]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-mips.c
MIPS: Add Imagination interAptiv MR2 MIPS32r3 processor support
[thirdparty/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946
947 /* TRUE if checks are suppressed for invalid branches between ISA modes.
948 Needed for broken assembly produced by some GCC versions and some
949 sloppy code out there, where branches to data labels are present. */
950 static bfd_boolean mips_ignore_branch_isa;
951 \f
952 /* The expansion of many macros depends on the type of symbol that
953 they refer to. For example, when generating position-dependent code,
954 a macro that refers to a symbol may have two different expansions,
955 one which uses GP-relative addresses and one which uses absolute
956 addresses. When generating SVR4-style PIC, a macro may have
957 different expansions for local and global symbols.
958
959 We handle these situations by generating both sequences and putting
960 them in variant frags. In position-dependent code, the first sequence
961 will be the GP-relative one and the second sequence will be the
962 absolute one. In SVR4 PIC, the first sequence will be for global
963 symbols and the second will be for local symbols.
964
965 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
966 SECOND are the lengths of the two sequences in bytes. These fields
967 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
968 the subtype has the following flags:
969
970 RELAX_PIC
971 Set if generating PIC code.
972
973 RELAX_USE_SECOND
974 Set if it has been decided that we should use the second
975 sequence instead of the first.
976
977 RELAX_SECOND_LONGER
978 Set in the first variant frag if the macro's second implementation
979 is longer than its first. This refers to the macro as a whole,
980 not an individual relaxation.
981
982 RELAX_NOMACRO
983 Set in the first variant frag if the macro appeared in a .set nomacro
984 block and if one alternative requires a warning but the other does not.
985
986 RELAX_DELAY_SLOT
987 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
988 delay slot.
989
990 RELAX_DELAY_SLOT_16BIT
991 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
992 16-bit instruction.
993
994 RELAX_DELAY_SLOT_SIZE_FIRST
995 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
996 the macro is of the wrong size for the branch delay slot.
997
998 RELAX_DELAY_SLOT_SIZE_SECOND
999 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1000 the macro is of the wrong size for the branch delay slot.
1001
1002 The frag's "opcode" points to the first fixup for relaxable code.
1003
1004 Relaxable macros are generated using a sequence such as:
1005
1006 relax_start (SYMBOL);
1007 ... generate first expansion ...
1008 relax_switch ();
1009 ... generate second expansion ...
1010 relax_end ();
1011
1012 The code and fixups for the unwanted alternative are discarded
1013 by md_convert_frag. */
1014 #define RELAX_ENCODE(FIRST, SECOND, PIC) \
1015 (((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
1016
1017 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1018 #define RELAX_SECOND(X) ((X) & 0xff)
1019 #define RELAX_PIC(X) (((X) & 0x10000) != 0)
1020 #define RELAX_USE_SECOND 0x20000
1021 #define RELAX_SECOND_LONGER 0x40000
1022 #define RELAX_NOMACRO 0x80000
1023 #define RELAX_DELAY_SLOT 0x100000
1024 #define RELAX_DELAY_SLOT_16BIT 0x200000
1025 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
1026 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
1027
1028 /* Branch without likely bit. If label is out of range, we turn:
1029
1030 beq reg1, reg2, label
1031 delay slot
1032
1033 into
1034
1035 bne reg1, reg2, 0f
1036 nop
1037 j label
1038 0: delay slot
1039
1040 with the following opcode replacements:
1041
1042 beq <-> bne
1043 blez <-> bgtz
1044 bltz <-> bgez
1045 bc1f <-> bc1t
1046
1047 bltzal <-> bgezal (with jal label instead of j label)
1048
1049 Even though keeping the delay slot instruction in the delay slot of
1050 the branch would be more efficient, it would be very tricky to do
1051 correctly, because we'd have to introduce a variable frag *after*
1052 the delay slot instruction, and expand that instead. Let's do it
1053 the easy way for now, even if the branch-not-taken case now costs
1054 one additional instruction. Out-of-range branches are not supposed
1055 to be common, anyway.
1056
1057 Branch likely. If label is out of range, we turn:
1058
1059 beql reg1, reg2, label
1060 delay slot (annulled if branch not taken)
1061
1062 into
1063
1064 beql reg1, reg2, 1f
1065 nop
1066 beql $0, $0, 2f
1067 nop
1068 1: j[al] label
1069 delay slot (executed only if branch taken)
1070 2:
1071
1072 It would be possible to generate a shorter sequence by losing the
1073 likely bit, generating something like:
1074
1075 bne reg1, reg2, 0f
1076 nop
1077 j[al] label
1078 delay slot (executed only if branch taken)
1079 0:
1080
1081 beql -> bne
1082 bnel -> beq
1083 blezl -> bgtz
1084 bgtzl -> blez
1085 bltzl -> bgez
1086 bgezl -> bltz
1087 bc1fl -> bc1t
1088 bc1tl -> bc1f
1089
1090 bltzall -> bgezal (with jal label instead of j label)
1091 bgezall -> bltzal (ditto)
1092
1093
1094 but it's not clear that it would actually improve performance. */
1095 #define RELAX_BRANCH_ENCODE(at, pic, \
1096 uncond, likely, link, toofar) \
1097 ((relax_substateT) \
1098 (0xc0000000 \
1099 | ((at) & 0x1f) \
1100 | ((pic) ? 0x20 : 0) \
1101 | ((toofar) ? 0x40 : 0) \
1102 | ((link) ? 0x80 : 0) \
1103 | ((likely) ? 0x100 : 0) \
1104 | ((uncond) ? 0x200 : 0)))
1105 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1106 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
1107 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
1108 #define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
1109 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
1110 #define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
1111 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1112
1113 /* For mips16 code, we use an entirely different form of relaxation.
1114 mips16 supports two versions of most instructions which take
1115 immediate values: a small one which takes some small value, and a
1116 larger one which takes a 16 bit value. Since branches also follow
1117 this pattern, relaxing these values is required.
1118
1119 We can assemble both mips16 and normal MIPS code in a single
1120 object. Therefore, we need to support this type of relaxation at
1121 the same time that we support the relaxation described above. We
1122 use the high bit of the subtype field to distinguish these cases.
1123
1124 The information we store for this type of relaxation is the
1125 argument code found in the opcode file for this relocation, whether
1126 the user explicitly requested a small or extended form, and whether
1127 the relocation is in a jump or jal delay slot. That tells us the
1128 size of the value, and how it should be stored. We also store
1129 whether the fragment is considered to be extended or not. We also
1130 store whether this is known to be a branch to a different section,
1131 whether we have tried to relax this frag yet, and whether we have
1132 ever extended a PC relative fragment because of a shift count. */
1133 #define RELAX_MIPS16_ENCODE(type, e2, pic, sym32, nomacro, \
1134 small, ext, \
1135 dslot, jal_dslot) \
1136 (0x80000000 \
1137 | ((type) & 0xff) \
1138 | ((e2) ? 0x100 : 0) \
1139 | ((pic) ? 0x200 : 0) \
1140 | ((sym32) ? 0x400 : 0) \
1141 | ((nomacro) ? 0x800 : 0) \
1142 | ((small) ? 0x1000 : 0) \
1143 | ((ext) ? 0x2000 : 0) \
1144 | ((dslot) ? 0x4000 : 0) \
1145 | ((jal_dslot) ? 0x8000 : 0))
1146
1147 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1148 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1149 #define RELAX_MIPS16_E2(i) (((i) & 0x100) != 0)
1150 #define RELAX_MIPS16_PIC(i) (((i) & 0x200) != 0)
1151 #define RELAX_MIPS16_SYM32(i) (((i) & 0x400) != 0)
1152 #define RELAX_MIPS16_NOMACRO(i) (((i) & 0x800) != 0)
1153 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x1000) != 0)
1154 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x2000) != 0)
1155 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x4000) != 0)
1156 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x8000) != 0)
1157
1158 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x10000) != 0)
1159 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x10000)
1160 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x10000)
1161 #define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x20000) != 0)
1162 #define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x20000)
1163 #define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x20000)
1164 #define RELAX_MIPS16_MACRO(i) (((i) & 0x40000) != 0)
1165 #define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x40000)
1166 #define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x40000)
1167
1168 /* For microMIPS code, we use relaxation similar to one we use for
1169 MIPS16 code. Some instructions that take immediate values support
1170 two encodings: a small one which takes some small value, and a
1171 larger one which takes a 16 bit value. As some branches also follow
1172 this pattern, relaxing these values is required.
1173
1174 We can assemble both microMIPS and normal MIPS code in a single
1175 object. Therefore, we need to support this type of relaxation at
1176 the same time that we support the relaxation described above. We
1177 use one of the high bits of the subtype field to distinguish these
1178 cases.
1179
1180 The information we store for this type of relaxation is the argument
1181 code found in the opcode file for this relocation, the register
1182 selected as the assembler temporary, whether in the 32-bit
1183 instruction mode, whether the branch is unconditional, whether it is
1184 compact, whether there is no delay-slot instruction available to fill
1185 in, whether it stores the link address implicitly in $ra, whether
1186 relaxation of out-of-range 32-bit branches to a sequence of
1187 instructions is enabled, and whether the displacement of a branch is
1188 too large to fit as an immediate argument of a 16-bit and a 32-bit
1189 branch, respectively. */
1190 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
1191 uncond, compact, link, nods, \
1192 relax32, toofar16, toofar32) \
1193 (0x40000000 \
1194 | ((type) & 0xff) \
1195 | (((at) & 0x1f) << 8) \
1196 | ((insn32) ? 0x2000 : 0) \
1197 | ((pic) ? 0x4000 : 0) \
1198 | ((uncond) ? 0x8000 : 0) \
1199 | ((compact) ? 0x10000 : 0) \
1200 | ((link) ? 0x20000 : 0) \
1201 | ((nods) ? 0x40000 : 0) \
1202 | ((relax32) ? 0x80000 : 0) \
1203 | ((toofar16) ? 0x100000 : 0) \
1204 | ((toofar32) ? 0x200000 : 0))
1205 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1206 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1207 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1208 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1209 #define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
1210 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
1211 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
1212 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
1213 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
1214 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
1215
1216 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
1217 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
1218 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
1219 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
1220 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
1221 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
1222
1223 /* Sign-extend 16-bit value X. */
1224 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1225
1226 /* Is the given value a sign-extended 32-bit value? */
1227 #define IS_SEXT_32BIT_NUM(x) \
1228 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1229 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1230
1231 /* Is the given value a sign-extended 16-bit value? */
1232 #define IS_SEXT_16BIT_NUM(x) \
1233 (((x) &~ (offsetT) 0x7fff) == 0 \
1234 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1235
1236 /* Is the given value a sign-extended 12-bit value? */
1237 #define IS_SEXT_12BIT_NUM(x) \
1238 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1239
1240 /* Is the given value a sign-extended 9-bit value? */
1241 #define IS_SEXT_9BIT_NUM(x) \
1242 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1243
1244 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1245 #define IS_ZEXT_32BIT_NUM(x) \
1246 (((x) &~ (offsetT) 0xffffffff) == 0 \
1247 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1248
1249 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1250 SHIFT places. */
1251 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1252 (((STRUCT) >> (SHIFT)) & (MASK))
1253
1254 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1255 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1256 (!(MICROMIPS) \
1257 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1258 : EXTRACT_BITS ((INSN).insn_opcode, \
1259 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1260 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1261 EXTRACT_BITS ((INSN).insn_opcode, \
1262 MIPS16OP_MASK_##FIELD, \
1263 MIPS16OP_SH_##FIELD)
1264
1265 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1266 #define MIPS16_EXTEND (0xf000U << 16)
1267 \f
1268 /* Whether or not we are emitting a branch-likely macro. */
1269 static bfd_boolean emit_branch_likely_macro = FALSE;
1270
1271 /* Global variables used when generating relaxable macros. See the
1272 comment above RELAX_ENCODE for more details about how relaxation
1273 is used. */
1274 static struct {
1275 /* 0 if we're not emitting a relaxable macro.
1276 1 if we're emitting the first of the two relaxation alternatives.
1277 2 if we're emitting the second alternative. */
1278 int sequence;
1279
1280 /* The first relaxable fixup in the current frag. (In other words,
1281 the first fixup that refers to relaxable code.) */
1282 fixS *first_fixup;
1283
1284 /* sizes[0] says how many bytes of the first alternative are stored in
1285 the current frag. Likewise sizes[1] for the second alternative. */
1286 unsigned int sizes[2];
1287
1288 /* The symbol on which the choice of sequence depends. */
1289 symbolS *symbol;
1290 } mips_relax;
1291 \f
1292 /* Global variables used to decide whether a macro needs a warning. */
1293 static struct {
1294 /* True if the macro is in a branch delay slot. */
1295 bfd_boolean delay_slot_p;
1296
1297 /* Set to the length in bytes required if the macro is in a delay slot
1298 that requires a specific length of instruction, otherwise zero. */
1299 unsigned int delay_slot_length;
1300
1301 /* For relaxable macros, sizes[0] is the length of the first alternative
1302 in bytes and sizes[1] is the length of the second alternative.
1303 For non-relaxable macros, both elements give the length of the
1304 macro in bytes. */
1305 unsigned int sizes[2];
1306
1307 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1308 instruction of the first alternative in bytes and first_insn_sizes[1]
1309 is the length of the first instruction of the second alternative.
1310 For non-relaxable macros, both elements give the length of the first
1311 instruction in bytes.
1312
1313 Set to zero if we haven't yet seen the first instruction. */
1314 unsigned int first_insn_sizes[2];
1315
1316 /* For relaxable macros, insns[0] is the number of instructions for the
1317 first alternative and insns[1] is the number of instructions for the
1318 second alternative.
1319
1320 For non-relaxable macros, both elements give the number of
1321 instructions for the macro. */
1322 unsigned int insns[2];
1323
1324 /* The first variant frag for this macro. */
1325 fragS *first_frag;
1326 } mips_macro_warning;
1327 \f
1328 /* Prototypes for static functions. */
1329
1330 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1331
1332 static void append_insn
1333 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1334 bfd_boolean expansionp);
1335 static void mips_no_prev_insn (void);
1336 static void macro_build (expressionS *, const char *, const char *, ...);
1337 static void mips16_macro_build
1338 (expressionS *, const char *, const char *, va_list *);
1339 static void load_register (int, expressionS *, int);
1340 static void macro_start (void);
1341 static void macro_end (void);
1342 static void macro (struct mips_cl_insn *ip, char *str);
1343 static void mips16_macro (struct mips_cl_insn * ip);
1344 static void mips_ip (char *str, struct mips_cl_insn * ip);
1345 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1346 static unsigned long mips16_immed_extend (offsetT, unsigned int);
1347 static void mips16_immed
1348 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1349 unsigned int, unsigned long *);
1350 static size_t my_getSmallExpression
1351 (expressionS *, bfd_reloc_code_real_type *, char *);
1352 static void my_getExpression (expressionS *, char *);
1353 static void s_align (int);
1354 static void s_change_sec (int);
1355 static void s_change_section (int);
1356 static void s_cons (int);
1357 static void s_float_cons (int);
1358 static void s_mips_globl (int);
1359 static void s_option (int);
1360 static void s_mipsset (int);
1361 static void s_abicalls (int);
1362 static void s_cpload (int);
1363 static void s_cpsetup (int);
1364 static void s_cplocal (int);
1365 static void s_cprestore (int);
1366 static void s_cpreturn (int);
1367 static void s_dtprelword (int);
1368 static void s_dtpreldword (int);
1369 static void s_tprelword (int);
1370 static void s_tpreldword (int);
1371 static void s_gpvalue (int);
1372 static void s_gpword (int);
1373 static void s_gpdword (int);
1374 static void s_ehword (int);
1375 static void s_cpadd (int);
1376 static void s_insn (int);
1377 static void s_nan (int);
1378 static void s_module (int);
1379 static void s_mips_ent (int);
1380 static void s_mips_end (int);
1381 static void s_mips_frame (int);
1382 static void s_mips_mask (int reg_type);
1383 static void s_mips_stab (int);
1384 static void s_mips_weakext (int);
1385 static void s_mips_file (int);
1386 static void s_mips_loc (int);
1387 static bfd_boolean pic_need_relax (symbolS *);
1388 static int relaxed_branch_length (fragS *, asection *, int);
1389 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1390 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1391 static void file_mips_check_options (void);
1392
1393 /* Table and functions used to map between CPU/ISA names, and
1394 ISA levels, and CPU numbers. */
1395
1396 struct mips_cpu_info
1397 {
1398 const char *name; /* CPU or ISA name. */
1399 int flags; /* MIPS_CPU_* flags. */
1400 int ase; /* Set of ASEs implemented by the CPU. */
1401 int isa; /* ISA level. */
1402 int cpu; /* CPU number (default CPU if ISA). */
1403 };
1404
1405 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1406
1407 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1408 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1409 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1410 \f
1411 /* Command-line options. */
1412 const char *md_shortopts = "O::g::G:";
1413
1414 enum options
1415 {
1416 OPTION_MARCH = OPTION_MD_BASE,
1417 OPTION_MTUNE,
1418 OPTION_MIPS1,
1419 OPTION_MIPS2,
1420 OPTION_MIPS3,
1421 OPTION_MIPS4,
1422 OPTION_MIPS5,
1423 OPTION_MIPS32,
1424 OPTION_MIPS64,
1425 OPTION_MIPS32R2,
1426 OPTION_MIPS32R3,
1427 OPTION_MIPS32R5,
1428 OPTION_MIPS32R6,
1429 OPTION_MIPS64R2,
1430 OPTION_MIPS64R3,
1431 OPTION_MIPS64R5,
1432 OPTION_MIPS64R6,
1433 OPTION_MIPS16,
1434 OPTION_NO_MIPS16,
1435 OPTION_MIPS3D,
1436 OPTION_NO_MIPS3D,
1437 OPTION_MDMX,
1438 OPTION_NO_MDMX,
1439 OPTION_DSP,
1440 OPTION_NO_DSP,
1441 OPTION_MT,
1442 OPTION_NO_MT,
1443 OPTION_VIRT,
1444 OPTION_NO_VIRT,
1445 OPTION_MSA,
1446 OPTION_NO_MSA,
1447 OPTION_SMARTMIPS,
1448 OPTION_NO_SMARTMIPS,
1449 OPTION_DSPR2,
1450 OPTION_NO_DSPR2,
1451 OPTION_DSPR3,
1452 OPTION_NO_DSPR3,
1453 OPTION_EVA,
1454 OPTION_NO_EVA,
1455 OPTION_XPA,
1456 OPTION_NO_XPA,
1457 OPTION_MICROMIPS,
1458 OPTION_NO_MICROMIPS,
1459 OPTION_MCU,
1460 OPTION_NO_MCU,
1461 OPTION_MIPS16E2,
1462 OPTION_NO_MIPS16E2,
1463 OPTION_COMPAT_ARCH_BASE,
1464 OPTION_M4650,
1465 OPTION_NO_M4650,
1466 OPTION_M4010,
1467 OPTION_NO_M4010,
1468 OPTION_M4100,
1469 OPTION_NO_M4100,
1470 OPTION_M3900,
1471 OPTION_NO_M3900,
1472 OPTION_M7000_HILO_FIX,
1473 OPTION_MNO_7000_HILO_FIX,
1474 OPTION_FIX_24K,
1475 OPTION_NO_FIX_24K,
1476 OPTION_FIX_RM7000,
1477 OPTION_NO_FIX_RM7000,
1478 OPTION_FIX_LOONGSON2F_JUMP,
1479 OPTION_NO_FIX_LOONGSON2F_JUMP,
1480 OPTION_FIX_LOONGSON2F_NOP,
1481 OPTION_NO_FIX_LOONGSON2F_NOP,
1482 OPTION_FIX_VR4120,
1483 OPTION_NO_FIX_VR4120,
1484 OPTION_FIX_VR4130,
1485 OPTION_NO_FIX_VR4130,
1486 OPTION_FIX_CN63XXP1,
1487 OPTION_NO_FIX_CN63XXP1,
1488 OPTION_TRAP,
1489 OPTION_BREAK,
1490 OPTION_EB,
1491 OPTION_EL,
1492 OPTION_FP32,
1493 OPTION_GP32,
1494 OPTION_CONSTRUCT_FLOATS,
1495 OPTION_NO_CONSTRUCT_FLOATS,
1496 OPTION_FP64,
1497 OPTION_FPXX,
1498 OPTION_GP64,
1499 OPTION_RELAX_BRANCH,
1500 OPTION_NO_RELAX_BRANCH,
1501 OPTION_IGNORE_BRANCH_ISA,
1502 OPTION_NO_IGNORE_BRANCH_ISA,
1503 OPTION_INSN32,
1504 OPTION_NO_INSN32,
1505 OPTION_MSHARED,
1506 OPTION_MNO_SHARED,
1507 OPTION_MSYM32,
1508 OPTION_MNO_SYM32,
1509 OPTION_SOFT_FLOAT,
1510 OPTION_HARD_FLOAT,
1511 OPTION_SINGLE_FLOAT,
1512 OPTION_DOUBLE_FLOAT,
1513 OPTION_32,
1514 OPTION_CALL_SHARED,
1515 OPTION_CALL_NONPIC,
1516 OPTION_NON_SHARED,
1517 OPTION_XGOT,
1518 OPTION_MABI,
1519 OPTION_N32,
1520 OPTION_64,
1521 OPTION_MDEBUG,
1522 OPTION_NO_MDEBUG,
1523 OPTION_PDR,
1524 OPTION_NO_PDR,
1525 OPTION_MVXWORKS_PIC,
1526 OPTION_NAN,
1527 OPTION_ODD_SPREG,
1528 OPTION_NO_ODD_SPREG,
1529 OPTION_END_OF_ENUM
1530 };
1531
1532 struct option md_longopts[] =
1533 {
1534 /* Options which specify architecture. */
1535 {"march", required_argument, NULL, OPTION_MARCH},
1536 {"mtune", required_argument, NULL, OPTION_MTUNE},
1537 {"mips0", no_argument, NULL, OPTION_MIPS1},
1538 {"mips1", no_argument, NULL, OPTION_MIPS1},
1539 {"mips2", no_argument, NULL, OPTION_MIPS2},
1540 {"mips3", no_argument, NULL, OPTION_MIPS3},
1541 {"mips4", no_argument, NULL, OPTION_MIPS4},
1542 {"mips5", no_argument, NULL, OPTION_MIPS5},
1543 {"mips32", no_argument, NULL, OPTION_MIPS32},
1544 {"mips64", no_argument, NULL, OPTION_MIPS64},
1545 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1546 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1547 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1548 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1549 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1550 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1551 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1552 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1553
1554 /* Options which specify Application Specific Extensions (ASEs). */
1555 {"mips16", no_argument, NULL, OPTION_MIPS16},
1556 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1557 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1558 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1559 {"mdmx", no_argument, NULL, OPTION_MDMX},
1560 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1561 {"mdsp", no_argument, NULL, OPTION_DSP},
1562 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1563 {"mmt", no_argument, NULL, OPTION_MT},
1564 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1565 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1566 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1567 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1568 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1569 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1570 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1571 {"meva", no_argument, NULL, OPTION_EVA},
1572 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1573 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1574 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1575 {"mmcu", no_argument, NULL, OPTION_MCU},
1576 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1577 {"mvirt", no_argument, NULL, OPTION_VIRT},
1578 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1579 {"mmsa", no_argument, NULL, OPTION_MSA},
1580 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1581 {"mxpa", no_argument, NULL, OPTION_XPA},
1582 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1583 {"mmips16e2", no_argument, NULL, OPTION_MIPS16E2},
1584 {"mno-mips16e2", no_argument, NULL, OPTION_NO_MIPS16E2},
1585
1586 /* Old-style architecture options. Don't add more of these. */
1587 {"m4650", no_argument, NULL, OPTION_M4650},
1588 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1589 {"m4010", no_argument, NULL, OPTION_M4010},
1590 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1591 {"m4100", no_argument, NULL, OPTION_M4100},
1592 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1593 {"m3900", no_argument, NULL, OPTION_M3900},
1594 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1595
1596 /* Options which enable bug fixes. */
1597 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1598 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1599 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1600 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1601 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1602 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1603 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1604 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1605 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1606 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1607 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1608 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1609 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1610 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1611 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1612 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1613 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1614
1615 /* Miscellaneous options. */
1616 {"trap", no_argument, NULL, OPTION_TRAP},
1617 {"no-break", no_argument, NULL, OPTION_TRAP},
1618 {"break", no_argument, NULL, OPTION_BREAK},
1619 {"no-trap", no_argument, NULL, OPTION_BREAK},
1620 {"EB", no_argument, NULL, OPTION_EB},
1621 {"EL", no_argument, NULL, OPTION_EL},
1622 {"mfp32", no_argument, NULL, OPTION_FP32},
1623 {"mgp32", no_argument, NULL, OPTION_GP32},
1624 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1625 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1626 {"mfp64", no_argument, NULL, OPTION_FP64},
1627 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1628 {"mgp64", no_argument, NULL, OPTION_GP64},
1629 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1630 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1631 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1632 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
1633 {"minsn32", no_argument, NULL, OPTION_INSN32},
1634 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1635 {"mshared", no_argument, NULL, OPTION_MSHARED},
1636 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1637 {"msym32", no_argument, NULL, OPTION_MSYM32},
1638 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1639 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1640 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1641 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1642 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1643 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1644 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1645
1646 /* Strictly speaking this next option is ELF specific,
1647 but we allow it for other ports as well in order to
1648 make testing easier. */
1649 {"32", no_argument, NULL, OPTION_32},
1650
1651 /* ELF-specific options. */
1652 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1653 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1654 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1655 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1656 {"xgot", no_argument, NULL, OPTION_XGOT},
1657 {"mabi", required_argument, NULL, OPTION_MABI},
1658 {"n32", no_argument, NULL, OPTION_N32},
1659 {"64", no_argument, NULL, OPTION_64},
1660 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1661 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1662 {"mpdr", no_argument, NULL, OPTION_PDR},
1663 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1664 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1665 {"mnan", required_argument, NULL, OPTION_NAN},
1666
1667 {NULL, no_argument, NULL, 0}
1668 };
1669 size_t md_longopts_size = sizeof (md_longopts);
1670 \f
1671 /* Information about either an Application Specific Extension or an
1672 optional architecture feature that, for simplicity, we treat in the
1673 same way as an ASE. */
1674 struct mips_ase
1675 {
1676 /* The name of the ASE, used in both the command-line and .set options. */
1677 const char *name;
1678
1679 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1680 and 64-bit architectures, the flags here refer to the subset that
1681 is available on both. */
1682 unsigned int flags;
1683
1684 /* The ASE_* flag used for instructions that are available on 64-bit
1685 architectures but that are not included in FLAGS. */
1686 unsigned int flags64;
1687
1688 /* The command-line options that turn the ASE on and off. */
1689 int option_on;
1690 int option_off;
1691
1692 /* The minimum required architecture revisions for MIPS32, MIPS64,
1693 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1694 int mips32_rev;
1695 int mips64_rev;
1696 int micromips32_rev;
1697 int micromips64_rev;
1698
1699 /* The architecture where the ASE was removed or -1 if the extension has not
1700 been removed. */
1701 int rem_rev;
1702 };
1703
1704 /* A table of all supported ASEs. */
1705 static const struct mips_ase mips_ases[] = {
1706 { "dsp", ASE_DSP, ASE_DSP64,
1707 OPTION_DSP, OPTION_NO_DSP,
1708 2, 2, 2, 2,
1709 -1 },
1710
1711 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1712 OPTION_DSPR2, OPTION_NO_DSPR2,
1713 2, 2, 2, 2,
1714 -1 },
1715
1716 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1717 OPTION_DSPR3, OPTION_NO_DSPR3,
1718 6, 6, -1, -1,
1719 -1 },
1720
1721 { "eva", ASE_EVA, 0,
1722 OPTION_EVA, OPTION_NO_EVA,
1723 2, 2, 2, 2,
1724 -1 },
1725
1726 { "mcu", ASE_MCU, 0,
1727 OPTION_MCU, OPTION_NO_MCU,
1728 2, 2, 2, 2,
1729 -1 },
1730
1731 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1732 { "mdmx", ASE_MDMX, 0,
1733 OPTION_MDMX, OPTION_NO_MDMX,
1734 -1, 1, -1, -1,
1735 6 },
1736
1737 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1738 { "mips3d", ASE_MIPS3D, 0,
1739 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1740 2, 1, -1, -1,
1741 6 },
1742
1743 { "mt", ASE_MT, 0,
1744 OPTION_MT, OPTION_NO_MT,
1745 2, 2, -1, -1,
1746 -1 },
1747
1748 { "smartmips", ASE_SMARTMIPS, 0,
1749 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1750 1, -1, -1, -1,
1751 6 },
1752
1753 { "virt", ASE_VIRT, ASE_VIRT64,
1754 OPTION_VIRT, OPTION_NO_VIRT,
1755 2, 2, 2, 2,
1756 -1 },
1757
1758 { "msa", ASE_MSA, ASE_MSA64,
1759 OPTION_MSA, OPTION_NO_MSA,
1760 2, 2, 2, 2,
1761 -1 },
1762
1763 { "xpa", ASE_XPA, 0,
1764 OPTION_XPA, OPTION_NO_XPA,
1765 2, 2, -1, -1,
1766 -1 },
1767
1768 { "mips16e2", ASE_MIPS16E2, 0,
1769 OPTION_MIPS16E2, OPTION_NO_MIPS16E2,
1770 2, 2, -1, -1,
1771 6 },
1772 };
1773
1774 /* The set of ASEs that require -mfp64. */
1775 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1776
1777 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1778 static const unsigned int mips_ase_groups[] = {
1779 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1780 };
1781 \f
1782 /* Pseudo-op table.
1783
1784 The following pseudo-ops from the Kane and Heinrich MIPS book
1785 should be defined here, but are currently unsupported: .alias,
1786 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1787
1788 The following pseudo-ops from the Kane and Heinrich MIPS book are
1789 specific to the type of debugging information being generated, and
1790 should be defined by the object format: .aent, .begin, .bend,
1791 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1792 .vreg.
1793
1794 The following pseudo-ops from the Kane and Heinrich MIPS book are
1795 not MIPS CPU specific, but are also not specific to the object file
1796 format. This file is probably the best place to define them, but
1797 they are not currently supported: .asm0, .endr, .lab, .struct. */
1798
1799 static const pseudo_typeS mips_pseudo_table[] =
1800 {
1801 /* MIPS specific pseudo-ops. */
1802 {"option", s_option, 0},
1803 {"set", s_mipsset, 0},
1804 {"rdata", s_change_sec, 'r'},
1805 {"sdata", s_change_sec, 's'},
1806 {"livereg", s_ignore, 0},
1807 {"abicalls", s_abicalls, 0},
1808 {"cpload", s_cpload, 0},
1809 {"cpsetup", s_cpsetup, 0},
1810 {"cplocal", s_cplocal, 0},
1811 {"cprestore", s_cprestore, 0},
1812 {"cpreturn", s_cpreturn, 0},
1813 {"dtprelword", s_dtprelword, 0},
1814 {"dtpreldword", s_dtpreldword, 0},
1815 {"tprelword", s_tprelword, 0},
1816 {"tpreldword", s_tpreldword, 0},
1817 {"gpvalue", s_gpvalue, 0},
1818 {"gpword", s_gpword, 0},
1819 {"gpdword", s_gpdword, 0},
1820 {"ehword", s_ehword, 0},
1821 {"cpadd", s_cpadd, 0},
1822 {"insn", s_insn, 0},
1823 {"nan", s_nan, 0},
1824 {"module", s_module, 0},
1825
1826 /* Relatively generic pseudo-ops that happen to be used on MIPS
1827 chips. */
1828 {"asciiz", stringer, 8 + 1},
1829 {"bss", s_change_sec, 'b'},
1830 {"err", s_err, 0},
1831 {"half", s_cons, 1},
1832 {"dword", s_cons, 3},
1833 {"weakext", s_mips_weakext, 0},
1834 {"origin", s_org, 0},
1835 {"repeat", s_rept, 0},
1836
1837 /* For MIPS this is non-standard, but we define it for consistency. */
1838 {"sbss", s_change_sec, 'B'},
1839
1840 /* These pseudo-ops are defined in read.c, but must be overridden
1841 here for one reason or another. */
1842 {"align", s_align, 0},
1843 {"byte", s_cons, 0},
1844 {"data", s_change_sec, 'd'},
1845 {"double", s_float_cons, 'd'},
1846 {"float", s_float_cons, 'f'},
1847 {"globl", s_mips_globl, 0},
1848 {"global", s_mips_globl, 0},
1849 {"hword", s_cons, 1},
1850 {"int", s_cons, 2},
1851 {"long", s_cons, 2},
1852 {"octa", s_cons, 4},
1853 {"quad", s_cons, 3},
1854 {"section", s_change_section, 0},
1855 {"short", s_cons, 1},
1856 {"single", s_float_cons, 'f'},
1857 {"stabd", s_mips_stab, 'd'},
1858 {"stabn", s_mips_stab, 'n'},
1859 {"stabs", s_mips_stab, 's'},
1860 {"text", s_change_sec, 't'},
1861 {"word", s_cons, 2},
1862
1863 { "extern", ecoff_directive_extern, 0},
1864
1865 { NULL, NULL, 0 },
1866 };
1867
1868 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1869 {
1870 /* These pseudo-ops should be defined by the object file format.
1871 However, a.out doesn't support them, so we have versions here. */
1872 {"aent", s_mips_ent, 1},
1873 {"bgnb", s_ignore, 0},
1874 {"end", s_mips_end, 0},
1875 {"endb", s_ignore, 0},
1876 {"ent", s_mips_ent, 0},
1877 {"file", s_mips_file, 0},
1878 {"fmask", s_mips_mask, 'F'},
1879 {"frame", s_mips_frame, 0},
1880 {"loc", s_mips_loc, 0},
1881 {"mask", s_mips_mask, 'R'},
1882 {"verstamp", s_ignore, 0},
1883 { NULL, NULL, 0 },
1884 };
1885
1886 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1887 purpose of the `.dc.a' internal pseudo-op. */
1888
1889 int
1890 mips_address_bytes (void)
1891 {
1892 file_mips_check_options ();
1893 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1894 }
1895
1896 extern void pop_insert (const pseudo_typeS *);
1897
1898 void
1899 mips_pop_insert (void)
1900 {
1901 pop_insert (mips_pseudo_table);
1902 if (! ECOFF_DEBUGGING)
1903 pop_insert (mips_nonecoff_pseudo_table);
1904 }
1905 \f
1906 /* Symbols labelling the current insn. */
1907
1908 struct insn_label_list
1909 {
1910 struct insn_label_list *next;
1911 symbolS *label;
1912 };
1913
1914 static struct insn_label_list *free_insn_labels;
1915 #define label_list tc_segment_info_data.labels
1916
1917 static void mips_clear_insn_labels (void);
1918 static void mips_mark_labels (void);
1919 static void mips_compressed_mark_labels (void);
1920
1921 static inline void
1922 mips_clear_insn_labels (void)
1923 {
1924 struct insn_label_list **pl;
1925 segment_info_type *si;
1926
1927 if (now_seg)
1928 {
1929 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1930 ;
1931
1932 si = seg_info (now_seg);
1933 *pl = si->label_list;
1934 si->label_list = NULL;
1935 }
1936 }
1937
1938 /* Mark instruction labels in MIPS16/microMIPS mode. */
1939
1940 static inline void
1941 mips_mark_labels (void)
1942 {
1943 if (HAVE_CODE_COMPRESSION)
1944 mips_compressed_mark_labels ();
1945 }
1946 \f
1947 static char *expr_end;
1948
1949 /* An expression in a macro instruction. This is set by mips_ip and
1950 mips16_ip and when populated is always an O_constant. */
1951
1952 static expressionS imm_expr;
1953
1954 /* The relocatable field in an instruction and the relocs associated
1955 with it. These variables are used for instructions like LUI and
1956 JAL as well as true offsets. They are also used for address
1957 operands in macros. */
1958
1959 static expressionS offset_expr;
1960 static bfd_reloc_code_real_type offset_reloc[3]
1961 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1962
1963 /* This is set to the resulting size of the instruction to be produced
1964 by mips16_ip if an explicit extension is used or by mips_ip if an
1965 explicit size is supplied. */
1966
1967 static unsigned int forced_insn_length;
1968
1969 /* True if we are assembling an instruction. All dot symbols defined during
1970 this time should be treated as code labels. */
1971
1972 static bfd_boolean mips_assembling_insn;
1973
1974 /* The pdr segment for per procedure frame/regmask info. Not used for
1975 ECOFF debugging. */
1976
1977 static segT pdr_seg;
1978
1979 /* The default target format to use. */
1980
1981 #if defined (TE_FreeBSD)
1982 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1983 #elif defined (TE_TMIPS)
1984 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1985 #else
1986 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1987 #endif
1988
1989 const char *
1990 mips_target_format (void)
1991 {
1992 switch (OUTPUT_FLAVOR)
1993 {
1994 case bfd_target_elf_flavour:
1995 #ifdef TE_VXWORKS
1996 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1997 return (target_big_endian
1998 ? "elf32-bigmips-vxworks"
1999 : "elf32-littlemips-vxworks");
2000 #endif
2001 return (target_big_endian
2002 ? (HAVE_64BIT_OBJECTS
2003 ? ELF_TARGET ("elf64-", "big")
2004 : (HAVE_NEWABI
2005 ? ELF_TARGET ("elf32-n", "big")
2006 : ELF_TARGET ("elf32-", "big")))
2007 : (HAVE_64BIT_OBJECTS
2008 ? ELF_TARGET ("elf64-", "little")
2009 : (HAVE_NEWABI
2010 ? ELF_TARGET ("elf32-n", "little")
2011 : ELF_TARGET ("elf32-", "little"))));
2012 default:
2013 abort ();
2014 return NULL;
2015 }
2016 }
2017
2018 /* Return the ISA revision that is currently in use, or 0 if we are
2019 generating code for MIPS V or below. */
2020
2021 static int
2022 mips_isa_rev (void)
2023 {
2024 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
2025 return 2;
2026
2027 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
2028 return 3;
2029
2030 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
2031 return 5;
2032
2033 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
2034 return 6;
2035
2036 /* microMIPS implies revision 2 or above. */
2037 if (mips_opts.micromips)
2038 return 2;
2039
2040 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2041 return 1;
2042
2043 return 0;
2044 }
2045
2046 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2047
2048 static unsigned int
2049 mips_ase_mask (unsigned int flags)
2050 {
2051 unsigned int i;
2052
2053 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2054 if (flags & mips_ase_groups[i])
2055 flags |= mips_ase_groups[i];
2056 return flags;
2057 }
2058
2059 /* Check whether the current ISA supports ASE. Issue a warning if
2060 appropriate. */
2061
2062 static void
2063 mips_check_isa_supports_ase (const struct mips_ase *ase)
2064 {
2065 const char *base;
2066 int min_rev, size;
2067 static unsigned int warned_isa;
2068 static unsigned int warned_fp32;
2069
2070 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2071 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2072 else
2073 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2074 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2075 && (warned_isa & ase->flags) != ase->flags)
2076 {
2077 warned_isa |= ase->flags;
2078 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2079 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2080 if (min_rev < 0)
2081 as_warn (_("the %d-bit %s architecture does not support the"
2082 " `%s' extension"), size, base, ase->name);
2083 else
2084 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2085 ase->name, base, size, min_rev);
2086 }
2087 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2088 && (warned_isa & ase->flags) != ase->flags)
2089 {
2090 warned_isa |= ase->flags;
2091 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2092 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2093 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2094 ase->name, base, size, ase->rem_rev);
2095 }
2096
2097 if ((ase->flags & FP64_ASES)
2098 && mips_opts.fp != 64
2099 && (warned_fp32 & ase->flags) != ase->flags)
2100 {
2101 warned_fp32 |= ase->flags;
2102 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2103 }
2104 }
2105
2106 /* Check all enabled ASEs to see whether they are supported by the
2107 chosen architecture. */
2108
2109 static void
2110 mips_check_isa_supports_ases (void)
2111 {
2112 unsigned int i, mask;
2113
2114 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2115 {
2116 mask = mips_ase_mask (mips_ases[i].flags);
2117 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2118 mips_check_isa_supports_ase (&mips_ases[i]);
2119 }
2120 }
2121
2122 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2123 that were affected. */
2124
2125 static unsigned int
2126 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2127 bfd_boolean enabled_p)
2128 {
2129 unsigned int mask;
2130
2131 mask = mips_ase_mask (ase->flags);
2132 opts->ase &= ~mask;
2133 if (enabled_p)
2134 opts->ase |= ase->flags;
2135
2136 if ((opts->ase & (ASE_MIPS16E2 | ASE_MT)) == (ASE_MIPS16E2 | ASE_MT))
2137 {
2138 opts->ase |= ASE_MIPS16E2_MT;
2139 mask |= ASE_MIPS16E2_MT;
2140 }
2141
2142 return mask;
2143 }
2144
2145 /* Return the ASE called NAME, or null if none. */
2146
2147 static const struct mips_ase *
2148 mips_lookup_ase (const char *name)
2149 {
2150 unsigned int i;
2151
2152 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2153 if (strcmp (name, mips_ases[i].name) == 0)
2154 return &mips_ases[i];
2155 return NULL;
2156 }
2157
2158 /* Return the length of a microMIPS instruction in bytes. If bits of
2159 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2160 otherwise it is a 32-bit instruction. */
2161
2162 static inline unsigned int
2163 micromips_insn_length (const struct mips_opcode *mo)
2164 {
2165 return mips_opcode_32bit_p (mo) ? 4 : 2;
2166 }
2167
2168 /* Return the length of MIPS16 instruction OPCODE. */
2169
2170 static inline unsigned int
2171 mips16_opcode_length (unsigned long opcode)
2172 {
2173 return (opcode >> 16) == 0 ? 2 : 4;
2174 }
2175
2176 /* Return the length of instruction INSN. */
2177
2178 static inline unsigned int
2179 insn_length (const struct mips_cl_insn *insn)
2180 {
2181 if (mips_opts.micromips)
2182 return micromips_insn_length (insn->insn_mo);
2183 else if (mips_opts.mips16)
2184 return mips16_opcode_length (insn->insn_opcode);
2185 else
2186 return 4;
2187 }
2188
2189 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2190
2191 static void
2192 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2193 {
2194 size_t i;
2195
2196 insn->insn_mo = mo;
2197 insn->insn_opcode = mo->match;
2198 insn->frag = NULL;
2199 insn->where = 0;
2200 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2201 insn->fixp[i] = NULL;
2202 insn->fixed_p = (mips_opts.noreorder > 0);
2203 insn->noreorder_p = (mips_opts.noreorder > 0);
2204 insn->mips16_absolute_jump_p = 0;
2205 insn->complete_p = 0;
2206 insn->cleared_p = 0;
2207 }
2208
2209 /* Get a list of all the operands in INSN. */
2210
2211 static const struct mips_operand_array *
2212 insn_operands (const struct mips_cl_insn *insn)
2213 {
2214 if (insn->insn_mo >= &mips_opcodes[0]
2215 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2216 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2217
2218 if (insn->insn_mo >= &mips16_opcodes[0]
2219 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2220 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2221
2222 if (insn->insn_mo >= &micromips_opcodes[0]
2223 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2224 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2225
2226 abort ();
2227 }
2228
2229 /* Get a description of operand OPNO of INSN. */
2230
2231 static const struct mips_operand *
2232 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2233 {
2234 const struct mips_operand_array *operands;
2235
2236 operands = insn_operands (insn);
2237 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2238 abort ();
2239 return operands->operand[opno];
2240 }
2241
2242 /* Install UVAL as the value of OPERAND in INSN. */
2243
2244 static inline void
2245 insn_insert_operand (struct mips_cl_insn *insn,
2246 const struct mips_operand *operand, unsigned int uval)
2247 {
2248 if (mips_opts.mips16
2249 && operand->type == OP_INT && operand->lsb == 0
2250 && mips_opcode_32bit_p (insn->insn_mo))
2251 insn->insn_opcode |= mips16_immed_extend (uval, operand->size);
2252 else
2253 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2254 }
2255
2256 /* Extract the value of OPERAND from INSN. */
2257
2258 static inline unsigned
2259 insn_extract_operand (const struct mips_cl_insn *insn,
2260 const struct mips_operand *operand)
2261 {
2262 return mips_extract_operand (operand, insn->insn_opcode);
2263 }
2264
2265 /* Record the current MIPS16/microMIPS mode in now_seg. */
2266
2267 static void
2268 mips_record_compressed_mode (void)
2269 {
2270 segment_info_type *si;
2271
2272 si = seg_info (now_seg);
2273 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2274 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2275 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2276 si->tc_segment_info_data.micromips = mips_opts.micromips;
2277 }
2278
2279 /* Read a standard MIPS instruction from BUF. */
2280
2281 static unsigned long
2282 read_insn (char *buf)
2283 {
2284 if (target_big_endian)
2285 return bfd_getb32 ((bfd_byte *) buf);
2286 else
2287 return bfd_getl32 ((bfd_byte *) buf);
2288 }
2289
2290 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2291 the next byte. */
2292
2293 static char *
2294 write_insn (char *buf, unsigned int insn)
2295 {
2296 md_number_to_chars (buf, insn, 4);
2297 return buf + 4;
2298 }
2299
2300 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2301 has length LENGTH. */
2302
2303 static unsigned long
2304 read_compressed_insn (char *buf, unsigned int length)
2305 {
2306 unsigned long insn;
2307 unsigned int i;
2308
2309 insn = 0;
2310 for (i = 0; i < length; i += 2)
2311 {
2312 insn <<= 16;
2313 if (target_big_endian)
2314 insn |= bfd_getb16 ((char *) buf);
2315 else
2316 insn |= bfd_getl16 ((char *) buf);
2317 buf += 2;
2318 }
2319 return insn;
2320 }
2321
2322 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2323 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2324
2325 static char *
2326 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2327 {
2328 unsigned int i;
2329
2330 for (i = 0; i < length; i += 2)
2331 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2332 return buf + length;
2333 }
2334
2335 /* Install INSN at the location specified by its "frag" and "where" fields. */
2336
2337 static void
2338 install_insn (const struct mips_cl_insn *insn)
2339 {
2340 char *f = insn->frag->fr_literal + insn->where;
2341 if (HAVE_CODE_COMPRESSION)
2342 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2343 else
2344 write_insn (f, insn->insn_opcode);
2345 mips_record_compressed_mode ();
2346 }
2347
2348 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2349 and install the opcode in the new location. */
2350
2351 static void
2352 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2353 {
2354 size_t i;
2355
2356 insn->frag = frag;
2357 insn->where = where;
2358 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2359 if (insn->fixp[i] != NULL)
2360 {
2361 insn->fixp[i]->fx_frag = frag;
2362 insn->fixp[i]->fx_where = where;
2363 }
2364 install_insn (insn);
2365 }
2366
2367 /* Add INSN to the end of the output. */
2368
2369 static void
2370 add_fixed_insn (struct mips_cl_insn *insn)
2371 {
2372 char *f = frag_more (insn_length (insn));
2373 move_insn (insn, frag_now, f - frag_now->fr_literal);
2374 }
2375
2376 /* Start a variant frag and move INSN to the start of the variant part,
2377 marking it as fixed. The other arguments are as for frag_var. */
2378
2379 static void
2380 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2381 relax_substateT subtype, symbolS *symbol, offsetT offset)
2382 {
2383 frag_grow (max_chars);
2384 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2385 insn->fixed_p = 1;
2386 frag_var (rs_machine_dependent, max_chars, var,
2387 subtype, symbol, offset, NULL);
2388 }
2389
2390 /* Insert N copies of INSN into the history buffer, starting at
2391 position FIRST. Neither FIRST nor N need to be clipped. */
2392
2393 static void
2394 insert_into_history (unsigned int first, unsigned int n,
2395 const struct mips_cl_insn *insn)
2396 {
2397 if (mips_relax.sequence != 2)
2398 {
2399 unsigned int i;
2400
2401 for (i = ARRAY_SIZE (history); i-- > first;)
2402 if (i >= first + n)
2403 history[i] = history[i - n];
2404 else
2405 history[i] = *insn;
2406 }
2407 }
2408
2409 /* Clear the error in insn_error. */
2410
2411 static void
2412 clear_insn_error (void)
2413 {
2414 memset (&insn_error, 0, sizeof (insn_error));
2415 }
2416
2417 /* Possibly record error message MSG for the current instruction.
2418 If the error is about a particular argument, ARGNUM is the 1-based
2419 number of that argument, otherwise it is 0. FORMAT is the format
2420 of MSG. Return true if MSG was used, false if the current message
2421 was kept. */
2422
2423 static bfd_boolean
2424 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2425 const char *msg)
2426 {
2427 if (argnum == 0)
2428 {
2429 /* Give priority to errors against specific arguments, and to
2430 the first whole-instruction message. */
2431 if (insn_error.msg)
2432 return FALSE;
2433 }
2434 else
2435 {
2436 /* Keep insn_error if it is against a later argument. */
2437 if (argnum < insn_error.min_argnum)
2438 return FALSE;
2439
2440 /* If both errors are against the same argument but are different,
2441 give up on reporting a specific error for this argument.
2442 See the comment about mips_insn_error for details. */
2443 if (argnum == insn_error.min_argnum
2444 && insn_error.msg
2445 && strcmp (insn_error.msg, msg) != 0)
2446 {
2447 insn_error.msg = 0;
2448 insn_error.min_argnum += 1;
2449 return FALSE;
2450 }
2451 }
2452 insn_error.min_argnum = argnum;
2453 insn_error.format = format;
2454 insn_error.msg = msg;
2455 return TRUE;
2456 }
2457
2458 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2459 as for set_insn_error_format. */
2460
2461 static void
2462 set_insn_error (int argnum, const char *msg)
2463 {
2464 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2465 }
2466
2467 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2468 as for set_insn_error_format. */
2469
2470 static void
2471 set_insn_error_i (int argnum, const char *msg, int i)
2472 {
2473 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2474 insn_error.u.i = i;
2475 }
2476
2477 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2478 are as for set_insn_error_format. */
2479
2480 static void
2481 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2482 {
2483 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2484 {
2485 insn_error.u.ss[0] = s1;
2486 insn_error.u.ss[1] = s2;
2487 }
2488 }
2489
2490 /* Report the error in insn_error, which is against assembly code STR. */
2491
2492 static void
2493 report_insn_error (const char *str)
2494 {
2495 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2496
2497 switch (insn_error.format)
2498 {
2499 case ERR_FMT_PLAIN:
2500 as_bad (msg, str);
2501 break;
2502
2503 case ERR_FMT_I:
2504 as_bad (msg, insn_error.u.i, str);
2505 break;
2506
2507 case ERR_FMT_SS:
2508 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2509 break;
2510 }
2511
2512 free ((char *) msg);
2513 }
2514
2515 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2516 the idea is to make it obvious at a glance that each errata is
2517 included. */
2518
2519 static void
2520 init_vr4120_conflicts (void)
2521 {
2522 #define CONFLICT(FIRST, SECOND) \
2523 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2524
2525 /* Errata 21 - [D]DIV[U] after [D]MACC */
2526 CONFLICT (MACC, DIV);
2527 CONFLICT (DMACC, DIV);
2528
2529 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2530 CONFLICT (DMULT, DMULT);
2531 CONFLICT (DMULT, DMACC);
2532 CONFLICT (DMACC, DMULT);
2533 CONFLICT (DMACC, DMACC);
2534
2535 /* Errata 24 - MT{LO,HI} after [D]MACC */
2536 CONFLICT (MACC, MTHILO);
2537 CONFLICT (DMACC, MTHILO);
2538
2539 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2540 instruction is executed immediately after a MACC or DMACC
2541 instruction, the result of [either instruction] is incorrect." */
2542 CONFLICT (MACC, MULT);
2543 CONFLICT (MACC, DMULT);
2544 CONFLICT (DMACC, MULT);
2545 CONFLICT (DMACC, DMULT);
2546
2547 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2548 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2549 DDIV or DDIVU instruction, the result of the MACC or
2550 DMACC instruction is incorrect.". */
2551 CONFLICT (DMULT, MACC);
2552 CONFLICT (DMULT, DMACC);
2553 CONFLICT (DIV, MACC);
2554 CONFLICT (DIV, DMACC);
2555
2556 #undef CONFLICT
2557 }
2558
2559 struct regname {
2560 const char *name;
2561 unsigned int num;
2562 };
2563
2564 #define RNUM_MASK 0x00000ff
2565 #define RTYPE_MASK 0x0ffff00
2566 #define RTYPE_NUM 0x0000100
2567 #define RTYPE_FPU 0x0000200
2568 #define RTYPE_FCC 0x0000400
2569 #define RTYPE_VEC 0x0000800
2570 #define RTYPE_GP 0x0001000
2571 #define RTYPE_CP0 0x0002000
2572 #define RTYPE_PC 0x0004000
2573 #define RTYPE_ACC 0x0008000
2574 #define RTYPE_CCC 0x0010000
2575 #define RTYPE_VI 0x0020000
2576 #define RTYPE_VF 0x0040000
2577 #define RTYPE_R5900_I 0x0080000
2578 #define RTYPE_R5900_Q 0x0100000
2579 #define RTYPE_R5900_R 0x0200000
2580 #define RTYPE_R5900_ACC 0x0400000
2581 #define RTYPE_MSA 0x0800000
2582 #define RWARN 0x8000000
2583
2584 #define GENERIC_REGISTER_NUMBERS \
2585 {"$0", RTYPE_NUM | 0}, \
2586 {"$1", RTYPE_NUM | 1}, \
2587 {"$2", RTYPE_NUM | 2}, \
2588 {"$3", RTYPE_NUM | 3}, \
2589 {"$4", RTYPE_NUM | 4}, \
2590 {"$5", RTYPE_NUM | 5}, \
2591 {"$6", RTYPE_NUM | 6}, \
2592 {"$7", RTYPE_NUM | 7}, \
2593 {"$8", RTYPE_NUM | 8}, \
2594 {"$9", RTYPE_NUM | 9}, \
2595 {"$10", RTYPE_NUM | 10}, \
2596 {"$11", RTYPE_NUM | 11}, \
2597 {"$12", RTYPE_NUM | 12}, \
2598 {"$13", RTYPE_NUM | 13}, \
2599 {"$14", RTYPE_NUM | 14}, \
2600 {"$15", RTYPE_NUM | 15}, \
2601 {"$16", RTYPE_NUM | 16}, \
2602 {"$17", RTYPE_NUM | 17}, \
2603 {"$18", RTYPE_NUM | 18}, \
2604 {"$19", RTYPE_NUM | 19}, \
2605 {"$20", RTYPE_NUM | 20}, \
2606 {"$21", RTYPE_NUM | 21}, \
2607 {"$22", RTYPE_NUM | 22}, \
2608 {"$23", RTYPE_NUM | 23}, \
2609 {"$24", RTYPE_NUM | 24}, \
2610 {"$25", RTYPE_NUM | 25}, \
2611 {"$26", RTYPE_NUM | 26}, \
2612 {"$27", RTYPE_NUM | 27}, \
2613 {"$28", RTYPE_NUM | 28}, \
2614 {"$29", RTYPE_NUM | 29}, \
2615 {"$30", RTYPE_NUM | 30}, \
2616 {"$31", RTYPE_NUM | 31}
2617
2618 #define FPU_REGISTER_NAMES \
2619 {"$f0", RTYPE_FPU | 0}, \
2620 {"$f1", RTYPE_FPU | 1}, \
2621 {"$f2", RTYPE_FPU | 2}, \
2622 {"$f3", RTYPE_FPU | 3}, \
2623 {"$f4", RTYPE_FPU | 4}, \
2624 {"$f5", RTYPE_FPU | 5}, \
2625 {"$f6", RTYPE_FPU | 6}, \
2626 {"$f7", RTYPE_FPU | 7}, \
2627 {"$f8", RTYPE_FPU | 8}, \
2628 {"$f9", RTYPE_FPU | 9}, \
2629 {"$f10", RTYPE_FPU | 10}, \
2630 {"$f11", RTYPE_FPU | 11}, \
2631 {"$f12", RTYPE_FPU | 12}, \
2632 {"$f13", RTYPE_FPU | 13}, \
2633 {"$f14", RTYPE_FPU | 14}, \
2634 {"$f15", RTYPE_FPU | 15}, \
2635 {"$f16", RTYPE_FPU | 16}, \
2636 {"$f17", RTYPE_FPU | 17}, \
2637 {"$f18", RTYPE_FPU | 18}, \
2638 {"$f19", RTYPE_FPU | 19}, \
2639 {"$f20", RTYPE_FPU | 20}, \
2640 {"$f21", RTYPE_FPU | 21}, \
2641 {"$f22", RTYPE_FPU | 22}, \
2642 {"$f23", RTYPE_FPU | 23}, \
2643 {"$f24", RTYPE_FPU | 24}, \
2644 {"$f25", RTYPE_FPU | 25}, \
2645 {"$f26", RTYPE_FPU | 26}, \
2646 {"$f27", RTYPE_FPU | 27}, \
2647 {"$f28", RTYPE_FPU | 28}, \
2648 {"$f29", RTYPE_FPU | 29}, \
2649 {"$f30", RTYPE_FPU | 30}, \
2650 {"$f31", RTYPE_FPU | 31}
2651
2652 #define FPU_CONDITION_CODE_NAMES \
2653 {"$fcc0", RTYPE_FCC | 0}, \
2654 {"$fcc1", RTYPE_FCC | 1}, \
2655 {"$fcc2", RTYPE_FCC | 2}, \
2656 {"$fcc3", RTYPE_FCC | 3}, \
2657 {"$fcc4", RTYPE_FCC | 4}, \
2658 {"$fcc5", RTYPE_FCC | 5}, \
2659 {"$fcc6", RTYPE_FCC | 6}, \
2660 {"$fcc7", RTYPE_FCC | 7}
2661
2662 #define COPROC_CONDITION_CODE_NAMES \
2663 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2664 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2665 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2666 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2667 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2668 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2669 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2670 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2671
2672 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2673 {"$a4", RTYPE_GP | 8}, \
2674 {"$a5", RTYPE_GP | 9}, \
2675 {"$a6", RTYPE_GP | 10}, \
2676 {"$a7", RTYPE_GP | 11}, \
2677 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2678 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2679 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2680 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2681 {"$t0", RTYPE_GP | 12}, \
2682 {"$t1", RTYPE_GP | 13}, \
2683 {"$t2", RTYPE_GP | 14}, \
2684 {"$t3", RTYPE_GP | 15}
2685
2686 #define O32_SYMBOLIC_REGISTER_NAMES \
2687 {"$t0", RTYPE_GP | 8}, \
2688 {"$t1", RTYPE_GP | 9}, \
2689 {"$t2", RTYPE_GP | 10}, \
2690 {"$t3", RTYPE_GP | 11}, \
2691 {"$t4", RTYPE_GP | 12}, \
2692 {"$t5", RTYPE_GP | 13}, \
2693 {"$t6", RTYPE_GP | 14}, \
2694 {"$t7", RTYPE_GP | 15}, \
2695 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2696 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2697 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2698 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2699
2700 /* Remaining symbolic register names */
2701 #define SYMBOLIC_REGISTER_NAMES \
2702 {"$zero", RTYPE_GP | 0}, \
2703 {"$at", RTYPE_GP | 1}, \
2704 {"$AT", RTYPE_GP | 1}, \
2705 {"$v0", RTYPE_GP | 2}, \
2706 {"$v1", RTYPE_GP | 3}, \
2707 {"$a0", RTYPE_GP | 4}, \
2708 {"$a1", RTYPE_GP | 5}, \
2709 {"$a2", RTYPE_GP | 6}, \
2710 {"$a3", RTYPE_GP | 7}, \
2711 {"$s0", RTYPE_GP | 16}, \
2712 {"$s1", RTYPE_GP | 17}, \
2713 {"$s2", RTYPE_GP | 18}, \
2714 {"$s3", RTYPE_GP | 19}, \
2715 {"$s4", RTYPE_GP | 20}, \
2716 {"$s5", RTYPE_GP | 21}, \
2717 {"$s6", RTYPE_GP | 22}, \
2718 {"$s7", RTYPE_GP | 23}, \
2719 {"$t8", RTYPE_GP | 24}, \
2720 {"$t9", RTYPE_GP | 25}, \
2721 {"$k0", RTYPE_GP | 26}, \
2722 {"$kt0", RTYPE_GP | 26}, \
2723 {"$k1", RTYPE_GP | 27}, \
2724 {"$kt1", RTYPE_GP | 27}, \
2725 {"$gp", RTYPE_GP | 28}, \
2726 {"$sp", RTYPE_GP | 29}, \
2727 {"$s8", RTYPE_GP | 30}, \
2728 {"$fp", RTYPE_GP | 30}, \
2729 {"$ra", RTYPE_GP | 31}
2730
2731 #define MIPS16_SPECIAL_REGISTER_NAMES \
2732 {"$pc", RTYPE_PC | 0}
2733
2734 #define MDMX_VECTOR_REGISTER_NAMES \
2735 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2736 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2737 {"$v2", RTYPE_VEC | 2}, \
2738 {"$v3", RTYPE_VEC | 3}, \
2739 {"$v4", RTYPE_VEC | 4}, \
2740 {"$v5", RTYPE_VEC | 5}, \
2741 {"$v6", RTYPE_VEC | 6}, \
2742 {"$v7", RTYPE_VEC | 7}, \
2743 {"$v8", RTYPE_VEC | 8}, \
2744 {"$v9", RTYPE_VEC | 9}, \
2745 {"$v10", RTYPE_VEC | 10}, \
2746 {"$v11", RTYPE_VEC | 11}, \
2747 {"$v12", RTYPE_VEC | 12}, \
2748 {"$v13", RTYPE_VEC | 13}, \
2749 {"$v14", RTYPE_VEC | 14}, \
2750 {"$v15", RTYPE_VEC | 15}, \
2751 {"$v16", RTYPE_VEC | 16}, \
2752 {"$v17", RTYPE_VEC | 17}, \
2753 {"$v18", RTYPE_VEC | 18}, \
2754 {"$v19", RTYPE_VEC | 19}, \
2755 {"$v20", RTYPE_VEC | 20}, \
2756 {"$v21", RTYPE_VEC | 21}, \
2757 {"$v22", RTYPE_VEC | 22}, \
2758 {"$v23", RTYPE_VEC | 23}, \
2759 {"$v24", RTYPE_VEC | 24}, \
2760 {"$v25", RTYPE_VEC | 25}, \
2761 {"$v26", RTYPE_VEC | 26}, \
2762 {"$v27", RTYPE_VEC | 27}, \
2763 {"$v28", RTYPE_VEC | 28}, \
2764 {"$v29", RTYPE_VEC | 29}, \
2765 {"$v30", RTYPE_VEC | 30}, \
2766 {"$v31", RTYPE_VEC | 31}
2767
2768 #define R5900_I_NAMES \
2769 {"$I", RTYPE_R5900_I | 0}
2770
2771 #define R5900_Q_NAMES \
2772 {"$Q", RTYPE_R5900_Q | 0}
2773
2774 #define R5900_R_NAMES \
2775 {"$R", RTYPE_R5900_R | 0}
2776
2777 #define R5900_ACC_NAMES \
2778 {"$ACC", RTYPE_R5900_ACC | 0 }
2779
2780 #define MIPS_DSP_ACCUMULATOR_NAMES \
2781 {"$ac0", RTYPE_ACC | 0}, \
2782 {"$ac1", RTYPE_ACC | 1}, \
2783 {"$ac2", RTYPE_ACC | 2}, \
2784 {"$ac3", RTYPE_ACC | 3}
2785
2786 static const struct regname reg_names[] = {
2787 GENERIC_REGISTER_NUMBERS,
2788 FPU_REGISTER_NAMES,
2789 FPU_CONDITION_CODE_NAMES,
2790 COPROC_CONDITION_CODE_NAMES,
2791
2792 /* The $txx registers depends on the abi,
2793 these will be added later into the symbol table from
2794 one of the tables below once mips_abi is set after
2795 parsing of arguments from the command line. */
2796 SYMBOLIC_REGISTER_NAMES,
2797
2798 MIPS16_SPECIAL_REGISTER_NAMES,
2799 MDMX_VECTOR_REGISTER_NAMES,
2800 R5900_I_NAMES,
2801 R5900_Q_NAMES,
2802 R5900_R_NAMES,
2803 R5900_ACC_NAMES,
2804 MIPS_DSP_ACCUMULATOR_NAMES,
2805 {0, 0}
2806 };
2807
2808 static const struct regname reg_names_o32[] = {
2809 O32_SYMBOLIC_REGISTER_NAMES,
2810 {0, 0}
2811 };
2812
2813 static const struct regname reg_names_n32n64[] = {
2814 N32N64_SYMBOLIC_REGISTER_NAMES,
2815 {0, 0}
2816 };
2817
2818 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2819 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2820 of these register symbols, return the associated vector register,
2821 otherwise return SYMVAL itself. */
2822
2823 static unsigned int
2824 mips_prefer_vec_regno (unsigned int symval)
2825 {
2826 if ((symval & -2) == (RTYPE_GP | 2))
2827 return RTYPE_VEC | (symval & 1);
2828 return symval;
2829 }
2830
2831 /* Return true if string [S, E) is a valid register name, storing its
2832 symbol value in *SYMVAL_PTR if so. */
2833
2834 static bfd_boolean
2835 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2836 {
2837 char save_c;
2838 symbolS *symbol;
2839
2840 /* Terminate name. */
2841 save_c = *e;
2842 *e = '\0';
2843
2844 /* Look up the name. */
2845 symbol = symbol_find (s);
2846 *e = save_c;
2847
2848 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2849 return FALSE;
2850
2851 *symval_ptr = S_GET_VALUE (symbol);
2852 return TRUE;
2853 }
2854
2855 /* Return true if the string at *SPTR is a valid register name. Allow it
2856 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2857 is nonnull.
2858
2859 When returning true, move *SPTR past the register, store the
2860 register's symbol value in *SYMVAL_PTR and the channel mask in
2861 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2862 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2863 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2864
2865 static bfd_boolean
2866 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2867 unsigned int *channels_ptr)
2868 {
2869 char *s, *e, *m;
2870 const char *q;
2871 unsigned int channels, symval, bit;
2872
2873 /* Find end of name. */
2874 s = e = *sptr;
2875 if (is_name_beginner (*e))
2876 ++e;
2877 while (is_part_of_name (*e))
2878 ++e;
2879
2880 channels = 0;
2881 if (!mips_parse_register_1 (s, e, &symval))
2882 {
2883 if (!channels_ptr)
2884 return FALSE;
2885
2886 /* Eat characters from the end of the string that are valid
2887 channel suffixes. The preceding register must be $ACC or
2888 end with a digit, so there is no ambiguity. */
2889 bit = 1;
2890 m = e;
2891 for (q = "wzyx"; *q; q++, bit <<= 1)
2892 if (m > s && m[-1] == *q)
2893 {
2894 --m;
2895 channels |= bit;
2896 }
2897
2898 if (channels == 0
2899 || !mips_parse_register_1 (s, m, &symval)
2900 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2901 return FALSE;
2902 }
2903
2904 *sptr = e;
2905 *symval_ptr = symval;
2906 if (channels_ptr)
2907 *channels_ptr = channels;
2908 return TRUE;
2909 }
2910
2911 /* Check if SPTR points at a valid register specifier according to TYPES.
2912 If so, then return 1, advance S to consume the specifier and store
2913 the register's number in REGNOP, otherwise return 0. */
2914
2915 static int
2916 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2917 {
2918 unsigned int regno;
2919
2920 if (mips_parse_register (s, &regno, NULL))
2921 {
2922 if (types & RTYPE_VEC)
2923 regno = mips_prefer_vec_regno (regno);
2924 if (regno & types)
2925 regno &= RNUM_MASK;
2926 else
2927 regno = ~0;
2928 }
2929 else
2930 {
2931 if (types & RWARN)
2932 as_warn (_("unrecognized register name `%s'"), *s);
2933 regno = ~0;
2934 }
2935 if (regnop)
2936 *regnop = regno;
2937 return regno <= RNUM_MASK;
2938 }
2939
2940 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2941 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2942
2943 static char *
2944 mips_parse_vu0_channels (char *s, unsigned int *channels)
2945 {
2946 unsigned int i;
2947
2948 *channels = 0;
2949 for (i = 0; i < 4; i++)
2950 if (*s == "xyzw"[i])
2951 {
2952 *channels |= 1 << (3 - i);
2953 ++s;
2954 }
2955 return s;
2956 }
2957
2958 /* Token types for parsed operand lists. */
2959 enum mips_operand_token_type {
2960 /* A plain register, e.g. $f2. */
2961 OT_REG,
2962
2963 /* A 4-bit XYZW channel mask. */
2964 OT_CHANNELS,
2965
2966 /* A constant vector index, e.g. [1]. */
2967 OT_INTEGER_INDEX,
2968
2969 /* A register vector index, e.g. [$2]. */
2970 OT_REG_INDEX,
2971
2972 /* A continuous range of registers, e.g. $s0-$s4. */
2973 OT_REG_RANGE,
2974
2975 /* A (possibly relocated) expression. */
2976 OT_INTEGER,
2977
2978 /* A floating-point value. */
2979 OT_FLOAT,
2980
2981 /* A single character. This can be '(', ')' or ',', but '(' only appears
2982 before OT_REGs. */
2983 OT_CHAR,
2984
2985 /* A doubled character, either "--" or "++". */
2986 OT_DOUBLE_CHAR,
2987
2988 /* The end of the operand list. */
2989 OT_END
2990 };
2991
2992 /* A parsed operand token. */
2993 struct mips_operand_token
2994 {
2995 /* The type of token. */
2996 enum mips_operand_token_type type;
2997 union
2998 {
2999 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
3000 unsigned int regno;
3001
3002 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
3003 unsigned int channels;
3004
3005 /* The integer value of an OT_INTEGER_INDEX. */
3006 addressT index;
3007
3008 /* The two register symbol values involved in an OT_REG_RANGE. */
3009 struct {
3010 unsigned int regno1;
3011 unsigned int regno2;
3012 } reg_range;
3013
3014 /* The value of an OT_INTEGER. The value is represented as an
3015 expression and the relocation operators that were applied to
3016 that expression. The reloc entries are BFD_RELOC_UNUSED if no
3017 relocation operators were used. */
3018 struct {
3019 expressionS value;
3020 bfd_reloc_code_real_type relocs[3];
3021 } integer;
3022
3023 /* The binary data for an OT_FLOAT constant, and the number of bytes
3024 in the constant. */
3025 struct {
3026 unsigned char data[8];
3027 int length;
3028 } flt;
3029
3030 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
3031 char ch;
3032 } u;
3033 };
3034
3035 /* An obstack used to construct lists of mips_operand_tokens. */
3036 static struct obstack mips_operand_tokens;
3037
3038 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
3039
3040 static void
3041 mips_add_token (struct mips_operand_token *token,
3042 enum mips_operand_token_type type)
3043 {
3044 token->type = type;
3045 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
3046 }
3047
3048 /* Check whether S is '(' followed by a register name. Add OT_CHAR
3049 and OT_REG tokens for them if so, and return a pointer to the first
3050 unconsumed character. Return null otherwise. */
3051
3052 static char *
3053 mips_parse_base_start (char *s)
3054 {
3055 struct mips_operand_token token;
3056 unsigned int regno, channels;
3057 bfd_boolean decrement_p;
3058
3059 if (*s != '(')
3060 return 0;
3061
3062 ++s;
3063 SKIP_SPACE_TABS (s);
3064
3065 /* Only match "--" as part of a base expression. In other contexts "--X"
3066 is a double negative. */
3067 decrement_p = (s[0] == '-' && s[1] == '-');
3068 if (decrement_p)
3069 {
3070 s += 2;
3071 SKIP_SPACE_TABS (s);
3072 }
3073
3074 /* Allow a channel specifier because that leads to better error messages
3075 than treating something like "$vf0x++" as an expression. */
3076 if (!mips_parse_register (&s, &regno, &channels))
3077 return 0;
3078
3079 token.u.ch = '(';
3080 mips_add_token (&token, OT_CHAR);
3081
3082 if (decrement_p)
3083 {
3084 token.u.ch = '-';
3085 mips_add_token (&token, OT_DOUBLE_CHAR);
3086 }
3087
3088 token.u.regno = regno;
3089 mips_add_token (&token, OT_REG);
3090
3091 if (channels)
3092 {
3093 token.u.channels = channels;
3094 mips_add_token (&token, OT_CHANNELS);
3095 }
3096
3097 /* For consistency, only match "++" as part of base expressions too. */
3098 SKIP_SPACE_TABS (s);
3099 if (s[0] == '+' && s[1] == '+')
3100 {
3101 s += 2;
3102 token.u.ch = '+';
3103 mips_add_token (&token, OT_DOUBLE_CHAR);
3104 }
3105
3106 return s;
3107 }
3108
3109 /* Parse one or more tokens from S. Return a pointer to the first
3110 unconsumed character on success. Return null if an error was found
3111 and store the error text in insn_error. FLOAT_FORMAT is as for
3112 mips_parse_arguments. */
3113
3114 static char *
3115 mips_parse_argument_token (char *s, char float_format)
3116 {
3117 char *end, *save_in;
3118 const char *err;
3119 unsigned int regno1, regno2, channels;
3120 struct mips_operand_token token;
3121
3122 /* First look for "($reg", since we want to treat that as an
3123 OT_CHAR and OT_REG rather than an expression. */
3124 end = mips_parse_base_start (s);
3125 if (end)
3126 return end;
3127
3128 /* Handle other characters that end up as OT_CHARs. */
3129 if (*s == ')' || *s == ',')
3130 {
3131 token.u.ch = *s;
3132 mips_add_token (&token, OT_CHAR);
3133 ++s;
3134 return s;
3135 }
3136
3137 /* Handle tokens that start with a register. */
3138 if (mips_parse_register (&s, &regno1, &channels))
3139 {
3140 if (channels)
3141 {
3142 /* A register and a VU0 channel suffix. */
3143 token.u.regno = regno1;
3144 mips_add_token (&token, OT_REG);
3145
3146 token.u.channels = channels;
3147 mips_add_token (&token, OT_CHANNELS);
3148 return s;
3149 }
3150
3151 SKIP_SPACE_TABS (s);
3152 if (*s == '-')
3153 {
3154 /* A register range. */
3155 ++s;
3156 SKIP_SPACE_TABS (s);
3157 if (!mips_parse_register (&s, &regno2, NULL))
3158 {
3159 set_insn_error (0, _("invalid register range"));
3160 return 0;
3161 }
3162
3163 token.u.reg_range.regno1 = regno1;
3164 token.u.reg_range.regno2 = regno2;
3165 mips_add_token (&token, OT_REG_RANGE);
3166 return s;
3167 }
3168
3169 /* Add the register itself. */
3170 token.u.regno = regno1;
3171 mips_add_token (&token, OT_REG);
3172
3173 /* Check for a vector index. */
3174 if (*s == '[')
3175 {
3176 ++s;
3177 SKIP_SPACE_TABS (s);
3178 if (mips_parse_register (&s, &token.u.regno, NULL))
3179 mips_add_token (&token, OT_REG_INDEX);
3180 else
3181 {
3182 expressionS element;
3183
3184 my_getExpression (&element, s);
3185 if (element.X_op != O_constant)
3186 {
3187 set_insn_error (0, _("vector element must be constant"));
3188 return 0;
3189 }
3190 s = expr_end;
3191 token.u.index = element.X_add_number;
3192 mips_add_token (&token, OT_INTEGER_INDEX);
3193 }
3194 SKIP_SPACE_TABS (s);
3195 if (*s != ']')
3196 {
3197 set_insn_error (0, _("missing `]'"));
3198 return 0;
3199 }
3200 ++s;
3201 }
3202 return s;
3203 }
3204
3205 if (float_format)
3206 {
3207 /* First try to treat expressions as floats. */
3208 save_in = input_line_pointer;
3209 input_line_pointer = s;
3210 err = md_atof (float_format, (char *) token.u.flt.data,
3211 &token.u.flt.length);
3212 end = input_line_pointer;
3213 input_line_pointer = save_in;
3214 if (err && *err)
3215 {
3216 set_insn_error (0, err);
3217 return 0;
3218 }
3219 if (s != end)
3220 {
3221 mips_add_token (&token, OT_FLOAT);
3222 return end;
3223 }
3224 }
3225
3226 /* Treat everything else as an integer expression. */
3227 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3228 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3229 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3230 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3231 s = expr_end;
3232 mips_add_token (&token, OT_INTEGER);
3233 return s;
3234 }
3235
3236 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3237 if expressions should be treated as 32-bit floating-point constants,
3238 'd' if they should be treated as 64-bit floating-point constants,
3239 or 0 if they should be treated as integer expressions (the usual case).
3240
3241 Return a list of tokens on success, otherwise return 0. The caller
3242 must obstack_free the list after use. */
3243
3244 static struct mips_operand_token *
3245 mips_parse_arguments (char *s, char float_format)
3246 {
3247 struct mips_operand_token token;
3248
3249 SKIP_SPACE_TABS (s);
3250 while (*s)
3251 {
3252 s = mips_parse_argument_token (s, float_format);
3253 if (!s)
3254 {
3255 obstack_free (&mips_operand_tokens,
3256 obstack_finish (&mips_operand_tokens));
3257 return 0;
3258 }
3259 SKIP_SPACE_TABS (s);
3260 }
3261 mips_add_token (&token, OT_END);
3262 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3263 }
3264
3265 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3266 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3267
3268 static bfd_boolean
3269 is_opcode_valid (const struct mips_opcode *mo)
3270 {
3271 int isa = mips_opts.isa;
3272 int ase = mips_opts.ase;
3273 int fp_s, fp_d;
3274 unsigned int i;
3275
3276 if (ISA_HAS_64BIT_REGS (isa))
3277 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3278 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3279 ase |= mips_ases[i].flags64;
3280
3281 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3282 return FALSE;
3283
3284 /* Check whether the instruction or macro requires single-precision or
3285 double-precision floating-point support. Note that this information is
3286 stored differently in the opcode table for insns and macros. */
3287 if (mo->pinfo == INSN_MACRO)
3288 {
3289 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3290 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3291 }
3292 else
3293 {
3294 fp_s = mo->pinfo & FP_S;
3295 fp_d = mo->pinfo & FP_D;
3296 }
3297
3298 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3299 return FALSE;
3300
3301 if (fp_s && mips_opts.soft_float)
3302 return FALSE;
3303
3304 return TRUE;
3305 }
3306
3307 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3308 selected ISA and architecture. */
3309
3310 static bfd_boolean
3311 is_opcode_valid_16 (const struct mips_opcode *mo)
3312 {
3313 int isa = mips_opts.isa;
3314 int ase = mips_opts.ase;
3315 unsigned int i;
3316
3317 if (ISA_HAS_64BIT_REGS (isa))
3318 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3319 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3320 ase |= mips_ases[i].flags64;
3321
3322 return opcode_is_member (mo, isa, ase, mips_opts.arch);
3323 }
3324
3325 /* Return TRUE if the size of the microMIPS opcode MO matches one
3326 explicitly requested. Always TRUE in the standard MIPS mode.
3327 Use is_size_valid_16 for MIPS16 opcodes. */
3328
3329 static bfd_boolean
3330 is_size_valid (const struct mips_opcode *mo)
3331 {
3332 if (!mips_opts.micromips)
3333 return TRUE;
3334
3335 if (mips_opts.insn32)
3336 {
3337 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3338 return FALSE;
3339 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3340 return FALSE;
3341 }
3342 if (!forced_insn_length)
3343 return TRUE;
3344 if (mo->pinfo == INSN_MACRO)
3345 return FALSE;
3346 return forced_insn_length == micromips_insn_length (mo);
3347 }
3348
3349 /* Return TRUE if the size of the MIPS16 opcode MO matches one
3350 explicitly requested. */
3351
3352 static bfd_boolean
3353 is_size_valid_16 (const struct mips_opcode *mo)
3354 {
3355 if (!forced_insn_length)
3356 return TRUE;
3357 if (mo->pinfo == INSN_MACRO)
3358 return FALSE;
3359 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3360 return FALSE;
3361 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3362 return FALSE;
3363 return TRUE;
3364 }
3365
3366 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3367 of the preceding instruction. Always TRUE in the standard MIPS mode.
3368
3369 We don't accept macros in 16-bit delay slots to avoid a case where
3370 a macro expansion fails because it relies on a preceding 32-bit real
3371 instruction to have matched and does not handle the operands correctly.
3372 The only macros that may expand to 16-bit instructions are JAL that
3373 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3374 and BGT (that likewise cannot be placed in a delay slot) that decay to
3375 a NOP. In all these cases the macros precede any corresponding real
3376 instruction definitions in the opcode table, so they will match in the
3377 second pass where the size of the delay slot is ignored and therefore
3378 produce correct code. */
3379
3380 static bfd_boolean
3381 is_delay_slot_valid (const struct mips_opcode *mo)
3382 {
3383 if (!mips_opts.micromips)
3384 return TRUE;
3385
3386 if (mo->pinfo == INSN_MACRO)
3387 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3388 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3389 && micromips_insn_length (mo) != 4)
3390 return FALSE;
3391 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3392 && micromips_insn_length (mo) != 2)
3393 return FALSE;
3394
3395 return TRUE;
3396 }
3397
3398 /* For consistency checking, verify that all bits of OPCODE are specified
3399 either by the match/mask part of the instruction definition, or by the
3400 operand list. Also build up a list of operands in OPERANDS.
3401
3402 INSN_BITS says which bits of the instruction are significant.
3403 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3404 provides the mips_operand description of each operand. DECODE_OPERAND
3405 is null for MIPS16 instructions. */
3406
3407 static int
3408 validate_mips_insn (const struct mips_opcode *opcode,
3409 unsigned long insn_bits,
3410 const struct mips_operand *(*decode_operand) (const char *),
3411 struct mips_operand_array *operands)
3412 {
3413 const char *s;
3414 unsigned long used_bits, doubled, undefined, opno, mask;
3415 const struct mips_operand *operand;
3416
3417 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3418 if ((mask & opcode->match) != opcode->match)
3419 {
3420 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3421 opcode->name, opcode->args);
3422 return 0;
3423 }
3424 used_bits = 0;
3425 opno = 0;
3426 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3427 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3428 for (s = opcode->args; *s; ++s)
3429 switch (*s)
3430 {
3431 case ',':
3432 case '(':
3433 case ')':
3434 break;
3435
3436 case '#':
3437 s++;
3438 break;
3439
3440 default:
3441 if (!decode_operand)
3442 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
3443 else
3444 operand = decode_operand (s);
3445 if (!operand && opcode->pinfo != INSN_MACRO)
3446 {
3447 as_bad (_("internal: unknown operand type: %s %s"),
3448 opcode->name, opcode->args);
3449 return 0;
3450 }
3451 gas_assert (opno < MAX_OPERANDS);
3452 operands->operand[opno] = operand;
3453 if (!decode_operand && operand
3454 && operand->type == OP_INT && operand->lsb == 0
3455 && mips_opcode_32bit_p (opcode))
3456 used_bits |= mips16_immed_extend (-1, operand->size);
3457 else if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3458 {
3459 used_bits = mips_insert_operand (operand, used_bits, -1);
3460 if (operand->type == OP_MDMX_IMM_REG)
3461 /* Bit 5 is the format selector (OB vs QH). The opcode table
3462 has separate entries for each format. */
3463 used_bits &= ~(1 << (operand->lsb + 5));
3464 if (operand->type == OP_ENTRY_EXIT_LIST)
3465 used_bits &= ~(mask & 0x700);
3466 /* interAptiv MR2 SAVE/RESTORE instructions have a discontiguous
3467 operand field that cannot be fully described with LSB/SIZE. */
3468 if (operand->type == OP_SAVE_RESTORE_LIST && operand->lsb == 6)
3469 used_bits &= ~0x6000;
3470 }
3471 /* Skip prefix characters. */
3472 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3473 ++s;
3474 opno += 1;
3475 break;
3476 }
3477 doubled = used_bits & mask & insn_bits;
3478 if (doubled)
3479 {
3480 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3481 " %s %s"), doubled, opcode->name, opcode->args);
3482 return 0;
3483 }
3484 used_bits |= mask;
3485 undefined = ~used_bits & insn_bits;
3486 if (opcode->pinfo != INSN_MACRO && undefined)
3487 {
3488 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3489 undefined, opcode->name, opcode->args);
3490 return 0;
3491 }
3492 used_bits &= ~insn_bits;
3493 if (used_bits)
3494 {
3495 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3496 used_bits, opcode->name, opcode->args);
3497 return 0;
3498 }
3499 return 1;
3500 }
3501
3502 /* The MIPS16 version of validate_mips_insn. */
3503
3504 static int
3505 validate_mips16_insn (const struct mips_opcode *opcode,
3506 struct mips_operand_array *operands)
3507 {
3508 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
3509
3510 return validate_mips_insn (opcode, insn_bits, 0, operands);
3511 }
3512
3513 /* The microMIPS version of validate_mips_insn. */
3514
3515 static int
3516 validate_micromips_insn (const struct mips_opcode *opc,
3517 struct mips_operand_array *operands)
3518 {
3519 unsigned long insn_bits;
3520 unsigned long major;
3521 unsigned int length;
3522
3523 if (opc->pinfo == INSN_MACRO)
3524 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3525 operands);
3526
3527 length = micromips_insn_length (opc);
3528 if (length != 2 && length != 4)
3529 {
3530 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3531 "%s %s"), length, opc->name, opc->args);
3532 return 0;
3533 }
3534 major = opc->match >> (10 + 8 * (length - 2));
3535 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3536 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3537 {
3538 as_bad (_("internal error: bad microMIPS opcode "
3539 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3540 return 0;
3541 }
3542
3543 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3544 insn_bits = 1 << 4 * length;
3545 insn_bits <<= 4 * length;
3546 insn_bits -= 1;
3547 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3548 operands);
3549 }
3550
3551 /* This function is called once, at assembler startup time. It should set up
3552 all the tables, etc. that the MD part of the assembler will need. */
3553
3554 void
3555 md_begin (void)
3556 {
3557 const char *retval = NULL;
3558 int i = 0;
3559 int broken = 0;
3560
3561 if (mips_pic != NO_PIC)
3562 {
3563 if (g_switch_seen && g_switch_value != 0)
3564 as_bad (_("-G may not be used in position-independent code"));
3565 g_switch_value = 0;
3566 }
3567 else if (mips_abicalls)
3568 {
3569 if (g_switch_seen && g_switch_value != 0)
3570 as_bad (_("-G may not be used with abicalls"));
3571 g_switch_value = 0;
3572 }
3573
3574 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3575 as_warn (_("could not set architecture and machine"));
3576
3577 op_hash = hash_new ();
3578
3579 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3580 for (i = 0; i < NUMOPCODES;)
3581 {
3582 const char *name = mips_opcodes[i].name;
3583
3584 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3585 if (retval != NULL)
3586 {
3587 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3588 mips_opcodes[i].name, retval);
3589 /* Probably a memory allocation problem? Give up now. */
3590 as_fatal (_("broken assembler, no assembly attempted"));
3591 }
3592 do
3593 {
3594 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3595 decode_mips_operand, &mips_operands[i]))
3596 broken = 1;
3597 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3598 {
3599 create_insn (&nop_insn, mips_opcodes + i);
3600 if (mips_fix_loongson2f_nop)
3601 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3602 nop_insn.fixed_p = 1;
3603 }
3604 ++i;
3605 }
3606 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3607 }
3608
3609 mips16_op_hash = hash_new ();
3610 mips16_operands = XCNEWVEC (struct mips_operand_array,
3611 bfd_mips16_num_opcodes);
3612
3613 i = 0;
3614 while (i < bfd_mips16_num_opcodes)
3615 {
3616 const char *name = mips16_opcodes[i].name;
3617
3618 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3619 if (retval != NULL)
3620 as_fatal (_("internal: can't hash `%s': %s"),
3621 mips16_opcodes[i].name, retval);
3622 do
3623 {
3624 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3625 broken = 1;
3626 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3627 {
3628 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3629 mips16_nop_insn.fixed_p = 1;
3630 }
3631 ++i;
3632 }
3633 while (i < bfd_mips16_num_opcodes
3634 && strcmp (mips16_opcodes[i].name, name) == 0);
3635 }
3636
3637 micromips_op_hash = hash_new ();
3638 micromips_operands = XCNEWVEC (struct mips_operand_array,
3639 bfd_micromips_num_opcodes);
3640
3641 i = 0;
3642 while (i < bfd_micromips_num_opcodes)
3643 {
3644 const char *name = micromips_opcodes[i].name;
3645
3646 retval = hash_insert (micromips_op_hash, name,
3647 (void *) &micromips_opcodes[i]);
3648 if (retval != NULL)
3649 as_fatal (_("internal: can't hash `%s': %s"),
3650 micromips_opcodes[i].name, retval);
3651 do
3652 {
3653 struct mips_cl_insn *micromips_nop_insn;
3654
3655 if (!validate_micromips_insn (&micromips_opcodes[i],
3656 &micromips_operands[i]))
3657 broken = 1;
3658
3659 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3660 {
3661 if (micromips_insn_length (micromips_opcodes + i) == 2)
3662 micromips_nop_insn = &micromips_nop16_insn;
3663 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3664 micromips_nop_insn = &micromips_nop32_insn;
3665 else
3666 continue;
3667
3668 if (micromips_nop_insn->insn_mo == NULL
3669 && strcmp (name, "nop") == 0)
3670 {
3671 create_insn (micromips_nop_insn, micromips_opcodes + i);
3672 micromips_nop_insn->fixed_p = 1;
3673 }
3674 }
3675 }
3676 while (++i < bfd_micromips_num_opcodes
3677 && strcmp (micromips_opcodes[i].name, name) == 0);
3678 }
3679
3680 if (broken)
3681 as_fatal (_("broken assembler, no assembly attempted"));
3682
3683 /* We add all the general register names to the symbol table. This
3684 helps us detect invalid uses of them. */
3685 for (i = 0; reg_names[i].name; i++)
3686 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3687 reg_names[i].num, /* & RNUM_MASK, */
3688 &zero_address_frag));
3689 if (HAVE_NEWABI)
3690 for (i = 0; reg_names_n32n64[i].name; i++)
3691 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3692 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3693 &zero_address_frag));
3694 else
3695 for (i = 0; reg_names_o32[i].name; i++)
3696 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3697 reg_names_o32[i].num, /* & RNUM_MASK, */
3698 &zero_address_frag));
3699
3700 for (i = 0; i < 32; i++)
3701 {
3702 char regname[6];
3703
3704 /* R5900 VU0 floating-point register. */
3705 sprintf (regname, "$vf%d", i);
3706 symbol_table_insert (symbol_new (regname, reg_section,
3707 RTYPE_VF | i, &zero_address_frag));
3708
3709 /* R5900 VU0 integer register. */
3710 sprintf (regname, "$vi%d", i);
3711 symbol_table_insert (symbol_new (regname, reg_section,
3712 RTYPE_VI | i, &zero_address_frag));
3713
3714 /* MSA register. */
3715 sprintf (regname, "$w%d", i);
3716 symbol_table_insert (symbol_new (regname, reg_section,
3717 RTYPE_MSA | i, &zero_address_frag));
3718 }
3719
3720 obstack_init (&mips_operand_tokens);
3721
3722 mips_no_prev_insn ();
3723
3724 mips_gprmask = 0;
3725 mips_cprmask[0] = 0;
3726 mips_cprmask[1] = 0;
3727 mips_cprmask[2] = 0;
3728 mips_cprmask[3] = 0;
3729
3730 /* set the default alignment for the text section (2**2) */
3731 record_alignment (text_section, 2);
3732
3733 bfd_set_gp_size (stdoutput, g_switch_value);
3734
3735 /* On a native system other than VxWorks, sections must be aligned
3736 to 16 byte boundaries. When configured for an embedded ELF
3737 target, we don't bother. */
3738 if (strncmp (TARGET_OS, "elf", 3) != 0
3739 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3740 {
3741 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3742 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3743 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3744 }
3745
3746 /* Create a .reginfo section for register masks and a .mdebug
3747 section for debugging information. */
3748 {
3749 segT seg;
3750 subsegT subseg;
3751 flagword flags;
3752 segT sec;
3753
3754 seg = now_seg;
3755 subseg = now_subseg;
3756
3757 /* The ABI says this section should be loaded so that the
3758 running program can access it. However, we don't load it
3759 if we are configured for an embedded target */
3760 flags = SEC_READONLY | SEC_DATA;
3761 if (strncmp (TARGET_OS, "elf", 3) != 0)
3762 flags |= SEC_ALLOC | SEC_LOAD;
3763
3764 if (mips_abi != N64_ABI)
3765 {
3766 sec = subseg_new (".reginfo", (subsegT) 0);
3767
3768 bfd_set_section_flags (stdoutput, sec, flags);
3769 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3770
3771 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3772 }
3773 else
3774 {
3775 /* The 64-bit ABI uses a .MIPS.options section rather than
3776 .reginfo section. */
3777 sec = subseg_new (".MIPS.options", (subsegT) 0);
3778 bfd_set_section_flags (stdoutput, sec, flags);
3779 bfd_set_section_alignment (stdoutput, sec, 3);
3780
3781 /* Set up the option header. */
3782 {
3783 Elf_Internal_Options opthdr;
3784 char *f;
3785
3786 opthdr.kind = ODK_REGINFO;
3787 opthdr.size = (sizeof (Elf_External_Options)
3788 + sizeof (Elf64_External_RegInfo));
3789 opthdr.section = 0;
3790 opthdr.info = 0;
3791 f = frag_more (sizeof (Elf_External_Options));
3792 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3793 (Elf_External_Options *) f);
3794
3795 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3796 }
3797 }
3798
3799 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3800 bfd_set_section_flags (stdoutput, sec,
3801 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3802 bfd_set_section_alignment (stdoutput, sec, 3);
3803 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3804
3805 if (ECOFF_DEBUGGING)
3806 {
3807 sec = subseg_new (".mdebug", (subsegT) 0);
3808 (void) bfd_set_section_flags (stdoutput, sec,
3809 SEC_HAS_CONTENTS | SEC_READONLY);
3810 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3811 }
3812 else if (mips_flag_pdr)
3813 {
3814 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3815 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3816 SEC_READONLY | SEC_RELOC
3817 | SEC_DEBUGGING);
3818 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3819 }
3820
3821 subseg_set (seg, subseg);
3822 }
3823
3824 if (mips_fix_vr4120)
3825 init_vr4120_conflicts ();
3826 }
3827
3828 static inline void
3829 fpabi_incompatible_with (int fpabi, const char *what)
3830 {
3831 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3832 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3833 }
3834
3835 static inline void
3836 fpabi_requires (int fpabi, const char *what)
3837 {
3838 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3839 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3840 }
3841
3842 /* Check -mabi and register sizes against the specified FP ABI. */
3843 static void
3844 check_fpabi (int fpabi)
3845 {
3846 switch (fpabi)
3847 {
3848 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3849 if (file_mips_opts.soft_float)
3850 fpabi_incompatible_with (fpabi, "softfloat");
3851 else if (file_mips_opts.single_float)
3852 fpabi_incompatible_with (fpabi, "singlefloat");
3853 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3854 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3855 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3856 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3857 break;
3858
3859 case Val_GNU_MIPS_ABI_FP_XX:
3860 if (mips_abi != O32_ABI)
3861 fpabi_requires (fpabi, "-mabi=32");
3862 else if (file_mips_opts.soft_float)
3863 fpabi_incompatible_with (fpabi, "softfloat");
3864 else if (file_mips_opts.single_float)
3865 fpabi_incompatible_with (fpabi, "singlefloat");
3866 else if (file_mips_opts.fp != 0)
3867 fpabi_requires (fpabi, "fp=xx");
3868 break;
3869
3870 case Val_GNU_MIPS_ABI_FP_64A:
3871 case Val_GNU_MIPS_ABI_FP_64:
3872 if (mips_abi != O32_ABI)
3873 fpabi_requires (fpabi, "-mabi=32");
3874 else if (file_mips_opts.soft_float)
3875 fpabi_incompatible_with (fpabi, "softfloat");
3876 else if (file_mips_opts.single_float)
3877 fpabi_incompatible_with (fpabi, "singlefloat");
3878 else if (file_mips_opts.fp != 64)
3879 fpabi_requires (fpabi, "fp=64");
3880 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3881 fpabi_incompatible_with (fpabi, "nooddspreg");
3882 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3883 fpabi_requires (fpabi, "nooddspreg");
3884 break;
3885
3886 case Val_GNU_MIPS_ABI_FP_SINGLE:
3887 if (file_mips_opts.soft_float)
3888 fpabi_incompatible_with (fpabi, "softfloat");
3889 else if (!file_mips_opts.single_float)
3890 fpabi_requires (fpabi, "singlefloat");
3891 break;
3892
3893 case Val_GNU_MIPS_ABI_FP_SOFT:
3894 if (!file_mips_opts.soft_float)
3895 fpabi_requires (fpabi, "softfloat");
3896 break;
3897
3898 case Val_GNU_MIPS_ABI_FP_OLD_64:
3899 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3900 Tag_GNU_MIPS_ABI_FP, fpabi);
3901 break;
3902
3903 case Val_GNU_MIPS_ABI_FP_NAN2008:
3904 /* Silently ignore compatibility value. */
3905 break;
3906
3907 default:
3908 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3909 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3910 break;
3911 }
3912 }
3913
3914 /* Perform consistency checks on the current options. */
3915
3916 static void
3917 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3918 {
3919 /* Check the size of integer registers agrees with the ABI and ISA. */
3920 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3921 as_bad (_("`gp=64' used with a 32-bit processor"));
3922 else if (abi_checks
3923 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3924 as_bad (_("`gp=32' used with a 64-bit ABI"));
3925 else if (abi_checks
3926 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3927 as_bad (_("`gp=64' used with a 32-bit ABI"));
3928
3929 /* Check the size of the float registers agrees with the ABI and ISA. */
3930 switch (opts->fp)
3931 {
3932 case 0:
3933 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3934 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3935 else if (opts->single_float == 1)
3936 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3937 break;
3938 case 64:
3939 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3940 as_bad (_("`fp=64' used with a 32-bit fpu"));
3941 else if (abi_checks
3942 && ABI_NEEDS_32BIT_REGS (mips_abi)
3943 && !ISA_HAS_MXHC1 (opts->isa))
3944 as_warn (_("`fp=64' used with a 32-bit ABI"));
3945 break;
3946 case 32:
3947 if (abi_checks
3948 && ABI_NEEDS_64BIT_REGS (mips_abi))
3949 as_warn (_("`fp=32' used with a 64-bit ABI"));
3950 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3951 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3952 break;
3953 default:
3954 as_bad (_("Unknown size of floating point registers"));
3955 break;
3956 }
3957
3958 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3959 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3960
3961 if (opts->micromips == 1 && opts->mips16 == 1)
3962 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3963 else if (ISA_IS_R6 (opts->isa)
3964 && (opts->micromips == 1
3965 || opts->mips16 == 1))
3966 as_fatal (_("`%s' cannot be used with `%s'"),
3967 opts->micromips ? "micromips" : "mips16",
3968 mips_cpu_info_from_isa (opts->isa)->name);
3969
3970 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3971 as_fatal (_("branch relaxation is not supported in `%s'"),
3972 mips_cpu_info_from_isa (opts->isa)->name);
3973 }
3974
3975 /* Perform consistency checks on the module level options exactly once.
3976 This is a deferred check that happens:
3977 at the first .set directive
3978 or, at the first pseudo op that generates code (inc .dc.a)
3979 or, at the first instruction
3980 or, at the end. */
3981
3982 static void
3983 file_mips_check_options (void)
3984 {
3985 const struct mips_cpu_info *arch_info = 0;
3986
3987 if (file_mips_opts_checked)
3988 return;
3989
3990 /* The following code determines the register size.
3991 Similar code was added to GCC 3.3 (see override_options() in
3992 config/mips/mips.c). The GAS and GCC code should be kept in sync
3993 as much as possible. */
3994
3995 if (file_mips_opts.gp < 0)
3996 {
3997 /* Infer the integer register size from the ABI and processor.
3998 Restrict ourselves to 32-bit registers if that's all the
3999 processor has, or if the ABI cannot handle 64-bit registers. */
4000 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
4001 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
4002 ? 32 : 64;
4003 }
4004
4005 if (file_mips_opts.fp < 0)
4006 {
4007 /* No user specified float register size.
4008 ??? GAS treats single-float processors as though they had 64-bit
4009 float registers (although it complains when double-precision
4010 instructions are used). As things stand, saying they have 32-bit
4011 registers would lead to spurious "register must be even" messages.
4012 So here we assume float registers are never smaller than the
4013 integer ones. */
4014 if (file_mips_opts.gp == 64)
4015 /* 64-bit integer registers implies 64-bit float registers. */
4016 file_mips_opts.fp = 64;
4017 else if ((file_mips_opts.ase & FP64_ASES)
4018 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
4019 /* Handle ASEs that require 64-bit float registers, if possible. */
4020 file_mips_opts.fp = 64;
4021 else if (ISA_IS_R6 (mips_opts.isa))
4022 /* R6 implies 64-bit float registers. */
4023 file_mips_opts.fp = 64;
4024 else
4025 /* 32-bit float registers. */
4026 file_mips_opts.fp = 32;
4027 }
4028
4029 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
4030
4031 /* Disable operations on odd-numbered floating-point registers by default
4032 when using the FPXX ABI. */
4033 if (file_mips_opts.oddspreg < 0)
4034 {
4035 if (file_mips_opts.fp == 0)
4036 file_mips_opts.oddspreg = 0;
4037 else
4038 file_mips_opts.oddspreg = 1;
4039 }
4040
4041 /* End of GCC-shared inference code. */
4042
4043 /* This flag is set when we have a 64-bit capable CPU but use only
4044 32-bit wide registers. Note that EABI does not use it. */
4045 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
4046 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
4047 || mips_abi == O32_ABI))
4048 mips_32bitmode = 1;
4049
4050 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
4051 as_bad (_("trap exception not supported at ISA 1"));
4052
4053 /* If the selected architecture includes support for ASEs, enable
4054 generation of code for them. */
4055 if (file_mips_opts.mips16 == -1)
4056 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
4057 if (file_mips_opts.micromips == -1)
4058 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
4059 ? 1 : 0;
4060
4061 if (mips_nan2008 == -1)
4062 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
4063 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4064 as_fatal (_("`%s' does not support legacy NaN"),
4065 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4066
4067 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4068 being selected implicitly. */
4069 if (file_mips_opts.fp != 64)
4070 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4071
4072 /* If the user didn't explicitly select or deselect a particular ASE,
4073 use the default setting for the CPU. */
4074 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4075
4076 /* Set up the current options. These may change throughout assembly. */
4077 mips_opts = file_mips_opts;
4078
4079 mips_check_isa_supports_ases ();
4080 mips_check_options (&file_mips_opts, TRUE);
4081 file_mips_opts_checked = TRUE;
4082
4083 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4084 as_warn (_("could not set architecture and machine"));
4085 }
4086
4087 void
4088 md_assemble (char *str)
4089 {
4090 struct mips_cl_insn insn;
4091 bfd_reloc_code_real_type unused_reloc[3]
4092 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4093
4094 file_mips_check_options ();
4095
4096 imm_expr.X_op = O_absent;
4097 offset_expr.X_op = O_absent;
4098 offset_reloc[0] = BFD_RELOC_UNUSED;
4099 offset_reloc[1] = BFD_RELOC_UNUSED;
4100 offset_reloc[2] = BFD_RELOC_UNUSED;
4101
4102 mips_mark_labels ();
4103 mips_assembling_insn = TRUE;
4104 clear_insn_error ();
4105
4106 if (mips_opts.mips16)
4107 mips16_ip (str, &insn);
4108 else
4109 {
4110 mips_ip (str, &insn);
4111 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4112 str, insn.insn_opcode));
4113 }
4114
4115 if (insn_error.msg)
4116 report_insn_error (str);
4117 else if (insn.insn_mo->pinfo == INSN_MACRO)
4118 {
4119 macro_start ();
4120 if (mips_opts.mips16)
4121 mips16_macro (&insn);
4122 else
4123 macro (&insn, str);
4124 macro_end ();
4125 }
4126 else
4127 {
4128 if (offset_expr.X_op != O_absent)
4129 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4130 else
4131 append_insn (&insn, NULL, unused_reloc, FALSE);
4132 }
4133
4134 mips_assembling_insn = FALSE;
4135 }
4136
4137 /* Convenience functions for abstracting away the differences between
4138 MIPS16 and non-MIPS16 relocations. */
4139
4140 static inline bfd_boolean
4141 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4142 {
4143 switch (reloc)
4144 {
4145 case BFD_RELOC_MIPS16_JMP:
4146 case BFD_RELOC_MIPS16_GPREL:
4147 case BFD_RELOC_MIPS16_GOT16:
4148 case BFD_RELOC_MIPS16_CALL16:
4149 case BFD_RELOC_MIPS16_HI16_S:
4150 case BFD_RELOC_MIPS16_HI16:
4151 case BFD_RELOC_MIPS16_LO16:
4152 case BFD_RELOC_MIPS16_16_PCREL_S1:
4153 return TRUE;
4154
4155 default:
4156 return FALSE;
4157 }
4158 }
4159
4160 static inline bfd_boolean
4161 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4162 {
4163 switch (reloc)
4164 {
4165 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4166 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4167 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4168 case BFD_RELOC_MICROMIPS_GPREL16:
4169 case BFD_RELOC_MICROMIPS_JMP:
4170 case BFD_RELOC_MICROMIPS_HI16:
4171 case BFD_RELOC_MICROMIPS_HI16_S:
4172 case BFD_RELOC_MICROMIPS_LO16:
4173 case BFD_RELOC_MICROMIPS_LITERAL:
4174 case BFD_RELOC_MICROMIPS_GOT16:
4175 case BFD_RELOC_MICROMIPS_CALL16:
4176 case BFD_RELOC_MICROMIPS_GOT_HI16:
4177 case BFD_RELOC_MICROMIPS_GOT_LO16:
4178 case BFD_RELOC_MICROMIPS_CALL_HI16:
4179 case BFD_RELOC_MICROMIPS_CALL_LO16:
4180 case BFD_RELOC_MICROMIPS_SUB:
4181 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4182 case BFD_RELOC_MICROMIPS_GOT_OFST:
4183 case BFD_RELOC_MICROMIPS_GOT_DISP:
4184 case BFD_RELOC_MICROMIPS_HIGHEST:
4185 case BFD_RELOC_MICROMIPS_HIGHER:
4186 case BFD_RELOC_MICROMIPS_SCN_DISP:
4187 case BFD_RELOC_MICROMIPS_JALR:
4188 return TRUE;
4189
4190 default:
4191 return FALSE;
4192 }
4193 }
4194
4195 static inline bfd_boolean
4196 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4197 {
4198 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4199 }
4200
4201 static inline bfd_boolean
4202 b_reloc_p (bfd_reloc_code_real_type reloc)
4203 {
4204 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4205 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4206 || reloc == BFD_RELOC_16_PCREL_S2
4207 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4208 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4209 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4210 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4211 }
4212
4213 static inline bfd_boolean
4214 got16_reloc_p (bfd_reloc_code_real_type reloc)
4215 {
4216 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4217 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4218 }
4219
4220 static inline bfd_boolean
4221 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4222 {
4223 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4224 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4225 }
4226
4227 static inline bfd_boolean
4228 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4229 {
4230 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4231 || reloc == BFD_RELOC_MICROMIPS_LO16);
4232 }
4233
4234 static inline bfd_boolean
4235 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4236 {
4237 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4238 }
4239
4240 static inline bfd_boolean
4241 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4242 {
4243 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4244 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4245 }
4246
4247 /* Return true if RELOC is a PC-relative relocation that does not have
4248 full address range. */
4249
4250 static inline bfd_boolean
4251 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4252 {
4253 switch (reloc)
4254 {
4255 case BFD_RELOC_16_PCREL_S2:
4256 case BFD_RELOC_MIPS16_16_PCREL_S1:
4257 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4258 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4259 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4260 case BFD_RELOC_MIPS_21_PCREL_S2:
4261 case BFD_RELOC_MIPS_26_PCREL_S2:
4262 case BFD_RELOC_MIPS_18_PCREL_S3:
4263 case BFD_RELOC_MIPS_19_PCREL_S2:
4264 return TRUE;
4265
4266 case BFD_RELOC_32_PCREL:
4267 case BFD_RELOC_HI16_S_PCREL:
4268 case BFD_RELOC_LO16_PCREL:
4269 return HAVE_64BIT_ADDRESSES;
4270
4271 default:
4272 return FALSE;
4273 }
4274 }
4275
4276 /* Return true if the given relocation might need a matching %lo().
4277 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4278 need a matching %lo() when applied to local symbols. */
4279
4280 static inline bfd_boolean
4281 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4282 {
4283 return (HAVE_IN_PLACE_ADDENDS
4284 && (hi16_reloc_p (reloc)
4285 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4286 all GOT16 relocations evaluate to "G". */
4287 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4288 }
4289
4290 /* Return the type of %lo() reloc needed by RELOC, given that
4291 reloc_needs_lo_p. */
4292
4293 static inline bfd_reloc_code_real_type
4294 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4295 {
4296 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4297 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4298 : BFD_RELOC_LO16));
4299 }
4300
4301 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4302 relocation. */
4303
4304 static inline bfd_boolean
4305 fixup_has_matching_lo_p (fixS *fixp)
4306 {
4307 return (fixp->fx_next != NULL
4308 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4309 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4310 && fixp->fx_offset == fixp->fx_next->fx_offset);
4311 }
4312
4313 /* Move all labels in LABELS to the current insertion point. TEXT_P
4314 says whether the labels refer to text or data. */
4315
4316 static void
4317 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4318 {
4319 struct insn_label_list *l;
4320 valueT val;
4321
4322 for (l = labels; l != NULL; l = l->next)
4323 {
4324 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4325 symbol_set_frag (l->label, frag_now);
4326 val = (valueT) frag_now_fix ();
4327 /* MIPS16/microMIPS text labels are stored as odd. */
4328 if (text_p && HAVE_CODE_COMPRESSION)
4329 ++val;
4330 S_SET_VALUE (l->label, val);
4331 }
4332 }
4333
4334 /* Move all labels in insn_labels to the current insertion point
4335 and treat them as text labels. */
4336
4337 static void
4338 mips_move_text_labels (void)
4339 {
4340 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4341 }
4342
4343 /* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4344
4345 static bfd_boolean
4346 s_is_linkonce (symbolS *sym, segT from_seg)
4347 {
4348 bfd_boolean linkonce = FALSE;
4349 segT symseg = S_GET_SEGMENT (sym);
4350
4351 if (symseg != from_seg && !S_IS_LOCAL (sym))
4352 {
4353 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4354 linkonce = TRUE;
4355 /* The GNU toolchain uses an extension for ELF: a section
4356 beginning with the magic string .gnu.linkonce is a
4357 linkonce section. */
4358 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4359 sizeof ".gnu.linkonce" - 1) == 0)
4360 linkonce = TRUE;
4361 }
4362 return linkonce;
4363 }
4364
4365 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4366 linker to handle them specially, such as generating jalx instructions
4367 when needed. We also make them odd for the duration of the assembly,
4368 in order to generate the right sort of code. We will make them even
4369 in the adjust_symtab routine, while leaving them marked. This is
4370 convenient for the debugger and the disassembler. The linker knows
4371 to make them odd again. */
4372
4373 static void
4374 mips_compressed_mark_label (symbolS *label)
4375 {
4376 gas_assert (HAVE_CODE_COMPRESSION);
4377
4378 if (mips_opts.mips16)
4379 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4380 else
4381 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4382 if ((S_GET_VALUE (label) & 1) == 0
4383 /* Don't adjust the address if the label is global or weak, or
4384 in a link-once section, since we'll be emitting symbol reloc
4385 references to it which will be patched up by the linker, and
4386 the final value of the symbol may or may not be MIPS16/microMIPS. */
4387 && !S_IS_WEAK (label)
4388 && !S_IS_EXTERNAL (label)
4389 && !s_is_linkonce (label, now_seg))
4390 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4391 }
4392
4393 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4394
4395 static void
4396 mips_compressed_mark_labels (void)
4397 {
4398 struct insn_label_list *l;
4399
4400 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4401 mips_compressed_mark_label (l->label);
4402 }
4403
4404 /* End the current frag. Make it a variant frag and record the
4405 relaxation info. */
4406
4407 static void
4408 relax_close_frag (void)
4409 {
4410 mips_macro_warning.first_frag = frag_now;
4411 frag_var (rs_machine_dependent, 0, 0,
4412 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
4413 mips_pic != NO_PIC),
4414 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4415
4416 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4417 mips_relax.first_fixup = 0;
4418 }
4419
4420 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4421 See the comment above RELAX_ENCODE for more details. */
4422
4423 static void
4424 relax_start (symbolS *symbol)
4425 {
4426 gas_assert (mips_relax.sequence == 0);
4427 mips_relax.sequence = 1;
4428 mips_relax.symbol = symbol;
4429 }
4430
4431 /* Start generating the second version of a relaxable sequence.
4432 See the comment above RELAX_ENCODE for more details. */
4433
4434 static void
4435 relax_switch (void)
4436 {
4437 gas_assert (mips_relax.sequence == 1);
4438 mips_relax.sequence = 2;
4439 }
4440
4441 /* End the current relaxable sequence. */
4442
4443 static void
4444 relax_end (void)
4445 {
4446 gas_assert (mips_relax.sequence == 2);
4447 relax_close_frag ();
4448 mips_relax.sequence = 0;
4449 }
4450
4451 /* Return true if IP is a delayed branch or jump. */
4452
4453 static inline bfd_boolean
4454 delayed_branch_p (const struct mips_cl_insn *ip)
4455 {
4456 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4457 | INSN_COND_BRANCH_DELAY
4458 | INSN_COND_BRANCH_LIKELY)) != 0;
4459 }
4460
4461 /* Return true if IP is a compact branch or jump. */
4462
4463 static inline bfd_boolean
4464 compact_branch_p (const struct mips_cl_insn *ip)
4465 {
4466 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4467 | INSN2_COND_BRANCH)) != 0;
4468 }
4469
4470 /* Return true if IP is an unconditional branch or jump. */
4471
4472 static inline bfd_boolean
4473 uncond_branch_p (const struct mips_cl_insn *ip)
4474 {
4475 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4476 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4477 }
4478
4479 /* Return true if IP is a branch-likely instruction. */
4480
4481 static inline bfd_boolean
4482 branch_likely_p (const struct mips_cl_insn *ip)
4483 {
4484 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4485 }
4486
4487 /* Return the type of nop that should be used to fill the delay slot
4488 of delayed branch IP. */
4489
4490 static struct mips_cl_insn *
4491 get_delay_slot_nop (const struct mips_cl_insn *ip)
4492 {
4493 if (mips_opts.micromips
4494 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4495 return &micromips_nop32_insn;
4496 return NOP_INSN;
4497 }
4498
4499 /* Return a mask that has bit N set if OPCODE reads the register(s)
4500 in operand N. */
4501
4502 static unsigned int
4503 insn_read_mask (const struct mips_opcode *opcode)
4504 {
4505 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4506 }
4507
4508 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4509 in operand N. */
4510
4511 static unsigned int
4512 insn_write_mask (const struct mips_opcode *opcode)
4513 {
4514 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4515 }
4516
4517 /* Return a mask of the registers specified by operand OPERAND of INSN.
4518 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4519 is set. */
4520
4521 static unsigned int
4522 operand_reg_mask (const struct mips_cl_insn *insn,
4523 const struct mips_operand *operand,
4524 unsigned int type_mask)
4525 {
4526 unsigned int uval, vsel;
4527
4528 switch (operand->type)
4529 {
4530 case OP_INT:
4531 case OP_MAPPED_INT:
4532 case OP_MSB:
4533 case OP_PCREL:
4534 case OP_PERF_REG:
4535 case OP_ADDIUSP_INT:
4536 case OP_ENTRY_EXIT_LIST:
4537 case OP_REPEAT_DEST_REG:
4538 case OP_REPEAT_PREV_REG:
4539 case OP_PC:
4540 case OP_VU0_SUFFIX:
4541 case OP_VU0_MATCH_SUFFIX:
4542 case OP_IMM_INDEX:
4543 abort ();
4544
4545 case OP_REG28:
4546 return 1 << 28;
4547
4548 case OP_REG:
4549 case OP_OPTIONAL_REG:
4550 {
4551 const struct mips_reg_operand *reg_op;
4552
4553 reg_op = (const struct mips_reg_operand *) operand;
4554 if (!(type_mask & (1 << reg_op->reg_type)))
4555 return 0;
4556 uval = insn_extract_operand (insn, operand);
4557 return 1 << mips_decode_reg_operand (reg_op, uval);
4558 }
4559
4560 case OP_REG_PAIR:
4561 {
4562 const struct mips_reg_pair_operand *pair_op;
4563
4564 pair_op = (const struct mips_reg_pair_operand *) operand;
4565 if (!(type_mask & (1 << pair_op->reg_type)))
4566 return 0;
4567 uval = insn_extract_operand (insn, operand);
4568 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4569 }
4570
4571 case OP_CLO_CLZ_DEST:
4572 if (!(type_mask & (1 << OP_REG_GP)))
4573 return 0;
4574 uval = insn_extract_operand (insn, operand);
4575 return (1 << (uval & 31)) | (1 << (uval >> 5));
4576
4577 case OP_SAME_RS_RT:
4578 if (!(type_mask & (1 << OP_REG_GP)))
4579 return 0;
4580 uval = insn_extract_operand (insn, operand);
4581 gas_assert ((uval & 31) == (uval >> 5));
4582 return 1 << (uval & 31);
4583
4584 case OP_CHECK_PREV:
4585 case OP_NON_ZERO_REG:
4586 if (!(type_mask & (1 << OP_REG_GP)))
4587 return 0;
4588 uval = insn_extract_operand (insn, operand);
4589 return 1 << (uval & 31);
4590
4591 case OP_LWM_SWM_LIST:
4592 abort ();
4593
4594 case OP_SAVE_RESTORE_LIST:
4595 abort ();
4596
4597 case OP_MDMX_IMM_REG:
4598 if (!(type_mask & (1 << OP_REG_VEC)))
4599 return 0;
4600 uval = insn_extract_operand (insn, operand);
4601 vsel = uval >> 5;
4602 if ((vsel & 0x18) == 0x18)
4603 return 0;
4604 return 1 << (uval & 31);
4605
4606 case OP_REG_INDEX:
4607 if (!(type_mask & (1 << OP_REG_GP)))
4608 return 0;
4609 return 1 << insn_extract_operand (insn, operand);
4610 }
4611 abort ();
4612 }
4613
4614 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4615 where bit N of OPNO_MASK is set if operand N should be included.
4616 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4617 is set. */
4618
4619 static unsigned int
4620 insn_reg_mask (const struct mips_cl_insn *insn,
4621 unsigned int type_mask, unsigned int opno_mask)
4622 {
4623 unsigned int opno, reg_mask;
4624
4625 opno = 0;
4626 reg_mask = 0;
4627 while (opno_mask != 0)
4628 {
4629 if (opno_mask & 1)
4630 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4631 opno_mask >>= 1;
4632 opno += 1;
4633 }
4634 return reg_mask;
4635 }
4636
4637 /* Return the mask of core registers that IP reads. */
4638
4639 static unsigned int
4640 gpr_read_mask (const struct mips_cl_insn *ip)
4641 {
4642 unsigned long pinfo, pinfo2;
4643 unsigned int mask;
4644
4645 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4646 pinfo = ip->insn_mo->pinfo;
4647 pinfo2 = ip->insn_mo->pinfo2;
4648 if (pinfo & INSN_UDI)
4649 {
4650 /* UDI instructions have traditionally been assumed to read RS
4651 and RT. */
4652 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4653 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4654 }
4655 if (pinfo & INSN_READ_GPR_24)
4656 mask |= 1 << 24;
4657 if (pinfo2 & INSN2_READ_GPR_16)
4658 mask |= 1 << 16;
4659 if (pinfo2 & INSN2_READ_SP)
4660 mask |= 1 << SP;
4661 if (pinfo2 & INSN2_READ_GPR_31)
4662 mask |= 1 << 31;
4663 /* Don't include register 0. */
4664 return mask & ~1;
4665 }
4666
4667 /* Return the mask of core registers that IP writes. */
4668
4669 static unsigned int
4670 gpr_write_mask (const struct mips_cl_insn *ip)
4671 {
4672 unsigned long pinfo, pinfo2;
4673 unsigned int mask;
4674
4675 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4676 pinfo = ip->insn_mo->pinfo;
4677 pinfo2 = ip->insn_mo->pinfo2;
4678 if (pinfo & INSN_WRITE_GPR_24)
4679 mask |= 1 << 24;
4680 if (pinfo & INSN_WRITE_GPR_31)
4681 mask |= 1 << 31;
4682 if (pinfo & INSN_UDI)
4683 /* UDI instructions have traditionally been assumed to write to RD. */
4684 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4685 if (pinfo2 & INSN2_WRITE_SP)
4686 mask |= 1 << SP;
4687 /* Don't include register 0. */
4688 return mask & ~1;
4689 }
4690
4691 /* Return the mask of floating-point registers that IP reads. */
4692
4693 static unsigned int
4694 fpr_read_mask (const struct mips_cl_insn *ip)
4695 {
4696 unsigned long pinfo;
4697 unsigned int mask;
4698
4699 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4700 | (1 << OP_REG_MSA)),
4701 insn_read_mask (ip->insn_mo));
4702 pinfo = ip->insn_mo->pinfo;
4703 /* Conservatively treat all operands to an FP_D instruction are doubles.
4704 (This is overly pessimistic for things like cvt.d.s.) */
4705 if (FPR_SIZE != 64 && (pinfo & FP_D))
4706 mask |= mask << 1;
4707 return mask;
4708 }
4709
4710 /* Return the mask of floating-point registers that IP writes. */
4711
4712 static unsigned int
4713 fpr_write_mask (const struct mips_cl_insn *ip)
4714 {
4715 unsigned long pinfo;
4716 unsigned int mask;
4717
4718 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4719 | (1 << OP_REG_MSA)),
4720 insn_write_mask (ip->insn_mo));
4721 pinfo = ip->insn_mo->pinfo;
4722 /* Conservatively treat all operands to an FP_D instruction are doubles.
4723 (This is overly pessimistic for things like cvt.s.d.) */
4724 if (FPR_SIZE != 64 && (pinfo & FP_D))
4725 mask |= mask << 1;
4726 return mask;
4727 }
4728
4729 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4730 Check whether that is allowed. */
4731
4732 static bfd_boolean
4733 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4734 {
4735 const char *s = insn->name;
4736 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4737 || FPR_SIZE == 64)
4738 && mips_opts.oddspreg;
4739
4740 if (insn->pinfo == INSN_MACRO)
4741 /* Let a macro pass, we'll catch it later when it is expanded. */
4742 return TRUE;
4743
4744 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4745 otherwise it depends on oddspreg. */
4746 if ((insn->pinfo & FP_S)
4747 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4748 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4749 return FPR_SIZE == 32 || oddspreg;
4750
4751 /* Allow odd registers for single-precision ops and double-precision if the
4752 floating-point registers are 64-bit wide. */
4753 switch (insn->pinfo & (FP_S | FP_D))
4754 {
4755 case FP_S:
4756 case 0:
4757 return oddspreg;
4758 case FP_D:
4759 return FPR_SIZE == 64;
4760 default:
4761 break;
4762 }
4763
4764 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4765 s = strchr (insn->name, '.');
4766 if (s != NULL && opnum == 2)
4767 s = strchr (s + 1, '.');
4768 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4769 return oddspreg;
4770
4771 return FPR_SIZE == 64;
4772 }
4773
4774 /* Information about an instruction argument that we're trying to match. */
4775 struct mips_arg_info
4776 {
4777 /* The instruction so far. */
4778 struct mips_cl_insn *insn;
4779
4780 /* The first unconsumed operand token. */
4781 struct mips_operand_token *token;
4782
4783 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4784 int opnum;
4785
4786 /* The 1-based argument number, for error reporting. This does not
4787 count elided optional registers, etc.. */
4788 int argnum;
4789
4790 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4791 unsigned int last_regno;
4792
4793 /* If the first operand was an OP_REG, this is the register that it
4794 specified, otherwise it is ILLEGAL_REG. */
4795 unsigned int dest_regno;
4796
4797 /* The value of the last OP_INT operand. Only used for OP_MSB,
4798 where it gives the lsb position. */
4799 unsigned int last_op_int;
4800
4801 /* If true, match routines should assume that no later instruction
4802 alternative matches and should therefore be as accommodating as
4803 possible. Match routines should not report errors if something
4804 is only invalid for !LAX_MATCH. */
4805 bfd_boolean lax_match;
4806
4807 /* True if a reference to the current AT register was seen. */
4808 bfd_boolean seen_at;
4809 };
4810
4811 /* Record that the argument is out of range. */
4812
4813 static void
4814 match_out_of_range (struct mips_arg_info *arg)
4815 {
4816 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4817 }
4818
4819 /* Record that the argument isn't constant but needs to be. */
4820
4821 static void
4822 match_not_constant (struct mips_arg_info *arg)
4823 {
4824 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4825 arg->argnum);
4826 }
4827
4828 /* Try to match an OT_CHAR token for character CH. Consume the token
4829 and return true on success, otherwise return false. */
4830
4831 static bfd_boolean
4832 match_char (struct mips_arg_info *arg, char ch)
4833 {
4834 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4835 {
4836 ++arg->token;
4837 if (ch == ',')
4838 arg->argnum += 1;
4839 return TRUE;
4840 }
4841 return FALSE;
4842 }
4843
4844 /* Try to get an expression from the next tokens in ARG. Consume the
4845 tokens and return true on success, storing the expression value in
4846 VALUE and relocation types in R. */
4847
4848 static bfd_boolean
4849 match_expression (struct mips_arg_info *arg, expressionS *value,
4850 bfd_reloc_code_real_type *r)
4851 {
4852 /* If the next token is a '(' that was parsed as being part of a base
4853 expression, assume we have an elided offset. The later match will fail
4854 if this turns out to be wrong. */
4855 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4856 {
4857 value->X_op = O_constant;
4858 value->X_add_number = 0;
4859 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4860 return TRUE;
4861 }
4862
4863 /* Reject register-based expressions such as "0+$2" and "(($2))".
4864 For plain registers the default error seems more appropriate. */
4865 if (arg->token->type == OT_INTEGER
4866 && arg->token->u.integer.value.X_op == O_register)
4867 {
4868 set_insn_error (arg->argnum, _("register value used as expression"));
4869 return FALSE;
4870 }
4871
4872 if (arg->token->type == OT_INTEGER)
4873 {
4874 *value = arg->token->u.integer.value;
4875 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4876 ++arg->token;
4877 return TRUE;
4878 }
4879
4880 set_insn_error_i
4881 (arg->argnum, _("operand %d must be an immediate expression"),
4882 arg->argnum);
4883 return FALSE;
4884 }
4885
4886 /* Try to get a constant expression from the next tokens in ARG. Consume
4887 the tokens and return return true on success, storing the constant value
4888 in *VALUE. */
4889
4890 static bfd_boolean
4891 match_const_int (struct mips_arg_info *arg, offsetT *value)
4892 {
4893 expressionS ex;
4894 bfd_reloc_code_real_type r[3];
4895
4896 if (!match_expression (arg, &ex, r))
4897 return FALSE;
4898
4899 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4900 *value = ex.X_add_number;
4901 else
4902 {
4903 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_big)
4904 match_out_of_range (arg);
4905 else
4906 match_not_constant (arg);
4907 return FALSE;
4908 }
4909 return TRUE;
4910 }
4911
4912 /* Return the RTYPE_* flags for a register operand of type TYPE that
4913 appears in instruction OPCODE. */
4914
4915 static unsigned int
4916 convert_reg_type (const struct mips_opcode *opcode,
4917 enum mips_reg_operand_type type)
4918 {
4919 switch (type)
4920 {
4921 case OP_REG_GP:
4922 return RTYPE_NUM | RTYPE_GP;
4923
4924 case OP_REG_FP:
4925 /* Allow vector register names for MDMX if the instruction is a 64-bit
4926 FPR load, store or move (including moves to and from GPRs). */
4927 if ((mips_opts.ase & ASE_MDMX)
4928 && (opcode->pinfo & FP_D)
4929 && (opcode->pinfo & (INSN_COPROC_MOVE
4930 | INSN_COPROC_MEMORY_DELAY
4931 | INSN_LOAD_COPROC
4932 | INSN_LOAD_MEMORY
4933 | INSN_STORE_MEMORY)))
4934 return RTYPE_FPU | RTYPE_VEC;
4935 return RTYPE_FPU;
4936
4937 case OP_REG_CCC:
4938 if (opcode->pinfo & (FP_D | FP_S))
4939 return RTYPE_CCC | RTYPE_FCC;
4940 return RTYPE_CCC;
4941
4942 case OP_REG_VEC:
4943 if (opcode->membership & INSN_5400)
4944 return RTYPE_FPU;
4945 return RTYPE_FPU | RTYPE_VEC;
4946
4947 case OP_REG_ACC:
4948 return RTYPE_ACC;
4949
4950 case OP_REG_COPRO:
4951 if (opcode->name[strlen (opcode->name) - 1] == '0')
4952 return RTYPE_NUM | RTYPE_CP0;
4953 return RTYPE_NUM;
4954
4955 case OP_REG_HW:
4956 return RTYPE_NUM;
4957
4958 case OP_REG_VI:
4959 return RTYPE_NUM | RTYPE_VI;
4960
4961 case OP_REG_VF:
4962 return RTYPE_NUM | RTYPE_VF;
4963
4964 case OP_REG_R5900_I:
4965 return RTYPE_R5900_I;
4966
4967 case OP_REG_R5900_Q:
4968 return RTYPE_R5900_Q;
4969
4970 case OP_REG_R5900_R:
4971 return RTYPE_R5900_R;
4972
4973 case OP_REG_R5900_ACC:
4974 return RTYPE_R5900_ACC;
4975
4976 case OP_REG_MSA:
4977 return RTYPE_MSA;
4978
4979 case OP_REG_MSA_CTRL:
4980 return RTYPE_NUM;
4981 }
4982 abort ();
4983 }
4984
4985 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4986
4987 static void
4988 check_regno (struct mips_arg_info *arg,
4989 enum mips_reg_operand_type type, unsigned int regno)
4990 {
4991 if (AT && type == OP_REG_GP && regno == AT)
4992 arg->seen_at = TRUE;
4993
4994 if (type == OP_REG_FP
4995 && (regno & 1) != 0
4996 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4997 {
4998 /* This was a warning prior to introducing O32 FPXX and FP64 support
4999 so maintain a warning for FP32 but raise an error for the new
5000 cases. */
5001 if (FPR_SIZE == 32)
5002 as_warn (_("float register should be even, was %d"), regno);
5003 else
5004 as_bad (_("float register should be even, was %d"), regno);
5005 }
5006
5007 if (type == OP_REG_CCC)
5008 {
5009 const char *name;
5010 size_t length;
5011
5012 name = arg->insn->insn_mo->name;
5013 length = strlen (name);
5014 if ((regno & 1) != 0
5015 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
5016 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
5017 as_warn (_("condition code register should be even for %s, was %d"),
5018 name, regno);
5019
5020 if ((regno & 3) != 0
5021 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
5022 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
5023 name, regno);
5024 }
5025 }
5026
5027 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
5028 a register of type TYPE. Return true on success, storing the register
5029 number in *REGNO and warning about any dubious uses. */
5030
5031 static bfd_boolean
5032 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5033 unsigned int symval, unsigned int *regno)
5034 {
5035 if (type == OP_REG_VEC)
5036 symval = mips_prefer_vec_regno (symval);
5037 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
5038 return FALSE;
5039
5040 *regno = symval & RNUM_MASK;
5041 check_regno (arg, type, *regno);
5042 return TRUE;
5043 }
5044
5045 /* Try to interpret the next token in ARG as a register of type TYPE.
5046 Consume the token and return true on success, storing the register
5047 number in *REGNO. Return false on failure. */
5048
5049 static bfd_boolean
5050 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5051 unsigned int *regno)
5052 {
5053 if (arg->token->type == OT_REG
5054 && match_regno (arg, type, arg->token->u.regno, regno))
5055 {
5056 ++arg->token;
5057 return TRUE;
5058 }
5059 return FALSE;
5060 }
5061
5062 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
5063 Consume the token and return true on success, storing the register numbers
5064 in *REGNO1 and *REGNO2. Return false on failure. */
5065
5066 static bfd_boolean
5067 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5068 unsigned int *regno1, unsigned int *regno2)
5069 {
5070 if (match_reg (arg, type, regno1))
5071 {
5072 *regno2 = *regno1;
5073 return TRUE;
5074 }
5075 if (arg->token->type == OT_REG_RANGE
5076 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5077 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5078 && *regno1 <= *regno2)
5079 {
5080 ++arg->token;
5081 return TRUE;
5082 }
5083 return FALSE;
5084 }
5085
5086 /* OP_INT matcher. */
5087
5088 static bfd_boolean
5089 match_int_operand (struct mips_arg_info *arg,
5090 const struct mips_operand *operand_base)
5091 {
5092 const struct mips_int_operand *operand;
5093 unsigned int uval;
5094 int min_val, max_val, factor;
5095 offsetT sval;
5096
5097 operand = (const struct mips_int_operand *) operand_base;
5098 factor = 1 << operand->shift;
5099 min_val = mips_int_operand_min (operand);
5100 max_val = mips_int_operand_max (operand);
5101
5102 if (operand_base->lsb == 0
5103 && operand_base->size == 16
5104 && operand->shift == 0
5105 && operand->bias == 0
5106 && (operand->max_val == 32767 || operand->max_val == 65535))
5107 {
5108 /* The operand can be relocated. */
5109 if (!match_expression (arg, &offset_expr, offset_reloc))
5110 return FALSE;
5111
5112 if (offset_expr.X_op == O_big)
5113 {
5114 match_out_of_range (arg);
5115 return FALSE;
5116 }
5117
5118 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5119 /* Relocation operators were used. Accept the argument and
5120 leave the relocation value in offset_expr and offset_relocs
5121 for the caller to process. */
5122 return TRUE;
5123
5124 if (offset_expr.X_op != O_constant)
5125 {
5126 /* Accept non-constant operands if no later alternative matches,
5127 leaving it for the caller to process. */
5128 if (!arg->lax_match)
5129 {
5130 match_not_constant (arg);
5131 return FALSE;
5132 }
5133 offset_reloc[0] = BFD_RELOC_LO16;
5134 return TRUE;
5135 }
5136
5137 /* Clear the global state; we're going to install the operand
5138 ourselves. */
5139 sval = offset_expr.X_add_number;
5140 offset_expr.X_op = O_absent;
5141
5142 /* For compatibility with older assemblers, we accept
5143 0x8000-0xffff as signed 16-bit numbers when only
5144 signed numbers are allowed. */
5145 if (sval > max_val)
5146 {
5147 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5148 if (!arg->lax_match && sval <= max_val)
5149 {
5150 match_out_of_range (arg);
5151 return FALSE;
5152 }
5153 }
5154 }
5155 else
5156 {
5157 if (!match_const_int (arg, &sval))
5158 return FALSE;
5159 }
5160
5161 arg->last_op_int = sval;
5162
5163 if (sval < min_val || sval > max_val || sval % factor)
5164 {
5165 match_out_of_range (arg);
5166 return FALSE;
5167 }
5168
5169 uval = (unsigned int) sval >> operand->shift;
5170 uval -= operand->bias;
5171
5172 /* Handle -mfix-cn63xxp1. */
5173 if (arg->opnum == 1
5174 && mips_fix_cn63xxp1
5175 && !mips_opts.micromips
5176 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5177 switch (uval)
5178 {
5179 case 5:
5180 case 25:
5181 case 26:
5182 case 27:
5183 case 28:
5184 case 29:
5185 case 30:
5186 case 31:
5187 /* These are ok. */
5188 break;
5189
5190 default:
5191 /* The rest must be changed to 28. */
5192 uval = 28;
5193 break;
5194 }
5195
5196 insn_insert_operand (arg->insn, operand_base, uval);
5197 return TRUE;
5198 }
5199
5200 /* OP_MAPPED_INT matcher. */
5201
5202 static bfd_boolean
5203 match_mapped_int_operand (struct mips_arg_info *arg,
5204 const struct mips_operand *operand_base)
5205 {
5206 const struct mips_mapped_int_operand *operand;
5207 unsigned int uval, num_vals;
5208 offsetT sval;
5209
5210 operand = (const struct mips_mapped_int_operand *) operand_base;
5211 if (!match_const_int (arg, &sval))
5212 return FALSE;
5213
5214 num_vals = 1 << operand_base->size;
5215 for (uval = 0; uval < num_vals; uval++)
5216 if (operand->int_map[uval] == sval)
5217 break;
5218 if (uval == num_vals)
5219 {
5220 match_out_of_range (arg);
5221 return FALSE;
5222 }
5223
5224 insn_insert_operand (arg->insn, operand_base, uval);
5225 return TRUE;
5226 }
5227
5228 /* OP_MSB matcher. */
5229
5230 static bfd_boolean
5231 match_msb_operand (struct mips_arg_info *arg,
5232 const struct mips_operand *operand_base)
5233 {
5234 const struct mips_msb_operand *operand;
5235 int min_val, max_val, max_high;
5236 offsetT size, sval, high;
5237
5238 operand = (const struct mips_msb_operand *) operand_base;
5239 min_val = operand->bias;
5240 max_val = min_val + (1 << operand_base->size) - 1;
5241 max_high = operand->opsize;
5242
5243 if (!match_const_int (arg, &size))
5244 return FALSE;
5245
5246 high = size + arg->last_op_int;
5247 sval = operand->add_lsb ? high : size;
5248
5249 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5250 {
5251 match_out_of_range (arg);
5252 return FALSE;
5253 }
5254 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5255 return TRUE;
5256 }
5257
5258 /* OP_REG matcher. */
5259
5260 static bfd_boolean
5261 match_reg_operand (struct mips_arg_info *arg,
5262 const struct mips_operand *operand_base)
5263 {
5264 const struct mips_reg_operand *operand;
5265 unsigned int regno, uval, num_vals;
5266
5267 operand = (const struct mips_reg_operand *) operand_base;
5268 if (!match_reg (arg, operand->reg_type, &regno))
5269 return FALSE;
5270
5271 if (operand->reg_map)
5272 {
5273 num_vals = 1 << operand->root.size;
5274 for (uval = 0; uval < num_vals; uval++)
5275 if (operand->reg_map[uval] == regno)
5276 break;
5277 if (num_vals == uval)
5278 return FALSE;
5279 }
5280 else
5281 uval = regno;
5282
5283 arg->last_regno = regno;
5284 if (arg->opnum == 1)
5285 arg->dest_regno = regno;
5286 insn_insert_operand (arg->insn, operand_base, uval);
5287 return TRUE;
5288 }
5289
5290 /* OP_REG_PAIR matcher. */
5291
5292 static bfd_boolean
5293 match_reg_pair_operand (struct mips_arg_info *arg,
5294 const struct mips_operand *operand_base)
5295 {
5296 const struct mips_reg_pair_operand *operand;
5297 unsigned int regno1, regno2, uval, num_vals;
5298
5299 operand = (const struct mips_reg_pair_operand *) operand_base;
5300 if (!match_reg (arg, operand->reg_type, &regno1)
5301 || !match_char (arg, ',')
5302 || !match_reg (arg, operand->reg_type, &regno2))
5303 return FALSE;
5304
5305 num_vals = 1 << operand_base->size;
5306 for (uval = 0; uval < num_vals; uval++)
5307 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5308 break;
5309 if (uval == num_vals)
5310 return FALSE;
5311
5312 insn_insert_operand (arg->insn, operand_base, uval);
5313 return TRUE;
5314 }
5315
5316 /* OP_PCREL matcher. The caller chooses the relocation type. */
5317
5318 static bfd_boolean
5319 match_pcrel_operand (struct mips_arg_info *arg)
5320 {
5321 bfd_reloc_code_real_type r[3];
5322
5323 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5324 }
5325
5326 /* OP_PERF_REG matcher. */
5327
5328 static bfd_boolean
5329 match_perf_reg_operand (struct mips_arg_info *arg,
5330 const struct mips_operand *operand)
5331 {
5332 offsetT sval;
5333
5334 if (!match_const_int (arg, &sval))
5335 return FALSE;
5336
5337 if (sval != 0
5338 && (sval != 1
5339 || (mips_opts.arch == CPU_R5900
5340 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5341 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5342 {
5343 set_insn_error (arg->argnum, _("invalid performance register"));
5344 return FALSE;
5345 }
5346
5347 insn_insert_operand (arg->insn, operand, sval);
5348 return TRUE;
5349 }
5350
5351 /* OP_ADDIUSP matcher. */
5352
5353 static bfd_boolean
5354 match_addiusp_operand (struct mips_arg_info *arg,
5355 const struct mips_operand *operand)
5356 {
5357 offsetT sval;
5358 unsigned int uval;
5359
5360 if (!match_const_int (arg, &sval))
5361 return FALSE;
5362
5363 if (sval % 4)
5364 {
5365 match_out_of_range (arg);
5366 return FALSE;
5367 }
5368
5369 sval /= 4;
5370 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5371 {
5372 match_out_of_range (arg);
5373 return FALSE;
5374 }
5375
5376 uval = (unsigned int) sval;
5377 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5378 insn_insert_operand (arg->insn, operand, uval);
5379 return TRUE;
5380 }
5381
5382 /* OP_CLO_CLZ_DEST matcher. */
5383
5384 static bfd_boolean
5385 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5386 const struct mips_operand *operand)
5387 {
5388 unsigned int regno;
5389
5390 if (!match_reg (arg, OP_REG_GP, &regno))
5391 return FALSE;
5392
5393 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5394 return TRUE;
5395 }
5396
5397 /* OP_CHECK_PREV matcher. */
5398
5399 static bfd_boolean
5400 match_check_prev_operand (struct mips_arg_info *arg,
5401 const struct mips_operand *operand_base)
5402 {
5403 const struct mips_check_prev_operand *operand;
5404 unsigned int regno;
5405
5406 operand = (const struct mips_check_prev_operand *) operand_base;
5407
5408 if (!match_reg (arg, OP_REG_GP, &regno))
5409 return FALSE;
5410
5411 if (!operand->zero_ok && regno == 0)
5412 return FALSE;
5413
5414 if ((operand->less_than_ok && regno < arg->last_regno)
5415 || (operand->greater_than_ok && regno > arg->last_regno)
5416 || (operand->equal_ok && regno == arg->last_regno))
5417 {
5418 arg->last_regno = regno;
5419 insn_insert_operand (arg->insn, operand_base, regno);
5420 return TRUE;
5421 }
5422
5423 return FALSE;
5424 }
5425
5426 /* OP_SAME_RS_RT matcher. */
5427
5428 static bfd_boolean
5429 match_same_rs_rt_operand (struct mips_arg_info *arg,
5430 const struct mips_operand *operand)
5431 {
5432 unsigned int regno;
5433
5434 if (!match_reg (arg, OP_REG_GP, &regno))
5435 return FALSE;
5436
5437 if (regno == 0)
5438 {
5439 set_insn_error (arg->argnum, _("the source register must not be $0"));
5440 return FALSE;
5441 }
5442
5443 arg->last_regno = regno;
5444
5445 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5446 return TRUE;
5447 }
5448
5449 /* OP_LWM_SWM_LIST matcher. */
5450
5451 static bfd_boolean
5452 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5453 const struct mips_operand *operand)
5454 {
5455 unsigned int reglist, sregs, ra, regno1, regno2;
5456 struct mips_arg_info reset;
5457
5458 reglist = 0;
5459 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5460 return FALSE;
5461 do
5462 {
5463 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5464 {
5465 reglist |= 1 << FP;
5466 regno2 = S7;
5467 }
5468 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5469 reset = *arg;
5470 }
5471 while (match_char (arg, ',')
5472 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5473 *arg = reset;
5474
5475 if (operand->size == 2)
5476 {
5477 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5478
5479 s0, ra
5480 s0, s1, ra, s2, s3
5481 s0-s2, ra
5482
5483 and any permutations of these. */
5484 if ((reglist & 0xfff1ffff) != 0x80010000)
5485 return FALSE;
5486
5487 sregs = (reglist >> 17) & 7;
5488 ra = 0;
5489 }
5490 else
5491 {
5492 /* The list must include at least one of ra and s0-sN,
5493 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5494 which are $23 and $30 respectively.) E.g.:
5495
5496 ra
5497 s0
5498 ra, s0, s1, s2
5499 s0-s8
5500 s0-s5, ra
5501
5502 and any permutations of these. */
5503 if ((reglist & 0x3f00ffff) != 0)
5504 return FALSE;
5505
5506 ra = (reglist >> 27) & 0x10;
5507 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5508 }
5509 sregs += 1;
5510 if ((sregs & -sregs) != sregs)
5511 return FALSE;
5512
5513 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5514 return TRUE;
5515 }
5516
5517 /* OP_ENTRY_EXIT_LIST matcher. */
5518
5519 static unsigned int
5520 match_entry_exit_operand (struct mips_arg_info *arg,
5521 const struct mips_operand *operand)
5522 {
5523 unsigned int mask;
5524 bfd_boolean is_exit;
5525
5526 /* The format is the same for both ENTRY and EXIT, but the constraints
5527 are different. */
5528 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5529 mask = (is_exit ? 7 << 3 : 0);
5530 do
5531 {
5532 unsigned int regno1, regno2;
5533 bfd_boolean is_freg;
5534
5535 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5536 is_freg = FALSE;
5537 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5538 is_freg = TRUE;
5539 else
5540 return FALSE;
5541
5542 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5543 {
5544 mask &= ~(7 << 3);
5545 mask |= (5 + regno2) << 3;
5546 }
5547 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5548 mask |= (regno2 - 3) << 3;
5549 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5550 mask |= (regno2 - 15) << 1;
5551 else if (regno1 == RA && regno2 == RA)
5552 mask |= 1;
5553 else
5554 return FALSE;
5555 }
5556 while (match_char (arg, ','));
5557
5558 insn_insert_operand (arg->insn, operand, mask);
5559 return TRUE;
5560 }
5561
5562 /* Encode regular MIPS SAVE/RESTORE instruction operands according to
5563 the argument register mask AMASK, the number of static registers
5564 saved NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5565 respectively, and the frame size FRAME_SIZE. */
5566
5567 static unsigned int
5568 mips_encode_save_restore (unsigned int amask, unsigned int nsreg,
5569 unsigned int ra, unsigned int s0, unsigned int s1,
5570 unsigned int frame_size)
5571 {
5572 return ((nsreg << 23) | ((frame_size & 0xf0) << 15) | (amask << 15)
5573 | (ra << 12) | (s0 << 11) | (s1 << 10) | ((frame_size & 0xf) << 6));
5574 }
5575
5576 /* Encode MIPS16 SAVE/RESTORE instruction operands according to the
5577 argument register mask AMASK, the number of static registers saved
5578 NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5579 respectively, and the frame size FRAME_SIZE. */
5580
5581 static unsigned int
5582 mips16_encode_save_restore (unsigned int amask, unsigned int nsreg,
5583 unsigned int ra, unsigned int s0, unsigned int s1,
5584 unsigned int frame_size)
5585 {
5586 unsigned int args;
5587
5588 args = (ra << 6) | (s0 << 5) | (s1 << 4) | (frame_size & 0xf);
5589 if (nsreg || amask || frame_size == 0 || frame_size > 16)
5590 args |= (MIPS16_EXTEND | (nsreg << 24) | (amask << 16)
5591 | ((frame_size & 0xf0) << 16));
5592 return args;
5593 }
5594
5595 /* OP_SAVE_RESTORE_LIST matcher. */
5596
5597 static bfd_boolean
5598 match_save_restore_list_operand (struct mips_arg_info *arg)
5599 {
5600 unsigned int opcode, args, statics, sregs;
5601 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5602 unsigned int arg_mask, ra, s0, s1;
5603 offsetT frame_size;
5604
5605 opcode = arg->insn->insn_opcode;
5606 frame_size = 0;
5607 num_frame_sizes = 0;
5608 args = 0;
5609 statics = 0;
5610 sregs = 0;
5611 ra = 0;
5612 s0 = 0;
5613 s1 = 0;
5614 do
5615 {
5616 unsigned int regno1, regno2;
5617
5618 if (arg->token->type == OT_INTEGER)
5619 {
5620 /* Handle the frame size. */
5621 if (!match_const_int (arg, &frame_size))
5622 return FALSE;
5623 num_frame_sizes += 1;
5624 }
5625 else
5626 {
5627 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5628 return FALSE;
5629
5630 while (regno1 <= regno2)
5631 {
5632 if (regno1 >= 4 && regno1 <= 7)
5633 {
5634 if (num_frame_sizes == 0)
5635 /* args $a0-$a3 */
5636 args |= 1 << (regno1 - 4);
5637 else
5638 /* statics $a0-$a3 */
5639 statics |= 1 << (regno1 - 4);
5640 }
5641 else if (regno1 >= 16 && regno1 <= 23)
5642 /* $s0-$s7 */
5643 sregs |= 1 << (regno1 - 16);
5644 else if (regno1 == 30)
5645 /* $s8 */
5646 sregs |= 1 << 8;
5647 else if (regno1 == 31)
5648 /* Add $ra to insn. */
5649 ra = 1;
5650 else
5651 return FALSE;
5652 regno1 += 1;
5653 if (regno1 == 24)
5654 regno1 = 30;
5655 }
5656 }
5657 }
5658 while (match_char (arg, ','));
5659
5660 /* Encode args/statics combination. */
5661 if (args & statics)
5662 return FALSE;
5663 else if (args == 0xf)
5664 /* All $a0-$a3 are args. */
5665 arg_mask = MIPS_SVRS_ALL_ARGS;
5666 else if (statics == 0xf)
5667 /* All $a0-$a3 are statics. */
5668 arg_mask = MIPS_SVRS_ALL_STATICS;
5669 else
5670 {
5671 /* Count arg registers. */
5672 num_args = 0;
5673 while (args & 0x1)
5674 {
5675 args >>= 1;
5676 num_args += 1;
5677 }
5678 if (args != 0)
5679 return FALSE;
5680
5681 /* Count static registers. */
5682 num_statics = 0;
5683 while (statics & 0x8)
5684 {
5685 statics = (statics << 1) & 0xf;
5686 num_statics += 1;
5687 }
5688 if (statics != 0)
5689 return FALSE;
5690
5691 /* Encode args/statics. */
5692 arg_mask = (num_args << 2) | num_statics;
5693 }
5694
5695 /* Encode $s0/$s1. */
5696 if (sregs & (1 << 0)) /* $s0 */
5697 s0 = 1;
5698 if (sregs & (1 << 1)) /* $s1 */
5699 s1 = 1;
5700 sregs >>= 2;
5701
5702 /* Encode $s2-$s8. */
5703 num_sregs = 0;
5704 while (sregs & 1)
5705 {
5706 sregs >>= 1;
5707 num_sregs += 1;
5708 }
5709 if (sregs != 0)
5710 return FALSE;
5711
5712 /* Encode frame size. */
5713 if (num_frame_sizes == 0)
5714 {
5715 set_insn_error (arg->argnum, _("missing frame size"));
5716 return FALSE;
5717 }
5718 if (num_frame_sizes > 1)
5719 {
5720 set_insn_error (arg->argnum, _("frame size specified twice"));
5721 return FALSE;
5722 }
5723 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5724 {
5725 set_insn_error (arg->argnum, _("invalid frame size"));
5726 return FALSE;
5727 }
5728 frame_size /= 8;
5729
5730 /* Finally build the instruction. */
5731 if (mips_opts.mips16)
5732 opcode |= mips16_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5733 frame_size);
5734 else if (!mips_opts.micromips)
5735 opcode |= mips_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5736 frame_size);
5737 else
5738 abort ();
5739
5740 arg->insn->insn_opcode = opcode;
5741 return TRUE;
5742 }
5743
5744 /* OP_MDMX_IMM_REG matcher. */
5745
5746 static bfd_boolean
5747 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5748 const struct mips_operand *operand)
5749 {
5750 unsigned int regno, uval;
5751 bfd_boolean is_qh;
5752 const struct mips_opcode *opcode;
5753
5754 /* The mips_opcode records whether this is an octobyte or quadhalf
5755 instruction. Start out with that bit in place. */
5756 opcode = arg->insn->insn_mo;
5757 uval = mips_extract_operand (operand, opcode->match);
5758 is_qh = (uval != 0);
5759
5760 if (arg->token->type == OT_REG)
5761 {
5762 if ((opcode->membership & INSN_5400)
5763 && strcmp (opcode->name, "rzu.ob") == 0)
5764 {
5765 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5766 arg->argnum);
5767 return FALSE;
5768 }
5769
5770 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5771 return FALSE;
5772 ++arg->token;
5773
5774 /* Check whether this is a vector register or a broadcast of
5775 a single element. */
5776 if (arg->token->type == OT_INTEGER_INDEX)
5777 {
5778 if (arg->token->u.index > (is_qh ? 3 : 7))
5779 {
5780 set_insn_error (arg->argnum, _("invalid element selector"));
5781 return FALSE;
5782 }
5783 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5784 ++arg->token;
5785 }
5786 else
5787 {
5788 /* A full vector. */
5789 if ((opcode->membership & INSN_5400)
5790 && (strcmp (opcode->name, "sll.ob") == 0
5791 || strcmp (opcode->name, "srl.ob") == 0))
5792 {
5793 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5794 arg->argnum);
5795 return FALSE;
5796 }
5797
5798 if (is_qh)
5799 uval |= MDMX_FMTSEL_VEC_QH << 5;
5800 else
5801 uval |= MDMX_FMTSEL_VEC_OB << 5;
5802 }
5803 uval |= regno;
5804 }
5805 else
5806 {
5807 offsetT sval;
5808
5809 if (!match_const_int (arg, &sval))
5810 return FALSE;
5811 if (sval < 0 || sval > 31)
5812 {
5813 match_out_of_range (arg);
5814 return FALSE;
5815 }
5816 uval |= (sval & 31);
5817 if (is_qh)
5818 uval |= MDMX_FMTSEL_IMM_QH << 5;
5819 else
5820 uval |= MDMX_FMTSEL_IMM_OB << 5;
5821 }
5822 insn_insert_operand (arg->insn, operand, uval);
5823 return TRUE;
5824 }
5825
5826 /* OP_IMM_INDEX matcher. */
5827
5828 static bfd_boolean
5829 match_imm_index_operand (struct mips_arg_info *arg,
5830 const struct mips_operand *operand)
5831 {
5832 unsigned int max_val;
5833
5834 if (arg->token->type != OT_INTEGER_INDEX)
5835 return FALSE;
5836
5837 max_val = (1 << operand->size) - 1;
5838 if (arg->token->u.index > max_val)
5839 {
5840 match_out_of_range (arg);
5841 return FALSE;
5842 }
5843 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5844 ++arg->token;
5845 return TRUE;
5846 }
5847
5848 /* OP_REG_INDEX matcher. */
5849
5850 static bfd_boolean
5851 match_reg_index_operand (struct mips_arg_info *arg,
5852 const struct mips_operand *operand)
5853 {
5854 unsigned int regno;
5855
5856 if (arg->token->type != OT_REG_INDEX)
5857 return FALSE;
5858
5859 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5860 return FALSE;
5861
5862 insn_insert_operand (arg->insn, operand, regno);
5863 ++arg->token;
5864 return TRUE;
5865 }
5866
5867 /* OP_PC matcher. */
5868
5869 static bfd_boolean
5870 match_pc_operand (struct mips_arg_info *arg)
5871 {
5872 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5873 {
5874 ++arg->token;
5875 return TRUE;
5876 }
5877 return FALSE;
5878 }
5879
5880 /* OP_REG28 matcher. */
5881
5882 static bfd_boolean
5883 match_reg28_operand (struct mips_arg_info *arg)
5884 {
5885 unsigned int regno;
5886
5887 if (arg->token->type == OT_REG
5888 && match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno)
5889 && regno == GP)
5890 {
5891 ++arg->token;
5892 return TRUE;
5893 }
5894 return FALSE;
5895 }
5896
5897 /* OP_NON_ZERO_REG matcher. */
5898
5899 static bfd_boolean
5900 match_non_zero_reg_operand (struct mips_arg_info *arg,
5901 const struct mips_operand *operand)
5902 {
5903 unsigned int regno;
5904
5905 if (!match_reg (arg, OP_REG_GP, &regno))
5906 return FALSE;
5907
5908 if (regno == 0)
5909 return FALSE;
5910
5911 arg->last_regno = regno;
5912 insn_insert_operand (arg->insn, operand, regno);
5913 return TRUE;
5914 }
5915
5916 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5917 register that we need to match. */
5918
5919 static bfd_boolean
5920 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5921 {
5922 unsigned int regno;
5923
5924 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5925 }
5926
5927 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5928 the length of the value in bytes (4 for float, 8 for double) and
5929 USING_GPRS says whether the destination is a GPR rather than an FPR.
5930
5931 Return the constant in IMM and OFFSET as follows:
5932
5933 - If the constant should be loaded via memory, set IMM to O_absent and
5934 OFFSET to the memory address.
5935
5936 - Otherwise, if the constant should be loaded into two 32-bit registers,
5937 set IMM to the O_constant to load into the high register and OFFSET
5938 to the corresponding value for the low register.
5939
5940 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5941
5942 These constants only appear as the last operand in an instruction,
5943 and every instruction that accepts them in any variant accepts them
5944 in all variants. This means we don't have to worry about backing out
5945 any changes if the instruction does not match. We just match
5946 unconditionally and report an error if the constant is invalid. */
5947
5948 static bfd_boolean
5949 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5950 expressionS *offset, int length, bfd_boolean using_gprs)
5951 {
5952 char *p;
5953 segT seg, new_seg;
5954 subsegT subseg;
5955 const char *newname;
5956 unsigned char *data;
5957
5958 /* Where the constant is placed is based on how the MIPS assembler
5959 does things:
5960
5961 length == 4 && using_gprs -- immediate value only
5962 length == 8 && using_gprs -- .rdata or immediate value
5963 length == 4 && !using_gprs -- .lit4 or immediate value
5964 length == 8 && !using_gprs -- .lit8 or immediate value
5965
5966 The .lit4 and .lit8 sections are only used if permitted by the
5967 -G argument. */
5968 if (arg->token->type != OT_FLOAT)
5969 {
5970 set_insn_error (arg->argnum, _("floating-point expression required"));
5971 return FALSE;
5972 }
5973
5974 gas_assert (arg->token->u.flt.length == length);
5975 data = arg->token->u.flt.data;
5976 ++arg->token;
5977
5978 /* Handle 32-bit constants for which an immediate value is best. */
5979 if (length == 4
5980 && (using_gprs
5981 || g_switch_value < 4
5982 || (data[0] == 0 && data[1] == 0)
5983 || (data[2] == 0 && data[3] == 0)))
5984 {
5985 imm->X_op = O_constant;
5986 if (!target_big_endian)
5987 imm->X_add_number = bfd_getl32 (data);
5988 else
5989 imm->X_add_number = bfd_getb32 (data);
5990 offset->X_op = O_absent;
5991 return TRUE;
5992 }
5993
5994 /* Handle 64-bit constants for which an immediate value is best. */
5995 if (length == 8
5996 && !mips_disable_float_construction
5997 /* Constants can only be constructed in GPRs and copied to FPRs if the
5998 GPRs are at least as wide as the FPRs or MTHC1 is available.
5999 Unlike most tests for 32-bit floating-point registers this check
6000 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
6001 permit 64-bit moves without MXHC1.
6002 Force the constant into memory otherwise. */
6003 && (using_gprs
6004 || GPR_SIZE == 64
6005 || ISA_HAS_MXHC1 (mips_opts.isa)
6006 || FPR_SIZE == 32)
6007 && ((data[0] == 0 && data[1] == 0)
6008 || (data[2] == 0 && data[3] == 0))
6009 && ((data[4] == 0 && data[5] == 0)
6010 || (data[6] == 0 && data[7] == 0)))
6011 {
6012 /* The value is simple enough to load with a couple of instructions.
6013 If using 32-bit registers, set IMM to the high order 32 bits and
6014 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
6015 64 bit constant. */
6016 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
6017 {
6018 imm->X_op = O_constant;
6019 offset->X_op = O_constant;
6020 if (!target_big_endian)
6021 {
6022 imm->X_add_number = bfd_getl32 (data + 4);
6023 offset->X_add_number = bfd_getl32 (data);
6024 }
6025 else
6026 {
6027 imm->X_add_number = bfd_getb32 (data);
6028 offset->X_add_number = bfd_getb32 (data + 4);
6029 }
6030 if (offset->X_add_number == 0)
6031 offset->X_op = O_absent;
6032 }
6033 else
6034 {
6035 imm->X_op = O_constant;
6036 if (!target_big_endian)
6037 imm->X_add_number = bfd_getl64 (data);
6038 else
6039 imm->X_add_number = bfd_getb64 (data);
6040 offset->X_op = O_absent;
6041 }
6042 return TRUE;
6043 }
6044
6045 /* Switch to the right section. */
6046 seg = now_seg;
6047 subseg = now_subseg;
6048 if (length == 4)
6049 {
6050 gas_assert (!using_gprs && g_switch_value >= 4);
6051 newname = ".lit4";
6052 }
6053 else
6054 {
6055 if (using_gprs || g_switch_value < 8)
6056 newname = RDATA_SECTION_NAME;
6057 else
6058 newname = ".lit8";
6059 }
6060
6061 new_seg = subseg_new (newname, (subsegT) 0);
6062 bfd_set_section_flags (stdoutput, new_seg,
6063 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
6064 frag_align (length == 4 ? 2 : 3, 0, 0);
6065 if (strncmp (TARGET_OS, "elf", 3) != 0)
6066 record_alignment (new_seg, 4);
6067 else
6068 record_alignment (new_seg, length == 4 ? 2 : 3);
6069 if (seg == now_seg)
6070 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
6071
6072 /* Set the argument to the current address in the section. */
6073 imm->X_op = O_absent;
6074 offset->X_op = O_symbol;
6075 offset->X_add_symbol = symbol_temp_new_now ();
6076 offset->X_add_number = 0;
6077
6078 /* Put the floating point number into the section. */
6079 p = frag_more (length);
6080 memcpy (p, data, length);
6081
6082 /* Switch back to the original section. */
6083 subseg_set (seg, subseg);
6084 return TRUE;
6085 }
6086
6087 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
6088 them. */
6089
6090 static bfd_boolean
6091 match_vu0_suffix_operand (struct mips_arg_info *arg,
6092 const struct mips_operand *operand,
6093 bfd_boolean match_p)
6094 {
6095 unsigned int uval;
6096
6097 /* The operand can be an XYZW mask or a single 2-bit channel index
6098 (with X being 0). */
6099 gas_assert (operand->size == 2 || operand->size == 4);
6100
6101 /* The suffix can be omitted when it is already part of the opcode. */
6102 if (arg->token->type != OT_CHANNELS)
6103 return match_p;
6104
6105 uval = arg->token->u.channels;
6106 if (operand->size == 2)
6107 {
6108 /* Check that a single bit is set and convert it into a 2-bit index. */
6109 if ((uval & -uval) != uval)
6110 return FALSE;
6111 uval = 4 - ffs (uval);
6112 }
6113
6114 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
6115 return FALSE;
6116
6117 ++arg->token;
6118 if (!match_p)
6119 insn_insert_operand (arg->insn, operand, uval);
6120 return TRUE;
6121 }
6122
6123 /* S is the text seen for ARG. Match it against OPERAND. Return the end
6124 of the argument text if the match is successful, otherwise return null. */
6125
6126 static bfd_boolean
6127 match_operand (struct mips_arg_info *arg,
6128 const struct mips_operand *operand)
6129 {
6130 switch (operand->type)
6131 {
6132 case OP_INT:
6133 return match_int_operand (arg, operand);
6134
6135 case OP_MAPPED_INT:
6136 return match_mapped_int_operand (arg, operand);
6137
6138 case OP_MSB:
6139 return match_msb_operand (arg, operand);
6140
6141 case OP_REG:
6142 case OP_OPTIONAL_REG:
6143 return match_reg_operand (arg, operand);
6144
6145 case OP_REG_PAIR:
6146 return match_reg_pair_operand (arg, operand);
6147
6148 case OP_PCREL:
6149 return match_pcrel_operand (arg);
6150
6151 case OP_PERF_REG:
6152 return match_perf_reg_operand (arg, operand);
6153
6154 case OP_ADDIUSP_INT:
6155 return match_addiusp_operand (arg, operand);
6156
6157 case OP_CLO_CLZ_DEST:
6158 return match_clo_clz_dest_operand (arg, operand);
6159
6160 case OP_LWM_SWM_LIST:
6161 return match_lwm_swm_list_operand (arg, operand);
6162
6163 case OP_ENTRY_EXIT_LIST:
6164 return match_entry_exit_operand (arg, operand);
6165
6166 case OP_SAVE_RESTORE_LIST:
6167 return match_save_restore_list_operand (arg);
6168
6169 case OP_MDMX_IMM_REG:
6170 return match_mdmx_imm_reg_operand (arg, operand);
6171
6172 case OP_REPEAT_DEST_REG:
6173 return match_tied_reg_operand (arg, arg->dest_regno);
6174
6175 case OP_REPEAT_PREV_REG:
6176 return match_tied_reg_operand (arg, arg->last_regno);
6177
6178 case OP_PC:
6179 return match_pc_operand (arg);
6180
6181 case OP_REG28:
6182 return match_reg28_operand (arg);
6183
6184 case OP_VU0_SUFFIX:
6185 return match_vu0_suffix_operand (arg, operand, FALSE);
6186
6187 case OP_VU0_MATCH_SUFFIX:
6188 return match_vu0_suffix_operand (arg, operand, TRUE);
6189
6190 case OP_IMM_INDEX:
6191 return match_imm_index_operand (arg, operand);
6192
6193 case OP_REG_INDEX:
6194 return match_reg_index_operand (arg, operand);
6195
6196 case OP_SAME_RS_RT:
6197 return match_same_rs_rt_operand (arg, operand);
6198
6199 case OP_CHECK_PREV:
6200 return match_check_prev_operand (arg, operand);
6201
6202 case OP_NON_ZERO_REG:
6203 return match_non_zero_reg_operand (arg, operand);
6204 }
6205 abort ();
6206 }
6207
6208 /* ARG is the state after successfully matching an instruction.
6209 Issue any queued-up warnings. */
6210
6211 static void
6212 check_completed_insn (struct mips_arg_info *arg)
6213 {
6214 if (arg->seen_at)
6215 {
6216 if (AT == ATREG)
6217 as_warn (_("used $at without \".set noat\""));
6218 else
6219 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6220 }
6221 }
6222
6223 /* Return true if modifying general-purpose register REG needs a delay. */
6224
6225 static bfd_boolean
6226 reg_needs_delay (unsigned int reg)
6227 {
6228 unsigned long prev_pinfo;
6229
6230 prev_pinfo = history[0].insn_mo->pinfo;
6231 if (!mips_opts.noreorder
6232 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6233 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6234 && (gpr_write_mask (&history[0]) & (1 << reg)))
6235 return TRUE;
6236
6237 return FALSE;
6238 }
6239
6240 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6241 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6242 by VR4120 errata. */
6243
6244 static unsigned int
6245 classify_vr4120_insn (const char *name)
6246 {
6247 if (strncmp (name, "macc", 4) == 0)
6248 return FIX_VR4120_MACC;
6249 if (strncmp (name, "dmacc", 5) == 0)
6250 return FIX_VR4120_DMACC;
6251 if (strncmp (name, "mult", 4) == 0)
6252 return FIX_VR4120_MULT;
6253 if (strncmp (name, "dmult", 5) == 0)
6254 return FIX_VR4120_DMULT;
6255 if (strstr (name, "div"))
6256 return FIX_VR4120_DIV;
6257 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6258 return FIX_VR4120_MTHILO;
6259 return NUM_FIX_VR4120_CLASSES;
6260 }
6261
6262 #define INSN_ERET 0x42000018
6263 #define INSN_DERET 0x4200001f
6264 #define INSN_DMULT 0x1c
6265 #define INSN_DMULTU 0x1d
6266
6267 /* Return the number of instructions that must separate INSN1 and INSN2,
6268 where INSN1 is the earlier instruction. Return the worst-case value
6269 for any INSN2 if INSN2 is null. */
6270
6271 static unsigned int
6272 insns_between (const struct mips_cl_insn *insn1,
6273 const struct mips_cl_insn *insn2)
6274 {
6275 unsigned long pinfo1, pinfo2;
6276 unsigned int mask;
6277
6278 /* If INFO2 is null, pessimistically assume that all flags are set for
6279 the second instruction. */
6280 pinfo1 = insn1->insn_mo->pinfo;
6281 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6282
6283 /* For most targets, write-after-read dependencies on the HI and LO
6284 registers must be separated by at least two instructions. */
6285 if (!hilo_interlocks)
6286 {
6287 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6288 return 2;
6289 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6290 return 2;
6291 }
6292
6293 /* If we're working around r7000 errata, there must be two instructions
6294 between an mfhi or mflo and any instruction that uses the result. */
6295 if (mips_7000_hilo_fix
6296 && !mips_opts.micromips
6297 && MF_HILO_INSN (pinfo1)
6298 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6299 return 2;
6300
6301 /* If we're working around 24K errata, one instruction is required
6302 if an ERET or DERET is followed by a branch instruction. */
6303 if (mips_fix_24k && !mips_opts.micromips)
6304 {
6305 if (insn1->insn_opcode == INSN_ERET
6306 || insn1->insn_opcode == INSN_DERET)
6307 {
6308 if (insn2 == NULL
6309 || insn2->insn_opcode == INSN_ERET
6310 || insn2->insn_opcode == INSN_DERET
6311 || delayed_branch_p (insn2))
6312 return 1;
6313 }
6314 }
6315
6316 /* If we're working around PMC RM7000 errata, there must be three
6317 nops between a dmult and a load instruction. */
6318 if (mips_fix_rm7000 && !mips_opts.micromips)
6319 {
6320 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6321 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6322 {
6323 if (pinfo2 & INSN_LOAD_MEMORY)
6324 return 3;
6325 }
6326 }
6327
6328 /* If working around VR4120 errata, check for combinations that need
6329 a single intervening instruction. */
6330 if (mips_fix_vr4120 && !mips_opts.micromips)
6331 {
6332 unsigned int class1, class2;
6333
6334 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6335 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6336 {
6337 if (insn2 == NULL)
6338 return 1;
6339 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6340 if (vr4120_conflicts[class1] & (1 << class2))
6341 return 1;
6342 }
6343 }
6344
6345 if (!HAVE_CODE_COMPRESSION)
6346 {
6347 /* Check for GPR or coprocessor load delays. All such delays
6348 are on the RT register. */
6349 /* Itbl support may require additional care here. */
6350 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6351 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6352 {
6353 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6354 return 1;
6355 }
6356
6357 /* Check for generic coprocessor hazards.
6358
6359 This case is not handled very well. There is no special
6360 knowledge of CP0 handling, and the coprocessors other than
6361 the floating point unit are not distinguished at all. */
6362 /* Itbl support may require additional care here. FIXME!
6363 Need to modify this to include knowledge about
6364 user specified delays! */
6365 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6366 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6367 {
6368 /* Handle cases where INSN1 writes to a known general coprocessor
6369 register. There must be a one instruction delay before INSN2
6370 if INSN2 reads that register, otherwise no delay is needed. */
6371 mask = fpr_write_mask (insn1);
6372 if (mask != 0)
6373 {
6374 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6375 return 1;
6376 }
6377 else
6378 {
6379 /* Read-after-write dependencies on the control registers
6380 require a two-instruction gap. */
6381 if ((pinfo1 & INSN_WRITE_COND_CODE)
6382 && (pinfo2 & INSN_READ_COND_CODE))
6383 return 2;
6384
6385 /* We don't know exactly what INSN1 does. If INSN2 is
6386 also a coprocessor instruction, assume there must be
6387 a one instruction gap. */
6388 if (pinfo2 & INSN_COP)
6389 return 1;
6390 }
6391 }
6392
6393 /* Check for read-after-write dependencies on the coprocessor
6394 control registers in cases where INSN1 does not need a general
6395 coprocessor delay. This means that INSN1 is a floating point
6396 comparison instruction. */
6397 /* Itbl support may require additional care here. */
6398 else if (!cop_interlocks
6399 && (pinfo1 & INSN_WRITE_COND_CODE)
6400 && (pinfo2 & INSN_READ_COND_CODE))
6401 return 1;
6402 }
6403
6404 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6405 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6406 and pause. */
6407 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6408 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6409 || (insn2 && delayed_branch_p (insn2))))
6410 return 1;
6411
6412 return 0;
6413 }
6414
6415 /* Return the number of nops that would be needed to work around the
6416 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6417 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6418 that are contained within the first IGNORE instructions of HIST. */
6419
6420 static int
6421 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6422 const struct mips_cl_insn *insn)
6423 {
6424 int i, j;
6425 unsigned int mask;
6426
6427 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6428 are not affected by the errata. */
6429 if (insn != 0
6430 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6431 || strcmp (insn->insn_mo->name, "mtlo") == 0
6432 || strcmp (insn->insn_mo->name, "mthi") == 0))
6433 return 0;
6434
6435 /* Search for the first MFLO or MFHI. */
6436 for (i = 0; i < MAX_VR4130_NOPS; i++)
6437 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6438 {
6439 /* Extract the destination register. */
6440 mask = gpr_write_mask (&hist[i]);
6441
6442 /* No nops are needed if INSN reads that register. */
6443 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6444 return 0;
6445
6446 /* ...or if any of the intervening instructions do. */
6447 for (j = 0; j < i; j++)
6448 if (gpr_read_mask (&hist[j]) & mask)
6449 return 0;
6450
6451 if (i >= ignore)
6452 return MAX_VR4130_NOPS - i;
6453 }
6454 return 0;
6455 }
6456
6457 #define BASE_REG_EQ(INSN1, INSN2) \
6458 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6459 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6460
6461 /* Return the minimum alignment for this store instruction. */
6462
6463 static int
6464 fix_24k_align_to (const struct mips_opcode *mo)
6465 {
6466 if (strcmp (mo->name, "sh") == 0)
6467 return 2;
6468
6469 if (strcmp (mo->name, "swc1") == 0
6470 || strcmp (mo->name, "swc2") == 0
6471 || strcmp (mo->name, "sw") == 0
6472 || strcmp (mo->name, "sc") == 0
6473 || strcmp (mo->name, "s.s") == 0)
6474 return 4;
6475
6476 if (strcmp (mo->name, "sdc1") == 0
6477 || strcmp (mo->name, "sdc2") == 0
6478 || strcmp (mo->name, "s.d") == 0)
6479 return 8;
6480
6481 /* sb, swl, swr */
6482 return 1;
6483 }
6484
6485 struct fix_24k_store_info
6486 {
6487 /* Immediate offset, if any, for this store instruction. */
6488 short off;
6489 /* Alignment required by this store instruction. */
6490 int align_to;
6491 /* True for register offsets. */
6492 int register_offset;
6493 };
6494
6495 /* Comparison function used by qsort. */
6496
6497 static int
6498 fix_24k_sort (const void *a, const void *b)
6499 {
6500 const struct fix_24k_store_info *pos1 = a;
6501 const struct fix_24k_store_info *pos2 = b;
6502
6503 return (pos1->off - pos2->off);
6504 }
6505
6506 /* INSN is a store instruction. Try to record the store information
6507 in STINFO. Return false if the information isn't known. */
6508
6509 static bfd_boolean
6510 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6511 const struct mips_cl_insn *insn)
6512 {
6513 /* The instruction must have a known offset. */
6514 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6515 return FALSE;
6516
6517 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6518 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6519 return TRUE;
6520 }
6521
6522 /* Return the number of nops that would be needed to work around the 24k
6523 "lost data on stores during refill" errata if instruction INSN
6524 immediately followed the 2 instructions described by HIST.
6525 Ignore hazards that are contained within the first IGNORE
6526 instructions of HIST.
6527
6528 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6529 for the data cache refills and store data. The following describes
6530 the scenario where the store data could be lost.
6531
6532 * A data cache miss, due to either a load or a store, causing fill
6533 data to be supplied by the memory subsystem
6534 * The first three doublewords of fill data are returned and written
6535 into the cache
6536 * A sequence of four stores occurs in consecutive cycles around the
6537 final doubleword of the fill:
6538 * Store A
6539 * Store B
6540 * Store C
6541 * Zero, One or more instructions
6542 * Store D
6543
6544 The four stores A-D must be to different doublewords of the line that
6545 is being filled. The fourth instruction in the sequence above permits
6546 the fill of the final doubleword to be transferred from the FSB into
6547 the cache. In the sequence above, the stores may be either integer
6548 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6549 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6550 different doublewords on the line. If the floating point unit is
6551 running in 1:2 mode, it is not possible to create the sequence above
6552 using only floating point store instructions.
6553
6554 In this case, the cache line being filled is incorrectly marked
6555 invalid, thereby losing the data from any store to the line that
6556 occurs between the original miss and the completion of the five
6557 cycle sequence shown above.
6558
6559 The workarounds are:
6560
6561 * Run the data cache in write-through mode.
6562 * Insert a non-store instruction between
6563 Store A and Store B or Store B and Store C. */
6564
6565 static int
6566 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6567 const struct mips_cl_insn *insn)
6568 {
6569 struct fix_24k_store_info pos[3];
6570 int align, i, base_offset;
6571
6572 if (ignore >= 2)
6573 return 0;
6574
6575 /* If the previous instruction wasn't a store, there's nothing to
6576 worry about. */
6577 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6578 return 0;
6579
6580 /* If the instructions after the previous one are unknown, we have
6581 to assume the worst. */
6582 if (!insn)
6583 return 1;
6584
6585 /* Check whether we are dealing with three consecutive stores. */
6586 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6587 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6588 return 0;
6589
6590 /* If we don't know the relationship between the store addresses,
6591 assume the worst. */
6592 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6593 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6594 return 1;
6595
6596 if (!fix_24k_record_store_info (&pos[0], insn)
6597 || !fix_24k_record_store_info (&pos[1], &hist[0])
6598 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6599 return 1;
6600
6601 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6602
6603 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6604 X bytes and such that the base register + X is known to be aligned
6605 to align bytes. */
6606
6607 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6608 align = 8;
6609 else
6610 {
6611 align = pos[0].align_to;
6612 base_offset = pos[0].off;
6613 for (i = 1; i < 3; i++)
6614 if (align < pos[i].align_to)
6615 {
6616 align = pos[i].align_to;
6617 base_offset = pos[i].off;
6618 }
6619 for (i = 0; i < 3; i++)
6620 pos[i].off -= base_offset;
6621 }
6622
6623 pos[0].off &= ~align + 1;
6624 pos[1].off &= ~align + 1;
6625 pos[2].off &= ~align + 1;
6626
6627 /* If any two stores write to the same chunk, they also write to the
6628 same doubleword. The offsets are still sorted at this point. */
6629 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6630 return 0;
6631
6632 /* A range of at least 9 bytes is needed for the stores to be in
6633 non-overlapping doublewords. */
6634 if (pos[2].off - pos[0].off <= 8)
6635 return 0;
6636
6637 if (pos[2].off - pos[1].off >= 24
6638 || pos[1].off - pos[0].off >= 24
6639 || pos[2].off - pos[0].off >= 32)
6640 return 0;
6641
6642 return 1;
6643 }
6644
6645 /* Return the number of nops that would be needed if instruction INSN
6646 immediately followed the MAX_NOPS instructions given by HIST,
6647 where HIST[0] is the most recent instruction. Ignore hazards
6648 between INSN and the first IGNORE instructions in HIST.
6649
6650 If INSN is null, return the worse-case number of nops for any
6651 instruction. */
6652
6653 static int
6654 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6655 const struct mips_cl_insn *insn)
6656 {
6657 int i, nops, tmp_nops;
6658
6659 nops = 0;
6660 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6661 {
6662 tmp_nops = insns_between (hist + i, insn) - i;
6663 if (tmp_nops > nops)
6664 nops = tmp_nops;
6665 }
6666
6667 if (mips_fix_vr4130 && !mips_opts.micromips)
6668 {
6669 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6670 if (tmp_nops > nops)
6671 nops = tmp_nops;
6672 }
6673
6674 if (mips_fix_24k && !mips_opts.micromips)
6675 {
6676 tmp_nops = nops_for_24k (ignore, hist, insn);
6677 if (tmp_nops > nops)
6678 nops = tmp_nops;
6679 }
6680
6681 return nops;
6682 }
6683
6684 /* The variable arguments provide NUM_INSNS extra instructions that
6685 might be added to HIST. Return the largest number of nops that
6686 would be needed after the extended sequence, ignoring hazards
6687 in the first IGNORE instructions. */
6688
6689 static int
6690 nops_for_sequence (int num_insns, int ignore,
6691 const struct mips_cl_insn *hist, ...)
6692 {
6693 va_list args;
6694 struct mips_cl_insn buffer[MAX_NOPS];
6695 struct mips_cl_insn *cursor;
6696 int nops;
6697
6698 va_start (args, hist);
6699 cursor = buffer + num_insns;
6700 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6701 while (cursor > buffer)
6702 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6703
6704 nops = nops_for_insn (ignore, buffer, NULL);
6705 va_end (args);
6706 return nops;
6707 }
6708
6709 /* Like nops_for_insn, but if INSN is a branch, take into account the
6710 worst-case delay for the branch target. */
6711
6712 static int
6713 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6714 const struct mips_cl_insn *insn)
6715 {
6716 int nops, tmp_nops;
6717
6718 nops = nops_for_insn (ignore, hist, insn);
6719 if (delayed_branch_p (insn))
6720 {
6721 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6722 hist, insn, get_delay_slot_nop (insn));
6723 if (tmp_nops > nops)
6724 nops = tmp_nops;
6725 }
6726 else if (compact_branch_p (insn))
6727 {
6728 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6729 if (tmp_nops > nops)
6730 nops = tmp_nops;
6731 }
6732 return nops;
6733 }
6734
6735 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6736
6737 static void
6738 fix_loongson2f_nop (struct mips_cl_insn * ip)
6739 {
6740 gas_assert (!HAVE_CODE_COMPRESSION);
6741 if (strcmp (ip->insn_mo->name, "nop") == 0)
6742 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6743 }
6744
6745 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6746 jr target pc &= 'hffff_ffff_cfff_ffff. */
6747
6748 static void
6749 fix_loongson2f_jump (struct mips_cl_insn * ip)
6750 {
6751 gas_assert (!HAVE_CODE_COMPRESSION);
6752 if (strcmp (ip->insn_mo->name, "j") == 0
6753 || strcmp (ip->insn_mo->name, "jr") == 0
6754 || strcmp (ip->insn_mo->name, "jalr") == 0)
6755 {
6756 int sreg;
6757 expressionS ep;
6758
6759 if (! mips_opts.at)
6760 return;
6761
6762 sreg = EXTRACT_OPERAND (0, RS, *ip);
6763 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6764 return;
6765
6766 ep.X_op = O_constant;
6767 ep.X_add_number = 0xcfff0000;
6768 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6769 ep.X_add_number = 0xffff;
6770 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6771 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6772 }
6773 }
6774
6775 static void
6776 fix_loongson2f (struct mips_cl_insn * ip)
6777 {
6778 if (mips_fix_loongson2f_nop)
6779 fix_loongson2f_nop (ip);
6780
6781 if (mips_fix_loongson2f_jump)
6782 fix_loongson2f_jump (ip);
6783 }
6784
6785 /* IP is a branch that has a delay slot, and we need to fill it
6786 automatically. Return true if we can do that by swapping IP
6787 with the previous instruction.
6788 ADDRESS_EXPR is an operand of the instruction to be used with
6789 RELOC_TYPE. */
6790
6791 static bfd_boolean
6792 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6793 bfd_reloc_code_real_type *reloc_type)
6794 {
6795 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6796 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6797 unsigned int fpr_read, prev_fpr_write;
6798
6799 /* -O2 and above is required for this optimization. */
6800 if (mips_optimize < 2)
6801 return FALSE;
6802
6803 /* If we have seen .set volatile or .set nomove, don't optimize. */
6804 if (mips_opts.nomove)
6805 return FALSE;
6806
6807 /* We can't swap if the previous instruction's position is fixed. */
6808 if (history[0].fixed_p)
6809 return FALSE;
6810
6811 /* If the previous previous insn was in a .set noreorder, we can't
6812 swap. Actually, the MIPS assembler will swap in this situation.
6813 However, gcc configured -with-gnu-as will generate code like
6814
6815 .set noreorder
6816 lw $4,XXX
6817 .set reorder
6818 INSN
6819 bne $4,$0,foo
6820
6821 in which we can not swap the bne and INSN. If gcc is not configured
6822 -with-gnu-as, it does not output the .set pseudo-ops. */
6823 if (history[1].noreorder_p)
6824 return FALSE;
6825
6826 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6827 This means that the previous instruction was a 4-byte one anyhow. */
6828 if (mips_opts.mips16 && history[0].fixp[0])
6829 return FALSE;
6830
6831 /* If the branch is itself the target of a branch, we can not swap.
6832 We cheat on this; all we check for is whether there is a label on
6833 this instruction. If there are any branches to anything other than
6834 a label, users must use .set noreorder. */
6835 if (seg_info (now_seg)->label_list)
6836 return FALSE;
6837
6838 /* If the previous instruction is in a variant frag other than this
6839 branch's one, we cannot do the swap. This does not apply to
6840 MIPS16 code, which uses variant frags for different purposes. */
6841 if (!mips_opts.mips16
6842 && history[0].frag
6843 && history[0].frag->fr_type == rs_machine_dependent)
6844 return FALSE;
6845
6846 /* We do not swap with instructions that cannot architecturally
6847 be placed in a branch delay slot, such as SYNC or ERET. We
6848 also refrain from swapping with a trap instruction, since it
6849 complicates trap handlers to have the trap instruction be in
6850 a delay slot. */
6851 prev_pinfo = history[0].insn_mo->pinfo;
6852 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6853 return FALSE;
6854
6855 /* Check for conflicts between the branch and the instructions
6856 before the candidate delay slot. */
6857 if (nops_for_insn (0, history + 1, ip) > 0)
6858 return FALSE;
6859
6860 /* Check for conflicts between the swapped sequence and the
6861 target of the branch. */
6862 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6863 return FALSE;
6864
6865 /* If the branch reads a register that the previous
6866 instruction sets, we can not swap. */
6867 gpr_read = gpr_read_mask (ip);
6868 prev_gpr_write = gpr_write_mask (&history[0]);
6869 if (gpr_read & prev_gpr_write)
6870 return FALSE;
6871
6872 fpr_read = fpr_read_mask (ip);
6873 prev_fpr_write = fpr_write_mask (&history[0]);
6874 if (fpr_read & prev_fpr_write)
6875 return FALSE;
6876
6877 /* If the branch writes a register that the previous
6878 instruction sets, we can not swap. */
6879 gpr_write = gpr_write_mask (ip);
6880 if (gpr_write & prev_gpr_write)
6881 return FALSE;
6882
6883 /* If the branch writes a register that the previous
6884 instruction reads, we can not swap. */
6885 prev_gpr_read = gpr_read_mask (&history[0]);
6886 if (gpr_write & prev_gpr_read)
6887 return FALSE;
6888
6889 /* If one instruction sets a condition code and the
6890 other one uses a condition code, we can not swap. */
6891 pinfo = ip->insn_mo->pinfo;
6892 if ((pinfo & INSN_READ_COND_CODE)
6893 && (prev_pinfo & INSN_WRITE_COND_CODE))
6894 return FALSE;
6895 if ((pinfo & INSN_WRITE_COND_CODE)
6896 && (prev_pinfo & INSN_READ_COND_CODE))
6897 return FALSE;
6898
6899 /* If the previous instruction uses the PC, we can not swap. */
6900 prev_pinfo2 = history[0].insn_mo->pinfo2;
6901 if (prev_pinfo2 & INSN2_READ_PC)
6902 return FALSE;
6903
6904 /* If the previous instruction has an incorrect size for a fixed
6905 branch delay slot in microMIPS mode, we cannot swap. */
6906 pinfo2 = ip->insn_mo->pinfo2;
6907 if (mips_opts.micromips
6908 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6909 && insn_length (history) != 2)
6910 return FALSE;
6911 if (mips_opts.micromips
6912 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6913 && insn_length (history) != 4)
6914 return FALSE;
6915
6916 /* On R5900 short loops need to be fixed by inserting a nop in
6917 the branch delay slots.
6918 A short loop can be terminated too early. */
6919 if (mips_opts.arch == CPU_R5900
6920 /* Check if instruction has a parameter, ignore "j $31". */
6921 && (address_expr != NULL)
6922 /* Parameter must be 16 bit. */
6923 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6924 /* Branch to same segment. */
6925 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6926 /* Branch to same code fragment. */
6927 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6928 /* Can only calculate branch offset if value is known. */
6929 && symbol_constant_p (address_expr->X_add_symbol)
6930 /* Check if branch is really conditional. */
6931 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6932 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6933 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6934 {
6935 int distance;
6936 /* Check if loop is shorter than 6 instructions including
6937 branch and delay slot. */
6938 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6939 if (distance <= 20)
6940 {
6941 int i;
6942 int rv;
6943
6944 rv = FALSE;
6945 /* When the loop includes branches or jumps,
6946 it is not a short loop. */
6947 for (i = 0; i < (distance / 4); i++)
6948 {
6949 if ((history[i].cleared_p)
6950 || delayed_branch_p (&history[i]))
6951 {
6952 rv = TRUE;
6953 break;
6954 }
6955 }
6956 if (!rv)
6957 {
6958 /* Insert nop after branch to fix short loop. */
6959 return FALSE;
6960 }
6961 }
6962 }
6963
6964 return TRUE;
6965 }
6966
6967 /* Decide how we should add IP to the instruction stream.
6968 ADDRESS_EXPR is an operand of the instruction to be used with
6969 RELOC_TYPE. */
6970
6971 static enum append_method
6972 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6973 bfd_reloc_code_real_type *reloc_type)
6974 {
6975 /* The relaxed version of a macro sequence must be inherently
6976 hazard-free. */
6977 if (mips_relax.sequence == 2)
6978 return APPEND_ADD;
6979
6980 /* We must not dabble with instructions in a ".set noreorder" block. */
6981 if (mips_opts.noreorder)
6982 return APPEND_ADD;
6983
6984 /* Otherwise, it's our responsibility to fill branch delay slots. */
6985 if (delayed_branch_p (ip))
6986 {
6987 if (!branch_likely_p (ip)
6988 && can_swap_branch_p (ip, address_expr, reloc_type))
6989 return APPEND_SWAP;
6990
6991 if (mips_opts.mips16
6992 && ISA_SUPPORTS_MIPS16E
6993 && gpr_read_mask (ip) != 0)
6994 return APPEND_ADD_COMPACT;
6995
6996 if (mips_opts.micromips
6997 && ((ip->insn_opcode & 0xffe0) == 0x4580
6998 || (!forced_insn_length
6999 && ((ip->insn_opcode & 0xfc00) == 0xcc00
7000 || (ip->insn_opcode & 0xdc00) == 0x8c00))
7001 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
7002 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
7003 return APPEND_ADD_COMPACT;
7004
7005 return APPEND_ADD_WITH_NOP;
7006 }
7007
7008 return APPEND_ADD;
7009 }
7010
7011 /* IP is an instruction whose opcode we have just changed, END points
7012 to the end of the opcode table processed. Point IP->insn_mo to the
7013 new opcode's definition. */
7014
7015 static void
7016 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
7017 {
7018 const struct mips_opcode *mo;
7019
7020 for (mo = ip->insn_mo; mo < end; mo++)
7021 if (mo->pinfo != INSN_MACRO
7022 && (ip->insn_opcode & mo->mask) == mo->match)
7023 {
7024 ip->insn_mo = mo;
7025 return;
7026 }
7027 abort ();
7028 }
7029
7030 /* IP is a MIPS16 instruction whose opcode we have just changed.
7031 Point IP->insn_mo to the new opcode's definition. */
7032
7033 static void
7034 find_altered_mips16_opcode (struct mips_cl_insn *ip)
7035 {
7036 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
7037 }
7038
7039 /* IP is a microMIPS instruction whose opcode we have just changed.
7040 Point IP->insn_mo to the new opcode's definition. */
7041
7042 static void
7043 find_altered_micromips_opcode (struct mips_cl_insn *ip)
7044 {
7045 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
7046 }
7047
7048 /* For microMIPS macros, we need to generate a local number label
7049 as the target of branches. */
7050 #define MICROMIPS_LABEL_CHAR '\037'
7051 static unsigned long micromips_target_label;
7052 static char micromips_target_name[32];
7053
7054 static char *
7055 micromips_label_name (void)
7056 {
7057 char *p = micromips_target_name;
7058 char symbol_name_temporary[24];
7059 unsigned long l;
7060 int i;
7061
7062 if (*p)
7063 return p;
7064
7065 i = 0;
7066 l = micromips_target_label;
7067 #ifdef LOCAL_LABEL_PREFIX
7068 *p++ = LOCAL_LABEL_PREFIX;
7069 #endif
7070 *p++ = 'L';
7071 *p++ = MICROMIPS_LABEL_CHAR;
7072 do
7073 {
7074 symbol_name_temporary[i++] = l % 10 + '0';
7075 l /= 10;
7076 }
7077 while (l != 0);
7078 while (i > 0)
7079 *p++ = symbol_name_temporary[--i];
7080 *p = '\0';
7081
7082 return micromips_target_name;
7083 }
7084
7085 static void
7086 micromips_label_expr (expressionS *label_expr)
7087 {
7088 label_expr->X_op = O_symbol;
7089 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
7090 label_expr->X_add_number = 0;
7091 }
7092
7093 static void
7094 micromips_label_inc (void)
7095 {
7096 micromips_target_label++;
7097 *micromips_target_name = '\0';
7098 }
7099
7100 static void
7101 micromips_add_label (void)
7102 {
7103 symbolS *s;
7104
7105 s = colon (micromips_label_name ());
7106 micromips_label_inc ();
7107 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
7108 }
7109
7110 /* If assembling microMIPS code, then return the microMIPS reloc
7111 corresponding to the requested one if any. Otherwise return
7112 the reloc unchanged. */
7113
7114 static bfd_reloc_code_real_type
7115 micromips_map_reloc (bfd_reloc_code_real_type reloc)
7116 {
7117 static const bfd_reloc_code_real_type relocs[][2] =
7118 {
7119 /* Keep sorted incrementally by the left-hand key. */
7120 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
7121 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
7122 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
7123 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
7124 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
7125 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
7126 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
7127 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
7128 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
7129 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
7130 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
7131 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
7132 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
7133 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
7134 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
7135 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
7136 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
7137 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
7138 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
7139 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7140 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7141 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7142 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7143 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7144 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7145 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7146 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7147 };
7148 bfd_reloc_code_real_type r;
7149 size_t i;
7150
7151 if (!mips_opts.micromips)
7152 return reloc;
7153 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7154 {
7155 r = relocs[i][0];
7156 if (r > reloc)
7157 return reloc;
7158 if (r == reloc)
7159 return relocs[i][1];
7160 }
7161 return reloc;
7162 }
7163
7164 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7165 Return true on success, storing the resolved value in RESULT. */
7166
7167 static bfd_boolean
7168 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7169 offsetT *result)
7170 {
7171 switch (reloc)
7172 {
7173 case BFD_RELOC_MIPS_HIGHEST:
7174 case BFD_RELOC_MICROMIPS_HIGHEST:
7175 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7176 return TRUE;
7177
7178 case BFD_RELOC_MIPS_HIGHER:
7179 case BFD_RELOC_MICROMIPS_HIGHER:
7180 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7181 return TRUE;
7182
7183 case BFD_RELOC_HI16_S:
7184 case BFD_RELOC_HI16_S_PCREL:
7185 case BFD_RELOC_MICROMIPS_HI16_S:
7186 case BFD_RELOC_MIPS16_HI16_S:
7187 *result = ((operand + 0x8000) >> 16) & 0xffff;
7188 return TRUE;
7189
7190 case BFD_RELOC_HI16:
7191 case BFD_RELOC_MICROMIPS_HI16:
7192 case BFD_RELOC_MIPS16_HI16:
7193 *result = (operand >> 16) & 0xffff;
7194 return TRUE;
7195
7196 case BFD_RELOC_LO16:
7197 case BFD_RELOC_LO16_PCREL:
7198 case BFD_RELOC_MICROMIPS_LO16:
7199 case BFD_RELOC_MIPS16_LO16:
7200 *result = operand & 0xffff;
7201 return TRUE;
7202
7203 case BFD_RELOC_UNUSED:
7204 *result = operand;
7205 return TRUE;
7206
7207 default:
7208 return FALSE;
7209 }
7210 }
7211
7212 /* Output an instruction. IP is the instruction information.
7213 ADDRESS_EXPR is an operand of the instruction to be used with
7214 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7215 a macro expansion. */
7216
7217 static void
7218 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7219 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7220 {
7221 unsigned long prev_pinfo2, pinfo;
7222 bfd_boolean relaxed_branch = FALSE;
7223 enum append_method method;
7224 bfd_boolean relax32;
7225 int branch_disp;
7226
7227 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7228 fix_loongson2f (ip);
7229
7230 file_ase_mips16 |= mips_opts.mips16;
7231 file_ase_micromips |= mips_opts.micromips;
7232
7233 prev_pinfo2 = history[0].insn_mo->pinfo2;
7234 pinfo = ip->insn_mo->pinfo;
7235
7236 /* Don't raise alarm about `nods' frags as they'll fill in the right
7237 kind of nop in relaxation if required. */
7238 if (mips_opts.micromips
7239 && !expansionp
7240 && !(history[0].frag
7241 && history[0].frag->fr_type == rs_machine_dependent
7242 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7243 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7244 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7245 && micromips_insn_length (ip->insn_mo) != 2)
7246 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7247 && micromips_insn_length (ip->insn_mo) != 4)))
7248 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7249 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7250
7251 if (address_expr == NULL)
7252 ip->complete_p = 1;
7253 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7254 && reloc_type[1] == BFD_RELOC_UNUSED
7255 && reloc_type[2] == BFD_RELOC_UNUSED
7256 && address_expr->X_op == O_constant)
7257 {
7258 switch (*reloc_type)
7259 {
7260 case BFD_RELOC_MIPS_JMP:
7261 {
7262 int shift;
7263
7264 /* Shift is 2, unusually, for microMIPS JALX. */
7265 shift = (mips_opts.micromips
7266 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7267 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7268 as_bad (_("jump to misaligned address (0x%lx)"),
7269 (unsigned long) address_expr->X_add_number);
7270 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7271 & 0x3ffffff);
7272 ip->complete_p = 1;
7273 }
7274 break;
7275
7276 case BFD_RELOC_MIPS16_JMP:
7277 if ((address_expr->X_add_number & 3) != 0)
7278 as_bad (_("jump to misaligned address (0x%lx)"),
7279 (unsigned long) address_expr->X_add_number);
7280 ip->insn_opcode |=
7281 (((address_expr->X_add_number & 0x7c0000) << 3)
7282 | ((address_expr->X_add_number & 0xf800000) >> 7)
7283 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7284 ip->complete_p = 1;
7285 break;
7286
7287 case BFD_RELOC_16_PCREL_S2:
7288 {
7289 int shift;
7290
7291 shift = mips_opts.micromips ? 1 : 2;
7292 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7293 as_bad (_("branch to misaligned address (0x%lx)"),
7294 (unsigned long) address_expr->X_add_number);
7295 if (!mips_relax_branch)
7296 {
7297 if ((address_expr->X_add_number + (1 << (shift + 15)))
7298 & ~((1 << (shift + 16)) - 1))
7299 as_bad (_("branch address range overflow (0x%lx)"),
7300 (unsigned long) address_expr->X_add_number);
7301 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7302 & 0xffff);
7303 }
7304 }
7305 break;
7306
7307 case BFD_RELOC_MIPS_21_PCREL_S2:
7308 {
7309 int shift;
7310
7311 shift = 2;
7312 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7313 as_bad (_("branch to misaligned address (0x%lx)"),
7314 (unsigned long) address_expr->X_add_number);
7315 if ((address_expr->X_add_number + (1 << (shift + 20)))
7316 & ~((1 << (shift + 21)) - 1))
7317 as_bad (_("branch address range overflow (0x%lx)"),
7318 (unsigned long) address_expr->X_add_number);
7319 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7320 & 0x1fffff);
7321 }
7322 break;
7323
7324 case BFD_RELOC_MIPS_26_PCREL_S2:
7325 {
7326 int shift;
7327
7328 shift = 2;
7329 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7330 as_bad (_("branch to misaligned address (0x%lx)"),
7331 (unsigned long) address_expr->X_add_number);
7332 if ((address_expr->X_add_number + (1 << (shift + 25)))
7333 & ~((1 << (shift + 26)) - 1))
7334 as_bad (_("branch address range overflow (0x%lx)"),
7335 (unsigned long) address_expr->X_add_number);
7336 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7337 & 0x3ffffff);
7338 }
7339 break;
7340
7341 default:
7342 {
7343 offsetT value;
7344
7345 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7346 &value))
7347 {
7348 ip->insn_opcode |= value & 0xffff;
7349 ip->complete_p = 1;
7350 }
7351 }
7352 break;
7353 }
7354 }
7355
7356 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7357 {
7358 /* There are a lot of optimizations we could do that we don't.
7359 In particular, we do not, in general, reorder instructions.
7360 If you use gcc with optimization, it will reorder
7361 instructions and generally do much more optimization then we
7362 do here; repeating all that work in the assembler would only
7363 benefit hand written assembly code, and does not seem worth
7364 it. */
7365 int nops = (mips_optimize == 0
7366 ? nops_for_insn (0, history, NULL)
7367 : nops_for_insn_or_target (0, history, ip));
7368 if (nops > 0)
7369 {
7370 fragS *old_frag;
7371 unsigned long old_frag_offset;
7372 int i;
7373
7374 old_frag = frag_now;
7375 old_frag_offset = frag_now_fix ();
7376
7377 for (i = 0; i < nops; i++)
7378 add_fixed_insn (NOP_INSN);
7379 insert_into_history (0, nops, NOP_INSN);
7380
7381 if (listing)
7382 {
7383 listing_prev_line ();
7384 /* We may be at the start of a variant frag. In case we
7385 are, make sure there is enough space for the frag
7386 after the frags created by listing_prev_line. The
7387 argument to frag_grow here must be at least as large
7388 as the argument to all other calls to frag_grow in
7389 this file. We don't have to worry about being in the
7390 middle of a variant frag, because the variants insert
7391 all needed nop instructions themselves. */
7392 frag_grow (40);
7393 }
7394
7395 mips_move_text_labels ();
7396
7397 #ifndef NO_ECOFF_DEBUGGING
7398 if (ECOFF_DEBUGGING)
7399 ecoff_fix_loc (old_frag, old_frag_offset);
7400 #endif
7401 }
7402 }
7403 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7404 {
7405 int nops;
7406
7407 /* Work out how many nops in prev_nop_frag are needed by IP,
7408 ignoring hazards generated by the first prev_nop_frag_since
7409 instructions. */
7410 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7411 gas_assert (nops <= prev_nop_frag_holds);
7412
7413 /* Enforce NOPS as a minimum. */
7414 if (nops > prev_nop_frag_required)
7415 prev_nop_frag_required = nops;
7416
7417 if (prev_nop_frag_holds == prev_nop_frag_required)
7418 {
7419 /* Settle for the current number of nops. Update the history
7420 accordingly (for the benefit of any future .set reorder code). */
7421 prev_nop_frag = NULL;
7422 insert_into_history (prev_nop_frag_since,
7423 prev_nop_frag_holds, NOP_INSN);
7424 }
7425 else
7426 {
7427 /* Allow this instruction to replace one of the nops that was
7428 tentatively added to prev_nop_frag. */
7429 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7430 prev_nop_frag_holds--;
7431 prev_nop_frag_since++;
7432 }
7433 }
7434
7435 method = get_append_method (ip, address_expr, reloc_type);
7436 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7437
7438 dwarf2_emit_insn (0);
7439 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7440 so "move" the instruction address accordingly.
7441
7442 Also, it doesn't seem appropriate for the assembler to reorder .loc
7443 entries. If this instruction is a branch that we are going to swap
7444 with the previous instruction, the two instructions should be
7445 treated as a unit, and the debug information for both instructions
7446 should refer to the start of the branch sequence. Using the
7447 current position is certainly wrong when swapping a 32-bit branch
7448 and a 16-bit delay slot, since the current position would then be
7449 in the middle of a branch. */
7450 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7451
7452 relax32 = (mips_relax_branch
7453 /* Don't try branch relaxation within .set nomacro, or within
7454 .set noat if we use $at for PIC computations. If it turns
7455 out that the branch was out-of-range, we'll get an error. */
7456 && !mips_opts.warn_about_macros
7457 && (mips_opts.at || mips_pic == NO_PIC)
7458 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7459 as they have no complementing branches. */
7460 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7461
7462 if (!HAVE_CODE_COMPRESSION
7463 && address_expr
7464 && relax32
7465 && *reloc_type == BFD_RELOC_16_PCREL_S2
7466 && delayed_branch_p (ip))
7467 {
7468 relaxed_branch = TRUE;
7469 add_relaxed_insn (ip, (relaxed_branch_length
7470 (NULL, NULL,
7471 uncond_branch_p (ip) ? -1
7472 : branch_likely_p (ip) ? 1
7473 : 0)), 4,
7474 RELAX_BRANCH_ENCODE
7475 (AT, mips_pic != NO_PIC,
7476 uncond_branch_p (ip),
7477 branch_likely_p (ip),
7478 pinfo & INSN_WRITE_GPR_31,
7479 0),
7480 address_expr->X_add_symbol,
7481 address_expr->X_add_number);
7482 *reloc_type = BFD_RELOC_UNUSED;
7483 }
7484 else if (mips_opts.micromips
7485 && address_expr
7486 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7487 || *reloc_type > BFD_RELOC_UNUSED)
7488 && (delayed_branch_p (ip) || compact_branch_p (ip))
7489 /* Don't try branch relaxation when users specify
7490 16-bit/32-bit instructions. */
7491 && !forced_insn_length)
7492 {
7493 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7494 && *reloc_type > BFD_RELOC_UNUSED);
7495 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7496 int uncond = uncond_branch_p (ip) ? -1 : 0;
7497 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7498 int nods = method == APPEND_ADD_WITH_NOP;
7499 int al = pinfo & INSN_WRITE_GPR_31;
7500 int length32 = nods ? 8 : 4;
7501
7502 gas_assert (address_expr != NULL);
7503 gas_assert (!mips_relax.sequence);
7504
7505 relaxed_branch = TRUE;
7506 if (nods)
7507 method = APPEND_ADD;
7508 if (relax32)
7509 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7510 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7511 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7512 mips_pic != NO_PIC,
7513 uncond, compact, al, nods,
7514 relax32, 0, 0),
7515 address_expr->X_add_symbol,
7516 address_expr->X_add_number);
7517 *reloc_type = BFD_RELOC_UNUSED;
7518 }
7519 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7520 {
7521 bfd_boolean require_unextended;
7522 bfd_boolean require_extended;
7523 symbolS *symbol;
7524 offsetT offset;
7525
7526 if (forced_insn_length != 0)
7527 {
7528 require_unextended = forced_insn_length == 2;
7529 require_extended = forced_insn_length == 4;
7530 }
7531 else
7532 {
7533 require_unextended = (mips_opts.noautoextend
7534 && !mips_opcode_32bit_p (ip->insn_mo));
7535 require_extended = 0;
7536 }
7537
7538 /* We need to set up a variant frag. */
7539 gas_assert (address_expr != NULL);
7540 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7541 symbol created by `make_expr_symbol' may not get a necessary
7542 external relocation produced. */
7543 if (address_expr->X_op == O_symbol)
7544 {
7545 symbol = address_expr->X_add_symbol;
7546 offset = address_expr->X_add_number;
7547 }
7548 else
7549 {
7550 symbol = make_expr_symbol (address_expr);
7551 symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
7552 offset = 0;
7553 }
7554 add_relaxed_insn (ip, 12, 0,
7555 RELAX_MIPS16_ENCODE
7556 (*reloc_type - BFD_RELOC_UNUSED,
7557 mips_opts.ase & ASE_MIPS16E2,
7558 mips_pic != NO_PIC,
7559 HAVE_32BIT_SYMBOLS,
7560 mips_opts.warn_about_macros,
7561 require_unextended, require_extended,
7562 delayed_branch_p (&history[0]),
7563 history[0].mips16_absolute_jump_p),
7564 symbol, offset);
7565 }
7566 else if (mips_opts.mips16 && insn_length (ip) == 2)
7567 {
7568 if (!delayed_branch_p (ip))
7569 /* Make sure there is enough room to swap this instruction with
7570 a following jump instruction. */
7571 frag_grow (6);
7572 add_fixed_insn (ip);
7573 }
7574 else
7575 {
7576 if (mips_opts.mips16
7577 && mips_opts.noreorder
7578 && delayed_branch_p (&history[0]))
7579 as_warn (_("extended instruction in delay slot"));
7580
7581 if (mips_relax.sequence)
7582 {
7583 /* If we've reached the end of this frag, turn it into a variant
7584 frag and record the information for the instructions we've
7585 written so far. */
7586 if (frag_room () < 4)
7587 relax_close_frag ();
7588 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7589 }
7590
7591 if (mips_relax.sequence != 2)
7592 {
7593 if (mips_macro_warning.first_insn_sizes[0] == 0)
7594 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7595 mips_macro_warning.sizes[0] += insn_length (ip);
7596 mips_macro_warning.insns[0]++;
7597 }
7598 if (mips_relax.sequence != 1)
7599 {
7600 if (mips_macro_warning.first_insn_sizes[1] == 0)
7601 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7602 mips_macro_warning.sizes[1] += insn_length (ip);
7603 mips_macro_warning.insns[1]++;
7604 }
7605
7606 if (mips_opts.mips16)
7607 {
7608 ip->fixed_p = 1;
7609 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7610 }
7611 add_fixed_insn (ip);
7612 }
7613
7614 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7615 {
7616 bfd_reloc_code_real_type final_type[3];
7617 reloc_howto_type *howto0;
7618 reloc_howto_type *howto;
7619 int i;
7620
7621 /* Perform any necessary conversion to microMIPS relocations
7622 and find out how many relocations there actually are. */
7623 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7624 final_type[i] = micromips_map_reloc (reloc_type[i]);
7625
7626 /* In a compound relocation, it is the final (outermost)
7627 operator that determines the relocated field. */
7628 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7629 if (!howto)
7630 abort ();
7631
7632 if (i > 1)
7633 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7634 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7635 bfd_get_reloc_size (howto),
7636 address_expr,
7637 howto0 && howto0->pc_relative,
7638 final_type[0]);
7639 /* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
7640 ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
7641
7642 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7643 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7644 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7645
7646 /* These relocations can have an addend that won't fit in
7647 4 octets for 64bit assembly. */
7648 if (GPR_SIZE == 64
7649 && ! howto->partial_inplace
7650 && (reloc_type[0] == BFD_RELOC_16
7651 || reloc_type[0] == BFD_RELOC_32
7652 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7653 || reloc_type[0] == BFD_RELOC_GPREL16
7654 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7655 || reloc_type[0] == BFD_RELOC_GPREL32
7656 || reloc_type[0] == BFD_RELOC_64
7657 || reloc_type[0] == BFD_RELOC_CTOR
7658 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7659 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7660 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7661 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7662 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7663 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7664 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7665 || hi16_reloc_p (reloc_type[0])
7666 || lo16_reloc_p (reloc_type[0])))
7667 ip->fixp[0]->fx_no_overflow = 1;
7668
7669 /* These relocations can have an addend that won't fit in 2 octets. */
7670 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7671 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7672 ip->fixp[0]->fx_no_overflow = 1;
7673
7674 if (mips_relax.sequence)
7675 {
7676 if (mips_relax.first_fixup == 0)
7677 mips_relax.first_fixup = ip->fixp[0];
7678 }
7679 else if (reloc_needs_lo_p (*reloc_type))
7680 {
7681 struct mips_hi_fixup *hi_fixup;
7682
7683 /* Reuse the last entry if it already has a matching %lo. */
7684 hi_fixup = mips_hi_fixup_list;
7685 if (hi_fixup == 0
7686 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7687 {
7688 hi_fixup = XNEW (struct mips_hi_fixup);
7689 hi_fixup->next = mips_hi_fixup_list;
7690 mips_hi_fixup_list = hi_fixup;
7691 }
7692 hi_fixup->fixp = ip->fixp[0];
7693 hi_fixup->seg = now_seg;
7694 }
7695
7696 /* Add fixups for the second and third relocations, if given.
7697 Note that the ABI allows the second relocation to be
7698 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7699 moment we only use RSS_UNDEF, but we could add support
7700 for the others if it ever becomes necessary. */
7701 for (i = 1; i < 3; i++)
7702 if (reloc_type[i] != BFD_RELOC_UNUSED)
7703 {
7704 ip->fixp[i] = fix_new (ip->frag, ip->where,
7705 ip->fixp[0]->fx_size, NULL, 0,
7706 FALSE, final_type[i]);
7707
7708 /* Use fx_tcbit to mark compound relocs. */
7709 ip->fixp[0]->fx_tcbit = 1;
7710 ip->fixp[i]->fx_tcbit = 1;
7711 }
7712 }
7713
7714 /* Update the register mask information. */
7715 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7716 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7717
7718 switch (method)
7719 {
7720 case APPEND_ADD:
7721 insert_into_history (0, 1, ip);
7722 break;
7723
7724 case APPEND_ADD_WITH_NOP:
7725 {
7726 struct mips_cl_insn *nop;
7727
7728 insert_into_history (0, 1, ip);
7729 nop = get_delay_slot_nop (ip);
7730 add_fixed_insn (nop);
7731 insert_into_history (0, 1, nop);
7732 if (mips_relax.sequence)
7733 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7734 }
7735 break;
7736
7737 case APPEND_ADD_COMPACT:
7738 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7739 if (mips_opts.mips16)
7740 {
7741 ip->insn_opcode |= 0x0080;
7742 find_altered_mips16_opcode (ip);
7743 }
7744 /* Convert microMIPS instructions. */
7745 else if (mips_opts.micromips)
7746 {
7747 /* jr16->jrc */
7748 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7749 ip->insn_opcode |= 0x0020;
7750 /* b16->bc */
7751 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7752 ip->insn_opcode = 0x40e00000;
7753 /* beqz16->beqzc, bnez16->bnezc */
7754 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7755 {
7756 unsigned long regno;
7757
7758 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7759 regno &= MICROMIPSOP_MASK_MD;
7760 regno = micromips_to_32_reg_d_map[regno];
7761 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7762 | (regno << MICROMIPSOP_SH_RS)
7763 | 0x40a00000) ^ 0x00400000;
7764 }
7765 /* beqz->beqzc, bnez->bnezc */
7766 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7767 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7768 | ((ip->insn_opcode >> 7) & 0x00400000)
7769 | 0x40a00000) ^ 0x00400000;
7770 /* beq $0->beqzc, bne $0->bnezc */
7771 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7772 ip->insn_opcode = (((ip->insn_opcode >>
7773 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7774 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7775 | ((ip->insn_opcode >> 7) & 0x00400000)
7776 | 0x40a00000) ^ 0x00400000;
7777 else
7778 abort ();
7779 find_altered_micromips_opcode (ip);
7780 }
7781 else
7782 abort ();
7783 install_insn (ip);
7784 insert_into_history (0, 1, ip);
7785 break;
7786
7787 case APPEND_SWAP:
7788 {
7789 struct mips_cl_insn delay = history[0];
7790
7791 if (relaxed_branch || delay.frag != ip->frag)
7792 {
7793 /* Add the delay slot instruction to the end of the
7794 current frag and shrink the fixed part of the
7795 original frag. If the branch occupies the tail of
7796 the latter, move it backwards to cover the gap. */
7797 delay.frag->fr_fix -= branch_disp;
7798 if (delay.frag == ip->frag)
7799 move_insn (ip, ip->frag, ip->where - branch_disp);
7800 add_fixed_insn (&delay);
7801 }
7802 else
7803 {
7804 /* If this is not a relaxed branch and we are in the
7805 same frag, then just swap the instructions. */
7806 move_insn (ip, delay.frag, delay.where);
7807 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7808 }
7809 history[0] = *ip;
7810 delay.fixed_p = 1;
7811 insert_into_history (0, 1, &delay);
7812 }
7813 break;
7814 }
7815
7816 /* If we have just completed an unconditional branch, clear the history. */
7817 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7818 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7819 {
7820 unsigned int i;
7821
7822 mips_no_prev_insn ();
7823
7824 for (i = 0; i < ARRAY_SIZE (history); i++)
7825 history[i].cleared_p = 1;
7826 }
7827
7828 /* We need to emit a label at the end of branch-likely macros. */
7829 if (emit_branch_likely_macro)
7830 {
7831 emit_branch_likely_macro = FALSE;
7832 micromips_add_label ();
7833 }
7834
7835 /* We just output an insn, so the next one doesn't have a label. */
7836 mips_clear_insn_labels ();
7837 }
7838
7839 /* Forget that there was any previous instruction or label.
7840 When BRANCH is true, the branch history is also flushed. */
7841
7842 static void
7843 mips_no_prev_insn (void)
7844 {
7845 prev_nop_frag = NULL;
7846 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7847 mips_clear_insn_labels ();
7848 }
7849
7850 /* This function must be called before we emit something other than
7851 instructions. It is like mips_no_prev_insn except that it inserts
7852 any NOPS that might be needed by previous instructions. */
7853
7854 void
7855 mips_emit_delays (void)
7856 {
7857 if (! mips_opts.noreorder)
7858 {
7859 int nops = nops_for_insn (0, history, NULL);
7860 if (nops > 0)
7861 {
7862 while (nops-- > 0)
7863 add_fixed_insn (NOP_INSN);
7864 mips_move_text_labels ();
7865 }
7866 }
7867 mips_no_prev_insn ();
7868 }
7869
7870 /* Start a (possibly nested) noreorder block. */
7871
7872 static void
7873 start_noreorder (void)
7874 {
7875 if (mips_opts.noreorder == 0)
7876 {
7877 unsigned int i;
7878 int nops;
7879
7880 /* None of the instructions before the .set noreorder can be moved. */
7881 for (i = 0; i < ARRAY_SIZE (history); i++)
7882 history[i].fixed_p = 1;
7883
7884 /* Insert any nops that might be needed between the .set noreorder
7885 block and the previous instructions. We will later remove any
7886 nops that turn out not to be needed. */
7887 nops = nops_for_insn (0, history, NULL);
7888 if (nops > 0)
7889 {
7890 if (mips_optimize != 0)
7891 {
7892 /* Record the frag which holds the nop instructions, so
7893 that we can remove them if we don't need them. */
7894 frag_grow (nops * NOP_INSN_SIZE);
7895 prev_nop_frag = frag_now;
7896 prev_nop_frag_holds = nops;
7897 prev_nop_frag_required = 0;
7898 prev_nop_frag_since = 0;
7899 }
7900
7901 for (; nops > 0; --nops)
7902 add_fixed_insn (NOP_INSN);
7903
7904 /* Move on to a new frag, so that it is safe to simply
7905 decrease the size of prev_nop_frag. */
7906 frag_wane (frag_now);
7907 frag_new (0);
7908 mips_move_text_labels ();
7909 }
7910 mips_mark_labels ();
7911 mips_clear_insn_labels ();
7912 }
7913 mips_opts.noreorder++;
7914 mips_any_noreorder = 1;
7915 }
7916
7917 /* End a nested noreorder block. */
7918
7919 static void
7920 end_noreorder (void)
7921 {
7922 mips_opts.noreorder--;
7923 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7924 {
7925 /* Commit to inserting prev_nop_frag_required nops and go back to
7926 handling nop insertion the .set reorder way. */
7927 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7928 * NOP_INSN_SIZE);
7929 insert_into_history (prev_nop_frag_since,
7930 prev_nop_frag_required, NOP_INSN);
7931 prev_nop_frag = NULL;
7932 }
7933 }
7934
7935 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7936 higher bits unset. */
7937
7938 static void
7939 normalize_constant_expr (expressionS *ex)
7940 {
7941 if (ex->X_op == O_constant
7942 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7943 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7944 - 0x80000000);
7945 }
7946
7947 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7948 all higher bits unset. */
7949
7950 static void
7951 normalize_address_expr (expressionS *ex)
7952 {
7953 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7954 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7955 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7956 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7957 - 0x80000000);
7958 }
7959
7960 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7961 Return true if the match was successful.
7962
7963 OPCODE_EXTRA is a value that should be ORed into the opcode
7964 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7965 there are more alternatives after OPCODE and SOFT_MATCH is
7966 as for mips_arg_info. */
7967
7968 static bfd_boolean
7969 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7970 struct mips_operand_token *tokens, unsigned int opcode_extra,
7971 bfd_boolean lax_match, bfd_boolean complete_p)
7972 {
7973 const char *args;
7974 struct mips_arg_info arg;
7975 const struct mips_operand *operand;
7976 char c;
7977
7978 imm_expr.X_op = O_absent;
7979 offset_expr.X_op = O_absent;
7980 offset_reloc[0] = BFD_RELOC_UNUSED;
7981 offset_reloc[1] = BFD_RELOC_UNUSED;
7982 offset_reloc[2] = BFD_RELOC_UNUSED;
7983
7984 create_insn (insn, opcode);
7985 /* When no opcode suffix is specified, assume ".xyzw". */
7986 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7987 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7988 else
7989 insn->insn_opcode |= opcode_extra;
7990 memset (&arg, 0, sizeof (arg));
7991 arg.insn = insn;
7992 arg.token = tokens;
7993 arg.argnum = 1;
7994 arg.last_regno = ILLEGAL_REG;
7995 arg.dest_regno = ILLEGAL_REG;
7996 arg.lax_match = lax_match;
7997 for (args = opcode->args;; ++args)
7998 {
7999 if (arg.token->type == OT_END)
8000 {
8001 /* Handle unary instructions in which only one operand is given.
8002 The source is then the same as the destination. */
8003 if (arg.opnum == 1 && *args == ',')
8004 {
8005 operand = (mips_opts.micromips
8006 ? decode_micromips_operand (args + 1)
8007 : decode_mips_operand (args + 1));
8008 if (operand && mips_optional_operand_p (operand))
8009 {
8010 arg.token = tokens;
8011 arg.argnum = 1;
8012 continue;
8013 }
8014 }
8015
8016 /* Treat elided base registers as $0. */
8017 if (strcmp (args, "(b)") == 0)
8018 args += 3;
8019
8020 if (args[0] == '+')
8021 switch (args[1])
8022 {
8023 case 'K':
8024 case 'N':
8025 /* The register suffix is optional. */
8026 args += 2;
8027 break;
8028 }
8029
8030 /* Fail the match if there were too few operands. */
8031 if (*args)
8032 return FALSE;
8033
8034 /* Successful match. */
8035 if (!complete_p)
8036 return TRUE;
8037 clear_insn_error ();
8038 if (arg.dest_regno == arg.last_regno
8039 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
8040 {
8041 if (arg.opnum == 2)
8042 set_insn_error
8043 (0, _("source and destination must be different"));
8044 else if (arg.last_regno == 31)
8045 set_insn_error
8046 (0, _("a destination register must be supplied"));
8047 }
8048 else if (arg.last_regno == 31
8049 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
8050 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
8051 set_insn_error (0, _("the source register must not be $31"));
8052 check_completed_insn (&arg);
8053 return TRUE;
8054 }
8055
8056 /* Fail the match if the line has too many operands. */
8057 if (*args == 0)
8058 return FALSE;
8059
8060 /* Handle characters that need to match exactly. */
8061 if (*args == '(' || *args == ')' || *args == ',')
8062 {
8063 if (match_char (&arg, *args))
8064 continue;
8065 return FALSE;
8066 }
8067 if (*args == '#')
8068 {
8069 ++args;
8070 if (arg.token->type == OT_DOUBLE_CHAR
8071 && arg.token->u.ch == *args)
8072 {
8073 ++arg.token;
8074 continue;
8075 }
8076 return FALSE;
8077 }
8078
8079 /* Handle special macro operands. Work out the properties of
8080 other operands. */
8081 arg.opnum += 1;
8082 switch (*args)
8083 {
8084 case '-':
8085 switch (args[1])
8086 {
8087 case 'A':
8088 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
8089 break;
8090
8091 case 'B':
8092 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
8093 break;
8094 }
8095 break;
8096
8097 case '+':
8098 switch (args[1])
8099 {
8100 case 'i':
8101 *offset_reloc = BFD_RELOC_MIPS_JMP;
8102 break;
8103
8104 case '\'':
8105 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
8106 break;
8107
8108 case '\"':
8109 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
8110 break;
8111 }
8112 break;
8113
8114 case 'I':
8115 if (!match_const_int (&arg, &imm_expr.X_add_number))
8116 return FALSE;
8117 imm_expr.X_op = O_constant;
8118 if (GPR_SIZE == 32)
8119 normalize_constant_expr (&imm_expr);
8120 continue;
8121
8122 case 'A':
8123 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8124 {
8125 /* Assume that the offset has been elided and that what
8126 we saw was a base register. The match will fail later
8127 if that assumption turns out to be wrong. */
8128 offset_expr.X_op = O_constant;
8129 offset_expr.X_add_number = 0;
8130 }
8131 else
8132 {
8133 if (!match_expression (&arg, &offset_expr, offset_reloc))
8134 return FALSE;
8135 normalize_address_expr (&offset_expr);
8136 }
8137 continue;
8138
8139 case 'F':
8140 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8141 8, TRUE))
8142 return FALSE;
8143 continue;
8144
8145 case 'L':
8146 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8147 8, FALSE))
8148 return FALSE;
8149 continue;
8150
8151 case 'f':
8152 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8153 4, TRUE))
8154 return FALSE;
8155 continue;
8156
8157 case 'l':
8158 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8159 4, FALSE))
8160 return FALSE;
8161 continue;
8162
8163 case 'p':
8164 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8165 break;
8166
8167 case 'a':
8168 *offset_reloc = BFD_RELOC_MIPS_JMP;
8169 break;
8170
8171 case 'm':
8172 gas_assert (mips_opts.micromips);
8173 c = args[1];
8174 switch (c)
8175 {
8176 case 'D':
8177 case 'E':
8178 if (!forced_insn_length)
8179 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8180 else if (c == 'D')
8181 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8182 else
8183 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8184 break;
8185 }
8186 break;
8187 }
8188
8189 operand = (mips_opts.micromips
8190 ? decode_micromips_operand (args)
8191 : decode_mips_operand (args));
8192 if (!operand)
8193 abort ();
8194
8195 /* Skip prefixes. */
8196 if (*args == '+' || *args == 'm' || *args == '-')
8197 args++;
8198
8199 if (mips_optional_operand_p (operand)
8200 && args[1] == ','
8201 && (arg.token[0].type != OT_REG
8202 || arg.token[1].type == OT_END))
8203 {
8204 /* Assume that the register has been elided and is the
8205 same as the first operand. */
8206 arg.token = tokens;
8207 arg.argnum = 1;
8208 }
8209
8210 if (!match_operand (&arg, operand))
8211 return FALSE;
8212 }
8213 }
8214
8215 /* Like match_insn, but for MIPS16. */
8216
8217 static bfd_boolean
8218 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8219 struct mips_operand_token *tokens)
8220 {
8221 const char *args;
8222 const struct mips_operand *operand;
8223 const struct mips_operand *ext_operand;
8224 bfd_boolean pcrel = FALSE;
8225 int required_insn_length;
8226 struct mips_arg_info arg;
8227 int relax_char;
8228
8229 if (forced_insn_length)
8230 required_insn_length = forced_insn_length;
8231 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8232 required_insn_length = 2;
8233 else
8234 required_insn_length = 0;
8235
8236 create_insn (insn, opcode);
8237 imm_expr.X_op = O_absent;
8238 offset_expr.X_op = O_absent;
8239 offset_reloc[0] = BFD_RELOC_UNUSED;
8240 offset_reloc[1] = BFD_RELOC_UNUSED;
8241 offset_reloc[2] = BFD_RELOC_UNUSED;
8242 relax_char = 0;
8243
8244 memset (&arg, 0, sizeof (arg));
8245 arg.insn = insn;
8246 arg.token = tokens;
8247 arg.argnum = 1;
8248 arg.last_regno = ILLEGAL_REG;
8249 arg.dest_regno = ILLEGAL_REG;
8250 relax_char = 0;
8251 for (args = opcode->args;; ++args)
8252 {
8253 int c;
8254
8255 if (arg.token->type == OT_END)
8256 {
8257 offsetT value;
8258
8259 /* Handle unary instructions in which only one operand is given.
8260 The source is then the same as the destination. */
8261 if (arg.opnum == 1 && *args == ',')
8262 {
8263 operand = decode_mips16_operand (args[1], FALSE);
8264 if (operand && mips_optional_operand_p (operand))
8265 {
8266 arg.token = tokens;
8267 arg.argnum = 1;
8268 continue;
8269 }
8270 }
8271
8272 /* Fail the match if there were too few operands. */
8273 if (*args)
8274 return FALSE;
8275
8276 /* Successful match. Stuff the immediate value in now, if
8277 we can. */
8278 clear_insn_error ();
8279 if (opcode->pinfo == INSN_MACRO)
8280 {
8281 gas_assert (relax_char == 0 || relax_char == 'p');
8282 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8283 }
8284 else if (relax_char
8285 && offset_expr.X_op == O_constant
8286 && !pcrel
8287 && calculate_reloc (*offset_reloc,
8288 offset_expr.X_add_number,
8289 &value))
8290 {
8291 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8292 required_insn_length, &insn->insn_opcode);
8293 offset_expr.X_op = O_absent;
8294 *offset_reloc = BFD_RELOC_UNUSED;
8295 }
8296 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8297 {
8298 if (required_insn_length == 2)
8299 set_insn_error (0, _("invalid unextended operand value"));
8300 else if (!mips_opcode_32bit_p (opcode))
8301 {
8302 forced_insn_length = 4;
8303 insn->insn_opcode |= MIPS16_EXTEND;
8304 }
8305 }
8306 else if (relax_char)
8307 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8308
8309 check_completed_insn (&arg);
8310 return TRUE;
8311 }
8312
8313 /* Fail the match if the line has too many operands. */
8314 if (*args == 0)
8315 return FALSE;
8316
8317 /* Handle characters that need to match exactly. */
8318 if (*args == '(' || *args == ')' || *args == ',')
8319 {
8320 if (match_char (&arg, *args))
8321 continue;
8322 return FALSE;
8323 }
8324
8325 arg.opnum += 1;
8326 c = *args;
8327 switch (c)
8328 {
8329 case 'p':
8330 case 'q':
8331 case 'A':
8332 case 'B':
8333 case 'E':
8334 case 'V':
8335 case 'u':
8336 relax_char = c;
8337 break;
8338
8339 case 'I':
8340 if (!match_const_int (&arg, &imm_expr.X_add_number))
8341 return FALSE;
8342 imm_expr.X_op = O_constant;
8343 if (GPR_SIZE == 32)
8344 normalize_constant_expr (&imm_expr);
8345 continue;
8346
8347 case 'a':
8348 case 'i':
8349 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8350 break;
8351 }
8352
8353 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
8354 if (!operand)
8355 abort ();
8356
8357 if (operand->type == OP_PCREL)
8358 pcrel = TRUE;
8359 else
8360 {
8361 ext_operand = decode_mips16_operand (c, TRUE);
8362 if (operand != ext_operand)
8363 {
8364 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8365 {
8366 offset_expr.X_op = O_constant;
8367 offset_expr.X_add_number = 0;
8368 relax_char = c;
8369 continue;
8370 }
8371
8372 if (!match_expression (&arg, &offset_expr, offset_reloc))
8373 return FALSE;
8374
8375 /* '8' is used for SLTI(U) and has traditionally not
8376 been allowed to take relocation operators. */
8377 if (offset_reloc[0] != BFD_RELOC_UNUSED
8378 && (ext_operand->size != 16 || c == '8'))
8379 {
8380 match_not_constant (&arg);
8381 return FALSE;
8382 }
8383
8384 if (offset_expr.X_op == O_big)
8385 {
8386 match_out_of_range (&arg);
8387 return FALSE;
8388 }
8389
8390 relax_char = c;
8391 continue;
8392 }
8393 }
8394
8395 if (mips_optional_operand_p (operand)
8396 && args[1] == ','
8397 && (arg.token[0].type != OT_REG
8398 || arg.token[1].type == OT_END))
8399 {
8400 /* Assume that the register has been elided and is the
8401 same as the first operand. */
8402 arg.token = tokens;
8403 arg.argnum = 1;
8404 }
8405
8406 if (!match_operand (&arg, operand))
8407 return FALSE;
8408 }
8409 }
8410
8411 /* Record that the current instruction is invalid for the current ISA. */
8412
8413 static void
8414 match_invalid_for_isa (void)
8415 {
8416 set_insn_error_ss
8417 (0, _("opcode not supported on this processor: %s (%s)"),
8418 mips_cpu_info_from_arch (mips_opts.arch)->name,
8419 mips_cpu_info_from_isa (mips_opts.isa)->name);
8420 }
8421
8422 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8423 Return true if a definite match or failure was found, storing any match
8424 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8425 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8426 tried and failed to match under normal conditions and now want to try a
8427 more relaxed match. */
8428
8429 static bfd_boolean
8430 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8431 const struct mips_opcode *past, struct mips_operand_token *tokens,
8432 int opcode_extra, bfd_boolean lax_match)
8433 {
8434 const struct mips_opcode *opcode;
8435 const struct mips_opcode *invalid_delay_slot;
8436 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8437
8438 /* Search for a match, ignoring alternatives that don't satisfy the
8439 current ISA or forced_length. */
8440 invalid_delay_slot = 0;
8441 seen_valid_for_isa = FALSE;
8442 seen_valid_for_size = FALSE;
8443 opcode = first;
8444 do
8445 {
8446 gas_assert (strcmp (opcode->name, first->name) == 0);
8447 if (is_opcode_valid (opcode))
8448 {
8449 seen_valid_for_isa = TRUE;
8450 if (is_size_valid (opcode))
8451 {
8452 bfd_boolean delay_slot_ok;
8453
8454 seen_valid_for_size = TRUE;
8455 delay_slot_ok = is_delay_slot_valid (opcode);
8456 if (match_insn (insn, opcode, tokens, opcode_extra,
8457 lax_match, delay_slot_ok))
8458 {
8459 if (!delay_slot_ok)
8460 {
8461 if (!invalid_delay_slot)
8462 invalid_delay_slot = opcode;
8463 }
8464 else
8465 return TRUE;
8466 }
8467 }
8468 }
8469 ++opcode;
8470 }
8471 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8472
8473 /* If the only matches we found had the wrong length for the delay slot,
8474 pick the first such match. We'll issue an appropriate warning later. */
8475 if (invalid_delay_slot)
8476 {
8477 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8478 lax_match, TRUE))
8479 return TRUE;
8480 abort ();
8481 }
8482
8483 /* Handle the case where we didn't try to match an instruction because
8484 all the alternatives were incompatible with the current ISA. */
8485 if (!seen_valid_for_isa)
8486 {
8487 match_invalid_for_isa ();
8488 return TRUE;
8489 }
8490
8491 /* Handle the case where we didn't try to match an instruction because
8492 all the alternatives were of the wrong size. */
8493 if (!seen_valid_for_size)
8494 {
8495 if (mips_opts.insn32)
8496 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8497 else
8498 set_insn_error_i
8499 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8500 8 * forced_insn_length);
8501 return TRUE;
8502 }
8503
8504 return FALSE;
8505 }
8506
8507 /* Like match_insns, but for MIPS16. */
8508
8509 static bfd_boolean
8510 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8511 struct mips_operand_token *tokens)
8512 {
8513 const struct mips_opcode *opcode;
8514 bfd_boolean seen_valid_for_isa;
8515 bfd_boolean seen_valid_for_size;
8516
8517 /* Search for a match, ignoring alternatives that don't satisfy the
8518 current ISA. There are no separate entries for extended forms so
8519 we deal with forced_length later. */
8520 seen_valid_for_isa = FALSE;
8521 seen_valid_for_size = FALSE;
8522 opcode = first;
8523 do
8524 {
8525 gas_assert (strcmp (opcode->name, first->name) == 0);
8526 if (is_opcode_valid_16 (opcode))
8527 {
8528 seen_valid_for_isa = TRUE;
8529 if (is_size_valid_16 (opcode))
8530 {
8531 seen_valid_for_size = TRUE;
8532 if (match_mips16_insn (insn, opcode, tokens))
8533 return TRUE;
8534 }
8535 }
8536 ++opcode;
8537 }
8538 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8539 && strcmp (opcode->name, first->name) == 0);
8540
8541 /* Handle the case where we didn't try to match an instruction because
8542 all the alternatives were incompatible with the current ISA. */
8543 if (!seen_valid_for_isa)
8544 {
8545 match_invalid_for_isa ();
8546 return TRUE;
8547 }
8548
8549 /* Handle the case where we didn't try to match an instruction because
8550 all the alternatives were of the wrong size. */
8551 if (!seen_valid_for_size)
8552 {
8553 if (forced_insn_length == 2)
8554 set_insn_error
8555 (0, _("unrecognized unextended version of MIPS16 opcode"));
8556 else
8557 set_insn_error
8558 (0, _("unrecognized extended version of MIPS16 opcode"));
8559 return TRUE;
8560 }
8561
8562 return FALSE;
8563 }
8564
8565 /* Set up global variables for the start of a new macro. */
8566
8567 static void
8568 macro_start (void)
8569 {
8570 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8571 memset (&mips_macro_warning.first_insn_sizes, 0,
8572 sizeof (mips_macro_warning.first_insn_sizes));
8573 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8574 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8575 && delayed_branch_p (&history[0]));
8576 if (history[0].frag
8577 && history[0].frag->fr_type == rs_machine_dependent
8578 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8579 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8580 mips_macro_warning.delay_slot_length = 0;
8581 else
8582 switch (history[0].insn_mo->pinfo2
8583 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8584 {
8585 case INSN2_BRANCH_DELAY_32BIT:
8586 mips_macro_warning.delay_slot_length = 4;
8587 break;
8588 case INSN2_BRANCH_DELAY_16BIT:
8589 mips_macro_warning.delay_slot_length = 2;
8590 break;
8591 default:
8592 mips_macro_warning.delay_slot_length = 0;
8593 break;
8594 }
8595 mips_macro_warning.first_frag = NULL;
8596 }
8597
8598 /* Given that a macro is longer than one instruction or of the wrong size,
8599 return the appropriate warning for it. Return null if no warning is
8600 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8601 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8602 and RELAX_NOMACRO. */
8603
8604 static const char *
8605 macro_warning (relax_substateT subtype)
8606 {
8607 if (subtype & RELAX_DELAY_SLOT)
8608 return _("macro instruction expanded into multiple instructions"
8609 " in a branch delay slot");
8610 else if (subtype & RELAX_NOMACRO)
8611 return _("macro instruction expanded into multiple instructions");
8612 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8613 | RELAX_DELAY_SLOT_SIZE_SECOND))
8614 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8615 ? _("macro instruction expanded into a wrong size instruction"
8616 " in a 16-bit branch delay slot")
8617 : _("macro instruction expanded into a wrong size instruction"
8618 " in a 32-bit branch delay slot"));
8619 else
8620 return 0;
8621 }
8622
8623 /* Finish up a macro. Emit warnings as appropriate. */
8624
8625 static void
8626 macro_end (void)
8627 {
8628 /* Relaxation warning flags. */
8629 relax_substateT subtype = 0;
8630
8631 /* Check delay slot size requirements. */
8632 if (mips_macro_warning.delay_slot_length == 2)
8633 subtype |= RELAX_DELAY_SLOT_16BIT;
8634 if (mips_macro_warning.delay_slot_length != 0)
8635 {
8636 if (mips_macro_warning.delay_slot_length
8637 != mips_macro_warning.first_insn_sizes[0])
8638 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8639 if (mips_macro_warning.delay_slot_length
8640 != mips_macro_warning.first_insn_sizes[1])
8641 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8642 }
8643
8644 /* Check instruction count requirements. */
8645 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8646 {
8647 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8648 subtype |= RELAX_SECOND_LONGER;
8649 if (mips_opts.warn_about_macros)
8650 subtype |= RELAX_NOMACRO;
8651 if (mips_macro_warning.delay_slot_p)
8652 subtype |= RELAX_DELAY_SLOT;
8653 }
8654
8655 /* If both alternatives fail to fill a delay slot correctly,
8656 emit the warning now. */
8657 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8658 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8659 {
8660 relax_substateT s;
8661 const char *msg;
8662
8663 s = subtype & (RELAX_DELAY_SLOT_16BIT
8664 | RELAX_DELAY_SLOT_SIZE_FIRST
8665 | RELAX_DELAY_SLOT_SIZE_SECOND);
8666 msg = macro_warning (s);
8667 if (msg != NULL)
8668 as_warn ("%s", msg);
8669 subtype &= ~s;
8670 }
8671
8672 /* If both implementations are longer than 1 instruction, then emit the
8673 warning now. */
8674 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8675 {
8676 relax_substateT s;
8677 const char *msg;
8678
8679 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8680 msg = macro_warning (s);
8681 if (msg != NULL)
8682 as_warn ("%s", msg);
8683 subtype &= ~s;
8684 }
8685
8686 /* If any flags still set, then one implementation might need a warning
8687 and the other either will need one of a different kind or none at all.
8688 Pass any remaining flags over to relaxation. */
8689 if (mips_macro_warning.first_frag != NULL)
8690 mips_macro_warning.first_frag->fr_subtype |= subtype;
8691 }
8692
8693 /* Instruction operand formats used in macros that vary between
8694 standard MIPS and microMIPS code. */
8695
8696 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8697 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8698 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8699 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8700 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8701 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8702 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8703 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8704
8705 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8706 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8707 : cop12_fmt[mips_opts.micromips])
8708 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8709 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8710 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8711 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8712 : mem12_fmt[mips_opts.micromips])
8713 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8714 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8715 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8716
8717 /* Read a macro's relocation codes from *ARGS and store them in *R.
8718 The first argument in *ARGS will be either the code for a single
8719 relocation or -1 followed by the three codes that make up a
8720 composite relocation. */
8721
8722 static void
8723 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8724 {
8725 int i, next;
8726
8727 next = va_arg (*args, int);
8728 if (next >= 0)
8729 r[0] = (bfd_reloc_code_real_type) next;
8730 else
8731 {
8732 for (i = 0; i < 3; i++)
8733 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8734 /* This function is only used for 16-bit relocation fields.
8735 To make the macro code simpler, treat an unrelocated value
8736 in the same way as BFD_RELOC_LO16. */
8737 if (r[0] == BFD_RELOC_UNUSED)
8738 r[0] = BFD_RELOC_LO16;
8739 }
8740 }
8741
8742 /* Build an instruction created by a macro expansion. This is passed
8743 a pointer to the count of instructions created so far, an
8744 expression, the name of the instruction to build, an operand format
8745 string, and corresponding arguments. */
8746
8747 static void
8748 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8749 {
8750 const struct mips_opcode *mo = NULL;
8751 bfd_reloc_code_real_type r[3];
8752 const struct mips_opcode *amo;
8753 const struct mips_operand *operand;
8754 struct hash_control *hash;
8755 struct mips_cl_insn insn;
8756 va_list args;
8757 unsigned int uval;
8758
8759 va_start (args, fmt);
8760
8761 if (mips_opts.mips16)
8762 {
8763 mips16_macro_build (ep, name, fmt, &args);
8764 va_end (args);
8765 return;
8766 }
8767
8768 r[0] = BFD_RELOC_UNUSED;
8769 r[1] = BFD_RELOC_UNUSED;
8770 r[2] = BFD_RELOC_UNUSED;
8771 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8772 amo = (struct mips_opcode *) hash_find (hash, name);
8773 gas_assert (amo);
8774 gas_assert (strcmp (name, amo->name) == 0);
8775
8776 do
8777 {
8778 /* Search until we get a match for NAME. It is assumed here that
8779 macros will never generate MDMX, MIPS-3D, or MT instructions.
8780 We try to match an instruction that fulfills the branch delay
8781 slot instruction length requirement (if any) of the previous
8782 instruction. While doing this we record the first instruction
8783 seen that matches all the other conditions and use it anyway
8784 if the requirement cannot be met; we will issue an appropriate
8785 warning later on. */
8786 if (strcmp (fmt, amo->args) == 0
8787 && amo->pinfo != INSN_MACRO
8788 && is_opcode_valid (amo)
8789 && is_size_valid (amo))
8790 {
8791 if (is_delay_slot_valid (amo))
8792 {
8793 mo = amo;
8794 break;
8795 }
8796 else if (!mo)
8797 mo = amo;
8798 }
8799
8800 ++amo;
8801 gas_assert (amo->name);
8802 }
8803 while (strcmp (name, amo->name) == 0);
8804
8805 gas_assert (mo);
8806 create_insn (&insn, mo);
8807 for (; *fmt; ++fmt)
8808 {
8809 switch (*fmt)
8810 {
8811 case ',':
8812 case '(':
8813 case ')':
8814 case 'z':
8815 break;
8816
8817 case 'i':
8818 case 'j':
8819 macro_read_relocs (&args, r);
8820 gas_assert (*r == BFD_RELOC_GPREL16
8821 || *r == BFD_RELOC_MIPS_HIGHER
8822 || *r == BFD_RELOC_HI16_S
8823 || *r == BFD_RELOC_LO16
8824 || *r == BFD_RELOC_MIPS_GOT_OFST);
8825 break;
8826
8827 case 'o':
8828 macro_read_relocs (&args, r);
8829 break;
8830
8831 case 'u':
8832 macro_read_relocs (&args, r);
8833 gas_assert (ep != NULL
8834 && (ep->X_op == O_constant
8835 || (ep->X_op == O_symbol
8836 && (*r == BFD_RELOC_MIPS_HIGHEST
8837 || *r == BFD_RELOC_HI16_S
8838 || *r == BFD_RELOC_HI16
8839 || *r == BFD_RELOC_GPREL16
8840 || *r == BFD_RELOC_MIPS_GOT_HI16
8841 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8842 break;
8843
8844 case 'p':
8845 gas_assert (ep != NULL);
8846
8847 /*
8848 * This allows macro() to pass an immediate expression for
8849 * creating short branches without creating a symbol.
8850 *
8851 * We don't allow branch relaxation for these branches, as
8852 * they should only appear in ".set nomacro" anyway.
8853 */
8854 if (ep->X_op == O_constant)
8855 {
8856 /* For microMIPS we always use relocations for branches.
8857 So we should not resolve immediate values. */
8858 gas_assert (!mips_opts.micromips);
8859
8860 if ((ep->X_add_number & 3) != 0)
8861 as_bad (_("branch to misaligned address (0x%lx)"),
8862 (unsigned long) ep->X_add_number);
8863 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8864 as_bad (_("branch address range overflow (0x%lx)"),
8865 (unsigned long) ep->X_add_number);
8866 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8867 ep = NULL;
8868 }
8869 else
8870 *r = BFD_RELOC_16_PCREL_S2;
8871 break;
8872
8873 case 'a':
8874 gas_assert (ep != NULL);
8875 *r = BFD_RELOC_MIPS_JMP;
8876 break;
8877
8878 default:
8879 operand = (mips_opts.micromips
8880 ? decode_micromips_operand (fmt)
8881 : decode_mips_operand (fmt));
8882 if (!operand)
8883 abort ();
8884
8885 uval = va_arg (args, int);
8886 if (operand->type == OP_CLO_CLZ_DEST)
8887 uval |= (uval << 5);
8888 insn_insert_operand (&insn, operand, uval);
8889
8890 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8891 ++fmt;
8892 break;
8893 }
8894 }
8895 va_end (args);
8896 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8897
8898 append_insn (&insn, ep, r, TRUE);
8899 }
8900
8901 static void
8902 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8903 va_list *args)
8904 {
8905 struct mips_opcode *mo;
8906 struct mips_cl_insn insn;
8907 const struct mips_operand *operand;
8908 bfd_reloc_code_real_type r[3]
8909 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8910
8911 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8912 gas_assert (mo);
8913 gas_assert (strcmp (name, mo->name) == 0);
8914
8915 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8916 {
8917 ++mo;
8918 gas_assert (mo->name);
8919 gas_assert (strcmp (name, mo->name) == 0);
8920 }
8921
8922 create_insn (&insn, mo);
8923 for (; *fmt; ++fmt)
8924 {
8925 int c;
8926
8927 c = *fmt;
8928 switch (c)
8929 {
8930 case ',':
8931 case '(':
8932 case ')':
8933 break;
8934
8935 case '.':
8936 case 'S':
8937 case 'P':
8938 case 'R':
8939 break;
8940
8941 case '<':
8942 case '5':
8943 case 'F':
8944 case 'H':
8945 case 'W':
8946 case 'D':
8947 case 'j':
8948 case '8':
8949 case 'V':
8950 case 'C':
8951 case 'U':
8952 case 'k':
8953 case 'K':
8954 case 'p':
8955 case 'q':
8956 {
8957 offsetT value;
8958
8959 gas_assert (ep != NULL);
8960
8961 if (ep->X_op != O_constant)
8962 *r = (int) BFD_RELOC_UNUSED + c;
8963 else if (calculate_reloc (*r, ep->X_add_number, &value))
8964 {
8965 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8966 ep = NULL;
8967 *r = BFD_RELOC_UNUSED;
8968 }
8969 }
8970 break;
8971
8972 default:
8973 operand = decode_mips16_operand (c, FALSE);
8974 if (!operand)
8975 abort ();
8976
8977 insn_insert_operand (&insn, operand, va_arg (*args, int));
8978 break;
8979 }
8980 }
8981
8982 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8983
8984 append_insn (&insn, ep, r, TRUE);
8985 }
8986
8987 /*
8988 * Generate a "jalr" instruction with a relocation hint to the called
8989 * function. This occurs in NewABI PIC code.
8990 */
8991 static void
8992 macro_build_jalr (expressionS *ep, int cprestore)
8993 {
8994 static const bfd_reloc_code_real_type jalr_relocs[2]
8995 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8996 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8997 const char *jalr;
8998 char *f = NULL;
8999
9000 if (MIPS_JALR_HINT_P (ep))
9001 {
9002 frag_grow (8);
9003 f = frag_more (0);
9004 }
9005 if (mips_opts.micromips)
9006 {
9007 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
9008 ? "jalr" : "jalrs");
9009 if (MIPS_JALR_HINT_P (ep)
9010 || mips_opts.insn32
9011 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9012 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
9013 else
9014 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
9015 }
9016 else
9017 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
9018 if (MIPS_JALR_HINT_P (ep))
9019 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
9020 }
9021
9022 /*
9023 * Generate a "lui" instruction.
9024 */
9025 static void
9026 macro_build_lui (expressionS *ep, int regnum)
9027 {
9028 gas_assert (! mips_opts.mips16);
9029
9030 if (ep->X_op != O_constant)
9031 {
9032 gas_assert (ep->X_op == O_symbol);
9033 /* _gp_disp is a special case, used from s_cpload.
9034 __gnu_local_gp is used if mips_no_shared. */
9035 gas_assert (mips_pic == NO_PIC
9036 || (! HAVE_NEWABI
9037 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
9038 || (! mips_in_shared
9039 && strcmp (S_GET_NAME (ep->X_add_symbol),
9040 "__gnu_local_gp") == 0));
9041 }
9042
9043 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
9044 }
9045
9046 /* Generate a sequence of instructions to do a load or store from a constant
9047 offset off of a base register (breg) into/from a target register (treg),
9048 using AT if necessary. */
9049 static void
9050 macro_build_ldst_constoffset (expressionS *ep, const char *op,
9051 int treg, int breg, int dbl)
9052 {
9053 gas_assert (ep->X_op == O_constant);
9054
9055 /* Sign-extending 32-bit constants makes their handling easier. */
9056 if (!dbl)
9057 normalize_constant_expr (ep);
9058
9059 /* Right now, this routine can only handle signed 32-bit constants. */
9060 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
9061 as_warn (_("operand overflow"));
9062
9063 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
9064 {
9065 /* Signed 16-bit offset will fit in the op. Easy! */
9066 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
9067 }
9068 else
9069 {
9070 /* 32-bit offset, need multiple instructions and AT, like:
9071 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
9072 addu $tempreg,$tempreg,$breg
9073 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
9074 to handle the complete offset. */
9075 macro_build_lui (ep, AT);
9076 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
9077 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
9078
9079 if (!mips_opts.at)
9080 as_bad (_("macro used $at after \".set noat\""));
9081 }
9082 }
9083
9084 /* set_at()
9085 * Generates code to set the $at register to true (one)
9086 * if reg is less than the immediate expression.
9087 */
9088 static void
9089 set_at (int reg, int unsignedp)
9090 {
9091 if (imm_expr.X_add_number >= -0x8000
9092 && imm_expr.X_add_number < 0x8000)
9093 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
9094 AT, reg, BFD_RELOC_LO16);
9095 else
9096 {
9097 load_register (AT, &imm_expr, GPR_SIZE == 64);
9098 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
9099 }
9100 }
9101
9102 /* Count the leading zeroes by performing a binary chop. This is a
9103 bulky bit of source, but performance is a LOT better for the
9104 majority of values than a simple loop to count the bits:
9105 for (lcnt = 0; (lcnt < 32); lcnt++)
9106 if ((v) & (1 << (31 - lcnt)))
9107 break;
9108 However it is not code size friendly, and the gain will drop a bit
9109 on certain cached systems.
9110 */
9111 #define COUNT_TOP_ZEROES(v) \
9112 (((v) & ~0xffff) == 0 \
9113 ? ((v) & ~0xff) == 0 \
9114 ? ((v) & ~0xf) == 0 \
9115 ? ((v) & ~0x3) == 0 \
9116 ? ((v) & ~0x1) == 0 \
9117 ? !(v) \
9118 ? 32 \
9119 : 31 \
9120 : 30 \
9121 : ((v) & ~0x7) == 0 \
9122 ? 29 \
9123 : 28 \
9124 : ((v) & ~0x3f) == 0 \
9125 ? ((v) & ~0x1f) == 0 \
9126 ? 27 \
9127 : 26 \
9128 : ((v) & ~0x7f) == 0 \
9129 ? 25 \
9130 : 24 \
9131 : ((v) & ~0xfff) == 0 \
9132 ? ((v) & ~0x3ff) == 0 \
9133 ? ((v) & ~0x1ff) == 0 \
9134 ? 23 \
9135 : 22 \
9136 : ((v) & ~0x7ff) == 0 \
9137 ? 21 \
9138 : 20 \
9139 : ((v) & ~0x3fff) == 0 \
9140 ? ((v) & ~0x1fff) == 0 \
9141 ? 19 \
9142 : 18 \
9143 : ((v) & ~0x7fff) == 0 \
9144 ? 17 \
9145 : 16 \
9146 : ((v) & ~0xffffff) == 0 \
9147 ? ((v) & ~0xfffff) == 0 \
9148 ? ((v) & ~0x3ffff) == 0 \
9149 ? ((v) & ~0x1ffff) == 0 \
9150 ? 15 \
9151 : 14 \
9152 : ((v) & ~0x7ffff) == 0 \
9153 ? 13 \
9154 : 12 \
9155 : ((v) & ~0x3fffff) == 0 \
9156 ? ((v) & ~0x1fffff) == 0 \
9157 ? 11 \
9158 : 10 \
9159 : ((v) & ~0x7fffff) == 0 \
9160 ? 9 \
9161 : 8 \
9162 : ((v) & ~0xfffffff) == 0 \
9163 ? ((v) & ~0x3ffffff) == 0 \
9164 ? ((v) & ~0x1ffffff) == 0 \
9165 ? 7 \
9166 : 6 \
9167 : ((v) & ~0x7ffffff) == 0 \
9168 ? 5 \
9169 : 4 \
9170 : ((v) & ~0x3fffffff) == 0 \
9171 ? ((v) & ~0x1fffffff) == 0 \
9172 ? 3 \
9173 : 2 \
9174 : ((v) & ~0x7fffffff) == 0 \
9175 ? 1 \
9176 : 0)
9177
9178 /* load_register()
9179 * This routine generates the least number of instructions necessary to load
9180 * an absolute expression value into a register.
9181 */
9182 static void
9183 load_register (int reg, expressionS *ep, int dbl)
9184 {
9185 int freg;
9186 expressionS hi32, lo32;
9187
9188 if (ep->X_op != O_big)
9189 {
9190 gas_assert (ep->X_op == O_constant);
9191
9192 /* Sign-extending 32-bit constants makes their handling easier. */
9193 if (!dbl)
9194 normalize_constant_expr (ep);
9195
9196 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
9197 {
9198 /* We can handle 16 bit signed values with an addiu to
9199 $zero. No need to ever use daddiu here, since $zero and
9200 the result are always correct in 32 bit mode. */
9201 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9202 return;
9203 }
9204 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9205 {
9206 /* We can handle 16 bit unsigned values with an ori to
9207 $zero. */
9208 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9209 return;
9210 }
9211 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
9212 {
9213 /* 32 bit values require an lui. */
9214 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9215 if ((ep->X_add_number & 0xffff) != 0)
9216 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9217 return;
9218 }
9219 }
9220
9221 /* The value is larger than 32 bits. */
9222
9223 if (!dbl || GPR_SIZE == 32)
9224 {
9225 char value[32];
9226
9227 sprintf_vma (value, ep->X_add_number);
9228 as_bad (_("number (0x%s) larger than 32 bits"), value);
9229 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9230 return;
9231 }
9232
9233 if (ep->X_op != O_big)
9234 {
9235 hi32 = *ep;
9236 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9237 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9238 hi32.X_add_number &= 0xffffffff;
9239 lo32 = *ep;
9240 lo32.X_add_number &= 0xffffffff;
9241 }
9242 else
9243 {
9244 gas_assert (ep->X_add_number > 2);
9245 if (ep->X_add_number == 3)
9246 generic_bignum[3] = 0;
9247 else if (ep->X_add_number > 4)
9248 as_bad (_("number larger than 64 bits"));
9249 lo32.X_op = O_constant;
9250 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9251 hi32.X_op = O_constant;
9252 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9253 }
9254
9255 if (hi32.X_add_number == 0)
9256 freg = 0;
9257 else
9258 {
9259 int shift, bit;
9260 unsigned long hi, lo;
9261
9262 if (hi32.X_add_number == (offsetT) 0xffffffff)
9263 {
9264 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9265 {
9266 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9267 return;
9268 }
9269 if (lo32.X_add_number & 0x80000000)
9270 {
9271 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9272 if (lo32.X_add_number & 0xffff)
9273 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9274 return;
9275 }
9276 }
9277
9278 /* Check for 16bit shifted constant. We know that hi32 is
9279 non-zero, so start the mask on the first bit of the hi32
9280 value. */
9281 shift = 17;
9282 do
9283 {
9284 unsigned long himask, lomask;
9285
9286 if (shift < 32)
9287 {
9288 himask = 0xffff >> (32 - shift);
9289 lomask = (0xffff << shift) & 0xffffffff;
9290 }
9291 else
9292 {
9293 himask = 0xffff << (shift - 32);
9294 lomask = 0;
9295 }
9296 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9297 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9298 {
9299 expressionS tmp;
9300
9301 tmp.X_op = O_constant;
9302 if (shift < 32)
9303 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9304 | (lo32.X_add_number >> shift));
9305 else
9306 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9307 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9308 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9309 reg, reg, (shift >= 32) ? shift - 32 : shift);
9310 return;
9311 }
9312 ++shift;
9313 }
9314 while (shift <= (64 - 16));
9315
9316 /* Find the bit number of the lowest one bit, and store the
9317 shifted value in hi/lo. */
9318 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9319 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9320 if (lo != 0)
9321 {
9322 bit = 0;
9323 while ((lo & 1) == 0)
9324 {
9325 lo >>= 1;
9326 ++bit;
9327 }
9328 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9329 hi >>= bit;
9330 }
9331 else
9332 {
9333 bit = 32;
9334 while ((hi & 1) == 0)
9335 {
9336 hi >>= 1;
9337 ++bit;
9338 }
9339 lo = hi;
9340 hi = 0;
9341 }
9342
9343 /* Optimize if the shifted value is a (power of 2) - 1. */
9344 if ((hi == 0 && ((lo + 1) & lo) == 0)
9345 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9346 {
9347 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9348 if (shift != 0)
9349 {
9350 expressionS tmp;
9351
9352 /* This instruction will set the register to be all
9353 ones. */
9354 tmp.X_op = O_constant;
9355 tmp.X_add_number = (offsetT) -1;
9356 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9357 if (bit != 0)
9358 {
9359 bit += shift;
9360 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9361 reg, reg, (bit >= 32) ? bit - 32 : bit);
9362 }
9363 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9364 reg, reg, (shift >= 32) ? shift - 32 : shift);
9365 return;
9366 }
9367 }
9368
9369 /* Sign extend hi32 before calling load_register, because we can
9370 generally get better code when we load a sign extended value. */
9371 if ((hi32.X_add_number & 0x80000000) != 0)
9372 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9373 load_register (reg, &hi32, 0);
9374 freg = reg;
9375 }
9376 if ((lo32.X_add_number & 0xffff0000) == 0)
9377 {
9378 if (freg != 0)
9379 {
9380 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9381 freg = reg;
9382 }
9383 }
9384 else
9385 {
9386 expressionS mid16;
9387
9388 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9389 {
9390 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9391 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9392 return;
9393 }
9394
9395 if (freg != 0)
9396 {
9397 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9398 freg = reg;
9399 }
9400 mid16 = lo32;
9401 mid16.X_add_number >>= 16;
9402 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9403 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9404 freg = reg;
9405 }
9406 if ((lo32.X_add_number & 0xffff) != 0)
9407 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9408 }
9409
9410 static inline void
9411 load_delay_nop (void)
9412 {
9413 if (!gpr_interlocks)
9414 macro_build (NULL, "nop", "");
9415 }
9416
9417 /* Load an address into a register. */
9418
9419 static void
9420 load_address (int reg, expressionS *ep, int *used_at)
9421 {
9422 if (ep->X_op != O_constant
9423 && ep->X_op != O_symbol)
9424 {
9425 as_bad (_("expression too complex"));
9426 ep->X_op = O_constant;
9427 }
9428
9429 if (ep->X_op == O_constant)
9430 {
9431 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9432 return;
9433 }
9434
9435 if (mips_pic == NO_PIC)
9436 {
9437 /* If this is a reference to a GP relative symbol, we want
9438 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9439 Otherwise we want
9440 lui $reg,<sym> (BFD_RELOC_HI16_S)
9441 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9442 If we have an addend, we always use the latter form.
9443
9444 With 64bit address space and a usable $at we want
9445 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9446 lui $at,<sym> (BFD_RELOC_HI16_S)
9447 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9448 daddiu $at,<sym> (BFD_RELOC_LO16)
9449 dsll32 $reg,0
9450 daddu $reg,$reg,$at
9451
9452 If $at is already in use, we use a path which is suboptimal
9453 on superscalar processors.
9454 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9455 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9456 dsll $reg,16
9457 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9458 dsll $reg,16
9459 daddiu $reg,<sym> (BFD_RELOC_LO16)
9460
9461 For GP relative symbols in 64bit address space we can use
9462 the same sequence as in 32bit address space. */
9463 if (HAVE_64BIT_SYMBOLS)
9464 {
9465 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9466 && !nopic_need_relax (ep->X_add_symbol, 1))
9467 {
9468 relax_start (ep->X_add_symbol);
9469 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9470 mips_gp_register, BFD_RELOC_GPREL16);
9471 relax_switch ();
9472 }
9473
9474 if (*used_at == 0 && mips_opts.at)
9475 {
9476 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9477 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9478 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9479 BFD_RELOC_MIPS_HIGHER);
9480 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9481 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9482 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9483 *used_at = 1;
9484 }
9485 else
9486 {
9487 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9488 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9489 BFD_RELOC_MIPS_HIGHER);
9490 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9491 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9492 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9493 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9494 }
9495
9496 if (mips_relax.sequence)
9497 relax_end ();
9498 }
9499 else
9500 {
9501 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9502 && !nopic_need_relax (ep->X_add_symbol, 1))
9503 {
9504 relax_start (ep->X_add_symbol);
9505 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9506 mips_gp_register, BFD_RELOC_GPREL16);
9507 relax_switch ();
9508 }
9509 macro_build_lui (ep, reg);
9510 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9511 reg, reg, BFD_RELOC_LO16);
9512 if (mips_relax.sequence)
9513 relax_end ();
9514 }
9515 }
9516 else if (!mips_big_got)
9517 {
9518 expressionS ex;
9519
9520 /* If this is a reference to an external symbol, we want
9521 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9522 Otherwise we want
9523 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9524 nop
9525 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9526 If there is a constant, it must be added in after.
9527
9528 If we have NewABI, we want
9529 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9530 unless we're referencing a global symbol with a non-zero
9531 offset, in which case cst must be added separately. */
9532 if (HAVE_NEWABI)
9533 {
9534 if (ep->X_add_number)
9535 {
9536 ex.X_add_number = ep->X_add_number;
9537 ep->X_add_number = 0;
9538 relax_start (ep->X_add_symbol);
9539 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9540 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9541 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9542 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9543 ex.X_op = O_constant;
9544 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9545 reg, reg, BFD_RELOC_LO16);
9546 ep->X_add_number = ex.X_add_number;
9547 relax_switch ();
9548 }
9549 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9550 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9551 if (mips_relax.sequence)
9552 relax_end ();
9553 }
9554 else
9555 {
9556 ex.X_add_number = ep->X_add_number;
9557 ep->X_add_number = 0;
9558 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9559 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9560 load_delay_nop ();
9561 relax_start (ep->X_add_symbol);
9562 relax_switch ();
9563 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9564 BFD_RELOC_LO16);
9565 relax_end ();
9566
9567 if (ex.X_add_number != 0)
9568 {
9569 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9570 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9571 ex.X_op = O_constant;
9572 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9573 reg, reg, BFD_RELOC_LO16);
9574 }
9575 }
9576 }
9577 else if (mips_big_got)
9578 {
9579 expressionS ex;
9580
9581 /* This is the large GOT case. If this is a reference to an
9582 external symbol, we want
9583 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9584 addu $reg,$reg,$gp
9585 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9586
9587 Otherwise, for a reference to a local symbol in old ABI, we want
9588 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9589 nop
9590 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9591 If there is a constant, it must be added in after.
9592
9593 In the NewABI, for local symbols, with or without offsets, we want:
9594 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9595 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9596 */
9597 if (HAVE_NEWABI)
9598 {
9599 ex.X_add_number = ep->X_add_number;
9600 ep->X_add_number = 0;
9601 relax_start (ep->X_add_symbol);
9602 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9603 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9604 reg, reg, mips_gp_register);
9605 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9606 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9607 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9608 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9609 else if (ex.X_add_number)
9610 {
9611 ex.X_op = O_constant;
9612 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9613 BFD_RELOC_LO16);
9614 }
9615
9616 ep->X_add_number = ex.X_add_number;
9617 relax_switch ();
9618 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9619 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9620 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9621 BFD_RELOC_MIPS_GOT_OFST);
9622 relax_end ();
9623 }
9624 else
9625 {
9626 ex.X_add_number = ep->X_add_number;
9627 ep->X_add_number = 0;
9628 relax_start (ep->X_add_symbol);
9629 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9630 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9631 reg, reg, mips_gp_register);
9632 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9633 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9634 relax_switch ();
9635 if (reg_needs_delay (mips_gp_register))
9636 {
9637 /* We need a nop before loading from $gp. This special
9638 check is required because the lui which starts the main
9639 instruction stream does not refer to $gp, and so will not
9640 insert the nop which may be required. */
9641 macro_build (NULL, "nop", "");
9642 }
9643 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9644 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9645 load_delay_nop ();
9646 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9647 BFD_RELOC_LO16);
9648 relax_end ();
9649
9650 if (ex.X_add_number != 0)
9651 {
9652 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9653 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9654 ex.X_op = O_constant;
9655 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9656 BFD_RELOC_LO16);
9657 }
9658 }
9659 }
9660 else
9661 abort ();
9662
9663 if (!mips_opts.at && *used_at == 1)
9664 as_bad (_("macro used $at after \".set noat\""));
9665 }
9666
9667 /* Move the contents of register SOURCE into register DEST. */
9668
9669 static void
9670 move_register (int dest, int source)
9671 {
9672 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9673 instruction specifically requires a 32-bit one. */
9674 if (mips_opts.micromips
9675 && !mips_opts.insn32
9676 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9677 macro_build (NULL, "move", "mp,mj", dest, source);
9678 else
9679 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9680 }
9681
9682 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9683 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9684 The two alternatives are:
9685
9686 Global symbol Local symbol
9687 ------------- ------------
9688 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9689 ... ...
9690 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9691
9692 load_got_offset emits the first instruction and add_got_offset
9693 emits the second for a 16-bit offset or add_got_offset_hilo emits
9694 a sequence to add a 32-bit offset using a scratch register. */
9695
9696 static void
9697 load_got_offset (int dest, expressionS *local)
9698 {
9699 expressionS global;
9700
9701 global = *local;
9702 global.X_add_number = 0;
9703
9704 relax_start (local->X_add_symbol);
9705 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9706 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9707 relax_switch ();
9708 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9709 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9710 relax_end ();
9711 }
9712
9713 static void
9714 add_got_offset (int dest, expressionS *local)
9715 {
9716 expressionS global;
9717
9718 global.X_op = O_constant;
9719 global.X_op_symbol = NULL;
9720 global.X_add_symbol = NULL;
9721 global.X_add_number = local->X_add_number;
9722
9723 relax_start (local->X_add_symbol);
9724 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9725 dest, dest, BFD_RELOC_LO16);
9726 relax_switch ();
9727 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9728 relax_end ();
9729 }
9730
9731 static void
9732 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9733 {
9734 expressionS global;
9735 int hold_mips_optimize;
9736
9737 global.X_op = O_constant;
9738 global.X_op_symbol = NULL;
9739 global.X_add_symbol = NULL;
9740 global.X_add_number = local->X_add_number;
9741
9742 relax_start (local->X_add_symbol);
9743 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9744 relax_switch ();
9745 /* Set mips_optimize around the lui instruction to avoid
9746 inserting an unnecessary nop after the lw. */
9747 hold_mips_optimize = mips_optimize;
9748 mips_optimize = 2;
9749 macro_build_lui (&global, tmp);
9750 mips_optimize = hold_mips_optimize;
9751 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9752 relax_end ();
9753
9754 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9755 }
9756
9757 /* Emit a sequence of instructions to emulate a branch likely operation.
9758 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9759 is its complementing branch with the original condition negated.
9760 CALL is set if the original branch specified the link operation.
9761 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9762
9763 Code like this is produced in the noreorder mode:
9764
9765 BRNEG <args>, 1f
9766 nop
9767 b <sym>
9768 delay slot (executed only if branch taken)
9769 1:
9770
9771 or, if CALL is set:
9772
9773 BRNEG <args>, 1f
9774 nop
9775 bal <sym>
9776 delay slot (executed only if branch taken)
9777 1:
9778
9779 In the reorder mode the delay slot would be filled with a nop anyway,
9780 so code produced is simply:
9781
9782 BR <args>, <sym>
9783 nop
9784
9785 This function is used when producing code for the microMIPS ASE that
9786 does not implement branch likely instructions in hardware. */
9787
9788 static void
9789 macro_build_branch_likely (const char *br, const char *brneg,
9790 int call, expressionS *ep, const char *fmt,
9791 unsigned int sreg, unsigned int treg)
9792 {
9793 int noreorder = mips_opts.noreorder;
9794 expressionS expr1;
9795
9796 gas_assert (mips_opts.micromips);
9797 start_noreorder ();
9798 if (noreorder)
9799 {
9800 micromips_label_expr (&expr1);
9801 macro_build (&expr1, brneg, fmt, sreg, treg);
9802 macro_build (NULL, "nop", "");
9803 macro_build (ep, call ? "bal" : "b", "p");
9804
9805 /* Set to true so that append_insn adds a label. */
9806 emit_branch_likely_macro = TRUE;
9807 }
9808 else
9809 {
9810 macro_build (ep, br, fmt, sreg, treg);
9811 macro_build (NULL, "nop", "");
9812 }
9813 end_noreorder ();
9814 }
9815
9816 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9817 the condition code tested. EP specifies the branch target. */
9818
9819 static void
9820 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9821 {
9822 const int call = 0;
9823 const char *brneg;
9824 const char *br;
9825
9826 switch (type)
9827 {
9828 case M_BC1FL:
9829 br = "bc1f";
9830 brneg = "bc1t";
9831 break;
9832 case M_BC1TL:
9833 br = "bc1t";
9834 brneg = "bc1f";
9835 break;
9836 case M_BC2FL:
9837 br = "bc2f";
9838 brneg = "bc2t";
9839 break;
9840 case M_BC2TL:
9841 br = "bc2t";
9842 brneg = "bc2f";
9843 break;
9844 default:
9845 abort ();
9846 }
9847 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9848 }
9849
9850 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9851 the register tested. EP specifies the branch target. */
9852
9853 static void
9854 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9855 {
9856 const char *brneg = NULL;
9857 const char *br;
9858 int call = 0;
9859
9860 switch (type)
9861 {
9862 case M_BGEZ:
9863 br = "bgez";
9864 break;
9865 case M_BGEZL:
9866 br = mips_opts.micromips ? "bgez" : "bgezl";
9867 brneg = "bltz";
9868 break;
9869 case M_BGEZALL:
9870 gas_assert (mips_opts.micromips);
9871 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9872 brneg = "bltz";
9873 call = 1;
9874 break;
9875 case M_BGTZ:
9876 br = "bgtz";
9877 break;
9878 case M_BGTZL:
9879 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9880 brneg = "blez";
9881 break;
9882 case M_BLEZ:
9883 br = "blez";
9884 break;
9885 case M_BLEZL:
9886 br = mips_opts.micromips ? "blez" : "blezl";
9887 brneg = "bgtz";
9888 break;
9889 case M_BLTZ:
9890 br = "bltz";
9891 break;
9892 case M_BLTZL:
9893 br = mips_opts.micromips ? "bltz" : "bltzl";
9894 brneg = "bgez";
9895 break;
9896 case M_BLTZALL:
9897 gas_assert (mips_opts.micromips);
9898 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9899 brneg = "bgez";
9900 call = 1;
9901 break;
9902 default:
9903 abort ();
9904 }
9905 if (mips_opts.micromips && brneg)
9906 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9907 else
9908 macro_build (ep, br, "s,p", sreg);
9909 }
9910
9911 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9912 TREG as the registers tested. EP specifies the branch target. */
9913
9914 static void
9915 macro_build_branch_rsrt (int type, expressionS *ep,
9916 unsigned int sreg, unsigned int treg)
9917 {
9918 const char *brneg = NULL;
9919 const int call = 0;
9920 const char *br;
9921
9922 switch (type)
9923 {
9924 case M_BEQ:
9925 case M_BEQ_I:
9926 br = "beq";
9927 break;
9928 case M_BEQL:
9929 case M_BEQL_I:
9930 br = mips_opts.micromips ? "beq" : "beql";
9931 brneg = "bne";
9932 break;
9933 case M_BNE:
9934 case M_BNE_I:
9935 br = "bne";
9936 break;
9937 case M_BNEL:
9938 case M_BNEL_I:
9939 br = mips_opts.micromips ? "bne" : "bnel";
9940 brneg = "beq";
9941 break;
9942 default:
9943 abort ();
9944 }
9945 if (mips_opts.micromips && brneg)
9946 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9947 else
9948 macro_build (ep, br, "s,t,p", sreg, treg);
9949 }
9950
9951 /* Return the high part that should be loaded in order to make the low
9952 part of VALUE accessible using an offset of OFFBITS bits. */
9953
9954 static offsetT
9955 offset_high_part (offsetT value, unsigned int offbits)
9956 {
9957 offsetT bias;
9958 addressT low_mask;
9959
9960 if (offbits == 0)
9961 return value;
9962 bias = 1 << (offbits - 1);
9963 low_mask = bias * 2 - 1;
9964 return (value + bias) & ~low_mask;
9965 }
9966
9967 /* Return true if the value stored in offset_expr and offset_reloc
9968 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9969 amount that the caller wants to add without inducing overflow
9970 and ALIGN is the known alignment of the value in bytes. */
9971
9972 static bfd_boolean
9973 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9974 {
9975 if (offbits == 16)
9976 {
9977 /* Accept any relocation operator if overflow isn't a concern. */
9978 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9979 return TRUE;
9980
9981 /* These relocations are guaranteed not to overflow in correct links. */
9982 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9983 || gprel16_reloc_p (*offset_reloc))
9984 return TRUE;
9985 }
9986 if (offset_expr.X_op == O_constant
9987 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9988 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9989 return TRUE;
9990 return FALSE;
9991 }
9992
9993 /*
9994 * Build macros
9995 * This routine implements the seemingly endless macro or synthesized
9996 * instructions and addressing modes in the mips assembly language. Many
9997 * of these macros are simple and are similar to each other. These could
9998 * probably be handled by some kind of table or grammar approach instead of
9999 * this verbose method. Others are not simple macros but are more like
10000 * optimizing code generation.
10001 * One interesting optimization is when several store macros appear
10002 * consecutively that would load AT with the upper half of the same address.
10003 * The ensuing load upper instructions are omitted. This implies some kind
10004 * of global optimization. We currently only optimize within a single macro.
10005 * For many of the load and store macros if the address is specified as a
10006 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
10007 * first load register 'at' with zero and use it as the base register. The
10008 * mips assembler simply uses register $zero. Just one tiny optimization
10009 * we're missing.
10010 */
10011 static void
10012 macro (struct mips_cl_insn *ip, char *str)
10013 {
10014 const struct mips_operand_array *operands;
10015 unsigned int breg, i;
10016 unsigned int tempreg;
10017 int mask;
10018 int used_at = 0;
10019 expressionS label_expr;
10020 expressionS expr1;
10021 expressionS *ep;
10022 const char *s;
10023 const char *s2;
10024 const char *fmt;
10025 int likely = 0;
10026 int coproc = 0;
10027 int offbits = 16;
10028 int call = 0;
10029 int jals = 0;
10030 int dbl = 0;
10031 int imm = 0;
10032 int ust = 0;
10033 int lp = 0;
10034 bfd_boolean large_offset;
10035 int off;
10036 int hold_mips_optimize;
10037 unsigned int align;
10038 unsigned int op[MAX_OPERANDS];
10039
10040 gas_assert (! mips_opts.mips16);
10041
10042 operands = insn_operands (ip);
10043 for (i = 0; i < MAX_OPERANDS; i++)
10044 if (operands->operand[i])
10045 op[i] = insn_extract_operand (ip, operands->operand[i]);
10046 else
10047 op[i] = -1;
10048
10049 mask = ip->insn_mo->mask;
10050
10051 label_expr.X_op = O_constant;
10052 label_expr.X_op_symbol = NULL;
10053 label_expr.X_add_symbol = NULL;
10054 label_expr.X_add_number = 0;
10055
10056 expr1.X_op = O_constant;
10057 expr1.X_op_symbol = NULL;
10058 expr1.X_add_symbol = NULL;
10059 expr1.X_add_number = 1;
10060 align = 1;
10061
10062 switch (mask)
10063 {
10064 case M_DABS:
10065 dbl = 1;
10066 /* Fall through. */
10067 case M_ABS:
10068 /* bgez $a0,1f
10069 move v0,$a0
10070 sub v0,$zero,$a0
10071 1:
10072 */
10073
10074 start_noreorder ();
10075
10076 if (mips_opts.micromips)
10077 micromips_label_expr (&label_expr);
10078 else
10079 label_expr.X_add_number = 8;
10080 macro_build (&label_expr, "bgez", "s,p", op[1]);
10081 if (op[0] == op[1])
10082 macro_build (NULL, "nop", "");
10083 else
10084 move_register (op[0], op[1]);
10085 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
10086 if (mips_opts.micromips)
10087 micromips_add_label ();
10088
10089 end_noreorder ();
10090 break;
10091
10092 case M_ADD_I:
10093 s = "addi";
10094 s2 = "add";
10095 goto do_addi;
10096 case M_ADDU_I:
10097 s = "addiu";
10098 s2 = "addu";
10099 goto do_addi;
10100 case M_DADD_I:
10101 dbl = 1;
10102 s = "daddi";
10103 s2 = "dadd";
10104 if (!mips_opts.micromips)
10105 goto do_addi;
10106 if (imm_expr.X_add_number >= -0x200
10107 && imm_expr.X_add_number < 0x200)
10108 {
10109 macro_build (NULL, s, "t,r,.", op[0], op[1],
10110 (int) imm_expr.X_add_number);
10111 break;
10112 }
10113 goto do_addi_i;
10114 case M_DADDU_I:
10115 dbl = 1;
10116 s = "daddiu";
10117 s2 = "daddu";
10118 do_addi:
10119 if (imm_expr.X_add_number >= -0x8000
10120 && imm_expr.X_add_number < 0x8000)
10121 {
10122 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
10123 break;
10124 }
10125 do_addi_i:
10126 used_at = 1;
10127 load_register (AT, &imm_expr, dbl);
10128 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10129 break;
10130
10131 case M_AND_I:
10132 s = "andi";
10133 s2 = "and";
10134 goto do_bit;
10135 case M_OR_I:
10136 s = "ori";
10137 s2 = "or";
10138 goto do_bit;
10139 case M_NOR_I:
10140 s = "";
10141 s2 = "nor";
10142 goto do_bit;
10143 case M_XOR_I:
10144 s = "xori";
10145 s2 = "xor";
10146 do_bit:
10147 if (imm_expr.X_add_number >= 0
10148 && imm_expr.X_add_number < 0x10000)
10149 {
10150 if (mask != M_NOR_I)
10151 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
10152 else
10153 {
10154 macro_build (&imm_expr, "ori", "t,r,i",
10155 op[0], op[1], BFD_RELOC_LO16);
10156 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
10157 }
10158 break;
10159 }
10160
10161 used_at = 1;
10162 load_register (AT, &imm_expr, GPR_SIZE == 64);
10163 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10164 break;
10165
10166 case M_BALIGN:
10167 switch (imm_expr.X_add_number)
10168 {
10169 case 0:
10170 macro_build (NULL, "nop", "");
10171 break;
10172 case 2:
10173 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
10174 break;
10175 case 1:
10176 case 3:
10177 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
10178 (int) imm_expr.X_add_number);
10179 break;
10180 default:
10181 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10182 (unsigned long) imm_expr.X_add_number);
10183 break;
10184 }
10185 break;
10186
10187 case M_BC1FL:
10188 case M_BC1TL:
10189 case M_BC2FL:
10190 case M_BC2TL:
10191 gas_assert (mips_opts.micromips);
10192 macro_build_branch_ccl (mask, &offset_expr,
10193 EXTRACT_OPERAND (1, BCC, *ip));
10194 break;
10195
10196 case M_BEQ_I:
10197 case M_BEQL_I:
10198 case M_BNE_I:
10199 case M_BNEL_I:
10200 if (imm_expr.X_add_number == 0)
10201 op[1] = 0;
10202 else
10203 {
10204 op[1] = AT;
10205 used_at = 1;
10206 load_register (op[1], &imm_expr, GPR_SIZE == 64);
10207 }
10208 /* Fall through. */
10209 case M_BEQL:
10210 case M_BNEL:
10211 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
10212 break;
10213
10214 case M_BGEL:
10215 likely = 1;
10216 /* Fall through. */
10217 case M_BGE:
10218 if (op[1] == 0)
10219 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10220 else if (op[0] == 0)
10221 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10222 else
10223 {
10224 used_at = 1;
10225 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10226 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10227 &offset_expr, AT, ZERO);
10228 }
10229 break;
10230
10231 case M_BGEZL:
10232 case M_BGEZALL:
10233 case M_BGTZL:
10234 case M_BLEZL:
10235 case M_BLTZL:
10236 case M_BLTZALL:
10237 macro_build_branch_rs (mask, &offset_expr, op[0]);
10238 break;
10239
10240 case M_BGTL_I:
10241 likely = 1;
10242 /* Fall through. */
10243 case M_BGT_I:
10244 /* Check for > max integer. */
10245 if (imm_expr.X_add_number >= GPR_SMAX)
10246 {
10247 do_false:
10248 /* Result is always false. */
10249 if (! likely)
10250 macro_build (NULL, "nop", "");
10251 else
10252 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10253 break;
10254 }
10255 ++imm_expr.X_add_number;
10256 /* FALLTHROUGH */
10257 case M_BGE_I:
10258 case M_BGEL_I:
10259 if (mask == M_BGEL_I)
10260 likely = 1;
10261 if (imm_expr.X_add_number == 0)
10262 {
10263 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10264 &offset_expr, op[0]);
10265 break;
10266 }
10267 if (imm_expr.X_add_number == 1)
10268 {
10269 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10270 &offset_expr, op[0]);
10271 break;
10272 }
10273 if (imm_expr.X_add_number <= GPR_SMIN)
10274 {
10275 do_true:
10276 /* result is always true */
10277 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10278 macro_build (&offset_expr, "b", "p");
10279 break;
10280 }
10281 used_at = 1;
10282 set_at (op[0], 0);
10283 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10284 &offset_expr, AT, ZERO);
10285 break;
10286
10287 case M_BGEUL:
10288 likely = 1;
10289 /* Fall through. */
10290 case M_BGEU:
10291 if (op[1] == 0)
10292 goto do_true;
10293 else if (op[0] == 0)
10294 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10295 &offset_expr, ZERO, op[1]);
10296 else
10297 {
10298 used_at = 1;
10299 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10300 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10301 &offset_expr, AT, ZERO);
10302 }
10303 break;
10304
10305 case M_BGTUL_I:
10306 likely = 1;
10307 /* Fall through. */
10308 case M_BGTU_I:
10309 if (op[0] == 0
10310 || (GPR_SIZE == 32
10311 && imm_expr.X_add_number == -1))
10312 goto do_false;
10313 ++imm_expr.X_add_number;
10314 /* FALLTHROUGH */
10315 case M_BGEU_I:
10316 case M_BGEUL_I:
10317 if (mask == M_BGEUL_I)
10318 likely = 1;
10319 if (imm_expr.X_add_number == 0)
10320 goto do_true;
10321 else if (imm_expr.X_add_number == 1)
10322 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10323 &offset_expr, op[0], ZERO);
10324 else
10325 {
10326 used_at = 1;
10327 set_at (op[0], 1);
10328 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10329 &offset_expr, AT, ZERO);
10330 }
10331 break;
10332
10333 case M_BGTL:
10334 likely = 1;
10335 /* Fall through. */
10336 case M_BGT:
10337 if (op[1] == 0)
10338 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10339 else if (op[0] == 0)
10340 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10341 else
10342 {
10343 used_at = 1;
10344 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10345 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10346 &offset_expr, AT, ZERO);
10347 }
10348 break;
10349
10350 case M_BGTUL:
10351 likely = 1;
10352 /* Fall through. */
10353 case M_BGTU:
10354 if (op[1] == 0)
10355 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10356 &offset_expr, op[0], ZERO);
10357 else if (op[0] == 0)
10358 goto do_false;
10359 else
10360 {
10361 used_at = 1;
10362 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10363 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10364 &offset_expr, AT, ZERO);
10365 }
10366 break;
10367
10368 case M_BLEL:
10369 likely = 1;
10370 /* Fall through. */
10371 case M_BLE:
10372 if (op[1] == 0)
10373 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10374 else if (op[0] == 0)
10375 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10376 else
10377 {
10378 used_at = 1;
10379 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10380 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10381 &offset_expr, AT, ZERO);
10382 }
10383 break;
10384
10385 case M_BLEL_I:
10386 likely = 1;
10387 /* Fall through. */
10388 case M_BLE_I:
10389 if (imm_expr.X_add_number >= GPR_SMAX)
10390 goto do_true;
10391 ++imm_expr.X_add_number;
10392 /* FALLTHROUGH */
10393 case M_BLT_I:
10394 case M_BLTL_I:
10395 if (mask == M_BLTL_I)
10396 likely = 1;
10397 if (imm_expr.X_add_number == 0)
10398 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10399 else if (imm_expr.X_add_number == 1)
10400 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10401 else
10402 {
10403 used_at = 1;
10404 set_at (op[0], 0);
10405 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10406 &offset_expr, AT, ZERO);
10407 }
10408 break;
10409
10410 case M_BLEUL:
10411 likely = 1;
10412 /* Fall through. */
10413 case M_BLEU:
10414 if (op[1] == 0)
10415 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10416 &offset_expr, op[0], ZERO);
10417 else if (op[0] == 0)
10418 goto do_true;
10419 else
10420 {
10421 used_at = 1;
10422 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10423 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10424 &offset_expr, AT, ZERO);
10425 }
10426 break;
10427
10428 case M_BLEUL_I:
10429 likely = 1;
10430 /* Fall through. */
10431 case M_BLEU_I:
10432 if (op[0] == 0
10433 || (GPR_SIZE == 32
10434 && imm_expr.X_add_number == -1))
10435 goto do_true;
10436 ++imm_expr.X_add_number;
10437 /* FALLTHROUGH */
10438 case M_BLTU_I:
10439 case M_BLTUL_I:
10440 if (mask == M_BLTUL_I)
10441 likely = 1;
10442 if (imm_expr.X_add_number == 0)
10443 goto do_false;
10444 else if (imm_expr.X_add_number == 1)
10445 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10446 &offset_expr, op[0], ZERO);
10447 else
10448 {
10449 used_at = 1;
10450 set_at (op[0], 1);
10451 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10452 &offset_expr, AT, ZERO);
10453 }
10454 break;
10455
10456 case M_BLTL:
10457 likely = 1;
10458 /* Fall through. */
10459 case M_BLT:
10460 if (op[1] == 0)
10461 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10462 else if (op[0] == 0)
10463 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10464 else
10465 {
10466 used_at = 1;
10467 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10468 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10469 &offset_expr, AT, ZERO);
10470 }
10471 break;
10472
10473 case M_BLTUL:
10474 likely = 1;
10475 /* Fall through. */
10476 case M_BLTU:
10477 if (op[1] == 0)
10478 goto do_false;
10479 else if (op[0] == 0)
10480 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10481 &offset_expr, ZERO, op[1]);
10482 else
10483 {
10484 used_at = 1;
10485 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10486 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10487 &offset_expr, AT, ZERO);
10488 }
10489 break;
10490
10491 case M_DDIV_3:
10492 dbl = 1;
10493 /* Fall through. */
10494 case M_DIV_3:
10495 s = "mflo";
10496 goto do_div3;
10497 case M_DREM_3:
10498 dbl = 1;
10499 /* Fall through. */
10500 case M_REM_3:
10501 s = "mfhi";
10502 do_div3:
10503 if (op[2] == 0)
10504 {
10505 as_warn (_("divide by zero"));
10506 if (mips_trap)
10507 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10508 else
10509 macro_build (NULL, "break", BRK_FMT, 7);
10510 break;
10511 }
10512
10513 start_noreorder ();
10514 if (mips_trap)
10515 {
10516 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10517 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10518 }
10519 else
10520 {
10521 if (mips_opts.micromips)
10522 micromips_label_expr (&label_expr);
10523 else
10524 label_expr.X_add_number = 8;
10525 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10526 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10527 macro_build (NULL, "break", BRK_FMT, 7);
10528 if (mips_opts.micromips)
10529 micromips_add_label ();
10530 }
10531 expr1.X_add_number = -1;
10532 used_at = 1;
10533 load_register (AT, &expr1, dbl);
10534 if (mips_opts.micromips)
10535 micromips_label_expr (&label_expr);
10536 else
10537 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10538 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10539 if (dbl)
10540 {
10541 expr1.X_add_number = 1;
10542 load_register (AT, &expr1, dbl);
10543 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10544 }
10545 else
10546 {
10547 expr1.X_add_number = 0x80000000;
10548 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10549 }
10550 if (mips_trap)
10551 {
10552 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10553 /* We want to close the noreorder block as soon as possible, so
10554 that later insns are available for delay slot filling. */
10555 end_noreorder ();
10556 }
10557 else
10558 {
10559 if (mips_opts.micromips)
10560 micromips_label_expr (&label_expr);
10561 else
10562 label_expr.X_add_number = 8;
10563 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10564 macro_build (NULL, "nop", "");
10565
10566 /* We want to close the noreorder block as soon as possible, so
10567 that later insns are available for delay slot filling. */
10568 end_noreorder ();
10569
10570 macro_build (NULL, "break", BRK_FMT, 6);
10571 }
10572 if (mips_opts.micromips)
10573 micromips_add_label ();
10574 macro_build (NULL, s, MFHL_FMT, op[0]);
10575 break;
10576
10577 case M_DIV_3I:
10578 s = "div";
10579 s2 = "mflo";
10580 goto do_divi;
10581 case M_DIVU_3I:
10582 s = "divu";
10583 s2 = "mflo";
10584 goto do_divi;
10585 case M_REM_3I:
10586 s = "div";
10587 s2 = "mfhi";
10588 goto do_divi;
10589 case M_REMU_3I:
10590 s = "divu";
10591 s2 = "mfhi";
10592 goto do_divi;
10593 case M_DDIV_3I:
10594 dbl = 1;
10595 s = "ddiv";
10596 s2 = "mflo";
10597 goto do_divi;
10598 case M_DDIVU_3I:
10599 dbl = 1;
10600 s = "ddivu";
10601 s2 = "mflo";
10602 goto do_divi;
10603 case M_DREM_3I:
10604 dbl = 1;
10605 s = "ddiv";
10606 s2 = "mfhi";
10607 goto do_divi;
10608 case M_DREMU_3I:
10609 dbl = 1;
10610 s = "ddivu";
10611 s2 = "mfhi";
10612 do_divi:
10613 if (imm_expr.X_add_number == 0)
10614 {
10615 as_warn (_("divide by zero"));
10616 if (mips_trap)
10617 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10618 else
10619 macro_build (NULL, "break", BRK_FMT, 7);
10620 break;
10621 }
10622 if (imm_expr.X_add_number == 1)
10623 {
10624 if (strcmp (s2, "mflo") == 0)
10625 move_register (op[0], op[1]);
10626 else
10627 move_register (op[0], ZERO);
10628 break;
10629 }
10630 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10631 {
10632 if (strcmp (s2, "mflo") == 0)
10633 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10634 else
10635 move_register (op[0], ZERO);
10636 break;
10637 }
10638
10639 used_at = 1;
10640 load_register (AT, &imm_expr, dbl);
10641 macro_build (NULL, s, "z,s,t", op[1], AT);
10642 macro_build (NULL, s2, MFHL_FMT, op[0]);
10643 break;
10644
10645 case M_DIVU_3:
10646 s = "divu";
10647 s2 = "mflo";
10648 goto do_divu3;
10649 case M_REMU_3:
10650 s = "divu";
10651 s2 = "mfhi";
10652 goto do_divu3;
10653 case M_DDIVU_3:
10654 s = "ddivu";
10655 s2 = "mflo";
10656 goto do_divu3;
10657 case M_DREMU_3:
10658 s = "ddivu";
10659 s2 = "mfhi";
10660 do_divu3:
10661 start_noreorder ();
10662 if (mips_trap)
10663 {
10664 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10665 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10666 /* We want to close the noreorder block as soon as possible, so
10667 that later insns are available for delay slot filling. */
10668 end_noreorder ();
10669 }
10670 else
10671 {
10672 if (mips_opts.micromips)
10673 micromips_label_expr (&label_expr);
10674 else
10675 label_expr.X_add_number = 8;
10676 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10677 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10678
10679 /* We want to close the noreorder block as soon as possible, so
10680 that later insns are available for delay slot filling. */
10681 end_noreorder ();
10682 macro_build (NULL, "break", BRK_FMT, 7);
10683 if (mips_opts.micromips)
10684 micromips_add_label ();
10685 }
10686 macro_build (NULL, s2, MFHL_FMT, op[0]);
10687 break;
10688
10689 case M_DLCA_AB:
10690 dbl = 1;
10691 /* Fall through. */
10692 case M_LCA_AB:
10693 call = 1;
10694 goto do_la;
10695 case M_DLA_AB:
10696 dbl = 1;
10697 /* Fall through. */
10698 case M_LA_AB:
10699 do_la:
10700 /* Load the address of a symbol into a register. If breg is not
10701 zero, we then add a base register to it. */
10702
10703 breg = op[2];
10704 if (dbl && GPR_SIZE == 32)
10705 as_warn (_("dla used to load 32-bit register; recommend using la "
10706 "instead"));
10707
10708 if (!dbl && HAVE_64BIT_OBJECTS)
10709 as_warn (_("la used to load 64-bit address; recommend using dla "
10710 "instead"));
10711
10712 if (small_offset_p (0, align, 16))
10713 {
10714 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10715 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10716 break;
10717 }
10718
10719 if (mips_opts.at && (op[0] == breg))
10720 {
10721 tempreg = AT;
10722 used_at = 1;
10723 }
10724 else
10725 tempreg = op[0];
10726
10727 if (offset_expr.X_op != O_symbol
10728 && offset_expr.X_op != O_constant)
10729 {
10730 as_bad (_("expression too complex"));
10731 offset_expr.X_op = O_constant;
10732 }
10733
10734 if (offset_expr.X_op == O_constant)
10735 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10736 else if (mips_pic == NO_PIC)
10737 {
10738 /* If this is a reference to a GP relative symbol, we want
10739 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10740 Otherwise we want
10741 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10742 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10743 If we have a constant, we need two instructions anyhow,
10744 so we may as well always use the latter form.
10745
10746 With 64bit address space and a usable $at we want
10747 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10748 lui $at,<sym> (BFD_RELOC_HI16_S)
10749 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10750 daddiu $at,<sym> (BFD_RELOC_LO16)
10751 dsll32 $tempreg,0
10752 daddu $tempreg,$tempreg,$at
10753
10754 If $at is already in use, we use a path which is suboptimal
10755 on superscalar processors.
10756 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10757 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10758 dsll $tempreg,16
10759 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10760 dsll $tempreg,16
10761 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10762
10763 For GP relative symbols in 64bit address space we can use
10764 the same sequence as in 32bit address space. */
10765 if (HAVE_64BIT_SYMBOLS)
10766 {
10767 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10768 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10769 {
10770 relax_start (offset_expr.X_add_symbol);
10771 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10772 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10773 relax_switch ();
10774 }
10775
10776 if (used_at == 0 && mips_opts.at)
10777 {
10778 macro_build (&offset_expr, "lui", LUI_FMT,
10779 tempreg, BFD_RELOC_MIPS_HIGHEST);
10780 macro_build (&offset_expr, "lui", LUI_FMT,
10781 AT, BFD_RELOC_HI16_S);
10782 macro_build (&offset_expr, "daddiu", "t,r,j",
10783 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10784 macro_build (&offset_expr, "daddiu", "t,r,j",
10785 AT, AT, BFD_RELOC_LO16);
10786 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10787 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10788 used_at = 1;
10789 }
10790 else
10791 {
10792 macro_build (&offset_expr, "lui", LUI_FMT,
10793 tempreg, BFD_RELOC_MIPS_HIGHEST);
10794 macro_build (&offset_expr, "daddiu", "t,r,j",
10795 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10796 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10797 macro_build (&offset_expr, "daddiu", "t,r,j",
10798 tempreg, tempreg, BFD_RELOC_HI16_S);
10799 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10800 macro_build (&offset_expr, "daddiu", "t,r,j",
10801 tempreg, tempreg, BFD_RELOC_LO16);
10802 }
10803
10804 if (mips_relax.sequence)
10805 relax_end ();
10806 }
10807 else
10808 {
10809 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10810 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10811 {
10812 relax_start (offset_expr.X_add_symbol);
10813 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10814 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10815 relax_switch ();
10816 }
10817 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10818 as_bad (_("offset too large"));
10819 macro_build_lui (&offset_expr, tempreg);
10820 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10821 tempreg, tempreg, BFD_RELOC_LO16);
10822 if (mips_relax.sequence)
10823 relax_end ();
10824 }
10825 }
10826 else if (!mips_big_got && !HAVE_NEWABI)
10827 {
10828 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10829
10830 /* If this is a reference to an external symbol, and there
10831 is no constant, we want
10832 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10833 or for lca or if tempreg is PIC_CALL_REG
10834 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10835 For a local symbol, we want
10836 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10837 nop
10838 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10839
10840 If we have a small constant, and this is a reference to
10841 an external symbol, we want
10842 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10843 nop
10844 addiu $tempreg,$tempreg,<constant>
10845 For a local symbol, we want the same instruction
10846 sequence, but we output a BFD_RELOC_LO16 reloc on the
10847 addiu instruction.
10848
10849 If we have a large constant, and this is a reference to
10850 an external symbol, we want
10851 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10852 lui $at,<hiconstant>
10853 addiu $at,$at,<loconstant>
10854 addu $tempreg,$tempreg,$at
10855 For a local symbol, we want the same instruction
10856 sequence, but we output a BFD_RELOC_LO16 reloc on the
10857 addiu instruction.
10858 */
10859
10860 if (offset_expr.X_add_number == 0)
10861 {
10862 if (mips_pic == SVR4_PIC
10863 && breg == 0
10864 && (call || tempreg == PIC_CALL_REG))
10865 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10866
10867 relax_start (offset_expr.X_add_symbol);
10868 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10869 lw_reloc_type, mips_gp_register);
10870 if (breg != 0)
10871 {
10872 /* We're going to put in an addu instruction using
10873 tempreg, so we may as well insert the nop right
10874 now. */
10875 load_delay_nop ();
10876 }
10877 relax_switch ();
10878 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10879 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10880 load_delay_nop ();
10881 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10882 tempreg, tempreg, BFD_RELOC_LO16);
10883 relax_end ();
10884 /* FIXME: If breg == 0, and the next instruction uses
10885 $tempreg, then if this variant case is used an extra
10886 nop will be generated. */
10887 }
10888 else if (offset_expr.X_add_number >= -0x8000
10889 && offset_expr.X_add_number < 0x8000)
10890 {
10891 load_got_offset (tempreg, &offset_expr);
10892 load_delay_nop ();
10893 add_got_offset (tempreg, &offset_expr);
10894 }
10895 else
10896 {
10897 expr1.X_add_number = offset_expr.X_add_number;
10898 offset_expr.X_add_number =
10899 SEXT_16BIT (offset_expr.X_add_number);
10900 load_got_offset (tempreg, &offset_expr);
10901 offset_expr.X_add_number = expr1.X_add_number;
10902 /* If we are going to add in a base register, and the
10903 target register and the base register are the same,
10904 then we are using AT as a temporary register. Since
10905 we want to load the constant into AT, we add our
10906 current AT (from the global offset table) and the
10907 register into the register now, and pretend we were
10908 not using a base register. */
10909 if (breg == op[0])
10910 {
10911 load_delay_nop ();
10912 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10913 op[0], AT, breg);
10914 breg = 0;
10915 tempreg = op[0];
10916 }
10917 add_got_offset_hilo (tempreg, &offset_expr, AT);
10918 used_at = 1;
10919 }
10920 }
10921 else if (!mips_big_got && HAVE_NEWABI)
10922 {
10923 int add_breg_early = 0;
10924
10925 /* If this is a reference to an external, and there is no
10926 constant, or local symbol (*), with or without a
10927 constant, we want
10928 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10929 or for lca or if tempreg is PIC_CALL_REG
10930 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10931
10932 If we have a small constant, and this is a reference to
10933 an external symbol, we want
10934 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10935 addiu $tempreg,$tempreg,<constant>
10936
10937 If we have a large constant, and this is a reference to
10938 an external symbol, we want
10939 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10940 lui $at,<hiconstant>
10941 addiu $at,$at,<loconstant>
10942 addu $tempreg,$tempreg,$at
10943
10944 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10945 local symbols, even though it introduces an additional
10946 instruction. */
10947
10948 if (offset_expr.X_add_number)
10949 {
10950 expr1.X_add_number = offset_expr.X_add_number;
10951 offset_expr.X_add_number = 0;
10952
10953 relax_start (offset_expr.X_add_symbol);
10954 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10955 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10956
10957 if (expr1.X_add_number >= -0x8000
10958 && expr1.X_add_number < 0x8000)
10959 {
10960 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10961 tempreg, tempreg, BFD_RELOC_LO16);
10962 }
10963 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10964 {
10965 unsigned int dreg;
10966
10967 /* If we are going to add in a base register, and the
10968 target register and the base register are the same,
10969 then we are using AT as a temporary register. Since
10970 we want to load the constant into AT, we add our
10971 current AT (from the global offset table) and the
10972 register into the register now, and pretend we were
10973 not using a base register. */
10974 if (breg != op[0])
10975 dreg = tempreg;
10976 else
10977 {
10978 gas_assert (tempreg == AT);
10979 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10980 op[0], AT, breg);
10981 dreg = op[0];
10982 add_breg_early = 1;
10983 }
10984
10985 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10986 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10987 dreg, dreg, AT);
10988
10989 used_at = 1;
10990 }
10991 else
10992 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10993
10994 relax_switch ();
10995 offset_expr.X_add_number = expr1.X_add_number;
10996
10997 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10998 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10999 if (add_breg_early)
11000 {
11001 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11002 op[0], tempreg, breg);
11003 breg = 0;
11004 tempreg = op[0];
11005 }
11006 relax_end ();
11007 }
11008 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
11009 {
11010 relax_start (offset_expr.X_add_symbol);
11011 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11012 BFD_RELOC_MIPS_CALL16, mips_gp_register);
11013 relax_switch ();
11014 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11015 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11016 relax_end ();
11017 }
11018 else
11019 {
11020 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11021 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11022 }
11023 }
11024 else if (mips_big_got && !HAVE_NEWABI)
11025 {
11026 int gpdelay;
11027 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11028 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11029 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11030
11031 /* This is the large GOT case. If this is a reference to an
11032 external symbol, and there is no constant, we want
11033 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11034 addu $tempreg,$tempreg,$gp
11035 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11036 or for lca or if tempreg is PIC_CALL_REG
11037 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11038 addu $tempreg,$tempreg,$gp
11039 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11040 For a local symbol, we want
11041 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11042 nop
11043 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11044
11045 If we have a small constant, and this is a reference to
11046 an external symbol, we want
11047 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11048 addu $tempreg,$tempreg,$gp
11049 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11050 nop
11051 addiu $tempreg,$tempreg,<constant>
11052 For a local symbol, we want
11053 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11054 nop
11055 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
11056
11057 If we have a large constant, and this is a reference to
11058 an external symbol, we want
11059 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11060 addu $tempreg,$tempreg,$gp
11061 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11062 lui $at,<hiconstant>
11063 addiu $at,$at,<loconstant>
11064 addu $tempreg,$tempreg,$at
11065 For a local symbol, we want
11066 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11067 lui $at,<hiconstant>
11068 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
11069 addu $tempreg,$tempreg,$at
11070 */
11071
11072 expr1.X_add_number = offset_expr.X_add_number;
11073 offset_expr.X_add_number = 0;
11074 relax_start (offset_expr.X_add_symbol);
11075 gpdelay = reg_needs_delay (mips_gp_register);
11076 if (expr1.X_add_number == 0 && breg == 0
11077 && (call || tempreg == PIC_CALL_REG))
11078 {
11079 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11080 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11081 }
11082 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11083 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11084 tempreg, tempreg, mips_gp_register);
11085 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11086 tempreg, lw_reloc_type, tempreg);
11087 if (expr1.X_add_number == 0)
11088 {
11089 if (breg != 0)
11090 {
11091 /* We're going to put in an addu instruction using
11092 tempreg, so we may as well insert the nop right
11093 now. */
11094 load_delay_nop ();
11095 }
11096 }
11097 else if (expr1.X_add_number >= -0x8000
11098 && expr1.X_add_number < 0x8000)
11099 {
11100 load_delay_nop ();
11101 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11102 tempreg, tempreg, BFD_RELOC_LO16);
11103 }
11104 else
11105 {
11106 unsigned int dreg;
11107
11108 /* If we are going to add in a base register, and the
11109 target register and the base register are the same,
11110 then we are using AT as a temporary register. Since
11111 we want to load the constant into AT, we add our
11112 current AT (from the global offset table) and the
11113 register into the register now, and pretend we were
11114 not using a base register. */
11115 if (breg != op[0])
11116 dreg = tempreg;
11117 else
11118 {
11119 gas_assert (tempreg == AT);
11120 load_delay_nop ();
11121 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11122 op[0], AT, breg);
11123 dreg = op[0];
11124 }
11125
11126 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11127 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11128
11129 used_at = 1;
11130 }
11131 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
11132 relax_switch ();
11133
11134 if (gpdelay)
11135 {
11136 /* This is needed because this instruction uses $gp, but
11137 the first instruction on the main stream does not. */
11138 macro_build (NULL, "nop", "");
11139 }
11140
11141 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11142 local_reloc_type, mips_gp_register);
11143 if (expr1.X_add_number >= -0x8000
11144 && expr1.X_add_number < 0x8000)
11145 {
11146 load_delay_nop ();
11147 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11148 tempreg, tempreg, BFD_RELOC_LO16);
11149 /* FIXME: If add_number is 0, and there was no base
11150 register, the external symbol case ended with a load,
11151 so if the symbol turns out to not be external, and
11152 the next instruction uses tempreg, an unnecessary nop
11153 will be inserted. */
11154 }
11155 else
11156 {
11157 if (breg == op[0])
11158 {
11159 /* We must add in the base register now, as in the
11160 external symbol case. */
11161 gas_assert (tempreg == AT);
11162 load_delay_nop ();
11163 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11164 op[0], AT, breg);
11165 tempreg = op[0];
11166 /* We set breg to 0 because we have arranged to add
11167 it in in both cases. */
11168 breg = 0;
11169 }
11170
11171 macro_build_lui (&expr1, AT);
11172 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11173 AT, AT, BFD_RELOC_LO16);
11174 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11175 tempreg, tempreg, AT);
11176 used_at = 1;
11177 }
11178 relax_end ();
11179 }
11180 else if (mips_big_got && HAVE_NEWABI)
11181 {
11182 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11183 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11184 int add_breg_early = 0;
11185
11186 /* This is the large GOT case. If this is a reference to an
11187 external symbol, and there is no constant, we want
11188 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11189 add $tempreg,$tempreg,$gp
11190 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11191 or for lca or if tempreg is PIC_CALL_REG
11192 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11193 add $tempreg,$tempreg,$gp
11194 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11195
11196 If we have a small constant, and this is a reference to
11197 an external symbol, we want
11198 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11199 add $tempreg,$tempreg,$gp
11200 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11201 addi $tempreg,$tempreg,<constant>
11202
11203 If we have a large constant, and this is a reference to
11204 an external symbol, we want
11205 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11206 addu $tempreg,$tempreg,$gp
11207 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11208 lui $at,<hiconstant>
11209 addi $at,$at,<loconstant>
11210 add $tempreg,$tempreg,$at
11211
11212 If we have NewABI, and we know it's a local symbol, we want
11213 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11214 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11215 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11216
11217 relax_start (offset_expr.X_add_symbol);
11218
11219 expr1.X_add_number = offset_expr.X_add_number;
11220 offset_expr.X_add_number = 0;
11221
11222 if (expr1.X_add_number == 0 && breg == 0
11223 && (call || tempreg == PIC_CALL_REG))
11224 {
11225 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11226 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11227 }
11228 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11229 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11230 tempreg, tempreg, mips_gp_register);
11231 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11232 tempreg, lw_reloc_type, tempreg);
11233
11234 if (expr1.X_add_number == 0)
11235 ;
11236 else if (expr1.X_add_number >= -0x8000
11237 && expr1.X_add_number < 0x8000)
11238 {
11239 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11240 tempreg, tempreg, BFD_RELOC_LO16);
11241 }
11242 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11243 {
11244 unsigned int dreg;
11245
11246 /* If we are going to add in a base register, and the
11247 target register and the base register are the same,
11248 then we are using AT as a temporary register. Since
11249 we want to load the constant into AT, we add our
11250 current AT (from the global offset table) and the
11251 register into the register now, and pretend we were
11252 not using a base register. */
11253 if (breg != op[0])
11254 dreg = tempreg;
11255 else
11256 {
11257 gas_assert (tempreg == AT);
11258 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11259 op[0], AT, breg);
11260 dreg = op[0];
11261 add_breg_early = 1;
11262 }
11263
11264 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11265 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11266
11267 used_at = 1;
11268 }
11269 else
11270 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11271
11272 relax_switch ();
11273 offset_expr.X_add_number = expr1.X_add_number;
11274 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11275 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11276 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11277 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11278 if (add_breg_early)
11279 {
11280 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11281 op[0], tempreg, breg);
11282 breg = 0;
11283 tempreg = op[0];
11284 }
11285 relax_end ();
11286 }
11287 else
11288 abort ();
11289
11290 if (breg != 0)
11291 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11292 break;
11293
11294 case M_MSGSND:
11295 gas_assert (!mips_opts.micromips);
11296 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11297 break;
11298
11299 case M_MSGLD:
11300 gas_assert (!mips_opts.micromips);
11301 macro_build (NULL, "c2", "C", 0x02);
11302 break;
11303
11304 case M_MSGLD_T:
11305 gas_assert (!mips_opts.micromips);
11306 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11307 break;
11308
11309 case M_MSGWAIT:
11310 gas_assert (!mips_opts.micromips);
11311 macro_build (NULL, "c2", "C", 3);
11312 break;
11313
11314 case M_MSGWAIT_T:
11315 gas_assert (!mips_opts.micromips);
11316 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11317 break;
11318
11319 case M_J_A:
11320 /* The j instruction may not be used in PIC code, since it
11321 requires an absolute address. We convert it to a b
11322 instruction. */
11323 if (mips_pic == NO_PIC)
11324 macro_build (&offset_expr, "j", "a");
11325 else
11326 macro_build (&offset_expr, "b", "p");
11327 break;
11328
11329 /* The jal instructions must be handled as macros because when
11330 generating PIC code they expand to multi-instruction
11331 sequences. Normally they are simple instructions. */
11332 case M_JALS_1:
11333 op[1] = op[0];
11334 op[0] = RA;
11335 /* Fall through. */
11336 case M_JALS_2:
11337 gas_assert (mips_opts.micromips);
11338 if (mips_opts.insn32)
11339 {
11340 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11341 break;
11342 }
11343 jals = 1;
11344 goto jal;
11345 case M_JAL_1:
11346 op[1] = op[0];
11347 op[0] = RA;
11348 /* Fall through. */
11349 case M_JAL_2:
11350 jal:
11351 if (mips_pic == NO_PIC)
11352 {
11353 s = jals ? "jalrs" : "jalr";
11354 if (mips_opts.micromips
11355 && !mips_opts.insn32
11356 && op[0] == RA
11357 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11358 macro_build (NULL, s, "mj", op[1]);
11359 else
11360 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11361 }
11362 else
11363 {
11364 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11365 && mips_cprestore_offset >= 0);
11366
11367 if (op[1] != PIC_CALL_REG)
11368 as_warn (_("MIPS PIC call to register other than $25"));
11369
11370 s = ((mips_opts.micromips
11371 && !mips_opts.insn32
11372 && (!mips_opts.noreorder || cprestore))
11373 ? "jalrs" : "jalr");
11374 if (mips_opts.micromips
11375 && !mips_opts.insn32
11376 && op[0] == RA
11377 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11378 macro_build (NULL, s, "mj", op[1]);
11379 else
11380 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11381 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11382 {
11383 if (mips_cprestore_offset < 0)
11384 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11385 else
11386 {
11387 if (!mips_frame_reg_valid)
11388 {
11389 as_warn (_("no .frame pseudo-op used in PIC code"));
11390 /* Quiet this warning. */
11391 mips_frame_reg_valid = 1;
11392 }
11393 if (!mips_cprestore_valid)
11394 {
11395 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11396 /* Quiet this warning. */
11397 mips_cprestore_valid = 1;
11398 }
11399 if (mips_opts.noreorder)
11400 macro_build (NULL, "nop", "");
11401 expr1.X_add_number = mips_cprestore_offset;
11402 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11403 mips_gp_register,
11404 mips_frame_reg,
11405 HAVE_64BIT_ADDRESSES);
11406 }
11407 }
11408 }
11409
11410 break;
11411
11412 case M_JALS_A:
11413 gas_assert (mips_opts.micromips);
11414 if (mips_opts.insn32)
11415 {
11416 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11417 break;
11418 }
11419 jals = 1;
11420 /* Fall through. */
11421 case M_JAL_A:
11422 if (mips_pic == NO_PIC)
11423 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11424 else if (mips_pic == SVR4_PIC)
11425 {
11426 /* If this is a reference to an external symbol, and we are
11427 using a small GOT, we want
11428 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11429 nop
11430 jalr $ra,$25
11431 nop
11432 lw $gp,cprestore($sp)
11433 The cprestore value is set using the .cprestore
11434 pseudo-op. If we are using a big GOT, we want
11435 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11436 addu $25,$25,$gp
11437 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11438 nop
11439 jalr $ra,$25
11440 nop
11441 lw $gp,cprestore($sp)
11442 If the symbol is not external, we want
11443 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11444 nop
11445 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11446 jalr $ra,$25
11447 nop
11448 lw $gp,cprestore($sp)
11449
11450 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11451 sequences above, minus nops, unless the symbol is local,
11452 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11453 GOT_DISP. */
11454 if (HAVE_NEWABI)
11455 {
11456 if (!mips_big_got)
11457 {
11458 relax_start (offset_expr.X_add_symbol);
11459 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11460 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11461 mips_gp_register);
11462 relax_switch ();
11463 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11464 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11465 mips_gp_register);
11466 relax_end ();
11467 }
11468 else
11469 {
11470 relax_start (offset_expr.X_add_symbol);
11471 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11472 BFD_RELOC_MIPS_CALL_HI16);
11473 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11474 PIC_CALL_REG, mips_gp_register);
11475 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11476 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11477 PIC_CALL_REG);
11478 relax_switch ();
11479 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11480 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11481 mips_gp_register);
11482 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11483 PIC_CALL_REG, PIC_CALL_REG,
11484 BFD_RELOC_MIPS_GOT_OFST);
11485 relax_end ();
11486 }
11487
11488 macro_build_jalr (&offset_expr, 0);
11489 }
11490 else
11491 {
11492 relax_start (offset_expr.X_add_symbol);
11493 if (!mips_big_got)
11494 {
11495 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11496 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11497 mips_gp_register);
11498 load_delay_nop ();
11499 relax_switch ();
11500 }
11501 else
11502 {
11503 int gpdelay;
11504
11505 gpdelay = reg_needs_delay (mips_gp_register);
11506 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11507 BFD_RELOC_MIPS_CALL_HI16);
11508 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11509 PIC_CALL_REG, mips_gp_register);
11510 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11511 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11512 PIC_CALL_REG);
11513 load_delay_nop ();
11514 relax_switch ();
11515 if (gpdelay)
11516 macro_build (NULL, "nop", "");
11517 }
11518 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11519 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11520 mips_gp_register);
11521 load_delay_nop ();
11522 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11523 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11524 relax_end ();
11525 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11526
11527 if (mips_cprestore_offset < 0)
11528 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11529 else
11530 {
11531 if (!mips_frame_reg_valid)
11532 {
11533 as_warn (_("no .frame pseudo-op used in PIC code"));
11534 /* Quiet this warning. */
11535 mips_frame_reg_valid = 1;
11536 }
11537 if (!mips_cprestore_valid)
11538 {
11539 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11540 /* Quiet this warning. */
11541 mips_cprestore_valid = 1;
11542 }
11543 if (mips_opts.noreorder)
11544 macro_build (NULL, "nop", "");
11545 expr1.X_add_number = mips_cprestore_offset;
11546 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11547 mips_gp_register,
11548 mips_frame_reg,
11549 HAVE_64BIT_ADDRESSES);
11550 }
11551 }
11552 }
11553 else if (mips_pic == VXWORKS_PIC)
11554 as_bad (_("non-PIC jump used in PIC library"));
11555 else
11556 abort ();
11557
11558 break;
11559
11560 case M_LBUE_AB:
11561 s = "lbue";
11562 fmt = "t,+j(b)";
11563 offbits = 9;
11564 goto ld_st;
11565 case M_LHUE_AB:
11566 s = "lhue";
11567 fmt = "t,+j(b)";
11568 offbits = 9;
11569 goto ld_st;
11570 case M_LBE_AB:
11571 s = "lbe";
11572 fmt = "t,+j(b)";
11573 offbits = 9;
11574 goto ld_st;
11575 case M_LHE_AB:
11576 s = "lhe";
11577 fmt = "t,+j(b)";
11578 offbits = 9;
11579 goto ld_st;
11580 case M_LLE_AB:
11581 s = "lle";
11582 fmt = "t,+j(b)";
11583 offbits = 9;
11584 goto ld_st;
11585 case M_LWE_AB:
11586 s = "lwe";
11587 fmt = "t,+j(b)";
11588 offbits = 9;
11589 goto ld_st;
11590 case M_LWLE_AB:
11591 s = "lwle";
11592 fmt = "t,+j(b)";
11593 offbits = 9;
11594 goto ld_st;
11595 case M_LWRE_AB:
11596 s = "lwre";
11597 fmt = "t,+j(b)";
11598 offbits = 9;
11599 goto ld_st;
11600 case M_SBE_AB:
11601 s = "sbe";
11602 fmt = "t,+j(b)";
11603 offbits = 9;
11604 goto ld_st;
11605 case M_SCE_AB:
11606 s = "sce";
11607 fmt = "t,+j(b)";
11608 offbits = 9;
11609 goto ld_st;
11610 case M_SHE_AB:
11611 s = "she";
11612 fmt = "t,+j(b)";
11613 offbits = 9;
11614 goto ld_st;
11615 case M_SWE_AB:
11616 s = "swe";
11617 fmt = "t,+j(b)";
11618 offbits = 9;
11619 goto ld_st;
11620 case M_SWLE_AB:
11621 s = "swle";
11622 fmt = "t,+j(b)";
11623 offbits = 9;
11624 goto ld_st;
11625 case M_SWRE_AB:
11626 s = "swre";
11627 fmt = "t,+j(b)";
11628 offbits = 9;
11629 goto ld_st;
11630 case M_ACLR_AB:
11631 s = "aclr";
11632 fmt = "\\,~(b)";
11633 offbits = 12;
11634 goto ld_st;
11635 case M_ASET_AB:
11636 s = "aset";
11637 fmt = "\\,~(b)";
11638 offbits = 12;
11639 goto ld_st;
11640 case M_LB_AB:
11641 s = "lb";
11642 fmt = "t,o(b)";
11643 goto ld;
11644 case M_LBU_AB:
11645 s = "lbu";
11646 fmt = "t,o(b)";
11647 goto ld;
11648 case M_LH_AB:
11649 s = "lh";
11650 fmt = "t,o(b)";
11651 goto ld;
11652 case M_LHU_AB:
11653 s = "lhu";
11654 fmt = "t,o(b)";
11655 goto ld;
11656 case M_LW_AB:
11657 s = "lw";
11658 fmt = "t,o(b)";
11659 goto ld;
11660 case M_LWC0_AB:
11661 gas_assert (!mips_opts.micromips);
11662 s = "lwc0";
11663 fmt = "E,o(b)";
11664 /* Itbl support may require additional care here. */
11665 coproc = 1;
11666 goto ld_st;
11667 case M_LWC1_AB:
11668 s = "lwc1";
11669 fmt = "T,o(b)";
11670 /* Itbl support may require additional care here. */
11671 coproc = 1;
11672 goto ld_st;
11673 case M_LWC2_AB:
11674 s = "lwc2";
11675 fmt = COP12_FMT;
11676 offbits = (mips_opts.micromips ? 12
11677 : ISA_IS_R6 (mips_opts.isa) ? 11
11678 : 16);
11679 /* Itbl support may require additional care here. */
11680 coproc = 1;
11681 goto ld_st;
11682 case M_LWC3_AB:
11683 gas_assert (!mips_opts.micromips);
11684 s = "lwc3";
11685 fmt = "E,o(b)";
11686 /* Itbl support may require additional care here. */
11687 coproc = 1;
11688 goto ld_st;
11689 case M_LWL_AB:
11690 s = "lwl";
11691 fmt = MEM12_FMT;
11692 offbits = (mips_opts.micromips ? 12 : 16);
11693 goto ld_st;
11694 case M_LWR_AB:
11695 s = "lwr";
11696 fmt = MEM12_FMT;
11697 offbits = (mips_opts.micromips ? 12 : 16);
11698 goto ld_st;
11699 case M_LDC1_AB:
11700 s = "ldc1";
11701 fmt = "T,o(b)";
11702 /* Itbl support may require additional care here. */
11703 coproc = 1;
11704 goto ld_st;
11705 case M_LDC2_AB:
11706 s = "ldc2";
11707 fmt = COP12_FMT;
11708 offbits = (mips_opts.micromips ? 12
11709 : ISA_IS_R6 (mips_opts.isa) ? 11
11710 : 16);
11711 /* Itbl support may require additional care here. */
11712 coproc = 1;
11713 goto ld_st;
11714 case M_LQC2_AB:
11715 s = "lqc2";
11716 fmt = "+7,o(b)";
11717 /* Itbl support may require additional care here. */
11718 coproc = 1;
11719 goto ld_st;
11720 case M_LDC3_AB:
11721 s = "ldc3";
11722 fmt = "E,o(b)";
11723 /* Itbl support may require additional care here. */
11724 coproc = 1;
11725 goto ld_st;
11726 case M_LDL_AB:
11727 s = "ldl";
11728 fmt = MEM12_FMT;
11729 offbits = (mips_opts.micromips ? 12 : 16);
11730 goto ld_st;
11731 case M_LDR_AB:
11732 s = "ldr";
11733 fmt = MEM12_FMT;
11734 offbits = (mips_opts.micromips ? 12 : 16);
11735 goto ld_st;
11736 case M_LL_AB:
11737 s = "ll";
11738 fmt = LL_SC_FMT;
11739 offbits = (mips_opts.micromips ? 12
11740 : ISA_IS_R6 (mips_opts.isa) ? 9
11741 : 16);
11742 goto ld;
11743 case M_LLD_AB:
11744 s = "lld";
11745 fmt = LL_SC_FMT;
11746 offbits = (mips_opts.micromips ? 12
11747 : ISA_IS_R6 (mips_opts.isa) ? 9
11748 : 16);
11749 goto ld;
11750 case M_LWU_AB:
11751 s = "lwu";
11752 fmt = MEM12_FMT;
11753 offbits = (mips_opts.micromips ? 12 : 16);
11754 goto ld;
11755 case M_LWP_AB:
11756 gas_assert (mips_opts.micromips);
11757 s = "lwp";
11758 fmt = "t,~(b)";
11759 offbits = 12;
11760 lp = 1;
11761 goto ld;
11762 case M_LDP_AB:
11763 gas_assert (mips_opts.micromips);
11764 s = "ldp";
11765 fmt = "t,~(b)";
11766 offbits = 12;
11767 lp = 1;
11768 goto ld;
11769 case M_LWM_AB:
11770 gas_assert (mips_opts.micromips);
11771 s = "lwm";
11772 fmt = "n,~(b)";
11773 offbits = 12;
11774 goto ld_st;
11775 case M_LDM_AB:
11776 gas_assert (mips_opts.micromips);
11777 s = "ldm";
11778 fmt = "n,~(b)";
11779 offbits = 12;
11780 goto ld_st;
11781
11782 ld:
11783 /* We don't want to use $0 as tempreg. */
11784 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11785 goto ld_st;
11786 else
11787 tempreg = op[0] + lp;
11788 goto ld_noat;
11789
11790 case M_SB_AB:
11791 s = "sb";
11792 fmt = "t,o(b)";
11793 goto ld_st;
11794 case M_SH_AB:
11795 s = "sh";
11796 fmt = "t,o(b)";
11797 goto ld_st;
11798 case M_SW_AB:
11799 s = "sw";
11800 fmt = "t,o(b)";
11801 goto ld_st;
11802 case M_SWC0_AB:
11803 gas_assert (!mips_opts.micromips);
11804 s = "swc0";
11805 fmt = "E,o(b)";
11806 /* Itbl support may require additional care here. */
11807 coproc = 1;
11808 goto ld_st;
11809 case M_SWC1_AB:
11810 s = "swc1";
11811 fmt = "T,o(b)";
11812 /* Itbl support may require additional care here. */
11813 coproc = 1;
11814 goto ld_st;
11815 case M_SWC2_AB:
11816 s = "swc2";
11817 fmt = COP12_FMT;
11818 offbits = (mips_opts.micromips ? 12
11819 : ISA_IS_R6 (mips_opts.isa) ? 11
11820 : 16);
11821 /* Itbl support may require additional care here. */
11822 coproc = 1;
11823 goto ld_st;
11824 case M_SWC3_AB:
11825 gas_assert (!mips_opts.micromips);
11826 s = "swc3";
11827 fmt = "E,o(b)";
11828 /* Itbl support may require additional care here. */
11829 coproc = 1;
11830 goto ld_st;
11831 case M_SWL_AB:
11832 s = "swl";
11833 fmt = MEM12_FMT;
11834 offbits = (mips_opts.micromips ? 12 : 16);
11835 goto ld_st;
11836 case M_SWR_AB:
11837 s = "swr";
11838 fmt = MEM12_FMT;
11839 offbits = (mips_opts.micromips ? 12 : 16);
11840 goto ld_st;
11841 case M_SC_AB:
11842 s = "sc";
11843 fmt = LL_SC_FMT;
11844 offbits = (mips_opts.micromips ? 12
11845 : ISA_IS_R6 (mips_opts.isa) ? 9
11846 : 16);
11847 goto ld_st;
11848 case M_SCD_AB:
11849 s = "scd";
11850 fmt = LL_SC_FMT;
11851 offbits = (mips_opts.micromips ? 12
11852 : ISA_IS_R6 (mips_opts.isa) ? 9
11853 : 16);
11854 goto ld_st;
11855 case M_CACHE_AB:
11856 s = "cache";
11857 fmt = (mips_opts.micromips ? "k,~(b)"
11858 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11859 : "k,o(b)");
11860 offbits = (mips_opts.micromips ? 12
11861 : ISA_IS_R6 (mips_opts.isa) ? 9
11862 : 16);
11863 goto ld_st;
11864 case M_CACHEE_AB:
11865 s = "cachee";
11866 fmt = "k,+j(b)";
11867 offbits = 9;
11868 goto ld_st;
11869 case M_PREF_AB:
11870 s = "pref";
11871 fmt = (mips_opts.micromips ? "k,~(b)"
11872 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11873 : "k,o(b)");
11874 offbits = (mips_opts.micromips ? 12
11875 : ISA_IS_R6 (mips_opts.isa) ? 9
11876 : 16);
11877 goto ld_st;
11878 case M_PREFE_AB:
11879 s = "prefe";
11880 fmt = "k,+j(b)";
11881 offbits = 9;
11882 goto ld_st;
11883 case M_SDC1_AB:
11884 s = "sdc1";
11885 fmt = "T,o(b)";
11886 coproc = 1;
11887 /* Itbl support may require additional care here. */
11888 goto ld_st;
11889 case M_SDC2_AB:
11890 s = "sdc2";
11891 fmt = COP12_FMT;
11892 offbits = (mips_opts.micromips ? 12
11893 : ISA_IS_R6 (mips_opts.isa) ? 11
11894 : 16);
11895 /* Itbl support may require additional care here. */
11896 coproc = 1;
11897 goto ld_st;
11898 case M_SQC2_AB:
11899 s = "sqc2";
11900 fmt = "+7,o(b)";
11901 /* Itbl support may require additional care here. */
11902 coproc = 1;
11903 goto ld_st;
11904 case M_SDC3_AB:
11905 gas_assert (!mips_opts.micromips);
11906 s = "sdc3";
11907 fmt = "E,o(b)";
11908 /* Itbl support may require additional care here. */
11909 coproc = 1;
11910 goto ld_st;
11911 case M_SDL_AB:
11912 s = "sdl";
11913 fmt = MEM12_FMT;
11914 offbits = (mips_opts.micromips ? 12 : 16);
11915 goto ld_st;
11916 case M_SDR_AB:
11917 s = "sdr";
11918 fmt = MEM12_FMT;
11919 offbits = (mips_opts.micromips ? 12 : 16);
11920 goto ld_st;
11921 case M_SWP_AB:
11922 gas_assert (mips_opts.micromips);
11923 s = "swp";
11924 fmt = "t,~(b)";
11925 offbits = 12;
11926 goto ld_st;
11927 case M_SDP_AB:
11928 gas_assert (mips_opts.micromips);
11929 s = "sdp";
11930 fmt = "t,~(b)";
11931 offbits = 12;
11932 goto ld_st;
11933 case M_SWM_AB:
11934 gas_assert (mips_opts.micromips);
11935 s = "swm";
11936 fmt = "n,~(b)";
11937 offbits = 12;
11938 goto ld_st;
11939 case M_SDM_AB:
11940 gas_assert (mips_opts.micromips);
11941 s = "sdm";
11942 fmt = "n,~(b)";
11943 offbits = 12;
11944
11945 ld_st:
11946 tempreg = AT;
11947 ld_noat:
11948 breg = op[2];
11949 if (small_offset_p (0, align, 16))
11950 {
11951 /* The first case exists for M_LD_AB and M_SD_AB, which are
11952 macros for o32 but which should act like normal instructions
11953 otherwise. */
11954 if (offbits == 16)
11955 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11956 offset_reloc[1], offset_reloc[2], breg);
11957 else if (small_offset_p (0, align, offbits))
11958 {
11959 if (offbits == 0)
11960 macro_build (NULL, s, fmt, op[0], breg);
11961 else
11962 macro_build (NULL, s, fmt, op[0],
11963 (int) offset_expr.X_add_number, breg);
11964 }
11965 else
11966 {
11967 if (tempreg == AT)
11968 used_at = 1;
11969 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11970 tempreg, breg, -1, offset_reloc[0],
11971 offset_reloc[1], offset_reloc[2]);
11972 if (offbits == 0)
11973 macro_build (NULL, s, fmt, op[0], tempreg);
11974 else
11975 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11976 }
11977 break;
11978 }
11979
11980 if (tempreg == AT)
11981 used_at = 1;
11982
11983 if (offset_expr.X_op != O_constant
11984 && offset_expr.X_op != O_symbol)
11985 {
11986 as_bad (_("expression too complex"));
11987 offset_expr.X_op = O_constant;
11988 }
11989
11990 if (HAVE_32BIT_ADDRESSES
11991 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11992 {
11993 char value [32];
11994
11995 sprintf_vma (value, offset_expr.X_add_number);
11996 as_bad (_("number (0x%s) larger than 32 bits"), value);
11997 }
11998
11999 /* A constant expression in PIC code can be handled just as it
12000 is in non PIC code. */
12001 if (offset_expr.X_op == O_constant)
12002 {
12003 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
12004 offbits == 0 ? 16 : offbits);
12005 offset_expr.X_add_number -= expr1.X_add_number;
12006
12007 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
12008 if (breg != 0)
12009 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12010 tempreg, tempreg, breg);
12011 if (offbits == 0)
12012 {
12013 if (offset_expr.X_add_number != 0)
12014 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
12015 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
12016 macro_build (NULL, s, fmt, op[0], tempreg);
12017 }
12018 else if (offbits == 16)
12019 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12020 else
12021 macro_build (NULL, s, fmt, op[0],
12022 (int) offset_expr.X_add_number, tempreg);
12023 }
12024 else if (offbits != 16)
12025 {
12026 /* The offset field is too narrow to be used for a low-part
12027 relocation, so load the whole address into the auxiliary
12028 register. */
12029 load_address (tempreg, &offset_expr, &used_at);
12030 if (breg != 0)
12031 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12032 tempreg, tempreg, breg);
12033 if (offbits == 0)
12034 macro_build (NULL, s, fmt, op[0], tempreg);
12035 else
12036 macro_build (NULL, s, fmt, op[0], 0, tempreg);
12037 }
12038 else if (mips_pic == NO_PIC)
12039 {
12040 /* If this is a reference to a GP relative symbol, and there
12041 is no base register, we want
12042 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12043 Otherwise, if there is no base register, we want
12044 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12045 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12046 If we have a constant, we need two instructions anyhow,
12047 so we always use the latter form.
12048
12049 If we have a base register, and this is a reference to a
12050 GP relative symbol, we want
12051 addu $tempreg,$breg,$gp
12052 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
12053 Otherwise we want
12054 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12055 addu $tempreg,$tempreg,$breg
12056 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12057 With a constant we always use the latter case.
12058
12059 With 64bit address space and no base register and $at usable,
12060 we want
12061 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12062 lui $at,<sym> (BFD_RELOC_HI16_S)
12063 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12064 dsll32 $tempreg,0
12065 daddu $tempreg,$at
12066 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12067 If we have a base register, we want
12068 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12069 lui $at,<sym> (BFD_RELOC_HI16_S)
12070 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12071 daddu $at,$breg
12072 dsll32 $tempreg,0
12073 daddu $tempreg,$at
12074 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12075
12076 Without $at we can't generate the optimal path for superscalar
12077 processors here since this would require two temporary registers.
12078 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12079 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12080 dsll $tempreg,16
12081 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12082 dsll $tempreg,16
12083 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12084 If we have a base register, we want
12085 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12086 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12087 dsll $tempreg,16
12088 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12089 dsll $tempreg,16
12090 daddu $tempreg,$tempreg,$breg
12091 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12092
12093 For GP relative symbols in 64bit address space we can use
12094 the same sequence as in 32bit address space. */
12095 if (HAVE_64BIT_SYMBOLS)
12096 {
12097 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12098 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12099 {
12100 relax_start (offset_expr.X_add_symbol);
12101 if (breg == 0)
12102 {
12103 macro_build (&offset_expr, s, fmt, op[0],
12104 BFD_RELOC_GPREL16, mips_gp_register);
12105 }
12106 else
12107 {
12108 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12109 tempreg, breg, mips_gp_register);
12110 macro_build (&offset_expr, s, fmt, op[0],
12111 BFD_RELOC_GPREL16, tempreg);
12112 }
12113 relax_switch ();
12114 }
12115
12116 if (used_at == 0 && mips_opts.at)
12117 {
12118 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12119 BFD_RELOC_MIPS_HIGHEST);
12120 macro_build (&offset_expr, "lui", LUI_FMT, AT,
12121 BFD_RELOC_HI16_S);
12122 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12123 tempreg, BFD_RELOC_MIPS_HIGHER);
12124 if (breg != 0)
12125 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
12126 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
12127 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
12128 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
12129 tempreg);
12130 used_at = 1;
12131 }
12132 else
12133 {
12134 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12135 BFD_RELOC_MIPS_HIGHEST);
12136 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12137 tempreg, BFD_RELOC_MIPS_HIGHER);
12138 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12139 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12140 tempreg, BFD_RELOC_HI16_S);
12141 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12142 if (breg != 0)
12143 macro_build (NULL, "daddu", "d,v,t",
12144 tempreg, tempreg, breg);
12145 macro_build (&offset_expr, s, fmt, op[0],
12146 BFD_RELOC_LO16, tempreg);
12147 }
12148
12149 if (mips_relax.sequence)
12150 relax_end ();
12151 break;
12152 }
12153
12154 if (breg == 0)
12155 {
12156 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12157 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12158 {
12159 relax_start (offset_expr.X_add_symbol);
12160 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
12161 mips_gp_register);
12162 relax_switch ();
12163 }
12164 macro_build_lui (&offset_expr, tempreg);
12165 macro_build (&offset_expr, s, fmt, op[0],
12166 BFD_RELOC_LO16, tempreg);
12167 if (mips_relax.sequence)
12168 relax_end ();
12169 }
12170 else
12171 {
12172 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12173 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12174 {
12175 relax_start (offset_expr.X_add_symbol);
12176 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12177 tempreg, breg, mips_gp_register);
12178 macro_build (&offset_expr, s, fmt, op[0],
12179 BFD_RELOC_GPREL16, tempreg);
12180 relax_switch ();
12181 }
12182 macro_build_lui (&offset_expr, tempreg);
12183 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12184 tempreg, tempreg, breg);
12185 macro_build (&offset_expr, s, fmt, op[0],
12186 BFD_RELOC_LO16, tempreg);
12187 if (mips_relax.sequence)
12188 relax_end ();
12189 }
12190 }
12191 else if (!mips_big_got)
12192 {
12193 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
12194
12195 /* If this is a reference to an external symbol, we want
12196 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12197 nop
12198 <op> op[0],0($tempreg)
12199 Otherwise we want
12200 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12201 nop
12202 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12203 <op> op[0],0($tempreg)
12204
12205 For NewABI, we want
12206 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12207 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
12208
12209 If there is a base register, we add it to $tempreg before
12210 the <op>. If there is a constant, we stick it in the
12211 <op> instruction. We don't handle constants larger than
12212 16 bits, because we have no way to load the upper 16 bits
12213 (actually, we could handle them for the subset of cases
12214 in which we are not using $at). */
12215 gas_assert (offset_expr.X_op == O_symbol);
12216 if (HAVE_NEWABI)
12217 {
12218 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12219 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12220 if (breg != 0)
12221 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12222 tempreg, tempreg, breg);
12223 macro_build (&offset_expr, s, fmt, op[0],
12224 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12225 break;
12226 }
12227 expr1.X_add_number = offset_expr.X_add_number;
12228 offset_expr.X_add_number = 0;
12229 if (expr1.X_add_number < -0x8000
12230 || expr1.X_add_number >= 0x8000)
12231 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12232 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12233 lw_reloc_type, mips_gp_register);
12234 load_delay_nop ();
12235 relax_start (offset_expr.X_add_symbol);
12236 relax_switch ();
12237 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12238 tempreg, BFD_RELOC_LO16);
12239 relax_end ();
12240 if (breg != 0)
12241 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12242 tempreg, tempreg, breg);
12243 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12244 }
12245 else if (mips_big_got && !HAVE_NEWABI)
12246 {
12247 int gpdelay;
12248
12249 /* If this is a reference to an external symbol, we want
12250 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12251 addu $tempreg,$tempreg,$gp
12252 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12253 <op> op[0],0($tempreg)
12254 Otherwise we want
12255 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12256 nop
12257 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12258 <op> op[0],0($tempreg)
12259 If there is a base register, we add it to $tempreg before
12260 the <op>. If there is a constant, we stick it in the
12261 <op> instruction. We don't handle constants larger than
12262 16 bits, because we have no way to load the upper 16 bits
12263 (actually, we could handle them for the subset of cases
12264 in which we are not using $at). */
12265 gas_assert (offset_expr.X_op == O_symbol);
12266 expr1.X_add_number = offset_expr.X_add_number;
12267 offset_expr.X_add_number = 0;
12268 if (expr1.X_add_number < -0x8000
12269 || expr1.X_add_number >= 0x8000)
12270 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12271 gpdelay = reg_needs_delay (mips_gp_register);
12272 relax_start (offset_expr.X_add_symbol);
12273 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12274 BFD_RELOC_MIPS_GOT_HI16);
12275 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12276 mips_gp_register);
12277 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12278 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12279 relax_switch ();
12280 if (gpdelay)
12281 macro_build (NULL, "nop", "");
12282 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12283 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12284 load_delay_nop ();
12285 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12286 tempreg, BFD_RELOC_LO16);
12287 relax_end ();
12288
12289 if (breg != 0)
12290 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12291 tempreg, tempreg, breg);
12292 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12293 }
12294 else if (mips_big_got && HAVE_NEWABI)
12295 {
12296 /* If this is a reference to an external symbol, we want
12297 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12298 add $tempreg,$tempreg,$gp
12299 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12300 <op> op[0],<ofst>($tempreg)
12301 Otherwise, for local symbols, we want:
12302 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12303 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12304 gas_assert (offset_expr.X_op == O_symbol);
12305 expr1.X_add_number = offset_expr.X_add_number;
12306 offset_expr.X_add_number = 0;
12307 if (expr1.X_add_number < -0x8000
12308 || expr1.X_add_number >= 0x8000)
12309 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12310 relax_start (offset_expr.X_add_symbol);
12311 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12312 BFD_RELOC_MIPS_GOT_HI16);
12313 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12314 mips_gp_register);
12315 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12316 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12317 if (breg != 0)
12318 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12319 tempreg, tempreg, breg);
12320 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12321
12322 relax_switch ();
12323 offset_expr.X_add_number = expr1.X_add_number;
12324 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12325 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12326 if (breg != 0)
12327 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12328 tempreg, tempreg, breg);
12329 macro_build (&offset_expr, s, fmt, op[0],
12330 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12331 relax_end ();
12332 }
12333 else
12334 abort ();
12335
12336 break;
12337
12338 case M_JRADDIUSP:
12339 gas_assert (mips_opts.micromips);
12340 gas_assert (mips_opts.insn32);
12341 start_noreorder ();
12342 macro_build (NULL, "jr", "s", RA);
12343 expr1.X_add_number = op[0] << 2;
12344 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12345 end_noreorder ();
12346 break;
12347
12348 case M_JRC:
12349 gas_assert (mips_opts.micromips);
12350 gas_assert (mips_opts.insn32);
12351 macro_build (NULL, "jr", "s", op[0]);
12352 if (mips_opts.noreorder)
12353 macro_build (NULL, "nop", "");
12354 break;
12355
12356 case M_LI:
12357 case M_LI_S:
12358 load_register (op[0], &imm_expr, 0);
12359 break;
12360
12361 case M_DLI:
12362 load_register (op[0], &imm_expr, 1);
12363 break;
12364
12365 case M_LI_SS:
12366 if (imm_expr.X_op == O_constant)
12367 {
12368 used_at = 1;
12369 load_register (AT, &imm_expr, 0);
12370 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12371 break;
12372 }
12373 else
12374 {
12375 gas_assert (imm_expr.X_op == O_absent
12376 && offset_expr.X_op == O_symbol
12377 && strcmp (segment_name (S_GET_SEGMENT
12378 (offset_expr.X_add_symbol)),
12379 ".lit4") == 0
12380 && offset_expr.X_add_number == 0);
12381 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12382 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12383 break;
12384 }
12385
12386 case M_LI_D:
12387 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12388 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12389 order 32 bits of the value and the low order 32 bits are either
12390 zero or in OFFSET_EXPR. */
12391 if (imm_expr.X_op == O_constant)
12392 {
12393 if (GPR_SIZE == 64)
12394 load_register (op[0], &imm_expr, 1);
12395 else
12396 {
12397 int hreg, lreg;
12398
12399 if (target_big_endian)
12400 {
12401 hreg = op[0];
12402 lreg = op[0] + 1;
12403 }
12404 else
12405 {
12406 hreg = op[0] + 1;
12407 lreg = op[0];
12408 }
12409
12410 if (hreg <= 31)
12411 load_register (hreg, &imm_expr, 0);
12412 if (lreg <= 31)
12413 {
12414 if (offset_expr.X_op == O_absent)
12415 move_register (lreg, 0);
12416 else
12417 {
12418 gas_assert (offset_expr.X_op == O_constant);
12419 load_register (lreg, &offset_expr, 0);
12420 }
12421 }
12422 }
12423 break;
12424 }
12425 gas_assert (imm_expr.X_op == O_absent);
12426
12427 /* We know that sym is in the .rdata section. First we get the
12428 upper 16 bits of the address. */
12429 if (mips_pic == NO_PIC)
12430 {
12431 macro_build_lui (&offset_expr, AT);
12432 used_at = 1;
12433 }
12434 else
12435 {
12436 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12437 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12438 used_at = 1;
12439 }
12440
12441 /* Now we load the register(s). */
12442 if (GPR_SIZE == 64)
12443 {
12444 used_at = 1;
12445 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12446 BFD_RELOC_LO16, AT);
12447 }
12448 else
12449 {
12450 used_at = 1;
12451 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12452 BFD_RELOC_LO16, AT);
12453 if (op[0] != RA)
12454 {
12455 /* FIXME: How in the world do we deal with the possible
12456 overflow here? */
12457 offset_expr.X_add_number += 4;
12458 macro_build (&offset_expr, "lw", "t,o(b)",
12459 op[0] + 1, BFD_RELOC_LO16, AT);
12460 }
12461 }
12462 break;
12463
12464 case M_LI_DD:
12465 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12466 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12467 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12468 the value and the low order 32 bits are either zero or in
12469 OFFSET_EXPR. */
12470 if (imm_expr.X_op == O_constant)
12471 {
12472 used_at = 1;
12473 load_register (AT, &imm_expr, FPR_SIZE == 64);
12474 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12475 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12476 else
12477 {
12478 if (ISA_HAS_MXHC1 (mips_opts.isa))
12479 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12480 else if (FPR_SIZE != 32)
12481 as_bad (_("Unable to generate `%s' compliant code "
12482 "without mthc1"),
12483 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12484 else
12485 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12486 if (offset_expr.X_op == O_absent)
12487 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12488 else
12489 {
12490 gas_assert (offset_expr.X_op == O_constant);
12491 load_register (AT, &offset_expr, 0);
12492 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12493 }
12494 }
12495 break;
12496 }
12497
12498 gas_assert (imm_expr.X_op == O_absent
12499 && offset_expr.X_op == O_symbol
12500 && offset_expr.X_add_number == 0);
12501 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12502 if (strcmp (s, ".lit8") == 0)
12503 {
12504 op[2] = mips_gp_register;
12505 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12506 offset_reloc[1] = BFD_RELOC_UNUSED;
12507 offset_reloc[2] = BFD_RELOC_UNUSED;
12508 }
12509 else
12510 {
12511 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12512 used_at = 1;
12513 if (mips_pic != NO_PIC)
12514 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12515 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12516 else
12517 {
12518 /* FIXME: This won't work for a 64 bit address. */
12519 macro_build_lui (&offset_expr, AT);
12520 }
12521
12522 op[2] = AT;
12523 offset_reloc[0] = BFD_RELOC_LO16;
12524 offset_reloc[1] = BFD_RELOC_UNUSED;
12525 offset_reloc[2] = BFD_RELOC_UNUSED;
12526 }
12527 align = 8;
12528 /* Fall through */
12529
12530 case M_L_DAB:
12531 /*
12532 * The MIPS assembler seems to check for X_add_number not
12533 * being double aligned and generating:
12534 * lui at,%hi(foo+1)
12535 * addu at,at,v1
12536 * addiu at,at,%lo(foo+1)
12537 * lwc1 f2,0(at)
12538 * lwc1 f3,4(at)
12539 * But, the resulting address is the same after relocation so why
12540 * generate the extra instruction?
12541 */
12542 /* Itbl support may require additional care here. */
12543 coproc = 1;
12544 fmt = "T,o(b)";
12545 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12546 {
12547 s = "ldc1";
12548 goto ld_st;
12549 }
12550 s = "lwc1";
12551 goto ldd_std;
12552
12553 case M_S_DAB:
12554 gas_assert (!mips_opts.micromips);
12555 /* Itbl support may require additional care here. */
12556 coproc = 1;
12557 fmt = "T,o(b)";
12558 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12559 {
12560 s = "sdc1";
12561 goto ld_st;
12562 }
12563 s = "swc1";
12564 goto ldd_std;
12565
12566 case M_LQ_AB:
12567 fmt = "t,o(b)";
12568 s = "lq";
12569 goto ld;
12570
12571 case M_SQ_AB:
12572 fmt = "t,o(b)";
12573 s = "sq";
12574 goto ld_st;
12575
12576 case M_LD_AB:
12577 fmt = "t,o(b)";
12578 if (GPR_SIZE == 64)
12579 {
12580 s = "ld";
12581 goto ld;
12582 }
12583 s = "lw";
12584 goto ldd_std;
12585
12586 case M_SD_AB:
12587 fmt = "t,o(b)";
12588 if (GPR_SIZE == 64)
12589 {
12590 s = "sd";
12591 goto ld_st;
12592 }
12593 s = "sw";
12594
12595 ldd_std:
12596 /* Even on a big endian machine $fn comes before $fn+1. We have
12597 to adjust when loading from memory. We set coproc if we must
12598 load $fn+1 first. */
12599 /* Itbl support may require additional care here. */
12600 if (!target_big_endian)
12601 coproc = 0;
12602
12603 breg = op[2];
12604 if (small_offset_p (0, align, 16))
12605 {
12606 ep = &offset_expr;
12607 if (!small_offset_p (4, align, 16))
12608 {
12609 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12610 -1, offset_reloc[0], offset_reloc[1],
12611 offset_reloc[2]);
12612 expr1.X_add_number = 0;
12613 ep = &expr1;
12614 breg = AT;
12615 used_at = 1;
12616 offset_reloc[0] = BFD_RELOC_LO16;
12617 offset_reloc[1] = BFD_RELOC_UNUSED;
12618 offset_reloc[2] = BFD_RELOC_UNUSED;
12619 }
12620 if (strcmp (s, "lw") == 0 && op[0] == breg)
12621 {
12622 ep->X_add_number += 4;
12623 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12624 offset_reloc[1], offset_reloc[2], breg);
12625 ep->X_add_number -= 4;
12626 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12627 offset_reloc[1], offset_reloc[2], breg);
12628 }
12629 else
12630 {
12631 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12632 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12633 breg);
12634 ep->X_add_number += 4;
12635 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12636 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12637 breg);
12638 }
12639 break;
12640 }
12641
12642 if (offset_expr.X_op != O_symbol
12643 && offset_expr.X_op != O_constant)
12644 {
12645 as_bad (_("expression too complex"));
12646 offset_expr.X_op = O_constant;
12647 }
12648
12649 if (HAVE_32BIT_ADDRESSES
12650 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12651 {
12652 char value [32];
12653
12654 sprintf_vma (value, offset_expr.X_add_number);
12655 as_bad (_("number (0x%s) larger than 32 bits"), value);
12656 }
12657
12658 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12659 {
12660 /* If this is a reference to a GP relative symbol, we want
12661 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12662 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12663 If we have a base register, we use this
12664 addu $at,$breg,$gp
12665 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12666 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12667 If this is not a GP relative symbol, we want
12668 lui $at,<sym> (BFD_RELOC_HI16_S)
12669 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12670 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12671 If there is a base register, we add it to $at after the
12672 lui instruction. If there is a constant, we always use
12673 the last case. */
12674 if (offset_expr.X_op == O_symbol
12675 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12676 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12677 {
12678 relax_start (offset_expr.X_add_symbol);
12679 if (breg == 0)
12680 {
12681 tempreg = mips_gp_register;
12682 }
12683 else
12684 {
12685 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12686 AT, breg, mips_gp_register);
12687 tempreg = AT;
12688 used_at = 1;
12689 }
12690
12691 /* Itbl support may require additional care here. */
12692 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12693 BFD_RELOC_GPREL16, tempreg);
12694 offset_expr.X_add_number += 4;
12695
12696 /* Set mips_optimize to 2 to avoid inserting an
12697 undesired nop. */
12698 hold_mips_optimize = mips_optimize;
12699 mips_optimize = 2;
12700 /* Itbl support may require additional care here. */
12701 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12702 BFD_RELOC_GPREL16, tempreg);
12703 mips_optimize = hold_mips_optimize;
12704
12705 relax_switch ();
12706
12707 offset_expr.X_add_number -= 4;
12708 }
12709 used_at = 1;
12710 if (offset_high_part (offset_expr.X_add_number, 16)
12711 != offset_high_part (offset_expr.X_add_number + 4, 16))
12712 {
12713 load_address (AT, &offset_expr, &used_at);
12714 offset_expr.X_op = O_constant;
12715 offset_expr.X_add_number = 0;
12716 }
12717 else
12718 macro_build_lui (&offset_expr, AT);
12719 if (breg != 0)
12720 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12721 /* Itbl support may require additional care here. */
12722 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12723 BFD_RELOC_LO16, AT);
12724 /* FIXME: How do we handle overflow here? */
12725 offset_expr.X_add_number += 4;
12726 /* Itbl support may require additional care here. */
12727 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12728 BFD_RELOC_LO16, AT);
12729 if (mips_relax.sequence)
12730 relax_end ();
12731 }
12732 else if (!mips_big_got)
12733 {
12734 /* If this is a reference to an external symbol, we want
12735 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12736 nop
12737 <op> op[0],0($at)
12738 <op> op[0]+1,4($at)
12739 Otherwise we want
12740 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12741 nop
12742 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12743 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12744 If there is a base register we add it to $at before the
12745 lwc1 instructions. If there is a constant we include it
12746 in the lwc1 instructions. */
12747 used_at = 1;
12748 expr1.X_add_number = offset_expr.X_add_number;
12749 if (expr1.X_add_number < -0x8000
12750 || expr1.X_add_number >= 0x8000 - 4)
12751 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12752 load_got_offset (AT, &offset_expr);
12753 load_delay_nop ();
12754 if (breg != 0)
12755 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12756
12757 /* Set mips_optimize to 2 to avoid inserting an undesired
12758 nop. */
12759 hold_mips_optimize = mips_optimize;
12760 mips_optimize = 2;
12761
12762 /* Itbl support may require additional care here. */
12763 relax_start (offset_expr.X_add_symbol);
12764 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12765 BFD_RELOC_LO16, AT);
12766 expr1.X_add_number += 4;
12767 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12768 BFD_RELOC_LO16, AT);
12769 relax_switch ();
12770 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12771 BFD_RELOC_LO16, AT);
12772 offset_expr.X_add_number += 4;
12773 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12774 BFD_RELOC_LO16, AT);
12775 relax_end ();
12776
12777 mips_optimize = hold_mips_optimize;
12778 }
12779 else if (mips_big_got)
12780 {
12781 int gpdelay;
12782
12783 /* If this is a reference to an external symbol, we want
12784 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12785 addu $at,$at,$gp
12786 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12787 nop
12788 <op> op[0],0($at)
12789 <op> op[0]+1,4($at)
12790 Otherwise we want
12791 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12792 nop
12793 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12794 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12795 If there is a base register we add it to $at before the
12796 lwc1 instructions. If there is a constant we include it
12797 in the lwc1 instructions. */
12798 used_at = 1;
12799 expr1.X_add_number = offset_expr.X_add_number;
12800 offset_expr.X_add_number = 0;
12801 if (expr1.X_add_number < -0x8000
12802 || expr1.X_add_number >= 0x8000 - 4)
12803 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12804 gpdelay = reg_needs_delay (mips_gp_register);
12805 relax_start (offset_expr.X_add_symbol);
12806 macro_build (&offset_expr, "lui", LUI_FMT,
12807 AT, BFD_RELOC_MIPS_GOT_HI16);
12808 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12809 AT, AT, mips_gp_register);
12810 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12811 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12812 load_delay_nop ();
12813 if (breg != 0)
12814 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12815 /* Itbl support may require additional care here. */
12816 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12817 BFD_RELOC_LO16, AT);
12818 expr1.X_add_number += 4;
12819
12820 /* Set mips_optimize to 2 to avoid inserting an undesired
12821 nop. */
12822 hold_mips_optimize = mips_optimize;
12823 mips_optimize = 2;
12824 /* Itbl support may require additional care here. */
12825 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12826 BFD_RELOC_LO16, AT);
12827 mips_optimize = hold_mips_optimize;
12828 expr1.X_add_number -= 4;
12829
12830 relax_switch ();
12831 offset_expr.X_add_number = expr1.X_add_number;
12832 if (gpdelay)
12833 macro_build (NULL, "nop", "");
12834 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12835 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12836 load_delay_nop ();
12837 if (breg != 0)
12838 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12839 /* Itbl support may require additional care here. */
12840 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12841 BFD_RELOC_LO16, AT);
12842 offset_expr.X_add_number += 4;
12843
12844 /* Set mips_optimize to 2 to avoid inserting an undesired
12845 nop. */
12846 hold_mips_optimize = mips_optimize;
12847 mips_optimize = 2;
12848 /* Itbl support may require additional care here. */
12849 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12850 BFD_RELOC_LO16, AT);
12851 mips_optimize = hold_mips_optimize;
12852 relax_end ();
12853 }
12854 else
12855 abort ();
12856
12857 break;
12858
12859 case M_SAA_AB:
12860 s = "saa";
12861 goto saa_saad;
12862 case M_SAAD_AB:
12863 s = "saad";
12864 saa_saad:
12865 gas_assert (!mips_opts.micromips);
12866 offbits = 0;
12867 fmt = "t,(b)";
12868 goto ld_st;
12869
12870 /* New code added to support COPZ instructions.
12871 This code builds table entries out of the macros in mip_opcodes.
12872 R4000 uses interlocks to handle coproc delays.
12873 Other chips (like the R3000) require nops to be inserted for delays.
12874
12875 FIXME: Currently, we require that the user handle delays.
12876 In order to fill delay slots for non-interlocked chips,
12877 we must have a way to specify delays based on the coprocessor.
12878 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12879 What are the side-effects of the cop instruction?
12880 What cache support might we have and what are its effects?
12881 Both coprocessor & memory require delays. how long???
12882 What registers are read/set/modified?
12883
12884 If an itbl is provided to interpret cop instructions,
12885 this knowledge can be encoded in the itbl spec. */
12886
12887 case M_COP0:
12888 s = "c0";
12889 goto copz;
12890 case M_COP1:
12891 s = "c1";
12892 goto copz;
12893 case M_COP2:
12894 s = "c2";
12895 goto copz;
12896 case M_COP3:
12897 s = "c3";
12898 copz:
12899 gas_assert (!mips_opts.micromips);
12900 /* For now we just do C (same as Cz). The parameter will be
12901 stored in insn_opcode by mips_ip. */
12902 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12903 break;
12904
12905 case M_MOVE:
12906 move_register (op[0], op[1]);
12907 break;
12908
12909 case M_MOVEP:
12910 gas_assert (mips_opts.micromips);
12911 gas_assert (mips_opts.insn32);
12912 move_register (micromips_to_32_reg_h_map1[op[0]],
12913 micromips_to_32_reg_m_map[op[1]]);
12914 move_register (micromips_to_32_reg_h_map2[op[0]],
12915 micromips_to_32_reg_n_map[op[2]]);
12916 break;
12917
12918 case M_DMUL:
12919 dbl = 1;
12920 /* Fall through. */
12921 case M_MUL:
12922 if (mips_opts.arch == CPU_R5900)
12923 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12924 op[2]);
12925 else
12926 {
12927 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12928 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12929 }
12930 break;
12931
12932 case M_DMUL_I:
12933 dbl = 1;
12934 /* Fall through. */
12935 case M_MUL_I:
12936 /* The MIPS assembler some times generates shifts and adds. I'm
12937 not trying to be that fancy. GCC should do this for us
12938 anyway. */
12939 used_at = 1;
12940 load_register (AT, &imm_expr, dbl);
12941 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12942 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12943 break;
12944
12945 case M_DMULO_I:
12946 dbl = 1;
12947 /* Fall through. */
12948 case M_MULO_I:
12949 imm = 1;
12950 goto do_mulo;
12951
12952 case M_DMULO:
12953 dbl = 1;
12954 /* Fall through. */
12955 case M_MULO:
12956 do_mulo:
12957 start_noreorder ();
12958 used_at = 1;
12959 if (imm)
12960 load_register (AT, &imm_expr, dbl);
12961 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12962 op[1], imm ? AT : op[2]);
12963 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12964 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12965 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12966 if (mips_trap)
12967 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12968 else
12969 {
12970 if (mips_opts.micromips)
12971 micromips_label_expr (&label_expr);
12972 else
12973 label_expr.X_add_number = 8;
12974 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12975 macro_build (NULL, "nop", "");
12976 macro_build (NULL, "break", BRK_FMT, 6);
12977 if (mips_opts.micromips)
12978 micromips_add_label ();
12979 }
12980 end_noreorder ();
12981 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12982 break;
12983
12984 case M_DMULOU_I:
12985 dbl = 1;
12986 /* Fall through. */
12987 case M_MULOU_I:
12988 imm = 1;
12989 goto do_mulou;
12990
12991 case M_DMULOU:
12992 dbl = 1;
12993 /* Fall through. */
12994 case M_MULOU:
12995 do_mulou:
12996 start_noreorder ();
12997 used_at = 1;
12998 if (imm)
12999 load_register (AT, &imm_expr, dbl);
13000 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
13001 op[1], imm ? AT : op[2]);
13002 macro_build (NULL, "mfhi", MFHL_FMT, AT);
13003 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13004 if (mips_trap)
13005 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
13006 else
13007 {
13008 if (mips_opts.micromips)
13009 micromips_label_expr (&label_expr);
13010 else
13011 label_expr.X_add_number = 8;
13012 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
13013 macro_build (NULL, "nop", "");
13014 macro_build (NULL, "break", BRK_FMT, 6);
13015 if (mips_opts.micromips)
13016 micromips_add_label ();
13017 }
13018 end_noreorder ();
13019 break;
13020
13021 case M_DROL:
13022 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13023 {
13024 if (op[0] == op[1])
13025 {
13026 tempreg = AT;
13027 used_at = 1;
13028 }
13029 else
13030 tempreg = op[0];
13031 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
13032 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
13033 break;
13034 }
13035 used_at = 1;
13036 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13037 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
13038 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
13039 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13040 break;
13041
13042 case M_ROL:
13043 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13044 {
13045 if (op[0] == op[1])
13046 {
13047 tempreg = AT;
13048 used_at = 1;
13049 }
13050 else
13051 tempreg = op[0];
13052 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
13053 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
13054 break;
13055 }
13056 used_at = 1;
13057 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13058 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
13059 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
13060 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13061 break;
13062
13063 case M_DROL_I:
13064 {
13065 unsigned int rot;
13066 const char *l;
13067 const char *rr;
13068
13069 rot = imm_expr.X_add_number & 0x3f;
13070 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13071 {
13072 rot = (64 - rot) & 0x3f;
13073 if (rot >= 32)
13074 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13075 else
13076 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13077 break;
13078 }
13079 if (rot == 0)
13080 {
13081 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13082 break;
13083 }
13084 l = (rot < 0x20) ? "dsll" : "dsll32";
13085 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
13086 rot &= 0x1f;
13087 used_at = 1;
13088 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
13089 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13090 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13091 }
13092 break;
13093
13094 case M_ROL_I:
13095 {
13096 unsigned int rot;
13097
13098 rot = imm_expr.X_add_number & 0x1f;
13099 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13100 {
13101 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
13102 (32 - rot) & 0x1f);
13103 break;
13104 }
13105 if (rot == 0)
13106 {
13107 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13108 break;
13109 }
13110 used_at = 1;
13111 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
13112 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13113 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13114 }
13115 break;
13116
13117 case M_DROR:
13118 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13119 {
13120 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
13121 break;
13122 }
13123 used_at = 1;
13124 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13125 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
13126 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
13127 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13128 break;
13129
13130 case M_ROR:
13131 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13132 {
13133 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
13134 break;
13135 }
13136 used_at = 1;
13137 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13138 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
13139 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
13140 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13141 break;
13142
13143 case M_DROR_I:
13144 {
13145 unsigned int rot;
13146 const char *l;
13147 const char *rr;
13148
13149 rot = imm_expr.X_add_number & 0x3f;
13150 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13151 {
13152 if (rot >= 32)
13153 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13154 else
13155 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13156 break;
13157 }
13158 if (rot == 0)
13159 {
13160 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13161 break;
13162 }
13163 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
13164 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13165 rot &= 0x1f;
13166 used_at = 1;
13167 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13168 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13169 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13170 }
13171 break;
13172
13173 case M_ROR_I:
13174 {
13175 unsigned int rot;
13176
13177 rot = imm_expr.X_add_number & 0x1f;
13178 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13179 {
13180 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
13181 break;
13182 }
13183 if (rot == 0)
13184 {
13185 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13186 break;
13187 }
13188 used_at = 1;
13189 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13190 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13191 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13192 }
13193 break;
13194
13195 case M_SEQ:
13196 if (op[1] == 0)
13197 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13198 else if (op[2] == 0)
13199 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13200 else
13201 {
13202 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13203 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13204 }
13205 break;
13206
13207 case M_SEQ_I:
13208 if (imm_expr.X_add_number == 0)
13209 {
13210 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13211 break;
13212 }
13213 if (op[1] == 0)
13214 {
13215 as_warn (_("instruction %s: result is always false"),
13216 ip->insn_mo->name);
13217 move_register (op[0], 0);
13218 break;
13219 }
13220 if (CPU_HAS_SEQ (mips_opts.arch)
13221 && -512 <= imm_expr.X_add_number
13222 && imm_expr.X_add_number < 512)
13223 {
13224 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13225 (int) imm_expr.X_add_number);
13226 break;
13227 }
13228 if (imm_expr.X_add_number >= 0
13229 && imm_expr.X_add_number < 0x10000)
13230 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13231 else if (imm_expr.X_add_number > -0x8000
13232 && imm_expr.X_add_number < 0)
13233 {
13234 imm_expr.X_add_number = -imm_expr.X_add_number;
13235 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13236 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13237 }
13238 else if (CPU_HAS_SEQ (mips_opts.arch))
13239 {
13240 used_at = 1;
13241 load_register (AT, &imm_expr, GPR_SIZE == 64);
13242 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13243 break;
13244 }
13245 else
13246 {
13247 load_register (AT, &imm_expr, GPR_SIZE == 64);
13248 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13249 used_at = 1;
13250 }
13251 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13252 break;
13253
13254 case M_SGE: /* X >= Y <==> not (X < Y) */
13255 s = "slt";
13256 goto sge;
13257 case M_SGEU:
13258 s = "sltu";
13259 sge:
13260 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13261 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13262 break;
13263
13264 case M_SGE_I: /* X >= I <==> not (X < I) */
13265 case M_SGEU_I:
13266 if (imm_expr.X_add_number >= -0x8000
13267 && imm_expr.X_add_number < 0x8000)
13268 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13269 op[0], op[1], BFD_RELOC_LO16);
13270 else
13271 {
13272 load_register (AT, &imm_expr, GPR_SIZE == 64);
13273 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13274 op[0], op[1], AT);
13275 used_at = 1;
13276 }
13277 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13278 break;
13279
13280 case M_SGT: /* X > Y <==> Y < X */
13281 s = "slt";
13282 goto sgt;
13283 case M_SGTU:
13284 s = "sltu";
13285 sgt:
13286 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13287 break;
13288
13289 case M_SGT_I: /* X > I <==> I < X */
13290 s = "slt";
13291 goto sgti;
13292 case M_SGTU_I:
13293 s = "sltu";
13294 sgti:
13295 used_at = 1;
13296 load_register (AT, &imm_expr, GPR_SIZE == 64);
13297 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13298 break;
13299
13300 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
13301 s = "slt";
13302 goto sle;
13303 case M_SLEU:
13304 s = "sltu";
13305 sle:
13306 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13307 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13308 break;
13309
13310 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13311 s = "slt";
13312 goto slei;
13313 case M_SLEU_I:
13314 s = "sltu";
13315 slei:
13316 used_at = 1;
13317 load_register (AT, &imm_expr, GPR_SIZE == 64);
13318 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13319 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13320 break;
13321
13322 case M_SLT_I:
13323 if (imm_expr.X_add_number >= -0x8000
13324 && imm_expr.X_add_number < 0x8000)
13325 {
13326 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13327 BFD_RELOC_LO16);
13328 break;
13329 }
13330 used_at = 1;
13331 load_register (AT, &imm_expr, GPR_SIZE == 64);
13332 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13333 break;
13334
13335 case M_SLTU_I:
13336 if (imm_expr.X_add_number >= -0x8000
13337 && imm_expr.X_add_number < 0x8000)
13338 {
13339 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13340 BFD_RELOC_LO16);
13341 break;
13342 }
13343 used_at = 1;
13344 load_register (AT, &imm_expr, GPR_SIZE == 64);
13345 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13346 break;
13347
13348 case M_SNE:
13349 if (op[1] == 0)
13350 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13351 else if (op[2] == 0)
13352 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13353 else
13354 {
13355 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13356 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13357 }
13358 break;
13359
13360 case M_SNE_I:
13361 if (imm_expr.X_add_number == 0)
13362 {
13363 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13364 break;
13365 }
13366 if (op[1] == 0)
13367 {
13368 as_warn (_("instruction %s: result is always true"),
13369 ip->insn_mo->name);
13370 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13371 op[0], 0, BFD_RELOC_LO16);
13372 break;
13373 }
13374 if (CPU_HAS_SEQ (mips_opts.arch)
13375 && -512 <= imm_expr.X_add_number
13376 && imm_expr.X_add_number < 512)
13377 {
13378 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13379 (int) imm_expr.X_add_number);
13380 break;
13381 }
13382 if (imm_expr.X_add_number >= 0
13383 && imm_expr.X_add_number < 0x10000)
13384 {
13385 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13386 BFD_RELOC_LO16);
13387 }
13388 else if (imm_expr.X_add_number > -0x8000
13389 && imm_expr.X_add_number < 0)
13390 {
13391 imm_expr.X_add_number = -imm_expr.X_add_number;
13392 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13393 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13394 }
13395 else if (CPU_HAS_SEQ (mips_opts.arch))
13396 {
13397 used_at = 1;
13398 load_register (AT, &imm_expr, GPR_SIZE == 64);
13399 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13400 break;
13401 }
13402 else
13403 {
13404 load_register (AT, &imm_expr, GPR_SIZE == 64);
13405 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13406 used_at = 1;
13407 }
13408 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13409 break;
13410
13411 case M_SUB_I:
13412 s = "addi";
13413 s2 = "sub";
13414 goto do_subi;
13415 case M_SUBU_I:
13416 s = "addiu";
13417 s2 = "subu";
13418 goto do_subi;
13419 case M_DSUB_I:
13420 dbl = 1;
13421 s = "daddi";
13422 s2 = "dsub";
13423 if (!mips_opts.micromips)
13424 goto do_subi;
13425 if (imm_expr.X_add_number > -0x200
13426 && imm_expr.X_add_number <= 0x200)
13427 {
13428 macro_build (NULL, s, "t,r,.", op[0], op[1],
13429 (int) -imm_expr.X_add_number);
13430 break;
13431 }
13432 goto do_subi_i;
13433 case M_DSUBU_I:
13434 dbl = 1;
13435 s = "daddiu";
13436 s2 = "dsubu";
13437 do_subi:
13438 if (imm_expr.X_add_number > -0x8000
13439 && imm_expr.X_add_number <= 0x8000)
13440 {
13441 imm_expr.X_add_number = -imm_expr.X_add_number;
13442 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13443 break;
13444 }
13445 do_subi_i:
13446 used_at = 1;
13447 load_register (AT, &imm_expr, dbl);
13448 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13449 break;
13450
13451 case M_TEQ_I:
13452 s = "teq";
13453 goto trap;
13454 case M_TGE_I:
13455 s = "tge";
13456 goto trap;
13457 case M_TGEU_I:
13458 s = "tgeu";
13459 goto trap;
13460 case M_TLT_I:
13461 s = "tlt";
13462 goto trap;
13463 case M_TLTU_I:
13464 s = "tltu";
13465 goto trap;
13466 case M_TNE_I:
13467 s = "tne";
13468 trap:
13469 used_at = 1;
13470 load_register (AT, &imm_expr, GPR_SIZE == 64);
13471 macro_build (NULL, s, "s,t", op[0], AT);
13472 break;
13473
13474 case M_TRUNCWS:
13475 case M_TRUNCWD:
13476 gas_assert (!mips_opts.micromips);
13477 gas_assert (mips_opts.isa == ISA_MIPS1);
13478 used_at = 1;
13479
13480 /*
13481 * Is the double cfc1 instruction a bug in the mips assembler;
13482 * or is there a reason for it?
13483 */
13484 start_noreorder ();
13485 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13486 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13487 macro_build (NULL, "nop", "");
13488 expr1.X_add_number = 3;
13489 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13490 expr1.X_add_number = 2;
13491 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13492 macro_build (NULL, "ctc1", "t,G", AT, RA);
13493 macro_build (NULL, "nop", "");
13494 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13495 op[0], op[1]);
13496 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13497 macro_build (NULL, "nop", "");
13498 end_noreorder ();
13499 break;
13500
13501 case M_ULH_AB:
13502 s = "lb";
13503 s2 = "lbu";
13504 off = 1;
13505 goto uld_st;
13506 case M_ULHU_AB:
13507 s = "lbu";
13508 s2 = "lbu";
13509 off = 1;
13510 goto uld_st;
13511 case M_ULW_AB:
13512 s = "lwl";
13513 s2 = "lwr";
13514 offbits = (mips_opts.micromips ? 12 : 16);
13515 off = 3;
13516 goto uld_st;
13517 case M_ULD_AB:
13518 s = "ldl";
13519 s2 = "ldr";
13520 offbits = (mips_opts.micromips ? 12 : 16);
13521 off = 7;
13522 goto uld_st;
13523 case M_USH_AB:
13524 s = "sb";
13525 s2 = "sb";
13526 off = 1;
13527 ust = 1;
13528 goto uld_st;
13529 case M_USW_AB:
13530 s = "swl";
13531 s2 = "swr";
13532 offbits = (mips_opts.micromips ? 12 : 16);
13533 off = 3;
13534 ust = 1;
13535 goto uld_st;
13536 case M_USD_AB:
13537 s = "sdl";
13538 s2 = "sdr";
13539 offbits = (mips_opts.micromips ? 12 : 16);
13540 off = 7;
13541 ust = 1;
13542
13543 uld_st:
13544 breg = op[2];
13545 large_offset = !small_offset_p (off, align, offbits);
13546 ep = &offset_expr;
13547 expr1.X_add_number = 0;
13548 if (large_offset)
13549 {
13550 used_at = 1;
13551 tempreg = AT;
13552 if (small_offset_p (0, align, 16))
13553 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13554 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13555 else
13556 {
13557 load_address (tempreg, ep, &used_at);
13558 if (breg != 0)
13559 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13560 tempreg, tempreg, breg);
13561 }
13562 offset_reloc[0] = BFD_RELOC_LO16;
13563 offset_reloc[1] = BFD_RELOC_UNUSED;
13564 offset_reloc[2] = BFD_RELOC_UNUSED;
13565 breg = tempreg;
13566 tempreg = op[0];
13567 ep = &expr1;
13568 }
13569 else if (!ust && op[0] == breg)
13570 {
13571 used_at = 1;
13572 tempreg = AT;
13573 }
13574 else
13575 tempreg = op[0];
13576
13577 if (off == 1)
13578 goto ulh_sh;
13579
13580 if (!target_big_endian)
13581 ep->X_add_number += off;
13582 if (offbits == 12)
13583 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13584 else
13585 macro_build (ep, s, "t,o(b)", tempreg, -1,
13586 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13587
13588 if (!target_big_endian)
13589 ep->X_add_number -= off;
13590 else
13591 ep->X_add_number += off;
13592 if (offbits == 12)
13593 macro_build (NULL, s2, "t,~(b)",
13594 tempreg, (int) ep->X_add_number, breg);
13595 else
13596 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13597 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13598
13599 /* If necessary, move the result in tempreg to the final destination. */
13600 if (!ust && op[0] != tempreg)
13601 {
13602 /* Protect second load's delay slot. */
13603 load_delay_nop ();
13604 move_register (op[0], tempreg);
13605 }
13606 break;
13607
13608 ulh_sh:
13609 used_at = 1;
13610 if (target_big_endian == ust)
13611 ep->X_add_number += off;
13612 tempreg = ust || large_offset ? op[0] : AT;
13613 macro_build (ep, s, "t,o(b)", tempreg, -1,
13614 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13615
13616 /* For halfword transfers we need a temporary register to shuffle
13617 bytes. Unfortunately for M_USH_A we have none available before
13618 the next store as AT holds the base address. We deal with this
13619 case by clobbering TREG and then restoring it as with ULH. */
13620 tempreg = ust == large_offset ? op[0] : AT;
13621 if (ust)
13622 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13623
13624 if (target_big_endian == ust)
13625 ep->X_add_number -= off;
13626 else
13627 ep->X_add_number += off;
13628 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13629 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13630
13631 /* For M_USH_A re-retrieve the LSB. */
13632 if (ust && large_offset)
13633 {
13634 if (target_big_endian)
13635 ep->X_add_number += off;
13636 else
13637 ep->X_add_number -= off;
13638 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13639 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13640 }
13641 /* For ULH and M_USH_A OR the LSB in. */
13642 if (!ust || large_offset)
13643 {
13644 tempreg = !large_offset ? AT : op[0];
13645 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13646 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13647 }
13648 break;
13649
13650 default:
13651 /* FIXME: Check if this is one of the itbl macros, since they
13652 are added dynamically. */
13653 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13654 break;
13655 }
13656 if (!mips_opts.at && used_at)
13657 as_bad (_("macro used $at after \".set noat\""));
13658 }
13659
13660 /* Implement macros in mips16 mode. */
13661
13662 static void
13663 mips16_macro (struct mips_cl_insn *ip)
13664 {
13665 const struct mips_operand_array *operands;
13666 int mask;
13667 int tmp;
13668 expressionS expr1;
13669 int dbl;
13670 const char *s, *s2, *s3;
13671 unsigned int op[MAX_OPERANDS];
13672 unsigned int i;
13673
13674 mask = ip->insn_mo->mask;
13675
13676 operands = insn_operands (ip);
13677 for (i = 0; i < MAX_OPERANDS; i++)
13678 if (operands->operand[i])
13679 op[i] = insn_extract_operand (ip, operands->operand[i]);
13680 else
13681 op[i] = -1;
13682
13683 expr1.X_op = O_constant;
13684 expr1.X_op_symbol = NULL;
13685 expr1.X_add_symbol = NULL;
13686 expr1.X_add_number = 1;
13687
13688 dbl = 0;
13689
13690 switch (mask)
13691 {
13692 default:
13693 abort ();
13694
13695 case M_DDIV_3:
13696 dbl = 1;
13697 /* Fall through. */
13698 case M_DIV_3:
13699 s = "mflo";
13700 goto do_div3;
13701 case M_DREM_3:
13702 dbl = 1;
13703 /* Fall through. */
13704 case M_REM_3:
13705 s = "mfhi";
13706 do_div3:
13707 start_noreorder ();
13708 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
13709 expr1.X_add_number = 2;
13710 macro_build (&expr1, "bnez", "x,p", op[2]);
13711 macro_build (NULL, "break", "6", 7);
13712
13713 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13714 since that causes an overflow. We should do that as well,
13715 but I don't see how to do the comparisons without a temporary
13716 register. */
13717 end_noreorder ();
13718 macro_build (NULL, s, "x", op[0]);
13719 break;
13720
13721 case M_DIVU_3:
13722 s = "divu";
13723 s2 = "mflo";
13724 goto do_divu3;
13725 case M_REMU_3:
13726 s = "divu";
13727 s2 = "mfhi";
13728 goto do_divu3;
13729 case M_DDIVU_3:
13730 s = "ddivu";
13731 s2 = "mflo";
13732 goto do_divu3;
13733 case M_DREMU_3:
13734 s = "ddivu";
13735 s2 = "mfhi";
13736 do_divu3:
13737 start_noreorder ();
13738 macro_build (NULL, s, ".,x,y", op[1], op[2]);
13739 expr1.X_add_number = 2;
13740 macro_build (&expr1, "bnez", "x,p", op[2]);
13741 macro_build (NULL, "break", "6", 7);
13742 end_noreorder ();
13743 macro_build (NULL, s2, "x", op[0]);
13744 break;
13745
13746 case M_DMUL:
13747 dbl = 1;
13748 /* Fall through. */
13749 case M_MUL:
13750 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13751 macro_build (NULL, "mflo", "x", op[0]);
13752 break;
13753
13754 case M_DSUBU_I:
13755 dbl = 1;
13756 goto do_subu;
13757 case M_SUBU_I:
13758 do_subu:
13759 imm_expr.X_add_number = -imm_expr.X_add_number;
13760 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
13761 break;
13762
13763 case M_SUBU_I_2:
13764 imm_expr.X_add_number = -imm_expr.X_add_number;
13765 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13766 break;
13767
13768 case M_DSUBU_I_2:
13769 imm_expr.X_add_number = -imm_expr.X_add_number;
13770 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13771 break;
13772
13773 case M_BEQ:
13774 s = "cmp";
13775 s2 = "bteqz";
13776 goto do_branch;
13777 case M_BNE:
13778 s = "cmp";
13779 s2 = "btnez";
13780 goto do_branch;
13781 case M_BLT:
13782 s = "slt";
13783 s2 = "btnez";
13784 goto do_branch;
13785 case M_BLTU:
13786 s = "sltu";
13787 s2 = "btnez";
13788 goto do_branch;
13789 case M_BLE:
13790 s = "slt";
13791 s2 = "bteqz";
13792 goto do_reverse_branch;
13793 case M_BLEU:
13794 s = "sltu";
13795 s2 = "bteqz";
13796 goto do_reverse_branch;
13797 case M_BGE:
13798 s = "slt";
13799 s2 = "bteqz";
13800 goto do_branch;
13801 case M_BGEU:
13802 s = "sltu";
13803 s2 = "bteqz";
13804 goto do_branch;
13805 case M_BGT:
13806 s = "slt";
13807 s2 = "btnez";
13808 goto do_reverse_branch;
13809 case M_BGTU:
13810 s = "sltu";
13811 s2 = "btnez";
13812
13813 do_reverse_branch:
13814 tmp = op[1];
13815 op[1] = op[0];
13816 op[0] = tmp;
13817
13818 do_branch:
13819 macro_build (NULL, s, "x,y", op[0], op[1]);
13820 macro_build (&offset_expr, s2, "p");
13821 break;
13822
13823 case M_BEQ_I:
13824 s = "cmpi";
13825 s2 = "bteqz";
13826 s3 = "x,U";
13827 goto do_branch_i;
13828 case M_BNE_I:
13829 s = "cmpi";
13830 s2 = "btnez";
13831 s3 = "x,U";
13832 goto do_branch_i;
13833 case M_BLT_I:
13834 s = "slti";
13835 s2 = "btnez";
13836 s3 = "x,8";
13837 goto do_branch_i;
13838 case M_BLTU_I:
13839 s = "sltiu";
13840 s2 = "btnez";
13841 s3 = "x,8";
13842 goto do_branch_i;
13843 case M_BLE_I:
13844 s = "slti";
13845 s2 = "btnez";
13846 s3 = "x,8";
13847 goto do_addone_branch_i;
13848 case M_BLEU_I:
13849 s = "sltiu";
13850 s2 = "btnez";
13851 s3 = "x,8";
13852 goto do_addone_branch_i;
13853 case M_BGE_I:
13854 s = "slti";
13855 s2 = "bteqz";
13856 s3 = "x,8";
13857 goto do_branch_i;
13858 case M_BGEU_I:
13859 s = "sltiu";
13860 s2 = "bteqz";
13861 s3 = "x,8";
13862 goto do_branch_i;
13863 case M_BGT_I:
13864 s = "slti";
13865 s2 = "bteqz";
13866 s3 = "x,8";
13867 goto do_addone_branch_i;
13868 case M_BGTU_I:
13869 s = "sltiu";
13870 s2 = "bteqz";
13871 s3 = "x,8";
13872
13873 do_addone_branch_i:
13874 ++imm_expr.X_add_number;
13875
13876 do_branch_i:
13877 macro_build (&imm_expr, s, s3, op[0]);
13878 macro_build (&offset_expr, s2, "p");
13879 break;
13880
13881 case M_ABS:
13882 expr1.X_add_number = 0;
13883 macro_build (&expr1, "slti", "x,8", op[1]);
13884 if (op[0] != op[1])
13885 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13886 expr1.X_add_number = 2;
13887 macro_build (&expr1, "bteqz", "p");
13888 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13889 break;
13890 }
13891 }
13892
13893 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13894 opcode bits in *OPCODE_EXTRA. */
13895
13896 static struct mips_opcode *
13897 mips_lookup_insn (struct hash_control *hash, const char *start,
13898 ssize_t length, unsigned int *opcode_extra)
13899 {
13900 char *name, *dot, *p;
13901 unsigned int mask, suffix;
13902 ssize_t opend;
13903 struct mips_opcode *insn;
13904
13905 /* Make a copy of the instruction so that we can fiddle with it. */
13906 name = xstrndup (start, length);
13907
13908 /* Look up the instruction as-is. */
13909 insn = (struct mips_opcode *) hash_find (hash, name);
13910 if (insn)
13911 goto end;
13912
13913 dot = strchr (name, '.');
13914 if (dot && dot[1])
13915 {
13916 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13917 p = mips_parse_vu0_channels (dot + 1, &mask);
13918 if (*p == 0 && mask != 0)
13919 {
13920 *dot = 0;
13921 insn = (struct mips_opcode *) hash_find (hash, name);
13922 *dot = '.';
13923 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13924 {
13925 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13926 goto end;
13927 }
13928 }
13929 }
13930
13931 if (mips_opts.micromips)
13932 {
13933 /* See if there's an instruction size override suffix,
13934 either `16' or `32', at the end of the mnemonic proper,
13935 that defines the operation, i.e. before the first `.'
13936 character if any. Strip it and retry. */
13937 opend = dot != NULL ? dot - name : length;
13938 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13939 suffix = 2;
13940 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13941 suffix = 4;
13942 else
13943 suffix = 0;
13944 if (suffix)
13945 {
13946 memcpy (name + opend - 2, name + opend, length - opend + 1);
13947 insn = (struct mips_opcode *) hash_find (hash, name);
13948 if (insn)
13949 {
13950 forced_insn_length = suffix;
13951 goto end;
13952 }
13953 }
13954 }
13955
13956 insn = NULL;
13957 end:
13958 free (name);
13959 return insn;
13960 }
13961
13962 /* Assemble an instruction into its binary format. If the instruction
13963 is a macro, set imm_expr and offset_expr to the values associated
13964 with "I" and "A" operands respectively. Otherwise store the value
13965 of the relocatable field (if any) in offset_expr. In both cases
13966 set offset_reloc to the relocation operators applied to offset_expr. */
13967
13968 static void
13969 mips_ip (char *str, struct mips_cl_insn *insn)
13970 {
13971 const struct mips_opcode *first, *past;
13972 struct hash_control *hash;
13973 char format;
13974 size_t end;
13975 struct mips_operand_token *tokens;
13976 unsigned int opcode_extra;
13977
13978 if (mips_opts.micromips)
13979 {
13980 hash = micromips_op_hash;
13981 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13982 }
13983 else
13984 {
13985 hash = op_hash;
13986 past = &mips_opcodes[NUMOPCODES];
13987 }
13988 forced_insn_length = 0;
13989 opcode_extra = 0;
13990
13991 /* We first try to match an instruction up to a space or to the end. */
13992 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13993 continue;
13994
13995 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13996 if (first == NULL)
13997 {
13998 set_insn_error (0, _("unrecognized opcode"));
13999 return;
14000 }
14001
14002 if (strcmp (first->name, "li.s") == 0)
14003 format = 'f';
14004 else if (strcmp (first->name, "li.d") == 0)
14005 format = 'd';
14006 else
14007 format = 0;
14008 tokens = mips_parse_arguments (str + end, format);
14009 if (!tokens)
14010 return;
14011
14012 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
14013 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
14014 set_insn_error (0, _("invalid operands"));
14015
14016 obstack_free (&mips_operand_tokens, tokens);
14017 }
14018
14019 /* As for mips_ip, but used when assembling MIPS16 code.
14020 Also set forced_insn_length to the resulting instruction size in
14021 bytes if the user explicitly requested a small or extended instruction. */
14022
14023 static void
14024 mips16_ip (char *str, struct mips_cl_insn *insn)
14025 {
14026 char *end, *s, c;
14027 struct mips_opcode *first;
14028 struct mips_operand_token *tokens;
14029 unsigned int l;
14030
14031 for (s = str; *s != '\0' && *s != '.' && *s != ' '; ++s)
14032 ;
14033 end = s;
14034 c = *end;
14035
14036 l = 0;
14037 switch (c)
14038 {
14039 case '\0':
14040 break;
14041
14042 case ' ':
14043 s++;
14044 break;
14045
14046 case '.':
14047 s++;
14048 if (*s == 't')
14049 {
14050 l = 2;
14051 s++;
14052 }
14053 else if (*s == 'e')
14054 {
14055 l = 4;
14056 s++;
14057 }
14058 if (*s == '\0')
14059 break;
14060 else if (*s++ == ' ')
14061 break;
14062 set_insn_error (0, _("unrecognized opcode"));
14063 return;
14064 }
14065 forced_insn_length = l;
14066
14067 *end = 0;
14068 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
14069 *end = c;
14070
14071 if (!first)
14072 {
14073 set_insn_error (0, _("unrecognized opcode"));
14074 return;
14075 }
14076
14077 tokens = mips_parse_arguments (s, 0);
14078 if (!tokens)
14079 return;
14080
14081 if (!match_mips16_insns (insn, first, tokens))
14082 set_insn_error (0, _("invalid operands"));
14083
14084 obstack_free (&mips_operand_tokens, tokens);
14085 }
14086
14087 /* Marshal immediate value VAL for an extended MIPS16 instruction.
14088 NBITS is the number of significant bits in VAL. */
14089
14090 static unsigned long
14091 mips16_immed_extend (offsetT val, unsigned int nbits)
14092 {
14093 int extval;
14094
14095 extval = 0;
14096 val &= (1U << nbits) - 1;
14097 if (nbits == 16 || nbits == 9)
14098 {
14099 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14100 val &= 0x1f;
14101 }
14102 else if (nbits == 15)
14103 {
14104 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14105 val &= 0xf;
14106 }
14107 else if (nbits == 6)
14108 {
14109 extval = ((val & 0x1f) << 6) | (val & 0x20);
14110 val = 0;
14111 }
14112 return (extval << 16) | val;
14113 }
14114
14115 /* Like decode_mips16_operand, but require the operand to be defined and
14116 require it to be an integer. */
14117
14118 static const struct mips_int_operand *
14119 mips16_immed_operand (int type, bfd_boolean extended_p)
14120 {
14121 const struct mips_operand *operand;
14122
14123 operand = decode_mips16_operand (type, extended_p);
14124 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
14125 abort ();
14126 return (const struct mips_int_operand *) operand;
14127 }
14128
14129 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
14130
14131 static bfd_boolean
14132 mips16_immed_in_range_p (const struct mips_int_operand *operand,
14133 bfd_reloc_code_real_type reloc, offsetT sval)
14134 {
14135 int min_val, max_val;
14136
14137 min_val = mips_int_operand_min (operand);
14138 max_val = mips_int_operand_max (operand);
14139 if (reloc != BFD_RELOC_UNUSED)
14140 {
14141 if (min_val < 0)
14142 sval = SEXT_16BIT (sval);
14143 else
14144 sval &= 0xffff;
14145 }
14146
14147 return (sval >= min_val
14148 && sval <= max_val
14149 && (sval & ((1 << operand->shift) - 1)) == 0);
14150 }
14151
14152 /* Install immediate value VAL into MIPS16 instruction *INSN,
14153 extending it if necessary. The instruction in *INSN may
14154 already be extended.
14155
14156 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14157 if none. In the former case, VAL is a 16-bit number with no
14158 defined signedness.
14159
14160 TYPE is the type of the immediate field. USER_INSN_LENGTH
14161 is the length that the user requested, or 0 if none. */
14162
14163 static void
14164 mips16_immed (const char *file, unsigned int line, int type,
14165 bfd_reloc_code_real_type reloc, offsetT val,
14166 unsigned int user_insn_length, unsigned long *insn)
14167 {
14168 const struct mips_int_operand *operand;
14169 unsigned int uval, length;
14170
14171 operand = mips16_immed_operand (type, FALSE);
14172 if (!mips16_immed_in_range_p (operand, reloc, val))
14173 {
14174 /* We need an extended instruction. */
14175 if (user_insn_length == 2)
14176 as_bad_where (file, line, _("invalid unextended operand value"));
14177 else
14178 *insn |= MIPS16_EXTEND;
14179 }
14180 else if (user_insn_length == 4)
14181 {
14182 /* The operand doesn't force an unextended instruction to be extended.
14183 Warn if the user wanted an extended instruction anyway. */
14184 *insn |= MIPS16_EXTEND;
14185 as_warn_where (file, line,
14186 _("extended operand requested but not required"));
14187 }
14188
14189 length = mips16_opcode_length (*insn);
14190 if (length == 4)
14191 {
14192 operand = mips16_immed_operand (type, TRUE);
14193 if (!mips16_immed_in_range_p (operand, reloc, val))
14194 as_bad_where (file, line,
14195 _("operand value out of range for instruction"));
14196 }
14197 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14198 if (length == 2 || operand->root.lsb != 0)
14199 *insn = mips_insert_operand (&operand->root, *insn, uval);
14200 else
14201 *insn |= mips16_immed_extend (uval, operand->root.size);
14202 }
14203 \f
14204 struct percent_op_match
14205 {
14206 const char *str;
14207 bfd_reloc_code_real_type reloc;
14208 };
14209
14210 static const struct percent_op_match mips_percent_op[] =
14211 {
14212 {"%lo", BFD_RELOC_LO16},
14213 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14214 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14215 {"%call16", BFD_RELOC_MIPS_CALL16},
14216 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14217 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14218 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14219 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14220 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14221 {"%got", BFD_RELOC_MIPS_GOT16},
14222 {"%gp_rel", BFD_RELOC_GPREL16},
14223 {"%gprel", BFD_RELOC_GPREL16},
14224 {"%half", BFD_RELOC_16},
14225 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14226 {"%higher", BFD_RELOC_MIPS_HIGHER},
14227 {"%neg", BFD_RELOC_MIPS_SUB},
14228 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14229 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14230 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14231 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14232 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14233 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14234 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14235 {"%hi", BFD_RELOC_HI16_S},
14236 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14237 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14238 };
14239
14240 static const struct percent_op_match mips16_percent_op[] =
14241 {
14242 {"%lo", BFD_RELOC_MIPS16_LO16},
14243 {"%gp_rel", BFD_RELOC_MIPS16_GPREL},
14244 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14245 {"%got", BFD_RELOC_MIPS16_GOT16},
14246 {"%call16", BFD_RELOC_MIPS16_CALL16},
14247 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14248 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14249 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14250 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14251 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14252 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14253 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14254 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14255 };
14256
14257
14258 /* Return true if *STR points to a relocation operator. When returning true,
14259 move *STR over the operator and store its relocation code in *RELOC.
14260 Leave both *STR and *RELOC alone when returning false. */
14261
14262 static bfd_boolean
14263 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14264 {
14265 const struct percent_op_match *percent_op;
14266 size_t limit, i;
14267
14268 if (mips_opts.mips16)
14269 {
14270 percent_op = mips16_percent_op;
14271 limit = ARRAY_SIZE (mips16_percent_op);
14272 }
14273 else
14274 {
14275 percent_op = mips_percent_op;
14276 limit = ARRAY_SIZE (mips_percent_op);
14277 }
14278
14279 for (i = 0; i < limit; i++)
14280 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14281 {
14282 int len = strlen (percent_op[i].str);
14283
14284 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14285 continue;
14286
14287 *str += strlen (percent_op[i].str);
14288 *reloc = percent_op[i].reloc;
14289
14290 /* Check whether the output BFD supports this relocation.
14291 If not, issue an error and fall back on something safe. */
14292 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14293 {
14294 as_bad (_("relocation %s isn't supported by the current ABI"),
14295 percent_op[i].str);
14296 *reloc = BFD_RELOC_UNUSED;
14297 }
14298 return TRUE;
14299 }
14300 return FALSE;
14301 }
14302
14303
14304 /* Parse string STR as a 16-bit relocatable operand. Store the
14305 expression in *EP and the relocations in the array starting
14306 at RELOC. Return the number of relocation operators used.
14307
14308 On exit, EXPR_END points to the first character after the expression. */
14309
14310 static size_t
14311 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14312 char *str)
14313 {
14314 bfd_reloc_code_real_type reversed_reloc[3];
14315 size_t reloc_index, i;
14316 int crux_depth, str_depth;
14317 char *crux;
14318
14319 /* Search for the start of the main expression, recoding relocations
14320 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14321 of the main expression and with CRUX_DEPTH containing the number
14322 of open brackets at that point. */
14323 reloc_index = -1;
14324 str_depth = 0;
14325 do
14326 {
14327 reloc_index++;
14328 crux = str;
14329 crux_depth = str_depth;
14330
14331 /* Skip over whitespace and brackets, keeping count of the number
14332 of brackets. */
14333 while (*str == ' ' || *str == '\t' || *str == '(')
14334 if (*str++ == '(')
14335 str_depth++;
14336 }
14337 while (*str == '%'
14338 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14339 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14340
14341 my_getExpression (ep, crux);
14342 str = expr_end;
14343
14344 /* Match every open bracket. */
14345 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14346 if (*str++ == ')')
14347 crux_depth--;
14348
14349 if (crux_depth > 0)
14350 as_bad (_("unclosed '('"));
14351
14352 expr_end = str;
14353
14354 if (reloc_index != 0)
14355 {
14356 prev_reloc_op_frag = frag_now;
14357 for (i = 0; i < reloc_index; i++)
14358 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14359 }
14360
14361 return reloc_index;
14362 }
14363
14364 static void
14365 my_getExpression (expressionS *ep, char *str)
14366 {
14367 char *save_in;
14368
14369 save_in = input_line_pointer;
14370 input_line_pointer = str;
14371 expression (ep);
14372 expr_end = input_line_pointer;
14373 input_line_pointer = save_in;
14374 }
14375
14376 const char *
14377 md_atof (int type, char *litP, int *sizeP)
14378 {
14379 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14380 }
14381
14382 void
14383 md_number_to_chars (char *buf, valueT val, int n)
14384 {
14385 if (target_big_endian)
14386 number_to_chars_bigendian (buf, val, n);
14387 else
14388 number_to_chars_littleendian (buf, val, n);
14389 }
14390 \f
14391 static int support_64bit_objects(void)
14392 {
14393 const char **list, **l;
14394 int yes;
14395
14396 list = bfd_target_list ();
14397 for (l = list; *l != NULL; l++)
14398 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14399 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14400 break;
14401 yes = (*l != NULL);
14402 free (list);
14403 return yes;
14404 }
14405
14406 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14407 NEW_VALUE. Warn if another value was already specified. Note:
14408 we have to defer parsing the -march and -mtune arguments in order
14409 to handle 'from-abi' correctly, since the ABI might be specified
14410 in a later argument. */
14411
14412 static void
14413 mips_set_option_string (const char **string_ptr, const char *new_value)
14414 {
14415 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14416 as_warn (_("a different %s was already specified, is now %s"),
14417 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14418 new_value);
14419
14420 *string_ptr = new_value;
14421 }
14422
14423 int
14424 md_parse_option (int c, const char *arg)
14425 {
14426 unsigned int i;
14427
14428 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14429 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14430 {
14431 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14432 c == mips_ases[i].option_on);
14433 return 1;
14434 }
14435
14436 switch (c)
14437 {
14438 case OPTION_CONSTRUCT_FLOATS:
14439 mips_disable_float_construction = 0;
14440 break;
14441
14442 case OPTION_NO_CONSTRUCT_FLOATS:
14443 mips_disable_float_construction = 1;
14444 break;
14445
14446 case OPTION_TRAP:
14447 mips_trap = 1;
14448 break;
14449
14450 case OPTION_BREAK:
14451 mips_trap = 0;
14452 break;
14453
14454 case OPTION_EB:
14455 target_big_endian = 1;
14456 break;
14457
14458 case OPTION_EL:
14459 target_big_endian = 0;
14460 break;
14461
14462 case 'O':
14463 if (arg == NULL)
14464 mips_optimize = 1;
14465 else if (arg[0] == '0')
14466 mips_optimize = 0;
14467 else if (arg[0] == '1')
14468 mips_optimize = 1;
14469 else
14470 mips_optimize = 2;
14471 break;
14472
14473 case 'g':
14474 if (arg == NULL)
14475 mips_debug = 2;
14476 else
14477 mips_debug = atoi (arg);
14478 break;
14479
14480 case OPTION_MIPS1:
14481 file_mips_opts.isa = ISA_MIPS1;
14482 break;
14483
14484 case OPTION_MIPS2:
14485 file_mips_opts.isa = ISA_MIPS2;
14486 break;
14487
14488 case OPTION_MIPS3:
14489 file_mips_opts.isa = ISA_MIPS3;
14490 break;
14491
14492 case OPTION_MIPS4:
14493 file_mips_opts.isa = ISA_MIPS4;
14494 break;
14495
14496 case OPTION_MIPS5:
14497 file_mips_opts.isa = ISA_MIPS5;
14498 break;
14499
14500 case OPTION_MIPS32:
14501 file_mips_opts.isa = ISA_MIPS32;
14502 break;
14503
14504 case OPTION_MIPS32R2:
14505 file_mips_opts.isa = ISA_MIPS32R2;
14506 break;
14507
14508 case OPTION_MIPS32R3:
14509 file_mips_opts.isa = ISA_MIPS32R3;
14510 break;
14511
14512 case OPTION_MIPS32R5:
14513 file_mips_opts.isa = ISA_MIPS32R5;
14514 break;
14515
14516 case OPTION_MIPS32R6:
14517 file_mips_opts.isa = ISA_MIPS32R6;
14518 break;
14519
14520 case OPTION_MIPS64R2:
14521 file_mips_opts.isa = ISA_MIPS64R2;
14522 break;
14523
14524 case OPTION_MIPS64R3:
14525 file_mips_opts.isa = ISA_MIPS64R3;
14526 break;
14527
14528 case OPTION_MIPS64R5:
14529 file_mips_opts.isa = ISA_MIPS64R5;
14530 break;
14531
14532 case OPTION_MIPS64R6:
14533 file_mips_opts.isa = ISA_MIPS64R6;
14534 break;
14535
14536 case OPTION_MIPS64:
14537 file_mips_opts.isa = ISA_MIPS64;
14538 break;
14539
14540 case OPTION_MTUNE:
14541 mips_set_option_string (&mips_tune_string, arg);
14542 break;
14543
14544 case OPTION_MARCH:
14545 mips_set_option_string (&mips_arch_string, arg);
14546 break;
14547
14548 case OPTION_M4650:
14549 mips_set_option_string (&mips_arch_string, "4650");
14550 mips_set_option_string (&mips_tune_string, "4650");
14551 break;
14552
14553 case OPTION_NO_M4650:
14554 break;
14555
14556 case OPTION_M4010:
14557 mips_set_option_string (&mips_arch_string, "4010");
14558 mips_set_option_string (&mips_tune_string, "4010");
14559 break;
14560
14561 case OPTION_NO_M4010:
14562 break;
14563
14564 case OPTION_M4100:
14565 mips_set_option_string (&mips_arch_string, "4100");
14566 mips_set_option_string (&mips_tune_string, "4100");
14567 break;
14568
14569 case OPTION_NO_M4100:
14570 break;
14571
14572 case OPTION_M3900:
14573 mips_set_option_string (&mips_arch_string, "3900");
14574 mips_set_option_string (&mips_tune_string, "3900");
14575 break;
14576
14577 case OPTION_NO_M3900:
14578 break;
14579
14580 case OPTION_MICROMIPS:
14581 if (file_mips_opts.mips16 == 1)
14582 {
14583 as_bad (_("-mmicromips cannot be used with -mips16"));
14584 return 0;
14585 }
14586 file_mips_opts.micromips = 1;
14587 mips_no_prev_insn ();
14588 break;
14589
14590 case OPTION_NO_MICROMIPS:
14591 file_mips_opts.micromips = 0;
14592 mips_no_prev_insn ();
14593 break;
14594
14595 case OPTION_MIPS16:
14596 if (file_mips_opts.micromips == 1)
14597 {
14598 as_bad (_("-mips16 cannot be used with -micromips"));
14599 return 0;
14600 }
14601 file_mips_opts.mips16 = 1;
14602 mips_no_prev_insn ();
14603 break;
14604
14605 case OPTION_NO_MIPS16:
14606 file_mips_opts.mips16 = 0;
14607 mips_no_prev_insn ();
14608 break;
14609
14610 case OPTION_FIX_24K:
14611 mips_fix_24k = 1;
14612 break;
14613
14614 case OPTION_NO_FIX_24K:
14615 mips_fix_24k = 0;
14616 break;
14617
14618 case OPTION_FIX_RM7000:
14619 mips_fix_rm7000 = 1;
14620 break;
14621
14622 case OPTION_NO_FIX_RM7000:
14623 mips_fix_rm7000 = 0;
14624 break;
14625
14626 case OPTION_FIX_LOONGSON2F_JUMP:
14627 mips_fix_loongson2f_jump = TRUE;
14628 break;
14629
14630 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14631 mips_fix_loongson2f_jump = FALSE;
14632 break;
14633
14634 case OPTION_FIX_LOONGSON2F_NOP:
14635 mips_fix_loongson2f_nop = TRUE;
14636 break;
14637
14638 case OPTION_NO_FIX_LOONGSON2F_NOP:
14639 mips_fix_loongson2f_nop = FALSE;
14640 break;
14641
14642 case OPTION_FIX_VR4120:
14643 mips_fix_vr4120 = 1;
14644 break;
14645
14646 case OPTION_NO_FIX_VR4120:
14647 mips_fix_vr4120 = 0;
14648 break;
14649
14650 case OPTION_FIX_VR4130:
14651 mips_fix_vr4130 = 1;
14652 break;
14653
14654 case OPTION_NO_FIX_VR4130:
14655 mips_fix_vr4130 = 0;
14656 break;
14657
14658 case OPTION_FIX_CN63XXP1:
14659 mips_fix_cn63xxp1 = TRUE;
14660 break;
14661
14662 case OPTION_NO_FIX_CN63XXP1:
14663 mips_fix_cn63xxp1 = FALSE;
14664 break;
14665
14666 case OPTION_RELAX_BRANCH:
14667 mips_relax_branch = 1;
14668 break;
14669
14670 case OPTION_NO_RELAX_BRANCH:
14671 mips_relax_branch = 0;
14672 break;
14673
14674 case OPTION_IGNORE_BRANCH_ISA:
14675 mips_ignore_branch_isa = TRUE;
14676 break;
14677
14678 case OPTION_NO_IGNORE_BRANCH_ISA:
14679 mips_ignore_branch_isa = FALSE;
14680 break;
14681
14682 case OPTION_INSN32:
14683 file_mips_opts.insn32 = TRUE;
14684 break;
14685
14686 case OPTION_NO_INSN32:
14687 file_mips_opts.insn32 = FALSE;
14688 break;
14689
14690 case OPTION_MSHARED:
14691 mips_in_shared = TRUE;
14692 break;
14693
14694 case OPTION_MNO_SHARED:
14695 mips_in_shared = FALSE;
14696 break;
14697
14698 case OPTION_MSYM32:
14699 file_mips_opts.sym32 = TRUE;
14700 break;
14701
14702 case OPTION_MNO_SYM32:
14703 file_mips_opts.sym32 = FALSE;
14704 break;
14705
14706 /* When generating ELF code, we permit -KPIC and -call_shared to
14707 select SVR4_PIC, and -non_shared to select no PIC. This is
14708 intended to be compatible with Irix 5. */
14709 case OPTION_CALL_SHARED:
14710 mips_pic = SVR4_PIC;
14711 mips_abicalls = TRUE;
14712 break;
14713
14714 case OPTION_CALL_NONPIC:
14715 mips_pic = NO_PIC;
14716 mips_abicalls = TRUE;
14717 break;
14718
14719 case OPTION_NON_SHARED:
14720 mips_pic = NO_PIC;
14721 mips_abicalls = FALSE;
14722 break;
14723
14724 /* The -xgot option tells the assembler to use 32 bit offsets
14725 when accessing the got in SVR4_PIC mode. It is for Irix
14726 compatibility. */
14727 case OPTION_XGOT:
14728 mips_big_got = 1;
14729 break;
14730
14731 case 'G':
14732 g_switch_value = atoi (arg);
14733 g_switch_seen = 1;
14734 break;
14735
14736 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14737 and -mabi=64. */
14738 case OPTION_32:
14739 mips_abi = O32_ABI;
14740 break;
14741
14742 case OPTION_N32:
14743 mips_abi = N32_ABI;
14744 break;
14745
14746 case OPTION_64:
14747 mips_abi = N64_ABI;
14748 if (!support_64bit_objects())
14749 as_fatal (_("no compiled in support for 64 bit object file format"));
14750 break;
14751
14752 case OPTION_GP32:
14753 file_mips_opts.gp = 32;
14754 break;
14755
14756 case OPTION_GP64:
14757 file_mips_opts.gp = 64;
14758 break;
14759
14760 case OPTION_FP32:
14761 file_mips_opts.fp = 32;
14762 break;
14763
14764 case OPTION_FPXX:
14765 file_mips_opts.fp = 0;
14766 break;
14767
14768 case OPTION_FP64:
14769 file_mips_opts.fp = 64;
14770 break;
14771
14772 case OPTION_ODD_SPREG:
14773 file_mips_opts.oddspreg = 1;
14774 break;
14775
14776 case OPTION_NO_ODD_SPREG:
14777 file_mips_opts.oddspreg = 0;
14778 break;
14779
14780 case OPTION_SINGLE_FLOAT:
14781 file_mips_opts.single_float = 1;
14782 break;
14783
14784 case OPTION_DOUBLE_FLOAT:
14785 file_mips_opts.single_float = 0;
14786 break;
14787
14788 case OPTION_SOFT_FLOAT:
14789 file_mips_opts.soft_float = 1;
14790 break;
14791
14792 case OPTION_HARD_FLOAT:
14793 file_mips_opts.soft_float = 0;
14794 break;
14795
14796 case OPTION_MABI:
14797 if (strcmp (arg, "32") == 0)
14798 mips_abi = O32_ABI;
14799 else if (strcmp (arg, "o64") == 0)
14800 mips_abi = O64_ABI;
14801 else if (strcmp (arg, "n32") == 0)
14802 mips_abi = N32_ABI;
14803 else if (strcmp (arg, "64") == 0)
14804 {
14805 mips_abi = N64_ABI;
14806 if (! support_64bit_objects())
14807 as_fatal (_("no compiled in support for 64 bit object file "
14808 "format"));
14809 }
14810 else if (strcmp (arg, "eabi") == 0)
14811 mips_abi = EABI_ABI;
14812 else
14813 {
14814 as_fatal (_("invalid abi -mabi=%s"), arg);
14815 return 0;
14816 }
14817 break;
14818
14819 case OPTION_M7000_HILO_FIX:
14820 mips_7000_hilo_fix = TRUE;
14821 break;
14822
14823 case OPTION_MNO_7000_HILO_FIX:
14824 mips_7000_hilo_fix = FALSE;
14825 break;
14826
14827 case OPTION_MDEBUG:
14828 mips_flag_mdebug = TRUE;
14829 break;
14830
14831 case OPTION_NO_MDEBUG:
14832 mips_flag_mdebug = FALSE;
14833 break;
14834
14835 case OPTION_PDR:
14836 mips_flag_pdr = TRUE;
14837 break;
14838
14839 case OPTION_NO_PDR:
14840 mips_flag_pdr = FALSE;
14841 break;
14842
14843 case OPTION_MVXWORKS_PIC:
14844 mips_pic = VXWORKS_PIC;
14845 break;
14846
14847 case OPTION_NAN:
14848 if (strcmp (arg, "2008") == 0)
14849 mips_nan2008 = 1;
14850 else if (strcmp (arg, "legacy") == 0)
14851 mips_nan2008 = 0;
14852 else
14853 {
14854 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14855 return 0;
14856 }
14857 break;
14858
14859 default:
14860 return 0;
14861 }
14862
14863 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14864
14865 return 1;
14866 }
14867 \f
14868 /* Set up globals to tune for the ISA or processor described by INFO. */
14869
14870 static void
14871 mips_set_tune (const struct mips_cpu_info *info)
14872 {
14873 if (info != 0)
14874 mips_tune = info->cpu;
14875 }
14876
14877
14878 void
14879 mips_after_parse_args (void)
14880 {
14881 const struct mips_cpu_info *arch_info = 0;
14882 const struct mips_cpu_info *tune_info = 0;
14883
14884 /* GP relative stuff not working for PE */
14885 if (strncmp (TARGET_OS, "pe", 2) == 0)
14886 {
14887 if (g_switch_seen && g_switch_value != 0)
14888 as_bad (_("-G not supported in this configuration"));
14889 g_switch_value = 0;
14890 }
14891
14892 if (mips_abi == NO_ABI)
14893 mips_abi = MIPS_DEFAULT_ABI;
14894
14895 /* The following code determines the architecture.
14896 Similar code was added to GCC 3.3 (see override_options() in
14897 config/mips/mips.c). The GAS and GCC code should be kept in sync
14898 as much as possible. */
14899
14900 if (mips_arch_string != 0)
14901 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14902
14903 if (file_mips_opts.isa != ISA_UNKNOWN)
14904 {
14905 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14906 ISA level specified by -mipsN, while arch_info->isa contains
14907 the -march selection (if any). */
14908 if (arch_info != 0)
14909 {
14910 /* -march takes precedence over -mipsN, since it is more descriptive.
14911 There's no harm in specifying both as long as the ISA levels
14912 are the same. */
14913 if (file_mips_opts.isa != arch_info->isa)
14914 as_bad (_("-%s conflicts with the other architecture options,"
14915 " which imply -%s"),
14916 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14917 mips_cpu_info_from_isa (arch_info->isa)->name);
14918 }
14919 else
14920 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14921 }
14922
14923 if (arch_info == 0)
14924 {
14925 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14926 gas_assert (arch_info);
14927 }
14928
14929 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14930 as_bad (_("-march=%s is not compatible with the selected ABI"),
14931 arch_info->name);
14932
14933 file_mips_opts.arch = arch_info->cpu;
14934 file_mips_opts.isa = arch_info->isa;
14935
14936 /* Set up initial mips_opts state. */
14937 mips_opts = file_mips_opts;
14938
14939 /* The register size inference code is now placed in
14940 file_mips_check_options. */
14941
14942 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14943 processor. */
14944 if (mips_tune_string != 0)
14945 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14946
14947 if (tune_info == 0)
14948 mips_set_tune (arch_info);
14949 else
14950 mips_set_tune (tune_info);
14951
14952 if (mips_flag_mdebug < 0)
14953 mips_flag_mdebug = 0;
14954 }
14955 \f
14956 void
14957 mips_init_after_args (void)
14958 {
14959 /* initialize opcodes */
14960 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14961 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14962 }
14963
14964 long
14965 md_pcrel_from (fixS *fixP)
14966 {
14967 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14968 switch (fixP->fx_r_type)
14969 {
14970 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14971 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14972 /* Return the address of the delay slot. */
14973 return addr + 2;
14974
14975 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14976 case BFD_RELOC_MICROMIPS_JMP:
14977 case BFD_RELOC_MIPS16_16_PCREL_S1:
14978 case BFD_RELOC_16_PCREL_S2:
14979 case BFD_RELOC_MIPS_21_PCREL_S2:
14980 case BFD_RELOC_MIPS_26_PCREL_S2:
14981 case BFD_RELOC_MIPS_JMP:
14982 /* Return the address of the delay slot. */
14983 return addr + 4;
14984
14985 case BFD_RELOC_MIPS_18_PCREL_S3:
14986 /* Return the aligned address of the doubleword containing
14987 the instruction. */
14988 return addr & ~7;
14989
14990 default:
14991 return addr;
14992 }
14993 }
14994
14995 /* This is called before the symbol table is processed. In order to
14996 work with gcc when using mips-tfile, we must keep all local labels.
14997 However, in other cases, we want to discard them. If we were
14998 called with -g, but we didn't see any debugging information, it may
14999 mean that gcc is smuggling debugging information through to
15000 mips-tfile, in which case we must generate all local labels. */
15001
15002 void
15003 mips_frob_file_before_adjust (void)
15004 {
15005 #ifndef NO_ECOFF_DEBUGGING
15006 if (ECOFF_DEBUGGING
15007 && mips_debug != 0
15008 && ! ecoff_debugging_seen)
15009 flag_keep_locals = 1;
15010 #endif
15011 }
15012
15013 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
15014 the corresponding LO16 reloc. This is called before md_apply_fix and
15015 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15016 relocation operators.
15017
15018 For our purposes, a %lo() expression matches a %got() or %hi()
15019 expression if:
15020
15021 (a) it refers to the same symbol; and
15022 (b) the offset applied in the %lo() expression is no lower than
15023 the offset applied in the %got() or %hi().
15024
15025 (b) allows us to cope with code like:
15026
15027 lui $4,%hi(foo)
15028 lh $4,%lo(foo+2)($4)
15029
15030 ...which is legal on RELA targets, and has a well-defined behaviour
15031 if the user knows that adding 2 to "foo" will not induce a carry to
15032 the high 16 bits.
15033
15034 When several %lo()s match a particular %got() or %hi(), we use the
15035 following rules to distinguish them:
15036
15037 (1) %lo()s with smaller offsets are a better match than %lo()s with
15038 higher offsets.
15039
15040 (2) %lo()s with no matching %got() or %hi() are better than those
15041 that already have a matching %got() or %hi().
15042
15043 (3) later %lo()s are better than earlier %lo()s.
15044
15045 These rules are applied in order.
15046
15047 (1) means, among other things, that %lo()s with identical offsets are
15048 chosen if they exist.
15049
15050 (2) means that we won't associate several high-part relocations with
15051 the same low-part relocation unless there's no alternative. Having
15052 several high parts for the same low part is a GNU extension; this rule
15053 allows careful users to avoid it.
15054
15055 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15056 with the last high-part relocation being at the front of the list.
15057 It therefore makes sense to choose the last matching low-part
15058 relocation, all other things being equal. It's also easier
15059 to code that way. */
15060
15061 void
15062 mips_frob_file (void)
15063 {
15064 struct mips_hi_fixup *l;
15065 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
15066
15067 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15068 {
15069 segment_info_type *seginfo;
15070 bfd_boolean matched_lo_p;
15071 fixS **hi_pos, **lo_pos, **pos;
15072
15073 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
15074
15075 /* If a GOT16 relocation turns out to be against a global symbol,
15076 there isn't supposed to be a matching LO. Ignore %gots against
15077 constants; we'll report an error for those later. */
15078 if (got16_reloc_p (l->fixp->fx_r_type)
15079 && !(l->fixp->fx_addsy
15080 && pic_need_relax (l->fixp->fx_addsy)))
15081 continue;
15082
15083 /* Check quickly whether the next fixup happens to be a matching %lo. */
15084 if (fixup_has_matching_lo_p (l->fixp))
15085 continue;
15086
15087 seginfo = seg_info (l->seg);
15088
15089 /* Set HI_POS to the position of this relocation in the chain.
15090 Set LO_POS to the position of the chosen low-part relocation.
15091 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15092 relocation that matches an immediately-preceding high-part
15093 relocation. */
15094 hi_pos = NULL;
15095 lo_pos = NULL;
15096 matched_lo_p = FALSE;
15097 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
15098
15099 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15100 {
15101 if (*pos == l->fixp)
15102 hi_pos = pos;
15103
15104 if ((*pos)->fx_r_type == looking_for_rtype
15105 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
15106 && (*pos)->fx_offset >= l->fixp->fx_offset
15107 && (lo_pos == NULL
15108 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15109 || (!matched_lo_p
15110 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15111 lo_pos = pos;
15112
15113 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15114 && fixup_has_matching_lo_p (*pos));
15115 }
15116
15117 /* If we found a match, remove the high-part relocation from its
15118 current position and insert it before the low-part relocation.
15119 Make the offsets match so that fixup_has_matching_lo_p()
15120 will return true.
15121
15122 We don't warn about unmatched high-part relocations since some
15123 versions of gcc have been known to emit dead "lui ...%hi(...)"
15124 instructions. */
15125 if (lo_pos != NULL)
15126 {
15127 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15128 if (l->fixp->fx_next != *lo_pos)
15129 {
15130 *hi_pos = l->fixp->fx_next;
15131 l->fixp->fx_next = *lo_pos;
15132 *lo_pos = l->fixp;
15133 }
15134 }
15135 }
15136 }
15137
15138 int
15139 mips_force_relocation (fixS *fixp)
15140 {
15141 if (generic_force_reloc (fixp))
15142 return 1;
15143
15144 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15145 so that the linker relaxation can update targets. */
15146 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15147 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15148 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15149 return 1;
15150
15151 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
15152 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
15153 microMIPS symbols so that we can do cross-mode branch diagnostics
15154 and BAL to JALX conversion by the linker. */
15155 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15156 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15157 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
15158 && fixp->fx_addsy
15159 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
15160 return 1;
15161
15162 /* We want all PC-relative relocations to be kept for R6 relaxation. */
15163 if (ISA_IS_R6 (file_mips_opts.isa)
15164 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15165 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15166 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15167 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15168 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15169 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15170 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15171 return 1;
15172
15173 return 0;
15174 }
15175
15176 /* Implement TC_FORCE_RELOCATION_ABS. */
15177
15178 bfd_boolean
15179 mips_force_relocation_abs (fixS *fixp)
15180 {
15181 if (generic_force_reloc (fixp))
15182 return TRUE;
15183
15184 /* These relocations do not have enough bits in the in-place addend
15185 to hold an arbitrary absolute section's offset. */
15186 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15187 return TRUE;
15188
15189 return FALSE;
15190 }
15191
15192 /* Read the instruction associated with RELOC from BUF. */
15193
15194 static unsigned int
15195 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15196 {
15197 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15198 return read_compressed_insn (buf, 4);
15199 else
15200 return read_insn (buf);
15201 }
15202
15203 /* Write instruction INSN to BUF, given that it has been relocated
15204 by RELOC. */
15205
15206 static void
15207 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15208 unsigned long insn)
15209 {
15210 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15211 write_compressed_insn (buf, insn, 4);
15212 else
15213 write_insn (buf, insn);
15214 }
15215
15216 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15217 to a symbol in another ISA mode, which cannot be converted to JALX. */
15218
15219 static bfd_boolean
15220 fix_bad_cross_mode_jump_p (fixS *fixP)
15221 {
15222 unsigned long opcode;
15223 int other;
15224 char *buf;
15225
15226 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15227 return FALSE;
15228
15229 other = S_GET_OTHER (fixP->fx_addsy);
15230 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15231 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15232 switch (fixP->fx_r_type)
15233 {
15234 case BFD_RELOC_MIPS_JMP:
15235 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15236 case BFD_RELOC_MICROMIPS_JMP:
15237 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15238 default:
15239 return FALSE;
15240 }
15241 }
15242
15243 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15244 jump to a symbol in the same ISA mode. */
15245
15246 static bfd_boolean
15247 fix_bad_same_mode_jalx_p (fixS *fixP)
15248 {
15249 unsigned long opcode;
15250 int other;
15251 char *buf;
15252
15253 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15254 return FALSE;
15255
15256 other = S_GET_OTHER (fixP->fx_addsy);
15257 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15258 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15259 switch (fixP->fx_r_type)
15260 {
15261 case BFD_RELOC_MIPS_JMP:
15262 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15263 case BFD_RELOC_MIPS16_JMP:
15264 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15265 case BFD_RELOC_MICROMIPS_JMP:
15266 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15267 default:
15268 return FALSE;
15269 }
15270 }
15271
15272 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15273 to a symbol whose value plus addend is not aligned according to the
15274 ultimate (after linker relaxation) jump instruction's immediate field
15275 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15276 regular MIPS code, to (1 << 2). */
15277
15278 static bfd_boolean
15279 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15280 {
15281 bfd_boolean micro_to_mips_p;
15282 valueT val;
15283 int other;
15284
15285 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15286 return FALSE;
15287
15288 other = S_GET_OTHER (fixP->fx_addsy);
15289 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15290 val += fixP->fx_offset;
15291 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15292 && !ELF_ST_IS_MICROMIPS (other));
15293 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15294 != ELF_ST_IS_COMPRESSED (other));
15295 }
15296
15297 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15298 to a symbol whose annotation indicates another ISA mode. For absolute
15299 symbols check the ISA bit instead.
15300
15301 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15302 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15303 MIPS symbols and associated with BAL instructions as these instructions
15304 may be be converted to JALX by the linker. */
15305
15306 static bfd_boolean
15307 fix_bad_cross_mode_branch_p (fixS *fixP)
15308 {
15309 bfd_boolean absolute_p;
15310 unsigned long opcode;
15311 asection *symsec;
15312 valueT val;
15313 int other;
15314 char *buf;
15315
15316 if (mips_ignore_branch_isa)
15317 return FALSE;
15318
15319 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15320 return FALSE;
15321
15322 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15323 absolute_p = bfd_is_abs_section (symsec);
15324
15325 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15326 other = S_GET_OTHER (fixP->fx_addsy);
15327
15328 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15329 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15330 switch (fixP->fx_r_type)
15331 {
15332 case BFD_RELOC_16_PCREL_S2:
15333 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15334 && opcode != 0x0411);
15335 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15336 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15337 && opcode != 0x4060);
15338 case BFD_RELOC_MIPS_21_PCREL_S2:
15339 case BFD_RELOC_MIPS_26_PCREL_S2:
15340 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15341 case BFD_RELOC_MIPS16_16_PCREL_S1:
15342 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15343 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15344 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15345 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15346 default:
15347 abort ();
15348 }
15349 }
15350
15351 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15352 branch instruction pointed to by FIXP is not aligned according to the
15353 branch instruction's immediate field requirement. We need the addend
15354 to preserve the ISA bit and also the sum must not have bit 2 set. We
15355 must explicitly OR in the ISA bit from symbol annotation as the bit
15356 won't be set in the symbol's value then. */
15357
15358 static bfd_boolean
15359 fix_bad_misaligned_branch_p (fixS *fixP)
15360 {
15361 bfd_boolean absolute_p;
15362 asection *symsec;
15363 valueT isa_bit;
15364 valueT val;
15365 valueT off;
15366 int other;
15367
15368 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15369 return FALSE;
15370
15371 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15372 absolute_p = bfd_is_abs_section (symsec);
15373
15374 val = S_GET_VALUE (fixP->fx_addsy);
15375 other = S_GET_OTHER (fixP->fx_addsy);
15376 off = fixP->fx_offset;
15377
15378 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15379 val |= ELF_ST_IS_COMPRESSED (other);
15380 val += off;
15381 return (val & 0x3) != isa_bit;
15382 }
15383
15384 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15385 and its calculated value VAL. */
15386
15387 static void
15388 fix_validate_branch (fixS *fixP, valueT val)
15389 {
15390 if (fixP->fx_done && (val & 0x3) != 0)
15391 as_bad_where (fixP->fx_file, fixP->fx_line,
15392 _("branch to misaligned address (0x%lx)"),
15393 (long) (val + md_pcrel_from (fixP)));
15394 else if (fix_bad_cross_mode_branch_p (fixP))
15395 as_bad_where (fixP->fx_file, fixP->fx_line,
15396 _("branch to a symbol in another ISA mode"));
15397 else if (fix_bad_misaligned_branch_p (fixP))
15398 as_bad_where (fixP->fx_file, fixP->fx_line,
15399 _("branch to misaligned address (0x%lx)"),
15400 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15401 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15402 as_bad_where (fixP->fx_file, fixP->fx_line,
15403 _("cannot encode misaligned addend "
15404 "in the relocatable field (0x%lx)"),
15405 (long) fixP->fx_offset);
15406 }
15407
15408 /* Apply a fixup to the object file. */
15409
15410 void
15411 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15412 {
15413 char *buf;
15414 unsigned long insn;
15415 reloc_howto_type *howto;
15416
15417 if (fixP->fx_pcrel)
15418 switch (fixP->fx_r_type)
15419 {
15420 case BFD_RELOC_16_PCREL_S2:
15421 case BFD_RELOC_MIPS16_16_PCREL_S1:
15422 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15423 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15424 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15425 case BFD_RELOC_32_PCREL:
15426 case BFD_RELOC_MIPS_21_PCREL_S2:
15427 case BFD_RELOC_MIPS_26_PCREL_S2:
15428 case BFD_RELOC_MIPS_18_PCREL_S3:
15429 case BFD_RELOC_MIPS_19_PCREL_S2:
15430 case BFD_RELOC_HI16_S_PCREL:
15431 case BFD_RELOC_LO16_PCREL:
15432 break;
15433
15434 case BFD_RELOC_32:
15435 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15436 break;
15437
15438 default:
15439 as_bad_where (fixP->fx_file, fixP->fx_line,
15440 _("PC-relative reference to a different section"));
15441 break;
15442 }
15443
15444 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15445 that have no MIPS ELF equivalent. */
15446 if (fixP->fx_r_type != BFD_RELOC_8)
15447 {
15448 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15449 if (!howto)
15450 return;
15451 }
15452
15453 gas_assert (fixP->fx_size == 2
15454 || fixP->fx_size == 4
15455 || fixP->fx_r_type == BFD_RELOC_8
15456 || fixP->fx_r_type == BFD_RELOC_16
15457 || fixP->fx_r_type == BFD_RELOC_64
15458 || fixP->fx_r_type == BFD_RELOC_CTOR
15459 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15460 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15461 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15462 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15463 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15464 || fixP->fx_r_type == BFD_RELOC_NONE);
15465
15466 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15467
15468 /* Don't treat parts of a composite relocation as done. There are two
15469 reasons for this:
15470
15471 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15472 should nevertheless be emitted if the first part is.
15473
15474 (2) In normal usage, composite relocations are never assembly-time
15475 constants. The easiest way of dealing with the pathological
15476 exceptions is to generate a relocation against STN_UNDEF and
15477 leave everything up to the linker. */
15478 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15479 fixP->fx_done = 1;
15480
15481 switch (fixP->fx_r_type)
15482 {
15483 case BFD_RELOC_MIPS_TLS_GD:
15484 case BFD_RELOC_MIPS_TLS_LDM:
15485 case BFD_RELOC_MIPS_TLS_DTPREL32:
15486 case BFD_RELOC_MIPS_TLS_DTPREL64:
15487 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15488 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15489 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15490 case BFD_RELOC_MIPS_TLS_TPREL32:
15491 case BFD_RELOC_MIPS_TLS_TPREL64:
15492 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15493 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15494 case BFD_RELOC_MICROMIPS_TLS_GD:
15495 case BFD_RELOC_MICROMIPS_TLS_LDM:
15496 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15497 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15498 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15499 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15500 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15501 case BFD_RELOC_MIPS16_TLS_GD:
15502 case BFD_RELOC_MIPS16_TLS_LDM:
15503 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15504 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15505 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15506 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15507 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15508 if (fixP->fx_addsy)
15509 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15510 else
15511 as_bad_where (fixP->fx_file, fixP->fx_line,
15512 _("TLS relocation against a constant"));
15513 break;
15514
15515 case BFD_RELOC_MIPS_JMP:
15516 case BFD_RELOC_MIPS16_JMP:
15517 case BFD_RELOC_MICROMIPS_JMP:
15518 {
15519 int shift;
15520
15521 gas_assert (!fixP->fx_done);
15522
15523 /* Shift is 2, unusually, for microMIPS JALX. */
15524 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15525 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15526 shift = 1;
15527 else
15528 shift = 2;
15529
15530 if (fix_bad_cross_mode_jump_p (fixP))
15531 as_bad_where (fixP->fx_file, fixP->fx_line,
15532 _("jump to a symbol in another ISA mode"));
15533 else if (fix_bad_same_mode_jalx_p (fixP))
15534 as_bad_where (fixP->fx_file, fixP->fx_line,
15535 _("JALX to a symbol in the same ISA mode"));
15536 else if (fix_bad_misaligned_jump_p (fixP, shift))
15537 as_bad_where (fixP->fx_file, fixP->fx_line,
15538 _("jump to misaligned address (0x%lx)"),
15539 (long) (S_GET_VALUE (fixP->fx_addsy)
15540 + fixP->fx_offset));
15541 else if (HAVE_IN_PLACE_ADDENDS
15542 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15543 as_bad_where (fixP->fx_file, fixP->fx_line,
15544 _("cannot encode misaligned addend "
15545 "in the relocatable field (0x%lx)"),
15546 (long) fixP->fx_offset);
15547 }
15548 /* Fall through. */
15549
15550 case BFD_RELOC_MIPS_SHIFT5:
15551 case BFD_RELOC_MIPS_SHIFT6:
15552 case BFD_RELOC_MIPS_GOT_DISP:
15553 case BFD_RELOC_MIPS_GOT_PAGE:
15554 case BFD_RELOC_MIPS_GOT_OFST:
15555 case BFD_RELOC_MIPS_SUB:
15556 case BFD_RELOC_MIPS_INSERT_A:
15557 case BFD_RELOC_MIPS_INSERT_B:
15558 case BFD_RELOC_MIPS_DELETE:
15559 case BFD_RELOC_MIPS_HIGHEST:
15560 case BFD_RELOC_MIPS_HIGHER:
15561 case BFD_RELOC_MIPS_SCN_DISP:
15562 case BFD_RELOC_MIPS_REL16:
15563 case BFD_RELOC_MIPS_RELGOT:
15564 case BFD_RELOC_MIPS_JALR:
15565 case BFD_RELOC_HI16:
15566 case BFD_RELOC_HI16_S:
15567 case BFD_RELOC_LO16:
15568 case BFD_RELOC_GPREL16:
15569 case BFD_RELOC_MIPS_LITERAL:
15570 case BFD_RELOC_MIPS_CALL16:
15571 case BFD_RELOC_MIPS_GOT16:
15572 case BFD_RELOC_GPREL32:
15573 case BFD_RELOC_MIPS_GOT_HI16:
15574 case BFD_RELOC_MIPS_GOT_LO16:
15575 case BFD_RELOC_MIPS_CALL_HI16:
15576 case BFD_RELOC_MIPS_CALL_LO16:
15577 case BFD_RELOC_HI16_S_PCREL:
15578 case BFD_RELOC_LO16_PCREL:
15579 case BFD_RELOC_MIPS16_GPREL:
15580 case BFD_RELOC_MIPS16_GOT16:
15581 case BFD_RELOC_MIPS16_CALL16:
15582 case BFD_RELOC_MIPS16_HI16:
15583 case BFD_RELOC_MIPS16_HI16_S:
15584 case BFD_RELOC_MIPS16_LO16:
15585 case BFD_RELOC_MICROMIPS_GOT_DISP:
15586 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15587 case BFD_RELOC_MICROMIPS_GOT_OFST:
15588 case BFD_RELOC_MICROMIPS_SUB:
15589 case BFD_RELOC_MICROMIPS_HIGHEST:
15590 case BFD_RELOC_MICROMIPS_HIGHER:
15591 case BFD_RELOC_MICROMIPS_SCN_DISP:
15592 case BFD_RELOC_MICROMIPS_JALR:
15593 case BFD_RELOC_MICROMIPS_HI16:
15594 case BFD_RELOC_MICROMIPS_HI16_S:
15595 case BFD_RELOC_MICROMIPS_LO16:
15596 case BFD_RELOC_MICROMIPS_GPREL16:
15597 case BFD_RELOC_MICROMIPS_LITERAL:
15598 case BFD_RELOC_MICROMIPS_CALL16:
15599 case BFD_RELOC_MICROMIPS_GOT16:
15600 case BFD_RELOC_MICROMIPS_GOT_HI16:
15601 case BFD_RELOC_MICROMIPS_GOT_LO16:
15602 case BFD_RELOC_MICROMIPS_CALL_HI16:
15603 case BFD_RELOC_MICROMIPS_CALL_LO16:
15604 case BFD_RELOC_MIPS_EH:
15605 if (fixP->fx_done)
15606 {
15607 offsetT value;
15608
15609 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15610 {
15611 insn = read_reloc_insn (buf, fixP->fx_r_type);
15612 if (mips16_reloc_p (fixP->fx_r_type))
15613 insn |= mips16_immed_extend (value, 16);
15614 else
15615 insn |= (value & 0xffff);
15616 write_reloc_insn (buf, fixP->fx_r_type, insn);
15617 }
15618 else
15619 as_bad_where (fixP->fx_file, fixP->fx_line,
15620 _("unsupported constant in relocation"));
15621 }
15622 break;
15623
15624 case BFD_RELOC_64:
15625 /* This is handled like BFD_RELOC_32, but we output a sign
15626 extended value if we are only 32 bits. */
15627 if (fixP->fx_done)
15628 {
15629 if (8 <= sizeof (valueT))
15630 md_number_to_chars (buf, *valP, 8);
15631 else
15632 {
15633 valueT hiv;
15634
15635 if ((*valP & 0x80000000) != 0)
15636 hiv = 0xffffffff;
15637 else
15638 hiv = 0;
15639 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15640 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15641 }
15642 }
15643 break;
15644
15645 case BFD_RELOC_RVA:
15646 case BFD_RELOC_32:
15647 case BFD_RELOC_32_PCREL:
15648 case BFD_RELOC_16:
15649 case BFD_RELOC_8:
15650 /* If we are deleting this reloc entry, we must fill in the
15651 value now. This can happen if we have a .word which is not
15652 resolved when it appears but is later defined. */
15653 if (fixP->fx_done)
15654 md_number_to_chars (buf, *valP, fixP->fx_size);
15655 break;
15656
15657 case BFD_RELOC_MIPS_21_PCREL_S2:
15658 fix_validate_branch (fixP, *valP);
15659 if (!fixP->fx_done)
15660 break;
15661
15662 if (*valP + 0x400000 <= 0x7fffff)
15663 {
15664 insn = read_insn (buf);
15665 insn |= (*valP >> 2) & 0x1fffff;
15666 write_insn (buf, insn);
15667 }
15668 else
15669 as_bad_where (fixP->fx_file, fixP->fx_line,
15670 _("branch out of range"));
15671 break;
15672
15673 case BFD_RELOC_MIPS_26_PCREL_S2:
15674 fix_validate_branch (fixP, *valP);
15675 if (!fixP->fx_done)
15676 break;
15677
15678 if (*valP + 0x8000000 <= 0xfffffff)
15679 {
15680 insn = read_insn (buf);
15681 insn |= (*valP >> 2) & 0x3ffffff;
15682 write_insn (buf, insn);
15683 }
15684 else
15685 as_bad_where (fixP->fx_file, fixP->fx_line,
15686 _("branch out of range"));
15687 break;
15688
15689 case BFD_RELOC_MIPS_18_PCREL_S3:
15690 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15691 as_bad_where (fixP->fx_file, fixP->fx_line,
15692 _("PC-relative access using misaligned symbol (%lx)"),
15693 (long) S_GET_VALUE (fixP->fx_addsy));
15694 if ((fixP->fx_offset & 0x7) != 0)
15695 as_bad_where (fixP->fx_file, fixP->fx_line,
15696 _("PC-relative access using misaligned offset (%lx)"),
15697 (long) fixP->fx_offset);
15698 if (!fixP->fx_done)
15699 break;
15700
15701 if (*valP + 0x100000 <= 0x1fffff)
15702 {
15703 insn = read_insn (buf);
15704 insn |= (*valP >> 3) & 0x3ffff;
15705 write_insn (buf, insn);
15706 }
15707 else
15708 as_bad_where (fixP->fx_file, fixP->fx_line,
15709 _("PC-relative access out of range"));
15710 break;
15711
15712 case BFD_RELOC_MIPS_19_PCREL_S2:
15713 if ((*valP & 0x3) != 0)
15714 as_bad_where (fixP->fx_file, fixP->fx_line,
15715 _("PC-relative access to misaligned address (%lx)"),
15716 (long) *valP);
15717 if (!fixP->fx_done)
15718 break;
15719
15720 if (*valP + 0x100000 <= 0x1fffff)
15721 {
15722 insn = read_insn (buf);
15723 insn |= (*valP >> 2) & 0x7ffff;
15724 write_insn (buf, insn);
15725 }
15726 else
15727 as_bad_where (fixP->fx_file, fixP->fx_line,
15728 _("PC-relative access out of range"));
15729 break;
15730
15731 case BFD_RELOC_16_PCREL_S2:
15732 fix_validate_branch (fixP, *valP);
15733
15734 /* We need to save the bits in the instruction since fixup_segment()
15735 might be deleting the relocation entry (i.e., a branch within
15736 the current segment). */
15737 if (! fixP->fx_done)
15738 break;
15739
15740 /* Update old instruction data. */
15741 insn = read_insn (buf);
15742
15743 if (*valP + 0x20000 <= 0x3ffff)
15744 {
15745 insn |= (*valP >> 2) & 0xffff;
15746 write_insn (buf, insn);
15747 }
15748 else if (fixP->fx_tcbit2
15749 && fixP->fx_done
15750 && fixP->fx_frag->fr_address >= text_section->vma
15751 && (fixP->fx_frag->fr_address
15752 < text_section->vma + bfd_get_section_size (text_section))
15753 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15754 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15755 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15756 {
15757 /* The branch offset is too large. If this is an
15758 unconditional branch, and we are not generating PIC code,
15759 we can convert it to an absolute jump instruction. */
15760 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15761 insn = 0x0c000000; /* jal */
15762 else
15763 insn = 0x08000000; /* j */
15764 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15765 fixP->fx_done = 0;
15766 fixP->fx_addsy = section_symbol (text_section);
15767 *valP += md_pcrel_from (fixP);
15768 write_insn (buf, insn);
15769 }
15770 else
15771 {
15772 /* If we got here, we have branch-relaxation disabled,
15773 and there's nothing we can do to fix this instruction
15774 without turning it into a longer sequence. */
15775 as_bad_where (fixP->fx_file, fixP->fx_line,
15776 _("branch out of range"));
15777 }
15778 break;
15779
15780 case BFD_RELOC_MIPS16_16_PCREL_S1:
15781 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15782 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15783 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15784 gas_assert (!fixP->fx_done);
15785 if (fix_bad_cross_mode_branch_p (fixP))
15786 as_bad_where (fixP->fx_file, fixP->fx_line,
15787 _("branch to a symbol in another ISA mode"));
15788 else if (fixP->fx_addsy
15789 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15790 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15791 && (fixP->fx_offset & 0x1) != 0)
15792 as_bad_where (fixP->fx_file, fixP->fx_line,
15793 _("branch to misaligned address (0x%lx)"),
15794 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15795 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15796 as_bad_where (fixP->fx_file, fixP->fx_line,
15797 _("cannot encode misaligned addend "
15798 "in the relocatable field (0x%lx)"),
15799 (long) fixP->fx_offset);
15800 break;
15801
15802 case BFD_RELOC_VTABLE_INHERIT:
15803 fixP->fx_done = 0;
15804 if (fixP->fx_addsy
15805 && !S_IS_DEFINED (fixP->fx_addsy)
15806 && !S_IS_WEAK (fixP->fx_addsy))
15807 S_SET_WEAK (fixP->fx_addsy);
15808 break;
15809
15810 case BFD_RELOC_NONE:
15811 case BFD_RELOC_VTABLE_ENTRY:
15812 fixP->fx_done = 0;
15813 break;
15814
15815 default:
15816 abort ();
15817 }
15818
15819 /* Remember value for tc_gen_reloc. */
15820 fixP->fx_addnumber = *valP;
15821 }
15822
15823 static symbolS *
15824 get_symbol (void)
15825 {
15826 int c;
15827 char *name;
15828 symbolS *p;
15829
15830 c = get_symbol_name (&name);
15831 p = (symbolS *) symbol_find_or_make (name);
15832 (void) restore_line_pointer (c);
15833 return p;
15834 }
15835
15836 /* Align the current frag to a given power of two. If a particular
15837 fill byte should be used, FILL points to an integer that contains
15838 that byte, otherwise FILL is null.
15839
15840 This function used to have the comment:
15841
15842 The MIPS assembler also automatically adjusts any preceding label.
15843
15844 The implementation therefore applied the adjustment to a maximum of
15845 one label. However, other label adjustments are applied to batches
15846 of labels, and adjusting just one caused problems when new labels
15847 were added for the sake of debugging or unwind information.
15848 We therefore adjust all preceding labels (given as LABELS) instead. */
15849
15850 static void
15851 mips_align (int to, int *fill, struct insn_label_list *labels)
15852 {
15853 mips_emit_delays ();
15854 mips_record_compressed_mode ();
15855 if (fill == NULL && subseg_text_p (now_seg))
15856 frag_align_code (to, 0);
15857 else
15858 frag_align (to, fill ? *fill : 0, 0);
15859 record_alignment (now_seg, to);
15860 mips_move_labels (labels, FALSE);
15861 }
15862
15863 /* Align to a given power of two. .align 0 turns off the automatic
15864 alignment used by the data creating pseudo-ops. */
15865
15866 static void
15867 s_align (int x ATTRIBUTE_UNUSED)
15868 {
15869 int temp, fill_value, *fill_ptr;
15870 long max_alignment = 28;
15871
15872 /* o Note that the assembler pulls down any immediately preceding label
15873 to the aligned address.
15874 o It's not documented but auto alignment is reinstated by
15875 a .align pseudo instruction.
15876 o Note also that after auto alignment is turned off the mips assembler
15877 issues an error on attempt to assemble an improperly aligned data item.
15878 We don't. */
15879
15880 temp = get_absolute_expression ();
15881 if (temp > max_alignment)
15882 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15883 else if (temp < 0)
15884 {
15885 as_warn (_("alignment negative, 0 assumed"));
15886 temp = 0;
15887 }
15888 if (*input_line_pointer == ',')
15889 {
15890 ++input_line_pointer;
15891 fill_value = get_absolute_expression ();
15892 fill_ptr = &fill_value;
15893 }
15894 else
15895 fill_ptr = 0;
15896 if (temp)
15897 {
15898 segment_info_type *si = seg_info (now_seg);
15899 struct insn_label_list *l = si->label_list;
15900 /* Auto alignment should be switched on by next section change. */
15901 auto_align = 1;
15902 mips_align (temp, fill_ptr, l);
15903 }
15904 else
15905 {
15906 auto_align = 0;
15907 }
15908
15909 demand_empty_rest_of_line ();
15910 }
15911
15912 static void
15913 s_change_sec (int sec)
15914 {
15915 segT seg;
15916
15917 /* The ELF backend needs to know that we are changing sections, so
15918 that .previous works correctly. We could do something like check
15919 for an obj_section_change_hook macro, but that might be confusing
15920 as it would not be appropriate to use it in the section changing
15921 functions in read.c, since obj-elf.c intercepts those. FIXME:
15922 This should be cleaner, somehow. */
15923 obj_elf_section_change_hook ();
15924
15925 mips_emit_delays ();
15926
15927 switch (sec)
15928 {
15929 case 't':
15930 s_text (0);
15931 break;
15932 case 'd':
15933 s_data (0);
15934 break;
15935 case 'b':
15936 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15937 demand_empty_rest_of_line ();
15938 break;
15939
15940 case 'r':
15941 seg = subseg_new (RDATA_SECTION_NAME,
15942 (subsegT) get_absolute_expression ());
15943 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15944 | SEC_READONLY | SEC_RELOC
15945 | SEC_DATA));
15946 if (strncmp (TARGET_OS, "elf", 3) != 0)
15947 record_alignment (seg, 4);
15948 demand_empty_rest_of_line ();
15949 break;
15950
15951 case 's':
15952 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15953 bfd_set_section_flags (stdoutput, seg,
15954 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15955 if (strncmp (TARGET_OS, "elf", 3) != 0)
15956 record_alignment (seg, 4);
15957 demand_empty_rest_of_line ();
15958 break;
15959
15960 case 'B':
15961 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15962 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15963 if (strncmp (TARGET_OS, "elf", 3) != 0)
15964 record_alignment (seg, 4);
15965 demand_empty_rest_of_line ();
15966 break;
15967 }
15968
15969 auto_align = 1;
15970 }
15971
15972 void
15973 s_change_section (int ignore ATTRIBUTE_UNUSED)
15974 {
15975 char *saved_ilp;
15976 char *section_name;
15977 char c, endc;
15978 char next_c = 0;
15979 int section_type;
15980 int section_flag;
15981 int section_entry_size;
15982 int section_alignment;
15983
15984 saved_ilp = input_line_pointer;
15985 endc = get_symbol_name (&section_name);
15986 c = (endc == '"' ? input_line_pointer[1] : endc);
15987 if (c)
15988 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15989
15990 /* Do we have .section Name<,"flags">? */
15991 if (c != ',' || (c == ',' && next_c == '"'))
15992 {
15993 /* Just after name is now '\0'. */
15994 (void) restore_line_pointer (endc);
15995 input_line_pointer = saved_ilp;
15996 obj_elf_section (ignore);
15997 return;
15998 }
15999
16000 section_name = xstrdup (section_name);
16001 c = restore_line_pointer (endc);
16002
16003 input_line_pointer++;
16004
16005 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
16006 if (c == ',')
16007 section_type = get_absolute_expression ();
16008 else
16009 section_type = 0;
16010
16011 if (*input_line_pointer++ == ',')
16012 section_flag = get_absolute_expression ();
16013 else
16014 section_flag = 0;
16015
16016 if (*input_line_pointer++ == ',')
16017 section_entry_size = get_absolute_expression ();
16018 else
16019 section_entry_size = 0;
16020
16021 if (*input_line_pointer++ == ',')
16022 section_alignment = get_absolute_expression ();
16023 else
16024 section_alignment = 0;
16025
16026 /* FIXME: really ignore? */
16027 (void) section_alignment;
16028
16029 /* When using the generic form of .section (as implemented by obj-elf.c),
16030 there's no way to set the section type to SHT_MIPS_DWARF. Users have
16031 traditionally had to fall back on the more common @progbits instead.
16032
16033 There's nothing really harmful in this, since bfd will correct
16034 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
16035 means that, for backwards compatibility, the special_section entries
16036 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
16037
16038 Even so, we shouldn't force users of the MIPS .section syntax to
16039 incorrectly label the sections as SHT_PROGBITS. The best compromise
16040 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
16041 generic type-checking code. */
16042 if (section_type == SHT_MIPS_DWARF)
16043 section_type = SHT_PROGBITS;
16044
16045 obj_elf_change_section (section_name, section_type, 0, section_flag,
16046 section_entry_size, 0, 0, 0);
16047
16048 if (now_seg->name != section_name)
16049 free (section_name);
16050 }
16051
16052 void
16053 mips_enable_auto_align (void)
16054 {
16055 auto_align = 1;
16056 }
16057
16058 static void
16059 s_cons (int log_size)
16060 {
16061 segment_info_type *si = seg_info (now_seg);
16062 struct insn_label_list *l = si->label_list;
16063
16064 mips_emit_delays ();
16065 if (log_size > 0 && auto_align)
16066 mips_align (log_size, 0, l);
16067 cons (1 << log_size);
16068 mips_clear_insn_labels ();
16069 }
16070
16071 static void
16072 s_float_cons (int type)
16073 {
16074 segment_info_type *si = seg_info (now_seg);
16075 struct insn_label_list *l = si->label_list;
16076
16077 mips_emit_delays ();
16078
16079 if (auto_align)
16080 {
16081 if (type == 'd')
16082 mips_align (3, 0, l);
16083 else
16084 mips_align (2, 0, l);
16085 }
16086
16087 float_cons (type);
16088 mips_clear_insn_labels ();
16089 }
16090
16091 /* Handle .globl. We need to override it because on Irix 5 you are
16092 permitted to say
16093 .globl foo .text
16094 where foo is an undefined symbol, to mean that foo should be
16095 considered to be the address of a function. */
16096
16097 static void
16098 s_mips_globl (int x ATTRIBUTE_UNUSED)
16099 {
16100 char *name;
16101 int c;
16102 symbolS *symbolP;
16103 flagword flag;
16104
16105 do
16106 {
16107 c = get_symbol_name (&name);
16108 symbolP = symbol_find_or_make (name);
16109 S_SET_EXTERNAL (symbolP);
16110
16111 *input_line_pointer = c;
16112 SKIP_WHITESPACE_AFTER_NAME ();
16113
16114 /* On Irix 5, every global symbol that is not explicitly labelled as
16115 being a function is apparently labelled as being an object. */
16116 flag = BSF_OBJECT;
16117
16118 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16119 && (*input_line_pointer != ','))
16120 {
16121 char *secname;
16122 asection *sec;
16123
16124 c = get_symbol_name (&secname);
16125 sec = bfd_get_section_by_name (stdoutput, secname);
16126 if (sec == NULL)
16127 as_bad (_("%s: no such section"), secname);
16128 (void) restore_line_pointer (c);
16129
16130 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16131 flag = BSF_FUNCTION;
16132 }
16133
16134 symbol_get_bfdsym (symbolP)->flags |= flag;
16135
16136 c = *input_line_pointer;
16137 if (c == ',')
16138 {
16139 input_line_pointer++;
16140 SKIP_WHITESPACE ();
16141 if (is_end_of_line[(unsigned char) *input_line_pointer])
16142 c = '\n';
16143 }
16144 }
16145 while (c == ',');
16146
16147 demand_empty_rest_of_line ();
16148 }
16149
16150 static void
16151 s_option (int x ATTRIBUTE_UNUSED)
16152 {
16153 char *opt;
16154 char c;
16155
16156 c = get_symbol_name (&opt);
16157
16158 if (*opt == 'O')
16159 {
16160 /* FIXME: What does this mean? */
16161 }
16162 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
16163 {
16164 int i;
16165
16166 i = atoi (opt + 3);
16167 if (i != 0 && i != 2)
16168 as_bad (_(".option pic%d not supported"), i);
16169 else if (mips_pic == VXWORKS_PIC)
16170 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16171 else if (i == 0)
16172 mips_pic = NO_PIC;
16173 else if (i == 2)
16174 {
16175 mips_pic = SVR4_PIC;
16176 mips_abicalls = TRUE;
16177 }
16178
16179 if (mips_pic == SVR4_PIC)
16180 {
16181 if (g_switch_seen && g_switch_value != 0)
16182 as_warn (_("-G may not be used with SVR4 PIC code"));
16183 g_switch_value = 0;
16184 bfd_set_gp_size (stdoutput, 0);
16185 }
16186 }
16187 else
16188 as_warn (_("unrecognized option \"%s\""), opt);
16189
16190 (void) restore_line_pointer (c);
16191 demand_empty_rest_of_line ();
16192 }
16193
16194 /* This structure is used to hold a stack of .set values. */
16195
16196 struct mips_option_stack
16197 {
16198 struct mips_option_stack *next;
16199 struct mips_set_options options;
16200 };
16201
16202 static struct mips_option_stack *mips_opts_stack;
16203
16204 /* Return status for .set/.module option handling. */
16205
16206 enum code_option_type
16207 {
16208 /* Unrecognized option. */
16209 OPTION_TYPE_BAD = -1,
16210
16211 /* Ordinary option. */
16212 OPTION_TYPE_NORMAL,
16213
16214 /* ISA changing option. */
16215 OPTION_TYPE_ISA
16216 };
16217
16218 /* Handle common .set/.module options. Return status indicating option
16219 type. */
16220
16221 static enum code_option_type
16222 parse_code_option (char * name)
16223 {
16224 bfd_boolean isa_set = FALSE;
16225 const struct mips_ase *ase;
16226
16227 if (strncmp (name, "at=", 3) == 0)
16228 {
16229 char *s = name + 3;
16230
16231 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16232 as_bad (_("unrecognized register name `%s'"), s);
16233 }
16234 else if (strcmp (name, "at") == 0)
16235 mips_opts.at = ATREG;
16236 else if (strcmp (name, "noat") == 0)
16237 mips_opts.at = ZERO;
16238 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16239 mips_opts.nomove = 0;
16240 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16241 mips_opts.nomove = 1;
16242 else if (strcmp (name, "bopt") == 0)
16243 mips_opts.nobopt = 0;
16244 else if (strcmp (name, "nobopt") == 0)
16245 mips_opts.nobopt = 1;
16246 else if (strcmp (name, "gp=32") == 0)
16247 mips_opts.gp = 32;
16248 else if (strcmp (name, "gp=64") == 0)
16249 mips_opts.gp = 64;
16250 else if (strcmp (name, "fp=32") == 0)
16251 mips_opts.fp = 32;
16252 else if (strcmp (name, "fp=xx") == 0)
16253 mips_opts.fp = 0;
16254 else if (strcmp (name, "fp=64") == 0)
16255 mips_opts.fp = 64;
16256 else if (strcmp (name, "softfloat") == 0)
16257 mips_opts.soft_float = 1;
16258 else if (strcmp (name, "hardfloat") == 0)
16259 mips_opts.soft_float = 0;
16260 else if (strcmp (name, "singlefloat") == 0)
16261 mips_opts.single_float = 1;
16262 else if (strcmp (name, "doublefloat") == 0)
16263 mips_opts.single_float = 0;
16264 else if (strcmp (name, "nooddspreg") == 0)
16265 mips_opts.oddspreg = 0;
16266 else if (strcmp (name, "oddspreg") == 0)
16267 mips_opts.oddspreg = 1;
16268 else if (strcmp (name, "mips16") == 0
16269 || strcmp (name, "MIPS-16") == 0)
16270 mips_opts.mips16 = 1;
16271 else if (strcmp (name, "nomips16") == 0
16272 || strcmp (name, "noMIPS-16") == 0)
16273 mips_opts.mips16 = 0;
16274 else if (strcmp (name, "micromips") == 0)
16275 mips_opts.micromips = 1;
16276 else if (strcmp (name, "nomicromips") == 0)
16277 mips_opts.micromips = 0;
16278 else if (name[0] == 'n'
16279 && name[1] == 'o'
16280 && (ase = mips_lookup_ase (name + 2)))
16281 mips_set_ase (ase, &mips_opts, FALSE);
16282 else if ((ase = mips_lookup_ase (name)))
16283 mips_set_ase (ase, &mips_opts, TRUE);
16284 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16285 {
16286 /* Permit the user to change the ISA and architecture on the fly.
16287 Needless to say, misuse can cause serious problems. */
16288 if (strncmp (name, "arch=", 5) == 0)
16289 {
16290 const struct mips_cpu_info *p;
16291
16292 p = mips_parse_cpu ("internal use", name + 5);
16293 if (!p)
16294 as_bad (_("unknown architecture %s"), name + 5);
16295 else
16296 {
16297 mips_opts.arch = p->cpu;
16298 mips_opts.isa = p->isa;
16299 isa_set = TRUE;
16300 }
16301 }
16302 else if (strncmp (name, "mips", 4) == 0)
16303 {
16304 const struct mips_cpu_info *p;
16305
16306 p = mips_parse_cpu ("internal use", name);
16307 if (!p)
16308 as_bad (_("unknown ISA level %s"), name + 4);
16309 else
16310 {
16311 mips_opts.arch = p->cpu;
16312 mips_opts.isa = p->isa;
16313 isa_set = TRUE;
16314 }
16315 }
16316 else
16317 as_bad (_("unknown ISA or architecture %s"), name);
16318 }
16319 else if (strcmp (name, "autoextend") == 0)
16320 mips_opts.noautoextend = 0;
16321 else if (strcmp (name, "noautoextend") == 0)
16322 mips_opts.noautoextend = 1;
16323 else if (strcmp (name, "insn32") == 0)
16324 mips_opts.insn32 = TRUE;
16325 else if (strcmp (name, "noinsn32") == 0)
16326 mips_opts.insn32 = FALSE;
16327 else if (strcmp (name, "sym32") == 0)
16328 mips_opts.sym32 = TRUE;
16329 else if (strcmp (name, "nosym32") == 0)
16330 mips_opts.sym32 = FALSE;
16331 else
16332 return OPTION_TYPE_BAD;
16333
16334 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16335 }
16336
16337 /* Handle the .set pseudo-op. */
16338
16339 static void
16340 s_mipsset (int x ATTRIBUTE_UNUSED)
16341 {
16342 enum code_option_type type = OPTION_TYPE_NORMAL;
16343 char *name = input_line_pointer, ch;
16344
16345 file_mips_check_options ();
16346
16347 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16348 ++input_line_pointer;
16349 ch = *input_line_pointer;
16350 *input_line_pointer = '\0';
16351
16352 if (strchr (name, ','))
16353 {
16354 /* Generic ".set" directive; use the generic handler. */
16355 *input_line_pointer = ch;
16356 input_line_pointer = name;
16357 s_set (0);
16358 return;
16359 }
16360
16361 if (strcmp (name, "reorder") == 0)
16362 {
16363 if (mips_opts.noreorder)
16364 end_noreorder ();
16365 }
16366 else if (strcmp (name, "noreorder") == 0)
16367 {
16368 if (!mips_opts.noreorder)
16369 start_noreorder ();
16370 }
16371 else if (strcmp (name, "macro") == 0)
16372 mips_opts.warn_about_macros = 0;
16373 else if (strcmp (name, "nomacro") == 0)
16374 {
16375 if (mips_opts.noreorder == 0)
16376 as_bad (_("`noreorder' must be set before `nomacro'"));
16377 mips_opts.warn_about_macros = 1;
16378 }
16379 else if (strcmp (name, "gp=default") == 0)
16380 mips_opts.gp = file_mips_opts.gp;
16381 else if (strcmp (name, "fp=default") == 0)
16382 mips_opts.fp = file_mips_opts.fp;
16383 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16384 {
16385 mips_opts.isa = file_mips_opts.isa;
16386 mips_opts.arch = file_mips_opts.arch;
16387 mips_opts.gp = file_mips_opts.gp;
16388 mips_opts.fp = file_mips_opts.fp;
16389 }
16390 else if (strcmp (name, "push") == 0)
16391 {
16392 struct mips_option_stack *s;
16393
16394 s = XNEW (struct mips_option_stack);
16395 s->next = mips_opts_stack;
16396 s->options = mips_opts;
16397 mips_opts_stack = s;
16398 }
16399 else if (strcmp (name, "pop") == 0)
16400 {
16401 struct mips_option_stack *s;
16402
16403 s = mips_opts_stack;
16404 if (s == NULL)
16405 as_bad (_(".set pop with no .set push"));
16406 else
16407 {
16408 /* If we're changing the reorder mode we need to handle
16409 delay slots correctly. */
16410 if (s->options.noreorder && ! mips_opts.noreorder)
16411 start_noreorder ();
16412 else if (! s->options.noreorder && mips_opts.noreorder)
16413 end_noreorder ();
16414
16415 mips_opts = s->options;
16416 mips_opts_stack = s->next;
16417 free (s);
16418 }
16419 }
16420 else
16421 {
16422 type = parse_code_option (name);
16423 if (type == OPTION_TYPE_BAD)
16424 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16425 }
16426
16427 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16428 registers based on what is supported by the arch/cpu. */
16429 if (type == OPTION_TYPE_ISA)
16430 {
16431 switch (mips_opts.isa)
16432 {
16433 case 0:
16434 break;
16435 case ISA_MIPS1:
16436 /* MIPS I cannot support FPXX. */
16437 mips_opts.fp = 32;
16438 /* fall-through. */
16439 case ISA_MIPS2:
16440 case ISA_MIPS32:
16441 case ISA_MIPS32R2:
16442 case ISA_MIPS32R3:
16443 case ISA_MIPS32R5:
16444 mips_opts.gp = 32;
16445 if (mips_opts.fp != 0)
16446 mips_opts.fp = 32;
16447 break;
16448 case ISA_MIPS32R6:
16449 mips_opts.gp = 32;
16450 mips_opts.fp = 64;
16451 break;
16452 case ISA_MIPS3:
16453 case ISA_MIPS4:
16454 case ISA_MIPS5:
16455 case ISA_MIPS64:
16456 case ISA_MIPS64R2:
16457 case ISA_MIPS64R3:
16458 case ISA_MIPS64R5:
16459 case ISA_MIPS64R6:
16460 mips_opts.gp = 64;
16461 if (mips_opts.fp != 0)
16462 {
16463 if (mips_opts.arch == CPU_R5900)
16464 mips_opts.fp = 32;
16465 else
16466 mips_opts.fp = 64;
16467 }
16468 break;
16469 default:
16470 as_bad (_("unknown ISA level %s"), name + 4);
16471 break;
16472 }
16473 }
16474
16475 mips_check_options (&mips_opts, FALSE);
16476
16477 mips_check_isa_supports_ases ();
16478 *input_line_pointer = ch;
16479 demand_empty_rest_of_line ();
16480 }
16481
16482 /* Handle the .module pseudo-op. */
16483
16484 static void
16485 s_module (int ignore ATTRIBUTE_UNUSED)
16486 {
16487 char *name = input_line_pointer, ch;
16488
16489 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16490 ++input_line_pointer;
16491 ch = *input_line_pointer;
16492 *input_line_pointer = '\0';
16493
16494 if (!file_mips_opts_checked)
16495 {
16496 if (parse_code_option (name) == OPTION_TYPE_BAD)
16497 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16498
16499 /* Update module level settings from mips_opts. */
16500 file_mips_opts = mips_opts;
16501 }
16502 else
16503 as_bad (_(".module is not permitted after generating code"));
16504
16505 *input_line_pointer = ch;
16506 demand_empty_rest_of_line ();
16507 }
16508
16509 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16510 .option pic2. It means to generate SVR4 PIC calls. */
16511
16512 static void
16513 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16514 {
16515 mips_pic = SVR4_PIC;
16516 mips_abicalls = TRUE;
16517
16518 if (g_switch_seen && g_switch_value != 0)
16519 as_warn (_("-G may not be used with SVR4 PIC code"));
16520 g_switch_value = 0;
16521
16522 bfd_set_gp_size (stdoutput, 0);
16523 demand_empty_rest_of_line ();
16524 }
16525
16526 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16527 PIC code. It sets the $gp register for the function based on the
16528 function address, which is in the register named in the argument.
16529 This uses a relocation against _gp_disp, which is handled specially
16530 by the linker. The result is:
16531 lui $gp,%hi(_gp_disp)
16532 addiu $gp,$gp,%lo(_gp_disp)
16533 addu $gp,$gp,.cpload argument
16534 The .cpload argument is normally $25 == $t9.
16535
16536 The -mno-shared option changes this to:
16537 lui $gp,%hi(__gnu_local_gp)
16538 addiu $gp,$gp,%lo(__gnu_local_gp)
16539 and the argument is ignored. This saves an instruction, but the
16540 resulting code is not position independent; it uses an absolute
16541 address for __gnu_local_gp. Thus code assembled with -mno-shared
16542 can go into an ordinary executable, but not into a shared library. */
16543
16544 static void
16545 s_cpload (int ignore ATTRIBUTE_UNUSED)
16546 {
16547 expressionS ex;
16548 int reg;
16549 int in_shared;
16550
16551 file_mips_check_options ();
16552
16553 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16554 .cpload is ignored. */
16555 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16556 {
16557 s_ignore (0);
16558 return;
16559 }
16560
16561 if (mips_opts.mips16)
16562 {
16563 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16564 ignore_rest_of_line ();
16565 return;
16566 }
16567
16568 /* .cpload should be in a .set noreorder section. */
16569 if (mips_opts.noreorder == 0)
16570 as_warn (_(".cpload not in noreorder section"));
16571
16572 reg = tc_get_register (0);
16573
16574 /* If we need to produce a 64-bit address, we are better off using
16575 the default instruction sequence. */
16576 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16577
16578 ex.X_op = O_symbol;
16579 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16580 "__gnu_local_gp");
16581 ex.X_op_symbol = NULL;
16582 ex.X_add_number = 0;
16583
16584 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16585 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16586
16587 mips_mark_labels ();
16588 mips_assembling_insn = TRUE;
16589
16590 macro_start ();
16591 macro_build_lui (&ex, mips_gp_register);
16592 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16593 mips_gp_register, BFD_RELOC_LO16);
16594 if (in_shared)
16595 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16596 mips_gp_register, reg);
16597 macro_end ();
16598
16599 mips_assembling_insn = FALSE;
16600 demand_empty_rest_of_line ();
16601 }
16602
16603 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16604 .cpsetup $reg1, offset|$reg2, label
16605
16606 If offset is given, this results in:
16607 sd $gp, offset($sp)
16608 lui $gp, %hi(%neg(%gp_rel(label)))
16609 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16610 daddu $gp, $gp, $reg1
16611
16612 If $reg2 is given, this results in:
16613 or $reg2, $gp, $0
16614 lui $gp, %hi(%neg(%gp_rel(label)))
16615 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16616 daddu $gp, $gp, $reg1
16617 $reg1 is normally $25 == $t9.
16618
16619 The -mno-shared option replaces the last three instructions with
16620 lui $gp,%hi(_gp)
16621 addiu $gp,$gp,%lo(_gp) */
16622
16623 static void
16624 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16625 {
16626 expressionS ex_off;
16627 expressionS ex_sym;
16628 int reg1;
16629
16630 file_mips_check_options ();
16631
16632 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16633 We also need NewABI support. */
16634 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16635 {
16636 s_ignore (0);
16637 return;
16638 }
16639
16640 if (mips_opts.mips16)
16641 {
16642 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16643 ignore_rest_of_line ();
16644 return;
16645 }
16646
16647 reg1 = tc_get_register (0);
16648 SKIP_WHITESPACE ();
16649 if (*input_line_pointer != ',')
16650 {
16651 as_bad (_("missing argument separator ',' for .cpsetup"));
16652 return;
16653 }
16654 else
16655 ++input_line_pointer;
16656 SKIP_WHITESPACE ();
16657 if (*input_line_pointer == '$')
16658 {
16659 mips_cpreturn_register = tc_get_register (0);
16660 mips_cpreturn_offset = -1;
16661 }
16662 else
16663 {
16664 mips_cpreturn_offset = get_absolute_expression ();
16665 mips_cpreturn_register = -1;
16666 }
16667 SKIP_WHITESPACE ();
16668 if (*input_line_pointer != ',')
16669 {
16670 as_bad (_("missing argument separator ',' for .cpsetup"));
16671 return;
16672 }
16673 else
16674 ++input_line_pointer;
16675 SKIP_WHITESPACE ();
16676 expression (&ex_sym);
16677
16678 mips_mark_labels ();
16679 mips_assembling_insn = TRUE;
16680
16681 macro_start ();
16682 if (mips_cpreturn_register == -1)
16683 {
16684 ex_off.X_op = O_constant;
16685 ex_off.X_add_symbol = NULL;
16686 ex_off.X_op_symbol = NULL;
16687 ex_off.X_add_number = mips_cpreturn_offset;
16688
16689 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16690 BFD_RELOC_LO16, SP);
16691 }
16692 else
16693 move_register (mips_cpreturn_register, mips_gp_register);
16694
16695 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16696 {
16697 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16698 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16699 BFD_RELOC_HI16_S);
16700
16701 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16702 mips_gp_register, -1, BFD_RELOC_GPREL16,
16703 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16704
16705 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16706 mips_gp_register, reg1);
16707 }
16708 else
16709 {
16710 expressionS ex;
16711
16712 ex.X_op = O_symbol;
16713 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16714 ex.X_op_symbol = NULL;
16715 ex.X_add_number = 0;
16716
16717 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16718 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16719
16720 macro_build_lui (&ex, mips_gp_register);
16721 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16722 mips_gp_register, BFD_RELOC_LO16);
16723 }
16724
16725 macro_end ();
16726
16727 mips_assembling_insn = FALSE;
16728 demand_empty_rest_of_line ();
16729 }
16730
16731 static void
16732 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16733 {
16734 file_mips_check_options ();
16735
16736 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16737 .cplocal is ignored. */
16738 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16739 {
16740 s_ignore (0);
16741 return;
16742 }
16743
16744 if (mips_opts.mips16)
16745 {
16746 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16747 ignore_rest_of_line ();
16748 return;
16749 }
16750
16751 mips_gp_register = tc_get_register (0);
16752 demand_empty_rest_of_line ();
16753 }
16754
16755 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16756 offset from $sp. The offset is remembered, and after making a PIC
16757 call $gp is restored from that location. */
16758
16759 static void
16760 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16761 {
16762 expressionS ex;
16763
16764 file_mips_check_options ();
16765
16766 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16767 .cprestore is ignored. */
16768 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16769 {
16770 s_ignore (0);
16771 return;
16772 }
16773
16774 if (mips_opts.mips16)
16775 {
16776 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16777 ignore_rest_of_line ();
16778 return;
16779 }
16780
16781 mips_cprestore_offset = get_absolute_expression ();
16782 mips_cprestore_valid = 1;
16783
16784 ex.X_op = O_constant;
16785 ex.X_add_symbol = NULL;
16786 ex.X_op_symbol = NULL;
16787 ex.X_add_number = mips_cprestore_offset;
16788
16789 mips_mark_labels ();
16790 mips_assembling_insn = TRUE;
16791
16792 macro_start ();
16793 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16794 SP, HAVE_64BIT_ADDRESSES);
16795 macro_end ();
16796
16797 mips_assembling_insn = FALSE;
16798 demand_empty_rest_of_line ();
16799 }
16800
16801 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16802 was given in the preceding .cpsetup, it results in:
16803 ld $gp, offset($sp)
16804
16805 If a register $reg2 was given there, it results in:
16806 or $gp, $reg2, $0 */
16807
16808 static void
16809 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16810 {
16811 expressionS ex;
16812
16813 file_mips_check_options ();
16814
16815 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16816 We also need NewABI support. */
16817 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16818 {
16819 s_ignore (0);
16820 return;
16821 }
16822
16823 if (mips_opts.mips16)
16824 {
16825 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16826 ignore_rest_of_line ();
16827 return;
16828 }
16829
16830 mips_mark_labels ();
16831 mips_assembling_insn = TRUE;
16832
16833 macro_start ();
16834 if (mips_cpreturn_register == -1)
16835 {
16836 ex.X_op = O_constant;
16837 ex.X_add_symbol = NULL;
16838 ex.X_op_symbol = NULL;
16839 ex.X_add_number = mips_cpreturn_offset;
16840
16841 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16842 }
16843 else
16844 move_register (mips_gp_register, mips_cpreturn_register);
16845
16846 macro_end ();
16847
16848 mips_assembling_insn = FALSE;
16849 demand_empty_rest_of_line ();
16850 }
16851
16852 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16853 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16854 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16855 debug information or MIPS16 TLS. */
16856
16857 static void
16858 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16859 bfd_reloc_code_real_type rtype)
16860 {
16861 expressionS ex;
16862 char *p;
16863
16864 expression (&ex);
16865
16866 if (ex.X_op != O_symbol)
16867 {
16868 as_bad (_("unsupported use of %s"), dirstr);
16869 ignore_rest_of_line ();
16870 }
16871
16872 p = frag_more (bytes);
16873 md_number_to_chars (p, 0, bytes);
16874 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16875 demand_empty_rest_of_line ();
16876 mips_clear_insn_labels ();
16877 }
16878
16879 /* Handle .dtprelword. */
16880
16881 static void
16882 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16883 {
16884 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16885 }
16886
16887 /* Handle .dtpreldword. */
16888
16889 static void
16890 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16891 {
16892 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16893 }
16894
16895 /* Handle .tprelword. */
16896
16897 static void
16898 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16899 {
16900 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16901 }
16902
16903 /* Handle .tpreldword. */
16904
16905 static void
16906 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16907 {
16908 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16909 }
16910
16911 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16912 code. It sets the offset to use in gp_rel relocations. */
16913
16914 static void
16915 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16916 {
16917 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16918 We also need NewABI support. */
16919 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16920 {
16921 s_ignore (0);
16922 return;
16923 }
16924
16925 mips_gprel_offset = get_absolute_expression ();
16926
16927 demand_empty_rest_of_line ();
16928 }
16929
16930 /* Handle the .gpword pseudo-op. This is used when generating PIC
16931 code. It generates a 32 bit GP relative reloc. */
16932
16933 static void
16934 s_gpword (int ignore ATTRIBUTE_UNUSED)
16935 {
16936 segment_info_type *si;
16937 struct insn_label_list *l;
16938 expressionS ex;
16939 char *p;
16940
16941 /* When not generating PIC code, this is treated as .word. */
16942 if (mips_pic != SVR4_PIC)
16943 {
16944 s_cons (2);
16945 return;
16946 }
16947
16948 si = seg_info (now_seg);
16949 l = si->label_list;
16950 mips_emit_delays ();
16951 if (auto_align)
16952 mips_align (2, 0, l);
16953
16954 expression (&ex);
16955 mips_clear_insn_labels ();
16956
16957 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16958 {
16959 as_bad (_("unsupported use of .gpword"));
16960 ignore_rest_of_line ();
16961 }
16962
16963 p = frag_more (4);
16964 md_number_to_chars (p, 0, 4);
16965 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16966 BFD_RELOC_GPREL32);
16967
16968 demand_empty_rest_of_line ();
16969 }
16970
16971 static void
16972 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16973 {
16974 segment_info_type *si;
16975 struct insn_label_list *l;
16976 expressionS ex;
16977 char *p;
16978
16979 /* When not generating PIC code, this is treated as .dword. */
16980 if (mips_pic != SVR4_PIC)
16981 {
16982 s_cons (3);
16983 return;
16984 }
16985
16986 si = seg_info (now_seg);
16987 l = si->label_list;
16988 mips_emit_delays ();
16989 if (auto_align)
16990 mips_align (3, 0, l);
16991
16992 expression (&ex);
16993 mips_clear_insn_labels ();
16994
16995 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16996 {
16997 as_bad (_("unsupported use of .gpdword"));
16998 ignore_rest_of_line ();
16999 }
17000
17001 p = frag_more (8);
17002 md_number_to_chars (p, 0, 8);
17003 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17004 BFD_RELOC_GPREL32)->fx_tcbit = 1;
17005
17006 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
17007 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
17008 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
17009
17010 demand_empty_rest_of_line ();
17011 }
17012
17013 /* Handle the .ehword pseudo-op. This is used when generating unwinding
17014 tables. It generates a R_MIPS_EH reloc. */
17015
17016 static void
17017 s_ehword (int ignore ATTRIBUTE_UNUSED)
17018 {
17019 expressionS ex;
17020 char *p;
17021
17022 mips_emit_delays ();
17023
17024 expression (&ex);
17025 mips_clear_insn_labels ();
17026
17027 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17028 {
17029 as_bad (_("unsupported use of .ehword"));
17030 ignore_rest_of_line ();
17031 }
17032
17033 p = frag_more (4);
17034 md_number_to_chars (p, 0, 4);
17035 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17036 BFD_RELOC_32_PCREL);
17037
17038 demand_empty_rest_of_line ();
17039 }
17040
17041 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
17042 tables in SVR4 PIC code. */
17043
17044 static void
17045 s_cpadd (int ignore ATTRIBUTE_UNUSED)
17046 {
17047 int reg;
17048
17049 file_mips_check_options ();
17050
17051 /* This is ignored when not generating SVR4 PIC code. */
17052 if (mips_pic != SVR4_PIC)
17053 {
17054 s_ignore (0);
17055 return;
17056 }
17057
17058 mips_mark_labels ();
17059 mips_assembling_insn = TRUE;
17060
17061 /* Add $gp to the register named as an argument. */
17062 macro_start ();
17063 reg = tc_get_register (0);
17064 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
17065 macro_end ();
17066
17067 mips_assembling_insn = FALSE;
17068 demand_empty_rest_of_line ();
17069 }
17070
17071 /* Handle the .insn pseudo-op. This marks instruction labels in
17072 mips16/micromips mode. This permits the linker to handle them specially,
17073 such as generating jalx instructions when needed. We also make
17074 them odd for the duration of the assembly, in order to generate the
17075 right sort of code. We will make them even in the adjust_symtab
17076 routine, while leaving them marked. This is convenient for the
17077 debugger and the disassembler. The linker knows to make them odd
17078 again. */
17079
17080 static void
17081 s_insn (int ignore ATTRIBUTE_UNUSED)
17082 {
17083 file_mips_check_options ();
17084 file_ase_mips16 |= mips_opts.mips16;
17085 file_ase_micromips |= mips_opts.micromips;
17086
17087 mips_mark_labels ();
17088
17089 demand_empty_rest_of_line ();
17090 }
17091
17092 /* Handle the .nan pseudo-op. */
17093
17094 static void
17095 s_nan (int ignore ATTRIBUTE_UNUSED)
17096 {
17097 static const char str_legacy[] = "legacy";
17098 static const char str_2008[] = "2008";
17099 size_t i;
17100
17101 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
17102
17103 if (i == sizeof (str_2008) - 1
17104 && memcmp (input_line_pointer, str_2008, i) == 0)
17105 mips_nan2008 = 1;
17106 else if (i == sizeof (str_legacy) - 1
17107 && memcmp (input_line_pointer, str_legacy, i) == 0)
17108 {
17109 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
17110 mips_nan2008 = 0;
17111 else
17112 as_bad (_("`%s' does not support legacy NaN"),
17113 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
17114 }
17115 else
17116 as_bad (_("bad .nan directive"));
17117
17118 input_line_pointer += i;
17119 demand_empty_rest_of_line ();
17120 }
17121
17122 /* Handle a .stab[snd] directive. Ideally these directives would be
17123 implemented in a transparent way, so that removing them would not
17124 have any effect on the generated instructions. However, s_stab
17125 internally changes the section, so in practice we need to decide
17126 now whether the preceding label marks compressed code. We do not
17127 support changing the compression mode of a label after a .stab*
17128 directive, such as in:
17129
17130 foo:
17131 .stabs ...
17132 .set mips16
17133
17134 so the current mode wins. */
17135
17136 static void
17137 s_mips_stab (int type)
17138 {
17139 mips_mark_labels ();
17140 s_stab (type);
17141 }
17142
17143 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
17144
17145 static void
17146 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
17147 {
17148 char *name;
17149 int c;
17150 symbolS *symbolP;
17151 expressionS exp;
17152
17153 c = get_symbol_name (&name);
17154 symbolP = symbol_find_or_make (name);
17155 S_SET_WEAK (symbolP);
17156 *input_line_pointer = c;
17157
17158 SKIP_WHITESPACE_AFTER_NAME ();
17159
17160 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17161 {
17162 if (S_IS_DEFINED (symbolP))
17163 {
17164 as_bad (_("ignoring attempt to redefine symbol %s"),
17165 S_GET_NAME (symbolP));
17166 ignore_rest_of_line ();
17167 return;
17168 }
17169
17170 if (*input_line_pointer == ',')
17171 {
17172 ++input_line_pointer;
17173 SKIP_WHITESPACE ();
17174 }
17175
17176 expression (&exp);
17177 if (exp.X_op != O_symbol)
17178 {
17179 as_bad (_("bad .weakext directive"));
17180 ignore_rest_of_line ();
17181 return;
17182 }
17183 symbol_set_value_expression (symbolP, &exp);
17184 }
17185
17186 demand_empty_rest_of_line ();
17187 }
17188
17189 /* Parse a register string into a number. Called from the ECOFF code
17190 to parse .frame. The argument is non-zero if this is the frame
17191 register, so that we can record it in mips_frame_reg. */
17192
17193 int
17194 tc_get_register (int frame)
17195 {
17196 unsigned int reg;
17197
17198 SKIP_WHITESPACE ();
17199 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17200 reg = 0;
17201 if (frame)
17202 {
17203 mips_frame_reg = reg != 0 ? reg : SP;
17204 mips_frame_reg_valid = 1;
17205 mips_cprestore_valid = 0;
17206 }
17207 return reg;
17208 }
17209
17210 valueT
17211 md_section_align (asection *seg, valueT addr)
17212 {
17213 int align = bfd_get_section_alignment (stdoutput, seg);
17214
17215 /* We don't need to align ELF sections to the full alignment.
17216 However, Irix 5 may prefer that we align them at least to a 16
17217 byte boundary. We don't bother to align the sections if we
17218 are targeted for an embedded system. */
17219 if (strncmp (TARGET_OS, "elf", 3) == 0)
17220 return addr;
17221 if (align > 4)
17222 align = 4;
17223
17224 return ((addr + (1 << align) - 1) & -(1 << align));
17225 }
17226
17227 /* Utility routine, called from above as well. If called while the
17228 input file is still being read, it's only an approximation. (For
17229 example, a symbol may later become defined which appeared to be
17230 undefined earlier.) */
17231
17232 static int
17233 nopic_need_relax (symbolS *sym, int before_relaxing)
17234 {
17235 if (sym == 0)
17236 return 0;
17237
17238 if (g_switch_value > 0)
17239 {
17240 const char *symname;
17241 int change;
17242
17243 /* Find out whether this symbol can be referenced off the $gp
17244 register. It can be if it is smaller than the -G size or if
17245 it is in the .sdata or .sbss section. Certain symbols can
17246 not be referenced off the $gp, although it appears as though
17247 they can. */
17248 symname = S_GET_NAME (sym);
17249 if (symname != (const char *) NULL
17250 && (strcmp (symname, "eprol") == 0
17251 || strcmp (symname, "etext") == 0
17252 || strcmp (symname, "_gp") == 0
17253 || strcmp (symname, "edata") == 0
17254 || strcmp (symname, "_fbss") == 0
17255 || strcmp (symname, "_fdata") == 0
17256 || strcmp (symname, "_ftext") == 0
17257 || strcmp (symname, "end") == 0
17258 || strcmp (symname, "_gp_disp") == 0))
17259 change = 1;
17260 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17261 && (0
17262 #ifndef NO_ECOFF_DEBUGGING
17263 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17264 && (symbol_get_obj (sym)->ecoff_extern_size
17265 <= g_switch_value))
17266 #endif
17267 /* We must defer this decision until after the whole
17268 file has been read, since there might be a .extern
17269 after the first use of this symbol. */
17270 || (before_relaxing
17271 #ifndef NO_ECOFF_DEBUGGING
17272 && symbol_get_obj (sym)->ecoff_extern_size == 0
17273 #endif
17274 && S_GET_VALUE (sym) == 0)
17275 || (S_GET_VALUE (sym) != 0
17276 && S_GET_VALUE (sym) <= g_switch_value)))
17277 change = 0;
17278 else
17279 {
17280 const char *segname;
17281
17282 segname = segment_name (S_GET_SEGMENT (sym));
17283 gas_assert (strcmp (segname, ".lit8") != 0
17284 && strcmp (segname, ".lit4") != 0);
17285 change = (strcmp (segname, ".sdata") != 0
17286 && strcmp (segname, ".sbss") != 0
17287 && strncmp (segname, ".sdata.", 7) != 0
17288 && strncmp (segname, ".sbss.", 6) != 0
17289 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17290 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17291 }
17292 return change;
17293 }
17294 else
17295 /* We are not optimizing for the $gp register. */
17296 return 1;
17297 }
17298
17299
17300 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17301
17302 static bfd_boolean
17303 pic_need_relax (symbolS *sym)
17304 {
17305 asection *symsec;
17306
17307 /* Handle the case of a symbol equated to another symbol. */
17308 while (symbol_equated_reloc_p (sym))
17309 {
17310 symbolS *n;
17311
17312 /* It's possible to get a loop here in a badly written program. */
17313 n = symbol_get_value_expression (sym)->X_add_symbol;
17314 if (n == sym)
17315 break;
17316 sym = n;
17317 }
17318
17319 if (symbol_section_p (sym))
17320 return TRUE;
17321
17322 symsec = S_GET_SEGMENT (sym);
17323
17324 /* This must duplicate the test in adjust_reloc_syms. */
17325 return (!bfd_is_und_section (symsec)
17326 && !bfd_is_abs_section (symsec)
17327 && !bfd_is_com_section (symsec)
17328 /* A global or weak symbol is treated as external. */
17329 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17330 }
17331 \f
17332 /* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
17333 convert a section-relative value VAL to the equivalent PC-relative
17334 value. */
17335
17336 static offsetT
17337 mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
17338 offsetT val, long stretch)
17339 {
17340 fragS *sym_frag;
17341 addressT addr;
17342
17343 gas_assert (pcrel_op->root.root.type == OP_PCREL);
17344
17345 sym_frag = symbol_get_frag (fragp->fr_symbol);
17346
17347 /* If the relax_marker of the symbol fragment differs from the
17348 relax_marker of this fragment, we have not yet adjusted the
17349 symbol fragment fr_address. We want to add in STRETCH in
17350 order to get a better estimate of the address. This
17351 particularly matters because of the shift bits. */
17352 if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
17353 {
17354 fragS *f;
17355
17356 /* Adjust stretch for any alignment frag. Note that if have
17357 been expanding the earlier code, the symbol may be
17358 defined in what appears to be an earlier frag. FIXME:
17359 This doesn't handle the fr_subtype field, which specifies
17360 a maximum number of bytes to skip when doing an
17361 alignment. */
17362 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17363 {
17364 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17365 {
17366 if (stretch < 0)
17367 stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
17368 else
17369 stretch &= ~((1 << (int) f->fr_offset) - 1);
17370 if (stretch == 0)
17371 break;
17372 }
17373 }
17374 if (f != NULL)
17375 val += stretch;
17376 }
17377
17378 addr = fragp->fr_address + fragp->fr_fix;
17379
17380 /* The base address rules are complicated. The base address of
17381 a branch is the following instruction. The base address of a
17382 PC relative load or add is the instruction itself, but if it
17383 is in a delay slot (in which case it can not be extended) use
17384 the address of the instruction whose delay slot it is in. */
17385 if (pcrel_op->include_isa_bit)
17386 {
17387 addr += 2;
17388
17389 /* If we are currently assuming that this frag should be
17390 extended, then the current address is two bytes higher. */
17391 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17392 addr += 2;
17393
17394 /* Ignore the low bit in the target, since it will be set
17395 for a text label. */
17396 val &= -2;
17397 }
17398 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17399 addr -= 4;
17400 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17401 addr -= 2;
17402
17403 val -= addr & -(1 << pcrel_op->align_log2);
17404
17405 return val;
17406 }
17407
17408 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17409 extended opcode. SEC is the section the frag is in. */
17410
17411 static int
17412 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17413 {
17414 const struct mips_int_operand *operand;
17415 offsetT val;
17416 segT symsec;
17417 int type;
17418
17419 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17420 return 0;
17421 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17422 return 1;
17423
17424 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17425 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17426 operand = mips16_immed_operand (type, FALSE);
17427 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17428 || (operand->root.type == OP_PCREL
17429 ? sec != symsec
17430 : !bfd_is_abs_section (symsec)))
17431 return 1;
17432
17433 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17434
17435 if (operand->root.type == OP_PCREL)
17436 {
17437 const struct mips_pcrel_operand *pcrel_op;
17438 offsetT maxtiny;
17439
17440 if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
17441 return 1;
17442
17443 pcrel_op = (const struct mips_pcrel_operand *) operand;
17444 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17445
17446 /* If any of the shifted bits are set, we must use an extended
17447 opcode. If the address depends on the size of this
17448 instruction, this can lead to a loop, so we arrange to always
17449 use an extended opcode. */
17450 if ((val & ((1 << operand->shift) - 1)) != 0)
17451 {
17452 fragp->fr_subtype =
17453 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17454 return 1;
17455 }
17456
17457 /* If we are about to mark a frag as extended because the value
17458 is precisely the next value above maxtiny, then there is a
17459 chance of an infinite loop as in the following code:
17460 la $4,foo
17461 .skip 1020
17462 .align 2
17463 foo:
17464 In this case when the la is extended, foo is 0x3fc bytes
17465 away, so the la can be shrunk, but then foo is 0x400 away, so
17466 the la must be extended. To avoid this loop, we mark the
17467 frag as extended if it was small, and is about to become
17468 extended with the next value above maxtiny. */
17469 maxtiny = mips_int_operand_max (operand);
17470 if (val == maxtiny + (1 << operand->shift)
17471 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17472 {
17473 fragp->fr_subtype =
17474 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17475 return 1;
17476 }
17477 }
17478
17479 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17480 }
17481
17482 /* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
17483 macro expansion. SEC is the section the frag is in. We only
17484 support PC-relative instructions (LA, DLA, LW, LD) here, in
17485 non-PIC code using 32-bit addressing. */
17486
17487 static int
17488 mips16_macro_frag (fragS *fragp, asection *sec, long stretch)
17489 {
17490 const struct mips_pcrel_operand *pcrel_op;
17491 const struct mips_int_operand *operand;
17492 offsetT val;
17493 segT symsec;
17494 int type;
17495
17496 gas_assert (!RELAX_MIPS16_USER_SMALL (fragp->fr_subtype));
17497
17498 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17499 return 0;
17500 if (!RELAX_MIPS16_SYM32 (fragp->fr_subtype))
17501 return 0;
17502
17503 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17504 switch (type)
17505 {
17506 case 'A':
17507 case 'B':
17508 case 'E':
17509 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17510 if (bfd_is_abs_section (symsec))
17511 return 1;
17512 if (RELAX_MIPS16_PIC (fragp->fr_subtype))
17513 return 0;
17514 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE) || sec != symsec)
17515 return 1;
17516
17517 operand = mips16_immed_operand (type, TRUE);
17518 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17519 pcrel_op = (const struct mips_pcrel_operand *) operand;
17520 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17521
17522 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17523
17524 default:
17525 return 0;
17526 }
17527 }
17528
17529 /* Compute the length of a branch sequence, and adjust the
17530 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17531 worst-case length is computed, with UPDATE being used to indicate
17532 whether an unconditional (-1), branch-likely (+1) or regular (0)
17533 branch is to be computed. */
17534 static int
17535 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17536 {
17537 bfd_boolean toofar;
17538 int length;
17539
17540 if (fragp
17541 && S_IS_DEFINED (fragp->fr_symbol)
17542 && !S_IS_WEAK (fragp->fr_symbol)
17543 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17544 {
17545 addressT addr;
17546 offsetT val;
17547
17548 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17549
17550 addr = fragp->fr_address + fragp->fr_fix + 4;
17551
17552 val -= addr;
17553
17554 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17555 }
17556 else
17557 /* If the symbol is not defined or it's in a different segment,
17558 we emit the long sequence. */
17559 toofar = TRUE;
17560
17561 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17562 fragp->fr_subtype
17563 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17564 RELAX_BRANCH_PIC (fragp->fr_subtype),
17565 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17566 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17567 RELAX_BRANCH_LINK (fragp->fr_subtype),
17568 toofar);
17569
17570 length = 4;
17571 if (toofar)
17572 {
17573 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17574 length += 8;
17575
17576 if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
17577 {
17578 /* Additional space for PIC loading of target address. */
17579 length += 8;
17580 if (mips_opts.isa == ISA_MIPS1)
17581 /* Additional space for $at-stabilizing nop. */
17582 length += 4;
17583 }
17584
17585 /* If branch is conditional. */
17586 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17587 length += 8;
17588 }
17589
17590 return length;
17591 }
17592
17593 /* Get a FRAG's branch instruction delay slot size, either from the
17594 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17595 or SHORT_INSN_SIZE otherwise. */
17596
17597 static int
17598 frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17599 {
17600 char *buf = fragp->fr_literal + fragp->fr_fix;
17601
17602 if (al)
17603 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17604 else
17605 return short_insn_size;
17606 }
17607
17608 /* Compute the length of a branch sequence, and adjust the
17609 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17610 worst-case length is computed, with UPDATE being used to indicate
17611 whether an unconditional (-1), or regular (0) branch is to be
17612 computed. */
17613
17614 static int
17615 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17616 {
17617 bfd_boolean insn32 = TRUE;
17618 bfd_boolean nods = TRUE;
17619 bfd_boolean pic = TRUE;
17620 bfd_boolean al = TRUE;
17621 int short_insn_size;
17622 bfd_boolean toofar;
17623 int length;
17624
17625 if (fragp)
17626 {
17627 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17628 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17629 pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
17630 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17631 }
17632 short_insn_size = insn32 ? 4 : 2;
17633
17634 if (fragp
17635 && S_IS_DEFINED (fragp->fr_symbol)
17636 && !S_IS_WEAK (fragp->fr_symbol)
17637 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17638 {
17639 addressT addr;
17640 offsetT val;
17641
17642 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17643 /* Ignore the low bit in the target, since it will be set
17644 for a text label. */
17645 if ((val & 1) != 0)
17646 --val;
17647
17648 addr = fragp->fr_address + fragp->fr_fix + 4;
17649
17650 val -= addr;
17651
17652 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17653 }
17654 else
17655 /* If the symbol is not defined or it's in a different segment,
17656 we emit the long sequence. */
17657 toofar = TRUE;
17658
17659 if (fragp && update
17660 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17661 fragp->fr_subtype = (toofar
17662 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17663 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17664
17665 length = 4;
17666 if (toofar)
17667 {
17668 bfd_boolean compact_known = fragp != NULL;
17669 bfd_boolean compact = FALSE;
17670 bfd_boolean uncond;
17671
17672 if (fragp)
17673 {
17674 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17675 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17676 }
17677 else
17678 uncond = update < 0;
17679
17680 /* If label is out of range, we turn branch <br>:
17681
17682 <br> label # 4 bytes
17683 0:
17684
17685 into:
17686
17687 j label # 4 bytes
17688 nop # 2/4 bytes if
17689 # compact && (!PIC || insn32)
17690 0:
17691 */
17692 if ((!pic || insn32) && (!compact_known || compact))
17693 length += short_insn_size;
17694
17695 /* If assembling PIC code, we further turn:
17696
17697 j label # 4 bytes
17698
17699 into:
17700
17701 lw/ld at, %got(label)(gp) # 4 bytes
17702 d/addiu at, %lo(label) # 4 bytes
17703 jr/c at # 2/4 bytes
17704 */
17705 if (pic)
17706 length += 4 + short_insn_size;
17707
17708 /* Add an extra nop if the jump has no compact form and we need
17709 to fill the delay slot. */
17710 if ((!pic || al) && nods)
17711 length += (fragp
17712 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17713 : short_insn_size);
17714
17715 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17716
17717 <brneg> 0f # 4 bytes
17718 nop # 2/4 bytes if !compact
17719 */
17720 if (!uncond)
17721 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
17722 }
17723 else if (nods)
17724 {
17725 /* Add an extra nop to fill the delay slot. */
17726 gas_assert (fragp);
17727 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17728 }
17729
17730 return length;
17731 }
17732
17733 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17734 bit accordingly. */
17735
17736 static int
17737 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17738 {
17739 bfd_boolean toofar;
17740
17741 if (fragp
17742 && S_IS_DEFINED (fragp->fr_symbol)
17743 && !S_IS_WEAK (fragp->fr_symbol)
17744 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17745 {
17746 addressT addr;
17747 offsetT val;
17748 int type;
17749
17750 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17751 /* Ignore the low bit in the target, since it will be set
17752 for a text label. */
17753 if ((val & 1) != 0)
17754 --val;
17755
17756 /* Assume this is a 2-byte branch. */
17757 addr = fragp->fr_address + fragp->fr_fix + 2;
17758
17759 /* We try to avoid the infinite loop by not adding 2 more bytes for
17760 long branches. */
17761
17762 val -= addr;
17763
17764 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17765 if (type == 'D')
17766 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17767 else if (type == 'E')
17768 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17769 else
17770 abort ();
17771 }
17772 else
17773 /* If the symbol is not defined or it's in a different segment,
17774 we emit a normal 32-bit branch. */
17775 toofar = TRUE;
17776
17777 if (fragp && update
17778 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17779 fragp->fr_subtype
17780 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17781 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17782
17783 if (toofar)
17784 return 4;
17785
17786 return 2;
17787 }
17788
17789 /* Estimate the size of a frag before relaxing. Unless this is the
17790 mips16, we are not really relaxing here, and the final size is
17791 encoded in the subtype information. For the mips16, we have to
17792 decide whether we are using an extended opcode or not. */
17793
17794 int
17795 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17796 {
17797 int change;
17798
17799 if (RELAX_BRANCH_P (fragp->fr_subtype))
17800 {
17801
17802 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17803
17804 return fragp->fr_var;
17805 }
17806
17807 if (RELAX_MIPS16_P (fragp->fr_subtype))
17808 {
17809 /* We don't want to modify the EXTENDED bit here; it might get us
17810 into infinite loops. We change it only in mips_relax_frag(). */
17811 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
17812 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 8 : 12;
17813 else
17814 return RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2;
17815 }
17816
17817 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17818 {
17819 int length = 4;
17820
17821 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17822 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17823 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17824 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17825 fragp->fr_var = length;
17826
17827 return length;
17828 }
17829
17830 if (mips_pic == VXWORKS_PIC)
17831 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17832 change = 0;
17833 else if (RELAX_PIC (fragp->fr_subtype))
17834 change = pic_need_relax (fragp->fr_symbol);
17835 else
17836 change = nopic_need_relax (fragp->fr_symbol, 0);
17837
17838 if (change)
17839 {
17840 fragp->fr_subtype |= RELAX_USE_SECOND;
17841 return -RELAX_FIRST (fragp->fr_subtype);
17842 }
17843 else
17844 return -RELAX_SECOND (fragp->fr_subtype);
17845 }
17846
17847 /* This is called to see whether a reloc against a defined symbol
17848 should be converted into a reloc against a section. */
17849
17850 int
17851 mips_fix_adjustable (fixS *fixp)
17852 {
17853 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17854 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17855 return 0;
17856
17857 if (fixp->fx_addsy == NULL)
17858 return 1;
17859
17860 /* Allow relocs used for EH tables. */
17861 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17862 return 1;
17863
17864 /* If symbol SYM is in a mergeable section, relocations of the form
17865 SYM + 0 can usually be made section-relative. The mergeable data
17866 is then identified by the section offset rather than by the symbol.
17867
17868 However, if we're generating REL LO16 relocations, the offset is split
17869 between the LO16 and partnering high part relocation. The linker will
17870 need to recalculate the complete offset in order to correctly identify
17871 the merge data.
17872
17873 The linker has traditionally not looked for the partnering high part
17874 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17875 placed anywhere. Rather than break backwards compatibility by changing
17876 this, it seems better not to force the issue, and instead keep the
17877 original symbol. This will work with either linker behavior. */
17878 if ((lo16_reloc_p (fixp->fx_r_type)
17879 || reloc_needs_lo_p (fixp->fx_r_type))
17880 && HAVE_IN_PLACE_ADDENDS
17881 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17882 return 0;
17883
17884 /* There is no place to store an in-place offset for JALR relocations. */
17885 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17886 return 0;
17887
17888 /* Likewise an in-range offset of limited PC-relative relocations may
17889 overflow the in-place relocatable field if recalculated against the
17890 start address of the symbol's containing section.
17891
17892 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17893 section relative to allow linker relaxations to be performed later on. */
17894 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17895 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17896 return 0;
17897
17898 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17899 to a floating-point stub. The same is true for non-R_MIPS16_26
17900 relocations against MIPS16 functions; in this case, the stub becomes
17901 the function's canonical address.
17902
17903 Floating-point stubs are stored in unique .mips16.call.* or
17904 .mips16.fn.* sections. If a stub T for function F is in section S,
17905 the first relocation in section S must be against F; this is how the
17906 linker determines the target function. All relocations that might
17907 resolve to T must also be against F. We therefore have the following
17908 restrictions, which are given in an intentionally-redundant way:
17909
17910 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17911 symbols.
17912
17913 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17914 if that stub might be used.
17915
17916 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17917 symbols.
17918
17919 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17920 that stub might be used.
17921
17922 There is a further restriction:
17923
17924 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17925 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
17926 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17927 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17928 against MIPS16 or microMIPS symbols because we need to keep the
17929 MIPS16 or microMIPS symbol for the purpose of mode mismatch
17930 detection and JAL or BAL to JALX instruction conversion in the
17931 linker.
17932
17933 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17934 against a MIPS16 symbol. We deal with (5) by additionally leaving
17935 alone any jump and branch relocations against a microMIPS symbol.
17936
17937 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17938 relocation against some symbol R, no relocation against R may be
17939 reduced. (Note that this deals with (2) as well as (1) because
17940 relocations against global symbols will never be reduced on ELF
17941 targets.) This approach is a little simpler than trying to detect
17942 stub sections, and gives the "all or nothing" per-symbol consistency
17943 that we have for MIPS16 symbols. */
17944 if (fixp->fx_subsy == NULL
17945 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17946 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17947 && (jmp_reloc_p (fixp->fx_r_type)
17948 || b_reloc_p (fixp->fx_r_type)))
17949 || *symbol_get_tc (fixp->fx_addsy)))
17950 return 0;
17951
17952 return 1;
17953 }
17954
17955 /* Translate internal representation of relocation info to BFD target
17956 format. */
17957
17958 arelent **
17959 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17960 {
17961 static arelent *retval[4];
17962 arelent *reloc;
17963 bfd_reloc_code_real_type code;
17964
17965 memset (retval, 0, sizeof(retval));
17966 reloc = retval[0] = XCNEW (arelent);
17967 reloc->sym_ptr_ptr = XNEW (asymbol *);
17968 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17969 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17970
17971 if (fixp->fx_pcrel)
17972 {
17973 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17974 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
17975 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17976 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17977 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17978 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17979 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17980 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17981 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17982 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17983 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17984 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17985
17986 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17987 Relocations want only the symbol offset. */
17988 switch (fixp->fx_r_type)
17989 {
17990 case BFD_RELOC_MIPS_18_PCREL_S3:
17991 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17992 break;
17993 default:
17994 reloc->addend = fixp->fx_addnumber + reloc->address;
17995 break;
17996 }
17997 }
17998 else if (HAVE_IN_PLACE_ADDENDS
17999 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
18000 && (read_compressed_insn (fixp->fx_frag->fr_literal
18001 + fixp->fx_where, 4) >> 26) == 0x3c)
18002 {
18003 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
18004 addend accordingly. */
18005 reloc->addend = fixp->fx_addnumber >> 1;
18006 }
18007 else
18008 reloc->addend = fixp->fx_addnumber;
18009
18010 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
18011 entry to be used in the relocation's section offset. */
18012 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18013 {
18014 reloc->address = reloc->addend;
18015 reloc->addend = 0;
18016 }
18017
18018 code = fixp->fx_r_type;
18019
18020 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
18021 if (reloc->howto == NULL)
18022 {
18023 as_bad_where (fixp->fx_file, fixp->fx_line,
18024 _("cannot represent %s relocation in this object file"
18025 " format"),
18026 bfd_get_reloc_code_name (code));
18027 retval[0] = NULL;
18028 }
18029
18030 return retval;
18031 }
18032
18033 /* Relax a machine dependent frag. This returns the amount by which
18034 the current size of the frag should change. */
18035
18036 int
18037 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
18038 {
18039 if (RELAX_BRANCH_P (fragp->fr_subtype))
18040 {
18041 offsetT old_var = fragp->fr_var;
18042
18043 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
18044
18045 return fragp->fr_var - old_var;
18046 }
18047
18048 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18049 {
18050 offsetT old_var = fragp->fr_var;
18051 offsetT new_var = 4;
18052
18053 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18054 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
18055 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18056 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
18057 fragp->fr_var = new_var;
18058
18059 return new_var - old_var;
18060 }
18061
18062 if (! RELAX_MIPS16_P (fragp->fr_subtype))
18063 return 0;
18064
18065 if (!mips16_extended_frag (fragp, sec, stretch))
18066 {
18067 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18068 {
18069 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18070 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -6 : -10;
18071 }
18072 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18073 {
18074 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18075 return -2;
18076 }
18077 else
18078 return 0;
18079 }
18080 else if (!mips16_macro_frag (fragp, sec, stretch))
18081 {
18082 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18083 {
18084 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18085 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18086 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -4 : -8;
18087 }
18088 else if (!RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18089 {
18090 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18091 return 2;
18092 }
18093 else
18094 return 0;
18095 }
18096 else
18097 {
18098 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18099 return 0;
18100 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18101 {
18102 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18103 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18104 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 4 : 8;
18105 }
18106 else
18107 {
18108 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18109 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 6 : 10;
18110 }
18111 }
18112
18113 return 0;
18114 }
18115
18116 /* Convert a machine dependent frag. */
18117
18118 void
18119 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
18120 {
18121 if (RELAX_BRANCH_P (fragp->fr_subtype))
18122 {
18123 char *buf;
18124 unsigned long insn;
18125 expressionS exp;
18126 fixS *fixp;
18127
18128 buf = fragp->fr_literal + fragp->fr_fix;
18129 insn = read_insn (buf);
18130
18131 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18132 {
18133 /* We generate a fixup instead of applying it right now
18134 because, if there are linker relaxations, we're going to
18135 need the relocations. */
18136 exp.X_op = O_symbol;
18137 exp.X_add_symbol = fragp->fr_symbol;
18138 exp.X_add_number = fragp->fr_offset;
18139
18140 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18141 BFD_RELOC_16_PCREL_S2);
18142 fixp->fx_file = fragp->fr_file;
18143 fixp->fx_line = fragp->fr_line;
18144
18145 buf = write_insn (buf, insn);
18146 }
18147 else
18148 {
18149 int i;
18150
18151 as_warn_where (fragp->fr_file, fragp->fr_line,
18152 _("relaxed out-of-range branch into a jump"));
18153
18154 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18155 goto uncond;
18156
18157 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18158 {
18159 /* Reverse the branch. */
18160 switch ((insn >> 28) & 0xf)
18161 {
18162 case 4:
18163 if ((insn & 0xff000000) == 0x47000000
18164 || (insn & 0xff600000) == 0x45600000)
18165 {
18166 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
18167 reversed by tweaking bit 23. */
18168 insn ^= 0x00800000;
18169 }
18170 else
18171 {
18172 /* bc[0-3][tf]l? instructions can have the condition
18173 reversed by tweaking a single TF bit, and their
18174 opcodes all have 0x4???????. */
18175 gas_assert ((insn & 0xf3e00000) == 0x41000000);
18176 insn ^= 0x00010000;
18177 }
18178 break;
18179
18180 case 0:
18181 /* bltz 0x04000000 bgez 0x04010000
18182 bltzal 0x04100000 bgezal 0x04110000 */
18183 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
18184 insn ^= 0x00010000;
18185 break;
18186
18187 case 1:
18188 /* beq 0x10000000 bne 0x14000000
18189 blez 0x18000000 bgtz 0x1c000000 */
18190 insn ^= 0x04000000;
18191 break;
18192
18193 default:
18194 abort ();
18195 }
18196 }
18197
18198 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18199 {
18200 /* Clear the and-link bit. */
18201 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
18202
18203 /* bltzal 0x04100000 bgezal 0x04110000
18204 bltzall 0x04120000 bgezall 0x04130000 */
18205 insn &= ~0x00100000;
18206 }
18207
18208 /* Branch over the branch (if the branch was likely) or the
18209 full jump (not likely case). Compute the offset from the
18210 current instruction to branch to. */
18211 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18212 i = 16;
18213 else
18214 {
18215 /* How many bytes in instructions we've already emitted? */
18216 i = buf - fragp->fr_literal - fragp->fr_fix;
18217 /* How many bytes in instructions from here to the end? */
18218 i = fragp->fr_var - i;
18219 }
18220 /* Convert to instruction count. */
18221 i >>= 2;
18222 /* Branch counts from the next instruction. */
18223 i--;
18224 insn |= i;
18225 /* Branch over the jump. */
18226 buf = write_insn (buf, insn);
18227
18228 /* nop */
18229 buf = write_insn (buf, 0);
18230
18231 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18232 {
18233 /* beql $0, $0, 2f */
18234 insn = 0x50000000;
18235 /* Compute the PC offset from the current instruction to
18236 the end of the variable frag. */
18237 /* How many bytes in instructions we've already emitted? */
18238 i = buf - fragp->fr_literal - fragp->fr_fix;
18239 /* How many bytes in instructions from here to the end? */
18240 i = fragp->fr_var - i;
18241 /* Convert to instruction count. */
18242 i >>= 2;
18243 /* Don't decrement i, because we want to branch over the
18244 delay slot. */
18245 insn |= i;
18246
18247 buf = write_insn (buf, insn);
18248 buf = write_insn (buf, 0);
18249 }
18250
18251 uncond:
18252 if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
18253 {
18254 /* j or jal. */
18255 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18256 ? 0x0c000000 : 0x08000000);
18257 exp.X_op = O_symbol;
18258 exp.X_add_symbol = fragp->fr_symbol;
18259 exp.X_add_number = fragp->fr_offset;
18260
18261 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18262 FALSE, BFD_RELOC_MIPS_JMP);
18263 fixp->fx_file = fragp->fr_file;
18264 fixp->fx_line = fragp->fr_line;
18265
18266 buf = write_insn (buf, insn);
18267 }
18268 else
18269 {
18270 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18271
18272 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18273 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18274 insn |= at << OP_SH_RT;
18275 exp.X_op = O_symbol;
18276 exp.X_add_symbol = fragp->fr_symbol;
18277 exp.X_add_number = fragp->fr_offset;
18278
18279 if (fragp->fr_offset)
18280 {
18281 exp.X_add_symbol = make_expr_symbol (&exp);
18282 exp.X_add_number = 0;
18283 }
18284
18285 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18286 FALSE, BFD_RELOC_MIPS_GOT16);
18287 fixp->fx_file = fragp->fr_file;
18288 fixp->fx_line = fragp->fr_line;
18289
18290 buf = write_insn (buf, insn);
18291
18292 if (mips_opts.isa == ISA_MIPS1)
18293 /* nop */
18294 buf = write_insn (buf, 0);
18295
18296 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18297 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18298 insn |= at << OP_SH_RS | at << OP_SH_RT;
18299
18300 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18301 FALSE, BFD_RELOC_LO16);
18302 fixp->fx_file = fragp->fr_file;
18303 fixp->fx_line = fragp->fr_line;
18304
18305 buf = write_insn (buf, insn);
18306
18307 /* j(al)r $at. */
18308 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18309 insn = 0x0000f809;
18310 else
18311 insn = 0x00000008;
18312 insn |= at << OP_SH_RS;
18313
18314 buf = write_insn (buf, insn);
18315 }
18316 }
18317
18318 fragp->fr_fix += fragp->fr_var;
18319 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18320 return;
18321 }
18322
18323 /* Relax microMIPS branches. */
18324 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18325 {
18326 char *buf = fragp->fr_literal + fragp->fr_fix;
18327 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18328 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18329 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18330 bfd_boolean pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
18331 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18332 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18333 bfd_boolean short_ds;
18334 unsigned long insn;
18335 expressionS exp;
18336 fixS *fixp;
18337
18338 exp.X_op = O_symbol;
18339 exp.X_add_symbol = fragp->fr_symbol;
18340 exp.X_add_number = fragp->fr_offset;
18341
18342 fragp->fr_fix += fragp->fr_var;
18343
18344 /* Handle 16-bit branches that fit or are forced to fit. */
18345 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18346 {
18347 /* We generate a fixup instead of applying it right now,
18348 because if there is linker relaxation, we're going to
18349 need the relocations. */
18350 if (type == 'D')
18351 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18352 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18353 else if (type == 'E')
18354 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18355 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18356 else
18357 abort ();
18358
18359 fixp->fx_file = fragp->fr_file;
18360 fixp->fx_line = fragp->fr_line;
18361
18362 /* These relocations can have an addend that won't fit in
18363 2 octets. */
18364 fixp->fx_no_overflow = 1;
18365
18366 return;
18367 }
18368
18369 /* Handle 32-bit branches that fit or are forced to fit. */
18370 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18371 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18372 {
18373 /* We generate a fixup instead of applying it right now,
18374 because if there is linker relaxation, we're going to
18375 need the relocations. */
18376 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18377 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18378 fixp->fx_file = fragp->fr_file;
18379 fixp->fx_line = fragp->fr_line;
18380
18381 if (type == 0)
18382 {
18383 insn = read_compressed_insn (buf, 4);
18384 buf += 4;
18385
18386 if (nods)
18387 {
18388 /* Check the short-delay-slot bit. */
18389 if (!al || (insn & 0x02000000) != 0)
18390 buf = write_compressed_insn (buf, 0x0c00, 2);
18391 else
18392 buf = write_compressed_insn (buf, 0x00000000, 4);
18393 }
18394
18395 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18396 return;
18397 }
18398 }
18399
18400 /* Relax 16-bit branches to 32-bit branches. */
18401 if (type != 0)
18402 {
18403 insn = read_compressed_insn (buf, 2);
18404
18405 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18406 insn = 0x94000000; /* beq */
18407 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18408 {
18409 unsigned long regno;
18410
18411 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18412 regno = micromips_to_32_reg_d_map [regno];
18413 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18414 insn |= regno << MICROMIPSOP_SH_RS;
18415 }
18416 else
18417 abort ();
18418
18419 /* Nothing else to do, just write it out. */
18420 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18421 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18422 {
18423 buf = write_compressed_insn (buf, insn, 4);
18424 if (nods)
18425 buf = write_compressed_insn (buf, 0x0c00, 2);
18426 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18427 return;
18428 }
18429 }
18430 else
18431 insn = read_compressed_insn (buf, 4);
18432
18433 /* Relax 32-bit branches to a sequence of instructions. */
18434 as_warn_where (fragp->fr_file, fragp->fr_line,
18435 _("relaxed out-of-range branch into a jump"));
18436
18437 /* Set the short-delay-slot bit. */
18438 short_ds = !al || (insn & 0x02000000) != 0;
18439
18440 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18441 {
18442 symbolS *l;
18443
18444 /* Reverse the branch. */
18445 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18446 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18447 insn ^= 0x20000000;
18448 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18449 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18450 || (insn & 0xffe00000) == 0x40800000 /* blez */
18451 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18452 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18453 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18454 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18455 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18456 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18457 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18458 insn ^= 0x00400000;
18459 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18460 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18461 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18462 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18463 insn ^= 0x00200000;
18464 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18465 BNZ.df */
18466 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18467 BNZ.V */
18468 insn ^= 0x00800000;
18469 else
18470 abort ();
18471
18472 if (al)
18473 {
18474 /* Clear the and-link and short-delay-slot bits. */
18475 gas_assert ((insn & 0xfda00000) == 0x40200000);
18476
18477 /* bltzal 0x40200000 bgezal 0x40600000 */
18478 /* bltzals 0x42200000 bgezals 0x42600000 */
18479 insn &= ~0x02200000;
18480 }
18481
18482 /* Make a label at the end for use with the branch. */
18483 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18484 micromips_label_inc ();
18485 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18486
18487 /* Refer to it. */
18488 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18489 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18490 fixp->fx_file = fragp->fr_file;
18491 fixp->fx_line = fragp->fr_line;
18492
18493 /* Branch over the jump. */
18494 buf = write_compressed_insn (buf, insn, 4);
18495
18496 if (!compact)
18497 {
18498 /* nop */
18499 if (insn32)
18500 buf = write_compressed_insn (buf, 0x00000000, 4);
18501 else
18502 buf = write_compressed_insn (buf, 0x0c00, 2);
18503 }
18504 }
18505
18506 if (!pic)
18507 {
18508 unsigned long jal = (short_ds || nods
18509 ? 0x74000000 : 0xf4000000); /* jal/s */
18510
18511 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18512 insn = al ? jal : 0xd4000000;
18513
18514 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18515 BFD_RELOC_MICROMIPS_JMP);
18516 fixp->fx_file = fragp->fr_file;
18517 fixp->fx_line = fragp->fr_line;
18518
18519 buf = write_compressed_insn (buf, insn, 4);
18520
18521 if (compact || nods)
18522 {
18523 /* nop */
18524 if (insn32)
18525 buf = write_compressed_insn (buf, 0x00000000, 4);
18526 else
18527 buf = write_compressed_insn (buf, 0x0c00, 2);
18528 }
18529 }
18530 else
18531 {
18532 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18533
18534 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18535 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18536 insn |= at << MICROMIPSOP_SH_RT;
18537
18538 if (exp.X_add_number)
18539 {
18540 exp.X_add_symbol = make_expr_symbol (&exp);
18541 exp.X_add_number = 0;
18542 }
18543
18544 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18545 BFD_RELOC_MICROMIPS_GOT16);
18546 fixp->fx_file = fragp->fr_file;
18547 fixp->fx_line = fragp->fr_line;
18548
18549 buf = write_compressed_insn (buf, insn, 4);
18550
18551 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18552 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18553 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18554
18555 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18556 BFD_RELOC_MICROMIPS_LO16);
18557 fixp->fx_file = fragp->fr_file;
18558 fixp->fx_line = fragp->fr_line;
18559
18560 buf = write_compressed_insn (buf, insn, 4);
18561
18562 if (insn32)
18563 {
18564 /* jr/jalr $at */
18565 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18566 insn |= at << MICROMIPSOP_SH_RS;
18567
18568 buf = write_compressed_insn (buf, insn, 4);
18569
18570 if (compact || nods)
18571 /* nop */
18572 buf = write_compressed_insn (buf, 0x00000000, 4);
18573 }
18574 else
18575 {
18576 /* jr/jrc/jalr/jalrs $at */
18577 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18578 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18579
18580 insn = al ? jalr : jr;
18581 insn |= at << MICROMIPSOP_SH_MJ;
18582
18583 buf = write_compressed_insn (buf, insn, 2);
18584 if (al && nods)
18585 {
18586 /* nop */
18587 if (short_ds)
18588 buf = write_compressed_insn (buf, 0x0c00, 2);
18589 else
18590 buf = write_compressed_insn (buf, 0x00000000, 4);
18591 }
18592 }
18593 }
18594
18595 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18596 return;
18597 }
18598
18599 if (RELAX_MIPS16_P (fragp->fr_subtype))
18600 {
18601 int type;
18602 const struct mips_int_operand *operand;
18603 offsetT val;
18604 char *buf;
18605 unsigned int user_length;
18606 bfd_boolean need_reloc;
18607 unsigned long insn;
18608 bfd_boolean mac;
18609 bfd_boolean ext;
18610 segT symsec;
18611
18612 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18613 operand = mips16_immed_operand (type, FALSE);
18614
18615 mac = RELAX_MIPS16_MACRO (fragp->fr_subtype);
18616 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18617 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18618
18619 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18620 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18621 || (operand->root.type == OP_PCREL && !mac
18622 ? asec != symsec
18623 : !bfd_is_abs_section (symsec)));
18624
18625 if (operand->root.type == OP_PCREL && !mac)
18626 {
18627 const struct mips_pcrel_operand *pcrel_op;
18628
18629 pcrel_op = (const struct mips_pcrel_operand *) operand;
18630
18631 if (pcrel_op->include_isa_bit && !need_reloc)
18632 {
18633 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18634 as_bad_where (fragp->fr_file, fragp->fr_line,
18635 _("branch to a symbol in another ISA mode"));
18636 else if ((fragp->fr_offset & 0x1) != 0)
18637 as_bad_where (fragp->fr_file, fragp->fr_line,
18638 _("branch to misaligned address (0x%lx)"),
18639 (long) val);
18640 }
18641
18642 val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
18643
18644 /* Make sure the section winds up with the alignment we have
18645 assumed. */
18646 if (operand->shift > 0)
18647 record_alignment (asec, operand->shift);
18648 }
18649
18650 if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18651 || RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18652 {
18653 if (mac)
18654 as_warn_where (fragp->fr_file, fragp->fr_line,
18655 _("macro instruction expanded into multiple "
18656 "instructions in a branch delay slot"));
18657 else if (ext)
18658 as_warn_where (fragp->fr_file, fragp->fr_line,
18659 _("extended instruction in a branch delay slot"));
18660 }
18661 else if (RELAX_MIPS16_NOMACRO (fragp->fr_subtype) && mac)
18662 as_warn_where (fragp->fr_file, fragp->fr_line,
18663 _("macro instruction expanded into multiple "
18664 "instructions"));
18665
18666 buf = fragp->fr_literal + fragp->fr_fix;
18667
18668 insn = read_compressed_insn (buf, 2);
18669 if (ext)
18670 insn |= MIPS16_EXTEND;
18671
18672 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18673 user_length = 4;
18674 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18675 user_length = 2;
18676 else
18677 user_length = 0;
18678
18679 if (mac)
18680 {
18681 unsigned long reg;
18682 unsigned long new;
18683 unsigned long op;
18684 bfd_boolean e2;
18685
18686 gas_assert (type == 'A' || type == 'B' || type == 'E');
18687 gas_assert (RELAX_MIPS16_SYM32 (fragp->fr_subtype));
18688
18689 e2 = RELAX_MIPS16_E2 (fragp->fr_subtype);
18690
18691 if (need_reloc)
18692 {
18693 fixS *fixp;
18694
18695 gas_assert (!RELAX_MIPS16_PIC (fragp->fr_subtype));
18696
18697 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18698 fragp->fr_symbol, fragp->fr_offset,
18699 FALSE, BFD_RELOC_MIPS16_HI16_S);
18700 fixp->fx_file = fragp->fr_file;
18701 fixp->fx_line = fragp->fr_line;
18702
18703 fixp = fix_new (fragp, buf - fragp->fr_literal + (e2 ? 4 : 8), 4,
18704 fragp->fr_symbol, fragp->fr_offset,
18705 FALSE, BFD_RELOC_MIPS16_LO16);
18706 fixp->fx_file = fragp->fr_file;
18707 fixp->fx_line = fragp->fr_line;
18708
18709 val = 0;
18710 }
18711
18712 switch (insn & 0xf800)
18713 {
18714 case 0x0800: /* ADDIU */
18715 reg = (insn >> 8) & 0x7;
18716 op = 0xf0004800 | (reg << 8);
18717 break;
18718 case 0xb000: /* LW */
18719 reg = (insn >> 8) & 0x7;
18720 op = 0xf0009800 | (reg << 8) | (reg << 5);
18721 break;
18722 case 0xf800: /* I64 */
18723 reg = (insn >> 5) & 0x7;
18724 switch (insn & 0x0700)
18725 {
18726 case 0x0400: /* LD */
18727 op = 0xf0003800 | (reg << 8) | (reg << 5);
18728 break;
18729 case 0x0600: /* DADDIU */
18730 op = 0xf000fd00 | (reg << 5);
18731 break;
18732 default:
18733 abort ();
18734 }
18735 break;
18736 default:
18737 abort ();
18738 }
18739
18740 new = (e2 ? 0xf0006820 : 0xf0006800) | (reg << 8); /* LUI/LI */
18741 new |= mips16_immed_extend ((val + 0x8000) >> 16, 16);
18742 buf = write_compressed_insn (buf, new, 4);
18743 if (!e2)
18744 {
18745 new = 0xf4003000 | (reg << 8) | (reg << 5); /* SLL */
18746 buf = write_compressed_insn (buf, new, 4);
18747 }
18748 op |= mips16_immed_extend (val, 16);
18749 buf = write_compressed_insn (buf, op, 4);
18750
18751 fragp->fr_fix += e2 ? 8 : 12;
18752 }
18753 else
18754 {
18755 unsigned int length = ext ? 4 : 2;
18756
18757 if (need_reloc)
18758 {
18759 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18760 expressionS exp;
18761 fixS *fixp;
18762
18763 switch (type)
18764 {
18765 case 'p':
18766 case 'q':
18767 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18768 break;
18769 default:
18770 break;
18771 }
18772 if (mac || reloc == BFD_RELOC_NONE)
18773 as_bad_where (fragp->fr_file, fragp->fr_line,
18774 _("unsupported relocation"));
18775 else if (ext)
18776 {
18777 exp.X_op = O_symbol;
18778 exp.X_add_symbol = fragp->fr_symbol;
18779 exp.X_add_number = fragp->fr_offset;
18780
18781 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18782 TRUE, reloc);
18783
18784 fixp->fx_file = fragp->fr_file;
18785 fixp->fx_line = fragp->fr_line;
18786 }
18787 else
18788 as_bad_where (fragp->fr_file, fragp->fr_line,
18789 _("invalid unextended operand value"));
18790 }
18791 else
18792 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18793 BFD_RELOC_UNUSED, val, user_length, &insn);
18794
18795 gas_assert (mips16_opcode_length (insn) == length);
18796 write_compressed_insn (buf, insn, length);
18797 fragp->fr_fix += length;
18798 }
18799 }
18800 else
18801 {
18802 relax_substateT subtype = fragp->fr_subtype;
18803 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18804 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18805 int first, second;
18806 fixS *fixp;
18807
18808 first = RELAX_FIRST (subtype);
18809 second = RELAX_SECOND (subtype);
18810 fixp = (fixS *) fragp->fr_opcode;
18811
18812 /* If the delay slot chosen does not match the size of the instruction,
18813 then emit a warning. */
18814 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18815 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18816 {
18817 relax_substateT s;
18818 const char *msg;
18819
18820 s = subtype & (RELAX_DELAY_SLOT_16BIT
18821 | RELAX_DELAY_SLOT_SIZE_FIRST
18822 | RELAX_DELAY_SLOT_SIZE_SECOND);
18823 msg = macro_warning (s);
18824 if (msg != NULL)
18825 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18826 subtype &= ~s;
18827 }
18828
18829 /* Possibly emit a warning if we've chosen the longer option. */
18830 if (use_second == second_longer)
18831 {
18832 relax_substateT s;
18833 const char *msg;
18834
18835 s = (subtype
18836 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18837 msg = macro_warning (s);
18838 if (msg != NULL)
18839 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18840 subtype &= ~s;
18841 }
18842
18843 /* Go through all the fixups for the first sequence. Disable them
18844 (by marking them as done) if we're going to use the second
18845 sequence instead. */
18846 while (fixp
18847 && fixp->fx_frag == fragp
18848 && fixp->fx_where < fragp->fr_fix - second)
18849 {
18850 if (subtype & RELAX_USE_SECOND)
18851 fixp->fx_done = 1;
18852 fixp = fixp->fx_next;
18853 }
18854
18855 /* Go through the fixups for the second sequence. Disable them if
18856 we're going to use the first sequence, otherwise adjust their
18857 addresses to account for the relaxation. */
18858 while (fixp && fixp->fx_frag == fragp)
18859 {
18860 if (subtype & RELAX_USE_SECOND)
18861 fixp->fx_where -= first;
18862 else
18863 fixp->fx_done = 1;
18864 fixp = fixp->fx_next;
18865 }
18866
18867 /* Now modify the frag contents. */
18868 if (subtype & RELAX_USE_SECOND)
18869 {
18870 char *start;
18871
18872 start = fragp->fr_literal + fragp->fr_fix - first - second;
18873 memmove (start, start + first, second);
18874 fragp->fr_fix -= first;
18875 }
18876 else
18877 fragp->fr_fix -= second;
18878 }
18879 }
18880
18881 /* This function is called after the relocs have been generated.
18882 We've been storing mips16 text labels as odd. Here we convert them
18883 back to even for the convenience of the debugger. */
18884
18885 void
18886 mips_frob_file_after_relocs (void)
18887 {
18888 asymbol **syms;
18889 unsigned int count, i;
18890
18891 syms = bfd_get_outsymbols (stdoutput);
18892 count = bfd_get_symcount (stdoutput);
18893 for (i = 0; i < count; i++, syms++)
18894 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18895 && ((*syms)->value & 1) != 0)
18896 {
18897 (*syms)->value &= ~1;
18898 /* If the symbol has an odd size, it was probably computed
18899 incorrectly, so adjust that as well. */
18900 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18901 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18902 }
18903 }
18904
18905 /* This function is called whenever a label is defined, including fake
18906 labels instantiated off the dot special symbol. It is used when
18907 handling branch delays; if a branch has a label, we assume we cannot
18908 move it. This also bumps the value of the symbol by 1 in compressed
18909 code. */
18910
18911 static void
18912 mips_record_label (symbolS *sym)
18913 {
18914 segment_info_type *si = seg_info (now_seg);
18915 struct insn_label_list *l;
18916
18917 if (free_insn_labels == NULL)
18918 l = XNEW (struct insn_label_list);
18919 else
18920 {
18921 l = free_insn_labels;
18922 free_insn_labels = l->next;
18923 }
18924
18925 l->label = sym;
18926 l->next = si->label_list;
18927 si->label_list = l;
18928 }
18929
18930 /* This function is called as tc_frob_label() whenever a label is defined
18931 and adds a DWARF-2 record we only want for true labels. */
18932
18933 void
18934 mips_define_label (symbolS *sym)
18935 {
18936 mips_record_label (sym);
18937 dwarf2_emit_label (sym);
18938 }
18939
18940 /* This function is called by tc_new_dot_label whenever a new dot symbol
18941 is defined. */
18942
18943 void
18944 mips_add_dot_label (symbolS *sym)
18945 {
18946 mips_record_label (sym);
18947 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18948 mips_compressed_mark_label (sym);
18949 }
18950 \f
18951 /* Converting ASE flags from internal to .MIPS.abiflags values. */
18952 static unsigned int
18953 mips_convert_ase_flags (int ase)
18954 {
18955 unsigned int ext_ases = 0;
18956
18957 if (ase & ASE_DSP)
18958 ext_ases |= AFL_ASE_DSP;
18959 if (ase & ASE_DSPR2)
18960 ext_ases |= AFL_ASE_DSPR2;
18961 if (ase & ASE_DSPR3)
18962 ext_ases |= AFL_ASE_DSPR3;
18963 if (ase & ASE_EVA)
18964 ext_ases |= AFL_ASE_EVA;
18965 if (ase & ASE_MCU)
18966 ext_ases |= AFL_ASE_MCU;
18967 if (ase & ASE_MDMX)
18968 ext_ases |= AFL_ASE_MDMX;
18969 if (ase & ASE_MIPS3D)
18970 ext_ases |= AFL_ASE_MIPS3D;
18971 if (ase & ASE_MT)
18972 ext_ases |= AFL_ASE_MT;
18973 if (ase & ASE_SMARTMIPS)
18974 ext_ases |= AFL_ASE_SMARTMIPS;
18975 if (ase & ASE_VIRT)
18976 ext_ases |= AFL_ASE_VIRT;
18977 if (ase & ASE_MSA)
18978 ext_ases |= AFL_ASE_MSA;
18979 if (ase & ASE_XPA)
18980 ext_ases |= AFL_ASE_XPA;
18981 if (ase & ASE_MIPS16E2)
18982 ext_ases |= file_ase_mips16 ? AFL_ASE_MIPS16E2 : 0;
18983
18984 return ext_ases;
18985 }
18986 /* Some special processing for a MIPS ELF file. */
18987
18988 void
18989 mips_elf_final_processing (void)
18990 {
18991 int fpabi;
18992 Elf_Internal_ABIFlags_v0 flags;
18993
18994 flags.version = 0;
18995 flags.isa_rev = 0;
18996 switch (file_mips_opts.isa)
18997 {
18998 case INSN_ISA1:
18999 flags.isa_level = 1;
19000 break;
19001 case INSN_ISA2:
19002 flags.isa_level = 2;
19003 break;
19004 case INSN_ISA3:
19005 flags.isa_level = 3;
19006 break;
19007 case INSN_ISA4:
19008 flags.isa_level = 4;
19009 break;
19010 case INSN_ISA5:
19011 flags.isa_level = 5;
19012 break;
19013 case INSN_ISA32:
19014 flags.isa_level = 32;
19015 flags.isa_rev = 1;
19016 break;
19017 case INSN_ISA32R2:
19018 flags.isa_level = 32;
19019 flags.isa_rev = 2;
19020 break;
19021 case INSN_ISA32R3:
19022 flags.isa_level = 32;
19023 flags.isa_rev = 3;
19024 break;
19025 case INSN_ISA32R5:
19026 flags.isa_level = 32;
19027 flags.isa_rev = 5;
19028 break;
19029 case INSN_ISA32R6:
19030 flags.isa_level = 32;
19031 flags.isa_rev = 6;
19032 break;
19033 case INSN_ISA64:
19034 flags.isa_level = 64;
19035 flags.isa_rev = 1;
19036 break;
19037 case INSN_ISA64R2:
19038 flags.isa_level = 64;
19039 flags.isa_rev = 2;
19040 break;
19041 case INSN_ISA64R3:
19042 flags.isa_level = 64;
19043 flags.isa_rev = 3;
19044 break;
19045 case INSN_ISA64R5:
19046 flags.isa_level = 64;
19047 flags.isa_rev = 5;
19048 break;
19049 case INSN_ISA64R6:
19050 flags.isa_level = 64;
19051 flags.isa_rev = 6;
19052 break;
19053 }
19054
19055 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
19056 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
19057 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
19058 : (file_mips_opts.fp == 64) ? AFL_REG_64
19059 : AFL_REG_32;
19060 flags.cpr2_size = AFL_REG_NONE;
19061 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19062 Tag_GNU_MIPS_ABI_FP);
19063 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
19064 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
19065 if (file_ase_mips16)
19066 flags.ases |= AFL_ASE_MIPS16;
19067 if (file_ase_micromips)
19068 flags.ases |= AFL_ASE_MICROMIPS;
19069 flags.flags1 = 0;
19070 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
19071 || file_mips_opts.fp == 64)
19072 && file_mips_opts.oddspreg)
19073 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
19074 flags.flags2 = 0;
19075
19076 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
19077 ((Elf_External_ABIFlags_v0 *)
19078 mips_flags_frag));
19079
19080 /* Write out the register information. */
19081 if (mips_abi != N64_ABI)
19082 {
19083 Elf32_RegInfo s;
19084
19085 s.ri_gprmask = mips_gprmask;
19086 s.ri_cprmask[0] = mips_cprmask[0];
19087 s.ri_cprmask[1] = mips_cprmask[1];
19088 s.ri_cprmask[2] = mips_cprmask[2];
19089 s.ri_cprmask[3] = mips_cprmask[3];
19090 /* The gp_value field is set by the MIPS ELF backend. */
19091
19092 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
19093 ((Elf32_External_RegInfo *)
19094 mips_regmask_frag));
19095 }
19096 else
19097 {
19098 Elf64_Internal_RegInfo s;
19099
19100 s.ri_gprmask = mips_gprmask;
19101 s.ri_pad = 0;
19102 s.ri_cprmask[0] = mips_cprmask[0];
19103 s.ri_cprmask[1] = mips_cprmask[1];
19104 s.ri_cprmask[2] = mips_cprmask[2];
19105 s.ri_cprmask[3] = mips_cprmask[3];
19106 /* The gp_value field is set by the MIPS ELF backend. */
19107
19108 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
19109 ((Elf64_External_RegInfo *)
19110 mips_regmask_frag));
19111 }
19112
19113 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
19114 sort of BFD interface for this. */
19115 if (mips_any_noreorder)
19116 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
19117 if (mips_pic != NO_PIC)
19118 {
19119 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
19120 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19121 }
19122 if (mips_abicalls)
19123 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19124
19125 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
19126 defined at present; this might need to change in future. */
19127 if (file_ase_mips16)
19128 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
19129 if (file_ase_micromips)
19130 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
19131 if (file_mips_opts.ase & ASE_MDMX)
19132 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
19133
19134 /* Set the MIPS ELF ABI flags. */
19135 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
19136 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
19137 else if (mips_abi == O64_ABI)
19138 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
19139 else if (mips_abi == EABI_ABI)
19140 {
19141 if (file_mips_opts.gp == 64)
19142 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
19143 else
19144 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
19145 }
19146 else if (mips_abi == N32_ABI)
19147 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
19148
19149 /* Nothing to do for N64_ABI. */
19150
19151 if (mips_32bitmode)
19152 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
19153
19154 if (mips_nan2008 == 1)
19155 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
19156
19157 /* 32 bit code with 64 bit FP registers. */
19158 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19159 Tag_GNU_MIPS_ABI_FP);
19160 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
19161 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
19162 }
19163 \f
19164 typedef struct proc {
19165 symbolS *func_sym;
19166 symbolS *func_end_sym;
19167 unsigned long reg_mask;
19168 unsigned long reg_offset;
19169 unsigned long fpreg_mask;
19170 unsigned long fpreg_offset;
19171 unsigned long frame_offset;
19172 unsigned long frame_reg;
19173 unsigned long pc_reg;
19174 } procS;
19175
19176 static procS cur_proc;
19177 static procS *cur_proc_ptr;
19178 static int numprocs;
19179
19180 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
19181 as "2", and a normal nop as "0". */
19182
19183 #define NOP_OPCODE_MIPS 0
19184 #define NOP_OPCODE_MIPS16 1
19185 #define NOP_OPCODE_MICROMIPS 2
19186
19187 char
19188 mips_nop_opcode (void)
19189 {
19190 if (seg_info (now_seg)->tc_segment_info_data.micromips)
19191 return NOP_OPCODE_MICROMIPS;
19192 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
19193 return NOP_OPCODE_MIPS16;
19194 else
19195 return NOP_OPCODE_MIPS;
19196 }
19197
19198 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
19199 32-bit microMIPS NOPs here (if applicable). */
19200
19201 void
19202 mips_handle_align (fragS *fragp)
19203 {
19204 char nop_opcode;
19205 char *p;
19206 int bytes, size, excess;
19207 valueT opcode;
19208
19209 if (fragp->fr_type != rs_align_code)
19210 return;
19211
19212 p = fragp->fr_literal + fragp->fr_fix;
19213 nop_opcode = *p;
19214 switch (nop_opcode)
19215 {
19216 case NOP_OPCODE_MICROMIPS:
19217 opcode = micromips_nop32_insn.insn_opcode;
19218 size = 4;
19219 break;
19220 case NOP_OPCODE_MIPS16:
19221 opcode = mips16_nop_insn.insn_opcode;
19222 size = 2;
19223 break;
19224 case NOP_OPCODE_MIPS:
19225 default:
19226 opcode = nop_insn.insn_opcode;
19227 size = 4;
19228 break;
19229 }
19230
19231 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
19232 excess = bytes % size;
19233
19234 /* Handle the leading part if we're not inserting a whole number of
19235 instructions, and make it the end of the fixed part of the frag.
19236 Try to fit in a short microMIPS NOP if applicable and possible,
19237 and use zeroes otherwise. */
19238 gas_assert (excess < 4);
19239 fragp->fr_fix += excess;
19240 switch (excess)
19241 {
19242 case 3:
19243 *p++ = '\0';
19244 /* Fall through. */
19245 case 2:
19246 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
19247 {
19248 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
19249 break;
19250 }
19251 *p++ = '\0';
19252 /* Fall through. */
19253 case 1:
19254 *p++ = '\0';
19255 /* Fall through. */
19256 case 0:
19257 break;
19258 }
19259
19260 md_number_to_chars (p, opcode, size);
19261 fragp->fr_var = size;
19262 }
19263
19264 static long
19265 get_number (void)
19266 {
19267 int negative = 0;
19268 long val = 0;
19269
19270 if (*input_line_pointer == '-')
19271 {
19272 ++input_line_pointer;
19273 negative = 1;
19274 }
19275 if (!ISDIGIT (*input_line_pointer))
19276 as_bad (_("expected simple number"));
19277 if (input_line_pointer[0] == '0')
19278 {
19279 if (input_line_pointer[1] == 'x')
19280 {
19281 input_line_pointer += 2;
19282 while (ISXDIGIT (*input_line_pointer))
19283 {
19284 val <<= 4;
19285 val |= hex_value (*input_line_pointer++);
19286 }
19287 return negative ? -val : val;
19288 }
19289 else
19290 {
19291 ++input_line_pointer;
19292 while (ISDIGIT (*input_line_pointer))
19293 {
19294 val <<= 3;
19295 val |= *input_line_pointer++ - '0';
19296 }
19297 return negative ? -val : val;
19298 }
19299 }
19300 if (!ISDIGIT (*input_line_pointer))
19301 {
19302 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
19303 *input_line_pointer, *input_line_pointer);
19304 as_warn (_("invalid number"));
19305 return -1;
19306 }
19307 while (ISDIGIT (*input_line_pointer))
19308 {
19309 val *= 10;
19310 val += *input_line_pointer++ - '0';
19311 }
19312 return negative ? -val : val;
19313 }
19314
19315 /* The .file directive; just like the usual .file directive, but there
19316 is an initial number which is the ECOFF file index. In the non-ECOFF
19317 case .file implies DWARF-2. */
19318
19319 static void
19320 s_mips_file (int x ATTRIBUTE_UNUSED)
19321 {
19322 static int first_file_directive = 0;
19323
19324 if (ECOFF_DEBUGGING)
19325 {
19326 get_number ();
19327 s_app_file (0);
19328 }
19329 else
19330 {
19331 char *filename;
19332
19333 filename = dwarf2_directive_file (0);
19334
19335 /* Versions of GCC up to 3.1 start files with a ".file"
19336 directive even for stabs output. Make sure that this
19337 ".file" is handled. Note that you need a version of GCC
19338 after 3.1 in order to support DWARF-2 on MIPS. */
19339 if (filename != NULL && ! first_file_directive)
19340 {
19341 (void) new_logical_line (filename, -1);
19342 s_app_file_string (filename, 0);
19343 }
19344 first_file_directive = 1;
19345 }
19346 }
19347
19348 /* The .loc directive, implying DWARF-2. */
19349
19350 static void
19351 s_mips_loc (int x ATTRIBUTE_UNUSED)
19352 {
19353 if (!ECOFF_DEBUGGING)
19354 dwarf2_directive_loc (0);
19355 }
19356
19357 /* The .end directive. */
19358
19359 static void
19360 s_mips_end (int x ATTRIBUTE_UNUSED)
19361 {
19362 symbolS *p;
19363
19364 /* Following functions need their own .frame and .cprestore directives. */
19365 mips_frame_reg_valid = 0;
19366 mips_cprestore_valid = 0;
19367
19368 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19369 {
19370 p = get_symbol ();
19371 demand_empty_rest_of_line ();
19372 }
19373 else
19374 p = NULL;
19375
19376 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19377 as_warn (_(".end not in text section"));
19378
19379 if (!cur_proc_ptr)
19380 {
19381 as_warn (_(".end directive without a preceding .ent directive"));
19382 demand_empty_rest_of_line ();
19383 return;
19384 }
19385
19386 if (p != NULL)
19387 {
19388 gas_assert (S_GET_NAME (p));
19389 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19390 as_warn (_(".end symbol does not match .ent symbol"));
19391
19392 if (debug_type == DEBUG_STABS)
19393 stabs_generate_asm_endfunc (S_GET_NAME (p),
19394 S_GET_NAME (p));
19395 }
19396 else
19397 as_warn (_(".end directive missing or unknown symbol"));
19398
19399 /* Create an expression to calculate the size of the function. */
19400 if (p && cur_proc_ptr)
19401 {
19402 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19403 expressionS *exp = XNEW (expressionS);
19404
19405 obj->size = exp;
19406 exp->X_op = O_subtract;
19407 exp->X_add_symbol = symbol_temp_new_now ();
19408 exp->X_op_symbol = p;
19409 exp->X_add_number = 0;
19410
19411 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19412 }
19413
19414 #ifdef md_flush_pending_output
19415 md_flush_pending_output ();
19416 #endif
19417
19418 /* Generate a .pdr section. */
19419 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19420 {
19421 segT saved_seg = now_seg;
19422 subsegT saved_subseg = now_subseg;
19423 expressionS exp;
19424 char *fragp;
19425
19426 gas_assert (pdr_seg);
19427 subseg_set (pdr_seg, 0);
19428
19429 /* Write the symbol. */
19430 exp.X_op = O_symbol;
19431 exp.X_add_symbol = p;
19432 exp.X_add_number = 0;
19433 emit_expr (&exp, 4);
19434
19435 fragp = frag_more (7 * 4);
19436
19437 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19438 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19439 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19440 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19441 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19442 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19443 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19444
19445 subseg_set (saved_seg, saved_subseg);
19446 }
19447
19448 cur_proc_ptr = NULL;
19449 }
19450
19451 /* The .aent and .ent directives. */
19452
19453 static void
19454 s_mips_ent (int aent)
19455 {
19456 symbolS *symbolP;
19457
19458 symbolP = get_symbol ();
19459 if (*input_line_pointer == ',')
19460 ++input_line_pointer;
19461 SKIP_WHITESPACE ();
19462 if (ISDIGIT (*input_line_pointer)
19463 || *input_line_pointer == '-')
19464 get_number ();
19465
19466 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19467 as_warn (_(".ent or .aent not in text section"));
19468
19469 if (!aent && cur_proc_ptr)
19470 as_warn (_("missing .end"));
19471
19472 if (!aent)
19473 {
19474 /* This function needs its own .frame and .cprestore directives. */
19475 mips_frame_reg_valid = 0;
19476 mips_cprestore_valid = 0;
19477
19478 cur_proc_ptr = &cur_proc;
19479 memset (cur_proc_ptr, '\0', sizeof (procS));
19480
19481 cur_proc_ptr->func_sym = symbolP;
19482
19483 ++numprocs;
19484
19485 if (debug_type == DEBUG_STABS)
19486 stabs_generate_asm_func (S_GET_NAME (symbolP),
19487 S_GET_NAME (symbolP));
19488 }
19489
19490 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19491
19492 demand_empty_rest_of_line ();
19493 }
19494
19495 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19496 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19497 s_mips_frame is used so that we can set the PDR information correctly.
19498 We can't use the ecoff routines because they make reference to the ecoff
19499 symbol table (in the mdebug section). */
19500
19501 static void
19502 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19503 {
19504 if (ECOFF_DEBUGGING)
19505 s_ignore (ignore);
19506 else
19507 {
19508 long val;
19509
19510 if (cur_proc_ptr == (procS *) NULL)
19511 {
19512 as_warn (_(".frame outside of .ent"));
19513 demand_empty_rest_of_line ();
19514 return;
19515 }
19516
19517 cur_proc_ptr->frame_reg = tc_get_register (1);
19518
19519 SKIP_WHITESPACE ();
19520 if (*input_line_pointer++ != ','
19521 || get_absolute_expression_and_terminator (&val) != ',')
19522 {
19523 as_warn (_("bad .frame directive"));
19524 --input_line_pointer;
19525 demand_empty_rest_of_line ();
19526 return;
19527 }
19528
19529 cur_proc_ptr->frame_offset = val;
19530 cur_proc_ptr->pc_reg = tc_get_register (0);
19531
19532 demand_empty_rest_of_line ();
19533 }
19534 }
19535
19536 /* The .fmask and .mask directives. If the mdebug section is present
19537 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19538 embedded targets, s_mips_mask is used so that we can set the PDR
19539 information correctly. We can't use the ecoff routines because they
19540 make reference to the ecoff symbol table (in the mdebug section). */
19541
19542 static void
19543 s_mips_mask (int reg_type)
19544 {
19545 if (ECOFF_DEBUGGING)
19546 s_ignore (reg_type);
19547 else
19548 {
19549 long mask, off;
19550
19551 if (cur_proc_ptr == (procS *) NULL)
19552 {
19553 as_warn (_(".mask/.fmask outside of .ent"));
19554 demand_empty_rest_of_line ();
19555 return;
19556 }
19557
19558 if (get_absolute_expression_and_terminator (&mask) != ',')
19559 {
19560 as_warn (_("bad .mask/.fmask directive"));
19561 --input_line_pointer;
19562 demand_empty_rest_of_line ();
19563 return;
19564 }
19565
19566 off = get_absolute_expression ();
19567
19568 if (reg_type == 'F')
19569 {
19570 cur_proc_ptr->fpreg_mask = mask;
19571 cur_proc_ptr->fpreg_offset = off;
19572 }
19573 else
19574 {
19575 cur_proc_ptr->reg_mask = mask;
19576 cur_proc_ptr->reg_offset = off;
19577 }
19578
19579 demand_empty_rest_of_line ();
19580 }
19581 }
19582
19583 /* A table describing all the processors gas knows about. Names are
19584 matched in the order listed.
19585
19586 To ease comparison, please keep this table in the same order as
19587 gcc's mips_cpu_info_table[]. */
19588 static const struct mips_cpu_info mips_cpu_info_table[] =
19589 {
19590 /* Entries for generic ISAs */
19591 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19592 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19593 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19594 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19595 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19596 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19597 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19598 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19599 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19600 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19601 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19602 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19603 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19604 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19605 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19606
19607 /* MIPS I */
19608 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19609 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19610 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19611
19612 /* MIPS II */
19613 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19614
19615 /* MIPS III */
19616 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19617 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19618 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19619 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19620 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19621 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19622 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19623 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19624 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19625 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19626 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19627 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19628 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19629 /* ST Microelectronics Loongson 2E and 2F cores */
19630 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19631 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
19632
19633 /* MIPS IV */
19634 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19635 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19636 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19637 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19638 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19639 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19640 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19641 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19642 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19643 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19644 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19645 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19646 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19647 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19648 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19649
19650 /* MIPS 32 */
19651 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19652 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19653 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19654 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19655
19656 /* MIPS 32 Release 2 */
19657 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19658 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19659 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19660 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19661 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19662 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19663 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19664 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19665 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19666 ISA_MIPS32R2, CPU_MIPS32R2 },
19667 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19668 ISA_MIPS32R2, CPU_MIPS32R2 },
19669 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19670 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19671 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19672 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19673 /* Deprecated forms of the above. */
19674 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19675 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19676 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19677 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19678 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19679 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19680 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19681 /* Deprecated forms of the above. */
19682 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19683 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19684 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19685 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19686 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19687 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19688 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19689 /* Deprecated forms of the above. */
19690 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19691 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19692 /* 34Kn is a 34kc without DSP. */
19693 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19694 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19695 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19696 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19697 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19698 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19699 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19700 /* Deprecated forms of the above. */
19701 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19702 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19703 /* 1004K cores are multiprocessor versions of the 34K. */
19704 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19705 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19706 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19707 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19708 /* interaptiv is the new name for 1004kf */
19709 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19710 { "interaptiv-mr2", 0,
19711 ASE_DSP | ASE_EVA | ASE_MT | ASE_MIPS16E2 | ASE_MIPS16E2_MT,
19712 ISA_MIPS32R3, CPU_INTERAPTIV_MR2 },
19713 /* M5100 family */
19714 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19715 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19716 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
19717 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
19718
19719 /* MIPS 64 */
19720 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19721 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19722 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19723 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19724
19725 /* Broadcom SB-1 CPU core */
19726 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19727 /* Broadcom SB-1A CPU core */
19728 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19729
19730 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
19731
19732 /* MIPS 64 Release 2 */
19733
19734 /* Cavium Networks Octeon CPU core */
19735 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19736 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19737 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19738 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
19739
19740 /* RMI Xlr */
19741 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19742
19743 /* Broadcom XLP.
19744 XLP is mostly like XLR, with the prominent exception that it is
19745 MIPS64R2 rather than MIPS64. */
19746 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19747
19748 /* MIPS 64 Release 6 */
19749 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19750 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19751
19752 /* End marker */
19753 { NULL, 0, 0, 0, 0 }
19754 };
19755
19756
19757 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19758 with a final "000" replaced by "k". Ignore case.
19759
19760 Note: this function is shared between GCC and GAS. */
19761
19762 static bfd_boolean
19763 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19764 {
19765 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19766 given++, canonical++;
19767
19768 return ((*given == 0 && *canonical == 0)
19769 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19770 }
19771
19772
19773 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19774 CPU name. We've traditionally allowed a lot of variation here.
19775
19776 Note: this function is shared between GCC and GAS. */
19777
19778 static bfd_boolean
19779 mips_matching_cpu_name_p (const char *canonical, const char *given)
19780 {
19781 /* First see if the name matches exactly, or with a final "000"
19782 turned into "k". */
19783 if (mips_strict_matching_cpu_name_p (canonical, given))
19784 return TRUE;
19785
19786 /* If not, try comparing based on numerical designation alone.
19787 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19788 if (TOLOWER (*given) == 'r')
19789 given++;
19790 if (!ISDIGIT (*given))
19791 return FALSE;
19792
19793 /* Skip over some well-known prefixes in the canonical name,
19794 hoping to find a number there too. */
19795 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19796 canonical += 2;
19797 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19798 canonical += 2;
19799 else if (TOLOWER (canonical[0]) == 'r')
19800 canonical += 1;
19801
19802 return mips_strict_matching_cpu_name_p (canonical, given);
19803 }
19804
19805
19806 /* Parse an option that takes the name of a processor as its argument.
19807 OPTION is the name of the option and CPU_STRING is the argument.
19808 Return the corresponding processor enumeration if the CPU_STRING is
19809 recognized, otherwise report an error and return null.
19810
19811 A similar function exists in GCC. */
19812
19813 static const struct mips_cpu_info *
19814 mips_parse_cpu (const char *option, const char *cpu_string)
19815 {
19816 const struct mips_cpu_info *p;
19817
19818 /* 'from-abi' selects the most compatible architecture for the given
19819 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19820 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19821 version. Look first at the -mgp options, if given, otherwise base
19822 the choice on MIPS_DEFAULT_64BIT.
19823
19824 Treat NO_ABI like the EABIs. One reason to do this is that the
19825 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19826 architecture. This code picks MIPS I for 'mips' and MIPS III for
19827 'mips64', just as we did in the days before 'from-abi'. */
19828 if (strcasecmp (cpu_string, "from-abi") == 0)
19829 {
19830 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19831 return mips_cpu_info_from_isa (ISA_MIPS1);
19832
19833 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19834 return mips_cpu_info_from_isa (ISA_MIPS3);
19835
19836 if (file_mips_opts.gp >= 0)
19837 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
19838 ? ISA_MIPS1 : ISA_MIPS3);
19839
19840 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19841 ? ISA_MIPS3
19842 : ISA_MIPS1);
19843 }
19844
19845 /* 'default' has traditionally been a no-op. Probably not very useful. */
19846 if (strcasecmp (cpu_string, "default") == 0)
19847 return 0;
19848
19849 for (p = mips_cpu_info_table; p->name != 0; p++)
19850 if (mips_matching_cpu_name_p (p->name, cpu_string))
19851 return p;
19852
19853 as_bad (_("bad value (%s) for %s"), cpu_string, option);
19854 return 0;
19855 }
19856
19857 /* Return the canonical processor information for ISA (a member of the
19858 ISA_MIPS* enumeration). */
19859
19860 static const struct mips_cpu_info *
19861 mips_cpu_info_from_isa (int isa)
19862 {
19863 int i;
19864
19865 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19866 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19867 && isa == mips_cpu_info_table[i].isa)
19868 return (&mips_cpu_info_table[i]);
19869
19870 return NULL;
19871 }
19872
19873 static const struct mips_cpu_info *
19874 mips_cpu_info_from_arch (int arch)
19875 {
19876 int i;
19877
19878 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19879 if (arch == mips_cpu_info_table[i].cpu)
19880 return (&mips_cpu_info_table[i]);
19881
19882 return NULL;
19883 }
19884 \f
19885 static void
19886 show (FILE *stream, const char *string, int *col_p, int *first_p)
19887 {
19888 if (*first_p)
19889 {
19890 fprintf (stream, "%24s", "");
19891 *col_p = 24;
19892 }
19893 else
19894 {
19895 fprintf (stream, ", ");
19896 *col_p += 2;
19897 }
19898
19899 if (*col_p + strlen (string) > 72)
19900 {
19901 fprintf (stream, "\n%24s", "");
19902 *col_p = 24;
19903 }
19904
19905 fprintf (stream, "%s", string);
19906 *col_p += strlen (string);
19907
19908 *first_p = 0;
19909 }
19910
19911 void
19912 md_show_usage (FILE *stream)
19913 {
19914 int column, first;
19915 size_t i;
19916
19917 fprintf (stream, _("\
19918 MIPS options:\n\
19919 -EB generate big endian output\n\
19920 -EL generate little endian output\n\
19921 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19922 -G NUM allow referencing objects up to NUM bytes\n\
19923 implicitly with the gp register [default 8]\n"));
19924 fprintf (stream, _("\
19925 -mips1 generate MIPS ISA I instructions\n\
19926 -mips2 generate MIPS ISA II instructions\n\
19927 -mips3 generate MIPS ISA III instructions\n\
19928 -mips4 generate MIPS ISA IV instructions\n\
19929 -mips5 generate MIPS ISA V instructions\n\
19930 -mips32 generate MIPS32 ISA instructions\n\
19931 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19932 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
19933 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
19934 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
19935 -mips64 generate MIPS64 ISA instructions\n\
19936 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19937 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
19938 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
19939 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
19940 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19941
19942 first = 1;
19943
19944 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19945 show (stream, mips_cpu_info_table[i].name, &column, &first);
19946 show (stream, "from-abi", &column, &first);
19947 fputc ('\n', stream);
19948
19949 fprintf (stream, _("\
19950 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19951 -no-mCPU don't generate code specific to CPU.\n\
19952 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19953
19954 first = 1;
19955
19956 show (stream, "3900", &column, &first);
19957 show (stream, "4010", &column, &first);
19958 show (stream, "4100", &column, &first);
19959 show (stream, "4650", &column, &first);
19960 fputc ('\n', stream);
19961
19962 fprintf (stream, _("\
19963 -mips16 generate mips16 instructions\n\
19964 -no-mips16 do not generate mips16 instructions\n"));
19965 fprintf (stream, _("\
19966 -mmicromips generate microMIPS instructions\n\
19967 -mno-micromips do not generate microMIPS instructions\n"));
19968 fprintf (stream, _("\
19969 -msmartmips generate smartmips instructions\n\
19970 -mno-smartmips do not generate smartmips instructions\n"));
19971 fprintf (stream, _("\
19972 -mdsp generate DSP instructions\n\
19973 -mno-dsp do not generate DSP instructions\n"));
19974 fprintf (stream, _("\
19975 -mdspr2 generate DSP R2 instructions\n\
19976 -mno-dspr2 do not generate DSP R2 instructions\n"));
19977 fprintf (stream, _("\
19978 -mdspr3 generate DSP R3 instructions\n\
19979 -mno-dspr3 do not generate DSP R3 instructions\n"));
19980 fprintf (stream, _("\
19981 -mmt generate MT instructions\n\
19982 -mno-mt do not generate MT instructions\n"));
19983 fprintf (stream, _("\
19984 -mmcu generate MCU instructions\n\
19985 -mno-mcu do not generate MCU instructions\n"));
19986 fprintf (stream, _("\
19987 -mmsa generate MSA instructions\n\
19988 -mno-msa do not generate MSA instructions\n"));
19989 fprintf (stream, _("\
19990 -mxpa generate eXtended Physical Address (XPA) instructions\n\
19991 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19992 fprintf (stream, _("\
19993 -mvirt generate Virtualization instructions\n\
19994 -mno-virt do not generate Virtualization instructions\n"));
19995 fprintf (stream, _("\
19996 -minsn32 only generate 32-bit microMIPS instructions\n\
19997 -mno-insn32 generate all microMIPS instructions\n"));
19998 fprintf (stream, _("\
19999 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
20000 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
20001 -mfix-vr4120 work around certain VR4120 errata\n\
20002 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
20003 -mfix-24k insert a nop after ERET and DERET instructions\n\
20004 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
20005 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
20006 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
20007 -msym32 assume all symbols have 32-bit values\n\
20008 -O0 remove unneeded NOPs, do not swap branches\n\
20009 -O remove unneeded NOPs and swap branches\n\
20010 --trap, --no-break trap exception on div by 0 and mult overflow\n\
20011 --break, --no-trap break exception on div by 0 and mult overflow\n"));
20012 fprintf (stream, _("\
20013 -mhard-float allow floating-point instructions\n\
20014 -msoft-float do not allow floating-point instructions\n\
20015 -msingle-float only allow 32-bit floating-point operations\n\
20016 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
20017 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
20018 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
20019 -mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
20020 -mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
20021 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
20022
20023 first = 1;
20024
20025 show (stream, "legacy", &column, &first);
20026 show (stream, "2008", &column, &first);
20027
20028 fputc ('\n', stream);
20029
20030 fprintf (stream, _("\
20031 -KPIC, -call_shared generate SVR4 position independent code\n\
20032 -call_nonpic generate non-PIC code that can operate with DSOs\n\
20033 -mvxworks-pic generate VxWorks position independent code\n\
20034 -non_shared do not generate code that can operate with DSOs\n\
20035 -xgot assume a 32 bit GOT\n\
20036 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
20037 -mshared, -mno-shared disable/enable .cpload optimization for\n\
20038 position dependent (non shared) code\n\
20039 -mabi=ABI create ABI conformant object file for:\n"));
20040
20041 first = 1;
20042
20043 show (stream, "32", &column, &first);
20044 show (stream, "o64", &column, &first);
20045 show (stream, "n32", &column, &first);
20046 show (stream, "64", &column, &first);
20047 show (stream, "eabi", &column, &first);
20048
20049 fputc ('\n', stream);
20050
20051 fprintf (stream, _("\
20052 -32 create o32 ABI object file (default)\n\
20053 -n32 create n32 ABI object file\n\
20054 -64 create 64 ABI object file\n"));
20055 }
20056
20057 #ifdef TE_IRIX
20058 enum dwarf2_format
20059 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
20060 {
20061 if (HAVE_64BIT_SYMBOLS)
20062 return dwarf2_format_64bit_irix;
20063 else
20064 return dwarf2_format_32bit;
20065 }
20066 #endif
20067
20068 int
20069 mips_dwarf2_addr_size (void)
20070 {
20071 if (HAVE_64BIT_OBJECTS)
20072 return 8;
20073 else
20074 return 4;
20075 }
20076
20077 /* Standard calling conventions leave the CFA at SP on entry. */
20078 void
20079 mips_cfi_frame_initial_instructions (void)
20080 {
20081 cfi_add_CFA_def_cfa_register (SP);
20082 }
20083
20084 int
20085 tc_mips_regname_to_dw2regnum (char *regname)
20086 {
20087 unsigned int regnum = -1;
20088 unsigned int reg;
20089
20090 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
20091 regnum = reg;
20092
20093 return regnum;
20094 }
20095
20096 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
20097 Given a symbolic attribute NAME, return the proper integer value.
20098 Returns -1 if the attribute is not known. */
20099
20100 int
20101 mips_convert_symbolic_attribute (const char *name)
20102 {
20103 static const struct
20104 {
20105 const char * name;
20106 const int tag;
20107 }
20108 attribute_table[] =
20109 {
20110 #define T(tag) {#tag, tag}
20111 T (Tag_GNU_MIPS_ABI_FP),
20112 T (Tag_GNU_MIPS_ABI_MSA),
20113 #undef T
20114 };
20115 unsigned int i;
20116
20117 if (name == NULL)
20118 return -1;
20119
20120 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
20121 if (streq (name, attribute_table[i].name))
20122 return attribute_table[i].tag;
20123
20124 return -1;
20125 }
20126
20127 void
20128 md_mips_end (void)
20129 {
20130 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
20131
20132 mips_emit_delays ();
20133 if (cur_proc_ptr)
20134 as_warn (_("missing .end at end of assembly"));
20135
20136 /* Just in case no code was emitted, do the consistency check. */
20137 file_mips_check_options ();
20138
20139 /* Set a floating-point ABI if the user did not. */
20140 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
20141 {
20142 /* Perform consistency checks on the floating-point ABI. */
20143 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20144 Tag_GNU_MIPS_ABI_FP);
20145 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
20146 check_fpabi (fpabi);
20147 }
20148 else
20149 {
20150 /* Soft-float gets precedence over single-float, the two options should
20151 not be used together so this should not matter. */
20152 if (file_mips_opts.soft_float == 1)
20153 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
20154 /* Single-float gets precedence over all double_float cases. */
20155 else if (file_mips_opts.single_float == 1)
20156 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
20157 else
20158 {
20159 switch (file_mips_opts.fp)
20160 {
20161 case 32:
20162 if (file_mips_opts.gp == 32)
20163 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20164 break;
20165 case 0:
20166 fpabi = Val_GNU_MIPS_ABI_FP_XX;
20167 break;
20168 case 64:
20169 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
20170 fpabi = Val_GNU_MIPS_ABI_FP_64A;
20171 else if (file_mips_opts.gp == 32)
20172 fpabi = Val_GNU_MIPS_ABI_FP_64;
20173 else
20174 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20175 break;
20176 }
20177 }
20178
20179 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20180 Tag_GNU_MIPS_ABI_FP, fpabi);
20181 }
20182 }
20183
20184 /* Returns the relocation type required for a particular CFI encoding. */
20185
20186 bfd_reloc_code_real_type
20187 mips_cfi_reloc_for_encoding (int encoding)
20188 {
20189 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
20190 return BFD_RELOC_32_PCREL;
20191 else return BFD_RELOC_NONE;
20192 }