]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-mips.c
MIPS/GAS: Implement microMIPS branch/jump compaction
[thirdparty/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946 \f
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018 /* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether in the 32-bit
1155 instruction mode, whether the branch is unconditional, whether it is
1156 compact, whether there is no delay-slot instruction available to fill
1157 in, whether it stores the link address implicitly in $ra, whether
1158 relaxation of out-of-range 32-bit branches to a sequence of
1159 instructions is enabled, and whether the displacement of a branch is
1160 too large to fit as an immediate argument of a 16-bit and a 32-bit
1161 branch, respectively. */
1162 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, \
1163 uncond, compact, link, nods, \
1164 relax32, toofar16, toofar32) \
1165 (0x40000000 \
1166 | ((type) & 0xff) \
1167 | (((at) & 0x1f) << 8) \
1168 | ((insn32) ? 0x2000 : 0) \
1169 | ((uncond) ? 0x4000 : 0) \
1170 | ((compact) ? 0x8000 : 0) \
1171 | ((link) ? 0x10000 : 0) \
1172 | ((nods) ? 0x20000 : 0) \
1173 | ((relax32) ? 0x40000 : 0) \
1174 | ((toofar16) ? 0x80000 : 0) \
1175 | ((toofar32) ? 0x100000 : 0))
1176 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1177 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1178 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1179 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1180 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x4000) != 0)
1181 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x8000) != 0)
1182 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x10000) != 0)
1183 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x20000) != 0)
1184 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x40000) != 0)
1185
1186 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x80000) != 0)
1187 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x80000)
1188 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x80000)
1189 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x100000) != 0)
1190 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x100000)
1191 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x100000)
1192
1193 /* Sign-extend 16-bit value X. */
1194 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1195
1196 /* Is the given value a sign-extended 32-bit value? */
1197 #define IS_SEXT_32BIT_NUM(x) \
1198 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1199 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1200
1201 /* Is the given value a sign-extended 16-bit value? */
1202 #define IS_SEXT_16BIT_NUM(x) \
1203 (((x) &~ (offsetT) 0x7fff) == 0 \
1204 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1205
1206 /* Is the given value a sign-extended 12-bit value? */
1207 #define IS_SEXT_12BIT_NUM(x) \
1208 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1209
1210 /* Is the given value a sign-extended 9-bit value? */
1211 #define IS_SEXT_9BIT_NUM(x) \
1212 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1213
1214 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1215 #define IS_ZEXT_32BIT_NUM(x) \
1216 (((x) &~ (offsetT) 0xffffffff) == 0 \
1217 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1218
1219 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1220 SHIFT places. */
1221 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1222 (((STRUCT) >> (SHIFT)) & (MASK))
1223
1224 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1225 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1226 (!(MICROMIPS) \
1227 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1228 : EXTRACT_BITS ((INSN).insn_opcode, \
1229 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1230 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1231 EXTRACT_BITS ((INSN).insn_opcode, \
1232 MIPS16OP_MASK_##FIELD, \
1233 MIPS16OP_SH_##FIELD)
1234
1235 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1236 #define MIPS16_EXTEND (0xf000U << 16)
1237 \f
1238 /* Whether or not we are emitting a branch-likely macro. */
1239 static bfd_boolean emit_branch_likely_macro = FALSE;
1240
1241 /* Global variables used when generating relaxable macros. See the
1242 comment above RELAX_ENCODE for more details about how relaxation
1243 is used. */
1244 static struct {
1245 /* 0 if we're not emitting a relaxable macro.
1246 1 if we're emitting the first of the two relaxation alternatives.
1247 2 if we're emitting the second alternative. */
1248 int sequence;
1249
1250 /* The first relaxable fixup in the current frag. (In other words,
1251 the first fixup that refers to relaxable code.) */
1252 fixS *first_fixup;
1253
1254 /* sizes[0] says how many bytes of the first alternative are stored in
1255 the current frag. Likewise sizes[1] for the second alternative. */
1256 unsigned int sizes[2];
1257
1258 /* The symbol on which the choice of sequence depends. */
1259 symbolS *symbol;
1260 } mips_relax;
1261 \f
1262 /* Global variables used to decide whether a macro needs a warning. */
1263 static struct {
1264 /* True if the macro is in a branch delay slot. */
1265 bfd_boolean delay_slot_p;
1266
1267 /* Set to the length in bytes required if the macro is in a delay slot
1268 that requires a specific length of instruction, otherwise zero. */
1269 unsigned int delay_slot_length;
1270
1271 /* For relaxable macros, sizes[0] is the length of the first alternative
1272 in bytes and sizes[1] is the length of the second alternative.
1273 For non-relaxable macros, both elements give the length of the
1274 macro in bytes. */
1275 unsigned int sizes[2];
1276
1277 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1278 instruction of the first alternative in bytes and first_insn_sizes[1]
1279 is the length of the first instruction of the second alternative.
1280 For non-relaxable macros, both elements give the length of the first
1281 instruction in bytes.
1282
1283 Set to zero if we haven't yet seen the first instruction. */
1284 unsigned int first_insn_sizes[2];
1285
1286 /* For relaxable macros, insns[0] is the number of instructions for the
1287 first alternative and insns[1] is the number of instructions for the
1288 second alternative.
1289
1290 For non-relaxable macros, both elements give the number of
1291 instructions for the macro. */
1292 unsigned int insns[2];
1293
1294 /* The first variant frag for this macro. */
1295 fragS *first_frag;
1296 } mips_macro_warning;
1297 \f
1298 /* Prototypes for static functions. */
1299
1300 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1301
1302 static void append_insn
1303 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1304 bfd_boolean expansionp);
1305 static void mips_no_prev_insn (void);
1306 static void macro_build (expressionS *, const char *, const char *, ...);
1307 static void mips16_macro_build
1308 (expressionS *, const char *, const char *, va_list *);
1309 static void load_register (int, expressionS *, int);
1310 static void macro_start (void);
1311 static void macro_end (void);
1312 static void macro (struct mips_cl_insn *ip, char *str);
1313 static void mips16_macro (struct mips_cl_insn * ip);
1314 static void mips_ip (char *str, struct mips_cl_insn * ip);
1315 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1316 static void mips16_immed
1317 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1318 unsigned int, unsigned long *);
1319 static size_t my_getSmallExpression
1320 (expressionS *, bfd_reloc_code_real_type *, char *);
1321 static void my_getExpression (expressionS *, char *);
1322 static void s_align (int);
1323 static void s_change_sec (int);
1324 static void s_change_section (int);
1325 static void s_cons (int);
1326 static void s_float_cons (int);
1327 static void s_mips_globl (int);
1328 static void s_option (int);
1329 static void s_mipsset (int);
1330 static void s_abicalls (int);
1331 static void s_cpload (int);
1332 static void s_cpsetup (int);
1333 static void s_cplocal (int);
1334 static void s_cprestore (int);
1335 static void s_cpreturn (int);
1336 static void s_dtprelword (int);
1337 static void s_dtpreldword (int);
1338 static void s_tprelword (int);
1339 static void s_tpreldword (int);
1340 static void s_gpvalue (int);
1341 static void s_gpword (int);
1342 static void s_gpdword (int);
1343 static void s_ehword (int);
1344 static void s_cpadd (int);
1345 static void s_insn (int);
1346 static void s_nan (int);
1347 static void s_module (int);
1348 static void s_mips_ent (int);
1349 static void s_mips_end (int);
1350 static void s_mips_frame (int);
1351 static void s_mips_mask (int reg_type);
1352 static void s_mips_stab (int);
1353 static void s_mips_weakext (int);
1354 static void s_mips_file (int);
1355 static void s_mips_loc (int);
1356 static bfd_boolean pic_need_relax (symbolS *, asection *);
1357 static int relaxed_branch_length (fragS *, asection *, int);
1358 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1359 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1360 static void file_mips_check_options (void);
1361
1362 /* Table and functions used to map between CPU/ISA names, and
1363 ISA levels, and CPU numbers. */
1364
1365 struct mips_cpu_info
1366 {
1367 const char *name; /* CPU or ISA name. */
1368 int flags; /* MIPS_CPU_* flags. */
1369 int ase; /* Set of ASEs implemented by the CPU. */
1370 int isa; /* ISA level. */
1371 int cpu; /* CPU number (default CPU if ISA). */
1372 };
1373
1374 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1375
1376 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1377 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1378 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1379 \f
1380 /* Command-line options. */
1381 const char *md_shortopts = "O::g::G:";
1382
1383 enum options
1384 {
1385 OPTION_MARCH = OPTION_MD_BASE,
1386 OPTION_MTUNE,
1387 OPTION_MIPS1,
1388 OPTION_MIPS2,
1389 OPTION_MIPS3,
1390 OPTION_MIPS4,
1391 OPTION_MIPS5,
1392 OPTION_MIPS32,
1393 OPTION_MIPS64,
1394 OPTION_MIPS32R2,
1395 OPTION_MIPS32R3,
1396 OPTION_MIPS32R5,
1397 OPTION_MIPS32R6,
1398 OPTION_MIPS64R2,
1399 OPTION_MIPS64R3,
1400 OPTION_MIPS64R5,
1401 OPTION_MIPS64R6,
1402 OPTION_MIPS16,
1403 OPTION_NO_MIPS16,
1404 OPTION_MIPS3D,
1405 OPTION_NO_MIPS3D,
1406 OPTION_MDMX,
1407 OPTION_NO_MDMX,
1408 OPTION_DSP,
1409 OPTION_NO_DSP,
1410 OPTION_MT,
1411 OPTION_NO_MT,
1412 OPTION_VIRT,
1413 OPTION_NO_VIRT,
1414 OPTION_MSA,
1415 OPTION_NO_MSA,
1416 OPTION_SMARTMIPS,
1417 OPTION_NO_SMARTMIPS,
1418 OPTION_DSPR2,
1419 OPTION_NO_DSPR2,
1420 OPTION_DSPR3,
1421 OPTION_NO_DSPR3,
1422 OPTION_EVA,
1423 OPTION_NO_EVA,
1424 OPTION_XPA,
1425 OPTION_NO_XPA,
1426 OPTION_MICROMIPS,
1427 OPTION_NO_MICROMIPS,
1428 OPTION_MCU,
1429 OPTION_NO_MCU,
1430 OPTION_COMPAT_ARCH_BASE,
1431 OPTION_M4650,
1432 OPTION_NO_M4650,
1433 OPTION_M4010,
1434 OPTION_NO_M4010,
1435 OPTION_M4100,
1436 OPTION_NO_M4100,
1437 OPTION_M3900,
1438 OPTION_NO_M3900,
1439 OPTION_M7000_HILO_FIX,
1440 OPTION_MNO_7000_HILO_FIX,
1441 OPTION_FIX_24K,
1442 OPTION_NO_FIX_24K,
1443 OPTION_FIX_RM7000,
1444 OPTION_NO_FIX_RM7000,
1445 OPTION_FIX_LOONGSON2F_JUMP,
1446 OPTION_NO_FIX_LOONGSON2F_JUMP,
1447 OPTION_FIX_LOONGSON2F_NOP,
1448 OPTION_NO_FIX_LOONGSON2F_NOP,
1449 OPTION_FIX_VR4120,
1450 OPTION_NO_FIX_VR4120,
1451 OPTION_FIX_VR4130,
1452 OPTION_NO_FIX_VR4130,
1453 OPTION_FIX_CN63XXP1,
1454 OPTION_NO_FIX_CN63XXP1,
1455 OPTION_TRAP,
1456 OPTION_BREAK,
1457 OPTION_EB,
1458 OPTION_EL,
1459 OPTION_FP32,
1460 OPTION_GP32,
1461 OPTION_CONSTRUCT_FLOATS,
1462 OPTION_NO_CONSTRUCT_FLOATS,
1463 OPTION_FP64,
1464 OPTION_FPXX,
1465 OPTION_GP64,
1466 OPTION_RELAX_BRANCH,
1467 OPTION_NO_RELAX_BRANCH,
1468 OPTION_INSN32,
1469 OPTION_NO_INSN32,
1470 OPTION_MSHARED,
1471 OPTION_MNO_SHARED,
1472 OPTION_MSYM32,
1473 OPTION_MNO_SYM32,
1474 OPTION_SOFT_FLOAT,
1475 OPTION_HARD_FLOAT,
1476 OPTION_SINGLE_FLOAT,
1477 OPTION_DOUBLE_FLOAT,
1478 OPTION_32,
1479 OPTION_CALL_SHARED,
1480 OPTION_CALL_NONPIC,
1481 OPTION_NON_SHARED,
1482 OPTION_XGOT,
1483 OPTION_MABI,
1484 OPTION_N32,
1485 OPTION_64,
1486 OPTION_MDEBUG,
1487 OPTION_NO_MDEBUG,
1488 OPTION_PDR,
1489 OPTION_NO_PDR,
1490 OPTION_MVXWORKS_PIC,
1491 OPTION_NAN,
1492 OPTION_ODD_SPREG,
1493 OPTION_NO_ODD_SPREG,
1494 OPTION_END_OF_ENUM
1495 };
1496
1497 struct option md_longopts[] =
1498 {
1499 /* Options which specify architecture. */
1500 {"march", required_argument, NULL, OPTION_MARCH},
1501 {"mtune", required_argument, NULL, OPTION_MTUNE},
1502 {"mips0", no_argument, NULL, OPTION_MIPS1},
1503 {"mips1", no_argument, NULL, OPTION_MIPS1},
1504 {"mips2", no_argument, NULL, OPTION_MIPS2},
1505 {"mips3", no_argument, NULL, OPTION_MIPS3},
1506 {"mips4", no_argument, NULL, OPTION_MIPS4},
1507 {"mips5", no_argument, NULL, OPTION_MIPS5},
1508 {"mips32", no_argument, NULL, OPTION_MIPS32},
1509 {"mips64", no_argument, NULL, OPTION_MIPS64},
1510 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1511 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1512 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1513 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1514 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1515 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1516 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1517 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1518
1519 /* Options which specify Application Specific Extensions (ASEs). */
1520 {"mips16", no_argument, NULL, OPTION_MIPS16},
1521 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1522 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1523 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1524 {"mdmx", no_argument, NULL, OPTION_MDMX},
1525 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1526 {"mdsp", no_argument, NULL, OPTION_DSP},
1527 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1528 {"mmt", no_argument, NULL, OPTION_MT},
1529 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1530 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1531 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1532 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1533 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1534 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1535 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1536 {"meva", no_argument, NULL, OPTION_EVA},
1537 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1538 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1539 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1540 {"mmcu", no_argument, NULL, OPTION_MCU},
1541 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1542 {"mvirt", no_argument, NULL, OPTION_VIRT},
1543 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1544 {"mmsa", no_argument, NULL, OPTION_MSA},
1545 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1546 {"mxpa", no_argument, NULL, OPTION_XPA},
1547 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1548
1549 /* Old-style architecture options. Don't add more of these. */
1550 {"m4650", no_argument, NULL, OPTION_M4650},
1551 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1552 {"m4010", no_argument, NULL, OPTION_M4010},
1553 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1554 {"m4100", no_argument, NULL, OPTION_M4100},
1555 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1556 {"m3900", no_argument, NULL, OPTION_M3900},
1557 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1558
1559 /* Options which enable bug fixes. */
1560 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1561 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1562 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1563 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1564 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1565 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1566 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1567 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1568 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1569 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1570 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1571 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1572 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1573 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1574 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1575 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1576 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1577
1578 /* Miscellaneous options. */
1579 {"trap", no_argument, NULL, OPTION_TRAP},
1580 {"no-break", no_argument, NULL, OPTION_TRAP},
1581 {"break", no_argument, NULL, OPTION_BREAK},
1582 {"no-trap", no_argument, NULL, OPTION_BREAK},
1583 {"EB", no_argument, NULL, OPTION_EB},
1584 {"EL", no_argument, NULL, OPTION_EL},
1585 {"mfp32", no_argument, NULL, OPTION_FP32},
1586 {"mgp32", no_argument, NULL, OPTION_GP32},
1587 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1588 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1589 {"mfp64", no_argument, NULL, OPTION_FP64},
1590 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1591 {"mgp64", no_argument, NULL, OPTION_GP64},
1592 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1593 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1594 {"minsn32", no_argument, NULL, OPTION_INSN32},
1595 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1596 {"mshared", no_argument, NULL, OPTION_MSHARED},
1597 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1598 {"msym32", no_argument, NULL, OPTION_MSYM32},
1599 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1600 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1601 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1602 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1603 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1604 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1605 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1606
1607 /* Strictly speaking this next option is ELF specific,
1608 but we allow it for other ports as well in order to
1609 make testing easier. */
1610 {"32", no_argument, NULL, OPTION_32},
1611
1612 /* ELF-specific options. */
1613 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1614 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1615 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1616 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1617 {"xgot", no_argument, NULL, OPTION_XGOT},
1618 {"mabi", required_argument, NULL, OPTION_MABI},
1619 {"n32", no_argument, NULL, OPTION_N32},
1620 {"64", no_argument, NULL, OPTION_64},
1621 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1622 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1623 {"mpdr", no_argument, NULL, OPTION_PDR},
1624 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1625 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1626 {"mnan", required_argument, NULL, OPTION_NAN},
1627
1628 {NULL, no_argument, NULL, 0}
1629 };
1630 size_t md_longopts_size = sizeof (md_longopts);
1631 \f
1632 /* Information about either an Application Specific Extension or an
1633 optional architecture feature that, for simplicity, we treat in the
1634 same way as an ASE. */
1635 struct mips_ase
1636 {
1637 /* The name of the ASE, used in both the command-line and .set options. */
1638 const char *name;
1639
1640 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1641 and 64-bit architectures, the flags here refer to the subset that
1642 is available on both. */
1643 unsigned int flags;
1644
1645 /* The ASE_* flag used for instructions that are available on 64-bit
1646 architectures but that are not included in FLAGS. */
1647 unsigned int flags64;
1648
1649 /* The command-line options that turn the ASE on and off. */
1650 int option_on;
1651 int option_off;
1652
1653 /* The minimum required architecture revisions for MIPS32, MIPS64,
1654 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1655 int mips32_rev;
1656 int mips64_rev;
1657 int micromips32_rev;
1658 int micromips64_rev;
1659
1660 /* The architecture where the ASE was removed or -1 if the extension has not
1661 been removed. */
1662 int rem_rev;
1663 };
1664
1665 /* A table of all supported ASEs. */
1666 static const struct mips_ase mips_ases[] = {
1667 { "dsp", ASE_DSP, ASE_DSP64,
1668 OPTION_DSP, OPTION_NO_DSP,
1669 2, 2, 2, 2,
1670 -1 },
1671
1672 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1673 OPTION_DSPR2, OPTION_NO_DSPR2,
1674 2, 2, 2, 2,
1675 -1 },
1676
1677 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1678 OPTION_DSPR3, OPTION_NO_DSPR3,
1679 6, 6, -1, -1,
1680 -1 },
1681
1682 { "eva", ASE_EVA, 0,
1683 OPTION_EVA, OPTION_NO_EVA,
1684 2, 2, 2, 2,
1685 -1 },
1686
1687 { "mcu", ASE_MCU, 0,
1688 OPTION_MCU, OPTION_NO_MCU,
1689 2, 2, 2, 2,
1690 -1 },
1691
1692 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1693 { "mdmx", ASE_MDMX, 0,
1694 OPTION_MDMX, OPTION_NO_MDMX,
1695 -1, 1, -1, -1,
1696 6 },
1697
1698 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1699 { "mips3d", ASE_MIPS3D, 0,
1700 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1701 2, 1, -1, -1,
1702 6 },
1703
1704 { "mt", ASE_MT, 0,
1705 OPTION_MT, OPTION_NO_MT,
1706 2, 2, -1, -1,
1707 -1 },
1708
1709 { "smartmips", ASE_SMARTMIPS, 0,
1710 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1711 1, -1, -1, -1,
1712 6 },
1713
1714 { "virt", ASE_VIRT, ASE_VIRT64,
1715 OPTION_VIRT, OPTION_NO_VIRT,
1716 2, 2, 2, 2,
1717 -1 },
1718
1719 { "msa", ASE_MSA, ASE_MSA64,
1720 OPTION_MSA, OPTION_NO_MSA,
1721 2, 2, 2, 2,
1722 -1 },
1723
1724 { "xpa", ASE_XPA, 0,
1725 OPTION_XPA, OPTION_NO_XPA,
1726 2, 2, -1, -1,
1727 -1 },
1728 };
1729
1730 /* The set of ASEs that require -mfp64. */
1731 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1732
1733 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1734 static const unsigned int mips_ase_groups[] = {
1735 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1736 };
1737 \f
1738 /* Pseudo-op table.
1739
1740 The following pseudo-ops from the Kane and Heinrich MIPS book
1741 should be defined here, but are currently unsupported: .alias,
1742 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1743
1744 The following pseudo-ops from the Kane and Heinrich MIPS book are
1745 specific to the type of debugging information being generated, and
1746 should be defined by the object format: .aent, .begin, .bend,
1747 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1748 .vreg.
1749
1750 The following pseudo-ops from the Kane and Heinrich MIPS book are
1751 not MIPS CPU specific, but are also not specific to the object file
1752 format. This file is probably the best place to define them, but
1753 they are not currently supported: .asm0, .endr, .lab, .struct. */
1754
1755 static const pseudo_typeS mips_pseudo_table[] =
1756 {
1757 /* MIPS specific pseudo-ops. */
1758 {"option", s_option, 0},
1759 {"set", s_mipsset, 0},
1760 {"rdata", s_change_sec, 'r'},
1761 {"sdata", s_change_sec, 's'},
1762 {"livereg", s_ignore, 0},
1763 {"abicalls", s_abicalls, 0},
1764 {"cpload", s_cpload, 0},
1765 {"cpsetup", s_cpsetup, 0},
1766 {"cplocal", s_cplocal, 0},
1767 {"cprestore", s_cprestore, 0},
1768 {"cpreturn", s_cpreturn, 0},
1769 {"dtprelword", s_dtprelword, 0},
1770 {"dtpreldword", s_dtpreldword, 0},
1771 {"tprelword", s_tprelword, 0},
1772 {"tpreldword", s_tpreldword, 0},
1773 {"gpvalue", s_gpvalue, 0},
1774 {"gpword", s_gpword, 0},
1775 {"gpdword", s_gpdword, 0},
1776 {"ehword", s_ehword, 0},
1777 {"cpadd", s_cpadd, 0},
1778 {"insn", s_insn, 0},
1779 {"nan", s_nan, 0},
1780 {"module", s_module, 0},
1781
1782 /* Relatively generic pseudo-ops that happen to be used on MIPS
1783 chips. */
1784 {"asciiz", stringer, 8 + 1},
1785 {"bss", s_change_sec, 'b'},
1786 {"err", s_err, 0},
1787 {"half", s_cons, 1},
1788 {"dword", s_cons, 3},
1789 {"weakext", s_mips_weakext, 0},
1790 {"origin", s_org, 0},
1791 {"repeat", s_rept, 0},
1792
1793 /* For MIPS this is non-standard, but we define it for consistency. */
1794 {"sbss", s_change_sec, 'B'},
1795
1796 /* These pseudo-ops are defined in read.c, but must be overridden
1797 here for one reason or another. */
1798 {"align", s_align, 0},
1799 {"byte", s_cons, 0},
1800 {"data", s_change_sec, 'd'},
1801 {"double", s_float_cons, 'd'},
1802 {"float", s_float_cons, 'f'},
1803 {"globl", s_mips_globl, 0},
1804 {"global", s_mips_globl, 0},
1805 {"hword", s_cons, 1},
1806 {"int", s_cons, 2},
1807 {"long", s_cons, 2},
1808 {"octa", s_cons, 4},
1809 {"quad", s_cons, 3},
1810 {"section", s_change_section, 0},
1811 {"short", s_cons, 1},
1812 {"single", s_float_cons, 'f'},
1813 {"stabd", s_mips_stab, 'd'},
1814 {"stabn", s_mips_stab, 'n'},
1815 {"stabs", s_mips_stab, 's'},
1816 {"text", s_change_sec, 't'},
1817 {"word", s_cons, 2},
1818
1819 { "extern", ecoff_directive_extern, 0},
1820
1821 { NULL, NULL, 0 },
1822 };
1823
1824 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1825 {
1826 /* These pseudo-ops should be defined by the object file format.
1827 However, a.out doesn't support them, so we have versions here. */
1828 {"aent", s_mips_ent, 1},
1829 {"bgnb", s_ignore, 0},
1830 {"end", s_mips_end, 0},
1831 {"endb", s_ignore, 0},
1832 {"ent", s_mips_ent, 0},
1833 {"file", s_mips_file, 0},
1834 {"fmask", s_mips_mask, 'F'},
1835 {"frame", s_mips_frame, 0},
1836 {"loc", s_mips_loc, 0},
1837 {"mask", s_mips_mask, 'R'},
1838 {"verstamp", s_ignore, 0},
1839 { NULL, NULL, 0 },
1840 };
1841
1842 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1843 purpose of the `.dc.a' internal pseudo-op. */
1844
1845 int
1846 mips_address_bytes (void)
1847 {
1848 file_mips_check_options ();
1849 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1850 }
1851
1852 extern void pop_insert (const pseudo_typeS *);
1853
1854 void
1855 mips_pop_insert (void)
1856 {
1857 pop_insert (mips_pseudo_table);
1858 if (! ECOFF_DEBUGGING)
1859 pop_insert (mips_nonecoff_pseudo_table);
1860 }
1861 \f
1862 /* Symbols labelling the current insn. */
1863
1864 struct insn_label_list
1865 {
1866 struct insn_label_list *next;
1867 symbolS *label;
1868 };
1869
1870 static struct insn_label_list *free_insn_labels;
1871 #define label_list tc_segment_info_data.labels
1872
1873 static void mips_clear_insn_labels (void);
1874 static void mips_mark_labels (void);
1875 static void mips_compressed_mark_labels (void);
1876
1877 static inline void
1878 mips_clear_insn_labels (void)
1879 {
1880 struct insn_label_list **pl;
1881 segment_info_type *si;
1882
1883 if (now_seg)
1884 {
1885 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1886 ;
1887
1888 si = seg_info (now_seg);
1889 *pl = si->label_list;
1890 si->label_list = NULL;
1891 }
1892 }
1893
1894 /* Mark instruction labels in MIPS16/microMIPS mode. */
1895
1896 static inline void
1897 mips_mark_labels (void)
1898 {
1899 if (HAVE_CODE_COMPRESSION)
1900 mips_compressed_mark_labels ();
1901 }
1902 \f
1903 static char *expr_end;
1904
1905 /* An expression in a macro instruction. This is set by mips_ip and
1906 mips16_ip and when populated is always an O_constant. */
1907
1908 static expressionS imm_expr;
1909
1910 /* The relocatable field in an instruction and the relocs associated
1911 with it. These variables are used for instructions like LUI and
1912 JAL as well as true offsets. They are also used for address
1913 operands in macros. */
1914
1915 static expressionS offset_expr;
1916 static bfd_reloc_code_real_type offset_reloc[3]
1917 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1918
1919 /* This is set to the resulting size of the instruction to be produced
1920 by mips16_ip if an explicit extension is used or by mips_ip if an
1921 explicit size is supplied. */
1922
1923 static unsigned int forced_insn_length;
1924
1925 /* True if we are assembling an instruction. All dot symbols defined during
1926 this time should be treated as code labels. */
1927
1928 static bfd_boolean mips_assembling_insn;
1929
1930 /* The pdr segment for per procedure frame/regmask info. Not used for
1931 ECOFF debugging. */
1932
1933 static segT pdr_seg;
1934
1935 /* The default target format to use. */
1936
1937 #if defined (TE_FreeBSD)
1938 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1939 #elif defined (TE_TMIPS)
1940 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1941 #else
1942 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1943 #endif
1944
1945 const char *
1946 mips_target_format (void)
1947 {
1948 switch (OUTPUT_FLAVOR)
1949 {
1950 case bfd_target_elf_flavour:
1951 #ifdef TE_VXWORKS
1952 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1953 return (target_big_endian
1954 ? "elf32-bigmips-vxworks"
1955 : "elf32-littlemips-vxworks");
1956 #endif
1957 return (target_big_endian
1958 ? (HAVE_64BIT_OBJECTS
1959 ? ELF_TARGET ("elf64-", "big")
1960 : (HAVE_NEWABI
1961 ? ELF_TARGET ("elf32-n", "big")
1962 : ELF_TARGET ("elf32-", "big")))
1963 : (HAVE_64BIT_OBJECTS
1964 ? ELF_TARGET ("elf64-", "little")
1965 : (HAVE_NEWABI
1966 ? ELF_TARGET ("elf32-n", "little")
1967 : ELF_TARGET ("elf32-", "little"))));
1968 default:
1969 abort ();
1970 return NULL;
1971 }
1972 }
1973
1974 /* Return the ISA revision that is currently in use, or 0 if we are
1975 generating code for MIPS V or below. */
1976
1977 static int
1978 mips_isa_rev (void)
1979 {
1980 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1981 return 2;
1982
1983 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1984 return 3;
1985
1986 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1987 return 5;
1988
1989 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1990 return 6;
1991
1992 /* microMIPS implies revision 2 or above. */
1993 if (mips_opts.micromips)
1994 return 2;
1995
1996 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1997 return 1;
1998
1999 return 0;
2000 }
2001
2002 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2003
2004 static unsigned int
2005 mips_ase_mask (unsigned int flags)
2006 {
2007 unsigned int i;
2008
2009 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2010 if (flags & mips_ase_groups[i])
2011 flags |= mips_ase_groups[i];
2012 return flags;
2013 }
2014
2015 /* Check whether the current ISA supports ASE. Issue a warning if
2016 appropriate. */
2017
2018 static void
2019 mips_check_isa_supports_ase (const struct mips_ase *ase)
2020 {
2021 const char *base;
2022 int min_rev, size;
2023 static unsigned int warned_isa;
2024 static unsigned int warned_fp32;
2025
2026 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2027 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2028 else
2029 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2030 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2031 && (warned_isa & ase->flags) != ase->flags)
2032 {
2033 warned_isa |= ase->flags;
2034 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2035 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2036 if (min_rev < 0)
2037 as_warn (_("the %d-bit %s architecture does not support the"
2038 " `%s' extension"), size, base, ase->name);
2039 else
2040 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2041 ase->name, base, size, min_rev);
2042 }
2043 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2044 && (warned_isa & ase->flags) != ase->flags)
2045 {
2046 warned_isa |= ase->flags;
2047 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2048 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2049 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2050 ase->name, base, size, ase->rem_rev);
2051 }
2052
2053 if ((ase->flags & FP64_ASES)
2054 && mips_opts.fp != 64
2055 && (warned_fp32 & ase->flags) != ase->flags)
2056 {
2057 warned_fp32 |= ase->flags;
2058 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2059 }
2060 }
2061
2062 /* Check all enabled ASEs to see whether they are supported by the
2063 chosen architecture. */
2064
2065 static void
2066 mips_check_isa_supports_ases (void)
2067 {
2068 unsigned int i, mask;
2069
2070 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2071 {
2072 mask = mips_ase_mask (mips_ases[i].flags);
2073 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2074 mips_check_isa_supports_ase (&mips_ases[i]);
2075 }
2076 }
2077
2078 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2079 that were affected. */
2080
2081 static unsigned int
2082 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2083 bfd_boolean enabled_p)
2084 {
2085 unsigned int mask;
2086
2087 mask = mips_ase_mask (ase->flags);
2088 opts->ase &= ~mask;
2089 if (enabled_p)
2090 opts->ase |= ase->flags;
2091 return mask;
2092 }
2093
2094 /* Return the ASE called NAME, or null if none. */
2095
2096 static const struct mips_ase *
2097 mips_lookup_ase (const char *name)
2098 {
2099 unsigned int i;
2100
2101 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2102 if (strcmp (name, mips_ases[i].name) == 0)
2103 return &mips_ases[i];
2104 return NULL;
2105 }
2106
2107 /* Return the length of a microMIPS instruction in bytes. If bits of
2108 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2109 otherwise it is a 32-bit instruction. */
2110
2111 static inline unsigned int
2112 micromips_insn_length (const struct mips_opcode *mo)
2113 {
2114 return (mo->mask >> 16) == 0 ? 2 : 4;
2115 }
2116
2117 /* Return the length of MIPS16 instruction OPCODE. */
2118
2119 static inline unsigned int
2120 mips16_opcode_length (unsigned long opcode)
2121 {
2122 return (opcode >> 16) == 0 ? 2 : 4;
2123 }
2124
2125 /* Return the length of instruction INSN. */
2126
2127 static inline unsigned int
2128 insn_length (const struct mips_cl_insn *insn)
2129 {
2130 if (mips_opts.micromips)
2131 return micromips_insn_length (insn->insn_mo);
2132 else if (mips_opts.mips16)
2133 return mips16_opcode_length (insn->insn_opcode);
2134 else
2135 return 4;
2136 }
2137
2138 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2139
2140 static void
2141 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2142 {
2143 size_t i;
2144
2145 insn->insn_mo = mo;
2146 insn->insn_opcode = mo->match;
2147 insn->frag = NULL;
2148 insn->where = 0;
2149 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2150 insn->fixp[i] = NULL;
2151 insn->fixed_p = (mips_opts.noreorder > 0);
2152 insn->noreorder_p = (mips_opts.noreorder > 0);
2153 insn->mips16_absolute_jump_p = 0;
2154 insn->complete_p = 0;
2155 insn->cleared_p = 0;
2156 }
2157
2158 /* Get a list of all the operands in INSN. */
2159
2160 static const struct mips_operand_array *
2161 insn_operands (const struct mips_cl_insn *insn)
2162 {
2163 if (insn->insn_mo >= &mips_opcodes[0]
2164 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2165 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2166
2167 if (insn->insn_mo >= &mips16_opcodes[0]
2168 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2169 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2170
2171 if (insn->insn_mo >= &micromips_opcodes[0]
2172 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2173 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2174
2175 abort ();
2176 }
2177
2178 /* Get a description of operand OPNO of INSN. */
2179
2180 static const struct mips_operand *
2181 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2182 {
2183 const struct mips_operand_array *operands;
2184
2185 operands = insn_operands (insn);
2186 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2187 abort ();
2188 return operands->operand[opno];
2189 }
2190
2191 /* Install UVAL as the value of OPERAND in INSN. */
2192
2193 static inline void
2194 insn_insert_operand (struct mips_cl_insn *insn,
2195 const struct mips_operand *operand, unsigned int uval)
2196 {
2197 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2198 }
2199
2200 /* Extract the value of OPERAND from INSN. */
2201
2202 static inline unsigned
2203 insn_extract_operand (const struct mips_cl_insn *insn,
2204 const struct mips_operand *operand)
2205 {
2206 return mips_extract_operand (operand, insn->insn_opcode);
2207 }
2208
2209 /* Record the current MIPS16/microMIPS mode in now_seg. */
2210
2211 static void
2212 mips_record_compressed_mode (void)
2213 {
2214 segment_info_type *si;
2215
2216 si = seg_info (now_seg);
2217 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2218 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2219 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2220 si->tc_segment_info_data.micromips = mips_opts.micromips;
2221 }
2222
2223 /* Read a standard MIPS instruction from BUF. */
2224
2225 static unsigned long
2226 read_insn (char *buf)
2227 {
2228 if (target_big_endian)
2229 return bfd_getb32 ((bfd_byte *) buf);
2230 else
2231 return bfd_getl32 ((bfd_byte *) buf);
2232 }
2233
2234 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2235 the next byte. */
2236
2237 static char *
2238 write_insn (char *buf, unsigned int insn)
2239 {
2240 md_number_to_chars (buf, insn, 4);
2241 return buf + 4;
2242 }
2243
2244 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2245 has length LENGTH. */
2246
2247 static unsigned long
2248 read_compressed_insn (char *buf, unsigned int length)
2249 {
2250 unsigned long insn;
2251 unsigned int i;
2252
2253 insn = 0;
2254 for (i = 0; i < length; i += 2)
2255 {
2256 insn <<= 16;
2257 if (target_big_endian)
2258 insn |= bfd_getb16 ((char *) buf);
2259 else
2260 insn |= bfd_getl16 ((char *) buf);
2261 buf += 2;
2262 }
2263 return insn;
2264 }
2265
2266 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2267 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2268
2269 static char *
2270 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2271 {
2272 unsigned int i;
2273
2274 for (i = 0; i < length; i += 2)
2275 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2276 return buf + length;
2277 }
2278
2279 /* Install INSN at the location specified by its "frag" and "where" fields. */
2280
2281 static void
2282 install_insn (const struct mips_cl_insn *insn)
2283 {
2284 char *f = insn->frag->fr_literal + insn->where;
2285 if (HAVE_CODE_COMPRESSION)
2286 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2287 else
2288 write_insn (f, insn->insn_opcode);
2289 mips_record_compressed_mode ();
2290 }
2291
2292 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2293 and install the opcode in the new location. */
2294
2295 static void
2296 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2297 {
2298 size_t i;
2299
2300 insn->frag = frag;
2301 insn->where = where;
2302 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2303 if (insn->fixp[i] != NULL)
2304 {
2305 insn->fixp[i]->fx_frag = frag;
2306 insn->fixp[i]->fx_where = where;
2307 }
2308 install_insn (insn);
2309 }
2310
2311 /* Add INSN to the end of the output. */
2312
2313 static void
2314 add_fixed_insn (struct mips_cl_insn *insn)
2315 {
2316 char *f = frag_more (insn_length (insn));
2317 move_insn (insn, frag_now, f - frag_now->fr_literal);
2318 }
2319
2320 /* Start a variant frag and move INSN to the start of the variant part,
2321 marking it as fixed. The other arguments are as for frag_var. */
2322
2323 static void
2324 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2325 relax_substateT subtype, symbolS *symbol, offsetT offset)
2326 {
2327 frag_grow (max_chars);
2328 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2329 insn->fixed_p = 1;
2330 frag_var (rs_machine_dependent, max_chars, var,
2331 subtype, symbol, offset, NULL);
2332 }
2333
2334 /* Insert N copies of INSN into the history buffer, starting at
2335 position FIRST. Neither FIRST nor N need to be clipped. */
2336
2337 static void
2338 insert_into_history (unsigned int first, unsigned int n,
2339 const struct mips_cl_insn *insn)
2340 {
2341 if (mips_relax.sequence != 2)
2342 {
2343 unsigned int i;
2344
2345 for (i = ARRAY_SIZE (history); i-- > first;)
2346 if (i >= first + n)
2347 history[i] = history[i - n];
2348 else
2349 history[i] = *insn;
2350 }
2351 }
2352
2353 /* Clear the error in insn_error. */
2354
2355 static void
2356 clear_insn_error (void)
2357 {
2358 memset (&insn_error, 0, sizeof (insn_error));
2359 }
2360
2361 /* Possibly record error message MSG for the current instruction.
2362 If the error is about a particular argument, ARGNUM is the 1-based
2363 number of that argument, otherwise it is 0. FORMAT is the format
2364 of MSG. Return true if MSG was used, false if the current message
2365 was kept. */
2366
2367 static bfd_boolean
2368 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2369 const char *msg)
2370 {
2371 if (argnum == 0)
2372 {
2373 /* Give priority to errors against specific arguments, and to
2374 the first whole-instruction message. */
2375 if (insn_error.msg)
2376 return FALSE;
2377 }
2378 else
2379 {
2380 /* Keep insn_error if it is against a later argument. */
2381 if (argnum < insn_error.min_argnum)
2382 return FALSE;
2383
2384 /* If both errors are against the same argument but are different,
2385 give up on reporting a specific error for this argument.
2386 See the comment about mips_insn_error for details. */
2387 if (argnum == insn_error.min_argnum
2388 && insn_error.msg
2389 && strcmp (insn_error.msg, msg) != 0)
2390 {
2391 insn_error.msg = 0;
2392 insn_error.min_argnum += 1;
2393 return FALSE;
2394 }
2395 }
2396 insn_error.min_argnum = argnum;
2397 insn_error.format = format;
2398 insn_error.msg = msg;
2399 return TRUE;
2400 }
2401
2402 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2403 as for set_insn_error_format. */
2404
2405 static void
2406 set_insn_error (int argnum, const char *msg)
2407 {
2408 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2409 }
2410
2411 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2412 as for set_insn_error_format. */
2413
2414 static void
2415 set_insn_error_i (int argnum, const char *msg, int i)
2416 {
2417 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2418 insn_error.u.i = i;
2419 }
2420
2421 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2422 are as for set_insn_error_format. */
2423
2424 static void
2425 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2426 {
2427 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2428 {
2429 insn_error.u.ss[0] = s1;
2430 insn_error.u.ss[1] = s2;
2431 }
2432 }
2433
2434 /* Report the error in insn_error, which is against assembly code STR. */
2435
2436 static void
2437 report_insn_error (const char *str)
2438 {
2439 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2440
2441 switch (insn_error.format)
2442 {
2443 case ERR_FMT_PLAIN:
2444 as_bad (msg, str);
2445 break;
2446
2447 case ERR_FMT_I:
2448 as_bad (msg, insn_error.u.i, str);
2449 break;
2450
2451 case ERR_FMT_SS:
2452 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2453 break;
2454 }
2455
2456 free ((char *) msg);
2457 }
2458
2459 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2460 the idea is to make it obvious at a glance that each errata is
2461 included. */
2462
2463 static void
2464 init_vr4120_conflicts (void)
2465 {
2466 #define CONFLICT(FIRST, SECOND) \
2467 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2468
2469 /* Errata 21 - [D]DIV[U] after [D]MACC */
2470 CONFLICT (MACC, DIV);
2471 CONFLICT (DMACC, DIV);
2472
2473 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2474 CONFLICT (DMULT, DMULT);
2475 CONFLICT (DMULT, DMACC);
2476 CONFLICT (DMACC, DMULT);
2477 CONFLICT (DMACC, DMACC);
2478
2479 /* Errata 24 - MT{LO,HI} after [D]MACC */
2480 CONFLICT (MACC, MTHILO);
2481 CONFLICT (DMACC, MTHILO);
2482
2483 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2484 instruction is executed immediately after a MACC or DMACC
2485 instruction, the result of [either instruction] is incorrect." */
2486 CONFLICT (MACC, MULT);
2487 CONFLICT (MACC, DMULT);
2488 CONFLICT (DMACC, MULT);
2489 CONFLICT (DMACC, DMULT);
2490
2491 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2492 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2493 DDIV or DDIVU instruction, the result of the MACC or
2494 DMACC instruction is incorrect.". */
2495 CONFLICT (DMULT, MACC);
2496 CONFLICT (DMULT, DMACC);
2497 CONFLICT (DIV, MACC);
2498 CONFLICT (DIV, DMACC);
2499
2500 #undef CONFLICT
2501 }
2502
2503 struct regname {
2504 const char *name;
2505 unsigned int num;
2506 };
2507
2508 #define RNUM_MASK 0x00000ff
2509 #define RTYPE_MASK 0x0ffff00
2510 #define RTYPE_NUM 0x0000100
2511 #define RTYPE_FPU 0x0000200
2512 #define RTYPE_FCC 0x0000400
2513 #define RTYPE_VEC 0x0000800
2514 #define RTYPE_GP 0x0001000
2515 #define RTYPE_CP0 0x0002000
2516 #define RTYPE_PC 0x0004000
2517 #define RTYPE_ACC 0x0008000
2518 #define RTYPE_CCC 0x0010000
2519 #define RTYPE_VI 0x0020000
2520 #define RTYPE_VF 0x0040000
2521 #define RTYPE_R5900_I 0x0080000
2522 #define RTYPE_R5900_Q 0x0100000
2523 #define RTYPE_R5900_R 0x0200000
2524 #define RTYPE_R5900_ACC 0x0400000
2525 #define RTYPE_MSA 0x0800000
2526 #define RWARN 0x8000000
2527
2528 #define GENERIC_REGISTER_NUMBERS \
2529 {"$0", RTYPE_NUM | 0}, \
2530 {"$1", RTYPE_NUM | 1}, \
2531 {"$2", RTYPE_NUM | 2}, \
2532 {"$3", RTYPE_NUM | 3}, \
2533 {"$4", RTYPE_NUM | 4}, \
2534 {"$5", RTYPE_NUM | 5}, \
2535 {"$6", RTYPE_NUM | 6}, \
2536 {"$7", RTYPE_NUM | 7}, \
2537 {"$8", RTYPE_NUM | 8}, \
2538 {"$9", RTYPE_NUM | 9}, \
2539 {"$10", RTYPE_NUM | 10}, \
2540 {"$11", RTYPE_NUM | 11}, \
2541 {"$12", RTYPE_NUM | 12}, \
2542 {"$13", RTYPE_NUM | 13}, \
2543 {"$14", RTYPE_NUM | 14}, \
2544 {"$15", RTYPE_NUM | 15}, \
2545 {"$16", RTYPE_NUM | 16}, \
2546 {"$17", RTYPE_NUM | 17}, \
2547 {"$18", RTYPE_NUM | 18}, \
2548 {"$19", RTYPE_NUM | 19}, \
2549 {"$20", RTYPE_NUM | 20}, \
2550 {"$21", RTYPE_NUM | 21}, \
2551 {"$22", RTYPE_NUM | 22}, \
2552 {"$23", RTYPE_NUM | 23}, \
2553 {"$24", RTYPE_NUM | 24}, \
2554 {"$25", RTYPE_NUM | 25}, \
2555 {"$26", RTYPE_NUM | 26}, \
2556 {"$27", RTYPE_NUM | 27}, \
2557 {"$28", RTYPE_NUM | 28}, \
2558 {"$29", RTYPE_NUM | 29}, \
2559 {"$30", RTYPE_NUM | 30}, \
2560 {"$31", RTYPE_NUM | 31}
2561
2562 #define FPU_REGISTER_NAMES \
2563 {"$f0", RTYPE_FPU | 0}, \
2564 {"$f1", RTYPE_FPU | 1}, \
2565 {"$f2", RTYPE_FPU | 2}, \
2566 {"$f3", RTYPE_FPU | 3}, \
2567 {"$f4", RTYPE_FPU | 4}, \
2568 {"$f5", RTYPE_FPU | 5}, \
2569 {"$f6", RTYPE_FPU | 6}, \
2570 {"$f7", RTYPE_FPU | 7}, \
2571 {"$f8", RTYPE_FPU | 8}, \
2572 {"$f9", RTYPE_FPU | 9}, \
2573 {"$f10", RTYPE_FPU | 10}, \
2574 {"$f11", RTYPE_FPU | 11}, \
2575 {"$f12", RTYPE_FPU | 12}, \
2576 {"$f13", RTYPE_FPU | 13}, \
2577 {"$f14", RTYPE_FPU | 14}, \
2578 {"$f15", RTYPE_FPU | 15}, \
2579 {"$f16", RTYPE_FPU | 16}, \
2580 {"$f17", RTYPE_FPU | 17}, \
2581 {"$f18", RTYPE_FPU | 18}, \
2582 {"$f19", RTYPE_FPU | 19}, \
2583 {"$f20", RTYPE_FPU | 20}, \
2584 {"$f21", RTYPE_FPU | 21}, \
2585 {"$f22", RTYPE_FPU | 22}, \
2586 {"$f23", RTYPE_FPU | 23}, \
2587 {"$f24", RTYPE_FPU | 24}, \
2588 {"$f25", RTYPE_FPU | 25}, \
2589 {"$f26", RTYPE_FPU | 26}, \
2590 {"$f27", RTYPE_FPU | 27}, \
2591 {"$f28", RTYPE_FPU | 28}, \
2592 {"$f29", RTYPE_FPU | 29}, \
2593 {"$f30", RTYPE_FPU | 30}, \
2594 {"$f31", RTYPE_FPU | 31}
2595
2596 #define FPU_CONDITION_CODE_NAMES \
2597 {"$fcc0", RTYPE_FCC | 0}, \
2598 {"$fcc1", RTYPE_FCC | 1}, \
2599 {"$fcc2", RTYPE_FCC | 2}, \
2600 {"$fcc3", RTYPE_FCC | 3}, \
2601 {"$fcc4", RTYPE_FCC | 4}, \
2602 {"$fcc5", RTYPE_FCC | 5}, \
2603 {"$fcc6", RTYPE_FCC | 6}, \
2604 {"$fcc7", RTYPE_FCC | 7}
2605
2606 #define COPROC_CONDITION_CODE_NAMES \
2607 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2608 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2609 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2610 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2611 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2612 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2613 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2614 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2615
2616 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2617 {"$a4", RTYPE_GP | 8}, \
2618 {"$a5", RTYPE_GP | 9}, \
2619 {"$a6", RTYPE_GP | 10}, \
2620 {"$a7", RTYPE_GP | 11}, \
2621 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2622 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2623 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2624 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2625 {"$t0", RTYPE_GP | 12}, \
2626 {"$t1", RTYPE_GP | 13}, \
2627 {"$t2", RTYPE_GP | 14}, \
2628 {"$t3", RTYPE_GP | 15}
2629
2630 #define O32_SYMBOLIC_REGISTER_NAMES \
2631 {"$t0", RTYPE_GP | 8}, \
2632 {"$t1", RTYPE_GP | 9}, \
2633 {"$t2", RTYPE_GP | 10}, \
2634 {"$t3", RTYPE_GP | 11}, \
2635 {"$t4", RTYPE_GP | 12}, \
2636 {"$t5", RTYPE_GP | 13}, \
2637 {"$t6", RTYPE_GP | 14}, \
2638 {"$t7", RTYPE_GP | 15}, \
2639 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2640 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2641 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2642 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2643
2644 /* Remaining symbolic register names */
2645 #define SYMBOLIC_REGISTER_NAMES \
2646 {"$zero", RTYPE_GP | 0}, \
2647 {"$at", RTYPE_GP | 1}, \
2648 {"$AT", RTYPE_GP | 1}, \
2649 {"$v0", RTYPE_GP | 2}, \
2650 {"$v1", RTYPE_GP | 3}, \
2651 {"$a0", RTYPE_GP | 4}, \
2652 {"$a1", RTYPE_GP | 5}, \
2653 {"$a2", RTYPE_GP | 6}, \
2654 {"$a3", RTYPE_GP | 7}, \
2655 {"$s0", RTYPE_GP | 16}, \
2656 {"$s1", RTYPE_GP | 17}, \
2657 {"$s2", RTYPE_GP | 18}, \
2658 {"$s3", RTYPE_GP | 19}, \
2659 {"$s4", RTYPE_GP | 20}, \
2660 {"$s5", RTYPE_GP | 21}, \
2661 {"$s6", RTYPE_GP | 22}, \
2662 {"$s7", RTYPE_GP | 23}, \
2663 {"$t8", RTYPE_GP | 24}, \
2664 {"$t9", RTYPE_GP | 25}, \
2665 {"$k0", RTYPE_GP | 26}, \
2666 {"$kt0", RTYPE_GP | 26}, \
2667 {"$k1", RTYPE_GP | 27}, \
2668 {"$kt1", RTYPE_GP | 27}, \
2669 {"$gp", RTYPE_GP | 28}, \
2670 {"$sp", RTYPE_GP | 29}, \
2671 {"$s8", RTYPE_GP | 30}, \
2672 {"$fp", RTYPE_GP | 30}, \
2673 {"$ra", RTYPE_GP | 31}
2674
2675 #define MIPS16_SPECIAL_REGISTER_NAMES \
2676 {"$pc", RTYPE_PC | 0}
2677
2678 #define MDMX_VECTOR_REGISTER_NAMES \
2679 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2680 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2681 {"$v2", RTYPE_VEC | 2}, \
2682 {"$v3", RTYPE_VEC | 3}, \
2683 {"$v4", RTYPE_VEC | 4}, \
2684 {"$v5", RTYPE_VEC | 5}, \
2685 {"$v6", RTYPE_VEC | 6}, \
2686 {"$v7", RTYPE_VEC | 7}, \
2687 {"$v8", RTYPE_VEC | 8}, \
2688 {"$v9", RTYPE_VEC | 9}, \
2689 {"$v10", RTYPE_VEC | 10}, \
2690 {"$v11", RTYPE_VEC | 11}, \
2691 {"$v12", RTYPE_VEC | 12}, \
2692 {"$v13", RTYPE_VEC | 13}, \
2693 {"$v14", RTYPE_VEC | 14}, \
2694 {"$v15", RTYPE_VEC | 15}, \
2695 {"$v16", RTYPE_VEC | 16}, \
2696 {"$v17", RTYPE_VEC | 17}, \
2697 {"$v18", RTYPE_VEC | 18}, \
2698 {"$v19", RTYPE_VEC | 19}, \
2699 {"$v20", RTYPE_VEC | 20}, \
2700 {"$v21", RTYPE_VEC | 21}, \
2701 {"$v22", RTYPE_VEC | 22}, \
2702 {"$v23", RTYPE_VEC | 23}, \
2703 {"$v24", RTYPE_VEC | 24}, \
2704 {"$v25", RTYPE_VEC | 25}, \
2705 {"$v26", RTYPE_VEC | 26}, \
2706 {"$v27", RTYPE_VEC | 27}, \
2707 {"$v28", RTYPE_VEC | 28}, \
2708 {"$v29", RTYPE_VEC | 29}, \
2709 {"$v30", RTYPE_VEC | 30}, \
2710 {"$v31", RTYPE_VEC | 31}
2711
2712 #define R5900_I_NAMES \
2713 {"$I", RTYPE_R5900_I | 0}
2714
2715 #define R5900_Q_NAMES \
2716 {"$Q", RTYPE_R5900_Q | 0}
2717
2718 #define R5900_R_NAMES \
2719 {"$R", RTYPE_R5900_R | 0}
2720
2721 #define R5900_ACC_NAMES \
2722 {"$ACC", RTYPE_R5900_ACC | 0 }
2723
2724 #define MIPS_DSP_ACCUMULATOR_NAMES \
2725 {"$ac0", RTYPE_ACC | 0}, \
2726 {"$ac1", RTYPE_ACC | 1}, \
2727 {"$ac2", RTYPE_ACC | 2}, \
2728 {"$ac3", RTYPE_ACC | 3}
2729
2730 static const struct regname reg_names[] = {
2731 GENERIC_REGISTER_NUMBERS,
2732 FPU_REGISTER_NAMES,
2733 FPU_CONDITION_CODE_NAMES,
2734 COPROC_CONDITION_CODE_NAMES,
2735
2736 /* The $txx registers depends on the abi,
2737 these will be added later into the symbol table from
2738 one of the tables below once mips_abi is set after
2739 parsing of arguments from the command line. */
2740 SYMBOLIC_REGISTER_NAMES,
2741
2742 MIPS16_SPECIAL_REGISTER_NAMES,
2743 MDMX_VECTOR_REGISTER_NAMES,
2744 R5900_I_NAMES,
2745 R5900_Q_NAMES,
2746 R5900_R_NAMES,
2747 R5900_ACC_NAMES,
2748 MIPS_DSP_ACCUMULATOR_NAMES,
2749 {0, 0}
2750 };
2751
2752 static const struct regname reg_names_o32[] = {
2753 O32_SYMBOLIC_REGISTER_NAMES,
2754 {0, 0}
2755 };
2756
2757 static const struct regname reg_names_n32n64[] = {
2758 N32N64_SYMBOLIC_REGISTER_NAMES,
2759 {0, 0}
2760 };
2761
2762 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2763 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2764 of these register symbols, return the associated vector register,
2765 otherwise return SYMVAL itself. */
2766
2767 static unsigned int
2768 mips_prefer_vec_regno (unsigned int symval)
2769 {
2770 if ((symval & -2) == (RTYPE_GP | 2))
2771 return RTYPE_VEC | (symval & 1);
2772 return symval;
2773 }
2774
2775 /* Return true if string [S, E) is a valid register name, storing its
2776 symbol value in *SYMVAL_PTR if so. */
2777
2778 static bfd_boolean
2779 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2780 {
2781 char save_c;
2782 symbolS *symbol;
2783
2784 /* Terminate name. */
2785 save_c = *e;
2786 *e = '\0';
2787
2788 /* Look up the name. */
2789 symbol = symbol_find (s);
2790 *e = save_c;
2791
2792 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2793 return FALSE;
2794
2795 *symval_ptr = S_GET_VALUE (symbol);
2796 return TRUE;
2797 }
2798
2799 /* Return true if the string at *SPTR is a valid register name. Allow it
2800 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2801 is nonnull.
2802
2803 When returning true, move *SPTR past the register, store the
2804 register's symbol value in *SYMVAL_PTR and the channel mask in
2805 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2806 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2807 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2808
2809 static bfd_boolean
2810 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2811 unsigned int *channels_ptr)
2812 {
2813 char *s, *e, *m;
2814 const char *q;
2815 unsigned int channels, symval, bit;
2816
2817 /* Find end of name. */
2818 s = e = *sptr;
2819 if (is_name_beginner (*e))
2820 ++e;
2821 while (is_part_of_name (*e))
2822 ++e;
2823
2824 channels = 0;
2825 if (!mips_parse_register_1 (s, e, &symval))
2826 {
2827 if (!channels_ptr)
2828 return FALSE;
2829
2830 /* Eat characters from the end of the string that are valid
2831 channel suffixes. The preceding register must be $ACC or
2832 end with a digit, so there is no ambiguity. */
2833 bit = 1;
2834 m = e;
2835 for (q = "wzyx"; *q; q++, bit <<= 1)
2836 if (m > s && m[-1] == *q)
2837 {
2838 --m;
2839 channels |= bit;
2840 }
2841
2842 if (channels == 0
2843 || !mips_parse_register_1 (s, m, &symval)
2844 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2845 return FALSE;
2846 }
2847
2848 *sptr = e;
2849 *symval_ptr = symval;
2850 if (channels_ptr)
2851 *channels_ptr = channels;
2852 return TRUE;
2853 }
2854
2855 /* Check if SPTR points at a valid register specifier according to TYPES.
2856 If so, then return 1, advance S to consume the specifier and store
2857 the register's number in REGNOP, otherwise return 0. */
2858
2859 static int
2860 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2861 {
2862 unsigned int regno;
2863
2864 if (mips_parse_register (s, &regno, NULL))
2865 {
2866 if (types & RTYPE_VEC)
2867 regno = mips_prefer_vec_regno (regno);
2868 if (regno & types)
2869 regno &= RNUM_MASK;
2870 else
2871 regno = ~0;
2872 }
2873 else
2874 {
2875 if (types & RWARN)
2876 as_warn (_("unrecognized register name `%s'"), *s);
2877 regno = ~0;
2878 }
2879 if (regnop)
2880 *regnop = regno;
2881 return regno <= RNUM_MASK;
2882 }
2883
2884 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2885 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2886
2887 static char *
2888 mips_parse_vu0_channels (char *s, unsigned int *channels)
2889 {
2890 unsigned int i;
2891
2892 *channels = 0;
2893 for (i = 0; i < 4; i++)
2894 if (*s == "xyzw"[i])
2895 {
2896 *channels |= 1 << (3 - i);
2897 ++s;
2898 }
2899 return s;
2900 }
2901
2902 /* Token types for parsed operand lists. */
2903 enum mips_operand_token_type {
2904 /* A plain register, e.g. $f2. */
2905 OT_REG,
2906
2907 /* A 4-bit XYZW channel mask. */
2908 OT_CHANNELS,
2909
2910 /* A constant vector index, e.g. [1]. */
2911 OT_INTEGER_INDEX,
2912
2913 /* A register vector index, e.g. [$2]. */
2914 OT_REG_INDEX,
2915
2916 /* A continuous range of registers, e.g. $s0-$s4. */
2917 OT_REG_RANGE,
2918
2919 /* A (possibly relocated) expression. */
2920 OT_INTEGER,
2921
2922 /* A floating-point value. */
2923 OT_FLOAT,
2924
2925 /* A single character. This can be '(', ')' or ',', but '(' only appears
2926 before OT_REGs. */
2927 OT_CHAR,
2928
2929 /* A doubled character, either "--" or "++". */
2930 OT_DOUBLE_CHAR,
2931
2932 /* The end of the operand list. */
2933 OT_END
2934 };
2935
2936 /* A parsed operand token. */
2937 struct mips_operand_token
2938 {
2939 /* The type of token. */
2940 enum mips_operand_token_type type;
2941 union
2942 {
2943 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2944 unsigned int regno;
2945
2946 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2947 unsigned int channels;
2948
2949 /* The integer value of an OT_INTEGER_INDEX. */
2950 addressT index;
2951
2952 /* The two register symbol values involved in an OT_REG_RANGE. */
2953 struct {
2954 unsigned int regno1;
2955 unsigned int regno2;
2956 } reg_range;
2957
2958 /* The value of an OT_INTEGER. The value is represented as an
2959 expression and the relocation operators that were applied to
2960 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2961 relocation operators were used. */
2962 struct {
2963 expressionS value;
2964 bfd_reloc_code_real_type relocs[3];
2965 } integer;
2966
2967 /* The binary data for an OT_FLOAT constant, and the number of bytes
2968 in the constant. */
2969 struct {
2970 unsigned char data[8];
2971 int length;
2972 } flt;
2973
2974 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2975 char ch;
2976 } u;
2977 };
2978
2979 /* An obstack used to construct lists of mips_operand_tokens. */
2980 static struct obstack mips_operand_tokens;
2981
2982 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2983
2984 static void
2985 mips_add_token (struct mips_operand_token *token,
2986 enum mips_operand_token_type type)
2987 {
2988 token->type = type;
2989 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2990 }
2991
2992 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2993 and OT_REG tokens for them if so, and return a pointer to the first
2994 unconsumed character. Return null otherwise. */
2995
2996 static char *
2997 mips_parse_base_start (char *s)
2998 {
2999 struct mips_operand_token token;
3000 unsigned int regno, channels;
3001 bfd_boolean decrement_p;
3002
3003 if (*s != '(')
3004 return 0;
3005
3006 ++s;
3007 SKIP_SPACE_TABS (s);
3008
3009 /* Only match "--" as part of a base expression. In other contexts "--X"
3010 is a double negative. */
3011 decrement_p = (s[0] == '-' && s[1] == '-');
3012 if (decrement_p)
3013 {
3014 s += 2;
3015 SKIP_SPACE_TABS (s);
3016 }
3017
3018 /* Allow a channel specifier because that leads to better error messages
3019 than treating something like "$vf0x++" as an expression. */
3020 if (!mips_parse_register (&s, &regno, &channels))
3021 return 0;
3022
3023 token.u.ch = '(';
3024 mips_add_token (&token, OT_CHAR);
3025
3026 if (decrement_p)
3027 {
3028 token.u.ch = '-';
3029 mips_add_token (&token, OT_DOUBLE_CHAR);
3030 }
3031
3032 token.u.regno = regno;
3033 mips_add_token (&token, OT_REG);
3034
3035 if (channels)
3036 {
3037 token.u.channels = channels;
3038 mips_add_token (&token, OT_CHANNELS);
3039 }
3040
3041 /* For consistency, only match "++" as part of base expressions too. */
3042 SKIP_SPACE_TABS (s);
3043 if (s[0] == '+' && s[1] == '+')
3044 {
3045 s += 2;
3046 token.u.ch = '+';
3047 mips_add_token (&token, OT_DOUBLE_CHAR);
3048 }
3049
3050 return s;
3051 }
3052
3053 /* Parse one or more tokens from S. Return a pointer to the first
3054 unconsumed character on success. Return null if an error was found
3055 and store the error text in insn_error. FLOAT_FORMAT is as for
3056 mips_parse_arguments. */
3057
3058 static char *
3059 mips_parse_argument_token (char *s, char float_format)
3060 {
3061 char *end, *save_in;
3062 const char *err;
3063 unsigned int regno1, regno2, channels;
3064 struct mips_operand_token token;
3065
3066 /* First look for "($reg", since we want to treat that as an
3067 OT_CHAR and OT_REG rather than an expression. */
3068 end = mips_parse_base_start (s);
3069 if (end)
3070 return end;
3071
3072 /* Handle other characters that end up as OT_CHARs. */
3073 if (*s == ')' || *s == ',')
3074 {
3075 token.u.ch = *s;
3076 mips_add_token (&token, OT_CHAR);
3077 ++s;
3078 return s;
3079 }
3080
3081 /* Handle tokens that start with a register. */
3082 if (mips_parse_register (&s, &regno1, &channels))
3083 {
3084 if (channels)
3085 {
3086 /* A register and a VU0 channel suffix. */
3087 token.u.regno = regno1;
3088 mips_add_token (&token, OT_REG);
3089
3090 token.u.channels = channels;
3091 mips_add_token (&token, OT_CHANNELS);
3092 return s;
3093 }
3094
3095 SKIP_SPACE_TABS (s);
3096 if (*s == '-')
3097 {
3098 /* A register range. */
3099 ++s;
3100 SKIP_SPACE_TABS (s);
3101 if (!mips_parse_register (&s, &regno2, NULL))
3102 {
3103 set_insn_error (0, _("invalid register range"));
3104 return 0;
3105 }
3106
3107 token.u.reg_range.regno1 = regno1;
3108 token.u.reg_range.regno2 = regno2;
3109 mips_add_token (&token, OT_REG_RANGE);
3110 return s;
3111 }
3112
3113 /* Add the register itself. */
3114 token.u.regno = regno1;
3115 mips_add_token (&token, OT_REG);
3116
3117 /* Check for a vector index. */
3118 if (*s == '[')
3119 {
3120 ++s;
3121 SKIP_SPACE_TABS (s);
3122 if (mips_parse_register (&s, &token.u.regno, NULL))
3123 mips_add_token (&token, OT_REG_INDEX);
3124 else
3125 {
3126 expressionS element;
3127
3128 my_getExpression (&element, s);
3129 if (element.X_op != O_constant)
3130 {
3131 set_insn_error (0, _("vector element must be constant"));
3132 return 0;
3133 }
3134 s = expr_end;
3135 token.u.index = element.X_add_number;
3136 mips_add_token (&token, OT_INTEGER_INDEX);
3137 }
3138 SKIP_SPACE_TABS (s);
3139 if (*s != ']')
3140 {
3141 set_insn_error (0, _("missing `]'"));
3142 return 0;
3143 }
3144 ++s;
3145 }
3146 return s;
3147 }
3148
3149 if (float_format)
3150 {
3151 /* First try to treat expressions as floats. */
3152 save_in = input_line_pointer;
3153 input_line_pointer = s;
3154 err = md_atof (float_format, (char *) token.u.flt.data,
3155 &token.u.flt.length);
3156 end = input_line_pointer;
3157 input_line_pointer = save_in;
3158 if (err && *err)
3159 {
3160 set_insn_error (0, err);
3161 return 0;
3162 }
3163 if (s != end)
3164 {
3165 mips_add_token (&token, OT_FLOAT);
3166 return end;
3167 }
3168 }
3169
3170 /* Treat everything else as an integer expression. */
3171 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3172 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3173 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3174 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3175 s = expr_end;
3176 mips_add_token (&token, OT_INTEGER);
3177 return s;
3178 }
3179
3180 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3181 if expressions should be treated as 32-bit floating-point constants,
3182 'd' if they should be treated as 64-bit floating-point constants,
3183 or 0 if they should be treated as integer expressions (the usual case).
3184
3185 Return a list of tokens on success, otherwise return 0. The caller
3186 must obstack_free the list after use. */
3187
3188 static struct mips_operand_token *
3189 mips_parse_arguments (char *s, char float_format)
3190 {
3191 struct mips_operand_token token;
3192
3193 SKIP_SPACE_TABS (s);
3194 while (*s)
3195 {
3196 s = mips_parse_argument_token (s, float_format);
3197 if (!s)
3198 {
3199 obstack_free (&mips_operand_tokens,
3200 obstack_finish (&mips_operand_tokens));
3201 return 0;
3202 }
3203 SKIP_SPACE_TABS (s);
3204 }
3205 mips_add_token (&token, OT_END);
3206 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3207 }
3208
3209 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3210 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3211
3212 static bfd_boolean
3213 is_opcode_valid (const struct mips_opcode *mo)
3214 {
3215 int isa = mips_opts.isa;
3216 int ase = mips_opts.ase;
3217 int fp_s, fp_d;
3218 unsigned int i;
3219
3220 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3221 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3222 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3223 ase |= mips_ases[i].flags64;
3224
3225 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3226 return FALSE;
3227
3228 /* Check whether the instruction or macro requires single-precision or
3229 double-precision floating-point support. Note that this information is
3230 stored differently in the opcode table for insns and macros. */
3231 if (mo->pinfo == INSN_MACRO)
3232 {
3233 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3234 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3235 }
3236 else
3237 {
3238 fp_s = mo->pinfo & FP_S;
3239 fp_d = mo->pinfo & FP_D;
3240 }
3241
3242 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3243 return FALSE;
3244
3245 if (fp_s && mips_opts.soft_float)
3246 return FALSE;
3247
3248 return TRUE;
3249 }
3250
3251 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3252 selected ISA and architecture. */
3253
3254 static bfd_boolean
3255 is_opcode_valid_16 (const struct mips_opcode *mo)
3256 {
3257 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3258 }
3259
3260 /* Return TRUE if the size of the microMIPS opcode MO matches one
3261 explicitly requested. Always TRUE in the standard MIPS mode. */
3262
3263 static bfd_boolean
3264 is_size_valid (const struct mips_opcode *mo)
3265 {
3266 if (!mips_opts.micromips)
3267 return TRUE;
3268
3269 if (mips_opts.insn32)
3270 {
3271 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3272 return FALSE;
3273 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3274 return FALSE;
3275 }
3276 if (!forced_insn_length)
3277 return TRUE;
3278 if (mo->pinfo == INSN_MACRO)
3279 return FALSE;
3280 return forced_insn_length == micromips_insn_length (mo);
3281 }
3282
3283 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3284 of the preceding instruction. Always TRUE in the standard MIPS mode.
3285
3286 We don't accept macros in 16-bit delay slots to avoid a case where
3287 a macro expansion fails because it relies on a preceding 32-bit real
3288 instruction to have matched and does not handle the operands correctly.
3289 The only macros that may expand to 16-bit instructions are JAL that
3290 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3291 and BGT (that likewise cannot be placed in a delay slot) that decay to
3292 a NOP. In all these cases the macros precede any corresponding real
3293 instruction definitions in the opcode table, so they will match in the
3294 second pass where the size of the delay slot is ignored and therefore
3295 produce correct code. */
3296
3297 static bfd_boolean
3298 is_delay_slot_valid (const struct mips_opcode *mo)
3299 {
3300 if (!mips_opts.micromips)
3301 return TRUE;
3302
3303 if (mo->pinfo == INSN_MACRO)
3304 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3305 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3306 && micromips_insn_length (mo) != 4)
3307 return FALSE;
3308 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3309 && micromips_insn_length (mo) != 2)
3310 return FALSE;
3311
3312 return TRUE;
3313 }
3314
3315 /* For consistency checking, verify that all bits of OPCODE are specified
3316 either by the match/mask part of the instruction definition, or by the
3317 operand list. Also build up a list of operands in OPERANDS.
3318
3319 INSN_BITS says which bits of the instruction are significant.
3320 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3321 provides the mips_operand description of each operand. DECODE_OPERAND
3322 is null for MIPS16 instructions. */
3323
3324 static int
3325 validate_mips_insn (const struct mips_opcode *opcode,
3326 unsigned long insn_bits,
3327 const struct mips_operand *(*decode_operand) (const char *),
3328 struct mips_operand_array *operands)
3329 {
3330 const char *s;
3331 unsigned long used_bits, doubled, undefined, opno, mask;
3332 const struct mips_operand *operand;
3333
3334 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3335 if ((mask & opcode->match) != opcode->match)
3336 {
3337 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3338 opcode->name, opcode->args);
3339 return 0;
3340 }
3341 used_bits = 0;
3342 opno = 0;
3343 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3344 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3345 for (s = opcode->args; *s; ++s)
3346 switch (*s)
3347 {
3348 case ',':
3349 case '(':
3350 case ')':
3351 break;
3352
3353 case '#':
3354 s++;
3355 break;
3356
3357 default:
3358 if (!decode_operand)
3359 operand = decode_mips16_operand (*s, FALSE);
3360 else
3361 operand = decode_operand (s);
3362 if (!operand && opcode->pinfo != INSN_MACRO)
3363 {
3364 as_bad (_("internal: unknown operand type: %s %s"),
3365 opcode->name, opcode->args);
3366 return 0;
3367 }
3368 gas_assert (opno < MAX_OPERANDS);
3369 operands->operand[opno] = operand;
3370 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3371 {
3372 used_bits = mips_insert_operand (operand, used_bits, -1);
3373 if (operand->type == OP_MDMX_IMM_REG)
3374 /* Bit 5 is the format selector (OB vs QH). The opcode table
3375 has separate entries for each format. */
3376 used_bits &= ~(1 << (operand->lsb + 5));
3377 if (operand->type == OP_ENTRY_EXIT_LIST)
3378 used_bits &= ~(mask & 0x700);
3379 }
3380 /* Skip prefix characters. */
3381 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3382 ++s;
3383 opno += 1;
3384 break;
3385 }
3386 doubled = used_bits & mask & insn_bits;
3387 if (doubled)
3388 {
3389 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3390 " %s %s"), doubled, opcode->name, opcode->args);
3391 return 0;
3392 }
3393 used_bits |= mask;
3394 undefined = ~used_bits & insn_bits;
3395 if (opcode->pinfo != INSN_MACRO && undefined)
3396 {
3397 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3398 undefined, opcode->name, opcode->args);
3399 return 0;
3400 }
3401 used_bits &= ~insn_bits;
3402 if (used_bits)
3403 {
3404 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3405 used_bits, opcode->name, opcode->args);
3406 return 0;
3407 }
3408 return 1;
3409 }
3410
3411 /* The MIPS16 version of validate_mips_insn. */
3412
3413 static int
3414 validate_mips16_insn (const struct mips_opcode *opcode,
3415 struct mips_operand_array *operands)
3416 {
3417 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3418 {
3419 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3420 instruction. Use TMP to describe the full instruction. */
3421 struct mips_opcode tmp;
3422
3423 tmp = *opcode;
3424 tmp.match <<= 16;
3425 tmp.mask <<= 16;
3426 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3427 }
3428 return validate_mips_insn (opcode, 0xffff, 0, operands);
3429 }
3430
3431 /* The microMIPS version of validate_mips_insn. */
3432
3433 static int
3434 validate_micromips_insn (const struct mips_opcode *opc,
3435 struct mips_operand_array *operands)
3436 {
3437 unsigned long insn_bits;
3438 unsigned long major;
3439 unsigned int length;
3440
3441 if (opc->pinfo == INSN_MACRO)
3442 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3443 operands);
3444
3445 length = micromips_insn_length (opc);
3446 if (length != 2 && length != 4)
3447 {
3448 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3449 "%s %s"), length, opc->name, opc->args);
3450 return 0;
3451 }
3452 major = opc->match >> (10 + 8 * (length - 2));
3453 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3454 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3455 {
3456 as_bad (_("internal error: bad microMIPS opcode "
3457 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3458 return 0;
3459 }
3460
3461 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3462 insn_bits = 1 << 4 * length;
3463 insn_bits <<= 4 * length;
3464 insn_bits -= 1;
3465 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3466 operands);
3467 }
3468
3469 /* This function is called once, at assembler startup time. It should set up
3470 all the tables, etc. that the MD part of the assembler will need. */
3471
3472 void
3473 md_begin (void)
3474 {
3475 const char *retval = NULL;
3476 int i = 0;
3477 int broken = 0;
3478
3479 if (mips_pic != NO_PIC)
3480 {
3481 if (g_switch_seen && g_switch_value != 0)
3482 as_bad (_("-G may not be used in position-independent code"));
3483 g_switch_value = 0;
3484 }
3485 else if (mips_abicalls)
3486 {
3487 if (g_switch_seen && g_switch_value != 0)
3488 as_bad (_("-G may not be used with abicalls"));
3489 g_switch_value = 0;
3490 }
3491
3492 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3493 as_warn (_("could not set architecture and machine"));
3494
3495 op_hash = hash_new ();
3496
3497 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3498 for (i = 0; i < NUMOPCODES;)
3499 {
3500 const char *name = mips_opcodes[i].name;
3501
3502 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3503 if (retval != NULL)
3504 {
3505 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3506 mips_opcodes[i].name, retval);
3507 /* Probably a memory allocation problem? Give up now. */
3508 as_fatal (_("broken assembler, no assembly attempted"));
3509 }
3510 do
3511 {
3512 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3513 decode_mips_operand, &mips_operands[i]))
3514 broken = 1;
3515 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3516 {
3517 create_insn (&nop_insn, mips_opcodes + i);
3518 if (mips_fix_loongson2f_nop)
3519 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3520 nop_insn.fixed_p = 1;
3521 }
3522 ++i;
3523 }
3524 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3525 }
3526
3527 mips16_op_hash = hash_new ();
3528 mips16_operands = XCNEWVEC (struct mips_operand_array,
3529 bfd_mips16_num_opcodes);
3530
3531 i = 0;
3532 while (i < bfd_mips16_num_opcodes)
3533 {
3534 const char *name = mips16_opcodes[i].name;
3535
3536 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3537 if (retval != NULL)
3538 as_fatal (_("internal: can't hash `%s': %s"),
3539 mips16_opcodes[i].name, retval);
3540 do
3541 {
3542 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3543 broken = 1;
3544 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3545 {
3546 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3547 mips16_nop_insn.fixed_p = 1;
3548 }
3549 ++i;
3550 }
3551 while (i < bfd_mips16_num_opcodes
3552 && strcmp (mips16_opcodes[i].name, name) == 0);
3553 }
3554
3555 micromips_op_hash = hash_new ();
3556 micromips_operands = XCNEWVEC (struct mips_operand_array,
3557 bfd_micromips_num_opcodes);
3558
3559 i = 0;
3560 while (i < bfd_micromips_num_opcodes)
3561 {
3562 const char *name = micromips_opcodes[i].name;
3563
3564 retval = hash_insert (micromips_op_hash, name,
3565 (void *) &micromips_opcodes[i]);
3566 if (retval != NULL)
3567 as_fatal (_("internal: can't hash `%s': %s"),
3568 micromips_opcodes[i].name, retval);
3569 do
3570 {
3571 struct mips_cl_insn *micromips_nop_insn;
3572
3573 if (!validate_micromips_insn (&micromips_opcodes[i],
3574 &micromips_operands[i]))
3575 broken = 1;
3576
3577 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3578 {
3579 if (micromips_insn_length (micromips_opcodes + i) == 2)
3580 micromips_nop_insn = &micromips_nop16_insn;
3581 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3582 micromips_nop_insn = &micromips_nop32_insn;
3583 else
3584 continue;
3585
3586 if (micromips_nop_insn->insn_mo == NULL
3587 && strcmp (name, "nop") == 0)
3588 {
3589 create_insn (micromips_nop_insn, micromips_opcodes + i);
3590 micromips_nop_insn->fixed_p = 1;
3591 }
3592 }
3593 }
3594 while (++i < bfd_micromips_num_opcodes
3595 && strcmp (micromips_opcodes[i].name, name) == 0);
3596 }
3597
3598 if (broken)
3599 as_fatal (_("broken assembler, no assembly attempted"));
3600
3601 /* We add all the general register names to the symbol table. This
3602 helps us detect invalid uses of them. */
3603 for (i = 0; reg_names[i].name; i++)
3604 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3605 reg_names[i].num, /* & RNUM_MASK, */
3606 &zero_address_frag));
3607 if (HAVE_NEWABI)
3608 for (i = 0; reg_names_n32n64[i].name; i++)
3609 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3610 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3611 &zero_address_frag));
3612 else
3613 for (i = 0; reg_names_o32[i].name; i++)
3614 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3615 reg_names_o32[i].num, /* & RNUM_MASK, */
3616 &zero_address_frag));
3617
3618 for (i = 0; i < 32; i++)
3619 {
3620 char regname[6];
3621
3622 /* R5900 VU0 floating-point register. */
3623 sprintf (regname, "$vf%d", i);
3624 symbol_table_insert (symbol_new (regname, reg_section,
3625 RTYPE_VF | i, &zero_address_frag));
3626
3627 /* R5900 VU0 integer register. */
3628 sprintf (regname, "$vi%d", i);
3629 symbol_table_insert (symbol_new (regname, reg_section,
3630 RTYPE_VI | i, &zero_address_frag));
3631
3632 /* MSA register. */
3633 sprintf (regname, "$w%d", i);
3634 symbol_table_insert (symbol_new (regname, reg_section,
3635 RTYPE_MSA | i, &zero_address_frag));
3636 }
3637
3638 obstack_init (&mips_operand_tokens);
3639
3640 mips_no_prev_insn ();
3641
3642 mips_gprmask = 0;
3643 mips_cprmask[0] = 0;
3644 mips_cprmask[1] = 0;
3645 mips_cprmask[2] = 0;
3646 mips_cprmask[3] = 0;
3647
3648 /* set the default alignment for the text section (2**2) */
3649 record_alignment (text_section, 2);
3650
3651 bfd_set_gp_size (stdoutput, g_switch_value);
3652
3653 /* On a native system other than VxWorks, sections must be aligned
3654 to 16 byte boundaries. When configured for an embedded ELF
3655 target, we don't bother. */
3656 if (strncmp (TARGET_OS, "elf", 3) != 0
3657 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3658 {
3659 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3660 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3661 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3662 }
3663
3664 /* Create a .reginfo section for register masks and a .mdebug
3665 section for debugging information. */
3666 {
3667 segT seg;
3668 subsegT subseg;
3669 flagword flags;
3670 segT sec;
3671
3672 seg = now_seg;
3673 subseg = now_subseg;
3674
3675 /* The ABI says this section should be loaded so that the
3676 running program can access it. However, we don't load it
3677 if we are configured for an embedded target */
3678 flags = SEC_READONLY | SEC_DATA;
3679 if (strncmp (TARGET_OS, "elf", 3) != 0)
3680 flags |= SEC_ALLOC | SEC_LOAD;
3681
3682 if (mips_abi != N64_ABI)
3683 {
3684 sec = subseg_new (".reginfo", (subsegT) 0);
3685
3686 bfd_set_section_flags (stdoutput, sec, flags);
3687 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3688
3689 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3690 }
3691 else
3692 {
3693 /* The 64-bit ABI uses a .MIPS.options section rather than
3694 .reginfo section. */
3695 sec = subseg_new (".MIPS.options", (subsegT) 0);
3696 bfd_set_section_flags (stdoutput, sec, flags);
3697 bfd_set_section_alignment (stdoutput, sec, 3);
3698
3699 /* Set up the option header. */
3700 {
3701 Elf_Internal_Options opthdr;
3702 char *f;
3703
3704 opthdr.kind = ODK_REGINFO;
3705 opthdr.size = (sizeof (Elf_External_Options)
3706 + sizeof (Elf64_External_RegInfo));
3707 opthdr.section = 0;
3708 opthdr.info = 0;
3709 f = frag_more (sizeof (Elf_External_Options));
3710 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3711 (Elf_External_Options *) f);
3712
3713 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3714 }
3715 }
3716
3717 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3718 bfd_set_section_flags (stdoutput, sec,
3719 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3720 bfd_set_section_alignment (stdoutput, sec, 3);
3721 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3722
3723 if (ECOFF_DEBUGGING)
3724 {
3725 sec = subseg_new (".mdebug", (subsegT) 0);
3726 (void) bfd_set_section_flags (stdoutput, sec,
3727 SEC_HAS_CONTENTS | SEC_READONLY);
3728 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3729 }
3730 else if (mips_flag_pdr)
3731 {
3732 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3733 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3734 SEC_READONLY | SEC_RELOC
3735 | SEC_DEBUGGING);
3736 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3737 }
3738
3739 subseg_set (seg, subseg);
3740 }
3741
3742 if (mips_fix_vr4120)
3743 init_vr4120_conflicts ();
3744 }
3745
3746 static inline void
3747 fpabi_incompatible_with (int fpabi, const char *what)
3748 {
3749 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3750 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3751 }
3752
3753 static inline void
3754 fpabi_requires (int fpabi, const char *what)
3755 {
3756 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3757 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3758 }
3759
3760 /* Check -mabi and register sizes against the specified FP ABI. */
3761 static void
3762 check_fpabi (int fpabi)
3763 {
3764 switch (fpabi)
3765 {
3766 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3767 if (file_mips_opts.soft_float)
3768 fpabi_incompatible_with (fpabi, "softfloat");
3769 else if (file_mips_opts.single_float)
3770 fpabi_incompatible_with (fpabi, "singlefloat");
3771 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3772 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3773 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3774 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3775 break;
3776
3777 case Val_GNU_MIPS_ABI_FP_XX:
3778 if (mips_abi != O32_ABI)
3779 fpabi_requires (fpabi, "-mabi=32");
3780 else if (file_mips_opts.soft_float)
3781 fpabi_incompatible_with (fpabi, "softfloat");
3782 else if (file_mips_opts.single_float)
3783 fpabi_incompatible_with (fpabi, "singlefloat");
3784 else if (file_mips_opts.fp != 0)
3785 fpabi_requires (fpabi, "fp=xx");
3786 break;
3787
3788 case Val_GNU_MIPS_ABI_FP_64A:
3789 case Val_GNU_MIPS_ABI_FP_64:
3790 if (mips_abi != O32_ABI)
3791 fpabi_requires (fpabi, "-mabi=32");
3792 else if (file_mips_opts.soft_float)
3793 fpabi_incompatible_with (fpabi, "softfloat");
3794 else if (file_mips_opts.single_float)
3795 fpabi_incompatible_with (fpabi, "singlefloat");
3796 else if (file_mips_opts.fp != 64)
3797 fpabi_requires (fpabi, "fp=64");
3798 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3799 fpabi_incompatible_with (fpabi, "nooddspreg");
3800 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3801 fpabi_requires (fpabi, "nooddspreg");
3802 break;
3803
3804 case Val_GNU_MIPS_ABI_FP_SINGLE:
3805 if (file_mips_opts.soft_float)
3806 fpabi_incompatible_with (fpabi, "softfloat");
3807 else if (!file_mips_opts.single_float)
3808 fpabi_requires (fpabi, "singlefloat");
3809 break;
3810
3811 case Val_GNU_MIPS_ABI_FP_SOFT:
3812 if (!file_mips_opts.soft_float)
3813 fpabi_requires (fpabi, "softfloat");
3814 break;
3815
3816 case Val_GNU_MIPS_ABI_FP_OLD_64:
3817 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3818 Tag_GNU_MIPS_ABI_FP, fpabi);
3819 break;
3820
3821 case Val_GNU_MIPS_ABI_FP_NAN2008:
3822 /* Silently ignore compatibility value. */
3823 break;
3824
3825 default:
3826 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3827 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3828 break;
3829 }
3830 }
3831
3832 /* Perform consistency checks on the current options. */
3833
3834 static void
3835 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3836 {
3837 /* Check the size of integer registers agrees with the ABI and ISA. */
3838 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3839 as_bad (_("`gp=64' used with a 32-bit processor"));
3840 else if (abi_checks
3841 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3842 as_bad (_("`gp=32' used with a 64-bit ABI"));
3843 else if (abi_checks
3844 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3845 as_bad (_("`gp=64' used with a 32-bit ABI"));
3846
3847 /* Check the size of the float registers agrees with the ABI and ISA. */
3848 switch (opts->fp)
3849 {
3850 case 0:
3851 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3852 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3853 else if (opts->single_float == 1)
3854 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3855 break;
3856 case 64:
3857 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3858 as_bad (_("`fp=64' used with a 32-bit fpu"));
3859 else if (abi_checks
3860 && ABI_NEEDS_32BIT_REGS (mips_abi)
3861 && !ISA_HAS_MXHC1 (opts->isa))
3862 as_warn (_("`fp=64' used with a 32-bit ABI"));
3863 break;
3864 case 32:
3865 if (abi_checks
3866 && ABI_NEEDS_64BIT_REGS (mips_abi))
3867 as_warn (_("`fp=32' used with a 64-bit ABI"));
3868 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3869 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3870 break;
3871 default:
3872 as_bad (_("Unknown size of floating point registers"));
3873 break;
3874 }
3875
3876 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3877 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3878
3879 if (opts->micromips == 1 && opts->mips16 == 1)
3880 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3881 else if (ISA_IS_R6 (opts->isa)
3882 && (opts->micromips == 1
3883 || opts->mips16 == 1))
3884 as_fatal (_("`%s' cannot be used with `%s'"),
3885 opts->micromips ? "micromips" : "mips16",
3886 mips_cpu_info_from_isa (opts->isa)->name);
3887
3888 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3889 as_fatal (_("branch relaxation is not supported in `%s'"),
3890 mips_cpu_info_from_isa (opts->isa)->name);
3891 }
3892
3893 /* Perform consistency checks on the module level options exactly once.
3894 This is a deferred check that happens:
3895 at the first .set directive
3896 or, at the first pseudo op that generates code (inc .dc.a)
3897 or, at the first instruction
3898 or, at the end. */
3899
3900 static void
3901 file_mips_check_options (void)
3902 {
3903 const struct mips_cpu_info *arch_info = 0;
3904
3905 if (file_mips_opts_checked)
3906 return;
3907
3908 /* The following code determines the register size.
3909 Similar code was added to GCC 3.3 (see override_options() in
3910 config/mips/mips.c). The GAS and GCC code should be kept in sync
3911 as much as possible. */
3912
3913 if (file_mips_opts.gp < 0)
3914 {
3915 /* Infer the integer register size from the ABI and processor.
3916 Restrict ourselves to 32-bit registers if that's all the
3917 processor has, or if the ABI cannot handle 64-bit registers. */
3918 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3919 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3920 ? 32 : 64;
3921 }
3922
3923 if (file_mips_opts.fp < 0)
3924 {
3925 /* No user specified float register size.
3926 ??? GAS treats single-float processors as though they had 64-bit
3927 float registers (although it complains when double-precision
3928 instructions are used). As things stand, saying they have 32-bit
3929 registers would lead to spurious "register must be even" messages.
3930 So here we assume float registers are never smaller than the
3931 integer ones. */
3932 if (file_mips_opts.gp == 64)
3933 /* 64-bit integer registers implies 64-bit float registers. */
3934 file_mips_opts.fp = 64;
3935 else if ((file_mips_opts.ase & FP64_ASES)
3936 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3937 /* Handle ASEs that require 64-bit float registers, if possible. */
3938 file_mips_opts.fp = 64;
3939 else if (ISA_IS_R6 (mips_opts.isa))
3940 /* R6 implies 64-bit float registers. */
3941 file_mips_opts.fp = 64;
3942 else
3943 /* 32-bit float registers. */
3944 file_mips_opts.fp = 32;
3945 }
3946
3947 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3948
3949 /* Disable operations on odd-numbered floating-point registers by default
3950 when using the FPXX ABI. */
3951 if (file_mips_opts.oddspreg < 0)
3952 {
3953 if (file_mips_opts.fp == 0)
3954 file_mips_opts.oddspreg = 0;
3955 else
3956 file_mips_opts.oddspreg = 1;
3957 }
3958
3959 /* End of GCC-shared inference code. */
3960
3961 /* This flag is set when we have a 64-bit capable CPU but use only
3962 32-bit wide registers. Note that EABI does not use it. */
3963 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3964 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3965 || mips_abi == O32_ABI))
3966 mips_32bitmode = 1;
3967
3968 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3969 as_bad (_("trap exception not supported at ISA 1"));
3970
3971 /* If the selected architecture includes support for ASEs, enable
3972 generation of code for them. */
3973 if (file_mips_opts.mips16 == -1)
3974 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3975 if (file_mips_opts.micromips == -1)
3976 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3977 ? 1 : 0;
3978
3979 if (mips_nan2008 == -1)
3980 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3981 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3982 as_fatal (_("`%s' does not support legacy NaN"),
3983 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3984
3985 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3986 being selected implicitly. */
3987 if (file_mips_opts.fp != 64)
3988 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3989
3990 /* If the user didn't explicitly select or deselect a particular ASE,
3991 use the default setting for the CPU. */
3992 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3993
3994 /* Set up the current options. These may change throughout assembly. */
3995 mips_opts = file_mips_opts;
3996
3997 mips_check_isa_supports_ases ();
3998 mips_check_options (&file_mips_opts, TRUE);
3999 file_mips_opts_checked = TRUE;
4000
4001 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4002 as_warn (_("could not set architecture and machine"));
4003 }
4004
4005 void
4006 md_assemble (char *str)
4007 {
4008 struct mips_cl_insn insn;
4009 bfd_reloc_code_real_type unused_reloc[3]
4010 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4011
4012 file_mips_check_options ();
4013
4014 imm_expr.X_op = O_absent;
4015 offset_expr.X_op = O_absent;
4016 offset_reloc[0] = BFD_RELOC_UNUSED;
4017 offset_reloc[1] = BFD_RELOC_UNUSED;
4018 offset_reloc[2] = BFD_RELOC_UNUSED;
4019
4020 mips_mark_labels ();
4021 mips_assembling_insn = TRUE;
4022 clear_insn_error ();
4023
4024 if (mips_opts.mips16)
4025 mips16_ip (str, &insn);
4026 else
4027 {
4028 mips_ip (str, &insn);
4029 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4030 str, insn.insn_opcode));
4031 }
4032
4033 if (insn_error.msg)
4034 report_insn_error (str);
4035 else if (insn.insn_mo->pinfo == INSN_MACRO)
4036 {
4037 macro_start ();
4038 if (mips_opts.mips16)
4039 mips16_macro (&insn);
4040 else
4041 macro (&insn, str);
4042 macro_end ();
4043 }
4044 else
4045 {
4046 if (offset_expr.X_op != O_absent)
4047 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4048 else
4049 append_insn (&insn, NULL, unused_reloc, FALSE);
4050 }
4051
4052 mips_assembling_insn = FALSE;
4053 }
4054
4055 /* Convenience functions for abstracting away the differences between
4056 MIPS16 and non-MIPS16 relocations. */
4057
4058 static inline bfd_boolean
4059 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4060 {
4061 switch (reloc)
4062 {
4063 case BFD_RELOC_MIPS16_JMP:
4064 case BFD_RELOC_MIPS16_GPREL:
4065 case BFD_RELOC_MIPS16_GOT16:
4066 case BFD_RELOC_MIPS16_CALL16:
4067 case BFD_RELOC_MIPS16_HI16_S:
4068 case BFD_RELOC_MIPS16_HI16:
4069 case BFD_RELOC_MIPS16_LO16:
4070 case BFD_RELOC_MIPS16_16_PCREL_S1:
4071 return TRUE;
4072
4073 default:
4074 return FALSE;
4075 }
4076 }
4077
4078 static inline bfd_boolean
4079 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4080 {
4081 switch (reloc)
4082 {
4083 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4084 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4085 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4086 case BFD_RELOC_MICROMIPS_GPREL16:
4087 case BFD_RELOC_MICROMIPS_JMP:
4088 case BFD_RELOC_MICROMIPS_HI16:
4089 case BFD_RELOC_MICROMIPS_HI16_S:
4090 case BFD_RELOC_MICROMIPS_LO16:
4091 case BFD_RELOC_MICROMIPS_LITERAL:
4092 case BFD_RELOC_MICROMIPS_GOT16:
4093 case BFD_RELOC_MICROMIPS_CALL16:
4094 case BFD_RELOC_MICROMIPS_GOT_HI16:
4095 case BFD_RELOC_MICROMIPS_GOT_LO16:
4096 case BFD_RELOC_MICROMIPS_CALL_HI16:
4097 case BFD_RELOC_MICROMIPS_CALL_LO16:
4098 case BFD_RELOC_MICROMIPS_SUB:
4099 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4100 case BFD_RELOC_MICROMIPS_GOT_OFST:
4101 case BFD_RELOC_MICROMIPS_GOT_DISP:
4102 case BFD_RELOC_MICROMIPS_HIGHEST:
4103 case BFD_RELOC_MICROMIPS_HIGHER:
4104 case BFD_RELOC_MICROMIPS_SCN_DISP:
4105 case BFD_RELOC_MICROMIPS_JALR:
4106 return TRUE;
4107
4108 default:
4109 return FALSE;
4110 }
4111 }
4112
4113 static inline bfd_boolean
4114 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4115 {
4116 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4117 }
4118
4119 static inline bfd_boolean
4120 b_reloc_p (bfd_reloc_code_real_type reloc)
4121 {
4122 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4123 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4124 || reloc == BFD_RELOC_16_PCREL_S2
4125 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4126 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4127 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4128 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4129 }
4130
4131 static inline bfd_boolean
4132 got16_reloc_p (bfd_reloc_code_real_type reloc)
4133 {
4134 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4135 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4136 }
4137
4138 static inline bfd_boolean
4139 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4140 {
4141 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4142 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4143 }
4144
4145 static inline bfd_boolean
4146 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4147 {
4148 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4149 || reloc == BFD_RELOC_MICROMIPS_LO16);
4150 }
4151
4152 static inline bfd_boolean
4153 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4154 {
4155 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4156 }
4157
4158 static inline bfd_boolean
4159 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4160 {
4161 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4162 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4163 }
4164
4165 /* Return true if RELOC is a PC-relative relocation that does not have
4166 full address range. */
4167
4168 static inline bfd_boolean
4169 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4170 {
4171 switch (reloc)
4172 {
4173 case BFD_RELOC_16_PCREL_S2:
4174 case BFD_RELOC_MIPS16_16_PCREL_S1:
4175 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4176 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4177 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4178 case BFD_RELOC_MIPS_21_PCREL_S2:
4179 case BFD_RELOC_MIPS_26_PCREL_S2:
4180 case BFD_RELOC_MIPS_18_PCREL_S3:
4181 case BFD_RELOC_MIPS_19_PCREL_S2:
4182 return TRUE;
4183
4184 case BFD_RELOC_32_PCREL:
4185 case BFD_RELOC_HI16_S_PCREL:
4186 case BFD_RELOC_LO16_PCREL:
4187 return HAVE_64BIT_ADDRESSES;
4188
4189 default:
4190 return FALSE;
4191 }
4192 }
4193
4194 /* Return true if the given relocation might need a matching %lo().
4195 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4196 need a matching %lo() when applied to local symbols. */
4197
4198 static inline bfd_boolean
4199 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4200 {
4201 return (HAVE_IN_PLACE_ADDENDS
4202 && (hi16_reloc_p (reloc)
4203 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4204 all GOT16 relocations evaluate to "G". */
4205 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4206 }
4207
4208 /* Return the type of %lo() reloc needed by RELOC, given that
4209 reloc_needs_lo_p. */
4210
4211 static inline bfd_reloc_code_real_type
4212 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4213 {
4214 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4215 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4216 : BFD_RELOC_LO16));
4217 }
4218
4219 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4220 relocation. */
4221
4222 static inline bfd_boolean
4223 fixup_has_matching_lo_p (fixS *fixp)
4224 {
4225 return (fixp->fx_next != NULL
4226 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4227 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4228 && fixp->fx_offset == fixp->fx_next->fx_offset);
4229 }
4230
4231 /* Move all labels in LABELS to the current insertion point. TEXT_P
4232 says whether the labels refer to text or data. */
4233
4234 static void
4235 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4236 {
4237 struct insn_label_list *l;
4238 valueT val;
4239
4240 for (l = labels; l != NULL; l = l->next)
4241 {
4242 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4243 symbol_set_frag (l->label, frag_now);
4244 val = (valueT) frag_now_fix ();
4245 /* MIPS16/microMIPS text labels are stored as odd. */
4246 if (text_p && HAVE_CODE_COMPRESSION)
4247 ++val;
4248 S_SET_VALUE (l->label, val);
4249 }
4250 }
4251
4252 /* Move all labels in insn_labels to the current insertion point
4253 and treat them as text labels. */
4254
4255 static void
4256 mips_move_text_labels (void)
4257 {
4258 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4259 }
4260
4261 static bfd_boolean
4262 s_is_linkonce (symbolS *sym, segT from_seg)
4263 {
4264 bfd_boolean linkonce = FALSE;
4265 segT symseg = S_GET_SEGMENT (sym);
4266
4267 if (symseg != from_seg && !S_IS_LOCAL (sym))
4268 {
4269 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4270 linkonce = TRUE;
4271 /* The GNU toolchain uses an extension for ELF: a section
4272 beginning with the magic string .gnu.linkonce is a
4273 linkonce section. */
4274 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4275 sizeof ".gnu.linkonce" - 1) == 0)
4276 linkonce = TRUE;
4277 }
4278 return linkonce;
4279 }
4280
4281 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4282 linker to handle them specially, such as generating jalx instructions
4283 when needed. We also make them odd for the duration of the assembly,
4284 in order to generate the right sort of code. We will make them even
4285 in the adjust_symtab routine, while leaving them marked. This is
4286 convenient for the debugger and the disassembler. The linker knows
4287 to make them odd again. */
4288
4289 static void
4290 mips_compressed_mark_label (symbolS *label)
4291 {
4292 gas_assert (HAVE_CODE_COMPRESSION);
4293
4294 if (mips_opts.mips16)
4295 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4296 else
4297 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4298 if ((S_GET_VALUE (label) & 1) == 0
4299 /* Don't adjust the address if the label is global or weak, or
4300 in a link-once section, since we'll be emitting symbol reloc
4301 references to it which will be patched up by the linker, and
4302 the final value of the symbol may or may not be MIPS16/microMIPS. */
4303 && !S_IS_WEAK (label)
4304 && !S_IS_EXTERNAL (label)
4305 && !s_is_linkonce (label, now_seg))
4306 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4307 }
4308
4309 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4310
4311 static void
4312 mips_compressed_mark_labels (void)
4313 {
4314 struct insn_label_list *l;
4315
4316 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4317 mips_compressed_mark_label (l->label);
4318 }
4319
4320 /* End the current frag. Make it a variant frag and record the
4321 relaxation info. */
4322
4323 static void
4324 relax_close_frag (void)
4325 {
4326 mips_macro_warning.first_frag = frag_now;
4327 frag_var (rs_machine_dependent, 0, 0,
4328 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4329 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4330
4331 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4332 mips_relax.first_fixup = 0;
4333 }
4334
4335 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4336 See the comment above RELAX_ENCODE for more details. */
4337
4338 static void
4339 relax_start (symbolS *symbol)
4340 {
4341 gas_assert (mips_relax.sequence == 0);
4342 mips_relax.sequence = 1;
4343 mips_relax.symbol = symbol;
4344 }
4345
4346 /* Start generating the second version of a relaxable sequence.
4347 See the comment above RELAX_ENCODE for more details. */
4348
4349 static void
4350 relax_switch (void)
4351 {
4352 gas_assert (mips_relax.sequence == 1);
4353 mips_relax.sequence = 2;
4354 }
4355
4356 /* End the current relaxable sequence. */
4357
4358 static void
4359 relax_end (void)
4360 {
4361 gas_assert (mips_relax.sequence == 2);
4362 relax_close_frag ();
4363 mips_relax.sequence = 0;
4364 }
4365
4366 /* Return true if IP is a delayed branch or jump. */
4367
4368 static inline bfd_boolean
4369 delayed_branch_p (const struct mips_cl_insn *ip)
4370 {
4371 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4372 | INSN_COND_BRANCH_DELAY
4373 | INSN_COND_BRANCH_LIKELY)) != 0;
4374 }
4375
4376 /* Return true if IP is a compact branch or jump. */
4377
4378 static inline bfd_boolean
4379 compact_branch_p (const struct mips_cl_insn *ip)
4380 {
4381 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4382 | INSN2_COND_BRANCH)) != 0;
4383 }
4384
4385 /* Return true if IP is an unconditional branch or jump. */
4386
4387 static inline bfd_boolean
4388 uncond_branch_p (const struct mips_cl_insn *ip)
4389 {
4390 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4391 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4392 }
4393
4394 /* Return true if IP is a branch-likely instruction. */
4395
4396 static inline bfd_boolean
4397 branch_likely_p (const struct mips_cl_insn *ip)
4398 {
4399 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4400 }
4401
4402 /* Return the type of nop that should be used to fill the delay slot
4403 of delayed branch IP. */
4404
4405 static struct mips_cl_insn *
4406 get_delay_slot_nop (const struct mips_cl_insn *ip)
4407 {
4408 if (mips_opts.micromips
4409 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4410 return &micromips_nop32_insn;
4411 return NOP_INSN;
4412 }
4413
4414 /* Return a mask that has bit N set if OPCODE reads the register(s)
4415 in operand N. */
4416
4417 static unsigned int
4418 insn_read_mask (const struct mips_opcode *opcode)
4419 {
4420 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4421 }
4422
4423 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4424 in operand N. */
4425
4426 static unsigned int
4427 insn_write_mask (const struct mips_opcode *opcode)
4428 {
4429 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4430 }
4431
4432 /* Return a mask of the registers specified by operand OPERAND of INSN.
4433 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4434 is set. */
4435
4436 static unsigned int
4437 operand_reg_mask (const struct mips_cl_insn *insn,
4438 const struct mips_operand *operand,
4439 unsigned int type_mask)
4440 {
4441 unsigned int uval, vsel;
4442
4443 switch (operand->type)
4444 {
4445 case OP_INT:
4446 case OP_MAPPED_INT:
4447 case OP_MSB:
4448 case OP_PCREL:
4449 case OP_PERF_REG:
4450 case OP_ADDIUSP_INT:
4451 case OP_ENTRY_EXIT_LIST:
4452 case OP_REPEAT_DEST_REG:
4453 case OP_REPEAT_PREV_REG:
4454 case OP_PC:
4455 case OP_VU0_SUFFIX:
4456 case OP_VU0_MATCH_SUFFIX:
4457 case OP_IMM_INDEX:
4458 abort ();
4459
4460 case OP_REG:
4461 case OP_OPTIONAL_REG:
4462 {
4463 const struct mips_reg_operand *reg_op;
4464
4465 reg_op = (const struct mips_reg_operand *) operand;
4466 if (!(type_mask & (1 << reg_op->reg_type)))
4467 return 0;
4468 uval = insn_extract_operand (insn, operand);
4469 return 1 << mips_decode_reg_operand (reg_op, uval);
4470 }
4471
4472 case OP_REG_PAIR:
4473 {
4474 const struct mips_reg_pair_operand *pair_op;
4475
4476 pair_op = (const struct mips_reg_pair_operand *) operand;
4477 if (!(type_mask & (1 << pair_op->reg_type)))
4478 return 0;
4479 uval = insn_extract_operand (insn, operand);
4480 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4481 }
4482
4483 case OP_CLO_CLZ_DEST:
4484 if (!(type_mask & (1 << OP_REG_GP)))
4485 return 0;
4486 uval = insn_extract_operand (insn, operand);
4487 return (1 << (uval & 31)) | (1 << (uval >> 5));
4488
4489 case OP_SAME_RS_RT:
4490 if (!(type_mask & (1 << OP_REG_GP)))
4491 return 0;
4492 uval = insn_extract_operand (insn, operand);
4493 gas_assert ((uval & 31) == (uval >> 5));
4494 return 1 << (uval & 31);
4495
4496 case OP_CHECK_PREV:
4497 case OP_NON_ZERO_REG:
4498 if (!(type_mask & (1 << OP_REG_GP)))
4499 return 0;
4500 uval = insn_extract_operand (insn, operand);
4501 return 1 << (uval & 31);
4502
4503 case OP_LWM_SWM_LIST:
4504 abort ();
4505
4506 case OP_SAVE_RESTORE_LIST:
4507 abort ();
4508
4509 case OP_MDMX_IMM_REG:
4510 if (!(type_mask & (1 << OP_REG_VEC)))
4511 return 0;
4512 uval = insn_extract_operand (insn, operand);
4513 vsel = uval >> 5;
4514 if ((vsel & 0x18) == 0x18)
4515 return 0;
4516 return 1 << (uval & 31);
4517
4518 case OP_REG_INDEX:
4519 if (!(type_mask & (1 << OP_REG_GP)))
4520 return 0;
4521 return 1 << insn_extract_operand (insn, operand);
4522 }
4523 abort ();
4524 }
4525
4526 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4527 where bit N of OPNO_MASK is set if operand N should be included.
4528 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4529 is set. */
4530
4531 static unsigned int
4532 insn_reg_mask (const struct mips_cl_insn *insn,
4533 unsigned int type_mask, unsigned int opno_mask)
4534 {
4535 unsigned int opno, reg_mask;
4536
4537 opno = 0;
4538 reg_mask = 0;
4539 while (opno_mask != 0)
4540 {
4541 if (opno_mask & 1)
4542 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4543 opno_mask >>= 1;
4544 opno += 1;
4545 }
4546 return reg_mask;
4547 }
4548
4549 /* Return the mask of core registers that IP reads. */
4550
4551 static unsigned int
4552 gpr_read_mask (const struct mips_cl_insn *ip)
4553 {
4554 unsigned long pinfo, pinfo2;
4555 unsigned int mask;
4556
4557 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4558 pinfo = ip->insn_mo->pinfo;
4559 pinfo2 = ip->insn_mo->pinfo2;
4560 if (pinfo & INSN_UDI)
4561 {
4562 /* UDI instructions have traditionally been assumed to read RS
4563 and RT. */
4564 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4565 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4566 }
4567 if (pinfo & INSN_READ_GPR_24)
4568 mask |= 1 << 24;
4569 if (pinfo2 & INSN2_READ_GPR_16)
4570 mask |= 1 << 16;
4571 if (pinfo2 & INSN2_READ_SP)
4572 mask |= 1 << SP;
4573 if (pinfo2 & INSN2_READ_GPR_31)
4574 mask |= 1 << 31;
4575 /* Don't include register 0. */
4576 return mask & ~1;
4577 }
4578
4579 /* Return the mask of core registers that IP writes. */
4580
4581 static unsigned int
4582 gpr_write_mask (const struct mips_cl_insn *ip)
4583 {
4584 unsigned long pinfo, pinfo2;
4585 unsigned int mask;
4586
4587 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4588 pinfo = ip->insn_mo->pinfo;
4589 pinfo2 = ip->insn_mo->pinfo2;
4590 if (pinfo & INSN_WRITE_GPR_24)
4591 mask |= 1 << 24;
4592 if (pinfo & INSN_WRITE_GPR_31)
4593 mask |= 1 << 31;
4594 if (pinfo & INSN_UDI)
4595 /* UDI instructions have traditionally been assumed to write to RD. */
4596 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4597 if (pinfo2 & INSN2_WRITE_SP)
4598 mask |= 1 << SP;
4599 /* Don't include register 0. */
4600 return mask & ~1;
4601 }
4602
4603 /* Return the mask of floating-point registers that IP reads. */
4604
4605 static unsigned int
4606 fpr_read_mask (const struct mips_cl_insn *ip)
4607 {
4608 unsigned long pinfo;
4609 unsigned int mask;
4610
4611 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4612 | (1 << OP_REG_MSA)),
4613 insn_read_mask (ip->insn_mo));
4614 pinfo = ip->insn_mo->pinfo;
4615 /* Conservatively treat all operands to an FP_D instruction are doubles.
4616 (This is overly pessimistic for things like cvt.d.s.) */
4617 if (FPR_SIZE != 64 && (pinfo & FP_D))
4618 mask |= mask << 1;
4619 return mask;
4620 }
4621
4622 /* Return the mask of floating-point registers that IP writes. */
4623
4624 static unsigned int
4625 fpr_write_mask (const struct mips_cl_insn *ip)
4626 {
4627 unsigned long pinfo;
4628 unsigned int mask;
4629
4630 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4631 | (1 << OP_REG_MSA)),
4632 insn_write_mask (ip->insn_mo));
4633 pinfo = ip->insn_mo->pinfo;
4634 /* Conservatively treat all operands to an FP_D instruction are doubles.
4635 (This is overly pessimistic for things like cvt.s.d.) */
4636 if (FPR_SIZE != 64 && (pinfo & FP_D))
4637 mask |= mask << 1;
4638 return mask;
4639 }
4640
4641 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4642 Check whether that is allowed. */
4643
4644 static bfd_boolean
4645 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4646 {
4647 const char *s = insn->name;
4648 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4649 || FPR_SIZE == 64)
4650 && mips_opts.oddspreg;
4651
4652 if (insn->pinfo == INSN_MACRO)
4653 /* Let a macro pass, we'll catch it later when it is expanded. */
4654 return TRUE;
4655
4656 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4657 otherwise it depends on oddspreg. */
4658 if ((insn->pinfo & FP_S)
4659 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4660 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4661 return FPR_SIZE == 32 || oddspreg;
4662
4663 /* Allow odd registers for single-precision ops and double-precision if the
4664 floating-point registers are 64-bit wide. */
4665 switch (insn->pinfo & (FP_S | FP_D))
4666 {
4667 case FP_S:
4668 case 0:
4669 return oddspreg;
4670 case FP_D:
4671 return FPR_SIZE == 64;
4672 default:
4673 break;
4674 }
4675
4676 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4677 s = strchr (insn->name, '.');
4678 if (s != NULL && opnum == 2)
4679 s = strchr (s + 1, '.');
4680 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4681 return oddspreg;
4682
4683 return FPR_SIZE == 64;
4684 }
4685
4686 /* Information about an instruction argument that we're trying to match. */
4687 struct mips_arg_info
4688 {
4689 /* The instruction so far. */
4690 struct mips_cl_insn *insn;
4691
4692 /* The first unconsumed operand token. */
4693 struct mips_operand_token *token;
4694
4695 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4696 int opnum;
4697
4698 /* The 1-based argument number, for error reporting. This does not
4699 count elided optional registers, etc.. */
4700 int argnum;
4701
4702 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4703 unsigned int last_regno;
4704
4705 /* If the first operand was an OP_REG, this is the register that it
4706 specified, otherwise it is ILLEGAL_REG. */
4707 unsigned int dest_regno;
4708
4709 /* The value of the last OP_INT operand. Only used for OP_MSB,
4710 where it gives the lsb position. */
4711 unsigned int last_op_int;
4712
4713 /* If true, match routines should assume that no later instruction
4714 alternative matches and should therefore be as accomodating as
4715 possible. Match routines should not report errors if something
4716 is only invalid for !LAX_MATCH. */
4717 bfd_boolean lax_match;
4718
4719 /* True if a reference to the current AT register was seen. */
4720 bfd_boolean seen_at;
4721 };
4722
4723 /* Record that the argument is out of range. */
4724
4725 static void
4726 match_out_of_range (struct mips_arg_info *arg)
4727 {
4728 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4729 }
4730
4731 /* Record that the argument isn't constant but needs to be. */
4732
4733 static void
4734 match_not_constant (struct mips_arg_info *arg)
4735 {
4736 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4737 arg->argnum);
4738 }
4739
4740 /* Try to match an OT_CHAR token for character CH. Consume the token
4741 and return true on success, otherwise return false. */
4742
4743 static bfd_boolean
4744 match_char (struct mips_arg_info *arg, char ch)
4745 {
4746 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4747 {
4748 ++arg->token;
4749 if (ch == ',')
4750 arg->argnum += 1;
4751 return TRUE;
4752 }
4753 return FALSE;
4754 }
4755
4756 /* Try to get an expression from the next tokens in ARG. Consume the
4757 tokens and return true on success, storing the expression value in
4758 VALUE and relocation types in R. */
4759
4760 static bfd_boolean
4761 match_expression (struct mips_arg_info *arg, expressionS *value,
4762 bfd_reloc_code_real_type *r)
4763 {
4764 /* If the next token is a '(' that was parsed as being part of a base
4765 expression, assume we have an elided offset. The later match will fail
4766 if this turns out to be wrong. */
4767 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4768 {
4769 value->X_op = O_constant;
4770 value->X_add_number = 0;
4771 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4772 return TRUE;
4773 }
4774
4775 /* Reject register-based expressions such as "0+$2" and "(($2))".
4776 For plain registers the default error seems more appropriate. */
4777 if (arg->token->type == OT_INTEGER
4778 && arg->token->u.integer.value.X_op == O_register)
4779 {
4780 set_insn_error (arg->argnum, _("register value used as expression"));
4781 return FALSE;
4782 }
4783
4784 if (arg->token->type == OT_INTEGER)
4785 {
4786 *value = arg->token->u.integer.value;
4787 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4788 ++arg->token;
4789 return TRUE;
4790 }
4791
4792 set_insn_error_i
4793 (arg->argnum, _("operand %d must be an immediate expression"),
4794 arg->argnum);
4795 return FALSE;
4796 }
4797
4798 /* Try to get a constant expression from the next tokens in ARG. Consume
4799 the tokens and return return true on success, storing the constant value
4800 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4801 error. */
4802
4803 static bfd_boolean
4804 match_const_int (struct mips_arg_info *arg, offsetT *value)
4805 {
4806 expressionS ex;
4807 bfd_reloc_code_real_type r[3];
4808
4809 if (!match_expression (arg, &ex, r))
4810 return FALSE;
4811
4812 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4813 *value = ex.X_add_number;
4814 else
4815 {
4816 match_not_constant (arg);
4817 return FALSE;
4818 }
4819 return TRUE;
4820 }
4821
4822 /* Return the RTYPE_* flags for a register operand of type TYPE that
4823 appears in instruction OPCODE. */
4824
4825 static unsigned int
4826 convert_reg_type (const struct mips_opcode *opcode,
4827 enum mips_reg_operand_type type)
4828 {
4829 switch (type)
4830 {
4831 case OP_REG_GP:
4832 return RTYPE_NUM | RTYPE_GP;
4833
4834 case OP_REG_FP:
4835 /* Allow vector register names for MDMX if the instruction is a 64-bit
4836 FPR load, store or move (including moves to and from GPRs). */
4837 if ((mips_opts.ase & ASE_MDMX)
4838 && (opcode->pinfo & FP_D)
4839 && (opcode->pinfo & (INSN_COPROC_MOVE
4840 | INSN_COPROC_MEMORY_DELAY
4841 | INSN_LOAD_COPROC
4842 | INSN_LOAD_MEMORY
4843 | INSN_STORE_MEMORY)))
4844 return RTYPE_FPU | RTYPE_VEC;
4845 return RTYPE_FPU;
4846
4847 case OP_REG_CCC:
4848 if (opcode->pinfo & (FP_D | FP_S))
4849 return RTYPE_CCC | RTYPE_FCC;
4850 return RTYPE_CCC;
4851
4852 case OP_REG_VEC:
4853 if (opcode->membership & INSN_5400)
4854 return RTYPE_FPU;
4855 return RTYPE_FPU | RTYPE_VEC;
4856
4857 case OP_REG_ACC:
4858 return RTYPE_ACC;
4859
4860 case OP_REG_COPRO:
4861 if (opcode->name[strlen (opcode->name) - 1] == '0')
4862 return RTYPE_NUM | RTYPE_CP0;
4863 return RTYPE_NUM;
4864
4865 case OP_REG_HW:
4866 return RTYPE_NUM;
4867
4868 case OP_REG_VI:
4869 return RTYPE_NUM | RTYPE_VI;
4870
4871 case OP_REG_VF:
4872 return RTYPE_NUM | RTYPE_VF;
4873
4874 case OP_REG_R5900_I:
4875 return RTYPE_R5900_I;
4876
4877 case OP_REG_R5900_Q:
4878 return RTYPE_R5900_Q;
4879
4880 case OP_REG_R5900_R:
4881 return RTYPE_R5900_R;
4882
4883 case OP_REG_R5900_ACC:
4884 return RTYPE_R5900_ACC;
4885
4886 case OP_REG_MSA:
4887 return RTYPE_MSA;
4888
4889 case OP_REG_MSA_CTRL:
4890 return RTYPE_NUM;
4891 }
4892 abort ();
4893 }
4894
4895 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4896
4897 static void
4898 check_regno (struct mips_arg_info *arg,
4899 enum mips_reg_operand_type type, unsigned int regno)
4900 {
4901 if (AT && type == OP_REG_GP && regno == AT)
4902 arg->seen_at = TRUE;
4903
4904 if (type == OP_REG_FP
4905 && (regno & 1) != 0
4906 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4907 {
4908 /* This was a warning prior to introducing O32 FPXX and FP64 support
4909 so maintain a warning for FP32 but raise an error for the new
4910 cases. */
4911 if (FPR_SIZE == 32)
4912 as_warn (_("float register should be even, was %d"), regno);
4913 else
4914 as_bad (_("float register should be even, was %d"), regno);
4915 }
4916
4917 if (type == OP_REG_CCC)
4918 {
4919 const char *name;
4920 size_t length;
4921
4922 name = arg->insn->insn_mo->name;
4923 length = strlen (name);
4924 if ((regno & 1) != 0
4925 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4926 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4927 as_warn (_("condition code register should be even for %s, was %d"),
4928 name, regno);
4929
4930 if ((regno & 3) != 0
4931 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4932 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4933 name, regno);
4934 }
4935 }
4936
4937 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4938 a register of type TYPE. Return true on success, storing the register
4939 number in *REGNO and warning about any dubious uses. */
4940
4941 static bfd_boolean
4942 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4943 unsigned int symval, unsigned int *regno)
4944 {
4945 if (type == OP_REG_VEC)
4946 symval = mips_prefer_vec_regno (symval);
4947 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4948 return FALSE;
4949
4950 *regno = symval & RNUM_MASK;
4951 check_regno (arg, type, *regno);
4952 return TRUE;
4953 }
4954
4955 /* Try to interpret the next token in ARG as a register of type TYPE.
4956 Consume the token and return true on success, storing the register
4957 number in *REGNO. Return false on failure. */
4958
4959 static bfd_boolean
4960 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4961 unsigned int *regno)
4962 {
4963 if (arg->token->type == OT_REG
4964 && match_regno (arg, type, arg->token->u.regno, regno))
4965 {
4966 ++arg->token;
4967 return TRUE;
4968 }
4969 return FALSE;
4970 }
4971
4972 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4973 Consume the token and return true on success, storing the register numbers
4974 in *REGNO1 and *REGNO2. Return false on failure. */
4975
4976 static bfd_boolean
4977 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4978 unsigned int *regno1, unsigned int *regno2)
4979 {
4980 if (match_reg (arg, type, regno1))
4981 {
4982 *regno2 = *regno1;
4983 return TRUE;
4984 }
4985 if (arg->token->type == OT_REG_RANGE
4986 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4987 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4988 && *regno1 <= *regno2)
4989 {
4990 ++arg->token;
4991 return TRUE;
4992 }
4993 return FALSE;
4994 }
4995
4996 /* OP_INT matcher. */
4997
4998 static bfd_boolean
4999 match_int_operand (struct mips_arg_info *arg,
5000 const struct mips_operand *operand_base)
5001 {
5002 const struct mips_int_operand *operand;
5003 unsigned int uval;
5004 int min_val, max_val, factor;
5005 offsetT sval;
5006
5007 operand = (const struct mips_int_operand *) operand_base;
5008 factor = 1 << operand->shift;
5009 min_val = mips_int_operand_min (operand);
5010 max_val = mips_int_operand_max (operand);
5011
5012 if (operand_base->lsb == 0
5013 && operand_base->size == 16
5014 && operand->shift == 0
5015 && operand->bias == 0
5016 && (operand->max_val == 32767 || operand->max_val == 65535))
5017 {
5018 /* The operand can be relocated. */
5019 if (!match_expression (arg, &offset_expr, offset_reloc))
5020 return FALSE;
5021
5022 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5023 /* Relocation operators were used. Accept the arguent and
5024 leave the relocation value in offset_expr and offset_relocs
5025 for the caller to process. */
5026 return TRUE;
5027
5028 if (offset_expr.X_op != O_constant)
5029 {
5030 /* Accept non-constant operands if no later alternative matches,
5031 leaving it for the caller to process. */
5032 if (!arg->lax_match)
5033 return FALSE;
5034 offset_reloc[0] = BFD_RELOC_LO16;
5035 return TRUE;
5036 }
5037
5038 /* Clear the global state; we're going to install the operand
5039 ourselves. */
5040 sval = offset_expr.X_add_number;
5041 offset_expr.X_op = O_absent;
5042
5043 /* For compatibility with older assemblers, we accept
5044 0x8000-0xffff as signed 16-bit numbers when only
5045 signed numbers are allowed. */
5046 if (sval > max_val)
5047 {
5048 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5049 if (!arg->lax_match && sval <= max_val)
5050 return FALSE;
5051 }
5052 }
5053 else
5054 {
5055 if (!match_const_int (arg, &sval))
5056 return FALSE;
5057 }
5058
5059 arg->last_op_int = sval;
5060
5061 if (sval < min_val || sval > max_val || sval % factor)
5062 {
5063 match_out_of_range (arg);
5064 return FALSE;
5065 }
5066
5067 uval = (unsigned int) sval >> operand->shift;
5068 uval -= operand->bias;
5069
5070 /* Handle -mfix-cn63xxp1. */
5071 if (arg->opnum == 1
5072 && mips_fix_cn63xxp1
5073 && !mips_opts.micromips
5074 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5075 switch (uval)
5076 {
5077 case 5:
5078 case 25:
5079 case 26:
5080 case 27:
5081 case 28:
5082 case 29:
5083 case 30:
5084 case 31:
5085 /* These are ok. */
5086 break;
5087
5088 default:
5089 /* The rest must be changed to 28. */
5090 uval = 28;
5091 break;
5092 }
5093
5094 insn_insert_operand (arg->insn, operand_base, uval);
5095 return TRUE;
5096 }
5097
5098 /* OP_MAPPED_INT matcher. */
5099
5100 static bfd_boolean
5101 match_mapped_int_operand (struct mips_arg_info *arg,
5102 const struct mips_operand *operand_base)
5103 {
5104 const struct mips_mapped_int_operand *operand;
5105 unsigned int uval, num_vals;
5106 offsetT sval;
5107
5108 operand = (const struct mips_mapped_int_operand *) operand_base;
5109 if (!match_const_int (arg, &sval))
5110 return FALSE;
5111
5112 num_vals = 1 << operand_base->size;
5113 for (uval = 0; uval < num_vals; uval++)
5114 if (operand->int_map[uval] == sval)
5115 break;
5116 if (uval == num_vals)
5117 {
5118 match_out_of_range (arg);
5119 return FALSE;
5120 }
5121
5122 insn_insert_operand (arg->insn, operand_base, uval);
5123 return TRUE;
5124 }
5125
5126 /* OP_MSB matcher. */
5127
5128 static bfd_boolean
5129 match_msb_operand (struct mips_arg_info *arg,
5130 const struct mips_operand *operand_base)
5131 {
5132 const struct mips_msb_operand *operand;
5133 int min_val, max_val, max_high;
5134 offsetT size, sval, high;
5135
5136 operand = (const struct mips_msb_operand *) operand_base;
5137 min_val = operand->bias;
5138 max_val = min_val + (1 << operand_base->size) - 1;
5139 max_high = operand->opsize;
5140
5141 if (!match_const_int (arg, &size))
5142 return FALSE;
5143
5144 high = size + arg->last_op_int;
5145 sval = operand->add_lsb ? high : size;
5146
5147 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5148 {
5149 match_out_of_range (arg);
5150 return FALSE;
5151 }
5152 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5153 return TRUE;
5154 }
5155
5156 /* OP_REG matcher. */
5157
5158 static bfd_boolean
5159 match_reg_operand (struct mips_arg_info *arg,
5160 const struct mips_operand *operand_base)
5161 {
5162 const struct mips_reg_operand *operand;
5163 unsigned int regno, uval, num_vals;
5164
5165 operand = (const struct mips_reg_operand *) operand_base;
5166 if (!match_reg (arg, operand->reg_type, &regno))
5167 return FALSE;
5168
5169 if (operand->reg_map)
5170 {
5171 num_vals = 1 << operand->root.size;
5172 for (uval = 0; uval < num_vals; uval++)
5173 if (operand->reg_map[uval] == regno)
5174 break;
5175 if (num_vals == uval)
5176 return FALSE;
5177 }
5178 else
5179 uval = regno;
5180
5181 arg->last_regno = regno;
5182 if (arg->opnum == 1)
5183 arg->dest_regno = regno;
5184 insn_insert_operand (arg->insn, operand_base, uval);
5185 return TRUE;
5186 }
5187
5188 /* OP_REG_PAIR matcher. */
5189
5190 static bfd_boolean
5191 match_reg_pair_operand (struct mips_arg_info *arg,
5192 const struct mips_operand *operand_base)
5193 {
5194 const struct mips_reg_pair_operand *operand;
5195 unsigned int regno1, regno2, uval, num_vals;
5196
5197 operand = (const struct mips_reg_pair_operand *) operand_base;
5198 if (!match_reg (arg, operand->reg_type, &regno1)
5199 || !match_char (arg, ',')
5200 || !match_reg (arg, operand->reg_type, &regno2))
5201 return FALSE;
5202
5203 num_vals = 1 << operand_base->size;
5204 for (uval = 0; uval < num_vals; uval++)
5205 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5206 break;
5207 if (uval == num_vals)
5208 return FALSE;
5209
5210 insn_insert_operand (arg->insn, operand_base, uval);
5211 return TRUE;
5212 }
5213
5214 /* OP_PCREL matcher. The caller chooses the relocation type. */
5215
5216 static bfd_boolean
5217 match_pcrel_operand (struct mips_arg_info *arg)
5218 {
5219 bfd_reloc_code_real_type r[3];
5220
5221 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5222 }
5223
5224 /* OP_PERF_REG matcher. */
5225
5226 static bfd_boolean
5227 match_perf_reg_operand (struct mips_arg_info *arg,
5228 const struct mips_operand *operand)
5229 {
5230 offsetT sval;
5231
5232 if (!match_const_int (arg, &sval))
5233 return FALSE;
5234
5235 if (sval != 0
5236 && (sval != 1
5237 || (mips_opts.arch == CPU_R5900
5238 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5239 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5240 {
5241 set_insn_error (arg->argnum, _("invalid performance register"));
5242 return FALSE;
5243 }
5244
5245 insn_insert_operand (arg->insn, operand, sval);
5246 return TRUE;
5247 }
5248
5249 /* OP_ADDIUSP matcher. */
5250
5251 static bfd_boolean
5252 match_addiusp_operand (struct mips_arg_info *arg,
5253 const struct mips_operand *operand)
5254 {
5255 offsetT sval;
5256 unsigned int uval;
5257
5258 if (!match_const_int (arg, &sval))
5259 return FALSE;
5260
5261 if (sval % 4)
5262 {
5263 match_out_of_range (arg);
5264 return FALSE;
5265 }
5266
5267 sval /= 4;
5268 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5269 {
5270 match_out_of_range (arg);
5271 return FALSE;
5272 }
5273
5274 uval = (unsigned int) sval;
5275 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5276 insn_insert_operand (arg->insn, operand, uval);
5277 return TRUE;
5278 }
5279
5280 /* OP_CLO_CLZ_DEST matcher. */
5281
5282 static bfd_boolean
5283 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5284 const struct mips_operand *operand)
5285 {
5286 unsigned int regno;
5287
5288 if (!match_reg (arg, OP_REG_GP, &regno))
5289 return FALSE;
5290
5291 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5292 return TRUE;
5293 }
5294
5295 /* OP_CHECK_PREV matcher. */
5296
5297 static bfd_boolean
5298 match_check_prev_operand (struct mips_arg_info *arg,
5299 const struct mips_operand *operand_base)
5300 {
5301 const struct mips_check_prev_operand *operand;
5302 unsigned int regno;
5303
5304 operand = (const struct mips_check_prev_operand *) operand_base;
5305
5306 if (!match_reg (arg, OP_REG_GP, &regno))
5307 return FALSE;
5308
5309 if (!operand->zero_ok && regno == 0)
5310 return FALSE;
5311
5312 if ((operand->less_than_ok && regno < arg->last_regno)
5313 || (operand->greater_than_ok && regno > arg->last_regno)
5314 || (operand->equal_ok && regno == arg->last_regno))
5315 {
5316 arg->last_regno = regno;
5317 insn_insert_operand (arg->insn, operand_base, regno);
5318 return TRUE;
5319 }
5320
5321 return FALSE;
5322 }
5323
5324 /* OP_SAME_RS_RT matcher. */
5325
5326 static bfd_boolean
5327 match_same_rs_rt_operand (struct mips_arg_info *arg,
5328 const struct mips_operand *operand)
5329 {
5330 unsigned int regno;
5331
5332 if (!match_reg (arg, OP_REG_GP, &regno))
5333 return FALSE;
5334
5335 if (regno == 0)
5336 {
5337 set_insn_error (arg->argnum, _("the source register must not be $0"));
5338 return FALSE;
5339 }
5340
5341 arg->last_regno = regno;
5342
5343 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5344 return TRUE;
5345 }
5346
5347 /* OP_LWM_SWM_LIST matcher. */
5348
5349 static bfd_boolean
5350 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5351 const struct mips_operand *operand)
5352 {
5353 unsigned int reglist, sregs, ra, regno1, regno2;
5354 struct mips_arg_info reset;
5355
5356 reglist = 0;
5357 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5358 return FALSE;
5359 do
5360 {
5361 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5362 {
5363 reglist |= 1 << FP;
5364 regno2 = S7;
5365 }
5366 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5367 reset = *arg;
5368 }
5369 while (match_char (arg, ',')
5370 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5371 *arg = reset;
5372
5373 if (operand->size == 2)
5374 {
5375 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5376
5377 s0, ra
5378 s0, s1, ra, s2, s3
5379 s0-s2, ra
5380
5381 and any permutations of these. */
5382 if ((reglist & 0xfff1ffff) != 0x80010000)
5383 return FALSE;
5384
5385 sregs = (reglist >> 17) & 7;
5386 ra = 0;
5387 }
5388 else
5389 {
5390 /* The list must include at least one of ra and s0-sN,
5391 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5392 which are $23 and $30 respectively.) E.g.:
5393
5394 ra
5395 s0
5396 ra, s0, s1, s2
5397 s0-s8
5398 s0-s5, ra
5399
5400 and any permutations of these. */
5401 if ((reglist & 0x3f00ffff) != 0)
5402 return FALSE;
5403
5404 ra = (reglist >> 27) & 0x10;
5405 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5406 }
5407 sregs += 1;
5408 if ((sregs & -sregs) != sregs)
5409 return FALSE;
5410
5411 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5412 return TRUE;
5413 }
5414
5415 /* OP_ENTRY_EXIT_LIST matcher. */
5416
5417 static unsigned int
5418 match_entry_exit_operand (struct mips_arg_info *arg,
5419 const struct mips_operand *operand)
5420 {
5421 unsigned int mask;
5422 bfd_boolean is_exit;
5423
5424 /* The format is the same for both ENTRY and EXIT, but the constraints
5425 are different. */
5426 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5427 mask = (is_exit ? 7 << 3 : 0);
5428 do
5429 {
5430 unsigned int regno1, regno2;
5431 bfd_boolean is_freg;
5432
5433 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5434 is_freg = FALSE;
5435 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5436 is_freg = TRUE;
5437 else
5438 return FALSE;
5439
5440 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5441 {
5442 mask &= ~(7 << 3);
5443 mask |= (5 + regno2) << 3;
5444 }
5445 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5446 mask |= (regno2 - 3) << 3;
5447 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5448 mask |= (regno2 - 15) << 1;
5449 else if (regno1 == RA && regno2 == RA)
5450 mask |= 1;
5451 else
5452 return FALSE;
5453 }
5454 while (match_char (arg, ','));
5455
5456 insn_insert_operand (arg->insn, operand, mask);
5457 return TRUE;
5458 }
5459
5460 /* OP_SAVE_RESTORE_LIST matcher. */
5461
5462 static bfd_boolean
5463 match_save_restore_list_operand (struct mips_arg_info *arg)
5464 {
5465 unsigned int opcode, args, statics, sregs;
5466 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5467 offsetT frame_size;
5468
5469 opcode = arg->insn->insn_opcode;
5470 frame_size = 0;
5471 num_frame_sizes = 0;
5472 args = 0;
5473 statics = 0;
5474 sregs = 0;
5475 do
5476 {
5477 unsigned int regno1, regno2;
5478
5479 if (arg->token->type == OT_INTEGER)
5480 {
5481 /* Handle the frame size. */
5482 if (!match_const_int (arg, &frame_size))
5483 return FALSE;
5484 num_frame_sizes += 1;
5485 }
5486 else
5487 {
5488 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5489 return FALSE;
5490
5491 while (regno1 <= regno2)
5492 {
5493 if (regno1 >= 4 && regno1 <= 7)
5494 {
5495 if (num_frame_sizes == 0)
5496 /* args $a0-$a3 */
5497 args |= 1 << (regno1 - 4);
5498 else
5499 /* statics $a0-$a3 */
5500 statics |= 1 << (regno1 - 4);
5501 }
5502 else if (regno1 >= 16 && regno1 <= 23)
5503 /* $s0-$s7 */
5504 sregs |= 1 << (regno1 - 16);
5505 else if (regno1 == 30)
5506 /* $s8 */
5507 sregs |= 1 << 8;
5508 else if (regno1 == 31)
5509 /* Add $ra to insn. */
5510 opcode |= 0x40;
5511 else
5512 return FALSE;
5513 regno1 += 1;
5514 if (regno1 == 24)
5515 regno1 = 30;
5516 }
5517 }
5518 }
5519 while (match_char (arg, ','));
5520
5521 /* Encode args/statics combination. */
5522 if (args & statics)
5523 return FALSE;
5524 else if (args == 0xf)
5525 /* All $a0-$a3 are args. */
5526 opcode |= MIPS16_ALL_ARGS << 16;
5527 else if (statics == 0xf)
5528 /* All $a0-$a3 are statics. */
5529 opcode |= MIPS16_ALL_STATICS << 16;
5530 else
5531 {
5532 /* Count arg registers. */
5533 num_args = 0;
5534 while (args & 0x1)
5535 {
5536 args >>= 1;
5537 num_args += 1;
5538 }
5539 if (args != 0)
5540 return FALSE;
5541
5542 /* Count static registers. */
5543 num_statics = 0;
5544 while (statics & 0x8)
5545 {
5546 statics = (statics << 1) & 0xf;
5547 num_statics += 1;
5548 }
5549 if (statics != 0)
5550 return FALSE;
5551
5552 /* Encode args/statics. */
5553 opcode |= ((num_args << 2) | num_statics) << 16;
5554 }
5555
5556 /* Encode $s0/$s1. */
5557 if (sregs & (1 << 0)) /* $s0 */
5558 opcode |= 0x20;
5559 if (sregs & (1 << 1)) /* $s1 */
5560 opcode |= 0x10;
5561 sregs >>= 2;
5562
5563 /* Encode $s2-$s8. */
5564 num_sregs = 0;
5565 while (sregs & 1)
5566 {
5567 sregs >>= 1;
5568 num_sregs += 1;
5569 }
5570 if (sregs != 0)
5571 return FALSE;
5572 opcode |= num_sregs << 24;
5573
5574 /* Encode frame size. */
5575 if (num_frame_sizes == 0)
5576 {
5577 set_insn_error (arg->argnum, _("missing frame size"));
5578 return FALSE;
5579 }
5580 if (num_frame_sizes > 1)
5581 {
5582 set_insn_error (arg->argnum, _("frame size specified twice"));
5583 return FALSE;
5584 }
5585 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5586 {
5587 set_insn_error (arg->argnum, _("invalid frame size"));
5588 return FALSE;
5589 }
5590 if (frame_size != 128 || (opcode >> 16) != 0)
5591 {
5592 frame_size /= 8;
5593 opcode |= (((frame_size & 0xf0) << 16)
5594 | (frame_size & 0x0f));
5595 }
5596
5597 /* Finally build the instruction. */
5598 if ((opcode >> 16) != 0 || frame_size == 0)
5599 opcode |= MIPS16_EXTEND;
5600 arg->insn->insn_opcode = opcode;
5601 return TRUE;
5602 }
5603
5604 /* OP_MDMX_IMM_REG matcher. */
5605
5606 static bfd_boolean
5607 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5608 const struct mips_operand *operand)
5609 {
5610 unsigned int regno, uval;
5611 bfd_boolean is_qh;
5612 const struct mips_opcode *opcode;
5613
5614 /* The mips_opcode records whether this is an octobyte or quadhalf
5615 instruction. Start out with that bit in place. */
5616 opcode = arg->insn->insn_mo;
5617 uval = mips_extract_operand (operand, opcode->match);
5618 is_qh = (uval != 0);
5619
5620 if (arg->token->type == OT_REG)
5621 {
5622 if ((opcode->membership & INSN_5400)
5623 && strcmp (opcode->name, "rzu.ob") == 0)
5624 {
5625 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5626 arg->argnum);
5627 return FALSE;
5628 }
5629
5630 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5631 return FALSE;
5632 ++arg->token;
5633
5634 /* Check whether this is a vector register or a broadcast of
5635 a single element. */
5636 if (arg->token->type == OT_INTEGER_INDEX)
5637 {
5638 if (arg->token->u.index > (is_qh ? 3 : 7))
5639 {
5640 set_insn_error (arg->argnum, _("invalid element selector"));
5641 return FALSE;
5642 }
5643 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5644 ++arg->token;
5645 }
5646 else
5647 {
5648 /* A full vector. */
5649 if ((opcode->membership & INSN_5400)
5650 && (strcmp (opcode->name, "sll.ob") == 0
5651 || strcmp (opcode->name, "srl.ob") == 0))
5652 {
5653 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5654 arg->argnum);
5655 return FALSE;
5656 }
5657
5658 if (is_qh)
5659 uval |= MDMX_FMTSEL_VEC_QH << 5;
5660 else
5661 uval |= MDMX_FMTSEL_VEC_OB << 5;
5662 }
5663 uval |= regno;
5664 }
5665 else
5666 {
5667 offsetT sval;
5668
5669 if (!match_const_int (arg, &sval))
5670 return FALSE;
5671 if (sval < 0 || sval > 31)
5672 {
5673 match_out_of_range (arg);
5674 return FALSE;
5675 }
5676 uval |= (sval & 31);
5677 if (is_qh)
5678 uval |= MDMX_FMTSEL_IMM_QH << 5;
5679 else
5680 uval |= MDMX_FMTSEL_IMM_OB << 5;
5681 }
5682 insn_insert_operand (arg->insn, operand, uval);
5683 return TRUE;
5684 }
5685
5686 /* OP_IMM_INDEX matcher. */
5687
5688 static bfd_boolean
5689 match_imm_index_operand (struct mips_arg_info *arg,
5690 const struct mips_operand *operand)
5691 {
5692 unsigned int max_val;
5693
5694 if (arg->token->type != OT_INTEGER_INDEX)
5695 return FALSE;
5696
5697 max_val = (1 << operand->size) - 1;
5698 if (arg->token->u.index > max_val)
5699 {
5700 match_out_of_range (arg);
5701 return FALSE;
5702 }
5703 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5704 ++arg->token;
5705 return TRUE;
5706 }
5707
5708 /* OP_REG_INDEX matcher. */
5709
5710 static bfd_boolean
5711 match_reg_index_operand (struct mips_arg_info *arg,
5712 const struct mips_operand *operand)
5713 {
5714 unsigned int regno;
5715
5716 if (arg->token->type != OT_REG_INDEX)
5717 return FALSE;
5718
5719 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5720 return FALSE;
5721
5722 insn_insert_operand (arg->insn, operand, regno);
5723 ++arg->token;
5724 return TRUE;
5725 }
5726
5727 /* OP_PC matcher. */
5728
5729 static bfd_boolean
5730 match_pc_operand (struct mips_arg_info *arg)
5731 {
5732 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5733 {
5734 ++arg->token;
5735 return TRUE;
5736 }
5737 return FALSE;
5738 }
5739
5740 /* OP_NON_ZERO_REG matcher. */
5741
5742 static bfd_boolean
5743 match_non_zero_reg_operand (struct mips_arg_info *arg,
5744 const struct mips_operand *operand)
5745 {
5746 unsigned int regno;
5747
5748 if (!match_reg (arg, OP_REG_GP, &regno))
5749 return FALSE;
5750
5751 if (regno == 0)
5752 return FALSE;
5753
5754 arg->last_regno = regno;
5755 insn_insert_operand (arg->insn, operand, regno);
5756 return TRUE;
5757 }
5758
5759 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5760 register that we need to match. */
5761
5762 static bfd_boolean
5763 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5764 {
5765 unsigned int regno;
5766
5767 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5768 }
5769
5770 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5771 the length of the value in bytes (4 for float, 8 for double) and
5772 USING_GPRS says whether the destination is a GPR rather than an FPR.
5773
5774 Return the constant in IMM and OFFSET as follows:
5775
5776 - If the constant should be loaded via memory, set IMM to O_absent and
5777 OFFSET to the memory address.
5778
5779 - Otherwise, if the constant should be loaded into two 32-bit registers,
5780 set IMM to the O_constant to load into the high register and OFFSET
5781 to the corresponding value for the low register.
5782
5783 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5784
5785 These constants only appear as the last operand in an instruction,
5786 and every instruction that accepts them in any variant accepts them
5787 in all variants. This means we don't have to worry about backing out
5788 any changes if the instruction does not match. We just match
5789 unconditionally and report an error if the constant is invalid. */
5790
5791 static bfd_boolean
5792 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5793 expressionS *offset, int length, bfd_boolean using_gprs)
5794 {
5795 char *p;
5796 segT seg, new_seg;
5797 subsegT subseg;
5798 const char *newname;
5799 unsigned char *data;
5800
5801 /* Where the constant is placed is based on how the MIPS assembler
5802 does things:
5803
5804 length == 4 && using_gprs -- immediate value only
5805 length == 8 && using_gprs -- .rdata or immediate value
5806 length == 4 && !using_gprs -- .lit4 or immediate value
5807 length == 8 && !using_gprs -- .lit8 or immediate value
5808
5809 The .lit4 and .lit8 sections are only used if permitted by the
5810 -G argument. */
5811 if (arg->token->type != OT_FLOAT)
5812 {
5813 set_insn_error (arg->argnum, _("floating-point expression required"));
5814 return FALSE;
5815 }
5816
5817 gas_assert (arg->token->u.flt.length == length);
5818 data = arg->token->u.flt.data;
5819 ++arg->token;
5820
5821 /* Handle 32-bit constants for which an immediate value is best. */
5822 if (length == 4
5823 && (using_gprs
5824 || g_switch_value < 4
5825 || (data[0] == 0 && data[1] == 0)
5826 || (data[2] == 0 && data[3] == 0)))
5827 {
5828 imm->X_op = O_constant;
5829 if (!target_big_endian)
5830 imm->X_add_number = bfd_getl32 (data);
5831 else
5832 imm->X_add_number = bfd_getb32 (data);
5833 offset->X_op = O_absent;
5834 return TRUE;
5835 }
5836
5837 /* Handle 64-bit constants for which an immediate value is best. */
5838 if (length == 8
5839 && !mips_disable_float_construction
5840 /* Constants can only be constructed in GPRs and copied to FPRs if the
5841 GPRs are at least as wide as the FPRs or MTHC1 is available.
5842 Unlike most tests for 32-bit floating-point registers this check
5843 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5844 permit 64-bit moves without MXHC1.
5845 Force the constant into memory otherwise. */
5846 && (using_gprs
5847 || GPR_SIZE == 64
5848 || ISA_HAS_MXHC1 (mips_opts.isa)
5849 || FPR_SIZE == 32)
5850 && ((data[0] == 0 && data[1] == 0)
5851 || (data[2] == 0 && data[3] == 0))
5852 && ((data[4] == 0 && data[5] == 0)
5853 || (data[6] == 0 && data[7] == 0)))
5854 {
5855 /* The value is simple enough to load with a couple of instructions.
5856 If using 32-bit registers, set IMM to the high order 32 bits and
5857 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5858 64 bit constant. */
5859 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5860 {
5861 imm->X_op = O_constant;
5862 offset->X_op = O_constant;
5863 if (!target_big_endian)
5864 {
5865 imm->X_add_number = bfd_getl32 (data + 4);
5866 offset->X_add_number = bfd_getl32 (data);
5867 }
5868 else
5869 {
5870 imm->X_add_number = bfd_getb32 (data);
5871 offset->X_add_number = bfd_getb32 (data + 4);
5872 }
5873 if (offset->X_add_number == 0)
5874 offset->X_op = O_absent;
5875 }
5876 else
5877 {
5878 imm->X_op = O_constant;
5879 if (!target_big_endian)
5880 imm->X_add_number = bfd_getl64 (data);
5881 else
5882 imm->X_add_number = bfd_getb64 (data);
5883 offset->X_op = O_absent;
5884 }
5885 return TRUE;
5886 }
5887
5888 /* Switch to the right section. */
5889 seg = now_seg;
5890 subseg = now_subseg;
5891 if (length == 4)
5892 {
5893 gas_assert (!using_gprs && g_switch_value >= 4);
5894 newname = ".lit4";
5895 }
5896 else
5897 {
5898 if (using_gprs || g_switch_value < 8)
5899 newname = RDATA_SECTION_NAME;
5900 else
5901 newname = ".lit8";
5902 }
5903
5904 new_seg = subseg_new (newname, (subsegT) 0);
5905 bfd_set_section_flags (stdoutput, new_seg,
5906 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5907 frag_align (length == 4 ? 2 : 3, 0, 0);
5908 if (strncmp (TARGET_OS, "elf", 3) != 0)
5909 record_alignment (new_seg, 4);
5910 else
5911 record_alignment (new_seg, length == 4 ? 2 : 3);
5912 if (seg == now_seg)
5913 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5914
5915 /* Set the argument to the current address in the section. */
5916 imm->X_op = O_absent;
5917 offset->X_op = O_symbol;
5918 offset->X_add_symbol = symbol_temp_new_now ();
5919 offset->X_add_number = 0;
5920
5921 /* Put the floating point number into the section. */
5922 p = frag_more (length);
5923 memcpy (p, data, length);
5924
5925 /* Switch back to the original section. */
5926 subseg_set (seg, subseg);
5927 return TRUE;
5928 }
5929
5930 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5931 them. */
5932
5933 static bfd_boolean
5934 match_vu0_suffix_operand (struct mips_arg_info *arg,
5935 const struct mips_operand *operand,
5936 bfd_boolean match_p)
5937 {
5938 unsigned int uval;
5939
5940 /* The operand can be an XYZW mask or a single 2-bit channel index
5941 (with X being 0). */
5942 gas_assert (operand->size == 2 || operand->size == 4);
5943
5944 /* The suffix can be omitted when it is already part of the opcode. */
5945 if (arg->token->type != OT_CHANNELS)
5946 return match_p;
5947
5948 uval = arg->token->u.channels;
5949 if (operand->size == 2)
5950 {
5951 /* Check that a single bit is set and convert it into a 2-bit index. */
5952 if ((uval & -uval) != uval)
5953 return FALSE;
5954 uval = 4 - ffs (uval);
5955 }
5956
5957 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5958 return FALSE;
5959
5960 ++arg->token;
5961 if (!match_p)
5962 insn_insert_operand (arg->insn, operand, uval);
5963 return TRUE;
5964 }
5965
5966 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5967 of the argument text if the match is successful, otherwise return null. */
5968
5969 static bfd_boolean
5970 match_operand (struct mips_arg_info *arg,
5971 const struct mips_operand *operand)
5972 {
5973 switch (operand->type)
5974 {
5975 case OP_INT:
5976 return match_int_operand (arg, operand);
5977
5978 case OP_MAPPED_INT:
5979 return match_mapped_int_operand (arg, operand);
5980
5981 case OP_MSB:
5982 return match_msb_operand (arg, operand);
5983
5984 case OP_REG:
5985 case OP_OPTIONAL_REG:
5986 return match_reg_operand (arg, operand);
5987
5988 case OP_REG_PAIR:
5989 return match_reg_pair_operand (arg, operand);
5990
5991 case OP_PCREL:
5992 return match_pcrel_operand (arg);
5993
5994 case OP_PERF_REG:
5995 return match_perf_reg_operand (arg, operand);
5996
5997 case OP_ADDIUSP_INT:
5998 return match_addiusp_operand (arg, operand);
5999
6000 case OP_CLO_CLZ_DEST:
6001 return match_clo_clz_dest_operand (arg, operand);
6002
6003 case OP_LWM_SWM_LIST:
6004 return match_lwm_swm_list_operand (arg, operand);
6005
6006 case OP_ENTRY_EXIT_LIST:
6007 return match_entry_exit_operand (arg, operand);
6008
6009 case OP_SAVE_RESTORE_LIST:
6010 return match_save_restore_list_operand (arg);
6011
6012 case OP_MDMX_IMM_REG:
6013 return match_mdmx_imm_reg_operand (arg, operand);
6014
6015 case OP_REPEAT_DEST_REG:
6016 return match_tied_reg_operand (arg, arg->dest_regno);
6017
6018 case OP_REPEAT_PREV_REG:
6019 return match_tied_reg_operand (arg, arg->last_regno);
6020
6021 case OP_PC:
6022 return match_pc_operand (arg);
6023
6024 case OP_VU0_SUFFIX:
6025 return match_vu0_suffix_operand (arg, operand, FALSE);
6026
6027 case OP_VU0_MATCH_SUFFIX:
6028 return match_vu0_suffix_operand (arg, operand, TRUE);
6029
6030 case OP_IMM_INDEX:
6031 return match_imm_index_operand (arg, operand);
6032
6033 case OP_REG_INDEX:
6034 return match_reg_index_operand (arg, operand);
6035
6036 case OP_SAME_RS_RT:
6037 return match_same_rs_rt_operand (arg, operand);
6038
6039 case OP_CHECK_PREV:
6040 return match_check_prev_operand (arg, operand);
6041
6042 case OP_NON_ZERO_REG:
6043 return match_non_zero_reg_operand (arg, operand);
6044 }
6045 abort ();
6046 }
6047
6048 /* ARG is the state after successfully matching an instruction.
6049 Issue any queued-up warnings. */
6050
6051 static void
6052 check_completed_insn (struct mips_arg_info *arg)
6053 {
6054 if (arg->seen_at)
6055 {
6056 if (AT == ATREG)
6057 as_warn (_("used $at without \".set noat\""));
6058 else
6059 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6060 }
6061 }
6062
6063 /* Return true if modifying general-purpose register REG needs a delay. */
6064
6065 static bfd_boolean
6066 reg_needs_delay (unsigned int reg)
6067 {
6068 unsigned long prev_pinfo;
6069
6070 prev_pinfo = history[0].insn_mo->pinfo;
6071 if (!mips_opts.noreorder
6072 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6073 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6074 && (gpr_write_mask (&history[0]) & (1 << reg)))
6075 return TRUE;
6076
6077 return FALSE;
6078 }
6079
6080 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6081 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6082 by VR4120 errata. */
6083
6084 static unsigned int
6085 classify_vr4120_insn (const char *name)
6086 {
6087 if (strncmp (name, "macc", 4) == 0)
6088 return FIX_VR4120_MACC;
6089 if (strncmp (name, "dmacc", 5) == 0)
6090 return FIX_VR4120_DMACC;
6091 if (strncmp (name, "mult", 4) == 0)
6092 return FIX_VR4120_MULT;
6093 if (strncmp (name, "dmult", 5) == 0)
6094 return FIX_VR4120_DMULT;
6095 if (strstr (name, "div"))
6096 return FIX_VR4120_DIV;
6097 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6098 return FIX_VR4120_MTHILO;
6099 return NUM_FIX_VR4120_CLASSES;
6100 }
6101
6102 #define INSN_ERET 0x42000018
6103 #define INSN_DERET 0x4200001f
6104 #define INSN_DMULT 0x1c
6105 #define INSN_DMULTU 0x1d
6106
6107 /* Return the number of instructions that must separate INSN1 and INSN2,
6108 where INSN1 is the earlier instruction. Return the worst-case value
6109 for any INSN2 if INSN2 is null. */
6110
6111 static unsigned int
6112 insns_between (const struct mips_cl_insn *insn1,
6113 const struct mips_cl_insn *insn2)
6114 {
6115 unsigned long pinfo1, pinfo2;
6116 unsigned int mask;
6117
6118 /* If INFO2 is null, pessimistically assume that all flags are set for
6119 the second instruction. */
6120 pinfo1 = insn1->insn_mo->pinfo;
6121 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6122
6123 /* For most targets, write-after-read dependencies on the HI and LO
6124 registers must be separated by at least two instructions. */
6125 if (!hilo_interlocks)
6126 {
6127 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6128 return 2;
6129 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6130 return 2;
6131 }
6132
6133 /* If we're working around r7000 errata, there must be two instructions
6134 between an mfhi or mflo and any instruction that uses the result. */
6135 if (mips_7000_hilo_fix
6136 && !mips_opts.micromips
6137 && MF_HILO_INSN (pinfo1)
6138 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6139 return 2;
6140
6141 /* If we're working around 24K errata, one instruction is required
6142 if an ERET or DERET is followed by a branch instruction. */
6143 if (mips_fix_24k && !mips_opts.micromips)
6144 {
6145 if (insn1->insn_opcode == INSN_ERET
6146 || insn1->insn_opcode == INSN_DERET)
6147 {
6148 if (insn2 == NULL
6149 || insn2->insn_opcode == INSN_ERET
6150 || insn2->insn_opcode == INSN_DERET
6151 || delayed_branch_p (insn2))
6152 return 1;
6153 }
6154 }
6155
6156 /* If we're working around PMC RM7000 errata, there must be three
6157 nops between a dmult and a load instruction. */
6158 if (mips_fix_rm7000 && !mips_opts.micromips)
6159 {
6160 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6161 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6162 {
6163 if (pinfo2 & INSN_LOAD_MEMORY)
6164 return 3;
6165 }
6166 }
6167
6168 /* If working around VR4120 errata, check for combinations that need
6169 a single intervening instruction. */
6170 if (mips_fix_vr4120 && !mips_opts.micromips)
6171 {
6172 unsigned int class1, class2;
6173
6174 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6175 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6176 {
6177 if (insn2 == NULL)
6178 return 1;
6179 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6180 if (vr4120_conflicts[class1] & (1 << class2))
6181 return 1;
6182 }
6183 }
6184
6185 if (!HAVE_CODE_COMPRESSION)
6186 {
6187 /* Check for GPR or coprocessor load delays. All such delays
6188 are on the RT register. */
6189 /* Itbl support may require additional care here. */
6190 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6191 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6192 {
6193 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6194 return 1;
6195 }
6196
6197 /* Check for generic coprocessor hazards.
6198
6199 This case is not handled very well. There is no special
6200 knowledge of CP0 handling, and the coprocessors other than
6201 the floating point unit are not distinguished at all. */
6202 /* Itbl support may require additional care here. FIXME!
6203 Need to modify this to include knowledge about
6204 user specified delays! */
6205 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6206 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6207 {
6208 /* Handle cases where INSN1 writes to a known general coprocessor
6209 register. There must be a one instruction delay before INSN2
6210 if INSN2 reads that register, otherwise no delay is needed. */
6211 mask = fpr_write_mask (insn1);
6212 if (mask != 0)
6213 {
6214 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6215 return 1;
6216 }
6217 else
6218 {
6219 /* Read-after-write dependencies on the control registers
6220 require a two-instruction gap. */
6221 if ((pinfo1 & INSN_WRITE_COND_CODE)
6222 && (pinfo2 & INSN_READ_COND_CODE))
6223 return 2;
6224
6225 /* We don't know exactly what INSN1 does. If INSN2 is
6226 also a coprocessor instruction, assume there must be
6227 a one instruction gap. */
6228 if (pinfo2 & INSN_COP)
6229 return 1;
6230 }
6231 }
6232
6233 /* Check for read-after-write dependencies on the coprocessor
6234 control registers in cases where INSN1 does not need a general
6235 coprocessor delay. This means that INSN1 is a floating point
6236 comparison instruction. */
6237 /* Itbl support may require additional care here. */
6238 else if (!cop_interlocks
6239 && (pinfo1 & INSN_WRITE_COND_CODE)
6240 && (pinfo2 & INSN_READ_COND_CODE))
6241 return 1;
6242 }
6243
6244 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6245 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6246 and pause. */
6247 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6248 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6249 || (insn2 && delayed_branch_p (insn2))))
6250 return 1;
6251
6252 return 0;
6253 }
6254
6255 /* Return the number of nops that would be needed to work around the
6256 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6257 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6258 that are contained within the first IGNORE instructions of HIST. */
6259
6260 static int
6261 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6262 const struct mips_cl_insn *insn)
6263 {
6264 int i, j;
6265 unsigned int mask;
6266
6267 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6268 are not affected by the errata. */
6269 if (insn != 0
6270 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6271 || strcmp (insn->insn_mo->name, "mtlo") == 0
6272 || strcmp (insn->insn_mo->name, "mthi") == 0))
6273 return 0;
6274
6275 /* Search for the first MFLO or MFHI. */
6276 for (i = 0; i < MAX_VR4130_NOPS; i++)
6277 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6278 {
6279 /* Extract the destination register. */
6280 mask = gpr_write_mask (&hist[i]);
6281
6282 /* No nops are needed if INSN reads that register. */
6283 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6284 return 0;
6285
6286 /* ...or if any of the intervening instructions do. */
6287 for (j = 0; j < i; j++)
6288 if (gpr_read_mask (&hist[j]) & mask)
6289 return 0;
6290
6291 if (i >= ignore)
6292 return MAX_VR4130_NOPS - i;
6293 }
6294 return 0;
6295 }
6296
6297 #define BASE_REG_EQ(INSN1, INSN2) \
6298 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6299 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6300
6301 /* Return the minimum alignment for this store instruction. */
6302
6303 static int
6304 fix_24k_align_to (const struct mips_opcode *mo)
6305 {
6306 if (strcmp (mo->name, "sh") == 0)
6307 return 2;
6308
6309 if (strcmp (mo->name, "swc1") == 0
6310 || strcmp (mo->name, "swc2") == 0
6311 || strcmp (mo->name, "sw") == 0
6312 || strcmp (mo->name, "sc") == 0
6313 || strcmp (mo->name, "s.s") == 0)
6314 return 4;
6315
6316 if (strcmp (mo->name, "sdc1") == 0
6317 || strcmp (mo->name, "sdc2") == 0
6318 || strcmp (mo->name, "s.d") == 0)
6319 return 8;
6320
6321 /* sb, swl, swr */
6322 return 1;
6323 }
6324
6325 struct fix_24k_store_info
6326 {
6327 /* Immediate offset, if any, for this store instruction. */
6328 short off;
6329 /* Alignment required by this store instruction. */
6330 int align_to;
6331 /* True for register offsets. */
6332 int register_offset;
6333 };
6334
6335 /* Comparison function used by qsort. */
6336
6337 static int
6338 fix_24k_sort (const void *a, const void *b)
6339 {
6340 const struct fix_24k_store_info *pos1 = a;
6341 const struct fix_24k_store_info *pos2 = b;
6342
6343 return (pos1->off - pos2->off);
6344 }
6345
6346 /* INSN is a store instruction. Try to record the store information
6347 in STINFO. Return false if the information isn't known. */
6348
6349 static bfd_boolean
6350 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6351 const struct mips_cl_insn *insn)
6352 {
6353 /* The instruction must have a known offset. */
6354 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6355 return FALSE;
6356
6357 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6358 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6359 return TRUE;
6360 }
6361
6362 /* Return the number of nops that would be needed to work around the 24k
6363 "lost data on stores during refill" errata if instruction INSN
6364 immediately followed the 2 instructions described by HIST.
6365 Ignore hazards that are contained within the first IGNORE
6366 instructions of HIST.
6367
6368 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6369 for the data cache refills and store data. The following describes
6370 the scenario where the store data could be lost.
6371
6372 * A data cache miss, due to either a load or a store, causing fill
6373 data to be supplied by the memory subsystem
6374 * The first three doublewords of fill data are returned and written
6375 into the cache
6376 * A sequence of four stores occurs in consecutive cycles around the
6377 final doubleword of the fill:
6378 * Store A
6379 * Store B
6380 * Store C
6381 * Zero, One or more instructions
6382 * Store D
6383
6384 The four stores A-D must be to different doublewords of the line that
6385 is being filled. The fourth instruction in the sequence above permits
6386 the fill of the final doubleword to be transferred from the FSB into
6387 the cache. In the sequence above, the stores may be either integer
6388 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6389 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6390 different doublewords on the line. If the floating point unit is
6391 running in 1:2 mode, it is not possible to create the sequence above
6392 using only floating point store instructions.
6393
6394 In this case, the cache line being filled is incorrectly marked
6395 invalid, thereby losing the data from any store to the line that
6396 occurs between the original miss and the completion of the five
6397 cycle sequence shown above.
6398
6399 The workarounds are:
6400
6401 * Run the data cache in write-through mode.
6402 * Insert a non-store instruction between
6403 Store A and Store B or Store B and Store C. */
6404
6405 static int
6406 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6407 const struct mips_cl_insn *insn)
6408 {
6409 struct fix_24k_store_info pos[3];
6410 int align, i, base_offset;
6411
6412 if (ignore >= 2)
6413 return 0;
6414
6415 /* If the previous instruction wasn't a store, there's nothing to
6416 worry about. */
6417 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6418 return 0;
6419
6420 /* If the instructions after the previous one are unknown, we have
6421 to assume the worst. */
6422 if (!insn)
6423 return 1;
6424
6425 /* Check whether we are dealing with three consecutive stores. */
6426 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6427 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6428 return 0;
6429
6430 /* If we don't know the relationship between the store addresses,
6431 assume the worst. */
6432 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6433 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6434 return 1;
6435
6436 if (!fix_24k_record_store_info (&pos[0], insn)
6437 || !fix_24k_record_store_info (&pos[1], &hist[0])
6438 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6439 return 1;
6440
6441 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6442
6443 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6444 X bytes and such that the base register + X is known to be aligned
6445 to align bytes. */
6446
6447 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6448 align = 8;
6449 else
6450 {
6451 align = pos[0].align_to;
6452 base_offset = pos[0].off;
6453 for (i = 1; i < 3; i++)
6454 if (align < pos[i].align_to)
6455 {
6456 align = pos[i].align_to;
6457 base_offset = pos[i].off;
6458 }
6459 for (i = 0; i < 3; i++)
6460 pos[i].off -= base_offset;
6461 }
6462
6463 pos[0].off &= ~align + 1;
6464 pos[1].off &= ~align + 1;
6465 pos[2].off &= ~align + 1;
6466
6467 /* If any two stores write to the same chunk, they also write to the
6468 same doubleword. The offsets are still sorted at this point. */
6469 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6470 return 0;
6471
6472 /* A range of at least 9 bytes is needed for the stores to be in
6473 non-overlapping doublewords. */
6474 if (pos[2].off - pos[0].off <= 8)
6475 return 0;
6476
6477 if (pos[2].off - pos[1].off >= 24
6478 || pos[1].off - pos[0].off >= 24
6479 || pos[2].off - pos[0].off >= 32)
6480 return 0;
6481
6482 return 1;
6483 }
6484
6485 /* Return the number of nops that would be needed if instruction INSN
6486 immediately followed the MAX_NOPS instructions given by HIST,
6487 where HIST[0] is the most recent instruction. Ignore hazards
6488 between INSN and the first IGNORE instructions in HIST.
6489
6490 If INSN is null, return the worse-case number of nops for any
6491 instruction. */
6492
6493 static int
6494 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6495 const struct mips_cl_insn *insn)
6496 {
6497 int i, nops, tmp_nops;
6498
6499 nops = 0;
6500 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6501 {
6502 tmp_nops = insns_between (hist + i, insn) - i;
6503 if (tmp_nops > nops)
6504 nops = tmp_nops;
6505 }
6506
6507 if (mips_fix_vr4130 && !mips_opts.micromips)
6508 {
6509 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6510 if (tmp_nops > nops)
6511 nops = tmp_nops;
6512 }
6513
6514 if (mips_fix_24k && !mips_opts.micromips)
6515 {
6516 tmp_nops = nops_for_24k (ignore, hist, insn);
6517 if (tmp_nops > nops)
6518 nops = tmp_nops;
6519 }
6520
6521 return nops;
6522 }
6523
6524 /* The variable arguments provide NUM_INSNS extra instructions that
6525 might be added to HIST. Return the largest number of nops that
6526 would be needed after the extended sequence, ignoring hazards
6527 in the first IGNORE instructions. */
6528
6529 static int
6530 nops_for_sequence (int num_insns, int ignore,
6531 const struct mips_cl_insn *hist, ...)
6532 {
6533 va_list args;
6534 struct mips_cl_insn buffer[MAX_NOPS];
6535 struct mips_cl_insn *cursor;
6536 int nops;
6537
6538 va_start (args, hist);
6539 cursor = buffer + num_insns;
6540 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6541 while (cursor > buffer)
6542 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6543
6544 nops = nops_for_insn (ignore, buffer, NULL);
6545 va_end (args);
6546 return nops;
6547 }
6548
6549 /* Like nops_for_insn, but if INSN is a branch, take into account the
6550 worst-case delay for the branch target. */
6551
6552 static int
6553 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6554 const struct mips_cl_insn *insn)
6555 {
6556 int nops, tmp_nops;
6557
6558 nops = nops_for_insn (ignore, hist, insn);
6559 if (delayed_branch_p (insn))
6560 {
6561 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6562 hist, insn, get_delay_slot_nop (insn));
6563 if (tmp_nops > nops)
6564 nops = tmp_nops;
6565 }
6566 else if (compact_branch_p (insn))
6567 {
6568 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6569 if (tmp_nops > nops)
6570 nops = tmp_nops;
6571 }
6572 return nops;
6573 }
6574
6575 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6576
6577 static void
6578 fix_loongson2f_nop (struct mips_cl_insn * ip)
6579 {
6580 gas_assert (!HAVE_CODE_COMPRESSION);
6581 if (strcmp (ip->insn_mo->name, "nop") == 0)
6582 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6583 }
6584
6585 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6586 jr target pc &= 'hffff_ffff_cfff_ffff. */
6587
6588 static void
6589 fix_loongson2f_jump (struct mips_cl_insn * ip)
6590 {
6591 gas_assert (!HAVE_CODE_COMPRESSION);
6592 if (strcmp (ip->insn_mo->name, "j") == 0
6593 || strcmp (ip->insn_mo->name, "jr") == 0
6594 || strcmp (ip->insn_mo->name, "jalr") == 0)
6595 {
6596 int sreg;
6597 expressionS ep;
6598
6599 if (! mips_opts.at)
6600 return;
6601
6602 sreg = EXTRACT_OPERAND (0, RS, *ip);
6603 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6604 return;
6605
6606 ep.X_op = O_constant;
6607 ep.X_add_number = 0xcfff0000;
6608 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6609 ep.X_add_number = 0xffff;
6610 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6611 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6612 }
6613 }
6614
6615 static void
6616 fix_loongson2f (struct mips_cl_insn * ip)
6617 {
6618 if (mips_fix_loongson2f_nop)
6619 fix_loongson2f_nop (ip);
6620
6621 if (mips_fix_loongson2f_jump)
6622 fix_loongson2f_jump (ip);
6623 }
6624
6625 /* IP is a branch that has a delay slot, and we need to fill it
6626 automatically. Return true if we can do that by swapping IP
6627 with the previous instruction.
6628 ADDRESS_EXPR is an operand of the instruction to be used with
6629 RELOC_TYPE. */
6630
6631 static bfd_boolean
6632 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6633 bfd_reloc_code_real_type *reloc_type)
6634 {
6635 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6636 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6637 unsigned int fpr_read, prev_fpr_write;
6638
6639 /* -O2 and above is required for this optimization. */
6640 if (mips_optimize < 2)
6641 return FALSE;
6642
6643 /* If we have seen .set volatile or .set nomove, don't optimize. */
6644 if (mips_opts.nomove)
6645 return FALSE;
6646
6647 /* We can't swap if the previous instruction's position is fixed. */
6648 if (history[0].fixed_p)
6649 return FALSE;
6650
6651 /* If the previous previous insn was in a .set noreorder, we can't
6652 swap. Actually, the MIPS assembler will swap in this situation.
6653 However, gcc configured -with-gnu-as will generate code like
6654
6655 .set noreorder
6656 lw $4,XXX
6657 .set reorder
6658 INSN
6659 bne $4,$0,foo
6660
6661 in which we can not swap the bne and INSN. If gcc is not configured
6662 -with-gnu-as, it does not output the .set pseudo-ops. */
6663 if (history[1].noreorder_p)
6664 return FALSE;
6665
6666 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6667 This means that the previous instruction was a 4-byte one anyhow. */
6668 if (mips_opts.mips16 && history[0].fixp[0])
6669 return FALSE;
6670
6671 /* If the branch is itself the target of a branch, we can not swap.
6672 We cheat on this; all we check for is whether there is a label on
6673 this instruction. If there are any branches to anything other than
6674 a label, users must use .set noreorder. */
6675 if (seg_info (now_seg)->label_list)
6676 return FALSE;
6677
6678 /* If the previous instruction is in a variant frag other than this
6679 branch's one, we cannot do the swap. This does not apply to
6680 MIPS16 code, which uses variant frags for different purposes. */
6681 if (!mips_opts.mips16
6682 && history[0].frag
6683 && history[0].frag->fr_type == rs_machine_dependent)
6684 return FALSE;
6685
6686 /* We do not swap with instructions that cannot architecturally
6687 be placed in a branch delay slot, such as SYNC or ERET. We
6688 also refrain from swapping with a trap instruction, since it
6689 complicates trap handlers to have the trap instruction be in
6690 a delay slot. */
6691 prev_pinfo = history[0].insn_mo->pinfo;
6692 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6693 return FALSE;
6694
6695 /* Check for conflicts between the branch and the instructions
6696 before the candidate delay slot. */
6697 if (nops_for_insn (0, history + 1, ip) > 0)
6698 return FALSE;
6699
6700 /* Check for conflicts between the swapped sequence and the
6701 target of the branch. */
6702 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6703 return FALSE;
6704
6705 /* If the branch reads a register that the previous
6706 instruction sets, we can not swap. */
6707 gpr_read = gpr_read_mask (ip);
6708 prev_gpr_write = gpr_write_mask (&history[0]);
6709 if (gpr_read & prev_gpr_write)
6710 return FALSE;
6711
6712 fpr_read = fpr_read_mask (ip);
6713 prev_fpr_write = fpr_write_mask (&history[0]);
6714 if (fpr_read & prev_fpr_write)
6715 return FALSE;
6716
6717 /* If the branch writes a register that the previous
6718 instruction sets, we can not swap. */
6719 gpr_write = gpr_write_mask (ip);
6720 if (gpr_write & prev_gpr_write)
6721 return FALSE;
6722
6723 /* If the branch writes a register that the previous
6724 instruction reads, we can not swap. */
6725 prev_gpr_read = gpr_read_mask (&history[0]);
6726 if (gpr_write & prev_gpr_read)
6727 return FALSE;
6728
6729 /* If one instruction sets a condition code and the
6730 other one uses a condition code, we can not swap. */
6731 pinfo = ip->insn_mo->pinfo;
6732 if ((pinfo & INSN_READ_COND_CODE)
6733 && (prev_pinfo & INSN_WRITE_COND_CODE))
6734 return FALSE;
6735 if ((pinfo & INSN_WRITE_COND_CODE)
6736 && (prev_pinfo & INSN_READ_COND_CODE))
6737 return FALSE;
6738
6739 /* If the previous instruction uses the PC, we can not swap. */
6740 prev_pinfo2 = history[0].insn_mo->pinfo2;
6741 if (prev_pinfo2 & INSN2_READ_PC)
6742 return FALSE;
6743
6744 /* If the previous instruction has an incorrect size for a fixed
6745 branch delay slot in microMIPS mode, we cannot swap. */
6746 pinfo2 = ip->insn_mo->pinfo2;
6747 if (mips_opts.micromips
6748 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6749 && insn_length (history) != 2)
6750 return FALSE;
6751 if (mips_opts.micromips
6752 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6753 && insn_length (history) != 4)
6754 return FALSE;
6755
6756 /* On R5900 short loops need to be fixed by inserting a nop in
6757 the branch delay slots.
6758 A short loop can be terminated too early. */
6759 if (mips_opts.arch == CPU_R5900
6760 /* Check if instruction has a parameter, ignore "j $31". */
6761 && (address_expr != NULL)
6762 /* Parameter must be 16 bit. */
6763 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6764 /* Branch to same segment. */
6765 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6766 /* Branch to same code fragment. */
6767 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6768 /* Can only calculate branch offset if value is known. */
6769 && symbol_constant_p (address_expr->X_add_symbol)
6770 /* Check if branch is really conditional. */
6771 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6772 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6773 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6774 {
6775 int distance;
6776 /* Check if loop is shorter than 6 instructions including
6777 branch and delay slot. */
6778 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6779 if (distance <= 20)
6780 {
6781 int i;
6782 int rv;
6783
6784 rv = FALSE;
6785 /* When the loop includes branches or jumps,
6786 it is not a short loop. */
6787 for (i = 0; i < (distance / 4); i++)
6788 {
6789 if ((history[i].cleared_p)
6790 || delayed_branch_p (&history[i]))
6791 {
6792 rv = TRUE;
6793 break;
6794 }
6795 }
6796 if (rv == FALSE)
6797 {
6798 /* Insert nop after branch to fix short loop. */
6799 return FALSE;
6800 }
6801 }
6802 }
6803
6804 return TRUE;
6805 }
6806
6807 /* Decide how we should add IP to the instruction stream.
6808 ADDRESS_EXPR is an operand of the instruction to be used with
6809 RELOC_TYPE. */
6810
6811 static enum append_method
6812 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6813 bfd_reloc_code_real_type *reloc_type)
6814 {
6815 /* The relaxed version of a macro sequence must be inherently
6816 hazard-free. */
6817 if (mips_relax.sequence == 2)
6818 return APPEND_ADD;
6819
6820 /* We must not dabble with instructions in a ".set noreorder" block. */
6821 if (mips_opts.noreorder)
6822 return APPEND_ADD;
6823
6824 /* Otherwise, it's our responsibility to fill branch delay slots. */
6825 if (delayed_branch_p (ip))
6826 {
6827 if (!branch_likely_p (ip)
6828 && can_swap_branch_p (ip, address_expr, reloc_type))
6829 return APPEND_SWAP;
6830
6831 if (mips_opts.mips16
6832 && ISA_SUPPORTS_MIPS16E
6833 && gpr_read_mask (ip) != 0)
6834 return APPEND_ADD_COMPACT;
6835
6836 if (mips_opts.micromips
6837 && ((ip->insn_opcode & 0xffe0) == 0x4580
6838 || (!forced_insn_length
6839 && ((ip->insn_opcode & 0xfc00) == 0xcc00
6840 || (ip->insn_opcode & 0xdc00) == 0x8c00))
6841 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
6842 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
6843 return APPEND_ADD_COMPACT;
6844
6845 return APPEND_ADD_WITH_NOP;
6846 }
6847
6848 return APPEND_ADD;
6849 }
6850
6851 /* IP is an instruction whose opcode we have just changed, END points
6852 to the end of the opcode table processed. Point IP->insn_mo to the
6853 new opcode's definition. */
6854
6855 static void
6856 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
6857 {
6858 const struct mips_opcode *mo;
6859
6860 for (mo = ip->insn_mo; mo < end; mo++)
6861 if (mo->pinfo != INSN_MACRO
6862 && (ip->insn_opcode & mo->mask) == mo->match)
6863 {
6864 ip->insn_mo = mo;
6865 return;
6866 }
6867 abort ();
6868 }
6869
6870 /* IP is a MIPS16 instruction whose opcode we have just changed.
6871 Point IP->insn_mo to the new opcode's definition. */
6872
6873 static void
6874 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6875 {
6876 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
6877 }
6878
6879 /* IP is a microMIPS instruction whose opcode we have just changed.
6880 Point IP->insn_mo to the new opcode's definition. */
6881
6882 static void
6883 find_altered_micromips_opcode (struct mips_cl_insn *ip)
6884 {
6885 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
6886 }
6887
6888 /* For microMIPS macros, we need to generate a local number label
6889 as the target of branches. */
6890 #define MICROMIPS_LABEL_CHAR '\037'
6891 static unsigned long micromips_target_label;
6892 static char micromips_target_name[32];
6893
6894 static char *
6895 micromips_label_name (void)
6896 {
6897 char *p = micromips_target_name;
6898 char symbol_name_temporary[24];
6899 unsigned long l;
6900 int i;
6901
6902 if (*p)
6903 return p;
6904
6905 i = 0;
6906 l = micromips_target_label;
6907 #ifdef LOCAL_LABEL_PREFIX
6908 *p++ = LOCAL_LABEL_PREFIX;
6909 #endif
6910 *p++ = 'L';
6911 *p++ = MICROMIPS_LABEL_CHAR;
6912 do
6913 {
6914 symbol_name_temporary[i++] = l % 10 + '0';
6915 l /= 10;
6916 }
6917 while (l != 0);
6918 while (i > 0)
6919 *p++ = symbol_name_temporary[--i];
6920 *p = '\0';
6921
6922 return micromips_target_name;
6923 }
6924
6925 static void
6926 micromips_label_expr (expressionS *label_expr)
6927 {
6928 label_expr->X_op = O_symbol;
6929 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6930 label_expr->X_add_number = 0;
6931 }
6932
6933 static void
6934 micromips_label_inc (void)
6935 {
6936 micromips_target_label++;
6937 *micromips_target_name = '\0';
6938 }
6939
6940 static void
6941 micromips_add_label (void)
6942 {
6943 symbolS *s;
6944
6945 s = colon (micromips_label_name ());
6946 micromips_label_inc ();
6947 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6948 }
6949
6950 /* If assembling microMIPS code, then return the microMIPS reloc
6951 corresponding to the requested one if any. Otherwise return
6952 the reloc unchanged. */
6953
6954 static bfd_reloc_code_real_type
6955 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6956 {
6957 static const bfd_reloc_code_real_type relocs[][2] =
6958 {
6959 /* Keep sorted incrementally by the left-hand key. */
6960 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6961 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6962 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6963 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6964 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6965 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6966 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6967 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6968 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6969 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6970 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6971 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6972 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6973 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6974 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6975 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6976 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6977 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6978 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6979 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6980 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6981 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6982 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6983 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6984 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6985 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6986 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6987 };
6988 bfd_reloc_code_real_type r;
6989 size_t i;
6990
6991 if (!mips_opts.micromips)
6992 return reloc;
6993 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6994 {
6995 r = relocs[i][0];
6996 if (r > reloc)
6997 return reloc;
6998 if (r == reloc)
6999 return relocs[i][1];
7000 }
7001 return reloc;
7002 }
7003
7004 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7005 Return true on success, storing the resolved value in RESULT. */
7006
7007 static bfd_boolean
7008 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7009 offsetT *result)
7010 {
7011 switch (reloc)
7012 {
7013 case BFD_RELOC_MIPS_HIGHEST:
7014 case BFD_RELOC_MICROMIPS_HIGHEST:
7015 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7016 return TRUE;
7017
7018 case BFD_RELOC_MIPS_HIGHER:
7019 case BFD_RELOC_MICROMIPS_HIGHER:
7020 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7021 return TRUE;
7022
7023 case BFD_RELOC_HI16_S:
7024 case BFD_RELOC_HI16_S_PCREL:
7025 case BFD_RELOC_MICROMIPS_HI16_S:
7026 case BFD_RELOC_MIPS16_HI16_S:
7027 *result = ((operand + 0x8000) >> 16) & 0xffff;
7028 return TRUE;
7029
7030 case BFD_RELOC_HI16:
7031 case BFD_RELOC_MICROMIPS_HI16:
7032 case BFD_RELOC_MIPS16_HI16:
7033 *result = (operand >> 16) & 0xffff;
7034 return TRUE;
7035
7036 case BFD_RELOC_LO16:
7037 case BFD_RELOC_LO16_PCREL:
7038 case BFD_RELOC_MICROMIPS_LO16:
7039 case BFD_RELOC_MIPS16_LO16:
7040 *result = operand & 0xffff;
7041 return TRUE;
7042
7043 case BFD_RELOC_UNUSED:
7044 *result = operand;
7045 return TRUE;
7046
7047 default:
7048 return FALSE;
7049 }
7050 }
7051
7052 /* Output an instruction. IP is the instruction information.
7053 ADDRESS_EXPR is an operand of the instruction to be used with
7054 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7055 a macro expansion. */
7056
7057 static void
7058 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7059 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7060 {
7061 unsigned long prev_pinfo2, pinfo;
7062 bfd_boolean relaxed_branch = FALSE;
7063 enum append_method method;
7064 bfd_boolean relax32;
7065 int branch_disp;
7066
7067 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7068 fix_loongson2f (ip);
7069
7070 file_ase_mips16 |= mips_opts.mips16;
7071 file_ase_micromips |= mips_opts.micromips;
7072
7073 prev_pinfo2 = history[0].insn_mo->pinfo2;
7074 pinfo = ip->insn_mo->pinfo;
7075
7076 /* Don't raise alarm about `nods' frags as they'll fill in the right
7077 kind of nop in relaxation if required. */
7078 if (mips_opts.micromips
7079 && !expansionp
7080 && !(history[0].frag
7081 && history[0].frag->fr_type == rs_machine_dependent
7082 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7083 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7084 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7085 && micromips_insn_length (ip->insn_mo) != 2)
7086 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7087 && micromips_insn_length (ip->insn_mo) != 4)))
7088 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7089 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7090
7091 if (address_expr == NULL)
7092 ip->complete_p = 1;
7093 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7094 && reloc_type[1] == BFD_RELOC_UNUSED
7095 && reloc_type[2] == BFD_RELOC_UNUSED
7096 && address_expr->X_op == O_constant)
7097 {
7098 switch (*reloc_type)
7099 {
7100 case BFD_RELOC_MIPS_JMP:
7101 {
7102 int shift;
7103
7104 /* Shift is 2, unusually, for microMIPS JALX. */
7105 shift = (mips_opts.micromips
7106 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7107 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7108 as_bad (_("jump to misaligned address (0x%lx)"),
7109 (unsigned long) address_expr->X_add_number);
7110 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7111 & 0x3ffffff);
7112 ip->complete_p = 1;
7113 }
7114 break;
7115
7116 case BFD_RELOC_MIPS16_JMP:
7117 if ((address_expr->X_add_number & 3) != 0)
7118 as_bad (_("jump to misaligned address (0x%lx)"),
7119 (unsigned long) address_expr->X_add_number);
7120 ip->insn_opcode |=
7121 (((address_expr->X_add_number & 0x7c0000) << 3)
7122 | ((address_expr->X_add_number & 0xf800000) >> 7)
7123 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7124 ip->complete_p = 1;
7125 break;
7126
7127 case BFD_RELOC_16_PCREL_S2:
7128 {
7129 int shift;
7130
7131 shift = mips_opts.micromips ? 1 : 2;
7132 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7133 as_bad (_("branch to misaligned address (0x%lx)"),
7134 (unsigned long) address_expr->X_add_number);
7135 if (!mips_relax_branch)
7136 {
7137 if ((address_expr->X_add_number + (1 << (shift + 15)))
7138 & ~((1 << (shift + 16)) - 1))
7139 as_bad (_("branch address range overflow (0x%lx)"),
7140 (unsigned long) address_expr->X_add_number);
7141 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7142 & 0xffff);
7143 }
7144 }
7145 break;
7146
7147 case BFD_RELOC_MIPS_21_PCREL_S2:
7148 {
7149 int shift;
7150
7151 shift = 2;
7152 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7153 as_bad (_("branch to misaligned address (0x%lx)"),
7154 (unsigned long) address_expr->X_add_number);
7155 if ((address_expr->X_add_number + (1 << (shift + 20)))
7156 & ~((1 << (shift + 21)) - 1))
7157 as_bad (_("branch address range overflow (0x%lx)"),
7158 (unsigned long) address_expr->X_add_number);
7159 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7160 & 0x1fffff);
7161 }
7162 break;
7163
7164 case BFD_RELOC_MIPS_26_PCREL_S2:
7165 {
7166 int shift;
7167
7168 shift = 2;
7169 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7170 as_bad (_("branch to misaligned address (0x%lx)"),
7171 (unsigned long) address_expr->X_add_number);
7172 if ((address_expr->X_add_number + (1 << (shift + 25)))
7173 & ~((1 << (shift + 26)) - 1))
7174 as_bad (_("branch address range overflow (0x%lx)"),
7175 (unsigned long) address_expr->X_add_number);
7176 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7177 & 0x3ffffff);
7178 }
7179 break;
7180
7181 default:
7182 {
7183 offsetT value;
7184
7185 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7186 &value))
7187 {
7188 ip->insn_opcode |= value & 0xffff;
7189 ip->complete_p = 1;
7190 }
7191 }
7192 break;
7193 }
7194 }
7195
7196 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7197 {
7198 /* There are a lot of optimizations we could do that we don't.
7199 In particular, we do not, in general, reorder instructions.
7200 If you use gcc with optimization, it will reorder
7201 instructions and generally do much more optimization then we
7202 do here; repeating all that work in the assembler would only
7203 benefit hand written assembly code, and does not seem worth
7204 it. */
7205 int nops = (mips_optimize == 0
7206 ? nops_for_insn (0, history, NULL)
7207 : nops_for_insn_or_target (0, history, ip));
7208 if (nops > 0)
7209 {
7210 fragS *old_frag;
7211 unsigned long old_frag_offset;
7212 int i;
7213
7214 old_frag = frag_now;
7215 old_frag_offset = frag_now_fix ();
7216
7217 for (i = 0; i < nops; i++)
7218 add_fixed_insn (NOP_INSN);
7219 insert_into_history (0, nops, NOP_INSN);
7220
7221 if (listing)
7222 {
7223 listing_prev_line ();
7224 /* We may be at the start of a variant frag. In case we
7225 are, make sure there is enough space for the frag
7226 after the frags created by listing_prev_line. The
7227 argument to frag_grow here must be at least as large
7228 as the argument to all other calls to frag_grow in
7229 this file. We don't have to worry about being in the
7230 middle of a variant frag, because the variants insert
7231 all needed nop instructions themselves. */
7232 frag_grow (40);
7233 }
7234
7235 mips_move_text_labels ();
7236
7237 #ifndef NO_ECOFF_DEBUGGING
7238 if (ECOFF_DEBUGGING)
7239 ecoff_fix_loc (old_frag, old_frag_offset);
7240 #endif
7241 }
7242 }
7243 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7244 {
7245 int nops;
7246
7247 /* Work out how many nops in prev_nop_frag are needed by IP,
7248 ignoring hazards generated by the first prev_nop_frag_since
7249 instructions. */
7250 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7251 gas_assert (nops <= prev_nop_frag_holds);
7252
7253 /* Enforce NOPS as a minimum. */
7254 if (nops > prev_nop_frag_required)
7255 prev_nop_frag_required = nops;
7256
7257 if (prev_nop_frag_holds == prev_nop_frag_required)
7258 {
7259 /* Settle for the current number of nops. Update the history
7260 accordingly (for the benefit of any future .set reorder code). */
7261 prev_nop_frag = NULL;
7262 insert_into_history (prev_nop_frag_since,
7263 prev_nop_frag_holds, NOP_INSN);
7264 }
7265 else
7266 {
7267 /* Allow this instruction to replace one of the nops that was
7268 tentatively added to prev_nop_frag. */
7269 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7270 prev_nop_frag_holds--;
7271 prev_nop_frag_since++;
7272 }
7273 }
7274
7275 method = get_append_method (ip, address_expr, reloc_type);
7276 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7277
7278 dwarf2_emit_insn (0);
7279 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7280 so "move" the instruction address accordingly.
7281
7282 Also, it doesn't seem appropriate for the assembler to reorder .loc
7283 entries. If this instruction is a branch that we are going to swap
7284 with the previous instruction, the two instructions should be
7285 treated as a unit, and the debug information for both instructions
7286 should refer to the start of the branch sequence. Using the
7287 current position is certainly wrong when swapping a 32-bit branch
7288 and a 16-bit delay slot, since the current position would then be
7289 in the middle of a branch. */
7290 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7291
7292 relax32 = (mips_relax_branch
7293 /* Don't try branch relaxation within .set nomacro, or within
7294 .set noat if we use $at for PIC computations. If it turns
7295 out that the branch was out-of-range, we'll get an error. */
7296 && !mips_opts.warn_about_macros
7297 && (mips_opts.at || mips_pic == NO_PIC)
7298 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7299 as they have no complementing branches. */
7300 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7301
7302 if (!HAVE_CODE_COMPRESSION
7303 && address_expr
7304 && relax32
7305 && *reloc_type == BFD_RELOC_16_PCREL_S2
7306 && delayed_branch_p (ip))
7307 {
7308 relaxed_branch = TRUE;
7309 add_relaxed_insn (ip, (relaxed_branch_length
7310 (NULL, NULL,
7311 uncond_branch_p (ip) ? -1
7312 : branch_likely_p (ip) ? 1
7313 : 0)), 4,
7314 RELAX_BRANCH_ENCODE
7315 (AT,
7316 uncond_branch_p (ip),
7317 branch_likely_p (ip),
7318 pinfo & INSN_WRITE_GPR_31,
7319 0),
7320 address_expr->X_add_symbol,
7321 address_expr->X_add_number);
7322 *reloc_type = BFD_RELOC_UNUSED;
7323 }
7324 else if (mips_opts.micromips
7325 && address_expr
7326 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7327 || *reloc_type > BFD_RELOC_UNUSED)
7328 && (delayed_branch_p (ip) || compact_branch_p (ip))
7329 /* Don't try branch relaxation when users specify
7330 16-bit/32-bit instructions. */
7331 && !forced_insn_length)
7332 {
7333 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7334 && *reloc_type > BFD_RELOC_UNUSED);
7335 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7336 int uncond = uncond_branch_p (ip) ? -1 : 0;
7337 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7338 int nods = method == APPEND_ADD_WITH_NOP;
7339 int al = pinfo & INSN_WRITE_GPR_31;
7340 int length32 = nods ? 8 : 4;
7341
7342 gas_assert (address_expr != NULL);
7343 gas_assert (!mips_relax.sequence);
7344
7345 relaxed_branch = TRUE;
7346 if (nods)
7347 method = APPEND_ADD;
7348 if (relax32)
7349 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7350 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7351 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7352 uncond, compact, al, nods,
7353 relax32, 0, 0),
7354 address_expr->X_add_symbol,
7355 address_expr->X_add_number);
7356 *reloc_type = BFD_RELOC_UNUSED;
7357 }
7358 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7359 {
7360 symbolS *symbol;
7361 offsetT offset;
7362
7363 /* We need to set up a variant frag. */
7364 gas_assert (address_expr != NULL);
7365 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7366 symbol created by `make_expr_symbol' may not get a necessary
7367 external relocation produced. */
7368 if (address_expr->X_op == O_symbol)
7369 {
7370 symbol = address_expr->X_add_symbol;
7371 offset = address_expr->X_add_number;
7372 }
7373 else
7374 {
7375 symbol = make_expr_symbol (address_expr);
7376 offset = 0;
7377 }
7378 add_relaxed_insn (ip, 4, 0,
7379 RELAX_MIPS16_ENCODE
7380 (*reloc_type - BFD_RELOC_UNUSED,
7381 forced_insn_length == 2, forced_insn_length == 4,
7382 delayed_branch_p (&history[0]),
7383 history[0].mips16_absolute_jump_p),
7384 symbol, offset);
7385 }
7386 else if (mips_opts.mips16 && insn_length (ip) == 2)
7387 {
7388 if (!delayed_branch_p (ip))
7389 /* Make sure there is enough room to swap this instruction with
7390 a following jump instruction. */
7391 frag_grow (6);
7392 add_fixed_insn (ip);
7393 }
7394 else
7395 {
7396 if (mips_opts.mips16
7397 && mips_opts.noreorder
7398 && delayed_branch_p (&history[0]))
7399 as_warn (_("extended instruction in delay slot"));
7400
7401 if (mips_relax.sequence)
7402 {
7403 /* If we've reached the end of this frag, turn it into a variant
7404 frag and record the information for the instructions we've
7405 written so far. */
7406 if (frag_room () < 4)
7407 relax_close_frag ();
7408 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7409 }
7410
7411 if (mips_relax.sequence != 2)
7412 {
7413 if (mips_macro_warning.first_insn_sizes[0] == 0)
7414 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7415 mips_macro_warning.sizes[0] += insn_length (ip);
7416 mips_macro_warning.insns[0]++;
7417 }
7418 if (mips_relax.sequence != 1)
7419 {
7420 if (mips_macro_warning.first_insn_sizes[1] == 0)
7421 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7422 mips_macro_warning.sizes[1] += insn_length (ip);
7423 mips_macro_warning.insns[1]++;
7424 }
7425
7426 if (mips_opts.mips16)
7427 {
7428 ip->fixed_p = 1;
7429 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7430 }
7431 add_fixed_insn (ip);
7432 }
7433
7434 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7435 {
7436 bfd_reloc_code_real_type final_type[3];
7437 reloc_howto_type *howto0;
7438 reloc_howto_type *howto;
7439 int i;
7440
7441 /* Perform any necessary conversion to microMIPS relocations
7442 and find out how many relocations there actually are. */
7443 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7444 final_type[i] = micromips_map_reloc (reloc_type[i]);
7445
7446 /* In a compound relocation, it is the final (outermost)
7447 operator that determines the relocated field. */
7448 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7449 if (!howto)
7450 abort ();
7451
7452 if (i > 1)
7453 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7454 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7455 bfd_get_reloc_size (howto),
7456 address_expr,
7457 howto0 && howto0->pc_relative,
7458 final_type[0]);
7459
7460 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7461 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7462 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7463
7464 /* These relocations can have an addend that won't fit in
7465 4 octets for 64bit assembly. */
7466 if (GPR_SIZE == 64
7467 && ! howto->partial_inplace
7468 && (reloc_type[0] == BFD_RELOC_16
7469 || reloc_type[0] == BFD_RELOC_32
7470 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7471 || reloc_type[0] == BFD_RELOC_GPREL16
7472 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7473 || reloc_type[0] == BFD_RELOC_GPREL32
7474 || reloc_type[0] == BFD_RELOC_64
7475 || reloc_type[0] == BFD_RELOC_CTOR
7476 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7477 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7478 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7479 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7480 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7481 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7482 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7483 || hi16_reloc_p (reloc_type[0])
7484 || lo16_reloc_p (reloc_type[0])))
7485 ip->fixp[0]->fx_no_overflow = 1;
7486
7487 /* These relocations can have an addend that won't fit in 2 octets. */
7488 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7489 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7490 ip->fixp[0]->fx_no_overflow = 1;
7491
7492 if (mips_relax.sequence)
7493 {
7494 if (mips_relax.first_fixup == 0)
7495 mips_relax.first_fixup = ip->fixp[0];
7496 }
7497 else if (reloc_needs_lo_p (*reloc_type))
7498 {
7499 struct mips_hi_fixup *hi_fixup;
7500
7501 /* Reuse the last entry if it already has a matching %lo. */
7502 hi_fixup = mips_hi_fixup_list;
7503 if (hi_fixup == 0
7504 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7505 {
7506 hi_fixup = XNEW (struct mips_hi_fixup);
7507 hi_fixup->next = mips_hi_fixup_list;
7508 mips_hi_fixup_list = hi_fixup;
7509 }
7510 hi_fixup->fixp = ip->fixp[0];
7511 hi_fixup->seg = now_seg;
7512 }
7513
7514 /* Add fixups for the second and third relocations, if given.
7515 Note that the ABI allows the second relocation to be
7516 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7517 moment we only use RSS_UNDEF, but we could add support
7518 for the others if it ever becomes necessary. */
7519 for (i = 1; i < 3; i++)
7520 if (reloc_type[i] != BFD_RELOC_UNUSED)
7521 {
7522 ip->fixp[i] = fix_new (ip->frag, ip->where,
7523 ip->fixp[0]->fx_size, NULL, 0,
7524 FALSE, final_type[i]);
7525
7526 /* Use fx_tcbit to mark compound relocs. */
7527 ip->fixp[0]->fx_tcbit = 1;
7528 ip->fixp[i]->fx_tcbit = 1;
7529 }
7530 }
7531
7532 /* Update the register mask information. */
7533 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7534 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7535
7536 switch (method)
7537 {
7538 case APPEND_ADD:
7539 insert_into_history (0, 1, ip);
7540 break;
7541
7542 case APPEND_ADD_WITH_NOP:
7543 {
7544 struct mips_cl_insn *nop;
7545
7546 insert_into_history (0, 1, ip);
7547 nop = get_delay_slot_nop (ip);
7548 add_fixed_insn (nop);
7549 insert_into_history (0, 1, nop);
7550 if (mips_relax.sequence)
7551 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7552 }
7553 break;
7554
7555 case APPEND_ADD_COMPACT:
7556 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7557 if (mips_opts.mips16)
7558 {
7559 ip->insn_opcode |= 0x0080;
7560 find_altered_mips16_opcode (ip);
7561 }
7562 /* Convert microMIPS instructions. */
7563 else if (mips_opts.micromips)
7564 {
7565 /* jr16->jrc */
7566 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7567 ip->insn_opcode |= 0x0020;
7568 /* b16->bc */
7569 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7570 ip->insn_opcode = 0x40e00000;
7571 /* beqz16->beqzc, bnez16->bnezc */
7572 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7573 {
7574 unsigned long regno;
7575
7576 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7577 regno &= MICROMIPSOP_MASK_MD;
7578 regno = micromips_to_32_reg_d_map[regno];
7579 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7580 | (regno << MICROMIPSOP_SH_RS)
7581 | 0x40a00000) ^ 0x00400000;
7582 }
7583 /* beqz->beqzc, bnez->bnezc */
7584 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7585 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7586 | ((ip->insn_opcode >> 7) & 0x00400000)
7587 | 0x40a00000) ^ 0x00400000;
7588 /* beq $0->beqzc, bne $0->bnezc */
7589 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7590 ip->insn_opcode = (((ip->insn_opcode >>
7591 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7592 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7593 | ((ip->insn_opcode >> 7) & 0x00400000)
7594 | 0x40a00000) ^ 0x00400000;
7595 else
7596 abort ();
7597 find_altered_micromips_opcode (ip);
7598 }
7599 else
7600 abort ();
7601 install_insn (ip);
7602 insert_into_history (0, 1, ip);
7603 break;
7604
7605 case APPEND_SWAP:
7606 {
7607 struct mips_cl_insn delay = history[0];
7608
7609 if (relaxed_branch || delay.frag != ip->frag)
7610 {
7611 /* Add the delay slot instruction to the end of the
7612 current frag and shrink the fixed part of the
7613 original frag. If the branch occupies the tail of
7614 the latter, move it backwards to cover the gap. */
7615 delay.frag->fr_fix -= branch_disp;
7616 if (delay.frag == ip->frag)
7617 move_insn (ip, ip->frag, ip->where - branch_disp);
7618 add_fixed_insn (&delay);
7619 }
7620 else
7621 {
7622 /* If this is not a relaxed branch and we are in the
7623 same frag, then just swap the instructions. */
7624 move_insn (ip, delay.frag, delay.where);
7625 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7626 }
7627 history[0] = *ip;
7628 delay.fixed_p = 1;
7629 insert_into_history (0, 1, &delay);
7630 }
7631 break;
7632 }
7633
7634 /* If we have just completed an unconditional branch, clear the history. */
7635 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7636 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7637 {
7638 unsigned int i;
7639
7640 mips_no_prev_insn ();
7641
7642 for (i = 0; i < ARRAY_SIZE (history); i++)
7643 history[i].cleared_p = 1;
7644 }
7645
7646 /* We need to emit a label at the end of branch-likely macros. */
7647 if (emit_branch_likely_macro)
7648 {
7649 emit_branch_likely_macro = FALSE;
7650 micromips_add_label ();
7651 }
7652
7653 /* We just output an insn, so the next one doesn't have a label. */
7654 mips_clear_insn_labels ();
7655 }
7656
7657 /* Forget that there was any previous instruction or label.
7658 When BRANCH is true, the branch history is also flushed. */
7659
7660 static void
7661 mips_no_prev_insn (void)
7662 {
7663 prev_nop_frag = NULL;
7664 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7665 mips_clear_insn_labels ();
7666 }
7667
7668 /* This function must be called before we emit something other than
7669 instructions. It is like mips_no_prev_insn except that it inserts
7670 any NOPS that might be needed by previous instructions. */
7671
7672 void
7673 mips_emit_delays (void)
7674 {
7675 if (! mips_opts.noreorder)
7676 {
7677 int nops = nops_for_insn (0, history, NULL);
7678 if (nops > 0)
7679 {
7680 while (nops-- > 0)
7681 add_fixed_insn (NOP_INSN);
7682 mips_move_text_labels ();
7683 }
7684 }
7685 mips_no_prev_insn ();
7686 }
7687
7688 /* Start a (possibly nested) noreorder block. */
7689
7690 static void
7691 start_noreorder (void)
7692 {
7693 if (mips_opts.noreorder == 0)
7694 {
7695 unsigned int i;
7696 int nops;
7697
7698 /* None of the instructions before the .set noreorder can be moved. */
7699 for (i = 0; i < ARRAY_SIZE (history); i++)
7700 history[i].fixed_p = 1;
7701
7702 /* Insert any nops that might be needed between the .set noreorder
7703 block and the previous instructions. We will later remove any
7704 nops that turn out not to be needed. */
7705 nops = nops_for_insn (0, history, NULL);
7706 if (nops > 0)
7707 {
7708 if (mips_optimize != 0)
7709 {
7710 /* Record the frag which holds the nop instructions, so
7711 that we can remove them if we don't need them. */
7712 frag_grow (nops * NOP_INSN_SIZE);
7713 prev_nop_frag = frag_now;
7714 prev_nop_frag_holds = nops;
7715 prev_nop_frag_required = 0;
7716 prev_nop_frag_since = 0;
7717 }
7718
7719 for (; nops > 0; --nops)
7720 add_fixed_insn (NOP_INSN);
7721
7722 /* Move on to a new frag, so that it is safe to simply
7723 decrease the size of prev_nop_frag. */
7724 frag_wane (frag_now);
7725 frag_new (0);
7726 mips_move_text_labels ();
7727 }
7728 mips_mark_labels ();
7729 mips_clear_insn_labels ();
7730 }
7731 mips_opts.noreorder++;
7732 mips_any_noreorder = 1;
7733 }
7734
7735 /* End a nested noreorder block. */
7736
7737 static void
7738 end_noreorder (void)
7739 {
7740 mips_opts.noreorder--;
7741 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7742 {
7743 /* Commit to inserting prev_nop_frag_required nops and go back to
7744 handling nop insertion the .set reorder way. */
7745 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7746 * NOP_INSN_SIZE);
7747 insert_into_history (prev_nop_frag_since,
7748 prev_nop_frag_required, NOP_INSN);
7749 prev_nop_frag = NULL;
7750 }
7751 }
7752
7753 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7754 higher bits unset. */
7755
7756 static void
7757 normalize_constant_expr (expressionS *ex)
7758 {
7759 if (ex->X_op == O_constant
7760 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7761 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7762 - 0x80000000);
7763 }
7764
7765 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7766 all higher bits unset. */
7767
7768 static void
7769 normalize_address_expr (expressionS *ex)
7770 {
7771 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7772 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7773 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7774 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7775 - 0x80000000);
7776 }
7777
7778 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7779 Return true if the match was successful.
7780
7781 OPCODE_EXTRA is a value that should be ORed into the opcode
7782 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7783 there are more alternatives after OPCODE and SOFT_MATCH is
7784 as for mips_arg_info. */
7785
7786 static bfd_boolean
7787 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7788 struct mips_operand_token *tokens, unsigned int opcode_extra,
7789 bfd_boolean lax_match, bfd_boolean complete_p)
7790 {
7791 const char *args;
7792 struct mips_arg_info arg;
7793 const struct mips_operand *operand;
7794 char c;
7795
7796 imm_expr.X_op = O_absent;
7797 offset_expr.X_op = O_absent;
7798 offset_reloc[0] = BFD_RELOC_UNUSED;
7799 offset_reloc[1] = BFD_RELOC_UNUSED;
7800 offset_reloc[2] = BFD_RELOC_UNUSED;
7801
7802 create_insn (insn, opcode);
7803 /* When no opcode suffix is specified, assume ".xyzw". */
7804 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7805 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7806 else
7807 insn->insn_opcode |= opcode_extra;
7808 memset (&arg, 0, sizeof (arg));
7809 arg.insn = insn;
7810 arg.token = tokens;
7811 arg.argnum = 1;
7812 arg.last_regno = ILLEGAL_REG;
7813 arg.dest_regno = ILLEGAL_REG;
7814 arg.lax_match = lax_match;
7815 for (args = opcode->args;; ++args)
7816 {
7817 if (arg.token->type == OT_END)
7818 {
7819 /* Handle unary instructions in which only one operand is given.
7820 The source is then the same as the destination. */
7821 if (arg.opnum == 1 && *args == ',')
7822 {
7823 operand = (mips_opts.micromips
7824 ? decode_micromips_operand (args + 1)
7825 : decode_mips_operand (args + 1));
7826 if (operand && mips_optional_operand_p (operand))
7827 {
7828 arg.token = tokens;
7829 arg.argnum = 1;
7830 continue;
7831 }
7832 }
7833
7834 /* Treat elided base registers as $0. */
7835 if (strcmp (args, "(b)") == 0)
7836 args += 3;
7837
7838 if (args[0] == '+')
7839 switch (args[1])
7840 {
7841 case 'K':
7842 case 'N':
7843 /* The register suffix is optional. */
7844 args += 2;
7845 break;
7846 }
7847
7848 /* Fail the match if there were too few operands. */
7849 if (*args)
7850 return FALSE;
7851
7852 /* Successful match. */
7853 if (!complete_p)
7854 return TRUE;
7855 clear_insn_error ();
7856 if (arg.dest_regno == arg.last_regno
7857 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7858 {
7859 if (arg.opnum == 2)
7860 set_insn_error
7861 (0, _("source and destination must be different"));
7862 else if (arg.last_regno == 31)
7863 set_insn_error
7864 (0, _("a destination register must be supplied"));
7865 }
7866 else if (arg.last_regno == 31
7867 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7868 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7869 set_insn_error (0, _("the source register must not be $31"));
7870 check_completed_insn (&arg);
7871 return TRUE;
7872 }
7873
7874 /* Fail the match if the line has too many operands. */
7875 if (*args == 0)
7876 return FALSE;
7877
7878 /* Handle characters that need to match exactly. */
7879 if (*args == '(' || *args == ')' || *args == ',')
7880 {
7881 if (match_char (&arg, *args))
7882 continue;
7883 return FALSE;
7884 }
7885 if (*args == '#')
7886 {
7887 ++args;
7888 if (arg.token->type == OT_DOUBLE_CHAR
7889 && arg.token->u.ch == *args)
7890 {
7891 ++arg.token;
7892 continue;
7893 }
7894 return FALSE;
7895 }
7896
7897 /* Handle special macro operands. Work out the properties of
7898 other operands. */
7899 arg.opnum += 1;
7900 switch (*args)
7901 {
7902 case '-':
7903 switch (args[1])
7904 {
7905 case 'A':
7906 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7907 break;
7908
7909 case 'B':
7910 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7911 break;
7912 }
7913 break;
7914
7915 case '+':
7916 switch (args[1])
7917 {
7918 case 'i':
7919 *offset_reloc = BFD_RELOC_MIPS_JMP;
7920 break;
7921
7922 case '\'':
7923 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7924 break;
7925
7926 case '\"':
7927 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7928 break;
7929 }
7930 break;
7931
7932 case 'I':
7933 if (!match_const_int (&arg, &imm_expr.X_add_number))
7934 return FALSE;
7935 imm_expr.X_op = O_constant;
7936 if (GPR_SIZE == 32)
7937 normalize_constant_expr (&imm_expr);
7938 continue;
7939
7940 case 'A':
7941 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7942 {
7943 /* Assume that the offset has been elided and that what
7944 we saw was a base register. The match will fail later
7945 if that assumption turns out to be wrong. */
7946 offset_expr.X_op = O_constant;
7947 offset_expr.X_add_number = 0;
7948 }
7949 else
7950 {
7951 if (!match_expression (&arg, &offset_expr, offset_reloc))
7952 return FALSE;
7953 normalize_address_expr (&offset_expr);
7954 }
7955 continue;
7956
7957 case 'F':
7958 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7959 8, TRUE))
7960 return FALSE;
7961 continue;
7962
7963 case 'L':
7964 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7965 8, FALSE))
7966 return FALSE;
7967 continue;
7968
7969 case 'f':
7970 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7971 4, TRUE))
7972 return FALSE;
7973 continue;
7974
7975 case 'l':
7976 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7977 4, FALSE))
7978 return FALSE;
7979 continue;
7980
7981 case 'p':
7982 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7983 break;
7984
7985 case 'a':
7986 *offset_reloc = BFD_RELOC_MIPS_JMP;
7987 break;
7988
7989 case 'm':
7990 gas_assert (mips_opts.micromips);
7991 c = args[1];
7992 switch (c)
7993 {
7994 case 'D':
7995 case 'E':
7996 if (!forced_insn_length)
7997 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7998 else if (c == 'D')
7999 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8000 else
8001 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8002 break;
8003 }
8004 break;
8005 }
8006
8007 operand = (mips_opts.micromips
8008 ? decode_micromips_operand (args)
8009 : decode_mips_operand (args));
8010 if (!operand)
8011 abort ();
8012
8013 /* Skip prefixes. */
8014 if (*args == '+' || *args == 'm' || *args == '-')
8015 args++;
8016
8017 if (mips_optional_operand_p (operand)
8018 && args[1] == ','
8019 && (arg.token[0].type != OT_REG
8020 || arg.token[1].type == OT_END))
8021 {
8022 /* Assume that the register has been elided and is the
8023 same as the first operand. */
8024 arg.token = tokens;
8025 arg.argnum = 1;
8026 }
8027
8028 if (!match_operand (&arg, operand))
8029 return FALSE;
8030 }
8031 }
8032
8033 /* Like match_insn, but for MIPS16. */
8034
8035 static bfd_boolean
8036 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8037 struct mips_operand_token *tokens)
8038 {
8039 const char *args;
8040 const struct mips_operand *operand;
8041 const struct mips_operand *ext_operand;
8042 struct mips_arg_info arg;
8043 int relax_char;
8044
8045 create_insn (insn, opcode);
8046 imm_expr.X_op = O_absent;
8047 offset_expr.X_op = O_absent;
8048 offset_reloc[0] = BFD_RELOC_UNUSED;
8049 offset_reloc[1] = BFD_RELOC_UNUSED;
8050 offset_reloc[2] = BFD_RELOC_UNUSED;
8051 relax_char = 0;
8052
8053 memset (&arg, 0, sizeof (arg));
8054 arg.insn = insn;
8055 arg.token = tokens;
8056 arg.argnum = 1;
8057 arg.last_regno = ILLEGAL_REG;
8058 arg.dest_regno = ILLEGAL_REG;
8059 relax_char = 0;
8060 for (args = opcode->args;; ++args)
8061 {
8062 int c;
8063
8064 if (arg.token->type == OT_END)
8065 {
8066 offsetT value;
8067
8068 /* Handle unary instructions in which only one operand is given.
8069 The source is then the same as the destination. */
8070 if (arg.opnum == 1 && *args == ',')
8071 {
8072 operand = decode_mips16_operand (args[1], FALSE);
8073 if (operand && mips_optional_operand_p (operand))
8074 {
8075 arg.token = tokens;
8076 arg.argnum = 1;
8077 continue;
8078 }
8079 }
8080
8081 /* Fail the match if there were too few operands. */
8082 if (*args)
8083 return FALSE;
8084
8085 /* Successful match. Stuff the immediate value in now, if
8086 we can. */
8087 clear_insn_error ();
8088 if (opcode->pinfo == INSN_MACRO)
8089 {
8090 gas_assert (relax_char == 0 || relax_char == 'p');
8091 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8092 }
8093 else if (relax_char
8094 && offset_expr.X_op == O_constant
8095 && calculate_reloc (*offset_reloc,
8096 offset_expr.X_add_number,
8097 &value))
8098 {
8099 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8100 forced_insn_length, &insn->insn_opcode);
8101 offset_expr.X_op = O_absent;
8102 *offset_reloc = BFD_RELOC_UNUSED;
8103 }
8104 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8105 {
8106 if (forced_insn_length == 2)
8107 set_insn_error (0, _("invalid unextended operand value"));
8108 forced_insn_length = 4;
8109 insn->insn_opcode |= MIPS16_EXTEND;
8110 }
8111 else if (relax_char)
8112 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8113
8114 check_completed_insn (&arg);
8115 return TRUE;
8116 }
8117
8118 /* Fail the match if the line has too many operands. */
8119 if (*args == 0)
8120 return FALSE;
8121
8122 /* Handle characters that need to match exactly. */
8123 if (*args == '(' || *args == ')' || *args == ',')
8124 {
8125 if (match_char (&arg, *args))
8126 continue;
8127 return FALSE;
8128 }
8129
8130 arg.opnum += 1;
8131 c = *args;
8132 switch (c)
8133 {
8134 case 'p':
8135 case 'q':
8136 case 'A':
8137 case 'B':
8138 case 'E':
8139 relax_char = c;
8140 break;
8141
8142 case 'I':
8143 if (!match_const_int (&arg, &imm_expr.X_add_number))
8144 return FALSE;
8145 imm_expr.X_op = O_constant;
8146 if (GPR_SIZE == 32)
8147 normalize_constant_expr (&imm_expr);
8148 continue;
8149
8150 case 'a':
8151 case 'i':
8152 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8153 insn->insn_opcode <<= 16;
8154 break;
8155 }
8156
8157 operand = decode_mips16_operand (c, FALSE);
8158 if (!operand)
8159 abort ();
8160
8161 /* '6' is a special case. It is used for BREAK and SDBBP,
8162 whose operands are only meaningful to the software that decodes
8163 them. This means that there is no architectural reason why
8164 they cannot be prefixed by EXTEND, but in practice,
8165 exception handlers will only look at the instruction
8166 itself. We therefore allow '6' to be extended when
8167 disassembling but not when assembling. */
8168 if (operand->type != OP_PCREL && c != '6')
8169 {
8170 ext_operand = decode_mips16_operand (c, TRUE);
8171 if (operand != ext_operand)
8172 {
8173 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8174 {
8175 offset_expr.X_op = O_constant;
8176 offset_expr.X_add_number = 0;
8177 relax_char = c;
8178 continue;
8179 }
8180
8181 /* We need the OT_INTEGER check because some MIPS16
8182 immediate variants are listed before the register ones. */
8183 if (arg.token->type != OT_INTEGER
8184 || !match_expression (&arg, &offset_expr, offset_reloc))
8185 return FALSE;
8186
8187 /* '8' is used for SLTI(U) and has traditionally not
8188 been allowed to take relocation operators. */
8189 if (offset_reloc[0] != BFD_RELOC_UNUSED
8190 && (ext_operand->size != 16 || c == '8'))
8191 return FALSE;
8192
8193 relax_char = c;
8194 continue;
8195 }
8196 }
8197
8198 if (mips_optional_operand_p (operand)
8199 && args[1] == ','
8200 && (arg.token[0].type != OT_REG
8201 || arg.token[1].type == OT_END))
8202 {
8203 /* Assume that the register has been elided and is the
8204 same as the first operand. */
8205 arg.token = tokens;
8206 arg.argnum = 1;
8207 }
8208
8209 if (!match_operand (&arg, operand))
8210 return FALSE;
8211 }
8212 }
8213
8214 /* Record that the current instruction is invalid for the current ISA. */
8215
8216 static void
8217 match_invalid_for_isa (void)
8218 {
8219 set_insn_error_ss
8220 (0, _("opcode not supported on this processor: %s (%s)"),
8221 mips_cpu_info_from_arch (mips_opts.arch)->name,
8222 mips_cpu_info_from_isa (mips_opts.isa)->name);
8223 }
8224
8225 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8226 Return true if a definite match or failure was found, storing any match
8227 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8228 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8229 tried and failed to match under normal conditions and now want to try a
8230 more relaxed match. */
8231
8232 static bfd_boolean
8233 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8234 const struct mips_opcode *past, struct mips_operand_token *tokens,
8235 int opcode_extra, bfd_boolean lax_match)
8236 {
8237 const struct mips_opcode *opcode;
8238 const struct mips_opcode *invalid_delay_slot;
8239 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8240
8241 /* Search for a match, ignoring alternatives that don't satisfy the
8242 current ISA or forced_length. */
8243 invalid_delay_slot = 0;
8244 seen_valid_for_isa = FALSE;
8245 seen_valid_for_size = FALSE;
8246 opcode = first;
8247 do
8248 {
8249 gas_assert (strcmp (opcode->name, first->name) == 0);
8250 if (is_opcode_valid (opcode))
8251 {
8252 seen_valid_for_isa = TRUE;
8253 if (is_size_valid (opcode))
8254 {
8255 bfd_boolean delay_slot_ok;
8256
8257 seen_valid_for_size = TRUE;
8258 delay_slot_ok = is_delay_slot_valid (opcode);
8259 if (match_insn (insn, opcode, tokens, opcode_extra,
8260 lax_match, delay_slot_ok))
8261 {
8262 if (!delay_slot_ok)
8263 {
8264 if (!invalid_delay_slot)
8265 invalid_delay_slot = opcode;
8266 }
8267 else
8268 return TRUE;
8269 }
8270 }
8271 }
8272 ++opcode;
8273 }
8274 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8275
8276 /* If the only matches we found had the wrong length for the delay slot,
8277 pick the first such match. We'll issue an appropriate warning later. */
8278 if (invalid_delay_slot)
8279 {
8280 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8281 lax_match, TRUE))
8282 return TRUE;
8283 abort ();
8284 }
8285
8286 /* Handle the case where we didn't try to match an instruction because
8287 all the alternatives were incompatible with the current ISA. */
8288 if (!seen_valid_for_isa)
8289 {
8290 match_invalid_for_isa ();
8291 return TRUE;
8292 }
8293
8294 /* Handle the case where we didn't try to match an instruction because
8295 all the alternatives were of the wrong size. */
8296 if (!seen_valid_for_size)
8297 {
8298 if (mips_opts.insn32)
8299 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8300 else
8301 set_insn_error_i
8302 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8303 8 * forced_insn_length);
8304 return TRUE;
8305 }
8306
8307 return FALSE;
8308 }
8309
8310 /* Like match_insns, but for MIPS16. */
8311
8312 static bfd_boolean
8313 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8314 struct mips_operand_token *tokens)
8315 {
8316 const struct mips_opcode *opcode;
8317 bfd_boolean seen_valid_for_isa;
8318
8319 /* Search for a match, ignoring alternatives that don't satisfy the
8320 current ISA. There are no separate entries for extended forms so
8321 we deal with forced_length later. */
8322 seen_valid_for_isa = FALSE;
8323 opcode = first;
8324 do
8325 {
8326 gas_assert (strcmp (opcode->name, first->name) == 0);
8327 if (is_opcode_valid_16 (opcode))
8328 {
8329 seen_valid_for_isa = TRUE;
8330 if (match_mips16_insn (insn, opcode, tokens))
8331 return TRUE;
8332 }
8333 ++opcode;
8334 }
8335 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8336 && strcmp (opcode->name, first->name) == 0);
8337
8338 /* Handle the case where we didn't try to match an instruction because
8339 all the alternatives were incompatible with the current ISA. */
8340 if (!seen_valid_for_isa)
8341 {
8342 match_invalid_for_isa ();
8343 return TRUE;
8344 }
8345
8346 return FALSE;
8347 }
8348
8349 /* Set up global variables for the start of a new macro. */
8350
8351 static void
8352 macro_start (void)
8353 {
8354 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8355 memset (&mips_macro_warning.first_insn_sizes, 0,
8356 sizeof (mips_macro_warning.first_insn_sizes));
8357 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8358 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8359 && delayed_branch_p (&history[0]));
8360 if (history[0].frag
8361 && history[0].frag->fr_type == rs_machine_dependent
8362 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8363 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8364 mips_macro_warning.delay_slot_length = 0;
8365 else
8366 switch (history[0].insn_mo->pinfo2
8367 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8368 {
8369 case INSN2_BRANCH_DELAY_32BIT:
8370 mips_macro_warning.delay_slot_length = 4;
8371 break;
8372 case INSN2_BRANCH_DELAY_16BIT:
8373 mips_macro_warning.delay_slot_length = 2;
8374 break;
8375 default:
8376 mips_macro_warning.delay_slot_length = 0;
8377 break;
8378 }
8379 mips_macro_warning.first_frag = NULL;
8380 }
8381
8382 /* Given that a macro is longer than one instruction or of the wrong size,
8383 return the appropriate warning for it. Return null if no warning is
8384 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8385 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8386 and RELAX_NOMACRO. */
8387
8388 static const char *
8389 macro_warning (relax_substateT subtype)
8390 {
8391 if (subtype & RELAX_DELAY_SLOT)
8392 return _("macro instruction expanded into multiple instructions"
8393 " in a branch delay slot");
8394 else if (subtype & RELAX_NOMACRO)
8395 return _("macro instruction expanded into multiple instructions");
8396 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8397 | RELAX_DELAY_SLOT_SIZE_SECOND))
8398 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8399 ? _("macro instruction expanded into a wrong size instruction"
8400 " in a 16-bit branch delay slot")
8401 : _("macro instruction expanded into a wrong size instruction"
8402 " in a 32-bit branch delay slot"));
8403 else
8404 return 0;
8405 }
8406
8407 /* Finish up a macro. Emit warnings as appropriate. */
8408
8409 static void
8410 macro_end (void)
8411 {
8412 /* Relaxation warning flags. */
8413 relax_substateT subtype = 0;
8414
8415 /* Check delay slot size requirements. */
8416 if (mips_macro_warning.delay_slot_length == 2)
8417 subtype |= RELAX_DELAY_SLOT_16BIT;
8418 if (mips_macro_warning.delay_slot_length != 0)
8419 {
8420 if (mips_macro_warning.delay_slot_length
8421 != mips_macro_warning.first_insn_sizes[0])
8422 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8423 if (mips_macro_warning.delay_slot_length
8424 != mips_macro_warning.first_insn_sizes[1])
8425 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8426 }
8427
8428 /* Check instruction count requirements. */
8429 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8430 {
8431 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8432 subtype |= RELAX_SECOND_LONGER;
8433 if (mips_opts.warn_about_macros)
8434 subtype |= RELAX_NOMACRO;
8435 if (mips_macro_warning.delay_slot_p)
8436 subtype |= RELAX_DELAY_SLOT;
8437 }
8438
8439 /* If both alternatives fail to fill a delay slot correctly,
8440 emit the warning now. */
8441 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8442 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8443 {
8444 relax_substateT s;
8445 const char *msg;
8446
8447 s = subtype & (RELAX_DELAY_SLOT_16BIT
8448 | RELAX_DELAY_SLOT_SIZE_FIRST
8449 | RELAX_DELAY_SLOT_SIZE_SECOND);
8450 msg = macro_warning (s);
8451 if (msg != NULL)
8452 as_warn ("%s", msg);
8453 subtype &= ~s;
8454 }
8455
8456 /* If both implementations are longer than 1 instruction, then emit the
8457 warning now. */
8458 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8459 {
8460 relax_substateT s;
8461 const char *msg;
8462
8463 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8464 msg = macro_warning (s);
8465 if (msg != NULL)
8466 as_warn ("%s", msg);
8467 subtype &= ~s;
8468 }
8469
8470 /* If any flags still set, then one implementation might need a warning
8471 and the other either will need one of a different kind or none at all.
8472 Pass any remaining flags over to relaxation. */
8473 if (mips_macro_warning.first_frag != NULL)
8474 mips_macro_warning.first_frag->fr_subtype |= subtype;
8475 }
8476
8477 /* Instruction operand formats used in macros that vary between
8478 standard MIPS and microMIPS code. */
8479
8480 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8481 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8482 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8483 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8484 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8485 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8486 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8487 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8488
8489 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8490 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8491 : cop12_fmt[mips_opts.micromips])
8492 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8493 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8494 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8495 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8496 : mem12_fmt[mips_opts.micromips])
8497 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8498 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8499 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8500
8501 /* Read a macro's relocation codes from *ARGS and store them in *R.
8502 The first argument in *ARGS will be either the code for a single
8503 relocation or -1 followed by the three codes that make up a
8504 composite relocation. */
8505
8506 static void
8507 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8508 {
8509 int i, next;
8510
8511 next = va_arg (*args, int);
8512 if (next >= 0)
8513 r[0] = (bfd_reloc_code_real_type) next;
8514 else
8515 {
8516 for (i = 0; i < 3; i++)
8517 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8518 /* This function is only used for 16-bit relocation fields.
8519 To make the macro code simpler, treat an unrelocated value
8520 in the same way as BFD_RELOC_LO16. */
8521 if (r[0] == BFD_RELOC_UNUSED)
8522 r[0] = BFD_RELOC_LO16;
8523 }
8524 }
8525
8526 /* Build an instruction created by a macro expansion. This is passed
8527 a pointer to the count of instructions created so far, an
8528 expression, the name of the instruction to build, an operand format
8529 string, and corresponding arguments. */
8530
8531 static void
8532 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8533 {
8534 const struct mips_opcode *mo = NULL;
8535 bfd_reloc_code_real_type r[3];
8536 const struct mips_opcode *amo;
8537 const struct mips_operand *operand;
8538 struct hash_control *hash;
8539 struct mips_cl_insn insn;
8540 va_list args;
8541 unsigned int uval;
8542
8543 va_start (args, fmt);
8544
8545 if (mips_opts.mips16)
8546 {
8547 mips16_macro_build (ep, name, fmt, &args);
8548 va_end (args);
8549 return;
8550 }
8551
8552 r[0] = BFD_RELOC_UNUSED;
8553 r[1] = BFD_RELOC_UNUSED;
8554 r[2] = BFD_RELOC_UNUSED;
8555 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8556 amo = (struct mips_opcode *) hash_find (hash, name);
8557 gas_assert (amo);
8558 gas_assert (strcmp (name, amo->name) == 0);
8559
8560 do
8561 {
8562 /* Search until we get a match for NAME. It is assumed here that
8563 macros will never generate MDMX, MIPS-3D, or MT instructions.
8564 We try to match an instruction that fulfils the branch delay
8565 slot instruction length requirement (if any) of the previous
8566 instruction. While doing this we record the first instruction
8567 seen that matches all the other conditions and use it anyway
8568 if the requirement cannot be met; we will issue an appropriate
8569 warning later on. */
8570 if (strcmp (fmt, amo->args) == 0
8571 && amo->pinfo != INSN_MACRO
8572 && is_opcode_valid (amo)
8573 && is_size_valid (amo))
8574 {
8575 if (is_delay_slot_valid (amo))
8576 {
8577 mo = amo;
8578 break;
8579 }
8580 else if (!mo)
8581 mo = amo;
8582 }
8583
8584 ++amo;
8585 gas_assert (amo->name);
8586 }
8587 while (strcmp (name, amo->name) == 0);
8588
8589 gas_assert (mo);
8590 create_insn (&insn, mo);
8591 for (; *fmt; ++fmt)
8592 {
8593 switch (*fmt)
8594 {
8595 case ',':
8596 case '(':
8597 case ')':
8598 case 'z':
8599 break;
8600
8601 case 'i':
8602 case 'j':
8603 macro_read_relocs (&args, r);
8604 gas_assert (*r == BFD_RELOC_GPREL16
8605 || *r == BFD_RELOC_MIPS_HIGHER
8606 || *r == BFD_RELOC_HI16_S
8607 || *r == BFD_RELOC_LO16
8608 || *r == BFD_RELOC_MIPS_GOT_OFST);
8609 break;
8610
8611 case 'o':
8612 macro_read_relocs (&args, r);
8613 break;
8614
8615 case 'u':
8616 macro_read_relocs (&args, r);
8617 gas_assert (ep != NULL
8618 && (ep->X_op == O_constant
8619 || (ep->X_op == O_symbol
8620 && (*r == BFD_RELOC_MIPS_HIGHEST
8621 || *r == BFD_RELOC_HI16_S
8622 || *r == BFD_RELOC_HI16
8623 || *r == BFD_RELOC_GPREL16
8624 || *r == BFD_RELOC_MIPS_GOT_HI16
8625 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8626 break;
8627
8628 case 'p':
8629 gas_assert (ep != NULL);
8630
8631 /*
8632 * This allows macro() to pass an immediate expression for
8633 * creating short branches without creating a symbol.
8634 *
8635 * We don't allow branch relaxation for these branches, as
8636 * they should only appear in ".set nomacro" anyway.
8637 */
8638 if (ep->X_op == O_constant)
8639 {
8640 /* For microMIPS we always use relocations for branches.
8641 So we should not resolve immediate values. */
8642 gas_assert (!mips_opts.micromips);
8643
8644 if ((ep->X_add_number & 3) != 0)
8645 as_bad (_("branch to misaligned address (0x%lx)"),
8646 (unsigned long) ep->X_add_number);
8647 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8648 as_bad (_("branch address range overflow (0x%lx)"),
8649 (unsigned long) ep->X_add_number);
8650 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8651 ep = NULL;
8652 }
8653 else
8654 *r = BFD_RELOC_16_PCREL_S2;
8655 break;
8656
8657 case 'a':
8658 gas_assert (ep != NULL);
8659 *r = BFD_RELOC_MIPS_JMP;
8660 break;
8661
8662 default:
8663 operand = (mips_opts.micromips
8664 ? decode_micromips_operand (fmt)
8665 : decode_mips_operand (fmt));
8666 if (!operand)
8667 abort ();
8668
8669 uval = va_arg (args, int);
8670 if (operand->type == OP_CLO_CLZ_DEST)
8671 uval |= (uval << 5);
8672 insn_insert_operand (&insn, operand, uval);
8673
8674 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8675 ++fmt;
8676 break;
8677 }
8678 }
8679 va_end (args);
8680 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8681
8682 append_insn (&insn, ep, r, TRUE);
8683 }
8684
8685 static void
8686 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8687 va_list *args)
8688 {
8689 struct mips_opcode *mo;
8690 struct mips_cl_insn insn;
8691 const struct mips_operand *operand;
8692 bfd_reloc_code_real_type r[3]
8693 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8694
8695 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8696 gas_assert (mo);
8697 gas_assert (strcmp (name, mo->name) == 0);
8698
8699 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8700 {
8701 ++mo;
8702 gas_assert (mo->name);
8703 gas_assert (strcmp (name, mo->name) == 0);
8704 }
8705
8706 create_insn (&insn, mo);
8707 for (; *fmt; ++fmt)
8708 {
8709 int c;
8710
8711 c = *fmt;
8712 switch (c)
8713 {
8714 case ',':
8715 case '(':
8716 case ')':
8717 break;
8718
8719 case '0':
8720 case 'S':
8721 case 'P':
8722 case 'R':
8723 break;
8724
8725 case '<':
8726 case '>':
8727 case '4':
8728 case '5':
8729 case 'H':
8730 case 'W':
8731 case 'D':
8732 case 'j':
8733 case '8':
8734 case 'V':
8735 case 'C':
8736 case 'U':
8737 case 'k':
8738 case 'K':
8739 case 'p':
8740 case 'q':
8741 {
8742 offsetT value;
8743
8744 gas_assert (ep != NULL);
8745
8746 if (ep->X_op != O_constant)
8747 *r = (int) BFD_RELOC_UNUSED + c;
8748 else if (calculate_reloc (*r, ep->X_add_number, &value))
8749 {
8750 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8751 ep = NULL;
8752 *r = BFD_RELOC_UNUSED;
8753 }
8754 }
8755 break;
8756
8757 default:
8758 operand = decode_mips16_operand (c, FALSE);
8759 if (!operand)
8760 abort ();
8761
8762 insn_insert_operand (&insn, operand, va_arg (*args, int));
8763 break;
8764 }
8765 }
8766
8767 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8768
8769 append_insn (&insn, ep, r, TRUE);
8770 }
8771
8772 /*
8773 * Generate a "jalr" instruction with a relocation hint to the called
8774 * function. This occurs in NewABI PIC code.
8775 */
8776 static void
8777 macro_build_jalr (expressionS *ep, int cprestore)
8778 {
8779 static const bfd_reloc_code_real_type jalr_relocs[2]
8780 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8781 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8782 const char *jalr;
8783 char *f = NULL;
8784
8785 if (MIPS_JALR_HINT_P (ep))
8786 {
8787 frag_grow (8);
8788 f = frag_more (0);
8789 }
8790 if (mips_opts.micromips)
8791 {
8792 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8793 ? "jalr" : "jalrs");
8794 if (MIPS_JALR_HINT_P (ep)
8795 || mips_opts.insn32
8796 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8797 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8798 else
8799 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8800 }
8801 else
8802 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8803 if (MIPS_JALR_HINT_P (ep))
8804 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8805 }
8806
8807 /*
8808 * Generate a "lui" instruction.
8809 */
8810 static void
8811 macro_build_lui (expressionS *ep, int regnum)
8812 {
8813 gas_assert (! mips_opts.mips16);
8814
8815 if (ep->X_op != O_constant)
8816 {
8817 gas_assert (ep->X_op == O_symbol);
8818 /* _gp_disp is a special case, used from s_cpload.
8819 __gnu_local_gp is used if mips_no_shared. */
8820 gas_assert (mips_pic == NO_PIC
8821 || (! HAVE_NEWABI
8822 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8823 || (! mips_in_shared
8824 && strcmp (S_GET_NAME (ep->X_add_symbol),
8825 "__gnu_local_gp") == 0));
8826 }
8827
8828 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8829 }
8830
8831 /* Generate a sequence of instructions to do a load or store from a constant
8832 offset off of a base register (breg) into/from a target register (treg),
8833 using AT if necessary. */
8834 static void
8835 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8836 int treg, int breg, int dbl)
8837 {
8838 gas_assert (ep->X_op == O_constant);
8839
8840 /* Sign-extending 32-bit constants makes their handling easier. */
8841 if (!dbl)
8842 normalize_constant_expr (ep);
8843
8844 /* Right now, this routine can only handle signed 32-bit constants. */
8845 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8846 as_warn (_("operand overflow"));
8847
8848 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8849 {
8850 /* Signed 16-bit offset will fit in the op. Easy! */
8851 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8852 }
8853 else
8854 {
8855 /* 32-bit offset, need multiple instructions and AT, like:
8856 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8857 addu $tempreg,$tempreg,$breg
8858 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8859 to handle the complete offset. */
8860 macro_build_lui (ep, AT);
8861 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8862 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8863
8864 if (!mips_opts.at)
8865 as_bad (_("macro used $at after \".set noat\""));
8866 }
8867 }
8868
8869 /* set_at()
8870 * Generates code to set the $at register to true (one)
8871 * if reg is less than the immediate expression.
8872 */
8873 static void
8874 set_at (int reg, int unsignedp)
8875 {
8876 if (imm_expr.X_add_number >= -0x8000
8877 && imm_expr.X_add_number < 0x8000)
8878 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8879 AT, reg, BFD_RELOC_LO16);
8880 else
8881 {
8882 load_register (AT, &imm_expr, GPR_SIZE == 64);
8883 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8884 }
8885 }
8886
8887 /* Count the leading zeroes by performing a binary chop. This is a
8888 bulky bit of source, but performance is a LOT better for the
8889 majority of values than a simple loop to count the bits:
8890 for (lcnt = 0; (lcnt < 32); lcnt++)
8891 if ((v) & (1 << (31 - lcnt)))
8892 break;
8893 However it is not code size friendly, and the gain will drop a bit
8894 on certain cached systems.
8895 */
8896 #define COUNT_TOP_ZEROES(v) \
8897 (((v) & ~0xffff) == 0 \
8898 ? ((v) & ~0xff) == 0 \
8899 ? ((v) & ~0xf) == 0 \
8900 ? ((v) & ~0x3) == 0 \
8901 ? ((v) & ~0x1) == 0 \
8902 ? !(v) \
8903 ? 32 \
8904 : 31 \
8905 : 30 \
8906 : ((v) & ~0x7) == 0 \
8907 ? 29 \
8908 : 28 \
8909 : ((v) & ~0x3f) == 0 \
8910 ? ((v) & ~0x1f) == 0 \
8911 ? 27 \
8912 : 26 \
8913 : ((v) & ~0x7f) == 0 \
8914 ? 25 \
8915 : 24 \
8916 : ((v) & ~0xfff) == 0 \
8917 ? ((v) & ~0x3ff) == 0 \
8918 ? ((v) & ~0x1ff) == 0 \
8919 ? 23 \
8920 : 22 \
8921 : ((v) & ~0x7ff) == 0 \
8922 ? 21 \
8923 : 20 \
8924 : ((v) & ~0x3fff) == 0 \
8925 ? ((v) & ~0x1fff) == 0 \
8926 ? 19 \
8927 : 18 \
8928 : ((v) & ~0x7fff) == 0 \
8929 ? 17 \
8930 : 16 \
8931 : ((v) & ~0xffffff) == 0 \
8932 ? ((v) & ~0xfffff) == 0 \
8933 ? ((v) & ~0x3ffff) == 0 \
8934 ? ((v) & ~0x1ffff) == 0 \
8935 ? 15 \
8936 : 14 \
8937 : ((v) & ~0x7ffff) == 0 \
8938 ? 13 \
8939 : 12 \
8940 : ((v) & ~0x3fffff) == 0 \
8941 ? ((v) & ~0x1fffff) == 0 \
8942 ? 11 \
8943 : 10 \
8944 : ((v) & ~0x7fffff) == 0 \
8945 ? 9 \
8946 : 8 \
8947 : ((v) & ~0xfffffff) == 0 \
8948 ? ((v) & ~0x3ffffff) == 0 \
8949 ? ((v) & ~0x1ffffff) == 0 \
8950 ? 7 \
8951 : 6 \
8952 : ((v) & ~0x7ffffff) == 0 \
8953 ? 5 \
8954 : 4 \
8955 : ((v) & ~0x3fffffff) == 0 \
8956 ? ((v) & ~0x1fffffff) == 0 \
8957 ? 3 \
8958 : 2 \
8959 : ((v) & ~0x7fffffff) == 0 \
8960 ? 1 \
8961 : 0)
8962
8963 /* load_register()
8964 * This routine generates the least number of instructions necessary to load
8965 * an absolute expression value into a register.
8966 */
8967 static void
8968 load_register (int reg, expressionS *ep, int dbl)
8969 {
8970 int freg;
8971 expressionS hi32, lo32;
8972
8973 if (ep->X_op != O_big)
8974 {
8975 gas_assert (ep->X_op == O_constant);
8976
8977 /* Sign-extending 32-bit constants makes their handling easier. */
8978 if (!dbl)
8979 normalize_constant_expr (ep);
8980
8981 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8982 {
8983 /* We can handle 16 bit signed values with an addiu to
8984 $zero. No need to ever use daddiu here, since $zero and
8985 the result are always correct in 32 bit mode. */
8986 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8987 return;
8988 }
8989 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8990 {
8991 /* We can handle 16 bit unsigned values with an ori to
8992 $zero. */
8993 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8994 return;
8995 }
8996 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8997 {
8998 /* 32 bit values require an lui. */
8999 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9000 if ((ep->X_add_number & 0xffff) != 0)
9001 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9002 return;
9003 }
9004 }
9005
9006 /* The value is larger than 32 bits. */
9007
9008 if (!dbl || GPR_SIZE == 32)
9009 {
9010 char value[32];
9011
9012 sprintf_vma (value, ep->X_add_number);
9013 as_bad (_("number (0x%s) larger than 32 bits"), value);
9014 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9015 return;
9016 }
9017
9018 if (ep->X_op != O_big)
9019 {
9020 hi32 = *ep;
9021 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9022 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9023 hi32.X_add_number &= 0xffffffff;
9024 lo32 = *ep;
9025 lo32.X_add_number &= 0xffffffff;
9026 }
9027 else
9028 {
9029 gas_assert (ep->X_add_number > 2);
9030 if (ep->X_add_number == 3)
9031 generic_bignum[3] = 0;
9032 else if (ep->X_add_number > 4)
9033 as_bad (_("number larger than 64 bits"));
9034 lo32.X_op = O_constant;
9035 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9036 hi32.X_op = O_constant;
9037 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9038 }
9039
9040 if (hi32.X_add_number == 0)
9041 freg = 0;
9042 else
9043 {
9044 int shift, bit;
9045 unsigned long hi, lo;
9046
9047 if (hi32.X_add_number == (offsetT) 0xffffffff)
9048 {
9049 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9050 {
9051 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9052 return;
9053 }
9054 if (lo32.X_add_number & 0x80000000)
9055 {
9056 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9057 if (lo32.X_add_number & 0xffff)
9058 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9059 return;
9060 }
9061 }
9062
9063 /* Check for 16bit shifted constant. We know that hi32 is
9064 non-zero, so start the mask on the first bit of the hi32
9065 value. */
9066 shift = 17;
9067 do
9068 {
9069 unsigned long himask, lomask;
9070
9071 if (shift < 32)
9072 {
9073 himask = 0xffff >> (32 - shift);
9074 lomask = (0xffff << shift) & 0xffffffff;
9075 }
9076 else
9077 {
9078 himask = 0xffff << (shift - 32);
9079 lomask = 0;
9080 }
9081 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9082 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9083 {
9084 expressionS tmp;
9085
9086 tmp.X_op = O_constant;
9087 if (shift < 32)
9088 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9089 | (lo32.X_add_number >> shift));
9090 else
9091 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9092 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9093 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9094 reg, reg, (shift >= 32) ? shift - 32 : shift);
9095 return;
9096 }
9097 ++shift;
9098 }
9099 while (shift <= (64 - 16));
9100
9101 /* Find the bit number of the lowest one bit, and store the
9102 shifted value in hi/lo. */
9103 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9104 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9105 if (lo != 0)
9106 {
9107 bit = 0;
9108 while ((lo & 1) == 0)
9109 {
9110 lo >>= 1;
9111 ++bit;
9112 }
9113 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9114 hi >>= bit;
9115 }
9116 else
9117 {
9118 bit = 32;
9119 while ((hi & 1) == 0)
9120 {
9121 hi >>= 1;
9122 ++bit;
9123 }
9124 lo = hi;
9125 hi = 0;
9126 }
9127
9128 /* Optimize if the shifted value is a (power of 2) - 1. */
9129 if ((hi == 0 && ((lo + 1) & lo) == 0)
9130 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9131 {
9132 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9133 if (shift != 0)
9134 {
9135 expressionS tmp;
9136
9137 /* This instruction will set the register to be all
9138 ones. */
9139 tmp.X_op = O_constant;
9140 tmp.X_add_number = (offsetT) -1;
9141 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9142 if (bit != 0)
9143 {
9144 bit += shift;
9145 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9146 reg, reg, (bit >= 32) ? bit - 32 : bit);
9147 }
9148 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9149 reg, reg, (shift >= 32) ? shift - 32 : shift);
9150 return;
9151 }
9152 }
9153
9154 /* Sign extend hi32 before calling load_register, because we can
9155 generally get better code when we load a sign extended value. */
9156 if ((hi32.X_add_number & 0x80000000) != 0)
9157 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9158 load_register (reg, &hi32, 0);
9159 freg = reg;
9160 }
9161 if ((lo32.X_add_number & 0xffff0000) == 0)
9162 {
9163 if (freg != 0)
9164 {
9165 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9166 freg = reg;
9167 }
9168 }
9169 else
9170 {
9171 expressionS mid16;
9172
9173 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9174 {
9175 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9176 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9177 return;
9178 }
9179
9180 if (freg != 0)
9181 {
9182 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9183 freg = reg;
9184 }
9185 mid16 = lo32;
9186 mid16.X_add_number >>= 16;
9187 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9188 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9189 freg = reg;
9190 }
9191 if ((lo32.X_add_number & 0xffff) != 0)
9192 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9193 }
9194
9195 static inline void
9196 load_delay_nop (void)
9197 {
9198 if (!gpr_interlocks)
9199 macro_build (NULL, "nop", "");
9200 }
9201
9202 /* Load an address into a register. */
9203
9204 static void
9205 load_address (int reg, expressionS *ep, int *used_at)
9206 {
9207 if (ep->X_op != O_constant
9208 && ep->X_op != O_symbol)
9209 {
9210 as_bad (_("expression too complex"));
9211 ep->X_op = O_constant;
9212 }
9213
9214 if (ep->X_op == O_constant)
9215 {
9216 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9217 return;
9218 }
9219
9220 if (mips_pic == NO_PIC)
9221 {
9222 /* If this is a reference to a GP relative symbol, we want
9223 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9224 Otherwise we want
9225 lui $reg,<sym> (BFD_RELOC_HI16_S)
9226 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9227 If we have an addend, we always use the latter form.
9228
9229 With 64bit address space and a usable $at we want
9230 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9231 lui $at,<sym> (BFD_RELOC_HI16_S)
9232 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9233 daddiu $at,<sym> (BFD_RELOC_LO16)
9234 dsll32 $reg,0
9235 daddu $reg,$reg,$at
9236
9237 If $at is already in use, we use a path which is suboptimal
9238 on superscalar processors.
9239 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9240 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9241 dsll $reg,16
9242 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9243 dsll $reg,16
9244 daddiu $reg,<sym> (BFD_RELOC_LO16)
9245
9246 For GP relative symbols in 64bit address space we can use
9247 the same sequence as in 32bit address space. */
9248 if (HAVE_64BIT_SYMBOLS)
9249 {
9250 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9251 && !nopic_need_relax (ep->X_add_symbol, 1))
9252 {
9253 relax_start (ep->X_add_symbol);
9254 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9255 mips_gp_register, BFD_RELOC_GPREL16);
9256 relax_switch ();
9257 }
9258
9259 if (*used_at == 0 && mips_opts.at)
9260 {
9261 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9262 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9263 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9264 BFD_RELOC_MIPS_HIGHER);
9265 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9266 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9267 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9268 *used_at = 1;
9269 }
9270 else
9271 {
9272 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9273 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9274 BFD_RELOC_MIPS_HIGHER);
9275 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9276 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9277 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9278 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9279 }
9280
9281 if (mips_relax.sequence)
9282 relax_end ();
9283 }
9284 else
9285 {
9286 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9287 && !nopic_need_relax (ep->X_add_symbol, 1))
9288 {
9289 relax_start (ep->X_add_symbol);
9290 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9291 mips_gp_register, BFD_RELOC_GPREL16);
9292 relax_switch ();
9293 }
9294 macro_build_lui (ep, reg);
9295 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9296 reg, reg, BFD_RELOC_LO16);
9297 if (mips_relax.sequence)
9298 relax_end ();
9299 }
9300 }
9301 else if (!mips_big_got)
9302 {
9303 expressionS ex;
9304
9305 /* If this is a reference to an external symbol, we want
9306 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9307 Otherwise we want
9308 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9309 nop
9310 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9311 If there is a constant, it must be added in after.
9312
9313 If we have NewABI, we want
9314 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9315 unless we're referencing a global symbol with a non-zero
9316 offset, in which case cst must be added separately. */
9317 if (HAVE_NEWABI)
9318 {
9319 if (ep->X_add_number)
9320 {
9321 ex.X_add_number = ep->X_add_number;
9322 ep->X_add_number = 0;
9323 relax_start (ep->X_add_symbol);
9324 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9325 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9326 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9327 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9328 ex.X_op = O_constant;
9329 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9330 reg, reg, BFD_RELOC_LO16);
9331 ep->X_add_number = ex.X_add_number;
9332 relax_switch ();
9333 }
9334 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9335 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9336 if (mips_relax.sequence)
9337 relax_end ();
9338 }
9339 else
9340 {
9341 ex.X_add_number = ep->X_add_number;
9342 ep->X_add_number = 0;
9343 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9344 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9345 load_delay_nop ();
9346 relax_start (ep->X_add_symbol);
9347 relax_switch ();
9348 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9349 BFD_RELOC_LO16);
9350 relax_end ();
9351
9352 if (ex.X_add_number != 0)
9353 {
9354 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9355 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9356 ex.X_op = O_constant;
9357 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9358 reg, reg, BFD_RELOC_LO16);
9359 }
9360 }
9361 }
9362 else if (mips_big_got)
9363 {
9364 expressionS ex;
9365
9366 /* This is the large GOT case. If this is a reference to an
9367 external symbol, we want
9368 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9369 addu $reg,$reg,$gp
9370 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9371
9372 Otherwise, for a reference to a local symbol in old ABI, we want
9373 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9374 nop
9375 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9376 If there is a constant, it must be added in after.
9377
9378 In the NewABI, for local symbols, with or without offsets, we want:
9379 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9380 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9381 */
9382 if (HAVE_NEWABI)
9383 {
9384 ex.X_add_number = ep->X_add_number;
9385 ep->X_add_number = 0;
9386 relax_start (ep->X_add_symbol);
9387 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9388 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9389 reg, reg, mips_gp_register);
9390 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9391 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9392 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9393 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9394 else if (ex.X_add_number)
9395 {
9396 ex.X_op = O_constant;
9397 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9398 BFD_RELOC_LO16);
9399 }
9400
9401 ep->X_add_number = ex.X_add_number;
9402 relax_switch ();
9403 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9404 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9405 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9406 BFD_RELOC_MIPS_GOT_OFST);
9407 relax_end ();
9408 }
9409 else
9410 {
9411 ex.X_add_number = ep->X_add_number;
9412 ep->X_add_number = 0;
9413 relax_start (ep->X_add_symbol);
9414 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9415 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9416 reg, reg, mips_gp_register);
9417 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9418 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9419 relax_switch ();
9420 if (reg_needs_delay (mips_gp_register))
9421 {
9422 /* We need a nop before loading from $gp. This special
9423 check is required because the lui which starts the main
9424 instruction stream does not refer to $gp, and so will not
9425 insert the nop which may be required. */
9426 macro_build (NULL, "nop", "");
9427 }
9428 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9429 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9430 load_delay_nop ();
9431 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9432 BFD_RELOC_LO16);
9433 relax_end ();
9434
9435 if (ex.X_add_number != 0)
9436 {
9437 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9438 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9439 ex.X_op = O_constant;
9440 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9441 BFD_RELOC_LO16);
9442 }
9443 }
9444 }
9445 else
9446 abort ();
9447
9448 if (!mips_opts.at && *used_at == 1)
9449 as_bad (_("macro used $at after \".set noat\""));
9450 }
9451
9452 /* Move the contents of register SOURCE into register DEST. */
9453
9454 static void
9455 move_register (int dest, int source)
9456 {
9457 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9458 instruction specifically requires a 32-bit one. */
9459 if (mips_opts.micromips
9460 && !mips_opts.insn32
9461 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9462 macro_build (NULL, "move", "mp,mj", dest, source);
9463 else
9464 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9465 }
9466
9467 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9468 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9469 The two alternatives are:
9470
9471 Global symbol Local sybmol
9472 ------------- ------------
9473 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9474 ... ...
9475 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9476
9477 load_got_offset emits the first instruction and add_got_offset
9478 emits the second for a 16-bit offset or add_got_offset_hilo emits
9479 a sequence to add a 32-bit offset using a scratch register. */
9480
9481 static void
9482 load_got_offset (int dest, expressionS *local)
9483 {
9484 expressionS global;
9485
9486 global = *local;
9487 global.X_add_number = 0;
9488
9489 relax_start (local->X_add_symbol);
9490 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9491 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9492 relax_switch ();
9493 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9494 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9495 relax_end ();
9496 }
9497
9498 static void
9499 add_got_offset (int dest, expressionS *local)
9500 {
9501 expressionS global;
9502
9503 global.X_op = O_constant;
9504 global.X_op_symbol = NULL;
9505 global.X_add_symbol = NULL;
9506 global.X_add_number = local->X_add_number;
9507
9508 relax_start (local->X_add_symbol);
9509 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9510 dest, dest, BFD_RELOC_LO16);
9511 relax_switch ();
9512 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9513 relax_end ();
9514 }
9515
9516 static void
9517 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9518 {
9519 expressionS global;
9520 int hold_mips_optimize;
9521
9522 global.X_op = O_constant;
9523 global.X_op_symbol = NULL;
9524 global.X_add_symbol = NULL;
9525 global.X_add_number = local->X_add_number;
9526
9527 relax_start (local->X_add_symbol);
9528 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9529 relax_switch ();
9530 /* Set mips_optimize around the lui instruction to avoid
9531 inserting an unnecessary nop after the lw. */
9532 hold_mips_optimize = mips_optimize;
9533 mips_optimize = 2;
9534 macro_build_lui (&global, tmp);
9535 mips_optimize = hold_mips_optimize;
9536 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9537 relax_end ();
9538
9539 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9540 }
9541
9542 /* Emit a sequence of instructions to emulate a branch likely operation.
9543 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9544 is its complementing branch with the original condition negated.
9545 CALL is set if the original branch specified the link operation.
9546 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9547
9548 Code like this is produced in the noreorder mode:
9549
9550 BRNEG <args>, 1f
9551 nop
9552 b <sym>
9553 delay slot (executed only if branch taken)
9554 1:
9555
9556 or, if CALL is set:
9557
9558 BRNEG <args>, 1f
9559 nop
9560 bal <sym>
9561 delay slot (executed only if branch taken)
9562 1:
9563
9564 In the reorder mode the delay slot would be filled with a nop anyway,
9565 so code produced is simply:
9566
9567 BR <args>, <sym>
9568 nop
9569
9570 This function is used when producing code for the microMIPS ASE that
9571 does not implement branch likely instructions in hardware. */
9572
9573 static void
9574 macro_build_branch_likely (const char *br, const char *brneg,
9575 int call, expressionS *ep, const char *fmt,
9576 unsigned int sreg, unsigned int treg)
9577 {
9578 int noreorder = mips_opts.noreorder;
9579 expressionS expr1;
9580
9581 gas_assert (mips_opts.micromips);
9582 start_noreorder ();
9583 if (noreorder)
9584 {
9585 micromips_label_expr (&expr1);
9586 macro_build (&expr1, brneg, fmt, sreg, treg);
9587 macro_build (NULL, "nop", "");
9588 macro_build (ep, call ? "bal" : "b", "p");
9589
9590 /* Set to true so that append_insn adds a label. */
9591 emit_branch_likely_macro = TRUE;
9592 }
9593 else
9594 {
9595 macro_build (ep, br, fmt, sreg, treg);
9596 macro_build (NULL, "nop", "");
9597 }
9598 end_noreorder ();
9599 }
9600
9601 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9602 the condition code tested. EP specifies the branch target. */
9603
9604 static void
9605 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9606 {
9607 const int call = 0;
9608 const char *brneg;
9609 const char *br;
9610
9611 switch (type)
9612 {
9613 case M_BC1FL:
9614 br = "bc1f";
9615 brneg = "bc1t";
9616 break;
9617 case M_BC1TL:
9618 br = "bc1t";
9619 brneg = "bc1f";
9620 break;
9621 case M_BC2FL:
9622 br = "bc2f";
9623 brneg = "bc2t";
9624 break;
9625 case M_BC2TL:
9626 br = "bc2t";
9627 brneg = "bc2f";
9628 break;
9629 default:
9630 abort ();
9631 }
9632 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9633 }
9634
9635 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9636 the register tested. EP specifies the branch target. */
9637
9638 static void
9639 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9640 {
9641 const char *brneg = NULL;
9642 const char *br;
9643 int call = 0;
9644
9645 switch (type)
9646 {
9647 case M_BGEZ:
9648 br = "bgez";
9649 break;
9650 case M_BGEZL:
9651 br = mips_opts.micromips ? "bgez" : "bgezl";
9652 brneg = "bltz";
9653 break;
9654 case M_BGEZALL:
9655 gas_assert (mips_opts.micromips);
9656 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9657 brneg = "bltz";
9658 call = 1;
9659 break;
9660 case M_BGTZ:
9661 br = "bgtz";
9662 break;
9663 case M_BGTZL:
9664 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9665 brneg = "blez";
9666 break;
9667 case M_BLEZ:
9668 br = "blez";
9669 break;
9670 case M_BLEZL:
9671 br = mips_opts.micromips ? "blez" : "blezl";
9672 brneg = "bgtz";
9673 break;
9674 case M_BLTZ:
9675 br = "bltz";
9676 break;
9677 case M_BLTZL:
9678 br = mips_opts.micromips ? "bltz" : "bltzl";
9679 brneg = "bgez";
9680 break;
9681 case M_BLTZALL:
9682 gas_assert (mips_opts.micromips);
9683 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9684 brneg = "bgez";
9685 call = 1;
9686 break;
9687 default:
9688 abort ();
9689 }
9690 if (mips_opts.micromips && brneg)
9691 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9692 else
9693 macro_build (ep, br, "s,p", sreg);
9694 }
9695
9696 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9697 TREG as the registers tested. EP specifies the branch target. */
9698
9699 static void
9700 macro_build_branch_rsrt (int type, expressionS *ep,
9701 unsigned int sreg, unsigned int treg)
9702 {
9703 const char *brneg = NULL;
9704 const int call = 0;
9705 const char *br;
9706
9707 switch (type)
9708 {
9709 case M_BEQ:
9710 case M_BEQ_I:
9711 br = "beq";
9712 break;
9713 case M_BEQL:
9714 case M_BEQL_I:
9715 br = mips_opts.micromips ? "beq" : "beql";
9716 brneg = "bne";
9717 break;
9718 case M_BNE:
9719 case M_BNE_I:
9720 br = "bne";
9721 break;
9722 case M_BNEL:
9723 case M_BNEL_I:
9724 br = mips_opts.micromips ? "bne" : "bnel";
9725 brneg = "beq";
9726 break;
9727 default:
9728 abort ();
9729 }
9730 if (mips_opts.micromips && brneg)
9731 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9732 else
9733 macro_build (ep, br, "s,t,p", sreg, treg);
9734 }
9735
9736 /* Return the high part that should be loaded in order to make the low
9737 part of VALUE accessible using an offset of OFFBITS bits. */
9738
9739 static offsetT
9740 offset_high_part (offsetT value, unsigned int offbits)
9741 {
9742 offsetT bias;
9743 addressT low_mask;
9744
9745 if (offbits == 0)
9746 return value;
9747 bias = 1 << (offbits - 1);
9748 low_mask = bias * 2 - 1;
9749 return (value + bias) & ~low_mask;
9750 }
9751
9752 /* Return true if the value stored in offset_expr and offset_reloc
9753 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9754 amount that the caller wants to add without inducing overflow
9755 and ALIGN is the known alignment of the value in bytes. */
9756
9757 static bfd_boolean
9758 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9759 {
9760 if (offbits == 16)
9761 {
9762 /* Accept any relocation operator if overflow isn't a concern. */
9763 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9764 return TRUE;
9765
9766 /* These relocations are guaranteed not to overflow in correct links. */
9767 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9768 || gprel16_reloc_p (*offset_reloc))
9769 return TRUE;
9770 }
9771 if (offset_expr.X_op == O_constant
9772 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9773 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9774 return TRUE;
9775 return FALSE;
9776 }
9777
9778 /*
9779 * Build macros
9780 * This routine implements the seemingly endless macro or synthesized
9781 * instructions and addressing modes in the mips assembly language. Many
9782 * of these macros are simple and are similar to each other. These could
9783 * probably be handled by some kind of table or grammar approach instead of
9784 * this verbose method. Others are not simple macros but are more like
9785 * optimizing code generation.
9786 * One interesting optimization is when several store macros appear
9787 * consecutively that would load AT with the upper half of the same address.
9788 * The ensuing load upper instructions are ommited. This implies some kind
9789 * of global optimization. We currently only optimize within a single macro.
9790 * For many of the load and store macros if the address is specified as a
9791 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9792 * first load register 'at' with zero and use it as the base register. The
9793 * mips assembler simply uses register $zero. Just one tiny optimization
9794 * we're missing.
9795 */
9796 static void
9797 macro (struct mips_cl_insn *ip, char *str)
9798 {
9799 const struct mips_operand_array *operands;
9800 unsigned int breg, i;
9801 unsigned int tempreg;
9802 int mask;
9803 int used_at = 0;
9804 expressionS label_expr;
9805 expressionS expr1;
9806 expressionS *ep;
9807 const char *s;
9808 const char *s2;
9809 const char *fmt;
9810 int likely = 0;
9811 int coproc = 0;
9812 int offbits = 16;
9813 int call = 0;
9814 int jals = 0;
9815 int dbl = 0;
9816 int imm = 0;
9817 int ust = 0;
9818 int lp = 0;
9819 bfd_boolean large_offset;
9820 int off;
9821 int hold_mips_optimize;
9822 unsigned int align;
9823 unsigned int op[MAX_OPERANDS];
9824
9825 gas_assert (! mips_opts.mips16);
9826
9827 operands = insn_operands (ip);
9828 for (i = 0; i < MAX_OPERANDS; i++)
9829 if (operands->operand[i])
9830 op[i] = insn_extract_operand (ip, operands->operand[i]);
9831 else
9832 op[i] = -1;
9833
9834 mask = ip->insn_mo->mask;
9835
9836 label_expr.X_op = O_constant;
9837 label_expr.X_op_symbol = NULL;
9838 label_expr.X_add_symbol = NULL;
9839 label_expr.X_add_number = 0;
9840
9841 expr1.X_op = O_constant;
9842 expr1.X_op_symbol = NULL;
9843 expr1.X_add_symbol = NULL;
9844 expr1.X_add_number = 1;
9845 align = 1;
9846
9847 switch (mask)
9848 {
9849 case M_DABS:
9850 dbl = 1;
9851 case M_ABS:
9852 /* bgez $a0,1f
9853 move v0,$a0
9854 sub v0,$zero,$a0
9855 1:
9856 */
9857
9858 start_noreorder ();
9859
9860 if (mips_opts.micromips)
9861 micromips_label_expr (&label_expr);
9862 else
9863 label_expr.X_add_number = 8;
9864 macro_build (&label_expr, "bgez", "s,p", op[1]);
9865 if (op[0] == op[1])
9866 macro_build (NULL, "nop", "");
9867 else
9868 move_register (op[0], op[1]);
9869 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9870 if (mips_opts.micromips)
9871 micromips_add_label ();
9872
9873 end_noreorder ();
9874 break;
9875
9876 case M_ADD_I:
9877 s = "addi";
9878 s2 = "add";
9879 goto do_addi;
9880 case M_ADDU_I:
9881 s = "addiu";
9882 s2 = "addu";
9883 goto do_addi;
9884 case M_DADD_I:
9885 dbl = 1;
9886 s = "daddi";
9887 s2 = "dadd";
9888 if (!mips_opts.micromips)
9889 goto do_addi;
9890 if (imm_expr.X_add_number >= -0x200
9891 && imm_expr.X_add_number < 0x200)
9892 {
9893 macro_build (NULL, s, "t,r,.", op[0], op[1],
9894 (int) imm_expr.X_add_number);
9895 break;
9896 }
9897 goto do_addi_i;
9898 case M_DADDU_I:
9899 dbl = 1;
9900 s = "daddiu";
9901 s2 = "daddu";
9902 do_addi:
9903 if (imm_expr.X_add_number >= -0x8000
9904 && imm_expr.X_add_number < 0x8000)
9905 {
9906 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9907 break;
9908 }
9909 do_addi_i:
9910 used_at = 1;
9911 load_register (AT, &imm_expr, dbl);
9912 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9913 break;
9914
9915 case M_AND_I:
9916 s = "andi";
9917 s2 = "and";
9918 goto do_bit;
9919 case M_OR_I:
9920 s = "ori";
9921 s2 = "or";
9922 goto do_bit;
9923 case M_NOR_I:
9924 s = "";
9925 s2 = "nor";
9926 goto do_bit;
9927 case M_XOR_I:
9928 s = "xori";
9929 s2 = "xor";
9930 do_bit:
9931 if (imm_expr.X_add_number >= 0
9932 && imm_expr.X_add_number < 0x10000)
9933 {
9934 if (mask != M_NOR_I)
9935 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9936 else
9937 {
9938 macro_build (&imm_expr, "ori", "t,r,i",
9939 op[0], op[1], BFD_RELOC_LO16);
9940 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9941 }
9942 break;
9943 }
9944
9945 used_at = 1;
9946 load_register (AT, &imm_expr, GPR_SIZE == 64);
9947 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9948 break;
9949
9950 case M_BALIGN:
9951 switch (imm_expr.X_add_number)
9952 {
9953 case 0:
9954 macro_build (NULL, "nop", "");
9955 break;
9956 case 2:
9957 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9958 break;
9959 case 1:
9960 case 3:
9961 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9962 (int) imm_expr.X_add_number);
9963 break;
9964 default:
9965 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9966 (unsigned long) imm_expr.X_add_number);
9967 break;
9968 }
9969 break;
9970
9971 case M_BC1FL:
9972 case M_BC1TL:
9973 case M_BC2FL:
9974 case M_BC2TL:
9975 gas_assert (mips_opts.micromips);
9976 macro_build_branch_ccl (mask, &offset_expr,
9977 EXTRACT_OPERAND (1, BCC, *ip));
9978 break;
9979
9980 case M_BEQ_I:
9981 case M_BEQL_I:
9982 case M_BNE_I:
9983 case M_BNEL_I:
9984 if (imm_expr.X_add_number == 0)
9985 op[1] = 0;
9986 else
9987 {
9988 op[1] = AT;
9989 used_at = 1;
9990 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9991 }
9992 /* Fall through. */
9993 case M_BEQL:
9994 case M_BNEL:
9995 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9996 break;
9997
9998 case M_BGEL:
9999 likely = 1;
10000 case M_BGE:
10001 if (op[1] == 0)
10002 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10003 else if (op[0] == 0)
10004 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10005 else
10006 {
10007 used_at = 1;
10008 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10009 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10010 &offset_expr, AT, ZERO);
10011 }
10012 break;
10013
10014 case M_BGEZL:
10015 case M_BGEZALL:
10016 case M_BGTZL:
10017 case M_BLEZL:
10018 case M_BLTZL:
10019 case M_BLTZALL:
10020 macro_build_branch_rs (mask, &offset_expr, op[0]);
10021 break;
10022
10023 case M_BGTL_I:
10024 likely = 1;
10025 case M_BGT_I:
10026 /* Check for > max integer. */
10027 if (imm_expr.X_add_number >= GPR_SMAX)
10028 {
10029 do_false:
10030 /* Result is always false. */
10031 if (! likely)
10032 macro_build (NULL, "nop", "");
10033 else
10034 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10035 break;
10036 }
10037 ++imm_expr.X_add_number;
10038 /* FALLTHROUGH */
10039 case M_BGE_I:
10040 case M_BGEL_I:
10041 if (mask == M_BGEL_I)
10042 likely = 1;
10043 if (imm_expr.X_add_number == 0)
10044 {
10045 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10046 &offset_expr, op[0]);
10047 break;
10048 }
10049 if (imm_expr.X_add_number == 1)
10050 {
10051 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10052 &offset_expr, op[0]);
10053 break;
10054 }
10055 if (imm_expr.X_add_number <= GPR_SMIN)
10056 {
10057 do_true:
10058 /* result is always true */
10059 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10060 macro_build (&offset_expr, "b", "p");
10061 break;
10062 }
10063 used_at = 1;
10064 set_at (op[0], 0);
10065 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10066 &offset_expr, AT, ZERO);
10067 break;
10068
10069 case M_BGEUL:
10070 likely = 1;
10071 case M_BGEU:
10072 if (op[1] == 0)
10073 goto do_true;
10074 else if (op[0] == 0)
10075 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10076 &offset_expr, ZERO, op[1]);
10077 else
10078 {
10079 used_at = 1;
10080 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10081 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10082 &offset_expr, AT, ZERO);
10083 }
10084 break;
10085
10086 case M_BGTUL_I:
10087 likely = 1;
10088 case M_BGTU_I:
10089 if (op[0] == 0
10090 || (GPR_SIZE == 32
10091 && imm_expr.X_add_number == -1))
10092 goto do_false;
10093 ++imm_expr.X_add_number;
10094 /* FALLTHROUGH */
10095 case M_BGEU_I:
10096 case M_BGEUL_I:
10097 if (mask == M_BGEUL_I)
10098 likely = 1;
10099 if (imm_expr.X_add_number == 0)
10100 goto do_true;
10101 else if (imm_expr.X_add_number == 1)
10102 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10103 &offset_expr, op[0], ZERO);
10104 else
10105 {
10106 used_at = 1;
10107 set_at (op[0], 1);
10108 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10109 &offset_expr, AT, ZERO);
10110 }
10111 break;
10112
10113 case M_BGTL:
10114 likely = 1;
10115 case M_BGT:
10116 if (op[1] == 0)
10117 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10118 else if (op[0] == 0)
10119 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10120 else
10121 {
10122 used_at = 1;
10123 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10124 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10125 &offset_expr, AT, ZERO);
10126 }
10127 break;
10128
10129 case M_BGTUL:
10130 likely = 1;
10131 case M_BGTU:
10132 if (op[1] == 0)
10133 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10134 &offset_expr, op[0], ZERO);
10135 else if (op[0] == 0)
10136 goto do_false;
10137 else
10138 {
10139 used_at = 1;
10140 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10141 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10142 &offset_expr, AT, ZERO);
10143 }
10144 break;
10145
10146 case M_BLEL:
10147 likely = 1;
10148 case M_BLE:
10149 if (op[1] == 0)
10150 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10151 else if (op[0] == 0)
10152 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10153 else
10154 {
10155 used_at = 1;
10156 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10157 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10158 &offset_expr, AT, ZERO);
10159 }
10160 break;
10161
10162 case M_BLEL_I:
10163 likely = 1;
10164 case M_BLE_I:
10165 if (imm_expr.X_add_number >= GPR_SMAX)
10166 goto do_true;
10167 ++imm_expr.X_add_number;
10168 /* FALLTHROUGH */
10169 case M_BLT_I:
10170 case M_BLTL_I:
10171 if (mask == M_BLTL_I)
10172 likely = 1;
10173 if (imm_expr.X_add_number == 0)
10174 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10175 else if (imm_expr.X_add_number == 1)
10176 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10177 else
10178 {
10179 used_at = 1;
10180 set_at (op[0], 0);
10181 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10182 &offset_expr, AT, ZERO);
10183 }
10184 break;
10185
10186 case M_BLEUL:
10187 likely = 1;
10188 case M_BLEU:
10189 if (op[1] == 0)
10190 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10191 &offset_expr, op[0], ZERO);
10192 else if (op[0] == 0)
10193 goto do_true;
10194 else
10195 {
10196 used_at = 1;
10197 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10198 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10199 &offset_expr, AT, ZERO);
10200 }
10201 break;
10202
10203 case M_BLEUL_I:
10204 likely = 1;
10205 case M_BLEU_I:
10206 if (op[0] == 0
10207 || (GPR_SIZE == 32
10208 && imm_expr.X_add_number == -1))
10209 goto do_true;
10210 ++imm_expr.X_add_number;
10211 /* FALLTHROUGH */
10212 case M_BLTU_I:
10213 case M_BLTUL_I:
10214 if (mask == M_BLTUL_I)
10215 likely = 1;
10216 if (imm_expr.X_add_number == 0)
10217 goto do_false;
10218 else if (imm_expr.X_add_number == 1)
10219 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10220 &offset_expr, op[0], ZERO);
10221 else
10222 {
10223 used_at = 1;
10224 set_at (op[0], 1);
10225 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10226 &offset_expr, AT, ZERO);
10227 }
10228 break;
10229
10230 case M_BLTL:
10231 likely = 1;
10232 case M_BLT:
10233 if (op[1] == 0)
10234 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10235 else if (op[0] == 0)
10236 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10237 else
10238 {
10239 used_at = 1;
10240 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10241 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10242 &offset_expr, AT, ZERO);
10243 }
10244 break;
10245
10246 case M_BLTUL:
10247 likely = 1;
10248 case M_BLTU:
10249 if (op[1] == 0)
10250 goto do_false;
10251 else if (op[0] == 0)
10252 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10253 &offset_expr, ZERO, op[1]);
10254 else
10255 {
10256 used_at = 1;
10257 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10258 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10259 &offset_expr, AT, ZERO);
10260 }
10261 break;
10262
10263 case M_DDIV_3:
10264 dbl = 1;
10265 case M_DIV_3:
10266 s = "mflo";
10267 goto do_div3;
10268 case M_DREM_3:
10269 dbl = 1;
10270 case M_REM_3:
10271 s = "mfhi";
10272 do_div3:
10273 if (op[2] == 0)
10274 {
10275 as_warn (_("divide by zero"));
10276 if (mips_trap)
10277 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10278 else
10279 macro_build (NULL, "break", BRK_FMT, 7);
10280 break;
10281 }
10282
10283 start_noreorder ();
10284 if (mips_trap)
10285 {
10286 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10287 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10288 }
10289 else
10290 {
10291 if (mips_opts.micromips)
10292 micromips_label_expr (&label_expr);
10293 else
10294 label_expr.X_add_number = 8;
10295 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10296 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10297 macro_build (NULL, "break", BRK_FMT, 7);
10298 if (mips_opts.micromips)
10299 micromips_add_label ();
10300 }
10301 expr1.X_add_number = -1;
10302 used_at = 1;
10303 load_register (AT, &expr1, dbl);
10304 if (mips_opts.micromips)
10305 micromips_label_expr (&label_expr);
10306 else
10307 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10308 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10309 if (dbl)
10310 {
10311 expr1.X_add_number = 1;
10312 load_register (AT, &expr1, dbl);
10313 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10314 }
10315 else
10316 {
10317 expr1.X_add_number = 0x80000000;
10318 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10319 }
10320 if (mips_trap)
10321 {
10322 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10323 /* We want to close the noreorder block as soon as possible, so
10324 that later insns are available for delay slot filling. */
10325 end_noreorder ();
10326 }
10327 else
10328 {
10329 if (mips_opts.micromips)
10330 micromips_label_expr (&label_expr);
10331 else
10332 label_expr.X_add_number = 8;
10333 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10334 macro_build (NULL, "nop", "");
10335
10336 /* We want to close the noreorder block as soon as possible, so
10337 that later insns are available for delay slot filling. */
10338 end_noreorder ();
10339
10340 macro_build (NULL, "break", BRK_FMT, 6);
10341 }
10342 if (mips_opts.micromips)
10343 micromips_add_label ();
10344 macro_build (NULL, s, MFHL_FMT, op[0]);
10345 break;
10346
10347 case M_DIV_3I:
10348 s = "div";
10349 s2 = "mflo";
10350 goto do_divi;
10351 case M_DIVU_3I:
10352 s = "divu";
10353 s2 = "mflo";
10354 goto do_divi;
10355 case M_REM_3I:
10356 s = "div";
10357 s2 = "mfhi";
10358 goto do_divi;
10359 case M_REMU_3I:
10360 s = "divu";
10361 s2 = "mfhi";
10362 goto do_divi;
10363 case M_DDIV_3I:
10364 dbl = 1;
10365 s = "ddiv";
10366 s2 = "mflo";
10367 goto do_divi;
10368 case M_DDIVU_3I:
10369 dbl = 1;
10370 s = "ddivu";
10371 s2 = "mflo";
10372 goto do_divi;
10373 case M_DREM_3I:
10374 dbl = 1;
10375 s = "ddiv";
10376 s2 = "mfhi";
10377 goto do_divi;
10378 case M_DREMU_3I:
10379 dbl = 1;
10380 s = "ddivu";
10381 s2 = "mfhi";
10382 do_divi:
10383 if (imm_expr.X_add_number == 0)
10384 {
10385 as_warn (_("divide by zero"));
10386 if (mips_trap)
10387 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10388 else
10389 macro_build (NULL, "break", BRK_FMT, 7);
10390 break;
10391 }
10392 if (imm_expr.X_add_number == 1)
10393 {
10394 if (strcmp (s2, "mflo") == 0)
10395 move_register (op[0], op[1]);
10396 else
10397 move_register (op[0], ZERO);
10398 break;
10399 }
10400 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10401 {
10402 if (strcmp (s2, "mflo") == 0)
10403 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10404 else
10405 move_register (op[0], ZERO);
10406 break;
10407 }
10408
10409 used_at = 1;
10410 load_register (AT, &imm_expr, dbl);
10411 macro_build (NULL, s, "z,s,t", op[1], AT);
10412 macro_build (NULL, s2, MFHL_FMT, op[0]);
10413 break;
10414
10415 case M_DIVU_3:
10416 s = "divu";
10417 s2 = "mflo";
10418 goto do_divu3;
10419 case M_REMU_3:
10420 s = "divu";
10421 s2 = "mfhi";
10422 goto do_divu3;
10423 case M_DDIVU_3:
10424 s = "ddivu";
10425 s2 = "mflo";
10426 goto do_divu3;
10427 case M_DREMU_3:
10428 s = "ddivu";
10429 s2 = "mfhi";
10430 do_divu3:
10431 start_noreorder ();
10432 if (mips_trap)
10433 {
10434 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10435 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10436 /* We want to close the noreorder block as soon as possible, so
10437 that later insns are available for delay slot filling. */
10438 end_noreorder ();
10439 }
10440 else
10441 {
10442 if (mips_opts.micromips)
10443 micromips_label_expr (&label_expr);
10444 else
10445 label_expr.X_add_number = 8;
10446 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10447 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10448
10449 /* We want to close the noreorder block as soon as possible, so
10450 that later insns are available for delay slot filling. */
10451 end_noreorder ();
10452 macro_build (NULL, "break", BRK_FMT, 7);
10453 if (mips_opts.micromips)
10454 micromips_add_label ();
10455 }
10456 macro_build (NULL, s2, MFHL_FMT, op[0]);
10457 break;
10458
10459 case M_DLCA_AB:
10460 dbl = 1;
10461 case M_LCA_AB:
10462 call = 1;
10463 goto do_la;
10464 case M_DLA_AB:
10465 dbl = 1;
10466 case M_LA_AB:
10467 do_la:
10468 /* Load the address of a symbol into a register. If breg is not
10469 zero, we then add a base register to it. */
10470
10471 breg = op[2];
10472 if (dbl && GPR_SIZE == 32)
10473 as_warn (_("dla used to load 32-bit register; recommend using la "
10474 "instead"));
10475
10476 if (!dbl && HAVE_64BIT_OBJECTS)
10477 as_warn (_("la used to load 64-bit address; recommend using dla "
10478 "instead"));
10479
10480 if (small_offset_p (0, align, 16))
10481 {
10482 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10483 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10484 break;
10485 }
10486
10487 if (mips_opts.at && (op[0] == breg))
10488 {
10489 tempreg = AT;
10490 used_at = 1;
10491 }
10492 else
10493 tempreg = op[0];
10494
10495 if (offset_expr.X_op != O_symbol
10496 && offset_expr.X_op != O_constant)
10497 {
10498 as_bad (_("expression too complex"));
10499 offset_expr.X_op = O_constant;
10500 }
10501
10502 if (offset_expr.X_op == O_constant)
10503 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10504 else if (mips_pic == NO_PIC)
10505 {
10506 /* If this is a reference to a GP relative symbol, we want
10507 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10508 Otherwise we want
10509 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10510 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10511 If we have a constant, we need two instructions anyhow,
10512 so we may as well always use the latter form.
10513
10514 With 64bit address space and a usable $at we want
10515 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10516 lui $at,<sym> (BFD_RELOC_HI16_S)
10517 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10518 daddiu $at,<sym> (BFD_RELOC_LO16)
10519 dsll32 $tempreg,0
10520 daddu $tempreg,$tempreg,$at
10521
10522 If $at is already in use, we use a path which is suboptimal
10523 on superscalar processors.
10524 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10525 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10526 dsll $tempreg,16
10527 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10528 dsll $tempreg,16
10529 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10530
10531 For GP relative symbols in 64bit address space we can use
10532 the same sequence as in 32bit address space. */
10533 if (HAVE_64BIT_SYMBOLS)
10534 {
10535 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10536 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10537 {
10538 relax_start (offset_expr.X_add_symbol);
10539 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10540 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10541 relax_switch ();
10542 }
10543
10544 if (used_at == 0 && mips_opts.at)
10545 {
10546 macro_build (&offset_expr, "lui", LUI_FMT,
10547 tempreg, BFD_RELOC_MIPS_HIGHEST);
10548 macro_build (&offset_expr, "lui", LUI_FMT,
10549 AT, BFD_RELOC_HI16_S);
10550 macro_build (&offset_expr, "daddiu", "t,r,j",
10551 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10552 macro_build (&offset_expr, "daddiu", "t,r,j",
10553 AT, AT, BFD_RELOC_LO16);
10554 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10555 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10556 used_at = 1;
10557 }
10558 else
10559 {
10560 macro_build (&offset_expr, "lui", LUI_FMT,
10561 tempreg, BFD_RELOC_MIPS_HIGHEST);
10562 macro_build (&offset_expr, "daddiu", "t,r,j",
10563 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10564 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10565 macro_build (&offset_expr, "daddiu", "t,r,j",
10566 tempreg, tempreg, BFD_RELOC_HI16_S);
10567 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10568 macro_build (&offset_expr, "daddiu", "t,r,j",
10569 tempreg, tempreg, BFD_RELOC_LO16);
10570 }
10571
10572 if (mips_relax.sequence)
10573 relax_end ();
10574 }
10575 else
10576 {
10577 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10578 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10579 {
10580 relax_start (offset_expr.X_add_symbol);
10581 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10582 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10583 relax_switch ();
10584 }
10585 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10586 as_bad (_("offset too large"));
10587 macro_build_lui (&offset_expr, tempreg);
10588 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10589 tempreg, tempreg, BFD_RELOC_LO16);
10590 if (mips_relax.sequence)
10591 relax_end ();
10592 }
10593 }
10594 else if (!mips_big_got && !HAVE_NEWABI)
10595 {
10596 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10597
10598 /* If this is a reference to an external symbol, and there
10599 is no constant, we want
10600 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10601 or for lca or if tempreg is PIC_CALL_REG
10602 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10603 For a local symbol, we want
10604 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10605 nop
10606 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10607
10608 If we have a small constant, and this is a reference to
10609 an external symbol, we want
10610 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10611 nop
10612 addiu $tempreg,$tempreg,<constant>
10613 For a local symbol, we want the same instruction
10614 sequence, but we output a BFD_RELOC_LO16 reloc on the
10615 addiu instruction.
10616
10617 If we have a large constant, and this is a reference to
10618 an external symbol, we want
10619 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10620 lui $at,<hiconstant>
10621 addiu $at,$at,<loconstant>
10622 addu $tempreg,$tempreg,$at
10623 For a local symbol, we want the same instruction
10624 sequence, but we output a BFD_RELOC_LO16 reloc on the
10625 addiu instruction.
10626 */
10627
10628 if (offset_expr.X_add_number == 0)
10629 {
10630 if (mips_pic == SVR4_PIC
10631 && breg == 0
10632 && (call || tempreg == PIC_CALL_REG))
10633 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10634
10635 relax_start (offset_expr.X_add_symbol);
10636 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10637 lw_reloc_type, mips_gp_register);
10638 if (breg != 0)
10639 {
10640 /* We're going to put in an addu instruction using
10641 tempreg, so we may as well insert the nop right
10642 now. */
10643 load_delay_nop ();
10644 }
10645 relax_switch ();
10646 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10647 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10648 load_delay_nop ();
10649 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10650 tempreg, tempreg, BFD_RELOC_LO16);
10651 relax_end ();
10652 /* FIXME: If breg == 0, and the next instruction uses
10653 $tempreg, then if this variant case is used an extra
10654 nop will be generated. */
10655 }
10656 else if (offset_expr.X_add_number >= -0x8000
10657 && offset_expr.X_add_number < 0x8000)
10658 {
10659 load_got_offset (tempreg, &offset_expr);
10660 load_delay_nop ();
10661 add_got_offset (tempreg, &offset_expr);
10662 }
10663 else
10664 {
10665 expr1.X_add_number = offset_expr.X_add_number;
10666 offset_expr.X_add_number =
10667 SEXT_16BIT (offset_expr.X_add_number);
10668 load_got_offset (tempreg, &offset_expr);
10669 offset_expr.X_add_number = expr1.X_add_number;
10670 /* If we are going to add in a base register, and the
10671 target register and the base register are the same,
10672 then we are using AT as a temporary register. Since
10673 we want to load the constant into AT, we add our
10674 current AT (from the global offset table) and the
10675 register into the register now, and pretend we were
10676 not using a base register. */
10677 if (breg == op[0])
10678 {
10679 load_delay_nop ();
10680 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10681 op[0], AT, breg);
10682 breg = 0;
10683 tempreg = op[0];
10684 }
10685 add_got_offset_hilo (tempreg, &offset_expr, AT);
10686 used_at = 1;
10687 }
10688 }
10689 else if (!mips_big_got && HAVE_NEWABI)
10690 {
10691 int add_breg_early = 0;
10692
10693 /* If this is a reference to an external, and there is no
10694 constant, or local symbol (*), with or without a
10695 constant, we want
10696 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10697 or for lca or if tempreg is PIC_CALL_REG
10698 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10699
10700 If we have a small constant, and this is a reference to
10701 an external symbol, we want
10702 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10703 addiu $tempreg,$tempreg,<constant>
10704
10705 If we have a large constant, and this is a reference to
10706 an external symbol, we want
10707 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10708 lui $at,<hiconstant>
10709 addiu $at,$at,<loconstant>
10710 addu $tempreg,$tempreg,$at
10711
10712 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10713 local symbols, even though it introduces an additional
10714 instruction. */
10715
10716 if (offset_expr.X_add_number)
10717 {
10718 expr1.X_add_number = offset_expr.X_add_number;
10719 offset_expr.X_add_number = 0;
10720
10721 relax_start (offset_expr.X_add_symbol);
10722 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10723 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10724
10725 if (expr1.X_add_number >= -0x8000
10726 && expr1.X_add_number < 0x8000)
10727 {
10728 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10729 tempreg, tempreg, BFD_RELOC_LO16);
10730 }
10731 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10732 {
10733 unsigned int dreg;
10734
10735 /* If we are going to add in a base register, and the
10736 target register and the base register are the same,
10737 then we are using AT as a temporary register. Since
10738 we want to load the constant into AT, we add our
10739 current AT (from the global offset table) and the
10740 register into the register now, and pretend we were
10741 not using a base register. */
10742 if (breg != op[0])
10743 dreg = tempreg;
10744 else
10745 {
10746 gas_assert (tempreg == AT);
10747 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10748 op[0], AT, breg);
10749 dreg = op[0];
10750 add_breg_early = 1;
10751 }
10752
10753 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10754 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10755 dreg, dreg, AT);
10756
10757 used_at = 1;
10758 }
10759 else
10760 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10761
10762 relax_switch ();
10763 offset_expr.X_add_number = expr1.X_add_number;
10764
10765 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10766 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10767 if (add_breg_early)
10768 {
10769 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10770 op[0], tempreg, breg);
10771 breg = 0;
10772 tempreg = op[0];
10773 }
10774 relax_end ();
10775 }
10776 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10777 {
10778 relax_start (offset_expr.X_add_symbol);
10779 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10780 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10781 relax_switch ();
10782 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10783 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10784 relax_end ();
10785 }
10786 else
10787 {
10788 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10789 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10790 }
10791 }
10792 else if (mips_big_got && !HAVE_NEWABI)
10793 {
10794 int gpdelay;
10795 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10796 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10797 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10798
10799 /* This is the large GOT case. If this is a reference to an
10800 external symbol, and there is no constant, we want
10801 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10802 addu $tempreg,$tempreg,$gp
10803 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10804 or for lca or if tempreg is PIC_CALL_REG
10805 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10806 addu $tempreg,$tempreg,$gp
10807 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10808 For a local symbol, we want
10809 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10810 nop
10811 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10812
10813 If we have a small constant, and this is a reference to
10814 an external symbol, we want
10815 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10816 addu $tempreg,$tempreg,$gp
10817 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10818 nop
10819 addiu $tempreg,$tempreg,<constant>
10820 For a local symbol, we want
10821 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10822 nop
10823 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10824
10825 If we have a large constant, and this is a reference to
10826 an external symbol, we want
10827 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10828 addu $tempreg,$tempreg,$gp
10829 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10830 lui $at,<hiconstant>
10831 addiu $at,$at,<loconstant>
10832 addu $tempreg,$tempreg,$at
10833 For a local symbol, we want
10834 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10835 lui $at,<hiconstant>
10836 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10837 addu $tempreg,$tempreg,$at
10838 */
10839
10840 expr1.X_add_number = offset_expr.X_add_number;
10841 offset_expr.X_add_number = 0;
10842 relax_start (offset_expr.X_add_symbol);
10843 gpdelay = reg_needs_delay (mips_gp_register);
10844 if (expr1.X_add_number == 0 && breg == 0
10845 && (call || tempreg == PIC_CALL_REG))
10846 {
10847 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10848 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10849 }
10850 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10851 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10852 tempreg, tempreg, mips_gp_register);
10853 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10854 tempreg, lw_reloc_type, tempreg);
10855 if (expr1.X_add_number == 0)
10856 {
10857 if (breg != 0)
10858 {
10859 /* We're going to put in an addu instruction using
10860 tempreg, so we may as well insert the nop right
10861 now. */
10862 load_delay_nop ();
10863 }
10864 }
10865 else if (expr1.X_add_number >= -0x8000
10866 && expr1.X_add_number < 0x8000)
10867 {
10868 load_delay_nop ();
10869 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10870 tempreg, tempreg, BFD_RELOC_LO16);
10871 }
10872 else
10873 {
10874 unsigned int dreg;
10875
10876 /* If we are going to add in a base register, and the
10877 target register and the base register are the same,
10878 then we are using AT as a temporary register. Since
10879 we want to load the constant into AT, we add our
10880 current AT (from the global offset table) and the
10881 register into the register now, and pretend we were
10882 not using a base register. */
10883 if (breg != op[0])
10884 dreg = tempreg;
10885 else
10886 {
10887 gas_assert (tempreg == AT);
10888 load_delay_nop ();
10889 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10890 op[0], AT, breg);
10891 dreg = op[0];
10892 }
10893
10894 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10895 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10896
10897 used_at = 1;
10898 }
10899 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10900 relax_switch ();
10901
10902 if (gpdelay)
10903 {
10904 /* This is needed because this instruction uses $gp, but
10905 the first instruction on the main stream does not. */
10906 macro_build (NULL, "nop", "");
10907 }
10908
10909 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10910 local_reloc_type, mips_gp_register);
10911 if (expr1.X_add_number >= -0x8000
10912 && expr1.X_add_number < 0x8000)
10913 {
10914 load_delay_nop ();
10915 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10916 tempreg, tempreg, BFD_RELOC_LO16);
10917 /* FIXME: If add_number is 0, and there was no base
10918 register, the external symbol case ended with a load,
10919 so if the symbol turns out to not be external, and
10920 the next instruction uses tempreg, an unnecessary nop
10921 will be inserted. */
10922 }
10923 else
10924 {
10925 if (breg == op[0])
10926 {
10927 /* We must add in the base register now, as in the
10928 external symbol case. */
10929 gas_assert (tempreg == AT);
10930 load_delay_nop ();
10931 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10932 op[0], AT, breg);
10933 tempreg = op[0];
10934 /* We set breg to 0 because we have arranged to add
10935 it in in both cases. */
10936 breg = 0;
10937 }
10938
10939 macro_build_lui (&expr1, AT);
10940 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10941 AT, AT, BFD_RELOC_LO16);
10942 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10943 tempreg, tempreg, AT);
10944 used_at = 1;
10945 }
10946 relax_end ();
10947 }
10948 else if (mips_big_got && HAVE_NEWABI)
10949 {
10950 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10951 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10952 int add_breg_early = 0;
10953
10954 /* This is the large GOT case. If this is a reference to an
10955 external symbol, and there is no constant, we want
10956 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10957 add $tempreg,$tempreg,$gp
10958 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10959 or for lca or if tempreg is PIC_CALL_REG
10960 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10961 add $tempreg,$tempreg,$gp
10962 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10963
10964 If we have a small constant, and this is a reference to
10965 an external symbol, we want
10966 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10967 add $tempreg,$tempreg,$gp
10968 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10969 addi $tempreg,$tempreg,<constant>
10970
10971 If we have a large constant, and this is a reference to
10972 an external symbol, we want
10973 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10974 addu $tempreg,$tempreg,$gp
10975 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10976 lui $at,<hiconstant>
10977 addi $at,$at,<loconstant>
10978 add $tempreg,$tempreg,$at
10979
10980 If we have NewABI, and we know it's a local symbol, we want
10981 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10982 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10983 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10984
10985 relax_start (offset_expr.X_add_symbol);
10986
10987 expr1.X_add_number = offset_expr.X_add_number;
10988 offset_expr.X_add_number = 0;
10989
10990 if (expr1.X_add_number == 0 && breg == 0
10991 && (call || tempreg == PIC_CALL_REG))
10992 {
10993 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10994 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10995 }
10996 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10997 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10998 tempreg, tempreg, mips_gp_register);
10999 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11000 tempreg, lw_reloc_type, tempreg);
11001
11002 if (expr1.X_add_number == 0)
11003 ;
11004 else if (expr1.X_add_number >= -0x8000
11005 && expr1.X_add_number < 0x8000)
11006 {
11007 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11008 tempreg, tempreg, BFD_RELOC_LO16);
11009 }
11010 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11011 {
11012 unsigned int dreg;
11013
11014 /* If we are going to add in a base register, and the
11015 target register and the base register are the same,
11016 then we are using AT as a temporary register. Since
11017 we want to load the constant into AT, we add our
11018 current AT (from the global offset table) and the
11019 register into the register now, and pretend we were
11020 not using a base register. */
11021 if (breg != op[0])
11022 dreg = tempreg;
11023 else
11024 {
11025 gas_assert (tempreg == AT);
11026 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11027 op[0], AT, breg);
11028 dreg = op[0];
11029 add_breg_early = 1;
11030 }
11031
11032 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11033 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11034
11035 used_at = 1;
11036 }
11037 else
11038 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11039
11040 relax_switch ();
11041 offset_expr.X_add_number = expr1.X_add_number;
11042 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11043 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11044 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11045 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11046 if (add_breg_early)
11047 {
11048 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11049 op[0], tempreg, breg);
11050 breg = 0;
11051 tempreg = op[0];
11052 }
11053 relax_end ();
11054 }
11055 else
11056 abort ();
11057
11058 if (breg != 0)
11059 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11060 break;
11061
11062 case M_MSGSND:
11063 gas_assert (!mips_opts.micromips);
11064 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11065 break;
11066
11067 case M_MSGLD:
11068 gas_assert (!mips_opts.micromips);
11069 macro_build (NULL, "c2", "C", 0x02);
11070 break;
11071
11072 case M_MSGLD_T:
11073 gas_assert (!mips_opts.micromips);
11074 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11075 break;
11076
11077 case M_MSGWAIT:
11078 gas_assert (!mips_opts.micromips);
11079 macro_build (NULL, "c2", "C", 3);
11080 break;
11081
11082 case M_MSGWAIT_T:
11083 gas_assert (!mips_opts.micromips);
11084 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11085 break;
11086
11087 case M_J_A:
11088 /* The j instruction may not be used in PIC code, since it
11089 requires an absolute address. We convert it to a b
11090 instruction. */
11091 if (mips_pic == NO_PIC)
11092 macro_build (&offset_expr, "j", "a");
11093 else
11094 macro_build (&offset_expr, "b", "p");
11095 break;
11096
11097 /* The jal instructions must be handled as macros because when
11098 generating PIC code they expand to multi-instruction
11099 sequences. Normally they are simple instructions. */
11100 case M_JALS_1:
11101 op[1] = op[0];
11102 op[0] = RA;
11103 /* Fall through. */
11104 case M_JALS_2:
11105 gas_assert (mips_opts.micromips);
11106 if (mips_opts.insn32)
11107 {
11108 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11109 break;
11110 }
11111 jals = 1;
11112 goto jal;
11113 case M_JAL_1:
11114 op[1] = op[0];
11115 op[0] = RA;
11116 /* Fall through. */
11117 case M_JAL_2:
11118 jal:
11119 if (mips_pic == NO_PIC)
11120 {
11121 s = jals ? "jalrs" : "jalr";
11122 if (mips_opts.micromips
11123 && !mips_opts.insn32
11124 && op[0] == RA
11125 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11126 macro_build (NULL, s, "mj", op[1]);
11127 else
11128 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11129 }
11130 else
11131 {
11132 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11133 && mips_cprestore_offset >= 0);
11134
11135 if (op[1] != PIC_CALL_REG)
11136 as_warn (_("MIPS PIC call to register other than $25"));
11137
11138 s = ((mips_opts.micromips
11139 && !mips_opts.insn32
11140 && (!mips_opts.noreorder || cprestore))
11141 ? "jalrs" : "jalr");
11142 if (mips_opts.micromips
11143 && !mips_opts.insn32
11144 && op[0] == RA
11145 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11146 macro_build (NULL, s, "mj", op[1]);
11147 else
11148 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11149 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11150 {
11151 if (mips_cprestore_offset < 0)
11152 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11153 else
11154 {
11155 if (!mips_frame_reg_valid)
11156 {
11157 as_warn (_("no .frame pseudo-op used in PIC code"));
11158 /* Quiet this warning. */
11159 mips_frame_reg_valid = 1;
11160 }
11161 if (!mips_cprestore_valid)
11162 {
11163 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11164 /* Quiet this warning. */
11165 mips_cprestore_valid = 1;
11166 }
11167 if (mips_opts.noreorder)
11168 macro_build (NULL, "nop", "");
11169 expr1.X_add_number = mips_cprestore_offset;
11170 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11171 mips_gp_register,
11172 mips_frame_reg,
11173 HAVE_64BIT_ADDRESSES);
11174 }
11175 }
11176 }
11177
11178 break;
11179
11180 case M_JALS_A:
11181 gas_assert (mips_opts.micromips);
11182 if (mips_opts.insn32)
11183 {
11184 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11185 break;
11186 }
11187 jals = 1;
11188 /* Fall through. */
11189 case M_JAL_A:
11190 if (mips_pic == NO_PIC)
11191 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11192 else if (mips_pic == SVR4_PIC)
11193 {
11194 /* If this is a reference to an external symbol, and we are
11195 using a small GOT, we want
11196 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11197 nop
11198 jalr $ra,$25
11199 nop
11200 lw $gp,cprestore($sp)
11201 The cprestore value is set using the .cprestore
11202 pseudo-op. If we are using a big GOT, we want
11203 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11204 addu $25,$25,$gp
11205 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11206 nop
11207 jalr $ra,$25
11208 nop
11209 lw $gp,cprestore($sp)
11210 If the symbol is not external, we want
11211 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11212 nop
11213 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11214 jalr $ra,$25
11215 nop
11216 lw $gp,cprestore($sp)
11217
11218 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11219 sequences above, minus nops, unless the symbol is local,
11220 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11221 GOT_DISP. */
11222 if (HAVE_NEWABI)
11223 {
11224 if (!mips_big_got)
11225 {
11226 relax_start (offset_expr.X_add_symbol);
11227 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11228 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11229 mips_gp_register);
11230 relax_switch ();
11231 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11232 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11233 mips_gp_register);
11234 relax_end ();
11235 }
11236 else
11237 {
11238 relax_start (offset_expr.X_add_symbol);
11239 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11240 BFD_RELOC_MIPS_CALL_HI16);
11241 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11242 PIC_CALL_REG, mips_gp_register);
11243 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11244 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11245 PIC_CALL_REG);
11246 relax_switch ();
11247 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11248 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11249 mips_gp_register);
11250 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11251 PIC_CALL_REG, PIC_CALL_REG,
11252 BFD_RELOC_MIPS_GOT_OFST);
11253 relax_end ();
11254 }
11255
11256 macro_build_jalr (&offset_expr, 0);
11257 }
11258 else
11259 {
11260 relax_start (offset_expr.X_add_symbol);
11261 if (!mips_big_got)
11262 {
11263 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11264 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11265 mips_gp_register);
11266 load_delay_nop ();
11267 relax_switch ();
11268 }
11269 else
11270 {
11271 int gpdelay;
11272
11273 gpdelay = reg_needs_delay (mips_gp_register);
11274 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11275 BFD_RELOC_MIPS_CALL_HI16);
11276 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11277 PIC_CALL_REG, mips_gp_register);
11278 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11279 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11280 PIC_CALL_REG);
11281 load_delay_nop ();
11282 relax_switch ();
11283 if (gpdelay)
11284 macro_build (NULL, "nop", "");
11285 }
11286 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11287 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11288 mips_gp_register);
11289 load_delay_nop ();
11290 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11291 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11292 relax_end ();
11293 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11294
11295 if (mips_cprestore_offset < 0)
11296 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11297 else
11298 {
11299 if (!mips_frame_reg_valid)
11300 {
11301 as_warn (_("no .frame pseudo-op used in PIC code"));
11302 /* Quiet this warning. */
11303 mips_frame_reg_valid = 1;
11304 }
11305 if (!mips_cprestore_valid)
11306 {
11307 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11308 /* Quiet this warning. */
11309 mips_cprestore_valid = 1;
11310 }
11311 if (mips_opts.noreorder)
11312 macro_build (NULL, "nop", "");
11313 expr1.X_add_number = mips_cprestore_offset;
11314 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11315 mips_gp_register,
11316 mips_frame_reg,
11317 HAVE_64BIT_ADDRESSES);
11318 }
11319 }
11320 }
11321 else if (mips_pic == VXWORKS_PIC)
11322 as_bad (_("non-PIC jump used in PIC library"));
11323 else
11324 abort ();
11325
11326 break;
11327
11328 case M_LBUE_AB:
11329 s = "lbue";
11330 fmt = "t,+j(b)";
11331 offbits = 9;
11332 goto ld_st;
11333 case M_LHUE_AB:
11334 s = "lhue";
11335 fmt = "t,+j(b)";
11336 offbits = 9;
11337 goto ld_st;
11338 case M_LBE_AB:
11339 s = "lbe";
11340 fmt = "t,+j(b)";
11341 offbits = 9;
11342 goto ld_st;
11343 case M_LHE_AB:
11344 s = "lhe";
11345 fmt = "t,+j(b)";
11346 offbits = 9;
11347 goto ld_st;
11348 case M_LLE_AB:
11349 s = "lle";
11350 fmt = "t,+j(b)";
11351 offbits = 9;
11352 goto ld_st;
11353 case M_LWE_AB:
11354 s = "lwe";
11355 fmt = "t,+j(b)";
11356 offbits = 9;
11357 goto ld_st;
11358 case M_LWLE_AB:
11359 s = "lwle";
11360 fmt = "t,+j(b)";
11361 offbits = 9;
11362 goto ld_st;
11363 case M_LWRE_AB:
11364 s = "lwre";
11365 fmt = "t,+j(b)";
11366 offbits = 9;
11367 goto ld_st;
11368 case M_SBE_AB:
11369 s = "sbe";
11370 fmt = "t,+j(b)";
11371 offbits = 9;
11372 goto ld_st;
11373 case M_SCE_AB:
11374 s = "sce";
11375 fmt = "t,+j(b)";
11376 offbits = 9;
11377 goto ld_st;
11378 case M_SHE_AB:
11379 s = "she";
11380 fmt = "t,+j(b)";
11381 offbits = 9;
11382 goto ld_st;
11383 case M_SWE_AB:
11384 s = "swe";
11385 fmt = "t,+j(b)";
11386 offbits = 9;
11387 goto ld_st;
11388 case M_SWLE_AB:
11389 s = "swle";
11390 fmt = "t,+j(b)";
11391 offbits = 9;
11392 goto ld_st;
11393 case M_SWRE_AB:
11394 s = "swre";
11395 fmt = "t,+j(b)";
11396 offbits = 9;
11397 goto ld_st;
11398 case M_ACLR_AB:
11399 s = "aclr";
11400 fmt = "\\,~(b)";
11401 offbits = 12;
11402 goto ld_st;
11403 case M_ASET_AB:
11404 s = "aset";
11405 fmt = "\\,~(b)";
11406 offbits = 12;
11407 goto ld_st;
11408 case M_LB_AB:
11409 s = "lb";
11410 fmt = "t,o(b)";
11411 goto ld;
11412 case M_LBU_AB:
11413 s = "lbu";
11414 fmt = "t,o(b)";
11415 goto ld;
11416 case M_LH_AB:
11417 s = "lh";
11418 fmt = "t,o(b)";
11419 goto ld;
11420 case M_LHU_AB:
11421 s = "lhu";
11422 fmt = "t,o(b)";
11423 goto ld;
11424 case M_LW_AB:
11425 s = "lw";
11426 fmt = "t,o(b)";
11427 goto ld;
11428 case M_LWC0_AB:
11429 gas_assert (!mips_opts.micromips);
11430 s = "lwc0";
11431 fmt = "E,o(b)";
11432 /* Itbl support may require additional care here. */
11433 coproc = 1;
11434 goto ld_st;
11435 case M_LWC1_AB:
11436 s = "lwc1";
11437 fmt = "T,o(b)";
11438 /* Itbl support may require additional care here. */
11439 coproc = 1;
11440 goto ld_st;
11441 case M_LWC2_AB:
11442 s = "lwc2";
11443 fmt = COP12_FMT;
11444 offbits = (mips_opts.micromips ? 12
11445 : ISA_IS_R6 (mips_opts.isa) ? 11
11446 : 16);
11447 /* Itbl support may require additional care here. */
11448 coproc = 1;
11449 goto ld_st;
11450 case M_LWC3_AB:
11451 gas_assert (!mips_opts.micromips);
11452 s = "lwc3";
11453 fmt = "E,o(b)";
11454 /* Itbl support may require additional care here. */
11455 coproc = 1;
11456 goto ld_st;
11457 case M_LWL_AB:
11458 s = "lwl";
11459 fmt = MEM12_FMT;
11460 offbits = (mips_opts.micromips ? 12 : 16);
11461 goto ld_st;
11462 case M_LWR_AB:
11463 s = "lwr";
11464 fmt = MEM12_FMT;
11465 offbits = (mips_opts.micromips ? 12 : 16);
11466 goto ld_st;
11467 case M_LDC1_AB:
11468 s = "ldc1";
11469 fmt = "T,o(b)";
11470 /* Itbl support may require additional care here. */
11471 coproc = 1;
11472 goto ld_st;
11473 case M_LDC2_AB:
11474 s = "ldc2";
11475 fmt = COP12_FMT;
11476 offbits = (mips_opts.micromips ? 12
11477 : ISA_IS_R6 (mips_opts.isa) ? 11
11478 : 16);
11479 /* Itbl support may require additional care here. */
11480 coproc = 1;
11481 goto ld_st;
11482 case M_LQC2_AB:
11483 s = "lqc2";
11484 fmt = "+7,o(b)";
11485 /* Itbl support may require additional care here. */
11486 coproc = 1;
11487 goto ld_st;
11488 case M_LDC3_AB:
11489 s = "ldc3";
11490 fmt = "E,o(b)";
11491 /* Itbl support may require additional care here. */
11492 coproc = 1;
11493 goto ld_st;
11494 case M_LDL_AB:
11495 s = "ldl";
11496 fmt = MEM12_FMT;
11497 offbits = (mips_opts.micromips ? 12 : 16);
11498 goto ld_st;
11499 case M_LDR_AB:
11500 s = "ldr";
11501 fmt = MEM12_FMT;
11502 offbits = (mips_opts.micromips ? 12 : 16);
11503 goto ld_st;
11504 case M_LL_AB:
11505 s = "ll";
11506 fmt = LL_SC_FMT;
11507 offbits = (mips_opts.micromips ? 12
11508 : ISA_IS_R6 (mips_opts.isa) ? 9
11509 : 16);
11510 goto ld;
11511 case M_LLD_AB:
11512 s = "lld";
11513 fmt = LL_SC_FMT;
11514 offbits = (mips_opts.micromips ? 12
11515 : ISA_IS_R6 (mips_opts.isa) ? 9
11516 : 16);
11517 goto ld;
11518 case M_LWU_AB:
11519 s = "lwu";
11520 fmt = MEM12_FMT;
11521 offbits = (mips_opts.micromips ? 12 : 16);
11522 goto ld;
11523 case M_LWP_AB:
11524 gas_assert (mips_opts.micromips);
11525 s = "lwp";
11526 fmt = "t,~(b)";
11527 offbits = 12;
11528 lp = 1;
11529 goto ld;
11530 case M_LDP_AB:
11531 gas_assert (mips_opts.micromips);
11532 s = "ldp";
11533 fmt = "t,~(b)";
11534 offbits = 12;
11535 lp = 1;
11536 goto ld;
11537 case M_LWM_AB:
11538 gas_assert (mips_opts.micromips);
11539 s = "lwm";
11540 fmt = "n,~(b)";
11541 offbits = 12;
11542 goto ld_st;
11543 case M_LDM_AB:
11544 gas_assert (mips_opts.micromips);
11545 s = "ldm";
11546 fmt = "n,~(b)";
11547 offbits = 12;
11548 goto ld_st;
11549
11550 ld:
11551 /* We don't want to use $0 as tempreg. */
11552 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11553 goto ld_st;
11554 else
11555 tempreg = op[0] + lp;
11556 goto ld_noat;
11557
11558 case M_SB_AB:
11559 s = "sb";
11560 fmt = "t,o(b)";
11561 goto ld_st;
11562 case M_SH_AB:
11563 s = "sh";
11564 fmt = "t,o(b)";
11565 goto ld_st;
11566 case M_SW_AB:
11567 s = "sw";
11568 fmt = "t,o(b)";
11569 goto ld_st;
11570 case M_SWC0_AB:
11571 gas_assert (!mips_opts.micromips);
11572 s = "swc0";
11573 fmt = "E,o(b)";
11574 /* Itbl support may require additional care here. */
11575 coproc = 1;
11576 goto ld_st;
11577 case M_SWC1_AB:
11578 s = "swc1";
11579 fmt = "T,o(b)";
11580 /* Itbl support may require additional care here. */
11581 coproc = 1;
11582 goto ld_st;
11583 case M_SWC2_AB:
11584 s = "swc2";
11585 fmt = COP12_FMT;
11586 offbits = (mips_opts.micromips ? 12
11587 : ISA_IS_R6 (mips_opts.isa) ? 11
11588 : 16);
11589 /* Itbl support may require additional care here. */
11590 coproc = 1;
11591 goto ld_st;
11592 case M_SWC3_AB:
11593 gas_assert (!mips_opts.micromips);
11594 s = "swc3";
11595 fmt = "E,o(b)";
11596 /* Itbl support may require additional care here. */
11597 coproc = 1;
11598 goto ld_st;
11599 case M_SWL_AB:
11600 s = "swl";
11601 fmt = MEM12_FMT;
11602 offbits = (mips_opts.micromips ? 12 : 16);
11603 goto ld_st;
11604 case M_SWR_AB:
11605 s = "swr";
11606 fmt = MEM12_FMT;
11607 offbits = (mips_opts.micromips ? 12 : 16);
11608 goto ld_st;
11609 case M_SC_AB:
11610 s = "sc";
11611 fmt = LL_SC_FMT;
11612 offbits = (mips_opts.micromips ? 12
11613 : ISA_IS_R6 (mips_opts.isa) ? 9
11614 : 16);
11615 goto ld_st;
11616 case M_SCD_AB:
11617 s = "scd";
11618 fmt = LL_SC_FMT;
11619 offbits = (mips_opts.micromips ? 12
11620 : ISA_IS_R6 (mips_opts.isa) ? 9
11621 : 16);
11622 goto ld_st;
11623 case M_CACHE_AB:
11624 s = "cache";
11625 fmt = (mips_opts.micromips ? "k,~(b)"
11626 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11627 : "k,o(b)");
11628 offbits = (mips_opts.micromips ? 12
11629 : ISA_IS_R6 (mips_opts.isa) ? 9
11630 : 16);
11631 goto ld_st;
11632 case M_CACHEE_AB:
11633 s = "cachee";
11634 fmt = "k,+j(b)";
11635 offbits = 9;
11636 goto ld_st;
11637 case M_PREF_AB:
11638 s = "pref";
11639 fmt = (mips_opts.micromips ? "k,~(b)"
11640 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11641 : "k,o(b)");
11642 offbits = (mips_opts.micromips ? 12
11643 : ISA_IS_R6 (mips_opts.isa) ? 9
11644 : 16);
11645 goto ld_st;
11646 case M_PREFE_AB:
11647 s = "prefe";
11648 fmt = "k,+j(b)";
11649 offbits = 9;
11650 goto ld_st;
11651 case M_SDC1_AB:
11652 s = "sdc1";
11653 fmt = "T,o(b)";
11654 coproc = 1;
11655 /* Itbl support may require additional care here. */
11656 goto ld_st;
11657 case M_SDC2_AB:
11658 s = "sdc2";
11659 fmt = COP12_FMT;
11660 offbits = (mips_opts.micromips ? 12
11661 : ISA_IS_R6 (mips_opts.isa) ? 11
11662 : 16);
11663 /* Itbl support may require additional care here. */
11664 coproc = 1;
11665 goto ld_st;
11666 case M_SQC2_AB:
11667 s = "sqc2";
11668 fmt = "+7,o(b)";
11669 /* Itbl support may require additional care here. */
11670 coproc = 1;
11671 goto ld_st;
11672 case M_SDC3_AB:
11673 gas_assert (!mips_opts.micromips);
11674 s = "sdc3";
11675 fmt = "E,o(b)";
11676 /* Itbl support may require additional care here. */
11677 coproc = 1;
11678 goto ld_st;
11679 case M_SDL_AB:
11680 s = "sdl";
11681 fmt = MEM12_FMT;
11682 offbits = (mips_opts.micromips ? 12 : 16);
11683 goto ld_st;
11684 case M_SDR_AB:
11685 s = "sdr";
11686 fmt = MEM12_FMT;
11687 offbits = (mips_opts.micromips ? 12 : 16);
11688 goto ld_st;
11689 case M_SWP_AB:
11690 gas_assert (mips_opts.micromips);
11691 s = "swp";
11692 fmt = "t,~(b)";
11693 offbits = 12;
11694 goto ld_st;
11695 case M_SDP_AB:
11696 gas_assert (mips_opts.micromips);
11697 s = "sdp";
11698 fmt = "t,~(b)";
11699 offbits = 12;
11700 goto ld_st;
11701 case M_SWM_AB:
11702 gas_assert (mips_opts.micromips);
11703 s = "swm";
11704 fmt = "n,~(b)";
11705 offbits = 12;
11706 goto ld_st;
11707 case M_SDM_AB:
11708 gas_assert (mips_opts.micromips);
11709 s = "sdm";
11710 fmt = "n,~(b)";
11711 offbits = 12;
11712
11713 ld_st:
11714 tempreg = AT;
11715 ld_noat:
11716 breg = op[2];
11717 if (small_offset_p (0, align, 16))
11718 {
11719 /* The first case exists for M_LD_AB and M_SD_AB, which are
11720 macros for o32 but which should act like normal instructions
11721 otherwise. */
11722 if (offbits == 16)
11723 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11724 offset_reloc[1], offset_reloc[2], breg);
11725 else if (small_offset_p (0, align, offbits))
11726 {
11727 if (offbits == 0)
11728 macro_build (NULL, s, fmt, op[0], breg);
11729 else
11730 macro_build (NULL, s, fmt, op[0],
11731 (int) offset_expr.X_add_number, breg);
11732 }
11733 else
11734 {
11735 if (tempreg == AT)
11736 used_at = 1;
11737 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11738 tempreg, breg, -1, offset_reloc[0],
11739 offset_reloc[1], offset_reloc[2]);
11740 if (offbits == 0)
11741 macro_build (NULL, s, fmt, op[0], tempreg);
11742 else
11743 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11744 }
11745 break;
11746 }
11747
11748 if (tempreg == AT)
11749 used_at = 1;
11750
11751 if (offset_expr.X_op != O_constant
11752 && offset_expr.X_op != O_symbol)
11753 {
11754 as_bad (_("expression too complex"));
11755 offset_expr.X_op = O_constant;
11756 }
11757
11758 if (HAVE_32BIT_ADDRESSES
11759 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11760 {
11761 char value [32];
11762
11763 sprintf_vma (value, offset_expr.X_add_number);
11764 as_bad (_("number (0x%s) larger than 32 bits"), value);
11765 }
11766
11767 /* A constant expression in PIC code can be handled just as it
11768 is in non PIC code. */
11769 if (offset_expr.X_op == O_constant)
11770 {
11771 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11772 offbits == 0 ? 16 : offbits);
11773 offset_expr.X_add_number -= expr1.X_add_number;
11774
11775 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11776 if (breg != 0)
11777 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11778 tempreg, tempreg, breg);
11779 if (offbits == 0)
11780 {
11781 if (offset_expr.X_add_number != 0)
11782 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11783 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11784 macro_build (NULL, s, fmt, op[0], tempreg);
11785 }
11786 else if (offbits == 16)
11787 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11788 else
11789 macro_build (NULL, s, fmt, op[0],
11790 (int) offset_expr.X_add_number, tempreg);
11791 }
11792 else if (offbits != 16)
11793 {
11794 /* The offset field is too narrow to be used for a low-part
11795 relocation, so load the whole address into the auxillary
11796 register. */
11797 load_address (tempreg, &offset_expr, &used_at);
11798 if (breg != 0)
11799 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11800 tempreg, tempreg, breg);
11801 if (offbits == 0)
11802 macro_build (NULL, s, fmt, op[0], tempreg);
11803 else
11804 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11805 }
11806 else if (mips_pic == NO_PIC)
11807 {
11808 /* If this is a reference to a GP relative symbol, and there
11809 is no base register, we want
11810 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11811 Otherwise, if there is no base register, we want
11812 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11813 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11814 If we have a constant, we need two instructions anyhow,
11815 so we always use the latter form.
11816
11817 If we have a base register, and this is a reference to a
11818 GP relative symbol, we want
11819 addu $tempreg,$breg,$gp
11820 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11821 Otherwise we want
11822 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11823 addu $tempreg,$tempreg,$breg
11824 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11825 With a constant we always use the latter case.
11826
11827 With 64bit address space and no base register and $at usable,
11828 we want
11829 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11830 lui $at,<sym> (BFD_RELOC_HI16_S)
11831 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11832 dsll32 $tempreg,0
11833 daddu $tempreg,$at
11834 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11835 If we have a base register, we want
11836 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11837 lui $at,<sym> (BFD_RELOC_HI16_S)
11838 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11839 daddu $at,$breg
11840 dsll32 $tempreg,0
11841 daddu $tempreg,$at
11842 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11843
11844 Without $at we can't generate the optimal path for superscalar
11845 processors here since this would require two temporary registers.
11846 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11847 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11848 dsll $tempreg,16
11849 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11850 dsll $tempreg,16
11851 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11852 If we have a base register, we want
11853 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11854 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11855 dsll $tempreg,16
11856 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11857 dsll $tempreg,16
11858 daddu $tempreg,$tempreg,$breg
11859 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11860
11861 For GP relative symbols in 64bit address space we can use
11862 the same sequence as in 32bit address space. */
11863 if (HAVE_64BIT_SYMBOLS)
11864 {
11865 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11866 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11867 {
11868 relax_start (offset_expr.X_add_symbol);
11869 if (breg == 0)
11870 {
11871 macro_build (&offset_expr, s, fmt, op[0],
11872 BFD_RELOC_GPREL16, mips_gp_register);
11873 }
11874 else
11875 {
11876 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11877 tempreg, breg, mips_gp_register);
11878 macro_build (&offset_expr, s, fmt, op[0],
11879 BFD_RELOC_GPREL16, tempreg);
11880 }
11881 relax_switch ();
11882 }
11883
11884 if (used_at == 0 && mips_opts.at)
11885 {
11886 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11887 BFD_RELOC_MIPS_HIGHEST);
11888 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11889 BFD_RELOC_HI16_S);
11890 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11891 tempreg, BFD_RELOC_MIPS_HIGHER);
11892 if (breg != 0)
11893 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11894 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11895 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11896 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11897 tempreg);
11898 used_at = 1;
11899 }
11900 else
11901 {
11902 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11903 BFD_RELOC_MIPS_HIGHEST);
11904 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11905 tempreg, BFD_RELOC_MIPS_HIGHER);
11906 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11907 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11908 tempreg, BFD_RELOC_HI16_S);
11909 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11910 if (breg != 0)
11911 macro_build (NULL, "daddu", "d,v,t",
11912 tempreg, tempreg, breg);
11913 macro_build (&offset_expr, s, fmt, op[0],
11914 BFD_RELOC_LO16, tempreg);
11915 }
11916
11917 if (mips_relax.sequence)
11918 relax_end ();
11919 break;
11920 }
11921
11922 if (breg == 0)
11923 {
11924 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11925 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11926 {
11927 relax_start (offset_expr.X_add_symbol);
11928 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11929 mips_gp_register);
11930 relax_switch ();
11931 }
11932 macro_build_lui (&offset_expr, tempreg);
11933 macro_build (&offset_expr, s, fmt, op[0],
11934 BFD_RELOC_LO16, tempreg);
11935 if (mips_relax.sequence)
11936 relax_end ();
11937 }
11938 else
11939 {
11940 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11941 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11942 {
11943 relax_start (offset_expr.X_add_symbol);
11944 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11945 tempreg, breg, mips_gp_register);
11946 macro_build (&offset_expr, s, fmt, op[0],
11947 BFD_RELOC_GPREL16, tempreg);
11948 relax_switch ();
11949 }
11950 macro_build_lui (&offset_expr, tempreg);
11951 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11952 tempreg, tempreg, breg);
11953 macro_build (&offset_expr, s, fmt, op[0],
11954 BFD_RELOC_LO16, tempreg);
11955 if (mips_relax.sequence)
11956 relax_end ();
11957 }
11958 }
11959 else if (!mips_big_got)
11960 {
11961 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11962
11963 /* If this is a reference to an external symbol, we want
11964 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11965 nop
11966 <op> op[0],0($tempreg)
11967 Otherwise we want
11968 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11969 nop
11970 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11971 <op> op[0],0($tempreg)
11972
11973 For NewABI, we want
11974 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11975 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11976
11977 If there is a base register, we add it to $tempreg before
11978 the <op>. If there is a constant, we stick it in the
11979 <op> instruction. We don't handle constants larger than
11980 16 bits, because we have no way to load the upper 16 bits
11981 (actually, we could handle them for the subset of cases
11982 in which we are not using $at). */
11983 gas_assert (offset_expr.X_op == O_symbol);
11984 if (HAVE_NEWABI)
11985 {
11986 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11987 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11988 if (breg != 0)
11989 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11990 tempreg, tempreg, breg);
11991 macro_build (&offset_expr, s, fmt, op[0],
11992 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11993 break;
11994 }
11995 expr1.X_add_number = offset_expr.X_add_number;
11996 offset_expr.X_add_number = 0;
11997 if (expr1.X_add_number < -0x8000
11998 || expr1.X_add_number >= 0x8000)
11999 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12000 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12001 lw_reloc_type, mips_gp_register);
12002 load_delay_nop ();
12003 relax_start (offset_expr.X_add_symbol);
12004 relax_switch ();
12005 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12006 tempreg, BFD_RELOC_LO16);
12007 relax_end ();
12008 if (breg != 0)
12009 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12010 tempreg, tempreg, breg);
12011 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12012 }
12013 else if (mips_big_got && !HAVE_NEWABI)
12014 {
12015 int gpdelay;
12016
12017 /* If this is a reference to an external symbol, we want
12018 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12019 addu $tempreg,$tempreg,$gp
12020 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12021 <op> op[0],0($tempreg)
12022 Otherwise we want
12023 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12024 nop
12025 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12026 <op> op[0],0($tempreg)
12027 If there is a base register, we add it to $tempreg before
12028 the <op>. If there is a constant, we stick it in the
12029 <op> instruction. We don't handle constants larger than
12030 16 bits, because we have no way to load the upper 16 bits
12031 (actually, we could handle them for the subset of cases
12032 in which we are not using $at). */
12033 gas_assert (offset_expr.X_op == O_symbol);
12034 expr1.X_add_number = offset_expr.X_add_number;
12035 offset_expr.X_add_number = 0;
12036 if (expr1.X_add_number < -0x8000
12037 || expr1.X_add_number >= 0x8000)
12038 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12039 gpdelay = reg_needs_delay (mips_gp_register);
12040 relax_start (offset_expr.X_add_symbol);
12041 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12042 BFD_RELOC_MIPS_GOT_HI16);
12043 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12044 mips_gp_register);
12045 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12046 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12047 relax_switch ();
12048 if (gpdelay)
12049 macro_build (NULL, "nop", "");
12050 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12051 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12052 load_delay_nop ();
12053 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12054 tempreg, BFD_RELOC_LO16);
12055 relax_end ();
12056
12057 if (breg != 0)
12058 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12059 tempreg, tempreg, breg);
12060 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12061 }
12062 else if (mips_big_got && HAVE_NEWABI)
12063 {
12064 /* If this is a reference to an external symbol, we want
12065 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12066 add $tempreg,$tempreg,$gp
12067 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12068 <op> op[0],<ofst>($tempreg)
12069 Otherwise, for local symbols, we want:
12070 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12071 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12072 gas_assert (offset_expr.X_op == O_symbol);
12073 expr1.X_add_number = offset_expr.X_add_number;
12074 offset_expr.X_add_number = 0;
12075 if (expr1.X_add_number < -0x8000
12076 || expr1.X_add_number >= 0x8000)
12077 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12078 relax_start (offset_expr.X_add_symbol);
12079 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12080 BFD_RELOC_MIPS_GOT_HI16);
12081 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12082 mips_gp_register);
12083 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12084 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12085 if (breg != 0)
12086 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12087 tempreg, tempreg, breg);
12088 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12089
12090 relax_switch ();
12091 offset_expr.X_add_number = expr1.X_add_number;
12092 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12093 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12094 if (breg != 0)
12095 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12096 tempreg, tempreg, breg);
12097 macro_build (&offset_expr, s, fmt, op[0],
12098 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12099 relax_end ();
12100 }
12101 else
12102 abort ();
12103
12104 break;
12105
12106 case M_JRADDIUSP:
12107 gas_assert (mips_opts.micromips);
12108 gas_assert (mips_opts.insn32);
12109 start_noreorder ();
12110 macro_build (NULL, "jr", "s", RA);
12111 expr1.X_add_number = op[0] << 2;
12112 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12113 end_noreorder ();
12114 break;
12115
12116 case M_JRC:
12117 gas_assert (mips_opts.micromips);
12118 gas_assert (mips_opts.insn32);
12119 macro_build (NULL, "jr", "s", op[0]);
12120 if (mips_opts.noreorder)
12121 macro_build (NULL, "nop", "");
12122 break;
12123
12124 case M_LI:
12125 case M_LI_S:
12126 load_register (op[0], &imm_expr, 0);
12127 break;
12128
12129 case M_DLI:
12130 load_register (op[0], &imm_expr, 1);
12131 break;
12132
12133 case M_LI_SS:
12134 if (imm_expr.X_op == O_constant)
12135 {
12136 used_at = 1;
12137 load_register (AT, &imm_expr, 0);
12138 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12139 break;
12140 }
12141 else
12142 {
12143 gas_assert (imm_expr.X_op == O_absent
12144 && offset_expr.X_op == O_symbol
12145 && strcmp (segment_name (S_GET_SEGMENT
12146 (offset_expr.X_add_symbol)),
12147 ".lit4") == 0
12148 && offset_expr.X_add_number == 0);
12149 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12150 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12151 break;
12152 }
12153
12154 case M_LI_D:
12155 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12156 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12157 order 32 bits of the value and the low order 32 bits are either
12158 zero or in OFFSET_EXPR. */
12159 if (imm_expr.X_op == O_constant)
12160 {
12161 if (GPR_SIZE == 64)
12162 load_register (op[0], &imm_expr, 1);
12163 else
12164 {
12165 int hreg, lreg;
12166
12167 if (target_big_endian)
12168 {
12169 hreg = op[0];
12170 lreg = op[0] + 1;
12171 }
12172 else
12173 {
12174 hreg = op[0] + 1;
12175 lreg = op[0];
12176 }
12177
12178 if (hreg <= 31)
12179 load_register (hreg, &imm_expr, 0);
12180 if (lreg <= 31)
12181 {
12182 if (offset_expr.X_op == O_absent)
12183 move_register (lreg, 0);
12184 else
12185 {
12186 gas_assert (offset_expr.X_op == O_constant);
12187 load_register (lreg, &offset_expr, 0);
12188 }
12189 }
12190 }
12191 break;
12192 }
12193 gas_assert (imm_expr.X_op == O_absent);
12194
12195 /* We know that sym is in the .rdata section. First we get the
12196 upper 16 bits of the address. */
12197 if (mips_pic == NO_PIC)
12198 {
12199 macro_build_lui (&offset_expr, AT);
12200 used_at = 1;
12201 }
12202 else
12203 {
12204 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12205 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12206 used_at = 1;
12207 }
12208
12209 /* Now we load the register(s). */
12210 if (GPR_SIZE == 64)
12211 {
12212 used_at = 1;
12213 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12214 BFD_RELOC_LO16, AT);
12215 }
12216 else
12217 {
12218 used_at = 1;
12219 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12220 BFD_RELOC_LO16, AT);
12221 if (op[0] != RA)
12222 {
12223 /* FIXME: How in the world do we deal with the possible
12224 overflow here? */
12225 offset_expr.X_add_number += 4;
12226 macro_build (&offset_expr, "lw", "t,o(b)",
12227 op[0] + 1, BFD_RELOC_LO16, AT);
12228 }
12229 }
12230 break;
12231
12232 case M_LI_DD:
12233 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12234 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12235 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12236 the value and the low order 32 bits are either zero or in
12237 OFFSET_EXPR. */
12238 if (imm_expr.X_op == O_constant)
12239 {
12240 used_at = 1;
12241 load_register (AT, &imm_expr, FPR_SIZE == 64);
12242 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12243 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12244 else
12245 {
12246 if (ISA_HAS_MXHC1 (mips_opts.isa))
12247 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12248 else if (FPR_SIZE != 32)
12249 as_bad (_("Unable to generate `%s' compliant code "
12250 "without mthc1"),
12251 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12252 else
12253 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12254 if (offset_expr.X_op == O_absent)
12255 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12256 else
12257 {
12258 gas_assert (offset_expr.X_op == O_constant);
12259 load_register (AT, &offset_expr, 0);
12260 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12261 }
12262 }
12263 break;
12264 }
12265
12266 gas_assert (imm_expr.X_op == O_absent
12267 && offset_expr.X_op == O_symbol
12268 && offset_expr.X_add_number == 0);
12269 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12270 if (strcmp (s, ".lit8") == 0)
12271 {
12272 op[2] = mips_gp_register;
12273 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12274 offset_reloc[1] = BFD_RELOC_UNUSED;
12275 offset_reloc[2] = BFD_RELOC_UNUSED;
12276 }
12277 else
12278 {
12279 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12280 used_at = 1;
12281 if (mips_pic != NO_PIC)
12282 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12283 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12284 else
12285 {
12286 /* FIXME: This won't work for a 64 bit address. */
12287 macro_build_lui (&offset_expr, AT);
12288 }
12289
12290 op[2] = AT;
12291 offset_reloc[0] = BFD_RELOC_LO16;
12292 offset_reloc[1] = BFD_RELOC_UNUSED;
12293 offset_reloc[2] = BFD_RELOC_UNUSED;
12294 }
12295 align = 8;
12296 /* Fall through */
12297
12298 case M_L_DAB:
12299 /*
12300 * The MIPS assembler seems to check for X_add_number not
12301 * being double aligned and generating:
12302 * lui at,%hi(foo+1)
12303 * addu at,at,v1
12304 * addiu at,at,%lo(foo+1)
12305 * lwc1 f2,0(at)
12306 * lwc1 f3,4(at)
12307 * But, the resulting address is the same after relocation so why
12308 * generate the extra instruction?
12309 */
12310 /* Itbl support may require additional care here. */
12311 coproc = 1;
12312 fmt = "T,o(b)";
12313 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12314 {
12315 s = "ldc1";
12316 goto ld_st;
12317 }
12318 s = "lwc1";
12319 goto ldd_std;
12320
12321 case M_S_DAB:
12322 gas_assert (!mips_opts.micromips);
12323 /* Itbl support may require additional care here. */
12324 coproc = 1;
12325 fmt = "T,o(b)";
12326 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12327 {
12328 s = "sdc1";
12329 goto ld_st;
12330 }
12331 s = "swc1";
12332 goto ldd_std;
12333
12334 case M_LQ_AB:
12335 fmt = "t,o(b)";
12336 s = "lq";
12337 goto ld;
12338
12339 case M_SQ_AB:
12340 fmt = "t,o(b)";
12341 s = "sq";
12342 goto ld_st;
12343
12344 case M_LD_AB:
12345 fmt = "t,o(b)";
12346 if (GPR_SIZE == 64)
12347 {
12348 s = "ld";
12349 goto ld;
12350 }
12351 s = "lw";
12352 goto ldd_std;
12353
12354 case M_SD_AB:
12355 fmt = "t,o(b)";
12356 if (GPR_SIZE == 64)
12357 {
12358 s = "sd";
12359 goto ld_st;
12360 }
12361 s = "sw";
12362
12363 ldd_std:
12364 /* Even on a big endian machine $fn comes before $fn+1. We have
12365 to adjust when loading from memory. We set coproc if we must
12366 load $fn+1 first. */
12367 /* Itbl support may require additional care here. */
12368 if (!target_big_endian)
12369 coproc = 0;
12370
12371 breg = op[2];
12372 if (small_offset_p (0, align, 16))
12373 {
12374 ep = &offset_expr;
12375 if (!small_offset_p (4, align, 16))
12376 {
12377 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12378 -1, offset_reloc[0], offset_reloc[1],
12379 offset_reloc[2]);
12380 expr1.X_add_number = 0;
12381 ep = &expr1;
12382 breg = AT;
12383 used_at = 1;
12384 offset_reloc[0] = BFD_RELOC_LO16;
12385 offset_reloc[1] = BFD_RELOC_UNUSED;
12386 offset_reloc[2] = BFD_RELOC_UNUSED;
12387 }
12388 if (strcmp (s, "lw") == 0 && op[0] == breg)
12389 {
12390 ep->X_add_number += 4;
12391 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12392 offset_reloc[1], offset_reloc[2], breg);
12393 ep->X_add_number -= 4;
12394 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12395 offset_reloc[1], offset_reloc[2], breg);
12396 }
12397 else
12398 {
12399 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12400 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12401 breg);
12402 ep->X_add_number += 4;
12403 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12404 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12405 breg);
12406 }
12407 break;
12408 }
12409
12410 if (offset_expr.X_op != O_symbol
12411 && offset_expr.X_op != O_constant)
12412 {
12413 as_bad (_("expression too complex"));
12414 offset_expr.X_op = O_constant;
12415 }
12416
12417 if (HAVE_32BIT_ADDRESSES
12418 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12419 {
12420 char value [32];
12421
12422 sprintf_vma (value, offset_expr.X_add_number);
12423 as_bad (_("number (0x%s) larger than 32 bits"), value);
12424 }
12425
12426 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12427 {
12428 /* If this is a reference to a GP relative symbol, we want
12429 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12430 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12431 If we have a base register, we use this
12432 addu $at,$breg,$gp
12433 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12434 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12435 If this is not a GP relative symbol, we want
12436 lui $at,<sym> (BFD_RELOC_HI16_S)
12437 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12438 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12439 If there is a base register, we add it to $at after the
12440 lui instruction. If there is a constant, we always use
12441 the last case. */
12442 if (offset_expr.X_op == O_symbol
12443 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12444 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12445 {
12446 relax_start (offset_expr.X_add_symbol);
12447 if (breg == 0)
12448 {
12449 tempreg = mips_gp_register;
12450 }
12451 else
12452 {
12453 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12454 AT, breg, mips_gp_register);
12455 tempreg = AT;
12456 used_at = 1;
12457 }
12458
12459 /* Itbl support may require additional care here. */
12460 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12461 BFD_RELOC_GPREL16, tempreg);
12462 offset_expr.X_add_number += 4;
12463
12464 /* Set mips_optimize to 2 to avoid inserting an
12465 undesired nop. */
12466 hold_mips_optimize = mips_optimize;
12467 mips_optimize = 2;
12468 /* Itbl support may require additional care here. */
12469 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12470 BFD_RELOC_GPREL16, tempreg);
12471 mips_optimize = hold_mips_optimize;
12472
12473 relax_switch ();
12474
12475 offset_expr.X_add_number -= 4;
12476 }
12477 used_at = 1;
12478 if (offset_high_part (offset_expr.X_add_number, 16)
12479 != offset_high_part (offset_expr.X_add_number + 4, 16))
12480 {
12481 load_address (AT, &offset_expr, &used_at);
12482 offset_expr.X_op = O_constant;
12483 offset_expr.X_add_number = 0;
12484 }
12485 else
12486 macro_build_lui (&offset_expr, AT);
12487 if (breg != 0)
12488 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12489 /* Itbl support may require additional care here. */
12490 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12491 BFD_RELOC_LO16, AT);
12492 /* FIXME: How do we handle overflow here? */
12493 offset_expr.X_add_number += 4;
12494 /* Itbl support may require additional care here. */
12495 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12496 BFD_RELOC_LO16, AT);
12497 if (mips_relax.sequence)
12498 relax_end ();
12499 }
12500 else if (!mips_big_got)
12501 {
12502 /* If this is a reference to an external symbol, we want
12503 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12504 nop
12505 <op> op[0],0($at)
12506 <op> op[0]+1,4($at)
12507 Otherwise we want
12508 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12509 nop
12510 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12511 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12512 If there is a base register we add it to $at before the
12513 lwc1 instructions. If there is a constant we include it
12514 in the lwc1 instructions. */
12515 used_at = 1;
12516 expr1.X_add_number = offset_expr.X_add_number;
12517 if (expr1.X_add_number < -0x8000
12518 || expr1.X_add_number >= 0x8000 - 4)
12519 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12520 load_got_offset (AT, &offset_expr);
12521 load_delay_nop ();
12522 if (breg != 0)
12523 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12524
12525 /* Set mips_optimize to 2 to avoid inserting an undesired
12526 nop. */
12527 hold_mips_optimize = mips_optimize;
12528 mips_optimize = 2;
12529
12530 /* Itbl support may require additional care here. */
12531 relax_start (offset_expr.X_add_symbol);
12532 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12533 BFD_RELOC_LO16, AT);
12534 expr1.X_add_number += 4;
12535 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12536 BFD_RELOC_LO16, AT);
12537 relax_switch ();
12538 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12539 BFD_RELOC_LO16, AT);
12540 offset_expr.X_add_number += 4;
12541 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12542 BFD_RELOC_LO16, AT);
12543 relax_end ();
12544
12545 mips_optimize = hold_mips_optimize;
12546 }
12547 else if (mips_big_got)
12548 {
12549 int gpdelay;
12550
12551 /* If this is a reference to an external symbol, we want
12552 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12553 addu $at,$at,$gp
12554 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12555 nop
12556 <op> op[0],0($at)
12557 <op> op[0]+1,4($at)
12558 Otherwise we want
12559 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12560 nop
12561 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12562 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12563 If there is a base register we add it to $at before the
12564 lwc1 instructions. If there is a constant we include it
12565 in the lwc1 instructions. */
12566 used_at = 1;
12567 expr1.X_add_number = offset_expr.X_add_number;
12568 offset_expr.X_add_number = 0;
12569 if (expr1.X_add_number < -0x8000
12570 || expr1.X_add_number >= 0x8000 - 4)
12571 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12572 gpdelay = reg_needs_delay (mips_gp_register);
12573 relax_start (offset_expr.X_add_symbol);
12574 macro_build (&offset_expr, "lui", LUI_FMT,
12575 AT, BFD_RELOC_MIPS_GOT_HI16);
12576 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12577 AT, AT, mips_gp_register);
12578 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12579 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12580 load_delay_nop ();
12581 if (breg != 0)
12582 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12583 /* Itbl support may require additional care here. */
12584 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12585 BFD_RELOC_LO16, AT);
12586 expr1.X_add_number += 4;
12587
12588 /* Set mips_optimize to 2 to avoid inserting an undesired
12589 nop. */
12590 hold_mips_optimize = mips_optimize;
12591 mips_optimize = 2;
12592 /* Itbl support may require additional care here. */
12593 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12594 BFD_RELOC_LO16, AT);
12595 mips_optimize = hold_mips_optimize;
12596 expr1.X_add_number -= 4;
12597
12598 relax_switch ();
12599 offset_expr.X_add_number = expr1.X_add_number;
12600 if (gpdelay)
12601 macro_build (NULL, "nop", "");
12602 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12603 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12604 load_delay_nop ();
12605 if (breg != 0)
12606 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12607 /* Itbl support may require additional care here. */
12608 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12609 BFD_RELOC_LO16, AT);
12610 offset_expr.X_add_number += 4;
12611
12612 /* Set mips_optimize to 2 to avoid inserting an undesired
12613 nop. */
12614 hold_mips_optimize = mips_optimize;
12615 mips_optimize = 2;
12616 /* Itbl support may require additional care here. */
12617 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12618 BFD_RELOC_LO16, AT);
12619 mips_optimize = hold_mips_optimize;
12620 relax_end ();
12621 }
12622 else
12623 abort ();
12624
12625 break;
12626
12627 case M_SAA_AB:
12628 s = "saa";
12629 goto saa_saad;
12630 case M_SAAD_AB:
12631 s = "saad";
12632 saa_saad:
12633 gas_assert (!mips_opts.micromips);
12634 offbits = 0;
12635 fmt = "t,(b)";
12636 goto ld_st;
12637
12638 /* New code added to support COPZ instructions.
12639 This code builds table entries out of the macros in mip_opcodes.
12640 R4000 uses interlocks to handle coproc delays.
12641 Other chips (like the R3000) require nops to be inserted for delays.
12642
12643 FIXME: Currently, we require that the user handle delays.
12644 In order to fill delay slots for non-interlocked chips,
12645 we must have a way to specify delays based on the coprocessor.
12646 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12647 What are the side-effects of the cop instruction?
12648 What cache support might we have and what are its effects?
12649 Both coprocessor & memory require delays. how long???
12650 What registers are read/set/modified?
12651
12652 If an itbl is provided to interpret cop instructions,
12653 this knowledge can be encoded in the itbl spec. */
12654
12655 case M_COP0:
12656 s = "c0";
12657 goto copz;
12658 case M_COP1:
12659 s = "c1";
12660 goto copz;
12661 case M_COP2:
12662 s = "c2";
12663 goto copz;
12664 case M_COP3:
12665 s = "c3";
12666 copz:
12667 gas_assert (!mips_opts.micromips);
12668 /* For now we just do C (same as Cz). The parameter will be
12669 stored in insn_opcode by mips_ip. */
12670 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12671 break;
12672
12673 case M_MOVE:
12674 move_register (op[0], op[1]);
12675 break;
12676
12677 case M_MOVEP:
12678 gas_assert (mips_opts.micromips);
12679 gas_assert (mips_opts.insn32);
12680 move_register (micromips_to_32_reg_h_map1[op[0]],
12681 micromips_to_32_reg_m_map[op[1]]);
12682 move_register (micromips_to_32_reg_h_map2[op[0]],
12683 micromips_to_32_reg_n_map[op[2]]);
12684 break;
12685
12686 case M_DMUL:
12687 dbl = 1;
12688 case M_MUL:
12689 if (mips_opts.arch == CPU_R5900)
12690 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12691 op[2]);
12692 else
12693 {
12694 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12695 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12696 }
12697 break;
12698
12699 case M_DMUL_I:
12700 dbl = 1;
12701 case M_MUL_I:
12702 /* The MIPS assembler some times generates shifts and adds. I'm
12703 not trying to be that fancy. GCC should do this for us
12704 anyway. */
12705 used_at = 1;
12706 load_register (AT, &imm_expr, dbl);
12707 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12708 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12709 break;
12710
12711 case M_DMULO_I:
12712 dbl = 1;
12713 case M_MULO_I:
12714 imm = 1;
12715 goto do_mulo;
12716
12717 case M_DMULO:
12718 dbl = 1;
12719 case M_MULO:
12720 do_mulo:
12721 start_noreorder ();
12722 used_at = 1;
12723 if (imm)
12724 load_register (AT, &imm_expr, dbl);
12725 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12726 op[1], imm ? AT : op[2]);
12727 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12728 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12729 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12730 if (mips_trap)
12731 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12732 else
12733 {
12734 if (mips_opts.micromips)
12735 micromips_label_expr (&label_expr);
12736 else
12737 label_expr.X_add_number = 8;
12738 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12739 macro_build (NULL, "nop", "");
12740 macro_build (NULL, "break", BRK_FMT, 6);
12741 if (mips_opts.micromips)
12742 micromips_add_label ();
12743 }
12744 end_noreorder ();
12745 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12746 break;
12747
12748 case M_DMULOU_I:
12749 dbl = 1;
12750 case M_MULOU_I:
12751 imm = 1;
12752 goto do_mulou;
12753
12754 case M_DMULOU:
12755 dbl = 1;
12756 case M_MULOU:
12757 do_mulou:
12758 start_noreorder ();
12759 used_at = 1;
12760 if (imm)
12761 load_register (AT, &imm_expr, dbl);
12762 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12763 op[1], imm ? AT : op[2]);
12764 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12765 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12766 if (mips_trap)
12767 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12768 else
12769 {
12770 if (mips_opts.micromips)
12771 micromips_label_expr (&label_expr);
12772 else
12773 label_expr.X_add_number = 8;
12774 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12775 macro_build (NULL, "nop", "");
12776 macro_build (NULL, "break", BRK_FMT, 6);
12777 if (mips_opts.micromips)
12778 micromips_add_label ();
12779 }
12780 end_noreorder ();
12781 break;
12782
12783 case M_DROL:
12784 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12785 {
12786 if (op[0] == op[1])
12787 {
12788 tempreg = AT;
12789 used_at = 1;
12790 }
12791 else
12792 tempreg = op[0];
12793 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12794 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12795 break;
12796 }
12797 used_at = 1;
12798 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12799 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12800 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12801 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12802 break;
12803
12804 case M_ROL:
12805 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12806 {
12807 if (op[0] == op[1])
12808 {
12809 tempreg = AT;
12810 used_at = 1;
12811 }
12812 else
12813 tempreg = op[0];
12814 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12815 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12816 break;
12817 }
12818 used_at = 1;
12819 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12820 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12821 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12822 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12823 break;
12824
12825 case M_DROL_I:
12826 {
12827 unsigned int rot;
12828 const char *l;
12829 const char *rr;
12830
12831 rot = imm_expr.X_add_number & 0x3f;
12832 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12833 {
12834 rot = (64 - rot) & 0x3f;
12835 if (rot >= 32)
12836 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12837 else
12838 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12839 break;
12840 }
12841 if (rot == 0)
12842 {
12843 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12844 break;
12845 }
12846 l = (rot < 0x20) ? "dsll" : "dsll32";
12847 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12848 rot &= 0x1f;
12849 used_at = 1;
12850 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12851 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12852 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12853 }
12854 break;
12855
12856 case M_ROL_I:
12857 {
12858 unsigned int rot;
12859
12860 rot = imm_expr.X_add_number & 0x1f;
12861 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12862 {
12863 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12864 (32 - rot) & 0x1f);
12865 break;
12866 }
12867 if (rot == 0)
12868 {
12869 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12870 break;
12871 }
12872 used_at = 1;
12873 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12874 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12875 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12876 }
12877 break;
12878
12879 case M_DROR:
12880 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12881 {
12882 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12883 break;
12884 }
12885 used_at = 1;
12886 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12887 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12888 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12889 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12890 break;
12891
12892 case M_ROR:
12893 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12894 {
12895 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12896 break;
12897 }
12898 used_at = 1;
12899 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12900 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12901 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12902 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12903 break;
12904
12905 case M_DROR_I:
12906 {
12907 unsigned int rot;
12908 const char *l;
12909 const char *rr;
12910
12911 rot = imm_expr.X_add_number & 0x3f;
12912 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12913 {
12914 if (rot >= 32)
12915 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12916 else
12917 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12918 break;
12919 }
12920 if (rot == 0)
12921 {
12922 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12923 break;
12924 }
12925 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12926 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12927 rot &= 0x1f;
12928 used_at = 1;
12929 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12930 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12931 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12932 }
12933 break;
12934
12935 case M_ROR_I:
12936 {
12937 unsigned int rot;
12938
12939 rot = imm_expr.X_add_number & 0x1f;
12940 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12941 {
12942 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12943 break;
12944 }
12945 if (rot == 0)
12946 {
12947 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12948 break;
12949 }
12950 used_at = 1;
12951 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12952 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12953 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12954 }
12955 break;
12956
12957 case M_SEQ:
12958 if (op[1] == 0)
12959 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12960 else if (op[2] == 0)
12961 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12962 else
12963 {
12964 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12965 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12966 }
12967 break;
12968
12969 case M_SEQ_I:
12970 if (imm_expr.X_add_number == 0)
12971 {
12972 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12973 break;
12974 }
12975 if (op[1] == 0)
12976 {
12977 as_warn (_("instruction %s: result is always false"),
12978 ip->insn_mo->name);
12979 move_register (op[0], 0);
12980 break;
12981 }
12982 if (CPU_HAS_SEQ (mips_opts.arch)
12983 && -512 <= imm_expr.X_add_number
12984 && imm_expr.X_add_number < 512)
12985 {
12986 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12987 (int) imm_expr.X_add_number);
12988 break;
12989 }
12990 if (imm_expr.X_add_number >= 0
12991 && imm_expr.X_add_number < 0x10000)
12992 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12993 else if (imm_expr.X_add_number > -0x8000
12994 && imm_expr.X_add_number < 0)
12995 {
12996 imm_expr.X_add_number = -imm_expr.X_add_number;
12997 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12998 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12999 }
13000 else if (CPU_HAS_SEQ (mips_opts.arch))
13001 {
13002 used_at = 1;
13003 load_register (AT, &imm_expr, GPR_SIZE == 64);
13004 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13005 break;
13006 }
13007 else
13008 {
13009 load_register (AT, &imm_expr, GPR_SIZE == 64);
13010 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13011 used_at = 1;
13012 }
13013 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13014 break;
13015
13016 case M_SGE: /* X >= Y <==> not (X < Y) */
13017 s = "slt";
13018 goto sge;
13019 case M_SGEU:
13020 s = "sltu";
13021 sge:
13022 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13023 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13024 break;
13025
13026 case M_SGE_I: /* X >= I <==> not (X < I) */
13027 case M_SGEU_I:
13028 if (imm_expr.X_add_number >= -0x8000
13029 && imm_expr.X_add_number < 0x8000)
13030 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13031 op[0], op[1], BFD_RELOC_LO16);
13032 else
13033 {
13034 load_register (AT, &imm_expr, GPR_SIZE == 64);
13035 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13036 op[0], op[1], AT);
13037 used_at = 1;
13038 }
13039 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13040 break;
13041
13042 case M_SGT: /* X > Y <==> Y < X */
13043 s = "slt";
13044 goto sgt;
13045 case M_SGTU:
13046 s = "sltu";
13047 sgt:
13048 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13049 break;
13050
13051 case M_SGT_I: /* X > I <==> I < X */
13052 s = "slt";
13053 goto sgti;
13054 case M_SGTU_I:
13055 s = "sltu";
13056 sgti:
13057 used_at = 1;
13058 load_register (AT, &imm_expr, GPR_SIZE == 64);
13059 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13060 break;
13061
13062 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
13063 s = "slt";
13064 goto sle;
13065 case M_SLEU:
13066 s = "sltu";
13067 sle:
13068 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13069 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13070 break;
13071
13072 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13073 s = "slt";
13074 goto slei;
13075 case M_SLEU_I:
13076 s = "sltu";
13077 slei:
13078 used_at = 1;
13079 load_register (AT, &imm_expr, GPR_SIZE == 64);
13080 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13081 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13082 break;
13083
13084 case M_SLT_I:
13085 if (imm_expr.X_add_number >= -0x8000
13086 && imm_expr.X_add_number < 0x8000)
13087 {
13088 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13089 BFD_RELOC_LO16);
13090 break;
13091 }
13092 used_at = 1;
13093 load_register (AT, &imm_expr, GPR_SIZE == 64);
13094 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13095 break;
13096
13097 case M_SLTU_I:
13098 if (imm_expr.X_add_number >= -0x8000
13099 && imm_expr.X_add_number < 0x8000)
13100 {
13101 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13102 BFD_RELOC_LO16);
13103 break;
13104 }
13105 used_at = 1;
13106 load_register (AT, &imm_expr, GPR_SIZE == 64);
13107 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13108 break;
13109
13110 case M_SNE:
13111 if (op[1] == 0)
13112 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13113 else if (op[2] == 0)
13114 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13115 else
13116 {
13117 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13118 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13119 }
13120 break;
13121
13122 case M_SNE_I:
13123 if (imm_expr.X_add_number == 0)
13124 {
13125 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13126 break;
13127 }
13128 if (op[1] == 0)
13129 {
13130 as_warn (_("instruction %s: result is always true"),
13131 ip->insn_mo->name);
13132 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13133 op[0], 0, BFD_RELOC_LO16);
13134 break;
13135 }
13136 if (CPU_HAS_SEQ (mips_opts.arch)
13137 && -512 <= imm_expr.X_add_number
13138 && imm_expr.X_add_number < 512)
13139 {
13140 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13141 (int) imm_expr.X_add_number);
13142 break;
13143 }
13144 if (imm_expr.X_add_number >= 0
13145 && imm_expr.X_add_number < 0x10000)
13146 {
13147 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13148 BFD_RELOC_LO16);
13149 }
13150 else if (imm_expr.X_add_number > -0x8000
13151 && imm_expr.X_add_number < 0)
13152 {
13153 imm_expr.X_add_number = -imm_expr.X_add_number;
13154 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13155 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13156 }
13157 else if (CPU_HAS_SEQ (mips_opts.arch))
13158 {
13159 used_at = 1;
13160 load_register (AT, &imm_expr, GPR_SIZE == 64);
13161 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13162 break;
13163 }
13164 else
13165 {
13166 load_register (AT, &imm_expr, GPR_SIZE == 64);
13167 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13168 used_at = 1;
13169 }
13170 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13171 break;
13172
13173 case M_SUB_I:
13174 s = "addi";
13175 s2 = "sub";
13176 goto do_subi;
13177 case M_SUBU_I:
13178 s = "addiu";
13179 s2 = "subu";
13180 goto do_subi;
13181 case M_DSUB_I:
13182 dbl = 1;
13183 s = "daddi";
13184 s2 = "dsub";
13185 if (!mips_opts.micromips)
13186 goto do_subi;
13187 if (imm_expr.X_add_number > -0x200
13188 && imm_expr.X_add_number <= 0x200)
13189 {
13190 macro_build (NULL, s, "t,r,.", op[0], op[1],
13191 (int) -imm_expr.X_add_number);
13192 break;
13193 }
13194 goto do_subi_i;
13195 case M_DSUBU_I:
13196 dbl = 1;
13197 s = "daddiu";
13198 s2 = "dsubu";
13199 do_subi:
13200 if (imm_expr.X_add_number > -0x8000
13201 && imm_expr.X_add_number <= 0x8000)
13202 {
13203 imm_expr.X_add_number = -imm_expr.X_add_number;
13204 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13205 break;
13206 }
13207 do_subi_i:
13208 used_at = 1;
13209 load_register (AT, &imm_expr, dbl);
13210 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13211 break;
13212
13213 case M_TEQ_I:
13214 s = "teq";
13215 goto trap;
13216 case M_TGE_I:
13217 s = "tge";
13218 goto trap;
13219 case M_TGEU_I:
13220 s = "tgeu";
13221 goto trap;
13222 case M_TLT_I:
13223 s = "tlt";
13224 goto trap;
13225 case M_TLTU_I:
13226 s = "tltu";
13227 goto trap;
13228 case M_TNE_I:
13229 s = "tne";
13230 trap:
13231 used_at = 1;
13232 load_register (AT, &imm_expr, GPR_SIZE == 64);
13233 macro_build (NULL, s, "s,t", op[0], AT);
13234 break;
13235
13236 case M_TRUNCWS:
13237 case M_TRUNCWD:
13238 gas_assert (!mips_opts.micromips);
13239 gas_assert (mips_opts.isa == ISA_MIPS1);
13240 used_at = 1;
13241
13242 /*
13243 * Is the double cfc1 instruction a bug in the mips assembler;
13244 * or is there a reason for it?
13245 */
13246 start_noreorder ();
13247 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13248 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13249 macro_build (NULL, "nop", "");
13250 expr1.X_add_number = 3;
13251 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13252 expr1.X_add_number = 2;
13253 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13254 macro_build (NULL, "ctc1", "t,G", AT, RA);
13255 macro_build (NULL, "nop", "");
13256 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13257 op[0], op[1]);
13258 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13259 macro_build (NULL, "nop", "");
13260 end_noreorder ();
13261 break;
13262
13263 case M_ULH_AB:
13264 s = "lb";
13265 s2 = "lbu";
13266 off = 1;
13267 goto uld_st;
13268 case M_ULHU_AB:
13269 s = "lbu";
13270 s2 = "lbu";
13271 off = 1;
13272 goto uld_st;
13273 case M_ULW_AB:
13274 s = "lwl";
13275 s2 = "lwr";
13276 offbits = (mips_opts.micromips ? 12 : 16);
13277 off = 3;
13278 goto uld_st;
13279 case M_ULD_AB:
13280 s = "ldl";
13281 s2 = "ldr";
13282 offbits = (mips_opts.micromips ? 12 : 16);
13283 off = 7;
13284 goto uld_st;
13285 case M_USH_AB:
13286 s = "sb";
13287 s2 = "sb";
13288 off = 1;
13289 ust = 1;
13290 goto uld_st;
13291 case M_USW_AB:
13292 s = "swl";
13293 s2 = "swr";
13294 offbits = (mips_opts.micromips ? 12 : 16);
13295 off = 3;
13296 ust = 1;
13297 goto uld_st;
13298 case M_USD_AB:
13299 s = "sdl";
13300 s2 = "sdr";
13301 offbits = (mips_opts.micromips ? 12 : 16);
13302 off = 7;
13303 ust = 1;
13304
13305 uld_st:
13306 breg = op[2];
13307 large_offset = !small_offset_p (off, align, offbits);
13308 ep = &offset_expr;
13309 expr1.X_add_number = 0;
13310 if (large_offset)
13311 {
13312 used_at = 1;
13313 tempreg = AT;
13314 if (small_offset_p (0, align, 16))
13315 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13316 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13317 else
13318 {
13319 load_address (tempreg, ep, &used_at);
13320 if (breg != 0)
13321 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13322 tempreg, tempreg, breg);
13323 }
13324 offset_reloc[0] = BFD_RELOC_LO16;
13325 offset_reloc[1] = BFD_RELOC_UNUSED;
13326 offset_reloc[2] = BFD_RELOC_UNUSED;
13327 breg = tempreg;
13328 tempreg = op[0];
13329 ep = &expr1;
13330 }
13331 else if (!ust && op[0] == breg)
13332 {
13333 used_at = 1;
13334 tempreg = AT;
13335 }
13336 else
13337 tempreg = op[0];
13338
13339 if (off == 1)
13340 goto ulh_sh;
13341
13342 if (!target_big_endian)
13343 ep->X_add_number += off;
13344 if (offbits == 12)
13345 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13346 else
13347 macro_build (ep, s, "t,o(b)", tempreg, -1,
13348 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13349
13350 if (!target_big_endian)
13351 ep->X_add_number -= off;
13352 else
13353 ep->X_add_number += off;
13354 if (offbits == 12)
13355 macro_build (NULL, s2, "t,~(b)",
13356 tempreg, (int) ep->X_add_number, breg);
13357 else
13358 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13359 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13360
13361 /* If necessary, move the result in tempreg to the final destination. */
13362 if (!ust && op[0] != tempreg)
13363 {
13364 /* Protect second load's delay slot. */
13365 load_delay_nop ();
13366 move_register (op[0], tempreg);
13367 }
13368 break;
13369
13370 ulh_sh:
13371 used_at = 1;
13372 if (target_big_endian == ust)
13373 ep->X_add_number += off;
13374 tempreg = ust || large_offset ? op[0] : AT;
13375 macro_build (ep, s, "t,o(b)", tempreg, -1,
13376 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13377
13378 /* For halfword transfers we need a temporary register to shuffle
13379 bytes. Unfortunately for M_USH_A we have none available before
13380 the next store as AT holds the base address. We deal with this
13381 case by clobbering TREG and then restoring it as with ULH. */
13382 tempreg = ust == large_offset ? op[0] : AT;
13383 if (ust)
13384 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13385
13386 if (target_big_endian == ust)
13387 ep->X_add_number -= off;
13388 else
13389 ep->X_add_number += off;
13390 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13391 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13392
13393 /* For M_USH_A re-retrieve the LSB. */
13394 if (ust && large_offset)
13395 {
13396 if (target_big_endian)
13397 ep->X_add_number += off;
13398 else
13399 ep->X_add_number -= off;
13400 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13401 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13402 }
13403 /* For ULH and M_USH_A OR the LSB in. */
13404 if (!ust || large_offset)
13405 {
13406 tempreg = !large_offset ? AT : op[0];
13407 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13408 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13409 }
13410 break;
13411
13412 default:
13413 /* FIXME: Check if this is one of the itbl macros, since they
13414 are added dynamically. */
13415 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13416 break;
13417 }
13418 if (!mips_opts.at && used_at)
13419 as_bad (_("macro used $at after \".set noat\""));
13420 }
13421
13422 /* Implement macros in mips16 mode. */
13423
13424 static void
13425 mips16_macro (struct mips_cl_insn *ip)
13426 {
13427 const struct mips_operand_array *operands;
13428 int mask;
13429 int tmp;
13430 expressionS expr1;
13431 int dbl;
13432 const char *s, *s2, *s3;
13433 unsigned int op[MAX_OPERANDS];
13434 unsigned int i;
13435
13436 mask = ip->insn_mo->mask;
13437
13438 operands = insn_operands (ip);
13439 for (i = 0; i < MAX_OPERANDS; i++)
13440 if (operands->operand[i])
13441 op[i] = insn_extract_operand (ip, operands->operand[i]);
13442 else
13443 op[i] = -1;
13444
13445 expr1.X_op = O_constant;
13446 expr1.X_op_symbol = NULL;
13447 expr1.X_add_symbol = NULL;
13448 expr1.X_add_number = 1;
13449
13450 dbl = 0;
13451
13452 switch (mask)
13453 {
13454 default:
13455 abort ();
13456
13457 case M_DDIV_3:
13458 dbl = 1;
13459 case M_DIV_3:
13460 s = "mflo";
13461 goto do_div3;
13462 case M_DREM_3:
13463 dbl = 1;
13464 case M_REM_3:
13465 s = "mfhi";
13466 do_div3:
13467 start_noreorder ();
13468 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13469 expr1.X_add_number = 2;
13470 macro_build (&expr1, "bnez", "x,p", op[2]);
13471 macro_build (NULL, "break", "6", 7);
13472
13473 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13474 since that causes an overflow. We should do that as well,
13475 but I don't see how to do the comparisons without a temporary
13476 register. */
13477 end_noreorder ();
13478 macro_build (NULL, s, "x", op[0]);
13479 break;
13480
13481 case M_DIVU_3:
13482 s = "divu";
13483 s2 = "mflo";
13484 goto do_divu3;
13485 case M_REMU_3:
13486 s = "divu";
13487 s2 = "mfhi";
13488 goto do_divu3;
13489 case M_DDIVU_3:
13490 s = "ddivu";
13491 s2 = "mflo";
13492 goto do_divu3;
13493 case M_DREMU_3:
13494 s = "ddivu";
13495 s2 = "mfhi";
13496 do_divu3:
13497 start_noreorder ();
13498 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13499 expr1.X_add_number = 2;
13500 macro_build (&expr1, "bnez", "x,p", op[2]);
13501 macro_build (NULL, "break", "6", 7);
13502 end_noreorder ();
13503 macro_build (NULL, s2, "x", op[0]);
13504 break;
13505
13506 case M_DMUL:
13507 dbl = 1;
13508 case M_MUL:
13509 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13510 macro_build (NULL, "mflo", "x", op[0]);
13511 break;
13512
13513 case M_DSUBU_I:
13514 dbl = 1;
13515 goto do_subu;
13516 case M_SUBU_I:
13517 do_subu:
13518 imm_expr.X_add_number = -imm_expr.X_add_number;
13519 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13520 break;
13521
13522 case M_SUBU_I_2:
13523 imm_expr.X_add_number = -imm_expr.X_add_number;
13524 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13525 break;
13526
13527 case M_DSUBU_I_2:
13528 imm_expr.X_add_number = -imm_expr.X_add_number;
13529 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13530 break;
13531
13532 case M_BEQ:
13533 s = "cmp";
13534 s2 = "bteqz";
13535 goto do_branch;
13536 case M_BNE:
13537 s = "cmp";
13538 s2 = "btnez";
13539 goto do_branch;
13540 case M_BLT:
13541 s = "slt";
13542 s2 = "btnez";
13543 goto do_branch;
13544 case M_BLTU:
13545 s = "sltu";
13546 s2 = "btnez";
13547 goto do_branch;
13548 case M_BLE:
13549 s = "slt";
13550 s2 = "bteqz";
13551 goto do_reverse_branch;
13552 case M_BLEU:
13553 s = "sltu";
13554 s2 = "bteqz";
13555 goto do_reverse_branch;
13556 case M_BGE:
13557 s = "slt";
13558 s2 = "bteqz";
13559 goto do_branch;
13560 case M_BGEU:
13561 s = "sltu";
13562 s2 = "bteqz";
13563 goto do_branch;
13564 case M_BGT:
13565 s = "slt";
13566 s2 = "btnez";
13567 goto do_reverse_branch;
13568 case M_BGTU:
13569 s = "sltu";
13570 s2 = "btnez";
13571
13572 do_reverse_branch:
13573 tmp = op[1];
13574 op[1] = op[0];
13575 op[0] = tmp;
13576
13577 do_branch:
13578 macro_build (NULL, s, "x,y", op[0], op[1]);
13579 macro_build (&offset_expr, s2, "p");
13580 break;
13581
13582 case M_BEQ_I:
13583 s = "cmpi";
13584 s2 = "bteqz";
13585 s3 = "x,U";
13586 goto do_branch_i;
13587 case M_BNE_I:
13588 s = "cmpi";
13589 s2 = "btnez";
13590 s3 = "x,U";
13591 goto do_branch_i;
13592 case M_BLT_I:
13593 s = "slti";
13594 s2 = "btnez";
13595 s3 = "x,8";
13596 goto do_branch_i;
13597 case M_BLTU_I:
13598 s = "sltiu";
13599 s2 = "btnez";
13600 s3 = "x,8";
13601 goto do_branch_i;
13602 case M_BLE_I:
13603 s = "slti";
13604 s2 = "btnez";
13605 s3 = "x,8";
13606 goto do_addone_branch_i;
13607 case M_BLEU_I:
13608 s = "sltiu";
13609 s2 = "btnez";
13610 s3 = "x,8";
13611 goto do_addone_branch_i;
13612 case M_BGE_I:
13613 s = "slti";
13614 s2 = "bteqz";
13615 s3 = "x,8";
13616 goto do_branch_i;
13617 case M_BGEU_I:
13618 s = "sltiu";
13619 s2 = "bteqz";
13620 s3 = "x,8";
13621 goto do_branch_i;
13622 case M_BGT_I:
13623 s = "slti";
13624 s2 = "bteqz";
13625 s3 = "x,8";
13626 goto do_addone_branch_i;
13627 case M_BGTU_I:
13628 s = "sltiu";
13629 s2 = "bteqz";
13630 s3 = "x,8";
13631
13632 do_addone_branch_i:
13633 ++imm_expr.X_add_number;
13634
13635 do_branch_i:
13636 macro_build (&imm_expr, s, s3, op[0]);
13637 macro_build (&offset_expr, s2, "p");
13638 break;
13639
13640 case M_ABS:
13641 expr1.X_add_number = 0;
13642 macro_build (&expr1, "slti", "x,8", op[1]);
13643 if (op[0] != op[1])
13644 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13645 expr1.X_add_number = 2;
13646 macro_build (&expr1, "bteqz", "p");
13647 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13648 break;
13649 }
13650 }
13651
13652 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13653 opcode bits in *OPCODE_EXTRA. */
13654
13655 static struct mips_opcode *
13656 mips_lookup_insn (struct hash_control *hash, const char *start,
13657 ssize_t length, unsigned int *opcode_extra)
13658 {
13659 char *name, *dot, *p;
13660 unsigned int mask, suffix;
13661 ssize_t opend;
13662 struct mips_opcode *insn;
13663
13664 /* Make a copy of the instruction so that we can fiddle with it. */
13665 name = xstrndup (start, length);
13666
13667 /* Look up the instruction as-is. */
13668 insn = (struct mips_opcode *) hash_find (hash, name);
13669 if (insn)
13670 goto end;
13671
13672 dot = strchr (name, '.');
13673 if (dot && dot[1])
13674 {
13675 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13676 p = mips_parse_vu0_channels (dot + 1, &mask);
13677 if (*p == 0 && mask != 0)
13678 {
13679 *dot = 0;
13680 insn = (struct mips_opcode *) hash_find (hash, name);
13681 *dot = '.';
13682 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13683 {
13684 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13685 goto end;
13686 }
13687 }
13688 }
13689
13690 if (mips_opts.micromips)
13691 {
13692 /* See if there's an instruction size override suffix,
13693 either `16' or `32', at the end of the mnemonic proper,
13694 that defines the operation, i.e. before the first `.'
13695 character if any. Strip it and retry. */
13696 opend = dot != NULL ? dot - name : length;
13697 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13698 suffix = 2;
13699 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13700 suffix = 4;
13701 else
13702 suffix = 0;
13703 if (suffix)
13704 {
13705 memcpy (name + opend - 2, name + opend, length - opend + 1);
13706 insn = (struct mips_opcode *) hash_find (hash, name);
13707 if (insn)
13708 {
13709 forced_insn_length = suffix;
13710 goto end;
13711 }
13712 }
13713 }
13714
13715 insn = NULL;
13716 end:
13717 free (name);
13718 return insn;
13719 }
13720
13721 /* Assemble an instruction into its binary format. If the instruction
13722 is a macro, set imm_expr and offset_expr to the values associated
13723 with "I" and "A" operands respectively. Otherwise store the value
13724 of the relocatable field (if any) in offset_expr. In both cases
13725 set offset_reloc to the relocation operators applied to offset_expr. */
13726
13727 static void
13728 mips_ip (char *str, struct mips_cl_insn *insn)
13729 {
13730 const struct mips_opcode *first, *past;
13731 struct hash_control *hash;
13732 char format;
13733 size_t end;
13734 struct mips_operand_token *tokens;
13735 unsigned int opcode_extra;
13736
13737 if (mips_opts.micromips)
13738 {
13739 hash = micromips_op_hash;
13740 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13741 }
13742 else
13743 {
13744 hash = op_hash;
13745 past = &mips_opcodes[NUMOPCODES];
13746 }
13747 forced_insn_length = 0;
13748 opcode_extra = 0;
13749
13750 /* We first try to match an instruction up to a space or to the end. */
13751 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13752 continue;
13753
13754 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13755 if (first == NULL)
13756 {
13757 set_insn_error (0, _("unrecognized opcode"));
13758 return;
13759 }
13760
13761 if (strcmp (first->name, "li.s") == 0)
13762 format = 'f';
13763 else if (strcmp (first->name, "li.d") == 0)
13764 format = 'd';
13765 else
13766 format = 0;
13767 tokens = mips_parse_arguments (str + end, format);
13768 if (!tokens)
13769 return;
13770
13771 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13772 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13773 set_insn_error (0, _("invalid operands"));
13774
13775 obstack_free (&mips_operand_tokens, tokens);
13776 }
13777
13778 /* As for mips_ip, but used when assembling MIPS16 code.
13779 Also set forced_insn_length to the resulting instruction size in
13780 bytes if the user explicitly requested a small or extended instruction. */
13781
13782 static void
13783 mips16_ip (char *str, struct mips_cl_insn *insn)
13784 {
13785 char *end, *s, c;
13786 struct mips_opcode *first;
13787 struct mips_operand_token *tokens;
13788
13789 forced_insn_length = 0;
13790
13791 for (s = str; ISLOWER (*s); ++s)
13792 ;
13793 end = s;
13794 c = *end;
13795 switch (c)
13796 {
13797 case '\0':
13798 break;
13799
13800 case ' ':
13801 s++;
13802 break;
13803
13804 case '.':
13805 if (s[1] == 't' && s[2] == ' ')
13806 {
13807 forced_insn_length = 2;
13808 s += 3;
13809 break;
13810 }
13811 else if (s[1] == 'e' && s[2] == ' ')
13812 {
13813 forced_insn_length = 4;
13814 s += 3;
13815 break;
13816 }
13817 /* Fall through. */
13818 default:
13819 set_insn_error (0, _("unrecognized opcode"));
13820 return;
13821 }
13822
13823 if (mips_opts.noautoextend && !forced_insn_length)
13824 forced_insn_length = 2;
13825
13826 *end = 0;
13827 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13828 *end = c;
13829
13830 if (!first)
13831 {
13832 set_insn_error (0, _("unrecognized opcode"));
13833 return;
13834 }
13835
13836 tokens = mips_parse_arguments (s, 0);
13837 if (!tokens)
13838 return;
13839
13840 if (!match_mips16_insns (insn, first, tokens))
13841 set_insn_error (0, _("invalid operands"));
13842
13843 obstack_free (&mips_operand_tokens, tokens);
13844 }
13845
13846 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13847 NBITS is the number of significant bits in VAL. */
13848
13849 static unsigned long
13850 mips16_immed_extend (offsetT val, unsigned int nbits)
13851 {
13852 int extval;
13853 if (nbits == 16)
13854 {
13855 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13856 val &= 0x1f;
13857 }
13858 else if (nbits == 15)
13859 {
13860 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13861 val &= 0xf;
13862 }
13863 else
13864 {
13865 extval = ((val & 0x1f) << 6) | (val & 0x20);
13866 val = 0;
13867 }
13868 return (extval << 16) | val;
13869 }
13870
13871 /* Like decode_mips16_operand, but require the operand to be defined and
13872 require it to be an integer. */
13873
13874 static const struct mips_int_operand *
13875 mips16_immed_operand (int type, bfd_boolean extended_p)
13876 {
13877 const struct mips_operand *operand;
13878
13879 operand = decode_mips16_operand (type, extended_p);
13880 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13881 abort ();
13882 return (const struct mips_int_operand *) operand;
13883 }
13884
13885 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13886
13887 static bfd_boolean
13888 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13889 bfd_reloc_code_real_type reloc, offsetT sval)
13890 {
13891 int min_val, max_val;
13892
13893 min_val = mips_int_operand_min (operand);
13894 max_val = mips_int_operand_max (operand);
13895 if (reloc != BFD_RELOC_UNUSED)
13896 {
13897 if (min_val < 0)
13898 sval = SEXT_16BIT (sval);
13899 else
13900 sval &= 0xffff;
13901 }
13902
13903 return (sval >= min_val
13904 && sval <= max_val
13905 && (sval & ((1 << operand->shift) - 1)) == 0);
13906 }
13907
13908 /* Install immediate value VAL into MIPS16 instruction *INSN,
13909 extending it if necessary. The instruction in *INSN may
13910 already be extended.
13911
13912 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13913 if none. In the former case, VAL is a 16-bit number with no
13914 defined signedness.
13915
13916 TYPE is the type of the immediate field. USER_INSN_LENGTH
13917 is the length that the user requested, or 0 if none. */
13918
13919 static void
13920 mips16_immed (const char *file, unsigned int line, int type,
13921 bfd_reloc_code_real_type reloc, offsetT val,
13922 unsigned int user_insn_length, unsigned long *insn)
13923 {
13924 const struct mips_int_operand *operand;
13925 unsigned int uval, length;
13926
13927 operand = mips16_immed_operand (type, FALSE);
13928 if (!mips16_immed_in_range_p (operand, reloc, val))
13929 {
13930 /* We need an extended instruction. */
13931 if (user_insn_length == 2)
13932 as_bad_where (file, line, _("invalid unextended operand value"));
13933 else
13934 *insn |= MIPS16_EXTEND;
13935 }
13936 else if (user_insn_length == 4)
13937 {
13938 /* The operand doesn't force an unextended instruction to be extended.
13939 Warn if the user wanted an extended instruction anyway. */
13940 *insn |= MIPS16_EXTEND;
13941 as_warn_where (file, line,
13942 _("extended operand requested but not required"));
13943 }
13944
13945 length = mips16_opcode_length (*insn);
13946 if (length == 4)
13947 {
13948 operand = mips16_immed_operand (type, TRUE);
13949 if (!mips16_immed_in_range_p (operand, reloc, val))
13950 as_bad_where (file, line,
13951 _("operand value out of range for instruction"));
13952 }
13953 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13954 if (length == 2)
13955 *insn = mips_insert_operand (&operand->root, *insn, uval);
13956 else
13957 *insn |= mips16_immed_extend (uval, operand->root.size);
13958 }
13959 \f
13960 struct percent_op_match
13961 {
13962 const char *str;
13963 bfd_reloc_code_real_type reloc;
13964 };
13965
13966 static const struct percent_op_match mips_percent_op[] =
13967 {
13968 {"%lo", BFD_RELOC_LO16},
13969 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13970 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13971 {"%call16", BFD_RELOC_MIPS_CALL16},
13972 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13973 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13974 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13975 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13976 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13977 {"%got", BFD_RELOC_MIPS_GOT16},
13978 {"%gp_rel", BFD_RELOC_GPREL16},
13979 {"%half", BFD_RELOC_16},
13980 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13981 {"%higher", BFD_RELOC_MIPS_HIGHER},
13982 {"%neg", BFD_RELOC_MIPS_SUB},
13983 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13984 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13985 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13986 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13987 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13988 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13989 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13990 {"%hi", BFD_RELOC_HI16_S},
13991 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13992 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
13993 };
13994
13995 static const struct percent_op_match mips16_percent_op[] =
13996 {
13997 {"%lo", BFD_RELOC_MIPS16_LO16},
13998 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13999 {"%got", BFD_RELOC_MIPS16_GOT16},
14000 {"%call16", BFD_RELOC_MIPS16_CALL16},
14001 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14002 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14003 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14004 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14005 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14006 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14007 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14008 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14009 };
14010
14011
14012 /* Return true if *STR points to a relocation operator. When returning true,
14013 move *STR over the operator and store its relocation code in *RELOC.
14014 Leave both *STR and *RELOC alone when returning false. */
14015
14016 static bfd_boolean
14017 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14018 {
14019 const struct percent_op_match *percent_op;
14020 size_t limit, i;
14021
14022 if (mips_opts.mips16)
14023 {
14024 percent_op = mips16_percent_op;
14025 limit = ARRAY_SIZE (mips16_percent_op);
14026 }
14027 else
14028 {
14029 percent_op = mips_percent_op;
14030 limit = ARRAY_SIZE (mips_percent_op);
14031 }
14032
14033 for (i = 0; i < limit; i++)
14034 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14035 {
14036 int len = strlen (percent_op[i].str);
14037
14038 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14039 continue;
14040
14041 *str += strlen (percent_op[i].str);
14042 *reloc = percent_op[i].reloc;
14043
14044 /* Check whether the output BFD supports this relocation.
14045 If not, issue an error and fall back on something safe. */
14046 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14047 {
14048 as_bad (_("relocation %s isn't supported by the current ABI"),
14049 percent_op[i].str);
14050 *reloc = BFD_RELOC_UNUSED;
14051 }
14052 return TRUE;
14053 }
14054 return FALSE;
14055 }
14056
14057
14058 /* Parse string STR as a 16-bit relocatable operand. Store the
14059 expression in *EP and the relocations in the array starting
14060 at RELOC. Return the number of relocation operators used.
14061
14062 On exit, EXPR_END points to the first character after the expression. */
14063
14064 static size_t
14065 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14066 char *str)
14067 {
14068 bfd_reloc_code_real_type reversed_reloc[3];
14069 size_t reloc_index, i;
14070 int crux_depth, str_depth;
14071 char *crux;
14072
14073 /* Search for the start of the main expression, recoding relocations
14074 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14075 of the main expression and with CRUX_DEPTH containing the number
14076 of open brackets at that point. */
14077 reloc_index = -1;
14078 str_depth = 0;
14079 do
14080 {
14081 reloc_index++;
14082 crux = str;
14083 crux_depth = str_depth;
14084
14085 /* Skip over whitespace and brackets, keeping count of the number
14086 of brackets. */
14087 while (*str == ' ' || *str == '\t' || *str == '(')
14088 if (*str++ == '(')
14089 str_depth++;
14090 }
14091 while (*str == '%'
14092 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14093 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14094
14095 my_getExpression (ep, crux);
14096 str = expr_end;
14097
14098 /* Match every open bracket. */
14099 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14100 if (*str++ == ')')
14101 crux_depth--;
14102
14103 if (crux_depth > 0)
14104 as_bad (_("unclosed '('"));
14105
14106 expr_end = str;
14107
14108 if (reloc_index != 0)
14109 {
14110 prev_reloc_op_frag = frag_now;
14111 for (i = 0; i < reloc_index; i++)
14112 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14113 }
14114
14115 return reloc_index;
14116 }
14117
14118 static void
14119 my_getExpression (expressionS *ep, char *str)
14120 {
14121 char *save_in;
14122
14123 save_in = input_line_pointer;
14124 input_line_pointer = str;
14125 expression (ep);
14126 expr_end = input_line_pointer;
14127 input_line_pointer = save_in;
14128 }
14129
14130 const char *
14131 md_atof (int type, char *litP, int *sizeP)
14132 {
14133 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14134 }
14135
14136 void
14137 md_number_to_chars (char *buf, valueT val, int n)
14138 {
14139 if (target_big_endian)
14140 number_to_chars_bigendian (buf, val, n);
14141 else
14142 number_to_chars_littleendian (buf, val, n);
14143 }
14144 \f
14145 static int support_64bit_objects(void)
14146 {
14147 const char **list, **l;
14148 int yes;
14149
14150 list = bfd_target_list ();
14151 for (l = list; *l != NULL; l++)
14152 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14153 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14154 break;
14155 yes = (*l != NULL);
14156 free (list);
14157 return yes;
14158 }
14159
14160 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14161 NEW_VALUE. Warn if another value was already specified. Note:
14162 we have to defer parsing the -march and -mtune arguments in order
14163 to handle 'from-abi' correctly, since the ABI might be specified
14164 in a later argument. */
14165
14166 static void
14167 mips_set_option_string (const char **string_ptr, const char *new_value)
14168 {
14169 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14170 as_warn (_("a different %s was already specified, is now %s"),
14171 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14172 new_value);
14173
14174 *string_ptr = new_value;
14175 }
14176
14177 int
14178 md_parse_option (int c, const char *arg)
14179 {
14180 unsigned int i;
14181
14182 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14183 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14184 {
14185 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14186 c == mips_ases[i].option_on);
14187 return 1;
14188 }
14189
14190 switch (c)
14191 {
14192 case OPTION_CONSTRUCT_FLOATS:
14193 mips_disable_float_construction = 0;
14194 break;
14195
14196 case OPTION_NO_CONSTRUCT_FLOATS:
14197 mips_disable_float_construction = 1;
14198 break;
14199
14200 case OPTION_TRAP:
14201 mips_trap = 1;
14202 break;
14203
14204 case OPTION_BREAK:
14205 mips_trap = 0;
14206 break;
14207
14208 case OPTION_EB:
14209 target_big_endian = 1;
14210 break;
14211
14212 case OPTION_EL:
14213 target_big_endian = 0;
14214 break;
14215
14216 case 'O':
14217 if (arg == NULL)
14218 mips_optimize = 1;
14219 else if (arg[0] == '0')
14220 mips_optimize = 0;
14221 else if (arg[0] == '1')
14222 mips_optimize = 1;
14223 else
14224 mips_optimize = 2;
14225 break;
14226
14227 case 'g':
14228 if (arg == NULL)
14229 mips_debug = 2;
14230 else
14231 mips_debug = atoi (arg);
14232 break;
14233
14234 case OPTION_MIPS1:
14235 file_mips_opts.isa = ISA_MIPS1;
14236 break;
14237
14238 case OPTION_MIPS2:
14239 file_mips_opts.isa = ISA_MIPS2;
14240 break;
14241
14242 case OPTION_MIPS3:
14243 file_mips_opts.isa = ISA_MIPS3;
14244 break;
14245
14246 case OPTION_MIPS4:
14247 file_mips_opts.isa = ISA_MIPS4;
14248 break;
14249
14250 case OPTION_MIPS5:
14251 file_mips_opts.isa = ISA_MIPS5;
14252 break;
14253
14254 case OPTION_MIPS32:
14255 file_mips_opts.isa = ISA_MIPS32;
14256 break;
14257
14258 case OPTION_MIPS32R2:
14259 file_mips_opts.isa = ISA_MIPS32R2;
14260 break;
14261
14262 case OPTION_MIPS32R3:
14263 file_mips_opts.isa = ISA_MIPS32R3;
14264 break;
14265
14266 case OPTION_MIPS32R5:
14267 file_mips_opts.isa = ISA_MIPS32R5;
14268 break;
14269
14270 case OPTION_MIPS32R6:
14271 file_mips_opts.isa = ISA_MIPS32R6;
14272 break;
14273
14274 case OPTION_MIPS64R2:
14275 file_mips_opts.isa = ISA_MIPS64R2;
14276 break;
14277
14278 case OPTION_MIPS64R3:
14279 file_mips_opts.isa = ISA_MIPS64R3;
14280 break;
14281
14282 case OPTION_MIPS64R5:
14283 file_mips_opts.isa = ISA_MIPS64R5;
14284 break;
14285
14286 case OPTION_MIPS64R6:
14287 file_mips_opts.isa = ISA_MIPS64R6;
14288 break;
14289
14290 case OPTION_MIPS64:
14291 file_mips_opts.isa = ISA_MIPS64;
14292 break;
14293
14294 case OPTION_MTUNE:
14295 mips_set_option_string (&mips_tune_string, arg);
14296 break;
14297
14298 case OPTION_MARCH:
14299 mips_set_option_string (&mips_arch_string, arg);
14300 break;
14301
14302 case OPTION_M4650:
14303 mips_set_option_string (&mips_arch_string, "4650");
14304 mips_set_option_string (&mips_tune_string, "4650");
14305 break;
14306
14307 case OPTION_NO_M4650:
14308 break;
14309
14310 case OPTION_M4010:
14311 mips_set_option_string (&mips_arch_string, "4010");
14312 mips_set_option_string (&mips_tune_string, "4010");
14313 break;
14314
14315 case OPTION_NO_M4010:
14316 break;
14317
14318 case OPTION_M4100:
14319 mips_set_option_string (&mips_arch_string, "4100");
14320 mips_set_option_string (&mips_tune_string, "4100");
14321 break;
14322
14323 case OPTION_NO_M4100:
14324 break;
14325
14326 case OPTION_M3900:
14327 mips_set_option_string (&mips_arch_string, "3900");
14328 mips_set_option_string (&mips_tune_string, "3900");
14329 break;
14330
14331 case OPTION_NO_M3900:
14332 break;
14333
14334 case OPTION_MICROMIPS:
14335 if (file_mips_opts.mips16 == 1)
14336 {
14337 as_bad (_("-mmicromips cannot be used with -mips16"));
14338 return 0;
14339 }
14340 file_mips_opts.micromips = 1;
14341 mips_no_prev_insn ();
14342 break;
14343
14344 case OPTION_NO_MICROMIPS:
14345 file_mips_opts.micromips = 0;
14346 mips_no_prev_insn ();
14347 break;
14348
14349 case OPTION_MIPS16:
14350 if (file_mips_opts.micromips == 1)
14351 {
14352 as_bad (_("-mips16 cannot be used with -micromips"));
14353 return 0;
14354 }
14355 file_mips_opts.mips16 = 1;
14356 mips_no_prev_insn ();
14357 break;
14358
14359 case OPTION_NO_MIPS16:
14360 file_mips_opts.mips16 = 0;
14361 mips_no_prev_insn ();
14362 break;
14363
14364 case OPTION_FIX_24K:
14365 mips_fix_24k = 1;
14366 break;
14367
14368 case OPTION_NO_FIX_24K:
14369 mips_fix_24k = 0;
14370 break;
14371
14372 case OPTION_FIX_RM7000:
14373 mips_fix_rm7000 = 1;
14374 break;
14375
14376 case OPTION_NO_FIX_RM7000:
14377 mips_fix_rm7000 = 0;
14378 break;
14379
14380 case OPTION_FIX_LOONGSON2F_JUMP:
14381 mips_fix_loongson2f_jump = TRUE;
14382 break;
14383
14384 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14385 mips_fix_loongson2f_jump = FALSE;
14386 break;
14387
14388 case OPTION_FIX_LOONGSON2F_NOP:
14389 mips_fix_loongson2f_nop = TRUE;
14390 break;
14391
14392 case OPTION_NO_FIX_LOONGSON2F_NOP:
14393 mips_fix_loongson2f_nop = FALSE;
14394 break;
14395
14396 case OPTION_FIX_VR4120:
14397 mips_fix_vr4120 = 1;
14398 break;
14399
14400 case OPTION_NO_FIX_VR4120:
14401 mips_fix_vr4120 = 0;
14402 break;
14403
14404 case OPTION_FIX_VR4130:
14405 mips_fix_vr4130 = 1;
14406 break;
14407
14408 case OPTION_NO_FIX_VR4130:
14409 mips_fix_vr4130 = 0;
14410 break;
14411
14412 case OPTION_FIX_CN63XXP1:
14413 mips_fix_cn63xxp1 = TRUE;
14414 break;
14415
14416 case OPTION_NO_FIX_CN63XXP1:
14417 mips_fix_cn63xxp1 = FALSE;
14418 break;
14419
14420 case OPTION_RELAX_BRANCH:
14421 mips_relax_branch = 1;
14422 break;
14423
14424 case OPTION_NO_RELAX_BRANCH:
14425 mips_relax_branch = 0;
14426 break;
14427
14428 case OPTION_INSN32:
14429 file_mips_opts.insn32 = TRUE;
14430 break;
14431
14432 case OPTION_NO_INSN32:
14433 file_mips_opts.insn32 = FALSE;
14434 break;
14435
14436 case OPTION_MSHARED:
14437 mips_in_shared = TRUE;
14438 break;
14439
14440 case OPTION_MNO_SHARED:
14441 mips_in_shared = FALSE;
14442 break;
14443
14444 case OPTION_MSYM32:
14445 file_mips_opts.sym32 = TRUE;
14446 break;
14447
14448 case OPTION_MNO_SYM32:
14449 file_mips_opts.sym32 = FALSE;
14450 break;
14451
14452 /* When generating ELF code, we permit -KPIC and -call_shared to
14453 select SVR4_PIC, and -non_shared to select no PIC. This is
14454 intended to be compatible with Irix 5. */
14455 case OPTION_CALL_SHARED:
14456 mips_pic = SVR4_PIC;
14457 mips_abicalls = TRUE;
14458 break;
14459
14460 case OPTION_CALL_NONPIC:
14461 mips_pic = NO_PIC;
14462 mips_abicalls = TRUE;
14463 break;
14464
14465 case OPTION_NON_SHARED:
14466 mips_pic = NO_PIC;
14467 mips_abicalls = FALSE;
14468 break;
14469
14470 /* The -xgot option tells the assembler to use 32 bit offsets
14471 when accessing the got in SVR4_PIC mode. It is for Irix
14472 compatibility. */
14473 case OPTION_XGOT:
14474 mips_big_got = 1;
14475 break;
14476
14477 case 'G':
14478 g_switch_value = atoi (arg);
14479 g_switch_seen = 1;
14480 break;
14481
14482 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14483 and -mabi=64. */
14484 case OPTION_32:
14485 mips_abi = O32_ABI;
14486 break;
14487
14488 case OPTION_N32:
14489 mips_abi = N32_ABI;
14490 break;
14491
14492 case OPTION_64:
14493 mips_abi = N64_ABI;
14494 if (!support_64bit_objects())
14495 as_fatal (_("no compiled in support for 64 bit object file format"));
14496 break;
14497
14498 case OPTION_GP32:
14499 file_mips_opts.gp = 32;
14500 break;
14501
14502 case OPTION_GP64:
14503 file_mips_opts.gp = 64;
14504 break;
14505
14506 case OPTION_FP32:
14507 file_mips_opts.fp = 32;
14508 break;
14509
14510 case OPTION_FPXX:
14511 file_mips_opts.fp = 0;
14512 break;
14513
14514 case OPTION_FP64:
14515 file_mips_opts.fp = 64;
14516 break;
14517
14518 case OPTION_ODD_SPREG:
14519 file_mips_opts.oddspreg = 1;
14520 break;
14521
14522 case OPTION_NO_ODD_SPREG:
14523 file_mips_opts.oddspreg = 0;
14524 break;
14525
14526 case OPTION_SINGLE_FLOAT:
14527 file_mips_opts.single_float = 1;
14528 break;
14529
14530 case OPTION_DOUBLE_FLOAT:
14531 file_mips_opts.single_float = 0;
14532 break;
14533
14534 case OPTION_SOFT_FLOAT:
14535 file_mips_opts.soft_float = 1;
14536 break;
14537
14538 case OPTION_HARD_FLOAT:
14539 file_mips_opts.soft_float = 0;
14540 break;
14541
14542 case OPTION_MABI:
14543 if (strcmp (arg, "32") == 0)
14544 mips_abi = O32_ABI;
14545 else if (strcmp (arg, "o64") == 0)
14546 mips_abi = O64_ABI;
14547 else if (strcmp (arg, "n32") == 0)
14548 mips_abi = N32_ABI;
14549 else if (strcmp (arg, "64") == 0)
14550 {
14551 mips_abi = N64_ABI;
14552 if (! support_64bit_objects())
14553 as_fatal (_("no compiled in support for 64 bit object file "
14554 "format"));
14555 }
14556 else if (strcmp (arg, "eabi") == 0)
14557 mips_abi = EABI_ABI;
14558 else
14559 {
14560 as_fatal (_("invalid abi -mabi=%s"), arg);
14561 return 0;
14562 }
14563 break;
14564
14565 case OPTION_M7000_HILO_FIX:
14566 mips_7000_hilo_fix = TRUE;
14567 break;
14568
14569 case OPTION_MNO_7000_HILO_FIX:
14570 mips_7000_hilo_fix = FALSE;
14571 break;
14572
14573 case OPTION_MDEBUG:
14574 mips_flag_mdebug = TRUE;
14575 break;
14576
14577 case OPTION_NO_MDEBUG:
14578 mips_flag_mdebug = FALSE;
14579 break;
14580
14581 case OPTION_PDR:
14582 mips_flag_pdr = TRUE;
14583 break;
14584
14585 case OPTION_NO_PDR:
14586 mips_flag_pdr = FALSE;
14587 break;
14588
14589 case OPTION_MVXWORKS_PIC:
14590 mips_pic = VXWORKS_PIC;
14591 break;
14592
14593 case OPTION_NAN:
14594 if (strcmp (arg, "2008") == 0)
14595 mips_nan2008 = 1;
14596 else if (strcmp (arg, "legacy") == 0)
14597 mips_nan2008 = 0;
14598 else
14599 {
14600 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14601 return 0;
14602 }
14603 break;
14604
14605 default:
14606 return 0;
14607 }
14608
14609 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14610
14611 return 1;
14612 }
14613 \f
14614 /* Set up globals to tune for the ISA or processor described by INFO. */
14615
14616 static void
14617 mips_set_tune (const struct mips_cpu_info *info)
14618 {
14619 if (info != 0)
14620 mips_tune = info->cpu;
14621 }
14622
14623
14624 void
14625 mips_after_parse_args (void)
14626 {
14627 const struct mips_cpu_info *arch_info = 0;
14628 const struct mips_cpu_info *tune_info = 0;
14629
14630 /* GP relative stuff not working for PE */
14631 if (strncmp (TARGET_OS, "pe", 2) == 0)
14632 {
14633 if (g_switch_seen && g_switch_value != 0)
14634 as_bad (_("-G not supported in this configuration"));
14635 g_switch_value = 0;
14636 }
14637
14638 if (mips_abi == NO_ABI)
14639 mips_abi = MIPS_DEFAULT_ABI;
14640
14641 /* The following code determines the architecture.
14642 Similar code was added to GCC 3.3 (see override_options() in
14643 config/mips/mips.c). The GAS and GCC code should be kept in sync
14644 as much as possible. */
14645
14646 if (mips_arch_string != 0)
14647 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14648
14649 if (file_mips_opts.isa != ISA_UNKNOWN)
14650 {
14651 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14652 ISA level specified by -mipsN, while arch_info->isa contains
14653 the -march selection (if any). */
14654 if (arch_info != 0)
14655 {
14656 /* -march takes precedence over -mipsN, since it is more descriptive.
14657 There's no harm in specifying both as long as the ISA levels
14658 are the same. */
14659 if (file_mips_opts.isa != arch_info->isa)
14660 as_bad (_("-%s conflicts with the other architecture options,"
14661 " which imply -%s"),
14662 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14663 mips_cpu_info_from_isa (arch_info->isa)->name);
14664 }
14665 else
14666 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14667 }
14668
14669 if (arch_info == 0)
14670 {
14671 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14672 gas_assert (arch_info);
14673 }
14674
14675 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14676 as_bad (_("-march=%s is not compatible with the selected ABI"),
14677 arch_info->name);
14678
14679 file_mips_opts.arch = arch_info->cpu;
14680 file_mips_opts.isa = arch_info->isa;
14681
14682 /* Set up initial mips_opts state. */
14683 mips_opts = file_mips_opts;
14684
14685 /* The register size inference code is now placed in
14686 file_mips_check_options. */
14687
14688 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14689 processor. */
14690 if (mips_tune_string != 0)
14691 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14692
14693 if (tune_info == 0)
14694 mips_set_tune (arch_info);
14695 else
14696 mips_set_tune (tune_info);
14697
14698 if (mips_flag_mdebug < 0)
14699 mips_flag_mdebug = 0;
14700 }
14701 \f
14702 void
14703 mips_init_after_args (void)
14704 {
14705 /* initialize opcodes */
14706 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14707 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14708 }
14709
14710 long
14711 md_pcrel_from (fixS *fixP)
14712 {
14713 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14714 switch (fixP->fx_r_type)
14715 {
14716 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14717 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14718 /* Return the address of the delay slot. */
14719 return addr + 2;
14720
14721 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14722 case BFD_RELOC_MICROMIPS_JMP:
14723 case BFD_RELOC_MIPS16_16_PCREL_S1:
14724 case BFD_RELOC_16_PCREL_S2:
14725 case BFD_RELOC_MIPS_21_PCREL_S2:
14726 case BFD_RELOC_MIPS_26_PCREL_S2:
14727 case BFD_RELOC_MIPS_JMP:
14728 /* Return the address of the delay slot. */
14729 return addr + 4;
14730
14731 case BFD_RELOC_MIPS_18_PCREL_S3:
14732 /* Return the aligned address of the doubleword containing
14733 the instruction. */
14734 return addr & ~7;
14735
14736 default:
14737 return addr;
14738 }
14739 }
14740
14741 /* This is called before the symbol table is processed. In order to
14742 work with gcc when using mips-tfile, we must keep all local labels.
14743 However, in other cases, we want to discard them. If we were
14744 called with -g, but we didn't see any debugging information, it may
14745 mean that gcc is smuggling debugging information through to
14746 mips-tfile, in which case we must generate all local labels. */
14747
14748 void
14749 mips_frob_file_before_adjust (void)
14750 {
14751 #ifndef NO_ECOFF_DEBUGGING
14752 if (ECOFF_DEBUGGING
14753 && mips_debug != 0
14754 && ! ecoff_debugging_seen)
14755 flag_keep_locals = 1;
14756 #endif
14757 }
14758
14759 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14760 the corresponding LO16 reloc. This is called before md_apply_fix and
14761 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14762 relocation operators.
14763
14764 For our purposes, a %lo() expression matches a %got() or %hi()
14765 expression if:
14766
14767 (a) it refers to the same symbol; and
14768 (b) the offset applied in the %lo() expression is no lower than
14769 the offset applied in the %got() or %hi().
14770
14771 (b) allows us to cope with code like:
14772
14773 lui $4,%hi(foo)
14774 lh $4,%lo(foo+2)($4)
14775
14776 ...which is legal on RELA targets, and has a well-defined behaviour
14777 if the user knows that adding 2 to "foo" will not induce a carry to
14778 the high 16 bits.
14779
14780 When several %lo()s match a particular %got() or %hi(), we use the
14781 following rules to distinguish them:
14782
14783 (1) %lo()s with smaller offsets are a better match than %lo()s with
14784 higher offsets.
14785
14786 (2) %lo()s with no matching %got() or %hi() are better than those
14787 that already have a matching %got() or %hi().
14788
14789 (3) later %lo()s are better than earlier %lo()s.
14790
14791 These rules are applied in order.
14792
14793 (1) means, among other things, that %lo()s with identical offsets are
14794 chosen if they exist.
14795
14796 (2) means that we won't associate several high-part relocations with
14797 the same low-part relocation unless there's no alternative. Having
14798 several high parts for the same low part is a GNU extension; this rule
14799 allows careful users to avoid it.
14800
14801 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14802 with the last high-part relocation being at the front of the list.
14803 It therefore makes sense to choose the last matching low-part
14804 relocation, all other things being equal. It's also easier
14805 to code that way. */
14806
14807 void
14808 mips_frob_file (void)
14809 {
14810 struct mips_hi_fixup *l;
14811 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14812
14813 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14814 {
14815 segment_info_type *seginfo;
14816 bfd_boolean matched_lo_p;
14817 fixS **hi_pos, **lo_pos, **pos;
14818
14819 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14820
14821 /* If a GOT16 relocation turns out to be against a global symbol,
14822 there isn't supposed to be a matching LO. Ignore %gots against
14823 constants; we'll report an error for those later. */
14824 if (got16_reloc_p (l->fixp->fx_r_type)
14825 && !(l->fixp->fx_addsy
14826 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14827 continue;
14828
14829 /* Check quickly whether the next fixup happens to be a matching %lo. */
14830 if (fixup_has_matching_lo_p (l->fixp))
14831 continue;
14832
14833 seginfo = seg_info (l->seg);
14834
14835 /* Set HI_POS to the position of this relocation in the chain.
14836 Set LO_POS to the position of the chosen low-part relocation.
14837 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14838 relocation that matches an immediately-preceding high-part
14839 relocation. */
14840 hi_pos = NULL;
14841 lo_pos = NULL;
14842 matched_lo_p = FALSE;
14843 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14844
14845 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14846 {
14847 if (*pos == l->fixp)
14848 hi_pos = pos;
14849
14850 if ((*pos)->fx_r_type == looking_for_rtype
14851 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14852 && (*pos)->fx_offset >= l->fixp->fx_offset
14853 && (lo_pos == NULL
14854 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14855 || (!matched_lo_p
14856 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14857 lo_pos = pos;
14858
14859 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14860 && fixup_has_matching_lo_p (*pos));
14861 }
14862
14863 /* If we found a match, remove the high-part relocation from its
14864 current position and insert it before the low-part relocation.
14865 Make the offsets match so that fixup_has_matching_lo_p()
14866 will return true.
14867
14868 We don't warn about unmatched high-part relocations since some
14869 versions of gcc have been known to emit dead "lui ...%hi(...)"
14870 instructions. */
14871 if (lo_pos != NULL)
14872 {
14873 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14874 if (l->fixp->fx_next != *lo_pos)
14875 {
14876 *hi_pos = l->fixp->fx_next;
14877 l->fixp->fx_next = *lo_pos;
14878 *lo_pos = l->fixp;
14879 }
14880 }
14881 }
14882 }
14883
14884 int
14885 mips_force_relocation (fixS *fixp)
14886 {
14887 if (generic_force_reloc (fixp))
14888 return 1;
14889
14890 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14891 so that the linker relaxation can update targets. */
14892 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14893 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14894 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14895 return 1;
14896
14897 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
14898 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
14899 microMIPS symbols so that we can do cross-mode branch diagnostics
14900 and BAL to JALX conversion by the linker. */
14901 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14902 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14903 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
14904 && fixp->fx_addsy
14905 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
14906 return 1;
14907
14908 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14909 if (ISA_IS_R6 (file_mips_opts.isa)
14910 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14911 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14912 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14913 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14914 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14915 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14916 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14917 return 1;
14918
14919 return 0;
14920 }
14921
14922 /* Implement TC_FORCE_RELOCATION_ABS. */
14923
14924 bfd_boolean
14925 mips_force_relocation_abs (fixS *fixp)
14926 {
14927 if (generic_force_reloc (fixp))
14928 return TRUE;
14929
14930 /* These relocations do not have enough bits in the in-place addend
14931 to hold an arbitrary absolute section's offset. */
14932 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
14933 return TRUE;
14934
14935 return FALSE;
14936 }
14937
14938 /* Read the instruction associated with RELOC from BUF. */
14939
14940 static unsigned int
14941 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14942 {
14943 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14944 return read_compressed_insn (buf, 4);
14945 else
14946 return read_insn (buf);
14947 }
14948
14949 /* Write instruction INSN to BUF, given that it has been relocated
14950 by RELOC. */
14951
14952 static void
14953 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14954 unsigned long insn)
14955 {
14956 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14957 write_compressed_insn (buf, insn, 4);
14958 else
14959 write_insn (buf, insn);
14960 }
14961
14962 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
14963 to a symbol in another ISA mode, which cannot be converted to JALX. */
14964
14965 static bfd_boolean
14966 fix_bad_cross_mode_jump_p (fixS *fixP)
14967 {
14968 unsigned long opcode;
14969 int other;
14970 char *buf;
14971
14972 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
14973 return FALSE;
14974
14975 other = S_GET_OTHER (fixP->fx_addsy);
14976 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14977 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
14978 switch (fixP->fx_r_type)
14979 {
14980 case BFD_RELOC_MIPS_JMP:
14981 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
14982 case BFD_RELOC_MICROMIPS_JMP:
14983 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
14984 default:
14985 return FALSE;
14986 }
14987 }
14988
14989 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
14990 jump to a symbol in the same ISA mode. */
14991
14992 static bfd_boolean
14993 fix_bad_same_mode_jalx_p (fixS *fixP)
14994 {
14995 unsigned long opcode;
14996 int other;
14997 char *buf;
14998
14999 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15000 return FALSE;
15001
15002 other = S_GET_OTHER (fixP->fx_addsy);
15003 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15004 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15005 switch (fixP->fx_r_type)
15006 {
15007 case BFD_RELOC_MIPS_JMP:
15008 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15009 case BFD_RELOC_MIPS16_JMP:
15010 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15011 case BFD_RELOC_MICROMIPS_JMP:
15012 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15013 default:
15014 return FALSE;
15015 }
15016 }
15017
15018 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15019 to a symbol whose value plus addend is not aligned according to the
15020 ultimate (after linker relaxation) jump instruction's immediate field
15021 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15022 regular MIPS code, to (1 << 2). */
15023
15024 static bfd_boolean
15025 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15026 {
15027 bfd_boolean micro_to_mips_p;
15028 valueT val;
15029 int other;
15030
15031 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15032 return FALSE;
15033
15034 other = S_GET_OTHER (fixP->fx_addsy);
15035 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15036 val += fixP->fx_offset;
15037 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15038 && !ELF_ST_IS_MICROMIPS (other));
15039 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15040 != ELF_ST_IS_COMPRESSED (other));
15041 }
15042
15043 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15044 to a symbol whose annotation indicates another ISA mode. For absolute
15045 symbols check the ISA bit instead.
15046
15047 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15048 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15049 MIPS symbols and associated with BAL instructions as these instructions
15050 may be be converted to JALX by the linker. */
15051
15052 static bfd_boolean
15053 fix_bad_cross_mode_branch_p (fixS *fixP)
15054 {
15055 bfd_boolean absolute_p;
15056 unsigned long opcode;
15057 asection *symsec;
15058 valueT val;
15059 int other;
15060 char *buf;
15061
15062 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15063 return FALSE;
15064
15065 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15066 absolute_p = bfd_is_abs_section (symsec);
15067
15068 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15069 other = S_GET_OTHER (fixP->fx_addsy);
15070
15071 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15072 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15073 switch (fixP->fx_r_type)
15074 {
15075 case BFD_RELOC_16_PCREL_S2:
15076 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15077 && opcode != 0x0411);
15078 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15079 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15080 && opcode != 0x4060);
15081 case BFD_RELOC_MIPS_21_PCREL_S2:
15082 case BFD_RELOC_MIPS_26_PCREL_S2:
15083 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15084 case BFD_RELOC_MIPS16_16_PCREL_S1:
15085 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15086 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15087 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15088 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15089 default:
15090 abort ();
15091 }
15092 }
15093
15094 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15095 branch instruction pointed to by FIXP is not aligned according to the
15096 branch instruction's immediate field requirement. We need the addend
15097 to preserve the ISA bit and also the sum must not have bit 2 set. We
15098 must explicitly OR in the ISA bit from symbol annotation as the bit
15099 won't be set in the symbol's value then. */
15100
15101 static bfd_boolean
15102 fix_bad_misaligned_branch_p (fixS *fixP)
15103 {
15104 bfd_boolean absolute_p;
15105 asection *symsec;
15106 valueT isa_bit;
15107 valueT val;
15108 valueT off;
15109 int other;
15110
15111 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15112 return FALSE;
15113
15114 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15115 absolute_p = bfd_is_abs_section (symsec);
15116
15117 val = S_GET_VALUE (fixP->fx_addsy);
15118 other = S_GET_OTHER (fixP->fx_addsy);
15119 off = fixP->fx_offset;
15120
15121 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15122 val |= ELF_ST_IS_COMPRESSED (other);
15123 val += off;
15124 return (val & 0x3) != isa_bit;
15125 }
15126
15127 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15128 and its calculated value VAL. */
15129
15130 static void
15131 fix_validate_branch (fixS *fixP, valueT val)
15132 {
15133 if (fixP->fx_done && (val & 0x3) != 0)
15134 as_bad_where (fixP->fx_file, fixP->fx_line,
15135 _("branch to misaligned address (0x%lx)"),
15136 (long) (val + md_pcrel_from (fixP)));
15137 else if (fix_bad_cross_mode_branch_p (fixP))
15138 as_bad_where (fixP->fx_file, fixP->fx_line,
15139 _("branch to a symbol in another ISA mode"));
15140 else if (fix_bad_misaligned_branch_p (fixP))
15141 as_bad_where (fixP->fx_file, fixP->fx_line,
15142 _("branch to misaligned address (0x%lx)"),
15143 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15144 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15145 as_bad_where (fixP->fx_file, fixP->fx_line,
15146 _("cannot encode misaligned addend "
15147 "in the relocatable field (0x%lx)"),
15148 (long) fixP->fx_offset);
15149 }
15150
15151 /* Apply a fixup to the object file. */
15152
15153 void
15154 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15155 {
15156 char *buf;
15157 unsigned long insn;
15158 reloc_howto_type *howto;
15159
15160 if (fixP->fx_pcrel)
15161 switch (fixP->fx_r_type)
15162 {
15163 case BFD_RELOC_16_PCREL_S2:
15164 case BFD_RELOC_MIPS16_16_PCREL_S1:
15165 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15166 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15167 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15168 case BFD_RELOC_32_PCREL:
15169 case BFD_RELOC_MIPS_21_PCREL_S2:
15170 case BFD_RELOC_MIPS_26_PCREL_S2:
15171 case BFD_RELOC_MIPS_18_PCREL_S3:
15172 case BFD_RELOC_MIPS_19_PCREL_S2:
15173 case BFD_RELOC_HI16_S_PCREL:
15174 case BFD_RELOC_LO16_PCREL:
15175 break;
15176
15177 case BFD_RELOC_32:
15178 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15179 break;
15180
15181 default:
15182 as_bad_where (fixP->fx_file, fixP->fx_line,
15183 _("PC-relative reference to a different section"));
15184 break;
15185 }
15186
15187 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15188 that have no MIPS ELF equivalent. */
15189 if (fixP->fx_r_type != BFD_RELOC_8)
15190 {
15191 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15192 if (!howto)
15193 return;
15194 }
15195
15196 gas_assert (fixP->fx_size == 2
15197 || fixP->fx_size == 4
15198 || fixP->fx_r_type == BFD_RELOC_8
15199 || fixP->fx_r_type == BFD_RELOC_16
15200 || fixP->fx_r_type == BFD_RELOC_64
15201 || fixP->fx_r_type == BFD_RELOC_CTOR
15202 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15203 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15204 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15205 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15206 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15207 || fixP->fx_r_type == BFD_RELOC_NONE);
15208
15209 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15210
15211 /* Don't treat parts of a composite relocation as done. There are two
15212 reasons for this:
15213
15214 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15215 should nevertheless be emitted if the first part is.
15216
15217 (2) In normal usage, composite relocations are never assembly-time
15218 constants. The easiest way of dealing with the pathological
15219 exceptions is to generate a relocation against STN_UNDEF and
15220 leave everything up to the linker. */
15221 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15222 fixP->fx_done = 1;
15223
15224 switch (fixP->fx_r_type)
15225 {
15226 case BFD_RELOC_MIPS_TLS_GD:
15227 case BFD_RELOC_MIPS_TLS_LDM:
15228 case BFD_RELOC_MIPS_TLS_DTPREL32:
15229 case BFD_RELOC_MIPS_TLS_DTPREL64:
15230 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15231 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15232 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15233 case BFD_RELOC_MIPS_TLS_TPREL32:
15234 case BFD_RELOC_MIPS_TLS_TPREL64:
15235 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15236 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15237 case BFD_RELOC_MICROMIPS_TLS_GD:
15238 case BFD_RELOC_MICROMIPS_TLS_LDM:
15239 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15240 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15241 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15242 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15243 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15244 case BFD_RELOC_MIPS16_TLS_GD:
15245 case BFD_RELOC_MIPS16_TLS_LDM:
15246 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15247 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15248 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15249 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15250 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15251 if (fixP->fx_addsy)
15252 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15253 else
15254 as_bad_where (fixP->fx_file, fixP->fx_line,
15255 _("TLS relocation against a constant"));
15256 break;
15257
15258 case BFD_RELOC_MIPS_JMP:
15259 case BFD_RELOC_MIPS16_JMP:
15260 case BFD_RELOC_MICROMIPS_JMP:
15261 {
15262 int shift;
15263
15264 gas_assert (!fixP->fx_done);
15265
15266 /* Shift is 2, unusually, for microMIPS JALX. */
15267 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15268 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15269 shift = 1;
15270 else
15271 shift = 2;
15272
15273 if (fix_bad_cross_mode_jump_p (fixP))
15274 as_bad_where (fixP->fx_file, fixP->fx_line,
15275 _("jump to a symbol in another ISA mode"));
15276 else if (fix_bad_same_mode_jalx_p (fixP))
15277 as_bad_where (fixP->fx_file, fixP->fx_line,
15278 _("JALX to a symbol in the same ISA mode"));
15279 else if (fix_bad_misaligned_jump_p (fixP, shift))
15280 as_bad_where (fixP->fx_file, fixP->fx_line,
15281 _("jump to misaligned address (0x%lx)"),
15282 (long) (S_GET_VALUE (fixP->fx_addsy)
15283 + fixP->fx_offset));
15284 else if (HAVE_IN_PLACE_ADDENDS
15285 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15286 as_bad_where (fixP->fx_file, fixP->fx_line,
15287 _("cannot encode misaligned addend "
15288 "in the relocatable field (0x%lx)"),
15289 (long) fixP->fx_offset);
15290 }
15291 /* Fall through. */
15292
15293 case BFD_RELOC_MIPS_SHIFT5:
15294 case BFD_RELOC_MIPS_SHIFT6:
15295 case BFD_RELOC_MIPS_GOT_DISP:
15296 case BFD_RELOC_MIPS_GOT_PAGE:
15297 case BFD_RELOC_MIPS_GOT_OFST:
15298 case BFD_RELOC_MIPS_SUB:
15299 case BFD_RELOC_MIPS_INSERT_A:
15300 case BFD_RELOC_MIPS_INSERT_B:
15301 case BFD_RELOC_MIPS_DELETE:
15302 case BFD_RELOC_MIPS_HIGHEST:
15303 case BFD_RELOC_MIPS_HIGHER:
15304 case BFD_RELOC_MIPS_SCN_DISP:
15305 case BFD_RELOC_MIPS_REL16:
15306 case BFD_RELOC_MIPS_RELGOT:
15307 case BFD_RELOC_MIPS_JALR:
15308 case BFD_RELOC_HI16:
15309 case BFD_RELOC_HI16_S:
15310 case BFD_RELOC_LO16:
15311 case BFD_RELOC_GPREL16:
15312 case BFD_RELOC_MIPS_LITERAL:
15313 case BFD_RELOC_MIPS_CALL16:
15314 case BFD_RELOC_MIPS_GOT16:
15315 case BFD_RELOC_GPREL32:
15316 case BFD_RELOC_MIPS_GOT_HI16:
15317 case BFD_RELOC_MIPS_GOT_LO16:
15318 case BFD_RELOC_MIPS_CALL_HI16:
15319 case BFD_RELOC_MIPS_CALL_LO16:
15320 case BFD_RELOC_HI16_S_PCREL:
15321 case BFD_RELOC_LO16_PCREL:
15322 case BFD_RELOC_MIPS16_GPREL:
15323 case BFD_RELOC_MIPS16_GOT16:
15324 case BFD_RELOC_MIPS16_CALL16:
15325 case BFD_RELOC_MIPS16_HI16:
15326 case BFD_RELOC_MIPS16_HI16_S:
15327 case BFD_RELOC_MIPS16_LO16:
15328 case BFD_RELOC_MICROMIPS_GOT_DISP:
15329 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15330 case BFD_RELOC_MICROMIPS_GOT_OFST:
15331 case BFD_RELOC_MICROMIPS_SUB:
15332 case BFD_RELOC_MICROMIPS_HIGHEST:
15333 case BFD_RELOC_MICROMIPS_HIGHER:
15334 case BFD_RELOC_MICROMIPS_SCN_DISP:
15335 case BFD_RELOC_MICROMIPS_JALR:
15336 case BFD_RELOC_MICROMIPS_HI16:
15337 case BFD_RELOC_MICROMIPS_HI16_S:
15338 case BFD_RELOC_MICROMIPS_LO16:
15339 case BFD_RELOC_MICROMIPS_GPREL16:
15340 case BFD_RELOC_MICROMIPS_LITERAL:
15341 case BFD_RELOC_MICROMIPS_CALL16:
15342 case BFD_RELOC_MICROMIPS_GOT16:
15343 case BFD_RELOC_MICROMIPS_GOT_HI16:
15344 case BFD_RELOC_MICROMIPS_GOT_LO16:
15345 case BFD_RELOC_MICROMIPS_CALL_HI16:
15346 case BFD_RELOC_MICROMIPS_CALL_LO16:
15347 case BFD_RELOC_MIPS_EH:
15348 if (fixP->fx_done)
15349 {
15350 offsetT value;
15351
15352 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15353 {
15354 insn = read_reloc_insn (buf, fixP->fx_r_type);
15355 if (mips16_reloc_p (fixP->fx_r_type))
15356 insn |= mips16_immed_extend (value, 16);
15357 else
15358 insn |= (value & 0xffff);
15359 write_reloc_insn (buf, fixP->fx_r_type, insn);
15360 }
15361 else
15362 as_bad_where (fixP->fx_file, fixP->fx_line,
15363 _("unsupported constant in relocation"));
15364 }
15365 break;
15366
15367 case BFD_RELOC_64:
15368 /* This is handled like BFD_RELOC_32, but we output a sign
15369 extended value if we are only 32 bits. */
15370 if (fixP->fx_done)
15371 {
15372 if (8 <= sizeof (valueT))
15373 md_number_to_chars (buf, *valP, 8);
15374 else
15375 {
15376 valueT hiv;
15377
15378 if ((*valP & 0x80000000) != 0)
15379 hiv = 0xffffffff;
15380 else
15381 hiv = 0;
15382 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15383 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15384 }
15385 }
15386 break;
15387
15388 case BFD_RELOC_RVA:
15389 case BFD_RELOC_32:
15390 case BFD_RELOC_32_PCREL:
15391 case BFD_RELOC_16:
15392 case BFD_RELOC_8:
15393 /* If we are deleting this reloc entry, we must fill in the
15394 value now. This can happen if we have a .word which is not
15395 resolved when it appears but is later defined. */
15396 if (fixP->fx_done)
15397 md_number_to_chars (buf, *valP, fixP->fx_size);
15398 break;
15399
15400 case BFD_RELOC_MIPS_21_PCREL_S2:
15401 fix_validate_branch (fixP, *valP);
15402 if (!fixP->fx_done)
15403 break;
15404
15405 if (*valP + 0x400000 <= 0x7fffff)
15406 {
15407 insn = read_insn (buf);
15408 insn |= (*valP >> 2) & 0x1fffff;
15409 write_insn (buf, insn);
15410 }
15411 else
15412 as_bad_where (fixP->fx_file, fixP->fx_line,
15413 _("branch out of range"));
15414 break;
15415
15416 case BFD_RELOC_MIPS_26_PCREL_S2:
15417 fix_validate_branch (fixP, *valP);
15418 if (!fixP->fx_done)
15419 break;
15420
15421 if (*valP + 0x8000000 <= 0xfffffff)
15422 {
15423 insn = read_insn (buf);
15424 insn |= (*valP >> 2) & 0x3ffffff;
15425 write_insn (buf, insn);
15426 }
15427 else
15428 as_bad_where (fixP->fx_file, fixP->fx_line,
15429 _("branch out of range"));
15430 break;
15431
15432 case BFD_RELOC_MIPS_18_PCREL_S3:
15433 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15434 as_bad_where (fixP->fx_file, fixP->fx_line,
15435 _("PC-relative access using misaligned symbol (%lx)"),
15436 (long) S_GET_VALUE (fixP->fx_addsy));
15437 if ((fixP->fx_offset & 0x7) != 0)
15438 as_bad_where (fixP->fx_file, fixP->fx_line,
15439 _("PC-relative access using misaligned offset (%lx)"),
15440 (long) fixP->fx_offset);
15441 if (!fixP->fx_done)
15442 break;
15443
15444 if (*valP + 0x100000 <= 0x1fffff)
15445 {
15446 insn = read_insn (buf);
15447 insn |= (*valP >> 3) & 0x3ffff;
15448 write_insn (buf, insn);
15449 }
15450 else
15451 as_bad_where (fixP->fx_file, fixP->fx_line,
15452 _("PC-relative access out of range"));
15453 break;
15454
15455 case BFD_RELOC_MIPS_19_PCREL_S2:
15456 if ((*valP & 0x3) != 0)
15457 as_bad_where (fixP->fx_file, fixP->fx_line,
15458 _("PC-relative access to misaligned address (%lx)"),
15459 (long) *valP);
15460 if (!fixP->fx_done)
15461 break;
15462
15463 if (*valP + 0x100000 <= 0x1fffff)
15464 {
15465 insn = read_insn (buf);
15466 insn |= (*valP >> 2) & 0x7ffff;
15467 write_insn (buf, insn);
15468 }
15469 else
15470 as_bad_where (fixP->fx_file, fixP->fx_line,
15471 _("PC-relative access out of range"));
15472 break;
15473
15474 case BFD_RELOC_16_PCREL_S2:
15475 fix_validate_branch (fixP, *valP);
15476
15477 /* We need to save the bits in the instruction since fixup_segment()
15478 might be deleting the relocation entry (i.e., a branch within
15479 the current segment). */
15480 if (! fixP->fx_done)
15481 break;
15482
15483 /* Update old instruction data. */
15484 insn = read_insn (buf);
15485
15486 if (*valP + 0x20000 <= 0x3ffff)
15487 {
15488 insn |= (*valP >> 2) & 0xffff;
15489 write_insn (buf, insn);
15490 }
15491 else if (mips_pic == NO_PIC
15492 && fixP->fx_done
15493 && fixP->fx_frag->fr_address >= text_section->vma
15494 && (fixP->fx_frag->fr_address
15495 < text_section->vma + bfd_get_section_size (text_section))
15496 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15497 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15498 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15499 {
15500 /* The branch offset is too large. If this is an
15501 unconditional branch, and we are not generating PIC code,
15502 we can convert it to an absolute jump instruction. */
15503 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15504 insn = 0x0c000000; /* jal */
15505 else
15506 insn = 0x08000000; /* j */
15507 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15508 fixP->fx_done = 0;
15509 fixP->fx_addsy = section_symbol (text_section);
15510 *valP += md_pcrel_from (fixP);
15511 write_insn (buf, insn);
15512 }
15513 else
15514 {
15515 /* If we got here, we have branch-relaxation disabled,
15516 and there's nothing we can do to fix this instruction
15517 without turning it into a longer sequence. */
15518 as_bad_where (fixP->fx_file, fixP->fx_line,
15519 _("branch out of range"));
15520 }
15521 break;
15522
15523 case BFD_RELOC_MIPS16_16_PCREL_S1:
15524 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15525 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15526 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15527 gas_assert (!fixP->fx_done);
15528 if (fix_bad_cross_mode_branch_p (fixP))
15529 as_bad_where (fixP->fx_file, fixP->fx_line,
15530 _("branch to a symbol in another ISA mode"));
15531 else if (fixP->fx_addsy
15532 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15533 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15534 && (fixP->fx_offset & 0x1) != 0)
15535 as_bad_where (fixP->fx_file, fixP->fx_line,
15536 _("branch to misaligned address (0x%lx)"),
15537 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15538 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15539 as_bad_where (fixP->fx_file, fixP->fx_line,
15540 _("cannot encode misaligned addend "
15541 "in the relocatable field (0x%lx)"),
15542 (long) fixP->fx_offset);
15543 break;
15544
15545 case BFD_RELOC_VTABLE_INHERIT:
15546 fixP->fx_done = 0;
15547 if (fixP->fx_addsy
15548 && !S_IS_DEFINED (fixP->fx_addsy)
15549 && !S_IS_WEAK (fixP->fx_addsy))
15550 S_SET_WEAK (fixP->fx_addsy);
15551 break;
15552
15553 case BFD_RELOC_NONE:
15554 case BFD_RELOC_VTABLE_ENTRY:
15555 fixP->fx_done = 0;
15556 break;
15557
15558 default:
15559 abort ();
15560 }
15561
15562 /* Remember value for tc_gen_reloc. */
15563 fixP->fx_addnumber = *valP;
15564 }
15565
15566 static symbolS *
15567 get_symbol (void)
15568 {
15569 int c;
15570 char *name;
15571 symbolS *p;
15572
15573 c = get_symbol_name (&name);
15574 p = (symbolS *) symbol_find_or_make (name);
15575 (void) restore_line_pointer (c);
15576 return p;
15577 }
15578
15579 /* Align the current frag to a given power of two. If a particular
15580 fill byte should be used, FILL points to an integer that contains
15581 that byte, otherwise FILL is null.
15582
15583 This function used to have the comment:
15584
15585 The MIPS assembler also automatically adjusts any preceding label.
15586
15587 The implementation therefore applied the adjustment to a maximum of
15588 one label. However, other label adjustments are applied to batches
15589 of labels, and adjusting just one caused problems when new labels
15590 were added for the sake of debugging or unwind information.
15591 We therefore adjust all preceding labels (given as LABELS) instead. */
15592
15593 static void
15594 mips_align (int to, int *fill, struct insn_label_list *labels)
15595 {
15596 mips_emit_delays ();
15597 mips_record_compressed_mode ();
15598 if (fill == NULL && subseg_text_p (now_seg))
15599 frag_align_code (to, 0);
15600 else
15601 frag_align (to, fill ? *fill : 0, 0);
15602 record_alignment (now_seg, to);
15603 mips_move_labels (labels, FALSE);
15604 }
15605
15606 /* Align to a given power of two. .align 0 turns off the automatic
15607 alignment used by the data creating pseudo-ops. */
15608
15609 static void
15610 s_align (int x ATTRIBUTE_UNUSED)
15611 {
15612 int temp, fill_value, *fill_ptr;
15613 long max_alignment = 28;
15614
15615 /* o Note that the assembler pulls down any immediately preceding label
15616 to the aligned address.
15617 o It's not documented but auto alignment is reinstated by
15618 a .align pseudo instruction.
15619 o Note also that after auto alignment is turned off the mips assembler
15620 issues an error on attempt to assemble an improperly aligned data item.
15621 We don't. */
15622
15623 temp = get_absolute_expression ();
15624 if (temp > max_alignment)
15625 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15626 else if (temp < 0)
15627 {
15628 as_warn (_("alignment negative, 0 assumed"));
15629 temp = 0;
15630 }
15631 if (*input_line_pointer == ',')
15632 {
15633 ++input_line_pointer;
15634 fill_value = get_absolute_expression ();
15635 fill_ptr = &fill_value;
15636 }
15637 else
15638 fill_ptr = 0;
15639 if (temp)
15640 {
15641 segment_info_type *si = seg_info (now_seg);
15642 struct insn_label_list *l = si->label_list;
15643 /* Auto alignment should be switched on by next section change. */
15644 auto_align = 1;
15645 mips_align (temp, fill_ptr, l);
15646 }
15647 else
15648 {
15649 auto_align = 0;
15650 }
15651
15652 demand_empty_rest_of_line ();
15653 }
15654
15655 static void
15656 s_change_sec (int sec)
15657 {
15658 segT seg;
15659
15660 /* The ELF backend needs to know that we are changing sections, so
15661 that .previous works correctly. We could do something like check
15662 for an obj_section_change_hook macro, but that might be confusing
15663 as it would not be appropriate to use it in the section changing
15664 functions in read.c, since obj-elf.c intercepts those. FIXME:
15665 This should be cleaner, somehow. */
15666 obj_elf_section_change_hook ();
15667
15668 mips_emit_delays ();
15669
15670 switch (sec)
15671 {
15672 case 't':
15673 s_text (0);
15674 break;
15675 case 'd':
15676 s_data (0);
15677 break;
15678 case 'b':
15679 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15680 demand_empty_rest_of_line ();
15681 break;
15682
15683 case 'r':
15684 seg = subseg_new (RDATA_SECTION_NAME,
15685 (subsegT) get_absolute_expression ());
15686 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15687 | SEC_READONLY | SEC_RELOC
15688 | SEC_DATA));
15689 if (strncmp (TARGET_OS, "elf", 3) != 0)
15690 record_alignment (seg, 4);
15691 demand_empty_rest_of_line ();
15692 break;
15693
15694 case 's':
15695 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15696 bfd_set_section_flags (stdoutput, seg,
15697 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15698 if (strncmp (TARGET_OS, "elf", 3) != 0)
15699 record_alignment (seg, 4);
15700 demand_empty_rest_of_line ();
15701 break;
15702
15703 case 'B':
15704 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15705 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15706 if (strncmp (TARGET_OS, "elf", 3) != 0)
15707 record_alignment (seg, 4);
15708 demand_empty_rest_of_line ();
15709 break;
15710 }
15711
15712 auto_align = 1;
15713 }
15714
15715 void
15716 s_change_section (int ignore ATTRIBUTE_UNUSED)
15717 {
15718 char *saved_ilp;
15719 char *section_name;
15720 char c, endc;
15721 char next_c = 0;
15722 int section_type;
15723 int section_flag;
15724 int section_entry_size;
15725 int section_alignment;
15726
15727 saved_ilp = input_line_pointer;
15728 endc = get_symbol_name (&section_name);
15729 c = (endc == '"' ? input_line_pointer[1] : endc);
15730 if (c)
15731 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15732
15733 /* Do we have .section Name<,"flags">? */
15734 if (c != ',' || (c == ',' && next_c == '"'))
15735 {
15736 /* Just after name is now '\0'. */
15737 (void) restore_line_pointer (endc);
15738 input_line_pointer = saved_ilp;
15739 obj_elf_section (ignore);
15740 return;
15741 }
15742
15743 section_name = xstrdup (section_name);
15744 c = restore_line_pointer (endc);
15745
15746 input_line_pointer++;
15747
15748 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15749 if (c == ',')
15750 section_type = get_absolute_expression ();
15751 else
15752 section_type = 0;
15753
15754 if (*input_line_pointer++ == ',')
15755 section_flag = get_absolute_expression ();
15756 else
15757 section_flag = 0;
15758
15759 if (*input_line_pointer++ == ',')
15760 section_entry_size = get_absolute_expression ();
15761 else
15762 section_entry_size = 0;
15763
15764 if (*input_line_pointer++ == ',')
15765 section_alignment = get_absolute_expression ();
15766 else
15767 section_alignment = 0;
15768
15769 /* FIXME: really ignore? */
15770 (void) section_alignment;
15771
15772 /* When using the generic form of .section (as implemented by obj-elf.c),
15773 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15774 traditionally had to fall back on the more common @progbits instead.
15775
15776 There's nothing really harmful in this, since bfd will correct
15777 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15778 means that, for backwards compatibility, the special_section entries
15779 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15780
15781 Even so, we shouldn't force users of the MIPS .section syntax to
15782 incorrectly label the sections as SHT_PROGBITS. The best compromise
15783 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15784 generic type-checking code. */
15785 if (section_type == SHT_MIPS_DWARF)
15786 section_type = SHT_PROGBITS;
15787
15788 obj_elf_change_section (section_name, section_type, section_flag,
15789 section_entry_size, 0, 0, 0);
15790
15791 if (now_seg->name != section_name)
15792 free (section_name);
15793 }
15794
15795 void
15796 mips_enable_auto_align (void)
15797 {
15798 auto_align = 1;
15799 }
15800
15801 static void
15802 s_cons (int log_size)
15803 {
15804 segment_info_type *si = seg_info (now_seg);
15805 struct insn_label_list *l = si->label_list;
15806
15807 mips_emit_delays ();
15808 if (log_size > 0 && auto_align)
15809 mips_align (log_size, 0, l);
15810 cons (1 << log_size);
15811 mips_clear_insn_labels ();
15812 }
15813
15814 static void
15815 s_float_cons (int type)
15816 {
15817 segment_info_type *si = seg_info (now_seg);
15818 struct insn_label_list *l = si->label_list;
15819
15820 mips_emit_delays ();
15821
15822 if (auto_align)
15823 {
15824 if (type == 'd')
15825 mips_align (3, 0, l);
15826 else
15827 mips_align (2, 0, l);
15828 }
15829
15830 float_cons (type);
15831 mips_clear_insn_labels ();
15832 }
15833
15834 /* Handle .globl. We need to override it because on Irix 5 you are
15835 permitted to say
15836 .globl foo .text
15837 where foo is an undefined symbol, to mean that foo should be
15838 considered to be the address of a function. */
15839
15840 static void
15841 s_mips_globl (int x ATTRIBUTE_UNUSED)
15842 {
15843 char *name;
15844 int c;
15845 symbolS *symbolP;
15846 flagword flag;
15847
15848 do
15849 {
15850 c = get_symbol_name (&name);
15851 symbolP = symbol_find_or_make (name);
15852 S_SET_EXTERNAL (symbolP);
15853
15854 *input_line_pointer = c;
15855 SKIP_WHITESPACE_AFTER_NAME ();
15856
15857 /* On Irix 5, every global symbol that is not explicitly labelled as
15858 being a function is apparently labelled as being an object. */
15859 flag = BSF_OBJECT;
15860
15861 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15862 && (*input_line_pointer != ','))
15863 {
15864 char *secname;
15865 asection *sec;
15866
15867 c = get_symbol_name (&secname);
15868 sec = bfd_get_section_by_name (stdoutput, secname);
15869 if (sec == NULL)
15870 as_bad (_("%s: no such section"), secname);
15871 (void) restore_line_pointer (c);
15872
15873 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15874 flag = BSF_FUNCTION;
15875 }
15876
15877 symbol_get_bfdsym (symbolP)->flags |= flag;
15878
15879 c = *input_line_pointer;
15880 if (c == ',')
15881 {
15882 input_line_pointer++;
15883 SKIP_WHITESPACE ();
15884 if (is_end_of_line[(unsigned char) *input_line_pointer])
15885 c = '\n';
15886 }
15887 }
15888 while (c == ',');
15889
15890 demand_empty_rest_of_line ();
15891 }
15892
15893 static void
15894 s_option (int x ATTRIBUTE_UNUSED)
15895 {
15896 char *opt;
15897 char c;
15898
15899 c = get_symbol_name (&opt);
15900
15901 if (*opt == 'O')
15902 {
15903 /* FIXME: What does this mean? */
15904 }
15905 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
15906 {
15907 int i;
15908
15909 i = atoi (opt + 3);
15910 if (i != 0 && i != 2)
15911 as_bad (_(".option pic%d not supported"), i);
15912 else if (mips_pic == VXWORKS_PIC)
15913 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15914 else if (i == 0)
15915 mips_pic = NO_PIC;
15916 else if (i == 2)
15917 {
15918 mips_pic = SVR4_PIC;
15919 mips_abicalls = TRUE;
15920 }
15921
15922 if (mips_pic == SVR4_PIC)
15923 {
15924 if (g_switch_seen && g_switch_value != 0)
15925 as_warn (_("-G may not be used with SVR4 PIC code"));
15926 g_switch_value = 0;
15927 bfd_set_gp_size (stdoutput, 0);
15928 }
15929 }
15930 else
15931 as_warn (_("unrecognized option \"%s\""), opt);
15932
15933 (void) restore_line_pointer (c);
15934 demand_empty_rest_of_line ();
15935 }
15936
15937 /* This structure is used to hold a stack of .set values. */
15938
15939 struct mips_option_stack
15940 {
15941 struct mips_option_stack *next;
15942 struct mips_set_options options;
15943 };
15944
15945 static struct mips_option_stack *mips_opts_stack;
15946
15947 /* Return status for .set/.module option handling. */
15948
15949 enum code_option_type
15950 {
15951 /* Unrecognized option. */
15952 OPTION_TYPE_BAD = -1,
15953
15954 /* Ordinary option. */
15955 OPTION_TYPE_NORMAL,
15956
15957 /* ISA changing option. */
15958 OPTION_TYPE_ISA
15959 };
15960
15961 /* Handle common .set/.module options. Return status indicating option
15962 type. */
15963
15964 static enum code_option_type
15965 parse_code_option (char * name)
15966 {
15967 bfd_boolean isa_set = FALSE;
15968 const struct mips_ase *ase;
15969
15970 if (strncmp (name, "at=", 3) == 0)
15971 {
15972 char *s = name + 3;
15973
15974 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15975 as_bad (_("unrecognized register name `%s'"), s);
15976 }
15977 else if (strcmp (name, "at") == 0)
15978 mips_opts.at = ATREG;
15979 else if (strcmp (name, "noat") == 0)
15980 mips_opts.at = ZERO;
15981 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15982 mips_opts.nomove = 0;
15983 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15984 mips_opts.nomove = 1;
15985 else if (strcmp (name, "bopt") == 0)
15986 mips_opts.nobopt = 0;
15987 else if (strcmp (name, "nobopt") == 0)
15988 mips_opts.nobopt = 1;
15989 else if (strcmp (name, "gp=32") == 0)
15990 mips_opts.gp = 32;
15991 else if (strcmp (name, "gp=64") == 0)
15992 mips_opts.gp = 64;
15993 else if (strcmp (name, "fp=32") == 0)
15994 mips_opts.fp = 32;
15995 else if (strcmp (name, "fp=xx") == 0)
15996 mips_opts.fp = 0;
15997 else if (strcmp (name, "fp=64") == 0)
15998 mips_opts.fp = 64;
15999 else if (strcmp (name, "softfloat") == 0)
16000 mips_opts.soft_float = 1;
16001 else if (strcmp (name, "hardfloat") == 0)
16002 mips_opts.soft_float = 0;
16003 else if (strcmp (name, "singlefloat") == 0)
16004 mips_opts.single_float = 1;
16005 else if (strcmp (name, "doublefloat") == 0)
16006 mips_opts.single_float = 0;
16007 else if (strcmp (name, "nooddspreg") == 0)
16008 mips_opts.oddspreg = 0;
16009 else if (strcmp (name, "oddspreg") == 0)
16010 mips_opts.oddspreg = 1;
16011 else if (strcmp (name, "mips16") == 0
16012 || strcmp (name, "MIPS-16") == 0)
16013 mips_opts.mips16 = 1;
16014 else if (strcmp (name, "nomips16") == 0
16015 || strcmp (name, "noMIPS-16") == 0)
16016 mips_opts.mips16 = 0;
16017 else if (strcmp (name, "micromips") == 0)
16018 mips_opts.micromips = 1;
16019 else if (strcmp (name, "nomicromips") == 0)
16020 mips_opts.micromips = 0;
16021 else if (name[0] == 'n'
16022 && name[1] == 'o'
16023 && (ase = mips_lookup_ase (name + 2)))
16024 mips_set_ase (ase, &mips_opts, FALSE);
16025 else if ((ase = mips_lookup_ase (name)))
16026 mips_set_ase (ase, &mips_opts, TRUE);
16027 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16028 {
16029 /* Permit the user to change the ISA and architecture on the fly.
16030 Needless to say, misuse can cause serious problems. */
16031 if (strncmp (name, "arch=", 5) == 0)
16032 {
16033 const struct mips_cpu_info *p;
16034
16035 p = mips_parse_cpu ("internal use", name + 5);
16036 if (!p)
16037 as_bad (_("unknown architecture %s"), name + 5);
16038 else
16039 {
16040 mips_opts.arch = p->cpu;
16041 mips_opts.isa = p->isa;
16042 isa_set = TRUE;
16043 }
16044 }
16045 else if (strncmp (name, "mips", 4) == 0)
16046 {
16047 const struct mips_cpu_info *p;
16048
16049 p = mips_parse_cpu ("internal use", name);
16050 if (!p)
16051 as_bad (_("unknown ISA level %s"), name + 4);
16052 else
16053 {
16054 mips_opts.arch = p->cpu;
16055 mips_opts.isa = p->isa;
16056 isa_set = TRUE;
16057 }
16058 }
16059 else
16060 as_bad (_("unknown ISA or architecture %s"), name);
16061 }
16062 else if (strcmp (name, "autoextend") == 0)
16063 mips_opts.noautoextend = 0;
16064 else if (strcmp (name, "noautoextend") == 0)
16065 mips_opts.noautoextend = 1;
16066 else if (strcmp (name, "insn32") == 0)
16067 mips_opts.insn32 = TRUE;
16068 else if (strcmp (name, "noinsn32") == 0)
16069 mips_opts.insn32 = FALSE;
16070 else if (strcmp (name, "sym32") == 0)
16071 mips_opts.sym32 = TRUE;
16072 else if (strcmp (name, "nosym32") == 0)
16073 mips_opts.sym32 = FALSE;
16074 else
16075 return OPTION_TYPE_BAD;
16076
16077 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16078 }
16079
16080 /* Handle the .set pseudo-op. */
16081
16082 static void
16083 s_mipsset (int x ATTRIBUTE_UNUSED)
16084 {
16085 enum code_option_type type = OPTION_TYPE_NORMAL;
16086 char *name = input_line_pointer, ch;
16087
16088 file_mips_check_options ();
16089
16090 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16091 ++input_line_pointer;
16092 ch = *input_line_pointer;
16093 *input_line_pointer = '\0';
16094
16095 if (strchr (name, ','))
16096 {
16097 /* Generic ".set" directive; use the generic handler. */
16098 *input_line_pointer = ch;
16099 input_line_pointer = name;
16100 s_set (0);
16101 return;
16102 }
16103
16104 if (strcmp (name, "reorder") == 0)
16105 {
16106 if (mips_opts.noreorder)
16107 end_noreorder ();
16108 }
16109 else if (strcmp (name, "noreorder") == 0)
16110 {
16111 if (!mips_opts.noreorder)
16112 start_noreorder ();
16113 }
16114 else if (strcmp (name, "macro") == 0)
16115 mips_opts.warn_about_macros = 0;
16116 else if (strcmp (name, "nomacro") == 0)
16117 {
16118 if (mips_opts.noreorder == 0)
16119 as_bad (_("`noreorder' must be set before `nomacro'"));
16120 mips_opts.warn_about_macros = 1;
16121 }
16122 else if (strcmp (name, "gp=default") == 0)
16123 mips_opts.gp = file_mips_opts.gp;
16124 else if (strcmp (name, "fp=default") == 0)
16125 mips_opts.fp = file_mips_opts.fp;
16126 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16127 {
16128 mips_opts.isa = file_mips_opts.isa;
16129 mips_opts.arch = file_mips_opts.arch;
16130 mips_opts.gp = file_mips_opts.gp;
16131 mips_opts.fp = file_mips_opts.fp;
16132 }
16133 else if (strcmp (name, "push") == 0)
16134 {
16135 struct mips_option_stack *s;
16136
16137 s = XNEW (struct mips_option_stack);
16138 s->next = mips_opts_stack;
16139 s->options = mips_opts;
16140 mips_opts_stack = s;
16141 }
16142 else if (strcmp (name, "pop") == 0)
16143 {
16144 struct mips_option_stack *s;
16145
16146 s = mips_opts_stack;
16147 if (s == NULL)
16148 as_bad (_(".set pop with no .set push"));
16149 else
16150 {
16151 /* If we're changing the reorder mode we need to handle
16152 delay slots correctly. */
16153 if (s->options.noreorder && ! mips_opts.noreorder)
16154 start_noreorder ();
16155 else if (! s->options.noreorder && mips_opts.noreorder)
16156 end_noreorder ();
16157
16158 mips_opts = s->options;
16159 mips_opts_stack = s->next;
16160 free (s);
16161 }
16162 }
16163 else
16164 {
16165 type = parse_code_option (name);
16166 if (type == OPTION_TYPE_BAD)
16167 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16168 }
16169
16170 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16171 registers based on what is supported by the arch/cpu. */
16172 if (type == OPTION_TYPE_ISA)
16173 {
16174 switch (mips_opts.isa)
16175 {
16176 case 0:
16177 break;
16178 case ISA_MIPS1:
16179 /* MIPS I cannot support FPXX. */
16180 mips_opts.fp = 32;
16181 /* fall-through. */
16182 case ISA_MIPS2:
16183 case ISA_MIPS32:
16184 case ISA_MIPS32R2:
16185 case ISA_MIPS32R3:
16186 case ISA_MIPS32R5:
16187 mips_opts.gp = 32;
16188 if (mips_opts.fp != 0)
16189 mips_opts.fp = 32;
16190 break;
16191 case ISA_MIPS32R6:
16192 mips_opts.gp = 32;
16193 mips_opts.fp = 64;
16194 break;
16195 case ISA_MIPS3:
16196 case ISA_MIPS4:
16197 case ISA_MIPS5:
16198 case ISA_MIPS64:
16199 case ISA_MIPS64R2:
16200 case ISA_MIPS64R3:
16201 case ISA_MIPS64R5:
16202 case ISA_MIPS64R6:
16203 mips_opts.gp = 64;
16204 if (mips_opts.fp != 0)
16205 {
16206 if (mips_opts.arch == CPU_R5900)
16207 mips_opts.fp = 32;
16208 else
16209 mips_opts.fp = 64;
16210 }
16211 break;
16212 default:
16213 as_bad (_("unknown ISA level %s"), name + 4);
16214 break;
16215 }
16216 }
16217
16218 mips_check_options (&mips_opts, FALSE);
16219
16220 mips_check_isa_supports_ases ();
16221 *input_line_pointer = ch;
16222 demand_empty_rest_of_line ();
16223 }
16224
16225 /* Handle the .module pseudo-op. */
16226
16227 static void
16228 s_module (int ignore ATTRIBUTE_UNUSED)
16229 {
16230 char *name = input_line_pointer, ch;
16231
16232 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16233 ++input_line_pointer;
16234 ch = *input_line_pointer;
16235 *input_line_pointer = '\0';
16236
16237 if (!file_mips_opts_checked)
16238 {
16239 if (parse_code_option (name) == OPTION_TYPE_BAD)
16240 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16241
16242 /* Update module level settings from mips_opts. */
16243 file_mips_opts = mips_opts;
16244 }
16245 else
16246 as_bad (_(".module is not permitted after generating code"));
16247
16248 *input_line_pointer = ch;
16249 demand_empty_rest_of_line ();
16250 }
16251
16252 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16253 .option pic2. It means to generate SVR4 PIC calls. */
16254
16255 static void
16256 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16257 {
16258 mips_pic = SVR4_PIC;
16259 mips_abicalls = TRUE;
16260
16261 if (g_switch_seen && g_switch_value != 0)
16262 as_warn (_("-G may not be used with SVR4 PIC code"));
16263 g_switch_value = 0;
16264
16265 bfd_set_gp_size (stdoutput, 0);
16266 demand_empty_rest_of_line ();
16267 }
16268
16269 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16270 PIC code. It sets the $gp register for the function based on the
16271 function address, which is in the register named in the argument.
16272 This uses a relocation against _gp_disp, which is handled specially
16273 by the linker. The result is:
16274 lui $gp,%hi(_gp_disp)
16275 addiu $gp,$gp,%lo(_gp_disp)
16276 addu $gp,$gp,.cpload argument
16277 The .cpload argument is normally $25 == $t9.
16278
16279 The -mno-shared option changes this to:
16280 lui $gp,%hi(__gnu_local_gp)
16281 addiu $gp,$gp,%lo(__gnu_local_gp)
16282 and the argument is ignored. This saves an instruction, but the
16283 resulting code is not position independent; it uses an absolute
16284 address for __gnu_local_gp. Thus code assembled with -mno-shared
16285 can go into an ordinary executable, but not into a shared library. */
16286
16287 static void
16288 s_cpload (int ignore ATTRIBUTE_UNUSED)
16289 {
16290 expressionS ex;
16291 int reg;
16292 int in_shared;
16293
16294 file_mips_check_options ();
16295
16296 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16297 .cpload is ignored. */
16298 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16299 {
16300 s_ignore (0);
16301 return;
16302 }
16303
16304 if (mips_opts.mips16)
16305 {
16306 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16307 ignore_rest_of_line ();
16308 return;
16309 }
16310
16311 /* .cpload should be in a .set noreorder section. */
16312 if (mips_opts.noreorder == 0)
16313 as_warn (_(".cpload not in noreorder section"));
16314
16315 reg = tc_get_register (0);
16316
16317 /* If we need to produce a 64-bit address, we are better off using
16318 the default instruction sequence. */
16319 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16320
16321 ex.X_op = O_symbol;
16322 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16323 "__gnu_local_gp");
16324 ex.X_op_symbol = NULL;
16325 ex.X_add_number = 0;
16326
16327 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16328 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16329
16330 mips_mark_labels ();
16331 mips_assembling_insn = TRUE;
16332
16333 macro_start ();
16334 macro_build_lui (&ex, mips_gp_register);
16335 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16336 mips_gp_register, BFD_RELOC_LO16);
16337 if (in_shared)
16338 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16339 mips_gp_register, reg);
16340 macro_end ();
16341
16342 mips_assembling_insn = FALSE;
16343 demand_empty_rest_of_line ();
16344 }
16345
16346 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16347 .cpsetup $reg1, offset|$reg2, label
16348
16349 If offset is given, this results in:
16350 sd $gp, offset($sp)
16351 lui $gp, %hi(%neg(%gp_rel(label)))
16352 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16353 daddu $gp, $gp, $reg1
16354
16355 If $reg2 is given, this results in:
16356 or $reg2, $gp, $0
16357 lui $gp, %hi(%neg(%gp_rel(label)))
16358 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16359 daddu $gp, $gp, $reg1
16360 $reg1 is normally $25 == $t9.
16361
16362 The -mno-shared option replaces the last three instructions with
16363 lui $gp,%hi(_gp)
16364 addiu $gp,$gp,%lo(_gp) */
16365
16366 static void
16367 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16368 {
16369 expressionS ex_off;
16370 expressionS ex_sym;
16371 int reg1;
16372
16373 file_mips_check_options ();
16374
16375 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16376 We also need NewABI support. */
16377 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16378 {
16379 s_ignore (0);
16380 return;
16381 }
16382
16383 if (mips_opts.mips16)
16384 {
16385 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16386 ignore_rest_of_line ();
16387 return;
16388 }
16389
16390 reg1 = tc_get_register (0);
16391 SKIP_WHITESPACE ();
16392 if (*input_line_pointer != ',')
16393 {
16394 as_bad (_("missing argument separator ',' for .cpsetup"));
16395 return;
16396 }
16397 else
16398 ++input_line_pointer;
16399 SKIP_WHITESPACE ();
16400 if (*input_line_pointer == '$')
16401 {
16402 mips_cpreturn_register = tc_get_register (0);
16403 mips_cpreturn_offset = -1;
16404 }
16405 else
16406 {
16407 mips_cpreturn_offset = get_absolute_expression ();
16408 mips_cpreturn_register = -1;
16409 }
16410 SKIP_WHITESPACE ();
16411 if (*input_line_pointer != ',')
16412 {
16413 as_bad (_("missing argument separator ',' for .cpsetup"));
16414 return;
16415 }
16416 else
16417 ++input_line_pointer;
16418 SKIP_WHITESPACE ();
16419 expression (&ex_sym);
16420
16421 mips_mark_labels ();
16422 mips_assembling_insn = TRUE;
16423
16424 macro_start ();
16425 if (mips_cpreturn_register == -1)
16426 {
16427 ex_off.X_op = O_constant;
16428 ex_off.X_add_symbol = NULL;
16429 ex_off.X_op_symbol = NULL;
16430 ex_off.X_add_number = mips_cpreturn_offset;
16431
16432 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16433 BFD_RELOC_LO16, SP);
16434 }
16435 else
16436 move_register (mips_cpreturn_register, mips_gp_register);
16437
16438 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16439 {
16440 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16441 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16442 BFD_RELOC_HI16_S);
16443
16444 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16445 mips_gp_register, -1, BFD_RELOC_GPREL16,
16446 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16447
16448 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16449 mips_gp_register, reg1);
16450 }
16451 else
16452 {
16453 expressionS ex;
16454
16455 ex.X_op = O_symbol;
16456 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16457 ex.X_op_symbol = NULL;
16458 ex.X_add_number = 0;
16459
16460 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16461 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16462
16463 macro_build_lui (&ex, mips_gp_register);
16464 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16465 mips_gp_register, BFD_RELOC_LO16);
16466 }
16467
16468 macro_end ();
16469
16470 mips_assembling_insn = FALSE;
16471 demand_empty_rest_of_line ();
16472 }
16473
16474 static void
16475 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16476 {
16477 file_mips_check_options ();
16478
16479 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16480 .cplocal is ignored. */
16481 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16482 {
16483 s_ignore (0);
16484 return;
16485 }
16486
16487 if (mips_opts.mips16)
16488 {
16489 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16490 ignore_rest_of_line ();
16491 return;
16492 }
16493
16494 mips_gp_register = tc_get_register (0);
16495 demand_empty_rest_of_line ();
16496 }
16497
16498 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16499 offset from $sp. The offset is remembered, and after making a PIC
16500 call $gp is restored from that location. */
16501
16502 static void
16503 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16504 {
16505 expressionS ex;
16506
16507 file_mips_check_options ();
16508
16509 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16510 .cprestore is ignored. */
16511 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16512 {
16513 s_ignore (0);
16514 return;
16515 }
16516
16517 if (mips_opts.mips16)
16518 {
16519 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16520 ignore_rest_of_line ();
16521 return;
16522 }
16523
16524 mips_cprestore_offset = get_absolute_expression ();
16525 mips_cprestore_valid = 1;
16526
16527 ex.X_op = O_constant;
16528 ex.X_add_symbol = NULL;
16529 ex.X_op_symbol = NULL;
16530 ex.X_add_number = mips_cprestore_offset;
16531
16532 mips_mark_labels ();
16533 mips_assembling_insn = TRUE;
16534
16535 macro_start ();
16536 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16537 SP, HAVE_64BIT_ADDRESSES);
16538 macro_end ();
16539
16540 mips_assembling_insn = FALSE;
16541 demand_empty_rest_of_line ();
16542 }
16543
16544 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16545 was given in the preceding .cpsetup, it results in:
16546 ld $gp, offset($sp)
16547
16548 If a register $reg2 was given there, it results in:
16549 or $gp, $reg2, $0 */
16550
16551 static void
16552 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16553 {
16554 expressionS ex;
16555
16556 file_mips_check_options ();
16557
16558 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16559 We also need NewABI support. */
16560 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16561 {
16562 s_ignore (0);
16563 return;
16564 }
16565
16566 if (mips_opts.mips16)
16567 {
16568 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16569 ignore_rest_of_line ();
16570 return;
16571 }
16572
16573 mips_mark_labels ();
16574 mips_assembling_insn = TRUE;
16575
16576 macro_start ();
16577 if (mips_cpreturn_register == -1)
16578 {
16579 ex.X_op = O_constant;
16580 ex.X_add_symbol = NULL;
16581 ex.X_op_symbol = NULL;
16582 ex.X_add_number = mips_cpreturn_offset;
16583
16584 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16585 }
16586 else
16587 move_register (mips_gp_register, mips_cpreturn_register);
16588
16589 macro_end ();
16590
16591 mips_assembling_insn = FALSE;
16592 demand_empty_rest_of_line ();
16593 }
16594
16595 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16596 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16597 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16598 debug information or MIPS16 TLS. */
16599
16600 static void
16601 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16602 bfd_reloc_code_real_type rtype)
16603 {
16604 expressionS ex;
16605 char *p;
16606
16607 expression (&ex);
16608
16609 if (ex.X_op != O_symbol)
16610 {
16611 as_bad (_("unsupported use of %s"), dirstr);
16612 ignore_rest_of_line ();
16613 }
16614
16615 p = frag_more (bytes);
16616 md_number_to_chars (p, 0, bytes);
16617 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16618 demand_empty_rest_of_line ();
16619 mips_clear_insn_labels ();
16620 }
16621
16622 /* Handle .dtprelword. */
16623
16624 static void
16625 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16626 {
16627 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16628 }
16629
16630 /* Handle .dtpreldword. */
16631
16632 static void
16633 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16634 {
16635 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16636 }
16637
16638 /* Handle .tprelword. */
16639
16640 static void
16641 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16642 {
16643 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16644 }
16645
16646 /* Handle .tpreldword. */
16647
16648 static void
16649 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16650 {
16651 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16652 }
16653
16654 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16655 code. It sets the offset to use in gp_rel relocations. */
16656
16657 static void
16658 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16659 {
16660 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16661 We also need NewABI support. */
16662 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16663 {
16664 s_ignore (0);
16665 return;
16666 }
16667
16668 mips_gprel_offset = get_absolute_expression ();
16669
16670 demand_empty_rest_of_line ();
16671 }
16672
16673 /* Handle the .gpword pseudo-op. This is used when generating PIC
16674 code. It generates a 32 bit GP relative reloc. */
16675
16676 static void
16677 s_gpword (int ignore ATTRIBUTE_UNUSED)
16678 {
16679 segment_info_type *si;
16680 struct insn_label_list *l;
16681 expressionS ex;
16682 char *p;
16683
16684 /* When not generating PIC code, this is treated as .word. */
16685 if (mips_pic != SVR4_PIC)
16686 {
16687 s_cons (2);
16688 return;
16689 }
16690
16691 si = seg_info (now_seg);
16692 l = si->label_list;
16693 mips_emit_delays ();
16694 if (auto_align)
16695 mips_align (2, 0, l);
16696
16697 expression (&ex);
16698 mips_clear_insn_labels ();
16699
16700 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16701 {
16702 as_bad (_("unsupported use of .gpword"));
16703 ignore_rest_of_line ();
16704 }
16705
16706 p = frag_more (4);
16707 md_number_to_chars (p, 0, 4);
16708 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16709 BFD_RELOC_GPREL32);
16710
16711 demand_empty_rest_of_line ();
16712 }
16713
16714 static void
16715 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16716 {
16717 segment_info_type *si;
16718 struct insn_label_list *l;
16719 expressionS ex;
16720 char *p;
16721
16722 /* When not generating PIC code, this is treated as .dword. */
16723 if (mips_pic != SVR4_PIC)
16724 {
16725 s_cons (3);
16726 return;
16727 }
16728
16729 si = seg_info (now_seg);
16730 l = si->label_list;
16731 mips_emit_delays ();
16732 if (auto_align)
16733 mips_align (3, 0, l);
16734
16735 expression (&ex);
16736 mips_clear_insn_labels ();
16737
16738 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16739 {
16740 as_bad (_("unsupported use of .gpdword"));
16741 ignore_rest_of_line ();
16742 }
16743
16744 p = frag_more (8);
16745 md_number_to_chars (p, 0, 8);
16746 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16747 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16748
16749 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16750 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16751 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16752
16753 demand_empty_rest_of_line ();
16754 }
16755
16756 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16757 tables. It generates a R_MIPS_EH reloc. */
16758
16759 static void
16760 s_ehword (int ignore ATTRIBUTE_UNUSED)
16761 {
16762 expressionS ex;
16763 char *p;
16764
16765 mips_emit_delays ();
16766
16767 expression (&ex);
16768 mips_clear_insn_labels ();
16769
16770 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16771 {
16772 as_bad (_("unsupported use of .ehword"));
16773 ignore_rest_of_line ();
16774 }
16775
16776 p = frag_more (4);
16777 md_number_to_chars (p, 0, 4);
16778 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16779 BFD_RELOC_32_PCREL);
16780
16781 demand_empty_rest_of_line ();
16782 }
16783
16784 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16785 tables in SVR4 PIC code. */
16786
16787 static void
16788 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16789 {
16790 int reg;
16791
16792 file_mips_check_options ();
16793
16794 /* This is ignored when not generating SVR4 PIC code. */
16795 if (mips_pic != SVR4_PIC)
16796 {
16797 s_ignore (0);
16798 return;
16799 }
16800
16801 mips_mark_labels ();
16802 mips_assembling_insn = TRUE;
16803
16804 /* Add $gp to the register named as an argument. */
16805 macro_start ();
16806 reg = tc_get_register (0);
16807 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16808 macro_end ();
16809
16810 mips_assembling_insn = FALSE;
16811 demand_empty_rest_of_line ();
16812 }
16813
16814 /* Handle the .insn pseudo-op. This marks instruction labels in
16815 mips16/micromips mode. This permits the linker to handle them specially,
16816 such as generating jalx instructions when needed. We also make
16817 them odd for the duration of the assembly, in order to generate the
16818 right sort of code. We will make them even in the adjust_symtab
16819 routine, while leaving them marked. This is convenient for the
16820 debugger and the disassembler. The linker knows to make them odd
16821 again. */
16822
16823 static void
16824 s_insn (int ignore ATTRIBUTE_UNUSED)
16825 {
16826 file_mips_check_options ();
16827 file_ase_mips16 |= mips_opts.mips16;
16828 file_ase_micromips |= mips_opts.micromips;
16829
16830 mips_mark_labels ();
16831
16832 demand_empty_rest_of_line ();
16833 }
16834
16835 /* Handle the .nan pseudo-op. */
16836
16837 static void
16838 s_nan (int ignore ATTRIBUTE_UNUSED)
16839 {
16840 static const char str_legacy[] = "legacy";
16841 static const char str_2008[] = "2008";
16842 size_t i;
16843
16844 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16845
16846 if (i == sizeof (str_2008) - 1
16847 && memcmp (input_line_pointer, str_2008, i) == 0)
16848 mips_nan2008 = 1;
16849 else if (i == sizeof (str_legacy) - 1
16850 && memcmp (input_line_pointer, str_legacy, i) == 0)
16851 {
16852 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16853 mips_nan2008 = 0;
16854 else
16855 as_bad (_("`%s' does not support legacy NaN"),
16856 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16857 }
16858 else
16859 as_bad (_("bad .nan directive"));
16860
16861 input_line_pointer += i;
16862 demand_empty_rest_of_line ();
16863 }
16864
16865 /* Handle a .stab[snd] directive. Ideally these directives would be
16866 implemented in a transparent way, so that removing them would not
16867 have any effect on the generated instructions. However, s_stab
16868 internally changes the section, so in practice we need to decide
16869 now whether the preceding label marks compressed code. We do not
16870 support changing the compression mode of a label after a .stab*
16871 directive, such as in:
16872
16873 foo:
16874 .stabs ...
16875 .set mips16
16876
16877 so the current mode wins. */
16878
16879 static void
16880 s_mips_stab (int type)
16881 {
16882 mips_mark_labels ();
16883 s_stab (type);
16884 }
16885
16886 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16887
16888 static void
16889 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16890 {
16891 char *name;
16892 int c;
16893 symbolS *symbolP;
16894 expressionS exp;
16895
16896 c = get_symbol_name (&name);
16897 symbolP = symbol_find_or_make (name);
16898 S_SET_WEAK (symbolP);
16899 *input_line_pointer = c;
16900
16901 SKIP_WHITESPACE_AFTER_NAME ();
16902
16903 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16904 {
16905 if (S_IS_DEFINED (symbolP))
16906 {
16907 as_bad (_("ignoring attempt to redefine symbol %s"),
16908 S_GET_NAME (symbolP));
16909 ignore_rest_of_line ();
16910 return;
16911 }
16912
16913 if (*input_line_pointer == ',')
16914 {
16915 ++input_line_pointer;
16916 SKIP_WHITESPACE ();
16917 }
16918
16919 expression (&exp);
16920 if (exp.X_op != O_symbol)
16921 {
16922 as_bad (_("bad .weakext directive"));
16923 ignore_rest_of_line ();
16924 return;
16925 }
16926 symbol_set_value_expression (symbolP, &exp);
16927 }
16928
16929 demand_empty_rest_of_line ();
16930 }
16931
16932 /* Parse a register string into a number. Called from the ECOFF code
16933 to parse .frame. The argument is non-zero if this is the frame
16934 register, so that we can record it in mips_frame_reg. */
16935
16936 int
16937 tc_get_register (int frame)
16938 {
16939 unsigned int reg;
16940
16941 SKIP_WHITESPACE ();
16942 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16943 reg = 0;
16944 if (frame)
16945 {
16946 mips_frame_reg = reg != 0 ? reg : SP;
16947 mips_frame_reg_valid = 1;
16948 mips_cprestore_valid = 0;
16949 }
16950 return reg;
16951 }
16952
16953 valueT
16954 md_section_align (asection *seg, valueT addr)
16955 {
16956 int align = bfd_get_section_alignment (stdoutput, seg);
16957
16958 /* We don't need to align ELF sections to the full alignment.
16959 However, Irix 5 may prefer that we align them at least to a 16
16960 byte boundary. We don't bother to align the sections if we
16961 are targeted for an embedded system. */
16962 if (strncmp (TARGET_OS, "elf", 3) == 0)
16963 return addr;
16964 if (align > 4)
16965 align = 4;
16966
16967 return ((addr + (1 << align) - 1) & -(1 << align));
16968 }
16969
16970 /* Utility routine, called from above as well. If called while the
16971 input file is still being read, it's only an approximation. (For
16972 example, a symbol may later become defined which appeared to be
16973 undefined earlier.) */
16974
16975 static int
16976 nopic_need_relax (symbolS *sym, int before_relaxing)
16977 {
16978 if (sym == 0)
16979 return 0;
16980
16981 if (g_switch_value > 0)
16982 {
16983 const char *symname;
16984 int change;
16985
16986 /* Find out whether this symbol can be referenced off the $gp
16987 register. It can be if it is smaller than the -G size or if
16988 it is in the .sdata or .sbss section. Certain symbols can
16989 not be referenced off the $gp, although it appears as though
16990 they can. */
16991 symname = S_GET_NAME (sym);
16992 if (symname != (const char *) NULL
16993 && (strcmp (symname, "eprol") == 0
16994 || strcmp (symname, "etext") == 0
16995 || strcmp (symname, "_gp") == 0
16996 || strcmp (symname, "edata") == 0
16997 || strcmp (symname, "_fbss") == 0
16998 || strcmp (symname, "_fdata") == 0
16999 || strcmp (symname, "_ftext") == 0
17000 || strcmp (symname, "end") == 0
17001 || strcmp (symname, "_gp_disp") == 0))
17002 change = 1;
17003 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17004 && (0
17005 #ifndef NO_ECOFF_DEBUGGING
17006 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17007 && (symbol_get_obj (sym)->ecoff_extern_size
17008 <= g_switch_value))
17009 #endif
17010 /* We must defer this decision until after the whole
17011 file has been read, since there might be a .extern
17012 after the first use of this symbol. */
17013 || (before_relaxing
17014 #ifndef NO_ECOFF_DEBUGGING
17015 && symbol_get_obj (sym)->ecoff_extern_size == 0
17016 #endif
17017 && S_GET_VALUE (sym) == 0)
17018 || (S_GET_VALUE (sym) != 0
17019 && S_GET_VALUE (sym) <= g_switch_value)))
17020 change = 0;
17021 else
17022 {
17023 const char *segname;
17024
17025 segname = segment_name (S_GET_SEGMENT (sym));
17026 gas_assert (strcmp (segname, ".lit8") != 0
17027 && strcmp (segname, ".lit4") != 0);
17028 change = (strcmp (segname, ".sdata") != 0
17029 && strcmp (segname, ".sbss") != 0
17030 && strncmp (segname, ".sdata.", 7) != 0
17031 && strncmp (segname, ".sbss.", 6) != 0
17032 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17033 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17034 }
17035 return change;
17036 }
17037 else
17038 /* We are not optimizing for the $gp register. */
17039 return 1;
17040 }
17041
17042
17043 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17044
17045 static bfd_boolean
17046 pic_need_relax (symbolS *sym, asection *segtype)
17047 {
17048 asection *symsec;
17049
17050 /* Handle the case of a symbol equated to another symbol. */
17051 while (symbol_equated_reloc_p (sym))
17052 {
17053 symbolS *n;
17054
17055 /* It's possible to get a loop here in a badly written program. */
17056 n = symbol_get_value_expression (sym)->X_add_symbol;
17057 if (n == sym)
17058 break;
17059 sym = n;
17060 }
17061
17062 if (symbol_section_p (sym))
17063 return TRUE;
17064
17065 symsec = S_GET_SEGMENT (sym);
17066
17067 /* This must duplicate the test in adjust_reloc_syms. */
17068 return (!bfd_is_und_section (symsec)
17069 && !bfd_is_abs_section (symsec)
17070 && !bfd_is_com_section (symsec)
17071 && !s_is_linkonce (sym, segtype)
17072 /* A global or weak symbol is treated as external. */
17073 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17074 }
17075
17076
17077 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17078 extended opcode. SEC is the section the frag is in. */
17079
17080 static int
17081 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17082 {
17083 int type;
17084 const struct mips_int_operand *operand;
17085 offsetT val;
17086 segT symsec;
17087 fragS *sym_frag;
17088
17089 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17090 return 0;
17091 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17092 return 1;
17093
17094 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17095 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17096 operand = mips16_immed_operand (type, FALSE);
17097 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17098 || (operand->root.type == OP_PCREL
17099 ? sec != symsec
17100 : !bfd_is_abs_section (symsec)))
17101 return 1;
17102
17103 sym_frag = symbol_get_frag (fragp->fr_symbol);
17104 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17105
17106 if (operand->root.type == OP_PCREL)
17107 {
17108 const struct mips_pcrel_operand *pcrel_op;
17109 addressT addr;
17110 offsetT maxtiny;
17111
17112 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17113 return 1;
17114
17115 pcrel_op = (const struct mips_pcrel_operand *) operand;
17116
17117 /* If the relax_marker of the symbol fragment differs from the
17118 relax_marker of this fragment, we have not yet adjusted the
17119 symbol fragment fr_address. We want to add in STRETCH in
17120 order to get a better estimate of the address. This
17121 particularly matters because of the shift bits. */
17122 if (stretch != 0
17123 && sym_frag->relax_marker != fragp->relax_marker)
17124 {
17125 fragS *f;
17126
17127 /* Adjust stretch for any alignment frag. Note that if have
17128 been expanding the earlier code, the symbol may be
17129 defined in what appears to be an earlier frag. FIXME:
17130 This doesn't handle the fr_subtype field, which specifies
17131 a maximum number of bytes to skip when doing an
17132 alignment. */
17133 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17134 {
17135 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17136 {
17137 if (stretch < 0)
17138 stretch = - ((- stretch)
17139 & ~ ((1 << (int) f->fr_offset) - 1));
17140 else
17141 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17142 if (stretch == 0)
17143 break;
17144 }
17145 }
17146 if (f != NULL)
17147 val += stretch;
17148 }
17149
17150 addr = fragp->fr_address + fragp->fr_fix;
17151
17152 /* The base address rules are complicated. The base address of
17153 a branch is the following instruction. The base address of a
17154 PC relative load or add is the instruction itself, but if it
17155 is in a delay slot (in which case it can not be extended) use
17156 the address of the instruction whose delay slot it is in. */
17157 if (pcrel_op->include_isa_bit)
17158 {
17159 addr += 2;
17160
17161 /* If we are currently assuming that this frag should be
17162 extended, then, the current address is two bytes
17163 higher. */
17164 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17165 addr += 2;
17166
17167 /* Ignore the low bit in the target, since it will be set
17168 for a text label. */
17169 val &= -2;
17170 }
17171 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17172 addr -= 4;
17173 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17174 addr -= 2;
17175
17176 val -= addr & -(1 << pcrel_op->align_log2);
17177
17178 /* If any of the shifted bits are set, we must use an extended
17179 opcode. If the address depends on the size of this
17180 instruction, this can lead to a loop, so we arrange to always
17181 use an extended opcode. */
17182 if ((val & ((1 << operand->shift) - 1)) != 0)
17183 {
17184 fragp->fr_subtype =
17185 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17186 return 1;
17187 }
17188
17189 /* If we are about to mark a frag as extended because the value
17190 is precisely the next value above maxtiny, then there is a
17191 chance of an infinite loop as in the following code:
17192 la $4,foo
17193 .skip 1020
17194 .align 2
17195 foo:
17196 In this case when the la is extended, foo is 0x3fc bytes
17197 away, so the la can be shrunk, but then foo is 0x400 away, so
17198 the la must be extended. To avoid this loop, we mark the
17199 frag as extended if it was small, and is about to become
17200 extended with the next value above maxtiny. */
17201 maxtiny = mips_int_operand_max (operand);
17202 if (val == maxtiny + (1 << operand->shift)
17203 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17204 {
17205 fragp->fr_subtype =
17206 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17207 return 1;
17208 }
17209 }
17210
17211 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17212 }
17213
17214 /* Compute the length of a branch sequence, and adjust the
17215 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17216 worst-case length is computed, with UPDATE being used to indicate
17217 whether an unconditional (-1), branch-likely (+1) or regular (0)
17218 branch is to be computed. */
17219 static int
17220 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17221 {
17222 bfd_boolean toofar;
17223 int length;
17224
17225 if (fragp
17226 && S_IS_DEFINED (fragp->fr_symbol)
17227 && !S_IS_WEAK (fragp->fr_symbol)
17228 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17229 {
17230 addressT addr;
17231 offsetT val;
17232
17233 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17234
17235 addr = fragp->fr_address + fragp->fr_fix + 4;
17236
17237 val -= addr;
17238
17239 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17240 }
17241 else
17242 /* If the symbol is not defined or it's in a different segment,
17243 we emit the long sequence. */
17244 toofar = TRUE;
17245
17246 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17247 fragp->fr_subtype
17248 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17249 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17250 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17251 RELAX_BRANCH_LINK (fragp->fr_subtype),
17252 toofar);
17253
17254 length = 4;
17255 if (toofar)
17256 {
17257 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17258 length += 8;
17259
17260 if (mips_pic != NO_PIC)
17261 {
17262 /* Additional space for PIC loading of target address. */
17263 length += 8;
17264 if (mips_opts.isa == ISA_MIPS1)
17265 /* Additional space for $at-stabilizing nop. */
17266 length += 4;
17267 }
17268
17269 /* If branch is conditional. */
17270 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17271 length += 8;
17272 }
17273
17274 return length;
17275 }
17276
17277 /* Get a FRAG's branch instruction delay slot size, either from the
17278 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17279 or SHORT_INSN_SIZE otherwise. */
17280
17281 static int
17282 frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17283 {
17284 char *buf = fragp->fr_literal + fragp->fr_fix;
17285
17286 if (al)
17287 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17288 else
17289 return short_insn_size;
17290 }
17291
17292 /* Compute the length of a branch sequence, and adjust the
17293 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17294 worst-case length is computed, with UPDATE being used to indicate
17295 whether an unconditional (-1), or regular (0) branch is to be
17296 computed. */
17297
17298 static int
17299 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17300 {
17301 bfd_boolean insn32 = TRUE;
17302 bfd_boolean nods = TRUE;
17303 bfd_boolean al = TRUE;
17304 int short_insn_size;
17305 bfd_boolean toofar;
17306 int length;
17307
17308 if (fragp)
17309 {
17310 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17311 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17312 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17313 }
17314 short_insn_size = insn32 ? 4 : 2;
17315
17316 if (fragp
17317 && S_IS_DEFINED (fragp->fr_symbol)
17318 && !S_IS_WEAK (fragp->fr_symbol)
17319 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17320 {
17321 addressT addr;
17322 offsetT val;
17323
17324 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17325 /* Ignore the low bit in the target, since it will be set
17326 for a text label. */
17327 if ((val & 1) != 0)
17328 --val;
17329
17330 addr = fragp->fr_address + fragp->fr_fix + 4;
17331
17332 val -= addr;
17333
17334 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17335 }
17336 else
17337 /* If the symbol is not defined or it's in a different segment,
17338 we emit the long sequence. */
17339 toofar = TRUE;
17340
17341 if (fragp && update
17342 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17343 fragp->fr_subtype = (toofar
17344 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17345 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17346
17347 length = 4;
17348 if (toofar)
17349 {
17350 bfd_boolean compact_known = fragp != NULL;
17351 bfd_boolean compact = FALSE;
17352 bfd_boolean uncond;
17353
17354 if (fragp)
17355 {
17356 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17357 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17358 }
17359 else
17360 uncond = update < 0;
17361
17362 /* If label is out of range, we turn branch <br>:
17363
17364 <br> label # 4 bytes
17365 0:
17366
17367 into:
17368
17369 j label # 4 bytes
17370 nop # 2/4 bytes if
17371 # compact && (!PIC || insn32)
17372 0:
17373 */
17374 if ((mips_pic == NO_PIC || insn32) && (!compact_known || compact))
17375 length += short_insn_size;
17376
17377 /* If assembling PIC code, we further turn:
17378
17379 j label # 4 bytes
17380
17381 into:
17382
17383 lw/ld at, %got(label)(gp) # 4 bytes
17384 d/addiu at, %lo(label) # 4 bytes
17385 jr/c at # 2/4 bytes
17386 */
17387 if (mips_pic != NO_PIC)
17388 length += 4 + short_insn_size;
17389
17390 /* Add an extra nop if the jump has no compact form and we need
17391 to fill the delay slot. */
17392 if ((mips_pic == NO_PIC || al) && nods)
17393 length += (fragp
17394 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17395 : short_insn_size);
17396
17397 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17398
17399 <brneg> 0f # 4 bytes
17400 nop # 2/4 bytes if !compact
17401 */
17402 if (!uncond)
17403 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
17404 }
17405 else if (nods)
17406 {
17407 /* Add an extra nop to fill the delay slot. */
17408 gas_assert (fragp);
17409 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17410 }
17411
17412 return length;
17413 }
17414
17415 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17416 bit accordingly. */
17417
17418 static int
17419 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17420 {
17421 bfd_boolean toofar;
17422
17423 if (fragp
17424 && S_IS_DEFINED (fragp->fr_symbol)
17425 && !S_IS_WEAK (fragp->fr_symbol)
17426 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17427 {
17428 addressT addr;
17429 offsetT val;
17430 int type;
17431
17432 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17433 /* Ignore the low bit in the target, since it will be set
17434 for a text label. */
17435 if ((val & 1) != 0)
17436 --val;
17437
17438 /* Assume this is a 2-byte branch. */
17439 addr = fragp->fr_address + fragp->fr_fix + 2;
17440
17441 /* We try to avoid the infinite loop by not adding 2 more bytes for
17442 long branches. */
17443
17444 val -= addr;
17445
17446 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17447 if (type == 'D')
17448 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17449 else if (type == 'E')
17450 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17451 else
17452 abort ();
17453 }
17454 else
17455 /* If the symbol is not defined or it's in a different segment,
17456 we emit a normal 32-bit branch. */
17457 toofar = TRUE;
17458
17459 if (fragp && update
17460 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17461 fragp->fr_subtype
17462 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17463 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17464
17465 if (toofar)
17466 return 4;
17467
17468 return 2;
17469 }
17470
17471 /* Estimate the size of a frag before relaxing. Unless this is the
17472 mips16, we are not really relaxing here, and the final size is
17473 encoded in the subtype information. For the mips16, we have to
17474 decide whether we are using an extended opcode or not. */
17475
17476 int
17477 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17478 {
17479 int change;
17480
17481 if (RELAX_BRANCH_P (fragp->fr_subtype))
17482 {
17483
17484 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17485
17486 return fragp->fr_var;
17487 }
17488
17489 if (RELAX_MIPS16_P (fragp->fr_subtype))
17490 /* We don't want to modify the EXTENDED bit here; it might get us
17491 into infinite loops. We change it only in mips_relax_frag(). */
17492 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17493
17494 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17495 {
17496 int length = 4;
17497
17498 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17499 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17500 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17501 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17502 fragp->fr_var = length;
17503
17504 return length;
17505 }
17506
17507 if (mips_pic == NO_PIC)
17508 change = nopic_need_relax (fragp->fr_symbol, 0);
17509 else if (mips_pic == SVR4_PIC)
17510 change = pic_need_relax (fragp->fr_symbol, segtype);
17511 else if (mips_pic == VXWORKS_PIC)
17512 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17513 change = 0;
17514 else
17515 abort ();
17516
17517 if (change)
17518 {
17519 fragp->fr_subtype |= RELAX_USE_SECOND;
17520 return -RELAX_FIRST (fragp->fr_subtype);
17521 }
17522 else
17523 return -RELAX_SECOND (fragp->fr_subtype);
17524 }
17525
17526 /* This is called to see whether a reloc against a defined symbol
17527 should be converted into a reloc against a section. */
17528
17529 int
17530 mips_fix_adjustable (fixS *fixp)
17531 {
17532 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17533 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17534 return 0;
17535
17536 if (fixp->fx_addsy == NULL)
17537 return 1;
17538
17539 /* Allow relocs used for EH tables. */
17540 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17541 return 1;
17542
17543 /* If symbol SYM is in a mergeable section, relocations of the form
17544 SYM + 0 can usually be made section-relative. The mergeable data
17545 is then identified by the section offset rather than by the symbol.
17546
17547 However, if we're generating REL LO16 relocations, the offset is split
17548 between the LO16 and parterning high part relocation. The linker will
17549 need to recalculate the complete offset in order to correctly identify
17550 the merge data.
17551
17552 The linker has traditionally not looked for the parterning high part
17553 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17554 placed anywhere. Rather than break backwards compatibility by changing
17555 this, it seems better not to force the issue, and instead keep the
17556 original symbol. This will work with either linker behavior. */
17557 if ((lo16_reloc_p (fixp->fx_r_type)
17558 || reloc_needs_lo_p (fixp->fx_r_type))
17559 && HAVE_IN_PLACE_ADDENDS
17560 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17561 return 0;
17562
17563 /* There is no place to store an in-place offset for JALR relocations. */
17564 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17565 return 0;
17566
17567 /* Likewise an in-range offset of limited PC-relative relocations may
17568 overflow the in-place relocatable field if recalculated against the
17569 start address of the symbol's containing section.
17570
17571 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17572 section relative to allow linker relaxations to be performed later on. */
17573 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17574 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17575 return 0;
17576
17577 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17578 to a floating-point stub. The same is true for non-R_MIPS16_26
17579 relocations against MIPS16 functions; in this case, the stub becomes
17580 the function's canonical address.
17581
17582 Floating-point stubs are stored in unique .mips16.call.* or
17583 .mips16.fn.* sections. If a stub T for function F is in section S,
17584 the first relocation in section S must be against F; this is how the
17585 linker determines the target function. All relocations that might
17586 resolve to T must also be against F. We therefore have the following
17587 restrictions, which are given in an intentionally-redundant way:
17588
17589 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17590 symbols.
17591
17592 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17593 if that stub might be used.
17594
17595 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17596 symbols.
17597
17598 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17599 that stub might be used.
17600
17601 There is a further restriction:
17602
17603 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17604 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
17605 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17606 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17607 against MIPS16 or microMIPS symbols because we need to keep the
17608 MIPS16 or microMIPS symbol for the purpose of mode mismatch
17609 detection and JAL or BAL to JALX instruction conversion in the
17610 linker.
17611
17612 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17613 against a MIPS16 symbol. We deal with (5) by additionally leaving
17614 alone any jump and branch relocations against a microMIPS symbol.
17615
17616 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17617 relocation against some symbol R, no relocation against R may be
17618 reduced. (Note that this deals with (2) as well as (1) because
17619 relocations against global symbols will never be reduced on ELF
17620 targets.) This approach is a little simpler than trying to detect
17621 stub sections, and gives the "all or nothing" per-symbol consistency
17622 that we have for MIPS16 symbols. */
17623 if (fixp->fx_subsy == NULL
17624 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17625 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17626 && (jmp_reloc_p (fixp->fx_r_type)
17627 || b_reloc_p (fixp->fx_r_type)))
17628 || *symbol_get_tc (fixp->fx_addsy)))
17629 return 0;
17630
17631 return 1;
17632 }
17633
17634 /* Translate internal representation of relocation info to BFD target
17635 format. */
17636
17637 arelent **
17638 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17639 {
17640 static arelent *retval[4];
17641 arelent *reloc;
17642 bfd_reloc_code_real_type code;
17643
17644 memset (retval, 0, sizeof(retval));
17645 reloc = retval[0] = XCNEW (arelent);
17646 reloc->sym_ptr_ptr = XNEW (asymbol *);
17647 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17648 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17649
17650 if (fixp->fx_pcrel)
17651 {
17652 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17653 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
17654 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17655 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17656 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17657 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17658 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17659 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17660 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17661 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17662 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17663 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17664
17665 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17666 Relocations want only the symbol offset. */
17667 switch (fixp->fx_r_type)
17668 {
17669 case BFD_RELOC_MIPS_18_PCREL_S3:
17670 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17671 break;
17672 default:
17673 reloc->addend = fixp->fx_addnumber + reloc->address;
17674 break;
17675 }
17676 }
17677 else if (HAVE_IN_PLACE_ADDENDS
17678 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17679 && (read_compressed_insn (fixp->fx_frag->fr_literal
17680 + fixp->fx_where, 4) >> 26) == 0x3c)
17681 {
17682 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17683 addend accordingly. */
17684 reloc->addend = fixp->fx_addnumber >> 1;
17685 }
17686 else
17687 reloc->addend = fixp->fx_addnumber;
17688
17689 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17690 entry to be used in the relocation's section offset. */
17691 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17692 {
17693 reloc->address = reloc->addend;
17694 reloc->addend = 0;
17695 }
17696
17697 code = fixp->fx_r_type;
17698
17699 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17700 if (reloc->howto == NULL)
17701 {
17702 as_bad_where (fixp->fx_file, fixp->fx_line,
17703 _("cannot represent %s relocation in this object file"
17704 " format"),
17705 bfd_get_reloc_code_name (code));
17706 retval[0] = NULL;
17707 }
17708
17709 return retval;
17710 }
17711
17712 /* Relax a machine dependent frag. This returns the amount by which
17713 the current size of the frag should change. */
17714
17715 int
17716 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17717 {
17718 if (RELAX_BRANCH_P (fragp->fr_subtype))
17719 {
17720 offsetT old_var = fragp->fr_var;
17721
17722 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17723
17724 return fragp->fr_var - old_var;
17725 }
17726
17727 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17728 {
17729 offsetT old_var = fragp->fr_var;
17730 offsetT new_var = 4;
17731
17732 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17733 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17734 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17735 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17736 fragp->fr_var = new_var;
17737
17738 return new_var - old_var;
17739 }
17740
17741 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17742 return 0;
17743
17744 if (mips16_extended_frag (fragp, sec, stretch))
17745 {
17746 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17747 return 0;
17748 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17749 return 2;
17750 }
17751 else
17752 {
17753 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17754 return 0;
17755 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17756 return -2;
17757 }
17758
17759 return 0;
17760 }
17761
17762 /* Convert a machine dependent frag. */
17763
17764 void
17765 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17766 {
17767 if (RELAX_BRANCH_P (fragp->fr_subtype))
17768 {
17769 char *buf;
17770 unsigned long insn;
17771 expressionS exp;
17772 fixS *fixp;
17773
17774 buf = fragp->fr_literal + fragp->fr_fix;
17775 insn = read_insn (buf);
17776
17777 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17778 {
17779 /* We generate a fixup instead of applying it right now
17780 because, if there are linker relaxations, we're going to
17781 need the relocations. */
17782 exp.X_op = O_symbol;
17783 exp.X_add_symbol = fragp->fr_symbol;
17784 exp.X_add_number = fragp->fr_offset;
17785
17786 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17787 BFD_RELOC_16_PCREL_S2);
17788 fixp->fx_file = fragp->fr_file;
17789 fixp->fx_line = fragp->fr_line;
17790
17791 buf = write_insn (buf, insn);
17792 }
17793 else
17794 {
17795 int i;
17796
17797 as_warn_where (fragp->fr_file, fragp->fr_line,
17798 _("relaxed out-of-range branch into a jump"));
17799
17800 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17801 goto uncond;
17802
17803 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17804 {
17805 /* Reverse the branch. */
17806 switch ((insn >> 28) & 0xf)
17807 {
17808 case 4:
17809 if ((insn & 0xff000000) == 0x47000000
17810 || (insn & 0xff600000) == 0x45600000)
17811 {
17812 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17813 reversed by tweaking bit 23. */
17814 insn ^= 0x00800000;
17815 }
17816 else
17817 {
17818 /* bc[0-3][tf]l? instructions can have the condition
17819 reversed by tweaking a single TF bit, and their
17820 opcodes all have 0x4???????. */
17821 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17822 insn ^= 0x00010000;
17823 }
17824 break;
17825
17826 case 0:
17827 /* bltz 0x04000000 bgez 0x04010000
17828 bltzal 0x04100000 bgezal 0x04110000 */
17829 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17830 insn ^= 0x00010000;
17831 break;
17832
17833 case 1:
17834 /* beq 0x10000000 bne 0x14000000
17835 blez 0x18000000 bgtz 0x1c000000 */
17836 insn ^= 0x04000000;
17837 break;
17838
17839 default:
17840 abort ();
17841 }
17842 }
17843
17844 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17845 {
17846 /* Clear the and-link bit. */
17847 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17848
17849 /* bltzal 0x04100000 bgezal 0x04110000
17850 bltzall 0x04120000 bgezall 0x04130000 */
17851 insn &= ~0x00100000;
17852 }
17853
17854 /* Branch over the branch (if the branch was likely) or the
17855 full jump (not likely case). Compute the offset from the
17856 current instruction to branch to. */
17857 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17858 i = 16;
17859 else
17860 {
17861 /* How many bytes in instructions we've already emitted? */
17862 i = buf - fragp->fr_literal - fragp->fr_fix;
17863 /* How many bytes in instructions from here to the end? */
17864 i = fragp->fr_var - i;
17865 }
17866 /* Convert to instruction count. */
17867 i >>= 2;
17868 /* Branch counts from the next instruction. */
17869 i--;
17870 insn |= i;
17871 /* Branch over the jump. */
17872 buf = write_insn (buf, insn);
17873
17874 /* nop */
17875 buf = write_insn (buf, 0);
17876
17877 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17878 {
17879 /* beql $0, $0, 2f */
17880 insn = 0x50000000;
17881 /* Compute the PC offset from the current instruction to
17882 the end of the variable frag. */
17883 /* How many bytes in instructions we've already emitted? */
17884 i = buf - fragp->fr_literal - fragp->fr_fix;
17885 /* How many bytes in instructions from here to the end? */
17886 i = fragp->fr_var - i;
17887 /* Convert to instruction count. */
17888 i >>= 2;
17889 /* Don't decrement i, because we want to branch over the
17890 delay slot. */
17891 insn |= i;
17892
17893 buf = write_insn (buf, insn);
17894 buf = write_insn (buf, 0);
17895 }
17896
17897 uncond:
17898 if (mips_pic == NO_PIC)
17899 {
17900 /* j or jal. */
17901 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17902 ? 0x0c000000 : 0x08000000);
17903 exp.X_op = O_symbol;
17904 exp.X_add_symbol = fragp->fr_symbol;
17905 exp.X_add_number = fragp->fr_offset;
17906
17907 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17908 FALSE, BFD_RELOC_MIPS_JMP);
17909 fixp->fx_file = fragp->fr_file;
17910 fixp->fx_line = fragp->fr_line;
17911
17912 buf = write_insn (buf, insn);
17913 }
17914 else
17915 {
17916 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17917
17918 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17919 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17920 insn |= at << OP_SH_RT;
17921 exp.X_op = O_symbol;
17922 exp.X_add_symbol = fragp->fr_symbol;
17923 exp.X_add_number = fragp->fr_offset;
17924
17925 if (fragp->fr_offset)
17926 {
17927 exp.X_add_symbol = make_expr_symbol (&exp);
17928 exp.X_add_number = 0;
17929 }
17930
17931 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17932 FALSE, BFD_RELOC_MIPS_GOT16);
17933 fixp->fx_file = fragp->fr_file;
17934 fixp->fx_line = fragp->fr_line;
17935
17936 buf = write_insn (buf, insn);
17937
17938 if (mips_opts.isa == ISA_MIPS1)
17939 /* nop */
17940 buf = write_insn (buf, 0);
17941
17942 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17943 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17944 insn |= at << OP_SH_RS | at << OP_SH_RT;
17945
17946 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17947 FALSE, BFD_RELOC_LO16);
17948 fixp->fx_file = fragp->fr_file;
17949 fixp->fx_line = fragp->fr_line;
17950
17951 buf = write_insn (buf, insn);
17952
17953 /* j(al)r $at. */
17954 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17955 insn = 0x0000f809;
17956 else
17957 insn = 0x00000008;
17958 insn |= at << OP_SH_RS;
17959
17960 buf = write_insn (buf, insn);
17961 }
17962 }
17963
17964 fragp->fr_fix += fragp->fr_var;
17965 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17966 return;
17967 }
17968
17969 /* Relax microMIPS branches. */
17970 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17971 {
17972 char *buf = fragp->fr_literal + fragp->fr_fix;
17973 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17974 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17975 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17976 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17977 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17978 bfd_boolean short_ds;
17979 unsigned long insn;
17980 expressionS exp;
17981 fixS *fixp;
17982
17983 exp.X_op = O_symbol;
17984 exp.X_add_symbol = fragp->fr_symbol;
17985 exp.X_add_number = fragp->fr_offset;
17986
17987 fragp->fr_fix += fragp->fr_var;
17988
17989 /* Handle 16-bit branches that fit or are forced to fit. */
17990 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17991 {
17992 /* We generate a fixup instead of applying it right now,
17993 because if there is linker relaxation, we're going to
17994 need the relocations. */
17995 if (type == 'D')
17996 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17997 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17998 else if (type == 'E')
17999 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18000 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18001 else
18002 abort ();
18003
18004 fixp->fx_file = fragp->fr_file;
18005 fixp->fx_line = fragp->fr_line;
18006
18007 /* These relocations can have an addend that won't fit in
18008 2 octets. */
18009 fixp->fx_no_overflow = 1;
18010
18011 return;
18012 }
18013
18014 /* Handle 32-bit branches that fit or are forced to fit. */
18015 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18016 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18017 {
18018 /* We generate a fixup instead of applying it right now,
18019 because if there is linker relaxation, we're going to
18020 need the relocations. */
18021 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18022 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18023 fixp->fx_file = fragp->fr_file;
18024 fixp->fx_line = fragp->fr_line;
18025
18026 if (type == 0)
18027 {
18028 insn = read_compressed_insn (buf, 4);
18029 buf += 4;
18030
18031 if (nods)
18032 {
18033 /* Check the short-delay-slot bit. */
18034 if (!al || (insn & 0x02000000) != 0)
18035 buf = write_compressed_insn (buf, 0x0c00, 2);
18036 else
18037 buf = write_compressed_insn (buf, 0x00000000, 4);
18038 }
18039
18040 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18041 return;
18042 }
18043 }
18044
18045 /* Relax 16-bit branches to 32-bit branches. */
18046 if (type != 0)
18047 {
18048 insn = read_compressed_insn (buf, 2);
18049
18050 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18051 insn = 0x94000000; /* beq */
18052 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18053 {
18054 unsigned long regno;
18055
18056 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18057 regno = micromips_to_32_reg_d_map [regno];
18058 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18059 insn |= regno << MICROMIPSOP_SH_RS;
18060 }
18061 else
18062 abort ();
18063
18064 /* Nothing else to do, just write it out. */
18065 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18066 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18067 {
18068 buf = write_compressed_insn (buf, insn, 4);
18069 if (nods)
18070 buf = write_compressed_insn (buf, 0x0c00, 2);
18071 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18072 return;
18073 }
18074 }
18075 else
18076 insn = read_compressed_insn (buf, 4);
18077
18078 /* Relax 32-bit branches to a sequence of instructions. */
18079 as_warn_where (fragp->fr_file, fragp->fr_line,
18080 _("relaxed out-of-range branch into a jump"));
18081
18082 /* Set the short-delay-slot bit. */
18083 short_ds = !al || (insn & 0x02000000) != 0;
18084
18085 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18086 {
18087 symbolS *l;
18088
18089 /* Reverse the branch. */
18090 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18091 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18092 insn ^= 0x20000000;
18093 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18094 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18095 || (insn & 0xffe00000) == 0x40800000 /* blez */
18096 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18097 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18098 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18099 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18100 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18101 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18102 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18103 insn ^= 0x00400000;
18104 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18105 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18106 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18107 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18108 insn ^= 0x00200000;
18109 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18110 BNZ.df */
18111 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18112 BNZ.V */
18113 insn ^= 0x00800000;
18114 else
18115 abort ();
18116
18117 if (al)
18118 {
18119 /* Clear the and-link and short-delay-slot bits. */
18120 gas_assert ((insn & 0xfda00000) == 0x40200000);
18121
18122 /* bltzal 0x40200000 bgezal 0x40600000 */
18123 /* bltzals 0x42200000 bgezals 0x42600000 */
18124 insn &= ~0x02200000;
18125 }
18126
18127 /* Make a label at the end for use with the branch. */
18128 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18129 micromips_label_inc ();
18130 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18131
18132 /* Refer to it. */
18133 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18134 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18135 fixp->fx_file = fragp->fr_file;
18136 fixp->fx_line = fragp->fr_line;
18137
18138 /* Branch over the jump. */
18139 buf = write_compressed_insn (buf, insn, 4);
18140
18141 if (!compact)
18142 {
18143 /* nop */
18144 if (insn32)
18145 buf = write_compressed_insn (buf, 0x00000000, 4);
18146 else
18147 buf = write_compressed_insn (buf, 0x0c00, 2);
18148 }
18149 }
18150
18151 if (mips_pic == NO_PIC)
18152 {
18153 unsigned long jal = (short_ds || nods
18154 ? 0x74000000 : 0xf4000000); /* jal/s */
18155
18156 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18157 insn = al ? jal : 0xd4000000;
18158
18159 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18160 BFD_RELOC_MICROMIPS_JMP);
18161 fixp->fx_file = fragp->fr_file;
18162 fixp->fx_line = fragp->fr_line;
18163
18164 buf = write_compressed_insn (buf, insn, 4);
18165
18166 if (compact || nods)
18167 {
18168 /* nop */
18169 if (insn32)
18170 buf = write_compressed_insn (buf, 0x00000000, 4);
18171 else
18172 buf = write_compressed_insn (buf, 0x0c00, 2);
18173 }
18174 }
18175 else
18176 {
18177 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18178
18179 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18180 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18181 insn |= at << MICROMIPSOP_SH_RT;
18182
18183 if (exp.X_add_number)
18184 {
18185 exp.X_add_symbol = make_expr_symbol (&exp);
18186 exp.X_add_number = 0;
18187 }
18188
18189 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18190 BFD_RELOC_MICROMIPS_GOT16);
18191 fixp->fx_file = fragp->fr_file;
18192 fixp->fx_line = fragp->fr_line;
18193
18194 buf = write_compressed_insn (buf, insn, 4);
18195
18196 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18197 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18198 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18199
18200 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18201 BFD_RELOC_MICROMIPS_LO16);
18202 fixp->fx_file = fragp->fr_file;
18203 fixp->fx_line = fragp->fr_line;
18204
18205 buf = write_compressed_insn (buf, insn, 4);
18206
18207 if (insn32)
18208 {
18209 /* jr/jalr $at */
18210 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18211 insn |= at << MICROMIPSOP_SH_RS;
18212
18213 buf = write_compressed_insn (buf, insn, 4);
18214
18215 if (compact || nods)
18216 /* nop */
18217 buf = write_compressed_insn (buf, 0x00000000, 4);
18218 }
18219 else
18220 {
18221 /* jr/jrc/jalr/jalrs $at */
18222 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18223 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18224
18225 insn = al ? jalr : jr;
18226 insn |= at << MICROMIPSOP_SH_MJ;
18227
18228 buf = write_compressed_insn (buf, insn, 2);
18229 if (al && nods)
18230 {
18231 /* nop */
18232 if (short_ds)
18233 buf = write_compressed_insn (buf, 0x0c00, 2);
18234 else
18235 buf = write_compressed_insn (buf, 0x00000000, 4);
18236 }
18237 }
18238 }
18239
18240 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18241 return;
18242 }
18243
18244 if (RELAX_MIPS16_P (fragp->fr_subtype))
18245 {
18246 int type;
18247 const struct mips_int_operand *operand;
18248 offsetT val;
18249 char *buf;
18250 unsigned int user_length, length;
18251 bfd_boolean need_reloc;
18252 unsigned long insn;
18253 bfd_boolean ext;
18254 segT symsec;
18255
18256 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18257 operand = mips16_immed_operand (type, FALSE);
18258
18259 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18260 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18261
18262 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18263 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18264 || (operand->root.type == OP_PCREL
18265 ? asec != symsec
18266 : !bfd_is_abs_section (symsec)));
18267
18268 if (operand->root.type == OP_PCREL)
18269 {
18270 const struct mips_pcrel_operand *pcrel_op;
18271 addressT addr;
18272
18273 pcrel_op = (const struct mips_pcrel_operand *) operand;
18274 addr = fragp->fr_address + fragp->fr_fix;
18275
18276 /* The rules for the base address of a PC relative reloc are
18277 complicated; see mips16_extended_frag. */
18278 if (pcrel_op->include_isa_bit)
18279 {
18280 if (!need_reloc)
18281 {
18282 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18283 as_bad_where (fragp->fr_file, fragp->fr_line,
18284 _("branch to a symbol in another ISA mode"));
18285 else if ((fragp->fr_offset & 0x1) != 0)
18286 as_bad_where (fragp->fr_file, fragp->fr_line,
18287 _("branch to misaligned address (0x%lx)"),
18288 (long) val);
18289 }
18290 addr += 2;
18291 if (ext)
18292 addr += 2;
18293 /* Ignore the low bit in the target, since it will be
18294 set for a text label. */
18295 val &= -2;
18296 }
18297 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18298 addr -= 4;
18299 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18300 addr -= 2;
18301
18302 addr &= -(1 << pcrel_op->align_log2);
18303 val -= addr;
18304
18305 /* Make sure the section winds up with the alignment we have
18306 assumed. */
18307 if (operand->shift > 0)
18308 record_alignment (asec, operand->shift);
18309 }
18310
18311 if (ext
18312 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18313 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18314 as_warn_where (fragp->fr_file, fragp->fr_line,
18315 _("extended instruction in delay slot"));
18316
18317 buf = fragp->fr_literal + fragp->fr_fix;
18318
18319 insn = read_compressed_insn (buf, 2);
18320 if (ext)
18321 insn |= MIPS16_EXTEND;
18322
18323 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18324 user_length = 4;
18325 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18326 user_length = 2;
18327 else
18328 user_length = 0;
18329
18330 if (need_reloc)
18331 {
18332 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18333 expressionS exp;
18334 fixS *fixp;
18335
18336 switch (type)
18337 {
18338 case 'p':
18339 case 'q':
18340 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18341 break;
18342 default:
18343 as_bad_where (fragp->fr_file, fragp->fr_line,
18344 _("unsupported relocation"));
18345 break;
18346 }
18347 if (reloc != BFD_RELOC_NONE)
18348 {
18349 gas_assert (ext);
18350
18351 exp.X_op = O_symbol;
18352 exp.X_add_symbol = fragp->fr_symbol;
18353 exp.X_add_number = fragp->fr_offset;
18354
18355 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp,
18356 TRUE, reloc);
18357
18358 fixp->fx_file = fragp->fr_file;
18359 fixp->fx_line = fragp->fr_line;
18360
18361 /* These relocations can have an addend that won't fit
18362 in 2 octets. */
18363 fixp->fx_no_overflow = 1;
18364 }
18365 }
18366 else
18367 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18368 BFD_RELOC_UNUSED, val, user_length, &insn);
18369
18370 length = (ext ? 4 : 2);
18371 gas_assert (mips16_opcode_length (insn) == length);
18372 write_compressed_insn (buf, insn, length);
18373 fragp->fr_fix += length;
18374 }
18375 else
18376 {
18377 relax_substateT subtype = fragp->fr_subtype;
18378 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18379 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18380 int first, second;
18381 fixS *fixp;
18382
18383 first = RELAX_FIRST (subtype);
18384 second = RELAX_SECOND (subtype);
18385 fixp = (fixS *) fragp->fr_opcode;
18386
18387 /* If the delay slot chosen does not match the size of the instruction,
18388 then emit a warning. */
18389 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18390 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18391 {
18392 relax_substateT s;
18393 const char *msg;
18394
18395 s = subtype & (RELAX_DELAY_SLOT_16BIT
18396 | RELAX_DELAY_SLOT_SIZE_FIRST
18397 | RELAX_DELAY_SLOT_SIZE_SECOND);
18398 msg = macro_warning (s);
18399 if (msg != NULL)
18400 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18401 subtype &= ~s;
18402 }
18403
18404 /* Possibly emit a warning if we've chosen the longer option. */
18405 if (use_second == second_longer)
18406 {
18407 relax_substateT s;
18408 const char *msg;
18409
18410 s = (subtype
18411 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18412 msg = macro_warning (s);
18413 if (msg != NULL)
18414 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18415 subtype &= ~s;
18416 }
18417
18418 /* Go through all the fixups for the first sequence. Disable them
18419 (by marking them as done) if we're going to use the second
18420 sequence instead. */
18421 while (fixp
18422 && fixp->fx_frag == fragp
18423 && fixp->fx_where < fragp->fr_fix - second)
18424 {
18425 if (subtype & RELAX_USE_SECOND)
18426 fixp->fx_done = 1;
18427 fixp = fixp->fx_next;
18428 }
18429
18430 /* Go through the fixups for the second sequence. Disable them if
18431 we're going to use the first sequence, otherwise adjust their
18432 addresses to account for the relaxation. */
18433 while (fixp && fixp->fx_frag == fragp)
18434 {
18435 if (subtype & RELAX_USE_SECOND)
18436 fixp->fx_where -= first;
18437 else
18438 fixp->fx_done = 1;
18439 fixp = fixp->fx_next;
18440 }
18441
18442 /* Now modify the frag contents. */
18443 if (subtype & RELAX_USE_SECOND)
18444 {
18445 char *start;
18446
18447 start = fragp->fr_literal + fragp->fr_fix - first - second;
18448 memmove (start, start + first, second);
18449 fragp->fr_fix -= first;
18450 }
18451 else
18452 fragp->fr_fix -= second;
18453 }
18454 }
18455
18456 /* This function is called after the relocs have been generated.
18457 We've been storing mips16 text labels as odd. Here we convert them
18458 back to even for the convenience of the debugger. */
18459
18460 void
18461 mips_frob_file_after_relocs (void)
18462 {
18463 asymbol **syms;
18464 unsigned int count, i;
18465
18466 syms = bfd_get_outsymbols (stdoutput);
18467 count = bfd_get_symcount (stdoutput);
18468 for (i = 0; i < count; i++, syms++)
18469 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18470 && ((*syms)->value & 1) != 0)
18471 {
18472 (*syms)->value &= ~1;
18473 /* If the symbol has an odd size, it was probably computed
18474 incorrectly, so adjust that as well. */
18475 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18476 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18477 }
18478 }
18479
18480 /* This function is called whenever a label is defined, including fake
18481 labels instantiated off the dot special symbol. It is used when
18482 handling branch delays; if a branch has a label, we assume we cannot
18483 move it. This also bumps the value of the symbol by 1 in compressed
18484 code. */
18485
18486 static void
18487 mips_record_label (symbolS *sym)
18488 {
18489 segment_info_type *si = seg_info (now_seg);
18490 struct insn_label_list *l;
18491
18492 if (free_insn_labels == NULL)
18493 l = XNEW (struct insn_label_list);
18494 else
18495 {
18496 l = free_insn_labels;
18497 free_insn_labels = l->next;
18498 }
18499
18500 l->label = sym;
18501 l->next = si->label_list;
18502 si->label_list = l;
18503 }
18504
18505 /* This function is called as tc_frob_label() whenever a label is defined
18506 and adds a DWARF-2 record we only want for true labels. */
18507
18508 void
18509 mips_define_label (symbolS *sym)
18510 {
18511 mips_record_label (sym);
18512 dwarf2_emit_label (sym);
18513 }
18514
18515 /* This function is called by tc_new_dot_label whenever a new dot symbol
18516 is defined. */
18517
18518 void
18519 mips_add_dot_label (symbolS *sym)
18520 {
18521 mips_record_label (sym);
18522 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18523 mips_compressed_mark_label (sym);
18524 }
18525 \f
18526 /* Converting ASE flags from internal to .MIPS.abiflags values. */
18527 static unsigned int
18528 mips_convert_ase_flags (int ase)
18529 {
18530 unsigned int ext_ases = 0;
18531
18532 if (ase & ASE_DSP)
18533 ext_ases |= AFL_ASE_DSP;
18534 if (ase & ASE_DSPR2)
18535 ext_ases |= AFL_ASE_DSPR2;
18536 if (ase & ASE_DSPR3)
18537 ext_ases |= AFL_ASE_DSPR3;
18538 if (ase & ASE_EVA)
18539 ext_ases |= AFL_ASE_EVA;
18540 if (ase & ASE_MCU)
18541 ext_ases |= AFL_ASE_MCU;
18542 if (ase & ASE_MDMX)
18543 ext_ases |= AFL_ASE_MDMX;
18544 if (ase & ASE_MIPS3D)
18545 ext_ases |= AFL_ASE_MIPS3D;
18546 if (ase & ASE_MT)
18547 ext_ases |= AFL_ASE_MT;
18548 if (ase & ASE_SMARTMIPS)
18549 ext_ases |= AFL_ASE_SMARTMIPS;
18550 if (ase & ASE_VIRT)
18551 ext_ases |= AFL_ASE_VIRT;
18552 if (ase & ASE_MSA)
18553 ext_ases |= AFL_ASE_MSA;
18554 if (ase & ASE_XPA)
18555 ext_ases |= AFL_ASE_XPA;
18556
18557 return ext_ases;
18558 }
18559 /* Some special processing for a MIPS ELF file. */
18560
18561 void
18562 mips_elf_final_processing (void)
18563 {
18564 int fpabi;
18565 Elf_Internal_ABIFlags_v0 flags;
18566
18567 flags.version = 0;
18568 flags.isa_rev = 0;
18569 switch (file_mips_opts.isa)
18570 {
18571 case INSN_ISA1:
18572 flags.isa_level = 1;
18573 break;
18574 case INSN_ISA2:
18575 flags.isa_level = 2;
18576 break;
18577 case INSN_ISA3:
18578 flags.isa_level = 3;
18579 break;
18580 case INSN_ISA4:
18581 flags.isa_level = 4;
18582 break;
18583 case INSN_ISA5:
18584 flags.isa_level = 5;
18585 break;
18586 case INSN_ISA32:
18587 flags.isa_level = 32;
18588 flags.isa_rev = 1;
18589 break;
18590 case INSN_ISA32R2:
18591 flags.isa_level = 32;
18592 flags.isa_rev = 2;
18593 break;
18594 case INSN_ISA32R3:
18595 flags.isa_level = 32;
18596 flags.isa_rev = 3;
18597 break;
18598 case INSN_ISA32R5:
18599 flags.isa_level = 32;
18600 flags.isa_rev = 5;
18601 break;
18602 case INSN_ISA32R6:
18603 flags.isa_level = 32;
18604 flags.isa_rev = 6;
18605 break;
18606 case INSN_ISA64:
18607 flags.isa_level = 64;
18608 flags.isa_rev = 1;
18609 break;
18610 case INSN_ISA64R2:
18611 flags.isa_level = 64;
18612 flags.isa_rev = 2;
18613 break;
18614 case INSN_ISA64R3:
18615 flags.isa_level = 64;
18616 flags.isa_rev = 3;
18617 break;
18618 case INSN_ISA64R5:
18619 flags.isa_level = 64;
18620 flags.isa_rev = 5;
18621 break;
18622 case INSN_ISA64R6:
18623 flags.isa_level = 64;
18624 flags.isa_rev = 6;
18625 break;
18626 }
18627
18628 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18629 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18630 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18631 : (file_mips_opts.fp == 64) ? AFL_REG_64
18632 : AFL_REG_32;
18633 flags.cpr2_size = AFL_REG_NONE;
18634 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18635 Tag_GNU_MIPS_ABI_FP);
18636 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18637 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18638 if (file_ase_mips16)
18639 flags.ases |= AFL_ASE_MIPS16;
18640 if (file_ase_micromips)
18641 flags.ases |= AFL_ASE_MICROMIPS;
18642 flags.flags1 = 0;
18643 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18644 || file_mips_opts.fp == 64)
18645 && file_mips_opts.oddspreg)
18646 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18647 flags.flags2 = 0;
18648
18649 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18650 ((Elf_External_ABIFlags_v0 *)
18651 mips_flags_frag));
18652
18653 /* Write out the register information. */
18654 if (mips_abi != N64_ABI)
18655 {
18656 Elf32_RegInfo s;
18657
18658 s.ri_gprmask = mips_gprmask;
18659 s.ri_cprmask[0] = mips_cprmask[0];
18660 s.ri_cprmask[1] = mips_cprmask[1];
18661 s.ri_cprmask[2] = mips_cprmask[2];
18662 s.ri_cprmask[3] = mips_cprmask[3];
18663 /* The gp_value field is set by the MIPS ELF backend. */
18664
18665 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18666 ((Elf32_External_RegInfo *)
18667 mips_regmask_frag));
18668 }
18669 else
18670 {
18671 Elf64_Internal_RegInfo s;
18672
18673 s.ri_gprmask = mips_gprmask;
18674 s.ri_pad = 0;
18675 s.ri_cprmask[0] = mips_cprmask[0];
18676 s.ri_cprmask[1] = mips_cprmask[1];
18677 s.ri_cprmask[2] = mips_cprmask[2];
18678 s.ri_cprmask[3] = mips_cprmask[3];
18679 /* The gp_value field is set by the MIPS ELF backend. */
18680
18681 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18682 ((Elf64_External_RegInfo *)
18683 mips_regmask_frag));
18684 }
18685
18686 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18687 sort of BFD interface for this. */
18688 if (mips_any_noreorder)
18689 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18690 if (mips_pic != NO_PIC)
18691 {
18692 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18693 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18694 }
18695 if (mips_abicalls)
18696 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18697
18698 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18699 defined at present; this might need to change in future. */
18700 if (file_ase_mips16)
18701 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18702 if (file_ase_micromips)
18703 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18704 if (file_mips_opts.ase & ASE_MDMX)
18705 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18706
18707 /* Set the MIPS ELF ABI flags. */
18708 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18709 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18710 else if (mips_abi == O64_ABI)
18711 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18712 else if (mips_abi == EABI_ABI)
18713 {
18714 if (file_mips_opts.gp == 64)
18715 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18716 else
18717 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18718 }
18719 else if (mips_abi == N32_ABI)
18720 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18721
18722 /* Nothing to do for N64_ABI. */
18723
18724 if (mips_32bitmode)
18725 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18726
18727 if (mips_nan2008 == 1)
18728 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18729
18730 /* 32 bit code with 64 bit FP registers. */
18731 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18732 Tag_GNU_MIPS_ABI_FP);
18733 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18734 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18735 }
18736 \f
18737 typedef struct proc {
18738 symbolS *func_sym;
18739 symbolS *func_end_sym;
18740 unsigned long reg_mask;
18741 unsigned long reg_offset;
18742 unsigned long fpreg_mask;
18743 unsigned long fpreg_offset;
18744 unsigned long frame_offset;
18745 unsigned long frame_reg;
18746 unsigned long pc_reg;
18747 } procS;
18748
18749 static procS cur_proc;
18750 static procS *cur_proc_ptr;
18751 static int numprocs;
18752
18753 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18754 as "2", and a normal nop as "0". */
18755
18756 #define NOP_OPCODE_MIPS 0
18757 #define NOP_OPCODE_MIPS16 1
18758 #define NOP_OPCODE_MICROMIPS 2
18759
18760 char
18761 mips_nop_opcode (void)
18762 {
18763 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18764 return NOP_OPCODE_MICROMIPS;
18765 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18766 return NOP_OPCODE_MIPS16;
18767 else
18768 return NOP_OPCODE_MIPS;
18769 }
18770
18771 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18772 32-bit microMIPS NOPs here (if applicable). */
18773
18774 void
18775 mips_handle_align (fragS *fragp)
18776 {
18777 char nop_opcode;
18778 char *p;
18779 int bytes, size, excess;
18780 valueT opcode;
18781
18782 if (fragp->fr_type != rs_align_code)
18783 return;
18784
18785 p = fragp->fr_literal + fragp->fr_fix;
18786 nop_opcode = *p;
18787 switch (nop_opcode)
18788 {
18789 case NOP_OPCODE_MICROMIPS:
18790 opcode = micromips_nop32_insn.insn_opcode;
18791 size = 4;
18792 break;
18793 case NOP_OPCODE_MIPS16:
18794 opcode = mips16_nop_insn.insn_opcode;
18795 size = 2;
18796 break;
18797 case NOP_OPCODE_MIPS:
18798 default:
18799 opcode = nop_insn.insn_opcode;
18800 size = 4;
18801 break;
18802 }
18803
18804 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18805 excess = bytes % size;
18806
18807 /* Handle the leading part if we're not inserting a whole number of
18808 instructions, and make it the end of the fixed part of the frag.
18809 Try to fit in a short microMIPS NOP if applicable and possible,
18810 and use zeroes otherwise. */
18811 gas_assert (excess < 4);
18812 fragp->fr_fix += excess;
18813 switch (excess)
18814 {
18815 case 3:
18816 *p++ = '\0';
18817 /* Fall through. */
18818 case 2:
18819 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18820 {
18821 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18822 break;
18823 }
18824 *p++ = '\0';
18825 /* Fall through. */
18826 case 1:
18827 *p++ = '\0';
18828 /* Fall through. */
18829 case 0:
18830 break;
18831 }
18832
18833 md_number_to_chars (p, opcode, size);
18834 fragp->fr_var = size;
18835 }
18836
18837 static long
18838 get_number (void)
18839 {
18840 int negative = 0;
18841 long val = 0;
18842
18843 if (*input_line_pointer == '-')
18844 {
18845 ++input_line_pointer;
18846 negative = 1;
18847 }
18848 if (!ISDIGIT (*input_line_pointer))
18849 as_bad (_("expected simple number"));
18850 if (input_line_pointer[0] == '0')
18851 {
18852 if (input_line_pointer[1] == 'x')
18853 {
18854 input_line_pointer += 2;
18855 while (ISXDIGIT (*input_line_pointer))
18856 {
18857 val <<= 4;
18858 val |= hex_value (*input_line_pointer++);
18859 }
18860 return negative ? -val : val;
18861 }
18862 else
18863 {
18864 ++input_line_pointer;
18865 while (ISDIGIT (*input_line_pointer))
18866 {
18867 val <<= 3;
18868 val |= *input_line_pointer++ - '0';
18869 }
18870 return negative ? -val : val;
18871 }
18872 }
18873 if (!ISDIGIT (*input_line_pointer))
18874 {
18875 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18876 *input_line_pointer, *input_line_pointer);
18877 as_warn (_("invalid number"));
18878 return -1;
18879 }
18880 while (ISDIGIT (*input_line_pointer))
18881 {
18882 val *= 10;
18883 val += *input_line_pointer++ - '0';
18884 }
18885 return negative ? -val : val;
18886 }
18887
18888 /* The .file directive; just like the usual .file directive, but there
18889 is an initial number which is the ECOFF file index. In the non-ECOFF
18890 case .file implies DWARF-2. */
18891
18892 static void
18893 s_mips_file (int x ATTRIBUTE_UNUSED)
18894 {
18895 static int first_file_directive = 0;
18896
18897 if (ECOFF_DEBUGGING)
18898 {
18899 get_number ();
18900 s_app_file (0);
18901 }
18902 else
18903 {
18904 char *filename;
18905
18906 filename = dwarf2_directive_file (0);
18907
18908 /* Versions of GCC up to 3.1 start files with a ".file"
18909 directive even for stabs output. Make sure that this
18910 ".file" is handled. Note that you need a version of GCC
18911 after 3.1 in order to support DWARF-2 on MIPS. */
18912 if (filename != NULL && ! first_file_directive)
18913 {
18914 (void) new_logical_line (filename, -1);
18915 s_app_file_string (filename, 0);
18916 }
18917 first_file_directive = 1;
18918 }
18919 }
18920
18921 /* The .loc directive, implying DWARF-2. */
18922
18923 static void
18924 s_mips_loc (int x ATTRIBUTE_UNUSED)
18925 {
18926 if (!ECOFF_DEBUGGING)
18927 dwarf2_directive_loc (0);
18928 }
18929
18930 /* The .end directive. */
18931
18932 static void
18933 s_mips_end (int x ATTRIBUTE_UNUSED)
18934 {
18935 symbolS *p;
18936
18937 /* Following functions need their own .frame and .cprestore directives. */
18938 mips_frame_reg_valid = 0;
18939 mips_cprestore_valid = 0;
18940
18941 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18942 {
18943 p = get_symbol ();
18944 demand_empty_rest_of_line ();
18945 }
18946 else
18947 p = NULL;
18948
18949 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18950 as_warn (_(".end not in text section"));
18951
18952 if (!cur_proc_ptr)
18953 {
18954 as_warn (_(".end directive without a preceding .ent directive"));
18955 demand_empty_rest_of_line ();
18956 return;
18957 }
18958
18959 if (p != NULL)
18960 {
18961 gas_assert (S_GET_NAME (p));
18962 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18963 as_warn (_(".end symbol does not match .ent symbol"));
18964
18965 if (debug_type == DEBUG_STABS)
18966 stabs_generate_asm_endfunc (S_GET_NAME (p),
18967 S_GET_NAME (p));
18968 }
18969 else
18970 as_warn (_(".end directive missing or unknown symbol"));
18971
18972 /* Create an expression to calculate the size of the function. */
18973 if (p && cur_proc_ptr)
18974 {
18975 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18976 expressionS *exp = XNEW (expressionS);
18977
18978 obj->size = exp;
18979 exp->X_op = O_subtract;
18980 exp->X_add_symbol = symbol_temp_new_now ();
18981 exp->X_op_symbol = p;
18982 exp->X_add_number = 0;
18983
18984 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18985 }
18986
18987 /* Generate a .pdr section. */
18988 if (!ECOFF_DEBUGGING && mips_flag_pdr)
18989 {
18990 segT saved_seg = now_seg;
18991 subsegT saved_subseg = now_subseg;
18992 expressionS exp;
18993 char *fragp;
18994
18995 #ifdef md_flush_pending_output
18996 md_flush_pending_output ();
18997 #endif
18998
18999 gas_assert (pdr_seg);
19000 subseg_set (pdr_seg, 0);
19001
19002 /* Write the symbol. */
19003 exp.X_op = O_symbol;
19004 exp.X_add_symbol = p;
19005 exp.X_add_number = 0;
19006 emit_expr (&exp, 4);
19007
19008 fragp = frag_more (7 * 4);
19009
19010 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19011 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19012 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19013 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19014 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19015 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19016 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19017
19018 subseg_set (saved_seg, saved_subseg);
19019 }
19020
19021 cur_proc_ptr = NULL;
19022 }
19023
19024 /* The .aent and .ent directives. */
19025
19026 static void
19027 s_mips_ent (int aent)
19028 {
19029 symbolS *symbolP;
19030
19031 symbolP = get_symbol ();
19032 if (*input_line_pointer == ',')
19033 ++input_line_pointer;
19034 SKIP_WHITESPACE ();
19035 if (ISDIGIT (*input_line_pointer)
19036 || *input_line_pointer == '-')
19037 get_number ();
19038
19039 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19040 as_warn (_(".ent or .aent not in text section"));
19041
19042 if (!aent && cur_proc_ptr)
19043 as_warn (_("missing .end"));
19044
19045 if (!aent)
19046 {
19047 /* This function needs its own .frame and .cprestore directives. */
19048 mips_frame_reg_valid = 0;
19049 mips_cprestore_valid = 0;
19050
19051 cur_proc_ptr = &cur_proc;
19052 memset (cur_proc_ptr, '\0', sizeof (procS));
19053
19054 cur_proc_ptr->func_sym = symbolP;
19055
19056 ++numprocs;
19057
19058 if (debug_type == DEBUG_STABS)
19059 stabs_generate_asm_func (S_GET_NAME (symbolP),
19060 S_GET_NAME (symbolP));
19061 }
19062
19063 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19064
19065 demand_empty_rest_of_line ();
19066 }
19067
19068 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19069 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19070 s_mips_frame is used so that we can set the PDR information correctly.
19071 We can't use the ecoff routines because they make reference to the ecoff
19072 symbol table (in the mdebug section). */
19073
19074 static void
19075 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19076 {
19077 if (ECOFF_DEBUGGING)
19078 s_ignore (ignore);
19079 else
19080 {
19081 long val;
19082
19083 if (cur_proc_ptr == (procS *) NULL)
19084 {
19085 as_warn (_(".frame outside of .ent"));
19086 demand_empty_rest_of_line ();
19087 return;
19088 }
19089
19090 cur_proc_ptr->frame_reg = tc_get_register (1);
19091
19092 SKIP_WHITESPACE ();
19093 if (*input_line_pointer++ != ','
19094 || get_absolute_expression_and_terminator (&val) != ',')
19095 {
19096 as_warn (_("bad .frame directive"));
19097 --input_line_pointer;
19098 demand_empty_rest_of_line ();
19099 return;
19100 }
19101
19102 cur_proc_ptr->frame_offset = val;
19103 cur_proc_ptr->pc_reg = tc_get_register (0);
19104
19105 demand_empty_rest_of_line ();
19106 }
19107 }
19108
19109 /* The .fmask and .mask directives. If the mdebug section is present
19110 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19111 embedded targets, s_mips_mask is used so that we can set the PDR
19112 information correctly. We can't use the ecoff routines because they
19113 make reference to the ecoff symbol table (in the mdebug section). */
19114
19115 static void
19116 s_mips_mask (int reg_type)
19117 {
19118 if (ECOFF_DEBUGGING)
19119 s_ignore (reg_type);
19120 else
19121 {
19122 long mask, off;
19123
19124 if (cur_proc_ptr == (procS *) NULL)
19125 {
19126 as_warn (_(".mask/.fmask outside of .ent"));
19127 demand_empty_rest_of_line ();
19128 return;
19129 }
19130
19131 if (get_absolute_expression_and_terminator (&mask) != ',')
19132 {
19133 as_warn (_("bad .mask/.fmask directive"));
19134 --input_line_pointer;
19135 demand_empty_rest_of_line ();
19136 return;
19137 }
19138
19139 off = get_absolute_expression ();
19140
19141 if (reg_type == 'F')
19142 {
19143 cur_proc_ptr->fpreg_mask = mask;
19144 cur_proc_ptr->fpreg_offset = off;
19145 }
19146 else
19147 {
19148 cur_proc_ptr->reg_mask = mask;
19149 cur_proc_ptr->reg_offset = off;
19150 }
19151
19152 demand_empty_rest_of_line ();
19153 }
19154 }
19155
19156 /* A table describing all the processors gas knows about. Names are
19157 matched in the order listed.
19158
19159 To ease comparison, please keep this table in the same order as
19160 gcc's mips_cpu_info_table[]. */
19161 static const struct mips_cpu_info mips_cpu_info_table[] =
19162 {
19163 /* Entries for generic ISAs */
19164 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19165 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19166 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19167 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19168 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19169 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19170 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19171 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19172 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19173 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19174 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19175 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19176 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19177 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19178 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19179
19180 /* MIPS I */
19181 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19182 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19183 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19184
19185 /* MIPS II */
19186 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19187
19188 /* MIPS III */
19189 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19190 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19191 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19192 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19193 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19194 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19195 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19196 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19197 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19198 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19199 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19200 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19201 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19202 /* ST Microelectronics Loongson 2E and 2F cores */
19203 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19204 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
19205
19206 /* MIPS IV */
19207 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19208 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19209 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19210 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19211 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19212 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19213 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19214 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19215 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19216 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19217 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19218 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19219 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19220 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19221 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19222
19223 /* MIPS 32 */
19224 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19225 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19226 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19227 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19228
19229 /* MIPS 32 Release 2 */
19230 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19231 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19232 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19233 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19234 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19235 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19236 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19237 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19238 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19239 ISA_MIPS32R2, CPU_MIPS32R2 },
19240 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19241 ISA_MIPS32R2, CPU_MIPS32R2 },
19242 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19243 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19244 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19245 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19246 /* Deprecated forms of the above. */
19247 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19248 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19249 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19250 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19251 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19252 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19253 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19254 /* Deprecated forms of the above. */
19255 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19256 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19257 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19258 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19259 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19260 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19261 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19262 /* Deprecated forms of the above. */
19263 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19264 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19265 /* 34Kn is a 34kc without DSP. */
19266 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19267 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19268 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19269 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19270 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19271 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19272 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19273 /* Deprecated forms of the above. */
19274 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19275 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19276 /* 1004K cores are multiprocessor versions of the 34K. */
19277 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19278 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19279 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19280 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19281 /* interaptiv is the new name for 1004kf */
19282 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19283 /* M5100 family */
19284 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19285 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19286 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
19287 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
19288
19289 /* MIPS 64 */
19290 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19291 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19292 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19293 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19294
19295 /* Broadcom SB-1 CPU core */
19296 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19297 /* Broadcom SB-1A CPU core */
19298 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19299
19300 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
19301
19302 /* MIPS 64 Release 2 */
19303
19304 /* Cavium Networks Octeon CPU core */
19305 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19306 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19307 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19308 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
19309
19310 /* RMI Xlr */
19311 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19312
19313 /* Broadcom XLP.
19314 XLP is mostly like XLR, with the prominent exception that it is
19315 MIPS64R2 rather than MIPS64. */
19316 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19317
19318 /* MIPS 64 Release 6 */
19319 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19320 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19321
19322 /* End marker */
19323 { NULL, 0, 0, 0, 0 }
19324 };
19325
19326
19327 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19328 with a final "000" replaced by "k". Ignore case.
19329
19330 Note: this function is shared between GCC and GAS. */
19331
19332 static bfd_boolean
19333 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19334 {
19335 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19336 given++, canonical++;
19337
19338 return ((*given == 0 && *canonical == 0)
19339 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19340 }
19341
19342
19343 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19344 CPU name. We've traditionally allowed a lot of variation here.
19345
19346 Note: this function is shared between GCC and GAS. */
19347
19348 static bfd_boolean
19349 mips_matching_cpu_name_p (const char *canonical, const char *given)
19350 {
19351 /* First see if the name matches exactly, or with a final "000"
19352 turned into "k". */
19353 if (mips_strict_matching_cpu_name_p (canonical, given))
19354 return TRUE;
19355
19356 /* If not, try comparing based on numerical designation alone.
19357 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19358 if (TOLOWER (*given) == 'r')
19359 given++;
19360 if (!ISDIGIT (*given))
19361 return FALSE;
19362
19363 /* Skip over some well-known prefixes in the canonical name,
19364 hoping to find a number there too. */
19365 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19366 canonical += 2;
19367 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19368 canonical += 2;
19369 else if (TOLOWER (canonical[0]) == 'r')
19370 canonical += 1;
19371
19372 return mips_strict_matching_cpu_name_p (canonical, given);
19373 }
19374
19375
19376 /* Parse an option that takes the name of a processor as its argument.
19377 OPTION is the name of the option and CPU_STRING is the argument.
19378 Return the corresponding processor enumeration if the CPU_STRING is
19379 recognized, otherwise report an error and return null.
19380
19381 A similar function exists in GCC. */
19382
19383 static const struct mips_cpu_info *
19384 mips_parse_cpu (const char *option, const char *cpu_string)
19385 {
19386 const struct mips_cpu_info *p;
19387
19388 /* 'from-abi' selects the most compatible architecture for the given
19389 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19390 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19391 version. Look first at the -mgp options, if given, otherwise base
19392 the choice on MIPS_DEFAULT_64BIT.
19393
19394 Treat NO_ABI like the EABIs. One reason to do this is that the
19395 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19396 architecture. This code picks MIPS I for 'mips' and MIPS III for
19397 'mips64', just as we did in the days before 'from-abi'. */
19398 if (strcasecmp (cpu_string, "from-abi") == 0)
19399 {
19400 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19401 return mips_cpu_info_from_isa (ISA_MIPS1);
19402
19403 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19404 return mips_cpu_info_from_isa (ISA_MIPS3);
19405
19406 if (file_mips_opts.gp >= 0)
19407 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
19408 ? ISA_MIPS1 : ISA_MIPS3);
19409
19410 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19411 ? ISA_MIPS3
19412 : ISA_MIPS1);
19413 }
19414
19415 /* 'default' has traditionally been a no-op. Probably not very useful. */
19416 if (strcasecmp (cpu_string, "default") == 0)
19417 return 0;
19418
19419 for (p = mips_cpu_info_table; p->name != 0; p++)
19420 if (mips_matching_cpu_name_p (p->name, cpu_string))
19421 return p;
19422
19423 as_bad (_("bad value (%s) for %s"), cpu_string, option);
19424 return 0;
19425 }
19426
19427 /* Return the canonical processor information for ISA (a member of the
19428 ISA_MIPS* enumeration). */
19429
19430 static const struct mips_cpu_info *
19431 mips_cpu_info_from_isa (int isa)
19432 {
19433 int i;
19434
19435 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19436 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19437 && isa == mips_cpu_info_table[i].isa)
19438 return (&mips_cpu_info_table[i]);
19439
19440 return NULL;
19441 }
19442
19443 static const struct mips_cpu_info *
19444 mips_cpu_info_from_arch (int arch)
19445 {
19446 int i;
19447
19448 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19449 if (arch == mips_cpu_info_table[i].cpu)
19450 return (&mips_cpu_info_table[i]);
19451
19452 return NULL;
19453 }
19454 \f
19455 static void
19456 show (FILE *stream, const char *string, int *col_p, int *first_p)
19457 {
19458 if (*first_p)
19459 {
19460 fprintf (stream, "%24s", "");
19461 *col_p = 24;
19462 }
19463 else
19464 {
19465 fprintf (stream, ", ");
19466 *col_p += 2;
19467 }
19468
19469 if (*col_p + strlen (string) > 72)
19470 {
19471 fprintf (stream, "\n%24s", "");
19472 *col_p = 24;
19473 }
19474
19475 fprintf (stream, "%s", string);
19476 *col_p += strlen (string);
19477
19478 *first_p = 0;
19479 }
19480
19481 void
19482 md_show_usage (FILE *stream)
19483 {
19484 int column, first;
19485 size_t i;
19486
19487 fprintf (stream, _("\
19488 MIPS options:\n\
19489 -EB generate big endian output\n\
19490 -EL generate little endian output\n\
19491 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19492 -G NUM allow referencing objects up to NUM bytes\n\
19493 implicitly with the gp register [default 8]\n"));
19494 fprintf (stream, _("\
19495 -mips1 generate MIPS ISA I instructions\n\
19496 -mips2 generate MIPS ISA II instructions\n\
19497 -mips3 generate MIPS ISA III instructions\n\
19498 -mips4 generate MIPS ISA IV instructions\n\
19499 -mips5 generate MIPS ISA V instructions\n\
19500 -mips32 generate MIPS32 ISA instructions\n\
19501 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19502 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
19503 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
19504 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
19505 -mips64 generate MIPS64 ISA instructions\n\
19506 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19507 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
19508 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
19509 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
19510 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19511
19512 first = 1;
19513
19514 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19515 show (stream, mips_cpu_info_table[i].name, &column, &first);
19516 show (stream, "from-abi", &column, &first);
19517 fputc ('\n', stream);
19518
19519 fprintf (stream, _("\
19520 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19521 -no-mCPU don't generate code specific to CPU.\n\
19522 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19523
19524 first = 1;
19525
19526 show (stream, "3900", &column, &first);
19527 show (stream, "4010", &column, &first);
19528 show (stream, "4100", &column, &first);
19529 show (stream, "4650", &column, &first);
19530 fputc ('\n', stream);
19531
19532 fprintf (stream, _("\
19533 -mips16 generate mips16 instructions\n\
19534 -no-mips16 do not generate mips16 instructions\n"));
19535 fprintf (stream, _("\
19536 -mmicromips generate microMIPS instructions\n\
19537 -mno-micromips do not generate microMIPS instructions\n"));
19538 fprintf (stream, _("\
19539 -msmartmips generate smartmips instructions\n\
19540 -mno-smartmips do not generate smartmips instructions\n"));
19541 fprintf (stream, _("\
19542 -mdsp generate DSP instructions\n\
19543 -mno-dsp do not generate DSP instructions\n"));
19544 fprintf (stream, _("\
19545 -mdspr2 generate DSP R2 instructions\n\
19546 -mno-dspr2 do not generate DSP R2 instructions\n"));
19547 fprintf (stream, _("\
19548 -mdspr3 generate DSP R3 instructions\n\
19549 -mno-dspr3 do not generate DSP R3 instructions\n"));
19550 fprintf (stream, _("\
19551 -mmt generate MT instructions\n\
19552 -mno-mt do not generate MT instructions\n"));
19553 fprintf (stream, _("\
19554 -mmcu generate MCU instructions\n\
19555 -mno-mcu do not generate MCU instructions\n"));
19556 fprintf (stream, _("\
19557 -mmsa generate MSA instructions\n\
19558 -mno-msa do not generate MSA instructions\n"));
19559 fprintf (stream, _("\
19560 -mxpa generate eXtended Physical Address (XPA) instructions\n\
19561 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19562 fprintf (stream, _("\
19563 -mvirt generate Virtualization instructions\n\
19564 -mno-virt do not generate Virtualization instructions\n"));
19565 fprintf (stream, _("\
19566 -minsn32 only generate 32-bit microMIPS instructions\n\
19567 -mno-insn32 generate all microMIPS instructions\n"));
19568 fprintf (stream, _("\
19569 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19570 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19571 -mfix-vr4120 work around certain VR4120 errata\n\
19572 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19573 -mfix-24k insert a nop after ERET and DERET instructions\n\
19574 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19575 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19576 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19577 -msym32 assume all symbols have 32-bit values\n\
19578 -O0 remove unneeded NOPs, do not swap branches\n\
19579 -O remove unneeded NOPs and swap branches\n\
19580 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19581 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19582 fprintf (stream, _("\
19583 -mhard-float allow floating-point instructions\n\
19584 -msoft-float do not allow floating-point instructions\n\
19585 -msingle-float only allow 32-bit floating-point operations\n\
19586 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19587 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19588 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19589 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19590
19591 first = 1;
19592
19593 show (stream, "legacy", &column, &first);
19594 show (stream, "2008", &column, &first);
19595
19596 fputc ('\n', stream);
19597
19598 fprintf (stream, _("\
19599 -KPIC, -call_shared generate SVR4 position independent code\n\
19600 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19601 -mvxworks-pic generate VxWorks position independent code\n\
19602 -non_shared do not generate code that can operate with DSOs\n\
19603 -xgot assume a 32 bit GOT\n\
19604 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19605 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19606 position dependent (non shared) code\n\
19607 -mabi=ABI create ABI conformant object file for:\n"));
19608
19609 first = 1;
19610
19611 show (stream, "32", &column, &first);
19612 show (stream, "o64", &column, &first);
19613 show (stream, "n32", &column, &first);
19614 show (stream, "64", &column, &first);
19615 show (stream, "eabi", &column, &first);
19616
19617 fputc ('\n', stream);
19618
19619 fprintf (stream, _("\
19620 -32 create o32 ABI object file (default)\n\
19621 -n32 create n32 ABI object file\n\
19622 -64 create 64 ABI object file\n"));
19623 }
19624
19625 #ifdef TE_IRIX
19626 enum dwarf2_format
19627 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19628 {
19629 if (HAVE_64BIT_SYMBOLS)
19630 return dwarf2_format_64bit_irix;
19631 else
19632 return dwarf2_format_32bit;
19633 }
19634 #endif
19635
19636 int
19637 mips_dwarf2_addr_size (void)
19638 {
19639 if (HAVE_64BIT_OBJECTS)
19640 return 8;
19641 else
19642 return 4;
19643 }
19644
19645 /* Standard calling conventions leave the CFA at SP on entry. */
19646 void
19647 mips_cfi_frame_initial_instructions (void)
19648 {
19649 cfi_add_CFA_def_cfa_register (SP);
19650 }
19651
19652 int
19653 tc_mips_regname_to_dw2regnum (char *regname)
19654 {
19655 unsigned int regnum = -1;
19656 unsigned int reg;
19657
19658 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19659 regnum = reg;
19660
19661 return regnum;
19662 }
19663
19664 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19665 Given a symbolic attribute NAME, return the proper integer value.
19666 Returns -1 if the attribute is not known. */
19667
19668 int
19669 mips_convert_symbolic_attribute (const char *name)
19670 {
19671 static const struct
19672 {
19673 const char * name;
19674 const int tag;
19675 }
19676 attribute_table[] =
19677 {
19678 #define T(tag) {#tag, tag}
19679 T (Tag_GNU_MIPS_ABI_FP),
19680 T (Tag_GNU_MIPS_ABI_MSA),
19681 #undef T
19682 };
19683 unsigned int i;
19684
19685 if (name == NULL)
19686 return -1;
19687
19688 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19689 if (streq (name, attribute_table[i].name))
19690 return attribute_table[i].tag;
19691
19692 return -1;
19693 }
19694
19695 void
19696 md_mips_end (void)
19697 {
19698 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19699
19700 mips_emit_delays ();
19701 if (cur_proc_ptr)
19702 as_warn (_("missing .end at end of assembly"));
19703
19704 /* Just in case no code was emitted, do the consistency check. */
19705 file_mips_check_options ();
19706
19707 /* Set a floating-point ABI if the user did not. */
19708 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19709 {
19710 /* Perform consistency checks on the floating-point ABI. */
19711 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19712 Tag_GNU_MIPS_ABI_FP);
19713 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19714 check_fpabi (fpabi);
19715 }
19716 else
19717 {
19718 /* Soft-float gets precedence over single-float, the two options should
19719 not be used together so this should not matter. */
19720 if (file_mips_opts.soft_float == 1)
19721 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19722 /* Single-float gets precedence over all double_float cases. */
19723 else if (file_mips_opts.single_float == 1)
19724 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19725 else
19726 {
19727 switch (file_mips_opts.fp)
19728 {
19729 case 32:
19730 if (file_mips_opts.gp == 32)
19731 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19732 break;
19733 case 0:
19734 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19735 break;
19736 case 64:
19737 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19738 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19739 else if (file_mips_opts.gp == 32)
19740 fpabi = Val_GNU_MIPS_ABI_FP_64;
19741 else
19742 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19743 break;
19744 }
19745 }
19746
19747 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19748 Tag_GNU_MIPS_ABI_FP, fpabi);
19749 }
19750 }
19751
19752 /* Returns the relocation type required for a particular CFI encoding. */
19753
19754 bfd_reloc_code_real_type
19755 mips_cfi_reloc_for_encoding (int encoding)
19756 {
19757 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19758 return BFD_RELOC_32_PCREL;
19759 else return BFD_RELOC_NONE;
19760 }