]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-mips.c
[MIPS] Map 'move' to 'or'.
[thirdparty/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2015 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946 \f
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018 /* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
1171 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1174 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1185
1186 /* Sign-extend 16-bit value X. */
1187 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
1189 /* Is the given value a sign-extended 32-bit value? */
1190 #define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194 /* Is the given value a sign-extended 16-bit value? */
1195 #define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
1199 /* Is the given value a sign-extended 12-bit value? */
1200 #define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
1203 /* Is the given value a sign-extended 9-bit value? */
1204 #define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
1207 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208 #define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
1212 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
1217 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1218 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1223 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
1227
1228 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229 #define MIPS16_EXTEND (0xf000U << 16)
1230 \f
1231 /* Whether or not we are emitting a branch-likely macro. */
1232 static bfd_boolean emit_branch_likely_macro = FALSE;
1233
1234 /* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237 static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253 } mips_relax;
1254 \f
1255 /* Global variables used to decide whether a macro needs a warning. */
1256 static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289 } mips_macro_warning;
1290 \f
1291 /* Prototypes for static functions. */
1292
1293 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
1295 static void append_insn
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
1298 static void mips_no_prev_insn (void);
1299 static void macro_build (expressionS *, const char *, const char *, ...);
1300 static void mips16_macro_build
1301 (expressionS *, const char *, const char *, va_list *);
1302 static void load_register (int, expressionS *, int);
1303 static void macro_start (void);
1304 static void macro_end (void);
1305 static void macro (struct mips_cl_insn *ip, char *str);
1306 static void mips16_macro (struct mips_cl_insn * ip);
1307 static void mips_ip (char *str, struct mips_cl_insn * ip);
1308 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1309 static void mips16_immed
1310 (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
1312 static size_t my_getSmallExpression
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314 static void my_getExpression (expressionS *, char *);
1315 static void s_align (int);
1316 static void s_change_sec (int);
1317 static void s_change_section (int);
1318 static void s_cons (int);
1319 static void s_float_cons (int);
1320 static void s_mips_globl (int);
1321 static void s_option (int);
1322 static void s_mipsset (int);
1323 static void s_abicalls (int);
1324 static void s_cpload (int);
1325 static void s_cpsetup (int);
1326 static void s_cplocal (int);
1327 static void s_cprestore (int);
1328 static void s_cpreturn (int);
1329 static void s_dtprelword (int);
1330 static void s_dtpreldword (int);
1331 static void s_tprelword (int);
1332 static void s_tpreldword (int);
1333 static void s_gpvalue (int);
1334 static void s_gpword (int);
1335 static void s_gpdword (int);
1336 static void s_ehword (int);
1337 static void s_cpadd (int);
1338 static void s_insn (int);
1339 static void s_nan (int);
1340 static void s_module (int);
1341 static void s_mips_ent (int);
1342 static void s_mips_end (int);
1343 static void s_mips_frame (int);
1344 static void s_mips_mask (int reg_type);
1345 static void s_mips_stab (int);
1346 static void s_mips_weakext (int);
1347 static void s_mips_file (int);
1348 static void s_mips_loc (int);
1349 static bfd_boolean pic_need_relax (symbolS *, asection *);
1350 static int relaxed_branch_length (fragS *, asection *, int);
1351 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1353 static void file_mips_check_options (void);
1354
1355 /* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
1358 struct mips_cpu_info
1359 {
1360 const char *name; /* CPU or ISA name. */
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365 };
1366
1367 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1368
1369 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1372 \f
1373 /* Command-line options. */
1374 const char *md_shortopts = "O::g::G:";
1375
1376 enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
1390 OPTION_MIPS32R6,
1391 OPTION_MIPS64R2,
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
1394 OPTION_MIPS64R6,
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
1413 OPTION_EVA,
1414 OPTION_NO_EVA,
1415 OPTION_XPA,
1416 OPTION_NO_XPA,
1417 OPTION_MICROMIPS,
1418 OPTION_NO_MICROMIPS,
1419 OPTION_MCU,
1420 OPTION_NO_MCU,
1421 OPTION_COMPAT_ARCH_BASE,
1422 OPTION_M4650,
1423 OPTION_NO_M4650,
1424 OPTION_M4010,
1425 OPTION_NO_M4010,
1426 OPTION_M4100,
1427 OPTION_NO_M4100,
1428 OPTION_M3900,
1429 OPTION_NO_M3900,
1430 OPTION_M7000_HILO_FIX,
1431 OPTION_MNO_7000_HILO_FIX,
1432 OPTION_FIX_24K,
1433 OPTION_NO_FIX_24K,
1434 OPTION_FIX_RM7000,
1435 OPTION_NO_FIX_RM7000,
1436 OPTION_FIX_LOONGSON2F_JUMP,
1437 OPTION_NO_FIX_LOONGSON2F_JUMP,
1438 OPTION_FIX_LOONGSON2F_NOP,
1439 OPTION_NO_FIX_LOONGSON2F_NOP,
1440 OPTION_FIX_VR4120,
1441 OPTION_NO_FIX_VR4120,
1442 OPTION_FIX_VR4130,
1443 OPTION_NO_FIX_VR4130,
1444 OPTION_FIX_CN63XXP1,
1445 OPTION_NO_FIX_CN63XXP1,
1446 OPTION_TRAP,
1447 OPTION_BREAK,
1448 OPTION_EB,
1449 OPTION_EL,
1450 OPTION_FP32,
1451 OPTION_GP32,
1452 OPTION_CONSTRUCT_FLOATS,
1453 OPTION_NO_CONSTRUCT_FLOATS,
1454 OPTION_FP64,
1455 OPTION_FPXX,
1456 OPTION_GP64,
1457 OPTION_RELAX_BRANCH,
1458 OPTION_NO_RELAX_BRANCH,
1459 OPTION_INSN32,
1460 OPTION_NO_INSN32,
1461 OPTION_MSHARED,
1462 OPTION_MNO_SHARED,
1463 OPTION_MSYM32,
1464 OPTION_MNO_SYM32,
1465 OPTION_SOFT_FLOAT,
1466 OPTION_HARD_FLOAT,
1467 OPTION_SINGLE_FLOAT,
1468 OPTION_DOUBLE_FLOAT,
1469 OPTION_32,
1470 OPTION_CALL_SHARED,
1471 OPTION_CALL_NONPIC,
1472 OPTION_NON_SHARED,
1473 OPTION_XGOT,
1474 OPTION_MABI,
1475 OPTION_N32,
1476 OPTION_64,
1477 OPTION_MDEBUG,
1478 OPTION_NO_MDEBUG,
1479 OPTION_PDR,
1480 OPTION_NO_PDR,
1481 OPTION_MVXWORKS_PIC,
1482 OPTION_NAN,
1483 OPTION_ODD_SPREG,
1484 OPTION_NO_ODD_SPREG,
1485 OPTION_END_OF_ENUM
1486 };
1487
1488 struct option md_longopts[] =
1489 {
1490 /* Options which specify architecture. */
1491 {"march", required_argument, NULL, OPTION_MARCH},
1492 {"mtune", required_argument, NULL, OPTION_MTUNE},
1493 {"mips0", no_argument, NULL, OPTION_MIPS1},
1494 {"mips1", no_argument, NULL, OPTION_MIPS1},
1495 {"mips2", no_argument, NULL, OPTION_MIPS2},
1496 {"mips3", no_argument, NULL, OPTION_MIPS3},
1497 {"mips4", no_argument, NULL, OPTION_MIPS4},
1498 {"mips5", no_argument, NULL, OPTION_MIPS5},
1499 {"mips32", no_argument, NULL, OPTION_MIPS32},
1500 {"mips64", no_argument, NULL, OPTION_MIPS64},
1501 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1502 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1503 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1504 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1505 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1506 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1507 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1508 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1509
1510 /* Options which specify Application Specific Extensions (ASEs). */
1511 {"mips16", no_argument, NULL, OPTION_MIPS16},
1512 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1513 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1514 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1515 {"mdmx", no_argument, NULL, OPTION_MDMX},
1516 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1517 {"mdsp", no_argument, NULL, OPTION_DSP},
1518 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1519 {"mmt", no_argument, NULL, OPTION_MT},
1520 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1521 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1522 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1523 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1524 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1525 {"meva", no_argument, NULL, OPTION_EVA},
1526 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1527 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1528 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1529 {"mmcu", no_argument, NULL, OPTION_MCU},
1530 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1531 {"mvirt", no_argument, NULL, OPTION_VIRT},
1532 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1533 {"mmsa", no_argument, NULL, OPTION_MSA},
1534 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1535 {"mxpa", no_argument, NULL, OPTION_XPA},
1536 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1537
1538 /* Old-style architecture options. Don't add more of these. */
1539 {"m4650", no_argument, NULL, OPTION_M4650},
1540 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1541 {"m4010", no_argument, NULL, OPTION_M4010},
1542 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1543 {"m4100", no_argument, NULL, OPTION_M4100},
1544 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1545 {"m3900", no_argument, NULL, OPTION_M3900},
1546 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1547
1548 /* Options which enable bug fixes. */
1549 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1550 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1551 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1552 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1553 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1554 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1555 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1556 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1557 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1558 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1559 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1560 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1561 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1562 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1563 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1564 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1565 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1566
1567 /* Miscellaneous options. */
1568 {"trap", no_argument, NULL, OPTION_TRAP},
1569 {"no-break", no_argument, NULL, OPTION_TRAP},
1570 {"break", no_argument, NULL, OPTION_BREAK},
1571 {"no-trap", no_argument, NULL, OPTION_BREAK},
1572 {"EB", no_argument, NULL, OPTION_EB},
1573 {"EL", no_argument, NULL, OPTION_EL},
1574 {"mfp32", no_argument, NULL, OPTION_FP32},
1575 {"mgp32", no_argument, NULL, OPTION_GP32},
1576 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1577 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1578 {"mfp64", no_argument, NULL, OPTION_FP64},
1579 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1580 {"mgp64", no_argument, NULL, OPTION_GP64},
1581 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1582 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1583 {"minsn32", no_argument, NULL, OPTION_INSN32},
1584 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1585 {"mshared", no_argument, NULL, OPTION_MSHARED},
1586 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1587 {"msym32", no_argument, NULL, OPTION_MSYM32},
1588 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1589 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1590 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1591 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1592 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1593 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1594 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1595
1596 /* Strictly speaking this next option is ELF specific,
1597 but we allow it for other ports as well in order to
1598 make testing easier. */
1599 {"32", no_argument, NULL, OPTION_32},
1600
1601 /* ELF-specific options. */
1602 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1603 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1604 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1605 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1606 {"xgot", no_argument, NULL, OPTION_XGOT},
1607 {"mabi", required_argument, NULL, OPTION_MABI},
1608 {"n32", no_argument, NULL, OPTION_N32},
1609 {"64", no_argument, NULL, OPTION_64},
1610 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1611 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1612 {"mpdr", no_argument, NULL, OPTION_PDR},
1613 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1614 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1615 {"mnan", required_argument, NULL, OPTION_NAN},
1616
1617 {NULL, no_argument, NULL, 0}
1618 };
1619 size_t md_longopts_size = sizeof (md_longopts);
1620 \f
1621 /* Information about either an Application Specific Extension or an
1622 optional architecture feature that, for simplicity, we treat in the
1623 same way as an ASE. */
1624 struct mips_ase
1625 {
1626 /* The name of the ASE, used in both the command-line and .set options. */
1627 const char *name;
1628
1629 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1630 and 64-bit architectures, the flags here refer to the subset that
1631 is available on both. */
1632 unsigned int flags;
1633
1634 /* The ASE_* flag used for instructions that are available on 64-bit
1635 architectures but that are not included in FLAGS. */
1636 unsigned int flags64;
1637
1638 /* The command-line options that turn the ASE on and off. */
1639 int option_on;
1640 int option_off;
1641
1642 /* The minimum required architecture revisions for MIPS32, MIPS64,
1643 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1644 int mips32_rev;
1645 int mips64_rev;
1646 int micromips32_rev;
1647 int micromips64_rev;
1648
1649 /* The architecture where the ASE was removed or -1 if the extension has not
1650 been removed. */
1651 int rem_rev;
1652 };
1653
1654 /* A table of all supported ASEs. */
1655 static const struct mips_ase mips_ases[] = {
1656 { "dsp", ASE_DSP, ASE_DSP64,
1657 OPTION_DSP, OPTION_NO_DSP,
1658 2, 2, 2, 2,
1659 -1 },
1660
1661 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1662 OPTION_DSPR2, OPTION_NO_DSPR2,
1663 2, 2, 2, 2,
1664 -1 },
1665
1666 { "eva", ASE_EVA, 0,
1667 OPTION_EVA, OPTION_NO_EVA,
1668 2, 2, 2, 2,
1669 -1 },
1670
1671 { "mcu", ASE_MCU, 0,
1672 OPTION_MCU, OPTION_NO_MCU,
1673 2, 2, 2, 2,
1674 -1 },
1675
1676 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1677 { "mdmx", ASE_MDMX, 0,
1678 OPTION_MDMX, OPTION_NO_MDMX,
1679 -1, 1, -1, -1,
1680 6 },
1681
1682 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1683 { "mips3d", ASE_MIPS3D, 0,
1684 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1685 2, 1, -1, -1,
1686 6 },
1687
1688 { "mt", ASE_MT, 0,
1689 OPTION_MT, OPTION_NO_MT,
1690 2, 2, -1, -1,
1691 -1 },
1692
1693 { "smartmips", ASE_SMARTMIPS, 0,
1694 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1695 1, -1, -1, -1,
1696 6 },
1697
1698 { "virt", ASE_VIRT, ASE_VIRT64,
1699 OPTION_VIRT, OPTION_NO_VIRT,
1700 2, 2, 2, 2,
1701 -1 },
1702
1703 { "msa", ASE_MSA, ASE_MSA64,
1704 OPTION_MSA, OPTION_NO_MSA,
1705 2, 2, 2, 2,
1706 -1 },
1707
1708 { "xpa", ASE_XPA, 0,
1709 OPTION_XPA, OPTION_NO_XPA,
1710 2, 2, -1, -1,
1711 -1 },
1712 };
1713
1714 /* The set of ASEs that require -mfp64. */
1715 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1716
1717 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1718 static const unsigned int mips_ase_groups[] = {
1719 ASE_DSP | ASE_DSPR2
1720 };
1721 \f
1722 /* Pseudo-op table.
1723
1724 The following pseudo-ops from the Kane and Heinrich MIPS book
1725 should be defined here, but are currently unsupported: .alias,
1726 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1727
1728 The following pseudo-ops from the Kane and Heinrich MIPS book are
1729 specific to the type of debugging information being generated, and
1730 should be defined by the object format: .aent, .begin, .bend,
1731 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1732 .vreg.
1733
1734 The following pseudo-ops from the Kane and Heinrich MIPS book are
1735 not MIPS CPU specific, but are also not specific to the object file
1736 format. This file is probably the best place to define them, but
1737 they are not currently supported: .asm0, .endr, .lab, .struct. */
1738
1739 static const pseudo_typeS mips_pseudo_table[] =
1740 {
1741 /* MIPS specific pseudo-ops. */
1742 {"option", s_option, 0},
1743 {"set", s_mipsset, 0},
1744 {"rdata", s_change_sec, 'r'},
1745 {"sdata", s_change_sec, 's'},
1746 {"livereg", s_ignore, 0},
1747 {"abicalls", s_abicalls, 0},
1748 {"cpload", s_cpload, 0},
1749 {"cpsetup", s_cpsetup, 0},
1750 {"cplocal", s_cplocal, 0},
1751 {"cprestore", s_cprestore, 0},
1752 {"cpreturn", s_cpreturn, 0},
1753 {"dtprelword", s_dtprelword, 0},
1754 {"dtpreldword", s_dtpreldword, 0},
1755 {"tprelword", s_tprelword, 0},
1756 {"tpreldword", s_tpreldword, 0},
1757 {"gpvalue", s_gpvalue, 0},
1758 {"gpword", s_gpword, 0},
1759 {"gpdword", s_gpdword, 0},
1760 {"ehword", s_ehword, 0},
1761 {"cpadd", s_cpadd, 0},
1762 {"insn", s_insn, 0},
1763 {"nan", s_nan, 0},
1764 {"module", s_module, 0},
1765
1766 /* Relatively generic pseudo-ops that happen to be used on MIPS
1767 chips. */
1768 {"asciiz", stringer, 8 + 1},
1769 {"bss", s_change_sec, 'b'},
1770 {"err", s_err, 0},
1771 {"half", s_cons, 1},
1772 {"dword", s_cons, 3},
1773 {"weakext", s_mips_weakext, 0},
1774 {"origin", s_org, 0},
1775 {"repeat", s_rept, 0},
1776
1777 /* For MIPS this is non-standard, but we define it for consistency. */
1778 {"sbss", s_change_sec, 'B'},
1779
1780 /* These pseudo-ops are defined in read.c, but must be overridden
1781 here for one reason or another. */
1782 {"align", s_align, 0},
1783 {"byte", s_cons, 0},
1784 {"data", s_change_sec, 'd'},
1785 {"double", s_float_cons, 'd'},
1786 {"float", s_float_cons, 'f'},
1787 {"globl", s_mips_globl, 0},
1788 {"global", s_mips_globl, 0},
1789 {"hword", s_cons, 1},
1790 {"int", s_cons, 2},
1791 {"long", s_cons, 2},
1792 {"octa", s_cons, 4},
1793 {"quad", s_cons, 3},
1794 {"section", s_change_section, 0},
1795 {"short", s_cons, 1},
1796 {"single", s_float_cons, 'f'},
1797 {"stabd", s_mips_stab, 'd'},
1798 {"stabn", s_mips_stab, 'n'},
1799 {"stabs", s_mips_stab, 's'},
1800 {"text", s_change_sec, 't'},
1801 {"word", s_cons, 2},
1802
1803 { "extern", ecoff_directive_extern, 0},
1804
1805 { NULL, NULL, 0 },
1806 };
1807
1808 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1809 {
1810 /* These pseudo-ops should be defined by the object file format.
1811 However, a.out doesn't support them, so we have versions here. */
1812 {"aent", s_mips_ent, 1},
1813 {"bgnb", s_ignore, 0},
1814 {"end", s_mips_end, 0},
1815 {"endb", s_ignore, 0},
1816 {"ent", s_mips_ent, 0},
1817 {"file", s_mips_file, 0},
1818 {"fmask", s_mips_mask, 'F'},
1819 {"frame", s_mips_frame, 0},
1820 {"loc", s_mips_loc, 0},
1821 {"mask", s_mips_mask, 'R'},
1822 {"verstamp", s_ignore, 0},
1823 { NULL, NULL, 0 },
1824 };
1825
1826 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1827 purpose of the `.dc.a' internal pseudo-op. */
1828
1829 int
1830 mips_address_bytes (void)
1831 {
1832 file_mips_check_options ();
1833 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1834 }
1835
1836 extern void pop_insert (const pseudo_typeS *);
1837
1838 void
1839 mips_pop_insert (void)
1840 {
1841 pop_insert (mips_pseudo_table);
1842 if (! ECOFF_DEBUGGING)
1843 pop_insert (mips_nonecoff_pseudo_table);
1844 }
1845 \f
1846 /* Symbols labelling the current insn. */
1847
1848 struct insn_label_list
1849 {
1850 struct insn_label_list *next;
1851 symbolS *label;
1852 };
1853
1854 static struct insn_label_list *free_insn_labels;
1855 #define label_list tc_segment_info_data.labels
1856
1857 static void mips_clear_insn_labels (void);
1858 static void mips_mark_labels (void);
1859 static void mips_compressed_mark_labels (void);
1860
1861 static inline void
1862 mips_clear_insn_labels (void)
1863 {
1864 struct insn_label_list **pl;
1865 segment_info_type *si;
1866
1867 if (now_seg)
1868 {
1869 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1870 ;
1871
1872 si = seg_info (now_seg);
1873 *pl = si->label_list;
1874 si->label_list = NULL;
1875 }
1876 }
1877
1878 /* Mark instruction labels in MIPS16/microMIPS mode. */
1879
1880 static inline void
1881 mips_mark_labels (void)
1882 {
1883 if (HAVE_CODE_COMPRESSION)
1884 mips_compressed_mark_labels ();
1885 }
1886 \f
1887 static char *expr_end;
1888
1889 /* An expression in a macro instruction. This is set by mips_ip and
1890 mips16_ip and when populated is always an O_constant. */
1891
1892 static expressionS imm_expr;
1893
1894 /* The relocatable field in an instruction and the relocs associated
1895 with it. These variables are used for instructions like LUI and
1896 JAL as well as true offsets. They are also used for address
1897 operands in macros. */
1898
1899 static expressionS offset_expr;
1900 static bfd_reloc_code_real_type offset_reloc[3]
1901 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1902
1903 /* This is set to the resulting size of the instruction to be produced
1904 by mips16_ip if an explicit extension is used or by mips_ip if an
1905 explicit size is supplied. */
1906
1907 static unsigned int forced_insn_length;
1908
1909 /* True if we are assembling an instruction. All dot symbols defined during
1910 this time should be treated as code labels. */
1911
1912 static bfd_boolean mips_assembling_insn;
1913
1914 /* The pdr segment for per procedure frame/regmask info. Not used for
1915 ECOFF debugging. */
1916
1917 static segT pdr_seg;
1918
1919 /* The default target format to use. */
1920
1921 #if defined (TE_FreeBSD)
1922 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1923 #elif defined (TE_TMIPS)
1924 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1925 #else
1926 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1927 #endif
1928
1929 const char *
1930 mips_target_format (void)
1931 {
1932 switch (OUTPUT_FLAVOR)
1933 {
1934 case bfd_target_elf_flavour:
1935 #ifdef TE_VXWORKS
1936 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1937 return (target_big_endian
1938 ? "elf32-bigmips-vxworks"
1939 : "elf32-littlemips-vxworks");
1940 #endif
1941 return (target_big_endian
1942 ? (HAVE_64BIT_OBJECTS
1943 ? ELF_TARGET ("elf64-", "big")
1944 : (HAVE_NEWABI
1945 ? ELF_TARGET ("elf32-n", "big")
1946 : ELF_TARGET ("elf32-", "big")))
1947 : (HAVE_64BIT_OBJECTS
1948 ? ELF_TARGET ("elf64-", "little")
1949 : (HAVE_NEWABI
1950 ? ELF_TARGET ("elf32-n", "little")
1951 : ELF_TARGET ("elf32-", "little"))));
1952 default:
1953 abort ();
1954 return NULL;
1955 }
1956 }
1957
1958 /* Return the ISA revision that is currently in use, or 0 if we are
1959 generating code for MIPS V or below. */
1960
1961 static int
1962 mips_isa_rev (void)
1963 {
1964 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1965 return 2;
1966
1967 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1968 return 3;
1969
1970 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1971 return 5;
1972
1973 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1974 return 6;
1975
1976 /* microMIPS implies revision 2 or above. */
1977 if (mips_opts.micromips)
1978 return 2;
1979
1980 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1981 return 1;
1982
1983 return 0;
1984 }
1985
1986 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1987
1988 static unsigned int
1989 mips_ase_mask (unsigned int flags)
1990 {
1991 unsigned int i;
1992
1993 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1994 if (flags & mips_ase_groups[i])
1995 flags |= mips_ase_groups[i];
1996 return flags;
1997 }
1998
1999 /* Check whether the current ISA supports ASE. Issue a warning if
2000 appropriate. */
2001
2002 static void
2003 mips_check_isa_supports_ase (const struct mips_ase *ase)
2004 {
2005 const char *base;
2006 int min_rev, size;
2007 static unsigned int warned_isa;
2008 static unsigned int warned_fp32;
2009
2010 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2011 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2012 else
2013 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2014 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2015 && (warned_isa & ase->flags) != ase->flags)
2016 {
2017 warned_isa |= ase->flags;
2018 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2019 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2020 if (min_rev < 0)
2021 as_warn (_("the %d-bit %s architecture does not support the"
2022 " `%s' extension"), size, base, ase->name);
2023 else
2024 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2025 ase->name, base, size, min_rev);
2026 }
2027 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2028 && (warned_isa & ase->flags) != ase->flags)
2029 {
2030 warned_isa |= ase->flags;
2031 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2032 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2033 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2034 ase->name, base, size, ase->rem_rev);
2035 }
2036
2037 if ((ase->flags & FP64_ASES)
2038 && mips_opts.fp != 64
2039 && (warned_fp32 & ase->flags) != ase->flags)
2040 {
2041 warned_fp32 |= ase->flags;
2042 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2043 }
2044 }
2045
2046 /* Check all enabled ASEs to see whether they are supported by the
2047 chosen architecture. */
2048
2049 static void
2050 mips_check_isa_supports_ases (void)
2051 {
2052 unsigned int i, mask;
2053
2054 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2055 {
2056 mask = mips_ase_mask (mips_ases[i].flags);
2057 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2058 mips_check_isa_supports_ase (&mips_ases[i]);
2059 }
2060 }
2061
2062 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2063 that were affected. */
2064
2065 static unsigned int
2066 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2067 bfd_boolean enabled_p)
2068 {
2069 unsigned int mask;
2070
2071 mask = mips_ase_mask (ase->flags);
2072 opts->ase &= ~mask;
2073 if (enabled_p)
2074 opts->ase |= ase->flags;
2075 return mask;
2076 }
2077
2078 /* Return the ASE called NAME, or null if none. */
2079
2080 static const struct mips_ase *
2081 mips_lookup_ase (const char *name)
2082 {
2083 unsigned int i;
2084
2085 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2086 if (strcmp (name, mips_ases[i].name) == 0)
2087 return &mips_ases[i];
2088 return NULL;
2089 }
2090
2091 /* Return the length of a microMIPS instruction in bytes. If bits of
2092 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
2093 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
2094 major opcode) will require further modifications to the opcode
2095 table. */
2096
2097 static inline unsigned int
2098 micromips_insn_length (const struct mips_opcode *mo)
2099 {
2100 return (mo->mask >> 16) == 0 ? 2 : 4;
2101 }
2102
2103 /* Return the length of MIPS16 instruction OPCODE. */
2104
2105 static inline unsigned int
2106 mips16_opcode_length (unsigned long opcode)
2107 {
2108 return (opcode >> 16) == 0 ? 2 : 4;
2109 }
2110
2111 /* Return the length of instruction INSN. */
2112
2113 static inline unsigned int
2114 insn_length (const struct mips_cl_insn *insn)
2115 {
2116 if (mips_opts.micromips)
2117 return micromips_insn_length (insn->insn_mo);
2118 else if (mips_opts.mips16)
2119 return mips16_opcode_length (insn->insn_opcode);
2120 else
2121 return 4;
2122 }
2123
2124 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2125
2126 static void
2127 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2128 {
2129 size_t i;
2130
2131 insn->insn_mo = mo;
2132 insn->insn_opcode = mo->match;
2133 insn->frag = NULL;
2134 insn->where = 0;
2135 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2136 insn->fixp[i] = NULL;
2137 insn->fixed_p = (mips_opts.noreorder > 0);
2138 insn->noreorder_p = (mips_opts.noreorder > 0);
2139 insn->mips16_absolute_jump_p = 0;
2140 insn->complete_p = 0;
2141 insn->cleared_p = 0;
2142 }
2143
2144 /* Get a list of all the operands in INSN. */
2145
2146 static const struct mips_operand_array *
2147 insn_operands (const struct mips_cl_insn *insn)
2148 {
2149 if (insn->insn_mo >= &mips_opcodes[0]
2150 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2151 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2152
2153 if (insn->insn_mo >= &mips16_opcodes[0]
2154 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2155 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2156
2157 if (insn->insn_mo >= &micromips_opcodes[0]
2158 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2159 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2160
2161 abort ();
2162 }
2163
2164 /* Get a description of operand OPNO of INSN. */
2165
2166 static const struct mips_operand *
2167 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2168 {
2169 const struct mips_operand_array *operands;
2170
2171 operands = insn_operands (insn);
2172 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2173 abort ();
2174 return operands->operand[opno];
2175 }
2176
2177 /* Install UVAL as the value of OPERAND in INSN. */
2178
2179 static inline void
2180 insn_insert_operand (struct mips_cl_insn *insn,
2181 const struct mips_operand *operand, unsigned int uval)
2182 {
2183 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2184 }
2185
2186 /* Extract the value of OPERAND from INSN. */
2187
2188 static inline unsigned
2189 insn_extract_operand (const struct mips_cl_insn *insn,
2190 const struct mips_operand *operand)
2191 {
2192 return mips_extract_operand (operand, insn->insn_opcode);
2193 }
2194
2195 /* Record the current MIPS16/microMIPS mode in now_seg. */
2196
2197 static void
2198 mips_record_compressed_mode (void)
2199 {
2200 segment_info_type *si;
2201
2202 si = seg_info (now_seg);
2203 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2204 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2205 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2206 si->tc_segment_info_data.micromips = mips_opts.micromips;
2207 }
2208
2209 /* Read a standard MIPS instruction from BUF. */
2210
2211 static unsigned long
2212 read_insn (char *buf)
2213 {
2214 if (target_big_endian)
2215 return bfd_getb32 ((bfd_byte *) buf);
2216 else
2217 return bfd_getl32 ((bfd_byte *) buf);
2218 }
2219
2220 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2221 the next byte. */
2222
2223 static char *
2224 write_insn (char *buf, unsigned int insn)
2225 {
2226 md_number_to_chars (buf, insn, 4);
2227 return buf + 4;
2228 }
2229
2230 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2231 has length LENGTH. */
2232
2233 static unsigned long
2234 read_compressed_insn (char *buf, unsigned int length)
2235 {
2236 unsigned long insn;
2237 unsigned int i;
2238
2239 insn = 0;
2240 for (i = 0; i < length; i += 2)
2241 {
2242 insn <<= 16;
2243 if (target_big_endian)
2244 insn |= bfd_getb16 ((char *) buf);
2245 else
2246 insn |= bfd_getl16 ((char *) buf);
2247 buf += 2;
2248 }
2249 return insn;
2250 }
2251
2252 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2253 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2254
2255 static char *
2256 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2257 {
2258 unsigned int i;
2259
2260 for (i = 0; i < length; i += 2)
2261 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2262 return buf + length;
2263 }
2264
2265 /* Install INSN at the location specified by its "frag" and "where" fields. */
2266
2267 static void
2268 install_insn (const struct mips_cl_insn *insn)
2269 {
2270 char *f = insn->frag->fr_literal + insn->where;
2271 if (HAVE_CODE_COMPRESSION)
2272 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2273 else
2274 write_insn (f, insn->insn_opcode);
2275 mips_record_compressed_mode ();
2276 }
2277
2278 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2279 and install the opcode in the new location. */
2280
2281 static void
2282 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2283 {
2284 size_t i;
2285
2286 insn->frag = frag;
2287 insn->where = where;
2288 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2289 if (insn->fixp[i] != NULL)
2290 {
2291 insn->fixp[i]->fx_frag = frag;
2292 insn->fixp[i]->fx_where = where;
2293 }
2294 install_insn (insn);
2295 }
2296
2297 /* Add INSN to the end of the output. */
2298
2299 static void
2300 add_fixed_insn (struct mips_cl_insn *insn)
2301 {
2302 char *f = frag_more (insn_length (insn));
2303 move_insn (insn, frag_now, f - frag_now->fr_literal);
2304 }
2305
2306 /* Start a variant frag and move INSN to the start of the variant part,
2307 marking it as fixed. The other arguments are as for frag_var. */
2308
2309 static void
2310 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2311 relax_substateT subtype, symbolS *symbol, offsetT offset)
2312 {
2313 frag_grow (max_chars);
2314 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2315 insn->fixed_p = 1;
2316 frag_var (rs_machine_dependent, max_chars, var,
2317 subtype, symbol, offset, NULL);
2318 }
2319
2320 /* Insert N copies of INSN into the history buffer, starting at
2321 position FIRST. Neither FIRST nor N need to be clipped. */
2322
2323 static void
2324 insert_into_history (unsigned int first, unsigned int n,
2325 const struct mips_cl_insn *insn)
2326 {
2327 if (mips_relax.sequence != 2)
2328 {
2329 unsigned int i;
2330
2331 for (i = ARRAY_SIZE (history); i-- > first;)
2332 if (i >= first + n)
2333 history[i] = history[i - n];
2334 else
2335 history[i] = *insn;
2336 }
2337 }
2338
2339 /* Clear the error in insn_error. */
2340
2341 static void
2342 clear_insn_error (void)
2343 {
2344 memset (&insn_error, 0, sizeof (insn_error));
2345 }
2346
2347 /* Possibly record error message MSG for the current instruction.
2348 If the error is about a particular argument, ARGNUM is the 1-based
2349 number of that argument, otherwise it is 0. FORMAT is the format
2350 of MSG. Return true if MSG was used, false if the current message
2351 was kept. */
2352
2353 static bfd_boolean
2354 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2355 const char *msg)
2356 {
2357 if (argnum == 0)
2358 {
2359 /* Give priority to errors against specific arguments, and to
2360 the first whole-instruction message. */
2361 if (insn_error.msg)
2362 return FALSE;
2363 }
2364 else
2365 {
2366 /* Keep insn_error if it is against a later argument. */
2367 if (argnum < insn_error.min_argnum)
2368 return FALSE;
2369
2370 /* If both errors are against the same argument but are different,
2371 give up on reporting a specific error for this argument.
2372 See the comment about mips_insn_error for details. */
2373 if (argnum == insn_error.min_argnum
2374 && insn_error.msg
2375 && strcmp (insn_error.msg, msg) != 0)
2376 {
2377 insn_error.msg = 0;
2378 insn_error.min_argnum += 1;
2379 return FALSE;
2380 }
2381 }
2382 insn_error.min_argnum = argnum;
2383 insn_error.format = format;
2384 insn_error.msg = msg;
2385 return TRUE;
2386 }
2387
2388 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2389 as for set_insn_error_format. */
2390
2391 static void
2392 set_insn_error (int argnum, const char *msg)
2393 {
2394 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2395 }
2396
2397 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2398 as for set_insn_error_format. */
2399
2400 static void
2401 set_insn_error_i (int argnum, const char *msg, int i)
2402 {
2403 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2404 insn_error.u.i = i;
2405 }
2406
2407 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2408 are as for set_insn_error_format. */
2409
2410 static void
2411 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2412 {
2413 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2414 {
2415 insn_error.u.ss[0] = s1;
2416 insn_error.u.ss[1] = s2;
2417 }
2418 }
2419
2420 /* Report the error in insn_error, which is against assembly code STR. */
2421
2422 static void
2423 report_insn_error (const char *str)
2424 {
2425 const char *msg;
2426
2427 msg = ACONCAT ((insn_error.msg, " `%s'", NULL));
2428 switch (insn_error.format)
2429 {
2430 case ERR_FMT_PLAIN:
2431 as_bad (msg, str);
2432 break;
2433
2434 case ERR_FMT_I:
2435 as_bad (msg, insn_error.u.i, str);
2436 break;
2437
2438 case ERR_FMT_SS:
2439 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2440 break;
2441 }
2442 }
2443
2444 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2445 the idea is to make it obvious at a glance that each errata is
2446 included. */
2447
2448 static void
2449 init_vr4120_conflicts (void)
2450 {
2451 #define CONFLICT(FIRST, SECOND) \
2452 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2453
2454 /* Errata 21 - [D]DIV[U] after [D]MACC */
2455 CONFLICT (MACC, DIV);
2456 CONFLICT (DMACC, DIV);
2457
2458 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2459 CONFLICT (DMULT, DMULT);
2460 CONFLICT (DMULT, DMACC);
2461 CONFLICT (DMACC, DMULT);
2462 CONFLICT (DMACC, DMACC);
2463
2464 /* Errata 24 - MT{LO,HI} after [D]MACC */
2465 CONFLICT (MACC, MTHILO);
2466 CONFLICT (DMACC, MTHILO);
2467
2468 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2469 instruction is executed immediately after a MACC or DMACC
2470 instruction, the result of [either instruction] is incorrect." */
2471 CONFLICT (MACC, MULT);
2472 CONFLICT (MACC, DMULT);
2473 CONFLICT (DMACC, MULT);
2474 CONFLICT (DMACC, DMULT);
2475
2476 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2477 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2478 DDIV or DDIVU instruction, the result of the MACC or
2479 DMACC instruction is incorrect.". */
2480 CONFLICT (DMULT, MACC);
2481 CONFLICT (DMULT, DMACC);
2482 CONFLICT (DIV, MACC);
2483 CONFLICT (DIV, DMACC);
2484
2485 #undef CONFLICT
2486 }
2487
2488 struct regname {
2489 const char *name;
2490 unsigned int num;
2491 };
2492
2493 #define RNUM_MASK 0x00000ff
2494 #define RTYPE_MASK 0x0ffff00
2495 #define RTYPE_NUM 0x0000100
2496 #define RTYPE_FPU 0x0000200
2497 #define RTYPE_FCC 0x0000400
2498 #define RTYPE_VEC 0x0000800
2499 #define RTYPE_GP 0x0001000
2500 #define RTYPE_CP0 0x0002000
2501 #define RTYPE_PC 0x0004000
2502 #define RTYPE_ACC 0x0008000
2503 #define RTYPE_CCC 0x0010000
2504 #define RTYPE_VI 0x0020000
2505 #define RTYPE_VF 0x0040000
2506 #define RTYPE_R5900_I 0x0080000
2507 #define RTYPE_R5900_Q 0x0100000
2508 #define RTYPE_R5900_R 0x0200000
2509 #define RTYPE_R5900_ACC 0x0400000
2510 #define RTYPE_MSA 0x0800000
2511 #define RWARN 0x8000000
2512
2513 #define GENERIC_REGISTER_NUMBERS \
2514 {"$0", RTYPE_NUM | 0}, \
2515 {"$1", RTYPE_NUM | 1}, \
2516 {"$2", RTYPE_NUM | 2}, \
2517 {"$3", RTYPE_NUM | 3}, \
2518 {"$4", RTYPE_NUM | 4}, \
2519 {"$5", RTYPE_NUM | 5}, \
2520 {"$6", RTYPE_NUM | 6}, \
2521 {"$7", RTYPE_NUM | 7}, \
2522 {"$8", RTYPE_NUM | 8}, \
2523 {"$9", RTYPE_NUM | 9}, \
2524 {"$10", RTYPE_NUM | 10}, \
2525 {"$11", RTYPE_NUM | 11}, \
2526 {"$12", RTYPE_NUM | 12}, \
2527 {"$13", RTYPE_NUM | 13}, \
2528 {"$14", RTYPE_NUM | 14}, \
2529 {"$15", RTYPE_NUM | 15}, \
2530 {"$16", RTYPE_NUM | 16}, \
2531 {"$17", RTYPE_NUM | 17}, \
2532 {"$18", RTYPE_NUM | 18}, \
2533 {"$19", RTYPE_NUM | 19}, \
2534 {"$20", RTYPE_NUM | 20}, \
2535 {"$21", RTYPE_NUM | 21}, \
2536 {"$22", RTYPE_NUM | 22}, \
2537 {"$23", RTYPE_NUM | 23}, \
2538 {"$24", RTYPE_NUM | 24}, \
2539 {"$25", RTYPE_NUM | 25}, \
2540 {"$26", RTYPE_NUM | 26}, \
2541 {"$27", RTYPE_NUM | 27}, \
2542 {"$28", RTYPE_NUM | 28}, \
2543 {"$29", RTYPE_NUM | 29}, \
2544 {"$30", RTYPE_NUM | 30}, \
2545 {"$31", RTYPE_NUM | 31}
2546
2547 #define FPU_REGISTER_NAMES \
2548 {"$f0", RTYPE_FPU | 0}, \
2549 {"$f1", RTYPE_FPU | 1}, \
2550 {"$f2", RTYPE_FPU | 2}, \
2551 {"$f3", RTYPE_FPU | 3}, \
2552 {"$f4", RTYPE_FPU | 4}, \
2553 {"$f5", RTYPE_FPU | 5}, \
2554 {"$f6", RTYPE_FPU | 6}, \
2555 {"$f7", RTYPE_FPU | 7}, \
2556 {"$f8", RTYPE_FPU | 8}, \
2557 {"$f9", RTYPE_FPU | 9}, \
2558 {"$f10", RTYPE_FPU | 10}, \
2559 {"$f11", RTYPE_FPU | 11}, \
2560 {"$f12", RTYPE_FPU | 12}, \
2561 {"$f13", RTYPE_FPU | 13}, \
2562 {"$f14", RTYPE_FPU | 14}, \
2563 {"$f15", RTYPE_FPU | 15}, \
2564 {"$f16", RTYPE_FPU | 16}, \
2565 {"$f17", RTYPE_FPU | 17}, \
2566 {"$f18", RTYPE_FPU | 18}, \
2567 {"$f19", RTYPE_FPU | 19}, \
2568 {"$f20", RTYPE_FPU | 20}, \
2569 {"$f21", RTYPE_FPU | 21}, \
2570 {"$f22", RTYPE_FPU | 22}, \
2571 {"$f23", RTYPE_FPU | 23}, \
2572 {"$f24", RTYPE_FPU | 24}, \
2573 {"$f25", RTYPE_FPU | 25}, \
2574 {"$f26", RTYPE_FPU | 26}, \
2575 {"$f27", RTYPE_FPU | 27}, \
2576 {"$f28", RTYPE_FPU | 28}, \
2577 {"$f29", RTYPE_FPU | 29}, \
2578 {"$f30", RTYPE_FPU | 30}, \
2579 {"$f31", RTYPE_FPU | 31}
2580
2581 #define FPU_CONDITION_CODE_NAMES \
2582 {"$fcc0", RTYPE_FCC | 0}, \
2583 {"$fcc1", RTYPE_FCC | 1}, \
2584 {"$fcc2", RTYPE_FCC | 2}, \
2585 {"$fcc3", RTYPE_FCC | 3}, \
2586 {"$fcc4", RTYPE_FCC | 4}, \
2587 {"$fcc5", RTYPE_FCC | 5}, \
2588 {"$fcc6", RTYPE_FCC | 6}, \
2589 {"$fcc7", RTYPE_FCC | 7}
2590
2591 #define COPROC_CONDITION_CODE_NAMES \
2592 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2593 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2594 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2595 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2596 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2597 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2598 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2599 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2600
2601 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2602 {"$a4", RTYPE_GP | 8}, \
2603 {"$a5", RTYPE_GP | 9}, \
2604 {"$a6", RTYPE_GP | 10}, \
2605 {"$a7", RTYPE_GP | 11}, \
2606 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2607 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2608 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2609 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2610 {"$t0", RTYPE_GP | 12}, \
2611 {"$t1", RTYPE_GP | 13}, \
2612 {"$t2", RTYPE_GP | 14}, \
2613 {"$t3", RTYPE_GP | 15}
2614
2615 #define O32_SYMBOLIC_REGISTER_NAMES \
2616 {"$t0", RTYPE_GP | 8}, \
2617 {"$t1", RTYPE_GP | 9}, \
2618 {"$t2", RTYPE_GP | 10}, \
2619 {"$t3", RTYPE_GP | 11}, \
2620 {"$t4", RTYPE_GP | 12}, \
2621 {"$t5", RTYPE_GP | 13}, \
2622 {"$t6", RTYPE_GP | 14}, \
2623 {"$t7", RTYPE_GP | 15}, \
2624 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2625 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2626 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2627 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2628
2629 /* Remaining symbolic register names */
2630 #define SYMBOLIC_REGISTER_NAMES \
2631 {"$zero", RTYPE_GP | 0}, \
2632 {"$at", RTYPE_GP | 1}, \
2633 {"$AT", RTYPE_GP | 1}, \
2634 {"$v0", RTYPE_GP | 2}, \
2635 {"$v1", RTYPE_GP | 3}, \
2636 {"$a0", RTYPE_GP | 4}, \
2637 {"$a1", RTYPE_GP | 5}, \
2638 {"$a2", RTYPE_GP | 6}, \
2639 {"$a3", RTYPE_GP | 7}, \
2640 {"$s0", RTYPE_GP | 16}, \
2641 {"$s1", RTYPE_GP | 17}, \
2642 {"$s2", RTYPE_GP | 18}, \
2643 {"$s3", RTYPE_GP | 19}, \
2644 {"$s4", RTYPE_GP | 20}, \
2645 {"$s5", RTYPE_GP | 21}, \
2646 {"$s6", RTYPE_GP | 22}, \
2647 {"$s7", RTYPE_GP | 23}, \
2648 {"$t8", RTYPE_GP | 24}, \
2649 {"$t9", RTYPE_GP | 25}, \
2650 {"$k0", RTYPE_GP | 26}, \
2651 {"$kt0", RTYPE_GP | 26}, \
2652 {"$k1", RTYPE_GP | 27}, \
2653 {"$kt1", RTYPE_GP | 27}, \
2654 {"$gp", RTYPE_GP | 28}, \
2655 {"$sp", RTYPE_GP | 29}, \
2656 {"$s8", RTYPE_GP | 30}, \
2657 {"$fp", RTYPE_GP | 30}, \
2658 {"$ra", RTYPE_GP | 31}
2659
2660 #define MIPS16_SPECIAL_REGISTER_NAMES \
2661 {"$pc", RTYPE_PC | 0}
2662
2663 #define MDMX_VECTOR_REGISTER_NAMES \
2664 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2665 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2666 {"$v2", RTYPE_VEC | 2}, \
2667 {"$v3", RTYPE_VEC | 3}, \
2668 {"$v4", RTYPE_VEC | 4}, \
2669 {"$v5", RTYPE_VEC | 5}, \
2670 {"$v6", RTYPE_VEC | 6}, \
2671 {"$v7", RTYPE_VEC | 7}, \
2672 {"$v8", RTYPE_VEC | 8}, \
2673 {"$v9", RTYPE_VEC | 9}, \
2674 {"$v10", RTYPE_VEC | 10}, \
2675 {"$v11", RTYPE_VEC | 11}, \
2676 {"$v12", RTYPE_VEC | 12}, \
2677 {"$v13", RTYPE_VEC | 13}, \
2678 {"$v14", RTYPE_VEC | 14}, \
2679 {"$v15", RTYPE_VEC | 15}, \
2680 {"$v16", RTYPE_VEC | 16}, \
2681 {"$v17", RTYPE_VEC | 17}, \
2682 {"$v18", RTYPE_VEC | 18}, \
2683 {"$v19", RTYPE_VEC | 19}, \
2684 {"$v20", RTYPE_VEC | 20}, \
2685 {"$v21", RTYPE_VEC | 21}, \
2686 {"$v22", RTYPE_VEC | 22}, \
2687 {"$v23", RTYPE_VEC | 23}, \
2688 {"$v24", RTYPE_VEC | 24}, \
2689 {"$v25", RTYPE_VEC | 25}, \
2690 {"$v26", RTYPE_VEC | 26}, \
2691 {"$v27", RTYPE_VEC | 27}, \
2692 {"$v28", RTYPE_VEC | 28}, \
2693 {"$v29", RTYPE_VEC | 29}, \
2694 {"$v30", RTYPE_VEC | 30}, \
2695 {"$v31", RTYPE_VEC | 31}
2696
2697 #define R5900_I_NAMES \
2698 {"$I", RTYPE_R5900_I | 0}
2699
2700 #define R5900_Q_NAMES \
2701 {"$Q", RTYPE_R5900_Q | 0}
2702
2703 #define R5900_R_NAMES \
2704 {"$R", RTYPE_R5900_R | 0}
2705
2706 #define R5900_ACC_NAMES \
2707 {"$ACC", RTYPE_R5900_ACC | 0 }
2708
2709 #define MIPS_DSP_ACCUMULATOR_NAMES \
2710 {"$ac0", RTYPE_ACC | 0}, \
2711 {"$ac1", RTYPE_ACC | 1}, \
2712 {"$ac2", RTYPE_ACC | 2}, \
2713 {"$ac3", RTYPE_ACC | 3}
2714
2715 static const struct regname reg_names[] = {
2716 GENERIC_REGISTER_NUMBERS,
2717 FPU_REGISTER_NAMES,
2718 FPU_CONDITION_CODE_NAMES,
2719 COPROC_CONDITION_CODE_NAMES,
2720
2721 /* The $txx registers depends on the abi,
2722 these will be added later into the symbol table from
2723 one of the tables below once mips_abi is set after
2724 parsing of arguments from the command line. */
2725 SYMBOLIC_REGISTER_NAMES,
2726
2727 MIPS16_SPECIAL_REGISTER_NAMES,
2728 MDMX_VECTOR_REGISTER_NAMES,
2729 R5900_I_NAMES,
2730 R5900_Q_NAMES,
2731 R5900_R_NAMES,
2732 R5900_ACC_NAMES,
2733 MIPS_DSP_ACCUMULATOR_NAMES,
2734 {0, 0}
2735 };
2736
2737 static const struct regname reg_names_o32[] = {
2738 O32_SYMBOLIC_REGISTER_NAMES,
2739 {0, 0}
2740 };
2741
2742 static const struct regname reg_names_n32n64[] = {
2743 N32N64_SYMBOLIC_REGISTER_NAMES,
2744 {0, 0}
2745 };
2746
2747 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2748 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2749 of these register symbols, return the associated vector register,
2750 otherwise return SYMVAL itself. */
2751
2752 static unsigned int
2753 mips_prefer_vec_regno (unsigned int symval)
2754 {
2755 if ((symval & -2) == (RTYPE_GP | 2))
2756 return RTYPE_VEC | (symval & 1);
2757 return symval;
2758 }
2759
2760 /* Return true if string [S, E) is a valid register name, storing its
2761 symbol value in *SYMVAL_PTR if so. */
2762
2763 static bfd_boolean
2764 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2765 {
2766 char save_c;
2767 symbolS *symbol;
2768
2769 /* Terminate name. */
2770 save_c = *e;
2771 *e = '\0';
2772
2773 /* Look up the name. */
2774 symbol = symbol_find (s);
2775 *e = save_c;
2776
2777 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2778 return FALSE;
2779
2780 *symval_ptr = S_GET_VALUE (symbol);
2781 return TRUE;
2782 }
2783
2784 /* Return true if the string at *SPTR is a valid register name. Allow it
2785 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2786 is nonnull.
2787
2788 When returning true, move *SPTR past the register, store the
2789 register's symbol value in *SYMVAL_PTR and the channel mask in
2790 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2791 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2792 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2793
2794 static bfd_boolean
2795 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2796 unsigned int *channels_ptr)
2797 {
2798 char *s, *e, *m;
2799 const char *q;
2800 unsigned int channels, symval, bit;
2801
2802 /* Find end of name. */
2803 s = e = *sptr;
2804 if (is_name_beginner (*e))
2805 ++e;
2806 while (is_part_of_name (*e))
2807 ++e;
2808
2809 channels = 0;
2810 if (!mips_parse_register_1 (s, e, &symval))
2811 {
2812 if (!channels_ptr)
2813 return FALSE;
2814
2815 /* Eat characters from the end of the string that are valid
2816 channel suffixes. The preceding register must be $ACC or
2817 end with a digit, so there is no ambiguity. */
2818 bit = 1;
2819 m = e;
2820 for (q = "wzyx"; *q; q++, bit <<= 1)
2821 if (m > s && m[-1] == *q)
2822 {
2823 --m;
2824 channels |= bit;
2825 }
2826
2827 if (channels == 0
2828 || !mips_parse_register_1 (s, m, &symval)
2829 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2830 return FALSE;
2831 }
2832
2833 *sptr = e;
2834 *symval_ptr = symval;
2835 if (channels_ptr)
2836 *channels_ptr = channels;
2837 return TRUE;
2838 }
2839
2840 /* Check if SPTR points at a valid register specifier according to TYPES.
2841 If so, then return 1, advance S to consume the specifier and store
2842 the register's number in REGNOP, otherwise return 0. */
2843
2844 static int
2845 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2846 {
2847 unsigned int regno;
2848
2849 if (mips_parse_register (s, &regno, NULL))
2850 {
2851 if (types & RTYPE_VEC)
2852 regno = mips_prefer_vec_regno (regno);
2853 if (regno & types)
2854 regno &= RNUM_MASK;
2855 else
2856 regno = ~0;
2857 }
2858 else
2859 {
2860 if (types & RWARN)
2861 as_warn (_("unrecognized register name `%s'"), *s);
2862 regno = ~0;
2863 }
2864 if (regnop)
2865 *regnop = regno;
2866 return regno <= RNUM_MASK;
2867 }
2868
2869 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2870 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2871
2872 static char *
2873 mips_parse_vu0_channels (char *s, unsigned int *channels)
2874 {
2875 unsigned int i;
2876
2877 *channels = 0;
2878 for (i = 0; i < 4; i++)
2879 if (*s == "xyzw"[i])
2880 {
2881 *channels |= 1 << (3 - i);
2882 ++s;
2883 }
2884 return s;
2885 }
2886
2887 /* Token types for parsed operand lists. */
2888 enum mips_operand_token_type {
2889 /* A plain register, e.g. $f2. */
2890 OT_REG,
2891
2892 /* A 4-bit XYZW channel mask. */
2893 OT_CHANNELS,
2894
2895 /* A constant vector index, e.g. [1]. */
2896 OT_INTEGER_INDEX,
2897
2898 /* A register vector index, e.g. [$2]. */
2899 OT_REG_INDEX,
2900
2901 /* A continuous range of registers, e.g. $s0-$s4. */
2902 OT_REG_RANGE,
2903
2904 /* A (possibly relocated) expression. */
2905 OT_INTEGER,
2906
2907 /* A floating-point value. */
2908 OT_FLOAT,
2909
2910 /* A single character. This can be '(', ')' or ',', but '(' only appears
2911 before OT_REGs. */
2912 OT_CHAR,
2913
2914 /* A doubled character, either "--" or "++". */
2915 OT_DOUBLE_CHAR,
2916
2917 /* The end of the operand list. */
2918 OT_END
2919 };
2920
2921 /* A parsed operand token. */
2922 struct mips_operand_token
2923 {
2924 /* The type of token. */
2925 enum mips_operand_token_type type;
2926 union
2927 {
2928 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2929 unsigned int regno;
2930
2931 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2932 unsigned int channels;
2933
2934 /* The integer value of an OT_INTEGER_INDEX. */
2935 addressT index;
2936
2937 /* The two register symbol values involved in an OT_REG_RANGE. */
2938 struct {
2939 unsigned int regno1;
2940 unsigned int regno2;
2941 } reg_range;
2942
2943 /* The value of an OT_INTEGER. The value is represented as an
2944 expression and the relocation operators that were applied to
2945 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2946 relocation operators were used. */
2947 struct {
2948 expressionS value;
2949 bfd_reloc_code_real_type relocs[3];
2950 } integer;
2951
2952 /* The binary data for an OT_FLOAT constant, and the number of bytes
2953 in the constant. */
2954 struct {
2955 unsigned char data[8];
2956 int length;
2957 } flt;
2958
2959 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2960 char ch;
2961 } u;
2962 };
2963
2964 /* An obstack used to construct lists of mips_operand_tokens. */
2965 static struct obstack mips_operand_tokens;
2966
2967 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2968
2969 static void
2970 mips_add_token (struct mips_operand_token *token,
2971 enum mips_operand_token_type type)
2972 {
2973 token->type = type;
2974 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2975 }
2976
2977 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2978 and OT_REG tokens for them if so, and return a pointer to the first
2979 unconsumed character. Return null otherwise. */
2980
2981 static char *
2982 mips_parse_base_start (char *s)
2983 {
2984 struct mips_operand_token token;
2985 unsigned int regno, channels;
2986 bfd_boolean decrement_p;
2987
2988 if (*s != '(')
2989 return 0;
2990
2991 ++s;
2992 SKIP_SPACE_TABS (s);
2993
2994 /* Only match "--" as part of a base expression. In other contexts "--X"
2995 is a double negative. */
2996 decrement_p = (s[0] == '-' && s[1] == '-');
2997 if (decrement_p)
2998 {
2999 s += 2;
3000 SKIP_SPACE_TABS (s);
3001 }
3002
3003 /* Allow a channel specifier because that leads to better error messages
3004 than treating something like "$vf0x++" as an expression. */
3005 if (!mips_parse_register (&s, &regno, &channels))
3006 return 0;
3007
3008 token.u.ch = '(';
3009 mips_add_token (&token, OT_CHAR);
3010
3011 if (decrement_p)
3012 {
3013 token.u.ch = '-';
3014 mips_add_token (&token, OT_DOUBLE_CHAR);
3015 }
3016
3017 token.u.regno = regno;
3018 mips_add_token (&token, OT_REG);
3019
3020 if (channels)
3021 {
3022 token.u.channels = channels;
3023 mips_add_token (&token, OT_CHANNELS);
3024 }
3025
3026 /* For consistency, only match "++" as part of base expressions too. */
3027 SKIP_SPACE_TABS (s);
3028 if (s[0] == '+' && s[1] == '+')
3029 {
3030 s += 2;
3031 token.u.ch = '+';
3032 mips_add_token (&token, OT_DOUBLE_CHAR);
3033 }
3034
3035 return s;
3036 }
3037
3038 /* Parse one or more tokens from S. Return a pointer to the first
3039 unconsumed character on success. Return null if an error was found
3040 and store the error text in insn_error. FLOAT_FORMAT is as for
3041 mips_parse_arguments. */
3042
3043 static char *
3044 mips_parse_argument_token (char *s, char float_format)
3045 {
3046 char *end, *save_in, *err;
3047 unsigned int regno1, regno2, channels;
3048 struct mips_operand_token token;
3049
3050 /* First look for "($reg", since we want to treat that as an
3051 OT_CHAR and OT_REG rather than an expression. */
3052 end = mips_parse_base_start (s);
3053 if (end)
3054 return end;
3055
3056 /* Handle other characters that end up as OT_CHARs. */
3057 if (*s == ')' || *s == ',')
3058 {
3059 token.u.ch = *s;
3060 mips_add_token (&token, OT_CHAR);
3061 ++s;
3062 return s;
3063 }
3064
3065 /* Handle tokens that start with a register. */
3066 if (mips_parse_register (&s, &regno1, &channels))
3067 {
3068 if (channels)
3069 {
3070 /* A register and a VU0 channel suffix. */
3071 token.u.regno = regno1;
3072 mips_add_token (&token, OT_REG);
3073
3074 token.u.channels = channels;
3075 mips_add_token (&token, OT_CHANNELS);
3076 return s;
3077 }
3078
3079 SKIP_SPACE_TABS (s);
3080 if (*s == '-')
3081 {
3082 /* A register range. */
3083 ++s;
3084 SKIP_SPACE_TABS (s);
3085 if (!mips_parse_register (&s, &regno2, NULL))
3086 {
3087 set_insn_error (0, _("invalid register range"));
3088 return 0;
3089 }
3090
3091 token.u.reg_range.regno1 = regno1;
3092 token.u.reg_range.regno2 = regno2;
3093 mips_add_token (&token, OT_REG_RANGE);
3094 return s;
3095 }
3096
3097 /* Add the register itself. */
3098 token.u.regno = regno1;
3099 mips_add_token (&token, OT_REG);
3100
3101 /* Check for a vector index. */
3102 if (*s == '[')
3103 {
3104 ++s;
3105 SKIP_SPACE_TABS (s);
3106 if (mips_parse_register (&s, &token.u.regno, NULL))
3107 mips_add_token (&token, OT_REG_INDEX);
3108 else
3109 {
3110 expressionS element;
3111
3112 my_getExpression (&element, s);
3113 if (element.X_op != O_constant)
3114 {
3115 set_insn_error (0, _("vector element must be constant"));
3116 return 0;
3117 }
3118 s = expr_end;
3119 token.u.index = element.X_add_number;
3120 mips_add_token (&token, OT_INTEGER_INDEX);
3121 }
3122 SKIP_SPACE_TABS (s);
3123 if (*s != ']')
3124 {
3125 set_insn_error (0, _("missing `]'"));
3126 return 0;
3127 }
3128 ++s;
3129 }
3130 return s;
3131 }
3132
3133 if (float_format)
3134 {
3135 /* First try to treat expressions as floats. */
3136 save_in = input_line_pointer;
3137 input_line_pointer = s;
3138 err = md_atof (float_format, (char *) token.u.flt.data,
3139 &token.u.flt.length);
3140 end = input_line_pointer;
3141 input_line_pointer = save_in;
3142 if (err && *err)
3143 {
3144 set_insn_error (0, err);
3145 return 0;
3146 }
3147 if (s != end)
3148 {
3149 mips_add_token (&token, OT_FLOAT);
3150 return end;
3151 }
3152 }
3153
3154 /* Treat everything else as an integer expression. */
3155 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3156 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3157 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3158 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3159 s = expr_end;
3160 mips_add_token (&token, OT_INTEGER);
3161 return s;
3162 }
3163
3164 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3165 if expressions should be treated as 32-bit floating-point constants,
3166 'd' if they should be treated as 64-bit floating-point constants,
3167 or 0 if they should be treated as integer expressions (the usual case).
3168
3169 Return a list of tokens on success, otherwise return 0. The caller
3170 must obstack_free the list after use. */
3171
3172 static struct mips_operand_token *
3173 mips_parse_arguments (char *s, char float_format)
3174 {
3175 struct mips_operand_token token;
3176
3177 SKIP_SPACE_TABS (s);
3178 while (*s)
3179 {
3180 s = mips_parse_argument_token (s, float_format);
3181 if (!s)
3182 {
3183 obstack_free (&mips_operand_tokens,
3184 obstack_finish (&mips_operand_tokens));
3185 return 0;
3186 }
3187 SKIP_SPACE_TABS (s);
3188 }
3189 mips_add_token (&token, OT_END);
3190 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3191 }
3192
3193 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3194 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3195
3196 static bfd_boolean
3197 is_opcode_valid (const struct mips_opcode *mo)
3198 {
3199 int isa = mips_opts.isa;
3200 int ase = mips_opts.ase;
3201 int fp_s, fp_d;
3202 unsigned int i;
3203
3204 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3205 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3206 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3207 ase |= mips_ases[i].flags64;
3208
3209 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3210 return FALSE;
3211
3212 /* Check whether the instruction or macro requires single-precision or
3213 double-precision floating-point support. Note that this information is
3214 stored differently in the opcode table for insns and macros. */
3215 if (mo->pinfo == INSN_MACRO)
3216 {
3217 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3218 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3219 }
3220 else
3221 {
3222 fp_s = mo->pinfo & FP_S;
3223 fp_d = mo->pinfo & FP_D;
3224 }
3225
3226 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3227 return FALSE;
3228
3229 if (fp_s && mips_opts.soft_float)
3230 return FALSE;
3231
3232 return TRUE;
3233 }
3234
3235 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3236 selected ISA and architecture. */
3237
3238 static bfd_boolean
3239 is_opcode_valid_16 (const struct mips_opcode *mo)
3240 {
3241 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3242 }
3243
3244 /* Return TRUE if the size of the microMIPS opcode MO matches one
3245 explicitly requested. Always TRUE in the standard MIPS mode. */
3246
3247 static bfd_boolean
3248 is_size_valid (const struct mips_opcode *mo)
3249 {
3250 if (!mips_opts.micromips)
3251 return TRUE;
3252
3253 if (mips_opts.insn32)
3254 {
3255 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3256 return FALSE;
3257 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3258 return FALSE;
3259 }
3260 if (!forced_insn_length)
3261 return TRUE;
3262 if (mo->pinfo == INSN_MACRO)
3263 return FALSE;
3264 return forced_insn_length == micromips_insn_length (mo);
3265 }
3266
3267 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3268 of the preceding instruction. Always TRUE in the standard MIPS mode.
3269
3270 We don't accept macros in 16-bit delay slots to avoid a case where
3271 a macro expansion fails because it relies on a preceding 32-bit real
3272 instruction to have matched and does not handle the operands correctly.
3273 The only macros that may expand to 16-bit instructions are JAL that
3274 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3275 and BGT (that likewise cannot be placed in a delay slot) that decay to
3276 a NOP. In all these cases the macros precede any corresponding real
3277 instruction definitions in the opcode table, so they will match in the
3278 second pass where the size of the delay slot is ignored and therefore
3279 produce correct code. */
3280
3281 static bfd_boolean
3282 is_delay_slot_valid (const struct mips_opcode *mo)
3283 {
3284 if (!mips_opts.micromips)
3285 return TRUE;
3286
3287 if (mo->pinfo == INSN_MACRO)
3288 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3289 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3290 && micromips_insn_length (mo) != 4)
3291 return FALSE;
3292 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3293 && micromips_insn_length (mo) != 2)
3294 return FALSE;
3295
3296 return TRUE;
3297 }
3298
3299 /* For consistency checking, verify that all bits of OPCODE are specified
3300 either by the match/mask part of the instruction definition, or by the
3301 operand list. Also build up a list of operands in OPERANDS.
3302
3303 INSN_BITS says which bits of the instruction are significant.
3304 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3305 provides the mips_operand description of each operand. DECODE_OPERAND
3306 is null for MIPS16 instructions. */
3307
3308 static int
3309 validate_mips_insn (const struct mips_opcode *opcode,
3310 unsigned long insn_bits,
3311 const struct mips_operand *(*decode_operand) (const char *),
3312 struct mips_operand_array *operands)
3313 {
3314 const char *s;
3315 unsigned long used_bits, doubled, undefined, opno, mask;
3316 const struct mips_operand *operand;
3317
3318 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3319 if ((mask & opcode->match) != opcode->match)
3320 {
3321 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3322 opcode->name, opcode->args);
3323 return 0;
3324 }
3325 used_bits = 0;
3326 opno = 0;
3327 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3328 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3329 for (s = opcode->args; *s; ++s)
3330 switch (*s)
3331 {
3332 case ',':
3333 case '(':
3334 case ')':
3335 break;
3336
3337 case '#':
3338 s++;
3339 break;
3340
3341 default:
3342 if (!decode_operand)
3343 operand = decode_mips16_operand (*s, FALSE);
3344 else
3345 operand = decode_operand (s);
3346 if (!operand && opcode->pinfo != INSN_MACRO)
3347 {
3348 as_bad (_("internal: unknown operand type: %s %s"),
3349 opcode->name, opcode->args);
3350 return 0;
3351 }
3352 gas_assert (opno < MAX_OPERANDS);
3353 operands->operand[opno] = operand;
3354 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3355 {
3356 used_bits = mips_insert_operand (operand, used_bits, -1);
3357 if (operand->type == OP_MDMX_IMM_REG)
3358 /* Bit 5 is the format selector (OB vs QH). The opcode table
3359 has separate entries for each format. */
3360 used_bits &= ~(1 << (operand->lsb + 5));
3361 if (operand->type == OP_ENTRY_EXIT_LIST)
3362 used_bits &= ~(mask & 0x700);
3363 }
3364 /* Skip prefix characters. */
3365 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3366 ++s;
3367 opno += 1;
3368 break;
3369 }
3370 doubled = used_bits & mask & insn_bits;
3371 if (doubled)
3372 {
3373 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3374 " %s %s"), doubled, opcode->name, opcode->args);
3375 return 0;
3376 }
3377 used_bits |= mask;
3378 undefined = ~used_bits & insn_bits;
3379 if (opcode->pinfo != INSN_MACRO && undefined)
3380 {
3381 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3382 undefined, opcode->name, opcode->args);
3383 return 0;
3384 }
3385 used_bits &= ~insn_bits;
3386 if (used_bits)
3387 {
3388 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3389 used_bits, opcode->name, opcode->args);
3390 return 0;
3391 }
3392 return 1;
3393 }
3394
3395 /* The MIPS16 version of validate_mips_insn. */
3396
3397 static int
3398 validate_mips16_insn (const struct mips_opcode *opcode,
3399 struct mips_operand_array *operands)
3400 {
3401 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3402 {
3403 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3404 instruction. Use TMP to describe the full instruction. */
3405 struct mips_opcode tmp;
3406
3407 tmp = *opcode;
3408 tmp.match <<= 16;
3409 tmp.mask <<= 16;
3410 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3411 }
3412 return validate_mips_insn (opcode, 0xffff, 0, operands);
3413 }
3414
3415 /* The microMIPS version of validate_mips_insn. */
3416
3417 static int
3418 validate_micromips_insn (const struct mips_opcode *opc,
3419 struct mips_operand_array *operands)
3420 {
3421 unsigned long insn_bits;
3422 unsigned long major;
3423 unsigned int length;
3424
3425 if (opc->pinfo == INSN_MACRO)
3426 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3427 operands);
3428
3429 length = micromips_insn_length (opc);
3430 if (length != 2 && length != 4)
3431 {
3432 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3433 "%s %s"), length, opc->name, opc->args);
3434 return 0;
3435 }
3436 major = opc->match >> (10 + 8 * (length - 2));
3437 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3438 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3439 {
3440 as_bad (_("internal error: bad microMIPS opcode "
3441 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3442 return 0;
3443 }
3444
3445 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3446 insn_bits = 1 << 4 * length;
3447 insn_bits <<= 4 * length;
3448 insn_bits -= 1;
3449 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3450 operands);
3451 }
3452
3453 /* This function is called once, at assembler startup time. It should set up
3454 all the tables, etc. that the MD part of the assembler will need. */
3455
3456 void
3457 md_begin (void)
3458 {
3459 const char *retval = NULL;
3460 int i = 0;
3461 int broken = 0;
3462
3463 if (mips_pic != NO_PIC)
3464 {
3465 if (g_switch_seen && g_switch_value != 0)
3466 as_bad (_("-G may not be used in position-independent code"));
3467 g_switch_value = 0;
3468 }
3469
3470 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3471 as_warn (_("could not set architecture and machine"));
3472
3473 op_hash = hash_new ();
3474
3475 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3476 for (i = 0; i < NUMOPCODES;)
3477 {
3478 const char *name = mips_opcodes[i].name;
3479
3480 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3481 if (retval != NULL)
3482 {
3483 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3484 mips_opcodes[i].name, retval);
3485 /* Probably a memory allocation problem? Give up now. */
3486 as_fatal (_("broken assembler, no assembly attempted"));
3487 }
3488 do
3489 {
3490 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3491 decode_mips_operand, &mips_operands[i]))
3492 broken = 1;
3493 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3494 {
3495 create_insn (&nop_insn, mips_opcodes + i);
3496 if (mips_fix_loongson2f_nop)
3497 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3498 nop_insn.fixed_p = 1;
3499 }
3500 ++i;
3501 }
3502 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3503 }
3504
3505 mips16_op_hash = hash_new ();
3506 mips16_operands = XCNEWVEC (struct mips_operand_array,
3507 bfd_mips16_num_opcodes);
3508
3509 i = 0;
3510 while (i < bfd_mips16_num_opcodes)
3511 {
3512 const char *name = mips16_opcodes[i].name;
3513
3514 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3515 if (retval != NULL)
3516 as_fatal (_("internal: can't hash `%s': %s"),
3517 mips16_opcodes[i].name, retval);
3518 do
3519 {
3520 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3521 broken = 1;
3522 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3523 {
3524 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3525 mips16_nop_insn.fixed_p = 1;
3526 }
3527 ++i;
3528 }
3529 while (i < bfd_mips16_num_opcodes
3530 && strcmp (mips16_opcodes[i].name, name) == 0);
3531 }
3532
3533 micromips_op_hash = hash_new ();
3534 micromips_operands = XCNEWVEC (struct mips_operand_array,
3535 bfd_micromips_num_opcodes);
3536
3537 i = 0;
3538 while (i < bfd_micromips_num_opcodes)
3539 {
3540 const char *name = micromips_opcodes[i].name;
3541
3542 retval = hash_insert (micromips_op_hash, name,
3543 (void *) &micromips_opcodes[i]);
3544 if (retval != NULL)
3545 as_fatal (_("internal: can't hash `%s': %s"),
3546 micromips_opcodes[i].name, retval);
3547 do
3548 {
3549 struct mips_cl_insn *micromips_nop_insn;
3550
3551 if (!validate_micromips_insn (&micromips_opcodes[i],
3552 &micromips_operands[i]))
3553 broken = 1;
3554
3555 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3556 {
3557 if (micromips_insn_length (micromips_opcodes + i) == 2)
3558 micromips_nop_insn = &micromips_nop16_insn;
3559 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3560 micromips_nop_insn = &micromips_nop32_insn;
3561 else
3562 continue;
3563
3564 if (micromips_nop_insn->insn_mo == NULL
3565 && strcmp (name, "nop") == 0)
3566 {
3567 create_insn (micromips_nop_insn, micromips_opcodes + i);
3568 micromips_nop_insn->fixed_p = 1;
3569 }
3570 }
3571 }
3572 while (++i < bfd_micromips_num_opcodes
3573 && strcmp (micromips_opcodes[i].name, name) == 0);
3574 }
3575
3576 if (broken)
3577 as_fatal (_("broken assembler, no assembly attempted"));
3578
3579 /* We add all the general register names to the symbol table. This
3580 helps us detect invalid uses of them. */
3581 for (i = 0; reg_names[i].name; i++)
3582 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3583 reg_names[i].num, /* & RNUM_MASK, */
3584 &zero_address_frag));
3585 if (HAVE_NEWABI)
3586 for (i = 0; reg_names_n32n64[i].name; i++)
3587 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3588 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3589 &zero_address_frag));
3590 else
3591 for (i = 0; reg_names_o32[i].name; i++)
3592 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3593 reg_names_o32[i].num, /* & RNUM_MASK, */
3594 &zero_address_frag));
3595
3596 for (i = 0; i < 32; i++)
3597 {
3598 char regname[7];
3599
3600 /* R5900 VU0 floating-point register. */
3601 regname[sizeof (rename) - 1] = 0;
3602 snprintf (regname, sizeof (regname) - 1, "$vf%d", i);
3603 symbol_table_insert (symbol_new (regname, reg_section,
3604 RTYPE_VF | i, &zero_address_frag));
3605
3606 /* R5900 VU0 integer register. */
3607 snprintf (regname, sizeof (regname) - 1, "$vi%d", i);
3608 symbol_table_insert (symbol_new (regname, reg_section,
3609 RTYPE_VI | i, &zero_address_frag));
3610
3611 /* MSA register. */
3612 snprintf (regname, sizeof (regname) - 1, "$w%d", i);
3613 symbol_table_insert (symbol_new (regname, reg_section,
3614 RTYPE_MSA | i, &zero_address_frag));
3615 }
3616
3617 obstack_init (&mips_operand_tokens);
3618
3619 mips_no_prev_insn ();
3620
3621 mips_gprmask = 0;
3622 mips_cprmask[0] = 0;
3623 mips_cprmask[1] = 0;
3624 mips_cprmask[2] = 0;
3625 mips_cprmask[3] = 0;
3626
3627 /* set the default alignment for the text section (2**2) */
3628 record_alignment (text_section, 2);
3629
3630 bfd_set_gp_size (stdoutput, g_switch_value);
3631
3632 /* On a native system other than VxWorks, sections must be aligned
3633 to 16 byte boundaries. When configured for an embedded ELF
3634 target, we don't bother. */
3635 if (strncmp (TARGET_OS, "elf", 3) != 0
3636 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3637 {
3638 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3639 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3640 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3641 }
3642
3643 /* Create a .reginfo section for register masks and a .mdebug
3644 section for debugging information. */
3645 {
3646 segT seg;
3647 subsegT subseg;
3648 flagword flags;
3649 segT sec;
3650
3651 seg = now_seg;
3652 subseg = now_subseg;
3653
3654 /* The ABI says this section should be loaded so that the
3655 running program can access it. However, we don't load it
3656 if we are configured for an embedded target */
3657 flags = SEC_READONLY | SEC_DATA;
3658 if (strncmp (TARGET_OS, "elf", 3) != 0)
3659 flags |= SEC_ALLOC | SEC_LOAD;
3660
3661 if (mips_abi != N64_ABI)
3662 {
3663 sec = subseg_new (".reginfo", (subsegT) 0);
3664
3665 bfd_set_section_flags (stdoutput, sec, flags);
3666 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3667
3668 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3669 }
3670 else
3671 {
3672 /* The 64-bit ABI uses a .MIPS.options section rather than
3673 .reginfo section. */
3674 sec = subseg_new (".MIPS.options", (subsegT) 0);
3675 bfd_set_section_flags (stdoutput, sec, flags);
3676 bfd_set_section_alignment (stdoutput, sec, 3);
3677
3678 /* Set up the option header. */
3679 {
3680 Elf_Internal_Options opthdr;
3681 char *f;
3682
3683 opthdr.kind = ODK_REGINFO;
3684 opthdr.size = (sizeof (Elf_External_Options)
3685 + sizeof (Elf64_External_RegInfo));
3686 opthdr.section = 0;
3687 opthdr.info = 0;
3688 f = frag_more (sizeof (Elf_External_Options));
3689 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3690 (Elf_External_Options *) f);
3691
3692 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3693 }
3694 }
3695
3696 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3697 bfd_set_section_flags (stdoutput, sec,
3698 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3699 bfd_set_section_alignment (stdoutput, sec, 3);
3700 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3701
3702 if (ECOFF_DEBUGGING)
3703 {
3704 sec = subseg_new (".mdebug", (subsegT) 0);
3705 (void) bfd_set_section_flags (stdoutput, sec,
3706 SEC_HAS_CONTENTS | SEC_READONLY);
3707 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3708 }
3709 else if (mips_flag_pdr)
3710 {
3711 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3712 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3713 SEC_READONLY | SEC_RELOC
3714 | SEC_DEBUGGING);
3715 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3716 }
3717
3718 subseg_set (seg, subseg);
3719 }
3720
3721 if (mips_fix_vr4120)
3722 init_vr4120_conflicts ();
3723 }
3724
3725 static inline void
3726 fpabi_incompatible_with (int fpabi, const char *what)
3727 {
3728 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3729 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3730 }
3731
3732 static inline void
3733 fpabi_requires (int fpabi, const char *what)
3734 {
3735 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3736 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3737 }
3738
3739 /* Check -mabi and register sizes against the specified FP ABI. */
3740 static void
3741 check_fpabi (int fpabi)
3742 {
3743 switch (fpabi)
3744 {
3745 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3746 if (file_mips_opts.soft_float)
3747 fpabi_incompatible_with (fpabi, "softfloat");
3748 else if (file_mips_opts.single_float)
3749 fpabi_incompatible_with (fpabi, "singlefloat");
3750 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3751 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3752 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3753 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3754 break;
3755
3756 case Val_GNU_MIPS_ABI_FP_XX:
3757 if (mips_abi != O32_ABI)
3758 fpabi_requires (fpabi, "-mabi=32");
3759 else if (file_mips_opts.soft_float)
3760 fpabi_incompatible_with (fpabi, "softfloat");
3761 else if (file_mips_opts.single_float)
3762 fpabi_incompatible_with (fpabi, "singlefloat");
3763 else if (file_mips_opts.fp != 0)
3764 fpabi_requires (fpabi, "fp=xx");
3765 break;
3766
3767 case Val_GNU_MIPS_ABI_FP_64A:
3768 case Val_GNU_MIPS_ABI_FP_64:
3769 if (mips_abi != O32_ABI)
3770 fpabi_requires (fpabi, "-mabi=32");
3771 else if (file_mips_opts.soft_float)
3772 fpabi_incompatible_with (fpabi, "softfloat");
3773 else if (file_mips_opts.single_float)
3774 fpabi_incompatible_with (fpabi, "singlefloat");
3775 else if (file_mips_opts.fp != 64)
3776 fpabi_requires (fpabi, "fp=64");
3777 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3778 fpabi_incompatible_with (fpabi, "nooddspreg");
3779 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3780 fpabi_requires (fpabi, "nooddspreg");
3781 break;
3782
3783 case Val_GNU_MIPS_ABI_FP_SINGLE:
3784 if (file_mips_opts.soft_float)
3785 fpabi_incompatible_with (fpabi, "softfloat");
3786 else if (!file_mips_opts.single_float)
3787 fpabi_requires (fpabi, "singlefloat");
3788 break;
3789
3790 case Val_GNU_MIPS_ABI_FP_SOFT:
3791 if (!file_mips_opts.soft_float)
3792 fpabi_requires (fpabi, "softfloat");
3793 break;
3794
3795 case Val_GNU_MIPS_ABI_FP_OLD_64:
3796 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3797 Tag_GNU_MIPS_ABI_FP, fpabi);
3798 break;
3799
3800 case Val_GNU_MIPS_ABI_FP_NAN2008:
3801 /* Silently ignore compatibility value. */
3802 break;
3803
3804 default:
3805 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3806 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3807 break;
3808 }
3809 }
3810
3811 /* Perform consistency checks on the current options. */
3812
3813 static void
3814 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3815 {
3816 /* Check the size of integer registers agrees with the ABI and ISA. */
3817 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3818 as_bad (_("`gp=64' used with a 32-bit processor"));
3819 else if (abi_checks
3820 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3821 as_bad (_("`gp=32' used with a 64-bit ABI"));
3822 else if (abi_checks
3823 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3824 as_bad (_("`gp=64' used with a 32-bit ABI"));
3825
3826 /* Check the size of the float registers agrees with the ABI and ISA. */
3827 switch (opts->fp)
3828 {
3829 case 0:
3830 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3831 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3832 else if (opts->single_float == 1)
3833 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3834 break;
3835 case 64:
3836 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3837 as_bad (_("`fp=64' used with a 32-bit fpu"));
3838 else if (abi_checks
3839 && ABI_NEEDS_32BIT_REGS (mips_abi)
3840 && !ISA_HAS_MXHC1 (opts->isa))
3841 as_warn (_("`fp=64' used with a 32-bit ABI"));
3842 break;
3843 case 32:
3844 if (abi_checks
3845 && ABI_NEEDS_64BIT_REGS (mips_abi))
3846 as_warn (_("`fp=32' used with a 64-bit ABI"));
3847 if (ISA_IS_R6 (mips_opts.isa) && opts->single_float == 0)
3848 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3849 break;
3850 default:
3851 as_bad (_("Unknown size of floating point registers"));
3852 break;
3853 }
3854
3855 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3856 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3857
3858 if (opts->micromips == 1 && opts->mips16 == 1)
3859 as_bad (_("`mips16' cannot be used with `micromips'"));
3860 else if (ISA_IS_R6 (mips_opts.isa)
3861 && (opts->micromips == 1
3862 || opts->mips16 == 1))
3863 as_fatal (_("`%s' can not be used with `%s'"),
3864 opts->micromips ? "micromips" : "mips16",
3865 mips_cpu_info_from_isa (mips_opts.isa)->name);
3866
3867 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3868 as_fatal (_("branch relaxation is not supported in `%s'"),
3869 mips_cpu_info_from_isa (opts->isa)->name);
3870 }
3871
3872 /* Perform consistency checks on the module level options exactly once.
3873 This is a deferred check that happens:
3874 at the first .set directive
3875 or, at the first pseudo op that generates code (inc .dc.a)
3876 or, at the first instruction
3877 or, at the end. */
3878
3879 static void
3880 file_mips_check_options (void)
3881 {
3882 const struct mips_cpu_info *arch_info = 0;
3883
3884 if (file_mips_opts_checked)
3885 return;
3886
3887 /* The following code determines the register size.
3888 Similar code was added to GCC 3.3 (see override_options() in
3889 config/mips/mips.c). The GAS and GCC code should be kept in sync
3890 as much as possible. */
3891
3892 if (file_mips_opts.gp < 0)
3893 {
3894 /* Infer the integer register size from the ABI and processor.
3895 Restrict ourselves to 32-bit registers if that's all the
3896 processor has, or if the ABI cannot handle 64-bit registers. */
3897 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3898 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3899 ? 32 : 64;
3900 }
3901
3902 if (file_mips_opts.fp < 0)
3903 {
3904 /* No user specified float register size.
3905 ??? GAS treats single-float processors as though they had 64-bit
3906 float registers (although it complains when double-precision
3907 instructions are used). As things stand, saying they have 32-bit
3908 registers would lead to spurious "register must be even" messages.
3909 So here we assume float registers are never smaller than the
3910 integer ones. */
3911 if (file_mips_opts.gp == 64)
3912 /* 64-bit integer registers implies 64-bit float registers. */
3913 file_mips_opts.fp = 64;
3914 else if ((file_mips_opts.ase & FP64_ASES)
3915 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3916 /* Handle ASEs that require 64-bit float registers, if possible. */
3917 file_mips_opts.fp = 64;
3918 else if (ISA_IS_R6 (mips_opts.isa))
3919 /* R6 implies 64-bit float registers. */
3920 file_mips_opts.fp = 64;
3921 else
3922 /* 32-bit float registers. */
3923 file_mips_opts.fp = 32;
3924 }
3925
3926 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3927
3928 /* Disable operations on odd-numbered floating-point registers by default
3929 when using the FPXX ABI. */
3930 if (file_mips_opts.oddspreg < 0)
3931 {
3932 if (file_mips_opts.fp == 0)
3933 file_mips_opts.oddspreg = 0;
3934 else
3935 file_mips_opts.oddspreg = 1;
3936 }
3937
3938 /* End of GCC-shared inference code. */
3939
3940 /* This flag is set when we have a 64-bit capable CPU but use only
3941 32-bit wide registers. Note that EABI does not use it. */
3942 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3943 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3944 || mips_abi == O32_ABI))
3945 mips_32bitmode = 1;
3946
3947 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3948 as_bad (_("trap exception not supported at ISA 1"));
3949
3950 /* If the selected architecture includes support for ASEs, enable
3951 generation of code for them. */
3952 if (file_mips_opts.mips16 == -1)
3953 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3954 if (file_mips_opts.micromips == -1)
3955 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3956 ? 1 : 0;
3957
3958 if (mips_nan2008 == -1)
3959 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3960 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3961 as_fatal (_("`%s' does not support legacy NaN"),
3962 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3963
3964 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3965 being selected implicitly. */
3966 if (file_mips_opts.fp != 64)
3967 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3968
3969 /* If the user didn't explicitly select or deselect a particular ASE,
3970 use the default setting for the CPU. */
3971 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3972
3973 /* Set up the current options. These may change throughout assembly. */
3974 mips_opts = file_mips_opts;
3975
3976 mips_check_isa_supports_ases ();
3977 mips_check_options (&file_mips_opts, TRUE);
3978 file_mips_opts_checked = TRUE;
3979
3980 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3981 as_warn (_("could not set architecture and machine"));
3982 }
3983
3984 void
3985 md_assemble (char *str)
3986 {
3987 struct mips_cl_insn insn;
3988 bfd_reloc_code_real_type unused_reloc[3]
3989 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3990
3991 file_mips_check_options ();
3992
3993 imm_expr.X_op = O_absent;
3994 offset_expr.X_op = O_absent;
3995 offset_reloc[0] = BFD_RELOC_UNUSED;
3996 offset_reloc[1] = BFD_RELOC_UNUSED;
3997 offset_reloc[2] = BFD_RELOC_UNUSED;
3998
3999 mips_mark_labels ();
4000 mips_assembling_insn = TRUE;
4001 clear_insn_error ();
4002
4003 if (mips_opts.mips16)
4004 mips16_ip (str, &insn);
4005 else
4006 {
4007 mips_ip (str, &insn);
4008 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4009 str, insn.insn_opcode));
4010 }
4011
4012 if (insn_error.msg)
4013 report_insn_error (str);
4014 else if (insn.insn_mo->pinfo == INSN_MACRO)
4015 {
4016 macro_start ();
4017 if (mips_opts.mips16)
4018 mips16_macro (&insn);
4019 else
4020 macro (&insn, str);
4021 macro_end ();
4022 }
4023 else
4024 {
4025 if (offset_expr.X_op != O_absent)
4026 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4027 else
4028 append_insn (&insn, NULL, unused_reloc, FALSE);
4029 }
4030
4031 mips_assembling_insn = FALSE;
4032 }
4033
4034 /* Convenience functions for abstracting away the differences between
4035 MIPS16 and non-MIPS16 relocations. */
4036
4037 static inline bfd_boolean
4038 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4039 {
4040 switch (reloc)
4041 {
4042 case BFD_RELOC_MIPS16_JMP:
4043 case BFD_RELOC_MIPS16_GPREL:
4044 case BFD_RELOC_MIPS16_GOT16:
4045 case BFD_RELOC_MIPS16_CALL16:
4046 case BFD_RELOC_MIPS16_HI16_S:
4047 case BFD_RELOC_MIPS16_HI16:
4048 case BFD_RELOC_MIPS16_LO16:
4049 return TRUE;
4050
4051 default:
4052 return FALSE;
4053 }
4054 }
4055
4056 static inline bfd_boolean
4057 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4058 {
4059 switch (reloc)
4060 {
4061 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4062 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4063 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4064 case BFD_RELOC_MICROMIPS_GPREL16:
4065 case BFD_RELOC_MICROMIPS_JMP:
4066 case BFD_RELOC_MICROMIPS_HI16:
4067 case BFD_RELOC_MICROMIPS_HI16_S:
4068 case BFD_RELOC_MICROMIPS_LO16:
4069 case BFD_RELOC_MICROMIPS_LITERAL:
4070 case BFD_RELOC_MICROMIPS_GOT16:
4071 case BFD_RELOC_MICROMIPS_CALL16:
4072 case BFD_RELOC_MICROMIPS_GOT_HI16:
4073 case BFD_RELOC_MICROMIPS_GOT_LO16:
4074 case BFD_RELOC_MICROMIPS_CALL_HI16:
4075 case BFD_RELOC_MICROMIPS_CALL_LO16:
4076 case BFD_RELOC_MICROMIPS_SUB:
4077 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4078 case BFD_RELOC_MICROMIPS_GOT_OFST:
4079 case BFD_RELOC_MICROMIPS_GOT_DISP:
4080 case BFD_RELOC_MICROMIPS_HIGHEST:
4081 case BFD_RELOC_MICROMIPS_HIGHER:
4082 case BFD_RELOC_MICROMIPS_SCN_DISP:
4083 case BFD_RELOC_MICROMIPS_JALR:
4084 return TRUE;
4085
4086 default:
4087 return FALSE;
4088 }
4089 }
4090
4091 static inline bfd_boolean
4092 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4093 {
4094 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4095 }
4096
4097 static inline bfd_boolean
4098 got16_reloc_p (bfd_reloc_code_real_type reloc)
4099 {
4100 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4101 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4102 }
4103
4104 static inline bfd_boolean
4105 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4106 {
4107 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4108 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4109 }
4110
4111 static inline bfd_boolean
4112 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4113 {
4114 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4115 || reloc == BFD_RELOC_MICROMIPS_LO16);
4116 }
4117
4118 static inline bfd_boolean
4119 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4120 {
4121 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4122 }
4123
4124 static inline bfd_boolean
4125 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4126 {
4127 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4128 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4129 }
4130
4131 /* Return true if RELOC is a PC-relative relocation that does not have
4132 full address range. */
4133
4134 static inline bfd_boolean
4135 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4136 {
4137 switch (reloc)
4138 {
4139 case BFD_RELOC_16_PCREL_S2:
4140 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4141 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4142 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4143 case BFD_RELOC_MIPS_21_PCREL_S2:
4144 case BFD_RELOC_MIPS_26_PCREL_S2:
4145 case BFD_RELOC_MIPS_18_PCREL_S3:
4146 case BFD_RELOC_MIPS_19_PCREL_S2:
4147 return TRUE;
4148
4149 case BFD_RELOC_32_PCREL:
4150 case BFD_RELOC_HI16_S_PCREL:
4151 case BFD_RELOC_LO16_PCREL:
4152 return HAVE_64BIT_ADDRESSES;
4153
4154 default:
4155 return FALSE;
4156 }
4157 }
4158
4159 /* Return true if the given relocation might need a matching %lo().
4160 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4161 need a matching %lo() when applied to local symbols. */
4162
4163 static inline bfd_boolean
4164 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4165 {
4166 return (HAVE_IN_PLACE_ADDENDS
4167 && (hi16_reloc_p (reloc)
4168 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4169 all GOT16 relocations evaluate to "G". */
4170 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4171 }
4172
4173 /* Return the type of %lo() reloc needed by RELOC, given that
4174 reloc_needs_lo_p. */
4175
4176 static inline bfd_reloc_code_real_type
4177 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4178 {
4179 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4180 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4181 : BFD_RELOC_LO16));
4182 }
4183
4184 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4185 relocation. */
4186
4187 static inline bfd_boolean
4188 fixup_has_matching_lo_p (fixS *fixp)
4189 {
4190 return (fixp->fx_next != NULL
4191 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4192 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4193 && fixp->fx_offset == fixp->fx_next->fx_offset);
4194 }
4195
4196 /* Move all labels in LABELS to the current insertion point. TEXT_P
4197 says whether the labels refer to text or data. */
4198
4199 static void
4200 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4201 {
4202 struct insn_label_list *l;
4203 valueT val;
4204
4205 for (l = labels; l != NULL; l = l->next)
4206 {
4207 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4208 symbol_set_frag (l->label, frag_now);
4209 val = (valueT) frag_now_fix ();
4210 /* MIPS16/microMIPS text labels are stored as odd. */
4211 if (text_p && HAVE_CODE_COMPRESSION)
4212 ++val;
4213 S_SET_VALUE (l->label, val);
4214 }
4215 }
4216
4217 /* Move all labels in insn_labels to the current insertion point
4218 and treat them as text labels. */
4219
4220 static void
4221 mips_move_text_labels (void)
4222 {
4223 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4224 }
4225
4226 static bfd_boolean
4227 s_is_linkonce (symbolS *sym, segT from_seg)
4228 {
4229 bfd_boolean linkonce = FALSE;
4230 segT symseg = S_GET_SEGMENT (sym);
4231
4232 if (symseg != from_seg && !S_IS_LOCAL (sym))
4233 {
4234 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4235 linkonce = TRUE;
4236 /* The GNU toolchain uses an extension for ELF: a section
4237 beginning with the magic string .gnu.linkonce is a
4238 linkonce section. */
4239 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4240 sizeof ".gnu.linkonce" - 1) == 0)
4241 linkonce = TRUE;
4242 }
4243 return linkonce;
4244 }
4245
4246 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4247 linker to handle them specially, such as generating jalx instructions
4248 when needed. We also make them odd for the duration of the assembly,
4249 in order to generate the right sort of code. We will make them even
4250 in the adjust_symtab routine, while leaving them marked. This is
4251 convenient for the debugger and the disassembler. The linker knows
4252 to make them odd again. */
4253
4254 static void
4255 mips_compressed_mark_label (symbolS *label)
4256 {
4257 gas_assert (HAVE_CODE_COMPRESSION);
4258
4259 if (mips_opts.mips16)
4260 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4261 else
4262 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4263 if ((S_GET_VALUE (label) & 1) == 0
4264 /* Don't adjust the address if the label is global or weak, or
4265 in a link-once section, since we'll be emitting symbol reloc
4266 references to it which will be patched up by the linker, and
4267 the final value of the symbol may or may not be MIPS16/microMIPS. */
4268 && !S_IS_WEAK (label)
4269 && !S_IS_EXTERNAL (label)
4270 && !s_is_linkonce (label, now_seg))
4271 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4272 }
4273
4274 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4275
4276 static void
4277 mips_compressed_mark_labels (void)
4278 {
4279 struct insn_label_list *l;
4280
4281 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4282 mips_compressed_mark_label (l->label);
4283 }
4284
4285 /* End the current frag. Make it a variant frag and record the
4286 relaxation info. */
4287
4288 static void
4289 relax_close_frag (void)
4290 {
4291 mips_macro_warning.first_frag = frag_now;
4292 frag_var (rs_machine_dependent, 0, 0,
4293 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4294 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4295
4296 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4297 mips_relax.first_fixup = 0;
4298 }
4299
4300 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4301 See the comment above RELAX_ENCODE for more details. */
4302
4303 static void
4304 relax_start (symbolS *symbol)
4305 {
4306 gas_assert (mips_relax.sequence == 0);
4307 mips_relax.sequence = 1;
4308 mips_relax.symbol = symbol;
4309 }
4310
4311 /* Start generating the second version of a relaxable sequence.
4312 See the comment above RELAX_ENCODE for more details. */
4313
4314 static void
4315 relax_switch (void)
4316 {
4317 gas_assert (mips_relax.sequence == 1);
4318 mips_relax.sequence = 2;
4319 }
4320
4321 /* End the current relaxable sequence. */
4322
4323 static void
4324 relax_end (void)
4325 {
4326 gas_assert (mips_relax.sequence == 2);
4327 relax_close_frag ();
4328 mips_relax.sequence = 0;
4329 }
4330
4331 /* Return true if IP is a delayed branch or jump. */
4332
4333 static inline bfd_boolean
4334 delayed_branch_p (const struct mips_cl_insn *ip)
4335 {
4336 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4337 | INSN_COND_BRANCH_DELAY
4338 | INSN_COND_BRANCH_LIKELY)) != 0;
4339 }
4340
4341 /* Return true if IP is a compact branch or jump. */
4342
4343 static inline bfd_boolean
4344 compact_branch_p (const struct mips_cl_insn *ip)
4345 {
4346 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4347 | INSN2_COND_BRANCH)) != 0;
4348 }
4349
4350 /* Return true if IP is an unconditional branch or jump. */
4351
4352 static inline bfd_boolean
4353 uncond_branch_p (const struct mips_cl_insn *ip)
4354 {
4355 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4356 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4357 }
4358
4359 /* Return true if IP is a branch-likely instruction. */
4360
4361 static inline bfd_boolean
4362 branch_likely_p (const struct mips_cl_insn *ip)
4363 {
4364 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4365 }
4366
4367 /* Return the type of nop that should be used to fill the delay slot
4368 of delayed branch IP. */
4369
4370 static struct mips_cl_insn *
4371 get_delay_slot_nop (const struct mips_cl_insn *ip)
4372 {
4373 if (mips_opts.micromips
4374 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4375 return &micromips_nop32_insn;
4376 return NOP_INSN;
4377 }
4378
4379 /* Return a mask that has bit N set if OPCODE reads the register(s)
4380 in operand N. */
4381
4382 static unsigned int
4383 insn_read_mask (const struct mips_opcode *opcode)
4384 {
4385 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4386 }
4387
4388 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4389 in operand N. */
4390
4391 static unsigned int
4392 insn_write_mask (const struct mips_opcode *opcode)
4393 {
4394 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4395 }
4396
4397 /* Return a mask of the registers specified by operand OPERAND of INSN.
4398 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4399 is set. */
4400
4401 static unsigned int
4402 operand_reg_mask (const struct mips_cl_insn *insn,
4403 const struct mips_operand *operand,
4404 unsigned int type_mask)
4405 {
4406 unsigned int uval, vsel;
4407
4408 switch (operand->type)
4409 {
4410 case OP_INT:
4411 case OP_MAPPED_INT:
4412 case OP_MSB:
4413 case OP_PCREL:
4414 case OP_PERF_REG:
4415 case OP_ADDIUSP_INT:
4416 case OP_ENTRY_EXIT_LIST:
4417 case OP_REPEAT_DEST_REG:
4418 case OP_REPEAT_PREV_REG:
4419 case OP_PC:
4420 case OP_VU0_SUFFIX:
4421 case OP_VU0_MATCH_SUFFIX:
4422 case OP_IMM_INDEX:
4423 abort ();
4424
4425 case OP_REG:
4426 case OP_OPTIONAL_REG:
4427 {
4428 const struct mips_reg_operand *reg_op;
4429
4430 reg_op = (const struct mips_reg_operand *) operand;
4431 if (!(type_mask & (1 << reg_op->reg_type)))
4432 return 0;
4433 uval = insn_extract_operand (insn, operand);
4434 return 1 << mips_decode_reg_operand (reg_op, uval);
4435 }
4436
4437 case OP_REG_PAIR:
4438 {
4439 const struct mips_reg_pair_operand *pair_op;
4440
4441 pair_op = (const struct mips_reg_pair_operand *) operand;
4442 if (!(type_mask & (1 << pair_op->reg_type)))
4443 return 0;
4444 uval = insn_extract_operand (insn, operand);
4445 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4446 }
4447
4448 case OP_CLO_CLZ_DEST:
4449 if (!(type_mask & (1 << OP_REG_GP)))
4450 return 0;
4451 uval = insn_extract_operand (insn, operand);
4452 return (1 << (uval & 31)) | (1 << (uval >> 5));
4453
4454 case OP_SAME_RS_RT:
4455 if (!(type_mask & (1 << OP_REG_GP)))
4456 return 0;
4457 uval = insn_extract_operand (insn, operand);
4458 gas_assert ((uval & 31) == (uval >> 5));
4459 return 1 << (uval & 31);
4460
4461 case OP_CHECK_PREV:
4462 case OP_NON_ZERO_REG:
4463 if (!(type_mask & (1 << OP_REG_GP)))
4464 return 0;
4465 uval = insn_extract_operand (insn, operand);
4466 return 1 << (uval & 31);
4467
4468 case OP_LWM_SWM_LIST:
4469 abort ();
4470
4471 case OP_SAVE_RESTORE_LIST:
4472 abort ();
4473
4474 case OP_MDMX_IMM_REG:
4475 if (!(type_mask & (1 << OP_REG_VEC)))
4476 return 0;
4477 uval = insn_extract_operand (insn, operand);
4478 vsel = uval >> 5;
4479 if ((vsel & 0x18) == 0x18)
4480 return 0;
4481 return 1 << (uval & 31);
4482
4483 case OP_REG_INDEX:
4484 if (!(type_mask & (1 << OP_REG_GP)))
4485 return 0;
4486 return 1 << insn_extract_operand (insn, operand);
4487 }
4488 abort ();
4489 }
4490
4491 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4492 where bit N of OPNO_MASK is set if operand N should be included.
4493 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4494 is set. */
4495
4496 static unsigned int
4497 insn_reg_mask (const struct mips_cl_insn *insn,
4498 unsigned int type_mask, unsigned int opno_mask)
4499 {
4500 unsigned int opno, reg_mask;
4501
4502 opno = 0;
4503 reg_mask = 0;
4504 while (opno_mask != 0)
4505 {
4506 if (opno_mask & 1)
4507 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4508 opno_mask >>= 1;
4509 opno += 1;
4510 }
4511 return reg_mask;
4512 }
4513
4514 /* Return the mask of core registers that IP reads. */
4515
4516 static unsigned int
4517 gpr_read_mask (const struct mips_cl_insn *ip)
4518 {
4519 unsigned long pinfo, pinfo2;
4520 unsigned int mask;
4521
4522 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4523 pinfo = ip->insn_mo->pinfo;
4524 pinfo2 = ip->insn_mo->pinfo2;
4525 if (pinfo & INSN_UDI)
4526 {
4527 /* UDI instructions have traditionally been assumed to read RS
4528 and RT. */
4529 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4530 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4531 }
4532 if (pinfo & INSN_READ_GPR_24)
4533 mask |= 1 << 24;
4534 if (pinfo2 & INSN2_READ_GPR_16)
4535 mask |= 1 << 16;
4536 if (pinfo2 & INSN2_READ_SP)
4537 mask |= 1 << SP;
4538 if (pinfo2 & INSN2_READ_GPR_31)
4539 mask |= 1 << 31;
4540 /* Don't include register 0. */
4541 return mask & ~1;
4542 }
4543
4544 /* Return the mask of core registers that IP writes. */
4545
4546 static unsigned int
4547 gpr_write_mask (const struct mips_cl_insn *ip)
4548 {
4549 unsigned long pinfo, pinfo2;
4550 unsigned int mask;
4551
4552 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4553 pinfo = ip->insn_mo->pinfo;
4554 pinfo2 = ip->insn_mo->pinfo2;
4555 if (pinfo & INSN_WRITE_GPR_24)
4556 mask |= 1 << 24;
4557 if (pinfo & INSN_WRITE_GPR_31)
4558 mask |= 1 << 31;
4559 if (pinfo & INSN_UDI)
4560 /* UDI instructions have traditionally been assumed to write to RD. */
4561 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4562 if (pinfo2 & INSN2_WRITE_SP)
4563 mask |= 1 << SP;
4564 /* Don't include register 0. */
4565 return mask & ~1;
4566 }
4567
4568 /* Return the mask of floating-point registers that IP reads. */
4569
4570 static unsigned int
4571 fpr_read_mask (const struct mips_cl_insn *ip)
4572 {
4573 unsigned long pinfo;
4574 unsigned int mask;
4575
4576 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4577 | (1 << OP_REG_MSA)),
4578 insn_read_mask (ip->insn_mo));
4579 pinfo = ip->insn_mo->pinfo;
4580 /* Conservatively treat all operands to an FP_D instruction are doubles.
4581 (This is overly pessimistic for things like cvt.d.s.) */
4582 if (FPR_SIZE != 64 && (pinfo & FP_D))
4583 mask |= mask << 1;
4584 return mask;
4585 }
4586
4587 /* Return the mask of floating-point registers that IP writes. */
4588
4589 static unsigned int
4590 fpr_write_mask (const struct mips_cl_insn *ip)
4591 {
4592 unsigned long pinfo;
4593 unsigned int mask;
4594
4595 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4596 | (1 << OP_REG_MSA)),
4597 insn_write_mask (ip->insn_mo));
4598 pinfo = ip->insn_mo->pinfo;
4599 /* Conservatively treat all operands to an FP_D instruction are doubles.
4600 (This is overly pessimistic for things like cvt.s.d.) */
4601 if (FPR_SIZE != 64 && (pinfo & FP_D))
4602 mask |= mask << 1;
4603 return mask;
4604 }
4605
4606 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4607 Check whether that is allowed. */
4608
4609 static bfd_boolean
4610 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4611 {
4612 const char *s = insn->name;
4613 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4614 || FPR_SIZE == 64)
4615 && mips_opts.oddspreg;
4616
4617 if (insn->pinfo == INSN_MACRO)
4618 /* Let a macro pass, we'll catch it later when it is expanded. */
4619 return TRUE;
4620
4621 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4622 otherwise it depends on oddspreg. */
4623 if ((insn->pinfo & FP_S)
4624 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4625 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4626 return FPR_SIZE == 32 || oddspreg;
4627
4628 /* Allow odd registers for single-precision ops and double-precision if the
4629 floating-point registers are 64-bit wide. */
4630 switch (insn->pinfo & (FP_S | FP_D))
4631 {
4632 case FP_S:
4633 case 0:
4634 return oddspreg;
4635 case FP_D:
4636 return FPR_SIZE == 64;
4637 default:
4638 break;
4639 }
4640
4641 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4642 s = strchr (insn->name, '.');
4643 if (s != NULL && opnum == 2)
4644 s = strchr (s + 1, '.');
4645 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4646 return oddspreg;
4647
4648 return FPR_SIZE == 64;
4649 }
4650
4651 /* Information about an instruction argument that we're trying to match. */
4652 struct mips_arg_info
4653 {
4654 /* The instruction so far. */
4655 struct mips_cl_insn *insn;
4656
4657 /* The first unconsumed operand token. */
4658 struct mips_operand_token *token;
4659
4660 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4661 int opnum;
4662
4663 /* The 1-based argument number, for error reporting. This does not
4664 count elided optional registers, etc.. */
4665 int argnum;
4666
4667 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4668 unsigned int last_regno;
4669
4670 /* If the first operand was an OP_REG, this is the register that it
4671 specified, otherwise it is ILLEGAL_REG. */
4672 unsigned int dest_regno;
4673
4674 /* The value of the last OP_INT operand. Only used for OP_MSB,
4675 where it gives the lsb position. */
4676 unsigned int last_op_int;
4677
4678 /* If true, match routines should assume that no later instruction
4679 alternative matches and should therefore be as accomodating as
4680 possible. Match routines should not report errors if something
4681 is only invalid for !LAX_MATCH. */
4682 bfd_boolean lax_match;
4683
4684 /* True if a reference to the current AT register was seen. */
4685 bfd_boolean seen_at;
4686 };
4687
4688 /* Record that the argument is out of range. */
4689
4690 static void
4691 match_out_of_range (struct mips_arg_info *arg)
4692 {
4693 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4694 }
4695
4696 /* Record that the argument isn't constant but needs to be. */
4697
4698 static void
4699 match_not_constant (struct mips_arg_info *arg)
4700 {
4701 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4702 arg->argnum);
4703 }
4704
4705 /* Try to match an OT_CHAR token for character CH. Consume the token
4706 and return true on success, otherwise return false. */
4707
4708 static bfd_boolean
4709 match_char (struct mips_arg_info *arg, char ch)
4710 {
4711 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4712 {
4713 ++arg->token;
4714 if (ch == ',')
4715 arg->argnum += 1;
4716 return TRUE;
4717 }
4718 return FALSE;
4719 }
4720
4721 /* Try to get an expression from the next tokens in ARG. Consume the
4722 tokens and return true on success, storing the expression value in
4723 VALUE and relocation types in R. */
4724
4725 static bfd_boolean
4726 match_expression (struct mips_arg_info *arg, expressionS *value,
4727 bfd_reloc_code_real_type *r)
4728 {
4729 /* If the next token is a '(' that was parsed as being part of a base
4730 expression, assume we have an elided offset. The later match will fail
4731 if this turns out to be wrong. */
4732 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4733 {
4734 value->X_op = O_constant;
4735 value->X_add_number = 0;
4736 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4737 return TRUE;
4738 }
4739
4740 /* Reject register-based expressions such as "0+$2" and "(($2))".
4741 For plain registers the default error seems more appropriate. */
4742 if (arg->token->type == OT_INTEGER
4743 && arg->token->u.integer.value.X_op == O_register)
4744 {
4745 set_insn_error (arg->argnum, _("register value used as expression"));
4746 return FALSE;
4747 }
4748
4749 if (arg->token->type == OT_INTEGER)
4750 {
4751 *value = arg->token->u.integer.value;
4752 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4753 ++arg->token;
4754 return TRUE;
4755 }
4756
4757 set_insn_error_i
4758 (arg->argnum, _("operand %d must be an immediate expression"),
4759 arg->argnum);
4760 return FALSE;
4761 }
4762
4763 /* Try to get a constant expression from the next tokens in ARG. Consume
4764 the tokens and return return true on success, storing the constant value
4765 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4766 error. */
4767
4768 static bfd_boolean
4769 match_const_int (struct mips_arg_info *arg, offsetT *value)
4770 {
4771 expressionS ex;
4772 bfd_reloc_code_real_type r[3];
4773
4774 if (!match_expression (arg, &ex, r))
4775 return FALSE;
4776
4777 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4778 *value = ex.X_add_number;
4779 else
4780 {
4781 match_not_constant (arg);
4782 return FALSE;
4783 }
4784 return TRUE;
4785 }
4786
4787 /* Return the RTYPE_* flags for a register operand of type TYPE that
4788 appears in instruction OPCODE. */
4789
4790 static unsigned int
4791 convert_reg_type (const struct mips_opcode *opcode,
4792 enum mips_reg_operand_type type)
4793 {
4794 switch (type)
4795 {
4796 case OP_REG_GP:
4797 return RTYPE_NUM | RTYPE_GP;
4798
4799 case OP_REG_FP:
4800 /* Allow vector register names for MDMX if the instruction is a 64-bit
4801 FPR load, store or move (including moves to and from GPRs). */
4802 if ((mips_opts.ase & ASE_MDMX)
4803 && (opcode->pinfo & FP_D)
4804 && (opcode->pinfo & (INSN_COPROC_MOVE
4805 | INSN_COPROC_MEMORY_DELAY
4806 | INSN_LOAD_COPROC
4807 | INSN_LOAD_MEMORY
4808 | INSN_STORE_MEMORY)))
4809 return RTYPE_FPU | RTYPE_VEC;
4810 return RTYPE_FPU;
4811
4812 case OP_REG_CCC:
4813 if (opcode->pinfo & (FP_D | FP_S))
4814 return RTYPE_CCC | RTYPE_FCC;
4815 return RTYPE_CCC;
4816
4817 case OP_REG_VEC:
4818 if (opcode->membership & INSN_5400)
4819 return RTYPE_FPU;
4820 return RTYPE_FPU | RTYPE_VEC;
4821
4822 case OP_REG_ACC:
4823 return RTYPE_ACC;
4824
4825 case OP_REG_COPRO:
4826 if (opcode->name[strlen (opcode->name) - 1] == '0')
4827 return RTYPE_NUM | RTYPE_CP0;
4828 return RTYPE_NUM;
4829
4830 case OP_REG_HW:
4831 return RTYPE_NUM;
4832
4833 case OP_REG_VI:
4834 return RTYPE_NUM | RTYPE_VI;
4835
4836 case OP_REG_VF:
4837 return RTYPE_NUM | RTYPE_VF;
4838
4839 case OP_REG_R5900_I:
4840 return RTYPE_R5900_I;
4841
4842 case OP_REG_R5900_Q:
4843 return RTYPE_R5900_Q;
4844
4845 case OP_REG_R5900_R:
4846 return RTYPE_R5900_R;
4847
4848 case OP_REG_R5900_ACC:
4849 return RTYPE_R5900_ACC;
4850
4851 case OP_REG_MSA:
4852 return RTYPE_MSA;
4853
4854 case OP_REG_MSA_CTRL:
4855 return RTYPE_NUM;
4856 }
4857 abort ();
4858 }
4859
4860 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4861
4862 static void
4863 check_regno (struct mips_arg_info *arg,
4864 enum mips_reg_operand_type type, unsigned int regno)
4865 {
4866 if (AT && type == OP_REG_GP && regno == AT)
4867 arg->seen_at = TRUE;
4868
4869 if (type == OP_REG_FP
4870 && (regno & 1) != 0
4871 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4872 {
4873 /* This was a warning prior to introducing O32 FPXX and FP64 support
4874 so maintain a warning for FP32 but raise an error for the new
4875 cases. */
4876 if (FPR_SIZE == 32)
4877 as_warn (_("float register should be even, was %d"), regno);
4878 else
4879 as_bad (_("float register should be even, was %d"), regno);
4880 }
4881
4882 if (type == OP_REG_CCC)
4883 {
4884 const char *name;
4885 size_t length;
4886
4887 name = arg->insn->insn_mo->name;
4888 length = strlen (name);
4889 if ((regno & 1) != 0
4890 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4891 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4892 as_warn (_("condition code register should be even for %s, was %d"),
4893 name, regno);
4894
4895 if ((regno & 3) != 0
4896 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4897 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4898 name, regno);
4899 }
4900 }
4901
4902 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4903 a register of type TYPE. Return true on success, storing the register
4904 number in *REGNO and warning about any dubious uses. */
4905
4906 static bfd_boolean
4907 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4908 unsigned int symval, unsigned int *regno)
4909 {
4910 if (type == OP_REG_VEC)
4911 symval = mips_prefer_vec_regno (symval);
4912 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4913 return FALSE;
4914
4915 *regno = symval & RNUM_MASK;
4916 check_regno (arg, type, *regno);
4917 return TRUE;
4918 }
4919
4920 /* Try to interpret the next token in ARG as a register of type TYPE.
4921 Consume the token and return true on success, storing the register
4922 number in *REGNO. Return false on failure. */
4923
4924 static bfd_boolean
4925 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4926 unsigned int *regno)
4927 {
4928 if (arg->token->type == OT_REG
4929 && match_regno (arg, type, arg->token->u.regno, regno))
4930 {
4931 ++arg->token;
4932 return TRUE;
4933 }
4934 return FALSE;
4935 }
4936
4937 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4938 Consume the token and return true on success, storing the register numbers
4939 in *REGNO1 and *REGNO2. Return false on failure. */
4940
4941 static bfd_boolean
4942 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4943 unsigned int *regno1, unsigned int *regno2)
4944 {
4945 if (match_reg (arg, type, regno1))
4946 {
4947 *regno2 = *regno1;
4948 return TRUE;
4949 }
4950 if (arg->token->type == OT_REG_RANGE
4951 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4952 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4953 && *regno1 <= *regno2)
4954 {
4955 ++arg->token;
4956 return TRUE;
4957 }
4958 return FALSE;
4959 }
4960
4961 /* OP_INT matcher. */
4962
4963 static bfd_boolean
4964 match_int_operand (struct mips_arg_info *arg,
4965 const struct mips_operand *operand_base)
4966 {
4967 const struct mips_int_operand *operand;
4968 unsigned int uval;
4969 int min_val, max_val, factor;
4970 offsetT sval;
4971
4972 operand = (const struct mips_int_operand *) operand_base;
4973 factor = 1 << operand->shift;
4974 min_val = mips_int_operand_min (operand);
4975 max_val = mips_int_operand_max (operand);
4976
4977 if (operand_base->lsb == 0
4978 && operand_base->size == 16
4979 && operand->shift == 0
4980 && operand->bias == 0
4981 && (operand->max_val == 32767 || operand->max_val == 65535))
4982 {
4983 /* The operand can be relocated. */
4984 if (!match_expression (arg, &offset_expr, offset_reloc))
4985 return FALSE;
4986
4987 if (offset_reloc[0] != BFD_RELOC_UNUSED)
4988 /* Relocation operators were used. Accept the arguent and
4989 leave the relocation value in offset_expr and offset_relocs
4990 for the caller to process. */
4991 return TRUE;
4992
4993 if (offset_expr.X_op != O_constant)
4994 {
4995 /* Accept non-constant operands if no later alternative matches,
4996 leaving it for the caller to process. */
4997 if (!arg->lax_match)
4998 return FALSE;
4999 offset_reloc[0] = BFD_RELOC_LO16;
5000 return TRUE;
5001 }
5002
5003 /* Clear the global state; we're going to install the operand
5004 ourselves. */
5005 sval = offset_expr.X_add_number;
5006 offset_expr.X_op = O_absent;
5007
5008 /* For compatibility with older assemblers, we accept
5009 0x8000-0xffff as signed 16-bit numbers when only
5010 signed numbers are allowed. */
5011 if (sval > max_val)
5012 {
5013 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5014 if (!arg->lax_match && sval <= max_val)
5015 return FALSE;
5016 }
5017 }
5018 else
5019 {
5020 if (!match_const_int (arg, &sval))
5021 return FALSE;
5022 }
5023
5024 arg->last_op_int = sval;
5025
5026 if (sval < min_val || sval > max_val || sval % factor)
5027 {
5028 match_out_of_range (arg);
5029 return FALSE;
5030 }
5031
5032 uval = (unsigned int) sval >> operand->shift;
5033 uval -= operand->bias;
5034
5035 /* Handle -mfix-cn63xxp1. */
5036 if (arg->opnum == 1
5037 && mips_fix_cn63xxp1
5038 && !mips_opts.micromips
5039 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5040 switch (uval)
5041 {
5042 case 5:
5043 case 25:
5044 case 26:
5045 case 27:
5046 case 28:
5047 case 29:
5048 case 30:
5049 case 31:
5050 /* These are ok. */
5051 break;
5052
5053 default:
5054 /* The rest must be changed to 28. */
5055 uval = 28;
5056 break;
5057 }
5058
5059 insn_insert_operand (arg->insn, operand_base, uval);
5060 return TRUE;
5061 }
5062
5063 /* OP_MAPPED_INT matcher. */
5064
5065 static bfd_boolean
5066 match_mapped_int_operand (struct mips_arg_info *arg,
5067 const struct mips_operand *operand_base)
5068 {
5069 const struct mips_mapped_int_operand *operand;
5070 unsigned int uval, num_vals;
5071 offsetT sval;
5072
5073 operand = (const struct mips_mapped_int_operand *) operand_base;
5074 if (!match_const_int (arg, &sval))
5075 return FALSE;
5076
5077 num_vals = 1 << operand_base->size;
5078 for (uval = 0; uval < num_vals; uval++)
5079 if (operand->int_map[uval] == sval)
5080 break;
5081 if (uval == num_vals)
5082 {
5083 match_out_of_range (arg);
5084 return FALSE;
5085 }
5086
5087 insn_insert_operand (arg->insn, operand_base, uval);
5088 return TRUE;
5089 }
5090
5091 /* OP_MSB matcher. */
5092
5093 static bfd_boolean
5094 match_msb_operand (struct mips_arg_info *arg,
5095 const struct mips_operand *operand_base)
5096 {
5097 const struct mips_msb_operand *operand;
5098 int min_val, max_val, max_high;
5099 offsetT size, sval, high;
5100
5101 operand = (const struct mips_msb_operand *) operand_base;
5102 min_val = operand->bias;
5103 max_val = min_val + (1 << operand_base->size) - 1;
5104 max_high = operand->opsize;
5105
5106 if (!match_const_int (arg, &size))
5107 return FALSE;
5108
5109 high = size + arg->last_op_int;
5110 sval = operand->add_lsb ? high : size;
5111
5112 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5113 {
5114 match_out_of_range (arg);
5115 return FALSE;
5116 }
5117 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5118 return TRUE;
5119 }
5120
5121 /* OP_REG matcher. */
5122
5123 static bfd_boolean
5124 match_reg_operand (struct mips_arg_info *arg,
5125 const struct mips_operand *operand_base)
5126 {
5127 const struct mips_reg_operand *operand;
5128 unsigned int regno, uval, num_vals;
5129
5130 operand = (const struct mips_reg_operand *) operand_base;
5131 if (!match_reg (arg, operand->reg_type, &regno))
5132 return FALSE;
5133
5134 if (operand->reg_map)
5135 {
5136 num_vals = 1 << operand->root.size;
5137 for (uval = 0; uval < num_vals; uval++)
5138 if (operand->reg_map[uval] == regno)
5139 break;
5140 if (num_vals == uval)
5141 return FALSE;
5142 }
5143 else
5144 uval = regno;
5145
5146 arg->last_regno = regno;
5147 if (arg->opnum == 1)
5148 arg->dest_regno = regno;
5149 insn_insert_operand (arg->insn, operand_base, uval);
5150 return TRUE;
5151 }
5152
5153 /* OP_REG_PAIR matcher. */
5154
5155 static bfd_boolean
5156 match_reg_pair_operand (struct mips_arg_info *arg,
5157 const struct mips_operand *operand_base)
5158 {
5159 const struct mips_reg_pair_operand *operand;
5160 unsigned int regno1, regno2, uval, num_vals;
5161
5162 operand = (const struct mips_reg_pair_operand *) operand_base;
5163 if (!match_reg (arg, operand->reg_type, &regno1)
5164 || !match_char (arg, ',')
5165 || !match_reg (arg, operand->reg_type, &regno2))
5166 return FALSE;
5167
5168 num_vals = 1 << operand_base->size;
5169 for (uval = 0; uval < num_vals; uval++)
5170 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5171 break;
5172 if (uval == num_vals)
5173 return FALSE;
5174
5175 insn_insert_operand (arg->insn, operand_base, uval);
5176 return TRUE;
5177 }
5178
5179 /* OP_PCREL matcher. The caller chooses the relocation type. */
5180
5181 static bfd_boolean
5182 match_pcrel_operand (struct mips_arg_info *arg)
5183 {
5184 bfd_reloc_code_real_type r[3];
5185
5186 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5187 }
5188
5189 /* OP_PERF_REG matcher. */
5190
5191 static bfd_boolean
5192 match_perf_reg_operand (struct mips_arg_info *arg,
5193 const struct mips_operand *operand)
5194 {
5195 offsetT sval;
5196
5197 if (!match_const_int (arg, &sval))
5198 return FALSE;
5199
5200 if (sval != 0
5201 && (sval != 1
5202 || (mips_opts.arch == CPU_R5900
5203 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5204 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5205 {
5206 set_insn_error (arg->argnum, _("invalid performance register"));
5207 return FALSE;
5208 }
5209
5210 insn_insert_operand (arg->insn, operand, sval);
5211 return TRUE;
5212 }
5213
5214 /* OP_ADDIUSP matcher. */
5215
5216 static bfd_boolean
5217 match_addiusp_operand (struct mips_arg_info *arg,
5218 const struct mips_operand *operand)
5219 {
5220 offsetT sval;
5221 unsigned int uval;
5222
5223 if (!match_const_int (arg, &sval))
5224 return FALSE;
5225
5226 if (sval % 4)
5227 {
5228 match_out_of_range (arg);
5229 return FALSE;
5230 }
5231
5232 sval /= 4;
5233 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5234 {
5235 match_out_of_range (arg);
5236 return FALSE;
5237 }
5238
5239 uval = (unsigned int) sval;
5240 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5241 insn_insert_operand (arg->insn, operand, uval);
5242 return TRUE;
5243 }
5244
5245 /* OP_CLO_CLZ_DEST matcher. */
5246
5247 static bfd_boolean
5248 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5249 const struct mips_operand *operand)
5250 {
5251 unsigned int regno;
5252
5253 if (!match_reg (arg, OP_REG_GP, &regno))
5254 return FALSE;
5255
5256 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5257 return TRUE;
5258 }
5259
5260 /* OP_CHECK_PREV matcher. */
5261
5262 static bfd_boolean
5263 match_check_prev_operand (struct mips_arg_info *arg,
5264 const struct mips_operand *operand_base)
5265 {
5266 const struct mips_check_prev_operand *operand;
5267 unsigned int regno;
5268
5269 operand = (const struct mips_check_prev_operand *) operand_base;
5270
5271 if (!match_reg (arg, OP_REG_GP, &regno))
5272 return FALSE;
5273
5274 if (!operand->zero_ok && regno == 0)
5275 return FALSE;
5276
5277 if ((operand->less_than_ok && regno < arg->last_regno)
5278 || (operand->greater_than_ok && regno > arg->last_regno)
5279 || (operand->equal_ok && regno == arg->last_regno))
5280 {
5281 arg->last_regno = regno;
5282 insn_insert_operand (arg->insn, operand_base, regno);
5283 return TRUE;
5284 }
5285
5286 return FALSE;
5287 }
5288
5289 /* OP_SAME_RS_RT matcher. */
5290
5291 static bfd_boolean
5292 match_same_rs_rt_operand (struct mips_arg_info *arg,
5293 const struct mips_operand *operand)
5294 {
5295 unsigned int regno;
5296
5297 if (!match_reg (arg, OP_REG_GP, &regno))
5298 return FALSE;
5299
5300 if (regno == 0)
5301 {
5302 set_insn_error (arg->argnum, _("the source register must not be $0"));
5303 return FALSE;
5304 }
5305
5306 arg->last_regno = regno;
5307
5308 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5309 return TRUE;
5310 }
5311
5312 /* OP_LWM_SWM_LIST matcher. */
5313
5314 static bfd_boolean
5315 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5316 const struct mips_operand *operand)
5317 {
5318 unsigned int reglist, sregs, ra, regno1, regno2;
5319 struct mips_arg_info reset;
5320
5321 reglist = 0;
5322 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5323 return FALSE;
5324 do
5325 {
5326 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5327 {
5328 reglist |= 1 << FP;
5329 regno2 = S7;
5330 }
5331 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5332 reset = *arg;
5333 }
5334 while (match_char (arg, ',')
5335 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5336 *arg = reset;
5337
5338 if (operand->size == 2)
5339 {
5340 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5341
5342 s0, ra
5343 s0, s1, ra, s2, s3
5344 s0-s2, ra
5345
5346 and any permutations of these. */
5347 if ((reglist & 0xfff1ffff) != 0x80010000)
5348 return FALSE;
5349
5350 sregs = (reglist >> 17) & 7;
5351 ra = 0;
5352 }
5353 else
5354 {
5355 /* The list must include at least one of ra and s0-sN,
5356 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5357 which are $23 and $30 respectively.) E.g.:
5358
5359 ra
5360 s0
5361 ra, s0, s1, s2
5362 s0-s8
5363 s0-s5, ra
5364
5365 and any permutations of these. */
5366 if ((reglist & 0x3f00ffff) != 0)
5367 return FALSE;
5368
5369 ra = (reglist >> 27) & 0x10;
5370 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5371 }
5372 sregs += 1;
5373 if ((sregs & -sregs) != sregs)
5374 return FALSE;
5375
5376 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5377 return TRUE;
5378 }
5379
5380 /* OP_ENTRY_EXIT_LIST matcher. */
5381
5382 static unsigned int
5383 match_entry_exit_operand (struct mips_arg_info *arg,
5384 const struct mips_operand *operand)
5385 {
5386 unsigned int mask;
5387 bfd_boolean is_exit;
5388
5389 /* The format is the same for both ENTRY and EXIT, but the constraints
5390 are different. */
5391 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5392 mask = (is_exit ? 7 << 3 : 0);
5393 do
5394 {
5395 unsigned int regno1, regno2;
5396 bfd_boolean is_freg;
5397
5398 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5399 is_freg = FALSE;
5400 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5401 is_freg = TRUE;
5402 else
5403 return FALSE;
5404
5405 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5406 {
5407 mask &= ~(7 << 3);
5408 mask |= (5 + regno2) << 3;
5409 }
5410 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5411 mask |= (regno2 - 3) << 3;
5412 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5413 mask |= (regno2 - 15) << 1;
5414 else if (regno1 == RA && regno2 == RA)
5415 mask |= 1;
5416 else
5417 return FALSE;
5418 }
5419 while (match_char (arg, ','));
5420
5421 insn_insert_operand (arg->insn, operand, mask);
5422 return TRUE;
5423 }
5424
5425 /* OP_SAVE_RESTORE_LIST matcher. */
5426
5427 static bfd_boolean
5428 match_save_restore_list_operand (struct mips_arg_info *arg)
5429 {
5430 unsigned int opcode, args, statics, sregs;
5431 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5432 offsetT frame_size;
5433
5434 opcode = arg->insn->insn_opcode;
5435 frame_size = 0;
5436 num_frame_sizes = 0;
5437 args = 0;
5438 statics = 0;
5439 sregs = 0;
5440 do
5441 {
5442 unsigned int regno1, regno2;
5443
5444 if (arg->token->type == OT_INTEGER)
5445 {
5446 /* Handle the frame size. */
5447 if (!match_const_int (arg, &frame_size))
5448 return FALSE;
5449 num_frame_sizes += 1;
5450 }
5451 else
5452 {
5453 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5454 return FALSE;
5455
5456 while (regno1 <= regno2)
5457 {
5458 if (regno1 >= 4 && regno1 <= 7)
5459 {
5460 if (num_frame_sizes == 0)
5461 /* args $a0-$a3 */
5462 args |= 1 << (regno1 - 4);
5463 else
5464 /* statics $a0-$a3 */
5465 statics |= 1 << (regno1 - 4);
5466 }
5467 else if (regno1 >= 16 && regno1 <= 23)
5468 /* $s0-$s7 */
5469 sregs |= 1 << (regno1 - 16);
5470 else if (regno1 == 30)
5471 /* $s8 */
5472 sregs |= 1 << 8;
5473 else if (regno1 == 31)
5474 /* Add $ra to insn. */
5475 opcode |= 0x40;
5476 else
5477 return FALSE;
5478 regno1 += 1;
5479 if (regno1 == 24)
5480 regno1 = 30;
5481 }
5482 }
5483 }
5484 while (match_char (arg, ','));
5485
5486 /* Encode args/statics combination. */
5487 if (args & statics)
5488 return FALSE;
5489 else if (args == 0xf)
5490 /* All $a0-$a3 are args. */
5491 opcode |= MIPS16_ALL_ARGS << 16;
5492 else if (statics == 0xf)
5493 /* All $a0-$a3 are statics. */
5494 opcode |= MIPS16_ALL_STATICS << 16;
5495 else
5496 {
5497 /* Count arg registers. */
5498 num_args = 0;
5499 while (args & 0x1)
5500 {
5501 args >>= 1;
5502 num_args += 1;
5503 }
5504 if (args != 0)
5505 return FALSE;
5506
5507 /* Count static registers. */
5508 num_statics = 0;
5509 while (statics & 0x8)
5510 {
5511 statics = (statics << 1) & 0xf;
5512 num_statics += 1;
5513 }
5514 if (statics != 0)
5515 return FALSE;
5516
5517 /* Encode args/statics. */
5518 opcode |= ((num_args << 2) | num_statics) << 16;
5519 }
5520
5521 /* Encode $s0/$s1. */
5522 if (sregs & (1 << 0)) /* $s0 */
5523 opcode |= 0x20;
5524 if (sregs & (1 << 1)) /* $s1 */
5525 opcode |= 0x10;
5526 sregs >>= 2;
5527
5528 /* Encode $s2-$s8. */
5529 num_sregs = 0;
5530 while (sregs & 1)
5531 {
5532 sregs >>= 1;
5533 num_sregs += 1;
5534 }
5535 if (sregs != 0)
5536 return FALSE;
5537 opcode |= num_sregs << 24;
5538
5539 /* Encode frame size. */
5540 if (num_frame_sizes == 0)
5541 {
5542 set_insn_error (arg->argnum, _("missing frame size"));
5543 return FALSE;
5544 }
5545 if (num_frame_sizes > 1)
5546 {
5547 set_insn_error (arg->argnum, _("frame size specified twice"));
5548 return FALSE;
5549 }
5550 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5551 {
5552 set_insn_error (arg->argnum, _("invalid frame size"));
5553 return FALSE;
5554 }
5555 if (frame_size != 128 || (opcode >> 16) != 0)
5556 {
5557 frame_size /= 8;
5558 opcode |= (((frame_size & 0xf0) << 16)
5559 | (frame_size & 0x0f));
5560 }
5561
5562 /* Finally build the instruction. */
5563 if ((opcode >> 16) != 0 || frame_size == 0)
5564 opcode |= MIPS16_EXTEND;
5565 arg->insn->insn_opcode = opcode;
5566 return TRUE;
5567 }
5568
5569 /* OP_MDMX_IMM_REG matcher. */
5570
5571 static bfd_boolean
5572 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5573 const struct mips_operand *operand)
5574 {
5575 unsigned int regno, uval;
5576 bfd_boolean is_qh;
5577 const struct mips_opcode *opcode;
5578
5579 /* The mips_opcode records whether this is an octobyte or quadhalf
5580 instruction. Start out with that bit in place. */
5581 opcode = arg->insn->insn_mo;
5582 uval = mips_extract_operand (operand, opcode->match);
5583 is_qh = (uval != 0);
5584
5585 if (arg->token->type == OT_REG)
5586 {
5587 if ((opcode->membership & INSN_5400)
5588 && strcmp (opcode->name, "rzu.ob") == 0)
5589 {
5590 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5591 arg->argnum);
5592 return FALSE;
5593 }
5594
5595 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5596 return FALSE;
5597 ++arg->token;
5598
5599 /* Check whether this is a vector register or a broadcast of
5600 a single element. */
5601 if (arg->token->type == OT_INTEGER_INDEX)
5602 {
5603 if (arg->token->u.index > (is_qh ? 3 : 7))
5604 {
5605 set_insn_error (arg->argnum, _("invalid element selector"));
5606 return FALSE;
5607 }
5608 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5609 ++arg->token;
5610 }
5611 else
5612 {
5613 /* A full vector. */
5614 if ((opcode->membership & INSN_5400)
5615 && (strcmp (opcode->name, "sll.ob") == 0
5616 || strcmp (opcode->name, "srl.ob") == 0))
5617 {
5618 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5619 arg->argnum);
5620 return FALSE;
5621 }
5622
5623 if (is_qh)
5624 uval |= MDMX_FMTSEL_VEC_QH << 5;
5625 else
5626 uval |= MDMX_FMTSEL_VEC_OB << 5;
5627 }
5628 uval |= regno;
5629 }
5630 else
5631 {
5632 offsetT sval;
5633
5634 if (!match_const_int (arg, &sval))
5635 return FALSE;
5636 if (sval < 0 || sval > 31)
5637 {
5638 match_out_of_range (arg);
5639 return FALSE;
5640 }
5641 uval |= (sval & 31);
5642 if (is_qh)
5643 uval |= MDMX_FMTSEL_IMM_QH << 5;
5644 else
5645 uval |= MDMX_FMTSEL_IMM_OB << 5;
5646 }
5647 insn_insert_operand (arg->insn, operand, uval);
5648 return TRUE;
5649 }
5650
5651 /* OP_IMM_INDEX matcher. */
5652
5653 static bfd_boolean
5654 match_imm_index_operand (struct mips_arg_info *arg,
5655 const struct mips_operand *operand)
5656 {
5657 unsigned int max_val;
5658
5659 if (arg->token->type != OT_INTEGER_INDEX)
5660 return FALSE;
5661
5662 max_val = (1 << operand->size) - 1;
5663 if (arg->token->u.index > max_val)
5664 {
5665 match_out_of_range (arg);
5666 return FALSE;
5667 }
5668 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5669 ++arg->token;
5670 return TRUE;
5671 }
5672
5673 /* OP_REG_INDEX matcher. */
5674
5675 static bfd_boolean
5676 match_reg_index_operand (struct mips_arg_info *arg,
5677 const struct mips_operand *operand)
5678 {
5679 unsigned int regno;
5680
5681 if (arg->token->type != OT_REG_INDEX)
5682 return FALSE;
5683
5684 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5685 return FALSE;
5686
5687 insn_insert_operand (arg->insn, operand, regno);
5688 ++arg->token;
5689 return TRUE;
5690 }
5691
5692 /* OP_PC matcher. */
5693
5694 static bfd_boolean
5695 match_pc_operand (struct mips_arg_info *arg)
5696 {
5697 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5698 {
5699 ++arg->token;
5700 return TRUE;
5701 }
5702 return FALSE;
5703 }
5704
5705 /* OP_NON_ZERO_REG matcher. */
5706
5707 static bfd_boolean
5708 match_non_zero_reg_operand (struct mips_arg_info *arg,
5709 const struct mips_operand *operand)
5710 {
5711 unsigned int regno;
5712
5713 if (!match_reg (arg, OP_REG_GP, &regno))
5714 return FALSE;
5715
5716 if (regno == 0)
5717 return FALSE;
5718
5719 arg->last_regno = regno;
5720 insn_insert_operand (arg->insn, operand, regno);
5721 return TRUE;
5722 }
5723
5724 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5725 register that we need to match. */
5726
5727 static bfd_boolean
5728 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5729 {
5730 unsigned int regno;
5731
5732 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5733 }
5734
5735 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5736 the length of the value in bytes (4 for float, 8 for double) and
5737 USING_GPRS says whether the destination is a GPR rather than an FPR.
5738
5739 Return the constant in IMM and OFFSET as follows:
5740
5741 - If the constant should be loaded via memory, set IMM to O_absent and
5742 OFFSET to the memory address.
5743
5744 - Otherwise, if the constant should be loaded into two 32-bit registers,
5745 set IMM to the O_constant to load into the high register and OFFSET
5746 to the corresponding value for the low register.
5747
5748 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5749
5750 These constants only appear as the last operand in an instruction,
5751 and every instruction that accepts them in any variant accepts them
5752 in all variants. This means we don't have to worry about backing out
5753 any changes if the instruction does not match. We just match
5754 unconditionally and report an error if the constant is invalid. */
5755
5756 static bfd_boolean
5757 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5758 expressionS *offset, int length, bfd_boolean using_gprs)
5759 {
5760 char *p;
5761 segT seg, new_seg;
5762 subsegT subseg;
5763 const char *newname;
5764 unsigned char *data;
5765
5766 /* Where the constant is placed is based on how the MIPS assembler
5767 does things:
5768
5769 length == 4 && using_gprs -- immediate value only
5770 length == 8 && using_gprs -- .rdata or immediate value
5771 length == 4 && !using_gprs -- .lit4 or immediate value
5772 length == 8 && !using_gprs -- .lit8 or immediate value
5773
5774 The .lit4 and .lit8 sections are only used if permitted by the
5775 -G argument. */
5776 if (arg->token->type != OT_FLOAT)
5777 {
5778 set_insn_error (arg->argnum, _("floating-point expression required"));
5779 return FALSE;
5780 }
5781
5782 gas_assert (arg->token->u.flt.length == length);
5783 data = arg->token->u.flt.data;
5784 ++arg->token;
5785
5786 /* Handle 32-bit constants for which an immediate value is best. */
5787 if (length == 4
5788 && (using_gprs
5789 || g_switch_value < 4
5790 || (data[0] == 0 && data[1] == 0)
5791 || (data[2] == 0 && data[3] == 0)))
5792 {
5793 imm->X_op = O_constant;
5794 if (!target_big_endian)
5795 imm->X_add_number = bfd_getl32 (data);
5796 else
5797 imm->X_add_number = bfd_getb32 (data);
5798 offset->X_op = O_absent;
5799 return TRUE;
5800 }
5801
5802 /* Handle 64-bit constants for which an immediate value is best. */
5803 if (length == 8
5804 && !mips_disable_float_construction
5805 /* Constants can only be constructed in GPRs and copied to FPRs if the
5806 GPRs are at least as wide as the FPRs or MTHC1 is available.
5807 Unlike most tests for 32-bit floating-point registers this check
5808 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5809 permit 64-bit moves without MXHC1.
5810 Force the constant into memory otherwise. */
5811 && (using_gprs
5812 || GPR_SIZE == 64
5813 || ISA_HAS_MXHC1 (mips_opts.isa)
5814 || FPR_SIZE == 32)
5815 && ((data[0] == 0 && data[1] == 0)
5816 || (data[2] == 0 && data[3] == 0))
5817 && ((data[4] == 0 && data[5] == 0)
5818 || (data[6] == 0 && data[7] == 0)))
5819 {
5820 /* The value is simple enough to load with a couple of instructions.
5821 If using 32-bit registers, set IMM to the high order 32 bits and
5822 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5823 64 bit constant. */
5824 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5825 {
5826 imm->X_op = O_constant;
5827 offset->X_op = O_constant;
5828 if (!target_big_endian)
5829 {
5830 imm->X_add_number = bfd_getl32 (data + 4);
5831 offset->X_add_number = bfd_getl32 (data);
5832 }
5833 else
5834 {
5835 imm->X_add_number = bfd_getb32 (data);
5836 offset->X_add_number = bfd_getb32 (data + 4);
5837 }
5838 if (offset->X_add_number == 0)
5839 offset->X_op = O_absent;
5840 }
5841 else
5842 {
5843 imm->X_op = O_constant;
5844 if (!target_big_endian)
5845 imm->X_add_number = bfd_getl64 (data);
5846 else
5847 imm->X_add_number = bfd_getb64 (data);
5848 offset->X_op = O_absent;
5849 }
5850 return TRUE;
5851 }
5852
5853 /* Switch to the right section. */
5854 seg = now_seg;
5855 subseg = now_subseg;
5856 if (length == 4)
5857 {
5858 gas_assert (!using_gprs && g_switch_value >= 4);
5859 newname = ".lit4";
5860 }
5861 else
5862 {
5863 if (using_gprs || g_switch_value < 8)
5864 newname = RDATA_SECTION_NAME;
5865 else
5866 newname = ".lit8";
5867 }
5868
5869 new_seg = subseg_new (newname, (subsegT) 0);
5870 bfd_set_section_flags (stdoutput, new_seg,
5871 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5872 frag_align (length == 4 ? 2 : 3, 0, 0);
5873 if (strncmp (TARGET_OS, "elf", 3) != 0)
5874 record_alignment (new_seg, 4);
5875 else
5876 record_alignment (new_seg, length == 4 ? 2 : 3);
5877 if (seg == now_seg)
5878 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5879
5880 /* Set the argument to the current address in the section. */
5881 imm->X_op = O_absent;
5882 offset->X_op = O_symbol;
5883 offset->X_add_symbol = symbol_temp_new_now ();
5884 offset->X_add_number = 0;
5885
5886 /* Put the floating point number into the section. */
5887 p = frag_more (length);
5888 memcpy (p, data, length);
5889
5890 /* Switch back to the original section. */
5891 subseg_set (seg, subseg);
5892 return TRUE;
5893 }
5894
5895 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5896 them. */
5897
5898 static bfd_boolean
5899 match_vu0_suffix_operand (struct mips_arg_info *arg,
5900 const struct mips_operand *operand,
5901 bfd_boolean match_p)
5902 {
5903 unsigned int uval;
5904
5905 /* The operand can be an XYZW mask or a single 2-bit channel index
5906 (with X being 0). */
5907 gas_assert (operand->size == 2 || operand->size == 4);
5908
5909 /* The suffix can be omitted when it is already part of the opcode. */
5910 if (arg->token->type != OT_CHANNELS)
5911 return match_p;
5912
5913 uval = arg->token->u.channels;
5914 if (operand->size == 2)
5915 {
5916 /* Check that a single bit is set and convert it into a 2-bit index. */
5917 if ((uval & -uval) != uval)
5918 return FALSE;
5919 uval = 4 - ffs (uval);
5920 }
5921
5922 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5923 return FALSE;
5924
5925 ++arg->token;
5926 if (!match_p)
5927 insn_insert_operand (arg->insn, operand, uval);
5928 return TRUE;
5929 }
5930
5931 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5932 of the argument text if the match is successful, otherwise return null. */
5933
5934 static bfd_boolean
5935 match_operand (struct mips_arg_info *arg,
5936 const struct mips_operand *operand)
5937 {
5938 switch (operand->type)
5939 {
5940 case OP_INT:
5941 return match_int_operand (arg, operand);
5942
5943 case OP_MAPPED_INT:
5944 return match_mapped_int_operand (arg, operand);
5945
5946 case OP_MSB:
5947 return match_msb_operand (arg, operand);
5948
5949 case OP_REG:
5950 case OP_OPTIONAL_REG:
5951 return match_reg_operand (arg, operand);
5952
5953 case OP_REG_PAIR:
5954 return match_reg_pair_operand (arg, operand);
5955
5956 case OP_PCREL:
5957 return match_pcrel_operand (arg);
5958
5959 case OP_PERF_REG:
5960 return match_perf_reg_operand (arg, operand);
5961
5962 case OP_ADDIUSP_INT:
5963 return match_addiusp_operand (arg, operand);
5964
5965 case OP_CLO_CLZ_DEST:
5966 return match_clo_clz_dest_operand (arg, operand);
5967
5968 case OP_LWM_SWM_LIST:
5969 return match_lwm_swm_list_operand (arg, operand);
5970
5971 case OP_ENTRY_EXIT_LIST:
5972 return match_entry_exit_operand (arg, operand);
5973
5974 case OP_SAVE_RESTORE_LIST:
5975 return match_save_restore_list_operand (arg);
5976
5977 case OP_MDMX_IMM_REG:
5978 return match_mdmx_imm_reg_operand (arg, operand);
5979
5980 case OP_REPEAT_DEST_REG:
5981 return match_tied_reg_operand (arg, arg->dest_regno);
5982
5983 case OP_REPEAT_PREV_REG:
5984 return match_tied_reg_operand (arg, arg->last_regno);
5985
5986 case OP_PC:
5987 return match_pc_operand (arg);
5988
5989 case OP_VU0_SUFFIX:
5990 return match_vu0_suffix_operand (arg, operand, FALSE);
5991
5992 case OP_VU0_MATCH_SUFFIX:
5993 return match_vu0_suffix_operand (arg, operand, TRUE);
5994
5995 case OP_IMM_INDEX:
5996 return match_imm_index_operand (arg, operand);
5997
5998 case OP_REG_INDEX:
5999 return match_reg_index_operand (arg, operand);
6000
6001 case OP_SAME_RS_RT:
6002 return match_same_rs_rt_operand (arg, operand);
6003
6004 case OP_CHECK_PREV:
6005 return match_check_prev_operand (arg, operand);
6006
6007 case OP_NON_ZERO_REG:
6008 return match_non_zero_reg_operand (arg, operand);
6009 }
6010 abort ();
6011 }
6012
6013 /* ARG is the state after successfully matching an instruction.
6014 Issue any queued-up warnings. */
6015
6016 static void
6017 check_completed_insn (struct mips_arg_info *arg)
6018 {
6019 if (arg->seen_at)
6020 {
6021 if (AT == ATREG)
6022 as_warn (_("used $at without \".set noat\""));
6023 else
6024 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6025 }
6026 }
6027
6028 /* Return true if modifying general-purpose register REG needs a delay. */
6029
6030 static bfd_boolean
6031 reg_needs_delay (unsigned int reg)
6032 {
6033 unsigned long prev_pinfo;
6034
6035 prev_pinfo = history[0].insn_mo->pinfo;
6036 if (!mips_opts.noreorder
6037 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6038 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6039 && (gpr_write_mask (&history[0]) & (1 << reg)))
6040 return TRUE;
6041
6042 return FALSE;
6043 }
6044
6045 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6046 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6047 by VR4120 errata. */
6048
6049 static unsigned int
6050 classify_vr4120_insn (const char *name)
6051 {
6052 if (strncmp (name, "macc", 4) == 0)
6053 return FIX_VR4120_MACC;
6054 if (strncmp (name, "dmacc", 5) == 0)
6055 return FIX_VR4120_DMACC;
6056 if (strncmp (name, "mult", 4) == 0)
6057 return FIX_VR4120_MULT;
6058 if (strncmp (name, "dmult", 5) == 0)
6059 return FIX_VR4120_DMULT;
6060 if (strstr (name, "div"))
6061 return FIX_VR4120_DIV;
6062 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6063 return FIX_VR4120_MTHILO;
6064 return NUM_FIX_VR4120_CLASSES;
6065 }
6066
6067 #define INSN_ERET 0x42000018
6068 #define INSN_DERET 0x4200001f
6069 #define INSN_DMULT 0x1c
6070 #define INSN_DMULTU 0x1d
6071
6072 /* Return the number of instructions that must separate INSN1 and INSN2,
6073 where INSN1 is the earlier instruction. Return the worst-case value
6074 for any INSN2 if INSN2 is null. */
6075
6076 static unsigned int
6077 insns_between (const struct mips_cl_insn *insn1,
6078 const struct mips_cl_insn *insn2)
6079 {
6080 unsigned long pinfo1, pinfo2;
6081 unsigned int mask;
6082
6083 /* If INFO2 is null, pessimistically assume that all flags are set for
6084 the second instruction. */
6085 pinfo1 = insn1->insn_mo->pinfo;
6086 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6087
6088 /* For most targets, write-after-read dependencies on the HI and LO
6089 registers must be separated by at least two instructions. */
6090 if (!hilo_interlocks)
6091 {
6092 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6093 return 2;
6094 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6095 return 2;
6096 }
6097
6098 /* If we're working around r7000 errata, there must be two instructions
6099 between an mfhi or mflo and any instruction that uses the result. */
6100 if (mips_7000_hilo_fix
6101 && !mips_opts.micromips
6102 && MF_HILO_INSN (pinfo1)
6103 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6104 return 2;
6105
6106 /* If we're working around 24K errata, one instruction is required
6107 if an ERET or DERET is followed by a branch instruction. */
6108 if (mips_fix_24k && !mips_opts.micromips)
6109 {
6110 if (insn1->insn_opcode == INSN_ERET
6111 || insn1->insn_opcode == INSN_DERET)
6112 {
6113 if (insn2 == NULL
6114 || insn2->insn_opcode == INSN_ERET
6115 || insn2->insn_opcode == INSN_DERET
6116 || delayed_branch_p (insn2))
6117 return 1;
6118 }
6119 }
6120
6121 /* If we're working around PMC RM7000 errata, there must be three
6122 nops between a dmult and a load instruction. */
6123 if (mips_fix_rm7000 && !mips_opts.micromips)
6124 {
6125 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6126 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6127 {
6128 if (pinfo2 & INSN_LOAD_MEMORY)
6129 return 3;
6130 }
6131 }
6132
6133 /* If working around VR4120 errata, check for combinations that need
6134 a single intervening instruction. */
6135 if (mips_fix_vr4120 && !mips_opts.micromips)
6136 {
6137 unsigned int class1, class2;
6138
6139 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6140 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6141 {
6142 if (insn2 == NULL)
6143 return 1;
6144 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6145 if (vr4120_conflicts[class1] & (1 << class2))
6146 return 1;
6147 }
6148 }
6149
6150 if (!HAVE_CODE_COMPRESSION)
6151 {
6152 /* Check for GPR or coprocessor load delays. All such delays
6153 are on the RT register. */
6154 /* Itbl support may require additional care here. */
6155 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6156 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6157 {
6158 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6159 return 1;
6160 }
6161
6162 /* Check for generic coprocessor hazards.
6163
6164 This case is not handled very well. There is no special
6165 knowledge of CP0 handling, and the coprocessors other than
6166 the floating point unit are not distinguished at all. */
6167 /* Itbl support may require additional care here. FIXME!
6168 Need to modify this to include knowledge about
6169 user specified delays! */
6170 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6171 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6172 {
6173 /* Handle cases where INSN1 writes to a known general coprocessor
6174 register. There must be a one instruction delay before INSN2
6175 if INSN2 reads that register, otherwise no delay is needed. */
6176 mask = fpr_write_mask (insn1);
6177 if (mask != 0)
6178 {
6179 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6180 return 1;
6181 }
6182 else
6183 {
6184 /* Read-after-write dependencies on the control registers
6185 require a two-instruction gap. */
6186 if ((pinfo1 & INSN_WRITE_COND_CODE)
6187 && (pinfo2 & INSN_READ_COND_CODE))
6188 return 2;
6189
6190 /* We don't know exactly what INSN1 does. If INSN2 is
6191 also a coprocessor instruction, assume there must be
6192 a one instruction gap. */
6193 if (pinfo2 & INSN_COP)
6194 return 1;
6195 }
6196 }
6197
6198 /* Check for read-after-write dependencies on the coprocessor
6199 control registers in cases where INSN1 does not need a general
6200 coprocessor delay. This means that INSN1 is a floating point
6201 comparison instruction. */
6202 /* Itbl support may require additional care here. */
6203 else if (!cop_interlocks
6204 && (pinfo1 & INSN_WRITE_COND_CODE)
6205 && (pinfo2 & INSN_READ_COND_CODE))
6206 return 1;
6207 }
6208
6209 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6210 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6211 and pause. */
6212 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6213 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6214 || (insn2 && delayed_branch_p (insn2))))
6215 return 1;
6216
6217 return 0;
6218 }
6219
6220 /* Return the number of nops that would be needed to work around the
6221 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6222 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6223 that are contained within the first IGNORE instructions of HIST. */
6224
6225 static int
6226 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6227 const struct mips_cl_insn *insn)
6228 {
6229 int i, j;
6230 unsigned int mask;
6231
6232 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6233 are not affected by the errata. */
6234 if (insn != 0
6235 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6236 || strcmp (insn->insn_mo->name, "mtlo") == 0
6237 || strcmp (insn->insn_mo->name, "mthi") == 0))
6238 return 0;
6239
6240 /* Search for the first MFLO or MFHI. */
6241 for (i = 0; i < MAX_VR4130_NOPS; i++)
6242 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6243 {
6244 /* Extract the destination register. */
6245 mask = gpr_write_mask (&hist[i]);
6246
6247 /* No nops are needed if INSN reads that register. */
6248 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6249 return 0;
6250
6251 /* ...or if any of the intervening instructions do. */
6252 for (j = 0; j < i; j++)
6253 if (gpr_read_mask (&hist[j]) & mask)
6254 return 0;
6255
6256 if (i >= ignore)
6257 return MAX_VR4130_NOPS - i;
6258 }
6259 return 0;
6260 }
6261
6262 #define BASE_REG_EQ(INSN1, INSN2) \
6263 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6264 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6265
6266 /* Return the minimum alignment for this store instruction. */
6267
6268 static int
6269 fix_24k_align_to (const struct mips_opcode *mo)
6270 {
6271 if (strcmp (mo->name, "sh") == 0)
6272 return 2;
6273
6274 if (strcmp (mo->name, "swc1") == 0
6275 || strcmp (mo->name, "swc2") == 0
6276 || strcmp (mo->name, "sw") == 0
6277 || strcmp (mo->name, "sc") == 0
6278 || strcmp (mo->name, "s.s") == 0)
6279 return 4;
6280
6281 if (strcmp (mo->name, "sdc1") == 0
6282 || strcmp (mo->name, "sdc2") == 0
6283 || strcmp (mo->name, "s.d") == 0)
6284 return 8;
6285
6286 /* sb, swl, swr */
6287 return 1;
6288 }
6289
6290 struct fix_24k_store_info
6291 {
6292 /* Immediate offset, if any, for this store instruction. */
6293 short off;
6294 /* Alignment required by this store instruction. */
6295 int align_to;
6296 /* True for register offsets. */
6297 int register_offset;
6298 };
6299
6300 /* Comparison function used by qsort. */
6301
6302 static int
6303 fix_24k_sort (const void *a, const void *b)
6304 {
6305 const struct fix_24k_store_info *pos1 = a;
6306 const struct fix_24k_store_info *pos2 = b;
6307
6308 return (pos1->off - pos2->off);
6309 }
6310
6311 /* INSN is a store instruction. Try to record the store information
6312 in STINFO. Return false if the information isn't known. */
6313
6314 static bfd_boolean
6315 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6316 const struct mips_cl_insn *insn)
6317 {
6318 /* The instruction must have a known offset. */
6319 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6320 return FALSE;
6321
6322 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6323 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6324 return TRUE;
6325 }
6326
6327 /* Return the number of nops that would be needed to work around the 24k
6328 "lost data on stores during refill" errata if instruction INSN
6329 immediately followed the 2 instructions described by HIST.
6330 Ignore hazards that are contained within the first IGNORE
6331 instructions of HIST.
6332
6333 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6334 for the data cache refills and store data. The following describes
6335 the scenario where the store data could be lost.
6336
6337 * A data cache miss, due to either a load or a store, causing fill
6338 data to be supplied by the memory subsystem
6339 * The first three doublewords of fill data are returned and written
6340 into the cache
6341 * A sequence of four stores occurs in consecutive cycles around the
6342 final doubleword of the fill:
6343 * Store A
6344 * Store B
6345 * Store C
6346 * Zero, One or more instructions
6347 * Store D
6348
6349 The four stores A-D must be to different doublewords of the line that
6350 is being filled. The fourth instruction in the sequence above permits
6351 the fill of the final doubleword to be transferred from the FSB into
6352 the cache. In the sequence above, the stores may be either integer
6353 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6354 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6355 different doublewords on the line. If the floating point unit is
6356 running in 1:2 mode, it is not possible to create the sequence above
6357 using only floating point store instructions.
6358
6359 In this case, the cache line being filled is incorrectly marked
6360 invalid, thereby losing the data from any store to the line that
6361 occurs between the original miss and the completion of the five
6362 cycle sequence shown above.
6363
6364 The workarounds are:
6365
6366 * Run the data cache in write-through mode.
6367 * Insert a non-store instruction between
6368 Store A and Store B or Store B and Store C. */
6369
6370 static int
6371 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6372 const struct mips_cl_insn *insn)
6373 {
6374 struct fix_24k_store_info pos[3];
6375 int align, i, base_offset;
6376
6377 if (ignore >= 2)
6378 return 0;
6379
6380 /* If the previous instruction wasn't a store, there's nothing to
6381 worry about. */
6382 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6383 return 0;
6384
6385 /* If the instructions after the previous one are unknown, we have
6386 to assume the worst. */
6387 if (!insn)
6388 return 1;
6389
6390 /* Check whether we are dealing with three consecutive stores. */
6391 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6392 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6393 return 0;
6394
6395 /* If we don't know the relationship between the store addresses,
6396 assume the worst. */
6397 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6398 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6399 return 1;
6400
6401 if (!fix_24k_record_store_info (&pos[0], insn)
6402 || !fix_24k_record_store_info (&pos[1], &hist[0])
6403 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6404 return 1;
6405
6406 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6407
6408 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6409 X bytes and such that the base register + X is known to be aligned
6410 to align bytes. */
6411
6412 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6413 align = 8;
6414 else
6415 {
6416 align = pos[0].align_to;
6417 base_offset = pos[0].off;
6418 for (i = 1; i < 3; i++)
6419 if (align < pos[i].align_to)
6420 {
6421 align = pos[i].align_to;
6422 base_offset = pos[i].off;
6423 }
6424 for (i = 0; i < 3; i++)
6425 pos[i].off -= base_offset;
6426 }
6427
6428 pos[0].off &= ~align + 1;
6429 pos[1].off &= ~align + 1;
6430 pos[2].off &= ~align + 1;
6431
6432 /* If any two stores write to the same chunk, they also write to the
6433 same doubleword. The offsets are still sorted at this point. */
6434 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6435 return 0;
6436
6437 /* A range of at least 9 bytes is needed for the stores to be in
6438 non-overlapping doublewords. */
6439 if (pos[2].off - pos[0].off <= 8)
6440 return 0;
6441
6442 if (pos[2].off - pos[1].off >= 24
6443 || pos[1].off - pos[0].off >= 24
6444 || pos[2].off - pos[0].off >= 32)
6445 return 0;
6446
6447 return 1;
6448 }
6449
6450 /* Return the number of nops that would be needed if instruction INSN
6451 immediately followed the MAX_NOPS instructions given by HIST,
6452 where HIST[0] is the most recent instruction. Ignore hazards
6453 between INSN and the first IGNORE instructions in HIST.
6454
6455 If INSN is null, return the worse-case number of nops for any
6456 instruction. */
6457
6458 static int
6459 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6460 const struct mips_cl_insn *insn)
6461 {
6462 int i, nops, tmp_nops;
6463
6464 nops = 0;
6465 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6466 {
6467 tmp_nops = insns_between (hist + i, insn) - i;
6468 if (tmp_nops > nops)
6469 nops = tmp_nops;
6470 }
6471
6472 if (mips_fix_vr4130 && !mips_opts.micromips)
6473 {
6474 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6475 if (tmp_nops > nops)
6476 nops = tmp_nops;
6477 }
6478
6479 if (mips_fix_24k && !mips_opts.micromips)
6480 {
6481 tmp_nops = nops_for_24k (ignore, hist, insn);
6482 if (tmp_nops > nops)
6483 nops = tmp_nops;
6484 }
6485
6486 return nops;
6487 }
6488
6489 /* The variable arguments provide NUM_INSNS extra instructions that
6490 might be added to HIST. Return the largest number of nops that
6491 would be needed after the extended sequence, ignoring hazards
6492 in the first IGNORE instructions. */
6493
6494 static int
6495 nops_for_sequence (int num_insns, int ignore,
6496 const struct mips_cl_insn *hist, ...)
6497 {
6498 va_list args;
6499 struct mips_cl_insn buffer[MAX_NOPS];
6500 struct mips_cl_insn *cursor;
6501 int nops;
6502
6503 va_start (args, hist);
6504 cursor = buffer + num_insns;
6505 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6506 while (cursor > buffer)
6507 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6508
6509 nops = nops_for_insn (ignore, buffer, NULL);
6510 va_end (args);
6511 return nops;
6512 }
6513
6514 /* Like nops_for_insn, but if INSN is a branch, take into account the
6515 worst-case delay for the branch target. */
6516
6517 static int
6518 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6519 const struct mips_cl_insn *insn)
6520 {
6521 int nops, tmp_nops;
6522
6523 nops = nops_for_insn (ignore, hist, insn);
6524 if (delayed_branch_p (insn))
6525 {
6526 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6527 hist, insn, get_delay_slot_nop (insn));
6528 if (tmp_nops > nops)
6529 nops = tmp_nops;
6530 }
6531 else if (compact_branch_p (insn))
6532 {
6533 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6534 if (tmp_nops > nops)
6535 nops = tmp_nops;
6536 }
6537 return nops;
6538 }
6539
6540 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6541
6542 static void
6543 fix_loongson2f_nop (struct mips_cl_insn * ip)
6544 {
6545 gas_assert (!HAVE_CODE_COMPRESSION);
6546 if (strcmp (ip->insn_mo->name, "nop") == 0)
6547 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6548 }
6549
6550 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6551 jr target pc &= 'hffff_ffff_cfff_ffff. */
6552
6553 static void
6554 fix_loongson2f_jump (struct mips_cl_insn * ip)
6555 {
6556 gas_assert (!HAVE_CODE_COMPRESSION);
6557 if (strcmp (ip->insn_mo->name, "j") == 0
6558 || strcmp (ip->insn_mo->name, "jr") == 0
6559 || strcmp (ip->insn_mo->name, "jalr") == 0)
6560 {
6561 int sreg;
6562 expressionS ep;
6563
6564 if (! mips_opts.at)
6565 return;
6566
6567 sreg = EXTRACT_OPERAND (0, RS, *ip);
6568 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6569 return;
6570
6571 ep.X_op = O_constant;
6572 ep.X_add_number = 0xcfff0000;
6573 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6574 ep.X_add_number = 0xffff;
6575 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6576 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6577 }
6578 }
6579
6580 static void
6581 fix_loongson2f (struct mips_cl_insn * ip)
6582 {
6583 if (mips_fix_loongson2f_nop)
6584 fix_loongson2f_nop (ip);
6585
6586 if (mips_fix_loongson2f_jump)
6587 fix_loongson2f_jump (ip);
6588 }
6589
6590 /* IP is a branch that has a delay slot, and we need to fill it
6591 automatically. Return true if we can do that by swapping IP
6592 with the previous instruction.
6593 ADDRESS_EXPR is an operand of the instruction to be used with
6594 RELOC_TYPE. */
6595
6596 static bfd_boolean
6597 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6598 bfd_reloc_code_real_type *reloc_type)
6599 {
6600 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6601 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6602 unsigned int fpr_read, prev_fpr_write;
6603
6604 /* -O2 and above is required for this optimization. */
6605 if (mips_optimize < 2)
6606 return FALSE;
6607
6608 /* If we have seen .set volatile or .set nomove, don't optimize. */
6609 if (mips_opts.nomove)
6610 return FALSE;
6611
6612 /* We can't swap if the previous instruction's position is fixed. */
6613 if (history[0].fixed_p)
6614 return FALSE;
6615
6616 /* If the previous previous insn was in a .set noreorder, we can't
6617 swap. Actually, the MIPS assembler will swap in this situation.
6618 However, gcc configured -with-gnu-as will generate code like
6619
6620 .set noreorder
6621 lw $4,XXX
6622 .set reorder
6623 INSN
6624 bne $4,$0,foo
6625
6626 in which we can not swap the bne and INSN. If gcc is not configured
6627 -with-gnu-as, it does not output the .set pseudo-ops. */
6628 if (history[1].noreorder_p)
6629 return FALSE;
6630
6631 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6632 This means that the previous instruction was a 4-byte one anyhow. */
6633 if (mips_opts.mips16 && history[0].fixp[0])
6634 return FALSE;
6635
6636 /* If the branch is itself the target of a branch, we can not swap.
6637 We cheat on this; all we check for is whether there is a label on
6638 this instruction. If there are any branches to anything other than
6639 a label, users must use .set noreorder. */
6640 if (seg_info (now_seg)->label_list)
6641 return FALSE;
6642
6643 /* If the previous instruction is in a variant frag other than this
6644 branch's one, we cannot do the swap. This does not apply to
6645 MIPS16 code, which uses variant frags for different purposes. */
6646 if (!mips_opts.mips16
6647 && history[0].frag
6648 && history[0].frag->fr_type == rs_machine_dependent)
6649 return FALSE;
6650
6651 /* We do not swap with instructions that cannot architecturally
6652 be placed in a branch delay slot, such as SYNC or ERET. We
6653 also refrain from swapping with a trap instruction, since it
6654 complicates trap handlers to have the trap instruction be in
6655 a delay slot. */
6656 prev_pinfo = history[0].insn_mo->pinfo;
6657 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6658 return FALSE;
6659
6660 /* Check for conflicts between the branch and the instructions
6661 before the candidate delay slot. */
6662 if (nops_for_insn (0, history + 1, ip) > 0)
6663 return FALSE;
6664
6665 /* Check for conflicts between the swapped sequence and the
6666 target of the branch. */
6667 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6668 return FALSE;
6669
6670 /* If the branch reads a register that the previous
6671 instruction sets, we can not swap. */
6672 gpr_read = gpr_read_mask (ip);
6673 prev_gpr_write = gpr_write_mask (&history[0]);
6674 if (gpr_read & prev_gpr_write)
6675 return FALSE;
6676
6677 fpr_read = fpr_read_mask (ip);
6678 prev_fpr_write = fpr_write_mask (&history[0]);
6679 if (fpr_read & prev_fpr_write)
6680 return FALSE;
6681
6682 /* If the branch writes a register that the previous
6683 instruction sets, we can not swap. */
6684 gpr_write = gpr_write_mask (ip);
6685 if (gpr_write & prev_gpr_write)
6686 return FALSE;
6687
6688 /* If the branch writes a register that the previous
6689 instruction reads, we can not swap. */
6690 prev_gpr_read = gpr_read_mask (&history[0]);
6691 if (gpr_write & prev_gpr_read)
6692 return FALSE;
6693
6694 /* If one instruction sets a condition code and the
6695 other one uses a condition code, we can not swap. */
6696 pinfo = ip->insn_mo->pinfo;
6697 if ((pinfo & INSN_READ_COND_CODE)
6698 && (prev_pinfo & INSN_WRITE_COND_CODE))
6699 return FALSE;
6700 if ((pinfo & INSN_WRITE_COND_CODE)
6701 && (prev_pinfo & INSN_READ_COND_CODE))
6702 return FALSE;
6703
6704 /* If the previous instruction uses the PC, we can not swap. */
6705 prev_pinfo2 = history[0].insn_mo->pinfo2;
6706 if (prev_pinfo2 & INSN2_READ_PC)
6707 return FALSE;
6708
6709 /* If the previous instruction has an incorrect size for a fixed
6710 branch delay slot in microMIPS mode, we cannot swap. */
6711 pinfo2 = ip->insn_mo->pinfo2;
6712 if (mips_opts.micromips
6713 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6714 && insn_length (history) != 2)
6715 return FALSE;
6716 if (mips_opts.micromips
6717 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6718 && insn_length (history) != 4)
6719 return FALSE;
6720
6721 /* On R5900 short loops need to be fixed by inserting a nop in
6722 the branch delay slots.
6723 A short loop can be terminated too early. */
6724 if (mips_opts.arch == CPU_R5900
6725 /* Check if instruction has a parameter, ignore "j $31". */
6726 && (address_expr != NULL)
6727 /* Parameter must be 16 bit. */
6728 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6729 /* Branch to same segment. */
6730 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
6731 /* Branch to same code fragment. */
6732 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
6733 /* Can only calculate branch offset if value is known. */
6734 && symbol_constant_p(address_expr->X_add_symbol)
6735 /* Check if branch is really conditional. */
6736 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6737 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6738 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6739 {
6740 int distance;
6741 /* Check if loop is shorter than 6 instructions including
6742 branch and delay slot. */
6743 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
6744 if (distance <= 20)
6745 {
6746 int i;
6747 int rv;
6748
6749 rv = FALSE;
6750 /* When the loop includes branches or jumps,
6751 it is not a short loop. */
6752 for (i = 0; i < (distance / 4); i++)
6753 {
6754 if ((history[i].cleared_p)
6755 || delayed_branch_p(&history[i]))
6756 {
6757 rv = TRUE;
6758 break;
6759 }
6760 }
6761 if (rv == FALSE)
6762 {
6763 /* Insert nop after branch to fix short loop. */
6764 return FALSE;
6765 }
6766 }
6767 }
6768
6769 return TRUE;
6770 }
6771
6772 /* Decide how we should add IP to the instruction stream.
6773 ADDRESS_EXPR is an operand of the instruction to be used with
6774 RELOC_TYPE. */
6775
6776 static enum append_method
6777 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6778 bfd_reloc_code_real_type *reloc_type)
6779 {
6780 /* The relaxed version of a macro sequence must be inherently
6781 hazard-free. */
6782 if (mips_relax.sequence == 2)
6783 return APPEND_ADD;
6784
6785 /* We must not dabble with instructions in a ".set norerorder" block. */
6786 if (mips_opts.noreorder)
6787 return APPEND_ADD;
6788
6789 /* Otherwise, it's our responsibility to fill branch delay slots. */
6790 if (delayed_branch_p (ip))
6791 {
6792 if (!branch_likely_p (ip)
6793 && can_swap_branch_p (ip, address_expr, reloc_type))
6794 return APPEND_SWAP;
6795
6796 if (mips_opts.mips16
6797 && ISA_SUPPORTS_MIPS16E
6798 && gpr_read_mask (ip) != 0)
6799 return APPEND_ADD_COMPACT;
6800
6801 return APPEND_ADD_WITH_NOP;
6802 }
6803
6804 return APPEND_ADD;
6805 }
6806
6807 /* IP is a MIPS16 instruction whose opcode we have just changed.
6808 Point IP->insn_mo to the new opcode's definition. */
6809
6810 static void
6811 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6812 {
6813 const struct mips_opcode *mo, *end;
6814
6815 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6816 for (mo = ip->insn_mo; mo < end; mo++)
6817 if ((ip->insn_opcode & mo->mask) == mo->match)
6818 {
6819 ip->insn_mo = mo;
6820 return;
6821 }
6822 abort ();
6823 }
6824
6825 /* For microMIPS macros, we need to generate a local number label
6826 as the target of branches. */
6827 #define MICROMIPS_LABEL_CHAR '\037'
6828 static unsigned long micromips_target_label;
6829 static char micromips_target_name[32];
6830
6831 static char *
6832 micromips_label_name (void)
6833 {
6834 char *p = micromips_target_name;
6835 char symbol_name_temporary[24];
6836 unsigned long l;
6837 int i;
6838
6839 if (*p)
6840 return p;
6841
6842 i = 0;
6843 l = micromips_target_label;
6844 #ifdef LOCAL_LABEL_PREFIX
6845 *p++ = LOCAL_LABEL_PREFIX;
6846 #endif
6847 *p++ = 'L';
6848 *p++ = MICROMIPS_LABEL_CHAR;
6849 do
6850 {
6851 symbol_name_temporary[i++] = l % 10 + '0';
6852 l /= 10;
6853 }
6854 while (l != 0);
6855 while (i > 0)
6856 *p++ = symbol_name_temporary[--i];
6857 *p = '\0';
6858
6859 return micromips_target_name;
6860 }
6861
6862 static void
6863 micromips_label_expr (expressionS *label_expr)
6864 {
6865 label_expr->X_op = O_symbol;
6866 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6867 label_expr->X_add_number = 0;
6868 }
6869
6870 static void
6871 micromips_label_inc (void)
6872 {
6873 micromips_target_label++;
6874 *micromips_target_name = '\0';
6875 }
6876
6877 static void
6878 micromips_add_label (void)
6879 {
6880 symbolS *s;
6881
6882 s = colon (micromips_label_name ());
6883 micromips_label_inc ();
6884 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6885 }
6886
6887 /* If assembling microMIPS code, then return the microMIPS reloc
6888 corresponding to the requested one if any. Otherwise return
6889 the reloc unchanged. */
6890
6891 static bfd_reloc_code_real_type
6892 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6893 {
6894 static const bfd_reloc_code_real_type relocs[][2] =
6895 {
6896 /* Keep sorted incrementally by the left-hand key. */
6897 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6898 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6899 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6900 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6901 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6902 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6903 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6904 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6905 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6906 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6907 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6908 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6909 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6910 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6911 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6912 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6913 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6914 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6915 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6916 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6917 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6918 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6919 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6920 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6921 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6922 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6923 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6924 };
6925 bfd_reloc_code_real_type r;
6926 size_t i;
6927
6928 if (!mips_opts.micromips)
6929 return reloc;
6930 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6931 {
6932 r = relocs[i][0];
6933 if (r > reloc)
6934 return reloc;
6935 if (r == reloc)
6936 return relocs[i][1];
6937 }
6938 return reloc;
6939 }
6940
6941 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6942 Return true on success, storing the resolved value in RESULT. */
6943
6944 static bfd_boolean
6945 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6946 offsetT *result)
6947 {
6948 switch (reloc)
6949 {
6950 case BFD_RELOC_MIPS_HIGHEST:
6951 case BFD_RELOC_MICROMIPS_HIGHEST:
6952 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6953 return TRUE;
6954
6955 case BFD_RELOC_MIPS_HIGHER:
6956 case BFD_RELOC_MICROMIPS_HIGHER:
6957 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6958 return TRUE;
6959
6960 case BFD_RELOC_HI16_S:
6961 case BFD_RELOC_MICROMIPS_HI16_S:
6962 case BFD_RELOC_MIPS16_HI16_S:
6963 *result = ((operand + 0x8000) >> 16) & 0xffff;
6964 return TRUE;
6965
6966 case BFD_RELOC_HI16:
6967 case BFD_RELOC_MICROMIPS_HI16:
6968 case BFD_RELOC_MIPS16_HI16:
6969 *result = (operand >> 16) & 0xffff;
6970 return TRUE;
6971
6972 case BFD_RELOC_LO16:
6973 case BFD_RELOC_MICROMIPS_LO16:
6974 case BFD_RELOC_MIPS16_LO16:
6975 *result = operand & 0xffff;
6976 return TRUE;
6977
6978 case BFD_RELOC_UNUSED:
6979 *result = operand;
6980 return TRUE;
6981
6982 default:
6983 return FALSE;
6984 }
6985 }
6986
6987 /* Output an instruction. IP is the instruction information.
6988 ADDRESS_EXPR is an operand of the instruction to be used with
6989 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6990 a macro expansion. */
6991
6992 static void
6993 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
6994 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
6995 {
6996 unsigned long prev_pinfo2, pinfo;
6997 bfd_boolean relaxed_branch = FALSE;
6998 enum append_method method;
6999 bfd_boolean relax32;
7000 int branch_disp;
7001
7002 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7003 fix_loongson2f (ip);
7004
7005 file_ase_mips16 |= mips_opts.mips16;
7006 file_ase_micromips |= mips_opts.micromips;
7007
7008 prev_pinfo2 = history[0].insn_mo->pinfo2;
7009 pinfo = ip->insn_mo->pinfo;
7010
7011 if (mips_opts.micromips
7012 && !expansionp
7013 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7014 && micromips_insn_length (ip->insn_mo) != 2)
7015 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7016 && micromips_insn_length (ip->insn_mo) != 4)))
7017 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7018 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7019
7020 if (address_expr == NULL)
7021 ip->complete_p = 1;
7022 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7023 && reloc_type[1] == BFD_RELOC_UNUSED
7024 && reloc_type[2] == BFD_RELOC_UNUSED
7025 && address_expr->X_op == O_constant)
7026 {
7027 switch (*reloc_type)
7028 {
7029 case BFD_RELOC_MIPS_JMP:
7030 {
7031 int shift;
7032
7033 shift = mips_opts.micromips ? 1 : 2;
7034 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7035 as_bad (_("jump to misaligned address (0x%lx)"),
7036 (unsigned long) address_expr->X_add_number);
7037 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7038 & 0x3ffffff);
7039 ip->complete_p = 1;
7040 }
7041 break;
7042
7043 case BFD_RELOC_MIPS16_JMP:
7044 if ((address_expr->X_add_number & 3) != 0)
7045 as_bad (_("jump to misaligned address (0x%lx)"),
7046 (unsigned long) address_expr->X_add_number);
7047 ip->insn_opcode |=
7048 (((address_expr->X_add_number & 0x7c0000) << 3)
7049 | ((address_expr->X_add_number & 0xf800000) >> 7)
7050 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7051 ip->complete_p = 1;
7052 break;
7053
7054 case BFD_RELOC_16_PCREL_S2:
7055 {
7056 int shift;
7057
7058 shift = mips_opts.micromips ? 1 : 2;
7059 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7060 as_bad (_("branch to misaligned address (0x%lx)"),
7061 (unsigned long) address_expr->X_add_number);
7062 if (!mips_relax_branch)
7063 {
7064 if ((address_expr->X_add_number + (1 << (shift + 15)))
7065 & ~((1 << (shift + 16)) - 1))
7066 as_bad (_("branch address range overflow (0x%lx)"),
7067 (unsigned long) address_expr->X_add_number);
7068 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7069 & 0xffff);
7070 }
7071 }
7072 break;
7073
7074 case BFD_RELOC_MIPS_21_PCREL_S2:
7075 {
7076 int shift;
7077
7078 shift = 2;
7079 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7080 as_bad (_("branch to misaligned address (0x%lx)"),
7081 (unsigned long) address_expr->X_add_number);
7082 if ((address_expr->X_add_number + (1 << (shift + 20)))
7083 & ~((1 << (shift + 21)) - 1))
7084 as_bad (_("branch address range overflow (0x%lx)"),
7085 (unsigned long) address_expr->X_add_number);
7086 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7087 & 0x1fffff);
7088 }
7089 break;
7090
7091 case BFD_RELOC_MIPS_26_PCREL_S2:
7092 {
7093 int shift;
7094
7095 shift = 2;
7096 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7097 as_bad (_("branch to misaligned address (0x%lx)"),
7098 (unsigned long) address_expr->X_add_number);
7099 if ((address_expr->X_add_number + (1 << (shift + 25)))
7100 & ~((1 << (shift + 26)) - 1))
7101 as_bad (_("branch address range overflow (0x%lx)"),
7102 (unsigned long) address_expr->X_add_number);
7103 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7104 & 0x3ffffff);
7105 }
7106 break;
7107
7108 default:
7109 {
7110 offsetT value;
7111
7112 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7113 &value))
7114 {
7115 ip->insn_opcode |= value & 0xffff;
7116 ip->complete_p = 1;
7117 }
7118 }
7119 break;
7120 }
7121 }
7122
7123 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7124 {
7125 /* There are a lot of optimizations we could do that we don't.
7126 In particular, we do not, in general, reorder instructions.
7127 If you use gcc with optimization, it will reorder
7128 instructions and generally do much more optimization then we
7129 do here; repeating all that work in the assembler would only
7130 benefit hand written assembly code, and does not seem worth
7131 it. */
7132 int nops = (mips_optimize == 0
7133 ? nops_for_insn (0, history, NULL)
7134 : nops_for_insn_or_target (0, history, ip));
7135 if (nops > 0)
7136 {
7137 fragS *old_frag;
7138 unsigned long old_frag_offset;
7139 int i;
7140
7141 old_frag = frag_now;
7142 old_frag_offset = frag_now_fix ();
7143
7144 for (i = 0; i < nops; i++)
7145 add_fixed_insn (NOP_INSN);
7146 insert_into_history (0, nops, NOP_INSN);
7147
7148 if (listing)
7149 {
7150 listing_prev_line ();
7151 /* We may be at the start of a variant frag. In case we
7152 are, make sure there is enough space for the frag
7153 after the frags created by listing_prev_line. The
7154 argument to frag_grow here must be at least as large
7155 as the argument to all other calls to frag_grow in
7156 this file. We don't have to worry about being in the
7157 middle of a variant frag, because the variants insert
7158 all needed nop instructions themselves. */
7159 frag_grow (40);
7160 }
7161
7162 mips_move_text_labels ();
7163
7164 #ifndef NO_ECOFF_DEBUGGING
7165 if (ECOFF_DEBUGGING)
7166 ecoff_fix_loc (old_frag, old_frag_offset);
7167 #endif
7168 }
7169 }
7170 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7171 {
7172 int nops;
7173
7174 /* Work out how many nops in prev_nop_frag are needed by IP,
7175 ignoring hazards generated by the first prev_nop_frag_since
7176 instructions. */
7177 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7178 gas_assert (nops <= prev_nop_frag_holds);
7179
7180 /* Enforce NOPS as a minimum. */
7181 if (nops > prev_nop_frag_required)
7182 prev_nop_frag_required = nops;
7183
7184 if (prev_nop_frag_holds == prev_nop_frag_required)
7185 {
7186 /* Settle for the current number of nops. Update the history
7187 accordingly (for the benefit of any future .set reorder code). */
7188 prev_nop_frag = NULL;
7189 insert_into_history (prev_nop_frag_since,
7190 prev_nop_frag_holds, NOP_INSN);
7191 }
7192 else
7193 {
7194 /* Allow this instruction to replace one of the nops that was
7195 tentatively added to prev_nop_frag. */
7196 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7197 prev_nop_frag_holds--;
7198 prev_nop_frag_since++;
7199 }
7200 }
7201
7202 method = get_append_method (ip, address_expr, reloc_type);
7203 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7204
7205 dwarf2_emit_insn (0);
7206 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7207 so "move" the instruction address accordingly.
7208
7209 Also, it doesn't seem appropriate for the assembler to reorder .loc
7210 entries. If this instruction is a branch that we are going to swap
7211 with the previous instruction, the two instructions should be
7212 treated as a unit, and the debug information for both instructions
7213 should refer to the start of the branch sequence. Using the
7214 current position is certainly wrong when swapping a 32-bit branch
7215 and a 16-bit delay slot, since the current position would then be
7216 in the middle of a branch. */
7217 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7218
7219 relax32 = (mips_relax_branch
7220 /* Don't try branch relaxation within .set nomacro, or within
7221 .set noat if we use $at for PIC computations. If it turns
7222 out that the branch was out-of-range, we'll get an error. */
7223 && !mips_opts.warn_about_macros
7224 && (mips_opts.at || mips_pic == NO_PIC)
7225 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7226 as they have no complementing branches. */
7227 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7228
7229 if (!HAVE_CODE_COMPRESSION
7230 && address_expr
7231 && relax32
7232 && *reloc_type == BFD_RELOC_16_PCREL_S2
7233 && delayed_branch_p (ip))
7234 {
7235 relaxed_branch = TRUE;
7236 add_relaxed_insn (ip, (relaxed_branch_length
7237 (NULL, NULL,
7238 uncond_branch_p (ip) ? -1
7239 : branch_likely_p (ip) ? 1
7240 : 0)), 4,
7241 RELAX_BRANCH_ENCODE
7242 (AT,
7243 uncond_branch_p (ip),
7244 branch_likely_p (ip),
7245 pinfo & INSN_WRITE_GPR_31,
7246 0),
7247 address_expr->X_add_symbol,
7248 address_expr->X_add_number);
7249 *reloc_type = BFD_RELOC_UNUSED;
7250 }
7251 else if (mips_opts.micromips
7252 && address_expr
7253 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7254 || *reloc_type > BFD_RELOC_UNUSED)
7255 && (delayed_branch_p (ip) || compact_branch_p (ip))
7256 /* Don't try branch relaxation when users specify
7257 16-bit/32-bit instructions. */
7258 && !forced_insn_length)
7259 {
7260 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7261 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7262 int uncond = uncond_branch_p (ip) ? -1 : 0;
7263 int compact = compact_branch_p (ip);
7264 int al = pinfo & INSN_WRITE_GPR_31;
7265 int length32;
7266
7267 gas_assert (address_expr != NULL);
7268 gas_assert (!mips_relax.sequence);
7269
7270 relaxed_branch = TRUE;
7271 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7272 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
7273 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7274 relax32, 0, 0),
7275 address_expr->X_add_symbol,
7276 address_expr->X_add_number);
7277 *reloc_type = BFD_RELOC_UNUSED;
7278 }
7279 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7280 {
7281 /* We need to set up a variant frag. */
7282 gas_assert (address_expr != NULL);
7283 add_relaxed_insn (ip, 4, 0,
7284 RELAX_MIPS16_ENCODE
7285 (*reloc_type - BFD_RELOC_UNUSED,
7286 forced_insn_length == 2, forced_insn_length == 4,
7287 delayed_branch_p (&history[0]),
7288 history[0].mips16_absolute_jump_p),
7289 make_expr_symbol (address_expr), 0);
7290 }
7291 else if (mips_opts.mips16 && insn_length (ip) == 2)
7292 {
7293 if (!delayed_branch_p (ip))
7294 /* Make sure there is enough room to swap this instruction with
7295 a following jump instruction. */
7296 frag_grow (6);
7297 add_fixed_insn (ip);
7298 }
7299 else
7300 {
7301 if (mips_opts.mips16
7302 && mips_opts.noreorder
7303 && delayed_branch_p (&history[0]))
7304 as_warn (_("extended instruction in delay slot"));
7305
7306 if (mips_relax.sequence)
7307 {
7308 /* If we've reached the end of this frag, turn it into a variant
7309 frag and record the information for the instructions we've
7310 written so far. */
7311 if (frag_room () < 4)
7312 relax_close_frag ();
7313 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7314 }
7315
7316 if (mips_relax.sequence != 2)
7317 {
7318 if (mips_macro_warning.first_insn_sizes[0] == 0)
7319 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7320 mips_macro_warning.sizes[0] += insn_length (ip);
7321 mips_macro_warning.insns[0]++;
7322 }
7323 if (mips_relax.sequence != 1)
7324 {
7325 if (mips_macro_warning.first_insn_sizes[1] == 0)
7326 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7327 mips_macro_warning.sizes[1] += insn_length (ip);
7328 mips_macro_warning.insns[1]++;
7329 }
7330
7331 if (mips_opts.mips16)
7332 {
7333 ip->fixed_p = 1;
7334 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7335 }
7336 add_fixed_insn (ip);
7337 }
7338
7339 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7340 {
7341 bfd_reloc_code_real_type final_type[3];
7342 reloc_howto_type *howto0;
7343 reloc_howto_type *howto;
7344 int i;
7345
7346 /* Perform any necessary conversion to microMIPS relocations
7347 and find out how many relocations there actually are. */
7348 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7349 final_type[i] = micromips_map_reloc (reloc_type[i]);
7350
7351 /* In a compound relocation, it is the final (outermost)
7352 operator that determines the relocated field. */
7353 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7354 if (!howto)
7355 abort ();
7356
7357 if (i > 1)
7358 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7359 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7360 bfd_get_reloc_size (howto),
7361 address_expr,
7362 howto0 && howto0->pc_relative,
7363 final_type[0]);
7364
7365 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7366 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7367 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7368
7369 /* These relocations can have an addend that won't fit in
7370 4 octets for 64bit assembly. */
7371 if (GPR_SIZE == 64
7372 && ! howto->partial_inplace
7373 && (reloc_type[0] == BFD_RELOC_16
7374 || reloc_type[0] == BFD_RELOC_32
7375 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7376 || reloc_type[0] == BFD_RELOC_GPREL16
7377 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7378 || reloc_type[0] == BFD_RELOC_GPREL32
7379 || reloc_type[0] == BFD_RELOC_64
7380 || reloc_type[0] == BFD_RELOC_CTOR
7381 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7382 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7383 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7384 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7385 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7386 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7387 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7388 || hi16_reloc_p (reloc_type[0])
7389 || lo16_reloc_p (reloc_type[0])))
7390 ip->fixp[0]->fx_no_overflow = 1;
7391
7392 /* These relocations can have an addend that won't fit in 2 octets. */
7393 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7394 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7395 ip->fixp[0]->fx_no_overflow = 1;
7396
7397 if (mips_relax.sequence)
7398 {
7399 if (mips_relax.first_fixup == 0)
7400 mips_relax.first_fixup = ip->fixp[0];
7401 }
7402 else if (reloc_needs_lo_p (*reloc_type))
7403 {
7404 struct mips_hi_fixup *hi_fixup;
7405
7406 /* Reuse the last entry if it already has a matching %lo. */
7407 hi_fixup = mips_hi_fixup_list;
7408 if (hi_fixup == 0
7409 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7410 {
7411 hi_fixup = ((struct mips_hi_fixup *)
7412 xmalloc (sizeof (struct mips_hi_fixup)));
7413 hi_fixup->next = mips_hi_fixup_list;
7414 mips_hi_fixup_list = hi_fixup;
7415 }
7416 hi_fixup->fixp = ip->fixp[0];
7417 hi_fixup->seg = now_seg;
7418 }
7419
7420 /* Add fixups for the second and third relocations, if given.
7421 Note that the ABI allows the second relocation to be
7422 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7423 moment we only use RSS_UNDEF, but we could add support
7424 for the others if it ever becomes necessary. */
7425 for (i = 1; i < 3; i++)
7426 if (reloc_type[i] != BFD_RELOC_UNUSED)
7427 {
7428 ip->fixp[i] = fix_new (ip->frag, ip->where,
7429 ip->fixp[0]->fx_size, NULL, 0,
7430 FALSE, final_type[i]);
7431
7432 /* Use fx_tcbit to mark compound relocs. */
7433 ip->fixp[0]->fx_tcbit = 1;
7434 ip->fixp[i]->fx_tcbit = 1;
7435 }
7436 }
7437 install_insn (ip);
7438
7439 /* Update the register mask information. */
7440 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7441 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7442
7443 switch (method)
7444 {
7445 case APPEND_ADD:
7446 insert_into_history (0, 1, ip);
7447 break;
7448
7449 case APPEND_ADD_WITH_NOP:
7450 {
7451 struct mips_cl_insn *nop;
7452
7453 insert_into_history (0, 1, ip);
7454 nop = get_delay_slot_nop (ip);
7455 add_fixed_insn (nop);
7456 insert_into_history (0, 1, nop);
7457 if (mips_relax.sequence)
7458 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7459 }
7460 break;
7461
7462 case APPEND_ADD_COMPACT:
7463 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7464 gas_assert (mips_opts.mips16);
7465 ip->insn_opcode |= 0x0080;
7466 find_altered_mips16_opcode (ip);
7467 install_insn (ip);
7468 insert_into_history (0, 1, ip);
7469 break;
7470
7471 case APPEND_SWAP:
7472 {
7473 struct mips_cl_insn delay = history[0];
7474 if (mips_opts.mips16)
7475 {
7476 know (delay.frag == ip->frag);
7477 move_insn (ip, delay.frag, delay.where);
7478 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7479 }
7480 else if (relaxed_branch || delay.frag != ip->frag)
7481 {
7482 /* Add the delay slot instruction to the end of the
7483 current frag and shrink the fixed part of the
7484 original frag. If the branch occupies the tail of
7485 the latter, move it backwards to cover the gap. */
7486 delay.frag->fr_fix -= branch_disp;
7487 if (delay.frag == ip->frag)
7488 move_insn (ip, ip->frag, ip->where - branch_disp);
7489 add_fixed_insn (&delay);
7490 }
7491 else
7492 {
7493 move_insn (&delay, ip->frag,
7494 ip->where - branch_disp + insn_length (ip));
7495 move_insn (ip, history[0].frag, history[0].where);
7496 }
7497 history[0] = *ip;
7498 delay.fixed_p = 1;
7499 insert_into_history (0, 1, &delay);
7500 }
7501 break;
7502 }
7503
7504 /* If we have just completed an unconditional branch, clear the history. */
7505 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7506 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7507 {
7508 unsigned int i;
7509
7510 mips_no_prev_insn ();
7511
7512 for (i = 0; i < ARRAY_SIZE (history); i++)
7513 history[i].cleared_p = 1;
7514 }
7515
7516 /* We need to emit a label at the end of branch-likely macros. */
7517 if (emit_branch_likely_macro)
7518 {
7519 emit_branch_likely_macro = FALSE;
7520 micromips_add_label ();
7521 }
7522
7523 /* We just output an insn, so the next one doesn't have a label. */
7524 mips_clear_insn_labels ();
7525 }
7526
7527 /* Forget that there was any previous instruction or label.
7528 When BRANCH is true, the branch history is also flushed. */
7529
7530 static void
7531 mips_no_prev_insn (void)
7532 {
7533 prev_nop_frag = NULL;
7534 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7535 mips_clear_insn_labels ();
7536 }
7537
7538 /* This function must be called before we emit something other than
7539 instructions. It is like mips_no_prev_insn except that it inserts
7540 any NOPS that might be needed by previous instructions. */
7541
7542 void
7543 mips_emit_delays (void)
7544 {
7545 if (! mips_opts.noreorder)
7546 {
7547 int nops = nops_for_insn (0, history, NULL);
7548 if (nops > 0)
7549 {
7550 while (nops-- > 0)
7551 add_fixed_insn (NOP_INSN);
7552 mips_move_text_labels ();
7553 }
7554 }
7555 mips_no_prev_insn ();
7556 }
7557
7558 /* Start a (possibly nested) noreorder block. */
7559
7560 static void
7561 start_noreorder (void)
7562 {
7563 if (mips_opts.noreorder == 0)
7564 {
7565 unsigned int i;
7566 int nops;
7567
7568 /* None of the instructions before the .set noreorder can be moved. */
7569 for (i = 0; i < ARRAY_SIZE (history); i++)
7570 history[i].fixed_p = 1;
7571
7572 /* Insert any nops that might be needed between the .set noreorder
7573 block and the previous instructions. We will later remove any
7574 nops that turn out not to be needed. */
7575 nops = nops_for_insn (0, history, NULL);
7576 if (nops > 0)
7577 {
7578 if (mips_optimize != 0)
7579 {
7580 /* Record the frag which holds the nop instructions, so
7581 that we can remove them if we don't need them. */
7582 frag_grow (nops * NOP_INSN_SIZE);
7583 prev_nop_frag = frag_now;
7584 prev_nop_frag_holds = nops;
7585 prev_nop_frag_required = 0;
7586 prev_nop_frag_since = 0;
7587 }
7588
7589 for (; nops > 0; --nops)
7590 add_fixed_insn (NOP_INSN);
7591
7592 /* Move on to a new frag, so that it is safe to simply
7593 decrease the size of prev_nop_frag. */
7594 frag_wane (frag_now);
7595 frag_new (0);
7596 mips_move_text_labels ();
7597 }
7598 mips_mark_labels ();
7599 mips_clear_insn_labels ();
7600 }
7601 mips_opts.noreorder++;
7602 mips_any_noreorder = 1;
7603 }
7604
7605 /* End a nested noreorder block. */
7606
7607 static void
7608 end_noreorder (void)
7609 {
7610 mips_opts.noreorder--;
7611 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7612 {
7613 /* Commit to inserting prev_nop_frag_required nops and go back to
7614 handling nop insertion the .set reorder way. */
7615 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7616 * NOP_INSN_SIZE);
7617 insert_into_history (prev_nop_frag_since,
7618 prev_nop_frag_required, NOP_INSN);
7619 prev_nop_frag = NULL;
7620 }
7621 }
7622
7623 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7624 higher bits unset. */
7625
7626 static void
7627 normalize_constant_expr (expressionS *ex)
7628 {
7629 if (ex->X_op == O_constant
7630 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7631 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7632 - 0x80000000);
7633 }
7634
7635 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7636 all higher bits unset. */
7637
7638 static void
7639 normalize_address_expr (expressionS *ex)
7640 {
7641 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7642 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7643 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7644 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7645 - 0x80000000);
7646 }
7647
7648 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7649 Return true if the match was successful.
7650
7651 OPCODE_EXTRA is a value that should be ORed into the opcode
7652 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7653 there are more alternatives after OPCODE and SOFT_MATCH is
7654 as for mips_arg_info. */
7655
7656 static bfd_boolean
7657 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7658 struct mips_operand_token *tokens, unsigned int opcode_extra,
7659 bfd_boolean lax_match, bfd_boolean complete_p)
7660 {
7661 const char *args;
7662 struct mips_arg_info arg;
7663 const struct mips_operand *operand;
7664 char c;
7665
7666 imm_expr.X_op = O_absent;
7667 offset_expr.X_op = O_absent;
7668 offset_reloc[0] = BFD_RELOC_UNUSED;
7669 offset_reloc[1] = BFD_RELOC_UNUSED;
7670 offset_reloc[2] = BFD_RELOC_UNUSED;
7671
7672 create_insn (insn, opcode);
7673 /* When no opcode suffix is specified, assume ".xyzw". */
7674 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7675 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7676 else
7677 insn->insn_opcode |= opcode_extra;
7678 memset (&arg, 0, sizeof (arg));
7679 arg.insn = insn;
7680 arg.token = tokens;
7681 arg.argnum = 1;
7682 arg.last_regno = ILLEGAL_REG;
7683 arg.dest_regno = ILLEGAL_REG;
7684 arg.lax_match = lax_match;
7685 for (args = opcode->args;; ++args)
7686 {
7687 if (arg.token->type == OT_END)
7688 {
7689 /* Handle unary instructions in which only one operand is given.
7690 The source is then the same as the destination. */
7691 if (arg.opnum == 1 && *args == ',')
7692 {
7693 operand = (mips_opts.micromips
7694 ? decode_micromips_operand (args + 1)
7695 : decode_mips_operand (args + 1));
7696 if (operand && mips_optional_operand_p (operand))
7697 {
7698 arg.token = tokens;
7699 arg.argnum = 1;
7700 continue;
7701 }
7702 }
7703
7704 /* Treat elided base registers as $0. */
7705 if (strcmp (args, "(b)") == 0)
7706 args += 3;
7707
7708 if (args[0] == '+')
7709 switch (args[1])
7710 {
7711 case 'K':
7712 case 'N':
7713 /* The register suffix is optional. */
7714 args += 2;
7715 break;
7716 }
7717
7718 /* Fail the match if there were too few operands. */
7719 if (*args)
7720 return FALSE;
7721
7722 /* Successful match. */
7723 if (!complete_p)
7724 return TRUE;
7725 clear_insn_error ();
7726 if (arg.dest_regno == arg.last_regno
7727 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7728 {
7729 if (arg.opnum == 2)
7730 set_insn_error
7731 (0, _("source and destination must be different"));
7732 else if (arg.last_regno == 31)
7733 set_insn_error
7734 (0, _("a destination register must be supplied"));
7735 }
7736 else if (arg.last_regno == 31
7737 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7738 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7739 set_insn_error (0, _("the source register must not be $31"));
7740 check_completed_insn (&arg);
7741 return TRUE;
7742 }
7743
7744 /* Fail the match if the line has too many operands. */
7745 if (*args == 0)
7746 return FALSE;
7747
7748 /* Handle characters that need to match exactly. */
7749 if (*args == '(' || *args == ')' || *args == ',')
7750 {
7751 if (match_char (&arg, *args))
7752 continue;
7753 return FALSE;
7754 }
7755 if (*args == '#')
7756 {
7757 ++args;
7758 if (arg.token->type == OT_DOUBLE_CHAR
7759 && arg.token->u.ch == *args)
7760 {
7761 ++arg.token;
7762 continue;
7763 }
7764 return FALSE;
7765 }
7766
7767 /* Handle special macro operands. Work out the properties of
7768 other operands. */
7769 arg.opnum += 1;
7770 switch (*args)
7771 {
7772 case '-':
7773 switch (args[1])
7774 {
7775 case 'A':
7776 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7777 break;
7778
7779 case 'B':
7780 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7781 break;
7782 }
7783 break;
7784
7785 case '+':
7786 switch (args[1])
7787 {
7788 case 'i':
7789 *offset_reloc = BFD_RELOC_MIPS_JMP;
7790 break;
7791
7792 case '\'':
7793 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7794 break;
7795
7796 case '\"':
7797 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7798 break;
7799 }
7800 break;
7801
7802 case 'I':
7803 if (!match_const_int (&arg, &imm_expr.X_add_number))
7804 return FALSE;
7805 imm_expr.X_op = O_constant;
7806 if (GPR_SIZE == 32)
7807 normalize_constant_expr (&imm_expr);
7808 continue;
7809
7810 case 'A':
7811 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7812 {
7813 /* Assume that the offset has been elided and that what
7814 we saw was a base register. The match will fail later
7815 if that assumption turns out to be wrong. */
7816 offset_expr.X_op = O_constant;
7817 offset_expr.X_add_number = 0;
7818 }
7819 else
7820 {
7821 if (!match_expression (&arg, &offset_expr, offset_reloc))
7822 return FALSE;
7823 normalize_address_expr (&offset_expr);
7824 }
7825 continue;
7826
7827 case 'F':
7828 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7829 8, TRUE))
7830 return FALSE;
7831 continue;
7832
7833 case 'L':
7834 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7835 8, FALSE))
7836 return FALSE;
7837 continue;
7838
7839 case 'f':
7840 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7841 4, TRUE))
7842 return FALSE;
7843 continue;
7844
7845 case 'l':
7846 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7847 4, FALSE))
7848 return FALSE;
7849 continue;
7850
7851 case 'p':
7852 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7853 break;
7854
7855 case 'a':
7856 *offset_reloc = BFD_RELOC_MIPS_JMP;
7857 break;
7858
7859 case 'm':
7860 gas_assert (mips_opts.micromips);
7861 c = args[1];
7862 switch (c)
7863 {
7864 case 'D':
7865 case 'E':
7866 if (!forced_insn_length)
7867 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7868 else if (c == 'D')
7869 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7870 else
7871 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7872 break;
7873 }
7874 break;
7875 }
7876
7877 operand = (mips_opts.micromips
7878 ? decode_micromips_operand (args)
7879 : decode_mips_operand (args));
7880 if (!operand)
7881 abort ();
7882
7883 /* Skip prefixes. */
7884 if (*args == '+' || *args == 'm' || *args == '-')
7885 args++;
7886
7887 if (mips_optional_operand_p (operand)
7888 && args[1] == ','
7889 && (arg.token[0].type != OT_REG
7890 || arg.token[1].type == OT_END))
7891 {
7892 /* Assume that the register has been elided and is the
7893 same as the first operand. */
7894 arg.token = tokens;
7895 arg.argnum = 1;
7896 }
7897
7898 if (!match_operand (&arg, operand))
7899 return FALSE;
7900 }
7901 }
7902
7903 /* Like match_insn, but for MIPS16. */
7904
7905 static bfd_boolean
7906 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7907 struct mips_operand_token *tokens)
7908 {
7909 const char *args;
7910 const struct mips_operand *operand;
7911 const struct mips_operand *ext_operand;
7912 struct mips_arg_info arg;
7913 int relax_char;
7914
7915 create_insn (insn, opcode);
7916 imm_expr.X_op = O_absent;
7917 offset_expr.X_op = O_absent;
7918 offset_reloc[0] = BFD_RELOC_UNUSED;
7919 offset_reloc[1] = BFD_RELOC_UNUSED;
7920 offset_reloc[2] = BFD_RELOC_UNUSED;
7921 relax_char = 0;
7922
7923 memset (&arg, 0, sizeof (arg));
7924 arg.insn = insn;
7925 arg.token = tokens;
7926 arg.argnum = 1;
7927 arg.last_regno = ILLEGAL_REG;
7928 arg.dest_regno = ILLEGAL_REG;
7929 relax_char = 0;
7930 for (args = opcode->args;; ++args)
7931 {
7932 int c;
7933
7934 if (arg.token->type == OT_END)
7935 {
7936 offsetT value;
7937
7938 /* Handle unary instructions in which only one operand is given.
7939 The source is then the same as the destination. */
7940 if (arg.opnum == 1 && *args == ',')
7941 {
7942 operand = decode_mips16_operand (args[1], FALSE);
7943 if (operand && mips_optional_operand_p (operand))
7944 {
7945 arg.token = tokens;
7946 arg.argnum = 1;
7947 continue;
7948 }
7949 }
7950
7951 /* Fail the match if there were too few operands. */
7952 if (*args)
7953 return FALSE;
7954
7955 /* Successful match. Stuff the immediate value in now, if
7956 we can. */
7957 clear_insn_error ();
7958 if (opcode->pinfo == INSN_MACRO)
7959 {
7960 gas_assert (relax_char == 0 || relax_char == 'p');
7961 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7962 }
7963 else if (relax_char
7964 && offset_expr.X_op == O_constant
7965 && calculate_reloc (*offset_reloc,
7966 offset_expr.X_add_number,
7967 &value))
7968 {
7969 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7970 forced_insn_length, &insn->insn_opcode);
7971 offset_expr.X_op = O_absent;
7972 *offset_reloc = BFD_RELOC_UNUSED;
7973 }
7974 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7975 {
7976 if (forced_insn_length == 2)
7977 set_insn_error (0, _("invalid unextended operand value"));
7978 forced_insn_length = 4;
7979 insn->insn_opcode |= MIPS16_EXTEND;
7980 }
7981 else if (relax_char)
7982 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7983
7984 check_completed_insn (&arg);
7985 return TRUE;
7986 }
7987
7988 /* Fail the match if the line has too many operands. */
7989 if (*args == 0)
7990 return FALSE;
7991
7992 /* Handle characters that need to match exactly. */
7993 if (*args == '(' || *args == ')' || *args == ',')
7994 {
7995 if (match_char (&arg, *args))
7996 continue;
7997 return FALSE;
7998 }
7999
8000 arg.opnum += 1;
8001 c = *args;
8002 switch (c)
8003 {
8004 case 'p':
8005 case 'q':
8006 case 'A':
8007 case 'B':
8008 case 'E':
8009 relax_char = c;
8010 break;
8011
8012 case 'I':
8013 if (!match_const_int (&arg, &imm_expr.X_add_number))
8014 return FALSE;
8015 imm_expr.X_op = O_constant;
8016 if (GPR_SIZE == 32)
8017 normalize_constant_expr (&imm_expr);
8018 continue;
8019
8020 case 'a':
8021 case 'i':
8022 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8023 insn->insn_opcode <<= 16;
8024 break;
8025 }
8026
8027 operand = decode_mips16_operand (c, FALSE);
8028 if (!operand)
8029 abort ();
8030
8031 /* '6' is a special case. It is used for BREAK and SDBBP,
8032 whose operands are only meaningful to the software that decodes
8033 them. This means that there is no architectural reason why
8034 they cannot be prefixed by EXTEND, but in practice,
8035 exception handlers will only look at the instruction
8036 itself. We therefore allow '6' to be extended when
8037 disassembling but not when assembling. */
8038 if (operand->type != OP_PCREL && c != '6')
8039 {
8040 ext_operand = decode_mips16_operand (c, TRUE);
8041 if (operand != ext_operand)
8042 {
8043 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8044 {
8045 offset_expr.X_op = O_constant;
8046 offset_expr.X_add_number = 0;
8047 relax_char = c;
8048 continue;
8049 }
8050
8051 /* We need the OT_INTEGER check because some MIPS16
8052 immediate variants are listed before the register ones. */
8053 if (arg.token->type != OT_INTEGER
8054 || !match_expression (&arg, &offset_expr, offset_reloc))
8055 return FALSE;
8056
8057 /* '8' is used for SLTI(U) and has traditionally not
8058 been allowed to take relocation operators. */
8059 if (offset_reloc[0] != BFD_RELOC_UNUSED
8060 && (ext_operand->size != 16 || c == '8'))
8061 return FALSE;
8062
8063 relax_char = c;
8064 continue;
8065 }
8066 }
8067
8068 if (mips_optional_operand_p (operand)
8069 && args[1] == ','
8070 && (arg.token[0].type != OT_REG
8071 || arg.token[1].type == OT_END))
8072 {
8073 /* Assume that the register has been elided and is the
8074 same as the first operand. */
8075 arg.token = tokens;
8076 arg.argnum = 1;
8077 }
8078
8079 if (!match_operand (&arg, operand))
8080 return FALSE;
8081 }
8082 }
8083
8084 /* Record that the current instruction is invalid for the current ISA. */
8085
8086 static void
8087 match_invalid_for_isa (void)
8088 {
8089 set_insn_error_ss
8090 (0, _("opcode not supported on this processor: %s (%s)"),
8091 mips_cpu_info_from_arch (mips_opts.arch)->name,
8092 mips_cpu_info_from_isa (mips_opts.isa)->name);
8093 }
8094
8095 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8096 Return true if a definite match or failure was found, storing any match
8097 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8098 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8099 tried and failed to match under normal conditions and now want to try a
8100 more relaxed match. */
8101
8102 static bfd_boolean
8103 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8104 const struct mips_opcode *past, struct mips_operand_token *tokens,
8105 int opcode_extra, bfd_boolean lax_match)
8106 {
8107 const struct mips_opcode *opcode;
8108 const struct mips_opcode *invalid_delay_slot;
8109 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8110
8111 /* Search for a match, ignoring alternatives that don't satisfy the
8112 current ISA or forced_length. */
8113 invalid_delay_slot = 0;
8114 seen_valid_for_isa = FALSE;
8115 seen_valid_for_size = FALSE;
8116 opcode = first;
8117 do
8118 {
8119 gas_assert (strcmp (opcode->name, first->name) == 0);
8120 if (is_opcode_valid (opcode))
8121 {
8122 seen_valid_for_isa = TRUE;
8123 if (is_size_valid (opcode))
8124 {
8125 bfd_boolean delay_slot_ok;
8126
8127 seen_valid_for_size = TRUE;
8128 delay_slot_ok = is_delay_slot_valid (opcode);
8129 if (match_insn (insn, opcode, tokens, opcode_extra,
8130 lax_match, delay_slot_ok))
8131 {
8132 if (!delay_slot_ok)
8133 {
8134 if (!invalid_delay_slot)
8135 invalid_delay_slot = opcode;
8136 }
8137 else
8138 return TRUE;
8139 }
8140 }
8141 }
8142 ++opcode;
8143 }
8144 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8145
8146 /* If the only matches we found had the wrong length for the delay slot,
8147 pick the first such match. We'll issue an appropriate warning later. */
8148 if (invalid_delay_slot)
8149 {
8150 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8151 lax_match, TRUE))
8152 return TRUE;
8153 abort ();
8154 }
8155
8156 /* Handle the case where we didn't try to match an instruction because
8157 all the alternatives were incompatible with the current ISA. */
8158 if (!seen_valid_for_isa)
8159 {
8160 match_invalid_for_isa ();
8161 return TRUE;
8162 }
8163
8164 /* Handle the case where we didn't try to match an instruction because
8165 all the alternatives were of the wrong size. */
8166 if (!seen_valid_for_size)
8167 {
8168 if (mips_opts.insn32)
8169 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8170 else
8171 set_insn_error_i
8172 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8173 8 * forced_insn_length);
8174 return TRUE;
8175 }
8176
8177 return FALSE;
8178 }
8179
8180 /* Like match_insns, but for MIPS16. */
8181
8182 static bfd_boolean
8183 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8184 struct mips_operand_token *tokens)
8185 {
8186 const struct mips_opcode *opcode;
8187 bfd_boolean seen_valid_for_isa;
8188
8189 /* Search for a match, ignoring alternatives that don't satisfy the
8190 current ISA. There are no separate entries for extended forms so
8191 we deal with forced_length later. */
8192 seen_valid_for_isa = FALSE;
8193 opcode = first;
8194 do
8195 {
8196 gas_assert (strcmp (opcode->name, first->name) == 0);
8197 if (is_opcode_valid_16 (opcode))
8198 {
8199 seen_valid_for_isa = TRUE;
8200 if (match_mips16_insn (insn, opcode, tokens))
8201 return TRUE;
8202 }
8203 ++opcode;
8204 }
8205 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8206 && strcmp (opcode->name, first->name) == 0);
8207
8208 /* Handle the case where we didn't try to match an instruction because
8209 all the alternatives were incompatible with the current ISA. */
8210 if (!seen_valid_for_isa)
8211 {
8212 match_invalid_for_isa ();
8213 return TRUE;
8214 }
8215
8216 return FALSE;
8217 }
8218
8219 /* Set up global variables for the start of a new macro. */
8220
8221 static void
8222 macro_start (void)
8223 {
8224 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8225 memset (&mips_macro_warning.first_insn_sizes, 0,
8226 sizeof (mips_macro_warning.first_insn_sizes));
8227 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8228 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8229 && delayed_branch_p (&history[0]));
8230 switch (history[0].insn_mo->pinfo2
8231 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8232 {
8233 case INSN2_BRANCH_DELAY_32BIT:
8234 mips_macro_warning.delay_slot_length = 4;
8235 break;
8236 case INSN2_BRANCH_DELAY_16BIT:
8237 mips_macro_warning.delay_slot_length = 2;
8238 break;
8239 default:
8240 mips_macro_warning.delay_slot_length = 0;
8241 break;
8242 }
8243 mips_macro_warning.first_frag = NULL;
8244 }
8245
8246 /* Given that a macro is longer than one instruction or of the wrong size,
8247 return the appropriate warning for it. Return null if no warning is
8248 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8249 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8250 and RELAX_NOMACRO. */
8251
8252 static const char *
8253 macro_warning (relax_substateT subtype)
8254 {
8255 if (subtype & RELAX_DELAY_SLOT)
8256 return _("macro instruction expanded into multiple instructions"
8257 " in a branch delay slot");
8258 else if (subtype & RELAX_NOMACRO)
8259 return _("macro instruction expanded into multiple instructions");
8260 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8261 | RELAX_DELAY_SLOT_SIZE_SECOND))
8262 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8263 ? _("macro instruction expanded into a wrong size instruction"
8264 " in a 16-bit branch delay slot")
8265 : _("macro instruction expanded into a wrong size instruction"
8266 " in a 32-bit branch delay slot"));
8267 else
8268 return 0;
8269 }
8270
8271 /* Finish up a macro. Emit warnings as appropriate. */
8272
8273 static void
8274 macro_end (void)
8275 {
8276 /* Relaxation warning flags. */
8277 relax_substateT subtype = 0;
8278
8279 /* Check delay slot size requirements. */
8280 if (mips_macro_warning.delay_slot_length == 2)
8281 subtype |= RELAX_DELAY_SLOT_16BIT;
8282 if (mips_macro_warning.delay_slot_length != 0)
8283 {
8284 if (mips_macro_warning.delay_slot_length
8285 != mips_macro_warning.first_insn_sizes[0])
8286 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8287 if (mips_macro_warning.delay_slot_length
8288 != mips_macro_warning.first_insn_sizes[1])
8289 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8290 }
8291
8292 /* Check instruction count requirements. */
8293 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8294 {
8295 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8296 subtype |= RELAX_SECOND_LONGER;
8297 if (mips_opts.warn_about_macros)
8298 subtype |= RELAX_NOMACRO;
8299 if (mips_macro_warning.delay_slot_p)
8300 subtype |= RELAX_DELAY_SLOT;
8301 }
8302
8303 /* If both alternatives fail to fill a delay slot correctly,
8304 emit the warning now. */
8305 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8306 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8307 {
8308 relax_substateT s;
8309 const char *msg;
8310
8311 s = subtype & (RELAX_DELAY_SLOT_16BIT
8312 | RELAX_DELAY_SLOT_SIZE_FIRST
8313 | RELAX_DELAY_SLOT_SIZE_SECOND);
8314 msg = macro_warning (s);
8315 if (msg != NULL)
8316 as_warn ("%s", msg);
8317 subtype &= ~s;
8318 }
8319
8320 /* If both implementations are longer than 1 instruction, then emit the
8321 warning now. */
8322 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8323 {
8324 relax_substateT s;
8325 const char *msg;
8326
8327 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8328 msg = macro_warning (s);
8329 if (msg != NULL)
8330 as_warn ("%s", msg);
8331 subtype &= ~s;
8332 }
8333
8334 /* If any flags still set, then one implementation might need a warning
8335 and the other either will need one of a different kind or none at all.
8336 Pass any remaining flags over to relaxation. */
8337 if (mips_macro_warning.first_frag != NULL)
8338 mips_macro_warning.first_frag->fr_subtype |= subtype;
8339 }
8340
8341 /* Instruction operand formats used in macros that vary between
8342 standard MIPS and microMIPS code. */
8343
8344 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8345 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8346 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8347 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8348 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8349 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8350 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8351 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8352
8353 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8354 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8355 : cop12_fmt[mips_opts.micromips])
8356 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8357 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8358 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8359 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8360 : mem12_fmt[mips_opts.micromips])
8361 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8362 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8363 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8364
8365 /* Read a macro's relocation codes from *ARGS and store them in *R.
8366 The first argument in *ARGS will be either the code for a single
8367 relocation or -1 followed by the three codes that make up a
8368 composite relocation. */
8369
8370 static void
8371 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8372 {
8373 int i, next;
8374
8375 next = va_arg (*args, int);
8376 if (next >= 0)
8377 r[0] = (bfd_reloc_code_real_type) next;
8378 else
8379 {
8380 for (i = 0; i < 3; i++)
8381 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8382 /* This function is only used for 16-bit relocation fields.
8383 To make the macro code simpler, treat an unrelocated value
8384 in the same way as BFD_RELOC_LO16. */
8385 if (r[0] == BFD_RELOC_UNUSED)
8386 r[0] = BFD_RELOC_LO16;
8387 }
8388 }
8389
8390 /* Build an instruction created by a macro expansion. This is passed
8391 a pointer to the count of instructions created so far, an
8392 expression, the name of the instruction to build, an operand format
8393 string, and corresponding arguments. */
8394
8395 static void
8396 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8397 {
8398 const struct mips_opcode *mo = NULL;
8399 bfd_reloc_code_real_type r[3];
8400 const struct mips_opcode *amo;
8401 const struct mips_operand *operand;
8402 struct hash_control *hash;
8403 struct mips_cl_insn insn;
8404 va_list args;
8405 unsigned int uval;
8406
8407 va_start (args, fmt);
8408
8409 if (mips_opts.mips16)
8410 {
8411 mips16_macro_build (ep, name, fmt, &args);
8412 va_end (args);
8413 return;
8414 }
8415
8416 r[0] = BFD_RELOC_UNUSED;
8417 r[1] = BFD_RELOC_UNUSED;
8418 r[2] = BFD_RELOC_UNUSED;
8419 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8420 amo = (struct mips_opcode *) hash_find (hash, name);
8421 gas_assert (amo);
8422 gas_assert (strcmp (name, amo->name) == 0);
8423
8424 do
8425 {
8426 /* Search until we get a match for NAME. It is assumed here that
8427 macros will never generate MDMX, MIPS-3D, or MT instructions.
8428 We try to match an instruction that fulfils the branch delay
8429 slot instruction length requirement (if any) of the previous
8430 instruction. While doing this we record the first instruction
8431 seen that matches all the other conditions and use it anyway
8432 if the requirement cannot be met; we will issue an appropriate
8433 warning later on. */
8434 if (strcmp (fmt, amo->args) == 0
8435 && amo->pinfo != INSN_MACRO
8436 && is_opcode_valid (amo)
8437 && is_size_valid (amo))
8438 {
8439 if (is_delay_slot_valid (amo))
8440 {
8441 mo = amo;
8442 break;
8443 }
8444 else if (!mo)
8445 mo = amo;
8446 }
8447
8448 ++amo;
8449 gas_assert (amo->name);
8450 }
8451 while (strcmp (name, amo->name) == 0);
8452
8453 gas_assert (mo);
8454 create_insn (&insn, mo);
8455 for (; *fmt; ++fmt)
8456 {
8457 switch (*fmt)
8458 {
8459 case ',':
8460 case '(':
8461 case ')':
8462 case 'z':
8463 break;
8464
8465 case 'i':
8466 case 'j':
8467 macro_read_relocs (&args, r);
8468 gas_assert (*r == BFD_RELOC_GPREL16
8469 || *r == BFD_RELOC_MIPS_HIGHER
8470 || *r == BFD_RELOC_HI16_S
8471 || *r == BFD_RELOC_LO16
8472 || *r == BFD_RELOC_MIPS_GOT_OFST);
8473 break;
8474
8475 case 'o':
8476 macro_read_relocs (&args, r);
8477 break;
8478
8479 case 'u':
8480 macro_read_relocs (&args, r);
8481 gas_assert (ep != NULL
8482 && (ep->X_op == O_constant
8483 || (ep->X_op == O_symbol
8484 && (*r == BFD_RELOC_MIPS_HIGHEST
8485 || *r == BFD_RELOC_HI16_S
8486 || *r == BFD_RELOC_HI16
8487 || *r == BFD_RELOC_GPREL16
8488 || *r == BFD_RELOC_MIPS_GOT_HI16
8489 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8490 break;
8491
8492 case 'p':
8493 gas_assert (ep != NULL);
8494
8495 /*
8496 * This allows macro() to pass an immediate expression for
8497 * creating short branches without creating a symbol.
8498 *
8499 * We don't allow branch relaxation for these branches, as
8500 * they should only appear in ".set nomacro" anyway.
8501 */
8502 if (ep->X_op == O_constant)
8503 {
8504 /* For microMIPS we always use relocations for branches.
8505 So we should not resolve immediate values. */
8506 gas_assert (!mips_opts.micromips);
8507
8508 if ((ep->X_add_number & 3) != 0)
8509 as_bad (_("branch to misaligned address (0x%lx)"),
8510 (unsigned long) ep->X_add_number);
8511 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8512 as_bad (_("branch address range overflow (0x%lx)"),
8513 (unsigned long) ep->X_add_number);
8514 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8515 ep = NULL;
8516 }
8517 else
8518 *r = BFD_RELOC_16_PCREL_S2;
8519 break;
8520
8521 case 'a':
8522 gas_assert (ep != NULL);
8523 *r = BFD_RELOC_MIPS_JMP;
8524 break;
8525
8526 default:
8527 operand = (mips_opts.micromips
8528 ? decode_micromips_operand (fmt)
8529 : decode_mips_operand (fmt));
8530 if (!operand)
8531 abort ();
8532
8533 uval = va_arg (args, int);
8534 if (operand->type == OP_CLO_CLZ_DEST)
8535 uval |= (uval << 5);
8536 insn_insert_operand (&insn, operand, uval);
8537
8538 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8539 ++fmt;
8540 break;
8541 }
8542 }
8543 va_end (args);
8544 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8545
8546 append_insn (&insn, ep, r, TRUE);
8547 }
8548
8549 static void
8550 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8551 va_list *args)
8552 {
8553 struct mips_opcode *mo;
8554 struct mips_cl_insn insn;
8555 const struct mips_operand *operand;
8556 bfd_reloc_code_real_type r[3]
8557 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8558
8559 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8560 gas_assert (mo);
8561 gas_assert (strcmp (name, mo->name) == 0);
8562
8563 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8564 {
8565 ++mo;
8566 gas_assert (mo->name);
8567 gas_assert (strcmp (name, mo->name) == 0);
8568 }
8569
8570 create_insn (&insn, mo);
8571 for (; *fmt; ++fmt)
8572 {
8573 int c;
8574
8575 c = *fmt;
8576 switch (c)
8577 {
8578 case ',':
8579 case '(':
8580 case ')':
8581 break;
8582
8583 case '0':
8584 case 'S':
8585 case 'P':
8586 case 'R':
8587 break;
8588
8589 case '<':
8590 case '>':
8591 case '4':
8592 case '5':
8593 case 'H':
8594 case 'W':
8595 case 'D':
8596 case 'j':
8597 case '8':
8598 case 'V':
8599 case 'C':
8600 case 'U':
8601 case 'k':
8602 case 'K':
8603 case 'p':
8604 case 'q':
8605 {
8606 offsetT value;
8607
8608 gas_assert (ep != NULL);
8609
8610 if (ep->X_op != O_constant)
8611 *r = (int) BFD_RELOC_UNUSED + c;
8612 else if (calculate_reloc (*r, ep->X_add_number, &value))
8613 {
8614 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8615 ep = NULL;
8616 *r = BFD_RELOC_UNUSED;
8617 }
8618 }
8619 break;
8620
8621 default:
8622 operand = decode_mips16_operand (c, FALSE);
8623 if (!operand)
8624 abort ();
8625
8626 insn_insert_operand (&insn, operand, va_arg (*args, int));
8627 break;
8628 }
8629 }
8630
8631 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8632
8633 append_insn (&insn, ep, r, TRUE);
8634 }
8635
8636 /*
8637 * Generate a "jalr" instruction with a relocation hint to the called
8638 * function. This occurs in NewABI PIC code.
8639 */
8640 static void
8641 macro_build_jalr (expressionS *ep, int cprestore)
8642 {
8643 static const bfd_reloc_code_real_type jalr_relocs[2]
8644 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8645 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8646 const char *jalr;
8647 char *f = NULL;
8648
8649 if (MIPS_JALR_HINT_P (ep))
8650 {
8651 frag_grow (8);
8652 f = frag_more (0);
8653 }
8654 if (mips_opts.micromips)
8655 {
8656 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8657 ? "jalr" : "jalrs");
8658 if (MIPS_JALR_HINT_P (ep)
8659 || mips_opts.insn32
8660 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8661 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8662 else
8663 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8664 }
8665 else
8666 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8667 if (MIPS_JALR_HINT_P (ep))
8668 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8669 }
8670
8671 /*
8672 * Generate a "lui" instruction.
8673 */
8674 static void
8675 macro_build_lui (expressionS *ep, int regnum)
8676 {
8677 gas_assert (! mips_opts.mips16);
8678
8679 if (ep->X_op != O_constant)
8680 {
8681 gas_assert (ep->X_op == O_symbol);
8682 /* _gp_disp is a special case, used from s_cpload.
8683 __gnu_local_gp is used if mips_no_shared. */
8684 gas_assert (mips_pic == NO_PIC
8685 || (! HAVE_NEWABI
8686 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8687 || (! mips_in_shared
8688 && strcmp (S_GET_NAME (ep->X_add_symbol),
8689 "__gnu_local_gp") == 0));
8690 }
8691
8692 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8693 }
8694
8695 /* Generate a sequence of instructions to do a load or store from a constant
8696 offset off of a base register (breg) into/from a target register (treg),
8697 using AT if necessary. */
8698 static void
8699 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8700 int treg, int breg, int dbl)
8701 {
8702 gas_assert (ep->X_op == O_constant);
8703
8704 /* Sign-extending 32-bit constants makes their handling easier. */
8705 if (!dbl)
8706 normalize_constant_expr (ep);
8707
8708 /* Right now, this routine can only handle signed 32-bit constants. */
8709 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8710 as_warn (_("operand overflow"));
8711
8712 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8713 {
8714 /* Signed 16-bit offset will fit in the op. Easy! */
8715 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8716 }
8717 else
8718 {
8719 /* 32-bit offset, need multiple instructions and AT, like:
8720 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8721 addu $tempreg,$tempreg,$breg
8722 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8723 to handle the complete offset. */
8724 macro_build_lui (ep, AT);
8725 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8726 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8727
8728 if (!mips_opts.at)
8729 as_bad (_("macro used $at after \".set noat\""));
8730 }
8731 }
8732
8733 /* set_at()
8734 * Generates code to set the $at register to true (one)
8735 * if reg is less than the immediate expression.
8736 */
8737 static void
8738 set_at (int reg, int unsignedp)
8739 {
8740 if (imm_expr.X_add_number >= -0x8000
8741 && imm_expr.X_add_number < 0x8000)
8742 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8743 AT, reg, BFD_RELOC_LO16);
8744 else
8745 {
8746 load_register (AT, &imm_expr, GPR_SIZE == 64);
8747 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8748 }
8749 }
8750
8751 /* Count the leading zeroes by performing a binary chop. This is a
8752 bulky bit of source, but performance is a LOT better for the
8753 majority of values than a simple loop to count the bits:
8754 for (lcnt = 0; (lcnt < 32); lcnt++)
8755 if ((v) & (1 << (31 - lcnt)))
8756 break;
8757 However it is not code size friendly, and the gain will drop a bit
8758 on certain cached systems.
8759 */
8760 #define COUNT_TOP_ZEROES(v) \
8761 (((v) & ~0xffff) == 0 \
8762 ? ((v) & ~0xff) == 0 \
8763 ? ((v) & ~0xf) == 0 \
8764 ? ((v) & ~0x3) == 0 \
8765 ? ((v) & ~0x1) == 0 \
8766 ? !(v) \
8767 ? 32 \
8768 : 31 \
8769 : 30 \
8770 : ((v) & ~0x7) == 0 \
8771 ? 29 \
8772 : 28 \
8773 : ((v) & ~0x3f) == 0 \
8774 ? ((v) & ~0x1f) == 0 \
8775 ? 27 \
8776 : 26 \
8777 : ((v) & ~0x7f) == 0 \
8778 ? 25 \
8779 : 24 \
8780 : ((v) & ~0xfff) == 0 \
8781 ? ((v) & ~0x3ff) == 0 \
8782 ? ((v) & ~0x1ff) == 0 \
8783 ? 23 \
8784 : 22 \
8785 : ((v) & ~0x7ff) == 0 \
8786 ? 21 \
8787 : 20 \
8788 : ((v) & ~0x3fff) == 0 \
8789 ? ((v) & ~0x1fff) == 0 \
8790 ? 19 \
8791 : 18 \
8792 : ((v) & ~0x7fff) == 0 \
8793 ? 17 \
8794 : 16 \
8795 : ((v) & ~0xffffff) == 0 \
8796 ? ((v) & ~0xfffff) == 0 \
8797 ? ((v) & ~0x3ffff) == 0 \
8798 ? ((v) & ~0x1ffff) == 0 \
8799 ? 15 \
8800 : 14 \
8801 : ((v) & ~0x7ffff) == 0 \
8802 ? 13 \
8803 : 12 \
8804 : ((v) & ~0x3fffff) == 0 \
8805 ? ((v) & ~0x1fffff) == 0 \
8806 ? 11 \
8807 : 10 \
8808 : ((v) & ~0x7fffff) == 0 \
8809 ? 9 \
8810 : 8 \
8811 : ((v) & ~0xfffffff) == 0 \
8812 ? ((v) & ~0x3ffffff) == 0 \
8813 ? ((v) & ~0x1ffffff) == 0 \
8814 ? 7 \
8815 : 6 \
8816 : ((v) & ~0x7ffffff) == 0 \
8817 ? 5 \
8818 : 4 \
8819 : ((v) & ~0x3fffffff) == 0 \
8820 ? ((v) & ~0x1fffffff) == 0 \
8821 ? 3 \
8822 : 2 \
8823 : ((v) & ~0x7fffffff) == 0 \
8824 ? 1 \
8825 : 0)
8826
8827 /* load_register()
8828 * This routine generates the least number of instructions necessary to load
8829 * an absolute expression value into a register.
8830 */
8831 static void
8832 load_register (int reg, expressionS *ep, int dbl)
8833 {
8834 int freg;
8835 expressionS hi32, lo32;
8836
8837 if (ep->X_op != O_big)
8838 {
8839 gas_assert (ep->X_op == O_constant);
8840
8841 /* Sign-extending 32-bit constants makes their handling easier. */
8842 if (!dbl)
8843 normalize_constant_expr (ep);
8844
8845 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8846 {
8847 /* We can handle 16 bit signed values with an addiu to
8848 $zero. No need to ever use daddiu here, since $zero and
8849 the result are always correct in 32 bit mode. */
8850 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8851 return;
8852 }
8853 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8854 {
8855 /* We can handle 16 bit unsigned values with an ori to
8856 $zero. */
8857 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8858 return;
8859 }
8860 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8861 {
8862 /* 32 bit values require an lui. */
8863 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8864 if ((ep->X_add_number & 0xffff) != 0)
8865 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8866 return;
8867 }
8868 }
8869
8870 /* The value is larger than 32 bits. */
8871
8872 if (!dbl || GPR_SIZE == 32)
8873 {
8874 char value[32];
8875
8876 sprintf_vma (value, ep->X_add_number);
8877 as_bad (_("number (0x%s) larger than 32 bits"), value);
8878 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8879 return;
8880 }
8881
8882 if (ep->X_op != O_big)
8883 {
8884 hi32 = *ep;
8885 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8886 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8887 hi32.X_add_number &= 0xffffffff;
8888 lo32 = *ep;
8889 lo32.X_add_number &= 0xffffffff;
8890 }
8891 else
8892 {
8893 gas_assert (ep->X_add_number > 2);
8894 if (ep->X_add_number == 3)
8895 generic_bignum[3] = 0;
8896 else if (ep->X_add_number > 4)
8897 as_bad (_("number larger than 64 bits"));
8898 lo32.X_op = O_constant;
8899 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8900 hi32.X_op = O_constant;
8901 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8902 }
8903
8904 if (hi32.X_add_number == 0)
8905 freg = 0;
8906 else
8907 {
8908 int shift, bit;
8909 unsigned long hi, lo;
8910
8911 if (hi32.X_add_number == (offsetT) 0xffffffff)
8912 {
8913 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8914 {
8915 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8916 return;
8917 }
8918 if (lo32.X_add_number & 0x80000000)
8919 {
8920 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8921 if (lo32.X_add_number & 0xffff)
8922 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8923 return;
8924 }
8925 }
8926
8927 /* Check for 16bit shifted constant. We know that hi32 is
8928 non-zero, so start the mask on the first bit of the hi32
8929 value. */
8930 shift = 17;
8931 do
8932 {
8933 unsigned long himask, lomask;
8934
8935 if (shift < 32)
8936 {
8937 himask = 0xffff >> (32 - shift);
8938 lomask = (0xffff << shift) & 0xffffffff;
8939 }
8940 else
8941 {
8942 himask = 0xffff << (shift - 32);
8943 lomask = 0;
8944 }
8945 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8946 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8947 {
8948 expressionS tmp;
8949
8950 tmp.X_op = O_constant;
8951 if (shift < 32)
8952 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8953 | (lo32.X_add_number >> shift));
8954 else
8955 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8956 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8957 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8958 reg, reg, (shift >= 32) ? shift - 32 : shift);
8959 return;
8960 }
8961 ++shift;
8962 }
8963 while (shift <= (64 - 16));
8964
8965 /* Find the bit number of the lowest one bit, and store the
8966 shifted value in hi/lo. */
8967 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8968 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8969 if (lo != 0)
8970 {
8971 bit = 0;
8972 while ((lo & 1) == 0)
8973 {
8974 lo >>= 1;
8975 ++bit;
8976 }
8977 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8978 hi >>= bit;
8979 }
8980 else
8981 {
8982 bit = 32;
8983 while ((hi & 1) == 0)
8984 {
8985 hi >>= 1;
8986 ++bit;
8987 }
8988 lo = hi;
8989 hi = 0;
8990 }
8991
8992 /* Optimize if the shifted value is a (power of 2) - 1. */
8993 if ((hi == 0 && ((lo + 1) & lo) == 0)
8994 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
8995 {
8996 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
8997 if (shift != 0)
8998 {
8999 expressionS tmp;
9000
9001 /* This instruction will set the register to be all
9002 ones. */
9003 tmp.X_op = O_constant;
9004 tmp.X_add_number = (offsetT) -1;
9005 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9006 if (bit != 0)
9007 {
9008 bit += shift;
9009 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9010 reg, reg, (bit >= 32) ? bit - 32 : bit);
9011 }
9012 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9013 reg, reg, (shift >= 32) ? shift - 32 : shift);
9014 return;
9015 }
9016 }
9017
9018 /* Sign extend hi32 before calling load_register, because we can
9019 generally get better code when we load a sign extended value. */
9020 if ((hi32.X_add_number & 0x80000000) != 0)
9021 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9022 load_register (reg, &hi32, 0);
9023 freg = reg;
9024 }
9025 if ((lo32.X_add_number & 0xffff0000) == 0)
9026 {
9027 if (freg != 0)
9028 {
9029 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9030 freg = reg;
9031 }
9032 }
9033 else
9034 {
9035 expressionS mid16;
9036
9037 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9038 {
9039 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9040 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9041 return;
9042 }
9043
9044 if (freg != 0)
9045 {
9046 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9047 freg = reg;
9048 }
9049 mid16 = lo32;
9050 mid16.X_add_number >>= 16;
9051 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9052 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9053 freg = reg;
9054 }
9055 if ((lo32.X_add_number & 0xffff) != 0)
9056 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9057 }
9058
9059 static inline void
9060 load_delay_nop (void)
9061 {
9062 if (!gpr_interlocks)
9063 macro_build (NULL, "nop", "");
9064 }
9065
9066 /* Load an address into a register. */
9067
9068 static void
9069 load_address (int reg, expressionS *ep, int *used_at)
9070 {
9071 if (ep->X_op != O_constant
9072 && ep->X_op != O_symbol)
9073 {
9074 as_bad (_("expression too complex"));
9075 ep->X_op = O_constant;
9076 }
9077
9078 if (ep->X_op == O_constant)
9079 {
9080 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9081 return;
9082 }
9083
9084 if (mips_pic == NO_PIC)
9085 {
9086 /* If this is a reference to a GP relative symbol, we want
9087 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9088 Otherwise we want
9089 lui $reg,<sym> (BFD_RELOC_HI16_S)
9090 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9091 If we have an addend, we always use the latter form.
9092
9093 With 64bit address space and a usable $at we want
9094 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9095 lui $at,<sym> (BFD_RELOC_HI16_S)
9096 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9097 daddiu $at,<sym> (BFD_RELOC_LO16)
9098 dsll32 $reg,0
9099 daddu $reg,$reg,$at
9100
9101 If $at is already in use, we use a path which is suboptimal
9102 on superscalar processors.
9103 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9104 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9105 dsll $reg,16
9106 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9107 dsll $reg,16
9108 daddiu $reg,<sym> (BFD_RELOC_LO16)
9109
9110 For GP relative symbols in 64bit address space we can use
9111 the same sequence as in 32bit address space. */
9112 if (HAVE_64BIT_SYMBOLS)
9113 {
9114 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9115 && !nopic_need_relax (ep->X_add_symbol, 1))
9116 {
9117 relax_start (ep->X_add_symbol);
9118 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9119 mips_gp_register, BFD_RELOC_GPREL16);
9120 relax_switch ();
9121 }
9122
9123 if (*used_at == 0 && mips_opts.at)
9124 {
9125 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9126 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9127 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9128 BFD_RELOC_MIPS_HIGHER);
9129 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9130 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9131 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9132 *used_at = 1;
9133 }
9134 else
9135 {
9136 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9137 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9138 BFD_RELOC_MIPS_HIGHER);
9139 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9140 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9141 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9142 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9143 }
9144
9145 if (mips_relax.sequence)
9146 relax_end ();
9147 }
9148 else
9149 {
9150 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9151 && !nopic_need_relax (ep->X_add_symbol, 1))
9152 {
9153 relax_start (ep->X_add_symbol);
9154 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9155 mips_gp_register, BFD_RELOC_GPREL16);
9156 relax_switch ();
9157 }
9158 macro_build_lui (ep, reg);
9159 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9160 reg, reg, BFD_RELOC_LO16);
9161 if (mips_relax.sequence)
9162 relax_end ();
9163 }
9164 }
9165 else if (!mips_big_got)
9166 {
9167 expressionS ex;
9168
9169 /* If this is a reference to an external symbol, we want
9170 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9171 Otherwise we want
9172 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9173 nop
9174 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9175 If there is a constant, it must be added in after.
9176
9177 If we have NewABI, we want
9178 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9179 unless we're referencing a global symbol with a non-zero
9180 offset, in which case cst must be added separately. */
9181 if (HAVE_NEWABI)
9182 {
9183 if (ep->X_add_number)
9184 {
9185 ex.X_add_number = ep->X_add_number;
9186 ep->X_add_number = 0;
9187 relax_start (ep->X_add_symbol);
9188 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9189 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9190 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9191 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9192 ex.X_op = O_constant;
9193 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9194 reg, reg, BFD_RELOC_LO16);
9195 ep->X_add_number = ex.X_add_number;
9196 relax_switch ();
9197 }
9198 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9199 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9200 if (mips_relax.sequence)
9201 relax_end ();
9202 }
9203 else
9204 {
9205 ex.X_add_number = ep->X_add_number;
9206 ep->X_add_number = 0;
9207 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9208 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9209 load_delay_nop ();
9210 relax_start (ep->X_add_symbol);
9211 relax_switch ();
9212 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9213 BFD_RELOC_LO16);
9214 relax_end ();
9215
9216 if (ex.X_add_number != 0)
9217 {
9218 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9219 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9220 ex.X_op = O_constant;
9221 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9222 reg, reg, BFD_RELOC_LO16);
9223 }
9224 }
9225 }
9226 else if (mips_big_got)
9227 {
9228 expressionS ex;
9229
9230 /* This is the large GOT case. If this is a reference to an
9231 external symbol, we want
9232 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9233 addu $reg,$reg,$gp
9234 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9235
9236 Otherwise, for a reference to a local symbol in old ABI, we want
9237 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9238 nop
9239 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9240 If there is a constant, it must be added in after.
9241
9242 In the NewABI, for local symbols, with or without offsets, we want:
9243 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9244 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9245 */
9246 if (HAVE_NEWABI)
9247 {
9248 ex.X_add_number = ep->X_add_number;
9249 ep->X_add_number = 0;
9250 relax_start (ep->X_add_symbol);
9251 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9252 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9253 reg, reg, mips_gp_register);
9254 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9255 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9256 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9257 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9258 else if (ex.X_add_number)
9259 {
9260 ex.X_op = O_constant;
9261 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9262 BFD_RELOC_LO16);
9263 }
9264
9265 ep->X_add_number = ex.X_add_number;
9266 relax_switch ();
9267 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9268 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9269 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9270 BFD_RELOC_MIPS_GOT_OFST);
9271 relax_end ();
9272 }
9273 else
9274 {
9275 ex.X_add_number = ep->X_add_number;
9276 ep->X_add_number = 0;
9277 relax_start (ep->X_add_symbol);
9278 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9279 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9280 reg, reg, mips_gp_register);
9281 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9282 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9283 relax_switch ();
9284 if (reg_needs_delay (mips_gp_register))
9285 {
9286 /* We need a nop before loading from $gp. This special
9287 check is required because the lui which starts the main
9288 instruction stream does not refer to $gp, and so will not
9289 insert the nop which may be required. */
9290 macro_build (NULL, "nop", "");
9291 }
9292 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9293 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9294 load_delay_nop ();
9295 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9296 BFD_RELOC_LO16);
9297 relax_end ();
9298
9299 if (ex.X_add_number != 0)
9300 {
9301 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9302 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9303 ex.X_op = O_constant;
9304 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9305 BFD_RELOC_LO16);
9306 }
9307 }
9308 }
9309 else
9310 abort ();
9311
9312 if (!mips_opts.at && *used_at == 1)
9313 as_bad (_("macro used $at after \".set noat\""));
9314 }
9315
9316 /* Move the contents of register SOURCE into register DEST. */
9317
9318 static void
9319 move_register (int dest, int source)
9320 {
9321 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9322 instruction specifically requires a 32-bit one. */
9323 if (mips_opts.micromips
9324 && !mips_opts.insn32
9325 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9326 macro_build (NULL, "move", "mp,mj", dest, source);
9327 else
9328 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9329 }
9330
9331 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9332 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9333 The two alternatives are:
9334
9335 Global symbol Local sybmol
9336 ------------- ------------
9337 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9338 ... ...
9339 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9340
9341 load_got_offset emits the first instruction and add_got_offset
9342 emits the second for a 16-bit offset or add_got_offset_hilo emits
9343 a sequence to add a 32-bit offset using a scratch register. */
9344
9345 static void
9346 load_got_offset (int dest, expressionS *local)
9347 {
9348 expressionS global;
9349
9350 global = *local;
9351 global.X_add_number = 0;
9352
9353 relax_start (local->X_add_symbol);
9354 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9355 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9356 relax_switch ();
9357 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9358 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9359 relax_end ();
9360 }
9361
9362 static void
9363 add_got_offset (int dest, expressionS *local)
9364 {
9365 expressionS global;
9366
9367 global.X_op = O_constant;
9368 global.X_op_symbol = NULL;
9369 global.X_add_symbol = NULL;
9370 global.X_add_number = local->X_add_number;
9371
9372 relax_start (local->X_add_symbol);
9373 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9374 dest, dest, BFD_RELOC_LO16);
9375 relax_switch ();
9376 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9377 relax_end ();
9378 }
9379
9380 static void
9381 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9382 {
9383 expressionS global;
9384 int hold_mips_optimize;
9385
9386 global.X_op = O_constant;
9387 global.X_op_symbol = NULL;
9388 global.X_add_symbol = NULL;
9389 global.X_add_number = local->X_add_number;
9390
9391 relax_start (local->X_add_symbol);
9392 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9393 relax_switch ();
9394 /* Set mips_optimize around the lui instruction to avoid
9395 inserting an unnecessary nop after the lw. */
9396 hold_mips_optimize = mips_optimize;
9397 mips_optimize = 2;
9398 macro_build_lui (&global, tmp);
9399 mips_optimize = hold_mips_optimize;
9400 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9401 relax_end ();
9402
9403 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9404 }
9405
9406 /* Emit a sequence of instructions to emulate a branch likely operation.
9407 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9408 is its complementing branch with the original condition negated.
9409 CALL is set if the original branch specified the link operation.
9410 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9411
9412 Code like this is produced in the noreorder mode:
9413
9414 BRNEG <args>, 1f
9415 nop
9416 b <sym>
9417 delay slot (executed only if branch taken)
9418 1:
9419
9420 or, if CALL is set:
9421
9422 BRNEG <args>, 1f
9423 nop
9424 bal <sym>
9425 delay slot (executed only if branch taken)
9426 1:
9427
9428 In the reorder mode the delay slot would be filled with a nop anyway,
9429 so code produced is simply:
9430
9431 BR <args>, <sym>
9432 nop
9433
9434 This function is used when producing code for the microMIPS ASE that
9435 does not implement branch likely instructions in hardware. */
9436
9437 static void
9438 macro_build_branch_likely (const char *br, const char *brneg,
9439 int call, expressionS *ep, const char *fmt,
9440 unsigned int sreg, unsigned int treg)
9441 {
9442 int noreorder = mips_opts.noreorder;
9443 expressionS expr1;
9444
9445 gas_assert (mips_opts.micromips);
9446 start_noreorder ();
9447 if (noreorder)
9448 {
9449 micromips_label_expr (&expr1);
9450 macro_build (&expr1, brneg, fmt, sreg, treg);
9451 macro_build (NULL, "nop", "");
9452 macro_build (ep, call ? "bal" : "b", "p");
9453
9454 /* Set to true so that append_insn adds a label. */
9455 emit_branch_likely_macro = TRUE;
9456 }
9457 else
9458 {
9459 macro_build (ep, br, fmt, sreg, treg);
9460 macro_build (NULL, "nop", "");
9461 }
9462 end_noreorder ();
9463 }
9464
9465 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9466 the condition code tested. EP specifies the branch target. */
9467
9468 static void
9469 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9470 {
9471 const int call = 0;
9472 const char *brneg;
9473 const char *br;
9474
9475 switch (type)
9476 {
9477 case M_BC1FL:
9478 br = "bc1f";
9479 brneg = "bc1t";
9480 break;
9481 case M_BC1TL:
9482 br = "bc1t";
9483 brneg = "bc1f";
9484 break;
9485 case M_BC2FL:
9486 br = "bc2f";
9487 brneg = "bc2t";
9488 break;
9489 case M_BC2TL:
9490 br = "bc2t";
9491 brneg = "bc2f";
9492 break;
9493 default:
9494 abort ();
9495 }
9496 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9497 }
9498
9499 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9500 the register tested. EP specifies the branch target. */
9501
9502 static void
9503 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9504 {
9505 const char *brneg = NULL;
9506 const char *br;
9507 int call = 0;
9508
9509 switch (type)
9510 {
9511 case M_BGEZ:
9512 br = "bgez";
9513 break;
9514 case M_BGEZL:
9515 br = mips_opts.micromips ? "bgez" : "bgezl";
9516 brneg = "bltz";
9517 break;
9518 case M_BGEZALL:
9519 gas_assert (mips_opts.micromips);
9520 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9521 brneg = "bltz";
9522 call = 1;
9523 break;
9524 case M_BGTZ:
9525 br = "bgtz";
9526 break;
9527 case M_BGTZL:
9528 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9529 brneg = "blez";
9530 break;
9531 case M_BLEZ:
9532 br = "blez";
9533 break;
9534 case M_BLEZL:
9535 br = mips_opts.micromips ? "blez" : "blezl";
9536 brneg = "bgtz";
9537 break;
9538 case M_BLTZ:
9539 br = "bltz";
9540 break;
9541 case M_BLTZL:
9542 br = mips_opts.micromips ? "bltz" : "bltzl";
9543 brneg = "bgez";
9544 break;
9545 case M_BLTZALL:
9546 gas_assert (mips_opts.micromips);
9547 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9548 brneg = "bgez";
9549 call = 1;
9550 break;
9551 default:
9552 abort ();
9553 }
9554 if (mips_opts.micromips && brneg)
9555 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9556 else
9557 macro_build (ep, br, "s,p", sreg);
9558 }
9559
9560 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9561 TREG as the registers tested. EP specifies the branch target. */
9562
9563 static void
9564 macro_build_branch_rsrt (int type, expressionS *ep,
9565 unsigned int sreg, unsigned int treg)
9566 {
9567 const char *brneg = NULL;
9568 const int call = 0;
9569 const char *br;
9570
9571 switch (type)
9572 {
9573 case M_BEQ:
9574 case M_BEQ_I:
9575 br = "beq";
9576 break;
9577 case M_BEQL:
9578 case M_BEQL_I:
9579 br = mips_opts.micromips ? "beq" : "beql";
9580 brneg = "bne";
9581 break;
9582 case M_BNE:
9583 case M_BNE_I:
9584 br = "bne";
9585 break;
9586 case M_BNEL:
9587 case M_BNEL_I:
9588 br = mips_opts.micromips ? "bne" : "bnel";
9589 brneg = "beq";
9590 break;
9591 default:
9592 abort ();
9593 }
9594 if (mips_opts.micromips && brneg)
9595 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9596 else
9597 macro_build (ep, br, "s,t,p", sreg, treg);
9598 }
9599
9600 /* Return the high part that should be loaded in order to make the low
9601 part of VALUE accessible using an offset of OFFBITS bits. */
9602
9603 static offsetT
9604 offset_high_part (offsetT value, unsigned int offbits)
9605 {
9606 offsetT bias;
9607 addressT low_mask;
9608
9609 if (offbits == 0)
9610 return value;
9611 bias = 1 << (offbits - 1);
9612 low_mask = bias * 2 - 1;
9613 return (value + bias) & ~low_mask;
9614 }
9615
9616 /* Return true if the value stored in offset_expr and offset_reloc
9617 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9618 amount that the caller wants to add without inducing overflow
9619 and ALIGN is the known alignment of the value in bytes. */
9620
9621 static bfd_boolean
9622 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9623 {
9624 if (offbits == 16)
9625 {
9626 /* Accept any relocation operator if overflow isn't a concern. */
9627 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9628 return TRUE;
9629
9630 /* These relocations are guaranteed not to overflow in correct links. */
9631 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9632 || gprel16_reloc_p (*offset_reloc))
9633 return TRUE;
9634 }
9635 if (offset_expr.X_op == O_constant
9636 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9637 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9638 return TRUE;
9639 return FALSE;
9640 }
9641
9642 /*
9643 * Build macros
9644 * This routine implements the seemingly endless macro or synthesized
9645 * instructions and addressing modes in the mips assembly language. Many
9646 * of these macros are simple and are similar to each other. These could
9647 * probably be handled by some kind of table or grammar approach instead of
9648 * this verbose method. Others are not simple macros but are more like
9649 * optimizing code generation.
9650 * One interesting optimization is when several store macros appear
9651 * consecutively that would load AT with the upper half of the same address.
9652 * The ensuing load upper instructions are ommited. This implies some kind
9653 * of global optimization. We currently only optimize within a single macro.
9654 * For many of the load and store macros if the address is specified as a
9655 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9656 * first load register 'at' with zero and use it as the base register. The
9657 * mips assembler simply uses register $zero. Just one tiny optimization
9658 * we're missing.
9659 */
9660 static void
9661 macro (struct mips_cl_insn *ip, char *str)
9662 {
9663 const struct mips_operand_array *operands;
9664 unsigned int breg, i;
9665 unsigned int tempreg;
9666 int mask;
9667 int used_at = 0;
9668 expressionS label_expr;
9669 expressionS expr1;
9670 expressionS *ep;
9671 const char *s;
9672 const char *s2;
9673 const char *fmt;
9674 int likely = 0;
9675 int coproc = 0;
9676 int offbits = 16;
9677 int call = 0;
9678 int jals = 0;
9679 int dbl = 0;
9680 int imm = 0;
9681 int ust = 0;
9682 int lp = 0;
9683 bfd_boolean large_offset;
9684 int off;
9685 int hold_mips_optimize;
9686 unsigned int align;
9687 unsigned int op[MAX_OPERANDS];
9688
9689 gas_assert (! mips_opts.mips16);
9690
9691 operands = insn_operands (ip);
9692 for (i = 0; i < MAX_OPERANDS; i++)
9693 if (operands->operand[i])
9694 op[i] = insn_extract_operand (ip, operands->operand[i]);
9695 else
9696 op[i] = -1;
9697
9698 mask = ip->insn_mo->mask;
9699
9700 label_expr.X_op = O_constant;
9701 label_expr.X_op_symbol = NULL;
9702 label_expr.X_add_symbol = NULL;
9703 label_expr.X_add_number = 0;
9704
9705 expr1.X_op = O_constant;
9706 expr1.X_op_symbol = NULL;
9707 expr1.X_add_symbol = NULL;
9708 expr1.X_add_number = 1;
9709 align = 1;
9710
9711 switch (mask)
9712 {
9713 case M_DABS:
9714 dbl = 1;
9715 case M_ABS:
9716 /* bgez $a0,1f
9717 move v0,$a0
9718 sub v0,$zero,$a0
9719 1:
9720 */
9721
9722 start_noreorder ();
9723
9724 if (mips_opts.micromips)
9725 micromips_label_expr (&label_expr);
9726 else
9727 label_expr.X_add_number = 8;
9728 macro_build (&label_expr, "bgez", "s,p", op[1]);
9729 if (op[0] == op[1])
9730 macro_build (NULL, "nop", "");
9731 else
9732 move_register (op[0], op[1]);
9733 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9734 if (mips_opts.micromips)
9735 micromips_add_label ();
9736
9737 end_noreorder ();
9738 break;
9739
9740 case M_ADD_I:
9741 s = "addi";
9742 s2 = "add";
9743 goto do_addi;
9744 case M_ADDU_I:
9745 s = "addiu";
9746 s2 = "addu";
9747 goto do_addi;
9748 case M_DADD_I:
9749 dbl = 1;
9750 s = "daddi";
9751 s2 = "dadd";
9752 if (!mips_opts.micromips)
9753 goto do_addi;
9754 if (imm_expr.X_add_number >= -0x200
9755 && imm_expr.X_add_number < 0x200)
9756 {
9757 macro_build (NULL, s, "t,r,.", op[0], op[1],
9758 (int) imm_expr.X_add_number);
9759 break;
9760 }
9761 goto do_addi_i;
9762 case M_DADDU_I:
9763 dbl = 1;
9764 s = "daddiu";
9765 s2 = "daddu";
9766 do_addi:
9767 if (imm_expr.X_add_number >= -0x8000
9768 && imm_expr.X_add_number < 0x8000)
9769 {
9770 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9771 break;
9772 }
9773 do_addi_i:
9774 used_at = 1;
9775 load_register (AT, &imm_expr, dbl);
9776 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9777 break;
9778
9779 case M_AND_I:
9780 s = "andi";
9781 s2 = "and";
9782 goto do_bit;
9783 case M_OR_I:
9784 s = "ori";
9785 s2 = "or";
9786 goto do_bit;
9787 case M_NOR_I:
9788 s = "";
9789 s2 = "nor";
9790 goto do_bit;
9791 case M_XOR_I:
9792 s = "xori";
9793 s2 = "xor";
9794 do_bit:
9795 if (imm_expr.X_add_number >= 0
9796 && imm_expr.X_add_number < 0x10000)
9797 {
9798 if (mask != M_NOR_I)
9799 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9800 else
9801 {
9802 macro_build (&imm_expr, "ori", "t,r,i",
9803 op[0], op[1], BFD_RELOC_LO16);
9804 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9805 }
9806 break;
9807 }
9808
9809 used_at = 1;
9810 load_register (AT, &imm_expr, GPR_SIZE == 64);
9811 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9812 break;
9813
9814 case M_BALIGN:
9815 switch (imm_expr.X_add_number)
9816 {
9817 case 0:
9818 macro_build (NULL, "nop", "");
9819 break;
9820 case 2:
9821 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9822 break;
9823 case 1:
9824 case 3:
9825 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9826 (int) imm_expr.X_add_number);
9827 break;
9828 default:
9829 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9830 (unsigned long) imm_expr.X_add_number);
9831 break;
9832 }
9833 break;
9834
9835 case M_BC1FL:
9836 case M_BC1TL:
9837 case M_BC2FL:
9838 case M_BC2TL:
9839 gas_assert (mips_opts.micromips);
9840 macro_build_branch_ccl (mask, &offset_expr,
9841 EXTRACT_OPERAND (1, BCC, *ip));
9842 break;
9843
9844 case M_BEQ_I:
9845 case M_BEQL_I:
9846 case M_BNE_I:
9847 case M_BNEL_I:
9848 if (imm_expr.X_add_number == 0)
9849 op[1] = 0;
9850 else
9851 {
9852 op[1] = AT;
9853 used_at = 1;
9854 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9855 }
9856 /* Fall through. */
9857 case M_BEQL:
9858 case M_BNEL:
9859 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9860 break;
9861
9862 case M_BGEL:
9863 likely = 1;
9864 case M_BGE:
9865 if (op[1] == 0)
9866 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9867 else if (op[0] == 0)
9868 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9869 else
9870 {
9871 used_at = 1;
9872 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9873 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9874 &offset_expr, AT, ZERO);
9875 }
9876 break;
9877
9878 case M_BGEZL:
9879 case M_BGEZALL:
9880 case M_BGTZL:
9881 case M_BLEZL:
9882 case M_BLTZL:
9883 case M_BLTZALL:
9884 macro_build_branch_rs (mask, &offset_expr, op[0]);
9885 break;
9886
9887 case M_BGTL_I:
9888 likely = 1;
9889 case M_BGT_I:
9890 /* Check for > max integer. */
9891 if (imm_expr.X_add_number >= GPR_SMAX)
9892 {
9893 do_false:
9894 /* Result is always false. */
9895 if (! likely)
9896 macro_build (NULL, "nop", "");
9897 else
9898 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9899 break;
9900 }
9901 ++imm_expr.X_add_number;
9902 /* FALLTHROUGH */
9903 case M_BGE_I:
9904 case M_BGEL_I:
9905 if (mask == M_BGEL_I)
9906 likely = 1;
9907 if (imm_expr.X_add_number == 0)
9908 {
9909 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9910 &offset_expr, op[0]);
9911 break;
9912 }
9913 if (imm_expr.X_add_number == 1)
9914 {
9915 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9916 &offset_expr, op[0]);
9917 break;
9918 }
9919 if (imm_expr.X_add_number <= GPR_SMIN)
9920 {
9921 do_true:
9922 /* result is always true */
9923 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9924 macro_build (&offset_expr, "b", "p");
9925 break;
9926 }
9927 used_at = 1;
9928 set_at (op[0], 0);
9929 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9930 &offset_expr, AT, ZERO);
9931 break;
9932
9933 case M_BGEUL:
9934 likely = 1;
9935 case M_BGEU:
9936 if (op[1] == 0)
9937 goto do_true;
9938 else if (op[0] == 0)
9939 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9940 &offset_expr, ZERO, op[1]);
9941 else
9942 {
9943 used_at = 1;
9944 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9945 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9946 &offset_expr, AT, ZERO);
9947 }
9948 break;
9949
9950 case M_BGTUL_I:
9951 likely = 1;
9952 case M_BGTU_I:
9953 if (op[0] == 0
9954 || (GPR_SIZE == 32
9955 && imm_expr.X_add_number == -1))
9956 goto do_false;
9957 ++imm_expr.X_add_number;
9958 /* FALLTHROUGH */
9959 case M_BGEU_I:
9960 case M_BGEUL_I:
9961 if (mask == M_BGEUL_I)
9962 likely = 1;
9963 if (imm_expr.X_add_number == 0)
9964 goto do_true;
9965 else if (imm_expr.X_add_number == 1)
9966 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9967 &offset_expr, op[0], ZERO);
9968 else
9969 {
9970 used_at = 1;
9971 set_at (op[0], 1);
9972 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9973 &offset_expr, AT, ZERO);
9974 }
9975 break;
9976
9977 case M_BGTL:
9978 likely = 1;
9979 case M_BGT:
9980 if (op[1] == 0)
9981 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9982 else if (op[0] == 0)
9983 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
9984 else
9985 {
9986 used_at = 1;
9987 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
9988 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9989 &offset_expr, AT, ZERO);
9990 }
9991 break;
9992
9993 case M_BGTUL:
9994 likely = 1;
9995 case M_BGTU:
9996 if (op[1] == 0)
9997 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9998 &offset_expr, op[0], ZERO);
9999 else if (op[0] == 0)
10000 goto do_false;
10001 else
10002 {
10003 used_at = 1;
10004 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10005 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10006 &offset_expr, AT, ZERO);
10007 }
10008 break;
10009
10010 case M_BLEL:
10011 likely = 1;
10012 case M_BLE:
10013 if (op[1] == 0)
10014 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10015 else if (op[0] == 0)
10016 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10017 else
10018 {
10019 used_at = 1;
10020 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10021 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10022 &offset_expr, AT, ZERO);
10023 }
10024 break;
10025
10026 case M_BLEL_I:
10027 likely = 1;
10028 case M_BLE_I:
10029 if (imm_expr.X_add_number >= GPR_SMAX)
10030 goto do_true;
10031 ++imm_expr.X_add_number;
10032 /* FALLTHROUGH */
10033 case M_BLT_I:
10034 case M_BLTL_I:
10035 if (mask == M_BLTL_I)
10036 likely = 1;
10037 if (imm_expr.X_add_number == 0)
10038 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10039 else if (imm_expr.X_add_number == 1)
10040 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10041 else
10042 {
10043 used_at = 1;
10044 set_at (op[0], 0);
10045 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10046 &offset_expr, AT, ZERO);
10047 }
10048 break;
10049
10050 case M_BLEUL:
10051 likely = 1;
10052 case M_BLEU:
10053 if (op[1] == 0)
10054 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10055 &offset_expr, op[0], ZERO);
10056 else if (op[0] == 0)
10057 goto do_true;
10058 else
10059 {
10060 used_at = 1;
10061 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10062 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10063 &offset_expr, AT, ZERO);
10064 }
10065 break;
10066
10067 case M_BLEUL_I:
10068 likely = 1;
10069 case M_BLEU_I:
10070 if (op[0] == 0
10071 || (GPR_SIZE == 32
10072 && imm_expr.X_add_number == -1))
10073 goto do_true;
10074 ++imm_expr.X_add_number;
10075 /* FALLTHROUGH */
10076 case M_BLTU_I:
10077 case M_BLTUL_I:
10078 if (mask == M_BLTUL_I)
10079 likely = 1;
10080 if (imm_expr.X_add_number == 0)
10081 goto do_false;
10082 else if (imm_expr.X_add_number == 1)
10083 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10084 &offset_expr, op[0], ZERO);
10085 else
10086 {
10087 used_at = 1;
10088 set_at (op[0], 1);
10089 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10090 &offset_expr, AT, ZERO);
10091 }
10092 break;
10093
10094 case M_BLTL:
10095 likely = 1;
10096 case M_BLT:
10097 if (op[1] == 0)
10098 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10099 else if (op[0] == 0)
10100 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10101 else
10102 {
10103 used_at = 1;
10104 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10105 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10106 &offset_expr, AT, ZERO);
10107 }
10108 break;
10109
10110 case M_BLTUL:
10111 likely = 1;
10112 case M_BLTU:
10113 if (op[1] == 0)
10114 goto do_false;
10115 else if (op[0] == 0)
10116 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10117 &offset_expr, ZERO, op[1]);
10118 else
10119 {
10120 used_at = 1;
10121 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10122 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10123 &offset_expr, AT, ZERO);
10124 }
10125 break;
10126
10127 case M_DDIV_3:
10128 dbl = 1;
10129 case M_DIV_3:
10130 s = "mflo";
10131 goto do_div3;
10132 case M_DREM_3:
10133 dbl = 1;
10134 case M_REM_3:
10135 s = "mfhi";
10136 do_div3:
10137 if (op[2] == 0)
10138 {
10139 as_warn (_("divide by zero"));
10140 if (mips_trap)
10141 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10142 else
10143 macro_build (NULL, "break", BRK_FMT, 7);
10144 break;
10145 }
10146
10147 start_noreorder ();
10148 if (mips_trap)
10149 {
10150 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10151 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10152 }
10153 else
10154 {
10155 if (mips_opts.micromips)
10156 micromips_label_expr (&label_expr);
10157 else
10158 label_expr.X_add_number = 8;
10159 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10160 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10161 macro_build (NULL, "break", BRK_FMT, 7);
10162 if (mips_opts.micromips)
10163 micromips_add_label ();
10164 }
10165 expr1.X_add_number = -1;
10166 used_at = 1;
10167 load_register (AT, &expr1, dbl);
10168 if (mips_opts.micromips)
10169 micromips_label_expr (&label_expr);
10170 else
10171 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10172 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10173 if (dbl)
10174 {
10175 expr1.X_add_number = 1;
10176 load_register (AT, &expr1, dbl);
10177 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10178 }
10179 else
10180 {
10181 expr1.X_add_number = 0x80000000;
10182 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10183 }
10184 if (mips_trap)
10185 {
10186 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10187 /* We want to close the noreorder block as soon as possible, so
10188 that later insns are available for delay slot filling. */
10189 end_noreorder ();
10190 }
10191 else
10192 {
10193 if (mips_opts.micromips)
10194 micromips_label_expr (&label_expr);
10195 else
10196 label_expr.X_add_number = 8;
10197 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10198 macro_build (NULL, "nop", "");
10199
10200 /* We want to close the noreorder block as soon as possible, so
10201 that later insns are available for delay slot filling. */
10202 end_noreorder ();
10203
10204 macro_build (NULL, "break", BRK_FMT, 6);
10205 }
10206 if (mips_opts.micromips)
10207 micromips_add_label ();
10208 macro_build (NULL, s, MFHL_FMT, op[0]);
10209 break;
10210
10211 case M_DIV_3I:
10212 s = "div";
10213 s2 = "mflo";
10214 goto do_divi;
10215 case M_DIVU_3I:
10216 s = "divu";
10217 s2 = "mflo";
10218 goto do_divi;
10219 case M_REM_3I:
10220 s = "div";
10221 s2 = "mfhi";
10222 goto do_divi;
10223 case M_REMU_3I:
10224 s = "divu";
10225 s2 = "mfhi";
10226 goto do_divi;
10227 case M_DDIV_3I:
10228 dbl = 1;
10229 s = "ddiv";
10230 s2 = "mflo";
10231 goto do_divi;
10232 case M_DDIVU_3I:
10233 dbl = 1;
10234 s = "ddivu";
10235 s2 = "mflo";
10236 goto do_divi;
10237 case M_DREM_3I:
10238 dbl = 1;
10239 s = "ddiv";
10240 s2 = "mfhi";
10241 goto do_divi;
10242 case M_DREMU_3I:
10243 dbl = 1;
10244 s = "ddivu";
10245 s2 = "mfhi";
10246 do_divi:
10247 if (imm_expr.X_add_number == 0)
10248 {
10249 as_warn (_("divide by zero"));
10250 if (mips_trap)
10251 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10252 else
10253 macro_build (NULL, "break", BRK_FMT, 7);
10254 break;
10255 }
10256 if (imm_expr.X_add_number == 1)
10257 {
10258 if (strcmp (s2, "mflo") == 0)
10259 move_register (op[0], op[1]);
10260 else
10261 move_register (op[0], ZERO);
10262 break;
10263 }
10264 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10265 {
10266 if (strcmp (s2, "mflo") == 0)
10267 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10268 else
10269 move_register (op[0], ZERO);
10270 break;
10271 }
10272
10273 used_at = 1;
10274 load_register (AT, &imm_expr, dbl);
10275 macro_build (NULL, s, "z,s,t", op[1], AT);
10276 macro_build (NULL, s2, MFHL_FMT, op[0]);
10277 break;
10278
10279 case M_DIVU_3:
10280 s = "divu";
10281 s2 = "mflo";
10282 goto do_divu3;
10283 case M_REMU_3:
10284 s = "divu";
10285 s2 = "mfhi";
10286 goto do_divu3;
10287 case M_DDIVU_3:
10288 s = "ddivu";
10289 s2 = "mflo";
10290 goto do_divu3;
10291 case M_DREMU_3:
10292 s = "ddivu";
10293 s2 = "mfhi";
10294 do_divu3:
10295 start_noreorder ();
10296 if (mips_trap)
10297 {
10298 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10299 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10300 /* We want to close the noreorder block as soon as possible, so
10301 that later insns are available for delay slot filling. */
10302 end_noreorder ();
10303 }
10304 else
10305 {
10306 if (mips_opts.micromips)
10307 micromips_label_expr (&label_expr);
10308 else
10309 label_expr.X_add_number = 8;
10310 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10311 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10312
10313 /* We want to close the noreorder block as soon as possible, so
10314 that later insns are available for delay slot filling. */
10315 end_noreorder ();
10316 macro_build (NULL, "break", BRK_FMT, 7);
10317 if (mips_opts.micromips)
10318 micromips_add_label ();
10319 }
10320 macro_build (NULL, s2, MFHL_FMT, op[0]);
10321 break;
10322
10323 case M_DLCA_AB:
10324 dbl = 1;
10325 case M_LCA_AB:
10326 call = 1;
10327 goto do_la;
10328 case M_DLA_AB:
10329 dbl = 1;
10330 case M_LA_AB:
10331 do_la:
10332 /* Load the address of a symbol into a register. If breg is not
10333 zero, we then add a base register to it. */
10334
10335 breg = op[2];
10336 if (dbl && GPR_SIZE == 32)
10337 as_warn (_("dla used to load 32-bit register; recommend using la "
10338 "instead"));
10339
10340 if (!dbl && HAVE_64BIT_OBJECTS)
10341 as_warn (_("la used to load 64-bit address; recommend using dla "
10342 "instead"));
10343
10344 if (small_offset_p (0, align, 16))
10345 {
10346 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10347 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10348 break;
10349 }
10350
10351 if (mips_opts.at && (op[0] == breg))
10352 {
10353 tempreg = AT;
10354 used_at = 1;
10355 }
10356 else
10357 tempreg = op[0];
10358
10359 if (offset_expr.X_op != O_symbol
10360 && offset_expr.X_op != O_constant)
10361 {
10362 as_bad (_("expression too complex"));
10363 offset_expr.X_op = O_constant;
10364 }
10365
10366 if (offset_expr.X_op == O_constant)
10367 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10368 else if (mips_pic == NO_PIC)
10369 {
10370 /* If this is a reference to a GP relative symbol, we want
10371 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10372 Otherwise we want
10373 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10374 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10375 If we have a constant, we need two instructions anyhow,
10376 so we may as well always use the latter form.
10377
10378 With 64bit address space and a usable $at we want
10379 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10380 lui $at,<sym> (BFD_RELOC_HI16_S)
10381 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10382 daddiu $at,<sym> (BFD_RELOC_LO16)
10383 dsll32 $tempreg,0
10384 daddu $tempreg,$tempreg,$at
10385
10386 If $at is already in use, we use a path which is suboptimal
10387 on superscalar processors.
10388 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10389 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10390 dsll $tempreg,16
10391 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10392 dsll $tempreg,16
10393 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10394
10395 For GP relative symbols in 64bit address space we can use
10396 the same sequence as in 32bit address space. */
10397 if (HAVE_64BIT_SYMBOLS)
10398 {
10399 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10400 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10401 {
10402 relax_start (offset_expr.X_add_symbol);
10403 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10404 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10405 relax_switch ();
10406 }
10407
10408 if (used_at == 0 && mips_opts.at)
10409 {
10410 macro_build (&offset_expr, "lui", LUI_FMT,
10411 tempreg, BFD_RELOC_MIPS_HIGHEST);
10412 macro_build (&offset_expr, "lui", LUI_FMT,
10413 AT, BFD_RELOC_HI16_S);
10414 macro_build (&offset_expr, "daddiu", "t,r,j",
10415 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10416 macro_build (&offset_expr, "daddiu", "t,r,j",
10417 AT, AT, BFD_RELOC_LO16);
10418 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10419 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10420 used_at = 1;
10421 }
10422 else
10423 {
10424 macro_build (&offset_expr, "lui", LUI_FMT,
10425 tempreg, BFD_RELOC_MIPS_HIGHEST);
10426 macro_build (&offset_expr, "daddiu", "t,r,j",
10427 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10428 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10429 macro_build (&offset_expr, "daddiu", "t,r,j",
10430 tempreg, tempreg, BFD_RELOC_HI16_S);
10431 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10432 macro_build (&offset_expr, "daddiu", "t,r,j",
10433 tempreg, tempreg, BFD_RELOC_LO16);
10434 }
10435
10436 if (mips_relax.sequence)
10437 relax_end ();
10438 }
10439 else
10440 {
10441 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10442 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10443 {
10444 relax_start (offset_expr.X_add_symbol);
10445 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10446 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10447 relax_switch ();
10448 }
10449 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10450 as_bad (_("offset too large"));
10451 macro_build_lui (&offset_expr, tempreg);
10452 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10453 tempreg, tempreg, BFD_RELOC_LO16);
10454 if (mips_relax.sequence)
10455 relax_end ();
10456 }
10457 }
10458 else if (!mips_big_got && !HAVE_NEWABI)
10459 {
10460 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10461
10462 /* If this is a reference to an external symbol, and there
10463 is no constant, we want
10464 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10465 or for lca or if tempreg is PIC_CALL_REG
10466 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10467 For a local symbol, we want
10468 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10469 nop
10470 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10471
10472 If we have a small constant, and this is a reference to
10473 an external symbol, we want
10474 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10475 nop
10476 addiu $tempreg,$tempreg,<constant>
10477 For a local symbol, we want the same instruction
10478 sequence, but we output a BFD_RELOC_LO16 reloc on the
10479 addiu instruction.
10480
10481 If we have a large constant, and this is a reference to
10482 an external symbol, we want
10483 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10484 lui $at,<hiconstant>
10485 addiu $at,$at,<loconstant>
10486 addu $tempreg,$tempreg,$at
10487 For a local symbol, we want the same instruction
10488 sequence, but we output a BFD_RELOC_LO16 reloc on the
10489 addiu instruction.
10490 */
10491
10492 if (offset_expr.X_add_number == 0)
10493 {
10494 if (mips_pic == SVR4_PIC
10495 && breg == 0
10496 && (call || tempreg == PIC_CALL_REG))
10497 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10498
10499 relax_start (offset_expr.X_add_symbol);
10500 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10501 lw_reloc_type, mips_gp_register);
10502 if (breg != 0)
10503 {
10504 /* We're going to put in an addu instruction using
10505 tempreg, so we may as well insert the nop right
10506 now. */
10507 load_delay_nop ();
10508 }
10509 relax_switch ();
10510 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10511 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10512 load_delay_nop ();
10513 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10514 tempreg, tempreg, BFD_RELOC_LO16);
10515 relax_end ();
10516 /* FIXME: If breg == 0, and the next instruction uses
10517 $tempreg, then if this variant case is used an extra
10518 nop will be generated. */
10519 }
10520 else if (offset_expr.X_add_number >= -0x8000
10521 && offset_expr.X_add_number < 0x8000)
10522 {
10523 load_got_offset (tempreg, &offset_expr);
10524 load_delay_nop ();
10525 add_got_offset (tempreg, &offset_expr);
10526 }
10527 else
10528 {
10529 expr1.X_add_number = offset_expr.X_add_number;
10530 offset_expr.X_add_number =
10531 SEXT_16BIT (offset_expr.X_add_number);
10532 load_got_offset (tempreg, &offset_expr);
10533 offset_expr.X_add_number = expr1.X_add_number;
10534 /* If we are going to add in a base register, and the
10535 target register and the base register are the same,
10536 then we are using AT as a temporary register. Since
10537 we want to load the constant into AT, we add our
10538 current AT (from the global offset table) and the
10539 register into the register now, and pretend we were
10540 not using a base register. */
10541 if (breg == op[0])
10542 {
10543 load_delay_nop ();
10544 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10545 op[0], AT, breg);
10546 breg = 0;
10547 tempreg = op[0];
10548 }
10549 add_got_offset_hilo (tempreg, &offset_expr, AT);
10550 used_at = 1;
10551 }
10552 }
10553 else if (!mips_big_got && HAVE_NEWABI)
10554 {
10555 int add_breg_early = 0;
10556
10557 /* If this is a reference to an external, and there is no
10558 constant, or local symbol (*), with or without a
10559 constant, we want
10560 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10561 or for lca or if tempreg is PIC_CALL_REG
10562 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10563
10564 If we have a small constant, and this is a reference to
10565 an external symbol, we want
10566 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10567 addiu $tempreg,$tempreg,<constant>
10568
10569 If we have a large constant, and this is a reference to
10570 an external symbol, we want
10571 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10572 lui $at,<hiconstant>
10573 addiu $at,$at,<loconstant>
10574 addu $tempreg,$tempreg,$at
10575
10576 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10577 local symbols, even though it introduces an additional
10578 instruction. */
10579
10580 if (offset_expr.X_add_number)
10581 {
10582 expr1.X_add_number = offset_expr.X_add_number;
10583 offset_expr.X_add_number = 0;
10584
10585 relax_start (offset_expr.X_add_symbol);
10586 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10587 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10588
10589 if (expr1.X_add_number >= -0x8000
10590 && expr1.X_add_number < 0x8000)
10591 {
10592 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10593 tempreg, tempreg, BFD_RELOC_LO16);
10594 }
10595 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10596 {
10597 unsigned int dreg;
10598
10599 /* If we are going to add in a base register, and the
10600 target register and the base register are the same,
10601 then we are using AT as a temporary register. Since
10602 we want to load the constant into AT, we add our
10603 current AT (from the global offset table) and the
10604 register into the register now, and pretend we were
10605 not using a base register. */
10606 if (breg != op[0])
10607 dreg = tempreg;
10608 else
10609 {
10610 gas_assert (tempreg == AT);
10611 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10612 op[0], AT, breg);
10613 dreg = op[0];
10614 add_breg_early = 1;
10615 }
10616
10617 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10618 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10619 dreg, dreg, AT);
10620
10621 used_at = 1;
10622 }
10623 else
10624 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10625
10626 relax_switch ();
10627 offset_expr.X_add_number = expr1.X_add_number;
10628
10629 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10630 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10631 if (add_breg_early)
10632 {
10633 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10634 op[0], tempreg, breg);
10635 breg = 0;
10636 tempreg = op[0];
10637 }
10638 relax_end ();
10639 }
10640 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10641 {
10642 relax_start (offset_expr.X_add_symbol);
10643 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10644 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10645 relax_switch ();
10646 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10647 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10648 relax_end ();
10649 }
10650 else
10651 {
10652 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10653 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10654 }
10655 }
10656 else if (mips_big_got && !HAVE_NEWABI)
10657 {
10658 int gpdelay;
10659 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10660 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10661 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10662
10663 /* This is the large GOT case. If this is a reference to an
10664 external symbol, and there is no constant, we want
10665 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10666 addu $tempreg,$tempreg,$gp
10667 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10668 or for lca or if tempreg is PIC_CALL_REG
10669 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10670 addu $tempreg,$tempreg,$gp
10671 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10672 For a local symbol, we want
10673 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10674 nop
10675 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10676
10677 If we have a small constant, and this is a reference to
10678 an external symbol, we want
10679 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10680 addu $tempreg,$tempreg,$gp
10681 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10682 nop
10683 addiu $tempreg,$tempreg,<constant>
10684 For a local symbol, we want
10685 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10686 nop
10687 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10688
10689 If we have a large constant, and this is a reference to
10690 an external symbol, we want
10691 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10692 addu $tempreg,$tempreg,$gp
10693 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10694 lui $at,<hiconstant>
10695 addiu $at,$at,<loconstant>
10696 addu $tempreg,$tempreg,$at
10697 For a local symbol, we want
10698 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10699 lui $at,<hiconstant>
10700 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10701 addu $tempreg,$tempreg,$at
10702 */
10703
10704 expr1.X_add_number = offset_expr.X_add_number;
10705 offset_expr.X_add_number = 0;
10706 relax_start (offset_expr.X_add_symbol);
10707 gpdelay = reg_needs_delay (mips_gp_register);
10708 if (expr1.X_add_number == 0 && breg == 0
10709 && (call || tempreg == PIC_CALL_REG))
10710 {
10711 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10712 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10713 }
10714 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10715 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10716 tempreg, tempreg, mips_gp_register);
10717 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10718 tempreg, lw_reloc_type, tempreg);
10719 if (expr1.X_add_number == 0)
10720 {
10721 if (breg != 0)
10722 {
10723 /* We're going to put in an addu instruction using
10724 tempreg, so we may as well insert the nop right
10725 now. */
10726 load_delay_nop ();
10727 }
10728 }
10729 else if (expr1.X_add_number >= -0x8000
10730 && expr1.X_add_number < 0x8000)
10731 {
10732 load_delay_nop ();
10733 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10734 tempreg, tempreg, BFD_RELOC_LO16);
10735 }
10736 else
10737 {
10738 unsigned int dreg;
10739
10740 /* If we are going to add in a base register, and the
10741 target register and the base register are the same,
10742 then we are using AT as a temporary register. Since
10743 we want to load the constant into AT, we add our
10744 current AT (from the global offset table) and the
10745 register into the register now, and pretend we were
10746 not using a base register. */
10747 if (breg != op[0])
10748 dreg = tempreg;
10749 else
10750 {
10751 gas_assert (tempreg == AT);
10752 load_delay_nop ();
10753 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10754 op[0], AT, breg);
10755 dreg = op[0];
10756 }
10757
10758 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10759 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10760
10761 used_at = 1;
10762 }
10763 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10764 relax_switch ();
10765
10766 if (gpdelay)
10767 {
10768 /* This is needed because this instruction uses $gp, but
10769 the first instruction on the main stream does not. */
10770 macro_build (NULL, "nop", "");
10771 }
10772
10773 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10774 local_reloc_type, mips_gp_register);
10775 if (expr1.X_add_number >= -0x8000
10776 && expr1.X_add_number < 0x8000)
10777 {
10778 load_delay_nop ();
10779 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10780 tempreg, tempreg, BFD_RELOC_LO16);
10781 /* FIXME: If add_number is 0, and there was no base
10782 register, the external symbol case ended with a load,
10783 so if the symbol turns out to not be external, and
10784 the next instruction uses tempreg, an unnecessary nop
10785 will be inserted. */
10786 }
10787 else
10788 {
10789 if (breg == op[0])
10790 {
10791 /* We must add in the base register now, as in the
10792 external symbol case. */
10793 gas_assert (tempreg == AT);
10794 load_delay_nop ();
10795 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10796 op[0], AT, breg);
10797 tempreg = op[0];
10798 /* We set breg to 0 because we have arranged to add
10799 it in in both cases. */
10800 breg = 0;
10801 }
10802
10803 macro_build_lui (&expr1, AT);
10804 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10805 AT, AT, BFD_RELOC_LO16);
10806 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10807 tempreg, tempreg, AT);
10808 used_at = 1;
10809 }
10810 relax_end ();
10811 }
10812 else if (mips_big_got && HAVE_NEWABI)
10813 {
10814 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10815 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10816 int add_breg_early = 0;
10817
10818 /* This is the large GOT case. If this is a reference to an
10819 external symbol, and there is no constant, we want
10820 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10821 add $tempreg,$tempreg,$gp
10822 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10823 or for lca or if tempreg is PIC_CALL_REG
10824 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10825 add $tempreg,$tempreg,$gp
10826 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10827
10828 If we have a small constant, and this is a reference to
10829 an external symbol, we want
10830 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10831 add $tempreg,$tempreg,$gp
10832 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10833 addi $tempreg,$tempreg,<constant>
10834
10835 If we have a large constant, and this is a reference to
10836 an external symbol, we want
10837 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10838 addu $tempreg,$tempreg,$gp
10839 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10840 lui $at,<hiconstant>
10841 addi $at,$at,<loconstant>
10842 add $tempreg,$tempreg,$at
10843
10844 If we have NewABI, and we know it's a local symbol, we want
10845 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10846 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10847 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10848
10849 relax_start (offset_expr.X_add_symbol);
10850
10851 expr1.X_add_number = offset_expr.X_add_number;
10852 offset_expr.X_add_number = 0;
10853
10854 if (expr1.X_add_number == 0 && breg == 0
10855 && (call || tempreg == PIC_CALL_REG))
10856 {
10857 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10858 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10859 }
10860 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10861 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10862 tempreg, tempreg, mips_gp_register);
10863 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10864 tempreg, lw_reloc_type, tempreg);
10865
10866 if (expr1.X_add_number == 0)
10867 ;
10868 else if (expr1.X_add_number >= -0x8000
10869 && expr1.X_add_number < 0x8000)
10870 {
10871 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10872 tempreg, tempreg, BFD_RELOC_LO16);
10873 }
10874 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10875 {
10876 unsigned int dreg;
10877
10878 /* If we are going to add in a base register, and the
10879 target register and the base register are the same,
10880 then we are using AT as a temporary register. Since
10881 we want to load the constant into AT, we add our
10882 current AT (from the global offset table) and the
10883 register into the register now, and pretend we were
10884 not using a base register. */
10885 if (breg != op[0])
10886 dreg = tempreg;
10887 else
10888 {
10889 gas_assert (tempreg == AT);
10890 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10891 op[0], AT, breg);
10892 dreg = op[0];
10893 add_breg_early = 1;
10894 }
10895
10896 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10897 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10898
10899 used_at = 1;
10900 }
10901 else
10902 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10903
10904 relax_switch ();
10905 offset_expr.X_add_number = expr1.X_add_number;
10906 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10907 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10908 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10909 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10910 if (add_breg_early)
10911 {
10912 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10913 op[0], tempreg, breg);
10914 breg = 0;
10915 tempreg = op[0];
10916 }
10917 relax_end ();
10918 }
10919 else
10920 abort ();
10921
10922 if (breg != 0)
10923 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10924 break;
10925
10926 case M_MSGSND:
10927 gas_assert (!mips_opts.micromips);
10928 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10929 break;
10930
10931 case M_MSGLD:
10932 gas_assert (!mips_opts.micromips);
10933 macro_build (NULL, "c2", "C", 0x02);
10934 break;
10935
10936 case M_MSGLD_T:
10937 gas_assert (!mips_opts.micromips);
10938 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10939 break;
10940
10941 case M_MSGWAIT:
10942 gas_assert (!mips_opts.micromips);
10943 macro_build (NULL, "c2", "C", 3);
10944 break;
10945
10946 case M_MSGWAIT_T:
10947 gas_assert (!mips_opts.micromips);
10948 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10949 break;
10950
10951 case M_J_A:
10952 /* The j instruction may not be used in PIC code, since it
10953 requires an absolute address. We convert it to a b
10954 instruction. */
10955 if (mips_pic == NO_PIC)
10956 macro_build (&offset_expr, "j", "a");
10957 else
10958 macro_build (&offset_expr, "b", "p");
10959 break;
10960
10961 /* The jal instructions must be handled as macros because when
10962 generating PIC code they expand to multi-instruction
10963 sequences. Normally they are simple instructions. */
10964 case M_JALS_1:
10965 op[1] = op[0];
10966 op[0] = RA;
10967 /* Fall through. */
10968 case M_JALS_2:
10969 gas_assert (mips_opts.micromips);
10970 if (mips_opts.insn32)
10971 {
10972 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10973 break;
10974 }
10975 jals = 1;
10976 goto jal;
10977 case M_JAL_1:
10978 op[1] = op[0];
10979 op[0] = RA;
10980 /* Fall through. */
10981 case M_JAL_2:
10982 jal:
10983 if (mips_pic == NO_PIC)
10984 {
10985 s = jals ? "jalrs" : "jalr";
10986 if (mips_opts.micromips
10987 && !mips_opts.insn32
10988 && op[0] == RA
10989 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
10990 macro_build (NULL, s, "mj", op[1]);
10991 else
10992 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
10993 }
10994 else
10995 {
10996 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
10997 && mips_cprestore_offset >= 0);
10998
10999 if (op[1] != PIC_CALL_REG)
11000 as_warn (_("MIPS PIC call to register other than $25"));
11001
11002 s = ((mips_opts.micromips
11003 && !mips_opts.insn32
11004 && (!mips_opts.noreorder || cprestore))
11005 ? "jalrs" : "jalr");
11006 if (mips_opts.micromips
11007 && !mips_opts.insn32
11008 && op[0] == RA
11009 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11010 macro_build (NULL, s, "mj", op[1]);
11011 else
11012 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11013 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11014 {
11015 if (mips_cprestore_offset < 0)
11016 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11017 else
11018 {
11019 if (!mips_frame_reg_valid)
11020 {
11021 as_warn (_("no .frame pseudo-op used in PIC code"));
11022 /* Quiet this warning. */
11023 mips_frame_reg_valid = 1;
11024 }
11025 if (!mips_cprestore_valid)
11026 {
11027 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11028 /* Quiet this warning. */
11029 mips_cprestore_valid = 1;
11030 }
11031 if (mips_opts.noreorder)
11032 macro_build (NULL, "nop", "");
11033 expr1.X_add_number = mips_cprestore_offset;
11034 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11035 mips_gp_register,
11036 mips_frame_reg,
11037 HAVE_64BIT_ADDRESSES);
11038 }
11039 }
11040 }
11041
11042 break;
11043
11044 case M_JALS_A:
11045 gas_assert (mips_opts.micromips);
11046 if (mips_opts.insn32)
11047 {
11048 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11049 break;
11050 }
11051 jals = 1;
11052 /* Fall through. */
11053 case M_JAL_A:
11054 if (mips_pic == NO_PIC)
11055 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11056 else if (mips_pic == SVR4_PIC)
11057 {
11058 /* If this is a reference to an external symbol, and we are
11059 using a small GOT, we want
11060 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11061 nop
11062 jalr $ra,$25
11063 nop
11064 lw $gp,cprestore($sp)
11065 The cprestore value is set using the .cprestore
11066 pseudo-op. If we are using a big GOT, we want
11067 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11068 addu $25,$25,$gp
11069 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11070 nop
11071 jalr $ra,$25
11072 nop
11073 lw $gp,cprestore($sp)
11074 If the symbol is not external, we want
11075 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11076 nop
11077 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11078 jalr $ra,$25
11079 nop
11080 lw $gp,cprestore($sp)
11081
11082 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11083 sequences above, minus nops, unless the symbol is local,
11084 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11085 GOT_DISP. */
11086 if (HAVE_NEWABI)
11087 {
11088 if (!mips_big_got)
11089 {
11090 relax_start (offset_expr.X_add_symbol);
11091 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11092 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11093 mips_gp_register);
11094 relax_switch ();
11095 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11096 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11097 mips_gp_register);
11098 relax_end ();
11099 }
11100 else
11101 {
11102 relax_start (offset_expr.X_add_symbol);
11103 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11104 BFD_RELOC_MIPS_CALL_HI16);
11105 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11106 PIC_CALL_REG, mips_gp_register);
11107 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11108 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11109 PIC_CALL_REG);
11110 relax_switch ();
11111 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11112 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11113 mips_gp_register);
11114 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11115 PIC_CALL_REG, PIC_CALL_REG,
11116 BFD_RELOC_MIPS_GOT_OFST);
11117 relax_end ();
11118 }
11119
11120 macro_build_jalr (&offset_expr, 0);
11121 }
11122 else
11123 {
11124 relax_start (offset_expr.X_add_symbol);
11125 if (!mips_big_got)
11126 {
11127 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11128 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11129 mips_gp_register);
11130 load_delay_nop ();
11131 relax_switch ();
11132 }
11133 else
11134 {
11135 int gpdelay;
11136
11137 gpdelay = reg_needs_delay (mips_gp_register);
11138 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11139 BFD_RELOC_MIPS_CALL_HI16);
11140 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11141 PIC_CALL_REG, mips_gp_register);
11142 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11143 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11144 PIC_CALL_REG);
11145 load_delay_nop ();
11146 relax_switch ();
11147 if (gpdelay)
11148 macro_build (NULL, "nop", "");
11149 }
11150 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11151 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11152 mips_gp_register);
11153 load_delay_nop ();
11154 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11155 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11156 relax_end ();
11157 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11158
11159 if (mips_cprestore_offset < 0)
11160 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11161 else
11162 {
11163 if (!mips_frame_reg_valid)
11164 {
11165 as_warn (_("no .frame pseudo-op used in PIC code"));
11166 /* Quiet this warning. */
11167 mips_frame_reg_valid = 1;
11168 }
11169 if (!mips_cprestore_valid)
11170 {
11171 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11172 /* Quiet this warning. */
11173 mips_cprestore_valid = 1;
11174 }
11175 if (mips_opts.noreorder)
11176 macro_build (NULL, "nop", "");
11177 expr1.X_add_number = mips_cprestore_offset;
11178 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11179 mips_gp_register,
11180 mips_frame_reg,
11181 HAVE_64BIT_ADDRESSES);
11182 }
11183 }
11184 }
11185 else if (mips_pic == VXWORKS_PIC)
11186 as_bad (_("non-PIC jump used in PIC library"));
11187 else
11188 abort ();
11189
11190 break;
11191
11192 case M_LBUE_AB:
11193 s = "lbue";
11194 fmt = "t,+j(b)";
11195 offbits = 9;
11196 goto ld_st;
11197 case M_LHUE_AB:
11198 s = "lhue";
11199 fmt = "t,+j(b)";
11200 offbits = 9;
11201 goto ld_st;
11202 case M_LBE_AB:
11203 s = "lbe";
11204 fmt = "t,+j(b)";
11205 offbits = 9;
11206 goto ld_st;
11207 case M_LHE_AB:
11208 s = "lhe";
11209 fmt = "t,+j(b)";
11210 offbits = 9;
11211 goto ld_st;
11212 case M_LLE_AB:
11213 s = "lle";
11214 fmt = "t,+j(b)";
11215 offbits = 9;
11216 goto ld_st;
11217 case M_LWE_AB:
11218 s = "lwe";
11219 fmt = "t,+j(b)";
11220 offbits = 9;
11221 goto ld_st;
11222 case M_LWLE_AB:
11223 s = "lwle";
11224 fmt = "t,+j(b)";
11225 offbits = 9;
11226 goto ld_st;
11227 case M_LWRE_AB:
11228 s = "lwre";
11229 fmt = "t,+j(b)";
11230 offbits = 9;
11231 goto ld_st;
11232 case M_SBE_AB:
11233 s = "sbe";
11234 fmt = "t,+j(b)";
11235 offbits = 9;
11236 goto ld_st;
11237 case M_SCE_AB:
11238 s = "sce";
11239 fmt = "t,+j(b)";
11240 offbits = 9;
11241 goto ld_st;
11242 case M_SHE_AB:
11243 s = "she";
11244 fmt = "t,+j(b)";
11245 offbits = 9;
11246 goto ld_st;
11247 case M_SWE_AB:
11248 s = "swe";
11249 fmt = "t,+j(b)";
11250 offbits = 9;
11251 goto ld_st;
11252 case M_SWLE_AB:
11253 s = "swle";
11254 fmt = "t,+j(b)";
11255 offbits = 9;
11256 goto ld_st;
11257 case M_SWRE_AB:
11258 s = "swre";
11259 fmt = "t,+j(b)";
11260 offbits = 9;
11261 goto ld_st;
11262 case M_ACLR_AB:
11263 s = "aclr";
11264 fmt = "\\,~(b)";
11265 offbits = 12;
11266 goto ld_st;
11267 case M_ASET_AB:
11268 s = "aset";
11269 fmt = "\\,~(b)";
11270 offbits = 12;
11271 goto ld_st;
11272 case M_LB_AB:
11273 s = "lb";
11274 fmt = "t,o(b)";
11275 goto ld;
11276 case M_LBU_AB:
11277 s = "lbu";
11278 fmt = "t,o(b)";
11279 goto ld;
11280 case M_LH_AB:
11281 s = "lh";
11282 fmt = "t,o(b)";
11283 goto ld;
11284 case M_LHU_AB:
11285 s = "lhu";
11286 fmt = "t,o(b)";
11287 goto ld;
11288 case M_LW_AB:
11289 s = "lw";
11290 fmt = "t,o(b)";
11291 goto ld;
11292 case M_LWC0_AB:
11293 gas_assert (!mips_opts.micromips);
11294 s = "lwc0";
11295 fmt = "E,o(b)";
11296 /* Itbl support may require additional care here. */
11297 coproc = 1;
11298 goto ld_st;
11299 case M_LWC1_AB:
11300 s = "lwc1";
11301 fmt = "T,o(b)";
11302 /* Itbl support may require additional care here. */
11303 coproc = 1;
11304 goto ld_st;
11305 case M_LWC2_AB:
11306 s = "lwc2";
11307 fmt = COP12_FMT;
11308 offbits = (mips_opts.micromips ? 12
11309 : ISA_IS_R6 (mips_opts.isa) ? 11
11310 : 16);
11311 /* Itbl support may require additional care here. */
11312 coproc = 1;
11313 goto ld_st;
11314 case M_LWC3_AB:
11315 gas_assert (!mips_opts.micromips);
11316 s = "lwc3";
11317 fmt = "E,o(b)";
11318 /* Itbl support may require additional care here. */
11319 coproc = 1;
11320 goto ld_st;
11321 case M_LWL_AB:
11322 s = "lwl";
11323 fmt = MEM12_FMT;
11324 offbits = (mips_opts.micromips ? 12 : 16);
11325 goto ld_st;
11326 case M_LWR_AB:
11327 s = "lwr";
11328 fmt = MEM12_FMT;
11329 offbits = (mips_opts.micromips ? 12 : 16);
11330 goto ld_st;
11331 case M_LDC1_AB:
11332 s = "ldc1";
11333 fmt = "T,o(b)";
11334 /* Itbl support may require additional care here. */
11335 coproc = 1;
11336 goto ld_st;
11337 case M_LDC2_AB:
11338 s = "ldc2";
11339 fmt = COP12_FMT;
11340 offbits = (mips_opts.micromips ? 12
11341 : ISA_IS_R6 (mips_opts.isa) ? 11
11342 : 16);
11343 /* Itbl support may require additional care here. */
11344 coproc = 1;
11345 goto ld_st;
11346 case M_LQC2_AB:
11347 s = "lqc2";
11348 fmt = "+7,o(b)";
11349 /* Itbl support may require additional care here. */
11350 coproc = 1;
11351 goto ld_st;
11352 case M_LDC3_AB:
11353 s = "ldc3";
11354 fmt = "E,o(b)";
11355 /* Itbl support may require additional care here. */
11356 coproc = 1;
11357 goto ld_st;
11358 case M_LDL_AB:
11359 s = "ldl";
11360 fmt = MEM12_FMT;
11361 offbits = (mips_opts.micromips ? 12 : 16);
11362 goto ld_st;
11363 case M_LDR_AB:
11364 s = "ldr";
11365 fmt = MEM12_FMT;
11366 offbits = (mips_opts.micromips ? 12 : 16);
11367 goto ld_st;
11368 case M_LL_AB:
11369 s = "ll";
11370 fmt = LL_SC_FMT;
11371 offbits = (mips_opts.micromips ? 12
11372 : ISA_IS_R6 (mips_opts.isa) ? 9
11373 : 16);
11374 goto ld;
11375 case M_LLD_AB:
11376 s = "lld";
11377 fmt = LL_SC_FMT;
11378 offbits = (mips_opts.micromips ? 12
11379 : ISA_IS_R6 (mips_opts.isa) ? 9
11380 : 16);
11381 goto ld;
11382 case M_LWU_AB:
11383 s = "lwu";
11384 fmt = MEM12_FMT;
11385 offbits = (mips_opts.micromips ? 12 : 16);
11386 goto ld;
11387 case M_LWP_AB:
11388 gas_assert (mips_opts.micromips);
11389 s = "lwp";
11390 fmt = "t,~(b)";
11391 offbits = 12;
11392 lp = 1;
11393 goto ld;
11394 case M_LDP_AB:
11395 gas_assert (mips_opts.micromips);
11396 s = "ldp";
11397 fmt = "t,~(b)";
11398 offbits = 12;
11399 lp = 1;
11400 goto ld;
11401 case M_LWM_AB:
11402 gas_assert (mips_opts.micromips);
11403 s = "lwm";
11404 fmt = "n,~(b)";
11405 offbits = 12;
11406 goto ld_st;
11407 case M_LDM_AB:
11408 gas_assert (mips_opts.micromips);
11409 s = "ldm";
11410 fmt = "n,~(b)";
11411 offbits = 12;
11412 goto ld_st;
11413
11414 ld:
11415 /* We don't want to use $0 as tempreg. */
11416 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11417 goto ld_st;
11418 else
11419 tempreg = op[0] + lp;
11420 goto ld_noat;
11421
11422 case M_SB_AB:
11423 s = "sb";
11424 fmt = "t,o(b)";
11425 goto ld_st;
11426 case M_SH_AB:
11427 s = "sh";
11428 fmt = "t,o(b)";
11429 goto ld_st;
11430 case M_SW_AB:
11431 s = "sw";
11432 fmt = "t,o(b)";
11433 goto ld_st;
11434 case M_SWC0_AB:
11435 gas_assert (!mips_opts.micromips);
11436 s = "swc0";
11437 fmt = "E,o(b)";
11438 /* Itbl support may require additional care here. */
11439 coproc = 1;
11440 goto ld_st;
11441 case M_SWC1_AB:
11442 s = "swc1";
11443 fmt = "T,o(b)";
11444 /* Itbl support may require additional care here. */
11445 coproc = 1;
11446 goto ld_st;
11447 case M_SWC2_AB:
11448 s = "swc2";
11449 fmt = COP12_FMT;
11450 offbits = (mips_opts.micromips ? 12
11451 : ISA_IS_R6 (mips_opts.isa) ? 11
11452 : 16);
11453 /* Itbl support may require additional care here. */
11454 coproc = 1;
11455 goto ld_st;
11456 case M_SWC3_AB:
11457 gas_assert (!mips_opts.micromips);
11458 s = "swc3";
11459 fmt = "E,o(b)";
11460 /* Itbl support may require additional care here. */
11461 coproc = 1;
11462 goto ld_st;
11463 case M_SWL_AB:
11464 s = "swl";
11465 fmt = MEM12_FMT;
11466 offbits = (mips_opts.micromips ? 12 : 16);
11467 goto ld_st;
11468 case M_SWR_AB:
11469 s = "swr";
11470 fmt = MEM12_FMT;
11471 offbits = (mips_opts.micromips ? 12 : 16);
11472 goto ld_st;
11473 case M_SC_AB:
11474 s = "sc";
11475 fmt = LL_SC_FMT;
11476 offbits = (mips_opts.micromips ? 12
11477 : ISA_IS_R6 (mips_opts.isa) ? 9
11478 : 16);
11479 goto ld_st;
11480 case M_SCD_AB:
11481 s = "scd";
11482 fmt = LL_SC_FMT;
11483 offbits = (mips_opts.micromips ? 12
11484 : ISA_IS_R6 (mips_opts.isa) ? 9
11485 : 16);
11486 goto ld_st;
11487 case M_CACHE_AB:
11488 s = "cache";
11489 fmt = (mips_opts.micromips ? "k,~(b)"
11490 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11491 : "k,o(b)");
11492 offbits = (mips_opts.micromips ? 12
11493 : ISA_IS_R6 (mips_opts.isa) ? 9
11494 : 16);
11495 goto ld_st;
11496 case M_CACHEE_AB:
11497 s = "cachee";
11498 fmt = "k,+j(b)";
11499 offbits = 9;
11500 goto ld_st;
11501 case M_PREF_AB:
11502 s = "pref";
11503 fmt = (mips_opts.micromips ? "k,~(b)"
11504 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11505 : "k,o(b)");
11506 offbits = (mips_opts.micromips ? 12
11507 : ISA_IS_R6 (mips_opts.isa) ? 9
11508 : 16);
11509 goto ld_st;
11510 case M_PREFE_AB:
11511 s = "prefe";
11512 fmt = "k,+j(b)";
11513 offbits = 9;
11514 goto ld_st;
11515 case M_SDC1_AB:
11516 s = "sdc1";
11517 fmt = "T,o(b)";
11518 coproc = 1;
11519 /* Itbl support may require additional care here. */
11520 goto ld_st;
11521 case M_SDC2_AB:
11522 s = "sdc2";
11523 fmt = COP12_FMT;
11524 offbits = (mips_opts.micromips ? 12
11525 : ISA_IS_R6 (mips_opts.isa) ? 11
11526 : 16);
11527 /* Itbl support may require additional care here. */
11528 coproc = 1;
11529 goto ld_st;
11530 case M_SQC2_AB:
11531 s = "sqc2";
11532 fmt = "+7,o(b)";
11533 /* Itbl support may require additional care here. */
11534 coproc = 1;
11535 goto ld_st;
11536 case M_SDC3_AB:
11537 gas_assert (!mips_opts.micromips);
11538 s = "sdc3";
11539 fmt = "E,o(b)";
11540 /* Itbl support may require additional care here. */
11541 coproc = 1;
11542 goto ld_st;
11543 case M_SDL_AB:
11544 s = "sdl";
11545 fmt = MEM12_FMT;
11546 offbits = (mips_opts.micromips ? 12 : 16);
11547 goto ld_st;
11548 case M_SDR_AB:
11549 s = "sdr";
11550 fmt = MEM12_FMT;
11551 offbits = (mips_opts.micromips ? 12 : 16);
11552 goto ld_st;
11553 case M_SWP_AB:
11554 gas_assert (mips_opts.micromips);
11555 s = "swp";
11556 fmt = "t,~(b)";
11557 offbits = 12;
11558 goto ld_st;
11559 case M_SDP_AB:
11560 gas_assert (mips_opts.micromips);
11561 s = "sdp";
11562 fmt = "t,~(b)";
11563 offbits = 12;
11564 goto ld_st;
11565 case M_SWM_AB:
11566 gas_assert (mips_opts.micromips);
11567 s = "swm";
11568 fmt = "n,~(b)";
11569 offbits = 12;
11570 goto ld_st;
11571 case M_SDM_AB:
11572 gas_assert (mips_opts.micromips);
11573 s = "sdm";
11574 fmt = "n,~(b)";
11575 offbits = 12;
11576
11577 ld_st:
11578 tempreg = AT;
11579 ld_noat:
11580 breg = op[2];
11581 if (small_offset_p (0, align, 16))
11582 {
11583 /* The first case exists for M_LD_AB and M_SD_AB, which are
11584 macros for o32 but which should act like normal instructions
11585 otherwise. */
11586 if (offbits == 16)
11587 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11588 offset_reloc[1], offset_reloc[2], breg);
11589 else if (small_offset_p (0, align, offbits))
11590 {
11591 if (offbits == 0)
11592 macro_build (NULL, s, fmt, op[0], breg);
11593 else
11594 macro_build (NULL, s, fmt, op[0],
11595 (int) offset_expr.X_add_number, breg);
11596 }
11597 else
11598 {
11599 if (tempreg == AT)
11600 used_at = 1;
11601 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11602 tempreg, breg, -1, offset_reloc[0],
11603 offset_reloc[1], offset_reloc[2]);
11604 if (offbits == 0)
11605 macro_build (NULL, s, fmt, op[0], tempreg);
11606 else
11607 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11608 }
11609 break;
11610 }
11611
11612 if (tempreg == AT)
11613 used_at = 1;
11614
11615 if (offset_expr.X_op != O_constant
11616 && offset_expr.X_op != O_symbol)
11617 {
11618 as_bad (_("expression too complex"));
11619 offset_expr.X_op = O_constant;
11620 }
11621
11622 if (HAVE_32BIT_ADDRESSES
11623 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11624 {
11625 char value [32];
11626
11627 sprintf_vma (value, offset_expr.X_add_number);
11628 as_bad (_("number (0x%s) larger than 32 bits"), value);
11629 }
11630
11631 /* A constant expression in PIC code can be handled just as it
11632 is in non PIC code. */
11633 if (offset_expr.X_op == O_constant)
11634 {
11635 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11636 offbits == 0 ? 16 : offbits);
11637 offset_expr.X_add_number -= expr1.X_add_number;
11638
11639 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11640 if (breg != 0)
11641 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11642 tempreg, tempreg, breg);
11643 if (offbits == 0)
11644 {
11645 if (offset_expr.X_add_number != 0)
11646 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11647 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11648 macro_build (NULL, s, fmt, op[0], tempreg);
11649 }
11650 else if (offbits == 16)
11651 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11652 else
11653 macro_build (NULL, s, fmt, op[0],
11654 (int) offset_expr.X_add_number, tempreg);
11655 }
11656 else if (offbits != 16)
11657 {
11658 /* The offset field is too narrow to be used for a low-part
11659 relocation, so load the whole address into the auxillary
11660 register. */
11661 load_address (tempreg, &offset_expr, &used_at);
11662 if (breg != 0)
11663 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11664 tempreg, tempreg, breg);
11665 if (offbits == 0)
11666 macro_build (NULL, s, fmt, op[0], tempreg);
11667 else
11668 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11669 }
11670 else if (mips_pic == NO_PIC)
11671 {
11672 /* If this is a reference to a GP relative symbol, and there
11673 is no base register, we want
11674 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11675 Otherwise, if there is no base register, we want
11676 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11677 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11678 If we have a constant, we need two instructions anyhow,
11679 so we always use the latter form.
11680
11681 If we have a base register, and this is a reference to a
11682 GP relative symbol, we want
11683 addu $tempreg,$breg,$gp
11684 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11685 Otherwise we want
11686 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11687 addu $tempreg,$tempreg,$breg
11688 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11689 With a constant we always use the latter case.
11690
11691 With 64bit address space and no base register and $at usable,
11692 we want
11693 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11694 lui $at,<sym> (BFD_RELOC_HI16_S)
11695 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11696 dsll32 $tempreg,0
11697 daddu $tempreg,$at
11698 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11699 If we have a base register, we want
11700 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11701 lui $at,<sym> (BFD_RELOC_HI16_S)
11702 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11703 daddu $at,$breg
11704 dsll32 $tempreg,0
11705 daddu $tempreg,$at
11706 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11707
11708 Without $at we can't generate the optimal path for superscalar
11709 processors here since this would require two temporary registers.
11710 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11711 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11712 dsll $tempreg,16
11713 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11714 dsll $tempreg,16
11715 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11716 If we have a base register, we want
11717 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11718 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11719 dsll $tempreg,16
11720 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11721 dsll $tempreg,16
11722 daddu $tempreg,$tempreg,$breg
11723 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11724
11725 For GP relative symbols in 64bit address space we can use
11726 the same sequence as in 32bit address space. */
11727 if (HAVE_64BIT_SYMBOLS)
11728 {
11729 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11730 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11731 {
11732 relax_start (offset_expr.X_add_symbol);
11733 if (breg == 0)
11734 {
11735 macro_build (&offset_expr, s, fmt, op[0],
11736 BFD_RELOC_GPREL16, mips_gp_register);
11737 }
11738 else
11739 {
11740 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11741 tempreg, breg, mips_gp_register);
11742 macro_build (&offset_expr, s, fmt, op[0],
11743 BFD_RELOC_GPREL16, tempreg);
11744 }
11745 relax_switch ();
11746 }
11747
11748 if (used_at == 0 && mips_opts.at)
11749 {
11750 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11751 BFD_RELOC_MIPS_HIGHEST);
11752 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11753 BFD_RELOC_HI16_S);
11754 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11755 tempreg, BFD_RELOC_MIPS_HIGHER);
11756 if (breg != 0)
11757 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11758 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11759 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11760 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11761 tempreg);
11762 used_at = 1;
11763 }
11764 else
11765 {
11766 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11767 BFD_RELOC_MIPS_HIGHEST);
11768 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11769 tempreg, BFD_RELOC_MIPS_HIGHER);
11770 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11771 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11772 tempreg, BFD_RELOC_HI16_S);
11773 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11774 if (breg != 0)
11775 macro_build (NULL, "daddu", "d,v,t",
11776 tempreg, tempreg, breg);
11777 macro_build (&offset_expr, s, fmt, op[0],
11778 BFD_RELOC_LO16, tempreg);
11779 }
11780
11781 if (mips_relax.sequence)
11782 relax_end ();
11783 break;
11784 }
11785
11786 if (breg == 0)
11787 {
11788 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11789 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11790 {
11791 relax_start (offset_expr.X_add_symbol);
11792 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11793 mips_gp_register);
11794 relax_switch ();
11795 }
11796 macro_build_lui (&offset_expr, tempreg);
11797 macro_build (&offset_expr, s, fmt, op[0],
11798 BFD_RELOC_LO16, tempreg);
11799 if (mips_relax.sequence)
11800 relax_end ();
11801 }
11802 else
11803 {
11804 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11805 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11806 {
11807 relax_start (offset_expr.X_add_symbol);
11808 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11809 tempreg, breg, mips_gp_register);
11810 macro_build (&offset_expr, s, fmt, op[0],
11811 BFD_RELOC_GPREL16, tempreg);
11812 relax_switch ();
11813 }
11814 macro_build_lui (&offset_expr, tempreg);
11815 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11816 tempreg, tempreg, breg);
11817 macro_build (&offset_expr, s, fmt, op[0],
11818 BFD_RELOC_LO16, tempreg);
11819 if (mips_relax.sequence)
11820 relax_end ();
11821 }
11822 }
11823 else if (!mips_big_got)
11824 {
11825 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11826
11827 /* If this is a reference to an external symbol, we want
11828 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11829 nop
11830 <op> op[0],0($tempreg)
11831 Otherwise we want
11832 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11833 nop
11834 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11835 <op> op[0],0($tempreg)
11836
11837 For NewABI, we want
11838 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11839 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11840
11841 If there is a base register, we add it to $tempreg before
11842 the <op>. If there is a constant, we stick it in the
11843 <op> instruction. We don't handle constants larger than
11844 16 bits, because we have no way to load the upper 16 bits
11845 (actually, we could handle them for the subset of cases
11846 in which we are not using $at). */
11847 gas_assert (offset_expr.X_op == O_symbol);
11848 if (HAVE_NEWABI)
11849 {
11850 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11851 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11852 if (breg != 0)
11853 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11854 tempreg, tempreg, breg);
11855 macro_build (&offset_expr, s, fmt, op[0],
11856 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11857 break;
11858 }
11859 expr1.X_add_number = offset_expr.X_add_number;
11860 offset_expr.X_add_number = 0;
11861 if (expr1.X_add_number < -0x8000
11862 || expr1.X_add_number >= 0x8000)
11863 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11864 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11865 lw_reloc_type, mips_gp_register);
11866 load_delay_nop ();
11867 relax_start (offset_expr.X_add_symbol);
11868 relax_switch ();
11869 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11870 tempreg, BFD_RELOC_LO16);
11871 relax_end ();
11872 if (breg != 0)
11873 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11874 tempreg, tempreg, breg);
11875 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11876 }
11877 else if (mips_big_got && !HAVE_NEWABI)
11878 {
11879 int gpdelay;
11880
11881 /* If this is a reference to an external symbol, we want
11882 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11883 addu $tempreg,$tempreg,$gp
11884 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11885 <op> op[0],0($tempreg)
11886 Otherwise we want
11887 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11888 nop
11889 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11890 <op> op[0],0($tempreg)
11891 If there is a base register, we add it to $tempreg before
11892 the <op>. If there is a constant, we stick it in the
11893 <op> instruction. We don't handle constants larger than
11894 16 bits, because we have no way to load the upper 16 bits
11895 (actually, we could handle them for the subset of cases
11896 in which we are not using $at). */
11897 gas_assert (offset_expr.X_op == O_symbol);
11898 expr1.X_add_number = offset_expr.X_add_number;
11899 offset_expr.X_add_number = 0;
11900 if (expr1.X_add_number < -0x8000
11901 || expr1.X_add_number >= 0x8000)
11902 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11903 gpdelay = reg_needs_delay (mips_gp_register);
11904 relax_start (offset_expr.X_add_symbol);
11905 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11906 BFD_RELOC_MIPS_GOT_HI16);
11907 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11908 mips_gp_register);
11909 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11910 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11911 relax_switch ();
11912 if (gpdelay)
11913 macro_build (NULL, "nop", "");
11914 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11915 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11916 load_delay_nop ();
11917 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11918 tempreg, BFD_RELOC_LO16);
11919 relax_end ();
11920
11921 if (breg != 0)
11922 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11923 tempreg, tempreg, breg);
11924 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11925 }
11926 else if (mips_big_got && HAVE_NEWABI)
11927 {
11928 /* If this is a reference to an external symbol, we want
11929 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11930 add $tempreg,$tempreg,$gp
11931 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11932 <op> op[0],<ofst>($tempreg)
11933 Otherwise, for local symbols, we want:
11934 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11935 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11936 gas_assert (offset_expr.X_op == O_symbol);
11937 expr1.X_add_number = offset_expr.X_add_number;
11938 offset_expr.X_add_number = 0;
11939 if (expr1.X_add_number < -0x8000
11940 || expr1.X_add_number >= 0x8000)
11941 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11942 relax_start (offset_expr.X_add_symbol);
11943 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11944 BFD_RELOC_MIPS_GOT_HI16);
11945 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11946 mips_gp_register);
11947 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11948 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11949 if (breg != 0)
11950 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11951 tempreg, tempreg, breg);
11952 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11953
11954 relax_switch ();
11955 offset_expr.X_add_number = expr1.X_add_number;
11956 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11957 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11958 if (breg != 0)
11959 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11960 tempreg, tempreg, breg);
11961 macro_build (&offset_expr, s, fmt, op[0],
11962 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11963 relax_end ();
11964 }
11965 else
11966 abort ();
11967
11968 break;
11969
11970 case M_JRADDIUSP:
11971 gas_assert (mips_opts.micromips);
11972 gas_assert (mips_opts.insn32);
11973 start_noreorder ();
11974 macro_build (NULL, "jr", "s", RA);
11975 expr1.X_add_number = op[0] << 2;
11976 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11977 end_noreorder ();
11978 break;
11979
11980 case M_JRC:
11981 gas_assert (mips_opts.micromips);
11982 gas_assert (mips_opts.insn32);
11983 macro_build (NULL, "jr", "s", op[0]);
11984 if (mips_opts.noreorder)
11985 macro_build (NULL, "nop", "");
11986 break;
11987
11988 case M_LI:
11989 case M_LI_S:
11990 load_register (op[0], &imm_expr, 0);
11991 break;
11992
11993 case M_DLI:
11994 load_register (op[0], &imm_expr, 1);
11995 break;
11996
11997 case M_LI_SS:
11998 if (imm_expr.X_op == O_constant)
11999 {
12000 used_at = 1;
12001 load_register (AT, &imm_expr, 0);
12002 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12003 break;
12004 }
12005 else
12006 {
12007 gas_assert (imm_expr.X_op == O_absent
12008 && offset_expr.X_op == O_symbol
12009 && strcmp (segment_name (S_GET_SEGMENT
12010 (offset_expr.X_add_symbol)),
12011 ".lit4") == 0
12012 && offset_expr.X_add_number == 0);
12013 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12014 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12015 break;
12016 }
12017
12018 case M_LI_D:
12019 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12020 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12021 order 32 bits of the value and the low order 32 bits are either
12022 zero or in OFFSET_EXPR. */
12023 if (imm_expr.X_op == O_constant)
12024 {
12025 if (GPR_SIZE == 64)
12026 load_register (op[0], &imm_expr, 1);
12027 else
12028 {
12029 int hreg, lreg;
12030
12031 if (target_big_endian)
12032 {
12033 hreg = op[0];
12034 lreg = op[0] + 1;
12035 }
12036 else
12037 {
12038 hreg = op[0] + 1;
12039 lreg = op[0];
12040 }
12041
12042 if (hreg <= 31)
12043 load_register (hreg, &imm_expr, 0);
12044 if (lreg <= 31)
12045 {
12046 if (offset_expr.X_op == O_absent)
12047 move_register (lreg, 0);
12048 else
12049 {
12050 gas_assert (offset_expr.X_op == O_constant);
12051 load_register (lreg, &offset_expr, 0);
12052 }
12053 }
12054 }
12055 break;
12056 }
12057 gas_assert (imm_expr.X_op == O_absent);
12058
12059 /* We know that sym is in the .rdata section. First we get the
12060 upper 16 bits of the address. */
12061 if (mips_pic == NO_PIC)
12062 {
12063 macro_build_lui (&offset_expr, AT);
12064 used_at = 1;
12065 }
12066 else
12067 {
12068 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12069 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12070 used_at = 1;
12071 }
12072
12073 /* Now we load the register(s). */
12074 if (GPR_SIZE == 64)
12075 {
12076 used_at = 1;
12077 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12078 BFD_RELOC_LO16, AT);
12079 }
12080 else
12081 {
12082 used_at = 1;
12083 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12084 BFD_RELOC_LO16, AT);
12085 if (op[0] != RA)
12086 {
12087 /* FIXME: How in the world do we deal with the possible
12088 overflow here? */
12089 offset_expr.X_add_number += 4;
12090 macro_build (&offset_expr, "lw", "t,o(b)",
12091 op[0] + 1, BFD_RELOC_LO16, AT);
12092 }
12093 }
12094 break;
12095
12096 case M_LI_DD:
12097 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12098 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12099 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12100 the value and the low order 32 bits are either zero or in
12101 OFFSET_EXPR. */
12102 if (imm_expr.X_op == O_constant)
12103 {
12104 used_at = 1;
12105 load_register (AT, &imm_expr, FPR_SIZE == 64);
12106 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12107 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12108 else
12109 {
12110 if (ISA_HAS_MXHC1 (mips_opts.isa))
12111 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12112 else if (FPR_SIZE != 32)
12113 as_bad (_("Unable to generate `%s' compliant code "
12114 "without mthc1"),
12115 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12116 else
12117 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12118 if (offset_expr.X_op == O_absent)
12119 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12120 else
12121 {
12122 gas_assert (offset_expr.X_op == O_constant);
12123 load_register (AT, &offset_expr, 0);
12124 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12125 }
12126 }
12127 break;
12128 }
12129
12130 gas_assert (imm_expr.X_op == O_absent
12131 && offset_expr.X_op == O_symbol
12132 && offset_expr.X_add_number == 0);
12133 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12134 if (strcmp (s, ".lit8") == 0)
12135 {
12136 op[2] = mips_gp_register;
12137 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12138 offset_reloc[1] = BFD_RELOC_UNUSED;
12139 offset_reloc[2] = BFD_RELOC_UNUSED;
12140 }
12141 else
12142 {
12143 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12144 used_at = 1;
12145 if (mips_pic != NO_PIC)
12146 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12147 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12148 else
12149 {
12150 /* FIXME: This won't work for a 64 bit address. */
12151 macro_build_lui (&offset_expr, AT);
12152 }
12153
12154 op[2] = AT;
12155 offset_reloc[0] = BFD_RELOC_LO16;
12156 offset_reloc[1] = BFD_RELOC_UNUSED;
12157 offset_reloc[2] = BFD_RELOC_UNUSED;
12158 }
12159 align = 8;
12160 /* Fall through */
12161
12162 case M_L_DAB:
12163 /*
12164 * The MIPS assembler seems to check for X_add_number not
12165 * being double aligned and generating:
12166 * lui at,%hi(foo+1)
12167 * addu at,at,v1
12168 * addiu at,at,%lo(foo+1)
12169 * lwc1 f2,0(at)
12170 * lwc1 f3,4(at)
12171 * But, the resulting address is the same after relocation so why
12172 * generate the extra instruction?
12173 */
12174 /* Itbl support may require additional care here. */
12175 coproc = 1;
12176 fmt = "T,o(b)";
12177 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12178 {
12179 s = "ldc1";
12180 goto ld_st;
12181 }
12182 s = "lwc1";
12183 goto ldd_std;
12184
12185 case M_S_DAB:
12186 gas_assert (!mips_opts.micromips);
12187 /* Itbl support may require additional care here. */
12188 coproc = 1;
12189 fmt = "T,o(b)";
12190 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12191 {
12192 s = "sdc1";
12193 goto ld_st;
12194 }
12195 s = "swc1";
12196 goto ldd_std;
12197
12198 case M_LQ_AB:
12199 fmt = "t,o(b)";
12200 s = "lq";
12201 goto ld;
12202
12203 case M_SQ_AB:
12204 fmt = "t,o(b)";
12205 s = "sq";
12206 goto ld_st;
12207
12208 case M_LD_AB:
12209 fmt = "t,o(b)";
12210 if (GPR_SIZE == 64)
12211 {
12212 s = "ld";
12213 goto ld;
12214 }
12215 s = "lw";
12216 goto ldd_std;
12217
12218 case M_SD_AB:
12219 fmt = "t,o(b)";
12220 if (GPR_SIZE == 64)
12221 {
12222 s = "sd";
12223 goto ld_st;
12224 }
12225 s = "sw";
12226
12227 ldd_std:
12228 /* Even on a big endian machine $fn comes before $fn+1. We have
12229 to adjust when loading from memory. We set coproc if we must
12230 load $fn+1 first. */
12231 /* Itbl support may require additional care here. */
12232 if (!target_big_endian)
12233 coproc = 0;
12234
12235 breg = op[2];
12236 if (small_offset_p (0, align, 16))
12237 {
12238 ep = &offset_expr;
12239 if (!small_offset_p (4, align, 16))
12240 {
12241 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12242 -1, offset_reloc[0], offset_reloc[1],
12243 offset_reloc[2]);
12244 expr1.X_add_number = 0;
12245 ep = &expr1;
12246 breg = AT;
12247 used_at = 1;
12248 offset_reloc[0] = BFD_RELOC_LO16;
12249 offset_reloc[1] = BFD_RELOC_UNUSED;
12250 offset_reloc[2] = BFD_RELOC_UNUSED;
12251 }
12252 if (strcmp (s, "lw") == 0 && op[0] == breg)
12253 {
12254 ep->X_add_number += 4;
12255 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12256 offset_reloc[1], offset_reloc[2], breg);
12257 ep->X_add_number -= 4;
12258 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12259 offset_reloc[1], offset_reloc[2], breg);
12260 }
12261 else
12262 {
12263 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12264 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12265 breg);
12266 ep->X_add_number += 4;
12267 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12268 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12269 breg);
12270 }
12271 break;
12272 }
12273
12274 if (offset_expr.X_op != O_symbol
12275 && offset_expr.X_op != O_constant)
12276 {
12277 as_bad (_("expression too complex"));
12278 offset_expr.X_op = O_constant;
12279 }
12280
12281 if (HAVE_32BIT_ADDRESSES
12282 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12283 {
12284 char value [32];
12285
12286 sprintf_vma (value, offset_expr.X_add_number);
12287 as_bad (_("number (0x%s) larger than 32 bits"), value);
12288 }
12289
12290 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12291 {
12292 /* If this is a reference to a GP relative symbol, we want
12293 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12294 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12295 If we have a base register, we use this
12296 addu $at,$breg,$gp
12297 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12298 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12299 If this is not a GP relative symbol, we want
12300 lui $at,<sym> (BFD_RELOC_HI16_S)
12301 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12302 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12303 If there is a base register, we add it to $at after the
12304 lui instruction. If there is a constant, we always use
12305 the last case. */
12306 if (offset_expr.X_op == O_symbol
12307 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12308 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12309 {
12310 relax_start (offset_expr.X_add_symbol);
12311 if (breg == 0)
12312 {
12313 tempreg = mips_gp_register;
12314 }
12315 else
12316 {
12317 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12318 AT, breg, mips_gp_register);
12319 tempreg = AT;
12320 used_at = 1;
12321 }
12322
12323 /* Itbl support may require additional care here. */
12324 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12325 BFD_RELOC_GPREL16, tempreg);
12326 offset_expr.X_add_number += 4;
12327
12328 /* Set mips_optimize to 2 to avoid inserting an
12329 undesired nop. */
12330 hold_mips_optimize = mips_optimize;
12331 mips_optimize = 2;
12332 /* Itbl support may require additional care here. */
12333 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12334 BFD_RELOC_GPREL16, tempreg);
12335 mips_optimize = hold_mips_optimize;
12336
12337 relax_switch ();
12338
12339 offset_expr.X_add_number -= 4;
12340 }
12341 used_at = 1;
12342 if (offset_high_part (offset_expr.X_add_number, 16)
12343 != offset_high_part (offset_expr.X_add_number + 4, 16))
12344 {
12345 load_address (AT, &offset_expr, &used_at);
12346 offset_expr.X_op = O_constant;
12347 offset_expr.X_add_number = 0;
12348 }
12349 else
12350 macro_build_lui (&offset_expr, AT);
12351 if (breg != 0)
12352 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12353 /* Itbl support may require additional care here. */
12354 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12355 BFD_RELOC_LO16, AT);
12356 /* FIXME: How do we handle overflow here? */
12357 offset_expr.X_add_number += 4;
12358 /* Itbl support may require additional care here. */
12359 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12360 BFD_RELOC_LO16, AT);
12361 if (mips_relax.sequence)
12362 relax_end ();
12363 }
12364 else if (!mips_big_got)
12365 {
12366 /* If this is a reference to an external symbol, we want
12367 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12368 nop
12369 <op> op[0],0($at)
12370 <op> op[0]+1,4($at)
12371 Otherwise we want
12372 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12373 nop
12374 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12375 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12376 If there is a base register we add it to $at before the
12377 lwc1 instructions. If there is a constant we include it
12378 in the lwc1 instructions. */
12379 used_at = 1;
12380 expr1.X_add_number = offset_expr.X_add_number;
12381 if (expr1.X_add_number < -0x8000
12382 || expr1.X_add_number >= 0x8000 - 4)
12383 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12384 load_got_offset (AT, &offset_expr);
12385 load_delay_nop ();
12386 if (breg != 0)
12387 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12388
12389 /* Set mips_optimize to 2 to avoid inserting an undesired
12390 nop. */
12391 hold_mips_optimize = mips_optimize;
12392 mips_optimize = 2;
12393
12394 /* Itbl support may require additional care here. */
12395 relax_start (offset_expr.X_add_symbol);
12396 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12397 BFD_RELOC_LO16, AT);
12398 expr1.X_add_number += 4;
12399 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12400 BFD_RELOC_LO16, AT);
12401 relax_switch ();
12402 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12403 BFD_RELOC_LO16, AT);
12404 offset_expr.X_add_number += 4;
12405 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12406 BFD_RELOC_LO16, AT);
12407 relax_end ();
12408
12409 mips_optimize = hold_mips_optimize;
12410 }
12411 else if (mips_big_got)
12412 {
12413 int gpdelay;
12414
12415 /* If this is a reference to an external symbol, we want
12416 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12417 addu $at,$at,$gp
12418 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12419 nop
12420 <op> op[0],0($at)
12421 <op> op[0]+1,4($at)
12422 Otherwise we want
12423 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12424 nop
12425 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12426 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12427 If there is a base register we add it to $at before the
12428 lwc1 instructions. If there is a constant we include it
12429 in the lwc1 instructions. */
12430 used_at = 1;
12431 expr1.X_add_number = offset_expr.X_add_number;
12432 offset_expr.X_add_number = 0;
12433 if (expr1.X_add_number < -0x8000
12434 || expr1.X_add_number >= 0x8000 - 4)
12435 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12436 gpdelay = reg_needs_delay (mips_gp_register);
12437 relax_start (offset_expr.X_add_symbol);
12438 macro_build (&offset_expr, "lui", LUI_FMT,
12439 AT, BFD_RELOC_MIPS_GOT_HI16);
12440 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12441 AT, AT, mips_gp_register);
12442 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12443 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12444 load_delay_nop ();
12445 if (breg != 0)
12446 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12447 /* Itbl support may require additional care here. */
12448 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12449 BFD_RELOC_LO16, AT);
12450 expr1.X_add_number += 4;
12451
12452 /* Set mips_optimize to 2 to avoid inserting an undesired
12453 nop. */
12454 hold_mips_optimize = mips_optimize;
12455 mips_optimize = 2;
12456 /* Itbl support may require additional care here. */
12457 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12458 BFD_RELOC_LO16, AT);
12459 mips_optimize = hold_mips_optimize;
12460 expr1.X_add_number -= 4;
12461
12462 relax_switch ();
12463 offset_expr.X_add_number = expr1.X_add_number;
12464 if (gpdelay)
12465 macro_build (NULL, "nop", "");
12466 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12467 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12468 load_delay_nop ();
12469 if (breg != 0)
12470 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12471 /* Itbl support may require additional care here. */
12472 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12473 BFD_RELOC_LO16, AT);
12474 offset_expr.X_add_number += 4;
12475
12476 /* Set mips_optimize to 2 to avoid inserting an undesired
12477 nop. */
12478 hold_mips_optimize = mips_optimize;
12479 mips_optimize = 2;
12480 /* Itbl support may require additional care here. */
12481 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12482 BFD_RELOC_LO16, AT);
12483 mips_optimize = hold_mips_optimize;
12484 relax_end ();
12485 }
12486 else
12487 abort ();
12488
12489 break;
12490
12491 case M_SAA_AB:
12492 s = "saa";
12493 goto saa_saad;
12494 case M_SAAD_AB:
12495 s = "saad";
12496 saa_saad:
12497 gas_assert (!mips_opts.micromips);
12498 offbits = 0;
12499 fmt = "t,(b)";
12500 goto ld_st;
12501
12502 /* New code added to support COPZ instructions.
12503 This code builds table entries out of the macros in mip_opcodes.
12504 R4000 uses interlocks to handle coproc delays.
12505 Other chips (like the R3000) require nops to be inserted for delays.
12506
12507 FIXME: Currently, we require that the user handle delays.
12508 In order to fill delay slots for non-interlocked chips,
12509 we must have a way to specify delays based on the coprocessor.
12510 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12511 What are the side-effects of the cop instruction?
12512 What cache support might we have and what are its effects?
12513 Both coprocessor & memory require delays. how long???
12514 What registers are read/set/modified?
12515
12516 If an itbl is provided to interpret cop instructions,
12517 this knowledge can be encoded in the itbl spec. */
12518
12519 case M_COP0:
12520 s = "c0";
12521 goto copz;
12522 case M_COP1:
12523 s = "c1";
12524 goto copz;
12525 case M_COP2:
12526 s = "c2";
12527 goto copz;
12528 case M_COP3:
12529 s = "c3";
12530 copz:
12531 gas_assert (!mips_opts.micromips);
12532 /* For now we just do C (same as Cz). The parameter will be
12533 stored in insn_opcode by mips_ip. */
12534 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12535 break;
12536
12537 case M_MOVE:
12538 move_register (op[0], op[1]);
12539 break;
12540
12541 case M_MOVEP:
12542 gas_assert (mips_opts.micromips);
12543 gas_assert (mips_opts.insn32);
12544 move_register (micromips_to_32_reg_h_map1[op[0]],
12545 micromips_to_32_reg_m_map[op[1]]);
12546 move_register (micromips_to_32_reg_h_map2[op[0]],
12547 micromips_to_32_reg_n_map[op[2]]);
12548 break;
12549
12550 case M_DMUL:
12551 dbl = 1;
12552 case M_MUL:
12553 if (mips_opts.arch == CPU_R5900)
12554 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12555 op[2]);
12556 else
12557 {
12558 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12559 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12560 }
12561 break;
12562
12563 case M_DMUL_I:
12564 dbl = 1;
12565 case M_MUL_I:
12566 /* The MIPS assembler some times generates shifts and adds. I'm
12567 not trying to be that fancy. GCC should do this for us
12568 anyway. */
12569 used_at = 1;
12570 load_register (AT, &imm_expr, dbl);
12571 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12572 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12573 break;
12574
12575 case M_DMULO_I:
12576 dbl = 1;
12577 case M_MULO_I:
12578 imm = 1;
12579 goto do_mulo;
12580
12581 case M_DMULO:
12582 dbl = 1;
12583 case M_MULO:
12584 do_mulo:
12585 start_noreorder ();
12586 used_at = 1;
12587 if (imm)
12588 load_register (AT, &imm_expr, dbl);
12589 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12590 op[1], imm ? AT : op[2]);
12591 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12592 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12593 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12594 if (mips_trap)
12595 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12596 else
12597 {
12598 if (mips_opts.micromips)
12599 micromips_label_expr (&label_expr);
12600 else
12601 label_expr.X_add_number = 8;
12602 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12603 macro_build (NULL, "nop", "");
12604 macro_build (NULL, "break", BRK_FMT, 6);
12605 if (mips_opts.micromips)
12606 micromips_add_label ();
12607 }
12608 end_noreorder ();
12609 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12610 break;
12611
12612 case M_DMULOU_I:
12613 dbl = 1;
12614 case M_MULOU_I:
12615 imm = 1;
12616 goto do_mulou;
12617
12618 case M_DMULOU:
12619 dbl = 1;
12620 case M_MULOU:
12621 do_mulou:
12622 start_noreorder ();
12623 used_at = 1;
12624 if (imm)
12625 load_register (AT, &imm_expr, dbl);
12626 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12627 op[1], imm ? AT : op[2]);
12628 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12629 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12630 if (mips_trap)
12631 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12632 else
12633 {
12634 if (mips_opts.micromips)
12635 micromips_label_expr (&label_expr);
12636 else
12637 label_expr.X_add_number = 8;
12638 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12639 macro_build (NULL, "nop", "");
12640 macro_build (NULL, "break", BRK_FMT, 6);
12641 if (mips_opts.micromips)
12642 micromips_add_label ();
12643 }
12644 end_noreorder ();
12645 break;
12646
12647 case M_DROL:
12648 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12649 {
12650 if (op[0] == op[1])
12651 {
12652 tempreg = AT;
12653 used_at = 1;
12654 }
12655 else
12656 tempreg = op[0];
12657 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12658 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12659 break;
12660 }
12661 used_at = 1;
12662 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12663 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12664 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12665 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12666 break;
12667
12668 case M_ROL:
12669 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12670 {
12671 if (op[0] == op[1])
12672 {
12673 tempreg = AT;
12674 used_at = 1;
12675 }
12676 else
12677 tempreg = op[0];
12678 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12679 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12680 break;
12681 }
12682 used_at = 1;
12683 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12684 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12685 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12686 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12687 break;
12688
12689 case M_DROL_I:
12690 {
12691 unsigned int rot;
12692 char *l;
12693 char *rr;
12694
12695 rot = imm_expr.X_add_number & 0x3f;
12696 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12697 {
12698 rot = (64 - rot) & 0x3f;
12699 if (rot >= 32)
12700 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12701 else
12702 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12703 break;
12704 }
12705 if (rot == 0)
12706 {
12707 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12708 break;
12709 }
12710 l = (rot < 0x20) ? "dsll" : "dsll32";
12711 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12712 rot &= 0x1f;
12713 used_at = 1;
12714 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12715 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12716 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12717 }
12718 break;
12719
12720 case M_ROL_I:
12721 {
12722 unsigned int rot;
12723
12724 rot = imm_expr.X_add_number & 0x1f;
12725 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12726 {
12727 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12728 (32 - rot) & 0x1f);
12729 break;
12730 }
12731 if (rot == 0)
12732 {
12733 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12734 break;
12735 }
12736 used_at = 1;
12737 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12738 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12739 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12740 }
12741 break;
12742
12743 case M_DROR:
12744 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12745 {
12746 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12747 break;
12748 }
12749 used_at = 1;
12750 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12751 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12752 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12753 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12754 break;
12755
12756 case M_ROR:
12757 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12758 {
12759 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12760 break;
12761 }
12762 used_at = 1;
12763 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12764 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12765 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12766 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12767 break;
12768
12769 case M_DROR_I:
12770 {
12771 unsigned int rot;
12772 char *l;
12773 char *rr;
12774
12775 rot = imm_expr.X_add_number & 0x3f;
12776 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12777 {
12778 if (rot >= 32)
12779 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12780 else
12781 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12782 break;
12783 }
12784 if (rot == 0)
12785 {
12786 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12787 break;
12788 }
12789 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12790 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12791 rot &= 0x1f;
12792 used_at = 1;
12793 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12794 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12795 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12796 }
12797 break;
12798
12799 case M_ROR_I:
12800 {
12801 unsigned int rot;
12802
12803 rot = imm_expr.X_add_number & 0x1f;
12804 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12805 {
12806 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12807 break;
12808 }
12809 if (rot == 0)
12810 {
12811 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12812 break;
12813 }
12814 used_at = 1;
12815 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12816 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12817 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12818 }
12819 break;
12820
12821 case M_SEQ:
12822 if (op[1] == 0)
12823 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12824 else if (op[2] == 0)
12825 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12826 else
12827 {
12828 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12829 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12830 }
12831 break;
12832
12833 case M_SEQ_I:
12834 if (imm_expr.X_add_number == 0)
12835 {
12836 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12837 break;
12838 }
12839 if (op[1] == 0)
12840 {
12841 as_warn (_("instruction %s: result is always false"),
12842 ip->insn_mo->name);
12843 move_register (op[0], 0);
12844 break;
12845 }
12846 if (CPU_HAS_SEQ (mips_opts.arch)
12847 && -512 <= imm_expr.X_add_number
12848 && imm_expr.X_add_number < 512)
12849 {
12850 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12851 (int) imm_expr.X_add_number);
12852 break;
12853 }
12854 if (imm_expr.X_add_number >= 0
12855 && imm_expr.X_add_number < 0x10000)
12856 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12857 else if (imm_expr.X_add_number > -0x8000
12858 && imm_expr.X_add_number < 0)
12859 {
12860 imm_expr.X_add_number = -imm_expr.X_add_number;
12861 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12862 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12863 }
12864 else if (CPU_HAS_SEQ (mips_opts.arch))
12865 {
12866 used_at = 1;
12867 load_register (AT, &imm_expr, GPR_SIZE == 64);
12868 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12869 break;
12870 }
12871 else
12872 {
12873 load_register (AT, &imm_expr, GPR_SIZE == 64);
12874 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12875 used_at = 1;
12876 }
12877 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12878 break;
12879
12880 case M_SGE: /* X >= Y <==> not (X < Y) */
12881 s = "slt";
12882 goto sge;
12883 case M_SGEU:
12884 s = "sltu";
12885 sge:
12886 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12887 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12888 break;
12889
12890 case M_SGE_I: /* X >= I <==> not (X < I) */
12891 case M_SGEU_I:
12892 if (imm_expr.X_add_number >= -0x8000
12893 && imm_expr.X_add_number < 0x8000)
12894 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12895 op[0], op[1], BFD_RELOC_LO16);
12896 else
12897 {
12898 load_register (AT, &imm_expr, GPR_SIZE == 64);
12899 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12900 op[0], op[1], AT);
12901 used_at = 1;
12902 }
12903 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12904 break;
12905
12906 case M_SGT: /* X > Y <==> Y < X */
12907 s = "slt";
12908 goto sgt;
12909 case M_SGTU:
12910 s = "sltu";
12911 sgt:
12912 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12913 break;
12914
12915 case M_SGT_I: /* X > I <==> I < X */
12916 s = "slt";
12917 goto sgti;
12918 case M_SGTU_I:
12919 s = "sltu";
12920 sgti:
12921 used_at = 1;
12922 load_register (AT, &imm_expr, GPR_SIZE == 64);
12923 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12924 break;
12925
12926 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12927 s = "slt";
12928 goto sle;
12929 case M_SLEU:
12930 s = "sltu";
12931 sle:
12932 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12933 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12934 break;
12935
12936 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12937 s = "slt";
12938 goto slei;
12939 case M_SLEU_I:
12940 s = "sltu";
12941 slei:
12942 used_at = 1;
12943 load_register (AT, &imm_expr, GPR_SIZE == 64);
12944 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12945 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12946 break;
12947
12948 case M_SLT_I:
12949 if (imm_expr.X_add_number >= -0x8000
12950 && imm_expr.X_add_number < 0x8000)
12951 {
12952 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12953 BFD_RELOC_LO16);
12954 break;
12955 }
12956 used_at = 1;
12957 load_register (AT, &imm_expr, GPR_SIZE == 64);
12958 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
12959 break;
12960
12961 case M_SLTU_I:
12962 if (imm_expr.X_add_number >= -0x8000
12963 && imm_expr.X_add_number < 0x8000)
12964 {
12965 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
12966 BFD_RELOC_LO16);
12967 break;
12968 }
12969 used_at = 1;
12970 load_register (AT, &imm_expr, GPR_SIZE == 64);
12971 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
12972 break;
12973
12974 case M_SNE:
12975 if (op[1] == 0)
12976 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12977 else if (op[2] == 0)
12978 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12979 else
12980 {
12981 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12982 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
12983 }
12984 break;
12985
12986 case M_SNE_I:
12987 if (imm_expr.X_add_number == 0)
12988 {
12989 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12990 break;
12991 }
12992 if (op[1] == 0)
12993 {
12994 as_warn (_("instruction %s: result is always true"),
12995 ip->insn_mo->name);
12996 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
12997 op[0], 0, BFD_RELOC_LO16);
12998 break;
12999 }
13000 if (CPU_HAS_SEQ (mips_opts.arch)
13001 && -512 <= imm_expr.X_add_number
13002 && imm_expr.X_add_number < 512)
13003 {
13004 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13005 (int) imm_expr.X_add_number);
13006 break;
13007 }
13008 if (imm_expr.X_add_number >= 0
13009 && imm_expr.X_add_number < 0x10000)
13010 {
13011 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13012 BFD_RELOC_LO16);
13013 }
13014 else if (imm_expr.X_add_number > -0x8000
13015 && imm_expr.X_add_number < 0)
13016 {
13017 imm_expr.X_add_number = -imm_expr.X_add_number;
13018 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13019 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13020 }
13021 else if (CPU_HAS_SEQ (mips_opts.arch))
13022 {
13023 used_at = 1;
13024 load_register (AT, &imm_expr, GPR_SIZE == 64);
13025 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13026 break;
13027 }
13028 else
13029 {
13030 load_register (AT, &imm_expr, GPR_SIZE == 64);
13031 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13032 used_at = 1;
13033 }
13034 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13035 break;
13036
13037 case M_SUB_I:
13038 s = "addi";
13039 s2 = "sub";
13040 goto do_subi;
13041 case M_SUBU_I:
13042 s = "addiu";
13043 s2 = "subu";
13044 goto do_subi;
13045 case M_DSUB_I:
13046 dbl = 1;
13047 s = "daddi";
13048 s2 = "dsub";
13049 if (!mips_opts.micromips)
13050 goto do_subi;
13051 if (imm_expr.X_add_number > -0x200
13052 && imm_expr.X_add_number <= 0x200)
13053 {
13054 macro_build (NULL, s, "t,r,.", op[0], op[1],
13055 (int) -imm_expr.X_add_number);
13056 break;
13057 }
13058 goto do_subi_i;
13059 case M_DSUBU_I:
13060 dbl = 1;
13061 s = "daddiu";
13062 s2 = "dsubu";
13063 do_subi:
13064 if (imm_expr.X_add_number > -0x8000
13065 && imm_expr.X_add_number <= 0x8000)
13066 {
13067 imm_expr.X_add_number = -imm_expr.X_add_number;
13068 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13069 break;
13070 }
13071 do_subi_i:
13072 used_at = 1;
13073 load_register (AT, &imm_expr, dbl);
13074 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13075 break;
13076
13077 case M_TEQ_I:
13078 s = "teq";
13079 goto trap;
13080 case M_TGE_I:
13081 s = "tge";
13082 goto trap;
13083 case M_TGEU_I:
13084 s = "tgeu";
13085 goto trap;
13086 case M_TLT_I:
13087 s = "tlt";
13088 goto trap;
13089 case M_TLTU_I:
13090 s = "tltu";
13091 goto trap;
13092 case M_TNE_I:
13093 s = "tne";
13094 trap:
13095 used_at = 1;
13096 load_register (AT, &imm_expr, GPR_SIZE == 64);
13097 macro_build (NULL, s, "s,t", op[0], AT);
13098 break;
13099
13100 case M_TRUNCWS:
13101 case M_TRUNCWD:
13102 gas_assert (!mips_opts.micromips);
13103 gas_assert (mips_opts.isa == ISA_MIPS1);
13104 used_at = 1;
13105
13106 /*
13107 * Is the double cfc1 instruction a bug in the mips assembler;
13108 * or is there a reason for it?
13109 */
13110 start_noreorder ();
13111 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13112 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13113 macro_build (NULL, "nop", "");
13114 expr1.X_add_number = 3;
13115 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13116 expr1.X_add_number = 2;
13117 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13118 macro_build (NULL, "ctc1", "t,G", AT, RA);
13119 macro_build (NULL, "nop", "");
13120 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13121 op[0], op[1]);
13122 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13123 macro_build (NULL, "nop", "");
13124 end_noreorder ();
13125 break;
13126
13127 case M_ULH_AB:
13128 s = "lb";
13129 s2 = "lbu";
13130 off = 1;
13131 goto uld_st;
13132 case M_ULHU_AB:
13133 s = "lbu";
13134 s2 = "lbu";
13135 off = 1;
13136 goto uld_st;
13137 case M_ULW_AB:
13138 s = "lwl";
13139 s2 = "lwr";
13140 offbits = (mips_opts.micromips ? 12 : 16);
13141 off = 3;
13142 goto uld_st;
13143 case M_ULD_AB:
13144 s = "ldl";
13145 s2 = "ldr";
13146 offbits = (mips_opts.micromips ? 12 : 16);
13147 off = 7;
13148 goto uld_st;
13149 case M_USH_AB:
13150 s = "sb";
13151 s2 = "sb";
13152 off = 1;
13153 ust = 1;
13154 goto uld_st;
13155 case M_USW_AB:
13156 s = "swl";
13157 s2 = "swr";
13158 offbits = (mips_opts.micromips ? 12 : 16);
13159 off = 3;
13160 ust = 1;
13161 goto uld_st;
13162 case M_USD_AB:
13163 s = "sdl";
13164 s2 = "sdr";
13165 offbits = (mips_opts.micromips ? 12 : 16);
13166 off = 7;
13167 ust = 1;
13168
13169 uld_st:
13170 breg = op[2];
13171 large_offset = !small_offset_p (off, align, offbits);
13172 ep = &offset_expr;
13173 expr1.X_add_number = 0;
13174 if (large_offset)
13175 {
13176 used_at = 1;
13177 tempreg = AT;
13178 if (small_offset_p (0, align, 16))
13179 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13180 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13181 else
13182 {
13183 load_address (tempreg, ep, &used_at);
13184 if (breg != 0)
13185 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13186 tempreg, tempreg, breg);
13187 }
13188 offset_reloc[0] = BFD_RELOC_LO16;
13189 offset_reloc[1] = BFD_RELOC_UNUSED;
13190 offset_reloc[2] = BFD_RELOC_UNUSED;
13191 breg = tempreg;
13192 tempreg = op[0];
13193 ep = &expr1;
13194 }
13195 else if (!ust && op[0] == breg)
13196 {
13197 used_at = 1;
13198 tempreg = AT;
13199 }
13200 else
13201 tempreg = op[0];
13202
13203 if (off == 1)
13204 goto ulh_sh;
13205
13206 if (!target_big_endian)
13207 ep->X_add_number += off;
13208 if (offbits == 12)
13209 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13210 else
13211 macro_build (ep, s, "t,o(b)", tempreg, -1,
13212 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13213
13214 if (!target_big_endian)
13215 ep->X_add_number -= off;
13216 else
13217 ep->X_add_number += off;
13218 if (offbits == 12)
13219 macro_build (NULL, s2, "t,~(b)",
13220 tempreg, (int) ep->X_add_number, breg);
13221 else
13222 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13223 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13224
13225 /* If necessary, move the result in tempreg to the final destination. */
13226 if (!ust && op[0] != tempreg)
13227 {
13228 /* Protect second load's delay slot. */
13229 load_delay_nop ();
13230 move_register (op[0], tempreg);
13231 }
13232 break;
13233
13234 ulh_sh:
13235 used_at = 1;
13236 if (target_big_endian == ust)
13237 ep->X_add_number += off;
13238 tempreg = ust || large_offset ? op[0] : AT;
13239 macro_build (ep, s, "t,o(b)", tempreg, -1,
13240 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13241
13242 /* For halfword transfers we need a temporary register to shuffle
13243 bytes. Unfortunately for M_USH_A we have none available before
13244 the next store as AT holds the base address. We deal with this
13245 case by clobbering TREG and then restoring it as with ULH. */
13246 tempreg = ust == large_offset ? op[0] : AT;
13247 if (ust)
13248 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13249
13250 if (target_big_endian == ust)
13251 ep->X_add_number -= off;
13252 else
13253 ep->X_add_number += off;
13254 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13255 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13256
13257 /* For M_USH_A re-retrieve the LSB. */
13258 if (ust && large_offset)
13259 {
13260 if (target_big_endian)
13261 ep->X_add_number += off;
13262 else
13263 ep->X_add_number -= off;
13264 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13265 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13266 }
13267 /* For ULH and M_USH_A OR the LSB in. */
13268 if (!ust || large_offset)
13269 {
13270 tempreg = !large_offset ? AT : op[0];
13271 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13272 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13273 }
13274 break;
13275
13276 default:
13277 /* FIXME: Check if this is one of the itbl macros, since they
13278 are added dynamically. */
13279 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13280 break;
13281 }
13282 if (!mips_opts.at && used_at)
13283 as_bad (_("macro used $at after \".set noat\""));
13284 }
13285
13286 /* Implement macros in mips16 mode. */
13287
13288 static void
13289 mips16_macro (struct mips_cl_insn *ip)
13290 {
13291 const struct mips_operand_array *operands;
13292 int mask;
13293 int tmp;
13294 expressionS expr1;
13295 int dbl;
13296 const char *s, *s2, *s3;
13297 unsigned int op[MAX_OPERANDS];
13298 unsigned int i;
13299
13300 mask = ip->insn_mo->mask;
13301
13302 operands = insn_operands (ip);
13303 for (i = 0; i < MAX_OPERANDS; i++)
13304 if (operands->operand[i])
13305 op[i] = insn_extract_operand (ip, operands->operand[i]);
13306 else
13307 op[i] = -1;
13308
13309 expr1.X_op = O_constant;
13310 expr1.X_op_symbol = NULL;
13311 expr1.X_add_symbol = NULL;
13312 expr1.X_add_number = 1;
13313
13314 dbl = 0;
13315
13316 switch (mask)
13317 {
13318 default:
13319 abort ();
13320
13321 case M_DDIV_3:
13322 dbl = 1;
13323 case M_DIV_3:
13324 s = "mflo";
13325 goto do_div3;
13326 case M_DREM_3:
13327 dbl = 1;
13328 case M_REM_3:
13329 s = "mfhi";
13330 do_div3:
13331 start_noreorder ();
13332 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13333 expr1.X_add_number = 2;
13334 macro_build (&expr1, "bnez", "x,p", op[2]);
13335 macro_build (NULL, "break", "6", 7);
13336
13337 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13338 since that causes an overflow. We should do that as well,
13339 but I don't see how to do the comparisons without a temporary
13340 register. */
13341 end_noreorder ();
13342 macro_build (NULL, s, "x", op[0]);
13343 break;
13344
13345 case M_DIVU_3:
13346 s = "divu";
13347 s2 = "mflo";
13348 goto do_divu3;
13349 case M_REMU_3:
13350 s = "divu";
13351 s2 = "mfhi";
13352 goto do_divu3;
13353 case M_DDIVU_3:
13354 s = "ddivu";
13355 s2 = "mflo";
13356 goto do_divu3;
13357 case M_DREMU_3:
13358 s = "ddivu";
13359 s2 = "mfhi";
13360 do_divu3:
13361 start_noreorder ();
13362 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13363 expr1.X_add_number = 2;
13364 macro_build (&expr1, "bnez", "x,p", op[2]);
13365 macro_build (NULL, "break", "6", 7);
13366 end_noreorder ();
13367 macro_build (NULL, s2, "x", op[0]);
13368 break;
13369
13370 case M_DMUL:
13371 dbl = 1;
13372 case M_MUL:
13373 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13374 macro_build (NULL, "mflo", "x", op[0]);
13375 break;
13376
13377 case M_DSUBU_I:
13378 dbl = 1;
13379 goto do_subu;
13380 case M_SUBU_I:
13381 do_subu:
13382 imm_expr.X_add_number = -imm_expr.X_add_number;
13383 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13384 break;
13385
13386 case M_SUBU_I_2:
13387 imm_expr.X_add_number = -imm_expr.X_add_number;
13388 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13389 break;
13390
13391 case M_DSUBU_I_2:
13392 imm_expr.X_add_number = -imm_expr.X_add_number;
13393 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13394 break;
13395
13396 case M_BEQ:
13397 s = "cmp";
13398 s2 = "bteqz";
13399 goto do_branch;
13400 case M_BNE:
13401 s = "cmp";
13402 s2 = "btnez";
13403 goto do_branch;
13404 case M_BLT:
13405 s = "slt";
13406 s2 = "btnez";
13407 goto do_branch;
13408 case M_BLTU:
13409 s = "sltu";
13410 s2 = "btnez";
13411 goto do_branch;
13412 case M_BLE:
13413 s = "slt";
13414 s2 = "bteqz";
13415 goto do_reverse_branch;
13416 case M_BLEU:
13417 s = "sltu";
13418 s2 = "bteqz";
13419 goto do_reverse_branch;
13420 case M_BGE:
13421 s = "slt";
13422 s2 = "bteqz";
13423 goto do_branch;
13424 case M_BGEU:
13425 s = "sltu";
13426 s2 = "bteqz";
13427 goto do_branch;
13428 case M_BGT:
13429 s = "slt";
13430 s2 = "btnez";
13431 goto do_reverse_branch;
13432 case M_BGTU:
13433 s = "sltu";
13434 s2 = "btnez";
13435
13436 do_reverse_branch:
13437 tmp = op[1];
13438 op[1] = op[0];
13439 op[0] = tmp;
13440
13441 do_branch:
13442 macro_build (NULL, s, "x,y", op[0], op[1]);
13443 macro_build (&offset_expr, s2, "p");
13444 break;
13445
13446 case M_BEQ_I:
13447 s = "cmpi";
13448 s2 = "bteqz";
13449 s3 = "x,U";
13450 goto do_branch_i;
13451 case M_BNE_I:
13452 s = "cmpi";
13453 s2 = "btnez";
13454 s3 = "x,U";
13455 goto do_branch_i;
13456 case M_BLT_I:
13457 s = "slti";
13458 s2 = "btnez";
13459 s3 = "x,8";
13460 goto do_branch_i;
13461 case M_BLTU_I:
13462 s = "sltiu";
13463 s2 = "btnez";
13464 s3 = "x,8";
13465 goto do_branch_i;
13466 case M_BLE_I:
13467 s = "slti";
13468 s2 = "btnez";
13469 s3 = "x,8";
13470 goto do_addone_branch_i;
13471 case M_BLEU_I:
13472 s = "sltiu";
13473 s2 = "btnez";
13474 s3 = "x,8";
13475 goto do_addone_branch_i;
13476 case M_BGE_I:
13477 s = "slti";
13478 s2 = "bteqz";
13479 s3 = "x,8";
13480 goto do_branch_i;
13481 case M_BGEU_I:
13482 s = "sltiu";
13483 s2 = "bteqz";
13484 s3 = "x,8";
13485 goto do_branch_i;
13486 case M_BGT_I:
13487 s = "slti";
13488 s2 = "bteqz";
13489 s3 = "x,8";
13490 goto do_addone_branch_i;
13491 case M_BGTU_I:
13492 s = "sltiu";
13493 s2 = "bteqz";
13494 s3 = "x,8";
13495
13496 do_addone_branch_i:
13497 ++imm_expr.X_add_number;
13498
13499 do_branch_i:
13500 macro_build (&imm_expr, s, s3, op[0]);
13501 macro_build (&offset_expr, s2, "p");
13502 break;
13503
13504 case M_ABS:
13505 expr1.X_add_number = 0;
13506 macro_build (&expr1, "slti", "x,8", op[1]);
13507 if (op[0] != op[1])
13508 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13509 expr1.X_add_number = 2;
13510 macro_build (&expr1, "bteqz", "p");
13511 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13512 break;
13513 }
13514 }
13515
13516 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13517 opcode bits in *OPCODE_EXTRA. */
13518
13519 static struct mips_opcode *
13520 mips_lookup_insn (struct hash_control *hash, const char *start,
13521 ssize_t length, unsigned int *opcode_extra)
13522 {
13523 char *name, *dot, *p;
13524 unsigned int mask, suffix;
13525 ssize_t opend;
13526 struct mips_opcode *insn;
13527
13528 /* Make a copy of the instruction so that we can fiddle with it. */
13529 name = alloca (length + 1);
13530 memcpy (name, start, length);
13531 name[length] = '\0';
13532
13533 /* Look up the instruction as-is. */
13534 insn = (struct mips_opcode *) hash_find (hash, name);
13535 if (insn)
13536 return insn;
13537
13538 dot = strchr (name, '.');
13539 if (dot && dot[1])
13540 {
13541 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13542 p = mips_parse_vu0_channels (dot + 1, &mask);
13543 if (*p == 0 && mask != 0)
13544 {
13545 *dot = 0;
13546 insn = (struct mips_opcode *) hash_find (hash, name);
13547 *dot = '.';
13548 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13549 {
13550 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13551 return insn;
13552 }
13553 }
13554 }
13555
13556 if (mips_opts.micromips)
13557 {
13558 /* See if there's an instruction size override suffix,
13559 either `16' or `32', at the end of the mnemonic proper,
13560 that defines the operation, i.e. before the first `.'
13561 character if any. Strip it and retry. */
13562 opend = dot != NULL ? dot - name : length;
13563 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13564 suffix = 2;
13565 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13566 suffix = 4;
13567 else
13568 suffix = 0;
13569 if (suffix)
13570 {
13571 memcpy (name + opend - 2, name + opend, length - opend + 1);
13572 insn = (struct mips_opcode *) hash_find (hash, name);
13573 if (insn)
13574 {
13575 forced_insn_length = suffix;
13576 return insn;
13577 }
13578 }
13579 }
13580
13581 return NULL;
13582 }
13583
13584 /* Assemble an instruction into its binary format. If the instruction
13585 is a macro, set imm_expr and offset_expr to the values associated
13586 with "I" and "A" operands respectively. Otherwise store the value
13587 of the relocatable field (if any) in offset_expr. In both cases
13588 set offset_reloc to the relocation operators applied to offset_expr. */
13589
13590 static void
13591 mips_ip (char *str, struct mips_cl_insn *insn)
13592 {
13593 const struct mips_opcode *first, *past;
13594 struct hash_control *hash;
13595 char format;
13596 size_t end;
13597 struct mips_operand_token *tokens;
13598 unsigned int opcode_extra;
13599
13600 if (mips_opts.micromips)
13601 {
13602 hash = micromips_op_hash;
13603 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13604 }
13605 else
13606 {
13607 hash = op_hash;
13608 past = &mips_opcodes[NUMOPCODES];
13609 }
13610 forced_insn_length = 0;
13611 opcode_extra = 0;
13612
13613 /* We first try to match an instruction up to a space or to the end. */
13614 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13615 continue;
13616
13617 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13618 if (first == NULL)
13619 {
13620 set_insn_error (0, _("unrecognized opcode"));
13621 return;
13622 }
13623
13624 if (strcmp (first->name, "li.s") == 0)
13625 format = 'f';
13626 else if (strcmp (first->name, "li.d") == 0)
13627 format = 'd';
13628 else
13629 format = 0;
13630 tokens = mips_parse_arguments (str + end, format);
13631 if (!tokens)
13632 return;
13633
13634 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13635 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13636 set_insn_error (0, _("invalid operands"));
13637
13638 obstack_free (&mips_operand_tokens, tokens);
13639 }
13640
13641 /* As for mips_ip, but used when assembling MIPS16 code.
13642 Also set forced_insn_length to the resulting instruction size in
13643 bytes if the user explicitly requested a small or extended instruction. */
13644
13645 static void
13646 mips16_ip (char *str, struct mips_cl_insn *insn)
13647 {
13648 char *end, *s, c;
13649 struct mips_opcode *first;
13650 struct mips_operand_token *tokens;
13651
13652 forced_insn_length = 0;
13653
13654 for (s = str; ISLOWER (*s); ++s)
13655 ;
13656 end = s;
13657 c = *end;
13658 switch (c)
13659 {
13660 case '\0':
13661 break;
13662
13663 case ' ':
13664 s++;
13665 break;
13666
13667 case '.':
13668 if (s[1] == 't' && s[2] == ' ')
13669 {
13670 forced_insn_length = 2;
13671 s += 3;
13672 break;
13673 }
13674 else if (s[1] == 'e' && s[2] == ' ')
13675 {
13676 forced_insn_length = 4;
13677 s += 3;
13678 break;
13679 }
13680 /* Fall through. */
13681 default:
13682 set_insn_error (0, _("unrecognized opcode"));
13683 return;
13684 }
13685
13686 if (mips_opts.noautoextend && !forced_insn_length)
13687 forced_insn_length = 2;
13688
13689 *end = 0;
13690 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13691 *end = c;
13692
13693 if (!first)
13694 {
13695 set_insn_error (0, _("unrecognized opcode"));
13696 return;
13697 }
13698
13699 tokens = mips_parse_arguments (s, 0);
13700 if (!tokens)
13701 return;
13702
13703 if (!match_mips16_insns (insn, first, tokens))
13704 set_insn_error (0, _("invalid operands"));
13705
13706 obstack_free (&mips_operand_tokens, tokens);
13707 }
13708
13709 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13710 NBITS is the number of significant bits in VAL. */
13711
13712 static unsigned long
13713 mips16_immed_extend (offsetT val, unsigned int nbits)
13714 {
13715 int extval;
13716 if (nbits == 16)
13717 {
13718 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13719 val &= 0x1f;
13720 }
13721 else if (nbits == 15)
13722 {
13723 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13724 val &= 0xf;
13725 }
13726 else
13727 {
13728 extval = ((val & 0x1f) << 6) | (val & 0x20);
13729 val = 0;
13730 }
13731 return (extval << 16) | val;
13732 }
13733
13734 /* Like decode_mips16_operand, but require the operand to be defined and
13735 require it to be an integer. */
13736
13737 static const struct mips_int_operand *
13738 mips16_immed_operand (int type, bfd_boolean extended_p)
13739 {
13740 const struct mips_operand *operand;
13741
13742 operand = decode_mips16_operand (type, extended_p);
13743 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13744 abort ();
13745 return (const struct mips_int_operand *) operand;
13746 }
13747
13748 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13749
13750 static bfd_boolean
13751 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13752 bfd_reloc_code_real_type reloc, offsetT sval)
13753 {
13754 int min_val, max_val;
13755
13756 min_val = mips_int_operand_min (operand);
13757 max_val = mips_int_operand_max (operand);
13758 if (reloc != BFD_RELOC_UNUSED)
13759 {
13760 if (min_val < 0)
13761 sval = SEXT_16BIT (sval);
13762 else
13763 sval &= 0xffff;
13764 }
13765
13766 return (sval >= min_val
13767 && sval <= max_val
13768 && (sval & ((1 << operand->shift) - 1)) == 0);
13769 }
13770
13771 /* Install immediate value VAL into MIPS16 instruction *INSN,
13772 extending it if necessary. The instruction in *INSN may
13773 already be extended.
13774
13775 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13776 if none. In the former case, VAL is a 16-bit number with no
13777 defined signedness.
13778
13779 TYPE is the type of the immediate field. USER_INSN_LENGTH
13780 is the length that the user requested, or 0 if none. */
13781
13782 static void
13783 mips16_immed (char *file, unsigned int line, int type,
13784 bfd_reloc_code_real_type reloc, offsetT val,
13785 unsigned int user_insn_length, unsigned long *insn)
13786 {
13787 const struct mips_int_operand *operand;
13788 unsigned int uval, length;
13789
13790 operand = mips16_immed_operand (type, FALSE);
13791 if (!mips16_immed_in_range_p (operand, reloc, val))
13792 {
13793 /* We need an extended instruction. */
13794 if (user_insn_length == 2)
13795 as_bad_where (file, line, _("invalid unextended operand value"));
13796 else
13797 *insn |= MIPS16_EXTEND;
13798 }
13799 else if (user_insn_length == 4)
13800 {
13801 /* The operand doesn't force an unextended instruction to be extended.
13802 Warn if the user wanted an extended instruction anyway. */
13803 *insn |= MIPS16_EXTEND;
13804 as_warn_where (file, line,
13805 _("extended operand requested but not required"));
13806 }
13807
13808 length = mips16_opcode_length (*insn);
13809 if (length == 4)
13810 {
13811 operand = mips16_immed_operand (type, TRUE);
13812 if (!mips16_immed_in_range_p (operand, reloc, val))
13813 as_bad_where (file, line,
13814 _("operand value out of range for instruction"));
13815 }
13816 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13817 if (length == 2)
13818 *insn = mips_insert_operand (&operand->root, *insn, uval);
13819 else
13820 *insn |= mips16_immed_extend (uval, operand->root.size);
13821 }
13822 \f
13823 struct percent_op_match
13824 {
13825 const char *str;
13826 bfd_reloc_code_real_type reloc;
13827 };
13828
13829 static const struct percent_op_match mips_percent_op[] =
13830 {
13831 {"%lo", BFD_RELOC_LO16},
13832 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13833 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13834 {"%call16", BFD_RELOC_MIPS_CALL16},
13835 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13836 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13837 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13838 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13839 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13840 {"%got", BFD_RELOC_MIPS_GOT16},
13841 {"%gp_rel", BFD_RELOC_GPREL16},
13842 {"%half", BFD_RELOC_16},
13843 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13844 {"%higher", BFD_RELOC_MIPS_HIGHER},
13845 {"%neg", BFD_RELOC_MIPS_SUB},
13846 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13847 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13848 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13849 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13850 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13851 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13852 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13853 {"%hi", BFD_RELOC_HI16_S},
13854 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13855 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
13856 };
13857
13858 static const struct percent_op_match mips16_percent_op[] =
13859 {
13860 {"%lo", BFD_RELOC_MIPS16_LO16},
13861 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13862 {"%got", BFD_RELOC_MIPS16_GOT16},
13863 {"%call16", BFD_RELOC_MIPS16_CALL16},
13864 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13865 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13866 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13867 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13868 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13869 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13870 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13871 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13872 };
13873
13874
13875 /* Return true if *STR points to a relocation operator. When returning true,
13876 move *STR over the operator and store its relocation code in *RELOC.
13877 Leave both *STR and *RELOC alone when returning false. */
13878
13879 static bfd_boolean
13880 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13881 {
13882 const struct percent_op_match *percent_op;
13883 size_t limit, i;
13884
13885 if (mips_opts.mips16)
13886 {
13887 percent_op = mips16_percent_op;
13888 limit = ARRAY_SIZE (mips16_percent_op);
13889 }
13890 else
13891 {
13892 percent_op = mips_percent_op;
13893 limit = ARRAY_SIZE (mips_percent_op);
13894 }
13895
13896 for (i = 0; i < limit; i++)
13897 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13898 {
13899 int len = strlen (percent_op[i].str);
13900
13901 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13902 continue;
13903
13904 *str += strlen (percent_op[i].str);
13905 *reloc = percent_op[i].reloc;
13906
13907 /* Check whether the output BFD supports this relocation.
13908 If not, issue an error and fall back on something safe. */
13909 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13910 {
13911 as_bad (_("relocation %s isn't supported by the current ABI"),
13912 percent_op[i].str);
13913 *reloc = BFD_RELOC_UNUSED;
13914 }
13915 return TRUE;
13916 }
13917 return FALSE;
13918 }
13919
13920
13921 /* Parse string STR as a 16-bit relocatable operand. Store the
13922 expression in *EP and the relocations in the array starting
13923 at RELOC. Return the number of relocation operators used.
13924
13925 On exit, EXPR_END points to the first character after the expression. */
13926
13927 static size_t
13928 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13929 char *str)
13930 {
13931 bfd_reloc_code_real_type reversed_reloc[3];
13932 size_t reloc_index, i;
13933 int crux_depth, str_depth;
13934 char *crux;
13935
13936 /* Search for the start of the main expression, recoding relocations
13937 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13938 of the main expression and with CRUX_DEPTH containing the number
13939 of open brackets at that point. */
13940 reloc_index = -1;
13941 str_depth = 0;
13942 do
13943 {
13944 reloc_index++;
13945 crux = str;
13946 crux_depth = str_depth;
13947
13948 /* Skip over whitespace and brackets, keeping count of the number
13949 of brackets. */
13950 while (*str == ' ' || *str == '\t' || *str == '(')
13951 if (*str++ == '(')
13952 str_depth++;
13953 }
13954 while (*str == '%'
13955 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13956 && parse_relocation (&str, &reversed_reloc[reloc_index]));
13957
13958 my_getExpression (ep, crux);
13959 str = expr_end;
13960
13961 /* Match every open bracket. */
13962 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
13963 if (*str++ == ')')
13964 crux_depth--;
13965
13966 if (crux_depth > 0)
13967 as_bad (_("unclosed '('"));
13968
13969 expr_end = str;
13970
13971 if (reloc_index != 0)
13972 {
13973 prev_reloc_op_frag = frag_now;
13974 for (i = 0; i < reloc_index; i++)
13975 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13976 }
13977
13978 return reloc_index;
13979 }
13980
13981 static void
13982 my_getExpression (expressionS *ep, char *str)
13983 {
13984 char *save_in;
13985
13986 save_in = input_line_pointer;
13987 input_line_pointer = str;
13988 expression (ep);
13989 expr_end = input_line_pointer;
13990 input_line_pointer = save_in;
13991 }
13992
13993 char *
13994 md_atof (int type, char *litP, int *sizeP)
13995 {
13996 return ieee_md_atof (type, litP, sizeP, target_big_endian);
13997 }
13998
13999 void
14000 md_number_to_chars (char *buf, valueT val, int n)
14001 {
14002 if (target_big_endian)
14003 number_to_chars_bigendian (buf, val, n);
14004 else
14005 number_to_chars_littleendian (buf, val, n);
14006 }
14007 \f
14008 static int support_64bit_objects(void)
14009 {
14010 const char **list, **l;
14011 int yes;
14012
14013 list = bfd_target_list ();
14014 for (l = list; *l != NULL; l++)
14015 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14016 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14017 break;
14018 yes = (*l != NULL);
14019 free (list);
14020 return yes;
14021 }
14022
14023 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14024 NEW_VALUE. Warn if another value was already specified. Note:
14025 we have to defer parsing the -march and -mtune arguments in order
14026 to handle 'from-abi' correctly, since the ABI might be specified
14027 in a later argument. */
14028
14029 static void
14030 mips_set_option_string (const char **string_ptr, const char *new_value)
14031 {
14032 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14033 as_warn (_("a different %s was already specified, is now %s"),
14034 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14035 new_value);
14036
14037 *string_ptr = new_value;
14038 }
14039
14040 int
14041 md_parse_option (int c, char *arg)
14042 {
14043 unsigned int i;
14044
14045 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14046 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14047 {
14048 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14049 c == mips_ases[i].option_on);
14050 return 1;
14051 }
14052
14053 switch (c)
14054 {
14055 case OPTION_CONSTRUCT_FLOATS:
14056 mips_disable_float_construction = 0;
14057 break;
14058
14059 case OPTION_NO_CONSTRUCT_FLOATS:
14060 mips_disable_float_construction = 1;
14061 break;
14062
14063 case OPTION_TRAP:
14064 mips_trap = 1;
14065 break;
14066
14067 case OPTION_BREAK:
14068 mips_trap = 0;
14069 break;
14070
14071 case OPTION_EB:
14072 target_big_endian = 1;
14073 break;
14074
14075 case OPTION_EL:
14076 target_big_endian = 0;
14077 break;
14078
14079 case 'O':
14080 if (arg == NULL)
14081 mips_optimize = 1;
14082 else if (arg[0] == '0')
14083 mips_optimize = 0;
14084 else if (arg[0] == '1')
14085 mips_optimize = 1;
14086 else
14087 mips_optimize = 2;
14088 break;
14089
14090 case 'g':
14091 if (arg == NULL)
14092 mips_debug = 2;
14093 else
14094 mips_debug = atoi (arg);
14095 break;
14096
14097 case OPTION_MIPS1:
14098 file_mips_opts.isa = ISA_MIPS1;
14099 break;
14100
14101 case OPTION_MIPS2:
14102 file_mips_opts.isa = ISA_MIPS2;
14103 break;
14104
14105 case OPTION_MIPS3:
14106 file_mips_opts.isa = ISA_MIPS3;
14107 break;
14108
14109 case OPTION_MIPS4:
14110 file_mips_opts.isa = ISA_MIPS4;
14111 break;
14112
14113 case OPTION_MIPS5:
14114 file_mips_opts.isa = ISA_MIPS5;
14115 break;
14116
14117 case OPTION_MIPS32:
14118 file_mips_opts.isa = ISA_MIPS32;
14119 break;
14120
14121 case OPTION_MIPS32R2:
14122 file_mips_opts.isa = ISA_MIPS32R2;
14123 break;
14124
14125 case OPTION_MIPS32R3:
14126 file_mips_opts.isa = ISA_MIPS32R3;
14127 break;
14128
14129 case OPTION_MIPS32R5:
14130 file_mips_opts.isa = ISA_MIPS32R5;
14131 break;
14132
14133 case OPTION_MIPS32R6:
14134 file_mips_opts.isa = ISA_MIPS32R6;
14135 break;
14136
14137 case OPTION_MIPS64R2:
14138 file_mips_opts.isa = ISA_MIPS64R2;
14139 break;
14140
14141 case OPTION_MIPS64R3:
14142 file_mips_opts.isa = ISA_MIPS64R3;
14143 break;
14144
14145 case OPTION_MIPS64R5:
14146 file_mips_opts.isa = ISA_MIPS64R5;
14147 break;
14148
14149 case OPTION_MIPS64R6:
14150 file_mips_opts.isa = ISA_MIPS64R6;
14151 break;
14152
14153 case OPTION_MIPS64:
14154 file_mips_opts.isa = ISA_MIPS64;
14155 break;
14156
14157 case OPTION_MTUNE:
14158 mips_set_option_string (&mips_tune_string, arg);
14159 break;
14160
14161 case OPTION_MARCH:
14162 mips_set_option_string (&mips_arch_string, arg);
14163 break;
14164
14165 case OPTION_M4650:
14166 mips_set_option_string (&mips_arch_string, "4650");
14167 mips_set_option_string (&mips_tune_string, "4650");
14168 break;
14169
14170 case OPTION_NO_M4650:
14171 break;
14172
14173 case OPTION_M4010:
14174 mips_set_option_string (&mips_arch_string, "4010");
14175 mips_set_option_string (&mips_tune_string, "4010");
14176 break;
14177
14178 case OPTION_NO_M4010:
14179 break;
14180
14181 case OPTION_M4100:
14182 mips_set_option_string (&mips_arch_string, "4100");
14183 mips_set_option_string (&mips_tune_string, "4100");
14184 break;
14185
14186 case OPTION_NO_M4100:
14187 break;
14188
14189 case OPTION_M3900:
14190 mips_set_option_string (&mips_arch_string, "3900");
14191 mips_set_option_string (&mips_tune_string, "3900");
14192 break;
14193
14194 case OPTION_NO_M3900:
14195 break;
14196
14197 case OPTION_MICROMIPS:
14198 if (file_mips_opts.mips16 == 1)
14199 {
14200 as_bad (_("-mmicromips cannot be used with -mips16"));
14201 return 0;
14202 }
14203 file_mips_opts.micromips = 1;
14204 mips_no_prev_insn ();
14205 break;
14206
14207 case OPTION_NO_MICROMIPS:
14208 file_mips_opts.micromips = 0;
14209 mips_no_prev_insn ();
14210 break;
14211
14212 case OPTION_MIPS16:
14213 if (file_mips_opts.micromips == 1)
14214 {
14215 as_bad (_("-mips16 cannot be used with -micromips"));
14216 return 0;
14217 }
14218 file_mips_opts.mips16 = 1;
14219 mips_no_prev_insn ();
14220 break;
14221
14222 case OPTION_NO_MIPS16:
14223 file_mips_opts.mips16 = 0;
14224 mips_no_prev_insn ();
14225 break;
14226
14227 case OPTION_FIX_24K:
14228 mips_fix_24k = 1;
14229 break;
14230
14231 case OPTION_NO_FIX_24K:
14232 mips_fix_24k = 0;
14233 break;
14234
14235 case OPTION_FIX_RM7000:
14236 mips_fix_rm7000 = 1;
14237 break;
14238
14239 case OPTION_NO_FIX_RM7000:
14240 mips_fix_rm7000 = 0;
14241 break;
14242
14243 case OPTION_FIX_LOONGSON2F_JUMP:
14244 mips_fix_loongson2f_jump = TRUE;
14245 break;
14246
14247 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14248 mips_fix_loongson2f_jump = FALSE;
14249 break;
14250
14251 case OPTION_FIX_LOONGSON2F_NOP:
14252 mips_fix_loongson2f_nop = TRUE;
14253 break;
14254
14255 case OPTION_NO_FIX_LOONGSON2F_NOP:
14256 mips_fix_loongson2f_nop = FALSE;
14257 break;
14258
14259 case OPTION_FIX_VR4120:
14260 mips_fix_vr4120 = 1;
14261 break;
14262
14263 case OPTION_NO_FIX_VR4120:
14264 mips_fix_vr4120 = 0;
14265 break;
14266
14267 case OPTION_FIX_VR4130:
14268 mips_fix_vr4130 = 1;
14269 break;
14270
14271 case OPTION_NO_FIX_VR4130:
14272 mips_fix_vr4130 = 0;
14273 break;
14274
14275 case OPTION_FIX_CN63XXP1:
14276 mips_fix_cn63xxp1 = TRUE;
14277 break;
14278
14279 case OPTION_NO_FIX_CN63XXP1:
14280 mips_fix_cn63xxp1 = FALSE;
14281 break;
14282
14283 case OPTION_RELAX_BRANCH:
14284 mips_relax_branch = 1;
14285 break;
14286
14287 case OPTION_NO_RELAX_BRANCH:
14288 mips_relax_branch = 0;
14289 break;
14290
14291 case OPTION_INSN32:
14292 file_mips_opts.insn32 = TRUE;
14293 break;
14294
14295 case OPTION_NO_INSN32:
14296 file_mips_opts.insn32 = FALSE;
14297 break;
14298
14299 case OPTION_MSHARED:
14300 mips_in_shared = TRUE;
14301 break;
14302
14303 case OPTION_MNO_SHARED:
14304 mips_in_shared = FALSE;
14305 break;
14306
14307 case OPTION_MSYM32:
14308 file_mips_opts.sym32 = TRUE;
14309 break;
14310
14311 case OPTION_MNO_SYM32:
14312 file_mips_opts.sym32 = FALSE;
14313 break;
14314
14315 /* When generating ELF code, we permit -KPIC and -call_shared to
14316 select SVR4_PIC, and -non_shared to select no PIC. This is
14317 intended to be compatible with Irix 5. */
14318 case OPTION_CALL_SHARED:
14319 mips_pic = SVR4_PIC;
14320 mips_abicalls = TRUE;
14321 break;
14322
14323 case OPTION_CALL_NONPIC:
14324 mips_pic = NO_PIC;
14325 mips_abicalls = TRUE;
14326 break;
14327
14328 case OPTION_NON_SHARED:
14329 mips_pic = NO_PIC;
14330 mips_abicalls = FALSE;
14331 break;
14332
14333 /* The -xgot option tells the assembler to use 32 bit offsets
14334 when accessing the got in SVR4_PIC mode. It is for Irix
14335 compatibility. */
14336 case OPTION_XGOT:
14337 mips_big_got = 1;
14338 break;
14339
14340 case 'G':
14341 g_switch_value = atoi (arg);
14342 g_switch_seen = 1;
14343 break;
14344
14345 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14346 and -mabi=64. */
14347 case OPTION_32:
14348 mips_abi = O32_ABI;
14349 break;
14350
14351 case OPTION_N32:
14352 mips_abi = N32_ABI;
14353 break;
14354
14355 case OPTION_64:
14356 mips_abi = N64_ABI;
14357 if (!support_64bit_objects())
14358 as_fatal (_("no compiled in support for 64 bit object file format"));
14359 break;
14360
14361 case OPTION_GP32:
14362 file_mips_opts.gp = 32;
14363 break;
14364
14365 case OPTION_GP64:
14366 file_mips_opts.gp = 64;
14367 break;
14368
14369 case OPTION_FP32:
14370 file_mips_opts.fp = 32;
14371 break;
14372
14373 case OPTION_FPXX:
14374 file_mips_opts.fp = 0;
14375 break;
14376
14377 case OPTION_FP64:
14378 file_mips_opts.fp = 64;
14379 break;
14380
14381 case OPTION_ODD_SPREG:
14382 file_mips_opts.oddspreg = 1;
14383 break;
14384
14385 case OPTION_NO_ODD_SPREG:
14386 file_mips_opts.oddspreg = 0;
14387 break;
14388
14389 case OPTION_SINGLE_FLOAT:
14390 file_mips_opts.single_float = 1;
14391 break;
14392
14393 case OPTION_DOUBLE_FLOAT:
14394 file_mips_opts.single_float = 0;
14395 break;
14396
14397 case OPTION_SOFT_FLOAT:
14398 file_mips_opts.soft_float = 1;
14399 break;
14400
14401 case OPTION_HARD_FLOAT:
14402 file_mips_opts.soft_float = 0;
14403 break;
14404
14405 case OPTION_MABI:
14406 if (strcmp (arg, "32") == 0)
14407 mips_abi = O32_ABI;
14408 else if (strcmp (arg, "o64") == 0)
14409 mips_abi = O64_ABI;
14410 else if (strcmp (arg, "n32") == 0)
14411 mips_abi = N32_ABI;
14412 else if (strcmp (arg, "64") == 0)
14413 {
14414 mips_abi = N64_ABI;
14415 if (! support_64bit_objects())
14416 as_fatal (_("no compiled in support for 64 bit object file "
14417 "format"));
14418 }
14419 else if (strcmp (arg, "eabi") == 0)
14420 mips_abi = EABI_ABI;
14421 else
14422 {
14423 as_fatal (_("invalid abi -mabi=%s"), arg);
14424 return 0;
14425 }
14426 break;
14427
14428 case OPTION_M7000_HILO_FIX:
14429 mips_7000_hilo_fix = TRUE;
14430 break;
14431
14432 case OPTION_MNO_7000_HILO_FIX:
14433 mips_7000_hilo_fix = FALSE;
14434 break;
14435
14436 case OPTION_MDEBUG:
14437 mips_flag_mdebug = TRUE;
14438 break;
14439
14440 case OPTION_NO_MDEBUG:
14441 mips_flag_mdebug = FALSE;
14442 break;
14443
14444 case OPTION_PDR:
14445 mips_flag_pdr = TRUE;
14446 break;
14447
14448 case OPTION_NO_PDR:
14449 mips_flag_pdr = FALSE;
14450 break;
14451
14452 case OPTION_MVXWORKS_PIC:
14453 mips_pic = VXWORKS_PIC;
14454 break;
14455
14456 case OPTION_NAN:
14457 if (strcmp (arg, "2008") == 0)
14458 mips_nan2008 = 1;
14459 else if (strcmp (arg, "legacy") == 0)
14460 mips_nan2008 = 0;
14461 else
14462 {
14463 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14464 return 0;
14465 }
14466 break;
14467
14468 default:
14469 return 0;
14470 }
14471
14472 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14473
14474 return 1;
14475 }
14476 \f
14477 /* Set up globals to tune for the ISA or processor described by INFO. */
14478
14479 static void
14480 mips_set_tune (const struct mips_cpu_info *info)
14481 {
14482 if (info != 0)
14483 mips_tune = info->cpu;
14484 }
14485
14486
14487 void
14488 mips_after_parse_args (void)
14489 {
14490 const struct mips_cpu_info *arch_info = 0;
14491 const struct mips_cpu_info *tune_info = 0;
14492
14493 /* GP relative stuff not working for PE */
14494 if (strncmp (TARGET_OS, "pe", 2) == 0)
14495 {
14496 if (g_switch_seen && g_switch_value != 0)
14497 as_bad (_("-G not supported in this configuration"));
14498 g_switch_value = 0;
14499 }
14500
14501 if (mips_abi == NO_ABI)
14502 mips_abi = MIPS_DEFAULT_ABI;
14503
14504 /* The following code determines the architecture.
14505 Similar code was added to GCC 3.3 (see override_options() in
14506 config/mips/mips.c). The GAS and GCC code should be kept in sync
14507 as much as possible. */
14508
14509 if (mips_arch_string != 0)
14510 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14511
14512 if (file_mips_opts.isa != ISA_UNKNOWN)
14513 {
14514 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14515 ISA level specified by -mipsN, while arch_info->isa contains
14516 the -march selection (if any). */
14517 if (arch_info != 0)
14518 {
14519 /* -march takes precedence over -mipsN, since it is more descriptive.
14520 There's no harm in specifying both as long as the ISA levels
14521 are the same. */
14522 if (file_mips_opts.isa != arch_info->isa)
14523 as_bad (_("-%s conflicts with the other architecture options,"
14524 " which imply -%s"),
14525 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14526 mips_cpu_info_from_isa (arch_info->isa)->name);
14527 }
14528 else
14529 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14530 }
14531
14532 if (arch_info == 0)
14533 {
14534 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14535 gas_assert (arch_info);
14536 }
14537
14538 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14539 as_bad (_("-march=%s is not compatible with the selected ABI"),
14540 arch_info->name);
14541
14542 file_mips_opts.arch = arch_info->cpu;
14543 file_mips_opts.isa = arch_info->isa;
14544
14545 /* Set up initial mips_opts state. */
14546 mips_opts = file_mips_opts;
14547
14548 /* The register size inference code is now placed in
14549 file_mips_check_options. */
14550
14551 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14552 processor. */
14553 if (mips_tune_string != 0)
14554 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14555
14556 if (tune_info == 0)
14557 mips_set_tune (arch_info);
14558 else
14559 mips_set_tune (tune_info);
14560
14561 if (mips_flag_mdebug < 0)
14562 mips_flag_mdebug = 0;
14563 }
14564 \f
14565 void
14566 mips_init_after_args (void)
14567 {
14568 /* initialize opcodes */
14569 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14570 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14571 }
14572
14573 long
14574 md_pcrel_from (fixS *fixP)
14575 {
14576 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14577 switch (fixP->fx_r_type)
14578 {
14579 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14580 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14581 /* Return the address of the delay slot. */
14582 return addr + 2;
14583
14584 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14585 case BFD_RELOC_MICROMIPS_JMP:
14586 case BFD_RELOC_16_PCREL_S2:
14587 case BFD_RELOC_MIPS_21_PCREL_S2:
14588 case BFD_RELOC_MIPS_26_PCREL_S2:
14589 case BFD_RELOC_MIPS_JMP:
14590 /* Return the address of the delay slot. */
14591 return addr + 4;
14592
14593 default:
14594 return addr;
14595 }
14596 }
14597
14598 /* This is called before the symbol table is processed. In order to
14599 work with gcc when using mips-tfile, we must keep all local labels.
14600 However, in other cases, we want to discard them. If we were
14601 called with -g, but we didn't see any debugging information, it may
14602 mean that gcc is smuggling debugging information through to
14603 mips-tfile, in which case we must generate all local labels. */
14604
14605 void
14606 mips_frob_file_before_adjust (void)
14607 {
14608 #ifndef NO_ECOFF_DEBUGGING
14609 if (ECOFF_DEBUGGING
14610 && mips_debug != 0
14611 && ! ecoff_debugging_seen)
14612 flag_keep_locals = 1;
14613 #endif
14614 }
14615
14616 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14617 the corresponding LO16 reloc. This is called before md_apply_fix and
14618 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14619 relocation operators.
14620
14621 For our purposes, a %lo() expression matches a %got() or %hi()
14622 expression if:
14623
14624 (a) it refers to the same symbol; and
14625 (b) the offset applied in the %lo() expression is no lower than
14626 the offset applied in the %got() or %hi().
14627
14628 (b) allows us to cope with code like:
14629
14630 lui $4,%hi(foo)
14631 lh $4,%lo(foo+2)($4)
14632
14633 ...which is legal on RELA targets, and has a well-defined behaviour
14634 if the user knows that adding 2 to "foo" will not induce a carry to
14635 the high 16 bits.
14636
14637 When several %lo()s match a particular %got() or %hi(), we use the
14638 following rules to distinguish them:
14639
14640 (1) %lo()s with smaller offsets are a better match than %lo()s with
14641 higher offsets.
14642
14643 (2) %lo()s with no matching %got() or %hi() are better than those
14644 that already have a matching %got() or %hi().
14645
14646 (3) later %lo()s are better than earlier %lo()s.
14647
14648 These rules are applied in order.
14649
14650 (1) means, among other things, that %lo()s with identical offsets are
14651 chosen if they exist.
14652
14653 (2) means that we won't associate several high-part relocations with
14654 the same low-part relocation unless there's no alternative. Having
14655 several high parts for the same low part is a GNU extension; this rule
14656 allows careful users to avoid it.
14657
14658 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14659 with the last high-part relocation being at the front of the list.
14660 It therefore makes sense to choose the last matching low-part
14661 relocation, all other things being equal. It's also easier
14662 to code that way. */
14663
14664 void
14665 mips_frob_file (void)
14666 {
14667 struct mips_hi_fixup *l;
14668 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14669
14670 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14671 {
14672 segment_info_type *seginfo;
14673 bfd_boolean matched_lo_p;
14674 fixS **hi_pos, **lo_pos, **pos;
14675
14676 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14677
14678 /* If a GOT16 relocation turns out to be against a global symbol,
14679 there isn't supposed to be a matching LO. Ignore %gots against
14680 constants; we'll report an error for those later. */
14681 if (got16_reloc_p (l->fixp->fx_r_type)
14682 && !(l->fixp->fx_addsy
14683 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14684 continue;
14685
14686 /* Check quickly whether the next fixup happens to be a matching %lo. */
14687 if (fixup_has_matching_lo_p (l->fixp))
14688 continue;
14689
14690 seginfo = seg_info (l->seg);
14691
14692 /* Set HI_POS to the position of this relocation in the chain.
14693 Set LO_POS to the position of the chosen low-part relocation.
14694 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14695 relocation that matches an immediately-preceding high-part
14696 relocation. */
14697 hi_pos = NULL;
14698 lo_pos = NULL;
14699 matched_lo_p = FALSE;
14700 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14701
14702 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14703 {
14704 if (*pos == l->fixp)
14705 hi_pos = pos;
14706
14707 if ((*pos)->fx_r_type == looking_for_rtype
14708 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14709 && (*pos)->fx_offset >= l->fixp->fx_offset
14710 && (lo_pos == NULL
14711 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14712 || (!matched_lo_p
14713 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14714 lo_pos = pos;
14715
14716 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14717 && fixup_has_matching_lo_p (*pos));
14718 }
14719
14720 /* If we found a match, remove the high-part relocation from its
14721 current position and insert it before the low-part relocation.
14722 Make the offsets match so that fixup_has_matching_lo_p()
14723 will return true.
14724
14725 We don't warn about unmatched high-part relocations since some
14726 versions of gcc have been known to emit dead "lui ...%hi(...)"
14727 instructions. */
14728 if (lo_pos != NULL)
14729 {
14730 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14731 if (l->fixp->fx_next != *lo_pos)
14732 {
14733 *hi_pos = l->fixp->fx_next;
14734 l->fixp->fx_next = *lo_pos;
14735 *lo_pos = l->fixp;
14736 }
14737 }
14738 }
14739 }
14740
14741 int
14742 mips_force_relocation (fixS *fixp)
14743 {
14744 if (generic_force_reloc (fixp))
14745 return 1;
14746
14747 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14748 so that the linker relaxation can update targets. */
14749 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14750 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14751 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14752 return 1;
14753
14754 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14755 if (ISA_IS_R6 (mips_opts.isa)
14756 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14757 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14758 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14759 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14760 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14761 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14762 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14763 return 1;
14764
14765 return 0;
14766 }
14767
14768 /* Read the instruction associated with RELOC from BUF. */
14769
14770 static unsigned int
14771 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14772 {
14773 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14774 return read_compressed_insn (buf, 4);
14775 else
14776 return read_insn (buf);
14777 }
14778
14779 /* Write instruction INSN to BUF, given that it has been relocated
14780 by RELOC. */
14781
14782 static void
14783 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14784 unsigned long insn)
14785 {
14786 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14787 write_compressed_insn (buf, insn, 4);
14788 else
14789 write_insn (buf, insn);
14790 }
14791
14792 /* Apply a fixup to the object file. */
14793
14794 void
14795 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14796 {
14797 char *buf;
14798 unsigned long insn;
14799 reloc_howto_type *howto;
14800
14801 if (fixP->fx_pcrel)
14802 switch (fixP->fx_r_type)
14803 {
14804 case BFD_RELOC_16_PCREL_S2:
14805 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14806 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14807 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14808 case BFD_RELOC_32_PCREL:
14809 case BFD_RELOC_MIPS_21_PCREL_S2:
14810 case BFD_RELOC_MIPS_26_PCREL_S2:
14811 case BFD_RELOC_MIPS_18_PCREL_S3:
14812 case BFD_RELOC_MIPS_19_PCREL_S2:
14813 case BFD_RELOC_HI16_S_PCREL:
14814 case BFD_RELOC_LO16_PCREL:
14815 break;
14816
14817 case BFD_RELOC_32:
14818 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14819 break;
14820
14821 default:
14822 as_bad_where (fixP->fx_file, fixP->fx_line,
14823 _("PC-relative reference to a different section"));
14824 break;
14825 }
14826
14827 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14828 that have no MIPS ELF equivalent. */
14829 if (fixP->fx_r_type != BFD_RELOC_8)
14830 {
14831 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14832 if (!howto)
14833 return;
14834 }
14835
14836 gas_assert (fixP->fx_size == 2
14837 || fixP->fx_size == 4
14838 || fixP->fx_r_type == BFD_RELOC_8
14839 || fixP->fx_r_type == BFD_RELOC_16
14840 || fixP->fx_r_type == BFD_RELOC_64
14841 || fixP->fx_r_type == BFD_RELOC_CTOR
14842 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14843 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14844 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14845 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14846 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14847 || fixP->fx_r_type == BFD_RELOC_NONE);
14848
14849 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14850
14851 /* Don't treat parts of a composite relocation as done. There are two
14852 reasons for this:
14853
14854 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14855 should nevertheless be emitted if the first part is.
14856
14857 (2) In normal usage, composite relocations are never assembly-time
14858 constants. The easiest way of dealing with the pathological
14859 exceptions is to generate a relocation against STN_UNDEF and
14860 leave everything up to the linker. */
14861 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14862 fixP->fx_done = 1;
14863
14864 switch (fixP->fx_r_type)
14865 {
14866 case BFD_RELOC_MIPS_TLS_GD:
14867 case BFD_RELOC_MIPS_TLS_LDM:
14868 case BFD_RELOC_MIPS_TLS_DTPREL32:
14869 case BFD_RELOC_MIPS_TLS_DTPREL64:
14870 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14871 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14872 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14873 case BFD_RELOC_MIPS_TLS_TPREL32:
14874 case BFD_RELOC_MIPS_TLS_TPREL64:
14875 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14876 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14877 case BFD_RELOC_MICROMIPS_TLS_GD:
14878 case BFD_RELOC_MICROMIPS_TLS_LDM:
14879 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14880 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14881 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14882 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14883 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14884 case BFD_RELOC_MIPS16_TLS_GD:
14885 case BFD_RELOC_MIPS16_TLS_LDM:
14886 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14887 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14888 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14889 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14890 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14891 if (!fixP->fx_addsy)
14892 {
14893 as_bad_where (fixP->fx_file, fixP->fx_line,
14894 _("TLS relocation against a constant"));
14895 break;
14896 }
14897 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14898 /* fall through */
14899
14900 case BFD_RELOC_MIPS_JMP:
14901 case BFD_RELOC_MIPS_SHIFT5:
14902 case BFD_RELOC_MIPS_SHIFT6:
14903 case BFD_RELOC_MIPS_GOT_DISP:
14904 case BFD_RELOC_MIPS_GOT_PAGE:
14905 case BFD_RELOC_MIPS_GOT_OFST:
14906 case BFD_RELOC_MIPS_SUB:
14907 case BFD_RELOC_MIPS_INSERT_A:
14908 case BFD_RELOC_MIPS_INSERT_B:
14909 case BFD_RELOC_MIPS_DELETE:
14910 case BFD_RELOC_MIPS_HIGHEST:
14911 case BFD_RELOC_MIPS_HIGHER:
14912 case BFD_RELOC_MIPS_SCN_DISP:
14913 case BFD_RELOC_MIPS_REL16:
14914 case BFD_RELOC_MIPS_RELGOT:
14915 case BFD_RELOC_MIPS_JALR:
14916 case BFD_RELOC_HI16:
14917 case BFD_RELOC_HI16_S:
14918 case BFD_RELOC_LO16:
14919 case BFD_RELOC_GPREL16:
14920 case BFD_RELOC_MIPS_LITERAL:
14921 case BFD_RELOC_MIPS_CALL16:
14922 case BFD_RELOC_MIPS_GOT16:
14923 case BFD_RELOC_GPREL32:
14924 case BFD_RELOC_MIPS_GOT_HI16:
14925 case BFD_RELOC_MIPS_GOT_LO16:
14926 case BFD_RELOC_MIPS_CALL_HI16:
14927 case BFD_RELOC_MIPS_CALL_LO16:
14928 case BFD_RELOC_MIPS16_GPREL:
14929 case BFD_RELOC_MIPS16_GOT16:
14930 case BFD_RELOC_MIPS16_CALL16:
14931 case BFD_RELOC_MIPS16_HI16:
14932 case BFD_RELOC_MIPS16_HI16_S:
14933 case BFD_RELOC_MIPS16_LO16:
14934 case BFD_RELOC_MIPS16_JMP:
14935 case BFD_RELOC_MICROMIPS_JMP:
14936 case BFD_RELOC_MICROMIPS_GOT_DISP:
14937 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14938 case BFD_RELOC_MICROMIPS_GOT_OFST:
14939 case BFD_RELOC_MICROMIPS_SUB:
14940 case BFD_RELOC_MICROMIPS_HIGHEST:
14941 case BFD_RELOC_MICROMIPS_HIGHER:
14942 case BFD_RELOC_MICROMIPS_SCN_DISP:
14943 case BFD_RELOC_MICROMIPS_JALR:
14944 case BFD_RELOC_MICROMIPS_HI16:
14945 case BFD_RELOC_MICROMIPS_HI16_S:
14946 case BFD_RELOC_MICROMIPS_LO16:
14947 case BFD_RELOC_MICROMIPS_GPREL16:
14948 case BFD_RELOC_MICROMIPS_LITERAL:
14949 case BFD_RELOC_MICROMIPS_CALL16:
14950 case BFD_RELOC_MICROMIPS_GOT16:
14951 case BFD_RELOC_MICROMIPS_GOT_HI16:
14952 case BFD_RELOC_MICROMIPS_GOT_LO16:
14953 case BFD_RELOC_MICROMIPS_CALL_HI16:
14954 case BFD_RELOC_MICROMIPS_CALL_LO16:
14955 case BFD_RELOC_MIPS_EH:
14956 if (fixP->fx_done)
14957 {
14958 offsetT value;
14959
14960 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14961 {
14962 insn = read_reloc_insn (buf, fixP->fx_r_type);
14963 if (mips16_reloc_p (fixP->fx_r_type))
14964 insn |= mips16_immed_extend (value, 16);
14965 else
14966 insn |= (value & 0xffff);
14967 write_reloc_insn (buf, fixP->fx_r_type, insn);
14968 }
14969 else
14970 as_bad_where (fixP->fx_file, fixP->fx_line,
14971 _("unsupported constant in relocation"));
14972 }
14973 break;
14974
14975 case BFD_RELOC_64:
14976 /* This is handled like BFD_RELOC_32, but we output a sign
14977 extended value if we are only 32 bits. */
14978 if (fixP->fx_done)
14979 {
14980 if (8 <= sizeof (valueT))
14981 md_number_to_chars (buf, *valP, 8);
14982 else
14983 {
14984 valueT hiv;
14985
14986 if ((*valP & 0x80000000) != 0)
14987 hiv = 0xffffffff;
14988 else
14989 hiv = 0;
14990 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14991 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
14992 }
14993 }
14994 break;
14995
14996 case BFD_RELOC_RVA:
14997 case BFD_RELOC_32:
14998 case BFD_RELOC_32_PCREL:
14999 case BFD_RELOC_16:
15000 case BFD_RELOC_8:
15001 /* If we are deleting this reloc entry, we must fill in the
15002 value now. This can happen if we have a .word which is not
15003 resolved when it appears but is later defined. */
15004 if (fixP->fx_done)
15005 md_number_to_chars (buf, *valP, fixP->fx_size);
15006 break;
15007
15008 case BFD_RELOC_MIPS_21_PCREL_S2:
15009 case BFD_RELOC_MIPS_26_PCREL_S2:
15010 if ((*valP & 0x3) != 0)
15011 as_bad_where (fixP->fx_file, fixP->fx_line,
15012 _("branch to misaligned address (%lx)"), (long) *valP);
15013
15014 gas_assert (!fixP->fx_done);
15015 break;
15016
15017 case BFD_RELOC_MIPS_18_PCREL_S3:
15018 if ((S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15019 as_bad_where (fixP->fx_file, fixP->fx_line,
15020 _("PC-relative access using misaligned symbol (%lx)"),
15021 (long) S_GET_VALUE (fixP->fx_addsy));
15022 if ((fixP->fx_offset & 0x7) != 0)
15023 as_bad_where (fixP->fx_file, fixP->fx_line,
15024 _("PC-relative access using misaligned offset (%lx)"),
15025 (long) fixP->fx_offset);
15026
15027 gas_assert (!fixP->fx_done);
15028 break;
15029
15030 case BFD_RELOC_MIPS_19_PCREL_S2:
15031 if ((*valP & 0x3) != 0)
15032 as_bad_where (fixP->fx_file, fixP->fx_line,
15033 _("PC-relative access to misaligned address (%lx)"),
15034 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15035
15036 gas_assert (!fixP->fx_done);
15037 break;
15038
15039 case BFD_RELOC_HI16_S_PCREL:
15040 case BFD_RELOC_LO16_PCREL:
15041 gas_assert (!fixP->fx_done);
15042 break;
15043
15044 case BFD_RELOC_16_PCREL_S2:
15045 if ((*valP & 0x3) != 0)
15046 as_bad_where (fixP->fx_file, fixP->fx_line,
15047 _("branch to misaligned address (%lx)"), (long) *valP);
15048
15049 /* We need to save the bits in the instruction since fixup_segment()
15050 might be deleting the relocation entry (i.e., a branch within
15051 the current segment). */
15052 if (! fixP->fx_done)
15053 break;
15054
15055 /* Update old instruction data. */
15056 insn = read_insn (buf);
15057
15058 if (*valP + 0x20000 <= 0x3ffff)
15059 {
15060 insn |= (*valP >> 2) & 0xffff;
15061 write_insn (buf, insn);
15062 }
15063 else if (mips_pic == NO_PIC
15064 && fixP->fx_done
15065 && fixP->fx_frag->fr_address >= text_section->vma
15066 && (fixP->fx_frag->fr_address
15067 < text_section->vma + bfd_get_section_size (text_section))
15068 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15069 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15070 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15071 {
15072 /* The branch offset is too large. If this is an
15073 unconditional branch, and we are not generating PIC code,
15074 we can convert it to an absolute jump instruction. */
15075 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15076 insn = 0x0c000000; /* jal */
15077 else
15078 insn = 0x08000000; /* j */
15079 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15080 fixP->fx_done = 0;
15081 fixP->fx_addsy = section_symbol (text_section);
15082 *valP += md_pcrel_from (fixP);
15083 write_insn (buf, insn);
15084 }
15085 else
15086 {
15087 /* If we got here, we have branch-relaxation disabled,
15088 and there's nothing we can do to fix this instruction
15089 without turning it into a longer sequence. */
15090 as_bad_where (fixP->fx_file, fixP->fx_line,
15091 _("branch out of range"));
15092 }
15093 break;
15094
15095 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15096 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15097 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15098 /* We adjust the offset back to even. */
15099 if ((*valP & 0x1) != 0)
15100 --(*valP);
15101
15102 if (! fixP->fx_done)
15103 break;
15104
15105 /* Should never visit here, because we keep the relocation. */
15106 abort ();
15107 break;
15108
15109 case BFD_RELOC_VTABLE_INHERIT:
15110 fixP->fx_done = 0;
15111 if (fixP->fx_addsy
15112 && !S_IS_DEFINED (fixP->fx_addsy)
15113 && !S_IS_WEAK (fixP->fx_addsy))
15114 S_SET_WEAK (fixP->fx_addsy);
15115 break;
15116
15117 case BFD_RELOC_NONE:
15118 case BFD_RELOC_VTABLE_ENTRY:
15119 fixP->fx_done = 0;
15120 break;
15121
15122 default:
15123 abort ();
15124 }
15125
15126 /* Remember value for tc_gen_reloc. */
15127 fixP->fx_addnumber = *valP;
15128 }
15129
15130 static symbolS *
15131 get_symbol (void)
15132 {
15133 int c;
15134 char *name;
15135 symbolS *p;
15136
15137 name = input_line_pointer;
15138 c = get_symbol_end ();
15139 p = (symbolS *) symbol_find_or_make (name);
15140 *input_line_pointer = c;
15141 return p;
15142 }
15143
15144 /* Align the current frag to a given power of two. If a particular
15145 fill byte should be used, FILL points to an integer that contains
15146 that byte, otherwise FILL is null.
15147
15148 This function used to have the comment:
15149
15150 The MIPS assembler also automatically adjusts any preceding label.
15151
15152 The implementation therefore applied the adjustment to a maximum of
15153 one label. However, other label adjustments are applied to batches
15154 of labels, and adjusting just one caused problems when new labels
15155 were added for the sake of debugging or unwind information.
15156 We therefore adjust all preceding labels (given as LABELS) instead. */
15157
15158 static void
15159 mips_align (int to, int *fill, struct insn_label_list *labels)
15160 {
15161 mips_emit_delays ();
15162 mips_record_compressed_mode ();
15163 if (fill == NULL && subseg_text_p (now_seg))
15164 frag_align_code (to, 0);
15165 else
15166 frag_align (to, fill ? *fill : 0, 0);
15167 record_alignment (now_seg, to);
15168 mips_move_labels (labels, FALSE);
15169 }
15170
15171 /* Align to a given power of two. .align 0 turns off the automatic
15172 alignment used by the data creating pseudo-ops. */
15173
15174 static void
15175 s_align (int x ATTRIBUTE_UNUSED)
15176 {
15177 int temp, fill_value, *fill_ptr;
15178 long max_alignment = 28;
15179
15180 /* o Note that the assembler pulls down any immediately preceding label
15181 to the aligned address.
15182 o It's not documented but auto alignment is reinstated by
15183 a .align pseudo instruction.
15184 o Note also that after auto alignment is turned off the mips assembler
15185 issues an error on attempt to assemble an improperly aligned data item.
15186 We don't. */
15187
15188 temp = get_absolute_expression ();
15189 if (temp > max_alignment)
15190 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15191 else if (temp < 0)
15192 {
15193 as_warn (_("alignment negative, 0 assumed"));
15194 temp = 0;
15195 }
15196 if (*input_line_pointer == ',')
15197 {
15198 ++input_line_pointer;
15199 fill_value = get_absolute_expression ();
15200 fill_ptr = &fill_value;
15201 }
15202 else
15203 fill_ptr = 0;
15204 if (temp)
15205 {
15206 segment_info_type *si = seg_info (now_seg);
15207 struct insn_label_list *l = si->label_list;
15208 /* Auto alignment should be switched on by next section change. */
15209 auto_align = 1;
15210 mips_align (temp, fill_ptr, l);
15211 }
15212 else
15213 {
15214 auto_align = 0;
15215 }
15216
15217 demand_empty_rest_of_line ();
15218 }
15219
15220 static void
15221 s_change_sec (int sec)
15222 {
15223 segT seg;
15224
15225 /* The ELF backend needs to know that we are changing sections, so
15226 that .previous works correctly. We could do something like check
15227 for an obj_section_change_hook macro, but that might be confusing
15228 as it would not be appropriate to use it in the section changing
15229 functions in read.c, since obj-elf.c intercepts those. FIXME:
15230 This should be cleaner, somehow. */
15231 obj_elf_section_change_hook ();
15232
15233 mips_emit_delays ();
15234
15235 switch (sec)
15236 {
15237 case 't':
15238 s_text (0);
15239 break;
15240 case 'd':
15241 s_data (0);
15242 break;
15243 case 'b':
15244 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15245 demand_empty_rest_of_line ();
15246 break;
15247
15248 case 'r':
15249 seg = subseg_new (RDATA_SECTION_NAME,
15250 (subsegT) get_absolute_expression ());
15251 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15252 | SEC_READONLY | SEC_RELOC
15253 | SEC_DATA));
15254 if (strncmp (TARGET_OS, "elf", 3) != 0)
15255 record_alignment (seg, 4);
15256 demand_empty_rest_of_line ();
15257 break;
15258
15259 case 's':
15260 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15261 bfd_set_section_flags (stdoutput, seg,
15262 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15263 if (strncmp (TARGET_OS, "elf", 3) != 0)
15264 record_alignment (seg, 4);
15265 demand_empty_rest_of_line ();
15266 break;
15267
15268 case 'B':
15269 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15270 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15271 if (strncmp (TARGET_OS, "elf", 3) != 0)
15272 record_alignment (seg, 4);
15273 demand_empty_rest_of_line ();
15274 break;
15275 }
15276
15277 auto_align = 1;
15278 }
15279
15280 void
15281 s_change_section (int ignore ATTRIBUTE_UNUSED)
15282 {
15283 char *section_name;
15284 char c;
15285 char next_c = 0;
15286 int section_type;
15287 int section_flag;
15288 int section_entry_size;
15289 int section_alignment;
15290
15291 section_name = input_line_pointer;
15292 c = get_symbol_end ();
15293 if (c)
15294 next_c = *(input_line_pointer + 1);
15295
15296 /* Do we have .section Name<,"flags">? */
15297 if (c != ',' || (c == ',' && next_c == '"'))
15298 {
15299 /* just after name is now '\0'. */
15300 *input_line_pointer = c;
15301 input_line_pointer = section_name;
15302 obj_elf_section (ignore);
15303 return;
15304 }
15305 input_line_pointer++;
15306
15307 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15308 if (c == ',')
15309 section_type = get_absolute_expression ();
15310 else
15311 section_type = 0;
15312 if (*input_line_pointer++ == ',')
15313 section_flag = get_absolute_expression ();
15314 else
15315 section_flag = 0;
15316 if (*input_line_pointer++ == ',')
15317 section_entry_size = get_absolute_expression ();
15318 else
15319 section_entry_size = 0;
15320 if (*input_line_pointer++ == ',')
15321 section_alignment = get_absolute_expression ();
15322 else
15323 section_alignment = 0;
15324 /* FIXME: really ignore? */
15325 (void) section_alignment;
15326
15327 section_name = xstrdup (section_name);
15328
15329 /* When using the generic form of .section (as implemented by obj-elf.c),
15330 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15331 traditionally had to fall back on the more common @progbits instead.
15332
15333 There's nothing really harmful in this, since bfd will correct
15334 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15335 means that, for backwards compatibility, the special_section entries
15336 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15337
15338 Even so, we shouldn't force users of the MIPS .section syntax to
15339 incorrectly label the sections as SHT_PROGBITS. The best compromise
15340 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15341 generic type-checking code. */
15342 if (section_type == SHT_MIPS_DWARF)
15343 section_type = SHT_PROGBITS;
15344
15345 obj_elf_change_section (section_name, section_type, section_flag,
15346 section_entry_size, 0, 0, 0);
15347
15348 if (now_seg->name != section_name)
15349 free (section_name);
15350 }
15351
15352 void
15353 mips_enable_auto_align (void)
15354 {
15355 auto_align = 1;
15356 }
15357
15358 static void
15359 s_cons (int log_size)
15360 {
15361 segment_info_type *si = seg_info (now_seg);
15362 struct insn_label_list *l = si->label_list;
15363
15364 mips_emit_delays ();
15365 if (log_size > 0 && auto_align)
15366 mips_align (log_size, 0, l);
15367 cons (1 << log_size);
15368 mips_clear_insn_labels ();
15369 }
15370
15371 static void
15372 s_float_cons (int type)
15373 {
15374 segment_info_type *si = seg_info (now_seg);
15375 struct insn_label_list *l = si->label_list;
15376
15377 mips_emit_delays ();
15378
15379 if (auto_align)
15380 {
15381 if (type == 'd')
15382 mips_align (3, 0, l);
15383 else
15384 mips_align (2, 0, l);
15385 }
15386
15387 float_cons (type);
15388 mips_clear_insn_labels ();
15389 }
15390
15391 /* Handle .globl. We need to override it because on Irix 5 you are
15392 permitted to say
15393 .globl foo .text
15394 where foo is an undefined symbol, to mean that foo should be
15395 considered to be the address of a function. */
15396
15397 static void
15398 s_mips_globl (int x ATTRIBUTE_UNUSED)
15399 {
15400 char *name;
15401 int c;
15402 symbolS *symbolP;
15403 flagword flag;
15404
15405 do
15406 {
15407 name = input_line_pointer;
15408 c = get_symbol_end ();
15409 symbolP = symbol_find_or_make (name);
15410 S_SET_EXTERNAL (symbolP);
15411
15412 *input_line_pointer = c;
15413 SKIP_WHITESPACE ();
15414
15415 /* On Irix 5, every global symbol that is not explicitly labelled as
15416 being a function is apparently labelled as being an object. */
15417 flag = BSF_OBJECT;
15418
15419 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15420 && (*input_line_pointer != ','))
15421 {
15422 char *secname;
15423 asection *sec;
15424
15425 secname = input_line_pointer;
15426 c = get_symbol_end ();
15427 sec = bfd_get_section_by_name (stdoutput, secname);
15428 if (sec == NULL)
15429 as_bad (_("%s: no such section"), secname);
15430 *input_line_pointer = c;
15431
15432 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15433 flag = BSF_FUNCTION;
15434 }
15435
15436 symbol_get_bfdsym (symbolP)->flags |= flag;
15437
15438 c = *input_line_pointer;
15439 if (c == ',')
15440 {
15441 input_line_pointer++;
15442 SKIP_WHITESPACE ();
15443 if (is_end_of_line[(unsigned char) *input_line_pointer])
15444 c = '\n';
15445 }
15446 }
15447 while (c == ',');
15448
15449 demand_empty_rest_of_line ();
15450 }
15451
15452 static void
15453 s_option (int x ATTRIBUTE_UNUSED)
15454 {
15455 char *opt;
15456 char c;
15457
15458 opt = input_line_pointer;
15459 c = get_symbol_end ();
15460
15461 if (*opt == 'O')
15462 {
15463 /* FIXME: What does this mean? */
15464 }
15465 else if (strncmp (opt, "pic", 3) == 0)
15466 {
15467 int i;
15468
15469 i = atoi (opt + 3);
15470 if (i == 0)
15471 mips_pic = NO_PIC;
15472 else if (i == 2)
15473 {
15474 mips_pic = SVR4_PIC;
15475 mips_abicalls = TRUE;
15476 }
15477 else
15478 as_bad (_(".option pic%d not supported"), i);
15479
15480 if (mips_pic == SVR4_PIC)
15481 {
15482 if (g_switch_seen && g_switch_value != 0)
15483 as_warn (_("-G may not be used with SVR4 PIC code"));
15484 g_switch_value = 0;
15485 bfd_set_gp_size (stdoutput, 0);
15486 }
15487 }
15488 else
15489 as_warn (_("unrecognized option \"%s\""), opt);
15490
15491 *input_line_pointer = c;
15492 demand_empty_rest_of_line ();
15493 }
15494
15495 /* This structure is used to hold a stack of .set values. */
15496
15497 struct mips_option_stack
15498 {
15499 struct mips_option_stack *next;
15500 struct mips_set_options options;
15501 };
15502
15503 static struct mips_option_stack *mips_opts_stack;
15504
15505 static bfd_boolean
15506 parse_code_option (char * name)
15507 {
15508 const struct mips_ase *ase;
15509 if (strncmp (name, "at=", 3) == 0)
15510 {
15511 char *s = name + 3;
15512
15513 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15514 as_bad (_("unrecognized register name `%s'"), s);
15515 }
15516 else if (strcmp (name, "at") == 0)
15517 mips_opts.at = ATREG;
15518 else if (strcmp (name, "noat") == 0)
15519 mips_opts.at = ZERO;
15520 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15521 mips_opts.nomove = 0;
15522 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15523 mips_opts.nomove = 1;
15524 else if (strcmp (name, "bopt") == 0)
15525 mips_opts.nobopt = 0;
15526 else if (strcmp (name, "nobopt") == 0)
15527 mips_opts.nobopt = 1;
15528 else if (strcmp (name, "gp=32") == 0)
15529 mips_opts.gp = 32;
15530 else if (strcmp (name, "gp=64") == 0)
15531 mips_opts.gp = 64;
15532 else if (strcmp (name, "fp=32") == 0)
15533 mips_opts.fp = 32;
15534 else if (strcmp (name, "fp=xx") == 0)
15535 mips_opts.fp = 0;
15536 else if (strcmp (name, "fp=64") == 0)
15537 mips_opts.fp = 64;
15538 else if (strcmp (name, "softfloat") == 0)
15539 mips_opts.soft_float = 1;
15540 else if (strcmp (name, "hardfloat") == 0)
15541 mips_opts.soft_float = 0;
15542 else if (strcmp (name, "singlefloat") == 0)
15543 mips_opts.single_float = 1;
15544 else if (strcmp (name, "doublefloat") == 0)
15545 mips_opts.single_float = 0;
15546 else if (strcmp (name, "nooddspreg") == 0)
15547 mips_opts.oddspreg = 0;
15548 else if (strcmp (name, "oddspreg") == 0)
15549 mips_opts.oddspreg = 1;
15550 else if (strcmp (name, "mips16") == 0
15551 || strcmp (name, "MIPS-16") == 0)
15552 mips_opts.mips16 = 1;
15553 else if (strcmp (name, "nomips16") == 0
15554 || strcmp (name, "noMIPS-16") == 0)
15555 mips_opts.mips16 = 0;
15556 else if (strcmp (name, "micromips") == 0)
15557 mips_opts.micromips = 1;
15558 else if (strcmp (name, "nomicromips") == 0)
15559 mips_opts.micromips = 0;
15560 else if (name[0] == 'n'
15561 && name[1] == 'o'
15562 && (ase = mips_lookup_ase (name + 2)))
15563 mips_set_ase (ase, &mips_opts, FALSE);
15564 else if ((ase = mips_lookup_ase (name)))
15565 mips_set_ase (ase, &mips_opts, TRUE);
15566 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
15567 {
15568 /* Permit the user to change the ISA and architecture on the fly.
15569 Needless to say, misuse can cause serious problems. */
15570 if (strncmp (name, "arch=", 5) == 0)
15571 {
15572 const struct mips_cpu_info *p;
15573
15574 p = mips_parse_cpu ("internal use", name + 5);
15575 if (!p)
15576 as_bad (_("unknown architecture %s"), name + 5);
15577 else
15578 {
15579 mips_opts.arch = p->cpu;
15580 mips_opts.isa = p->isa;
15581 }
15582 }
15583 else if (strncmp (name, "mips", 4) == 0)
15584 {
15585 const struct mips_cpu_info *p;
15586
15587 p = mips_parse_cpu ("internal use", name);
15588 if (!p)
15589 as_bad (_("unknown ISA level %s"), name + 4);
15590 else
15591 {
15592 mips_opts.arch = p->cpu;
15593 mips_opts.isa = p->isa;
15594 }
15595 }
15596 else
15597 as_bad (_("unknown ISA or architecture %s"), name);
15598 }
15599 else if (strcmp (name, "autoextend") == 0)
15600 mips_opts.noautoextend = 0;
15601 else if (strcmp (name, "noautoextend") == 0)
15602 mips_opts.noautoextend = 1;
15603 else if (strcmp (name, "insn32") == 0)
15604 mips_opts.insn32 = TRUE;
15605 else if (strcmp (name, "noinsn32") == 0)
15606 mips_opts.insn32 = FALSE;
15607 else if (strcmp (name, "sym32") == 0)
15608 mips_opts.sym32 = TRUE;
15609 else if (strcmp (name, "nosym32") == 0)
15610 mips_opts.sym32 = FALSE;
15611 else
15612 return FALSE;
15613 return TRUE;
15614 }
15615
15616 /* Handle the .set pseudo-op. */
15617
15618 static void
15619 s_mipsset (int x ATTRIBUTE_UNUSED)
15620 {
15621 char *name = input_line_pointer, ch;
15622 int prev_isa = mips_opts.isa;
15623
15624 file_mips_check_options ();
15625
15626 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15627 ++input_line_pointer;
15628 ch = *input_line_pointer;
15629 *input_line_pointer = '\0';
15630
15631 if (strchr (name, ','))
15632 {
15633 /* Generic ".set" directive; use the generic handler. */
15634 *input_line_pointer = ch;
15635 input_line_pointer = name;
15636 s_set (0);
15637 return;
15638 }
15639
15640 if (strcmp (name, "reorder") == 0)
15641 {
15642 if (mips_opts.noreorder)
15643 end_noreorder ();
15644 }
15645 else if (strcmp (name, "noreorder") == 0)
15646 {
15647 if (!mips_opts.noreorder)
15648 start_noreorder ();
15649 }
15650 else if (strcmp (name, "macro") == 0)
15651 mips_opts.warn_about_macros = 0;
15652 else if (strcmp (name, "nomacro") == 0)
15653 {
15654 if (mips_opts.noreorder == 0)
15655 as_bad (_("`noreorder' must be set before `nomacro'"));
15656 mips_opts.warn_about_macros = 1;
15657 }
15658 else if (strcmp (name, "gp=default") == 0)
15659 mips_opts.gp = file_mips_opts.gp;
15660 else if (strcmp (name, "fp=default") == 0)
15661 mips_opts.fp = file_mips_opts.fp;
15662 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15663 {
15664 mips_opts.isa = file_mips_opts.isa;
15665 mips_opts.arch = file_mips_opts.arch;
15666 mips_opts.gp = file_mips_opts.gp;
15667 mips_opts.fp = file_mips_opts.fp;
15668 }
15669 else if (strcmp (name, "push") == 0)
15670 {
15671 struct mips_option_stack *s;
15672
15673 s = (struct mips_option_stack *) xmalloc (sizeof *s);
15674 s->next = mips_opts_stack;
15675 s->options = mips_opts;
15676 mips_opts_stack = s;
15677 }
15678 else if (strcmp (name, "pop") == 0)
15679 {
15680 struct mips_option_stack *s;
15681
15682 s = mips_opts_stack;
15683 if (s == NULL)
15684 as_bad (_(".set pop with no .set push"));
15685 else
15686 {
15687 /* If we're changing the reorder mode we need to handle
15688 delay slots correctly. */
15689 if (s->options.noreorder && ! mips_opts.noreorder)
15690 start_noreorder ();
15691 else if (! s->options.noreorder && mips_opts.noreorder)
15692 end_noreorder ();
15693
15694 mips_opts = s->options;
15695 mips_opts_stack = s->next;
15696 free (s);
15697 }
15698 }
15699 else if (!parse_code_option (name))
15700 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15701
15702 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15703 registers based on what is supported by the arch/cpu. */
15704 if (mips_opts.isa != prev_isa)
15705 {
15706 switch (mips_opts.isa)
15707 {
15708 case 0:
15709 break;
15710 case ISA_MIPS1:
15711 /* MIPS I cannot support FPXX. */
15712 mips_opts.fp = 32;
15713 /* fall-through. */
15714 case ISA_MIPS2:
15715 case ISA_MIPS32:
15716 case ISA_MIPS32R2:
15717 case ISA_MIPS32R3:
15718 case ISA_MIPS32R5:
15719 mips_opts.gp = 32;
15720 if (mips_opts.fp != 0)
15721 mips_opts.fp = 32;
15722 break;
15723 case ISA_MIPS32R6:
15724 mips_opts.gp = 32;
15725 mips_opts.fp = 64;
15726 break;
15727 case ISA_MIPS3:
15728 case ISA_MIPS4:
15729 case ISA_MIPS5:
15730 case ISA_MIPS64:
15731 case ISA_MIPS64R2:
15732 case ISA_MIPS64R3:
15733 case ISA_MIPS64R5:
15734 case ISA_MIPS64R6:
15735 mips_opts.gp = 64;
15736 if (mips_opts.fp != 0)
15737 {
15738 if (mips_opts.arch == CPU_R5900)
15739 mips_opts.fp = 32;
15740 else
15741 mips_opts.fp = 64;
15742 }
15743 break;
15744 default:
15745 as_bad (_("unknown ISA level %s"), name + 4);
15746 break;
15747 }
15748 }
15749
15750 mips_check_options (&mips_opts, FALSE);
15751
15752 mips_check_isa_supports_ases ();
15753 *input_line_pointer = ch;
15754 demand_empty_rest_of_line ();
15755 }
15756
15757 /* Handle the .module pseudo-op. */
15758
15759 static void
15760 s_module (int ignore ATTRIBUTE_UNUSED)
15761 {
15762 char *name = input_line_pointer, ch;
15763
15764 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15765 ++input_line_pointer;
15766 ch = *input_line_pointer;
15767 *input_line_pointer = '\0';
15768
15769 if (!file_mips_opts_checked)
15770 {
15771 if (!parse_code_option (name))
15772 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15773
15774 /* Update module level settings from mips_opts. */
15775 file_mips_opts = mips_opts;
15776 }
15777 else
15778 as_bad (_(".module is not permitted after generating code"));
15779
15780 *input_line_pointer = ch;
15781 demand_empty_rest_of_line ();
15782 }
15783
15784 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15785 .option pic2. It means to generate SVR4 PIC calls. */
15786
15787 static void
15788 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15789 {
15790 mips_pic = SVR4_PIC;
15791 mips_abicalls = TRUE;
15792
15793 if (g_switch_seen && g_switch_value != 0)
15794 as_warn (_("-G may not be used with SVR4 PIC code"));
15795 g_switch_value = 0;
15796
15797 bfd_set_gp_size (stdoutput, 0);
15798 demand_empty_rest_of_line ();
15799 }
15800
15801 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15802 PIC code. It sets the $gp register for the function based on the
15803 function address, which is in the register named in the argument.
15804 This uses a relocation against _gp_disp, which is handled specially
15805 by the linker. The result is:
15806 lui $gp,%hi(_gp_disp)
15807 addiu $gp,$gp,%lo(_gp_disp)
15808 addu $gp,$gp,.cpload argument
15809 The .cpload argument is normally $25 == $t9.
15810
15811 The -mno-shared option changes this to:
15812 lui $gp,%hi(__gnu_local_gp)
15813 addiu $gp,$gp,%lo(__gnu_local_gp)
15814 and the argument is ignored. This saves an instruction, but the
15815 resulting code is not position independent; it uses an absolute
15816 address for __gnu_local_gp. Thus code assembled with -mno-shared
15817 can go into an ordinary executable, but not into a shared library. */
15818
15819 static void
15820 s_cpload (int ignore ATTRIBUTE_UNUSED)
15821 {
15822 expressionS ex;
15823 int reg;
15824 int in_shared;
15825
15826 file_mips_check_options ();
15827
15828 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15829 .cpload is ignored. */
15830 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15831 {
15832 s_ignore (0);
15833 return;
15834 }
15835
15836 if (mips_opts.mips16)
15837 {
15838 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15839 ignore_rest_of_line ();
15840 return;
15841 }
15842
15843 /* .cpload should be in a .set noreorder section. */
15844 if (mips_opts.noreorder == 0)
15845 as_warn (_(".cpload not in noreorder section"));
15846
15847 reg = tc_get_register (0);
15848
15849 /* If we need to produce a 64-bit address, we are better off using
15850 the default instruction sequence. */
15851 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15852
15853 ex.X_op = O_symbol;
15854 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15855 "__gnu_local_gp");
15856 ex.X_op_symbol = NULL;
15857 ex.X_add_number = 0;
15858
15859 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15860 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15861
15862 mips_mark_labels ();
15863 mips_assembling_insn = TRUE;
15864
15865 macro_start ();
15866 macro_build_lui (&ex, mips_gp_register);
15867 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15868 mips_gp_register, BFD_RELOC_LO16);
15869 if (in_shared)
15870 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15871 mips_gp_register, reg);
15872 macro_end ();
15873
15874 mips_assembling_insn = FALSE;
15875 demand_empty_rest_of_line ();
15876 }
15877
15878 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15879 .cpsetup $reg1, offset|$reg2, label
15880
15881 If offset is given, this results in:
15882 sd $gp, offset($sp)
15883 lui $gp, %hi(%neg(%gp_rel(label)))
15884 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15885 daddu $gp, $gp, $reg1
15886
15887 If $reg2 is given, this results in:
15888 or $reg2, $gp, $0
15889 lui $gp, %hi(%neg(%gp_rel(label)))
15890 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15891 daddu $gp, $gp, $reg1
15892 $reg1 is normally $25 == $t9.
15893
15894 The -mno-shared option replaces the last three instructions with
15895 lui $gp,%hi(_gp)
15896 addiu $gp,$gp,%lo(_gp) */
15897
15898 static void
15899 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
15900 {
15901 expressionS ex_off;
15902 expressionS ex_sym;
15903 int reg1;
15904
15905 file_mips_check_options ();
15906
15907 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
15908 We also need NewABI support. */
15909 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15910 {
15911 s_ignore (0);
15912 return;
15913 }
15914
15915 if (mips_opts.mips16)
15916 {
15917 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15918 ignore_rest_of_line ();
15919 return;
15920 }
15921
15922 reg1 = tc_get_register (0);
15923 SKIP_WHITESPACE ();
15924 if (*input_line_pointer != ',')
15925 {
15926 as_bad (_("missing argument separator ',' for .cpsetup"));
15927 return;
15928 }
15929 else
15930 ++input_line_pointer;
15931 SKIP_WHITESPACE ();
15932 if (*input_line_pointer == '$')
15933 {
15934 mips_cpreturn_register = tc_get_register (0);
15935 mips_cpreturn_offset = -1;
15936 }
15937 else
15938 {
15939 mips_cpreturn_offset = get_absolute_expression ();
15940 mips_cpreturn_register = -1;
15941 }
15942 SKIP_WHITESPACE ();
15943 if (*input_line_pointer != ',')
15944 {
15945 as_bad (_("missing argument separator ',' for .cpsetup"));
15946 return;
15947 }
15948 else
15949 ++input_line_pointer;
15950 SKIP_WHITESPACE ();
15951 expression (&ex_sym);
15952
15953 mips_mark_labels ();
15954 mips_assembling_insn = TRUE;
15955
15956 macro_start ();
15957 if (mips_cpreturn_register == -1)
15958 {
15959 ex_off.X_op = O_constant;
15960 ex_off.X_add_symbol = NULL;
15961 ex_off.X_op_symbol = NULL;
15962 ex_off.X_add_number = mips_cpreturn_offset;
15963
15964 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
15965 BFD_RELOC_LO16, SP);
15966 }
15967 else
15968 move_register (mips_cpreturn_register, mips_gp_register);
15969
15970 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
15971 {
15972 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
15973 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
15974 BFD_RELOC_HI16_S);
15975
15976 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
15977 mips_gp_register, -1, BFD_RELOC_GPREL16,
15978 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
15979
15980 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
15981 mips_gp_register, reg1);
15982 }
15983 else
15984 {
15985 expressionS ex;
15986
15987 ex.X_op = O_symbol;
15988 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
15989 ex.X_op_symbol = NULL;
15990 ex.X_add_number = 0;
15991
15992 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15993 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15994
15995 macro_build_lui (&ex, mips_gp_register);
15996 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15997 mips_gp_register, BFD_RELOC_LO16);
15998 }
15999
16000 macro_end ();
16001
16002 mips_assembling_insn = FALSE;
16003 demand_empty_rest_of_line ();
16004 }
16005
16006 static void
16007 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16008 {
16009 file_mips_check_options ();
16010
16011 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16012 .cplocal is ignored. */
16013 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16014 {
16015 s_ignore (0);
16016 return;
16017 }
16018
16019 if (mips_opts.mips16)
16020 {
16021 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16022 ignore_rest_of_line ();
16023 return;
16024 }
16025
16026 mips_gp_register = tc_get_register (0);
16027 demand_empty_rest_of_line ();
16028 }
16029
16030 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16031 offset from $sp. The offset is remembered, and after making a PIC
16032 call $gp is restored from that location. */
16033
16034 static void
16035 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16036 {
16037 expressionS ex;
16038
16039 file_mips_check_options ();
16040
16041 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16042 .cprestore is ignored. */
16043 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16044 {
16045 s_ignore (0);
16046 return;
16047 }
16048
16049 if (mips_opts.mips16)
16050 {
16051 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16052 ignore_rest_of_line ();
16053 return;
16054 }
16055
16056 mips_cprestore_offset = get_absolute_expression ();
16057 mips_cprestore_valid = 1;
16058
16059 ex.X_op = O_constant;
16060 ex.X_add_symbol = NULL;
16061 ex.X_op_symbol = NULL;
16062 ex.X_add_number = mips_cprestore_offset;
16063
16064 mips_mark_labels ();
16065 mips_assembling_insn = TRUE;
16066
16067 macro_start ();
16068 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16069 SP, HAVE_64BIT_ADDRESSES);
16070 macro_end ();
16071
16072 mips_assembling_insn = FALSE;
16073 demand_empty_rest_of_line ();
16074 }
16075
16076 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16077 was given in the preceding .cpsetup, it results in:
16078 ld $gp, offset($sp)
16079
16080 If a register $reg2 was given there, it results in:
16081 or $gp, $reg2, $0 */
16082
16083 static void
16084 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16085 {
16086 expressionS ex;
16087
16088 file_mips_check_options ();
16089
16090 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16091 We also need NewABI support. */
16092 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16093 {
16094 s_ignore (0);
16095 return;
16096 }
16097
16098 if (mips_opts.mips16)
16099 {
16100 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16101 ignore_rest_of_line ();
16102 return;
16103 }
16104
16105 mips_mark_labels ();
16106 mips_assembling_insn = TRUE;
16107
16108 macro_start ();
16109 if (mips_cpreturn_register == -1)
16110 {
16111 ex.X_op = O_constant;
16112 ex.X_add_symbol = NULL;
16113 ex.X_op_symbol = NULL;
16114 ex.X_add_number = mips_cpreturn_offset;
16115
16116 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16117 }
16118 else
16119 move_register (mips_gp_register, mips_cpreturn_register);
16120
16121 macro_end ();
16122
16123 mips_assembling_insn = FALSE;
16124 demand_empty_rest_of_line ();
16125 }
16126
16127 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16128 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16129 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16130 debug information or MIPS16 TLS. */
16131
16132 static void
16133 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16134 bfd_reloc_code_real_type rtype)
16135 {
16136 expressionS ex;
16137 char *p;
16138
16139 expression (&ex);
16140
16141 if (ex.X_op != O_symbol)
16142 {
16143 as_bad (_("unsupported use of %s"), dirstr);
16144 ignore_rest_of_line ();
16145 }
16146
16147 p = frag_more (bytes);
16148 md_number_to_chars (p, 0, bytes);
16149 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16150 demand_empty_rest_of_line ();
16151 mips_clear_insn_labels ();
16152 }
16153
16154 /* Handle .dtprelword. */
16155
16156 static void
16157 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16158 {
16159 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16160 }
16161
16162 /* Handle .dtpreldword. */
16163
16164 static void
16165 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16166 {
16167 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16168 }
16169
16170 /* Handle .tprelword. */
16171
16172 static void
16173 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16174 {
16175 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16176 }
16177
16178 /* Handle .tpreldword. */
16179
16180 static void
16181 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16182 {
16183 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16184 }
16185
16186 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16187 code. It sets the offset to use in gp_rel relocations. */
16188
16189 static void
16190 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16191 {
16192 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16193 We also need NewABI support. */
16194 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16195 {
16196 s_ignore (0);
16197 return;
16198 }
16199
16200 mips_gprel_offset = get_absolute_expression ();
16201
16202 demand_empty_rest_of_line ();
16203 }
16204
16205 /* Handle the .gpword pseudo-op. This is used when generating PIC
16206 code. It generates a 32 bit GP relative reloc. */
16207
16208 static void
16209 s_gpword (int ignore ATTRIBUTE_UNUSED)
16210 {
16211 segment_info_type *si;
16212 struct insn_label_list *l;
16213 expressionS ex;
16214 char *p;
16215
16216 /* When not generating PIC code, this is treated as .word. */
16217 if (mips_pic != SVR4_PIC)
16218 {
16219 s_cons (2);
16220 return;
16221 }
16222
16223 si = seg_info (now_seg);
16224 l = si->label_list;
16225 mips_emit_delays ();
16226 if (auto_align)
16227 mips_align (2, 0, l);
16228
16229 expression (&ex);
16230 mips_clear_insn_labels ();
16231
16232 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16233 {
16234 as_bad (_("unsupported use of .gpword"));
16235 ignore_rest_of_line ();
16236 }
16237
16238 p = frag_more (4);
16239 md_number_to_chars (p, 0, 4);
16240 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16241 BFD_RELOC_GPREL32);
16242
16243 demand_empty_rest_of_line ();
16244 }
16245
16246 static void
16247 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16248 {
16249 segment_info_type *si;
16250 struct insn_label_list *l;
16251 expressionS ex;
16252 char *p;
16253
16254 /* When not generating PIC code, this is treated as .dword. */
16255 if (mips_pic != SVR4_PIC)
16256 {
16257 s_cons (3);
16258 return;
16259 }
16260
16261 si = seg_info (now_seg);
16262 l = si->label_list;
16263 mips_emit_delays ();
16264 if (auto_align)
16265 mips_align (3, 0, l);
16266
16267 expression (&ex);
16268 mips_clear_insn_labels ();
16269
16270 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16271 {
16272 as_bad (_("unsupported use of .gpdword"));
16273 ignore_rest_of_line ();
16274 }
16275
16276 p = frag_more (8);
16277 md_number_to_chars (p, 0, 8);
16278 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16279 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16280
16281 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16282 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16283 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16284
16285 demand_empty_rest_of_line ();
16286 }
16287
16288 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16289 tables. It generates a R_MIPS_EH reloc. */
16290
16291 static void
16292 s_ehword (int ignore ATTRIBUTE_UNUSED)
16293 {
16294 expressionS ex;
16295 char *p;
16296
16297 mips_emit_delays ();
16298
16299 expression (&ex);
16300 mips_clear_insn_labels ();
16301
16302 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16303 {
16304 as_bad (_("unsupported use of .ehword"));
16305 ignore_rest_of_line ();
16306 }
16307
16308 p = frag_more (4);
16309 md_number_to_chars (p, 0, 4);
16310 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16311 BFD_RELOC_32_PCREL);
16312
16313 demand_empty_rest_of_line ();
16314 }
16315
16316 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16317 tables in SVR4 PIC code. */
16318
16319 static void
16320 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16321 {
16322 int reg;
16323
16324 file_mips_check_options ();
16325
16326 /* This is ignored when not generating SVR4 PIC code. */
16327 if (mips_pic != SVR4_PIC)
16328 {
16329 s_ignore (0);
16330 return;
16331 }
16332
16333 mips_mark_labels ();
16334 mips_assembling_insn = TRUE;
16335
16336 /* Add $gp to the register named as an argument. */
16337 macro_start ();
16338 reg = tc_get_register (0);
16339 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16340 macro_end ();
16341
16342 mips_assembling_insn = FALSE;
16343 demand_empty_rest_of_line ();
16344 }
16345
16346 /* Handle the .insn pseudo-op. This marks instruction labels in
16347 mips16/micromips mode. This permits the linker to handle them specially,
16348 such as generating jalx instructions when needed. We also make
16349 them odd for the duration of the assembly, in order to generate the
16350 right sort of code. We will make them even in the adjust_symtab
16351 routine, while leaving them marked. This is convenient for the
16352 debugger and the disassembler. The linker knows to make them odd
16353 again. */
16354
16355 static void
16356 s_insn (int ignore ATTRIBUTE_UNUSED)
16357 {
16358 file_mips_check_options ();
16359 file_ase_mips16 |= mips_opts.mips16;
16360 file_ase_micromips |= mips_opts.micromips;
16361
16362 mips_mark_labels ();
16363
16364 demand_empty_rest_of_line ();
16365 }
16366
16367 /* Handle the .nan pseudo-op. */
16368
16369 static void
16370 s_nan (int ignore ATTRIBUTE_UNUSED)
16371 {
16372 static const char str_legacy[] = "legacy";
16373 static const char str_2008[] = "2008";
16374 size_t i;
16375
16376 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16377
16378 if (i == sizeof (str_2008) - 1
16379 && memcmp (input_line_pointer, str_2008, i) == 0)
16380 mips_nan2008 = 1;
16381 else if (i == sizeof (str_legacy) - 1
16382 && memcmp (input_line_pointer, str_legacy, i) == 0)
16383 {
16384 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16385 mips_nan2008 = 0;
16386 else
16387 as_bad (_("`%s' does not support legacy NaN"),
16388 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16389 }
16390 else
16391 as_bad (_("bad .nan directive"));
16392
16393 input_line_pointer += i;
16394 demand_empty_rest_of_line ();
16395 }
16396
16397 /* Handle a .stab[snd] directive. Ideally these directives would be
16398 implemented in a transparent way, so that removing them would not
16399 have any effect on the generated instructions. However, s_stab
16400 internally changes the section, so in practice we need to decide
16401 now whether the preceding label marks compressed code. We do not
16402 support changing the compression mode of a label after a .stab*
16403 directive, such as in:
16404
16405 foo:
16406 .stabs ...
16407 .set mips16
16408
16409 so the current mode wins. */
16410
16411 static void
16412 s_mips_stab (int type)
16413 {
16414 mips_mark_labels ();
16415 s_stab (type);
16416 }
16417
16418 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16419
16420 static void
16421 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16422 {
16423 char *name;
16424 int c;
16425 symbolS *symbolP;
16426 expressionS exp;
16427
16428 name = input_line_pointer;
16429 c = get_symbol_end ();
16430 symbolP = symbol_find_or_make (name);
16431 S_SET_WEAK (symbolP);
16432 *input_line_pointer = c;
16433
16434 SKIP_WHITESPACE ();
16435
16436 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16437 {
16438 if (S_IS_DEFINED (symbolP))
16439 {
16440 as_bad (_("ignoring attempt to redefine symbol %s"),
16441 S_GET_NAME (symbolP));
16442 ignore_rest_of_line ();
16443 return;
16444 }
16445
16446 if (*input_line_pointer == ',')
16447 {
16448 ++input_line_pointer;
16449 SKIP_WHITESPACE ();
16450 }
16451
16452 expression (&exp);
16453 if (exp.X_op != O_symbol)
16454 {
16455 as_bad (_("bad .weakext directive"));
16456 ignore_rest_of_line ();
16457 return;
16458 }
16459 symbol_set_value_expression (symbolP, &exp);
16460 }
16461
16462 demand_empty_rest_of_line ();
16463 }
16464
16465 /* Parse a register string into a number. Called from the ECOFF code
16466 to parse .frame. The argument is non-zero if this is the frame
16467 register, so that we can record it in mips_frame_reg. */
16468
16469 int
16470 tc_get_register (int frame)
16471 {
16472 unsigned int reg;
16473
16474 SKIP_WHITESPACE ();
16475 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16476 reg = 0;
16477 if (frame)
16478 {
16479 mips_frame_reg = reg != 0 ? reg : SP;
16480 mips_frame_reg_valid = 1;
16481 mips_cprestore_valid = 0;
16482 }
16483 return reg;
16484 }
16485
16486 valueT
16487 md_section_align (asection *seg, valueT addr)
16488 {
16489 int align = bfd_get_section_alignment (stdoutput, seg);
16490
16491 /* We don't need to align ELF sections to the full alignment.
16492 However, Irix 5 may prefer that we align them at least to a 16
16493 byte boundary. We don't bother to align the sections if we
16494 are targeted for an embedded system. */
16495 if (strncmp (TARGET_OS, "elf", 3) == 0)
16496 return addr;
16497 if (align > 4)
16498 align = 4;
16499
16500 return ((addr + (1 << align) - 1) & (-1 << align));
16501 }
16502
16503 /* Utility routine, called from above as well. If called while the
16504 input file is still being read, it's only an approximation. (For
16505 example, a symbol may later become defined which appeared to be
16506 undefined earlier.) */
16507
16508 static int
16509 nopic_need_relax (symbolS *sym, int before_relaxing)
16510 {
16511 if (sym == 0)
16512 return 0;
16513
16514 if (g_switch_value > 0)
16515 {
16516 const char *symname;
16517 int change;
16518
16519 /* Find out whether this symbol can be referenced off the $gp
16520 register. It can be if it is smaller than the -G size or if
16521 it is in the .sdata or .sbss section. Certain symbols can
16522 not be referenced off the $gp, although it appears as though
16523 they can. */
16524 symname = S_GET_NAME (sym);
16525 if (symname != (const char *) NULL
16526 && (strcmp (symname, "eprol") == 0
16527 || strcmp (symname, "etext") == 0
16528 || strcmp (symname, "_gp") == 0
16529 || strcmp (symname, "edata") == 0
16530 || strcmp (symname, "_fbss") == 0
16531 || strcmp (symname, "_fdata") == 0
16532 || strcmp (symname, "_ftext") == 0
16533 || strcmp (symname, "end") == 0
16534 || strcmp (symname, "_gp_disp") == 0))
16535 change = 1;
16536 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16537 && (0
16538 #ifndef NO_ECOFF_DEBUGGING
16539 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16540 && (symbol_get_obj (sym)->ecoff_extern_size
16541 <= g_switch_value))
16542 #endif
16543 /* We must defer this decision until after the whole
16544 file has been read, since there might be a .extern
16545 after the first use of this symbol. */
16546 || (before_relaxing
16547 #ifndef NO_ECOFF_DEBUGGING
16548 && symbol_get_obj (sym)->ecoff_extern_size == 0
16549 #endif
16550 && S_GET_VALUE (sym) == 0)
16551 || (S_GET_VALUE (sym) != 0
16552 && S_GET_VALUE (sym) <= g_switch_value)))
16553 change = 0;
16554 else
16555 {
16556 const char *segname;
16557
16558 segname = segment_name (S_GET_SEGMENT (sym));
16559 gas_assert (strcmp (segname, ".lit8") != 0
16560 && strcmp (segname, ".lit4") != 0);
16561 change = (strcmp (segname, ".sdata") != 0
16562 && strcmp (segname, ".sbss") != 0
16563 && strncmp (segname, ".sdata.", 7) != 0
16564 && strncmp (segname, ".sbss.", 6) != 0
16565 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16566 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16567 }
16568 return change;
16569 }
16570 else
16571 /* We are not optimizing for the $gp register. */
16572 return 1;
16573 }
16574
16575
16576 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16577
16578 static bfd_boolean
16579 pic_need_relax (symbolS *sym, asection *segtype)
16580 {
16581 asection *symsec;
16582
16583 /* Handle the case of a symbol equated to another symbol. */
16584 while (symbol_equated_reloc_p (sym))
16585 {
16586 symbolS *n;
16587
16588 /* It's possible to get a loop here in a badly written program. */
16589 n = symbol_get_value_expression (sym)->X_add_symbol;
16590 if (n == sym)
16591 break;
16592 sym = n;
16593 }
16594
16595 if (symbol_section_p (sym))
16596 return TRUE;
16597
16598 symsec = S_GET_SEGMENT (sym);
16599
16600 /* This must duplicate the test in adjust_reloc_syms. */
16601 return (!bfd_is_und_section (symsec)
16602 && !bfd_is_abs_section (symsec)
16603 && !bfd_is_com_section (symsec)
16604 && !s_is_linkonce (sym, segtype)
16605 /* A global or weak symbol is treated as external. */
16606 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
16607 }
16608
16609
16610 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16611 extended opcode. SEC is the section the frag is in. */
16612
16613 static int
16614 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
16615 {
16616 int type;
16617 const struct mips_int_operand *operand;
16618 offsetT val;
16619 segT symsec;
16620 fragS *sym_frag;
16621
16622 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16623 return 0;
16624 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16625 return 1;
16626
16627 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16628 operand = mips16_immed_operand (type, FALSE);
16629
16630 sym_frag = symbol_get_frag (fragp->fr_symbol);
16631 val = S_GET_VALUE (fragp->fr_symbol);
16632 symsec = S_GET_SEGMENT (fragp->fr_symbol);
16633
16634 if (operand->root.type == OP_PCREL)
16635 {
16636 const struct mips_pcrel_operand *pcrel_op;
16637 addressT addr;
16638 offsetT maxtiny;
16639
16640 /* We won't have the section when we are called from
16641 mips_relax_frag. However, we will always have been called
16642 from md_estimate_size_before_relax first. If this is a
16643 branch to a different section, we mark it as such. If SEC is
16644 NULL, and the frag is not marked, then it must be a branch to
16645 the same section. */
16646 pcrel_op = (const struct mips_pcrel_operand *) operand;
16647 if (sec == NULL)
16648 {
16649 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16650 return 1;
16651 }
16652 else
16653 {
16654 /* Must have been called from md_estimate_size_before_relax. */
16655 if (symsec != sec)
16656 {
16657 fragp->fr_subtype =
16658 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16659
16660 /* FIXME: We should support this, and let the linker
16661 catch branches and loads that are out of range. */
16662 as_bad_where (fragp->fr_file, fragp->fr_line,
16663 _("unsupported PC relative reference to different section"));
16664
16665 return 1;
16666 }
16667 if (fragp != sym_frag && sym_frag->fr_address == 0)
16668 /* Assume non-extended on the first relaxation pass.
16669 The address we have calculated will be bogus if this is
16670 a forward branch to another frag, as the forward frag
16671 will have fr_address == 0. */
16672 return 0;
16673 }
16674
16675 /* In this case, we know for sure that the symbol fragment is in
16676 the same section. If the relax_marker of the symbol fragment
16677 differs from the relax_marker of this fragment, we have not
16678 yet adjusted the symbol fragment fr_address. We want to add
16679 in STRETCH in order to get a better estimate of the address.
16680 This particularly matters because of the shift bits. */
16681 if (stretch != 0
16682 && sym_frag->relax_marker != fragp->relax_marker)
16683 {
16684 fragS *f;
16685
16686 /* Adjust stretch for any alignment frag. Note that if have
16687 been expanding the earlier code, the symbol may be
16688 defined in what appears to be an earlier frag. FIXME:
16689 This doesn't handle the fr_subtype field, which specifies
16690 a maximum number of bytes to skip when doing an
16691 alignment. */
16692 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16693 {
16694 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16695 {
16696 if (stretch < 0)
16697 stretch = - ((- stretch)
16698 & ~ ((1 << (int) f->fr_offset) - 1));
16699 else
16700 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16701 if (stretch == 0)
16702 break;
16703 }
16704 }
16705 if (f != NULL)
16706 val += stretch;
16707 }
16708
16709 addr = fragp->fr_address + fragp->fr_fix;
16710
16711 /* The base address rules are complicated. The base address of
16712 a branch is the following instruction. The base address of a
16713 PC relative load or add is the instruction itself, but if it
16714 is in a delay slot (in which case it can not be extended) use
16715 the address of the instruction whose delay slot it is in. */
16716 if (pcrel_op->include_isa_bit)
16717 {
16718 addr += 2;
16719
16720 /* If we are currently assuming that this frag should be
16721 extended, then, the current address is two bytes
16722 higher. */
16723 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16724 addr += 2;
16725
16726 /* Ignore the low bit in the target, since it will be set
16727 for a text label. */
16728 val &= -2;
16729 }
16730 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16731 addr -= 4;
16732 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16733 addr -= 2;
16734
16735 val -= addr & -(1 << pcrel_op->align_log2);
16736
16737 /* If any of the shifted bits are set, we must use an extended
16738 opcode. If the address depends on the size of this
16739 instruction, this can lead to a loop, so we arrange to always
16740 use an extended opcode. We only check this when we are in
16741 the main relaxation loop, when SEC is NULL. */
16742 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
16743 {
16744 fragp->fr_subtype =
16745 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16746 return 1;
16747 }
16748
16749 /* If we are about to mark a frag as extended because the value
16750 is precisely the next value above maxtiny, then there is a
16751 chance of an infinite loop as in the following code:
16752 la $4,foo
16753 .skip 1020
16754 .align 2
16755 foo:
16756 In this case when the la is extended, foo is 0x3fc bytes
16757 away, so the la can be shrunk, but then foo is 0x400 away, so
16758 the la must be extended. To avoid this loop, we mark the
16759 frag as extended if it was small, and is about to become
16760 extended with the next value above maxtiny. */
16761 maxtiny = mips_int_operand_max (operand);
16762 if (val == maxtiny + (1 << operand->shift)
16763 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16764 && sec == NULL)
16765 {
16766 fragp->fr_subtype =
16767 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16768 return 1;
16769 }
16770 }
16771 else if (symsec != absolute_section && sec != NULL)
16772 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16773
16774 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16775 }
16776
16777 /* Compute the length of a branch sequence, and adjust the
16778 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16779 worst-case length is computed, with UPDATE being used to indicate
16780 whether an unconditional (-1), branch-likely (+1) or regular (0)
16781 branch is to be computed. */
16782 static int
16783 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16784 {
16785 bfd_boolean toofar;
16786 int length;
16787
16788 if (fragp
16789 && S_IS_DEFINED (fragp->fr_symbol)
16790 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16791 {
16792 addressT addr;
16793 offsetT val;
16794
16795 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16796
16797 addr = fragp->fr_address + fragp->fr_fix + 4;
16798
16799 val -= addr;
16800
16801 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16802 }
16803 else if (fragp)
16804 /* If the symbol is not defined or it's in a different segment,
16805 assume the user knows what's going on and emit a short
16806 branch. */
16807 toofar = FALSE;
16808 else
16809 toofar = TRUE;
16810
16811 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16812 fragp->fr_subtype
16813 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16814 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16815 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16816 RELAX_BRANCH_LINK (fragp->fr_subtype),
16817 toofar);
16818
16819 length = 4;
16820 if (toofar)
16821 {
16822 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16823 length += 8;
16824
16825 if (mips_pic != NO_PIC)
16826 {
16827 /* Additional space for PIC loading of target address. */
16828 length += 8;
16829 if (mips_opts.isa == ISA_MIPS1)
16830 /* Additional space for $at-stabilizing nop. */
16831 length += 4;
16832 }
16833
16834 /* If branch is conditional. */
16835 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16836 length += 8;
16837 }
16838
16839 return length;
16840 }
16841
16842 /* Compute the length of a branch sequence, and adjust the
16843 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16844 worst-case length is computed, with UPDATE being used to indicate
16845 whether an unconditional (-1), or regular (0) branch is to be
16846 computed. */
16847
16848 static int
16849 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16850 {
16851 bfd_boolean toofar;
16852 int length;
16853
16854 if (fragp
16855 && S_IS_DEFINED (fragp->fr_symbol)
16856 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16857 {
16858 addressT addr;
16859 offsetT val;
16860
16861 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16862 /* Ignore the low bit in the target, since it will be set
16863 for a text label. */
16864 if ((val & 1) != 0)
16865 --val;
16866
16867 addr = fragp->fr_address + fragp->fr_fix + 4;
16868
16869 val -= addr;
16870
16871 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16872 }
16873 else if (fragp)
16874 /* If the symbol is not defined or it's in a different segment,
16875 assume the user knows what's going on and emit a short
16876 branch. */
16877 toofar = FALSE;
16878 else
16879 toofar = TRUE;
16880
16881 if (fragp && update
16882 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16883 fragp->fr_subtype = (toofar
16884 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16885 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16886
16887 length = 4;
16888 if (toofar)
16889 {
16890 bfd_boolean compact_known = fragp != NULL;
16891 bfd_boolean compact = FALSE;
16892 bfd_boolean uncond;
16893
16894 if (compact_known)
16895 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16896 if (fragp)
16897 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16898 else
16899 uncond = update < 0;
16900
16901 /* If label is out of range, we turn branch <br>:
16902
16903 <br> label # 4 bytes
16904 0:
16905
16906 into:
16907
16908 j label # 4 bytes
16909 nop # 2 bytes if compact && !PIC
16910 0:
16911 */
16912 if (mips_pic == NO_PIC && (!compact_known || compact))
16913 length += 2;
16914
16915 /* If assembling PIC code, we further turn:
16916
16917 j label # 4 bytes
16918
16919 into:
16920
16921 lw/ld at, %got(label)(gp) # 4 bytes
16922 d/addiu at, %lo(label) # 4 bytes
16923 jr/c at # 2 bytes
16924 */
16925 if (mips_pic != NO_PIC)
16926 length += 6;
16927
16928 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16929
16930 <brneg> 0f # 4 bytes
16931 nop # 2 bytes if !compact
16932 */
16933 if (!uncond)
16934 length += (compact_known && compact) ? 4 : 6;
16935 }
16936
16937 return length;
16938 }
16939
16940 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16941 bit accordingly. */
16942
16943 static int
16944 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16945 {
16946 bfd_boolean toofar;
16947
16948 if (fragp
16949 && S_IS_DEFINED (fragp->fr_symbol)
16950 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16951 {
16952 addressT addr;
16953 offsetT val;
16954 int type;
16955
16956 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16957 /* Ignore the low bit in the target, since it will be set
16958 for a text label. */
16959 if ((val & 1) != 0)
16960 --val;
16961
16962 /* Assume this is a 2-byte branch. */
16963 addr = fragp->fr_address + fragp->fr_fix + 2;
16964
16965 /* We try to avoid the infinite loop by not adding 2 more bytes for
16966 long branches. */
16967
16968 val -= addr;
16969
16970 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16971 if (type == 'D')
16972 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
16973 else if (type == 'E')
16974 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
16975 else
16976 abort ();
16977 }
16978 else
16979 /* If the symbol is not defined or it's in a different segment,
16980 we emit a normal 32-bit branch. */
16981 toofar = TRUE;
16982
16983 if (fragp && update
16984 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16985 fragp->fr_subtype
16986 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
16987 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
16988
16989 if (toofar)
16990 return 4;
16991
16992 return 2;
16993 }
16994
16995 /* Estimate the size of a frag before relaxing. Unless this is the
16996 mips16, we are not really relaxing here, and the final size is
16997 encoded in the subtype information. For the mips16, we have to
16998 decide whether we are using an extended opcode or not. */
16999
17000 int
17001 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17002 {
17003 int change;
17004
17005 if (RELAX_BRANCH_P (fragp->fr_subtype))
17006 {
17007
17008 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17009
17010 return fragp->fr_var;
17011 }
17012
17013 if (RELAX_MIPS16_P (fragp->fr_subtype))
17014 /* We don't want to modify the EXTENDED bit here; it might get us
17015 into infinite loops. We change it only in mips_relax_frag(). */
17016 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17017
17018 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17019 {
17020 int length = 4;
17021
17022 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17023 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17024 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17025 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17026 fragp->fr_var = length;
17027
17028 return length;
17029 }
17030
17031 if (mips_pic == NO_PIC)
17032 change = nopic_need_relax (fragp->fr_symbol, 0);
17033 else if (mips_pic == SVR4_PIC)
17034 change = pic_need_relax (fragp->fr_symbol, segtype);
17035 else if (mips_pic == VXWORKS_PIC)
17036 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17037 change = 0;
17038 else
17039 abort ();
17040
17041 if (change)
17042 {
17043 fragp->fr_subtype |= RELAX_USE_SECOND;
17044 return -RELAX_FIRST (fragp->fr_subtype);
17045 }
17046 else
17047 return -RELAX_SECOND (fragp->fr_subtype);
17048 }
17049
17050 /* This is called to see whether a reloc against a defined symbol
17051 should be converted into a reloc against a section. */
17052
17053 int
17054 mips_fix_adjustable (fixS *fixp)
17055 {
17056 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17057 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17058 return 0;
17059
17060 if (fixp->fx_addsy == NULL)
17061 return 1;
17062
17063 /* Allow relocs used for EH tables. */
17064 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17065 return 1;
17066
17067 /* If symbol SYM is in a mergeable section, relocations of the form
17068 SYM + 0 can usually be made section-relative. The mergeable data
17069 is then identified by the section offset rather than by the symbol.
17070
17071 However, if we're generating REL LO16 relocations, the offset is split
17072 between the LO16 and parterning high part relocation. The linker will
17073 need to recalculate the complete offset in order to correctly identify
17074 the merge data.
17075
17076 The linker has traditionally not looked for the parterning high part
17077 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17078 placed anywhere. Rather than break backwards compatibility by changing
17079 this, it seems better not to force the issue, and instead keep the
17080 original symbol. This will work with either linker behavior. */
17081 if ((lo16_reloc_p (fixp->fx_r_type)
17082 || reloc_needs_lo_p (fixp->fx_r_type))
17083 && HAVE_IN_PLACE_ADDENDS
17084 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17085 return 0;
17086
17087 /* There is no place to store an in-place offset for JALR relocations.
17088 Likewise an in-range offset of limited PC-relative relocations may
17089 overflow the in-place relocatable field if recalculated against the
17090 start address of the symbol's containing section.
17091
17092 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17093 section relative to allow linker relaxations to be performed later on. */
17094 if ((HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (mips_opts.isa))
17095 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17096 || jalr_reloc_p (fixp->fx_r_type)))
17097 return 0;
17098
17099 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17100 to a floating-point stub. The same is true for non-R_MIPS16_26
17101 relocations against MIPS16 functions; in this case, the stub becomes
17102 the function's canonical address.
17103
17104 Floating-point stubs are stored in unique .mips16.call.* or
17105 .mips16.fn.* sections. If a stub T for function F is in section S,
17106 the first relocation in section S must be against F; this is how the
17107 linker determines the target function. All relocations that might
17108 resolve to T must also be against F. We therefore have the following
17109 restrictions, which are given in an intentionally-redundant way:
17110
17111 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17112 symbols.
17113
17114 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17115 if that stub might be used.
17116
17117 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17118 symbols.
17119
17120 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17121 that stub might be used.
17122
17123 There is a further restriction:
17124
17125 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17126 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17127 targets with in-place addends; the relocation field cannot
17128 encode the low bit.
17129
17130 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17131 against a MIPS16 symbol. We deal with (5) by by not reducing any
17132 such relocations on REL targets.
17133
17134 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17135 relocation against some symbol R, no relocation against R may be
17136 reduced. (Note that this deals with (2) as well as (1) because
17137 relocations against global symbols will never be reduced on ELF
17138 targets.) This approach is a little simpler than trying to detect
17139 stub sections, and gives the "all or nothing" per-symbol consistency
17140 that we have for MIPS16 symbols. */
17141 if (fixp->fx_subsy == NULL
17142 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17143 || *symbol_get_tc (fixp->fx_addsy)
17144 || (HAVE_IN_PLACE_ADDENDS
17145 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17146 && jmp_reloc_p (fixp->fx_r_type))))
17147 return 0;
17148
17149 return 1;
17150 }
17151
17152 /* Translate internal representation of relocation info to BFD target
17153 format. */
17154
17155 arelent **
17156 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17157 {
17158 static arelent *retval[4];
17159 arelent *reloc;
17160 bfd_reloc_code_real_type code;
17161
17162 memset (retval, 0, sizeof(retval));
17163 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
17164 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
17165 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17166 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17167
17168 if (fixp->fx_pcrel)
17169 {
17170 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17171 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17172 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17173 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17174 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17175 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17176 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17177 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17178 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17179 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17180 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17181
17182 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17183 Relocations want only the symbol offset. */
17184 reloc->addend = fixp->fx_addnumber + reloc->address;
17185 }
17186 else
17187 reloc->addend = fixp->fx_addnumber;
17188
17189 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17190 entry to be used in the relocation's section offset. */
17191 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17192 {
17193 reloc->address = reloc->addend;
17194 reloc->addend = 0;
17195 }
17196
17197 code = fixp->fx_r_type;
17198
17199 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17200 if (reloc->howto == NULL)
17201 {
17202 as_bad_where (fixp->fx_file, fixp->fx_line,
17203 _("cannot represent %s relocation in this object file"
17204 " format"),
17205 bfd_get_reloc_code_name (code));
17206 retval[0] = NULL;
17207 }
17208
17209 return retval;
17210 }
17211
17212 /* Relax a machine dependent frag. This returns the amount by which
17213 the current size of the frag should change. */
17214
17215 int
17216 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17217 {
17218 if (RELAX_BRANCH_P (fragp->fr_subtype))
17219 {
17220 offsetT old_var = fragp->fr_var;
17221
17222 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17223
17224 return fragp->fr_var - old_var;
17225 }
17226
17227 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17228 {
17229 offsetT old_var = fragp->fr_var;
17230 offsetT new_var = 4;
17231
17232 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17233 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17234 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17235 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17236 fragp->fr_var = new_var;
17237
17238 return new_var - old_var;
17239 }
17240
17241 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17242 return 0;
17243
17244 if (mips16_extended_frag (fragp, NULL, stretch))
17245 {
17246 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17247 return 0;
17248 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17249 return 2;
17250 }
17251 else
17252 {
17253 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17254 return 0;
17255 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17256 return -2;
17257 }
17258
17259 return 0;
17260 }
17261
17262 /* Convert a machine dependent frag. */
17263
17264 void
17265 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17266 {
17267 if (RELAX_BRANCH_P (fragp->fr_subtype))
17268 {
17269 char *buf;
17270 unsigned long insn;
17271 expressionS exp;
17272 fixS *fixp;
17273
17274 buf = fragp->fr_literal + fragp->fr_fix;
17275 insn = read_insn (buf);
17276
17277 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17278 {
17279 /* We generate a fixup instead of applying it right now
17280 because, if there are linker relaxations, we're going to
17281 need the relocations. */
17282 exp.X_op = O_symbol;
17283 exp.X_add_symbol = fragp->fr_symbol;
17284 exp.X_add_number = fragp->fr_offset;
17285
17286 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17287 BFD_RELOC_16_PCREL_S2);
17288 fixp->fx_file = fragp->fr_file;
17289 fixp->fx_line = fragp->fr_line;
17290
17291 buf = write_insn (buf, insn);
17292 }
17293 else
17294 {
17295 int i;
17296
17297 as_warn_where (fragp->fr_file, fragp->fr_line,
17298 _("relaxed out-of-range branch into a jump"));
17299
17300 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17301 goto uncond;
17302
17303 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17304 {
17305 /* Reverse the branch. */
17306 switch ((insn >> 28) & 0xf)
17307 {
17308 case 4:
17309 if ((insn & 0xff000000) == 0x47000000
17310 || (insn & 0xff600000) == 0x45600000)
17311 {
17312 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17313 reversed by tweaking bit 23. */
17314 insn ^= 0x00800000;
17315 }
17316 else
17317 {
17318 /* bc[0-3][tf]l? instructions can have the condition
17319 reversed by tweaking a single TF bit, and their
17320 opcodes all have 0x4???????. */
17321 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17322 insn ^= 0x00010000;
17323 }
17324 break;
17325
17326 case 0:
17327 /* bltz 0x04000000 bgez 0x04010000
17328 bltzal 0x04100000 bgezal 0x04110000 */
17329 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17330 insn ^= 0x00010000;
17331 break;
17332
17333 case 1:
17334 /* beq 0x10000000 bne 0x14000000
17335 blez 0x18000000 bgtz 0x1c000000 */
17336 insn ^= 0x04000000;
17337 break;
17338
17339 default:
17340 abort ();
17341 }
17342 }
17343
17344 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17345 {
17346 /* Clear the and-link bit. */
17347 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17348
17349 /* bltzal 0x04100000 bgezal 0x04110000
17350 bltzall 0x04120000 bgezall 0x04130000 */
17351 insn &= ~0x00100000;
17352 }
17353
17354 /* Branch over the branch (if the branch was likely) or the
17355 full jump (not likely case). Compute the offset from the
17356 current instruction to branch to. */
17357 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17358 i = 16;
17359 else
17360 {
17361 /* How many bytes in instructions we've already emitted? */
17362 i = buf - fragp->fr_literal - fragp->fr_fix;
17363 /* How many bytes in instructions from here to the end? */
17364 i = fragp->fr_var - i;
17365 }
17366 /* Convert to instruction count. */
17367 i >>= 2;
17368 /* Branch counts from the next instruction. */
17369 i--;
17370 insn |= i;
17371 /* Branch over the jump. */
17372 buf = write_insn (buf, insn);
17373
17374 /* nop */
17375 buf = write_insn (buf, 0);
17376
17377 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17378 {
17379 /* beql $0, $0, 2f */
17380 insn = 0x50000000;
17381 /* Compute the PC offset from the current instruction to
17382 the end of the variable frag. */
17383 /* How many bytes in instructions we've already emitted? */
17384 i = buf - fragp->fr_literal - fragp->fr_fix;
17385 /* How many bytes in instructions from here to the end? */
17386 i = fragp->fr_var - i;
17387 /* Convert to instruction count. */
17388 i >>= 2;
17389 /* Don't decrement i, because we want to branch over the
17390 delay slot. */
17391 insn |= i;
17392
17393 buf = write_insn (buf, insn);
17394 buf = write_insn (buf, 0);
17395 }
17396
17397 uncond:
17398 if (mips_pic == NO_PIC)
17399 {
17400 /* j or jal. */
17401 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17402 ? 0x0c000000 : 0x08000000);
17403 exp.X_op = O_symbol;
17404 exp.X_add_symbol = fragp->fr_symbol;
17405 exp.X_add_number = fragp->fr_offset;
17406
17407 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17408 FALSE, BFD_RELOC_MIPS_JMP);
17409 fixp->fx_file = fragp->fr_file;
17410 fixp->fx_line = fragp->fr_line;
17411
17412 buf = write_insn (buf, insn);
17413 }
17414 else
17415 {
17416 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17417
17418 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17419 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17420 insn |= at << OP_SH_RT;
17421 exp.X_op = O_symbol;
17422 exp.X_add_symbol = fragp->fr_symbol;
17423 exp.X_add_number = fragp->fr_offset;
17424
17425 if (fragp->fr_offset)
17426 {
17427 exp.X_add_symbol = make_expr_symbol (&exp);
17428 exp.X_add_number = 0;
17429 }
17430
17431 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17432 FALSE, BFD_RELOC_MIPS_GOT16);
17433 fixp->fx_file = fragp->fr_file;
17434 fixp->fx_line = fragp->fr_line;
17435
17436 buf = write_insn (buf, insn);
17437
17438 if (mips_opts.isa == ISA_MIPS1)
17439 /* nop */
17440 buf = write_insn (buf, 0);
17441
17442 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17443 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17444 insn |= at << OP_SH_RS | at << OP_SH_RT;
17445
17446 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17447 FALSE, BFD_RELOC_LO16);
17448 fixp->fx_file = fragp->fr_file;
17449 fixp->fx_line = fragp->fr_line;
17450
17451 buf = write_insn (buf, insn);
17452
17453 /* j(al)r $at. */
17454 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17455 insn = 0x0000f809;
17456 else
17457 insn = 0x00000008;
17458 insn |= at << OP_SH_RS;
17459
17460 buf = write_insn (buf, insn);
17461 }
17462 }
17463
17464 fragp->fr_fix += fragp->fr_var;
17465 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17466 return;
17467 }
17468
17469 /* Relax microMIPS branches. */
17470 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17471 {
17472 char *buf = fragp->fr_literal + fragp->fr_fix;
17473 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17474 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17475 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17476 bfd_boolean short_ds;
17477 unsigned long insn;
17478 expressionS exp;
17479 fixS *fixp;
17480
17481 exp.X_op = O_symbol;
17482 exp.X_add_symbol = fragp->fr_symbol;
17483 exp.X_add_number = fragp->fr_offset;
17484
17485 fragp->fr_fix += fragp->fr_var;
17486
17487 /* Handle 16-bit branches that fit or are forced to fit. */
17488 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17489 {
17490 /* We generate a fixup instead of applying it right now,
17491 because if there is linker relaxation, we're going to
17492 need the relocations. */
17493 if (type == 'D')
17494 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17495 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17496 else if (type == 'E')
17497 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17498 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17499 else
17500 abort ();
17501
17502 fixp->fx_file = fragp->fr_file;
17503 fixp->fx_line = fragp->fr_line;
17504
17505 /* These relocations can have an addend that won't fit in
17506 2 octets. */
17507 fixp->fx_no_overflow = 1;
17508
17509 return;
17510 }
17511
17512 /* Handle 32-bit branches that fit or are forced to fit. */
17513 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17514 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17515 {
17516 /* We generate a fixup instead of applying it right now,
17517 because if there is linker relaxation, we're going to
17518 need the relocations. */
17519 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17520 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17521 fixp->fx_file = fragp->fr_file;
17522 fixp->fx_line = fragp->fr_line;
17523
17524 if (type == 0)
17525 return;
17526 }
17527
17528 /* Relax 16-bit branches to 32-bit branches. */
17529 if (type != 0)
17530 {
17531 insn = read_compressed_insn (buf, 2);
17532
17533 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17534 insn = 0x94000000; /* beq */
17535 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17536 {
17537 unsigned long regno;
17538
17539 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17540 regno = micromips_to_32_reg_d_map [regno];
17541 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17542 insn |= regno << MICROMIPSOP_SH_RS;
17543 }
17544 else
17545 abort ();
17546
17547 /* Nothing else to do, just write it out. */
17548 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17549 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17550 {
17551 buf = write_compressed_insn (buf, insn, 4);
17552 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17553 return;
17554 }
17555 }
17556 else
17557 insn = read_compressed_insn (buf, 4);
17558
17559 /* Relax 32-bit branches to a sequence of instructions. */
17560 as_warn_where (fragp->fr_file, fragp->fr_line,
17561 _("relaxed out-of-range branch into a jump"));
17562
17563 /* Set the short-delay-slot bit. */
17564 short_ds = al && (insn & 0x02000000) != 0;
17565
17566 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17567 {
17568 symbolS *l;
17569
17570 /* Reverse the branch. */
17571 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17572 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17573 insn ^= 0x20000000;
17574 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17575 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17576 || (insn & 0xffe00000) == 0x40800000 /* blez */
17577 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17578 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17579 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17580 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17581 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17582 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17583 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17584 insn ^= 0x00400000;
17585 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17586 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17587 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17588 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17589 insn ^= 0x00200000;
17590 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17591 BNZ.df */
17592 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17593 BNZ.V */
17594 insn ^= 0x00800000;
17595 else
17596 abort ();
17597
17598 if (al)
17599 {
17600 /* Clear the and-link and short-delay-slot bits. */
17601 gas_assert ((insn & 0xfda00000) == 0x40200000);
17602
17603 /* bltzal 0x40200000 bgezal 0x40600000 */
17604 /* bltzals 0x42200000 bgezals 0x42600000 */
17605 insn &= ~0x02200000;
17606 }
17607
17608 /* Make a label at the end for use with the branch. */
17609 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17610 micromips_label_inc ();
17611 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
17612
17613 /* Refer to it. */
17614 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17615 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17616 fixp->fx_file = fragp->fr_file;
17617 fixp->fx_line = fragp->fr_line;
17618
17619 /* Branch over the jump. */
17620 buf = write_compressed_insn (buf, insn, 4);
17621 if (!compact)
17622 /* nop */
17623 buf = write_compressed_insn (buf, 0x0c00, 2);
17624 }
17625
17626 if (mips_pic == NO_PIC)
17627 {
17628 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17629
17630 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17631 insn = al ? jal : 0xd4000000;
17632
17633 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17634 BFD_RELOC_MICROMIPS_JMP);
17635 fixp->fx_file = fragp->fr_file;
17636 fixp->fx_line = fragp->fr_line;
17637
17638 buf = write_compressed_insn (buf, insn, 4);
17639 if (compact)
17640 /* nop */
17641 buf = write_compressed_insn (buf, 0x0c00, 2);
17642 }
17643 else
17644 {
17645 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
17646 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17647 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
17648
17649 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17650 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17651 insn |= at << MICROMIPSOP_SH_RT;
17652
17653 if (exp.X_add_number)
17654 {
17655 exp.X_add_symbol = make_expr_symbol (&exp);
17656 exp.X_add_number = 0;
17657 }
17658
17659 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17660 BFD_RELOC_MICROMIPS_GOT16);
17661 fixp->fx_file = fragp->fr_file;
17662 fixp->fx_line = fragp->fr_line;
17663
17664 buf = write_compressed_insn (buf, insn, 4);
17665
17666 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17667 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17668 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17669
17670 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17671 BFD_RELOC_MICROMIPS_LO16);
17672 fixp->fx_file = fragp->fr_file;
17673 fixp->fx_line = fragp->fr_line;
17674
17675 buf = write_compressed_insn (buf, insn, 4);
17676
17677 /* jr/jrc/jalr/jalrs $at */
17678 insn = al ? jalr : jr;
17679 insn |= at << MICROMIPSOP_SH_MJ;
17680
17681 buf = write_compressed_insn (buf, insn, 2);
17682 }
17683
17684 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17685 return;
17686 }
17687
17688 if (RELAX_MIPS16_P (fragp->fr_subtype))
17689 {
17690 int type;
17691 const struct mips_int_operand *operand;
17692 offsetT val;
17693 char *buf;
17694 unsigned int user_length, length;
17695 unsigned long insn;
17696 bfd_boolean ext;
17697
17698 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17699 operand = mips16_immed_operand (type, FALSE);
17700
17701 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
17702 val = resolve_symbol_value (fragp->fr_symbol);
17703 if (operand->root.type == OP_PCREL)
17704 {
17705 const struct mips_pcrel_operand *pcrel_op;
17706 addressT addr;
17707
17708 pcrel_op = (const struct mips_pcrel_operand *) operand;
17709 addr = fragp->fr_address + fragp->fr_fix;
17710
17711 /* The rules for the base address of a PC relative reloc are
17712 complicated; see mips16_extended_frag. */
17713 if (pcrel_op->include_isa_bit)
17714 {
17715 addr += 2;
17716 if (ext)
17717 addr += 2;
17718 /* Ignore the low bit in the target, since it will be
17719 set for a text label. */
17720 val &= -2;
17721 }
17722 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17723 addr -= 4;
17724 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17725 addr -= 2;
17726
17727 addr &= -(1 << pcrel_op->align_log2);
17728 val -= addr;
17729
17730 /* Make sure the section winds up with the alignment we have
17731 assumed. */
17732 if (operand->shift > 0)
17733 record_alignment (asec, operand->shift);
17734 }
17735
17736 if (ext
17737 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17738 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17739 as_warn_where (fragp->fr_file, fragp->fr_line,
17740 _("extended instruction in delay slot"));
17741
17742 buf = fragp->fr_literal + fragp->fr_fix;
17743
17744 insn = read_compressed_insn (buf, 2);
17745 if (ext)
17746 insn |= MIPS16_EXTEND;
17747
17748 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17749 user_length = 4;
17750 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17751 user_length = 2;
17752 else
17753 user_length = 0;
17754
17755 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17756 BFD_RELOC_UNUSED, val, user_length, &insn);
17757
17758 length = (ext ? 4 : 2);
17759 gas_assert (mips16_opcode_length (insn) == length);
17760 write_compressed_insn (buf, insn, length);
17761 fragp->fr_fix += length;
17762 }
17763 else
17764 {
17765 relax_substateT subtype = fragp->fr_subtype;
17766 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17767 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
17768 int first, second;
17769 fixS *fixp;
17770
17771 first = RELAX_FIRST (subtype);
17772 second = RELAX_SECOND (subtype);
17773 fixp = (fixS *) fragp->fr_opcode;
17774
17775 /* If the delay slot chosen does not match the size of the instruction,
17776 then emit a warning. */
17777 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17778 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17779 {
17780 relax_substateT s;
17781 const char *msg;
17782
17783 s = subtype & (RELAX_DELAY_SLOT_16BIT
17784 | RELAX_DELAY_SLOT_SIZE_FIRST
17785 | RELAX_DELAY_SLOT_SIZE_SECOND);
17786 msg = macro_warning (s);
17787 if (msg != NULL)
17788 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17789 subtype &= ~s;
17790 }
17791
17792 /* Possibly emit a warning if we've chosen the longer option. */
17793 if (use_second == second_longer)
17794 {
17795 relax_substateT s;
17796 const char *msg;
17797
17798 s = (subtype
17799 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17800 msg = macro_warning (s);
17801 if (msg != NULL)
17802 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17803 subtype &= ~s;
17804 }
17805
17806 /* Go through all the fixups for the first sequence. Disable them
17807 (by marking them as done) if we're going to use the second
17808 sequence instead. */
17809 while (fixp
17810 && fixp->fx_frag == fragp
17811 && fixp->fx_where < fragp->fr_fix - second)
17812 {
17813 if (subtype & RELAX_USE_SECOND)
17814 fixp->fx_done = 1;
17815 fixp = fixp->fx_next;
17816 }
17817
17818 /* Go through the fixups for the second sequence. Disable them if
17819 we're going to use the first sequence, otherwise adjust their
17820 addresses to account for the relaxation. */
17821 while (fixp && fixp->fx_frag == fragp)
17822 {
17823 if (subtype & RELAX_USE_SECOND)
17824 fixp->fx_where -= first;
17825 else
17826 fixp->fx_done = 1;
17827 fixp = fixp->fx_next;
17828 }
17829
17830 /* Now modify the frag contents. */
17831 if (subtype & RELAX_USE_SECOND)
17832 {
17833 char *start;
17834
17835 start = fragp->fr_literal + fragp->fr_fix - first - second;
17836 memmove (start, start + first, second);
17837 fragp->fr_fix -= first;
17838 }
17839 else
17840 fragp->fr_fix -= second;
17841 }
17842 }
17843
17844 /* This function is called after the relocs have been generated.
17845 We've been storing mips16 text labels as odd. Here we convert them
17846 back to even for the convenience of the debugger. */
17847
17848 void
17849 mips_frob_file_after_relocs (void)
17850 {
17851 asymbol **syms;
17852 unsigned int count, i;
17853
17854 syms = bfd_get_outsymbols (stdoutput);
17855 count = bfd_get_symcount (stdoutput);
17856 for (i = 0; i < count; i++, syms++)
17857 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17858 && ((*syms)->value & 1) != 0)
17859 {
17860 (*syms)->value &= ~1;
17861 /* If the symbol has an odd size, it was probably computed
17862 incorrectly, so adjust that as well. */
17863 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17864 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17865 }
17866 }
17867
17868 /* This function is called whenever a label is defined, including fake
17869 labels instantiated off the dot special symbol. It is used when
17870 handling branch delays; if a branch has a label, we assume we cannot
17871 move it. This also bumps the value of the symbol by 1 in compressed
17872 code. */
17873
17874 static void
17875 mips_record_label (symbolS *sym)
17876 {
17877 segment_info_type *si = seg_info (now_seg);
17878 struct insn_label_list *l;
17879
17880 if (free_insn_labels == NULL)
17881 l = (struct insn_label_list *) xmalloc (sizeof *l);
17882 else
17883 {
17884 l = free_insn_labels;
17885 free_insn_labels = l->next;
17886 }
17887
17888 l->label = sym;
17889 l->next = si->label_list;
17890 si->label_list = l;
17891 }
17892
17893 /* This function is called as tc_frob_label() whenever a label is defined
17894 and adds a DWARF-2 record we only want for true labels. */
17895
17896 void
17897 mips_define_label (symbolS *sym)
17898 {
17899 mips_record_label (sym);
17900 dwarf2_emit_label (sym);
17901 }
17902
17903 /* This function is called by tc_new_dot_label whenever a new dot symbol
17904 is defined. */
17905
17906 void
17907 mips_add_dot_label (symbolS *sym)
17908 {
17909 mips_record_label (sym);
17910 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17911 mips_compressed_mark_label (sym);
17912 }
17913 \f
17914 /* Converting ASE flags from internal to .MIPS.abiflags values. */
17915 static unsigned int
17916 mips_convert_ase_flags (int ase)
17917 {
17918 unsigned int ext_ases = 0;
17919
17920 if (ase & ASE_DSP)
17921 ext_ases |= AFL_ASE_DSP;
17922 if (ase & ASE_DSPR2)
17923 ext_ases |= AFL_ASE_DSPR2;
17924 if (ase & ASE_EVA)
17925 ext_ases |= AFL_ASE_EVA;
17926 if (ase & ASE_MCU)
17927 ext_ases |= AFL_ASE_MCU;
17928 if (ase & ASE_MDMX)
17929 ext_ases |= AFL_ASE_MDMX;
17930 if (ase & ASE_MIPS3D)
17931 ext_ases |= AFL_ASE_MIPS3D;
17932 if (ase & ASE_MT)
17933 ext_ases |= AFL_ASE_MT;
17934 if (ase & ASE_SMARTMIPS)
17935 ext_ases |= AFL_ASE_SMARTMIPS;
17936 if (ase & ASE_VIRT)
17937 ext_ases |= AFL_ASE_VIRT;
17938 if (ase & ASE_MSA)
17939 ext_ases |= AFL_ASE_MSA;
17940 if (ase & ASE_XPA)
17941 ext_ases |= AFL_ASE_XPA;
17942
17943 return ext_ases;
17944 }
17945 /* Some special processing for a MIPS ELF file. */
17946
17947 void
17948 mips_elf_final_processing (void)
17949 {
17950 int fpabi;
17951 Elf_Internal_ABIFlags_v0 flags;
17952
17953 flags.version = 0;
17954 flags.isa_rev = 0;
17955 switch (file_mips_opts.isa)
17956 {
17957 case INSN_ISA1:
17958 flags.isa_level = 1;
17959 break;
17960 case INSN_ISA2:
17961 flags.isa_level = 2;
17962 break;
17963 case INSN_ISA3:
17964 flags.isa_level = 3;
17965 break;
17966 case INSN_ISA4:
17967 flags.isa_level = 4;
17968 break;
17969 case INSN_ISA5:
17970 flags.isa_level = 5;
17971 break;
17972 case INSN_ISA32:
17973 flags.isa_level = 32;
17974 flags.isa_rev = 1;
17975 break;
17976 case INSN_ISA32R2:
17977 flags.isa_level = 32;
17978 flags.isa_rev = 2;
17979 break;
17980 case INSN_ISA32R3:
17981 flags.isa_level = 32;
17982 flags.isa_rev = 3;
17983 break;
17984 case INSN_ISA32R5:
17985 flags.isa_level = 32;
17986 flags.isa_rev = 5;
17987 break;
17988 case INSN_ISA32R6:
17989 flags.isa_level = 32;
17990 flags.isa_rev = 6;
17991 break;
17992 case INSN_ISA64:
17993 flags.isa_level = 64;
17994 flags.isa_rev = 1;
17995 break;
17996 case INSN_ISA64R2:
17997 flags.isa_level = 64;
17998 flags.isa_rev = 2;
17999 break;
18000 case INSN_ISA64R3:
18001 flags.isa_level = 64;
18002 flags.isa_rev = 3;
18003 break;
18004 case INSN_ISA64R5:
18005 flags.isa_level = 64;
18006 flags.isa_rev = 5;
18007 break;
18008 case INSN_ISA64R6:
18009 flags.isa_level = 64;
18010 flags.isa_rev = 6;
18011 break;
18012 }
18013
18014 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18015 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18016 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18017 : (file_mips_opts.fp == 64) ? AFL_REG_64
18018 : AFL_REG_32;
18019 flags.cpr2_size = AFL_REG_NONE;
18020 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18021 Tag_GNU_MIPS_ABI_FP);
18022 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18023 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18024 if (file_ase_mips16)
18025 flags.ases |= AFL_ASE_MIPS16;
18026 if (file_ase_micromips)
18027 flags.ases |= AFL_ASE_MICROMIPS;
18028 flags.flags1 = 0;
18029 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18030 || file_mips_opts.fp == 64)
18031 && file_mips_opts.oddspreg)
18032 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18033 flags.flags2 = 0;
18034
18035 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18036 ((Elf_External_ABIFlags_v0 *)
18037 mips_flags_frag));
18038
18039 /* Write out the register information. */
18040 if (mips_abi != N64_ABI)
18041 {
18042 Elf32_RegInfo s;
18043
18044 s.ri_gprmask = mips_gprmask;
18045 s.ri_cprmask[0] = mips_cprmask[0];
18046 s.ri_cprmask[1] = mips_cprmask[1];
18047 s.ri_cprmask[2] = mips_cprmask[2];
18048 s.ri_cprmask[3] = mips_cprmask[3];
18049 /* The gp_value field is set by the MIPS ELF backend. */
18050
18051 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18052 ((Elf32_External_RegInfo *)
18053 mips_regmask_frag));
18054 }
18055 else
18056 {
18057 Elf64_Internal_RegInfo s;
18058
18059 s.ri_gprmask = mips_gprmask;
18060 s.ri_pad = 0;
18061 s.ri_cprmask[0] = mips_cprmask[0];
18062 s.ri_cprmask[1] = mips_cprmask[1];
18063 s.ri_cprmask[2] = mips_cprmask[2];
18064 s.ri_cprmask[3] = mips_cprmask[3];
18065 /* The gp_value field is set by the MIPS ELF backend. */
18066
18067 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18068 ((Elf64_External_RegInfo *)
18069 mips_regmask_frag));
18070 }
18071
18072 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18073 sort of BFD interface for this. */
18074 if (mips_any_noreorder)
18075 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18076 if (mips_pic != NO_PIC)
18077 {
18078 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18079 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18080 }
18081 if (mips_abicalls)
18082 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18083
18084 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18085 defined at present; this might need to change in future. */
18086 if (file_ase_mips16)
18087 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18088 if (file_ase_micromips)
18089 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18090 if (file_mips_opts.ase & ASE_MDMX)
18091 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18092
18093 /* Set the MIPS ELF ABI flags. */
18094 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18095 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18096 else if (mips_abi == O64_ABI)
18097 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18098 else if (mips_abi == EABI_ABI)
18099 {
18100 if (file_mips_opts.gp == 64)
18101 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18102 else
18103 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18104 }
18105 else if (mips_abi == N32_ABI)
18106 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18107
18108 /* Nothing to do for N64_ABI. */
18109
18110 if (mips_32bitmode)
18111 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18112
18113 if (mips_nan2008 == 1)
18114 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18115
18116 /* 32 bit code with 64 bit FP registers. */
18117 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18118 Tag_GNU_MIPS_ABI_FP);
18119 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18120 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18121 }
18122 \f
18123 typedef struct proc {
18124 symbolS *func_sym;
18125 symbolS *func_end_sym;
18126 unsigned long reg_mask;
18127 unsigned long reg_offset;
18128 unsigned long fpreg_mask;
18129 unsigned long fpreg_offset;
18130 unsigned long frame_offset;
18131 unsigned long frame_reg;
18132 unsigned long pc_reg;
18133 } procS;
18134
18135 static procS cur_proc;
18136 static procS *cur_proc_ptr;
18137 static int numprocs;
18138
18139 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18140 as "2", and a normal nop as "0". */
18141
18142 #define NOP_OPCODE_MIPS 0
18143 #define NOP_OPCODE_MIPS16 1
18144 #define NOP_OPCODE_MICROMIPS 2
18145
18146 char
18147 mips_nop_opcode (void)
18148 {
18149 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18150 return NOP_OPCODE_MICROMIPS;
18151 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18152 return NOP_OPCODE_MIPS16;
18153 else
18154 return NOP_OPCODE_MIPS;
18155 }
18156
18157 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18158 32-bit microMIPS NOPs here (if applicable). */
18159
18160 void
18161 mips_handle_align (fragS *fragp)
18162 {
18163 char nop_opcode;
18164 char *p;
18165 int bytes, size, excess;
18166 valueT opcode;
18167
18168 if (fragp->fr_type != rs_align_code)
18169 return;
18170
18171 p = fragp->fr_literal + fragp->fr_fix;
18172 nop_opcode = *p;
18173 switch (nop_opcode)
18174 {
18175 case NOP_OPCODE_MICROMIPS:
18176 opcode = micromips_nop32_insn.insn_opcode;
18177 size = 4;
18178 break;
18179 case NOP_OPCODE_MIPS16:
18180 opcode = mips16_nop_insn.insn_opcode;
18181 size = 2;
18182 break;
18183 case NOP_OPCODE_MIPS:
18184 default:
18185 opcode = nop_insn.insn_opcode;
18186 size = 4;
18187 break;
18188 }
18189
18190 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18191 excess = bytes % size;
18192
18193 /* Handle the leading part if we're not inserting a whole number of
18194 instructions, and make it the end of the fixed part of the frag.
18195 Try to fit in a short microMIPS NOP if applicable and possible,
18196 and use zeroes otherwise. */
18197 gas_assert (excess < 4);
18198 fragp->fr_fix += excess;
18199 switch (excess)
18200 {
18201 case 3:
18202 *p++ = '\0';
18203 /* Fall through. */
18204 case 2:
18205 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18206 {
18207 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18208 break;
18209 }
18210 *p++ = '\0';
18211 /* Fall through. */
18212 case 1:
18213 *p++ = '\0';
18214 /* Fall through. */
18215 case 0:
18216 break;
18217 }
18218
18219 md_number_to_chars (p, opcode, size);
18220 fragp->fr_var = size;
18221 }
18222
18223 static long
18224 get_number (void)
18225 {
18226 int negative = 0;
18227 long val = 0;
18228
18229 if (*input_line_pointer == '-')
18230 {
18231 ++input_line_pointer;
18232 negative = 1;
18233 }
18234 if (!ISDIGIT (*input_line_pointer))
18235 as_bad (_("expected simple number"));
18236 if (input_line_pointer[0] == '0')
18237 {
18238 if (input_line_pointer[1] == 'x')
18239 {
18240 input_line_pointer += 2;
18241 while (ISXDIGIT (*input_line_pointer))
18242 {
18243 val <<= 4;
18244 val |= hex_value (*input_line_pointer++);
18245 }
18246 return negative ? -val : val;
18247 }
18248 else
18249 {
18250 ++input_line_pointer;
18251 while (ISDIGIT (*input_line_pointer))
18252 {
18253 val <<= 3;
18254 val |= *input_line_pointer++ - '0';
18255 }
18256 return negative ? -val : val;
18257 }
18258 }
18259 if (!ISDIGIT (*input_line_pointer))
18260 {
18261 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18262 *input_line_pointer, *input_line_pointer);
18263 as_warn (_("invalid number"));
18264 return -1;
18265 }
18266 while (ISDIGIT (*input_line_pointer))
18267 {
18268 val *= 10;
18269 val += *input_line_pointer++ - '0';
18270 }
18271 return negative ? -val : val;
18272 }
18273
18274 /* The .file directive; just like the usual .file directive, but there
18275 is an initial number which is the ECOFF file index. In the non-ECOFF
18276 case .file implies DWARF-2. */
18277
18278 static void
18279 s_mips_file (int x ATTRIBUTE_UNUSED)
18280 {
18281 static int first_file_directive = 0;
18282
18283 if (ECOFF_DEBUGGING)
18284 {
18285 get_number ();
18286 s_app_file (0);
18287 }
18288 else
18289 {
18290 char *filename;
18291
18292 filename = dwarf2_directive_file (0);
18293
18294 /* Versions of GCC up to 3.1 start files with a ".file"
18295 directive even for stabs output. Make sure that this
18296 ".file" is handled. Note that you need a version of GCC
18297 after 3.1 in order to support DWARF-2 on MIPS. */
18298 if (filename != NULL && ! first_file_directive)
18299 {
18300 (void) new_logical_line (filename, -1);
18301 s_app_file_string (filename, 0);
18302 }
18303 first_file_directive = 1;
18304 }
18305 }
18306
18307 /* The .loc directive, implying DWARF-2. */
18308
18309 static void
18310 s_mips_loc (int x ATTRIBUTE_UNUSED)
18311 {
18312 if (!ECOFF_DEBUGGING)
18313 dwarf2_directive_loc (0);
18314 }
18315
18316 /* The .end directive. */
18317
18318 static void
18319 s_mips_end (int x ATTRIBUTE_UNUSED)
18320 {
18321 symbolS *p;
18322
18323 /* Following functions need their own .frame and .cprestore directives. */
18324 mips_frame_reg_valid = 0;
18325 mips_cprestore_valid = 0;
18326
18327 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18328 {
18329 p = get_symbol ();
18330 demand_empty_rest_of_line ();
18331 }
18332 else
18333 p = NULL;
18334
18335 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18336 as_warn (_(".end not in text section"));
18337
18338 if (!cur_proc_ptr)
18339 {
18340 as_warn (_(".end directive without a preceding .ent directive"));
18341 demand_empty_rest_of_line ();
18342 return;
18343 }
18344
18345 if (p != NULL)
18346 {
18347 gas_assert (S_GET_NAME (p));
18348 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18349 as_warn (_(".end symbol does not match .ent symbol"));
18350
18351 if (debug_type == DEBUG_STABS)
18352 stabs_generate_asm_endfunc (S_GET_NAME (p),
18353 S_GET_NAME (p));
18354 }
18355 else
18356 as_warn (_(".end directive missing or unknown symbol"));
18357
18358 /* Create an expression to calculate the size of the function. */
18359 if (p && cur_proc_ptr)
18360 {
18361 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18362 expressionS *exp = xmalloc (sizeof (expressionS));
18363
18364 obj->size = exp;
18365 exp->X_op = O_subtract;
18366 exp->X_add_symbol = symbol_temp_new_now ();
18367 exp->X_op_symbol = p;
18368 exp->X_add_number = 0;
18369
18370 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18371 }
18372
18373 /* Generate a .pdr section. */
18374 if (!ECOFF_DEBUGGING && mips_flag_pdr)
18375 {
18376 segT saved_seg = now_seg;
18377 subsegT saved_subseg = now_subseg;
18378 expressionS exp;
18379 char *fragp;
18380
18381 #ifdef md_flush_pending_output
18382 md_flush_pending_output ();
18383 #endif
18384
18385 gas_assert (pdr_seg);
18386 subseg_set (pdr_seg, 0);
18387
18388 /* Write the symbol. */
18389 exp.X_op = O_symbol;
18390 exp.X_add_symbol = p;
18391 exp.X_add_number = 0;
18392 emit_expr (&exp, 4);
18393
18394 fragp = frag_more (7 * 4);
18395
18396 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18397 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18398 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18399 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18400 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18401 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18402 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
18403
18404 subseg_set (saved_seg, saved_subseg);
18405 }
18406
18407 cur_proc_ptr = NULL;
18408 }
18409
18410 /* The .aent and .ent directives. */
18411
18412 static void
18413 s_mips_ent (int aent)
18414 {
18415 symbolS *symbolP;
18416
18417 symbolP = get_symbol ();
18418 if (*input_line_pointer == ',')
18419 ++input_line_pointer;
18420 SKIP_WHITESPACE ();
18421 if (ISDIGIT (*input_line_pointer)
18422 || *input_line_pointer == '-')
18423 get_number ();
18424
18425 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18426 as_warn (_(".ent or .aent not in text section"));
18427
18428 if (!aent && cur_proc_ptr)
18429 as_warn (_("missing .end"));
18430
18431 if (!aent)
18432 {
18433 /* This function needs its own .frame and .cprestore directives. */
18434 mips_frame_reg_valid = 0;
18435 mips_cprestore_valid = 0;
18436
18437 cur_proc_ptr = &cur_proc;
18438 memset (cur_proc_ptr, '\0', sizeof (procS));
18439
18440 cur_proc_ptr->func_sym = symbolP;
18441
18442 ++numprocs;
18443
18444 if (debug_type == DEBUG_STABS)
18445 stabs_generate_asm_func (S_GET_NAME (symbolP),
18446 S_GET_NAME (symbolP));
18447 }
18448
18449 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18450
18451 demand_empty_rest_of_line ();
18452 }
18453
18454 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
18455 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
18456 s_mips_frame is used so that we can set the PDR information correctly.
18457 We can't use the ecoff routines because they make reference to the ecoff
18458 symbol table (in the mdebug section). */
18459
18460 static void
18461 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
18462 {
18463 if (ECOFF_DEBUGGING)
18464 s_ignore (ignore);
18465 else
18466 {
18467 long val;
18468
18469 if (cur_proc_ptr == (procS *) NULL)
18470 {
18471 as_warn (_(".frame outside of .ent"));
18472 demand_empty_rest_of_line ();
18473 return;
18474 }
18475
18476 cur_proc_ptr->frame_reg = tc_get_register (1);
18477
18478 SKIP_WHITESPACE ();
18479 if (*input_line_pointer++ != ','
18480 || get_absolute_expression_and_terminator (&val) != ',')
18481 {
18482 as_warn (_("bad .frame directive"));
18483 --input_line_pointer;
18484 demand_empty_rest_of_line ();
18485 return;
18486 }
18487
18488 cur_proc_ptr->frame_offset = val;
18489 cur_proc_ptr->pc_reg = tc_get_register (0);
18490
18491 demand_empty_rest_of_line ();
18492 }
18493 }
18494
18495 /* The .fmask and .mask directives. If the mdebug section is present
18496 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
18497 embedded targets, s_mips_mask is used so that we can set the PDR
18498 information correctly. We can't use the ecoff routines because they
18499 make reference to the ecoff symbol table (in the mdebug section). */
18500
18501 static void
18502 s_mips_mask (int reg_type)
18503 {
18504 if (ECOFF_DEBUGGING)
18505 s_ignore (reg_type);
18506 else
18507 {
18508 long mask, off;
18509
18510 if (cur_proc_ptr == (procS *) NULL)
18511 {
18512 as_warn (_(".mask/.fmask outside of .ent"));
18513 demand_empty_rest_of_line ();
18514 return;
18515 }
18516
18517 if (get_absolute_expression_and_terminator (&mask) != ',')
18518 {
18519 as_warn (_("bad .mask/.fmask directive"));
18520 --input_line_pointer;
18521 demand_empty_rest_of_line ();
18522 return;
18523 }
18524
18525 off = get_absolute_expression ();
18526
18527 if (reg_type == 'F')
18528 {
18529 cur_proc_ptr->fpreg_mask = mask;
18530 cur_proc_ptr->fpreg_offset = off;
18531 }
18532 else
18533 {
18534 cur_proc_ptr->reg_mask = mask;
18535 cur_proc_ptr->reg_offset = off;
18536 }
18537
18538 demand_empty_rest_of_line ();
18539 }
18540 }
18541
18542 /* A table describing all the processors gas knows about. Names are
18543 matched in the order listed.
18544
18545 To ease comparison, please keep this table in the same order as
18546 gcc's mips_cpu_info_table[]. */
18547 static const struct mips_cpu_info mips_cpu_info_table[] =
18548 {
18549 /* Entries for generic ISAs */
18550 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18551 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18552 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18553 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18554 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18555 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18556 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18557 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18558 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
18559 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
18560 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18561 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
18562 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18563 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
18564 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
18565
18566 /* MIPS I */
18567 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18568 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18569 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
18570
18571 /* MIPS II */
18572 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
18573
18574 /* MIPS III */
18575 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18576 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18577 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18578 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18579 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18580 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18581 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18582 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18583 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18584 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18585 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18586 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18587 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
18588 /* ST Microelectronics Loongson 2E and 2F cores */
18589 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18590 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
18591
18592 /* MIPS IV */
18593 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18594 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18595 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18596 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18597 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18598 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18599 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18600 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18601 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18602 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18603 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18604 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18605 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18606 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18607 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
18608
18609 /* MIPS 32 */
18610 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18611 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18612 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18613 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
18614
18615 /* MIPS 32 Release 2 */
18616 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18617 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18618 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18619 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18620 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18621 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18622 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18623 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18624 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18625 ISA_MIPS32R2, CPU_MIPS32R2 },
18626 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18627 ISA_MIPS32R2, CPU_MIPS32R2 },
18628 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18629 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18630 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18631 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18632 /* Deprecated forms of the above. */
18633 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18634 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18635 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
18636 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18637 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18638 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18639 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18640 /* Deprecated forms of the above. */
18641 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18642 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18643 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
18644 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18645 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18646 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18647 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18648 /* Deprecated forms of the above. */
18649 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18650 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18651 /* 34Kn is a 34kc without DSP. */
18652 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18653 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
18654 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18655 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18656 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18657 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18658 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18659 /* Deprecated forms of the above. */
18660 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18661 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18662 /* 1004K cores are multiprocessor versions of the 34K. */
18663 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18664 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18665 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18666 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18667 /* interaptiv is the new name for 1004kf */
18668 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18669 /* M5100 family */
18670 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18671 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18672 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
18673 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
18674
18675 /* MIPS 64 */
18676 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18677 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18678 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18679 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18680
18681 /* Broadcom SB-1 CPU core */
18682 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18683 /* Broadcom SB-1A CPU core */
18684 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18685
18686 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
18687
18688 /* MIPS 64 Release 2 */
18689
18690 /* Cavium Networks Octeon CPU core */
18691 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18692 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18693 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
18694 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
18695
18696 /* RMI Xlr */
18697 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
18698
18699 /* Broadcom XLP.
18700 XLP is mostly like XLR, with the prominent exception that it is
18701 MIPS64R2 rather than MIPS64. */
18702 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
18703
18704 /* i6400. */
18705 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18706
18707 /* End marker */
18708 { NULL, 0, 0, 0, 0 }
18709 };
18710
18711
18712 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18713 with a final "000" replaced by "k". Ignore case.
18714
18715 Note: this function is shared between GCC and GAS. */
18716
18717 static bfd_boolean
18718 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
18719 {
18720 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18721 given++, canonical++;
18722
18723 return ((*given == 0 && *canonical == 0)
18724 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18725 }
18726
18727
18728 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18729 CPU name. We've traditionally allowed a lot of variation here.
18730
18731 Note: this function is shared between GCC and GAS. */
18732
18733 static bfd_boolean
18734 mips_matching_cpu_name_p (const char *canonical, const char *given)
18735 {
18736 /* First see if the name matches exactly, or with a final "000"
18737 turned into "k". */
18738 if (mips_strict_matching_cpu_name_p (canonical, given))
18739 return TRUE;
18740
18741 /* If not, try comparing based on numerical designation alone.
18742 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18743 if (TOLOWER (*given) == 'r')
18744 given++;
18745 if (!ISDIGIT (*given))
18746 return FALSE;
18747
18748 /* Skip over some well-known prefixes in the canonical name,
18749 hoping to find a number there too. */
18750 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18751 canonical += 2;
18752 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18753 canonical += 2;
18754 else if (TOLOWER (canonical[0]) == 'r')
18755 canonical += 1;
18756
18757 return mips_strict_matching_cpu_name_p (canonical, given);
18758 }
18759
18760
18761 /* Parse an option that takes the name of a processor as its argument.
18762 OPTION is the name of the option and CPU_STRING is the argument.
18763 Return the corresponding processor enumeration if the CPU_STRING is
18764 recognized, otherwise report an error and return null.
18765
18766 A similar function exists in GCC. */
18767
18768 static const struct mips_cpu_info *
18769 mips_parse_cpu (const char *option, const char *cpu_string)
18770 {
18771 const struct mips_cpu_info *p;
18772
18773 /* 'from-abi' selects the most compatible architecture for the given
18774 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18775 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18776 version. Look first at the -mgp options, if given, otherwise base
18777 the choice on MIPS_DEFAULT_64BIT.
18778
18779 Treat NO_ABI like the EABIs. One reason to do this is that the
18780 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18781 architecture. This code picks MIPS I for 'mips' and MIPS III for
18782 'mips64', just as we did in the days before 'from-abi'. */
18783 if (strcasecmp (cpu_string, "from-abi") == 0)
18784 {
18785 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18786 return mips_cpu_info_from_isa (ISA_MIPS1);
18787
18788 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18789 return mips_cpu_info_from_isa (ISA_MIPS3);
18790
18791 if (file_mips_opts.gp >= 0)
18792 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
18793 ? ISA_MIPS1 : ISA_MIPS3);
18794
18795 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18796 ? ISA_MIPS3
18797 : ISA_MIPS1);
18798 }
18799
18800 /* 'default' has traditionally been a no-op. Probably not very useful. */
18801 if (strcasecmp (cpu_string, "default") == 0)
18802 return 0;
18803
18804 for (p = mips_cpu_info_table; p->name != 0; p++)
18805 if (mips_matching_cpu_name_p (p->name, cpu_string))
18806 return p;
18807
18808 as_bad (_("bad value (%s) for %s"), cpu_string, option);
18809 return 0;
18810 }
18811
18812 /* Return the canonical processor information for ISA (a member of the
18813 ISA_MIPS* enumeration). */
18814
18815 static const struct mips_cpu_info *
18816 mips_cpu_info_from_isa (int isa)
18817 {
18818 int i;
18819
18820 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18821 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
18822 && isa == mips_cpu_info_table[i].isa)
18823 return (&mips_cpu_info_table[i]);
18824
18825 return NULL;
18826 }
18827
18828 static const struct mips_cpu_info *
18829 mips_cpu_info_from_arch (int arch)
18830 {
18831 int i;
18832
18833 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18834 if (arch == mips_cpu_info_table[i].cpu)
18835 return (&mips_cpu_info_table[i]);
18836
18837 return NULL;
18838 }
18839 \f
18840 static void
18841 show (FILE *stream, const char *string, int *col_p, int *first_p)
18842 {
18843 if (*first_p)
18844 {
18845 fprintf (stream, "%24s", "");
18846 *col_p = 24;
18847 }
18848 else
18849 {
18850 fprintf (stream, ", ");
18851 *col_p += 2;
18852 }
18853
18854 if (*col_p + strlen (string) > 72)
18855 {
18856 fprintf (stream, "\n%24s", "");
18857 *col_p = 24;
18858 }
18859
18860 fprintf (stream, "%s", string);
18861 *col_p += strlen (string);
18862
18863 *first_p = 0;
18864 }
18865
18866 void
18867 md_show_usage (FILE *stream)
18868 {
18869 int column, first;
18870 size_t i;
18871
18872 fprintf (stream, _("\
18873 MIPS options:\n\
18874 -EB generate big endian output\n\
18875 -EL generate little endian output\n\
18876 -g, -g2 do not remove unneeded NOPs or swap branches\n\
18877 -G NUM allow referencing objects up to NUM bytes\n\
18878 implicitly with the gp register [default 8]\n"));
18879 fprintf (stream, _("\
18880 -mips1 generate MIPS ISA I instructions\n\
18881 -mips2 generate MIPS ISA II instructions\n\
18882 -mips3 generate MIPS ISA III instructions\n\
18883 -mips4 generate MIPS ISA IV instructions\n\
18884 -mips5 generate MIPS ISA V instructions\n\
18885 -mips32 generate MIPS32 ISA instructions\n\
18886 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
18887 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
18888 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
18889 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
18890 -mips64 generate MIPS64 ISA instructions\n\
18891 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
18892 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
18893 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
18894 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
18895 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18896
18897 first = 1;
18898
18899 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18900 show (stream, mips_cpu_info_table[i].name, &column, &first);
18901 show (stream, "from-abi", &column, &first);
18902 fputc ('\n', stream);
18903
18904 fprintf (stream, _("\
18905 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18906 -no-mCPU don't generate code specific to CPU.\n\
18907 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18908
18909 first = 1;
18910
18911 show (stream, "3900", &column, &first);
18912 show (stream, "4010", &column, &first);
18913 show (stream, "4100", &column, &first);
18914 show (stream, "4650", &column, &first);
18915 fputc ('\n', stream);
18916
18917 fprintf (stream, _("\
18918 -mips16 generate mips16 instructions\n\
18919 -no-mips16 do not generate mips16 instructions\n"));
18920 fprintf (stream, _("\
18921 -mmicromips generate microMIPS instructions\n\
18922 -mno-micromips do not generate microMIPS instructions\n"));
18923 fprintf (stream, _("\
18924 -msmartmips generate smartmips instructions\n\
18925 -mno-smartmips do not generate smartmips instructions\n"));
18926 fprintf (stream, _("\
18927 -mdsp generate DSP instructions\n\
18928 -mno-dsp do not generate DSP instructions\n"));
18929 fprintf (stream, _("\
18930 -mdspr2 generate DSP R2 instructions\n\
18931 -mno-dspr2 do not generate DSP R2 instructions\n"));
18932 fprintf (stream, _("\
18933 -mmt generate MT instructions\n\
18934 -mno-mt do not generate MT instructions\n"));
18935 fprintf (stream, _("\
18936 -mmcu generate MCU instructions\n\
18937 -mno-mcu do not generate MCU instructions\n"));
18938 fprintf (stream, _("\
18939 -mmsa generate MSA instructions\n\
18940 -mno-msa do not generate MSA instructions\n"));
18941 fprintf (stream, _("\
18942 -mxpa generate eXtended Physical Address (XPA) instructions\n\
18943 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18944 fprintf (stream, _("\
18945 -mvirt generate Virtualization instructions\n\
18946 -mno-virt do not generate Virtualization instructions\n"));
18947 fprintf (stream, _("\
18948 -minsn32 only generate 32-bit microMIPS instructions\n\
18949 -mno-insn32 generate all microMIPS instructions\n"));
18950 fprintf (stream, _("\
18951 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18952 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
18953 -mfix-vr4120 work around certain VR4120 errata\n\
18954 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
18955 -mfix-24k insert a nop after ERET and DERET instructions\n\
18956 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
18957 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18958 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
18959 -msym32 assume all symbols have 32-bit values\n\
18960 -O0 remove unneeded NOPs, do not swap branches\n\
18961 -O remove unneeded NOPs and swap branches\n\
18962 --trap, --no-break trap exception on div by 0 and mult overflow\n\
18963 --break, --no-trap break exception on div by 0 and mult overflow\n"));
18964 fprintf (stream, _("\
18965 -mhard-float allow floating-point instructions\n\
18966 -msoft-float do not allow floating-point instructions\n\
18967 -msingle-float only allow 32-bit floating-point operations\n\
18968 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
18969 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
18970 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
18971 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
18972
18973 first = 1;
18974
18975 show (stream, "legacy", &column, &first);
18976 show (stream, "2008", &column, &first);
18977
18978 fputc ('\n', stream);
18979
18980 fprintf (stream, _("\
18981 -KPIC, -call_shared generate SVR4 position independent code\n\
18982 -call_nonpic generate non-PIC code that can operate with DSOs\n\
18983 -mvxworks-pic generate VxWorks position independent code\n\
18984 -non_shared do not generate code that can operate with DSOs\n\
18985 -xgot assume a 32 bit GOT\n\
18986 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
18987 -mshared, -mno-shared disable/enable .cpload optimization for\n\
18988 position dependent (non shared) code\n\
18989 -mabi=ABI create ABI conformant object file for:\n"));
18990
18991 first = 1;
18992
18993 show (stream, "32", &column, &first);
18994 show (stream, "o64", &column, &first);
18995 show (stream, "n32", &column, &first);
18996 show (stream, "64", &column, &first);
18997 show (stream, "eabi", &column, &first);
18998
18999 fputc ('\n', stream);
19000
19001 fprintf (stream, _("\
19002 -32 create o32 ABI object file (default)\n\
19003 -n32 create n32 ABI object file\n\
19004 -64 create 64 ABI object file\n"));
19005 }
19006
19007 #ifdef TE_IRIX
19008 enum dwarf2_format
19009 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19010 {
19011 if (HAVE_64BIT_SYMBOLS)
19012 return dwarf2_format_64bit_irix;
19013 else
19014 return dwarf2_format_32bit;
19015 }
19016 #endif
19017
19018 int
19019 mips_dwarf2_addr_size (void)
19020 {
19021 if (HAVE_64BIT_OBJECTS)
19022 return 8;
19023 else
19024 return 4;
19025 }
19026
19027 /* Standard calling conventions leave the CFA at SP on entry. */
19028 void
19029 mips_cfi_frame_initial_instructions (void)
19030 {
19031 cfi_add_CFA_def_cfa_register (SP);
19032 }
19033
19034 int
19035 tc_mips_regname_to_dw2regnum (char *regname)
19036 {
19037 unsigned int regnum = -1;
19038 unsigned int reg;
19039
19040 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19041 regnum = reg;
19042
19043 return regnum;
19044 }
19045
19046 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19047 Given a symbolic attribute NAME, return the proper integer value.
19048 Returns -1 if the attribute is not known. */
19049
19050 int
19051 mips_convert_symbolic_attribute (const char *name)
19052 {
19053 static const struct
19054 {
19055 const char * name;
19056 const int tag;
19057 }
19058 attribute_table[] =
19059 {
19060 #define T(tag) {#tag, tag}
19061 T (Tag_GNU_MIPS_ABI_FP),
19062 T (Tag_GNU_MIPS_ABI_MSA),
19063 #undef T
19064 };
19065 unsigned int i;
19066
19067 if (name == NULL)
19068 return -1;
19069
19070 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19071 if (streq (name, attribute_table[i].name))
19072 return attribute_table[i].tag;
19073
19074 return -1;
19075 }
19076
19077 void
19078 md_mips_end (void)
19079 {
19080 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19081
19082 mips_emit_delays ();
19083 if (cur_proc_ptr)
19084 as_warn (_("missing .end at end of assembly"));
19085
19086 /* Just in case no code was emitted, do the consistency check. */
19087 file_mips_check_options ();
19088
19089 /* Set a floating-point ABI if the user did not. */
19090 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19091 {
19092 /* Perform consistency checks on the floating-point ABI. */
19093 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19094 Tag_GNU_MIPS_ABI_FP);
19095 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19096 check_fpabi (fpabi);
19097 }
19098 else
19099 {
19100 /* Soft-float gets precedence over single-float, the two options should
19101 not be used together so this should not matter. */
19102 if (file_mips_opts.soft_float == 1)
19103 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19104 /* Single-float gets precedence over all double_float cases. */
19105 else if (file_mips_opts.single_float == 1)
19106 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19107 else
19108 {
19109 switch (file_mips_opts.fp)
19110 {
19111 case 32:
19112 if (file_mips_opts.gp == 32)
19113 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19114 break;
19115 case 0:
19116 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19117 break;
19118 case 64:
19119 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19120 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19121 else if (file_mips_opts.gp == 32)
19122 fpabi = Val_GNU_MIPS_ABI_FP_64;
19123 else
19124 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19125 break;
19126 }
19127 }
19128
19129 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19130 Tag_GNU_MIPS_ABI_FP, fpabi);
19131 }
19132 }
19133
19134 /* Returns the relocation type required for a particular CFI encoding. */
19135
19136 bfd_reloc_code_real_type
19137 mips_cfi_reloc_for_encoding (int encoding)
19138 {
19139 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19140 return BFD_RELOC_32_PCREL;
19141 else return BFD_RELOC_NONE;
19142 }