1553 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1554 {"m4100", no_argument, NULL, OPTION_M4100},
1555 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1556 {"m3900", no_argument, NULL, OPTION_M3900},
1557 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1558
1559 /* Options which enable bug fixes. */
1560 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1561 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1562 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1563 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1564 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1565 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1566 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1567 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1568 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1569 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1570 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1571 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1572 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1573 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1574 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1575 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1576 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1577
1578 /* Miscellaneous options. */
1579 {"trap", no_argument, NULL, OPTION_TRAP},
1580 {"no-break", no_argument, NULL, OPTION_TRAP},
1581 {"break", no_argument, NULL, OPTION_BREAK},
1582 {"no-trap", no_argument, NULL, OPTION_BREAK},
1583 {"EB", no_argument, NULL, OPTION_EB},
1584 {"EL", no_argument, NULL, OPTION_EL},
1585 {"mfp32", no_argument, NULL, OPTION_FP32},
1586 {"mgp32", no_argument, NULL, OPTION_GP32},
1587 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1588 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1589 {"mfp64", no_argument, NULL, OPTION_FP64},
1590 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1591 {"mgp64", no_argument, NULL, OPTION_GP64},
1592 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1593 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1594 {"minsn32", no_argument, NULL, OPTION_INSN32},
1595 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1596 {"mshared", no_argument, NULL, OPTION_MSHARED},
1597 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1598 {"msym32", no_argument, NULL, OPTION_MSYM32},
1599 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1600 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1601 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1602 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1603 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1604 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1605 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1606
1607 /* Strictly speaking this next option is ELF specific,
1608 but we allow it for other ports as well in order to
1609 make testing easier. */
1610 {"32", no_argument, NULL, OPTION_32},
1611
1612 /* ELF-specific options. */
1613 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1614 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1615 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1616 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1617 {"xgot", no_argument, NULL, OPTION_XGOT},
1618 {"mabi", required_argument, NULL, OPTION_MABI},
1619 {"n32", no_argument, NULL, OPTION_N32},
1620 {"64", no_argument, NULL, OPTION_64},
1621 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1622 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1623 {"mpdr", no_argument, NULL, OPTION_PDR},
1624 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1625 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1626 {"mnan", required_argument, NULL, OPTION_NAN},
1627
1628 {NULL, no_argument, NULL, 0}
1629 };
1630 size_t md_longopts_size = sizeof (md_longopts);
1631 \f
1632 /* Information about either an Application Specific Extension or an
1633 optional architecture feature that, for simplicity, we treat in the
1634 same way as an ASE. */
1635 struct mips_ase
1636 {
1637 /* The name of the ASE, used in both the command-line and .set options. */
1638 const char *name;
1639
1640 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1641 and 64-bit architectures, the flags here refer to the subset that
1642 is available on both. */
1643 unsigned int flags;
1644
1645 /* The ASE_* flag used for instructions that are available on 64-bit
1646 architectures but that are not included in FLAGS. */
1647 unsigned int flags64;
1648
1649 /* The command-line options that turn the ASE on and off. */
1650 int option_on;
1651 int option_off;
1652
1653 /* The minimum required architecture revisions for MIPS32, MIPS64,
1654 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1655 int mips32_rev;
1656 int mips64_rev;
1657 int micromips32_rev;
1658 int micromips64_rev;
1659
1660 /* The architecture where the ASE was removed or -1 if the extension has not
1661 been removed. */
1662 int rem_rev;
1663 };
1664
1665 /* A table of all supported ASEs. */
1666 static const struct mips_ase mips_ases[] = {
1667 { "dsp", ASE_DSP, ASE_DSP64,
1668 OPTION_DSP, OPTION_NO_DSP,
1669 2, 2, 2, 2,
1670 -1 },
1671
1672 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1673 OPTION_DSPR2, OPTION_NO_DSPR2,
1674 2, 2, 2, 2,
1675 -1 },
1676
1677 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1678 OPTION_DSPR3, OPTION_NO_DSPR3,
1679 6, 6, -1, -1,
1680 -1 },
1681
1682 { "eva", ASE_EVA, 0,
1683 OPTION_EVA, OPTION_NO_EVA,
1684 2, 2, 2, 2,
1685 -1 },
1686
1687 { "mcu", ASE_MCU, 0,
1688 OPTION_MCU, OPTION_NO_MCU,
1689 2, 2, 2, 2,
1690 -1 },
1691
1692 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1693 { "mdmx", ASE_MDMX, 0,
1694 OPTION_MDMX, OPTION_NO_MDMX,
1695 -1, 1, -1, -1,
1696 6 },
1697
1698 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1699 { "mips3d", ASE_MIPS3D, 0,
1700 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1701 2, 1, -1, -1,
1702 6 },
1703
1704 { "mt", ASE_MT, 0,
1705 OPTION_MT, OPTION_NO_MT,
1706 2, 2, -1, -1,
1707 -1 },
1708
1709 { "smartmips", ASE_SMARTMIPS, 0,
1710 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1711 1, -1, -1, -1,
1712 6 },
1713
1714 { "virt", ASE_VIRT, ASE_VIRT64,
1715 OPTION_VIRT, OPTION_NO_VIRT,
1716 2, 2, 2, 2,
1717 -1 },
1718
1719 { "msa", ASE_MSA, ASE_MSA64,
1720 OPTION_MSA, OPTION_NO_MSA,
1721 2, 2, 2, 2,
1722 -1 },
1723
1724 { "xpa", ASE_XPA, 0,
1725 OPTION_XPA, OPTION_NO_XPA,
1726 2, 2, -1, -1,
1727 -1 },
1728 };
1729
1730 /* The set of ASEs that require -mfp64. */
1731 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1732
1733 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1734 static const unsigned int mips_ase_groups[] = {
1735 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1736 };
1737 \f
1738 /* Pseudo-op table.
1739
1740 The following pseudo-ops from the Kane and Heinrich MIPS book
1741 should be defined here, but are currently unsupported: .alias,
1742 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1743
1744 The following pseudo-ops from the Kane and Heinrich MIPS book are
1745 specific to the type of debugging information being generated, and
1746 should be defined by the object format: .aent, .begin, .bend,
1747 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1748 .vreg.
1749
1750 The following pseudo-ops from the Kane and Heinrich MIPS book are
1751 not MIPS CPU specific, but are also not specific to the object file
1752 format. This file is probably the best place to define them, but
1753 they are not currently supported: .asm0, .endr, .lab, .struct. */
1754
1755 static const pseudo_typeS mips_pseudo_table[] =
1756 {
1757 /* MIPS specific pseudo-ops. */
1758 {"option", s_option, 0},
1759 {"set", s_mipsset, 0},
1760 {"rdata", s_change_sec, 'r'},
1761 {"sdata", s_change_sec, 's'},
1762 {"livereg", s_ignore, 0},
1763 {"abicalls", s_abicalls, 0},
1764 {"cpload", s_cpload, 0},
1765 {"cpsetup", s_cpsetup, 0},
1766 {"cplocal", s_cplocal, 0},
1767 {"cprestore", s_cprestore, 0},
1768 {"cpreturn", s_cpreturn, 0},
1769 {"dtprelword", s_dtprelword, 0},
1770 {"dtpreldword", s_dtpreldword, 0},
1771 {"tprelword", s_tprelword, 0},
1772 {"tpreldword", s_tpreldword, 0},
1773 {"gpvalue", s_gpvalue, 0},
1774 {"gpword", s_gpword, 0},
1775 {"gpdword", s_gpdword, 0},
1776 {"ehword", s_ehword, 0},
1777 {"cpadd", s_cpadd, 0},
1778 {"insn", s_insn, 0},
1779 {"nan", s_nan, 0},
1780 {"module", s_module, 0},
1781
1782 /* Relatively generic pseudo-ops that happen to be used on MIPS
1783 chips. */
1784 {"asciiz", stringer, 8 + 1},
1785 {"bss", s_change_sec, 'b'},
1786 {"err", s_err, 0},
1787 {"half", s_cons, 1},
1788 {"dword", s_cons, 3},
1789 {"weakext", s_mips_weakext, 0},
1790 {"origin", s_org, 0},
1791 {"repeat", s_rept, 0},
1792
1793 /* For MIPS this is non-standard, but we define it for consistency. */
1794 {"sbss", s_change_sec, 'B'},
1795
1796 /* These pseudo-ops are defined in read.c, but must be overridden
1797 here for one reason or another. */
1798 {"align", s_align, 0},
1799 {"byte", s_cons, 0},
1800 {"data", s_change_sec, 'd'},
1801 {"double", s_float_cons, 'd'},
1802 {"float", s_float_cons, 'f'},
1803 {"globl", s_mips_globl, 0},
1804 {"global", s_mips_globl, 0},
1805 {"hword", s_cons, 1},
1806 {"int", s_cons, 2},
1807 {"long", s_cons, 2},
1808 {"octa", s_cons, 4},
1809 {"quad", s_cons, 3},
1810 {"section", s_change_section, 0},
1811 {"short", s_cons, 1},
1812 {"single", s_float_cons, 'f'},
1813 {"stabd", s_mips_stab, 'd'},
1814 {"stabn", s_mips_stab, 'n'},
1815 {"stabs", s_mips_stab, 's'},
1816 {"text", s_change_sec, 't'},
1817 {"word", s_cons, 2},
1818
1819 { "extern", ecoff_directive_extern, 0},
1820
1821 { NULL, NULL, 0 },
1822 };
1823
1824 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1825 {
1826 /* These pseudo-ops should be defined by the object file format.
1827 However, a.out doesn't support them, so we have versions here. */
1828 {"aent", s_mips_ent, 1},
1829 {"bgnb", s_ignore, 0},
1830 {"end", s_mips_end, 0},
1831 {"endb", s_ignore, 0},
1832 {"ent", s_mips_ent, 0},
1833 {"file", s_mips_file, 0},
1834 {"fmask", s_mips_mask, 'F'},
1835 {"frame", s_mips_frame, 0},
1836 {"loc", s_mips_loc, 0},
1837 {"mask", s_mips_mask, 'R'},
1838 {"verstamp", s_ignore, 0},
1839 { NULL, NULL, 0 },
1840 };
1841
1842 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1843 purpose of the `.dc.a' internal pseudo-op. */
1844
1845 int
1846 mips_address_bytes (void)
1847 {
1848 file_mips_check_options ();
1849 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1850 }
1851
1852 extern void pop_insert (const pseudo_typeS *);
1853
1854 void
1855 mips_pop_insert (void)
1856 {
1857 pop_insert (mips_pseudo_table);
1858 if (! ECOFF_DEBUGGING)
1859 pop_insert (mips_nonecoff_pseudo_table);
1860 }
1861 \f
1862 /* Symbols labelling the current insn. */
1863
1864 struct insn_label_list
1865 {
1866 struct insn_label_list *next;
1867 symbolS *label;
1868 };
1869
1870 static struct insn_label_list *free_insn_labels;
1871 #define label_list tc_segment_info_data.labels
1872
1873 static void mips_clear_insn_labels (void);
1874 static void mips_mark_labels (void);
1875 static void mips_compressed_mark_labels (void);
1876
1877 static inline void
1878 mips_clear_insn_labels (void)
1879 {
1880 struct insn_label_list **pl;
1881 segment_info_type *si;
1882
1883 if (now_seg)
1884 {
1885 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1886 ;
1887
1888 si = seg_info (now_seg);
1889 *pl = si->label_list;
1890 si->label_list = NULL;
1891 }
1892 }
1893
1894 /* Mark instruction labels in MIPS16/microMIPS mode. */
1895
1896 static inline void
1897 mips_mark_labels (void)
1898 {
1899 if (HAVE_CODE_COMPRESSION)
1900 mips_compressed_mark_labels ();
1901 }
1902 \f
1903 static char *expr_end;
1904
1905 /* An expression in a macro instruction. This is set by mips_ip and
1906 mips16_ip and when populated is always an O_constant. */
1907
1908 static expressionS imm_expr;
1909
1910 /* The relocatable field in an instruction and the relocs associated
1911 with it. These variables are used for instructions like LUI and
1912 JAL as well as true offsets. They are also used for address
1913 operands in macros. */
1914
1915 static expressionS offset_expr;
1916 static bfd_reloc_code_real_type offset_reloc[3]
1917 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1918
1919 /* This is set to the resulting size of the instruction to be produced
1920 by mips16_ip if an explicit extension is used or by mips_ip if an
1921 explicit size is supplied. */
1922
1923 static unsigned int forced_insn_length;
1924
1925 /* True if we are assembling an instruction. All dot symbols defined during
1926 this time should be treated as code labels. */
1927
1928 static bfd_boolean mips_assembling_insn;
1929
1930 /* The pdr segment for per procedure frame/regmask info. Not used for
1931 ECOFF debugging. */
1932
1933 static segT pdr_seg;
1934
1935 /* The default target format to use. */
1936
1937 #if defined (TE_FreeBSD)
1938 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1939 #elif defined (TE_TMIPS)
1940 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1941 #else
1942 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1943 #endif
1944
1945 const char *
1946 mips_target_format (void)
1947 {
1948 switch (OUTPUT_FLAVOR)
1949 {
1950 case bfd_target_elf_flavour:
1951 #ifdef TE_VXWORKS
1952 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1953 return (target_big_endian
1954 ? "elf32-bigmips-vxworks"
1955 : "elf32-littlemips-vxworks");
1956 #endif
1957 return (target_big_endian
1958 ? (HAVE_64BIT_OBJECTS
1959 ? ELF_TARGET ("elf64-", "big")
1960 : (HAVE_NEWABI
1961 ? ELF_TARGET ("elf32-n", "big")
1962 : ELF_TARGET ("elf32-", "big")))
1963 : (HAVE_64BIT_OBJECTS
1964 ? ELF_TARGET ("elf64-", "little")
1965 : (HAVE_NEWABI
1966 ? ELF_TARGET ("elf32-n", "little")
1967 : ELF_TARGET ("elf32-", "little"))));
1968 default:
1969 abort ();
1970 return NULL;
1971 }
1972 }
1973
1974 /* Return the ISA revision that is currently in use, or 0 if we are
1975 generating code for MIPS V or below. */
1976
1977 static int
1978 mips_isa_rev (void)
1979 {
1980 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1981 return 2;
1982
1983 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1984 return 3;
1985
1986 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1987 return 5;
1988
1989 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1990 return 6;
1991
1992 /* microMIPS implies revision 2 or above. */
1993 if (mips_opts.micromips)
1994 return 2;
1995
1996 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1997 return 1;
1998
1999 return 0;
2000 }
2001
2002 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2003
2004 static unsigned int
2005 mips_ase_mask (unsigned int flags)
2006 {
2007 unsigned int i;
2008
2009 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2010 if (flags & mips_ase_groups[i])
2011 flags |= mips_ase_groups[i];
2012 return flags;
2013 }
2014
2015 /* Check whether the current ISA supports ASE. Issue a warning if
2016 appropriate. */
2017
2018 static void
2019 mips_check_isa_supports_ase (const struct mips_ase *ase)
2020 {
2021 const char *base;
2022 int min_rev, size;
2023 static unsigned int warned_isa;
2024 static unsigned int warned_fp32;
2025
2026 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2027 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2028 else
2029 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2030 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2031 && (warned_isa & ase->flags) != ase->flags)
2032 {
2033 warned_isa |= ase->flags;
2034 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2035 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2036 if (min_rev < 0)
2037 as_warn (_("the %d-bit %s architecture does not support the"
2038 " `%s' extension"), size, base, ase->name);
2039 else
2040 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2041 ase->name, base, size, min_rev);
2042 }
2043 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2044 && (warned_isa & ase->flags) != ase->flags)
2045 {
2046 warned_isa |= ase->flags;
2047 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2048 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2049 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2050 ase->name, base, size, ase->rem_rev);
2051 }
2052
2053 if ((ase->flags & FP64_ASES)
2054 && mips_opts.fp != 64
2055 && (warned_fp32 & ase->flags) != ase->flags)
2056 {
2057 warned_fp32 |= ase->flags;
2058 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2059 }
2060 }
2061
2062 /* Check all enabled ASEs to see whether they are supported by the
2063 chosen architecture. */
2064
2065 static void
2066 mips_check_isa_supports_ases (void)
2067 {
2068 unsigned int i, mask;
2069
2070 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2071 {
2072 mask = mips_ase_mask (mips_ases[i].flags);
2073 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2074 mips_check_isa_supports_ase (&mips_ases[i]);
2075 }
2076 }
2077
2078 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2079 that were affected. */
2080
2081 static unsigned int
2082 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2083 bfd_boolean enabled_p)
2084 {
2085 unsigned int mask;
2086
2087 mask = mips_ase_mask (ase->flags);
2088 opts->ase &= ~mask;
2089 if (enabled_p)
2090 opts->ase |= ase->flags;
2091 return mask;
2092 }
2093
2094 /* Return the ASE called NAME, or null if none. */
2095
2096 static const struct mips_ase *
2097 mips_lookup_ase (const char *name)
2098 {
2099 unsigned int i;
2100
2101 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2102 if (strcmp (name, mips_ases[i].name) == 0)
2103 return &mips_ases[i];
2104 return NULL;
2105 }
2106
2107 /* Return the length of a microMIPS instruction in bytes. If bits of
2108 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2109 otherwise it is a 32-bit instruction. */
2110
2111 static inline unsigned int
2112 micromips_insn_length (const struct mips_opcode *mo)
2113 {
2114 return mips_opcode_32bit_p (mo) ? 4 : 2;
2115 }
2116
2117 /* Return the length of MIPS16 instruction OPCODE. */
2118
2119 static inline unsigned int
2120 mips16_opcode_length (unsigned long opcode)
2121 {
2122 return (opcode >> 16) == 0 ? 2 : 4;
2123 }
2124
2125 /* Return the length of instruction INSN. */
2126
2127 static inline unsigned int
2128 insn_length (const struct mips_cl_insn *insn)
2129 {
2130 if (mips_opts.micromips)
2131 return micromips_insn_length (insn->insn_mo);
2132 else if (mips_opts.mips16)
2133 return mips16_opcode_length (insn->insn_opcode);
2134 else
2135 return 4;
2136 }
2137
2138 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2139
2140 static void
2141 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2142 {
2143 size_t i;
2144
2145 insn->insn_mo = mo;
2146 insn->insn_opcode = mo->match;
2147 insn->frag = NULL;
2148 insn->where = 0;
2149 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2150 insn->fixp[i] = NULL;
2151 insn->fixed_p = (mips_opts.noreorder > 0);
2152 insn->noreorder_p = (mips_opts.noreorder > 0);
2153 insn->mips16_absolute_jump_p = 0;
2154 insn->complete_p = 0;
2155 insn->cleared_p = 0;
2156 }
2157
2158 /* Get a list of all the operands in INSN. */
2159
2160 static const struct mips_operand_array *
2161 insn_operands (const struct mips_cl_insn *insn)
2162 {
2163 if (insn->insn_mo >= &mips_opcodes[0]
2164 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2165 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2166
2167 if (insn->insn_mo >= &mips16_opcodes[0]
2168 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2169 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2170
2171 if (insn->insn_mo >= &micromips_opcodes[0]
2172 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2173 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2174
2175 abort ();
2176 }
2177
2178 /* Get a description of operand OPNO of INSN. */
2179
2180 static const struct mips_operand *
2181 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2182 {
2183 const struct mips_operand_array *operands;
2184
2185 operands = insn_operands (insn);
2186 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2187 abort ();
2188 return operands->operand[opno];
2189 }
2190
2191 /* Install UVAL as the value of OPERAND in INSN. */
2192
2193 static inline void
2194 insn_insert_operand (struct mips_cl_insn *insn,
2195 const struct mips_operand *operand, unsigned int uval)
2196 {
2197 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2198 }
2199
2200 /* Extract the value of OPERAND from INSN. */
2201
2202 static inline unsigned
2203 insn_extract_operand (const struct mips_cl_insn *insn,
2204 const struct mips_operand *operand)
2205 {
2206 return mips_extract_operand (operand, insn->insn_opcode);
2207 }
2208
2209 /* Record the current MIPS16/microMIPS mode in now_seg. */
2210
2211 static void
2212 mips_record_compressed_mode (void)
2213 {
2214 segment_info_type *si;
2215
2216 si = seg_info (now_seg);
2217 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2218 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2219 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2220 si->tc_segment_info_data.micromips = mips_opts.micromips;
2221 }
2222
2223 /* Read a standard MIPS instruction from BUF. */
2224
2225 static unsigned long
2226 read_insn (char *buf)
2227 {
2228 if (target_big_endian)
2229 return bfd_getb32 ((bfd_byte *) buf);
2230 else
2231 return bfd_getl32 ((bfd_byte *) buf);
2232 }
2233
2234 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2235 the next byte. */
2236
2237 static char *
2238 write_insn (char *buf, unsigned int insn)
2239 {
2240 md_number_to_chars (buf, insn, 4);
2241 return buf + 4;
2242 }
2243
2244 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2245 has length LENGTH. */
2246
2247 static unsigned long
2248 read_compressed_insn (char *buf, unsigned int length)
2249 {
2250 unsigned long insn;
2251 unsigned int i;
2252
2253 insn = 0;
2254 for (i = 0; i < length; i += 2)
2255 {
2256 insn <<= 16;
2257 if (target_big_endian)
2258 insn |= bfd_getb16 ((char *) buf);
2259 else
2260 insn |= bfd_getl16 ((char *) buf);
2261 buf += 2;
2262 }
2263 return insn;
2264 }
2265
2266 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2267 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2268
2269 static char *
2270 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2271 {
2272 unsigned int i;
2273
2274 for (i = 0; i < length; i += 2)
2275 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2276 return buf + length;
2277 }
2278
2279 /* Install INSN at the location specified by its "frag" and "where" fields. */
2280
2281 static void
2282 install_insn (const struct mips_cl_insn *insn)
2283 {
2284 char *f = insn->frag->fr_literal + insn->where;
2285 if (HAVE_CODE_COMPRESSION)
2286 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2287 else
2288 write_insn (f, insn->insn_opcode);
2289 mips_record_compressed_mode ();
2290 }
2291
2292 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2293 and install the opcode in the new location. */
2294
2295 static void
2296 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2297 {
2298 size_t i;
2299
2300 insn->frag = frag;
2301 insn->where = where;
2302 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2303 if (insn->fixp[i] != NULL)
2304 {
2305 insn->fixp[i]->fx_frag = frag;
2306 insn->fixp[i]->fx_where = where;
2307 }
2308 install_insn (insn);
2309 }
2310
2311 /* Add INSN to the end of the output. */
2312
2313 static void
2314 add_fixed_insn (struct mips_cl_insn *insn)
2315 {
2316 char *f = frag_more (insn_length (insn));
2317 move_insn (insn, frag_now, f - frag_now->fr_literal);
2318 }
2319
2320 /* Start a variant frag and move INSN to the start of the variant part,
2321 marking it as fixed. The other arguments are as for frag_var. */
2322
2323 static void
2324 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2325 relax_substateT subtype, symbolS *symbol, offsetT offset)
2326 {
2327 frag_grow (max_chars);
2328 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2329 insn->fixed_p = 1;
2330 frag_var (rs_machine_dependent, max_chars, var,
2331 subtype, symbol, offset, NULL);
2332 }
2333
2334 /* Insert N copies of INSN into the history buffer, starting at
2335 position FIRST. Neither FIRST nor N need to be clipped. */
2336
2337 static void
2338 insert_into_history (unsigned int first, unsigned int n,
2339 const struct mips_cl_insn *insn)
2340 {
2341 if (mips_relax.sequence != 2)
2342 {
2343 unsigned int i;
2344
2345 for (i = ARRAY_SIZE (history); i-- > first;)
2346 if (i >= first + n)
2347 history[i] = history[i - n];
2348 else
2349 history[i] = *insn;
2350 }
2351 }
2352
2353 /* Clear the error in insn_error. */
2354
2355 static void
2356 clear_insn_error (void)
2357 {
2358 memset (&insn_error, 0, sizeof (insn_error));
2359 }
2360
2361 /* Possibly record error message MSG for the current instruction.
2362 If the error is about a particular argument, ARGNUM is the 1-based
2363 number of that argument, otherwise it is 0. FORMAT is the format
2364 of MSG. Return true if MSG was used, false if the current message
2365 was kept. */
2366
2367 static bfd_boolean
2368 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2369 const char *msg)
2370 {
2371 if (argnum == 0)
2372 {
2373 /* Give priority to errors against specific arguments, and to
2374 the first whole-instruction message. */
2375 if (insn_error.msg)
2376 return FALSE;
2377 }
2378 else
2379 {
2380 /* Keep insn_error if it is against a later argument. */
2381 if (argnum < insn_error.min_argnum)
2382 return FALSE;
2383
2384 /* If both errors are against the same argument but are different,
2385 give up on reporting a specific error for this argument.
2386 See the comment about mips_insn_error for details. */
2387 if (argnum == insn_error.min_argnum
2388 && insn_error.msg
2389 && strcmp (insn_error.msg, msg) != 0)
2390 {
2391 insn_error.msg = 0;
2392 insn_error.min_argnum += 1;
2393 return FALSE;
2394 }
2395 }
2396 insn_error.min_argnum = argnum;
2397 insn_error.format = format;
2398 insn_error.msg = msg;
2399 return TRUE;
2400 }
2401
2402 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2403 as for set_insn_error_format. */
2404
2405 static void
2406 set_insn_error (int argnum, const char *msg)
2407 {
2408 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2409 }
2410
2411 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2412 as for set_insn_error_format. */
2413
2414 static void
2415 set_insn_error_i (int argnum, const char *msg, int i)
2416 {
2417 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2418 insn_error.u.i = i;
2419 }
2420
2421 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2422 are as for set_insn_error_format. */
2423
2424 static void
2425 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2426 {
2427 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2428 {
2429 insn_error.u.ss[0] = s1;
2430 insn_error.u.ss[1] = s2;
2431 }
2432 }
2433
2434 /* Report the error in insn_error, which is against assembly code STR. */
2435
2436 static void
2437 report_insn_error (const char *str)
2438 {
2439 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2440
2441 switch (insn_error.format)
2442 {
2443 case ERR_FMT_PLAIN:
2444 as_bad (msg, str);
2445 break;
2446
2447 case ERR_FMT_I:
2448 as_bad (msg, insn_error.u.i, str);
2449 break;
2450
2451 case ERR_FMT_SS:
2452 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2453 break;
2454 }
2455
2456 free ((char *) msg);
2457 }
2458
2459 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2460 the idea is to make it obvious at a glance that each errata is
2461 included. */
2462
2463 static void
2464 init_vr4120_conflicts (void)
2465 {
2466 #define CONFLICT(FIRST, SECOND) \
2467 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2468
2469 /* Errata 21 - [D]DIV[U] after [D]MACC */
2470 CONFLICT (MACC, DIV);
2471 CONFLICT (DMACC, DIV);
2472
2473 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2474 CONFLICT (DMULT, DMULT);
2475 CONFLICT (DMULT, DMACC);
2476 CONFLICT (DMACC, DMULT);
2477 CONFLICT (DMACC, DMACC);
2478
2479 /* Errata 24 - MT{LO,HI} after [D]MACC */
2480 CONFLICT (MACC, MTHILO);
2481 CONFLICT (DMACC, MTHILO);
2482
2483 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2484 instruction is executed immediately after a MACC or DMACC
2485 instruction, the result of [either instruction] is incorrect." */
2486 CONFLICT (MACC, MULT);
2487 CONFLICT (MACC, DMULT);
2488 CONFLICT (DMACC, MULT);
2489 CONFLICT (DMACC, DMULT);
2490
2491 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2492 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2493 DDIV or DDIVU instruction, the result of the MACC or
2494 DMACC instruction is incorrect.". */
2495 CONFLICT (DMULT, MACC);
2496 CONFLICT (DMULT, DMACC);
2497 CONFLICT (DIV, MACC);
2498 CONFLICT (DIV, DMACC);
2499
2500 #undef CONFLICT
2501 }
2502
2503 struct regname {
2504 const char *name;
2505 unsigned int num;
2506 };
2507
2508 #define RNUM_MASK 0x00000ff
2509 #define RTYPE_MASK 0x0ffff00
2510 #define RTYPE_NUM 0x0000100
2511 #define RTYPE_FPU 0x0000200
2512 #define RTYPE_FCC 0x0000400
2513 #define RTYPE_VEC 0x0000800
2514 #define RTYPE_GP 0x0001000
2515 #define RTYPE_CP0 0x0002000
2516 #define RTYPE_PC 0x0004000
2517 #define RTYPE_ACC 0x0008000
2518 #define RTYPE_CCC 0x0010000
2519 #define RTYPE_VI 0x0020000
2520 #define RTYPE_VF 0x0040000
2521 #define RTYPE_R5900_I 0x0080000
2522 #define RTYPE_R5900_Q 0x0100000
2523 #define RTYPE_R5900_R 0x0200000
2524 #define RTYPE_R5900_ACC 0x0400000
2525 #define RTYPE_MSA 0x0800000
2526 #define RWARN 0x8000000
2527
2528 #define GENERIC_REGISTER_NUMBERS \
2529 {"$0", RTYPE_NUM | 0}, \
2530 {"$1", RTYPE_NUM | 1}, \
2531 {"$2", RTYPE_NUM | 2}, \
2532 {"$3", RTYPE_NUM | 3}, \
2533 {"$4", RTYPE_NUM | 4}, \
2534 {"$5", RTYPE_NUM | 5}, \
2535 {"$6", RTYPE_NUM | 6}, \
2536 {"$7", RTYPE_NUM | 7}, \
2537 {"$8", RTYPE_NUM | 8}, \
2538 {"$9", RTYPE_NUM | 9}, \
2539 {"$10", RTYPE_NUM | 10}, \
2540 {"$11", RTYPE_NUM | 11}, \
2541 {"$12", RTYPE_NUM | 12}, \
2542 {"$13", RTYPE_NUM | 13}, \
2543 {"$14", RTYPE_NUM | 14}, \
2544 {"$15", RTYPE_NUM | 15}, \
2545 {"$16", RTYPE_NUM | 16}, \
2546 {"$17", RTYPE_NUM | 17}, \
2547 {"$18", RTYPE_NUM | 18}, \
2548 {"$19", RTYPE_NUM | 19}, \
2549 {"$20", RTYPE_NUM | 20}, \
2550 {"$21", RTYPE_NUM | 21}, \
2551 {"$22", RTYPE_NUM | 22}, \
2552 {"$23", RTYPE_NUM | 23}, \
2553 {"$24", RTYPE_NUM | 24}, \
2554 {"$25", RTYPE_NUM | 25}, \
2555 {"$26", RTYPE_NUM | 26}, \
2556 {"$27", RTYPE_NUM | 27}, \
2557 {"$28", RTYPE_NUM | 28}, \
2558 {"$29", RTYPE_NUM | 29}, \
2559 {"$30", RTYPE_NUM | 30}, \
2560 {"$31", RTYPE_NUM | 31}
2561
2562 #define FPU_REGISTER_NAMES \
2563 {"$f0", RTYPE_FPU | 0}, \
2564 {"$f1", RTYPE_FPU | 1}, \
2565 {"$f2", RTYPE_FPU | 2}, \
2566 {"$f3", RTYPE_FPU | 3}, \
2567 {"$f4", RTYPE_FPU | 4}, \
2568 {"$f5", RTYPE_FPU | 5}, \
2569 {"$f6", RTYPE_FPU | 6}, \
2570 {"$f7", RTYPE_FPU | 7}, \
2571 {"$f8", RTYPE_FPU | 8}, \
2572 {"$f9", RTYPE_FPU | 9}, \
2573 {"$f10", RTYPE_FPU | 10}, \
2574 {"$f11", RTYPE_FPU | 11}, \
2575 {"$f12", RTYPE_FPU | 12}, \
2576 {"$f13", RTYPE_FPU | 13}, \
2577 {"$f14", RTYPE_FPU | 14}, \
2578 {"$f15", RTYPE_FPU | 15}, \
2579 {"$f16", RTYPE_FPU | 16}, \
2580 {"$f17", RTYPE_FPU | 17}, \
2581 {"$f18", RTYPE_FPU | 18}, \
2582 {"$f19", RTYPE_FPU | 19}, \
2583 {"$f20", RTYPE_FPU | 20}, \
2584 {"$f21", RTYPE_FPU | 21}, \
2585 {"$f22", RTYPE_FPU | 22}, \
2586 {"$f23", RTYPE_FPU | 23}, \
2587 {"$f24", RTYPE_FPU | 24}, \
2588 {"$f25", RTYPE_FPU | 25}, \
2589 {"$f26", RTYPE_FPU | 26}, \
2590 {"$f27", RTYPE_FPU | 27}, \
2591 {"$f28", RTYPE_FPU | 28}, \
2592 {"$f29", RTYPE_FPU | 29}, \
2593 {"$f30", RTYPE_FPU | 30}, \
2594 {"$f31", RTYPE_FPU | 31}
2595
2596 #define FPU_CONDITION_CODE_NAMES \
2597 {"$fcc0", RTYPE_FCC | 0}, \
2598 {"$fcc1", RTYPE_FCC | 1}, \
2599 {"$fcc2", RTYPE_FCC | 2}, \
2600 {"$fcc3", RTYPE_FCC | 3}, \
2601 {"$fcc4", RTYPE_FCC | 4}, \
2602 {"$fcc5", RTYPE_FCC | 5}, \
2603 {"$fcc6", RTYPE_FCC | 6}, \
2604 {"$fcc7", RTYPE_FCC | 7}
2605
2606 #define COPROC_CONDITION_CODE_NAMES \
2607 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2608 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2609 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2610 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2611 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2612 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2613 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2614 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2615
2616 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2617 {"$a4", RTYPE_GP | 8}, \
2618 {"$a5", RTYPE_GP | 9}, \
2619 {"$a6", RTYPE_GP | 10}, \
2620 {"$a7", RTYPE_GP | 11}, \
2621 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2622 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2623 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2624 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2625 {"$t0", RTYPE_GP | 12}, \
2626 {"$t1", RTYPE_GP | 13}, \
2627 {"$t2", RTYPE_GP | 14}, \
2628 {"$t3", RTYPE_GP | 15}
2629
2630 #define O32_SYMBOLIC_REGISTER_NAMES \
2631 {"$t0", RTYPE_GP | 8}, \
2632 {"$t1", RTYPE_GP | 9}, \
2633 {"$t2", RTYPE_GP | 10}, \
2634 {"$t3", RTYPE_GP | 11}, \
2635 {"$t4", RTYPE_GP | 12}, \
2636 {"$t5", RTYPE_GP | 13}, \
2637 {"$t6", RTYPE_GP | 14}, \
2638 {"$t7", RTYPE_GP | 15}, \
2639 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2640 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2641 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2642 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2643
2644 /* Remaining symbolic register names */
2645 #define SYMBOLIC_REGISTER_NAMES \
2646 {"$zero", RTYPE_GP | 0}, \
2647 {"$at", RTYPE_GP | 1}, \
2648 {"$AT", RTYPE_GP | 1}, \
2649 {"$v0", RTYPE_GP | 2}, \
2650 {"$v1", RTYPE_GP | 3}, \
2651 {"$a0", RTYPE_GP | 4}, \
2652 {"$a1", RTYPE_GP | 5}, \
2653 {"$a2", RTYPE_GP | 6}, \
2654 {"$a3", RTYPE_GP | 7}, \
2655 {"$s0", RTYPE_GP | 16}, \
2656 {"$s1", RTYPE_GP | 17}, \
2657 {"$s2", RTYPE_GP | 18}, \
2658 {"$s3", RTYPE_GP | 19}, \
2659 {"$s4", RTYPE_GP | 20}, \
2660 {"$s5", RTYPE_GP | 21}, \
2661 {"$s6", RTYPE_GP | 22}, \
2662 {"$s7", RTYPE_GP | 23}, \
2663 {"$t8", RTYPE_GP | 24}, \
2664 {"$t9", RTYPE_GP | 25}, \
2665 {"$k0", RTYPE_GP | 26}, \
2666 {"$kt0", RTYPE_GP | 26}, \
2667 {"$k1", RTYPE_GP | 27}, \
2668 {"$kt1", RTYPE_GP | 27}, \
2669 {"$gp", RTYPE_GP | 28}, \
2670 {"$sp", RTYPE_GP | 29}, \
2671 {"$s8", RTYPE_GP | 30}, \
2672 {"$fp", RTYPE_GP | 30}, \
2673 {"$ra", RTYPE_GP | 31}
2674
2675 #define MIPS16_SPECIAL_REGISTER_NAMES \
2676 {"$pc", RTYPE_PC | 0}
2677
2678 #define MDMX_VECTOR_REGISTER_NAMES \
2679 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2680 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2681 {"$v2", RTYPE_VEC | 2}, \
2682 {"$v3", RTYPE_VEC | 3}, \
2683 {"$v4", RTYPE_VEC | 4}, \
2684 {"$v5", RTYPE_VEC | 5}, \
2685 {"$v6", RTYPE_VEC | 6}, \
2686 {"$v7", RTYPE_VEC | 7}, \
2687 {"$v8", RTYPE_VEC | 8}, \
2688 {"$v9", RTYPE_VEC | 9}, \
2689 {"$v10", RTYPE_VEC | 10}, \
2690 {"$v11", RTYPE_VEC | 11}, \
2691 {"$v12", RTYPE_VEC | 12}, \
2692 {"$v13", RTYPE_VEC | 13}, \
2693 {"$v14", RTYPE_VEC | 14}, \
2694 {"$v15", RTYPE_VEC | 15}, \
2695 {"$v16", RTYPE_VEC | 16}, \
2696 {"$v17", RTYPE_VEC | 17}, \
2697 {"$v18", RTYPE_VEC | 18}, \
2698 {"$v19", RTYPE_VEC | 19}, \
2699 {"$v20", RTYPE_VEC | 20}, \
2700 {"$v21", RTYPE_VEC | 21}, \
2701 {"$v22", RTYPE_VEC | 22}, \
2702 {"$v23", RTYPE_VEC | 23}, \
2703 {"$v24", RTYPE_VEC | 24}, \
2704 {"$v25", RTYPE_VEC | 25}, \
2705 {"$v26", RTYPE_VEC | 26}, \
2706 {"$v27", RTYPE_VEC | 27}, \
2707 {"$v28", RTYPE_VEC | 28}, \
2708 {"$v29", RTYPE_VEC | 29}, \
2709 {"$v30", RTYPE_VEC | 30}, \
2710 {"$v31", RTYPE_VEC | 31}
2711
2712 #define R5900_I_NAMES \
2713 {"$I", RTYPE_R5900_I | 0}
2714
2715 #define R5900_Q_NAMES \
2716 {"$Q", RTYPE_R5900_Q | 0}
2717
2718 #define R5900_R_NAMES \
2719 {"$R", RTYPE_R5900_R | 0}
2720
2721 #define R5900_ACC_NAMES \
2722 {"$ACC", RTYPE_R5900_ACC | 0 }
2723
2724 #define MIPS_DSP_ACCUMULATOR_NAMES \
2725 {"$ac0", RTYPE_ACC | 0}, \
2726 {"$ac1", RTYPE_ACC | 1}, \
2727 {"$ac2", RTYPE_ACC | 2}, \
2728 {"$ac3", RTYPE_ACC | 3}
2729
2730 static const struct regname reg_names[] = {
2731 GENERIC_REGISTER_NUMBERS,
2732 FPU_REGISTER_NAMES,
2733 FPU_CONDITION_CODE_NAMES,
2734 COPROC_CONDITION_CODE_NAMES,
2735
2736 /* The $txx registers depends on the abi,
2737 these will be added later into the symbol table from
2738 one of the tables below once mips_abi is set after
2739 parsing of arguments from the command line. */
2740 SYMBOLIC_REGISTER_NAMES,
2741
2742 MIPS16_SPECIAL_REGISTER_NAMES,
2743 MDMX_VECTOR_REGISTER_NAMES,
2744 R5900_I_NAMES,
2745 R5900_Q_NAMES,
2746 R5900_R_NAMES,
2747 R5900_ACC_NAMES,
2748 MIPS_DSP_ACCUMULATOR_NAMES,
2749 {0, 0}
2750 };
2751
2752 static const struct regname reg_names_o32[] = {
2753 O32_SYMBOLIC_REGISTER_NAMES,
2754 {0, 0}
2755 };
2756
2757 static const struct regname reg_names_n32n64[] = {
2758 N32N64_SYMBOLIC_REGISTER_NAMES,
2759 {0, 0}
2760 };
2761
2762 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2763 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2764 of these register symbols, return the associated vector register,
2765 otherwise return SYMVAL itself. */
2766
2767 static unsigned int
2768 mips_prefer_vec_regno (unsigned int symval)
2769 {
2770 if ((symval & -2) == (RTYPE_GP | 2))
2771 return RTYPE_VEC | (symval & 1);
2772 return symval;
2773 }
2774
2775 /* Return true if string [S, E) is a valid register name, storing its
2776 symbol value in *SYMVAL_PTR if so. */
2777
2778 static bfd_boolean
2779 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2780 {
2781 char save_c;
2782 symbolS *symbol;
2783
2784 /* Terminate name. */
2785 save_c = *e;
2786 *e = '\0';
2787
2788 /* Look up the name. */
2789 symbol = symbol_find (s);
2790 *e = save_c;
2791
2792 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2793 return FALSE;
2794
2795 *symval_ptr = S_GET_VALUE (symbol);
2796 return TRUE;
2797 }
2798
2799 /* Return true if the string at *SPTR is a valid register name. Allow it
2800 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2801 is nonnull.
2802
2803 When returning true, move *SPTR past the register, store the
2804 register's symbol value in *SYMVAL_PTR and the channel mask in
2805 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2806 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2807 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2808
2809 static bfd_boolean
2810 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2811 unsigned int *channels_ptr)
2812 {
2813 char *s, *e, *m;
2814 const char *q;
2815 unsigned int channels, symval, bit;
2816
2817 /* Find end of name. */
2818 s = e = *sptr;
2819 if (is_name_beginner (*e))
2820 ++e;
2821 while (is_part_of_name (*e))
2822 ++e;
2823
2824 channels = 0;
2825 if (!mips_parse_register_1 (s, e, &symval))
2826 {
2827 if (!channels_ptr)
2828 return FALSE;
2829
2830 /* Eat characters from the end of the string that are valid
2831 channel suffixes. The preceding register must be $ACC or
2832 end with a digit, so there is no ambiguity. */
2833 bit = 1;
2834 m = e;
2835 for (q = "wzyx"; *q; q++, bit <<= 1)
2836 if (m > s && m[-1] == *q)
2837 {
2838 --m;
2839 channels |= bit;
2840 }
2841
2842 if (channels == 0
2843 || !mips_parse_register_1 (s, m, &symval)
2844 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2845 return FALSE;
2846 }
2847
2848 *sptr = e;
2849 *symval_ptr = symval;
2850 if (channels_ptr)
2851 *channels_ptr = channels;
2852 return TRUE;
2853 }
2854
2855 /* Check if SPTR points at a valid register specifier according to TYPES.
2856 If so, then return 1, advance S to consume the specifier and store
2857 the register's number in REGNOP, otherwise return 0. */
2858
2859 static int
2860 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2861 {
2862 unsigned int regno;
2863
2864 if (mips_parse_register (s, &regno, NULL))
2865 {
2866 if (types & RTYPE_VEC)
2867 regno = mips_prefer_vec_regno (regno);
2868 if (regno & types)
2869 regno &= RNUM_MASK;
2870 else
2871 regno = ~0;
2872 }
2873 else
2874 {
2875 if (types & RWARN)
2876 as_warn (_("unrecognized register name `%s'"), *s);
2877 regno = ~0;
2878 }
2879 if (regnop)
2880 *regnop = regno;
2881 return regno <= RNUM_MASK;
2882 }
2883
2884 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2885 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2886
2887 static char *
2888 mips_parse_vu0_channels (char *s, unsigned int *channels)
2889 {
2890 unsigned int i;
2891
2892 *channels = 0;
2893 for (i = 0; i < 4; i++)
2894 if (*s == "xyzw"[i])
2895 {
2896 *channels |= 1 << (3 - i);
2897 ++s;
2898 }
2899 return s;
2900 }
2901
2902 /* Token types for parsed operand lists. */
2903 enum mips_operand_token_type {
2904 /* A plain register, e.g. $f2. */
2905 OT_REG,
2906
2907 /* A 4-bit XYZW channel mask. */
2908 OT_CHANNELS,
2909
2910 /* A constant vector index, e.g. [1]. */
2911 OT_INTEGER_INDEX,
2912
2913 /* A register vector index, e.g. [$2]. */
2914 OT_REG_INDEX,
2915
2916 /* A continuous range of registers, e.g. $s0-$s4. */
2917 OT_REG_RANGE,
2918
2919 /* A (possibly relocated) expression. */
2920 OT_INTEGER,
2921
2922 /* A floating-point value. */
2923 OT_FLOAT,
2924
2925 /* A single character. This can be '(', ')' or ',', but '(' only appears
2926 before OT_REGs. */
2927 OT_CHAR,
2928
2929 /* A doubled character, either "--" or "++". */
2930 OT_DOUBLE_CHAR,
2931
2932 /* The end of the operand list. */
2933 OT_END
2934 };
2935
2936 /* A parsed operand token. */
2937 struct mips_operand_token
2938 {
2939 /* The type of token. */
2940 enum mips_operand_token_type type;
2941 union
2942 {
2943 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2944 unsigned int regno;
2945
2946 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2947 unsigned int channels;
2948
2949 /* The integer value of an OT_INTEGER_INDEX. */
2950 addressT index;
2951
2952 /* The two register symbol values involved in an OT_REG_RANGE. */
2953 struct {
2954 unsigned int regno1;
2955 unsigned int regno2;
2956 } reg_range;
2957
2958 /* The value of an OT_INTEGER. The value is represented as an
2959 expression and the relocation operators that were applied to
2960 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2961 relocation operators were used. */
2962 struct {
2963 expressionS value;
2964 bfd_reloc_code_real_type relocs[3];
2965 } integer;
2966
2967 /* The binary data for an OT_FLOAT constant, and the number of bytes
2968 in the constant. */
2969 struct {
2970 unsigned char data[8];
2971 int length;
2972 } flt;
2973
2974 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2975 char ch;
2976 } u;
2977 };
2978
2979 /* An obstack used to construct lists of mips_operand_tokens. */
2980 static struct obstack mips_operand_tokens;
2981
2982 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2983
2984 static void
2985 mips_add_token (struct mips_operand_token *token,
2986 enum mips_operand_token_type type)
2987 {
2988 token->type = type;
2989 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2990 }
2991
2992 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2993 and OT_REG tokens for them if so, and return a pointer to the first
2994 unconsumed character. Return null otherwise. */
2995
2996 static char *
2997 mips_parse_base_start (char *s)
2998 {
2999 struct mips_operand_token token;
3000 unsigned int regno, channels;
3001 bfd_boolean decrement_p;
3002
3003 if (*s != '(')
3004 return 0;
3005
3006 ++s;
3007 SKIP_SPACE_TABS (s);
3008
3009 /* Only match "--" as part of a base expression. In other contexts "--X"
3010 is a double negative. */
3011 decrement_p = (s[0] == '-' && s[1] == '-');
3012 if (decrement_p)
3013 {
3014 s += 2;
3015 SKIP_SPACE_TABS (s);
3016 }
3017
3018 /* Allow a channel specifier because that leads to better error messages
3019 than treating something like "$vf0x++" as an expression. */
3020 if (!mips_parse_register (&s, &regno, &channels))
3021 return 0;
3022
3023 token.u.ch = '(';
3024 mips_add_token (&token, OT_CHAR);
3025
3026 if (decrement_p)
3027 {
3028 token.u.ch = '-';
3029 mips_add_token (&token, OT_DOUBLE_CHAR);
3030 }
3031
3032 token.u.regno = regno;
3033 mips_add_token (&token, OT_REG);
3034
3035 if (channels)
3036 {
3037 token.u.channels = channels;
3038 mips_add_token (&token, OT_CHANNELS);
3039 }
3040
3041 /* For consistency, only match "++" as part of base expressions too. */
3042 SKIP_SPACE_TABS (s);
3043 if (s[0] == '+' && s[1] == '+')
3044 {
3045 s += 2;
3046 token.u.ch = '+';
3047 mips_add_token (&token, OT_DOUBLE_CHAR);
3048 }
3049
3050 return s;
3051 }
3052
3053 /* Parse one or more tokens from S. Return a pointer to the first
3054 unconsumed character on success. Return null if an error was found
3055 and store the error text in insn_error. FLOAT_FORMAT is as for
3056 mips_parse_arguments. */
3057
3058 static char *
3059 mips_parse_argument_token (char *s, char float_format)
3060 {
3061 char *end, *save_in;
3062 const char *err;
3063 unsigned int regno1, regno2, channels;
3064 struct mips_operand_token token;
3065
3066 /* First look for "($reg", since we want to treat that as an
3067 OT_CHAR and OT_REG rather than an expression. */
3068 end = mips_parse_base_start (s);
3069 if (end)
3070 return end;
3071
3072 /* Handle other characters that end up as OT_CHARs. */
3073 if (*s == ')' || *s == ',')
3074 {
3075 token.u.ch = *s;
3076 mips_add_token (&token, OT_CHAR);
3077 ++s;
3078 return s;
3079 }
3080
3081 /* Handle tokens that start with a register. */
3082 if (mips_parse_register (&s, &regno1, &channels))
3083 {
3084 if (channels)
3085 {
3086 /* A register and a VU0 channel suffix. */
3087 token.u.regno = regno1;
3088 mips_add_token (&token, OT_REG);
3089
3090 token.u.channels = channels;
3091 mips_add_token (&token, OT_CHANNELS);
3092 return s;
3093 }
3094
3095 SKIP_SPACE_TABS (s);
3096 if (*s == '-')
3097 {
3098 /* A register range. */
3099 ++s;
3100 SKIP_SPACE_TABS (s);
3101 if (!mips_parse_register (&s, &regno2, NULL))
3102 {
3103 set_insn_error (0, _("invalid register range"));
3104 return 0;
3105 }
3106
3107 token.u.reg_range.regno1 = regno1;
3108 token.u.reg_range.regno2 = regno2;
3109 mips_add_token (&token, OT_REG_RANGE);
3110 return s;
3111 }
3112
3113 /* Add the register itself. */
3114 token.u.regno = regno1;
3115 mips_add_token (&token, OT_REG);
3116
3117 /* Check for a vector index. */
3118 if (*s == '[')
3119 {
3120 ++s;
3121 SKIP_SPACE_TABS (s);
3122 if (mips_parse_register (&s, &token.u.regno, NULL))
3123 mips_add_token (&token, OT_REG_INDEX);
3124 else
3125 {
3126 expressionS element;
3127
3128 my_getExpression (&element, s);
3129 if (element.X_op != O_constant)
3130 {
3131 set_insn_error (0, _("vector element must be constant"));
3132 return 0;
3133 }
3134 s = expr_end;
3135 token.u.index = element.X_add_number;
3136 mips_add_token (&token, OT_INTEGER_INDEX);
3137 }
3138 SKIP_SPACE_TABS (s);
3139 if (*s != ']')
3140 {
3141 set_insn_error (0, _("missing `]'"));
3142 return 0;
3143 }
3144 ++s;
3145 }
3146 return s;
3147 }
3148
3149 if (float_format)
3150 {
3151 /* First try to treat expressions as floats. */
3152 save_in = input_line_pointer;
3153 input_line_pointer = s;
3154 err = md_atof (float_format, (char *) token.u.flt.data,
3155 &token.u.flt.length);
3156 end = input_line_pointer;
3157 input_line_pointer = save_in;
3158 if (err && *err)
3159 {
3160 set_insn_error (0, err);
3161 return 0;
3162 }
3163 if (s != end)
3164 {
3165 mips_add_token (&token, OT_FLOAT);
3166 return end;
3167 }
3168 }
3169
3170 /* Treat everything else as an integer expression. */
3171 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3172 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3173 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3174 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3175 s = expr_end;
3176 mips_add_token (&token, OT_INTEGER);
3177 return s;
3178 }
3179
3180 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3181 if expressions should be treated as 32-bit floating-point constants,
3182 'd' if they should be treated as 64-bit floating-point constants,
3183 or 0 if they should be treated as integer expressions (the usual case).
3184
3185 Return a list of tokens on success, otherwise return 0. The caller
3186 must obstack_free the list after use. */
3187
3188 static struct mips_operand_token *
3189 mips_parse_arguments (char *s, char float_format)
3190 {
3191 struct mips_operand_token token;
3192
3193 SKIP_SPACE_TABS (s);
3194 while (*s)
3195 {
3196 s = mips_parse_argument_token (s, float_format);
3197 if (!s)
3198 {
3199 obstack_free (&mips_operand_tokens,
3200 obstack_finish (&mips_operand_tokens));
3201 return 0;
3202 }
3203 SKIP_SPACE_TABS (s);
3204 }
3205 mips_add_token (&token, OT_END);
3206 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3207 }
3208
3209 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3210 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3211
3212 static bfd_boolean
3213 is_opcode_valid (const struct mips_opcode *mo)
3214 {
3215 int isa = mips_opts.isa;
3216 int ase = mips_opts.ase;
3217 int fp_s, fp_d;
3218 unsigned int i;
3219
3220 if (ISA_HAS_64BIT_REGS (isa))
3221 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3222 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3223 ase |= mips_ases[i].flags64;
3224
3225 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3226 return FALSE;
3227
3228 /* Check whether the instruction or macro requires single-precision or
3229 double-precision floating-point support. Note that this information is
3230 stored differently in the opcode table for insns and macros. */
3231 if (mo->pinfo == INSN_MACRO)
3232 {
3233 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3234 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3235 }
3236 else
3237 {
3238 fp_s = mo->pinfo & FP_S;
3239 fp_d = mo->pinfo & FP_D;
3240 }
3241
3242 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3243 return FALSE;
3244
3245 if (fp_s && mips_opts.soft_float)
3246 return FALSE;
3247
3248 return TRUE;
3249 }
3250
3251 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3252 selected ISA and architecture. */
3253
3254 static bfd_boolean
3255 is_opcode_valid_16 (const struct mips_opcode *mo)
3256 {
3257 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3258 }
3259
3260 /* Return TRUE if the size of the microMIPS opcode MO matches one
3261 explicitly requested. Always TRUE in the standard MIPS mode.
3262 Use is_size_valid_16 for MIPS16 opcodes. */
3263
3264 static bfd_boolean
3265 is_size_valid (const struct mips_opcode *mo)
3266 {
3267 if (!mips_opts.micromips)
3268 return TRUE;
3269
3270 if (mips_opts.insn32)
3271 {
3272 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3273 return FALSE;
3274 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3275 return FALSE;
3276 }
3277 if (!forced_insn_length)
3278 return TRUE;
3279 if (mo->pinfo == INSN_MACRO)
3280 return FALSE;
3281 return forced_insn_length == micromips_insn_length (mo);
3282 }
3283
3284 /* Return TRUE if the size of the MIPS16 opcode MO matches one
3285 explicitly requested. */
3286
3287 static bfd_boolean
3288 is_size_valid_16 (const struct mips_opcode *mo)
3289 {
3290 if (!forced_insn_length)
3291 return TRUE;
3292 if (mo->pinfo == INSN_MACRO)
3293 return FALSE;
3294 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3295 return FALSE;
3296 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3297 return FALSE;
3298 return TRUE;
3299 }
3300
3301 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3302 of the preceding instruction. Always TRUE in the standard MIPS mode.
3303
3304 We don't accept macros in 16-bit delay slots to avoid a case where
3305 a macro expansion fails because it relies on a preceding 32-bit real
3306 instruction to have matched and does not handle the operands correctly.
3307 The only macros that may expand to 16-bit instructions are JAL that
3308 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3309 and BGT (that likewise cannot be placed in a delay slot) that decay to
3310 a NOP. In all these cases the macros precede any corresponding real
3311 instruction definitions in the opcode table, so they will match in the
3312 second pass where the size of the delay slot is ignored and therefore
3313 produce correct code. */
3314
3315 static bfd_boolean
3316 is_delay_slot_valid (const struct mips_opcode *mo)
3317 {
3318 if (!mips_opts.micromips)
3319 return TRUE;
3320
3321 if (mo->pinfo == INSN_MACRO)
3322 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3323 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3324 && micromips_insn_length (mo) != 4)
3325 return FALSE;
3326 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3327 && micromips_insn_length (mo) != 2)
3328 return FALSE;
3329
3330 return TRUE;
3331 }
3332
3333 /* For consistency checking, verify that all bits of OPCODE are specified
3334 either by the match/mask part of the instruction definition, or by the
3335 operand list. Also build up a list of operands in OPERANDS.
3336
3337 INSN_BITS says which bits of the instruction are significant.
3338 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3339 provides the mips_operand description of each operand. DECODE_OPERAND
3340 is null for MIPS16 instructions. */
3341
3342 static int
3343 validate_mips_insn (const struct mips_opcode *opcode,
3344 unsigned long insn_bits,
3345 const struct mips_operand *(*decode_operand) (const char *),
3346 struct mips_operand_array *operands)
3347 {
3348 const char *s;
3349 unsigned long used_bits, doubled, undefined, opno, mask;
3350 const struct mips_operand *operand;
3351
3352 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3353 if ((mask & opcode->match) != opcode->match)
3354 {
3355 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3356 opcode->name, opcode->args);
3357 return 0;
3358 }
3359 used_bits = 0;
3360 opno = 0;
3361 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3362 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3363 for (s = opcode->args; *s; ++s)
3364 switch (*s)
3365 {
3366 case ',':
3367 case '(':
3368 case ')':
3369 break;
3370
3371 case '#':
3372 s++;
3373 break;
3374
3375 default:
3376 if (!decode_operand)
3377 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
3378 else
3379 operand = decode_operand (s);
3380 if (!operand && opcode->pinfo != INSN_MACRO)
3381 {
3382 as_bad (_("internal: unknown operand type: %s %s"),
3383 opcode->name, opcode->args);
3384 return 0;
3385 }
3386 gas_assert (opno < MAX_OPERANDS);
3387 operands->operand[opno] = operand;
3388 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3389 {
3390 used_bits = mips_insert_operand (operand, used_bits, -1);
3391 if (operand->type == OP_MDMX_IMM_REG)
3392 /* Bit 5 is the format selector (OB vs QH). The opcode table
3393 has separate entries for each format. */
3394 used_bits &= ~(1 << (operand->lsb + 5));
3395 if (operand->type == OP_ENTRY_EXIT_LIST)
3396 used_bits &= ~(mask & 0x700);
3397 }
3398 /* Skip prefix characters. */
3399 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3400 ++s;
3401 opno += 1;
3402 break;
3403 }
3404 doubled = used_bits & mask & insn_bits;
3405 if (doubled)
3406 {
3407 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3408 " %s %s"), doubled, opcode->name, opcode->args);
3409 return 0;
3410 }
3411 used_bits |= mask;
3412 undefined = ~used_bits & insn_bits;
3413 if (opcode->pinfo != INSN_MACRO && undefined)
3414 {
3415 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3416 undefined, opcode->name, opcode->args);
3417 return 0;
3418 }
3419 used_bits &= ~insn_bits;
3420 if (used_bits)
3421 {
3422 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3423 used_bits, opcode->name, opcode->args);
3424 return 0;
3425 }
3426 return 1;
3427 }
3428
3429 /* The MIPS16 version of validate_mips_insn. */
3430
3431 static int
3432 validate_mips16_insn (const struct mips_opcode *opcode,
3433 struct mips_operand_array *operands)
3434 {
3435 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
3436
3437 return validate_mips_insn (opcode, insn_bits, 0, operands);
3438 }
3439
3440 /* The microMIPS version of validate_mips_insn. */
3441
3442 static int
3443 validate_micromips_insn (const struct mips_opcode *opc,
3444 struct mips_operand_array *operands)
3445 {
3446 unsigned long insn_bits;
3447 unsigned long major;
3448 unsigned int length;
3449
3450 if (opc->pinfo == INSN_MACRO)
3451 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3452 operands);
3453
3454 length = micromips_insn_length (opc);
3455 if (length != 2 && length != 4)
3456 {
3457 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3458 "%s %s"), length, opc->name, opc->args);
3459 return 0;
3460 }
3461 major = opc->match >> (10 + 8 * (length - 2));
3462 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3463 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3464 {
3465 as_bad (_("internal error: bad microMIPS opcode "
3466 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3467 return 0;
3468 }
3469
3470 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3471 insn_bits = 1 << 4 * length;
3472 insn_bits <<= 4 * length;
3473 insn_bits -= 1;
3474 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3475 operands);
3476 }
3477
3478 /* This function is called once, at assembler startup time. It should set up
3479 all the tables, etc. that the MD part of the assembler will need. */
3480
3481 void
3482 md_begin (void)
3483 {
3484 const char *retval = NULL;
3485 int i = 0;
3486 int broken = 0;
3487
3488 if (mips_pic != NO_PIC)
3489 {
3490 if (g_switch_seen && g_switch_value != 0)
3491 as_bad (_("-G may not be used in position-independent code"));
3492 g_switch_value = 0;
3493 }
3494 else if (mips_abicalls)
3495 {
3496 if (g_switch_seen && g_switch_value != 0)
3497 as_bad (_("-G may not be used with abicalls"));
3498 g_switch_value = 0;
3499 }
3500
3501 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3502 as_warn (_("could not set architecture and machine"));
3503
3504 op_hash = hash_new ();
3505
3506 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3507 for (i = 0; i < NUMOPCODES;)
3508 {
3509 const char *name = mips_opcodes[i].name;
3510
3511 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3512 if (retval != NULL)
3513 {
3514 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3515 mips_opcodes[i].name, retval);
3516 /* Probably a memory allocation problem? Give up now. */
3517 as_fatal (_("broken assembler, no assembly attempted"));
3518 }
3519 do
3520 {
3521 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3522 decode_mips_operand, &mips_operands[i]))
3523 broken = 1;
3524 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3525 {
3526 create_insn (&nop_insn, mips_opcodes + i);
3527 if (mips_fix_loongson2f_nop)
3528 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3529 nop_insn.fixed_p = 1;
3530 }
3531 ++i;
3532 }
3533 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3534 }
3535
3536 mips16_op_hash = hash_new ();
3537 mips16_operands = XCNEWVEC (struct mips_operand_array,
3538 bfd_mips16_num_opcodes);
3539
3540 i = 0;
3541 while (i < bfd_mips16_num_opcodes)
3542 {
3543 const char *name = mips16_opcodes[i].name;
3544
3545 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3546 if (retval != NULL)
3547 as_fatal (_("internal: can't hash `%s': %s"),
3548 mips16_opcodes[i].name, retval);
3549 do
3550 {
3551 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3552 broken = 1;
3553 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3554 {
3555 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3556 mips16_nop_insn.fixed_p = 1;
3557 }
3558 ++i;
3559 }
3560 while (i < bfd_mips16_num_opcodes
3561 && strcmp (mips16_opcodes[i].name, name) == 0);
3562 }
3563
3564 micromips_op_hash = hash_new ();
3565 micromips_operands = XCNEWVEC (struct mips_operand_array,
3566 bfd_micromips_num_opcodes);
3567
3568 i = 0;
3569 while (i < bfd_micromips_num_opcodes)
3570 {
3571 const char *name = micromips_opcodes[i].name;
3572
3573 retval = hash_insert (micromips_op_hash, name,
3574 (void *) &micromips_opcodes[i]);
3575 if (retval != NULL)
3576 as_fatal (_("internal: can't hash `%s': %s"),
3577 micromips_opcodes[i].name, retval);
3578 do
3579 {
3580 struct mips_cl_insn *micromips_nop_insn;
3581
3582 if (!validate_micromips_insn (&micromips_opcodes[i],
3583 &micromips_operands[i]))
3584 broken = 1;
3585
3586 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3587 {
3588 if (micromips_insn_length (micromips_opcodes + i) == 2)
3589 micromips_nop_insn = &micromips_nop16_insn;
3590 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3591 micromips_nop_insn = &micromips_nop32_insn;
3592 else
3593 continue;
3594
3595 if (micromips_nop_insn->insn_mo == NULL
3596 && strcmp (name, "nop") == 0)
3597 {
3598 create_insn (micromips_nop_insn, micromips_opcodes + i);
3599 micromips_nop_insn->fixed_p = 1;
3600 }
3601 }
3602 }
3603 while (++i < bfd_micromips_num_opcodes
3604 && strcmp (micromips_opcodes[i].name, name) == 0);
3605 }
3606
3607 if (broken)
3608 as_fatal (_("broken assembler, no assembly attempted"));
3609
3610 /* We add all the general register names to the symbol table. This
3611 helps us detect invalid uses of them. */
3612 for (i = 0; reg_names[i].name; i++)
3613 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3614 reg_names[i].num, /* & RNUM_MASK, */
3615 &zero_address_frag));
3616 if (HAVE_NEWABI)
3617 for (i = 0; reg_names_n32n64[i].name; i++)
3618 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3619 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3620 &zero_address_frag));
3621 else
3622 for (i = 0; reg_names_o32[i].name; i++)
3623 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3624 reg_names_o32[i].num, /* & RNUM_MASK, */
3625 &zero_address_frag));
3626
3627 for (i = 0; i < 32; i++)
3628 {
3629 char regname[6];
3630
3631 /* R5900 VU0 floating-point register. */
3632 sprintf (regname, "$vf%d", i);
3633 symbol_table_insert (symbol_new (regname, reg_section,
3634 RTYPE_VF | i, &zero_address_frag));
3635
3636 /* R5900 VU0 integer register. */
3637 sprintf (regname, "$vi%d", i);
3638 symbol_table_insert (symbol_new (regname, reg_section,
3639 RTYPE_VI | i, &zero_address_frag));
3640
3641 /* MSA register. */
3642 sprintf (regname, "$w%d", i);
3643 symbol_table_insert (symbol_new (regname, reg_section,
3644 RTYPE_MSA | i, &zero_address_frag));
3645 }
3646
3647 obstack_init (&mips_operand_tokens);
3648
3649 mips_no_prev_insn ();
3650
3651 mips_gprmask = 0;
3652 mips_cprmask[0] = 0;
3653 mips_cprmask[1] = 0;
3654 mips_cprmask[2] = 0;
3655 mips_cprmask[3] = 0;
3656
3657 /* set the default alignment for the text section (2**2) */
3658 record_alignment (text_section, 2);
3659
3660 bfd_set_gp_size (stdoutput, g_switch_value);
3661
3662 /* On a native system other than VxWorks, sections must be aligned
3663 to 16 byte boundaries. When configured for an embedded ELF
3664 target, we don't bother. */
3665 if (strncmp (TARGET_OS, "elf", 3) != 0
3666 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3667 {
3668 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3669 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3670 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3671 }
3672
3673 /* Create a .reginfo section for register masks and a .mdebug
3674 section for debugging information. */
3675 {
3676 segT seg;
3677 subsegT subseg;
3678 flagword flags;
3679 segT sec;
3680
3681 seg = now_seg;
3682 subseg = now_subseg;
3683
3684 /* The ABI says this section should be loaded so that the
3685 running program can access it. However, we don't load it
3686 if we are configured for an embedded target */
3687 flags = SEC_READONLY | SEC_DATA;
3688 if (strncmp (TARGET_OS, "elf", 3) != 0)
3689 flags |= SEC_ALLOC | SEC_LOAD;
3690
3691 if (mips_abi != N64_ABI)
3692 {
3693 sec = subseg_new (".reginfo", (subsegT) 0);
3694
3695 bfd_set_section_flags (stdoutput, sec, flags);
3696 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3697
3698 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3699 }
3700 else
3701 {
3702 /* The 64-bit ABI uses a .MIPS.options section rather than
3703 .reginfo section. */
3704 sec = subseg_new (".MIPS.options", (subsegT) 0);
3705 bfd_set_section_flags (stdoutput, sec, flags);
3706 bfd_set_section_alignment (stdoutput, sec, 3);
3707
3708 /* Set up the option header. */
3709 {
3710 Elf_Internal_Options opthdr;
3711 char *f;
3712
3713 opthdr.kind = ODK_REGINFO;
3714 opthdr.size = (sizeof (Elf_External_Options)
3715 + sizeof (Elf64_External_RegInfo));
3716 opthdr.section = 0;
3717 opthdr.info = 0;
3718 f = frag_more (sizeof (Elf_External_Options));
3719 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3720 (Elf_External_Options *) f);
3721
3722 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3723 }
3724 }
3725
3726 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3727 bfd_set_section_flags (stdoutput, sec,
3728 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3729 bfd_set_section_alignment (stdoutput, sec, 3);
3730 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3731
3732 if (ECOFF_DEBUGGING)
3733 {
3734 sec = subseg_new (".mdebug", (subsegT) 0);
3735 (void) bfd_set_section_flags (stdoutput, sec,
3736 SEC_HAS_CONTENTS | SEC_READONLY);
3737 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3738 }
3739 else if (mips_flag_pdr)
3740 {
3741 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3742 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3743 SEC_READONLY | SEC_RELOC
3744 | SEC_DEBUGGING);
3745 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3746 }
3747
3748 subseg_set (seg, subseg);
3749 }
3750
3751 if (mips_fix_vr4120)
3752 init_vr4120_conflicts ();
3753 }
3754
3755 static inline void
3756 fpabi_incompatible_with (int fpabi, const char *what)
3757 {
3758 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3759 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3760 }
3761
3762 static inline void
3763 fpabi_requires (int fpabi, const char *what)
3764 {
3765 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3766 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3767 }
3768
3769 /* Check -mabi and register sizes against the specified FP ABI. */
3770 static void
3771 check_fpabi (int fpabi)
3772 {
3773 switch (fpabi)
3774 {
3775 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3776 if (file_mips_opts.soft_float)
3777 fpabi_incompatible_with (fpabi, "softfloat");
3778 else if (file_mips_opts.single_float)
3779 fpabi_incompatible_with (fpabi, "singlefloat");
3780 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3781 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3782 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3783 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3784 break;
3785
3786 case Val_GNU_MIPS_ABI_FP_XX:
3787 if (mips_abi != O32_ABI)
3788 fpabi_requires (fpabi, "-mabi=32");
3789 else if (file_mips_opts.soft_float)
3790 fpabi_incompatible_with (fpabi, "softfloat");
3791 else if (file_mips_opts.single_float)
3792 fpabi_incompatible_with (fpabi, "singlefloat");
3793 else if (file_mips_opts.fp != 0)
3794 fpabi_requires (fpabi, "fp=xx");
3795 break;
3796
3797 case Val_GNU_MIPS_ABI_FP_64A:
3798 case Val_GNU_MIPS_ABI_FP_64:
3799 if (mips_abi != O32_ABI)
3800 fpabi_requires (fpabi, "-mabi=32");
3801 else if (file_mips_opts.soft_float)
3802 fpabi_incompatible_with (fpabi, "softfloat");
3803 else if (file_mips_opts.single_float)
3804 fpabi_incompatible_with (fpabi, "singlefloat");
3805 else if (file_mips_opts.fp != 64)
3806 fpabi_requires (fpabi, "fp=64");
3807 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3808 fpabi_incompatible_with (fpabi, "nooddspreg");
3809 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3810 fpabi_requires (fpabi, "nooddspreg");
3811 break;
3812
3813 case Val_GNU_MIPS_ABI_FP_SINGLE:
3814 if (file_mips_opts.soft_float)
3815 fpabi_incompatible_with (fpabi, "softfloat");
3816 else if (!file_mips_opts.single_float)
3817 fpabi_requires (fpabi, "singlefloat");
3818 break;
3819
3820 case Val_GNU_MIPS_ABI_FP_SOFT:
3821 if (!file_mips_opts.soft_float)
3822 fpabi_requires (fpabi, "softfloat");
3823 break;
3824
3825 case Val_GNU_MIPS_ABI_FP_OLD_64:
3826 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3827 Tag_GNU_MIPS_ABI_FP, fpabi);
3828 break;
3829
3830 case Val_GNU_MIPS_ABI_FP_NAN2008:
3831 /* Silently ignore compatibility value. */
3832 break;
3833
3834 default:
3835 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3836 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3837 break;
3838 }
3839 }
3840
3841 /* Perform consistency checks on the current options. */
3842
3843 static void
3844 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3845 {
3846 /* Check the size of integer registers agrees with the ABI and ISA. */
3847 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3848 as_bad (_("`gp=64' used with a 32-bit processor"));
3849 else if (abi_checks
3850 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3851 as_bad (_("`gp=32' used with a 64-bit ABI"));
3852 else if (abi_checks
3853 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3854 as_bad (_("`gp=64' used with a 32-bit ABI"));
3855
3856 /* Check the size of the float registers agrees with the ABI and ISA. */
3857 switch (opts->fp)
3858 {
3859 case 0:
3860 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3861 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3862 else if (opts->single_float == 1)
3863 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3864 break;
3865 case 64:
3866 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3867 as_bad (_("`fp=64' used with a 32-bit fpu"));
3868 else if (abi_checks
3869 && ABI_NEEDS_32BIT_REGS (mips_abi)
3870 && !ISA_HAS_MXHC1 (opts->isa))
3871 as_warn (_("`fp=64' used with a 32-bit ABI"));
3872 break;
3873 case 32:
3874 if (abi_checks
3875 && ABI_NEEDS_64BIT_REGS (mips_abi))
3876 as_warn (_("`fp=32' used with a 64-bit ABI"));
3877 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3878 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3879 break;
3880 default:
3881 as_bad (_("Unknown size of floating point registers"));
3882 break;
3883 }
3884
3885 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3886 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3887
3888 if (opts->micromips == 1 && opts->mips16 == 1)
3889 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3890 else if (ISA_IS_R6 (opts->isa)
3891 && (opts->micromips == 1
3892 || opts->mips16 == 1))
3893 as_fatal (_("`%s' cannot be used with `%s'"),
3894 opts->micromips ? "micromips" : "mips16",
3895 mips_cpu_info_from_isa (opts->isa)->name);
3896
3897 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3898 as_fatal (_("branch relaxation is not supported in `%s'"),
3899 mips_cpu_info_from_isa (opts->isa)->name);
3900 }
3901
3902 /* Perform consistency checks on the module level options exactly once.
3903 This is a deferred check that happens:
3904 at the first .set directive
3905 or, at the first pseudo op that generates code (inc .dc.a)
3906 or, at the first instruction
3907 or, at the end. */
3908
3909 static void
3910 file_mips_check_options (void)
3911 {
3912 const struct mips_cpu_info *arch_info = 0;
3913
3914 if (file_mips_opts_checked)
3915 return;
3916
3917 /* The following code determines the register size.
3918 Similar code was added to GCC 3.3 (see override_options() in
3919 config/mips/mips.c). The GAS and GCC code should be kept in sync
3920 as much as possible. */
3921
3922 if (file_mips_opts.gp < 0)
3923 {
3924 /* Infer the integer register size from the ABI and processor.
3925 Restrict ourselves to 32-bit registers if that's all the
3926 processor has, or if the ABI cannot handle 64-bit registers. */
3927 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3928 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3929 ? 32 : 64;
3930 }
3931
3932 if (file_mips_opts.fp < 0)
3933 {
3934 /* No user specified float register size.
3935 ??? GAS treats single-float processors as though they had 64-bit
3936 float registers (although it complains when double-precision
3937 instructions are used). As things stand, saying they have 32-bit
3938 registers would lead to spurious "register must be even" messages.
3939 So here we assume float registers are never smaller than the
3940 integer ones. */
3941 if (file_mips_opts.gp == 64)
3942 /* 64-bit integer registers implies 64-bit float registers. */
3943 file_mips_opts.fp = 64;
3944 else if ((file_mips_opts.ase & FP64_ASES)
3945 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3946 /* Handle ASEs that require 64-bit float registers, if possible. */
3947 file_mips_opts.fp = 64;
3948 else if (ISA_IS_R6 (mips_opts.isa))
3949 /* R6 implies 64-bit float registers. */
3950 file_mips_opts.fp = 64;
3951 else
3952 /* 32-bit float registers. */
3953 file_mips_opts.fp = 32;
3954 }
3955
3956 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3957
3958 /* Disable operations on odd-numbered floating-point registers by default
3959 when using the FPXX ABI. */
3960 if (file_mips_opts.oddspreg < 0)
3961 {
3962 if (file_mips_opts.fp == 0)
3963 file_mips_opts.oddspreg = 0;
3964 else
3965 file_mips_opts.oddspreg = 1;
3966 }
3967
3968 /* End of GCC-shared inference code. */
3969
3970 /* This flag is set when we have a 64-bit capable CPU but use only
3971 32-bit wide registers. Note that EABI does not use it. */
3972 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3973 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3974 || mips_abi == O32_ABI))
3975 mips_32bitmode = 1;
3976
3977 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3978 as_bad (_("trap exception not supported at ISA 1"));
3979
3980 /* If the selected architecture includes support for ASEs, enable
3981 generation of code for them. */
3982 if (file_mips_opts.mips16 == -1)
3983 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3984 if (file_mips_opts.micromips == -1)
3985 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3986 ? 1 : 0;
3987
3988 if (mips_nan2008 == -1)
3989 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3990 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3991 as_fatal (_("`%s' does not support legacy NaN"),
3992 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3993
3994 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3995 being selected implicitly. */
3996 if (file_mips_opts.fp != 64)
3997 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3998
3999 /* If the user didn't explicitly select or deselect a particular ASE,
4000 use the default setting for the CPU. */
4001 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4002
4003 /* Set up the current options. These may change throughout assembly. */
4004 mips_opts = file_mips_opts;
4005
4006 mips_check_isa_supports_ases ();
4007 mips_check_options (&file_mips_opts, TRUE);
4008 file_mips_opts_checked = TRUE;
4009
4010 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4011 as_warn (_("could not set architecture and machine"));
4012 }
4013
4014 void
4015 md_assemble (char *str)
4016 {
4017 struct mips_cl_insn insn;
4018 bfd_reloc_code_real_type unused_reloc[3]
4019 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4020
4021 file_mips_check_options ();
4022
4023 imm_expr.X_op = O_absent;
4024 offset_expr.X_op = O_absent;
4025 offset_reloc[0] = BFD_RELOC_UNUSED;
4026 offset_reloc[1] = BFD_RELOC_UNUSED;
4027 offset_reloc[2] = BFD_RELOC_UNUSED;
4028
4029 mips_mark_labels ();
4030 mips_assembling_insn = TRUE;
4031 clear_insn_error ();
4032
4033 if (mips_opts.mips16)
4034 mips16_ip (str, &insn);
4035 else
4036 {
4037 mips_ip (str, &insn);
4038 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4039 str, insn.insn_opcode));
4040 }
4041
4042 if (insn_error.msg)
4043 report_insn_error (str);
4044 else if (insn.insn_mo->pinfo == INSN_MACRO)
4045 {
4046 macro_start ();
4047 if (mips_opts.mips16)
4048 mips16_macro (&insn);
4049 else
4050 macro (&insn, str);
4051 macro_end ();
4052 }
4053 else
4054 {
4055 if (offset_expr.X_op != O_absent)
4056 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4057 else
4058 append_insn (&insn, NULL, unused_reloc, FALSE);
4059 }
4060
4061 mips_assembling_insn = FALSE;
4062 }
4063
4064 /* Convenience functions for abstracting away the differences between
4065 MIPS16 and non-MIPS16 relocations. */
4066
4067 static inline bfd_boolean
4068 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4069 {
4070 switch (reloc)
4071 {
4072 case BFD_RELOC_MIPS16_JMP:
4073 case BFD_RELOC_MIPS16_GPREL:
4074 case BFD_RELOC_MIPS16_GOT16:
4075 case BFD_RELOC_MIPS16_CALL16:
4076 case BFD_RELOC_MIPS16_HI16_S:
4077 case BFD_RELOC_MIPS16_HI16:
4078 case BFD_RELOC_MIPS16_LO16:
4079 case BFD_RELOC_MIPS16_16_PCREL_S1:
4080 return TRUE;
4081
4082 default:
4083 return FALSE;
4084 }
4085 }
4086
4087 static inline bfd_boolean
4088 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4089 {
4090 switch (reloc)
4091 {
4092 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4093 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4094 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4095 case BFD_RELOC_MICROMIPS_GPREL16:
4096 case BFD_RELOC_MICROMIPS_JMP:
4097 case BFD_RELOC_MICROMIPS_HI16:
4098 case BFD_RELOC_MICROMIPS_HI16_S:
4099 case BFD_RELOC_MICROMIPS_LO16:
4100 case BFD_RELOC_MICROMIPS_LITERAL:
4101 case BFD_RELOC_MICROMIPS_GOT16:
4102 case BFD_RELOC_MICROMIPS_CALL16:
4103 case BFD_RELOC_MICROMIPS_GOT_HI16:
4104 case BFD_RELOC_MICROMIPS_GOT_LO16:
4105 case BFD_RELOC_MICROMIPS_CALL_HI16:
4106 case BFD_RELOC_MICROMIPS_CALL_LO16:
4107 case BFD_RELOC_MICROMIPS_SUB:
4108 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4109 case BFD_RELOC_MICROMIPS_GOT_OFST:
4110 case BFD_RELOC_MICROMIPS_GOT_DISP:
4111 case BFD_RELOC_MICROMIPS_HIGHEST:
4112 case BFD_RELOC_MICROMIPS_HIGHER:
4113 case BFD_RELOC_MICROMIPS_SCN_DISP:
4114 case BFD_RELOC_MICROMIPS_JALR:
4115 return TRUE;
4116
4117 default:
4118 return FALSE;
4119 }
4120 }
4121
4122 static inline bfd_boolean
4123 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4124 {
4125 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4126 }
4127
4128 static inline bfd_boolean
4129 b_reloc_p (bfd_reloc_code_real_type reloc)
4130 {
4131 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4132 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4133 || reloc == BFD_RELOC_16_PCREL_S2
4134 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4135 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4136 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4137 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4138 }
4139
4140 static inline bfd_boolean
4141 got16_reloc_p (bfd_reloc_code_real_type reloc)
4142 {
4143 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4144 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4145 }
4146
4147 static inline bfd_boolean
4148 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4149 {
4150 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4151 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4152 }
4153
4154 static inline bfd_boolean
4155 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4156 {
4157 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4158 || reloc == BFD_RELOC_MICROMIPS_LO16);
4159 }
4160
4161 static inline bfd_boolean
4162 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4163 {
4164 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4165 }
4166
4167 static inline bfd_boolean
4168 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4169 {
4170 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4171 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4172 }
4173
4174 /* Return true if RELOC is a PC-relative relocation that does not have
4175 full address range. */
4176
4177 static inline bfd_boolean
4178 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4179 {
4180 switch (reloc)
4181 {
4182 case BFD_RELOC_16_PCREL_S2:
4183 case BFD_RELOC_MIPS16_16_PCREL_S1:
4184 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4185 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4186 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4187 case BFD_RELOC_MIPS_21_PCREL_S2:
4188 case BFD_RELOC_MIPS_26_PCREL_S2:
4189 case BFD_RELOC_MIPS_18_PCREL_S3:
4190 case BFD_RELOC_MIPS_19_PCREL_S2:
4191 return TRUE;
4192
4193 case BFD_RELOC_32_PCREL:
4194 case BFD_RELOC_HI16_S_PCREL:
4195 case BFD_RELOC_LO16_PCREL:
4196 return HAVE_64BIT_ADDRESSES;
4197
4198 default:
4199 return FALSE;
4200 }
4201 }
4202
4203 /* Return true if the given relocation might need a matching %lo().
4204 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4205 need a matching %lo() when applied to local symbols. */
4206
4207 static inline bfd_boolean
4208 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4209 {
4210 return (HAVE_IN_PLACE_ADDENDS
4211 && (hi16_reloc_p (reloc)
4212 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4213 all GOT16 relocations evaluate to "G". */
4214 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4215 }
4216
4217 /* Return the type of %lo() reloc needed by RELOC, given that
4218 reloc_needs_lo_p. */
4219
4220 static inline bfd_reloc_code_real_type
4221 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4222 {
4223 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4224 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4225 : BFD_RELOC_LO16));
4226 }
4227
4228 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4229 relocation. */
4230
4231 static inline bfd_boolean
4232 fixup_has_matching_lo_p (fixS *fixp)
4233 {
4234 return (fixp->fx_next != NULL
4235 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4236 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4237 && fixp->fx_offset == fixp->fx_next->fx_offset);
4238 }
4239
4240 /* Move all labels in LABELS to the current insertion point. TEXT_P
4241 says whether the labels refer to text or data. */
4242
4243 static void
4244 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4245 {
4246 struct insn_label_list *l;
4247 valueT val;
4248
4249 for (l = labels; l != NULL; l = l->next)
4250 {
4251 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4252 symbol_set_frag (l->label, frag_now);
4253 val = (valueT) frag_now_fix ();
4254 /* MIPS16/microMIPS text labels are stored as odd. */
4255 if (text_p && HAVE_CODE_COMPRESSION)
4256 ++val;
4257 S_SET_VALUE (l->label, val);
4258 }
4259 }
4260
4261 /* Move all labels in insn_labels to the current insertion point
4262 and treat them as text labels. */
4263
4264 static void
4265 mips_move_text_labels (void)
4266 {
4267 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4268 }
4269
4270 static bfd_boolean
4271 s_is_linkonce (symbolS *sym, segT from_seg)
4272 {
4273 bfd_boolean linkonce = FALSE;
4274 segT symseg = S_GET_SEGMENT (sym);
4275
4276 if (symseg != from_seg && !S_IS_LOCAL (sym))
4277 {
4278 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4279 linkonce = TRUE;
4280 /* The GNU toolchain uses an extension for ELF: a section
4281 beginning with the magic string .gnu.linkonce is a
4282 linkonce section. */
4283 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4284 sizeof ".gnu.linkonce" - 1) == 0)
4285 linkonce = TRUE;
4286 }
4287 return linkonce;
4288 }
4289
4290 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4291 linker to handle them specially, such as generating jalx instructions
4292 when needed. We also make them odd for the duration of the assembly,
4293 in order to generate the right sort of code. We will make them even
4294 in the adjust_symtab routine, while leaving them marked. This is
4295 convenient for the debugger and the disassembler. The linker knows
4296 to make them odd again. */
4297
4298 static void
4299 mips_compressed_mark_label (symbolS *label)
4300 {
4301 gas_assert (HAVE_CODE_COMPRESSION);
4302
4303 if (mips_opts.mips16)
4304 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4305 else
4306 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4307 if ((S_GET_VALUE (label) & 1) == 0
4308 /* Don't adjust the address if the label is global or weak, or
4309 in a link-once section, since we'll be emitting symbol reloc
4310 references to it which will be patched up by the linker, and
4311 the final value of the symbol may or may not be MIPS16/microMIPS. */
4312 && !S_IS_WEAK (label)
4313 && !S_IS_EXTERNAL (label)
4314 && !s_is_linkonce (label, now_seg))
4315 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4316 }
4317
4318 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4319
4320 static void
4321 mips_compressed_mark_labels (void)
4322 {
4323 struct insn_label_list *l;
4324
4325 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4326 mips_compressed_mark_label (l->label);
4327 }
4328
4329 /* End the current frag. Make it a variant frag and record the
4330 relaxation info. */
4331
4332 static void
4333 relax_close_frag (void)
4334 {
4335 mips_macro_warning.first_frag = frag_now;
4336 frag_var (rs_machine_dependent, 0, 0,
4337 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4338 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4339
4340 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4341 mips_relax.first_fixup = 0;
4342 }
4343
4344 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4345 See the comment above RELAX_ENCODE for more details. */
4346
4347 static void
4348 relax_start (symbolS *symbol)
4349 {
4350 gas_assert (mips_relax.sequence == 0);
4351 mips_relax.sequence = 1;
4352 mips_relax.symbol = symbol;
4353 }
4354
4355 /* Start generating the second version of a relaxable sequence.
4356 See the comment above RELAX_ENCODE for more details. */
4357
4358 static void
4359 relax_switch (void)
4360 {
4361 gas_assert (mips_relax.sequence == 1);
4362 mips_relax.sequence = 2;
4363 }
4364
4365 /* End the current relaxable sequence. */
4366
4367 static void
4368 relax_end (void)
4369 {
4370 gas_assert (mips_relax.sequence == 2);
4371 relax_close_frag ();
4372 mips_relax.sequence = 0;
4373 }
4374
4375 /* Return true if IP is a delayed branch or jump. */
4376
4377 static inline bfd_boolean
4378 delayed_branch_p (const struct mips_cl_insn *ip)
4379 {
4380 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4381 | INSN_COND_BRANCH_DELAY
4382 | INSN_COND_BRANCH_LIKELY)) != 0;
4383 }
4384
4385 /* Return true if IP is a compact branch or jump. */
4386
4387 static inline bfd_boolean
4388 compact_branch_p (const struct mips_cl_insn *ip)
4389 {
4390 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4391 | INSN2_COND_BRANCH)) != 0;
4392 }
4393
4394 /* Return true if IP is an unconditional branch or jump. */
4395
4396 static inline bfd_boolean
4397 uncond_branch_p (const struct mips_cl_insn *ip)
4398 {
4399 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4400 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4401 }
4402
4403 /* Return true if IP is a branch-likely instruction. */
4404
4405 static inline bfd_boolean
4406 branch_likely_p (const struct mips_cl_insn *ip)
4407 {
4408 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4409 }
4410
4411 /* Return the type of nop that should be used to fill the delay slot
4412 of delayed branch IP. */
4413
4414 static struct mips_cl_insn *
4415 get_delay_slot_nop (const struct mips_cl_insn *ip)
4416 {
4417 if (mips_opts.micromips
4418 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4419 return &micromips_nop32_insn;
4420 return NOP_INSN;
4421 }
4422
4423 /* Return a mask that has bit N set if OPCODE reads the register(s)
4424 in operand N. */
4425
4426 static unsigned int
4427 insn_read_mask (const struct mips_opcode *opcode)
4428 {
4429 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4430 }
4431
4432 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4433 in operand N. */
4434
4435 static unsigned int
4436 insn_write_mask (const struct mips_opcode *opcode)
4437 {
4438 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4439 }
4440
4441 /* Return a mask of the registers specified by operand OPERAND of INSN.
4442 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4443 is set. */
4444
4445 static unsigned int
4446 operand_reg_mask (const struct mips_cl_insn *insn,
4447 const struct mips_operand *operand,
4448 unsigned int type_mask)
4449 {
4450 unsigned int uval, vsel;
4451
4452 switch (operand->type)
4453 {
4454 case OP_INT:
4455 case OP_MAPPED_INT:
4456 case OP_MSB:
4457 case OP_PCREL:
4458 case OP_PERF_REG:
4459 case OP_ADDIUSP_INT:
4460 case OP_ENTRY_EXIT_LIST:
4461 case OP_REPEAT_DEST_REG:
4462 case OP_REPEAT_PREV_REG:
4463 case OP_PC:
4464 case OP_VU0_SUFFIX:
4465 case OP_VU0_MATCH_SUFFIX:
4466 case OP_IMM_INDEX:
4467 abort ();
4468
4469 case OP_REG:
4470 case OP_OPTIONAL_REG:
4471 {
4472 const struct mips_reg_operand *reg_op;
4473
4474 reg_op = (const struct mips_reg_operand *) operand;
4475 if (!(type_mask & (1 << reg_op->reg_type)))
4476 return 0;
4477 uval = insn_extract_operand (insn, operand);
4478 return 1 << mips_decode_reg_operand (reg_op, uval);
4479 }
4480
4481 case OP_REG_PAIR:
4482 {
4483 const struct mips_reg_pair_operand *pair_op;
4484
4485 pair_op = (const struct mips_reg_pair_operand *) operand;
4486 if (!(type_mask & (1 << pair_op->reg_type)))
4487 return 0;
4488 uval = insn_extract_operand (insn, operand);
4489 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4490 }
4491
4492 case OP_CLO_CLZ_DEST:
4493 if (!(type_mask & (1 << OP_REG_GP)))
4494 return 0;
4495 uval = insn_extract_operand (insn, operand);
4496 return (1 << (uval & 31)) | (1 << (uval >> 5));
4497
4498 case OP_SAME_RS_RT:
4499 if (!(type_mask & (1 << OP_REG_GP)))
4500 return 0;
4501 uval = insn_extract_operand (insn, operand);
4502 gas_assert ((uval & 31) == (uval >> 5));
4503 return 1 << (uval & 31);
4504
4505 case OP_CHECK_PREV:
4506 case OP_NON_ZERO_REG:
4507 if (!(type_mask & (1 << OP_REG_GP)))
4508 return 0;
4509 uval = insn_extract_operand (insn, operand);
4510 return 1 << (uval & 31);
4511
4512 case OP_LWM_SWM_LIST:
4513 abort ();
4514
4515 case OP_SAVE_RESTORE_LIST:
4516 abort ();
4517
4518 case OP_MDMX_IMM_REG:
4519 if (!(type_mask & (1 << OP_REG_VEC)))
4520 return 0;
4521 uval = insn_extract_operand (insn, operand);
4522 vsel = uval >> 5;
4523 if ((vsel & 0x18) == 0x18)
4524 return 0;
4525 return 1 << (uval & 31);
4526
4527 case OP_REG_INDEX:
4528 if (!(type_mask & (1 << OP_REG_GP)))
4529 return 0;
4530 return 1 << insn_extract_operand (insn, operand);
4531 }
4532 abort ();
4533 }
4534
4535 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4536 where bit N of OPNO_MASK is set if operand N should be included.
4537 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4538 is set. */
4539
4540 static unsigned int
4541 insn_reg_mask (const struct mips_cl_insn *insn,
4542 unsigned int type_mask, unsigned int opno_mask)
4543 {
4544 unsigned int opno, reg_mask;
4545
4546 opno = 0;
4547 reg_mask = 0;
4548 while (opno_mask != 0)
4549 {
4550 if (opno_mask & 1)
4551 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4552 opno_mask >>= 1;
4553 opno += 1;
4554 }
4555 return reg_mask;
4556 }
4557
4558 /* Return the mask of core registers that IP reads. */
4559
4560 static unsigned int
4561 gpr_read_mask (const struct mips_cl_insn *ip)
4562 {
4563 unsigned long pinfo, pinfo2;
4564 unsigned int mask;
4565
4566 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4567 pinfo = ip->insn_mo->pinfo;
4568 pinfo2 = ip->insn_mo->pinfo2;
4569 if (pinfo & INSN_UDI)
4570 {
4571 /* UDI instructions have traditionally been assumed to read RS
4572 and RT. */
4573 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4574 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4575 }
4576 if (pinfo & INSN_READ_GPR_24)
4577 mask |= 1 << 24;
4578 if (pinfo2 & INSN2_READ_GPR_16)
4579 mask |= 1 << 16;
4580 if (pinfo2 & INSN2_READ_SP)
4581 mask |= 1 << SP;
4582 if (pinfo2 & INSN2_READ_GPR_31)
4583 mask |= 1 << 31;
4584 /* Don't include register 0. */
4585 return mask & ~1;
4586 }
4587
4588 /* Return the mask of core registers that IP writes. */
4589
4590 static unsigned int
4591 gpr_write_mask (const struct mips_cl_insn *ip)
4592 {
4593 unsigned long pinfo, pinfo2;
4594 unsigned int mask;
4595
4596 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4597 pinfo = ip->insn_mo->pinfo;
4598 pinfo2 = ip->insn_mo->pinfo2;
4599 if (pinfo & INSN_WRITE_GPR_24)
4600 mask |= 1 << 24;
4601 if (pinfo & INSN_WRITE_GPR_31)
4602 mask |= 1 << 31;
4603 if (pinfo & INSN_UDI)
4604 /* UDI instructions have traditionally been assumed to write to RD. */
4605 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4606 if (pinfo2 & INSN2_WRITE_SP)
4607 mask |= 1 << SP;
4608 /* Don't include register 0. */
4609 return mask & ~1;
4610 }
4611
4612 /* Return the mask of floating-point registers that IP reads. */
4613
4614 static unsigned int
4615 fpr_read_mask (const struct mips_cl_insn *ip)
4616 {
4617 unsigned long pinfo;
4618 unsigned int mask;
4619
4620 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4621 | (1 << OP_REG_MSA)),
4622 insn_read_mask (ip->insn_mo));
4623 pinfo = ip->insn_mo->pinfo;
4624 /* Conservatively treat all operands to an FP_D instruction are doubles.
4625 (This is overly pessimistic for things like cvt.d.s.) */
4626 if (FPR_SIZE != 64 && (pinfo & FP_D))
4627 mask |= mask << 1;
4628 return mask;
4629 }
4630
4631 /* Return the mask of floating-point registers that IP writes. */
4632
4633 static unsigned int
4634 fpr_write_mask (const struct mips_cl_insn *ip)
4635 {
4636 unsigned long pinfo;
4637 unsigned int mask;
4638
4639 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4640 | (1 << OP_REG_MSA)),
4641 insn_write_mask (ip->insn_mo));
4642 pinfo = ip->insn_mo->pinfo;
4643 /* Conservatively treat all operands to an FP_D instruction are doubles.
4644 (This is overly pessimistic for things like cvt.s.d.) */
4645 if (FPR_SIZE != 64 && (pinfo & FP_D))
4646 mask |= mask << 1;
4647 return mask;
4648 }
4649
4650 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4651 Check whether that is allowed. */
4652
4653 static bfd_boolean
4654 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4655 {
4656 const char *s = insn->name;
4657 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4658 || FPR_SIZE == 64)
4659 && mips_opts.oddspreg;
4660
4661 if (insn->pinfo == INSN_MACRO)
4662 /* Let a macro pass, we'll catch it later when it is expanded. */
4663 return TRUE;
4664
4665 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4666 otherwise it depends on oddspreg. */
4667 if ((insn->pinfo & FP_S)
4668 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4669 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4670 return FPR_SIZE == 32 || oddspreg;
4671
4672 /* Allow odd registers for single-precision ops and double-precision if the
4673 floating-point registers are 64-bit wide. */
4674 switch (insn->pinfo & (FP_S | FP_D))
4675 {
4676 case FP_S:
4677 case 0:
4678 return oddspreg;
4679 case FP_D:
4680 return FPR_SIZE == 64;
4681 default:
4682 break;
4683 }
4684
4685 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4686 s = strchr (insn->name, '.');
4687 if (s != NULL && opnum == 2)
4688 s = strchr (s + 1, '.');
4689 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4690 return oddspreg;
4691
4692 return FPR_SIZE == 64;
4693 }
4694
4695 /* Information about an instruction argument that we're trying to match. */
4696 struct mips_arg_info
4697 {
4698 /* The instruction so far. */
4699 struct mips_cl_insn *insn;
4700
4701 /* The first unconsumed operand token. */
4702 struct mips_operand_token *token;
4703
4704 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4705 int opnum;
4706
4707 /* The 1-based argument number, for error reporting. This does not
4708 count elided optional registers, etc.. */
4709 int argnum;
4710
4711 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4712 unsigned int last_regno;
4713
4714 /* If the first operand was an OP_REG, this is the register that it
4715 specified, otherwise it is ILLEGAL_REG. */
4716 unsigned int dest_regno;
4717
4718 /* The value of the last OP_INT operand. Only used for OP_MSB,
4719 where it gives the lsb position. */
4720 unsigned int last_op_int;
4721
4722 /* If true, match routines should assume that no later instruction
4723 alternative matches and should therefore be as accommodating as
4724 possible. Match routines should not report errors if something
4725 is only invalid for !LAX_MATCH. */
4726 bfd_boolean lax_match;
4727
4728 /* True if a reference to the current AT register was seen. */
4729 bfd_boolean seen_at;
4730 };
4731
4732 /* Record that the argument is out of range. */
4733
4734 static void
4735 match_out_of_range (struct mips_arg_info *arg)
4736 {
4737 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4738 }
4739
4740 /* Record that the argument isn't constant but needs to be. */
4741
4742 static void
4743 match_not_constant (struct mips_arg_info *arg)
4744 {
4745 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4746 arg->argnum);
4747 }
4748
4749 /* Try to match an OT_CHAR token for character CH. Consume the token
4750 and return true on success, otherwise return false. */
4751
4752 static bfd_boolean
4753 match_char (struct mips_arg_info *arg, char ch)
4754 {
4755 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4756 {
4757 ++arg->token;
4758 if (ch == ',')
4759 arg->argnum += 1;
4760 return TRUE;
4761 }
4762 return FALSE;
4763 }
4764
4765 /* Try to get an expression from the next tokens in ARG. Consume the
4766 tokens and return true on success, storing the expression value in
4767 VALUE and relocation types in R. */
4768
4769 static bfd_boolean
4770 match_expression (struct mips_arg_info *arg, expressionS *value,
4771 bfd_reloc_code_real_type *r)
4772 {
4773 /* If the next token is a '(' that was parsed as being part of a base
4774 expression, assume we have an elided offset. The later match will fail
4775 if this turns out to be wrong. */
4776 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4777 {
4778 value->X_op = O_constant;
4779 value->X_add_number = 0;
4780 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4781 return TRUE;
4782 }
4783
4784 /* Reject register-based expressions such as "0+$2" and "(($2))".
4785 For plain registers the default error seems more appropriate. */
4786 if (arg->token->type == OT_INTEGER
4787 && arg->token->u.integer.value.X_op == O_register)
4788 {
4789 set_insn_error (arg->argnum, _("register value used as expression"));
4790 return FALSE;
4791 }
4792
4793 if (arg->token->type == OT_INTEGER)
4794 {
4795 *value = arg->token->u.integer.value;
4796 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4797 ++arg->token;
4798 return TRUE;
4799 }
4800
4801 set_insn_error_i
4802 (arg->argnum, _("operand %d must be an immediate expression"),
4803 arg->argnum);
4804 return FALSE;
4805 }
4806
4807 /* Try to get a constant expression from the next tokens in ARG. Consume
4808 the tokens and return return true on success, storing the constant value
4809 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4810 error. */
4811
4812 static bfd_boolean
4813 match_const_int (struct mips_arg_info *arg, offsetT *value)
4814 {
4815 expressionS ex;
4816 bfd_reloc_code_real_type r[3];
4817
4818 if (!match_expression (arg, &ex, r))
4819 return FALSE;
4820
4821 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4822 *value = ex.X_add_number;
4823 else
4824 {
4825 match_not_constant (arg);
4826 return FALSE;
4827 }
4828 return TRUE;
4829 }
4830
4831 /* Return the RTYPE_* flags for a register operand of type TYPE that
4832 appears in instruction OPCODE. */
4833
4834 static unsigned int
4835 convert_reg_type (const struct mips_opcode *opcode,
4836 enum mips_reg_operand_type type)
4837 {
4838 switch (type)
4839 {
4840 case OP_REG_GP:
4841 return RTYPE_NUM | RTYPE_GP;
4842
4843 case OP_REG_FP:
4844 /* Allow vector register names for MDMX if the instruction is a 64-bit
4845 FPR load, store or move (including moves to and from GPRs). */
4846 if ((mips_opts.ase & ASE_MDMX)
4847 && (opcode->pinfo & FP_D)
4848 && (opcode->pinfo & (INSN_COPROC_MOVE
4849 | INSN_COPROC_MEMORY_DELAY
4850 | INSN_LOAD_COPROC
4851 | INSN_LOAD_MEMORY
4852 | INSN_STORE_MEMORY)))
4853 return RTYPE_FPU | RTYPE_VEC;
4854 return RTYPE_FPU;
4855
4856 case OP_REG_CCC:
4857 if (opcode->pinfo & (FP_D | FP_S))
4858 return RTYPE_CCC | RTYPE_FCC;
4859 return RTYPE_CCC;
4860
4861 case OP_REG_VEC:
4862 if (opcode->membership & INSN_5400)
4863 return RTYPE_FPU;
4864 return RTYPE_FPU | RTYPE_VEC;
4865
4866 case OP_REG_ACC:
4867 return RTYPE_ACC;
4868
4869 case OP_REG_COPRO:
4870 if (opcode->name[strlen (opcode->name) - 1] == '0')
4871 return RTYPE_NUM | RTYPE_CP0;
4872 return RTYPE_NUM;
4873
4874 case OP_REG_HW:
4875 return RTYPE_NUM;
4876
4877 case OP_REG_VI:
4878 return RTYPE_NUM | RTYPE_VI;
4879
4880 case OP_REG_VF:
4881 return RTYPE_NUM | RTYPE_VF;
4882
4883 case OP_REG_R5900_I:
4884 return RTYPE_R5900_I;
4885
4886 case OP_REG_R5900_Q:
4887 return RTYPE_R5900_Q;
4888
4889 case OP_REG_R5900_R:
4890 return RTYPE_R5900_R;
4891
4892 case OP_REG_R5900_ACC:
4893 return RTYPE_R5900_ACC;
4894
4895 case OP_REG_MSA:
4896 return RTYPE_MSA;
4897
4898 case OP_REG_MSA_CTRL:
4899 return RTYPE_NUM;
4900 }
4901 abort ();
4902 }
4903
4904 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4905
4906 static void
4907 check_regno (struct mips_arg_info *arg,
4908 enum mips_reg_operand_type type, unsigned int regno)
4909 {
4910 if (AT && type == OP_REG_GP && regno == AT)
4911 arg->seen_at = TRUE;
4912
4913 if (type == OP_REG_FP
4914 && (regno & 1) != 0
4915 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4916 {
4917 /* This was a warning prior to introducing O32 FPXX and FP64 support
4918 so maintain a warning for FP32 but raise an error for the new
4919 cases. */
4920 if (FPR_SIZE == 32)
4921 as_warn (_("float register should be even, was %d"), regno);
4922 else
4923 as_bad (_("float register should be even, was %d"), regno);
4924 }
4925
4926 if (type == OP_REG_CCC)
4927 {
4928 const char *name;
4929 size_t length;
4930
4931 name = arg->insn->insn_mo->name;
4932 length = strlen (name);
4933 if ((regno & 1) != 0
4934 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4935 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4936 as_warn (_("condition code register should be even for %s, was %d"),
4937 name, regno);
4938
4939 if ((regno & 3) != 0
4940 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4941 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4942 name, regno);
4943 }
4944 }
4945
4946 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4947 a register of type TYPE. Return true on success, storing the register
4948 number in *REGNO and warning about any dubious uses. */
4949
4950 static bfd_boolean
4951 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4952 unsigned int symval, unsigned int *regno)
4953 {
4954 if (type == OP_REG_VEC)
4955 symval = mips_prefer_vec_regno (symval);
4956 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4957 return FALSE;
4958
4959 *regno = symval & RNUM_MASK;
4960 check_regno (arg, type, *regno);
4961 return TRUE;
4962 }
4963
4964 /* Try to interpret the next token in ARG as a register of type TYPE.
4965 Consume the token and return true on success, storing the register
4966 number in *REGNO. Return false on failure. */
4967
4968 static bfd_boolean
4969 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4970 unsigned int *regno)
4971 {
4972 if (arg->token->type == OT_REG
4973 && match_regno (arg, type, arg->token->u.regno, regno))
4974 {
4975 ++arg->token;
4976 return TRUE;
4977 }
4978 return FALSE;
4979 }
4980
4981 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4982 Consume the token and return true on success, storing the register numbers
4983 in *REGNO1 and *REGNO2. Return false on failure. */
4984
4985 static bfd_boolean
4986 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4987 unsigned int *regno1, unsigned int *regno2)
4988 {
4989 if (match_reg (arg, type, regno1))
4990 {
4991 *regno2 = *regno1;
4992 return TRUE;
4993 }
4994 if (arg->token->type == OT_REG_RANGE
4995 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4996 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4997 && *regno1 <= *regno2)
4998 {
4999 ++arg->token;
5000 return TRUE;
5001 }
5002 return FALSE;
5003 }
5004
5005 /* OP_INT matcher. */
5006
5007 static bfd_boolean
5008 match_int_operand (struct mips_arg_info *arg,
5009 const struct mips_operand *operand_base)
5010 {
5011 const struct mips_int_operand *operand;
5012 unsigned int uval;
5013 int min_val, max_val, factor;
5014 offsetT sval;
5015
5016 operand = (const struct mips_int_operand *) operand_base;
5017 factor = 1 << operand->shift;
5018 min_val = mips_int_operand_min (operand);
5019 max_val = mips_int_operand_max (operand);
5020
5021 if (operand_base->lsb == 0
5022 && operand_base->size == 16
5023 && operand->shift == 0
5024 && operand->bias == 0
5025 && (operand->max_val == 32767 || operand->max_val == 65535))
5026 {
5027 /* The operand can be relocated. */
5028 if (!match_expression (arg, &offset_expr, offset_reloc))
5029 return FALSE;
5030
5031 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5032 /* Relocation operators were used. Accept the arguent and
5033 leave the relocation value in offset_expr and offset_relocs
5034 for the caller to process. */
5035 return TRUE;
5036
5037 if (offset_expr.X_op != O_constant)
5038 {
5039 /* Accept non-constant operands if no later alternative matches,
5040 leaving it for the caller to process. */
5041 if (!arg->lax_match)
5042 return FALSE;
5043 offset_reloc[0] = BFD_RELOC_LO16;
5044 return TRUE;
5045 }
5046
5047 /* Clear the global state; we're going to install the operand
5048 ourselves. */
5049 sval = offset_expr.X_add_number;
5050 offset_expr.X_op = O_absent;
5051
5052 /* For compatibility with older assemblers, we accept
5053 0x8000-0xffff as signed 16-bit numbers when only
5054 signed numbers are allowed. */
5055 if (sval > max_val)
5056 {
5057 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5058 if (!arg->lax_match && sval <= max_val)
5059 return FALSE;
5060 }
5061 }
5062 else
5063 {
5064 if (!match_const_int (arg, &sval))
5065 return FALSE;
5066 }
5067
5068 arg->last_op_int = sval;
5069
5070 if (sval < min_val || sval > max_val || sval % factor)
5071 {
5072 match_out_of_range (arg);
5073 return FALSE;
5074 }
5075
5076 uval = (unsigned int) sval >> operand->shift;
5077 uval -= operand->bias;
5078
5079 /* Handle -mfix-cn63xxp1. */
5080 if (arg->opnum == 1
5081 && mips_fix_cn63xxp1
5082 && !mips_opts.micromips
5083 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5084 switch (uval)
5085 {
5086 case 5:
5087 case 25:
5088 case 26:
5089 case 27:
5090 case 28:
5091 case 29:
5092 case 30:
5093 case 31:
5094 /* These are ok. */
5095 break;
5096
5097 default:
5098 /* The rest must be changed to 28. */
5099 uval = 28;
5100 break;
5101 }
5102
5103 insn_insert_operand (arg->insn, operand_base, uval);
5104 return TRUE;
5105 }
5106
5107 /* OP_MAPPED_INT matcher. */
5108
5109 static bfd_boolean
5110 match_mapped_int_operand (struct mips_arg_info *arg,
5111 const struct mips_operand *operand_base)
5112 {
5113 const struct mips_mapped_int_operand *operand;
5114 unsigned int uval, num_vals;
5115 offsetT sval;
5116
5117 operand = (const struct mips_mapped_int_operand *) operand_base;
5118 if (!match_const_int (arg, &sval))
5119 return FALSE;
5120
5121 num_vals = 1 << operand_base->size;
5122 for (uval = 0; uval < num_vals; uval++)
5123 if (operand->int_map[uval] == sval)
5124 break;
5125 if (uval == num_vals)
5126 {
5127 match_out_of_range (arg);
5128 return FALSE;
5129 }
5130
5131 insn_insert_operand (arg->insn, operand_base, uval);
5132 return TRUE;
5133 }
5134
5135 /* OP_MSB matcher. */
5136
5137 static bfd_boolean
5138 match_msb_operand (struct mips_arg_info *arg,
5139 const struct mips_operand *operand_base)
5140 {
5141 const struct mips_msb_operand *operand;
5142 int min_val, max_val, max_high;
5143 offsetT size, sval, high;
5144
5145 operand = (const struct mips_msb_operand *) operand_base;
5146 min_val = operand->bias;
5147 max_val = min_val + (1 << operand_base->size) - 1;
5148 max_high = operand->opsize;
5149
5150 if (!match_const_int (arg, &size))
5151 return FALSE;
5152
5153 high = size + arg->last_op_int;
5154 sval = operand->add_lsb ? high : size;
5155
5156 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5157 {
5158 match_out_of_range (arg);
5159 return FALSE;
5160 }
5161 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5162 return TRUE;
5163 }
5164
5165 /* OP_REG matcher. */
5166
5167 static bfd_boolean
5168 match_reg_operand (struct mips_arg_info *arg,
5169 const struct mips_operand *operand_base)
5170 {
5171 const struct mips_reg_operand *operand;
5172 unsigned int regno, uval, num_vals;
5173
5174 operand = (const struct mips_reg_operand *) operand_base;
5175 if (!match_reg (arg, operand->reg_type, &regno))
5176 return FALSE;
5177
5178 if (operand->reg_map)
5179 {
5180 num_vals = 1 << operand->root.size;
5181 for (uval = 0; uval < num_vals; uval++)
5182 if (operand->reg_map[uval] == regno)
5183 break;
5184 if (num_vals == uval)
5185 return FALSE;
5186 }
5187 else
5188 uval = regno;
5189
5190 arg->last_regno = regno;
5191 if (arg->opnum == 1)
5192 arg->dest_regno = regno;
5193 insn_insert_operand (arg->insn, operand_base, uval);
5194 return TRUE;
5195 }
5196
5197 /* OP_REG_PAIR matcher. */
5198
5199 static bfd_boolean
5200 match_reg_pair_operand (struct mips_arg_info *arg,
5201 const struct mips_operand *operand_base)
5202 {
5203 const struct mips_reg_pair_operand *operand;
5204 unsigned int regno1, regno2, uval, num_vals;
5205
5206 operand = (const struct mips_reg_pair_operand *) operand_base;
5207 if (!match_reg (arg, operand->reg_type, &regno1)
5208 || !match_char (arg, ',')
5209 || !match_reg (arg, operand->reg_type, &regno2))
5210 return FALSE;
5211
5212 num_vals = 1 << operand_base->size;
5213 for (uval = 0; uval < num_vals; uval++)
5214 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5215 break;
5216 if (uval == num_vals)
5217 return FALSE;
5218
5219 insn_insert_operand (arg->insn, operand_base, uval);
5220 return TRUE;
5221 }
5222
5223 /* OP_PCREL matcher. The caller chooses the relocation type. */
5224
5225 static bfd_boolean
5226 match_pcrel_operand (struct mips_arg_info *arg)
5227 {
5228 bfd_reloc_code_real_type r[3];
5229
5230 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5231 }
5232
5233 /* OP_PERF_REG matcher. */
5234
5235 static bfd_boolean
5236 match_perf_reg_operand (struct mips_arg_info *arg,
5237 const struct mips_operand *operand)
5238 {
5239 offsetT sval;
5240
5241 if (!match_const_int (arg, &sval))
5242 return FALSE;
5243
5244 if (sval != 0
5245 && (sval != 1
5246 || (mips_opts.arch == CPU_R5900
5247 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5248 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5249 {
5250 set_insn_error (arg->argnum, _("invalid performance register"));
5251 return FALSE;
5252 }
5253
5254 insn_insert_operand (arg->insn, operand, sval);
5255 return TRUE;
5256 }
5257
5258 /* OP_ADDIUSP matcher. */
5259
5260 static bfd_boolean
5261 match_addiusp_operand (struct mips_arg_info *arg,
5262 const struct mips_operand *operand)
5263 {
5264 offsetT sval;
5265 unsigned int uval;
5266
5267 if (!match_const_int (arg, &sval))
5268 return FALSE;
5269
5270 if (sval % 4)
5271 {
5272 match_out_of_range (arg);
5273 return FALSE;
5274 }
5275
5276 sval /= 4;
5277 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5278 {
5279 match_out_of_range (arg);
5280 return FALSE;
5281 }
5282
5283 uval = (unsigned int) sval;
5284 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5285 insn_insert_operand (arg->insn, operand, uval);
5286 return TRUE;
5287 }
5288
5289 /* OP_CLO_CLZ_DEST matcher. */
5290
5291 static bfd_boolean
5292 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5293 const struct mips_operand *operand)
5294 {
5295 unsigned int regno;
5296
5297 if (!match_reg (arg, OP_REG_GP, &regno))
5298 return FALSE;
5299
5300 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5301 return TRUE;
5302 }
5303
5304 /* OP_CHECK_PREV matcher. */
5305
5306 static bfd_boolean
5307 match_check_prev_operand (struct mips_arg_info *arg,
5308 const struct mips_operand *operand_base)
5309 {
5310 const struct mips_check_prev_operand *operand;
5311 unsigned int regno;
5312
5313 operand = (const struct mips_check_prev_operand *) operand_base;
5314
5315 if (!match_reg (arg, OP_REG_GP, &regno))
5316 return FALSE;
5317
5318 if (!operand->zero_ok && regno == 0)
5319 return FALSE;
5320
5321 if ((operand->less_than_ok && regno < arg->last_regno)
5322 || (operand->greater_than_ok && regno > arg->last_regno)
5323 || (operand->equal_ok && regno == arg->last_regno))
5324 {
5325 arg->last_regno = regno;
5326 insn_insert_operand (arg->insn, operand_base, regno);
5327 return TRUE;
5328 }
5329
5330 return FALSE;
5331 }
5332
5333 /* OP_SAME_RS_RT matcher. */
5334
5335 static bfd_boolean
5336 match_same_rs_rt_operand (struct mips_arg_info *arg,
5337 const struct mips_operand *operand)
5338 {
5339 unsigned int regno;
5340
5341 if (!match_reg (arg, OP_REG_GP, &regno))
5342 return FALSE;
5343
5344 if (regno == 0)
5345 {
5346 set_insn_error (arg->argnum, _("the source register must not be $0"));
5347 return FALSE;
5348 }
5349
5350 arg->last_regno = regno;
5351
5352 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5353 return TRUE;
5354 }
5355
5356 /* OP_LWM_SWM_LIST matcher. */
5357
5358 static bfd_boolean
5359 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5360 const struct mips_operand *operand)
5361 {
5362 unsigned int reglist, sregs, ra, regno1, regno2;
5363 struct mips_arg_info reset;
5364
5365 reglist = 0;
5366 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5367 return FALSE;
5368 do
5369 {
5370 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5371 {
5372 reglist |= 1 << FP;
5373 regno2 = S7;
5374 }
5375 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5376 reset = *arg;
5377 }
5378 while (match_char (arg, ',')
5379 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5380 *arg = reset;
5381
5382 if (operand->size == 2)
5383 {
5384 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5385
5386 s0, ra
5387 s0, s1, ra, s2, s3
5388 s0-s2, ra
5389
5390 and any permutations of these. */
5391 if ((reglist & 0xfff1ffff) != 0x80010000)
5392 return FALSE;
5393
5394 sregs = (reglist >> 17) & 7;
5395 ra = 0;
5396 }
5397 else
5398 {
5399 /* The list must include at least one of ra and s0-sN,
5400 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5401 which are $23 and $30 respectively.) E.g.:
5402
5403 ra
5404 s0
5405 ra, s0, s1, s2
5406 s0-s8
5407 s0-s5, ra
5408
5409 and any permutations of these. */
5410 if ((reglist & 0x3f00ffff) != 0)
5411 return FALSE;
5412
5413 ra = (reglist >> 27) & 0x10;
5414 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5415 }
5416 sregs += 1;
5417 if ((sregs & -sregs) != sregs)
5418 return FALSE;
5419
5420 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5421 return TRUE;
5422 }
5423
5424 /* OP_ENTRY_EXIT_LIST matcher. */
5425
5426 static unsigned int
5427 match_entry_exit_operand (struct mips_arg_info *arg,
5428 const struct mips_operand *operand)
5429 {
5430 unsigned int mask;
5431 bfd_boolean is_exit;
5432
5433 /* The format is the same for both ENTRY and EXIT, but the constraints
5434 are different. */
5435 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5436 mask = (is_exit ? 7 << 3 : 0);
5437 do
5438 {
5439 unsigned int regno1, regno2;
5440 bfd_boolean is_freg;
5441
5442 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5443 is_freg = FALSE;
5444 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5445 is_freg = TRUE;
5446 else
5447 return FALSE;
5448
5449 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5450 {
5451 mask &= ~(7 << 3);
5452 mask |= (5 + regno2) << 3;
5453 }
5454 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5455 mask |= (regno2 - 3) << 3;
5456 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5457 mask |= (regno2 - 15) << 1;
5458 else if (regno1 == RA && regno2 == RA)
5459 mask |= 1;
5460 else
5461 return FALSE;
5462 }
5463 while (match_char (arg, ','));
5464
5465 insn_insert_operand (arg->insn, operand, mask);
5466 return TRUE;
5467 }
5468
5469 /* OP_SAVE_RESTORE_LIST matcher. */
5470
5471 static bfd_boolean
5472 match_save_restore_list_operand (struct mips_arg_info *arg)
5473 {
5474 unsigned int opcode, args, statics, sregs;
5475 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5476 offsetT frame_size;
5477
5478 opcode = arg->insn->insn_opcode;
5479 frame_size = 0;
5480 num_frame_sizes = 0;
5481 args = 0;
5482 statics = 0;
5483 sregs = 0;
5484 do
5485 {
5486 unsigned int regno1, regno2;
5487
5488 if (arg->token->type == OT_INTEGER)
5489 {
5490 /* Handle the frame size. */
5491 if (!match_const_int (arg, &frame_size))
5492 return FALSE;
5493 num_frame_sizes += 1;
5494 }
5495 else
5496 {
5497 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5498 return FALSE;
5499
5500 while (regno1 <= regno2)
5501 {
5502 if (regno1 >= 4 && regno1 <= 7)
5503 {
5504 if (num_frame_sizes == 0)
5505 /* args $a0-$a3 */
5506 args |= 1 << (regno1 - 4);
5507 else
5508 /* statics $a0-$a3 */
5509 statics |= 1 << (regno1 - 4);
5510 }
5511 else if (regno1 >= 16 && regno1 <= 23)
5512 /* $s0-$s7 */
5513 sregs |= 1 << (regno1 - 16);
5514 else if (regno1 == 30)
5515 /* $s8 */
5516 sregs |= 1 << 8;
5517 else if (regno1 == 31)
5518 /* Add $ra to insn. */
5519 opcode |= 0x40;
5520 else
5521 return FALSE;
5522 regno1 += 1;
5523 if (regno1 == 24)
5524 regno1 = 30;
5525 }
5526 }
5527 }
5528 while (match_char (arg, ','));
5529
5530 /* Encode args/statics combination. */
5531 if (args & statics)
5532 return FALSE;
5533 else if (args == 0xf)
5534 /* All $a0-$a3 are args. */
5535 opcode |= MIPS16_ALL_ARGS << 16;
5536 else if (statics == 0xf)
5537 /* All $a0-$a3 are statics. */
5538 opcode |= MIPS16_ALL_STATICS << 16;
5539 else
5540 {
5541 /* Count arg registers. */
5542 num_args = 0;
5543 while (args & 0x1)
5544 {
5545 args >>= 1;
5546 num_args += 1;
5547 }
5548 if (args != 0)
5549 return FALSE;
5550
5551 /* Count static registers. */
5552 num_statics = 0;
5553 while (statics & 0x8)
5554 {
5555 statics = (statics << 1) & 0xf;
5556 num_statics += 1;
5557 }
5558 if (statics != 0)
5559 return FALSE;
5560
5561 /* Encode args/statics. */
5562 opcode |= ((num_args << 2) | num_statics) << 16;
5563 }
5564
5565 /* Encode $s0/$s1. */
5566 if (sregs & (1 << 0)) /* $s0 */
5567 opcode |= 0x20;
5568 if (sregs & (1 << 1)) /* $s1 */
5569 opcode |= 0x10;
5570 sregs >>= 2;
5571
5572 /* Encode $s2-$s8. */
5573 num_sregs = 0;
5574 while (sregs & 1)
5575 {
5576 sregs >>= 1;
5577 num_sregs += 1;
5578 }
5579 if (sregs != 0)
5580 return FALSE;
5581 opcode |= num_sregs << 24;
5582
5583 /* Encode frame size. */
5584 if (num_frame_sizes == 0)
5585 {
5586 set_insn_error (arg->argnum, _("missing frame size"));
5587 return FALSE;
5588 }
5589 if (num_frame_sizes > 1)
5590 {
5591 set_insn_error (arg->argnum, _("frame size specified twice"));
5592 return FALSE;
5593 }
5594 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5595 {
5596 set_insn_error (arg->argnum, _("invalid frame size"));
5597 return FALSE;
5598 }
5599 if (frame_size != 128 || (opcode >> 16) != 0)
5600 {
5601 frame_size /= 8;
5602 opcode |= (((frame_size & 0xf0) << 16)
5603 | (frame_size & 0x0f));
5604 }
5605
5606 /* Finally build the instruction. */
5607 if ((opcode >> 16) != 0 || frame_size == 0)
5608 opcode |= MIPS16_EXTEND;
5609 arg->insn->insn_opcode = opcode;
5610 return TRUE;
5611 }
5612
5613 /* OP_MDMX_IMM_REG matcher. */
5614
5615 static bfd_boolean
5616 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5617 const struct mips_operand *operand)
5618 {
5619 unsigned int regno, uval;
5620 bfd_boolean is_qh;
5621 const struct mips_opcode *opcode;
5622
5623 /* The mips_opcode records whether this is an octobyte or quadhalf
5624 instruction. Start out with that bit in place. */
5625 opcode = arg->insn->insn_mo;
5626 uval = mips_extract_operand (operand, opcode->match);
5627 is_qh = (uval != 0);
5628
5629 if (arg->token->type == OT_REG)
5630 {
5631 if ((opcode->membership & INSN_5400)
5632 && strcmp (opcode->name, "rzu.ob") == 0)
5633 {
5634 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5635 arg->argnum);
5636 return FALSE;
5637 }
5638
5639 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5640 return FALSE;
5641 ++arg->token;
5642
5643 /* Check whether this is a vector register or a broadcast of
5644 a single element. */
5645 if (arg->token->type == OT_INTEGER_INDEX)
5646 {
5647 if (arg->token->u.index > (is_qh ? 3 : 7))
5648 {
5649 set_insn_error (arg->argnum, _("invalid element selector"));
5650 return FALSE;
5651 }
5652 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5653 ++arg->token;
5654 }
5655 else
5656 {
5657 /* A full vector. */
5658 if ((opcode->membership & INSN_5400)
5659 && (strcmp (opcode->name, "sll.ob") == 0
5660 || strcmp (opcode->name, "srl.ob") == 0))
5661 {
5662 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5663 arg->argnum);
5664 return FALSE;
5665 }
5666
5667 if (is_qh)
5668 uval |= MDMX_FMTSEL_VEC_QH << 5;
5669 else
5670 uval |= MDMX_FMTSEL_VEC_OB << 5;
5671 }
5672 uval |= regno;
5673 }
5674 else
5675 {
5676 offsetT sval;
5677
5678 if (!match_const_int (arg, &sval))
5679 return FALSE;
5680 if (sval < 0 || sval > 31)
5681 {
5682 match_out_of_range (arg);
5683 return FALSE;
5684 }
5685 uval |= (sval & 31);
5686 if (is_qh)
5687 uval |= MDMX_FMTSEL_IMM_QH << 5;
5688 else
5689 uval |= MDMX_FMTSEL_IMM_OB << 5;
5690 }
5691 insn_insert_operand (arg->insn, operand, uval);
5692 return TRUE;
5693 }
5694
5695 /* OP_IMM_INDEX matcher. */
5696
5697 static bfd_boolean
5698 match_imm_index_operand (struct mips_arg_info *arg,
5699 const struct mips_operand *operand)
5700 {
5701 unsigned int max_val;
5702
5703 if (arg->token->type != OT_INTEGER_INDEX)
5704 return FALSE;
5705
5706 max_val = (1 << operand->size) - 1;
5707 if (arg->token->u.index > max_val)
5708 {
5709 match_out_of_range (arg);
5710 return FALSE;
5711 }
5712 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5713 ++arg->token;
5714 return TRUE;
5715 }
5716
5717 /* OP_REG_INDEX matcher. */
5718
5719 static bfd_boolean
5720 match_reg_index_operand (struct mips_arg_info *arg,
5721 const struct mips_operand *operand)
5722 {
5723 unsigned int regno;
5724
5725 if (arg->token->type != OT_REG_INDEX)
5726 return FALSE;
5727
5728 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5729 return FALSE;
5730
5731 insn_insert_operand (arg->insn, operand, regno);
5732 ++arg->token;
5733 return TRUE;
5734 }
5735
5736 /* OP_PC matcher. */
5737
5738 static bfd_boolean
5739 match_pc_operand (struct mips_arg_info *arg)
5740 {
5741 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5742 {
5743 ++arg->token;
5744 return TRUE;
5745 }
5746 return FALSE;
5747 }
5748
5749 /* OP_NON_ZERO_REG matcher. */
5750
5751 static bfd_boolean
5752 match_non_zero_reg_operand (struct mips_arg_info *arg,
5753 const struct mips_operand *operand)
5754 {
5755 unsigned int regno;
5756
5757 if (!match_reg (arg, OP_REG_GP, &regno))
5758 return FALSE;
5759
5760 if (regno == 0)
5761 return FALSE;
5762
5763 arg->last_regno = regno;
5764 insn_insert_operand (arg->insn, operand, regno);
5765 return TRUE;
5766 }
5767
5768 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5769 register that we need to match. */
5770
5771 static bfd_boolean
5772 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5773 {
5774 unsigned int regno;
5775
5776 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5777 }
5778
5779 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5780 the length of the value in bytes (4 for float, 8 for double) and
5781 USING_GPRS says whether the destination is a GPR rather than an FPR.
5782
5783 Return the constant in IMM and OFFSET as follows:
5784
5785 - If the constant should be loaded via memory, set IMM to O_absent and
5786 OFFSET to the memory address.
5787
5788 - Otherwise, if the constant should be loaded into two 32-bit registers,
5789 set IMM to the O_constant to load into the high register and OFFSET
5790 to the corresponding value for the low register.
5791
5792 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5793
5794 These constants only appear as the last operand in an instruction,
5795 and every instruction that accepts them in any variant accepts them
5796 in all variants. This means we don't have to worry about backing out
5797 any changes if the instruction does not match. We just match
5798 unconditionally and report an error if the constant is invalid. */
5799
5800 static bfd_boolean
5801 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5802 expressionS *offset, int length, bfd_boolean using_gprs)
5803 {
5804 char *p;
5805 segT seg, new_seg;
5806 subsegT subseg;
5807 const char *newname;
5808 unsigned char *data;
5809
5810 /* Where the constant is placed is based on how the MIPS assembler
5811 does things:
5812
5813 length == 4 && using_gprs -- immediate value only
5814 length == 8 && using_gprs -- .rdata or immediate value
5815 length == 4 && !using_gprs -- .lit4 or immediate value
5816 length == 8 && !using_gprs -- .lit8 or immediate value
5817
5818 The .lit4 and .lit8 sections are only used if permitted by the
5819 -G argument. */
5820 if (arg->token->type != OT_FLOAT)
5821 {
5822 set_insn_error (arg->argnum, _("floating-point expression required"));
5823 return FALSE;
5824 }
5825
5826 gas_assert (arg->token->u.flt.length == length);
5827 data = arg->token->u.flt.data;
5828 ++arg->token;
5829
5830 /* Handle 32-bit constants for which an immediate value is best. */
5831 if (length == 4
5832 && (using_gprs
5833 || g_switch_value < 4
5834 || (data[0] == 0 && data[1] == 0)
5835 || (data[2] == 0 && data[3] == 0)))
5836 {
5837 imm->X_op = O_constant;
5838 if (!target_big_endian)
5839 imm->X_add_number = bfd_getl32 (data);
5840 else
5841 imm->X_add_number = bfd_getb32 (data);
5842 offset->X_op = O_absent;
5843 return TRUE;
5844 }
5845
5846 /* Handle 64-bit constants for which an immediate value is best. */
5847 if (length == 8
5848 && !mips_disable_float_construction
5849 /* Constants can only be constructed in GPRs and copied to FPRs if the
5850 GPRs are at least as wide as the FPRs or MTHC1 is available.
5851 Unlike most tests for 32-bit floating-point registers this check
5852 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5853 permit 64-bit moves without MXHC1.
5854 Force the constant into memory otherwise. */
5855 && (using_gprs
5856 || GPR_SIZE == 64
5857 || ISA_HAS_MXHC1 (mips_opts.isa)
5858 || FPR_SIZE == 32)
5859 && ((data[0] == 0 && data[1] == 0)
5860 || (data[2] == 0 && data[3] == 0))
5861 && ((data[4] == 0 && data[5] == 0)
5862 || (data[6] == 0 && data[7] == 0)))
5863 {
5864 /* The value is simple enough to load with a couple of instructions.
5865 If using 32-bit registers, set IMM to the high order 32 bits and
5866 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5867 64 bit constant. */
5868 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5869 {
5870 imm->X_op = O_constant;
5871 offset->X_op = O_constant;
5872 if (!target_big_endian)
5873 {
5874 imm->X_add_number = bfd_getl32 (data + 4);
5875 offset->X_add_number = bfd_getl32 (data);
5876 }
5877 else
5878 {
5879 imm->X_add_number = bfd_getb32 (data);
5880 offset->X_add_number = bfd_getb32 (data + 4);
5881 }
5882 if (offset->X_add_number == 0)
5883 offset->X_op = O_absent;
5884 }
5885 else
5886 {
5887 imm->X_op = O_constant;
5888 if (!target_big_endian)
5889 imm->X_add_number = bfd_getl64 (data);
5890 else
5891 imm->X_add_number = bfd_getb64 (data);
5892 offset->X_op = O_absent;
5893 }
5894 return TRUE;
5895 }
5896
5897 /* Switch to the right section. */
5898 seg = now_seg;
5899 subseg = now_subseg;
5900 if (length == 4)
5901 {
5902 gas_assert (!using_gprs && g_switch_value >= 4);
5903 newname = ".lit4";
5904 }
5905 else
5906 {
5907 if (using_gprs || g_switch_value < 8)
5908 newname = RDATA_SECTION_NAME;
5909 else
5910 newname = ".lit8";
5911 }
5912
5913 new_seg = subseg_new (newname, (subsegT) 0);
5914 bfd_set_section_flags (stdoutput, new_seg,
5915 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5916 frag_align (length == 4 ? 2 : 3, 0, 0);
5917 if (strncmp (TARGET_OS, "elf", 3) != 0)
5918 record_alignment (new_seg, 4);
5919 else
5920 record_alignment (new_seg, length == 4 ? 2 : 3);
5921 if (seg == now_seg)
5922 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5923
5924 /* Set the argument to the current address in the section. */
5925 imm->X_op = O_absent;
5926 offset->X_op = O_symbol;
5927 offset->X_add_symbol = symbol_temp_new_now ();
5928 offset->X_add_number = 0;
5929
5930 /* Put the floating point number into the section. */
5931 p = frag_more (length);
5932 memcpy (p, data, length);
5933
5934 /* Switch back to the original section. */
5935 subseg_set (seg, subseg);
5936 return TRUE;
5937 }
5938
5939 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5940 them. */
5941
5942 static bfd_boolean
5943 match_vu0_suffix_operand (struct mips_arg_info *arg,
5944 const struct mips_operand *operand,
5945 bfd_boolean match_p)
5946 {
5947 unsigned int uval;
5948
5949 /* The operand can be an XYZW mask or a single 2-bit channel index
5950 (with X being 0). */
5951 gas_assert (operand->size == 2 || operand->size == 4);
5952
5953 /* The suffix can be omitted when it is already part of the opcode. */
5954 if (arg->token->type != OT_CHANNELS)
5955 return match_p;
5956
5957 uval = arg->token->u.channels;
5958 if (operand->size == 2)
5959 {
5960 /* Check that a single bit is set and convert it into a 2-bit index. */
5961 if ((uval & -uval) != uval)
5962 return FALSE;
5963 uval = 4 - ffs (uval);
5964 }
5965
5966 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5967 return FALSE;
5968
5969 ++arg->token;
5970 if (!match_p)
5971 insn_insert_operand (arg->insn, operand, uval);
5972 return TRUE;
5973 }
5974
5975 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5976 of the argument text if the match is successful, otherwise return null. */
5977
5978 static bfd_boolean
5979 match_operand (struct mips_arg_info *arg,
5980 const struct mips_operand *operand)
5981 {
5982 switch (operand->type)
5983 {
5984 case OP_INT:
5985 return match_int_operand (arg, operand);
5986
5987 case OP_MAPPED_INT:
5988 return match_mapped_int_operand (arg, operand);
5989
5990 case OP_MSB:
5991 return match_msb_operand (arg, operand);
5992
5993 case OP_REG:
5994 case OP_OPTIONAL_REG:
5995 return match_reg_operand (arg, operand);
5996
5997 case OP_REG_PAIR:
5998 return match_reg_pair_operand (arg, operand);
5999
6000 case OP_PCREL:
6001 return match_pcrel_operand (arg);
6002
6003 case OP_PERF_REG:
6004 return match_perf_reg_operand (arg, operand);
6005
6006 case OP_ADDIUSP_INT:
6007 return match_addiusp_operand (arg, operand);
6008
6009 case OP_CLO_CLZ_DEST:
6010 return match_clo_clz_dest_operand (arg, operand);
6011
6012 case OP_LWM_SWM_LIST:
6013 return match_lwm_swm_list_operand (arg, operand);
6014
6015 case OP_ENTRY_EXIT_LIST:
6016 return match_entry_exit_operand (arg, operand);
6017
6018 case OP_SAVE_RESTORE_LIST:
6019 return match_save_restore_list_operand (arg);
6020
6021 case OP_MDMX_IMM_REG:
6022 return match_mdmx_imm_reg_operand (arg, operand);
6023
6024 case OP_REPEAT_DEST_REG:
6025 return match_tied_reg_operand (arg, arg->dest_regno);
6026
6027 case OP_REPEAT_PREV_REG:
6028 return match_tied_reg_operand (arg, arg->last_regno);
6029
6030 case OP_PC:
6031 return match_pc_operand (arg);
6032
6033 case OP_VU0_SUFFIX:
6034 return match_vu0_suffix_operand (arg, operand, FALSE);
6035
6036 case OP_VU0_MATCH_SUFFIX:
6037 return match_vu0_suffix_operand (arg, operand, TRUE);
6038
6039 case OP_IMM_INDEX:
6040 return match_imm_index_operand (arg, operand);
6041
6042 case OP_REG_INDEX:
6043 return match_reg_index_operand (arg, operand);
6044
6045 case OP_SAME_RS_RT:
6046 return match_same_rs_rt_operand (arg, operand);
6047
6048 case OP_CHECK_PREV:
6049 return match_check_prev_operand (arg, operand);
6050
6051 case OP_NON_ZERO_REG:
6052 return match_non_zero_reg_operand (arg, operand);
6053 }
6054 abort ();
6055 }
6056
6057 /* ARG is the state after successfully matching an instruction.
6058 Issue any queued-up warnings. */
6059
6060 static void
6061 check_completed_insn (struct mips_arg_info *arg)
6062 {
6063 if (arg->seen_at)
6064 {
6065 if (AT == ATREG)
6066 as_warn (_("used $at without \".set noat\""));
6067 else
6068 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6069 }
6070 }
6071
6072 /* Return true if modifying general-purpose register REG needs a delay. */
6073
6074 static bfd_boolean
6075 reg_needs_delay (unsigned int reg)
6076 {
6077 unsigned long prev_pinfo;
6078
6079 prev_pinfo = history[0].insn_mo->pinfo;
6080 if (!mips_opts.noreorder
6081 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6082 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6083 && (gpr_write_mask (&history[0]) & (1 << reg)))
6084 return TRUE;
6085
6086 return FALSE;
6087 }
6088
6089 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6090 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6091 by VR4120 errata. */
6092
6093 static unsigned int
6094 classify_vr4120_insn (const char *name)
6095 {
6096 if (strncmp (name, "macc", 4) == 0)
6097 return FIX_VR4120_MACC;
6098 if (strncmp (name, "dmacc", 5) == 0)
6099 return FIX_VR4120_DMACC;
6100 if (strncmp (name, "mult", 4) == 0)
6101 return FIX_VR4120_MULT;
6102 if (strncmp (name, "dmult", 5) == 0)
6103 return FIX_VR4120_DMULT;
6104 if (strstr (name, "div"))
6105 return FIX_VR4120_DIV;
6106 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6107 return FIX_VR4120_MTHILO;
6108 return NUM_FIX_VR4120_CLASSES;
6109 }
6110
6111 #define INSN_ERET 0x42000018
6112 #define INSN_DERET 0x4200001f
6113 #define INSN_DMULT 0x1c
6114 #define INSN_DMULTU 0x1d
6115
6116 /* Return the number of instructions that must separate INSN1 and INSN2,
6117 where INSN1 is the earlier instruction. Return the worst-case value
6118 for any INSN2 if INSN2 is null. */
6119
6120 static unsigned int
6121 insns_between (const struct mips_cl_insn *insn1,
6122 const struct mips_cl_insn *insn2)
6123 {
6124 unsigned long pinfo1, pinfo2;
6125 unsigned int mask;
6126
6127 /* If INFO2 is null, pessimistically assume that all flags are set for
6128 the second instruction. */
6129 pinfo1 = insn1->insn_mo->pinfo;
6130 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6131
6132 /* For most targets, write-after-read dependencies on the HI and LO
6133 registers must be separated by at least two instructions. */
6134 if (!hilo_interlocks)
6135 {
6136 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6137 return 2;
6138 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6139 return 2;
6140 }
6141
6142 /* If we're working around r7000 errata, there must be two instructions
6143 between an mfhi or mflo and any instruction that uses the result. */
6144 if (mips_7000_hilo_fix
6145 && !mips_opts.micromips
6146 && MF_HILO_INSN (pinfo1)
6147 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6148 return 2;
6149
6150 /* If we're working around 24K errata, one instruction is required
6151 if an ERET or DERET is followed by a branch instruction. */
6152 if (mips_fix_24k && !mips_opts.micromips)
6153 {
6154 if (insn1->insn_opcode == INSN_ERET
6155 || insn1->insn_opcode == INSN_DERET)
6156 {
6157 if (insn2 == NULL
6158 || insn2->insn_opcode == INSN_ERET
6159 || insn2->insn_opcode == INSN_DERET
6160 || delayed_branch_p (insn2))
6161 return 1;
6162 }
6163 }
6164
6165 /* If we're working around PMC RM7000 errata, there must be three
6166 nops between a dmult and a load instruction. */
6167 if (mips_fix_rm7000 && !mips_opts.micromips)
6168 {
6169 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6170 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6171 {
6172 if (pinfo2 & INSN_LOAD_MEMORY)
6173 return 3;
6174 }
6175 }
6176
6177 /* If working around VR4120 errata, check for combinations that need
6178 a single intervening instruction. */
6179 if (mips_fix_vr4120 && !mips_opts.micromips)
6180 {
6181 unsigned int class1, class2;
6182
6183 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6184 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6185 {
6186 if (insn2 == NULL)
6187 return 1;
6188 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6189 if (vr4120_conflicts[class1] & (1 << class2))
6190 return 1;
6191 }
6192 }
6193
6194 if (!HAVE_CODE_COMPRESSION)
6195 {
6196 /* Check for GPR or coprocessor load delays. All such delays
6197 are on the RT register. */
6198 /* Itbl support may require additional care here. */
6199 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6200 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6201 {
6202 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6203 return 1;
6204 }
6205
6206 /* Check for generic coprocessor hazards.
6207
6208 This case is not handled very well. There is no special
6209 knowledge of CP0 handling, and the coprocessors other than
6210 the floating point unit are not distinguished at all. */
6211 /* Itbl support may require additional care here. FIXME!
6212 Need to modify this to include knowledge about
6213 user specified delays! */
6214 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6215 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6216 {
6217 /* Handle cases where INSN1 writes to a known general coprocessor
6218 register. There must be a one instruction delay before INSN2
6219 if INSN2 reads that register, otherwise no delay is needed. */
6220 mask = fpr_write_mask (insn1);
6221 if (mask != 0)
6222 {
6223 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6224 return 1;
6225 }
6226 else
6227 {
6228 /* Read-after-write dependencies on the control registers
6229 require a two-instruction gap. */
6230 if ((pinfo1 & INSN_WRITE_COND_CODE)
6231 && (pinfo2 & INSN_READ_COND_CODE))
6232 return 2;
6233
6234 /* We don't know exactly what INSN1 does. If INSN2 is
6235 also a coprocessor instruction, assume there must be
6236 a one instruction gap. */
6237 if (pinfo2 & INSN_COP)
6238 return 1;
6239 }
6240 }
6241
6242 /* Check for read-after-write dependencies on the coprocessor
6243 control registers in cases where INSN1 does not need a general
6244 coprocessor delay. This means that INSN1 is a floating point
6245 comparison instruction. */
6246 /* Itbl support may require additional care here. */
6247 else if (!cop_interlocks
6248 && (pinfo1 & INSN_WRITE_COND_CODE)
6249 && (pinfo2 & INSN_READ_COND_CODE))
6250 return 1;
6251 }
6252
6253 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6254 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6255 and pause. */
6256 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6257 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6258 || (insn2 && delayed_branch_p (insn2))))
6259 return 1;
6260
6261 return 0;
6262 }
6263
6264 /* Return the number of nops that would be needed to work around the
6265 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6266 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6267 that are contained within the first IGNORE instructions of HIST. */
6268
6269 static int
6270 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6271 const struct mips_cl_insn *insn)
6272 {
6273 int i, j;
6274 unsigned int mask;
6275
6276 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6277 are not affected by the errata. */
6278 if (insn != 0
6279 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6280 || strcmp (insn->insn_mo->name, "mtlo") == 0
6281 || strcmp (insn->insn_mo->name, "mthi") == 0))
6282 return 0;
6283
6284 /* Search for the first MFLO or MFHI. */
6285 for (i = 0; i < MAX_VR4130_NOPS; i++)
6286 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6287 {
6288 /* Extract the destination register. */
6289 mask = gpr_write_mask (&hist[i]);
6290
6291 /* No nops are needed if INSN reads that register. */
6292 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6293 return 0;
6294
6295 /* ...or if any of the intervening instructions do. */
6296 for (j = 0; j < i; j++)
6297 if (gpr_read_mask (&hist[j]) & mask)
6298 return 0;
6299
6300 if (i >= ignore)
6301 return MAX_VR4130_NOPS - i;
6302 }
6303 return 0;
6304 }
6305
6306 #define BASE_REG_EQ(INSN1, INSN2) \
6307 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6308 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6309
6310 /* Return the minimum alignment for this store instruction. */
6311
6312 static int
6313 fix_24k_align_to (const struct mips_opcode *mo)
6314 {
6315 if (strcmp (mo->name, "sh") == 0)
6316 return 2;
6317
6318 if (strcmp (mo->name, "swc1") == 0
6319 || strcmp (mo->name, "swc2") == 0
6320 || strcmp (mo->name, "sw") == 0
6321 || strcmp (mo->name, "sc") == 0
6322 || strcmp (mo->name, "s.s") == 0)
6323 return 4;
6324
6325 if (strcmp (mo->name, "sdc1") == 0
6326 || strcmp (mo->name, "sdc2") == 0
6327 || strcmp (mo->name, "s.d") == 0)
6328 return 8;
6329
6330 /* sb, swl, swr */
6331 return 1;
6332 }
6333
6334 struct fix_24k_store_info
6335 {
6336 /* Immediate offset, if any, for this store instruction. */
6337 short off;
6338 /* Alignment required by this store instruction. */
6339 int align_to;
6340 /* True for register offsets. */
6341 int register_offset;
6342 };
6343
6344 /* Comparison function used by qsort. */
6345
6346 static int
6347 fix_24k_sort (const void *a, const void *b)
6348 {
6349 const struct fix_24k_store_info *pos1 = a;
6350 const struct fix_24k_store_info *pos2 = b;
6351
6352 return (pos1->off - pos2->off);
6353 }
6354
6355 /* INSN is a store instruction. Try to record the store information
6356 in STINFO. Return false if the information isn't known. */
6357
6358 static bfd_boolean
6359 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6360 const struct mips_cl_insn *insn)
6361 {
6362 /* The instruction must have a known offset. */
6363 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6364 return FALSE;
6365
6366 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6367 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6368 return TRUE;
6369 }
6370
6371 /* Return the number of nops that would be needed to work around the 24k
6372 "lost data on stores during refill" errata if instruction INSN
6373 immediately followed the 2 instructions described by HIST.
6374 Ignore hazards that are contained within the first IGNORE
6375 instructions of HIST.
6376
6377 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6378 for the data cache refills and store data. The following describes
6379 the scenario where the store data could be lost.
6380
6381 * A data cache miss, due to either a load or a store, causing fill
6382 data to be supplied by the memory subsystem
6383 * The first three doublewords of fill data are returned and written
6384 into the cache
6385 * A sequence of four stores occurs in consecutive cycles around the
6386 final doubleword of the fill:
6387 * Store A
6388 * Store B
6389 * Store C
6390 * Zero, One or more instructions
6391 * Store D
6392
6393 The four stores A-D must be to different doublewords of the line that
6394 is being filled. The fourth instruction in the sequence above permits
6395 the fill of the final doubleword to be transferred from the FSB into
6396 the cache. In the sequence above, the stores may be either integer
6397 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6398 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6399 different doublewords on the line. If the floating point unit is
6400 running in 1:2 mode, it is not possible to create the sequence above
6401 using only floating point store instructions.
6402
6403 In this case, the cache line being filled is incorrectly marked
6404 invalid, thereby losing the data from any store to the line that
6405 occurs between the original miss and the completion of the five
6406 cycle sequence shown above.
6407
6408 The workarounds are:
6409
6410 * Run the data cache in write-through mode.
6411 * Insert a non-store instruction between
6412 Store A and Store B or Store B and Store C. */
6413
6414 static int
6415 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6416 const struct mips_cl_insn *insn)
6417 {
6418 struct fix_24k_store_info pos[3];
6419 int align, i, base_offset;
6420
6421 if (ignore >= 2)
6422 return 0;
6423
6424 /* If the previous instruction wasn't a store, there's nothing to
6425 worry about. */
6426 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6427 return 0;
6428
6429 /* If the instructions after the previous one are unknown, we have
6430 to assume the worst. */
6431 if (!insn)
6432 return 1;
6433
6434 /* Check whether we are dealing with three consecutive stores. */
6435 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6436 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6437 return 0;
6438
6439 /* If we don't know the relationship between the store addresses,
6440 assume the worst. */
6441 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6442 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6443 return 1;
6444
6445 if (!fix_24k_record_store_info (&pos[0], insn)
6446 || !fix_24k_record_store_info (&pos[1], &hist[0])
6447 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6448 return 1;
6449
6450 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6451
6452 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6453 X bytes and such that the base register + X is known to be aligned
6454 to align bytes. */
6455
6456 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6457 align = 8;
6458 else
6459 {
6460 align = pos[0].align_to;
6461 base_offset = pos[0].off;
6462 for (i = 1; i < 3; i++)
6463 if (align < pos[i].align_to)
6464 {
6465 align = pos[i].align_to;
6466 base_offset = pos[i].off;
6467 }
6468 for (i = 0; i < 3; i++)
6469 pos[i].off -= base_offset;
6470 }
6471
6472 pos[0].off &= ~align + 1;
6473 pos[1].off &= ~align + 1;
6474 pos[2].off &= ~align + 1;
6475
6476 /* If any two stores write to the same chunk, they also write to the
6477 same doubleword. The offsets are still sorted at this point. */
6478 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6479 return 0;
6480
6481 /* A range of at least 9 bytes is needed for the stores to be in
6482 non-overlapping doublewords. */
6483 if (pos[2].off - pos[0].off <= 8)
6484 return 0;
6485
6486 if (pos[2].off - pos[1].off >= 24
6487 || pos[1].off - pos[0].off >= 24
6488 || pos[2].off - pos[0].off >= 32)
6489 return 0;
6490
6491 return 1;
6492 }
6493
6494 /* Return the number of nops that would be needed if instruction INSN
6495 immediately followed the MAX_NOPS instructions given by HIST,
6496 where HIST[0] is the most recent instruction. Ignore hazards
6497 between INSN and the first IGNORE instructions in HIST.
6498
6499 If INSN is null, return the worse-case number of nops for any
6500 instruction. */
6501
6502 static int
6503 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6504 const struct mips_cl_insn *insn)
6505 {
6506 int i, nops, tmp_nops;
6507
6508 nops = 0;
6509 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6510 {
6511 tmp_nops = insns_between (hist + i, insn) - i;
6512 if (tmp_nops > nops)
6513 nops = tmp_nops;
6514 }
6515
6516 if (mips_fix_vr4130 && !mips_opts.micromips)
6517 {
6518 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6519 if (tmp_nops > nops)
6520 nops = tmp_nops;
6521 }
6522
6523 if (mips_fix_24k && !mips_opts.micromips)
6524 {
6525 tmp_nops = nops_for_24k (ignore, hist, insn);
6526 if (tmp_nops > nops)
6527 nops = tmp_nops;
6528 }
6529
6530 return nops;
6531 }
6532
6533 /* The variable arguments provide NUM_INSNS extra instructions that
6534 might be added to HIST. Return the largest number of nops that
6535 would be needed after the extended sequence, ignoring hazards
6536 in the first IGNORE instructions. */
6537
6538 static int
6539 nops_for_sequence (int num_insns, int ignore,
6540 const struct mips_cl_insn *hist, ...)
6541 {
6542 va_list args;
6543 struct mips_cl_insn buffer[MAX_NOPS];
6544 struct mips_cl_insn *cursor;
6545 int nops;
6546
6547 va_start (args, hist);
6548 cursor = buffer + num_insns;
6549 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6550 while (cursor > buffer)
6551 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6552
6553 nops = nops_for_insn (ignore, buffer, NULL);
6554 va_end (args);
6555 return nops;
6556 }
6557
6558 /* Like nops_for_insn, but if INSN is a branch, take into account the
6559 worst-case delay for the branch target. */
6560
6561 static int
6562 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6563 const struct mips_cl_insn *insn)
6564 {
6565 int nops, tmp_nops;
6566
6567 nops = nops_for_insn (ignore, hist, insn);
6568 if (delayed_branch_p (insn))
6569 {
6570 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6571 hist, insn, get_delay_slot_nop (insn));
6572 if (tmp_nops > nops)
6573 nops = tmp_nops;
6574 }
6575 else if (compact_branch_p (insn))
6576 {
6577 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6578 if (tmp_nops > nops)
6579 nops = tmp_nops;
6580 }
6581 return nops;
6582 }
6583
6584 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6585
6586 static void
6587 fix_loongson2f_nop (struct mips_cl_insn * ip)
6588 {
6589 gas_assert (!HAVE_CODE_COMPRESSION);
6590 if (strcmp (ip->insn_mo->name, "nop") == 0)
6591 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6592 }
6593
6594 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6595 jr target pc &= 'hffff_ffff_cfff_ffff. */
6596
6597 static void
6598 fix_loongson2f_jump (struct mips_cl_insn * ip)
6599 {
6600 gas_assert (!HAVE_CODE_COMPRESSION);
6601 if (strcmp (ip->insn_mo->name, "j") == 0
6602 || strcmp (ip->insn_mo->name, "jr") == 0
6603 || strcmp (ip->insn_mo->name, "jalr") == 0)
6604 {
6605 int sreg;
6606 expressionS ep;
6607
6608 if (! mips_opts.at)
6609 return;
6610
6611 sreg = EXTRACT_OPERAND (0, RS, *ip);
6612 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6613 return;
6614
6615 ep.X_op = O_constant;
6616 ep.X_add_number = 0xcfff0000;
6617 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6618 ep.X_add_number = 0xffff;
6619 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6620 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6621 }
6622 }
6623
6624 static void
6625 fix_loongson2f (struct mips_cl_insn * ip)
6626 {
6627 if (mips_fix_loongson2f_nop)
6628 fix_loongson2f_nop (ip);
6629
6630 if (mips_fix_loongson2f_jump)
6631 fix_loongson2f_jump (ip);
6632 }
6633
6634 /* IP is a branch that has a delay slot, and we need to fill it
6635 automatically. Return true if we can do that by swapping IP
6636 with the previous instruction.
6637 ADDRESS_EXPR is an operand of the instruction to be used with
6638 RELOC_TYPE. */
6639
6640 static bfd_boolean
6641 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6642 bfd_reloc_code_real_type *reloc_type)
6643 {
6644 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6645 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6646 unsigned int fpr_read, prev_fpr_write;
6647
6648 /* -O2 and above is required for this optimization. */
6649 if (mips_optimize < 2)
6650 return FALSE;
6651
6652 /* If we have seen .set volatile or .set nomove, don't optimize. */
6653 if (mips_opts.nomove)
6654 return FALSE;
6655
6656 /* We can't swap if the previous instruction's position is fixed. */
6657 if (history[0].fixed_p)
6658 return FALSE;
6659
6660 /* If the previous previous insn was in a .set noreorder, we can't
6661 swap. Actually, the MIPS assembler will swap in this situation.
6662 However, gcc configured -with-gnu-as will generate code like
6663
6664 .set noreorder
6665 lw $4,XXX
6666 .set reorder
6667 INSN
6668 bne $4,$0,foo
6669
6670 in which we can not swap the bne and INSN. If gcc is not configured
6671 -with-gnu-as, it does not output the .set pseudo-ops. */
6672 if (history[1].noreorder_p)
6673 return FALSE;
6674
6675 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6676 This means that the previous instruction was a 4-byte one anyhow. */
6677 if (mips_opts.mips16 && history[0].fixp[0])
6678 return FALSE;
6679
6680 /* If the branch is itself the target of a branch, we can not swap.
6681 We cheat on this; all we check for is whether there is a label on
6682 this instruction. If there are any branches to anything other than
6683 a label, users must use .set noreorder. */
6684 if (seg_info (now_seg)->label_list)
6685 return FALSE;
6686
6687 /* If the previous instruction is in a variant frag other than this
6688 branch's one, we cannot do the swap. This does not apply to
6689 MIPS16 code, which uses variant frags for different purposes. */
6690 if (!mips_opts.mips16
6691 && history[0].frag
6692 && history[0].frag->fr_type == rs_machine_dependent)
6693 return FALSE;
6694
6695 /* We do not swap with instructions that cannot architecturally
6696 be placed in a branch delay slot, such as SYNC or ERET. We
6697 also refrain from swapping with a trap instruction, since it
6698 complicates trap handlers to have the trap instruction be in
6699 a delay slot. */
6700 prev_pinfo = history[0].insn_mo->pinfo;
6701 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6702 return FALSE;
6703
6704 /* Check for conflicts between the branch and the instructions
6705 before the candidate delay slot. */
6706 if (nops_for_insn (0, history + 1, ip) > 0)
6707 return FALSE;
6708
6709 /* Check for conflicts between the swapped sequence and the
6710 target of the branch. */
6711 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6712 return FALSE;
6713
6714 /* If the branch reads a register that the previous
6715 instruction sets, we can not swap. */
6716 gpr_read = gpr_read_mask (ip);
6717 prev_gpr_write = gpr_write_mask (&history[0]);
6718 if (gpr_read & prev_gpr_write)
6719 return FALSE;
6720
6721 fpr_read = fpr_read_mask (ip);
6722 prev_fpr_write = fpr_write_mask (&history[0]);
6723 if (fpr_read & prev_fpr_write)
6724 return FALSE;
6725
6726 /* If the branch writes a register that the previous
6727 instruction sets, we can not swap. */
6728 gpr_write = gpr_write_mask (ip);
6729 if (gpr_write & prev_gpr_write)
6730 return FALSE;
6731
6732 /* If the branch writes a register that the previous
6733 instruction reads, we can not swap. */
6734 prev_gpr_read = gpr_read_mask (&history[0]);
6735 if (gpr_write & prev_gpr_read)
6736 return FALSE;
6737
6738 /* If one instruction sets a condition code and the
6739 other one uses a condition code, we can not swap. */
6740 pinfo = ip->insn_mo->pinfo;
6741 if ((pinfo & INSN_READ_COND_CODE)
6742 && (prev_pinfo & INSN_WRITE_COND_CODE))
6743 return FALSE;
6744 if ((pinfo & INSN_WRITE_COND_CODE)
6745 && (prev_pinfo & INSN_READ_COND_CODE))
6746 return FALSE;
6747
6748 /* If the previous instruction uses the PC, we can not swap. */
6749 prev_pinfo2 = history[0].insn_mo->pinfo2;
6750 if (prev_pinfo2 & INSN2_READ_PC)
6751 return FALSE;
6752
6753 /* If the previous instruction has an incorrect size for a fixed
6754 branch delay slot in microMIPS mode, we cannot swap. */
6755 pinfo2 = ip->insn_mo->pinfo2;
6756 if (mips_opts.micromips
6757 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6758 && insn_length (history) != 2)
6759 return FALSE;
6760 if (mips_opts.micromips
6761 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6762 && insn_length (history) != 4)
6763 return FALSE;
6764
6765 /* On R5900 short loops need to be fixed by inserting a nop in
6766 the branch delay slots.
6767 A short loop can be terminated too early. */
6768 if (mips_opts.arch == CPU_R5900
6769 /* Check if instruction has a parameter, ignore "j $31". */
6770 && (address_expr != NULL)
6771 /* Parameter must be 16 bit. */
6772 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6773 /* Branch to same segment. */
6774 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6775 /* Branch to same code fragment. */
6776 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6777 /* Can only calculate branch offset if value is known. */
6778 && symbol_constant_p (address_expr->X_add_symbol)
6779 /* Check if branch is really conditional. */
6780 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6781 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6782 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6783 {
6784 int distance;
6785 /* Check if loop is shorter than 6 instructions including
6786 branch and delay slot. */
6787 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6788 if (distance <= 20)
6789 {
6790 int i;
6791 int rv;
6792
6793 rv = FALSE;
6794 /* When the loop includes branches or jumps,
6795 it is not a short loop. */
6796 for (i = 0; i < (distance / 4); i++)
6797 {
6798 if ((history[i].cleared_p)
6799 || delayed_branch_p (&history[i]))
6800 {
6801 rv = TRUE;
6802 break;
6803 }
6804 }
6805 if (rv == FALSE)
6806 {
6807 /* Insert nop after branch to fix short loop. */
6808 return FALSE;
6809 }
6810 }
6811 }
6812
6813 return TRUE;
6814 }
6815
6816 /* Decide how we should add IP to the instruction stream.
6817 ADDRESS_EXPR is an operand of the instruction to be used with
6818 RELOC_TYPE. */
6819
6820 static enum append_method
6821 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6822 bfd_reloc_code_real_type *reloc_type)
6823 {
6824 /* The relaxed version of a macro sequence must be inherently
6825 hazard-free. */
6826 if (mips_relax.sequence == 2)
6827 return APPEND_ADD;
6828
6829 /* We must not dabble with instructions in a ".set noreorder" block. */
6830 if (mips_opts.noreorder)
6831 return APPEND_ADD;
6832
6833 /* Otherwise, it's our responsibility to fill branch delay slots. */
6834 if (delayed_branch_p (ip))
6835 {
6836 if (!branch_likely_p (ip)
6837 && can_swap_branch_p (ip, address_expr, reloc_type))
6838 return APPEND_SWAP;
6839
6840 if (mips_opts.mips16
6841 && ISA_SUPPORTS_MIPS16E
6842 && gpr_read_mask (ip) != 0)
6843 return APPEND_ADD_COMPACT;
6844
6845 if (mips_opts.micromips
6846 && ((ip->insn_opcode & 0xffe0) == 0x4580
6847 || (!forced_insn_length
6848 && ((ip->insn_opcode & 0xfc00) == 0xcc00
6849 || (ip->insn_opcode & 0xdc00) == 0x8c00))
6850 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
6851 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
6852 return APPEND_ADD_COMPACT;
6853
6854 return APPEND_ADD_WITH_NOP;
6855 }
6856
6857 return APPEND_ADD;
6858 }
6859
6860 /* IP is an instruction whose opcode we have just changed, END points
6861 to the end of the opcode table processed. Point IP->insn_mo to the
6862 new opcode's definition. */
6863
6864 static void
6865 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
6866 {
6867 const struct mips_opcode *mo;
6868
6869 for (mo = ip->insn_mo; mo < end; mo++)
6870 if (mo->pinfo != INSN_MACRO
6871 && (ip->insn_opcode & mo->mask) == mo->match)
6872 {
6873 ip->insn_mo = mo;
6874 return;
6875 }
6876 abort ();
6877 }
6878
6879 /* IP is a MIPS16 instruction whose opcode we have just changed.
6880 Point IP->insn_mo to the new opcode's definition. */
6881
6882 static void
6883 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6884 {
6885 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
6886 }
6887
6888 /* IP is a microMIPS instruction whose opcode we have just changed.
6889 Point IP->insn_mo to the new opcode's definition. */
6890
6891 static void
6892 find_altered_micromips_opcode (struct mips_cl_insn *ip)
6893 {
6894 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
6895 }
6896
6897 /* For microMIPS macros, we need to generate a local number label
6898 as the target of branches. */
6899 #define MICROMIPS_LABEL_CHAR '\037'
6900 static unsigned long micromips_target_label;
6901 static char micromips_target_name[32];
6902
6903 static char *
6904 micromips_label_name (void)
6905 {
6906 char *p = micromips_target_name;
6907 char symbol_name_temporary[24];
6908 unsigned long l;
6909 int i;
6910
6911 if (*p)
6912 return p;
6913
6914 i = 0;
6915 l = micromips_target_label;
6916 #ifdef LOCAL_LABEL_PREFIX
6917 *p++ = LOCAL_LABEL_PREFIX;
6918 #endif
6919 *p++ = 'L';
6920 *p++ = MICROMIPS_LABEL_CHAR;
6921 do
6922 {
6923 symbol_name_temporary[i++] = l % 10 + '0';
6924 l /= 10;
6925 }
6926 while (l != 0);
6927 while (i > 0)
6928 *p++ = symbol_name_temporary[--i];
6929 *p = '\0';
6930
6931 return micromips_target_name;
6932 }
6933
6934 static void
6935 micromips_label_expr (expressionS *label_expr)
6936 {
6937 label_expr->X_op = O_symbol;
6938 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6939 label_expr->X_add_number = 0;
6940 }
6941
6942 static void
6943 micromips_label_inc (void)
6944 {
6945 micromips_target_label++;
6946 *micromips_target_name = '\0';
6947 }
6948
6949 static void
6950 micromips_add_label (void)
6951 {
6952 symbolS *s;
6953
6954 s = colon (micromips_label_name ());
6955 micromips_label_inc ();
6956 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6957 }
6958
6959 /* If assembling microMIPS code, then return the microMIPS reloc
6960 corresponding to the requested one if any. Otherwise return
6961 the reloc unchanged. */
6962
6963 static bfd_reloc_code_real_type
6964 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6965 {
6966 static const bfd_reloc_code_real_type relocs[][2] =
6967 {
6968 /* Keep sorted incrementally by the left-hand key. */
6969 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6970 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6971 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6972 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6973 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6974 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6975 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6976 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6977 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6978 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6979 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6980 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6981 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6982 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6983 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6984 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6985 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6986 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6987 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6988 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6989 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6990 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6991 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6992 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6993 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6994 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6995 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6996 };
6997 bfd_reloc_code_real_type r;
6998 size_t i;
6999
7000 if (!mips_opts.micromips)
7001 return reloc;
7002 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7003 {
7004 r = relocs[i][0];
7005 if (r > reloc)
7006 return reloc;
7007 if (r == reloc)
7008 return relocs[i][1];
7009 }
7010 return reloc;
7011 }
7012
7013 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7014 Return true on success, storing the resolved value in RESULT. */
7015
7016 static bfd_boolean
7017 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7018 offsetT *result)
7019 {
7020 switch (reloc)
7021 {
7022 case BFD_RELOC_MIPS_HIGHEST:
7023 case BFD_RELOC_MICROMIPS_HIGHEST:
7024 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7025 return TRUE;
7026
7027 case BFD_RELOC_MIPS_HIGHER:
7028 case BFD_RELOC_MICROMIPS_HIGHER:
7029 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7030 return TRUE;
7031
7032 case BFD_RELOC_HI16_S:
7033 case BFD_RELOC_HI16_S_PCREL:
7034 case BFD_RELOC_MICROMIPS_HI16_S:
7035 case BFD_RELOC_MIPS16_HI16_S:
7036 *result = ((operand + 0x8000) >> 16) & 0xffff;
7037 return TRUE;
7038
7039 case BFD_RELOC_HI16:
7040 case BFD_RELOC_MICROMIPS_HI16:
7041 case BFD_RELOC_MIPS16_HI16:
7042 *result = (operand >> 16) & 0xffff;
7043 return TRUE;
7044
7045 case BFD_RELOC_LO16:
7046 case BFD_RELOC_LO16_PCREL:
7047 case BFD_RELOC_MICROMIPS_LO16:
7048 case BFD_RELOC_MIPS16_LO16:
7049 *result = operand & 0xffff;
7050 return TRUE;
7051
7052 case BFD_RELOC_UNUSED:
7053 *result = operand;
7054 return TRUE;
7055
7056 default:
7057 return FALSE;
7058 }
7059 }
7060
7061 /* Output an instruction. IP is the instruction information.
7062 ADDRESS_EXPR is an operand of the instruction to be used with
7063 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7064 a macro expansion. */
7065
7066 static void
7067 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7068 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7069 {
7070 unsigned long prev_pinfo2, pinfo;
7071 bfd_boolean relaxed_branch = FALSE;
7072 enum append_method method;
7073 bfd_boolean relax32;
7074 int branch_disp;
7075
7076 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7077 fix_loongson2f (ip);
7078
7079 file_ase_mips16 |= mips_opts.mips16;
7080 file_ase_micromips |= mips_opts.micromips;
7081
7082 prev_pinfo2 = history[0].insn_mo->pinfo2;
7083 pinfo = ip->insn_mo->pinfo;
7084
7085 /* Don't raise alarm about `nods' frags as they'll fill in the right
7086 kind of nop in relaxation if required. */
7087 if (mips_opts.micromips
7088 && !expansionp
7089 && !(history[0].frag
7090 && history[0].frag->fr_type == rs_machine_dependent
7091 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7092 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7093 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7094 && micromips_insn_length (ip->insn_mo) != 2)
7095 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7096 && micromips_insn_length (ip->insn_mo) != 4)))
7097 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7098 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7099
7100 if (address_expr == NULL)
7101 ip->complete_p = 1;
7102 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7103 && reloc_type[1] == BFD_RELOC_UNUSED
7104 && reloc_type[2] == BFD_RELOC_UNUSED
7105 && address_expr->X_op == O_constant)
7106 {
7107 switch (*reloc_type)
7108 {
7109 case BFD_RELOC_MIPS_JMP:
7110 {
7111 int shift;
7112
7113 /* Shift is 2, unusually, for microMIPS JALX. */
7114 shift = (mips_opts.micromips
7115 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7116 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7117 as_bad (_("jump to misaligned address (0x%lx)"),
7118 (unsigned long) address_expr->X_add_number);
7119 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7120 & 0x3ffffff);
7121 ip->complete_p = 1;
7122 }
7123 break;
7124
7125 case BFD_RELOC_MIPS16_JMP:
7126 if ((address_expr->X_add_number & 3) != 0)
7127 as_bad (_("jump to misaligned address (0x%lx)"),
7128 (unsigned long) address_expr->X_add_number);
7129 ip->insn_opcode |=
7130 (((address_expr->X_add_number & 0x7c0000) << 3)
7131 | ((address_expr->X_add_number & 0xf800000) >> 7)
7132 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7133 ip->complete_p = 1;
7134 break;
7135
7136 case BFD_RELOC_16_PCREL_S2:
7137 {
7138 int shift;
7139
7140 shift = mips_opts.micromips ? 1 : 2;
7141 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7142 as_bad (_("branch to misaligned address (0x%lx)"),
7143 (unsigned long) address_expr->X_add_number);
7144 if (!mips_relax_branch)
7145 {
7146 if ((address_expr->X_add_number + (1 << (shift + 15)))
7147 & ~((1 << (shift + 16)) - 1))
7148 as_bad (_("branch address range overflow (0x%lx)"),
7149 (unsigned long) address_expr->X_add_number);
7150 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7151 & 0xffff);
7152 }
7153 }
7154 break;
7155
7156 case BFD_RELOC_MIPS_21_PCREL_S2:
7157 {
7158 int shift;
7159
7160 shift = 2;
7161 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7162 as_bad (_("branch to misaligned address (0x%lx)"),
7163 (unsigned long) address_expr->X_add_number);
7164 if ((address_expr->X_add_number + (1 << (shift + 20)))
7165 & ~((1 << (shift + 21)) - 1))
7166 as_bad (_("branch address range overflow (0x%lx)"),
7167 (unsigned long) address_expr->X_add_number);
7168 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7169 & 0x1fffff);
7170 }
7171 break;
7172
7173 case BFD_RELOC_MIPS_26_PCREL_S2:
7174 {
7175 int shift;
7176
7177 shift = 2;
7178 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7179 as_bad (_("branch to misaligned address (0x%lx)"),
7180 (unsigned long) address_expr->X_add_number);
7181 if ((address_expr->X_add_number + (1 << (shift + 25)))
7182 & ~((1 << (shift + 26)) - 1))
7183 as_bad (_("branch address range overflow (0x%lx)"),
7184 (unsigned long) address_expr->X_add_number);
7185 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7186 & 0x3ffffff);
7187 }
7188 break;
7189
7190 default:
7191 {
7192 offsetT value;
7193
7194 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7195 &value))
7196 {
7197 ip->insn_opcode |= value & 0xffff;
7198 ip->complete_p = 1;
7199 }
7200 }
7201 break;
7202 }
7203 }
7204
7205 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7206 {
7207 /* There are a lot of optimizations we could do that we don't.
7208 In particular, we do not, in general, reorder instructions.
7209 If you use gcc with optimization, it will reorder
7210 instructions and generally do much more optimization then we
7211 do here; repeating all that work in the assembler would only
7212 benefit hand written assembly code, and does not seem worth
7213 it. */
7214 int nops = (mips_optimize == 0
7215 ? nops_for_insn (0, history, NULL)
7216 : nops_for_insn_or_target (0, history, ip));
7217 if (nops > 0)
7218 {
7219 fragS *old_frag;
7220 unsigned long old_frag_offset;
7221 int i;
7222
7223 old_frag = frag_now;
7224 old_frag_offset = frag_now_fix ();
7225
7226 for (i = 0; i < nops; i++)
7227 add_fixed_insn (NOP_INSN);
7228 insert_into_history (0, nops, NOP_INSN);
7229
7230 if (listing)
7231 {
7232 listing_prev_line ();
7233 /* We may be at the start of a variant frag. In case we
7234 are, make sure there is enough space for the frag
7235 after the frags created by listing_prev_line. The
7236 argument to frag_grow here must be at least as large
7237 as the argument to all other calls to frag_grow in
7238 this file. We don't have to worry about being in the
7239 middle of a variant frag, because the variants insert
7240 all needed nop instructions themselves. */
7241 frag_grow (40);
7242 }
7243
7244 mips_move_text_labels ();
7245
7246 #ifndef NO_ECOFF_DEBUGGING
7247 if (ECOFF_DEBUGGING)
7248 ecoff_fix_loc (old_frag, old_frag_offset);
7249 #endif
7250 }
7251 }
7252 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7253 {
7254 int nops;
7255
7256 /* Work out how many nops in prev_nop_frag are needed by IP,
7257 ignoring hazards generated by the first prev_nop_frag_since
7258 instructions. */
7259 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7260 gas_assert (nops <= prev_nop_frag_holds);
7261
7262 /* Enforce NOPS as a minimum. */
7263 if (nops > prev_nop_frag_required)
7264 prev_nop_frag_required = nops;
7265
7266 if (prev_nop_frag_holds == prev_nop_frag_required)
7267 {
7268 /* Settle for the current number of nops. Update the history
7269 accordingly (for the benefit of any future .set reorder code). */
7270 prev_nop_frag = NULL;
7271 insert_into_history (prev_nop_frag_since,
7272 prev_nop_frag_holds, NOP_INSN);
7273 }
7274 else
7275 {
7276 /* Allow this instruction to replace one of the nops that was
7277 tentatively added to prev_nop_frag. */
7278 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7279 prev_nop_frag_holds--;
7280 prev_nop_frag_since++;
7281 }
7282 }
7283
7284 method = get_append_method (ip, address_expr, reloc_type);
7285 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7286
7287 dwarf2_emit_insn (0);
7288 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7289 so "move" the instruction address accordingly.
7290
7291 Also, it doesn't seem appropriate for the assembler to reorder .loc
7292 entries. If this instruction is a branch that we are going to swap
7293 with the previous instruction, the two instructions should be
7294 treated as a unit, and the debug information for both instructions
7295 should refer to the start of the branch sequence. Using the
7296 current position is certainly wrong when swapping a 32-bit branch
7297 and a 16-bit delay slot, since the current position would then be
7298 in the middle of a branch. */
7299 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7300
7301 relax32 = (mips_relax_branch
7302 /* Don't try branch relaxation within .set nomacro, or within
7303 .set noat if we use $at for PIC computations. If it turns
7304 out that the branch was out-of-range, we'll get an error. */
7305 && !mips_opts.warn_about_macros
7306 && (mips_opts.at || mips_pic == NO_PIC)
7307 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7308 as they have no complementing branches. */
7309 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7310
7311 if (!HAVE_CODE_COMPRESSION
7312 && address_expr
7313 && relax32
7314 && *reloc_type == BFD_RELOC_16_PCREL_S2
7315 && delayed_branch_p (ip))
7316 {
7317 relaxed_branch = TRUE;
7318 add_relaxed_insn (ip, (relaxed_branch_length
7319 (NULL, NULL,
7320 uncond_branch_p (ip) ? -1
7321 : branch_likely_p (ip) ? 1
7322 : 0)), 4,
7323 RELAX_BRANCH_ENCODE
7324 (AT,
7325 uncond_branch_p (ip),
7326 branch_likely_p (ip),
7327 pinfo & INSN_WRITE_GPR_31,
7328 0),
7329 address_expr->X_add_symbol,
7330 address_expr->X_add_number);
7331 *reloc_type = BFD_RELOC_UNUSED;
7332 }
7333 else if (mips_opts.micromips
7334 && address_expr
7335 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7336 || *reloc_type > BFD_RELOC_UNUSED)
7337 && (delayed_branch_p (ip) || compact_branch_p (ip))
7338 /* Don't try branch relaxation when users specify
7339 16-bit/32-bit instructions. */
7340 && !forced_insn_length)
7341 {
7342 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7343 && *reloc_type > BFD_RELOC_UNUSED);
7344 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7345 int uncond = uncond_branch_p (ip) ? -1 : 0;
7346 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7347 int nods = method == APPEND_ADD_WITH_NOP;
7348 int al = pinfo & INSN_WRITE_GPR_31;
7349 int length32 = nods ? 8 : 4;
7350
7351 gas_assert (address_expr != NULL);
7352 gas_assert (!mips_relax.sequence);
7353
7354 relaxed_branch = TRUE;
7355 if (nods)
7356 method = APPEND_ADD;
7357 if (relax32)
7358 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7359 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7360 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7361 uncond, compact, al, nods,
7362 relax32, 0, 0),
7363 address_expr->X_add_symbol,
7364 address_expr->X_add_number);
7365 *reloc_type = BFD_RELOC_UNUSED;
7366 }
7367 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7368 {
7369 bfd_boolean require_unextended;
7370 bfd_boolean require_extended;
7371 symbolS *symbol;
7372 offsetT offset;
7373
7374 if (forced_insn_length != 0)
7375 {
7376 require_unextended = forced_insn_length == 2;
7377 require_extended = forced_insn_length == 4;
7378 }
7379 else
7380 {
7381 require_unextended = (mips_opts.noautoextend
7382 && !mips_opcode_32bit_p (ip->insn_mo));
7383 require_extended = 0;
7384 }
7385
7386 /* We need to set up a variant frag. */
7387 gas_assert (address_expr != NULL);
7388 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7389 symbol created by `make_expr_symbol' may not get a necessary
7390 external relocation produced. */
7391 if (address_expr->X_op == O_symbol)
7392 {
7393 symbol = address_expr->X_add_symbol;
7394 offset = address_expr->X_add_number;
7395 }
7396 else
7397 {
7398 symbol = make_expr_symbol (address_expr);
7399 offset = 0;
7400 }
7401 add_relaxed_insn (ip, 4, 0,
7402 RELAX_MIPS16_ENCODE
7403 (*reloc_type - BFD_RELOC_UNUSED,
7404 require_unextended, require_extended,
7405 delayed_branch_p (&history[0]),
7406 history[0].mips16_absolute_jump_p),
7407 symbol, offset);
7408 }
7409 else if (mips_opts.mips16 && insn_length (ip) == 2)
7410 {
7411 if (!delayed_branch_p (ip))
7412 /* Make sure there is enough room to swap this instruction with
7413 a following jump instruction. */
7414 frag_grow (6);
7415 add_fixed_insn (ip);
7416 }
7417 else
7418 {
7419 if (mips_opts.mips16
7420 && mips_opts.noreorder
7421 && delayed_branch_p (&history[0]))
7422 as_warn (_("extended instruction in delay slot"));
7423
7424 if (mips_relax.sequence)
7425 {
7426 /* If we've reached the end of this frag, turn it into a variant
7427 frag and record the information for the instructions we've
7428 written so far. */
7429 if (frag_room () < 4)
7430 relax_close_frag ();
7431 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7432 }
7433
7434 if (mips_relax.sequence != 2)
7435 {
7436 if (mips_macro_warning.first_insn_sizes[0] == 0)
7437 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7438 mips_macro_warning.sizes[0] += insn_length (ip);
7439 mips_macro_warning.insns[0]++;
7440 }
7441 if (mips_relax.sequence != 1)
7442 {
7443 if (mips_macro_warning.first_insn_sizes[1] == 0)
7444 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7445 mips_macro_warning.sizes[1] += insn_length (ip);
7446 mips_macro_warning.insns[1]++;
7447 }
7448
7449 if (mips_opts.mips16)
7450 {
7451 ip->fixed_p = 1;
7452 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7453 }
7454 add_fixed_insn (ip);
7455 }
7456
7457 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7458 {
7459 bfd_reloc_code_real_type final_type[3];
7460 reloc_howto_type *howto0;
7461 reloc_howto_type *howto;
7462 int i;
7463
7464 /* Perform any necessary conversion to microMIPS relocations
7465 and find out how many relocations there actually are. */
7466 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7467 final_type[i] = micromips_map_reloc (reloc_type[i]);
7468
7469 /* In a compound relocation, it is the final (outermost)
7470 operator that determines the relocated field. */
7471 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7472 if (!howto)
7473 abort ();
7474
7475 if (i > 1)
7476 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7477 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7478 bfd_get_reloc_size (howto),
7479 address_expr,
7480 howto0 && howto0->pc_relative,
7481 final_type[0]);
7482
7483 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7484 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7485 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7486
7487 /* These relocations can have an addend that won't fit in
7488 4 octets for 64bit assembly. */
7489 if (GPR_SIZE == 64
7490 && ! howto->partial_inplace
7491 && (reloc_type[0] == BFD_RELOC_16
7492 || reloc_type[0] == BFD_RELOC_32
7493 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7494 || reloc_type[0] == BFD_RELOC_GPREL16
7495 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7496 || reloc_type[0] == BFD_RELOC_GPREL32
7497 || reloc_type[0] == BFD_RELOC_64
7498 || reloc_type[0] == BFD_RELOC_CTOR
7499 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7500 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7501 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7502 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7503 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7504 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7505 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7506 || hi16_reloc_p (reloc_type[0])
7507 || lo16_reloc_p (reloc_type[0])))
7508 ip->fixp[0]->fx_no_overflow = 1;
7509
7510 /* These relocations can have an addend that won't fit in 2 octets. */
7511 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7512 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7513 ip->fixp[0]->fx_no_overflow = 1;
7514
7515 if (mips_relax.sequence)
7516 {
7517 if (mips_relax.first_fixup == 0)
7518 mips_relax.first_fixup = ip->fixp[0];
7519 }
7520 else if (reloc_needs_lo_p (*reloc_type))
7521 {
7522 struct mips_hi_fixup *hi_fixup;
7523
7524 /* Reuse the last entry if it already has a matching %lo. */
7525 hi_fixup = mips_hi_fixup_list;
7526 if (hi_fixup == 0
7527 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7528 {
7529 hi_fixup = XNEW (struct mips_hi_fixup);
7530 hi_fixup->next = mips_hi_fixup_list;
7531 mips_hi_fixup_list = hi_fixup;
7532 }
7533 hi_fixup->fixp = ip->fixp[0];
7534 hi_fixup->seg = now_seg;
7535 }
7536
7537 /* Add fixups for the second and third relocations, if given.
7538 Note that the ABI allows the second relocation to be
7539 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7540 moment we only use RSS_UNDEF, but we could add support
7541 for the others if it ever becomes necessary. */
7542 for (i = 1; i < 3; i++)
7543 if (reloc_type[i] != BFD_RELOC_UNUSED)
7544 {
7545 ip->fixp[i] = fix_new (ip->frag, ip->where,
7546 ip->fixp[0]->fx_size, NULL, 0,
7547 FALSE, final_type[i]);
7548
7549 /* Use fx_tcbit to mark compound relocs. */
7550 ip->fixp[0]->fx_tcbit = 1;
7551 ip->fixp[i]->fx_tcbit = 1;
7552 }
7553 }
7554
7555 /* Update the register mask information. */
7556 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7557 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7558
7559 switch (method)
7560 {
7561 case APPEND_ADD:
7562 insert_into_history (0, 1, ip);
7563 break;
7564
7565 case APPEND_ADD_WITH_NOP:
7566 {
7567 struct mips_cl_insn *nop;
7568
7569 insert_into_history (0, 1, ip);
7570 nop = get_delay_slot_nop (ip);
7571 add_fixed_insn (nop);
7572 insert_into_history (0, 1, nop);
7573 if (mips_relax.sequence)
7574 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7575 }
7576 break;
7577
7578 case APPEND_ADD_COMPACT:
7579 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7580 if (mips_opts.mips16)
7581 {
7582 ip->insn_opcode |= 0x0080;
7583 find_altered_mips16_opcode (ip);
7584 }
7585 /* Convert microMIPS instructions. */
7586 else if (mips_opts.micromips)
7587 {
7588 /* jr16->jrc */
7589 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7590 ip->insn_opcode |= 0x0020;
7591 /* b16->bc */
7592 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7593 ip->insn_opcode = 0x40e00000;
7594 /* beqz16->beqzc, bnez16->bnezc */
7595 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7596 {
7597 unsigned long regno;
7598
7599 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7600 regno &= MICROMIPSOP_MASK_MD;
7601 regno = micromips_to_32_reg_d_map[regno];
7602 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7603 | (regno << MICROMIPSOP_SH_RS)
7604 | 0x40a00000) ^ 0x00400000;
7605 }
7606 /* beqz->beqzc, bnez->bnezc */
7607 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7608 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7609 | ((ip->insn_opcode >> 7) & 0x00400000)
7610 | 0x40a00000) ^ 0x00400000;
7611 /* beq $0->beqzc, bne $0->bnezc */
7612 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7613 ip->insn_opcode = (((ip->insn_opcode >>
7614 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7615 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7616 | ((ip->insn_opcode >> 7) & 0x00400000)
7617 | 0x40a00000) ^ 0x00400000;
7618 else
7619 abort ();
7620 find_altered_micromips_opcode (ip);
7621 }
7622 else
7623 abort ();
7624 install_insn (ip);
7625 insert_into_history (0, 1, ip);
7626 break;
7627
7628 case APPEND_SWAP:
7629 {
7630 struct mips_cl_insn delay = history[0];
7631
7632 if (relaxed_branch || delay.frag != ip->frag)
7633 {
7634 /* Add the delay slot instruction to the end of the
7635 current frag and shrink the fixed part of the
7636 original frag. If the branch occupies the tail of
7637 the latter, move it backwards to cover the gap. */
7638 delay.frag->fr_fix -= branch_disp;
7639 if (delay.frag == ip->frag)
7640 move_insn (ip, ip->frag, ip->where - branch_disp);
7641 add_fixed_insn (&delay);
7642 }
7643 else
7644 {
7645 /* If this is not a relaxed branch and we are in the
7646 same frag, then just swap the instructions. */
7647 move_insn (ip, delay.frag, delay.where);
7648 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7649 }
7650 history[0] = *ip;
7651 delay.fixed_p = 1;
7652 insert_into_history (0, 1, &delay);
7653 }
7654 break;
7655 }
7656
7657 /* If we have just completed an unconditional branch, clear the history. */
7658 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7659 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7660 {
7661 unsigned int i;
7662
7663 mips_no_prev_insn ();
7664
7665 for (i = 0; i < ARRAY_SIZE (history); i++)
7666 history[i].cleared_p = 1;
7667 }
7668
7669 /* We need to emit a label at the end of branch-likely macros. */
7670 if (emit_branch_likely_macro)
7671 {
7672 emit_branch_likely_macro = FALSE;
7673 micromips_add_label ();
7674 }
7675
7676 /* We just output an insn, so the next one doesn't have a label. */
7677 mips_clear_insn_labels ();
7678 }
7679
7680 /* Forget that there was any previous instruction or label.
7681 When BRANCH is true, the branch history is also flushed. */
7682
7683 static void
7684 mips_no_prev_insn (void)
7685 {
7686 prev_nop_frag = NULL;
7687 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7688 mips_clear_insn_labels ();
7689 }
7690
7691 /* This function must be called before we emit something other than
7692 instructions. It is like mips_no_prev_insn except that it inserts
7693 any NOPS that might be needed by previous instructions. */
7694
7695 void
7696 mips_emit_delays (void)
7697 {
7698 if (! mips_opts.noreorder)
7699 {
7700 int nops = nops_for_insn (0, history, NULL);
7701 if (nops > 0)
7702 {
7703 while (nops-- > 0)
7704 add_fixed_insn (NOP_INSN);
7705 mips_move_text_labels ();
7706 }
7707 }
7708 mips_no_prev_insn ();
7709 }
7710
7711 /* Start a (possibly nested) noreorder block. */
7712
7713 static void
7714 start_noreorder (void)
7715 {
7716 if (mips_opts.noreorder == 0)
7717 {
7718 unsigned int i;
7719 int nops;
7720
7721 /* None of the instructions before the .set noreorder can be moved. */
7722 for (i = 0; i < ARRAY_SIZE (history); i++)
7723 history[i].fixed_p = 1;
7724
7725 /* Insert any nops that might be needed between the .set noreorder
7726 block and the previous instructions. We will later remove any
7727 nops that turn out not to be needed. */
7728 nops = nops_for_insn (0, history, NULL);
7729 if (nops > 0)
7730 {
7731 if (mips_optimize != 0)
7732 {
7733 /* Record the frag which holds the nop instructions, so
7734 that we can remove them if we don't need them. */
7735 frag_grow (nops * NOP_INSN_SIZE);
7736 prev_nop_frag = frag_now;
7737 prev_nop_frag_holds = nops;
7738 prev_nop_frag_required = 0;
7739 prev_nop_frag_since = 0;
7740 }
7741
7742 for (; nops > 0; --nops)
7743 add_fixed_insn (NOP_INSN);
7744
7745 /* Move on to a new frag, so that it is safe to simply
7746 decrease the size of prev_nop_frag. */
7747 frag_wane (frag_now);
7748 frag_new (0);
7749 mips_move_text_labels ();
7750 }
7751 mips_mark_labels ();
7752 mips_clear_insn_labels ();
7753 }
7754 mips_opts.noreorder++;
7755 mips_any_noreorder = 1;
7756 }
7757
7758 /* End a nested noreorder block. */
7759
7760 static void
7761 end_noreorder (void)
7762 {
7763 mips_opts.noreorder--;
7764 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7765 {
7766 /* Commit to inserting prev_nop_frag_required nops and go back to
7767 handling nop insertion the .set reorder way. */
7768 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7769 * NOP_INSN_SIZE);
7770 insert_into_history (prev_nop_frag_since,
7771 prev_nop_frag_required, NOP_INSN);
7772 prev_nop_frag = NULL;
7773 }
7774 }
7775
7776 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7777 higher bits unset. */
7778
7779 static void
7780 normalize_constant_expr (expressionS *ex)
7781 {
7782 if (ex->X_op == O_constant
7783 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7784 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7785 - 0x80000000);
7786 }
7787
7788 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7789 all higher bits unset. */
7790
7791 static void
7792 normalize_address_expr (expressionS *ex)
7793 {
7794 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7795 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7796 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7797 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7798 - 0x80000000);
7799 }
7800
7801 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7802 Return true if the match was successful.
7803
7804 OPCODE_EXTRA is a value that should be ORed into the opcode
7805 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7806 there are more alternatives after OPCODE and SOFT_MATCH is
7807 as for mips_arg_info. */
7808
7809 static bfd_boolean
7810 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7811 struct mips_operand_token *tokens, unsigned int opcode_extra,
7812 bfd_boolean lax_match, bfd_boolean complete_p)
7813 {
7814 const char *args;
7815 struct mips_arg_info arg;
7816 const struct mips_operand *operand;
7817 char c;
7818
7819 imm_expr.X_op = O_absent;
7820 offset_expr.X_op = O_absent;
7821 offset_reloc[0] = BFD_RELOC_UNUSED;
7822 offset_reloc[1] = BFD_RELOC_UNUSED;
7823 offset_reloc[2] = BFD_RELOC_UNUSED;
7824
7825 create_insn (insn, opcode);
7826 /* When no opcode suffix is specified, assume ".xyzw". */
7827 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7828 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7829 else
7830 insn->insn_opcode |= opcode_extra;
7831 memset (&arg, 0, sizeof (arg));
7832 arg.insn = insn;
7833 arg.token = tokens;
7834 arg.argnum = 1;
7835 arg.last_regno = ILLEGAL_REG;
7836 arg.dest_regno = ILLEGAL_REG;
7837 arg.lax_match = lax_match;
7838 for (args = opcode->args;; ++args)
7839 {
7840 if (arg.token->type == OT_END)
7841 {
7842 /* Handle unary instructions in which only one operand is given.
7843 The source is then the same as the destination. */
7844 if (arg.opnum == 1 && *args == ',')
7845 {
7846 operand = (mips_opts.micromips
7847 ? decode_micromips_operand (args + 1)
7848 : decode_mips_operand (args + 1));
7849 if (operand && mips_optional_operand_p (operand))
7850 {
7851 arg.token = tokens;
7852 arg.argnum = 1;
7853 continue;
7854 }
7855 }
7856
7857 /* Treat elided base registers as $0. */
7858 if (strcmp (args, "(b)") == 0)
7859 args += 3;
7860
7861 if (args[0] == '+')
7862 switch (args[1])
7863 {
7864 case 'K':
7865 case 'N':
7866 /* The register suffix is optional. */
7867 args += 2;
7868 break;
7869 }
7870
7871 /* Fail the match if there were too few operands. */
7872 if (*args)
7873 return FALSE;
7874
7875 /* Successful match. */
7876 if (!complete_p)
7877 return TRUE;
7878 clear_insn_error ();
7879 if (arg.dest_regno == arg.last_regno
7880 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7881 {
7882 if (arg.opnum == 2)
7883 set_insn_error
7884 (0, _("source and destination must be different"));
7885 else if (arg.last_regno == 31)
7886 set_insn_error
7887 (0, _("a destination register must be supplied"));
7888 }
7889 else if (arg.last_regno == 31
7890 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7891 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7892 set_insn_error (0, _("the source register must not be $31"));
7893 check_completed_insn (&arg);
7894 return TRUE;
7895 }
7896
7897 /* Fail the match if the line has too many operands. */
7898 if (*args == 0)
7899 return FALSE;
7900
7901 /* Handle characters that need to match exactly. */
7902 if (*args == '(' || *args == ')' || *args == ',')
7903 {
7904 if (match_char (&arg, *args))
7905 continue;
7906 return FALSE;
7907 }
7908 if (*args == '#')
7909 {
7910 ++args;
7911 if (arg.token->type == OT_DOUBLE_CHAR
7912 && arg.token->u.ch == *args)
7913 {
7914 ++arg.token;
7915 continue;
7916 }
7917 return FALSE;
7918 }
7919
7920 /* Handle special macro operands. Work out the properties of
7921 other operands. */
7922 arg.opnum += 1;
7923 switch (*args)
7924 {
7925 case '-':
7926 switch (args[1])
7927 {
7928 case 'A':
7929 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7930 break;
7931
7932 case 'B':
7933 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7934 break;
7935 }
7936 break;
7937
7938 case '+':
7939 switch (args[1])
7940 {
7941 case 'i':
7942 *offset_reloc = BFD_RELOC_MIPS_JMP;
7943 break;
7944
7945 case '\'':
7946 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7947 break;
7948
7949 case '\"':
7950 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7951 break;
7952 }
7953 break;
7954
7955 case 'I':
7956 if (!match_const_int (&arg, &imm_expr.X_add_number))
7957 return FALSE;
7958 imm_expr.X_op = O_constant;
7959 if (GPR_SIZE == 32)
7960 normalize_constant_expr (&imm_expr);
7961 continue;
7962
7963 case 'A':
7964 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7965 {
7966 /* Assume that the offset has been elided and that what
7967 we saw was a base register. The match will fail later
7968 if that assumption turns out to be wrong. */
7969 offset_expr.X_op = O_constant;
7970 offset_expr.X_add_number = 0;
7971 }
7972 else
7973 {
7974 if (!match_expression (&arg, &offset_expr, offset_reloc))
7975 return FALSE;
7976 normalize_address_expr (&offset_expr);
7977 }
7978 continue;
7979
7980 case 'F':
7981 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7982 8, TRUE))
7983 return FALSE;
7984 continue;
7985
7986 case 'L':
7987 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7988 8, FALSE))
7989 return FALSE;
7990 continue;
7991
7992 case 'f':
7993 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7994 4, TRUE))
7995 return FALSE;
7996 continue;
7997
7998 case 'l':
7999 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8000 4, FALSE))
8001 return FALSE;
8002 continue;
8003
8004 case 'p':
8005 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8006 break;
8007
8008 case 'a':
8009 *offset_reloc = BFD_RELOC_MIPS_JMP;
8010 break;
8011
8012 case 'm':
8013 gas_assert (mips_opts.micromips);
8014 c = args[1];
8015 switch (c)
8016 {
8017 case 'D':
8018 case 'E':
8019 if (!forced_insn_length)
8020 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8021 else if (c == 'D')
8022 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8023 else
8024 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8025 break;
8026 }
8027 break;
8028 }
8029
8030 operand = (mips_opts.micromips
8031 ? decode_micromips_operand (args)
8032 : decode_mips_operand (args));
8033 if (!operand)
8034 abort ();
8035
8036 /* Skip prefixes. */
8037 if (*args == '+' || *args == 'm' || *args == '-')
8038 args++;
8039
8040 if (mips_optional_operand_p (operand)
8041 && args[1] == ','
8042 && (arg.token[0].type != OT_REG
8043 || arg.token[1].type == OT_END))
8044 {
8045 /* Assume that the register has been elided and is the
8046 same as the first operand. */
8047 arg.token = tokens;
8048 arg.argnum = 1;
8049 }
8050
8051 if (!match_operand (&arg, operand))
8052 return FALSE;
8053 }
8054 }
8055
8056 /* Like match_insn, but for MIPS16. */
8057
8058 static bfd_boolean
8059 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8060 struct mips_operand_token *tokens)
8061 {
8062 const char *args;
8063 const struct mips_operand *operand;
8064 const struct mips_operand *ext_operand;
8065 int required_insn_length;
8066 struct mips_arg_info arg;
8067 int relax_char;
8068
8069 if (forced_insn_length)
8070 required_insn_length = forced_insn_length;
8071 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8072 required_insn_length = 2;
8073 else
8074 required_insn_length = 0;
8075
8076 create_insn (insn, opcode);
8077 imm_expr.X_op = O_absent;
8078 offset_expr.X_op = O_absent;
8079 offset_reloc[0] = BFD_RELOC_UNUSED;
8080 offset_reloc[1] = BFD_RELOC_UNUSED;
8081 offset_reloc[2] = BFD_RELOC_UNUSED;
8082 relax_char = 0;
8083
8084 memset (&arg, 0, sizeof (arg));
8085 arg.insn = insn;
8086 arg.token = tokens;
8087 arg.argnum = 1;
8088 arg.last_regno = ILLEGAL_REG;
8089 arg.dest_regno = ILLEGAL_REG;
8090 relax_char = 0;
8091 for (args = opcode->args;; ++args)
8092 {
8093 int c;
8094
8095 if (arg.token->type == OT_END)
8096 {
8097 offsetT value;
8098
8099 /* Handle unary instructions in which only one operand is given.
8100 The source is then the same as the destination. */
8101 if (arg.opnum == 1 && *args == ',')
8102 {
8103 operand = decode_mips16_operand (args[1], FALSE);
8104 if (operand && mips_optional_operand_p (operand))
8105 {
8106 arg.token = tokens;
8107 arg.argnum = 1;
8108 continue;
8109 }
8110 }
8111
8112 /* Fail the match if there were too few operands. */
8113 if (*args)
8114 return FALSE;
8115
8116 /* Successful match. Stuff the immediate value in now, if
8117 we can. */
8118 clear_insn_error ();
8119 if (opcode->pinfo == INSN_MACRO)
8120 {
8121 gas_assert (relax_char == 0 || relax_char == 'p');
8122 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8123 }
8124 else if (relax_char
8125 && offset_expr.X_op == O_constant
8126 && calculate_reloc (*offset_reloc,
8127 offset_expr.X_add_number,
8128 &value))
8129 {
8130 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8131 required_insn_length, &insn->insn_opcode);
8132 offset_expr.X_op = O_absent;
8133 *offset_reloc = BFD_RELOC_UNUSED;
8134 }
8135 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8136 {
8137 if (required_insn_length == 2)
8138 set_insn_error (0, _("invalid unextended operand value"));
8139 forced_insn_length = 4;
8140 insn->insn_opcode |= MIPS16_EXTEND;
8141 }
8142 else if (relax_char)
8143 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8144
8145 check_completed_insn (&arg);
8146 return TRUE;
8147 }
8148
8149 /* Fail the match if the line has too many operands. */
8150 if (*args == 0)
8151 return FALSE;
8152
8153 /* Handle characters that need to match exactly. */
8154 if (*args == '(' || *args == ')' || *args == ',')
8155 {
8156 if (match_char (&arg, *args))
8157 continue;
8158 return FALSE;
8159 }
8160
8161 arg.opnum += 1;
8162 c = *args;
8163 switch (c)
8164 {
8165 case 'p':
8166 case 'q':
8167 case 'A':
8168 case 'B':
8169 case 'E':
8170 relax_char = c;
8171 break;
8172
8173 case 'I':
8174 if (!match_const_int (&arg, &imm_expr.X_add_number))
8175 return FALSE;
8176 imm_expr.X_op = O_constant;
8177 if (GPR_SIZE == 32)
8178 normalize_constant_expr (&imm_expr);
8179 continue;
8180
8181 case 'a':
8182 case 'i':
8183 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8184 break;
8185 }
8186
8187 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
8188 if (!operand)
8189 abort ();
8190
8191 if (operand->type != OP_PCREL)
8192 {
8193 ext_operand = decode_mips16_operand (c, TRUE);
8194 if (operand != ext_operand)
8195 {
8196 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8197 {
8198 offset_expr.X_op = O_constant;
8199 offset_expr.X_add_number = 0;
8200 relax_char = c;
8201 continue;
8202 }
8203
8204 /* We need the OT_INTEGER check because some MIPS16
8205 immediate variants are listed before the register ones. */
8206 if (arg.token->type != OT_INTEGER
8207 || !match_expression (&arg, &offset_expr, offset_reloc))
8208 return FALSE;
8209
8210 /* '8' is used for SLTI(U) and has traditionally not
8211 been allowed to take relocation operators. */
8212 if (offset_reloc[0] != BFD_RELOC_UNUSED
8213 && (ext_operand->size != 16 || c == '8'))
8214 return FALSE;
8215
8216 relax_char = c;
8217 continue;
8218 }
8219 }
8220
8221 if (mips_optional_operand_p (operand)
8222 && args[1] == ','
8223 && (arg.token[0].type != OT_REG
8224 || arg.token[1].type == OT_END))
8225 {
8226 /* Assume that the register has been elided and is the
8227 same as the first operand. */
8228 arg.token = tokens;
8229 arg.argnum = 1;
8230 }
8231
8232 if (!match_operand (&arg, operand))
8233 return FALSE;
8234 }
8235 }
8236
8237 /* Record that the current instruction is invalid for the current ISA. */
8238
8239 static void
8240 match_invalid_for_isa (void)
8241 {
8242 set_insn_error_ss
8243 (0, _("opcode not supported on this processor: %s (%s)"),
8244 mips_cpu_info_from_arch (mips_opts.arch)->name,
8245 mips_cpu_info_from_isa (mips_opts.isa)->name);
8246 }
8247
8248 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8249 Return true if a definite match or failure was found, storing any match
8250 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8251 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8252 tried and failed to match under normal conditions and now want to try a
8253 more relaxed match. */
8254
8255 static bfd_boolean
8256 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8257 const struct mips_opcode *past, struct mips_operand_token *tokens,
8258 int opcode_extra, bfd_boolean lax_match)
8259 {
8260 const struct mips_opcode *opcode;
8261 const struct mips_opcode *invalid_delay_slot;
8262 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8263
8264 /* Search for a match, ignoring alternatives that don't satisfy the
8265 current ISA or forced_length. */
8266 invalid_delay_slot = 0;
8267 seen_valid_for_isa = FALSE;
8268 seen_valid_for_size = FALSE;
8269 opcode = first;
8270 do
8271 {
8272 gas_assert (strcmp (opcode->name, first->name) == 0);
8273 if (is_opcode_valid (opcode))
8274 {
8275 seen_valid_for_isa = TRUE;
8276 if (is_size_valid (opcode))
8277 {
8278 bfd_boolean delay_slot_ok;
8279
8280 seen_valid_for_size = TRUE;
8281 delay_slot_ok = is_delay_slot_valid (opcode);
8282 if (match_insn (insn, opcode, tokens, opcode_extra,
8283 lax_match, delay_slot_ok))
8284 {
8285 if (!delay_slot_ok)
8286 {
8287 if (!invalid_delay_slot)
8288 invalid_delay_slot = opcode;
8289 }
8290 else
8291 return TRUE;
8292 }
8293 }
8294 }
8295 ++opcode;
8296 }
8297 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8298
8299 /* If the only matches we found had the wrong length for the delay slot,
8300 pick the first such match. We'll issue an appropriate warning later. */
8301 if (invalid_delay_slot)
8302 {
8303 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8304 lax_match, TRUE))
8305 return TRUE;
8306 abort ();
8307 }
8308
8309 /* Handle the case where we didn't try to match an instruction because
8310 all the alternatives were incompatible with the current ISA. */
8311 if (!seen_valid_for_isa)
8312 {
8313 match_invalid_for_isa ();
8314 return TRUE;
8315 }
8316
8317 /* Handle the case where we didn't try to match an instruction because
8318 all the alternatives were of the wrong size. */
8319 if (!seen_valid_for_size)
8320 {
8321 if (mips_opts.insn32)
8322 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8323 else
8324 set_insn_error_i
8325 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8326 8 * forced_insn_length);
8327 return TRUE;
8328 }
8329
8330 return FALSE;
8331 }
8332
8333 /* Like match_insns, but for MIPS16. */
8334
8335 static bfd_boolean
8336 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8337 struct mips_operand_token *tokens)
8338 {
8339 const struct mips_opcode *opcode;
8340 bfd_boolean seen_valid_for_isa;
8341 bfd_boolean seen_valid_for_size;
8342
8343 /* Search for a match, ignoring alternatives that don't satisfy the
8344 current ISA. There are no separate entries for extended forms so
8345 we deal with forced_length later. */
8346 seen_valid_for_isa = FALSE;
8347 seen_valid_for_size = FALSE;
8348 opcode = first;
8349 do
8350 {
8351 gas_assert (strcmp (opcode->name, first->name) == 0);
8352 if (is_opcode_valid_16 (opcode))
8353 {
8354 seen_valid_for_isa = TRUE;
8355 if (is_size_valid_16 (opcode))
8356 {
8357 seen_valid_for_size = TRUE;
8358 if (match_mips16_insn (insn, opcode, tokens))
8359 return TRUE;
8360 }
8361 }
8362 ++opcode;
8363 }
8364 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8365 && strcmp (opcode->name, first->name) == 0);
8366
8367 /* Handle the case where we didn't try to match an instruction because
8368 all the alternatives were incompatible with the current ISA. */
8369 if (!seen_valid_for_isa)
8370 {
8371 match_invalid_for_isa ();
8372 return TRUE;
8373 }
8374
8375 /* Handle the case where we didn't try to match an instruction because
8376 all the alternatives were of the wrong size. */
8377 if (!seen_valid_for_size)
8378 {
8379 if (forced_insn_length == 2)
8380 set_insn_error
8381 (0, _("unrecognized unextended version of MIPS16 opcode"));
8382 else
8383 set_insn_error
8384 (0, _("unrecognized extended version of MIPS16 opcode"));
8385 return TRUE;
8386 }
8387
8388 return FALSE;
8389 }
8390
8391 /* Set up global variables for the start of a new macro. */
8392
8393 static void
8394 macro_start (void)
8395 {
8396 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8397 memset (&mips_macro_warning.first_insn_sizes, 0,
8398 sizeof (mips_macro_warning.first_insn_sizes));
8399 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8400 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8401 && delayed_branch_p (&history[0]));
8402 if (history[0].frag
8403 && history[0].frag->fr_type == rs_machine_dependent
8404 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8405 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8406 mips_macro_warning.delay_slot_length = 0;
8407 else
8408 switch (history[0].insn_mo->pinfo2
8409 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8410 {
8411 case INSN2_BRANCH_DELAY_32BIT:
8412 mips_macro_warning.delay_slot_length = 4;
8413 break;
8414 case INSN2_BRANCH_DELAY_16BIT:
8415 mips_macro_warning.delay_slot_length = 2;
8416 break;
8417 default:
8418 mips_macro_warning.delay_slot_length = 0;
8419 break;
8420 }
8421 mips_macro_warning.first_frag = NULL;
8422 }
8423
8424 /* Given that a macro is longer than one instruction or of the wrong size,
8425 return the appropriate warning for it. Return null if no warning is
8426 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8427 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8428 and RELAX_NOMACRO. */
8429
8430 static const char *
8431 macro_warning (relax_substateT subtype)
8432 {
8433 if (subtype & RELAX_DELAY_SLOT)
8434 return _("macro instruction expanded into multiple instructions"
8435 " in a branch delay slot");
8436 else if (subtype & RELAX_NOMACRO)
8437 return _("macro instruction expanded into multiple instructions");
8438 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8439 | RELAX_DELAY_SLOT_SIZE_SECOND))
8440 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8441 ? _("macro instruction expanded into a wrong size instruction"
8442 " in a 16-bit branch delay slot")
8443 : _("macro instruction expanded into a wrong size instruction"
8444 " in a 32-bit branch delay slot"));
8445 else
8446 return 0;
8447 }
8448
8449 /* Finish up a macro. Emit warnings as appropriate. */
8450
8451 static void
8452 macro_end (void)
8453 {
8454 /* Relaxation warning flags. */
8455 relax_substateT subtype = 0;
8456
8457 /* Check delay slot size requirements. */
8458 if (mips_macro_warning.delay_slot_length == 2)
8459 subtype |= RELAX_DELAY_SLOT_16BIT;
8460 if (mips_macro_warning.delay_slot_length != 0)
8461 {
8462 if (mips_macro_warning.delay_slot_length
8463 != mips_macro_warning.first_insn_sizes[0])
8464 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8465 if (mips_macro_warning.delay_slot_length
8466 != mips_macro_warning.first_insn_sizes[1])
8467 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8468 }
8469
8470 /* Check instruction count requirements. */
8471 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8472 {
8473 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8474 subtype |= RELAX_SECOND_LONGER;
8475 if (mips_opts.warn_about_macros)
8476 subtype |= RELAX_NOMACRO;
8477 if (mips_macro_warning.delay_slot_p)
8478 subtype |= RELAX_DELAY_SLOT;
8479 }
8480
8481 /* If both alternatives fail to fill a delay slot correctly,
8482 emit the warning now. */
8483 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8484 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8485 {
8486 relax_substateT s;
8487 const char *msg;
8488
8489 s = subtype & (RELAX_DELAY_SLOT_16BIT
8490 | RELAX_DELAY_SLOT_SIZE_FIRST
8491 | RELAX_DELAY_SLOT_SIZE_SECOND);
8492 msg = macro_warning (s);
8493 if (msg != NULL)
8494 as_warn ("%s", msg);
8495 subtype &= ~s;
8496 }
8497
8498 /* If both implementations are longer than 1 instruction, then emit the
8499 warning now. */
8500 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8501 {
8502 relax_substateT s;
8503 const char *msg;
8504
8505 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8506 msg = macro_warning (s);
8507 if (msg != NULL)
8508 as_warn ("%s", msg);
8509 subtype &= ~s;
8510 }
8511
8512 /* If any flags still set, then one implementation might need a warning
8513 and the other either will need one of a different kind or none at all.
8514 Pass any remaining flags over to relaxation. */
8515 if (mips_macro_warning.first_frag != NULL)
8516 mips_macro_warning.first_frag->fr_subtype |= subtype;
8517 }
8518
8519 /* Instruction operand formats used in macros that vary between
8520 standard MIPS and microMIPS code. */
8521
8522 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8523 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8524 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8525 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8526 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8527 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8528 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8529 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8530
8531 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8532 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8533 : cop12_fmt[mips_opts.micromips])
8534 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8535 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8536 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8537 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8538 : mem12_fmt[mips_opts.micromips])
8539 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8540 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8541 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8542
8543 /* Read a macro's relocation codes from *ARGS and store them in *R.
8544 The first argument in *ARGS will be either the code for a single
8545 relocation or -1 followed by the three codes that make up a
8546 composite relocation. */
8547
8548 static void
8549 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8550 {
8551 int i, next;
8552
8553 next = va_arg (*args, int);
8554 if (next >= 0)
8555 r[0] = (bfd_reloc_code_real_type) next;
8556 else
8557 {
8558 for (i = 0; i < 3; i++)
8559 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8560 /* This function is only used for 16-bit relocation fields.
8561 To make the macro code simpler, treat an unrelocated value
8562 in the same way as BFD_RELOC_LO16. */
8563 if (r[0] == BFD_RELOC_UNUSED)
8564 r[0] = BFD_RELOC_LO16;
8565 }
8566 }
8567
8568 /* Build an instruction created by a macro expansion. This is passed
8569 a pointer to the count of instructions created so far, an
8570 expression, the name of the instruction to build, an operand format
8571 string, and corresponding arguments. */
8572
8573 static void
8574 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8575 {
8576 const struct mips_opcode *mo = NULL;
8577 bfd_reloc_code_real_type r[3];
8578 const struct mips_opcode *amo;
8579 const struct mips_operand *operand;
8580 struct hash_control *hash;
8581 struct mips_cl_insn insn;
8582 va_list args;
8583 unsigned int uval;
8584
8585 va_start (args, fmt);
8586
8587 if (mips_opts.mips16)
8588 {
8589 mips16_macro_build (ep, name, fmt, &args);
8590 va_end (args);
8591 return;
8592 }
8593
8594 r[0] = BFD_RELOC_UNUSED;
8595 r[1] = BFD_RELOC_UNUSED;
8596 r[2] = BFD_RELOC_UNUSED;
8597 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8598 amo = (struct mips_opcode *) hash_find (hash, name);
8599 gas_assert (amo);
8600 gas_assert (strcmp (name, amo->name) == 0);
8601
8602 do
8603 {
8604 /* Search until we get a match for NAME. It is assumed here that
8605 macros will never generate MDMX, MIPS-3D, or MT instructions.
8606 We try to match an instruction that fulfils the branch delay
8607 slot instruction length requirement (if any) of the previous
8608 instruction. While doing this we record the first instruction
8609 seen that matches all the other conditions and use it anyway
8610 if the requirement cannot be met; we will issue an appropriate
8611 warning later on. */
8612 if (strcmp (fmt, amo->args) == 0
8613 && amo->pinfo != INSN_MACRO
8614 && is_opcode_valid (amo)
8615 && is_size_valid (amo))
8616 {
8617 if (is_delay_slot_valid (amo))
8618 {
8619 mo = amo;
8620 break;
8621 }
8622 else if (!mo)
8623 mo = amo;
8624 }
8625
8626 ++amo;
8627 gas_assert (amo->name);
8628 }
8629 while (strcmp (name, amo->name) == 0);
8630
8631 gas_assert (mo);
8632 create_insn (&insn, mo);
8633 for (; *fmt; ++fmt)
8634 {
8635 switch (*fmt)
8636 {
8637 case ',':
8638 case '(':
8639 case ')':
8640 case 'z':
8641 break;
8642
8643 case 'i':
8644 case 'j':
8645 macro_read_relocs (&args, r);
8646 gas_assert (*r == BFD_RELOC_GPREL16
8647 || *r == BFD_RELOC_MIPS_HIGHER
8648 || *r == BFD_RELOC_HI16_S
8649 || *r == BFD_RELOC_LO16
8650 || *r == BFD_RELOC_MIPS_GOT_OFST);
8651 break;
8652
8653 case 'o':
8654 macro_read_relocs (&args, r);
8655 break;
8656
8657 case 'u':
8658 macro_read_relocs (&args, r);
8659 gas_assert (ep != NULL
8660 && (ep->X_op == O_constant
8661 || (ep->X_op == O_symbol
8662 && (*r == BFD_RELOC_MIPS_HIGHEST
8663 || *r == BFD_RELOC_HI16_S
8664 || *r == BFD_RELOC_HI16
8665 || *r == BFD_RELOC_GPREL16
8666 || *r == BFD_RELOC_MIPS_GOT_HI16
8667 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8668 break;
8669
8670 case 'p':
8671 gas_assert (ep != NULL);
8672
8673 /*
8674 * This allows macro() to pass an immediate expression for
8675 * creating short branches without creating a symbol.
8676 *
8677 * We don't allow branch relaxation for these branches, as
8678 * they should only appear in ".set nomacro" anyway.
8679 */
8680 if (ep->X_op == O_constant)
8681 {
8682 /* For microMIPS we always use relocations for branches.
8683 So we should not resolve immediate values. */
8684 gas_assert (!mips_opts.micromips);
8685
8686 if ((ep->X_add_number & 3) != 0)
8687 as_bad (_("branch to misaligned address (0x%lx)"),
8688 (unsigned long) ep->X_add_number);
8689 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8690 as_bad (_("branch address range overflow (0x%lx)"),
8691 (unsigned long) ep->X_add_number);
8692 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8693 ep = NULL;
8694 }
8695 else
8696 *r = BFD_RELOC_16_PCREL_S2;
8697 break;
8698
8699 case 'a':
8700 gas_assert (ep != NULL);
8701 *r = BFD_RELOC_MIPS_JMP;
8702 break;
8703
8704 default:
8705 operand = (mips_opts.micromips
8706 ? decode_micromips_operand (fmt)
8707 : decode_mips_operand (fmt));
8708 if (!operand)
8709 abort ();
8710
8711 uval = va_arg (args, int);
8712 if (operand->type == OP_CLO_CLZ_DEST)
8713 uval |= (uval << 5);
8714 insn_insert_operand (&insn, operand, uval);
8715
8716 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8717 ++fmt;
8718 break;
8719 }
8720 }
8721 va_end (args);
8722 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8723
8724 append_insn (&insn, ep, r, TRUE);
8725 }
8726
8727 static void
8728 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8729 va_list *args)
8730 {
8731 struct mips_opcode *mo;
8732 struct mips_cl_insn insn;
8733 const struct mips_operand *operand;
8734 bfd_reloc_code_real_type r[3]
8735 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8736
8737 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8738 gas_assert (mo);
8739 gas_assert (strcmp (name, mo->name) == 0);
8740
8741 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8742 {
8743 ++mo;
8744 gas_assert (mo->name);
8745 gas_assert (strcmp (name, mo->name) == 0);
8746 }
8747
8748 create_insn (&insn, mo);
8749 for (; *fmt; ++fmt)
8750 {
8751 int c;
8752
8753 c = *fmt;
8754 switch (c)
8755 {
8756 case ',':
8757 case '(':
8758 case ')':
8759 break;
8760
8761 case '0':
8762 case 'S':
8763 case 'P':
8764 case 'R':
8765 break;
8766
8767 case '<':
8768 case '4':
8769 case '5':
8770 case 'H':
8771 case 'W':
8772 case 'D':
8773 case 'j':
8774 case '8':
8775 case 'V':
8776 case 'C':
8777 case 'U':
8778 case 'k':
8779 case 'K':
8780 case 'p':
8781 case 'q':
8782 {
8783 offsetT value;
8784
8785 gas_assert (ep != NULL);
8786
8787 if (ep->X_op != O_constant)
8788 *r = (int) BFD_RELOC_UNUSED + c;
8789 else if (calculate_reloc (*r, ep->X_add_number, &value))
8790 {
8791 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8792 ep = NULL;
8793 *r = BFD_RELOC_UNUSED;
8794 }
8795 }
8796 break;
8797
8798 default:
8799 operand = decode_mips16_operand (c, FALSE);
8800 if (!operand)
8801 abort ();
8802
8803 insn_insert_operand (&insn, operand, va_arg (*args, int));
8804 break;
8805 }
8806 }
8807
8808 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8809
8810 append_insn (&insn, ep, r, TRUE);
8811 }
8812
8813 /*
8814 * Generate a "jalr" instruction with a relocation hint to the called
8815 * function. This occurs in NewABI PIC code.
8816 */
8817 static void
8818 macro_build_jalr (expressionS *ep, int cprestore)
8819 {
8820 static const bfd_reloc_code_real_type jalr_relocs[2]
8821 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8822 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8823 const char *jalr;
8824 char *f = NULL;
8825
8826 if (MIPS_JALR_HINT_P (ep))
8827 {
8828 frag_grow (8);
8829 f = frag_more (0);
8830 }
8831 if (mips_opts.micromips)
8832 {
8833 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8834 ? "jalr" : "jalrs");
8835 if (MIPS_JALR_HINT_P (ep)
8836 || mips_opts.insn32
8837 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8838 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8839 else
8840 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8841 }
8842 else
8843 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8844 if (MIPS_JALR_HINT_P (ep))
8845 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8846 }
8847
8848 /*
8849 * Generate a "lui" instruction.
8850 */
8851 static void
8852 macro_build_lui (expressionS *ep, int regnum)
8853 {
8854 gas_assert (! mips_opts.mips16);
8855
8856 if (ep->X_op != O_constant)
8857 {
8858 gas_assert (ep->X_op == O_symbol);
8859 /* _gp_disp is a special case, used from s_cpload.
8860 __gnu_local_gp is used if mips_no_shared. */
8861 gas_assert (mips_pic == NO_PIC
8862 || (! HAVE_NEWABI
8863 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8864 || (! mips_in_shared
8865 && strcmp (S_GET_NAME (ep->X_add_symbol),
8866 "__gnu_local_gp") == 0));
8867 }
8868
8869 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8870 }
8871
8872 /* Generate a sequence of instructions to do a load or store from a constant
8873 offset off of a base register (breg) into/from a target register (treg),
8874 using AT if necessary. */
8875 static void
8876 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8877 int treg, int breg, int dbl)
8878 {
8879 gas_assert (ep->X_op == O_constant);
8880
8881 /* Sign-extending 32-bit constants makes their handling easier. */
8882 if (!dbl)
8883 normalize_constant_expr (ep);
8884
8885 /* Right now, this routine can only handle signed 32-bit constants. */
8886 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8887 as_warn (_("operand overflow"));
8888
8889 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8890 {
8891 /* Signed 16-bit offset will fit in the op. Easy! */
8892 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8893 }
8894 else
8895 {
8896 /* 32-bit offset, need multiple instructions and AT, like:
8897 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8898 addu $tempreg,$tempreg,$breg
8899 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8900 to handle the complete offset. */
8901 macro_build_lui (ep, AT);
8902 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8903 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8904
8905 if (!mips_opts.at)
8906 as_bad (_("macro used $at after \".set noat\""));
8907 }
8908 }
8909
8910 /* set_at()
8911 * Generates code to set the $at register to true (one)
8912 * if reg is less than the immediate expression.
8913 */
8914 static void
8915 set_at (int reg, int unsignedp)
8916 {
8917 if (imm_expr.X_add_number >= -0x8000
8918 && imm_expr.X_add_number < 0x8000)
8919 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8920 AT, reg, BFD_RELOC_LO16);
8921 else
8922 {
8923 load_register (AT, &imm_expr, GPR_SIZE == 64);
8924 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8925 }
8926 }
8927
8928 /* Count the leading zeroes by performing a binary chop. This is a
8929 bulky bit of source, but performance is a LOT better for the
8930 majority of values than a simple loop to count the bits:
8931 for (lcnt = 0; (lcnt < 32); lcnt++)
8932 if ((v) & (1 << (31 - lcnt)))
8933 break;
8934 However it is not code size friendly, and the gain will drop a bit
8935 on certain cached systems.
8936 */
8937 #define COUNT_TOP_ZEROES(v) \
8938 (((v) & ~0xffff) == 0 \
8939 ? ((v) & ~0xff) == 0 \
8940 ? ((v) & ~0xf) == 0 \
8941 ? ((v) & ~0x3) == 0 \
8942 ? ((v) & ~0x1) == 0 \
8943 ? !(v) \
8944 ? 32 \
8945 : 31 \
8946 : 30 \
8947 : ((v) & ~0x7) == 0 \
8948 ? 29 \
8949 : 28 \
8950 : ((v) & ~0x3f) == 0 \
8951 ? ((v) & ~0x1f) == 0 \
8952 ? 27 \
8953 : 26 \
8954 : ((v) & ~0x7f) == 0 \
8955 ? 25 \
8956 : 24 \
8957 : ((v) & ~0xfff) == 0 \
8958 ? ((v) & ~0x3ff) == 0 \
8959 ? ((v) & ~0x1ff) == 0 \
8960 ? 23 \
8961 : 22 \
8962 : ((v) & ~0x7ff) == 0 \
8963 ? 21 \
8964 : 20 \
8965 : ((v) & ~0x3fff) == 0 \
8966 ? ((v) & ~0x1fff) == 0 \
8967 ? 19 \
8968 : 18 \
8969 : ((v) & ~0x7fff) == 0 \
8970 ? 17 \
8971 : 16 \
8972 : ((v) & ~0xffffff) == 0 \
8973 ? ((v) & ~0xfffff) == 0 \
8974 ? ((v) & ~0x3ffff) == 0 \
8975 ? ((v) & ~0x1ffff) == 0 \
8976 ? 15 \
8977 : 14 \
8978 : ((v) & ~0x7ffff) == 0 \
8979 ? 13 \
8980 : 12 \
8981 : ((v) & ~0x3fffff) == 0 \
8982 ? ((v) & ~0x1fffff) == 0 \
8983 ? 11 \
8984 : 10 \
8985 : ((v) & ~0x7fffff) == 0 \
8986 ? 9 \
8987 : 8 \
8988 : ((v) & ~0xfffffff) == 0 \
8989 ? ((v) & ~0x3ffffff) == 0 \
8990 ? ((v) & ~0x1ffffff) == 0 \
8991 ? 7 \
8992 : 6 \
8993 : ((v) & ~0x7ffffff) == 0 \
8994 ? 5 \
8995 : 4 \
8996 : ((v) & ~0x3fffffff) == 0 \
8997 ? ((v) & ~0x1fffffff) == 0 \
8998 ? 3 \
8999 : 2 \
9000 : ((v) & ~0x7fffffff) == 0 \
9001 ? 1 \
9002 : 0)
9003
9004 /* load_register()
9005 * This routine generates the least number of instructions necessary to load
9006 * an absolute expression value into a register.
9007 */
9008 static void
9009 load_register (int reg, expressionS *ep, int dbl)
9010 {
9011 int freg;
9012 expressionS hi32, lo32;
9013
9014 if (ep->X_op != O_big)
9015 {
9016 gas_assert (ep->X_op == O_constant);
9017
9018 /* Sign-extending 32-bit constants makes their handling easier. */
9019 if (!dbl)
9020 normalize_constant_expr (ep);
9021
9022 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
9023 {
9024 /* We can handle 16 bit signed values with an addiu to
9025 $zero. No need to ever use daddiu here, since $zero and
9026 the result are always correct in 32 bit mode. */
9027 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9028 return;
9029 }
9030 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9031 {
9032 /* We can handle 16 bit unsigned values with an ori to
9033 $zero. */
9034 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9035 return;
9036 }
9037 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
9038 {
9039 /* 32 bit values require an lui. */
9040 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9041 if ((ep->X_add_number & 0xffff) != 0)
9042 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9043 return;
9044 }
9045 }
9046
9047 /* The value is larger than 32 bits. */
9048
9049 if (!dbl || GPR_SIZE == 32)
9050 {
9051 char value[32];
9052
9053 sprintf_vma (value, ep->X_add_number);
9054 as_bad (_("number (0x%s) larger than 32 bits"), value);
9055 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9056 return;
9057 }
9058
9059 if (ep->X_op != O_big)
9060 {
9061 hi32 = *ep;
9062 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9063 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9064 hi32.X_add_number &= 0xffffffff;
9065 lo32 = *ep;
9066 lo32.X_add_number &= 0xffffffff;
9067 }
9068 else
9069 {
9070 gas_assert (ep->X_add_number > 2);
9071 if (ep->X_add_number == 3)
9072 generic_bignum[3] = 0;
9073 else if (ep->X_add_number > 4)
9074 as_bad (_("number larger than 64 bits"));
9075 lo32.X_op = O_constant;
9076 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9077 hi32.X_op = O_constant;
9078 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9079 }
9080
9081 if (hi32.X_add_number == 0)
9082 freg = 0;
9083 else
9084 {
9085 int shift, bit;
9086 unsigned long hi, lo;
9087
9088 if (hi32.X_add_number == (offsetT) 0xffffffff)
9089 {
9090 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9091 {
9092 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9093 return;
9094 }
9095 if (lo32.X_add_number & 0x80000000)
9096 {
9097 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9098 if (lo32.X_add_number & 0xffff)
9099 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9100 return;
9101 }
9102 }
9103
9104 /* Check for 16bit shifted constant. We know that hi32 is
9105 non-zero, so start the mask on the first bit of the hi32
9106 value. */
9107 shift = 17;
9108 do
9109 {
9110 unsigned long himask, lomask;
9111
9112 if (shift < 32)
9113 {
9114 himask = 0xffff >> (32 - shift);
9115 lomask = (0xffff << shift) & 0xffffffff;
9116 }
9117 else
9118 {
9119 himask = 0xffff << (shift - 32);
9120 lomask = 0;
9121 }
9122 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9123 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9124 {
9125 expressionS tmp;
9126
9127 tmp.X_op = O_constant;
9128 if (shift < 32)
9129 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9130 | (lo32.X_add_number >> shift));
9131 else
9132 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9133 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9134 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9135 reg, reg, (shift >= 32) ? shift - 32 : shift);
9136 return;
9137 }
9138 ++shift;
9139 }
9140 while (shift <= (64 - 16));
9141
9142 /* Find the bit number of the lowest one bit, and store the
9143 shifted value in hi/lo. */
9144 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9145 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9146 if (lo != 0)
9147 {
9148 bit = 0;
9149 while ((lo & 1) == 0)
9150 {
9151 lo >>= 1;
9152 ++bit;
9153 }
9154 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9155 hi >>= bit;
9156 }
9157 else
9158 {
9159 bit = 32;
9160 while ((hi & 1) == 0)
9161 {
9162 hi >>= 1;
9163 ++bit;
9164 }
9165 lo = hi;
9166 hi = 0;
9167 }
9168
9169 /* Optimize if the shifted value is a (power of 2) - 1. */
9170 if ((hi == 0 && ((lo + 1) & lo) == 0)
9171 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9172 {
9173 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9174 if (shift != 0)
9175 {
9176 expressionS tmp;
9177
9178 /* This instruction will set the register to be all
9179 ones. */
9180 tmp.X_op = O_constant;
9181 tmp.X_add_number = (offsetT) -1;
9182 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9183 if (bit != 0)
9184 {
9185 bit += shift;
9186 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9187 reg, reg, (bit >= 32) ? bit - 32 : bit);
9188 }
9189 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9190 reg, reg, (shift >= 32) ? shift - 32 : shift);
9191 return;
9192 }
9193 }
9194
9195 /* Sign extend hi32 before calling load_register, because we can
9196 generally get better code when we load a sign extended value. */
9197 if ((hi32.X_add_number & 0x80000000) != 0)
9198 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9199 load_register (reg, &hi32, 0);
9200 freg = reg;
9201 }
9202 if ((lo32.X_add_number & 0xffff0000) == 0)
9203 {
9204 if (freg != 0)
9205 {
9206 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9207 freg = reg;
9208 }
9209 }
9210 else
9211 {
9212 expressionS mid16;
9213
9214 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9215 {
9216 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9217 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9218 return;
9219 }
9220
9221 if (freg != 0)
9222 {
9223 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9224 freg = reg;
9225 }
9226 mid16 = lo32;
9227 mid16.X_add_number >>= 16;
9228 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9229 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9230 freg = reg;
9231 }
9232 if ((lo32.X_add_number & 0xffff) != 0)
9233 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9234 }
9235
9236 static inline void
9237 load_delay_nop (void)
9238 {
9239 if (!gpr_interlocks)
9240 macro_build (NULL, "nop", "");
9241 }
9242
9243 /* Load an address into a register. */
9244
9245 static void
9246 load_address (int reg, expressionS *ep, int *used_at)
9247 {
9248 if (ep->X_op != O_constant
9249 && ep->X_op != O_symbol)
9250 {
9251 as_bad (_("expression too complex"));
9252 ep->X_op = O_constant;
9253 }
9254
9255 if (ep->X_op == O_constant)
9256 {
9257 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9258 return;
9259 }
9260
9261 if (mips_pic == NO_PIC)
9262 {
9263 /* If this is a reference to a GP relative symbol, we want
9264 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9265 Otherwise we want
9266 lui $reg,<sym> (BFD_RELOC_HI16_S)
9267 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9268 If we have an addend, we always use the latter form.
9269
9270 With 64bit address space and a usable $at we want
9271 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9272 lui $at,<sym> (BFD_RELOC_HI16_S)
9273 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9274 daddiu $at,<sym> (BFD_RELOC_LO16)
9275 dsll32 $reg,0
9276 daddu $reg,$reg,$at
9277
9278 If $at is already in use, we use a path which is suboptimal
9279 on superscalar processors.
9280 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9281 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9282 dsll $reg,16
9283 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9284 dsll $reg,16
9285 daddiu $reg,<sym> (BFD_RELOC_LO16)
9286
9287 For GP relative symbols in 64bit address space we can use
9288 the same sequence as in 32bit address space. */
9289 if (HAVE_64BIT_SYMBOLS)
9290 {
9291 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9292 && !nopic_need_relax (ep->X_add_symbol, 1))
9293 {
9294 relax_start (ep->X_add_symbol);
9295 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9296 mips_gp_register, BFD_RELOC_GPREL16);
9297 relax_switch ();
9298 }
9299
9300 if (*used_at == 0 && mips_opts.at)
9301 {
9302 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9303 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9304 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9305 BFD_RELOC_MIPS_HIGHER);
9306 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9307 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9308 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9309 *used_at = 1;
9310 }
9311 else
9312 {
9313 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9314 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9315 BFD_RELOC_MIPS_HIGHER);
9316 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9317 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9318 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9319 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9320 }
9321
9322 if (mips_relax.sequence)
9323 relax_end ();
9324 }
9325 else
9326 {
9327 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9328 && !nopic_need_relax (ep->X_add_symbol, 1))
9329 {
9330 relax_start (ep->X_add_symbol);
9331 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9332 mips_gp_register, BFD_RELOC_GPREL16);
9333 relax_switch ();
9334 }
9335 macro_build_lui (ep, reg);
9336 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9337 reg, reg, BFD_RELOC_LO16);
9338 if (mips_relax.sequence)
9339 relax_end ();
9340 }
9341 }
9342 else if (!mips_big_got)
9343 {
9344 expressionS ex;
9345
9346 /* If this is a reference to an external symbol, we want
9347 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9348 Otherwise we want
9349 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9350 nop
9351 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9352 If there is a constant, it must be added in after.
9353
9354 If we have NewABI, we want
9355 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9356 unless we're referencing a global symbol with a non-zero
9357 offset, in which case cst must be added separately. */
9358 if (HAVE_NEWABI)
9359 {
9360 if (ep->X_add_number)
9361 {
9362 ex.X_add_number = ep->X_add_number;
9363 ep->X_add_number = 0;
9364 relax_start (ep->X_add_symbol);
9365 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9366 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9367 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9368 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9369 ex.X_op = O_constant;
9370 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9371 reg, reg, BFD_RELOC_LO16);
9372 ep->X_add_number = ex.X_add_number;
9373 relax_switch ();
9374 }
9375 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9376 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9377 if (mips_relax.sequence)
9378 relax_end ();
9379 }
9380 else
9381 {
9382 ex.X_add_number = ep->X_add_number;
9383 ep->X_add_number = 0;
9384 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9385 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9386 load_delay_nop ();
9387 relax_start (ep->X_add_symbol);
9388 relax_switch ();
9389 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9390 BFD_RELOC_LO16);
9391 relax_end ();
9392
9393 if (ex.X_add_number != 0)
9394 {
9395 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9396 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9397 ex.X_op = O_constant;
9398 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9399 reg, reg, BFD_RELOC_LO16);
9400 }
9401 }
9402 }
9403 else if (mips_big_got)
9404 {
9405 expressionS ex;
9406
9407 /* This is the large GOT case. If this is a reference to an
9408 external symbol, we want
9409 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9410 addu $reg,$reg,$gp
9411 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9412
9413 Otherwise, for a reference to a local symbol in old ABI, we want
9414 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9415 nop
9416 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9417 If there is a constant, it must be added in after.
9418
9419 In the NewABI, for local symbols, with or without offsets, we want:
9420 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9421 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9422 */
9423 if (HAVE_NEWABI)
9424 {
9425 ex.X_add_number = ep->X_add_number;
9426 ep->X_add_number = 0;
9427 relax_start (ep->X_add_symbol);
9428 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9429 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9430 reg, reg, mips_gp_register);
9431 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9432 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9433 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9434 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9435 else if (ex.X_add_number)
9436 {
9437 ex.X_op = O_constant;
9438 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9439 BFD_RELOC_LO16);
9440 }
9441
9442 ep->X_add_number = ex.X_add_number;
9443 relax_switch ();
9444 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9445 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9446 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9447 BFD_RELOC_MIPS_GOT_OFST);
9448 relax_end ();
9449 }
9450 else
9451 {
9452 ex.X_add_number = ep->X_add_number;
9453 ep->X_add_number = 0;
9454 relax_start (ep->X_add_symbol);
9455 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9456 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9457 reg, reg, mips_gp_register);
9458 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9459 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9460 relax_switch ();
9461 if (reg_needs_delay (mips_gp_register))
9462 {
9463 /* We need a nop before loading from $gp. This special
9464 check is required because the lui which starts the main
9465 instruction stream does not refer to $gp, and so will not
9466 insert the nop which may be required. */
9467 macro_build (NULL, "nop", "");
9468 }
9469 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9470 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9471 load_delay_nop ();
9472 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9473 BFD_RELOC_LO16);
9474 relax_end ();
9475
9476 if (ex.X_add_number != 0)
9477 {
9478 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9479 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9480 ex.X_op = O_constant;
9481 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9482 BFD_RELOC_LO16);
9483 }
9484 }
9485 }
9486 else
9487 abort ();
9488
9489 if (!mips_opts.at && *used_at == 1)
9490 as_bad (_("macro used $at after \".set noat\""));
9491 }
9492
9493 /* Move the contents of register SOURCE into register DEST. */
9494
9495 static void
9496 move_register (int dest, int source)
9497 {
9498 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9499 instruction specifically requires a 32-bit one. */
9500 if (mips_opts.micromips
9501 && !mips_opts.insn32
9502 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9503 macro_build (NULL, "move", "mp,mj", dest, source);
9504 else
9505 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9506 }
9507
9508 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9509 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9510 The two alternatives are:
9511
9512 Global symbol Local sybmol
9513 ------------- ------------
9514 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9515 ... ...
9516 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9517
9518 load_got_offset emits the first instruction and add_got_offset
9519 emits the second for a 16-bit offset or add_got_offset_hilo emits
9520 a sequence to add a 32-bit offset using a scratch register. */
9521
9522 static void
9523 load_got_offset (int dest, expressionS *local)
9524 {
9525 expressionS global;
9526
9527 global = *local;
9528 global.X_add_number = 0;
9529
9530 relax_start (local->X_add_symbol);
9531 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9532 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9533 relax_switch ();
9534 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9535 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9536 relax_end ();
9537 }
9538
9539 static void
9540 add_got_offset (int dest, expressionS *local)
9541 {
9542 expressionS global;
9543
9544 global.X_op = O_constant;
9545 global.X_op_symbol = NULL;
9546 global.X_add_symbol = NULL;
9547 global.X_add_number = local->X_add_number;
9548
9549 relax_start (local->X_add_symbol);
9550 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9551 dest, dest, BFD_RELOC_LO16);
9552 relax_switch ();
9553 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9554 relax_end ();
9555 }
9556
9557 static void
9558 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9559 {
9560 expressionS global;
9561 int hold_mips_optimize;
9562
9563 global.X_op = O_constant;
9564 global.X_op_symbol = NULL;
9565 global.X_add_symbol = NULL;
9566 global.X_add_number = local->X_add_number;
9567
9568 relax_start (local->X_add_symbol);
9569 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9570 relax_switch ();
9571 /* Set mips_optimize around the lui instruction to avoid
9572 inserting an unnecessary nop after the lw. */
9573 hold_mips_optimize = mips_optimize;
9574 mips_optimize = 2;
9575 macro_build_lui (&global, tmp);
9576 mips_optimize = hold_mips_optimize;
9577 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9578 relax_end ();
9579
9580 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9581 }
9582
9583 /* Emit a sequence of instructions to emulate a branch likely operation.
9584 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9585 is its complementing branch with the original condition negated.
9586 CALL is set if the original branch specified the link operation.
9587 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9588
9589 Code like this is produced in the noreorder mode:
9590
9591 BRNEG <args>, 1f
9592 nop
9593 b <sym>
9594 delay slot (executed only if branch taken)
9595 1:
9596
9597 or, if CALL is set:
9598
9599 BRNEG <args>, 1f
9600 nop
9601 bal <sym>
9602 delay slot (executed only if branch taken)
9603 1:
9604
9605 In the reorder mode the delay slot would be filled with a nop anyway,
9606 so code produced is simply:
9607
9608 BR <args>, <sym>
9609 nop
9610
9611 This function is used when producing code for the microMIPS ASE that
9612 does not implement branch likely instructions in hardware. */
9613
9614 static void
9615 macro_build_branch_likely (const char *br, const char *brneg,
9616 int call, expressionS *ep, const char *fmt,
9617 unsigned int sreg, unsigned int treg)
9618 {
9619 int noreorder = mips_opts.noreorder;
9620 expressionS expr1;
9621
9622 gas_assert (mips_opts.micromips);
9623 start_noreorder ();
9624 if (noreorder)
9625 {
9626 micromips_label_expr (&expr1);
9627 macro_build (&expr1, brneg, fmt, sreg, treg);
9628 macro_build (NULL, "nop", "");
9629 macro_build (ep, call ? "bal" : "b", "p");
9630
9631 /* Set to true so that append_insn adds a label. */
9632 emit_branch_likely_macro = TRUE;
9633 }
9634 else
9635 {
9636 macro_build (ep, br, fmt, sreg, treg);
9637 macro_build (NULL, "nop", "");
9638 }
9639 end_noreorder ();
9640 }
9641
9642 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9643 the condition code tested. EP specifies the branch target. */
9644
9645 static void
9646 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9647 {
9648 const int call = 0;
9649 const char *brneg;
9650 const char *br;
9651
9652 switch (type)
9653 {
9654 case M_BC1FL:
9655 br = "bc1f";
9656 brneg = "bc1t";
9657 break;
9658 case M_BC1TL:
9659 br = "bc1t";
9660 brneg = "bc1f";
9661 break;
9662 case M_BC2FL:
9663 br = "bc2f";
9664 brneg = "bc2t";
9665 break;
9666 case M_BC2TL:
9667 br = "bc2t";
9668 brneg = "bc2f";
9669 break;
9670 default:
9671 abort ();
9672 }
9673 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9674 }
9675
9676 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9677 the register tested. EP specifies the branch target. */
9678
9679 static void
9680 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9681 {
9682 const char *brneg = NULL;
9683 const char *br;
9684 int call = 0;
9685
9686 switch (type)
9687 {
9688 case M_BGEZ:
9689 br = "bgez";
9690 break;
9691 case M_BGEZL:
9692 br = mips_opts.micromips ? "bgez" : "bgezl";
9693 brneg = "bltz";
9694 break;
9695 case M_BGEZALL:
9696 gas_assert (mips_opts.micromips);
9697 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9698 brneg = "bltz";
9699 call = 1;
9700 break;
9701 case M_BGTZ:
9702 br = "bgtz";
9703 break;
9704 case M_BGTZL:
9705 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9706 brneg = "blez";
9707 break;
9708 case M_BLEZ:
9709 br = "blez";
9710 break;
9711 case M_BLEZL:
9712 br = mips_opts.micromips ? "blez" : "blezl";
9713 brneg = "bgtz";
9714 break;
9715 case M_BLTZ:
9716 br = "bltz";
9717 break;
9718 case M_BLTZL:
9719 br = mips_opts.micromips ? "bltz" : "bltzl";
9720 brneg = "bgez";
9721 break;
9722 case M_BLTZALL:
9723 gas_assert (mips_opts.micromips);
9724 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9725 brneg = "bgez";
9726 call = 1;
9727 break;
9728 default:
9729 abort ();
9730 }
9731 if (mips_opts.micromips && brneg)
9732 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9733 else
9734 macro_build (ep, br, "s,p", sreg);
9735 }
9736
9737 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9738 TREG as the registers tested. EP specifies the branch target. */
9739
9740 static void
9741 macro_build_branch_rsrt (int type, expressionS *ep,
9742 unsigned int sreg, unsigned int treg)
9743 {
9744 const char *brneg = NULL;
9745 const int call = 0;
9746 const char *br;
9747
9748 switch (type)
9749 {
9750 case M_BEQ:
9751 case M_BEQ_I:
9752 br = "beq";
9753 break;
9754 case M_BEQL:
9755 case M_BEQL_I:
9756 br = mips_opts.micromips ? "beq" : "beql";
9757 brneg = "bne";
9758 break;
9759 case M_BNE:
9760 case M_BNE_I:
9761 br = "bne";
9762 break;
9763 case M_BNEL:
9764 case M_BNEL_I:
9765 br = mips_opts.micromips ? "bne" : "bnel";
9766 brneg = "beq";
9767 break;
9768 default:
9769 abort ();
9770 }
9771 if (mips_opts.micromips && brneg)
9772 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9773 else
9774 macro_build (ep, br, "s,t,p", sreg, treg);
9775 }
9776
9777 /* Return the high part that should be loaded in order to make the low
9778 part of VALUE accessible using an offset of OFFBITS bits. */
9779
9780 static offsetT
9781 offset_high_part (offsetT value, unsigned int offbits)
9782 {
9783 offsetT bias;
9784 addressT low_mask;
9785
9786 if (offbits == 0)
9787 return value;
9788 bias = 1 << (offbits - 1);
9789 low_mask = bias * 2 - 1;
9790 return (value + bias) & ~low_mask;
9791 }
9792
9793 /* Return true if the value stored in offset_expr and offset_reloc
9794 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9795 amount that the caller wants to add without inducing overflow
9796 and ALIGN is the known alignment of the value in bytes. */
9797
9798 static bfd_boolean
9799 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9800 {
9801 if (offbits == 16)
9802 {
9803 /* Accept any relocation operator if overflow isn't a concern. */
9804 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9805 return TRUE;
9806
9807 /* These relocations are guaranteed not to overflow in correct links. */
9808 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9809 || gprel16_reloc_p (*offset_reloc))
9810 return TRUE;
9811 }
9812 if (offset_expr.X_op == O_constant
9813 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9814 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9815 return TRUE;
9816 return FALSE;
9817 }
9818
9819 /*
9820 * Build macros
9821 * This routine implements the seemingly endless macro or synthesized
9822 * instructions and addressing modes in the mips assembly language. Many
9823 * of these macros are simple and are similar to each other. These could
9824 * probably be handled by some kind of table or grammar approach instead of
9825 * this verbose method. Others are not simple macros but are more like
9826 * optimizing code generation.
9827 * One interesting optimization is when several store macros appear
9828 * consecutively that would load AT with the upper half of the same address.
9829 * The ensuing load upper instructions are omitted. This implies some kind
9830 * of global optimization. We currently only optimize within a single macro.
9831 * For many of the load and store macros if the address is specified as a
9832 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9833 * first load register 'at' with zero and use it as the base register. The
9834 * mips assembler simply uses register $zero. Just one tiny optimization
9835 * we're missing.
9836 */
9837 static void
9838 macro (struct mips_cl_insn *ip, char *str)
9839 {
9840 const struct mips_operand_array *operands;
9841 unsigned int breg, i;
9842 unsigned int tempreg;
9843 int mask;
9844 int used_at = 0;
9845 expressionS label_expr;
9846 expressionS expr1;
9847 expressionS *ep;
9848 const char *s;
9849 const char *s2;
9850 const char *fmt;
9851 int likely = 0;
9852 int coproc = 0;
9853 int offbits = 16;
9854 int call = 0;
9855 int jals = 0;
9856 int dbl = 0;
9857 int imm = 0;
9858 int ust = 0;
9859 int lp = 0;
9860 bfd_boolean large_offset;
9861 int off;
9862 int hold_mips_optimize;
9863 unsigned int align;
9864 unsigned int op[MAX_OPERANDS];
9865
9866 gas_assert (! mips_opts.mips16);
9867
9868 operands = insn_operands (ip);
9869 for (i = 0; i < MAX_OPERANDS; i++)
9870 if (operands->operand[i])
9871 op[i] = insn_extract_operand (ip, operands->operand[i]);
9872 else
9873 op[i] = -1;
9874
9875 mask = ip->insn_mo->mask;
9876
9877 label_expr.X_op = O_constant;
9878 label_expr.X_op_symbol = NULL;
9879 label_expr.X_add_symbol = NULL;
9880 label_expr.X_add_number = 0;
9881
9882 expr1.X_op = O_constant;
9883 expr1.X_op_symbol = NULL;
9884 expr1.X_add_symbol = NULL;
9885 expr1.X_add_number = 1;
9886 align = 1;
9887
9888 switch (mask)
9889 {
9890 case M_DABS:
9891 dbl = 1;
9892 /* Fall through. */
9893 case M_ABS:
9894 /* bgez $a0,1f
9895 move v0,$a0
9896 sub v0,$zero,$a0
9897 1:
9898 */
9899
9900 start_noreorder ();
9901
9902 if (mips_opts.micromips)
9903 micromips_label_expr (&label_expr);
9904 else
9905 label_expr.X_add_number = 8;
9906 macro_build (&label_expr, "bgez", "s,p", op[1]);
9907 if (op[0] == op[1])
9908 macro_build (NULL, "nop", "");
9909 else
9910 move_register (op[0], op[1]);
9911 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9912 if (mips_opts.micromips)
9913 micromips_add_label ();
9914
9915 end_noreorder ();
9916 break;
9917
9918 case M_ADD_I:
9919 s = "addi";
9920 s2 = "add";
9921 goto do_addi;
9922 case M_ADDU_I:
9923 s = "addiu";
9924 s2 = "addu";
9925 goto do_addi;
9926 case M_DADD_I:
9927 dbl = 1;
9928 s = "daddi";
9929 s2 = "dadd";
9930 if (!mips_opts.micromips)
9931 goto do_addi;
9932 if (imm_expr.X_add_number >= -0x200
9933 && imm_expr.X_add_number < 0x200)
9934 {
9935 macro_build (NULL, s, "t,r,.", op[0], op[1],
9936 (int) imm_expr.X_add_number);
9937 break;
9938 }
9939 goto do_addi_i;
9940 case M_DADDU_I:
9941 dbl = 1;
9942 s = "daddiu";
9943 s2 = "daddu";
9944 do_addi:
9945 if (imm_expr.X_add_number >= -0x8000
9946 && imm_expr.X_add_number < 0x8000)
9947 {
9948 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9949 break;
9950 }
9951 do_addi_i:
9952 used_at = 1;
9953 load_register (AT, &imm_expr, dbl);
9954 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9955 break;
9956
9957 case M_AND_I:
9958 s = "andi";
9959 s2 = "and";
9960 goto do_bit;
9961 case M_OR_I:
9962 s = "ori";
9963 s2 = "or";
9964 goto do_bit;
9965 case M_NOR_I:
9966 s = "";
9967 s2 = "nor";
9968 goto do_bit;
9969 case M_XOR_I:
9970 s = "xori";
9971 s2 = "xor";
9972 do_bit:
9973 if (imm_expr.X_add_number >= 0
9974 && imm_expr.X_add_number < 0x10000)
9975 {
9976 if (mask != M_NOR_I)
9977 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9978 else
9979 {
9980 macro_build (&imm_expr, "ori", "t,r,i",
9981 op[0], op[1], BFD_RELOC_LO16);
9982 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9983 }
9984 break;
9985 }
9986
9987 used_at = 1;
9988 load_register (AT, &imm_expr, GPR_SIZE == 64);
9989 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9990 break;
9991
9992 case M_BALIGN:
9993 switch (imm_expr.X_add_number)
9994 {
9995 case 0:
9996 macro_build (NULL, "nop", "");
9997 break;
9998 case 2:
9999 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
10000 break;
10001 case 1:
10002 case 3:
10003 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
10004 (int) imm_expr.X_add_number);
10005 break;
10006 default:
10007 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10008 (unsigned long) imm_expr.X_add_number);
10009 break;
10010 }
10011 break;
10012
10013 case M_BC1FL:
10014 case M_BC1TL:
10015 case M_BC2FL:
10016 case M_BC2TL:
10017 gas_assert (mips_opts.micromips);
10018 macro_build_branch_ccl (mask, &offset_expr,
10019 EXTRACT_OPERAND (1, BCC, *ip));
10020 break;
10021
10022 case M_BEQ_I:
10023 case M_BEQL_I:
10024 case M_BNE_I:
10025 case M_BNEL_I:
10026 if (imm_expr.X_add_number == 0)
10027 op[1] = 0;
10028 else
10029 {
10030 op[1] = AT;
10031 used_at = 1;
10032 load_register (op[1], &imm_expr, GPR_SIZE == 64);
10033 }
10034 /* Fall through. */
10035 case M_BEQL:
10036 case M_BNEL:
10037 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
10038 break;
10039
10040 case M_BGEL:
10041 likely = 1;
10042 /* Fall through. */
10043 case M_BGE:
10044 if (op[1] == 0)
10045 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10046 else if (op[0] == 0)
10047 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10048 else
10049 {
10050 used_at = 1;
10051 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10052 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10053 &offset_expr, AT, ZERO);
10054 }
10055 break;
10056
10057 case M_BGEZL:
10058 case M_BGEZALL:
10059 case M_BGTZL:
10060 case M_BLEZL:
10061 case M_BLTZL:
10062 case M_BLTZALL:
10063 macro_build_branch_rs (mask, &offset_expr, op[0]);
10064 break;
10065
10066 case M_BGTL_I:
10067 likely = 1;
10068 /* Fall through. */
10069 case M_BGT_I:
10070 /* Check for > max integer. */
10071 if (imm_expr.X_add_number >= GPR_SMAX)
10072 {
10073 do_false:
10074 /* Result is always false. */
10075 if (! likely)
10076 macro_build (NULL, "nop", "");
10077 else
10078 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10079 break;
10080 }
10081 ++imm_expr.X_add_number;
10082 /* FALLTHROUGH */
10083 case M_BGE_I:
10084 case M_BGEL_I:
10085 if (mask == M_BGEL_I)
10086 likely = 1;
10087 if (imm_expr.X_add_number == 0)
10088 {
10089 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10090 &offset_expr, op[0]);
10091 break;
10092 }
10093 if (imm_expr.X_add_number == 1)
10094 {
10095 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10096 &offset_expr, op[0]);
10097 break;
10098 }
10099 if (imm_expr.X_add_number <= GPR_SMIN)
10100 {
10101 do_true:
10102 /* result is always true */
10103 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10104 macro_build (&offset_expr, "b", "p");
10105 break;
10106 }
10107 used_at = 1;
10108 set_at (op[0], 0);
10109 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10110 &offset_expr, AT, ZERO);
10111 break;
10112
10113 case M_BGEUL:
10114 likely = 1;
10115 /* Fall through. */
10116 case M_BGEU:
10117 if (op[1] == 0)
10118 goto do_true;
10119 else if (op[0] == 0)
10120 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10121 &offset_expr, ZERO, op[1]);
10122 else
10123 {
10124 used_at = 1;
10125 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10126 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10127 &offset_expr, AT, ZERO);
10128 }
10129 break;
10130
10131 case M_BGTUL_I:
10132 likely = 1;
10133 /* Fall through. */
10134 case M_BGTU_I:
10135 if (op[0] == 0
10136 || (GPR_SIZE == 32
10137 && imm_expr.X_add_number == -1))
10138 goto do_false;
10139 ++imm_expr.X_add_number;
10140 /* FALLTHROUGH */
10141 case M_BGEU_I:
10142 case M_BGEUL_I:
10143 if (mask == M_BGEUL_I)
10144 likely = 1;
10145 if (imm_expr.X_add_number == 0)
10146 goto do_true;
10147 else if (imm_expr.X_add_number == 1)
10148 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10149 &offset_expr, op[0], ZERO);
10150 else
10151 {
10152 used_at = 1;
10153 set_at (op[0], 1);
10154 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10155 &offset_expr, AT, ZERO);
10156 }
10157 break;
10158
10159 case M_BGTL:
10160 likely = 1;
10161 /* Fall through. */
10162 case M_BGT:
10163 if (op[1] == 0)
10164 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10165 else if (op[0] == 0)
10166 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10167 else
10168 {
10169 used_at = 1;
10170 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10171 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10172 &offset_expr, AT, ZERO);
10173 }
10174 break;
10175
10176 case M_BGTUL:
10177 likely = 1;
10178 /* Fall through. */
10179 case M_BGTU:
10180 if (op[1] == 0)
10181 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10182 &offset_expr, op[0], ZERO);
10183 else if (op[0] == 0)
10184 goto do_false;
10185 else
10186 {
10187 used_at = 1;
10188 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10189 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10190 &offset_expr, AT, ZERO);
10191 }
10192 break;
10193
10194 case M_BLEL:
10195 likely = 1;
10196 /* Fall through. */
10197 case M_BLE:
10198 if (op[1] == 0)
10199 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10200 else if (op[0] == 0)
10201 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10202 else
10203 {
10204 used_at = 1;
10205 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10206 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10207 &offset_expr, AT, ZERO);
10208 }
10209 break;
10210
10211 case M_BLEL_I:
10212 likely = 1;
10213 /* Fall through. */
10214 case M_BLE_I:
10215 if (imm_expr.X_add_number >= GPR_SMAX)
10216 goto do_true;
10217 ++imm_expr.X_add_number;
10218 /* FALLTHROUGH */
10219 case M_BLT_I:
10220 case M_BLTL_I:
10221 if (mask == M_BLTL_I)
10222 likely = 1;
10223 if (imm_expr.X_add_number == 0)
10224 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10225 else if (imm_expr.X_add_number == 1)
10226 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10227 else
10228 {
10229 used_at = 1;
10230 set_at (op[0], 0);
10231 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10232 &offset_expr, AT, ZERO);
10233 }
10234 break;
10235
10236 case M_BLEUL:
10237 likely = 1;
10238 /* Fall through. */
10239 case M_BLEU:
10240 if (op[1] == 0)
10241 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10242 &offset_expr, op[0], ZERO);
10243 else if (op[0] == 0)
10244 goto do_true;
10245 else
10246 {
10247 used_at = 1;
10248 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10249 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10250 &offset_expr, AT, ZERO);
10251 }
10252 break;
10253
10254 case M_BLEUL_I:
10255 likely = 1;
10256 /* Fall through. */
10257 case M_BLEU_I:
10258 if (op[0] == 0
10259 || (GPR_SIZE == 32
10260 && imm_expr.X_add_number == -1))
10261 goto do_true;
10262 ++imm_expr.X_add_number;
10263 /* FALLTHROUGH */
10264 case M_BLTU_I:
10265 case M_BLTUL_I:
10266 if (mask == M_BLTUL_I)
10267 likely = 1;
10268 if (imm_expr.X_add_number == 0)
10269 goto do_false;
10270 else if (imm_expr.X_add_number == 1)
10271 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10272 &offset_expr, op[0], ZERO);
10273 else
10274 {
10275 used_at = 1;
10276 set_at (op[0], 1);
10277 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10278 &offset_expr, AT, ZERO);
10279 }
10280 break;
10281
10282 case M_BLTL:
10283 likely = 1;
10284 /* Fall through. */
10285 case M_BLT:
10286 if (op[1] == 0)
10287 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10288 else if (op[0] == 0)
10289 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10290 else
10291 {
10292 used_at = 1;
10293 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10294 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10295 &offset_expr, AT, ZERO);
10296 }
10297 break;
10298
10299 case M_BLTUL:
10300 likely = 1;
10301 /* Fall through. */
10302 case M_BLTU:
10303 if (op[1] == 0)
10304 goto do_false;
10305 else if (op[0] == 0)
10306 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10307 &offset_expr, ZERO, op[1]);
10308 else
10309 {
10310 used_at = 1;
10311 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10312 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10313 &offset_expr, AT, ZERO);
10314 }
10315 break;
10316
10317 case M_DDIV_3:
10318 dbl = 1;
10319 /* Fall through. */
10320 case M_DIV_3:
10321 s = "mflo";
10322 goto do_div3;
10323 case M_DREM_3:
10324 dbl = 1;
10325 /* Fall through. */
10326 case M_REM_3:
10327 s = "mfhi";
10328 do_div3:
10329 if (op[2] == 0)
10330 {
10331 as_warn (_("divide by zero"));
10332 if (mips_trap)
10333 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10334 else
10335 macro_build (NULL, "break", BRK_FMT, 7);
10336 break;
10337 }
10338
10339 start_noreorder ();
10340 if (mips_trap)
10341 {
10342 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10343 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10344 }
10345 else
10346 {
10347 if (mips_opts.micromips)
10348 micromips_label_expr (&label_expr);
10349 else
10350 label_expr.X_add_number = 8;
10351 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10352 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10353 macro_build (NULL, "break", BRK_FMT, 7);
10354 if (mips_opts.micromips)
10355 micromips_add_label ();
10356 }
10357 expr1.X_add_number = -1;
10358 used_at = 1;
10359 load_register (AT, &expr1, dbl);
10360 if (mips_opts.micromips)
10361 micromips_label_expr (&label_expr);
10362 else
10363 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10364 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10365 if (dbl)
10366 {
10367 expr1.X_add_number = 1;
10368 load_register (AT, &expr1, dbl);
10369 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10370 }
10371 else
10372 {
10373 expr1.X_add_number = 0x80000000;
10374 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10375 }
10376 if (mips_trap)
10377 {
10378 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10379 /* We want to close the noreorder block as soon as possible, so
10380 that later insns are available for delay slot filling. */
10381 end_noreorder ();
10382 }
10383 else
10384 {
10385 if (mips_opts.micromips)
10386 micromips_label_expr (&label_expr);
10387 else
10388 label_expr.X_add_number = 8;
10389 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10390 macro_build (NULL, "nop", "");
10391
10392 /* We want to close the noreorder block as soon as possible, so
10393 that later insns are available for delay slot filling. */
10394 end_noreorder ();
10395
10396 macro_build (NULL, "break", BRK_FMT, 6);
10397 }
10398 if (mips_opts.micromips)
10399 micromips_add_label ();
10400 macro_build (NULL, s, MFHL_FMT, op[0]);
10401 break;
10402
10403 case M_DIV_3I:
10404 s = "div";
10405 s2 = "mflo";
10406 goto do_divi;
10407 case M_DIVU_3I:
10408 s = "divu";
10409 s2 = "mflo";
10410 goto do_divi;
10411 case M_REM_3I:
10412 s = "div";
10413 s2 = "mfhi";
10414 goto do_divi;
10415 case M_REMU_3I:
10416 s = "divu";
10417 s2 = "mfhi";
10418 goto do_divi;
10419 case M_DDIV_3I:
10420 dbl = 1;
10421 s = "ddiv";
10422 s2 = "mflo";
10423 goto do_divi;
10424 case M_DDIVU_3I:
10425 dbl = 1;
10426 s = "ddivu";
10427 s2 = "mflo";
10428 goto do_divi;
10429 case M_DREM_3I:
10430 dbl = 1;
10431 s = "ddiv";
10432 s2 = "mfhi";
10433 goto do_divi;
10434 case M_DREMU_3I:
10435 dbl = 1;
10436 s = "ddivu";
10437 s2 = "mfhi";
10438 do_divi:
10439 if (imm_expr.X_add_number == 0)
10440 {
10441 as_warn (_("divide by zero"));
10442 if (mips_trap)
10443 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10444 else
10445 macro_build (NULL, "break", BRK_FMT, 7);
10446 break;
10447 }
10448 if (imm_expr.X_add_number == 1)
10449 {
10450 if (strcmp (s2, "mflo") == 0)
10451 move_register (op[0], op[1]);
10452 else
10453 move_register (op[0], ZERO);
10454 break;
10455 }
10456 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10457 {
10458 if (strcmp (s2, "mflo") == 0)
10459 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10460 else
10461 move_register (op[0], ZERO);
10462 break;
10463 }
10464
10465 used_at = 1;
10466 load_register (AT, &imm_expr, dbl);
10467 macro_build (NULL, s, "z,s,t", op[1], AT);
10468 macro_build (NULL, s2, MFHL_FMT, op[0]);
10469 break;
10470
10471 case M_DIVU_3:
10472 s = "divu";
10473 s2 = "mflo";
10474 goto do_divu3;
10475 case M_REMU_3:
10476 s = "divu";
10477 s2 = "mfhi";
10478 goto do_divu3;
10479 case M_DDIVU_3:
10480 s = "ddivu";
10481 s2 = "mflo";
10482 goto do_divu3;
10483 case M_DREMU_3:
10484 s = "ddivu";
10485 s2 = "mfhi";
10486 do_divu3:
10487 start_noreorder ();
10488 if (mips_trap)
10489 {
10490 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10491 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10492 /* We want to close the noreorder block as soon as possible, so
10493 that later insns are available for delay slot filling. */
10494 end_noreorder ();
10495 }
10496 else
10497 {
10498 if (mips_opts.micromips)
10499 micromips_label_expr (&label_expr);
10500 else
10501 label_expr.X_add_number = 8;
10502 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10503 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10504
10505 /* We want to close the noreorder block as soon as possible, so
10506 that later insns are available for delay slot filling. */
10507 end_noreorder ();
10508 macro_build (NULL, "break", BRK_FMT, 7);
10509 if (mips_opts.micromips)
10510 micromips_add_label ();
10511 }
10512 macro_build (NULL, s2, MFHL_FMT, op[0]);
10513 break;
10514
10515 case M_DLCA_AB:
10516 dbl = 1;
10517 /* Fall through. */
10518 case M_LCA_AB:
10519 call = 1;
10520 goto do_la;
10521 case M_DLA_AB:
10522 dbl = 1;
10523 /* Fall through. */
10524 case M_LA_AB:
10525 do_la:
10526 /* Load the address of a symbol into a register. If breg is not
10527 zero, we then add a base register to it. */
10528
10529 breg = op[2];
10530 if (dbl && GPR_SIZE == 32)
10531 as_warn (_("dla used to load 32-bit register; recommend using la "
10532 "instead"));
10533
10534 if (!dbl && HAVE_64BIT_OBJECTS)
10535 as_warn (_("la used to load 64-bit address; recommend using dla "
10536 "instead"));
10537
10538 if (small_offset_p (0, align, 16))
10539 {
10540 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10541 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10542 break;
10543 }
10544
10545 if (mips_opts.at && (op[0] == breg))
10546 {
10547 tempreg = AT;
10548 used_at = 1;
10549 }
10550 else
10551 tempreg = op[0];
10552
10553 if (offset_expr.X_op != O_symbol
10554 && offset_expr.X_op != O_constant)
10555 {
10556 as_bad (_("expression too complex"));
10557 offset_expr.X_op = O_constant;
10558 }
10559
10560 if (offset_expr.X_op == O_constant)
10561 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10562 else if (mips_pic == NO_PIC)
10563 {
10564 /* If this is a reference to a GP relative symbol, we want
10565 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10566 Otherwise we want
10567 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10568 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10569 If we have a constant, we need two instructions anyhow,
10570 so we may as well always use the latter form.
10571
10572 With 64bit address space and a usable $at we want
10573 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10574 lui $at,<sym> (BFD_RELOC_HI16_S)
10575 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10576 daddiu $at,<sym> (BFD_RELOC_LO16)
10577 dsll32 $tempreg,0
10578 daddu $tempreg,$tempreg,$at
10579
10580 If $at is already in use, we use a path which is suboptimal
10581 on superscalar processors.
10582 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10583 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10584 dsll $tempreg,16
10585 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10586 dsll $tempreg,16
10587 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10588
10589 For GP relative symbols in 64bit address space we can use
10590 the same sequence as in 32bit address space. */
10591 if (HAVE_64BIT_SYMBOLS)
10592 {
10593 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10594 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10595 {
10596 relax_start (offset_expr.X_add_symbol);
10597 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10598 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10599 relax_switch ();
10600 }
10601
10602 if (used_at == 0 && mips_opts.at)
10603 {
10604 macro_build (&offset_expr, "lui", LUI_FMT,
10605 tempreg, BFD_RELOC_MIPS_HIGHEST);
10606 macro_build (&offset_expr, "lui", LUI_FMT,
10607 AT, BFD_RELOC_HI16_S);
10608 macro_build (&offset_expr, "daddiu", "t,r,j",
10609 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10610 macro_build (&offset_expr, "daddiu", "t,r,j",
10611 AT, AT, BFD_RELOC_LO16);
10612 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10613 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10614 used_at = 1;
10615 }
10616 else
10617 {
10618 macro_build (&offset_expr, "lui", LUI_FMT,
10619 tempreg, BFD_RELOC_MIPS_HIGHEST);
10620 macro_build (&offset_expr, "daddiu", "t,r,j",
10621 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10622 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10623 macro_build (&offset_expr, "daddiu", "t,r,j",
10624 tempreg, tempreg, BFD_RELOC_HI16_S);
10625 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10626 macro_build (&offset_expr, "daddiu", "t,r,j",
10627 tempreg, tempreg, BFD_RELOC_LO16);
10628 }
10629
10630 if (mips_relax.sequence)
10631 relax_end ();
10632 }
10633 else
10634 {
10635 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10636 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10637 {
10638 relax_start (offset_expr.X_add_symbol);
10639 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10640 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10641 relax_switch ();
10642 }
10643 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10644 as_bad (_("offset too large"));
10645 macro_build_lui (&offset_expr, tempreg);
10646 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10647 tempreg, tempreg, BFD_RELOC_LO16);
10648 if (mips_relax.sequence)
10649 relax_end ();
10650 }
10651 }
10652 else if (!mips_big_got && !HAVE_NEWABI)
10653 {
10654 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10655
10656 /* If this is a reference to an external symbol, and there
10657 is no constant, we want
10658 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10659 or for lca or if tempreg is PIC_CALL_REG
10660 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10661 For a local symbol, we want
10662 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10663 nop
10664 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10665
10666 If we have a small constant, and this is a reference to
10667 an external symbol, we want
10668 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10669 nop
10670 addiu $tempreg,$tempreg,<constant>
10671 For a local symbol, we want the same instruction
10672 sequence, but we output a BFD_RELOC_LO16 reloc on the
10673 addiu instruction.
10674
10675 If we have a large constant, and this is a reference to
10676 an external symbol, we want
10677 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10678 lui $at,<hiconstant>
10679 addiu $at,$at,<loconstant>
10680 addu $tempreg,$tempreg,$at
10681 For a local symbol, we want the same instruction
10682 sequence, but we output a BFD_RELOC_LO16 reloc on the
10683 addiu instruction.
10684 */
10685
10686 if (offset_expr.X_add_number == 0)
10687 {
10688 if (mips_pic == SVR4_PIC
10689 && breg == 0
10690 && (call || tempreg == PIC_CALL_REG))
10691 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10692
10693 relax_start (offset_expr.X_add_symbol);
10694 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10695 lw_reloc_type, mips_gp_register);
10696 if (breg != 0)
10697 {
10698 /* We're going to put in an addu instruction using
10699 tempreg, so we may as well insert the nop right
10700 now. */
10701 load_delay_nop ();
10702 }
10703 relax_switch ();
10704 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10705 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10706 load_delay_nop ();
10707 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10708 tempreg, tempreg, BFD_RELOC_LO16);
10709 relax_end ();
10710 /* FIXME: If breg == 0, and the next instruction uses
10711 $tempreg, then if this variant case is used an extra
10712 nop will be generated. */
10713 }
10714 else if (offset_expr.X_add_number >= -0x8000
10715 && offset_expr.X_add_number < 0x8000)
10716 {
10717 load_got_offset (tempreg, &offset_expr);
10718 load_delay_nop ();
10719 add_got_offset (tempreg, &offset_expr);
10720 }
10721 else
10722 {
10723 expr1.X_add_number = offset_expr.X_add_number;
10724 offset_expr.X_add_number =
10725 SEXT_16BIT (offset_expr.X_add_number);
10726 load_got_offset (tempreg, &offset_expr);
10727 offset_expr.X_add_number = expr1.X_add_number;
10728 /* If we are going to add in a base register, and the
10729 target register and the base register are the same,
10730 then we are using AT as a temporary register. Since
10731 we want to load the constant into AT, we add our
10732 current AT (from the global offset table) and the
10733 register into the register now, and pretend we were
10734 not using a base register. */
10735 if (breg == op[0])
10736 {
10737 load_delay_nop ();
10738 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10739 op[0], AT, breg);
10740 breg = 0;
10741 tempreg = op[0];
10742 }
10743 add_got_offset_hilo (tempreg, &offset_expr, AT);
10744 used_at = 1;
10745 }
10746 }
10747 else if (!mips_big_got && HAVE_NEWABI)
10748 {
10749 int add_breg_early = 0;
10750
10751 /* If this is a reference to an external, and there is no
10752 constant, or local symbol (*), with or without a
10753 constant, we want
10754 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10755 or for lca or if tempreg is PIC_CALL_REG
10756 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10757
10758 If we have a small constant, and this is a reference to
10759 an external symbol, we want
10760 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10761 addiu $tempreg,$tempreg,<constant>
10762
10763 If we have a large constant, and this is a reference to
10764 an external symbol, we want
10765 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10766 lui $at,<hiconstant>
10767 addiu $at,$at,<loconstant>
10768 addu $tempreg,$tempreg,$at
10769
10770 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10771 local symbols, even though it introduces an additional
10772 instruction. */
10773
10774 if (offset_expr.X_add_number)
10775 {
10776 expr1.X_add_number = offset_expr.X_add_number;
10777 offset_expr.X_add_number = 0;
10778
10779 relax_start (offset_expr.X_add_symbol);
10780 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10781 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10782
10783 if (expr1.X_add_number >= -0x8000
10784 && expr1.X_add_number < 0x8000)
10785 {
10786 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10787 tempreg, tempreg, BFD_RELOC_LO16);
10788 }
10789 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10790 {
10791 unsigned int dreg;
10792
10793 /* If we are going to add in a base register, and the
10794 target register and the base register are the same,
10795 then we are using AT as a temporary register. Since
10796 we want to load the constant into AT, we add our
10797 current AT (from the global offset table) and the
10798 register into the register now, and pretend we were
10799 not using a base register. */
10800 if (breg != op[0])
10801 dreg = tempreg;
10802 else
10803 {
10804 gas_assert (tempreg == AT);
10805 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10806 op[0], AT, breg);
10807 dreg = op[0];
10808 add_breg_early = 1;
10809 }
10810
10811 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10812 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10813 dreg, dreg, AT);
10814
10815 used_at = 1;
10816 }
10817 else
10818 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10819
10820 relax_switch ();
10821 offset_expr.X_add_number = expr1.X_add_number;
10822
10823 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10824 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10825 if (add_breg_early)
10826 {
10827 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10828 op[0], tempreg, breg);
10829 breg = 0;
10830 tempreg = op[0];
10831 }
10832 relax_end ();
10833 }
10834 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10835 {
10836 relax_start (offset_expr.X_add_symbol);
10837 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10838 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10839 relax_switch ();
10840 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10841 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10842 relax_end ();
10843 }
10844 else
10845 {
10846 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10847 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10848 }
10849 }
10850 else if (mips_big_got && !HAVE_NEWABI)
10851 {
10852 int gpdelay;
10853 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10854 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10855 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10856
10857 /* This is the large GOT case. If this is a reference to an
10858 external symbol, and there is no constant, we want
10859 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10860 addu $tempreg,$tempreg,$gp
10861 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10862 or for lca or if tempreg is PIC_CALL_REG
10863 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10864 addu $tempreg,$tempreg,$gp
10865 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10866 For a local symbol, we want
10867 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10868 nop
10869 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10870
10871 If we have a small constant, and this is a reference to
10872 an external symbol, we want
10873 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10874 addu $tempreg,$tempreg,$gp
10875 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10876 nop
10877 addiu $tempreg,$tempreg,<constant>
10878 For a local symbol, we want
10879 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10880 nop
10881 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10882
10883 If we have a large constant, and this is a reference to
10884 an external symbol, we want
10885 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10886 addu $tempreg,$tempreg,$gp
10887 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10888 lui $at,<hiconstant>
10889 addiu $at,$at,<loconstant>
10890 addu $tempreg,$tempreg,$at
10891 For a local symbol, we want
10892 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10893 lui $at,<hiconstant>
10894 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10895 addu $tempreg,$tempreg,$at
10896 */
10897
10898 expr1.X_add_number = offset_expr.X_add_number;
10899 offset_expr.X_add_number = 0;
10900 relax_start (offset_expr.X_add_symbol);
10901 gpdelay = reg_needs_delay (mips_gp_register);
10902 if (expr1.X_add_number == 0 && breg == 0
10903 && (call || tempreg == PIC_CALL_REG))
10904 {
10905 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10906 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10907 }
10908 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10909 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10910 tempreg, tempreg, mips_gp_register);
10911 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10912 tempreg, lw_reloc_type, tempreg);
10913 if (expr1.X_add_number == 0)
10914 {
10915 if (breg != 0)
10916 {
10917 /* We're going to put in an addu instruction using
10918 tempreg, so we may as well insert the nop right
10919 now. */
10920 load_delay_nop ();
10921 }
10922 }
10923 else if (expr1.X_add_number >= -0x8000
10924 && expr1.X_add_number < 0x8000)
10925 {
10926 load_delay_nop ();
10927 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10928 tempreg, tempreg, BFD_RELOC_LO16);
10929 }
10930 else
10931 {
10932 unsigned int dreg;
10933
10934 /* If we are going to add in a base register, and the
10935 target register and the base register are the same,
10936 then we are using AT as a temporary register. Since
10937 we want to load the constant into AT, we add our
10938 current AT (from the global offset table) and the
10939 register into the register now, and pretend we were
10940 not using a base register. */
10941 if (breg != op[0])
10942 dreg = tempreg;
10943 else
10944 {
10945 gas_assert (tempreg == AT);
10946 load_delay_nop ();
10947 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10948 op[0], AT, breg);
10949 dreg = op[0];
10950 }
10951
10952 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10953 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10954
10955 used_at = 1;
10956 }
10957 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10958 relax_switch ();
10959
10960 if (gpdelay)
10961 {
10962 /* This is needed because this instruction uses $gp, but
10963 the first instruction on the main stream does not. */
10964 macro_build (NULL, "nop", "");
10965 }
10966
10967 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10968 local_reloc_type, mips_gp_register);
10969 if (expr1.X_add_number >= -0x8000
10970 && expr1.X_add_number < 0x8000)
10971 {
10972 load_delay_nop ();
10973 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10974 tempreg, tempreg, BFD_RELOC_LO16);
10975 /* FIXME: If add_number is 0, and there was no base
10976 register, the external symbol case ended with a load,
10977 so if the symbol turns out to not be external, and
10978 the next instruction uses tempreg, an unnecessary nop
10979 will be inserted. */
10980 }
10981 else
10982 {
10983 if (breg == op[0])
10984 {
10985 /* We must add in the base register now, as in the
10986 external symbol case. */
10987 gas_assert (tempreg == AT);
10988 load_delay_nop ();
10989 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10990 op[0], AT, breg);
10991 tempreg = op[0];
10992 /* We set breg to 0 because we have arranged to add
10993 it in in both cases. */
10994 breg = 0;
10995 }
10996
10997 macro_build_lui (&expr1, AT);
10998 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10999 AT, AT, BFD_RELOC_LO16);
11000 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11001 tempreg, tempreg, AT);
11002 used_at = 1;
11003 }
11004 relax_end ();
11005 }
11006 else if (mips_big_got && HAVE_NEWABI)
11007 {
11008 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11009 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11010 int add_breg_early = 0;
11011
11012 /* This is the large GOT case. If this is a reference to an
11013 external symbol, and there is no constant, we want
11014 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11015 add $tempreg,$tempreg,$gp
11016 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11017 or for lca or if tempreg is PIC_CALL_REG
11018 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11019 add $tempreg,$tempreg,$gp
11020 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11021
11022 If we have a small constant, and this is a reference to
11023 an external symbol, we want
11024 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11025 add $tempreg,$tempreg,$gp
11026 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11027 addi $tempreg,$tempreg,<constant>
11028
11029 If we have a large constant, and this is a reference to
11030 an external symbol, we want
11031 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11032 addu $tempreg,$tempreg,$gp
11033 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11034 lui $at,<hiconstant>
11035 addi $at,$at,<loconstant>
11036 add $tempreg,$tempreg,$at
11037
11038 If we have NewABI, and we know it's a local symbol, we want
11039 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11040 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11041 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11042
11043 relax_start (offset_expr.X_add_symbol);
11044
11045 expr1.X_add_number = offset_expr.X_add_number;
11046 offset_expr.X_add_number = 0;
11047
11048 if (expr1.X_add_number == 0 && breg == 0
11049 && (call || tempreg == PIC_CALL_REG))
11050 {
11051 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11052 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11053 }
11054 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11055 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11056 tempreg, tempreg, mips_gp_register);
11057 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11058 tempreg, lw_reloc_type, tempreg);
11059
11060 if (expr1.X_add_number == 0)
11061 ;
11062 else if (expr1.X_add_number >= -0x8000
11063 && expr1.X_add_number < 0x8000)
11064 {
11065 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11066 tempreg, tempreg, BFD_RELOC_LO16);
11067 }
11068 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11069 {
11070 unsigned int dreg;
11071
11072 /* If we are going to add in a base register, and the
11073 target register and the base register are the same,
11074 then we are using AT as a temporary register. Since
11075 we want to load the constant into AT, we add our
11076 current AT (from the global offset table) and the
11077 register into the register now, and pretend we were
11078 not using a base register. */
11079 if (breg != op[0])
11080 dreg = tempreg;
11081 else
11082 {
11083 gas_assert (tempreg == AT);
11084 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11085 op[0], AT, breg);
11086 dreg = op[0];
11087 add_breg_early = 1;
11088 }
11089
11090 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11091 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11092
11093 used_at = 1;
11094 }
11095 else
11096 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11097
11098 relax_switch ();
11099 offset_expr.X_add_number = expr1.X_add_number;
11100 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11101 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11102 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11103 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11104 if (add_breg_early)
11105 {
11106 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11107 op[0], tempreg, breg);
11108 breg = 0;
11109 tempreg = op[0];
11110 }
11111 relax_end ();
11112 }
11113 else
11114 abort ();
11115
11116 if (breg != 0)
11117 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11118 break;
11119
11120 case M_MSGSND:
11121 gas_assert (!mips_opts.micromips);
11122 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11123 break;
11124
11125 case M_MSGLD:
11126 gas_assert (!mips_opts.micromips);
11127 macro_build (NULL, "c2", "C", 0x02);
11128 break;
11129
11130 case M_MSGLD_T:
11131 gas_assert (!mips_opts.micromips);
11132 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11133 break;
11134
11135 case M_MSGWAIT:
11136 gas_assert (!mips_opts.micromips);
11137 macro_build (NULL, "c2", "C", 3);
11138 break;
11139
11140 case M_MSGWAIT_T:
11141 gas_assert (!mips_opts.micromips);
11142 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11143 break;
11144
11145 case M_J_A:
11146 /* The j instruction may not be used in PIC code, since it
11147 requires an absolute address. We convert it to a b
11148 instruction. */
11149 if (mips_pic == NO_PIC)
11150 macro_build (&offset_expr, "j", "a");
11151 else
11152 macro_build (&offset_expr, "b", "p");
11153 break;
11154
11155 /* The jal instructions must be handled as macros because when
11156 generating PIC code they expand to multi-instruction
11157 sequences. Normally they are simple instructions. */
11158 case M_JALS_1:
11159 op[1] = op[0];
11160 op[0] = RA;
11161 /* Fall through. */
11162 case M_JALS_2:
11163 gas_assert (mips_opts.micromips);
11164 if (mips_opts.insn32)
11165 {
11166 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11167 break;
11168 }
11169 jals = 1;
11170 goto jal;
11171 case M_JAL_1:
11172 op[1] = op[0];
11173 op[0] = RA;
11174 /* Fall through. */
11175 case M_JAL_2:
11176 jal:
11177 if (mips_pic == NO_PIC)
11178 {
11179 s = jals ? "jalrs" : "jalr";
11180 if (mips_opts.micromips
11181 && !mips_opts.insn32
11182 && op[0] == RA
11183 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11184 macro_build (NULL, s, "mj", op[1]);
11185 else
11186 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11187 }
11188 else
11189 {
11190 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11191 && mips_cprestore_offset >= 0);
11192
11193 if (op[1] != PIC_CALL_REG)
11194 as_warn (_("MIPS PIC call to register other than $25"));
11195
11196 s = ((mips_opts.micromips
11197 && !mips_opts.insn32
11198 && (!mips_opts.noreorder || cprestore))
11199 ? "jalrs" : "jalr");
11200 if (mips_opts.micromips
11201 && !mips_opts.insn32
11202 && op[0] == RA
11203 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11204 macro_build (NULL, s, "mj", op[1]);
11205 else
11206 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11207 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11208 {
11209 if (mips_cprestore_offset < 0)
11210 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11211 else
11212 {
11213 if (!mips_frame_reg_valid)
11214 {
11215 as_warn (_("no .frame pseudo-op used in PIC code"));
11216 /* Quiet this warning. */
11217 mips_frame_reg_valid = 1;
11218 }
11219 if (!mips_cprestore_valid)
11220 {
11221 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11222 /* Quiet this warning. */
11223 mips_cprestore_valid = 1;
11224 }
11225 if (mips_opts.noreorder)
11226 macro_build (NULL, "nop", "");
11227 expr1.X_add_number = mips_cprestore_offset;
11228 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11229 mips_gp_register,
11230 mips_frame_reg,
11231 HAVE_64BIT_ADDRESSES);
11232 }
11233 }
11234 }
11235
11236 break;
11237
11238 case M_JALS_A:
11239 gas_assert (mips_opts.micromips);
11240 if (mips_opts.insn32)
11241 {
11242 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11243 break;
11244 }
11245 jals = 1;
11246 /* Fall through. */
11247 case M_JAL_A:
11248 if (mips_pic == NO_PIC)
11249 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11250 else if (mips_pic == SVR4_PIC)
11251 {
11252 /* If this is a reference to an external symbol, and we are
11253 using a small GOT, we want
11254 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11255 nop
11256 jalr $ra,$25
11257 nop
11258 lw $gp,cprestore($sp)
11259 The cprestore value is set using the .cprestore
11260 pseudo-op. If we are using a big GOT, we want
11261 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11262 addu $25,$25,$gp
11263 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11264 nop
11265 jalr $ra,$25
11266 nop
11267 lw $gp,cprestore($sp)
11268 If the symbol is not external, we want
11269 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11270 nop
11271 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11272 jalr $ra,$25
11273 nop
11274 lw $gp,cprestore($sp)
11275
11276 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11277 sequences above, minus nops, unless the symbol is local,
11278 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11279 GOT_DISP. */
11280 if (HAVE_NEWABI)
11281 {
11282 if (!mips_big_got)
11283 {
11284 relax_start (offset_expr.X_add_symbol);
11285 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11286 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11287 mips_gp_register);
11288 relax_switch ();
11289 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11290 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11291 mips_gp_register);
11292 relax_end ();
11293 }
11294 else
11295 {
11296 relax_start (offset_expr.X_add_symbol);
11297 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11298 BFD_RELOC_MIPS_CALL_HI16);
11299 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11300 PIC_CALL_REG, mips_gp_register);
11301 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11302 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11303 PIC_CALL_REG);
11304 relax_switch ();
11305 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11306 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11307 mips_gp_register);
11308 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11309 PIC_CALL_REG, PIC_CALL_REG,
11310 BFD_RELOC_MIPS_GOT_OFST);
11311 relax_end ();
11312 }
11313
11314 macro_build_jalr (&offset_expr, 0);
11315 }
11316 else
11317 {
11318 relax_start (offset_expr.X_add_symbol);
11319 if (!mips_big_got)
11320 {
11321 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11322 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11323 mips_gp_register);
11324 load_delay_nop ();
11325 relax_switch ();
11326 }
11327 else
11328 {
11329 int gpdelay;
11330
11331 gpdelay = reg_needs_delay (mips_gp_register);
11332 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11333 BFD_RELOC_MIPS_CALL_HI16);
11334 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11335 PIC_CALL_REG, mips_gp_register);
11336 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11337 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11338 PIC_CALL_REG);
11339 load_delay_nop ();
11340 relax_switch ();
11341 if (gpdelay)
11342 macro_build (NULL, "nop", "");
11343 }
11344 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11345 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11346 mips_gp_register);
11347 load_delay_nop ();
11348 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11349 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11350 relax_end ();
11351 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11352
11353 if (mips_cprestore_offset < 0)
11354 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11355 else
11356 {
11357 if (!mips_frame_reg_valid)
11358 {
11359 as_warn (_("no .frame pseudo-op used in PIC code"));
11360 /* Quiet this warning. */
11361 mips_frame_reg_valid = 1;
11362 }
11363 if (!mips_cprestore_valid)
11364 {
11365 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11366 /* Quiet this warning. */
11367 mips_cprestore_valid = 1;
11368 }
11369 if (mips_opts.noreorder)
11370 macro_build (NULL, "nop", "");
11371 expr1.X_add_number = mips_cprestore_offset;
11372 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11373 mips_gp_register,
11374 mips_frame_reg,
11375 HAVE_64BIT_ADDRESSES);
11376 }
11377 }
11378 }
11379 else if (mips_pic == VXWORKS_PIC)
11380 as_bad (_("non-PIC jump used in PIC library"));
11381 else
11382 abort ();
11383
11384 break;
11385
11386 case M_LBUE_AB:
11387 s = "lbue";
11388 fmt = "t,+j(b)";
11389 offbits = 9;
11390 goto ld_st;
11391 case M_LHUE_AB:
11392 s = "lhue";
11393 fmt = "t,+j(b)";
11394 offbits = 9;
11395 goto ld_st;
11396 case M_LBE_AB:
11397 s = "lbe";
11398 fmt = "t,+j(b)";
11399 offbits = 9;
11400 goto ld_st;
11401 case M_LHE_AB:
11402 s = "lhe";
11403 fmt = "t,+j(b)";
11404 offbits = 9;
11405 goto ld_st;
11406 case M_LLE_AB:
11407 s = "lle";
11408 fmt = "t,+j(b)";
11409 offbits = 9;
11410 goto ld_st;
11411 case M_LWE_AB:
11412 s = "lwe";
11413 fmt = "t,+j(b)";
11414 offbits = 9;
11415 goto ld_st;
11416 case M_LWLE_AB:
11417 s = "lwle";
11418 fmt = "t,+j(b)";
11419 offbits = 9;
11420 goto ld_st;
11421 case M_LWRE_AB:
11422 s = "lwre";
11423 fmt = "t,+j(b)";
11424 offbits = 9;
11425 goto ld_st;
11426 case M_SBE_AB:
11427 s = "sbe";
11428 fmt = "t,+j(b)";
11429 offbits = 9;
11430 goto ld_st;
11431 case M_SCE_AB:
11432 s = "sce";
11433 fmt = "t,+j(b)";
11434 offbits = 9;
11435 goto ld_st;
11436 case M_SHE_AB:
11437 s = "she";
11438 fmt = "t,+j(b)";
11439 offbits = 9;
11440 goto ld_st;
11441 case M_SWE_AB:
11442 s = "swe";
11443 fmt = "t,+j(b)";
11444 offbits = 9;
11445 goto ld_st;
11446 case M_SWLE_AB:
11447 s = "swle";
11448 fmt = "t,+j(b)";
11449 offbits = 9;
11450 goto ld_st;
11451 case M_SWRE_AB:
11452 s = "swre";
11453 fmt = "t,+j(b)";
11454 offbits = 9;
11455 goto ld_st;
11456 case M_ACLR_AB:
11457 s = "aclr";
11458 fmt = "\\,~(b)";
11459 offbits = 12;
11460 goto ld_st;
11461 case M_ASET_AB:
11462 s = "aset";
11463 fmt = "\\,~(b)";
11464 offbits = 12;
11465 goto ld_st;
11466 case M_LB_AB:
11467 s = "lb";
11468 fmt = "t,o(b)";
11469 goto ld;
11470 case M_LBU_AB:
11471 s = "lbu";
11472 fmt = "t,o(b)";
11473 goto ld;
11474 case M_LH_AB:
11475 s = "lh";
11476 fmt = "t,o(b)";
11477 goto ld;
11478 case M_LHU_AB:
11479 s = "lhu";
11480 fmt = "t,o(b)";
11481 goto ld;
11482 case M_LW_AB:
11483 s = "lw";
11484 fmt = "t,o(b)";
11485 goto ld;
11486 case M_LWC0_AB:
11487 gas_assert (!mips_opts.micromips);
11488 s = "lwc0";
11489 fmt = "E,o(b)";
11490 /* Itbl support may require additional care here. */
11491 coproc = 1;
11492 goto ld_st;
11493 case M_LWC1_AB:
11494 s = "lwc1";
11495 fmt = "T,o(b)";
11496 /* Itbl support may require additional care here. */
11497 coproc = 1;
11498 goto ld_st;
11499 case M_LWC2_AB:
11500 s = "lwc2";
11501 fmt = COP12_FMT;
11502 offbits = (mips_opts.micromips ? 12
11503 : ISA_IS_R6 (mips_opts.isa) ? 11
11504 : 16);
11505 /* Itbl support may require additional care here. */
11506 coproc = 1;
11507 goto ld_st;
11508 case M_LWC3_AB:
11509 gas_assert (!mips_opts.micromips);
11510 s = "lwc3";
11511 fmt = "E,o(b)";
11512 /* Itbl support may require additional care here. */
11513 coproc = 1;
11514 goto ld_st;
11515 case M_LWL_AB:
11516 s = "lwl";
11517 fmt = MEM12_FMT;
11518 offbits = (mips_opts.micromips ? 12 : 16);
11519 goto ld_st;
11520 case M_LWR_AB:
11521 s = "lwr";
11522 fmt = MEM12_FMT;
11523 offbits = (mips_opts.micromips ? 12 : 16);
11524 goto ld_st;
11525 case M_LDC1_AB:
11526 s = "ldc1";
11527 fmt = "T,o(b)";
11528 /* Itbl support may require additional care here. */
11529 coproc = 1;
11530 goto ld_st;
11531 case M_LDC2_AB:
11532 s = "ldc2";
11533 fmt = COP12_FMT;
11534 offbits = (mips_opts.micromips ? 12
11535 : ISA_IS_R6 (mips_opts.isa) ? 11
11536 : 16);
11537 /* Itbl support may require additional care here. */
11538 coproc = 1;
11539 goto ld_st;
11540 case M_LQC2_AB:
11541 s = "lqc2";
11542 fmt = "+7,o(b)";
11543 /* Itbl support may require additional care here. */
11544 coproc = 1;
11545 goto ld_st;
11546 case M_LDC3_AB:
11547 s = "ldc3";
11548 fmt = "E,o(b)";
11549 /* Itbl support may require additional care here. */
11550 coproc = 1;
11551 goto ld_st;
11552 case M_LDL_AB:
11553 s = "ldl";
11554 fmt = MEM12_FMT;
11555 offbits = (mips_opts.micromips ? 12 : 16);
11556 goto ld_st;
11557 case M_LDR_AB:
11558 s = "ldr";
11559 fmt = MEM12_FMT;
11560 offbits = (mips_opts.micromips ? 12 : 16);
11561 goto ld_st;
11562 case M_LL_AB:
11563 s = "ll";
11564 fmt = LL_SC_FMT;
11565 offbits = (mips_opts.micromips ? 12
11566 : ISA_IS_R6 (mips_opts.isa) ? 9
11567 : 16);
11568 goto ld;
11569 case M_LLD_AB:
11570 s = "lld";
11571 fmt = LL_SC_FMT;
11572 offbits = (mips_opts.micromips ? 12
11573 : ISA_IS_R6 (mips_opts.isa) ? 9
11574 : 16);
11575 goto ld;
11576 case M_LWU_AB:
11577 s = "lwu";
11578 fmt = MEM12_FMT;
11579 offbits = (mips_opts.micromips ? 12 : 16);
11580 goto ld;
11581 case M_LWP_AB:
11582 gas_assert (mips_opts.micromips);
11583 s = "lwp";
11584 fmt = "t,~(b)";
11585 offbits = 12;
11586 lp = 1;
11587 goto ld;
11588 case M_LDP_AB:
11589 gas_assert (mips_opts.micromips);
11590 s = "ldp";
11591 fmt = "t,~(b)";
11592 offbits = 12;
11593 lp = 1;
11594 goto ld;
11595 case M_LWM_AB:
11596 gas_assert (mips_opts.micromips);
11597 s = "lwm";
11598 fmt = "n,~(b)";
11599 offbits = 12;
11600 goto ld_st;
11601 case M_LDM_AB:
11602 gas_assert (mips_opts.micromips);
11603 s = "ldm";
11604 fmt = "n,~(b)";
11605 offbits = 12;
11606 goto ld_st;
11607
11608 ld:
11609 /* We don't want to use $0 as tempreg. */
11610 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11611 goto ld_st;
11612 else
11613 tempreg = op[0] + lp;
11614 goto ld_noat;
11615
11616 case M_SB_AB:
11617 s = "sb";
11618 fmt = "t,o(b)";
11619 goto ld_st;
11620 case M_SH_AB:
11621 s = "sh";
11622 fmt = "t,o(b)";
11623 goto ld_st;
11624 case M_SW_AB:
11625 s = "sw";
11626 fmt = "t,o(b)";
11627 goto ld_st;
11628 case M_SWC0_AB:
11629 gas_assert (!mips_opts.micromips);
11630 s = "swc0";
11631 fmt = "E,o(b)";
11632 /* Itbl support may require additional care here. */
11633 coproc = 1;
11634 goto ld_st;
11635 case M_SWC1_AB:
11636 s = "swc1";
11637 fmt = "T,o(b)";
11638 /* Itbl support may require additional care here. */
11639 coproc = 1;
11640 goto ld_st;
11641 case M_SWC2_AB:
11642 s = "swc2";
11643 fmt = COP12_FMT;
11644 offbits = (mips_opts.micromips ? 12
11645 : ISA_IS_R6 (mips_opts.isa) ? 11
11646 : 16);
11647 /* Itbl support may require additional care here. */
11648 coproc = 1;
11649 goto ld_st;
11650 case M_SWC3_AB:
11651 gas_assert (!mips_opts.micromips);
11652 s = "swc3";
11653 fmt = "E,o(b)";
11654 /* Itbl support may require additional care here. */
11655 coproc = 1;
11656 goto ld_st;
11657 case M_SWL_AB:
11658 s = "swl";
11659 fmt = MEM12_FMT;
11660 offbits = (mips_opts.micromips ? 12 : 16);
11661 goto ld_st;
11662 case M_SWR_AB:
11663 s = "swr";
11664 fmt = MEM12_FMT;
11665 offbits = (mips_opts.micromips ? 12 : 16);
11666 goto ld_st;
11667 case M_SC_AB:
11668 s = "sc";
11669 fmt = LL_SC_FMT;
11670 offbits = (mips_opts.micromips ? 12
11671 : ISA_IS_R6 (mips_opts.isa) ? 9
11672 : 16);
11673 goto ld_st;
11674 case M_SCD_AB:
11675 s = "scd";
11676 fmt = LL_SC_FMT;
11677 offbits = (mips_opts.micromips ? 12
11678 : ISA_IS_R6 (mips_opts.isa) ? 9
11679 : 16);
11680 goto ld_st;
11681 case M_CACHE_AB:
11682 s = "cache";
11683 fmt = (mips_opts.micromips ? "k,~(b)"
11684 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11685 : "k,o(b)");
11686 offbits = (mips_opts.micromips ? 12
11687 : ISA_IS_R6 (mips_opts.isa) ? 9
11688 : 16);
11689 goto ld_st;
11690 case M_CACHEE_AB:
11691 s = "cachee";
11692 fmt = "k,+j(b)";
11693 offbits = 9;
11694 goto ld_st;
11695 case M_PREF_AB:
11696 s = "pref";
11697 fmt = (mips_opts.micromips ? "k,~(b)"
11698 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11699 : "k,o(b)");
11700 offbits = (mips_opts.micromips ? 12
11701 : ISA_IS_R6 (mips_opts.isa) ? 9
11702 : 16);
11703 goto ld_st;
11704 case M_PREFE_AB:
11705 s = "prefe";
11706 fmt = "k,+j(b)";
11707 offbits = 9;
11708 goto ld_st;
11709 case M_SDC1_AB:
11710 s = "sdc1";
11711 fmt = "T,o(b)";
11712 coproc = 1;
11713 /* Itbl support may require additional care here. */
11714 goto ld_st;
11715 case M_SDC2_AB:
11716 s = "sdc2";
11717 fmt = COP12_FMT;
11718 offbits = (mips_opts.micromips ? 12
11719 : ISA_IS_R6 (mips_opts.isa) ? 11
11720 : 16);
11721 /* Itbl support may require additional care here. */
11722 coproc = 1;
11723 goto ld_st;
11724 case M_SQC2_AB:
11725 s = "sqc2";
11726 fmt = "+7,o(b)";
11727 /* Itbl support may require additional care here. */
11728 coproc = 1;
11729 goto ld_st;
11730 case M_SDC3_AB:
11731 gas_assert (!mips_opts.micromips);
11732 s = "sdc3";
11733 fmt = "E,o(b)";
11734 /* Itbl support may require additional care here. */
11735 coproc = 1;
11736 goto ld_st;
11737 case M_SDL_AB:
11738 s = "sdl";
11739 fmt = MEM12_FMT;
11740 offbits = (mips_opts.micromips ? 12 : 16);
11741 goto ld_st;
11742 case M_SDR_AB:
11743 s = "sdr";
11744 fmt = MEM12_FMT;
11745 offbits = (mips_opts.micromips ? 12 : 16);
11746 goto ld_st;
11747 case M_SWP_AB:
11748 gas_assert (mips_opts.micromips);
11749 s = "swp";
11750 fmt = "t,~(b)";
11751 offbits = 12;
11752 goto ld_st;
11753 case M_SDP_AB:
11754 gas_assert (mips_opts.micromips);
11755 s = "sdp";
11756 fmt = "t,~(b)";
11757 offbits = 12;
11758 goto ld_st;
11759 case M_SWM_AB:
11760 gas_assert (mips_opts.micromips);
11761 s = "swm";
11762 fmt = "n,~(b)";
11763 offbits = 12;
11764 goto ld_st;
11765 case M_SDM_AB:
11766 gas_assert (mips_opts.micromips);
11767 s = "sdm";
11768 fmt = "n,~(b)";
11769 offbits = 12;
11770
11771 ld_st:
11772 tempreg = AT;
11773 ld_noat:
11774 breg = op[2];
11775 if (small_offset_p (0, align, 16))
11776 {
11777 /* The first case exists for M_LD_AB and M_SD_AB, which are
11778 macros for o32 but which should act like normal instructions
11779 otherwise. */
11780 if (offbits == 16)
11781 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11782 offset_reloc[1], offset_reloc[2], breg);
11783 else if (small_offset_p (0, align, offbits))
11784 {
11785 if (offbits == 0)
11786 macro_build (NULL, s, fmt, op[0], breg);
11787 else
11788 macro_build (NULL, s, fmt, op[0],
11789 (int) offset_expr.X_add_number, breg);
11790 }
11791 else
11792 {
11793 if (tempreg == AT)
11794 used_at = 1;
11795 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11796 tempreg, breg, -1, offset_reloc[0],
11797 offset_reloc[1], offset_reloc[2]);
11798 if (offbits == 0)
11799 macro_build (NULL, s, fmt, op[0], tempreg);
11800 else
11801 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11802 }
11803 break;
11804 }
11805
11806 if (tempreg == AT)
11807 used_at = 1;
11808
11809 if (offset_expr.X_op != O_constant
11810 && offset_expr.X_op != O_symbol)
11811 {
11812 as_bad (_("expression too complex"));
11813 offset_expr.X_op = O_constant;
11814 }
11815
11816 if (HAVE_32BIT_ADDRESSES
11817 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11818 {
11819 char value [32];
11820
11821 sprintf_vma (value, offset_expr.X_add_number);
11822 as_bad (_("number (0x%s) larger than 32 bits"), value);
11823 }
11824
11825 /* A constant expression in PIC code can be handled just as it
11826 is in non PIC code. */
11827 if (offset_expr.X_op == O_constant)
11828 {
11829 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11830 offbits == 0 ? 16 : offbits);
11831 offset_expr.X_add_number -= expr1.X_add_number;
11832
11833 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11834 if (breg != 0)
11835 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11836 tempreg, tempreg, breg);
11837 if (offbits == 0)
11838 {
11839 if (offset_expr.X_add_number != 0)
11840 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11841 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11842 macro_build (NULL, s, fmt, op[0], tempreg);
11843 }
11844 else if (offbits == 16)
11845 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11846 else
11847 macro_build (NULL, s, fmt, op[0],
11848 (int) offset_expr.X_add_number, tempreg);
11849 }
11850 else if (offbits != 16)
11851 {
11852 /* The offset field is too narrow to be used for a low-part
11853 relocation, so load the whole address into the auxiliary
11854 register. */
11855 load_address (tempreg, &offset_expr, &used_at);
11856 if (breg != 0)
11857 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11858 tempreg, tempreg, breg);
11859 if (offbits == 0)
11860 macro_build (NULL, s, fmt, op[0], tempreg);
11861 else
11862 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11863 }
11864 else if (mips_pic == NO_PIC)
11865 {
11866 /* If this is a reference to a GP relative symbol, and there
11867 is no base register, we want
11868 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11869 Otherwise, if there is no base register, we want
11870 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11871 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11872 If we have a constant, we need two instructions anyhow,
11873 so we always use the latter form.
11874
11875 If we have a base register, and this is a reference to a
11876 GP relative symbol, we want
11877 addu $tempreg,$breg,$gp
11878 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11879 Otherwise we want
11880 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11881 addu $tempreg,$tempreg,$breg
11882 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11883 With a constant we always use the latter case.
11884
11885 With 64bit address space and no base register and $at usable,
11886 we want
11887 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11888 lui $at,<sym> (BFD_RELOC_HI16_S)
11889 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11890 dsll32 $tempreg,0
11891 daddu $tempreg,$at
11892 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11893 If we have a base register, we want
11894 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11895 lui $at,<sym> (BFD_RELOC_HI16_S)
11896 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11897 daddu $at,$breg
11898 dsll32 $tempreg,0
11899 daddu $tempreg,$at
11900 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11901
11902 Without $at we can't generate the optimal path for superscalar
11903 processors here since this would require two temporary registers.
11904 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11905 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11906 dsll $tempreg,16
11907 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11908 dsll $tempreg,16
11909 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11910 If we have a base register, we want
11911 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11912 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11913 dsll $tempreg,16
11914 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11915 dsll $tempreg,16
11916 daddu $tempreg,$tempreg,$breg
11917 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11918
11919 For GP relative symbols in 64bit address space we can use
11920 the same sequence as in 32bit address space. */
11921 if (HAVE_64BIT_SYMBOLS)
11922 {
11923 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11924 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11925 {
11926 relax_start (offset_expr.X_add_symbol);
11927 if (breg == 0)
11928 {
11929 macro_build (&offset_expr, s, fmt, op[0],
11930 BFD_RELOC_GPREL16, mips_gp_register);
11931 }
11932 else
11933 {
11934 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11935 tempreg, breg, mips_gp_register);
11936 macro_build (&offset_expr, s, fmt, op[0],
11937 BFD_RELOC_GPREL16, tempreg);
11938 }
11939 relax_switch ();
11940 }
11941
11942 if (used_at == 0 && mips_opts.at)
11943 {
11944 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11945 BFD_RELOC_MIPS_HIGHEST);
11946 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11947 BFD_RELOC_HI16_S);
11948 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11949 tempreg, BFD_RELOC_MIPS_HIGHER);
11950 if (breg != 0)
11951 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11952 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11953 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11954 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11955 tempreg);
11956 used_at = 1;
11957 }
11958 else
11959 {
11960 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11961 BFD_RELOC_MIPS_HIGHEST);
11962 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11963 tempreg, BFD_RELOC_MIPS_HIGHER);
11964 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11965 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11966 tempreg, BFD_RELOC_HI16_S);
11967 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11968 if (breg != 0)
11969 macro_build (NULL, "daddu", "d,v,t",
11970 tempreg, tempreg, breg);
11971 macro_build (&offset_expr, s, fmt, op[0],
11972 BFD_RELOC_LO16, tempreg);
11973 }
11974
11975 if (mips_relax.sequence)
11976 relax_end ();
11977 break;
11978 }
11979
11980 if (breg == 0)
11981 {
11982 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11983 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11984 {
11985 relax_start (offset_expr.X_add_symbol);
11986 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11987 mips_gp_register);
11988 relax_switch ();
11989 }
11990 macro_build_lui (&offset_expr, tempreg);
11991 macro_build (&offset_expr, s, fmt, op[0],
11992 BFD_RELOC_LO16, tempreg);
11993 if (mips_relax.sequence)
11994 relax_end ();
11995 }
11996 else
11997 {
11998 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11999 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12000 {
12001 relax_start (offset_expr.X_add_symbol);
12002 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12003 tempreg, breg, mips_gp_register);
12004 macro_build (&offset_expr, s, fmt, op[0],
12005 BFD_RELOC_GPREL16, tempreg);
12006 relax_switch ();
12007 }
12008 macro_build_lui (&offset_expr, tempreg);
12009 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12010 tempreg, tempreg, breg);
12011 macro_build (&offset_expr, s, fmt, op[0],
12012 BFD_RELOC_LO16, tempreg);
12013 if (mips_relax.sequence)
12014 relax_end ();
12015 }
12016 }
12017 else if (!mips_big_got)
12018 {
12019 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
12020
12021 /* If this is a reference to an external symbol, we want
12022 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12023 nop
12024 <op> op[0],0($tempreg)
12025 Otherwise we want
12026 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12027 nop
12028 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12029 <op> op[0],0($tempreg)
12030
12031 For NewABI, we want
12032 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12033 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
12034
12035 If there is a base register, we add it to $tempreg before
12036 the <op>. If there is a constant, we stick it in the
12037 <op> instruction. We don't handle constants larger than
12038 16 bits, because we have no way to load the upper 16 bits
12039 (actually, we could handle them for the subset of cases
12040 in which we are not using $at). */
12041 gas_assert (offset_expr.X_op == O_symbol);
12042 if (HAVE_NEWABI)
12043 {
12044 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12045 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12046 if (breg != 0)
12047 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12048 tempreg, tempreg, breg);
12049 macro_build (&offset_expr, s, fmt, op[0],
12050 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12051 break;
12052 }
12053 expr1.X_add_number = offset_expr.X_add_number;
12054 offset_expr.X_add_number = 0;
12055 if (expr1.X_add_number < -0x8000
12056 || expr1.X_add_number >= 0x8000)
12057 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12058 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12059 lw_reloc_type, mips_gp_register);
12060 load_delay_nop ();
12061 relax_start (offset_expr.X_add_symbol);
12062 relax_switch ();
12063 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12064 tempreg, BFD_RELOC_LO16);
12065 relax_end ();
12066 if (breg != 0)
12067 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12068 tempreg, tempreg, breg);
12069 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12070 }
12071 else if (mips_big_got && !HAVE_NEWABI)
12072 {
12073 int gpdelay;
12074
12075 /* If this is a reference to an external symbol, we want
12076 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12077 addu $tempreg,$tempreg,$gp
12078 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12079 <op> op[0],0($tempreg)
12080 Otherwise we want
12081 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12082 nop
12083 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12084 <op> op[0],0($tempreg)
12085 If there is a base register, we add it to $tempreg before
12086 the <op>. If there is a constant, we stick it in the
12087 <op> instruction. We don't handle constants larger than
12088 16 bits, because we have no way to load the upper 16 bits
12089 (actually, we could handle them for the subset of cases
12090 in which we are not using $at). */
12091 gas_assert (offset_expr.X_op == O_symbol);
12092 expr1.X_add_number = offset_expr.X_add_number;
12093 offset_expr.X_add_number = 0;
12094 if (expr1.X_add_number < -0x8000
12095 || expr1.X_add_number >= 0x8000)
12096 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12097 gpdelay = reg_needs_delay (mips_gp_register);
12098 relax_start (offset_expr.X_add_symbol);
12099 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12100 BFD_RELOC_MIPS_GOT_HI16);
12101 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12102 mips_gp_register);
12103 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12104 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12105 relax_switch ();
12106 if (gpdelay)
12107 macro_build (NULL, "nop", "");
12108 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12109 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12110 load_delay_nop ();
12111 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12112 tempreg, BFD_RELOC_LO16);
12113 relax_end ();
12114
12115 if (breg != 0)
12116 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12117 tempreg, tempreg, breg);
12118 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12119 }
12120 else if (mips_big_got && HAVE_NEWABI)
12121 {
12122 /* If this is a reference to an external symbol, we want
12123 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12124 add $tempreg,$tempreg,$gp
12125 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12126 <op> op[0],<ofst>($tempreg)
12127 Otherwise, for local symbols, we want:
12128 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12129 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12130 gas_assert (offset_expr.X_op == O_symbol);
12131 expr1.X_add_number = offset_expr.X_add_number;
12132 offset_expr.X_add_number = 0;
12133 if (expr1.X_add_number < -0x8000
12134 || expr1.X_add_number >= 0x8000)
12135 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12136 relax_start (offset_expr.X_add_symbol);
12137 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12138 BFD_RELOC_MIPS_GOT_HI16);
12139 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12140 mips_gp_register);
12141 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12142 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12143 if (breg != 0)
12144 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12145 tempreg, tempreg, breg);
12146 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12147
12148 relax_switch ();
12149 offset_expr.X_add_number = expr1.X_add_number;
12150 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12151 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12152 if (breg != 0)
12153 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12154 tempreg, tempreg, breg);
12155 macro_build (&offset_expr, s, fmt, op[0],
12156 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12157 relax_end ();
12158 }
12159 else
12160 abort ();
12161
12162 break;
12163
12164 case M_JRADDIUSP:
12165 gas_assert (mips_opts.micromips);
12166 gas_assert (mips_opts.insn32);
12167 start_noreorder ();
12168 macro_build (NULL, "jr", "s", RA);
12169 expr1.X_add_number = op[0] << 2;
12170 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12171 end_noreorder ();
12172 break;
12173
12174 case M_JRC:
12175 gas_assert (mips_opts.micromips);
12176 gas_assert (mips_opts.insn32);
12177 macro_build (NULL, "jr", "s", op[0]);
12178 if (mips_opts.noreorder)
12179 macro_build (NULL, "nop", "");
12180 break;
12181
12182 case M_LI:
12183 case M_LI_S:
12184 load_register (op[0], &imm_expr, 0);
12185 break;
12186
12187 case M_DLI:
12188 load_register (op[0], &imm_expr, 1);
12189 break;
12190
12191 case M_LI_SS:
12192 if (imm_expr.X_op == O_constant)
12193 {
12194 used_at = 1;
12195 load_register (AT, &imm_expr, 0);
12196 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12197 break;
12198 }
12199 else
12200 {
12201 gas_assert (imm_expr.X_op == O_absent
12202 && offset_expr.X_op == O_symbol
12203 && strcmp (segment_name (S_GET_SEGMENT
12204 (offset_expr.X_add_symbol)),
12205 ".lit4") == 0
12206 && offset_expr.X_add_number == 0);
12207 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12208 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12209 break;
12210 }
12211
12212 case M_LI_D:
12213 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12214 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12215 order 32 bits of the value and the low order 32 bits are either
12216 zero or in OFFSET_EXPR. */
12217 if (imm_expr.X_op == O_constant)
12218 {
12219 if (GPR_SIZE == 64)
12220 load_register (op[0], &imm_expr, 1);
12221 else
12222 {
12223 int hreg, lreg;
12224
12225 if (target_big_endian)
12226 {
12227 hreg = op[0];
12228 lreg = op[0] + 1;
12229 }
12230 else
12231 {
12232 hreg = op[0] + 1;
12233 lreg = op[0];
12234 }
12235
12236 if (hreg <= 31)
12237 load_register (hreg, &imm_expr, 0);
12238 if (lreg <= 31)
12239 {
12240 if (offset_expr.X_op == O_absent)
12241 move_register (lreg, 0);
12242 else
12243 {
12244 gas_assert (offset_expr.X_op == O_constant);
12245 load_register (lreg, &offset_expr, 0);
12246 }
12247 }
12248 }
12249 break;
12250 }
12251 gas_assert (imm_expr.X_op == O_absent);
12252
12253 /* We know that sym is in the .rdata section. First we get the
12254 upper 16 bits of the address. */
12255 if (mips_pic == NO_PIC)
12256 {
12257 macro_build_lui (&offset_expr, AT);
12258 used_at = 1;
12259 }
12260 else
12261 {
12262 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12263 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12264 used_at = 1;
12265 }
12266
12267 /* Now we load the register(s). */
12268 if (GPR_SIZE == 64)
12269 {
12270 used_at = 1;
12271 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12272 BFD_RELOC_LO16, AT);
12273 }
12274 else
12275 {
12276 used_at = 1;
12277 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12278 BFD_RELOC_LO16, AT);
12279 if (op[0] != RA)
12280 {
12281 /* FIXME: How in the world do we deal with the possible
12282 overflow here? */
12283 offset_expr.X_add_number += 4;
12284 macro_build (&offset_expr, "lw", "t,o(b)",
12285 op[0] + 1, BFD_RELOC_LO16, AT);
12286 }
12287 }
12288 break;
12289
12290 case M_LI_DD:
12291 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12292 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12293 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12294 the value and the low order 32 bits are either zero or in
12295 OFFSET_EXPR. */
12296 if (imm_expr.X_op == O_constant)
12297 {
12298 used_at = 1;
12299 load_register (AT, &imm_expr, FPR_SIZE == 64);
12300 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12301 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12302 else
12303 {
12304 if (ISA_HAS_MXHC1 (mips_opts.isa))
12305 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12306 else if (FPR_SIZE != 32)
12307 as_bad (_("Unable to generate `%s' compliant code "
12308 "without mthc1"),
12309 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12310 else
12311 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12312 if (offset_expr.X_op == O_absent)
12313 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12314 else
12315 {
12316 gas_assert (offset_expr.X_op == O_constant);
12317 load_register (AT, &offset_expr, 0);
12318 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12319 }
12320 }
12321 break;
12322 }
12323
12324 gas_assert (imm_expr.X_op == O_absent
12325 && offset_expr.X_op == O_symbol
12326 && offset_expr.X_add_number == 0);
12327 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12328 if (strcmp (s, ".lit8") == 0)
12329 {
12330 op[2] = mips_gp_register;
12331 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12332 offset_reloc[1] = BFD_RELOC_UNUSED;
12333 offset_reloc[2] = BFD_RELOC_UNUSED;
12334 }
12335 else
12336 {
12337 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12338 used_at = 1;
12339 if (mips_pic != NO_PIC)
12340 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12341 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12342 else
12343 {
12344 /* FIXME: This won't work for a 64 bit address. */
12345 macro_build_lui (&offset_expr, AT);
12346 }
12347
12348 op[2] = AT;
12349 offset_reloc[0] = BFD_RELOC_LO16;
12350 offset_reloc[1] = BFD_RELOC_UNUSED;
12351 offset_reloc[2] = BFD_RELOC_UNUSED;
12352 }
12353 align = 8;
12354 /* Fall through */
12355
12356 case M_L_DAB:
12357 /*
12358 * The MIPS assembler seems to check for X_add_number not
12359 * being double aligned and generating:
12360 * lui at,%hi(foo+1)
12361 * addu at,at,v1
12362 * addiu at,at,%lo(foo+1)
12363 * lwc1 f2,0(at)
12364 * lwc1 f3,4(at)
12365 * But, the resulting address is the same after relocation so why
12366 * generate the extra instruction?
12367 */
12368 /* Itbl support may require additional care here. */
12369 coproc = 1;
12370 fmt = "T,o(b)";
12371 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12372 {
12373 s = "ldc1";
12374 goto ld_st;
12375 }
12376 s = "lwc1";
12377 goto ldd_std;
12378
12379 case M_S_DAB:
12380 gas_assert (!mips_opts.micromips);
12381 /* Itbl support may require additional care here. */
12382 coproc = 1;
12383 fmt = "T,o(b)";
12384 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12385 {
12386 s = "sdc1";
12387 goto ld_st;
12388 }
12389 s = "swc1";
12390 goto ldd_std;
12391
12392 case M_LQ_AB:
12393 fmt = "t,o(b)";
12394 s = "lq";
12395 goto ld;
12396
12397 case M_SQ_AB:
12398 fmt = "t,o(b)";
12399 s = "sq";
12400 goto ld_st;
12401
12402 case M_LD_AB:
12403 fmt = "t,o(b)";
12404 if (GPR_SIZE == 64)
12405 {
12406 s = "ld";
12407 goto ld;
12408 }
12409 s = "lw";
12410 goto ldd_std;
12411
12412 case M_SD_AB:
12413 fmt = "t,o(b)";
12414 if (GPR_SIZE == 64)
12415 {
12416 s = "sd";
12417 goto ld_st;
12418 }
12419 s = "sw";
12420
12421 ldd_std:
12422 /* Even on a big endian machine $fn comes before $fn+1. We have
12423 to adjust when loading from memory. We set coproc if we must
12424 load $fn+1 first. */
12425 /* Itbl support may require additional care here. */
12426 if (!target_big_endian)
12427 coproc = 0;
12428
12429 breg = op[2];
12430 if (small_offset_p (0, align, 16))
12431 {
12432 ep = &offset_expr;
12433 if (!small_offset_p (4, align, 16))
12434 {
12435 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12436 -1, offset_reloc[0], offset_reloc[1],
12437 offset_reloc[2]);
12438 expr1.X_add_number = 0;
12439 ep = &expr1;
12440 breg = AT;
12441 used_at = 1;
12442 offset_reloc[0] = BFD_RELOC_LO16;
12443 offset_reloc[1] = BFD_RELOC_UNUSED;
12444 offset_reloc[2] = BFD_RELOC_UNUSED;
12445 }
12446 if (strcmp (s, "lw") == 0 && op[0] == breg)
12447 {
12448 ep->X_add_number += 4;
12449 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12450 offset_reloc[1], offset_reloc[2], breg);
12451 ep->X_add_number -= 4;
12452 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12453 offset_reloc[1], offset_reloc[2], breg);
12454 }
12455 else
12456 {
12457 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12458 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12459 breg);
12460 ep->X_add_number += 4;
12461 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12462 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12463 breg);
12464 }
12465 break;
12466 }
12467
12468 if (offset_expr.X_op != O_symbol
12469 && offset_expr.X_op != O_constant)
12470 {
12471 as_bad (_("expression too complex"));
12472 offset_expr.X_op = O_constant;
12473 }
12474
12475 if (HAVE_32BIT_ADDRESSES
12476 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12477 {
12478 char value [32];
12479
12480 sprintf_vma (value, offset_expr.X_add_number);
12481 as_bad (_("number (0x%s) larger than 32 bits"), value);
12482 }
12483
12484 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12485 {
12486 /* If this is a reference to a GP relative symbol, we want
12487 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12488 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12489 If we have a base register, we use this
12490 addu $at,$breg,$gp
12491 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12492 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12493 If this is not a GP relative symbol, we want
12494 lui $at,<sym> (BFD_RELOC_HI16_S)
12495 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12496 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12497 If there is a base register, we add it to $at after the
12498 lui instruction. If there is a constant, we always use
12499 the last case. */
12500 if (offset_expr.X_op == O_symbol
12501 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12502 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12503 {
12504 relax_start (offset_expr.X_add_symbol);
12505 if (breg == 0)
12506 {
12507 tempreg = mips_gp_register;
12508 }
12509 else
12510 {
12511 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12512 AT, breg, mips_gp_register);
12513 tempreg = AT;
12514 used_at = 1;
12515 }
12516
12517 /* Itbl support may require additional care here. */
12518 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12519 BFD_RELOC_GPREL16, tempreg);
12520 offset_expr.X_add_number += 4;
12521
12522 /* Set mips_optimize to 2 to avoid inserting an
12523 undesired nop. */
12524 hold_mips_optimize = mips_optimize;
12525 mips_optimize = 2;
12526 /* Itbl support may require additional care here. */
12527 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12528 BFD_RELOC_GPREL16, tempreg);
12529 mips_optimize = hold_mips_optimize;
12530
12531 relax_switch ();
12532
12533 offset_expr.X_add_number -= 4;
12534 }
12535 used_at = 1;
12536 if (offset_high_part (offset_expr.X_add_number, 16)
12537 != offset_high_part (offset_expr.X_add_number + 4, 16))
12538 {
12539 load_address (AT, &offset_expr, &used_at);
12540 offset_expr.X_op = O_constant;
12541 offset_expr.X_add_number = 0;
12542 }
12543 else
12544 macro_build_lui (&offset_expr, AT);
12545 if (breg != 0)
12546 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12547 /* Itbl support may require additional care here. */
12548 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12549 BFD_RELOC_LO16, AT);
12550 /* FIXME: How do we handle overflow here? */
12551 offset_expr.X_add_number += 4;
12552 /* Itbl support may require additional care here. */
12553 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12554 BFD_RELOC_LO16, AT);
12555 if (mips_relax.sequence)
12556 relax_end ();
12557 }
12558 else if (!mips_big_got)
12559 {
12560 /* If this is a reference to an external symbol, we want
12561 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12562 nop
12563 <op> op[0],0($at)
12564 <op> op[0]+1,4($at)
12565 Otherwise we want
12566 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12567 nop
12568 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12569 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12570 If there is a base register we add it to $at before the
12571 lwc1 instructions. If there is a constant we include it
12572 in the lwc1 instructions. */
12573 used_at = 1;
12574 expr1.X_add_number = offset_expr.X_add_number;
12575 if (expr1.X_add_number < -0x8000
12576 || expr1.X_add_number >= 0x8000 - 4)
12577 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12578 load_got_offset (AT, &offset_expr);
12579 load_delay_nop ();
12580 if (breg != 0)
12581 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12582
12583 /* Set mips_optimize to 2 to avoid inserting an undesired
12584 nop. */
12585 hold_mips_optimize = mips_optimize;
12586 mips_optimize = 2;
12587
12588 /* Itbl support may require additional care here. */
12589 relax_start (offset_expr.X_add_symbol);
12590 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12591 BFD_RELOC_LO16, AT);
12592 expr1.X_add_number += 4;
12593 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12594 BFD_RELOC_LO16, AT);
12595 relax_switch ();
12596 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12597 BFD_RELOC_LO16, AT);
12598 offset_expr.X_add_number += 4;
12599 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12600 BFD_RELOC_LO16, AT);
12601 relax_end ();
12602
12603 mips_optimize = hold_mips_optimize;
12604 }
12605 else if (mips_big_got)
12606 {
12607 int gpdelay;
12608
12609 /* If this is a reference to an external symbol, we want
12610 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12611 addu $at,$at,$gp
12612 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12613 nop
12614 <op> op[0],0($at)
12615 <op> op[0]+1,4($at)
12616 Otherwise we want
12617 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12618 nop
12619 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12620 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12621 If there is a base register we add it to $at before the
12622 lwc1 instructions. If there is a constant we include it
12623 in the lwc1 instructions. */
12624 used_at = 1;
12625 expr1.X_add_number = offset_expr.X_add_number;
12626 offset_expr.X_add_number = 0;
12627 if (expr1.X_add_number < -0x8000
12628 || expr1.X_add_number >= 0x8000 - 4)
12629 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12630 gpdelay = reg_needs_delay (mips_gp_register);
12631 relax_start (offset_expr.X_add_symbol);
12632 macro_build (&offset_expr, "lui", LUI_FMT,
12633 AT, BFD_RELOC_MIPS_GOT_HI16);
12634 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12635 AT, AT, mips_gp_register);
12636 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12637 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12638 load_delay_nop ();
12639 if (breg != 0)
12640 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12641 /* Itbl support may require additional care here. */
12642 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12643 BFD_RELOC_LO16, AT);
12644 expr1.X_add_number += 4;
12645
12646 /* Set mips_optimize to 2 to avoid inserting an undesired
12647 nop. */
12648 hold_mips_optimize = mips_optimize;
12649 mips_optimize = 2;
12650 /* Itbl support may require additional care here. */
12651 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12652 BFD_RELOC_LO16, AT);
12653 mips_optimize = hold_mips_optimize;
12654 expr1.X_add_number -= 4;
12655
12656 relax_switch ();
12657 offset_expr.X_add_number = expr1.X_add_number;
12658 if (gpdelay)
12659 macro_build (NULL, "nop", "");
12660 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12661 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12662 load_delay_nop ();
12663 if (breg != 0)
12664 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12665 /* Itbl support may require additional care here. */
12666 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12667 BFD_RELOC_LO16, AT);
12668 offset_expr.X_add_number += 4;
12669
12670 /* Set mips_optimize to 2 to avoid inserting an undesired
12671 nop. */
12672 hold_mips_optimize = mips_optimize;
12673 mips_optimize = 2;
12674 /* Itbl support may require additional care here. */
12675 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12676 BFD_RELOC_LO16, AT);
12677 mips_optimize = hold_mips_optimize;
12678 relax_end ();
12679 }
12680 else
12681 abort ();
12682
12683 break;
12684
12685 case M_SAA_AB:
12686 s = "saa";
12687 goto saa_saad;
12688 case M_SAAD_AB:
12689 s = "saad";
12690 saa_saad:
12691 gas_assert (!mips_opts.micromips);
12692 offbits = 0;
12693 fmt = "t,(b)";
12694 goto ld_st;
12695
12696 /* New code added to support COPZ instructions.
12697 This code builds table entries out of the macros in mip_opcodes.
12698 R4000 uses interlocks to handle coproc delays.
12699 Other chips (like the R3000) require nops to be inserted for delays.
12700
12701 FIXME: Currently, we require that the user handle delays.
12702 In order to fill delay slots for non-interlocked chips,
12703 we must have a way to specify delays based on the coprocessor.
12704 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12705 What are the side-effects of the cop instruction?
12706 What cache support might we have and what are its effects?
12707 Both coprocessor & memory require delays. how long???
12708 What registers are read/set/modified?
12709
12710 If an itbl is provided to interpret cop instructions,
12711 this knowledge can be encoded in the itbl spec. */
12712
12713 case M_COP0:
12714 s = "c0";
12715 goto copz;
12716 case M_COP1:
12717 s = "c1";
12718 goto copz;
12719 case M_COP2:
12720 s = "c2";
12721 goto copz;
12722 case M_COP3:
12723 s = "c3";
12724 copz:
12725 gas_assert (!mips_opts.micromips);
12726 /* For now we just do C (same as Cz). The parameter will be
12727 stored in insn_opcode by mips_ip. */
12728 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12729 break;
12730
12731 case M_MOVE:
12732 move_register (op[0], op[1]);
12733 break;
12734
12735 case M_MOVEP:
12736 gas_assert (mips_opts.micromips);
12737 gas_assert (mips_opts.insn32);
12738 move_register (micromips_to_32_reg_h_map1[op[0]],
12739 micromips_to_32_reg_m_map[op[1]]);
12740 move_register (micromips_to_32_reg_h_map2[op[0]],
12741 micromips_to_32_reg_n_map[op[2]]);
12742 break;
12743
12744 case M_DMUL:
12745 dbl = 1;
12746 /* Fall through. */
12747 case M_MUL:
12748 if (mips_opts.arch == CPU_R5900)
12749 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12750 op[2]);
12751 else
12752 {
12753 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12754 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12755 }
12756 break;
12757
12758 case M_DMUL_I:
12759 dbl = 1;
12760 /* Fall through. */
12761 case M_MUL_I:
12762 /* The MIPS assembler some times generates shifts and adds. I'm
12763 not trying to be that fancy. GCC should do this for us
12764 anyway. */
12765 used_at = 1;
12766 load_register (AT, &imm_expr, dbl);
12767 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12768 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12769 break;
12770
12771 case M_DMULO_I:
12772 dbl = 1;
12773 /* Fall through. */
12774 case M_MULO_I:
12775 imm = 1;
12776 goto do_mulo;
12777
12778 case M_DMULO:
12779 dbl = 1;
12780 /* Fall through. */
12781 case M_MULO:
12782 do_mulo:
12783 start_noreorder ();
12784 used_at = 1;
12785 if (imm)
12786 load_register (AT, &imm_expr, dbl);
12787 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12788 op[1], imm ? AT : op[2]);
12789 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12790 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12791 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12792 if (mips_trap)
12793 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12794 else
12795 {
12796 if (mips_opts.micromips)
12797 micromips_label_expr (&label_expr);
12798 else
12799 label_expr.X_add_number = 8;
12800 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12801 macro_build (NULL, "nop", "");
12802 macro_build (NULL, "break", BRK_FMT, 6);
12803 if (mips_opts.micromips)
12804 micromips_add_label ();
12805 }
12806 end_noreorder ();
12807 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12808 break;
12809
12810 case M_DMULOU_I:
12811 dbl = 1;
12812 /* Fall through. */
12813 case M_MULOU_I:
12814 imm = 1;
12815 goto do_mulou;
12816
12817 case M_DMULOU:
12818 dbl = 1;
12819 /* Fall through. */
12820 case M_MULOU:
12821 do_mulou:
12822 start_noreorder ();
12823 used_at = 1;
12824 if (imm)
12825 load_register (AT, &imm_expr, dbl);
12826 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12827 op[1], imm ? AT : op[2]);
12828 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12829 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12830 if (mips_trap)
12831 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12832 else
12833 {
12834 if (mips_opts.micromips)
12835 micromips_label_expr (&label_expr);
12836 else
12837 label_expr.X_add_number = 8;
12838 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12839 macro_build (NULL, "nop", "");
12840 macro_build (NULL, "break", BRK_FMT, 6);
12841 if (mips_opts.micromips)
12842 micromips_add_label ();
12843 }
12844 end_noreorder ();
12845 break;
12846
12847 case M_DROL:
12848 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12849 {
12850 if (op[0] == op[1])
12851 {
12852 tempreg = AT;
12853 used_at = 1;
12854 }
12855 else
12856 tempreg = op[0];
12857 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12858 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12859 break;
12860 }
12861 used_at = 1;
12862 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12863 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12864 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12865 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12866 break;
12867
12868 case M_ROL:
12869 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12870 {
12871 if (op[0] == op[1])
12872 {
12873 tempreg = AT;
12874 used_at = 1;
12875 }
12876 else
12877 tempreg = op[0];
12878 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12879 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12880 break;
12881 }
12882 used_at = 1;
12883 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12884 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12885 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12886 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12887 break;
12888
12889 case M_DROL_I:
12890 {
12891 unsigned int rot;
12892 const char *l;
12893 const char *rr;
12894
12895 rot = imm_expr.X_add_number & 0x3f;
12896 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12897 {
12898 rot = (64 - rot) & 0x3f;
12899 if (rot >= 32)
12900 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12901 else
12902 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12903 break;
12904 }
12905 if (rot == 0)
12906 {
12907 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12908 break;
12909 }
12910 l = (rot < 0x20) ? "dsll" : "dsll32";
12911 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12912 rot &= 0x1f;
12913 used_at = 1;
12914 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12915 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12916 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12917 }
12918 break;
12919
12920 case M_ROL_I:
12921 {
12922 unsigned int rot;
12923
12924 rot = imm_expr.X_add_number & 0x1f;
12925 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12926 {
12927 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12928 (32 - rot) & 0x1f);
12929 break;
12930 }
12931 if (rot == 0)
12932 {
12933 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12934 break;
12935 }
12936 used_at = 1;
12937 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12938 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12939 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12940 }
12941 break;
12942
12943 case M_DROR:
12944 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12945 {
12946 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12947 break;
12948 }
12949 used_at = 1;
12950 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12951 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12952 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12953 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12954 break;
12955
12956 case M_ROR:
12957 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12958 {
12959 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12960 break;
12961 }
12962 used_at = 1;
12963 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12964 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12965 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12966 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12967 break;
12968
12969 case M_DROR_I:
12970 {
12971 unsigned int rot;
12972 const char *l;
12973 const char *rr;
12974
12975 rot = imm_expr.X_add_number & 0x3f;
12976 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12977 {
12978 if (rot >= 32)
12979 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12980 else
12981 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12982 break;
12983 }
12984 if (rot == 0)
12985 {
12986 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12987 break;
12988 }
12989 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12990 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12991 rot &= 0x1f;
12992 used_at = 1;
12993 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12994 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12995 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12996 }
12997 break;
12998
12999 case M_ROR_I:
13000 {
13001 unsigned int rot;
13002
13003 rot = imm_expr.X_add_number & 0x1f;
13004 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13005 {
13006 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
13007 break;
13008 }
13009 if (rot == 0)
13010 {
13011 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13012 break;
13013 }
13014 used_at = 1;
13015 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13016 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13017 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13018 }
13019 break;
13020
13021 case M_SEQ:
13022 if (op[1] == 0)
13023 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13024 else if (op[2] == 0)
13025 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13026 else
13027 {
13028 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13029 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13030 }
13031 break;
13032
13033 case M_SEQ_I:
13034 if (imm_expr.X_add_number == 0)
13035 {
13036 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13037 break;
13038 }
13039 if (op[1] == 0)
13040 {
13041 as_warn (_("instruction %s: result is always false"),
13042 ip->insn_mo->name);
13043 move_register (op[0], 0);
13044 break;
13045 }
13046 if (CPU_HAS_SEQ (mips_opts.arch)
13047 && -512 <= imm_expr.X_add_number
13048 && imm_expr.X_add_number < 512)
13049 {
13050 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13051 (int) imm_expr.X_add_number);
13052 break;
13053 }
13054 if (imm_expr.X_add_number >= 0
13055 && imm_expr.X_add_number < 0x10000)
13056 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13057 else if (imm_expr.X_add_number > -0x8000
13058 && imm_expr.X_add_number < 0)
13059 {
13060 imm_expr.X_add_number = -imm_expr.X_add_number;
13061 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13062 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13063 }
13064 else if (CPU_HAS_SEQ (mips_opts.arch))
13065 {
13066 used_at = 1;
13067 load_register (AT, &imm_expr, GPR_SIZE == 64);
13068 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13069 break;
13070 }
13071 else
13072 {
13073 load_register (AT, &imm_expr, GPR_SIZE == 64);
13074 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13075 used_at = 1;
13076 }
13077 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13078 break;
13079
13080 case M_SGE: /* X >= Y <==> not (X < Y) */
13081 s = "slt";
13082 goto sge;
13083 case M_SGEU:
13084 s = "sltu";
13085 sge:
13086 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13087 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13088 break;
13089
13090 case M_SGE_I: /* X >= I <==> not (X < I) */
13091 case M_SGEU_I:
13092 if (imm_expr.X_add_number >= -0x8000
13093 && imm_expr.X_add_number < 0x8000)
13094 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13095 op[0], op[1], BFD_RELOC_LO16);
13096 else
13097 {
13098 load_register (AT, &imm_expr, GPR_SIZE == 64);
13099 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13100 op[0], op[1], AT);
13101 used_at = 1;
13102 }
13103 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13104 break;
13105
13106 case M_SGT: /* X > Y <==> Y < X */
13107 s = "slt";
13108 goto sgt;
13109 case M_SGTU:
13110 s = "sltu";
13111 sgt:
13112 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13113 break;
13114
13115 case M_SGT_I: /* X > I <==> I < X */
13116 s = "slt";
13117 goto sgti;
13118 case M_SGTU_I:
13119 s = "sltu";
13120 sgti:
13121 used_at = 1;
13122 load_register (AT, &imm_expr, GPR_SIZE == 64);
13123 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13124 break;
13125
13126 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
13127 s = "slt";
13128 goto sle;
13129 case M_SLEU:
13130 s = "sltu";
13131 sle:
13132 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13133 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13134 break;
13135
13136 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13137 s = "slt";
13138 goto slei;
13139 case M_SLEU_I:
13140 s = "sltu";
13141 slei:
13142 used_at = 1;
13143 load_register (AT, &imm_expr, GPR_SIZE == 64);
13144 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13145 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13146 break;
13147
13148 case M_SLT_I:
13149 if (imm_expr.X_add_number >= -0x8000
13150 && imm_expr.X_add_number < 0x8000)
13151 {
13152 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13153 BFD_RELOC_LO16);
13154 break;
13155 }
13156 used_at = 1;
13157 load_register (AT, &imm_expr, GPR_SIZE == 64);
13158 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13159 break;
13160
13161 case M_SLTU_I:
13162 if (imm_expr.X_add_number >= -0x8000
13163 && imm_expr.X_add_number < 0x8000)
13164 {
13165 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13166 BFD_RELOC_LO16);
13167 break;
13168 }
13169 used_at = 1;
13170 load_register (AT, &imm_expr, GPR_SIZE == 64);
13171 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13172 break;
13173
13174 case M_SNE:
13175 if (op[1] == 0)
13176 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13177 else if (op[2] == 0)
13178 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13179 else
13180 {
13181 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13182 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13183 }
13184 break;
13185
13186 case M_SNE_I:
13187 if (imm_expr.X_add_number == 0)
13188 {
13189 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13190 break;
13191 }
13192 if (op[1] == 0)
13193 {
13194 as_warn (_("instruction %s: result is always true"),
13195 ip->insn_mo->name);
13196 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13197 op[0], 0, BFD_RELOC_LO16);
13198 break;
13199 }
13200 if (CPU_HAS_SEQ (mips_opts.arch)
13201 && -512 <= imm_expr.X_add_number
13202 && imm_expr.X_add_number < 512)
13203 {
13204 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13205 (int) imm_expr.X_add_number);
13206 break;
13207 }
13208 if (imm_expr.X_add_number >= 0
13209 && imm_expr.X_add_number < 0x10000)
13210 {
13211 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13212 BFD_RELOC_LO16);
13213 }
13214 else if (imm_expr.X_add_number > -0x8000
13215 && imm_expr.X_add_number < 0)
13216 {
13217 imm_expr.X_add_number = -imm_expr.X_add_number;
13218 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13219 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13220 }
13221 else if (CPU_HAS_SEQ (mips_opts.arch))
13222 {
13223 used_at = 1;
13224 load_register (AT, &imm_expr, GPR_SIZE == 64);
13225 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13226 break;
13227 }
13228 else
13229 {
13230 load_register (AT, &imm_expr, GPR_SIZE == 64);
13231 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13232 used_at = 1;
13233 }
13234 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13235 break;
13236
13237 case M_SUB_I:
13238 s = "addi";
13239 s2 = "sub";
13240 goto do_subi;
13241 case M_SUBU_I:
13242 s = "addiu";
13243 s2 = "subu";
13244 goto do_subi;
13245 case M_DSUB_I:
13246 dbl = 1;
13247 s = "daddi";
13248 s2 = "dsub";
13249 if (!mips_opts.micromips)
13250 goto do_subi;
13251 if (imm_expr.X_add_number > -0x200
13252 && imm_expr.X_add_number <= 0x200)
13253 {
13254 macro_build (NULL, s, "t,r,.", op[0], op[1],
13255 (int) -imm_expr.X_add_number);
13256 break;
13257 }
13258 goto do_subi_i;
13259 case M_DSUBU_I:
13260 dbl = 1;
13261 s = "daddiu";
13262 s2 = "dsubu";
13263 do_subi:
13264 if (imm_expr.X_add_number > -0x8000
13265 && imm_expr.X_add_number <= 0x8000)
13266 {
13267 imm_expr.X_add_number = -imm_expr.X_add_number;
13268 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13269 break;
13270 }
13271 do_subi_i:
13272 used_at = 1;
13273 load_register (AT, &imm_expr, dbl);
13274 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13275 break;
13276
13277 case M_TEQ_I:
13278 s = "teq";
13279 goto trap;
13280 case M_TGE_I:
13281 s = "tge";
13282 goto trap;
13283 case M_TGEU_I:
13284 s = "tgeu";
13285 goto trap;
13286 case M_TLT_I:
13287 s = "tlt";
13288 goto trap;
13289 case M_TLTU_I:
13290 s = "tltu";
13291 goto trap;
13292 case M_TNE_I:
13293 s = "tne";
13294 trap:
13295 used_at = 1;
13296 load_register (AT, &imm_expr, GPR_SIZE == 64);
13297 macro_build (NULL, s, "s,t", op[0], AT);
13298 break;
13299
13300 case M_TRUNCWS:
13301 case M_TRUNCWD:
13302 gas_assert (!mips_opts.micromips);
13303 gas_assert (mips_opts.isa == ISA_MIPS1);
13304 used_at = 1;
13305
13306 /*
13307 * Is the double cfc1 instruction a bug in the mips assembler;
13308 * or is there a reason for it?
13309 */
13310 start_noreorder ();
13311 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13312 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13313 macro_build (NULL, "nop", "");
13314 expr1.X_add_number = 3;
13315 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13316 expr1.X_add_number = 2;
13317 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13318 macro_build (NULL, "ctc1", "t,G", AT, RA);
13319 macro_build (NULL, "nop", "");
13320 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13321 op[0], op[1]);
13322 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13323 macro_build (NULL, "nop", "");
13324 end_noreorder ();
13325 break;
13326
13327 case M_ULH_AB:
13328 s = "lb";
13329 s2 = "lbu";
13330 off = 1;
13331 goto uld_st;
13332 case M_ULHU_AB:
13333 s = "lbu";
13334 s2 = "lbu";
13335 off = 1;
13336 goto uld_st;
13337 case M_ULW_AB:
13338 s = "lwl";
13339 s2 = "lwr";
13340 offbits = (mips_opts.micromips ? 12 : 16);
13341 off = 3;
13342 goto uld_st;
13343 case M_ULD_AB:
13344 s = "ldl";
13345 s2 = "ldr";
13346 offbits = (mips_opts.micromips ? 12 : 16);
13347 off = 7;
13348 goto uld_st;
13349 case M_USH_AB:
13350 s = "sb";
13351 s2 = "sb";
13352 off = 1;
13353 ust = 1;
13354 goto uld_st;
13355 case M_USW_AB:
13356 s = "swl";
13357 s2 = "swr";
13358 offbits = (mips_opts.micromips ? 12 : 16);
13359 off = 3;
13360 ust = 1;
13361 goto uld_st;
13362 case M_USD_AB:
13363 s = "sdl";
13364 s2 = "sdr";
13365 offbits = (mips_opts.micromips ? 12 : 16);
13366 off = 7;
13367 ust = 1;
13368
13369 uld_st:
13370 breg = op[2];
13371 large_offset = !small_offset_p (off, align, offbits);
13372 ep = &offset_expr;
13373 expr1.X_add_number = 0;
13374 if (large_offset)
13375 {
13376 used_at = 1;
13377 tempreg = AT;
13378 if (small_offset_p (0, align, 16))
13379 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13380 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13381 else
13382 {
13383 load_address (tempreg, ep, &used_at);
13384 if (breg != 0)
13385 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13386 tempreg, tempreg, breg);
13387 }
13388 offset_reloc[0] = BFD_RELOC_LO16;
13389 offset_reloc[1] = BFD_RELOC_UNUSED;
13390 offset_reloc[2] = BFD_RELOC_UNUSED;
13391 breg = tempreg;
13392 tempreg = op[0];
13393 ep = &expr1;
13394 }
13395 else if (!ust && op[0] == breg)
13396 {
13397 used_at = 1;
13398 tempreg = AT;
13399 }
13400 else
13401 tempreg = op[0];
13402
13403 if (off == 1)
13404 goto ulh_sh;
13405
13406 if (!target_big_endian)
13407 ep->X_add_number += off;
13408 if (offbits == 12)
13409 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13410 else
13411 macro_build (ep, s, "t,o(b)", tempreg, -1,
13412 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13413
13414 if (!target_big_endian)
13415 ep->X_add_number -= off;
13416 else
13417 ep->X_add_number += off;
13418 if (offbits == 12)
13419 macro_build (NULL, s2, "t,~(b)",
13420 tempreg, (int) ep->X_add_number, breg);
13421 else
13422 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13423 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13424
13425 /* If necessary, move the result in tempreg to the final destination. */
13426 if (!ust && op[0] != tempreg)
13427 {
13428 /* Protect second load's delay slot. */
13429 load_delay_nop ();
13430 move_register (op[0], tempreg);
13431 }
13432 break;
13433
13434 ulh_sh:
13435 used_at = 1;
13436 if (target_big_endian == ust)
13437 ep->X_add_number += off;
13438 tempreg = ust || large_offset ? op[0] : AT;
13439 macro_build (ep, s, "t,o(b)", tempreg, -1,
13440 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13441
13442 /* For halfword transfers we need a temporary register to shuffle
13443 bytes. Unfortunately for M_USH_A we have none available before
13444 the next store as AT holds the base address. We deal with this
13445 case by clobbering TREG and then restoring it as with ULH. */
13446 tempreg = ust == large_offset ? op[0] : AT;
13447 if (ust)
13448 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13449
13450 if (target_big_endian == ust)
13451 ep->X_add_number -= off;
13452 else
13453 ep->X_add_number += off;
13454 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13455 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13456
13457 /* For M_USH_A re-retrieve the LSB. */
13458 if (ust && large_offset)
13459 {
13460 if (target_big_endian)
13461 ep->X_add_number += off;
13462 else
13463 ep->X_add_number -= off;
13464 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13465 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13466 }
13467 /* For ULH and M_USH_A OR the LSB in. */
13468 if (!ust || large_offset)
13469 {
13470 tempreg = !large_offset ? AT : op[0];
13471 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13472 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13473 }
13474 break;
13475
13476 default:
13477 /* FIXME: Check if this is one of the itbl macros, since they
13478 are added dynamically. */
13479 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13480 break;
13481 }
13482 if (!mips_opts.at && used_at)
13483 as_bad (_("macro used $at after \".set noat\""));
13484 }
13485
13486 /* Implement macros in mips16 mode. */
13487
13488 static void
13489 mips16_macro (struct mips_cl_insn *ip)
13490 {
13491 const struct mips_operand_array *operands;
13492 int mask;
13493 int tmp;
13494 expressionS expr1;
13495 int dbl;
13496 const char *s, *s2, *s3;
13497 unsigned int op[MAX_OPERANDS];
13498 unsigned int i;
13499
13500 mask = ip->insn_mo->mask;
13501
13502 operands = insn_operands (ip);
13503 for (i = 0; i < MAX_OPERANDS; i++)
13504 if (operands->operand[i])
13505 op[i] = insn_extract_operand (ip, operands->operand[i]);
13506 else
13507 op[i] = -1;
13508
13509 expr1.X_op = O_constant;
13510 expr1.X_op_symbol = NULL;
13511 expr1.X_add_symbol = NULL;
13512 expr1.X_add_number = 1;
13513
13514 dbl = 0;
13515
13516 switch (mask)
13517 {
13518 default:
13519 abort ();
13520
13521 case M_DDIV_3:
13522 dbl = 1;
13523 /* Fall through. */
13524 case M_DIV_3:
13525 s = "mflo";
13526 goto do_div3;
13527 case M_DREM_3:
13528 dbl = 1;
13529 /* Fall through. */
13530 case M_REM_3:
13531 s = "mfhi";
13532 do_div3:
13533 start_noreorder ();
13534 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13535 expr1.X_add_number = 2;
13536 macro_build (&expr1, "bnez", "x,p", op[2]);
13537 macro_build (NULL, "break", "6", 7);
13538
13539 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13540 since that causes an overflow. We should do that as well,
13541 but I don't see how to do the comparisons without a temporary
13542 register. */
13543 end_noreorder ();
13544 macro_build (NULL, s, "x", op[0]);
13545 break;
13546
13547 case M_DIVU_3:
13548 s = "divu";
13549 s2 = "mflo";
13550 goto do_divu3;
13551 case M_REMU_3:
13552 s = "divu";
13553 s2 = "mfhi";
13554 goto do_divu3;
13555 case M_DDIVU_3:
13556 s = "ddivu";
13557 s2 = "mflo";
13558 goto do_divu3;
13559 case M_DREMU_3:
13560 s = "ddivu";
13561 s2 = "mfhi";
13562 do_divu3:
13563 start_noreorder ();
13564 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13565 expr1.X_add_number = 2;
13566 macro_build (&expr1, "bnez", "x,p", op[2]);
13567 macro_build (NULL, "break", "6", 7);
13568 end_noreorder ();
13569 macro_build (NULL, s2, "x", op[0]);
13570 break;
13571
13572 case M_DMUL:
13573 dbl = 1;
13574 /* Fall through. */
13575 case M_MUL:
13576 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13577 macro_build (NULL, "mflo", "x", op[0]);
13578 break;
13579
13580 case M_DSUBU_I:
13581 dbl = 1;
13582 goto do_subu;
13583 case M_SUBU_I:
13584 do_subu:
13585 imm_expr.X_add_number = -imm_expr.X_add_number;
13586 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13587 break;
13588
13589 case M_SUBU_I_2:
13590 imm_expr.X_add_number = -imm_expr.X_add_number;
13591 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13592 break;
13593
13594 case M_DSUBU_I_2:
13595 imm_expr.X_add_number = -imm_expr.X_add_number;
13596 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13597 break;
13598
13599 case M_BEQ:
13600 s = "cmp";
13601 s2 = "bteqz";
13602 goto do_branch;
13603 case M_BNE:
13604 s = "cmp";
13605 s2 = "btnez";
13606 goto do_branch;
13607 case M_BLT:
13608 s = "slt";
13609 s2 = "btnez";
13610 goto do_branch;
13611 case M_BLTU:
13612 s = "sltu";
13613 s2 = "btnez";
13614 goto do_branch;
13615 case M_BLE:
13616 s = "slt";
13617 s2 = "bteqz";
13618 goto do_reverse_branch;
13619 case M_BLEU:
13620 s = "sltu";
13621 s2 = "bteqz";
13622 goto do_reverse_branch;
13623 case M_BGE:
13624 s = "slt";
13625 s2 = "bteqz";
13626 goto do_branch;
13627 case M_BGEU:
13628 s = "sltu";
13629 s2 = "bteqz";
13630 goto do_branch;
13631 case M_BGT:
13632 s = "slt";
13633 s2 = "btnez";
13634 goto do_reverse_branch;
13635 case M_BGTU:
13636 s = "sltu";
13637 s2 = "btnez";
13638
13639 do_reverse_branch:
13640 tmp = op[1];
13641 op[1] = op[0];
13642 op[0] = tmp;
13643
13644 do_branch:
13645 macro_build (NULL, s, "x,y", op[0], op[1]);
13646 macro_build (&offset_expr, s2, "p");
13647 break;
13648
13649 case M_BEQ_I:
13650 s = "cmpi";
13651 s2 = "bteqz";
13652 s3 = "x,U";
13653 goto do_branch_i;
13654 case M_BNE_I:
13655 s = "cmpi";
13656 s2 = "btnez";
13657 s3 = "x,U";
13658 goto do_branch_i;
13659 case M_BLT_I:
13660 s = "slti";
13661 s2 = "btnez";
13662 s3 = "x,8";
13663 goto do_branch_i;
13664 case M_BLTU_I:
13665 s = "sltiu";
13666 s2 = "btnez";
13667 s3 = "x,8";
13668 goto do_branch_i;
13669 case M_BLE_I:
13670 s = "slti";
13671 s2 = "btnez";
13672 s3 = "x,8";
13673 goto do_addone_branch_i;
13674 case M_BLEU_I:
13675 s = "sltiu";
13676 s2 = "btnez";
13677 s3 = "x,8";
13678 goto do_addone_branch_i;
13679 case M_BGE_I:
13680 s = "slti";
13681 s2 = "bteqz";
13682 s3 = "x,8";
13683 goto do_branch_i;
13684 case M_BGEU_I:
13685 s = "sltiu";
13686 s2 = "bteqz";
13687 s3 = "x,8";
13688 goto do_branch_i;
13689 case M_BGT_I:
13690 s = "slti";
13691 s2 = "bteqz";
13692 s3 = "x,8";
13693 goto do_addone_branch_i;
13694 case M_BGTU_I:
13695 s = "sltiu";
13696 s2 = "bteqz";
13697 s3 = "x,8";
13698
13699 do_addone_branch_i:
13700 ++imm_expr.X_add_number;
13701
13702 do_branch_i:
13703 macro_build (&imm_expr, s, s3, op[0]);
13704 macro_build (&offset_expr, s2, "p");
13705 break;
13706
13707 case M_ABS:
13708 expr1.X_add_number = 0;
13709 macro_build (&expr1, "slti", "x,8", op[1]);
13710 if (op[0] != op[1])
13711 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13712 expr1.X_add_number = 2;
13713 macro_build (&expr1, "bteqz", "p");
13714 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13715 break;
13716 }
13717 }
13718
13719 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13720 opcode bits in *OPCODE_EXTRA. */
13721
13722 static struct mips_opcode *
13723 mips_lookup_insn (struct hash_control *hash, const char *start,
13724 ssize_t length, unsigned int *opcode_extra)
13725 {
13726 char *name, *dot, *p;
13727 unsigned int mask, suffix;
13728 ssize_t opend;
13729 struct mips_opcode *insn;
13730
13731 /* Make a copy of the instruction so that we can fiddle with it. */
13732 name = xstrndup (start, length);
13733
13734 /* Look up the instruction as-is. */
13735 insn = (struct mips_opcode *) hash_find (hash, name);
13736 if (insn)
13737 goto end;
13738
13739 dot = strchr (name, '.');
13740 if (dot && dot[1])
13741 {
13742 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13743 p = mips_parse_vu0_channels (dot + 1, &mask);
13744 if (*p == 0 && mask != 0)
13745 {
13746 *dot = 0;
13747 insn = (struct mips_opcode *) hash_find (hash, name);
13748 *dot = '.';
13749 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13750 {
13751 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13752 goto end;
13753 }
13754 }
13755 }
13756
13757 if (mips_opts.micromips)
13758 {
13759 /* See if there's an instruction size override suffix,
13760 either `16' or `32', at the end of the mnemonic proper,
13761 that defines the operation, i.e. before the first `.'
13762 character if any. Strip it and retry. */
13763 opend = dot != NULL ? dot - name : length;
13764 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13765 suffix = 2;
13766 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13767 suffix = 4;
13768 else
13769 suffix = 0;
13770 if (suffix)
13771 {
13772 memcpy (name + opend - 2, name + opend, length - opend + 1);
13773 insn = (struct mips_opcode *) hash_find (hash, name);
13774 if (insn)
13775 {
13776 forced_insn_length = suffix;
13777 goto end;
13778 }
13779 }
13780 }
13781
13782 insn = NULL;
13783 end:
13784 free (name);
13785 return insn;
13786 }
13787
13788 /* Assemble an instruction into its binary format. If the instruction
13789 is a macro, set imm_expr and offset_expr to the values associated
13790 with "I" and "A" operands respectively. Otherwise store the value
13791 of the relocatable field (if any) in offset_expr. In both cases
13792 set offset_reloc to the relocation operators applied to offset_expr. */
13793
13794 static void
13795 mips_ip (char *str, struct mips_cl_insn *insn)
13796 {
13797 const struct mips_opcode *first, *past;
13798 struct hash_control *hash;
13799 char format;
13800 size_t end;
13801 struct mips_operand_token *tokens;
13802 unsigned int opcode_extra;
13803
13804 if (mips_opts.micromips)
13805 {
13806 hash = micromips_op_hash;
13807 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13808 }
13809 else
13810 {
13811 hash = op_hash;
13812 past = &mips_opcodes[NUMOPCODES];
13813 }
13814 forced_insn_length = 0;
13815 opcode_extra = 0;
13816
13817 /* We first try to match an instruction up to a space or to the end. */
13818 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13819 continue;
13820
13821 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13822 if (first == NULL)
13823 {
13824 set_insn_error (0, _("unrecognized opcode"));
13825 return;
13826 }
13827
13828 if (strcmp (first->name, "li.s") == 0)
13829 format = 'f';
13830 else if (strcmp (first->name, "li.d") == 0)
13831 format = 'd';
13832 else
13833 format = 0;
13834 tokens = mips_parse_arguments (str + end, format);
13835 if (!tokens)
13836 return;
13837
13838 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13839 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13840 set_insn_error (0, _("invalid operands"));
13841
13842 obstack_free (&mips_operand_tokens, tokens);
13843 }
13844
13845 /* As for mips_ip, but used when assembling MIPS16 code.
13846 Also set forced_insn_length to the resulting instruction size in
13847 bytes if the user explicitly requested a small or extended instruction. */
13848
13849 static void
13850 mips16_ip (char *str, struct mips_cl_insn *insn)
13851 {
13852 char *end, *s, c;
13853 struct mips_opcode *first;
13854 struct mips_operand_token *tokens;
13855 unsigned int l;
13856
13857 for (s = str; ISLOWER (*s); ++s)
13858 ;
13859 end = s;
13860 c = *end;
13861
13862 l = 0;
13863 switch (c)
13864 {
13865 case '\0':
13866 break;
13867
13868 case ' ':
13869 s++;
13870 break;
13871
13872 case '.':
13873 s++;
13874 if (*s == 't')
13875 {
13876 l = 2;
13877 s++;
13878 }
13879 else if (*s == 'e')
13880 {
13881 l = 4;
13882 s++;
13883 }
13884 if (*s == '\0')
13885 break;
13886 else if (*s++ == ' ')
13887 break;
13888 /* Fall through. */
13889 default:
13890 set_insn_error (0, _("unrecognized opcode"));
13891 return;
13892 }
13893 forced_insn_length = l;
13894
13895 *end = 0;
13896 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13897 *end = c;
13898
13899 if (!first)
13900 {
13901 set_insn_error (0, _("unrecognized opcode"));
13902 return;
13903 }
13904
13905 tokens = mips_parse_arguments (s, 0);
13906 if (!tokens)
13907 return;
13908
13909 if (!match_mips16_insns (insn, first, tokens))
13910 set_insn_error (0, _("invalid operands"));
13911
13912 obstack_free (&mips_operand_tokens, tokens);
13913 }
13914
13915 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13916 NBITS is the number of significant bits in VAL. */
13917
13918 static unsigned long
13919 mips16_immed_extend (offsetT val, unsigned int nbits)
13920 {
13921 int extval;
13922 if (nbits == 16)
13923 {
13924 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13925 val &= 0x1f;
13926 }
13927 else if (nbits == 15)
13928 {
13929 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13930 val &= 0xf;
13931 }
13932 else
13933 {
13934 extval = ((val & 0x1f) << 6) | (val & 0x20);
13935 val = 0;
13936 }
13937 return (extval << 16) | val;
13938 }
13939
13940 /* Like decode_mips16_operand, but require the operand to be defined and
13941 require it to be an integer. */
13942
13943 static const struct mips_int_operand *
13944 mips16_immed_operand (int type, bfd_boolean extended_p)
13945 {
13946 const struct mips_operand *operand;
13947
13948 operand = decode_mips16_operand (type, extended_p);
13949 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13950 abort ();
13951 return (const struct mips_int_operand *) operand;
13952 }
13953
13954 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13955
13956 static bfd_boolean
13957 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13958 bfd_reloc_code_real_type reloc, offsetT sval)
13959 {
13960 int min_val, max_val;
13961
13962 min_val = mips_int_operand_min (operand);
13963 max_val = mips_int_operand_max (operand);
13964 if (reloc != BFD_RELOC_UNUSED)
13965 {
13966 if (min_val < 0)
13967 sval = SEXT_16BIT (sval);
13968 else
13969 sval &= 0xffff;
13970 }
13971
13972 return (sval >= min_val
13973 && sval <= max_val
13974 && (sval & ((1 << operand->shift) - 1)) == 0);
13975 }
13976
13977 /* Install immediate value VAL into MIPS16 instruction *INSN,
13978 extending it if necessary. The instruction in *INSN may
13979 already be extended.
13980
13981 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13982 if none. In the former case, VAL is a 16-bit number with no
13983 defined signedness.
13984
13985 TYPE is the type of the immediate field. USER_INSN_LENGTH
13986 is the length that the user requested, or 0 if none. */
13987
13988 static void
13989 mips16_immed (const char *file, unsigned int line, int type,
13990 bfd_reloc_code_real_type reloc, offsetT val,
13991 unsigned int user_insn_length, unsigned long *insn)
13992 {
13993 const struct mips_int_operand *operand;
13994 unsigned int uval, length;
13995
13996 operand = mips16_immed_operand (type, FALSE);
13997 if (!mips16_immed_in_range_p (operand, reloc, val))
13998 {
13999 /* We need an extended instruction. */
14000 if (user_insn_length == 2)
14001 as_bad_where (file, line, _("invalid unextended operand value"));
14002 else
14003 *insn |= MIPS16_EXTEND;
14004 }
14005 else if (user_insn_length == 4)
14006 {
14007 /* The operand doesn't force an unextended instruction to be extended.
14008 Warn if the user wanted an extended instruction anyway. */
14009 *insn |= MIPS16_EXTEND;
14010 as_warn_where (file, line,
14011 _("extended operand requested but not required"));
14012 }
14013
14014 length = mips16_opcode_length (*insn);
14015 if (length == 4)
14016 {
14017 operand = mips16_immed_operand (type, TRUE);
14018 if (!mips16_immed_in_range_p (operand, reloc, val))
14019 as_bad_where (file, line,
14020 _("operand value out of range for instruction"));
14021 }
14022 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14023 if (length == 2)
14024 *insn = mips_insert_operand (&operand->root, *insn, uval);
14025 else
14026 *insn |= mips16_immed_extend (uval, operand->root.size);
14027 }
14028 \f
14029 struct percent_op_match
14030 {
14031 const char *str;
14032 bfd_reloc_code_real_type reloc;
14033 };
14034
14035 static const struct percent_op_match mips_percent_op[] =
14036 {
14037 {"%lo", BFD_RELOC_LO16},
14038 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14039 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14040 {"%call16", BFD_RELOC_MIPS_CALL16},
14041 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14042 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14043 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14044 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14045 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14046 {"%got", BFD_RELOC_MIPS_GOT16},
14047 {"%gp_rel", BFD_RELOC_GPREL16},
14048 {"%half", BFD_RELOC_16},
14049 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14050 {"%higher", BFD_RELOC_MIPS_HIGHER},
14051 {"%neg", BFD_RELOC_MIPS_SUB},
14052 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14053 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14054 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14055 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14056 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14057 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14058 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14059 {"%hi", BFD_RELOC_HI16_S},
14060 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14061 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14062 };
14063
14064 static const struct percent_op_match mips16_percent_op[] =
14065 {
14066 {"%lo", BFD_RELOC_MIPS16_LO16},
14067 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14068 {"%got", BFD_RELOC_MIPS16_GOT16},
14069 {"%call16", BFD_RELOC_MIPS16_CALL16},
14070 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14071 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14072 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14073 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14074 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14075 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14076 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14077 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14078 };
14079
14080
14081 /* Return true if *STR points to a relocation operator. When returning true,
14082 move *STR over the operator and store its relocation code in *RELOC.
14083 Leave both *STR and *RELOC alone when returning false. */
14084
14085 static bfd_boolean
14086 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14087 {
14088 const struct percent_op_match *percent_op;
14089 size_t limit, i;
14090
14091 if (mips_opts.mips16)
14092 {
14093 percent_op = mips16_percent_op;
14094 limit = ARRAY_SIZE (mips16_percent_op);
14095 }
14096 else
14097 {
14098 percent_op = mips_percent_op;
14099 limit = ARRAY_SIZE (mips_percent_op);
14100 }
14101
14102 for (i = 0; i < limit; i++)
14103 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14104 {
14105 int len = strlen (percent_op[i].str);
14106
14107 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14108 continue;
14109
14110 *str += strlen (percent_op[i].str);
14111 *reloc = percent_op[i].reloc;
14112
14113 /* Check whether the output BFD supports this relocation.
14114 If not, issue an error and fall back on something safe. */
14115 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14116 {
14117 as_bad (_("relocation %s isn't supported by the current ABI"),
14118 percent_op[i].str);
14119 *reloc = BFD_RELOC_UNUSED;
14120 }
14121 return TRUE;
14122 }
14123 return FALSE;
14124 }
14125
14126
14127 /* Parse string STR as a 16-bit relocatable operand. Store the
14128 expression in *EP and the relocations in the array starting
14129 at RELOC. Return the number of relocation operators used.
14130
14131 On exit, EXPR_END points to the first character after the expression. */
14132
14133 static size_t
14134 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14135 char *str)
14136 {
14137 bfd_reloc_code_real_type reversed_reloc[3];
14138 size_t reloc_index, i;
14139 int crux_depth, str_depth;
14140 char *crux;
14141
14142 /* Search for the start of the main expression, recoding relocations
14143 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14144 of the main expression and with CRUX_DEPTH containing the number
14145 of open brackets at that point. */
14146 reloc_index = -1;
14147 str_depth = 0;
14148 do
14149 {
14150 reloc_index++;
14151 crux = str;
14152 crux_depth = str_depth;
14153
14154 /* Skip over whitespace and brackets, keeping count of the number
14155 of brackets. */
14156 while (*str == ' ' || *str == '\t' || *str == '(')
14157 if (*str++ == '(')
14158 str_depth++;
14159 }
14160 while (*str == '%'
14161 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14162 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14163
14164 my_getExpression (ep, crux);
14165 str = expr_end;
14166
14167 /* Match every open bracket. */
14168 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14169 if (*str++ == ')')
14170 crux_depth--;
14171
14172 if (crux_depth > 0)
14173 as_bad (_("unclosed '('"));
14174
14175 expr_end = str;
14176
14177 if (reloc_index != 0)
14178 {
14179 prev_reloc_op_frag = frag_now;
14180 for (i = 0; i < reloc_index; i++)
14181 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14182 }
14183
14184 return reloc_index;
14185 }
14186
14187 static void
14188 my_getExpression (expressionS *ep, char *str)
14189 {
14190 char *save_in;
14191
14192 save_in = input_line_pointer;
14193 input_line_pointer = str;
14194 expression (ep);
14195 expr_end = input_line_pointer;
14196 input_line_pointer = save_in;
14197 }
14198
14199 const char *
14200 md_atof (int type, char *litP, int *sizeP)
14201 {
14202 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14203 }
14204
14205 void
14206 md_number_to_chars (char *buf, valueT val, int n)
14207 {
14208 if (target_big_endian)
14209 number_to_chars_bigendian (buf, val, n);
14210 else
14211 number_to_chars_littleendian (buf, val, n);
14212 }
14213 \f
14214 static int support_64bit_objects(void)
14215 {
14216 const char **list, **l;
14217 int yes;
14218
14219 list = bfd_target_list ();
14220 for (l = list; *l != NULL; l++)
14221 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14222 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14223 break;
14224 yes = (*l != NULL);
14225 free (list);
14226 return yes;
14227 }
14228
14229 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14230 NEW_VALUE. Warn if another value was already specified. Note:
14231 we have to defer parsing the -march and -mtune arguments in order
14232 to handle 'from-abi' correctly, since the ABI might be specified
14233 in a later argument. */
14234
14235 static void
14236 mips_set_option_string (const char **string_ptr, const char *new_value)
14237 {
14238 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14239 as_warn (_("a different %s was already specified, is now %s"),
14240 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14241 new_value);
14242
14243 *string_ptr = new_value;
14244 }
14245
14246 int
14247 md_parse_option (int c, const char *arg)
14248 {
14249 unsigned int i;
14250
14251 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14252 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14253 {
14254 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14255 c == mips_ases[i].option_on);
14256 return 1;
14257 }
14258
14259 switch (c)
14260 {
14261 case OPTION_CONSTRUCT_FLOATS:
14262 mips_disable_float_construction = 0;
14263 break;
14264
14265 case OPTION_NO_CONSTRUCT_FLOATS:
14266 mips_disable_float_construction = 1;
14267 break;
14268
14269 case OPTION_TRAP:
14270 mips_trap = 1;
14271 break;
14272
14273 case OPTION_BREAK:
14274 mips_trap = 0;
14275 break;
14276
14277 case OPTION_EB:
14278 target_big_endian = 1;
14279 break;
14280
14281 case OPTION_EL:
14282 target_big_endian = 0;
14283 break;
14284
14285 case 'O':
14286 if (arg == NULL)
14287 mips_optimize = 1;
14288 else if (arg[0] == '0')
14289 mips_optimize = 0;
14290 else if (arg[0] == '1')
14291 mips_optimize = 1;
14292 else
14293 mips_optimize = 2;
14294 break;
14295
14296 case 'g':
14297 if (arg == NULL)
14298 mips_debug = 2;
14299 else
14300 mips_debug = atoi (arg);
14301 break;
14302
14303 case OPTION_MIPS1:
14304 file_mips_opts.isa = ISA_MIPS1;
14305 break;
14306
14307 case OPTION_MIPS2:
14308 file_mips_opts.isa = ISA_MIPS2;
14309 break;
14310
14311 case OPTION_MIPS3:
14312 file_mips_opts.isa = ISA_MIPS3;
14313 break;
14314
14315 case OPTION_MIPS4:
14316 file_mips_opts.isa = ISA_MIPS4;
14317 break;
14318
14319 case OPTION_MIPS5:
14320 file_mips_opts.isa = ISA_MIPS5;
14321 break;
14322
14323 case OPTION_MIPS32:
14324 file_mips_opts.isa = ISA_MIPS32;
14325 break;
14326
14327 case OPTION_MIPS32R2:
14328 file_mips_opts.isa = ISA_MIPS32R2;
14329 break;
14330
14331 case OPTION_MIPS32R3:
14332 file_mips_opts.isa = ISA_MIPS32R3;
14333 break;
14334
14335 case OPTION_MIPS32R5:
14336 file_mips_opts.isa = ISA_MIPS32R5;
14337 break;
14338
14339 case OPTION_MIPS32R6:
14340 file_mips_opts.isa = ISA_MIPS32R6;
14341 break;
14342
14343 case OPTION_MIPS64R2:
14344 file_mips_opts.isa = ISA_MIPS64R2;
14345 break;
14346
14347 case OPTION_MIPS64R3:
14348 file_mips_opts.isa = ISA_MIPS64R3;
14349 break;
14350
14351 case OPTION_MIPS64R5:
14352 file_mips_opts.isa = ISA_MIPS64R5;
14353 break;
14354
14355 case OPTION_MIPS64R6:
14356 file_mips_opts.isa = ISA_MIPS64R6;
14357 break;
14358
14359 case OPTION_MIPS64:
14360 file_mips_opts.isa = ISA_MIPS64;
14361 break;
14362
14363 case OPTION_MTUNE:
14364 mips_set_option_string (&mips_tune_string, arg);
14365 break;
14366
14367 case OPTION_MARCH:
14368 mips_set_option_string (&mips_arch_string, arg);
14369 break;
14370
14371 case OPTION_M4650:
14372 mips_set_option_string (&mips_arch_string, "4650");
14373 mips_set_option_string (&mips_tune_string, "4650");
14374 break;
14375
14376 case OPTION_NO_M4650:
14377 break;
14378
14379 case OPTION_M4010:
14380 mips_set_option_string (&mips_arch_string, "4010");
14381 mips_set_option_string (&mips_tune_string, "4010");
14382 break;
14383
14384 case OPTION_NO_M4010:
14385 break;
14386
14387 case OPTION_M4100:
14388 mips_set_option_string (&mips_arch_string, "4100");
14389 mips_set_option_string (&mips_tune_string, "4100");
14390 break;
14391
14392 case OPTION_NO_M4100:
14393 break;
14394
14395 case OPTION_M3900:
14396 mips_set_option_string (&mips_arch_string, "3900");
14397 mips_set_option_string (&mips_tune_string, "3900");
14398 break;
14399
14400 case OPTION_NO_M3900:
14401 break;
14402
14403 case OPTION_MICROMIPS:
14404 if (file_mips_opts.mips16 == 1)
14405 {
14406 as_bad (_("-mmicromips cannot be used with -mips16"));
14407 return 0;
14408 }
14409 file_mips_opts.micromips = 1;
14410 mips_no_prev_insn ();
14411 break;
14412
14413 case OPTION_NO_MICROMIPS:
14414 file_mips_opts.micromips = 0;
14415 mips_no_prev_insn ();
14416 break;
14417
14418 case OPTION_MIPS16:
14419 if (file_mips_opts.micromips == 1)
14420 {
14421 as_bad (_("-mips16 cannot be used with -micromips"));
14422 return 0;
14423 }
14424 file_mips_opts.mips16 = 1;
14425 mips_no_prev_insn ();
14426 break;
14427
14428 case OPTION_NO_MIPS16:
14429 file_mips_opts.mips16 = 0;
14430 mips_no_prev_insn ();
14431 break;
14432
14433 case OPTION_FIX_24K:
14434 mips_fix_24k = 1;
14435 break;
14436
14437 case OPTION_NO_FIX_24K:
14438 mips_fix_24k = 0;
14439 break;
14440
14441 case OPTION_FIX_RM7000:
14442 mips_fix_rm7000 = 1;
14443 break;
14444
14445 case OPTION_NO_FIX_RM7000:
14446 mips_fix_rm7000 = 0;
14447 break;
14448
14449 case OPTION_FIX_LOONGSON2F_JUMP:
14450 mips_fix_loongson2f_jump = TRUE;
14451 break;
14452
14453 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14454 mips_fix_loongson2f_jump = FALSE;
14455 break;
14456
14457 case OPTION_FIX_LOONGSON2F_NOP:
14458 mips_fix_loongson2f_nop = TRUE;
14459 break;
14460
14461 case OPTION_NO_FIX_LOONGSON2F_NOP:
14462 mips_fix_loongson2f_nop = FALSE;
14463 break;
14464
14465 case OPTION_FIX_VR4120:
14466 mips_fix_vr4120 = 1;
14467 break;
14468
14469 case OPTION_NO_FIX_VR4120:
14470 mips_fix_vr4120 = 0;
14471 break;
14472
14473 case OPTION_FIX_VR4130:
14474 mips_fix_vr4130 = 1;
14475 break;
14476
14477 case OPTION_NO_FIX_VR4130:
14478 mips_fix_vr4130 = 0;
14479 break;
14480
14481 case OPTION_FIX_CN63XXP1:
14482 mips_fix_cn63xxp1 = TRUE;
14483 break;
14484
14485 case OPTION_NO_FIX_CN63XXP1:
14486 mips_fix_cn63xxp1 = FALSE;
14487 break;
14488
14489 case OPTION_RELAX_BRANCH:
14490 mips_relax_branch = 1;
14491 break;
14492
14493 case OPTION_NO_RELAX_BRANCH:
14494 mips_relax_branch = 0;
14495 break;
14496
14497 case OPTION_INSN32:
14498 file_mips_opts.insn32 = TRUE;
14499 break;
14500
14501 case OPTION_NO_INSN32:
14502 file_mips_opts.insn32 = FALSE;
14503 break;
14504
14505 case OPTION_MSHARED:
14506 mips_in_shared = TRUE;
14507 break;
14508
14509 case OPTION_MNO_SHARED:
14510 mips_in_shared = FALSE;
14511 break;
14512
14513 case OPTION_MSYM32:
14514 file_mips_opts.sym32 = TRUE;
14515 break;
14516
14517 case OPTION_MNO_SYM32:
14518 file_mips_opts.sym32 = FALSE;
14519 break;
14520
14521 /* When generating ELF code, we permit -KPIC and -call_shared to
14522 select SVR4_PIC, and -non_shared to select no PIC. This is
14523 intended to be compatible with Irix 5. */
14524 case OPTION_CALL_SHARED:
14525 mips_pic = SVR4_PIC;
14526 mips_abicalls = TRUE;
14527 break;
14528
14529 case OPTION_CALL_NONPIC:
14530 mips_pic = NO_PIC;
14531 mips_abicalls = TRUE;
14532 break;
14533
14534 case OPTION_NON_SHARED:
14535 mips_pic = NO_PIC;
14536 mips_abicalls = FALSE;
14537 break;
14538
14539 /* The -xgot option tells the assembler to use 32 bit offsets
14540 when accessing the got in SVR4_PIC mode. It is for Irix
14541 compatibility. */
14542 case OPTION_XGOT:
14543 mips_big_got = 1;
14544 break;
14545
14546 case 'G':
14547 g_switch_value = atoi (arg);
14548 g_switch_seen = 1;
14549 break;
14550
14551 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14552 and -mabi=64. */
14553 case OPTION_32:
14554 mips_abi = O32_ABI;
14555 break;
14556
14557 case OPTION_N32:
14558 mips_abi = N32_ABI;
14559 break;
14560
14561 case OPTION_64:
14562 mips_abi = N64_ABI;
14563 if (!support_64bit_objects())
14564 as_fatal (_("no compiled in support for 64 bit object file format"));
14565 break;
14566
14567 case OPTION_GP32:
14568 file_mips_opts.gp = 32;
14569 break;
14570
14571 case OPTION_GP64:
14572 file_mips_opts.gp = 64;
14573 break;
14574
14575 case OPTION_FP32:
14576 file_mips_opts.fp = 32;
14577 break;
14578
14579 case OPTION_FPXX:
14580 file_mips_opts.fp = 0;
14581 break;
14582
14583 case OPTION_FP64:
14584 file_mips_opts.fp = 64;
14585 break;
14586
14587 case OPTION_ODD_SPREG:
14588 file_mips_opts.oddspreg = 1;
14589 break;
14590
14591 case OPTION_NO_ODD_SPREG:
14592 file_mips_opts.oddspreg = 0;
14593 break;
14594
14595 case OPTION_SINGLE_FLOAT:
14596 file_mips_opts.single_float = 1;
14597 break;
14598
14599 case OPTION_DOUBLE_FLOAT:
14600 file_mips_opts.single_float = 0;
14601 break;
14602
14603 case OPTION_SOFT_FLOAT:
14604 file_mips_opts.soft_float = 1;
14605 break;
14606
14607 case OPTION_HARD_FLOAT:
14608 file_mips_opts.soft_float = 0;
14609 break;
14610
14611 case OPTION_MABI:
14612 if (strcmp (arg, "32") == 0)
14613 mips_abi = O32_ABI;
14614 else if (strcmp (arg, "o64") == 0)
14615 mips_abi = O64_ABI;
14616 else if (strcmp (arg, "n32") == 0)
14617 mips_abi = N32_ABI;
14618 else if (strcmp (arg, "64") == 0)
14619 {
14620 mips_abi = N64_ABI;
14621 if (! support_64bit_objects())
14622 as_fatal (_("no compiled in support for 64 bit object file "
14623 "format"));
14624 }
14625 else if (strcmp (arg, "eabi") == 0)
14626 mips_abi = EABI_ABI;
14627 else
14628 {
14629 as_fatal (_("invalid abi -mabi=%s"), arg);
14630 return 0;
14631 }
14632 break;
14633
14634 case OPTION_M7000_HILO_FIX:
14635 mips_7000_hilo_fix = TRUE;
14636 break;
14637
14638 case OPTION_MNO_7000_HILO_FIX:
14639 mips_7000_hilo_fix = FALSE;
14640 break;
14641
14642 case OPTION_MDEBUG:
14643 mips_flag_mdebug = TRUE;
14644 break;
14645
14646 case OPTION_NO_MDEBUG:
14647 mips_flag_mdebug = FALSE;
14648 break;
14649
14650 case OPTION_PDR:
14651 mips_flag_pdr = TRUE;
14652 break;
14653
14654 case OPTION_NO_PDR:
14655 mips_flag_pdr = FALSE;
14656 break;
14657
14658 case OPTION_MVXWORKS_PIC:
14659 mips_pic = VXWORKS_PIC;
14660 break;
14661
14662 case OPTION_NAN:
14663 if (strcmp (arg, "2008") == 0)
14664 mips_nan2008 = 1;
14665 else if (strcmp (arg, "legacy") == 0)
14666 mips_nan2008 = 0;
14667 else
14668 {
14669 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14670 return 0;
14671 }
14672 break;
14673
14674 default:
14675 return 0;
14676 }
14677
14678 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14679
14680 return 1;
14681 }
14682 \f
14683 /* Set up globals to tune for the ISA or processor described by INFO. */
14684
14685 static void
14686 mips_set_tune (const struct mips_cpu_info *info)
14687 {
14688 if (info != 0)
14689 mips_tune = info->cpu;
14690 }
14691
14692
14693 void
14694 mips_after_parse_args (void)
14695 {
14696 const struct mips_cpu_info *arch_info = 0;
14697 const struct mips_cpu_info *tune_info = 0;
14698
14699 /* GP relative stuff not working for PE */
14700 if (strncmp (TARGET_OS, "pe", 2) == 0)
14701 {
14702 if (g_switch_seen && g_switch_value != 0)
14703 as_bad (_("-G not supported in this configuration"));
14704 g_switch_value = 0;
14705 }
14706
14707 if (mips_abi == NO_ABI)
14708 mips_abi = MIPS_DEFAULT_ABI;
14709
14710 /* The following code determines the architecture.
14711 Similar code was added to GCC 3.3 (see override_options() in
14712 config/mips/mips.c). The GAS and GCC code should be kept in sync
14713 as much as possible. */
14714
14715 if (mips_arch_string != 0)
14716 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14717
14718 if (file_mips_opts.isa != ISA_UNKNOWN)
14719 {
14720 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14721 ISA level specified by -mipsN, while arch_info->isa contains
14722 the -march selection (if any). */
14723 if (arch_info != 0)
14724 {
14725 /* -march takes precedence over -mipsN, since it is more descriptive.
14726 There's no harm in specifying both as long as the ISA levels
14727 are the same. */
14728 if (file_mips_opts.isa != arch_info->isa)
14729 as_bad (_("-%s conflicts with the other architecture options,"
14730 " which imply -%s"),
14731 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14732 mips_cpu_info_from_isa (arch_info->isa)->name);
14733 }
14734 else
14735 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14736 }
14737
14738 if (arch_info == 0)
14739 {
14740 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14741 gas_assert (arch_info);
14742 }
14743
14744 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14745 as_bad (_("-march=%s is not compatible with the selected ABI"),
14746 arch_info->name);
14747
14748 file_mips_opts.arch = arch_info->cpu;
14749 file_mips_opts.isa = arch_info->isa;
14750
14751 /* Set up initial mips_opts state. */
14752 mips_opts = file_mips_opts;
14753
14754 /* The register size inference code is now placed in
14755 file_mips_check_options. */
14756
14757 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14758 processor. */
14759 if (mips_tune_string != 0)
14760 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14761
14762 if (tune_info == 0)
14763 mips_set_tune (arch_info);
14764 else
14765 mips_set_tune (tune_info);
14766
14767 if (mips_flag_mdebug < 0)
14768 mips_flag_mdebug = 0;
14769 }
14770 \f
14771 void
14772 mips_init_after_args (void)
14773 {
14774 /* initialize opcodes */
14775 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14776 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14777 }
14778
14779 long
14780 md_pcrel_from (fixS *fixP)
14781 {
14782 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14783 switch (fixP->fx_r_type)
14784 {
14785 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14786 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14787 /* Return the address of the delay slot. */
14788 return addr + 2;
14789
14790 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14791 case BFD_RELOC_MICROMIPS_JMP:
14792 case BFD_RELOC_MIPS16_16_PCREL_S1:
14793 case BFD_RELOC_16_PCREL_S2:
14794 case BFD_RELOC_MIPS_21_PCREL_S2:
14795 case BFD_RELOC_MIPS_26_PCREL_S2:
14796 case BFD_RELOC_MIPS_JMP:
14797 /* Return the address of the delay slot. */
14798 return addr + 4;
14799
14800 case BFD_RELOC_MIPS_18_PCREL_S3:
14801 /* Return the aligned address of the doubleword containing
14802 the instruction. */
14803 return addr & ~7;
14804
14805 default:
14806 return addr;
14807 }
14808 }
14809
14810 /* This is called before the symbol table is processed. In order to
14811 work with gcc when using mips-tfile, we must keep all local labels.
14812 However, in other cases, we want to discard them. If we were
14813 called with -g, but we didn't see any debugging information, it may
14814 mean that gcc is smuggling debugging information through to
14815 mips-tfile, in which case we must generate all local labels. */
14816
14817 void
14818 mips_frob_file_before_adjust (void)
14819 {
14820 #ifndef NO_ECOFF_DEBUGGING
14821 if (ECOFF_DEBUGGING
14822 && mips_debug != 0
14823 && ! ecoff_debugging_seen)
14824 flag_keep_locals = 1;
14825 #endif
14826 }
14827
14828 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14829 the corresponding LO16 reloc. This is called before md_apply_fix and
14830 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14831 relocation operators.
14832
14833 For our purposes, a %lo() expression matches a %got() or %hi()
14834 expression if:
14835
14836 (a) it refers to the same symbol; and
14837 (b) the offset applied in the %lo() expression is no lower than
14838 the offset applied in the %got() or %hi().
14839
14840 (b) allows us to cope with code like:
14841
14842 lui $4,%hi(foo)
14843 lh $4,%lo(foo+2)($4)
14844
14845 ...which is legal on RELA targets, and has a well-defined behaviour
14846 if the user knows that adding 2 to "foo" will not induce a carry to
14847 the high 16 bits.
14848
14849 When several %lo()s match a particular %got() or %hi(), we use the
14850 following rules to distinguish them:
14851
14852 (1) %lo()s with smaller offsets are a better match than %lo()s with
14853 higher offsets.
14854
14855 (2) %lo()s with no matching %got() or %hi() are better than those
14856 that already have a matching %got() or %hi().
14857
14858 (3) later %lo()s are better than earlier %lo()s.
14859
14860 These rules are applied in order.
14861
14862 (1) means, among other things, that %lo()s with identical offsets are
14863 chosen if they exist.
14864
14865 (2) means that we won't associate several high-part relocations with
14866 the same low-part relocation unless there's no alternative. Having
14867 several high parts for the same low part is a GNU extension; this rule
14868 allows careful users to avoid it.
14869
14870 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14871 with the last high-part relocation being at the front of the list.
14872 It therefore makes sense to choose the last matching low-part
14873 relocation, all other things being equal. It's also easier
14874 to code that way. */
14875
14876 void
14877 mips_frob_file (void)
14878 {
14879 struct mips_hi_fixup *l;
14880 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14881
14882 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14883 {
14884 segment_info_type *seginfo;
14885 bfd_boolean matched_lo_p;
14886 fixS **hi_pos, **lo_pos, **pos;
14887
14888 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14889
14890 /* If a GOT16 relocation turns out to be against a global symbol,
14891 there isn't supposed to be a matching LO. Ignore %gots against
14892 constants; we'll report an error for those later. */
14893 if (got16_reloc_p (l->fixp->fx_r_type)
14894 && !(l->fixp->fx_addsy
14895 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14896 continue;
14897
14898 /* Check quickly whether the next fixup happens to be a matching %lo. */
14899 if (fixup_has_matching_lo_p (l->fixp))
14900 continue;
14901
14902 seginfo = seg_info (l->seg);
14903
14904 /* Set HI_POS to the position of this relocation in the chain.
14905 Set LO_POS to the position of the chosen low-part relocation.
14906 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14907 relocation that matches an immediately-preceding high-part
14908 relocation. */
14909 hi_pos = NULL;
14910 lo_pos = NULL;
14911 matched_lo_p = FALSE;
14912 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14913
14914 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14915 {
14916 if (*pos == l->fixp)
14917 hi_pos = pos;
14918
14919 if ((*pos)->fx_r_type == looking_for_rtype
14920 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14921 && (*pos)->fx_offset >= l->fixp->fx_offset
14922 && (lo_pos == NULL
14923 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14924 || (!matched_lo_p
14925 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14926 lo_pos = pos;
14927
14928 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14929 && fixup_has_matching_lo_p (*pos));
14930 }
14931
14932 /* If we found a match, remove the high-part relocation from its
14933 current position and insert it before the low-part relocation.
14934 Make the offsets match so that fixup_has_matching_lo_p()
14935 will return true.
14936
14937 We don't warn about unmatched high-part relocations since some
14938 versions of gcc have been known to emit dead "lui ...%hi(...)"
14939 instructions. */
14940 if (lo_pos != NULL)
14941 {
14942 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14943 if (l->fixp->fx_next != *lo_pos)
14944 {
14945 *hi_pos = l->fixp->fx_next;
14946 l->fixp->fx_next = *lo_pos;
14947 *lo_pos = l->fixp;
14948 }
14949 }
14950 }
14951 }
14952
14953 int
14954 mips_force_relocation (fixS *fixp)
14955 {
14956 if (generic_force_reloc (fixp))
14957 return 1;
14958
14959 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14960 so that the linker relaxation can update targets. */
14961 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14962 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14963 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14964 return 1;
14965
14966 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
14967 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
14968 microMIPS symbols so that we can do cross-mode branch diagnostics
14969 and BAL to JALX conversion by the linker. */
14970 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14971 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14972 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
14973 && fixp->fx_addsy
14974 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
14975 return 1;
14976
14977 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14978 if (ISA_IS_R6 (file_mips_opts.isa)
14979 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14980 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14981 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14982 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14983 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14984 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14985 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14986 return 1;
14987
14988 return 0;
14989 }
14990
14991 /* Implement TC_FORCE_RELOCATION_ABS. */
14992
14993 bfd_boolean
14994 mips_force_relocation_abs (fixS *fixp)
14995 {
14996 if (generic_force_reloc (fixp))
14997 return TRUE;
14998
14999 /* These relocations do not have enough bits in the in-place addend
15000 to hold an arbitrary absolute section's offset. */
15001 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15002 return TRUE;
15003
15004 return FALSE;
15005 }
15006
15007 /* Read the instruction associated with RELOC from BUF. */
15008
15009 static unsigned int
15010 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15011 {
15012 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15013 return read_compressed_insn (buf, 4);
15014 else
15015 return read_insn (buf);
15016 }
15017
15018 /* Write instruction INSN to BUF, given that it has been relocated
15019 by RELOC. */
15020
15021 static void
15022 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15023 unsigned long insn)
15024 {
15025 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15026 write_compressed_insn (buf, insn, 4);
15027 else
15028 write_insn (buf, insn);
15029 }
15030
15031 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15032 to a symbol in another ISA mode, which cannot be converted to JALX. */
15033
15034 static bfd_boolean
15035 fix_bad_cross_mode_jump_p (fixS *fixP)
15036 {
15037 unsigned long opcode;
15038 int other;
15039 char *buf;
15040
15041 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15042 return FALSE;
15043
15044 other = S_GET_OTHER (fixP->fx_addsy);
15045 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15046 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15047 switch (fixP->fx_r_type)
15048 {
15049 case BFD_RELOC_MIPS_JMP:
15050 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15051 case BFD_RELOC_MICROMIPS_JMP:
15052 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15053 default:
15054 return FALSE;
15055 }
15056 }
15057
15058 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15059 jump to a symbol in the same ISA mode. */
15060
15061 static bfd_boolean
15062 fix_bad_same_mode_jalx_p (fixS *fixP)
15063 {
15064 unsigned long opcode;
15065 int other;
15066 char *buf;
15067
15068 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15069 return FALSE;
15070
15071 other = S_GET_OTHER (fixP->fx_addsy);
15072 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15073 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15074 switch (fixP->fx_r_type)
15075 {
15076 case BFD_RELOC_MIPS_JMP:
15077 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15078 case BFD_RELOC_MIPS16_JMP:
15079 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15080 case BFD_RELOC_MICROMIPS_JMP:
15081 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15082 default:
15083 return FALSE;
15084 }
15085 }
15086
15087 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15088 to a symbol whose value plus addend is not aligned according to the
15089 ultimate (after linker relaxation) jump instruction's immediate field
15090 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15091 regular MIPS code, to (1 << 2). */
15092
15093 static bfd_boolean
15094 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15095 {
15096 bfd_boolean micro_to_mips_p;
15097 valueT val;
15098 int other;
15099
15100 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15101 return FALSE;
15102
15103 other = S_GET_OTHER (fixP->fx_addsy);
15104 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15105 val += fixP->fx_offset;
15106 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15107 && !ELF_ST_IS_MICROMIPS (other));
15108 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15109 != ELF_ST_IS_COMPRESSED (other));
15110 }
15111
15112 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15113 to a symbol whose annotation indicates another ISA mode. For absolute
15114 symbols check the ISA bit instead.
15115
15116 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15117 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15118 MIPS symbols and associated with BAL instructions as these instructions
15119 may be be converted to JALX by the linker. */
15120
15121 static bfd_boolean
15122 fix_bad_cross_mode_branch_p (fixS *fixP)
15123 {
15124 bfd_boolean absolute_p;
15125 unsigned long opcode;
15126 asection *symsec;
15127 valueT val;
15128 int other;
15129 char *buf;
15130
15131 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15132 return FALSE;
15133
15134 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15135 absolute_p = bfd_is_abs_section (symsec);
15136
15137 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15138 other = S_GET_OTHER (fixP->fx_addsy);
15139
15140 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15141 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15142 switch (fixP->fx_r_type)
15143 {
15144 case BFD_RELOC_16_PCREL_S2:
15145 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15146 && opcode != 0x0411);
15147 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15148 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15149 && opcode != 0x4060);
15150 case BFD_RELOC_MIPS_21_PCREL_S2:
15151 case BFD_RELOC_MIPS_26_PCREL_S2:
15152 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15153 case BFD_RELOC_MIPS16_16_PCREL_S1:
15154 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15155 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15156 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15157 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15158 default:
15159 abort ();
15160 }
15161 }
15162
15163 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15164 branch instruction pointed to by FIXP is not aligned according to the
15165 branch instruction's immediate field requirement. We need the addend
15166 to preserve the ISA bit and also the sum must not have bit 2 set. We
15167 must explicitly OR in the ISA bit from symbol annotation as the bit
15168 won't be set in the symbol's value then. */
15169
15170 static bfd_boolean
15171 fix_bad_misaligned_branch_p (fixS *fixP)
15172 {
15173 bfd_boolean absolute_p;
15174 asection *symsec;
15175 valueT isa_bit;
15176 valueT val;
15177 valueT off;
15178 int other;
15179
15180 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15181 return FALSE;
15182
15183 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15184 absolute_p = bfd_is_abs_section (symsec);
15185
15186 val = S_GET_VALUE (fixP->fx_addsy);
15187 other = S_GET_OTHER (fixP->fx_addsy);
15188 off = fixP->fx_offset;
15189
15190 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15191 val |= ELF_ST_IS_COMPRESSED (other);
15192 val += off;
15193 return (val & 0x3) != isa_bit;
15194 }
15195
15196 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15197 and its calculated value VAL. */
15198
15199 static void
15200 fix_validate_branch (fixS *fixP, valueT val)
15201 {
15202 if (fixP->fx_done && (val & 0x3) != 0)
15203 as_bad_where (fixP->fx_file, fixP->fx_line,
15204 _("branch to misaligned address (0x%lx)"),
15205 (long) (val + md_pcrel_from (fixP)));
15206 else if (fix_bad_cross_mode_branch_p (fixP))
15207 as_bad_where (fixP->fx_file, fixP->fx_line,
15208 _("branch to a symbol in another ISA mode"));
15209 else if (fix_bad_misaligned_branch_p (fixP))
15210 as_bad_where (fixP->fx_file, fixP->fx_line,
15211 _("branch to misaligned address (0x%lx)"),
15212 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15213 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15214 as_bad_where (fixP->fx_file, fixP->fx_line,
15215 _("cannot encode misaligned addend "
15216 "in the relocatable field (0x%lx)"),
15217 (long) fixP->fx_offset);
15218 }
15219
15220 /* Apply a fixup to the object file. */
15221
15222 void
15223 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15224 {
15225 char *buf;
15226 unsigned long insn;
15227 reloc_howto_type *howto;
15228
15229 if (fixP->fx_pcrel)
15230 switch (fixP->fx_r_type)
15231 {
15232 case BFD_RELOC_16_PCREL_S2:
15233 case BFD_RELOC_MIPS16_16_PCREL_S1:
15234 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15235 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15236 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15237 case BFD_RELOC_32_PCREL:
15238 case BFD_RELOC_MIPS_21_PCREL_S2:
15239 case BFD_RELOC_MIPS_26_PCREL_S2:
15240 case BFD_RELOC_MIPS_18_PCREL_S3:
15241 case BFD_RELOC_MIPS_19_PCREL_S2:
15242 case BFD_RELOC_HI16_S_PCREL:
15243 case BFD_RELOC_LO16_PCREL:
15244 break;
15245
15246 case BFD_RELOC_32:
15247 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15248 break;
15249
15250 default:
15251 as_bad_where (fixP->fx_file, fixP->fx_line,
15252 _("PC-relative reference to a different section"));
15253 break;
15254 }
15255
15256 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15257 that have no MIPS ELF equivalent. */
15258 if (fixP->fx_r_type != BFD_RELOC_8)
15259 {
15260 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15261 if (!howto)
15262 return;
15263 }
15264
15265 gas_assert (fixP->fx_size == 2
15266 || fixP->fx_size == 4
15267 || fixP->fx_r_type == BFD_RELOC_8
15268 || fixP->fx_r_type == BFD_RELOC_16
15269 || fixP->fx_r_type == BFD_RELOC_64
15270 || fixP->fx_r_type == BFD_RELOC_CTOR
15271 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15272 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15273 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15274 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15275 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15276 || fixP->fx_r_type == BFD_RELOC_NONE);
15277
15278 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15279
15280 /* Don't treat parts of a composite relocation as done. There are two
15281 reasons for this:
15282
15283 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15284 should nevertheless be emitted if the first part is.
15285
15286 (2) In normal usage, composite relocations are never assembly-time
15287 constants. The easiest way of dealing with the pathological
15288 exceptions is to generate a relocation against STN_UNDEF and
15289 leave everything up to the linker. */
15290 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15291 fixP->fx_done = 1;
15292
15293 switch (fixP->fx_r_type)
15294 {
15295 case BFD_RELOC_MIPS_TLS_GD:
15296 case BFD_RELOC_MIPS_TLS_LDM:
15297 case BFD_RELOC_MIPS_TLS_DTPREL32:
15298 case BFD_RELOC_MIPS_TLS_DTPREL64:
15299 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15300 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15301 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15302 case BFD_RELOC_MIPS_TLS_TPREL32:
15303 case BFD_RELOC_MIPS_TLS_TPREL64:
15304 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15305 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15306 case BFD_RELOC_MICROMIPS_TLS_GD:
15307 case BFD_RELOC_MICROMIPS_TLS_LDM:
15308 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15309 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15310 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15311 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15312 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15313 case BFD_RELOC_MIPS16_TLS_GD:
15314 case BFD_RELOC_MIPS16_TLS_LDM:
15315 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15316 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15317 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15318 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15319 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15320 if (fixP->fx_addsy)
15321 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15322 else
15323 as_bad_where (fixP->fx_file, fixP->fx_line,
15324 _("TLS relocation against a constant"));
15325 break;
15326
15327 case BFD_RELOC_MIPS_JMP:
15328 case BFD_RELOC_MIPS16_JMP:
15329 case BFD_RELOC_MICROMIPS_JMP:
15330 {
15331 int shift;
15332
15333 gas_assert (!fixP->fx_done);
15334
15335 /* Shift is 2, unusually, for microMIPS JALX. */
15336 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15337 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15338 shift = 1;
15339 else
15340 shift = 2;
15341
15342 if (fix_bad_cross_mode_jump_p (fixP))
15343 as_bad_where (fixP->fx_file, fixP->fx_line,
15344 _("jump to a symbol in another ISA mode"));
15345 else if (fix_bad_same_mode_jalx_p (fixP))
15346 as_bad_where (fixP->fx_file, fixP->fx_line,
15347 _("JALX to a symbol in the same ISA mode"));
15348 else if (fix_bad_misaligned_jump_p (fixP, shift))
15349 as_bad_where (fixP->fx_file, fixP->fx_line,
15350 _("jump to misaligned address (0x%lx)"),
15351 (long) (S_GET_VALUE (fixP->fx_addsy)
15352 + fixP->fx_offset));
15353 else if (HAVE_IN_PLACE_ADDENDS
15354 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15355 as_bad_where (fixP->fx_file, fixP->fx_line,
15356 _("cannot encode misaligned addend "
15357 "in the relocatable field (0x%lx)"),
15358 (long) fixP->fx_offset);
15359 }
15360 /* Fall through. */
15361
15362 case BFD_RELOC_MIPS_SHIFT5:
15363 case BFD_RELOC_MIPS_SHIFT6:
15364 case BFD_RELOC_MIPS_GOT_DISP:
15365 case BFD_RELOC_MIPS_GOT_PAGE:
15366 case BFD_RELOC_MIPS_GOT_OFST:
15367 case BFD_RELOC_MIPS_SUB:
15368 case BFD_RELOC_MIPS_INSERT_A:
15369 case BFD_RELOC_MIPS_INSERT_B:
15370 case BFD_RELOC_MIPS_DELETE:
15371 case BFD_RELOC_MIPS_HIGHEST:
15372 case BFD_RELOC_MIPS_HIGHER:
15373 case BFD_RELOC_MIPS_SCN_DISP:
15374 case BFD_RELOC_MIPS_REL16:
15375 case BFD_RELOC_MIPS_RELGOT:
15376 case BFD_RELOC_MIPS_JALR:
15377 case BFD_RELOC_HI16:
15378 case BFD_RELOC_HI16_S:
15379 case BFD_RELOC_LO16:
15380 case BFD_RELOC_GPREL16:
15381 case BFD_RELOC_MIPS_LITERAL:
15382 case BFD_RELOC_MIPS_CALL16:
15383 case BFD_RELOC_MIPS_GOT16:
15384 case BFD_RELOC_GPREL32:
15385 case BFD_RELOC_MIPS_GOT_HI16:
15386 case BFD_RELOC_MIPS_GOT_LO16:
15387 case BFD_RELOC_MIPS_CALL_HI16:
15388 case BFD_RELOC_MIPS_CALL_LO16:
15389 case BFD_RELOC_HI16_S_PCREL:
15390 case BFD_RELOC_LO16_PCREL:
15391 case BFD_RELOC_MIPS16_GPREL:
15392 case BFD_RELOC_MIPS16_GOT16:
15393 case BFD_RELOC_MIPS16_CALL16:
15394 case BFD_RELOC_MIPS16_HI16:
15395 case BFD_RELOC_MIPS16_HI16_S:
15396 case BFD_RELOC_MIPS16_LO16:
15397 case BFD_RELOC_MICROMIPS_GOT_DISP:
15398 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15399 case BFD_RELOC_MICROMIPS_GOT_OFST:
15400 case BFD_RELOC_MICROMIPS_SUB:
15401 case BFD_RELOC_MICROMIPS_HIGHEST:
15402 case BFD_RELOC_MICROMIPS_HIGHER:
15403 case BFD_RELOC_MICROMIPS_SCN_DISP:
15404 case BFD_RELOC_MICROMIPS_JALR:
15405 case BFD_RELOC_MICROMIPS_HI16:
15406 case BFD_RELOC_MICROMIPS_HI16_S:
15407 case BFD_RELOC_MICROMIPS_LO16:
15408 case BFD_RELOC_MICROMIPS_GPREL16:
15409 case BFD_RELOC_MICROMIPS_LITERAL:
15410 case BFD_RELOC_MICROMIPS_CALL16:
15411 case BFD_RELOC_MICROMIPS_GOT16:
15412 case BFD_RELOC_MICROMIPS_GOT_HI16:
15413 case BFD_RELOC_MICROMIPS_GOT_LO16:
15414 case BFD_RELOC_MICROMIPS_CALL_HI16:
15415 case BFD_RELOC_MICROMIPS_CALL_LO16:
15416 case BFD_RELOC_MIPS_EH:
15417 if (fixP->fx_done)
15418 {
15419 offsetT value;
15420
15421 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15422 {
15423 insn = read_reloc_insn (buf, fixP->fx_r_type);
15424 if (mips16_reloc_p (fixP->fx_r_type))
15425 insn |= mips16_immed_extend (value, 16);
15426 else
15427 insn |= (value & 0xffff);
15428 write_reloc_insn (buf, fixP->fx_r_type, insn);
15429 }
15430 else
15431 as_bad_where (fixP->fx_file, fixP->fx_line,
15432 _("unsupported constant in relocation"));
15433 }
15434 break;
15435
15436 case BFD_RELOC_64:
15437 /* This is handled like BFD_RELOC_32, but we output a sign
15438 extended value if we are only 32 bits. */
15439 if (fixP->fx_done)
15440 {
15441 if (8 <= sizeof (valueT))
15442 md_number_to_chars (buf, *valP, 8);
15443 else
15444 {
15445 valueT hiv;
15446
15447 if ((*valP & 0x80000000) != 0)
15448 hiv = 0xffffffff;
15449 else
15450 hiv = 0;
15451 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15452 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15453 }
15454 }
15455 break;
15456
15457 case BFD_RELOC_RVA:
15458 case BFD_RELOC_32:
15459 case BFD_RELOC_32_PCREL:
15460 case BFD_RELOC_16:
15461 case BFD_RELOC_8:
15462 /* If we are deleting this reloc entry, we must fill in the
15463 value now. This can happen if we have a .word which is not
15464 resolved when it appears but is later defined. */
15465 if (fixP->fx_done)
15466 md_number_to_chars (buf, *valP, fixP->fx_size);
15467 break;
15468
15469 case BFD_RELOC_MIPS_21_PCREL_S2:
15470 fix_validate_branch (fixP, *valP);
15471 if (!fixP->fx_done)
15472 break;
15473
15474 if (*valP + 0x400000 <= 0x7fffff)
15475 {
15476 insn = read_insn (buf);
15477 insn |= (*valP >> 2) & 0x1fffff;
15478 write_insn (buf, insn);
15479 }
15480 else
15481 as_bad_where (fixP->fx_file, fixP->fx_line,
15482 _("branch out of range"));
15483 break;
15484
15485 case BFD_RELOC_MIPS_26_PCREL_S2:
15486 fix_validate_branch (fixP, *valP);
15487 if (!fixP->fx_done)
15488 break;
15489
15490 if (*valP + 0x8000000 <= 0xfffffff)
15491 {
15492 insn = read_insn (buf);
15493 insn |= (*valP >> 2) & 0x3ffffff;
15494 write_insn (buf, insn);
15495 }
15496 else
15497 as_bad_where (fixP->fx_file, fixP->fx_line,
15498 _("branch out of range"));
15499 break;
15500
15501 case BFD_RELOC_MIPS_18_PCREL_S3:
15502 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15503 as_bad_where (fixP->fx_file, fixP->fx_line,
15504 _("PC-relative access using misaligned symbol (%lx)"),
15505 (long) S_GET_VALUE (fixP->fx_addsy));
15506 if ((fixP->fx_offset & 0x7) != 0)
15507 as_bad_where (fixP->fx_file, fixP->fx_line,
15508 _("PC-relative access using misaligned offset (%lx)"),
15509 (long) fixP->fx_offset);
15510 if (!fixP->fx_done)
15511 break;
15512
15513 if (*valP + 0x100000 <= 0x1fffff)
15514 {
15515 insn = read_insn (buf);
15516 insn |= (*valP >> 3) & 0x3ffff;
15517 write_insn (buf, insn);
15518 }
15519 else
15520 as_bad_where (fixP->fx_file, fixP->fx_line,
15521 _("PC-relative access out of range"));
15522 break;
15523
15524 case BFD_RELOC_MIPS_19_PCREL_S2:
15525 if ((*valP & 0x3) != 0)
15526 as_bad_where (fixP->fx_file, fixP->fx_line,
15527 _("PC-relative access to misaligned address (%lx)"),
15528 (long) *valP);
15529 if (!fixP->fx_done)
15530 break;
15531
15532 if (*valP + 0x100000 <= 0x1fffff)
15533 {
15534 insn = read_insn (buf);
15535 insn |= (*valP >> 2) & 0x7ffff;
15536 write_insn (buf, insn);
15537 }
15538 else
15539 as_bad_where (fixP->fx_file, fixP->fx_line,
15540 _("PC-relative access out of range"));
15541 break;
15542
15543 case BFD_RELOC_16_PCREL_S2:
15544 fix_validate_branch (fixP, *valP);
15545
15546 /* We need to save the bits in the instruction since fixup_segment()
15547 might be deleting the relocation entry (i.e., a branch within
15548 the current segment). */
15549 if (! fixP->fx_done)
15550 break;
15551
15552 /* Update old instruction data. */
15553 insn = read_insn (buf);
15554
15555 if (*valP + 0x20000 <= 0x3ffff)
15556 {
15557 insn |= (*valP >> 2) & 0xffff;
15558 write_insn (buf, insn);
15559 }
15560 else if (mips_pic == NO_PIC
15561 && fixP->fx_done
15562 && fixP->fx_frag->fr_address >= text_section->vma
15563 && (fixP->fx_frag->fr_address
15564 < text_section->vma + bfd_get_section_size (text_section))
15565 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15566 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15567 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15568 {
15569 /* The branch offset is too large. If this is an
15570 unconditional branch, and we are not generating PIC code,
15571 we can convert it to an absolute jump instruction. */
15572 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15573 insn = 0x0c000000; /* jal */
15574 else
15575 insn = 0x08000000; /* j */
15576 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15577 fixP->fx_done = 0;
15578 fixP->fx_addsy = section_symbol (text_section);
15579 *valP += md_pcrel_from (fixP);
15580 write_insn (buf, insn);
15581 }
15582 else
15583 {
15584 /* If we got here, we have branch-relaxation disabled,
15585 and there's nothing we can do to fix this instruction
15586 without turning it into a longer sequence. */
15587 as_bad_where (fixP->fx_file, fixP->fx_line,
15588 _("branch out of range"));
15589 }
15590 break;
15591
15592 case BFD_RELOC_MIPS16_16_PCREL_S1:
15593 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15594 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15595 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15596 gas_assert (!fixP->fx_done);
15597 if (fix_bad_cross_mode_branch_p (fixP))
15598 as_bad_where (fixP->fx_file, fixP->fx_line,
15599 _("branch to a symbol in another ISA mode"));
15600 else if (fixP->fx_addsy
15601 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15602 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15603 && (fixP->fx_offset & 0x1) != 0)
15604 as_bad_where (fixP->fx_file, fixP->fx_line,
15605 _("branch to misaligned address (0x%lx)"),
15606 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15607 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15608 as_bad_where (fixP->fx_file, fixP->fx_line,
15609 _("cannot encode misaligned addend "
15610 "in the relocatable field (0x%lx)"),
15611 (long) fixP->fx_offset);
15612 break;
15613
15614 case BFD_RELOC_VTABLE_INHERIT:
15615 fixP->fx_done = 0;
15616 if (fixP->fx_addsy
15617 && !S_IS_DEFINED (fixP->fx_addsy)
15618 && !S_IS_WEAK (fixP->fx_addsy))
15619 S_SET_WEAK (fixP->fx_addsy);
15620 break;
15621
15622 case BFD_RELOC_NONE:
15623 case BFD_RELOC_VTABLE_ENTRY:
15624 fixP->fx_done = 0;
15625 break;
15626
15627 default:
15628 abort ();
15629 }
15630
15631 /* Remember value for tc_gen_reloc. */
15632 fixP->fx_addnumber = *valP;
15633 }
15634
15635 static symbolS *
15636 get_symbol (void)
15637 {
15638 int c;
15639 char *name;
15640 symbolS *p;
15641
15642 c = get_symbol_name (&name);
15643 p = (symbolS *) symbol_find_or_make (name);
15644 (void) restore_line_pointer (c);
15645 return p;
15646 }
15647
15648 /* Align the current frag to a given power of two. If a particular
15649 fill byte should be used, FILL points to an integer that contains
15650 that byte, otherwise FILL is null.
15651
15652 This function used to have the comment:
15653
15654 The MIPS assembler also automatically adjusts any preceding label.
15655
15656 The implementation therefore applied the adjustment to a maximum of
15657 one label. However, other label adjustments are applied to batches
15658 of labels, and adjusting just one caused problems when new labels
15659 were added for the sake of debugging or unwind information.
15660 We therefore adjust all preceding labels (given as LABELS) instead. */
15661
15662 static void
15663 mips_align (int to, int *fill, struct insn_label_list *labels)
15664 {
15665 mips_emit_delays ();
15666 mips_record_compressed_mode ();
15667 if (fill == NULL && subseg_text_p (now_seg))
15668 frag_align_code (to, 0);
15669 else
15670 frag_align (to, fill ? *fill : 0, 0);
15671 record_alignment (now_seg, to);
15672 mips_move_labels (labels, FALSE);
15673 }
15674
15675 /* Align to a given power of two. .align 0 turns off the automatic
15676 alignment used by the data creating pseudo-ops. */
15677
15678 static void
15679 s_align (int x ATTRIBUTE_UNUSED)
15680 {
15681 int temp, fill_value, *fill_ptr;
15682 long max_alignment = 28;
15683
15684 /* o Note that the assembler pulls down any immediately preceding label
15685 to the aligned address.
15686 o It's not documented but auto alignment is reinstated by
15687 a .align pseudo instruction.
15688 o Note also that after auto alignment is turned off the mips assembler
15689 issues an error on attempt to assemble an improperly aligned data item.
15690 We don't. */
15691
15692 temp = get_absolute_expression ();
15693 if (temp > max_alignment)
15694 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15695 else if (temp < 0)
15696 {
15697 as_warn (_("alignment negative, 0 assumed"));
15698 temp = 0;
15699 }
15700 if (*input_line_pointer == ',')
15701 {
15702 ++input_line_pointer;
15703 fill_value = get_absolute_expression ();
15704 fill_ptr = &fill_value;
15705 }
15706 else
15707 fill_ptr = 0;
15708 if (temp)
15709 {
15710 segment_info_type *si = seg_info (now_seg);
15711 struct insn_label_list *l = si->label_list;
15712 /* Auto alignment should be switched on by next section change. */
15713 auto_align = 1;
15714 mips_align (temp, fill_ptr, l);
15715 }
15716 else
15717 {
15718 auto_align = 0;
15719 }
15720
15721 demand_empty_rest_of_line ();
15722 }
15723
15724 static void
15725 s_change_sec (int sec)
15726 {
15727 segT seg;
15728
15729 /* The ELF backend needs to know that we are changing sections, so
15730 that .previous works correctly. We could do something like check
15731 for an obj_section_change_hook macro, but that might be confusing
15732 as it would not be appropriate to use it in the section changing
15733 functions in read.c, since obj-elf.c intercepts those. FIXME:
15734 This should be cleaner, somehow. */
15735 obj_elf_section_change_hook ();
15736
15737 mips_emit_delays ();
15738
15739 switch (sec)
15740 {
15741 case 't':
15742 s_text (0);
15743 break;
15744 case 'd':
15745 s_data (0);
15746 break;
15747 case 'b':
15748 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15749 demand_empty_rest_of_line ();
15750 break;
15751
15752 case 'r':
15753 seg = subseg_new (RDATA_SECTION_NAME,
15754 (subsegT) get_absolute_expression ());
15755 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15756 | SEC_READONLY | SEC_RELOC
15757 | SEC_DATA));
15758 if (strncmp (TARGET_OS, "elf", 3) != 0)
15759 record_alignment (seg, 4);
15760 demand_empty_rest_of_line ();
15761 break;
15762
15763 case 's':
15764 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15765 bfd_set_section_flags (stdoutput, seg,
15766 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15767 if (strncmp (TARGET_OS, "elf", 3) != 0)
15768 record_alignment (seg, 4);
15769 demand_empty_rest_of_line ();
15770 break;
15771
15772 case 'B':
15773 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15774 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15775 if (strncmp (TARGET_OS, "elf", 3) != 0)
15776 record_alignment (seg, 4);
15777 demand_empty_rest_of_line ();
15778 break;
15779 }
15780
15781 auto_align = 1;
15782 }
15783
15784 void
15785 s_change_section (int ignore ATTRIBUTE_UNUSED)
15786 {
15787 char *saved_ilp;
15788 char *section_name;
15789 char c, endc;
15790 char next_c = 0;
15791 int section_type;
15792 int section_flag;
15793 int section_entry_size;
15794 int section_alignment;
15795
15796 saved_ilp = input_line_pointer;
15797 endc = get_symbol_name (&section_name);
15798 c = (endc == '"' ? input_line_pointer[1] : endc);
15799 if (c)
15800 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15801
15802 /* Do we have .section Name<,"flags">? */
15803 if (c != ',' || (c == ',' && next_c == '"'))
15804 {
15805 /* Just after name is now '\0'. */
15806 (void) restore_line_pointer (endc);
15807 input_line_pointer = saved_ilp;
15808 obj_elf_section (ignore);
15809 return;
15810 }
15811
15812 section_name = xstrdup (section_name);
15813 c = restore_line_pointer (endc);
15814
15815 input_line_pointer++;
15816
15817 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15818 if (c == ',')
15819 section_type = get_absolute_expression ();
15820 else
15821 section_type = 0;
15822
15823 if (*input_line_pointer++ == ',')
15824 section_flag = get_absolute_expression ();
15825 else
15826 section_flag = 0;
15827
15828 if (*input_line_pointer++ == ',')
15829 section_entry_size = get_absolute_expression ();
15830 else
15831 section_entry_size = 0;
15832
15833 if (*input_line_pointer++ == ',')
15834 section_alignment = get_absolute_expression ();
15835 else
15836 section_alignment = 0;
15837
15838 /* FIXME: really ignore? */
15839 (void) section_alignment;
15840
15841 /* When using the generic form of .section (as implemented by obj-elf.c),
15842 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15843 traditionally had to fall back on the more common @progbits instead.
15844
15845 There's nothing really harmful in this, since bfd will correct
15846 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15847 means that, for backwards compatibility, the special_section entries
15848 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15849
15850 Even so, we shouldn't force users of the MIPS .section syntax to
15851 incorrectly label the sections as SHT_PROGBITS. The best compromise
15852 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15853 generic type-checking code. */
15854 if (section_type == SHT_MIPS_DWARF)
15855 section_type = SHT_PROGBITS;
15856
15857 obj_elf_change_section (section_name, section_type, section_flag,
15858 section_entry_size, 0, 0, 0);
15859
15860 if (now_seg->name != section_name)
15861 free (section_name);
15862 }
15863
15864 void
15865 mips_enable_auto_align (void)
15866 {
15867 auto_align = 1;
15868 }
15869
15870 static void
15871 s_cons (int log_size)
15872 {
15873 segment_info_type *si = seg_info (now_seg);
15874 struct insn_label_list *l = si->label_list;
15875
15876 mips_emit_delays ();
15877 if (log_size > 0 && auto_align)
15878 mips_align (log_size, 0, l);
15879 cons (1 << log_size);
15880 mips_clear_insn_labels ();
15881 }
15882
15883 static void
15884 s_float_cons (int type)
15885 {
15886 segment_info_type *si = seg_info (now_seg);
15887 struct insn_label_list *l = si->label_list;
15888
15889 mips_emit_delays ();
15890
15891 if (auto_align)
15892 {
15893 if (type == 'd')
15894 mips_align (3, 0, l);
15895 else
15896 mips_align (2, 0, l);
15897 }
15898
15899 float_cons (type);
15900 mips_clear_insn_labels ();
15901 }
15902
15903 /* Handle .globl. We need to override it because on Irix 5 you are
15904 permitted to say
15905 .globl foo .text
15906 where foo is an undefined symbol, to mean that foo should be
15907 considered to be the address of a function. */
15908
15909 static void
15910 s_mips_globl (int x ATTRIBUTE_UNUSED)
15911 {
15912 char *name;
15913 int c;
15914 symbolS *symbolP;
15915 flagword flag;
15916
15917 do
15918 {
15919 c = get_symbol_name (&name);
15920 symbolP = symbol_find_or_make (name);
15921 S_SET_EXTERNAL (symbolP);
15922
15923 *input_line_pointer = c;
15924 SKIP_WHITESPACE_AFTER_NAME ();
15925
15926 /* On Irix 5, every global symbol that is not explicitly labelled as
15927 being a function is apparently labelled as being an object. */
15928 flag = BSF_OBJECT;
15929
15930 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15931 && (*input_line_pointer != ','))
15932 {
15933 char *secname;
15934 asection *sec;
15935
15936 c = get_symbol_name (&secname);
15937 sec = bfd_get_section_by_name (stdoutput, secname);
15938 if (sec == NULL)
15939 as_bad (_("%s: no such section"), secname);
15940 (void) restore_line_pointer (c);
15941
15942 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15943 flag = BSF_FUNCTION;
15944 }
15945
15946 symbol_get_bfdsym (symbolP)->flags |= flag;
15947
15948 c = *input_line_pointer;
15949 if (c == ',')
15950 {
15951 input_line_pointer++;
15952 SKIP_WHITESPACE ();
15953 if (is_end_of_line[(unsigned char) *input_line_pointer])
15954 c = '\n';
15955 }
15956 }
15957 while (c == ',');
15958
15959 demand_empty_rest_of_line ();
15960 }
15961
15962 static void
15963 s_option (int x ATTRIBUTE_UNUSED)
15964 {
15965 char *opt;
15966 char c;
15967
15968 c = get_symbol_name (&opt);
15969
15970 if (*opt == 'O')
15971 {
15972 /* FIXME: What does this mean? */
15973 }
15974 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
15975 {
15976 int i;
15977
15978 i = atoi (opt + 3);
15979 if (i != 0 && i != 2)
15980 as_bad (_(".option pic%d not supported"), i);
15981 else if (mips_pic == VXWORKS_PIC)
15982 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15983 else if (i == 0)
15984 mips_pic = NO_PIC;
15985 else if (i == 2)
15986 {
15987 mips_pic = SVR4_PIC;
15988 mips_abicalls = TRUE;
15989 }
15990
15991 if (mips_pic == SVR4_PIC)
15992 {
15993 if (g_switch_seen && g_switch_value != 0)
15994 as_warn (_("-G may not be used with SVR4 PIC code"));
15995 g_switch_value = 0;
15996 bfd_set_gp_size (stdoutput, 0);
15997 }
15998 }
15999 else
16000 as_warn (_("unrecognized option \"%s\""), opt);
16001
16002 (void) restore_line_pointer (c);
16003 demand_empty_rest_of_line ();
16004 }
16005
16006 /* This structure is used to hold a stack of .set values. */
16007
16008 struct mips_option_stack
16009 {
16010 struct mips_option_stack *next;
16011 struct mips_set_options options;
16012 };
16013
16014 static struct mips_option_stack *mips_opts_stack;
16015
16016 /* Return status for .set/.module option handling. */
16017
16018 enum code_option_type
16019 {
16020 /* Unrecognized option. */
16021 OPTION_TYPE_BAD = -1,
16022
16023 /* Ordinary option. */
16024 OPTION_TYPE_NORMAL,
16025
16026 /* ISA changing option. */
16027 OPTION_TYPE_ISA
16028 };
16029
16030 /* Handle common .set/.module options. Return status indicating option
16031 type. */
16032
16033 static enum code_option_type
16034 parse_code_option (char * name)
16035 {
16036 bfd_boolean isa_set = FALSE;
16037 const struct mips_ase *ase;
16038
16039 if (strncmp (name, "at=", 3) == 0)
16040 {
16041 char *s = name + 3;
16042
16043 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16044 as_bad (_("unrecognized register name `%s'"), s);
16045 }
16046 else if (strcmp (name, "at") == 0)
16047 mips_opts.at = ATREG;
16048 else if (strcmp (name, "noat") == 0)
16049 mips_opts.at = ZERO;
16050 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16051 mips_opts.nomove = 0;
16052 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16053 mips_opts.nomove = 1;
16054 else if (strcmp (name, "bopt") == 0)
16055 mips_opts.nobopt = 0;
16056 else if (strcmp (name, "nobopt") == 0)
16057 mips_opts.nobopt = 1;
16058 else if (strcmp (name, "gp=32") == 0)
16059 mips_opts.gp = 32;
16060 else if (strcmp (name, "gp=64") == 0)
16061 mips_opts.gp = 64;
16062 else if (strcmp (name, "fp=32") == 0)
16063 mips_opts.fp = 32;
16064 else if (strcmp (name, "fp=xx") == 0)
16065 mips_opts.fp = 0;
16066 else if (strcmp (name, "fp=64") == 0)
16067 mips_opts.fp = 64;
16068 else if (strcmp (name, "softfloat") == 0)
16069 mips_opts.soft_float = 1;
16070 else if (strcmp (name, "hardfloat") == 0)
16071 mips_opts.soft_float = 0;
16072 else if (strcmp (name, "singlefloat") == 0)
16073 mips_opts.single_float = 1;
16074 else if (strcmp (name, "doublefloat") == 0)
16075 mips_opts.single_float = 0;
16076 else if (strcmp (name, "nooddspreg") == 0)
16077 mips_opts.oddspreg = 0;
16078 else if (strcmp (name, "oddspreg") == 0)
16079 mips_opts.oddspreg = 1;
16080 else if (strcmp (name, "mips16") == 0
16081 || strcmp (name, "MIPS-16") == 0)
16082 mips_opts.mips16 = 1;
16083 else if (strcmp (name, "nomips16") == 0
16084 || strcmp (name, "noMIPS-16") == 0)
16085 mips_opts.mips16 = 0;
16086 else if (strcmp (name, "micromips") == 0)
16087 mips_opts.micromips = 1;
16088 else if (strcmp (name, "nomicromips") == 0)
16089 mips_opts.micromips = 0;
16090 else if (name[0] == 'n'
16091 && name[1] == 'o'
16092 && (ase = mips_lookup_ase (name + 2)))
16093 mips_set_ase (ase, &mips_opts, FALSE);
16094 else if ((ase = mips_lookup_ase (name)))
16095 mips_set_ase (ase, &mips_opts, TRUE);
16096 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16097 {
16098 /* Permit the user to change the ISA and architecture on the fly.
16099 Needless to say, misuse can cause serious problems. */
16100 if (strncmp (name, "arch=", 5) == 0)
16101 {
16102 const struct mips_cpu_info *p;
16103
16104 p = mips_parse_cpu ("internal use", name + 5);
16105 if (!p)
16106 as_bad (_("unknown architecture %s"), name + 5);
16107 else
16108 {
16109 mips_opts.arch = p->cpu;
16110 mips_opts.isa = p->isa;
16111 isa_set = TRUE;
16112 }
16113 }
16114 else if (strncmp (name, "mips", 4) == 0)
16115 {
16116 const struct mips_cpu_info *p;
16117
16118 p = mips_parse_cpu ("internal use", name);
16119 if (!p)
16120 as_bad (_("unknown ISA level %s"), name + 4);
16121 else
16122 {
16123 mips_opts.arch = p->cpu;
16124 mips_opts.isa = p->isa;
16125 isa_set = TRUE;
16126 }
16127 }
16128 else
16129 as_bad (_("unknown ISA or architecture %s"), name);
16130 }
16131 else if (strcmp (name, "autoextend") == 0)
16132 mips_opts.noautoextend = 0;
16133 else if (strcmp (name, "noautoextend") == 0)
16134 mips_opts.noautoextend = 1;
16135 else if (strcmp (name, "insn32") == 0)
16136 mips_opts.insn32 = TRUE;
16137 else if (strcmp (name, "noinsn32") == 0)
16138 mips_opts.insn32 = FALSE;
16139 else if (strcmp (name, "sym32") == 0)
16140 mips_opts.sym32 = TRUE;
16141 else if (strcmp (name, "nosym32") == 0)
16142 mips_opts.sym32 = FALSE;
16143 else
16144 return OPTION_TYPE_BAD;
16145
16146 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16147 }
16148
16149 /* Handle the .set pseudo-op. */
16150
16151 static void
16152 s_mipsset (int x ATTRIBUTE_UNUSED)
16153 {
16154 enum code_option_type type = OPTION_TYPE_NORMAL;
16155 char *name = input_line_pointer, ch;
16156
16157 file_mips_check_options ();
16158
16159 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16160 ++input_line_pointer;
16161 ch = *input_line_pointer;
16162 *input_line_pointer = '\0';
16163
16164 if (strchr (name, ','))
16165 {
16166 /* Generic ".set" directive; use the generic handler. */
16167 *input_line_pointer = ch;
16168 input_line_pointer = name;
16169 s_set (0);
16170 return;
16171 }
16172
16173 if (strcmp (name, "reorder") == 0)
16174 {
16175 if (mips_opts.noreorder)
16176 end_noreorder ();
16177 }
16178 else if (strcmp (name, "noreorder") == 0)
16179 {
16180 if (!mips_opts.noreorder)
16181 start_noreorder ();
16182 }
16183 else if (strcmp (name, "macro") == 0)
16184 mips_opts.warn_about_macros = 0;
16185 else if (strcmp (name, "nomacro") == 0)
16186 {
16187 if (mips_opts.noreorder == 0)
16188 as_bad (_("`noreorder' must be set before `nomacro'"));
16189 mips_opts.warn_about_macros = 1;
16190 }
16191 else if (strcmp (name, "gp=default") == 0)
16192 mips_opts.gp = file_mips_opts.gp;
16193 else if (strcmp (name, "fp=default") == 0)
16194 mips_opts.fp = file_mips_opts.fp;
16195 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16196 {
16197 mips_opts.isa = file_mips_opts.isa;
16198 mips_opts.arch = file_mips_opts.arch;
16199 mips_opts.gp = file_mips_opts.gp;
16200 mips_opts.fp = file_mips_opts.fp;
16201 }
16202 else if (strcmp (name, "push") == 0)
16203 {
16204 struct mips_option_stack *s;
16205
16206 s = XNEW (struct mips_option_stack);
16207 s->next = mips_opts_stack;
16208 s->options = mips_opts;
16209 mips_opts_stack = s;
16210 }
16211 else if (strcmp (name, "pop") == 0)
16212 {
16213 struct mips_option_stack *s;
16214
16215 s = mips_opts_stack;
16216 if (s == NULL)
16217 as_bad (_(".set pop with no .set push"));
16218 else
16219 {
16220 /* If we're changing the reorder mode we need to handle
16221 delay slots correctly. */
16222 if (s->options.noreorder && ! mips_opts.noreorder)
16223 start_noreorder ();
16224 else if (! s->options.noreorder && mips_opts.noreorder)
16225 end_noreorder ();
16226
16227 mips_opts = s->options;
16228 mips_opts_stack = s->next;
16229 free (s);
16230 }
16231 }
16232 else
16233 {
16234 type = parse_code_option (name);
16235 if (type == OPTION_TYPE_BAD)
16236 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16237 }
16238
16239 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16240 registers based on what is supported by the arch/cpu. */
16241 if (type == OPTION_TYPE_ISA)
16242 {
16243 switch (mips_opts.isa)
16244 {
16245 case 0:
16246 break;
16247 case ISA_MIPS1:
16248 /* MIPS I cannot support FPXX. */
16249 mips_opts.fp = 32;
16250 /* fall-through. */
16251 case ISA_MIPS2:
16252 case ISA_MIPS32:
16253 case ISA_MIPS32R2:
16254 case ISA_MIPS32R3:
16255 case ISA_MIPS32R5:
16256 mips_opts.gp = 32;
16257 if (mips_opts.fp != 0)
16258 mips_opts.fp = 32;
16259 break;
16260 case ISA_MIPS32R6:
16261 mips_opts.gp = 32;
16262 mips_opts.fp = 64;
16263 break;
16264 case ISA_MIPS3:
16265 case ISA_MIPS4:
16266 case ISA_MIPS5:
16267 case ISA_MIPS64:
16268 case ISA_MIPS64R2:
16269 case ISA_MIPS64R3:
16270 case ISA_MIPS64R5:
16271 case ISA_MIPS64R6:
16272 mips_opts.gp = 64;
16273 if (mips_opts.fp != 0)
16274 {
16275 if (mips_opts.arch == CPU_R5900)
16276 mips_opts.fp = 32;
16277 else
16278 mips_opts.fp = 64;
16279 }
16280 break;
16281 default:
16282 as_bad (_("unknown ISA level %s"), name + 4);
16283 break;
16284 }
16285 }
16286
16287 mips_check_options (&mips_opts, FALSE);
16288
16289 mips_check_isa_supports_ases ();
16290 *input_line_pointer = ch;
16291 demand_empty_rest_of_line ();
16292 }
16293
16294 /* Handle the .module pseudo-op. */
16295
16296 static void
16297 s_module (int ignore ATTRIBUTE_UNUSED)
16298 {
16299 char *name = input_line_pointer, ch;
16300
16301 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16302 ++input_line_pointer;
16303 ch = *input_line_pointer;
16304 *input_line_pointer = '\0';
16305
16306 if (!file_mips_opts_checked)
16307 {
16308 if (parse_code_option (name) == OPTION_TYPE_BAD)
16309 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16310
16311 /* Update module level settings from mips_opts. */
16312 file_mips_opts = mips_opts;
16313 }
16314 else
16315 as_bad (_(".module is not permitted after generating code"));
16316
16317 *input_line_pointer = ch;
16318 demand_empty_rest_of_line ();
16319 }
16320
16321 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16322 .option pic2. It means to generate SVR4 PIC calls. */
16323
16324 static void
16325 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16326 {
16327 mips_pic = SVR4_PIC;
16328 mips_abicalls = TRUE;
16329
16330 if (g_switch_seen && g_switch_value != 0)
16331 as_warn (_("-G may not be used with SVR4 PIC code"));
16332 g_switch_value = 0;
16333
16334 bfd_set_gp_size (stdoutput, 0);
16335 demand_empty_rest_of_line ();
16336 }
16337
16338 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16339 PIC code. It sets the $gp register for the function based on the
16340 function address, which is in the register named in the argument.
16341 This uses a relocation against _gp_disp, which is handled specially
16342 by the linker. The result is:
16343 lui $gp,%hi(_gp_disp)
16344 addiu $gp,$gp,%lo(_gp_disp)
16345 addu $gp,$gp,.cpload argument
16346 The .cpload argument is normally $25 == $t9.
16347
16348 The -mno-shared option changes this to:
16349 lui $gp,%hi(__gnu_local_gp)
16350 addiu $gp,$gp,%lo(__gnu_local_gp)
16351 and the argument is ignored. This saves an instruction, but the
16352 resulting code is not position independent; it uses an absolute
16353 address for __gnu_local_gp. Thus code assembled with -mno-shared
16354 can go into an ordinary executable, but not into a shared library. */
16355
16356 static void
16357 s_cpload (int ignore ATTRIBUTE_UNUSED)
16358 {
16359 expressionS ex;
16360 int reg;
16361 int in_shared;
16362
16363 file_mips_check_options ();
16364
16365 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16366 .cpload is ignored. */
16367 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16368 {
16369 s_ignore (0);
16370 return;
16371 }
16372
16373 if (mips_opts.mips16)
16374 {
16375 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16376 ignore_rest_of_line ();
16377 return;
16378 }
16379
16380 /* .cpload should be in a .set noreorder section. */
16381 if (mips_opts.noreorder == 0)
16382 as_warn (_(".cpload not in noreorder section"));
16383
16384 reg = tc_get_register (0);
16385
16386 /* If we need to produce a 64-bit address, we are better off using
16387 the default instruction sequence. */
16388 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16389
16390 ex.X_op = O_symbol;
16391 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16392 "__gnu_local_gp");
16393 ex.X_op_symbol = NULL;
16394 ex.X_add_number = 0;
16395
16396 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16397 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16398
16399 mips_mark_labels ();
16400 mips_assembling_insn = TRUE;
16401
16402 macro_start ();
16403 macro_build_lui (&ex, mips_gp_register);
16404 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16405 mips_gp_register, BFD_RELOC_LO16);
16406 if (in_shared)
16407 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16408 mips_gp_register, reg);
16409 macro_end ();
16410
16411 mips_assembling_insn = FALSE;
16412 demand_empty_rest_of_line ();
16413 }
16414
16415 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16416 .cpsetup $reg1, offset|$reg2, label
16417
16418 If offset is given, this results in:
16419 sd $gp, offset($sp)
16420 lui $gp, %hi(%neg(%gp_rel(label)))
16421 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16422 daddu $gp, $gp, $reg1
16423
16424 If $reg2 is given, this results in:
16425 or $reg2, $gp, $0
16426 lui $gp, %hi(%neg(%gp_rel(label)))
16427 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16428 daddu $gp, $gp, $reg1
16429 $reg1 is normally $25 == $t9.
16430
16431 The -mno-shared option replaces the last three instructions with
16432 lui $gp,%hi(_gp)
16433 addiu $gp,$gp,%lo(_gp) */
16434
16435 static void
16436 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16437 {
16438 expressionS ex_off;
16439 expressionS ex_sym;
16440 int reg1;
16441
16442 file_mips_check_options ();
16443
16444 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16445 We also need NewABI support. */
16446 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16447 {
16448 s_ignore (0);
16449 return;
16450 }
16451
16452 if (mips_opts.mips16)
16453 {
16454 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16455 ignore_rest_of_line ();
16456 return;
16457 }
16458
16459 reg1 = tc_get_register (0);
16460 SKIP_WHITESPACE ();
16461 if (*input_line_pointer != ',')
16462 {
16463 as_bad (_("missing argument separator ',' for .cpsetup"));
16464 return;
16465 }
16466 else
16467 ++input_line_pointer;
16468 SKIP_WHITESPACE ();
16469 if (*input_line_pointer == '$')
16470 {
16471 mips_cpreturn_register = tc_get_register (0);
16472 mips_cpreturn_offset = -1;
16473 }
16474 else
16475 {
16476 mips_cpreturn_offset = get_absolute_expression ();
16477 mips_cpreturn_register = -1;
16478 }
16479 SKIP_WHITESPACE ();
16480 if (*input_line_pointer != ',')
16481 {
16482 as_bad (_("missing argument separator ',' for .cpsetup"));
16483 return;
16484 }
16485 else
16486 ++input_line_pointer;
16487 SKIP_WHITESPACE ();
16488 expression (&ex_sym);
16489
16490 mips_mark_labels ();
16491 mips_assembling_insn = TRUE;
16492
16493 macro_start ();
16494 if (mips_cpreturn_register == -1)
16495 {
16496 ex_off.X_op = O_constant;
16497 ex_off.X_add_symbol = NULL;
16498 ex_off.X_op_symbol = NULL;
16499 ex_off.X_add_number = mips_cpreturn_offset;
16500
16501 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16502 BFD_RELOC_LO16, SP);
16503 }
16504 else
16505 move_register (mips_cpreturn_register, mips_gp_register);
16506
16507 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16508 {
16509 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16510 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16511 BFD_RELOC_HI16_S);
16512
16513 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16514 mips_gp_register, -1, BFD_RELOC_GPREL16,
16515 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16516
16517 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16518 mips_gp_register, reg1);
16519 }
16520 else
16521 {
16522 expressionS ex;
16523
16524 ex.X_op = O_symbol;
16525 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16526 ex.X_op_symbol = NULL;
16527 ex.X_add_number = 0;
16528
16529 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16530 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16531
16532 macro_build_lui (&ex, mips_gp_register);
16533 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16534 mips_gp_register, BFD_RELOC_LO16);
16535 }
16536
16537 macro_end ();
16538
16539 mips_assembling_insn = FALSE;
16540 demand_empty_rest_of_line ();
16541 }
16542
16543 static void
16544 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16545 {
16546 file_mips_check_options ();
16547
16548 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16549 .cplocal is ignored. */
16550 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16551 {
16552 s_ignore (0);
16553 return;
16554 }
16555
16556 if (mips_opts.mips16)
16557 {
16558 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16559 ignore_rest_of_line ();
16560 return;
16561 }
16562
16563 mips_gp_register = tc_get_register (0);
16564 demand_empty_rest_of_line ();
16565 }
16566
16567 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16568 offset from $sp. The offset is remembered, and after making a PIC
16569 call $gp is restored from that location. */
16570
16571 static void
16572 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16573 {
16574 expressionS ex;
16575
16576 file_mips_check_options ();
16577
16578 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16579 .cprestore is ignored. */
16580 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16581 {
16582 s_ignore (0);
16583 return;
16584 }
16585
16586 if (mips_opts.mips16)
16587 {
16588 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16589 ignore_rest_of_line ();
16590 return;
16591 }
16592
16593 mips_cprestore_offset = get_absolute_expression ();
16594 mips_cprestore_valid = 1;
16595
16596 ex.X_op = O_constant;
16597 ex.X_add_symbol = NULL;
16598 ex.X_op_symbol = NULL;
16599 ex.X_add_number = mips_cprestore_offset;
16600
16601 mips_mark_labels ();
16602 mips_assembling_insn = TRUE;
16603
16604 macro_start ();
16605 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16606 SP, HAVE_64BIT_ADDRESSES);
16607 macro_end ();
16608
16609 mips_assembling_insn = FALSE;
16610 demand_empty_rest_of_line ();
16611 }
16612
16613 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16614 was given in the preceding .cpsetup, it results in:
16615 ld $gp, offset($sp)
16616
16617 If a register $reg2 was given there, it results in:
16618 or $gp, $reg2, $0 */
16619
16620 static void
16621 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16622 {
16623 expressionS ex;
16624
16625 file_mips_check_options ();
16626
16627 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16628 We also need NewABI support. */
16629 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16630 {
16631 s_ignore (0);
16632 return;
16633 }
16634
16635 if (mips_opts.mips16)
16636 {
16637 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16638 ignore_rest_of_line ();
16639 return;
16640 }
16641
16642 mips_mark_labels ();
16643 mips_assembling_insn = TRUE;
16644
16645 macro_start ();
16646 if (mips_cpreturn_register == -1)
16647 {
16648 ex.X_op = O_constant;
16649 ex.X_add_symbol = NULL;
16650 ex.X_op_symbol = NULL;
16651 ex.X_add_number = mips_cpreturn_offset;
16652
16653 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16654 }
16655 else
16656 move_register (mips_gp_register, mips_cpreturn_register);
16657
16658 macro_end ();
16659
16660 mips_assembling_insn = FALSE;
16661 demand_empty_rest_of_line ();
16662 }
16663
16664 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16665 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16666 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16667 debug information or MIPS16 TLS. */
16668
16669 static void
16670 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16671 bfd_reloc_code_real_type rtype)
16672 {
16673 expressionS ex;
16674 char *p;
16675
16676 expression (&ex);
16677
16678 if (ex.X_op != O_symbol)
16679 {
16680 as_bad (_("unsupported use of %s"), dirstr);
16681 ignore_rest_of_line ();
16682 }
16683
16684 p = frag_more (bytes);
16685 md_number_to_chars (p, 0, bytes);
16686 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16687 demand_empty_rest_of_line ();
16688 mips_clear_insn_labels ();
16689 }
16690
16691 /* Handle .dtprelword. */
16692
16693 static void
16694 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16695 {
16696 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16697 }
16698
16699 /* Handle .dtpreldword. */
16700
16701 static void
16702 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16703 {
16704 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16705 }
16706
16707 /* Handle .tprelword. */
16708
16709 static void
16710 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16711 {
16712 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16713 }
16714
16715 /* Handle .tpreldword. */
16716
16717 static void
16718 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16719 {
16720 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16721 }
16722
16723 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16724 code. It sets the offset to use in gp_rel relocations. */
16725
16726 static void
16727 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16728 {
16729 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16730 We also need NewABI support. */
16731 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16732 {
16733 s_ignore (0);
16734 return;
16735 }
16736
16737 mips_gprel_offset = get_absolute_expression ();
16738
16739 demand_empty_rest_of_line ();
16740 }
16741
16742 /* Handle the .gpword pseudo-op. This is used when generating PIC
16743 code. It generates a 32 bit GP relative reloc. */
16744
16745 static void
16746 s_gpword (int ignore ATTRIBUTE_UNUSED)
16747 {
16748 segment_info_type *si;
16749 struct insn_label_list *l;
16750 expressionS ex;
16751 char *p;
16752
16753 /* When not generating PIC code, this is treated as .word. */
16754 if (mips_pic != SVR4_PIC)
16755 {
16756 s_cons (2);
16757 return;
16758 }
16759
16760 si = seg_info (now_seg);
16761 l = si->label_list;
16762 mips_emit_delays ();
16763 if (auto_align)
16764 mips_align (2, 0, l);
16765
16766 expression (&ex);
16767 mips_clear_insn_labels ();
16768
16769 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16770 {
16771 as_bad (_("unsupported use of .gpword"));
16772 ignore_rest_of_line ();
16773 }
16774
16775 p = frag_more (4);
16776 md_number_to_chars (p, 0, 4);
16777 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16778 BFD_RELOC_GPREL32);
16779
16780 demand_empty_rest_of_line ();
16781 }
16782
16783 static void
16784 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16785 {
16786 segment_info_type *si;
16787 struct insn_label_list *l;
16788 expressionS ex;
16789 char *p;
16790
16791 /* When not generating PIC code, this is treated as .dword. */
16792 if (mips_pic != SVR4_PIC)
16793 {
16794 s_cons (3);
16795 return;
16796 }
16797
16798 si = seg_info (now_seg);
16799 l = si->label_list;
16800 mips_emit_delays ();
16801 if (auto_align)
16802 mips_align (3, 0, l);
16803
16804 expression (&ex);
16805 mips_clear_insn_labels ();
16806
16807 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16808 {
16809 as_bad (_("unsupported use of .gpdword"));
16810 ignore_rest_of_line ();
16811 }
16812
16813 p = frag_more (8);
16814 md_number_to_chars (p, 0, 8);
16815 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16816 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16817
16818 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16819 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16820 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16821
16822 demand_empty_rest_of_line ();
16823 }
16824
16825 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16826 tables. It generates a R_MIPS_EH reloc. */
16827
16828 static void
16829 s_ehword (int ignore ATTRIBUTE_UNUSED)
16830 {
16831 expressionS ex;
16832 char *p;
16833
16834 mips_emit_delays ();
16835
16836 expression (&ex);
16837 mips_clear_insn_labels ();
16838
16839 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16840 {
16841 as_bad (_("unsupported use of .ehword"));
16842 ignore_rest_of_line ();
16843 }
16844
16845 p = frag_more (4);
16846 md_number_to_chars (p, 0, 4);
16847 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16848 BFD_RELOC_32_PCREL);
16849
16850 demand_empty_rest_of_line ();
16851 }
16852
16853 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16854 tables in SVR4 PIC code. */
16855
16856 static void
16857 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16858 {
16859 int reg;
16860
16861 file_mips_check_options ();
16862
16863 /* This is ignored when not generating SVR4 PIC code. */
16864 if (mips_pic != SVR4_PIC)
16865 {
16866 s_ignore (0);
16867 return;
16868 }
16869
16870 mips_mark_labels ();
16871 mips_assembling_insn = TRUE;
16872
16873 /* Add $gp to the register named as an argument. */
16874 macro_start ();
16875 reg = tc_get_register (0);
16876 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16877 macro_end ();
16878
16879 mips_assembling_insn = FALSE;
16880 demand_empty_rest_of_line ();
16881 }
16882
16883 /* Handle the .insn pseudo-op. This marks instruction labels in
16884 mips16/micromips mode. This permits the linker to handle them specially,
16885 such as generating jalx instructions when needed. We also make
16886 them odd for the duration of the assembly, in order to generate the
16887 right sort of code. We will make them even in the adjust_symtab
16888 routine, while leaving them marked. This is convenient for the
16889 debugger and the disassembler. The linker knows to make them odd
16890 again. */
16891
16892 static void
16893 s_insn (int ignore ATTRIBUTE_UNUSED)
16894 {
16895 file_mips_check_options ();
16896 file_ase_mips16 |= mips_opts.mips16;
16897 file_ase_micromips |= mips_opts.micromips;
16898
16899 mips_mark_labels ();
16900
16901 demand_empty_rest_of_line ();
16902 }
16903
16904 /* Handle the .nan pseudo-op. */
16905
16906 static void
16907 s_nan (int ignore ATTRIBUTE_UNUSED)
16908 {
16909 static const char str_legacy[] = "legacy";
16910 static const char str_2008[] = "2008";
16911 size_t i;
16912
16913 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16914
16915 if (i == sizeof (str_2008) - 1
16916 && memcmp (input_line_pointer, str_2008, i) == 0)
16917 mips_nan2008 = 1;
16918 else if (i == sizeof (str_legacy) - 1
16919 && memcmp (input_line_pointer, str_legacy, i) == 0)
16920 {
16921 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16922 mips_nan2008 = 0;
16923 else
16924 as_bad (_("`%s' does not support legacy NaN"),
16925 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16926 }
16927 else
16928 as_bad (_("bad .nan directive"));
16929
16930 input_line_pointer += i;
16931 demand_empty_rest_of_line ();
16932 }
16933
16934 /* Handle a .stab[snd] directive. Ideally these directives would be
16935 implemented in a transparent way, so that removing them would not
16936 have any effect on the generated instructions. However, s_stab
16937 internally changes the section, so in practice we need to decide
16938 now whether the preceding label marks compressed code. We do not
16939 support changing the compression mode of a label after a .stab*
16940 directive, such as in:
16941
16942 foo:
16943 .stabs ...
16944 .set mips16
16945
16946 so the current mode wins. */
16947
16948 static void
16949 s_mips_stab (int type)
16950 {
16951 mips_mark_labels ();
16952 s_stab (type);
16953 }
16954
16955 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16956
16957 static void
16958 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16959 {
16960 char *name;
16961 int c;
16962 symbolS *symbolP;
16963 expressionS exp;
16964
16965 c = get_symbol_name (&name);
16966 symbolP = symbol_find_or_make (name);
16967 S_SET_WEAK (symbolP);
16968 *input_line_pointer = c;
16969
16970 SKIP_WHITESPACE_AFTER_NAME ();
16971
16972 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16973 {
16974 if (S_IS_DEFINED (symbolP))
16975 {
16976 as_bad (_("ignoring attempt to redefine symbol %s"),
16977 S_GET_NAME (symbolP));
16978 ignore_rest_of_line ();
16979 return;
16980 }
16981
16982 if (*input_line_pointer == ',')
16983 {
16984 ++input_line_pointer;
16985 SKIP_WHITESPACE ();
16986 }
16987
16988 expression (&exp);
16989 if (exp.X_op != O_symbol)
16990 {
16991 as_bad (_("bad .weakext directive"));
16992 ignore_rest_of_line ();
16993 return;
16994 }
16995 symbol_set_value_expression (symbolP, &exp);
16996 }
16997
16998 demand_empty_rest_of_line ();
16999 }
17000
17001 /* Parse a register string into a number. Called from the ECOFF code
17002 to parse .frame. The argument is non-zero if this is the frame
17003 register, so that we can record it in mips_frame_reg. */
17004
17005 int
17006 tc_get_register (int frame)
17007 {
17008 unsigned int reg;
17009
17010 SKIP_WHITESPACE ();
17011 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17012 reg = 0;
17013 if (frame)
17014 {
17015 mips_frame_reg = reg != 0 ? reg : SP;
17016 mips_frame_reg_valid = 1;
17017 mips_cprestore_valid = 0;
17018 }
17019 return reg;
17020 }
17021
17022 valueT
17023 md_section_align (asection *seg, valueT addr)
17024 {
17025 int align = bfd_get_section_alignment (stdoutput, seg);
17026
17027 /* We don't need to align ELF sections to the full alignment.
17028 However, Irix 5 may prefer that we align them at least to a 16
17029 byte boundary. We don't bother to align the sections if we
17030 are targeted for an embedded system. */
17031 if (strncmp (TARGET_OS, "elf", 3) == 0)
17032 return addr;
17033 if (align > 4)
17034 align = 4;
17035
17036 return ((addr + (1 << align) - 1) & -(1 << align));
17037 }
17038
17039 /* Utility routine, called from above as well. If called while the
17040 input file is still being read, it's only an approximation. (For
17041 example, a symbol may later become defined which appeared to be
17042 undefined earlier.) */
17043
17044 static int
17045 nopic_need_relax (symbolS *sym, int before_relaxing)
17046 {
17047 if (sym == 0)
17048 return 0;
17049
17050 if (g_switch_value > 0)
17051 {
17052 const char *symname;
17053 int change;
17054
17055 /* Find out whether this symbol can be referenced off the $gp
17056 register. It can be if it is smaller than the -G size or if
17057 it is in the .sdata or .sbss section. Certain symbols can
17058 not be referenced off the $gp, although it appears as though
17059 they can. */
17060 symname = S_GET_NAME (sym);
17061 if (symname != (const char *) NULL
17062 && (strcmp (symname, "eprol") == 0
17063 || strcmp (symname, "etext") == 0
17064 || strcmp (symname, "_gp") == 0
17065 || strcmp (symname, "edata") == 0
17066 || strcmp (symname, "_fbss") == 0
17067 || strcmp (symname, "_fdata") == 0
17068 || strcmp (symname, "_ftext") == 0
17069 || strcmp (symname, "end") == 0
17070 || strcmp (symname, "_gp_disp") == 0))
17071 change = 1;
17072 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17073 && (0
17074 #ifndef NO_ECOFF_DEBUGGING
17075 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17076 && (symbol_get_obj (sym)->ecoff_extern_size
17077 <= g_switch_value))
17078 #endif
17079 /* We must defer this decision until after the whole
17080 file has been read, since there might be a .extern
17081 after the first use of this symbol. */
17082 || (before_relaxing
17083 #ifndef NO_ECOFF_DEBUGGING
17084 && symbol_get_obj (sym)->ecoff_extern_size == 0
17085 #endif
17086 && S_GET_VALUE (sym) == 0)
17087 || (S_GET_VALUE (sym) != 0
17088 && S_GET_VALUE (sym) <= g_switch_value)))
17089 change = 0;
17090 else
17091 {
17092 const char *segname;
17093
17094 segname = segment_name (S_GET_SEGMENT (sym));
17095 gas_assert (strcmp (segname, ".lit8") != 0
17096 && strcmp (segname, ".lit4") != 0);
17097 change = (strcmp (segname, ".sdata") != 0
17098 && strcmp (segname, ".sbss") != 0
17099 && strncmp (segname, ".sdata.", 7) != 0
17100 && strncmp (segname, ".sbss.", 6) != 0
17101 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17102 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17103 }
17104 return change;
17105 }
17106 else
17107 /* We are not optimizing for the $gp register. */
17108 return 1;
17109 }
17110
17111
17112 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17113
17114 static bfd_boolean
17115 pic_need_relax (symbolS *sym, asection *segtype)
17116 {
17117 asection *symsec;
17118
17119 /* Handle the case of a symbol equated to another symbol. */
17120 while (symbol_equated_reloc_p (sym))
17121 {
17122 symbolS *n;
17123
17124 /* It's possible to get a loop here in a badly written program. */
17125 n = symbol_get_value_expression (sym)->X_add_symbol;
17126 if (n == sym)
17127 break;
17128 sym = n;
17129 }
17130
17131 if (symbol_section_p (sym))
17132 return TRUE;
17133
17134 symsec = S_GET_SEGMENT (sym);
17135
17136 /* This must duplicate the test in adjust_reloc_syms. */
17137 return (!bfd_is_und_section (symsec)
17138 && !bfd_is_abs_section (symsec)
17139 && !bfd_is_com_section (symsec)
17140 && !s_is_linkonce (sym, segtype)
17141 /* A global or weak symbol is treated as external. */
17142 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17143 }
17144
17145
17146 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17147 extended opcode. SEC is the section the frag is in. */
17148
17149 static int
17150 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17151 {
17152 int type;
17153 const struct mips_int_operand *operand;
17154 offsetT val;
17155 segT symsec;
17156 fragS *sym_frag;
17157
17158 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17159 return 0;
17160 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17161 return 1;
17162
17163 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17164 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17165 operand = mips16_immed_operand (type, FALSE);
17166 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17167 || (operand->root.type == OP_PCREL
17168 ? sec != symsec
17169 : !bfd_is_abs_section (symsec)))
17170 return 1;
17171
17172 sym_frag = symbol_get_frag (fragp->fr_symbol);
17173 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17174
17175 if (operand->root.type == OP_PCREL)
17176 {
17177 const struct mips_pcrel_operand *pcrel_op;
17178 addressT addr;
17179 offsetT maxtiny;
17180
17181 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17182 return 1;
17183
17184 pcrel_op = (const struct mips_pcrel_operand *) operand;
17185
17186 /* If the relax_marker of the symbol fragment differs from the
17187 relax_marker of this fragment, we have not yet adjusted the
17188 symbol fragment fr_address. We want to add in STRETCH in
17189 order to get a better estimate of the address. This
17190 particularly matters because of the shift bits. */
17191 if (stretch != 0
17192 && sym_frag->relax_marker != fragp->relax_marker)
17193 {
17194 fragS *f;
17195
17196 /* Adjust stretch for any alignment frag. Note that if have
17197 been expanding the earlier code, the symbol may be
17198 defined in what appears to be an earlier frag. FIXME:
17199 This doesn't handle the fr_subtype field, which specifies
17200 a maximum number of bytes to skip when doing an
17201 alignment. */
17202 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17203 {
17204 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17205 {
17206 if (stretch < 0)
17207 stretch = - ((- stretch)
17208 & ~ ((1 << (int) f->fr_offset) - 1));
17209 else
17210 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17211 if (stretch == 0)
17212 break;
17213 }
17214 }
17215 if (f != NULL)
17216 val += stretch;
17217 }
17218
17219 addr = fragp->fr_address + fragp->fr_fix;
17220
17221 /* The base address rules are complicated. The base address of
17222 a branch is the following instruction. The base address of a
17223 PC relative load or add is the instruction itself, but if it
17224 is in a delay slot (in which case it can not be extended) use
17225 the address of the instruction whose delay slot it is in. */
17226 if (pcrel_op->include_isa_bit)
17227 {
17228 addr += 2;
17229
17230 /* If we are currently assuming that this frag should be
17231 extended, then, the current address is two bytes
17232 higher. */
17233 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17234 addr += 2;
17235
17236 /* Ignore the low bit in the target, since it will be set
17237 for a text label. */
17238 val &= -2;
17239 }
17240 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17241 addr -= 4;
17242 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17243 addr -= 2;
17244
17245 val -= addr & -(1 << pcrel_op->align_log2);
17246
17247 /* If any of the shifted bits are set, we must use an extended
17248 opcode. If the address depends on the size of this
17249 instruction, this can lead to a loop, so we arrange to always
17250 use an extended opcode. */
17251 if ((val & ((1 << operand->shift) - 1)) != 0)
17252 {
17253 fragp->fr_subtype =
17254 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17255 return 1;
17256 }
17257
17258 /* If we are about to mark a frag as extended because the value
17259 is precisely the next value above maxtiny, then there is a
17260 chance of an infinite loop as in the following code:
17261 la $4,foo
17262 .skip 1020
17263 .align 2
17264 foo:
17265 In this case when the la is extended, foo is 0x3fc bytes
17266 away, so the la can be shrunk, but then foo is 0x400 away, so
17267 the la must be extended. To avoid this loop, we mark the
17268 frag as extended if it was small, and is about to become
17269 extended with the next value above maxtiny. */
17270 maxtiny = mips_int_operand_max (operand);
17271 if (val == maxtiny + (1 << operand->shift)
17272 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17273 {
17274 fragp->fr_subtype =
17275 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17276 return 1;
17277 }
17278 }
17279
17280 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17281 }
17282
17283 /* Compute the length of a branch sequence, and adjust the
17284 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17285 worst-case length is computed, with UPDATE being used to indicate
17286 whether an unconditional (-1), branch-likely (+1) or regular (0)
17287 branch is to be computed. */
17288 static int
17289 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17290 {
17291 bfd_boolean toofar;
17292 int length;
17293
17294 if (fragp
17295 && S_IS_DEFINED (fragp->fr_symbol)
17296 && !S_IS_WEAK (fragp->fr_symbol)
17297 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17298 {
17299 addressT addr;
17300 offsetT val;
17301
17302 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17303
17304 addr = fragp->fr_address + fragp->fr_fix + 4;
17305
17306 val -= addr;
17307
17308 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17309 }
17310 else
17311 /* If the symbol is not defined or it's in a different segment,
17312 we emit the long sequence. */
17313 toofar = TRUE;
17314
17315 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17316 fragp->fr_subtype
17317 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17318 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17319 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17320 RELAX_BRANCH_LINK (fragp->fr_subtype),
17321 toofar);
17322
17323 length = 4;
17324 if (toofar)
17325 {
17326 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17327 length += 8;
17328
17329 if (mips_pic != NO_PIC)
17330 {
17331 /* Additional space for PIC loading of target address. */
17332 length += 8;
17333 if (mips_opts.isa == ISA_MIPS1)
17334 /* Additional space for $at-stabilizing nop. */
17335 length += 4;
17336 }
17337
17338 /* If branch is conditional. */
17339 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17340 length += 8;
17341 }
17342
17343 return length;
17344 }
17345
17346 /* Get a FRAG's branch instruction delay slot size, either from the
17347 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17348 or SHORT_INSN_SIZE otherwise. */
17349
17350 static int
17351 frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17352 {
17353 char *buf = fragp->fr_literal + fragp->fr_fix;
17354
17355 if (al)
17356 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17357 else
17358 return short_insn_size;
17359 }
17360
17361 /* Compute the length of a branch sequence, and adjust the
17362 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17363 worst-case length is computed, with UPDATE being used to indicate
17364 whether an unconditional (-1), or regular (0) branch is to be
17365 computed. */
17366
17367 static int
17368 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17369 {
17370 bfd_boolean insn32 = TRUE;
17371 bfd_boolean nods = TRUE;
17372 bfd_boolean al = TRUE;
17373 int short_insn_size;
17374 bfd_boolean toofar;
17375 int length;
17376
17377 if (fragp)
17378 {
17379 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17380 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17381 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17382 }
17383 short_insn_size = insn32 ? 4 : 2;
17384
17385 if (fragp
17386 && S_IS_DEFINED (fragp->fr_symbol)
17387 && !S_IS_WEAK (fragp->fr_symbol)
17388 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17389 {
17390 addressT addr;
17391 offsetT val;
17392
17393 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17394 /* Ignore the low bit in the target, since it will be set
17395 for a text label. */
17396 if ((val & 1) != 0)
17397 --val;
17398
17399 addr = fragp->fr_address + fragp->fr_fix + 4;
17400
17401 val -= addr;
17402
17403 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17404 }
17405 else
17406 /* If the symbol is not defined or it's in a different segment,
17407 we emit the long sequence. */
17408 toofar = TRUE;
17409
17410 if (fragp && update
17411 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17412 fragp->fr_subtype = (toofar
17413 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17414 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17415
17416 length = 4;
17417 if (toofar)
17418 {
17419 bfd_boolean compact_known = fragp != NULL;
17420 bfd_boolean compact = FALSE;
17421 bfd_boolean uncond;
17422
17423 if (fragp)
17424 {
17425 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17426 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17427 }
17428 else
17429 uncond = update < 0;
17430
17431 /* If label is out of range, we turn branch <br>:
17432
17433 <br> label # 4 bytes
17434 0:
17435
17436 into:
17437
17438 j label # 4 bytes
17439 nop # 2/4 bytes if
17440 # compact && (!PIC || insn32)
17441 0:
17442 */
17443 if ((mips_pic == NO_PIC || insn32) && (!compact_known || compact))
17444 length += short_insn_size;
17445
17446 /* If assembling PIC code, we further turn:
17447
17448 j label # 4 bytes
17449
17450 into:
17451
17452 lw/ld at, %got(label)(gp) # 4 bytes
17453 d/addiu at, %lo(label) # 4 bytes
17454 jr/c at # 2/4 bytes
17455 */
17456 if (mips_pic != NO_PIC)
17457 length += 4 + short_insn_size;
17458
17459 /* Add an extra nop if the jump has no compact form and we need
17460 to fill the delay slot. */
17461 if ((mips_pic == NO_PIC || al) && nods)
17462 length += (fragp
17463 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17464 : short_insn_size);
17465
17466 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17467
17468 <brneg> 0f # 4 bytes
17469 nop # 2/4 bytes if !compact
17470 */
17471 if (!uncond)
17472 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
17473 }
17474 else if (nods)
17475 {
17476 /* Add an extra nop to fill the delay slot. */
17477 gas_assert (fragp);
17478 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17479 }
17480
17481 return length;
17482 }
17483
17484 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17485 bit accordingly. */
17486
17487 static int
17488 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17489 {
17490 bfd_boolean toofar;
17491
17492 if (fragp
17493 && S_IS_DEFINED (fragp->fr_symbol)
17494 && !S_IS_WEAK (fragp->fr_symbol)
17495 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17496 {
17497 addressT addr;
17498 offsetT val;
17499 int type;
17500
17501 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17502 /* Ignore the low bit in the target, since it will be set
17503 for a text label. */
17504 if ((val & 1) != 0)
17505 --val;
17506
17507 /* Assume this is a 2-byte branch. */
17508 addr = fragp->fr_address + fragp->fr_fix + 2;
17509
17510 /* We try to avoid the infinite loop by not adding 2 more bytes for
17511 long branches. */
17512
17513 val -= addr;
17514
17515 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17516 if (type == 'D')
17517 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17518 else if (type == 'E')
17519 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17520 else
17521 abort ();
17522 }
17523 else
17524 /* If the symbol is not defined or it's in a different segment,
17525 we emit a normal 32-bit branch. */
17526 toofar = TRUE;
17527
17528 if (fragp && update
17529 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17530 fragp->fr_subtype
17531 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17532 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17533
17534 if (toofar)
17535 return 4;
17536
17537 return 2;
17538 }
17539
17540 /* Estimate the size of a frag before relaxing. Unless this is the
17541 mips16, we are not really relaxing here, and the final size is
17542 encoded in the subtype information. For the mips16, we have to
17543 decide whether we are using an extended opcode or not. */
17544
17545 int
17546 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17547 {
17548 int change;
17549
17550 if (RELAX_BRANCH_P (fragp->fr_subtype))
17551 {
17552
17553 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17554
17555 return fragp->fr_var;
17556 }
17557
17558 if (RELAX_MIPS16_P (fragp->fr_subtype))
17559 /* We don't want to modify the EXTENDED bit here; it might get us
17560 into infinite loops. We change it only in mips_relax_frag(). */
17561 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17562
17563 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17564 {
17565 int length = 4;
17566
17567 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17568 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17569 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17570 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17571 fragp->fr_var = length;
17572
17573 return length;
17574 }
17575
17576 if (mips_pic == NO_PIC)
17577 change = nopic_need_relax (fragp->fr_symbol, 0);
17578 else if (mips_pic == SVR4_PIC)
17579 change = pic_need_relax (fragp->fr_symbol, segtype);
17580 else if (mips_pic == VXWORKS_PIC)
17581 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17582 change = 0;
17583 else
17584 abort ();
17585
17586 if (change)
17587 {
17588 fragp->fr_subtype |= RELAX_USE_SECOND;
17589 return -RELAX_FIRST (fragp->fr_subtype);
17590 }
17591 else
17592 return -RELAX_SECOND (fragp->fr_subtype);
17593 }
17594
17595 /* This is called to see whether a reloc against a defined symbol
17596 should be converted into a reloc against a section. */
17597
17598 int
17599 mips_fix_adjustable (fixS *fixp)
17600 {
17601 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17602 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17603 return 0;
17604
17605 if (fixp->fx_addsy == NULL)
17606 return 1;
17607
17608 /* Allow relocs used for EH tables. */
17609 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17610 return 1;
17611
17612 /* If symbol SYM is in a mergeable section, relocations of the form
17613 SYM + 0 can usually be made section-relative. The mergeable data
17614 is then identified by the section offset rather than by the symbol.
17615
17616 However, if we're generating REL LO16 relocations, the offset is split
17617 between the LO16 and parterning high part relocation. The linker will
17618 need to recalculate the complete offset in order to correctly identify
17619 the merge data.
17620
17621 The linker has traditionally not looked for the parterning high part
17622 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17623 placed anywhere. Rather than break backwards compatibility by changing
17624 this, it seems better not to force the issue, and instead keep the
17625 original symbol. This will work with either linker behavior. */
17626 if ((lo16_reloc_p (fixp->fx_r_type)
17627 || reloc_needs_lo_p (fixp->fx_r_type))
17628 && HAVE_IN_PLACE_ADDENDS
17629 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17630 return 0;
17631
17632 /* There is no place to store an in-place offset for JALR relocations. */
17633 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17634 return 0;
17635
17636 /* Likewise an in-range offset of limited PC-relative relocations may
17637 overflow the in-place relocatable field if recalculated against the
17638 start address of the symbol's containing section.
17639
17640 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17641 section relative to allow linker relaxations to be performed later on. */
17642 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17643 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17644 return 0;
17645
17646 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17647 to a floating-point stub. The same is true for non-R_MIPS16_26
17648 relocations against MIPS16 functions; in this case, the stub becomes
17649 the function's canonical address.
17650
17651 Floating-point stubs are stored in unique .mips16.call.* or
17652 .mips16.fn.* sections. If a stub T for function F is in section S,
17653 the first relocation in section S must be against F; this is how the
17654 linker determines the target function. All relocations that might
17655 resolve to T must also be against F. We therefore have the following
17656 restrictions, which are given in an intentionally-redundant way:
17657
17658 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17659 symbols.
17660
17661 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17662 if that stub might be used.
17663
17664 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17665 symbols.
17666
17667 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17668 that stub might be used.
17669
17670 There is a further restriction:
17671
17672 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17673 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
17674 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17675 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17676 against MIPS16 or microMIPS symbols because we need to keep the
17677 MIPS16 or microMIPS symbol for the purpose of mode mismatch
17678 detection and JAL or BAL to JALX instruction conversion in the
17679 linker.
17680
17681 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17682 against a MIPS16 symbol. We deal with (5) by additionally leaving
17683 alone any jump and branch relocations against a microMIPS symbol.
17684
17685 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17686 relocation against some symbol R, no relocation against R may be
17687 reduced. (Note that this deals with (2) as well as (1) because
17688 relocations against global symbols will never be reduced on ELF
17689 targets.) This approach is a little simpler than trying to detect
17690 stub sections, and gives the "all or nothing" per-symbol consistency
17691 that we have for MIPS16 symbols. */
17692 if (fixp->fx_subsy == NULL
17693 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17694 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17695 && (jmp_reloc_p (fixp->fx_r_type)
17696 || b_reloc_p (fixp->fx_r_type)))
17697 || *symbol_get_tc (fixp->fx_addsy)))
17698 return 0;
17699
17700 return 1;
17701 }
17702
17703 /* Translate internal representation of relocation info to BFD target
17704 format. */
17705
17706 arelent **
17707 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17708 {
17709 static arelent *retval[4];
17710 arelent *reloc;
17711 bfd_reloc_code_real_type code;
17712
17713 memset (retval, 0, sizeof(retval));
17714 reloc = retval[0] = XCNEW (arelent);
17715 reloc->sym_ptr_ptr = XNEW (asymbol *);
17716 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17717 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17718
17719 if (fixp->fx_pcrel)
17720 {
17721 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17722 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
17723 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17724 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17725 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17726 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17727 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17728 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17729 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17730 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17731 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17732 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17733
17734 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17735 Relocations want only the symbol offset. */
17736 switch (fixp->fx_r_type)
17737 {
17738 case BFD_RELOC_MIPS_18_PCREL_S3:
17739 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17740 break;
17741 default:
17742 reloc->addend = fixp->fx_addnumber + reloc->address;
17743 break;
17744 }
17745 }
17746 else if (HAVE_IN_PLACE_ADDENDS
17747 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17748 && (read_compressed_insn (fixp->fx_frag->fr_literal
17749 + fixp->fx_where, 4) >> 26) == 0x3c)
17750 {
17751 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17752 addend accordingly. */
17753 reloc->addend = fixp->fx_addnumber >> 1;
17754 }
17755 else
17756 reloc->addend = fixp->fx_addnumber;
17757
17758 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17759 entry to be used in the relocation's section offset. */
17760 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17761 {
17762 reloc->address = reloc->addend;
17763 reloc->addend = 0;
17764 }
17765
17766 code = fixp->fx_r_type;
17767
17768 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17769 if (reloc->howto == NULL)
17770 {
17771 as_bad_where (fixp->fx_file, fixp->fx_line,
17772 _("cannot represent %s relocation in this object file"
17773 " format"),
17774 bfd_get_reloc_code_name (code));
17775 retval[0] = NULL;
17776 }
17777
17778 return retval;
17779 }
17780
17781 /* Relax a machine dependent frag. This returns the amount by which
17782 the current size of the frag should change. */
17783
17784 int
17785 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17786 {
17787 if (RELAX_BRANCH_P (fragp->fr_subtype))
17788 {
17789 offsetT old_var = fragp->fr_var;
17790
17791 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17792
17793 return fragp->fr_var - old_var;
17794 }
17795
17796 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17797 {
17798 offsetT old_var = fragp->fr_var;
17799 offsetT new_var = 4;
17800
17801 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17802 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17803 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17804 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17805 fragp->fr_var = new_var;
17806
17807 return new_var - old_var;
17808 }
17809
17810 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17811 return 0;
17812
17813 if (mips16_extended_frag (fragp, sec, stretch))
17814 {
17815 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17816 return 0;
17817 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17818 return 2;
17819 }
17820 else
17821 {
17822 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17823 return 0;
17824 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17825 return -2;
17826 }
17827
17828 return 0;
17829 }
17830
17831 /* Convert a machine dependent frag. */
17832
17833 void
17834 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17835 {
17836 if (RELAX_BRANCH_P (fragp->fr_subtype))
17837 {
17838 char *buf;
17839 unsigned long insn;
17840 expressionS exp;
17841 fixS *fixp;
17842
17843 buf = fragp->fr_literal + fragp->fr_fix;
17844 insn = read_insn (buf);
17845
17846 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17847 {
17848 /* We generate a fixup instead of applying it right now
17849 because, if there are linker relaxations, we're going to
17850 need the relocations. */
17851 exp.X_op = O_symbol;
17852 exp.X_add_symbol = fragp->fr_symbol;
17853 exp.X_add_number = fragp->fr_offset;
17854
17855 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17856 BFD_RELOC_16_PCREL_S2);
17857 fixp->fx_file = fragp->fr_file;
17858 fixp->fx_line = fragp->fr_line;
17859
17860 buf = write_insn (buf, insn);
17861 }
17862 else
17863 {
17864 int i;
17865
17866 as_warn_where (fragp->fr_file, fragp->fr_line,
17867 _("relaxed out-of-range branch into a jump"));
17868
17869 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17870 goto uncond;
17871
17872 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17873 {
17874 /* Reverse the branch. */
17875 switch ((insn >> 28) & 0xf)
17876 {
17877 case 4:
17878 if ((insn & 0xff000000) == 0x47000000
17879 || (insn & 0xff600000) == 0x45600000)
17880 {
17881 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17882 reversed by tweaking bit 23. */
17883 insn ^= 0x00800000;
17884 }
17885 else
17886 {
17887 /* bc[0-3][tf]l? instructions can have the condition
17888 reversed by tweaking a single TF bit, and their
17889 opcodes all have 0x4???????. */
17890 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17891 insn ^= 0x00010000;
17892 }
17893 break;
17894
17895 case 0:
17896 /* bltz 0x04000000 bgez 0x04010000
17897 bltzal 0x04100000 bgezal 0x04110000 */
17898 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17899 insn ^= 0x00010000;
17900 break;
17901
17902 case 1:
17903 /* beq 0x10000000 bne 0x14000000
17904 blez 0x18000000 bgtz 0x1c000000 */
17905 insn ^= 0x04000000;
17906 break;
17907
17908 default:
17909 abort ();
17910 }
17911 }
17912
17913 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17914 {
17915 /* Clear the and-link bit. */
17916 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17917
17918 /* bltzal 0x04100000 bgezal 0x04110000
17919 bltzall 0x04120000 bgezall 0x04130000 */
17920 insn &= ~0x00100000;
17921 }
17922
17923 /* Branch over the branch (if the branch was likely) or the
17924 full jump (not likely case). Compute the offset from the
17925 current instruction to branch to. */
17926 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17927 i = 16;
17928 else
17929 {
17930 /* How many bytes in instructions we've already emitted? */
17931 i = buf - fragp->fr_literal - fragp->fr_fix;
17932 /* How many bytes in instructions from here to the end? */
17933 i = fragp->fr_var - i;
17934 }
17935 /* Convert to instruction count. */
17936 i >>= 2;
17937 /* Branch counts from the next instruction. */
17938 i--;
17939 insn |= i;
17940 /* Branch over the jump. */
17941 buf = write_insn (buf, insn);
17942
17943 /* nop */
17944 buf = write_insn (buf, 0);
17945
17946 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17947 {
17948 /* beql $0, $0, 2f */
17949 insn = 0x50000000;
17950 /* Compute the PC offset from the current instruction to
17951 the end of the variable frag. */
17952 /* How many bytes in instructions we've already emitted? */
17953 i = buf - fragp->fr_literal - fragp->fr_fix;
17954 /* How many bytes in instructions from here to the end? */
17955 i = fragp->fr_var - i;
17956 /* Convert to instruction count. */
17957 i >>= 2;
17958 /* Don't decrement i, because we want to branch over the
17959 delay slot. */
17960 insn |= i;
17961
17962 buf = write_insn (buf, insn);
17963 buf = write_insn (buf, 0);
17964 }
17965
17966 uncond:
17967 if (mips_pic == NO_PIC)
17968 {
17969 /* j or jal. */
17970 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17971 ? 0x0c000000 : 0x08000000);
17972 exp.X_op = O_symbol;
17973 exp.X_add_symbol = fragp->fr_symbol;
17974 exp.X_add_number = fragp->fr_offset;
17975
17976 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17977 FALSE, BFD_RELOC_MIPS_JMP);
17978 fixp->fx_file = fragp->fr_file;
17979 fixp->fx_line = fragp->fr_line;
17980
17981 buf = write_insn (buf, insn);
17982 }
17983 else
17984 {
17985 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17986
17987 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17988 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17989 insn |= at << OP_SH_RT;
17990 exp.X_op = O_symbol;
17991 exp.X_add_symbol = fragp->fr_symbol;
17992 exp.X_add_number = fragp->fr_offset;
17993
17994 if (fragp->fr_offset)
17995 {
17996 exp.X_add_symbol = make_expr_symbol (&exp);
17997 exp.X_add_number = 0;
17998 }
17999
18000 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18001 FALSE, BFD_RELOC_MIPS_GOT16);
18002 fixp->fx_file = fragp->fr_file;
18003 fixp->fx_line = fragp->fr_line;
18004
18005 buf = write_insn (buf, insn);
18006
18007 if (mips_opts.isa == ISA_MIPS1)
18008 /* nop */
18009 buf = write_insn (buf, 0);
18010
18011 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18012 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18013 insn |= at << OP_SH_RS | at << OP_SH_RT;
18014
18015 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18016 FALSE, BFD_RELOC_LO16);
18017 fixp->fx_file = fragp->fr_file;
18018 fixp->fx_line = fragp->fr_line;
18019
18020 buf = write_insn (buf, insn);
18021
18022 /* j(al)r $at. */
18023 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18024 insn = 0x0000f809;
18025 else
18026 insn = 0x00000008;
18027 insn |= at << OP_SH_RS;
18028
18029 buf = write_insn (buf, insn);
18030 }
18031 }
18032
18033 fragp->fr_fix += fragp->fr_var;
18034 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18035 return;
18036 }
18037
18038 /* Relax microMIPS branches. */
18039 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18040 {
18041 char *buf = fragp->fr_literal + fragp->fr_fix;
18042 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18043 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18044 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18045 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18046 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18047 bfd_boolean short_ds;
18048 unsigned long insn;
18049 expressionS exp;
18050 fixS *fixp;
18051
18052 exp.X_op = O_symbol;
18053 exp.X_add_symbol = fragp->fr_symbol;
18054 exp.X_add_number = fragp->fr_offset;
18055
18056 fragp->fr_fix += fragp->fr_var;
18057
18058 /* Handle 16-bit branches that fit or are forced to fit. */
18059 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18060 {
18061 /* We generate a fixup instead of applying it right now,
18062 because if there is linker relaxation, we're going to
18063 need the relocations. */
18064 if (type == 'D')
18065 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18066 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18067 else if (type == 'E')
18068 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18069 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18070 else
18071 abort ();
18072
18073 fixp->fx_file = fragp->fr_file;
18074 fixp->fx_line = fragp->fr_line;
18075
18076 /* These relocations can have an addend that won't fit in
18077 2 octets. */
18078 fixp->fx_no_overflow = 1;
18079
18080 return;
18081 }
18082
18083 /* Handle 32-bit branches that fit or are forced to fit. */
18084 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18085 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18086 {
18087 /* We generate a fixup instead of applying it right now,
18088 because if there is linker relaxation, we're going to
18089 need the relocations. */
18090 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18091 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18092 fixp->fx_file = fragp->fr_file;
18093 fixp->fx_line = fragp->fr_line;
18094
18095 if (type == 0)
18096 {
18097 insn = read_compressed_insn (buf, 4);
18098 buf += 4;
18099
18100 if (nods)
18101 {
18102 /* Check the short-delay-slot bit. */
18103 if (!al || (insn & 0x02000000) != 0)
18104 buf = write_compressed_insn (buf, 0x0c00, 2);
18105 else
18106 buf = write_compressed_insn (buf, 0x00000000, 4);
18107 }
18108
18109 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18110 return;
18111 }
18112 }
18113
18114 /* Relax 16-bit branches to 32-bit branches. */
18115 if (type != 0)
18116 {
18117 insn = read_compressed_insn (buf, 2);
18118
18119 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18120 insn = 0x94000000; /* beq */
18121 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18122 {
18123 unsigned long regno;
18124
18125 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18126 regno = micromips_to_32_reg_d_map [regno];
18127 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18128 insn |= regno << MICROMIPSOP_SH_RS;
18129 }
18130 else
18131 abort ();
18132
18133 /* Nothing else to do, just write it out. */
18134 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18135 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18136 {
18137 buf = write_compressed_insn (buf, insn, 4);
18138 if (nods)
18139 buf = write_compressed_insn (buf, 0x0c00, 2);
18140 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18141 return;
18142 }
18143 }
18144 else
18145 insn = read_compressed_insn (buf, 4);
18146
18147 /* Relax 32-bit branches to a sequence of instructions. */
18148 as_warn_where (fragp->fr_file, fragp->fr_line,
18149 _("relaxed out-of-range branch into a jump"));
18150
18151 /* Set the short-delay-slot bit. */
18152 short_ds = !al || (insn & 0x02000000) != 0;
18153
18154 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18155 {
18156 symbolS *l;
18157
18158 /* Reverse the branch. */
18159 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18160 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18161 insn ^= 0x20000000;
18162 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18163 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18164 || (insn & 0xffe00000) == 0x40800000 /* blez */
18165 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18166 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18167 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18168 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18169 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18170 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18171 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18172 insn ^= 0x00400000;
18173 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18174 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18175 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18176 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18177 insn ^= 0x00200000;
18178 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18179 BNZ.df */
18180 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18181 BNZ.V */
18182 insn ^= 0x00800000;
18183 else
18184 abort ();
18185
18186 if (al)
18187 {
18188 /* Clear the and-link and short-delay-slot bits. */
18189 gas_assert ((insn & 0xfda00000) == 0x40200000);
18190
18191 /* bltzal 0x40200000 bgezal 0x40600000 */
18192 /* bltzals 0x42200000 bgezals 0x42600000 */
18193 insn &= ~0x02200000;
18194 }
18195
18196 /* Make a label at the end for use with the branch. */
18197 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18198 micromips_label_inc ();
18199 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18200
18201 /* Refer to it. */
18202 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18203 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18204 fixp->fx_file = fragp->fr_file;
18205 fixp->fx_line = fragp->fr_line;
18206
18207 /* Branch over the jump. */
18208 buf = write_compressed_insn (buf, insn, 4);
18209
18210 if (!compact)
18211 {
18212 /* nop */
18213 if (insn32)
18214 buf = write_compressed_insn (buf, 0x00000000, 4);
18215 else
18216 buf = write_compressed_insn (buf, 0x0c00, 2);
18217 }
18218 }
18219
18220 if (mips_pic == NO_PIC)
18221 {
18222 unsigned long jal = (short_ds || nods
18223 ? 0x74000000 : 0xf4000000); /* jal/s */
18224
18225 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18226 insn = al ? jal : 0xd4000000;
18227
18228 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18229 BFD_RELOC_MICROMIPS_JMP);
18230 fixp->fx_file = fragp->fr_file;
18231 fixp->fx_line = fragp->fr_line;
18232
18233 buf = write_compressed_insn (buf, insn, 4);
18234
18235 if (compact || nods)
18236 {
18237 /* nop */
18238 if (insn32)
18239 buf = write_compressed_insn (buf, 0x00000000, 4);
18240 else
18241 buf = write_compressed_insn (buf, 0x0c00, 2);
18242 }
18243 }
18244 else
18245 {
18246 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18247
18248 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18249 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18250 insn |= at << MICROMIPSOP_SH_RT;
18251
18252 if (exp.X_add_number)
18253 {
18254 exp.X_add_symbol = make_expr_symbol (&exp);
18255 exp.X_add_number = 0;
18256 }
18257
18258 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18259 BFD_RELOC_MICROMIPS_GOT16);
18260 fixp->fx_file = fragp->fr_file;
18261 fixp->fx_line = fragp->fr_line;
18262
18263 buf = write_compressed_insn (buf, insn, 4);
18264
18265 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18266 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18267 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18268
18269 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18270 BFD_RELOC_MICROMIPS_LO16);
18271 fixp->fx_file = fragp->fr_file;
18272 fixp->fx_line = fragp->fr_line;
18273
18274 buf = write_compressed_insn (buf, insn, 4);
18275
18276 if (insn32)
18277 {
18278 /* jr/jalr $at */
18279 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18280 insn |= at << MICROMIPSOP_SH_RS;
18281
18282 buf = write_compressed_insn (buf, insn, 4);
18283
18284 if (compact || nods)
18285 /* nop */
18286 buf = write_compressed_insn (buf, 0x00000000, 4);
18287 }
18288 else
18289 {
18290 /* jr/jrc/jalr/jalrs $at */
18291 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18292 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18293
18294 insn = al ? jalr : jr;
18295 insn |= at << MICROMIPSOP_SH_MJ;
18296
18297 buf = write_compressed_insn (buf, insn, 2);
18298 if (al && nods)
18299 {
18300 /* nop */
18301 if (short_ds)
18302 buf = write_compressed_insn (buf, 0x0c00, 2);
18303 else
18304 buf = write_compressed_insn (buf, 0x00000000, 4);
18305 }
18306 }
18307 }
18308
18309 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18310 return;
18311 }
18312
18313 if (RELAX_MIPS16_P (fragp->fr_subtype))
18314 {
18315 int type;
18316 const struct mips_int_operand *operand;
18317 offsetT val;
18318 char *buf;
18319 unsigned int user_length, length;
18320 bfd_boolean need_reloc;
18321 unsigned long insn;
18322 bfd_boolean ext;
18323 segT symsec;
18324
18325 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18326 operand = mips16_immed_operand (type, FALSE);
18327
18328 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18329 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18330
18331 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18332 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18333 || (operand->root.type == OP_PCREL
18334 ? asec != symsec
18335 : !bfd_is_abs_section (symsec)));
18336
18337 if (operand->root.type == OP_PCREL)
18338 {
18339 const struct mips_pcrel_operand *pcrel_op;
18340 addressT addr;
18341
18342 pcrel_op = (const struct mips_pcrel_operand *) operand;
18343 addr = fragp->fr_address + fragp->fr_fix;
18344
18345 /* The rules for the base address of a PC relative reloc are
18346 complicated; see mips16_extended_frag. */
18347 if (pcrel_op->include_isa_bit)
18348 {
18349 if (!need_reloc)
18350 {
18351 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18352 as_bad_where (fragp->fr_file, fragp->fr_line,
18353 _("branch to a symbol in another ISA mode"));
18354 else if ((fragp->fr_offset & 0x1) != 0)
18355 as_bad_where (fragp->fr_file, fragp->fr_line,
18356 _("branch to misaligned address (0x%lx)"),
18357 (long) val);
18358 }
18359 addr += 2;
18360 if (ext)
18361 addr += 2;
18362 /* Ignore the low bit in the target, since it will be
18363 set for a text label. */
18364 val &= -2;
18365 }
18366 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18367 addr -= 4;
18368 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18369 addr -= 2;
18370
18371 addr &= -(1 << pcrel_op->align_log2);
18372 val -= addr;
18373
18374 /* Make sure the section winds up with the alignment we have
18375 assumed. */
18376 if (operand->shift > 0)
18377 record_alignment (asec, operand->shift);
18378 }
18379
18380 if (ext
18381 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18382 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18383 as_warn_where (fragp->fr_file, fragp->fr_line,
18384 _("extended instruction in delay slot"));
18385
18386 buf = fragp->fr_literal + fragp->fr_fix;
18387
18388 insn = read_compressed_insn (buf, 2);
18389 if (ext)
18390 insn |= MIPS16_EXTEND;
18391
18392 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18393 user_length = 4;
18394 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18395 user_length = 2;
18396 else
18397 user_length = 0;
18398
18399 if (need_reloc)
18400 {
18401 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18402 expressionS exp;
18403 fixS *fixp;
18404
18405 switch (type)
18406 {
18407 case 'p':
18408 case 'q':
18409 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18410 break;
18411 default:
18412 as_bad_where (fragp->fr_file, fragp->fr_line,
18413 _("unsupported relocation"));
18414 break;
18415 }
18416 if (reloc == BFD_RELOC_NONE)
18417 ;
18418 else if (ext)
18419 {
18420 exp.X_op = O_symbol;
18421 exp.X_add_symbol = fragp->fr_symbol;
18422 exp.X_add_number = fragp->fr_offset;
18423
18424 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp,
18425 TRUE, reloc);
18426
18427 fixp->fx_file = fragp->fr_file;
18428 fixp->fx_line = fragp->fr_line;
18429
18430 /* These relocations can have an addend that won't fit
18431 in 2 octets. */
18432 fixp->fx_no_overflow = 1;
18433 }
18434 else
18435 as_bad_where (fragp->fr_file, fragp->fr_line,
18436 _("invalid unextended operand value"));
18437 }
18438 else
18439 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18440 BFD_RELOC_UNUSED, val, user_length, &insn);
18441
18442 length = (ext ? 4 : 2);
18443 gas_assert (mips16_opcode_length (insn) == length);
18444 write_compressed_insn (buf, insn, length);
18445 fragp->fr_fix += length;
18446 }
18447 else
18448 {
18449 relax_substateT subtype = fragp->fr_subtype;
18450 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18451 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18452 int first, second;
18453 fixS *fixp;
18454
18455 first = RELAX_FIRST (subtype);
18456 second = RELAX_SECOND (subtype);
18457 fixp = (fixS *) fragp->fr_opcode;
18458
18459 /* If the delay slot chosen does not match the size of the instruction,
18460 then emit a warning. */
18461 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18462 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18463 {
18464 relax_substateT s;
18465 const char *msg;
18466
18467 s = subtype & (RELAX_DELAY_SLOT_16BIT
18468 | RELAX_DELAY_SLOT_SIZE_FIRST
18469 | RELAX_DELAY_SLOT_SIZE_SECOND);
18470 msg = macro_warning (s);
18471 if (msg != NULL)
18472 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18473 subtype &= ~s;
18474 }
18475
18476 /* Possibly emit a warning if we've chosen the longer option. */
18477 if (use_second == second_longer)
18478 {
18479 relax_substateT s;
18480 const char *msg;
18481
18482 s = (subtype
18483 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18484 msg = macro_warning (s);
18485 if (msg != NULL)
18486 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18487 subtype &= ~s;
18488 }
18489
18490 /* Go through all the fixups for the first sequence. Disable them
18491 (by marking them as done) if we're going to use the second
18492 sequence instead. */
18493 while (fixp
18494 && fixp->fx_frag == fragp
18495 && fixp->fx_where < fragp->fr_fix - second)
18496 {
18497 if (subtype & RELAX_USE_SECOND)
18498 fixp->fx_done = 1;
18499 fixp = fixp->fx_next;
18500 }
18501
18502 /* Go through the fixups for the second sequence. Disable them if
18503 we're going to use the first sequence, otherwise adjust their
18504 addresses to account for the relaxation. */
18505 while (fixp && fixp->fx_frag == fragp)
18506 {
18507 if (subtype & RELAX_USE_SECOND)
18508 fixp->fx_where -= first;
18509 else
18510 fixp->fx_done = 1;
18511 fixp = fixp->fx_next;
18512 }
18513
18514 /* Now modify the frag contents. */
18515 if (subtype & RELAX_USE_SECOND)
18516 {
18517 char *start;
18518
18519 start = fragp->fr_literal + fragp->fr_fix - first - second;
18520 memmove (start, start + first, second);
18521 fragp->fr_fix -= first;
18522 }
18523 else
18524 fragp->fr_fix -= second;
18525 }
18526 }
18527
18528 /* This function is called after the relocs have been generated.
18529 We've been storing mips16 text labels as odd. Here we convert them
18530 back to even for the convenience of the debugger. */
18531
18532 void
18533 mips_frob_file_after_relocs (void)
18534 {
18535 asymbol **syms;
18536 unsigned int count, i;
18537
18538 syms = bfd_get_outsymbols (stdoutput);
18539 count = bfd_get_symcount (stdoutput);
18540 for (i = 0; i < count; i++, syms++)
18541 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18542 && ((*syms)->value & 1) != 0)
18543 {
18544 (*syms)->value &= ~1;
18545 /* If the symbol has an odd size, it was probably computed
18546 incorrectly, so adjust that as well. */
18547 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18548 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18549 }
18550 }
18551
18552 /* This function is called whenever a label is defined, including fake
18553 labels instantiated off the dot special symbol. It is used when
18554 handling branch delays; if a branch has a label, we assume we cannot
18555 move it. This also bumps the value of the symbol by 1 in compressed
18556 code. */
18557
18558 static void
18559 mips_record_label (symbolS *sym)
18560 {
18561 segment_info_type *si = seg_info (now_seg);
18562 struct insn_label_list *l;
18563
18564 if (free_insn_labels == NULL)
18565 l = XNEW (struct insn_label_list);
18566 else
18567 {
18568 l = free_insn_labels;
18569 free_insn_labels = l->next;
18570 }
18571
18572 l->label = sym;
18573 l->next = si->label_list;
18574 si->label_list = l;
18575 }
18576
18577 /* This function is called as tc_frob_label() whenever a label is defined
18578 and adds a DWARF-2 record we only want for true labels. */
18579
18580 void
18581 mips_define_label (symbolS *sym)
18582 {
18583 mips_record_label (sym);
18584 dwarf2_emit_label (sym);
18585 }
18586
18587 /* This function is called by tc_new_dot_label whenever a new dot symbol
18588 is defined. */
18589
18590 void
18591 mips_add_dot_label (symbolS *sym)
18592 {
18593 mips_record_label (sym);
18594 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18595 mips_compressed_mark_label (sym);
18596 }
18597 \f
18598 /* Converting ASE flags from internal to .MIPS.abiflags values. */
18599 static unsigned int
18600 mips_convert_ase_flags (int ase)
18601 {
18602 unsigned int ext_ases = 0;
18603
18604 if (ase & ASE_DSP)
18605 ext_ases |= AFL_ASE_DSP;
18606 if (ase & ASE_DSPR2)
18607 ext_ases |= AFL_ASE_DSPR2;
18608 if (ase & ASE_DSPR3)
18609 ext_ases |= AFL_ASE_DSPR3;
18610 if (ase & ASE_EVA)
18611 ext_ases |= AFL_ASE_EVA;
18612 if (ase & ASE_MCU)
18613 ext_ases |= AFL_ASE_MCU;
18614 if (ase & ASE_MDMX)
18615 ext_ases |= AFL_ASE_MDMX;
18616 if (ase & ASE_MIPS3D)
18617 ext_ases |= AFL_ASE_MIPS3D;
18618 if (ase & ASE_MT)
18619 ext_ases |= AFL_ASE_MT;
18620 if (ase & ASE_SMARTMIPS)
18621 ext_ases |= AFL_ASE_SMARTMIPS;
18622 if (ase & ASE_VIRT)
18623 ext_ases |= AFL_ASE_VIRT;
18624 if (ase & ASE_MSA)
18625 ext_ases |= AFL_ASE_MSA;
18626 if (ase & ASE_XPA)
18627 ext_ases |= AFL_ASE_XPA;
18628
18629 return ext_ases;
18630 }
18631 /* Some special processing for a MIPS ELF file. */
18632
18633 void
18634 mips_elf_final_processing (void)
18635 {
18636 int fpabi;
18637 Elf_Internal_ABIFlags_v0 flags;
18638
18639 flags.version = 0;
18640 flags.isa_rev = 0;
18641 switch (file_mips_opts.isa)
18642 {
18643 case INSN_ISA1:
18644 flags.isa_level = 1;
18645 break;
18646 case INSN_ISA2:
18647 flags.isa_level = 2;
18648 break;
18649 case INSN_ISA3:
18650 flags.isa_level = 3;
18651 break;
18652 case INSN_ISA4:
18653 flags.isa_level = 4;
18654 break;
18655 case INSN_ISA5:
18656 flags.isa_level = 5;
18657 break;
18658 case INSN_ISA32:
18659 flags.isa_level = 32;
18660 flags.isa_rev = 1;
18661 break;
18662 case INSN_ISA32R2:
18663 flags.isa_level = 32;
18664 flags.isa_rev = 2;
18665 break;
18666 case INSN_ISA32R3:
18667 flags.isa_level = 32;
18668 flags.isa_rev = 3;
18669 break;
18670 case INSN_ISA32R5:
18671 flags.isa_level = 32;
18672 flags.isa_rev = 5;
18673 break;
18674 case INSN_ISA32R6:
18675 flags.isa_level = 32;
18676 flags.isa_rev = 6;
18677 break;
18678 case INSN_ISA64:
18679 flags.isa_level = 64;
18680 flags.isa_rev = 1;
18681 break;
18682 case INSN_ISA64R2:
18683 flags.isa_level = 64;
18684 flags.isa_rev = 2;
18685 break;
18686 case INSN_ISA64R3:
18687 flags.isa_level = 64;
18688 flags.isa_rev = 3;
18689 break;
18690 case INSN_ISA64R5:
18691 flags.isa_level = 64;
18692 flags.isa_rev = 5;
18693 break;
18694 case INSN_ISA64R6:
18695 flags.isa_level = 64;
18696 flags.isa_rev = 6;
18697 break;
18698 }
18699
18700 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18701 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18702 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18703 : (file_mips_opts.fp == 64) ? AFL_REG_64
18704 : AFL_REG_32;
18705 flags.cpr2_size = AFL_REG_NONE;
18706 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18707 Tag_GNU_MIPS_ABI_FP);
18708 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18709 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18710 if (file_ase_mips16)
18711 flags.ases |= AFL_ASE_MIPS16;
18712 if (file_ase_micromips)
18713 flags.ases |= AFL_ASE_MICROMIPS;
18714 flags.flags1 = 0;
18715 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18716 || file_mips_opts.fp == 64)
18717 && file_mips_opts.oddspreg)
18718 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18719 flags.flags2 = 0;
18720
18721 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18722 ((Elf_External_ABIFlags_v0 *)
18723 mips_flags_frag));
18724
18725 /* Write out the register information. */
18726 if (mips_abi != N64_ABI)
18727 {
18728 Elf32_RegInfo s;
18729
18730 s.ri_gprmask = mips_gprmask;
18731 s.ri_cprmask[0] = mips_cprmask[0];
18732 s.ri_cprmask[1] = mips_cprmask[1];
18733 s.ri_cprmask[2] = mips_cprmask[2];
18734 s.ri_cprmask[3] = mips_cprmask[3];
18735 /* The gp_value field is set by the MIPS ELF backend. */
18736
18737 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18738 ((Elf32_External_RegInfo *)
18739 mips_regmask_frag));
18740 }
18741 else
18742 {
18743 Elf64_Internal_RegInfo s;
18744
18745 s.ri_gprmask = mips_gprmask;
18746 s.ri_pad = 0;
18747 s.ri_cprmask[0] = mips_cprmask[0];
18748 s.ri_cprmask[1] = mips_cprmask[1];
18749 s.ri_cprmask[2] = mips_cprmask[2];
18750 s.ri_cprmask[3] = mips_cprmask[3];
18751 /* The gp_value field is set by the MIPS ELF backend. */
18752
18753 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18754 ((Elf64_External_RegInfo *)
18755 mips_regmask_frag));
18756 }
18757
18758 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18759 sort of BFD interface for this. */
18760 if (mips_any_noreorder)
18761 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18762 if (mips_pic != NO_PIC)
18763 {
18764 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18765 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18766 }
18767 if (mips_abicalls)
18768 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18769
18770 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18771 defined at present; this might need to change in future. */
18772 if (file_ase_mips16)
18773 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18774 if (file_ase_micromips)
18775 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18776 if (file_mips_opts.ase & ASE_MDMX)
18777 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18778
18779 /* Set the MIPS ELF ABI flags. */
18780 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18781 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18782 else if (mips_abi == O64_ABI)
18783 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18784 else if (mips_abi == EABI_ABI)
18785 {
18786 if (file_mips_opts.gp == 64)
18787 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18788 else
18789 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18790 }
18791 else if (mips_abi == N32_ABI)
18792 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18793
18794 /* Nothing to do for N64_ABI. */
18795
18796 if (mips_32bitmode)
18797 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18798
18799 if (mips_nan2008 == 1)
18800 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18801
18802 /* 32 bit code with 64 bit FP registers. */
18803 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18804 Tag_GNU_MIPS_ABI_FP);
18805 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18806 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18807 }
18808 \f
18809 typedef struct proc {
18810 symbolS *func_sym;
18811 symbolS *func_end_sym;
18812 unsigned long reg_mask;
18813 unsigned long reg_offset;
18814 unsigned long fpreg_mask;
18815 unsigned long fpreg_offset;
18816 unsigned long frame_offset;
18817 unsigned long frame_reg;
18818 unsigned long pc_reg;
18819 } procS;
18820
18821 static procS cur_proc;
18822 static procS *cur_proc_ptr;
18823 static int numprocs;
18824
18825 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18826 as "2", and a normal nop as "0". */
18827
18828 #define NOP_OPCODE_MIPS 0
18829 #define NOP_OPCODE_MIPS16 1
18830 #define NOP_OPCODE_MICROMIPS 2
18831
18832 char
18833 mips_nop_opcode (void)
18834 {
18835 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18836 return NOP_OPCODE_MICROMIPS;
18837 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18838 return NOP_OPCODE_MIPS16;
18839 else
18840 return NOP_OPCODE_MIPS;
18841 }
18842
18843 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18844 32-bit microMIPS NOPs here (if applicable). */
18845
18846 void
18847 mips_handle_align (fragS *fragp)
18848 {
18849 char nop_opcode;
18850 char *p;
18851 int bytes, size, excess;
18852 valueT opcode;
18853
18854 if (fragp->fr_type != rs_align_code)
18855 return;
18856
18857 p = fragp->fr_literal + fragp->fr_fix;
18858 nop_opcode = *p;
18859 switch (nop_opcode)
18860 {
18861 case NOP_OPCODE_MICROMIPS:
18862 opcode = micromips_nop32_insn.insn_opcode;
18863 size = 4;
18864 break;
18865 case NOP_OPCODE_MIPS16:
18866 opcode = mips16_nop_insn.insn_opcode;
18867 size = 2;
18868 break;
18869 case NOP_OPCODE_MIPS:
18870 default:
18871 opcode = nop_insn.insn_opcode;
18872 size = 4;
18873 break;
18874 }
18875
18876 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18877 excess = bytes % size;
18878
18879 /* Handle the leading part if we're not inserting a whole number of
18880 instructions, and make it the end of the fixed part of the frag.
18881 Try to fit in a short microMIPS NOP if applicable and possible,
18882 and use zeroes otherwise. */
18883 gas_assert (excess < 4);
18884 fragp->fr_fix += excess;
18885 switch (excess)
18886 {
18887 case 3:
18888 *p++ = '\0';
18889 /* Fall through. */
18890 case 2:
18891 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18892 {
18893 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18894 break;
18895 }
18896 *p++ = '\0';
18897 /* Fall through. */
18898 case 1:
18899 *p++ = '\0';
18900 /* Fall through. */
18901 case 0:
18902 break;
18903 }
18904
18905 md_number_to_chars (p, opcode, size);
18906 fragp->fr_var = size;
18907 }
18908
18909 static long
18910 get_number (void)
18911 {
18912 int negative = 0;
18913 long val = 0;
18914
18915 if (*input_line_pointer == '-')
18916 {
18917 ++input_line_pointer;
18918 negative = 1;
18919 }
18920 if (!ISDIGIT (*input_line_pointer))
18921 as_bad (_("expected simple number"));
18922 if (input_line_pointer[0] == '0')
18923 {
18924 if (input_line_pointer[1] == 'x')
18925 {
18926 input_line_pointer += 2;
18927 while (ISXDIGIT (*input_line_pointer))
18928 {
18929 val <<= 4;
18930 val |= hex_value (*input_line_pointer++);
18931 }
18932 return negative ? -val : val;
18933 }
18934 else
18935 {
18936 ++input_line_pointer;
18937 while (ISDIGIT (*input_line_pointer))
18938 {
18939 val <<= 3;
18940 val |= *input_line_pointer++ - '0';
18941 }
18942 return negative ? -val : val;
18943 }
18944 }
18945 if (!ISDIGIT (*input_line_pointer))
18946 {
18947 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18948 *input_line_pointer, *input_line_pointer);
18949 as_warn (_("invalid number"));
18950 return -1;
18951 }
18952 while (ISDIGIT (*input_line_pointer))
18953 {
18954 val *= 10;
18955 val += *input_line_pointer++ - '0';
18956 }
18957 return negative ? -val : val;
18958 }
18959
18960 /* The .file directive; just like the usual .file directive, but there
18961 is an initial number which is the ECOFF file index. In the non-ECOFF
18962 case .file implies DWARF-2. */
18963
18964 static void
18965 s_mips_file (int x ATTRIBUTE_UNUSED)
18966 {
18967 static int first_file_directive = 0;
18968
18969 if (ECOFF_DEBUGGING)
18970 {
18971 get_number ();
18972 s_app_file (0);
18973 }
18974 else
18975 {
18976 char *filename;
18977
18978 filename = dwarf2_directive_file (0);
18979
18980 /* Versions of GCC up to 3.1 start files with a ".file"
18981 directive even for stabs output. Make sure that this
18982 ".file" is handled. Note that you need a version of GCC
18983 after 3.1 in order to support DWARF-2 on MIPS. */
18984 if (filename != NULL && ! first_file_directive)
18985 {
18986 (void) new_logical_line (filename, -1);
18987 s_app_file_string (filename, 0);
18988 }
18989 first_file_directive = 1;
18990 }
18991 }
18992
18993 /* The .loc directive, implying DWARF-2. */
18994
18995 static void
18996 s_mips_loc (int x ATTRIBUTE_UNUSED)
18997 {
18998 if (!ECOFF_DEBUGGING)
18999 dwarf2_directive_loc (0);
19000 }
19001
19002 /* The .end directive. */
19003
19004 static void
19005 s_mips_end (int x ATTRIBUTE_UNUSED)
19006 {
19007 symbolS *p;
19008
19009 /* Following functions need their own .frame and .cprestore directives. */
19010 mips_frame_reg_valid = 0;
19011 mips_cprestore_valid = 0;
19012
19013 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19014 {
19015 p = get_symbol ();
19016 demand_empty_rest_of_line ();
19017 }
19018 else
19019 p = NULL;
19020
19021 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19022 as_warn (_(".end not in text section"));
19023
19024 if (!cur_proc_ptr)
19025 {
19026 as_warn (_(".end directive without a preceding .ent directive"));
19027 demand_empty_rest_of_line ();
19028 return;
19029 }
19030
19031 if (p != NULL)
19032 {
19033 gas_assert (S_GET_NAME (p));
19034 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19035 as_warn (_(".end symbol does not match .ent symbol"));
19036
19037 if (debug_type == DEBUG_STABS)
19038 stabs_generate_asm_endfunc (S_GET_NAME (p),
19039 S_GET_NAME (p));
19040 }
19041 else
19042 as_warn (_(".end directive missing or unknown symbol"));
19043
19044 /* Create an expression to calculate the size of the function. */
19045 if (p && cur_proc_ptr)
19046 {
19047 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19048 expressionS *exp = XNEW (expressionS);
19049
19050 obj->size = exp;
19051 exp->X_op = O_subtract;
19052 exp->X_add_symbol = symbol_temp_new_now ();
19053 exp->X_op_symbol = p;
19054 exp->X_add_number = 0;
19055
19056 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19057 }
19058
19059 /* Generate a .pdr section. */
19060 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19061 {
19062 segT saved_seg = now_seg;
19063 subsegT saved_subseg = now_subseg;
19064 expressionS exp;
19065 char *fragp;
19066
19067 #ifdef md_flush_pending_output
19068 md_flush_pending_output ();
19069 #endif
19070
19071 gas_assert (pdr_seg);
19072 subseg_set (pdr_seg, 0);
19073
19074 /* Write the symbol. */
19075 exp.X_op = O_symbol;
19076 exp.X_add_symbol = p;
19077 exp.X_add_number = 0;
19078 emit_expr (&exp, 4);
19079
19080 fragp = frag_more (7 * 4);
19081
19082 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19083 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19084 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19085 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19086 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19087 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19088 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19089
19090 subseg_set (saved_seg, saved_subseg);
19091 }
19092
19093 cur_proc_ptr = NULL;
19094 }
19095
19096 /* The .aent and .ent directives. */
19097
19098 static void
19099 s_mips_ent (int aent)
19100 {
19101 symbolS *symbolP;
19102
19103 symbolP = get_symbol ();
19104 if (*input_line_pointer == ',')
19105 ++input_line_pointer;
19106 SKIP_WHITESPACE ();
19107 if (ISDIGIT (*input_line_pointer)
19108 || *input_line_pointer == '-')
19109 get_number ();
19110
19111 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19112 as_warn (_(".ent or .aent not in text section"));
19113
19114 if (!aent && cur_proc_ptr)
19115 as_warn (_("missing .end"));
19116
19117 if (!aent)
19118 {
19119 /* This function needs its own .frame and .cprestore directives. */
19120 mips_frame_reg_valid = 0;
19121 mips_cprestore_valid = 0;
19122
19123 cur_proc_ptr = &cur_proc;
19124 memset (cur_proc_ptr, '\0', sizeof (procS));
19125
19126 cur_proc_ptr->func_sym = symbolP;
19127
19128 ++numprocs;
19129
19130 if (debug_type == DEBUG_STABS)
19131 stabs_generate_asm_func (S_GET_NAME (symbolP),
19132 S_GET_NAME (symbolP));
19133 }
19134
19135 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19136
19137 demand_empty_rest_of_line ();
19138 }
19139
19140 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19141 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19142 s_mips_frame is used so that we can set the PDR information correctly.
19143 We can't use the ecoff routines because they make reference to the ecoff
19144 symbol table (in the mdebug section). */
19145
19146 static void
19147 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19148 {
19149 if (ECOFF_DEBUGGING)
19150 s_ignore (ignore);
19151 else
19152 {
19153 long val;
19154
19155 if (cur_proc_ptr == (procS *) NULL)
19156 {
19157 as_warn (_(".frame outside of .ent"));
19158 demand_empty_rest_of_line ();
19159 return;
19160 }
19161
19162 cur_proc_ptr->frame_reg = tc_get_register (1);
19163
19164 SKIP_WHITESPACE ();
19165 if (*input_line_pointer++ != ','
19166 || get_absolute_expression_and_terminator (&val) != ',')
19167 {
19168 as_warn (_("bad .frame directive"));
19169 --input_line_pointer;
19170 demand_empty_rest_of_line ();
19171 return;
19172 }
19173
19174 cur_proc_ptr->frame_offset = val;
19175 cur_proc_ptr->pc_reg = tc_get_register (0);
19176
19177 demand_empty_rest_of_line ();
19178 }
19179 }
19180
19181 /* The .fmask and .mask directives. If the mdebug section is present
19182 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19183 embedded targets, s_mips_mask is used so that we can set the PDR
19184 information correctly. We can't use the ecoff routines because they
19185 make reference to the ecoff symbol table (in the mdebug section). */
19186
19187 static void
19188 s_mips_mask (int reg_type)
19189 {
19190 if (ECOFF_DEBUGGING)
19191 s_ignore (reg_type);
19192 else
19193 {
19194 long mask, off;
19195
19196 if (cur_proc_ptr == (procS *) NULL)
19197 {
19198 as_warn (_(".mask/.fmask outside of .ent"));
19199 demand_empty_rest_of_line ();
19200 return;
19201 }
19202
19203 if (get_absolute_expression_and_terminator (&mask) != ',')
19204 {
19205 as_warn (_("bad .mask/.fmask directive"));
19206 --input_line_pointer;
19207 demand_empty_rest_of_line ();
19208 return;
19209 }
19210
19211 off = get_absolute_expression ();
19212
19213 if (reg_type == 'F')
19214 {
19215 cur_proc_ptr->fpreg_mask = mask;
19216 cur_proc_ptr->fpreg_offset = off;
19217 }
19218 else
19219 {
19220 cur_proc_ptr->reg_mask = mask;
19221 cur_proc_ptr->reg_offset = off;
19222 }
19223
19224 demand_empty_rest_of_line ();
19225 }
19226 }
19227
19228 /* A table describing all the processors gas knows about. Names are
19229 matched in the order listed.
19230
19231 To ease comparison, please keep this table in the same order as
19232 gcc's mips_cpu_info_table[]. */
19233 static const struct mips_cpu_info mips_cpu_info_table[] =
19234 {
19235 /* Entries for generic ISAs */
19236 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19237 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19238 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19239 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19240 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19241 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19242 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19243 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19244 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19245 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19246 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19247 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19248 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19249 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19250 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19251
19252 /* MIPS I */
19253 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19254 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19255 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19256
19257 /* MIPS II */
19258 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19259
19260 /* MIPS III */
19261 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19262 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19263 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19264 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19265 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19266 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19267 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19268 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19269 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19270 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19271 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19272 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19273 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19274 /* ST Microelectronics Loongson 2E and 2F cores */
19275 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19276 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
19277
19278 /* MIPS IV */
19279 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19280 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19281 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19282 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19283 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19284 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19285 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19286 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19287 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19288 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19289 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19290 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19291 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19292 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19293 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19294
19295 /* MIPS 32 */
19296 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19297 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19298 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19299 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19300
19301 /* MIPS 32 Release 2 */
19302 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19303 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19304 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19305 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19306 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19307 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19308 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19309 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19310 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19311 ISA_MIPS32R2, CPU_MIPS32R2 },
19312 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19313 ISA_MIPS32R2, CPU_MIPS32R2 },
19314 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19315 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19316 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19317 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19318 /* Deprecated forms of the above. */
19319 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19320 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19321 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19322 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19323 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19324 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19325 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19326 /* Deprecated forms of the above. */
19327 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19328 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19329 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19330 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19331 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19332 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19333 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19334 /* Deprecated forms of the above. */
19335 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19336 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19337 /* 34Kn is a 34kc without DSP. */
19338 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19339 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19340 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19341 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19342 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19343 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19344 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19345 /* Deprecated forms of the above. */
19346 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19347 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19348 /* 1004K cores are multiprocessor versions of the 34K. */
19349 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19350 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19351 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19352 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19353 /* interaptiv is the new name for 1004kf */
19354 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19355 /* M5100 family */
19356 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19357 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19358 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
19359 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
19360
19361 /* MIPS 64 */
19362 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19363 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19364 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19365 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19366
19367 /* Broadcom SB-1 CPU core */
19368 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19369 /* Broadcom SB-1A CPU core */
19370 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19371
19372 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
19373
19374 /* MIPS 64 Release 2 */
19375
19376 /* Cavium Networks Octeon CPU core */
19377 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19378 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19379 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19380 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
19381
19382 /* RMI Xlr */
19383 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19384
19385 /* Broadcom XLP.
19386 XLP is mostly like XLR, with the prominent exception that it is
19387 MIPS64R2 rather than MIPS64. */
19388 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19389
19390 /* MIPS 64 Release 6 */
19391 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19392 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19393
19394 /* End marker */
19395 { NULL, 0, 0, 0, 0 }
19396 };
19397
19398
19399 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19400 with a final "000" replaced by "k". Ignore case.
19401
19402 Note: this function is shared between GCC and GAS. */
19403
19404 static bfd_boolean
19405 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19406 {
19407 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19408 given++, canonical++;
19409
19410 return ((*given == 0 && *canonical == 0)
19411 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19412 }
19413
19414
19415 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19416 CPU name. We've traditionally allowed a lot of variation here.
19417
19418 Note: this function is shared between GCC and GAS. */
19419
19420 static bfd_boolean
19421 mips_matching_cpu_name_p (const char *canonical, const char *given)
19422 {
19423 /* First see if the name matches exactly, or with a final "000"
19424 turned into "k". */
19425 if (mips_strict_matching_cpu_name_p (canonical, given))
19426 return TRUE;
19427
19428 /* If not, try comparing based on numerical designation alone.
19429 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19430 if (TOLOWER (*given) == 'r')
19431 given++;
19432 if (!ISDIGIT (*given))
19433 return FALSE;
19434
19435 /* Skip over some well-known prefixes in the canonical name,
19436 hoping to find a number there too. */
19437 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19438 canonical += 2;
19439 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19440 canonical += 2;
19441 else if (TOLOWER (canonical[0]) == 'r')
19442 canonical += 1;
19443
19444 return mips_strict_matching_cpu_name_p (canonical, given);
19445 }
19446
19447
19448 /* Parse an option that takes the name of a processor as its argument.
19449 OPTION is the name of the option and CPU_STRING is the argument.
19450 Return the corresponding processor enumeration if the CPU_STRING is
19451 recognized, otherwise report an error and return null.
19452
19453 A similar function exists in GCC. */
19454
19455 static const struct mips_cpu_info *
19456 mips_parse_cpu (const char *option, const char *cpu_string)
19457 {
19458 const struct mips_cpu_info *p;
19459
19460 /* 'from-abi' selects the most compatible architecture for the given
19461 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19462 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19463 version. Look first at the -mgp options, if given, otherwise base
19464 the choice on MIPS_DEFAULT_64BIT.
19465
19466 Treat NO_ABI like the EABIs. One reason to do this is that the
19467 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19468 architecture. This code picks MIPS I for 'mips' and MIPS III for
19469 'mips64', just as we did in the days before 'from-abi'. */
19470 if (strcasecmp (cpu_string, "from-abi") == 0)
19471 {
19472 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19473 return mips_cpu_info_from_isa (ISA_MIPS1);
19474
19475 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19476 return mips_cpu_info_from_isa (ISA_MIPS3);
19477
19478 if (file_mips_opts.gp >= 0)
19479 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
19480 ? ISA_MIPS1 : ISA_MIPS3);
19481
19482 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19483 ? ISA_MIPS3
19484 : ISA_MIPS1);
19485 }
19486
19487 /* 'default' has traditionally been a no-op. Probably not very useful. */
19488 if (strcasecmp (cpu_string, "default") == 0)
19489 return 0;
19490
19491 for (p = mips_cpu_info_table; p->name != 0; p++)
19492 if (mips_matching_cpu_name_p (p->name, cpu_string))
19493 return p;
19494
19495 as_bad (_("bad value (%s) for %s"), cpu_string, option);
19496 return 0;
19497 }
19498
19499 /* Return the canonical processor information for ISA (a member of the
19500 ISA_MIPS* enumeration). */
19501
19502 static const struct mips_cpu_info *
19503 mips_cpu_info_from_isa (int isa)
19504 {
19505 int i;
19506
19507 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19508 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19509 && isa == mips_cpu_info_table[i].isa)
19510 return (&mips_cpu_info_table[i]);
19511
19512 return NULL;
19513 }
19514
19515 static const struct mips_cpu_info *
19516 mips_cpu_info_from_arch (int arch)
19517 {
19518 int i;
19519
19520 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19521 if (arch == mips_cpu_info_table[i].cpu)
19522 return (&mips_cpu_info_table[i]);
19523
19524 return NULL;
19525 }
19526 \f
19527 static void
19528 show (FILE *stream, const char *string, int *col_p, int *first_p)
19529 {
19530 if (*first_p)
19531 {
19532 fprintf (stream, "%24s", "");
19533 *col_p = 24;
19534 }
19535 else
19536 {
19537 fprintf (stream, ", ");
19538 *col_p += 2;
19539 }
19540
19541 if (*col_p + strlen (string) > 72)
19542 {
19543 fprintf (stream, "\n%24s", "");
19544 *col_p = 24;
19545 }
19546
19547 fprintf (stream, "%s", string);
19548 *col_p += strlen (string);
19549
19550 *first_p = 0;
19551 }
19552
19553 void
19554 md_show_usage (FILE *stream)
19555 {
19556 int column, first;
19557 size_t i;
19558
19559 fprintf (stream, _("\
19560 MIPS options:\n\
19561 -EB generate big endian output\n\
19562 -EL generate little endian output\n\
19563 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19564 -G NUM allow referencing objects up to NUM bytes\n\
19565 implicitly with the gp register [default 8]\n"));
19566 fprintf (stream, _("\
19567 -mips1 generate MIPS ISA I instructions\n\
19568 -mips2 generate MIPS ISA II instructions\n\
19569 -mips3 generate MIPS ISA III instructions\n\
19570 -mips4 generate MIPS ISA IV instructions\n\
19571 -mips5 generate MIPS ISA V instructions\n\
19572 -mips32 generate MIPS32 ISA instructions\n\
19573 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19574 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
19575 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
19576 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
19577 -mips64 generate MIPS64 ISA instructions\n\
19578 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19579 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
19580 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
19581 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
19582 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19583
19584 first = 1;
19585
19586 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19587 show (stream, mips_cpu_info_table[i].name, &column, &first);
19588 show (stream, "from-abi", &column, &first);
19589 fputc ('\n', stream);
19590
19591 fprintf (stream, _("\
19592 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19593 -no-mCPU don't generate code specific to CPU.\n\
19594 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19595
19596 first = 1;
19597
19598 show (stream, "3900", &column, &first);
19599 show (stream, "4010", &column, &first);
19600 show (stream, "4100", &column, &first);
19601 show (stream, "4650", &column, &first);
19602 fputc ('\n', stream);
19603
19604 fprintf (stream, _("\
19605 -mips16 generate mips16 instructions\n\
19606 -no-mips16 do not generate mips16 instructions\n"));
19607 fprintf (stream, _("\
19608 -mmicromips generate microMIPS instructions\n\
19609 -mno-micromips do not generate microMIPS instructions\n"));
19610 fprintf (stream, _("\
19611 -msmartmips generate smartmips instructions\n\
19612 -mno-smartmips do not generate smartmips instructions\n"));
19613 fprintf (stream, _("\
19614 -mdsp generate DSP instructions\n\
19615 -mno-dsp do not generate DSP instructions\n"));
19616 fprintf (stream, _("\
19617 -mdspr2 generate DSP R2 instructions\n\
19618 -mno-dspr2 do not generate DSP R2 instructions\n"));
19619 fprintf (stream, _("\
19620 -mdspr3 generate DSP R3 instructions\n\
19621 -mno-dspr3 do not generate DSP R3 instructions\n"));
19622 fprintf (stream, _("\
19623 -mmt generate MT instructions\n\
19624 -mno-mt do not generate MT instructions\n"));
19625 fprintf (stream, _("\
19626 -mmcu generate MCU instructions\n\
19627 -mno-mcu do not generate MCU instructions\n"));
19628 fprintf (stream, _("\
19629 -mmsa generate MSA instructions\n\
19630 -mno-msa do not generate MSA instructions\n"));
19631 fprintf (stream, _("\
19632 -mxpa generate eXtended Physical Address (XPA) instructions\n\
19633 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19634 fprintf (stream, _("\
19635 -mvirt generate Virtualization instructions\n\
19636 -mno-virt do not generate Virtualization instructions\n"));
19637 fprintf (stream, _("\
19638 -minsn32 only generate 32-bit microMIPS instructions\n\
19639 -mno-insn32 generate all microMIPS instructions\n"));
19640 fprintf (stream, _("\
19641 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19642 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19643 -mfix-vr4120 work around certain VR4120 errata\n\
19644 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19645 -mfix-24k insert a nop after ERET and DERET instructions\n\
19646 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19647 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19648 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19649 -msym32 assume all symbols have 32-bit values\n\
19650 -O0 remove unneeded NOPs, do not swap branches\n\
19651 -O remove unneeded NOPs and swap branches\n\
19652 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19653 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19654 fprintf (stream, _("\
19655 -mhard-float allow floating-point instructions\n\
19656 -msoft-float do not allow floating-point instructions\n\
19657 -msingle-float only allow 32-bit floating-point operations\n\
19658 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19659 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19660 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19661 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19662
19663 first = 1;
19664
19665 show (stream, "legacy", &column, &first);
19666 show (stream, "2008", &column, &first);
19667
19668 fputc ('\n', stream);
19669
19670 fprintf (stream, _("\
19671 -KPIC, -call_shared generate SVR4 position independent code\n\
19672 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19673 -mvxworks-pic generate VxWorks position independent code\n\
19674 -non_shared do not generate code that can operate with DSOs\n\
19675 -xgot assume a 32 bit GOT\n\
19676 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19677 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19678 position dependent (non shared) code\n\
19679 -mabi=ABI create ABI conformant object file for:\n"));
19680
19681 first = 1;
19682
19683 show (stream, "32", &column, &first);
19684 show (stream, "o64", &column, &first);
19685 show (stream, "n32", &column, &first);
19686 show (stream, "64", &column, &first);
19687 show (stream, "eabi", &column, &first);
19688
19689 fputc ('\n', stream);
19690
19691 fprintf (stream, _("\
19692 -32 create o32 ABI object file (default)\n\
19693 -n32 create n32 ABI object file\n\
19694 -64 create 64 ABI object file\n"));
19695 }
19696
19697 #ifdef TE_IRIX
19698 enum dwarf2_format
19699 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19700 {
19701 if (HAVE_64BIT_SYMBOLS)
19702 return dwarf2_format_64bit_irix;
19703 else
19704 return dwarf2_format_32bit;
19705 }
19706 #endif
19707
19708 int
19709 mips_dwarf2_addr_size (void)
19710 {
19711 if (HAVE_64BIT_OBJECTS)
19712 return 8;
19713 else
19714 return 4;
19715 }
19716
19717 /* Standard calling conventions leave the CFA at SP on entry. */
19718 void
19719 mips_cfi_frame_initial_instructions (void)
19720 {
19721 cfi_add_CFA_def_cfa_register (SP);
19722 }
19723
19724 int
19725 tc_mips_regname_to_dw2regnum (char *regname)
19726 {
19727 unsigned int regnum = -1;
19728 unsigned int reg;
19729
19730 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19731 regnum = reg;
19732
19733 return regnum;
19734 }
19735
19736 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19737 Given a symbolic attribute NAME, return the proper integer value.
19738 Returns -1 if the attribute is not known. */
19739
19740 int
19741 mips_convert_symbolic_attribute (const char *name)
19742 {
19743 static const struct
19744 {
19745 const char * name;
19746 const int tag;
19747 }
19748 attribute_table[] =
19749 {
19750 #define T(tag) {#tag, tag}
19751 T (Tag_GNU_MIPS_ABI_FP),
19752 T (Tag_GNU_MIPS_ABI_MSA),
19753 #undef T
19754 };
19755 unsigned int i;
19756
19757 if (name == NULL)
19758 return -1;
19759
19760 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19761 if (streq (name, attribute_table[i].name))
19762 return attribute_table[i].tag;
19763
19764 return -1;
19765 }
19766
19767 void
19768 md_mips_end (void)
19769 {
19770 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19771
19772 mips_emit_delays ();
19773 if (cur_proc_ptr)
19774 as_warn (_("missing .end at end of assembly"));
19775
19776 /* Just in case no code was emitted, do the consistency check. */
19777 file_mips_check_options ();
19778
19779 /* Set a floating-point ABI if the user did not. */
19780 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19781 {
19782 /* Perform consistency checks on the floating-point ABI. */
19783 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19784 Tag_GNU_MIPS_ABI_FP);
19785 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19786 check_fpabi (fpabi);
19787 }
19788 else
19789 {
19790 /* Soft-float gets precedence over single-float, the two options should
19791 not be used together so this should not matter. */
19792 if (file_mips_opts.soft_float == 1)
19793 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19794 /* Single-float gets precedence over all double_float cases. */
19795 else if (file_mips_opts.single_float == 1)
19796 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19797 else
19798 {
19799 switch (file_mips_opts.fp)
19800 {
19801 case 32:
19802 if (file_mips_opts.gp == 32)
19803 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19804 break;
19805 case 0:
19806 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19807 break;
19808 case 64:
19809 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19810 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19811 else if (file_mips_opts.gp == 32)
19812 fpabi = Val_GNU_MIPS_ABI_FP_64;
19813 else
19814 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19815 break;
19816 }
19817 }
19818
19819 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19820 Tag_GNU_MIPS_ABI_FP, fpabi);
19821 }
19822 }
19823
19824 /* Returns the relocation type required for a particular CFI encoding. */
19825
19826 bfd_reloc_code_real_type
19827 mips_cfi_reloc_for_encoding (int encoding)
19828 {
19829 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19830 return BFD_RELOC_32_PCREL;
19831 else return BFD_RELOC_NONE;
19832 }