]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-mips.c
remove pointless assignment
[thirdparty/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946 \f
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018 /* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
1171 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1174 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1185
1186 /* Sign-extend 16-bit value X. */
1187 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
1189 /* Is the given value a sign-extended 32-bit value? */
1190 #define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194 /* Is the given value a sign-extended 16-bit value? */
1195 #define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
1199 /* Is the given value a sign-extended 12-bit value? */
1200 #define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
1203 /* Is the given value a sign-extended 9-bit value? */
1204 #define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
1207 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208 #define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
1212 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
1217 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1218 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1223 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
1227
1228 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229 #define MIPS16_EXTEND (0xf000U << 16)
1230 \f
1231 /* Whether or not we are emitting a branch-likely macro. */
1232 static bfd_boolean emit_branch_likely_macro = FALSE;
1233
1234 /* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237 static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253 } mips_relax;
1254 \f
1255 /* Global variables used to decide whether a macro needs a warning. */
1256 static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289 } mips_macro_warning;
1290 \f
1291 /* Prototypes for static functions. */
1292
1293 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
1295 static void append_insn
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
1298 static void mips_no_prev_insn (void);
1299 static void macro_build (expressionS *, const char *, const char *, ...);
1300 static void mips16_macro_build
1301 (expressionS *, const char *, const char *, va_list *);
1302 static void load_register (int, expressionS *, int);
1303 static void macro_start (void);
1304 static void macro_end (void);
1305 static void macro (struct mips_cl_insn *ip, char *str);
1306 static void mips16_macro (struct mips_cl_insn * ip);
1307 static void mips_ip (char *str, struct mips_cl_insn * ip);
1308 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1309 static void mips16_immed
1310 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
1312 static size_t my_getSmallExpression
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314 static void my_getExpression (expressionS *, char *);
1315 static void s_align (int);
1316 static void s_change_sec (int);
1317 static void s_change_section (int);
1318 static void s_cons (int);
1319 static void s_float_cons (int);
1320 static void s_mips_globl (int);
1321 static void s_option (int);
1322 static void s_mipsset (int);
1323 static void s_abicalls (int);
1324 static void s_cpload (int);
1325 static void s_cpsetup (int);
1326 static void s_cplocal (int);
1327 static void s_cprestore (int);
1328 static void s_cpreturn (int);
1329 static void s_dtprelword (int);
1330 static void s_dtpreldword (int);
1331 static void s_tprelword (int);
1332 static void s_tpreldword (int);
1333 static void s_gpvalue (int);
1334 static void s_gpword (int);
1335 static void s_gpdword (int);
1336 static void s_ehword (int);
1337 static void s_cpadd (int);
1338 static void s_insn (int);
1339 static void s_nan (int);
1340 static void s_module (int);
1341 static void s_mips_ent (int);
1342 static void s_mips_end (int);
1343 static void s_mips_frame (int);
1344 static void s_mips_mask (int reg_type);
1345 static void s_mips_stab (int);
1346 static void s_mips_weakext (int);
1347 static void s_mips_file (int);
1348 static void s_mips_loc (int);
1349 static bfd_boolean pic_need_relax (symbolS *, asection *);
1350 static int relaxed_branch_length (fragS *, asection *, int);
1351 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1353 static void file_mips_check_options (void);
1354
1355 /* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
1358 struct mips_cpu_info
1359 {
1360 const char *name; /* CPU or ISA name. */
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365 };
1366
1367 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1368
1369 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1372 \f
1373 /* Command-line options. */
1374 const char *md_shortopts = "O::g::G:";
1375
1376 enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
1390 OPTION_MIPS32R6,
1391 OPTION_MIPS64R2,
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
1394 OPTION_MIPS64R6,
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
1413 OPTION_EVA,
1414 OPTION_NO_EVA,
1415 OPTION_XPA,
1416 OPTION_NO_XPA,
1417 OPTION_MICROMIPS,
1418 OPTION_NO_MICROMIPS,
1419 OPTION_MCU,
1420 OPTION_NO_MCU,
1421 OPTION_COMPAT_ARCH_BASE,
1422 OPTION_M4650,
1423 OPTION_NO_M4650,
1424 OPTION_M4010,
1425 OPTION_NO_M4010,
1426 OPTION_M4100,
1427 OPTION_NO_M4100,
1428 OPTION_M3900,
1429 OPTION_NO_M3900,
1430 OPTION_M7000_HILO_FIX,
1431 OPTION_MNO_7000_HILO_FIX,
1432 OPTION_FIX_24K,
1433 OPTION_NO_FIX_24K,
1434 OPTION_FIX_RM7000,
1435 OPTION_NO_FIX_RM7000,
1436 OPTION_FIX_LOONGSON2F_JUMP,
1437 OPTION_NO_FIX_LOONGSON2F_JUMP,
1438 OPTION_FIX_LOONGSON2F_NOP,
1439 OPTION_NO_FIX_LOONGSON2F_NOP,
1440 OPTION_FIX_VR4120,
1441 OPTION_NO_FIX_VR4120,
1442 OPTION_FIX_VR4130,
1443 OPTION_NO_FIX_VR4130,
1444 OPTION_FIX_CN63XXP1,
1445 OPTION_NO_FIX_CN63XXP1,
1446 OPTION_TRAP,
1447 OPTION_BREAK,
1448 OPTION_EB,
1449 OPTION_EL,
1450 OPTION_FP32,
1451 OPTION_GP32,
1452 OPTION_CONSTRUCT_FLOATS,
1453 OPTION_NO_CONSTRUCT_FLOATS,
1454 OPTION_FP64,
1455 OPTION_FPXX,
1456 OPTION_GP64,
1457 OPTION_RELAX_BRANCH,
1458 OPTION_NO_RELAX_BRANCH,
1459 OPTION_INSN32,
1460 OPTION_NO_INSN32,
1461 OPTION_MSHARED,
1462 OPTION_MNO_SHARED,
1463 OPTION_MSYM32,
1464 OPTION_MNO_SYM32,
1465 OPTION_SOFT_FLOAT,
1466 OPTION_HARD_FLOAT,
1467 OPTION_SINGLE_FLOAT,
1468 OPTION_DOUBLE_FLOAT,
1469 OPTION_32,
1470 OPTION_CALL_SHARED,
1471 OPTION_CALL_NONPIC,
1472 OPTION_NON_SHARED,
1473 OPTION_XGOT,
1474 OPTION_MABI,
1475 OPTION_N32,
1476 OPTION_64,
1477 OPTION_MDEBUG,
1478 OPTION_NO_MDEBUG,
1479 OPTION_PDR,
1480 OPTION_NO_PDR,
1481 OPTION_MVXWORKS_PIC,
1482 OPTION_NAN,
1483 OPTION_ODD_SPREG,
1484 OPTION_NO_ODD_SPREG,
1485 OPTION_END_OF_ENUM
1486 };
1487
1488 struct option md_longopts[] =
1489 {
1490 /* Options which specify architecture. */
1491 {"march", required_argument, NULL, OPTION_MARCH},
1492 {"mtune", required_argument, NULL, OPTION_MTUNE},
1493 {"mips0", no_argument, NULL, OPTION_MIPS1},
1494 {"mips1", no_argument, NULL, OPTION_MIPS1},
1495 {"mips2", no_argument, NULL, OPTION_MIPS2},
1496 {"mips3", no_argument, NULL, OPTION_MIPS3},
1497 {"mips4", no_argument, NULL, OPTION_MIPS4},
1498 {"mips5", no_argument, NULL, OPTION_MIPS5},
1499 {"mips32", no_argument, NULL, OPTION_MIPS32},
1500 {"mips64", no_argument, NULL, OPTION_MIPS64},
1501 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1502 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1503 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1504 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1505 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1506 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1507 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1508 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1509
1510 /* Options which specify Application Specific Extensions (ASEs). */
1511 {"mips16", no_argument, NULL, OPTION_MIPS16},
1512 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1513 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1514 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1515 {"mdmx", no_argument, NULL, OPTION_MDMX},
1516 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1517 {"mdsp", no_argument, NULL, OPTION_DSP},
1518 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1519 {"mmt", no_argument, NULL, OPTION_MT},
1520 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1521 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1522 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1523 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1524 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1525 {"meva", no_argument, NULL, OPTION_EVA},
1526 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1527 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1528 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1529 {"mmcu", no_argument, NULL, OPTION_MCU},
1530 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1531 {"mvirt", no_argument, NULL, OPTION_VIRT},
1532 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1533 {"mmsa", no_argument, NULL, OPTION_MSA},
1534 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1535 {"mxpa", no_argument, NULL, OPTION_XPA},
1536 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1537
1538 /* Old-style architecture options. Don't add more of these. */
1539 {"m4650", no_argument, NULL, OPTION_M4650},
1540 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1541 {"m4010", no_argument, NULL, OPTION_M4010},
1542 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1543 {"m4100", no_argument, NULL, OPTION_M4100},
1544 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1545 {"m3900", no_argument, NULL, OPTION_M3900},
1546 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1547
1548 /* Options which enable bug fixes. */
1549 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1550 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1551 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1552 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1553 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1554 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1555 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1556 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1557 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1558 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1559 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1560 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1561 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1562 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1563 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1564 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1565 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1566
1567 /* Miscellaneous options. */
1568 {"trap", no_argument, NULL, OPTION_TRAP},
1569 {"no-break", no_argument, NULL, OPTION_TRAP},
1570 {"break", no_argument, NULL, OPTION_BREAK},
1571 {"no-trap", no_argument, NULL, OPTION_BREAK},
1572 {"EB", no_argument, NULL, OPTION_EB},
1573 {"EL", no_argument, NULL, OPTION_EL},
1574 {"mfp32", no_argument, NULL, OPTION_FP32},
1575 {"mgp32", no_argument, NULL, OPTION_GP32},
1576 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1577 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1578 {"mfp64", no_argument, NULL, OPTION_FP64},
1579 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1580 {"mgp64", no_argument, NULL, OPTION_GP64},
1581 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1582 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1583 {"minsn32", no_argument, NULL, OPTION_INSN32},
1584 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1585 {"mshared", no_argument, NULL, OPTION_MSHARED},
1586 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1587 {"msym32", no_argument, NULL, OPTION_MSYM32},
1588 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1589 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1590 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1591 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1592 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1593 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1594 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1595
1596 /* Strictly speaking this next option is ELF specific,
1597 but we allow it for other ports as well in order to
1598 make testing easier. */
1599 {"32", no_argument, NULL, OPTION_32},
1600
1601 /* ELF-specific options. */
1602 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1603 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1604 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1605 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1606 {"xgot", no_argument, NULL, OPTION_XGOT},
1607 {"mabi", required_argument, NULL, OPTION_MABI},
1608 {"n32", no_argument, NULL, OPTION_N32},
1609 {"64", no_argument, NULL, OPTION_64},
1610 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1611 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1612 {"mpdr", no_argument, NULL, OPTION_PDR},
1613 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1614 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1615 {"mnan", required_argument, NULL, OPTION_NAN},
1616
1617 {NULL, no_argument, NULL, 0}
1618 };
1619 size_t md_longopts_size = sizeof (md_longopts);
1620 \f
1621 /* Information about either an Application Specific Extension or an
1622 optional architecture feature that, for simplicity, we treat in the
1623 same way as an ASE. */
1624 struct mips_ase
1625 {
1626 /* The name of the ASE, used in both the command-line and .set options. */
1627 const char *name;
1628
1629 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1630 and 64-bit architectures, the flags here refer to the subset that
1631 is available on both. */
1632 unsigned int flags;
1633
1634 /* The ASE_* flag used for instructions that are available on 64-bit
1635 architectures but that are not included in FLAGS. */
1636 unsigned int flags64;
1637
1638 /* The command-line options that turn the ASE on and off. */
1639 int option_on;
1640 int option_off;
1641
1642 /* The minimum required architecture revisions for MIPS32, MIPS64,
1643 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1644 int mips32_rev;
1645 int mips64_rev;
1646 int micromips32_rev;
1647 int micromips64_rev;
1648
1649 /* The architecture where the ASE was removed or -1 if the extension has not
1650 been removed. */
1651 int rem_rev;
1652 };
1653
1654 /* A table of all supported ASEs. */
1655 static const struct mips_ase mips_ases[] = {
1656 { "dsp", ASE_DSP, ASE_DSP64,
1657 OPTION_DSP, OPTION_NO_DSP,
1658 2, 2, 2, 2,
1659 -1 },
1660
1661 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1662 OPTION_DSPR2, OPTION_NO_DSPR2,
1663 2, 2, 2, 2,
1664 -1 },
1665
1666 { "eva", ASE_EVA, 0,
1667 OPTION_EVA, OPTION_NO_EVA,
1668 2, 2, 2, 2,
1669 -1 },
1670
1671 { "mcu", ASE_MCU, 0,
1672 OPTION_MCU, OPTION_NO_MCU,
1673 2, 2, 2, 2,
1674 -1 },
1675
1676 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1677 { "mdmx", ASE_MDMX, 0,
1678 OPTION_MDMX, OPTION_NO_MDMX,
1679 -1, 1, -1, -1,
1680 6 },
1681
1682 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1683 { "mips3d", ASE_MIPS3D, 0,
1684 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1685 2, 1, -1, -1,
1686 6 },
1687
1688 { "mt", ASE_MT, 0,
1689 OPTION_MT, OPTION_NO_MT,
1690 2, 2, -1, -1,
1691 -1 },
1692
1693 { "smartmips", ASE_SMARTMIPS, 0,
1694 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1695 1, -1, -1, -1,
1696 6 },
1697
1698 { "virt", ASE_VIRT, ASE_VIRT64,
1699 OPTION_VIRT, OPTION_NO_VIRT,
1700 2, 2, 2, 2,
1701 -1 },
1702
1703 { "msa", ASE_MSA, ASE_MSA64,
1704 OPTION_MSA, OPTION_NO_MSA,
1705 2, 2, 2, 2,
1706 -1 },
1707
1708 { "xpa", ASE_XPA, 0,
1709 OPTION_XPA, OPTION_NO_XPA,
1710 2, 2, -1, -1,
1711 -1 },
1712 };
1713
1714 /* The set of ASEs that require -mfp64. */
1715 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1716
1717 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1718 static const unsigned int mips_ase_groups[] = {
1719 ASE_DSP | ASE_DSPR2
1720 };
1721 \f
1722 /* Pseudo-op table.
1723
1724 The following pseudo-ops from the Kane and Heinrich MIPS book
1725 should be defined here, but are currently unsupported: .alias,
1726 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1727
1728 The following pseudo-ops from the Kane and Heinrich MIPS book are
1729 specific to the type of debugging information being generated, and
1730 should be defined by the object format: .aent, .begin, .bend,
1731 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1732 .vreg.
1733
1734 The following pseudo-ops from the Kane and Heinrich MIPS book are
1735 not MIPS CPU specific, but are also not specific to the object file
1736 format. This file is probably the best place to define them, but
1737 they are not currently supported: .asm0, .endr, .lab, .struct. */
1738
1739 static const pseudo_typeS mips_pseudo_table[] =
1740 {
1741 /* MIPS specific pseudo-ops. */
1742 {"option", s_option, 0},
1743 {"set", s_mipsset, 0},
1744 {"rdata", s_change_sec, 'r'},
1745 {"sdata", s_change_sec, 's'},
1746 {"livereg", s_ignore, 0},
1747 {"abicalls", s_abicalls, 0},
1748 {"cpload", s_cpload, 0},
1749 {"cpsetup", s_cpsetup, 0},
1750 {"cplocal", s_cplocal, 0},
1751 {"cprestore", s_cprestore, 0},
1752 {"cpreturn", s_cpreturn, 0},
1753 {"dtprelword", s_dtprelword, 0},
1754 {"dtpreldword", s_dtpreldword, 0},
1755 {"tprelword", s_tprelword, 0},
1756 {"tpreldword", s_tpreldword, 0},
1757 {"gpvalue", s_gpvalue, 0},
1758 {"gpword", s_gpword, 0},
1759 {"gpdword", s_gpdword, 0},
1760 {"ehword", s_ehword, 0},
1761 {"cpadd", s_cpadd, 0},
1762 {"insn", s_insn, 0},
1763 {"nan", s_nan, 0},
1764 {"module", s_module, 0},
1765
1766 /* Relatively generic pseudo-ops that happen to be used on MIPS
1767 chips. */
1768 {"asciiz", stringer, 8 + 1},
1769 {"bss", s_change_sec, 'b'},
1770 {"err", s_err, 0},
1771 {"half", s_cons, 1},
1772 {"dword", s_cons, 3},
1773 {"weakext", s_mips_weakext, 0},
1774 {"origin", s_org, 0},
1775 {"repeat", s_rept, 0},
1776
1777 /* For MIPS this is non-standard, but we define it for consistency. */
1778 {"sbss", s_change_sec, 'B'},
1779
1780 /* These pseudo-ops are defined in read.c, but must be overridden
1781 here for one reason or another. */
1782 {"align", s_align, 0},
1783 {"byte", s_cons, 0},
1784 {"data", s_change_sec, 'd'},
1785 {"double", s_float_cons, 'd'},
1786 {"float", s_float_cons, 'f'},
1787 {"globl", s_mips_globl, 0},
1788 {"global", s_mips_globl, 0},
1789 {"hword", s_cons, 1},
1790 {"int", s_cons, 2},
1791 {"long", s_cons, 2},
1792 {"octa", s_cons, 4},
1793 {"quad", s_cons, 3},
1794 {"section", s_change_section, 0},
1795 {"short", s_cons, 1},
1796 {"single", s_float_cons, 'f'},
1797 {"stabd", s_mips_stab, 'd'},
1798 {"stabn", s_mips_stab, 'n'},
1799 {"stabs", s_mips_stab, 's'},
1800 {"text", s_change_sec, 't'},
1801 {"word", s_cons, 2},
1802
1803 { "extern", ecoff_directive_extern, 0},
1804
1805 { NULL, NULL, 0 },
1806 };
1807
1808 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1809 {
1810 /* These pseudo-ops should be defined by the object file format.
1811 However, a.out doesn't support them, so we have versions here. */
1812 {"aent", s_mips_ent, 1},
1813 {"bgnb", s_ignore, 0},
1814 {"end", s_mips_end, 0},
1815 {"endb", s_ignore, 0},
1816 {"ent", s_mips_ent, 0},
1817 {"file", s_mips_file, 0},
1818 {"fmask", s_mips_mask, 'F'},
1819 {"frame", s_mips_frame, 0},
1820 {"loc", s_mips_loc, 0},
1821 {"mask", s_mips_mask, 'R'},
1822 {"verstamp", s_ignore, 0},
1823 { NULL, NULL, 0 },
1824 };
1825
1826 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1827 purpose of the `.dc.a' internal pseudo-op. */
1828
1829 int
1830 mips_address_bytes (void)
1831 {
1832 file_mips_check_options ();
1833 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1834 }
1835
1836 extern void pop_insert (const pseudo_typeS *);
1837
1838 void
1839 mips_pop_insert (void)
1840 {
1841 pop_insert (mips_pseudo_table);
1842 if (! ECOFF_DEBUGGING)
1843 pop_insert (mips_nonecoff_pseudo_table);
1844 }
1845 \f
1846 /* Symbols labelling the current insn. */
1847
1848 struct insn_label_list
1849 {
1850 struct insn_label_list *next;
1851 symbolS *label;
1852 };
1853
1854 static struct insn_label_list *free_insn_labels;
1855 #define label_list tc_segment_info_data.labels
1856
1857 static void mips_clear_insn_labels (void);
1858 static void mips_mark_labels (void);
1859 static void mips_compressed_mark_labels (void);
1860
1861 static inline void
1862 mips_clear_insn_labels (void)
1863 {
1864 struct insn_label_list **pl;
1865 segment_info_type *si;
1866
1867 if (now_seg)
1868 {
1869 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1870 ;
1871
1872 si = seg_info (now_seg);
1873 *pl = si->label_list;
1874 si->label_list = NULL;
1875 }
1876 }
1877
1878 /* Mark instruction labels in MIPS16/microMIPS mode. */
1879
1880 static inline void
1881 mips_mark_labels (void)
1882 {
1883 if (HAVE_CODE_COMPRESSION)
1884 mips_compressed_mark_labels ();
1885 }
1886 \f
1887 static char *expr_end;
1888
1889 /* An expression in a macro instruction. This is set by mips_ip and
1890 mips16_ip and when populated is always an O_constant. */
1891
1892 static expressionS imm_expr;
1893
1894 /* The relocatable field in an instruction and the relocs associated
1895 with it. These variables are used for instructions like LUI and
1896 JAL as well as true offsets. They are also used for address
1897 operands in macros. */
1898
1899 static expressionS offset_expr;
1900 static bfd_reloc_code_real_type offset_reloc[3]
1901 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1902
1903 /* This is set to the resulting size of the instruction to be produced
1904 by mips16_ip if an explicit extension is used or by mips_ip if an
1905 explicit size is supplied. */
1906
1907 static unsigned int forced_insn_length;
1908
1909 /* True if we are assembling an instruction. All dot symbols defined during
1910 this time should be treated as code labels. */
1911
1912 static bfd_boolean mips_assembling_insn;
1913
1914 /* The pdr segment for per procedure frame/regmask info. Not used for
1915 ECOFF debugging. */
1916
1917 static segT pdr_seg;
1918
1919 /* The default target format to use. */
1920
1921 #if defined (TE_FreeBSD)
1922 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1923 #elif defined (TE_TMIPS)
1924 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1925 #else
1926 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1927 #endif
1928
1929 const char *
1930 mips_target_format (void)
1931 {
1932 switch (OUTPUT_FLAVOR)
1933 {
1934 case bfd_target_elf_flavour:
1935 #ifdef TE_VXWORKS
1936 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1937 return (target_big_endian
1938 ? "elf32-bigmips-vxworks"
1939 : "elf32-littlemips-vxworks");
1940 #endif
1941 return (target_big_endian
1942 ? (HAVE_64BIT_OBJECTS
1943 ? ELF_TARGET ("elf64-", "big")
1944 : (HAVE_NEWABI
1945 ? ELF_TARGET ("elf32-n", "big")
1946 : ELF_TARGET ("elf32-", "big")))
1947 : (HAVE_64BIT_OBJECTS
1948 ? ELF_TARGET ("elf64-", "little")
1949 : (HAVE_NEWABI
1950 ? ELF_TARGET ("elf32-n", "little")
1951 : ELF_TARGET ("elf32-", "little"))));
1952 default:
1953 abort ();
1954 return NULL;
1955 }
1956 }
1957
1958 /* Return the ISA revision that is currently in use, or 0 if we are
1959 generating code for MIPS V or below. */
1960
1961 static int
1962 mips_isa_rev (void)
1963 {
1964 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1965 return 2;
1966
1967 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1968 return 3;
1969
1970 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1971 return 5;
1972
1973 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1974 return 6;
1975
1976 /* microMIPS implies revision 2 or above. */
1977 if (mips_opts.micromips)
1978 return 2;
1979
1980 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1981 return 1;
1982
1983 return 0;
1984 }
1985
1986 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1987
1988 static unsigned int
1989 mips_ase_mask (unsigned int flags)
1990 {
1991 unsigned int i;
1992
1993 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1994 if (flags & mips_ase_groups[i])
1995 flags |= mips_ase_groups[i];
1996 return flags;
1997 }
1998
1999 /* Check whether the current ISA supports ASE. Issue a warning if
2000 appropriate. */
2001
2002 static void
2003 mips_check_isa_supports_ase (const struct mips_ase *ase)
2004 {
2005 const char *base;
2006 int min_rev, size;
2007 static unsigned int warned_isa;
2008 static unsigned int warned_fp32;
2009
2010 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2011 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2012 else
2013 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2014 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2015 && (warned_isa & ase->flags) != ase->flags)
2016 {
2017 warned_isa |= ase->flags;
2018 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2019 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2020 if (min_rev < 0)
2021 as_warn (_("the %d-bit %s architecture does not support the"
2022 " `%s' extension"), size, base, ase->name);
2023 else
2024 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2025 ase->name, base, size, min_rev);
2026 }
2027 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2028 && (warned_isa & ase->flags) != ase->flags)
2029 {
2030 warned_isa |= ase->flags;
2031 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2032 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2033 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2034 ase->name, base, size, ase->rem_rev);
2035 }
2036
2037 if ((ase->flags & FP64_ASES)
2038 && mips_opts.fp != 64
2039 && (warned_fp32 & ase->flags) != ase->flags)
2040 {
2041 warned_fp32 |= ase->flags;
2042 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2043 }
2044 }
2045
2046 /* Check all enabled ASEs to see whether they are supported by the
2047 chosen architecture. */
2048
2049 static void
2050 mips_check_isa_supports_ases (void)
2051 {
2052 unsigned int i, mask;
2053
2054 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2055 {
2056 mask = mips_ase_mask (mips_ases[i].flags);
2057 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2058 mips_check_isa_supports_ase (&mips_ases[i]);
2059 }
2060 }
2061
2062 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2063 that were affected. */
2064
2065 static unsigned int
2066 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2067 bfd_boolean enabled_p)
2068 {
2069 unsigned int mask;
2070
2071 mask = mips_ase_mask (ase->flags);
2072 opts->ase &= ~mask;
2073 if (enabled_p)
2074 opts->ase |= ase->flags;
2075 return mask;
2076 }
2077
2078 /* Return the ASE called NAME, or null if none. */
2079
2080 static const struct mips_ase *
2081 mips_lookup_ase (const char *name)
2082 {
2083 unsigned int i;
2084
2085 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2086 if (strcmp (name, mips_ases[i].name) == 0)
2087 return &mips_ases[i];
2088 return NULL;
2089 }
2090
2091 /* Return the length of a microMIPS instruction in bytes. If bits of
2092 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2093 otherwise it is a 32-bit instruction. */
2094
2095 static inline unsigned int
2096 micromips_insn_length (const struct mips_opcode *mo)
2097 {
2098 return (mo->mask >> 16) == 0 ? 2 : 4;
2099 }
2100
2101 /* Return the length of MIPS16 instruction OPCODE. */
2102
2103 static inline unsigned int
2104 mips16_opcode_length (unsigned long opcode)
2105 {
2106 return (opcode >> 16) == 0 ? 2 : 4;
2107 }
2108
2109 /* Return the length of instruction INSN. */
2110
2111 static inline unsigned int
2112 insn_length (const struct mips_cl_insn *insn)
2113 {
2114 if (mips_opts.micromips)
2115 return micromips_insn_length (insn->insn_mo);
2116 else if (mips_opts.mips16)
2117 return mips16_opcode_length (insn->insn_opcode);
2118 else
2119 return 4;
2120 }
2121
2122 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2123
2124 static void
2125 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2126 {
2127 size_t i;
2128
2129 insn->insn_mo = mo;
2130 insn->insn_opcode = mo->match;
2131 insn->frag = NULL;
2132 insn->where = 0;
2133 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2134 insn->fixp[i] = NULL;
2135 insn->fixed_p = (mips_opts.noreorder > 0);
2136 insn->noreorder_p = (mips_opts.noreorder > 0);
2137 insn->mips16_absolute_jump_p = 0;
2138 insn->complete_p = 0;
2139 insn->cleared_p = 0;
2140 }
2141
2142 /* Get a list of all the operands in INSN. */
2143
2144 static const struct mips_operand_array *
2145 insn_operands (const struct mips_cl_insn *insn)
2146 {
2147 if (insn->insn_mo >= &mips_opcodes[0]
2148 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2149 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2150
2151 if (insn->insn_mo >= &mips16_opcodes[0]
2152 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2153 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2154
2155 if (insn->insn_mo >= &micromips_opcodes[0]
2156 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2157 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2158
2159 abort ();
2160 }
2161
2162 /* Get a description of operand OPNO of INSN. */
2163
2164 static const struct mips_operand *
2165 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2166 {
2167 const struct mips_operand_array *operands;
2168
2169 operands = insn_operands (insn);
2170 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2171 abort ();
2172 return operands->operand[opno];
2173 }
2174
2175 /* Install UVAL as the value of OPERAND in INSN. */
2176
2177 static inline void
2178 insn_insert_operand (struct mips_cl_insn *insn,
2179 const struct mips_operand *operand, unsigned int uval)
2180 {
2181 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2182 }
2183
2184 /* Extract the value of OPERAND from INSN. */
2185
2186 static inline unsigned
2187 insn_extract_operand (const struct mips_cl_insn *insn,
2188 const struct mips_operand *operand)
2189 {
2190 return mips_extract_operand (operand, insn->insn_opcode);
2191 }
2192
2193 /* Record the current MIPS16/microMIPS mode in now_seg. */
2194
2195 static void
2196 mips_record_compressed_mode (void)
2197 {
2198 segment_info_type *si;
2199
2200 si = seg_info (now_seg);
2201 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2202 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2203 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2204 si->tc_segment_info_data.micromips = mips_opts.micromips;
2205 }
2206
2207 /* Read a standard MIPS instruction from BUF. */
2208
2209 static unsigned long
2210 read_insn (char *buf)
2211 {
2212 if (target_big_endian)
2213 return bfd_getb32 ((bfd_byte *) buf);
2214 else
2215 return bfd_getl32 ((bfd_byte *) buf);
2216 }
2217
2218 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2219 the next byte. */
2220
2221 static char *
2222 write_insn (char *buf, unsigned int insn)
2223 {
2224 md_number_to_chars (buf, insn, 4);
2225 return buf + 4;
2226 }
2227
2228 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2229 has length LENGTH. */
2230
2231 static unsigned long
2232 read_compressed_insn (char *buf, unsigned int length)
2233 {
2234 unsigned long insn;
2235 unsigned int i;
2236
2237 insn = 0;
2238 for (i = 0; i < length; i += 2)
2239 {
2240 insn <<= 16;
2241 if (target_big_endian)
2242 insn |= bfd_getb16 ((char *) buf);
2243 else
2244 insn |= bfd_getl16 ((char *) buf);
2245 buf += 2;
2246 }
2247 return insn;
2248 }
2249
2250 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2251 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2252
2253 static char *
2254 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2255 {
2256 unsigned int i;
2257
2258 for (i = 0; i < length; i += 2)
2259 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2260 return buf + length;
2261 }
2262
2263 /* Install INSN at the location specified by its "frag" and "where" fields. */
2264
2265 static void
2266 install_insn (const struct mips_cl_insn *insn)
2267 {
2268 char *f = insn->frag->fr_literal + insn->where;
2269 if (HAVE_CODE_COMPRESSION)
2270 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2271 else
2272 write_insn (f, insn->insn_opcode);
2273 mips_record_compressed_mode ();
2274 }
2275
2276 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2277 and install the opcode in the new location. */
2278
2279 static void
2280 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2281 {
2282 size_t i;
2283
2284 insn->frag = frag;
2285 insn->where = where;
2286 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2287 if (insn->fixp[i] != NULL)
2288 {
2289 insn->fixp[i]->fx_frag = frag;
2290 insn->fixp[i]->fx_where = where;
2291 }
2292 install_insn (insn);
2293 }
2294
2295 /* Add INSN to the end of the output. */
2296
2297 static void
2298 add_fixed_insn (struct mips_cl_insn *insn)
2299 {
2300 char *f = frag_more (insn_length (insn));
2301 move_insn (insn, frag_now, f - frag_now->fr_literal);
2302 }
2303
2304 /* Start a variant frag and move INSN to the start of the variant part,
2305 marking it as fixed. The other arguments are as for frag_var. */
2306
2307 static void
2308 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2309 relax_substateT subtype, symbolS *symbol, offsetT offset)
2310 {
2311 frag_grow (max_chars);
2312 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2313 insn->fixed_p = 1;
2314 frag_var (rs_machine_dependent, max_chars, var,
2315 subtype, symbol, offset, NULL);
2316 }
2317
2318 /* Insert N copies of INSN into the history buffer, starting at
2319 position FIRST. Neither FIRST nor N need to be clipped. */
2320
2321 static void
2322 insert_into_history (unsigned int first, unsigned int n,
2323 const struct mips_cl_insn *insn)
2324 {
2325 if (mips_relax.sequence != 2)
2326 {
2327 unsigned int i;
2328
2329 for (i = ARRAY_SIZE (history); i-- > first;)
2330 if (i >= first + n)
2331 history[i] = history[i - n];
2332 else
2333 history[i] = *insn;
2334 }
2335 }
2336
2337 /* Clear the error in insn_error. */
2338
2339 static void
2340 clear_insn_error (void)
2341 {
2342 memset (&insn_error, 0, sizeof (insn_error));
2343 }
2344
2345 /* Possibly record error message MSG for the current instruction.
2346 If the error is about a particular argument, ARGNUM is the 1-based
2347 number of that argument, otherwise it is 0. FORMAT is the format
2348 of MSG. Return true if MSG was used, false if the current message
2349 was kept. */
2350
2351 static bfd_boolean
2352 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2353 const char *msg)
2354 {
2355 if (argnum == 0)
2356 {
2357 /* Give priority to errors against specific arguments, and to
2358 the first whole-instruction message. */
2359 if (insn_error.msg)
2360 return FALSE;
2361 }
2362 else
2363 {
2364 /* Keep insn_error if it is against a later argument. */
2365 if (argnum < insn_error.min_argnum)
2366 return FALSE;
2367
2368 /* If both errors are against the same argument but are different,
2369 give up on reporting a specific error for this argument.
2370 See the comment about mips_insn_error for details. */
2371 if (argnum == insn_error.min_argnum
2372 && insn_error.msg
2373 && strcmp (insn_error.msg, msg) != 0)
2374 {
2375 insn_error.msg = 0;
2376 insn_error.min_argnum += 1;
2377 return FALSE;
2378 }
2379 }
2380 insn_error.min_argnum = argnum;
2381 insn_error.format = format;
2382 insn_error.msg = msg;
2383 return TRUE;
2384 }
2385
2386 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2387 as for set_insn_error_format. */
2388
2389 static void
2390 set_insn_error (int argnum, const char *msg)
2391 {
2392 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2393 }
2394
2395 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2396 as for set_insn_error_format. */
2397
2398 static void
2399 set_insn_error_i (int argnum, const char *msg, int i)
2400 {
2401 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2402 insn_error.u.i = i;
2403 }
2404
2405 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2406 are as for set_insn_error_format. */
2407
2408 static void
2409 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2410 {
2411 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2412 {
2413 insn_error.u.ss[0] = s1;
2414 insn_error.u.ss[1] = s2;
2415 }
2416 }
2417
2418 /* Report the error in insn_error, which is against assembly code STR. */
2419
2420 static void
2421 report_insn_error (const char *str)
2422 {
2423 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2424
2425 switch (insn_error.format)
2426 {
2427 case ERR_FMT_PLAIN:
2428 as_bad (msg, str);
2429 break;
2430
2431 case ERR_FMT_I:
2432 as_bad (msg, insn_error.u.i, str);
2433 break;
2434
2435 case ERR_FMT_SS:
2436 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2437 break;
2438 }
2439
2440 free ((char *) msg);
2441 }
2442
2443 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2444 the idea is to make it obvious at a glance that each errata is
2445 included. */
2446
2447 static void
2448 init_vr4120_conflicts (void)
2449 {
2450 #define CONFLICT(FIRST, SECOND) \
2451 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2452
2453 /* Errata 21 - [D]DIV[U] after [D]MACC */
2454 CONFLICT (MACC, DIV);
2455 CONFLICT (DMACC, DIV);
2456
2457 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2458 CONFLICT (DMULT, DMULT);
2459 CONFLICT (DMULT, DMACC);
2460 CONFLICT (DMACC, DMULT);
2461 CONFLICT (DMACC, DMACC);
2462
2463 /* Errata 24 - MT{LO,HI} after [D]MACC */
2464 CONFLICT (MACC, MTHILO);
2465 CONFLICT (DMACC, MTHILO);
2466
2467 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2468 instruction is executed immediately after a MACC or DMACC
2469 instruction, the result of [either instruction] is incorrect." */
2470 CONFLICT (MACC, MULT);
2471 CONFLICT (MACC, DMULT);
2472 CONFLICT (DMACC, MULT);
2473 CONFLICT (DMACC, DMULT);
2474
2475 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2476 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2477 DDIV or DDIVU instruction, the result of the MACC or
2478 DMACC instruction is incorrect.". */
2479 CONFLICT (DMULT, MACC);
2480 CONFLICT (DMULT, DMACC);
2481 CONFLICT (DIV, MACC);
2482 CONFLICT (DIV, DMACC);
2483
2484 #undef CONFLICT
2485 }
2486
2487 struct regname {
2488 const char *name;
2489 unsigned int num;
2490 };
2491
2492 #define RNUM_MASK 0x00000ff
2493 #define RTYPE_MASK 0x0ffff00
2494 #define RTYPE_NUM 0x0000100
2495 #define RTYPE_FPU 0x0000200
2496 #define RTYPE_FCC 0x0000400
2497 #define RTYPE_VEC 0x0000800
2498 #define RTYPE_GP 0x0001000
2499 #define RTYPE_CP0 0x0002000
2500 #define RTYPE_PC 0x0004000
2501 #define RTYPE_ACC 0x0008000
2502 #define RTYPE_CCC 0x0010000
2503 #define RTYPE_VI 0x0020000
2504 #define RTYPE_VF 0x0040000
2505 #define RTYPE_R5900_I 0x0080000
2506 #define RTYPE_R5900_Q 0x0100000
2507 #define RTYPE_R5900_R 0x0200000
2508 #define RTYPE_R5900_ACC 0x0400000
2509 #define RTYPE_MSA 0x0800000
2510 #define RWARN 0x8000000
2511
2512 #define GENERIC_REGISTER_NUMBERS \
2513 {"$0", RTYPE_NUM | 0}, \
2514 {"$1", RTYPE_NUM | 1}, \
2515 {"$2", RTYPE_NUM | 2}, \
2516 {"$3", RTYPE_NUM | 3}, \
2517 {"$4", RTYPE_NUM | 4}, \
2518 {"$5", RTYPE_NUM | 5}, \
2519 {"$6", RTYPE_NUM | 6}, \
2520 {"$7", RTYPE_NUM | 7}, \
2521 {"$8", RTYPE_NUM | 8}, \
2522 {"$9", RTYPE_NUM | 9}, \
2523 {"$10", RTYPE_NUM | 10}, \
2524 {"$11", RTYPE_NUM | 11}, \
2525 {"$12", RTYPE_NUM | 12}, \
2526 {"$13", RTYPE_NUM | 13}, \
2527 {"$14", RTYPE_NUM | 14}, \
2528 {"$15", RTYPE_NUM | 15}, \
2529 {"$16", RTYPE_NUM | 16}, \
2530 {"$17", RTYPE_NUM | 17}, \
2531 {"$18", RTYPE_NUM | 18}, \
2532 {"$19", RTYPE_NUM | 19}, \
2533 {"$20", RTYPE_NUM | 20}, \
2534 {"$21", RTYPE_NUM | 21}, \
2535 {"$22", RTYPE_NUM | 22}, \
2536 {"$23", RTYPE_NUM | 23}, \
2537 {"$24", RTYPE_NUM | 24}, \
2538 {"$25", RTYPE_NUM | 25}, \
2539 {"$26", RTYPE_NUM | 26}, \
2540 {"$27", RTYPE_NUM | 27}, \
2541 {"$28", RTYPE_NUM | 28}, \
2542 {"$29", RTYPE_NUM | 29}, \
2543 {"$30", RTYPE_NUM | 30}, \
2544 {"$31", RTYPE_NUM | 31}
2545
2546 #define FPU_REGISTER_NAMES \
2547 {"$f0", RTYPE_FPU | 0}, \
2548 {"$f1", RTYPE_FPU | 1}, \
2549 {"$f2", RTYPE_FPU | 2}, \
2550 {"$f3", RTYPE_FPU | 3}, \
2551 {"$f4", RTYPE_FPU | 4}, \
2552 {"$f5", RTYPE_FPU | 5}, \
2553 {"$f6", RTYPE_FPU | 6}, \
2554 {"$f7", RTYPE_FPU | 7}, \
2555 {"$f8", RTYPE_FPU | 8}, \
2556 {"$f9", RTYPE_FPU | 9}, \
2557 {"$f10", RTYPE_FPU | 10}, \
2558 {"$f11", RTYPE_FPU | 11}, \
2559 {"$f12", RTYPE_FPU | 12}, \
2560 {"$f13", RTYPE_FPU | 13}, \
2561 {"$f14", RTYPE_FPU | 14}, \
2562 {"$f15", RTYPE_FPU | 15}, \
2563 {"$f16", RTYPE_FPU | 16}, \
2564 {"$f17", RTYPE_FPU | 17}, \
2565 {"$f18", RTYPE_FPU | 18}, \
2566 {"$f19", RTYPE_FPU | 19}, \
2567 {"$f20", RTYPE_FPU | 20}, \
2568 {"$f21", RTYPE_FPU | 21}, \
2569 {"$f22", RTYPE_FPU | 22}, \
2570 {"$f23", RTYPE_FPU | 23}, \
2571 {"$f24", RTYPE_FPU | 24}, \
2572 {"$f25", RTYPE_FPU | 25}, \
2573 {"$f26", RTYPE_FPU | 26}, \
2574 {"$f27", RTYPE_FPU | 27}, \
2575 {"$f28", RTYPE_FPU | 28}, \
2576 {"$f29", RTYPE_FPU | 29}, \
2577 {"$f30", RTYPE_FPU | 30}, \
2578 {"$f31", RTYPE_FPU | 31}
2579
2580 #define FPU_CONDITION_CODE_NAMES \
2581 {"$fcc0", RTYPE_FCC | 0}, \
2582 {"$fcc1", RTYPE_FCC | 1}, \
2583 {"$fcc2", RTYPE_FCC | 2}, \
2584 {"$fcc3", RTYPE_FCC | 3}, \
2585 {"$fcc4", RTYPE_FCC | 4}, \
2586 {"$fcc5", RTYPE_FCC | 5}, \
2587 {"$fcc6", RTYPE_FCC | 6}, \
2588 {"$fcc7", RTYPE_FCC | 7}
2589
2590 #define COPROC_CONDITION_CODE_NAMES \
2591 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2592 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2593 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2594 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2595 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2596 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2597 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2598 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2599
2600 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2601 {"$a4", RTYPE_GP | 8}, \
2602 {"$a5", RTYPE_GP | 9}, \
2603 {"$a6", RTYPE_GP | 10}, \
2604 {"$a7", RTYPE_GP | 11}, \
2605 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2606 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2607 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2608 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2609 {"$t0", RTYPE_GP | 12}, \
2610 {"$t1", RTYPE_GP | 13}, \
2611 {"$t2", RTYPE_GP | 14}, \
2612 {"$t3", RTYPE_GP | 15}
2613
2614 #define O32_SYMBOLIC_REGISTER_NAMES \
2615 {"$t0", RTYPE_GP | 8}, \
2616 {"$t1", RTYPE_GP | 9}, \
2617 {"$t2", RTYPE_GP | 10}, \
2618 {"$t3", RTYPE_GP | 11}, \
2619 {"$t4", RTYPE_GP | 12}, \
2620 {"$t5", RTYPE_GP | 13}, \
2621 {"$t6", RTYPE_GP | 14}, \
2622 {"$t7", RTYPE_GP | 15}, \
2623 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2624 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2625 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2626 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2627
2628 /* Remaining symbolic register names */
2629 #define SYMBOLIC_REGISTER_NAMES \
2630 {"$zero", RTYPE_GP | 0}, \
2631 {"$at", RTYPE_GP | 1}, \
2632 {"$AT", RTYPE_GP | 1}, \
2633 {"$v0", RTYPE_GP | 2}, \
2634 {"$v1", RTYPE_GP | 3}, \
2635 {"$a0", RTYPE_GP | 4}, \
2636 {"$a1", RTYPE_GP | 5}, \
2637 {"$a2", RTYPE_GP | 6}, \
2638 {"$a3", RTYPE_GP | 7}, \
2639 {"$s0", RTYPE_GP | 16}, \
2640 {"$s1", RTYPE_GP | 17}, \
2641 {"$s2", RTYPE_GP | 18}, \
2642 {"$s3", RTYPE_GP | 19}, \
2643 {"$s4", RTYPE_GP | 20}, \
2644 {"$s5", RTYPE_GP | 21}, \
2645 {"$s6", RTYPE_GP | 22}, \
2646 {"$s7", RTYPE_GP | 23}, \
2647 {"$t8", RTYPE_GP | 24}, \
2648 {"$t9", RTYPE_GP | 25}, \
2649 {"$k0", RTYPE_GP | 26}, \
2650 {"$kt0", RTYPE_GP | 26}, \
2651 {"$k1", RTYPE_GP | 27}, \
2652 {"$kt1", RTYPE_GP | 27}, \
2653 {"$gp", RTYPE_GP | 28}, \
2654 {"$sp", RTYPE_GP | 29}, \
2655 {"$s8", RTYPE_GP | 30}, \
2656 {"$fp", RTYPE_GP | 30}, \
2657 {"$ra", RTYPE_GP | 31}
2658
2659 #define MIPS16_SPECIAL_REGISTER_NAMES \
2660 {"$pc", RTYPE_PC | 0}
2661
2662 #define MDMX_VECTOR_REGISTER_NAMES \
2663 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2664 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2665 {"$v2", RTYPE_VEC | 2}, \
2666 {"$v3", RTYPE_VEC | 3}, \
2667 {"$v4", RTYPE_VEC | 4}, \
2668 {"$v5", RTYPE_VEC | 5}, \
2669 {"$v6", RTYPE_VEC | 6}, \
2670 {"$v7", RTYPE_VEC | 7}, \
2671 {"$v8", RTYPE_VEC | 8}, \
2672 {"$v9", RTYPE_VEC | 9}, \
2673 {"$v10", RTYPE_VEC | 10}, \
2674 {"$v11", RTYPE_VEC | 11}, \
2675 {"$v12", RTYPE_VEC | 12}, \
2676 {"$v13", RTYPE_VEC | 13}, \
2677 {"$v14", RTYPE_VEC | 14}, \
2678 {"$v15", RTYPE_VEC | 15}, \
2679 {"$v16", RTYPE_VEC | 16}, \
2680 {"$v17", RTYPE_VEC | 17}, \
2681 {"$v18", RTYPE_VEC | 18}, \
2682 {"$v19", RTYPE_VEC | 19}, \
2683 {"$v20", RTYPE_VEC | 20}, \
2684 {"$v21", RTYPE_VEC | 21}, \
2685 {"$v22", RTYPE_VEC | 22}, \
2686 {"$v23", RTYPE_VEC | 23}, \
2687 {"$v24", RTYPE_VEC | 24}, \
2688 {"$v25", RTYPE_VEC | 25}, \
2689 {"$v26", RTYPE_VEC | 26}, \
2690 {"$v27", RTYPE_VEC | 27}, \
2691 {"$v28", RTYPE_VEC | 28}, \
2692 {"$v29", RTYPE_VEC | 29}, \
2693 {"$v30", RTYPE_VEC | 30}, \
2694 {"$v31", RTYPE_VEC | 31}
2695
2696 #define R5900_I_NAMES \
2697 {"$I", RTYPE_R5900_I | 0}
2698
2699 #define R5900_Q_NAMES \
2700 {"$Q", RTYPE_R5900_Q | 0}
2701
2702 #define R5900_R_NAMES \
2703 {"$R", RTYPE_R5900_R | 0}
2704
2705 #define R5900_ACC_NAMES \
2706 {"$ACC", RTYPE_R5900_ACC | 0 }
2707
2708 #define MIPS_DSP_ACCUMULATOR_NAMES \
2709 {"$ac0", RTYPE_ACC | 0}, \
2710 {"$ac1", RTYPE_ACC | 1}, \
2711 {"$ac2", RTYPE_ACC | 2}, \
2712 {"$ac3", RTYPE_ACC | 3}
2713
2714 static const struct regname reg_names[] = {
2715 GENERIC_REGISTER_NUMBERS,
2716 FPU_REGISTER_NAMES,
2717 FPU_CONDITION_CODE_NAMES,
2718 COPROC_CONDITION_CODE_NAMES,
2719
2720 /* The $txx registers depends on the abi,
2721 these will be added later into the symbol table from
2722 one of the tables below once mips_abi is set after
2723 parsing of arguments from the command line. */
2724 SYMBOLIC_REGISTER_NAMES,
2725
2726 MIPS16_SPECIAL_REGISTER_NAMES,
2727 MDMX_VECTOR_REGISTER_NAMES,
2728 R5900_I_NAMES,
2729 R5900_Q_NAMES,
2730 R5900_R_NAMES,
2731 R5900_ACC_NAMES,
2732 MIPS_DSP_ACCUMULATOR_NAMES,
2733 {0, 0}
2734 };
2735
2736 static const struct regname reg_names_o32[] = {
2737 O32_SYMBOLIC_REGISTER_NAMES,
2738 {0, 0}
2739 };
2740
2741 static const struct regname reg_names_n32n64[] = {
2742 N32N64_SYMBOLIC_REGISTER_NAMES,
2743 {0, 0}
2744 };
2745
2746 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2747 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2748 of these register symbols, return the associated vector register,
2749 otherwise return SYMVAL itself. */
2750
2751 static unsigned int
2752 mips_prefer_vec_regno (unsigned int symval)
2753 {
2754 if ((symval & -2) == (RTYPE_GP | 2))
2755 return RTYPE_VEC | (symval & 1);
2756 return symval;
2757 }
2758
2759 /* Return true if string [S, E) is a valid register name, storing its
2760 symbol value in *SYMVAL_PTR if so. */
2761
2762 static bfd_boolean
2763 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2764 {
2765 char save_c;
2766 symbolS *symbol;
2767
2768 /* Terminate name. */
2769 save_c = *e;
2770 *e = '\0';
2771
2772 /* Look up the name. */
2773 symbol = symbol_find (s);
2774 *e = save_c;
2775
2776 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2777 return FALSE;
2778
2779 *symval_ptr = S_GET_VALUE (symbol);
2780 return TRUE;
2781 }
2782
2783 /* Return true if the string at *SPTR is a valid register name. Allow it
2784 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2785 is nonnull.
2786
2787 When returning true, move *SPTR past the register, store the
2788 register's symbol value in *SYMVAL_PTR and the channel mask in
2789 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2790 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2791 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2792
2793 static bfd_boolean
2794 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2795 unsigned int *channels_ptr)
2796 {
2797 char *s, *e, *m;
2798 const char *q;
2799 unsigned int channels, symval, bit;
2800
2801 /* Find end of name. */
2802 s = e = *sptr;
2803 if (is_name_beginner (*e))
2804 ++e;
2805 while (is_part_of_name (*e))
2806 ++e;
2807
2808 channels = 0;
2809 if (!mips_parse_register_1 (s, e, &symval))
2810 {
2811 if (!channels_ptr)
2812 return FALSE;
2813
2814 /* Eat characters from the end of the string that are valid
2815 channel suffixes. The preceding register must be $ACC or
2816 end with a digit, so there is no ambiguity. */
2817 bit = 1;
2818 m = e;
2819 for (q = "wzyx"; *q; q++, bit <<= 1)
2820 if (m > s && m[-1] == *q)
2821 {
2822 --m;
2823 channels |= bit;
2824 }
2825
2826 if (channels == 0
2827 || !mips_parse_register_1 (s, m, &symval)
2828 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2829 return FALSE;
2830 }
2831
2832 *sptr = e;
2833 *symval_ptr = symval;
2834 if (channels_ptr)
2835 *channels_ptr = channels;
2836 return TRUE;
2837 }
2838
2839 /* Check if SPTR points at a valid register specifier according to TYPES.
2840 If so, then return 1, advance S to consume the specifier and store
2841 the register's number in REGNOP, otherwise return 0. */
2842
2843 static int
2844 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2845 {
2846 unsigned int regno;
2847
2848 if (mips_parse_register (s, &regno, NULL))
2849 {
2850 if (types & RTYPE_VEC)
2851 regno = mips_prefer_vec_regno (regno);
2852 if (regno & types)
2853 regno &= RNUM_MASK;
2854 else
2855 regno = ~0;
2856 }
2857 else
2858 {
2859 if (types & RWARN)
2860 as_warn (_("unrecognized register name `%s'"), *s);
2861 regno = ~0;
2862 }
2863 if (regnop)
2864 *regnop = regno;
2865 return regno <= RNUM_MASK;
2866 }
2867
2868 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2869 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2870
2871 static char *
2872 mips_parse_vu0_channels (char *s, unsigned int *channels)
2873 {
2874 unsigned int i;
2875
2876 *channels = 0;
2877 for (i = 0; i < 4; i++)
2878 if (*s == "xyzw"[i])
2879 {
2880 *channels |= 1 << (3 - i);
2881 ++s;
2882 }
2883 return s;
2884 }
2885
2886 /* Token types for parsed operand lists. */
2887 enum mips_operand_token_type {
2888 /* A plain register, e.g. $f2. */
2889 OT_REG,
2890
2891 /* A 4-bit XYZW channel mask. */
2892 OT_CHANNELS,
2893
2894 /* A constant vector index, e.g. [1]. */
2895 OT_INTEGER_INDEX,
2896
2897 /* A register vector index, e.g. [$2]. */
2898 OT_REG_INDEX,
2899
2900 /* A continuous range of registers, e.g. $s0-$s4. */
2901 OT_REG_RANGE,
2902
2903 /* A (possibly relocated) expression. */
2904 OT_INTEGER,
2905
2906 /* A floating-point value. */
2907 OT_FLOAT,
2908
2909 /* A single character. This can be '(', ')' or ',', but '(' only appears
2910 before OT_REGs. */
2911 OT_CHAR,
2912
2913 /* A doubled character, either "--" or "++". */
2914 OT_DOUBLE_CHAR,
2915
2916 /* The end of the operand list. */
2917 OT_END
2918 };
2919
2920 /* A parsed operand token. */
2921 struct mips_operand_token
2922 {
2923 /* The type of token. */
2924 enum mips_operand_token_type type;
2925 union
2926 {
2927 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2928 unsigned int regno;
2929
2930 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2931 unsigned int channels;
2932
2933 /* The integer value of an OT_INTEGER_INDEX. */
2934 addressT index;
2935
2936 /* The two register symbol values involved in an OT_REG_RANGE. */
2937 struct {
2938 unsigned int regno1;
2939 unsigned int regno2;
2940 } reg_range;
2941
2942 /* The value of an OT_INTEGER. The value is represented as an
2943 expression and the relocation operators that were applied to
2944 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2945 relocation operators were used. */
2946 struct {
2947 expressionS value;
2948 bfd_reloc_code_real_type relocs[3];
2949 } integer;
2950
2951 /* The binary data for an OT_FLOAT constant, and the number of bytes
2952 in the constant. */
2953 struct {
2954 unsigned char data[8];
2955 int length;
2956 } flt;
2957
2958 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2959 char ch;
2960 } u;
2961 };
2962
2963 /* An obstack used to construct lists of mips_operand_tokens. */
2964 static struct obstack mips_operand_tokens;
2965
2966 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2967
2968 static void
2969 mips_add_token (struct mips_operand_token *token,
2970 enum mips_operand_token_type type)
2971 {
2972 token->type = type;
2973 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2974 }
2975
2976 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2977 and OT_REG tokens for them if so, and return a pointer to the first
2978 unconsumed character. Return null otherwise. */
2979
2980 static char *
2981 mips_parse_base_start (char *s)
2982 {
2983 struct mips_operand_token token;
2984 unsigned int regno, channels;
2985 bfd_boolean decrement_p;
2986
2987 if (*s != '(')
2988 return 0;
2989
2990 ++s;
2991 SKIP_SPACE_TABS (s);
2992
2993 /* Only match "--" as part of a base expression. In other contexts "--X"
2994 is a double negative. */
2995 decrement_p = (s[0] == '-' && s[1] == '-');
2996 if (decrement_p)
2997 {
2998 s += 2;
2999 SKIP_SPACE_TABS (s);
3000 }
3001
3002 /* Allow a channel specifier because that leads to better error messages
3003 than treating something like "$vf0x++" as an expression. */
3004 if (!mips_parse_register (&s, &regno, &channels))
3005 return 0;
3006
3007 token.u.ch = '(';
3008 mips_add_token (&token, OT_CHAR);
3009
3010 if (decrement_p)
3011 {
3012 token.u.ch = '-';
3013 mips_add_token (&token, OT_DOUBLE_CHAR);
3014 }
3015
3016 token.u.regno = regno;
3017 mips_add_token (&token, OT_REG);
3018
3019 if (channels)
3020 {
3021 token.u.channels = channels;
3022 mips_add_token (&token, OT_CHANNELS);
3023 }
3024
3025 /* For consistency, only match "++" as part of base expressions too. */
3026 SKIP_SPACE_TABS (s);
3027 if (s[0] == '+' && s[1] == '+')
3028 {
3029 s += 2;
3030 token.u.ch = '+';
3031 mips_add_token (&token, OT_DOUBLE_CHAR);
3032 }
3033
3034 return s;
3035 }
3036
3037 /* Parse one or more tokens from S. Return a pointer to the first
3038 unconsumed character on success. Return null if an error was found
3039 and store the error text in insn_error. FLOAT_FORMAT is as for
3040 mips_parse_arguments. */
3041
3042 static char *
3043 mips_parse_argument_token (char *s, char float_format)
3044 {
3045 char *end, *save_in;
3046 const char *err;
3047 unsigned int regno1, regno2, channels;
3048 struct mips_operand_token token;
3049
3050 /* First look for "($reg", since we want to treat that as an
3051 OT_CHAR and OT_REG rather than an expression. */
3052 end = mips_parse_base_start (s);
3053 if (end)
3054 return end;
3055
3056 /* Handle other characters that end up as OT_CHARs. */
3057 if (*s == ')' || *s == ',')
3058 {
3059 token.u.ch = *s;
3060 mips_add_token (&token, OT_CHAR);
3061 ++s;
3062 return s;
3063 }
3064
3065 /* Handle tokens that start with a register. */
3066 if (mips_parse_register (&s, &regno1, &channels))
3067 {
3068 if (channels)
3069 {
3070 /* A register and a VU0 channel suffix. */
3071 token.u.regno = regno1;
3072 mips_add_token (&token, OT_REG);
3073
3074 token.u.channels = channels;
3075 mips_add_token (&token, OT_CHANNELS);
3076 return s;
3077 }
3078
3079 SKIP_SPACE_TABS (s);
3080 if (*s == '-')
3081 {
3082 /* A register range. */
3083 ++s;
3084 SKIP_SPACE_TABS (s);
3085 if (!mips_parse_register (&s, &regno2, NULL))
3086 {
3087 set_insn_error (0, _("invalid register range"));
3088 return 0;
3089 }
3090
3091 token.u.reg_range.regno1 = regno1;
3092 token.u.reg_range.regno2 = regno2;
3093 mips_add_token (&token, OT_REG_RANGE);
3094 return s;
3095 }
3096
3097 /* Add the register itself. */
3098 token.u.regno = regno1;
3099 mips_add_token (&token, OT_REG);
3100
3101 /* Check for a vector index. */
3102 if (*s == '[')
3103 {
3104 ++s;
3105 SKIP_SPACE_TABS (s);
3106 if (mips_parse_register (&s, &token.u.regno, NULL))
3107 mips_add_token (&token, OT_REG_INDEX);
3108 else
3109 {
3110 expressionS element;
3111
3112 my_getExpression (&element, s);
3113 if (element.X_op != O_constant)
3114 {
3115 set_insn_error (0, _("vector element must be constant"));
3116 return 0;
3117 }
3118 s = expr_end;
3119 token.u.index = element.X_add_number;
3120 mips_add_token (&token, OT_INTEGER_INDEX);
3121 }
3122 SKIP_SPACE_TABS (s);
3123 if (*s != ']')
3124 {
3125 set_insn_error (0, _("missing `]'"));
3126 return 0;
3127 }
3128 ++s;
3129 }
3130 return s;
3131 }
3132
3133 if (float_format)
3134 {
3135 /* First try to treat expressions as floats. */
3136 save_in = input_line_pointer;
3137 input_line_pointer = s;
3138 err = md_atof (float_format, (char *) token.u.flt.data,
3139 &token.u.flt.length);
3140 end = input_line_pointer;
3141 input_line_pointer = save_in;
3142 if (err && *err)
3143 {
3144 set_insn_error (0, err);
3145 return 0;
3146 }
3147 if (s != end)
3148 {
3149 mips_add_token (&token, OT_FLOAT);
3150 return end;
3151 }
3152 }
3153
3154 /* Treat everything else as an integer expression. */
3155 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3156 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3157 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3158 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3159 s = expr_end;
3160 mips_add_token (&token, OT_INTEGER);
3161 return s;
3162 }
3163
3164 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3165 if expressions should be treated as 32-bit floating-point constants,
3166 'd' if they should be treated as 64-bit floating-point constants,
3167 or 0 if they should be treated as integer expressions (the usual case).
3168
3169 Return a list of tokens on success, otherwise return 0. The caller
3170 must obstack_free the list after use. */
3171
3172 static struct mips_operand_token *
3173 mips_parse_arguments (char *s, char float_format)
3174 {
3175 struct mips_operand_token token;
3176
3177 SKIP_SPACE_TABS (s);
3178 while (*s)
3179 {
3180 s = mips_parse_argument_token (s, float_format);
3181 if (!s)
3182 {
3183 obstack_free (&mips_operand_tokens,
3184 obstack_finish (&mips_operand_tokens));
3185 return 0;
3186 }
3187 SKIP_SPACE_TABS (s);
3188 }
3189 mips_add_token (&token, OT_END);
3190 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3191 }
3192
3193 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3194 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3195
3196 static bfd_boolean
3197 is_opcode_valid (const struct mips_opcode *mo)
3198 {
3199 int isa = mips_opts.isa;
3200 int ase = mips_opts.ase;
3201 int fp_s, fp_d;
3202 unsigned int i;
3203
3204 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3205 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3206 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3207 ase |= mips_ases[i].flags64;
3208
3209 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3210 return FALSE;
3211
3212 /* Check whether the instruction or macro requires single-precision or
3213 double-precision floating-point support. Note that this information is
3214 stored differently in the opcode table for insns and macros. */
3215 if (mo->pinfo == INSN_MACRO)
3216 {
3217 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3218 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3219 }
3220 else
3221 {
3222 fp_s = mo->pinfo & FP_S;
3223 fp_d = mo->pinfo & FP_D;
3224 }
3225
3226 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3227 return FALSE;
3228
3229 if (fp_s && mips_opts.soft_float)
3230 return FALSE;
3231
3232 return TRUE;
3233 }
3234
3235 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3236 selected ISA and architecture. */
3237
3238 static bfd_boolean
3239 is_opcode_valid_16 (const struct mips_opcode *mo)
3240 {
3241 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3242 }
3243
3244 /* Return TRUE if the size of the microMIPS opcode MO matches one
3245 explicitly requested. Always TRUE in the standard MIPS mode. */
3246
3247 static bfd_boolean
3248 is_size_valid (const struct mips_opcode *mo)
3249 {
3250 if (!mips_opts.micromips)
3251 return TRUE;
3252
3253 if (mips_opts.insn32)
3254 {
3255 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3256 return FALSE;
3257 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3258 return FALSE;
3259 }
3260 if (!forced_insn_length)
3261 return TRUE;
3262 if (mo->pinfo == INSN_MACRO)
3263 return FALSE;
3264 return forced_insn_length == micromips_insn_length (mo);
3265 }
3266
3267 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3268 of the preceding instruction. Always TRUE in the standard MIPS mode.
3269
3270 We don't accept macros in 16-bit delay slots to avoid a case where
3271 a macro expansion fails because it relies on a preceding 32-bit real
3272 instruction to have matched and does not handle the operands correctly.
3273 The only macros that may expand to 16-bit instructions are JAL that
3274 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3275 and BGT (that likewise cannot be placed in a delay slot) that decay to
3276 a NOP. In all these cases the macros precede any corresponding real
3277 instruction definitions in the opcode table, so they will match in the
3278 second pass where the size of the delay slot is ignored and therefore
3279 produce correct code. */
3280
3281 static bfd_boolean
3282 is_delay_slot_valid (const struct mips_opcode *mo)
3283 {
3284 if (!mips_opts.micromips)
3285 return TRUE;
3286
3287 if (mo->pinfo == INSN_MACRO)
3288 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3289 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3290 && micromips_insn_length (mo) != 4)
3291 return FALSE;
3292 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3293 && micromips_insn_length (mo) != 2)
3294 return FALSE;
3295
3296 return TRUE;
3297 }
3298
3299 /* For consistency checking, verify that all bits of OPCODE are specified
3300 either by the match/mask part of the instruction definition, or by the
3301 operand list. Also build up a list of operands in OPERANDS.
3302
3303 INSN_BITS says which bits of the instruction are significant.
3304 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3305 provides the mips_operand description of each operand. DECODE_OPERAND
3306 is null for MIPS16 instructions. */
3307
3308 static int
3309 validate_mips_insn (const struct mips_opcode *opcode,
3310 unsigned long insn_bits,
3311 const struct mips_operand *(*decode_operand) (const char *),
3312 struct mips_operand_array *operands)
3313 {
3314 const char *s;
3315 unsigned long used_bits, doubled, undefined, opno, mask;
3316 const struct mips_operand *operand;
3317
3318 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3319 if ((mask & opcode->match) != opcode->match)
3320 {
3321 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3322 opcode->name, opcode->args);
3323 return 0;
3324 }
3325 used_bits = 0;
3326 opno = 0;
3327 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3328 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3329 for (s = opcode->args; *s; ++s)
3330 switch (*s)
3331 {
3332 case ',':
3333 case '(':
3334 case ')':
3335 break;
3336
3337 case '#':
3338 s++;
3339 break;
3340
3341 default:
3342 if (!decode_operand)
3343 operand = decode_mips16_operand (*s, FALSE);
3344 else
3345 operand = decode_operand (s);
3346 if (!operand && opcode->pinfo != INSN_MACRO)
3347 {
3348 as_bad (_("internal: unknown operand type: %s %s"),
3349 opcode->name, opcode->args);
3350 return 0;
3351 }
3352 gas_assert (opno < MAX_OPERANDS);
3353 operands->operand[opno] = operand;
3354 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3355 {
3356 used_bits = mips_insert_operand (operand, used_bits, -1);
3357 if (operand->type == OP_MDMX_IMM_REG)
3358 /* Bit 5 is the format selector (OB vs QH). The opcode table
3359 has separate entries for each format. */
3360 used_bits &= ~(1 << (operand->lsb + 5));
3361 if (operand->type == OP_ENTRY_EXIT_LIST)
3362 used_bits &= ~(mask & 0x700);
3363 }
3364 /* Skip prefix characters. */
3365 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3366 ++s;
3367 opno += 1;
3368 break;
3369 }
3370 doubled = used_bits & mask & insn_bits;
3371 if (doubled)
3372 {
3373 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3374 " %s %s"), doubled, opcode->name, opcode->args);
3375 return 0;
3376 }
3377 used_bits |= mask;
3378 undefined = ~used_bits & insn_bits;
3379 if (opcode->pinfo != INSN_MACRO && undefined)
3380 {
3381 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3382 undefined, opcode->name, opcode->args);
3383 return 0;
3384 }
3385 used_bits &= ~insn_bits;
3386 if (used_bits)
3387 {
3388 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3389 used_bits, opcode->name, opcode->args);
3390 return 0;
3391 }
3392 return 1;
3393 }
3394
3395 /* The MIPS16 version of validate_mips_insn. */
3396
3397 static int
3398 validate_mips16_insn (const struct mips_opcode *opcode,
3399 struct mips_operand_array *operands)
3400 {
3401 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3402 {
3403 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3404 instruction. Use TMP to describe the full instruction. */
3405 struct mips_opcode tmp;
3406
3407 tmp = *opcode;
3408 tmp.match <<= 16;
3409 tmp.mask <<= 16;
3410 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3411 }
3412 return validate_mips_insn (opcode, 0xffff, 0, operands);
3413 }
3414
3415 /* The microMIPS version of validate_mips_insn. */
3416
3417 static int
3418 validate_micromips_insn (const struct mips_opcode *opc,
3419 struct mips_operand_array *operands)
3420 {
3421 unsigned long insn_bits;
3422 unsigned long major;
3423 unsigned int length;
3424
3425 if (opc->pinfo == INSN_MACRO)
3426 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3427 operands);
3428
3429 length = micromips_insn_length (opc);
3430 if (length != 2 && length != 4)
3431 {
3432 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3433 "%s %s"), length, opc->name, opc->args);
3434 return 0;
3435 }
3436 major = opc->match >> (10 + 8 * (length - 2));
3437 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3438 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3439 {
3440 as_bad (_("internal error: bad microMIPS opcode "
3441 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3442 return 0;
3443 }
3444
3445 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3446 insn_bits = 1 << 4 * length;
3447 insn_bits <<= 4 * length;
3448 insn_bits -= 1;
3449 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3450 operands);
3451 }
3452
3453 /* This function is called once, at assembler startup time. It should set up
3454 all the tables, etc. that the MD part of the assembler will need. */
3455
3456 void
3457 md_begin (void)
3458 {
3459 const char *retval = NULL;
3460 int i = 0;
3461 int broken = 0;
3462
3463 if (mips_pic != NO_PIC)
3464 {
3465 if (g_switch_seen && g_switch_value != 0)
3466 as_bad (_("-G may not be used in position-independent code"));
3467 g_switch_value = 0;
3468 }
3469 else if (mips_abicalls)
3470 {
3471 if (g_switch_seen && g_switch_value != 0)
3472 as_bad (_("-G may not be used with abicalls"));
3473 g_switch_value = 0;
3474 }
3475
3476 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3477 as_warn (_("could not set architecture and machine"));
3478
3479 op_hash = hash_new ();
3480
3481 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3482 for (i = 0; i < NUMOPCODES;)
3483 {
3484 const char *name = mips_opcodes[i].name;
3485
3486 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3487 if (retval != NULL)
3488 {
3489 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3490 mips_opcodes[i].name, retval);
3491 /* Probably a memory allocation problem? Give up now. */
3492 as_fatal (_("broken assembler, no assembly attempted"));
3493 }
3494 do
3495 {
3496 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3497 decode_mips_operand, &mips_operands[i]))
3498 broken = 1;
3499 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3500 {
3501 create_insn (&nop_insn, mips_opcodes + i);
3502 if (mips_fix_loongson2f_nop)
3503 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3504 nop_insn.fixed_p = 1;
3505 }
3506 ++i;
3507 }
3508 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3509 }
3510
3511 mips16_op_hash = hash_new ();
3512 mips16_operands = XCNEWVEC (struct mips_operand_array,
3513 bfd_mips16_num_opcodes);
3514
3515 i = 0;
3516 while (i < bfd_mips16_num_opcodes)
3517 {
3518 const char *name = mips16_opcodes[i].name;
3519
3520 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3521 if (retval != NULL)
3522 as_fatal (_("internal: can't hash `%s': %s"),
3523 mips16_opcodes[i].name, retval);
3524 do
3525 {
3526 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3527 broken = 1;
3528 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3529 {
3530 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3531 mips16_nop_insn.fixed_p = 1;
3532 }
3533 ++i;
3534 }
3535 while (i < bfd_mips16_num_opcodes
3536 && strcmp (mips16_opcodes[i].name, name) == 0);
3537 }
3538
3539 micromips_op_hash = hash_new ();
3540 micromips_operands = XCNEWVEC (struct mips_operand_array,
3541 bfd_micromips_num_opcodes);
3542
3543 i = 0;
3544 while (i < bfd_micromips_num_opcodes)
3545 {
3546 const char *name = micromips_opcodes[i].name;
3547
3548 retval = hash_insert (micromips_op_hash, name,
3549 (void *) &micromips_opcodes[i]);
3550 if (retval != NULL)
3551 as_fatal (_("internal: can't hash `%s': %s"),
3552 micromips_opcodes[i].name, retval);
3553 do
3554 {
3555 struct mips_cl_insn *micromips_nop_insn;
3556
3557 if (!validate_micromips_insn (&micromips_opcodes[i],
3558 &micromips_operands[i]))
3559 broken = 1;
3560
3561 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3562 {
3563 if (micromips_insn_length (micromips_opcodes + i) == 2)
3564 micromips_nop_insn = &micromips_nop16_insn;
3565 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3566 micromips_nop_insn = &micromips_nop32_insn;
3567 else
3568 continue;
3569
3570 if (micromips_nop_insn->insn_mo == NULL
3571 && strcmp (name, "nop") == 0)
3572 {
3573 create_insn (micromips_nop_insn, micromips_opcodes + i);
3574 micromips_nop_insn->fixed_p = 1;
3575 }
3576 }
3577 }
3578 while (++i < bfd_micromips_num_opcodes
3579 && strcmp (micromips_opcodes[i].name, name) == 0);
3580 }
3581
3582 if (broken)
3583 as_fatal (_("broken assembler, no assembly attempted"));
3584
3585 /* We add all the general register names to the symbol table. This
3586 helps us detect invalid uses of them. */
3587 for (i = 0; reg_names[i].name; i++)
3588 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3589 reg_names[i].num, /* & RNUM_MASK, */
3590 &zero_address_frag));
3591 if (HAVE_NEWABI)
3592 for (i = 0; reg_names_n32n64[i].name; i++)
3593 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3594 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3595 &zero_address_frag));
3596 else
3597 for (i = 0; reg_names_o32[i].name; i++)
3598 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3599 reg_names_o32[i].num, /* & RNUM_MASK, */
3600 &zero_address_frag));
3601
3602 for (i = 0; i < 32; i++)
3603 {
3604 char regname[6];
3605
3606 /* R5900 VU0 floating-point register. */
3607 sprintf (regname, "$vf%d", i);
3608 symbol_table_insert (symbol_new (regname, reg_section,
3609 RTYPE_VF | i, &zero_address_frag));
3610
3611 /* R5900 VU0 integer register. */
3612 sprintf (regname, "$vi%d", i);
3613 symbol_table_insert (symbol_new (regname, reg_section,
3614 RTYPE_VI | i, &zero_address_frag));
3615
3616 /* MSA register. */
3617 sprintf (regname, "$w%d", i);
3618 symbol_table_insert (symbol_new (regname, reg_section,
3619 RTYPE_MSA | i, &zero_address_frag));
3620 }
3621
3622 obstack_init (&mips_operand_tokens);
3623
3624 mips_no_prev_insn ();
3625
3626 mips_gprmask = 0;
3627 mips_cprmask[0] = 0;
3628 mips_cprmask[1] = 0;
3629 mips_cprmask[2] = 0;
3630 mips_cprmask[3] = 0;
3631
3632 /* set the default alignment for the text section (2**2) */
3633 record_alignment (text_section, 2);
3634
3635 bfd_set_gp_size (stdoutput, g_switch_value);
3636
3637 /* On a native system other than VxWorks, sections must be aligned
3638 to 16 byte boundaries. When configured for an embedded ELF
3639 target, we don't bother. */
3640 if (strncmp (TARGET_OS, "elf", 3) != 0
3641 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3642 {
3643 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3644 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3645 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3646 }
3647
3648 /* Create a .reginfo section for register masks and a .mdebug
3649 section for debugging information. */
3650 {
3651 segT seg;
3652 subsegT subseg;
3653 flagword flags;
3654 segT sec;
3655
3656 seg = now_seg;
3657 subseg = now_subseg;
3658
3659 /* The ABI says this section should be loaded so that the
3660 running program can access it. However, we don't load it
3661 if we are configured for an embedded target */
3662 flags = SEC_READONLY | SEC_DATA;
3663 if (strncmp (TARGET_OS, "elf", 3) != 0)
3664 flags |= SEC_ALLOC | SEC_LOAD;
3665
3666 if (mips_abi != N64_ABI)
3667 {
3668 sec = subseg_new (".reginfo", (subsegT) 0);
3669
3670 bfd_set_section_flags (stdoutput, sec, flags);
3671 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3672
3673 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3674 }
3675 else
3676 {
3677 /* The 64-bit ABI uses a .MIPS.options section rather than
3678 .reginfo section. */
3679 sec = subseg_new (".MIPS.options", (subsegT) 0);
3680 bfd_set_section_flags (stdoutput, sec, flags);
3681 bfd_set_section_alignment (stdoutput, sec, 3);
3682
3683 /* Set up the option header. */
3684 {
3685 Elf_Internal_Options opthdr;
3686 char *f;
3687
3688 opthdr.kind = ODK_REGINFO;
3689 opthdr.size = (sizeof (Elf_External_Options)
3690 + sizeof (Elf64_External_RegInfo));
3691 opthdr.section = 0;
3692 opthdr.info = 0;
3693 f = frag_more (sizeof (Elf_External_Options));
3694 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3695 (Elf_External_Options *) f);
3696
3697 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3698 }
3699 }
3700
3701 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3702 bfd_set_section_flags (stdoutput, sec,
3703 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3704 bfd_set_section_alignment (stdoutput, sec, 3);
3705 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3706
3707 if (ECOFF_DEBUGGING)
3708 {
3709 sec = subseg_new (".mdebug", (subsegT) 0);
3710 (void) bfd_set_section_flags (stdoutput, sec,
3711 SEC_HAS_CONTENTS | SEC_READONLY);
3712 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3713 }
3714 else if (mips_flag_pdr)
3715 {
3716 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3717 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3718 SEC_READONLY | SEC_RELOC
3719 | SEC_DEBUGGING);
3720 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3721 }
3722
3723 subseg_set (seg, subseg);
3724 }
3725
3726 if (mips_fix_vr4120)
3727 init_vr4120_conflicts ();
3728 }
3729
3730 static inline void
3731 fpabi_incompatible_with (int fpabi, const char *what)
3732 {
3733 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3734 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3735 }
3736
3737 static inline void
3738 fpabi_requires (int fpabi, const char *what)
3739 {
3740 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3741 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3742 }
3743
3744 /* Check -mabi and register sizes against the specified FP ABI. */
3745 static void
3746 check_fpabi (int fpabi)
3747 {
3748 switch (fpabi)
3749 {
3750 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3751 if (file_mips_opts.soft_float)
3752 fpabi_incompatible_with (fpabi, "softfloat");
3753 else if (file_mips_opts.single_float)
3754 fpabi_incompatible_with (fpabi, "singlefloat");
3755 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3756 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3757 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3758 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3759 break;
3760
3761 case Val_GNU_MIPS_ABI_FP_XX:
3762 if (mips_abi != O32_ABI)
3763 fpabi_requires (fpabi, "-mabi=32");
3764 else if (file_mips_opts.soft_float)
3765 fpabi_incompatible_with (fpabi, "softfloat");
3766 else if (file_mips_opts.single_float)
3767 fpabi_incompatible_with (fpabi, "singlefloat");
3768 else if (file_mips_opts.fp != 0)
3769 fpabi_requires (fpabi, "fp=xx");
3770 break;
3771
3772 case Val_GNU_MIPS_ABI_FP_64A:
3773 case Val_GNU_MIPS_ABI_FP_64:
3774 if (mips_abi != O32_ABI)
3775 fpabi_requires (fpabi, "-mabi=32");
3776 else if (file_mips_opts.soft_float)
3777 fpabi_incompatible_with (fpabi, "softfloat");
3778 else if (file_mips_opts.single_float)
3779 fpabi_incompatible_with (fpabi, "singlefloat");
3780 else if (file_mips_opts.fp != 64)
3781 fpabi_requires (fpabi, "fp=64");
3782 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3783 fpabi_incompatible_with (fpabi, "nooddspreg");
3784 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3785 fpabi_requires (fpabi, "nooddspreg");
3786 break;
3787
3788 case Val_GNU_MIPS_ABI_FP_SINGLE:
3789 if (file_mips_opts.soft_float)
3790 fpabi_incompatible_with (fpabi, "softfloat");
3791 else if (!file_mips_opts.single_float)
3792 fpabi_requires (fpabi, "singlefloat");
3793 break;
3794
3795 case Val_GNU_MIPS_ABI_FP_SOFT:
3796 if (!file_mips_opts.soft_float)
3797 fpabi_requires (fpabi, "softfloat");
3798 break;
3799
3800 case Val_GNU_MIPS_ABI_FP_OLD_64:
3801 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3802 Tag_GNU_MIPS_ABI_FP, fpabi);
3803 break;
3804
3805 case Val_GNU_MIPS_ABI_FP_NAN2008:
3806 /* Silently ignore compatibility value. */
3807 break;
3808
3809 default:
3810 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3811 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3812 break;
3813 }
3814 }
3815
3816 /* Perform consistency checks on the current options. */
3817
3818 static void
3819 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3820 {
3821 /* Check the size of integer registers agrees with the ABI and ISA. */
3822 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3823 as_bad (_("`gp=64' used with a 32-bit processor"));
3824 else if (abi_checks
3825 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3826 as_bad (_("`gp=32' used with a 64-bit ABI"));
3827 else if (abi_checks
3828 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3829 as_bad (_("`gp=64' used with a 32-bit ABI"));
3830
3831 /* Check the size of the float registers agrees with the ABI and ISA. */
3832 switch (opts->fp)
3833 {
3834 case 0:
3835 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3836 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3837 else if (opts->single_float == 1)
3838 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3839 break;
3840 case 64:
3841 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3842 as_bad (_("`fp=64' used with a 32-bit fpu"));
3843 else if (abi_checks
3844 && ABI_NEEDS_32BIT_REGS (mips_abi)
3845 && !ISA_HAS_MXHC1 (opts->isa))
3846 as_warn (_("`fp=64' used with a 32-bit ABI"));
3847 break;
3848 case 32:
3849 if (abi_checks
3850 && ABI_NEEDS_64BIT_REGS (mips_abi))
3851 as_warn (_("`fp=32' used with a 64-bit ABI"));
3852 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3853 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3854 break;
3855 default:
3856 as_bad (_("Unknown size of floating point registers"));
3857 break;
3858 }
3859
3860 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3861 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3862
3863 if (opts->micromips == 1 && opts->mips16 == 1)
3864 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3865 else if (ISA_IS_R6 (opts->isa)
3866 && (opts->micromips == 1
3867 || opts->mips16 == 1))
3868 as_fatal (_("`%s' cannot be used with `%s'"),
3869 opts->micromips ? "micromips" : "mips16",
3870 mips_cpu_info_from_isa (opts->isa)->name);
3871
3872 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3873 as_fatal (_("branch relaxation is not supported in `%s'"),
3874 mips_cpu_info_from_isa (opts->isa)->name);
3875 }
3876
3877 /* Perform consistency checks on the module level options exactly once.
3878 This is a deferred check that happens:
3879 at the first .set directive
3880 or, at the first pseudo op that generates code (inc .dc.a)
3881 or, at the first instruction
3882 or, at the end. */
3883
3884 static void
3885 file_mips_check_options (void)
3886 {
3887 const struct mips_cpu_info *arch_info = 0;
3888
3889 if (file_mips_opts_checked)
3890 return;
3891
3892 /* The following code determines the register size.
3893 Similar code was added to GCC 3.3 (see override_options() in
3894 config/mips/mips.c). The GAS and GCC code should be kept in sync
3895 as much as possible. */
3896
3897 if (file_mips_opts.gp < 0)
3898 {
3899 /* Infer the integer register size from the ABI and processor.
3900 Restrict ourselves to 32-bit registers if that's all the
3901 processor has, or if the ABI cannot handle 64-bit registers. */
3902 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3903 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3904 ? 32 : 64;
3905 }
3906
3907 if (file_mips_opts.fp < 0)
3908 {
3909 /* No user specified float register size.
3910 ??? GAS treats single-float processors as though they had 64-bit
3911 float registers (although it complains when double-precision
3912 instructions are used). As things stand, saying they have 32-bit
3913 registers would lead to spurious "register must be even" messages.
3914 So here we assume float registers are never smaller than the
3915 integer ones. */
3916 if (file_mips_opts.gp == 64)
3917 /* 64-bit integer registers implies 64-bit float registers. */
3918 file_mips_opts.fp = 64;
3919 else if ((file_mips_opts.ase & FP64_ASES)
3920 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3921 /* Handle ASEs that require 64-bit float registers, if possible. */
3922 file_mips_opts.fp = 64;
3923 else if (ISA_IS_R6 (mips_opts.isa))
3924 /* R6 implies 64-bit float registers. */
3925 file_mips_opts.fp = 64;
3926 else
3927 /* 32-bit float registers. */
3928 file_mips_opts.fp = 32;
3929 }
3930
3931 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3932
3933 /* Disable operations on odd-numbered floating-point registers by default
3934 when using the FPXX ABI. */
3935 if (file_mips_opts.oddspreg < 0)
3936 {
3937 if (file_mips_opts.fp == 0)
3938 file_mips_opts.oddspreg = 0;
3939 else
3940 file_mips_opts.oddspreg = 1;
3941 }
3942
3943 /* End of GCC-shared inference code. */
3944
3945 /* This flag is set when we have a 64-bit capable CPU but use only
3946 32-bit wide registers. Note that EABI does not use it. */
3947 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3948 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3949 || mips_abi == O32_ABI))
3950 mips_32bitmode = 1;
3951
3952 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3953 as_bad (_("trap exception not supported at ISA 1"));
3954
3955 /* If the selected architecture includes support for ASEs, enable
3956 generation of code for them. */
3957 if (file_mips_opts.mips16 == -1)
3958 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3959 if (file_mips_opts.micromips == -1)
3960 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3961 ? 1 : 0;
3962
3963 if (mips_nan2008 == -1)
3964 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3965 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3966 as_fatal (_("`%s' does not support legacy NaN"),
3967 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3968
3969 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3970 being selected implicitly. */
3971 if (file_mips_opts.fp != 64)
3972 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3973
3974 /* If the user didn't explicitly select or deselect a particular ASE,
3975 use the default setting for the CPU. */
3976 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3977
3978 /* Set up the current options. These may change throughout assembly. */
3979 mips_opts = file_mips_opts;
3980
3981 mips_check_isa_supports_ases ();
3982 mips_check_options (&file_mips_opts, TRUE);
3983 file_mips_opts_checked = TRUE;
3984
3985 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3986 as_warn (_("could not set architecture and machine"));
3987 }
3988
3989 void
3990 md_assemble (char *str)
3991 {
3992 struct mips_cl_insn insn;
3993 bfd_reloc_code_real_type unused_reloc[3]
3994 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3995
3996 file_mips_check_options ();
3997
3998 imm_expr.X_op = O_absent;
3999 offset_expr.X_op = O_absent;
4000 offset_reloc[0] = BFD_RELOC_UNUSED;
4001 offset_reloc[1] = BFD_RELOC_UNUSED;
4002 offset_reloc[2] = BFD_RELOC_UNUSED;
4003
4004 mips_mark_labels ();
4005 mips_assembling_insn = TRUE;
4006 clear_insn_error ();
4007
4008 if (mips_opts.mips16)
4009 mips16_ip (str, &insn);
4010 else
4011 {
4012 mips_ip (str, &insn);
4013 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4014 str, insn.insn_opcode));
4015 }
4016
4017 if (insn_error.msg)
4018 report_insn_error (str);
4019 else if (insn.insn_mo->pinfo == INSN_MACRO)
4020 {
4021 macro_start ();
4022 if (mips_opts.mips16)
4023 mips16_macro (&insn);
4024 else
4025 macro (&insn, str);
4026 macro_end ();
4027 }
4028 else
4029 {
4030 if (offset_expr.X_op != O_absent)
4031 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4032 else
4033 append_insn (&insn, NULL, unused_reloc, FALSE);
4034 }
4035
4036 mips_assembling_insn = FALSE;
4037 }
4038
4039 /* Convenience functions for abstracting away the differences between
4040 MIPS16 and non-MIPS16 relocations. */
4041
4042 static inline bfd_boolean
4043 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4044 {
4045 switch (reloc)
4046 {
4047 case BFD_RELOC_MIPS16_JMP:
4048 case BFD_RELOC_MIPS16_GPREL:
4049 case BFD_RELOC_MIPS16_GOT16:
4050 case BFD_RELOC_MIPS16_CALL16:
4051 case BFD_RELOC_MIPS16_HI16_S:
4052 case BFD_RELOC_MIPS16_HI16:
4053 case BFD_RELOC_MIPS16_LO16:
4054 return TRUE;
4055
4056 default:
4057 return FALSE;
4058 }
4059 }
4060
4061 static inline bfd_boolean
4062 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4063 {
4064 switch (reloc)
4065 {
4066 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4067 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4068 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4069 case BFD_RELOC_MICROMIPS_GPREL16:
4070 case BFD_RELOC_MICROMIPS_JMP:
4071 case BFD_RELOC_MICROMIPS_HI16:
4072 case BFD_RELOC_MICROMIPS_HI16_S:
4073 case BFD_RELOC_MICROMIPS_LO16:
4074 case BFD_RELOC_MICROMIPS_LITERAL:
4075 case BFD_RELOC_MICROMIPS_GOT16:
4076 case BFD_RELOC_MICROMIPS_CALL16:
4077 case BFD_RELOC_MICROMIPS_GOT_HI16:
4078 case BFD_RELOC_MICROMIPS_GOT_LO16:
4079 case BFD_RELOC_MICROMIPS_CALL_HI16:
4080 case BFD_RELOC_MICROMIPS_CALL_LO16:
4081 case BFD_RELOC_MICROMIPS_SUB:
4082 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4083 case BFD_RELOC_MICROMIPS_GOT_OFST:
4084 case BFD_RELOC_MICROMIPS_GOT_DISP:
4085 case BFD_RELOC_MICROMIPS_HIGHEST:
4086 case BFD_RELOC_MICROMIPS_HIGHER:
4087 case BFD_RELOC_MICROMIPS_SCN_DISP:
4088 case BFD_RELOC_MICROMIPS_JALR:
4089 return TRUE;
4090
4091 default:
4092 return FALSE;
4093 }
4094 }
4095
4096 static inline bfd_boolean
4097 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4098 {
4099 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4100 }
4101
4102 static inline bfd_boolean
4103 got16_reloc_p (bfd_reloc_code_real_type reloc)
4104 {
4105 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4106 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4107 }
4108
4109 static inline bfd_boolean
4110 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4111 {
4112 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4113 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4114 }
4115
4116 static inline bfd_boolean
4117 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4118 {
4119 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4120 || reloc == BFD_RELOC_MICROMIPS_LO16);
4121 }
4122
4123 static inline bfd_boolean
4124 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4125 {
4126 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4127 }
4128
4129 static inline bfd_boolean
4130 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4131 {
4132 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4133 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4134 }
4135
4136 /* Return true if RELOC is a PC-relative relocation that does not have
4137 full address range. */
4138
4139 static inline bfd_boolean
4140 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4141 {
4142 switch (reloc)
4143 {
4144 case BFD_RELOC_16_PCREL_S2:
4145 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4146 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4147 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4148 case BFD_RELOC_MIPS_21_PCREL_S2:
4149 case BFD_RELOC_MIPS_26_PCREL_S2:
4150 case BFD_RELOC_MIPS_18_PCREL_S3:
4151 case BFD_RELOC_MIPS_19_PCREL_S2:
4152 return TRUE;
4153
4154 case BFD_RELOC_32_PCREL:
4155 case BFD_RELOC_HI16_S_PCREL:
4156 case BFD_RELOC_LO16_PCREL:
4157 return HAVE_64BIT_ADDRESSES;
4158
4159 default:
4160 return FALSE;
4161 }
4162 }
4163
4164 /* Return true if the given relocation might need a matching %lo().
4165 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4166 need a matching %lo() when applied to local symbols. */
4167
4168 static inline bfd_boolean
4169 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4170 {
4171 return (HAVE_IN_PLACE_ADDENDS
4172 && (hi16_reloc_p (reloc)
4173 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4174 all GOT16 relocations evaluate to "G". */
4175 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4176 }
4177
4178 /* Return the type of %lo() reloc needed by RELOC, given that
4179 reloc_needs_lo_p. */
4180
4181 static inline bfd_reloc_code_real_type
4182 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4183 {
4184 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4185 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4186 : BFD_RELOC_LO16));
4187 }
4188
4189 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4190 relocation. */
4191
4192 static inline bfd_boolean
4193 fixup_has_matching_lo_p (fixS *fixp)
4194 {
4195 return (fixp->fx_next != NULL
4196 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4197 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4198 && fixp->fx_offset == fixp->fx_next->fx_offset);
4199 }
4200
4201 /* Move all labels in LABELS to the current insertion point. TEXT_P
4202 says whether the labels refer to text or data. */
4203
4204 static void
4205 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4206 {
4207 struct insn_label_list *l;
4208 valueT val;
4209
4210 for (l = labels; l != NULL; l = l->next)
4211 {
4212 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4213 symbol_set_frag (l->label, frag_now);
4214 val = (valueT) frag_now_fix ();
4215 /* MIPS16/microMIPS text labels are stored as odd. */
4216 if (text_p && HAVE_CODE_COMPRESSION)
4217 ++val;
4218 S_SET_VALUE (l->label, val);
4219 }
4220 }
4221
4222 /* Move all labels in insn_labels to the current insertion point
4223 and treat them as text labels. */
4224
4225 static void
4226 mips_move_text_labels (void)
4227 {
4228 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4229 }
4230
4231 static bfd_boolean
4232 s_is_linkonce (symbolS *sym, segT from_seg)
4233 {
4234 bfd_boolean linkonce = FALSE;
4235 segT symseg = S_GET_SEGMENT (sym);
4236
4237 if (symseg != from_seg && !S_IS_LOCAL (sym))
4238 {
4239 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4240 linkonce = TRUE;
4241 /* The GNU toolchain uses an extension for ELF: a section
4242 beginning with the magic string .gnu.linkonce is a
4243 linkonce section. */
4244 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4245 sizeof ".gnu.linkonce" - 1) == 0)
4246 linkonce = TRUE;
4247 }
4248 return linkonce;
4249 }
4250
4251 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4252 linker to handle them specially, such as generating jalx instructions
4253 when needed. We also make them odd for the duration of the assembly,
4254 in order to generate the right sort of code. We will make them even
4255 in the adjust_symtab routine, while leaving them marked. This is
4256 convenient for the debugger and the disassembler. The linker knows
4257 to make them odd again. */
4258
4259 static void
4260 mips_compressed_mark_label (symbolS *label)
4261 {
4262 gas_assert (HAVE_CODE_COMPRESSION);
4263
4264 if (mips_opts.mips16)
4265 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4266 else
4267 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4268 if ((S_GET_VALUE (label) & 1) == 0
4269 /* Don't adjust the address if the label is global or weak, or
4270 in a link-once section, since we'll be emitting symbol reloc
4271 references to it which will be patched up by the linker, and
4272 the final value of the symbol may or may not be MIPS16/microMIPS. */
4273 && !S_IS_WEAK (label)
4274 && !S_IS_EXTERNAL (label)
4275 && !s_is_linkonce (label, now_seg))
4276 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4277 }
4278
4279 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4280
4281 static void
4282 mips_compressed_mark_labels (void)
4283 {
4284 struct insn_label_list *l;
4285
4286 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4287 mips_compressed_mark_label (l->label);
4288 }
4289
4290 /* End the current frag. Make it a variant frag and record the
4291 relaxation info. */
4292
4293 static void
4294 relax_close_frag (void)
4295 {
4296 mips_macro_warning.first_frag = frag_now;
4297 frag_var (rs_machine_dependent, 0, 0,
4298 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4299 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4300
4301 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4302 mips_relax.first_fixup = 0;
4303 }
4304
4305 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4306 See the comment above RELAX_ENCODE for more details. */
4307
4308 static void
4309 relax_start (symbolS *symbol)
4310 {
4311 gas_assert (mips_relax.sequence == 0);
4312 mips_relax.sequence = 1;
4313 mips_relax.symbol = symbol;
4314 }
4315
4316 /* Start generating the second version of a relaxable sequence.
4317 See the comment above RELAX_ENCODE for more details. */
4318
4319 static void
4320 relax_switch (void)
4321 {
4322 gas_assert (mips_relax.sequence == 1);
4323 mips_relax.sequence = 2;
4324 }
4325
4326 /* End the current relaxable sequence. */
4327
4328 static void
4329 relax_end (void)
4330 {
4331 gas_assert (mips_relax.sequence == 2);
4332 relax_close_frag ();
4333 mips_relax.sequence = 0;
4334 }
4335
4336 /* Return true if IP is a delayed branch or jump. */
4337
4338 static inline bfd_boolean
4339 delayed_branch_p (const struct mips_cl_insn *ip)
4340 {
4341 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4342 | INSN_COND_BRANCH_DELAY
4343 | INSN_COND_BRANCH_LIKELY)) != 0;
4344 }
4345
4346 /* Return true if IP is a compact branch or jump. */
4347
4348 static inline bfd_boolean
4349 compact_branch_p (const struct mips_cl_insn *ip)
4350 {
4351 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4352 | INSN2_COND_BRANCH)) != 0;
4353 }
4354
4355 /* Return true if IP is an unconditional branch or jump. */
4356
4357 static inline bfd_boolean
4358 uncond_branch_p (const struct mips_cl_insn *ip)
4359 {
4360 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4361 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4362 }
4363
4364 /* Return true if IP is a branch-likely instruction. */
4365
4366 static inline bfd_boolean
4367 branch_likely_p (const struct mips_cl_insn *ip)
4368 {
4369 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4370 }
4371
4372 /* Return the type of nop that should be used to fill the delay slot
4373 of delayed branch IP. */
4374
4375 static struct mips_cl_insn *
4376 get_delay_slot_nop (const struct mips_cl_insn *ip)
4377 {
4378 if (mips_opts.micromips
4379 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4380 return &micromips_nop32_insn;
4381 return NOP_INSN;
4382 }
4383
4384 /* Return a mask that has bit N set if OPCODE reads the register(s)
4385 in operand N. */
4386
4387 static unsigned int
4388 insn_read_mask (const struct mips_opcode *opcode)
4389 {
4390 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4391 }
4392
4393 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4394 in operand N. */
4395
4396 static unsigned int
4397 insn_write_mask (const struct mips_opcode *opcode)
4398 {
4399 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4400 }
4401
4402 /* Return a mask of the registers specified by operand OPERAND of INSN.
4403 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4404 is set. */
4405
4406 static unsigned int
4407 operand_reg_mask (const struct mips_cl_insn *insn,
4408 const struct mips_operand *operand,
4409 unsigned int type_mask)
4410 {
4411 unsigned int uval, vsel;
4412
4413 switch (operand->type)
4414 {
4415 case OP_INT:
4416 case OP_MAPPED_INT:
4417 case OP_MSB:
4418 case OP_PCREL:
4419 case OP_PERF_REG:
4420 case OP_ADDIUSP_INT:
4421 case OP_ENTRY_EXIT_LIST:
4422 case OP_REPEAT_DEST_REG:
4423 case OP_REPEAT_PREV_REG:
4424 case OP_PC:
4425 case OP_VU0_SUFFIX:
4426 case OP_VU0_MATCH_SUFFIX:
4427 case OP_IMM_INDEX:
4428 abort ();
4429
4430 case OP_REG:
4431 case OP_OPTIONAL_REG:
4432 {
4433 const struct mips_reg_operand *reg_op;
4434
4435 reg_op = (const struct mips_reg_operand *) operand;
4436 if (!(type_mask & (1 << reg_op->reg_type)))
4437 return 0;
4438 uval = insn_extract_operand (insn, operand);
4439 return 1 << mips_decode_reg_operand (reg_op, uval);
4440 }
4441
4442 case OP_REG_PAIR:
4443 {
4444 const struct mips_reg_pair_operand *pair_op;
4445
4446 pair_op = (const struct mips_reg_pair_operand *) operand;
4447 if (!(type_mask & (1 << pair_op->reg_type)))
4448 return 0;
4449 uval = insn_extract_operand (insn, operand);
4450 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4451 }
4452
4453 case OP_CLO_CLZ_DEST:
4454 if (!(type_mask & (1 << OP_REG_GP)))
4455 return 0;
4456 uval = insn_extract_operand (insn, operand);
4457 return (1 << (uval & 31)) | (1 << (uval >> 5));
4458
4459 case OP_SAME_RS_RT:
4460 if (!(type_mask & (1 << OP_REG_GP)))
4461 return 0;
4462 uval = insn_extract_operand (insn, operand);
4463 gas_assert ((uval & 31) == (uval >> 5));
4464 return 1 << (uval & 31);
4465
4466 case OP_CHECK_PREV:
4467 case OP_NON_ZERO_REG:
4468 if (!(type_mask & (1 << OP_REG_GP)))
4469 return 0;
4470 uval = insn_extract_operand (insn, operand);
4471 return 1 << (uval & 31);
4472
4473 case OP_LWM_SWM_LIST:
4474 abort ();
4475
4476 case OP_SAVE_RESTORE_LIST:
4477 abort ();
4478
4479 case OP_MDMX_IMM_REG:
4480 if (!(type_mask & (1 << OP_REG_VEC)))
4481 return 0;
4482 uval = insn_extract_operand (insn, operand);
4483 vsel = uval >> 5;
4484 if ((vsel & 0x18) == 0x18)
4485 return 0;
4486 return 1 << (uval & 31);
4487
4488 case OP_REG_INDEX:
4489 if (!(type_mask & (1 << OP_REG_GP)))
4490 return 0;
4491 return 1 << insn_extract_operand (insn, operand);
4492 }
4493 abort ();
4494 }
4495
4496 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4497 where bit N of OPNO_MASK is set if operand N should be included.
4498 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4499 is set. */
4500
4501 static unsigned int
4502 insn_reg_mask (const struct mips_cl_insn *insn,
4503 unsigned int type_mask, unsigned int opno_mask)
4504 {
4505 unsigned int opno, reg_mask;
4506
4507 opno = 0;
4508 reg_mask = 0;
4509 while (opno_mask != 0)
4510 {
4511 if (opno_mask & 1)
4512 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4513 opno_mask >>= 1;
4514 opno += 1;
4515 }
4516 return reg_mask;
4517 }
4518
4519 /* Return the mask of core registers that IP reads. */
4520
4521 static unsigned int
4522 gpr_read_mask (const struct mips_cl_insn *ip)
4523 {
4524 unsigned long pinfo, pinfo2;
4525 unsigned int mask;
4526
4527 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4528 pinfo = ip->insn_mo->pinfo;
4529 pinfo2 = ip->insn_mo->pinfo2;
4530 if (pinfo & INSN_UDI)
4531 {
4532 /* UDI instructions have traditionally been assumed to read RS
4533 and RT. */
4534 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4535 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4536 }
4537 if (pinfo & INSN_READ_GPR_24)
4538 mask |= 1 << 24;
4539 if (pinfo2 & INSN2_READ_GPR_16)
4540 mask |= 1 << 16;
4541 if (pinfo2 & INSN2_READ_SP)
4542 mask |= 1 << SP;
4543 if (pinfo2 & INSN2_READ_GPR_31)
4544 mask |= 1 << 31;
4545 /* Don't include register 0. */
4546 return mask & ~1;
4547 }
4548
4549 /* Return the mask of core registers that IP writes. */
4550
4551 static unsigned int
4552 gpr_write_mask (const struct mips_cl_insn *ip)
4553 {
4554 unsigned long pinfo, pinfo2;
4555 unsigned int mask;
4556
4557 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4558 pinfo = ip->insn_mo->pinfo;
4559 pinfo2 = ip->insn_mo->pinfo2;
4560 if (pinfo & INSN_WRITE_GPR_24)
4561 mask |= 1 << 24;
4562 if (pinfo & INSN_WRITE_GPR_31)
4563 mask |= 1 << 31;
4564 if (pinfo & INSN_UDI)
4565 /* UDI instructions have traditionally been assumed to write to RD. */
4566 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4567 if (pinfo2 & INSN2_WRITE_SP)
4568 mask |= 1 << SP;
4569 /* Don't include register 0. */
4570 return mask & ~1;
4571 }
4572
4573 /* Return the mask of floating-point registers that IP reads. */
4574
4575 static unsigned int
4576 fpr_read_mask (const struct mips_cl_insn *ip)
4577 {
4578 unsigned long pinfo;
4579 unsigned int mask;
4580
4581 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4582 | (1 << OP_REG_MSA)),
4583 insn_read_mask (ip->insn_mo));
4584 pinfo = ip->insn_mo->pinfo;
4585 /* Conservatively treat all operands to an FP_D instruction are doubles.
4586 (This is overly pessimistic for things like cvt.d.s.) */
4587 if (FPR_SIZE != 64 && (pinfo & FP_D))
4588 mask |= mask << 1;
4589 return mask;
4590 }
4591
4592 /* Return the mask of floating-point registers that IP writes. */
4593
4594 static unsigned int
4595 fpr_write_mask (const struct mips_cl_insn *ip)
4596 {
4597 unsigned long pinfo;
4598 unsigned int mask;
4599
4600 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4601 | (1 << OP_REG_MSA)),
4602 insn_write_mask (ip->insn_mo));
4603 pinfo = ip->insn_mo->pinfo;
4604 /* Conservatively treat all operands to an FP_D instruction are doubles.
4605 (This is overly pessimistic for things like cvt.s.d.) */
4606 if (FPR_SIZE != 64 && (pinfo & FP_D))
4607 mask |= mask << 1;
4608 return mask;
4609 }
4610
4611 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4612 Check whether that is allowed. */
4613
4614 static bfd_boolean
4615 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4616 {
4617 const char *s = insn->name;
4618 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4619 || FPR_SIZE == 64)
4620 && mips_opts.oddspreg;
4621
4622 if (insn->pinfo == INSN_MACRO)
4623 /* Let a macro pass, we'll catch it later when it is expanded. */
4624 return TRUE;
4625
4626 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4627 otherwise it depends on oddspreg. */
4628 if ((insn->pinfo & FP_S)
4629 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4630 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4631 return FPR_SIZE == 32 || oddspreg;
4632
4633 /* Allow odd registers for single-precision ops and double-precision if the
4634 floating-point registers are 64-bit wide. */
4635 switch (insn->pinfo & (FP_S | FP_D))
4636 {
4637 case FP_S:
4638 case 0:
4639 return oddspreg;
4640 case FP_D:
4641 return FPR_SIZE == 64;
4642 default:
4643 break;
4644 }
4645
4646 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4647 s = strchr (insn->name, '.');
4648 if (s != NULL && opnum == 2)
4649 s = strchr (s + 1, '.');
4650 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4651 return oddspreg;
4652
4653 return FPR_SIZE == 64;
4654 }
4655
4656 /* Information about an instruction argument that we're trying to match. */
4657 struct mips_arg_info
4658 {
4659 /* The instruction so far. */
4660 struct mips_cl_insn *insn;
4661
4662 /* The first unconsumed operand token. */
4663 struct mips_operand_token *token;
4664
4665 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4666 int opnum;
4667
4668 /* The 1-based argument number, for error reporting. This does not
4669 count elided optional registers, etc.. */
4670 int argnum;
4671
4672 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4673 unsigned int last_regno;
4674
4675 /* If the first operand was an OP_REG, this is the register that it
4676 specified, otherwise it is ILLEGAL_REG. */
4677 unsigned int dest_regno;
4678
4679 /* The value of the last OP_INT operand. Only used for OP_MSB,
4680 where it gives the lsb position. */
4681 unsigned int last_op_int;
4682
4683 /* If true, match routines should assume that no later instruction
4684 alternative matches and should therefore be as accomodating as
4685 possible. Match routines should not report errors if something
4686 is only invalid for !LAX_MATCH. */
4687 bfd_boolean lax_match;
4688
4689 /* True if a reference to the current AT register was seen. */
4690 bfd_boolean seen_at;
4691 };
4692
4693 /* Record that the argument is out of range. */
4694
4695 static void
4696 match_out_of_range (struct mips_arg_info *arg)
4697 {
4698 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4699 }
4700
4701 /* Record that the argument isn't constant but needs to be. */
4702
4703 static void
4704 match_not_constant (struct mips_arg_info *arg)
4705 {
4706 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4707 arg->argnum);
4708 }
4709
4710 /* Try to match an OT_CHAR token for character CH. Consume the token
4711 and return true on success, otherwise return false. */
4712
4713 static bfd_boolean
4714 match_char (struct mips_arg_info *arg, char ch)
4715 {
4716 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4717 {
4718 ++arg->token;
4719 if (ch == ',')
4720 arg->argnum += 1;
4721 return TRUE;
4722 }
4723 return FALSE;
4724 }
4725
4726 /* Try to get an expression from the next tokens in ARG. Consume the
4727 tokens and return true on success, storing the expression value in
4728 VALUE and relocation types in R. */
4729
4730 static bfd_boolean
4731 match_expression (struct mips_arg_info *arg, expressionS *value,
4732 bfd_reloc_code_real_type *r)
4733 {
4734 /* If the next token is a '(' that was parsed as being part of a base
4735 expression, assume we have an elided offset. The later match will fail
4736 if this turns out to be wrong. */
4737 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4738 {
4739 value->X_op = O_constant;
4740 value->X_add_number = 0;
4741 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4742 return TRUE;
4743 }
4744
4745 /* Reject register-based expressions such as "0+$2" and "(($2))".
4746 For plain registers the default error seems more appropriate. */
4747 if (arg->token->type == OT_INTEGER
4748 && arg->token->u.integer.value.X_op == O_register)
4749 {
4750 set_insn_error (arg->argnum, _("register value used as expression"));
4751 return FALSE;
4752 }
4753
4754 if (arg->token->type == OT_INTEGER)
4755 {
4756 *value = arg->token->u.integer.value;
4757 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4758 ++arg->token;
4759 return TRUE;
4760 }
4761
4762 set_insn_error_i
4763 (arg->argnum, _("operand %d must be an immediate expression"),
4764 arg->argnum);
4765 return FALSE;
4766 }
4767
4768 /* Try to get a constant expression from the next tokens in ARG. Consume
4769 the tokens and return return true on success, storing the constant value
4770 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4771 error. */
4772
4773 static bfd_boolean
4774 match_const_int (struct mips_arg_info *arg, offsetT *value)
4775 {
4776 expressionS ex;
4777 bfd_reloc_code_real_type r[3];
4778
4779 if (!match_expression (arg, &ex, r))
4780 return FALSE;
4781
4782 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4783 *value = ex.X_add_number;
4784 else
4785 {
4786 match_not_constant (arg);
4787 return FALSE;
4788 }
4789 return TRUE;
4790 }
4791
4792 /* Return the RTYPE_* flags for a register operand of type TYPE that
4793 appears in instruction OPCODE. */
4794
4795 static unsigned int
4796 convert_reg_type (const struct mips_opcode *opcode,
4797 enum mips_reg_operand_type type)
4798 {
4799 switch (type)
4800 {
4801 case OP_REG_GP:
4802 return RTYPE_NUM | RTYPE_GP;
4803
4804 case OP_REG_FP:
4805 /* Allow vector register names for MDMX if the instruction is a 64-bit
4806 FPR load, store or move (including moves to and from GPRs). */
4807 if ((mips_opts.ase & ASE_MDMX)
4808 && (opcode->pinfo & FP_D)
4809 && (opcode->pinfo & (INSN_COPROC_MOVE
4810 | INSN_COPROC_MEMORY_DELAY
4811 | INSN_LOAD_COPROC
4812 | INSN_LOAD_MEMORY
4813 | INSN_STORE_MEMORY)))
4814 return RTYPE_FPU | RTYPE_VEC;
4815 return RTYPE_FPU;
4816
4817 case OP_REG_CCC:
4818 if (opcode->pinfo & (FP_D | FP_S))
4819 return RTYPE_CCC | RTYPE_FCC;
4820 return RTYPE_CCC;
4821
4822 case OP_REG_VEC:
4823 if (opcode->membership & INSN_5400)
4824 return RTYPE_FPU;
4825 return RTYPE_FPU | RTYPE_VEC;
4826
4827 case OP_REG_ACC:
4828 return RTYPE_ACC;
4829
4830 case OP_REG_COPRO:
4831 if (opcode->name[strlen (opcode->name) - 1] == '0')
4832 return RTYPE_NUM | RTYPE_CP0;
4833 return RTYPE_NUM;
4834
4835 case OP_REG_HW:
4836 return RTYPE_NUM;
4837
4838 case OP_REG_VI:
4839 return RTYPE_NUM | RTYPE_VI;
4840
4841 case OP_REG_VF:
4842 return RTYPE_NUM | RTYPE_VF;
4843
4844 case OP_REG_R5900_I:
4845 return RTYPE_R5900_I;
4846
4847 case OP_REG_R5900_Q:
4848 return RTYPE_R5900_Q;
4849
4850 case OP_REG_R5900_R:
4851 return RTYPE_R5900_R;
4852
4853 case OP_REG_R5900_ACC:
4854 return RTYPE_R5900_ACC;
4855
4856 case OP_REG_MSA:
4857 return RTYPE_MSA;
4858
4859 case OP_REG_MSA_CTRL:
4860 return RTYPE_NUM;
4861 }
4862 abort ();
4863 }
4864
4865 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4866
4867 static void
4868 check_regno (struct mips_arg_info *arg,
4869 enum mips_reg_operand_type type, unsigned int regno)
4870 {
4871 if (AT && type == OP_REG_GP && regno == AT)
4872 arg->seen_at = TRUE;
4873
4874 if (type == OP_REG_FP
4875 && (regno & 1) != 0
4876 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4877 {
4878 /* This was a warning prior to introducing O32 FPXX and FP64 support
4879 so maintain a warning for FP32 but raise an error for the new
4880 cases. */
4881 if (FPR_SIZE == 32)
4882 as_warn (_("float register should be even, was %d"), regno);
4883 else
4884 as_bad (_("float register should be even, was %d"), regno);
4885 }
4886
4887 if (type == OP_REG_CCC)
4888 {
4889 const char *name;
4890 size_t length;
4891
4892 name = arg->insn->insn_mo->name;
4893 length = strlen (name);
4894 if ((regno & 1) != 0
4895 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4896 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4897 as_warn (_("condition code register should be even for %s, was %d"),
4898 name, regno);
4899
4900 if ((regno & 3) != 0
4901 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4902 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4903 name, regno);
4904 }
4905 }
4906
4907 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4908 a register of type TYPE. Return true on success, storing the register
4909 number in *REGNO and warning about any dubious uses. */
4910
4911 static bfd_boolean
4912 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4913 unsigned int symval, unsigned int *regno)
4914 {
4915 if (type == OP_REG_VEC)
4916 symval = mips_prefer_vec_regno (symval);
4917 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4918 return FALSE;
4919
4920 *regno = symval & RNUM_MASK;
4921 check_regno (arg, type, *regno);
4922 return TRUE;
4923 }
4924
4925 /* Try to interpret the next token in ARG as a register of type TYPE.
4926 Consume the token and return true on success, storing the register
4927 number in *REGNO. Return false on failure. */
4928
4929 static bfd_boolean
4930 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4931 unsigned int *regno)
4932 {
4933 if (arg->token->type == OT_REG
4934 && match_regno (arg, type, arg->token->u.regno, regno))
4935 {
4936 ++arg->token;
4937 return TRUE;
4938 }
4939 return FALSE;
4940 }
4941
4942 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4943 Consume the token and return true on success, storing the register numbers
4944 in *REGNO1 and *REGNO2. Return false on failure. */
4945
4946 static bfd_boolean
4947 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4948 unsigned int *regno1, unsigned int *regno2)
4949 {
4950 if (match_reg (arg, type, regno1))
4951 {
4952 *regno2 = *regno1;
4953 return TRUE;
4954 }
4955 if (arg->token->type == OT_REG_RANGE
4956 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4957 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4958 && *regno1 <= *regno2)
4959 {
4960 ++arg->token;
4961 return TRUE;
4962 }
4963 return FALSE;
4964 }
4965
4966 /* OP_INT matcher. */
4967
4968 static bfd_boolean
4969 match_int_operand (struct mips_arg_info *arg,
4970 const struct mips_operand *operand_base)
4971 {
4972 const struct mips_int_operand *operand;
4973 unsigned int uval;
4974 int min_val, max_val, factor;
4975 offsetT sval;
4976
4977 operand = (const struct mips_int_operand *) operand_base;
4978 factor = 1 << operand->shift;
4979 min_val = mips_int_operand_min (operand);
4980 max_val = mips_int_operand_max (operand);
4981
4982 if (operand_base->lsb == 0
4983 && operand_base->size == 16
4984 && operand->shift == 0
4985 && operand->bias == 0
4986 && (operand->max_val == 32767 || operand->max_val == 65535))
4987 {
4988 /* The operand can be relocated. */
4989 if (!match_expression (arg, &offset_expr, offset_reloc))
4990 return FALSE;
4991
4992 if (offset_reloc[0] != BFD_RELOC_UNUSED)
4993 /* Relocation operators were used. Accept the arguent and
4994 leave the relocation value in offset_expr and offset_relocs
4995 for the caller to process. */
4996 return TRUE;
4997
4998 if (offset_expr.X_op != O_constant)
4999 {
5000 /* Accept non-constant operands if no later alternative matches,
5001 leaving it for the caller to process. */
5002 if (!arg->lax_match)
5003 return FALSE;
5004 offset_reloc[0] = BFD_RELOC_LO16;
5005 return TRUE;
5006 }
5007
5008 /* Clear the global state; we're going to install the operand
5009 ourselves. */
5010 sval = offset_expr.X_add_number;
5011 offset_expr.X_op = O_absent;
5012
5013 /* For compatibility with older assemblers, we accept
5014 0x8000-0xffff as signed 16-bit numbers when only
5015 signed numbers are allowed. */
5016 if (sval > max_val)
5017 {
5018 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5019 if (!arg->lax_match && sval <= max_val)
5020 return FALSE;
5021 }
5022 }
5023 else
5024 {
5025 if (!match_const_int (arg, &sval))
5026 return FALSE;
5027 }
5028
5029 arg->last_op_int = sval;
5030
5031 if (sval < min_val || sval > max_val || sval % factor)
5032 {
5033 match_out_of_range (arg);
5034 return FALSE;
5035 }
5036
5037 uval = (unsigned int) sval >> operand->shift;
5038 uval -= operand->bias;
5039
5040 /* Handle -mfix-cn63xxp1. */
5041 if (arg->opnum == 1
5042 && mips_fix_cn63xxp1
5043 && !mips_opts.micromips
5044 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5045 switch (uval)
5046 {
5047 case 5:
5048 case 25:
5049 case 26:
5050 case 27:
5051 case 28:
5052 case 29:
5053 case 30:
5054 case 31:
5055 /* These are ok. */
5056 break;
5057
5058 default:
5059 /* The rest must be changed to 28. */
5060 uval = 28;
5061 break;
5062 }
5063
5064 insn_insert_operand (arg->insn, operand_base, uval);
5065 return TRUE;
5066 }
5067
5068 /* OP_MAPPED_INT matcher. */
5069
5070 static bfd_boolean
5071 match_mapped_int_operand (struct mips_arg_info *arg,
5072 const struct mips_operand *operand_base)
5073 {
5074 const struct mips_mapped_int_operand *operand;
5075 unsigned int uval, num_vals;
5076 offsetT sval;
5077
5078 operand = (const struct mips_mapped_int_operand *) operand_base;
5079 if (!match_const_int (arg, &sval))
5080 return FALSE;
5081
5082 num_vals = 1 << operand_base->size;
5083 for (uval = 0; uval < num_vals; uval++)
5084 if (operand->int_map[uval] == sval)
5085 break;
5086 if (uval == num_vals)
5087 {
5088 match_out_of_range (arg);
5089 return FALSE;
5090 }
5091
5092 insn_insert_operand (arg->insn, operand_base, uval);
5093 return TRUE;
5094 }
5095
5096 /* OP_MSB matcher. */
5097
5098 static bfd_boolean
5099 match_msb_operand (struct mips_arg_info *arg,
5100 const struct mips_operand *operand_base)
5101 {
5102 const struct mips_msb_operand *operand;
5103 int min_val, max_val, max_high;
5104 offsetT size, sval, high;
5105
5106 operand = (const struct mips_msb_operand *) operand_base;
5107 min_val = operand->bias;
5108 max_val = min_val + (1 << operand_base->size) - 1;
5109 max_high = operand->opsize;
5110
5111 if (!match_const_int (arg, &size))
5112 return FALSE;
5113
5114 high = size + arg->last_op_int;
5115 sval = operand->add_lsb ? high : size;
5116
5117 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5118 {
5119 match_out_of_range (arg);
5120 return FALSE;
5121 }
5122 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5123 return TRUE;
5124 }
5125
5126 /* OP_REG matcher. */
5127
5128 static bfd_boolean
5129 match_reg_operand (struct mips_arg_info *arg,
5130 const struct mips_operand *operand_base)
5131 {
5132 const struct mips_reg_operand *operand;
5133 unsigned int regno, uval, num_vals;
5134
5135 operand = (const struct mips_reg_operand *) operand_base;
5136 if (!match_reg (arg, operand->reg_type, &regno))
5137 return FALSE;
5138
5139 if (operand->reg_map)
5140 {
5141 num_vals = 1 << operand->root.size;
5142 for (uval = 0; uval < num_vals; uval++)
5143 if (operand->reg_map[uval] == regno)
5144 break;
5145 if (num_vals == uval)
5146 return FALSE;
5147 }
5148 else
5149 uval = regno;
5150
5151 arg->last_regno = regno;
5152 if (arg->opnum == 1)
5153 arg->dest_regno = regno;
5154 insn_insert_operand (arg->insn, operand_base, uval);
5155 return TRUE;
5156 }
5157
5158 /* OP_REG_PAIR matcher. */
5159
5160 static bfd_boolean
5161 match_reg_pair_operand (struct mips_arg_info *arg,
5162 const struct mips_operand *operand_base)
5163 {
5164 const struct mips_reg_pair_operand *operand;
5165 unsigned int regno1, regno2, uval, num_vals;
5166
5167 operand = (const struct mips_reg_pair_operand *) operand_base;
5168 if (!match_reg (arg, operand->reg_type, &regno1)
5169 || !match_char (arg, ',')
5170 || !match_reg (arg, operand->reg_type, &regno2))
5171 return FALSE;
5172
5173 num_vals = 1 << operand_base->size;
5174 for (uval = 0; uval < num_vals; uval++)
5175 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5176 break;
5177 if (uval == num_vals)
5178 return FALSE;
5179
5180 insn_insert_operand (arg->insn, operand_base, uval);
5181 return TRUE;
5182 }
5183
5184 /* OP_PCREL matcher. The caller chooses the relocation type. */
5185
5186 static bfd_boolean
5187 match_pcrel_operand (struct mips_arg_info *arg)
5188 {
5189 bfd_reloc_code_real_type r[3];
5190
5191 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5192 }
5193
5194 /* OP_PERF_REG matcher. */
5195
5196 static bfd_boolean
5197 match_perf_reg_operand (struct mips_arg_info *arg,
5198 const struct mips_operand *operand)
5199 {
5200 offsetT sval;
5201
5202 if (!match_const_int (arg, &sval))
5203 return FALSE;
5204
5205 if (sval != 0
5206 && (sval != 1
5207 || (mips_opts.arch == CPU_R5900
5208 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5209 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5210 {
5211 set_insn_error (arg->argnum, _("invalid performance register"));
5212 return FALSE;
5213 }
5214
5215 insn_insert_operand (arg->insn, operand, sval);
5216 return TRUE;
5217 }
5218
5219 /* OP_ADDIUSP matcher. */
5220
5221 static bfd_boolean
5222 match_addiusp_operand (struct mips_arg_info *arg,
5223 const struct mips_operand *operand)
5224 {
5225 offsetT sval;
5226 unsigned int uval;
5227
5228 if (!match_const_int (arg, &sval))
5229 return FALSE;
5230
5231 if (sval % 4)
5232 {
5233 match_out_of_range (arg);
5234 return FALSE;
5235 }
5236
5237 sval /= 4;
5238 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5239 {
5240 match_out_of_range (arg);
5241 return FALSE;
5242 }
5243
5244 uval = (unsigned int) sval;
5245 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5246 insn_insert_operand (arg->insn, operand, uval);
5247 return TRUE;
5248 }
5249
5250 /* OP_CLO_CLZ_DEST matcher. */
5251
5252 static bfd_boolean
5253 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5254 const struct mips_operand *operand)
5255 {
5256 unsigned int regno;
5257
5258 if (!match_reg (arg, OP_REG_GP, &regno))
5259 return FALSE;
5260
5261 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5262 return TRUE;
5263 }
5264
5265 /* OP_CHECK_PREV matcher. */
5266
5267 static bfd_boolean
5268 match_check_prev_operand (struct mips_arg_info *arg,
5269 const struct mips_operand *operand_base)
5270 {
5271 const struct mips_check_prev_operand *operand;
5272 unsigned int regno;
5273
5274 operand = (const struct mips_check_prev_operand *) operand_base;
5275
5276 if (!match_reg (arg, OP_REG_GP, &regno))
5277 return FALSE;
5278
5279 if (!operand->zero_ok && regno == 0)
5280 return FALSE;
5281
5282 if ((operand->less_than_ok && regno < arg->last_regno)
5283 || (operand->greater_than_ok && regno > arg->last_regno)
5284 || (operand->equal_ok && regno == arg->last_regno))
5285 {
5286 arg->last_regno = regno;
5287 insn_insert_operand (arg->insn, operand_base, regno);
5288 return TRUE;
5289 }
5290
5291 return FALSE;
5292 }
5293
5294 /* OP_SAME_RS_RT matcher. */
5295
5296 static bfd_boolean
5297 match_same_rs_rt_operand (struct mips_arg_info *arg,
5298 const struct mips_operand *operand)
5299 {
5300 unsigned int regno;
5301
5302 if (!match_reg (arg, OP_REG_GP, &regno))
5303 return FALSE;
5304
5305 if (regno == 0)
5306 {
5307 set_insn_error (arg->argnum, _("the source register must not be $0"));
5308 return FALSE;
5309 }
5310
5311 arg->last_regno = regno;
5312
5313 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5314 return TRUE;
5315 }
5316
5317 /* OP_LWM_SWM_LIST matcher. */
5318
5319 static bfd_boolean
5320 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5321 const struct mips_operand *operand)
5322 {
5323 unsigned int reglist, sregs, ra, regno1, regno2;
5324 struct mips_arg_info reset;
5325
5326 reglist = 0;
5327 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5328 return FALSE;
5329 do
5330 {
5331 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5332 {
5333 reglist |= 1 << FP;
5334 regno2 = S7;
5335 }
5336 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5337 reset = *arg;
5338 }
5339 while (match_char (arg, ',')
5340 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5341 *arg = reset;
5342
5343 if (operand->size == 2)
5344 {
5345 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5346
5347 s0, ra
5348 s0, s1, ra, s2, s3
5349 s0-s2, ra
5350
5351 and any permutations of these. */
5352 if ((reglist & 0xfff1ffff) != 0x80010000)
5353 return FALSE;
5354
5355 sregs = (reglist >> 17) & 7;
5356 ra = 0;
5357 }
5358 else
5359 {
5360 /* The list must include at least one of ra and s0-sN,
5361 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5362 which are $23 and $30 respectively.) E.g.:
5363
5364 ra
5365 s0
5366 ra, s0, s1, s2
5367 s0-s8
5368 s0-s5, ra
5369
5370 and any permutations of these. */
5371 if ((reglist & 0x3f00ffff) != 0)
5372 return FALSE;
5373
5374 ra = (reglist >> 27) & 0x10;
5375 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5376 }
5377 sregs += 1;
5378 if ((sregs & -sregs) != sregs)
5379 return FALSE;
5380
5381 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5382 return TRUE;
5383 }
5384
5385 /* OP_ENTRY_EXIT_LIST matcher. */
5386
5387 static unsigned int
5388 match_entry_exit_operand (struct mips_arg_info *arg,
5389 const struct mips_operand *operand)
5390 {
5391 unsigned int mask;
5392 bfd_boolean is_exit;
5393
5394 /* The format is the same for both ENTRY and EXIT, but the constraints
5395 are different. */
5396 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5397 mask = (is_exit ? 7 << 3 : 0);
5398 do
5399 {
5400 unsigned int regno1, regno2;
5401 bfd_boolean is_freg;
5402
5403 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5404 is_freg = FALSE;
5405 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5406 is_freg = TRUE;
5407 else
5408 return FALSE;
5409
5410 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5411 {
5412 mask &= ~(7 << 3);
5413 mask |= (5 + regno2) << 3;
5414 }
5415 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5416 mask |= (regno2 - 3) << 3;
5417 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5418 mask |= (regno2 - 15) << 1;
5419 else if (regno1 == RA && regno2 == RA)
5420 mask |= 1;
5421 else
5422 return FALSE;
5423 }
5424 while (match_char (arg, ','));
5425
5426 insn_insert_operand (arg->insn, operand, mask);
5427 return TRUE;
5428 }
5429
5430 /* OP_SAVE_RESTORE_LIST matcher. */
5431
5432 static bfd_boolean
5433 match_save_restore_list_operand (struct mips_arg_info *arg)
5434 {
5435 unsigned int opcode, args, statics, sregs;
5436 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5437 offsetT frame_size;
5438
5439 opcode = arg->insn->insn_opcode;
5440 frame_size = 0;
5441 num_frame_sizes = 0;
5442 args = 0;
5443 statics = 0;
5444 sregs = 0;
5445 do
5446 {
5447 unsigned int regno1, regno2;
5448
5449 if (arg->token->type == OT_INTEGER)
5450 {
5451 /* Handle the frame size. */
5452 if (!match_const_int (arg, &frame_size))
5453 return FALSE;
5454 num_frame_sizes += 1;
5455 }
5456 else
5457 {
5458 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5459 return FALSE;
5460
5461 while (regno1 <= regno2)
5462 {
5463 if (regno1 >= 4 && regno1 <= 7)
5464 {
5465 if (num_frame_sizes == 0)
5466 /* args $a0-$a3 */
5467 args |= 1 << (regno1 - 4);
5468 else
5469 /* statics $a0-$a3 */
5470 statics |= 1 << (regno1 - 4);
5471 }
5472 else if (regno1 >= 16 && regno1 <= 23)
5473 /* $s0-$s7 */
5474 sregs |= 1 << (regno1 - 16);
5475 else if (regno1 == 30)
5476 /* $s8 */
5477 sregs |= 1 << 8;
5478 else if (regno1 == 31)
5479 /* Add $ra to insn. */
5480 opcode |= 0x40;
5481 else
5482 return FALSE;
5483 regno1 += 1;
5484 if (regno1 == 24)
5485 regno1 = 30;
5486 }
5487 }
5488 }
5489 while (match_char (arg, ','));
5490
5491 /* Encode args/statics combination. */
5492 if (args & statics)
5493 return FALSE;
5494 else if (args == 0xf)
5495 /* All $a0-$a3 are args. */
5496 opcode |= MIPS16_ALL_ARGS << 16;
5497 else if (statics == 0xf)
5498 /* All $a0-$a3 are statics. */
5499 opcode |= MIPS16_ALL_STATICS << 16;
5500 else
5501 {
5502 /* Count arg registers. */
5503 num_args = 0;
5504 while (args & 0x1)
5505 {
5506 args >>= 1;
5507 num_args += 1;
5508 }
5509 if (args != 0)
5510 return FALSE;
5511
5512 /* Count static registers. */
5513 num_statics = 0;
5514 while (statics & 0x8)
5515 {
5516 statics = (statics << 1) & 0xf;
5517 num_statics += 1;
5518 }
5519 if (statics != 0)
5520 return FALSE;
5521
5522 /* Encode args/statics. */
5523 opcode |= ((num_args << 2) | num_statics) << 16;
5524 }
5525
5526 /* Encode $s0/$s1. */
5527 if (sregs & (1 << 0)) /* $s0 */
5528 opcode |= 0x20;
5529 if (sregs & (1 << 1)) /* $s1 */
5530 opcode |= 0x10;
5531 sregs >>= 2;
5532
5533 /* Encode $s2-$s8. */
5534 num_sregs = 0;
5535 while (sregs & 1)
5536 {
5537 sregs >>= 1;
5538 num_sregs += 1;
5539 }
5540 if (sregs != 0)
5541 return FALSE;
5542 opcode |= num_sregs << 24;
5543
5544 /* Encode frame size. */
5545 if (num_frame_sizes == 0)
5546 {
5547 set_insn_error (arg->argnum, _("missing frame size"));
5548 return FALSE;
5549 }
5550 if (num_frame_sizes > 1)
5551 {
5552 set_insn_error (arg->argnum, _("frame size specified twice"));
5553 return FALSE;
5554 }
5555 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5556 {
5557 set_insn_error (arg->argnum, _("invalid frame size"));
5558 return FALSE;
5559 }
5560 if (frame_size != 128 || (opcode >> 16) != 0)
5561 {
5562 frame_size /= 8;
5563 opcode |= (((frame_size & 0xf0) << 16)
5564 | (frame_size & 0x0f));
5565 }
5566
5567 /* Finally build the instruction. */
5568 if ((opcode >> 16) != 0 || frame_size == 0)
5569 opcode |= MIPS16_EXTEND;
5570 arg->insn->insn_opcode = opcode;
5571 return TRUE;
5572 }
5573
5574 /* OP_MDMX_IMM_REG matcher. */
5575
5576 static bfd_boolean
5577 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5578 const struct mips_operand *operand)
5579 {
5580 unsigned int regno, uval;
5581 bfd_boolean is_qh;
5582 const struct mips_opcode *opcode;
5583
5584 /* The mips_opcode records whether this is an octobyte or quadhalf
5585 instruction. Start out with that bit in place. */
5586 opcode = arg->insn->insn_mo;
5587 uval = mips_extract_operand (operand, opcode->match);
5588 is_qh = (uval != 0);
5589
5590 if (arg->token->type == OT_REG)
5591 {
5592 if ((opcode->membership & INSN_5400)
5593 && strcmp (opcode->name, "rzu.ob") == 0)
5594 {
5595 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5596 arg->argnum);
5597 return FALSE;
5598 }
5599
5600 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5601 return FALSE;
5602 ++arg->token;
5603
5604 /* Check whether this is a vector register or a broadcast of
5605 a single element. */
5606 if (arg->token->type == OT_INTEGER_INDEX)
5607 {
5608 if (arg->token->u.index > (is_qh ? 3 : 7))
5609 {
5610 set_insn_error (arg->argnum, _("invalid element selector"));
5611 return FALSE;
5612 }
5613 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5614 ++arg->token;
5615 }
5616 else
5617 {
5618 /* A full vector. */
5619 if ((opcode->membership & INSN_5400)
5620 && (strcmp (opcode->name, "sll.ob") == 0
5621 || strcmp (opcode->name, "srl.ob") == 0))
5622 {
5623 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5624 arg->argnum);
5625 return FALSE;
5626 }
5627
5628 if (is_qh)
5629 uval |= MDMX_FMTSEL_VEC_QH << 5;
5630 else
5631 uval |= MDMX_FMTSEL_VEC_OB << 5;
5632 }
5633 uval |= regno;
5634 }
5635 else
5636 {
5637 offsetT sval;
5638
5639 if (!match_const_int (arg, &sval))
5640 return FALSE;
5641 if (sval < 0 || sval > 31)
5642 {
5643 match_out_of_range (arg);
5644 return FALSE;
5645 }
5646 uval |= (sval & 31);
5647 if (is_qh)
5648 uval |= MDMX_FMTSEL_IMM_QH << 5;
5649 else
5650 uval |= MDMX_FMTSEL_IMM_OB << 5;
5651 }
5652 insn_insert_operand (arg->insn, operand, uval);
5653 return TRUE;
5654 }
5655
5656 /* OP_IMM_INDEX matcher. */
5657
5658 static bfd_boolean
5659 match_imm_index_operand (struct mips_arg_info *arg,
5660 const struct mips_operand *operand)
5661 {
5662 unsigned int max_val;
5663
5664 if (arg->token->type != OT_INTEGER_INDEX)
5665 return FALSE;
5666
5667 max_val = (1 << operand->size) - 1;
5668 if (arg->token->u.index > max_val)
5669 {
5670 match_out_of_range (arg);
5671 return FALSE;
5672 }
5673 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5674 ++arg->token;
5675 return TRUE;
5676 }
5677
5678 /* OP_REG_INDEX matcher. */
5679
5680 static bfd_boolean
5681 match_reg_index_operand (struct mips_arg_info *arg,
5682 const struct mips_operand *operand)
5683 {
5684 unsigned int regno;
5685
5686 if (arg->token->type != OT_REG_INDEX)
5687 return FALSE;
5688
5689 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5690 return FALSE;
5691
5692 insn_insert_operand (arg->insn, operand, regno);
5693 ++arg->token;
5694 return TRUE;
5695 }
5696
5697 /* OP_PC matcher. */
5698
5699 static bfd_boolean
5700 match_pc_operand (struct mips_arg_info *arg)
5701 {
5702 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5703 {
5704 ++arg->token;
5705 return TRUE;
5706 }
5707 return FALSE;
5708 }
5709
5710 /* OP_NON_ZERO_REG matcher. */
5711
5712 static bfd_boolean
5713 match_non_zero_reg_operand (struct mips_arg_info *arg,
5714 const struct mips_operand *operand)
5715 {
5716 unsigned int regno;
5717
5718 if (!match_reg (arg, OP_REG_GP, &regno))
5719 return FALSE;
5720
5721 if (regno == 0)
5722 return FALSE;
5723
5724 arg->last_regno = regno;
5725 insn_insert_operand (arg->insn, operand, regno);
5726 return TRUE;
5727 }
5728
5729 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5730 register that we need to match. */
5731
5732 static bfd_boolean
5733 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5734 {
5735 unsigned int regno;
5736
5737 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5738 }
5739
5740 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5741 the length of the value in bytes (4 for float, 8 for double) and
5742 USING_GPRS says whether the destination is a GPR rather than an FPR.
5743
5744 Return the constant in IMM and OFFSET as follows:
5745
5746 - If the constant should be loaded via memory, set IMM to O_absent and
5747 OFFSET to the memory address.
5748
5749 - Otherwise, if the constant should be loaded into two 32-bit registers,
5750 set IMM to the O_constant to load into the high register and OFFSET
5751 to the corresponding value for the low register.
5752
5753 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5754
5755 These constants only appear as the last operand in an instruction,
5756 and every instruction that accepts them in any variant accepts them
5757 in all variants. This means we don't have to worry about backing out
5758 any changes if the instruction does not match. We just match
5759 unconditionally and report an error if the constant is invalid. */
5760
5761 static bfd_boolean
5762 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5763 expressionS *offset, int length, bfd_boolean using_gprs)
5764 {
5765 char *p;
5766 segT seg, new_seg;
5767 subsegT subseg;
5768 const char *newname;
5769 unsigned char *data;
5770
5771 /* Where the constant is placed is based on how the MIPS assembler
5772 does things:
5773
5774 length == 4 && using_gprs -- immediate value only
5775 length == 8 && using_gprs -- .rdata or immediate value
5776 length == 4 && !using_gprs -- .lit4 or immediate value
5777 length == 8 && !using_gprs -- .lit8 or immediate value
5778
5779 The .lit4 and .lit8 sections are only used if permitted by the
5780 -G argument. */
5781 if (arg->token->type != OT_FLOAT)
5782 {
5783 set_insn_error (arg->argnum, _("floating-point expression required"));
5784 return FALSE;
5785 }
5786
5787 gas_assert (arg->token->u.flt.length == length);
5788 data = arg->token->u.flt.data;
5789 ++arg->token;
5790
5791 /* Handle 32-bit constants for which an immediate value is best. */
5792 if (length == 4
5793 && (using_gprs
5794 || g_switch_value < 4
5795 || (data[0] == 0 && data[1] == 0)
5796 || (data[2] == 0 && data[3] == 0)))
5797 {
5798 imm->X_op = O_constant;
5799 if (!target_big_endian)
5800 imm->X_add_number = bfd_getl32 (data);
5801 else
5802 imm->X_add_number = bfd_getb32 (data);
5803 offset->X_op = O_absent;
5804 return TRUE;
5805 }
5806
5807 /* Handle 64-bit constants for which an immediate value is best. */
5808 if (length == 8
5809 && !mips_disable_float_construction
5810 /* Constants can only be constructed in GPRs and copied to FPRs if the
5811 GPRs are at least as wide as the FPRs or MTHC1 is available.
5812 Unlike most tests for 32-bit floating-point registers this check
5813 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5814 permit 64-bit moves without MXHC1.
5815 Force the constant into memory otherwise. */
5816 && (using_gprs
5817 || GPR_SIZE == 64
5818 || ISA_HAS_MXHC1 (mips_opts.isa)
5819 || FPR_SIZE == 32)
5820 && ((data[0] == 0 && data[1] == 0)
5821 || (data[2] == 0 && data[3] == 0))
5822 && ((data[4] == 0 && data[5] == 0)
5823 || (data[6] == 0 && data[7] == 0)))
5824 {
5825 /* The value is simple enough to load with a couple of instructions.
5826 If using 32-bit registers, set IMM to the high order 32 bits and
5827 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5828 64 bit constant. */
5829 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5830 {
5831 imm->X_op = O_constant;
5832 offset->X_op = O_constant;
5833 if (!target_big_endian)
5834 {
5835 imm->X_add_number = bfd_getl32 (data + 4);
5836 offset->X_add_number = bfd_getl32 (data);
5837 }
5838 else
5839 {
5840 imm->X_add_number = bfd_getb32 (data);
5841 offset->X_add_number = bfd_getb32 (data + 4);
5842 }
5843 if (offset->X_add_number == 0)
5844 offset->X_op = O_absent;
5845 }
5846 else
5847 {
5848 imm->X_op = O_constant;
5849 if (!target_big_endian)
5850 imm->X_add_number = bfd_getl64 (data);
5851 else
5852 imm->X_add_number = bfd_getb64 (data);
5853 offset->X_op = O_absent;
5854 }
5855 return TRUE;
5856 }
5857
5858 /* Switch to the right section. */
5859 seg = now_seg;
5860 subseg = now_subseg;
5861 if (length == 4)
5862 {
5863 gas_assert (!using_gprs && g_switch_value >= 4);
5864 newname = ".lit4";
5865 }
5866 else
5867 {
5868 if (using_gprs || g_switch_value < 8)
5869 newname = RDATA_SECTION_NAME;
5870 else
5871 newname = ".lit8";
5872 }
5873
5874 new_seg = subseg_new (newname, (subsegT) 0);
5875 bfd_set_section_flags (stdoutput, new_seg,
5876 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5877 frag_align (length == 4 ? 2 : 3, 0, 0);
5878 if (strncmp (TARGET_OS, "elf", 3) != 0)
5879 record_alignment (new_seg, 4);
5880 else
5881 record_alignment (new_seg, length == 4 ? 2 : 3);
5882 if (seg == now_seg)
5883 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5884
5885 /* Set the argument to the current address in the section. */
5886 imm->X_op = O_absent;
5887 offset->X_op = O_symbol;
5888 offset->X_add_symbol = symbol_temp_new_now ();
5889 offset->X_add_number = 0;
5890
5891 /* Put the floating point number into the section. */
5892 p = frag_more (length);
5893 memcpy (p, data, length);
5894
5895 /* Switch back to the original section. */
5896 subseg_set (seg, subseg);
5897 return TRUE;
5898 }
5899
5900 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5901 them. */
5902
5903 static bfd_boolean
5904 match_vu0_suffix_operand (struct mips_arg_info *arg,
5905 const struct mips_operand *operand,
5906 bfd_boolean match_p)
5907 {
5908 unsigned int uval;
5909
5910 /* The operand can be an XYZW mask or a single 2-bit channel index
5911 (with X being 0). */
5912 gas_assert (operand->size == 2 || operand->size == 4);
5913
5914 /* The suffix can be omitted when it is already part of the opcode. */
5915 if (arg->token->type != OT_CHANNELS)
5916 return match_p;
5917
5918 uval = arg->token->u.channels;
5919 if (operand->size == 2)
5920 {
5921 /* Check that a single bit is set and convert it into a 2-bit index. */
5922 if ((uval & -uval) != uval)
5923 return FALSE;
5924 uval = 4 - ffs (uval);
5925 }
5926
5927 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5928 return FALSE;
5929
5930 ++arg->token;
5931 if (!match_p)
5932 insn_insert_operand (arg->insn, operand, uval);
5933 return TRUE;
5934 }
5935
5936 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5937 of the argument text if the match is successful, otherwise return null. */
5938
5939 static bfd_boolean
5940 match_operand (struct mips_arg_info *arg,
5941 const struct mips_operand *operand)
5942 {
5943 switch (operand->type)
5944 {
5945 case OP_INT:
5946 return match_int_operand (arg, operand);
5947
5948 case OP_MAPPED_INT:
5949 return match_mapped_int_operand (arg, operand);
5950
5951 case OP_MSB:
5952 return match_msb_operand (arg, operand);
5953
5954 case OP_REG:
5955 case OP_OPTIONAL_REG:
5956 return match_reg_operand (arg, operand);
5957
5958 case OP_REG_PAIR:
5959 return match_reg_pair_operand (arg, operand);
5960
5961 case OP_PCREL:
5962 return match_pcrel_operand (arg);
5963
5964 case OP_PERF_REG:
5965 return match_perf_reg_operand (arg, operand);
5966
5967 case OP_ADDIUSP_INT:
5968 return match_addiusp_operand (arg, operand);
5969
5970 case OP_CLO_CLZ_DEST:
5971 return match_clo_clz_dest_operand (arg, operand);
5972
5973 case OP_LWM_SWM_LIST:
5974 return match_lwm_swm_list_operand (arg, operand);
5975
5976 case OP_ENTRY_EXIT_LIST:
5977 return match_entry_exit_operand (arg, operand);
5978
5979 case OP_SAVE_RESTORE_LIST:
5980 return match_save_restore_list_operand (arg);
5981
5982 case OP_MDMX_IMM_REG:
5983 return match_mdmx_imm_reg_operand (arg, operand);
5984
5985 case OP_REPEAT_DEST_REG:
5986 return match_tied_reg_operand (arg, arg->dest_regno);
5987
5988 case OP_REPEAT_PREV_REG:
5989 return match_tied_reg_operand (arg, arg->last_regno);
5990
5991 case OP_PC:
5992 return match_pc_operand (arg);
5993
5994 case OP_VU0_SUFFIX:
5995 return match_vu0_suffix_operand (arg, operand, FALSE);
5996
5997 case OP_VU0_MATCH_SUFFIX:
5998 return match_vu0_suffix_operand (arg, operand, TRUE);
5999
6000 case OP_IMM_INDEX:
6001 return match_imm_index_operand (arg, operand);
6002
6003 case OP_REG_INDEX:
6004 return match_reg_index_operand (arg, operand);
6005
6006 case OP_SAME_RS_RT:
6007 return match_same_rs_rt_operand (arg, operand);
6008
6009 case OP_CHECK_PREV:
6010 return match_check_prev_operand (arg, operand);
6011
6012 case OP_NON_ZERO_REG:
6013 return match_non_zero_reg_operand (arg, operand);
6014 }
6015 abort ();
6016 }
6017
6018 /* ARG is the state after successfully matching an instruction.
6019 Issue any queued-up warnings. */
6020
6021 static void
6022 check_completed_insn (struct mips_arg_info *arg)
6023 {
6024 if (arg->seen_at)
6025 {
6026 if (AT == ATREG)
6027 as_warn (_("used $at without \".set noat\""));
6028 else
6029 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6030 }
6031 }
6032
6033 /* Return true if modifying general-purpose register REG needs a delay. */
6034
6035 static bfd_boolean
6036 reg_needs_delay (unsigned int reg)
6037 {
6038 unsigned long prev_pinfo;
6039
6040 prev_pinfo = history[0].insn_mo->pinfo;
6041 if (!mips_opts.noreorder
6042 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6043 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6044 && (gpr_write_mask (&history[0]) & (1 << reg)))
6045 return TRUE;
6046
6047 return FALSE;
6048 }
6049
6050 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6051 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6052 by VR4120 errata. */
6053
6054 static unsigned int
6055 classify_vr4120_insn (const char *name)
6056 {
6057 if (strncmp (name, "macc", 4) == 0)
6058 return FIX_VR4120_MACC;
6059 if (strncmp (name, "dmacc", 5) == 0)
6060 return FIX_VR4120_DMACC;
6061 if (strncmp (name, "mult", 4) == 0)
6062 return FIX_VR4120_MULT;
6063 if (strncmp (name, "dmult", 5) == 0)
6064 return FIX_VR4120_DMULT;
6065 if (strstr (name, "div"))
6066 return FIX_VR4120_DIV;
6067 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6068 return FIX_VR4120_MTHILO;
6069 return NUM_FIX_VR4120_CLASSES;
6070 }
6071
6072 #define INSN_ERET 0x42000018
6073 #define INSN_DERET 0x4200001f
6074 #define INSN_DMULT 0x1c
6075 #define INSN_DMULTU 0x1d
6076
6077 /* Return the number of instructions that must separate INSN1 and INSN2,
6078 where INSN1 is the earlier instruction. Return the worst-case value
6079 for any INSN2 if INSN2 is null. */
6080
6081 static unsigned int
6082 insns_between (const struct mips_cl_insn *insn1,
6083 const struct mips_cl_insn *insn2)
6084 {
6085 unsigned long pinfo1, pinfo2;
6086 unsigned int mask;
6087
6088 /* If INFO2 is null, pessimistically assume that all flags are set for
6089 the second instruction. */
6090 pinfo1 = insn1->insn_mo->pinfo;
6091 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6092
6093 /* For most targets, write-after-read dependencies on the HI and LO
6094 registers must be separated by at least two instructions. */
6095 if (!hilo_interlocks)
6096 {
6097 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6098 return 2;
6099 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6100 return 2;
6101 }
6102
6103 /* If we're working around r7000 errata, there must be two instructions
6104 between an mfhi or mflo and any instruction that uses the result. */
6105 if (mips_7000_hilo_fix
6106 && !mips_opts.micromips
6107 && MF_HILO_INSN (pinfo1)
6108 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6109 return 2;
6110
6111 /* If we're working around 24K errata, one instruction is required
6112 if an ERET or DERET is followed by a branch instruction. */
6113 if (mips_fix_24k && !mips_opts.micromips)
6114 {
6115 if (insn1->insn_opcode == INSN_ERET
6116 || insn1->insn_opcode == INSN_DERET)
6117 {
6118 if (insn2 == NULL
6119 || insn2->insn_opcode == INSN_ERET
6120 || insn2->insn_opcode == INSN_DERET
6121 || delayed_branch_p (insn2))
6122 return 1;
6123 }
6124 }
6125
6126 /* If we're working around PMC RM7000 errata, there must be three
6127 nops between a dmult and a load instruction. */
6128 if (mips_fix_rm7000 && !mips_opts.micromips)
6129 {
6130 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6131 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6132 {
6133 if (pinfo2 & INSN_LOAD_MEMORY)
6134 return 3;
6135 }
6136 }
6137
6138 /* If working around VR4120 errata, check for combinations that need
6139 a single intervening instruction. */
6140 if (mips_fix_vr4120 && !mips_opts.micromips)
6141 {
6142 unsigned int class1, class2;
6143
6144 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6145 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6146 {
6147 if (insn2 == NULL)
6148 return 1;
6149 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6150 if (vr4120_conflicts[class1] & (1 << class2))
6151 return 1;
6152 }
6153 }
6154
6155 if (!HAVE_CODE_COMPRESSION)
6156 {
6157 /* Check for GPR or coprocessor load delays. All such delays
6158 are on the RT register. */
6159 /* Itbl support may require additional care here. */
6160 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6161 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6162 {
6163 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6164 return 1;
6165 }
6166
6167 /* Check for generic coprocessor hazards.
6168
6169 This case is not handled very well. There is no special
6170 knowledge of CP0 handling, and the coprocessors other than
6171 the floating point unit are not distinguished at all. */
6172 /* Itbl support may require additional care here. FIXME!
6173 Need to modify this to include knowledge about
6174 user specified delays! */
6175 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6176 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6177 {
6178 /* Handle cases where INSN1 writes to a known general coprocessor
6179 register. There must be a one instruction delay before INSN2
6180 if INSN2 reads that register, otherwise no delay is needed. */
6181 mask = fpr_write_mask (insn1);
6182 if (mask != 0)
6183 {
6184 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6185 return 1;
6186 }
6187 else
6188 {
6189 /* Read-after-write dependencies on the control registers
6190 require a two-instruction gap. */
6191 if ((pinfo1 & INSN_WRITE_COND_CODE)
6192 && (pinfo2 & INSN_READ_COND_CODE))
6193 return 2;
6194
6195 /* We don't know exactly what INSN1 does. If INSN2 is
6196 also a coprocessor instruction, assume there must be
6197 a one instruction gap. */
6198 if (pinfo2 & INSN_COP)
6199 return 1;
6200 }
6201 }
6202
6203 /* Check for read-after-write dependencies on the coprocessor
6204 control registers in cases where INSN1 does not need a general
6205 coprocessor delay. This means that INSN1 is a floating point
6206 comparison instruction. */
6207 /* Itbl support may require additional care here. */
6208 else if (!cop_interlocks
6209 && (pinfo1 & INSN_WRITE_COND_CODE)
6210 && (pinfo2 & INSN_READ_COND_CODE))
6211 return 1;
6212 }
6213
6214 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6215 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6216 and pause. */
6217 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6218 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6219 || (insn2 && delayed_branch_p (insn2))))
6220 return 1;
6221
6222 return 0;
6223 }
6224
6225 /* Return the number of nops that would be needed to work around the
6226 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6227 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6228 that are contained within the first IGNORE instructions of HIST. */
6229
6230 static int
6231 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6232 const struct mips_cl_insn *insn)
6233 {
6234 int i, j;
6235 unsigned int mask;
6236
6237 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6238 are not affected by the errata. */
6239 if (insn != 0
6240 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6241 || strcmp (insn->insn_mo->name, "mtlo") == 0
6242 || strcmp (insn->insn_mo->name, "mthi") == 0))
6243 return 0;
6244
6245 /* Search for the first MFLO or MFHI. */
6246 for (i = 0; i < MAX_VR4130_NOPS; i++)
6247 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6248 {
6249 /* Extract the destination register. */
6250 mask = gpr_write_mask (&hist[i]);
6251
6252 /* No nops are needed if INSN reads that register. */
6253 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6254 return 0;
6255
6256 /* ...or if any of the intervening instructions do. */
6257 for (j = 0; j < i; j++)
6258 if (gpr_read_mask (&hist[j]) & mask)
6259 return 0;
6260
6261 if (i >= ignore)
6262 return MAX_VR4130_NOPS - i;
6263 }
6264 return 0;
6265 }
6266
6267 #define BASE_REG_EQ(INSN1, INSN2) \
6268 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6269 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6270
6271 /* Return the minimum alignment for this store instruction. */
6272
6273 static int
6274 fix_24k_align_to (const struct mips_opcode *mo)
6275 {
6276 if (strcmp (mo->name, "sh") == 0)
6277 return 2;
6278
6279 if (strcmp (mo->name, "swc1") == 0
6280 || strcmp (mo->name, "swc2") == 0
6281 || strcmp (mo->name, "sw") == 0
6282 || strcmp (mo->name, "sc") == 0
6283 || strcmp (mo->name, "s.s") == 0)
6284 return 4;
6285
6286 if (strcmp (mo->name, "sdc1") == 0
6287 || strcmp (mo->name, "sdc2") == 0
6288 || strcmp (mo->name, "s.d") == 0)
6289 return 8;
6290
6291 /* sb, swl, swr */
6292 return 1;
6293 }
6294
6295 struct fix_24k_store_info
6296 {
6297 /* Immediate offset, if any, for this store instruction. */
6298 short off;
6299 /* Alignment required by this store instruction. */
6300 int align_to;
6301 /* True for register offsets. */
6302 int register_offset;
6303 };
6304
6305 /* Comparison function used by qsort. */
6306
6307 static int
6308 fix_24k_sort (const void *a, const void *b)
6309 {
6310 const struct fix_24k_store_info *pos1 = a;
6311 const struct fix_24k_store_info *pos2 = b;
6312
6313 return (pos1->off - pos2->off);
6314 }
6315
6316 /* INSN is a store instruction. Try to record the store information
6317 in STINFO. Return false if the information isn't known. */
6318
6319 static bfd_boolean
6320 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6321 const struct mips_cl_insn *insn)
6322 {
6323 /* The instruction must have a known offset. */
6324 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6325 return FALSE;
6326
6327 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6328 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6329 return TRUE;
6330 }
6331
6332 /* Return the number of nops that would be needed to work around the 24k
6333 "lost data on stores during refill" errata if instruction INSN
6334 immediately followed the 2 instructions described by HIST.
6335 Ignore hazards that are contained within the first IGNORE
6336 instructions of HIST.
6337
6338 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6339 for the data cache refills and store data. The following describes
6340 the scenario where the store data could be lost.
6341
6342 * A data cache miss, due to either a load or a store, causing fill
6343 data to be supplied by the memory subsystem
6344 * The first three doublewords of fill data are returned and written
6345 into the cache
6346 * A sequence of four stores occurs in consecutive cycles around the
6347 final doubleword of the fill:
6348 * Store A
6349 * Store B
6350 * Store C
6351 * Zero, One or more instructions
6352 * Store D
6353
6354 The four stores A-D must be to different doublewords of the line that
6355 is being filled. The fourth instruction in the sequence above permits
6356 the fill of the final doubleword to be transferred from the FSB into
6357 the cache. In the sequence above, the stores may be either integer
6358 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6359 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6360 different doublewords on the line. If the floating point unit is
6361 running in 1:2 mode, it is not possible to create the sequence above
6362 using only floating point store instructions.
6363
6364 In this case, the cache line being filled is incorrectly marked
6365 invalid, thereby losing the data from any store to the line that
6366 occurs between the original miss and the completion of the five
6367 cycle sequence shown above.
6368
6369 The workarounds are:
6370
6371 * Run the data cache in write-through mode.
6372 * Insert a non-store instruction between
6373 Store A and Store B or Store B and Store C. */
6374
6375 static int
6376 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6377 const struct mips_cl_insn *insn)
6378 {
6379 struct fix_24k_store_info pos[3];
6380 int align, i, base_offset;
6381
6382 if (ignore >= 2)
6383 return 0;
6384
6385 /* If the previous instruction wasn't a store, there's nothing to
6386 worry about. */
6387 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6388 return 0;
6389
6390 /* If the instructions after the previous one are unknown, we have
6391 to assume the worst. */
6392 if (!insn)
6393 return 1;
6394
6395 /* Check whether we are dealing with three consecutive stores. */
6396 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6397 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6398 return 0;
6399
6400 /* If we don't know the relationship between the store addresses,
6401 assume the worst. */
6402 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6403 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6404 return 1;
6405
6406 if (!fix_24k_record_store_info (&pos[0], insn)
6407 || !fix_24k_record_store_info (&pos[1], &hist[0])
6408 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6409 return 1;
6410
6411 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6412
6413 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6414 X bytes and such that the base register + X is known to be aligned
6415 to align bytes. */
6416
6417 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6418 align = 8;
6419 else
6420 {
6421 align = pos[0].align_to;
6422 base_offset = pos[0].off;
6423 for (i = 1; i < 3; i++)
6424 if (align < pos[i].align_to)
6425 {
6426 align = pos[i].align_to;
6427 base_offset = pos[i].off;
6428 }
6429 for (i = 0; i < 3; i++)
6430 pos[i].off -= base_offset;
6431 }
6432
6433 pos[0].off &= ~align + 1;
6434 pos[1].off &= ~align + 1;
6435 pos[2].off &= ~align + 1;
6436
6437 /* If any two stores write to the same chunk, they also write to the
6438 same doubleword. The offsets are still sorted at this point. */
6439 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6440 return 0;
6441
6442 /* A range of at least 9 bytes is needed for the stores to be in
6443 non-overlapping doublewords. */
6444 if (pos[2].off - pos[0].off <= 8)
6445 return 0;
6446
6447 if (pos[2].off - pos[1].off >= 24
6448 || pos[1].off - pos[0].off >= 24
6449 || pos[2].off - pos[0].off >= 32)
6450 return 0;
6451
6452 return 1;
6453 }
6454
6455 /* Return the number of nops that would be needed if instruction INSN
6456 immediately followed the MAX_NOPS instructions given by HIST,
6457 where HIST[0] is the most recent instruction. Ignore hazards
6458 between INSN and the first IGNORE instructions in HIST.
6459
6460 If INSN is null, return the worse-case number of nops for any
6461 instruction. */
6462
6463 static int
6464 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6465 const struct mips_cl_insn *insn)
6466 {
6467 int i, nops, tmp_nops;
6468
6469 nops = 0;
6470 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6471 {
6472 tmp_nops = insns_between (hist + i, insn) - i;
6473 if (tmp_nops > nops)
6474 nops = tmp_nops;
6475 }
6476
6477 if (mips_fix_vr4130 && !mips_opts.micromips)
6478 {
6479 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6480 if (tmp_nops > nops)
6481 nops = tmp_nops;
6482 }
6483
6484 if (mips_fix_24k && !mips_opts.micromips)
6485 {
6486 tmp_nops = nops_for_24k (ignore, hist, insn);
6487 if (tmp_nops > nops)
6488 nops = tmp_nops;
6489 }
6490
6491 return nops;
6492 }
6493
6494 /* The variable arguments provide NUM_INSNS extra instructions that
6495 might be added to HIST. Return the largest number of nops that
6496 would be needed after the extended sequence, ignoring hazards
6497 in the first IGNORE instructions. */
6498
6499 static int
6500 nops_for_sequence (int num_insns, int ignore,
6501 const struct mips_cl_insn *hist, ...)
6502 {
6503 va_list args;
6504 struct mips_cl_insn buffer[MAX_NOPS];
6505 struct mips_cl_insn *cursor;
6506 int nops;
6507
6508 va_start (args, hist);
6509 cursor = buffer + num_insns;
6510 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6511 while (cursor > buffer)
6512 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6513
6514 nops = nops_for_insn (ignore, buffer, NULL);
6515 va_end (args);
6516 return nops;
6517 }
6518
6519 /* Like nops_for_insn, but if INSN is a branch, take into account the
6520 worst-case delay for the branch target. */
6521
6522 static int
6523 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6524 const struct mips_cl_insn *insn)
6525 {
6526 int nops, tmp_nops;
6527
6528 nops = nops_for_insn (ignore, hist, insn);
6529 if (delayed_branch_p (insn))
6530 {
6531 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6532 hist, insn, get_delay_slot_nop (insn));
6533 if (tmp_nops > nops)
6534 nops = tmp_nops;
6535 }
6536 else if (compact_branch_p (insn))
6537 {
6538 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6539 if (tmp_nops > nops)
6540 nops = tmp_nops;
6541 }
6542 return nops;
6543 }
6544
6545 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6546
6547 static void
6548 fix_loongson2f_nop (struct mips_cl_insn * ip)
6549 {
6550 gas_assert (!HAVE_CODE_COMPRESSION);
6551 if (strcmp (ip->insn_mo->name, "nop") == 0)
6552 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6553 }
6554
6555 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6556 jr target pc &= 'hffff_ffff_cfff_ffff. */
6557
6558 static void
6559 fix_loongson2f_jump (struct mips_cl_insn * ip)
6560 {
6561 gas_assert (!HAVE_CODE_COMPRESSION);
6562 if (strcmp (ip->insn_mo->name, "j") == 0
6563 || strcmp (ip->insn_mo->name, "jr") == 0
6564 || strcmp (ip->insn_mo->name, "jalr") == 0)
6565 {
6566 int sreg;
6567 expressionS ep;
6568
6569 if (! mips_opts.at)
6570 return;
6571
6572 sreg = EXTRACT_OPERAND (0, RS, *ip);
6573 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6574 return;
6575
6576 ep.X_op = O_constant;
6577 ep.X_add_number = 0xcfff0000;
6578 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6579 ep.X_add_number = 0xffff;
6580 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6581 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6582 }
6583 }
6584
6585 static void
6586 fix_loongson2f (struct mips_cl_insn * ip)
6587 {
6588 if (mips_fix_loongson2f_nop)
6589 fix_loongson2f_nop (ip);
6590
6591 if (mips_fix_loongson2f_jump)
6592 fix_loongson2f_jump (ip);
6593 }
6594
6595 /* IP is a branch that has a delay slot, and we need to fill it
6596 automatically. Return true if we can do that by swapping IP
6597 with the previous instruction.
6598 ADDRESS_EXPR is an operand of the instruction to be used with
6599 RELOC_TYPE. */
6600
6601 static bfd_boolean
6602 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6603 bfd_reloc_code_real_type *reloc_type)
6604 {
6605 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6606 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6607 unsigned int fpr_read, prev_fpr_write;
6608
6609 /* -O2 and above is required for this optimization. */
6610 if (mips_optimize < 2)
6611 return FALSE;
6612
6613 /* If we have seen .set volatile or .set nomove, don't optimize. */
6614 if (mips_opts.nomove)
6615 return FALSE;
6616
6617 /* We can't swap if the previous instruction's position is fixed. */
6618 if (history[0].fixed_p)
6619 return FALSE;
6620
6621 /* If the previous previous insn was in a .set noreorder, we can't
6622 swap. Actually, the MIPS assembler will swap in this situation.
6623 However, gcc configured -with-gnu-as will generate code like
6624
6625 .set noreorder
6626 lw $4,XXX
6627 .set reorder
6628 INSN
6629 bne $4,$0,foo
6630
6631 in which we can not swap the bne and INSN. If gcc is not configured
6632 -with-gnu-as, it does not output the .set pseudo-ops. */
6633 if (history[1].noreorder_p)
6634 return FALSE;
6635
6636 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6637 This means that the previous instruction was a 4-byte one anyhow. */
6638 if (mips_opts.mips16 && history[0].fixp[0])
6639 return FALSE;
6640
6641 /* If the branch is itself the target of a branch, we can not swap.
6642 We cheat on this; all we check for is whether there is a label on
6643 this instruction. If there are any branches to anything other than
6644 a label, users must use .set noreorder. */
6645 if (seg_info (now_seg)->label_list)
6646 return FALSE;
6647
6648 /* If the previous instruction is in a variant frag other than this
6649 branch's one, we cannot do the swap. This does not apply to
6650 MIPS16 code, which uses variant frags for different purposes. */
6651 if (!mips_opts.mips16
6652 && history[0].frag
6653 && history[0].frag->fr_type == rs_machine_dependent)
6654 return FALSE;
6655
6656 /* We do not swap with instructions that cannot architecturally
6657 be placed in a branch delay slot, such as SYNC or ERET. We
6658 also refrain from swapping with a trap instruction, since it
6659 complicates trap handlers to have the trap instruction be in
6660 a delay slot. */
6661 prev_pinfo = history[0].insn_mo->pinfo;
6662 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6663 return FALSE;
6664
6665 /* Check for conflicts between the branch and the instructions
6666 before the candidate delay slot. */
6667 if (nops_for_insn (0, history + 1, ip) > 0)
6668 return FALSE;
6669
6670 /* Check for conflicts between the swapped sequence and the
6671 target of the branch. */
6672 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6673 return FALSE;
6674
6675 /* If the branch reads a register that the previous
6676 instruction sets, we can not swap. */
6677 gpr_read = gpr_read_mask (ip);
6678 prev_gpr_write = gpr_write_mask (&history[0]);
6679 if (gpr_read & prev_gpr_write)
6680 return FALSE;
6681
6682 fpr_read = fpr_read_mask (ip);
6683 prev_fpr_write = fpr_write_mask (&history[0]);
6684 if (fpr_read & prev_fpr_write)
6685 return FALSE;
6686
6687 /* If the branch writes a register that the previous
6688 instruction sets, we can not swap. */
6689 gpr_write = gpr_write_mask (ip);
6690 if (gpr_write & prev_gpr_write)
6691 return FALSE;
6692
6693 /* If the branch writes a register that the previous
6694 instruction reads, we can not swap. */
6695 prev_gpr_read = gpr_read_mask (&history[0]);
6696 if (gpr_write & prev_gpr_read)
6697 return FALSE;
6698
6699 /* If one instruction sets a condition code and the
6700 other one uses a condition code, we can not swap. */
6701 pinfo = ip->insn_mo->pinfo;
6702 if ((pinfo & INSN_READ_COND_CODE)
6703 && (prev_pinfo & INSN_WRITE_COND_CODE))
6704 return FALSE;
6705 if ((pinfo & INSN_WRITE_COND_CODE)
6706 && (prev_pinfo & INSN_READ_COND_CODE))
6707 return FALSE;
6708
6709 /* If the previous instruction uses the PC, we can not swap. */
6710 prev_pinfo2 = history[0].insn_mo->pinfo2;
6711 if (prev_pinfo2 & INSN2_READ_PC)
6712 return FALSE;
6713
6714 /* If the previous instruction has an incorrect size for a fixed
6715 branch delay slot in microMIPS mode, we cannot swap. */
6716 pinfo2 = ip->insn_mo->pinfo2;
6717 if (mips_opts.micromips
6718 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6719 && insn_length (history) != 2)
6720 return FALSE;
6721 if (mips_opts.micromips
6722 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6723 && insn_length (history) != 4)
6724 return FALSE;
6725
6726 /* On R5900 short loops need to be fixed by inserting a nop in
6727 the branch delay slots.
6728 A short loop can be terminated too early. */
6729 if (mips_opts.arch == CPU_R5900
6730 /* Check if instruction has a parameter, ignore "j $31". */
6731 && (address_expr != NULL)
6732 /* Parameter must be 16 bit. */
6733 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6734 /* Branch to same segment. */
6735 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6736 /* Branch to same code fragment. */
6737 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6738 /* Can only calculate branch offset if value is known. */
6739 && symbol_constant_p (address_expr->X_add_symbol)
6740 /* Check if branch is really conditional. */
6741 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6742 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6743 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6744 {
6745 int distance;
6746 /* Check if loop is shorter than 6 instructions including
6747 branch and delay slot. */
6748 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6749 if (distance <= 20)
6750 {
6751 int i;
6752 int rv;
6753
6754 rv = FALSE;
6755 /* When the loop includes branches or jumps,
6756 it is not a short loop. */
6757 for (i = 0; i < (distance / 4); i++)
6758 {
6759 if ((history[i].cleared_p)
6760 || delayed_branch_p (&history[i]))
6761 {
6762 rv = TRUE;
6763 break;
6764 }
6765 }
6766 if (rv == FALSE)
6767 {
6768 /* Insert nop after branch to fix short loop. */
6769 return FALSE;
6770 }
6771 }
6772 }
6773
6774 return TRUE;
6775 }
6776
6777 /* Decide how we should add IP to the instruction stream.
6778 ADDRESS_EXPR is an operand of the instruction to be used with
6779 RELOC_TYPE. */
6780
6781 static enum append_method
6782 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6783 bfd_reloc_code_real_type *reloc_type)
6784 {
6785 /* The relaxed version of a macro sequence must be inherently
6786 hazard-free. */
6787 if (mips_relax.sequence == 2)
6788 return APPEND_ADD;
6789
6790 /* We must not dabble with instructions in a ".set norerorder" block. */
6791 if (mips_opts.noreorder)
6792 return APPEND_ADD;
6793
6794 /* Otherwise, it's our responsibility to fill branch delay slots. */
6795 if (delayed_branch_p (ip))
6796 {
6797 if (!branch_likely_p (ip)
6798 && can_swap_branch_p (ip, address_expr, reloc_type))
6799 return APPEND_SWAP;
6800
6801 if (mips_opts.mips16
6802 && ISA_SUPPORTS_MIPS16E
6803 && gpr_read_mask (ip) != 0)
6804 return APPEND_ADD_COMPACT;
6805
6806 return APPEND_ADD_WITH_NOP;
6807 }
6808
6809 return APPEND_ADD;
6810 }
6811
6812 /* IP is a MIPS16 instruction whose opcode we have just changed.
6813 Point IP->insn_mo to the new opcode's definition. */
6814
6815 static void
6816 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6817 {
6818 const struct mips_opcode *mo, *end;
6819
6820 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6821 for (mo = ip->insn_mo; mo < end; mo++)
6822 if ((ip->insn_opcode & mo->mask) == mo->match)
6823 {
6824 ip->insn_mo = mo;
6825 return;
6826 }
6827 abort ();
6828 }
6829
6830 /* For microMIPS macros, we need to generate a local number label
6831 as the target of branches. */
6832 #define MICROMIPS_LABEL_CHAR '\037'
6833 static unsigned long micromips_target_label;
6834 static char micromips_target_name[32];
6835
6836 static char *
6837 micromips_label_name (void)
6838 {
6839 char *p = micromips_target_name;
6840 char symbol_name_temporary[24];
6841 unsigned long l;
6842 int i;
6843
6844 if (*p)
6845 return p;
6846
6847 i = 0;
6848 l = micromips_target_label;
6849 #ifdef LOCAL_LABEL_PREFIX
6850 *p++ = LOCAL_LABEL_PREFIX;
6851 #endif
6852 *p++ = 'L';
6853 *p++ = MICROMIPS_LABEL_CHAR;
6854 do
6855 {
6856 symbol_name_temporary[i++] = l % 10 + '0';
6857 l /= 10;
6858 }
6859 while (l != 0);
6860 while (i > 0)
6861 *p++ = symbol_name_temporary[--i];
6862 *p = '\0';
6863
6864 return micromips_target_name;
6865 }
6866
6867 static void
6868 micromips_label_expr (expressionS *label_expr)
6869 {
6870 label_expr->X_op = O_symbol;
6871 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6872 label_expr->X_add_number = 0;
6873 }
6874
6875 static void
6876 micromips_label_inc (void)
6877 {
6878 micromips_target_label++;
6879 *micromips_target_name = '\0';
6880 }
6881
6882 static void
6883 micromips_add_label (void)
6884 {
6885 symbolS *s;
6886
6887 s = colon (micromips_label_name ());
6888 micromips_label_inc ();
6889 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6890 }
6891
6892 /* If assembling microMIPS code, then return the microMIPS reloc
6893 corresponding to the requested one if any. Otherwise return
6894 the reloc unchanged. */
6895
6896 static bfd_reloc_code_real_type
6897 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6898 {
6899 static const bfd_reloc_code_real_type relocs[][2] =
6900 {
6901 /* Keep sorted incrementally by the left-hand key. */
6902 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6903 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6904 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6905 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6906 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6907 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6908 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6909 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6910 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6911 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6912 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6913 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6914 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6915 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6916 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6917 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6918 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6919 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6920 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6921 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6922 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6923 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6924 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6925 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6926 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6927 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6928 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6929 };
6930 bfd_reloc_code_real_type r;
6931 size_t i;
6932
6933 if (!mips_opts.micromips)
6934 return reloc;
6935 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6936 {
6937 r = relocs[i][0];
6938 if (r > reloc)
6939 return reloc;
6940 if (r == reloc)
6941 return relocs[i][1];
6942 }
6943 return reloc;
6944 }
6945
6946 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6947 Return true on success, storing the resolved value in RESULT. */
6948
6949 static bfd_boolean
6950 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6951 offsetT *result)
6952 {
6953 switch (reloc)
6954 {
6955 case BFD_RELOC_MIPS_HIGHEST:
6956 case BFD_RELOC_MICROMIPS_HIGHEST:
6957 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6958 return TRUE;
6959
6960 case BFD_RELOC_MIPS_HIGHER:
6961 case BFD_RELOC_MICROMIPS_HIGHER:
6962 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6963 return TRUE;
6964
6965 case BFD_RELOC_HI16_S:
6966 case BFD_RELOC_MICROMIPS_HI16_S:
6967 case BFD_RELOC_MIPS16_HI16_S:
6968 *result = ((operand + 0x8000) >> 16) & 0xffff;
6969 return TRUE;
6970
6971 case BFD_RELOC_HI16:
6972 case BFD_RELOC_MICROMIPS_HI16:
6973 case BFD_RELOC_MIPS16_HI16:
6974 *result = (operand >> 16) & 0xffff;
6975 return TRUE;
6976
6977 case BFD_RELOC_LO16:
6978 case BFD_RELOC_MICROMIPS_LO16:
6979 case BFD_RELOC_MIPS16_LO16:
6980 *result = operand & 0xffff;
6981 return TRUE;
6982
6983 case BFD_RELOC_UNUSED:
6984 *result = operand;
6985 return TRUE;
6986
6987 default:
6988 return FALSE;
6989 }
6990 }
6991
6992 /* Output an instruction. IP is the instruction information.
6993 ADDRESS_EXPR is an operand of the instruction to be used with
6994 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6995 a macro expansion. */
6996
6997 static void
6998 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
6999 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7000 {
7001 unsigned long prev_pinfo2, pinfo;
7002 bfd_boolean relaxed_branch = FALSE;
7003 enum append_method method;
7004 bfd_boolean relax32;
7005 int branch_disp;
7006
7007 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7008 fix_loongson2f (ip);
7009
7010 file_ase_mips16 |= mips_opts.mips16;
7011 file_ase_micromips |= mips_opts.micromips;
7012
7013 prev_pinfo2 = history[0].insn_mo->pinfo2;
7014 pinfo = ip->insn_mo->pinfo;
7015
7016 if (mips_opts.micromips
7017 && !expansionp
7018 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7019 && micromips_insn_length (ip->insn_mo) != 2)
7020 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7021 && micromips_insn_length (ip->insn_mo) != 4)))
7022 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7023 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7024
7025 if (address_expr == NULL)
7026 ip->complete_p = 1;
7027 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7028 && reloc_type[1] == BFD_RELOC_UNUSED
7029 && reloc_type[2] == BFD_RELOC_UNUSED
7030 && address_expr->X_op == O_constant)
7031 {
7032 switch (*reloc_type)
7033 {
7034 case BFD_RELOC_MIPS_JMP:
7035 {
7036 int shift;
7037
7038 shift = mips_opts.micromips ? 1 : 2;
7039 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7040 as_bad (_("jump to misaligned address (0x%lx)"),
7041 (unsigned long) address_expr->X_add_number);
7042 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7043 & 0x3ffffff);
7044 ip->complete_p = 1;
7045 }
7046 break;
7047
7048 case BFD_RELOC_MIPS16_JMP:
7049 if ((address_expr->X_add_number & 3) != 0)
7050 as_bad (_("jump to misaligned address (0x%lx)"),
7051 (unsigned long) address_expr->X_add_number);
7052 ip->insn_opcode |=
7053 (((address_expr->X_add_number & 0x7c0000) << 3)
7054 | ((address_expr->X_add_number & 0xf800000) >> 7)
7055 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7056 ip->complete_p = 1;
7057 break;
7058
7059 case BFD_RELOC_16_PCREL_S2:
7060 {
7061 int shift;
7062
7063 shift = mips_opts.micromips ? 1 : 2;
7064 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7065 as_bad (_("branch to misaligned address (0x%lx)"),
7066 (unsigned long) address_expr->X_add_number);
7067 if (!mips_relax_branch)
7068 {
7069 if ((address_expr->X_add_number + (1 << (shift + 15)))
7070 & ~((1 << (shift + 16)) - 1))
7071 as_bad (_("branch address range overflow (0x%lx)"),
7072 (unsigned long) address_expr->X_add_number);
7073 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7074 & 0xffff);
7075 }
7076 }
7077 break;
7078
7079 case BFD_RELOC_MIPS_21_PCREL_S2:
7080 {
7081 int shift;
7082
7083 shift = 2;
7084 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7085 as_bad (_("branch to misaligned address (0x%lx)"),
7086 (unsigned long) address_expr->X_add_number);
7087 if ((address_expr->X_add_number + (1 << (shift + 20)))
7088 & ~((1 << (shift + 21)) - 1))
7089 as_bad (_("branch address range overflow (0x%lx)"),
7090 (unsigned long) address_expr->X_add_number);
7091 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7092 & 0x1fffff);
7093 }
7094 break;
7095
7096 case BFD_RELOC_MIPS_26_PCREL_S2:
7097 {
7098 int shift;
7099
7100 shift = 2;
7101 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7102 as_bad (_("branch to misaligned address (0x%lx)"),
7103 (unsigned long) address_expr->X_add_number);
7104 if ((address_expr->X_add_number + (1 << (shift + 25)))
7105 & ~((1 << (shift + 26)) - 1))
7106 as_bad (_("branch address range overflow (0x%lx)"),
7107 (unsigned long) address_expr->X_add_number);
7108 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7109 & 0x3ffffff);
7110 }
7111 break;
7112
7113 default:
7114 {
7115 offsetT value;
7116
7117 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7118 &value))
7119 {
7120 ip->insn_opcode |= value & 0xffff;
7121 ip->complete_p = 1;
7122 }
7123 }
7124 break;
7125 }
7126 }
7127
7128 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7129 {
7130 /* There are a lot of optimizations we could do that we don't.
7131 In particular, we do not, in general, reorder instructions.
7132 If you use gcc with optimization, it will reorder
7133 instructions and generally do much more optimization then we
7134 do here; repeating all that work in the assembler would only
7135 benefit hand written assembly code, and does not seem worth
7136 it. */
7137 int nops = (mips_optimize == 0
7138 ? nops_for_insn (0, history, NULL)
7139 : nops_for_insn_or_target (0, history, ip));
7140 if (nops > 0)
7141 {
7142 fragS *old_frag;
7143 unsigned long old_frag_offset;
7144 int i;
7145
7146 old_frag = frag_now;
7147 old_frag_offset = frag_now_fix ();
7148
7149 for (i = 0; i < nops; i++)
7150 add_fixed_insn (NOP_INSN);
7151 insert_into_history (0, nops, NOP_INSN);
7152
7153 if (listing)
7154 {
7155 listing_prev_line ();
7156 /* We may be at the start of a variant frag. In case we
7157 are, make sure there is enough space for the frag
7158 after the frags created by listing_prev_line. The
7159 argument to frag_grow here must be at least as large
7160 as the argument to all other calls to frag_grow in
7161 this file. We don't have to worry about being in the
7162 middle of a variant frag, because the variants insert
7163 all needed nop instructions themselves. */
7164 frag_grow (40);
7165 }
7166
7167 mips_move_text_labels ();
7168
7169 #ifndef NO_ECOFF_DEBUGGING
7170 if (ECOFF_DEBUGGING)
7171 ecoff_fix_loc (old_frag, old_frag_offset);
7172 #endif
7173 }
7174 }
7175 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7176 {
7177 int nops;
7178
7179 /* Work out how many nops in prev_nop_frag are needed by IP,
7180 ignoring hazards generated by the first prev_nop_frag_since
7181 instructions. */
7182 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7183 gas_assert (nops <= prev_nop_frag_holds);
7184
7185 /* Enforce NOPS as a minimum. */
7186 if (nops > prev_nop_frag_required)
7187 prev_nop_frag_required = nops;
7188
7189 if (prev_nop_frag_holds == prev_nop_frag_required)
7190 {
7191 /* Settle for the current number of nops. Update the history
7192 accordingly (for the benefit of any future .set reorder code). */
7193 prev_nop_frag = NULL;
7194 insert_into_history (prev_nop_frag_since,
7195 prev_nop_frag_holds, NOP_INSN);
7196 }
7197 else
7198 {
7199 /* Allow this instruction to replace one of the nops that was
7200 tentatively added to prev_nop_frag. */
7201 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7202 prev_nop_frag_holds--;
7203 prev_nop_frag_since++;
7204 }
7205 }
7206
7207 method = get_append_method (ip, address_expr, reloc_type);
7208 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7209
7210 dwarf2_emit_insn (0);
7211 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7212 so "move" the instruction address accordingly.
7213
7214 Also, it doesn't seem appropriate for the assembler to reorder .loc
7215 entries. If this instruction is a branch that we are going to swap
7216 with the previous instruction, the two instructions should be
7217 treated as a unit, and the debug information for both instructions
7218 should refer to the start of the branch sequence. Using the
7219 current position is certainly wrong when swapping a 32-bit branch
7220 and a 16-bit delay slot, since the current position would then be
7221 in the middle of a branch. */
7222 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7223
7224 relax32 = (mips_relax_branch
7225 /* Don't try branch relaxation within .set nomacro, or within
7226 .set noat if we use $at for PIC computations. If it turns
7227 out that the branch was out-of-range, we'll get an error. */
7228 && !mips_opts.warn_about_macros
7229 && (mips_opts.at || mips_pic == NO_PIC)
7230 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7231 as they have no complementing branches. */
7232 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7233
7234 if (!HAVE_CODE_COMPRESSION
7235 && address_expr
7236 && relax32
7237 && *reloc_type == BFD_RELOC_16_PCREL_S2
7238 && delayed_branch_p (ip))
7239 {
7240 relaxed_branch = TRUE;
7241 add_relaxed_insn (ip, (relaxed_branch_length
7242 (NULL, NULL,
7243 uncond_branch_p (ip) ? -1
7244 : branch_likely_p (ip) ? 1
7245 : 0)), 4,
7246 RELAX_BRANCH_ENCODE
7247 (AT,
7248 uncond_branch_p (ip),
7249 branch_likely_p (ip),
7250 pinfo & INSN_WRITE_GPR_31,
7251 0),
7252 address_expr->X_add_symbol,
7253 address_expr->X_add_number);
7254 *reloc_type = BFD_RELOC_UNUSED;
7255 }
7256 else if (mips_opts.micromips
7257 && address_expr
7258 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7259 || *reloc_type > BFD_RELOC_UNUSED)
7260 && (delayed_branch_p (ip) || compact_branch_p (ip))
7261 /* Don't try branch relaxation when users specify
7262 16-bit/32-bit instructions. */
7263 && !forced_insn_length)
7264 {
7265 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7266 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7267 int uncond = uncond_branch_p (ip) ? -1 : 0;
7268 int compact = compact_branch_p (ip);
7269 int al = pinfo & INSN_WRITE_GPR_31;
7270 int length32;
7271
7272 gas_assert (address_expr != NULL);
7273 gas_assert (!mips_relax.sequence);
7274
7275 relaxed_branch = TRUE;
7276 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7277 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
7278 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7279 relax32, 0, 0),
7280 address_expr->X_add_symbol,
7281 address_expr->X_add_number);
7282 *reloc_type = BFD_RELOC_UNUSED;
7283 }
7284 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7285 {
7286 /* We need to set up a variant frag. */
7287 gas_assert (address_expr != NULL);
7288 add_relaxed_insn (ip, 4, 0,
7289 RELAX_MIPS16_ENCODE
7290 (*reloc_type - BFD_RELOC_UNUSED,
7291 forced_insn_length == 2, forced_insn_length == 4,
7292 delayed_branch_p (&history[0]),
7293 history[0].mips16_absolute_jump_p),
7294 make_expr_symbol (address_expr), 0);
7295 }
7296 else if (mips_opts.mips16 && insn_length (ip) == 2)
7297 {
7298 if (!delayed_branch_p (ip))
7299 /* Make sure there is enough room to swap this instruction with
7300 a following jump instruction. */
7301 frag_grow (6);
7302 add_fixed_insn (ip);
7303 }
7304 else
7305 {
7306 if (mips_opts.mips16
7307 && mips_opts.noreorder
7308 && delayed_branch_p (&history[0]))
7309 as_warn (_("extended instruction in delay slot"));
7310
7311 if (mips_relax.sequence)
7312 {
7313 /* If we've reached the end of this frag, turn it into a variant
7314 frag and record the information for the instructions we've
7315 written so far. */
7316 if (frag_room () < 4)
7317 relax_close_frag ();
7318 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7319 }
7320
7321 if (mips_relax.sequence != 2)
7322 {
7323 if (mips_macro_warning.first_insn_sizes[0] == 0)
7324 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7325 mips_macro_warning.sizes[0] += insn_length (ip);
7326 mips_macro_warning.insns[0]++;
7327 }
7328 if (mips_relax.sequence != 1)
7329 {
7330 if (mips_macro_warning.first_insn_sizes[1] == 0)
7331 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7332 mips_macro_warning.sizes[1] += insn_length (ip);
7333 mips_macro_warning.insns[1]++;
7334 }
7335
7336 if (mips_opts.mips16)
7337 {
7338 ip->fixed_p = 1;
7339 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7340 }
7341 add_fixed_insn (ip);
7342 }
7343
7344 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7345 {
7346 bfd_reloc_code_real_type final_type[3];
7347 reloc_howto_type *howto0;
7348 reloc_howto_type *howto;
7349 int i;
7350
7351 /* Perform any necessary conversion to microMIPS relocations
7352 and find out how many relocations there actually are. */
7353 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7354 final_type[i] = micromips_map_reloc (reloc_type[i]);
7355
7356 /* In a compound relocation, it is the final (outermost)
7357 operator that determines the relocated field. */
7358 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7359 if (!howto)
7360 abort ();
7361
7362 if (i > 1)
7363 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7364 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7365 bfd_get_reloc_size (howto),
7366 address_expr,
7367 howto0 && howto0->pc_relative,
7368 final_type[0]);
7369
7370 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7371 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7372 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7373
7374 /* These relocations can have an addend that won't fit in
7375 4 octets for 64bit assembly. */
7376 if (GPR_SIZE == 64
7377 && ! howto->partial_inplace
7378 && (reloc_type[0] == BFD_RELOC_16
7379 || reloc_type[0] == BFD_RELOC_32
7380 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7381 || reloc_type[0] == BFD_RELOC_GPREL16
7382 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7383 || reloc_type[0] == BFD_RELOC_GPREL32
7384 || reloc_type[0] == BFD_RELOC_64
7385 || reloc_type[0] == BFD_RELOC_CTOR
7386 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7387 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7388 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7389 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7390 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7391 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7392 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7393 || hi16_reloc_p (reloc_type[0])
7394 || lo16_reloc_p (reloc_type[0])))
7395 ip->fixp[0]->fx_no_overflow = 1;
7396
7397 /* These relocations can have an addend that won't fit in 2 octets. */
7398 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7399 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7400 ip->fixp[0]->fx_no_overflow = 1;
7401
7402 if (mips_relax.sequence)
7403 {
7404 if (mips_relax.first_fixup == 0)
7405 mips_relax.first_fixup = ip->fixp[0];
7406 }
7407 else if (reloc_needs_lo_p (*reloc_type))
7408 {
7409 struct mips_hi_fixup *hi_fixup;
7410
7411 /* Reuse the last entry if it already has a matching %lo. */
7412 hi_fixup = mips_hi_fixup_list;
7413 if (hi_fixup == 0
7414 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7415 {
7416 hi_fixup = XNEW (struct mips_hi_fixup);
7417 hi_fixup->next = mips_hi_fixup_list;
7418 mips_hi_fixup_list = hi_fixup;
7419 }
7420 hi_fixup->fixp = ip->fixp[0];
7421 hi_fixup->seg = now_seg;
7422 }
7423
7424 /* Add fixups for the second and third relocations, if given.
7425 Note that the ABI allows the second relocation to be
7426 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7427 moment we only use RSS_UNDEF, but we could add support
7428 for the others if it ever becomes necessary. */
7429 for (i = 1; i < 3; i++)
7430 if (reloc_type[i] != BFD_RELOC_UNUSED)
7431 {
7432 ip->fixp[i] = fix_new (ip->frag, ip->where,
7433 ip->fixp[0]->fx_size, NULL, 0,
7434 FALSE, final_type[i]);
7435
7436 /* Use fx_tcbit to mark compound relocs. */
7437 ip->fixp[0]->fx_tcbit = 1;
7438 ip->fixp[i]->fx_tcbit = 1;
7439 }
7440 }
7441 install_insn (ip);
7442
7443 /* Update the register mask information. */
7444 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7445 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7446
7447 switch (method)
7448 {
7449 case APPEND_ADD:
7450 insert_into_history (0, 1, ip);
7451 break;
7452
7453 case APPEND_ADD_WITH_NOP:
7454 {
7455 struct mips_cl_insn *nop;
7456
7457 insert_into_history (0, 1, ip);
7458 nop = get_delay_slot_nop (ip);
7459 add_fixed_insn (nop);
7460 insert_into_history (0, 1, nop);
7461 if (mips_relax.sequence)
7462 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7463 }
7464 break;
7465
7466 case APPEND_ADD_COMPACT:
7467 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7468 gas_assert (mips_opts.mips16);
7469 ip->insn_opcode |= 0x0080;
7470 find_altered_mips16_opcode (ip);
7471 install_insn (ip);
7472 insert_into_history (0, 1, ip);
7473 break;
7474
7475 case APPEND_SWAP:
7476 {
7477 struct mips_cl_insn delay = history[0];
7478 if (mips_opts.mips16)
7479 {
7480 know (delay.frag == ip->frag);
7481 move_insn (ip, delay.frag, delay.where);
7482 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7483 }
7484 else if (relaxed_branch || delay.frag != ip->frag)
7485 {
7486 /* Add the delay slot instruction to the end of the
7487 current frag and shrink the fixed part of the
7488 original frag. If the branch occupies the tail of
7489 the latter, move it backwards to cover the gap. */
7490 delay.frag->fr_fix -= branch_disp;
7491 if (delay.frag == ip->frag)
7492 move_insn (ip, ip->frag, ip->where - branch_disp);
7493 add_fixed_insn (&delay);
7494 }
7495 else
7496 {
7497 move_insn (&delay, ip->frag,
7498 ip->where - branch_disp + insn_length (ip));
7499 move_insn (ip, history[0].frag, history[0].where);
7500 }
7501 history[0] = *ip;
7502 delay.fixed_p = 1;
7503 insert_into_history (0, 1, &delay);
7504 }
7505 break;
7506 }
7507
7508 /* If we have just completed an unconditional branch, clear the history. */
7509 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7510 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7511 {
7512 unsigned int i;
7513
7514 mips_no_prev_insn ();
7515
7516 for (i = 0; i < ARRAY_SIZE (history); i++)
7517 history[i].cleared_p = 1;
7518 }
7519
7520 /* We need to emit a label at the end of branch-likely macros. */
7521 if (emit_branch_likely_macro)
7522 {
7523 emit_branch_likely_macro = FALSE;
7524 micromips_add_label ();
7525 }
7526
7527 /* We just output an insn, so the next one doesn't have a label. */
7528 mips_clear_insn_labels ();
7529 }
7530
7531 /* Forget that there was any previous instruction or label.
7532 When BRANCH is true, the branch history is also flushed. */
7533
7534 static void
7535 mips_no_prev_insn (void)
7536 {
7537 prev_nop_frag = NULL;
7538 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7539 mips_clear_insn_labels ();
7540 }
7541
7542 /* This function must be called before we emit something other than
7543 instructions. It is like mips_no_prev_insn except that it inserts
7544 any NOPS that might be needed by previous instructions. */
7545
7546 void
7547 mips_emit_delays (void)
7548 {
7549 if (! mips_opts.noreorder)
7550 {
7551 int nops = nops_for_insn (0, history, NULL);
7552 if (nops > 0)
7553 {
7554 while (nops-- > 0)
7555 add_fixed_insn (NOP_INSN);
7556 mips_move_text_labels ();
7557 }
7558 }
7559 mips_no_prev_insn ();
7560 }
7561
7562 /* Start a (possibly nested) noreorder block. */
7563
7564 static void
7565 start_noreorder (void)
7566 {
7567 if (mips_opts.noreorder == 0)
7568 {
7569 unsigned int i;
7570 int nops;
7571
7572 /* None of the instructions before the .set noreorder can be moved. */
7573 for (i = 0; i < ARRAY_SIZE (history); i++)
7574 history[i].fixed_p = 1;
7575
7576 /* Insert any nops that might be needed between the .set noreorder
7577 block and the previous instructions. We will later remove any
7578 nops that turn out not to be needed. */
7579 nops = nops_for_insn (0, history, NULL);
7580 if (nops > 0)
7581 {
7582 if (mips_optimize != 0)
7583 {
7584 /* Record the frag which holds the nop instructions, so
7585 that we can remove them if we don't need them. */
7586 frag_grow (nops * NOP_INSN_SIZE);
7587 prev_nop_frag = frag_now;
7588 prev_nop_frag_holds = nops;
7589 prev_nop_frag_required = 0;
7590 prev_nop_frag_since = 0;
7591 }
7592
7593 for (; nops > 0; --nops)
7594 add_fixed_insn (NOP_INSN);
7595
7596 /* Move on to a new frag, so that it is safe to simply
7597 decrease the size of prev_nop_frag. */
7598 frag_wane (frag_now);
7599 frag_new (0);
7600 mips_move_text_labels ();
7601 }
7602 mips_mark_labels ();
7603 mips_clear_insn_labels ();
7604 }
7605 mips_opts.noreorder++;
7606 mips_any_noreorder = 1;
7607 }
7608
7609 /* End a nested noreorder block. */
7610
7611 static void
7612 end_noreorder (void)
7613 {
7614 mips_opts.noreorder--;
7615 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7616 {
7617 /* Commit to inserting prev_nop_frag_required nops and go back to
7618 handling nop insertion the .set reorder way. */
7619 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7620 * NOP_INSN_SIZE);
7621 insert_into_history (prev_nop_frag_since,
7622 prev_nop_frag_required, NOP_INSN);
7623 prev_nop_frag = NULL;
7624 }
7625 }
7626
7627 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7628 higher bits unset. */
7629
7630 static void
7631 normalize_constant_expr (expressionS *ex)
7632 {
7633 if (ex->X_op == O_constant
7634 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7635 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7636 - 0x80000000);
7637 }
7638
7639 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7640 all higher bits unset. */
7641
7642 static void
7643 normalize_address_expr (expressionS *ex)
7644 {
7645 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7646 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7647 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7648 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7649 - 0x80000000);
7650 }
7651
7652 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7653 Return true if the match was successful.
7654
7655 OPCODE_EXTRA is a value that should be ORed into the opcode
7656 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7657 there are more alternatives after OPCODE and SOFT_MATCH is
7658 as for mips_arg_info. */
7659
7660 static bfd_boolean
7661 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7662 struct mips_operand_token *tokens, unsigned int opcode_extra,
7663 bfd_boolean lax_match, bfd_boolean complete_p)
7664 {
7665 const char *args;
7666 struct mips_arg_info arg;
7667 const struct mips_operand *operand;
7668 char c;
7669
7670 imm_expr.X_op = O_absent;
7671 offset_expr.X_op = O_absent;
7672 offset_reloc[0] = BFD_RELOC_UNUSED;
7673 offset_reloc[1] = BFD_RELOC_UNUSED;
7674 offset_reloc[2] = BFD_RELOC_UNUSED;
7675
7676 create_insn (insn, opcode);
7677 /* When no opcode suffix is specified, assume ".xyzw". */
7678 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7679 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7680 else
7681 insn->insn_opcode |= opcode_extra;
7682 memset (&arg, 0, sizeof (arg));
7683 arg.insn = insn;
7684 arg.token = tokens;
7685 arg.argnum = 1;
7686 arg.last_regno = ILLEGAL_REG;
7687 arg.dest_regno = ILLEGAL_REG;
7688 arg.lax_match = lax_match;
7689 for (args = opcode->args;; ++args)
7690 {
7691 if (arg.token->type == OT_END)
7692 {
7693 /* Handle unary instructions in which only one operand is given.
7694 The source is then the same as the destination. */
7695 if (arg.opnum == 1 && *args == ',')
7696 {
7697 operand = (mips_opts.micromips
7698 ? decode_micromips_operand (args + 1)
7699 : decode_mips_operand (args + 1));
7700 if (operand && mips_optional_operand_p (operand))
7701 {
7702 arg.token = tokens;
7703 arg.argnum = 1;
7704 continue;
7705 }
7706 }
7707
7708 /* Treat elided base registers as $0. */
7709 if (strcmp (args, "(b)") == 0)
7710 args += 3;
7711
7712 if (args[0] == '+')
7713 switch (args[1])
7714 {
7715 case 'K':
7716 case 'N':
7717 /* The register suffix is optional. */
7718 args += 2;
7719 break;
7720 }
7721
7722 /* Fail the match if there were too few operands. */
7723 if (*args)
7724 return FALSE;
7725
7726 /* Successful match. */
7727 if (!complete_p)
7728 return TRUE;
7729 clear_insn_error ();
7730 if (arg.dest_regno == arg.last_regno
7731 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7732 {
7733 if (arg.opnum == 2)
7734 set_insn_error
7735 (0, _("source and destination must be different"));
7736 else if (arg.last_regno == 31)
7737 set_insn_error
7738 (0, _("a destination register must be supplied"));
7739 }
7740 else if (arg.last_regno == 31
7741 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7742 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7743 set_insn_error (0, _("the source register must not be $31"));
7744 check_completed_insn (&arg);
7745 return TRUE;
7746 }
7747
7748 /* Fail the match if the line has too many operands. */
7749 if (*args == 0)
7750 return FALSE;
7751
7752 /* Handle characters that need to match exactly. */
7753 if (*args == '(' || *args == ')' || *args == ',')
7754 {
7755 if (match_char (&arg, *args))
7756 continue;
7757 return FALSE;
7758 }
7759 if (*args == '#')
7760 {
7761 ++args;
7762 if (arg.token->type == OT_DOUBLE_CHAR
7763 && arg.token->u.ch == *args)
7764 {
7765 ++arg.token;
7766 continue;
7767 }
7768 return FALSE;
7769 }
7770
7771 /* Handle special macro operands. Work out the properties of
7772 other operands. */
7773 arg.opnum += 1;
7774 switch (*args)
7775 {
7776 case '-':
7777 switch (args[1])
7778 {
7779 case 'A':
7780 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7781 break;
7782
7783 case 'B':
7784 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7785 break;
7786 }
7787 break;
7788
7789 case '+':
7790 switch (args[1])
7791 {
7792 case 'i':
7793 *offset_reloc = BFD_RELOC_MIPS_JMP;
7794 break;
7795
7796 case '\'':
7797 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7798 break;
7799
7800 case '\"':
7801 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7802 break;
7803 }
7804 break;
7805
7806 case 'I':
7807 if (!match_const_int (&arg, &imm_expr.X_add_number))
7808 return FALSE;
7809 imm_expr.X_op = O_constant;
7810 if (GPR_SIZE == 32)
7811 normalize_constant_expr (&imm_expr);
7812 continue;
7813
7814 case 'A':
7815 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7816 {
7817 /* Assume that the offset has been elided and that what
7818 we saw was a base register. The match will fail later
7819 if that assumption turns out to be wrong. */
7820 offset_expr.X_op = O_constant;
7821 offset_expr.X_add_number = 0;
7822 }
7823 else
7824 {
7825 if (!match_expression (&arg, &offset_expr, offset_reloc))
7826 return FALSE;
7827 normalize_address_expr (&offset_expr);
7828 }
7829 continue;
7830
7831 case 'F':
7832 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7833 8, TRUE))
7834 return FALSE;
7835 continue;
7836
7837 case 'L':
7838 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7839 8, FALSE))
7840 return FALSE;
7841 continue;
7842
7843 case 'f':
7844 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7845 4, TRUE))
7846 return FALSE;
7847 continue;
7848
7849 case 'l':
7850 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7851 4, FALSE))
7852 return FALSE;
7853 continue;
7854
7855 case 'p':
7856 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7857 break;
7858
7859 case 'a':
7860 *offset_reloc = BFD_RELOC_MIPS_JMP;
7861 break;
7862
7863 case 'm':
7864 gas_assert (mips_opts.micromips);
7865 c = args[1];
7866 switch (c)
7867 {
7868 case 'D':
7869 case 'E':
7870 if (!forced_insn_length)
7871 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7872 else if (c == 'D')
7873 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7874 else
7875 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7876 break;
7877 }
7878 break;
7879 }
7880
7881 operand = (mips_opts.micromips
7882 ? decode_micromips_operand (args)
7883 : decode_mips_operand (args));
7884 if (!operand)
7885 abort ();
7886
7887 /* Skip prefixes. */
7888 if (*args == '+' || *args == 'm' || *args == '-')
7889 args++;
7890
7891 if (mips_optional_operand_p (operand)
7892 && args[1] == ','
7893 && (arg.token[0].type != OT_REG
7894 || arg.token[1].type == OT_END))
7895 {
7896 /* Assume that the register has been elided and is the
7897 same as the first operand. */
7898 arg.token = tokens;
7899 arg.argnum = 1;
7900 }
7901
7902 if (!match_operand (&arg, operand))
7903 return FALSE;
7904 }
7905 }
7906
7907 /* Like match_insn, but for MIPS16. */
7908
7909 static bfd_boolean
7910 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7911 struct mips_operand_token *tokens)
7912 {
7913 const char *args;
7914 const struct mips_operand *operand;
7915 const struct mips_operand *ext_operand;
7916 struct mips_arg_info arg;
7917 int relax_char;
7918
7919 create_insn (insn, opcode);
7920 imm_expr.X_op = O_absent;
7921 offset_expr.X_op = O_absent;
7922 offset_reloc[0] = BFD_RELOC_UNUSED;
7923 offset_reloc[1] = BFD_RELOC_UNUSED;
7924 offset_reloc[2] = BFD_RELOC_UNUSED;
7925 relax_char = 0;
7926
7927 memset (&arg, 0, sizeof (arg));
7928 arg.insn = insn;
7929 arg.token = tokens;
7930 arg.argnum = 1;
7931 arg.last_regno = ILLEGAL_REG;
7932 arg.dest_regno = ILLEGAL_REG;
7933 relax_char = 0;
7934 for (args = opcode->args;; ++args)
7935 {
7936 int c;
7937
7938 if (arg.token->type == OT_END)
7939 {
7940 offsetT value;
7941
7942 /* Handle unary instructions in which only one operand is given.
7943 The source is then the same as the destination. */
7944 if (arg.opnum == 1 && *args == ',')
7945 {
7946 operand = decode_mips16_operand (args[1], FALSE);
7947 if (operand && mips_optional_operand_p (operand))
7948 {
7949 arg.token = tokens;
7950 arg.argnum = 1;
7951 continue;
7952 }
7953 }
7954
7955 /* Fail the match if there were too few operands. */
7956 if (*args)
7957 return FALSE;
7958
7959 /* Successful match. Stuff the immediate value in now, if
7960 we can. */
7961 clear_insn_error ();
7962 if (opcode->pinfo == INSN_MACRO)
7963 {
7964 gas_assert (relax_char == 0 || relax_char == 'p');
7965 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7966 }
7967 else if (relax_char
7968 && offset_expr.X_op == O_constant
7969 && calculate_reloc (*offset_reloc,
7970 offset_expr.X_add_number,
7971 &value))
7972 {
7973 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7974 forced_insn_length, &insn->insn_opcode);
7975 offset_expr.X_op = O_absent;
7976 *offset_reloc = BFD_RELOC_UNUSED;
7977 }
7978 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7979 {
7980 if (forced_insn_length == 2)
7981 set_insn_error (0, _("invalid unextended operand value"));
7982 forced_insn_length = 4;
7983 insn->insn_opcode |= MIPS16_EXTEND;
7984 }
7985 else if (relax_char)
7986 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7987
7988 check_completed_insn (&arg);
7989 return TRUE;
7990 }
7991
7992 /* Fail the match if the line has too many operands. */
7993 if (*args == 0)
7994 return FALSE;
7995
7996 /* Handle characters that need to match exactly. */
7997 if (*args == '(' || *args == ')' || *args == ',')
7998 {
7999 if (match_char (&arg, *args))
8000 continue;
8001 return FALSE;
8002 }
8003
8004 arg.opnum += 1;
8005 c = *args;
8006 switch (c)
8007 {
8008 case 'p':
8009 case 'q':
8010 case 'A':
8011 case 'B':
8012 case 'E':
8013 relax_char = c;
8014 break;
8015
8016 case 'I':
8017 if (!match_const_int (&arg, &imm_expr.X_add_number))
8018 return FALSE;
8019 imm_expr.X_op = O_constant;
8020 if (GPR_SIZE == 32)
8021 normalize_constant_expr (&imm_expr);
8022 continue;
8023
8024 case 'a':
8025 case 'i':
8026 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8027 insn->insn_opcode <<= 16;
8028 break;
8029 }
8030
8031 operand = decode_mips16_operand (c, FALSE);
8032 if (!operand)
8033 abort ();
8034
8035 /* '6' is a special case. It is used for BREAK and SDBBP,
8036 whose operands are only meaningful to the software that decodes
8037 them. This means that there is no architectural reason why
8038 they cannot be prefixed by EXTEND, but in practice,
8039 exception handlers will only look at the instruction
8040 itself. We therefore allow '6' to be extended when
8041 disassembling but not when assembling. */
8042 if (operand->type != OP_PCREL && c != '6')
8043 {
8044 ext_operand = decode_mips16_operand (c, TRUE);
8045 if (operand != ext_operand)
8046 {
8047 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8048 {
8049 offset_expr.X_op = O_constant;
8050 offset_expr.X_add_number = 0;
8051 relax_char = c;
8052 continue;
8053 }
8054
8055 /* We need the OT_INTEGER check because some MIPS16
8056 immediate variants are listed before the register ones. */
8057 if (arg.token->type != OT_INTEGER
8058 || !match_expression (&arg, &offset_expr, offset_reloc))
8059 return FALSE;
8060
8061 /* '8' is used for SLTI(U) and has traditionally not
8062 been allowed to take relocation operators. */
8063 if (offset_reloc[0] != BFD_RELOC_UNUSED
8064 && (ext_operand->size != 16 || c == '8'))
8065 return FALSE;
8066
8067 relax_char = c;
8068 continue;
8069 }
8070 }
8071
8072 if (mips_optional_operand_p (operand)
8073 && args[1] == ','
8074 && (arg.token[0].type != OT_REG
8075 || arg.token[1].type == OT_END))
8076 {
8077 /* Assume that the register has been elided and is the
8078 same as the first operand. */
8079 arg.token = tokens;
8080 arg.argnum = 1;
8081 }
8082
8083 if (!match_operand (&arg, operand))
8084 return FALSE;
8085 }
8086 }
8087
8088 /* Record that the current instruction is invalid for the current ISA. */
8089
8090 static void
8091 match_invalid_for_isa (void)
8092 {
8093 set_insn_error_ss
8094 (0, _("opcode not supported on this processor: %s (%s)"),
8095 mips_cpu_info_from_arch (mips_opts.arch)->name,
8096 mips_cpu_info_from_isa (mips_opts.isa)->name);
8097 }
8098
8099 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8100 Return true if a definite match or failure was found, storing any match
8101 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8102 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8103 tried and failed to match under normal conditions and now want to try a
8104 more relaxed match. */
8105
8106 static bfd_boolean
8107 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8108 const struct mips_opcode *past, struct mips_operand_token *tokens,
8109 int opcode_extra, bfd_boolean lax_match)
8110 {
8111 const struct mips_opcode *opcode;
8112 const struct mips_opcode *invalid_delay_slot;
8113 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8114
8115 /* Search for a match, ignoring alternatives that don't satisfy the
8116 current ISA or forced_length. */
8117 invalid_delay_slot = 0;
8118 seen_valid_for_isa = FALSE;
8119 seen_valid_for_size = FALSE;
8120 opcode = first;
8121 do
8122 {
8123 gas_assert (strcmp (opcode->name, first->name) == 0);
8124 if (is_opcode_valid (opcode))
8125 {
8126 seen_valid_for_isa = TRUE;
8127 if (is_size_valid (opcode))
8128 {
8129 bfd_boolean delay_slot_ok;
8130
8131 seen_valid_for_size = TRUE;
8132 delay_slot_ok = is_delay_slot_valid (opcode);
8133 if (match_insn (insn, opcode, tokens, opcode_extra,
8134 lax_match, delay_slot_ok))
8135 {
8136 if (!delay_slot_ok)
8137 {
8138 if (!invalid_delay_slot)
8139 invalid_delay_slot = opcode;
8140 }
8141 else
8142 return TRUE;
8143 }
8144 }
8145 }
8146 ++opcode;
8147 }
8148 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8149
8150 /* If the only matches we found had the wrong length for the delay slot,
8151 pick the first such match. We'll issue an appropriate warning later. */
8152 if (invalid_delay_slot)
8153 {
8154 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8155 lax_match, TRUE))
8156 return TRUE;
8157 abort ();
8158 }
8159
8160 /* Handle the case where we didn't try to match an instruction because
8161 all the alternatives were incompatible with the current ISA. */
8162 if (!seen_valid_for_isa)
8163 {
8164 match_invalid_for_isa ();
8165 return TRUE;
8166 }
8167
8168 /* Handle the case where we didn't try to match an instruction because
8169 all the alternatives were of the wrong size. */
8170 if (!seen_valid_for_size)
8171 {
8172 if (mips_opts.insn32)
8173 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8174 else
8175 set_insn_error_i
8176 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8177 8 * forced_insn_length);
8178 return TRUE;
8179 }
8180
8181 return FALSE;
8182 }
8183
8184 /* Like match_insns, but for MIPS16. */
8185
8186 static bfd_boolean
8187 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8188 struct mips_operand_token *tokens)
8189 {
8190 const struct mips_opcode *opcode;
8191 bfd_boolean seen_valid_for_isa;
8192
8193 /* Search for a match, ignoring alternatives that don't satisfy the
8194 current ISA. There are no separate entries for extended forms so
8195 we deal with forced_length later. */
8196 seen_valid_for_isa = FALSE;
8197 opcode = first;
8198 do
8199 {
8200 gas_assert (strcmp (opcode->name, first->name) == 0);
8201 if (is_opcode_valid_16 (opcode))
8202 {
8203 seen_valid_for_isa = TRUE;
8204 if (match_mips16_insn (insn, opcode, tokens))
8205 return TRUE;
8206 }
8207 ++opcode;
8208 }
8209 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8210 && strcmp (opcode->name, first->name) == 0);
8211
8212 /* Handle the case where we didn't try to match an instruction because
8213 all the alternatives were incompatible with the current ISA. */
8214 if (!seen_valid_for_isa)
8215 {
8216 match_invalid_for_isa ();
8217 return TRUE;
8218 }
8219
8220 return FALSE;
8221 }
8222
8223 /* Set up global variables for the start of a new macro. */
8224
8225 static void
8226 macro_start (void)
8227 {
8228 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8229 memset (&mips_macro_warning.first_insn_sizes, 0,
8230 sizeof (mips_macro_warning.first_insn_sizes));
8231 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8232 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8233 && delayed_branch_p (&history[0]));
8234 switch (history[0].insn_mo->pinfo2
8235 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8236 {
8237 case INSN2_BRANCH_DELAY_32BIT:
8238 mips_macro_warning.delay_slot_length = 4;
8239 break;
8240 case INSN2_BRANCH_DELAY_16BIT:
8241 mips_macro_warning.delay_slot_length = 2;
8242 break;
8243 default:
8244 mips_macro_warning.delay_slot_length = 0;
8245 break;
8246 }
8247 mips_macro_warning.first_frag = NULL;
8248 }
8249
8250 /* Given that a macro is longer than one instruction or of the wrong size,
8251 return the appropriate warning for it. Return null if no warning is
8252 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8253 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8254 and RELAX_NOMACRO. */
8255
8256 static const char *
8257 macro_warning (relax_substateT subtype)
8258 {
8259 if (subtype & RELAX_DELAY_SLOT)
8260 return _("macro instruction expanded into multiple instructions"
8261 " in a branch delay slot");
8262 else if (subtype & RELAX_NOMACRO)
8263 return _("macro instruction expanded into multiple instructions");
8264 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8265 | RELAX_DELAY_SLOT_SIZE_SECOND))
8266 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8267 ? _("macro instruction expanded into a wrong size instruction"
8268 " in a 16-bit branch delay slot")
8269 : _("macro instruction expanded into a wrong size instruction"
8270 " in a 32-bit branch delay slot"));
8271 else
8272 return 0;
8273 }
8274
8275 /* Finish up a macro. Emit warnings as appropriate. */
8276
8277 static void
8278 macro_end (void)
8279 {
8280 /* Relaxation warning flags. */
8281 relax_substateT subtype = 0;
8282
8283 /* Check delay slot size requirements. */
8284 if (mips_macro_warning.delay_slot_length == 2)
8285 subtype |= RELAX_DELAY_SLOT_16BIT;
8286 if (mips_macro_warning.delay_slot_length != 0)
8287 {
8288 if (mips_macro_warning.delay_slot_length
8289 != mips_macro_warning.first_insn_sizes[0])
8290 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8291 if (mips_macro_warning.delay_slot_length
8292 != mips_macro_warning.first_insn_sizes[1])
8293 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8294 }
8295
8296 /* Check instruction count requirements. */
8297 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8298 {
8299 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8300 subtype |= RELAX_SECOND_LONGER;
8301 if (mips_opts.warn_about_macros)
8302 subtype |= RELAX_NOMACRO;
8303 if (mips_macro_warning.delay_slot_p)
8304 subtype |= RELAX_DELAY_SLOT;
8305 }
8306
8307 /* If both alternatives fail to fill a delay slot correctly,
8308 emit the warning now. */
8309 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8310 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8311 {
8312 relax_substateT s;
8313 const char *msg;
8314
8315 s = subtype & (RELAX_DELAY_SLOT_16BIT
8316 | RELAX_DELAY_SLOT_SIZE_FIRST
8317 | RELAX_DELAY_SLOT_SIZE_SECOND);
8318 msg = macro_warning (s);
8319 if (msg != NULL)
8320 as_warn ("%s", msg);
8321 subtype &= ~s;
8322 }
8323
8324 /* If both implementations are longer than 1 instruction, then emit the
8325 warning now. */
8326 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8327 {
8328 relax_substateT s;
8329 const char *msg;
8330
8331 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8332 msg = macro_warning (s);
8333 if (msg != NULL)
8334 as_warn ("%s", msg);
8335 subtype &= ~s;
8336 }
8337
8338 /* If any flags still set, then one implementation might need a warning
8339 and the other either will need one of a different kind or none at all.
8340 Pass any remaining flags over to relaxation. */
8341 if (mips_macro_warning.first_frag != NULL)
8342 mips_macro_warning.first_frag->fr_subtype |= subtype;
8343 }
8344
8345 /* Instruction operand formats used in macros that vary between
8346 standard MIPS and microMIPS code. */
8347
8348 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8349 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8350 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8351 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8352 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8353 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8354 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8355 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8356
8357 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8358 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8359 : cop12_fmt[mips_opts.micromips])
8360 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8361 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8362 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8363 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8364 : mem12_fmt[mips_opts.micromips])
8365 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8366 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8367 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8368
8369 /* Read a macro's relocation codes from *ARGS and store them in *R.
8370 The first argument in *ARGS will be either the code for a single
8371 relocation or -1 followed by the three codes that make up a
8372 composite relocation. */
8373
8374 static void
8375 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8376 {
8377 int i, next;
8378
8379 next = va_arg (*args, int);
8380 if (next >= 0)
8381 r[0] = (bfd_reloc_code_real_type) next;
8382 else
8383 {
8384 for (i = 0; i < 3; i++)
8385 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8386 /* This function is only used for 16-bit relocation fields.
8387 To make the macro code simpler, treat an unrelocated value
8388 in the same way as BFD_RELOC_LO16. */
8389 if (r[0] == BFD_RELOC_UNUSED)
8390 r[0] = BFD_RELOC_LO16;
8391 }
8392 }
8393
8394 /* Build an instruction created by a macro expansion. This is passed
8395 a pointer to the count of instructions created so far, an
8396 expression, the name of the instruction to build, an operand format
8397 string, and corresponding arguments. */
8398
8399 static void
8400 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8401 {
8402 const struct mips_opcode *mo = NULL;
8403 bfd_reloc_code_real_type r[3];
8404 const struct mips_opcode *amo;
8405 const struct mips_operand *operand;
8406 struct hash_control *hash;
8407 struct mips_cl_insn insn;
8408 va_list args;
8409 unsigned int uval;
8410
8411 va_start (args, fmt);
8412
8413 if (mips_opts.mips16)
8414 {
8415 mips16_macro_build (ep, name, fmt, &args);
8416 va_end (args);
8417 return;
8418 }
8419
8420 r[0] = BFD_RELOC_UNUSED;
8421 r[1] = BFD_RELOC_UNUSED;
8422 r[2] = BFD_RELOC_UNUSED;
8423 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8424 amo = (struct mips_opcode *) hash_find (hash, name);
8425 gas_assert (amo);
8426 gas_assert (strcmp (name, amo->name) == 0);
8427
8428 do
8429 {
8430 /* Search until we get a match for NAME. It is assumed here that
8431 macros will never generate MDMX, MIPS-3D, or MT instructions.
8432 We try to match an instruction that fulfils the branch delay
8433 slot instruction length requirement (if any) of the previous
8434 instruction. While doing this we record the first instruction
8435 seen that matches all the other conditions and use it anyway
8436 if the requirement cannot be met; we will issue an appropriate
8437 warning later on. */
8438 if (strcmp (fmt, amo->args) == 0
8439 && amo->pinfo != INSN_MACRO
8440 && is_opcode_valid (amo)
8441 && is_size_valid (amo))
8442 {
8443 if (is_delay_slot_valid (amo))
8444 {
8445 mo = amo;
8446 break;
8447 }
8448 else if (!mo)
8449 mo = amo;
8450 }
8451
8452 ++amo;
8453 gas_assert (amo->name);
8454 }
8455 while (strcmp (name, amo->name) == 0);
8456
8457 gas_assert (mo);
8458 create_insn (&insn, mo);
8459 for (; *fmt; ++fmt)
8460 {
8461 switch (*fmt)
8462 {
8463 case ',':
8464 case '(':
8465 case ')':
8466 case 'z':
8467 break;
8468
8469 case 'i':
8470 case 'j':
8471 macro_read_relocs (&args, r);
8472 gas_assert (*r == BFD_RELOC_GPREL16
8473 || *r == BFD_RELOC_MIPS_HIGHER
8474 || *r == BFD_RELOC_HI16_S
8475 || *r == BFD_RELOC_LO16
8476 || *r == BFD_RELOC_MIPS_GOT_OFST);
8477 break;
8478
8479 case 'o':
8480 macro_read_relocs (&args, r);
8481 break;
8482
8483 case 'u':
8484 macro_read_relocs (&args, r);
8485 gas_assert (ep != NULL
8486 && (ep->X_op == O_constant
8487 || (ep->X_op == O_symbol
8488 && (*r == BFD_RELOC_MIPS_HIGHEST
8489 || *r == BFD_RELOC_HI16_S
8490 || *r == BFD_RELOC_HI16
8491 || *r == BFD_RELOC_GPREL16
8492 || *r == BFD_RELOC_MIPS_GOT_HI16
8493 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8494 break;
8495
8496 case 'p':
8497 gas_assert (ep != NULL);
8498
8499 /*
8500 * This allows macro() to pass an immediate expression for
8501 * creating short branches without creating a symbol.
8502 *
8503 * We don't allow branch relaxation for these branches, as
8504 * they should only appear in ".set nomacro" anyway.
8505 */
8506 if (ep->X_op == O_constant)
8507 {
8508 /* For microMIPS we always use relocations for branches.
8509 So we should not resolve immediate values. */
8510 gas_assert (!mips_opts.micromips);
8511
8512 if ((ep->X_add_number & 3) != 0)
8513 as_bad (_("branch to misaligned address (0x%lx)"),
8514 (unsigned long) ep->X_add_number);
8515 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8516 as_bad (_("branch address range overflow (0x%lx)"),
8517 (unsigned long) ep->X_add_number);
8518 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8519 ep = NULL;
8520 }
8521 else
8522 *r = BFD_RELOC_16_PCREL_S2;
8523 break;
8524
8525 case 'a':
8526 gas_assert (ep != NULL);
8527 *r = BFD_RELOC_MIPS_JMP;
8528 break;
8529
8530 default:
8531 operand = (mips_opts.micromips
8532 ? decode_micromips_operand (fmt)
8533 : decode_mips_operand (fmt));
8534 if (!operand)
8535 abort ();
8536
8537 uval = va_arg (args, int);
8538 if (operand->type == OP_CLO_CLZ_DEST)
8539 uval |= (uval << 5);
8540 insn_insert_operand (&insn, operand, uval);
8541
8542 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8543 ++fmt;
8544 break;
8545 }
8546 }
8547 va_end (args);
8548 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8549
8550 append_insn (&insn, ep, r, TRUE);
8551 }
8552
8553 static void
8554 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8555 va_list *args)
8556 {
8557 struct mips_opcode *mo;
8558 struct mips_cl_insn insn;
8559 const struct mips_operand *operand;
8560 bfd_reloc_code_real_type r[3]
8561 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8562
8563 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8564 gas_assert (mo);
8565 gas_assert (strcmp (name, mo->name) == 0);
8566
8567 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8568 {
8569 ++mo;
8570 gas_assert (mo->name);
8571 gas_assert (strcmp (name, mo->name) == 0);
8572 }
8573
8574 create_insn (&insn, mo);
8575 for (; *fmt; ++fmt)
8576 {
8577 int c;
8578
8579 c = *fmt;
8580 switch (c)
8581 {
8582 case ',':
8583 case '(':
8584 case ')':
8585 break;
8586
8587 case '0':
8588 case 'S':
8589 case 'P':
8590 case 'R':
8591 break;
8592
8593 case '<':
8594 case '>':
8595 case '4':
8596 case '5':
8597 case 'H':
8598 case 'W':
8599 case 'D':
8600 case 'j':
8601 case '8':
8602 case 'V':
8603 case 'C':
8604 case 'U':
8605 case 'k':
8606 case 'K':
8607 case 'p':
8608 case 'q':
8609 {
8610 offsetT value;
8611
8612 gas_assert (ep != NULL);
8613
8614 if (ep->X_op != O_constant)
8615 *r = (int) BFD_RELOC_UNUSED + c;
8616 else if (calculate_reloc (*r, ep->X_add_number, &value))
8617 {
8618 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8619 ep = NULL;
8620 *r = BFD_RELOC_UNUSED;
8621 }
8622 }
8623 break;
8624
8625 default:
8626 operand = decode_mips16_operand (c, FALSE);
8627 if (!operand)
8628 abort ();
8629
8630 insn_insert_operand (&insn, operand, va_arg (*args, int));
8631 break;
8632 }
8633 }
8634
8635 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8636
8637 append_insn (&insn, ep, r, TRUE);
8638 }
8639
8640 /*
8641 * Generate a "jalr" instruction with a relocation hint to the called
8642 * function. This occurs in NewABI PIC code.
8643 */
8644 static void
8645 macro_build_jalr (expressionS *ep, int cprestore)
8646 {
8647 static const bfd_reloc_code_real_type jalr_relocs[2]
8648 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8649 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8650 const char *jalr;
8651 char *f = NULL;
8652
8653 if (MIPS_JALR_HINT_P (ep))
8654 {
8655 frag_grow (8);
8656 f = frag_more (0);
8657 }
8658 if (mips_opts.micromips)
8659 {
8660 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8661 ? "jalr" : "jalrs");
8662 if (MIPS_JALR_HINT_P (ep)
8663 || mips_opts.insn32
8664 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8665 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8666 else
8667 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8668 }
8669 else
8670 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8671 if (MIPS_JALR_HINT_P (ep))
8672 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8673 }
8674
8675 /*
8676 * Generate a "lui" instruction.
8677 */
8678 static void
8679 macro_build_lui (expressionS *ep, int regnum)
8680 {
8681 gas_assert (! mips_opts.mips16);
8682
8683 if (ep->X_op != O_constant)
8684 {
8685 gas_assert (ep->X_op == O_symbol);
8686 /* _gp_disp is a special case, used from s_cpload.
8687 __gnu_local_gp is used if mips_no_shared. */
8688 gas_assert (mips_pic == NO_PIC
8689 || (! HAVE_NEWABI
8690 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8691 || (! mips_in_shared
8692 && strcmp (S_GET_NAME (ep->X_add_symbol),
8693 "__gnu_local_gp") == 0));
8694 }
8695
8696 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8697 }
8698
8699 /* Generate a sequence of instructions to do a load or store from a constant
8700 offset off of a base register (breg) into/from a target register (treg),
8701 using AT if necessary. */
8702 static void
8703 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8704 int treg, int breg, int dbl)
8705 {
8706 gas_assert (ep->X_op == O_constant);
8707
8708 /* Sign-extending 32-bit constants makes their handling easier. */
8709 if (!dbl)
8710 normalize_constant_expr (ep);
8711
8712 /* Right now, this routine can only handle signed 32-bit constants. */
8713 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8714 as_warn (_("operand overflow"));
8715
8716 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8717 {
8718 /* Signed 16-bit offset will fit in the op. Easy! */
8719 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8720 }
8721 else
8722 {
8723 /* 32-bit offset, need multiple instructions and AT, like:
8724 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8725 addu $tempreg,$tempreg,$breg
8726 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8727 to handle the complete offset. */
8728 macro_build_lui (ep, AT);
8729 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8730 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8731
8732 if (!mips_opts.at)
8733 as_bad (_("macro used $at after \".set noat\""));
8734 }
8735 }
8736
8737 /* set_at()
8738 * Generates code to set the $at register to true (one)
8739 * if reg is less than the immediate expression.
8740 */
8741 static void
8742 set_at (int reg, int unsignedp)
8743 {
8744 if (imm_expr.X_add_number >= -0x8000
8745 && imm_expr.X_add_number < 0x8000)
8746 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8747 AT, reg, BFD_RELOC_LO16);
8748 else
8749 {
8750 load_register (AT, &imm_expr, GPR_SIZE == 64);
8751 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8752 }
8753 }
8754
8755 /* Count the leading zeroes by performing a binary chop. This is a
8756 bulky bit of source, but performance is a LOT better for the
8757 majority of values than a simple loop to count the bits:
8758 for (lcnt = 0; (lcnt < 32); lcnt++)
8759 if ((v) & (1 << (31 - lcnt)))
8760 break;
8761 However it is not code size friendly, and the gain will drop a bit
8762 on certain cached systems.
8763 */
8764 #define COUNT_TOP_ZEROES(v) \
8765 (((v) & ~0xffff) == 0 \
8766 ? ((v) & ~0xff) == 0 \
8767 ? ((v) & ~0xf) == 0 \
8768 ? ((v) & ~0x3) == 0 \
8769 ? ((v) & ~0x1) == 0 \
8770 ? !(v) \
8771 ? 32 \
8772 : 31 \
8773 : 30 \
8774 : ((v) & ~0x7) == 0 \
8775 ? 29 \
8776 : 28 \
8777 : ((v) & ~0x3f) == 0 \
8778 ? ((v) & ~0x1f) == 0 \
8779 ? 27 \
8780 : 26 \
8781 : ((v) & ~0x7f) == 0 \
8782 ? 25 \
8783 : 24 \
8784 : ((v) & ~0xfff) == 0 \
8785 ? ((v) & ~0x3ff) == 0 \
8786 ? ((v) & ~0x1ff) == 0 \
8787 ? 23 \
8788 : 22 \
8789 : ((v) & ~0x7ff) == 0 \
8790 ? 21 \
8791 : 20 \
8792 : ((v) & ~0x3fff) == 0 \
8793 ? ((v) & ~0x1fff) == 0 \
8794 ? 19 \
8795 : 18 \
8796 : ((v) & ~0x7fff) == 0 \
8797 ? 17 \
8798 : 16 \
8799 : ((v) & ~0xffffff) == 0 \
8800 ? ((v) & ~0xfffff) == 0 \
8801 ? ((v) & ~0x3ffff) == 0 \
8802 ? ((v) & ~0x1ffff) == 0 \
8803 ? 15 \
8804 : 14 \
8805 : ((v) & ~0x7ffff) == 0 \
8806 ? 13 \
8807 : 12 \
8808 : ((v) & ~0x3fffff) == 0 \
8809 ? ((v) & ~0x1fffff) == 0 \
8810 ? 11 \
8811 : 10 \
8812 : ((v) & ~0x7fffff) == 0 \
8813 ? 9 \
8814 : 8 \
8815 : ((v) & ~0xfffffff) == 0 \
8816 ? ((v) & ~0x3ffffff) == 0 \
8817 ? ((v) & ~0x1ffffff) == 0 \
8818 ? 7 \
8819 : 6 \
8820 : ((v) & ~0x7ffffff) == 0 \
8821 ? 5 \
8822 : 4 \
8823 : ((v) & ~0x3fffffff) == 0 \
8824 ? ((v) & ~0x1fffffff) == 0 \
8825 ? 3 \
8826 : 2 \
8827 : ((v) & ~0x7fffffff) == 0 \
8828 ? 1 \
8829 : 0)
8830
8831 /* load_register()
8832 * This routine generates the least number of instructions necessary to load
8833 * an absolute expression value into a register.
8834 */
8835 static void
8836 load_register (int reg, expressionS *ep, int dbl)
8837 {
8838 int freg;
8839 expressionS hi32, lo32;
8840
8841 if (ep->X_op != O_big)
8842 {
8843 gas_assert (ep->X_op == O_constant);
8844
8845 /* Sign-extending 32-bit constants makes their handling easier. */
8846 if (!dbl)
8847 normalize_constant_expr (ep);
8848
8849 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8850 {
8851 /* We can handle 16 bit signed values with an addiu to
8852 $zero. No need to ever use daddiu here, since $zero and
8853 the result are always correct in 32 bit mode. */
8854 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8855 return;
8856 }
8857 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8858 {
8859 /* We can handle 16 bit unsigned values with an ori to
8860 $zero. */
8861 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8862 return;
8863 }
8864 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8865 {
8866 /* 32 bit values require an lui. */
8867 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8868 if ((ep->X_add_number & 0xffff) != 0)
8869 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8870 return;
8871 }
8872 }
8873
8874 /* The value is larger than 32 bits. */
8875
8876 if (!dbl || GPR_SIZE == 32)
8877 {
8878 char value[32];
8879
8880 sprintf_vma (value, ep->X_add_number);
8881 as_bad (_("number (0x%s) larger than 32 bits"), value);
8882 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8883 return;
8884 }
8885
8886 if (ep->X_op != O_big)
8887 {
8888 hi32 = *ep;
8889 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8890 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8891 hi32.X_add_number &= 0xffffffff;
8892 lo32 = *ep;
8893 lo32.X_add_number &= 0xffffffff;
8894 }
8895 else
8896 {
8897 gas_assert (ep->X_add_number > 2);
8898 if (ep->X_add_number == 3)
8899 generic_bignum[3] = 0;
8900 else if (ep->X_add_number > 4)
8901 as_bad (_("number larger than 64 bits"));
8902 lo32.X_op = O_constant;
8903 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8904 hi32.X_op = O_constant;
8905 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8906 }
8907
8908 if (hi32.X_add_number == 0)
8909 freg = 0;
8910 else
8911 {
8912 int shift, bit;
8913 unsigned long hi, lo;
8914
8915 if (hi32.X_add_number == (offsetT) 0xffffffff)
8916 {
8917 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8918 {
8919 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8920 return;
8921 }
8922 if (lo32.X_add_number & 0x80000000)
8923 {
8924 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8925 if (lo32.X_add_number & 0xffff)
8926 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8927 return;
8928 }
8929 }
8930
8931 /* Check for 16bit shifted constant. We know that hi32 is
8932 non-zero, so start the mask on the first bit of the hi32
8933 value. */
8934 shift = 17;
8935 do
8936 {
8937 unsigned long himask, lomask;
8938
8939 if (shift < 32)
8940 {
8941 himask = 0xffff >> (32 - shift);
8942 lomask = (0xffff << shift) & 0xffffffff;
8943 }
8944 else
8945 {
8946 himask = 0xffff << (shift - 32);
8947 lomask = 0;
8948 }
8949 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8950 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8951 {
8952 expressionS tmp;
8953
8954 tmp.X_op = O_constant;
8955 if (shift < 32)
8956 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8957 | (lo32.X_add_number >> shift));
8958 else
8959 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8960 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8961 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8962 reg, reg, (shift >= 32) ? shift - 32 : shift);
8963 return;
8964 }
8965 ++shift;
8966 }
8967 while (shift <= (64 - 16));
8968
8969 /* Find the bit number of the lowest one bit, and store the
8970 shifted value in hi/lo. */
8971 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8972 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8973 if (lo != 0)
8974 {
8975 bit = 0;
8976 while ((lo & 1) == 0)
8977 {
8978 lo >>= 1;
8979 ++bit;
8980 }
8981 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8982 hi >>= bit;
8983 }
8984 else
8985 {
8986 bit = 32;
8987 while ((hi & 1) == 0)
8988 {
8989 hi >>= 1;
8990 ++bit;
8991 }
8992 lo = hi;
8993 hi = 0;
8994 }
8995
8996 /* Optimize if the shifted value is a (power of 2) - 1. */
8997 if ((hi == 0 && ((lo + 1) & lo) == 0)
8998 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
8999 {
9000 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9001 if (shift != 0)
9002 {
9003 expressionS tmp;
9004
9005 /* This instruction will set the register to be all
9006 ones. */
9007 tmp.X_op = O_constant;
9008 tmp.X_add_number = (offsetT) -1;
9009 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9010 if (bit != 0)
9011 {
9012 bit += shift;
9013 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9014 reg, reg, (bit >= 32) ? bit - 32 : bit);
9015 }
9016 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9017 reg, reg, (shift >= 32) ? shift - 32 : shift);
9018 return;
9019 }
9020 }
9021
9022 /* Sign extend hi32 before calling load_register, because we can
9023 generally get better code when we load a sign extended value. */
9024 if ((hi32.X_add_number & 0x80000000) != 0)
9025 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9026 load_register (reg, &hi32, 0);
9027 freg = reg;
9028 }
9029 if ((lo32.X_add_number & 0xffff0000) == 0)
9030 {
9031 if (freg != 0)
9032 {
9033 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9034 freg = reg;
9035 }
9036 }
9037 else
9038 {
9039 expressionS mid16;
9040
9041 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9042 {
9043 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9044 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9045 return;
9046 }
9047
9048 if (freg != 0)
9049 {
9050 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9051 freg = reg;
9052 }
9053 mid16 = lo32;
9054 mid16.X_add_number >>= 16;
9055 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9056 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9057 freg = reg;
9058 }
9059 if ((lo32.X_add_number & 0xffff) != 0)
9060 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9061 }
9062
9063 static inline void
9064 load_delay_nop (void)
9065 {
9066 if (!gpr_interlocks)
9067 macro_build (NULL, "nop", "");
9068 }
9069
9070 /* Load an address into a register. */
9071
9072 static void
9073 load_address (int reg, expressionS *ep, int *used_at)
9074 {
9075 if (ep->X_op != O_constant
9076 && ep->X_op != O_symbol)
9077 {
9078 as_bad (_("expression too complex"));
9079 ep->X_op = O_constant;
9080 }
9081
9082 if (ep->X_op == O_constant)
9083 {
9084 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9085 return;
9086 }
9087
9088 if (mips_pic == NO_PIC)
9089 {
9090 /* If this is a reference to a GP relative symbol, we want
9091 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9092 Otherwise we want
9093 lui $reg,<sym> (BFD_RELOC_HI16_S)
9094 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9095 If we have an addend, we always use the latter form.
9096
9097 With 64bit address space and a usable $at we want
9098 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9099 lui $at,<sym> (BFD_RELOC_HI16_S)
9100 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9101 daddiu $at,<sym> (BFD_RELOC_LO16)
9102 dsll32 $reg,0
9103 daddu $reg,$reg,$at
9104
9105 If $at is already in use, we use a path which is suboptimal
9106 on superscalar processors.
9107 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9108 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9109 dsll $reg,16
9110 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9111 dsll $reg,16
9112 daddiu $reg,<sym> (BFD_RELOC_LO16)
9113
9114 For GP relative symbols in 64bit address space we can use
9115 the same sequence as in 32bit address space. */
9116 if (HAVE_64BIT_SYMBOLS)
9117 {
9118 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9119 && !nopic_need_relax (ep->X_add_symbol, 1))
9120 {
9121 relax_start (ep->X_add_symbol);
9122 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9123 mips_gp_register, BFD_RELOC_GPREL16);
9124 relax_switch ();
9125 }
9126
9127 if (*used_at == 0 && mips_opts.at)
9128 {
9129 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9130 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9131 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9132 BFD_RELOC_MIPS_HIGHER);
9133 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9134 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9135 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9136 *used_at = 1;
9137 }
9138 else
9139 {
9140 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9141 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9142 BFD_RELOC_MIPS_HIGHER);
9143 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9144 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9145 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9146 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9147 }
9148
9149 if (mips_relax.sequence)
9150 relax_end ();
9151 }
9152 else
9153 {
9154 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9155 && !nopic_need_relax (ep->X_add_symbol, 1))
9156 {
9157 relax_start (ep->X_add_symbol);
9158 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9159 mips_gp_register, BFD_RELOC_GPREL16);
9160 relax_switch ();
9161 }
9162 macro_build_lui (ep, reg);
9163 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9164 reg, reg, BFD_RELOC_LO16);
9165 if (mips_relax.sequence)
9166 relax_end ();
9167 }
9168 }
9169 else if (!mips_big_got)
9170 {
9171 expressionS ex;
9172
9173 /* If this is a reference to an external symbol, we want
9174 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9175 Otherwise we want
9176 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9177 nop
9178 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9179 If there is a constant, it must be added in after.
9180
9181 If we have NewABI, we want
9182 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9183 unless we're referencing a global symbol with a non-zero
9184 offset, in which case cst must be added separately. */
9185 if (HAVE_NEWABI)
9186 {
9187 if (ep->X_add_number)
9188 {
9189 ex.X_add_number = ep->X_add_number;
9190 ep->X_add_number = 0;
9191 relax_start (ep->X_add_symbol);
9192 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9193 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9194 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9195 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9196 ex.X_op = O_constant;
9197 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9198 reg, reg, BFD_RELOC_LO16);
9199 ep->X_add_number = ex.X_add_number;
9200 relax_switch ();
9201 }
9202 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9203 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9204 if (mips_relax.sequence)
9205 relax_end ();
9206 }
9207 else
9208 {
9209 ex.X_add_number = ep->X_add_number;
9210 ep->X_add_number = 0;
9211 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9212 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9213 load_delay_nop ();
9214 relax_start (ep->X_add_symbol);
9215 relax_switch ();
9216 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9217 BFD_RELOC_LO16);
9218 relax_end ();
9219
9220 if (ex.X_add_number != 0)
9221 {
9222 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9223 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9224 ex.X_op = O_constant;
9225 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9226 reg, reg, BFD_RELOC_LO16);
9227 }
9228 }
9229 }
9230 else if (mips_big_got)
9231 {
9232 expressionS ex;
9233
9234 /* This is the large GOT case. If this is a reference to an
9235 external symbol, we want
9236 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9237 addu $reg,$reg,$gp
9238 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9239
9240 Otherwise, for a reference to a local symbol in old ABI, we want
9241 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9242 nop
9243 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9244 If there is a constant, it must be added in after.
9245
9246 In the NewABI, for local symbols, with or without offsets, we want:
9247 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9248 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9249 */
9250 if (HAVE_NEWABI)
9251 {
9252 ex.X_add_number = ep->X_add_number;
9253 ep->X_add_number = 0;
9254 relax_start (ep->X_add_symbol);
9255 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9256 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9257 reg, reg, mips_gp_register);
9258 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9259 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9260 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9261 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9262 else if (ex.X_add_number)
9263 {
9264 ex.X_op = O_constant;
9265 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9266 BFD_RELOC_LO16);
9267 }
9268
9269 ep->X_add_number = ex.X_add_number;
9270 relax_switch ();
9271 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9272 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9273 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9274 BFD_RELOC_MIPS_GOT_OFST);
9275 relax_end ();
9276 }
9277 else
9278 {
9279 ex.X_add_number = ep->X_add_number;
9280 ep->X_add_number = 0;
9281 relax_start (ep->X_add_symbol);
9282 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9283 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9284 reg, reg, mips_gp_register);
9285 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9286 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9287 relax_switch ();
9288 if (reg_needs_delay (mips_gp_register))
9289 {
9290 /* We need a nop before loading from $gp. This special
9291 check is required because the lui which starts the main
9292 instruction stream does not refer to $gp, and so will not
9293 insert the nop which may be required. */
9294 macro_build (NULL, "nop", "");
9295 }
9296 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9297 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9298 load_delay_nop ();
9299 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9300 BFD_RELOC_LO16);
9301 relax_end ();
9302
9303 if (ex.X_add_number != 0)
9304 {
9305 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9306 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9307 ex.X_op = O_constant;
9308 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9309 BFD_RELOC_LO16);
9310 }
9311 }
9312 }
9313 else
9314 abort ();
9315
9316 if (!mips_opts.at && *used_at == 1)
9317 as_bad (_("macro used $at after \".set noat\""));
9318 }
9319
9320 /* Move the contents of register SOURCE into register DEST. */
9321
9322 static void
9323 move_register (int dest, int source)
9324 {
9325 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9326 instruction specifically requires a 32-bit one. */
9327 if (mips_opts.micromips
9328 && !mips_opts.insn32
9329 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9330 macro_build (NULL, "move", "mp,mj", dest, source);
9331 else
9332 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9333 }
9334
9335 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9336 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9337 The two alternatives are:
9338
9339 Global symbol Local sybmol
9340 ------------- ------------
9341 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9342 ... ...
9343 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9344
9345 load_got_offset emits the first instruction and add_got_offset
9346 emits the second for a 16-bit offset or add_got_offset_hilo emits
9347 a sequence to add a 32-bit offset using a scratch register. */
9348
9349 static void
9350 load_got_offset (int dest, expressionS *local)
9351 {
9352 expressionS global;
9353
9354 global = *local;
9355 global.X_add_number = 0;
9356
9357 relax_start (local->X_add_symbol);
9358 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9359 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9360 relax_switch ();
9361 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9362 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9363 relax_end ();
9364 }
9365
9366 static void
9367 add_got_offset (int dest, expressionS *local)
9368 {
9369 expressionS global;
9370
9371 global.X_op = O_constant;
9372 global.X_op_symbol = NULL;
9373 global.X_add_symbol = NULL;
9374 global.X_add_number = local->X_add_number;
9375
9376 relax_start (local->X_add_symbol);
9377 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9378 dest, dest, BFD_RELOC_LO16);
9379 relax_switch ();
9380 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9381 relax_end ();
9382 }
9383
9384 static void
9385 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9386 {
9387 expressionS global;
9388 int hold_mips_optimize;
9389
9390 global.X_op = O_constant;
9391 global.X_op_symbol = NULL;
9392 global.X_add_symbol = NULL;
9393 global.X_add_number = local->X_add_number;
9394
9395 relax_start (local->X_add_symbol);
9396 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9397 relax_switch ();
9398 /* Set mips_optimize around the lui instruction to avoid
9399 inserting an unnecessary nop after the lw. */
9400 hold_mips_optimize = mips_optimize;
9401 mips_optimize = 2;
9402 macro_build_lui (&global, tmp);
9403 mips_optimize = hold_mips_optimize;
9404 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9405 relax_end ();
9406
9407 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9408 }
9409
9410 /* Emit a sequence of instructions to emulate a branch likely operation.
9411 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9412 is its complementing branch with the original condition negated.
9413 CALL is set if the original branch specified the link operation.
9414 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9415
9416 Code like this is produced in the noreorder mode:
9417
9418 BRNEG <args>, 1f
9419 nop
9420 b <sym>
9421 delay slot (executed only if branch taken)
9422 1:
9423
9424 or, if CALL is set:
9425
9426 BRNEG <args>, 1f
9427 nop
9428 bal <sym>
9429 delay slot (executed only if branch taken)
9430 1:
9431
9432 In the reorder mode the delay slot would be filled with a nop anyway,
9433 so code produced is simply:
9434
9435 BR <args>, <sym>
9436 nop
9437
9438 This function is used when producing code for the microMIPS ASE that
9439 does not implement branch likely instructions in hardware. */
9440
9441 static void
9442 macro_build_branch_likely (const char *br, const char *brneg,
9443 int call, expressionS *ep, const char *fmt,
9444 unsigned int sreg, unsigned int treg)
9445 {
9446 int noreorder = mips_opts.noreorder;
9447 expressionS expr1;
9448
9449 gas_assert (mips_opts.micromips);
9450 start_noreorder ();
9451 if (noreorder)
9452 {
9453 micromips_label_expr (&expr1);
9454 macro_build (&expr1, brneg, fmt, sreg, treg);
9455 macro_build (NULL, "nop", "");
9456 macro_build (ep, call ? "bal" : "b", "p");
9457
9458 /* Set to true so that append_insn adds a label. */
9459 emit_branch_likely_macro = TRUE;
9460 }
9461 else
9462 {
9463 macro_build (ep, br, fmt, sreg, treg);
9464 macro_build (NULL, "nop", "");
9465 }
9466 end_noreorder ();
9467 }
9468
9469 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9470 the condition code tested. EP specifies the branch target. */
9471
9472 static void
9473 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9474 {
9475 const int call = 0;
9476 const char *brneg;
9477 const char *br;
9478
9479 switch (type)
9480 {
9481 case M_BC1FL:
9482 br = "bc1f";
9483 brneg = "bc1t";
9484 break;
9485 case M_BC1TL:
9486 br = "bc1t";
9487 brneg = "bc1f";
9488 break;
9489 case M_BC2FL:
9490 br = "bc2f";
9491 brneg = "bc2t";
9492 break;
9493 case M_BC2TL:
9494 br = "bc2t";
9495 brneg = "bc2f";
9496 break;
9497 default:
9498 abort ();
9499 }
9500 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9501 }
9502
9503 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9504 the register tested. EP specifies the branch target. */
9505
9506 static void
9507 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9508 {
9509 const char *brneg = NULL;
9510 const char *br;
9511 int call = 0;
9512
9513 switch (type)
9514 {
9515 case M_BGEZ:
9516 br = "bgez";
9517 break;
9518 case M_BGEZL:
9519 br = mips_opts.micromips ? "bgez" : "bgezl";
9520 brneg = "bltz";
9521 break;
9522 case M_BGEZALL:
9523 gas_assert (mips_opts.micromips);
9524 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9525 brneg = "bltz";
9526 call = 1;
9527 break;
9528 case M_BGTZ:
9529 br = "bgtz";
9530 break;
9531 case M_BGTZL:
9532 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9533 brneg = "blez";
9534 break;
9535 case M_BLEZ:
9536 br = "blez";
9537 break;
9538 case M_BLEZL:
9539 br = mips_opts.micromips ? "blez" : "blezl";
9540 brneg = "bgtz";
9541 break;
9542 case M_BLTZ:
9543 br = "bltz";
9544 break;
9545 case M_BLTZL:
9546 br = mips_opts.micromips ? "bltz" : "bltzl";
9547 brneg = "bgez";
9548 break;
9549 case M_BLTZALL:
9550 gas_assert (mips_opts.micromips);
9551 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9552 brneg = "bgez";
9553 call = 1;
9554 break;
9555 default:
9556 abort ();
9557 }
9558 if (mips_opts.micromips && brneg)
9559 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9560 else
9561 macro_build (ep, br, "s,p", sreg);
9562 }
9563
9564 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9565 TREG as the registers tested. EP specifies the branch target. */
9566
9567 static void
9568 macro_build_branch_rsrt (int type, expressionS *ep,
9569 unsigned int sreg, unsigned int treg)
9570 {
9571 const char *brneg = NULL;
9572 const int call = 0;
9573 const char *br;
9574
9575 switch (type)
9576 {
9577 case M_BEQ:
9578 case M_BEQ_I:
9579 br = "beq";
9580 break;
9581 case M_BEQL:
9582 case M_BEQL_I:
9583 br = mips_opts.micromips ? "beq" : "beql";
9584 brneg = "bne";
9585 break;
9586 case M_BNE:
9587 case M_BNE_I:
9588 br = "bne";
9589 break;
9590 case M_BNEL:
9591 case M_BNEL_I:
9592 br = mips_opts.micromips ? "bne" : "bnel";
9593 brneg = "beq";
9594 break;
9595 default:
9596 abort ();
9597 }
9598 if (mips_opts.micromips && brneg)
9599 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9600 else
9601 macro_build (ep, br, "s,t,p", sreg, treg);
9602 }
9603
9604 /* Return the high part that should be loaded in order to make the low
9605 part of VALUE accessible using an offset of OFFBITS bits. */
9606
9607 static offsetT
9608 offset_high_part (offsetT value, unsigned int offbits)
9609 {
9610 offsetT bias;
9611 addressT low_mask;
9612
9613 if (offbits == 0)
9614 return value;
9615 bias = 1 << (offbits - 1);
9616 low_mask = bias * 2 - 1;
9617 return (value + bias) & ~low_mask;
9618 }
9619
9620 /* Return true if the value stored in offset_expr and offset_reloc
9621 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9622 amount that the caller wants to add without inducing overflow
9623 and ALIGN is the known alignment of the value in bytes. */
9624
9625 static bfd_boolean
9626 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9627 {
9628 if (offbits == 16)
9629 {
9630 /* Accept any relocation operator if overflow isn't a concern. */
9631 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9632 return TRUE;
9633
9634 /* These relocations are guaranteed not to overflow in correct links. */
9635 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9636 || gprel16_reloc_p (*offset_reloc))
9637 return TRUE;
9638 }
9639 if (offset_expr.X_op == O_constant
9640 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9641 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9642 return TRUE;
9643 return FALSE;
9644 }
9645
9646 /*
9647 * Build macros
9648 * This routine implements the seemingly endless macro or synthesized
9649 * instructions and addressing modes in the mips assembly language. Many
9650 * of these macros are simple and are similar to each other. These could
9651 * probably be handled by some kind of table or grammar approach instead of
9652 * this verbose method. Others are not simple macros but are more like
9653 * optimizing code generation.
9654 * One interesting optimization is when several store macros appear
9655 * consecutively that would load AT with the upper half of the same address.
9656 * The ensuing load upper instructions are ommited. This implies some kind
9657 * of global optimization. We currently only optimize within a single macro.
9658 * For many of the load and store macros if the address is specified as a
9659 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9660 * first load register 'at' with zero and use it as the base register. The
9661 * mips assembler simply uses register $zero. Just one tiny optimization
9662 * we're missing.
9663 */
9664 static void
9665 macro (struct mips_cl_insn *ip, char *str)
9666 {
9667 const struct mips_operand_array *operands;
9668 unsigned int breg, i;
9669 unsigned int tempreg;
9670 int mask;
9671 int used_at = 0;
9672 expressionS label_expr;
9673 expressionS expr1;
9674 expressionS *ep;
9675 const char *s;
9676 const char *s2;
9677 const char *fmt;
9678 int likely = 0;
9679 int coproc = 0;
9680 int offbits = 16;
9681 int call = 0;
9682 int jals = 0;
9683 int dbl = 0;
9684 int imm = 0;
9685 int ust = 0;
9686 int lp = 0;
9687 bfd_boolean large_offset;
9688 int off;
9689 int hold_mips_optimize;
9690 unsigned int align;
9691 unsigned int op[MAX_OPERANDS];
9692
9693 gas_assert (! mips_opts.mips16);
9694
9695 operands = insn_operands (ip);
9696 for (i = 0; i < MAX_OPERANDS; i++)
9697 if (operands->operand[i])
9698 op[i] = insn_extract_operand (ip, operands->operand[i]);
9699 else
9700 op[i] = -1;
9701
9702 mask = ip->insn_mo->mask;
9703
9704 label_expr.X_op = O_constant;
9705 label_expr.X_op_symbol = NULL;
9706 label_expr.X_add_symbol = NULL;
9707 label_expr.X_add_number = 0;
9708
9709 expr1.X_op = O_constant;
9710 expr1.X_op_symbol = NULL;
9711 expr1.X_add_symbol = NULL;
9712 expr1.X_add_number = 1;
9713 align = 1;
9714
9715 switch (mask)
9716 {
9717 case M_DABS:
9718 dbl = 1;
9719 case M_ABS:
9720 /* bgez $a0,1f
9721 move v0,$a0
9722 sub v0,$zero,$a0
9723 1:
9724 */
9725
9726 start_noreorder ();
9727
9728 if (mips_opts.micromips)
9729 micromips_label_expr (&label_expr);
9730 else
9731 label_expr.X_add_number = 8;
9732 macro_build (&label_expr, "bgez", "s,p", op[1]);
9733 if (op[0] == op[1])
9734 macro_build (NULL, "nop", "");
9735 else
9736 move_register (op[0], op[1]);
9737 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9738 if (mips_opts.micromips)
9739 micromips_add_label ();
9740
9741 end_noreorder ();
9742 break;
9743
9744 case M_ADD_I:
9745 s = "addi";
9746 s2 = "add";
9747 goto do_addi;
9748 case M_ADDU_I:
9749 s = "addiu";
9750 s2 = "addu";
9751 goto do_addi;
9752 case M_DADD_I:
9753 dbl = 1;
9754 s = "daddi";
9755 s2 = "dadd";
9756 if (!mips_opts.micromips)
9757 goto do_addi;
9758 if (imm_expr.X_add_number >= -0x200
9759 && imm_expr.X_add_number < 0x200)
9760 {
9761 macro_build (NULL, s, "t,r,.", op[0], op[1],
9762 (int) imm_expr.X_add_number);
9763 break;
9764 }
9765 goto do_addi_i;
9766 case M_DADDU_I:
9767 dbl = 1;
9768 s = "daddiu";
9769 s2 = "daddu";
9770 do_addi:
9771 if (imm_expr.X_add_number >= -0x8000
9772 && imm_expr.X_add_number < 0x8000)
9773 {
9774 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9775 break;
9776 }
9777 do_addi_i:
9778 used_at = 1;
9779 load_register (AT, &imm_expr, dbl);
9780 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9781 break;
9782
9783 case M_AND_I:
9784 s = "andi";
9785 s2 = "and";
9786 goto do_bit;
9787 case M_OR_I:
9788 s = "ori";
9789 s2 = "or";
9790 goto do_bit;
9791 case M_NOR_I:
9792 s = "";
9793 s2 = "nor";
9794 goto do_bit;
9795 case M_XOR_I:
9796 s = "xori";
9797 s2 = "xor";
9798 do_bit:
9799 if (imm_expr.X_add_number >= 0
9800 && imm_expr.X_add_number < 0x10000)
9801 {
9802 if (mask != M_NOR_I)
9803 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9804 else
9805 {
9806 macro_build (&imm_expr, "ori", "t,r,i",
9807 op[0], op[1], BFD_RELOC_LO16);
9808 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9809 }
9810 break;
9811 }
9812
9813 used_at = 1;
9814 load_register (AT, &imm_expr, GPR_SIZE == 64);
9815 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9816 break;
9817
9818 case M_BALIGN:
9819 switch (imm_expr.X_add_number)
9820 {
9821 case 0:
9822 macro_build (NULL, "nop", "");
9823 break;
9824 case 2:
9825 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9826 break;
9827 case 1:
9828 case 3:
9829 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9830 (int) imm_expr.X_add_number);
9831 break;
9832 default:
9833 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9834 (unsigned long) imm_expr.X_add_number);
9835 break;
9836 }
9837 break;
9838
9839 case M_BC1FL:
9840 case M_BC1TL:
9841 case M_BC2FL:
9842 case M_BC2TL:
9843 gas_assert (mips_opts.micromips);
9844 macro_build_branch_ccl (mask, &offset_expr,
9845 EXTRACT_OPERAND (1, BCC, *ip));
9846 break;
9847
9848 case M_BEQ_I:
9849 case M_BEQL_I:
9850 case M_BNE_I:
9851 case M_BNEL_I:
9852 if (imm_expr.X_add_number == 0)
9853 op[1] = 0;
9854 else
9855 {
9856 op[1] = AT;
9857 used_at = 1;
9858 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9859 }
9860 /* Fall through. */
9861 case M_BEQL:
9862 case M_BNEL:
9863 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9864 break;
9865
9866 case M_BGEL:
9867 likely = 1;
9868 case M_BGE:
9869 if (op[1] == 0)
9870 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9871 else if (op[0] == 0)
9872 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9873 else
9874 {
9875 used_at = 1;
9876 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9877 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9878 &offset_expr, AT, ZERO);
9879 }
9880 break;
9881
9882 case M_BGEZL:
9883 case M_BGEZALL:
9884 case M_BGTZL:
9885 case M_BLEZL:
9886 case M_BLTZL:
9887 case M_BLTZALL:
9888 macro_build_branch_rs (mask, &offset_expr, op[0]);
9889 break;
9890
9891 case M_BGTL_I:
9892 likely = 1;
9893 case M_BGT_I:
9894 /* Check for > max integer. */
9895 if (imm_expr.X_add_number >= GPR_SMAX)
9896 {
9897 do_false:
9898 /* Result is always false. */
9899 if (! likely)
9900 macro_build (NULL, "nop", "");
9901 else
9902 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9903 break;
9904 }
9905 ++imm_expr.X_add_number;
9906 /* FALLTHROUGH */
9907 case M_BGE_I:
9908 case M_BGEL_I:
9909 if (mask == M_BGEL_I)
9910 likely = 1;
9911 if (imm_expr.X_add_number == 0)
9912 {
9913 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9914 &offset_expr, op[0]);
9915 break;
9916 }
9917 if (imm_expr.X_add_number == 1)
9918 {
9919 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9920 &offset_expr, op[0]);
9921 break;
9922 }
9923 if (imm_expr.X_add_number <= GPR_SMIN)
9924 {
9925 do_true:
9926 /* result is always true */
9927 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9928 macro_build (&offset_expr, "b", "p");
9929 break;
9930 }
9931 used_at = 1;
9932 set_at (op[0], 0);
9933 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9934 &offset_expr, AT, ZERO);
9935 break;
9936
9937 case M_BGEUL:
9938 likely = 1;
9939 case M_BGEU:
9940 if (op[1] == 0)
9941 goto do_true;
9942 else if (op[0] == 0)
9943 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9944 &offset_expr, ZERO, op[1]);
9945 else
9946 {
9947 used_at = 1;
9948 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9949 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9950 &offset_expr, AT, ZERO);
9951 }
9952 break;
9953
9954 case M_BGTUL_I:
9955 likely = 1;
9956 case M_BGTU_I:
9957 if (op[0] == 0
9958 || (GPR_SIZE == 32
9959 && imm_expr.X_add_number == -1))
9960 goto do_false;
9961 ++imm_expr.X_add_number;
9962 /* FALLTHROUGH */
9963 case M_BGEU_I:
9964 case M_BGEUL_I:
9965 if (mask == M_BGEUL_I)
9966 likely = 1;
9967 if (imm_expr.X_add_number == 0)
9968 goto do_true;
9969 else if (imm_expr.X_add_number == 1)
9970 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9971 &offset_expr, op[0], ZERO);
9972 else
9973 {
9974 used_at = 1;
9975 set_at (op[0], 1);
9976 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9977 &offset_expr, AT, ZERO);
9978 }
9979 break;
9980
9981 case M_BGTL:
9982 likely = 1;
9983 case M_BGT:
9984 if (op[1] == 0)
9985 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9986 else if (op[0] == 0)
9987 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
9988 else
9989 {
9990 used_at = 1;
9991 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
9992 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9993 &offset_expr, AT, ZERO);
9994 }
9995 break;
9996
9997 case M_BGTUL:
9998 likely = 1;
9999 case M_BGTU:
10000 if (op[1] == 0)
10001 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10002 &offset_expr, op[0], ZERO);
10003 else if (op[0] == 0)
10004 goto do_false;
10005 else
10006 {
10007 used_at = 1;
10008 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10009 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10010 &offset_expr, AT, ZERO);
10011 }
10012 break;
10013
10014 case M_BLEL:
10015 likely = 1;
10016 case M_BLE:
10017 if (op[1] == 0)
10018 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10019 else if (op[0] == 0)
10020 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10021 else
10022 {
10023 used_at = 1;
10024 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10025 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10026 &offset_expr, AT, ZERO);
10027 }
10028 break;
10029
10030 case M_BLEL_I:
10031 likely = 1;
10032 case M_BLE_I:
10033 if (imm_expr.X_add_number >= GPR_SMAX)
10034 goto do_true;
10035 ++imm_expr.X_add_number;
10036 /* FALLTHROUGH */
10037 case M_BLT_I:
10038 case M_BLTL_I:
10039 if (mask == M_BLTL_I)
10040 likely = 1;
10041 if (imm_expr.X_add_number == 0)
10042 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10043 else if (imm_expr.X_add_number == 1)
10044 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10045 else
10046 {
10047 used_at = 1;
10048 set_at (op[0], 0);
10049 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10050 &offset_expr, AT, ZERO);
10051 }
10052 break;
10053
10054 case M_BLEUL:
10055 likely = 1;
10056 case M_BLEU:
10057 if (op[1] == 0)
10058 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10059 &offset_expr, op[0], ZERO);
10060 else if (op[0] == 0)
10061 goto do_true;
10062 else
10063 {
10064 used_at = 1;
10065 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10066 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10067 &offset_expr, AT, ZERO);
10068 }
10069 break;
10070
10071 case M_BLEUL_I:
10072 likely = 1;
10073 case M_BLEU_I:
10074 if (op[0] == 0
10075 || (GPR_SIZE == 32
10076 && imm_expr.X_add_number == -1))
10077 goto do_true;
10078 ++imm_expr.X_add_number;
10079 /* FALLTHROUGH */
10080 case M_BLTU_I:
10081 case M_BLTUL_I:
10082 if (mask == M_BLTUL_I)
10083 likely = 1;
10084 if (imm_expr.X_add_number == 0)
10085 goto do_false;
10086 else if (imm_expr.X_add_number == 1)
10087 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10088 &offset_expr, op[0], ZERO);
10089 else
10090 {
10091 used_at = 1;
10092 set_at (op[0], 1);
10093 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10094 &offset_expr, AT, ZERO);
10095 }
10096 break;
10097
10098 case M_BLTL:
10099 likely = 1;
10100 case M_BLT:
10101 if (op[1] == 0)
10102 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10103 else if (op[0] == 0)
10104 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10105 else
10106 {
10107 used_at = 1;
10108 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10109 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10110 &offset_expr, AT, ZERO);
10111 }
10112 break;
10113
10114 case M_BLTUL:
10115 likely = 1;
10116 case M_BLTU:
10117 if (op[1] == 0)
10118 goto do_false;
10119 else if (op[0] == 0)
10120 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10121 &offset_expr, ZERO, op[1]);
10122 else
10123 {
10124 used_at = 1;
10125 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10126 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10127 &offset_expr, AT, ZERO);
10128 }
10129 break;
10130
10131 case M_DDIV_3:
10132 dbl = 1;
10133 case M_DIV_3:
10134 s = "mflo";
10135 goto do_div3;
10136 case M_DREM_3:
10137 dbl = 1;
10138 case M_REM_3:
10139 s = "mfhi";
10140 do_div3:
10141 if (op[2] == 0)
10142 {
10143 as_warn (_("divide by zero"));
10144 if (mips_trap)
10145 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10146 else
10147 macro_build (NULL, "break", BRK_FMT, 7);
10148 break;
10149 }
10150
10151 start_noreorder ();
10152 if (mips_trap)
10153 {
10154 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10155 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10156 }
10157 else
10158 {
10159 if (mips_opts.micromips)
10160 micromips_label_expr (&label_expr);
10161 else
10162 label_expr.X_add_number = 8;
10163 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10164 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10165 macro_build (NULL, "break", BRK_FMT, 7);
10166 if (mips_opts.micromips)
10167 micromips_add_label ();
10168 }
10169 expr1.X_add_number = -1;
10170 used_at = 1;
10171 load_register (AT, &expr1, dbl);
10172 if (mips_opts.micromips)
10173 micromips_label_expr (&label_expr);
10174 else
10175 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10176 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10177 if (dbl)
10178 {
10179 expr1.X_add_number = 1;
10180 load_register (AT, &expr1, dbl);
10181 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10182 }
10183 else
10184 {
10185 expr1.X_add_number = 0x80000000;
10186 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10187 }
10188 if (mips_trap)
10189 {
10190 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10191 /* We want to close the noreorder block as soon as possible, so
10192 that later insns are available for delay slot filling. */
10193 end_noreorder ();
10194 }
10195 else
10196 {
10197 if (mips_opts.micromips)
10198 micromips_label_expr (&label_expr);
10199 else
10200 label_expr.X_add_number = 8;
10201 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10202 macro_build (NULL, "nop", "");
10203
10204 /* We want to close the noreorder block as soon as possible, so
10205 that later insns are available for delay slot filling. */
10206 end_noreorder ();
10207
10208 macro_build (NULL, "break", BRK_FMT, 6);
10209 }
10210 if (mips_opts.micromips)
10211 micromips_add_label ();
10212 macro_build (NULL, s, MFHL_FMT, op[0]);
10213 break;
10214
10215 case M_DIV_3I:
10216 s = "div";
10217 s2 = "mflo";
10218 goto do_divi;
10219 case M_DIVU_3I:
10220 s = "divu";
10221 s2 = "mflo";
10222 goto do_divi;
10223 case M_REM_3I:
10224 s = "div";
10225 s2 = "mfhi";
10226 goto do_divi;
10227 case M_REMU_3I:
10228 s = "divu";
10229 s2 = "mfhi";
10230 goto do_divi;
10231 case M_DDIV_3I:
10232 dbl = 1;
10233 s = "ddiv";
10234 s2 = "mflo";
10235 goto do_divi;
10236 case M_DDIVU_3I:
10237 dbl = 1;
10238 s = "ddivu";
10239 s2 = "mflo";
10240 goto do_divi;
10241 case M_DREM_3I:
10242 dbl = 1;
10243 s = "ddiv";
10244 s2 = "mfhi";
10245 goto do_divi;
10246 case M_DREMU_3I:
10247 dbl = 1;
10248 s = "ddivu";
10249 s2 = "mfhi";
10250 do_divi:
10251 if (imm_expr.X_add_number == 0)
10252 {
10253 as_warn (_("divide by zero"));
10254 if (mips_trap)
10255 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10256 else
10257 macro_build (NULL, "break", BRK_FMT, 7);
10258 break;
10259 }
10260 if (imm_expr.X_add_number == 1)
10261 {
10262 if (strcmp (s2, "mflo") == 0)
10263 move_register (op[0], op[1]);
10264 else
10265 move_register (op[0], ZERO);
10266 break;
10267 }
10268 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10269 {
10270 if (strcmp (s2, "mflo") == 0)
10271 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10272 else
10273 move_register (op[0], ZERO);
10274 break;
10275 }
10276
10277 used_at = 1;
10278 load_register (AT, &imm_expr, dbl);
10279 macro_build (NULL, s, "z,s,t", op[1], AT);
10280 macro_build (NULL, s2, MFHL_FMT, op[0]);
10281 break;
10282
10283 case M_DIVU_3:
10284 s = "divu";
10285 s2 = "mflo";
10286 goto do_divu3;
10287 case M_REMU_3:
10288 s = "divu";
10289 s2 = "mfhi";
10290 goto do_divu3;
10291 case M_DDIVU_3:
10292 s = "ddivu";
10293 s2 = "mflo";
10294 goto do_divu3;
10295 case M_DREMU_3:
10296 s = "ddivu";
10297 s2 = "mfhi";
10298 do_divu3:
10299 start_noreorder ();
10300 if (mips_trap)
10301 {
10302 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10303 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10304 /* We want to close the noreorder block as soon as possible, so
10305 that later insns are available for delay slot filling. */
10306 end_noreorder ();
10307 }
10308 else
10309 {
10310 if (mips_opts.micromips)
10311 micromips_label_expr (&label_expr);
10312 else
10313 label_expr.X_add_number = 8;
10314 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10315 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10316
10317 /* We want to close the noreorder block as soon as possible, so
10318 that later insns are available for delay slot filling. */
10319 end_noreorder ();
10320 macro_build (NULL, "break", BRK_FMT, 7);
10321 if (mips_opts.micromips)
10322 micromips_add_label ();
10323 }
10324 macro_build (NULL, s2, MFHL_FMT, op[0]);
10325 break;
10326
10327 case M_DLCA_AB:
10328 dbl = 1;
10329 case M_LCA_AB:
10330 call = 1;
10331 goto do_la;
10332 case M_DLA_AB:
10333 dbl = 1;
10334 case M_LA_AB:
10335 do_la:
10336 /* Load the address of a symbol into a register. If breg is not
10337 zero, we then add a base register to it. */
10338
10339 breg = op[2];
10340 if (dbl && GPR_SIZE == 32)
10341 as_warn (_("dla used to load 32-bit register; recommend using la "
10342 "instead"));
10343
10344 if (!dbl && HAVE_64BIT_OBJECTS)
10345 as_warn (_("la used to load 64-bit address; recommend using dla "
10346 "instead"));
10347
10348 if (small_offset_p (0, align, 16))
10349 {
10350 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10351 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10352 break;
10353 }
10354
10355 if (mips_opts.at && (op[0] == breg))
10356 {
10357 tempreg = AT;
10358 used_at = 1;
10359 }
10360 else
10361 tempreg = op[0];
10362
10363 if (offset_expr.X_op != O_symbol
10364 && offset_expr.X_op != O_constant)
10365 {
10366 as_bad (_("expression too complex"));
10367 offset_expr.X_op = O_constant;
10368 }
10369
10370 if (offset_expr.X_op == O_constant)
10371 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10372 else if (mips_pic == NO_PIC)
10373 {
10374 /* If this is a reference to a GP relative symbol, we want
10375 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10376 Otherwise we want
10377 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10378 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10379 If we have a constant, we need two instructions anyhow,
10380 so we may as well always use the latter form.
10381
10382 With 64bit address space and a usable $at we want
10383 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10384 lui $at,<sym> (BFD_RELOC_HI16_S)
10385 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10386 daddiu $at,<sym> (BFD_RELOC_LO16)
10387 dsll32 $tempreg,0
10388 daddu $tempreg,$tempreg,$at
10389
10390 If $at is already in use, we use a path which is suboptimal
10391 on superscalar processors.
10392 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10393 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10394 dsll $tempreg,16
10395 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10396 dsll $tempreg,16
10397 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10398
10399 For GP relative symbols in 64bit address space we can use
10400 the same sequence as in 32bit address space. */
10401 if (HAVE_64BIT_SYMBOLS)
10402 {
10403 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10404 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10405 {
10406 relax_start (offset_expr.X_add_symbol);
10407 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10408 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10409 relax_switch ();
10410 }
10411
10412 if (used_at == 0 && mips_opts.at)
10413 {
10414 macro_build (&offset_expr, "lui", LUI_FMT,
10415 tempreg, BFD_RELOC_MIPS_HIGHEST);
10416 macro_build (&offset_expr, "lui", LUI_FMT,
10417 AT, BFD_RELOC_HI16_S);
10418 macro_build (&offset_expr, "daddiu", "t,r,j",
10419 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10420 macro_build (&offset_expr, "daddiu", "t,r,j",
10421 AT, AT, BFD_RELOC_LO16);
10422 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10423 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10424 used_at = 1;
10425 }
10426 else
10427 {
10428 macro_build (&offset_expr, "lui", LUI_FMT,
10429 tempreg, BFD_RELOC_MIPS_HIGHEST);
10430 macro_build (&offset_expr, "daddiu", "t,r,j",
10431 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10432 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10433 macro_build (&offset_expr, "daddiu", "t,r,j",
10434 tempreg, tempreg, BFD_RELOC_HI16_S);
10435 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10436 macro_build (&offset_expr, "daddiu", "t,r,j",
10437 tempreg, tempreg, BFD_RELOC_LO16);
10438 }
10439
10440 if (mips_relax.sequence)
10441 relax_end ();
10442 }
10443 else
10444 {
10445 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10446 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10447 {
10448 relax_start (offset_expr.X_add_symbol);
10449 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10450 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10451 relax_switch ();
10452 }
10453 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10454 as_bad (_("offset too large"));
10455 macro_build_lui (&offset_expr, tempreg);
10456 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10457 tempreg, tempreg, BFD_RELOC_LO16);
10458 if (mips_relax.sequence)
10459 relax_end ();
10460 }
10461 }
10462 else if (!mips_big_got && !HAVE_NEWABI)
10463 {
10464 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10465
10466 /* If this is a reference to an external symbol, and there
10467 is no constant, we want
10468 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10469 or for lca or if tempreg is PIC_CALL_REG
10470 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10471 For a local symbol, we want
10472 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10473 nop
10474 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10475
10476 If we have a small constant, and this is a reference to
10477 an external symbol, we want
10478 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10479 nop
10480 addiu $tempreg,$tempreg,<constant>
10481 For a local symbol, we want the same instruction
10482 sequence, but we output a BFD_RELOC_LO16 reloc on the
10483 addiu instruction.
10484
10485 If we have a large constant, and this is a reference to
10486 an external symbol, we want
10487 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10488 lui $at,<hiconstant>
10489 addiu $at,$at,<loconstant>
10490 addu $tempreg,$tempreg,$at
10491 For a local symbol, we want the same instruction
10492 sequence, but we output a BFD_RELOC_LO16 reloc on the
10493 addiu instruction.
10494 */
10495
10496 if (offset_expr.X_add_number == 0)
10497 {
10498 if (mips_pic == SVR4_PIC
10499 && breg == 0
10500 && (call || tempreg == PIC_CALL_REG))
10501 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10502
10503 relax_start (offset_expr.X_add_symbol);
10504 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10505 lw_reloc_type, mips_gp_register);
10506 if (breg != 0)
10507 {
10508 /* We're going to put in an addu instruction using
10509 tempreg, so we may as well insert the nop right
10510 now. */
10511 load_delay_nop ();
10512 }
10513 relax_switch ();
10514 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10515 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10516 load_delay_nop ();
10517 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10518 tempreg, tempreg, BFD_RELOC_LO16);
10519 relax_end ();
10520 /* FIXME: If breg == 0, and the next instruction uses
10521 $tempreg, then if this variant case is used an extra
10522 nop will be generated. */
10523 }
10524 else if (offset_expr.X_add_number >= -0x8000
10525 && offset_expr.X_add_number < 0x8000)
10526 {
10527 load_got_offset (tempreg, &offset_expr);
10528 load_delay_nop ();
10529 add_got_offset (tempreg, &offset_expr);
10530 }
10531 else
10532 {
10533 expr1.X_add_number = offset_expr.X_add_number;
10534 offset_expr.X_add_number =
10535 SEXT_16BIT (offset_expr.X_add_number);
10536 load_got_offset (tempreg, &offset_expr);
10537 offset_expr.X_add_number = expr1.X_add_number;
10538 /* If we are going to add in a base register, and the
10539 target register and the base register are the same,
10540 then we are using AT as a temporary register. Since
10541 we want to load the constant into AT, we add our
10542 current AT (from the global offset table) and the
10543 register into the register now, and pretend we were
10544 not using a base register. */
10545 if (breg == op[0])
10546 {
10547 load_delay_nop ();
10548 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10549 op[0], AT, breg);
10550 breg = 0;
10551 tempreg = op[0];
10552 }
10553 add_got_offset_hilo (tempreg, &offset_expr, AT);
10554 used_at = 1;
10555 }
10556 }
10557 else if (!mips_big_got && HAVE_NEWABI)
10558 {
10559 int add_breg_early = 0;
10560
10561 /* If this is a reference to an external, and there is no
10562 constant, or local symbol (*), with or without a
10563 constant, we want
10564 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10565 or for lca or if tempreg is PIC_CALL_REG
10566 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10567
10568 If we have a small constant, and this is a reference to
10569 an external symbol, we want
10570 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10571 addiu $tempreg,$tempreg,<constant>
10572
10573 If we have a large constant, and this is a reference to
10574 an external symbol, we want
10575 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10576 lui $at,<hiconstant>
10577 addiu $at,$at,<loconstant>
10578 addu $tempreg,$tempreg,$at
10579
10580 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10581 local symbols, even though it introduces an additional
10582 instruction. */
10583
10584 if (offset_expr.X_add_number)
10585 {
10586 expr1.X_add_number = offset_expr.X_add_number;
10587 offset_expr.X_add_number = 0;
10588
10589 relax_start (offset_expr.X_add_symbol);
10590 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10591 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10592
10593 if (expr1.X_add_number >= -0x8000
10594 && expr1.X_add_number < 0x8000)
10595 {
10596 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10597 tempreg, tempreg, BFD_RELOC_LO16);
10598 }
10599 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10600 {
10601 unsigned int dreg;
10602
10603 /* If we are going to add in a base register, and the
10604 target register and the base register are the same,
10605 then we are using AT as a temporary register. Since
10606 we want to load the constant into AT, we add our
10607 current AT (from the global offset table) and the
10608 register into the register now, and pretend we were
10609 not using a base register. */
10610 if (breg != op[0])
10611 dreg = tempreg;
10612 else
10613 {
10614 gas_assert (tempreg == AT);
10615 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10616 op[0], AT, breg);
10617 dreg = op[0];
10618 add_breg_early = 1;
10619 }
10620
10621 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10622 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10623 dreg, dreg, AT);
10624
10625 used_at = 1;
10626 }
10627 else
10628 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10629
10630 relax_switch ();
10631 offset_expr.X_add_number = expr1.X_add_number;
10632
10633 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10634 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10635 if (add_breg_early)
10636 {
10637 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10638 op[0], tempreg, breg);
10639 breg = 0;
10640 tempreg = op[0];
10641 }
10642 relax_end ();
10643 }
10644 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10645 {
10646 relax_start (offset_expr.X_add_symbol);
10647 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10648 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10649 relax_switch ();
10650 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10651 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10652 relax_end ();
10653 }
10654 else
10655 {
10656 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10657 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10658 }
10659 }
10660 else if (mips_big_got && !HAVE_NEWABI)
10661 {
10662 int gpdelay;
10663 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10664 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10665 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10666
10667 /* This is the large GOT case. If this is a reference to an
10668 external symbol, and there is no constant, we want
10669 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10670 addu $tempreg,$tempreg,$gp
10671 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10672 or for lca or if tempreg is PIC_CALL_REG
10673 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10674 addu $tempreg,$tempreg,$gp
10675 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10676 For a local symbol, we want
10677 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10678 nop
10679 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10680
10681 If we have a small constant, and this is a reference to
10682 an external symbol, we want
10683 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10684 addu $tempreg,$tempreg,$gp
10685 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10686 nop
10687 addiu $tempreg,$tempreg,<constant>
10688 For a local symbol, we want
10689 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10690 nop
10691 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10692
10693 If we have a large constant, and this is a reference to
10694 an external symbol, we want
10695 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10696 addu $tempreg,$tempreg,$gp
10697 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10698 lui $at,<hiconstant>
10699 addiu $at,$at,<loconstant>
10700 addu $tempreg,$tempreg,$at
10701 For a local symbol, we want
10702 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10703 lui $at,<hiconstant>
10704 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10705 addu $tempreg,$tempreg,$at
10706 */
10707
10708 expr1.X_add_number = offset_expr.X_add_number;
10709 offset_expr.X_add_number = 0;
10710 relax_start (offset_expr.X_add_symbol);
10711 gpdelay = reg_needs_delay (mips_gp_register);
10712 if (expr1.X_add_number == 0 && breg == 0
10713 && (call || tempreg == PIC_CALL_REG))
10714 {
10715 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10716 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10717 }
10718 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10719 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10720 tempreg, tempreg, mips_gp_register);
10721 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10722 tempreg, lw_reloc_type, tempreg);
10723 if (expr1.X_add_number == 0)
10724 {
10725 if (breg != 0)
10726 {
10727 /* We're going to put in an addu instruction using
10728 tempreg, so we may as well insert the nop right
10729 now. */
10730 load_delay_nop ();
10731 }
10732 }
10733 else if (expr1.X_add_number >= -0x8000
10734 && expr1.X_add_number < 0x8000)
10735 {
10736 load_delay_nop ();
10737 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10738 tempreg, tempreg, BFD_RELOC_LO16);
10739 }
10740 else
10741 {
10742 unsigned int dreg;
10743
10744 /* If we are going to add in a base register, and the
10745 target register and the base register are the same,
10746 then we are using AT as a temporary register. Since
10747 we want to load the constant into AT, we add our
10748 current AT (from the global offset table) and the
10749 register into the register now, and pretend we were
10750 not using a base register. */
10751 if (breg != op[0])
10752 dreg = tempreg;
10753 else
10754 {
10755 gas_assert (tempreg == AT);
10756 load_delay_nop ();
10757 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10758 op[0], AT, breg);
10759 dreg = op[0];
10760 }
10761
10762 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10763 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10764
10765 used_at = 1;
10766 }
10767 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10768 relax_switch ();
10769
10770 if (gpdelay)
10771 {
10772 /* This is needed because this instruction uses $gp, but
10773 the first instruction on the main stream does not. */
10774 macro_build (NULL, "nop", "");
10775 }
10776
10777 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10778 local_reloc_type, mips_gp_register);
10779 if (expr1.X_add_number >= -0x8000
10780 && expr1.X_add_number < 0x8000)
10781 {
10782 load_delay_nop ();
10783 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10784 tempreg, tempreg, BFD_RELOC_LO16);
10785 /* FIXME: If add_number is 0, and there was no base
10786 register, the external symbol case ended with a load,
10787 so if the symbol turns out to not be external, and
10788 the next instruction uses tempreg, an unnecessary nop
10789 will be inserted. */
10790 }
10791 else
10792 {
10793 if (breg == op[0])
10794 {
10795 /* We must add in the base register now, as in the
10796 external symbol case. */
10797 gas_assert (tempreg == AT);
10798 load_delay_nop ();
10799 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10800 op[0], AT, breg);
10801 tempreg = op[0];
10802 /* We set breg to 0 because we have arranged to add
10803 it in in both cases. */
10804 breg = 0;
10805 }
10806
10807 macro_build_lui (&expr1, AT);
10808 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10809 AT, AT, BFD_RELOC_LO16);
10810 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10811 tempreg, tempreg, AT);
10812 used_at = 1;
10813 }
10814 relax_end ();
10815 }
10816 else if (mips_big_got && HAVE_NEWABI)
10817 {
10818 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10819 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10820 int add_breg_early = 0;
10821
10822 /* This is the large GOT case. If this is a reference to an
10823 external symbol, and there is no constant, we want
10824 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10825 add $tempreg,$tempreg,$gp
10826 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10827 or for lca or if tempreg is PIC_CALL_REG
10828 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10829 add $tempreg,$tempreg,$gp
10830 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10831
10832 If we have a small constant, and this is a reference to
10833 an external symbol, we want
10834 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10835 add $tempreg,$tempreg,$gp
10836 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10837 addi $tempreg,$tempreg,<constant>
10838
10839 If we have a large constant, and this is a reference to
10840 an external symbol, we want
10841 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10842 addu $tempreg,$tempreg,$gp
10843 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10844 lui $at,<hiconstant>
10845 addi $at,$at,<loconstant>
10846 add $tempreg,$tempreg,$at
10847
10848 If we have NewABI, and we know it's a local symbol, we want
10849 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10850 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10851 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10852
10853 relax_start (offset_expr.X_add_symbol);
10854
10855 expr1.X_add_number = offset_expr.X_add_number;
10856 offset_expr.X_add_number = 0;
10857
10858 if (expr1.X_add_number == 0 && breg == 0
10859 && (call || tempreg == PIC_CALL_REG))
10860 {
10861 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10862 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10863 }
10864 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10865 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10866 tempreg, tempreg, mips_gp_register);
10867 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10868 tempreg, lw_reloc_type, tempreg);
10869
10870 if (expr1.X_add_number == 0)
10871 ;
10872 else if (expr1.X_add_number >= -0x8000
10873 && expr1.X_add_number < 0x8000)
10874 {
10875 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10876 tempreg, tempreg, BFD_RELOC_LO16);
10877 }
10878 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10879 {
10880 unsigned int dreg;
10881
10882 /* If we are going to add in a base register, and the
10883 target register and the base register are the same,
10884 then we are using AT as a temporary register. Since
10885 we want to load the constant into AT, we add our
10886 current AT (from the global offset table) and the
10887 register into the register now, and pretend we were
10888 not using a base register. */
10889 if (breg != op[0])
10890 dreg = tempreg;
10891 else
10892 {
10893 gas_assert (tempreg == AT);
10894 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10895 op[0], AT, breg);
10896 dreg = op[0];
10897 add_breg_early = 1;
10898 }
10899
10900 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10901 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10902
10903 used_at = 1;
10904 }
10905 else
10906 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10907
10908 relax_switch ();
10909 offset_expr.X_add_number = expr1.X_add_number;
10910 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10911 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10912 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10913 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10914 if (add_breg_early)
10915 {
10916 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10917 op[0], tempreg, breg);
10918 breg = 0;
10919 tempreg = op[0];
10920 }
10921 relax_end ();
10922 }
10923 else
10924 abort ();
10925
10926 if (breg != 0)
10927 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10928 break;
10929
10930 case M_MSGSND:
10931 gas_assert (!mips_opts.micromips);
10932 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10933 break;
10934
10935 case M_MSGLD:
10936 gas_assert (!mips_opts.micromips);
10937 macro_build (NULL, "c2", "C", 0x02);
10938 break;
10939
10940 case M_MSGLD_T:
10941 gas_assert (!mips_opts.micromips);
10942 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10943 break;
10944
10945 case M_MSGWAIT:
10946 gas_assert (!mips_opts.micromips);
10947 macro_build (NULL, "c2", "C", 3);
10948 break;
10949
10950 case M_MSGWAIT_T:
10951 gas_assert (!mips_opts.micromips);
10952 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10953 break;
10954
10955 case M_J_A:
10956 /* The j instruction may not be used in PIC code, since it
10957 requires an absolute address. We convert it to a b
10958 instruction. */
10959 if (mips_pic == NO_PIC)
10960 macro_build (&offset_expr, "j", "a");
10961 else
10962 macro_build (&offset_expr, "b", "p");
10963 break;
10964
10965 /* The jal instructions must be handled as macros because when
10966 generating PIC code they expand to multi-instruction
10967 sequences. Normally they are simple instructions. */
10968 case M_JALS_1:
10969 op[1] = op[0];
10970 op[0] = RA;
10971 /* Fall through. */
10972 case M_JALS_2:
10973 gas_assert (mips_opts.micromips);
10974 if (mips_opts.insn32)
10975 {
10976 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10977 break;
10978 }
10979 jals = 1;
10980 goto jal;
10981 case M_JAL_1:
10982 op[1] = op[0];
10983 op[0] = RA;
10984 /* Fall through. */
10985 case M_JAL_2:
10986 jal:
10987 if (mips_pic == NO_PIC)
10988 {
10989 s = jals ? "jalrs" : "jalr";
10990 if (mips_opts.micromips
10991 && !mips_opts.insn32
10992 && op[0] == RA
10993 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
10994 macro_build (NULL, s, "mj", op[1]);
10995 else
10996 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
10997 }
10998 else
10999 {
11000 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11001 && mips_cprestore_offset >= 0);
11002
11003 if (op[1] != PIC_CALL_REG)
11004 as_warn (_("MIPS PIC call to register other than $25"));
11005
11006 s = ((mips_opts.micromips
11007 && !mips_opts.insn32
11008 && (!mips_opts.noreorder || cprestore))
11009 ? "jalrs" : "jalr");
11010 if (mips_opts.micromips
11011 && !mips_opts.insn32
11012 && op[0] == RA
11013 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11014 macro_build (NULL, s, "mj", op[1]);
11015 else
11016 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11017 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11018 {
11019 if (mips_cprestore_offset < 0)
11020 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11021 else
11022 {
11023 if (!mips_frame_reg_valid)
11024 {
11025 as_warn (_("no .frame pseudo-op used in PIC code"));
11026 /* Quiet this warning. */
11027 mips_frame_reg_valid = 1;
11028 }
11029 if (!mips_cprestore_valid)
11030 {
11031 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11032 /* Quiet this warning. */
11033 mips_cprestore_valid = 1;
11034 }
11035 if (mips_opts.noreorder)
11036 macro_build (NULL, "nop", "");
11037 expr1.X_add_number = mips_cprestore_offset;
11038 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11039 mips_gp_register,
11040 mips_frame_reg,
11041 HAVE_64BIT_ADDRESSES);
11042 }
11043 }
11044 }
11045
11046 break;
11047
11048 case M_JALS_A:
11049 gas_assert (mips_opts.micromips);
11050 if (mips_opts.insn32)
11051 {
11052 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11053 break;
11054 }
11055 jals = 1;
11056 /* Fall through. */
11057 case M_JAL_A:
11058 if (mips_pic == NO_PIC)
11059 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11060 else if (mips_pic == SVR4_PIC)
11061 {
11062 /* If this is a reference to an external symbol, and we are
11063 using a small GOT, we want
11064 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11065 nop
11066 jalr $ra,$25
11067 nop
11068 lw $gp,cprestore($sp)
11069 The cprestore value is set using the .cprestore
11070 pseudo-op. If we are using a big GOT, we want
11071 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11072 addu $25,$25,$gp
11073 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11074 nop
11075 jalr $ra,$25
11076 nop
11077 lw $gp,cprestore($sp)
11078 If the symbol is not external, we want
11079 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11080 nop
11081 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11082 jalr $ra,$25
11083 nop
11084 lw $gp,cprestore($sp)
11085
11086 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11087 sequences above, minus nops, unless the symbol is local,
11088 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11089 GOT_DISP. */
11090 if (HAVE_NEWABI)
11091 {
11092 if (!mips_big_got)
11093 {
11094 relax_start (offset_expr.X_add_symbol);
11095 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11096 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11097 mips_gp_register);
11098 relax_switch ();
11099 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11100 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11101 mips_gp_register);
11102 relax_end ();
11103 }
11104 else
11105 {
11106 relax_start (offset_expr.X_add_symbol);
11107 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11108 BFD_RELOC_MIPS_CALL_HI16);
11109 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11110 PIC_CALL_REG, mips_gp_register);
11111 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11112 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11113 PIC_CALL_REG);
11114 relax_switch ();
11115 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11116 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11117 mips_gp_register);
11118 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11119 PIC_CALL_REG, PIC_CALL_REG,
11120 BFD_RELOC_MIPS_GOT_OFST);
11121 relax_end ();
11122 }
11123
11124 macro_build_jalr (&offset_expr, 0);
11125 }
11126 else
11127 {
11128 relax_start (offset_expr.X_add_symbol);
11129 if (!mips_big_got)
11130 {
11131 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11132 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11133 mips_gp_register);
11134 load_delay_nop ();
11135 relax_switch ();
11136 }
11137 else
11138 {
11139 int gpdelay;
11140
11141 gpdelay = reg_needs_delay (mips_gp_register);
11142 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11143 BFD_RELOC_MIPS_CALL_HI16);
11144 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11145 PIC_CALL_REG, mips_gp_register);
11146 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11147 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11148 PIC_CALL_REG);
11149 load_delay_nop ();
11150 relax_switch ();
11151 if (gpdelay)
11152 macro_build (NULL, "nop", "");
11153 }
11154 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11155 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11156 mips_gp_register);
11157 load_delay_nop ();
11158 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11159 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11160 relax_end ();
11161 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11162
11163 if (mips_cprestore_offset < 0)
11164 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11165 else
11166 {
11167 if (!mips_frame_reg_valid)
11168 {
11169 as_warn (_("no .frame pseudo-op used in PIC code"));
11170 /* Quiet this warning. */
11171 mips_frame_reg_valid = 1;
11172 }
11173 if (!mips_cprestore_valid)
11174 {
11175 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11176 /* Quiet this warning. */
11177 mips_cprestore_valid = 1;
11178 }
11179 if (mips_opts.noreorder)
11180 macro_build (NULL, "nop", "");
11181 expr1.X_add_number = mips_cprestore_offset;
11182 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11183 mips_gp_register,
11184 mips_frame_reg,
11185 HAVE_64BIT_ADDRESSES);
11186 }
11187 }
11188 }
11189 else if (mips_pic == VXWORKS_PIC)
11190 as_bad (_("non-PIC jump used in PIC library"));
11191 else
11192 abort ();
11193
11194 break;
11195
11196 case M_LBUE_AB:
11197 s = "lbue";
11198 fmt = "t,+j(b)";
11199 offbits = 9;
11200 goto ld_st;
11201 case M_LHUE_AB:
11202 s = "lhue";
11203 fmt = "t,+j(b)";
11204 offbits = 9;
11205 goto ld_st;
11206 case M_LBE_AB:
11207 s = "lbe";
11208 fmt = "t,+j(b)";
11209 offbits = 9;
11210 goto ld_st;
11211 case M_LHE_AB:
11212 s = "lhe";
11213 fmt = "t,+j(b)";
11214 offbits = 9;
11215 goto ld_st;
11216 case M_LLE_AB:
11217 s = "lle";
11218 fmt = "t,+j(b)";
11219 offbits = 9;
11220 goto ld_st;
11221 case M_LWE_AB:
11222 s = "lwe";
11223 fmt = "t,+j(b)";
11224 offbits = 9;
11225 goto ld_st;
11226 case M_LWLE_AB:
11227 s = "lwle";
11228 fmt = "t,+j(b)";
11229 offbits = 9;
11230 goto ld_st;
11231 case M_LWRE_AB:
11232 s = "lwre";
11233 fmt = "t,+j(b)";
11234 offbits = 9;
11235 goto ld_st;
11236 case M_SBE_AB:
11237 s = "sbe";
11238 fmt = "t,+j(b)";
11239 offbits = 9;
11240 goto ld_st;
11241 case M_SCE_AB:
11242 s = "sce";
11243 fmt = "t,+j(b)";
11244 offbits = 9;
11245 goto ld_st;
11246 case M_SHE_AB:
11247 s = "she";
11248 fmt = "t,+j(b)";
11249 offbits = 9;
11250 goto ld_st;
11251 case M_SWE_AB:
11252 s = "swe";
11253 fmt = "t,+j(b)";
11254 offbits = 9;
11255 goto ld_st;
11256 case M_SWLE_AB:
11257 s = "swle";
11258 fmt = "t,+j(b)";
11259 offbits = 9;
11260 goto ld_st;
11261 case M_SWRE_AB:
11262 s = "swre";
11263 fmt = "t,+j(b)";
11264 offbits = 9;
11265 goto ld_st;
11266 case M_ACLR_AB:
11267 s = "aclr";
11268 fmt = "\\,~(b)";
11269 offbits = 12;
11270 goto ld_st;
11271 case M_ASET_AB:
11272 s = "aset";
11273 fmt = "\\,~(b)";
11274 offbits = 12;
11275 goto ld_st;
11276 case M_LB_AB:
11277 s = "lb";
11278 fmt = "t,o(b)";
11279 goto ld;
11280 case M_LBU_AB:
11281 s = "lbu";
11282 fmt = "t,o(b)";
11283 goto ld;
11284 case M_LH_AB:
11285 s = "lh";
11286 fmt = "t,o(b)";
11287 goto ld;
11288 case M_LHU_AB:
11289 s = "lhu";
11290 fmt = "t,o(b)";
11291 goto ld;
11292 case M_LW_AB:
11293 s = "lw";
11294 fmt = "t,o(b)";
11295 goto ld;
11296 case M_LWC0_AB:
11297 gas_assert (!mips_opts.micromips);
11298 s = "lwc0";
11299 fmt = "E,o(b)";
11300 /* Itbl support may require additional care here. */
11301 coproc = 1;
11302 goto ld_st;
11303 case M_LWC1_AB:
11304 s = "lwc1";
11305 fmt = "T,o(b)";
11306 /* Itbl support may require additional care here. */
11307 coproc = 1;
11308 goto ld_st;
11309 case M_LWC2_AB:
11310 s = "lwc2";
11311 fmt = COP12_FMT;
11312 offbits = (mips_opts.micromips ? 12
11313 : ISA_IS_R6 (mips_opts.isa) ? 11
11314 : 16);
11315 /* Itbl support may require additional care here. */
11316 coproc = 1;
11317 goto ld_st;
11318 case M_LWC3_AB:
11319 gas_assert (!mips_opts.micromips);
11320 s = "lwc3";
11321 fmt = "E,o(b)";
11322 /* Itbl support may require additional care here. */
11323 coproc = 1;
11324 goto ld_st;
11325 case M_LWL_AB:
11326 s = "lwl";
11327 fmt = MEM12_FMT;
11328 offbits = (mips_opts.micromips ? 12 : 16);
11329 goto ld_st;
11330 case M_LWR_AB:
11331 s = "lwr";
11332 fmt = MEM12_FMT;
11333 offbits = (mips_opts.micromips ? 12 : 16);
11334 goto ld_st;
11335 case M_LDC1_AB:
11336 s = "ldc1";
11337 fmt = "T,o(b)";
11338 /* Itbl support may require additional care here. */
11339 coproc = 1;
11340 goto ld_st;
11341 case M_LDC2_AB:
11342 s = "ldc2";
11343 fmt = COP12_FMT;
11344 offbits = (mips_opts.micromips ? 12
11345 : ISA_IS_R6 (mips_opts.isa) ? 11
11346 : 16);
11347 /* Itbl support may require additional care here. */
11348 coproc = 1;
11349 goto ld_st;
11350 case M_LQC2_AB:
11351 s = "lqc2";
11352 fmt = "+7,o(b)";
11353 /* Itbl support may require additional care here. */
11354 coproc = 1;
11355 goto ld_st;
11356 case M_LDC3_AB:
11357 s = "ldc3";
11358 fmt = "E,o(b)";
11359 /* Itbl support may require additional care here. */
11360 coproc = 1;
11361 goto ld_st;
11362 case M_LDL_AB:
11363 s = "ldl";
11364 fmt = MEM12_FMT;
11365 offbits = (mips_opts.micromips ? 12 : 16);
11366 goto ld_st;
11367 case M_LDR_AB:
11368 s = "ldr";
11369 fmt = MEM12_FMT;
11370 offbits = (mips_opts.micromips ? 12 : 16);
11371 goto ld_st;
11372 case M_LL_AB:
11373 s = "ll";
11374 fmt = LL_SC_FMT;
11375 offbits = (mips_opts.micromips ? 12
11376 : ISA_IS_R6 (mips_opts.isa) ? 9
11377 : 16);
11378 goto ld;
11379 case M_LLD_AB:
11380 s = "lld";
11381 fmt = LL_SC_FMT;
11382 offbits = (mips_opts.micromips ? 12
11383 : ISA_IS_R6 (mips_opts.isa) ? 9
11384 : 16);
11385 goto ld;
11386 case M_LWU_AB:
11387 s = "lwu";
11388 fmt = MEM12_FMT;
11389 offbits = (mips_opts.micromips ? 12 : 16);
11390 goto ld;
11391 case M_LWP_AB:
11392 gas_assert (mips_opts.micromips);
11393 s = "lwp";
11394 fmt = "t,~(b)";
11395 offbits = 12;
11396 lp = 1;
11397 goto ld;
11398 case M_LDP_AB:
11399 gas_assert (mips_opts.micromips);
11400 s = "ldp";
11401 fmt = "t,~(b)";
11402 offbits = 12;
11403 lp = 1;
11404 goto ld;
11405 case M_LWM_AB:
11406 gas_assert (mips_opts.micromips);
11407 s = "lwm";
11408 fmt = "n,~(b)";
11409 offbits = 12;
11410 goto ld_st;
11411 case M_LDM_AB:
11412 gas_assert (mips_opts.micromips);
11413 s = "ldm";
11414 fmt = "n,~(b)";
11415 offbits = 12;
11416 goto ld_st;
11417
11418 ld:
11419 /* We don't want to use $0 as tempreg. */
11420 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11421 goto ld_st;
11422 else
11423 tempreg = op[0] + lp;
11424 goto ld_noat;
11425
11426 case M_SB_AB:
11427 s = "sb";
11428 fmt = "t,o(b)";
11429 goto ld_st;
11430 case M_SH_AB:
11431 s = "sh";
11432 fmt = "t,o(b)";
11433 goto ld_st;
11434 case M_SW_AB:
11435 s = "sw";
11436 fmt = "t,o(b)";
11437 goto ld_st;
11438 case M_SWC0_AB:
11439 gas_assert (!mips_opts.micromips);
11440 s = "swc0";
11441 fmt = "E,o(b)";
11442 /* Itbl support may require additional care here. */
11443 coproc = 1;
11444 goto ld_st;
11445 case M_SWC1_AB:
11446 s = "swc1";
11447 fmt = "T,o(b)";
11448 /* Itbl support may require additional care here. */
11449 coproc = 1;
11450 goto ld_st;
11451 case M_SWC2_AB:
11452 s = "swc2";
11453 fmt = COP12_FMT;
11454 offbits = (mips_opts.micromips ? 12
11455 : ISA_IS_R6 (mips_opts.isa) ? 11
11456 : 16);
11457 /* Itbl support may require additional care here. */
11458 coproc = 1;
11459 goto ld_st;
11460 case M_SWC3_AB:
11461 gas_assert (!mips_opts.micromips);
11462 s = "swc3";
11463 fmt = "E,o(b)";
11464 /* Itbl support may require additional care here. */
11465 coproc = 1;
11466 goto ld_st;
11467 case M_SWL_AB:
11468 s = "swl";
11469 fmt = MEM12_FMT;
11470 offbits = (mips_opts.micromips ? 12 : 16);
11471 goto ld_st;
11472 case M_SWR_AB:
11473 s = "swr";
11474 fmt = MEM12_FMT;
11475 offbits = (mips_opts.micromips ? 12 : 16);
11476 goto ld_st;
11477 case M_SC_AB:
11478 s = "sc";
11479 fmt = LL_SC_FMT;
11480 offbits = (mips_opts.micromips ? 12
11481 : ISA_IS_R6 (mips_opts.isa) ? 9
11482 : 16);
11483 goto ld_st;
11484 case M_SCD_AB:
11485 s = "scd";
11486 fmt = LL_SC_FMT;
11487 offbits = (mips_opts.micromips ? 12
11488 : ISA_IS_R6 (mips_opts.isa) ? 9
11489 : 16);
11490 goto ld_st;
11491 case M_CACHE_AB:
11492 s = "cache";
11493 fmt = (mips_opts.micromips ? "k,~(b)"
11494 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11495 : "k,o(b)");
11496 offbits = (mips_opts.micromips ? 12
11497 : ISA_IS_R6 (mips_opts.isa) ? 9
11498 : 16);
11499 goto ld_st;
11500 case M_CACHEE_AB:
11501 s = "cachee";
11502 fmt = "k,+j(b)";
11503 offbits = 9;
11504 goto ld_st;
11505 case M_PREF_AB:
11506 s = "pref";
11507 fmt = (mips_opts.micromips ? "k,~(b)"
11508 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11509 : "k,o(b)");
11510 offbits = (mips_opts.micromips ? 12
11511 : ISA_IS_R6 (mips_opts.isa) ? 9
11512 : 16);
11513 goto ld_st;
11514 case M_PREFE_AB:
11515 s = "prefe";
11516 fmt = "k,+j(b)";
11517 offbits = 9;
11518 goto ld_st;
11519 case M_SDC1_AB:
11520 s = "sdc1";
11521 fmt = "T,o(b)";
11522 coproc = 1;
11523 /* Itbl support may require additional care here. */
11524 goto ld_st;
11525 case M_SDC2_AB:
11526 s = "sdc2";
11527 fmt = COP12_FMT;
11528 offbits = (mips_opts.micromips ? 12
11529 : ISA_IS_R6 (mips_opts.isa) ? 11
11530 : 16);
11531 /* Itbl support may require additional care here. */
11532 coproc = 1;
11533 goto ld_st;
11534 case M_SQC2_AB:
11535 s = "sqc2";
11536 fmt = "+7,o(b)";
11537 /* Itbl support may require additional care here. */
11538 coproc = 1;
11539 goto ld_st;
11540 case M_SDC3_AB:
11541 gas_assert (!mips_opts.micromips);
11542 s = "sdc3";
11543 fmt = "E,o(b)";
11544 /* Itbl support may require additional care here. */
11545 coproc = 1;
11546 goto ld_st;
11547 case M_SDL_AB:
11548 s = "sdl";
11549 fmt = MEM12_FMT;
11550 offbits = (mips_opts.micromips ? 12 : 16);
11551 goto ld_st;
11552 case M_SDR_AB:
11553 s = "sdr";
11554 fmt = MEM12_FMT;
11555 offbits = (mips_opts.micromips ? 12 : 16);
11556 goto ld_st;
11557 case M_SWP_AB:
11558 gas_assert (mips_opts.micromips);
11559 s = "swp";
11560 fmt = "t,~(b)";
11561 offbits = 12;
11562 goto ld_st;
11563 case M_SDP_AB:
11564 gas_assert (mips_opts.micromips);
11565 s = "sdp";
11566 fmt = "t,~(b)";
11567 offbits = 12;
11568 goto ld_st;
11569 case M_SWM_AB:
11570 gas_assert (mips_opts.micromips);
11571 s = "swm";
11572 fmt = "n,~(b)";
11573 offbits = 12;
11574 goto ld_st;
11575 case M_SDM_AB:
11576 gas_assert (mips_opts.micromips);
11577 s = "sdm";
11578 fmt = "n,~(b)";
11579 offbits = 12;
11580
11581 ld_st:
11582 tempreg = AT;
11583 ld_noat:
11584 breg = op[2];
11585 if (small_offset_p (0, align, 16))
11586 {
11587 /* The first case exists for M_LD_AB and M_SD_AB, which are
11588 macros for o32 but which should act like normal instructions
11589 otherwise. */
11590 if (offbits == 16)
11591 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11592 offset_reloc[1], offset_reloc[2], breg);
11593 else if (small_offset_p (0, align, offbits))
11594 {
11595 if (offbits == 0)
11596 macro_build (NULL, s, fmt, op[0], breg);
11597 else
11598 macro_build (NULL, s, fmt, op[0],
11599 (int) offset_expr.X_add_number, breg);
11600 }
11601 else
11602 {
11603 if (tempreg == AT)
11604 used_at = 1;
11605 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11606 tempreg, breg, -1, offset_reloc[0],
11607 offset_reloc[1], offset_reloc[2]);
11608 if (offbits == 0)
11609 macro_build (NULL, s, fmt, op[0], tempreg);
11610 else
11611 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11612 }
11613 break;
11614 }
11615
11616 if (tempreg == AT)
11617 used_at = 1;
11618
11619 if (offset_expr.X_op != O_constant
11620 && offset_expr.X_op != O_symbol)
11621 {
11622 as_bad (_("expression too complex"));
11623 offset_expr.X_op = O_constant;
11624 }
11625
11626 if (HAVE_32BIT_ADDRESSES
11627 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11628 {
11629 char value [32];
11630
11631 sprintf_vma (value, offset_expr.X_add_number);
11632 as_bad (_("number (0x%s) larger than 32 bits"), value);
11633 }
11634
11635 /* A constant expression in PIC code can be handled just as it
11636 is in non PIC code. */
11637 if (offset_expr.X_op == O_constant)
11638 {
11639 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11640 offbits == 0 ? 16 : offbits);
11641 offset_expr.X_add_number -= expr1.X_add_number;
11642
11643 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11644 if (breg != 0)
11645 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11646 tempreg, tempreg, breg);
11647 if (offbits == 0)
11648 {
11649 if (offset_expr.X_add_number != 0)
11650 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11651 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11652 macro_build (NULL, s, fmt, op[0], tempreg);
11653 }
11654 else if (offbits == 16)
11655 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11656 else
11657 macro_build (NULL, s, fmt, op[0],
11658 (int) offset_expr.X_add_number, tempreg);
11659 }
11660 else if (offbits != 16)
11661 {
11662 /* The offset field is too narrow to be used for a low-part
11663 relocation, so load the whole address into the auxillary
11664 register. */
11665 load_address (tempreg, &offset_expr, &used_at);
11666 if (breg != 0)
11667 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11668 tempreg, tempreg, breg);
11669 if (offbits == 0)
11670 macro_build (NULL, s, fmt, op[0], tempreg);
11671 else
11672 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11673 }
11674 else if (mips_pic == NO_PIC)
11675 {
11676 /* If this is a reference to a GP relative symbol, and there
11677 is no base register, we want
11678 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11679 Otherwise, if there is no base register, we want
11680 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11681 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11682 If we have a constant, we need two instructions anyhow,
11683 so we always use the latter form.
11684
11685 If we have a base register, and this is a reference to a
11686 GP relative symbol, we want
11687 addu $tempreg,$breg,$gp
11688 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11689 Otherwise we want
11690 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11691 addu $tempreg,$tempreg,$breg
11692 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11693 With a constant we always use the latter case.
11694
11695 With 64bit address space and no base register and $at usable,
11696 we want
11697 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11698 lui $at,<sym> (BFD_RELOC_HI16_S)
11699 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11700 dsll32 $tempreg,0
11701 daddu $tempreg,$at
11702 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11703 If we have a base register, we want
11704 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11705 lui $at,<sym> (BFD_RELOC_HI16_S)
11706 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11707 daddu $at,$breg
11708 dsll32 $tempreg,0
11709 daddu $tempreg,$at
11710 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11711
11712 Without $at we can't generate the optimal path for superscalar
11713 processors here since this would require two temporary registers.
11714 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11715 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11716 dsll $tempreg,16
11717 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11718 dsll $tempreg,16
11719 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11720 If we have a base register, we want
11721 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11722 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11723 dsll $tempreg,16
11724 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11725 dsll $tempreg,16
11726 daddu $tempreg,$tempreg,$breg
11727 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11728
11729 For GP relative symbols in 64bit address space we can use
11730 the same sequence as in 32bit address space. */
11731 if (HAVE_64BIT_SYMBOLS)
11732 {
11733 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11734 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11735 {
11736 relax_start (offset_expr.X_add_symbol);
11737 if (breg == 0)
11738 {
11739 macro_build (&offset_expr, s, fmt, op[0],
11740 BFD_RELOC_GPREL16, mips_gp_register);
11741 }
11742 else
11743 {
11744 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11745 tempreg, breg, mips_gp_register);
11746 macro_build (&offset_expr, s, fmt, op[0],
11747 BFD_RELOC_GPREL16, tempreg);
11748 }
11749 relax_switch ();
11750 }
11751
11752 if (used_at == 0 && mips_opts.at)
11753 {
11754 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11755 BFD_RELOC_MIPS_HIGHEST);
11756 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11757 BFD_RELOC_HI16_S);
11758 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11759 tempreg, BFD_RELOC_MIPS_HIGHER);
11760 if (breg != 0)
11761 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11762 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11763 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11764 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11765 tempreg);
11766 used_at = 1;
11767 }
11768 else
11769 {
11770 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11771 BFD_RELOC_MIPS_HIGHEST);
11772 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11773 tempreg, BFD_RELOC_MIPS_HIGHER);
11774 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11775 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11776 tempreg, BFD_RELOC_HI16_S);
11777 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11778 if (breg != 0)
11779 macro_build (NULL, "daddu", "d,v,t",
11780 tempreg, tempreg, breg);
11781 macro_build (&offset_expr, s, fmt, op[0],
11782 BFD_RELOC_LO16, tempreg);
11783 }
11784
11785 if (mips_relax.sequence)
11786 relax_end ();
11787 break;
11788 }
11789
11790 if (breg == 0)
11791 {
11792 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11793 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11794 {
11795 relax_start (offset_expr.X_add_symbol);
11796 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11797 mips_gp_register);
11798 relax_switch ();
11799 }
11800 macro_build_lui (&offset_expr, tempreg);
11801 macro_build (&offset_expr, s, fmt, op[0],
11802 BFD_RELOC_LO16, tempreg);
11803 if (mips_relax.sequence)
11804 relax_end ();
11805 }
11806 else
11807 {
11808 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11809 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11810 {
11811 relax_start (offset_expr.X_add_symbol);
11812 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11813 tempreg, breg, mips_gp_register);
11814 macro_build (&offset_expr, s, fmt, op[0],
11815 BFD_RELOC_GPREL16, tempreg);
11816 relax_switch ();
11817 }
11818 macro_build_lui (&offset_expr, tempreg);
11819 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11820 tempreg, tempreg, breg);
11821 macro_build (&offset_expr, s, fmt, op[0],
11822 BFD_RELOC_LO16, tempreg);
11823 if (mips_relax.sequence)
11824 relax_end ();
11825 }
11826 }
11827 else if (!mips_big_got)
11828 {
11829 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11830
11831 /* If this is a reference to an external symbol, we want
11832 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11833 nop
11834 <op> op[0],0($tempreg)
11835 Otherwise we want
11836 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11837 nop
11838 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11839 <op> op[0],0($tempreg)
11840
11841 For NewABI, we want
11842 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11843 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11844
11845 If there is a base register, we add it to $tempreg before
11846 the <op>. If there is a constant, we stick it in the
11847 <op> instruction. We don't handle constants larger than
11848 16 bits, because we have no way to load the upper 16 bits
11849 (actually, we could handle them for the subset of cases
11850 in which we are not using $at). */
11851 gas_assert (offset_expr.X_op == O_symbol);
11852 if (HAVE_NEWABI)
11853 {
11854 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11855 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11856 if (breg != 0)
11857 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11858 tempreg, tempreg, breg);
11859 macro_build (&offset_expr, s, fmt, op[0],
11860 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11861 break;
11862 }
11863 expr1.X_add_number = offset_expr.X_add_number;
11864 offset_expr.X_add_number = 0;
11865 if (expr1.X_add_number < -0x8000
11866 || expr1.X_add_number >= 0x8000)
11867 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11868 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11869 lw_reloc_type, mips_gp_register);
11870 load_delay_nop ();
11871 relax_start (offset_expr.X_add_symbol);
11872 relax_switch ();
11873 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11874 tempreg, BFD_RELOC_LO16);
11875 relax_end ();
11876 if (breg != 0)
11877 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11878 tempreg, tempreg, breg);
11879 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11880 }
11881 else if (mips_big_got && !HAVE_NEWABI)
11882 {
11883 int gpdelay;
11884
11885 /* If this is a reference to an external symbol, we want
11886 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11887 addu $tempreg,$tempreg,$gp
11888 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11889 <op> op[0],0($tempreg)
11890 Otherwise we want
11891 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11892 nop
11893 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11894 <op> op[0],0($tempreg)
11895 If there is a base register, we add it to $tempreg before
11896 the <op>. If there is a constant, we stick it in the
11897 <op> instruction. We don't handle constants larger than
11898 16 bits, because we have no way to load the upper 16 bits
11899 (actually, we could handle them for the subset of cases
11900 in which we are not using $at). */
11901 gas_assert (offset_expr.X_op == O_symbol);
11902 expr1.X_add_number = offset_expr.X_add_number;
11903 offset_expr.X_add_number = 0;
11904 if (expr1.X_add_number < -0x8000
11905 || expr1.X_add_number >= 0x8000)
11906 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11907 gpdelay = reg_needs_delay (mips_gp_register);
11908 relax_start (offset_expr.X_add_symbol);
11909 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11910 BFD_RELOC_MIPS_GOT_HI16);
11911 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11912 mips_gp_register);
11913 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11914 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11915 relax_switch ();
11916 if (gpdelay)
11917 macro_build (NULL, "nop", "");
11918 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11919 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11920 load_delay_nop ();
11921 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11922 tempreg, BFD_RELOC_LO16);
11923 relax_end ();
11924
11925 if (breg != 0)
11926 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11927 tempreg, tempreg, breg);
11928 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11929 }
11930 else if (mips_big_got && HAVE_NEWABI)
11931 {
11932 /* If this is a reference to an external symbol, we want
11933 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11934 add $tempreg,$tempreg,$gp
11935 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11936 <op> op[0],<ofst>($tempreg)
11937 Otherwise, for local symbols, we want:
11938 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11939 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11940 gas_assert (offset_expr.X_op == O_symbol);
11941 expr1.X_add_number = offset_expr.X_add_number;
11942 offset_expr.X_add_number = 0;
11943 if (expr1.X_add_number < -0x8000
11944 || expr1.X_add_number >= 0x8000)
11945 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11946 relax_start (offset_expr.X_add_symbol);
11947 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11948 BFD_RELOC_MIPS_GOT_HI16);
11949 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11950 mips_gp_register);
11951 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11952 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11953 if (breg != 0)
11954 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11955 tempreg, tempreg, breg);
11956 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11957
11958 relax_switch ();
11959 offset_expr.X_add_number = expr1.X_add_number;
11960 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11961 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11962 if (breg != 0)
11963 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11964 tempreg, tempreg, breg);
11965 macro_build (&offset_expr, s, fmt, op[0],
11966 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11967 relax_end ();
11968 }
11969 else
11970 abort ();
11971
11972 break;
11973
11974 case M_JRADDIUSP:
11975 gas_assert (mips_opts.micromips);
11976 gas_assert (mips_opts.insn32);
11977 start_noreorder ();
11978 macro_build (NULL, "jr", "s", RA);
11979 expr1.X_add_number = op[0] << 2;
11980 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11981 end_noreorder ();
11982 break;
11983
11984 case M_JRC:
11985 gas_assert (mips_opts.micromips);
11986 gas_assert (mips_opts.insn32);
11987 macro_build (NULL, "jr", "s", op[0]);
11988 if (mips_opts.noreorder)
11989 macro_build (NULL, "nop", "");
11990 break;
11991
11992 case M_LI:
11993 case M_LI_S:
11994 load_register (op[0], &imm_expr, 0);
11995 break;
11996
11997 case M_DLI:
11998 load_register (op[0], &imm_expr, 1);
11999 break;
12000
12001 case M_LI_SS:
12002 if (imm_expr.X_op == O_constant)
12003 {
12004 used_at = 1;
12005 load_register (AT, &imm_expr, 0);
12006 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12007 break;
12008 }
12009 else
12010 {
12011 gas_assert (imm_expr.X_op == O_absent
12012 && offset_expr.X_op == O_symbol
12013 && strcmp (segment_name (S_GET_SEGMENT
12014 (offset_expr.X_add_symbol)),
12015 ".lit4") == 0
12016 && offset_expr.X_add_number == 0);
12017 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12018 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12019 break;
12020 }
12021
12022 case M_LI_D:
12023 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12024 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12025 order 32 bits of the value and the low order 32 bits are either
12026 zero or in OFFSET_EXPR. */
12027 if (imm_expr.X_op == O_constant)
12028 {
12029 if (GPR_SIZE == 64)
12030 load_register (op[0], &imm_expr, 1);
12031 else
12032 {
12033 int hreg, lreg;
12034
12035 if (target_big_endian)
12036 {
12037 hreg = op[0];
12038 lreg = op[0] + 1;
12039 }
12040 else
12041 {
12042 hreg = op[0] + 1;
12043 lreg = op[0];
12044 }
12045
12046 if (hreg <= 31)
12047 load_register (hreg, &imm_expr, 0);
12048 if (lreg <= 31)
12049 {
12050 if (offset_expr.X_op == O_absent)
12051 move_register (lreg, 0);
12052 else
12053 {
12054 gas_assert (offset_expr.X_op == O_constant);
12055 load_register (lreg, &offset_expr, 0);
12056 }
12057 }
12058 }
12059 break;
12060 }
12061 gas_assert (imm_expr.X_op == O_absent);
12062
12063 /* We know that sym is in the .rdata section. First we get the
12064 upper 16 bits of the address. */
12065 if (mips_pic == NO_PIC)
12066 {
12067 macro_build_lui (&offset_expr, AT);
12068 used_at = 1;
12069 }
12070 else
12071 {
12072 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12073 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12074 used_at = 1;
12075 }
12076
12077 /* Now we load the register(s). */
12078 if (GPR_SIZE == 64)
12079 {
12080 used_at = 1;
12081 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12082 BFD_RELOC_LO16, AT);
12083 }
12084 else
12085 {
12086 used_at = 1;
12087 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12088 BFD_RELOC_LO16, AT);
12089 if (op[0] != RA)
12090 {
12091 /* FIXME: How in the world do we deal with the possible
12092 overflow here? */
12093 offset_expr.X_add_number += 4;
12094 macro_build (&offset_expr, "lw", "t,o(b)",
12095 op[0] + 1, BFD_RELOC_LO16, AT);
12096 }
12097 }
12098 break;
12099
12100 case M_LI_DD:
12101 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12102 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12103 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12104 the value and the low order 32 bits are either zero or in
12105 OFFSET_EXPR. */
12106 if (imm_expr.X_op == O_constant)
12107 {
12108 used_at = 1;
12109 load_register (AT, &imm_expr, FPR_SIZE == 64);
12110 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12111 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12112 else
12113 {
12114 if (ISA_HAS_MXHC1 (mips_opts.isa))
12115 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12116 else if (FPR_SIZE != 32)
12117 as_bad (_("Unable to generate `%s' compliant code "
12118 "without mthc1"),
12119 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12120 else
12121 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12122 if (offset_expr.X_op == O_absent)
12123 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12124 else
12125 {
12126 gas_assert (offset_expr.X_op == O_constant);
12127 load_register (AT, &offset_expr, 0);
12128 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12129 }
12130 }
12131 break;
12132 }
12133
12134 gas_assert (imm_expr.X_op == O_absent
12135 && offset_expr.X_op == O_symbol
12136 && offset_expr.X_add_number == 0);
12137 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12138 if (strcmp (s, ".lit8") == 0)
12139 {
12140 op[2] = mips_gp_register;
12141 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12142 offset_reloc[1] = BFD_RELOC_UNUSED;
12143 offset_reloc[2] = BFD_RELOC_UNUSED;
12144 }
12145 else
12146 {
12147 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12148 used_at = 1;
12149 if (mips_pic != NO_PIC)
12150 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12151 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12152 else
12153 {
12154 /* FIXME: This won't work for a 64 bit address. */
12155 macro_build_lui (&offset_expr, AT);
12156 }
12157
12158 op[2] = AT;
12159 offset_reloc[0] = BFD_RELOC_LO16;
12160 offset_reloc[1] = BFD_RELOC_UNUSED;
12161 offset_reloc[2] = BFD_RELOC_UNUSED;
12162 }
12163 align = 8;
12164 /* Fall through */
12165
12166 case M_L_DAB:
12167 /*
12168 * The MIPS assembler seems to check for X_add_number not
12169 * being double aligned and generating:
12170 * lui at,%hi(foo+1)
12171 * addu at,at,v1
12172 * addiu at,at,%lo(foo+1)
12173 * lwc1 f2,0(at)
12174 * lwc1 f3,4(at)
12175 * But, the resulting address is the same after relocation so why
12176 * generate the extra instruction?
12177 */
12178 /* Itbl support may require additional care here. */
12179 coproc = 1;
12180 fmt = "T,o(b)";
12181 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12182 {
12183 s = "ldc1";
12184 goto ld_st;
12185 }
12186 s = "lwc1";
12187 goto ldd_std;
12188
12189 case M_S_DAB:
12190 gas_assert (!mips_opts.micromips);
12191 /* Itbl support may require additional care here. */
12192 coproc = 1;
12193 fmt = "T,o(b)";
12194 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12195 {
12196 s = "sdc1";
12197 goto ld_st;
12198 }
12199 s = "swc1";
12200 goto ldd_std;
12201
12202 case M_LQ_AB:
12203 fmt = "t,o(b)";
12204 s = "lq";
12205 goto ld;
12206
12207 case M_SQ_AB:
12208 fmt = "t,o(b)";
12209 s = "sq";
12210 goto ld_st;
12211
12212 case M_LD_AB:
12213 fmt = "t,o(b)";
12214 if (GPR_SIZE == 64)
12215 {
12216 s = "ld";
12217 goto ld;
12218 }
12219 s = "lw";
12220 goto ldd_std;
12221
12222 case M_SD_AB:
12223 fmt = "t,o(b)";
12224 if (GPR_SIZE == 64)
12225 {
12226 s = "sd";
12227 goto ld_st;
12228 }
12229 s = "sw";
12230
12231 ldd_std:
12232 /* Even on a big endian machine $fn comes before $fn+1. We have
12233 to adjust when loading from memory. We set coproc if we must
12234 load $fn+1 first. */
12235 /* Itbl support may require additional care here. */
12236 if (!target_big_endian)
12237 coproc = 0;
12238
12239 breg = op[2];
12240 if (small_offset_p (0, align, 16))
12241 {
12242 ep = &offset_expr;
12243 if (!small_offset_p (4, align, 16))
12244 {
12245 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12246 -1, offset_reloc[0], offset_reloc[1],
12247 offset_reloc[2]);
12248 expr1.X_add_number = 0;
12249 ep = &expr1;
12250 breg = AT;
12251 used_at = 1;
12252 offset_reloc[0] = BFD_RELOC_LO16;
12253 offset_reloc[1] = BFD_RELOC_UNUSED;
12254 offset_reloc[2] = BFD_RELOC_UNUSED;
12255 }
12256 if (strcmp (s, "lw") == 0 && op[0] == breg)
12257 {
12258 ep->X_add_number += 4;
12259 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12260 offset_reloc[1], offset_reloc[2], breg);
12261 ep->X_add_number -= 4;
12262 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12263 offset_reloc[1], offset_reloc[2], breg);
12264 }
12265 else
12266 {
12267 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12268 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12269 breg);
12270 ep->X_add_number += 4;
12271 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12272 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12273 breg);
12274 }
12275 break;
12276 }
12277
12278 if (offset_expr.X_op != O_symbol
12279 && offset_expr.X_op != O_constant)
12280 {
12281 as_bad (_("expression too complex"));
12282 offset_expr.X_op = O_constant;
12283 }
12284
12285 if (HAVE_32BIT_ADDRESSES
12286 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12287 {
12288 char value [32];
12289
12290 sprintf_vma (value, offset_expr.X_add_number);
12291 as_bad (_("number (0x%s) larger than 32 bits"), value);
12292 }
12293
12294 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12295 {
12296 /* If this is a reference to a GP relative symbol, we want
12297 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12298 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12299 If we have a base register, we use this
12300 addu $at,$breg,$gp
12301 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12302 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12303 If this is not a GP relative symbol, we want
12304 lui $at,<sym> (BFD_RELOC_HI16_S)
12305 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12306 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12307 If there is a base register, we add it to $at after the
12308 lui instruction. If there is a constant, we always use
12309 the last case. */
12310 if (offset_expr.X_op == O_symbol
12311 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12312 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12313 {
12314 relax_start (offset_expr.X_add_symbol);
12315 if (breg == 0)
12316 {
12317 tempreg = mips_gp_register;
12318 }
12319 else
12320 {
12321 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12322 AT, breg, mips_gp_register);
12323 tempreg = AT;
12324 used_at = 1;
12325 }
12326
12327 /* Itbl support may require additional care here. */
12328 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12329 BFD_RELOC_GPREL16, tempreg);
12330 offset_expr.X_add_number += 4;
12331
12332 /* Set mips_optimize to 2 to avoid inserting an
12333 undesired nop. */
12334 hold_mips_optimize = mips_optimize;
12335 mips_optimize = 2;
12336 /* Itbl support may require additional care here. */
12337 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12338 BFD_RELOC_GPREL16, tempreg);
12339 mips_optimize = hold_mips_optimize;
12340
12341 relax_switch ();
12342
12343 offset_expr.X_add_number -= 4;
12344 }
12345 used_at = 1;
12346 if (offset_high_part (offset_expr.X_add_number, 16)
12347 != offset_high_part (offset_expr.X_add_number + 4, 16))
12348 {
12349 load_address (AT, &offset_expr, &used_at);
12350 offset_expr.X_op = O_constant;
12351 offset_expr.X_add_number = 0;
12352 }
12353 else
12354 macro_build_lui (&offset_expr, AT);
12355 if (breg != 0)
12356 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12357 /* Itbl support may require additional care here. */
12358 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12359 BFD_RELOC_LO16, AT);
12360 /* FIXME: How do we handle overflow here? */
12361 offset_expr.X_add_number += 4;
12362 /* Itbl support may require additional care here. */
12363 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12364 BFD_RELOC_LO16, AT);
12365 if (mips_relax.sequence)
12366 relax_end ();
12367 }
12368 else if (!mips_big_got)
12369 {
12370 /* If this is a reference to an external symbol, we want
12371 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12372 nop
12373 <op> op[0],0($at)
12374 <op> op[0]+1,4($at)
12375 Otherwise we want
12376 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12377 nop
12378 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12379 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12380 If there is a base register we add it to $at before the
12381 lwc1 instructions. If there is a constant we include it
12382 in the lwc1 instructions. */
12383 used_at = 1;
12384 expr1.X_add_number = offset_expr.X_add_number;
12385 if (expr1.X_add_number < -0x8000
12386 || expr1.X_add_number >= 0x8000 - 4)
12387 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12388 load_got_offset (AT, &offset_expr);
12389 load_delay_nop ();
12390 if (breg != 0)
12391 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12392
12393 /* Set mips_optimize to 2 to avoid inserting an undesired
12394 nop. */
12395 hold_mips_optimize = mips_optimize;
12396 mips_optimize = 2;
12397
12398 /* Itbl support may require additional care here. */
12399 relax_start (offset_expr.X_add_symbol);
12400 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12401 BFD_RELOC_LO16, AT);
12402 expr1.X_add_number += 4;
12403 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12404 BFD_RELOC_LO16, AT);
12405 relax_switch ();
12406 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12407 BFD_RELOC_LO16, AT);
12408 offset_expr.X_add_number += 4;
12409 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12410 BFD_RELOC_LO16, AT);
12411 relax_end ();
12412
12413 mips_optimize = hold_mips_optimize;
12414 }
12415 else if (mips_big_got)
12416 {
12417 int gpdelay;
12418
12419 /* If this is a reference to an external symbol, we want
12420 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12421 addu $at,$at,$gp
12422 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12423 nop
12424 <op> op[0],0($at)
12425 <op> op[0]+1,4($at)
12426 Otherwise we want
12427 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12428 nop
12429 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12430 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12431 If there is a base register we add it to $at before the
12432 lwc1 instructions. If there is a constant we include it
12433 in the lwc1 instructions. */
12434 used_at = 1;
12435 expr1.X_add_number = offset_expr.X_add_number;
12436 offset_expr.X_add_number = 0;
12437 if (expr1.X_add_number < -0x8000
12438 || expr1.X_add_number >= 0x8000 - 4)
12439 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12440 gpdelay = reg_needs_delay (mips_gp_register);
12441 relax_start (offset_expr.X_add_symbol);
12442 macro_build (&offset_expr, "lui", LUI_FMT,
12443 AT, BFD_RELOC_MIPS_GOT_HI16);
12444 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12445 AT, AT, mips_gp_register);
12446 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12447 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12448 load_delay_nop ();
12449 if (breg != 0)
12450 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12451 /* Itbl support may require additional care here. */
12452 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12453 BFD_RELOC_LO16, AT);
12454 expr1.X_add_number += 4;
12455
12456 /* Set mips_optimize to 2 to avoid inserting an undesired
12457 nop. */
12458 hold_mips_optimize = mips_optimize;
12459 mips_optimize = 2;
12460 /* Itbl support may require additional care here. */
12461 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12462 BFD_RELOC_LO16, AT);
12463 mips_optimize = hold_mips_optimize;
12464 expr1.X_add_number -= 4;
12465
12466 relax_switch ();
12467 offset_expr.X_add_number = expr1.X_add_number;
12468 if (gpdelay)
12469 macro_build (NULL, "nop", "");
12470 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12471 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12472 load_delay_nop ();
12473 if (breg != 0)
12474 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12475 /* Itbl support may require additional care here. */
12476 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12477 BFD_RELOC_LO16, AT);
12478 offset_expr.X_add_number += 4;
12479
12480 /* Set mips_optimize to 2 to avoid inserting an undesired
12481 nop. */
12482 hold_mips_optimize = mips_optimize;
12483 mips_optimize = 2;
12484 /* Itbl support may require additional care here. */
12485 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12486 BFD_RELOC_LO16, AT);
12487 mips_optimize = hold_mips_optimize;
12488 relax_end ();
12489 }
12490 else
12491 abort ();
12492
12493 break;
12494
12495 case M_SAA_AB:
12496 s = "saa";
12497 goto saa_saad;
12498 case M_SAAD_AB:
12499 s = "saad";
12500 saa_saad:
12501 gas_assert (!mips_opts.micromips);
12502 offbits = 0;
12503 fmt = "t,(b)";
12504 goto ld_st;
12505
12506 /* New code added to support COPZ instructions.
12507 This code builds table entries out of the macros in mip_opcodes.
12508 R4000 uses interlocks to handle coproc delays.
12509 Other chips (like the R3000) require nops to be inserted for delays.
12510
12511 FIXME: Currently, we require that the user handle delays.
12512 In order to fill delay slots for non-interlocked chips,
12513 we must have a way to specify delays based on the coprocessor.
12514 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12515 What are the side-effects of the cop instruction?
12516 What cache support might we have and what are its effects?
12517 Both coprocessor & memory require delays. how long???
12518 What registers are read/set/modified?
12519
12520 If an itbl is provided to interpret cop instructions,
12521 this knowledge can be encoded in the itbl spec. */
12522
12523 case M_COP0:
12524 s = "c0";
12525 goto copz;
12526 case M_COP1:
12527 s = "c1";
12528 goto copz;
12529 case M_COP2:
12530 s = "c2";
12531 goto copz;
12532 case M_COP3:
12533 s = "c3";
12534 copz:
12535 gas_assert (!mips_opts.micromips);
12536 /* For now we just do C (same as Cz). The parameter will be
12537 stored in insn_opcode by mips_ip. */
12538 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12539 break;
12540
12541 case M_MOVE:
12542 move_register (op[0], op[1]);
12543 break;
12544
12545 case M_MOVEP:
12546 gas_assert (mips_opts.micromips);
12547 gas_assert (mips_opts.insn32);
12548 move_register (micromips_to_32_reg_h_map1[op[0]],
12549 micromips_to_32_reg_m_map[op[1]]);
12550 move_register (micromips_to_32_reg_h_map2[op[0]],
12551 micromips_to_32_reg_n_map[op[2]]);
12552 break;
12553
12554 case M_DMUL:
12555 dbl = 1;
12556 case M_MUL:
12557 if (mips_opts.arch == CPU_R5900)
12558 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12559 op[2]);
12560 else
12561 {
12562 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12563 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12564 }
12565 break;
12566
12567 case M_DMUL_I:
12568 dbl = 1;
12569 case M_MUL_I:
12570 /* The MIPS assembler some times generates shifts and adds. I'm
12571 not trying to be that fancy. GCC should do this for us
12572 anyway. */
12573 used_at = 1;
12574 load_register (AT, &imm_expr, dbl);
12575 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12576 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12577 break;
12578
12579 case M_DMULO_I:
12580 dbl = 1;
12581 case M_MULO_I:
12582 imm = 1;
12583 goto do_mulo;
12584
12585 case M_DMULO:
12586 dbl = 1;
12587 case M_MULO:
12588 do_mulo:
12589 start_noreorder ();
12590 used_at = 1;
12591 if (imm)
12592 load_register (AT, &imm_expr, dbl);
12593 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12594 op[1], imm ? AT : op[2]);
12595 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12596 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12597 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12598 if (mips_trap)
12599 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12600 else
12601 {
12602 if (mips_opts.micromips)
12603 micromips_label_expr (&label_expr);
12604 else
12605 label_expr.X_add_number = 8;
12606 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12607 macro_build (NULL, "nop", "");
12608 macro_build (NULL, "break", BRK_FMT, 6);
12609 if (mips_opts.micromips)
12610 micromips_add_label ();
12611 }
12612 end_noreorder ();
12613 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12614 break;
12615
12616 case M_DMULOU_I:
12617 dbl = 1;
12618 case M_MULOU_I:
12619 imm = 1;
12620 goto do_mulou;
12621
12622 case M_DMULOU:
12623 dbl = 1;
12624 case M_MULOU:
12625 do_mulou:
12626 start_noreorder ();
12627 used_at = 1;
12628 if (imm)
12629 load_register (AT, &imm_expr, dbl);
12630 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12631 op[1], imm ? AT : op[2]);
12632 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12633 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12634 if (mips_trap)
12635 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12636 else
12637 {
12638 if (mips_opts.micromips)
12639 micromips_label_expr (&label_expr);
12640 else
12641 label_expr.X_add_number = 8;
12642 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12643 macro_build (NULL, "nop", "");
12644 macro_build (NULL, "break", BRK_FMT, 6);
12645 if (mips_opts.micromips)
12646 micromips_add_label ();
12647 }
12648 end_noreorder ();
12649 break;
12650
12651 case M_DROL:
12652 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12653 {
12654 if (op[0] == op[1])
12655 {
12656 tempreg = AT;
12657 used_at = 1;
12658 }
12659 else
12660 tempreg = op[0];
12661 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12662 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12663 break;
12664 }
12665 used_at = 1;
12666 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12667 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12668 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12669 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12670 break;
12671
12672 case M_ROL:
12673 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12674 {
12675 if (op[0] == op[1])
12676 {
12677 tempreg = AT;
12678 used_at = 1;
12679 }
12680 else
12681 tempreg = op[0];
12682 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12683 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12684 break;
12685 }
12686 used_at = 1;
12687 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12688 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12689 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12690 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12691 break;
12692
12693 case M_DROL_I:
12694 {
12695 unsigned int rot;
12696 const char *l;
12697 const char *rr;
12698
12699 rot = imm_expr.X_add_number & 0x3f;
12700 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12701 {
12702 rot = (64 - rot) & 0x3f;
12703 if (rot >= 32)
12704 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12705 else
12706 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12707 break;
12708 }
12709 if (rot == 0)
12710 {
12711 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12712 break;
12713 }
12714 l = (rot < 0x20) ? "dsll" : "dsll32";
12715 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12716 rot &= 0x1f;
12717 used_at = 1;
12718 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12719 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12720 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12721 }
12722 break;
12723
12724 case M_ROL_I:
12725 {
12726 unsigned int rot;
12727
12728 rot = imm_expr.X_add_number & 0x1f;
12729 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12730 {
12731 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12732 (32 - rot) & 0x1f);
12733 break;
12734 }
12735 if (rot == 0)
12736 {
12737 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12738 break;
12739 }
12740 used_at = 1;
12741 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12742 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12743 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12744 }
12745 break;
12746
12747 case M_DROR:
12748 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12749 {
12750 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12751 break;
12752 }
12753 used_at = 1;
12754 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12755 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12756 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12757 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12758 break;
12759
12760 case M_ROR:
12761 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12762 {
12763 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12764 break;
12765 }
12766 used_at = 1;
12767 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12768 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12769 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12770 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12771 break;
12772
12773 case M_DROR_I:
12774 {
12775 unsigned int rot;
12776 const char *l;
12777 const char *rr;
12778
12779 rot = imm_expr.X_add_number & 0x3f;
12780 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12781 {
12782 if (rot >= 32)
12783 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12784 else
12785 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12786 break;
12787 }
12788 if (rot == 0)
12789 {
12790 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12791 break;
12792 }
12793 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12794 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12795 rot &= 0x1f;
12796 used_at = 1;
12797 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12798 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12799 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12800 }
12801 break;
12802
12803 case M_ROR_I:
12804 {
12805 unsigned int rot;
12806
12807 rot = imm_expr.X_add_number & 0x1f;
12808 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12809 {
12810 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12811 break;
12812 }
12813 if (rot == 0)
12814 {
12815 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12816 break;
12817 }
12818 used_at = 1;
12819 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12820 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12821 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12822 }
12823 break;
12824
12825 case M_SEQ:
12826 if (op[1] == 0)
12827 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12828 else if (op[2] == 0)
12829 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12830 else
12831 {
12832 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12833 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12834 }
12835 break;
12836
12837 case M_SEQ_I:
12838 if (imm_expr.X_add_number == 0)
12839 {
12840 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12841 break;
12842 }
12843 if (op[1] == 0)
12844 {
12845 as_warn (_("instruction %s: result is always false"),
12846 ip->insn_mo->name);
12847 move_register (op[0], 0);
12848 break;
12849 }
12850 if (CPU_HAS_SEQ (mips_opts.arch)
12851 && -512 <= imm_expr.X_add_number
12852 && imm_expr.X_add_number < 512)
12853 {
12854 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12855 (int) imm_expr.X_add_number);
12856 break;
12857 }
12858 if (imm_expr.X_add_number >= 0
12859 && imm_expr.X_add_number < 0x10000)
12860 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12861 else if (imm_expr.X_add_number > -0x8000
12862 && imm_expr.X_add_number < 0)
12863 {
12864 imm_expr.X_add_number = -imm_expr.X_add_number;
12865 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12866 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12867 }
12868 else if (CPU_HAS_SEQ (mips_opts.arch))
12869 {
12870 used_at = 1;
12871 load_register (AT, &imm_expr, GPR_SIZE == 64);
12872 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12873 break;
12874 }
12875 else
12876 {
12877 load_register (AT, &imm_expr, GPR_SIZE == 64);
12878 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12879 used_at = 1;
12880 }
12881 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12882 break;
12883
12884 case M_SGE: /* X >= Y <==> not (X < Y) */
12885 s = "slt";
12886 goto sge;
12887 case M_SGEU:
12888 s = "sltu";
12889 sge:
12890 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12891 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12892 break;
12893
12894 case M_SGE_I: /* X >= I <==> not (X < I) */
12895 case M_SGEU_I:
12896 if (imm_expr.X_add_number >= -0x8000
12897 && imm_expr.X_add_number < 0x8000)
12898 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12899 op[0], op[1], BFD_RELOC_LO16);
12900 else
12901 {
12902 load_register (AT, &imm_expr, GPR_SIZE == 64);
12903 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12904 op[0], op[1], AT);
12905 used_at = 1;
12906 }
12907 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12908 break;
12909
12910 case M_SGT: /* X > Y <==> Y < X */
12911 s = "slt";
12912 goto sgt;
12913 case M_SGTU:
12914 s = "sltu";
12915 sgt:
12916 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12917 break;
12918
12919 case M_SGT_I: /* X > I <==> I < X */
12920 s = "slt";
12921 goto sgti;
12922 case M_SGTU_I:
12923 s = "sltu";
12924 sgti:
12925 used_at = 1;
12926 load_register (AT, &imm_expr, GPR_SIZE == 64);
12927 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12928 break;
12929
12930 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12931 s = "slt";
12932 goto sle;
12933 case M_SLEU:
12934 s = "sltu";
12935 sle:
12936 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12937 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12938 break;
12939
12940 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12941 s = "slt";
12942 goto slei;
12943 case M_SLEU_I:
12944 s = "sltu";
12945 slei:
12946 used_at = 1;
12947 load_register (AT, &imm_expr, GPR_SIZE == 64);
12948 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12949 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12950 break;
12951
12952 case M_SLT_I:
12953 if (imm_expr.X_add_number >= -0x8000
12954 && imm_expr.X_add_number < 0x8000)
12955 {
12956 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12957 BFD_RELOC_LO16);
12958 break;
12959 }
12960 used_at = 1;
12961 load_register (AT, &imm_expr, GPR_SIZE == 64);
12962 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
12963 break;
12964
12965 case M_SLTU_I:
12966 if (imm_expr.X_add_number >= -0x8000
12967 && imm_expr.X_add_number < 0x8000)
12968 {
12969 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
12970 BFD_RELOC_LO16);
12971 break;
12972 }
12973 used_at = 1;
12974 load_register (AT, &imm_expr, GPR_SIZE == 64);
12975 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
12976 break;
12977
12978 case M_SNE:
12979 if (op[1] == 0)
12980 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12981 else if (op[2] == 0)
12982 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12983 else
12984 {
12985 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12986 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
12987 }
12988 break;
12989
12990 case M_SNE_I:
12991 if (imm_expr.X_add_number == 0)
12992 {
12993 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12994 break;
12995 }
12996 if (op[1] == 0)
12997 {
12998 as_warn (_("instruction %s: result is always true"),
12999 ip->insn_mo->name);
13000 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13001 op[0], 0, BFD_RELOC_LO16);
13002 break;
13003 }
13004 if (CPU_HAS_SEQ (mips_opts.arch)
13005 && -512 <= imm_expr.X_add_number
13006 && imm_expr.X_add_number < 512)
13007 {
13008 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13009 (int) imm_expr.X_add_number);
13010 break;
13011 }
13012 if (imm_expr.X_add_number >= 0
13013 && imm_expr.X_add_number < 0x10000)
13014 {
13015 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13016 BFD_RELOC_LO16);
13017 }
13018 else if (imm_expr.X_add_number > -0x8000
13019 && imm_expr.X_add_number < 0)
13020 {
13021 imm_expr.X_add_number = -imm_expr.X_add_number;
13022 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13023 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13024 }
13025 else if (CPU_HAS_SEQ (mips_opts.arch))
13026 {
13027 used_at = 1;
13028 load_register (AT, &imm_expr, GPR_SIZE == 64);
13029 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13030 break;
13031 }
13032 else
13033 {
13034 load_register (AT, &imm_expr, GPR_SIZE == 64);
13035 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13036 used_at = 1;
13037 }
13038 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13039 break;
13040
13041 case M_SUB_I:
13042 s = "addi";
13043 s2 = "sub";
13044 goto do_subi;
13045 case M_SUBU_I:
13046 s = "addiu";
13047 s2 = "subu";
13048 goto do_subi;
13049 case M_DSUB_I:
13050 dbl = 1;
13051 s = "daddi";
13052 s2 = "dsub";
13053 if (!mips_opts.micromips)
13054 goto do_subi;
13055 if (imm_expr.X_add_number > -0x200
13056 && imm_expr.X_add_number <= 0x200)
13057 {
13058 macro_build (NULL, s, "t,r,.", op[0], op[1],
13059 (int) -imm_expr.X_add_number);
13060 break;
13061 }
13062 goto do_subi_i;
13063 case M_DSUBU_I:
13064 dbl = 1;
13065 s = "daddiu";
13066 s2 = "dsubu";
13067 do_subi:
13068 if (imm_expr.X_add_number > -0x8000
13069 && imm_expr.X_add_number <= 0x8000)
13070 {
13071 imm_expr.X_add_number = -imm_expr.X_add_number;
13072 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13073 break;
13074 }
13075 do_subi_i:
13076 used_at = 1;
13077 load_register (AT, &imm_expr, dbl);
13078 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13079 break;
13080
13081 case M_TEQ_I:
13082 s = "teq";
13083 goto trap;
13084 case M_TGE_I:
13085 s = "tge";
13086 goto trap;
13087 case M_TGEU_I:
13088 s = "tgeu";
13089 goto trap;
13090 case M_TLT_I:
13091 s = "tlt";
13092 goto trap;
13093 case M_TLTU_I:
13094 s = "tltu";
13095 goto trap;
13096 case M_TNE_I:
13097 s = "tne";
13098 trap:
13099 used_at = 1;
13100 load_register (AT, &imm_expr, GPR_SIZE == 64);
13101 macro_build (NULL, s, "s,t", op[0], AT);
13102 break;
13103
13104 case M_TRUNCWS:
13105 case M_TRUNCWD:
13106 gas_assert (!mips_opts.micromips);
13107 gas_assert (mips_opts.isa == ISA_MIPS1);
13108 used_at = 1;
13109
13110 /*
13111 * Is the double cfc1 instruction a bug in the mips assembler;
13112 * or is there a reason for it?
13113 */
13114 start_noreorder ();
13115 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13116 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13117 macro_build (NULL, "nop", "");
13118 expr1.X_add_number = 3;
13119 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13120 expr1.X_add_number = 2;
13121 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13122 macro_build (NULL, "ctc1", "t,G", AT, RA);
13123 macro_build (NULL, "nop", "");
13124 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13125 op[0], op[1]);
13126 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13127 macro_build (NULL, "nop", "");
13128 end_noreorder ();
13129 break;
13130
13131 case M_ULH_AB:
13132 s = "lb";
13133 s2 = "lbu";
13134 off = 1;
13135 goto uld_st;
13136 case M_ULHU_AB:
13137 s = "lbu";
13138 s2 = "lbu";
13139 off = 1;
13140 goto uld_st;
13141 case M_ULW_AB:
13142 s = "lwl";
13143 s2 = "lwr";
13144 offbits = (mips_opts.micromips ? 12 : 16);
13145 off = 3;
13146 goto uld_st;
13147 case M_ULD_AB:
13148 s = "ldl";
13149 s2 = "ldr";
13150 offbits = (mips_opts.micromips ? 12 : 16);
13151 off = 7;
13152 goto uld_st;
13153 case M_USH_AB:
13154 s = "sb";
13155 s2 = "sb";
13156 off = 1;
13157 ust = 1;
13158 goto uld_st;
13159 case M_USW_AB:
13160 s = "swl";
13161 s2 = "swr";
13162 offbits = (mips_opts.micromips ? 12 : 16);
13163 off = 3;
13164 ust = 1;
13165 goto uld_st;
13166 case M_USD_AB:
13167 s = "sdl";
13168 s2 = "sdr";
13169 offbits = (mips_opts.micromips ? 12 : 16);
13170 off = 7;
13171 ust = 1;
13172
13173 uld_st:
13174 breg = op[2];
13175 large_offset = !small_offset_p (off, align, offbits);
13176 ep = &offset_expr;
13177 expr1.X_add_number = 0;
13178 if (large_offset)
13179 {
13180 used_at = 1;
13181 tempreg = AT;
13182 if (small_offset_p (0, align, 16))
13183 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13184 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13185 else
13186 {
13187 load_address (tempreg, ep, &used_at);
13188 if (breg != 0)
13189 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13190 tempreg, tempreg, breg);
13191 }
13192 offset_reloc[0] = BFD_RELOC_LO16;
13193 offset_reloc[1] = BFD_RELOC_UNUSED;
13194 offset_reloc[2] = BFD_RELOC_UNUSED;
13195 breg = tempreg;
13196 tempreg = op[0];
13197 ep = &expr1;
13198 }
13199 else if (!ust && op[0] == breg)
13200 {
13201 used_at = 1;
13202 tempreg = AT;
13203 }
13204 else
13205 tempreg = op[0];
13206
13207 if (off == 1)
13208 goto ulh_sh;
13209
13210 if (!target_big_endian)
13211 ep->X_add_number += off;
13212 if (offbits == 12)
13213 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13214 else
13215 macro_build (ep, s, "t,o(b)", tempreg, -1,
13216 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13217
13218 if (!target_big_endian)
13219 ep->X_add_number -= off;
13220 else
13221 ep->X_add_number += off;
13222 if (offbits == 12)
13223 macro_build (NULL, s2, "t,~(b)",
13224 tempreg, (int) ep->X_add_number, breg);
13225 else
13226 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13227 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13228
13229 /* If necessary, move the result in tempreg to the final destination. */
13230 if (!ust && op[0] != tempreg)
13231 {
13232 /* Protect second load's delay slot. */
13233 load_delay_nop ();
13234 move_register (op[0], tempreg);
13235 }
13236 break;
13237
13238 ulh_sh:
13239 used_at = 1;
13240 if (target_big_endian == ust)
13241 ep->X_add_number += off;
13242 tempreg = ust || large_offset ? op[0] : AT;
13243 macro_build (ep, s, "t,o(b)", tempreg, -1,
13244 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13245
13246 /* For halfword transfers we need a temporary register to shuffle
13247 bytes. Unfortunately for M_USH_A we have none available before
13248 the next store as AT holds the base address. We deal with this
13249 case by clobbering TREG and then restoring it as with ULH. */
13250 tempreg = ust == large_offset ? op[0] : AT;
13251 if (ust)
13252 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13253
13254 if (target_big_endian == ust)
13255 ep->X_add_number -= off;
13256 else
13257 ep->X_add_number += off;
13258 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13259 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13260
13261 /* For M_USH_A re-retrieve the LSB. */
13262 if (ust && large_offset)
13263 {
13264 if (target_big_endian)
13265 ep->X_add_number += off;
13266 else
13267 ep->X_add_number -= off;
13268 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13269 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13270 }
13271 /* For ULH and M_USH_A OR the LSB in. */
13272 if (!ust || large_offset)
13273 {
13274 tempreg = !large_offset ? AT : op[0];
13275 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13276 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13277 }
13278 break;
13279
13280 default:
13281 /* FIXME: Check if this is one of the itbl macros, since they
13282 are added dynamically. */
13283 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13284 break;
13285 }
13286 if (!mips_opts.at && used_at)
13287 as_bad (_("macro used $at after \".set noat\""));
13288 }
13289
13290 /* Implement macros in mips16 mode. */
13291
13292 static void
13293 mips16_macro (struct mips_cl_insn *ip)
13294 {
13295 const struct mips_operand_array *operands;
13296 int mask;
13297 int tmp;
13298 expressionS expr1;
13299 int dbl;
13300 const char *s, *s2, *s3;
13301 unsigned int op[MAX_OPERANDS];
13302 unsigned int i;
13303
13304 mask = ip->insn_mo->mask;
13305
13306 operands = insn_operands (ip);
13307 for (i = 0; i < MAX_OPERANDS; i++)
13308 if (operands->operand[i])
13309 op[i] = insn_extract_operand (ip, operands->operand[i]);
13310 else
13311 op[i] = -1;
13312
13313 expr1.X_op = O_constant;
13314 expr1.X_op_symbol = NULL;
13315 expr1.X_add_symbol = NULL;
13316 expr1.X_add_number = 1;
13317
13318 dbl = 0;
13319
13320 switch (mask)
13321 {
13322 default:
13323 abort ();
13324
13325 case M_DDIV_3:
13326 dbl = 1;
13327 case M_DIV_3:
13328 s = "mflo";
13329 goto do_div3;
13330 case M_DREM_3:
13331 dbl = 1;
13332 case M_REM_3:
13333 s = "mfhi";
13334 do_div3:
13335 start_noreorder ();
13336 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13337 expr1.X_add_number = 2;
13338 macro_build (&expr1, "bnez", "x,p", op[2]);
13339 macro_build (NULL, "break", "6", 7);
13340
13341 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13342 since that causes an overflow. We should do that as well,
13343 but I don't see how to do the comparisons without a temporary
13344 register. */
13345 end_noreorder ();
13346 macro_build (NULL, s, "x", op[0]);
13347 break;
13348
13349 case M_DIVU_3:
13350 s = "divu";
13351 s2 = "mflo";
13352 goto do_divu3;
13353 case M_REMU_3:
13354 s = "divu";
13355 s2 = "mfhi";
13356 goto do_divu3;
13357 case M_DDIVU_3:
13358 s = "ddivu";
13359 s2 = "mflo";
13360 goto do_divu3;
13361 case M_DREMU_3:
13362 s = "ddivu";
13363 s2 = "mfhi";
13364 do_divu3:
13365 start_noreorder ();
13366 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13367 expr1.X_add_number = 2;
13368 macro_build (&expr1, "bnez", "x,p", op[2]);
13369 macro_build (NULL, "break", "6", 7);
13370 end_noreorder ();
13371 macro_build (NULL, s2, "x", op[0]);
13372 break;
13373
13374 case M_DMUL:
13375 dbl = 1;
13376 case M_MUL:
13377 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13378 macro_build (NULL, "mflo", "x", op[0]);
13379 break;
13380
13381 case M_DSUBU_I:
13382 dbl = 1;
13383 goto do_subu;
13384 case M_SUBU_I:
13385 do_subu:
13386 imm_expr.X_add_number = -imm_expr.X_add_number;
13387 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13388 break;
13389
13390 case M_SUBU_I_2:
13391 imm_expr.X_add_number = -imm_expr.X_add_number;
13392 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13393 break;
13394
13395 case M_DSUBU_I_2:
13396 imm_expr.X_add_number = -imm_expr.X_add_number;
13397 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13398 break;
13399
13400 case M_BEQ:
13401 s = "cmp";
13402 s2 = "bteqz";
13403 goto do_branch;
13404 case M_BNE:
13405 s = "cmp";
13406 s2 = "btnez";
13407 goto do_branch;
13408 case M_BLT:
13409 s = "slt";
13410 s2 = "btnez";
13411 goto do_branch;
13412 case M_BLTU:
13413 s = "sltu";
13414 s2 = "btnez";
13415 goto do_branch;
13416 case M_BLE:
13417 s = "slt";
13418 s2 = "bteqz";
13419 goto do_reverse_branch;
13420 case M_BLEU:
13421 s = "sltu";
13422 s2 = "bteqz";
13423 goto do_reverse_branch;
13424 case M_BGE:
13425 s = "slt";
13426 s2 = "bteqz";
13427 goto do_branch;
13428 case M_BGEU:
13429 s = "sltu";
13430 s2 = "bteqz";
13431 goto do_branch;
13432 case M_BGT:
13433 s = "slt";
13434 s2 = "btnez";
13435 goto do_reverse_branch;
13436 case M_BGTU:
13437 s = "sltu";
13438 s2 = "btnez";
13439
13440 do_reverse_branch:
13441 tmp = op[1];
13442 op[1] = op[0];
13443 op[0] = tmp;
13444
13445 do_branch:
13446 macro_build (NULL, s, "x,y", op[0], op[1]);
13447 macro_build (&offset_expr, s2, "p");
13448 break;
13449
13450 case M_BEQ_I:
13451 s = "cmpi";
13452 s2 = "bteqz";
13453 s3 = "x,U";
13454 goto do_branch_i;
13455 case M_BNE_I:
13456 s = "cmpi";
13457 s2 = "btnez";
13458 s3 = "x,U";
13459 goto do_branch_i;
13460 case M_BLT_I:
13461 s = "slti";
13462 s2 = "btnez";
13463 s3 = "x,8";
13464 goto do_branch_i;
13465 case M_BLTU_I:
13466 s = "sltiu";
13467 s2 = "btnez";
13468 s3 = "x,8";
13469 goto do_branch_i;
13470 case M_BLE_I:
13471 s = "slti";
13472 s2 = "btnez";
13473 s3 = "x,8";
13474 goto do_addone_branch_i;
13475 case M_BLEU_I:
13476 s = "sltiu";
13477 s2 = "btnez";
13478 s3 = "x,8";
13479 goto do_addone_branch_i;
13480 case M_BGE_I:
13481 s = "slti";
13482 s2 = "bteqz";
13483 s3 = "x,8";
13484 goto do_branch_i;
13485 case M_BGEU_I:
13486 s = "sltiu";
13487 s2 = "bteqz";
13488 s3 = "x,8";
13489 goto do_branch_i;
13490 case M_BGT_I:
13491 s = "slti";
13492 s2 = "bteqz";
13493 s3 = "x,8";
13494 goto do_addone_branch_i;
13495 case M_BGTU_I:
13496 s = "sltiu";
13497 s2 = "bteqz";
13498 s3 = "x,8";
13499
13500 do_addone_branch_i:
13501 ++imm_expr.X_add_number;
13502
13503 do_branch_i:
13504 macro_build (&imm_expr, s, s3, op[0]);
13505 macro_build (&offset_expr, s2, "p");
13506 break;
13507
13508 case M_ABS:
13509 expr1.X_add_number = 0;
13510 macro_build (&expr1, "slti", "x,8", op[1]);
13511 if (op[0] != op[1])
13512 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13513 expr1.X_add_number = 2;
13514 macro_build (&expr1, "bteqz", "p");
13515 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13516 break;
13517 }
13518 }
13519
13520 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13521 opcode bits in *OPCODE_EXTRA. */
13522
13523 static struct mips_opcode *
13524 mips_lookup_insn (struct hash_control *hash, const char *start,
13525 ssize_t length, unsigned int *opcode_extra)
13526 {
13527 char *name, *dot, *p;
13528 unsigned int mask, suffix;
13529 ssize_t opend;
13530 struct mips_opcode *insn;
13531
13532 /* Make a copy of the instruction so that we can fiddle with it. */
13533 name = xstrndup (start, length);
13534
13535 /* Look up the instruction as-is. */
13536 insn = (struct mips_opcode *) hash_find (hash, name);
13537 if (insn)
13538 goto end;
13539
13540 dot = strchr (name, '.');
13541 if (dot && dot[1])
13542 {
13543 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13544 p = mips_parse_vu0_channels (dot + 1, &mask);
13545 if (*p == 0 && mask != 0)
13546 {
13547 *dot = 0;
13548 insn = (struct mips_opcode *) hash_find (hash, name);
13549 *dot = '.';
13550 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13551 {
13552 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13553 goto end;
13554 }
13555 }
13556 }
13557
13558 if (mips_opts.micromips)
13559 {
13560 /* See if there's an instruction size override suffix,
13561 either `16' or `32', at the end of the mnemonic proper,
13562 that defines the operation, i.e. before the first `.'
13563 character if any. Strip it and retry. */
13564 opend = dot != NULL ? dot - name : length;
13565 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13566 suffix = 2;
13567 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13568 suffix = 4;
13569 else
13570 suffix = 0;
13571 if (suffix)
13572 {
13573 memcpy (name + opend - 2, name + opend, length - opend + 1);
13574 insn = (struct mips_opcode *) hash_find (hash, name);
13575 if (insn)
13576 {
13577 forced_insn_length = suffix;
13578 goto end;
13579 }
13580 }
13581 }
13582
13583 insn = NULL;
13584 end:
13585 free (name);
13586 return insn;
13587 }
13588
13589 /* Assemble an instruction into its binary format. If the instruction
13590 is a macro, set imm_expr and offset_expr to the values associated
13591 with "I" and "A" operands respectively. Otherwise store the value
13592 of the relocatable field (if any) in offset_expr. In both cases
13593 set offset_reloc to the relocation operators applied to offset_expr. */
13594
13595 static void
13596 mips_ip (char *str, struct mips_cl_insn *insn)
13597 {
13598 const struct mips_opcode *first, *past;
13599 struct hash_control *hash;
13600 char format;
13601 size_t end;
13602 struct mips_operand_token *tokens;
13603 unsigned int opcode_extra;
13604
13605 if (mips_opts.micromips)
13606 {
13607 hash = micromips_op_hash;
13608 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13609 }
13610 else
13611 {
13612 hash = op_hash;
13613 past = &mips_opcodes[NUMOPCODES];
13614 }
13615 forced_insn_length = 0;
13616 opcode_extra = 0;
13617
13618 /* We first try to match an instruction up to a space or to the end. */
13619 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13620 continue;
13621
13622 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13623 if (first == NULL)
13624 {
13625 set_insn_error (0, _("unrecognized opcode"));
13626 return;
13627 }
13628
13629 if (strcmp (first->name, "li.s") == 0)
13630 format = 'f';
13631 else if (strcmp (first->name, "li.d") == 0)
13632 format = 'd';
13633 else
13634 format = 0;
13635 tokens = mips_parse_arguments (str + end, format);
13636 if (!tokens)
13637 return;
13638
13639 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13640 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13641 set_insn_error (0, _("invalid operands"));
13642
13643 obstack_free (&mips_operand_tokens, tokens);
13644 }
13645
13646 /* As for mips_ip, but used when assembling MIPS16 code.
13647 Also set forced_insn_length to the resulting instruction size in
13648 bytes if the user explicitly requested a small or extended instruction. */
13649
13650 static void
13651 mips16_ip (char *str, struct mips_cl_insn *insn)
13652 {
13653 char *end, *s, c;
13654 struct mips_opcode *first;
13655 struct mips_operand_token *tokens;
13656
13657 forced_insn_length = 0;
13658
13659 for (s = str; ISLOWER (*s); ++s)
13660 ;
13661 end = s;
13662 c = *end;
13663 switch (c)
13664 {
13665 case '\0':
13666 break;
13667
13668 case ' ':
13669 s++;
13670 break;
13671
13672 case '.':
13673 if (s[1] == 't' && s[2] == ' ')
13674 {
13675 forced_insn_length = 2;
13676 s += 3;
13677 break;
13678 }
13679 else if (s[1] == 'e' && s[2] == ' ')
13680 {
13681 forced_insn_length = 4;
13682 s += 3;
13683 break;
13684 }
13685 /* Fall through. */
13686 default:
13687 set_insn_error (0, _("unrecognized opcode"));
13688 return;
13689 }
13690
13691 if (mips_opts.noautoextend && !forced_insn_length)
13692 forced_insn_length = 2;
13693
13694 *end = 0;
13695 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13696 *end = c;
13697
13698 if (!first)
13699 {
13700 set_insn_error (0, _("unrecognized opcode"));
13701 return;
13702 }
13703
13704 tokens = mips_parse_arguments (s, 0);
13705 if (!tokens)
13706 return;
13707
13708 if (!match_mips16_insns (insn, first, tokens))
13709 set_insn_error (0, _("invalid operands"));
13710
13711 obstack_free (&mips_operand_tokens, tokens);
13712 }
13713
13714 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13715 NBITS is the number of significant bits in VAL. */
13716
13717 static unsigned long
13718 mips16_immed_extend (offsetT val, unsigned int nbits)
13719 {
13720 int extval;
13721 if (nbits == 16)
13722 {
13723 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13724 val &= 0x1f;
13725 }
13726 else if (nbits == 15)
13727 {
13728 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13729 val &= 0xf;
13730 }
13731 else
13732 {
13733 extval = ((val & 0x1f) << 6) | (val & 0x20);
13734 val = 0;
13735 }
13736 return (extval << 16) | val;
13737 }
13738
13739 /* Like decode_mips16_operand, but require the operand to be defined and
13740 require it to be an integer. */
13741
13742 static const struct mips_int_operand *
13743 mips16_immed_operand (int type, bfd_boolean extended_p)
13744 {
13745 const struct mips_operand *operand;
13746
13747 operand = decode_mips16_operand (type, extended_p);
13748 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13749 abort ();
13750 return (const struct mips_int_operand *) operand;
13751 }
13752
13753 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13754
13755 static bfd_boolean
13756 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13757 bfd_reloc_code_real_type reloc, offsetT sval)
13758 {
13759 int min_val, max_val;
13760
13761 min_val = mips_int_operand_min (operand);
13762 max_val = mips_int_operand_max (operand);
13763 if (reloc != BFD_RELOC_UNUSED)
13764 {
13765 if (min_val < 0)
13766 sval = SEXT_16BIT (sval);
13767 else
13768 sval &= 0xffff;
13769 }
13770
13771 return (sval >= min_val
13772 && sval <= max_val
13773 && (sval & ((1 << operand->shift) - 1)) == 0);
13774 }
13775
13776 /* Install immediate value VAL into MIPS16 instruction *INSN,
13777 extending it if necessary. The instruction in *INSN may
13778 already be extended.
13779
13780 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13781 if none. In the former case, VAL is a 16-bit number with no
13782 defined signedness.
13783
13784 TYPE is the type of the immediate field. USER_INSN_LENGTH
13785 is the length that the user requested, or 0 if none. */
13786
13787 static void
13788 mips16_immed (const char *file, unsigned int line, int type,
13789 bfd_reloc_code_real_type reloc, offsetT val,
13790 unsigned int user_insn_length, unsigned long *insn)
13791 {
13792 const struct mips_int_operand *operand;
13793 unsigned int uval, length;
13794
13795 operand = mips16_immed_operand (type, FALSE);
13796 if (!mips16_immed_in_range_p (operand, reloc, val))
13797 {
13798 /* We need an extended instruction. */
13799 if (user_insn_length == 2)
13800 as_bad_where (file, line, _("invalid unextended operand value"));
13801 else
13802 *insn |= MIPS16_EXTEND;
13803 }
13804 else if (user_insn_length == 4)
13805 {
13806 /* The operand doesn't force an unextended instruction to be extended.
13807 Warn if the user wanted an extended instruction anyway. */
13808 *insn |= MIPS16_EXTEND;
13809 as_warn_where (file, line,
13810 _("extended operand requested but not required"));
13811 }
13812
13813 length = mips16_opcode_length (*insn);
13814 if (length == 4)
13815 {
13816 operand = mips16_immed_operand (type, TRUE);
13817 if (!mips16_immed_in_range_p (operand, reloc, val))
13818 as_bad_where (file, line,
13819 _("operand value out of range for instruction"));
13820 }
13821 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13822 if (length == 2)
13823 *insn = mips_insert_operand (&operand->root, *insn, uval);
13824 else
13825 *insn |= mips16_immed_extend (uval, operand->root.size);
13826 }
13827 \f
13828 struct percent_op_match
13829 {
13830 const char *str;
13831 bfd_reloc_code_real_type reloc;
13832 };
13833
13834 static const struct percent_op_match mips_percent_op[] =
13835 {
13836 {"%lo", BFD_RELOC_LO16},
13837 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13838 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13839 {"%call16", BFD_RELOC_MIPS_CALL16},
13840 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13841 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13842 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13843 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13844 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13845 {"%got", BFD_RELOC_MIPS_GOT16},
13846 {"%gp_rel", BFD_RELOC_GPREL16},
13847 {"%half", BFD_RELOC_16},
13848 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13849 {"%higher", BFD_RELOC_MIPS_HIGHER},
13850 {"%neg", BFD_RELOC_MIPS_SUB},
13851 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13852 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13853 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13854 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13855 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13856 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13857 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13858 {"%hi", BFD_RELOC_HI16_S},
13859 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13860 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
13861 };
13862
13863 static const struct percent_op_match mips16_percent_op[] =
13864 {
13865 {"%lo", BFD_RELOC_MIPS16_LO16},
13866 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13867 {"%got", BFD_RELOC_MIPS16_GOT16},
13868 {"%call16", BFD_RELOC_MIPS16_CALL16},
13869 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13870 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13871 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13872 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13873 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13874 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13875 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13876 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13877 };
13878
13879
13880 /* Return true if *STR points to a relocation operator. When returning true,
13881 move *STR over the operator and store its relocation code in *RELOC.
13882 Leave both *STR and *RELOC alone when returning false. */
13883
13884 static bfd_boolean
13885 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13886 {
13887 const struct percent_op_match *percent_op;
13888 size_t limit, i;
13889
13890 if (mips_opts.mips16)
13891 {
13892 percent_op = mips16_percent_op;
13893 limit = ARRAY_SIZE (mips16_percent_op);
13894 }
13895 else
13896 {
13897 percent_op = mips_percent_op;
13898 limit = ARRAY_SIZE (mips_percent_op);
13899 }
13900
13901 for (i = 0; i < limit; i++)
13902 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13903 {
13904 int len = strlen (percent_op[i].str);
13905
13906 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13907 continue;
13908
13909 *str += strlen (percent_op[i].str);
13910 *reloc = percent_op[i].reloc;
13911
13912 /* Check whether the output BFD supports this relocation.
13913 If not, issue an error and fall back on something safe. */
13914 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13915 {
13916 as_bad (_("relocation %s isn't supported by the current ABI"),
13917 percent_op[i].str);
13918 *reloc = BFD_RELOC_UNUSED;
13919 }
13920 return TRUE;
13921 }
13922 return FALSE;
13923 }
13924
13925
13926 /* Parse string STR as a 16-bit relocatable operand. Store the
13927 expression in *EP and the relocations in the array starting
13928 at RELOC. Return the number of relocation operators used.
13929
13930 On exit, EXPR_END points to the first character after the expression. */
13931
13932 static size_t
13933 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13934 char *str)
13935 {
13936 bfd_reloc_code_real_type reversed_reloc[3];
13937 size_t reloc_index, i;
13938 int crux_depth, str_depth;
13939 char *crux;
13940
13941 /* Search for the start of the main expression, recoding relocations
13942 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13943 of the main expression and with CRUX_DEPTH containing the number
13944 of open brackets at that point. */
13945 reloc_index = -1;
13946 str_depth = 0;
13947 do
13948 {
13949 reloc_index++;
13950 crux = str;
13951 crux_depth = str_depth;
13952
13953 /* Skip over whitespace and brackets, keeping count of the number
13954 of brackets. */
13955 while (*str == ' ' || *str == '\t' || *str == '(')
13956 if (*str++ == '(')
13957 str_depth++;
13958 }
13959 while (*str == '%'
13960 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13961 && parse_relocation (&str, &reversed_reloc[reloc_index]));
13962
13963 my_getExpression (ep, crux);
13964 str = expr_end;
13965
13966 /* Match every open bracket. */
13967 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
13968 if (*str++ == ')')
13969 crux_depth--;
13970
13971 if (crux_depth > 0)
13972 as_bad (_("unclosed '('"));
13973
13974 expr_end = str;
13975
13976 if (reloc_index != 0)
13977 {
13978 prev_reloc_op_frag = frag_now;
13979 for (i = 0; i < reloc_index; i++)
13980 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13981 }
13982
13983 return reloc_index;
13984 }
13985
13986 static void
13987 my_getExpression (expressionS *ep, char *str)
13988 {
13989 char *save_in;
13990
13991 save_in = input_line_pointer;
13992 input_line_pointer = str;
13993 expression (ep);
13994 expr_end = input_line_pointer;
13995 input_line_pointer = save_in;
13996 }
13997
13998 const char *
13999 md_atof (int type, char *litP, int *sizeP)
14000 {
14001 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14002 }
14003
14004 void
14005 md_number_to_chars (char *buf, valueT val, int n)
14006 {
14007 if (target_big_endian)
14008 number_to_chars_bigendian (buf, val, n);
14009 else
14010 number_to_chars_littleendian (buf, val, n);
14011 }
14012 \f
14013 static int support_64bit_objects(void)
14014 {
14015 const char **list, **l;
14016 int yes;
14017
14018 list = bfd_target_list ();
14019 for (l = list; *l != NULL; l++)
14020 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14021 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14022 break;
14023 yes = (*l != NULL);
14024 free (list);
14025 return yes;
14026 }
14027
14028 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14029 NEW_VALUE. Warn if another value was already specified. Note:
14030 we have to defer parsing the -march and -mtune arguments in order
14031 to handle 'from-abi' correctly, since the ABI might be specified
14032 in a later argument. */
14033
14034 static void
14035 mips_set_option_string (const char **string_ptr, const char *new_value)
14036 {
14037 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14038 as_warn (_("a different %s was already specified, is now %s"),
14039 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14040 new_value);
14041
14042 *string_ptr = new_value;
14043 }
14044
14045 int
14046 md_parse_option (int c, const char *arg)
14047 {
14048 unsigned int i;
14049
14050 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14051 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14052 {
14053 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14054 c == mips_ases[i].option_on);
14055 return 1;
14056 }
14057
14058 switch (c)
14059 {
14060 case OPTION_CONSTRUCT_FLOATS:
14061 mips_disable_float_construction = 0;
14062 break;
14063
14064 case OPTION_NO_CONSTRUCT_FLOATS:
14065 mips_disable_float_construction = 1;
14066 break;
14067
14068 case OPTION_TRAP:
14069 mips_trap = 1;
14070 break;
14071
14072 case OPTION_BREAK:
14073 mips_trap = 0;
14074 break;
14075
14076 case OPTION_EB:
14077 target_big_endian = 1;
14078 break;
14079
14080 case OPTION_EL:
14081 target_big_endian = 0;
14082 break;
14083
14084 case 'O':
14085 if (arg == NULL)
14086 mips_optimize = 1;
14087 else if (arg[0] == '0')
14088 mips_optimize = 0;
14089 else if (arg[0] == '1')
14090 mips_optimize = 1;
14091 else
14092 mips_optimize = 2;
14093 break;
14094
14095 case 'g':
14096 if (arg == NULL)
14097 mips_debug = 2;
14098 else
14099 mips_debug = atoi (arg);
14100 break;
14101
14102 case OPTION_MIPS1:
14103 file_mips_opts.isa = ISA_MIPS1;
14104 break;
14105
14106 case OPTION_MIPS2:
14107 file_mips_opts.isa = ISA_MIPS2;
14108 break;
14109
14110 case OPTION_MIPS3:
14111 file_mips_opts.isa = ISA_MIPS3;
14112 break;
14113
14114 case OPTION_MIPS4:
14115 file_mips_opts.isa = ISA_MIPS4;
14116 break;
14117
14118 case OPTION_MIPS5:
14119 file_mips_opts.isa = ISA_MIPS5;
14120 break;
14121
14122 case OPTION_MIPS32:
14123 file_mips_opts.isa = ISA_MIPS32;
14124 break;
14125
14126 case OPTION_MIPS32R2:
14127 file_mips_opts.isa = ISA_MIPS32R2;
14128 break;
14129
14130 case OPTION_MIPS32R3:
14131 file_mips_opts.isa = ISA_MIPS32R3;
14132 break;
14133
14134 case OPTION_MIPS32R5:
14135 file_mips_opts.isa = ISA_MIPS32R5;
14136 break;
14137
14138 case OPTION_MIPS32R6:
14139 file_mips_opts.isa = ISA_MIPS32R6;
14140 break;
14141
14142 case OPTION_MIPS64R2:
14143 file_mips_opts.isa = ISA_MIPS64R2;
14144 break;
14145
14146 case OPTION_MIPS64R3:
14147 file_mips_opts.isa = ISA_MIPS64R3;
14148 break;
14149
14150 case OPTION_MIPS64R5:
14151 file_mips_opts.isa = ISA_MIPS64R5;
14152 break;
14153
14154 case OPTION_MIPS64R6:
14155 file_mips_opts.isa = ISA_MIPS64R6;
14156 break;
14157
14158 case OPTION_MIPS64:
14159 file_mips_opts.isa = ISA_MIPS64;
14160 break;
14161
14162 case OPTION_MTUNE:
14163 mips_set_option_string (&mips_tune_string, arg);
14164 break;
14165
14166 case OPTION_MARCH:
14167 mips_set_option_string (&mips_arch_string, arg);
14168 break;
14169
14170 case OPTION_M4650:
14171 mips_set_option_string (&mips_arch_string, "4650");
14172 mips_set_option_string (&mips_tune_string, "4650");
14173 break;
14174
14175 case OPTION_NO_M4650:
14176 break;
14177
14178 case OPTION_M4010:
14179 mips_set_option_string (&mips_arch_string, "4010");
14180 mips_set_option_string (&mips_tune_string, "4010");
14181 break;
14182
14183 case OPTION_NO_M4010:
14184 break;
14185
14186 case OPTION_M4100:
14187 mips_set_option_string (&mips_arch_string, "4100");
14188 mips_set_option_string (&mips_tune_string, "4100");
14189 break;
14190
14191 case OPTION_NO_M4100:
14192 break;
14193
14194 case OPTION_M3900:
14195 mips_set_option_string (&mips_arch_string, "3900");
14196 mips_set_option_string (&mips_tune_string, "3900");
14197 break;
14198
14199 case OPTION_NO_M3900:
14200 break;
14201
14202 case OPTION_MICROMIPS:
14203 if (file_mips_opts.mips16 == 1)
14204 {
14205 as_bad (_("-mmicromips cannot be used with -mips16"));
14206 return 0;
14207 }
14208 file_mips_opts.micromips = 1;
14209 mips_no_prev_insn ();
14210 break;
14211
14212 case OPTION_NO_MICROMIPS:
14213 file_mips_opts.micromips = 0;
14214 mips_no_prev_insn ();
14215 break;
14216
14217 case OPTION_MIPS16:
14218 if (file_mips_opts.micromips == 1)
14219 {
14220 as_bad (_("-mips16 cannot be used with -micromips"));
14221 return 0;
14222 }
14223 file_mips_opts.mips16 = 1;
14224 mips_no_prev_insn ();
14225 break;
14226
14227 case OPTION_NO_MIPS16:
14228 file_mips_opts.mips16 = 0;
14229 mips_no_prev_insn ();
14230 break;
14231
14232 case OPTION_FIX_24K:
14233 mips_fix_24k = 1;
14234 break;
14235
14236 case OPTION_NO_FIX_24K:
14237 mips_fix_24k = 0;
14238 break;
14239
14240 case OPTION_FIX_RM7000:
14241 mips_fix_rm7000 = 1;
14242 break;
14243
14244 case OPTION_NO_FIX_RM7000:
14245 mips_fix_rm7000 = 0;
14246 break;
14247
14248 case OPTION_FIX_LOONGSON2F_JUMP:
14249 mips_fix_loongson2f_jump = TRUE;
14250 break;
14251
14252 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14253 mips_fix_loongson2f_jump = FALSE;
14254 break;
14255
14256 case OPTION_FIX_LOONGSON2F_NOP:
14257 mips_fix_loongson2f_nop = TRUE;
14258 break;
14259
14260 case OPTION_NO_FIX_LOONGSON2F_NOP:
14261 mips_fix_loongson2f_nop = FALSE;
14262 break;
14263
14264 case OPTION_FIX_VR4120:
14265 mips_fix_vr4120 = 1;
14266 break;
14267
14268 case OPTION_NO_FIX_VR4120:
14269 mips_fix_vr4120 = 0;
14270 break;
14271
14272 case OPTION_FIX_VR4130:
14273 mips_fix_vr4130 = 1;
14274 break;
14275
14276 case OPTION_NO_FIX_VR4130:
14277 mips_fix_vr4130 = 0;
14278 break;
14279
14280 case OPTION_FIX_CN63XXP1:
14281 mips_fix_cn63xxp1 = TRUE;
14282 break;
14283
14284 case OPTION_NO_FIX_CN63XXP1:
14285 mips_fix_cn63xxp1 = FALSE;
14286 break;
14287
14288 case OPTION_RELAX_BRANCH:
14289 mips_relax_branch = 1;
14290 break;
14291
14292 case OPTION_NO_RELAX_BRANCH:
14293 mips_relax_branch = 0;
14294 break;
14295
14296 case OPTION_INSN32:
14297 file_mips_opts.insn32 = TRUE;
14298 break;
14299
14300 case OPTION_NO_INSN32:
14301 file_mips_opts.insn32 = FALSE;
14302 break;
14303
14304 case OPTION_MSHARED:
14305 mips_in_shared = TRUE;
14306 break;
14307
14308 case OPTION_MNO_SHARED:
14309 mips_in_shared = FALSE;
14310 break;
14311
14312 case OPTION_MSYM32:
14313 file_mips_opts.sym32 = TRUE;
14314 break;
14315
14316 case OPTION_MNO_SYM32:
14317 file_mips_opts.sym32 = FALSE;
14318 break;
14319
14320 /* When generating ELF code, we permit -KPIC and -call_shared to
14321 select SVR4_PIC, and -non_shared to select no PIC. This is
14322 intended to be compatible with Irix 5. */
14323 case OPTION_CALL_SHARED:
14324 mips_pic = SVR4_PIC;
14325 mips_abicalls = TRUE;
14326 break;
14327
14328 case OPTION_CALL_NONPIC:
14329 mips_pic = NO_PIC;
14330 mips_abicalls = TRUE;
14331 break;
14332
14333 case OPTION_NON_SHARED:
14334 mips_pic = NO_PIC;
14335 mips_abicalls = FALSE;
14336 break;
14337
14338 /* The -xgot option tells the assembler to use 32 bit offsets
14339 when accessing the got in SVR4_PIC mode. It is for Irix
14340 compatibility. */
14341 case OPTION_XGOT:
14342 mips_big_got = 1;
14343 break;
14344
14345 case 'G':
14346 g_switch_value = atoi (arg);
14347 g_switch_seen = 1;
14348 break;
14349
14350 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14351 and -mabi=64. */
14352 case OPTION_32:
14353 mips_abi = O32_ABI;
14354 break;
14355
14356 case OPTION_N32:
14357 mips_abi = N32_ABI;
14358 break;
14359
14360 case OPTION_64:
14361 mips_abi = N64_ABI;
14362 if (!support_64bit_objects())
14363 as_fatal (_("no compiled in support for 64 bit object file format"));
14364 break;
14365
14366 case OPTION_GP32:
14367 file_mips_opts.gp = 32;
14368 break;
14369
14370 case OPTION_GP64:
14371 file_mips_opts.gp = 64;
14372 break;
14373
14374 case OPTION_FP32:
14375 file_mips_opts.fp = 32;
14376 break;
14377
14378 case OPTION_FPXX:
14379 file_mips_opts.fp = 0;
14380 break;
14381
14382 case OPTION_FP64:
14383 file_mips_opts.fp = 64;
14384 break;
14385
14386 case OPTION_ODD_SPREG:
14387 file_mips_opts.oddspreg = 1;
14388 break;
14389
14390 case OPTION_NO_ODD_SPREG:
14391 file_mips_opts.oddspreg = 0;
14392 break;
14393
14394 case OPTION_SINGLE_FLOAT:
14395 file_mips_opts.single_float = 1;
14396 break;
14397
14398 case OPTION_DOUBLE_FLOAT:
14399 file_mips_opts.single_float = 0;
14400 break;
14401
14402 case OPTION_SOFT_FLOAT:
14403 file_mips_opts.soft_float = 1;
14404 break;
14405
14406 case OPTION_HARD_FLOAT:
14407 file_mips_opts.soft_float = 0;
14408 break;
14409
14410 case OPTION_MABI:
14411 if (strcmp (arg, "32") == 0)
14412 mips_abi = O32_ABI;
14413 else if (strcmp (arg, "o64") == 0)
14414 mips_abi = O64_ABI;
14415 else if (strcmp (arg, "n32") == 0)
14416 mips_abi = N32_ABI;
14417 else if (strcmp (arg, "64") == 0)
14418 {
14419 mips_abi = N64_ABI;
14420 if (! support_64bit_objects())
14421 as_fatal (_("no compiled in support for 64 bit object file "
14422 "format"));
14423 }
14424 else if (strcmp (arg, "eabi") == 0)
14425 mips_abi = EABI_ABI;
14426 else
14427 {
14428 as_fatal (_("invalid abi -mabi=%s"), arg);
14429 return 0;
14430 }
14431 break;
14432
14433 case OPTION_M7000_HILO_FIX:
14434 mips_7000_hilo_fix = TRUE;
14435 break;
14436
14437 case OPTION_MNO_7000_HILO_FIX:
14438 mips_7000_hilo_fix = FALSE;
14439 break;
14440
14441 case OPTION_MDEBUG:
14442 mips_flag_mdebug = TRUE;
14443 break;
14444
14445 case OPTION_NO_MDEBUG:
14446 mips_flag_mdebug = FALSE;
14447 break;
14448
14449 case OPTION_PDR:
14450 mips_flag_pdr = TRUE;
14451 break;
14452
14453 case OPTION_NO_PDR:
14454 mips_flag_pdr = FALSE;
14455 break;
14456
14457 case OPTION_MVXWORKS_PIC:
14458 mips_pic = VXWORKS_PIC;
14459 break;
14460
14461 case OPTION_NAN:
14462 if (strcmp (arg, "2008") == 0)
14463 mips_nan2008 = 1;
14464 else if (strcmp (arg, "legacy") == 0)
14465 mips_nan2008 = 0;
14466 else
14467 {
14468 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14469 return 0;
14470 }
14471 break;
14472
14473 default:
14474 return 0;
14475 }
14476
14477 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14478
14479 return 1;
14480 }
14481 \f
14482 /* Set up globals to tune for the ISA or processor described by INFO. */
14483
14484 static void
14485 mips_set_tune (const struct mips_cpu_info *info)
14486 {
14487 if (info != 0)
14488 mips_tune = info->cpu;
14489 }
14490
14491
14492 void
14493 mips_after_parse_args (void)
14494 {
14495 const struct mips_cpu_info *arch_info = 0;
14496 const struct mips_cpu_info *tune_info = 0;
14497
14498 /* GP relative stuff not working for PE */
14499 if (strncmp (TARGET_OS, "pe", 2) == 0)
14500 {
14501 if (g_switch_seen && g_switch_value != 0)
14502 as_bad (_("-G not supported in this configuration"));
14503 g_switch_value = 0;
14504 }
14505
14506 if (mips_abi == NO_ABI)
14507 mips_abi = MIPS_DEFAULT_ABI;
14508
14509 /* The following code determines the architecture.
14510 Similar code was added to GCC 3.3 (see override_options() in
14511 config/mips/mips.c). The GAS and GCC code should be kept in sync
14512 as much as possible. */
14513
14514 if (mips_arch_string != 0)
14515 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14516
14517 if (file_mips_opts.isa != ISA_UNKNOWN)
14518 {
14519 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14520 ISA level specified by -mipsN, while arch_info->isa contains
14521 the -march selection (if any). */
14522 if (arch_info != 0)
14523 {
14524 /* -march takes precedence over -mipsN, since it is more descriptive.
14525 There's no harm in specifying both as long as the ISA levels
14526 are the same. */
14527 if (file_mips_opts.isa != arch_info->isa)
14528 as_bad (_("-%s conflicts with the other architecture options,"
14529 " which imply -%s"),
14530 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14531 mips_cpu_info_from_isa (arch_info->isa)->name);
14532 }
14533 else
14534 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14535 }
14536
14537 if (arch_info == 0)
14538 {
14539 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14540 gas_assert (arch_info);
14541 }
14542
14543 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14544 as_bad (_("-march=%s is not compatible with the selected ABI"),
14545 arch_info->name);
14546
14547 file_mips_opts.arch = arch_info->cpu;
14548 file_mips_opts.isa = arch_info->isa;
14549
14550 /* Set up initial mips_opts state. */
14551 mips_opts = file_mips_opts;
14552
14553 /* The register size inference code is now placed in
14554 file_mips_check_options. */
14555
14556 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14557 processor. */
14558 if (mips_tune_string != 0)
14559 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14560
14561 if (tune_info == 0)
14562 mips_set_tune (arch_info);
14563 else
14564 mips_set_tune (tune_info);
14565
14566 if (mips_flag_mdebug < 0)
14567 mips_flag_mdebug = 0;
14568 }
14569 \f
14570 void
14571 mips_init_after_args (void)
14572 {
14573 /* initialize opcodes */
14574 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14575 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14576 }
14577
14578 long
14579 md_pcrel_from (fixS *fixP)
14580 {
14581 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14582 switch (fixP->fx_r_type)
14583 {
14584 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14585 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14586 /* Return the address of the delay slot. */
14587 return addr + 2;
14588
14589 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14590 case BFD_RELOC_MICROMIPS_JMP:
14591 case BFD_RELOC_16_PCREL_S2:
14592 case BFD_RELOC_MIPS_21_PCREL_S2:
14593 case BFD_RELOC_MIPS_26_PCREL_S2:
14594 case BFD_RELOC_MIPS_JMP:
14595 /* Return the address of the delay slot. */
14596 return addr + 4;
14597
14598 default:
14599 return addr;
14600 }
14601 }
14602
14603 /* This is called before the symbol table is processed. In order to
14604 work with gcc when using mips-tfile, we must keep all local labels.
14605 However, in other cases, we want to discard them. If we were
14606 called with -g, but we didn't see any debugging information, it may
14607 mean that gcc is smuggling debugging information through to
14608 mips-tfile, in which case we must generate all local labels. */
14609
14610 void
14611 mips_frob_file_before_adjust (void)
14612 {
14613 #ifndef NO_ECOFF_DEBUGGING
14614 if (ECOFF_DEBUGGING
14615 && mips_debug != 0
14616 && ! ecoff_debugging_seen)
14617 flag_keep_locals = 1;
14618 #endif
14619 }
14620
14621 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14622 the corresponding LO16 reloc. This is called before md_apply_fix and
14623 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14624 relocation operators.
14625
14626 For our purposes, a %lo() expression matches a %got() or %hi()
14627 expression if:
14628
14629 (a) it refers to the same symbol; and
14630 (b) the offset applied in the %lo() expression is no lower than
14631 the offset applied in the %got() or %hi().
14632
14633 (b) allows us to cope with code like:
14634
14635 lui $4,%hi(foo)
14636 lh $4,%lo(foo+2)($4)
14637
14638 ...which is legal on RELA targets, and has a well-defined behaviour
14639 if the user knows that adding 2 to "foo" will not induce a carry to
14640 the high 16 bits.
14641
14642 When several %lo()s match a particular %got() or %hi(), we use the
14643 following rules to distinguish them:
14644
14645 (1) %lo()s with smaller offsets are a better match than %lo()s with
14646 higher offsets.
14647
14648 (2) %lo()s with no matching %got() or %hi() are better than those
14649 that already have a matching %got() or %hi().
14650
14651 (3) later %lo()s are better than earlier %lo()s.
14652
14653 These rules are applied in order.
14654
14655 (1) means, among other things, that %lo()s with identical offsets are
14656 chosen if they exist.
14657
14658 (2) means that we won't associate several high-part relocations with
14659 the same low-part relocation unless there's no alternative. Having
14660 several high parts for the same low part is a GNU extension; this rule
14661 allows careful users to avoid it.
14662
14663 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14664 with the last high-part relocation being at the front of the list.
14665 It therefore makes sense to choose the last matching low-part
14666 relocation, all other things being equal. It's also easier
14667 to code that way. */
14668
14669 void
14670 mips_frob_file (void)
14671 {
14672 struct mips_hi_fixup *l;
14673 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14674
14675 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14676 {
14677 segment_info_type *seginfo;
14678 bfd_boolean matched_lo_p;
14679 fixS **hi_pos, **lo_pos, **pos;
14680
14681 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14682
14683 /* If a GOT16 relocation turns out to be against a global symbol,
14684 there isn't supposed to be a matching LO. Ignore %gots against
14685 constants; we'll report an error for those later. */
14686 if (got16_reloc_p (l->fixp->fx_r_type)
14687 && !(l->fixp->fx_addsy
14688 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14689 continue;
14690
14691 /* Check quickly whether the next fixup happens to be a matching %lo. */
14692 if (fixup_has_matching_lo_p (l->fixp))
14693 continue;
14694
14695 seginfo = seg_info (l->seg);
14696
14697 /* Set HI_POS to the position of this relocation in the chain.
14698 Set LO_POS to the position of the chosen low-part relocation.
14699 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14700 relocation that matches an immediately-preceding high-part
14701 relocation. */
14702 hi_pos = NULL;
14703 lo_pos = NULL;
14704 matched_lo_p = FALSE;
14705 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14706
14707 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14708 {
14709 if (*pos == l->fixp)
14710 hi_pos = pos;
14711
14712 if ((*pos)->fx_r_type == looking_for_rtype
14713 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14714 && (*pos)->fx_offset >= l->fixp->fx_offset
14715 && (lo_pos == NULL
14716 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14717 || (!matched_lo_p
14718 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14719 lo_pos = pos;
14720
14721 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14722 && fixup_has_matching_lo_p (*pos));
14723 }
14724
14725 /* If we found a match, remove the high-part relocation from its
14726 current position and insert it before the low-part relocation.
14727 Make the offsets match so that fixup_has_matching_lo_p()
14728 will return true.
14729
14730 We don't warn about unmatched high-part relocations since some
14731 versions of gcc have been known to emit dead "lui ...%hi(...)"
14732 instructions. */
14733 if (lo_pos != NULL)
14734 {
14735 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14736 if (l->fixp->fx_next != *lo_pos)
14737 {
14738 *hi_pos = l->fixp->fx_next;
14739 l->fixp->fx_next = *lo_pos;
14740 *lo_pos = l->fixp;
14741 }
14742 }
14743 }
14744 }
14745
14746 int
14747 mips_force_relocation (fixS *fixp)
14748 {
14749 if (generic_force_reloc (fixp))
14750 return 1;
14751
14752 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14753 so that the linker relaxation can update targets. */
14754 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14755 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14756 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14757 return 1;
14758
14759 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14760 if (ISA_IS_R6 (mips_opts.isa)
14761 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14762 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14763 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14764 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14765 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14766 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14767 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14768 return 1;
14769
14770 return 0;
14771 }
14772
14773 /* Read the instruction associated with RELOC from BUF. */
14774
14775 static unsigned int
14776 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14777 {
14778 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14779 return read_compressed_insn (buf, 4);
14780 else
14781 return read_insn (buf);
14782 }
14783
14784 /* Write instruction INSN to BUF, given that it has been relocated
14785 by RELOC. */
14786
14787 static void
14788 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14789 unsigned long insn)
14790 {
14791 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14792 write_compressed_insn (buf, insn, 4);
14793 else
14794 write_insn (buf, insn);
14795 }
14796
14797 /* Apply a fixup to the object file. */
14798
14799 void
14800 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14801 {
14802 char *buf;
14803 unsigned long insn;
14804 reloc_howto_type *howto;
14805
14806 if (fixP->fx_pcrel)
14807 switch (fixP->fx_r_type)
14808 {
14809 case BFD_RELOC_16_PCREL_S2:
14810 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14811 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14812 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14813 case BFD_RELOC_32_PCREL:
14814 case BFD_RELOC_MIPS_21_PCREL_S2:
14815 case BFD_RELOC_MIPS_26_PCREL_S2:
14816 case BFD_RELOC_MIPS_18_PCREL_S3:
14817 case BFD_RELOC_MIPS_19_PCREL_S2:
14818 case BFD_RELOC_HI16_S_PCREL:
14819 case BFD_RELOC_LO16_PCREL:
14820 break;
14821
14822 case BFD_RELOC_32:
14823 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14824 break;
14825
14826 default:
14827 as_bad_where (fixP->fx_file, fixP->fx_line,
14828 _("PC-relative reference to a different section"));
14829 break;
14830 }
14831
14832 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14833 that have no MIPS ELF equivalent. */
14834 if (fixP->fx_r_type != BFD_RELOC_8)
14835 {
14836 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14837 if (!howto)
14838 return;
14839 }
14840
14841 gas_assert (fixP->fx_size == 2
14842 || fixP->fx_size == 4
14843 || fixP->fx_r_type == BFD_RELOC_8
14844 || fixP->fx_r_type == BFD_RELOC_16
14845 || fixP->fx_r_type == BFD_RELOC_64
14846 || fixP->fx_r_type == BFD_RELOC_CTOR
14847 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14848 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14849 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14850 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14851 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14852 || fixP->fx_r_type == BFD_RELOC_NONE);
14853
14854 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14855
14856 /* Don't treat parts of a composite relocation as done. There are two
14857 reasons for this:
14858
14859 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14860 should nevertheless be emitted if the first part is.
14861
14862 (2) In normal usage, composite relocations are never assembly-time
14863 constants. The easiest way of dealing with the pathological
14864 exceptions is to generate a relocation against STN_UNDEF and
14865 leave everything up to the linker. */
14866 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14867 fixP->fx_done = 1;
14868
14869 switch (fixP->fx_r_type)
14870 {
14871 case BFD_RELOC_MIPS_TLS_GD:
14872 case BFD_RELOC_MIPS_TLS_LDM:
14873 case BFD_RELOC_MIPS_TLS_DTPREL32:
14874 case BFD_RELOC_MIPS_TLS_DTPREL64:
14875 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14876 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14877 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14878 case BFD_RELOC_MIPS_TLS_TPREL32:
14879 case BFD_RELOC_MIPS_TLS_TPREL64:
14880 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14881 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14882 case BFD_RELOC_MICROMIPS_TLS_GD:
14883 case BFD_RELOC_MICROMIPS_TLS_LDM:
14884 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14885 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14886 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14887 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14888 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14889 case BFD_RELOC_MIPS16_TLS_GD:
14890 case BFD_RELOC_MIPS16_TLS_LDM:
14891 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14892 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14893 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14894 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14895 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14896 if (!fixP->fx_addsy)
14897 {
14898 as_bad_where (fixP->fx_file, fixP->fx_line,
14899 _("TLS relocation against a constant"));
14900 break;
14901 }
14902 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14903 /* fall through */
14904
14905 case BFD_RELOC_MIPS_JMP:
14906 case BFD_RELOC_MIPS_SHIFT5:
14907 case BFD_RELOC_MIPS_SHIFT6:
14908 case BFD_RELOC_MIPS_GOT_DISP:
14909 case BFD_RELOC_MIPS_GOT_PAGE:
14910 case BFD_RELOC_MIPS_GOT_OFST:
14911 case BFD_RELOC_MIPS_SUB:
14912 case BFD_RELOC_MIPS_INSERT_A:
14913 case BFD_RELOC_MIPS_INSERT_B:
14914 case BFD_RELOC_MIPS_DELETE:
14915 case BFD_RELOC_MIPS_HIGHEST:
14916 case BFD_RELOC_MIPS_HIGHER:
14917 case BFD_RELOC_MIPS_SCN_DISP:
14918 case BFD_RELOC_MIPS_REL16:
14919 case BFD_RELOC_MIPS_RELGOT:
14920 case BFD_RELOC_MIPS_JALR:
14921 case BFD_RELOC_HI16:
14922 case BFD_RELOC_HI16_S:
14923 case BFD_RELOC_LO16:
14924 case BFD_RELOC_GPREL16:
14925 case BFD_RELOC_MIPS_LITERAL:
14926 case BFD_RELOC_MIPS_CALL16:
14927 case BFD_RELOC_MIPS_GOT16:
14928 case BFD_RELOC_GPREL32:
14929 case BFD_RELOC_MIPS_GOT_HI16:
14930 case BFD_RELOC_MIPS_GOT_LO16:
14931 case BFD_RELOC_MIPS_CALL_HI16:
14932 case BFD_RELOC_MIPS_CALL_LO16:
14933 case BFD_RELOC_MIPS16_GPREL:
14934 case BFD_RELOC_MIPS16_GOT16:
14935 case BFD_RELOC_MIPS16_CALL16:
14936 case BFD_RELOC_MIPS16_HI16:
14937 case BFD_RELOC_MIPS16_HI16_S:
14938 case BFD_RELOC_MIPS16_LO16:
14939 case BFD_RELOC_MIPS16_JMP:
14940 case BFD_RELOC_MICROMIPS_JMP:
14941 case BFD_RELOC_MICROMIPS_GOT_DISP:
14942 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14943 case BFD_RELOC_MICROMIPS_GOT_OFST:
14944 case BFD_RELOC_MICROMIPS_SUB:
14945 case BFD_RELOC_MICROMIPS_HIGHEST:
14946 case BFD_RELOC_MICROMIPS_HIGHER:
14947 case BFD_RELOC_MICROMIPS_SCN_DISP:
14948 case BFD_RELOC_MICROMIPS_JALR:
14949 case BFD_RELOC_MICROMIPS_HI16:
14950 case BFD_RELOC_MICROMIPS_HI16_S:
14951 case BFD_RELOC_MICROMIPS_LO16:
14952 case BFD_RELOC_MICROMIPS_GPREL16:
14953 case BFD_RELOC_MICROMIPS_LITERAL:
14954 case BFD_RELOC_MICROMIPS_CALL16:
14955 case BFD_RELOC_MICROMIPS_GOT16:
14956 case BFD_RELOC_MICROMIPS_GOT_HI16:
14957 case BFD_RELOC_MICROMIPS_GOT_LO16:
14958 case BFD_RELOC_MICROMIPS_CALL_HI16:
14959 case BFD_RELOC_MICROMIPS_CALL_LO16:
14960 case BFD_RELOC_MIPS_EH:
14961 if (fixP->fx_done)
14962 {
14963 offsetT value;
14964
14965 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14966 {
14967 insn = read_reloc_insn (buf, fixP->fx_r_type);
14968 if (mips16_reloc_p (fixP->fx_r_type))
14969 insn |= mips16_immed_extend (value, 16);
14970 else
14971 insn |= (value & 0xffff);
14972 write_reloc_insn (buf, fixP->fx_r_type, insn);
14973 }
14974 else
14975 as_bad_where (fixP->fx_file, fixP->fx_line,
14976 _("unsupported constant in relocation"));
14977 }
14978 break;
14979
14980 case BFD_RELOC_64:
14981 /* This is handled like BFD_RELOC_32, but we output a sign
14982 extended value if we are only 32 bits. */
14983 if (fixP->fx_done)
14984 {
14985 if (8 <= sizeof (valueT))
14986 md_number_to_chars (buf, *valP, 8);
14987 else
14988 {
14989 valueT hiv;
14990
14991 if ((*valP & 0x80000000) != 0)
14992 hiv = 0xffffffff;
14993 else
14994 hiv = 0;
14995 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14996 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
14997 }
14998 }
14999 break;
15000
15001 case BFD_RELOC_RVA:
15002 case BFD_RELOC_32:
15003 case BFD_RELOC_32_PCREL:
15004 case BFD_RELOC_16:
15005 case BFD_RELOC_8:
15006 /* If we are deleting this reloc entry, we must fill in the
15007 value now. This can happen if we have a .word which is not
15008 resolved when it appears but is later defined. */
15009 if (fixP->fx_done)
15010 md_number_to_chars (buf, *valP, fixP->fx_size);
15011 break;
15012
15013 case BFD_RELOC_MIPS_21_PCREL_S2:
15014 case BFD_RELOC_MIPS_26_PCREL_S2:
15015 if ((*valP & 0x3) != 0)
15016 as_bad_where (fixP->fx_file, fixP->fx_line,
15017 _("branch to misaligned address (%lx)"), (long) *valP);
15018
15019 gas_assert (!fixP->fx_done);
15020 break;
15021
15022 case BFD_RELOC_MIPS_18_PCREL_S3:
15023 if ((S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15024 as_bad_where (fixP->fx_file, fixP->fx_line,
15025 _("PC-relative access using misaligned symbol (%lx)"),
15026 (long) S_GET_VALUE (fixP->fx_addsy));
15027 if ((fixP->fx_offset & 0x7) != 0)
15028 as_bad_where (fixP->fx_file, fixP->fx_line,
15029 _("PC-relative access using misaligned offset (%lx)"),
15030 (long) fixP->fx_offset);
15031
15032 gas_assert (!fixP->fx_done);
15033 break;
15034
15035 case BFD_RELOC_MIPS_19_PCREL_S2:
15036 if ((*valP & 0x3) != 0)
15037 as_bad_where (fixP->fx_file, fixP->fx_line,
15038 _("PC-relative access to misaligned address (%lx)"),
15039 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15040
15041 gas_assert (!fixP->fx_done);
15042 break;
15043
15044 case BFD_RELOC_HI16_S_PCREL:
15045 case BFD_RELOC_LO16_PCREL:
15046 gas_assert (!fixP->fx_done);
15047 break;
15048
15049 case BFD_RELOC_16_PCREL_S2:
15050 if ((*valP & 0x3) != 0)
15051 as_bad_where (fixP->fx_file, fixP->fx_line,
15052 _("branch to misaligned address (%lx)"), (long) *valP);
15053
15054 /* We need to save the bits in the instruction since fixup_segment()
15055 might be deleting the relocation entry (i.e., a branch within
15056 the current segment). */
15057 if (! fixP->fx_done)
15058 break;
15059
15060 /* Update old instruction data. */
15061 insn = read_insn (buf);
15062
15063 if (*valP + 0x20000 <= 0x3ffff)
15064 {
15065 insn |= (*valP >> 2) & 0xffff;
15066 write_insn (buf, insn);
15067 }
15068 else if (mips_pic == NO_PIC
15069 && fixP->fx_done
15070 && fixP->fx_frag->fr_address >= text_section->vma
15071 && (fixP->fx_frag->fr_address
15072 < text_section->vma + bfd_get_section_size (text_section))
15073 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15074 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15075 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15076 {
15077 /* The branch offset is too large. If this is an
15078 unconditional branch, and we are not generating PIC code,
15079 we can convert it to an absolute jump instruction. */
15080 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15081 insn = 0x0c000000; /* jal */
15082 else
15083 insn = 0x08000000; /* j */
15084 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15085 fixP->fx_done = 0;
15086 fixP->fx_addsy = section_symbol (text_section);
15087 *valP += md_pcrel_from (fixP);
15088 write_insn (buf, insn);
15089 }
15090 else
15091 {
15092 /* If we got here, we have branch-relaxation disabled,
15093 and there's nothing we can do to fix this instruction
15094 without turning it into a longer sequence. */
15095 as_bad_where (fixP->fx_file, fixP->fx_line,
15096 _("branch out of range"));
15097 }
15098 break;
15099
15100 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15101 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15102 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15103 /* We adjust the offset back to even. */
15104 if ((*valP & 0x1) != 0)
15105 --(*valP);
15106
15107 if (! fixP->fx_done)
15108 break;
15109
15110 /* Should never visit here, because we keep the relocation. */
15111 abort ();
15112 break;
15113
15114 case BFD_RELOC_VTABLE_INHERIT:
15115 fixP->fx_done = 0;
15116 if (fixP->fx_addsy
15117 && !S_IS_DEFINED (fixP->fx_addsy)
15118 && !S_IS_WEAK (fixP->fx_addsy))
15119 S_SET_WEAK (fixP->fx_addsy);
15120 break;
15121
15122 case BFD_RELOC_NONE:
15123 case BFD_RELOC_VTABLE_ENTRY:
15124 fixP->fx_done = 0;
15125 break;
15126
15127 default:
15128 abort ();
15129 }
15130
15131 /* Remember value for tc_gen_reloc. */
15132 fixP->fx_addnumber = *valP;
15133 }
15134
15135 static symbolS *
15136 get_symbol (void)
15137 {
15138 int c;
15139 char *name;
15140 symbolS *p;
15141
15142 c = get_symbol_name (&name);
15143 p = (symbolS *) symbol_find_or_make (name);
15144 (void) restore_line_pointer (c);
15145 return p;
15146 }
15147
15148 /* Align the current frag to a given power of two. If a particular
15149 fill byte should be used, FILL points to an integer that contains
15150 that byte, otherwise FILL is null.
15151
15152 This function used to have the comment:
15153
15154 The MIPS assembler also automatically adjusts any preceding label.
15155
15156 The implementation therefore applied the adjustment to a maximum of
15157 one label. However, other label adjustments are applied to batches
15158 of labels, and adjusting just one caused problems when new labels
15159 were added for the sake of debugging or unwind information.
15160 We therefore adjust all preceding labels (given as LABELS) instead. */
15161
15162 static void
15163 mips_align (int to, int *fill, struct insn_label_list *labels)
15164 {
15165 mips_emit_delays ();
15166 mips_record_compressed_mode ();
15167 if (fill == NULL && subseg_text_p (now_seg))
15168 frag_align_code (to, 0);
15169 else
15170 frag_align (to, fill ? *fill : 0, 0);
15171 record_alignment (now_seg, to);
15172 mips_move_labels (labels, FALSE);
15173 }
15174
15175 /* Align to a given power of two. .align 0 turns off the automatic
15176 alignment used by the data creating pseudo-ops. */
15177
15178 static void
15179 s_align (int x ATTRIBUTE_UNUSED)
15180 {
15181 int temp, fill_value, *fill_ptr;
15182 long max_alignment = 28;
15183
15184 /* o Note that the assembler pulls down any immediately preceding label
15185 to the aligned address.
15186 o It's not documented but auto alignment is reinstated by
15187 a .align pseudo instruction.
15188 o Note also that after auto alignment is turned off the mips assembler
15189 issues an error on attempt to assemble an improperly aligned data item.
15190 We don't. */
15191
15192 temp = get_absolute_expression ();
15193 if (temp > max_alignment)
15194 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15195 else if (temp < 0)
15196 {
15197 as_warn (_("alignment negative, 0 assumed"));
15198 temp = 0;
15199 }
15200 if (*input_line_pointer == ',')
15201 {
15202 ++input_line_pointer;
15203 fill_value = get_absolute_expression ();
15204 fill_ptr = &fill_value;
15205 }
15206 else
15207 fill_ptr = 0;
15208 if (temp)
15209 {
15210 segment_info_type *si = seg_info (now_seg);
15211 struct insn_label_list *l = si->label_list;
15212 /* Auto alignment should be switched on by next section change. */
15213 auto_align = 1;
15214 mips_align (temp, fill_ptr, l);
15215 }
15216 else
15217 {
15218 auto_align = 0;
15219 }
15220
15221 demand_empty_rest_of_line ();
15222 }
15223
15224 static void
15225 s_change_sec (int sec)
15226 {
15227 segT seg;
15228
15229 /* The ELF backend needs to know that we are changing sections, so
15230 that .previous works correctly. We could do something like check
15231 for an obj_section_change_hook macro, but that might be confusing
15232 as it would not be appropriate to use it in the section changing
15233 functions in read.c, since obj-elf.c intercepts those. FIXME:
15234 This should be cleaner, somehow. */
15235 obj_elf_section_change_hook ();
15236
15237 mips_emit_delays ();
15238
15239 switch (sec)
15240 {
15241 case 't':
15242 s_text (0);
15243 break;
15244 case 'd':
15245 s_data (0);
15246 break;
15247 case 'b':
15248 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15249 demand_empty_rest_of_line ();
15250 break;
15251
15252 case 'r':
15253 seg = subseg_new (RDATA_SECTION_NAME,
15254 (subsegT) get_absolute_expression ());
15255 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15256 | SEC_READONLY | SEC_RELOC
15257 | SEC_DATA));
15258 if (strncmp (TARGET_OS, "elf", 3) != 0)
15259 record_alignment (seg, 4);
15260 demand_empty_rest_of_line ();
15261 break;
15262
15263 case 's':
15264 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15265 bfd_set_section_flags (stdoutput, seg,
15266 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15267 if (strncmp (TARGET_OS, "elf", 3) != 0)
15268 record_alignment (seg, 4);
15269 demand_empty_rest_of_line ();
15270 break;
15271
15272 case 'B':
15273 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15274 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15275 if (strncmp (TARGET_OS, "elf", 3) != 0)
15276 record_alignment (seg, 4);
15277 demand_empty_rest_of_line ();
15278 break;
15279 }
15280
15281 auto_align = 1;
15282 }
15283
15284 void
15285 s_change_section (int ignore ATTRIBUTE_UNUSED)
15286 {
15287 char *saved_ilp;
15288 char *section_name;
15289 char c, endc;
15290 char next_c = 0;
15291 int section_type;
15292 int section_flag;
15293 int section_entry_size;
15294 int section_alignment;
15295
15296 saved_ilp = input_line_pointer;
15297 endc = get_symbol_name (&section_name);
15298 c = (endc == '"' ? input_line_pointer[1] : endc);
15299 if (c)
15300 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15301
15302 /* Do we have .section Name<,"flags">? */
15303 if (c != ',' || (c == ',' && next_c == '"'))
15304 {
15305 /* Just after name is now '\0'. */
15306 (void) restore_line_pointer (endc);
15307 input_line_pointer = saved_ilp;
15308 obj_elf_section (ignore);
15309 return;
15310 }
15311
15312 section_name = xstrdup (section_name);
15313 c = restore_line_pointer (endc);
15314
15315 input_line_pointer++;
15316
15317 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15318 if (c == ',')
15319 section_type = get_absolute_expression ();
15320 else
15321 section_type = 0;
15322
15323 if (*input_line_pointer++ == ',')
15324 section_flag = get_absolute_expression ();
15325 else
15326 section_flag = 0;
15327
15328 if (*input_line_pointer++ == ',')
15329 section_entry_size = get_absolute_expression ();
15330 else
15331 section_entry_size = 0;
15332
15333 if (*input_line_pointer++ == ',')
15334 section_alignment = get_absolute_expression ();
15335 else
15336 section_alignment = 0;
15337
15338 /* FIXME: really ignore? */
15339 (void) section_alignment;
15340
15341 /* When using the generic form of .section (as implemented by obj-elf.c),
15342 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15343 traditionally had to fall back on the more common @progbits instead.
15344
15345 There's nothing really harmful in this, since bfd will correct
15346 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15347 means that, for backwards compatibility, the special_section entries
15348 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15349
15350 Even so, we shouldn't force users of the MIPS .section syntax to
15351 incorrectly label the sections as SHT_PROGBITS. The best compromise
15352 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15353 generic type-checking code. */
15354 if (section_type == SHT_MIPS_DWARF)
15355 section_type = SHT_PROGBITS;
15356
15357 obj_elf_change_section (section_name, section_type, section_flag,
15358 section_entry_size, 0, 0, 0);
15359
15360 if (now_seg->name != section_name)
15361 free (section_name);
15362 }
15363
15364 void
15365 mips_enable_auto_align (void)
15366 {
15367 auto_align = 1;
15368 }
15369
15370 static void
15371 s_cons (int log_size)
15372 {
15373 segment_info_type *si = seg_info (now_seg);
15374 struct insn_label_list *l = si->label_list;
15375
15376 mips_emit_delays ();
15377 if (log_size > 0 && auto_align)
15378 mips_align (log_size, 0, l);
15379 cons (1 << log_size);
15380 mips_clear_insn_labels ();
15381 }
15382
15383 static void
15384 s_float_cons (int type)
15385 {
15386 segment_info_type *si = seg_info (now_seg);
15387 struct insn_label_list *l = si->label_list;
15388
15389 mips_emit_delays ();
15390
15391 if (auto_align)
15392 {
15393 if (type == 'd')
15394 mips_align (3, 0, l);
15395 else
15396 mips_align (2, 0, l);
15397 }
15398
15399 float_cons (type);
15400 mips_clear_insn_labels ();
15401 }
15402
15403 /* Handle .globl. We need to override it because on Irix 5 you are
15404 permitted to say
15405 .globl foo .text
15406 where foo is an undefined symbol, to mean that foo should be
15407 considered to be the address of a function. */
15408
15409 static void
15410 s_mips_globl (int x ATTRIBUTE_UNUSED)
15411 {
15412 char *name;
15413 int c;
15414 symbolS *symbolP;
15415 flagword flag;
15416
15417 do
15418 {
15419 c = get_symbol_name (&name);
15420 symbolP = symbol_find_or_make (name);
15421 S_SET_EXTERNAL (symbolP);
15422
15423 *input_line_pointer = c;
15424 SKIP_WHITESPACE_AFTER_NAME ();
15425
15426 /* On Irix 5, every global symbol that is not explicitly labelled as
15427 being a function is apparently labelled as being an object. */
15428 flag = BSF_OBJECT;
15429
15430 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15431 && (*input_line_pointer != ','))
15432 {
15433 char *secname;
15434 asection *sec;
15435
15436 c = get_symbol_name (&secname);
15437 sec = bfd_get_section_by_name (stdoutput, secname);
15438 if (sec == NULL)
15439 as_bad (_("%s: no such section"), secname);
15440 (void) restore_line_pointer (c);
15441
15442 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15443 flag = BSF_FUNCTION;
15444 }
15445
15446 symbol_get_bfdsym (symbolP)->flags |= flag;
15447
15448 c = *input_line_pointer;
15449 if (c == ',')
15450 {
15451 input_line_pointer++;
15452 SKIP_WHITESPACE ();
15453 if (is_end_of_line[(unsigned char) *input_line_pointer])
15454 c = '\n';
15455 }
15456 }
15457 while (c == ',');
15458
15459 demand_empty_rest_of_line ();
15460 }
15461
15462 static void
15463 s_option (int x ATTRIBUTE_UNUSED)
15464 {
15465 char *opt;
15466 char c;
15467
15468 c = get_symbol_name (&opt);
15469
15470 if (*opt == 'O')
15471 {
15472 /* FIXME: What does this mean? */
15473 }
15474 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
15475 {
15476 int i;
15477
15478 i = atoi (opt + 3);
15479 if (i != 0 && i != 2)
15480 as_bad (_(".option pic%d not supported"), i);
15481 else if (mips_pic == VXWORKS_PIC)
15482 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15483 else if (i == 0)
15484 mips_pic = NO_PIC;
15485 else if (i == 2)
15486 {
15487 mips_pic = SVR4_PIC;
15488 mips_abicalls = TRUE;
15489 }
15490
15491 if (mips_pic == SVR4_PIC)
15492 {
15493 if (g_switch_seen && g_switch_value != 0)
15494 as_warn (_("-G may not be used with SVR4 PIC code"));
15495 g_switch_value = 0;
15496 bfd_set_gp_size (stdoutput, 0);
15497 }
15498 }
15499 else
15500 as_warn (_("unrecognized option \"%s\""), opt);
15501
15502 (void) restore_line_pointer (c);
15503 demand_empty_rest_of_line ();
15504 }
15505
15506 /* This structure is used to hold a stack of .set values. */
15507
15508 struct mips_option_stack
15509 {
15510 struct mips_option_stack *next;
15511 struct mips_set_options options;
15512 };
15513
15514 static struct mips_option_stack *mips_opts_stack;
15515
15516 static bfd_boolean
15517 parse_code_option (char * name)
15518 {
15519 const struct mips_ase *ase;
15520 if (strncmp (name, "at=", 3) == 0)
15521 {
15522 char *s = name + 3;
15523
15524 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15525 as_bad (_("unrecognized register name `%s'"), s);
15526 }
15527 else if (strcmp (name, "at") == 0)
15528 mips_opts.at = ATREG;
15529 else if (strcmp (name, "noat") == 0)
15530 mips_opts.at = ZERO;
15531 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15532 mips_opts.nomove = 0;
15533 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15534 mips_opts.nomove = 1;
15535 else if (strcmp (name, "bopt") == 0)
15536 mips_opts.nobopt = 0;
15537 else if (strcmp (name, "nobopt") == 0)
15538 mips_opts.nobopt = 1;
15539 else if (strcmp (name, "gp=32") == 0)
15540 mips_opts.gp = 32;
15541 else if (strcmp (name, "gp=64") == 0)
15542 mips_opts.gp = 64;
15543 else if (strcmp (name, "fp=32") == 0)
15544 mips_opts.fp = 32;
15545 else if (strcmp (name, "fp=xx") == 0)
15546 mips_opts.fp = 0;
15547 else if (strcmp (name, "fp=64") == 0)
15548 mips_opts.fp = 64;
15549 else if (strcmp (name, "softfloat") == 0)
15550 mips_opts.soft_float = 1;
15551 else if (strcmp (name, "hardfloat") == 0)
15552 mips_opts.soft_float = 0;
15553 else if (strcmp (name, "singlefloat") == 0)
15554 mips_opts.single_float = 1;
15555 else if (strcmp (name, "doublefloat") == 0)
15556 mips_opts.single_float = 0;
15557 else if (strcmp (name, "nooddspreg") == 0)
15558 mips_opts.oddspreg = 0;
15559 else if (strcmp (name, "oddspreg") == 0)
15560 mips_opts.oddspreg = 1;
15561 else if (strcmp (name, "mips16") == 0
15562 || strcmp (name, "MIPS-16") == 0)
15563 mips_opts.mips16 = 1;
15564 else if (strcmp (name, "nomips16") == 0
15565 || strcmp (name, "noMIPS-16") == 0)
15566 mips_opts.mips16 = 0;
15567 else if (strcmp (name, "micromips") == 0)
15568 mips_opts.micromips = 1;
15569 else if (strcmp (name, "nomicromips") == 0)
15570 mips_opts.micromips = 0;
15571 else if (name[0] == 'n'
15572 && name[1] == 'o'
15573 && (ase = mips_lookup_ase (name + 2)))
15574 mips_set_ase (ase, &mips_opts, FALSE);
15575 else if ((ase = mips_lookup_ase (name)))
15576 mips_set_ase (ase, &mips_opts, TRUE);
15577 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
15578 {
15579 /* Permit the user to change the ISA and architecture on the fly.
15580 Needless to say, misuse can cause serious problems. */
15581 if (strncmp (name, "arch=", 5) == 0)
15582 {
15583 const struct mips_cpu_info *p;
15584
15585 p = mips_parse_cpu ("internal use", name + 5);
15586 if (!p)
15587 as_bad (_("unknown architecture %s"), name + 5);
15588 else
15589 {
15590 mips_opts.arch = p->cpu;
15591 mips_opts.isa = p->isa;
15592 }
15593 }
15594 else if (strncmp (name, "mips", 4) == 0)
15595 {
15596 const struct mips_cpu_info *p;
15597
15598 p = mips_parse_cpu ("internal use", name);
15599 if (!p)
15600 as_bad (_("unknown ISA level %s"), name + 4);
15601 else
15602 {
15603 mips_opts.arch = p->cpu;
15604 mips_opts.isa = p->isa;
15605 }
15606 }
15607 else
15608 as_bad (_("unknown ISA or architecture %s"), name);
15609 }
15610 else if (strcmp (name, "autoextend") == 0)
15611 mips_opts.noautoextend = 0;
15612 else if (strcmp (name, "noautoextend") == 0)
15613 mips_opts.noautoextend = 1;
15614 else if (strcmp (name, "insn32") == 0)
15615 mips_opts.insn32 = TRUE;
15616 else if (strcmp (name, "noinsn32") == 0)
15617 mips_opts.insn32 = FALSE;
15618 else if (strcmp (name, "sym32") == 0)
15619 mips_opts.sym32 = TRUE;
15620 else if (strcmp (name, "nosym32") == 0)
15621 mips_opts.sym32 = FALSE;
15622 else
15623 return FALSE;
15624 return TRUE;
15625 }
15626
15627 /* Handle the .set pseudo-op. */
15628
15629 static void
15630 s_mipsset (int x ATTRIBUTE_UNUSED)
15631 {
15632 char *name = input_line_pointer, ch;
15633 int prev_isa = mips_opts.isa;
15634
15635 file_mips_check_options ();
15636
15637 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15638 ++input_line_pointer;
15639 ch = *input_line_pointer;
15640 *input_line_pointer = '\0';
15641
15642 if (strchr (name, ','))
15643 {
15644 /* Generic ".set" directive; use the generic handler. */
15645 *input_line_pointer = ch;
15646 input_line_pointer = name;
15647 s_set (0);
15648 return;
15649 }
15650
15651 if (strcmp (name, "reorder") == 0)
15652 {
15653 if (mips_opts.noreorder)
15654 end_noreorder ();
15655 }
15656 else if (strcmp (name, "noreorder") == 0)
15657 {
15658 if (!mips_opts.noreorder)
15659 start_noreorder ();
15660 }
15661 else if (strcmp (name, "macro") == 0)
15662 mips_opts.warn_about_macros = 0;
15663 else if (strcmp (name, "nomacro") == 0)
15664 {
15665 if (mips_opts.noreorder == 0)
15666 as_bad (_("`noreorder' must be set before `nomacro'"));
15667 mips_opts.warn_about_macros = 1;
15668 }
15669 else if (strcmp (name, "gp=default") == 0)
15670 mips_opts.gp = file_mips_opts.gp;
15671 else if (strcmp (name, "fp=default") == 0)
15672 mips_opts.fp = file_mips_opts.fp;
15673 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15674 {
15675 mips_opts.isa = file_mips_opts.isa;
15676 mips_opts.arch = file_mips_opts.arch;
15677 mips_opts.gp = file_mips_opts.gp;
15678 mips_opts.fp = file_mips_opts.fp;
15679 }
15680 else if (strcmp (name, "push") == 0)
15681 {
15682 struct mips_option_stack *s;
15683
15684 s = XNEW (struct mips_option_stack);
15685 s->next = mips_opts_stack;
15686 s->options = mips_opts;
15687 mips_opts_stack = s;
15688 }
15689 else if (strcmp (name, "pop") == 0)
15690 {
15691 struct mips_option_stack *s;
15692
15693 s = mips_opts_stack;
15694 if (s == NULL)
15695 as_bad (_(".set pop with no .set push"));
15696 else
15697 {
15698 /* If we're changing the reorder mode we need to handle
15699 delay slots correctly. */
15700 if (s->options.noreorder && ! mips_opts.noreorder)
15701 start_noreorder ();
15702 else if (! s->options.noreorder && mips_opts.noreorder)
15703 end_noreorder ();
15704
15705 mips_opts = s->options;
15706 mips_opts_stack = s->next;
15707 free (s);
15708 }
15709 }
15710 else if (!parse_code_option (name))
15711 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15712
15713 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15714 registers based on what is supported by the arch/cpu. */
15715 if (mips_opts.isa != prev_isa)
15716 {
15717 switch (mips_opts.isa)
15718 {
15719 case 0:
15720 break;
15721 case ISA_MIPS1:
15722 /* MIPS I cannot support FPXX. */
15723 mips_opts.fp = 32;
15724 /* fall-through. */
15725 case ISA_MIPS2:
15726 case ISA_MIPS32:
15727 case ISA_MIPS32R2:
15728 case ISA_MIPS32R3:
15729 case ISA_MIPS32R5:
15730 mips_opts.gp = 32;
15731 if (mips_opts.fp != 0)
15732 mips_opts.fp = 32;
15733 break;
15734 case ISA_MIPS32R6:
15735 mips_opts.gp = 32;
15736 mips_opts.fp = 64;
15737 break;
15738 case ISA_MIPS3:
15739 case ISA_MIPS4:
15740 case ISA_MIPS5:
15741 case ISA_MIPS64:
15742 case ISA_MIPS64R2:
15743 case ISA_MIPS64R3:
15744 case ISA_MIPS64R5:
15745 case ISA_MIPS64R6:
15746 mips_opts.gp = 64;
15747 if (mips_opts.fp != 0)
15748 {
15749 if (mips_opts.arch == CPU_R5900)
15750 mips_opts.fp = 32;
15751 else
15752 mips_opts.fp = 64;
15753 }
15754 break;
15755 default:
15756 as_bad (_("unknown ISA level %s"), name + 4);
15757 break;
15758 }
15759 }
15760
15761 mips_check_options (&mips_opts, FALSE);
15762
15763 mips_check_isa_supports_ases ();
15764 *input_line_pointer = ch;
15765 demand_empty_rest_of_line ();
15766 }
15767
15768 /* Handle the .module pseudo-op. */
15769
15770 static void
15771 s_module (int ignore ATTRIBUTE_UNUSED)
15772 {
15773 char *name = input_line_pointer, ch;
15774
15775 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15776 ++input_line_pointer;
15777 ch = *input_line_pointer;
15778 *input_line_pointer = '\0';
15779
15780 if (!file_mips_opts_checked)
15781 {
15782 if (!parse_code_option (name))
15783 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15784
15785 /* Update module level settings from mips_opts. */
15786 file_mips_opts = mips_opts;
15787 }
15788 else
15789 as_bad (_(".module is not permitted after generating code"));
15790
15791 *input_line_pointer = ch;
15792 demand_empty_rest_of_line ();
15793 }
15794
15795 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15796 .option pic2. It means to generate SVR4 PIC calls. */
15797
15798 static void
15799 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15800 {
15801 mips_pic = SVR4_PIC;
15802 mips_abicalls = TRUE;
15803
15804 if (g_switch_seen && g_switch_value != 0)
15805 as_warn (_("-G may not be used with SVR4 PIC code"));
15806 g_switch_value = 0;
15807
15808 bfd_set_gp_size (stdoutput, 0);
15809 demand_empty_rest_of_line ();
15810 }
15811
15812 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15813 PIC code. It sets the $gp register for the function based on the
15814 function address, which is in the register named in the argument.
15815 This uses a relocation against _gp_disp, which is handled specially
15816 by the linker. The result is:
15817 lui $gp,%hi(_gp_disp)
15818 addiu $gp,$gp,%lo(_gp_disp)
15819 addu $gp,$gp,.cpload argument
15820 The .cpload argument is normally $25 == $t9.
15821
15822 The -mno-shared option changes this to:
15823 lui $gp,%hi(__gnu_local_gp)
15824 addiu $gp,$gp,%lo(__gnu_local_gp)
15825 and the argument is ignored. This saves an instruction, but the
15826 resulting code is not position independent; it uses an absolute
15827 address for __gnu_local_gp. Thus code assembled with -mno-shared
15828 can go into an ordinary executable, but not into a shared library. */
15829
15830 static void
15831 s_cpload (int ignore ATTRIBUTE_UNUSED)
15832 {
15833 expressionS ex;
15834 int reg;
15835 int in_shared;
15836
15837 file_mips_check_options ();
15838
15839 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15840 .cpload is ignored. */
15841 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15842 {
15843 s_ignore (0);
15844 return;
15845 }
15846
15847 if (mips_opts.mips16)
15848 {
15849 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15850 ignore_rest_of_line ();
15851 return;
15852 }
15853
15854 /* .cpload should be in a .set noreorder section. */
15855 if (mips_opts.noreorder == 0)
15856 as_warn (_(".cpload not in noreorder section"));
15857
15858 reg = tc_get_register (0);
15859
15860 /* If we need to produce a 64-bit address, we are better off using
15861 the default instruction sequence. */
15862 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15863
15864 ex.X_op = O_symbol;
15865 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15866 "__gnu_local_gp");
15867 ex.X_op_symbol = NULL;
15868 ex.X_add_number = 0;
15869
15870 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15871 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15872
15873 mips_mark_labels ();
15874 mips_assembling_insn = TRUE;
15875
15876 macro_start ();
15877 macro_build_lui (&ex, mips_gp_register);
15878 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15879 mips_gp_register, BFD_RELOC_LO16);
15880 if (in_shared)
15881 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15882 mips_gp_register, reg);
15883 macro_end ();
15884
15885 mips_assembling_insn = FALSE;
15886 demand_empty_rest_of_line ();
15887 }
15888
15889 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15890 .cpsetup $reg1, offset|$reg2, label
15891
15892 If offset is given, this results in:
15893 sd $gp, offset($sp)
15894 lui $gp, %hi(%neg(%gp_rel(label)))
15895 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15896 daddu $gp, $gp, $reg1
15897
15898 If $reg2 is given, this results in:
15899 or $reg2, $gp, $0
15900 lui $gp, %hi(%neg(%gp_rel(label)))
15901 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15902 daddu $gp, $gp, $reg1
15903 $reg1 is normally $25 == $t9.
15904
15905 The -mno-shared option replaces the last three instructions with
15906 lui $gp,%hi(_gp)
15907 addiu $gp,$gp,%lo(_gp) */
15908
15909 static void
15910 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
15911 {
15912 expressionS ex_off;
15913 expressionS ex_sym;
15914 int reg1;
15915
15916 file_mips_check_options ();
15917
15918 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
15919 We also need NewABI support. */
15920 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15921 {
15922 s_ignore (0);
15923 return;
15924 }
15925
15926 if (mips_opts.mips16)
15927 {
15928 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15929 ignore_rest_of_line ();
15930 return;
15931 }
15932
15933 reg1 = tc_get_register (0);
15934 SKIP_WHITESPACE ();
15935 if (*input_line_pointer != ',')
15936 {
15937 as_bad (_("missing argument separator ',' for .cpsetup"));
15938 return;
15939 }
15940 else
15941 ++input_line_pointer;
15942 SKIP_WHITESPACE ();
15943 if (*input_line_pointer == '$')
15944 {
15945 mips_cpreturn_register = tc_get_register (0);
15946 mips_cpreturn_offset = -1;
15947 }
15948 else
15949 {
15950 mips_cpreturn_offset = get_absolute_expression ();
15951 mips_cpreturn_register = -1;
15952 }
15953 SKIP_WHITESPACE ();
15954 if (*input_line_pointer != ',')
15955 {
15956 as_bad (_("missing argument separator ',' for .cpsetup"));
15957 return;
15958 }
15959 else
15960 ++input_line_pointer;
15961 SKIP_WHITESPACE ();
15962 expression (&ex_sym);
15963
15964 mips_mark_labels ();
15965 mips_assembling_insn = TRUE;
15966
15967 macro_start ();
15968 if (mips_cpreturn_register == -1)
15969 {
15970 ex_off.X_op = O_constant;
15971 ex_off.X_add_symbol = NULL;
15972 ex_off.X_op_symbol = NULL;
15973 ex_off.X_add_number = mips_cpreturn_offset;
15974
15975 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
15976 BFD_RELOC_LO16, SP);
15977 }
15978 else
15979 move_register (mips_cpreturn_register, mips_gp_register);
15980
15981 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
15982 {
15983 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
15984 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
15985 BFD_RELOC_HI16_S);
15986
15987 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
15988 mips_gp_register, -1, BFD_RELOC_GPREL16,
15989 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
15990
15991 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
15992 mips_gp_register, reg1);
15993 }
15994 else
15995 {
15996 expressionS ex;
15997
15998 ex.X_op = O_symbol;
15999 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16000 ex.X_op_symbol = NULL;
16001 ex.X_add_number = 0;
16002
16003 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16004 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16005
16006 macro_build_lui (&ex, mips_gp_register);
16007 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16008 mips_gp_register, BFD_RELOC_LO16);
16009 }
16010
16011 macro_end ();
16012
16013 mips_assembling_insn = FALSE;
16014 demand_empty_rest_of_line ();
16015 }
16016
16017 static void
16018 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16019 {
16020 file_mips_check_options ();
16021
16022 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16023 .cplocal is ignored. */
16024 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16025 {
16026 s_ignore (0);
16027 return;
16028 }
16029
16030 if (mips_opts.mips16)
16031 {
16032 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16033 ignore_rest_of_line ();
16034 return;
16035 }
16036
16037 mips_gp_register = tc_get_register (0);
16038 demand_empty_rest_of_line ();
16039 }
16040
16041 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16042 offset from $sp. The offset is remembered, and after making a PIC
16043 call $gp is restored from that location. */
16044
16045 static void
16046 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16047 {
16048 expressionS ex;
16049
16050 file_mips_check_options ();
16051
16052 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16053 .cprestore is ignored. */
16054 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16055 {
16056 s_ignore (0);
16057 return;
16058 }
16059
16060 if (mips_opts.mips16)
16061 {
16062 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16063 ignore_rest_of_line ();
16064 return;
16065 }
16066
16067 mips_cprestore_offset = get_absolute_expression ();
16068 mips_cprestore_valid = 1;
16069
16070 ex.X_op = O_constant;
16071 ex.X_add_symbol = NULL;
16072 ex.X_op_symbol = NULL;
16073 ex.X_add_number = mips_cprestore_offset;
16074
16075 mips_mark_labels ();
16076 mips_assembling_insn = TRUE;
16077
16078 macro_start ();
16079 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16080 SP, HAVE_64BIT_ADDRESSES);
16081 macro_end ();
16082
16083 mips_assembling_insn = FALSE;
16084 demand_empty_rest_of_line ();
16085 }
16086
16087 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16088 was given in the preceding .cpsetup, it results in:
16089 ld $gp, offset($sp)
16090
16091 If a register $reg2 was given there, it results in:
16092 or $gp, $reg2, $0 */
16093
16094 static void
16095 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16096 {
16097 expressionS ex;
16098
16099 file_mips_check_options ();
16100
16101 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16102 We also need NewABI support. */
16103 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16104 {
16105 s_ignore (0);
16106 return;
16107 }
16108
16109 if (mips_opts.mips16)
16110 {
16111 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16112 ignore_rest_of_line ();
16113 return;
16114 }
16115
16116 mips_mark_labels ();
16117 mips_assembling_insn = TRUE;
16118
16119 macro_start ();
16120 if (mips_cpreturn_register == -1)
16121 {
16122 ex.X_op = O_constant;
16123 ex.X_add_symbol = NULL;
16124 ex.X_op_symbol = NULL;
16125 ex.X_add_number = mips_cpreturn_offset;
16126
16127 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16128 }
16129 else
16130 move_register (mips_gp_register, mips_cpreturn_register);
16131
16132 macro_end ();
16133
16134 mips_assembling_insn = FALSE;
16135 demand_empty_rest_of_line ();
16136 }
16137
16138 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16139 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16140 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16141 debug information or MIPS16 TLS. */
16142
16143 static void
16144 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16145 bfd_reloc_code_real_type rtype)
16146 {
16147 expressionS ex;
16148 char *p;
16149
16150 expression (&ex);
16151
16152 if (ex.X_op != O_symbol)
16153 {
16154 as_bad (_("unsupported use of %s"), dirstr);
16155 ignore_rest_of_line ();
16156 }
16157
16158 p = frag_more (bytes);
16159 md_number_to_chars (p, 0, bytes);
16160 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16161 demand_empty_rest_of_line ();
16162 mips_clear_insn_labels ();
16163 }
16164
16165 /* Handle .dtprelword. */
16166
16167 static void
16168 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16169 {
16170 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16171 }
16172
16173 /* Handle .dtpreldword. */
16174
16175 static void
16176 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16177 {
16178 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16179 }
16180
16181 /* Handle .tprelword. */
16182
16183 static void
16184 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16185 {
16186 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16187 }
16188
16189 /* Handle .tpreldword. */
16190
16191 static void
16192 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16193 {
16194 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16195 }
16196
16197 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16198 code. It sets the offset to use in gp_rel relocations. */
16199
16200 static void
16201 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16202 {
16203 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16204 We also need NewABI support. */
16205 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16206 {
16207 s_ignore (0);
16208 return;
16209 }
16210
16211 mips_gprel_offset = get_absolute_expression ();
16212
16213 demand_empty_rest_of_line ();
16214 }
16215
16216 /* Handle the .gpword pseudo-op. This is used when generating PIC
16217 code. It generates a 32 bit GP relative reloc. */
16218
16219 static void
16220 s_gpword (int ignore ATTRIBUTE_UNUSED)
16221 {
16222 segment_info_type *si;
16223 struct insn_label_list *l;
16224 expressionS ex;
16225 char *p;
16226
16227 /* When not generating PIC code, this is treated as .word. */
16228 if (mips_pic != SVR4_PIC)
16229 {
16230 s_cons (2);
16231 return;
16232 }
16233
16234 si = seg_info (now_seg);
16235 l = si->label_list;
16236 mips_emit_delays ();
16237 if (auto_align)
16238 mips_align (2, 0, l);
16239
16240 expression (&ex);
16241 mips_clear_insn_labels ();
16242
16243 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16244 {
16245 as_bad (_("unsupported use of .gpword"));
16246 ignore_rest_of_line ();
16247 }
16248
16249 p = frag_more (4);
16250 md_number_to_chars (p, 0, 4);
16251 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16252 BFD_RELOC_GPREL32);
16253
16254 demand_empty_rest_of_line ();
16255 }
16256
16257 static void
16258 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16259 {
16260 segment_info_type *si;
16261 struct insn_label_list *l;
16262 expressionS ex;
16263 char *p;
16264
16265 /* When not generating PIC code, this is treated as .dword. */
16266 if (mips_pic != SVR4_PIC)
16267 {
16268 s_cons (3);
16269 return;
16270 }
16271
16272 si = seg_info (now_seg);
16273 l = si->label_list;
16274 mips_emit_delays ();
16275 if (auto_align)
16276 mips_align (3, 0, l);
16277
16278 expression (&ex);
16279 mips_clear_insn_labels ();
16280
16281 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16282 {
16283 as_bad (_("unsupported use of .gpdword"));
16284 ignore_rest_of_line ();
16285 }
16286
16287 p = frag_more (8);
16288 md_number_to_chars (p, 0, 8);
16289 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16290 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16291
16292 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16293 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16294 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16295
16296 demand_empty_rest_of_line ();
16297 }
16298
16299 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16300 tables. It generates a R_MIPS_EH reloc. */
16301
16302 static void
16303 s_ehword (int ignore ATTRIBUTE_UNUSED)
16304 {
16305 expressionS ex;
16306 char *p;
16307
16308 mips_emit_delays ();
16309
16310 expression (&ex);
16311 mips_clear_insn_labels ();
16312
16313 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16314 {
16315 as_bad (_("unsupported use of .ehword"));
16316 ignore_rest_of_line ();
16317 }
16318
16319 p = frag_more (4);
16320 md_number_to_chars (p, 0, 4);
16321 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16322 BFD_RELOC_32_PCREL);
16323
16324 demand_empty_rest_of_line ();
16325 }
16326
16327 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16328 tables in SVR4 PIC code. */
16329
16330 static void
16331 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16332 {
16333 int reg;
16334
16335 file_mips_check_options ();
16336
16337 /* This is ignored when not generating SVR4 PIC code. */
16338 if (mips_pic != SVR4_PIC)
16339 {
16340 s_ignore (0);
16341 return;
16342 }
16343
16344 mips_mark_labels ();
16345 mips_assembling_insn = TRUE;
16346
16347 /* Add $gp to the register named as an argument. */
16348 macro_start ();
16349 reg = tc_get_register (0);
16350 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16351 macro_end ();
16352
16353 mips_assembling_insn = FALSE;
16354 demand_empty_rest_of_line ();
16355 }
16356
16357 /* Handle the .insn pseudo-op. This marks instruction labels in
16358 mips16/micromips mode. This permits the linker to handle them specially,
16359 such as generating jalx instructions when needed. We also make
16360 them odd for the duration of the assembly, in order to generate the
16361 right sort of code. We will make them even in the adjust_symtab
16362 routine, while leaving them marked. This is convenient for the
16363 debugger and the disassembler. The linker knows to make them odd
16364 again. */
16365
16366 static void
16367 s_insn (int ignore ATTRIBUTE_UNUSED)
16368 {
16369 file_mips_check_options ();
16370 file_ase_mips16 |= mips_opts.mips16;
16371 file_ase_micromips |= mips_opts.micromips;
16372
16373 mips_mark_labels ();
16374
16375 demand_empty_rest_of_line ();
16376 }
16377
16378 /* Handle the .nan pseudo-op. */
16379
16380 static void
16381 s_nan (int ignore ATTRIBUTE_UNUSED)
16382 {
16383 static const char str_legacy[] = "legacy";
16384 static const char str_2008[] = "2008";
16385 size_t i;
16386
16387 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16388
16389 if (i == sizeof (str_2008) - 1
16390 && memcmp (input_line_pointer, str_2008, i) == 0)
16391 mips_nan2008 = 1;
16392 else if (i == sizeof (str_legacy) - 1
16393 && memcmp (input_line_pointer, str_legacy, i) == 0)
16394 {
16395 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16396 mips_nan2008 = 0;
16397 else
16398 as_bad (_("`%s' does not support legacy NaN"),
16399 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16400 }
16401 else
16402 as_bad (_("bad .nan directive"));
16403
16404 input_line_pointer += i;
16405 demand_empty_rest_of_line ();
16406 }
16407
16408 /* Handle a .stab[snd] directive. Ideally these directives would be
16409 implemented in a transparent way, so that removing them would not
16410 have any effect on the generated instructions. However, s_stab
16411 internally changes the section, so in practice we need to decide
16412 now whether the preceding label marks compressed code. We do not
16413 support changing the compression mode of a label after a .stab*
16414 directive, such as in:
16415
16416 foo:
16417 .stabs ...
16418 .set mips16
16419
16420 so the current mode wins. */
16421
16422 static void
16423 s_mips_stab (int type)
16424 {
16425 mips_mark_labels ();
16426 s_stab (type);
16427 }
16428
16429 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16430
16431 static void
16432 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16433 {
16434 char *name;
16435 int c;
16436 symbolS *symbolP;
16437 expressionS exp;
16438
16439 c = get_symbol_name (&name);
16440 symbolP = symbol_find_or_make (name);
16441 S_SET_WEAK (symbolP);
16442 *input_line_pointer = c;
16443
16444 SKIP_WHITESPACE_AFTER_NAME ();
16445
16446 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16447 {
16448 if (S_IS_DEFINED (symbolP))
16449 {
16450 as_bad (_("ignoring attempt to redefine symbol %s"),
16451 S_GET_NAME (symbolP));
16452 ignore_rest_of_line ();
16453 return;
16454 }
16455
16456 if (*input_line_pointer == ',')
16457 {
16458 ++input_line_pointer;
16459 SKIP_WHITESPACE ();
16460 }
16461
16462 expression (&exp);
16463 if (exp.X_op != O_symbol)
16464 {
16465 as_bad (_("bad .weakext directive"));
16466 ignore_rest_of_line ();
16467 return;
16468 }
16469 symbol_set_value_expression (symbolP, &exp);
16470 }
16471
16472 demand_empty_rest_of_line ();
16473 }
16474
16475 /* Parse a register string into a number. Called from the ECOFF code
16476 to parse .frame. The argument is non-zero if this is the frame
16477 register, so that we can record it in mips_frame_reg. */
16478
16479 int
16480 tc_get_register (int frame)
16481 {
16482 unsigned int reg;
16483
16484 SKIP_WHITESPACE ();
16485 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16486 reg = 0;
16487 if (frame)
16488 {
16489 mips_frame_reg = reg != 0 ? reg : SP;
16490 mips_frame_reg_valid = 1;
16491 mips_cprestore_valid = 0;
16492 }
16493 return reg;
16494 }
16495
16496 valueT
16497 md_section_align (asection *seg, valueT addr)
16498 {
16499 int align = bfd_get_section_alignment (stdoutput, seg);
16500
16501 /* We don't need to align ELF sections to the full alignment.
16502 However, Irix 5 may prefer that we align them at least to a 16
16503 byte boundary. We don't bother to align the sections if we
16504 are targeted for an embedded system. */
16505 if (strncmp (TARGET_OS, "elf", 3) == 0)
16506 return addr;
16507 if (align > 4)
16508 align = 4;
16509
16510 return ((addr + (1 << align) - 1) & -(1 << align));
16511 }
16512
16513 /* Utility routine, called from above as well. If called while the
16514 input file is still being read, it's only an approximation. (For
16515 example, a symbol may later become defined which appeared to be
16516 undefined earlier.) */
16517
16518 static int
16519 nopic_need_relax (symbolS *sym, int before_relaxing)
16520 {
16521 if (sym == 0)
16522 return 0;
16523
16524 if (g_switch_value > 0)
16525 {
16526 const char *symname;
16527 int change;
16528
16529 /* Find out whether this symbol can be referenced off the $gp
16530 register. It can be if it is smaller than the -G size or if
16531 it is in the .sdata or .sbss section. Certain symbols can
16532 not be referenced off the $gp, although it appears as though
16533 they can. */
16534 symname = S_GET_NAME (sym);
16535 if (symname != (const char *) NULL
16536 && (strcmp (symname, "eprol") == 0
16537 || strcmp (symname, "etext") == 0
16538 || strcmp (symname, "_gp") == 0
16539 || strcmp (symname, "edata") == 0
16540 || strcmp (symname, "_fbss") == 0
16541 || strcmp (symname, "_fdata") == 0
16542 || strcmp (symname, "_ftext") == 0
16543 || strcmp (symname, "end") == 0
16544 || strcmp (symname, "_gp_disp") == 0))
16545 change = 1;
16546 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16547 && (0
16548 #ifndef NO_ECOFF_DEBUGGING
16549 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16550 && (symbol_get_obj (sym)->ecoff_extern_size
16551 <= g_switch_value))
16552 #endif
16553 /* We must defer this decision until after the whole
16554 file has been read, since there might be a .extern
16555 after the first use of this symbol. */
16556 || (before_relaxing
16557 #ifndef NO_ECOFF_DEBUGGING
16558 && symbol_get_obj (sym)->ecoff_extern_size == 0
16559 #endif
16560 && S_GET_VALUE (sym) == 0)
16561 || (S_GET_VALUE (sym) != 0
16562 && S_GET_VALUE (sym) <= g_switch_value)))
16563 change = 0;
16564 else
16565 {
16566 const char *segname;
16567
16568 segname = segment_name (S_GET_SEGMENT (sym));
16569 gas_assert (strcmp (segname, ".lit8") != 0
16570 && strcmp (segname, ".lit4") != 0);
16571 change = (strcmp (segname, ".sdata") != 0
16572 && strcmp (segname, ".sbss") != 0
16573 && strncmp (segname, ".sdata.", 7) != 0
16574 && strncmp (segname, ".sbss.", 6) != 0
16575 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16576 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16577 }
16578 return change;
16579 }
16580 else
16581 /* We are not optimizing for the $gp register. */
16582 return 1;
16583 }
16584
16585
16586 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16587
16588 static bfd_boolean
16589 pic_need_relax (symbolS *sym, asection *segtype)
16590 {
16591 asection *symsec;
16592
16593 /* Handle the case of a symbol equated to another symbol. */
16594 while (symbol_equated_reloc_p (sym))
16595 {
16596 symbolS *n;
16597
16598 /* It's possible to get a loop here in a badly written program. */
16599 n = symbol_get_value_expression (sym)->X_add_symbol;
16600 if (n == sym)
16601 break;
16602 sym = n;
16603 }
16604
16605 if (symbol_section_p (sym))
16606 return TRUE;
16607
16608 symsec = S_GET_SEGMENT (sym);
16609
16610 /* This must duplicate the test in adjust_reloc_syms. */
16611 return (!bfd_is_und_section (symsec)
16612 && !bfd_is_abs_section (symsec)
16613 && !bfd_is_com_section (symsec)
16614 && !s_is_linkonce (sym, segtype)
16615 /* A global or weak symbol is treated as external. */
16616 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
16617 }
16618
16619
16620 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16621 extended opcode. SEC is the section the frag is in. */
16622
16623 static int
16624 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
16625 {
16626 int type;
16627 const struct mips_int_operand *operand;
16628 offsetT val;
16629 segT symsec;
16630 fragS *sym_frag;
16631
16632 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16633 return 0;
16634 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16635 return 1;
16636
16637 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16638 operand = mips16_immed_operand (type, FALSE);
16639
16640 sym_frag = symbol_get_frag (fragp->fr_symbol);
16641 val = S_GET_VALUE (fragp->fr_symbol);
16642 symsec = S_GET_SEGMENT (fragp->fr_symbol);
16643
16644 if (operand->root.type == OP_PCREL)
16645 {
16646 const struct mips_pcrel_operand *pcrel_op;
16647 addressT addr;
16648 offsetT maxtiny;
16649
16650 /* We won't have the section when we are called from
16651 mips_relax_frag. However, we will always have been called
16652 from md_estimate_size_before_relax first. If this is a
16653 branch to a different section, we mark it as such. If SEC is
16654 NULL, and the frag is not marked, then it must be a branch to
16655 the same section. */
16656 pcrel_op = (const struct mips_pcrel_operand *) operand;
16657 if (sec == NULL)
16658 {
16659 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16660 return 1;
16661 }
16662 else
16663 {
16664 /* Must have been called from md_estimate_size_before_relax. */
16665 if (symsec != sec)
16666 {
16667 fragp->fr_subtype =
16668 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16669
16670 /* FIXME: We should support this, and let the linker
16671 catch branches and loads that are out of range. */
16672 as_bad_where (fragp->fr_file, fragp->fr_line,
16673 _("unsupported PC relative reference to different section"));
16674
16675 return 1;
16676 }
16677 if (fragp != sym_frag && sym_frag->fr_address == 0)
16678 /* Assume non-extended on the first relaxation pass.
16679 The address we have calculated will be bogus if this is
16680 a forward branch to another frag, as the forward frag
16681 will have fr_address == 0. */
16682 return 0;
16683 }
16684
16685 /* In this case, we know for sure that the symbol fragment is in
16686 the same section. If the relax_marker of the symbol fragment
16687 differs from the relax_marker of this fragment, we have not
16688 yet adjusted the symbol fragment fr_address. We want to add
16689 in STRETCH in order to get a better estimate of the address.
16690 This particularly matters because of the shift bits. */
16691 if (stretch != 0
16692 && sym_frag->relax_marker != fragp->relax_marker)
16693 {
16694 fragS *f;
16695
16696 /* Adjust stretch for any alignment frag. Note that if have
16697 been expanding the earlier code, the symbol may be
16698 defined in what appears to be an earlier frag. FIXME:
16699 This doesn't handle the fr_subtype field, which specifies
16700 a maximum number of bytes to skip when doing an
16701 alignment. */
16702 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16703 {
16704 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16705 {
16706 if (stretch < 0)
16707 stretch = - ((- stretch)
16708 & ~ ((1 << (int) f->fr_offset) - 1));
16709 else
16710 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16711 if (stretch == 0)
16712 break;
16713 }
16714 }
16715 if (f != NULL)
16716 val += stretch;
16717 }
16718
16719 addr = fragp->fr_address + fragp->fr_fix;
16720
16721 /* The base address rules are complicated. The base address of
16722 a branch is the following instruction. The base address of a
16723 PC relative load or add is the instruction itself, but if it
16724 is in a delay slot (in which case it can not be extended) use
16725 the address of the instruction whose delay slot it is in. */
16726 if (pcrel_op->include_isa_bit)
16727 {
16728 addr += 2;
16729
16730 /* If we are currently assuming that this frag should be
16731 extended, then, the current address is two bytes
16732 higher. */
16733 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16734 addr += 2;
16735
16736 /* Ignore the low bit in the target, since it will be set
16737 for a text label. */
16738 val &= -2;
16739 }
16740 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16741 addr -= 4;
16742 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16743 addr -= 2;
16744
16745 val -= addr & -(1 << pcrel_op->align_log2);
16746
16747 /* If any of the shifted bits are set, we must use an extended
16748 opcode. If the address depends on the size of this
16749 instruction, this can lead to a loop, so we arrange to always
16750 use an extended opcode. We only check this when we are in
16751 the main relaxation loop, when SEC is NULL. */
16752 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
16753 {
16754 fragp->fr_subtype =
16755 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16756 return 1;
16757 }
16758
16759 /* If we are about to mark a frag as extended because the value
16760 is precisely the next value above maxtiny, then there is a
16761 chance of an infinite loop as in the following code:
16762 la $4,foo
16763 .skip 1020
16764 .align 2
16765 foo:
16766 In this case when the la is extended, foo is 0x3fc bytes
16767 away, so the la can be shrunk, but then foo is 0x400 away, so
16768 the la must be extended. To avoid this loop, we mark the
16769 frag as extended if it was small, and is about to become
16770 extended with the next value above maxtiny. */
16771 maxtiny = mips_int_operand_max (operand);
16772 if (val == maxtiny + (1 << operand->shift)
16773 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16774 && sec == NULL)
16775 {
16776 fragp->fr_subtype =
16777 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16778 return 1;
16779 }
16780 }
16781 else if (symsec != absolute_section && sec != NULL)
16782 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16783
16784 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16785 }
16786
16787 /* Compute the length of a branch sequence, and adjust the
16788 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16789 worst-case length is computed, with UPDATE being used to indicate
16790 whether an unconditional (-1), branch-likely (+1) or regular (0)
16791 branch is to be computed. */
16792 static int
16793 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16794 {
16795 bfd_boolean toofar;
16796 int length;
16797
16798 if (fragp
16799 && S_IS_DEFINED (fragp->fr_symbol)
16800 && !S_IS_WEAK (fragp->fr_symbol)
16801 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16802 {
16803 addressT addr;
16804 offsetT val;
16805
16806 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16807
16808 addr = fragp->fr_address + fragp->fr_fix + 4;
16809
16810 val -= addr;
16811
16812 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16813 }
16814 else
16815 /* If the symbol is not defined or it's in a different segment,
16816 we emit the long sequence. */
16817 toofar = TRUE;
16818
16819 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16820 fragp->fr_subtype
16821 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16822 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16823 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16824 RELAX_BRANCH_LINK (fragp->fr_subtype),
16825 toofar);
16826
16827 length = 4;
16828 if (toofar)
16829 {
16830 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16831 length += 8;
16832
16833 if (mips_pic != NO_PIC)
16834 {
16835 /* Additional space for PIC loading of target address. */
16836 length += 8;
16837 if (mips_opts.isa == ISA_MIPS1)
16838 /* Additional space for $at-stabilizing nop. */
16839 length += 4;
16840 }
16841
16842 /* If branch is conditional. */
16843 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16844 length += 8;
16845 }
16846
16847 return length;
16848 }
16849
16850 /* Compute the length of a branch sequence, and adjust the
16851 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16852 worst-case length is computed, with UPDATE being used to indicate
16853 whether an unconditional (-1), or regular (0) branch is to be
16854 computed. */
16855
16856 static int
16857 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16858 {
16859 bfd_boolean toofar;
16860 int length;
16861
16862 if (fragp
16863 && S_IS_DEFINED (fragp->fr_symbol)
16864 && !S_IS_WEAK (fragp->fr_symbol)
16865 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16866 {
16867 addressT addr;
16868 offsetT val;
16869
16870 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16871 /* Ignore the low bit in the target, since it will be set
16872 for a text label. */
16873 if ((val & 1) != 0)
16874 --val;
16875
16876 addr = fragp->fr_address + fragp->fr_fix + 4;
16877
16878 val -= addr;
16879
16880 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16881 }
16882 else
16883 /* If the symbol is not defined or it's in a different segment,
16884 we emit the long sequence. */
16885 toofar = TRUE;
16886
16887 if (fragp && update
16888 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16889 fragp->fr_subtype = (toofar
16890 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16891 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16892
16893 length = 4;
16894 if (toofar)
16895 {
16896 bfd_boolean compact_known = fragp != NULL;
16897 bfd_boolean compact = FALSE;
16898 bfd_boolean uncond;
16899
16900 if (compact_known)
16901 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16902 if (fragp)
16903 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16904 else
16905 uncond = update < 0;
16906
16907 /* If label is out of range, we turn branch <br>:
16908
16909 <br> label # 4 bytes
16910 0:
16911
16912 into:
16913
16914 j label # 4 bytes
16915 nop # 2 bytes if compact && !PIC
16916 0:
16917 */
16918 if (mips_pic == NO_PIC && (!compact_known || compact))
16919 length += 2;
16920
16921 /* If assembling PIC code, we further turn:
16922
16923 j label # 4 bytes
16924
16925 into:
16926
16927 lw/ld at, %got(label)(gp) # 4 bytes
16928 d/addiu at, %lo(label) # 4 bytes
16929 jr/c at # 2 bytes
16930 */
16931 if (mips_pic != NO_PIC)
16932 length += 6;
16933
16934 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16935
16936 <brneg> 0f # 4 bytes
16937 nop # 2 bytes if !compact
16938 */
16939 if (!uncond)
16940 length += (compact_known && compact) ? 4 : 6;
16941 }
16942
16943 return length;
16944 }
16945
16946 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16947 bit accordingly. */
16948
16949 static int
16950 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16951 {
16952 bfd_boolean toofar;
16953
16954 if (fragp
16955 && S_IS_DEFINED (fragp->fr_symbol)
16956 && !S_IS_WEAK (fragp->fr_symbol)
16957 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16958 {
16959 addressT addr;
16960 offsetT val;
16961 int type;
16962
16963 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16964 /* Ignore the low bit in the target, since it will be set
16965 for a text label. */
16966 if ((val & 1) != 0)
16967 --val;
16968
16969 /* Assume this is a 2-byte branch. */
16970 addr = fragp->fr_address + fragp->fr_fix + 2;
16971
16972 /* We try to avoid the infinite loop by not adding 2 more bytes for
16973 long branches. */
16974
16975 val -= addr;
16976
16977 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16978 if (type == 'D')
16979 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
16980 else if (type == 'E')
16981 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
16982 else
16983 abort ();
16984 }
16985 else
16986 /* If the symbol is not defined or it's in a different segment,
16987 we emit a normal 32-bit branch. */
16988 toofar = TRUE;
16989
16990 if (fragp && update
16991 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16992 fragp->fr_subtype
16993 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
16994 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
16995
16996 if (toofar)
16997 return 4;
16998
16999 return 2;
17000 }
17001
17002 /* Estimate the size of a frag before relaxing. Unless this is the
17003 mips16, we are not really relaxing here, and the final size is
17004 encoded in the subtype information. For the mips16, we have to
17005 decide whether we are using an extended opcode or not. */
17006
17007 int
17008 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17009 {
17010 int change;
17011
17012 if (RELAX_BRANCH_P (fragp->fr_subtype))
17013 {
17014
17015 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17016
17017 return fragp->fr_var;
17018 }
17019
17020 if (RELAX_MIPS16_P (fragp->fr_subtype))
17021 /* We don't want to modify the EXTENDED bit here; it might get us
17022 into infinite loops. We change it only in mips_relax_frag(). */
17023 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17024
17025 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17026 {
17027 int length = 4;
17028
17029 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17030 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17031 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17032 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17033 fragp->fr_var = length;
17034
17035 return length;
17036 }
17037
17038 if (mips_pic == NO_PIC)
17039 change = nopic_need_relax (fragp->fr_symbol, 0);
17040 else if (mips_pic == SVR4_PIC)
17041 change = pic_need_relax (fragp->fr_symbol, segtype);
17042 else if (mips_pic == VXWORKS_PIC)
17043 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17044 change = 0;
17045 else
17046 abort ();
17047
17048 if (change)
17049 {
17050 fragp->fr_subtype |= RELAX_USE_SECOND;
17051 return -RELAX_FIRST (fragp->fr_subtype);
17052 }
17053 else
17054 return -RELAX_SECOND (fragp->fr_subtype);
17055 }
17056
17057 /* This is called to see whether a reloc against a defined symbol
17058 should be converted into a reloc against a section. */
17059
17060 int
17061 mips_fix_adjustable (fixS *fixp)
17062 {
17063 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17064 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17065 return 0;
17066
17067 if (fixp->fx_addsy == NULL)
17068 return 1;
17069
17070 /* Allow relocs used for EH tables. */
17071 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17072 return 1;
17073
17074 /* If symbol SYM is in a mergeable section, relocations of the form
17075 SYM + 0 can usually be made section-relative. The mergeable data
17076 is then identified by the section offset rather than by the symbol.
17077
17078 However, if we're generating REL LO16 relocations, the offset is split
17079 between the LO16 and parterning high part relocation. The linker will
17080 need to recalculate the complete offset in order to correctly identify
17081 the merge data.
17082
17083 The linker has traditionally not looked for the parterning high part
17084 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17085 placed anywhere. Rather than break backwards compatibility by changing
17086 this, it seems better not to force the issue, and instead keep the
17087 original symbol. This will work with either linker behavior. */
17088 if ((lo16_reloc_p (fixp->fx_r_type)
17089 || reloc_needs_lo_p (fixp->fx_r_type))
17090 && HAVE_IN_PLACE_ADDENDS
17091 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17092 return 0;
17093
17094 /* There is no place to store an in-place offset for JALR relocations.
17095 Likewise an in-range offset of limited PC-relative relocations may
17096 overflow the in-place relocatable field if recalculated against the
17097 start address of the symbol's containing section.
17098
17099 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17100 section relative to allow linker relaxations to be performed later on. */
17101 if ((HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (mips_opts.isa))
17102 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17103 || jalr_reloc_p (fixp->fx_r_type)))
17104 return 0;
17105
17106 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17107 to a floating-point stub. The same is true for non-R_MIPS16_26
17108 relocations against MIPS16 functions; in this case, the stub becomes
17109 the function's canonical address.
17110
17111 Floating-point stubs are stored in unique .mips16.call.* or
17112 .mips16.fn.* sections. If a stub T for function F is in section S,
17113 the first relocation in section S must be against F; this is how the
17114 linker determines the target function. All relocations that might
17115 resolve to T must also be against F. We therefore have the following
17116 restrictions, which are given in an intentionally-redundant way:
17117
17118 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17119 symbols.
17120
17121 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17122 if that stub might be used.
17123
17124 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17125 symbols.
17126
17127 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17128 that stub might be used.
17129
17130 There is a further restriction:
17131
17132 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17133 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17134 targets with in-place addends; the relocation field cannot
17135 encode the low bit.
17136
17137 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17138 against a MIPS16 symbol. We deal with (5) by by not reducing any
17139 such relocations on REL targets.
17140
17141 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17142 relocation against some symbol R, no relocation against R may be
17143 reduced. (Note that this deals with (2) as well as (1) because
17144 relocations against global symbols will never be reduced on ELF
17145 targets.) This approach is a little simpler than trying to detect
17146 stub sections, and gives the "all or nothing" per-symbol consistency
17147 that we have for MIPS16 symbols. */
17148 if (fixp->fx_subsy == NULL
17149 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17150 || *symbol_get_tc (fixp->fx_addsy)
17151 || (HAVE_IN_PLACE_ADDENDS
17152 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17153 && jmp_reloc_p (fixp->fx_r_type))))
17154 return 0;
17155
17156 return 1;
17157 }
17158
17159 /* Translate internal representation of relocation info to BFD target
17160 format. */
17161
17162 arelent **
17163 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17164 {
17165 static arelent *retval[4];
17166 arelent *reloc;
17167 bfd_reloc_code_real_type code;
17168
17169 memset (retval, 0, sizeof(retval));
17170 reloc = retval[0] = XCNEW (arelent);
17171 reloc->sym_ptr_ptr = XNEW (asymbol *);
17172 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17173 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17174
17175 if (fixp->fx_pcrel)
17176 {
17177 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17178 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17179 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17180 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17181 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17182 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17183 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17184 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17185 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17186 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17187 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17188
17189 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17190 Relocations want only the symbol offset. */
17191 reloc->addend = fixp->fx_addnumber + reloc->address;
17192 }
17193 else
17194 reloc->addend = fixp->fx_addnumber;
17195
17196 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17197 entry to be used in the relocation's section offset. */
17198 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17199 {
17200 reloc->address = reloc->addend;
17201 reloc->addend = 0;
17202 }
17203
17204 code = fixp->fx_r_type;
17205
17206 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17207 if (reloc->howto == NULL)
17208 {
17209 as_bad_where (fixp->fx_file, fixp->fx_line,
17210 _("cannot represent %s relocation in this object file"
17211 " format"),
17212 bfd_get_reloc_code_name (code));
17213 retval[0] = NULL;
17214 }
17215
17216 return retval;
17217 }
17218
17219 /* Relax a machine dependent frag. This returns the amount by which
17220 the current size of the frag should change. */
17221
17222 int
17223 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17224 {
17225 if (RELAX_BRANCH_P (fragp->fr_subtype))
17226 {
17227 offsetT old_var = fragp->fr_var;
17228
17229 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17230
17231 return fragp->fr_var - old_var;
17232 }
17233
17234 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17235 {
17236 offsetT old_var = fragp->fr_var;
17237 offsetT new_var = 4;
17238
17239 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17240 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17241 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17242 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17243 fragp->fr_var = new_var;
17244
17245 return new_var - old_var;
17246 }
17247
17248 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17249 return 0;
17250
17251 if (mips16_extended_frag (fragp, NULL, stretch))
17252 {
17253 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17254 return 0;
17255 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17256 return 2;
17257 }
17258 else
17259 {
17260 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17261 return 0;
17262 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17263 return -2;
17264 }
17265
17266 return 0;
17267 }
17268
17269 /* Convert a machine dependent frag. */
17270
17271 void
17272 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17273 {
17274 if (RELAX_BRANCH_P (fragp->fr_subtype))
17275 {
17276 char *buf;
17277 unsigned long insn;
17278 expressionS exp;
17279 fixS *fixp;
17280
17281 buf = fragp->fr_literal + fragp->fr_fix;
17282 insn = read_insn (buf);
17283
17284 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17285 {
17286 /* We generate a fixup instead of applying it right now
17287 because, if there are linker relaxations, we're going to
17288 need the relocations. */
17289 exp.X_op = O_symbol;
17290 exp.X_add_symbol = fragp->fr_symbol;
17291 exp.X_add_number = fragp->fr_offset;
17292
17293 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17294 BFD_RELOC_16_PCREL_S2);
17295 fixp->fx_file = fragp->fr_file;
17296 fixp->fx_line = fragp->fr_line;
17297
17298 buf = write_insn (buf, insn);
17299 }
17300 else
17301 {
17302 int i;
17303
17304 as_warn_where (fragp->fr_file, fragp->fr_line,
17305 _("relaxed out-of-range branch into a jump"));
17306
17307 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17308 goto uncond;
17309
17310 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17311 {
17312 /* Reverse the branch. */
17313 switch ((insn >> 28) & 0xf)
17314 {
17315 case 4:
17316 if ((insn & 0xff000000) == 0x47000000
17317 || (insn & 0xff600000) == 0x45600000)
17318 {
17319 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17320 reversed by tweaking bit 23. */
17321 insn ^= 0x00800000;
17322 }
17323 else
17324 {
17325 /* bc[0-3][tf]l? instructions can have the condition
17326 reversed by tweaking a single TF bit, and their
17327 opcodes all have 0x4???????. */
17328 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17329 insn ^= 0x00010000;
17330 }
17331 break;
17332
17333 case 0:
17334 /* bltz 0x04000000 bgez 0x04010000
17335 bltzal 0x04100000 bgezal 0x04110000 */
17336 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17337 insn ^= 0x00010000;
17338 break;
17339
17340 case 1:
17341 /* beq 0x10000000 bne 0x14000000
17342 blez 0x18000000 bgtz 0x1c000000 */
17343 insn ^= 0x04000000;
17344 break;
17345
17346 default:
17347 abort ();
17348 }
17349 }
17350
17351 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17352 {
17353 /* Clear the and-link bit. */
17354 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17355
17356 /* bltzal 0x04100000 bgezal 0x04110000
17357 bltzall 0x04120000 bgezall 0x04130000 */
17358 insn &= ~0x00100000;
17359 }
17360
17361 /* Branch over the branch (if the branch was likely) or the
17362 full jump (not likely case). Compute the offset from the
17363 current instruction to branch to. */
17364 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17365 i = 16;
17366 else
17367 {
17368 /* How many bytes in instructions we've already emitted? */
17369 i = buf - fragp->fr_literal - fragp->fr_fix;
17370 /* How many bytes in instructions from here to the end? */
17371 i = fragp->fr_var - i;
17372 }
17373 /* Convert to instruction count. */
17374 i >>= 2;
17375 /* Branch counts from the next instruction. */
17376 i--;
17377 insn |= i;
17378 /* Branch over the jump. */
17379 buf = write_insn (buf, insn);
17380
17381 /* nop */
17382 buf = write_insn (buf, 0);
17383
17384 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17385 {
17386 /* beql $0, $0, 2f */
17387 insn = 0x50000000;
17388 /* Compute the PC offset from the current instruction to
17389 the end of the variable frag. */
17390 /* How many bytes in instructions we've already emitted? */
17391 i = buf - fragp->fr_literal - fragp->fr_fix;
17392 /* How many bytes in instructions from here to the end? */
17393 i = fragp->fr_var - i;
17394 /* Convert to instruction count. */
17395 i >>= 2;
17396 /* Don't decrement i, because we want to branch over the
17397 delay slot. */
17398 insn |= i;
17399
17400 buf = write_insn (buf, insn);
17401 buf = write_insn (buf, 0);
17402 }
17403
17404 uncond:
17405 if (mips_pic == NO_PIC)
17406 {
17407 /* j or jal. */
17408 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17409 ? 0x0c000000 : 0x08000000);
17410 exp.X_op = O_symbol;
17411 exp.X_add_symbol = fragp->fr_symbol;
17412 exp.X_add_number = fragp->fr_offset;
17413
17414 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17415 FALSE, BFD_RELOC_MIPS_JMP);
17416 fixp->fx_file = fragp->fr_file;
17417 fixp->fx_line = fragp->fr_line;
17418
17419 buf = write_insn (buf, insn);
17420 }
17421 else
17422 {
17423 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17424
17425 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17426 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17427 insn |= at << OP_SH_RT;
17428 exp.X_op = O_symbol;
17429 exp.X_add_symbol = fragp->fr_symbol;
17430 exp.X_add_number = fragp->fr_offset;
17431
17432 if (fragp->fr_offset)
17433 {
17434 exp.X_add_symbol = make_expr_symbol (&exp);
17435 exp.X_add_number = 0;
17436 }
17437
17438 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17439 FALSE, BFD_RELOC_MIPS_GOT16);
17440 fixp->fx_file = fragp->fr_file;
17441 fixp->fx_line = fragp->fr_line;
17442
17443 buf = write_insn (buf, insn);
17444
17445 if (mips_opts.isa == ISA_MIPS1)
17446 /* nop */
17447 buf = write_insn (buf, 0);
17448
17449 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17450 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17451 insn |= at << OP_SH_RS | at << OP_SH_RT;
17452
17453 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17454 FALSE, BFD_RELOC_LO16);
17455 fixp->fx_file = fragp->fr_file;
17456 fixp->fx_line = fragp->fr_line;
17457
17458 buf = write_insn (buf, insn);
17459
17460 /* j(al)r $at. */
17461 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17462 insn = 0x0000f809;
17463 else
17464 insn = 0x00000008;
17465 insn |= at << OP_SH_RS;
17466
17467 buf = write_insn (buf, insn);
17468 }
17469 }
17470
17471 fragp->fr_fix += fragp->fr_var;
17472 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17473 return;
17474 }
17475
17476 /* Relax microMIPS branches. */
17477 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17478 {
17479 char *buf = fragp->fr_literal + fragp->fr_fix;
17480 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17481 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17482 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17483 bfd_boolean short_ds;
17484 unsigned long insn;
17485 expressionS exp;
17486 fixS *fixp;
17487
17488 exp.X_op = O_symbol;
17489 exp.X_add_symbol = fragp->fr_symbol;
17490 exp.X_add_number = fragp->fr_offset;
17491
17492 fragp->fr_fix += fragp->fr_var;
17493
17494 /* Handle 16-bit branches that fit or are forced to fit. */
17495 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17496 {
17497 /* We generate a fixup instead of applying it right now,
17498 because if there is linker relaxation, we're going to
17499 need the relocations. */
17500 if (type == 'D')
17501 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17502 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17503 else if (type == 'E')
17504 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17505 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17506 else
17507 abort ();
17508
17509 fixp->fx_file = fragp->fr_file;
17510 fixp->fx_line = fragp->fr_line;
17511
17512 /* These relocations can have an addend that won't fit in
17513 2 octets. */
17514 fixp->fx_no_overflow = 1;
17515
17516 return;
17517 }
17518
17519 /* Handle 32-bit branches that fit or are forced to fit. */
17520 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17521 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17522 {
17523 /* We generate a fixup instead of applying it right now,
17524 because if there is linker relaxation, we're going to
17525 need the relocations. */
17526 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17527 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17528 fixp->fx_file = fragp->fr_file;
17529 fixp->fx_line = fragp->fr_line;
17530
17531 if (type == 0)
17532 return;
17533 }
17534
17535 /* Relax 16-bit branches to 32-bit branches. */
17536 if (type != 0)
17537 {
17538 insn = read_compressed_insn (buf, 2);
17539
17540 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17541 insn = 0x94000000; /* beq */
17542 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17543 {
17544 unsigned long regno;
17545
17546 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17547 regno = micromips_to_32_reg_d_map [regno];
17548 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17549 insn |= regno << MICROMIPSOP_SH_RS;
17550 }
17551 else
17552 abort ();
17553
17554 /* Nothing else to do, just write it out. */
17555 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17556 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17557 {
17558 buf = write_compressed_insn (buf, insn, 4);
17559 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17560 return;
17561 }
17562 }
17563 else
17564 insn = read_compressed_insn (buf, 4);
17565
17566 /* Relax 32-bit branches to a sequence of instructions. */
17567 as_warn_where (fragp->fr_file, fragp->fr_line,
17568 _("relaxed out-of-range branch into a jump"));
17569
17570 /* Set the short-delay-slot bit. */
17571 short_ds = al && (insn & 0x02000000) != 0;
17572
17573 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17574 {
17575 symbolS *l;
17576
17577 /* Reverse the branch. */
17578 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17579 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17580 insn ^= 0x20000000;
17581 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17582 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17583 || (insn & 0xffe00000) == 0x40800000 /* blez */
17584 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17585 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17586 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17587 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17588 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17589 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17590 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17591 insn ^= 0x00400000;
17592 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17593 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17594 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17595 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17596 insn ^= 0x00200000;
17597 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17598 BNZ.df */
17599 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17600 BNZ.V */
17601 insn ^= 0x00800000;
17602 else
17603 abort ();
17604
17605 if (al)
17606 {
17607 /* Clear the and-link and short-delay-slot bits. */
17608 gas_assert ((insn & 0xfda00000) == 0x40200000);
17609
17610 /* bltzal 0x40200000 bgezal 0x40600000 */
17611 /* bltzals 0x42200000 bgezals 0x42600000 */
17612 insn &= ~0x02200000;
17613 }
17614
17615 /* Make a label at the end for use with the branch. */
17616 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17617 micromips_label_inc ();
17618 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
17619
17620 /* Refer to it. */
17621 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17622 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17623 fixp->fx_file = fragp->fr_file;
17624 fixp->fx_line = fragp->fr_line;
17625
17626 /* Branch over the jump. */
17627 buf = write_compressed_insn (buf, insn, 4);
17628 if (!compact)
17629 /* nop */
17630 buf = write_compressed_insn (buf, 0x0c00, 2);
17631 }
17632
17633 if (mips_pic == NO_PIC)
17634 {
17635 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17636
17637 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17638 insn = al ? jal : 0xd4000000;
17639
17640 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17641 BFD_RELOC_MICROMIPS_JMP);
17642 fixp->fx_file = fragp->fr_file;
17643 fixp->fx_line = fragp->fr_line;
17644
17645 buf = write_compressed_insn (buf, insn, 4);
17646 if (compact)
17647 /* nop */
17648 buf = write_compressed_insn (buf, 0x0c00, 2);
17649 }
17650 else
17651 {
17652 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
17653 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17654 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
17655
17656 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17657 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17658 insn |= at << MICROMIPSOP_SH_RT;
17659
17660 if (exp.X_add_number)
17661 {
17662 exp.X_add_symbol = make_expr_symbol (&exp);
17663 exp.X_add_number = 0;
17664 }
17665
17666 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17667 BFD_RELOC_MICROMIPS_GOT16);
17668 fixp->fx_file = fragp->fr_file;
17669 fixp->fx_line = fragp->fr_line;
17670
17671 buf = write_compressed_insn (buf, insn, 4);
17672
17673 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17674 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17675 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17676
17677 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17678 BFD_RELOC_MICROMIPS_LO16);
17679 fixp->fx_file = fragp->fr_file;
17680 fixp->fx_line = fragp->fr_line;
17681
17682 buf = write_compressed_insn (buf, insn, 4);
17683
17684 /* jr/jrc/jalr/jalrs $at */
17685 insn = al ? jalr : jr;
17686 insn |= at << MICROMIPSOP_SH_MJ;
17687
17688 buf = write_compressed_insn (buf, insn, 2);
17689 }
17690
17691 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17692 return;
17693 }
17694
17695 if (RELAX_MIPS16_P (fragp->fr_subtype))
17696 {
17697 int type;
17698 const struct mips_int_operand *operand;
17699 offsetT val;
17700 char *buf;
17701 unsigned int user_length, length;
17702 unsigned long insn;
17703 bfd_boolean ext;
17704
17705 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17706 operand = mips16_immed_operand (type, FALSE);
17707
17708 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
17709 val = resolve_symbol_value (fragp->fr_symbol);
17710 if (operand->root.type == OP_PCREL)
17711 {
17712 const struct mips_pcrel_operand *pcrel_op;
17713 addressT addr;
17714
17715 pcrel_op = (const struct mips_pcrel_operand *) operand;
17716 addr = fragp->fr_address + fragp->fr_fix;
17717
17718 /* The rules for the base address of a PC relative reloc are
17719 complicated; see mips16_extended_frag. */
17720 if (pcrel_op->include_isa_bit)
17721 {
17722 addr += 2;
17723 if (ext)
17724 addr += 2;
17725 /* Ignore the low bit in the target, since it will be
17726 set for a text label. */
17727 val &= -2;
17728 }
17729 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17730 addr -= 4;
17731 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17732 addr -= 2;
17733
17734 addr &= -(1 << pcrel_op->align_log2);
17735 val -= addr;
17736
17737 /* Make sure the section winds up with the alignment we have
17738 assumed. */
17739 if (operand->shift > 0)
17740 record_alignment (asec, operand->shift);
17741 }
17742
17743 if (ext
17744 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17745 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17746 as_warn_where (fragp->fr_file, fragp->fr_line,
17747 _("extended instruction in delay slot"));
17748
17749 buf = fragp->fr_literal + fragp->fr_fix;
17750
17751 insn = read_compressed_insn (buf, 2);
17752 if (ext)
17753 insn |= MIPS16_EXTEND;
17754
17755 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17756 user_length = 4;
17757 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17758 user_length = 2;
17759 else
17760 user_length = 0;
17761
17762 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17763 BFD_RELOC_UNUSED, val, user_length, &insn);
17764
17765 length = (ext ? 4 : 2);
17766 gas_assert (mips16_opcode_length (insn) == length);
17767 write_compressed_insn (buf, insn, length);
17768 fragp->fr_fix += length;
17769 }
17770 else
17771 {
17772 relax_substateT subtype = fragp->fr_subtype;
17773 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17774 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
17775 int first, second;
17776 fixS *fixp;
17777
17778 first = RELAX_FIRST (subtype);
17779 second = RELAX_SECOND (subtype);
17780 fixp = (fixS *) fragp->fr_opcode;
17781
17782 /* If the delay slot chosen does not match the size of the instruction,
17783 then emit a warning. */
17784 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17785 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17786 {
17787 relax_substateT s;
17788 const char *msg;
17789
17790 s = subtype & (RELAX_DELAY_SLOT_16BIT
17791 | RELAX_DELAY_SLOT_SIZE_FIRST
17792 | RELAX_DELAY_SLOT_SIZE_SECOND);
17793 msg = macro_warning (s);
17794 if (msg != NULL)
17795 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17796 subtype &= ~s;
17797 }
17798
17799 /* Possibly emit a warning if we've chosen the longer option. */
17800 if (use_second == second_longer)
17801 {
17802 relax_substateT s;
17803 const char *msg;
17804
17805 s = (subtype
17806 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17807 msg = macro_warning (s);
17808 if (msg != NULL)
17809 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17810 subtype &= ~s;
17811 }
17812
17813 /* Go through all the fixups for the first sequence. Disable them
17814 (by marking them as done) if we're going to use the second
17815 sequence instead. */
17816 while (fixp
17817 && fixp->fx_frag == fragp
17818 && fixp->fx_where < fragp->fr_fix - second)
17819 {
17820 if (subtype & RELAX_USE_SECOND)
17821 fixp->fx_done = 1;
17822 fixp = fixp->fx_next;
17823 }
17824
17825 /* Go through the fixups for the second sequence. Disable them if
17826 we're going to use the first sequence, otherwise adjust their
17827 addresses to account for the relaxation. */
17828 while (fixp && fixp->fx_frag == fragp)
17829 {
17830 if (subtype & RELAX_USE_SECOND)
17831 fixp->fx_where -= first;
17832 else
17833 fixp->fx_done = 1;
17834 fixp = fixp->fx_next;
17835 }
17836
17837 /* Now modify the frag contents. */
17838 if (subtype & RELAX_USE_SECOND)
17839 {
17840 char *start;
17841
17842 start = fragp->fr_literal + fragp->fr_fix - first - second;
17843 memmove (start, start + first, second);
17844 fragp->fr_fix -= first;
17845 }
17846 else
17847 fragp->fr_fix -= second;
17848 }
17849 }
17850
17851 /* This function is called after the relocs have been generated.
17852 We've been storing mips16 text labels as odd. Here we convert them
17853 back to even for the convenience of the debugger. */
17854
17855 void
17856 mips_frob_file_after_relocs (void)
17857 {
17858 asymbol **syms;
17859 unsigned int count, i;
17860
17861 syms = bfd_get_outsymbols (stdoutput);
17862 count = bfd_get_symcount (stdoutput);
17863 for (i = 0; i < count; i++, syms++)
17864 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17865 && ((*syms)->value & 1) != 0)
17866 {
17867 (*syms)->value &= ~1;
17868 /* If the symbol has an odd size, it was probably computed
17869 incorrectly, so adjust that as well. */
17870 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17871 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17872 }
17873 }
17874
17875 /* This function is called whenever a label is defined, including fake
17876 labels instantiated off the dot special symbol. It is used when
17877 handling branch delays; if a branch has a label, we assume we cannot
17878 move it. This also bumps the value of the symbol by 1 in compressed
17879 code. */
17880
17881 static void
17882 mips_record_label (symbolS *sym)
17883 {
17884 segment_info_type *si = seg_info (now_seg);
17885 struct insn_label_list *l;
17886
17887 if (free_insn_labels == NULL)
17888 l = XNEW (struct insn_label_list);
17889 else
17890 {
17891 l = free_insn_labels;
17892 free_insn_labels = l->next;
17893 }
17894
17895 l->label = sym;
17896 l->next = si->label_list;
17897 si->label_list = l;
17898 }
17899
17900 /* This function is called as tc_frob_label() whenever a label is defined
17901 and adds a DWARF-2 record we only want for true labels. */
17902
17903 void
17904 mips_define_label (symbolS *sym)
17905 {
17906 mips_record_label (sym);
17907 dwarf2_emit_label (sym);
17908 }
17909
17910 /* This function is called by tc_new_dot_label whenever a new dot symbol
17911 is defined. */
17912
17913 void
17914 mips_add_dot_label (symbolS *sym)
17915 {
17916 mips_record_label (sym);
17917 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17918 mips_compressed_mark_label (sym);
17919 }
17920 \f
17921 /* Converting ASE flags from internal to .MIPS.abiflags values. */
17922 static unsigned int
17923 mips_convert_ase_flags (int ase)
17924 {
17925 unsigned int ext_ases = 0;
17926
17927 if (ase & ASE_DSP)
17928 ext_ases |= AFL_ASE_DSP;
17929 if (ase & ASE_DSPR2)
17930 ext_ases |= AFL_ASE_DSPR2;
17931 if (ase & ASE_EVA)
17932 ext_ases |= AFL_ASE_EVA;
17933 if (ase & ASE_MCU)
17934 ext_ases |= AFL_ASE_MCU;
17935 if (ase & ASE_MDMX)
17936 ext_ases |= AFL_ASE_MDMX;
17937 if (ase & ASE_MIPS3D)
17938 ext_ases |= AFL_ASE_MIPS3D;
17939 if (ase & ASE_MT)
17940 ext_ases |= AFL_ASE_MT;
17941 if (ase & ASE_SMARTMIPS)
17942 ext_ases |= AFL_ASE_SMARTMIPS;
17943 if (ase & ASE_VIRT)
17944 ext_ases |= AFL_ASE_VIRT;
17945 if (ase & ASE_MSA)
17946 ext_ases |= AFL_ASE_MSA;
17947 if (ase & ASE_XPA)
17948 ext_ases |= AFL_ASE_XPA;
17949
17950 return ext_ases;
17951 }
17952 /* Some special processing for a MIPS ELF file. */
17953
17954 void
17955 mips_elf_final_processing (void)
17956 {
17957 int fpabi;
17958 Elf_Internal_ABIFlags_v0 flags;
17959
17960 flags.version = 0;
17961 flags.isa_rev = 0;
17962 switch (file_mips_opts.isa)
17963 {
17964 case INSN_ISA1:
17965 flags.isa_level = 1;
17966 break;
17967 case INSN_ISA2:
17968 flags.isa_level = 2;
17969 break;
17970 case INSN_ISA3:
17971 flags.isa_level = 3;
17972 break;
17973 case INSN_ISA4:
17974 flags.isa_level = 4;
17975 break;
17976 case INSN_ISA5:
17977 flags.isa_level = 5;
17978 break;
17979 case INSN_ISA32:
17980 flags.isa_level = 32;
17981 flags.isa_rev = 1;
17982 break;
17983 case INSN_ISA32R2:
17984 flags.isa_level = 32;
17985 flags.isa_rev = 2;
17986 break;
17987 case INSN_ISA32R3:
17988 flags.isa_level = 32;
17989 flags.isa_rev = 3;
17990 break;
17991 case INSN_ISA32R5:
17992 flags.isa_level = 32;
17993 flags.isa_rev = 5;
17994 break;
17995 case INSN_ISA32R6:
17996 flags.isa_level = 32;
17997 flags.isa_rev = 6;
17998 break;
17999 case INSN_ISA64:
18000 flags.isa_level = 64;
18001 flags.isa_rev = 1;
18002 break;
18003 case INSN_ISA64R2:
18004 flags.isa_level = 64;
18005 flags.isa_rev = 2;
18006 break;
18007 case INSN_ISA64R3:
18008 flags.isa_level = 64;
18009 flags.isa_rev = 3;
18010 break;
18011 case INSN_ISA64R5:
18012 flags.isa_level = 64;
18013 flags.isa_rev = 5;
18014 break;
18015 case INSN_ISA64R6:
18016 flags.isa_level = 64;
18017 flags.isa_rev = 6;
18018 break;
18019 }
18020
18021 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18022 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18023 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18024 : (file_mips_opts.fp == 64) ? AFL_REG_64
18025 : AFL_REG_32;
18026 flags.cpr2_size = AFL_REG_NONE;
18027 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18028 Tag_GNU_MIPS_ABI_FP);
18029 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18030 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18031 if (file_ase_mips16)
18032 flags.ases |= AFL_ASE_MIPS16;
18033 if (file_ase_micromips)
18034 flags.ases |= AFL_ASE_MICROMIPS;
18035 flags.flags1 = 0;
18036 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18037 || file_mips_opts.fp == 64)
18038 && file_mips_opts.oddspreg)
18039 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18040 flags.flags2 = 0;
18041
18042 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18043 ((Elf_External_ABIFlags_v0 *)
18044 mips_flags_frag));
18045
18046 /* Write out the register information. */
18047 if (mips_abi != N64_ABI)
18048 {
18049 Elf32_RegInfo s;
18050
18051 s.ri_gprmask = mips_gprmask;
18052 s.ri_cprmask[0] = mips_cprmask[0];
18053 s.ri_cprmask[1] = mips_cprmask[1];
18054 s.ri_cprmask[2] = mips_cprmask[2];
18055 s.ri_cprmask[3] = mips_cprmask[3];
18056 /* The gp_value field is set by the MIPS ELF backend. */
18057
18058 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18059 ((Elf32_External_RegInfo *)
18060 mips_regmask_frag));
18061 }
18062 else
18063 {
18064 Elf64_Internal_RegInfo s;
18065
18066 s.ri_gprmask = mips_gprmask;
18067 s.ri_pad = 0;
18068 s.ri_cprmask[0] = mips_cprmask[0];
18069 s.ri_cprmask[1] = mips_cprmask[1];
18070 s.ri_cprmask[2] = mips_cprmask[2];
18071 s.ri_cprmask[3] = mips_cprmask[3];
18072 /* The gp_value field is set by the MIPS ELF backend. */
18073
18074 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18075 ((Elf64_External_RegInfo *)
18076 mips_regmask_frag));
18077 }
18078
18079 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18080 sort of BFD interface for this. */
18081 if (mips_any_noreorder)
18082 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18083 if (mips_pic != NO_PIC)
18084 {
18085 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18086 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18087 }
18088 if (mips_abicalls)
18089 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18090
18091 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18092 defined at present; this might need to change in future. */
18093 if (file_ase_mips16)
18094 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18095 if (file_ase_micromips)
18096 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18097 if (file_mips_opts.ase & ASE_MDMX)
18098 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18099
18100 /* Set the MIPS ELF ABI flags. */
18101 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18102 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18103 else if (mips_abi == O64_ABI)
18104 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18105 else if (mips_abi == EABI_ABI)
18106 {
18107 if (file_mips_opts.gp == 64)
18108 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18109 else
18110 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18111 }
18112 else if (mips_abi == N32_ABI)
18113 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18114
18115 /* Nothing to do for N64_ABI. */
18116
18117 if (mips_32bitmode)
18118 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18119
18120 if (mips_nan2008 == 1)
18121 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18122
18123 /* 32 bit code with 64 bit FP registers. */
18124 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18125 Tag_GNU_MIPS_ABI_FP);
18126 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18127 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18128 }
18129 \f
18130 typedef struct proc {
18131 symbolS *func_sym;
18132 symbolS *func_end_sym;
18133 unsigned long reg_mask;
18134 unsigned long reg_offset;
18135 unsigned long fpreg_mask;
18136 unsigned long fpreg_offset;
18137 unsigned long frame_offset;
18138 unsigned long frame_reg;
18139 unsigned long pc_reg;
18140 } procS;
18141
18142 static procS cur_proc;
18143 static procS *cur_proc_ptr;
18144 static int numprocs;
18145
18146 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18147 as "2", and a normal nop as "0". */
18148
18149 #define NOP_OPCODE_MIPS 0
18150 #define NOP_OPCODE_MIPS16 1
18151 #define NOP_OPCODE_MICROMIPS 2
18152
18153 char
18154 mips_nop_opcode (void)
18155 {
18156 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18157 return NOP_OPCODE_MICROMIPS;
18158 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18159 return NOP_OPCODE_MIPS16;
18160 else
18161 return NOP_OPCODE_MIPS;
18162 }
18163
18164 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18165 32-bit microMIPS NOPs here (if applicable). */
18166
18167 void
18168 mips_handle_align (fragS *fragp)
18169 {
18170 char nop_opcode;
18171 char *p;
18172 int bytes, size, excess;
18173 valueT opcode;
18174
18175 if (fragp->fr_type != rs_align_code)
18176 return;
18177
18178 p = fragp->fr_literal + fragp->fr_fix;
18179 nop_opcode = *p;
18180 switch (nop_opcode)
18181 {
18182 case NOP_OPCODE_MICROMIPS:
18183 opcode = micromips_nop32_insn.insn_opcode;
18184 size = 4;
18185 break;
18186 case NOP_OPCODE_MIPS16:
18187 opcode = mips16_nop_insn.insn_opcode;
18188 size = 2;
18189 break;
18190 case NOP_OPCODE_MIPS:
18191 default:
18192 opcode = nop_insn.insn_opcode;
18193 size = 4;
18194 break;
18195 }
18196
18197 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18198 excess = bytes % size;
18199
18200 /* Handle the leading part if we're not inserting a whole number of
18201 instructions, and make it the end of the fixed part of the frag.
18202 Try to fit in a short microMIPS NOP if applicable and possible,
18203 and use zeroes otherwise. */
18204 gas_assert (excess < 4);
18205 fragp->fr_fix += excess;
18206 switch (excess)
18207 {
18208 case 3:
18209 *p++ = '\0';
18210 /* Fall through. */
18211 case 2:
18212 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18213 {
18214 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18215 break;
18216 }
18217 *p++ = '\0';
18218 /* Fall through. */
18219 case 1:
18220 *p++ = '\0';
18221 /* Fall through. */
18222 case 0:
18223 break;
18224 }
18225
18226 md_number_to_chars (p, opcode, size);
18227 fragp->fr_var = size;
18228 }
18229
18230 static long
18231 get_number (void)
18232 {
18233 int negative = 0;
18234 long val = 0;
18235
18236 if (*input_line_pointer == '-')
18237 {
18238 ++input_line_pointer;
18239 negative = 1;
18240 }
18241 if (!ISDIGIT (*input_line_pointer))
18242 as_bad (_("expected simple number"));
18243 if (input_line_pointer[0] == '0')
18244 {
18245 if (input_line_pointer[1] == 'x')
18246 {
18247 input_line_pointer += 2;
18248 while (ISXDIGIT (*input_line_pointer))
18249 {
18250 val <<= 4;
18251 val |= hex_value (*input_line_pointer++);
18252 }
18253 return negative ? -val : val;
18254 }
18255 else
18256 {
18257 ++input_line_pointer;
18258 while (ISDIGIT (*input_line_pointer))
18259 {
18260 val <<= 3;
18261 val |= *input_line_pointer++ - '0';
18262 }
18263 return negative ? -val : val;
18264 }
18265 }
18266 if (!ISDIGIT (*input_line_pointer))
18267 {
18268 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18269 *input_line_pointer, *input_line_pointer);
18270 as_warn (_("invalid number"));
18271 return -1;
18272 }
18273 while (ISDIGIT (*input_line_pointer))
18274 {
18275 val *= 10;
18276 val += *input_line_pointer++ - '0';
18277 }
18278 return negative ? -val : val;
18279 }
18280
18281 /* The .file directive; just like the usual .file directive, but there
18282 is an initial number which is the ECOFF file index. In the non-ECOFF
18283 case .file implies DWARF-2. */
18284
18285 static void
18286 s_mips_file (int x ATTRIBUTE_UNUSED)
18287 {
18288 static int first_file_directive = 0;
18289
18290 if (ECOFF_DEBUGGING)
18291 {
18292 get_number ();
18293 s_app_file (0);
18294 }
18295 else
18296 {
18297 char *filename;
18298
18299 filename = dwarf2_directive_file (0);
18300
18301 /* Versions of GCC up to 3.1 start files with a ".file"
18302 directive even for stabs output. Make sure that this
18303 ".file" is handled. Note that you need a version of GCC
18304 after 3.1 in order to support DWARF-2 on MIPS. */
18305 if (filename != NULL && ! first_file_directive)
18306 {
18307 (void) new_logical_line (filename, -1);
18308 s_app_file_string (filename, 0);
18309 }
18310 first_file_directive = 1;
18311 }
18312 }
18313
18314 /* The .loc directive, implying DWARF-2. */
18315
18316 static void
18317 s_mips_loc (int x ATTRIBUTE_UNUSED)
18318 {
18319 if (!ECOFF_DEBUGGING)
18320 dwarf2_directive_loc (0);
18321 }
18322
18323 /* The .end directive. */
18324
18325 static void
18326 s_mips_end (int x ATTRIBUTE_UNUSED)
18327 {
18328 symbolS *p;
18329
18330 /* Following functions need their own .frame and .cprestore directives. */
18331 mips_frame_reg_valid = 0;
18332 mips_cprestore_valid = 0;
18333
18334 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18335 {
18336 p = get_symbol ();
18337 demand_empty_rest_of_line ();
18338 }
18339 else
18340 p = NULL;
18341
18342 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18343 as_warn (_(".end not in text section"));
18344
18345 if (!cur_proc_ptr)
18346 {
18347 as_warn (_(".end directive without a preceding .ent directive"));
18348 demand_empty_rest_of_line ();
18349 return;
18350 }
18351
18352 if (p != NULL)
18353 {
18354 gas_assert (S_GET_NAME (p));
18355 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18356 as_warn (_(".end symbol does not match .ent symbol"));
18357
18358 if (debug_type == DEBUG_STABS)
18359 stabs_generate_asm_endfunc (S_GET_NAME (p),
18360 S_GET_NAME (p));
18361 }
18362 else
18363 as_warn (_(".end directive missing or unknown symbol"));
18364
18365 /* Create an expression to calculate the size of the function. */
18366 if (p && cur_proc_ptr)
18367 {
18368 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18369 expressionS *exp = XNEW (expressionS);
18370
18371 obj->size = exp;
18372 exp->X_op = O_subtract;
18373 exp->X_add_symbol = symbol_temp_new_now ();
18374 exp->X_op_symbol = p;
18375 exp->X_add_number = 0;
18376
18377 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18378 }
18379
18380 /* Generate a .pdr section. */
18381 if (!ECOFF_DEBUGGING && mips_flag_pdr)
18382 {
18383 segT saved_seg = now_seg;
18384 subsegT saved_subseg = now_subseg;
18385 expressionS exp;
18386 char *fragp;
18387
18388 #ifdef md_flush_pending_output
18389 md_flush_pending_output ();
18390 #endif
18391
18392 gas_assert (pdr_seg);
18393 subseg_set (pdr_seg, 0);
18394
18395 /* Write the symbol. */
18396 exp.X_op = O_symbol;
18397 exp.X_add_symbol = p;
18398 exp.X_add_number = 0;
18399 emit_expr (&exp, 4);
18400
18401 fragp = frag_more (7 * 4);
18402
18403 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18404 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18405 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18406 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18407 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18408 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18409 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
18410
18411 subseg_set (saved_seg, saved_subseg);
18412 }
18413
18414 cur_proc_ptr = NULL;
18415 }
18416
18417 /* The .aent and .ent directives. */
18418
18419 static void
18420 s_mips_ent (int aent)
18421 {
18422 symbolS *symbolP;
18423
18424 symbolP = get_symbol ();
18425 if (*input_line_pointer == ',')
18426 ++input_line_pointer;
18427 SKIP_WHITESPACE ();
18428 if (ISDIGIT (*input_line_pointer)
18429 || *input_line_pointer == '-')
18430 get_number ();
18431
18432 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18433 as_warn (_(".ent or .aent not in text section"));
18434
18435 if (!aent && cur_proc_ptr)
18436 as_warn (_("missing .end"));
18437
18438 if (!aent)
18439 {
18440 /* This function needs its own .frame and .cprestore directives. */
18441 mips_frame_reg_valid = 0;
18442 mips_cprestore_valid = 0;
18443
18444 cur_proc_ptr = &cur_proc;
18445 memset (cur_proc_ptr, '\0', sizeof (procS));
18446
18447 cur_proc_ptr->func_sym = symbolP;
18448
18449 ++numprocs;
18450
18451 if (debug_type == DEBUG_STABS)
18452 stabs_generate_asm_func (S_GET_NAME (symbolP),
18453 S_GET_NAME (symbolP));
18454 }
18455
18456 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18457
18458 demand_empty_rest_of_line ();
18459 }
18460
18461 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
18462 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
18463 s_mips_frame is used so that we can set the PDR information correctly.
18464 We can't use the ecoff routines because they make reference to the ecoff
18465 symbol table (in the mdebug section). */
18466
18467 static void
18468 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
18469 {
18470 if (ECOFF_DEBUGGING)
18471 s_ignore (ignore);
18472 else
18473 {
18474 long val;
18475
18476 if (cur_proc_ptr == (procS *) NULL)
18477 {
18478 as_warn (_(".frame outside of .ent"));
18479 demand_empty_rest_of_line ();
18480 return;
18481 }
18482
18483 cur_proc_ptr->frame_reg = tc_get_register (1);
18484
18485 SKIP_WHITESPACE ();
18486 if (*input_line_pointer++ != ','
18487 || get_absolute_expression_and_terminator (&val) != ',')
18488 {
18489 as_warn (_("bad .frame directive"));
18490 --input_line_pointer;
18491 demand_empty_rest_of_line ();
18492 return;
18493 }
18494
18495 cur_proc_ptr->frame_offset = val;
18496 cur_proc_ptr->pc_reg = tc_get_register (0);
18497
18498 demand_empty_rest_of_line ();
18499 }
18500 }
18501
18502 /* The .fmask and .mask directives. If the mdebug section is present
18503 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
18504 embedded targets, s_mips_mask is used so that we can set the PDR
18505 information correctly. We can't use the ecoff routines because they
18506 make reference to the ecoff symbol table (in the mdebug section). */
18507
18508 static void
18509 s_mips_mask (int reg_type)
18510 {
18511 if (ECOFF_DEBUGGING)
18512 s_ignore (reg_type);
18513 else
18514 {
18515 long mask, off;
18516
18517 if (cur_proc_ptr == (procS *) NULL)
18518 {
18519 as_warn (_(".mask/.fmask outside of .ent"));
18520 demand_empty_rest_of_line ();
18521 return;
18522 }
18523
18524 if (get_absolute_expression_and_terminator (&mask) != ',')
18525 {
18526 as_warn (_("bad .mask/.fmask directive"));
18527 --input_line_pointer;
18528 demand_empty_rest_of_line ();
18529 return;
18530 }
18531
18532 off = get_absolute_expression ();
18533
18534 if (reg_type == 'F')
18535 {
18536 cur_proc_ptr->fpreg_mask = mask;
18537 cur_proc_ptr->fpreg_offset = off;
18538 }
18539 else
18540 {
18541 cur_proc_ptr->reg_mask = mask;
18542 cur_proc_ptr->reg_offset = off;
18543 }
18544
18545 demand_empty_rest_of_line ();
18546 }
18547 }
18548
18549 /* A table describing all the processors gas knows about. Names are
18550 matched in the order listed.
18551
18552 To ease comparison, please keep this table in the same order as
18553 gcc's mips_cpu_info_table[]. */
18554 static const struct mips_cpu_info mips_cpu_info_table[] =
18555 {
18556 /* Entries for generic ISAs */
18557 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18558 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18559 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18560 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18561 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18562 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18563 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18564 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18565 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
18566 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
18567 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18568 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
18569 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18570 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
18571 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
18572
18573 /* MIPS I */
18574 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18575 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18576 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
18577
18578 /* MIPS II */
18579 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
18580
18581 /* MIPS III */
18582 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18583 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18584 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18585 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18586 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18587 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18588 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18589 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18590 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18591 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18592 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18593 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18594 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
18595 /* ST Microelectronics Loongson 2E and 2F cores */
18596 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18597 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
18598
18599 /* MIPS IV */
18600 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18601 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18602 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18603 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18604 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18605 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18606 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18607 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18608 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18609 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18610 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18611 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18612 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18613 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18614 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
18615
18616 /* MIPS 32 */
18617 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18618 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18619 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18620 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
18621
18622 /* MIPS 32 Release 2 */
18623 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18624 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18625 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18626 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18627 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18628 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18629 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18630 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18631 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18632 ISA_MIPS32R2, CPU_MIPS32R2 },
18633 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18634 ISA_MIPS32R2, CPU_MIPS32R2 },
18635 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18636 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18637 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18638 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18639 /* Deprecated forms of the above. */
18640 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18641 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18642 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
18643 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18644 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18645 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18646 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18647 /* Deprecated forms of the above. */
18648 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18649 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18650 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
18651 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18652 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18653 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18654 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18655 /* Deprecated forms of the above. */
18656 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18657 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18658 /* 34Kn is a 34kc without DSP. */
18659 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18660 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
18661 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18662 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18663 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18664 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18665 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18666 /* Deprecated forms of the above. */
18667 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18668 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18669 /* 1004K cores are multiprocessor versions of the 34K. */
18670 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18671 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18672 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18673 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18674 /* interaptiv is the new name for 1004kf */
18675 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18676 /* M5100 family */
18677 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18678 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18679 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
18680 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
18681
18682 /* MIPS 64 */
18683 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18684 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18685 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18686 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18687
18688 /* Broadcom SB-1 CPU core */
18689 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18690 /* Broadcom SB-1A CPU core */
18691 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18692
18693 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
18694
18695 /* MIPS 64 Release 2 */
18696
18697 /* Cavium Networks Octeon CPU core */
18698 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18699 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18700 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
18701 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
18702
18703 /* RMI Xlr */
18704 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
18705
18706 /* Broadcom XLP.
18707 XLP is mostly like XLR, with the prominent exception that it is
18708 MIPS64R2 rather than MIPS64. */
18709 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
18710
18711 /* i6400. */
18712 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18713
18714 /* End marker */
18715 { NULL, 0, 0, 0, 0 }
18716 };
18717
18718
18719 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18720 with a final "000" replaced by "k". Ignore case.
18721
18722 Note: this function is shared between GCC and GAS. */
18723
18724 static bfd_boolean
18725 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
18726 {
18727 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18728 given++, canonical++;
18729
18730 return ((*given == 0 && *canonical == 0)
18731 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18732 }
18733
18734
18735 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18736 CPU name. We've traditionally allowed a lot of variation here.
18737
18738 Note: this function is shared between GCC and GAS. */
18739
18740 static bfd_boolean
18741 mips_matching_cpu_name_p (const char *canonical, const char *given)
18742 {
18743 /* First see if the name matches exactly, or with a final "000"
18744 turned into "k". */
18745 if (mips_strict_matching_cpu_name_p (canonical, given))
18746 return TRUE;
18747
18748 /* If not, try comparing based on numerical designation alone.
18749 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18750 if (TOLOWER (*given) == 'r')
18751 given++;
18752 if (!ISDIGIT (*given))
18753 return FALSE;
18754
18755 /* Skip over some well-known prefixes in the canonical name,
18756 hoping to find a number there too. */
18757 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18758 canonical += 2;
18759 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18760 canonical += 2;
18761 else if (TOLOWER (canonical[0]) == 'r')
18762 canonical += 1;
18763
18764 return mips_strict_matching_cpu_name_p (canonical, given);
18765 }
18766
18767
18768 /* Parse an option that takes the name of a processor as its argument.
18769 OPTION is the name of the option and CPU_STRING is the argument.
18770 Return the corresponding processor enumeration if the CPU_STRING is
18771 recognized, otherwise report an error and return null.
18772
18773 A similar function exists in GCC. */
18774
18775 static const struct mips_cpu_info *
18776 mips_parse_cpu (const char *option, const char *cpu_string)
18777 {
18778 const struct mips_cpu_info *p;
18779
18780 /* 'from-abi' selects the most compatible architecture for the given
18781 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18782 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18783 version. Look first at the -mgp options, if given, otherwise base
18784 the choice on MIPS_DEFAULT_64BIT.
18785
18786 Treat NO_ABI like the EABIs. One reason to do this is that the
18787 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18788 architecture. This code picks MIPS I for 'mips' and MIPS III for
18789 'mips64', just as we did in the days before 'from-abi'. */
18790 if (strcasecmp (cpu_string, "from-abi") == 0)
18791 {
18792 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18793 return mips_cpu_info_from_isa (ISA_MIPS1);
18794
18795 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18796 return mips_cpu_info_from_isa (ISA_MIPS3);
18797
18798 if (file_mips_opts.gp >= 0)
18799 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
18800 ? ISA_MIPS1 : ISA_MIPS3);
18801
18802 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18803 ? ISA_MIPS3
18804 : ISA_MIPS1);
18805 }
18806
18807 /* 'default' has traditionally been a no-op. Probably not very useful. */
18808 if (strcasecmp (cpu_string, "default") == 0)
18809 return 0;
18810
18811 for (p = mips_cpu_info_table; p->name != 0; p++)
18812 if (mips_matching_cpu_name_p (p->name, cpu_string))
18813 return p;
18814
18815 as_bad (_("bad value (%s) for %s"), cpu_string, option);
18816 return 0;
18817 }
18818
18819 /* Return the canonical processor information for ISA (a member of the
18820 ISA_MIPS* enumeration). */
18821
18822 static const struct mips_cpu_info *
18823 mips_cpu_info_from_isa (int isa)
18824 {
18825 int i;
18826
18827 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18828 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
18829 && isa == mips_cpu_info_table[i].isa)
18830 return (&mips_cpu_info_table[i]);
18831
18832 return NULL;
18833 }
18834
18835 static const struct mips_cpu_info *
18836 mips_cpu_info_from_arch (int arch)
18837 {
18838 int i;
18839
18840 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18841 if (arch == mips_cpu_info_table[i].cpu)
18842 return (&mips_cpu_info_table[i]);
18843
18844 return NULL;
18845 }
18846 \f
18847 static void
18848 show (FILE *stream, const char *string, int *col_p, int *first_p)
18849 {
18850 if (*first_p)
18851 {
18852 fprintf (stream, "%24s", "");
18853 *col_p = 24;
18854 }
18855 else
18856 {
18857 fprintf (stream, ", ");
18858 *col_p += 2;
18859 }
18860
18861 if (*col_p + strlen (string) > 72)
18862 {
18863 fprintf (stream, "\n%24s", "");
18864 *col_p = 24;
18865 }
18866
18867 fprintf (stream, "%s", string);
18868 *col_p += strlen (string);
18869
18870 *first_p = 0;
18871 }
18872
18873 void
18874 md_show_usage (FILE *stream)
18875 {
18876 int column, first;
18877 size_t i;
18878
18879 fprintf (stream, _("\
18880 MIPS options:\n\
18881 -EB generate big endian output\n\
18882 -EL generate little endian output\n\
18883 -g, -g2 do not remove unneeded NOPs or swap branches\n\
18884 -G NUM allow referencing objects up to NUM bytes\n\
18885 implicitly with the gp register [default 8]\n"));
18886 fprintf (stream, _("\
18887 -mips1 generate MIPS ISA I instructions\n\
18888 -mips2 generate MIPS ISA II instructions\n\
18889 -mips3 generate MIPS ISA III instructions\n\
18890 -mips4 generate MIPS ISA IV instructions\n\
18891 -mips5 generate MIPS ISA V instructions\n\
18892 -mips32 generate MIPS32 ISA instructions\n\
18893 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
18894 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
18895 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
18896 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
18897 -mips64 generate MIPS64 ISA instructions\n\
18898 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
18899 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
18900 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
18901 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
18902 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18903
18904 first = 1;
18905
18906 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18907 show (stream, mips_cpu_info_table[i].name, &column, &first);
18908 show (stream, "from-abi", &column, &first);
18909 fputc ('\n', stream);
18910
18911 fprintf (stream, _("\
18912 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18913 -no-mCPU don't generate code specific to CPU.\n\
18914 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18915
18916 first = 1;
18917
18918 show (stream, "3900", &column, &first);
18919 show (stream, "4010", &column, &first);
18920 show (stream, "4100", &column, &first);
18921 show (stream, "4650", &column, &first);
18922 fputc ('\n', stream);
18923
18924 fprintf (stream, _("\
18925 -mips16 generate mips16 instructions\n\
18926 -no-mips16 do not generate mips16 instructions\n"));
18927 fprintf (stream, _("\
18928 -mmicromips generate microMIPS instructions\n\
18929 -mno-micromips do not generate microMIPS instructions\n"));
18930 fprintf (stream, _("\
18931 -msmartmips generate smartmips instructions\n\
18932 -mno-smartmips do not generate smartmips instructions\n"));
18933 fprintf (stream, _("\
18934 -mdsp generate DSP instructions\n\
18935 -mno-dsp do not generate DSP instructions\n"));
18936 fprintf (stream, _("\
18937 -mdspr2 generate DSP R2 instructions\n\
18938 -mno-dspr2 do not generate DSP R2 instructions\n"));
18939 fprintf (stream, _("\
18940 -mmt generate MT instructions\n\
18941 -mno-mt do not generate MT instructions\n"));
18942 fprintf (stream, _("\
18943 -mmcu generate MCU instructions\n\
18944 -mno-mcu do not generate MCU instructions\n"));
18945 fprintf (stream, _("\
18946 -mmsa generate MSA instructions\n\
18947 -mno-msa do not generate MSA instructions\n"));
18948 fprintf (stream, _("\
18949 -mxpa generate eXtended Physical Address (XPA) instructions\n\
18950 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18951 fprintf (stream, _("\
18952 -mvirt generate Virtualization instructions\n\
18953 -mno-virt do not generate Virtualization instructions\n"));
18954 fprintf (stream, _("\
18955 -minsn32 only generate 32-bit microMIPS instructions\n\
18956 -mno-insn32 generate all microMIPS instructions\n"));
18957 fprintf (stream, _("\
18958 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18959 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
18960 -mfix-vr4120 work around certain VR4120 errata\n\
18961 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
18962 -mfix-24k insert a nop after ERET and DERET instructions\n\
18963 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
18964 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18965 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
18966 -msym32 assume all symbols have 32-bit values\n\
18967 -O0 remove unneeded NOPs, do not swap branches\n\
18968 -O remove unneeded NOPs and swap branches\n\
18969 --trap, --no-break trap exception on div by 0 and mult overflow\n\
18970 --break, --no-trap break exception on div by 0 and mult overflow\n"));
18971 fprintf (stream, _("\
18972 -mhard-float allow floating-point instructions\n\
18973 -msoft-float do not allow floating-point instructions\n\
18974 -msingle-float only allow 32-bit floating-point operations\n\
18975 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
18976 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
18977 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
18978 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
18979
18980 first = 1;
18981
18982 show (stream, "legacy", &column, &first);
18983 show (stream, "2008", &column, &first);
18984
18985 fputc ('\n', stream);
18986
18987 fprintf (stream, _("\
18988 -KPIC, -call_shared generate SVR4 position independent code\n\
18989 -call_nonpic generate non-PIC code that can operate with DSOs\n\
18990 -mvxworks-pic generate VxWorks position independent code\n\
18991 -non_shared do not generate code that can operate with DSOs\n\
18992 -xgot assume a 32 bit GOT\n\
18993 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
18994 -mshared, -mno-shared disable/enable .cpload optimization for\n\
18995 position dependent (non shared) code\n\
18996 -mabi=ABI create ABI conformant object file for:\n"));
18997
18998 first = 1;
18999
19000 show (stream, "32", &column, &first);
19001 show (stream, "o64", &column, &first);
19002 show (stream, "n32", &column, &first);
19003 show (stream, "64", &column, &first);
19004 show (stream, "eabi", &column, &first);
19005
19006 fputc ('\n', stream);
19007
19008 fprintf (stream, _("\
19009 -32 create o32 ABI object file (default)\n\
19010 -n32 create n32 ABI object file\n\
19011 -64 create 64 ABI object file\n"));
19012 }
19013
19014 #ifdef TE_IRIX
19015 enum dwarf2_format
19016 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19017 {
19018 if (HAVE_64BIT_SYMBOLS)
19019 return dwarf2_format_64bit_irix;
19020 else
19021 return dwarf2_format_32bit;
19022 }
19023 #endif
19024
19025 int
19026 mips_dwarf2_addr_size (void)
19027 {
19028 if (HAVE_64BIT_OBJECTS)
19029 return 8;
19030 else
19031 return 4;
19032 }
19033
19034 /* Standard calling conventions leave the CFA at SP on entry. */
19035 void
19036 mips_cfi_frame_initial_instructions (void)
19037 {
19038 cfi_add_CFA_def_cfa_register (SP);
19039 }
19040
19041 int
19042 tc_mips_regname_to_dw2regnum (char *regname)
19043 {
19044 unsigned int regnum = -1;
19045 unsigned int reg;
19046
19047 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19048 regnum = reg;
19049
19050 return regnum;
19051 }
19052
19053 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19054 Given a symbolic attribute NAME, return the proper integer value.
19055 Returns -1 if the attribute is not known. */
19056
19057 int
19058 mips_convert_symbolic_attribute (const char *name)
19059 {
19060 static const struct
19061 {
19062 const char * name;
19063 const int tag;
19064 }
19065 attribute_table[] =
19066 {
19067 #define T(tag) {#tag, tag}
19068 T (Tag_GNU_MIPS_ABI_FP),
19069 T (Tag_GNU_MIPS_ABI_MSA),
19070 #undef T
19071 };
19072 unsigned int i;
19073
19074 if (name == NULL)
19075 return -1;
19076
19077 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19078 if (streq (name, attribute_table[i].name))
19079 return attribute_table[i].tag;
19080
19081 return -1;
19082 }
19083
19084 void
19085 md_mips_end (void)
19086 {
19087 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19088
19089 mips_emit_delays ();
19090 if (cur_proc_ptr)
19091 as_warn (_("missing .end at end of assembly"));
19092
19093 /* Just in case no code was emitted, do the consistency check. */
19094 file_mips_check_options ();
19095
19096 /* Set a floating-point ABI if the user did not. */
19097 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19098 {
19099 /* Perform consistency checks on the floating-point ABI. */
19100 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19101 Tag_GNU_MIPS_ABI_FP);
19102 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19103 check_fpabi (fpabi);
19104 }
19105 else
19106 {
19107 /* Soft-float gets precedence over single-float, the two options should
19108 not be used together so this should not matter. */
19109 if (file_mips_opts.soft_float == 1)
19110 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19111 /* Single-float gets precedence over all double_float cases. */
19112 else if (file_mips_opts.single_float == 1)
19113 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19114 else
19115 {
19116 switch (file_mips_opts.fp)
19117 {
19118 case 32:
19119 if (file_mips_opts.gp == 32)
19120 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19121 break;
19122 case 0:
19123 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19124 break;
19125 case 64:
19126 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19127 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19128 else if (file_mips_opts.gp == 32)
19129 fpabi = Val_GNU_MIPS_ABI_FP_64;
19130 else
19131 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19132 break;
19133 }
19134 }
19135
19136 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19137 Tag_GNU_MIPS_ABI_FP, fpabi);
19138 }
19139 }
19140
19141 /* Returns the relocation type required for a particular CFI encoding. */
19142
19143 bfd_reloc_code_real_type
19144 mips_cfi_reloc_for_encoding (int encoding)
19145 {
19146 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19147 return BFD_RELOC_32_PCREL;
19148 else return BFD_RELOC_NONE;
19149 }