]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-mips.c
MIPS/GAS: Use the module level ISA setting for R6 relaxation
[thirdparty/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946 \f
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018 /* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
1171 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1174 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1185
1186 /* Sign-extend 16-bit value X. */
1187 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
1189 /* Is the given value a sign-extended 32-bit value? */
1190 #define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194 /* Is the given value a sign-extended 16-bit value? */
1195 #define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
1199 /* Is the given value a sign-extended 12-bit value? */
1200 #define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
1203 /* Is the given value a sign-extended 9-bit value? */
1204 #define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
1207 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208 #define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
1212 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
1217 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1218 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1223 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
1227
1228 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229 #define MIPS16_EXTEND (0xf000U << 16)
1230 \f
1231 /* Whether or not we are emitting a branch-likely macro. */
1232 static bfd_boolean emit_branch_likely_macro = FALSE;
1233
1234 /* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237 static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253 } mips_relax;
1254 \f
1255 /* Global variables used to decide whether a macro needs a warning. */
1256 static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289 } mips_macro_warning;
1290 \f
1291 /* Prototypes for static functions. */
1292
1293 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
1295 static void append_insn
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
1298 static void mips_no_prev_insn (void);
1299 static void macro_build (expressionS *, const char *, const char *, ...);
1300 static void mips16_macro_build
1301 (expressionS *, const char *, const char *, va_list *);
1302 static void load_register (int, expressionS *, int);
1303 static void macro_start (void);
1304 static void macro_end (void);
1305 static void macro (struct mips_cl_insn *ip, char *str);
1306 static void mips16_macro (struct mips_cl_insn * ip);
1307 static void mips_ip (char *str, struct mips_cl_insn * ip);
1308 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1309 static void mips16_immed
1310 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
1312 static size_t my_getSmallExpression
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314 static void my_getExpression (expressionS *, char *);
1315 static void s_align (int);
1316 static void s_change_sec (int);
1317 static void s_change_section (int);
1318 static void s_cons (int);
1319 static void s_float_cons (int);
1320 static void s_mips_globl (int);
1321 static void s_option (int);
1322 static void s_mipsset (int);
1323 static void s_abicalls (int);
1324 static void s_cpload (int);
1325 static void s_cpsetup (int);
1326 static void s_cplocal (int);
1327 static void s_cprestore (int);
1328 static void s_cpreturn (int);
1329 static void s_dtprelword (int);
1330 static void s_dtpreldword (int);
1331 static void s_tprelword (int);
1332 static void s_tpreldword (int);
1333 static void s_gpvalue (int);
1334 static void s_gpword (int);
1335 static void s_gpdword (int);
1336 static void s_ehword (int);
1337 static void s_cpadd (int);
1338 static void s_insn (int);
1339 static void s_nan (int);
1340 static void s_module (int);
1341 static void s_mips_ent (int);
1342 static void s_mips_end (int);
1343 static void s_mips_frame (int);
1344 static void s_mips_mask (int reg_type);
1345 static void s_mips_stab (int);
1346 static void s_mips_weakext (int);
1347 static void s_mips_file (int);
1348 static void s_mips_loc (int);
1349 static bfd_boolean pic_need_relax (symbolS *, asection *);
1350 static int relaxed_branch_length (fragS *, asection *, int);
1351 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1353 static void file_mips_check_options (void);
1354
1355 /* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
1358 struct mips_cpu_info
1359 {
1360 const char *name; /* CPU or ISA name. */
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365 };
1366
1367 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1368
1369 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1372 \f
1373 /* Command-line options. */
1374 const char *md_shortopts = "O::g::G:";
1375
1376 enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
1390 OPTION_MIPS32R6,
1391 OPTION_MIPS64R2,
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
1394 OPTION_MIPS64R6,
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
1413 OPTION_DSPR3,
1414 OPTION_NO_DSPR3,
1415 OPTION_EVA,
1416 OPTION_NO_EVA,
1417 OPTION_XPA,
1418 OPTION_NO_XPA,
1419 OPTION_MICROMIPS,
1420 OPTION_NO_MICROMIPS,
1421 OPTION_MCU,
1422 OPTION_NO_MCU,
1423 OPTION_COMPAT_ARCH_BASE,
1424 OPTION_M4650,
1425 OPTION_NO_M4650,
1426 OPTION_M4010,
1427 OPTION_NO_M4010,
1428 OPTION_M4100,
1429 OPTION_NO_M4100,
1430 OPTION_M3900,
1431 OPTION_NO_M3900,
1432 OPTION_M7000_HILO_FIX,
1433 OPTION_MNO_7000_HILO_FIX,
1434 OPTION_FIX_24K,
1435 OPTION_NO_FIX_24K,
1436 OPTION_FIX_RM7000,
1437 OPTION_NO_FIX_RM7000,
1438 OPTION_FIX_LOONGSON2F_JUMP,
1439 OPTION_NO_FIX_LOONGSON2F_JUMP,
1440 OPTION_FIX_LOONGSON2F_NOP,
1441 OPTION_NO_FIX_LOONGSON2F_NOP,
1442 OPTION_FIX_VR4120,
1443 OPTION_NO_FIX_VR4120,
1444 OPTION_FIX_VR4130,
1445 OPTION_NO_FIX_VR4130,
1446 OPTION_FIX_CN63XXP1,
1447 OPTION_NO_FIX_CN63XXP1,
1448 OPTION_TRAP,
1449 OPTION_BREAK,
1450 OPTION_EB,
1451 OPTION_EL,
1452 OPTION_FP32,
1453 OPTION_GP32,
1454 OPTION_CONSTRUCT_FLOATS,
1455 OPTION_NO_CONSTRUCT_FLOATS,
1456 OPTION_FP64,
1457 OPTION_FPXX,
1458 OPTION_GP64,
1459 OPTION_RELAX_BRANCH,
1460 OPTION_NO_RELAX_BRANCH,
1461 OPTION_INSN32,
1462 OPTION_NO_INSN32,
1463 OPTION_MSHARED,
1464 OPTION_MNO_SHARED,
1465 OPTION_MSYM32,
1466 OPTION_MNO_SYM32,
1467 OPTION_SOFT_FLOAT,
1468 OPTION_HARD_FLOAT,
1469 OPTION_SINGLE_FLOAT,
1470 OPTION_DOUBLE_FLOAT,
1471 OPTION_32,
1472 OPTION_CALL_SHARED,
1473 OPTION_CALL_NONPIC,
1474 OPTION_NON_SHARED,
1475 OPTION_XGOT,
1476 OPTION_MABI,
1477 OPTION_N32,
1478 OPTION_64,
1479 OPTION_MDEBUG,
1480 OPTION_NO_MDEBUG,
1481 OPTION_PDR,
1482 OPTION_NO_PDR,
1483 OPTION_MVXWORKS_PIC,
1484 OPTION_NAN,
1485 OPTION_ODD_SPREG,
1486 OPTION_NO_ODD_SPREG,
1487 OPTION_END_OF_ENUM
1488 };
1489
1490 struct option md_longopts[] =
1491 {
1492 /* Options which specify architecture. */
1493 {"march", required_argument, NULL, OPTION_MARCH},
1494 {"mtune", required_argument, NULL, OPTION_MTUNE},
1495 {"mips0", no_argument, NULL, OPTION_MIPS1},
1496 {"mips1", no_argument, NULL, OPTION_MIPS1},
1497 {"mips2", no_argument, NULL, OPTION_MIPS2},
1498 {"mips3", no_argument, NULL, OPTION_MIPS3},
1499 {"mips4", no_argument, NULL, OPTION_MIPS4},
1500 {"mips5", no_argument, NULL, OPTION_MIPS5},
1501 {"mips32", no_argument, NULL, OPTION_MIPS32},
1502 {"mips64", no_argument, NULL, OPTION_MIPS64},
1503 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1504 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1505 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1506 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1507 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1508 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1509 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1510 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1511
1512 /* Options which specify Application Specific Extensions (ASEs). */
1513 {"mips16", no_argument, NULL, OPTION_MIPS16},
1514 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1515 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1516 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1517 {"mdmx", no_argument, NULL, OPTION_MDMX},
1518 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1519 {"mdsp", no_argument, NULL, OPTION_DSP},
1520 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1521 {"mmt", no_argument, NULL, OPTION_MT},
1522 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1523 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1524 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1525 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1526 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1527 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1528 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1529 {"meva", no_argument, NULL, OPTION_EVA},
1530 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1531 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1532 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1533 {"mmcu", no_argument, NULL, OPTION_MCU},
1534 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1535 {"mvirt", no_argument, NULL, OPTION_VIRT},
1536 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1537 {"mmsa", no_argument, NULL, OPTION_MSA},
1538 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1539 {"mxpa", no_argument, NULL, OPTION_XPA},
1540 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1541
1542 /* Old-style architecture options. Don't add more of these. */
1543 {"m4650", no_argument, NULL, OPTION_M4650},
1544 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1545 {"m4010", no_argument, NULL, OPTION_M4010},
1546 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1547 {"m4100", no_argument, NULL, OPTION_M4100},
1548 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1549 {"m3900", no_argument, NULL, OPTION_M3900},
1550 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1551
1552 /* Options which enable bug fixes. */
1553 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1554 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1555 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1556 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1557 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1558 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1559 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1560 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1561 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1562 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1563 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1564 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1565 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1566 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1567 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1568 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1569 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1570
1571 /* Miscellaneous options. */
1572 {"trap", no_argument, NULL, OPTION_TRAP},
1573 {"no-break", no_argument, NULL, OPTION_TRAP},
1574 {"break", no_argument, NULL, OPTION_BREAK},
1575 {"no-trap", no_argument, NULL, OPTION_BREAK},
1576 {"EB", no_argument, NULL, OPTION_EB},
1577 {"EL", no_argument, NULL, OPTION_EL},
1578 {"mfp32", no_argument, NULL, OPTION_FP32},
1579 {"mgp32", no_argument, NULL, OPTION_GP32},
1580 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1581 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1582 {"mfp64", no_argument, NULL, OPTION_FP64},
1583 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1584 {"mgp64", no_argument, NULL, OPTION_GP64},
1585 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1586 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1587 {"minsn32", no_argument, NULL, OPTION_INSN32},
1588 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1589 {"mshared", no_argument, NULL, OPTION_MSHARED},
1590 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1591 {"msym32", no_argument, NULL, OPTION_MSYM32},
1592 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1593 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1594 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1595 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1596 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1597 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1598 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1599
1600 /* Strictly speaking this next option is ELF specific,
1601 but we allow it for other ports as well in order to
1602 make testing easier. */
1603 {"32", no_argument, NULL, OPTION_32},
1604
1605 /* ELF-specific options. */
1606 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1607 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1608 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1609 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1610 {"xgot", no_argument, NULL, OPTION_XGOT},
1611 {"mabi", required_argument, NULL, OPTION_MABI},
1612 {"n32", no_argument, NULL, OPTION_N32},
1613 {"64", no_argument, NULL, OPTION_64},
1614 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1615 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1616 {"mpdr", no_argument, NULL, OPTION_PDR},
1617 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1618 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1619 {"mnan", required_argument, NULL, OPTION_NAN},
1620
1621 {NULL, no_argument, NULL, 0}
1622 };
1623 size_t md_longopts_size = sizeof (md_longopts);
1624 \f
1625 /* Information about either an Application Specific Extension or an
1626 optional architecture feature that, for simplicity, we treat in the
1627 same way as an ASE. */
1628 struct mips_ase
1629 {
1630 /* The name of the ASE, used in both the command-line and .set options. */
1631 const char *name;
1632
1633 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1634 and 64-bit architectures, the flags here refer to the subset that
1635 is available on both. */
1636 unsigned int flags;
1637
1638 /* The ASE_* flag used for instructions that are available on 64-bit
1639 architectures but that are not included in FLAGS. */
1640 unsigned int flags64;
1641
1642 /* The command-line options that turn the ASE on and off. */
1643 int option_on;
1644 int option_off;
1645
1646 /* The minimum required architecture revisions for MIPS32, MIPS64,
1647 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1648 int mips32_rev;
1649 int mips64_rev;
1650 int micromips32_rev;
1651 int micromips64_rev;
1652
1653 /* The architecture where the ASE was removed or -1 if the extension has not
1654 been removed. */
1655 int rem_rev;
1656 };
1657
1658 /* A table of all supported ASEs. */
1659 static const struct mips_ase mips_ases[] = {
1660 { "dsp", ASE_DSP, ASE_DSP64,
1661 OPTION_DSP, OPTION_NO_DSP,
1662 2, 2, 2, 2,
1663 -1 },
1664
1665 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1666 OPTION_DSPR2, OPTION_NO_DSPR2,
1667 2, 2, 2, 2,
1668 -1 },
1669
1670 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1671 OPTION_DSPR3, OPTION_NO_DSPR3,
1672 6, 6, -1, -1,
1673 -1 },
1674
1675 { "eva", ASE_EVA, 0,
1676 OPTION_EVA, OPTION_NO_EVA,
1677 2, 2, 2, 2,
1678 -1 },
1679
1680 { "mcu", ASE_MCU, 0,
1681 OPTION_MCU, OPTION_NO_MCU,
1682 2, 2, 2, 2,
1683 -1 },
1684
1685 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1686 { "mdmx", ASE_MDMX, 0,
1687 OPTION_MDMX, OPTION_NO_MDMX,
1688 -1, 1, -1, -1,
1689 6 },
1690
1691 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1692 { "mips3d", ASE_MIPS3D, 0,
1693 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1694 2, 1, -1, -1,
1695 6 },
1696
1697 { "mt", ASE_MT, 0,
1698 OPTION_MT, OPTION_NO_MT,
1699 2, 2, -1, -1,
1700 -1 },
1701
1702 { "smartmips", ASE_SMARTMIPS, 0,
1703 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1704 1, -1, -1, -1,
1705 6 },
1706
1707 { "virt", ASE_VIRT, ASE_VIRT64,
1708 OPTION_VIRT, OPTION_NO_VIRT,
1709 2, 2, 2, 2,
1710 -1 },
1711
1712 { "msa", ASE_MSA, ASE_MSA64,
1713 OPTION_MSA, OPTION_NO_MSA,
1714 2, 2, 2, 2,
1715 -1 },
1716
1717 { "xpa", ASE_XPA, 0,
1718 OPTION_XPA, OPTION_NO_XPA,
1719 2, 2, -1, -1,
1720 -1 },
1721 };
1722
1723 /* The set of ASEs that require -mfp64. */
1724 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1725
1726 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1727 static const unsigned int mips_ase_groups[] = {
1728 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1729 };
1730 \f
1731 /* Pseudo-op table.
1732
1733 The following pseudo-ops from the Kane and Heinrich MIPS book
1734 should be defined here, but are currently unsupported: .alias,
1735 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1736
1737 The following pseudo-ops from the Kane and Heinrich MIPS book are
1738 specific to the type of debugging information being generated, and
1739 should be defined by the object format: .aent, .begin, .bend,
1740 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1741 .vreg.
1742
1743 The following pseudo-ops from the Kane and Heinrich MIPS book are
1744 not MIPS CPU specific, but are also not specific to the object file
1745 format. This file is probably the best place to define them, but
1746 they are not currently supported: .asm0, .endr, .lab, .struct. */
1747
1748 static const pseudo_typeS mips_pseudo_table[] =
1749 {
1750 /* MIPS specific pseudo-ops. */
1751 {"option", s_option, 0},
1752 {"set", s_mipsset, 0},
1753 {"rdata", s_change_sec, 'r'},
1754 {"sdata", s_change_sec, 's'},
1755 {"livereg", s_ignore, 0},
1756 {"abicalls", s_abicalls, 0},
1757 {"cpload", s_cpload, 0},
1758 {"cpsetup", s_cpsetup, 0},
1759 {"cplocal", s_cplocal, 0},
1760 {"cprestore", s_cprestore, 0},
1761 {"cpreturn", s_cpreturn, 0},
1762 {"dtprelword", s_dtprelword, 0},
1763 {"dtpreldword", s_dtpreldword, 0},
1764 {"tprelword", s_tprelword, 0},
1765 {"tpreldword", s_tpreldword, 0},
1766 {"gpvalue", s_gpvalue, 0},
1767 {"gpword", s_gpword, 0},
1768 {"gpdword", s_gpdword, 0},
1769 {"ehword", s_ehword, 0},
1770 {"cpadd", s_cpadd, 0},
1771 {"insn", s_insn, 0},
1772 {"nan", s_nan, 0},
1773 {"module", s_module, 0},
1774
1775 /* Relatively generic pseudo-ops that happen to be used on MIPS
1776 chips. */
1777 {"asciiz", stringer, 8 + 1},
1778 {"bss", s_change_sec, 'b'},
1779 {"err", s_err, 0},
1780 {"half", s_cons, 1},
1781 {"dword", s_cons, 3},
1782 {"weakext", s_mips_weakext, 0},
1783 {"origin", s_org, 0},
1784 {"repeat", s_rept, 0},
1785
1786 /* For MIPS this is non-standard, but we define it for consistency. */
1787 {"sbss", s_change_sec, 'B'},
1788
1789 /* These pseudo-ops are defined in read.c, but must be overridden
1790 here for one reason or another. */
1791 {"align", s_align, 0},
1792 {"byte", s_cons, 0},
1793 {"data", s_change_sec, 'd'},
1794 {"double", s_float_cons, 'd'},
1795 {"float", s_float_cons, 'f'},
1796 {"globl", s_mips_globl, 0},
1797 {"global", s_mips_globl, 0},
1798 {"hword", s_cons, 1},
1799 {"int", s_cons, 2},
1800 {"long", s_cons, 2},
1801 {"octa", s_cons, 4},
1802 {"quad", s_cons, 3},
1803 {"section", s_change_section, 0},
1804 {"short", s_cons, 1},
1805 {"single", s_float_cons, 'f'},
1806 {"stabd", s_mips_stab, 'd'},
1807 {"stabn", s_mips_stab, 'n'},
1808 {"stabs", s_mips_stab, 's'},
1809 {"text", s_change_sec, 't'},
1810 {"word", s_cons, 2},
1811
1812 { "extern", ecoff_directive_extern, 0},
1813
1814 { NULL, NULL, 0 },
1815 };
1816
1817 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1818 {
1819 /* These pseudo-ops should be defined by the object file format.
1820 However, a.out doesn't support them, so we have versions here. */
1821 {"aent", s_mips_ent, 1},
1822 {"bgnb", s_ignore, 0},
1823 {"end", s_mips_end, 0},
1824 {"endb", s_ignore, 0},
1825 {"ent", s_mips_ent, 0},
1826 {"file", s_mips_file, 0},
1827 {"fmask", s_mips_mask, 'F'},
1828 {"frame", s_mips_frame, 0},
1829 {"loc", s_mips_loc, 0},
1830 {"mask", s_mips_mask, 'R'},
1831 {"verstamp", s_ignore, 0},
1832 { NULL, NULL, 0 },
1833 };
1834
1835 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1836 purpose of the `.dc.a' internal pseudo-op. */
1837
1838 int
1839 mips_address_bytes (void)
1840 {
1841 file_mips_check_options ();
1842 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1843 }
1844
1845 extern void pop_insert (const pseudo_typeS *);
1846
1847 void
1848 mips_pop_insert (void)
1849 {
1850 pop_insert (mips_pseudo_table);
1851 if (! ECOFF_DEBUGGING)
1852 pop_insert (mips_nonecoff_pseudo_table);
1853 }
1854 \f
1855 /* Symbols labelling the current insn. */
1856
1857 struct insn_label_list
1858 {
1859 struct insn_label_list *next;
1860 symbolS *label;
1861 };
1862
1863 static struct insn_label_list *free_insn_labels;
1864 #define label_list tc_segment_info_data.labels
1865
1866 static void mips_clear_insn_labels (void);
1867 static void mips_mark_labels (void);
1868 static void mips_compressed_mark_labels (void);
1869
1870 static inline void
1871 mips_clear_insn_labels (void)
1872 {
1873 struct insn_label_list **pl;
1874 segment_info_type *si;
1875
1876 if (now_seg)
1877 {
1878 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1879 ;
1880
1881 si = seg_info (now_seg);
1882 *pl = si->label_list;
1883 si->label_list = NULL;
1884 }
1885 }
1886
1887 /* Mark instruction labels in MIPS16/microMIPS mode. */
1888
1889 static inline void
1890 mips_mark_labels (void)
1891 {
1892 if (HAVE_CODE_COMPRESSION)
1893 mips_compressed_mark_labels ();
1894 }
1895 \f
1896 static char *expr_end;
1897
1898 /* An expression in a macro instruction. This is set by mips_ip and
1899 mips16_ip and when populated is always an O_constant. */
1900
1901 static expressionS imm_expr;
1902
1903 /* The relocatable field in an instruction and the relocs associated
1904 with it. These variables are used for instructions like LUI and
1905 JAL as well as true offsets. They are also used for address
1906 operands in macros. */
1907
1908 static expressionS offset_expr;
1909 static bfd_reloc_code_real_type offset_reloc[3]
1910 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1911
1912 /* This is set to the resulting size of the instruction to be produced
1913 by mips16_ip if an explicit extension is used or by mips_ip if an
1914 explicit size is supplied. */
1915
1916 static unsigned int forced_insn_length;
1917
1918 /* True if we are assembling an instruction. All dot symbols defined during
1919 this time should be treated as code labels. */
1920
1921 static bfd_boolean mips_assembling_insn;
1922
1923 /* The pdr segment for per procedure frame/regmask info. Not used for
1924 ECOFF debugging. */
1925
1926 static segT pdr_seg;
1927
1928 /* The default target format to use. */
1929
1930 #if defined (TE_FreeBSD)
1931 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1932 #elif defined (TE_TMIPS)
1933 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1934 #else
1935 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1936 #endif
1937
1938 const char *
1939 mips_target_format (void)
1940 {
1941 switch (OUTPUT_FLAVOR)
1942 {
1943 case bfd_target_elf_flavour:
1944 #ifdef TE_VXWORKS
1945 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1946 return (target_big_endian
1947 ? "elf32-bigmips-vxworks"
1948 : "elf32-littlemips-vxworks");
1949 #endif
1950 return (target_big_endian
1951 ? (HAVE_64BIT_OBJECTS
1952 ? ELF_TARGET ("elf64-", "big")
1953 : (HAVE_NEWABI
1954 ? ELF_TARGET ("elf32-n", "big")
1955 : ELF_TARGET ("elf32-", "big")))
1956 : (HAVE_64BIT_OBJECTS
1957 ? ELF_TARGET ("elf64-", "little")
1958 : (HAVE_NEWABI
1959 ? ELF_TARGET ("elf32-n", "little")
1960 : ELF_TARGET ("elf32-", "little"))));
1961 default:
1962 abort ();
1963 return NULL;
1964 }
1965 }
1966
1967 /* Return the ISA revision that is currently in use, or 0 if we are
1968 generating code for MIPS V or below. */
1969
1970 static int
1971 mips_isa_rev (void)
1972 {
1973 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1974 return 2;
1975
1976 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1977 return 3;
1978
1979 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1980 return 5;
1981
1982 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1983 return 6;
1984
1985 /* microMIPS implies revision 2 or above. */
1986 if (mips_opts.micromips)
1987 return 2;
1988
1989 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1990 return 1;
1991
1992 return 0;
1993 }
1994
1995 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1996
1997 static unsigned int
1998 mips_ase_mask (unsigned int flags)
1999 {
2000 unsigned int i;
2001
2002 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2003 if (flags & mips_ase_groups[i])
2004 flags |= mips_ase_groups[i];
2005 return flags;
2006 }
2007
2008 /* Check whether the current ISA supports ASE. Issue a warning if
2009 appropriate. */
2010
2011 static void
2012 mips_check_isa_supports_ase (const struct mips_ase *ase)
2013 {
2014 const char *base;
2015 int min_rev, size;
2016 static unsigned int warned_isa;
2017 static unsigned int warned_fp32;
2018
2019 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2020 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2021 else
2022 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2023 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2024 && (warned_isa & ase->flags) != ase->flags)
2025 {
2026 warned_isa |= ase->flags;
2027 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2028 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2029 if (min_rev < 0)
2030 as_warn (_("the %d-bit %s architecture does not support the"
2031 " `%s' extension"), size, base, ase->name);
2032 else
2033 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2034 ase->name, base, size, min_rev);
2035 }
2036 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2037 && (warned_isa & ase->flags) != ase->flags)
2038 {
2039 warned_isa |= ase->flags;
2040 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2041 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2042 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2043 ase->name, base, size, ase->rem_rev);
2044 }
2045
2046 if ((ase->flags & FP64_ASES)
2047 && mips_opts.fp != 64
2048 && (warned_fp32 & ase->flags) != ase->flags)
2049 {
2050 warned_fp32 |= ase->flags;
2051 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2052 }
2053 }
2054
2055 /* Check all enabled ASEs to see whether they are supported by the
2056 chosen architecture. */
2057
2058 static void
2059 mips_check_isa_supports_ases (void)
2060 {
2061 unsigned int i, mask;
2062
2063 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2064 {
2065 mask = mips_ase_mask (mips_ases[i].flags);
2066 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2067 mips_check_isa_supports_ase (&mips_ases[i]);
2068 }
2069 }
2070
2071 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2072 that were affected. */
2073
2074 static unsigned int
2075 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2076 bfd_boolean enabled_p)
2077 {
2078 unsigned int mask;
2079
2080 mask = mips_ase_mask (ase->flags);
2081 opts->ase &= ~mask;
2082 if (enabled_p)
2083 opts->ase |= ase->flags;
2084 return mask;
2085 }
2086
2087 /* Return the ASE called NAME, or null if none. */
2088
2089 static const struct mips_ase *
2090 mips_lookup_ase (const char *name)
2091 {
2092 unsigned int i;
2093
2094 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2095 if (strcmp (name, mips_ases[i].name) == 0)
2096 return &mips_ases[i];
2097 return NULL;
2098 }
2099
2100 /* Return the length of a microMIPS instruction in bytes. If bits of
2101 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2102 otherwise it is a 32-bit instruction. */
2103
2104 static inline unsigned int
2105 micromips_insn_length (const struct mips_opcode *mo)
2106 {
2107 return (mo->mask >> 16) == 0 ? 2 : 4;
2108 }
2109
2110 /* Return the length of MIPS16 instruction OPCODE. */
2111
2112 static inline unsigned int
2113 mips16_opcode_length (unsigned long opcode)
2114 {
2115 return (opcode >> 16) == 0 ? 2 : 4;
2116 }
2117
2118 /* Return the length of instruction INSN. */
2119
2120 static inline unsigned int
2121 insn_length (const struct mips_cl_insn *insn)
2122 {
2123 if (mips_opts.micromips)
2124 return micromips_insn_length (insn->insn_mo);
2125 else if (mips_opts.mips16)
2126 return mips16_opcode_length (insn->insn_opcode);
2127 else
2128 return 4;
2129 }
2130
2131 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2132
2133 static void
2134 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2135 {
2136 size_t i;
2137
2138 insn->insn_mo = mo;
2139 insn->insn_opcode = mo->match;
2140 insn->frag = NULL;
2141 insn->where = 0;
2142 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2143 insn->fixp[i] = NULL;
2144 insn->fixed_p = (mips_opts.noreorder > 0);
2145 insn->noreorder_p = (mips_opts.noreorder > 0);
2146 insn->mips16_absolute_jump_p = 0;
2147 insn->complete_p = 0;
2148 insn->cleared_p = 0;
2149 }
2150
2151 /* Get a list of all the operands in INSN. */
2152
2153 static const struct mips_operand_array *
2154 insn_operands (const struct mips_cl_insn *insn)
2155 {
2156 if (insn->insn_mo >= &mips_opcodes[0]
2157 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2158 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2159
2160 if (insn->insn_mo >= &mips16_opcodes[0]
2161 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2162 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2163
2164 if (insn->insn_mo >= &micromips_opcodes[0]
2165 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2166 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2167
2168 abort ();
2169 }
2170
2171 /* Get a description of operand OPNO of INSN. */
2172
2173 static const struct mips_operand *
2174 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2175 {
2176 const struct mips_operand_array *operands;
2177
2178 operands = insn_operands (insn);
2179 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2180 abort ();
2181 return operands->operand[opno];
2182 }
2183
2184 /* Install UVAL as the value of OPERAND in INSN. */
2185
2186 static inline void
2187 insn_insert_operand (struct mips_cl_insn *insn,
2188 const struct mips_operand *operand, unsigned int uval)
2189 {
2190 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2191 }
2192
2193 /* Extract the value of OPERAND from INSN. */
2194
2195 static inline unsigned
2196 insn_extract_operand (const struct mips_cl_insn *insn,
2197 const struct mips_operand *operand)
2198 {
2199 return mips_extract_operand (operand, insn->insn_opcode);
2200 }
2201
2202 /* Record the current MIPS16/microMIPS mode in now_seg. */
2203
2204 static void
2205 mips_record_compressed_mode (void)
2206 {
2207 segment_info_type *si;
2208
2209 si = seg_info (now_seg);
2210 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2211 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2212 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2213 si->tc_segment_info_data.micromips = mips_opts.micromips;
2214 }
2215
2216 /* Read a standard MIPS instruction from BUF. */
2217
2218 static unsigned long
2219 read_insn (char *buf)
2220 {
2221 if (target_big_endian)
2222 return bfd_getb32 ((bfd_byte *) buf);
2223 else
2224 return bfd_getl32 ((bfd_byte *) buf);
2225 }
2226
2227 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2228 the next byte. */
2229
2230 static char *
2231 write_insn (char *buf, unsigned int insn)
2232 {
2233 md_number_to_chars (buf, insn, 4);
2234 return buf + 4;
2235 }
2236
2237 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2238 has length LENGTH. */
2239
2240 static unsigned long
2241 read_compressed_insn (char *buf, unsigned int length)
2242 {
2243 unsigned long insn;
2244 unsigned int i;
2245
2246 insn = 0;
2247 for (i = 0; i < length; i += 2)
2248 {
2249 insn <<= 16;
2250 if (target_big_endian)
2251 insn |= bfd_getb16 ((char *) buf);
2252 else
2253 insn |= bfd_getl16 ((char *) buf);
2254 buf += 2;
2255 }
2256 return insn;
2257 }
2258
2259 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2260 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2261
2262 static char *
2263 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2264 {
2265 unsigned int i;
2266
2267 for (i = 0; i < length; i += 2)
2268 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2269 return buf + length;
2270 }
2271
2272 /* Install INSN at the location specified by its "frag" and "where" fields. */
2273
2274 static void
2275 install_insn (const struct mips_cl_insn *insn)
2276 {
2277 char *f = insn->frag->fr_literal + insn->where;
2278 if (HAVE_CODE_COMPRESSION)
2279 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2280 else
2281 write_insn (f, insn->insn_opcode);
2282 mips_record_compressed_mode ();
2283 }
2284
2285 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2286 and install the opcode in the new location. */
2287
2288 static void
2289 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2290 {
2291 size_t i;
2292
2293 insn->frag = frag;
2294 insn->where = where;
2295 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2296 if (insn->fixp[i] != NULL)
2297 {
2298 insn->fixp[i]->fx_frag = frag;
2299 insn->fixp[i]->fx_where = where;
2300 }
2301 install_insn (insn);
2302 }
2303
2304 /* Add INSN to the end of the output. */
2305
2306 static void
2307 add_fixed_insn (struct mips_cl_insn *insn)
2308 {
2309 char *f = frag_more (insn_length (insn));
2310 move_insn (insn, frag_now, f - frag_now->fr_literal);
2311 }
2312
2313 /* Start a variant frag and move INSN to the start of the variant part,
2314 marking it as fixed. The other arguments are as for frag_var. */
2315
2316 static void
2317 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2318 relax_substateT subtype, symbolS *symbol, offsetT offset)
2319 {
2320 frag_grow (max_chars);
2321 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2322 insn->fixed_p = 1;
2323 frag_var (rs_machine_dependent, max_chars, var,
2324 subtype, symbol, offset, NULL);
2325 }
2326
2327 /* Insert N copies of INSN into the history buffer, starting at
2328 position FIRST. Neither FIRST nor N need to be clipped. */
2329
2330 static void
2331 insert_into_history (unsigned int first, unsigned int n,
2332 const struct mips_cl_insn *insn)
2333 {
2334 if (mips_relax.sequence != 2)
2335 {
2336 unsigned int i;
2337
2338 for (i = ARRAY_SIZE (history); i-- > first;)
2339 if (i >= first + n)
2340 history[i] = history[i - n];
2341 else
2342 history[i] = *insn;
2343 }
2344 }
2345
2346 /* Clear the error in insn_error. */
2347
2348 static void
2349 clear_insn_error (void)
2350 {
2351 memset (&insn_error, 0, sizeof (insn_error));
2352 }
2353
2354 /* Possibly record error message MSG for the current instruction.
2355 If the error is about a particular argument, ARGNUM is the 1-based
2356 number of that argument, otherwise it is 0. FORMAT is the format
2357 of MSG. Return true if MSG was used, false if the current message
2358 was kept. */
2359
2360 static bfd_boolean
2361 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2362 const char *msg)
2363 {
2364 if (argnum == 0)
2365 {
2366 /* Give priority to errors against specific arguments, and to
2367 the first whole-instruction message. */
2368 if (insn_error.msg)
2369 return FALSE;
2370 }
2371 else
2372 {
2373 /* Keep insn_error if it is against a later argument. */
2374 if (argnum < insn_error.min_argnum)
2375 return FALSE;
2376
2377 /* If both errors are against the same argument but are different,
2378 give up on reporting a specific error for this argument.
2379 See the comment about mips_insn_error for details. */
2380 if (argnum == insn_error.min_argnum
2381 && insn_error.msg
2382 && strcmp (insn_error.msg, msg) != 0)
2383 {
2384 insn_error.msg = 0;
2385 insn_error.min_argnum += 1;
2386 return FALSE;
2387 }
2388 }
2389 insn_error.min_argnum = argnum;
2390 insn_error.format = format;
2391 insn_error.msg = msg;
2392 return TRUE;
2393 }
2394
2395 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2396 as for set_insn_error_format. */
2397
2398 static void
2399 set_insn_error (int argnum, const char *msg)
2400 {
2401 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2402 }
2403
2404 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2405 as for set_insn_error_format. */
2406
2407 static void
2408 set_insn_error_i (int argnum, const char *msg, int i)
2409 {
2410 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2411 insn_error.u.i = i;
2412 }
2413
2414 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2415 are as for set_insn_error_format. */
2416
2417 static void
2418 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2419 {
2420 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2421 {
2422 insn_error.u.ss[0] = s1;
2423 insn_error.u.ss[1] = s2;
2424 }
2425 }
2426
2427 /* Report the error in insn_error, which is against assembly code STR. */
2428
2429 static void
2430 report_insn_error (const char *str)
2431 {
2432 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2433
2434 switch (insn_error.format)
2435 {
2436 case ERR_FMT_PLAIN:
2437 as_bad (msg, str);
2438 break;
2439
2440 case ERR_FMT_I:
2441 as_bad (msg, insn_error.u.i, str);
2442 break;
2443
2444 case ERR_FMT_SS:
2445 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2446 break;
2447 }
2448
2449 free ((char *) msg);
2450 }
2451
2452 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2453 the idea is to make it obvious at a glance that each errata is
2454 included. */
2455
2456 static void
2457 init_vr4120_conflicts (void)
2458 {
2459 #define CONFLICT(FIRST, SECOND) \
2460 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2461
2462 /* Errata 21 - [D]DIV[U] after [D]MACC */
2463 CONFLICT (MACC, DIV);
2464 CONFLICT (DMACC, DIV);
2465
2466 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2467 CONFLICT (DMULT, DMULT);
2468 CONFLICT (DMULT, DMACC);
2469 CONFLICT (DMACC, DMULT);
2470 CONFLICT (DMACC, DMACC);
2471
2472 /* Errata 24 - MT{LO,HI} after [D]MACC */
2473 CONFLICT (MACC, MTHILO);
2474 CONFLICT (DMACC, MTHILO);
2475
2476 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2477 instruction is executed immediately after a MACC or DMACC
2478 instruction, the result of [either instruction] is incorrect." */
2479 CONFLICT (MACC, MULT);
2480 CONFLICT (MACC, DMULT);
2481 CONFLICT (DMACC, MULT);
2482 CONFLICT (DMACC, DMULT);
2483
2484 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2485 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2486 DDIV or DDIVU instruction, the result of the MACC or
2487 DMACC instruction is incorrect.". */
2488 CONFLICT (DMULT, MACC);
2489 CONFLICT (DMULT, DMACC);
2490 CONFLICT (DIV, MACC);
2491 CONFLICT (DIV, DMACC);
2492
2493 #undef CONFLICT
2494 }
2495
2496 struct regname {
2497 const char *name;
2498 unsigned int num;
2499 };
2500
2501 #define RNUM_MASK 0x00000ff
2502 #define RTYPE_MASK 0x0ffff00
2503 #define RTYPE_NUM 0x0000100
2504 #define RTYPE_FPU 0x0000200
2505 #define RTYPE_FCC 0x0000400
2506 #define RTYPE_VEC 0x0000800
2507 #define RTYPE_GP 0x0001000
2508 #define RTYPE_CP0 0x0002000
2509 #define RTYPE_PC 0x0004000
2510 #define RTYPE_ACC 0x0008000
2511 #define RTYPE_CCC 0x0010000
2512 #define RTYPE_VI 0x0020000
2513 #define RTYPE_VF 0x0040000
2514 #define RTYPE_R5900_I 0x0080000
2515 #define RTYPE_R5900_Q 0x0100000
2516 #define RTYPE_R5900_R 0x0200000
2517 #define RTYPE_R5900_ACC 0x0400000
2518 #define RTYPE_MSA 0x0800000
2519 #define RWARN 0x8000000
2520
2521 #define GENERIC_REGISTER_NUMBERS \
2522 {"$0", RTYPE_NUM | 0}, \
2523 {"$1", RTYPE_NUM | 1}, \
2524 {"$2", RTYPE_NUM | 2}, \
2525 {"$3", RTYPE_NUM | 3}, \
2526 {"$4", RTYPE_NUM | 4}, \
2527 {"$5", RTYPE_NUM | 5}, \
2528 {"$6", RTYPE_NUM | 6}, \
2529 {"$7", RTYPE_NUM | 7}, \
2530 {"$8", RTYPE_NUM | 8}, \
2531 {"$9", RTYPE_NUM | 9}, \
2532 {"$10", RTYPE_NUM | 10}, \
2533 {"$11", RTYPE_NUM | 11}, \
2534 {"$12", RTYPE_NUM | 12}, \
2535 {"$13", RTYPE_NUM | 13}, \
2536 {"$14", RTYPE_NUM | 14}, \
2537 {"$15", RTYPE_NUM | 15}, \
2538 {"$16", RTYPE_NUM | 16}, \
2539 {"$17", RTYPE_NUM | 17}, \
2540 {"$18", RTYPE_NUM | 18}, \
2541 {"$19", RTYPE_NUM | 19}, \
2542 {"$20", RTYPE_NUM | 20}, \
2543 {"$21", RTYPE_NUM | 21}, \
2544 {"$22", RTYPE_NUM | 22}, \
2545 {"$23", RTYPE_NUM | 23}, \
2546 {"$24", RTYPE_NUM | 24}, \
2547 {"$25", RTYPE_NUM | 25}, \
2548 {"$26", RTYPE_NUM | 26}, \
2549 {"$27", RTYPE_NUM | 27}, \
2550 {"$28", RTYPE_NUM | 28}, \
2551 {"$29", RTYPE_NUM | 29}, \
2552 {"$30", RTYPE_NUM | 30}, \
2553 {"$31", RTYPE_NUM | 31}
2554
2555 #define FPU_REGISTER_NAMES \
2556 {"$f0", RTYPE_FPU | 0}, \
2557 {"$f1", RTYPE_FPU | 1}, \
2558 {"$f2", RTYPE_FPU | 2}, \
2559 {"$f3", RTYPE_FPU | 3}, \
2560 {"$f4", RTYPE_FPU | 4}, \
2561 {"$f5", RTYPE_FPU | 5}, \
2562 {"$f6", RTYPE_FPU | 6}, \
2563 {"$f7", RTYPE_FPU | 7}, \
2564 {"$f8", RTYPE_FPU | 8}, \
2565 {"$f9", RTYPE_FPU | 9}, \
2566 {"$f10", RTYPE_FPU | 10}, \
2567 {"$f11", RTYPE_FPU | 11}, \
2568 {"$f12", RTYPE_FPU | 12}, \
2569 {"$f13", RTYPE_FPU | 13}, \
2570 {"$f14", RTYPE_FPU | 14}, \
2571 {"$f15", RTYPE_FPU | 15}, \
2572 {"$f16", RTYPE_FPU | 16}, \
2573 {"$f17", RTYPE_FPU | 17}, \
2574 {"$f18", RTYPE_FPU | 18}, \
2575 {"$f19", RTYPE_FPU | 19}, \
2576 {"$f20", RTYPE_FPU | 20}, \
2577 {"$f21", RTYPE_FPU | 21}, \
2578 {"$f22", RTYPE_FPU | 22}, \
2579 {"$f23", RTYPE_FPU | 23}, \
2580 {"$f24", RTYPE_FPU | 24}, \
2581 {"$f25", RTYPE_FPU | 25}, \
2582 {"$f26", RTYPE_FPU | 26}, \
2583 {"$f27", RTYPE_FPU | 27}, \
2584 {"$f28", RTYPE_FPU | 28}, \
2585 {"$f29", RTYPE_FPU | 29}, \
2586 {"$f30", RTYPE_FPU | 30}, \
2587 {"$f31", RTYPE_FPU | 31}
2588
2589 #define FPU_CONDITION_CODE_NAMES \
2590 {"$fcc0", RTYPE_FCC | 0}, \
2591 {"$fcc1", RTYPE_FCC | 1}, \
2592 {"$fcc2", RTYPE_FCC | 2}, \
2593 {"$fcc3", RTYPE_FCC | 3}, \
2594 {"$fcc4", RTYPE_FCC | 4}, \
2595 {"$fcc5", RTYPE_FCC | 5}, \
2596 {"$fcc6", RTYPE_FCC | 6}, \
2597 {"$fcc7", RTYPE_FCC | 7}
2598
2599 #define COPROC_CONDITION_CODE_NAMES \
2600 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2601 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2602 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2603 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2604 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2605 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2606 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2607 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2608
2609 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2610 {"$a4", RTYPE_GP | 8}, \
2611 {"$a5", RTYPE_GP | 9}, \
2612 {"$a6", RTYPE_GP | 10}, \
2613 {"$a7", RTYPE_GP | 11}, \
2614 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2615 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2616 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2617 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2618 {"$t0", RTYPE_GP | 12}, \
2619 {"$t1", RTYPE_GP | 13}, \
2620 {"$t2", RTYPE_GP | 14}, \
2621 {"$t3", RTYPE_GP | 15}
2622
2623 #define O32_SYMBOLIC_REGISTER_NAMES \
2624 {"$t0", RTYPE_GP | 8}, \
2625 {"$t1", RTYPE_GP | 9}, \
2626 {"$t2", RTYPE_GP | 10}, \
2627 {"$t3", RTYPE_GP | 11}, \
2628 {"$t4", RTYPE_GP | 12}, \
2629 {"$t5", RTYPE_GP | 13}, \
2630 {"$t6", RTYPE_GP | 14}, \
2631 {"$t7", RTYPE_GP | 15}, \
2632 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2633 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2634 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2635 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2636
2637 /* Remaining symbolic register names */
2638 #define SYMBOLIC_REGISTER_NAMES \
2639 {"$zero", RTYPE_GP | 0}, \
2640 {"$at", RTYPE_GP | 1}, \
2641 {"$AT", RTYPE_GP | 1}, \
2642 {"$v0", RTYPE_GP | 2}, \
2643 {"$v1", RTYPE_GP | 3}, \
2644 {"$a0", RTYPE_GP | 4}, \
2645 {"$a1", RTYPE_GP | 5}, \
2646 {"$a2", RTYPE_GP | 6}, \
2647 {"$a3", RTYPE_GP | 7}, \
2648 {"$s0", RTYPE_GP | 16}, \
2649 {"$s1", RTYPE_GP | 17}, \
2650 {"$s2", RTYPE_GP | 18}, \
2651 {"$s3", RTYPE_GP | 19}, \
2652 {"$s4", RTYPE_GP | 20}, \
2653 {"$s5", RTYPE_GP | 21}, \
2654 {"$s6", RTYPE_GP | 22}, \
2655 {"$s7", RTYPE_GP | 23}, \
2656 {"$t8", RTYPE_GP | 24}, \
2657 {"$t9", RTYPE_GP | 25}, \
2658 {"$k0", RTYPE_GP | 26}, \
2659 {"$kt0", RTYPE_GP | 26}, \
2660 {"$k1", RTYPE_GP | 27}, \
2661 {"$kt1", RTYPE_GP | 27}, \
2662 {"$gp", RTYPE_GP | 28}, \
2663 {"$sp", RTYPE_GP | 29}, \
2664 {"$s8", RTYPE_GP | 30}, \
2665 {"$fp", RTYPE_GP | 30}, \
2666 {"$ra", RTYPE_GP | 31}
2667
2668 #define MIPS16_SPECIAL_REGISTER_NAMES \
2669 {"$pc", RTYPE_PC | 0}
2670
2671 #define MDMX_VECTOR_REGISTER_NAMES \
2672 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2673 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2674 {"$v2", RTYPE_VEC | 2}, \
2675 {"$v3", RTYPE_VEC | 3}, \
2676 {"$v4", RTYPE_VEC | 4}, \
2677 {"$v5", RTYPE_VEC | 5}, \
2678 {"$v6", RTYPE_VEC | 6}, \
2679 {"$v7", RTYPE_VEC | 7}, \
2680 {"$v8", RTYPE_VEC | 8}, \
2681 {"$v9", RTYPE_VEC | 9}, \
2682 {"$v10", RTYPE_VEC | 10}, \
2683 {"$v11", RTYPE_VEC | 11}, \
2684 {"$v12", RTYPE_VEC | 12}, \
2685 {"$v13", RTYPE_VEC | 13}, \
2686 {"$v14", RTYPE_VEC | 14}, \
2687 {"$v15", RTYPE_VEC | 15}, \
2688 {"$v16", RTYPE_VEC | 16}, \
2689 {"$v17", RTYPE_VEC | 17}, \
2690 {"$v18", RTYPE_VEC | 18}, \
2691 {"$v19", RTYPE_VEC | 19}, \
2692 {"$v20", RTYPE_VEC | 20}, \
2693 {"$v21", RTYPE_VEC | 21}, \
2694 {"$v22", RTYPE_VEC | 22}, \
2695 {"$v23", RTYPE_VEC | 23}, \
2696 {"$v24", RTYPE_VEC | 24}, \
2697 {"$v25", RTYPE_VEC | 25}, \
2698 {"$v26", RTYPE_VEC | 26}, \
2699 {"$v27", RTYPE_VEC | 27}, \
2700 {"$v28", RTYPE_VEC | 28}, \
2701 {"$v29", RTYPE_VEC | 29}, \
2702 {"$v30", RTYPE_VEC | 30}, \
2703 {"$v31", RTYPE_VEC | 31}
2704
2705 #define R5900_I_NAMES \
2706 {"$I", RTYPE_R5900_I | 0}
2707
2708 #define R5900_Q_NAMES \
2709 {"$Q", RTYPE_R5900_Q | 0}
2710
2711 #define R5900_R_NAMES \
2712 {"$R", RTYPE_R5900_R | 0}
2713
2714 #define R5900_ACC_NAMES \
2715 {"$ACC", RTYPE_R5900_ACC | 0 }
2716
2717 #define MIPS_DSP_ACCUMULATOR_NAMES \
2718 {"$ac0", RTYPE_ACC | 0}, \
2719 {"$ac1", RTYPE_ACC | 1}, \
2720 {"$ac2", RTYPE_ACC | 2}, \
2721 {"$ac3", RTYPE_ACC | 3}
2722
2723 static const struct regname reg_names[] = {
2724 GENERIC_REGISTER_NUMBERS,
2725 FPU_REGISTER_NAMES,
2726 FPU_CONDITION_CODE_NAMES,
2727 COPROC_CONDITION_CODE_NAMES,
2728
2729 /* The $txx registers depends on the abi,
2730 these will be added later into the symbol table from
2731 one of the tables below once mips_abi is set after
2732 parsing of arguments from the command line. */
2733 SYMBOLIC_REGISTER_NAMES,
2734
2735 MIPS16_SPECIAL_REGISTER_NAMES,
2736 MDMX_VECTOR_REGISTER_NAMES,
2737 R5900_I_NAMES,
2738 R5900_Q_NAMES,
2739 R5900_R_NAMES,
2740 R5900_ACC_NAMES,
2741 MIPS_DSP_ACCUMULATOR_NAMES,
2742 {0, 0}
2743 };
2744
2745 static const struct regname reg_names_o32[] = {
2746 O32_SYMBOLIC_REGISTER_NAMES,
2747 {0, 0}
2748 };
2749
2750 static const struct regname reg_names_n32n64[] = {
2751 N32N64_SYMBOLIC_REGISTER_NAMES,
2752 {0, 0}
2753 };
2754
2755 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2756 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2757 of these register symbols, return the associated vector register,
2758 otherwise return SYMVAL itself. */
2759
2760 static unsigned int
2761 mips_prefer_vec_regno (unsigned int symval)
2762 {
2763 if ((symval & -2) == (RTYPE_GP | 2))
2764 return RTYPE_VEC | (symval & 1);
2765 return symval;
2766 }
2767
2768 /* Return true if string [S, E) is a valid register name, storing its
2769 symbol value in *SYMVAL_PTR if so. */
2770
2771 static bfd_boolean
2772 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2773 {
2774 char save_c;
2775 symbolS *symbol;
2776
2777 /* Terminate name. */
2778 save_c = *e;
2779 *e = '\0';
2780
2781 /* Look up the name. */
2782 symbol = symbol_find (s);
2783 *e = save_c;
2784
2785 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2786 return FALSE;
2787
2788 *symval_ptr = S_GET_VALUE (symbol);
2789 return TRUE;
2790 }
2791
2792 /* Return true if the string at *SPTR is a valid register name. Allow it
2793 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2794 is nonnull.
2795
2796 When returning true, move *SPTR past the register, store the
2797 register's symbol value in *SYMVAL_PTR and the channel mask in
2798 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2799 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2800 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2801
2802 static bfd_boolean
2803 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2804 unsigned int *channels_ptr)
2805 {
2806 char *s, *e, *m;
2807 const char *q;
2808 unsigned int channels, symval, bit;
2809
2810 /* Find end of name. */
2811 s = e = *sptr;
2812 if (is_name_beginner (*e))
2813 ++e;
2814 while (is_part_of_name (*e))
2815 ++e;
2816
2817 channels = 0;
2818 if (!mips_parse_register_1 (s, e, &symval))
2819 {
2820 if (!channels_ptr)
2821 return FALSE;
2822
2823 /* Eat characters from the end of the string that are valid
2824 channel suffixes. The preceding register must be $ACC or
2825 end with a digit, so there is no ambiguity. */
2826 bit = 1;
2827 m = e;
2828 for (q = "wzyx"; *q; q++, bit <<= 1)
2829 if (m > s && m[-1] == *q)
2830 {
2831 --m;
2832 channels |= bit;
2833 }
2834
2835 if (channels == 0
2836 || !mips_parse_register_1 (s, m, &symval)
2837 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2838 return FALSE;
2839 }
2840
2841 *sptr = e;
2842 *symval_ptr = symval;
2843 if (channels_ptr)
2844 *channels_ptr = channels;
2845 return TRUE;
2846 }
2847
2848 /* Check if SPTR points at a valid register specifier according to TYPES.
2849 If so, then return 1, advance S to consume the specifier and store
2850 the register's number in REGNOP, otherwise return 0. */
2851
2852 static int
2853 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2854 {
2855 unsigned int regno;
2856
2857 if (mips_parse_register (s, &regno, NULL))
2858 {
2859 if (types & RTYPE_VEC)
2860 regno = mips_prefer_vec_regno (regno);
2861 if (regno & types)
2862 regno &= RNUM_MASK;
2863 else
2864 regno = ~0;
2865 }
2866 else
2867 {
2868 if (types & RWARN)
2869 as_warn (_("unrecognized register name `%s'"), *s);
2870 regno = ~0;
2871 }
2872 if (regnop)
2873 *regnop = regno;
2874 return regno <= RNUM_MASK;
2875 }
2876
2877 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2878 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2879
2880 static char *
2881 mips_parse_vu0_channels (char *s, unsigned int *channels)
2882 {
2883 unsigned int i;
2884
2885 *channels = 0;
2886 for (i = 0; i < 4; i++)
2887 if (*s == "xyzw"[i])
2888 {
2889 *channels |= 1 << (3 - i);
2890 ++s;
2891 }
2892 return s;
2893 }
2894
2895 /* Token types for parsed operand lists. */
2896 enum mips_operand_token_type {
2897 /* A plain register, e.g. $f2. */
2898 OT_REG,
2899
2900 /* A 4-bit XYZW channel mask. */
2901 OT_CHANNELS,
2902
2903 /* A constant vector index, e.g. [1]. */
2904 OT_INTEGER_INDEX,
2905
2906 /* A register vector index, e.g. [$2]. */
2907 OT_REG_INDEX,
2908
2909 /* A continuous range of registers, e.g. $s0-$s4. */
2910 OT_REG_RANGE,
2911
2912 /* A (possibly relocated) expression. */
2913 OT_INTEGER,
2914
2915 /* A floating-point value. */
2916 OT_FLOAT,
2917
2918 /* A single character. This can be '(', ')' or ',', but '(' only appears
2919 before OT_REGs. */
2920 OT_CHAR,
2921
2922 /* A doubled character, either "--" or "++". */
2923 OT_DOUBLE_CHAR,
2924
2925 /* The end of the operand list. */
2926 OT_END
2927 };
2928
2929 /* A parsed operand token. */
2930 struct mips_operand_token
2931 {
2932 /* The type of token. */
2933 enum mips_operand_token_type type;
2934 union
2935 {
2936 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2937 unsigned int regno;
2938
2939 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2940 unsigned int channels;
2941
2942 /* The integer value of an OT_INTEGER_INDEX. */
2943 addressT index;
2944
2945 /* The two register symbol values involved in an OT_REG_RANGE. */
2946 struct {
2947 unsigned int regno1;
2948 unsigned int regno2;
2949 } reg_range;
2950
2951 /* The value of an OT_INTEGER. The value is represented as an
2952 expression and the relocation operators that were applied to
2953 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2954 relocation operators were used. */
2955 struct {
2956 expressionS value;
2957 bfd_reloc_code_real_type relocs[3];
2958 } integer;
2959
2960 /* The binary data for an OT_FLOAT constant, and the number of bytes
2961 in the constant. */
2962 struct {
2963 unsigned char data[8];
2964 int length;
2965 } flt;
2966
2967 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2968 char ch;
2969 } u;
2970 };
2971
2972 /* An obstack used to construct lists of mips_operand_tokens. */
2973 static struct obstack mips_operand_tokens;
2974
2975 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2976
2977 static void
2978 mips_add_token (struct mips_operand_token *token,
2979 enum mips_operand_token_type type)
2980 {
2981 token->type = type;
2982 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2983 }
2984
2985 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2986 and OT_REG tokens for them if so, and return a pointer to the first
2987 unconsumed character. Return null otherwise. */
2988
2989 static char *
2990 mips_parse_base_start (char *s)
2991 {
2992 struct mips_operand_token token;
2993 unsigned int regno, channels;
2994 bfd_boolean decrement_p;
2995
2996 if (*s != '(')
2997 return 0;
2998
2999 ++s;
3000 SKIP_SPACE_TABS (s);
3001
3002 /* Only match "--" as part of a base expression. In other contexts "--X"
3003 is a double negative. */
3004 decrement_p = (s[0] == '-' && s[1] == '-');
3005 if (decrement_p)
3006 {
3007 s += 2;
3008 SKIP_SPACE_TABS (s);
3009 }
3010
3011 /* Allow a channel specifier because that leads to better error messages
3012 than treating something like "$vf0x++" as an expression. */
3013 if (!mips_parse_register (&s, &regno, &channels))
3014 return 0;
3015
3016 token.u.ch = '(';
3017 mips_add_token (&token, OT_CHAR);
3018
3019 if (decrement_p)
3020 {
3021 token.u.ch = '-';
3022 mips_add_token (&token, OT_DOUBLE_CHAR);
3023 }
3024
3025 token.u.regno = regno;
3026 mips_add_token (&token, OT_REG);
3027
3028 if (channels)
3029 {
3030 token.u.channels = channels;
3031 mips_add_token (&token, OT_CHANNELS);
3032 }
3033
3034 /* For consistency, only match "++" as part of base expressions too. */
3035 SKIP_SPACE_TABS (s);
3036 if (s[0] == '+' && s[1] == '+')
3037 {
3038 s += 2;
3039 token.u.ch = '+';
3040 mips_add_token (&token, OT_DOUBLE_CHAR);
3041 }
3042
3043 return s;
3044 }
3045
3046 /* Parse one or more tokens from S. Return a pointer to the first
3047 unconsumed character on success. Return null if an error was found
3048 and store the error text in insn_error. FLOAT_FORMAT is as for
3049 mips_parse_arguments. */
3050
3051 static char *
3052 mips_parse_argument_token (char *s, char float_format)
3053 {
3054 char *end, *save_in;
3055 const char *err;
3056 unsigned int regno1, regno2, channels;
3057 struct mips_operand_token token;
3058
3059 /* First look for "($reg", since we want to treat that as an
3060 OT_CHAR and OT_REG rather than an expression. */
3061 end = mips_parse_base_start (s);
3062 if (end)
3063 return end;
3064
3065 /* Handle other characters that end up as OT_CHARs. */
3066 if (*s == ')' || *s == ',')
3067 {
3068 token.u.ch = *s;
3069 mips_add_token (&token, OT_CHAR);
3070 ++s;
3071 return s;
3072 }
3073
3074 /* Handle tokens that start with a register. */
3075 if (mips_parse_register (&s, &regno1, &channels))
3076 {
3077 if (channels)
3078 {
3079 /* A register and a VU0 channel suffix. */
3080 token.u.regno = regno1;
3081 mips_add_token (&token, OT_REG);
3082
3083 token.u.channels = channels;
3084 mips_add_token (&token, OT_CHANNELS);
3085 return s;
3086 }
3087
3088 SKIP_SPACE_TABS (s);
3089 if (*s == '-')
3090 {
3091 /* A register range. */
3092 ++s;
3093 SKIP_SPACE_TABS (s);
3094 if (!mips_parse_register (&s, &regno2, NULL))
3095 {
3096 set_insn_error (0, _("invalid register range"));
3097 return 0;
3098 }
3099
3100 token.u.reg_range.regno1 = regno1;
3101 token.u.reg_range.regno2 = regno2;
3102 mips_add_token (&token, OT_REG_RANGE);
3103 return s;
3104 }
3105
3106 /* Add the register itself. */
3107 token.u.regno = regno1;
3108 mips_add_token (&token, OT_REG);
3109
3110 /* Check for a vector index. */
3111 if (*s == '[')
3112 {
3113 ++s;
3114 SKIP_SPACE_TABS (s);
3115 if (mips_parse_register (&s, &token.u.regno, NULL))
3116 mips_add_token (&token, OT_REG_INDEX);
3117 else
3118 {
3119 expressionS element;
3120
3121 my_getExpression (&element, s);
3122 if (element.X_op != O_constant)
3123 {
3124 set_insn_error (0, _("vector element must be constant"));
3125 return 0;
3126 }
3127 s = expr_end;
3128 token.u.index = element.X_add_number;
3129 mips_add_token (&token, OT_INTEGER_INDEX);
3130 }
3131 SKIP_SPACE_TABS (s);
3132 if (*s != ']')
3133 {
3134 set_insn_error (0, _("missing `]'"));
3135 return 0;
3136 }
3137 ++s;
3138 }
3139 return s;
3140 }
3141
3142 if (float_format)
3143 {
3144 /* First try to treat expressions as floats. */
3145 save_in = input_line_pointer;
3146 input_line_pointer = s;
3147 err = md_atof (float_format, (char *) token.u.flt.data,
3148 &token.u.flt.length);
3149 end = input_line_pointer;
3150 input_line_pointer = save_in;
3151 if (err && *err)
3152 {
3153 set_insn_error (0, err);
3154 return 0;
3155 }
3156 if (s != end)
3157 {
3158 mips_add_token (&token, OT_FLOAT);
3159 return end;
3160 }
3161 }
3162
3163 /* Treat everything else as an integer expression. */
3164 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3165 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3166 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3167 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3168 s = expr_end;
3169 mips_add_token (&token, OT_INTEGER);
3170 return s;
3171 }
3172
3173 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3174 if expressions should be treated as 32-bit floating-point constants,
3175 'd' if they should be treated as 64-bit floating-point constants,
3176 or 0 if they should be treated as integer expressions (the usual case).
3177
3178 Return a list of tokens on success, otherwise return 0. The caller
3179 must obstack_free the list after use. */
3180
3181 static struct mips_operand_token *
3182 mips_parse_arguments (char *s, char float_format)
3183 {
3184 struct mips_operand_token token;
3185
3186 SKIP_SPACE_TABS (s);
3187 while (*s)
3188 {
3189 s = mips_parse_argument_token (s, float_format);
3190 if (!s)
3191 {
3192 obstack_free (&mips_operand_tokens,
3193 obstack_finish (&mips_operand_tokens));
3194 return 0;
3195 }
3196 SKIP_SPACE_TABS (s);
3197 }
3198 mips_add_token (&token, OT_END);
3199 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3200 }
3201
3202 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3203 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3204
3205 static bfd_boolean
3206 is_opcode_valid (const struct mips_opcode *mo)
3207 {
3208 int isa = mips_opts.isa;
3209 int ase = mips_opts.ase;
3210 int fp_s, fp_d;
3211 unsigned int i;
3212
3213 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3214 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3215 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3216 ase |= mips_ases[i].flags64;
3217
3218 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3219 return FALSE;
3220
3221 /* Check whether the instruction or macro requires single-precision or
3222 double-precision floating-point support. Note that this information is
3223 stored differently in the opcode table for insns and macros. */
3224 if (mo->pinfo == INSN_MACRO)
3225 {
3226 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3227 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3228 }
3229 else
3230 {
3231 fp_s = mo->pinfo & FP_S;
3232 fp_d = mo->pinfo & FP_D;
3233 }
3234
3235 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3236 return FALSE;
3237
3238 if (fp_s && mips_opts.soft_float)
3239 return FALSE;
3240
3241 return TRUE;
3242 }
3243
3244 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3245 selected ISA and architecture. */
3246
3247 static bfd_boolean
3248 is_opcode_valid_16 (const struct mips_opcode *mo)
3249 {
3250 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3251 }
3252
3253 /* Return TRUE if the size of the microMIPS opcode MO matches one
3254 explicitly requested. Always TRUE in the standard MIPS mode. */
3255
3256 static bfd_boolean
3257 is_size_valid (const struct mips_opcode *mo)
3258 {
3259 if (!mips_opts.micromips)
3260 return TRUE;
3261
3262 if (mips_opts.insn32)
3263 {
3264 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3265 return FALSE;
3266 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3267 return FALSE;
3268 }
3269 if (!forced_insn_length)
3270 return TRUE;
3271 if (mo->pinfo == INSN_MACRO)
3272 return FALSE;
3273 return forced_insn_length == micromips_insn_length (mo);
3274 }
3275
3276 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3277 of the preceding instruction. Always TRUE in the standard MIPS mode.
3278
3279 We don't accept macros in 16-bit delay slots to avoid a case where
3280 a macro expansion fails because it relies on a preceding 32-bit real
3281 instruction to have matched and does not handle the operands correctly.
3282 The only macros that may expand to 16-bit instructions are JAL that
3283 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3284 and BGT (that likewise cannot be placed in a delay slot) that decay to
3285 a NOP. In all these cases the macros precede any corresponding real
3286 instruction definitions in the opcode table, so they will match in the
3287 second pass where the size of the delay slot is ignored and therefore
3288 produce correct code. */
3289
3290 static bfd_boolean
3291 is_delay_slot_valid (const struct mips_opcode *mo)
3292 {
3293 if (!mips_opts.micromips)
3294 return TRUE;
3295
3296 if (mo->pinfo == INSN_MACRO)
3297 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3298 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3299 && micromips_insn_length (mo) != 4)
3300 return FALSE;
3301 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3302 && micromips_insn_length (mo) != 2)
3303 return FALSE;
3304
3305 return TRUE;
3306 }
3307
3308 /* For consistency checking, verify that all bits of OPCODE are specified
3309 either by the match/mask part of the instruction definition, or by the
3310 operand list. Also build up a list of operands in OPERANDS.
3311
3312 INSN_BITS says which bits of the instruction are significant.
3313 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3314 provides the mips_operand description of each operand. DECODE_OPERAND
3315 is null for MIPS16 instructions. */
3316
3317 static int
3318 validate_mips_insn (const struct mips_opcode *opcode,
3319 unsigned long insn_bits,
3320 const struct mips_operand *(*decode_operand) (const char *),
3321 struct mips_operand_array *operands)
3322 {
3323 const char *s;
3324 unsigned long used_bits, doubled, undefined, opno, mask;
3325 const struct mips_operand *operand;
3326
3327 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3328 if ((mask & opcode->match) != opcode->match)
3329 {
3330 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3331 opcode->name, opcode->args);
3332 return 0;
3333 }
3334 used_bits = 0;
3335 opno = 0;
3336 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3337 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3338 for (s = opcode->args; *s; ++s)
3339 switch (*s)
3340 {
3341 case ',':
3342 case '(':
3343 case ')':
3344 break;
3345
3346 case '#':
3347 s++;
3348 break;
3349
3350 default:
3351 if (!decode_operand)
3352 operand = decode_mips16_operand (*s, FALSE);
3353 else
3354 operand = decode_operand (s);
3355 if (!operand && opcode->pinfo != INSN_MACRO)
3356 {
3357 as_bad (_("internal: unknown operand type: %s %s"),
3358 opcode->name, opcode->args);
3359 return 0;
3360 }
3361 gas_assert (opno < MAX_OPERANDS);
3362 operands->operand[opno] = operand;
3363 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3364 {
3365 used_bits = mips_insert_operand (operand, used_bits, -1);
3366 if (operand->type == OP_MDMX_IMM_REG)
3367 /* Bit 5 is the format selector (OB vs QH). The opcode table
3368 has separate entries for each format. */
3369 used_bits &= ~(1 << (operand->lsb + 5));
3370 if (operand->type == OP_ENTRY_EXIT_LIST)
3371 used_bits &= ~(mask & 0x700);
3372 }
3373 /* Skip prefix characters. */
3374 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3375 ++s;
3376 opno += 1;
3377 break;
3378 }
3379 doubled = used_bits & mask & insn_bits;
3380 if (doubled)
3381 {
3382 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3383 " %s %s"), doubled, opcode->name, opcode->args);
3384 return 0;
3385 }
3386 used_bits |= mask;
3387 undefined = ~used_bits & insn_bits;
3388 if (opcode->pinfo != INSN_MACRO && undefined)
3389 {
3390 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3391 undefined, opcode->name, opcode->args);
3392 return 0;
3393 }
3394 used_bits &= ~insn_bits;
3395 if (used_bits)
3396 {
3397 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3398 used_bits, opcode->name, opcode->args);
3399 return 0;
3400 }
3401 return 1;
3402 }
3403
3404 /* The MIPS16 version of validate_mips_insn. */
3405
3406 static int
3407 validate_mips16_insn (const struct mips_opcode *opcode,
3408 struct mips_operand_array *operands)
3409 {
3410 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3411 {
3412 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3413 instruction. Use TMP to describe the full instruction. */
3414 struct mips_opcode tmp;
3415
3416 tmp = *opcode;
3417 tmp.match <<= 16;
3418 tmp.mask <<= 16;
3419 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3420 }
3421 return validate_mips_insn (opcode, 0xffff, 0, operands);
3422 }
3423
3424 /* The microMIPS version of validate_mips_insn. */
3425
3426 static int
3427 validate_micromips_insn (const struct mips_opcode *opc,
3428 struct mips_operand_array *operands)
3429 {
3430 unsigned long insn_bits;
3431 unsigned long major;
3432 unsigned int length;
3433
3434 if (opc->pinfo == INSN_MACRO)
3435 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3436 operands);
3437
3438 length = micromips_insn_length (opc);
3439 if (length != 2 && length != 4)
3440 {
3441 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3442 "%s %s"), length, opc->name, opc->args);
3443 return 0;
3444 }
3445 major = opc->match >> (10 + 8 * (length - 2));
3446 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3447 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3448 {
3449 as_bad (_("internal error: bad microMIPS opcode "
3450 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3451 return 0;
3452 }
3453
3454 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3455 insn_bits = 1 << 4 * length;
3456 insn_bits <<= 4 * length;
3457 insn_bits -= 1;
3458 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3459 operands);
3460 }
3461
3462 /* This function is called once, at assembler startup time. It should set up
3463 all the tables, etc. that the MD part of the assembler will need. */
3464
3465 void
3466 md_begin (void)
3467 {
3468 const char *retval = NULL;
3469 int i = 0;
3470 int broken = 0;
3471
3472 if (mips_pic != NO_PIC)
3473 {
3474 if (g_switch_seen && g_switch_value != 0)
3475 as_bad (_("-G may not be used in position-independent code"));
3476 g_switch_value = 0;
3477 }
3478 else if (mips_abicalls)
3479 {
3480 if (g_switch_seen && g_switch_value != 0)
3481 as_bad (_("-G may not be used with abicalls"));
3482 g_switch_value = 0;
3483 }
3484
3485 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3486 as_warn (_("could not set architecture and machine"));
3487
3488 op_hash = hash_new ();
3489
3490 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3491 for (i = 0; i < NUMOPCODES;)
3492 {
3493 const char *name = mips_opcodes[i].name;
3494
3495 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3496 if (retval != NULL)
3497 {
3498 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3499 mips_opcodes[i].name, retval);
3500 /* Probably a memory allocation problem? Give up now. */
3501 as_fatal (_("broken assembler, no assembly attempted"));
3502 }
3503 do
3504 {
3505 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3506 decode_mips_operand, &mips_operands[i]))
3507 broken = 1;
3508 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3509 {
3510 create_insn (&nop_insn, mips_opcodes + i);
3511 if (mips_fix_loongson2f_nop)
3512 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3513 nop_insn.fixed_p = 1;
3514 }
3515 ++i;
3516 }
3517 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3518 }
3519
3520 mips16_op_hash = hash_new ();
3521 mips16_operands = XCNEWVEC (struct mips_operand_array,
3522 bfd_mips16_num_opcodes);
3523
3524 i = 0;
3525 while (i < bfd_mips16_num_opcodes)
3526 {
3527 const char *name = mips16_opcodes[i].name;
3528
3529 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3530 if (retval != NULL)
3531 as_fatal (_("internal: can't hash `%s': %s"),
3532 mips16_opcodes[i].name, retval);
3533 do
3534 {
3535 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3536 broken = 1;
3537 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3538 {
3539 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3540 mips16_nop_insn.fixed_p = 1;
3541 }
3542 ++i;
3543 }
3544 while (i < bfd_mips16_num_opcodes
3545 && strcmp (mips16_opcodes[i].name, name) == 0);
3546 }
3547
3548 micromips_op_hash = hash_new ();
3549 micromips_operands = XCNEWVEC (struct mips_operand_array,
3550 bfd_micromips_num_opcodes);
3551
3552 i = 0;
3553 while (i < bfd_micromips_num_opcodes)
3554 {
3555 const char *name = micromips_opcodes[i].name;
3556
3557 retval = hash_insert (micromips_op_hash, name,
3558 (void *) &micromips_opcodes[i]);
3559 if (retval != NULL)
3560 as_fatal (_("internal: can't hash `%s': %s"),
3561 micromips_opcodes[i].name, retval);
3562 do
3563 {
3564 struct mips_cl_insn *micromips_nop_insn;
3565
3566 if (!validate_micromips_insn (&micromips_opcodes[i],
3567 &micromips_operands[i]))
3568 broken = 1;
3569
3570 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3571 {
3572 if (micromips_insn_length (micromips_opcodes + i) == 2)
3573 micromips_nop_insn = &micromips_nop16_insn;
3574 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3575 micromips_nop_insn = &micromips_nop32_insn;
3576 else
3577 continue;
3578
3579 if (micromips_nop_insn->insn_mo == NULL
3580 && strcmp (name, "nop") == 0)
3581 {
3582 create_insn (micromips_nop_insn, micromips_opcodes + i);
3583 micromips_nop_insn->fixed_p = 1;
3584 }
3585 }
3586 }
3587 while (++i < bfd_micromips_num_opcodes
3588 && strcmp (micromips_opcodes[i].name, name) == 0);
3589 }
3590
3591 if (broken)
3592 as_fatal (_("broken assembler, no assembly attempted"));
3593
3594 /* We add all the general register names to the symbol table. This
3595 helps us detect invalid uses of them. */
3596 for (i = 0; reg_names[i].name; i++)
3597 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3598 reg_names[i].num, /* & RNUM_MASK, */
3599 &zero_address_frag));
3600 if (HAVE_NEWABI)
3601 for (i = 0; reg_names_n32n64[i].name; i++)
3602 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3603 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3604 &zero_address_frag));
3605 else
3606 for (i = 0; reg_names_o32[i].name; i++)
3607 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3608 reg_names_o32[i].num, /* & RNUM_MASK, */
3609 &zero_address_frag));
3610
3611 for (i = 0; i < 32; i++)
3612 {
3613 char regname[6];
3614
3615 /* R5900 VU0 floating-point register. */
3616 sprintf (regname, "$vf%d", i);
3617 symbol_table_insert (symbol_new (regname, reg_section,
3618 RTYPE_VF | i, &zero_address_frag));
3619
3620 /* R5900 VU0 integer register. */
3621 sprintf (regname, "$vi%d", i);
3622 symbol_table_insert (symbol_new (regname, reg_section,
3623 RTYPE_VI | i, &zero_address_frag));
3624
3625 /* MSA register. */
3626 sprintf (regname, "$w%d", i);
3627 symbol_table_insert (symbol_new (regname, reg_section,
3628 RTYPE_MSA | i, &zero_address_frag));
3629 }
3630
3631 obstack_init (&mips_operand_tokens);
3632
3633 mips_no_prev_insn ();
3634
3635 mips_gprmask = 0;
3636 mips_cprmask[0] = 0;
3637 mips_cprmask[1] = 0;
3638 mips_cprmask[2] = 0;
3639 mips_cprmask[3] = 0;
3640
3641 /* set the default alignment for the text section (2**2) */
3642 record_alignment (text_section, 2);
3643
3644 bfd_set_gp_size (stdoutput, g_switch_value);
3645
3646 /* On a native system other than VxWorks, sections must be aligned
3647 to 16 byte boundaries. When configured for an embedded ELF
3648 target, we don't bother. */
3649 if (strncmp (TARGET_OS, "elf", 3) != 0
3650 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3651 {
3652 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3653 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3654 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3655 }
3656
3657 /* Create a .reginfo section for register masks and a .mdebug
3658 section for debugging information. */
3659 {
3660 segT seg;
3661 subsegT subseg;
3662 flagword flags;
3663 segT sec;
3664
3665 seg = now_seg;
3666 subseg = now_subseg;
3667
3668 /* The ABI says this section should be loaded so that the
3669 running program can access it. However, we don't load it
3670 if we are configured for an embedded target */
3671 flags = SEC_READONLY | SEC_DATA;
3672 if (strncmp (TARGET_OS, "elf", 3) != 0)
3673 flags |= SEC_ALLOC | SEC_LOAD;
3674
3675 if (mips_abi != N64_ABI)
3676 {
3677 sec = subseg_new (".reginfo", (subsegT) 0);
3678
3679 bfd_set_section_flags (stdoutput, sec, flags);
3680 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3681
3682 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3683 }
3684 else
3685 {
3686 /* The 64-bit ABI uses a .MIPS.options section rather than
3687 .reginfo section. */
3688 sec = subseg_new (".MIPS.options", (subsegT) 0);
3689 bfd_set_section_flags (stdoutput, sec, flags);
3690 bfd_set_section_alignment (stdoutput, sec, 3);
3691
3692 /* Set up the option header. */
3693 {
3694 Elf_Internal_Options opthdr;
3695 char *f;
3696
3697 opthdr.kind = ODK_REGINFO;
3698 opthdr.size = (sizeof (Elf_External_Options)
3699 + sizeof (Elf64_External_RegInfo));
3700 opthdr.section = 0;
3701 opthdr.info = 0;
3702 f = frag_more (sizeof (Elf_External_Options));
3703 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3704 (Elf_External_Options *) f);
3705
3706 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3707 }
3708 }
3709
3710 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3711 bfd_set_section_flags (stdoutput, sec,
3712 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3713 bfd_set_section_alignment (stdoutput, sec, 3);
3714 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3715
3716 if (ECOFF_DEBUGGING)
3717 {
3718 sec = subseg_new (".mdebug", (subsegT) 0);
3719 (void) bfd_set_section_flags (stdoutput, sec,
3720 SEC_HAS_CONTENTS | SEC_READONLY);
3721 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3722 }
3723 else if (mips_flag_pdr)
3724 {
3725 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3726 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3727 SEC_READONLY | SEC_RELOC
3728 | SEC_DEBUGGING);
3729 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3730 }
3731
3732 subseg_set (seg, subseg);
3733 }
3734
3735 if (mips_fix_vr4120)
3736 init_vr4120_conflicts ();
3737 }
3738
3739 static inline void
3740 fpabi_incompatible_with (int fpabi, const char *what)
3741 {
3742 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3743 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3744 }
3745
3746 static inline void
3747 fpabi_requires (int fpabi, const char *what)
3748 {
3749 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3750 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3751 }
3752
3753 /* Check -mabi and register sizes against the specified FP ABI. */
3754 static void
3755 check_fpabi (int fpabi)
3756 {
3757 switch (fpabi)
3758 {
3759 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3760 if (file_mips_opts.soft_float)
3761 fpabi_incompatible_with (fpabi, "softfloat");
3762 else if (file_mips_opts.single_float)
3763 fpabi_incompatible_with (fpabi, "singlefloat");
3764 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3765 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3766 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3767 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3768 break;
3769
3770 case Val_GNU_MIPS_ABI_FP_XX:
3771 if (mips_abi != O32_ABI)
3772 fpabi_requires (fpabi, "-mabi=32");
3773 else if (file_mips_opts.soft_float)
3774 fpabi_incompatible_with (fpabi, "softfloat");
3775 else if (file_mips_opts.single_float)
3776 fpabi_incompatible_with (fpabi, "singlefloat");
3777 else if (file_mips_opts.fp != 0)
3778 fpabi_requires (fpabi, "fp=xx");
3779 break;
3780
3781 case Val_GNU_MIPS_ABI_FP_64A:
3782 case Val_GNU_MIPS_ABI_FP_64:
3783 if (mips_abi != O32_ABI)
3784 fpabi_requires (fpabi, "-mabi=32");
3785 else if (file_mips_opts.soft_float)
3786 fpabi_incompatible_with (fpabi, "softfloat");
3787 else if (file_mips_opts.single_float)
3788 fpabi_incompatible_with (fpabi, "singlefloat");
3789 else if (file_mips_opts.fp != 64)
3790 fpabi_requires (fpabi, "fp=64");
3791 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3792 fpabi_incompatible_with (fpabi, "nooddspreg");
3793 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3794 fpabi_requires (fpabi, "nooddspreg");
3795 break;
3796
3797 case Val_GNU_MIPS_ABI_FP_SINGLE:
3798 if (file_mips_opts.soft_float)
3799 fpabi_incompatible_with (fpabi, "softfloat");
3800 else if (!file_mips_opts.single_float)
3801 fpabi_requires (fpabi, "singlefloat");
3802 break;
3803
3804 case Val_GNU_MIPS_ABI_FP_SOFT:
3805 if (!file_mips_opts.soft_float)
3806 fpabi_requires (fpabi, "softfloat");
3807 break;
3808
3809 case Val_GNU_MIPS_ABI_FP_OLD_64:
3810 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3811 Tag_GNU_MIPS_ABI_FP, fpabi);
3812 break;
3813
3814 case Val_GNU_MIPS_ABI_FP_NAN2008:
3815 /* Silently ignore compatibility value. */
3816 break;
3817
3818 default:
3819 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3820 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3821 break;
3822 }
3823 }
3824
3825 /* Perform consistency checks on the current options. */
3826
3827 static void
3828 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3829 {
3830 /* Check the size of integer registers agrees with the ABI and ISA. */
3831 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3832 as_bad (_("`gp=64' used with a 32-bit processor"));
3833 else if (abi_checks
3834 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3835 as_bad (_("`gp=32' used with a 64-bit ABI"));
3836 else if (abi_checks
3837 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3838 as_bad (_("`gp=64' used with a 32-bit ABI"));
3839
3840 /* Check the size of the float registers agrees with the ABI and ISA. */
3841 switch (opts->fp)
3842 {
3843 case 0:
3844 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3845 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3846 else if (opts->single_float == 1)
3847 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3848 break;
3849 case 64:
3850 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3851 as_bad (_("`fp=64' used with a 32-bit fpu"));
3852 else if (abi_checks
3853 && ABI_NEEDS_32BIT_REGS (mips_abi)
3854 && !ISA_HAS_MXHC1 (opts->isa))
3855 as_warn (_("`fp=64' used with a 32-bit ABI"));
3856 break;
3857 case 32:
3858 if (abi_checks
3859 && ABI_NEEDS_64BIT_REGS (mips_abi))
3860 as_warn (_("`fp=32' used with a 64-bit ABI"));
3861 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3862 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3863 break;
3864 default:
3865 as_bad (_("Unknown size of floating point registers"));
3866 break;
3867 }
3868
3869 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3870 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3871
3872 if (opts->micromips == 1 && opts->mips16 == 1)
3873 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3874 else if (ISA_IS_R6 (opts->isa)
3875 && (opts->micromips == 1
3876 || opts->mips16 == 1))
3877 as_fatal (_("`%s' cannot be used with `%s'"),
3878 opts->micromips ? "micromips" : "mips16",
3879 mips_cpu_info_from_isa (opts->isa)->name);
3880
3881 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3882 as_fatal (_("branch relaxation is not supported in `%s'"),
3883 mips_cpu_info_from_isa (opts->isa)->name);
3884 }
3885
3886 /* Perform consistency checks on the module level options exactly once.
3887 This is a deferred check that happens:
3888 at the first .set directive
3889 or, at the first pseudo op that generates code (inc .dc.a)
3890 or, at the first instruction
3891 or, at the end. */
3892
3893 static void
3894 file_mips_check_options (void)
3895 {
3896 const struct mips_cpu_info *arch_info = 0;
3897
3898 if (file_mips_opts_checked)
3899 return;
3900
3901 /* The following code determines the register size.
3902 Similar code was added to GCC 3.3 (see override_options() in
3903 config/mips/mips.c). The GAS and GCC code should be kept in sync
3904 as much as possible. */
3905
3906 if (file_mips_opts.gp < 0)
3907 {
3908 /* Infer the integer register size from the ABI and processor.
3909 Restrict ourselves to 32-bit registers if that's all the
3910 processor has, or if the ABI cannot handle 64-bit registers. */
3911 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3912 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3913 ? 32 : 64;
3914 }
3915
3916 if (file_mips_opts.fp < 0)
3917 {
3918 /* No user specified float register size.
3919 ??? GAS treats single-float processors as though they had 64-bit
3920 float registers (although it complains when double-precision
3921 instructions are used). As things stand, saying they have 32-bit
3922 registers would lead to spurious "register must be even" messages.
3923 So here we assume float registers are never smaller than the
3924 integer ones. */
3925 if (file_mips_opts.gp == 64)
3926 /* 64-bit integer registers implies 64-bit float registers. */
3927 file_mips_opts.fp = 64;
3928 else if ((file_mips_opts.ase & FP64_ASES)
3929 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3930 /* Handle ASEs that require 64-bit float registers, if possible. */
3931 file_mips_opts.fp = 64;
3932 else if (ISA_IS_R6 (mips_opts.isa))
3933 /* R6 implies 64-bit float registers. */
3934 file_mips_opts.fp = 64;
3935 else
3936 /* 32-bit float registers. */
3937 file_mips_opts.fp = 32;
3938 }
3939
3940 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3941
3942 /* Disable operations on odd-numbered floating-point registers by default
3943 when using the FPXX ABI. */
3944 if (file_mips_opts.oddspreg < 0)
3945 {
3946 if (file_mips_opts.fp == 0)
3947 file_mips_opts.oddspreg = 0;
3948 else
3949 file_mips_opts.oddspreg = 1;
3950 }
3951
3952 /* End of GCC-shared inference code. */
3953
3954 /* This flag is set when we have a 64-bit capable CPU but use only
3955 32-bit wide registers. Note that EABI does not use it. */
3956 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3957 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3958 || mips_abi == O32_ABI))
3959 mips_32bitmode = 1;
3960
3961 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3962 as_bad (_("trap exception not supported at ISA 1"));
3963
3964 /* If the selected architecture includes support for ASEs, enable
3965 generation of code for them. */
3966 if (file_mips_opts.mips16 == -1)
3967 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3968 if (file_mips_opts.micromips == -1)
3969 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3970 ? 1 : 0;
3971
3972 if (mips_nan2008 == -1)
3973 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3974 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3975 as_fatal (_("`%s' does not support legacy NaN"),
3976 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3977
3978 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3979 being selected implicitly. */
3980 if (file_mips_opts.fp != 64)
3981 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3982
3983 /* If the user didn't explicitly select or deselect a particular ASE,
3984 use the default setting for the CPU. */
3985 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3986
3987 /* Set up the current options. These may change throughout assembly. */
3988 mips_opts = file_mips_opts;
3989
3990 mips_check_isa_supports_ases ();
3991 mips_check_options (&file_mips_opts, TRUE);
3992 file_mips_opts_checked = TRUE;
3993
3994 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3995 as_warn (_("could not set architecture and machine"));
3996 }
3997
3998 void
3999 md_assemble (char *str)
4000 {
4001 struct mips_cl_insn insn;
4002 bfd_reloc_code_real_type unused_reloc[3]
4003 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4004
4005 file_mips_check_options ();
4006
4007 imm_expr.X_op = O_absent;
4008 offset_expr.X_op = O_absent;
4009 offset_reloc[0] = BFD_RELOC_UNUSED;
4010 offset_reloc[1] = BFD_RELOC_UNUSED;
4011 offset_reloc[2] = BFD_RELOC_UNUSED;
4012
4013 mips_mark_labels ();
4014 mips_assembling_insn = TRUE;
4015 clear_insn_error ();
4016
4017 if (mips_opts.mips16)
4018 mips16_ip (str, &insn);
4019 else
4020 {
4021 mips_ip (str, &insn);
4022 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4023 str, insn.insn_opcode));
4024 }
4025
4026 if (insn_error.msg)
4027 report_insn_error (str);
4028 else if (insn.insn_mo->pinfo == INSN_MACRO)
4029 {
4030 macro_start ();
4031 if (mips_opts.mips16)
4032 mips16_macro (&insn);
4033 else
4034 macro (&insn, str);
4035 macro_end ();
4036 }
4037 else
4038 {
4039 if (offset_expr.X_op != O_absent)
4040 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4041 else
4042 append_insn (&insn, NULL, unused_reloc, FALSE);
4043 }
4044
4045 mips_assembling_insn = FALSE;
4046 }
4047
4048 /* Convenience functions for abstracting away the differences between
4049 MIPS16 and non-MIPS16 relocations. */
4050
4051 static inline bfd_boolean
4052 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4053 {
4054 switch (reloc)
4055 {
4056 case BFD_RELOC_MIPS16_JMP:
4057 case BFD_RELOC_MIPS16_GPREL:
4058 case BFD_RELOC_MIPS16_GOT16:
4059 case BFD_RELOC_MIPS16_CALL16:
4060 case BFD_RELOC_MIPS16_HI16_S:
4061 case BFD_RELOC_MIPS16_HI16:
4062 case BFD_RELOC_MIPS16_LO16:
4063 return TRUE;
4064
4065 default:
4066 return FALSE;
4067 }
4068 }
4069
4070 static inline bfd_boolean
4071 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4072 {
4073 switch (reloc)
4074 {
4075 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4076 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4077 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4078 case BFD_RELOC_MICROMIPS_GPREL16:
4079 case BFD_RELOC_MICROMIPS_JMP:
4080 case BFD_RELOC_MICROMIPS_HI16:
4081 case BFD_RELOC_MICROMIPS_HI16_S:
4082 case BFD_RELOC_MICROMIPS_LO16:
4083 case BFD_RELOC_MICROMIPS_LITERAL:
4084 case BFD_RELOC_MICROMIPS_GOT16:
4085 case BFD_RELOC_MICROMIPS_CALL16:
4086 case BFD_RELOC_MICROMIPS_GOT_HI16:
4087 case BFD_RELOC_MICROMIPS_GOT_LO16:
4088 case BFD_RELOC_MICROMIPS_CALL_HI16:
4089 case BFD_RELOC_MICROMIPS_CALL_LO16:
4090 case BFD_RELOC_MICROMIPS_SUB:
4091 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4092 case BFD_RELOC_MICROMIPS_GOT_OFST:
4093 case BFD_RELOC_MICROMIPS_GOT_DISP:
4094 case BFD_RELOC_MICROMIPS_HIGHEST:
4095 case BFD_RELOC_MICROMIPS_HIGHER:
4096 case BFD_RELOC_MICROMIPS_SCN_DISP:
4097 case BFD_RELOC_MICROMIPS_JALR:
4098 return TRUE;
4099
4100 default:
4101 return FALSE;
4102 }
4103 }
4104
4105 static inline bfd_boolean
4106 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4107 {
4108 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4109 }
4110
4111 static inline bfd_boolean
4112 got16_reloc_p (bfd_reloc_code_real_type reloc)
4113 {
4114 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4115 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4116 }
4117
4118 static inline bfd_boolean
4119 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4120 {
4121 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4122 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4123 }
4124
4125 static inline bfd_boolean
4126 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4127 {
4128 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4129 || reloc == BFD_RELOC_MICROMIPS_LO16);
4130 }
4131
4132 static inline bfd_boolean
4133 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4134 {
4135 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4136 }
4137
4138 static inline bfd_boolean
4139 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4140 {
4141 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4142 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4143 }
4144
4145 /* Return true if RELOC is a PC-relative relocation that does not have
4146 full address range. */
4147
4148 static inline bfd_boolean
4149 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4150 {
4151 switch (reloc)
4152 {
4153 case BFD_RELOC_16_PCREL_S2:
4154 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4155 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4156 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4157 case BFD_RELOC_MIPS_21_PCREL_S2:
4158 case BFD_RELOC_MIPS_26_PCREL_S2:
4159 case BFD_RELOC_MIPS_18_PCREL_S3:
4160 case BFD_RELOC_MIPS_19_PCREL_S2:
4161 return TRUE;
4162
4163 case BFD_RELOC_32_PCREL:
4164 case BFD_RELOC_HI16_S_PCREL:
4165 case BFD_RELOC_LO16_PCREL:
4166 return HAVE_64BIT_ADDRESSES;
4167
4168 default:
4169 return FALSE;
4170 }
4171 }
4172
4173 /* Return true if the given relocation might need a matching %lo().
4174 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4175 need a matching %lo() when applied to local symbols. */
4176
4177 static inline bfd_boolean
4178 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4179 {
4180 return (HAVE_IN_PLACE_ADDENDS
4181 && (hi16_reloc_p (reloc)
4182 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4183 all GOT16 relocations evaluate to "G". */
4184 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4185 }
4186
4187 /* Return the type of %lo() reloc needed by RELOC, given that
4188 reloc_needs_lo_p. */
4189
4190 static inline bfd_reloc_code_real_type
4191 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4192 {
4193 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4194 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4195 : BFD_RELOC_LO16));
4196 }
4197
4198 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4199 relocation. */
4200
4201 static inline bfd_boolean
4202 fixup_has_matching_lo_p (fixS *fixp)
4203 {
4204 return (fixp->fx_next != NULL
4205 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4206 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4207 && fixp->fx_offset == fixp->fx_next->fx_offset);
4208 }
4209
4210 /* Move all labels in LABELS to the current insertion point. TEXT_P
4211 says whether the labels refer to text or data. */
4212
4213 static void
4214 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4215 {
4216 struct insn_label_list *l;
4217 valueT val;
4218
4219 for (l = labels; l != NULL; l = l->next)
4220 {
4221 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4222 symbol_set_frag (l->label, frag_now);
4223 val = (valueT) frag_now_fix ();
4224 /* MIPS16/microMIPS text labels are stored as odd. */
4225 if (text_p && HAVE_CODE_COMPRESSION)
4226 ++val;
4227 S_SET_VALUE (l->label, val);
4228 }
4229 }
4230
4231 /* Move all labels in insn_labels to the current insertion point
4232 and treat them as text labels. */
4233
4234 static void
4235 mips_move_text_labels (void)
4236 {
4237 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4238 }
4239
4240 static bfd_boolean
4241 s_is_linkonce (symbolS *sym, segT from_seg)
4242 {
4243 bfd_boolean linkonce = FALSE;
4244 segT symseg = S_GET_SEGMENT (sym);
4245
4246 if (symseg != from_seg && !S_IS_LOCAL (sym))
4247 {
4248 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4249 linkonce = TRUE;
4250 /* The GNU toolchain uses an extension for ELF: a section
4251 beginning with the magic string .gnu.linkonce is a
4252 linkonce section. */
4253 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4254 sizeof ".gnu.linkonce" - 1) == 0)
4255 linkonce = TRUE;
4256 }
4257 return linkonce;
4258 }
4259
4260 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4261 linker to handle them specially, such as generating jalx instructions
4262 when needed. We also make them odd for the duration of the assembly,
4263 in order to generate the right sort of code. We will make them even
4264 in the adjust_symtab routine, while leaving them marked. This is
4265 convenient for the debugger and the disassembler. The linker knows
4266 to make them odd again. */
4267
4268 static void
4269 mips_compressed_mark_label (symbolS *label)
4270 {
4271 gas_assert (HAVE_CODE_COMPRESSION);
4272
4273 if (mips_opts.mips16)
4274 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4275 else
4276 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4277 if ((S_GET_VALUE (label) & 1) == 0
4278 /* Don't adjust the address if the label is global or weak, or
4279 in a link-once section, since we'll be emitting symbol reloc
4280 references to it which will be patched up by the linker, and
4281 the final value of the symbol may or may not be MIPS16/microMIPS. */
4282 && !S_IS_WEAK (label)
4283 && !S_IS_EXTERNAL (label)
4284 && !s_is_linkonce (label, now_seg))
4285 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4286 }
4287
4288 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4289
4290 static void
4291 mips_compressed_mark_labels (void)
4292 {
4293 struct insn_label_list *l;
4294
4295 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4296 mips_compressed_mark_label (l->label);
4297 }
4298
4299 /* End the current frag. Make it a variant frag and record the
4300 relaxation info. */
4301
4302 static void
4303 relax_close_frag (void)
4304 {
4305 mips_macro_warning.first_frag = frag_now;
4306 frag_var (rs_machine_dependent, 0, 0,
4307 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4308 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4309
4310 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4311 mips_relax.first_fixup = 0;
4312 }
4313
4314 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4315 See the comment above RELAX_ENCODE for more details. */
4316
4317 static void
4318 relax_start (symbolS *symbol)
4319 {
4320 gas_assert (mips_relax.sequence == 0);
4321 mips_relax.sequence = 1;
4322 mips_relax.symbol = symbol;
4323 }
4324
4325 /* Start generating the second version of a relaxable sequence.
4326 See the comment above RELAX_ENCODE for more details. */
4327
4328 static void
4329 relax_switch (void)
4330 {
4331 gas_assert (mips_relax.sequence == 1);
4332 mips_relax.sequence = 2;
4333 }
4334
4335 /* End the current relaxable sequence. */
4336
4337 static void
4338 relax_end (void)
4339 {
4340 gas_assert (mips_relax.sequence == 2);
4341 relax_close_frag ();
4342 mips_relax.sequence = 0;
4343 }
4344
4345 /* Return true if IP is a delayed branch or jump. */
4346
4347 static inline bfd_boolean
4348 delayed_branch_p (const struct mips_cl_insn *ip)
4349 {
4350 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4351 | INSN_COND_BRANCH_DELAY
4352 | INSN_COND_BRANCH_LIKELY)) != 0;
4353 }
4354
4355 /* Return true if IP is a compact branch or jump. */
4356
4357 static inline bfd_boolean
4358 compact_branch_p (const struct mips_cl_insn *ip)
4359 {
4360 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4361 | INSN2_COND_BRANCH)) != 0;
4362 }
4363
4364 /* Return true if IP is an unconditional branch or jump. */
4365
4366 static inline bfd_boolean
4367 uncond_branch_p (const struct mips_cl_insn *ip)
4368 {
4369 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4370 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4371 }
4372
4373 /* Return true if IP is a branch-likely instruction. */
4374
4375 static inline bfd_boolean
4376 branch_likely_p (const struct mips_cl_insn *ip)
4377 {
4378 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4379 }
4380
4381 /* Return the type of nop that should be used to fill the delay slot
4382 of delayed branch IP. */
4383
4384 static struct mips_cl_insn *
4385 get_delay_slot_nop (const struct mips_cl_insn *ip)
4386 {
4387 if (mips_opts.micromips
4388 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4389 return &micromips_nop32_insn;
4390 return NOP_INSN;
4391 }
4392
4393 /* Return a mask that has bit N set if OPCODE reads the register(s)
4394 in operand N. */
4395
4396 static unsigned int
4397 insn_read_mask (const struct mips_opcode *opcode)
4398 {
4399 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4400 }
4401
4402 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4403 in operand N. */
4404
4405 static unsigned int
4406 insn_write_mask (const struct mips_opcode *opcode)
4407 {
4408 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4409 }
4410
4411 /* Return a mask of the registers specified by operand OPERAND of INSN.
4412 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4413 is set. */
4414
4415 static unsigned int
4416 operand_reg_mask (const struct mips_cl_insn *insn,
4417 const struct mips_operand *operand,
4418 unsigned int type_mask)
4419 {
4420 unsigned int uval, vsel;
4421
4422 switch (operand->type)
4423 {
4424 case OP_INT:
4425 case OP_MAPPED_INT:
4426 case OP_MSB:
4427 case OP_PCREL:
4428 case OP_PERF_REG:
4429 case OP_ADDIUSP_INT:
4430 case OP_ENTRY_EXIT_LIST:
4431 case OP_REPEAT_DEST_REG:
4432 case OP_REPEAT_PREV_REG:
4433 case OP_PC:
4434 case OP_VU0_SUFFIX:
4435 case OP_VU0_MATCH_SUFFIX:
4436 case OP_IMM_INDEX:
4437 abort ();
4438
4439 case OP_REG:
4440 case OP_OPTIONAL_REG:
4441 {
4442 const struct mips_reg_operand *reg_op;
4443
4444 reg_op = (const struct mips_reg_operand *) operand;
4445 if (!(type_mask & (1 << reg_op->reg_type)))
4446 return 0;
4447 uval = insn_extract_operand (insn, operand);
4448 return 1 << mips_decode_reg_operand (reg_op, uval);
4449 }
4450
4451 case OP_REG_PAIR:
4452 {
4453 const struct mips_reg_pair_operand *pair_op;
4454
4455 pair_op = (const struct mips_reg_pair_operand *) operand;
4456 if (!(type_mask & (1 << pair_op->reg_type)))
4457 return 0;
4458 uval = insn_extract_operand (insn, operand);
4459 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4460 }
4461
4462 case OP_CLO_CLZ_DEST:
4463 if (!(type_mask & (1 << OP_REG_GP)))
4464 return 0;
4465 uval = insn_extract_operand (insn, operand);
4466 return (1 << (uval & 31)) | (1 << (uval >> 5));
4467
4468 case OP_SAME_RS_RT:
4469 if (!(type_mask & (1 << OP_REG_GP)))
4470 return 0;
4471 uval = insn_extract_operand (insn, operand);
4472 gas_assert ((uval & 31) == (uval >> 5));
4473 return 1 << (uval & 31);
4474
4475 case OP_CHECK_PREV:
4476 case OP_NON_ZERO_REG:
4477 if (!(type_mask & (1 << OP_REG_GP)))
4478 return 0;
4479 uval = insn_extract_operand (insn, operand);
4480 return 1 << (uval & 31);
4481
4482 case OP_LWM_SWM_LIST:
4483 abort ();
4484
4485 case OP_SAVE_RESTORE_LIST:
4486 abort ();
4487
4488 case OP_MDMX_IMM_REG:
4489 if (!(type_mask & (1 << OP_REG_VEC)))
4490 return 0;
4491 uval = insn_extract_operand (insn, operand);
4492 vsel = uval >> 5;
4493 if ((vsel & 0x18) == 0x18)
4494 return 0;
4495 return 1 << (uval & 31);
4496
4497 case OP_REG_INDEX:
4498 if (!(type_mask & (1 << OP_REG_GP)))
4499 return 0;
4500 return 1 << insn_extract_operand (insn, operand);
4501 }
4502 abort ();
4503 }
4504
4505 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4506 where bit N of OPNO_MASK is set if operand N should be included.
4507 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4508 is set. */
4509
4510 static unsigned int
4511 insn_reg_mask (const struct mips_cl_insn *insn,
4512 unsigned int type_mask, unsigned int opno_mask)
4513 {
4514 unsigned int opno, reg_mask;
4515
4516 opno = 0;
4517 reg_mask = 0;
4518 while (opno_mask != 0)
4519 {
4520 if (opno_mask & 1)
4521 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4522 opno_mask >>= 1;
4523 opno += 1;
4524 }
4525 return reg_mask;
4526 }
4527
4528 /* Return the mask of core registers that IP reads. */
4529
4530 static unsigned int
4531 gpr_read_mask (const struct mips_cl_insn *ip)
4532 {
4533 unsigned long pinfo, pinfo2;
4534 unsigned int mask;
4535
4536 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4537 pinfo = ip->insn_mo->pinfo;
4538 pinfo2 = ip->insn_mo->pinfo2;
4539 if (pinfo & INSN_UDI)
4540 {
4541 /* UDI instructions have traditionally been assumed to read RS
4542 and RT. */
4543 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4544 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4545 }
4546 if (pinfo & INSN_READ_GPR_24)
4547 mask |= 1 << 24;
4548 if (pinfo2 & INSN2_READ_GPR_16)
4549 mask |= 1 << 16;
4550 if (pinfo2 & INSN2_READ_SP)
4551 mask |= 1 << SP;
4552 if (pinfo2 & INSN2_READ_GPR_31)
4553 mask |= 1 << 31;
4554 /* Don't include register 0. */
4555 return mask & ~1;
4556 }
4557
4558 /* Return the mask of core registers that IP writes. */
4559
4560 static unsigned int
4561 gpr_write_mask (const struct mips_cl_insn *ip)
4562 {
4563 unsigned long pinfo, pinfo2;
4564 unsigned int mask;
4565
4566 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4567 pinfo = ip->insn_mo->pinfo;
4568 pinfo2 = ip->insn_mo->pinfo2;
4569 if (pinfo & INSN_WRITE_GPR_24)
4570 mask |= 1 << 24;
4571 if (pinfo & INSN_WRITE_GPR_31)
4572 mask |= 1 << 31;
4573 if (pinfo & INSN_UDI)
4574 /* UDI instructions have traditionally been assumed to write to RD. */
4575 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4576 if (pinfo2 & INSN2_WRITE_SP)
4577 mask |= 1 << SP;
4578 /* Don't include register 0. */
4579 return mask & ~1;
4580 }
4581
4582 /* Return the mask of floating-point registers that IP reads. */
4583
4584 static unsigned int
4585 fpr_read_mask (const struct mips_cl_insn *ip)
4586 {
4587 unsigned long pinfo;
4588 unsigned int mask;
4589
4590 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4591 | (1 << OP_REG_MSA)),
4592 insn_read_mask (ip->insn_mo));
4593 pinfo = ip->insn_mo->pinfo;
4594 /* Conservatively treat all operands to an FP_D instruction are doubles.
4595 (This is overly pessimistic for things like cvt.d.s.) */
4596 if (FPR_SIZE != 64 && (pinfo & FP_D))
4597 mask |= mask << 1;
4598 return mask;
4599 }
4600
4601 /* Return the mask of floating-point registers that IP writes. */
4602
4603 static unsigned int
4604 fpr_write_mask (const struct mips_cl_insn *ip)
4605 {
4606 unsigned long pinfo;
4607 unsigned int mask;
4608
4609 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4610 | (1 << OP_REG_MSA)),
4611 insn_write_mask (ip->insn_mo));
4612 pinfo = ip->insn_mo->pinfo;
4613 /* Conservatively treat all operands to an FP_D instruction are doubles.
4614 (This is overly pessimistic for things like cvt.s.d.) */
4615 if (FPR_SIZE != 64 && (pinfo & FP_D))
4616 mask |= mask << 1;
4617 return mask;
4618 }
4619
4620 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4621 Check whether that is allowed. */
4622
4623 static bfd_boolean
4624 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4625 {
4626 const char *s = insn->name;
4627 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4628 || FPR_SIZE == 64)
4629 && mips_opts.oddspreg;
4630
4631 if (insn->pinfo == INSN_MACRO)
4632 /* Let a macro pass, we'll catch it later when it is expanded. */
4633 return TRUE;
4634
4635 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4636 otherwise it depends on oddspreg. */
4637 if ((insn->pinfo & FP_S)
4638 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4639 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4640 return FPR_SIZE == 32 || oddspreg;
4641
4642 /* Allow odd registers for single-precision ops and double-precision if the
4643 floating-point registers are 64-bit wide. */
4644 switch (insn->pinfo & (FP_S | FP_D))
4645 {
4646 case FP_S:
4647 case 0:
4648 return oddspreg;
4649 case FP_D:
4650 return FPR_SIZE == 64;
4651 default:
4652 break;
4653 }
4654
4655 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4656 s = strchr (insn->name, '.');
4657 if (s != NULL && opnum == 2)
4658 s = strchr (s + 1, '.');
4659 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4660 return oddspreg;
4661
4662 return FPR_SIZE == 64;
4663 }
4664
4665 /* Information about an instruction argument that we're trying to match. */
4666 struct mips_arg_info
4667 {
4668 /* The instruction so far. */
4669 struct mips_cl_insn *insn;
4670
4671 /* The first unconsumed operand token. */
4672 struct mips_operand_token *token;
4673
4674 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4675 int opnum;
4676
4677 /* The 1-based argument number, for error reporting. This does not
4678 count elided optional registers, etc.. */
4679 int argnum;
4680
4681 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4682 unsigned int last_regno;
4683
4684 /* If the first operand was an OP_REG, this is the register that it
4685 specified, otherwise it is ILLEGAL_REG. */
4686 unsigned int dest_regno;
4687
4688 /* The value of the last OP_INT operand. Only used for OP_MSB,
4689 where it gives the lsb position. */
4690 unsigned int last_op_int;
4691
4692 /* If true, match routines should assume that no later instruction
4693 alternative matches and should therefore be as accomodating as
4694 possible. Match routines should not report errors if something
4695 is only invalid for !LAX_MATCH. */
4696 bfd_boolean lax_match;
4697
4698 /* True if a reference to the current AT register was seen. */
4699 bfd_boolean seen_at;
4700 };
4701
4702 /* Record that the argument is out of range. */
4703
4704 static void
4705 match_out_of_range (struct mips_arg_info *arg)
4706 {
4707 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4708 }
4709
4710 /* Record that the argument isn't constant but needs to be. */
4711
4712 static void
4713 match_not_constant (struct mips_arg_info *arg)
4714 {
4715 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4716 arg->argnum);
4717 }
4718
4719 /* Try to match an OT_CHAR token for character CH. Consume the token
4720 and return true on success, otherwise return false. */
4721
4722 static bfd_boolean
4723 match_char (struct mips_arg_info *arg, char ch)
4724 {
4725 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4726 {
4727 ++arg->token;
4728 if (ch == ',')
4729 arg->argnum += 1;
4730 return TRUE;
4731 }
4732 return FALSE;
4733 }
4734
4735 /* Try to get an expression from the next tokens in ARG. Consume the
4736 tokens and return true on success, storing the expression value in
4737 VALUE and relocation types in R. */
4738
4739 static bfd_boolean
4740 match_expression (struct mips_arg_info *arg, expressionS *value,
4741 bfd_reloc_code_real_type *r)
4742 {
4743 /* If the next token is a '(' that was parsed as being part of a base
4744 expression, assume we have an elided offset. The later match will fail
4745 if this turns out to be wrong. */
4746 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4747 {
4748 value->X_op = O_constant;
4749 value->X_add_number = 0;
4750 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4751 return TRUE;
4752 }
4753
4754 /* Reject register-based expressions such as "0+$2" and "(($2))".
4755 For plain registers the default error seems more appropriate. */
4756 if (arg->token->type == OT_INTEGER
4757 && arg->token->u.integer.value.X_op == O_register)
4758 {
4759 set_insn_error (arg->argnum, _("register value used as expression"));
4760 return FALSE;
4761 }
4762
4763 if (arg->token->type == OT_INTEGER)
4764 {
4765 *value = arg->token->u.integer.value;
4766 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4767 ++arg->token;
4768 return TRUE;
4769 }
4770
4771 set_insn_error_i
4772 (arg->argnum, _("operand %d must be an immediate expression"),
4773 arg->argnum);
4774 return FALSE;
4775 }
4776
4777 /* Try to get a constant expression from the next tokens in ARG. Consume
4778 the tokens and return return true on success, storing the constant value
4779 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4780 error. */
4781
4782 static bfd_boolean
4783 match_const_int (struct mips_arg_info *arg, offsetT *value)
4784 {
4785 expressionS ex;
4786 bfd_reloc_code_real_type r[3];
4787
4788 if (!match_expression (arg, &ex, r))
4789 return FALSE;
4790
4791 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4792 *value = ex.X_add_number;
4793 else
4794 {
4795 match_not_constant (arg);
4796 return FALSE;
4797 }
4798 return TRUE;
4799 }
4800
4801 /* Return the RTYPE_* flags for a register operand of type TYPE that
4802 appears in instruction OPCODE. */
4803
4804 static unsigned int
4805 convert_reg_type (const struct mips_opcode *opcode,
4806 enum mips_reg_operand_type type)
4807 {
4808 switch (type)
4809 {
4810 case OP_REG_GP:
4811 return RTYPE_NUM | RTYPE_GP;
4812
4813 case OP_REG_FP:
4814 /* Allow vector register names for MDMX if the instruction is a 64-bit
4815 FPR load, store or move (including moves to and from GPRs). */
4816 if ((mips_opts.ase & ASE_MDMX)
4817 && (opcode->pinfo & FP_D)
4818 && (opcode->pinfo & (INSN_COPROC_MOVE
4819 | INSN_COPROC_MEMORY_DELAY
4820 | INSN_LOAD_COPROC
4821 | INSN_LOAD_MEMORY
4822 | INSN_STORE_MEMORY)))
4823 return RTYPE_FPU | RTYPE_VEC;
4824 return RTYPE_FPU;
4825
4826 case OP_REG_CCC:
4827 if (opcode->pinfo & (FP_D | FP_S))
4828 return RTYPE_CCC | RTYPE_FCC;
4829 return RTYPE_CCC;
4830
4831 case OP_REG_VEC:
4832 if (opcode->membership & INSN_5400)
4833 return RTYPE_FPU;
4834 return RTYPE_FPU | RTYPE_VEC;
4835
4836 case OP_REG_ACC:
4837 return RTYPE_ACC;
4838
4839 case OP_REG_COPRO:
4840 if (opcode->name[strlen (opcode->name) - 1] == '0')
4841 return RTYPE_NUM | RTYPE_CP0;
4842 return RTYPE_NUM;
4843
4844 case OP_REG_HW:
4845 return RTYPE_NUM;
4846
4847 case OP_REG_VI:
4848 return RTYPE_NUM | RTYPE_VI;
4849
4850 case OP_REG_VF:
4851 return RTYPE_NUM | RTYPE_VF;
4852
4853 case OP_REG_R5900_I:
4854 return RTYPE_R5900_I;
4855
4856 case OP_REG_R5900_Q:
4857 return RTYPE_R5900_Q;
4858
4859 case OP_REG_R5900_R:
4860 return RTYPE_R5900_R;
4861
4862 case OP_REG_R5900_ACC:
4863 return RTYPE_R5900_ACC;
4864
4865 case OP_REG_MSA:
4866 return RTYPE_MSA;
4867
4868 case OP_REG_MSA_CTRL:
4869 return RTYPE_NUM;
4870 }
4871 abort ();
4872 }
4873
4874 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4875
4876 static void
4877 check_regno (struct mips_arg_info *arg,
4878 enum mips_reg_operand_type type, unsigned int regno)
4879 {
4880 if (AT && type == OP_REG_GP && regno == AT)
4881 arg->seen_at = TRUE;
4882
4883 if (type == OP_REG_FP
4884 && (regno & 1) != 0
4885 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4886 {
4887 /* This was a warning prior to introducing O32 FPXX and FP64 support
4888 so maintain a warning for FP32 but raise an error for the new
4889 cases. */
4890 if (FPR_SIZE == 32)
4891 as_warn (_("float register should be even, was %d"), regno);
4892 else
4893 as_bad (_("float register should be even, was %d"), regno);
4894 }
4895
4896 if (type == OP_REG_CCC)
4897 {
4898 const char *name;
4899 size_t length;
4900
4901 name = arg->insn->insn_mo->name;
4902 length = strlen (name);
4903 if ((regno & 1) != 0
4904 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4905 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4906 as_warn (_("condition code register should be even for %s, was %d"),
4907 name, regno);
4908
4909 if ((regno & 3) != 0
4910 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4911 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4912 name, regno);
4913 }
4914 }
4915
4916 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4917 a register of type TYPE. Return true on success, storing the register
4918 number in *REGNO and warning about any dubious uses. */
4919
4920 static bfd_boolean
4921 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4922 unsigned int symval, unsigned int *regno)
4923 {
4924 if (type == OP_REG_VEC)
4925 symval = mips_prefer_vec_regno (symval);
4926 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4927 return FALSE;
4928
4929 *regno = symval & RNUM_MASK;
4930 check_regno (arg, type, *regno);
4931 return TRUE;
4932 }
4933
4934 /* Try to interpret the next token in ARG as a register of type TYPE.
4935 Consume the token and return true on success, storing the register
4936 number in *REGNO. Return false on failure. */
4937
4938 static bfd_boolean
4939 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4940 unsigned int *regno)
4941 {
4942 if (arg->token->type == OT_REG
4943 && match_regno (arg, type, arg->token->u.regno, regno))
4944 {
4945 ++arg->token;
4946 return TRUE;
4947 }
4948 return FALSE;
4949 }
4950
4951 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4952 Consume the token and return true on success, storing the register numbers
4953 in *REGNO1 and *REGNO2. Return false on failure. */
4954
4955 static bfd_boolean
4956 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4957 unsigned int *regno1, unsigned int *regno2)
4958 {
4959 if (match_reg (arg, type, regno1))
4960 {
4961 *regno2 = *regno1;
4962 return TRUE;
4963 }
4964 if (arg->token->type == OT_REG_RANGE
4965 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4966 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4967 && *regno1 <= *regno2)
4968 {
4969 ++arg->token;
4970 return TRUE;
4971 }
4972 return FALSE;
4973 }
4974
4975 /* OP_INT matcher. */
4976
4977 static bfd_boolean
4978 match_int_operand (struct mips_arg_info *arg,
4979 const struct mips_operand *operand_base)
4980 {
4981 const struct mips_int_operand *operand;
4982 unsigned int uval;
4983 int min_val, max_val, factor;
4984 offsetT sval;
4985
4986 operand = (const struct mips_int_operand *) operand_base;
4987 factor = 1 << operand->shift;
4988 min_val = mips_int_operand_min (operand);
4989 max_val = mips_int_operand_max (operand);
4990
4991 if (operand_base->lsb == 0
4992 && operand_base->size == 16
4993 && operand->shift == 0
4994 && operand->bias == 0
4995 && (operand->max_val == 32767 || operand->max_val == 65535))
4996 {
4997 /* The operand can be relocated. */
4998 if (!match_expression (arg, &offset_expr, offset_reloc))
4999 return FALSE;
5000
5001 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5002 /* Relocation operators were used. Accept the arguent and
5003 leave the relocation value in offset_expr and offset_relocs
5004 for the caller to process. */
5005 return TRUE;
5006
5007 if (offset_expr.X_op != O_constant)
5008 {
5009 /* Accept non-constant operands if no later alternative matches,
5010 leaving it for the caller to process. */
5011 if (!arg->lax_match)
5012 return FALSE;
5013 offset_reloc[0] = BFD_RELOC_LO16;
5014 return TRUE;
5015 }
5016
5017 /* Clear the global state; we're going to install the operand
5018 ourselves. */
5019 sval = offset_expr.X_add_number;
5020 offset_expr.X_op = O_absent;
5021
5022 /* For compatibility with older assemblers, we accept
5023 0x8000-0xffff as signed 16-bit numbers when only
5024 signed numbers are allowed. */
5025 if (sval > max_val)
5026 {
5027 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5028 if (!arg->lax_match && sval <= max_val)
5029 return FALSE;
5030 }
5031 }
5032 else
5033 {
5034 if (!match_const_int (arg, &sval))
5035 return FALSE;
5036 }
5037
5038 arg->last_op_int = sval;
5039
5040 if (sval < min_val || sval > max_val || sval % factor)
5041 {
5042 match_out_of_range (arg);
5043 return FALSE;
5044 }
5045
5046 uval = (unsigned int) sval >> operand->shift;
5047 uval -= operand->bias;
5048
5049 /* Handle -mfix-cn63xxp1. */
5050 if (arg->opnum == 1
5051 && mips_fix_cn63xxp1
5052 && !mips_opts.micromips
5053 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5054 switch (uval)
5055 {
5056 case 5:
5057 case 25:
5058 case 26:
5059 case 27:
5060 case 28:
5061 case 29:
5062 case 30:
5063 case 31:
5064 /* These are ok. */
5065 break;
5066
5067 default:
5068 /* The rest must be changed to 28. */
5069 uval = 28;
5070 break;
5071 }
5072
5073 insn_insert_operand (arg->insn, operand_base, uval);
5074 return TRUE;
5075 }
5076
5077 /* OP_MAPPED_INT matcher. */
5078
5079 static bfd_boolean
5080 match_mapped_int_operand (struct mips_arg_info *arg,
5081 const struct mips_operand *operand_base)
5082 {
5083 const struct mips_mapped_int_operand *operand;
5084 unsigned int uval, num_vals;
5085 offsetT sval;
5086
5087 operand = (const struct mips_mapped_int_operand *) operand_base;
5088 if (!match_const_int (arg, &sval))
5089 return FALSE;
5090
5091 num_vals = 1 << operand_base->size;
5092 for (uval = 0; uval < num_vals; uval++)
5093 if (operand->int_map[uval] == sval)
5094 break;
5095 if (uval == num_vals)
5096 {
5097 match_out_of_range (arg);
5098 return FALSE;
5099 }
5100
5101 insn_insert_operand (arg->insn, operand_base, uval);
5102 return TRUE;
5103 }
5104
5105 /* OP_MSB matcher. */
5106
5107 static bfd_boolean
5108 match_msb_operand (struct mips_arg_info *arg,
5109 const struct mips_operand *operand_base)
5110 {
5111 const struct mips_msb_operand *operand;
5112 int min_val, max_val, max_high;
5113 offsetT size, sval, high;
5114
5115 operand = (const struct mips_msb_operand *) operand_base;
5116 min_val = operand->bias;
5117 max_val = min_val + (1 << operand_base->size) - 1;
5118 max_high = operand->opsize;
5119
5120 if (!match_const_int (arg, &size))
5121 return FALSE;
5122
5123 high = size + arg->last_op_int;
5124 sval = operand->add_lsb ? high : size;
5125
5126 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5127 {
5128 match_out_of_range (arg);
5129 return FALSE;
5130 }
5131 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5132 return TRUE;
5133 }
5134
5135 /* OP_REG matcher. */
5136
5137 static bfd_boolean
5138 match_reg_operand (struct mips_arg_info *arg,
5139 const struct mips_operand *operand_base)
5140 {
5141 const struct mips_reg_operand *operand;
5142 unsigned int regno, uval, num_vals;
5143
5144 operand = (const struct mips_reg_operand *) operand_base;
5145 if (!match_reg (arg, operand->reg_type, &regno))
5146 return FALSE;
5147
5148 if (operand->reg_map)
5149 {
5150 num_vals = 1 << operand->root.size;
5151 for (uval = 0; uval < num_vals; uval++)
5152 if (operand->reg_map[uval] == regno)
5153 break;
5154 if (num_vals == uval)
5155 return FALSE;
5156 }
5157 else
5158 uval = regno;
5159
5160 arg->last_regno = regno;
5161 if (arg->opnum == 1)
5162 arg->dest_regno = regno;
5163 insn_insert_operand (arg->insn, operand_base, uval);
5164 return TRUE;
5165 }
5166
5167 /* OP_REG_PAIR matcher. */
5168
5169 static bfd_boolean
5170 match_reg_pair_operand (struct mips_arg_info *arg,
5171 const struct mips_operand *operand_base)
5172 {
5173 const struct mips_reg_pair_operand *operand;
5174 unsigned int regno1, regno2, uval, num_vals;
5175
5176 operand = (const struct mips_reg_pair_operand *) operand_base;
5177 if (!match_reg (arg, operand->reg_type, &regno1)
5178 || !match_char (arg, ',')
5179 || !match_reg (arg, operand->reg_type, &regno2))
5180 return FALSE;
5181
5182 num_vals = 1 << operand_base->size;
5183 for (uval = 0; uval < num_vals; uval++)
5184 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5185 break;
5186 if (uval == num_vals)
5187 return FALSE;
5188
5189 insn_insert_operand (arg->insn, operand_base, uval);
5190 return TRUE;
5191 }
5192
5193 /* OP_PCREL matcher. The caller chooses the relocation type. */
5194
5195 static bfd_boolean
5196 match_pcrel_operand (struct mips_arg_info *arg)
5197 {
5198 bfd_reloc_code_real_type r[3];
5199
5200 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5201 }
5202
5203 /* OP_PERF_REG matcher. */
5204
5205 static bfd_boolean
5206 match_perf_reg_operand (struct mips_arg_info *arg,
5207 const struct mips_operand *operand)
5208 {
5209 offsetT sval;
5210
5211 if (!match_const_int (arg, &sval))
5212 return FALSE;
5213
5214 if (sval != 0
5215 && (sval != 1
5216 || (mips_opts.arch == CPU_R5900
5217 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5218 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5219 {
5220 set_insn_error (arg->argnum, _("invalid performance register"));
5221 return FALSE;
5222 }
5223
5224 insn_insert_operand (arg->insn, operand, sval);
5225 return TRUE;
5226 }
5227
5228 /* OP_ADDIUSP matcher. */
5229
5230 static bfd_boolean
5231 match_addiusp_operand (struct mips_arg_info *arg,
5232 const struct mips_operand *operand)
5233 {
5234 offsetT sval;
5235 unsigned int uval;
5236
5237 if (!match_const_int (arg, &sval))
5238 return FALSE;
5239
5240 if (sval % 4)
5241 {
5242 match_out_of_range (arg);
5243 return FALSE;
5244 }
5245
5246 sval /= 4;
5247 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5248 {
5249 match_out_of_range (arg);
5250 return FALSE;
5251 }
5252
5253 uval = (unsigned int) sval;
5254 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5255 insn_insert_operand (arg->insn, operand, uval);
5256 return TRUE;
5257 }
5258
5259 /* OP_CLO_CLZ_DEST matcher. */
5260
5261 static bfd_boolean
5262 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5263 const struct mips_operand *operand)
5264 {
5265 unsigned int regno;
5266
5267 if (!match_reg (arg, OP_REG_GP, &regno))
5268 return FALSE;
5269
5270 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5271 return TRUE;
5272 }
5273
5274 /* OP_CHECK_PREV matcher. */
5275
5276 static bfd_boolean
5277 match_check_prev_operand (struct mips_arg_info *arg,
5278 const struct mips_operand *operand_base)
5279 {
5280 const struct mips_check_prev_operand *operand;
5281 unsigned int regno;
5282
5283 operand = (const struct mips_check_prev_operand *) operand_base;
5284
5285 if (!match_reg (arg, OP_REG_GP, &regno))
5286 return FALSE;
5287
5288 if (!operand->zero_ok && regno == 0)
5289 return FALSE;
5290
5291 if ((operand->less_than_ok && regno < arg->last_regno)
5292 || (operand->greater_than_ok && regno > arg->last_regno)
5293 || (operand->equal_ok && regno == arg->last_regno))
5294 {
5295 arg->last_regno = regno;
5296 insn_insert_operand (arg->insn, operand_base, regno);
5297 return TRUE;
5298 }
5299
5300 return FALSE;
5301 }
5302
5303 /* OP_SAME_RS_RT matcher. */
5304
5305 static bfd_boolean
5306 match_same_rs_rt_operand (struct mips_arg_info *arg,
5307 const struct mips_operand *operand)
5308 {
5309 unsigned int regno;
5310
5311 if (!match_reg (arg, OP_REG_GP, &regno))
5312 return FALSE;
5313
5314 if (regno == 0)
5315 {
5316 set_insn_error (arg->argnum, _("the source register must not be $0"));
5317 return FALSE;
5318 }
5319
5320 arg->last_regno = regno;
5321
5322 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5323 return TRUE;
5324 }
5325
5326 /* OP_LWM_SWM_LIST matcher. */
5327
5328 static bfd_boolean
5329 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5330 const struct mips_operand *operand)
5331 {
5332 unsigned int reglist, sregs, ra, regno1, regno2;
5333 struct mips_arg_info reset;
5334
5335 reglist = 0;
5336 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5337 return FALSE;
5338 do
5339 {
5340 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5341 {
5342 reglist |= 1 << FP;
5343 regno2 = S7;
5344 }
5345 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5346 reset = *arg;
5347 }
5348 while (match_char (arg, ',')
5349 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5350 *arg = reset;
5351
5352 if (operand->size == 2)
5353 {
5354 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5355
5356 s0, ra
5357 s0, s1, ra, s2, s3
5358 s0-s2, ra
5359
5360 and any permutations of these. */
5361 if ((reglist & 0xfff1ffff) != 0x80010000)
5362 return FALSE;
5363
5364 sregs = (reglist >> 17) & 7;
5365 ra = 0;
5366 }
5367 else
5368 {
5369 /* The list must include at least one of ra and s0-sN,
5370 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5371 which are $23 and $30 respectively.) E.g.:
5372
5373 ra
5374 s0
5375 ra, s0, s1, s2
5376 s0-s8
5377 s0-s5, ra
5378
5379 and any permutations of these. */
5380 if ((reglist & 0x3f00ffff) != 0)
5381 return FALSE;
5382
5383 ra = (reglist >> 27) & 0x10;
5384 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5385 }
5386 sregs += 1;
5387 if ((sregs & -sregs) != sregs)
5388 return FALSE;
5389
5390 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5391 return TRUE;
5392 }
5393
5394 /* OP_ENTRY_EXIT_LIST matcher. */
5395
5396 static unsigned int
5397 match_entry_exit_operand (struct mips_arg_info *arg,
5398 const struct mips_operand *operand)
5399 {
5400 unsigned int mask;
5401 bfd_boolean is_exit;
5402
5403 /* The format is the same for both ENTRY and EXIT, but the constraints
5404 are different. */
5405 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5406 mask = (is_exit ? 7 << 3 : 0);
5407 do
5408 {
5409 unsigned int regno1, regno2;
5410 bfd_boolean is_freg;
5411
5412 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5413 is_freg = FALSE;
5414 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5415 is_freg = TRUE;
5416 else
5417 return FALSE;
5418
5419 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5420 {
5421 mask &= ~(7 << 3);
5422 mask |= (5 + regno2) << 3;
5423 }
5424 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5425 mask |= (regno2 - 3) << 3;
5426 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5427 mask |= (regno2 - 15) << 1;
5428 else if (regno1 == RA && regno2 == RA)
5429 mask |= 1;
5430 else
5431 return FALSE;
5432 }
5433 while (match_char (arg, ','));
5434
5435 insn_insert_operand (arg->insn, operand, mask);
5436 return TRUE;
5437 }
5438
5439 /* OP_SAVE_RESTORE_LIST matcher. */
5440
5441 static bfd_boolean
5442 match_save_restore_list_operand (struct mips_arg_info *arg)
5443 {
5444 unsigned int opcode, args, statics, sregs;
5445 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5446 offsetT frame_size;
5447
5448 opcode = arg->insn->insn_opcode;
5449 frame_size = 0;
5450 num_frame_sizes = 0;
5451 args = 0;
5452 statics = 0;
5453 sregs = 0;
5454 do
5455 {
5456 unsigned int regno1, regno2;
5457
5458 if (arg->token->type == OT_INTEGER)
5459 {
5460 /* Handle the frame size. */
5461 if (!match_const_int (arg, &frame_size))
5462 return FALSE;
5463 num_frame_sizes += 1;
5464 }
5465 else
5466 {
5467 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5468 return FALSE;
5469
5470 while (regno1 <= regno2)
5471 {
5472 if (regno1 >= 4 && regno1 <= 7)
5473 {
5474 if (num_frame_sizes == 0)
5475 /* args $a0-$a3 */
5476 args |= 1 << (regno1 - 4);
5477 else
5478 /* statics $a0-$a3 */
5479 statics |= 1 << (regno1 - 4);
5480 }
5481 else if (regno1 >= 16 && regno1 <= 23)
5482 /* $s0-$s7 */
5483 sregs |= 1 << (regno1 - 16);
5484 else if (regno1 == 30)
5485 /* $s8 */
5486 sregs |= 1 << 8;
5487 else if (regno1 == 31)
5488 /* Add $ra to insn. */
5489 opcode |= 0x40;
5490 else
5491 return FALSE;
5492 regno1 += 1;
5493 if (regno1 == 24)
5494 regno1 = 30;
5495 }
5496 }
5497 }
5498 while (match_char (arg, ','));
5499
5500 /* Encode args/statics combination. */
5501 if (args & statics)
5502 return FALSE;
5503 else if (args == 0xf)
5504 /* All $a0-$a3 are args. */
5505 opcode |= MIPS16_ALL_ARGS << 16;
5506 else if (statics == 0xf)
5507 /* All $a0-$a3 are statics. */
5508 opcode |= MIPS16_ALL_STATICS << 16;
5509 else
5510 {
5511 /* Count arg registers. */
5512 num_args = 0;
5513 while (args & 0x1)
5514 {
5515 args >>= 1;
5516 num_args += 1;
5517 }
5518 if (args != 0)
5519 return FALSE;
5520
5521 /* Count static registers. */
5522 num_statics = 0;
5523 while (statics & 0x8)
5524 {
5525 statics = (statics << 1) & 0xf;
5526 num_statics += 1;
5527 }
5528 if (statics != 0)
5529 return FALSE;
5530
5531 /* Encode args/statics. */
5532 opcode |= ((num_args << 2) | num_statics) << 16;
5533 }
5534
5535 /* Encode $s0/$s1. */
5536 if (sregs & (1 << 0)) /* $s0 */
5537 opcode |= 0x20;
5538 if (sregs & (1 << 1)) /* $s1 */
5539 opcode |= 0x10;
5540 sregs >>= 2;
5541
5542 /* Encode $s2-$s8. */
5543 num_sregs = 0;
5544 while (sregs & 1)
5545 {
5546 sregs >>= 1;
5547 num_sregs += 1;
5548 }
5549 if (sregs != 0)
5550 return FALSE;
5551 opcode |= num_sregs << 24;
5552
5553 /* Encode frame size. */
5554 if (num_frame_sizes == 0)
5555 {
5556 set_insn_error (arg->argnum, _("missing frame size"));
5557 return FALSE;
5558 }
5559 if (num_frame_sizes > 1)
5560 {
5561 set_insn_error (arg->argnum, _("frame size specified twice"));
5562 return FALSE;
5563 }
5564 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5565 {
5566 set_insn_error (arg->argnum, _("invalid frame size"));
5567 return FALSE;
5568 }
5569 if (frame_size != 128 || (opcode >> 16) != 0)
5570 {
5571 frame_size /= 8;
5572 opcode |= (((frame_size & 0xf0) << 16)
5573 | (frame_size & 0x0f));
5574 }
5575
5576 /* Finally build the instruction. */
5577 if ((opcode >> 16) != 0 || frame_size == 0)
5578 opcode |= MIPS16_EXTEND;
5579 arg->insn->insn_opcode = opcode;
5580 return TRUE;
5581 }
5582
5583 /* OP_MDMX_IMM_REG matcher. */
5584
5585 static bfd_boolean
5586 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5587 const struct mips_operand *operand)
5588 {
5589 unsigned int regno, uval;
5590 bfd_boolean is_qh;
5591 const struct mips_opcode *opcode;
5592
5593 /* The mips_opcode records whether this is an octobyte or quadhalf
5594 instruction. Start out with that bit in place. */
5595 opcode = arg->insn->insn_mo;
5596 uval = mips_extract_operand (operand, opcode->match);
5597 is_qh = (uval != 0);
5598
5599 if (arg->token->type == OT_REG)
5600 {
5601 if ((opcode->membership & INSN_5400)
5602 && strcmp (opcode->name, "rzu.ob") == 0)
5603 {
5604 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5605 arg->argnum);
5606 return FALSE;
5607 }
5608
5609 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5610 return FALSE;
5611 ++arg->token;
5612
5613 /* Check whether this is a vector register or a broadcast of
5614 a single element. */
5615 if (arg->token->type == OT_INTEGER_INDEX)
5616 {
5617 if (arg->token->u.index > (is_qh ? 3 : 7))
5618 {
5619 set_insn_error (arg->argnum, _("invalid element selector"));
5620 return FALSE;
5621 }
5622 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5623 ++arg->token;
5624 }
5625 else
5626 {
5627 /* A full vector. */
5628 if ((opcode->membership & INSN_5400)
5629 && (strcmp (opcode->name, "sll.ob") == 0
5630 || strcmp (opcode->name, "srl.ob") == 0))
5631 {
5632 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5633 arg->argnum);
5634 return FALSE;
5635 }
5636
5637 if (is_qh)
5638 uval |= MDMX_FMTSEL_VEC_QH << 5;
5639 else
5640 uval |= MDMX_FMTSEL_VEC_OB << 5;
5641 }
5642 uval |= regno;
5643 }
5644 else
5645 {
5646 offsetT sval;
5647
5648 if (!match_const_int (arg, &sval))
5649 return FALSE;
5650 if (sval < 0 || sval > 31)
5651 {
5652 match_out_of_range (arg);
5653 return FALSE;
5654 }
5655 uval |= (sval & 31);
5656 if (is_qh)
5657 uval |= MDMX_FMTSEL_IMM_QH << 5;
5658 else
5659 uval |= MDMX_FMTSEL_IMM_OB << 5;
5660 }
5661 insn_insert_operand (arg->insn, operand, uval);
5662 return TRUE;
5663 }
5664
5665 /* OP_IMM_INDEX matcher. */
5666
5667 static bfd_boolean
5668 match_imm_index_operand (struct mips_arg_info *arg,
5669 const struct mips_operand *operand)
5670 {
5671 unsigned int max_val;
5672
5673 if (arg->token->type != OT_INTEGER_INDEX)
5674 return FALSE;
5675
5676 max_val = (1 << operand->size) - 1;
5677 if (arg->token->u.index > max_val)
5678 {
5679 match_out_of_range (arg);
5680 return FALSE;
5681 }
5682 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5683 ++arg->token;
5684 return TRUE;
5685 }
5686
5687 /* OP_REG_INDEX matcher. */
5688
5689 static bfd_boolean
5690 match_reg_index_operand (struct mips_arg_info *arg,
5691 const struct mips_operand *operand)
5692 {
5693 unsigned int regno;
5694
5695 if (arg->token->type != OT_REG_INDEX)
5696 return FALSE;
5697
5698 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5699 return FALSE;
5700
5701 insn_insert_operand (arg->insn, operand, regno);
5702 ++arg->token;
5703 return TRUE;
5704 }
5705
5706 /* OP_PC matcher. */
5707
5708 static bfd_boolean
5709 match_pc_operand (struct mips_arg_info *arg)
5710 {
5711 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5712 {
5713 ++arg->token;
5714 return TRUE;
5715 }
5716 return FALSE;
5717 }
5718
5719 /* OP_NON_ZERO_REG matcher. */
5720
5721 static bfd_boolean
5722 match_non_zero_reg_operand (struct mips_arg_info *arg,
5723 const struct mips_operand *operand)
5724 {
5725 unsigned int regno;
5726
5727 if (!match_reg (arg, OP_REG_GP, &regno))
5728 return FALSE;
5729
5730 if (regno == 0)
5731 return FALSE;
5732
5733 arg->last_regno = regno;
5734 insn_insert_operand (arg->insn, operand, regno);
5735 return TRUE;
5736 }
5737
5738 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5739 register that we need to match. */
5740
5741 static bfd_boolean
5742 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5743 {
5744 unsigned int regno;
5745
5746 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5747 }
5748
5749 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5750 the length of the value in bytes (4 for float, 8 for double) and
5751 USING_GPRS says whether the destination is a GPR rather than an FPR.
5752
5753 Return the constant in IMM and OFFSET as follows:
5754
5755 - If the constant should be loaded via memory, set IMM to O_absent and
5756 OFFSET to the memory address.
5757
5758 - Otherwise, if the constant should be loaded into two 32-bit registers,
5759 set IMM to the O_constant to load into the high register and OFFSET
5760 to the corresponding value for the low register.
5761
5762 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5763
5764 These constants only appear as the last operand in an instruction,
5765 and every instruction that accepts them in any variant accepts them
5766 in all variants. This means we don't have to worry about backing out
5767 any changes if the instruction does not match. We just match
5768 unconditionally and report an error if the constant is invalid. */
5769
5770 static bfd_boolean
5771 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5772 expressionS *offset, int length, bfd_boolean using_gprs)
5773 {
5774 char *p;
5775 segT seg, new_seg;
5776 subsegT subseg;
5777 const char *newname;
5778 unsigned char *data;
5779
5780 /* Where the constant is placed is based on how the MIPS assembler
5781 does things:
5782
5783 length == 4 && using_gprs -- immediate value only
5784 length == 8 && using_gprs -- .rdata or immediate value
5785 length == 4 && !using_gprs -- .lit4 or immediate value
5786 length == 8 && !using_gprs -- .lit8 or immediate value
5787
5788 The .lit4 and .lit8 sections are only used if permitted by the
5789 -G argument. */
5790 if (arg->token->type != OT_FLOAT)
5791 {
5792 set_insn_error (arg->argnum, _("floating-point expression required"));
5793 return FALSE;
5794 }
5795
5796 gas_assert (arg->token->u.flt.length == length);
5797 data = arg->token->u.flt.data;
5798 ++arg->token;
5799
5800 /* Handle 32-bit constants for which an immediate value is best. */
5801 if (length == 4
5802 && (using_gprs
5803 || g_switch_value < 4
5804 || (data[0] == 0 && data[1] == 0)
5805 || (data[2] == 0 && data[3] == 0)))
5806 {
5807 imm->X_op = O_constant;
5808 if (!target_big_endian)
5809 imm->X_add_number = bfd_getl32 (data);
5810 else
5811 imm->X_add_number = bfd_getb32 (data);
5812 offset->X_op = O_absent;
5813 return TRUE;
5814 }
5815
5816 /* Handle 64-bit constants for which an immediate value is best. */
5817 if (length == 8
5818 && !mips_disable_float_construction
5819 /* Constants can only be constructed in GPRs and copied to FPRs if the
5820 GPRs are at least as wide as the FPRs or MTHC1 is available.
5821 Unlike most tests for 32-bit floating-point registers this check
5822 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5823 permit 64-bit moves without MXHC1.
5824 Force the constant into memory otherwise. */
5825 && (using_gprs
5826 || GPR_SIZE == 64
5827 || ISA_HAS_MXHC1 (mips_opts.isa)
5828 || FPR_SIZE == 32)
5829 && ((data[0] == 0 && data[1] == 0)
5830 || (data[2] == 0 && data[3] == 0))
5831 && ((data[4] == 0 && data[5] == 0)
5832 || (data[6] == 0 && data[7] == 0)))
5833 {
5834 /* The value is simple enough to load with a couple of instructions.
5835 If using 32-bit registers, set IMM to the high order 32 bits and
5836 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5837 64 bit constant. */
5838 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5839 {
5840 imm->X_op = O_constant;
5841 offset->X_op = O_constant;
5842 if (!target_big_endian)
5843 {
5844 imm->X_add_number = bfd_getl32 (data + 4);
5845 offset->X_add_number = bfd_getl32 (data);
5846 }
5847 else
5848 {
5849 imm->X_add_number = bfd_getb32 (data);
5850 offset->X_add_number = bfd_getb32 (data + 4);
5851 }
5852 if (offset->X_add_number == 0)
5853 offset->X_op = O_absent;
5854 }
5855 else
5856 {
5857 imm->X_op = O_constant;
5858 if (!target_big_endian)
5859 imm->X_add_number = bfd_getl64 (data);
5860 else
5861 imm->X_add_number = bfd_getb64 (data);
5862 offset->X_op = O_absent;
5863 }
5864 return TRUE;
5865 }
5866
5867 /* Switch to the right section. */
5868 seg = now_seg;
5869 subseg = now_subseg;
5870 if (length == 4)
5871 {
5872 gas_assert (!using_gprs && g_switch_value >= 4);
5873 newname = ".lit4";
5874 }
5875 else
5876 {
5877 if (using_gprs || g_switch_value < 8)
5878 newname = RDATA_SECTION_NAME;
5879 else
5880 newname = ".lit8";
5881 }
5882
5883 new_seg = subseg_new (newname, (subsegT) 0);
5884 bfd_set_section_flags (stdoutput, new_seg,
5885 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5886 frag_align (length == 4 ? 2 : 3, 0, 0);
5887 if (strncmp (TARGET_OS, "elf", 3) != 0)
5888 record_alignment (new_seg, 4);
5889 else
5890 record_alignment (new_seg, length == 4 ? 2 : 3);
5891 if (seg == now_seg)
5892 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5893
5894 /* Set the argument to the current address in the section. */
5895 imm->X_op = O_absent;
5896 offset->X_op = O_symbol;
5897 offset->X_add_symbol = symbol_temp_new_now ();
5898 offset->X_add_number = 0;
5899
5900 /* Put the floating point number into the section. */
5901 p = frag_more (length);
5902 memcpy (p, data, length);
5903
5904 /* Switch back to the original section. */
5905 subseg_set (seg, subseg);
5906 return TRUE;
5907 }
5908
5909 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5910 them. */
5911
5912 static bfd_boolean
5913 match_vu0_suffix_operand (struct mips_arg_info *arg,
5914 const struct mips_operand *operand,
5915 bfd_boolean match_p)
5916 {
5917 unsigned int uval;
5918
5919 /* The operand can be an XYZW mask or a single 2-bit channel index
5920 (with X being 0). */
5921 gas_assert (operand->size == 2 || operand->size == 4);
5922
5923 /* The suffix can be omitted when it is already part of the opcode. */
5924 if (arg->token->type != OT_CHANNELS)
5925 return match_p;
5926
5927 uval = arg->token->u.channels;
5928 if (operand->size == 2)
5929 {
5930 /* Check that a single bit is set and convert it into a 2-bit index. */
5931 if ((uval & -uval) != uval)
5932 return FALSE;
5933 uval = 4 - ffs (uval);
5934 }
5935
5936 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5937 return FALSE;
5938
5939 ++arg->token;
5940 if (!match_p)
5941 insn_insert_operand (arg->insn, operand, uval);
5942 return TRUE;
5943 }
5944
5945 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5946 of the argument text if the match is successful, otherwise return null. */
5947
5948 static bfd_boolean
5949 match_operand (struct mips_arg_info *arg,
5950 const struct mips_operand *operand)
5951 {
5952 switch (operand->type)
5953 {
5954 case OP_INT:
5955 return match_int_operand (arg, operand);
5956
5957 case OP_MAPPED_INT:
5958 return match_mapped_int_operand (arg, operand);
5959
5960 case OP_MSB:
5961 return match_msb_operand (arg, operand);
5962
5963 case OP_REG:
5964 case OP_OPTIONAL_REG:
5965 return match_reg_operand (arg, operand);
5966
5967 case OP_REG_PAIR:
5968 return match_reg_pair_operand (arg, operand);
5969
5970 case OP_PCREL:
5971 return match_pcrel_operand (arg);
5972
5973 case OP_PERF_REG:
5974 return match_perf_reg_operand (arg, operand);
5975
5976 case OP_ADDIUSP_INT:
5977 return match_addiusp_operand (arg, operand);
5978
5979 case OP_CLO_CLZ_DEST:
5980 return match_clo_clz_dest_operand (arg, operand);
5981
5982 case OP_LWM_SWM_LIST:
5983 return match_lwm_swm_list_operand (arg, operand);
5984
5985 case OP_ENTRY_EXIT_LIST:
5986 return match_entry_exit_operand (arg, operand);
5987
5988 case OP_SAVE_RESTORE_LIST:
5989 return match_save_restore_list_operand (arg);
5990
5991 case OP_MDMX_IMM_REG:
5992 return match_mdmx_imm_reg_operand (arg, operand);
5993
5994 case OP_REPEAT_DEST_REG:
5995 return match_tied_reg_operand (arg, arg->dest_regno);
5996
5997 case OP_REPEAT_PREV_REG:
5998 return match_tied_reg_operand (arg, arg->last_regno);
5999
6000 case OP_PC:
6001 return match_pc_operand (arg);
6002
6003 case OP_VU0_SUFFIX:
6004 return match_vu0_suffix_operand (arg, operand, FALSE);
6005
6006 case OP_VU0_MATCH_SUFFIX:
6007 return match_vu0_suffix_operand (arg, operand, TRUE);
6008
6009 case OP_IMM_INDEX:
6010 return match_imm_index_operand (arg, operand);
6011
6012 case OP_REG_INDEX:
6013 return match_reg_index_operand (arg, operand);
6014
6015 case OP_SAME_RS_RT:
6016 return match_same_rs_rt_operand (arg, operand);
6017
6018 case OP_CHECK_PREV:
6019 return match_check_prev_operand (arg, operand);
6020
6021 case OP_NON_ZERO_REG:
6022 return match_non_zero_reg_operand (arg, operand);
6023 }
6024 abort ();
6025 }
6026
6027 /* ARG is the state after successfully matching an instruction.
6028 Issue any queued-up warnings. */
6029
6030 static void
6031 check_completed_insn (struct mips_arg_info *arg)
6032 {
6033 if (arg->seen_at)
6034 {
6035 if (AT == ATREG)
6036 as_warn (_("used $at without \".set noat\""));
6037 else
6038 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6039 }
6040 }
6041
6042 /* Return true if modifying general-purpose register REG needs a delay. */
6043
6044 static bfd_boolean
6045 reg_needs_delay (unsigned int reg)
6046 {
6047 unsigned long prev_pinfo;
6048
6049 prev_pinfo = history[0].insn_mo->pinfo;
6050 if (!mips_opts.noreorder
6051 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6052 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6053 && (gpr_write_mask (&history[0]) & (1 << reg)))
6054 return TRUE;
6055
6056 return FALSE;
6057 }
6058
6059 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6060 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6061 by VR4120 errata. */
6062
6063 static unsigned int
6064 classify_vr4120_insn (const char *name)
6065 {
6066 if (strncmp (name, "macc", 4) == 0)
6067 return FIX_VR4120_MACC;
6068 if (strncmp (name, "dmacc", 5) == 0)
6069 return FIX_VR4120_DMACC;
6070 if (strncmp (name, "mult", 4) == 0)
6071 return FIX_VR4120_MULT;
6072 if (strncmp (name, "dmult", 5) == 0)
6073 return FIX_VR4120_DMULT;
6074 if (strstr (name, "div"))
6075 return FIX_VR4120_DIV;
6076 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6077 return FIX_VR4120_MTHILO;
6078 return NUM_FIX_VR4120_CLASSES;
6079 }
6080
6081 #define INSN_ERET 0x42000018
6082 #define INSN_DERET 0x4200001f
6083 #define INSN_DMULT 0x1c
6084 #define INSN_DMULTU 0x1d
6085
6086 /* Return the number of instructions that must separate INSN1 and INSN2,
6087 where INSN1 is the earlier instruction. Return the worst-case value
6088 for any INSN2 if INSN2 is null. */
6089
6090 static unsigned int
6091 insns_between (const struct mips_cl_insn *insn1,
6092 const struct mips_cl_insn *insn2)
6093 {
6094 unsigned long pinfo1, pinfo2;
6095 unsigned int mask;
6096
6097 /* If INFO2 is null, pessimistically assume that all flags are set for
6098 the second instruction. */
6099 pinfo1 = insn1->insn_mo->pinfo;
6100 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6101
6102 /* For most targets, write-after-read dependencies on the HI and LO
6103 registers must be separated by at least two instructions. */
6104 if (!hilo_interlocks)
6105 {
6106 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6107 return 2;
6108 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6109 return 2;
6110 }
6111
6112 /* If we're working around r7000 errata, there must be two instructions
6113 between an mfhi or mflo and any instruction that uses the result. */
6114 if (mips_7000_hilo_fix
6115 && !mips_opts.micromips
6116 && MF_HILO_INSN (pinfo1)
6117 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6118 return 2;
6119
6120 /* If we're working around 24K errata, one instruction is required
6121 if an ERET or DERET is followed by a branch instruction. */
6122 if (mips_fix_24k && !mips_opts.micromips)
6123 {
6124 if (insn1->insn_opcode == INSN_ERET
6125 || insn1->insn_opcode == INSN_DERET)
6126 {
6127 if (insn2 == NULL
6128 || insn2->insn_opcode == INSN_ERET
6129 || insn2->insn_opcode == INSN_DERET
6130 || delayed_branch_p (insn2))
6131 return 1;
6132 }
6133 }
6134
6135 /* If we're working around PMC RM7000 errata, there must be three
6136 nops between a dmult and a load instruction. */
6137 if (mips_fix_rm7000 && !mips_opts.micromips)
6138 {
6139 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6140 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6141 {
6142 if (pinfo2 & INSN_LOAD_MEMORY)
6143 return 3;
6144 }
6145 }
6146
6147 /* If working around VR4120 errata, check for combinations that need
6148 a single intervening instruction. */
6149 if (mips_fix_vr4120 && !mips_opts.micromips)
6150 {
6151 unsigned int class1, class2;
6152
6153 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6154 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6155 {
6156 if (insn2 == NULL)
6157 return 1;
6158 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6159 if (vr4120_conflicts[class1] & (1 << class2))
6160 return 1;
6161 }
6162 }
6163
6164 if (!HAVE_CODE_COMPRESSION)
6165 {
6166 /* Check for GPR or coprocessor load delays. All such delays
6167 are on the RT register. */
6168 /* Itbl support may require additional care here. */
6169 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6170 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6171 {
6172 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6173 return 1;
6174 }
6175
6176 /* Check for generic coprocessor hazards.
6177
6178 This case is not handled very well. There is no special
6179 knowledge of CP0 handling, and the coprocessors other than
6180 the floating point unit are not distinguished at all. */
6181 /* Itbl support may require additional care here. FIXME!
6182 Need to modify this to include knowledge about
6183 user specified delays! */
6184 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6185 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6186 {
6187 /* Handle cases where INSN1 writes to a known general coprocessor
6188 register. There must be a one instruction delay before INSN2
6189 if INSN2 reads that register, otherwise no delay is needed. */
6190 mask = fpr_write_mask (insn1);
6191 if (mask != 0)
6192 {
6193 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6194 return 1;
6195 }
6196 else
6197 {
6198 /* Read-after-write dependencies on the control registers
6199 require a two-instruction gap. */
6200 if ((pinfo1 & INSN_WRITE_COND_CODE)
6201 && (pinfo2 & INSN_READ_COND_CODE))
6202 return 2;
6203
6204 /* We don't know exactly what INSN1 does. If INSN2 is
6205 also a coprocessor instruction, assume there must be
6206 a one instruction gap. */
6207 if (pinfo2 & INSN_COP)
6208 return 1;
6209 }
6210 }
6211
6212 /* Check for read-after-write dependencies on the coprocessor
6213 control registers in cases where INSN1 does not need a general
6214 coprocessor delay. This means that INSN1 is a floating point
6215 comparison instruction. */
6216 /* Itbl support may require additional care here. */
6217 else if (!cop_interlocks
6218 && (pinfo1 & INSN_WRITE_COND_CODE)
6219 && (pinfo2 & INSN_READ_COND_CODE))
6220 return 1;
6221 }
6222
6223 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6224 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6225 and pause. */
6226 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6227 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6228 || (insn2 && delayed_branch_p (insn2))))
6229 return 1;
6230
6231 return 0;
6232 }
6233
6234 /* Return the number of nops that would be needed to work around the
6235 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6236 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6237 that are contained within the first IGNORE instructions of HIST. */
6238
6239 static int
6240 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6241 const struct mips_cl_insn *insn)
6242 {
6243 int i, j;
6244 unsigned int mask;
6245
6246 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6247 are not affected by the errata. */
6248 if (insn != 0
6249 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6250 || strcmp (insn->insn_mo->name, "mtlo") == 0
6251 || strcmp (insn->insn_mo->name, "mthi") == 0))
6252 return 0;
6253
6254 /* Search for the first MFLO or MFHI. */
6255 for (i = 0; i < MAX_VR4130_NOPS; i++)
6256 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6257 {
6258 /* Extract the destination register. */
6259 mask = gpr_write_mask (&hist[i]);
6260
6261 /* No nops are needed if INSN reads that register. */
6262 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6263 return 0;
6264
6265 /* ...or if any of the intervening instructions do. */
6266 for (j = 0; j < i; j++)
6267 if (gpr_read_mask (&hist[j]) & mask)
6268 return 0;
6269
6270 if (i >= ignore)
6271 return MAX_VR4130_NOPS - i;
6272 }
6273 return 0;
6274 }
6275
6276 #define BASE_REG_EQ(INSN1, INSN2) \
6277 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6278 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6279
6280 /* Return the minimum alignment for this store instruction. */
6281
6282 static int
6283 fix_24k_align_to (const struct mips_opcode *mo)
6284 {
6285 if (strcmp (mo->name, "sh") == 0)
6286 return 2;
6287
6288 if (strcmp (mo->name, "swc1") == 0
6289 || strcmp (mo->name, "swc2") == 0
6290 || strcmp (mo->name, "sw") == 0
6291 || strcmp (mo->name, "sc") == 0
6292 || strcmp (mo->name, "s.s") == 0)
6293 return 4;
6294
6295 if (strcmp (mo->name, "sdc1") == 0
6296 || strcmp (mo->name, "sdc2") == 0
6297 || strcmp (mo->name, "s.d") == 0)
6298 return 8;
6299
6300 /* sb, swl, swr */
6301 return 1;
6302 }
6303
6304 struct fix_24k_store_info
6305 {
6306 /* Immediate offset, if any, for this store instruction. */
6307 short off;
6308 /* Alignment required by this store instruction. */
6309 int align_to;
6310 /* True for register offsets. */
6311 int register_offset;
6312 };
6313
6314 /* Comparison function used by qsort. */
6315
6316 static int
6317 fix_24k_sort (const void *a, const void *b)
6318 {
6319 const struct fix_24k_store_info *pos1 = a;
6320 const struct fix_24k_store_info *pos2 = b;
6321
6322 return (pos1->off - pos2->off);
6323 }
6324
6325 /* INSN is a store instruction. Try to record the store information
6326 in STINFO. Return false if the information isn't known. */
6327
6328 static bfd_boolean
6329 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6330 const struct mips_cl_insn *insn)
6331 {
6332 /* The instruction must have a known offset. */
6333 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6334 return FALSE;
6335
6336 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6337 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6338 return TRUE;
6339 }
6340
6341 /* Return the number of nops that would be needed to work around the 24k
6342 "lost data on stores during refill" errata if instruction INSN
6343 immediately followed the 2 instructions described by HIST.
6344 Ignore hazards that are contained within the first IGNORE
6345 instructions of HIST.
6346
6347 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6348 for the data cache refills and store data. The following describes
6349 the scenario where the store data could be lost.
6350
6351 * A data cache miss, due to either a load or a store, causing fill
6352 data to be supplied by the memory subsystem
6353 * The first three doublewords of fill data are returned and written
6354 into the cache
6355 * A sequence of four stores occurs in consecutive cycles around the
6356 final doubleword of the fill:
6357 * Store A
6358 * Store B
6359 * Store C
6360 * Zero, One or more instructions
6361 * Store D
6362
6363 The four stores A-D must be to different doublewords of the line that
6364 is being filled. The fourth instruction in the sequence above permits
6365 the fill of the final doubleword to be transferred from the FSB into
6366 the cache. In the sequence above, the stores may be either integer
6367 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6368 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6369 different doublewords on the line. If the floating point unit is
6370 running in 1:2 mode, it is not possible to create the sequence above
6371 using only floating point store instructions.
6372
6373 In this case, the cache line being filled is incorrectly marked
6374 invalid, thereby losing the data from any store to the line that
6375 occurs between the original miss and the completion of the five
6376 cycle sequence shown above.
6377
6378 The workarounds are:
6379
6380 * Run the data cache in write-through mode.
6381 * Insert a non-store instruction between
6382 Store A and Store B or Store B and Store C. */
6383
6384 static int
6385 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6386 const struct mips_cl_insn *insn)
6387 {
6388 struct fix_24k_store_info pos[3];
6389 int align, i, base_offset;
6390
6391 if (ignore >= 2)
6392 return 0;
6393
6394 /* If the previous instruction wasn't a store, there's nothing to
6395 worry about. */
6396 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6397 return 0;
6398
6399 /* If the instructions after the previous one are unknown, we have
6400 to assume the worst. */
6401 if (!insn)
6402 return 1;
6403
6404 /* Check whether we are dealing with three consecutive stores. */
6405 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6406 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6407 return 0;
6408
6409 /* If we don't know the relationship between the store addresses,
6410 assume the worst. */
6411 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6412 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6413 return 1;
6414
6415 if (!fix_24k_record_store_info (&pos[0], insn)
6416 || !fix_24k_record_store_info (&pos[1], &hist[0])
6417 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6418 return 1;
6419
6420 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6421
6422 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6423 X bytes and such that the base register + X is known to be aligned
6424 to align bytes. */
6425
6426 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6427 align = 8;
6428 else
6429 {
6430 align = pos[0].align_to;
6431 base_offset = pos[0].off;
6432 for (i = 1; i < 3; i++)
6433 if (align < pos[i].align_to)
6434 {
6435 align = pos[i].align_to;
6436 base_offset = pos[i].off;
6437 }
6438 for (i = 0; i < 3; i++)
6439 pos[i].off -= base_offset;
6440 }
6441
6442 pos[0].off &= ~align + 1;
6443 pos[1].off &= ~align + 1;
6444 pos[2].off &= ~align + 1;
6445
6446 /* If any two stores write to the same chunk, they also write to the
6447 same doubleword. The offsets are still sorted at this point. */
6448 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6449 return 0;
6450
6451 /* A range of at least 9 bytes is needed for the stores to be in
6452 non-overlapping doublewords. */
6453 if (pos[2].off - pos[0].off <= 8)
6454 return 0;
6455
6456 if (pos[2].off - pos[1].off >= 24
6457 || pos[1].off - pos[0].off >= 24
6458 || pos[2].off - pos[0].off >= 32)
6459 return 0;
6460
6461 return 1;
6462 }
6463
6464 /* Return the number of nops that would be needed if instruction INSN
6465 immediately followed the MAX_NOPS instructions given by HIST,
6466 where HIST[0] is the most recent instruction. Ignore hazards
6467 between INSN and the first IGNORE instructions in HIST.
6468
6469 If INSN is null, return the worse-case number of nops for any
6470 instruction. */
6471
6472 static int
6473 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6474 const struct mips_cl_insn *insn)
6475 {
6476 int i, nops, tmp_nops;
6477
6478 nops = 0;
6479 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6480 {
6481 tmp_nops = insns_between (hist + i, insn) - i;
6482 if (tmp_nops > nops)
6483 nops = tmp_nops;
6484 }
6485
6486 if (mips_fix_vr4130 && !mips_opts.micromips)
6487 {
6488 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6489 if (tmp_nops > nops)
6490 nops = tmp_nops;
6491 }
6492
6493 if (mips_fix_24k && !mips_opts.micromips)
6494 {
6495 tmp_nops = nops_for_24k (ignore, hist, insn);
6496 if (tmp_nops > nops)
6497 nops = tmp_nops;
6498 }
6499
6500 return nops;
6501 }
6502
6503 /* The variable arguments provide NUM_INSNS extra instructions that
6504 might be added to HIST. Return the largest number of nops that
6505 would be needed after the extended sequence, ignoring hazards
6506 in the first IGNORE instructions. */
6507
6508 static int
6509 nops_for_sequence (int num_insns, int ignore,
6510 const struct mips_cl_insn *hist, ...)
6511 {
6512 va_list args;
6513 struct mips_cl_insn buffer[MAX_NOPS];
6514 struct mips_cl_insn *cursor;
6515 int nops;
6516
6517 va_start (args, hist);
6518 cursor = buffer + num_insns;
6519 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6520 while (cursor > buffer)
6521 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6522
6523 nops = nops_for_insn (ignore, buffer, NULL);
6524 va_end (args);
6525 return nops;
6526 }
6527
6528 /* Like nops_for_insn, but if INSN is a branch, take into account the
6529 worst-case delay for the branch target. */
6530
6531 static int
6532 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6533 const struct mips_cl_insn *insn)
6534 {
6535 int nops, tmp_nops;
6536
6537 nops = nops_for_insn (ignore, hist, insn);
6538 if (delayed_branch_p (insn))
6539 {
6540 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6541 hist, insn, get_delay_slot_nop (insn));
6542 if (tmp_nops > nops)
6543 nops = tmp_nops;
6544 }
6545 else if (compact_branch_p (insn))
6546 {
6547 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6548 if (tmp_nops > nops)
6549 nops = tmp_nops;
6550 }
6551 return nops;
6552 }
6553
6554 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6555
6556 static void
6557 fix_loongson2f_nop (struct mips_cl_insn * ip)
6558 {
6559 gas_assert (!HAVE_CODE_COMPRESSION);
6560 if (strcmp (ip->insn_mo->name, "nop") == 0)
6561 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6562 }
6563
6564 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6565 jr target pc &= 'hffff_ffff_cfff_ffff. */
6566
6567 static void
6568 fix_loongson2f_jump (struct mips_cl_insn * ip)
6569 {
6570 gas_assert (!HAVE_CODE_COMPRESSION);
6571 if (strcmp (ip->insn_mo->name, "j") == 0
6572 || strcmp (ip->insn_mo->name, "jr") == 0
6573 || strcmp (ip->insn_mo->name, "jalr") == 0)
6574 {
6575 int sreg;
6576 expressionS ep;
6577
6578 if (! mips_opts.at)
6579 return;
6580
6581 sreg = EXTRACT_OPERAND (0, RS, *ip);
6582 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6583 return;
6584
6585 ep.X_op = O_constant;
6586 ep.X_add_number = 0xcfff0000;
6587 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6588 ep.X_add_number = 0xffff;
6589 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6590 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6591 }
6592 }
6593
6594 static void
6595 fix_loongson2f (struct mips_cl_insn * ip)
6596 {
6597 if (mips_fix_loongson2f_nop)
6598 fix_loongson2f_nop (ip);
6599
6600 if (mips_fix_loongson2f_jump)
6601 fix_loongson2f_jump (ip);
6602 }
6603
6604 /* IP is a branch that has a delay slot, and we need to fill it
6605 automatically. Return true if we can do that by swapping IP
6606 with the previous instruction.
6607 ADDRESS_EXPR is an operand of the instruction to be used with
6608 RELOC_TYPE. */
6609
6610 static bfd_boolean
6611 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6612 bfd_reloc_code_real_type *reloc_type)
6613 {
6614 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6615 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6616 unsigned int fpr_read, prev_fpr_write;
6617
6618 /* -O2 and above is required for this optimization. */
6619 if (mips_optimize < 2)
6620 return FALSE;
6621
6622 /* If we have seen .set volatile or .set nomove, don't optimize. */
6623 if (mips_opts.nomove)
6624 return FALSE;
6625
6626 /* We can't swap if the previous instruction's position is fixed. */
6627 if (history[0].fixed_p)
6628 return FALSE;
6629
6630 /* If the previous previous insn was in a .set noreorder, we can't
6631 swap. Actually, the MIPS assembler will swap in this situation.
6632 However, gcc configured -with-gnu-as will generate code like
6633
6634 .set noreorder
6635 lw $4,XXX
6636 .set reorder
6637 INSN
6638 bne $4,$0,foo
6639
6640 in which we can not swap the bne and INSN. If gcc is not configured
6641 -with-gnu-as, it does not output the .set pseudo-ops. */
6642 if (history[1].noreorder_p)
6643 return FALSE;
6644
6645 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6646 This means that the previous instruction was a 4-byte one anyhow. */
6647 if (mips_opts.mips16 && history[0].fixp[0])
6648 return FALSE;
6649
6650 /* If the branch is itself the target of a branch, we can not swap.
6651 We cheat on this; all we check for is whether there is a label on
6652 this instruction. If there are any branches to anything other than
6653 a label, users must use .set noreorder. */
6654 if (seg_info (now_seg)->label_list)
6655 return FALSE;
6656
6657 /* If the previous instruction is in a variant frag other than this
6658 branch's one, we cannot do the swap. This does not apply to
6659 MIPS16 code, which uses variant frags for different purposes. */
6660 if (!mips_opts.mips16
6661 && history[0].frag
6662 && history[0].frag->fr_type == rs_machine_dependent)
6663 return FALSE;
6664
6665 /* We do not swap with instructions that cannot architecturally
6666 be placed in a branch delay slot, such as SYNC or ERET. We
6667 also refrain from swapping with a trap instruction, since it
6668 complicates trap handlers to have the trap instruction be in
6669 a delay slot. */
6670 prev_pinfo = history[0].insn_mo->pinfo;
6671 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6672 return FALSE;
6673
6674 /* Check for conflicts between the branch and the instructions
6675 before the candidate delay slot. */
6676 if (nops_for_insn (0, history + 1, ip) > 0)
6677 return FALSE;
6678
6679 /* Check for conflicts between the swapped sequence and the
6680 target of the branch. */
6681 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6682 return FALSE;
6683
6684 /* If the branch reads a register that the previous
6685 instruction sets, we can not swap. */
6686 gpr_read = gpr_read_mask (ip);
6687 prev_gpr_write = gpr_write_mask (&history[0]);
6688 if (gpr_read & prev_gpr_write)
6689 return FALSE;
6690
6691 fpr_read = fpr_read_mask (ip);
6692 prev_fpr_write = fpr_write_mask (&history[0]);
6693 if (fpr_read & prev_fpr_write)
6694 return FALSE;
6695
6696 /* If the branch writes a register that the previous
6697 instruction sets, we can not swap. */
6698 gpr_write = gpr_write_mask (ip);
6699 if (gpr_write & prev_gpr_write)
6700 return FALSE;
6701
6702 /* If the branch writes a register that the previous
6703 instruction reads, we can not swap. */
6704 prev_gpr_read = gpr_read_mask (&history[0]);
6705 if (gpr_write & prev_gpr_read)
6706 return FALSE;
6707
6708 /* If one instruction sets a condition code and the
6709 other one uses a condition code, we can not swap. */
6710 pinfo = ip->insn_mo->pinfo;
6711 if ((pinfo & INSN_READ_COND_CODE)
6712 && (prev_pinfo & INSN_WRITE_COND_CODE))
6713 return FALSE;
6714 if ((pinfo & INSN_WRITE_COND_CODE)
6715 && (prev_pinfo & INSN_READ_COND_CODE))
6716 return FALSE;
6717
6718 /* If the previous instruction uses the PC, we can not swap. */
6719 prev_pinfo2 = history[0].insn_mo->pinfo2;
6720 if (prev_pinfo2 & INSN2_READ_PC)
6721 return FALSE;
6722
6723 /* If the previous instruction has an incorrect size for a fixed
6724 branch delay slot in microMIPS mode, we cannot swap. */
6725 pinfo2 = ip->insn_mo->pinfo2;
6726 if (mips_opts.micromips
6727 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6728 && insn_length (history) != 2)
6729 return FALSE;
6730 if (mips_opts.micromips
6731 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6732 && insn_length (history) != 4)
6733 return FALSE;
6734
6735 /* On R5900 short loops need to be fixed by inserting a nop in
6736 the branch delay slots.
6737 A short loop can be terminated too early. */
6738 if (mips_opts.arch == CPU_R5900
6739 /* Check if instruction has a parameter, ignore "j $31". */
6740 && (address_expr != NULL)
6741 /* Parameter must be 16 bit. */
6742 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6743 /* Branch to same segment. */
6744 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6745 /* Branch to same code fragment. */
6746 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6747 /* Can only calculate branch offset if value is known. */
6748 && symbol_constant_p (address_expr->X_add_symbol)
6749 /* Check if branch is really conditional. */
6750 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6751 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6752 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6753 {
6754 int distance;
6755 /* Check if loop is shorter than 6 instructions including
6756 branch and delay slot. */
6757 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6758 if (distance <= 20)
6759 {
6760 int i;
6761 int rv;
6762
6763 rv = FALSE;
6764 /* When the loop includes branches or jumps,
6765 it is not a short loop. */
6766 for (i = 0; i < (distance / 4); i++)
6767 {
6768 if ((history[i].cleared_p)
6769 || delayed_branch_p (&history[i]))
6770 {
6771 rv = TRUE;
6772 break;
6773 }
6774 }
6775 if (rv == FALSE)
6776 {
6777 /* Insert nop after branch to fix short loop. */
6778 return FALSE;
6779 }
6780 }
6781 }
6782
6783 return TRUE;
6784 }
6785
6786 /* Decide how we should add IP to the instruction stream.
6787 ADDRESS_EXPR is an operand of the instruction to be used with
6788 RELOC_TYPE. */
6789
6790 static enum append_method
6791 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6792 bfd_reloc_code_real_type *reloc_type)
6793 {
6794 /* The relaxed version of a macro sequence must be inherently
6795 hazard-free. */
6796 if (mips_relax.sequence == 2)
6797 return APPEND_ADD;
6798
6799 /* We must not dabble with instructions in a ".set norerorder" block. */
6800 if (mips_opts.noreorder)
6801 return APPEND_ADD;
6802
6803 /* Otherwise, it's our responsibility to fill branch delay slots. */
6804 if (delayed_branch_p (ip))
6805 {
6806 if (!branch_likely_p (ip)
6807 && can_swap_branch_p (ip, address_expr, reloc_type))
6808 return APPEND_SWAP;
6809
6810 if (mips_opts.mips16
6811 && ISA_SUPPORTS_MIPS16E
6812 && gpr_read_mask (ip) != 0)
6813 return APPEND_ADD_COMPACT;
6814
6815 return APPEND_ADD_WITH_NOP;
6816 }
6817
6818 return APPEND_ADD;
6819 }
6820
6821 /* IP is a MIPS16 instruction whose opcode we have just changed.
6822 Point IP->insn_mo to the new opcode's definition. */
6823
6824 static void
6825 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6826 {
6827 const struct mips_opcode *mo, *end;
6828
6829 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6830 for (mo = ip->insn_mo; mo < end; mo++)
6831 if ((ip->insn_opcode & mo->mask) == mo->match)
6832 {
6833 ip->insn_mo = mo;
6834 return;
6835 }
6836 abort ();
6837 }
6838
6839 /* For microMIPS macros, we need to generate a local number label
6840 as the target of branches. */
6841 #define MICROMIPS_LABEL_CHAR '\037'
6842 static unsigned long micromips_target_label;
6843 static char micromips_target_name[32];
6844
6845 static char *
6846 micromips_label_name (void)
6847 {
6848 char *p = micromips_target_name;
6849 char symbol_name_temporary[24];
6850 unsigned long l;
6851 int i;
6852
6853 if (*p)
6854 return p;
6855
6856 i = 0;
6857 l = micromips_target_label;
6858 #ifdef LOCAL_LABEL_PREFIX
6859 *p++ = LOCAL_LABEL_PREFIX;
6860 #endif
6861 *p++ = 'L';
6862 *p++ = MICROMIPS_LABEL_CHAR;
6863 do
6864 {
6865 symbol_name_temporary[i++] = l % 10 + '0';
6866 l /= 10;
6867 }
6868 while (l != 0);
6869 while (i > 0)
6870 *p++ = symbol_name_temporary[--i];
6871 *p = '\0';
6872
6873 return micromips_target_name;
6874 }
6875
6876 static void
6877 micromips_label_expr (expressionS *label_expr)
6878 {
6879 label_expr->X_op = O_symbol;
6880 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6881 label_expr->X_add_number = 0;
6882 }
6883
6884 static void
6885 micromips_label_inc (void)
6886 {
6887 micromips_target_label++;
6888 *micromips_target_name = '\0';
6889 }
6890
6891 static void
6892 micromips_add_label (void)
6893 {
6894 symbolS *s;
6895
6896 s = colon (micromips_label_name ());
6897 micromips_label_inc ();
6898 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6899 }
6900
6901 /* If assembling microMIPS code, then return the microMIPS reloc
6902 corresponding to the requested one if any. Otherwise return
6903 the reloc unchanged. */
6904
6905 static bfd_reloc_code_real_type
6906 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6907 {
6908 static const bfd_reloc_code_real_type relocs[][2] =
6909 {
6910 /* Keep sorted incrementally by the left-hand key. */
6911 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6912 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6913 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6914 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6915 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6916 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6917 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6918 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6919 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6920 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6921 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6922 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6923 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6924 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6925 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6926 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6927 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6928 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6929 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6930 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6931 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6932 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6933 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6934 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6935 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6936 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6937 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6938 };
6939 bfd_reloc_code_real_type r;
6940 size_t i;
6941
6942 if (!mips_opts.micromips)
6943 return reloc;
6944 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6945 {
6946 r = relocs[i][0];
6947 if (r > reloc)
6948 return reloc;
6949 if (r == reloc)
6950 return relocs[i][1];
6951 }
6952 return reloc;
6953 }
6954
6955 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6956 Return true on success, storing the resolved value in RESULT. */
6957
6958 static bfd_boolean
6959 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6960 offsetT *result)
6961 {
6962 switch (reloc)
6963 {
6964 case BFD_RELOC_MIPS_HIGHEST:
6965 case BFD_RELOC_MICROMIPS_HIGHEST:
6966 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6967 return TRUE;
6968
6969 case BFD_RELOC_MIPS_HIGHER:
6970 case BFD_RELOC_MICROMIPS_HIGHER:
6971 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6972 return TRUE;
6973
6974 case BFD_RELOC_HI16_S:
6975 case BFD_RELOC_MICROMIPS_HI16_S:
6976 case BFD_RELOC_MIPS16_HI16_S:
6977 *result = ((operand + 0x8000) >> 16) & 0xffff;
6978 return TRUE;
6979
6980 case BFD_RELOC_HI16:
6981 case BFD_RELOC_MICROMIPS_HI16:
6982 case BFD_RELOC_MIPS16_HI16:
6983 *result = (operand >> 16) & 0xffff;
6984 return TRUE;
6985
6986 case BFD_RELOC_LO16:
6987 case BFD_RELOC_MICROMIPS_LO16:
6988 case BFD_RELOC_MIPS16_LO16:
6989 *result = operand & 0xffff;
6990 return TRUE;
6991
6992 case BFD_RELOC_UNUSED:
6993 *result = operand;
6994 return TRUE;
6995
6996 default:
6997 return FALSE;
6998 }
6999 }
7000
7001 /* Output an instruction. IP is the instruction information.
7002 ADDRESS_EXPR is an operand of the instruction to be used with
7003 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7004 a macro expansion. */
7005
7006 static void
7007 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7008 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7009 {
7010 unsigned long prev_pinfo2, pinfo;
7011 bfd_boolean relaxed_branch = FALSE;
7012 enum append_method method;
7013 bfd_boolean relax32;
7014 int branch_disp;
7015
7016 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7017 fix_loongson2f (ip);
7018
7019 file_ase_mips16 |= mips_opts.mips16;
7020 file_ase_micromips |= mips_opts.micromips;
7021
7022 prev_pinfo2 = history[0].insn_mo->pinfo2;
7023 pinfo = ip->insn_mo->pinfo;
7024
7025 if (mips_opts.micromips
7026 && !expansionp
7027 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7028 && micromips_insn_length (ip->insn_mo) != 2)
7029 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7030 && micromips_insn_length (ip->insn_mo) != 4)))
7031 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7032 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7033
7034 if (address_expr == NULL)
7035 ip->complete_p = 1;
7036 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7037 && reloc_type[1] == BFD_RELOC_UNUSED
7038 && reloc_type[2] == BFD_RELOC_UNUSED
7039 && address_expr->X_op == O_constant)
7040 {
7041 switch (*reloc_type)
7042 {
7043 case BFD_RELOC_MIPS_JMP:
7044 {
7045 int shift;
7046
7047 /* Shift is 2, unusually, for microMIPS JALX. */
7048 shift = (mips_opts.micromips
7049 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7050 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7051 as_bad (_("jump to misaligned address (0x%lx)"),
7052 (unsigned long) address_expr->X_add_number);
7053 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7054 & 0x3ffffff);
7055 ip->complete_p = 1;
7056 }
7057 break;
7058
7059 case BFD_RELOC_MIPS16_JMP:
7060 if ((address_expr->X_add_number & 3) != 0)
7061 as_bad (_("jump to misaligned address (0x%lx)"),
7062 (unsigned long) address_expr->X_add_number);
7063 ip->insn_opcode |=
7064 (((address_expr->X_add_number & 0x7c0000) << 3)
7065 | ((address_expr->X_add_number & 0xf800000) >> 7)
7066 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7067 ip->complete_p = 1;
7068 break;
7069
7070 case BFD_RELOC_16_PCREL_S2:
7071 {
7072 int shift;
7073
7074 shift = mips_opts.micromips ? 1 : 2;
7075 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7076 as_bad (_("branch to misaligned address (0x%lx)"),
7077 (unsigned long) address_expr->X_add_number);
7078 if (!mips_relax_branch)
7079 {
7080 if ((address_expr->X_add_number + (1 << (shift + 15)))
7081 & ~((1 << (shift + 16)) - 1))
7082 as_bad (_("branch address range overflow (0x%lx)"),
7083 (unsigned long) address_expr->X_add_number);
7084 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7085 & 0xffff);
7086 }
7087 }
7088 break;
7089
7090 case BFD_RELOC_MIPS_21_PCREL_S2:
7091 {
7092 int shift;
7093
7094 shift = 2;
7095 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7096 as_bad (_("branch to misaligned address (0x%lx)"),
7097 (unsigned long) address_expr->X_add_number);
7098 if ((address_expr->X_add_number + (1 << (shift + 20)))
7099 & ~((1 << (shift + 21)) - 1))
7100 as_bad (_("branch address range overflow (0x%lx)"),
7101 (unsigned long) address_expr->X_add_number);
7102 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7103 & 0x1fffff);
7104 }
7105 break;
7106
7107 case BFD_RELOC_MIPS_26_PCREL_S2:
7108 {
7109 int shift;
7110
7111 shift = 2;
7112 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7113 as_bad (_("branch to misaligned address (0x%lx)"),
7114 (unsigned long) address_expr->X_add_number);
7115 if ((address_expr->X_add_number + (1 << (shift + 25)))
7116 & ~((1 << (shift + 26)) - 1))
7117 as_bad (_("branch address range overflow (0x%lx)"),
7118 (unsigned long) address_expr->X_add_number);
7119 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7120 & 0x3ffffff);
7121 }
7122 break;
7123
7124 default:
7125 {
7126 offsetT value;
7127
7128 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7129 &value))
7130 {
7131 ip->insn_opcode |= value & 0xffff;
7132 ip->complete_p = 1;
7133 }
7134 }
7135 break;
7136 }
7137 }
7138
7139 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7140 {
7141 /* There are a lot of optimizations we could do that we don't.
7142 In particular, we do not, in general, reorder instructions.
7143 If you use gcc with optimization, it will reorder
7144 instructions and generally do much more optimization then we
7145 do here; repeating all that work in the assembler would only
7146 benefit hand written assembly code, and does not seem worth
7147 it. */
7148 int nops = (mips_optimize == 0
7149 ? nops_for_insn (0, history, NULL)
7150 : nops_for_insn_or_target (0, history, ip));
7151 if (nops > 0)
7152 {
7153 fragS *old_frag;
7154 unsigned long old_frag_offset;
7155 int i;
7156
7157 old_frag = frag_now;
7158 old_frag_offset = frag_now_fix ();
7159
7160 for (i = 0; i < nops; i++)
7161 add_fixed_insn (NOP_INSN);
7162 insert_into_history (0, nops, NOP_INSN);
7163
7164 if (listing)
7165 {
7166 listing_prev_line ();
7167 /* We may be at the start of a variant frag. In case we
7168 are, make sure there is enough space for the frag
7169 after the frags created by listing_prev_line. The
7170 argument to frag_grow here must be at least as large
7171 as the argument to all other calls to frag_grow in
7172 this file. We don't have to worry about being in the
7173 middle of a variant frag, because the variants insert
7174 all needed nop instructions themselves. */
7175 frag_grow (40);
7176 }
7177
7178 mips_move_text_labels ();
7179
7180 #ifndef NO_ECOFF_DEBUGGING
7181 if (ECOFF_DEBUGGING)
7182 ecoff_fix_loc (old_frag, old_frag_offset);
7183 #endif
7184 }
7185 }
7186 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7187 {
7188 int nops;
7189
7190 /* Work out how many nops in prev_nop_frag are needed by IP,
7191 ignoring hazards generated by the first prev_nop_frag_since
7192 instructions. */
7193 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7194 gas_assert (nops <= prev_nop_frag_holds);
7195
7196 /* Enforce NOPS as a minimum. */
7197 if (nops > prev_nop_frag_required)
7198 prev_nop_frag_required = nops;
7199
7200 if (prev_nop_frag_holds == prev_nop_frag_required)
7201 {
7202 /* Settle for the current number of nops. Update the history
7203 accordingly (for the benefit of any future .set reorder code). */
7204 prev_nop_frag = NULL;
7205 insert_into_history (prev_nop_frag_since,
7206 prev_nop_frag_holds, NOP_INSN);
7207 }
7208 else
7209 {
7210 /* Allow this instruction to replace one of the nops that was
7211 tentatively added to prev_nop_frag. */
7212 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7213 prev_nop_frag_holds--;
7214 prev_nop_frag_since++;
7215 }
7216 }
7217
7218 method = get_append_method (ip, address_expr, reloc_type);
7219 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7220
7221 dwarf2_emit_insn (0);
7222 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7223 so "move" the instruction address accordingly.
7224
7225 Also, it doesn't seem appropriate for the assembler to reorder .loc
7226 entries. If this instruction is a branch that we are going to swap
7227 with the previous instruction, the two instructions should be
7228 treated as a unit, and the debug information for both instructions
7229 should refer to the start of the branch sequence. Using the
7230 current position is certainly wrong when swapping a 32-bit branch
7231 and a 16-bit delay slot, since the current position would then be
7232 in the middle of a branch. */
7233 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7234
7235 relax32 = (mips_relax_branch
7236 /* Don't try branch relaxation within .set nomacro, or within
7237 .set noat if we use $at for PIC computations. If it turns
7238 out that the branch was out-of-range, we'll get an error. */
7239 && !mips_opts.warn_about_macros
7240 && (mips_opts.at || mips_pic == NO_PIC)
7241 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7242 as they have no complementing branches. */
7243 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7244
7245 if (!HAVE_CODE_COMPRESSION
7246 && address_expr
7247 && relax32
7248 && *reloc_type == BFD_RELOC_16_PCREL_S2
7249 && delayed_branch_p (ip))
7250 {
7251 relaxed_branch = TRUE;
7252 add_relaxed_insn (ip, (relaxed_branch_length
7253 (NULL, NULL,
7254 uncond_branch_p (ip) ? -1
7255 : branch_likely_p (ip) ? 1
7256 : 0)), 4,
7257 RELAX_BRANCH_ENCODE
7258 (AT,
7259 uncond_branch_p (ip),
7260 branch_likely_p (ip),
7261 pinfo & INSN_WRITE_GPR_31,
7262 0),
7263 address_expr->X_add_symbol,
7264 address_expr->X_add_number);
7265 *reloc_type = BFD_RELOC_UNUSED;
7266 }
7267 else if (mips_opts.micromips
7268 && address_expr
7269 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7270 || *reloc_type > BFD_RELOC_UNUSED)
7271 && (delayed_branch_p (ip) || compact_branch_p (ip))
7272 /* Don't try branch relaxation when users specify
7273 16-bit/32-bit instructions. */
7274 && !forced_insn_length)
7275 {
7276 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7277 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7278 int uncond = uncond_branch_p (ip) ? -1 : 0;
7279 int compact = compact_branch_p (ip);
7280 int al = pinfo & INSN_WRITE_GPR_31;
7281 int length32;
7282
7283 gas_assert (address_expr != NULL);
7284 gas_assert (!mips_relax.sequence);
7285
7286 relaxed_branch = TRUE;
7287 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7288 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
7289 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7290 relax32, 0, 0),
7291 address_expr->X_add_symbol,
7292 address_expr->X_add_number);
7293 *reloc_type = BFD_RELOC_UNUSED;
7294 }
7295 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7296 {
7297 /* We need to set up a variant frag. */
7298 gas_assert (address_expr != NULL);
7299 add_relaxed_insn (ip, 4, 0,
7300 RELAX_MIPS16_ENCODE
7301 (*reloc_type - BFD_RELOC_UNUSED,
7302 forced_insn_length == 2, forced_insn_length == 4,
7303 delayed_branch_p (&history[0]),
7304 history[0].mips16_absolute_jump_p),
7305 make_expr_symbol (address_expr), 0);
7306 }
7307 else if (mips_opts.mips16 && insn_length (ip) == 2)
7308 {
7309 if (!delayed_branch_p (ip))
7310 /* Make sure there is enough room to swap this instruction with
7311 a following jump instruction. */
7312 frag_grow (6);
7313 add_fixed_insn (ip);
7314 }
7315 else
7316 {
7317 if (mips_opts.mips16
7318 && mips_opts.noreorder
7319 && delayed_branch_p (&history[0]))
7320 as_warn (_("extended instruction in delay slot"));
7321
7322 if (mips_relax.sequence)
7323 {
7324 /* If we've reached the end of this frag, turn it into a variant
7325 frag and record the information for the instructions we've
7326 written so far. */
7327 if (frag_room () < 4)
7328 relax_close_frag ();
7329 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7330 }
7331
7332 if (mips_relax.sequence != 2)
7333 {
7334 if (mips_macro_warning.first_insn_sizes[0] == 0)
7335 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7336 mips_macro_warning.sizes[0] += insn_length (ip);
7337 mips_macro_warning.insns[0]++;
7338 }
7339 if (mips_relax.sequence != 1)
7340 {
7341 if (mips_macro_warning.first_insn_sizes[1] == 0)
7342 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7343 mips_macro_warning.sizes[1] += insn_length (ip);
7344 mips_macro_warning.insns[1]++;
7345 }
7346
7347 if (mips_opts.mips16)
7348 {
7349 ip->fixed_p = 1;
7350 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7351 }
7352 add_fixed_insn (ip);
7353 }
7354
7355 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7356 {
7357 bfd_reloc_code_real_type final_type[3];
7358 reloc_howto_type *howto0;
7359 reloc_howto_type *howto;
7360 int i;
7361
7362 /* Perform any necessary conversion to microMIPS relocations
7363 and find out how many relocations there actually are. */
7364 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7365 final_type[i] = micromips_map_reloc (reloc_type[i]);
7366
7367 /* In a compound relocation, it is the final (outermost)
7368 operator that determines the relocated field. */
7369 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7370 if (!howto)
7371 abort ();
7372
7373 if (i > 1)
7374 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7375 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7376 bfd_get_reloc_size (howto),
7377 address_expr,
7378 howto0 && howto0->pc_relative,
7379 final_type[0]);
7380
7381 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7382 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7383 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7384
7385 /* These relocations can have an addend that won't fit in
7386 4 octets for 64bit assembly. */
7387 if (GPR_SIZE == 64
7388 && ! howto->partial_inplace
7389 && (reloc_type[0] == BFD_RELOC_16
7390 || reloc_type[0] == BFD_RELOC_32
7391 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7392 || reloc_type[0] == BFD_RELOC_GPREL16
7393 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7394 || reloc_type[0] == BFD_RELOC_GPREL32
7395 || reloc_type[0] == BFD_RELOC_64
7396 || reloc_type[0] == BFD_RELOC_CTOR
7397 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7398 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7399 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7400 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7401 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7402 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7403 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7404 || hi16_reloc_p (reloc_type[0])
7405 || lo16_reloc_p (reloc_type[0])))
7406 ip->fixp[0]->fx_no_overflow = 1;
7407
7408 /* These relocations can have an addend that won't fit in 2 octets. */
7409 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7410 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7411 ip->fixp[0]->fx_no_overflow = 1;
7412
7413 if (mips_relax.sequence)
7414 {
7415 if (mips_relax.first_fixup == 0)
7416 mips_relax.first_fixup = ip->fixp[0];
7417 }
7418 else if (reloc_needs_lo_p (*reloc_type))
7419 {
7420 struct mips_hi_fixup *hi_fixup;
7421
7422 /* Reuse the last entry if it already has a matching %lo. */
7423 hi_fixup = mips_hi_fixup_list;
7424 if (hi_fixup == 0
7425 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7426 {
7427 hi_fixup = XNEW (struct mips_hi_fixup);
7428 hi_fixup->next = mips_hi_fixup_list;
7429 mips_hi_fixup_list = hi_fixup;
7430 }
7431 hi_fixup->fixp = ip->fixp[0];
7432 hi_fixup->seg = now_seg;
7433 }
7434
7435 /* Add fixups for the second and third relocations, if given.
7436 Note that the ABI allows the second relocation to be
7437 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7438 moment we only use RSS_UNDEF, but we could add support
7439 for the others if it ever becomes necessary. */
7440 for (i = 1; i < 3; i++)
7441 if (reloc_type[i] != BFD_RELOC_UNUSED)
7442 {
7443 ip->fixp[i] = fix_new (ip->frag, ip->where,
7444 ip->fixp[0]->fx_size, NULL, 0,
7445 FALSE, final_type[i]);
7446
7447 /* Use fx_tcbit to mark compound relocs. */
7448 ip->fixp[0]->fx_tcbit = 1;
7449 ip->fixp[i]->fx_tcbit = 1;
7450 }
7451 }
7452 install_insn (ip);
7453
7454 /* Update the register mask information. */
7455 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7456 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7457
7458 switch (method)
7459 {
7460 case APPEND_ADD:
7461 insert_into_history (0, 1, ip);
7462 break;
7463
7464 case APPEND_ADD_WITH_NOP:
7465 {
7466 struct mips_cl_insn *nop;
7467
7468 insert_into_history (0, 1, ip);
7469 nop = get_delay_slot_nop (ip);
7470 add_fixed_insn (nop);
7471 insert_into_history (0, 1, nop);
7472 if (mips_relax.sequence)
7473 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7474 }
7475 break;
7476
7477 case APPEND_ADD_COMPACT:
7478 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7479 gas_assert (mips_opts.mips16);
7480 ip->insn_opcode |= 0x0080;
7481 find_altered_mips16_opcode (ip);
7482 install_insn (ip);
7483 insert_into_history (0, 1, ip);
7484 break;
7485
7486 case APPEND_SWAP:
7487 {
7488 struct mips_cl_insn delay = history[0];
7489 if (mips_opts.mips16)
7490 {
7491 know (delay.frag == ip->frag);
7492 move_insn (ip, delay.frag, delay.where);
7493 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7494 }
7495 else if (relaxed_branch || delay.frag != ip->frag)
7496 {
7497 /* Add the delay slot instruction to the end of the
7498 current frag and shrink the fixed part of the
7499 original frag. If the branch occupies the tail of
7500 the latter, move it backwards to cover the gap. */
7501 delay.frag->fr_fix -= branch_disp;
7502 if (delay.frag == ip->frag)
7503 move_insn (ip, ip->frag, ip->where - branch_disp);
7504 add_fixed_insn (&delay);
7505 }
7506 else
7507 {
7508 move_insn (&delay, ip->frag,
7509 ip->where - branch_disp + insn_length (ip));
7510 move_insn (ip, history[0].frag, history[0].where);
7511 }
7512 history[0] = *ip;
7513 delay.fixed_p = 1;
7514 insert_into_history (0, 1, &delay);
7515 }
7516 break;
7517 }
7518
7519 /* If we have just completed an unconditional branch, clear the history. */
7520 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7521 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7522 {
7523 unsigned int i;
7524
7525 mips_no_prev_insn ();
7526
7527 for (i = 0; i < ARRAY_SIZE (history); i++)
7528 history[i].cleared_p = 1;
7529 }
7530
7531 /* We need to emit a label at the end of branch-likely macros. */
7532 if (emit_branch_likely_macro)
7533 {
7534 emit_branch_likely_macro = FALSE;
7535 micromips_add_label ();
7536 }
7537
7538 /* We just output an insn, so the next one doesn't have a label. */
7539 mips_clear_insn_labels ();
7540 }
7541
7542 /* Forget that there was any previous instruction or label.
7543 When BRANCH is true, the branch history is also flushed. */
7544
7545 static void
7546 mips_no_prev_insn (void)
7547 {
7548 prev_nop_frag = NULL;
7549 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7550 mips_clear_insn_labels ();
7551 }
7552
7553 /* This function must be called before we emit something other than
7554 instructions. It is like mips_no_prev_insn except that it inserts
7555 any NOPS that might be needed by previous instructions. */
7556
7557 void
7558 mips_emit_delays (void)
7559 {
7560 if (! mips_opts.noreorder)
7561 {
7562 int nops = nops_for_insn (0, history, NULL);
7563 if (nops > 0)
7564 {
7565 while (nops-- > 0)
7566 add_fixed_insn (NOP_INSN);
7567 mips_move_text_labels ();
7568 }
7569 }
7570 mips_no_prev_insn ();
7571 }
7572
7573 /* Start a (possibly nested) noreorder block. */
7574
7575 static void
7576 start_noreorder (void)
7577 {
7578 if (mips_opts.noreorder == 0)
7579 {
7580 unsigned int i;
7581 int nops;
7582
7583 /* None of the instructions before the .set noreorder can be moved. */
7584 for (i = 0; i < ARRAY_SIZE (history); i++)
7585 history[i].fixed_p = 1;
7586
7587 /* Insert any nops that might be needed between the .set noreorder
7588 block and the previous instructions. We will later remove any
7589 nops that turn out not to be needed. */
7590 nops = nops_for_insn (0, history, NULL);
7591 if (nops > 0)
7592 {
7593 if (mips_optimize != 0)
7594 {
7595 /* Record the frag which holds the nop instructions, so
7596 that we can remove them if we don't need them. */
7597 frag_grow (nops * NOP_INSN_SIZE);
7598 prev_nop_frag = frag_now;
7599 prev_nop_frag_holds = nops;
7600 prev_nop_frag_required = 0;
7601 prev_nop_frag_since = 0;
7602 }
7603
7604 for (; nops > 0; --nops)
7605 add_fixed_insn (NOP_INSN);
7606
7607 /* Move on to a new frag, so that it is safe to simply
7608 decrease the size of prev_nop_frag. */
7609 frag_wane (frag_now);
7610 frag_new (0);
7611 mips_move_text_labels ();
7612 }
7613 mips_mark_labels ();
7614 mips_clear_insn_labels ();
7615 }
7616 mips_opts.noreorder++;
7617 mips_any_noreorder = 1;
7618 }
7619
7620 /* End a nested noreorder block. */
7621
7622 static void
7623 end_noreorder (void)
7624 {
7625 mips_opts.noreorder--;
7626 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7627 {
7628 /* Commit to inserting prev_nop_frag_required nops and go back to
7629 handling nop insertion the .set reorder way. */
7630 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7631 * NOP_INSN_SIZE);
7632 insert_into_history (prev_nop_frag_since,
7633 prev_nop_frag_required, NOP_INSN);
7634 prev_nop_frag = NULL;
7635 }
7636 }
7637
7638 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7639 higher bits unset. */
7640
7641 static void
7642 normalize_constant_expr (expressionS *ex)
7643 {
7644 if (ex->X_op == O_constant
7645 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7646 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7647 - 0x80000000);
7648 }
7649
7650 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7651 all higher bits unset. */
7652
7653 static void
7654 normalize_address_expr (expressionS *ex)
7655 {
7656 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7657 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7658 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7659 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7660 - 0x80000000);
7661 }
7662
7663 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7664 Return true if the match was successful.
7665
7666 OPCODE_EXTRA is a value that should be ORed into the opcode
7667 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7668 there are more alternatives after OPCODE and SOFT_MATCH is
7669 as for mips_arg_info. */
7670
7671 static bfd_boolean
7672 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7673 struct mips_operand_token *tokens, unsigned int opcode_extra,
7674 bfd_boolean lax_match, bfd_boolean complete_p)
7675 {
7676 const char *args;
7677 struct mips_arg_info arg;
7678 const struct mips_operand *operand;
7679 char c;
7680
7681 imm_expr.X_op = O_absent;
7682 offset_expr.X_op = O_absent;
7683 offset_reloc[0] = BFD_RELOC_UNUSED;
7684 offset_reloc[1] = BFD_RELOC_UNUSED;
7685 offset_reloc[2] = BFD_RELOC_UNUSED;
7686
7687 create_insn (insn, opcode);
7688 /* When no opcode suffix is specified, assume ".xyzw". */
7689 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7690 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7691 else
7692 insn->insn_opcode |= opcode_extra;
7693 memset (&arg, 0, sizeof (arg));
7694 arg.insn = insn;
7695 arg.token = tokens;
7696 arg.argnum = 1;
7697 arg.last_regno = ILLEGAL_REG;
7698 arg.dest_regno = ILLEGAL_REG;
7699 arg.lax_match = lax_match;
7700 for (args = opcode->args;; ++args)
7701 {
7702 if (arg.token->type == OT_END)
7703 {
7704 /* Handle unary instructions in which only one operand is given.
7705 The source is then the same as the destination. */
7706 if (arg.opnum == 1 && *args == ',')
7707 {
7708 operand = (mips_opts.micromips
7709 ? decode_micromips_operand (args + 1)
7710 : decode_mips_operand (args + 1));
7711 if (operand && mips_optional_operand_p (operand))
7712 {
7713 arg.token = tokens;
7714 arg.argnum = 1;
7715 continue;
7716 }
7717 }
7718
7719 /* Treat elided base registers as $0. */
7720 if (strcmp (args, "(b)") == 0)
7721 args += 3;
7722
7723 if (args[0] == '+')
7724 switch (args[1])
7725 {
7726 case 'K':
7727 case 'N':
7728 /* The register suffix is optional. */
7729 args += 2;
7730 break;
7731 }
7732
7733 /* Fail the match if there were too few operands. */
7734 if (*args)
7735 return FALSE;
7736
7737 /* Successful match. */
7738 if (!complete_p)
7739 return TRUE;
7740 clear_insn_error ();
7741 if (arg.dest_regno == arg.last_regno
7742 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7743 {
7744 if (arg.opnum == 2)
7745 set_insn_error
7746 (0, _("source and destination must be different"));
7747 else if (arg.last_regno == 31)
7748 set_insn_error
7749 (0, _("a destination register must be supplied"));
7750 }
7751 else if (arg.last_regno == 31
7752 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7753 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7754 set_insn_error (0, _("the source register must not be $31"));
7755 check_completed_insn (&arg);
7756 return TRUE;
7757 }
7758
7759 /* Fail the match if the line has too many operands. */
7760 if (*args == 0)
7761 return FALSE;
7762
7763 /* Handle characters that need to match exactly. */
7764 if (*args == '(' || *args == ')' || *args == ',')
7765 {
7766 if (match_char (&arg, *args))
7767 continue;
7768 return FALSE;
7769 }
7770 if (*args == '#')
7771 {
7772 ++args;
7773 if (arg.token->type == OT_DOUBLE_CHAR
7774 && arg.token->u.ch == *args)
7775 {
7776 ++arg.token;
7777 continue;
7778 }
7779 return FALSE;
7780 }
7781
7782 /* Handle special macro operands. Work out the properties of
7783 other operands. */
7784 arg.opnum += 1;
7785 switch (*args)
7786 {
7787 case '-':
7788 switch (args[1])
7789 {
7790 case 'A':
7791 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7792 break;
7793
7794 case 'B':
7795 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7796 break;
7797 }
7798 break;
7799
7800 case '+':
7801 switch (args[1])
7802 {
7803 case 'i':
7804 *offset_reloc = BFD_RELOC_MIPS_JMP;
7805 break;
7806
7807 case '\'':
7808 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7809 break;
7810
7811 case '\"':
7812 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7813 break;
7814 }
7815 break;
7816
7817 case 'I':
7818 if (!match_const_int (&arg, &imm_expr.X_add_number))
7819 return FALSE;
7820 imm_expr.X_op = O_constant;
7821 if (GPR_SIZE == 32)
7822 normalize_constant_expr (&imm_expr);
7823 continue;
7824
7825 case 'A':
7826 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7827 {
7828 /* Assume that the offset has been elided and that what
7829 we saw was a base register. The match will fail later
7830 if that assumption turns out to be wrong. */
7831 offset_expr.X_op = O_constant;
7832 offset_expr.X_add_number = 0;
7833 }
7834 else
7835 {
7836 if (!match_expression (&arg, &offset_expr, offset_reloc))
7837 return FALSE;
7838 normalize_address_expr (&offset_expr);
7839 }
7840 continue;
7841
7842 case 'F':
7843 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7844 8, TRUE))
7845 return FALSE;
7846 continue;
7847
7848 case 'L':
7849 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7850 8, FALSE))
7851 return FALSE;
7852 continue;
7853
7854 case 'f':
7855 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7856 4, TRUE))
7857 return FALSE;
7858 continue;
7859
7860 case 'l':
7861 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7862 4, FALSE))
7863 return FALSE;
7864 continue;
7865
7866 case 'p':
7867 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7868 break;
7869
7870 case 'a':
7871 *offset_reloc = BFD_RELOC_MIPS_JMP;
7872 break;
7873
7874 case 'm':
7875 gas_assert (mips_opts.micromips);
7876 c = args[1];
7877 switch (c)
7878 {
7879 case 'D':
7880 case 'E':
7881 if (!forced_insn_length)
7882 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7883 else if (c == 'D')
7884 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7885 else
7886 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7887 break;
7888 }
7889 break;
7890 }
7891
7892 operand = (mips_opts.micromips
7893 ? decode_micromips_operand (args)
7894 : decode_mips_operand (args));
7895 if (!operand)
7896 abort ();
7897
7898 /* Skip prefixes. */
7899 if (*args == '+' || *args == 'm' || *args == '-')
7900 args++;
7901
7902 if (mips_optional_operand_p (operand)
7903 && args[1] == ','
7904 && (arg.token[0].type != OT_REG
7905 || arg.token[1].type == OT_END))
7906 {
7907 /* Assume that the register has been elided and is the
7908 same as the first operand. */
7909 arg.token = tokens;
7910 arg.argnum = 1;
7911 }
7912
7913 if (!match_operand (&arg, operand))
7914 return FALSE;
7915 }
7916 }
7917
7918 /* Like match_insn, but for MIPS16. */
7919
7920 static bfd_boolean
7921 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7922 struct mips_operand_token *tokens)
7923 {
7924 const char *args;
7925 const struct mips_operand *operand;
7926 const struct mips_operand *ext_operand;
7927 struct mips_arg_info arg;
7928 int relax_char;
7929
7930 create_insn (insn, opcode);
7931 imm_expr.X_op = O_absent;
7932 offset_expr.X_op = O_absent;
7933 offset_reloc[0] = BFD_RELOC_UNUSED;
7934 offset_reloc[1] = BFD_RELOC_UNUSED;
7935 offset_reloc[2] = BFD_RELOC_UNUSED;
7936 relax_char = 0;
7937
7938 memset (&arg, 0, sizeof (arg));
7939 arg.insn = insn;
7940 arg.token = tokens;
7941 arg.argnum = 1;
7942 arg.last_regno = ILLEGAL_REG;
7943 arg.dest_regno = ILLEGAL_REG;
7944 relax_char = 0;
7945 for (args = opcode->args;; ++args)
7946 {
7947 int c;
7948
7949 if (arg.token->type == OT_END)
7950 {
7951 offsetT value;
7952
7953 /* Handle unary instructions in which only one operand is given.
7954 The source is then the same as the destination. */
7955 if (arg.opnum == 1 && *args == ',')
7956 {
7957 operand = decode_mips16_operand (args[1], FALSE);
7958 if (operand && mips_optional_operand_p (operand))
7959 {
7960 arg.token = tokens;
7961 arg.argnum = 1;
7962 continue;
7963 }
7964 }
7965
7966 /* Fail the match if there were too few operands. */
7967 if (*args)
7968 return FALSE;
7969
7970 /* Successful match. Stuff the immediate value in now, if
7971 we can. */
7972 clear_insn_error ();
7973 if (opcode->pinfo == INSN_MACRO)
7974 {
7975 gas_assert (relax_char == 0 || relax_char == 'p');
7976 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7977 }
7978 else if (relax_char
7979 && offset_expr.X_op == O_constant
7980 && calculate_reloc (*offset_reloc,
7981 offset_expr.X_add_number,
7982 &value))
7983 {
7984 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7985 forced_insn_length, &insn->insn_opcode);
7986 offset_expr.X_op = O_absent;
7987 *offset_reloc = BFD_RELOC_UNUSED;
7988 }
7989 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7990 {
7991 if (forced_insn_length == 2)
7992 set_insn_error (0, _("invalid unextended operand value"));
7993 forced_insn_length = 4;
7994 insn->insn_opcode |= MIPS16_EXTEND;
7995 }
7996 else if (relax_char)
7997 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7998
7999 check_completed_insn (&arg);
8000 return TRUE;
8001 }
8002
8003 /* Fail the match if the line has too many operands. */
8004 if (*args == 0)
8005 return FALSE;
8006
8007 /* Handle characters that need to match exactly. */
8008 if (*args == '(' || *args == ')' || *args == ',')
8009 {
8010 if (match_char (&arg, *args))
8011 continue;
8012 return FALSE;
8013 }
8014
8015 arg.opnum += 1;
8016 c = *args;
8017 switch (c)
8018 {
8019 case 'p':
8020 case 'q':
8021 case 'A':
8022 case 'B':
8023 case 'E':
8024 relax_char = c;
8025 break;
8026
8027 case 'I':
8028 if (!match_const_int (&arg, &imm_expr.X_add_number))
8029 return FALSE;
8030 imm_expr.X_op = O_constant;
8031 if (GPR_SIZE == 32)
8032 normalize_constant_expr (&imm_expr);
8033 continue;
8034
8035 case 'a':
8036 case 'i':
8037 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8038 insn->insn_opcode <<= 16;
8039 break;
8040 }
8041
8042 operand = decode_mips16_operand (c, FALSE);
8043 if (!operand)
8044 abort ();
8045
8046 /* '6' is a special case. It is used for BREAK and SDBBP,
8047 whose operands are only meaningful to the software that decodes
8048 them. This means that there is no architectural reason why
8049 they cannot be prefixed by EXTEND, but in practice,
8050 exception handlers will only look at the instruction
8051 itself. We therefore allow '6' to be extended when
8052 disassembling but not when assembling. */
8053 if (operand->type != OP_PCREL && c != '6')
8054 {
8055 ext_operand = decode_mips16_operand (c, TRUE);
8056 if (operand != ext_operand)
8057 {
8058 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8059 {
8060 offset_expr.X_op = O_constant;
8061 offset_expr.X_add_number = 0;
8062 relax_char = c;
8063 continue;
8064 }
8065
8066 /* We need the OT_INTEGER check because some MIPS16
8067 immediate variants are listed before the register ones. */
8068 if (arg.token->type != OT_INTEGER
8069 || !match_expression (&arg, &offset_expr, offset_reloc))
8070 return FALSE;
8071
8072 /* '8' is used for SLTI(U) and has traditionally not
8073 been allowed to take relocation operators. */
8074 if (offset_reloc[0] != BFD_RELOC_UNUSED
8075 && (ext_operand->size != 16 || c == '8'))
8076 return FALSE;
8077
8078 relax_char = c;
8079 continue;
8080 }
8081 }
8082
8083 if (mips_optional_operand_p (operand)
8084 && args[1] == ','
8085 && (arg.token[0].type != OT_REG
8086 || arg.token[1].type == OT_END))
8087 {
8088 /* Assume that the register has been elided and is the
8089 same as the first operand. */
8090 arg.token = tokens;
8091 arg.argnum = 1;
8092 }
8093
8094 if (!match_operand (&arg, operand))
8095 return FALSE;
8096 }
8097 }
8098
8099 /* Record that the current instruction is invalid for the current ISA. */
8100
8101 static void
8102 match_invalid_for_isa (void)
8103 {
8104 set_insn_error_ss
8105 (0, _("opcode not supported on this processor: %s (%s)"),
8106 mips_cpu_info_from_arch (mips_opts.arch)->name,
8107 mips_cpu_info_from_isa (mips_opts.isa)->name);
8108 }
8109
8110 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8111 Return true if a definite match or failure was found, storing any match
8112 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8113 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8114 tried and failed to match under normal conditions and now want to try a
8115 more relaxed match. */
8116
8117 static bfd_boolean
8118 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8119 const struct mips_opcode *past, struct mips_operand_token *tokens,
8120 int opcode_extra, bfd_boolean lax_match)
8121 {
8122 const struct mips_opcode *opcode;
8123 const struct mips_opcode *invalid_delay_slot;
8124 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8125
8126 /* Search for a match, ignoring alternatives that don't satisfy the
8127 current ISA or forced_length. */
8128 invalid_delay_slot = 0;
8129 seen_valid_for_isa = FALSE;
8130 seen_valid_for_size = FALSE;
8131 opcode = first;
8132 do
8133 {
8134 gas_assert (strcmp (opcode->name, first->name) == 0);
8135 if (is_opcode_valid (opcode))
8136 {
8137 seen_valid_for_isa = TRUE;
8138 if (is_size_valid (opcode))
8139 {
8140 bfd_boolean delay_slot_ok;
8141
8142 seen_valid_for_size = TRUE;
8143 delay_slot_ok = is_delay_slot_valid (opcode);
8144 if (match_insn (insn, opcode, tokens, opcode_extra,
8145 lax_match, delay_slot_ok))
8146 {
8147 if (!delay_slot_ok)
8148 {
8149 if (!invalid_delay_slot)
8150 invalid_delay_slot = opcode;
8151 }
8152 else
8153 return TRUE;
8154 }
8155 }
8156 }
8157 ++opcode;
8158 }
8159 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8160
8161 /* If the only matches we found had the wrong length for the delay slot,
8162 pick the first such match. We'll issue an appropriate warning later. */
8163 if (invalid_delay_slot)
8164 {
8165 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8166 lax_match, TRUE))
8167 return TRUE;
8168 abort ();
8169 }
8170
8171 /* Handle the case where we didn't try to match an instruction because
8172 all the alternatives were incompatible with the current ISA. */
8173 if (!seen_valid_for_isa)
8174 {
8175 match_invalid_for_isa ();
8176 return TRUE;
8177 }
8178
8179 /* Handle the case where we didn't try to match an instruction because
8180 all the alternatives were of the wrong size. */
8181 if (!seen_valid_for_size)
8182 {
8183 if (mips_opts.insn32)
8184 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8185 else
8186 set_insn_error_i
8187 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8188 8 * forced_insn_length);
8189 return TRUE;
8190 }
8191
8192 return FALSE;
8193 }
8194
8195 /* Like match_insns, but for MIPS16. */
8196
8197 static bfd_boolean
8198 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8199 struct mips_operand_token *tokens)
8200 {
8201 const struct mips_opcode *opcode;
8202 bfd_boolean seen_valid_for_isa;
8203
8204 /* Search for a match, ignoring alternatives that don't satisfy the
8205 current ISA. There are no separate entries for extended forms so
8206 we deal with forced_length later. */
8207 seen_valid_for_isa = FALSE;
8208 opcode = first;
8209 do
8210 {
8211 gas_assert (strcmp (opcode->name, first->name) == 0);
8212 if (is_opcode_valid_16 (opcode))
8213 {
8214 seen_valid_for_isa = TRUE;
8215 if (match_mips16_insn (insn, opcode, tokens))
8216 return TRUE;
8217 }
8218 ++opcode;
8219 }
8220 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8221 && strcmp (opcode->name, first->name) == 0);
8222
8223 /* Handle the case where we didn't try to match an instruction because
8224 all the alternatives were incompatible with the current ISA. */
8225 if (!seen_valid_for_isa)
8226 {
8227 match_invalid_for_isa ();
8228 return TRUE;
8229 }
8230
8231 return FALSE;
8232 }
8233
8234 /* Set up global variables for the start of a new macro. */
8235
8236 static void
8237 macro_start (void)
8238 {
8239 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8240 memset (&mips_macro_warning.first_insn_sizes, 0,
8241 sizeof (mips_macro_warning.first_insn_sizes));
8242 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8243 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8244 && delayed_branch_p (&history[0]));
8245 switch (history[0].insn_mo->pinfo2
8246 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8247 {
8248 case INSN2_BRANCH_DELAY_32BIT:
8249 mips_macro_warning.delay_slot_length = 4;
8250 break;
8251 case INSN2_BRANCH_DELAY_16BIT:
8252 mips_macro_warning.delay_slot_length = 2;
8253 break;
8254 default:
8255 mips_macro_warning.delay_slot_length = 0;
8256 break;
8257 }
8258 mips_macro_warning.first_frag = NULL;
8259 }
8260
8261 /* Given that a macro is longer than one instruction or of the wrong size,
8262 return the appropriate warning for it. Return null if no warning is
8263 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8264 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8265 and RELAX_NOMACRO. */
8266
8267 static const char *
8268 macro_warning (relax_substateT subtype)
8269 {
8270 if (subtype & RELAX_DELAY_SLOT)
8271 return _("macro instruction expanded into multiple instructions"
8272 " in a branch delay slot");
8273 else if (subtype & RELAX_NOMACRO)
8274 return _("macro instruction expanded into multiple instructions");
8275 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8276 | RELAX_DELAY_SLOT_SIZE_SECOND))
8277 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8278 ? _("macro instruction expanded into a wrong size instruction"
8279 " in a 16-bit branch delay slot")
8280 : _("macro instruction expanded into a wrong size instruction"
8281 " in a 32-bit branch delay slot"));
8282 else
8283 return 0;
8284 }
8285
8286 /* Finish up a macro. Emit warnings as appropriate. */
8287
8288 static void
8289 macro_end (void)
8290 {
8291 /* Relaxation warning flags. */
8292 relax_substateT subtype = 0;
8293
8294 /* Check delay slot size requirements. */
8295 if (mips_macro_warning.delay_slot_length == 2)
8296 subtype |= RELAX_DELAY_SLOT_16BIT;
8297 if (mips_macro_warning.delay_slot_length != 0)
8298 {
8299 if (mips_macro_warning.delay_slot_length
8300 != mips_macro_warning.first_insn_sizes[0])
8301 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8302 if (mips_macro_warning.delay_slot_length
8303 != mips_macro_warning.first_insn_sizes[1])
8304 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8305 }
8306
8307 /* Check instruction count requirements. */
8308 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8309 {
8310 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8311 subtype |= RELAX_SECOND_LONGER;
8312 if (mips_opts.warn_about_macros)
8313 subtype |= RELAX_NOMACRO;
8314 if (mips_macro_warning.delay_slot_p)
8315 subtype |= RELAX_DELAY_SLOT;
8316 }
8317
8318 /* If both alternatives fail to fill a delay slot correctly,
8319 emit the warning now. */
8320 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8321 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8322 {
8323 relax_substateT s;
8324 const char *msg;
8325
8326 s = subtype & (RELAX_DELAY_SLOT_16BIT
8327 | RELAX_DELAY_SLOT_SIZE_FIRST
8328 | RELAX_DELAY_SLOT_SIZE_SECOND);
8329 msg = macro_warning (s);
8330 if (msg != NULL)
8331 as_warn ("%s", msg);
8332 subtype &= ~s;
8333 }
8334
8335 /* If both implementations are longer than 1 instruction, then emit the
8336 warning now. */
8337 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8338 {
8339 relax_substateT s;
8340 const char *msg;
8341
8342 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8343 msg = macro_warning (s);
8344 if (msg != NULL)
8345 as_warn ("%s", msg);
8346 subtype &= ~s;
8347 }
8348
8349 /* If any flags still set, then one implementation might need a warning
8350 and the other either will need one of a different kind or none at all.
8351 Pass any remaining flags over to relaxation. */
8352 if (mips_macro_warning.first_frag != NULL)
8353 mips_macro_warning.first_frag->fr_subtype |= subtype;
8354 }
8355
8356 /* Instruction operand formats used in macros that vary between
8357 standard MIPS and microMIPS code. */
8358
8359 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8360 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8361 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8362 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8363 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8364 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8365 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8366 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8367
8368 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8369 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8370 : cop12_fmt[mips_opts.micromips])
8371 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8372 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8373 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8374 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8375 : mem12_fmt[mips_opts.micromips])
8376 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8377 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8378 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8379
8380 /* Read a macro's relocation codes from *ARGS and store them in *R.
8381 The first argument in *ARGS will be either the code for a single
8382 relocation or -1 followed by the three codes that make up a
8383 composite relocation. */
8384
8385 static void
8386 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8387 {
8388 int i, next;
8389
8390 next = va_arg (*args, int);
8391 if (next >= 0)
8392 r[0] = (bfd_reloc_code_real_type) next;
8393 else
8394 {
8395 for (i = 0; i < 3; i++)
8396 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8397 /* This function is only used for 16-bit relocation fields.
8398 To make the macro code simpler, treat an unrelocated value
8399 in the same way as BFD_RELOC_LO16. */
8400 if (r[0] == BFD_RELOC_UNUSED)
8401 r[0] = BFD_RELOC_LO16;
8402 }
8403 }
8404
8405 /* Build an instruction created by a macro expansion. This is passed
8406 a pointer to the count of instructions created so far, an
8407 expression, the name of the instruction to build, an operand format
8408 string, and corresponding arguments. */
8409
8410 static void
8411 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8412 {
8413 const struct mips_opcode *mo = NULL;
8414 bfd_reloc_code_real_type r[3];
8415 const struct mips_opcode *amo;
8416 const struct mips_operand *operand;
8417 struct hash_control *hash;
8418 struct mips_cl_insn insn;
8419 va_list args;
8420 unsigned int uval;
8421
8422 va_start (args, fmt);
8423
8424 if (mips_opts.mips16)
8425 {
8426 mips16_macro_build (ep, name, fmt, &args);
8427 va_end (args);
8428 return;
8429 }
8430
8431 r[0] = BFD_RELOC_UNUSED;
8432 r[1] = BFD_RELOC_UNUSED;
8433 r[2] = BFD_RELOC_UNUSED;
8434 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8435 amo = (struct mips_opcode *) hash_find (hash, name);
8436 gas_assert (amo);
8437 gas_assert (strcmp (name, amo->name) == 0);
8438
8439 do
8440 {
8441 /* Search until we get a match for NAME. It is assumed here that
8442 macros will never generate MDMX, MIPS-3D, or MT instructions.
8443 We try to match an instruction that fulfils the branch delay
8444 slot instruction length requirement (if any) of the previous
8445 instruction. While doing this we record the first instruction
8446 seen that matches all the other conditions and use it anyway
8447 if the requirement cannot be met; we will issue an appropriate
8448 warning later on. */
8449 if (strcmp (fmt, amo->args) == 0
8450 && amo->pinfo != INSN_MACRO
8451 && is_opcode_valid (amo)
8452 && is_size_valid (amo))
8453 {
8454 if (is_delay_slot_valid (amo))
8455 {
8456 mo = amo;
8457 break;
8458 }
8459 else if (!mo)
8460 mo = amo;
8461 }
8462
8463 ++amo;
8464 gas_assert (amo->name);
8465 }
8466 while (strcmp (name, amo->name) == 0);
8467
8468 gas_assert (mo);
8469 create_insn (&insn, mo);
8470 for (; *fmt; ++fmt)
8471 {
8472 switch (*fmt)
8473 {
8474 case ',':
8475 case '(':
8476 case ')':
8477 case 'z':
8478 break;
8479
8480 case 'i':
8481 case 'j':
8482 macro_read_relocs (&args, r);
8483 gas_assert (*r == BFD_RELOC_GPREL16
8484 || *r == BFD_RELOC_MIPS_HIGHER
8485 || *r == BFD_RELOC_HI16_S
8486 || *r == BFD_RELOC_LO16
8487 || *r == BFD_RELOC_MIPS_GOT_OFST);
8488 break;
8489
8490 case 'o':
8491 macro_read_relocs (&args, r);
8492 break;
8493
8494 case 'u':
8495 macro_read_relocs (&args, r);
8496 gas_assert (ep != NULL
8497 && (ep->X_op == O_constant
8498 || (ep->X_op == O_symbol
8499 && (*r == BFD_RELOC_MIPS_HIGHEST
8500 || *r == BFD_RELOC_HI16_S
8501 || *r == BFD_RELOC_HI16
8502 || *r == BFD_RELOC_GPREL16
8503 || *r == BFD_RELOC_MIPS_GOT_HI16
8504 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8505 break;
8506
8507 case 'p':
8508 gas_assert (ep != NULL);
8509
8510 /*
8511 * This allows macro() to pass an immediate expression for
8512 * creating short branches without creating a symbol.
8513 *
8514 * We don't allow branch relaxation for these branches, as
8515 * they should only appear in ".set nomacro" anyway.
8516 */
8517 if (ep->X_op == O_constant)
8518 {
8519 /* For microMIPS we always use relocations for branches.
8520 So we should not resolve immediate values. */
8521 gas_assert (!mips_opts.micromips);
8522
8523 if ((ep->X_add_number & 3) != 0)
8524 as_bad (_("branch to misaligned address (0x%lx)"),
8525 (unsigned long) ep->X_add_number);
8526 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8527 as_bad (_("branch address range overflow (0x%lx)"),
8528 (unsigned long) ep->X_add_number);
8529 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8530 ep = NULL;
8531 }
8532 else
8533 *r = BFD_RELOC_16_PCREL_S2;
8534 break;
8535
8536 case 'a':
8537 gas_assert (ep != NULL);
8538 *r = BFD_RELOC_MIPS_JMP;
8539 break;
8540
8541 default:
8542 operand = (mips_opts.micromips
8543 ? decode_micromips_operand (fmt)
8544 : decode_mips_operand (fmt));
8545 if (!operand)
8546 abort ();
8547
8548 uval = va_arg (args, int);
8549 if (operand->type == OP_CLO_CLZ_DEST)
8550 uval |= (uval << 5);
8551 insn_insert_operand (&insn, operand, uval);
8552
8553 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8554 ++fmt;
8555 break;
8556 }
8557 }
8558 va_end (args);
8559 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8560
8561 append_insn (&insn, ep, r, TRUE);
8562 }
8563
8564 static void
8565 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8566 va_list *args)
8567 {
8568 struct mips_opcode *mo;
8569 struct mips_cl_insn insn;
8570 const struct mips_operand *operand;
8571 bfd_reloc_code_real_type r[3]
8572 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8573
8574 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8575 gas_assert (mo);
8576 gas_assert (strcmp (name, mo->name) == 0);
8577
8578 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8579 {
8580 ++mo;
8581 gas_assert (mo->name);
8582 gas_assert (strcmp (name, mo->name) == 0);
8583 }
8584
8585 create_insn (&insn, mo);
8586 for (; *fmt; ++fmt)
8587 {
8588 int c;
8589
8590 c = *fmt;
8591 switch (c)
8592 {
8593 case ',':
8594 case '(':
8595 case ')':
8596 break;
8597
8598 case '0':
8599 case 'S':
8600 case 'P':
8601 case 'R':
8602 break;
8603
8604 case '<':
8605 case '>':
8606 case '4':
8607 case '5':
8608 case 'H':
8609 case 'W':
8610 case 'D':
8611 case 'j':
8612 case '8':
8613 case 'V':
8614 case 'C':
8615 case 'U':
8616 case 'k':
8617 case 'K':
8618 case 'p':
8619 case 'q':
8620 {
8621 offsetT value;
8622
8623 gas_assert (ep != NULL);
8624
8625 if (ep->X_op != O_constant)
8626 *r = (int) BFD_RELOC_UNUSED + c;
8627 else if (calculate_reloc (*r, ep->X_add_number, &value))
8628 {
8629 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8630 ep = NULL;
8631 *r = BFD_RELOC_UNUSED;
8632 }
8633 }
8634 break;
8635
8636 default:
8637 operand = decode_mips16_operand (c, FALSE);
8638 if (!operand)
8639 abort ();
8640
8641 insn_insert_operand (&insn, operand, va_arg (*args, int));
8642 break;
8643 }
8644 }
8645
8646 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8647
8648 append_insn (&insn, ep, r, TRUE);
8649 }
8650
8651 /*
8652 * Generate a "jalr" instruction with a relocation hint to the called
8653 * function. This occurs in NewABI PIC code.
8654 */
8655 static void
8656 macro_build_jalr (expressionS *ep, int cprestore)
8657 {
8658 static const bfd_reloc_code_real_type jalr_relocs[2]
8659 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8660 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8661 const char *jalr;
8662 char *f = NULL;
8663
8664 if (MIPS_JALR_HINT_P (ep))
8665 {
8666 frag_grow (8);
8667 f = frag_more (0);
8668 }
8669 if (mips_opts.micromips)
8670 {
8671 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8672 ? "jalr" : "jalrs");
8673 if (MIPS_JALR_HINT_P (ep)
8674 || mips_opts.insn32
8675 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8676 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8677 else
8678 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8679 }
8680 else
8681 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8682 if (MIPS_JALR_HINT_P (ep))
8683 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8684 }
8685
8686 /*
8687 * Generate a "lui" instruction.
8688 */
8689 static void
8690 macro_build_lui (expressionS *ep, int regnum)
8691 {
8692 gas_assert (! mips_opts.mips16);
8693
8694 if (ep->X_op != O_constant)
8695 {
8696 gas_assert (ep->X_op == O_symbol);
8697 /* _gp_disp is a special case, used from s_cpload.
8698 __gnu_local_gp is used if mips_no_shared. */
8699 gas_assert (mips_pic == NO_PIC
8700 || (! HAVE_NEWABI
8701 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8702 || (! mips_in_shared
8703 && strcmp (S_GET_NAME (ep->X_add_symbol),
8704 "__gnu_local_gp") == 0));
8705 }
8706
8707 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8708 }
8709
8710 /* Generate a sequence of instructions to do a load or store from a constant
8711 offset off of a base register (breg) into/from a target register (treg),
8712 using AT if necessary. */
8713 static void
8714 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8715 int treg, int breg, int dbl)
8716 {
8717 gas_assert (ep->X_op == O_constant);
8718
8719 /* Sign-extending 32-bit constants makes their handling easier. */
8720 if (!dbl)
8721 normalize_constant_expr (ep);
8722
8723 /* Right now, this routine can only handle signed 32-bit constants. */
8724 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8725 as_warn (_("operand overflow"));
8726
8727 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8728 {
8729 /* Signed 16-bit offset will fit in the op. Easy! */
8730 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8731 }
8732 else
8733 {
8734 /* 32-bit offset, need multiple instructions and AT, like:
8735 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8736 addu $tempreg,$tempreg,$breg
8737 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8738 to handle the complete offset. */
8739 macro_build_lui (ep, AT);
8740 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8741 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8742
8743 if (!mips_opts.at)
8744 as_bad (_("macro used $at after \".set noat\""));
8745 }
8746 }
8747
8748 /* set_at()
8749 * Generates code to set the $at register to true (one)
8750 * if reg is less than the immediate expression.
8751 */
8752 static void
8753 set_at (int reg, int unsignedp)
8754 {
8755 if (imm_expr.X_add_number >= -0x8000
8756 && imm_expr.X_add_number < 0x8000)
8757 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8758 AT, reg, BFD_RELOC_LO16);
8759 else
8760 {
8761 load_register (AT, &imm_expr, GPR_SIZE == 64);
8762 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8763 }
8764 }
8765
8766 /* Count the leading zeroes by performing a binary chop. This is a
8767 bulky bit of source, but performance is a LOT better for the
8768 majority of values than a simple loop to count the bits:
8769 for (lcnt = 0; (lcnt < 32); lcnt++)
8770 if ((v) & (1 << (31 - lcnt)))
8771 break;
8772 However it is not code size friendly, and the gain will drop a bit
8773 on certain cached systems.
8774 */
8775 #define COUNT_TOP_ZEROES(v) \
8776 (((v) & ~0xffff) == 0 \
8777 ? ((v) & ~0xff) == 0 \
8778 ? ((v) & ~0xf) == 0 \
8779 ? ((v) & ~0x3) == 0 \
8780 ? ((v) & ~0x1) == 0 \
8781 ? !(v) \
8782 ? 32 \
8783 : 31 \
8784 : 30 \
8785 : ((v) & ~0x7) == 0 \
8786 ? 29 \
8787 : 28 \
8788 : ((v) & ~0x3f) == 0 \
8789 ? ((v) & ~0x1f) == 0 \
8790 ? 27 \
8791 : 26 \
8792 : ((v) & ~0x7f) == 0 \
8793 ? 25 \
8794 : 24 \
8795 : ((v) & ~0xfff) == 0 \
8796 ? ((v) & ~0x3ff) == 0 \
8797 ? ((v) & ~0x1ff) == 0 \
8798 ? 23 \
8799 : 22 \
8800 : ((v) & ~0x7ff) == 0 \
8801 ? 21 \
8802 : 20 \
8803 : ((v) & ~0x3fff) == 0 \
8804 ? ((v) & ~0x1fff) == 0 \
8805 ? 19 \
8806 : 18 \
8807 : ((v) & ~0x7fff) == 0 \
8808 ? 17 \
8809 : 16 \
8810 : ((v) & ~0xffffff) == 0 \
8811 ? ((v) & ~0xfffff) == 0 \
8812 ? ((v) & ~0x3ffff) == 0 \
8813 ? ((v) & ~0x1ffff) == 0 \
8814 ? 15 \
8815 : 14 \
8816 : ((v) & ~0x7ffff) == 0 \
8817 ? 13 \
8818 : 12 \
8819 : ((v) & ~0x3fffff) == 0 \
8820 ? ((v) & ~0x1fffff) == 0 \
8821 ? 11 \
8822 : 10 \
8823 : ((v) & ~0x7fffff) == 0 \
8824 ? 9 \
8825 : 8 \
8826 : ((v) & ~0xfffffff) == 0 \
8827 ? ((v) & ~0x3ffffff) == 0 \
8828 ? ((v) & ~0x1ffffff) == 0 \
8829 ? 7 \
8830 : 6 \
8831 : ((v) & ~0x7ffffff) == 0 \
8832 ? 5 \
8833 : 4 \
8834 : ((v) & ~0x3fffffff) == 0 \
8835 ? ((v) & ~0x1fffffff) == 0 \
8836 ? 3 \
8837 : 2 \
8838 : ((v) & ~0x7fffffff) == 0 \
8839 ? 1 \
8840 : 0)
8841
8842 /* load_register()
8843 * This routine generates the least number of instructions necessary to load
8844 * an absolute expression value into a register.
8845 */
8846 static void
8847 load_register (int reg, expressionS *ep, int dbl)
8848 {
8849 int freg;
8850 expressionS hi32, lo32;
8851
8852 if (ep->X_op != O_big)
8853 {
8854 gas_assert (ep->X_op == O_constant);
8855
8856 /* Sign-extending 32-bit constants makes their handling easier. */
8857 if (!dbl)
8858 normalize_constant_expr (ep);
8859
8860 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8861 {
8862 /* We can handle 16 bit signed values with an addiu to
8863 $zero. No need to ever use daddiu here, since $zero and
8864 the result are always correct in 32 bit mode. */
8865 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8866 return;
8867 }
8868 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8869 {
8870 /* We can handle 16 bit unsigned values with an ori to
8871 $zero. */
8872 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8873 return;
8874 }
8875 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8876 {
8877 /* 32 bit values require an lui. */
8878 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8879 if ((ep->X_add_number & 0xffff) != 0)
8880 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8881 return;
8882 }
8883 }
8884
8885 /* The value is larger than 32 bits. */
8886
8887 if (!dbl || GPR_SIZE == 32)
8888 {
8889 char value[32];
8890
8891 sprintf_vma (value, ep->X_add_number);
8892 as_bad (_("number (0x%s) larger than 32 bits"), value);
8893 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8894 return;
8895 }
8896
8897 if (ep->X_op != O_big)
8898 {
8899 hi32 = *ep;
8900 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8901 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8902 hi32.X_add_number &= 0xffffffff;
8903 lo32 = *ep;
8904 lo32.X_add_number &= 0xffffffff;
8905 }
8906 else
8907 {
8908 gas_assert (ep->X_add_number > 2);
8909 if (ep->X_add_number == 3)
8910 generic_bignum[3] = 0;
8911 else if (ep->X_add_number > 4)
8912 as_bad (_("number larger than 64 bits"));
8913 lo32.X_op = O_constant;
8914 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8915 hi32.X_op = O_constant;
8916 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8917 }
8918
8919 if (hi32.X_add_number == 0)
8920 freg = 0;
8921 else
8922 {
8923 int shift, bit;
8924 unsigned long hi, lo;
8925
8926 if (hi32.X_add_number == (offsetT) 0xffffffff)
8927 {
8928 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8929 {
8930 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8931 return;
8932 }
8933 if (lo32.X_add_number & 0x80000000)
8934 {
8935 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8936 if (lo32.X_add_number & 0xffff)
8937 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8938 return;
8939 }
8940 }
8941
8942 /* Check for 16bit shifted constant. We know that hi32 is
8943 non-zero, so start the mask on the first bit of the hi32
8944 value. */
8945 shift = 17;
8946 do
8947 {
8948 unsigned long himask, lomask;
8949
8950 if (shift < 32)
8951 {
8952 himask = 0xffff >> (32 - shift);
8953 lomask = (0xffff << shift) & 0xffffffff;
8954 }
8955 else
8956 {
8957 himask = 0xffff << (shift - 32);
8958 lomask = 0;
8959 }
8960 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8961 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8962 {
8963 expressionS tmp;
8964
8965 tmp.X_op = O_constant;
8966 if (shift < 32)
8967 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8968 | (lo32.X_add_number >> shift));
8969 else
8970 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8971 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8972 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8973 reg, reg, (shift >= 32) ? shift - 32 : shift);
8974 return;
8975 }
8976 ++shift;
8977 }
8978 while (shift <= (64 - 16));
8979
8980 /* Find the bit number of the lowest one bit, and store the
8981 shifted value in hi/lo. */
8982 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8983 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8984 if (lo != 0)
8985 {
8986 bit = 0;
8987 while ((lo & 1) == 0)
8988 {
8989 lo >>= 1;
8990 ++bit;
8991 }
8992 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8993 hi >>= bit;
8994 }
8995 else
8996 {
8997 bit = 32;
8998 while ((hi & 1) == 0)
8999 {
9000 hi >>= 1;
9001 ++bit;
9002 }
9003 lo = hi;
9004 hi = 0;
9005 }
9006
9007 /* Optimize if the shifted value is a (power of 2) - 1. */
9008 if ((hi == 0 && ((lo + 1) & lo) == 0)
9009 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9010 {
9011 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9012 if (shift != 0)
9013 {
9014 expressionS tmp;
9015
9016 /* This instruction will set the register to be all
9017 ones. */
9018 tmp.X_op = O_constant;
9019 tmp.X_add_number = (offsetT) -1;
9020 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9021 if (bit != 0)
9022 {
9023 bit += shift;
9024 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9025 reg, reg, (bit >= 32) ? bit - 32 : bit);
9026 }
9027 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9028 reg, reg, (shift >= 32) ? shift - 32 : shift);
9029 return;
9030 }
9031 }
9032
9033 /* Sign extend hi32 before calling load_register, because we can
9034 generally get better code when we load a sign extended value. */
9035 if ((hi32.X_add_number & 0x80000000) != 0)
9036 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9037 load_register (reg, &hi32, 0);
9038 freg = reg;
9039 }
9040 if ((lo32.X_add_number & 0xffff0000) == 0)
9041 {
9042 if (freg != 0)
9043 {
9044 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9045 freg = reg;
9046 }
9047 }
9048 else
9049 {
9050 expressionS mid16;
9051
9052 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9053 {
9054 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9055 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9056 return;
9057 }
9058
9059 if (freg != 0)
9060 {
9061 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9062 freg = reg;
9063 }
9064 mid16 = lo32;
9065 mid16.X_add_number >>= 16;
9066 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9067 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9068 freg = reg;
9069 }
9070 if ((lo32.X_add_number & 0xffff) != 0)
9071 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9072 }
9073
9074 static inline void
9075 load_delay_nop (void)
9076 {
9077 if (!gpr_interlocks)
9078 macro_build (NULL, "nop", "");
9079 }
9080
9081 /* Load an address into a register. */
9082
9083 static void
9084 load_address (int reg, expressionS *ep, int *used_at)
9085 {
9086 if (ep->X_op != O_constant
9087 && ep->X_op != O_symbol)
9088 {
9089 as_bad (_("expression too complex"));
9090 ep->X_op = O_constant;
9091 }
9092
9093 if (ep->X_op == O_constant)
9094 {
9095 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9096 return;
9097 }
9098
9099 if (mips_pic == NO_PIC)
9100 {
9101 /* If this is a reference to a GP relative symbol, we want
9102 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9103 Otherwise we want
9104 lui $reg,<sym> (BFD_RELOC_HI16_S)
9105 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9106 If we have an addend, we always use the latter form.
9107
9108 With 64bit address space and a usable $at we want
9109 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9110 lui $at,<sym> (BFD_RELOC_HI16_S)
9111 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9112 daddiu $at,<sym> (BFD_RELOC_LO16)
9113 dsll32 $reg,0
9114 daddu $reg,$reg,$at
9115
9116 If $at is already in use, we use a path which is suboptimal
9117 on superscalar processors.
9118 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9119 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9120 dsll $reg,16
9121 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9122 dsll $reg,16
9123 daddiu $reg,<sym> (BFD_RELOC_LO16)
9124
9125 For GP relative symbols in 64bit address space we can use
9126 the same sequence as in 32bit address space. */
9127 if (HAVE_64BIT_SYMBOLS)
9128 {
9129 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9130 && !nopic_need_relax (ep->X_add_symbol, 1))
9131 {
9132 relax_start (ep->X_add_symbol);
9133 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9134 mips_gp_register, BFD_RELOC_GPREL16);
9135 relax_switch ();
9136 }
9137
9138 if (*used_at == 0 && mips_opts.at)
9139 {
9140 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9141 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9142 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9143 BFD_RELOC_MIPS_HIGHER);
9144 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9145 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9146 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9147 *used_at = 1;
9148 }
9149 else
9150 {
9151 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9152 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9153 BFD_RELOC_MIPS_HIGHER);
9154 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9155 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9156 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9157 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9158 }
9159
9160 if (mips_relax.sequence)
9161 relax_end ();
9162 }
9163 else
9164 {
9165 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9166 && !nopic_need_relax (ep->X_add_symbol, 1))
9167 {
9168 relax_start (ep->X_add_symbol);
9169 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9170 mips_gp_register, BFD_RELOC_GPREL16);
9171 relax_switch ();
9172 }
9173 macro_build_lui (ep, reg);
9174 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9175 reg, reg, BFD_RELOC_LO16);
9176 if (mips_relax.sequence)
9177 relax_end ();
9178 }
9179 }
9180 else if (!mips_big_got)
9181 {
9182 expressionS ex;
9183
9184 /* If this is a reference to an external symbol, we want
9185 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9186 Otherwise we want
9187 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9188 nop
9189 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9190 If there is a constant, it must be added in after.
9191
9192 If we have NewABI, we want
9193 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9194 unless we're referencing a global symbol with a non-zero
9195 offset, in which case cst must be added separately. */
9196 if (HAVE_NEWABI)
9197 {
9198 if (ep->X_add_number)
9199 {
9200 ex.X_add_number = ep->X_add_number;
9201 ep->X_add_number = 0;
9202 relax_start (ep->X_add_symbol);
9203 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9204 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9205 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9206 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9207 ex.X_op = O_constant;
9208 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9209 reg, reg, BFD_RELOC_LO16);
9210 ep->X_add_number = ex.X_add_number;
9211 relax_switch ();
9212 }
9213 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9214 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9215 if (mips_relax.sequence)
9216 relax_end ();
9217 }
9218 else
9219 {
9220 ex.X_add_number = ep->X_add_number;
9221 ep->X_add_number = 0;
9222 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9223 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9224 load_delay_nop ();
9225 relax_start (ep->X_add_symbol);
9226 relax_switch ();
9227 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9228 BFD_RELOC_LO16);
9229 relax_end ();
9230
9231 if (ex.X_add_number != 0)
9232 {
9233 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9234 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9235 ex.X_op = O_constant;
9236 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9237 reg, reg, BFD_RELOC_LO16);
9238 }
9239 }
9240 }
9241 else if (mips_big_got)
9242 {
9243 expressionS ex;
9244
9245 /* This is the large GOT case. If this is a reference to an
9246 external symbol, we want
9247 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9248 addu $reg,$reg,$gp
9249 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9250
9251 Otherwise, for a reference to a local symbol in old ABI, we want
9252 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9253 nop
9254 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9255 If there is a constant, it must be added in after.
9256
9257 In the NewABI, for local symbols, with or without offsets, we want:
9258 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9259 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9260 */
9261 if (HAVE_NEWABI)
9262 {
9263 ex.X_add_number = ep->X_add_number;
9264 ep->X_add_number = 0;
9265 relax_start (ep->X_add_symbol);
9266 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9267 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9268 reg, reg, mips_gp_register);
9269 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9270 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9271 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9272 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9273 else if (ex.X_add_number)
9274 {
9275 ex.X_op = O_constant;
9276 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9277 BFD_RELOC_LO16);
9278 }
9279
9280 ep->X_add_number = ex.X_add_number;
9281 relax_switch ();
9282 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9283 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9284 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9285 BFD_RELOC_MIPS_GOT_OFST);
9286 relax_end ();
9287 }
9288 else
9289 {
9290 ex.X_add_number = ep->X_add_number;
9291 ep->X_add_number = 0;
9292 relax_start (ep->X_add_symbol);
9293 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9294 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9295 reg, reg, mips_gp_register);
9296 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9297 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9298 relax_switch ();
9299 if (reg_needs_delay (mips_gp_register))
9300 {
9301 /* We need a nop before loading from $gp. This special
9302 check is required because the lui which starts the main
9303 instruction stream does not refer to $gp, and so will not
9304 insert the nop which may be required. */
9305 macro_build (NULL, "nop", "");
9306 }
9307 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9308 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9309 load_delay_nop ();
9310 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9311 BFD_RELOC_LO16);
9312 relax_end ();
9313
9314 if (ex.X_add_number != 0)
9315 {
9316 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9317 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9318 ex.X_op = O_constant;
9319 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9320 BFD_RELOC_LO16);
9321 }
9322 }
9323 }
9324 else
9325 abort ();
9326
9327 if (!mips_opts.at && *used_at == 1)
9328 as_bad (_("macro used $at after \".set noat\""));
9329 }
9330
9331 /* Move the contents of register SOURCE into register DEST. */
9332
9333 static void
9334 move_register (int dest, int source)
9335 {
9336 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9337 instruction specifically requires a 32-bit one. */
9338 if (mips_opts.micromips
9339 && !mips_opts.insn32
9340 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9341 macro_build (NULL, "move", "mp,mj", dest, source);
9342 else
9343 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9344 }
9345
9346 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9347 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9348 The two alternatives are:
9349
9350 Global symbol Local sybmol
9351 ------------- ------------
9352 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9353 ... ...
9354 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9355
9356 load_got_offset emits the first instruction and add_got_offset
9357 emits the second for a 16-bit offset or add_got_offset_hilo emits
9358 a sequence to add a 32-bit offset using a scratch register. */
9359
9360 static void
9361 load_got_offset (int dest, expressionS *local)
9362 {
9363 expressionS global;
9364
9365 global = *local;
9366 global.X_add_number = 0;
9367
9368 relax_start (local->X_add_symbol);
9369 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9370 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9371 relax_switch ();
9372 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9373 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9374 relax_end ();
9375 }
9376
9377 static void
9378 add_got_offset (int dest, expressionS *local)
9379 {
9380 expressionS global;
9381
9382 global.X_op = O_constant;
9383 global.X_op_symbol = NULL;
9384 global.X_add_symbol = NULL;
9385 global.X_add_number = local->X_add_number;
9386
9387 relax_start (local->X_add_symbol);
9388 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9389 dest, dest, BFD_RELOC_LO16);
9390 relax_switch ();
9391 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9392 relax_end ();
9393 }
9394
9395 static void
9396 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9397 {
9398 expressionS global;
9399 int hold_mips_optimize;
9400
9401 global.X_op = O_constant;
9402 global.X_op_symbol = NULL;
9403 global.X_add_symbol = NULL;
9404 global.X_add_number = local->X_add_number;
9405
9406 relax_start (local->X_add_symbol);
9407 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9408 relax_switch ();
9409 /* Set mips_optimize around the lui instruction to avoid
9410 inserting an unnecessary nop after the lw. */
9411 hold_mips_optimize = mips_optimize;
9412 mips_optimize = 2;
9413 macro_build_lui (&global, tmp);
9414 mips_optimize = hold_mips_optimize;
9415 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9416 relax_end ();
9417
9418 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9419 }
9420
9421 /* Emit a sequence of instructions to emulate a branch likely operation.
9422 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9423 is its complementing branch with the original condition negated.
9424 CALL is set if the original branch specified the link operation.
9425 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9426
9427 Code like this is produced in the noreorder mode:
9428
9429 BRNEG <args>, 1f
9430 nop
9431 b <sym>
9432 delay slot (executed only if branch taken)
9433 1:
9434
9435 or, if CALL is set:
9436
9437 BRNEG <args>, 1f
9438 nop
9439 bal <sym>
9440 delay slot (executed only if branch taken)
9441 1:
9442
9443 In the reorder mode the delay slot would be filled with a nop anyway,
9444 so code produced is simply:
9445
9446 BR <args>, <sym>
9447 nop
9448
9449 This function is used when producing code for the microMIPS ASE that
9450 does not implement branch likely instructions in hardware. */
9451
9452 static void
9453 macro_build_branch_likely (const char *br, const char *brneg,
9454 int call, expressionS *ep, const char *fmt,
9455 unsigned int sreg, unsigned int treg)
9456 {
9457 int noreorder = mips_opts.noreorder;
9458 expressionS expr1;
9459
9460 gas_assert (mips_opts.micromips);
9461 start_noreorder ();
9462 if (noreorder)
9463 {
9464 micromips_label_expr (&expr1);
9465 macro_build (&expr1, brneg, fmt, sreg, treg);
9466 macro_build (NULL, "nop", "");
9467 macro_build (ep, call ? "bal" : "b", "p");
9468
9469 /* Set to true so that append_insn adds a label. */
9470 emit_branch_likely_macro = TRUE;
9471 }
9472 else
9473 {
9474 macro_build (ep, br, fmt, sreg, treg);
9475 macro_build (NULL, "nop", "");
9476 }
9477 end_noreorder ();
9478 }
9479
9480 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9481 the condition code tested. EP specifies the branch target. */
9482
9483 static void
9484 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9485 {
9486 const int call = 0;
9487 const char *brneg;
9488 const char *br;
9489
9490 switch (type)
9491 {
9492 case M_BC1FL:
9493 br = "bc1f";
9494 brneg = "bc1t";
9495 break;
9496 case M_BC1TL:
9497 br = "bc1t";
9498 brneg = "bc1f";
9499 break;
9500 case M_BC2FL:
9501 br = "bc2f";
9502 brneg = "bc2t";
9503 break;
9504 case M_BC2TL:
9505 br = "bc2t";
9506 brneg = "bc2f";
9507 break;
9508 default:
9509 abort ();
9510 }
9511 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9512 }
9513
9514 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9515 the register tested. EP specifies the branch target. */
9516
9517 static void
9518 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9519 {
9520 const char *brneg = NULL;
9521 const char *br;
9522 int call = 0;
9523
9524 switch (type)
9525 {
9526 case M_BGEZ:
9527 br = "bgez";
9528 break;
9529 case M_BGEZL:
9530 br = mips_opts.micromips ? "bgez" : "bgezl";
9531 brneg = "bltz";
9532 break;
9533 case M_BGEZALL:
9534 gas_assert (mips_opts.micromips);
9535 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9536 brneg = "bltz";
9537 call = 1;
9538 break;
9539 case M_BGTZ:
9540 br = "bgtz";
9541 break;
9542 case M_BGTZL:
9543 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9544 brneg = "blez";
9545 break;
9546 case M_BLEZ:
9547 br = "blez";
9548 break;
9549 case M_BLEZL:
9550 br = mips_opts.micromips ? "blez" : "blezl";
9551 brneg = "bgtz";
9552 break;
9553 case M_BLTZ:
9554 br = "bltz";
9555 break;
9556 case M_BLTZL:
9557 br = mips_opts.micromips ? "bltz" : "bltzl";
9558 brneg = "bgez";
9559 break;
9560 case M_BLTZALL:
9561 gas_assert (mips_opts.micromips);
9562 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9563 brneg = "bgez";
9564 call = 1;
9565 break;
9566 default:
9567 abort ();
9568 }
9569 if (mips_opts.micromips && brneg)
9570 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9571 else
9572 macro_build (ep, br, "s,p", sreg);
9573 }
9574
9575 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9576 TREG as the registers tested. EP specifies the branch target. */
9577
9578 static void
9579 macro_build_branch_rsrt (int type, expressionS *ep,
9580 unsigned int sreg, unsigned int treg)
9581 {
9582 const char *brneg = NULL;
9583 const int call = 0;
9584 const char *br;
9585
9586 switch (type)
9587 {
9588 case M_BEQ:
9589 case M_BEQ_I:
9590 br = "beq";
9591 break;
9592 case M_BEQL:
9593 case M_BEQL_I:
9594 br = mips_opts.micromips ? "beq" : "beql";
9595 brneg = "bne";
9596 break;
9597 case M_BNE:
9598 case M_BNE_I:
9599 br = "bne";
9600 break;
9601 case M_BNEL:
9602 case M_BNEL_I:
9603 br = mips_opts.micromips ? "bne" : "bnel";
9604 brneg = "beq";
9605 break;
9606 default:
9607 abort ();
9608 }
9609 if (mips_opts.micromips && brneg)
9610 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9611 else
9612 macro_build (ep, br, "s,t,p", sreg, treg);
9613 }
9614
9615 /* Return the high part that should be loaded in order to make the low
9616 part of VALUE accessible using an offset of OFFBITS bits. */
9617
9618 static offsetT
9619 offset_high_part (offsetT value, unsigned int offbits)
9620 {
9621 offsetT bias;
9622 addressT low_mask;
9623
9624 if (offbits == 0)
9625 return value;
9626 bias = 1 << (offbits - 1);
9627 low_mask = bias * 2 - 1;
9628 return (value + bias) & ~low_mask;
9629 }
9630
9631 /* Return true if the value stored in offset_expr and offset_reloc
9632 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9633 amount that the caller wants to add without inducing overflow
9634 and ALIGN is the known alignment of the value in bytes. */
9635
9636 static bfd_boolean
9637 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9638 {
9639 if (offbits == 16)
9640 {
9641 /* Accept any relocation operator if overflow isn't a concern. */
9642 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9643 return TRUE;
9644
9645 /* These relocations are guaranteed not to overflow in correct links. */
9646 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9647 || gprel16_reloc_p (*offset_reloc))
9648 return TRUE;
9649 }
9650 if (offset_expr.X_op == O_constant
9651 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9652 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9653 return TRUE;
9654 return FALSE;
9655 }
9656
9657 /*
9658 * Build macros
9659 * This routine implements the seemingly endless macro or synthesized
9660 * instructions and addressing modes in the mips assembly language. Many
9661 * of these macros are simple and are similar to each other. These could
9662 * probably be handled by some kind of table or grammar approach instead of
9663 * this verbose method. Others are not simple macros but are more like
9664 * optimizing code generation.
9665 * One interesting optimization is when several store macros appear
9666 * consecutively that would load AT with the upper half of the same address.
9667 * The ensuing load upper instructions are ommited. This implies some kind
9668 * of global optimization. We currently only optimize within a single macro.
9669 * For many of the load and store macros if the address is specified as a
9670 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9671 * first load register 'at' with zero and use it as the base register. The
9672 * mips assembler simply uses register $zero. Just one tiny optimization
9673 * we're missing.
9674 */
9675 static void
9676 macro (struct mips_cl_insn *ip, char *str)
9677 {
9678 const struct mips_operand_array *operands;
9679 unsigned int breg, i;
9680 unsigned int tempreg;
9681 int mask;
9682 int used_at = 0;
9683 expressionS label_expr;
9684 expressionS expr1;
9685 expressionS *ep;
9686 const char *s;
9687 const char *s2;
9688 const char *fmt;
9689 int likely = 0;
9690 int coproc = 0;
9691 int offbits = 16;
9692 int call = 0;
9693 int jals = 0;
9694 int dbl = 0;
9695 int imm = 0;
9696 int ust = 0;
9697 int lp = 0;
9698 bfd_boolean large_offset;
9699 int off;
9700 int hold_mips_optimize;
9701 unsigned int align;
9702 unsigned int op[MAX_OPERANDS];
9703
9704 gas_assert (! mips_opts.mips16);
9705
9706 operands = insn_operands (ip);
9707 for (i = 0; i < MAX_OPERANDS; i++)
9708 if (operands->operand[i])
9709 op[i] = insn_extract_operand (ip, operands->operand[i]);
9710 else
9711 op[i] = -1;
9712
9713 mask = ip->insn_mo->mask;
9714
9715 label_expr.X_op = O_constant;
9716 label_expr.X_op_symbol = NULL;
9717 label_expr.X_add_symbol = NULL;
9718 label_expr.X_add_number = 0;
9719
9720 expr1.X_op = O_constant;
9721 expr1.X_op_symbol = NULL;
9722 expr1.X_add_symbol = NULL;
9723 expr1.X_add_number = 1;
9724 align = 1;
9725
9726 switch (mask)
9727 {
9728 case M_DABS:
9729 dbl = 1;
9730 case M_ABS:
9731 /* bgez $a0,1f
9732 move v0,$a0
9733 sub v0,$zero,$a0
9734 1:
9735 */
9736
9737 start_noreorder ();
9738
9739 if (mips_opts.micromips)
9740 micromips_label_expr (&label_expr);
9741 else
9742 label_expr.X_add_number = 8;
9743 macro_build (&label_expr, "bgez", "s,p", op[1]);
9744 if (op[0] == op[1])
9745 macro_build (NULL, "nop", "");
9746 else
9747 move_register (op[0], op[1]);
9748 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9749 if (mips_opts.micromips)
9750 micromips_add_label ();
9751
9752 end_noreorder ();
9753 break;
9754
9755 case M_ADD_I:
9756 s = "addi";
9757 s2 = "add";
9758 goto do_addi;
9759 case M_ADDU_I:
9760 s = "addiu";
9761 s2 = "addu";
9762 goto do_addi;
9763 case M_DADD_I:
9764 dbl = 1;
9765 s = "daddi";
9766 s2 = "dadd";
9767 if (!mips_opts.micromips)
9768 goto do_addi;
9769 if (imm_expr.X_add_number >= -0x200
9770 && imm_expr.X_add_number < 0x200)
9771 {
9772 macro_build (NULL, s, "t,r,.", op[0], op[1],
9773 (int) imm_expr.X_add_number);
9774 break;
9775 }
9776 goto do_addi_i;
9777 case M_DADDU_I:
9778 dbl = 1;
9779 s = "daddiu";
9780 s2 = "daddu";
9781 do_addi:
9782 if (imm_expr.X_add_number >= -0x8000
9783 && imm_expr.X_add_number < 0x8000)
9784 {
9785 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9786 break;
9787 }
9788 do_addi_i:
9789 used_at = 1;
9790 load_register (AT, &imm_expr, dbl);
9791 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9792 break;
9793
9794 case M_AND_I:
9795 s = "andi";
9796 s2 = "and";
9797 goto do_bit;
9798 case M_OR_I:
9799 s = "ori";
9800 s2 = "or";
9801 goto do_bit;
9802 case M_NOR_I:
9803 s = "";
9804 s2 = "nor";
9805 goto do_bit;
9806 case M_XOR_I:
9807 s = "xori";
9808 s2 = "xor";
9809 do_bit:
9810 if (imm_expr.X_add_number >= 0
9811 && imm_expr.X_add_number < 0x10000)
9812 {
9813 if (mask != M_NOR_I)
9814 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9815 else
9816 {
9817 macro_build (&imm_expr, "ori", "t,r,i",
9818 op[0], op[1], BFD_RELOC_LO16);
9819 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9820 }
9821 break;
9822 }
9823
9824 used_at = 1;
9825 load_register (AT, &imm_expr, GPR_SIZE == 64);
9826 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9827 break;
9828
9829 case M_BALIGN:
9830 switch (imm_expr.X_add_number)
9831 {
9832 case 0:
9833 macro_build (NULL, "nop", "");
9834 break;
9835 case 2:
9836 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9837 break;
9838 case 1:
9839 case 3:
9840 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9841 (int) imm_expr.X_add_number);
9842 break;
9843 default:
9844 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9845 (unsigned long) imm_expr.X_add_number);
9846 break;
9847 }
9848 break;
9849
9850 case M_BC1FL:
9851 case M_BC1TL:
9852 case M_BC2FL:
9853 case M_BC2TL:
9854 gas_assert (mips_opts.micromips);
9855 macro_build_branch_ccl (mask, &offset_expr,
9856 EXTRACT_OPERAND (1, BCC, *ip));
9857 break;
9858
9859 case M_BEQ_I:
9860 case M_BEQL_I:
9861 case M_BNE_I:
9862 case M_BNEL_I:
9863 if (imm_expr.X_add_number == 0)
9864 op[1] = 0;
9865 else
9866 {
9867 op[1] = AT;
9868 used_at = 1;
9869 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9870 }
9871 /* Fall through. */
9872 case M_BEQL:
9873 case M_BNEL:
9874 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9875 break;
9876
9877 case M_BGEL:
9878 likely = 1;
9879 case M_BGE:
9880 if (op[1] == 0)
9881 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9882 else if (op[0] == 0)
9883 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9884 else
9885 {
9886 used_at = 1;
9887 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9888 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9889 &offset_expr, AT, ZERO);
9890 }
9891 break;
9892
9893 case M_BGEZL:
9894 case M_BGEZALL:
9895 case M_BGTZL:
9896 case M_BLEZL:
9897 case M_BLTZL:
9898 case M_BLTZALL:
9899 macro_build_branch_rs (mask, &offset_expr, op[0]);
9900 break;
9901
9902 case M_BGTL_I:
9903 likely = 1;
9904 case M_BGT_I:
9905 /* Check for > max integer. */
9906 if (imm_expr.X_add_number >= GPR_SMAX)
9907 {
9908 do_false:
9909 /* Result is always false. */
9910 if (! likely)
9911 macro_build (NULL, "nop", "");
9912 else
9913 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9914 break;
9915 }
9916 ++imm_expr.X_add_number;
9917 /* FALLTHROUGH */
9918 case M_BGE_I:
9919 case M_BGEL_I:
9920 if (mask == M_BGEL_I)
9921 likely = 1;
9922 if (imm_expr.X_add_number == 0)
9923 {
9924 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9925 &offset_expr, op[0]);
9926 break;
9927 }
9928 if (imm_expr.X_add_number == 1)
9929 {
9930 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9931 &offset_expr, op[0]);
9932 break;
9933 }
9934 if (imm_expr.X_add_number <= GPR_SMIN)
9935 {
9936 do_true:
9937 /* result is always true */
9938 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9939 macro_build (&offset_expr, "b", "p");
9940 break;
9941 }
9942 used_at = 1;
9943 set_at (op[0], 0);
9944 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9945 &offset_expr, AT, ZERO);
9946 break;
9947
9948 case M_BGEUL:
9949 likely = 1;
9950 case M_BGEU:
9951 if (op[1] == 0)
9952 goto do_true;
9953 else if (op[0] == 0)
9954 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9955 &offset_expr, ZERO, op[1]);
9956 else
9957 {
9958 used_at = 1;
9959 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9960 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9961 &offset_expr, AT, ZERO);
9962 }
9963 break;
9964
9965 case M_BGTUL_I:
9966 likely = 1;
9967 case M_BGTU_I:
9968 if (op[0] == 0
9969 || (GPR_SIZE == 32
9970 && imm_expr.X_add_number == -1))
9971 goto do_false;
9972 ++imm_expr.X_add_number;
9973 /* FALLTHROUGH */
9974 case M_BGEU_I:
9975 case M_BGEUL_I:
9976 if (mask == M_BGEUL_I)
9977 likely = 1;
9978 if (imm_expr.X_add_number == 0)
9979 goto do_true;
9980 else if (imm_expr.X_add_number == 1)
9981 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9982 &offset_expr, op[0], ZERO);
9983 else
9984 {
9985 used_at = 1;
9986 set_at (op[0], 1);
9987 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9988 &offset_expr, AT, ZERO);
9989 }
9990 break;
9991
9992 case M_BGTL:
9993 likely = 1;
9994 case M_BGT:
9995 if (op[1] == 0)
9996 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9997 else if (op[0] == 0)
9998 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
9999 else
10000 {
10001 used_at = 1;
10002 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10003 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10004 &offset_expr, AT, ZERO);
10005 }
10006 break;
10007
10008 case M_BGTUL:
10009 likely = 1;
10010 case M_BGTU:
10011 if (op[1] == 0)
10012 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10013 &offset_expr, op[0], ZERO);
10014 else if (op[0] == 0)
10015 goto do_false;
10016 else
10017 {
10018 used_at = 1;
10019 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10020 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10021 &offset_expr, AT, ZERO);
10022 }
10023 break;
10024
10025 case M_BLEL:
10026 likely = 1;
10027 case M_BLE:
10028 if (op[1] == 0)
10029 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10030 else if (op[0] == 0)
10031 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10032 else
10033 {
10034 used_at = 1;
10035 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10036 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10037 &offset_expr, AT, ZERO);
10038 }
10039 break;
10040
10041 case M_BLEL_I:
10042 likely = 1;
10043 case M_BLE_I:
10044 if (imm_expr.X_add_number >= GPR_SMAX)
10045 goto do_true;
10046 ++imm_expr.X_add_number;
10047 /* FALLTHROUGH */
10048 case M_BLT_I:
10049 case M_BLTL_I:
10050 if (mask == M_BLTL_I)
10051 likely = 1;
10052 if (imm_expr.X_add_number == 0)
10053 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10054 else if (imm_expr.X_add_number == 1)
10055 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10056 else
10057 {
10058 used_at = 1;
10059 set_at (op[0], 0);
10060 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10061 &offset_expr, AT, ZERO);
10062 }
10063 break;
10064
10065 case M_BLEUL:
10066 likely = 1;
10067 case M_BLEU:
10068 if (op[1] == 0)
10069 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10070 &offset_expr, op[0], ZERO);
10071 else if (op[0] == 0)
10072 goto do_true;
10073 else
10074 {
10075 used_at = 1;
10076 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10077 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10078 &offset_expr, AT, ZERO);
10079 }
10080 break;
10081
10082 case M_BLEUL_I:
10083 likely = 1;
10084 case M_BLEU_I:
10085 if (op[0] == 0
10086 || (GPR_SIZE == 32
10087 && imm_expr.X_add_number == -1))
10088 goto do_true;
10089 ++imm_expr.X_add_number;
10090 /* FALLTHROUGH */
10091 case M_BLTU_I:
10092 case M_BLTUL_I:
10093 if (mask == M_BLTUL_I)
10094 likely = 1;
10095 if (imm_expr.X_add_number == 0)
10096 goto do_false;
10097 else if (imm_expr.X_add_number == 1)
10098 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10099 &offset_expr, op[0], ZERO);
10100 else
10101 {
10102 used_at = 1;
10103 set_at (op[0], 1);
10104 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10105 &offset_expr, AT, ZERO);
10106 }
10107 break;
10108
10109 case M_BLTL:
10110 likely = 1;
10111 case M_BLT:
10112 if (op[1] == 0)
10113 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10114 else if (op[0] == 0)
10115 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10116 else
10117 {
10118 used_at = 1;
10119 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10120 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10121 &offset_expr, AT, ZERO);
10122 }
10123 break;
10124
10125 case M_BLTUL:
10126 likely = 1;
10127 case M_BLTU:
10128 if (op[1] == 0)
10129 goto do_false;
10130 else if (op[0] == 0)
10131 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10132 &offset_expr, ZERO, op[1]);
10133 else
10134 {
10135 used_at = 1;
10136 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10137 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10138 &offset_expr, AT, ZERO);
10139 }
10140 break;
10141
10142 case M_DDIV_3:
10143 dbl = 1;
10144 case M_DIV_3:
10145 s = "mflo";
10146 goto do_div3;
10147 case M_DREM_3:
10148 dbl = 1;
10149 case M_REM_3:
10150 s = "mfhi";
10151 do_div3:
10152 if (op[2] == 0)
10153 {
10154 as_warn (_("divide by zero"));
10155 if (mips_trap)
10156 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10157 else
10158 macro_build (NULL, "break", BRK_FMT, 7);
10159 break;
10160 }
10161
10162 start_noreorder ();
10163 if (mips_trap)
10164 {
10165 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10166 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10167 }
10168 else
10169 {
10170 if (mips_opts.micromips)
10171 micromips_label_expr (&label_expr);
10172 else
10173 label_expr.X_add_number = 8;
10174 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10175 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10176 macro_build (NULL, "break", BRK_FMT, 7);
10177 if (mips_opts.micromips)
10178 micromips_add_label ();
10179 }
10180 expr1.X_add_number = -1;
10181 used_at = 1;
10182 load_register (AT, &expr1, dbl);
10183 if (mips_opts.micromips)
10184 micromips_label_expr (&label_expr);
10185 else
10186 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10187 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10188 if (dbl)
10189 {
10190 expr1.X_add_number = 1;
10191 load_register (AT, &expr1, dbl);
10192 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10193 }
10194 else
10195 {
10196 expr1.X_add_number = 0x80000000;
10197 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10198 }
10199 if (mips_trap)
10200 {
10201 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10202 /* We want to close the noreorder block as soon as possible, so
10203 that later insns are available for delay slot filling. */
10204 end_noreorder ();
10205 }
10206 else
10207 {
10208 if (mips_opts.micromips)
10209 micromips_label_expr (&label_expr);
10210 else
10211 label_expr.X_add_number = 8;
10212 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10213 macro_build (NULL, "nop", "");
10214
10215 /* We want to close the noreorder block as soon as possible, so
10216 that later insns are available for delay slot filling. */
10217 end_noreorder ();
10218
10219 macro_build (NULL, "break", BRK_FMT, 6);
10220 }
10221 if (mips_opts.micromips)
10222 micromips_add_label ();
10223 macro_build (NULL, s, MFHL_FMT, op[0]);
10224 break;
10225
10226 case M_DIV_3I:
10227 s = "div";
10228 s2 = "mflo";
10229 goto do_divi;
10230 case M_DIVU_3I:
10231 s = "divu";
10232 s2 = "mflo";
10233 goto do_divi;
10234 case M_REM_3I:
10235 s = "div";
10236 s2 = "mfhi";
10237 goto do_divi;
10238 case M_REMU_3I:
10239 s = "divu";
10240 s2 = "mfhi";
10241 goto do_divi;
10242 case M_DDIV_3I:
10243 dbl = 1;
10244 s = "ddiv";
10245 s2 = "mflo";
10246 goto do_divi;
10247 case M_DDIVU_3I:
10248 dbl = 1;
10249 s = "ddivu";
10250 s2 = "mflo";
10251 goto do_divi;
10252 case M_DREM_3I:
10253 dbl = 1;
10254 s = "ddiv";
10255 s2 = "mfhi";
10256 goto do_divi;
10257 case M_DREMU_3I:
10258 dbl = 1;
10259 s = "ddivu";
10260 s2 = "mfhi";
10261 do_divi:
10262 if (imm_expr.X_add_number == 0)
10263 {
10264 as_warn (_("divide by zero"));
10265 if (mips_trap)
10266 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10267 else
10268 macro_build (NULL, "break", BRK_FMT, 7);
10269 break;
10270 }
10271 if (imm_expr.X_add_number == 1)
10272 {
10273 if (strcmp (s2, "mflo") == 0)
10274 move_register (op[0], op[1]);
10275 else
10276 move_register (op[0], ZERO);
10277 break;
10278 }
10279 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10280 {
10281 if (strcmp (s2, "mflo") == 0)
10282 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10283 else
10284 move_register (op[0], ZERO);
10285 break;
10286 }
10287
10288 used_at = 1;
10289 load_register (AT, &imm_expr, dbl);
10290 macro_build (NULL, s, "z,s,t", op[1], AT);
10291 macro_build (NULL, s2, MFHL_FMT, op[0]);
10292 break;
10293
10294 case M_DIVU_3:
10295 s = "divu";
10296 s2 = "mflo";
10297 goto do_divu3;
10298 case M_REMU_3:
10299 s = "divu";
10300 s2 = "mfhi";
10301 goto do_divu3;
10302 case M_DDIVU_3:
10303 s = "ddivu";
10304 s2 = "mflo";
10305 goto do_divu3;
10306 case M_DREMU_3:
10307 s = "ddivu";
10308 s2 = "mfhi";
10309 do_divu3:
10310 start_noreorder ();
10311 if (mips_trap)
10312 {
10313 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10314 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10315 /* We want to close the noreorder block as soon as possible, so
10316 that later insns are available for delay slot filling. */
10317 end_noreorder ();
10318 }
10319 else
10320 {
10321 if (mips_opts.micromips)
10322 micromips_label_expr (&label_expr);
10323 else
10324 label_expr.X_add_number = 8;
10325 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10326 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10327
10328 /* We want to close the noreorder block as soon as possible, so
10329 that later insns are available for delay slot filling. */
10330 end_noreorder ();
10331 macro_build (NULL, "break", BRK_FMT, 7);
10332 if (mips_opts.micromips)
10333 micromips_add_label ();
10334 }
10335 macro_build (NULL, s2, MFHL_FMT, op[0]);
10336 break;
10337
10338 case M_DLCA_AB:
10339 dbl = 1;
10340 case M_LCA_AB:
10341 call = 1;
10342 goto do_la;
10343 case M_DLA_AB:
10344 dbl = 1;
10345 case M_LA_AB:
10346 do_la:
10347 /* Load the address of a symbol into a register. If breg is not
10348 zero, we then add a base register to it. */
10349
10350 breg = op[2];
10351 if (dbl && GPR_SIZE == 32)
10352 as_warn (_("dla used to load 32-bit register; recommend using la "
10353 "instead"));
10354
10355 if (!dbl && HAVE_64BIT_OBJECTS)
10356 as_warn (_("la used to load 64-bit address; recommend using dla "
10357 "instead"));
10358
10359 if (small_offset_p (0, align, 16))
10360 {
10361 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10362 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10363 break;
10364 }
10365
10366 if (mips_opts.at && (op[0] == breg))
10367 {
10368 tempreg = AT;
10369 used_at = 1;
10370 }
10371 else
10372 tempreg = op[0];
10373
10374 if (offset_expr.X_op != O_symbol
10375 && offset_expr.X_op != O_constant)
10376 {
10377 as_bad (_("expression too complex"));
10378 offset_expr.X_op = O_constant;
10379 }
10380
10381 if (offset_expr.X_op == O_constant)
10382 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10383 else if (mips_pic == NO_PIC)
10384 {
10385 /* If this is a reference to a GP relative symbol, we want
10386 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10387 Otherwise we want
10388 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10389 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10390 If we have a constant, we need two instructions anyhow,
10391 so we may as well always use the latter form.
10392
10393 With 64bit address space and a usable $at we want
10394 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10395 lui $at,<sym> (BFD_RELOC_HI16_S)
10396 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10397 daddiu $at,<sym> (BFD_RELOC_LO16)
10398 dsll32 $tempreg,0
10399 daddu $tempreg,$tempreg,$at
10400
10401 If $at is already in use, we use a path which is suboptimal
10402 on superscalar processors.
10403 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10404 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10405 dsll $tempreg,16
10406 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10407 dsll $tempreg,16
10408 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10409
10410 For GP relative symbols in 64bit address space we can use
10411 the same sequence as in 32bit address space. */
10412 if (HAVE_64BIT_SYMBOLS)
10413 {
10414 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10415 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10416 {
10417 relax_start (offset_expr.X_add_symbol);
10418 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10419 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10420 relax_switch ();
10421 }
10422
10423 if (used_at == 0 && mips_opts.at)
10424 {
10425 macro_build (&offset_expr, "lui", LUI_FMT,
10426 tempreg, BFD_RELOC_MIPS_HIGHEST);
10427 macro_build (&offset_expr, "lui", LUI_FMT,
10428 AT, BFD_RELOC_HI16_S);
10429 macro_build (&offset_expr, "daddiu", "t,r,j",
10430 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10431 macro_build (&offset_expr, "daddiu", "t,r,j",
10432 AT, AT, BFD_RELOC_LO16);
10433 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10434 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10435 used_at = 1;
10436 }
10437 else
10438 {
10439 macro_build (&offset_expr, "lui", LUI_FMT,
10440 tempreg, BFD_RELOC_MIPS_HIGHEST);
10441 macro_build (&offset_expr, "daddiu", "t,r,j",
10442 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10443 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10444 macro_build (&offset_expr, "daddiu", "t,r,j",
10445 tempreg, tempreg, BFD_RELOC_HI16_S);
10446 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10447 macro_build (&offset_expr, "daddiu", "t,r,j",
10448 tempreg, tempreg, BFD_RELOC_LO16);
10449 }
10450
10451 if (mips_relax.sequence)
10452 relax_end ();
10453 }
10454 else
10455 {
10456 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10457 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10458 {
10459 relax_start (offset_expr.X_add_symbol);
10460 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10461 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10462 relax_switch ();
10463 }
10464 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10465 as_bad (_("offset too large"));
10466 macro_build_lui (&offset_expr, tempreg);
10467 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10468 tempreg, tempreg, BFD_RELOC_LO16);
10469 if (mips_relax.sequence)
10470 relax_end ();
10471 }
10472 }
10473 else if (!mips_big_got && !HAVE_NEWABI)
10474 {
10475 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10476
10477 /* If this is a reference to an external symbol, and there
10478 is no constant, we want
10479 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10480 or for lca or if tempreg is PIC_CALL_REG
10481 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10482 For a local symbol, we want
10483 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10484 nop
10485 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10486
10487 If we have a small constant, and this is a reference to
10488 an external symbol, we want
10489 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10490 nop
10491 addiu $tempreg,$tempreg,<constant>
10492 For a local symbol, we want the same instruction
10493 sequence, but we output a BFD_RELOC_LO16 reloc on the
10494 addiu instruction.
10495
10496 If we have a large constant, and this is a reference to
10497 an external symbol, we want
10498 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10499 lui $at,<hiconstant>
10500 addiu $at,$at,<loconstant>
10501 addu $tempreg,$tempreg,$at
10502 For a local symbol, we want the same instruction
10503 sequence, but we output a BFD_RELOC_LO16 reloc on the
10504 addiu instruction.
10505 */
10506
10507 if (offset_expr.X_add_number == 0)
10508 {
10509 if (mips_pic == SVR4_PIC
10510 && breg == 0
10511 && (call || tempreg == PIC_CALL_REG))
10512 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10513
10514 relax_start (offset_expr.X_add_symbol);
10515 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10516 lw_reloc_type, mips_gp_register);
10517 if (breg != 0)
10518 {
10519 /* We're going to put in an addu instruction using
10520 tempreg, so we may as well insert the nop right
10521 now. */
10522 load_delay_nop ();
10523 }
10524 relax_switch ();
10525 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10526 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10527 load_delay_nop ();
10528 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10529 tempreg, tempreg, BFD_RELOC_LO16);
10530 relax_end ();
10531 /* FIXME: If breg == 0, and the next instruction uses
10532 $tempreg, then if this variant case is used an extra
10533 nop will be generated. */
10534 }
10535 else if (offset_expr.X_add_number >= -0x8000
10536 && offset_expr.X_add_number < 0x8000)
10537 {
10538 load_got_offset (tempreg, &offset_expr);
10539 load_delay_nop ();
10540 add_got_offset (tempreg, &offset_expr);
10541 }
10542 else
10543 {
10544 expr1.X_add_number = offset_expr.X_add_number;
10545 offset_expr.X_add_number =
10546 SEXT_16BIT (offset_expr.X_add_number);
10547 load_got_offset (tempreg, &offset_expr);
10548 offset_expr.X_add_number = expr1.X_add_number;
10549 /* If we are going to add in a base register, and the
10550 target register and the base register are the same,
10551 then we are using AT as a temporary register. Since
10552 we want to load the constant into AT, we add our
10553 current AT (from the global offset table) and the
10554 register into the register now, and pretend we were
10555 not using a base register. */
10556 if (breg == op[0])
10557 {
10558 load_delay_nop ();
10559 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10560 op[0], AT, breg);
10561 breg = 0;
10562 tempreg = op[0];
10563 }
10564 add_got_offset_hilo (tempreg, &offset_expr, AT);
10565 used_at = 1;
10566 }
10567 }
10568 else if (!mips_big_got && HAVE_NEWABI)
10569 {
10570 int add_breg_early = 0;
10571
10572 /* If this is a reference to an external, and there is no
10573 constant, or local symbol (*), with or without a
10574 constant, we want
10575 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10576 or for lca or if tempreg is PIC_CALL_REG
10577 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10578
10579 If we have a small constant, and this is a reference to
10580 an external symbol, we want
10581 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10582 addiu $tempreg,$tempreg,<constant>
10583
10584 If we have a large constant, and this is a reference to
10585 an external symbol, we want
10586 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10587 lui $at,<hiconstant>
10588 addiu $at,$at,<loconstant>
10589 addu $tempreg,$tempreg,$at
10590
10591 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10592 local symbols, even though it introduces an additional
10593 instruction. */
10594
10595 if (offset_expr.X_add_number)
10596 {
10597 expr1.X_add_number = offset_expr.X_add_number;
10598 offset_expr.X_add_number = 0;
10599
10600 relax_start (offset_expr.X_add_symbol);
10601 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10602 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10603
10604 if (expr1.X_add_number >= -0x8000
10605 && expr1.X_add_number < 0x8000)
10606 {
10607 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10608 tempreg, tempreg, BFD_RELOC_LO16);
10609 }
10610 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10611 {
10612 unsigned int dreg;
10613
10614 /* If we are going to add in a base register, and the
10615 target register and the base register are the same,
10616 then we are using AT as a temporary register. Since
10617 we want to load the constant into AT, we add our
10618 current AT (from the global offset table) and the
10619 register into the register now, and pretend we were
10620 not using a base register. */
10621 if (breg != op[0])
10622 dreg = tempreg;
10623 else
10624 {
10625 gas_assert (tempreg == AT);
10626 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10627 op[0], AT, breg);
10628 dreg = op[0];
10629 add_breg_early = 1;
10630 }
10631
10632 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10633 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10634 dreg, dreg, AT);
10635
10636 used_at = 1;
10637 }
10638 else
10639 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10640
10641 relax_switch ();
10642 offset_expr.X_add_number = expr1.X_add_number;
10643
10644 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10645 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10646 if (add_breg_early)
10647 {
10648 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10649 op[0], tempreg, breg);
10650 breg = 0;
10651 tempreg = op[0];
10652 }
10653 relax_end ();
10654 }
10655 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10656 {
10657 relax_start (offset_expr.X_add_symbol);
10658 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10659 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10660 relax_switch ();
10661 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10662 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10663 relax_end ();
10664 }
10665 else
10666 {
10667 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10668 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10669 }
10670 }
10671 else if (mips_big_got && !HAVE_NEWABI)
10672 {
10673 int gpdelay;
10674 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10675 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10676 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10677
10678 /* This is the large GOT case. If this is a reference to an
10679 external symbol, and there is no constant, we want
10680 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10681 addu $tempreg,$tempreg,$gp
10682 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10683 or for lca or if tempreg is PIC_CALL_REG
10684 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10685 addu $tempreg,$tempreg,$gp
10686 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10687 For a local symbol, we want
10688 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10689 nop
10690 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10691
10692 If we have a small constant, and this is a reference to
10693 an external symbol, we want
10694 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10695 addu $tempreg,$tempreg,$gp
10696 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10697 nop
10698 addiu $tempreg,$tempreg,<constant>
10699 For a local symbol, we want
10700 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10701 nop
10702 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10703
10704 If we have a large constant, and this is a reference to
10705 an external symbol, we want
10706 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10707 addu $tempreg,$tempreg,$gp
10708 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10709 lui $at,<hiconstant>
10710 addiu $at,$at,<loconstant>
10711 addu $tempreg,$tempreg,$at
10712 For a local symbol, we want
10713 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10714 lui $at,<hiconstant>
10715 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10716 addu $tempreg,$tempreg,$at
10717 */
10718
10719 expr1.X_add_number = offset_expr.X_add_number;
10720 offset_expr.X_add_number = 0;
10721 relax_start (offset_expr.X_add_symbol);
10722 gpdelay = reg_needs_delay (mips_gp_register);
10723 if (expr1.X_add_number == 0 && breg == 0
10724 && (call || tempreg == PIC_CALL_REG))
10725 {
10726 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10727 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10728 }
10729 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10730 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10731 tempreg, tempreg, mips_gp_register);
10732 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10733 tempreg, lw_reloc_type, tempreg);
10734 if (expr1.X_add_number == 0)
10735 {
10736 if (breg != 0)
10737 {
10738 /* We're going to put in an addu instruction using
10739 tempreg, so we may as well insert the nop right
10740 now. */
10741 load_delay_nop ();
10742 }
10743 }
10744 else if (expr1.X_add_number >= -0x8000
10745 && expr1.X_add_number < 0x8000)
10746 {
10747 load_delay_nop ();
10748 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10749 tempreg, tempreg, BFD_RELOC_LO16);
10750 }
10751 else
10752 {
10753 unsigned int dreg;
10754
10755 /* If we are going to add in a base register, and the
10756 target register and the base register are the same,
10757 then we are using AT as a temporary register. Since
10758 we want to load the constant into AT, we add our
10759 current AT (from the global offset table) and the
10760 register into the register now, and pretend we were
10761 not using a base register. */
10762 if (breg != op[0])
10763 dreg = tempreg;
10764 else
10765 {
10766 gas_assert (tempreg == AT);
10767 load_delay_nop ();
10768 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10769 op[0], AT, breg);
10770 dreg = op[0];
10771 }
10772
10773 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10774 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10775
10776 used_at = 1;
10777 }
10778 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10779 relax_switch ();
10780
10781 if (gpdelay)
10782 {
10783 /* This is needed because this instruction uses $gp, but
10784 the first instruction on the main stream does not. */
10785 macro_build (NULL, "nop", "");
10786 }
10787
10788 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10789 local_reloc_type, mips_gp_register);
10790 if (expr1.X_add_number >= -0x8000
10791 && expr1.X_add_number < 0x8000)
10792 {
10793 load_delay_nop ();
10794 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10795 tempreg, tempreg, BFD_RELOC_LO16);
10796 /* FIXME: If add_number is 0, and there was no base
10797 register, the external symbol case ended with a load,
10798 so if the symbol turns out to not be external, and
10799 the next instruction uses tempreg, an unnecessary nop
10800 will be inserted. */
10801 }
10802 else
10803 {
10804 if (breg == op[0])
10805 {
10806 /* We must add in the base register now, as in the
10807 external symbol case. */
10808 gas_assert (tempreg == AT);
10809 load_delay_nop ();
10810 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10811 op[0], AT, breg);
10812 tempreg = op[0];
10813 /* We set breg to 0 because we have arranged to add
10814 it in in both cases. */
10815 breg = 0;
10816 }
10817
10818 macro_build_lui (&expr1, AT);
10819 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10820 AT, AT, BFD_RELOC_LO16);
10821 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10822 tempreg, tempreg, AT);
10823 used_at = 1;
10824 }
10825 relax_end ();
10826 }
10827 else if (mips_big_got && HAVE_NEWABI)
10828 {
10829 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10830 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10831 int add_breg_early = 0;
10832
10833 /* This is the large GOT case. If this is a reference to an
10834 external symbol, and there is no constant, we want
10835 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10836 add $tempreg,$tempreg,$gp
10837 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10838 or for lca or if tempreg is PIC_CALL_REG
10839 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10840 add $tempreg,$tempreg,$gp
10841 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10842
10843 If we have a small constant, and this is a reference to
10844 an external symbol, we want
10845 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10846 add $tempreg,$tempreg,$gp
10847 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10848 addi $tempreg,$tempreg,<constant>
10849
10850 If we have a large constant, and this is a reference to
10851 an external symbol, we want
10852 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10853 addu $tempreg,$tempreg,$gp
10854 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10855 lui $at,<hiconstant>
10856 addi $at,$at,<loconstant>
10857 add $tempreg,$tempreg,$at
10858
10859 If we have NewABI, and we know it's a local symbol, we want
10860 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10861 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10862 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10863
10864 relax_start (offset_expr.X_add_symbol);
10865
10866 expr1.X_add_number = offset_expr.X_add_number;
10867 offset_expr.X_add_number = 0;
10868
10869 if (expr1.X_add_number == 0 && breg == 0
10870 && (call || tempreg == PIC_CALL_REG))
10871 {
10872 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10873 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10874 }
10875 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10876 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10877 tempreg, tempreg, mips_gp_register);
10878 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10879 tempreg, lw_reloc_type, tempreg);
10880
10881 if (expr1.X_add_number == 0)
10882 ;
10883 else if (expr1.X_add_number >= -0x8000
10884 && expr1.X_add_number < 0x8000)
10885 {
10886 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10887 tempreg, tempreg, BFD_RELOC_LO16);
10888 }
10889 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10890 {
10891 unsigned int dreg;
10892
10893 /* If we are going to add in a base register, and the
10894 target register and the base register are the same,
10895 then we are using AT as a temporary register. Since
10896 we want to load the constant into AT, we add our
10897 current AT (from the global offset table) and the
10898 register into the register now, and pretend we were
10899 not using a base register. */
10900 if (breg != op[0])
10901 dreg = tempreg;
10902 else
10903 {
10904 gas_assert (tempreg == AT);
10905 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10906 op[0], AT, breg);
10907 dreg = op[0];
10908 add_breg_early = 1;
10909 }
10910
10911 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10912 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10913
10914 used_at = 1;
10915 }
10916 else
10917 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10918
10919 relax_switch ();
10920 offset_expr.X_add_number = expr1.X_add_number;
10921 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10922 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10923 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10924 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10925 if (add_breg_early)
10926 {
10927 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10928 op[0], tempreg, breg);
10929 breg = 0;
10930 tempreg = op[0];
10931 }
10932 relax_end ();
10933 }
10934 else
10935 abort ();
10936
10937 if (breg != 0)
10938 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10939 break;
10940
10941 case M_MSGSND:
10942 gas_assert (!mips_opts.micromips);
10943 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10944 break;
10945
10946 case M_MSGLD:
10947 gas_assert (!mips_opts.micromips);
10948 macro_build (NULL, "c2", "C", 0x02);
10949 break;
10950
10951 case M_MSGLD_T:
10952 gas_assert (!mips_opts.micromips);
10953 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10954 break;
10955
10956 case M_MSGWAIT:
10957 gas_assert (!mips_opts.micromips);
10958 macro_build (NULL, "c2", "C", 3);
10959 break;
10960
10961 case M_MSGWAIT_T:
10962 gas_assert (!mips_opts.micromips);
10963 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10964 break;
10965
10966 case M_J_A:
10967 /* The j instruction may not be used in PIC code, since it
10968 requires an absolute address. We convert it to a b
10969 instruction. */
10970 if (mips_pic == NO_PIC)
10971 macro_build (&offset_expr, "j", "a");
10972 else
10973 macro_build (&offset_expr, "b", "p");
10974 break;
10975
10976 /* The jal instructions must be handled as macros because when
10977 generating PIC code they expand to multi-instruction
10978 sequences. Normally they are simple instructions. */
10979 case M_JALS_1:
10980 op[1] = op[0];
10981 op[0] = RA;
10982 /* Fall through. */
10983 case M_JALS_2:
10984 gas_assert (mips_opts.micromips);
10985 if (mips_opts.insn32)
10986 {
10987 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10988 break;
10989 }
10990 jals = 1;
10991 goto jal;
10992 case M_JAL_1:
10993 op[1] = op[0];
10994 op[0] = RA;
10995 /* Fall through. */
10996 case M_JAL_2:
10997 jal:
10998 if (mips_pic == NO_PIC)
10999 {
11000 s = jals ? "jalrs" : "jalr";
11001 if (mips_opts.micromips
11002 && !mips_opts.insn32
11003 && op[0] == RA
11004 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11005 macro_build (NULL, s, "mj", op[1]);
11006 else
11007 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11008 }
11009 else
11010 {
11011 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11012 && mips_cprestore_offset >= 0);
11013
11014 if (op[1] != PIC_CALL_REG)
11015 as_warn (_("MIPS PIC call to register other than $25"));
11016
11017 s = ((mips_opts.micromips
11018 && !mips_opts.insn32
11019 && (!mips_opts.noreorder || cprestore))
11020 ? "jalrs" : "jalr");
11021 if (mips_opts.micromips
11022 && !mips_opts.insn32
11023 && op[0] == RA
11024 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11025 macro_build (NULL, s, "mj", op[1]);
11026 else
11027 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11028 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11029 {
11030 if (mips_cprestore_offset < 0)
11031 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11032 else
11033 {
11034 if (!mips_frame_reg_valid)
11035 {
11036 as_warn (_("no .frame pseudo-op used in PIC code"));
11037 /* Quiet this warning. */
11038 mips_frame_reg_valid = 1;
11039 }
11040 if (!mips_cprestore_valid)
11041 {
11042 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11043 /* Quiet this warning. */
11044 mips_cprestore_valid = 1;
11045 }
11046 if (mips_opts.noreorder)
11047 macro_build (NULL, "nop", "");
11048 expr1.X_add_number = mips_cprestore_offset;
11049 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11050 mips_gp_register,
11051 mips_frame_reg,
11052 HAVE_64BIT_ADDRESSES);
11053 }
11054 }
11055 }
11056
11057 break;
11058
11059 case M_JALS_A:
11060 gas_assert (mips_opts.micromips);
11061 if (mips_opts.insn32)
11062 {
11063 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11064 break;
11065 }
11066 jals = 1;
11067 /* Fall through. */
11068 case M_JAL_A:
11069 if (mips_pic == NO_PIC)
11070 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11071 else if (mips_pic == SVR4_PIC)
11072 {
11073 /* If this is a reference to an external symbol, and we are
11074 using a small GOT, we want
11075 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11076 nop
11077 jalr $ra,$25
11078 nop
11079 lw $gp,cprestore($sp)
11080 The cprestore value is set using the .cprestore
11081 pseudo-op. If we are using a big GOT, we want
11082 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11083 addu $25,$25,$gp
11084 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11085 nop
11086 jalr $ra,$25
11087 nop
11088 lw $gp,cprestore($sp)
11089 If the symbol is not external, we want
11090 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11091 nop
11092 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11093 jalr $ra,$25
11094 nop
11095 lw $gp,cprestore($sp)
11096
11097 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11098 sequences above, minus nops, unless the symbol is local,
11099 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11100 GOT_DISP. */
11101 if (HAVE_NEWABI)
11102 {
11103 if (!mips_big_got)
11104 {
11105 relax_start (offset_expr.X_add_symbol);
11106 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11107 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11108 mips_gp_register);
11109 relax_switch ();
11110 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11111 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11112 mips_gp_register);
11113 relax_end ();
11114 }
11115 else
11116 {
11117 relax_start (offset_expr.X_add_symbol);
11118 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11119 BFD_RELOC_MIPS_CALL_HI16);
11120 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11121 PIC_CALL_REG, mips_gp_register);
11122 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11123 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11124 PIC_CALL_REG);
11125 relax_switch ();
11126 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11127 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11128 mips_gp_register);
11129 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11130 PIC_CALL_REG, PIC_CALL_REG,
11131 BFD_RELOC_MIPS_GOT_OFST);
11132 relax_end ();
11133 }
11134
11135 macro_build_jalr (&offset_expr, 0);
11136 }
11137 else
11138 {
11139 relax_start (offset_expr.X_add_symbol);
11140 if (!mips_big_got)
11141 {
11142 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11143 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11144 mips_gp_register);
11145 load_delay_nop ();
11146 relax_switch ();
11147 }
11148 else
11149 {
11150 int gpdelay;
11151
11152 gpdelay = reg_needs_delay (mips_gp_register);
11153 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11154 BFD_RELOC_MIPS_CALL_HI16);
11155 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11156 PIC_CALL_REG, mips_gp_register);
11157 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11158 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11159 PIC_CALL_REG);
11160 load_delay_nop ();
11161 relax_switch ();
11162 if (gpdelay)
11163 macro_build (NULL, "nop", "");
11164 }
11165 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11166 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11167 mips_gp_register);
11168 load_delay_nop ();
11169 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11170 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11171 relax_end ();
11172 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11173
11174 if (mips_cprestore_offset < 0)
11175 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11176 else
11177 {
11178 if (!mips_frame_reg_valid)
11179 {
11180 as_warn (_("no .frame pseudo-op used in PIC code"));
11181 /* Quiet this warning. */
11182 mips_frame_reg_valid = 1;
11183 }
11184 if (!mips_cprestore_valid)
11185 {
11186 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11187 /* Quiet this warning. */
11188 mips_cprestore_valid = 1;
11189 }
11190 if (mips_opts.noreorder)
11191 macro_build (NULL, "nop", "");
11192 expr1.X_add_number = mips_cprestore_offset;
11193 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11194 mips_gp_register,
11195 mips_frame_reg,
11196 HAVE_64BIT_ADDRESSES);
11197 }
11198 }
11199 }
11200 else if (mips_pic == VXWORKS_PIC)
11201 as_bad (_("non-PIC jump used in PIC library"));
11202 else
11203 abort ();
11204
11205 break;
11206
11207 case M_LBUE_AB:
11208 s = "lbue";
11209 fmt = "t,+j(b)";
11210 offbits = 9;
11211 goto ld_st;
11212 case M_LHUE_AB:
11213 s = "lhue";
11214 fmt = "t,+j(b)";
11215 offbits = 9;
11216 goto ld_st;
11217 case M_LBE_AB:
11218 s = "lbe";
11219 fmt = "t,+j(b)";
11220 offbits = 9;
11221 goto ld_st;
11222 case M_LHE_AB:
11223 s = "lhe";
11224 fmt = "t,+j(b)";
11225 offbits = 9;
11226 goto ld_st;
11227 case M_LLE_AB:
11228 s = "lle";
11229 fmt = "t,+j(b)";
11230 offbits = 9;
11231 goto ld_st;
11232 case M_LWE_AB:
11233 s = "lwe";
11234 fmt = "t,+j(b)";
11235 offbits = 9;
11236 goto ld_st;
11237 case M_LWLE_AB:
11238 s = "lwle";
11239 fmt = "t,+j(b)";
11240 offbits = 9;
11241 goto ld_st;
11242 case M_LWRE_AB:
11243 s = "lwre";
11244 fmt = "t,+j(b)";
11245 offbits = 9;
11246 goto ld_st;
11247 case M_SBE_AB:
11248 s = "sbe";
11249 fmt = "t,+j(b)";
11250 offbits = 9;
11251 goto ld_st;
11252 case M_SCE_AB:
11253 s = "sce";
11254 fmt = "t,+j(b)";
11255 offbits = 9;
11256 goto ld_st;
11257 case M_SHE_AB:
11258 s = "she";
11259 fmt = "t,+j(b)";
11260 offbits = 9;
11261 goto ld_st;
11262 case M_SWE_AB:
11263 s = "swe";
11264 fmt = "t,+j(b)";
11265 offbits = 9;
11266 goto ld_st;
11267 case M_SWLE_AB:
11268 s = "swle";
11269 fmt = "t,+j(b)";
11270 offbits = 9;
11271 goto ld_st;
11272 case M_SWRE_AB:
11273 s = "swre";
11274 fmt = "t,+j(b)";
11275 offbits = 9;
11276 goto ld_st;
11277 case M_ACLR_AB:
11278 s = "aclr";
11279 fmt = "\\,~(b)";
11280 offbits = 12;
11281 goto ld_st;
11282 case M_ASET_AB:
11283 s = "aset";
11284 fmt = "\\,~(b)";
11285 offbits = 12;
11286 goto ld_st;
11287 case M_LB_AB:
11288 s = "lb";
11289 fmt = "t,o(b)";
11290 goto ld;
11291 case M_LBU_AB:
11292 s = "lbu";
11293 fmt = "t,o(b)";
11294 goto ld;
11295 case M_LH_AB:
11296 s = "lh";
11297 fmt = "t,o(b)";
11298 goto ld;
11299 case M_LHU_AB:
11300 s = "lhu";
11301 fmt = "t,o(b)";
11302 goto ld;
11303 case M_LW_AB:
11304 s = "lw";
11305 fmt = "t,o(b)";
11306 goto ld;
11307 case M_LWC0_AB:
11308 gas_assert (!mips_opts.micromips);
11309 s = "lwc0";
11310 fmt = "E,o(b)";
11311 /* Itbl support may require additional care here. */
11312 coproc = 1;
11313 goto ld_st;
11314 case M_LWC1_AB:
11315 s = "lwc1";
11316 fmt = "T,o(b)";
11317 /* Itbl support may require additional care here. */
11318 coproc = 1;
11319 goto ld_st;
11320 case M_LWC2_AB:
11321 s = "lwc2";
11322 fmt = COP12_FMT;
11323 offbits = (mips_opts.micromips ? 12
11324 : ISA_IS_R6 (mips_opts.isa) ? 11
11325 : 16);
11326 /* Itbl support may require additional care here. */
11327 coproc = 1;
11328 goto ld_st;
11329 case M_LWC3_AB:
11330 gas_assert (!mips_opts.micromips);
11331 s = "lwc3";
11332 fmt = "E,o(b)";
11333 /* Itbl support may require additional care here. */
11334 coproc = 1;
11335 goto ld_st;
11336 case M_LWL_AB:
11337 s = "lwl";
11338 fmt = MEM12_FMT;
11339 offbits = (mips_opts.micromips ? 12 : 16);
11340 goto ld_st;
11341 case M_LWR_AB:
11342 s = "lwr";
11343 fmt = MEM12_FMT;
11344 offbits = (mips_opts.micromips ? 12 : 16);
11345 goto ld_st;
11346 case M_LDC1_AB:
11347 s = "ldc1";
11348 fmt = "T,o(b)";
11349 /* Itbl support may require additional care here. */
11350 coproc = 1;
11351 goto ld_st;
11352 case M_LDC2_AB:
11353 s = "ldc2";
11354 fmt = COP12_FMT;
11355 offbits = (mips_opts.micromips ? 12
11356 : ISA_IS_R6 (mips_opts.isa) ? 11
11357 : 16);
11358 /* Itbl support may require additional care here. */
11359 coproc = 1;
11360 goto ld_st;
11361 case M_LQC2_AB:
11362 s = "lqc2";
11363 fmt = "+7,o(b)";
11364 /* Itbl support may require additional care here. */
11365 coproc = 1;
11366 goto ld_st;
11367 case M_LDC3_AB:
11368 s = "ldc3";
11369 fmt = "E,o(b)";
11370 /* Itbl support may require additional care here. */
11371 coproc = 1;
11372 goto ld_st;
11373 case M_LDL_AB:
11374 s = "ldl";
11375 fmt = MEM12_FMT;
11376 offbits = (mips_opts.micromips ? 12 : 16);
11377 goto ld_st;
11378 case M_LDR_AB:
11379 s = "ldr";
11380 fmt = MEM12_FMT;
11381 offbits = (mips_opts.micromips ? 12 : 16);
11382 goto ld_st;
11383 case M_LL_AB:
11384 s = "ll";
11385 fmt = LL_SC_FMT;
11386 offbits = (mips_opts.micromips ? 12
11387 : ISA_IS_R6 (mips_opts.isa) ? 9
11388 : 16);
11389 goto ld;
11390 case M_LLD_AB:
11391 s = "lld";
11392 fmt = LL_SC_FMT;
11393 offbits = (mips_opts.micromips ? 12
11394 : ISA_IS_R6 (mips_opts.isa) ? 9
11395 : 16);
11396 goto ld;
11397 case M_LWU_AB:
11398 s = "lwu";
11399 fmt = MEM12_FMT;
11400 offbits = (mips_opts.micromips ? 12 : 16);
11401 goto ld;
11402 case M_LWP_AB:
11403 gas_assert (mips_opts.micromips);
11404 s = "lwp";
11405 fmt = "t,~(b)";
11406 offbits = 12;
11407 lp = 1;
11408 goto ld;
11409 case M_LDP_AB:
11410 gas_assert (mips_opts.micromips);
11411 s = "ldp";
11412 fmt = "t,~(b)";
11413 offbits = 12;
11414 lp = 1;
11415 goto ld;
11416 case M_LWM_AB:
11417 gas_assert (mips_opts.micromips);
11418 s = "lwm";
11419 fmt = "n,~(b)";
11420 offbits = 12;
11421 goto ld_st;
11422 case M_LDM_AB:
11423 gas_assert (mips_opts.micromips);
11424 s = "ldm";
11425 fmt = "n,~(b)";
11426 offbits = 12;
11427 goto ld_st;
11428
11429 ld:
11430 /* We don't want to use $0 as tempreg. */
11431 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11432 goto ld_st;
11433 else
11434 tempreg = op[0] + lp;
11435 goto ld_noat;
11436
11437 case M_SB_AB:
11438 s = "sb";
11439 fmt = "t,o(b)";
11440 goto ld_st;
11441 case M_SH_AB:
11442 s = "sh";
11443 fmt = "t,o(b)";
11444 goto ld_st;
11445 case M_SW_AB:
11446 s = "sw";
11447 fmt = "t,o(b)";
11448 goto ld_st;
11449 case M_SWC0_AB:
11450 gas_assert (!mips_opts.micromips);
11451 s = "swc0";
11452 fmt = "E,o(b)";
11453 /* Itbl support may require additional care here. */
11454 coproc = 1;
11455 goto ld_st;
11456 case M_SWC1_AB:
11457 s = "swc1";
11458 fmt = "T,o(b)";
11459 /* Itbl support may require additional care here. */
11460 coproc = 1;
11461 goto ld_st;
11462 case M_SWC2_AB:
11463 s = "swc2";
11464 fmt = COP12_FMT;
11465 offbits = (mips_opts.micromips ? 12
11466 : ISA_IS_R6 (mips_opts.isa) ? 11
11467 : 16);
11468 /* Itbl support may require additional care here. */
11469 coproc = 1;
11470 goto ld_st;
11471 case M_SWC3_AB:
11472 gas_assert (!mips_opts.micromips);
11473 s = "swc3";
11474 fmt = "E,o(b)";
11475 /* Itbl support may require additional care here. */
11476 coproc = 1;
11477 goto ld_st;
11478 case M_SWL_AB:
11479 s = "swl";
11480 fmt = MEM12_FMT;
11481 offbits = (mips_opts.micromips ? 12 : 16);
11482 goto ld_st;
11483 case M_SWR_AB:
11484 s = "swr";
11485 fmt = MEM12_FMT;
11486 offbits = (mips_opts.micromips ? 12 : 16);
11487 goto ld_st;
11488 case M_SC_AB:
11489 s = "sc";
11490 fmt = LL_SC_FMT;
11491 offbits = (mips_opts.micromips ? 12
11492 : ISA_IS_R6 (mips_opts.isa) ? 9
11493 : 16);
11494 goto ld_st;
11495 case M_SCD_AB:
11496 s = "scd";
11497 fmt = LL_SC_FMT;
11498 offbits = (mips_opts.micromips ? 12
11499 : ISA_IS_R6 (mips_opts.isa) ? 9
11500 : 16);
11501 goto ld_st;
11502 case M_CACHE_AB:
11503 s = "cache";
11504 fmt = (mips_opts.micromips ? "k,~(b)"
11505 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11506 : "k,o(b)");
11507 offbits = (mips_opts.micromips ? 12
11508 : ISA_IS_R6 (mips_opts.isa) ? 9
11509 : 16);
11510 goto ld_st;
11511 case M_CACHEE_AB:
11512 s = "cachee";
11513 fmt = "k,+j(b)";
11514 offbits = 9;
11515 goto ld_st;
11516 case M_PREF_AB:
11517 s = "pref";
11518 fmt = (mips_opts.micromips ? "k,~(b)"
11519 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11520 : "k,o(b)");
11521 offbits = (mips_opts.micromips ? 12
11522 : ISA_IS_R6 (mips_opts.isa) ? 9
11523 : 16);
11524 goto ld_st;
11525 case M_PREFE_AB:
11526 s = "prefe";
11527 fmt = "k,+j(b)";
11528 offbits = 9;
11529 goto ld_st;
11530 case M_SDC1_AB:
11531 s = "sdc1";
11532 fmt = "T,o(b)";
11533 coproc = 1;
11534 /* Itbl support may require additional care here. */
11535 goto ld_st;
11536 case M_SDC2_AB:
11537 s = "sdc2";
11538 fmt = COP12_FMT;
11539 offbits = (mips_opts.micromips ? 12
11540 : ISA_IS_R6 (mips_opts.isa) ? 11
11541 : 16);
11542 /* Itbl support may require additional care here. */
11543 coproc = 1;
11544 goto ld_st;
11545 case M_SQC2_AB:
11546 s = "sqc2";
11547 fmt = "+7,o(b)";
11548 /* Itbl support may require additional care here. */
11549 coproc = 1;
11550 goto ld_st;
11551 case M_SDC3_AB:
11552 gas_assert (!mips_opts.micromips);
11553 s = "sdc3";
11554 fmt = "E,o(b)";
11555 /* Itbl support may require additional care here. */
11556 coproc = 1;
11557 goto ld_st;
11558 case M_SDL_AB:
11559 s = "sdl";
11560 fmt = MEM12_FMT;
11561 offbits = (mips_opts.micromips ? 12 : 16);
11562 goto ld_st;
11563 case M_SDR_AB:
11564 s = "sdr";
11565 fmt = MEM12_FMT;
11566 offbits = (mips_opts.micromips ? 12 : 16);
11567 goto ld_st;
11568 case M_SWP_AB:
11569 gas_assert (mips_opts.micromips);
11570 s = "swp";
11571 fmt = "t,~(b)";
11572 offbits = 12;
11573 goto ld_st;
11574 case M_SDP_AB:
11575 gas_assert (mips_opts.micromips);
11576 s = "sdp";
11577 fmt = "t,~(b)";
11578 offbits = 12;
11579 goto ld_st;
11580 case M_SWM_AB:
11581 gas_assert (mips_opts.micromips);
11582 s = "swm";
11583 fmt = "n,~(b)";
11584 offbits = 12;
11585 goto ld_st;
11586 case M_SDM_AB:
11587 gas_assert (mips_opts.micromips);
11588 s = "sdm";
11589 fmt = "n,~(b)";
11590 offbits = 12;
11591
11592 ld_st:
11593 tempreg = AT;
11594 ld_noat:
11595 breg = op[2];
11596 if (small_offset_p (0, align, 16))
11597 {
11598 /* The first case exists for M_LD_AB and M_SD_AB, which are
11599 macros for o32 but which should act like normal instructions
11600 otherwise. */
11601 if (offbits == 16)
11602 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11603 offset_reloc[1], offset_reloc[2], breg);
11604 else if (small_offset_p (0, align, offbits))
11605 {
11606 if (offbits == 0)
11607 macro_build (NULL, s, fmt, op[0], breg);
11608 else
11609 macro_build (NULL, s, fmt, op[0],
11610 (int) offset_expr.X_add_number, breg);
11611 }
11612 else
11613 {
11614 if (tempreg == AT)
11615 used_at = 1;
11616 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11617 tempreg, breg, -1, offset_reloc[0],
11618 offset_reloc[1], offset_reloc[2]);
11619 if (offbits == 0)
11620 macro_build (NULL, s, fmt, op[0], tempreg);
11621 else
11622 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11623 }
11624 break;
11625 }
11626
11627 if (tempreg == AT)
11628 used_at = 1;
11629
11630 if (offset_expr.X_op != O_constant
11631 && offset_expr.X_op != O_symbol)
11632 {
11633 as_bad (_("expression too complex"));
11634 offset_expr.X_op = O_constant;
11635 }
11636
11637 if (HAVE_32BIT_ADDRESSES
11638 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11639 {
11640 char value [32];
11641
11642 sprintf_vma (value, offset_expr.X_add_number);
11643 as_bad (_("number (0x%s) larger than 32 bits"), value);
11644 }
11645
11646 /* A constant expression in PIC code can be handled just as it
11647 is in non PIC code. */
11648 if (offset_expr.X_op == O_constant)
11649 {
11650 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11651 offbits == 0 ? 16 : offbits);
11652 offset_expr.X_add_number -= expr1.X_add_number;
11653
11654 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11655 if (breg != 0)
11656 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11657 tempreg, tempreg, breg);
11658 if (offbits == 0)
11659 {
11660 if (offset_expr.X_add_number != 0)
11661 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11662 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11663 macro_build (NULL, s, fmt, op[0], tempreg);
11664 }
11665 else if (offbits == 16)
11666 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11667 else
11668 macro_build (NULL, s, fmt, op[0],
11669 (int) offset_expr.X_add_number, tempreg);
11670 }
11671 else if (offbits != 16)
11672 {
11673 /* The offset field is too narrow to be used for a low-part
11674 relocation, so load the whole address into the auxillary
11675 register. */
11676 load_address (tempreg, &offset_expr, &used_at);
11677 if (breg != 0)
11678 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11679 tempreg, tempreg, breg);
11680 if (offbits == 0)
11681 macro_build (NULL, s, fmt, op[0], tempreg);
11682 else
11683 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11684 }
11685 else if (mips_pic == NO_PIC)
11686 {
11687 /* If this is a reference to a GP relative symbol, and there
11688 is no base register, we want
11689 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11690 Otherwise, if there is no base register, we want
11691 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11692 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11693 If we have a constant, we need two instructions anyhow,
11694 so we always use the latter form.
11695
11696 If we have a base register, and this is a reference to a
11697 GP relative symbol, we want
11698 addu $tempreg,$breg,$gp
11699 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11700 Otherwise we want
11701 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11702 addu $tempreg,$tempreg,$breg
11703 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11704 With a constant we always use the latter case.
11705
11706 With 64bit address space and no base register and $at usable,
11707 we want
11708 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11709 lui $at,<sym> (BFD_RELOC_HI16_S)
11710 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11711 dsll32 $tempreg,0
11712 daddu $tempreg,$at
11713 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11714 If we have a base register, we want
11715 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11716 lui $at,<sym> (BFD_RELOC_HI16_S)
11717 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11718 daddu $at,$breg
11719 dsll32 $tempreg,0
11720 daddu $tempreg,$at
11721 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11722
11723 Without $at we can't generate the optimal path for superscalar
11724 processors here since this would require two temporary registers.
11725 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11726 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11727 dsll $tempreg,16
11728 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11729 dsll $tempreg,16
11730 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11731 If we have a base register, we want
11732 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11733 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11734 dsll $tempreg,16
11735 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11736 dsll $tempreg,16
11737 daddu $tempreg,$tempreg,$breg
11738 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11739
11740 For GP relative symbols in 64bit address space we can use
11741 the same sequence as in 32bit address space. */
11742 if (HAVE_64BIT_SYMBOLS)
11743 {
11744 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11745 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11746 {
11747 relax_start (offset_expr.X_add_symbol);
11748 if (breg == 0)
11749 {
11750 macro_build (&offset_expr, s, fmt, op[0],
11751 BFD_RELOC_GPREL16, mips_gp_register);
11752 }
11753 else
11754 {
11755 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11756 tempreg, breg, mips_gp_register);
11757 macro_build (&offset_expr, s, fmt, op[0],
11758 BFD_RELOC_GPREL16, tempreg);
11759 }
11760 relax_switch ();
11761 }
11762
11763 if (used_at == 0 && mips_opts.at)
11764 {
11765 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11766 BFD_RELOC_MIPS_HIGHEST);
11767 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11768 BFD_RELOC_HI16_S);
11769 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11770 tempreg, BFD_RELOC_MIPS_HIGHER);
11771 if (breg != 0)
11772 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11773 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11774 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11775 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11776 tempreg);
11777 used_at = 1;
11778 }
11779 else
11780 {
11781 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11782 BFD_RELOC_MIPS_HIGHEST);
11783 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11784 tempreg, BFD_RELOC_MIPS_HIGHER);
11785 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11786 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11787 tempreg, BFD_RELOC_HI16_S);
11788 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11789 if (breg != 0)
11790 macro_build (NULL, "daddu", "d,v,t",
11791 tempreg, tempreg, breg);
11792 macro_build (&offset_expr, s, fmt, op[0],
11793 BFD_RELOC_LO16, tempreg);
11794 }
11795
11796 if (mips_relax.sequence)
11797 relax_end ();
11798 break;
11799 }
11800
11801 if (breg == 0)
11802 {
11803 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11804 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11805 {
11806 relax_start (offset_expr.X_add_symbol);
11807 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11808 mips_gp_register);
11809 relax_switch ();
11810 }
11811 macro_build_lui (&offset_expr, tempreg);
11812 macro_build (&offset_expr, s, fmt, op[0],
11813 BFD_RELOC_LO16, tempreg);
11814 if (mips_relax.sequence)
11815 relax_end ();
11816 }
11817 else
11818 {
11819 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11820 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11821 {
11822 relax_start (offset_expr.X_add_symbol);
11823 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11824 tempreg, breg, mips_gp_register);
11825 macro_build (&offset_expr, s, fmt, op[0],
11826 BFD_RELOC_GPREL16, tempreg);
11827 relax_switch ();
11828 }
11829 macro_build_lui (&offset_expr, tempreg);
11830 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11831 tempreg, tempreg, breg);
11832 macro_build (&offset_expr, s, fmt, op[0],
11833 BFD_RELOC_LO16, tempreg);
11834 if (mips_relax.sequence)
11835 relax_end ();
11836 }
11837 }
11838 else if (!mips_big_got)
11839 {
11840 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11841
11842 /* If this is a reference to an external symbol, we want
11843 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11844 nop
11845 <op> op[0],0($tempreg)
11846 Otherwise we want
11847 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11848 nop
11849 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11850 <op> op[0],0($tempreg)
11851
11852 For NewABI, we want
11853 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11854 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11855
11856 If there is a base register, we add it to $tempreg before
11857 the <op>. If there is a constant, we stick it in the
11858 <op> instruction. We don't handle constants larger than
11859 16 bits, because we have no way to load the upper 16 bits
11860 (actually, we could handle them for the subset of cases
11861 in which we are not using $at). */
11862 gas_assert (offset_expr.X_op == O_symbol);
11863 if (HAVE_NEWABI)
11864 {
11865 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11866 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11867 if (breg != 0)
11868 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11869 tempreg, tempreg, breg);
11870 macro_build (&offset_expr, s, fmt, op[0],
11871 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11872 break;
11873 }
11874 expr1.X_add_number = offset_expr.X_add_number;
11875 offset_expr.X_add_number = 0;
11876 if (expr1.X_add_number < -0x8000
11877 || expr1.X_add_number >= 0x8000)
11878 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11879 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11880 lw_reloc_type, mips_gp_register);
11881 load_delay_nop ();
11882 relax_start (offset_expr.X_add_symbol);
11883 relax_switch ();
11884 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11885 tempreg, BFD_RELOC_LO16);
11886 relax_end ();
11887 if (breg != 0)
11888 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11889 tempreg, tempreg, breg);
11890 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11891 }
11892 else if (mips_big_got && !HAVE_NEWABI)
11893 {
11894 int gpdelay;
11895
11896 /* If this is a reference to an external symbol, we want
11897 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11898 addu $tempreg,$tempreg,$gp
11899 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11900 <op> op[0],0($tempreg)
11901 Otherwise we want
11902 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11903 nop
11904 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11905 <op> op[0],0($tempreg)
11906 If there is a base register, we add it to $tempreg before
11907 the <op>. If there is a constant, we stick it in the
11908 <op> instruction. We don't handle constants larger than
11909 16 bits, because we have no way to load the upper 16 bits
11910 (actually, we could handle them for the subset of cases
11911 in which we are not using $at). */
11912 gas_assert (offset_expr.X_op == O_symbol);
11913 expr1.X_add_number = offset_expr.X_add_number;
11914 offset_expr.X_add_number = 0;
11915 if (expr1.X_add_number < -0x8000
11916 || expr1.X_add_number >= 0x8000)
11917 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11918 gpdelay = reg_needs_delay (mips_gp_register);
11919 relax_start (offset_expr.X_add_symbol);
11920 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11921 BFD_RELOC_MIPS_GOT_HI16);
11922 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11923 mips_gp_register);
11924 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11925 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11926 relax_switch ();
11927 if (gpdelay)
11928 macro_build (NULL, "nop", "");
11929 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11930 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11931 load_delay_nop ();
11932 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11933 tempreg, BFD_RELOC_LO16);
11934 relax_end ();
11935
11936 if (breg != 0)
11937 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11938 tempreg, tempreg, breg);
11939 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11940 }
11941 else if (mips_big_got && HAVE_NEWABI)
11942 {
11943 /* If this is a reference to an external symbol, we want
11944 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11945 add $tempreg,$tempreg,$gp
11946 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11947 <op> op[0],<ofst>($tempreg)
11948 Otherwise, for local symbols, we want:
11949 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11950 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11951 gas_assert (offset_expr.X_op == O_symbol);
11952 expr1.X_add_number = offset_expr.X_add_number;
11953 offset_expr.X_add_number = 0;
11954 if (expr1.X_add_number < -0x8000
11955 || expr1.X_add_number >= 0x8000)
11956 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11957 relax_start (offset_expr.X_add_symbol);
11958 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11959 BFD_RELOC_MIPS_GOT_HI16);
11960 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11961 mips_gp_register);
11962 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11963 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11964 if (breg != 0)
11965 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11966 tempreg, tempreg, breg);
11967 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11968
11969 relax_switch ();
11970 offset_expr.X_add_number = expr1.X_add_number;
11971 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11972 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11973 if (breg != 0)
11974 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11975 tempreg, tempreg, breg);
11976 macro_build (&offset_expr, s, fmt, op[0],
11977 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11978 relax_end ();
11979 }
11980 else
11981 abort ();
11982
11983 break;
11984
11985 case M_JRADDIUSP:
11986 gas_assert (mips_opts.micromips);
11987 gas_assert (mips_opts.insn32);
11988 start_noreorder ();
11989 macro_build (NULL, "jr", "s", RA);
11990 expr1.X_add_number = op[0] << 2;
11991 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11992 end_noreorder ();
11993 break;
11994
11995 case M_JRC:
11996 gas_assert (mips_opts.micromips);
11997 gas_assert (mips_opts.insn32);
11998 macro_build (NULL, "jr", "s", op[0]);
11999 if (mips_opts.noreorder)
12000 macro_build (NULL, "nop", "");
12001 break;
12002
12003 case M_LI:
12004 case M_LI_S:
12005 load_register (op[0], &imm_expr, 0);
12006 break;
12007
12008 case M_DLI:
12009 load_register (op[0], &imm_expr, 1);
12010 break;
12011
12012 case M_LI_SS:
12013 if (imm_expr.X_op == O_constant)
12014 {
12015 used_at = 1;
12016 load_register (AT, &imm_expr, 0);
12017 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12018 break;
12019 }
12020 else
12021 {
12022 gas_assert (imm_expr.X_op == O_absent
12023 && offset_expr.X_op == O_symbol
12024 && strcmp (segment_name (S_GET_SEGMENT
12025 (offset_expr.X_add_symbol)),
12026 ".lit4") == 0
12027 && offset_expr.X_add_number == 0);
12028 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12029 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12030 break;
12031 }
12032
12033 case M_LI_D:
12034 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12035 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12036 order 32 bits of the value and the low order 32 bits are either
12037 zero or in OFFSET_EXPR. */
12038 if (imm_expr.X_op == O_constant)
12039 {
12040 if (GPR_SIZE == 64)
12041 load_register (op[0], &imm_expr, 1);
12042 else
12043 {
12044 int hreg, lreg;
12045
12046 if (target_big_endian)
12047 {
12048 hreg = op[0];
12049 lreg = op[0] + 1;
12050 }
12051 else
12052 {
12053 hreg = op[0] + 1;
12054 lreg = op[0];
12055 }
12056
12057 if (hreg <= 31)
12058 load_register (hreg, &imm_expr, 0);
12059 if (lreg <= 31)
12060 {
12061 if (offset_expr.X_op == O_absent)
12062 move_register (lreg, 0);
12063 else
12064 {
12065 gas_assert (offset_expr.X_op == O_constant);
12066 load_register (lreg, &offset_expr, 0);
12067 }
12068 }
12069 }
12070 break;
12071 }
12072 gas_assert (imm_expr.X_op == O_absent);
12073
12074 /* We know that sym is in the .rdata section. First we get the
12075 upper 16 bits of the address. */
12076 if (mips_pic == NO_PIC)
12077 {
12078 macro_build_lui (&offset_expr, AT);
12079 used_at = 1;
12080 }
12081 else
12082 {
12083 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12084 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12085 used_at = 1;
12086 }
12087
12088 /* Now we load the register(s). */
12089 if (GPR_SIZE == 64)
12090 {
12091 used_at = 1;
12092 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12093 BFD_RELOC_LO16, AT);
12094 }
12095 else
12096 {
12097 used_at = 1;
12098 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12099 BFD_RELOC_LO16, AT);
12100 if (op[0] != RA)
12101 {
12102 /* FIXME: How in the world do we deal with the possible
12103 overflow here? */
12104 offset_expr.X_add_number += 4;
12105 macro_build (&offset_expr, "lw", "t,o(b)",
12106 op[0] + 1, BFD_RELOC_LO16, AT);
12107 }
12108 }
12109 break;
12110
12111 case M_LI_DD:
12112 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12113 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12114 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12115 the value and the low order 32 bits are either zero or in
12116 OFFSET_EXPR. */
12117 if (imm_expr.X_op == O_constant)
12118 {
12119 used_at = 1;
12120 load_register (AT, &imm_expr, FPR_SIZE == 64);
12121 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12122 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12123 else
12124 {
12125 if (ISA_HAS_MXHC1 (mips_opts.isa))
12126 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12127 else if (FPR_SIZE != 32)
12128 as_bad (_("Unable to generate `%s' compliant code "
12129 "without mthc1"),
12130 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12131 else
12132 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12133 if (offset_expr.X_op == O_absent)
12134 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12135 else
12136 {
12137 gas_assert (offset_expr.X_op == O_constant);
12138 load_register (AT, &offset_expr, 0);
12139 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12140 }
12141 }
12142 break;
12143 }
12144
12145 gas_assert (imm_expr.X_op == O_absent
12146 && offset_expr.X_op == O_symbol
12147 && offset_expr.X_add_number == 0);
12148 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12149 if (strcmp (s, ".lit8") == 0)
12150 {
12151 op[2] = mips_gp_register;
12152 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12153 offset_reloc[1] = BFD_RELOC_UNUSED;
12154 offset_reloc[2] = BFD_RELOC_UNUSED;
12155 }
12156 else
12157 {
12158 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12159 used_at = 1;
12160 if (mips_pic != NO_PIC)
12161 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12162 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12163 else
12164 {
12165 /* FIXME: This won't work for a 64 bit address. */
12166 macro_build_lui (&offset_expr, AT);
12167 }
12168
12169 op[2] = AT;
12170 offset_reloc[0] = BFD_RELOC_LO16;
12171 offset_reloc[1] = BFD_RELOC_UNUSED;
12172 offset_reloc[2] = BFD_RELOC_UNUSED;
12173 }
12174 align = 8;
12175 /* Fall through */
12176
12177 case M_L_DAB:
12178 /*
12179 * The MIPS assembler seems to check for X_add_number not
12180 * being double aligned and generating:
12181 * lui at,%hi(foo+1)
12182 * addu at,at,v1
12183 * addiu at,at,%lo(foo+1)
12184 * lwc1 f2,0(at)
12185 * lwc1 f3,4(at)
12186 * But, the resulting address is the same after relocation so why
12187 * generate the extra instruction?
12188 */
12189 /* Itbl support may require additional care here. */
12190 coproc = 1;
12191 fmt = "T,o(b)";
12192 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12193 {
12194 s = "ldc1";
12195 goto ld_st;
12196 }
12197 s = "lwc1";
12198 goto ldd_std;
12199
12200 case M_S_DAB:
12201 gas_assert (!mips_opts.micromips);
12202 /* Itbl support may require additional care here. */
12203 coproc = 1;
12204 fmt = "T,o(b)";
12205 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12206 {
12207 s = "sdc1";
12208 goto ld_st;
12209 }
12210 s = "swc1";
12211 goto ldd_std;
12212
12213 case M_LQ_AB:
12214 fmt = "t,o(b)";
12215 s = "lq";
12216 goto ld;
12217
12218 case M_SQ_AB:
12219 fmt = "t,o(b)";
12220 s = "sq";
12221 goto ld_st;
12222
12223 case M_LD_AB:
12224 fmt = "t,o(b)";
12225 if (GPR_SIZE == 64)
12226 {
12227 s = "ld";
12228 goto ld;
12229 }
12230 s = "lw";
12231 goto ldd_std;
12232
12233 case M_SD_AB:
12234 fmt = "t,o(b)";
12235 if (GPR_SIZE == 64)
12236 {
12237 s = "sd";
12238 goto ld_st;
12239 }
12240 s = "sw";
12241
12242 ldd_std:
12243 /* Even on a big endian machine $fn comes before $fn+1. We have
12244 to adjust when loading from memory. We set coproc if we must
12245 load $fn+1 first. */
12246 /* Itbl support may require additional care here. */
12247 if (!target_big_endian)
12248 coproc = 0;
12249
12250 breg = op[2];
12251 if (small_offset_p (0, align, 16))
12252 {
12253 ep = &offset_expr;
12254 if (!small_offset_p (4, align, 16))
12255 {
12256 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12257 -1, offset_reloc[0], offset_reloc[1],
12258 offset_reloc[2]);
12259 expr1.X_add_number = 0;
12260 ep = &expr1;
12261 breg = AT;
12262 used_at = 1;
12263 offset_reloc[0] = BFD_RELOC_LO16;
12264 offset_reloc[1] = BFD_RELOC_UNUSED;
12265 offset_reloc[2] = BFD_RELOC_UNUSED;
12266 }
12267 if (strcmp (s, "lw") == 0 && op[0] == breg)
12268 {
12269 ep->X_add_number += 4;
12270 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12271 offset_reloc[1], offset_reloc[2], breg);
12272 ep->X_add_number -= 4;
12273 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12274 offset_reloc[1], offset_reloc[2], breg);
12275 }
12276 else
12277 {
12278 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12279 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12280 breg);
12281 ep->X_add_number += 4;
12282 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12283 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12284 breg);
12285 }
12286 break;
12287 }
12288
12289 if (offset_expr.X_op != O_symbol
12290 && offset_expr.X_op != O_constant)
12291 {
12292 as_bad (_("expression too complex"));
12293 offset_expr.X_op = O_constant;
12294 }
12295
12296 if (HAVE_32BIT_ADDRESSES
12297 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12298 {
12299 char value [32];
12300
12301 sprintf_vma (value, offset_expr.X_add_number);
12302 as_bad (_("number (0x%s) larger than 32 bits"), value);
12303 }
12304
12305 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12306 {
12307 /* If this is a reference to a GP relative symbol, we want
12308 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12309 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12310 If we have a base register, we use this
12311 addu $at,$breg,$gp
12312 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12313 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12314 If this is not a GP relative symbol, we want
12315 lui $at,<sym> (BFD_RELOC_HI16_S)
12316 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12317 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12318 If there is a base register, we add it to $at after the
12319 lui instruction. If there is a constant, we always use
12320 the last case. */
12321 if (offset_expr.X_op == O_symbol
12322 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12323 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12324 {
12325 relax_start (offset_expr.X_add_symbol);
12326 if (breg == 0)
12327 {
12328 tempreg = mips_gp_register;
12329 }
12330 else
12331 {
12332 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12333 AT, breg, mips_gp_register);
12334 tempreg = AT;
12335 used_at = 1;
12336 }
12337
12338 /* Itbl support may require additional care here. */
12339 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12340 BFD_RELOC_GPREL16, tempreg);
12341 offset_expr.X_add_number += 4;
12342
12343 /* Set mips_optimize to 2 to avoid inserting an
12344 undesired nop. */
12345 hold_mips_optimize = mips_optimize;
12346 mips_optimize = 2;
12347 /* Itbl support may require additional care here. */
12348 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12349 BFD_RELOC_GPREL16, tempreg);
12350 mips_optimize = hold_mips_optimize;
12351
12352 relax_switch ();
12353
12354 offset_expr.X_add_number -= 4;
12355 }
12356 used_at = 1;
12357 if (offset_high_part (offset_expr.X_add_number, 16)
12358 != offset_high_part (offset_expr.X_add_number + 4, 16))
12359 {
12360 load_address (AT, &offset_expr, &used_at);
12361 offset_expr.X_op = O_constant;
12362 offset_expr.X_add_number = 0;
12363 }
12364 else
12365 macro_build_lui (&offset_expr, AT);
12366 if (breg != 0)
12367 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12368 /* Itbl support may require additional care here. */
12369 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12370 BFD_RELOC_LO16, AT);
12371 /* FIXME: How do we handle overflow here? */
12372 offset_expr.X_add_number += 4;
12373 /* Itbl support may require additional care here. */
12374 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12375 BFD_RELOC_LO16, AT);
12376 if (mips_relax.sequence)
12377 relax_end ();
12378 }
12379 else if (!mips_big_got)
12380 {
12381 /* If this is a reference to an external symbol, we want
12382 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12383 nop
12384 <op> op[0],0($at)
12385 <op> op[0]+1,4($at)
12386 Otherwise we want
12387 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12388 nop
12389 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12390 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12391 If there is a base register we add it to $at before the
12392 lwc1 instructions. If there is a constant we include it
12393 in the lwc1 instructions. */
12394 used_at = 1;
12395 expr1.X_add_number = offset_expr.X_add_number;
12396 if (expr1.X_add_number < -0x8000
12397 || expr1.X_add_number >= 0x8000 - 4)
12398 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12399 load_got_offset (AT, &offset_expr);
12400 load_delay_nop ();
12401 if (breg != 0)
12402 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12403
12404 /* Set mips_optimize to 2 to avoid inserting an undesired
12405 nop. */
12406 hold_mips_optimize = mips_optimize;
12407 mips_optimize = 2;
12408
12409 /* Itbl support may require additional care here. */
12410 relax_start (offset_expr.X_add_symbol);
12411 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12412 BFD_RELOC_LO16, AT);
12413 expr1.X_add_number += 4;
12414 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12415 BFD_RELOC_LO16, AT);
12416 relax_switch ();
12417 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12418 BFD_RELOC_LO16, AT);
12419 offset_expr.X_add_number += 4;
12420 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12421 BFD_RELOC_LO16, AT);
12422 relax_end ();
12423
12424 mips_optimize = hold_mips_optimize;
12425 }
12426 else if (mips_big_got)
12427 {
12428 int gpdelay;
12429
12430 /* If this is a reference to an external symbol, we want
12431 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12432 addu $at,$at,$gp
12433 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12434 nop
12435 <op> op[0],0($at)
12436 <op> op[0]+1,4($at)
12437 Otherwise we want
12438 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12439 nop
12440 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12441 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12442 If there is a base register we add it to $at before the
12443 lwc1 instructions. If there is a constant we include it
12444 in the lwc1 instructions. */
12445 used_at = 1;
12446 expr1.X_add_number = offset_expr.X_add_number;
12447 offset_expr.X_add_number = 0;
12448 if (expr1.X_add_number < -0x8000
12449 || expr1.X_add_number >= 0x8000 - 4)
12450 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12451 gpdelay = reg_needs_delay (mips_gp_register);
12452 relax_start (offset_expr.X_add_symbol);
12453 macro_build (&offset_expr, "lui", LUI_FMT,
12454 AT, BFD_RELOC_MIPS_GOT_HI16);
12455 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12456 AT, AT, mips_gp_register);
12457 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12458 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12459 load_delay_nop ();
12460 if (breg != 0)
12461 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12462 /* Itbl support may require additional care here. */
12463 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12464 BFD_RELOC_LO16, AT);
12465 expr1.X_add_number += 4;
12466
12467 /* Set mips_optimize to 2 to avoid inserting an undesired
12468 nop. */
12469 hold_mips_optimize = mips_optimize;
12470 mips_optimize = 2;
12471 /* Itbl support may require additional care here. */
12472 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12473 BFD_RELOC_LO16, AT);
12474 mips_optimize = hold_mips_optimize;
12475 expr1.X_add_number -= 4;
12476
12477 relax_switch ();
12478 offset_expr.X_add_number = expr1.X_add_number;
12479 if (gpdelay)
12480 macro_build (NULL, "nop", "");
12481 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12482 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12483 load_delay_nop ();
12484 if (breg != 0)
12485 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12486 /* Itbl support may require additional care here. */
12487 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12488 BFD_RELOC_LO16, AT);
12489 offset_expr.X_add_number += 4;
12490
12491 /* Set mips_optimize to 2 to avoid inserting an undesired
12492 nop. */
12493 hold_mips_optimize = mips_optimize;
12494 mips_optimize = 2;
12495 /* Itbl support may require additional care here. */
12496 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12497 BFD_RELOC_LO16, AT);
12498 mips_optimize = hold_mips_optimize;
12499 relax_end ();
12500 }
12501 else
12502 abort ();
12503
12504 break;
12505
12506 case M_SAA_AB:
12507 s = "saa";
12508 goto saa_saad;
12509 case M_SAAD_AB:
12510 s = "saad";
12511 saa_saad:
12512 gas_assert (!mips_opts.micromips);
12513 offbits = 0;
12514 fmt = "t,(b)";
12515 goto ld_st;
12516
12517 /* New code added to support COPZ instructions.
12518 This code builds table entries out of the macros in mip_opcodes.
12519 R4000 uses interlocks to handle coproc delays.
12520 Other chips (like the R3000) require nops to be inserted for delays.
12521
12522 FIXME: Currently, we require that the user handle delays.
12523 In order to fill delay slots for non-interlocked chips,
12524 we must have a way to specify delays based on the coprocessor.
12525 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12526 What are the side-effects of the cop instruction?
12527 What cache support might we have and what are its effects?
12528 Both coprocessor & memory require delays. how long???
12529 What registers are read/set/modified?
12530
12531 If an itbl is provided to interpret cop instructions,
12532 this knowledge can be encoded in the itbl spec. */
12533
12534 case M_COP0:
12535 s = "c0";
12536 goto copz;
12537 case M_COP1:
12538 s = "c1";
12539 goto copz;
12540 case M_COP2:
12541 s = "c2";
12542 goto copz;
12543 case M_COP3:
12544 s = "c3";
12545 copz:
12546 gas_assert (!mips_opts.micromips);
12547 /* For now we just do C (same as Cz). The parameter will be
12548 stored in insn_opcode by mips_ip. */
12549 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12550 break;
12551
12552 case M_MOVE:
12553 move_register (op[0], op[1]);
12554 break;
12555
12556 case M_MOVEP:
12557 gas_assert (mips_opts.micromips);
12558 gas_assert (mips_opts.insn32);
12559 move_register (micromips_to_32_reg_h_map1[op[0]],
12560 micromips_to_32_reg_m_map[op[1]]);
12561 move_register (micromips_to_32_reg_h_map2[op[0]],
12562 micromips_to_32_reg_n_map[op[2]]);
12563 break;
12564
12565 case M_DMUL:
12566 dbl = 1;
12567 case M_MUL:
12568 if (mips_opts.arch == CPU_R5900)
12569 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12570 op[2]);
12571 else
12572 {
12573 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12574 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12575 }
12576 break;
12577
12578 case M_DMUL_I:
12579 dbl = 1;
12580 case M_MUL_I:
12581 /* The MIPS assembler some times generates shifts and adds. I'm
12582 not trying to be that fancy. GCC should do this for us
12583 anyway. */
12584 used_at = 1;
12585 load_register (AT, &imm_expr, dbl);
12586 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12587 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12588 break;
12589
12590 case M_DMULO_I:
12591 dbl = 1;
12592 case M_MULO_I:
12593 imm = 1;
12594 goto do_mulo;
12595
12596 case M_DMULO:
12597 dbl = 1;
12598 case M_MULO:
12599 do_mulo:
12600 start_noreorder ();
12601 used_at = 1;
12602 if (imm)
12603 load_register (AT, &imm_expr, dbl);
12604 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12605 op[1], imm ? AT : op[2]);
12606 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12607 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12608 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12609 if (mips_trap)
12610 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12611 else
12612 {
12613 if (mips_opts.micromips)
12614 micromips_label_expr (&label_expr);
12615 else
12616 label_expr.X_add_number = 8;
12617 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12618 macro_build (NULL, "nop", "");
12619 macro_build (NULL, "break", BRK_FMT, 6);
12620 if (mips_opts.micromips)
12621 micromips_add_label ();
12622 }
12623 end_noreorder ();
12624 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12625 break;
12626
12627 case M_DMULOU_I:
12628 dbl = 1;
12629 case M_MULOU_I:
12630 imm = 1;
12631 goto do_mulou;
12632
12633 case M_DMULOU:
12634 dbl = 1;
12635 case M_MULOU:
12636 do_mulou:
12637 start_noreorder ();
12638 used_at = 1;
12639 if (imm)
12640 load_register (AT, &imm_expr, dbl);
12641 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12642 op[1], imm ? AT : op[2]);
12643 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12644 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12645 if (mips_trap)
12646 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12647 else
12648 {
12649 if (mips_opts.micromips)
12650 micromips_label_expr (&label_expr);
12651 else
12652 label_expr.X_add_number = 8;
12653 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12654 macro_build (NULL, "nop", "");
12655 macro_build (NULL, "break", BRK_FMT, 6);
12656 if (mips_opts.micromips)
12657 micromips_add_label ();
12658 }
12659 end_noreorder ();
12660 break;
12661
12662 case M_DROL:
12663 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12664 {
12665 if (op[0] == op[1])
12666 {
12667 tempreg = AT;
12668 used_at = 1;
12669 }
12670 else
12671 tempreg = op[0];
12672 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12673 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12674 break;
12675 }
12676 used_at = 1;
12677 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12678 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12679 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12680 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12681 break;
12682
12683 case M_ROL:
12684 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12685 {
12686 if (op[0] == op[1])
12687 {
12688 tempreg = AT;
12689 used_at = 1;
12690 }
12691 else
12692 tempreg = op[0];
12693 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12694 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12695 break;
12696 }
12697 used_at = 1;
12698 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12699 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12700 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12701 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12702 break;
12703
12704 case M_DROL_I:
12705 {
12706 unsigned int rot;
12707 const char *l;
12708 const char *rr;
12709
12710 rot = imm_expr.X_add_number & 0x3f;
12711 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12712 {
12713 rot = (64 - rot) & 0x3f;
12714 if (rot >= 32)
12715 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12716 else
12717 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12718 break;
12719 }
12720 if (rot == 0)
12721 {
12722 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12723 break;
12724 }
12725 l = (rot < 0x20) ? "dsll" : "dsll32";
12726 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12727 rot &= 0x1f;
12728 used_at = 1;
12729 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12730 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12731 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12732 }
12733 break;
12734
12735 case M_ROL_I:
12736 {
12737 unsigned int rot;
12738
12739 rot = imm_expr.X_add_number & 0x1f;
12740 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12741 {
12742 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12743 (32 - rot) & 0x1f);
12744 break;
12745 }
12746 if (rot == 0)
12747 {
12748 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12749 break;
12750 }
12751 used_at = 1;
12752 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12753 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12754 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12755 }
12756 break;
12757
12758 case M_DROR:
12759 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12760 {
12761 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12762 break;
12763 }
12764 used_at = 1;
12765 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12766 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12767 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12768 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12769 break;
12770
12771 case M_ROR:
12772 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12773 {
12774 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12775 break;
12776 }
12777 used_at = 1;
12778 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12779 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12780 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12781 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12782 break;
12783
12784 case M_DROR_I:
12785 {
12786 unsigned int rot;
12787 const char *l;
12788 const char *rr;
12789
12790 rot = imm_expr.X_add_number & 0x3f;
12791 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12792 {
12793 if (rot >= 32)
12794 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12795 else
12796 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12797 break;
12798 }
12799 if (rot == 0)
12800 {
12801 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12802 break;
12803 }
12804 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12805 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12806 rot &= 0x1f;
12807 used_at = 1;
12808 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12809 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12810 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12811 }
12812 break;
12813
12814 case M_ROR_I:
12815 {
12816 unsigned int rot;
12817
12818 rot = imm_expr.X_add_number & 0x1f;
12819 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12820 {
12821 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12822 break;
12823 }
12824 if (rot == 0)
12825 {
12826 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12827 break;
12828 }
12829 used_at = 1;
12830 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12831 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12832 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12833 }
12834 break;
12835
12836 case M_SEQ:
12837 if (op[1] == 0)
12838 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12839 else if (op[2] == 0)
12840 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12841 else
12842 {
12843 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12844 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12845 }
12846 break;
12847
12848 case M_SEQ_I:
12849 if (imm_expr.X_add_number == 0)
12850 {
12851 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12852 break;
12853 }
12854 if (op[1] == 0)
12855 {
12856 as_warn (_("instruction %s: result is always false"),
12857 ip->insn_mo->name);
12858 move_register (op[0], 0);
12859 break;
12860 }
12861 if (CPU_HAS_SEQ (mips_opts.arch)
12862 && -512 <= imm_expr.X_add_number
12863 && imm_expr.X_add_number < 512)
12864 {
12865 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12866 (int) imm_expr.X_add_number);
12867 break;
12868 }
12869 if (imm_expr.X_add_number >= 0
12870 && imm_expr.X_add_number < 0x10000)
12871 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12872 else if (imm_expr.X_add_number > -0x8000
12873 && imm_expr.X_add_number < 0)
12874 {
12875 imm_expr.X_add_number = -imm_expr.X_add_number;
12876 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12877 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12878 }
12879 else if (CPU_HAS_SEQ (mips_opts.arch))
12880 {
12881 used_at = 1;
12882 load_register (AT, &imm_expr, GPR_SIZE == 64);
12883 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12884 break;
12885 }
12886 else
12887 {
12888 load_register (AT, &imm_expr, GPR_SIZE == 64);
12889 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12890 used_at = 1;
12891 }
12892 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12893 break;
12894
12895 case M_SGE: /* X >= Y <==> not (X < Y) */
12896 s = "slt";
12897 goto sge;
12898 case M_SGEU:
12899 s = "sltu";
12900 sge:
12901 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12902 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12903 break;
12904
12905 case M_SGE_I: /* X >= I <==> not (X < I) */
12906 case M_SGEU_I:
12907 if (imm_expr.X_add_number >= -0x8000
12908 && imm_expr.X_add_number < 0x8000)
12909 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12910 op[0], op[1], BFD_RELOC_LO16);
12911 else
12912 {
12913 load_register (AT, &imm_expr, GPR_SIZE == 64);
12914 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12915 op[0], op[1], AT);
12916 used_at = 1;
12917 }
12918 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12919 break;
12920
12921 case M_SGT: /* X > Y <==> Y < X */
12922 s = "slt";
12923 goto sgt;
12924 case M_SGTU:
12925 s = "sltu";
12926 sgt:
12927 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12928 break;
12929
12930 case M_SGT_I: /* X > I <==> I < X */
12931 s = "slt";
12932 goto sgti;
12933 case M_SGTU_I:
12934 s = "sltu";
12935 sgti:
12936 used_at = 1;
12937 load_register (AT, &imm_expr, GPR_SIZE == 64);
12938 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12939 break;
12940
12941 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12942 s = "slt";
12943 goto sle;
12944 case M_SLEU:
12945 s = "sltu";
12946 sle:
12947 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12948 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12949 break;
12950
12951 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12952 s = "slt";
12953 goto slei;
12954 case M_SLEU_I:
12955 s = "sltu";
12956 slei:
12957 used_at = 1;
12958 load_register (AT, &imm_expr, GPR_SIZE == 64);
12959 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12960 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12961 break;
12962
12963 case M_SLT_I:
12964 if (imm_expr.X_add_number >= -0x8000
12965 && imm_expr.X_add_number < 0x8000)
12966 {
12967 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12968 BFD_RELOC_LO16);
12969 break;
12970 }
12971 used_at = 1;
12972 load_register (AT, &imm_expr, GPR_SIZE == 64);
12973 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
12974 break;
12975
12976 case M_SLTU_I:
12977 if (imm_expr.X_add_number >= -0x8000
12978 && imm_expr.X_add_number < 0x8000)
12979 {
12980 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
12981 BFD_RELOC_LO16);
12982 break;
12983 }
12984 used_at = 1;
12985 load_register (AT, &imm_expr, GPR_SIZE == 64);
12986 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
12987 break;
12988
12989 case M_SNE:
12990 if (op[1] == 0)
12991 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12992 else if (op[2] == 0)
12993 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12994 else
12995 {
12996 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12997 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
12998 }
12999 break;
13000
13001 case M_SNE_I:
13002 if (imm_expr.X_add_number == 0)
13003 {
13004 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13005 break;
13006 }
13007 if (op[1] == 0)
13008 {
13009 as_warn (_("instruction %s: result is always true"),
13010 ip->insn_mo->name);
13011 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13012 op[0], 0, BFD_RELOC_LO16);
13013 break;
13014 }
13015 if (CPU_HAS_SEQ (mips_opts.arch)
13016 && -512 <= imm_expr.X_add_number
13017 && imm_expr.X_add_number < 512)
13018 {
13019 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13020 (int) imm_expr.X_add_number);
13021 break;
13022 }
13023 if (imm_expr.X_add_number >= 0
13024 && imm_expr.X_add_number < 0x10000)
13025 {
13026 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13027 BFD_RELOC_LO16);
13028 }
13029 else if (imm_expr.X_add_number > -0x8000
13030 && imm_expr.X_add_number < 0)
13031 {
13032 imm_expr.X_add_number = -imm_expr.X_add_number;
13033 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13034 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13035 }
13036 else if (CPU_HAS_SEQ (mips_opts.arch))
13037 {
13038 used_at = 1;
13039 load_register (AT, &imm_expr, GPR_SIZE == 64);
13040 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13041 break;
13042 }
13043 else
13044 {
13045 load_register (AT, &imm_expr, GPR_SIZE == 64);
13046 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13047 used_at = 1;
13048 }
13049 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13050 break;
13051
13052 case M_SUB_I:
13053 s = "addi";
13054 s2 = "sub";
13055 goto do_subi;
13056 case M_SUBU_I:
13057 s = "addiu";
13058 s2 = "subu";
13059 goto do_subi;
13060 case M_DSUB_I:
13061 dbl = 1;
13062 s = "daddi";
13063 s2 = "dsub";
13064 if (!mips_opts.micromips)
13065 goto do_subi;
13066 if (imm_expr.X_add_number > -0x200
13067 && imm_expr.X_add_number <= 0x200)
13068 {
13069 macro_build (NULL, s, "t,r,.", op[0], op[1],
13070 (int) -imm_expr.X_add_number);
13071 break;
13072 }
13073 goto do_subi_i;
13074 case M_DSUBU_I:
13075 dbl = 1;
13076 s = "daddiu";
13077 s2 = "dsubu";
13078 do_subi:
13079 if (imm_expr.X_add_number > -0x8000
13080 && imm_expr.X_add_number <= 0x8000)
13081 {
13082 imm_expr.X_add_number = -imm_expr.X_add_number;
13083 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13084 break;
13085 }
13086 do_subi_i:
13087 used_at = 1;
13088 load_register (AT, &imm_expr, dbl);
13089 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13090 break;
13091
13092 case M_TEQ_I:
13093 s = "teq";
13094 goto trap;
13095 case M_TGE_I:
13096 s = "tge";
13097 goto trap;
13098 case M_TGEU_I:
13099 s = "tgeu";
13100 goto trap;
13101 case M_TLT_I:
13102 s = "tlt";
13103 goto trap;
13104 case M_TLTU_I:
13105 s = "tltu";
13106 goto trap;
13107 case M_TNE_I:
13108 s = "tne";
13109 trap:
13110 used_at = 1;
13111 load_register (AT, &imm_expr, GPR_SIZE == 64);
13112 macro_build (NULL, s, "s,t", op[0], AT);
13113 break;
13114
13115 case M_TRUNCWS:
13116 case M_TRUNCWD:
13117 gas_assert (!mips_opts.micromips);
13118 gas_assert (mips_opts.isa == ISA_MIPS1);
13119 used_at = 1;
13120
13121 /*
13122 * Is the double cfc1 instruction a bug in the mips assembler;
13123 * or is there a reason for it?
13124 */
13125 start_noreorder ();
13126 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13127 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13128 macro_build (NULL, "nop", "");
13129 expr1.X_add_number = 3;
13130 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13131 expr1.X_add_number = 2;
13132 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13133 macro_build (NULL, "ctc1", "t,G", AT, RA);
13134 macro_build (NULL, "nop", "");
13135 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13136 op[0], op[1]);
13137 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13138 macro_build (NULL, "nop", "");
13139 end_noreorder ();
13140 break;
13141
13142 case M_ULH_AB:
13143 s = "lb";
13144 s2 = "lbu";
13145 off = 1;
13146 goto uld_st;
13147 case M_ULHU_AB:
13148 s = "lbu";
13149 s2 = "lbu";
13150 off = 1;
13151 goto uld_st;
13152 case M_ULW_AB:
13153 s = "lwl";
13154 s2 = "lwr";
13155 offbits = (mips_opts.micromips ? 12 : 16);
13156 off = 3;
13157 goto uld_st;
13158 case M_ULD_AB:
13159 s = "ldl";
13160 s2 = "ldr";
13161 offbits = (mips_opts.micromips ? 12 : 16);
13162 off = 7;
13163 goto uld_st;
13164 case M_USH_AB:
13165 s = "sb";
13166 s2 = "sb";
13167 off = 1;
13168 ust = 1;
13169 goto uld_st;
13170 case M_USW_AB:
13171 s = "swl";
13172 s2 = "swr";
13173 offbits = (mips_opts.micromips ? 12 : 16);
13174 off = 3;
13175 ust = 1;
13176 goto uld_st;
13177 case M_USD_AB:
13178 s = "sdl";
13179 s2 = "sdr";
13180 offbits = (mips_opts.micromips ? 12 : 16);
13181 off = 7;
13182 ust = 1;
13183
13184 uld_st:
13185 breg = op[2];
13186 large_offset = !small_offset_p (off, align, offbits);
13187 ep = &offset_expr;
13188 expr1.X_add_number = 0;
13189 if (large_offset)
13190 {
13191 used_at = 1;
13192 tempreg = AT;
13193 if (small_offset_p (0, align, 16))
13194 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13195 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13196 else
13197 {
13198 load_address (tempreg, ep, &used_at);
13199 if (breg != 0)
13200 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13201 tempreg, tempreg, breg);
13202 }
13203 offset_reloc[0] = BFD_RELOC_LO16;
13204 offset_reloc[1] = BFD_RELOC_UNUSED;
13205 offset_reloc[2] = BFD_RELOC_UNUSED;
13206 breg = tempreg;
13207 tempreg = op[0];
13208 ep = &expr1;
13209 }
13210 else if (!ust && op[0] == breg)
13211 {
13212 used_at = 1;
13213 tempreg = AT;
13214 }
13215 else
13216 tempreg = op[0];
13217
13218 if (off == 1)
13219 goto ulh_sh;
13220
13221 if (!target_big_endian)
13222 ep->X_add_number += off;
13223 if (offbits == 12)
13224 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13225 else
13226 macro_build (ep, s, "t,o(b)", tempreg, -1,
13227 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13228
13229 if (!target_big_endian)
13230 ep->X_add_number -= off;
13231 else
13232 ep->X_add_number += off;
13233 if (offbits == 12)
13234 macro_build (NULL, s2, "t,~(b)",
13235 tempreg, (int) ep->X_add_number, breg);
13236 else
13237 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13238 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13239
13240 /* If necessary, move the result in tempreg to the final destination. */
13241 if (!ust && op[0] != tempreg)
13242 {
13243 /* Protect second load's delay slot. */
13244 load_delay_nop ();
13245 move_register (op[0], tempreg);
13246 }
13247 break;
13248
13249 ulh_sh:
13250 used_at = 1;
13251 if (target_big_endian == ust)
13252 ep->X_add_number += off;
13253 tempreg = ust || large_offset ? op[0] : AT;
13254 macro_build (ep, s, "t,o(b)", tempreg, -1,
13255 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13256
13257 /* For halfword transfers we need a temporary register to shuffle
13258 bytes. Unfortunately for M_USH_A we have none available before
13259 the next store as AT holds the base address. We deal with this
13260 case by clobbering TREG and then restoring it as with ULH. */
13261 tempreg = ust == large_offset ? op[0] : AT;
13262 if (ust)
13263 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13264
13265 if (target_big_endian == ust)
13266 ep->X_add_number -= off;
13267 else
13268 ep->X_add_number += off;
13269 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13270 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13271
13272 /* For M_USH_A re-retrieve the LSB. */
13273 if (ust && large_offset)
13274 {
13275 if (target_big_endian)
13276 ep->X_add_number += off;
13277 else
13278 ep->X_add_number -= off;
13279 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13280 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13281 }
13282 /* For ULH and M_USH_A OR the LSB in. */
13283 if (!ust || large_offset)
13284 {
13285 tempreg = !large_offset ? AT : op[0];
13286 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13287 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13288 }
13289 break;
13290
13291 default:
13292 /* FIXME: Check if this is one of the itbl macros, since they
13293 are added dynamically. */
13294 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13295 break;
13296 }
13297 if (!mips_opts.at && used_at)
13298 as_bad (_("macro used $at after \".set noat\""));
13299 }
13300
13301 /* Implement macros in mips16 mode. */
13302
13303 static void
13304 mips16_macro (struct mips_cl_insn *ip)
13305 {
13306 const struct mips_operand_array *operands;
13307 int mask;
13308 int tmp;
13309 expressionS expr1;
13310 int dbl;
13311 const char *s, *s2, *s3;
13312 unsigned int op[MAX_OPERANDS];
13313 unsigned int i;
13314
13315 mask = ip->insn_mo->mask;
13316
13317 operands = insn_operands (ip);
13318 for (i = 0; i < MAX_OPERANDS; i++)
13319 if (operands->operand[i])
13320 op[i] = insn_extract_operand (ip, operands->operand[i]);
13321 else
13322 op[i] = -1;
13323
13324 expr1.X_op = O_constant;
13325 expr1.X_op_symbol = NULL;
13326 expr1.X_add_symbol = NULL;
13327 expr1.X_add_number = 1;
13328
13329 dbl = 0;
13330
13331 switch (mask)
13332 {
13333 default:
13334 abort ();
13335
13336 case M_DDIV_3:
13337 dbl = 1;
13338 case M_DIV_3:
13339 s = "mflo";
13340 goto do_div3;
13341 case M_DREM_3:
13342 dbl = 1;
13343 case M_REM_3:
13344 s = "mfhi";
13345 do_div3:
13346 start_noreorder ();
13347 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13348 expr1.X_add_number = 2;
13349 macro_build (&expr1, "bnez", "x,p", op[2]);
13350 macro_build (NULL, "break", "6", 7);
13351
13352 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13353 since that causes an overflow. We should do that as well,
13354 but I don't see how to do the comparisons without a temporary
13355 register. */
13356 end_noreorder ();
13357 macro_build (NULL, s, "x", op[0]);
13358 break;
13359
13360 case M_DIVU_3:
13361 s = "divu";
13362 s2 = "mflo";
13363 goto do_divu3;
13364 case M_REMU_3:
13365 s = "divu";
13366 s2 = "mfhi";
13367 goto do_divu3;
13368 case M_DDIVU_3:
13369 s = "ddivu";
13370 s2 = "mflo";
13371 goto do_divu3;
13372 case M_DREMU_3:
13373 s = "ddivu";
13374 s2 = "mfhi";
13375 do_divu3:
13376 start_noreorder ();
13377 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13378 expr1.X_add_number = 2;
13379 macro_build (&expr1, "bnez", "x,p", op[2]);
13380 macro_build (NULL, "break", "6", 7);
13381 end_noreorder ();
13382 macro_build (NULL, s2, "x", op[0]);
13383 break;
13384
13385 case M_DMUL:
13386 dbl = 1;
13387 case M_MUL:
13388 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13389 macro_build (NULL, "mflo", "x", op[0]);
13390 break;
13391
13392 case M_DSUBU_I:
13393 dbl = 1;
13394 goto do_subu;
13395 case M_SUBU_I:
13396 do_subu:
13397 imm_expr.X_add_number = -imm_expr.X_add_number;
13398 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13399 break;
13400
13401 case M_SUBU_I_2:
13402 imm_expr.X_add_number = -imm_expr.X_add_number;
13403 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13404 break;
13405
13406 case M_DSUBU_I_2:
13407 imm_expr.X_add_number = -imm_expr.X_add_number;
13408 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13409 break;
13410
13411 case M_BEQ:
13412 s = "cmp";
13413 s2 = "bteqz";
13414 goto do_branch;
13415 case M_BNE:
13416 s = "cmp";
13417 s2 = "btnez";
13418 goto do_branch;
13419 case M_BLT:
13420 s = "slt";
13421 s2 = "btnez";
13422 goto do_branch;
13423 case M_BLTU:
13424 s = "sltu";
13425 s2 = "btnez";
13426 goto do_branch;
13427 case M_BLE:
13428 s = "slt";
13429 s2 = "bteqz";
13430 goto do_reverse_branch;
13431 case M_BLEU:
13432 s = "sltu";
13433 s2 = "bteqz";
13434 goto do_reverse_branch;
13435 case M_BGE:
13436 s = "slt";
13437 s2 = "bteqz";
13438 goto do_branch;
13439 case M_BGEU:
13440 s = "sltu";
13441 s2 = "bteqz";
13442 goto do_branch;
13443 case M_BGT:
13444 s = "slt";
13445 s2 = "btnez";
13446 goto do_reverse_branch;
13447 case M_BGTU:
13448 s = "sltu";
13449 s2 = "btnez";
13450
13451 do_reverse_branch:
13452 tmp = op[1];
13453 op[1] = op[0];
13454 op[0] = tmp;
13455
13456 do_branch:
13457 macro_build (NULL, s, "x,y", op[0], op[1]);
13458 macro_build (&offset_expr, s2, "p");
13459 break;
13460
13461 case M_BEQ_I:
13462 s = "cmpi";
13463 s2 = "bteqz";
13464 s3 = "x,U";
13465 goto do_branch_i;
13466 case M_BNE_I:
13467 s = "cmpi";
13468 s2 = "btnez";
13469 s3 = "x,U";
13470 goto do_branch_i;
13471 case M_BLT_I:
13472 s = "slti";
13473 s2 = "btnez";
13474 s3 = "x,8";
13475 goto do_branch_i;
13476 case M_BLTU_I:
13477 s = "sltiu";
13478 s2 = "btnez";
13479 s3 = "x,8";
13480 goto do_branch_i;
13481 case M_BLE_I:
13482 s = "slti";
13483 s2 = "btnez";
13484 s3 = "x,8";
13485 goto do_addone_branch_i;
13486 case M_BLEU_I:
13487 s = "sltiu";
13488 s2 = "btnez";
13489 s3 = "x,8";
13490 goto do_addone_branch_i;
13491 case M_BGE_I:
13492 s = "slti";
13493 s2 = "bteqz";
13494 s3 = "x,8";
13495 goto do_branch_i;
13496 case M_BGEU_I:
13497 s = "sltiu";
13498 s2 = "bteqz";
13499 s3 = "x,8";
13500 goto do_branch_i;
13501 case M_BGT_I:
13502 s = "slti";
13503 s2 = "bteqz";
13504 s3 = "x,8";
13505 goto do_addone_branch_i;
13506 case M_BGTU_I:
13507 s = "sltiu";
13508 s2 = "bteqz";
13509 s3 = "x,8";
13510
13511 do_addone_branch_i:
13512 ++imm_expr.X_add_number;
13513
13514 do_branch_i:
13515 macro_build (&imm_expr, s, s3, op[0]);
13516 macro_build (&offset_expr, s2, "p");
13517 break;
13518
13519 case M_ABS:
13520 expr1.X_add_number = 0;
13521 macro_build (&expr1, "slti", "x,8", op[1]);
13522 if (op[0] != op[1])
13523 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13524 expr1.X_add_number = 2;
13525 macro_build (&expr1, "bteqz", "p");
13526 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13527 break;
13528 }
13529 }
13530
13531 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13532 opcode bits in *OPCODE_EXTRA. */
13533
13534 static struct mips_opcode *
13535 mips_lookup_insn (struct hash_control *hash, const char *start,
13536 ssize_t length, unsigned int *opcode_extra)
13537 {
13538 char *name, *dot, *p;
13539 unsigned int mask, suffix;
13540 ssize_t opend;
13541 struct mips_opcode *insn;
13542
13543 /* Make a copy of the instruction so that we can fiddle with it. */
13544 name = xstrndup (start, length);
13545
13546 /* Look up the instruction as-is. */
13547 insn = (struct mips_opcode *) hash_find (hash, name);
13548 if (insn)
13549 goto end;
13550
13551 dot = strchr (name, '.');
13552 if (dot && dot[1])
13553 {
13554 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13555 p = mips_parse_vu0_channels (dot + 1, &mask);
13556 if (*p == 0 && mask != 0)
13557 {
13558 *dot = 0;
13559 insn = (struct mips_opcode *) hash_find (hash, name);
13560 *dot = '.';
13561 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13562 {
13563 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13564 goto end;
13565 }
13566 }
13567 }
13568
13569 if (mips_opts.micromips)
13570 {
13571 /* See if there's an instruction size override suffix,
13572 either `16' or `32', at the end of the mnemonic proper,
13573 that defines the operation, i.e. before the first `.'
13574 character if any. Strip it and retry. */
13575 opend = dot != NULL ? dot - name : length;
13576 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13577 suffix = 2;
13578 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13579 suffix = 4;
13580 else
13581 suffix = 0;
13582 if (suffix)
13583 {
13584 memcpy (name + opend - 2, name + opend, length - opend + 1);
13585 insn = (struct mips_opcode *) hash_find (hash, name);
13586 if (insn)
13587 {
13588 forced_insn_length = suffix;
13589 goto end;
13590 }
13591 }
13592 }
13593
13594 insn = NULL;
13595 end:
13596 free (name);
13597 return insn;
13598 }
13599
13600 /* Assemble an instruction into its binary format. If the instruction
13601 is a macro, set imm_expr and offset_expr to the values associated
13602 with "I" and "A" operands respectively. Otherwise store the value
13603 of the relocatable field (if any) in offset_expr. In both cases
13604 set offset_reloc to the relocation operators applied to offset_expr. */
13605
13606 static void
13607 mips_ip (char *str, struct mips_cl_insn *insn)
13608 {
13609 const struct mips_opcode *first, *past;
13610 struct hash_control *hash;
13611 char format;
13612 size_t end;
13613 struct mips_operand_token *tokens;
13614 unsigned int opcode_extra;
13615
13616 if (mips_opts.micromips)
13617 {
13618 hash = micromips_op_hash;
13619 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13620 }
13621 else
13622 {
13623 hash = op_hash;
13624 past = &mips_opcodes[NUMOPCODES];
13625 }
13626 forced_insn_length = 0;
13627 opcode_extra = 0;
13628
13629 /* We first try to match an instruction up to a space or to the end. */
13630 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13631 continue;
13632
13633 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13634 if (first == NULL)
13635 {
13636 set_insn_error (0, _("unrecognized opcode"));
13637 return;
13638 }
13639
13640 if (strcmp (first->name, "li.s") == 0)
13641 format = 'f';
13642 else if (strcmp (first->name, "li.d") == 0)
13643 format = 'd';
13644 else
13645 format = 0;
13646 tokens = mips_parse_arguments (str + end, format);
13647 if (!tokens)
13648 return;
13649
13650 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13651 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13652 set_insn_error (0, _("invalid operands"));
13653
13654 obstack_free (&mips_operand_tokens, tokens);
13655 }
13656
13657 /* As for mips_ip, but used when assembling MIPS16 code.
13658 Also set forced_insn_length to the resulting instruction size in
13659 bytes if the user explicitly requested a small or extended instruction. */
13660
13661 static void
13662 mips16_ip (char *str, struct mips_cl_insn *insn)
13663 {
13664 char *end, *s, c;
13665 struct mips_opcode *first;
13666 struct mips_operand_token *tokens;
13667
13668 forced_insn_length = 0;
13669
13670 for (s = str; ISLOWER (*s); ++s)
13671 ;
13672 end = s;
13673 c = *end;
13674 switch (c)
13675 {
13676 case '\0':
13677 break;
13678
13679 case ' ':
13680 s++;
13681 break;
13682
13683 case '.':
13684 if (s[1] == 't' && s[2] == ' ')
13685 {
13686 forced_insn_length = 2;
13687 s += 3;
13688 break;
13689 }
13690 else if (s[1] == 'e' && s[2] == ' ')
13691 {
13692 forced_insn_length = 4;
13693 s += 3;
13694 break;
13695 }
13696 /* Fall through. */
13697 default:
13698 set_insn_error (0, _("unrecognized opcode"));
13699 return;
13700 }
13701
13702 if (mips_opts.noautoextend && !forced_insn_length)
13703 forced_insn_length = 2;
13704
13705 *end = 0;
13706 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13707 *end = c;
13708
13709 if (!first)
13710 {
13711 set_insn_error (0, _("unrecognized opcode"));
13712 return;
13713 }
13714
13715 tokens = mips_parse_arguments (s, 0);
13716 if (!tokens)
13717 return;
13718
13719 if (!match_mips16_insns (insn, first, tokens))
13720 set_insn_error (0, _("invalid operands"));
13721
13722 obstack_free (&mips_operand_tokens, tokens);
13723 }
13724
13725 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13726 NBITS is the number of significant bits in VAL. */
13727
13728 static unsigned long
13729 mips16_immed_extend (offsetT val, unsigned int nbits)
13730 {
13731 int extval;
13732 if (nbits == 16)
13733 {
13734 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13735 val &= 0x1f;
13736 }
13737 else if (nbits == 15)
13738 {
13739 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13740 val &= 0xf;
13741 }
13742 else
13743 {
13744 extval = ((val & 0x1f) << 6) | (val & 0x20);
13745 val = 0;
13746 }
13747 return (extval << 16) | val;
13748 }
13749
13750 /* Like decode_mips16_operand, but require the operand to be defined and
13751 require it to be an integer. */
13752
13753 static const struct mips_int_operand *
13754 mips16_immed_operand (int type, bfd_boolean extended_p)
13755 {
13756 const struct mips_operand *operand;
13757
13758 operand = decode_mips16_operand (type, extended_p);
13759 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13760 abort ();
13761 return (const struct mips_int_operand *) operand;
13762 }
13763
13764 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13765
13766 static bfd_boolean
13767 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13768 bfd_reloc_code_real_type reloc, offsetT sval)
13769 {
13770 int min_val, max_val;
13771
13772 min_val = mips_int_operand_min (operand);
13773 max_val = mips_int_operand_max (operand);
13774 if (reloc != BFD_RELOC_UNUSED)
13775 {
13776 if (min_val < 0)
13777 sval = SEXT_16BIT (sval);
13778 else
13779 sval &= 0xffff;
13780 }
13781
13782 return (sval >= min_val
13783 && sval <= max_val
13784 && (sval & ((1 << operand->shift) - 1)) == 0);
13785 }
13786
13787 /* Install immediate value VAL into MIPS16 instruction *INSN,
13788 extending it if necessary. The instruction in *INSN may
13789 already be extended.
13790
13791 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13792 if none. In the former case, VAL is a 16-bit number with no
13793 defined signedness.
13794
13795 TYPE is the type of the immediate field. USER_INSN_LENGTH
13796 is the length that the user requested, or 0 if none. */
13797
13798 static void
13799 mips16_immed (const char *file, unsigned int line, int type,
13800 bfd_reloc_code_real_type reloc, offsetT val,
13801 unsigned int user_insn_length, unsigned long *insn)
13802 {
13803 const struct mips_int_operand *operand;
13804 unsigned int uval, length;
13805
13806 operand = mips16_immed_operand (type, FALSE);
13807 if (!mips16_immed_in_range_p (operand, reloc, val))
13808 {
13809 /* We need an extended instruction. */
13810 if (user_insn_length == 2)
13811 as_bad_where (file, line, _("invalid unextended operand value"));
13812 else
13813 *insn |= MIPS16_EXTEND;
13814 }
13815 else if (user_insn_length == 4)
13816 {
13817 /* The operand doesn't force an unextended instruction to be extended.
13818 Warn if the user wanted an extended instruction anyway. */
13819 *insn |= MIPS16_EXTEND;
13820 as_warn_where (file, line,
13821 _("extended operand requested but not required"));
13822 }
13823
13824 length = mips16_opcode_length (*insn);
13825 if (length == 4)
13826 {
13827 operand = mips16_immed_operand (type, TRUE);
13828 if (!mips16_immed_in_range_p (operand, reloc, val))
13829 as_bad_where (file, line,
13830 _("operand value out of range for instruction"));
13831 }
13832 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13833 if (length == 2)
13834 *insn = mips_insert_operand (&operand->root, *insn, uval);
13835 else
13836 *insn |= mips16_immed_extend (uval, operand->root.size);
13837 }
13838 \f
13839 struct percent_op_match
13840 {
13841 const char *str;
13842 bfd_reloc_code_real_type reloc;
13843 };
13844
13845 static const struct percent_op_match mips_percent_op[] =
13846 {
13847 {"%lo", BFD_RELOC_LO16},
13848 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13849 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13850 {"%call16", BFD_RELOC_MIPS_CALL16},
13851 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13852 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13853 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13854 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13855 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13856 {"%got", BFD_RELOC_MIPS_GOT16},
13857 {"%gp_rel", BFD_RELOC_GPREL16},
13858 {"%half", BFD_RELOC_16},
13859 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13860 {"%higher", BFD_RELOC_MIPS_HIGHER},
13861 {"%neg", BFD_RELOC_MIPS_SUB},
13862 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13863 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13864 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13865 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13866 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13867 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13868 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13869 {"%hi", BFD_RELOC_HI16_S},
13870 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13871 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
13872 };
13873
13874 static const struct percent_op_match mips16_percent_op[] =
13875 {
13876 {"%lo", BFD_RELOC_MIPS16_LO16},
13877 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13878 {"%got", BFD_RELOC_MIPS16_GOT16},
13879 {"%call16", BFD_RELOC_MIPS16_CALL16},
13880 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13881 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13882 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13883 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13884 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13885 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13886 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13887 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13888 };
13889
13890
13891 /* Return true if *STR points to a relocation operator. When returning true,
13892 move *STR over the operator and store its relocation code in *RELOC.
13893 Leave both *STR and *RELOC alone when returning false. */
13894
13895 static bfd_boolean
13896 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13897 {
13898 const struct percent_op_match *percent_op;
13899 size_t limit, i;
13900
13901 if (mips_opts.mips16)
13902 {
13903 percent_op = mips16_percent_op;
13904 limit = ARRAY_SIZE (mips16_percent_op);
13905 }
13906 else
13907 {
13908 percent_op = mips_percent_op;
13909 limit = ARRAY_SIZE (mips_percent_op);
13910 }
13911
13912 for (i = 0; i < limit; i++)
13913 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13914 {
13915 int len = strlen (percent_op[i].str);
13916
13917 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13918 continue;
13919
13920 *str += strlen (percent_op[i].str);
13921 *reloc = percent_op[i].reloc;
13922
13923 /* Check whether the output BFD supports this relocation.
13924 If not, issue an error and fall back on something safe. */
13925 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13926 {
13927 as_bad (_("relocation %s isn't supported by the current ABI"),
13928 percent_op[i].str);
13929 *reloc = BFD_RELOC_UNUSED;
13930 }
13931 return TRUE;
13932 }
13933 return FALSE;
13934 }
13935
13936
13937 /* Parse string STR as a 16-bit relocatable operand. Store the
13938 expression in *EP and the relocations in the array starting
13939 at RELOC. Return the number of relocation operators used.
13940
13941 On exit, EXPR_END points to the first character after the expression. */
13942
13943 static size_t
13944 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13945 char *str)
13946 {
13947 bfd_reloc_code_real_type reversed_reloc[3];
13948 size_t reloc_index, i;
13949 int crux_depth, str_depth;
13950 char *crux;
13951
13952 /* Search for the start of the main expression, recoding relocations
13953 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13954 of the main expression and with CRUX_DEPTH containing the number
13955 of open brackets at that point. */
13956 reloc_index = -1;
13957 str_depth = 0;
13958 do
13959 {
13960 reloc_index++;
13961 crux = str;
13962 crux_depth = str_depth;
13963
13964 /* Skip over whitespace and brackets, keeping count of the number
13965 of brackets. */
13966 while (*str == ' ' || *str == '\t' || *str == '(')
13967 if (*str++ == '(')
13968 str_depth++;
13969 }
13970 while (*str == '%'
13971 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13972 && parse_relocation (&str, &reversed_reloc[reloc_index]));
13973
13974 my_getExpression (ep, crux);
13975 str = expr_end;
13976
13977 /* Match every open bracket. */
13978 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
13979 if (*str++ == ')')
13980 crux_depth--;
13981
13982 if (crux_depth > 0)
13983 as_bad (_("unclosed '('"));
13984
13985 expr_end = str;
13986
13987 if (reloc_index != 0)
13988 {
13989 prev_reloc_op_frag = frag_now;
13990 for (i = 0; i < reloc_index; i++)
13991 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13992 }
13993
13994 return reloc_index;
13995 }
13996
13997 static void
13998 my_getExpression (expressionS *ep, char *str)
13999 {
14000 char *save_in;
14001
14002 save_in = input_line_pointer;
14003 input_line_pointer = str;
14004 expression (ep);
14005 expr_end = input_line_pointer;
14006 input_line_pointer = save_in;
14007 }
14008
14009 const char *
14010 md_atof (int type, char *litP, int *sizeP)
14011 {
14012 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14013 }
14014
14015 void
14016 md_number_to_chars (char *buf, valueT val, int n)
14017 {
14018 if (target_big_endian)
14019 number_to_chars_bigendian (buf, val, n);
14020 else
14021 number_to_chars_littleendian (buf, val, n);
14022 }
14023 \f
14024 static int support_64bit_objects(void)
14025 {
14026 const char **list, **l;
14027 int yes;
14028
14029 list = bfd_target_list ();
14030 for (l = list; *l != NULL; l++)
14031 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14032 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14033 break;
14034 yes = (*l != NULL);
14035 free (list);
14036 return yes;
14037 }
14038
14039 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14040 NEW_VALUE. Warn if another value was already specified. Note:
14041 we have to defer parsing the -march and -mtune arguments in order
14042 to handle 'from-abi' correctly, since the ABI might be specified
14043 in a later argument. */
14044
14045 static void
14046 mips_set_option_string (const char **string_ptr, const char *new_value)
14047 {
14048 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14049 as_warn (_("a different %s was already specified, is now %s"),
14050 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14051 new_value);
14052
14053 *string_ptr = new_value;
14054 }
14055
14056 int
14057 md_parse_option (int c, const char *arg)
14058 {
14059 unsigned int i;
14060
14061 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14062 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14063 {
14064 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14065 c == mips_ases[i].option_on);
14066 return 1;
14067 }
14068
14069 switch (c)
14070 {
14071 case OPTION_CONSTRUCT_FLOATS:
14072 mips_disable_float_construction = 0;
14073 break;
14074
14075 case OPTION_NO_CONSTRUCT_FLOATS:
14076 mips_disable_float_construction = 1;
14077 break;
14078
14079 case OPTION_TRAP:
14080 mips_trap = 1;
14081 break;
14082
14083 case OPTION_BREAK:
14084 mips_trap = 0;
14085 break;
14086
14087 case OPTION_EB:
14088 target_big_endian = 1;
14089 break;
14090
14091 case OPTION_EL:
14092 target_big_endian = 0;
14093 break;
14094
14095 case 'O':
14096 if (arg == NULL)
14097 mips_optimize = 1;
14098 else if (arg[0] == '0')
14099 mips_optimize = 0;
14100 else if (arg[0] == '1')
14101 mips_optimize = 1;
14102 else
14103 mips_optimize = 2;
14104 break;
14105
14106 case 'g':
14107 if (arg == NULL)
14108 mips_debug = 2;
14109 else
14110 mips_debug = atoi (arg);
14111 break;
14112
14113 case OPTION_MIPS1:
14114 file_mips_opts.isa = ISA_MIPS1;
14115 break;
14116
14117 case OPTION_MIPS2:
14118 file_mips_opts.isa = ISA_MIPS2;
14119 break;
14120
14121 case OPTION_MIPS3:
14122 file_mips_opts.isa = ISA_MIPS3;
14123 break;
14124
14125 case OPTION_MIPS4:
14126 file_mips_opts.isa = ISA_MIPS4;
14127 break;
14128
14129 case OPTION_MIPS5:
14130 file_mips_opts.isa = ISA_MIPS5;
14131 break;
14132
14133 case OPTION_MIPS32:
14134 file_mips_opts.isa = ISA_MIPS32;
14135 break;
14136
14137 case OPTION_MIPS32R2:
14138 file_mips_opts.isa = ISA_MIPS32R2;
14139 break;
14140
14141 case OPTION_MIPS32R3:
14142 file_mips_opts.isa = ISA_MIPS32R3;
14143 break;
14144
14145 case OPTION_MIPS32R5:
14146 file_mips_opts.isa = ISA_MIPS32R5;
14147 break;
14148
14149 case OPTION_MIPS32R6:
14150 file_mips_opts.isa = ISA_MIPS32R6;
14151 break;
14152
14153 case OPTION_MIPS64R2:
14154 file_mips_opts.isa = ISA_MIPS64R2;
14155 break;
14156
14157 case OPTION_MIPS64R3:
14158 file_mips_opts.isa = ISA_MIPS64R3;
14159 break;
14160
14161 case OPTION_MIPS64R5:
14162 file_mips_opts.isa = ISA_MIPS64R5;
14163 break;
14164
14165 case OPTION_MIPS64R6:
14166 file_mips_opts.isa = ISA_MIPS64R6;
14167 break;
14168
14169 case OPTION_MIPS64:
14170 file_mips_opts.isa = ISA_MIPS64;
14171 break;
14172
14173 case OPTION_MTUNE:
14174 mips_set_option_string (&mips_tune_string, arg);
14175 break;
14176
14177 case OPTION_MARCH:
14178 mips_set_option_string (&mips_arch_string, arg);
14179 break;
14180
14181 case OPTION_M4650:
14182 mips_set_option_string (&mips_arch_string, "4650");
14183 mips_set_option_string (&mips_tune_string, "4650");
14184 break;
14185
14186 case OPTION_NO_M4650:
14187 break;
14188
14189 case OPTION_M4010:
14190 mips_set_option_string (&mips_arch_string, "4010");
14191 mips_set_option_string (&mips_tune_string, "4010");
14192 break;
14193
14194 case OPTION_NO_M4010:
14195 break;
14196
14197 case OPTION_M4100:
14198 mips_set_option_string (&mips_arch_string, "4100");
14199 mips_set_option_string (&mips_tune_string, "4100");
14200 break;
14201
14202 case OPTION_NO_M4100:
14203 break;
14204
14205 case OPTION_M3900:
14206 mips_set_option_string (&mips_arch_string, "3900");
14207 mips_set_option_string (&mips_tune_string, "3900");
14208 break;
14209
14210 case OPTION_NO_M3900:
14211 break;
14212
14213 case OPTION_MICROMIPS:
14214 if (file_mips_opts.mips16 == 1)
14215 {
14216 as_bad (_("-mmicromips cannot be used with -mips16"));
14217 return 0;
14218 }
14219 file_mips_opts.micromips = 1;
14220 mips_no_prev_insn ();
14221 break;
14222
14223 case OPTION_NO_MICROMIPS:
14224 file_mips_opts.micromips = 0;
14225 mips_no_prev_insn ();
14226 break;
14227
14228 case OPTION_MIPS16:
14229 if (file_mips_opts.micromips == 1)
14230 {
14231 as_bad (_("-mips16 cannot be used with -micromips"));
14232 return 0;
14233 }
14234 file_mips_opts.mips16 = 1;
14235 mips_no_prev_insn ();
14236 break;
14237
14238 case OPTION_NO_MIPS16:
14239 file_mips_opts.mips16 = 0;
14240 mips_no_prev_insn ();
14241 break;
14242
14243 case OPTION_FIX_24K:
14244 mips_fix_24k = 1;
14245 break;
14246
14247 case OPTION_NO_FIX_24K:
14248 mips_fix_24k = 0;
14249 break;
14250
14251 case OPTION_FIX_RM7000:
14252 mips_fix_rm7000 = 1;
14253 break;
14254
14255 case OPTION_NO_FIX_RM7000:
14256 mips_fix_rm7000 = 0;
14257 break;
14258
14259 case OPTION_FIX_LOONGSON2F_JUMP:
14260 mips_fix_loongson2f_jump = TRUE;
14261 break;
14262
14263 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14264 mips_fix_loongson2f_jump = FALSE;
14265 break;
14266
14267 case OPTION_FIX_LOONGSON2F_NOP:
14268 mips_fix_loongson2f_nop = TRUE;
14269 break;
14270
14271 case OPTION_NO_FIX_LOONGSON2F_NOP:
14272 mips_fix_loongson2f_nop = FALSE;
14273 break;
14274
14275 case OPTION_FIX_VR4120:
14276 mips_fix_vr4120 = 1;
14277 break;
14278
14279 case OPTION_NO_FIX_VR4120:
14280 mips_fix_vr4120 = 0;
14281 break;
14282
14283 case OPTION_FIX_VR4130:
14284 mips_fix_vr4130 = 1;
14285 break;
14286
14287 case OPTION_NO_FIX_VR4130:
14288 mips_fix_vr4130 = 0;
14289 break;
14290
14291 case OPTION_FIX_CN63XXP1:
14292 mips_fix_cn63xxp1 = TRUE;
14293 break;
14294
14295 case OPTION_NO_FIX_CN63XXP1:
14296 mips_fix_cn63xxp1 = FALSE;
14297 break;
14298
14299 case OPTION_RELAX_BRANCH:
14300 mips_relax_branch = 1;
14301 break;
14302
14303 case OPTION_NO_RELAX_BRANCH:
14304 mips_relax_branch = 0;
14305 break;
14306
14307 case OPTION_INSN32:
14308 file_mips_opts.insn32 = TRUE;
14309 break;
14310
14311 case OPTION_NO_INSN32:
14312 file_mips_opts.insn32 = FALSE;
14313 break;
14314
14315 case OPTION_MSHARED:
14316 mips_in_shared = TRUE;
14317 break;
14318
14319 case OPTION_MNO_SHARED:
14320 mips_in_shared = FALSE;
14321 break;
14322
14323 case OPTION_MSYM32:
14324 file_mips_opts.sym32 = TRUE;
14325 break;
14326
14327 case OPTION_MNO_SYM32:
14328 file_mips_opts.sym32 = FALSE;
14329 break;
14330
14331 /* When generating ELF code, we permit -KPIC and -call_shared to
14332 select SVR4_PIC, and -non_shared to select no PIC. This is
14333 intended to be compatible with Irix 5. */
14334 case OPTION_CALL_SHARED:
14335 mips_pic = SVR4_PIC;
14336 mips_abicalls = TRUE;
14337 break;
14338
14339 case OPTION_CALL_NONPIC:
14340 mips_pic = NO_PIC;
14341 mips_abicalls = TRUE;
14342 break;
14343
14344 case OPTION_NON_SHARED:
14345 mips_pic = NO_PIC;
14346 mips_abicalls = FALSE;
14347 break;
14348
14349 /* The -xgot option tells the assembler to use 32 bit offsets
14350 when accessing the got in SVR4_PIC mode. It is for Irix
14351 compatibility. */
14352 case OPTION_XGOT:
14353 mips_big_got = 1;
14354 break;
14355
14356 case 'G':
14357 g_switch_value = atoi (arg);
14358 g_switch_seen = 1;
14359 break;
14360
14361 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14362 and -mabi=64. */
14363 case OPTION_32:
14364 mips_abi = O32_ABI;
14365 break;
14366
14367 case OPTION_N32:
14368 mips_abi = N32_ABI;
14369 break;
14370
14371 case OPTION_64:
14372 mips_abi = N64_ABI;
14373 if (!support_64bit_objects())
14374 as_fatal (_("no compiled in support for 64 bit object file format"));
14375 break;
14376
14377 case OPTION_GP32:
14378 file_mips_opts.gp = 32;
14379 break;
14380
14381 case OPTION_GP64:
14382 file_mips_opts.gp = 64;
14383 break;
14384
14385 case OPTION_FP32:
14386 file_mips_opts.fp = 32;
14387 break;
14388
14389 case OPTION_FPXX:
14390 file_mips_opts.fp = 0;
14391 break;
14392
14393 case OPTION_FP64:
14394 file_mips_opts.fp = 64;
14395 break;
14396
14397 case OPTION_ODD_SPREG:
14398 file_mips_opts.oddspreg = 1;
14399 break;
14400
14401 case OPTION_NO_ODD_SPREG:
14402 file_mips_opts.oddspreg = 0;
14403 break;
14404
14405 case OPTION_SINGLE_FLOAT:
14406 file_mips_opts.single_float = 1;
14407 break;
14408
14409 case OPTION_DOUBLE_FLOAT:
14410 file_mips_opts.single_float = 0;
14411 break;
14412
14413 case OPTION_SOFT_FLOAT:
14414 file_mips_opts.soft_float = 1;
14415 break;
14416
14417 case OPTION_HARD_FLOAT:
14418 file_mips_opts.soft_float = 0;
14419 break;
14420
14421 case OPTION_MABI:
14422 if (strcmp (arg, "32") == 0)
14423 mips_abi = O32_ABI;
14424 else if (strcmp (arg, "o64") == 0)
14425 mips_abi = O64_ABI;
14426 else if (strcmp (arg, "n32") == 0)
14427 mips_abi = N32_ABI;
14428 else if (strcmp (arg, "64") == 0)
14429 {
14430 mips_abi = N64_ABI;
14431 if (! support_64bit_objects())
14432 as_fatal (_("no compiled in support for 64 bit object file "
14433 "format"));
14434 }
14435 else if (strcmp (arg, "eabi") == 0)
14436 mips_abi = EABI_ABI;
14437 else
14438 {
14439 as_fatal (_("invalid abi -mabi=%s"), arg);
14440 return 0;
14441 }
14442 break;
14443
14444 case OPTION_M7000_HILO_FIX:
14445 mips_7000_hilo_fix = TRUE;
14446 break;
14447
14448 case OPTION_MNO_7000_HILO_FIX:
14449 mips_7000_hilo_fix = FALSE;
14450 break;
14451
14452 case OPTION_MDEBUG:
14453 mips_flag_mdebug = TRUE;
14454 break;
14455
14456 case OPTION_NO_MDEBUG:
14457 mips_flag_mdebug = FALSE;
14458 break;
14459
14460 case OPTION_PDR:
14461 mips_flag_pdr = TRUE;
14462 break;
14463
14464 case OPTION_NO_PDR:
14465 mips_flag_pdr = FALSE;
14466 break;
14467
14468 case OPTION_MVXWORKS_PIC:
14469 mips_pic = VXWORKS_PIC;
14470 break;
14471
14472 case OPTION_NAN:
14473 if (strcmp (arg, "2008") == 0)
14474 mips_nan2008 = 1;
14475 else if (strcmp (arg, "legacy") == 0)
14476 mips_nan2008 = 0;
14477 else
14478 {
14479 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14480 return 0;
14481 }
14482 break;
14483
14484 default:
14485 return 0;
14486 }
14487
14488 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14489
14490 return 1;
14491 }
14492 \f
14493 /* Set up globals to tune for the ISA or processor described by INFO. */
14494
14495 static void
14496 mips_set_tune (const struct mips_cpu_info *info)
14497 {
14498 if (info != 0)
14499 mips_tune = info->cpu;
14500 }
14501
14502
14503 void
14504 mips_after_parse_args (void)
14505 {
14506 const struct mips_cpu_info *arch_info = 0;
14507 const struct mips_cpu_info *tune_info = 0;
14508
14509 /* GP relative stuff not working for PE */
14510 if (strncmp (TARGET_OS, "pe", 2) == 0)
14511 {
14512 if (g_switch_seen && g_switch_value != 0)
14513 as_bad (_("-G not supported in this configuration"));
14514 g_switch_value = 0;
14515 }
14516
14517 if (mips_abi == NO_ABI)
14518 mips_abi = MIPS_DEFAULT_ABI;
14519
14520 /* The following code determines the architecture.
14521 Similar code was added to GCC 3.3 (see override_options() in
14522 config/mips/mips.c). The GAS and GCC code should be kept in sync
14523 as much as possible. */
14524
14525 if (mips_arch_string != 0)
14526 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14527
14528 if (file_mips_opts.isa != ISA_UNKNOWN)
14529 {
14530 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14531 ISA level specified by -mipsN, while arch_info->isa contains
14532 the -march selection (if any). */
14533 if (arch_info != 0)
14534 {
14535 /* -march takes precedence over -mipsN, since it is more descriptive.
14536 There's no harm in specifying both as long as the ISA levels
14537 are the same. */
14538 if (file_mips_opts.isa != arch_info->isa)
14539 as_bad (_("-%s conflicts with the other architecture options,"
14540 " which imply -%s"),
14541 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14542 mips_cpu_info_from_isa (arch_info->isa)->name);
14543 }
14544 else
14545 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14546 }
14547
14548 if (arch_info == 0)
14549 {
14550 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14551 gas_assert (arch_info);
14552 }
14553
14554 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14555 as_bad (_("-march=%s is not compatible with the selected ABI"),
14556 arch_info->name);
14557
14558 file_mips_opts.arch = arch_info->cpu;
14559 file_mips_opts.isa = arch_info->isa;
14560
14561 /* Set up initial mips_opts state. */
14562 mips_opts = file_mips_opts;
14563
14564 /* The register size inference code is now placed in
14565 file_mips_check_options. */
14566
14567 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14568 processor. */
14569 if (mips_tune_string != 0)
14570 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14571
14572 if (tune_info == 0)
14573 mips_set_tune (arch_info);
14574 else
14575 mips_set_tune (tune_info);
14576
14577 if (mips_flag_mdebug < 0)
14578 mips_flag_mdebug = 0;
14579 }
14580 \f
14581 void
14582 mips_init_after_args (void)
14583 {
14584 /* initialize opcodes */
14585 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14586 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14587 }
14588
14589 long
14590 md_pcrel_from (fixS *fixP)
14591 {
14592 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14593 switch (fixP->fx_r_type)
14594 {
14595 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14596 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14597 /* Return the address of the delay slot. */
14598 return addr + 2;
14599
14600 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14601 case BFD_RELOC_MICROMIPS_JMP:
14602 case BFD_RELOC_16_PCREL_S2:
14603 case BFD_RELOC_MIPS_21_PCREL_S2:
14604 case BFD_RELOC_MIPS_26_PCREL_S2:
14605 case BFD_RELOC_MIPS_JMP:
14606 /* Return the address of the delay slot. */
14607 return addr + 4;
14608
14609 default:
14610 return addr;
14611 }
14612 }
14613
14614 /* This is called before the symbol table is processed. In order to
14615 work with gcc when using mips-tfile, we must keep all local labels.
14616 However, in other cases, we want to discard them. If we were
14617 called with -g, but we didn't see any debugging information, it may
14618 mean that gcc is smuggling debugging information through to
14619 mips-tfile, in which case we must generate all local labels. */
14620
14621 void
14622 mips_frob_file_before_adjust (void)
14623 {
14624 #ifndef NO_ECOFF_DEBUGGING
14625 if (ECOFF_DEBUGGING
14626 && mips_debug != 0
14627 && ! ecoff_debugging_seen)
14628 flag_keep_locals = 1;
14629 #endif
14630 }
14631
14632 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14633 the corresponding LO16 reloc. This is called before md_apply_fix and
14634 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14635 relocation operators.
14636
14637 For our purposes, a %lo() expression matches a %got() or %hi()
14638 expression if:
14639
14640 (a) it refers to the same symbol; and
14641 (b) the offset applied in the %lo() expression is no lower than
14642 the offset applied in the %got() or %hi().
14643
14644 (b) allows us to cope with code like:
14645
14646 lui $4,%hi(foo)
14647 lh $4,%lo(foo+2)($4)
14648
14649 ...which is legal on RELA targets, and has a well-defined behaviour
14650 if the user knows that adding 2 to "foo" will not induce a carry to
14651 the high 16 bits.
14652
14653 When several %lo()s match a particular %got() or %hi(), we use the
14654 following rules to distinguish them:
14655
14656 (1) %lo()s with smaller offsets are a better match than %lo()s with
14657 higher offsets.
14658
14659 (2) %lo()s with no matching %got() or %hi() are better than those
14660 that already have a matching %got() or %hi().
14661
14662 (3) later %lo()s are better than earlier %lo()s.
14663
14664 These rules are applied in order.
14665
14666 (1) means, among other things, that %lo()s with identical offsets are
14667 chosen if they exist.
14668
14669 (2) means that we won't associate several high-part relocations with
14670 the same low-part relocation unless there's no alternative. Having
14671 several high parts for the same low part is a GNU extension; this rule
14672 allows careful users to avoid it.
14673
14674 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14675 with the last high-part relocation being at the front of the list.
14676 It therefore makes sense to choose the last matching low-part
14677 relocation, all other things being equal. It's also easier
14678 to code that way. */
14679
14680 void
14681 mips_frob_file (void)
14682 {
14683 struct mips_hi_fixup *l;
14684 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14685
14686 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14687 {
14688 segment_info_type *seginfo;
14689 bfd_boolean matched_lo_p;
14690 fixS **hi_pos, **lo_pos, **pos;
14691
14692 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14693
14694 /* If a GOT16 relocation turns out to be against a global symbol,
14695 there isn't supposed to be a matching LO. Ignore %gots against
14696 constants; we'll report an error for those later. */
14697 if (got16_reloc_p (l->fixp->fx_r_type)
14698 && !(l->fixp->fx_addsy
14699 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14700 continue;
14701
14702 /* Check quickly whether the next fixup happens to be a matching %lo. */
14703 if (fixup_has_matching_lo_p (l->fixp))
14704 continue;
14705
14706 seginfo = seg_info (l->seg);
14707
14708 /* Set HI_POS to the position of this relocation in the chain.
14709 Set LO_POS to the position of the chosen low-part relocation.
14710 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14711 relocation that matches an immediately-preceding high-part
14712 relocation. */
14713 hi_pos = NULL;
14714 lo_pos = NULL;
14715 matched_lo_p = FALSE;
14716 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14717
14718 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14719 {
14720 if (*pos == l->fixp)
14721 hi_pos = pos;
14722
14723 if ((*pos)->fx_r_type == looking_for_rtype
14724 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14725 && (*pos)->fx_offset >= l->fixp->fx_offset
14726 && (lo_pos == NULL
14727 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14728 || (!matched_lo_p
14729 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14730 lo_pos = pos;
14731
14732 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14733 && fixup_has_matching_lo_p (*pos));
14734 }
14735
14736 /* If we found a match, remove the high-part relocation from its
14737 current position and insert it before the low-part relocation.
14738 Make the offsets match so that fixup_has_matching_lo_p()
14739 will return true.
14740
14741 We don't warn about unmatched high-part relocations since some
14742 versions of gcc have been known to emit dead "lui ...%hi(...)"
14743 instructions. */
14744 if (lo_pos != NULL)
14745 {
14746 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14747 if (l->fixp->fx_next != *lo_pos)
14748 {
14749 *hi_pos = l->fixp->fx_next;
14750 l->fixp->fx_next = *lo_pos;
14751 *lo_pos = l->fixp;
14752 }
14753 }
14754 }
14755 }
14756
14757 int
14758 mips_force_relocation (fixS *fixp)
14759 {
14760 if (generic_force_reloc (fixp))
14761 return 1;
14762
14763 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14764 so that the linker relaxation can update targets. */
14765 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14766 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14767 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14768 return 1;
14769
14770 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14771 if (ISA_IS_R6 (file_mips_opts.isa)
14772 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14773 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14774 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14775 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14776 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14777 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14778 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14779 return 1;
14780
14781 return 0;
14782 }
14783
14784 /* Read the instruction associated with RELOC from BUF. */
14785
14786 static unsigned int
14787 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14788 {
14789 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14790 return read_compressed_insn (buf, 4);
14791 else
14792 return read_insn (buf);
14793 }
14794
14795 /* Write instruction INSN to BUF, given that it has been relocated
14796 by RELOC. */
14797
14798 static void
14799 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14800 unsigned long insn)
14801 {
14802 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14803 write_compressed_insn (buf, insn, 4);
14804 else
14805 write_insn (buf, insn);
14806 }
14807
14808 /* Apply a fixup to the object file. */
14809
14810 void
14811 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14812 {
14813 char *buf;
14814 unsigned long insn;
14815 reloc_howto_type *howto;
14816
14817 if (fixP->fx_pcrel)
14818 switch (fixP->fx_r_type)
14819 {
14820 case BFD_RELOC_16_PCREL_S2:
14821 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14822 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14823 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14824 case BFD_RELOC_32_PCREL:
14825 case BFD_RELOC_MIPS_21_PCREL_S2:
14826 case BFD_RELOC_MIPS_26_PCREL_S2:
14827 case BFD_RELOC_MIPS_18_PCREL_S3:
14828 case BFD_RELOC_MIPS_19_PCREL_S2:
14829 case BFD_RELOC_HI16_S_PCREL:
14830 case BFD_RELOC_LO16_PCREL:
14831 break;
14832
14833 case BFD_RELOC_32:
14834 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14835 break;
14836
14837 default:
14838 as_bad_where (fixP->fx_file, fixP->fx_line,
14839 _("PC-relative reference to a different section"));
14840 break;
14841 }
14842
14843 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14844 that have no MIPS ELF equivalent. */
14845 if (fixP->fx_r_type != BFD_RELOC_8)
14846 {
14847 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14848 if (!howto)
14849 return;
14850 }
14851
14852 gas_assert (fixP->fx_size == 2
14853 || fixP->fx_size == 4
14854 || fixP->fx_r_type == BFD_RELOC_8
14855 || fixP->fx_r_type == BFD_RELOC_16
14856 || fixP->fx_r_type == BFD_RELOC_64
14857 || fixP->fx_r_type == BFD_RELOC_CTOR
14858 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14859 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14860 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14861 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14862 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14863 || fixP->fx_r_type == BFD_RELOC_NONE);
14864
14865 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14866
14867 /* Don't treat parts of a composite relocation as done. There are two
14868 reasons for this:
14869
14870 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14871 should nevertheless be emitted if the first part is.
14872
14873 (2) In normal usage, composite relocations are never assembly-time
14874 constants. The easiest way of dealing with the pathological
14875 exceptions is to generate a relocation against STN_UNDEF and
14876 leave everything up to the linker. */
14877 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14878 fixP->fx_done = 1;
14879
14880 switch (fixP->fx_r_type)
14881 {
14882 case BFD_RELOC_MIPS_TLS_GD:
14883 case BFD_RELOC_MIPS_TLS_LDM:
14884 case BFD_RELOC_MIPS_TLS_DTPREL32:
14885 case BFD_RELOC_MIPS_TLS_DTPREL64:
14886 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14887 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14888 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14889 case BFD_RELOC_MIPS_TLS_TPREL32:
14890 case BFD_RELOC_MIPS_TLS_TPREL64:
14891 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14892 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14893 case BFD_RELOC_MICROMIPS_TLS_GD:
14894 case BFD_RELOC_MICROMIPS_TLS_LDM:
14895 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14896 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14897 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14898 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14899 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14900 case BFD_RELOC_MIPS16_TLS_GD:
14901 case BFD_RELOC_MIPS16_TLS_LDM:
14902 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14903 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14904 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14905 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14906 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14907 if (fixP->fx_addsy)
14908 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14909 else
14910 as_bad_where (fixP->fx_file, fixP->fx_line,
14911 _("TLS relocation against a constant"));
14912 break;
14913
14914 case BFD_RELOC_MIPS_JMP:
14915 case BFD_RELOC_MIPS_SHIFT5:
14916 case BFD_RELOC_MIPS_SHIFT6:
14917 case BFD_RELOC_MIPS_GOT_DISP:
14918 case BFD_RELOC_MIPS_GOT_PAGE:
14919 case BFD_RELOC_MIPS_GOT_OFST:
14920 case BFD_RELOC_MIPS_SUB:
14921 case BFD_RELOC_MIPS_INSERT_A:
14922 case BFD_RELOC_MIPS_INSERT_B:
14923 case BFD_RELOC_MIPS_DELETE:
14924 case BFD_RELOC_MIPS_HIGHEST:
14925 case BFD_RELOC_MIPS_HIGHER:
14926 case BFD_RELOC_MIPS_SCN_DISP:
14927 case BFD_RELOC_MIPS_REL16:
14928 case BFD_RELOC_MIPS_RELGOT:
14929 case BFD_RELOC_MIPS_JALR:
14930 case BFD_RELOC_HI16:
14931 case BFD_RELOC_HI16_S:
14932 case BFD_RELOC_LO16:
14933 case BFD_RELOC_GPREL16:
14934 case BFD_RELOC_MIPS_LITERAL:
14935 case BFD_RELOC_MIPS_CALL16:
14936 case BFD_RELOC_MIPS_GOT16:
14937 case BFD_RELOC_GPREL32:
14938 case BFD_RELOC_MIPS_GOT_HI16:
14939 case BFD_RELOC_MIPS_GOT_LO16:
14940 case BFD_RELOC_MIPS_CALL_HI16:
14941 case BFD_RELOC_MIPS_CALL_LO16:
14942 case BFD_RELOC_MIPS16_GPREL:
14943 case BFD_RELOC_MIPS16_GOT16:
14944 case BFD_RELOC_MIPS16_CALL16:
14945 case BFD_RELOC_MIPS16_HI16:
14946 case BFD_RELOC_MIPS16_HI16_S:
14947 case BFD_RELOC_MIPS16_LO16:
14948 case BFD_RELOC_MIPS16_JMP:
14949 case BFD_RELOC_MICROMIPS_JMP:
14950 case BFD_RELOC_MICROMIPS_GOT_DISP:
14951 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14952 case BFD_RELOC_MICROMIPS_GOT_OFST:
14953 case BFD_RELOC_MICROMIPS_SUB:
14954 case BFD_RELOC_MICROMIPS_HIGHEST:
14955 case BFD_RELOC_MICROMIPS_HIGHER:
14956 case BFD_RELOC_MICROMIPS_SCN_DISP:
14957 case BFD_RELOC_MICROMIPS_JALR:
14958 case BFD_RELOC_MICROMIPS_HI16:
14959 case BFD_RELOC_MICROMIPS_HI16_S:
14960 case BFD_RELOC_MICROMIPS_LO16:
14961 case BFD_RELOC_MICROMIPS_GPREL16:
14962 case BFD_RELOC_MICROMIPS_LITERAL:
14963 case BFD_RELOC_MICROMIPS_CALL16:
14964 case BFD_RELOC_MICROMIPS_GOT16:
14965 case BFD_RELOC_MICROMIPS_GOT_HI16:
14966 case BFD_RELOC_MICROMIPS_GOT_LO16:
14967 case BFD_RELOC_MICROMIPS_CALL_HI16:
14968 case BFD_RELOC_MICROMIPS_CALL_LO16:
14969 case BFD_RELOC_MIPS_EH:
14970 if (fixP->fx_done)
14971 {
14972 offsetT value;
14973
14974 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14975 {
14976 insn = read_reloc_insn (buf, fixP->fx_r_type);
14977 if (mips16_reloc_p (fixP->fx_r_type))
14978 insn |= mips16_immed_extend (value, 16);
14979 else
14980 insn |= (value & 0xffff);
14981 write_reloc_insn (buf, fixP->fx_r_type, insn);
14982 }
14983 else
14984 as_bad_where (fixP->fx_file, fixP->fx_line,
14985 _("unsupported constant in relocation"));
14986 }
14987 break;
14988
14989 case BFD_RELOC_64:
14990 /* This is handled like BFD_RELOC_32, but we output a sign
14991 extended value if we are only 32 bits. */
14992 if (fixP->fx_done)
14993 {
14994 if (8 <= sizeof (valueT))
14995 md_number_to_chars (buf, *valP, 8);
14996 else
14997 {
14998 valueT hiv;
14999
15000 if ((*valP & 0x80000000) != 0)
15001 hiv = 0xffffffff;
15002 else
15003 hiv = 0;
15004 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15005 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15006 }
15007 }
15008 break;
15009
15010 case BFD_RELOC_RVA:
15011 case BFD_RELOC_32:
15012 case BFD_RELOC_32_PCREL:
15013 case BFD_RELOC_16:
15014 case BFD_RELOC_8:
15015 /* If we are deleting this reloc entry, we must fill in the
15016 value now. This can happen if we have a .word which is not
15017 resolved when it appears but is later defined. */
15018 if (fixP->fx_done)
15019 md_number_to_chars (buf, *valP, fixP->fx_size);
15020 break;
15021
15022 case BFD_RELOC_MIPS_21_PCREL_S2:
15023 case BFD_RELOC_MIPS_26_PCREL_S2:
15024 if ((*valP & 0x3) != 0)
15025 as_bad_where (fixP->fx_file, fixP->fx_line,
15026 _("branch to misaligned address (%lx)"), (long) *valP);
15027
15028 gas_assert (!fixP->fx_done);
15029 break;
15030
15031 case BFD_RELOC_MIPS_18_PCREL_S3:
15032 if ((S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15033 as_bad_where (fixP->fx_file, fixP->fx_line,
15034 _("PC-relative access using misaligned symbol (%lx)"),
15035 (long) S_GET_VALUE (fixP->fx_addsy));
15036 if ((fixP->fx_offset & 0x7) != 0)
15037 as_bad_where (fixP->fx_file, fixP->fx_line,
15038 _("PC-relative access using misaligned offset (%lx)"),
15039 (long) fixP->fx_offset);
15040
15041 gas_assert (!fixP->fx_done);
15042 break;
15043
15044 case BFD_RELOC_MIPS_19_PCREL_S2:
15045 if ((*valP & 0x3) != 0)
15046 as_bad_where (fixP->fx_file, fixP->fx_line,
15047 _("PC-relative access to misaligned address (%lx)"),
15048 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15049
15050 gas_assert (!fixP->fx_done);
15051 break;
15052
15053 case BFD_RELOC_HI16_S_PCREL:
15054 case BFD_RELOC_LO16_PCREL:
15055 gas_assert (!fixP->fx_done);
15056 break;
15057
15058 case BFD_RELOC_16_PCREL_S2:
15059 if ((*valP & 0x3) != 0)
15060 as_bad_where (fixP->fx_file, fixP->fx_line,
15061 _("branch to misaligned address (%lx)"), (long) *valP);
15062
15063 /* We need to save the bits in the instruction since fixup_segment()
15064 might be deleting the relocation entry (i.e., a branch within
15065 the current segment). */
15066 if (! fixP->fx_done)
15067 break;
15068
15069 /* Update old instruction data. */
15070 insn = read_insn (buf);
15071
15072 if (*valP + 0x20000 <= 0x3ffff)
15073 {
15074 insn |= (*valP >> 2) & 0xffff;
15075 write_insn (buf, insn);
15076 }
15077 else if (mips_pic == NO_PIC
15078 && fixP->fx_done
15079 && fixP->fx_frag->fr_address >= text_section->vma
15080 && (fixP->fx_frag->fr_address
15081 < text_section->vma + bfd_get_section_size (text_section))
15082 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15083 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15084 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15085 {
15086 /* The branch offset is too large. If this is an
15087 unconditional branch, and we are not generating PIC code,
15088 we can convert it to an absolute jump instruction. */
15089 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15090 insn = 0x0c000000; /* jal */
15091 else
15092 insn = 0x08000000; /* j */
15093 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15094 fixP->fx_done = 0;
15095 fixP->fx_addsy = section_symbol (text_section);
15096 *valP += md_pcrel_from (fixP);
15097 write_insn (buf, insn);
15098 }
15099 else
15100 {
15101 /* If we got here, we have branch-relaxation disabled,
15102 and there's nothing we can do to fix this instruction
15103 without turning it into a longer sequence. */
15104 as_bad_where (fixP->fx_file, fixP->fx_line,
15105 _("branch out of range"));
15106 }
15107 break;
15108
15109 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15110 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15111 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15112 /* We adjust the offset back to even. */
15113 if ((*valP & 0x1) != 0)
15114 --(*valP);
15115
15116 if (! fixP->fx_done)
15117 break;
15118
15119 /* Should never visit here, because we keep the relocation. */
15120 abort ();
15121 break;
15122
15123 case BFD_RELOC_VTABLE_INHERIT:
15124 fixP->fx_done = 0;
15125 if (fixP->fx_addsy
15126 && !S_IS_DEFINED (fixP->fx_addsy)
15127 && !S_IS_WEAK (fixP->fx_addsy))
15128 S_SET_WEAK (fixP->fx_addsy);
15129 break;
15130
15131 case BFD_RELOC_NONE:
15132 case BFD_RELOC_VTABLE_ENTRY:
15133 fixP->fx_done = 0;
15134 break;
15135
15136 default:
15137 abort ();
15138 }
15139
15140 /* Remember value for tc_gen_reloc. */
15141 fixP->fx_addnumber = *valP;
15142 }
15143
15144 static symbolS *
15145 get_symbol (void)
15146 {
15147 int c;
15148 char *name;
15149 symbolS *p;
15150
15151 c = get_symbol_name (&name);
15152 p = (symbolS *) symbol_find_or_make (name);
15153 (void) restore_line_pointer (c);
15154 return p;
15155 }
15156
15157 /* Align the current frag to a given power of two. If a particular
15158 fill byte should be used, FILL points to an integer that contains
15159 that byte, otherwise FILL is null.
15160
15161 This function used to have the comment:
15162
15163 The MIPS assembler also automatically adjusts any preceding label.
15164
15165 The implementation therefore applied the adjustment to a maximum of
15166 one label. However, other label adjustments are applied to batches
15167 of labels, and adjusting just one caused problems when new labels
15168 were added for the sake of debugging or unwind information.
15169 We therefore adjust all preceding labels (given as LABELS) instead. */
15170
15171 static void
15172 mips_align (int to, int *fill, struct insn_label_list *labels)
15173 {
15174 mips_emit_delays ();
15175 mips_record_compressed_mode ();
15176 if (fill == NULL && subseg_text_p (now_seg))
15177 frag_align_code (to, 0);
15178 else
15179 frag_align (to, fill ? *fill : 0, 0);
15180 record_alignment (now_seg, to);
15181 mips_move_labels (labels, FALSE);
15182 }
15183
15184 /* Align to a given power of two. .align 0 turns off the automatic
15185 alignment used by the data creating pseudo-ops. */
15186
15187 static void
15188 s_align (int x ATTRIBUTE_UNUSED)
15189 {
15190 int temp, fill_value, *fill_ptr;
15191 long max_alignment = 28;
15192
15193 /* o Note that the assembler pulls down any immediately preceding label
15194 to the aligned address.
15195 o It's not documented but auto alignment is reinstated by
15196 a .align pseudo instruction.
15197 o Note also that after auto alignment is turned off the mips assembler
15198 issues an error on attempt to assemble an improperly aligned data item.
15199 We don't. */
15200
15201 temp = get_absolute_expression ();
15202 if (temp > max_alignment)
15203 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15204 else if (temp < 0)
15205 {
15206 as_warn (_("alignment negative, 0 assumed"));
15207 temp = 0;
15208 }
15209 if (*input_line_pointer == ',')
15210 {
15211 ++input_line_pointer;
15212 fill_value = get_absolute_expression ();
15213 fill_ptr = &fill_value;
15214 }
15215 else
15216 fill_ptr = 0;
15217 if (temp)
15218 {
15219 segment_info_type *si = seg_info (now_seg);
15220 struct insn_label_list *l = si->label_list;
15221 /* Auto alignment should be switched on by next section change. */
15222 auto_align = 1;
15223 mips_align (temp, fill_ptr, l);
15224 }
15225 else
15226 {
15227 auto_align = 0;
15228 }
15229
15230 demand_empty_rest_of_line ();
15231 }
15232
15233 static void
15234 s_change_sec (int sec)
15235 {
15236 segT seg;
15237
15238 /* The ELF backend needs to know that we are changing sections, so
15239 that .previous works correctly. We could do something like check
15240 for an obj_section_change_hook macro, but that might be confusing
15241 as it would not be appropriate to use it in the section changing
15242 functions in read.c, since obj-elf.c intercepts those. FIXME:
15243 This should be cleaner, somehow. */
15244 obj_elf_section_change_hook ();
15245
15246 mips_emit_delays ();
15247
15248 switch (sec)
15249 {
15250 case 't':
15251 s_text (0);
15252 break;
15253 case 'd':
15254 s_data (0);
15255 break;
15256 case 'b':
15257 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15258 demand_empty_rest_of_line ();
15259 break;
15260
15261 case 'r':
15262 seg = subseg_new (RDATA_SECTION_NAME,
15263 (subsegT) get_absolute_expression ());
15264 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15265 | SEC_READONLY | SEC_RELOC
15266 | SEC_DATA));
15267 if (strncmp (TARGET_OS, "elf", 3) != 0)
15268 record_alignment (seg, 4);
15269 demand_empty_rest_of_line ();
15270 break;
15271
15272 case 's':
15273 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15274 bfd_set_section_flags (stdoutput, seg,
15275 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15276 if (strncmp (TARGET_OS, "elf", 3) != 0)
15277 record_alignment (seg, 4);
15278 demand_empty_rest_of_line ();
15279 break;
15280
15281 case 'B':
15282 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15283 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15284 if (strncmp (TARGET_OS, "elf", 3) != 0)
15285 record_alignment (seg, 4);
15286 demand_empty_rest_of_line ();
15287 break;
15288 }
15289
15290 auto_align = 1;
15291 }
15292
15293 void
15294 s_change_section (int ignore ATTRIBUTE_UNUSED)
15295 {
15296 char *saved_ilp;
15297 char *section_name;
15298 char c, endc;
15299 char next_c = 0;
15300 int section_type;
15301 int section_flag;
15302 int section_entry_size;
15303 int section_alignment;
15304
15305 saved_ilp = input_line_pointer;
15306 endc = get_symbol_name (&section_name);
15307 c = (endc == '"' ? input_line_pointer[1] : endc);
15308 if (c)
15309 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15310
15311 /* Do we have .section Name<,"flags">? */
15312 if (c != ',' || (c == ',' && next_c == '"'))
15313 {
15314 /* Just after name is now '\0'. */
15315 (void) restore_line_pointer (endc);
15316 input_line_pointer = saved_ilp;
15317 obj_elf_section (ignore);
15318 return;
15319 }
15320
15321 section_name = xstrdup (section_name);
15322 c = restore_line_pointer (endc);
15323
15324 input_line_pointer++;
15325
15326 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15327 if (c == ',')
15328 section_type = get_absolute_expression ();
15329 else
15330 section_type = 0;
15331
15332 if (*input_line_pointer++ == ',')
15333 section_flag = get_absolute_expression ();
15334 else
15335 section_flag = 0;
15336
15337 if (*input_line_pointer++ == ',')
15338 section_entry_size = get_absolute_expression ();
15339 else
15340 section_entry_size = 0;
15341
15342 if (*input_line_pointer++ == ',')
15343 section_alignment = get_absolute_expression ();
15344 else
15345 section_alignment = 0;
15346
15347 /* FIXME: really ignore? */
15348 (void) section_alignment;
15349
15350 /* When using the generic form of .section (as implemented by obj-elf.c),
15351 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15352 traditionally had to fall back on the more common @progbits instead.
15353
15354 There's nothing really harmful in this, since bfd will correct
15355 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15356 means that, for backwards compatibility, the special_section entries
15357 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15358
15359 Even so, we shouldn't force users of the MIPS .section syntax to
15360 incorrectly label the sections as SHT_PROGBITS. The best compromise
15361 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15362 generic type-checking code. */
15363 if (section_type == SHT_MIPS_DWARF)
15364 section_type = SHT_PROGBITS;
15365
15366 obj_elf_change_section (section_name, section_type, section_flag,
15367 section_entry_size, 0, 0, 0);
15368
15369 if (now_seg->name != section_name)
15370 free (section_name);
15371 }
15372
15373 void
15374 mips_enable_auto_align (void)
15375 {
15376 auto_align = 1;
15377 }
15378
15379 static void
15380 s_cons (int log_size)
15381 {
15382 segment_info_type *si = seg_info (now_seg);
15383 struct insn_label_list *l = si->label_list;
15384
15385 mips_emit_delays ();
15386 if (log_size > 0 && auto_align)
15387 mips_align (log_size, 0, l);
15388 cons (1 << log_size);
15389 mips_clear_insn_labels ();
15390 }
15391
15392 static void
15393 s_float_cons (int type)
15394 {
15395 segment_info_type *si = seg_info (now_seg);
15396 struct insn_label_list *l = si->label_list;
15397
15398 mips_emit_delays ();
15399
15400 if (auto_align)
15401 {
15402 if (type == 'd')
15403 mips_align (3, 0, l);
15404 else
15405 mips_align (2, 0, l);
15406 }
15407
15408 float_cons (type);
15409 mips_clear_insn_labels ();
15410 }
15411
15412 /* Handle .globl. We need to override it because on Irix 5 you are
15413 permitted to say
15414 .globl foo .text
15415 where foo is an undefined symbol, to mean that foo should be
15416 considered to be the address of a function. */
15417
15418 static void
15419 s_mips_globl (int x ATTRIBUTE_UNUSED)
15420 {
15421 char *name;
15422 int c;
15423 symbolS *symbolP;
15424 flagword flag;
15425
15426 do
15427 {
15428 c = get_symbol_name (&name);
15429 symbolP = symbol_find_or_make (name);
15430 S_SET_EXTERNAL (symbolP);
15431
15432 *input_line_pointer = c;
15433 SKIP_WHITESPACE_AFTER_NAME ();
15434
15435 /* On Irix 5, every global symbol that is not explicitly labelled as
15436 being a function is apparently labelled as being an object. */
15437 flag = BSF_OBJECT;
15438
15439 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15440 && (*input_line_pointer != ','))
15441 {
15442 char *secname;
15443 asection *sec;
15444
15445 c = get_symbol_name (&secname);
15446 sec = bfd_get_section_by_name (stdoutput, secname);
15447 if (sec == NULL)
15448 as_bad (_("%s: no such section"), secname);
15449 (void) restore_line_pointer (c);
15450
15451 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15452 flag = BSF_FUNCTION;
15453 }
15454
15455 symbol_get_bfdsym (symbolP)->flags |= flag;
15456
15457 c = *input_line_pointer;
15458 if (c == ',')
15459 {
15460 input_line_pointer++;
15461 SKIP_WHITESPACE ();
15462 if (is_end_of_line[(unsigned char) *input_line_pointer])
15463 c = '\n';
15464 }
15465 }
15466 while (c == ',');
15467
15468 demand_empty_rest_of_line ();
15469 }
15470
15471 static void
15472 s_option (int x ATTRIBUTE_UNUSED)
15473 {
15474 char *opt;
15475 char c;
15476
15477 c = get_symbol_name (&opt);
15478
15479 if (*opt == 'O')
15480 {
15481 /* FIXME: What does this mean? */
15482 }
15483 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
15484 {
15485 int i;
15486
15487 i = atoi (opt + 3);
15488 if (i != 0 && i != 2)
15489 as_bad (_(".option pic%d not supported"), i);
15490 else if (mips_pic == VXWORKS_PIC)
15491 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15492 else if (i == 0)
15493 mips_pic = NO_PIC;
15494 else if (i == 2)
15495 {
15496 mips_pic = SVR4_PIC;
15497 mips_abicalls = TRUE;
15498 }
15499
15500 if (mips_pic == SVR4_PIC)
15501 {
15502 if (g_switch_seen && g_switch_value != 0)
15503 as_warn (_("-G may not be used with SVR4 PIC code"));
15504 g_switch_value = 0;
15505 bfd_set_gp_size (stdoutput, 0);
15506 }
15507 }
15508 else
15509 as_warn (_("unrecognized option \"%s\""), opt);
15510
15511 (void) restore_line_pointer (c);
15512 demand_empty_rest_of_line ();
15513 }
15514
15515 /* This structure is used to hold a stack of .set values. */
15516
15517 struct mips_option_stack
15518 {
15519 struct mips_option_stack *next;
15520 struct mips_set_options options;
15521 };
15522
15523 static struct mips_option_stack *mips_opts_stack;
15524
15525 /* Return status for .set/.module option handling. */
15526
15527 enum code_option_type
15528 {
15529 /* Unrecognized option. */
15530 OPTION_TYPE_BAD = -1,
15531
15532 /* Ordinary option. */
15533 OPTION_TYPE_NORMAL,
15534
15535 /* ISA changing option. */
15536 OPTION_TYPE_ISA
15537 };
15538
15539 /* Handle common .set/.module options. Return status indicating option
15540 type. */
15541
15542 static enum code_option_type
15543 parse_code_option (char * name)
15544 {
15545 bfd_boolean isa_set = FALSE;
15546 const struct mips_ase *ase;
15547
15548 if (strncmp (name, "at=", 3) == 0)
15549 {
15550 char *s = name + 3;
15551
15552 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15553 as_bad (_("unrecognized register name `%s'"), s);
15554 }
15555 else if (strcmp (name, "at") == 0)
15556 mips_opts.at = ATREG;
15557 else if (strcmp (name, "noat") == 0)
15558 mips_opts.at = ZERO;
15559 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15560 mips_opts.nomove = 0;
15561 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15562 mips_opts.nomove = 1;
15563 else if (strcmp (name, "bopt") == 0)
15564 mips_opts.nobopt = 0;
15565 else if (strcmp (name, "nobopt") == 0)
15566 mips_opts.nobopt = 1;
15567 else if (strcmp (name, "gp=32") == 0)
15568 mips_opts.gp = 32;
15569 else if (strcmp (name, "gp=64") == 0)
15570 mips_opts.gp = 64;
15571 else if (strcmp (name, "fp=32") == 0)
15572 mips_opts.fp = 32;
15573 else if (strcmp (name, "fp=xx") == 0)
15574 mips_opts.fp = 0;
15575 else if (strcmp (name, "fp=64") == 0)
15576 mips_opts.fp = 64;
15577 else if (strcmp (name, "softfloat") == 0)
15578 mips_opts.soft_float = 1;
15579 else if (strcmp (name, "hardfloat") == 0)
15580 mips_opts.soft_float = 0;
15581 else if (strcmp (name, "singlefloat") == 0)
15582 mips_opts.single_float = 1;
15583 else if (strcmp (name, "doublefloat") == 0)
15584 mips_opts.single_float = 0;
15585 else if (strcmp (name, "nooddspreg") == 0)
15586 mips_opts.oddspreg = 0;
15587 else if (strcmp (name, "oddspreg") == 0)
15588 mips_opts.oddspreg = 1;
15589 else if (strcmp (name, "mips16") == 0
15590 || strcmp (name, "MIPS-16") == 0)
15591 mips_opts.mips16 = 1;
15592 else if (strcmp (name, "nomips16") == 0
15593 || strcmp (name, "noMIPS-16") == 0)
15594 mips_opts.mips16 = 0;
15595 else if (strcmp (name, "micromips") == 0)
15596 mips_opts.micromips = 1;
15597 else if (strcmp (name, "nomicromips") == 0)
15598 mips_opts.micromips = 0;
15599 else if (name[0] == 'n'
15600 && name[1] == 'o'
15601 && (ase = mips_lookup_ase (name + 2)))
15602 mips_set_ase (ase, &mips_opts, FALSE);
15603 else if ((ase = mips_lookup_ase (name)))
15604 mips_set_ase (ase, &mips_opts, TRUE);
15605 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
15606 {
15607 /* Permit the user to change the ISA and architecture on the fly.
15608 Needless to say, misuse can cause serious problems. */
15609 if (strncmp (name, "arch=", 5) == 0)
15610 {
15611 const struct mips_cpu_info *p;
15612
15613 p = mips_parse_cpu ("internal use", name + 5);
15614 if (!p)
15615 as_bad (_("unknown architecture %s"), name + 5);
15616 else
15617 {
15618 mips_opts.arch = p->cpu;
15619 mips_opts.isa = p->isa;
15620 isa_set = TRUE;
15621 }
15622 }
15623 else if (strncmp (name, "mips", 4) == 0)
15624 {
15625 const struct mips_cpu_info *p;
15626
15627 p = mips_parse_cpu ("internal use", name);
15628 if (!p)
15629 as_bad (_("unknown ISA level %s"), name + 4);
15630 else
15631 {
15632 mips_opts.arch = p->cpu;
15633 mips_opts.isa = p->isa;
15634 isa_set = TRUE;
15635 }
15636 }
15637 else
15638 as_bad (_("unknown ISA or architecture %s"), name);
15639 }
15640 else if (strcmp (name, "autoextend") == 0)
15641 mips_opts.noautoextend = 0;
15642 else if (strcmp (name, "noautoextend") == 0)
15643 mips_opts.noautoextend = 1;
15644 else if (strcmp (name, "insn32") == 0)
15645 mips_opts.insn32 = TRUE;
15646 else if (strcmp (name, "noinsn32") == 0)
15647 mips_opts.insn32 = FALSE;
15648 else if (strcmp (name, "sym32") == 0)
15649 mips_opts.sym32 = TRUE;
15650 else if (strcmp (name, "nosym32") == 0)
15651 mips_opts.sym32 = FALSE;
15652 else
15653 return OPTION_TYPE_BAD;
15654
15655 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
15656 }
15657
15658 /* Handle the .set pseudo-op. */
15659
15660 static void
15661 s_mipsset (int x ATTRIBUTE_UNUSED)
15662 {
15663 enum code_option_type type = OPTION_TYPE_NORMAL;
15664 char *name = input_line_pointer, ch;
15665
15666 file_mips_check_options ();
15667
15668 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15669 ++input_line_pointer;
15670 ch = *input_line_pointer;
15671 *input_line_pointer = '\0';
15672
15673 if (strchr (name, ','))
15674 {
15675 /* Generic ".set" directive; use the generic handler. */
15676 *input_line_pointer = ch;
15677 input_line_pointer = name;
15678 s_set (0);
15679 return;
15680 }
15681
15682 if (strcmp (name, "reorder") == 0)
15683 {
15684 if (mips_opts.noreorder)
15685 end_noreorder ();
15686 }
15687 else if (strcmp (name, "noreorder") == 0)
15688 {
15689 if (!mips_opts.noreorder)
15690 start_noreorder ();
15691 }
15692 else if (strcmp (name, "macro") == 0)
15693 mips_opts.warn_about_macros = 0;
15694 else if (strcmp (name, "nomacro") == 0)
15695 {
15696 if (mips_opts.noreorder == 0)
15697 as_bad (_("`noreorder' must be set before `nomacro'"));
15698 mips_opts.warn_about_macros = 1;
15699 }
15700 else if (strcmp (name, "gp=default") == 0)
15701 mips_opts.gp = file_mips_opts.gp;
15702 else if (strcmp (name, "fp=default") == 0)
15703 mips_opts.fp = file_mips_opts.fp;
15704 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15705 {
15706 mips_opts.isa = file_mips_opts.isa;
15707 mips_opts.arch = file_mips_opts.arch;
15708 mips_opts.gp = file_mips_opts.gp;
15709 mips_opts.fp = file_mips_opts.fp;
15710 }
15711 else if (strcmp (name, "push") == 0)
15712 {
15713 struct mips_option_stack *s;
15714
15715 s = XNEW (struct mips_option_stack);
15716 s->next = mips_opts_stack;
15717 s->options = mips_opts;
15718 mips_opts_stack = s;
15719 }
15720 else if (strcmp (name, "pop") == 0)
15721 {
15722 struct mips_option_stack *s;
15723
15724 s = mips_opts_stack;
15725 if (s == NULL)
15726 as_bad (_(".set pop with no .set push"));
15727 else
15728 {
15729 /* If we're changing the reorder mode we need to handle
15730 delay slots correctly. */
15731 if (s->options.noreorder && ! mips_opts.noreorder)
15732 start_noreorder ();
15733 else if (! s->options.noreorder && mips_opts.noreorder)
15734 end_noreorder ();
15735
15736 mips_opts = s->options;
15737 mips_opts_stack = s->next;
15738 free (s);
15739 }
15740 }
15741 else
15742 {
15743 type = parse_code_option (name);
15744 if (type == OPTION_TYPE_BAD)
15745 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15746 }
15747
15748 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15749 registers based on what is supported by the arch/cpu. */
15750 if (type == OPTION_TYPE_ISA)
15751 {
15752 switch (mips_opts.isa)
15753 {
15754 case 0:
15755 break;
15756 case ISA_MIPS1:
15757 /* MIPS I cannot support FPXX. */
15758 mips_opts.fp = 32;
15759 /* fall-through. */
15760 case ISA_MIPS2:
15761 case ISA_MIPS32:
15762 case ISA_MIPS32R2:
15763 case ISA_MIPS32R3:
15764 case ISA_MIPS32R5:
15765 mips_opts.gp = 32;
15766 if (mips_opts.fp != 0)
15767 mips_opts.fp = 32;
15768 break;
15769 case ISA_MIPS32R6:
15770 mips_opts.gp = 32;
15771 mips_opts.fp = 64;
15772 break;
15773 case ISA_MIPS3:
15774 case ISA_MIPS4:
15775 case ISA_MIPS5:
15776 case ISA_MIPS64:
15777 case ISA_MIPS64R2:
15778 case ISA_MIPS64R3:
15779 case ISA_MIPS64R5:
15780 case ISA_MIPS64R6:
15781 mips_opts.gp = 64;
15782 if (mips_opts.fp != 0)
15783 {
15784 if (mips_opts.arch == CPU_R5900)
15785 mips_opts.fp = 32;
15786 else
15787 mips_opts.fp = 64;
15788 }
15789 break;
15790 default:
15791 as_bad (_("unknown ISA level %s"), name + 4);
15792 break;
15793 }
15794 }
15795
15796 mips_check_options (&mips_opts, FALSE);
15797
15798 mips_check_isa_supports_ases ();
15799 *input_line_pointer = ch;
15800 demand_empty_rest_of_line ();
15801 }
15802
15803 /* Handle the .module pseudo-op. */
15804
15805 static void
15806 s_module (int ignore ATTRIBUTE_UNUSED)
15807 {
15808 char *name = input_line_pointer, ch;
15809
15810 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15811 ++input_line_pointer;
15812 ch = *input_line_pointer;
15813 *input_line_pointer = '\0';
15814
15815 if (!file_mips_opts_checked)
15816 {
15817 if (parse_code_option (name) == OPTION_TYPE_BAD)
15818 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15819
15820 /* Update module level settings from mips_opts. */
15821 file_mips_opts = mips_opts;
15822 }
15823 else
15824 as_bad (_(".module is not permitted after generating code"));
15825
15826 *input_line_pointer = ch;
15827 demand_empty_rest_of_line ();
15828 }
15829
15830 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15831 .option pic2. It means to generate SVR4 PIC calls. */
15832
15833 static void
15834 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15835 {
15836 mips_pic = SVR4_PIC;
15837 mips_abicalls = TRUE;
15838
15839 if (g_switch_seen && g_switch_value != 0)
15840 as_warn (_("-G may not be used with SVR4 PIC code"));
15841 g_switch_value = 0;
15842
15843 bfd_set_gp_size (stdoutput, 0);
15844 demand_empty_rest_of_line ();
15845 }
15846
15847 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15848 PIC code. It sets the $gp register for the function based on the
15849 function address, which is in the register named in the argument.
15850 This uses a relocation against _gp_disp, which is handled specially
15851 by the linker. The result is:
15852 lui $gp,%hi(_gp_disp)
15853 addiu $gp,$gp,%lo(_gp_disp)
15854 addu $gp,$gp,.cpload argument
15855 The .cpload argument is normally $25 == $t9.
15856
15857 The -mno-shared option changes this to:
15858 lui $gp,%hi(__gnu_local_gp)
15859 addiu $gp,$gp,%lo(__gnu_local_gp)
15860 and the argument is ignored. This saves an instruction, but the
15861 resulting code is not position independent; it uses an absolute
15862 address for __gnu_local_gp. Thus code assembled with -mno-shared
15863 can go into an ordinary executable, but not into a shared library. */
15864
15865 static void
15866 s_cpload (int ignore ATTRIBUTE_UNUSED)
15867 {
15868 expressionS ex;
15869 int reg;
15870 int in_shared;
15871
15872 file_mips_check_options ();
15873
15874 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15875 .cpload is ignored. */
15876 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15877 {
15878 s_ignore (0);
15879 return;
15880 }
15881
15882 if (mips_opts.mips16)
15883 {
15884 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15885 ignore_rest_of_line ();
15886 return;
15887 }
15888
15889 /* .cpload should be in a .set noreorder section. */
15890 if (mips_opts.noreorder == 0)
15891 as_warn (_(".cpload not in noreorder section"));
15892
15893 reg = tc_get_register (0);
15894
15895 /* If we need to produce a 64-bit address, we are better off using
15896 the default instruction sequence. */
15897 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15898
15899 ex.X_op = O_symbol;
15900 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15901 "__gnu_local_gp");
15902 ex.X_op_symbol = NULL;
15903 ex.X_add_number = 0;
15904
15905 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15906 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15907
15908 mips_mark_labels ();
15909 mips_assembling_insn = TRUE;
15910
15911 macro_start ();
15912 macro_build_lui (&ex, mips_gp_register);
15913 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15914 mips_gp_register, BFD_RELOC_LO16);
15915 if (in_shared)
15916 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15917 mips_gp_register, reg);
15918 macro_end ();
15919
15920 mips_assembling_insn = FALSE;
15921 demand_empty_rest_of_line ();
15922 }
15923
15924 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15925 .cpsetup $reg1, offset|$reg2, label
15926
15927 If offset is given, this results in:
15928 sd $gp, offset($sp)
15929 lui $gp, %hi(%neg(%gp_rel(label)))
15930 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15931 daddu $gp, $gp, $reg1
15932
15933 If $reg2 is given, this results in:
15934 or $reg2, $gp, $0
15935 lui $gp, %hi(%neg(%gp_rel(label)))
15936 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15937 daddu $gp, $gp, $reg1
15938 $reg1 is normally $25 == $t9.
15939
15940 The -mno-shared option replaces the last three instructions with
15941 lui $gp,%hi(_gp)
15942 addiu $gp,$gp,%lo(_gp) */
15943
15944 static void
15945 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
15946 {
15947 expressionS ex_off;
15948 expressionS ex_sym;
15949 int reg1;
15950
15951 file_mips_check_options ();
15952
15953 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
15954 We also need NewABI support. */
15955 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15956 {
15957 s_ignore (0);
15958 return;
15959 }
15960
15961 if (mips_opts.mips16)
15962 {
15963 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15964 ignore_rest_of_line ();
15965 return;
15966 }
15967
15968 reg1 = tc_get_register (0);
15969 SKIP_WHITESPACE ();
15970 if (*input_line_pointer != ',')
15971 {
15972 as_bad (_("missing argument separator ',' for .cpsetup"));
15973 return;
15974 }
15975 else
15976 ++input_line_pointer;
15977 SKIP_WHITESPACE ();
15978 if (*input_line_pointer == '$')
15979 {
15980 mips_cpreturn_register = tc_get_register (0);
15981 mips_cpreturn_offset = -1;
15982 }
15983 else
15984 {
15985 mips_cpreturn_offset = get_absolute_expression ();
15986 mips_cpreturn_register = -1;
15987 }
15988 SKIP_WHITESPACE ();
15989 if (*input_line_pointer != ',')
15990 {
15991 as_bad (_("missing argument separator ',' for .cpsetup"));
15992 return;
15993 }
15994 else
15995 ++input_line_pointer;
15996 SKIP_WHITESPACE ();
15997 expression (&ex_sym);
15998
15999 mips_mark_labels ();
16000 mips_assembling_insn = TRUE;
16001
16002 macro_start ();
16003 if (mips_cpreturn_register == -1)
16004 {
16005 ex_off.X_op = O_constant;
16006 ex_off.X_add_symbol = NULL;
16007 ex_off.X_op_symbol = NULL;
16008 ex_off.X_add_number = mips_cpreturn_offset;
16009
16010 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16011 BFD_RELOC_LO16, SP);
16012 }
16013 else
16014 move_register (mips_cpreturn_register, mips_gp_register);
16015
16016 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16017 {
16018 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16019 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16020 BFD_RELOC_HI16_S);
16021
16022 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16023 mips_gp_register, -1, BFD_RELOC_GPREL16,
16024 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16025
16026 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16027 mips_gp_register, reg1);
16028 }
16029 else
16030 {
16031 expressionS ex;
16032
16033 ex.X_op = O_symbol;
16034 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16035 ex.X_op_symbol = NULL;
16036 ex.X_add_number = 0;
16037
16038 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16039 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16040
16041 macro_build_lui (&ex, mips_gp_register);
16042 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16043 mips_gp_register, BFD_RELOC_LO16);
16044 }
16045
16046 macro_end ();
16047
16048 mips_assembling_insn = FALSE;
16049 demand_empty_rest_of_line ();
16050 }
16051
16052 static void
16053 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16054 {
16055 file_mips_check_options ();
16056
16057 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16058 .cplocal is ignored. */
16059 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16060 {
16061 s_ignore (0);
16062 return;
16063 }
16064
16065 if (mips_opts.mips16)
16066 {
16067 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16068 ignore_rest_of_line ();
16069 return;
16070 }
16071
16072 mips_gp_register = tc_get_register (0);
16073 demand_empty_rest_of_line ();
16074 }
16075
16076 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16077 offset from $sp. The offset is remembered, and after making a PIC
16078 call $gp is restored from that location. */
16079
16080 static void
16081 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16082 {
16083 expressionS ex;
16084
16085 file_mips_check_options ();
16086
16087 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16088 .cprestore is ignored. */
16089 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16090 {
16091 s_ignore (0);
16092 return;
16093 }
16094
16095 if (mips_opts.mips16)
16096 {
16097 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16098 ignore_rest_of_line ();
16099 return;
16100 }
16101
16102 mips_cprestore_offset = get_absolute_expression ();
16103 mips_cprestore_valid = 1;
16104
16105 ex.X_op = O_constant;
16106 ex.X_add_symbol = NULL;
16107 ex.X_op_symbol = NULL;
16108 ex.X_add_number = mips_cprestore_offset;
16109
16110 mips_mark_labels ();
16111 mips_assembling_insn = TRUE;
16112
16113 macro_start ();
16114 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16115 SP, HAVE_64BIT_ADDRESSES);
16116 macro_end ();
16117
16118 mips_assembling_insn = FALSE;
16119 demand_empty_rest_of_line ();
16120 }
16121
16122 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16123 was given in the preceding .cpsetup, it results in:
16124 ld $gp, offset($sp)
16125
16126 If a register $reg2 was given there, it results in:
16127 or $gp, $reg2, $0 */
16128
16129 static void
16130 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16131 {
16132 expressionS ex;
16133
16134 file_mips_check_options ();
16135
16136 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16137 We also need NewABI support. */
16138 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16139 {
16140 s_ignore (0);
16141 return;
16142 }
16143
16144 if (mips_opts.mips16)
16145 {
16146 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16147 ignore_rest_of_line ();
16148 return;
16149 }
16150
16151 mips_mark_labels ();
16152 mips_assembling_insn = TRUE;
16153
16154 macro_start ();
16155 if (mips_cpreturn_register == -1)
16156 {
16157 ex.X_op = O_constant;
16158 ex.X_add_symbol = NULL;
16159 ex.X_op_symbol = NULL;
16160 ex.X_add_number = mips_cpreturn_offset;
16161
16162 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16163 }
16164 else
16165 move_register (mips_gp_register, mips_cpreturn_register);
16166
16167 macro_end ();
16168
16169 mips_assembling_insn = FALSE;
16170 demand_empty_rest_of_line ();
16171 }
16172
16173 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16174 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16175 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16176 debug information or MIPS16 TLS. */
16177
16178 static void
16179 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16180 bfd_reloc_code_real_type rtype)
16181 {
16182 expressionS ex;
16183 char *p;
16184
16185 expression (&ex);
16186
16187 if (ex.X_op != O_symbol)
16188 {
16189 as_bad (_("unsupported use of %s"), dirstr);
16190 ignore_rest_of_line ();
16191 }
16192
16193 p = frag_more (bytes);
16194 md_number_to_chars (p, 0, bytes);
16195 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16196 demand_empty_rest_of_line ();
16197 mips_clear_insn_labels ();
16198 }
16199
16200 /* Handle .dtprelword. */
16201
16202 static void
16203 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16204 {
16205 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16206 }
16207
16208 /* Handle .dtpreldword. */
16209
16210 static void
16211 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16212 {
16213 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16214 }
16215
16216 /* Handle .tprelword. */
16217
16218 static void
16219 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16220 {
16221 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16222 }
16223
16224 /* Handle .tpreldword. */
16225
16226 static void
16227 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16228 {
16229 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16230 }
16231
16232 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16233 code. It sets the offset to use in gp_rel relocations. */
16234
16235 static void
16236 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16237 {
16238 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16239 We also need NewABI support. */
16240 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16241 {
16242 s_ignore (0);
16243 return;
16244 }
16245
16246 mips_gprel_offset = get_absolute_expression ();
16247
16248 demand_empty_rest_of_line ();
16249 }
16250
16251 /* Handle the .gpword pseudo-op. This is used when generating PIC
16252 code. It generates a 32 bit GP relative reloc. */
16253
16254 static void
16255 s_gpword (int ignore ATTRIBUTE_UNUSED)
16256 {
16257 segment_info_type *si;
16258 struct insn_label_list *l;
16259 expressionS ex;
16260 char *p;
16261
16262 /* When not generating PIC code, this is treated as .word. */
16263 if (mips_pic != SVR4_PIC)
16264 {
16265 s_cons (2);
16266 return;
16267 }
16268
16269 si = seg_info (now_seg);
16270 l = si->label_list;
16271 mips_emit_delays ();
16272 if (auto_align)
16273 mips_align (2, 0, l);
16274
16275 expression (&ex);
16276 mips_clear_insn_labels ();
16277
16278 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16279 {
16280 as_bad (_("unsupported use of .gpword"));
16281 ignore_rest_of_line ();
16282 }
16283
16284 p = frag_more (4);
16285 md_number_to_chars (p, 0, 4);
16286 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16287 BFD_RELOC_GPREL32);
16288
16289 demand_empty_rest_of_line ();
16290 }
16291
16292 static void
16293 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16294 {
16295 segment_info_type *si;
16296 struct insn_label_list *l;
16297 expressionS ex;
16298 char *p;
16299
16300 /* When not generating PIC code, this is treated as .dword. */
16301 if (mips_pic != SVR4_PIC)
16302 {
16303 s_cons (3);
16304 return;
16305 }
16306
16307 si = seg_info (now_seg);
16308 l = si->label_list;
16309 mips_emit_delays ();
16310 if (auto_align)
16311 mips_align (3, 0, l);
16312
16313 expression (&ex);
16314 mips_clear_insn_labels ();
16315
16316 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16317 {
16318 as_bad (_("unsupported use of .gpdword"));
16319 ignore_rest_of_line ();
16320 }
16321
16322 p = frag_more (8);
16323 md_number_to_chars (p, 0, 8);
16324 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16325 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16326
16327 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16328 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16329 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16330
16331 demand_empty_rest_of_line ();
16332 }
16333
16334 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16335 tables. It generates a R_MIPS_EH reloc. */
16336
16337 static void
16338 s_ehword (int ignore ATTRIBUTE_UNUSED)
16339 {
16340 expressionS ex;
16341 char *p;
16342
16343 mips_emit_delays ();
16344
16345 expression (&ex);
16346 mips_clear_insn_labels ();
16347
16348 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16349 {
16350 as_bad (_("unsupported use of .ehword"));
16351 ignore_rest_of_line ();
16352 }
16353
16354 p = frag_more (4);
16355 md_number_to_chars (p, 0, 4);
16356 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16357 BFD_RELOC_32_PCREL);
16358
16359 demand_empty_rest_of_line ();
16360 }
16361
16362 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16363 tables in SVR4 PIC code. */
16364
16365 static void
16366 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16367 {
16368 int reg;
16369
16370 file_mips_check_options ();
16371
16372 /* This is ignored when not generating SVR4 PIC code. */
16373 if (mips_pic != SVR4_PIC)
16374 {
16375 s_ignore (0);
16376 return;
16377 }
16378
16379 mips_mark_labels ();
16380 mips_assembling_insn = TRUE;
16381
16382 /* Add $gp to the register named as an argument. */
16383 macro_start ();
16384 reg = tc_get_register (0);
16385 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16386 macro_end ();
16387
16388 mips_assembling_insn = FALSE;
16389 demand_empty_rest_of_line ();
16390 }
16391
16392 /* Handle the .insn pseudo-op. This marks instruction labels in
16393 mips16/micromips mode. This permits the linker to handle them specially,
16394 such as generating jalx instructions when needed. We also make
16395 them odd for the duration of the assembly, in order to generate the
16396 right sort of code. We will make them even in the adjust_symtab
16397 routine, while leaving them marked. This is convenient for the
16398 debugger and the disassembler. The linker knows to make them odd
16399 again. */
16400
16401 static void
16402 s_insn (int ignore ATTRIBUTE_UNUSED)
16403 {
16404 file_mips_check_options ();
16405 file_ase_mips16 |= mips_opts.mips16;
16406 file_ase_micromips |= mips_opts.micromips;
16407
16408 mips_mark_labels ();
16409
16410 demand_empty_rest_of_line ();
16411 }
16412
16413 /* Handle the .nan pseudo-op. */
16414
16415 static void
16416 s_nan (int ignore ATTRIBUTE_UNUSED)
16417 {
16418 static const char str_legacy[] = "legacy";
16419 static const char str_2008[] = "2008";
16420 size_t i;
16421
16422 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16423
16424 if (i == sizeof (str_2008) - 1
16425 && memcmp (input_line_pointer, str_2008, i) == 0)
16426 mips_nan2008 = 1;
16427 else if (i == sizeof (str_legacy) - 1
16428 && memcmp (input_line_pointer, str_legacy, i) == 0)
16429 {
16430 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16431 mips_nan2008 = 0;
16432 else
16433 as_bad (_("`%s' does not support legacy NaN"),
16434 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16435 }
16436 else
16437 as_bad (_("bad .nan directive"));
16438
16439 input_line_pointer += i;
16440 demand_empty_rest_of_line ();
16441 }
16442
16443 /* Handle a .stab[snd] directive. Ideally these directives would be
16444 implemented in a transparent way, so that removing them would not
16445 have any effect on the generated instructions. However, s_stab
16446 internally changes the section, so in practice we need to decide
16447 now whether the preceding label marks compressed code. We do not
16448 support changing the compression mode of a label after a .stab*
16449 directive, such as in:
16450
16451 foo:
16452 .stabs ...
16453 .set mips16
16454
16455 so the current mode wins. */
16456
16457 static void
16458 s_mips_stab (int type)
16459 {
16460 mips_mark_labels ();
16461 s_stab (type);
16462 }
16463
16464 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16465
16466 static void
16467 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16468 {
16469 char *name;
16470 int c;
16471 symbolS *symbolP;
16472 expressionS exp;
16473
16474 c = get_symbol_name (&name);
16475 symbolP = symbol_find_or_make (name);
16476 S_SET_WEAK (symbolP);
16477 *input_line_pointer = c;
16478
16479 SKIP_WHITESPACE_AFTER_NAME ();
16480
16481 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16482 {
16483 if (S_IS_DEFINED (symbolP))
16484 {
16485 as_bad (_("ignoring attempt to redefine symbol %s"),
16486 S_GET_NAME (symbolP));
16487 ignore_rest_of_line ();
16488 return;
16489 }
16490
16491 if (*input_line_pointer == ',')
16492 {
16493 ++input_line_pointer;
16494 SKIP_WHITESPACE ();
16495 }
16496
16497 expression (&exp);
16498 if (exp.X_op != O_symbol)
16499 {
16500 as_bad (_("bad .weakext directive"));
16501 ignore_rest_of_line ();
16502 return;
16503 }
16504 symbol_set_value_expression (symbolP, &exp);
16505 }
16506
16507 demand_empty_rest_of_line ();
16508 }
16509
16510 /* Parse a register string into a number. Called from the ECOFF code
16511 to parse .frame. The argument is non-zero if this is the frame
16512 register, so that we can record it in mips_frame_reg. */
16513
16514 int
16515 tc_get_register (int frame)
16516 {
16517 unsigned int reg;
16518
16519 SKIP_WHITESPACE ();
16520 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16521 reg = 0;
16522 if (frame)
16523 {
16524 mips_frame_reg = reg != 0 ? reg : SP;
16525 mips_frame_reg_valid = 1;
16526 mips_cprestore_valid = 0;
16527 }
16528 return reg;
16529 }
16530
16531 valueT
16532 md_section_align (asection *seg, valueT addr)
16533 {
16534 int align = bfd_get_section_alignment (stdoutput, seg);
16535
16536 /* We don't need to align ELF sections to the full alignment.
16537 However, Irix 5 may prefer that we align them at least to a 16
16538 byte boundary. We don't bother to align the sections if we
16539 are targeted for an embedded system. */
16540 if (strncmp (TARGET_OS, "elf", 3) == 0)
16541 return addr;
16542 if (align > 4)
16543 align = 4;
16544
16545 return ((addr + (1 << align) - 1) & -(1 << align));
16546 }
16547
16548 /* Utility routine, called from above as well. If called while the
16549 input file is still being read, it's only an approximation. (For
16550 example, a symbol may later become defined which appeared to be
16551 undefined earlier.) */
16552
16553 static int
16554 nopic_need_relax (symbolS *sym, int before_relaxing)
16555 {
16556 if (sym == 0)
16557 return 0;
16558
16559 if (g_switch_value > 0)
16560 {
16561 const char *symname;
16562 int change;
16563
16564 /* Find out whether this symbol can be referenced off the $gp
16565 register. It can be if it is smaller than the -G size or if
16566 it is in the .sdata or .sbss section. Certain symbols can
16567 not be referenced off the $gp, although it appears as though
16568 they can. */
16569 symname = S_GET_NAME (sym);
16570 if (symname != (const char *) NULL
16571 && (strcmp (symname, "eprol") == 0
16572 || strcmp (symname, "etext") == 0
16573 || strcmp (symname, "_gp") == 0
16574 || strcmp (symname, "edata") == 0
16575 || strcmp (symname, "_fbss") == 0
16576 || strcmp (symname, "_fdata") == 0
16577 || strcmp (symname, "_ftext") == 0
16578 || strcmp (symname, "end") == 0
16579 || strcmp (symname, "_gp_disp") == 0))
16580 change = 1;
16581 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16582 && (0
16583 #ifndef NO_ECOFF_DEBUGGING
16584 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16585 && (symbol_get_obj (sym)->ecoff_extern_size
16586 <= g_switch_value))
16587 #endif
16588 /* We must defer this decision until after the whole
16589 file has been read, since there might be a .extern
16590 after the first use of this symbol. */
16591 || (before_relaxing
16592 #ifndef NO_ECOFF_DEBUGGING
16593 && symbol_get_obj (sym)->ecoff_extern_size == 0
16594 #endif
16595 && S_GET_VALUE (sym) == 0)
16596 || (S_GET_VALUE (sym) != 0
16597 && S_GET_VALUE (sym) <= g_switch_value)))
16598 change = 0;
16599 else
16600 {
16601 const char *segname;
16602
16603 segname = segment_name (S_GET_SEGMENT (sym));
16604 gas_assert (strcmp (segname, ".lit8") != 0
16605 && strcmp (segname, ".lit4") != 0);
16606 change = (strcmp (segname, ".sdata") != 0
16607 && strcmp (segname, ".sbss") != 0
16608 && strncmp (segname, ".sdata.", 7) != 0
16609 && strncmp (segname, ".sbss.", 6) != 0
16610 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16611 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16612 }
16613 return change;
16614 }
16615 else
16616 /* We are not optimizing for the $gp register. */
16617 return 1;
16618 }
16619
16620
16621 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16622
16623 static bfd_boolean
16624 pic_need_relax (symbolS *sym, asection *segtype)
16625 {
16626 asection *symsec;
16627
16628 /* Handle the case of a symbol equated to another symbol. */
16629 while (symbol_equated_reloc_p (sym))
16630 {
16631 symbolS *n;
16632
16633 /* It's possible to get a loop here in a badly written program. */
16634 n = symbol_get_value_expression (sym)->X_add_symbol;
16635 if (n == sym)
16636 break;
16637 sym = n;
16638 }
16639
16640 if (symbol_section_p (sym))
16641 return TRUE;
16642
16643 symsec = S_GET_SEGMENT (sym);
16644
16645 /* This must duplicate the test in adjust_reloc_syms. */
16646 return (!bfd_is_und_section (symsec)
16647 && !bfd_is_abs_section (symsec)
16648 && !bfd_is_com_section (symsec)
16649 && !s_is_linkonce (sym, segtype)
16650 /* A global or weak symbol is treated as external. */
16651 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
16652 }
16653
16654
16655 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16656 extended opcode. SEC is the section the frag is in. */
16657
16658 static int
16659 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
16660 {
16661 int type;
16662 const struct mips_int_operand *operand;
16663 offsetT val;
16664 segT symsec;
16665 fragS *sym_frag;
16666
16667 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16668 return 0;
16669 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16670 return 1;
16671
16672 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16673 operand = mips16_immed_operand (type, FALSE);
16674
16675 sym_frag = symbol_get_frag (fragp->fr_symbol);
16676 val = S_GET_VALUE (fragp->fr_symbol);
16677 symsec = S_GET_SEGMENT (fragp->fr_symbol);
16678
16679 if (operand->root.type == OP_PCREL)
16680 {
16681 const struct mips_pcrel_operand *pcrel_op;
16682 addressT addr;
16683 offsetT maxtiny;
16684
16685 /* We won't have the section when we are called from
16686 mips_relax_frag. However, we will always have been called
16687 from md_estimate_size_before_relax first. If this is a
16688 branch to a different section, we mark it as such. If SEC is
16689 NULL, and the frag is not marked, then it must be a branch to
16690 the same section. */
16691 pcrel_op = (const struct mips_pcrel_operand *) operand;
16692 if (sec == NULL)
16693 {
16694 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16695 return 1;
16696 }
16697 else
16698 {
16699 /* Must have been called from md_estimate_size_before_relax. */
16700 if (symsec != sec)
16701 {
16702 fragp->fr_subtype =
16703 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16704
16705 /* FIXME: We should support this, and let the linker
16706 catch branches and loads that are out of range. */
16707 as_bad_where (fragp->fr_file, fragp->fr_line,
16708 _("unsupported PC relative reference to different section"));
16709
16710 return 1;
16711 }
16712 if (fragp != sym_frag && sym_frag->fr_address == 0)
16713 /* Assume non-extended on the first relaxation pass.
16714 The address we have calculated will be bogus if this is
16715 a forward branch to another frag, as the forward frag
16716 will have fr_address == 0. */
16717 return 0;
16718 }
16719
16720 /* In this case, we know for sure that the symbol fragment is in
16721 the same section. If the relax_marker of the symbol fragment
16722 differs from the relax_marker of this fragment, we have not
16723 yet adjusted the symbol fragment fr_address. We want to add
16724 in STRETCH in order to get a better estimate of the address.
16725 This particularly matters because of the shift bits. */
16726 if (stretch != 0
16727 && sym_frag->relax_marker != fragp->relax_marker)
16728 {
16729 fragS *f;
16730
16731 /* Adjust stretch for any alignment frag. Note that if have
16732 been expanding the earlier code, the symbol may be
16733 defined in what appears to be an earlier frag. FIXME:
16734 This doesn't handle the fr_subtype field, which specifies
16735 a maximum number of bytes to skip when doing an
16736 alignment. */
16737 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16738 {
16739 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16740 {
16741 if (stretch < 0)
16742 stretch = - ((- stretch)
16743 & ~ ((1 << (int) f->fr_offset) - 1));
16744 else
16745 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16746 if (stretch == 0)
16747 break;
16748 }
16749 }
16750 if (f != NULL)
16751 val += stretch;
16752 }
16753
16754 addr = fragp->fr_address + fragp->fr_fix;
16755
16756 /* The base address rules are complicated. The base address of
16757 a branch is the following instruction. The base address of a
16758 PC relative load or add is the instruction itself, but if it
16759 is in a delay slot (in which case it can not be extended) use
16760 the address of the instruction whose delay slot it is in. */
16761 if (pcrel_op->include_isa_bit)
16762 {
16763 addr += 2;
16764
16765 /* If we are currently assuming that this frag should be
16766 extended, then, the current address is two bytes
16767 higher. */
16768 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16769 addr += 2;
16770
16771 /* Ignore the low bit in the target, since it will be set
16772 for a text label. */
16773 val &= -2;
16774 }
16775 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16776 addr -= 4;
16777 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16778 addr -= 2;
16779
16780 val -= addr & -(1 << pcrel_op->align_log2);
16781
16782 /* If any of the shifted bits are set, we must use an extended
16783 opcode. If the address depends on the size of this
16784 instruction, this can lead to a loop, so we arrange to always
16785 use an extended opcode. We only check this when we are in
16786 the main relaxation loop, when SEC is NULL. */
16787 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
16788 {
16789 fragp->fr_subtype =
16790 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16791 return 1;
16792 }
16793
16794 /* If we are about to mark a frag as extended because the value
16795 is precisely the next value above maxtiny, then there is a
16796 chance of an infinite loop as in the following code:
16797 la $4,foo
16798 .skip 1020
16799 .align 2
16800 foo:
16801 In this case when the la is extended, foo is 0x3fc bytes
16802 away, so the la can be shrunk, but then foo is 0x400 away, so
16803 the la must be extended. To avoid this loop, we mark the
16804 frag as extended if it was small, and is about to become
16805 extended with the next value above maxtiny. */
16806 maxtiny = mips_int_operand_max (operand);
16807 if (val == maxtiny + (1 << operand->shift)
16808 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16809 && sec == NULL)
16810 {
16811 fragp->fr_subtype =
16812 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16813 return 1;
16814 }
16815 }
16816 else if (symsec != absolute_section && sec != NULL)
16817 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16818
16819 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16820 }
16821
16822 /* Compute the length of a branch sequence, and adjust the
16823 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16824 worst-case length is computed, with UPDATE being used to indicate
16825 whether an unconditional (-1), branch-likely (+1) or regular (0)
16826 branch is to be computed. */
16827 static int
16828 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16829 {
16830 bfd_boolean toofar;
16831 int length;
16832
16833 if (fragp
16834 && S_IS_DEFINED (fragp->fr_symbol)
16835 && !S_IS_WEAK (fragp->fr_symbol)
16836 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16837 {
16838 addressT addr;
16839 offsetT val;
16840
16841 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16842
16843 addr = fragp->fr_address + fragp->fr_fix + 4;
16844
16845 val -= addr;
16846
16847 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16848 }
16849 else
16850 /* If the symbol is not defined or it's in a different segment,
16851 we emit the long sequence. */
16852 toofar = TRUE;
16853
16854 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16855 fragp->fr_subtype
16856 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16857 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16858 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16859 RELAX_BRANCH_LINK (fragp->fr_subtype),
16860 toofar);
16861
16862 length = 4;
16863 if (toofar)
16864 {
16865 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16866 length += 8;
16867
16868 if (mips_pic != NO_PIC)
16869 {
16870 /* Additional space for PIC loading of target address. */
16871 length += 8;
16872 if (mips_opts.isa == ISA_MIPS1)
16873 /* Additional space for $at-stabilizing nop. */
16874 length += 4;
16875 }
16876
16877 /* If branch is conditional. */
16878 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16879 length += 8;
16880 }
16881
16882 return length;
16883 }
16884
16885 /* Compute the length of a branch sequence, and adjust the
16886 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16887 worst-case length is computed, with UPDATE being used to indicate
16888 whether an unconditional (-1), or regular (0) branch is to be
16889 computed. */
16890
16891 static int
16892 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16893 {
16894 bfd_boolean toofar;
16895 int length;
16896
16897 if (fragp
16898 && S_IS_DEFINED (fragp->fr_symbol)
16899 && !S_IS_WEAK (fragp->fr_symbol)
16900 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16901 {
16902 addressT addr;
16903 offsetT val;
16904
16905 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16906 /* Ignore the low bit in the target, since it will be set
16907 for a text label. */
16908 if ((val & 1) != 0)
16909 --val;
16910
16911 addr = fragp->fr_address + fragp->fr_fix + 4;
16912
16913 val -= addr;
16914
16915 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16916 }
16917 else
16918 /* If the symbol is not defined or it's in a different segment,
16919 we emit the long sequence. */
16920 toofar = TRUE;
16921
16922 if (fragp && update
16923 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16924 fragp->fr_subtype = (toofar
16925 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16926 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16927
16928 length = 4;
16929 if (toofar)
16930 {
16931 bfd_boolean compact_known = fragp != NULL;
16932 bfd_boolean compact = FALSE;
16933 bfd_boolean uncond;
16934
16935 if (compact_known)
16936 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16937 if (fragp)
16938 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16939 else
16940 uncond = update < 0;
16941
16942 /* If label is out of range, we turn branch <br>:
16943
16944 <br> label # 4 bytes
16945 0:
16946
16947 into:
16948
16949 j label # 4 bytes
16950 nop # 2 bytes if compact && !PIC
16951 0:
16952 */
16953 if (mips_pic == NO_PIC && (!compact_known || compact))
16954 length += 2;
16955
16956 /* If assembling PIC code, we further turn:
16957
16958 j label # 4 bytes
16959
16960 into:
16961
16962 lw/ld at, %got(label)(gp) # 4 bytes
16963 d/addiu at, %lo(label) # 4 bytes
16964 jr/c at # 2 bytes
16965 */
16966 if (mips_pic != NO_PIC)
16967 length += 6;
16968
16969 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16970
16971 <brneg> 0f # 4 bytes
16972 nop # 2 bytes if !compact
16973 */
16974 if (!uncond)
16975 length += (compact_known && compact) ? 4 : 6;
16976 }
16977
16978 return length;
16979 }
16980
16981 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16982 bit accordingly. */
16983
16984 static int
16985 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16986 {
16987 bfd_boolean toofar;
16988
16989 if (fragp
16990 && S_IS_DEFINED (fragp->fr_symbol)
16991 && !S_IS_WEAK (fragp->fr_symbol)
16992 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16993 {
16994 addressT addr;
16995 offsetT val;
16996 int type;
16997
16998 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16999 /* Ignore the low bit in the target, since it will be set
17000 for a text label. */
17001 if ((val & 1) != 0)
17002 --val;
17003
17004 /* Assume this is a 2-byte branch. */
17005 addr = fragp->fr_address + fragp->fr_fix + 2;
17006
17007 /* We try to avoid the infinite loop by not adding 2 more bytes for
17008 long branches. */
17009
17010 val -= addr;
17011
17012 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17013 if (type == 'D')
17014 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17015 else if (type == 'E')
17016 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17017 else
17018 abort ();
17019 }
17020 else
17021 /* If the symbol is not defined or it's in a different segment,
17022 we emit a normal 32-bit branch. */
17023 toofar = TRUE;
17024
17025 if (fragp && update
17026 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17027 fragp->fr_subtype
17028 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17029 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17030
17031 if (toofar)
17032 return 4;
17033
17034 return 2;
17035 }
17036
17037 /* Estimate the size of a frag before relaxing. Unless this is the
17038 mips16, we are not really relaxing here, and the final size is
17039 encoded in the subtype information. For the mips16, we have to
17040 decide whether we are using an extended opcode or not. */
17041
17042 int
17043 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17044 {
17045 int change;
17046
17047 if (RELAX_BRANCH_P (fragp->fr_subtype))
17048 {
17049
17050 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17051
17052 return fragp->fr_var;
17053 }
17054
17055 if (RELAX_MIPS16_P (fragp->fr_subtype))
17056 /* We don't want to modify the EXTENDED bit here; it might get us
17057 into infinite loops. We change it only in mips_relax_frag(). */
17058 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17059
17060 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17061 {
17062 int length = 4;
17063
17064 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17065 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17066 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17067 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17068 fragp->fr_var = length;
17069
17070 return length;
17071 }
17072
17073 if (mips_pic == NO_PIC)
17074 change = nopic_need_relax (fragp->fr_symbol, 0);
17075 else if (mips_pic == SVR4_PIC)
17076 change = pic_need_relax (fragp->fr_symbol, segtype);
17077 else if (mips_pic == VXWORKS_PIC)
17078 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17079 change = 0;
17080 else
17081 abort ();
17082
17083 if (change)
17084 {
17085 fragp->fr_subtype |= RELAX_USE_SECOND;
17086 return -RELAX_FIRST (fragp->fr_subtype);
17087 }
17088 else
17089 return -RELAX_SECOND (fragp->fr_subtype);
17090 }
17091
17092 /* This is called to see whether a reloc against a defined symbol
17093 should be converted into a reloc against a section. */
17094
17095 int
17096 mips_fix_adjustable (fixS *fixp)
17097 {
17098 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17099 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17100 return 0;
17101
17102 if (fixp->fx_addsy == NULL)
17103 return 1;
17104
17105 /* Allow relocs used for EH tables. */
17106 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17107 return 1;
17108
17109 /* If symbol SYM is in a mergeable section, relocations of the form
17110 SYM + 0 can usually be made section-relative. The mergeable data
17111 is then identified by the section offset rather than by the symbol.
17112
17113 However, if we're generating REL LO16 relocations, the offset is split
17114 between the LO16 and parterning high part relocation. The linker will
17115 need to recalculate the complete offset in order to correctly identify
17116 the merge data.
17117
17118 The linker has traditionally not looked for the parterning high part
17119 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17120 placed anywhere. Rather than break backwards compatibility by changing
17121 this, it seems better not to force the issue, and instead keep the
17122 original symbol. This will work with either linker behavior. */
17123 if ((lo16_reloc_p (fixp->fx_r_type)
17124 || reloc_needs_lo_p (fixp->fx_r_type))
17125 && HAVE_IN_PLACE_ADDENDS
17126 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17127 return 0;
17128
17129 /* There is no place to store an in-place offset for JALR relocations. */
17130 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17131 return 0;
17132
17133 /* Likewise an in-range offset of limited PC-relative relocations may
17134 overflow the in-place relocatable field if recalculated against the
17135 start address of the symbol's containing section.
17136
17137 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17138 section relative to allow linker relaxations to be performed later on. */
17139 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17140 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17141 return 0;
17142
17143 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17144 to a floating-point stub. The same is true for non-R_MIPS16_26
17145 relocations against MIPS16 functions; in this case, the stub becomes
17146 the function's canonical address.
17147
17148 Floating-point stubs are stored in unique .mips16.call.* or
17149 .mips16.fn.* sections. If a stub T for function F is in section S,
17150 the first relocation in section S must be against F; this is how the
17151 linker determines the target function. All relocations that might
17152 resolve to T must also be against F. We therefore have the following
17153 restrictions, which are given in an intentionally-redundant way:
17154
17155 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17156 symbols.
17157
17158 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17159 if that stub might be used.
17160
17161 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17162 symbols.
17163
17164 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17165 that stub might be used.
17166
17167 There is a further restriction:
17168
17169 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17170 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols because
17171 we need to keep the MIPS16 or microMIPS symbol for the purpose
17172 of converting JAL to JALX instructions in the linker.
17173
17174 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17175 against a MIPS16 symbol. We deal with (5) by additionally leaving
17176 alone any jump relocations against a microMIPS symbol.
17177
17178 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17179 relocation against some symbol R, no relocation against R may be
17180 reduced. (Note that this deals with (2) as well as (1) because
17181 relocations against global symbols will never be reduced on ELF
17182 targets.) This approach is a little simpler than trying to detect
17183 stub sections, and gives the "all or nothing" per-symbol consistency
17184 that we have for MIPS16 symbols. */
17185 if (fixp->fx_subsy == NULL
17186 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17187 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17188 && jmp_reloc_p (fixp->fx_r_type))
17189 || *symbol_get_tc (fixp->fx_addsy)))
17190 return 0;
17191
17192 return 1;
17193 }
17194
17195 /* Translate internal representation of relocation info to BFD target
17196 format. */
17197
17198 arelent **
17199 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17200 {
17201 static arelent *retval[4];
17202 arelent *reloc;
17203 bfd_reloc_code_real_type code;
17204
17205 memset (retval, 0, sizeof(retval));
17206 reloc = retval[0] = XCNEW (arelent);
17207 reloc->sym_ptr_ptr = XNEW (asymbol *);
17208 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17209 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17210
17211 if (fixp->fx_pcrel)
17212 {
17213 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17214 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17215 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17216 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17217 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17218 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17219 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17220 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17221 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17222 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17223 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17224
17225 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17226 Relocations want only the symbol offset. */
17227 reloc->addend = fixp->fx_addnumber + reloc->address;
17228 }
17229 else if (HAVE_IN_PLACE_ADDENDS
17230 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17231 && (read_compressed_insn (fixp->fx_frag->fr_literal
17232 + fixp->fx_where, 4) >> 26) == 0x3c)
17233 {
17234 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17235 addend accordingly. */
17236 reloc->addend = fixp->fx_addnumber >> 1;
17237 }
17238 else
17239 reloc->addend = fixp->fx_addnumber;
17240
17241 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17242 entry to be used in the relocation's section offset. */
17243 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17244 {
17245 reloc->address = reloc->addend;
17246 reloc->addend = 0;
17247 }
17248
17249 code = fixp->fx_r_type;
17250
17251 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17252 if (reloc->howto == NULL)
17253 {
17254 as_bad_where (fixp->fx_file, fixp->fx_line,
17255 _("cannot represent %s relocation in this object file"
17256 " format"),
17257 bfd_get_reloc_code_name (code));
17258 retval[0] = NULL;
17259 }
17260
17261 return retval;
17262 }
17263
17264 /* Relax a machine dependent frag. This returns the amount by which
17265 the current size of the frag should change. */
17266
17267 int
17268 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17269 {
17270 if (RELAX_BRANCH_P (fragp->fr_subtype))
17271 {
17272 offsetT old_var = fragp->fr_var;
17273
17274 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17275
17276 return fragp->fr_var - old_var;
17277 }
17278
17279 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17280 {
17281 offsetT old_var = fragp->fr_var;
17282 offsetT new_var = 4;
17283
17284 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17285 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17286 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17287 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17288 fragp->fr_var = new_var;
17289
17290 return new_var - old_var;
17291 }
17292
17293 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17294 return 0;
17295
17296 if (mips16_extended_frag (fragp, NULL, stretch))
17297 {
17298 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17299 return 0;
17300 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17301 return 2;
17302 }
17303 else
17304 {
17305 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17306 return 0;
17307 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17308 return -2;
17309 }
17310
17311 return 0;
17312 }
17313
17314 /* Convert a machine dependent frag. */
17315
17316 void
17317 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17318 {
17319 if (RELAX_BRANCH_P (fragp->fr_subtype))
17320 {
17321 char *buf;
17322 unsigned long insn;
17323 expressionS exp;
17324 fixS *fixp;
17325
17326 buf = fragp->fr_literal + fragp->fr_fix;
17327 insn = read_insn (buf);
17328
17329 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17330 {
17331 /* We generate a fixup instead of applying it right now
17332 because, if there are linker relaxations, we're going to
17333 need the relocations. */
17334 exp.X_op = O_symbol;
17335 exp.X_add_symbol = fragp->fr_symbol;
17336 exp.X_add_number = fragp->fr_offset;
17337
17338 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17339 BFD_RELOC_16_PCREL_S2);
17340 fixp->fx_file = fragp->fr_file;
17341 fixp->fx_line = fragp->fr_line;
17342
17343 buf = write_insn (buf, insn);
17344 }
17345 else
17346 {
17347 int i;
17348
17349 as_warn_where (fragp->fr_file, fragp->fr_line,
17350 _("relaxed out-of-range branch into a jump"));
17351
17352 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17353 goto uncond;
17354
17355 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17356 {
17357 /* Reverse the branch. */
17358 switch ((insn >> 28) & 0xf)
17359 {
17360 case 4:
17361 if ((insn & 0xff000000) == 0x47000000
17362 || (insn & 0xff600000) == 0x45600000)
17363 {
17364 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17365 reversed by tweaking bit 23. */
17366 insn ^= 0x00800000;
17367 }
17368 else
17369 {
17370 /* bc[0-3][tf]l? instructions can have the condition
17371 reversed by tweaking a single TF bit, and their
17372 opcodes all have 0x4???????. */
17373 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17374 insn ^= 0x00010000;
17375 }
17376 break;
17377
17378 case 0:
17379 /* bltz 0x04000000 bgez 0x04010000
17380 bltzal 0x04100000 bgezal 0x04110000 */
17381 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17382 insn ^= 0x00010000;
17383 break;
17384
17385 case 1:
17386 /* beq 0x10000000 bne 0x14000000
17387 blez 0x18000000 bgtz 0x1c000000 */
17388 insn ^= 0x04000000;
17389 break;
17390
17391 default:
17392 abort ();
17393 }
17394 }
17395
17396 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17397 {
17398 /* Clear the and-link bit. */
17399 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17400
17401 /* bltzal 0x04100000 bgezal 0x04110000
17402 bltzall 0x04120000 bgezall 0x04130000 */
17403 insn &= ~0x00100000;
17404 }
17405
17406 /* Branch over the branch (if the branch was likely) or the
17407 full jump (not likely case). Compute the offset from the
17408 current instruction to branch to. */
17409 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17410 i = 16;
17411 else
17412 {
17413 /* How many bytes in instructions we've already emitted? */
17414 i = buf - fragp->fr_literal - fragp->fr_fix;
17415 /* How many bytes in instructions from here to the end? */
17416 i = fragp->fr_var - i;
17417 }
17418 /* Convert to instruction count. */
17419 i >>= 2;
17420 /* Branch counts from the next instruction. */
17421 i--;
17422 insn |= i;
17423 /* Branch over the jump. */
17424 buf = write_insn (buf, insn);
17425
17426 /* nop */
17427 buf = write_insn (buf, 0);
17428
17429 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17430 {
17431 /* beql $0, $0, 2f */
17432 insn = 0x50000000;
17433 /* Compute the PC offset from the current instruction to
17434 the end of the variable frag. */
17435 /* How many bytes in instructions we've already emitted? */
17436 i = buf - fragp->fr_literal - fragp->fr_fix;
17437 /* How many bytes in instructions from here to the end? */
17438 i = fragp->fr_var - i;
17439 /* Convert to instruction count. */
17440 i >>= 2;
17441 /* Don't decrement i, because we want to branch over the
17442 delay slot. */
17443 insn |= i;
17444
17445 buf = write_insn (buf, insn);
17446 buf = write_insn (buf, 0);
17447 }
17448
17449 uncond:
17450 if (mips_pic == NO_PIC)
17451 {
17452 /* j or jal. */
17453 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17454 ? 0x0c000000 : 0x08000000);
17455 exp.X_op = O_symbol;
17456 exp.X_add_symbol = fragp->fr_symbol;
17457 exp.X_add_number = fragp->fr_offset;
17458
17459 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17460 FALSE, BFD_RELOC_MIPS_JMP);
17461 fixp->fx_file = fragp->fr_file;
17462 fixp->fx_line = fragp->fr_line;
17463
17464 buf = write_insn (buf, insn);
17465 }
17466 else
17467 {
17468 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17469
17470 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17471 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17472 insn |= at << OP_SH_RT;
17473 exp.X_op = O_symbol;
17474 exp.X_add_symbol = fragp->fr_symbol;
17475 exp.X_add_number = fragp->fr_offset;
17476
17477 if (fragp->fr_offset)
17478 {
17479 exp.X_add_symbol = make_expr_symbol (&exp);
17480 exp.X_add_number = 0;
17481 }
17482
17483 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17484 FALSE, BFD_RELOC_MIPS_GOT16);
17485 fixp->fx_file = fragp->fr_file;
17486 fixp->fx_line = fragp->fr_line;
17487
17488 buf = write_insn (buf, insn);
17489
17490 if (mips_opts.isa == ISA_MIPS1)
17491 /* nop */
17492 buf = write_insn (buf, 0);
17493
17494 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17495 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17496 insn |= at << OP_SH_RS | at << OP_SH_RT;
17497
17498 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17499 FALSE, BFD_RELOC_LO16);
17500 fixp->fx_file = fragp->fr_file;
17501 fixp->fx_line = fragp->fr_line;
17502
17503 buf = write_insn (buf, insn);
17504
17505 /* j(al)r $at. */
17506 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17507 insn = 0x0000f809;
17508 else
17509 insn = 0x00000008;
17510 insn |= at << OP_SH_RS;
17511
17512 buf = write_insn (buf, insn);
17513 }
17514 }
17515
17516 fragp->fr_fix += fragp->fr_var;
17517 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17518 return;
17519 }
17520
17521 /* Relax microMIPS branches. */
17522 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17523 {
17524 char *buf = fragp->fr_literal + fragp->fr_fix;
17525 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17526 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17527 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17528 bfd_boolean short_ds;
17529 unsigned long insn;
17530 expressionS exp;
17531 fixS *fixp;
17532
17533 exp.X_op = O_symbol;
17534 exp.X_add_symbol = fragp->fr_symbol;
17535 exp.X_add_number = fragp->fr_offset;
17536
17537 fragp->fr_fix += fragp->fr_var;
17538
17539 /* Handle 16-bit branches that fit or are forced to fit. */
17540 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17541 {
17542 /* We generate a fixup instead of applying it right now,
17543 because if there is linker relaxation, we're going to
17544 need the relocations. */
17545 if (type == 'D')
17546 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17547 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17548 else if (type == 'E')
17549 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17550 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17551 else
17552 abort ();
17553
17554 fixp->fx_file = fragp->fr_file;
17555 fixp->fx_line = fragp->fr_line;
17556
17557 /* These relocations can have an addend that won't fit in
17558 2 octets. */
17559 fixp->fx_no_overflow = 1;
17560
17561 return;
17562 }
17563
17564 /* Handle 32-bit branches that fit or are forced to fit. */
17565 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17566 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17567 {
17568 /* We generate a fixup instead of applying it right now,
17569 because if there is linker relaxation, we're going to
17570 need the relocations. */
17571 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17572 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17573 fixp->fx_file = fragp->fr_file;
17574 fixp->fx_line = fragp->fr_line;
17575
17576 if (type == 0)
17577 return;
17578 }
17579
17580 /* Relax 16-bit branches to 32-bit branches. */
17581 if (type != 0)
17582 {
17583 insn = read_compressed_insn (buf, 2);
17584
17585 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17586 insn = 0x94000000; /* beq */
17587 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17588 {
17589 unsigned long regno;
17590
17591 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17592 regno = micromips_to_32_reg_d_map [regno];
17593 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17594 insn |= regno << MICROMIPSOP_SH_RS;
17595 }
17596 else
17597 abort ();
17598
17599 /* Nothing else to do, just write it out. */
17600 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17601 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17602 {
17603 buf = write_compressed_insn (buf, insn, 4);
17604 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17605 return;
17606 }
17607 }
17608 else
17609 insn = read_compressed_insn (buf, 4);
17610
17611 /* Relax 32-bit branches to a sequence of instructions. */
17612 as_warn_where (fragp->fr_file, fragp->fr_line,
17613 _("relaxed out-of-range branch into a jump"));
17614
17615 /* Set the short-delay-slot bit. */
17616 short_ds = al && (insn & 0x02000000) != 0;
17617
17618 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17619 {
17620 symbolS *l;
17621
17622 /* Reverse the branch. */
17623 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17624 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17625 insn ^= 0x20000000;
17626 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17627 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17628 || (insn & 0xffe00000) == 0x40800000 /* blez */
17629 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17630 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17631 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17632 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17633 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17634 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17635 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17636 insn ^= 0x00400000;
17637 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17638 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17639 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17640 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17641 insn ^= 0x00200000;
17642 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17643 BNZ.df */
17644 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17645 BNZ.V */
17646 insn ^= 0x00800000;
17647 else
17648 abort ();
17649
17650 if (al)
17651 {
17652 /* Clear the and-link and short-delay-slot bits. */
17653 gas_assert ((insn & 0xfda00000) == 0x40200000);
17654
17655 /* bltzal 0x40200000 bgezal 0x40600000 */
17656 /* bltzals 0x42200000 bgezals 0x42600000 */
17657 insn &= ~0x02200000;
17658 }
17659
17660 /* Make a label at the end for use with the branch. */
17661 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17662 micromips_label_inc ();
17663 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
17664
17665 /* Refer to it. */
17666 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17667 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17668 fixp->fx_file = fragp->fr_file;
17669 fixp->fx_line = fragp->fr_line;
17670
17671 /* Branch over the jump. */
17672 buf = write_compressed_insn (buf, insn, 4);
17673 if (!compact)
17674 /* nop */
17675 buf = write_compressed_insn (buf, 0x0c00, 2);
17676 }
17677
17678 if (mips_pic == NO_PIC)
17679 {
17680 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17681
17682 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17683 insn = al ? jal : 0xd4000000;
17684
17685 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17686 BFD_RELOC_MICROMIPS_JMP);
17687 fixp->fx_file = fragp->fr_file;
17688 fixp->fx_line = fragp->fr_line;
17689
17690 buf = write_compressed_insn (buf, insn, 4);
17691 if (compact)
17692 /* nop */
17693 buf = write_compressed_insn (buf, 0x0c00, 2);
17694 }
17695 else
17696 {
17697 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
17698 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17699 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
17700
17701 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17702 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17703 insn |= at << MICROMIPSOP_SH_RT;
17704
17705 if (exp.X_add_number)
17706 {
17707 exp.X_add_symbol = make_expr_symbol (&exp);
17708 exp.X_add_number = 0;
17709 }
17710
17711 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17712 BFD_RELOC_MICROMIPS_GOT16);
17713 fixp->fx_file = fragp->fr_file;
17714 fixp->fx_line = fragp->fr_line;
17715
17716 buf = write_compressed_insn (buf, insn, 4);
17717
17718 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17719 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17720 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17721
17722 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17723 BFD_RELOC_MICROMIPS_LO16);
17724 fixp->fx_file = fragp->fr_file;
17725 fixp->fx_line = fragp->fr_line;
17726
17727 buf = write_compressed_insn (buf, insn, 4);
17728
17729 /* jr/jrc/jalr/jalrs $at */
17730 insn = al ? jalr : jr;
17731 insn |= at << MICROMIPSOP_SH_MJ;
17732
17733 buf = write_compressed_insn (buf, insn, 2);
17734 }
17735
17736 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17737 return;
17738 }
17739
17740 if (RELAX_MIPS16_P (fragp->fr_subtype))
17741 {
17742 int type;
17743 const struct mips_int_operand *operand;
17744 offsetT val;
17745 char *buf;
17746 unsigned int user_length, length;
17747 unsigned long insn;
17748 bfd_boolean ext;
17749
17750 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17751 operand = mips16_immed_operand (type, FALSE);
17752
17753 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
17754 val = resolve_symbol_value (fragp->fr_symbol);
17755 if (operand->root.type == OP_PCREL)
17756 {
17757 const struct mips_pcrel_operand *pcrel_op;
17758 addressT addr;
17759
17760 pcrel_op = (const struct mips_pcrel_operand *) operand;
17761 addr = fragp->fr_address + fragp->fr_fix;
17762
17763 /* The rules for the base address of a PC relative reloc are
17764 complicated; see mips16_extended_frag. */
17765 if (pcrel_op->include_isa_bit)
17766 {
17767 addr += 2;
17768 if (ext)
17769 addr += 2;
17770 /* Ignore the low bit in the target, since it will be
17771 set for a text label. */
17772 val &= -2;
17773 }
17774 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17775 addr -= 4;
17776 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17777 addr -= 2;
17778
17779 addr &= -(1 << pcrel_op->align_log2);
17780 val -= addr;
17781
17782 /* Make sure the section winds up with the alignment we have
17783 assumed. */
17784 if (operand->shift > 0)
17785 record_alignment (asec, operand->shift);
17786 }
17787
17788 if (ext
17789 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17790 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17791 as_warn_where (fragp->fr_file, fragp->fr_line,
17792 _("extended instruction in delay slot"));
17793
17794 buf = fragp->fr_literal + fragp->fr_fix;
17795
17796 insn = read_compressed_insn (buf, 2);
17797 if (ext)
17798 insn |= MIPS16_EXTEND;
17799
17800 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17801 user_length = 4;
17802 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17803 user_length = 2;
17804 else
17805 user_length = 0;
17806
17807 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17808 BFD_RELOC_UNUSED, val, user_length, &insn);
17809
17810 length = (ext ? 4 : 2);
17811 gas_assert (mips16_opcode_length (insn) == length);
17812 write_compressed_insn (buf, insn, length);
17813 fragp->fr_fix += length;
17814 }
17815 else
17816 {
17817 relax_substateT subtype = fragp->fr_subtype;
17818 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17819 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
17820 int first, second;
17821 fixS *fixp;
17822
17823 first = RELAX_FIRST (subtype);
17824 second = RELAX_SECOND (subtype);
17825 fixp = (fixS *) fragp->fr_opcode;
17826
17827 /* If the delay slot chosen does not match the size of the instruction,
17828 then emit a warning. */
17829 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17830 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17831 {
17832 relax_substateT s;
17833 const char *msg;
17834
17835 s = subtype & (RELAX_DELAY_SLOT_16BIT
17836 | RELAX_DELAY_SLOT_SIZE_FIRST
17837 | RELAX_DELAY_SLOT_SIZE_SECOND);
17838 msg = macro_warning (s);
17839 if (msg != NULL)
17840 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17841 subtype &= ~s;
17842 }
17843
17844 /* Possibly emit a warning if we've chosen the longer option. */
17845 if (use_second == second_longer)
17846 {
17847 relax_substateT s;
17848 const char *msg;
17849
17850 s = (subtype
17851 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17852 msg = macro_warning (s);
17853 if (msg != NULL)
17854 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17855 subtype &= ~s;
17856 }
17857
17858 /* Go through all the fixups for the first sequence. Disable them
17859 (by marking them as done) if we're going to use the second
17860 sequence instead. */
17861 while (fixp
17862 && fixp->fx_frag == fragp
17863 && fixp->fx_where < fragp->fr_fix - second)
17864 {
17865 if (subtype & RELAX_USE_SECOND)
17866 fixp->fx_done = 1;
17867 fixp = fixp->fx_next;
17868 }
17869
17870 /* Go through the fixups for the second sequence. Disable them if
17871 we're going to use the first sequence, otherwise adjust their
17872 addresses to account for the relaxation. */
17873 while (fixp && fixp->fx_frag == fragp)
17874 {
17875 if (subtype & RELAX_USE_SECOND)
17876 fixp->fx_where -= first;
17877 else
17878 fixp->fx_done = 1;
17879 fixp = fixp->fx_next;
17880 }
17881
17882 /* Now modify the frag contents. */
17883 if (subtype & RELAX_USE_SECOND)
17884 {
17885 char *start;
17886
17887 start = fragp->fr_literal + fragp->fr_fix - first - second;
17888 memmove (start, start + first, second);
17889 fragp->fr_fix -= first;
17890 }
17891 else
17892 fragp->fr_fix -= second;
17893 }
17894 }
17895
17896 /* This function is called after the relocs have been generated.
17897 We've been storing mips16 text labels as odd. Here we convert them
17898 back to even for the convenience of the debugger. */
17899
17900 void
17901 mips_frob_file_after_relocs (void)
17902 {
17903 asymbol **syms;
17904 unsigned int count, i;
17905
17906 syms = bfd_get_outsymbols (stdoutput);
17907 count = bfd_get_symcount (stdoutput);
17908 for (i = 0; i < count; i++, syms++)
17909 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17910 && ((*syms)->value & 1) != 0)
17911 {
17912 (*syms)->value &= ~1;
17913 /* If the symbol has an odd size, it was probably computed
17914 incorrectly, so adjust that as well. */
17915 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17916 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17917 }
17918 }
17919
17920 /* This function is called whenever a label is defined, including fake
17921 labels instantiated off the dot special symbol. It is used when
17922 handling branch delays; if a branch has a label, we assume we cannot
17923 move it. This also bumps the value of the symbol by 1 in compressed
17924 code. */
17925
17926 static void
17927 mips_record_label (symbolS *sym)
17928 {
17929 segment_info_type *si = seg_info (now_seg);
17930 struct insn_label_list *l;
17931
17932 if (free_insn_labels == NULL)
17933 l = XNEW (struct insn_label_list);
17934 else
17935 {
17936 l = free_insn_labels;
17937 free_insn_labels = l->next;
17938 }
17939
17940 l->label = sym;
17941 l->next = si->label_list;
17942 si->label_list = l;
17943 }
17944
17945 /* This function is called as tc_frob_label() whenever a label is defined
17946 and adds a DWARF-2 record we only want for true labels. */
17947
17948 void
17949 mips_define_label (symbolS *sym)
17950 {
17951 mips_record_label (sym);
17952 dwarf2_emit_label (sym);
17953 }
17954
17955 /* This function is called by tc_new_dot_label whenever a new dot symbol
17956 is defined. */
17957
17958 void
17959 mips_add_dot_label (symbolS *sym)
17960 {
17961 mips_record_label (sym);
17962 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17963 mips_compressed_mark_label (sym);
17964 }
17965 \f
17966 /* Converting ASE flags from internal to .MIPS.abiflags values. */
17967 static unsigned int
17968 mips_convert_ase_flags (int ase)
17969 {
17970 unsigned int ext_ases = 0;
17971
17972 if (ase & ASE_DSP)
17973 ext_ases |= AFL_ASE_DSP;
17974 if (ase & ASE_DSPR2)
17975 ext_ases |= AFL_ASE_DSPR2;
17976 if (ase & ASE_DSPR3)
17977 ext_ases |= AFL_ASE_DSPR3;
17978 if (ase & ASE_EVA)
17979 ext_ases |= AFL_ASE_EVA;
17980 if (ase & ASE_MCU)
17981 ext_ases |= AFL_ASE_MCU;
17982 if (ase & ASE_MDMX)
17983 ext_ases |= AFL_ASE_MDMX;
17984 if (ase & ASE_MIPS3D)
17985 ext_ases |= AFL_ASE_MIPS3D;
17986 if (ase & ASE_MT)
17987 ext_ases |= AFL_ASE_MT;
17988 if (ase & ASE_SMARTMIPS)
17989 ext_ases |= AFL_ASE_SMARTMIPS;
17990 if (ase & ASE_VIRT)
17991 ext_ases |= AFL_ASE_VIRT;
17992 if (ase & ASE_MSA)
17993 ext_ases |= AFL_ASE_MSA;
17994 if (ase & ASE_XPA)
17995 ext_ases |= AFL_ASE_XPA;
17996
17997 return ext_ases;
17998 }
17999 /* Some special processing for a MIPS ELF file. */
18000
18001 void
18002 mips_elf_final_processing (void)
18003 {
18004 int fpabi;
18005 Elf_Internal_ABIFlags_v0 flags;
18006
18007 flags.version = 0;
18008 flags.isa_rev = 0;
18009 switch (file_mips_opts.isa)
18010 {
18011 case INSN_ISA1:
18012 flags.isa_level = 1;
18013 break;
18014 case INSN_ISA2:
18015 flags.isa_level = 2;
18016 break;
18017 case INSN_ISA3:
18018 flags.isa_level = 3;
18019 break;
18020 case INSN_ISA4:
18021 flags.isa_level = 4;
18022 break;
18023 case INSN_ISA5:
18024 flags.isa_level = 5;
18025 break;
18026 case INSN_ISA32:
18027 flags.isa_level = 32;
18028 flags.isa_rev = 1;
18029 break;
18030 case INSN_ISA32R2:
18031 flags.isa_level = 32;
18032 flags.isa_rev = 2;
18033 break;
18034 case INSN_ISA32R3:
18035 flags.isa_level = 32;
18036 flags.isa_rev = 3;
18037 break;
18038 case INSN_ISA32R5:
18039 flags.isa_level = 32;
18040 flags.isa_rev = 5;
18041 break;
18042 case INSN_ISA32R6:
18043 flags.isa_level = 32;
18044 flags.isa_rev = 6;
18045 break;
18046 case INSN_ISA64:
18047 flags.isa_level = 64;
18048 flags.isa_rev = 1;
18049 break;
18050 case INSN_ISA64R2:
18051 flags.isa_level = 64;
18052 flags.isa_rev = 2;
18053 break;
18054 case INSN_ISA64R3:
18055 flags.isa_level = 64;
18056 flags.isa_rev = 3;
18057 break;
18058 case INSN_ISA64R5:
18059 flags.isa_level = 64;
18060 flags.isa_rev = 5;
18061 break;
18062 case INSN_ISA64R6:
18063 flags.isa_level = 64;
18064 flags.isa_rev = 6;
18065 break;
18066 }
18067
18068 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18069 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18070 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18071 : (file_mips_opts.fp == 64) ? AFL_REG_64
18072 : AFL_REG_32;
18073 flags.cpr2_size = AFL_REG_NONE;
18074 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18075 Tag_GNU_MIPS_ABI_FP);
18076 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18077 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18078 if (file_ase_mips16)
18079 flags.ases |= AFL_ASE_MIPS16;
18080 if (file_ase_micromips)
18081 flags.ases |= AFL_ASE_MICROMIPS;
18082 flags.flags1 = 0;
18083 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18084 || file_mips_opts.fp == 64)
18085 && file_mips_opts.oddspreg)
18086 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18087 flags.flags2 = 0;
18088
18089 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18090 ((Elf_External_ABIFlags_v0 *)
18091 mips_flags_frag));
18092
18093 /* Write out the register information. */
18094 if (mips_abi != N64_ABI)
18095 {
18096 Elf32_RegInfo s;
18097
18098 s.ri_gprmask = mips_gprmask;
18099 s.ri_cprmask[0] = mips_cprmask[0];
18100 s.ri_cprmask[1] = mips_cprmask[1];
18101 s.ri_cprmask[2] = mips_cprmask[2];
18102 s.ri_cprmask[3] = mips_cprmask[3];
18103 /* The gp_value field is set by the MIPS ELF backend. */
18104
18105 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18106 ((Elf32_External_RegInfo *)
18107 mips_regmask_frag));
18108 }
18109 else
18110 {
18111 Elf64_Internal_RegInfo s;
18112
18113 s.ri_gprmask = mips_gprmask;
18114 s.ri_pad = 0;
18115 s.ri_cprmask[0] = mips_cprmask[0];
18116 s.ri_cprmask[1] = mips_cprmask[1];
18117 s.ri_cprmask[2] = mips_cprmask[2];
18118 s.ri_cprmask[3] = mips_cprmask[3];
18119 /* The gp_value field is set by the MIPS ELF backend. */
18120
18121 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18122 ((Elf64_External_RegInfo *)
18123 mips_regmask_frag));
18124 }
18125
18126 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18127 sort of BFD interface for this. */
18128 if (mips_any_noreorder)
18129 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18130 if (mips_pic != NO_PIC)
18131 {
18132 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18133 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18134 }
18135 if (mips_abicalls)
18136 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18137
18138 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18139 defined at present; this might need to change in future. */
18140 if (file_ase_mips16)
18141 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18142 if (file_ase_micromips)
18143 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18144 if (file_mips_opts.ase & ASE_MDMX)
18145 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18146
18147 /* Set the MIPS ELF ABI flags. */
18148 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18149 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18150 else if (mips_abi == O64_ABI)
18151 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18152 else if (mips_abi == EABI_ABI)
18153 {
18154 if (file_mips_opts.gp == 64)
18155 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18156 else
18157 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18158 }
18159 else if (mips_abi == N32_ABI)
18160 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18161
18162 /* Nothing to do for N64_ABI. */
18163
18164 if (mips_32bitmode)
18165 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18166
18167 if (mips_nan2008 == 1)
18168 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18169
18170 /* 32 bit code with 64 bit FP registers. */
18171 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18172 Tag_GNU_MIPS_ABI_FP);
18173 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18174 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18175 }
18176 \f
18177 typedef struct proc {
18178 symbolS *func_sym;
18179 symbolS *func_end_sym;
18180 unsigned long reg_mask;
18181 unsigned long reg_offset;
18182 unsigned long fpreg_mask;
18183 unsigned long fpreg_offset;
18184 unsigned long frame_offset;
18185 unsigned long frame_reg;
18186 unsigned long pc_reg;
18187 } procS;
18188
18189 static procS cur_proc;
18190 static procS *cur_proc_ptr;
18191 static int numprocs;
18192
18193 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18194 as "2", and a normal nop as "0". */
18195
18196 #define NOP_OPCODE_MIPS 0
18197 #define NOP_OPCODE_MIPS16 1
18198 #define NOP_OPCODE_MICROMIPS 2
18199
18200 char
18201 mips_nop_opcode (void)
18202 {
18203 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18204 return NOP_OPCODE_MICROMIPS;
18205 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18206 return NOP_OPCODE_MIPS16;
18207 else
18208 return NOP_OPCODE_MIPS;
18209 }
18210
18211 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18212 32-bit microMIPS NOPs here (if applicable). */
18213
18214 void
18215 mips_handle_align (fragS *fragp)
18216 {
18217 char nop_opcode;
18218 char *p;
18219 int bytes, size, excess;
18220 valueT opcode;
18221
18222 if (fragp->fr_type != rs_align_code)
18223 return;
18224
18225 p = fragp->fr_literal + fragp->fr_fix;
18226 nop_opcode = *p;
18227 switch (nop_opcode)
18228 {
18229 case NOP_OPCODE_MICROMIPS:
18230 opcode = micromips_nop32_insn.insn_opcode;
18231 size = 4;
18232 break;
18233 case NOP_OPCODE_MIPS16:
18234 opcode = mips16_nop_insn.insn_opcode;
18235 size = 2;
18236 break;
18237 case NOP_OPCODE_MIPS:
18238 default:
18239 opcode = nop_insn.insn_opcode;
18240 size = 4;
18241 break;
18242 }
18243
18244 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18245 excess = bytes % size;
18246
18247 /* Handle the leading part if we're not inserting a whole number of
18248 instructions, and make it the end of the fixed part of the frag.
18249 Try to fit in a short microMIPS NOP if applicable and possible,
18250 and use zeroes otherwise. */
18251 gas_assert (excess < 4);
18252 fragp->fr_fix += excess;
18253 switch (excess)
18254 {
18255 case 3:
18256 *p++ = '\0';
18257 /* Fall through. */
18258 case 2:
18259 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18260 {
18261 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18262 break;
18263 }
18264 *p++ = '\0';
18265 /* Fall through. */
18266 case 1:
18267 *p++ = '\0';
18268 /* Fall through. */
18269 case 0:
18270 break;
18271 }
18272
18273 md_number_to_chars (p, opcode, size);
18274 fragp->fr_var = size;
18275 }
18276
18277 static long
18278 get_number (void)
18279 {
18280 int negative = 0;
18281 long val = 0;
18282
18283 if (*input_line_pointer == '-')
18284 {
18285 ++input_line_pointer;
18286 negative = 1;
18287 }
18288 if (!ISDIGIT (*input_line_pointer))
18289 as_bad (_("expected simple number"));
18290 if (input_line_pointer[0] == '0')
18291 {
18292 if (input_line_pointer[1] == 'x')
18293 {
18294 input_line_pointer += 2;
18295 while (ISXDIGIT (*input_line_pointer))
18296 {
18297 val <<= 4;
18298 val |= hex_value (*input_line_pointer++);
18299 }
18300 return negative ? -val : val;
18301 }
18302 else
18303 {
18304 ++input_line_pointer;
18305 while (ISDIGIT (*input_line_pointer))
18306 {
18307 val <<= 3;
18308 val |= *input_line_pointer++ - '0';
18309 }
18310 return negative ? -val : val;
18311 }
18312 }
18313 if (!ISDIGIT (*input_line_pointer))
18314 {
18315 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18316 *input_line_pointer, *input_line_pointer);
18317 as_warn (_("invalid number"));
18318 return -1;
18319 }
18320 while (ISDIGIT (*input_line_pointer))
18321 {
18322 val *= 10;
18323 val += *input_line_pointer++ - '0';
18324 }
18325 return negative ? -val : val;
18326 }
18327
18328 /* The .file directive; just like the usual .file directive, but there
18329 is an initial number which is the ECOFF file index. In the non-ECOFF
18330 case .file implies DWARF-2. */
18331
18332 static void
18333 s_mips_file (int x ATTRIBUTE_UNUSED)
18334 {
18335 static int first_file_directive = 0;
18336
18337 if (ECOFF_DEBUGGING)
18338 {
18339 get_number ();
18340 s_app_file (0);
18341 }
18342 else
18343 {
18344 char *filename;
18345
18346 filename = dwarf2_directive_file (0);
18347
18348 /* Versions of GCC up to 3.1 start files with a ".file"
18349 directive even for stabs output. Make sure that this
18350 ".file" is handled. Note that you need a version of GCC
18351 after 3.1 in order to support DWARF-2 on MIPS. */
18352 if (filename != NULL && ! first_file_directive)
18353 {
18354 (void) new_logical_line (filename, -1);
18355 s_app_file_string (filename, 0);
18356 }
18357 first_file_directive = 1;
18358 }
18359 }
18360
18361 /* The .loc directive, implying DWARF-2. */
18362
18363 static void
18364 s_mips_loc (int x ATTRIBUTE_UNUSED)
18365 {
18366 if (!ECOFF_DEBUGGING)
18367 dwarf2_directive_loc (0);
18368 }
18369
18370 /* The .end directive. */
18371
18372 static void
18373 s_mips_end (int x ATTRIBUTE_UNUSED)
18374 {
18375 symbolS *p;
18376
18377 /* Following functions need their own .frame and .cprestore directives. */
18378 mips_frame_reg_valid = 0;
18379 mips_cprestore_valid = 0;
18380
18381 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18382 {
18383 p = get_symbol ();
18384 demand_empty_rest_of_line ();
18385 }
18386 else
18387 p = NULL;
18388
18389 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18390 as_warn (_(".end not in text section"));
18391
18392 if (!cur_proc_ptr)
18393 {
18394 as_warn (_(".end directive without a preceding .ent directive"));
18395 demand_empty_rest_of_line ();
18396 return;
18397 }
18398
18399 if (p != NULL)
18400 {
18401 gas_assert (S_GET_NAME (p));
18402 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18403 as_warn (_(".end symbol does not match .ent symbol"));
18404
18405 if (debug_type == DEBUG_STABS)
18406 stabs_generate_asm_endfunc (S_GET_NAME (p),
18407 S_GET_NAME (p));
18408 }
18409 else
18410 as_warn (_(".end directive missing or unknown symbol"));
18411
18412 /* Create an expression to calculate the size of the function. */
18413 if (p && cur_proc_ptr)
18414 {
18415 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18416 expressionS *exp = XNEW (expressionS);
18417
18418 obj->size = exp;
18419 exp->X_op = O_subtract;
18420 exp->X_add_symbol = symbol_temp_new_now ();
18421 exp->X_op_symbol = p;
18422 exp->X_add_number = 0;
18423
18424 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18425 }
18426
18427 /* Generate a .pdr section. */
18428 if (!ECOFF_DEBUGGING && mips_flag_pdr)
18429 {
18430 segT saved_seg = now_seg;
18431 subsegT saved_subseg = now_subseg;
18432 expressionS exp;
18433 char *fragp;
18434
18435 #ifdef md_flush_pending_output
18436 md_flush_pending_output ();
18437 #endif
18438
18439 gas_assert (pdr_seg);
18440 subseg_set (pdr_seg, 0);
18441
18442 /* Write the symbol. */
18443 exp.X_op = O_symbol;
18444 exp.X_add_symbol = p;
18445 exp.X_add_number = 0;
18446 emit_expr (&exp, 4);
18447
18448 fragp = frag_more (7 * 4);
18449
18450 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18451 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18452 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18453 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18454 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18455 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18456 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
18457
18458 subseg_set (saved_seg, saved_subseg);
18459 }
18460
18461 cur_proc_ptr = NULL;
18462 }
18463
18464 /* The .aent and .ent directives. */
18465
18466 static void
18467 s_mips_ent (int aent)
18468 {
18469 symbolS *symbolP;
18470
18471 symbolP = get_symbol ();
18472 if (*input_line_pointer == ',')
18473 ++input_line_pointer;
18474 SKIP_WHITESPACE ();
18475 if (ISDIGIT (*input_line_pointer)
18476 || *input_line_pointer == '-')
18477 get_number ();
18478
18479 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18480 as_warn (_(".ent or .aent not in text section"));
18481
18482 if (!aent && cur_proc_ptr)
18483 as_warn (_("missing .end"));
18484
18485 if (!aent)
18486 {
18487 /* This function needs its own .frame and .cprestore directives. */
18488 mips_frame_reg_valid = 0;
18489 mips_cprestore_valid = 0;
18490
18491 cur_proc_ptr = &cur_proc;
18492 memset (cur_proc_ptr, '\0', sizeof (procS));
18493
18494 cur_proc_ptr->func_sym = symbolP;
18495
18496 ++numprocs;
18497
18498 if (debug_type == DEBUG_STABS)
18499 stabs_generate_asm_func (S_GET_NAME (symbolP),
18500 S_GET_NAME (symbolP));
18501 }
18502
18503 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18504
18505 demand_empty_rest_of_line ();
18506 }
18507
18508 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
18509 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
18510 s_mips_frame is used so that we can set the PDR information correctly.
18511 We can't use the ecoff routines because they make reference to the ecoff
18512 symbol table (in the mdebug section). */
18513
18514 static void
18515 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
18516 {
18517 if (ECOFF_DEBUGGING)
18518 s_ignore (ignore);
18519 else
18520 {
18521 long val;
18522
18523 if (cur_proc_ptr == (procS *) NULL)
18524 {
18525 as_warn (_(".frame outside of .ent"));
18526 demand_empty_rest_of_line ();
18527 return;
18528 }
18529
18530 cur_proc_ptr->frame_reg = tc_get_register (1);
18531
18532 SKIP_WHITESPACE ();
18533 if (*input_line_pointer++ != ','
18534 || get_absolute_expression_and_terminator (&val) != ',')
18535 {
18536 as_warn (_("bad .frame directive"));
18537 --input_line_pointer;
18538 demand_empty_rest_of_line ();
18539 return;
18540 }
18541
18542 cur_proc_ptr->frame_offset = val;
18543 cur_proc_ptr->pc_reg = tc_get_register (0);
18544
18545 demand_empty_rest_of_line ();
18546 }
18547 }
18548
18549 /* The .fmask and .mask directives. If the mdebug section is present
18550 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
18551 embedded targets, s_mips_mask is used so that we can set the PDR
18552 information correctly. We can't use the ecoff routines because they
18553 make reference to the ecoff symbol table (in the mdebug section). */
18554
18555 static void
18556 s_mips_mask (int reg_type)
18557 {
18558 if (ECOFF_DEBUGGING)
18559 s_ignore (reg_type);
18560 else
18561 {
18562 long mask, off;
18563
18564 if (cur_proc_ptr == (procS *) NULL)
18565 {
18566 as_warn (_(".mask/.fmask outside of .ent"));
18567 demand_empty_rest_of_line ();
18568 return;
18569 }
18570
18571 if (get_absolute_expression_and_terminator (&mask) != ',')
18572 {
18573 as_warn (_("bad .mask/.fmask directive"));
18574 --input_line_pointer;
18575 demand_empty_rest_of_line ();
18576 return;
18577 }
18578
18579 off = get_absolute_expression ();
18580
18581 if (reg_type == 'F')
18582 {
18583 cur_proc_ptr->fpreg_mask = mask;
18584 cur_proc_ptr->fpreg_offset = off;
18585 }
18586 else
18587 {
18588 cur_proc_ptr->reg_mask = mask;
18589 cur_proc_ptr->reg_offset = off;
18590 }
18591
18592 demand_empty_rest_of_line ();
18593 }
18594 }
18595
18596 /* A table describing all the processors gas knows about. Names are
18597 matched in the order listed.
18598
18599 To ease comparison, please keep this table in the same order as
18600 gcc's mips_cpu_info_table[]. */
18601 static const struct mips_cpu_info mips_cpu_info_table[] =
18602 {
18603 /* Entries for generic ISAs */
18604 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18605 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18606 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18607 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18608 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18609 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18610 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18611 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18612 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
18613 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
18614 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18615 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
18616 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18617 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
18618 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
18619
18620 /* MIPS I */
18621 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18622 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18623 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
18624
18625 /* MIPS II */
18626 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
18627
18628 /* MIPS III */
18629 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18630 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18631 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18632 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18633 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18634 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18635 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18636 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18637 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18638 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18639 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18640 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18641 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
18642 /* ST Microelectronics Loongson 2E and 2F cores */
18643 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18644 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
18645
18646 /* MIPS IV */
18647 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18648 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18649 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18650 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18651 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18652 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18653 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18654 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18655 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18656 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18657 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18658 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18659 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18660 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18661 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
18662
18663 /* MIPS 32 */
18664 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18665 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18666 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18667 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
18668
18669 /* MIPS 32 Release 2 */
18670 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18671 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18672 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18673 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18674 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18675 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18676 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18677 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18678 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18679 ISA_MIPS32R2, CPU_MIPS32R2 },
18680 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18681 ISA_MIPS32R2, CPU_MIPS32R2 },
18682 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18683 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18684 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18685 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18686 /* Deprecated forms of the above. */
18687 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18688 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18689 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
18690 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18691 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18692 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18693 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18694 /* Deprecated forms of the above. */
18695 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18696 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18697 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
18698 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18699 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18700 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18701 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18702 /* Deprecated forms of the above. */
18703 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18704 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18705 /* 34Kn is a 34kc without DSP. */
18706 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18707 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
18708 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18709 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18710 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18711 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18712 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18713 /* Deprecated forms of the above. */
18714 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18715 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18716 /* 1004K cores are multiprocessor versions of the 34K. */
18717 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18718 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18719 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18720 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18721 /* interaptiv is the new name for 1004kf */
18722 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18723 /* M5100 family */
18724 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18725 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18726 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
18727 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
18728
18729 /* MIPS 64 */
18730 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18731 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18732 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18733 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18734
18735 /* Broadcom SB-1 CPU core */
18736 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18737 /* Broadcom SB-1A CPU core */
18738 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18739
18740 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
18741
18742 /* MIPS 64 Release 2 */
18743
18744 /* Cavium Networks Octeon CPU core */
18745 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18746 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18747 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
18748 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
18749
18750 /* RMI Xlr */
18751 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
18752
18753 /* Broadcom XLP.
18754 XLP is mostly like XLR, with the prominent exception that it is
18755 MIPS64R2 rather than MIPS64. */
18756 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
18757
18758 /* MIPS 64 Release 6 */
18759 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18760 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18761
18762 /* End marker */
18763 { NULL, 0, 0, 0, 0 }
18764 };
18765
18766
18767 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18768 with a final "000" replaced by "k". Ignore case.
18769
18770 Note: this function is shared between GCC and GAS. */
18771
18772 static bfd_boolean
18773 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
18774 {
18775 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18776 given++, canonical++;
18777
18778 return ((*given == 0 && *canonical == 0)
18779 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18780 }
18781
18782
18783 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18784 CPU name. We've traditionally allowed a lot of variation here.
18785
18786 Note: this function is shared between GCC and GAS. */
18787
18788 static bfd_boolean
18789 mips_matching_cpu_name_p (const char *canonical, const char *given)
18790 {
18791 /* First see if the name matches exactly, or with a final "000"
18792 turned into "k". */
18793 if (mips_strict_matching_cpu_name_p (canonical, given))
18794 return TRUE;
18795
18796 /* If not, try comparing based on numerical designation alone.
18797 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18798 if (TOLOWER (*given) == 'r')
18799 given++;
18800 if (!ISDIGIT (*given))
18801 return FALSE;
18802
18803 /* Skip over some well-known prefixes in the canonical name,
18804 hoping to find a number there too. */
18805 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18806 canonical += 2;
18807 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18808 canonical += 2;
18809 else if (TOLOWER (canonical[0]) == 'r')
18810 canonical += 1;
18811
18812 return mips_strict_matching_cpu_name_p (canonical, given);
18813 }
18814
18815
18816 /* Parse an option that takes the name of a processor as its argument.
18817 OPTION is the name of the option and CPU_STRING is the argument.
18818 Return the corresponding processor enumeration if the CPU_STRING is
18819 recognized, otherwise report an error and return null.
18820
18821 A similar function exists in GCC. */
18822
18823 static const struct mips_cpu_info *
18824 mips_parse_cpu (const char *option, const char *cpu_string)
18825 {
18826 const struct mips_cpu_info *p;
18827
18828 /* 'from-abi' selects the most compatible architecture for the given
18829 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18830 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18831 version. Look first at the -mgp options, if given, otherwise base
18832 the choice on MIPS_DEFAULT_64BIT.
18833
18834 Treat NO_ABI like the EABIs. One reason to do this is that the
18835 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18836 architecture. This code picks MIPS I for 'mips' and MIPS III for
18837 'mips64', just as we did in the days before 'from-abi'. */
18838 if (strcasecmp (cpu_string, "from-abi") == 0)
18839 {
18840 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18841 return mips_cpu_info_from_isa (ISA_MIPS1);
18842
18843 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18844 return mips_cpu_info_from_isa (ISA_MIPS3);
18845
18846 if (file_mips_opts.gp >= 0)
18847 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
18848 ? ISA_MIPS1 : ISA_MIPS3);
18849
18850 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18851 ? ISA_MIPS3
18852 : ISA_MIPS1);
18853 }
18854
18855 /* 'default' has traditionally been a no-op. Probably not very useful. */
18856 if (strcasecmp (cpu_string, "default") == 0)
18857 return 0;
18858
18859 for (p = mips_cpu_info_table; p->name != 0; p++)
18860 if (mips_matching_cpu_name_p (p->name, cpu_string))
18861 return p;
18862
18863 as_bad (_("bad value (%s) for %s"), cpu_string, option);
18864 return 0;
18865 }
18866
18867 /* Return the canonical processor information for ISA (a member of the
18868 ISA_MIPS* enumeration). */
18869
18870 static const struct mips_cpu_info *
18871 mips_cpu_info_from_isa (int isa)
18872 {
18873 int i;
18874
18875 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18876 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
18877 && isa == mips_cpu_info_table[i].isa)
18878 return (&mips_cpu_info_table[i]);
18879
18880 return NULL;
18881 }
18882
18883 static const struct mips_cpu_info *
18884 mips_cpu_info_from_arch (int arch)
18885 {
18886 int i;
18887
18888 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18889 if (arch == mips_cpu_info_table[i].cpu)
18890 return (&mips_cpu_info_table[i]);
18891
18892 return NULL;
18893 }
18894 \f
18895 static void
18896 show (FILE *stream, const char *string, int *col_p, int *first_p)
18897 {
18898 if (*first_p)
18899 {
18900 fprintf (stream, "%24s", "");
18901 *col_p = 24;
18902 }
18903 else
18904 {
18905 fprintf (stream, ", ");
18906 *col_p += 2;
18907 }
18908
18909 if (*col_p + strlen (string) > 72)
18910 {
18911 fprintf (stream, "\n%24s", "");
18912 *col_p = 24;
18913 }
18914
18915 fprintf (stream, "%s", string);
18916 *col_p += strlen (string);
18917
18918 *first_p = 0;
18919 }
18920
18921 void
18922 md_show_usage (FILE *stream)
18923 {
18924 int column, first;
18925 size_t i;
18926
18927 fprintf (stream, _("\
18928 MIPS options:\n\
18929 -EB generate big endian output\n\
18930 -EL generate little endian output\n\
18931 -g, -g2 do not remove unneeded NOPs or swap branches\n\
18932 -G NUM allow referencing objects up to NUM bytes\n\
18933 implicitly with the gp register [default 8]\n"));
18934 fprintf (stream, _("\
18935 -mips1 generate MIPS ISA I instructions\n\
18936 -mips2 generate MIPS ISA II instructions\n\
18937 -mips3 generate MIPS ISA III instructions\n\
18938 -mips4 generate MIPS ISA IV instructions\n\
18939 -mips5 generate MIPS ISA V instructions\n\
18940 -mips32 generate MIPS32 ISA instructions\n\
18941 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
18942 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
18943 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
18944 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
18945 -mips64 generate MIPS64 ISA instructions\n\
18946 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
18947 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
18948 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
18949 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
18950 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18951
18952 first = 1;
18953
18954 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18955 show (stream, mips_cpu_info_table[i].name, &column, &first);
18956 show (stream, "from-abi", &column, &first);
18957 fputc ('\n', stream);
18958
18959 fprintf (stream, _("\
18960 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18961 -no-mCPU don't generate code specific to CPU.\n\
18962 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18963
18964 first = 1;
18965
18966 show (stream, "3900", &column, &first);
18967 show (stream, "4010", &column, &first);
18968 show (stream, "4100", &column, &first);
18969 show (stream, "4650", &column, &first);
18970 fputc ('\n', stream);
18971
18972 fprintf (stream, _("\
18973 -mips16 generate mips16 instructions\n\
18974 -no-mips16 do not generate mips16 instructions\n"));
18975 fprintf (stream, _("\
18976 -mmicromips generate microMIPS instructions\n\
18977 -mno-micromips do not generate microMIPS instructions\n"));
18978 fprintf (stream, _("\
18979 -msmartmips generate smartmips instructions\n\
18980 -mno-smartmips do not generate smartmips instructions\n"));
18981 fprintf (stream, _("\
18982 -mdsp generate DSP instructions\n\
18983 -mno-dsp do not generate DSP instructions\n"));
18984 fprintf (stream, _("\
18985 -mdspr2 generate DSP R2 instructions\n\
18986 -mno-dspr2 do not generate DSP R2 instructions\n"));
18987 fprintf (stream, _("\
18988 -mdspr3 generate DSP R3 instructions\n\
18989 -mno-dspr3 do not generate DSP R3 instructions\n"));
18990 fprintf (stream, _("\
18991 -mmt generate MT instructions\n\
18992 -mno-mt do not generate MT instructions\n"));
18993 fprintf (stream, _("\
18994 -mmcu generate MCU instructions\n\
18995 -mno-mcu do not generate MCU instructions\n"));
18996 fprintf (stream, _("\
18997 -mmsa generate MSA instructions\n\
18998 -mno-msa do not generate MSA instructions\n"));
18999 fprintf (stream, _("\
19000 -mxpa generate eXtended Physical Address (XPA) instructions\n\
19001 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19002 fprintf (stream, _("\
19003 -mvirt generate Virtualization instructions\n\
19004 -mno-virt do not generate Virtualization instructions\n"));
19005 fprintf (stream, _("\
19006 -minsn32 only generate 32-bit microMIPS instructions\n\
19007 -mno-insn32 generate all microMIPS instructions\n"));
19008 fprintf (stream, _("\
19009 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19010 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19011 -mfix-vr4120 work around certain VR4120 errata\n\
19012 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19013 -mfix-24k insert a nop after ERET and DERET instructions\n\
19014 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19015 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19016 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19017 -msym32 assume all symbols have 32-bit values\n\
19018 -O0 remove unneeded NOPs, do not swap branches\n\
19019 -O remove unneeded NOPs and swap branches\n\
19020 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19021 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19022 fprintf (stream, _("\
19023 -mhard-float allow floating-point instructions\n\
19024 -msoft-float do not allow floating-point instructions\n\
19025 -msingle-float only allow 32-bit floating-point operations\n\
19026 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19027 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19028 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19029 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19030
19031 first = 1;
19032
19033 show (stream, "legacy", &column, &first);
19034 show (stream, "2008", &column, &first);
19035
19036 fputc ('\n', stream);
19037
19038 fprintf (stream, _("\
19039 -KPIC, -call_shared generate SVR4 position independent code\n\
19040 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19041 -mvxworks-pic generate VxWorks position independent code\n\
19042 -non_shared do not generate code that can operate with DSOs\n\
19043 -xgot assume a 32 bit GOT\n\
19044 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19045 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19046 position dependent (non shared) code\n\
19047 -mabi=ABI create ABI conformant object file for:\n"));
19048
19049 first = 1;
19050
19051 show (stream, "32", &column, &first);
19052 show (stream, "o64", &column, &first);
19053 show (stream, "n32", &column, &first);
19054 show (stream, "64", &column, &first);
19055 show (stream, "eabi", &column, &first);
19056
19057 fputc ('\n', stream);
19058
19059 fprintf (stream, _("\
19060 -32 create o32 ABI object file (default)\n\
19061 -n32 create n32 ABI object file\n\
19062 -64 create 64 ABI object file\n"));
19063 }
19064
19065 #ifdef TE_IRIX
19066 enum dwarf2_format
19067 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19068 {
19069 if (HAVE_64BIT_SYMBOLS)
19070 return dwarf2_format_64bit_irix;
19071 else
19072 return dwarf2_format_32bit;
19073 }
19074 #endif
19075
19076 int
19077 mips_dwarf2_addr_size (void)
19078 {
19079 if (HAVE_64BIT_OBJECTS)
19080 return 8;
19081 else
19082 return 4;
19083 }
19084
19085 /* Standard calling conventions leave the CFA at SP on entry. */
19086 void
19087 mips_cfi_frame_initial_instructions (void)
19088 {
19089 cfi_add_CFA_def_cfa_register (SP);
19090 }
19091
19092 int
19093 tc_mips_regname_to_dw2regnum (char *regname)
19094 {
19095 unsigned int regnum = -1;
19096 unsigned int reg;
19097
19098 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19099 regnum = reg;
19100
19101 return regnum;
19102 }
19103
19104 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19105 Given a symbolic attribute NAME, return the proper integer value.
19106 Returns -1 if the attribute is not known. */
19107
19108 int
19109 mips_convert_symbolic_attribute (const char *name)
19110 {
19111 static const struct
19112 {
19113 const char * name;
19114 const int tag;
19115 }
19116 attribute_table[] =
19117 {
19118 #define T(tag) {#tag, tag}
19119 T (Tag_GNU_MIPS_ABI_FP),
19120 T (Tag_GNU_MIPS_ABI_MSA),
19121 #undef T
19122 };
19123 unsigned int i;
19124
19125 if (name == NULL)
19126 return -1;
19127
19128 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19129 if (streq (name, attribute_table[i].name))
19130 return attribute_table[i].tag;
19131
19132 return -1;
19133 }
19134
19135 void
19136 md_mips_end (void)
19137 {
19138 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19139
19140 mips_emit_delays ();
19141 if (cur_proc_ptr)
19142 as_warn (_("missing .end at end of assembly"));
19143
19144 /* Just in case no code was emitted, do the consistency check. */
19145 file_mips_check_options ();
19146
19147 /* Set a floating-point ABI if the user did not. */
19148 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19149 {
19150 /* Perform consistency checks on the floating-point ABI. */
19151 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19152 Tag_GNU_MIPS_ABI_FP);
19153 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19154 check_fpabi (fpabi);
19155 }
19156 else
19157 {
19158 /* Soft-float gets precedence over single-float, the two options should
19159 not be used together so this should not matter. */
19160 if (file_mips_opts.soft_float == 1)
19161 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19162 /* Single-float gets precedence over all double_float cases. */
19163 else if (file_mips_opts.single_float == 1)
19164 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19165 else
19166 {
19167 switch (file_mips_opts.fp)
19168 {
19169 case 32:
19170 if (file_mips_opts.gp == 32)
19171 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19172 break;
19173 case 0:
19174 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19175 break;
19176 case 64:
19177 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19178 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19179 else if (file_mips_opts.gp == 32)
19180 fpabi = Val_GNU_MIPS_ABI_FP_64;
19181 else
19182 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19183 break;
19184 }
19185 }
19186
19187 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19188 Tag_GNU_MIPS_ABI_FP, fpabi);
19189 }
19190 }
19191
19192 /* Returns the relocation type required for a particular CFI encoding. */
19193
19194 bfd_reloc_code_real_type
19195 mips_cfi_reloc_for_encoding (int encoding)
19196 {
19197 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19198 return BFD_RELOC_32_PCREL;
19199 else return BFD_RELOC_NONE;
19200 }