]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-mips.c
MIPS/GAS: Correct branch relaxation for weak symbols
[thirdparty/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946 \f
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018 /* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
1171 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1174 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1185
1186 /* Sign-extend 16-bit value X. */
1187 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
1189 /* Is the given value a sign-extended 32-bit value? */
1190 #define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194 /* Is the given value a sign-extended 16-bit value? */
1195 #define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
1199 /* Is the given value a sign-extended 12-bit value? */
1200 #define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
1203 /* Is the given value a sign-extended 9-bit value? */
1204 #define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
1207 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208 #define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
1212 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
1217 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1218 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1223 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
1227
1228 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229 #define MIPS16_EXTEND (0xf000U << 16)
1230 \f
1231 /* Whether or not we are emitting a branch-likely macro. */
1232 static bfd_boolean emit_branch_likely_macro = FALSE;
1233
1234 /* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237 static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253 } mips_relax;
1254 \f
1255 /* Global variables used to decide whether a macro needs a warning. */
1256 static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289 } mips_macro_warning;
1290 \f
1291 /* Prototypes for static functions. */
1292
1293 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
1295 static void append_insn
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
1298 static void mips_no_prev_insn (void);
1299 static void macro_build (expressionS *, const char *, const char *, ...);
1300 static void mips16_macro_build
1301 (expressionS *, const char *, const char *, va_list *);
1302 static void load_register (int, expressionS *, int);
1303 static void macro_start (void);
1304 static void macro_end (void);
1305 static void macro (struct mips_cl_insn *ip, char *str);
1306 static void mips16_macro (struct mips_cl_insn * ip);
1307 static void mips_ip (char *str, struct mips_cl_insn * ip);
1308 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1309 static void mips16_immed
1310 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
1312 static size_t my_getSmallExpression
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314 static void my_getExpression (expressionS *, char *);
1315 static void s_align (int);
1316 static void s_change_sec (int);
1317 static void s_change_section (int);
1318 static void s_cons (int);
1319 static void s_float_cons (int);
1320 static void s_mips_globl (int);
1321 static void s_option (int);
1322 static void s_mipsset (int);
1323 static void s_abicalls (int);
1324 static void s_cpload (int);
1325 static void s_cpsetup (int);
1326 static void s_cplocal (int);
1327 static void s_cprestore (int);
1328 static void s_cpreturn (int);
1329 static void s_dtprelword (int);
1330 static void s_dtpreldword (int);
1331 static void s_tprelword (int);
1332 static void s_tpreldword (int);
1333 static void s_gpvalue (int);
1334 static void s_gpword (int);
1335 static void s_gpdword (int);
1336 static void s_ehword (int);
1337 static void s_cpadd (int);
1338 static void s_insn (int);
1339 static void s_nan (int);
1340 static void s_module (int);
1341 static void s_mips_ent (int);
1342 static void s_mips_end (int);
1343 static void s_mips_frame (int);
1344 static void s_mips_mask (int reg_type);
1345 static void s_mips_stab (int);
1346 static void s_mips_weakext (int);
1347 static void s_mips_file (int);
1348 static void s_mips_loc (int);
1349 static bfd_boolean pic_need_relax (symbolS *, asection *);
1350 static int relaxed_branch_length (fragS *, asection *, int);
1351 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1353 static void file_mips_check_options (void);
1354
1355 /* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
1358 struct mips_cpu_info
1359 {
1360 const char *name; /* CPU or ISA name. */
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365 };
1366
1367 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1368
1369 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1372 \f
1373 /* Command-line options. */
1374 const char *md_shortopts = "O::g::G:";
1375
1376 enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
1390 OPTION_MIPS32R6,
1391 OPTION_MIPS64R2,
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
1394 OPTION_MIPS64R6,
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
1413 OPTION_EVA,
1414 OPTION_NO_EVA,
1415 OPTION_XPA,
1416 OPTION_NO_XPA,
1417 OPTION_MICROMIPS,
1418 OPTION_NO_MICROMIPS,
1419 OPTION_MCU,
1420 OPTION_NO_MCU,
1421 OPTION_COMPAT_ARCH_BASE,
1422 OPTION_M4650,
1423 OPTION_NO_M4650,
1424 OPTION_M4010,
1425 OPTION_NO_M4010,
1426 OPTION_M4100,
1427 OPTION_NO_M4100,
1428 OPTION_M3900,
1429 OPTION_NO_M3900,
1430 OPTION_M7000_HILO_FIX,
1431 OPTION_MNO_7000_HILO_FIX,
1432 OPTION_FIX_24K,
1433 OPTION_NO_FIX_24K,
1434 OPTION_FIX_RM7000,
1435 OPTION_NO_FIX_RM7000,
1436 OPTION_FIX_LOONGSON2F_JUMP,
1437 OPTION_NO_FIX_LOONGSON2F_JUMP,
1438 OPTION_FIX_LOONGSON2F_NOP,
1439 OPTION_NO_FIX_LOONGSON2F_NOP,
1440 OPTION_FIX_VR4120,
1441 OPTION_NO_FIX_VR4120,
1442 OPTION_FIX_VR4130,
1443 OPTION_NO_FIX_VR4130,
1444 OPTION_FIX_CN63XXP1,
1445 OPTION_NO_FIX_CN63XXP1,
1446 OPTION_TRAP,
1447 OPTION_BREAK,
1448 OPTION_EB,
1449 OPTION_EL,
1450 OPTION_FP32,
1451 OPTION_GP32,
1452 OPTION_CONSTRUCT_FLOATS,
1453 OPTION_NO_CONSTRUCT_FLOATS,
1454 OPTION_FP64,
1455 OPTION_FPXX,
1456 OPTION_GP64,
1457 OPTION_RELAX_BRANCH,
1458 OPTION_NO_RELAX_BRANCH,
1459 OPTION_INSN32,
1460 OPTION_NO_INSN32,
1461 OPTION_MSHARED,
1462 OPTION_MNO_SHARED,
1463 OPTION_MSYM32,
1464 OPTION_MNO_SYM32,
1465 OPTION_SOFT_FLOAT,
1466 OPTION_HARD_FLOAT,
1467 OPTION_SINGLE_FLOAT,
1468 OPTION_DOUBLE_FLOAT,
1469 OPTION_32,
1470 OPTION_CALL_SHARED,
1471 OPTION_CALL_NONPIC,
1472 OPTION_NON_SHARED,
1473 OPTION_XGOT,
1474 OPTION_MABI,
1475 OPTION_N32,
1476 OPTION_64,
1477 OPTION_MDEBUG,
1478 OPTION_NO_MDEBUG,
1479 OPTION_PDR,
1480 OPTION_NO_PDR,
1481 OPTION_MVXWORKS_PIC,
1482 OPTION_NAN,
1483 OPTION_ODD_SPREG,
1484 OPTION_NO_ODD_SPREG,
1485 OPTION_END_OF_ENUM
1486 };
1487
1488 struct option md_longopts[] =
1489 {
1490 /* Options which specify architecture. */
1491 {"march", required_argument, NULL, OPTION_MARCH},
1492 {"mtune", required_argument, NULL, OPTION_MTUNE},
1493 {"mips0", no_argument, NULL, OPTION_MIPS1},
1494 {"mips1", no_argument, NULL, OPTION_MIPS1},
1495 {"mips2", no_argument, NULL, OPTION_MIPS2},
1496 {"mips3", no_argument, NULL, OPTION_MIPS3},
1497 {"mips4", no_argument, NULL, OPTION_MIPS4},
1498 {"mips5", no_argument, NULL, OPTION_MIPS5},
1499 {"mips32", no_argument, NULL, OPTION_MIPS32},
1500 {"mips64", no_argument, NULL, OPTION_MIPS64},
1501 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1502 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1503 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1504 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1505 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1506 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1507 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1508 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1509
1510 /* Options which specify Application Specific Extensions (ASEs). */
1511 {"mips16", no_argument, NULL, OPTION_MIPS16},
1512 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1513 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1514 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1515 {"mdmx", no_argument, NULL, OPTION_MDMX},
1516 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1517 {"mdsp", no_argument, NULL, OPTION_DSP},
1518 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1519 {"mmt", no_argument, NULL, OPTION_MT},
1520 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1521 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1522 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1523 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1524 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1525 {"meva", no_argument, NULL, OPTION_EVA},
1526 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1527 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1528 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1529 {"mmcu", no_argument, NULL, OPTION_MCU},
1530 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1531 {"mvirt", no_argument, NULL, OPTION_VIRT},
1532 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1533 {"mmsa", no_argument, NULL, OPTION_MSA},
1534 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1535 {"mxpa", no_argument, NULL, OPTION_XPA},
1536 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1537
1538 /* Old-style architecture options. Don't add more of these. */
1539 {"m4650", no_argument, NULL, OPTION_M4650},
1540 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1541 {"m4010", no_argument, NULL, OPTION_M4010},
1542 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1543 {"m4100", no_argument, NULL, OPTION_M4100},
1544 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1545 {"m3900", no_argument, NULL, OPTION_M3900},
1546 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1547
1548 /* Options which enable bug fixes. */
1549 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1550 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1551 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1552 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1553 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1554 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1555 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1556 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1557 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1558 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1559 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1560 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1561 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1562 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1563 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1564 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1565 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1566
1567 /* Miscellaneous options. */
1568 {"trap", no_argument, NULL, OPTION_TRAP},
1569 {"no-break", no_argument, NULL, OPTION_TRAP},
1570 {"break", no_argument, NULL, OPTION_BREAK},
1571 {"no-trap", no_argument, NULL, OPTION_BREAK},
1572 {"EB", no_argument, NULL, OPTION_EB},
1573 {"EL", no_argument, NULL, OPTION_EL},
1574 {"mfp32", no_argument, NULL, OPTION_FP32},
1575 {"mgp32", no_argument, NULL, OPTION_GP32},
1576 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1577 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1578 {"mfp64", no_argument, NULL, OPTION_FP64},
1579 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1580 {"mgp64", no_argument, NULL, OPTION_GP64},
1581 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1582 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1583 {"minsn32", no_argument, NULL, OPTION_INSN32},
1584 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1585 {"mshared", no_argument, NULL, OPTION_MSHARED},
1586 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1587 {"msym32", no_argument, NULL, OPTION_MSYM32},
1588 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1589 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1590 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1591 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1592 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1593 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1594 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1595
1596 /* Strictly speaking this next option is ELF specific,
1597 but we allow it for other ports as well in order to
1598 make testing easier. */
1599 {"32", no_argument, NULL, OPTION_32},
1600
1601 /* ELF-specific options. */
1602 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1603 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1604 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1605 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1606 {"xgot", no_argument, NULL, OPTION_XGOT},
1607 {"mabi", required_argument, NULL, OPTION_MABI},
1608 {"n32", no_argument, NULL, OPTION_N32},
1609 {"64", no_argument, NULL, OPTION_64},
1610 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1611 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1612 {"mpdr", no_argument, NULL, OPTION_PDR},
1613 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1614 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1615 {"mnan", required_argument, NULL, OPTION_NAN},
1616
1617 {NULL, no_argument, NULL, 0}
1618 };
1619 size_t md_longopts_size = sizeof (md_longopts);
1620 \f
1621 /* Information about either an Application Specific Extension or an
1622 optional architecture feature that, for simplicity, we treat in the
1623 same way as an ASE. */
1624 struct mips_ase
1625 {
1626 /* The name of the ASE, used in both the command-line and .set options. */
1627 const char *name;
1628
1629 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1630 and 64-bit architectures, the flags here refer to the subset that
1631 is available on both. */
1632 unsigned int flags;
1633
1634 /* The ASE_* flag used for instructions that are available on 64-bit
1635 architectures but that are not included in FLAGS. */
1636 unsigned int flags64;
1637
1638 /* The command-line options that turn the ASE on and off. */
1639 int option_on;
1640 int option_off;
1641
1642 /* The minimum required architecture revisions for MIPS32, MIPS64,
1643 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1644 int mips32_rev;
1645 int mips64_rev;
1646 int micromips32_rev;
1647 int micromips64_rev;
1648
1649 /* The architecture where the ASE was removed or -1 if the extension has not
1650 been removed. */
1651 int rem_rev;
1652 };
1653
1654 /* A table of all supported ASEs. */
1655 static const struct mips_ase mips_ases[] = {
1656 { "dsp", ASE_DSP, ASE_DSP64,
1657 OPTION_DSP, OPTION_NO_DSP,
1658 2, 2, 2, 2,
1659 -1 },
1660
1661 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1662 OPTION_DSPR2, OPTION_NO_DSPR2,
1663 2, 2, 2, 2,
1664 -1 },
1665
1666 { "eva", ASE_EVA, 0,
1667 OPTION_EVA, OPTION_NO_EVA,
1668 2, 2, 2, 2,
1669 -1 },
1670
1671 { "mcu", ASE_MCU, 0,
1672 OPTION_MCU, OPTION_NO_MCU,
1673 2, 2, 2, 2,
1674 -1 },
1675
1676 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1677 { "mdmx", ASE_MDMX, 0,
1678 OPTION_MDMX, OPTION_NO_MDMX,
1679 -1, 1, -1, -1,
1680 6 },
1681
1682 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1683 { "mips3d", ASE_MIPS3D, 0,
1684 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1685 2, 1, -1, -1,
1686 6 },
1687
1688 { "mt", ASE_MT, 0,
1689 OPTION_MT, OPTION_NO_MT,
1690 2, 2, -1, -1,
1691 -1 },
1692
1693 { "smartmips", ASE_SMARTMIPS, 0,
1694 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1695 1, -1, -1, -1,
1696 6 },
1697
1698 { "virt", ASE_VIRT, ASE_VIRT64,
1699 OPTION_VIRT, OPTION_NO_VIRT,
1700 2, 2, 2, 2,
1701 -1 },
1702
1703 { "msa", ASE_MSA, ASE_MSA64,
1704 OPTION_MSA, OPTION_NO_MSA,
1705 2, 2, 2, 2,
1706 -1 },
1707
1708 { "xpa", ASE_XPA, 0,
1709 OPTION_XPA, OPTION_NO_XPA,
1710 2, 2, -1, -1,
1711 -1 },
1712 };
1713
1714 /* The set of ASEs that require -mfp64. */
1715 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1716
1717 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1718 static const unsigned int mips_ase_groups[] = {
1719 ASE_DSP | ASE_DSPR2
1720 };
1721 \f
1722 /* Pseudo-op table.
1723
1724 The following pseudo-ops from the Kane and Heinrich MIPS book
1725 should be defined here, but are currently unsupported: .alias,
1726 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1727
1728 The following pseudo-ops from the Kane and Heinrich MIPS book are
1729 specific to the type of debugging information being generated, and
1730 should be defined by the object format: .aent, .begin, .bend,
1731 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1732 .vreg.
1733
1734 The following pseudo-ops from the Kane and Heinrich MIPS book are
1735 not MIPS CPU specific, but are also not specific to the object file
1736 format. This file is probably the best place to define them, but
1737 they are not currently supported: .asm0, .endr, .lab, .struct. */
1738
1739 static const pseudo_typeS mips_pseudo_table[] =
1740 {
1741 /* MIPS specific pseudo-ops. */
1742 {"option", s_option, 0},
1743 {"set", s_mipsset, 0},
1744 {"rdata", s_change_sec, 'r'},
1745 {"sdata", s_change_sec, 's'},
1746 {"livereg", s_ignore, 0},
1747 {"abicalls", s_abicalls, 0},
1748 {"cpload", s_cpload, 0},
1749 {"cpsetup", s_cpsetup, 0},
1750 {"cplocal", s_cplocal, 0},
1751 {"cprestore", s_cprestore, 0},
1752 {"cpreturn", s_cpreturn, 0},
1753 {"dtprelword", s_dtprelword, 0},
1754 {"dtpreldword", s_dtpreldword, 0},
1755 {"tprelword", s_tprelword, 0},
1756 {"tpreldword", s_tpreldword, 0},
1757 {"gpvalue", s_gpvalue, 0},
1758 {"gpword", s_gpword, 0},
1759 {"gpdword", s_gpdword, 0},
1760 {"ehword", s_ehword, 0},
1761 {"cpadd", s_cpadd, 0},
1762 {"insn", s_insn, 0},
1763 {"nan", s_nan, 0},
1764 {"module", s_module, 0},
1765
1766 /* Relatively generic pseudo-ops that happen to be used on MIPS
1767 chips. */
1768 {"asciiz", stringer, 8 + 1},
1769 {"bss", s_change_sec, 'b'},
1770 {"err", s_err, 0},
1771 {"half", s_cons, 1},
1772 {"dword", s_cons, 3},
1773 {"weakext", s_mips_weakext, 0},
1774 {"origin", s_org, 0},
1775 {"repeat", s_rept, 0},
1776
1777 /* For MIPS this is non-standard, but we define it for consistency. */
1778 {"sbss", s_change_sec, 'B'},
1779
1780 /* These pseudo-ops are defined in read.c, but must be overridden
1781 here for one reason or another. */
1782 {"align", s_align, 0},
1783 {"byte", s_cons, 0},
1784 {"data", s_change_sec, 'd'},
1785 {"double", s_float_cons, 'd'},
1786 {"float", s_float_cons, 'f'},
1787 {"globl", s_mips_globl, 0},
1788 {"global", s_mips_globl, 0},
1789 {"hword", s_cons, 1},
1790 {"int", s_cons, 2},
1791 {"long", s_cons, 2},
1792 {"octa", s_cons, 4},
1793 {"quad", s_cons, 3},
1794 {"section", s_change_section, 0},
1795 {"short", s_cons, 1},
1796 {"single", s_float_cons, 'f'},
1797 {"stabd", s_mips_stab, 'd'},
1798 {"stabn", s_mips_stab, 'n'},
1799 {"stabs", s_mips_stab, 's'},
1800 {"text", s_change_sec, 't'},
1801 {"word", s_cons, 2},
1802
1803 { "extern", ecoff_directive_extern, 0},
1804
1805 { NULL, NULL, 0 },
1806 };
1807
1808 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1809 {
1810 /* These pseudo-ops should be defined by the object file format.
1811 However, a.out doesn't support them, so we have versions here. */
1812 {"aent", s_mips_ent, 1},
1813 {"bgnb", s_ignore, 0},
1814 {"end", s_mips_end, 0},
1815 {"endb", s_ignore, 0},
1816 {"ent", s_mips_ent, 0},
1817 {"file", s_mips_file, 0},
1818 {"fmask", s_mips_mask, 'F'},
1819 {"frame", s_mips_frame, 0},
1820 {"loc", s_mips_loc, 0},
1821 {"mask", s_mips_mask, 'R'},
1822 {"verstamp", s_ignore, 0},
1823 { NULL, NULL, 0 },
1824 };
1825
1826 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1827 purpose of the `.dc.a' internal pseudo-op. */
1828
1829 int
1830 mips_address_bytes (void)
1831 {
1832 file_mips_check_options ();
1833 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1834 }
1835
1836 extern void pop_insert (const pseudo_typeS *);
1837
1838 void
1839 mips_pop_insert (void)
1840 {
1841 pop_insert (mips_pseudo_table);
1842 if (! ECOFF_DEBUGGING)
1843 pop_insert (mips_nonecoff_pseudo_table);
1844 }
1845 \f
1846 /* Symbols labelling the current insn. */
1847
1848 struct insn_label_list
1849 {
1850 struct insn_label_list *next;
1851 symbolS *label;
1852 };
1853
1854 static struct insn_label_list *free_insn_labels;
1855 #define label_list tc_segment_info_data.labels
1856
1857 static void mips_clear_insn_labels (void);
1858 static void mips_mark_labels (void);
1859 static void mips_compressed_mark_labels (void);
1860
1861 static inline void
1862 mips_clear_insn_labels (void)
1863 {
1864 struct insn_label_list **pl;
1865 segment_info_type *si;
1866
1867 if (now_seg)
1868 {
1869 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1870 ;
1871
1872 si = seg_info (now_seg);
1873 *pl = si->label_list;
1874 si->label_list = NULL;
1875 }
1876 }
1877
1878 /* Mark instruction labels in MIPS16/microMIPS mode. */
1879
1880 static inline void
1881 mips_mark_labels (void)
1882 {
1883 if (HAVE_CODE_COMPRESSION)
1884 mips_compressed_mark_labels ();
1885 }
1886 \f
1887 static char *expr_end;
1888
1889 /* An expression in a macro instruction. This is set by mips_ip and
1890 mips16_ip and when populated is always an O_constant. */
1891
1892 static expressionS imm_expr;
1893
1894 /* The relocatable field in an instruction and the relocs associated
1895 with it. These variables are used for instructions like LUI and
1896 JAL as well as true offsets. They are also used for address
1897 operands in macros. */
1898
1899 static expressionS offset_expr;
1900 static bfd_reloc_code_real_type offset_reloc[3]
1901 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1902
1903 /* This is set to the resulting size of the instruction to be produced
1904 by mips16_ip if an explicit extension is used or by mips_ip if an
1905 explicit size is supplied. */
1906
1907 static unsigned int forced_insn_length;
1908
1909 /* True if we are assembling an instruction. All dot symbols defined during
1910 this time should be treated as code labels. */
1911
1912 static bfd_boolean mips_assembling_insn;
1913
1914 /* The pdr segment for per procedure frame/regmask info. Not used for
1915 ECOFF debugging. */
1916
1917 static segT pdr_seg;
1918
1919 /* The default target format to use. */
1920
1921 #if defined (TE_FreeBSD)
1922 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1923 #elif defined (TE_TMIPS)
1924 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1925 #else
1926 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1927 #endif
1928
1929 const char *
1930 mips_target_format (void)
1931 {
1932 switch (OUTPUT_FLAVOR)
1933 {
1934 case bfd_target_elf_flavour:
1935 #ifdef TE_VXWORKS
1936 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1937 return (target_big_endian
1938 ? "elf32-bigmips-vxworks"
1939 : "elf32-littlemips-vxworks");
1940 #endif
1941 return (target_big_endian
1942 ? (HAVE_64BIT_OBJECTS
1943 ? ELF_TARGET ("elf64-", "big")
1944 : (HAVE_NEWABI
1945 ? ELF_TARGET ("elf32-n", "big")
1946 : ELF_TARGET ("elf32-", "big")))
1947 : (HAVE_64BIT_OBJECTS
1948 ? ELF_TARGET ("elf64-", "little")
1949 : (HAVE_NEWABI
1950 ? ELF_TARGET ("elf32-n", "little")
1951 : ELF_TARGET ("elf32-", "little"))));
1952 default:
1953 abort ();
1954 return NULL;
1955 }
1956 }
1957
1958 /* Return the ISA revision that is currently in use, or 0 if we are
1959 generating code for MIPS V or below. */
1960
1961 static int
1962 mips_isa_rev (void)
1963 {
1964 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1965 return 2;
1966
1967 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1968 return 3;
1969
1970 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1971 return 5;
1972
1973 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1974 return 6;
1975
1976 /* microMIPS implies revision 2 or above. */
1977 if (mips_opts.micromips)
1978 return 2;
1979
1980 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1981 return 1;
1982
1983 return 0;
1984 }
1985
1986 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1987
1988 static unsigned int
1989 mips_ase_mask (unsigned int flags)
1990 {
1991 unsigned int i;
1992
1993 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1994 if (flags & mips_ase_groups[i])
1995 flags |= mips_ase_groups[i];
1996 return flags;
1997 }
1998
1999 /* Check whether the current ISA supports ASE. Issue a warning if
2000 appropriate. */
2001
2002 static void
2003 mips_check_isa_supports_ase (const struct mips_ase *ase)
2004 {
2005 const char *base;
2006 int min_rev, size;
2007 static unsigned int warned_isa;
2008 static unsigned int warned_fp32;
2009
2010 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2011 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2012 else
2013 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2014 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2015 && (warned_isa & ase->flags) != ase->flags)
2016 {
2017 warned_isa |= ase->flags;
2018 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2019 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2020 if (min_rev < 0)
2021 as_warn (_("the %d-bit %s architecture does not support the"
2022 " `%s' extension"), size, base, ase->name);
2023 else
2024 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2025 ase->name, base, size, min_rev);
2026 }
2027 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2028 && (warned_isa & ase->flags) != ase->flags)
2029 {
2030 warned_isa |= ase->flags;
2031 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2032 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2033 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2034 ase->name, base, size, ase->rem_rev);
2035 }
2036
2037 if ((ase->flags & FP64_ASES)
2038 && mips_opts.fp != 64
2039 && (warned_fp32 & ase->flags) != ase->flags)
2040 {
2041 warned_fp32 |= ase->flags;
2042 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2043 }
2044 }
2045
2046 /* Check all enabled ASEs to see whether they are supported by the
2047 chosen architecture. */
2048
2049 static void
2050 mips_check_isa_supports_ases (void)
2051 {
2052 unsigned int i, mask;
2053
2054 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2055 {
2056 mask = mips_ase_mask (mips_ases[i].flags);
2057 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2058 mips_check_isa_supports_ase (&mips_ases[i]);
2059 }
2060 }
2061
2062 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2063 that were affected. */
2064
2065 static unsigned int
2066 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2067 bfd_boolean enabled_p)
2068 {
2069 unsigned int mask;
2070
2071 mask = mips_ase_mask (ase->flags);
2072 opts->ase &= ~mask;
2073 if (enabled_p)
2074 opts->ase |= ase->flags;
2075 return mask;
2076 }
2077
2078 /* Return the ASE called NAME, or null if none. */
2079
2080 static const struct mips_ase *
2081 mips_lookup_ase (const char *name)
2082 {
2083 unsigned int i;
2084
2085 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2086 if (strcmp (name, mips_ases[i].name) == 0)
2087 return &mips_ases[i];
2088 return NULL;
2089 }
2090
2091 /* Return the length of a microMIPS instruction in bytes. If bits of
2092 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2093 otherwise it is a 32-bit instruction. */
2094
2095 static inline unsigned int
2096 micromips_insn_length (const struct mips_opcode *mo)
2097 {
2098 return (mo->mask >> 16) == 0 ? 2 : 4;
2099 }
2100
2101 /* Return the length of MIPS16 instruction OPCODE. */
2102
2103 static inline unsigned int
2104 mips16_opcode_length (unsigned long opcode)
2105 {
2106 return (opcode >> 16) == 0 ? 2 : 4;
2107 }
2108
2109 /* Return the length of instruction INSN. */
2110
2111 static inline unsigned int
2112 insn_length (const struct mips_cl_insn *insn)
2113 {
2114 if (mips_opts.micromips)
2115 return micromips_insn_length (insn->insn_mo);
2116 else if (mips_opts.mips16)
2117 return mips16_opcode_length (insn->insn_opcode);
2118 else
2119 return 4;
2120 }
2121
2122 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2123
2124 static void
2125 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2126 {
2127 size_t i;
2128
2129 insn->insn_mo = mo;
2130 insn->insn_opcode = mo->match;
2131 insn->frag = NULL;
2132 insn->where = 0;
2133 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2134 insn->fixp[i] = NULL;
2135 insn->fixed_p = (mips_opts.noreorder > 0);
2136 insn->noreorder_p = (mips_opts.noreorder > 0);
2137 insn->mips16_absolute_jump_p = 0;
2138 insn->complete_p = 0;
2139 insn->cleared_p = 0;
2140 }
2141
2142 /* Get a list of all the operands in INSN. */
2143
2144 static const struct mips_operand_array *
2145 insn_operands (const struct mips_cl_insn *insn)
2146 {
2147 if (insn->insn_mo >= &mips_opcodes[0]
2148 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2149 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2150
2151 if (insn->insn_mo >= &mips16_opcodes[0]
2152 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2153 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2154
2155 if (insn->insn_mo >= &micromips_opcodes[0]
2156 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2157 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2158
2159 abort ();
2160 }
2161
2162 /* Get a description of operand OPNO of INSN. */
2163
2164 static const struct mips_operand *
2165 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2166 {
2167 const struct mips_operand_array *operands;
2168
2169 operands = insn_operands (insn);
2170 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2171 abort ();
2172 return operands->operand[opno];
2173 }
2174
2175 /* Install UVAL as the value of OPERAND in INSN. */
2176
2177 static inline void
2178 insn_insert_operand (struct mips_cl_insn *insn,
2179 const struct mips_operand *operand, unsigned int uval)
2180 {
2181 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2182 }
2183
2184 /* Extract the value of OPERAND from INSN. */
2185
2186 static inline unsigned
2187 insn_extract_operand (const struct mips_cl_insn *insn,
2188 const struct mips_operand *operand)
2189 {
2190 return mips_extract_operand (operand, insn->insn_opcode);
2191 }
2192
2193 /* Record the current MIPS16/microMIPS mode in now_seg. */
2194
2195 static void
2196 mips_record_compressed_mode (void)
2197 {
2198 segment_info_type *si;
2199
2200 si = seg_info (now_seg);
2201 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2202 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2203 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2204 si->tc_segment_info_data.micromips = mips_opts.micromips;
2205 }
2206
2207 /* Read a standard MIPS instruction from BUF. */
2208
2209 static unsigned long
2210 read_insn (char *buf)
2211 {
2212 if (target_big_endian)
2213 return bfd_getb32 ((bfd_byte *) buf);
2214 else
2215 return bfd_getl32 ((bfd_byte *) buf);
2216 }
2217
2218 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2219 the next byte. */
2220
2221 static char *
2222 write_insn (char *buf, unsigned int insn)
2223 {
2224 md_number_to_chars (buf, insn, 4);
2225 return buf + 4;
2226 }
2227
2228 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2229 has length LENGTH. */
2230
2231 static unsigned long
2232 read_compressed_insn (char *buf, unsigned int length)
2233 {
2234 unsigned long insn;
2235 unsigned int i;
2236
2237 insn = 0;
2238 for (i = 0; i < length; i += 2)
2239 {
2240 insn <<= 16;
2241 if (target_big_endian)
2242 insn |= bfd_getb16 ((char *) buf);
2243 else
2244 insn |= bfd_getl16 ((char *) buf);
2245 buf += 2;
2246 }
2247 return insn;
2248 }
2249
2250 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2251 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2252
2253 static char *
2254 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2255 {
2256 unsigned int i;
2257
2258 for (i = 0; i < length; i += 2)
2259 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2260 return buf + length;
2261 }
2262
2263 /* Install INSN at the location specified by its "frag" and "where" fields. */
2264
2265 static void
2266 install_insn (const struct mips_cl_insn *insn)
2267 {
2268 char *f = insn->frag->fr_literal + insn->where;
2269 if (HAVE_CODE_COMPRESSION)
2270 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2271 else
2272 write_insn (f, insn->insn_opcode);
2273 mips_record_compressed_mode ();
2274 }
2275
2276 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2277 and install the opcode in the new location. */
2278
2279 static void
2280 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2281 {
2282 size_t i;
2283
2284 insn->frag = frag;
2285 insn->where = where;
2286 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2287 if (insn->fixp[i] != NULL)
2288 {
2289 insn->fixp[i]->fx_frag = frag;
2290 insn->fixp[i]->fx_where = where;
2291 }
2292 install_insn (insn);
2293 }
2294
2295 /* Add INSN to the end of the output. */
2296
2297 static void
2298 add_fixed_insn (struct mips_cl_insn *insn)
2299 {
2300 char *f = frag_more (insn_length (insn));
2301 move_insn (insn, frag_now, f - frag_now->fr_literal);
2302 }
2303
2304 /* Start a variant frag and move INSN to the start of the variant part,
2305 marking it as fixed. The other arguments are as for frag_var. */
2306
2307 static void
2308 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2309 relax_substateT subtype, symbolS *symbol, offsetT offset)
2310 {
2311 frag_grow (max_chars);
2312 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2313 insn->fixed_p = 1;
2314 frag_var (rs_machine_dependent, max_chars, var,
2315 subtype, symbol, offset, NULL);
2316 }
2317
2318 /* Insert N copies of INSN into the history buffer, starting at
2319 position FIRST. Neither FIRST nor N need to be clipped. */
2320
2321 static void
2322 insert_into_history (unsigned int first, unsigned int n,
2323 const struct mips_cl_insn *insn)
2324 {
2325 if (mips_relax.sequence != 2)
2326 {
2327 unsigned int i;
2328
2329 for (i = ARRAY_SIZE (history); i-- > first;)
2330 if (i >= first + n)
2331 history[i] = history[i - n];
2332 else
2333 history[i] = *insn;
2334 }
2335 }
2336
2337 /* Clear the error in insn_error. */
2338
2339 static void
2340 clear_insn_error (void)
2341 {
2342 memset (&insn_error, 0, sizeof (insn_error));
2343 }
2344
2345 /* Possibly record error message MSG for the current instruction.
2346 If the error is about a particular argument, ARGNUM is the 1-based
2347 number of that argument, otherwise it is 0. FORMAT is the format
2348 of MSG. Return true if MSG was used, false if the current message
2349 was kept. */
2350
2351 static bfd_boolean
2352 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2353 const char *msg)
2354 {
2355 if (argnum == 0)
2356 {
2357 /* Give priority to errors against specific arguments, and to
2358 the first whole-instruction message. */
2359 if (insn_error.msg)
2360 return FALSE;
2361 }
2362 else
2363 {
2364 /* Keep insn_error if it is against a later argument. */
2365 if (argnum < insn_error.min_argnum)
2366 return FALSE;
2367
2368 /* If both errors are against the same argument but are different,
2369 give up on reporting a specific error for this argument.
2370 See the comment about mips_insn_error for details. */
2371 if (argnum == insn_error.min_argnum
2372 && insn_error.msg
2373 && strcmp (insn_error.msg, msg) != 0)
2374 {
2375 insn_error.msg = 0;
2376 insn_error.min_argnum += 1;
2377 return FALSE;
2378 }
2379 }
2380 insn_error.min_argnum = argnum;
2381 insn_error.format = format;
2382 insn_error.msg = msg;
2383 return TRUE;
2384 }
2385
2386 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2387 as for set_insn_error_format. */
2388
2389 static void
2390 set_insn_error (int argnum, const char *msg)
2391 {
2392 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2393 }
2394
2395 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2396 as for set_insn_error_format. */
2397
2398 static void
2399 set_insn_error_i (int argnum, const char *msg, int i)
2400 {
2401 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2402 insn_error.u.i = i;
2403 }
2404
2405 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2406 are as for set_insn_error_format. */
2407
2408 static void
2409 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2410 {
2411 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2412 {
2413 insn_error.u.ss[0] = s1;
2414 insn_error.u.ss[1] = s2;
2415 }
2416 }
2417
2418 /* Report the error in insn_error, which is against assembly code STR. */
2419
2420 static void
2421 report_insn_error (const char *str)
2422 {
2423 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2424
2425 switch (insn_error.format)
2426 {
2427 case ERR_FMT_PLAIN:
2428 as_bad (msg, str);
2429 break;
2430
2431 case ERR_FMT_I:
2432 as_bad (msg, insn_error.u.i, str);
2433 break;
2434
2435 case ERR_FMT_SS:
2436 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2437 break;
2438 }
2439
2440 free ((char *) msg);
2441 }
2442
2443 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2444 the idea is to make it obvious at a glance that each errata is
2445 included. */
2446
2447 static void
2448 init_vr4120_conflicts (void)
2449 {
2450 #define CONFLICT(FIRST, SECOND) \
2451 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2452
2453 /* Errata 21 - [D]DIV[U] after [D]MACC */
2454 CONFLICT (MACC, DIV);
2455 CONFLICT (DMACC, DIV);
2456
2457 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2458 CONFLICT (DMULT, DMULT);
2459 CONFLICT (DMULT, DMACC);
2460 CONFLICT (DMACC, DMULT);
2461 CONFLICT (DMACC, DMACC);
2462
2463 /* Errata 24 - MT{LO,HI} after [D]MACC */
2464 CONFLICT (MACC, MTHILO);
2465 CONFLICT (DMACC, MTHILO);
2466
2467 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2468 instruction is executed immediately after a MACC or DMACC
2469 instruction, the result of [either instruction] is incorrect." */
2470 CONFLICT (MACC, MULT);
2471 CONFLICT (MACC, DMULT);
2472 CONFLICT (DMACC, MULT);
2473 CONFLICT (DMACC, DMULT);
2474
2475 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2476 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2477 DDIV or DDIVU instruction, the result of the MACC or
2478 DMACC instruction is incorrect.". */
2479 CONFLICT (DMULT, MACC);
2480 CONFLICT (DMULT, DMACC);
2481 CONFLICT (DIV, MACC);
2482 CONFLICT (DIV, DMACC);
2483
2484 #undef CONFLICT
2485 }
2486
2487 struct regname {
2488 const char *name;
2489 unsigned int num;
2490 };
2491
2492 #define RNUM_MASK 0x00000ff
2493 #define RTYPE_MASK 0x0ffff00
2494 #define RTYPE_NUM 0x0000100
2495 #define RTYPE_FPU 0x0000200
2496 #define RTYPE_FCC 0x0000400
2497 #define RTYPE_VEC 0x0000800
2498 #define RTYPE_GP 0x0001000
2499 #define RTYPE_CP0 0x0002000
2500 #define RTYPE_PC 0x0004000
2501 #define RTYPE_ACC 0x0008000
2502 #define RTYPE_CCC 0x0010000
2503 #define RTYPE_VI 0x0020000
2504 #define RTYPE_VF 0x0040000
2505 #define RTYPE_R5900_I 0x0080000
2506 #define RTYPE_R5900_Q 0x0100000
2507 #define RTYPE_R5900_R 0x0200000
2508 #define RTYPE_R5900_ACC 0x0400000
2509 #define RTYPE_MSA 0x0800000
2510 #define RWARN 0x8000000
2511
2512 #define GENERIC_REGISTER_NUMBERS \
2513 {"$0", RTYPE_NUM | 0}, \
2514 {"$1", RTYPE_NUM | 1}, \
2515 {"$2", RTYPE_NUM | 2}, \
2516 {"$3", RTYPE_NUM | 3}, \
2517 {"$4", RTYPE_NUM | 4}, \
2518 {"$5", RTYPE_NUM | 5}, \
2519 {"$6", RTYPE_NUM | 6}, \
2520 {"$7", RTYPE_NUM | 7}, \
2521 {"$8", RTYPE_NUM | 8}, \
2522 {"$9", RTYPE_NUM | 9}, \
2523 {"$10", RTYPE_NUM | 10}, \
2524 {"$11", RTYPE_NUM | 11}, \
2525 {"$12", RTYPE_NUM | 12}, \
2526 {"$13", RTYPE_NUM | 13}, \
2527 {"$14", RTYPE_NUM | 14}, \
2528 {"$15", RTYPE_NUM | 15}, \
2529 {"$16", RTYPE_NUM | 16}, \
2530 {"$17", RTYPE_NUM | 17}, \
2531 {"$18", RTYPE_NUM | 18}, \
2532 {"$19", RTYPE_NUM | 19}, \
2533 {"$20", RTYPE_NUM | 20}, \
2534 {"$21", RTYPE_NUM | 21}, \
2535 {"$22", RTYPE_NUM | 22}, \
2536 {"$23", RTYPE_NUM | 23}, \
2537 {"$24", RTYPE_NUM | 24}, \
2538 {"$25", RTYPE_NUM | 25}, \
2539 {"$26", RTYPE_NUM | 26}, \
2540 {"$27", RTYPE_NUM | 27}, \
2541 {"$28", RTYPE_NUM | 28}, \
2542 {"$29", RTYPE_NUM | 29}, \
2543 {"$30", RTYPE_NUM | 30}, \
2544 {"$31", RTYPE_NUM | 31}
2545
2546 #define FPU_REGISTER_NAMES \
2547 {"$f0", RTYPE_FPU | 0}, \
2548 {"$f1", RTYPE_FPU | 1}, \
2549 {"$f2", RTYPE_FPU | 2}, \
2550 {"$f3", RTYPE_FPU | 3}, \
2551 {"$f4", RTYPE_FPU | 4}, \
2552 {"$f5", RTYPE_FPU | 5}, \
2553 {"$f6", RTYPE_FPU | 6}, \
2554 {"$f7", RTYPE_FPU | 7}, \
2555 {"$f8", RTYPE_FPU | 8}, \
2556 {"$f9", RTYPE_FPU | 9}, \
2557 {"$f10", RTYPE_FPU | 10}, \
2558 {"$f11", RTYPE_FPU | 11}, \
2559 {"$f12", RTYPE_FPU | 12}, \
2560 {"$f13", RTYPE_FPU | 13}, \
2561 {"$f14", RTYPE_FPU | 14}, \
2562 {"$f15", RTYPE_FPU | 15}, \
2563 {"$f16", RTYPE_FPU | 16}, \
2564 {"$f17", RTYPE_FPU | 17}, \
2565 {"$f18", RTYPE_FPU | 18}, \
2566 {"$f19", RTYPE_FPU | 19}, \
2567 {"$f20", RTYPE_FPU | 20}, \
2568 {"$f21", RTYPE_FPU | 21}, \
2569 {"$f22", RTYPE_FPU | 22}, \
2570 {"$f23", RTYPE_FPU | 23}, \
2571 {"$f24", RTYPE_FPU | 24}, \
2572 {"$f25", RTYPE_FPU | 25}, \
2573 {"$f26", RTYPE_FPU | 26}, \
2574 {"$f27", RTYPE_FPU | 27}, \
2575 {"$f28", RTYPE_FPU | 28}, \
2576 {"$f29", RTYPE_FPU | 29}, \
2577 {"$f30", RTYPE_FPU | 30}, \
2578 {"$f31", RTYPE_FPU | 31}
2579
2580 #define FPU_CONDITION_CODE_NAMES \
2581 {"$fcc0", RTYPE_FCC | 0}, \
2582 {"$fcc1", RTYPE_FCC | 1}, \
2583 {"$fcc2", RTYPE_FCC | 2}, \
2584 {"$fcc3", RTYPE_FCC | 3}, \
2585 {"$fcc4", RTYPE_FCC | 4}, \
2586 {"$fcc5", RTYPE_FCC | 5}, \
2587 {"$fcc6", RTYPE_FCC | 6}, \
2588 {"$fcc7", RTYPE_FCC | 7}
2589
2590 #define COPROC_CONDITION_CODE_NAMES \
2591 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2592 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2593 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2594 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2595 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2596 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2597 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2598 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2599
2600 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2601 {"$a4", RTYPE_GP | 8}, \
2602 {"$a5", RTYPE_GP | 9}, \
2603 {"$a6", RTYPE_GP | 10}, \
2604 {"$a7", RTYPE_GP | 11}, \
2605 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2606 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2607 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2608 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2609 {"$t0", RTYPE_GP | 12}, \
2610 {"$t1", RTYPE_GP | 13}, \
2611 {"$t2", RTYPE_GP | 14}, \
2612 {"$t3", RTYPE_GP | 15}
2613
2614 #define O32_SYMBOLIC_REGISTER_NAMES \
2615 {"$t0", RTYPE_GP | 8}, \
2616 {"$t1", RTYPE_GP | 9}, \
2617 {"$t2", RTYPE_GP | 10}, \
2618 {"$t3", RTYPE_GP | 11}, \
2619 {"$t4", RTYPE_GP | 12}, \
2620 {"$t5", RTYPE_GP | 13}, \
2621 {"$t6", RTYPE_GP | 14}, \
2622 {"$t7", RTYPE_GP | 15}, \
2623 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2624 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2625 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2626 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2627
2628 /* Remaining symbolic register names */
2629 #define SYMBOLIC_REGISTER_NAMES \
2630 {"$zero", RTYPE_GP | 0}, \
2631 {"$at", RTYPE_GP | 1}, \
2632 {"$AT", RTYPE_GP | 1}, \
2633 {"$v0", RTYPE_GP | 2}, \
2634 {"$v1", RTYPE_GP | 3}, \
2635 {"$a0", RTYPE_GP | 4}, \
2636 {"$a1", RTYPE_GP | 5}, \
2637 {"$a2", RTYPE_GP | 6}, \
2638 {"$a3", RTYPE_GP | 7}, \
2639 {"$s0", RTYPE_GP | 16}, \
2640 {"$s1", RTYPE_GP | 17}, \
2641 {"$s2", RTYPE_GP | 18}, \
2642 {"$s3", RTYPE_GP | 19}, \
2643 {"$s4", RTYPE_GP | 20}, \
2644 {"$s5", RTYPE_GP | 21}, \
2645 {"$s6", RTYPE_GP | 22}, \
2646 {"$s7", RTYPE_GP | 23}, \
2647 {"$t8", RTYPE_GP | 24}, \
2648 {"$t9", RTYPE_GP | 25}, \
2649 {"$k0", RTYPE_GP | 26}, \
2650 {"$kt0", RTYPE_GP | 26}, \
2651 {"$k1", RTYPE_GP | 27}, \
2652 {"$kt1", RTYPE_GP | 27}, \
2653 {"$gp", RTYPE_GP | 28}, \
2654 {"$sp", RTYPE_GP | 29}, \
2655 {"$s8", RTYPE_GP | 30}, \
2656 {"$fp", RTYPE_GP | 30}, \
2657 {"$ra", RTYPE_GP | 31}
2658
2659 #define MIPS16_SPECIAL_REGISTER_NAMES \
2660 {"$pc", RTYPE_PC | 0}
2661
2662 #define MDMX_VECTOR_REGISTER_NAMES \
2663 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2664 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2665 {"$v2", RTYPE_VEC | 2}, \
2666 {"$v3", RTYPE_VEC | 3}, \
2667 {"$v4", RTYPE_VEC | 4}, \
2668 {"$v5", RTYPE_VEC | 5}, \
2669 {"$v6", RTYPE_VEC | 6}, \
2670 {"$v7", RTYPE_VEC | 7}, \
2671 {"$v8", RTYPE_VEC | 8}, \
2672 {"$v9", RTYPE_VEC | 9}, \
2673 {"$v10", RTYPE_VEC | 10}, \
2674 {"$v11", RTYPE_VEC | 11}, \
2675 {"$v12", RTYPE_VEC | 12}, \
2676 {"$v13", RTYPE_VEC | 13}, \
2677 {"$v14", RTYPE_VEC | 14}, \
2678 {"$v15", RTYPE_VEC | 15}, \
2679 {"$v16", RTYPE_VEC | 16}, \
2680 {"$v17", RTYPE_VEC | 17}, \
2681 {"$v18", RTYPE_VEC | 18}, \
2682 {"$v19", RTYPE_VEC | 19}, \
2683 {"$v20", RTYPE_VEC | 20}, \
2684 {"$v21", RTYPE_VEC | 21}, \
2685 {"$v22", RTYPE_VEC | 22}, \
2686 {"$v23", RTYPE_VEC | 23}, \
2687 {"$v24", RTYPE_VEC | 24}, \
2688 {"$v25", RTYPE_VEC | 25}, \
2689 {"$v26", RTYPE_VEC | 26}, \
2690 {"$v27", RTYPE_VEC | 27}, \
2691 {"$v28", RTYPE_VEC | 28}, \
2692 {"$v29", RTYPE_VEC | 29}, \
2693 {"$v30", RTYPE_VEC | 30}, \
2694 {"$v31", RTYPE_VEC | 31}
2695
2696 #define R5900_I_NAMES \
2697 {"$I", RTYPE_R5900_I | 0}
2698
2699 #define R5900_Q_NAMES \
2700 {"$Q", RTYPE_R5900_Q | 0}
2701
2702 #define R5900_R_NAMES \
2703 {"$R", RTYPE_R5900_R | 0}
2704
2705 #define R5900_ACC_NAMES \
2706 {"$ACC", RTYPE_R5900_ACC | 0 }
2707
2708 #define MIPS_DSP_ACCUMULATOR_NAMES \
2709 {"$ac0", RTYPE_ACC | 0}, \
2710 {"$ac1", RTYPE_ACC | 1}, \
2711 {"$ac2", RTYPE_ACC | 2}, \
2712 {"$ac3", RTYPE_ACC | 3}
2713
2714 static const struct regname reg_names[] = {
2715 GENERIC_REGISTER_NUMBERS,
2716 FPU_REGISTER_NAMES,
2717 FPU_CONDITION_CODE_NAMES,
2718 COPROC_CONDITION_CODE_NAMES,
2719
2720 /* The $txx registers depends on the abi,
2721 these will be added later into the symbol table from
2722 one of the tables below once mips_abi is set after
2723 parsing of arguments from the command line. */
2724 SYMBOLIC_REGISTER_NAMES,
2725
2726 MIPS16_SPECIAL_REGISTER_NAMES,
2727 MDMX_VECTOR_REGISTER_NAMES,
2728 R5900_I_NAMES,
2729 R5900_Q_NAMES,
2730 R5900_R_NAMES,
2731 R5900_ACC_NAMES,
2732 MIPS_DSP_ACCUMULATOR_NAMES,
2733 {0, 0}
2734 };
2735
2736 static const struct regname reg_names_o32[] = {
2737 O32_SYMBOLIC_REGISTER_NAMES,
2738 {0, 0}
2739 };
2740
2741 static const struct regname reg_names_n32n64[] = {
2742 N32N64_SYMBOLIC_REGISTER_NAMES,
2743 {0, 0}
2744 };
2745
2746 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2747 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2748 of these register symbols, return the associated vector register,
2749 otherwise return SYMVAL itself. */
2750
2751 static unsigned int
2752 mips_prefer_vec_regno (unsigned int symval)
2753 {
2754 if ((symval & -2) == (RTYPE_GP | 2))
2755 return RTYPE_VEC | (symval & 1);
2756 return symval;
2757 }
2758
2759 /* Return true if string [S, E) is a valid register name, storing its
2760 symbol value in *SYMVAL_PTR if so. */
2761
2762 static bfd_boolean
2763 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2764 {
2765 char save_c;
2766 symbolS *symbol;
2767
2768 /* Terminate name. */
2769 save_c = *e;
2770 *e = '\0';
2771
2772 /* Look up the name. */
2773 symbol = symbol_find (s);
2774 *e = save_c;
2775
2776 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2777 return FALSE;
2778
2779 *symval_ptr = S_GET_VALUE (symbol);
2780 return TRUE;
2781 }
2782
2783 /* Return true if the string at *SPTR is a valid register name. Allow it
2784 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2785 is nonnull.
2786
2787 When returning true, move *SPTR past the register, store the
2788 register's symbol value in *SYMVAL_PTR and the channel mask in
2789 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2790 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2791 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2792
2793 static bfd_boolean
2794 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2795 unsigned int *channels_ptr)
2796 {
2797 char *s, *e, *m;
2798 const char *q;
2799 unsigned int channels, symval, bit;
2800
2801 /* Find end of name. */
2802 s = e = *sptr;
2803 if (is_name_beginner (*e))
2804 ++e;
2805 while (is_part_of_name (*e))
2806 ++e;
2807
2808 channels = 0;
2809 if (!mips_parse_register_1 (s, e, &symval))
2810 {
2811 if (!channels_ptr)
2812 return FALSE;
2813
2814 /* Eat characters from the end of the string that are valid
2815 channel suffixes. The preceding register must be $ACC or
2816 end with a digit, so there is no ambiguity. */
2817 bit = 1;
2818 m = e;
2819 for (q = "wzyx"; *q; q++, bit <<= 1)
2820 if (m > s && m[-1] == *q)
2821 {
2822 --m;
2823 channels |= bit;
2824 }
2825
2826 if (channels == 0
2827 || !mips_parse_register_1 (s, m, &symval)
2828 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2829 return FALSE;
2830 }
2831
2832 *sptr = e;
2833 *symval_ptr = symval;
2834 if (channels_ptr)
2835 *channels_ptr = channels;
2836 return TRUE;
2837 }
2838
2839 /* Check if SPTR points at a valid register specifier according to TYPES.
2840 If so, then return 1, advance S to consume the specifier and store
2841 the register's number in REGNOP, otherwise return 0. */
2842
2843 static int
2844 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2845 {
2846 unsigned int regno;
2847
2848 if (mips_parse_register (s, &regno, NULL))
2849 {
2850 if (types & RTYPE_VEC)
2851 regno = mips_prefer_vec_regno (regno);
2852 if (regno & types)
2853 regno &= RNUM_MASK;
2854 else
2855 regno = ~0;
2856 }
2857 else
2858 {
2859 if (types & RWARN)
2860 as_warn (_("unrecognized register name `%s'"), *s);
2861 regno = ~0;
2862 }
2863 if (regnop)
2864 *regnop = regno;
2865 return regno <= RNUM_MASK;
2866 }
2867
2868 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2869 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2870
2871 static char *
2872 mips_parse_vu0_channels (char *s, unsigned int *channels)
2873 {
2874 unsigned int i;
2875
2876 *channels = 0;
2877 for (i = 0; i < 4; i++)
2878 if (*s == "xyzw"[i])
2879 {
2880 *channels |= 1 << (3 - i);
2881 ++s;
2882 }
2883 return s;
2884 }
2885
2886 /* Token types for parsed operand lists. */
2887 enum mips_operand_token_type {
2888 /* A plain register, e.g. $f2. */
2889 OT_REG,
2890
2891 /* A 4-bit XYZW channel mask. */
2892 OT_CHANNELS,
2893
2894 /* A constant vector index, e.g. [1]. */
2895 OT_INTEGER_INDEX,
2896
2897 /* A register vector index, e.g. [$2]. */
2898 OT_REG_INDEX,
2899
2900 /* A continuous range of registers, e.g. $s0-$s4. */
2901 OT_REG_RANGE,
2902
2903 /* A (possibly relocated) expression. */
2904 OT_INTEGER,
2905
2906 /* A floating-point value. */
2907 OT_FLOAT,
2908
2909 /* A single character. This can be '(', ')' or ',', but '(' only appears
2910 before OT_REGs. */
2911 OT_CHAR,
2912
2913 /* A doubled character, either "--" or "++". */
2914 OT_DOUBLE_CHAR,
2915
2916 /* The end of the operand list. */
2917 OT_END
2918 };
2919
2920 /* A parsed operand token. */
2921 struct mips_operand_token
2922 {
2923 /* The type of token. */
2924 enum mips_operand_token_type type;
2925 union
2926 {
2927 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2928 unsigned int regno;
2929
2930 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2931 unsigned int channels;
2932
2933 /* The integer value of an OT_INTEGER_INDEX. */
2934 addressT index;
2935
2936 /* The two register symbol values involved in an OT_REG_RANGE. */
2937 struct {
2938 unsigned int regno1;
2939 unsigned int regno2;
2940 } reg_range;
2941
2942 /* The value of an OT_INTEGER. The value is represented as an
2943 expression and the relocation operators that were applied to
2944 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2945 relocation operators were used. */
2946 struct {
2947 expressionS value;
2948 bfd_reloc_code_real_type relocs[3];
2949 } integer;
2950
2951 /* The binary data for an OT_FLOAT constant, and the number of bytes
2952 in the constant. */
2953 struct {
2954 unsigned char data[8];
2955 int length;
2956 } flt;
2957
2958 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2959 char ch;
2960 } u;
2961 };
2962
2963 /* An obstack used to construct lists of mips_operand_tokens. */
2964 static struct obstack mips_operand_tokens;
2965
2966 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2967
2968 static void
2969 mips_add_token (struct mips_operand_token *token,
2970 enum mips_operand_token_type type)
2971 {
2972 token->type = type;
2973 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2974 }
2975
2976 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2977 and OT_REG tokens for them if so, and return a pointer to the first
2978 unconsumed character. Return null otherwise. */
2979
2980 static char *
2981 mips_parse_base_start (char *s)
2982 {
2983 struct mips_operand_token token;
2984 unsigned int regno, channels;
2985 bfd_boolean decrement_p;
2986
2987 if (*s != '(')
2988 return 0;
2989
2990 ++s;
2991 SKIP_SPACE_TABS (s);
2992
2993 /* Only match "--" as part of a base expression. In other contexts "--X"
2994 is a double negative. */
2995 decrement_p = (s[0] == '-' && s[1] == '-');
2996 if (decrement_p)
2997 {
2998 s += 2;
2999 SKIP_SPACE_TABS (s);
3000 }
3001
3002 /* Allow a channel specifier because that leads to better error messages
3003 than treating something like "$vf0x++" as an expression. */
3004 if (!mips_parse_register (&s, &regno, &channels))
3005 return 0;
3006
3007 token.u.ch = '(';
3008 mips_add_token (&token, OT_CHAR);
3009
3010 if (decrement_p)
3011 {
3012 token.u.ch = '-';
3013 mips_add_token (&token, OT_DOUBLE_CHAR);
3014 }
3015
3016 token.u.regno = regno;
3017 mips_add_token (&token, OT_REG);
3018
3019 if (channels)
3020 {
3021 token.u.channels = channels;
3022 mips_add_token (&token, OT_CHANNELS);
3023 }
3024
3025 /* For consistency, only match "++" as part of base expressions too. */
3026 SKIP_SPACE_TABS (s);
3027 if (s[0] == '+' && s[1] == '+')
3028 {
3029 s += 2;
3030 token.u.ch = '+';
3031 mips_add_token (&token, OT_DOUBLE_CHAR);
3032 }
3033
3034 return s;
3035 }
3036
3037 /* Parse one or more tokens from S. Return a pointer to the first
3038 unconsumed character on success. Return null if an error was found
3039 and store the error text in insn_error. FLOAT_FORMAT is as for
3040 mips_parse_arguments. */
3041
3042 static char *
3043 mips_parse_argument_token (char *s, char float_format)
3044 {
3045 char *end, *save_in;
3046 const char *err;
3047 unsigned int regno1, regno2, channels;
3048 struct mips_operand_token token;
3049
3050 /* First look for "($reg", since we want to treat that as an
3051 OT_CHAR and OT_REG rather than an expression. */
3052 end = mips_parse_base_start (s);
3053 if (end)
3054 return end;
3055
3056 /* Handle other characters that end up as OT_CHARs. */
3057 if (*s == ')' || *s == ',')
3058 {
3059 token.u.ch = *s;
3060 mips_add_token (&token, OT_CHAR);
3061 ++s;
3062 return s;
3063 }
3064
3065 /* Handle tokens that start with a register. */
3066 if (mips_parse_register (&s, &regno1, &channels))
3067 {
3068 if (channels)
3069 {
3070 /* A register and a VU0 channel suffix. */
3071 token.u.regno = regno1;
3072 mips_add_token (&token, OT_REG);
3073
3074 token.u.channels = channels;
3075 mips_add_token (&token, OT_CHANNELS);
3076 return s;
3077 }
3078
3079 SKIP_SPACE_TABS (s);
3080 if (*s == '-')
3081 {
3082 /* A register range. */
3083 ++s;
3084 SKIP_SPACE_TABS (s);
3085 if (!mips_parse_register (&s, &regno2, NULL))
3086 {
3087 set_insn_error (0, _("invalid register range"));
3088 return 0;
3089 }
3090
3091 token.u.reg_range.regno1 = regno1;
3092 token.u.reg_range.regno2 = regno2;
3093 mips_add_token (&token, OT_REG_RANGE);
3094 return s;
3095 }
3096
3097 /* Add the register itself. */
3098 token.u.regno = regno1;
3099 mips_add_token (&token, OT_REG);
3100
3101 /* Check for a vector index. */
3102 if (*s == '[')
3103 {
3104 ++s;
3105 SKIP_SPACE_TABS (s);
3106 if (mips_parse_register (&s, &token.u.regno, NULL))
3107 mips_add_token (&token, OT_REG_INDEX);
3108 else
3109 {
3110 expressionS element;
3111
3112 my_getExpression (&element, s);
3113 if (element.X_op != O_constant)
3114 {
3115 set_insn_error (0, _("vector element must be constant"));
3116 return 0;
3117 }
3118 s = expr_end;
3119 token.u.index = element.X_add_number;
3120 mips_add_token (&token, OT_INTEGER_INDEX);
3121 }
3122 SKIP_SPACE_TABS (s);
3123 if (*s != ']')
3124 {
3125 set_insn_error (0, _("missing `]'"));
3126 return 0;
3127 }
3128 ++s;
3129 }
3130 return s;
3131 }
3132
3133 if (float_format)
3134 {
3135 /* First try to treat expressions as floats. */
3136 save_in = input_line_pointer;
3137 input_line_pointer = s;
3138 err = md_atof (float_format, (char *) token.u.flt.data,
3139 &token.u.flt.length);
3140 end = input_line_pointer;
3141 input_line_pointer = save_in;
3142 if (err && *err)
3143 {
3144 set_insn_error (0, err);
3145 return 0;
3146 }
3147 if (s != end)
3148 {
3149 mips_add_token (&token, OT_FLOAT);
3150 return end;
3151 }
3152 }
3153
3154 /* Treat everything else as an integer expression. */
3155 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3156 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3157 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3158 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3159 s = expr_end;
3160 mips_add_token (&token, OT_INTEGER);
3161 return s;
3162 }
3163
3164 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3165 if expressions should be treated as 32-bit floating-point constants,
3166 'd' if they should be treated as 64-bit floating-point constants,
3167 or 0 if they should be treated as integer expressions (the usual case).
3168
3169 Return a list of tokens on success, otherwise return 0. The caller
3170 must obstack_free the list after use. */
3171
3172 static struct mips_operand_token *
3173 mips_parse_arguments (char *s, char float_format)
3174 {
3175 struct mips_operand_token token;
3176
3177 SKIP_SPACE_TABS (s);
3178 while (*s)
3179 {
3180 s = mips_parse_argument_token (s, float_format);
3181 if (!s)
3182 {
3183 obstack_free (&mips_operand_tokens,
3184 obstack_finish (&mips_operand_tokens));
3185 return 0;
3186 }
3187 SKIP_SPACE_TABS (s);
3188 }
3189 mips_add_token (&token, OT_END);
3190 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3191 }
3192
3193 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3194 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3195
3196 static bfd_boolean
3197 is_opcode_valid (const struct mips_opcode *mo)
3198 {
3199 int isa = mips_opts.isa;
3200 int ase = mips_opts.ase;
3201 int fp_s, fp_d;
3202 unsigned int i;
3203
3204 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3205 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3206 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3207 ase |= mips_ases[i].flags64;
3208
3209 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3210 return FALSE;
3211
3212 /* Check whether the instruction or macro requires single-precision or
3213 double-precision floating-point support. Note that this information is
3214 stored differently in the opcode table for insns and macros. */
3215 if (mo->pinfo == INSN_MACRO)
3216 {
3217 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3218 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3219 }
3220 else
3221 {
3222 fp_s = mo->pinfo & FP_S;
3223 fp_d = mo->pinfo & FP_D;
3224 }
3225
3226 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3227 return FALSE;
3228
3229 if (fp_s && mips_opts.soft_float)
3230 return FALSE;
3231
3232 return TRUE;
3233 }
3234
3235 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3236 selected ISA and architecture. */
3237
3238 static bfd_boolean
3239 is_opcode_valid_16 (const struct mips_opcode *mo)
3240 {
3241 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3242 }
3243
3244 /* Return TRUE if the size of the microMIPS opcode MO matches one
3245 explicitly requested. Always TRUE in the standard MIPS mode. */
3246
3247 static bfd_boolean
3248 is_size_valid (const struct mips_opcode *mo)
3249 {
3250 if (!mips_opts.micromips)
3251 return TRUE;
3252
3253 if (mips_opts.insn32)
3254 {
3255 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3256 return FALSE;
3257 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3258 return FALSE;
3259 }
3260 if (!forced_insn_length)
3261 return TRUE;
3262 if (mo->pinfo == INSN_MACRO)
3263 return FALSE;
3264 return forced_insn_length == micromips_insn_length (mo);
3265 }
3266
3267 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3268 of the preceding instruction. Always TRUE in the standard MIPS mode.
3269
3270 We don't accept macros in 16-bit delay slots to avoid a case where
3271 a macro expansion fails because it relies on a preceding 32-bit real
3272 instruction to have matched and does not handle the operands correctly.
3273 The only macros that may expand to 16-bit instructions are JAL that
3274 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3275 and BGT (that likewise cannot be placed in a delay slot) that decay to
3276 a NOP. In all these cases the macros precede any corresponding real
3277 instruction definitions in the opcode table, so they will match in the
3278 second pass where the size of the delay slot is ignored and therefore
3279 produce correct code. */
3280
3281 static bfd_boolean
3282 is_delay_slot_valid (const struct mips_opcode *mo)
3283 {
3284 if (!mips_opts.micromips)
3285 return TRUE;
3286
3287 if (mo->pinfo == INSN_MACRO)
3288 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3289 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3290 && micromips_insn_length (mo) != 4)
3291 return FALSE;
3292 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3293 && micromips_insn_length (mo) != 2)
3294 return FALSE;
3295
3296 return TRUE;
3297 }
3298
3299 /* For consistency checking, verify that all bits of OPCODE are specified
3300 either by the match/mask part of the instruction definition, or by the
3301 operand list. Also build up a list of operands in OPERANDS.
3302
3303 INSN_BITS says which bits of the instruction are significant.
3304 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3305 provides the mips_operand description of each operand. DECODE_OPERAND
3306 is null for MIPS16 instructions. */
3307
3308 static int
3309 validate_mips_insn (const struct mips_opcode *opcode,
3310 unsigned long insn_bits,
3311 const struct mips_operand *(*decode_operand) (const char *),
3312 struct mips_operand_array *operands)
3313 {
3314 const char *s;
3315 unsigned long used_bits, doubled, undefined, opno, mask;
3316 const struct mips_operand *operand;
3317
3318 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3319 if ((mask & opcode->match) != opcode->match)
3320 {
3321 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3322 opcode->name, opcode->args);
3323 return 0;
3324 }
3325 used_bits = 0;
3326 opno = 0;
3327 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3328 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3329 for (s = opcode->args; *s; ++s)
3330 switch (*s)
3331 {
3332 case ',':
3333 case '(':
3334 case ')':
3335 break;
3336
3337 case '#':
3338 s++;
3339 break;
3340
3341 default:
3342 if (!decode_operand)
3343 operand = decode_mips16_operand (*s, FALSE);
3344 else
3345 operand = decode_operand (s);
3346 if (!operand && opcode->pinfo != INSN_MACRO)
3347 {
3348 as_bad (_("internal: unknown operand type: %s %s"),
3349 opcode->name, opcode->args);
3350 return 0;
3351 }
3352 gas_assert (opno < MAX_OPERANDS);
3353 operands->operand[opno] = operand;
3354 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3355 {
3356 used_bits = mips_insert_operand (operand, used_bits, -1);
3357 if (operand->type == OP_MDMX_IMM_REG)
3358 /* Bit 5 is the format selector (OB vs QH). The opcode table
3359 has separate entries for each format. */
3360 used_bits &= ~(1 << (operand->lsb + 5));
3361 if (operand->type == OP_ENTRY_EXIT_LIST)
3362 used_bits &= ~(mask & 0x700);
3363 }
3364 /* Skip prefix characters. */
3365 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3366 ++s;
3367 opno += 1;
3368 break;
3369 }
3370 doubled = used_bits & mask & insn_bits;
3371 if (doubled)
3372 {
3373 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3374 " %s %s"), doubled, opcode->name, opcode->args);
3375 return 0;
3376 }
3377 used_bits |= mask;
3378 undefined = ~used_bits & insn_bits;
3379 if (opcode->pinfo != INSN_MACRO && undefined)
3380 {
3381 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3382 undefined, opcode->name, opcode->args);
3383 return 0;
3384 }
3385 used_bits &= ~insn_bits;
3386 if (used_bits)
3387 {
3388 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3389 used_bits, opcode->name, opcode->args);
3390 return 0;
3391 }
3392 return 1;
3393 }
3394
3395 /* The MIPS16 version of validate_mips_insn. */
3396
3397 static int
3398 validate_mips16_insn (const struct mips_opcode *opcode,
3399 struct mips_operand_array *operands)
3400 {
3401 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3402 {
3403 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3404 instruction. Use TMP to describe the full instruction. */
3405 struct mips_opcode tmp;
3406
3407 tmp = *opcode;
3408 tmp.match <<= 16;
3409 tmp.mask <<= 16;
3410 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3411 }
3412 return validate_mips_insn (opcode, 0xffff, 0, operands);
3413 }
3414
3415 /* The microMIPS version of validate_mips_insn. */
3416
3417 static int
3418 validate_micromips_insn (const struct mips_opcode *opc,
3419 struct mips_operand_array *operands)
3420 {
3421 unsigned long insn_bits;
3422 unsigned long major;
3423 unsigned int length;
3424
3425 if (opc->pinfo == INSN_MACRO)
3426 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3427 operands);
3428
3429 length = micromips_insn_length (opc);
3430 if (length != 2 && length != 4)
3431 {
3432 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3433 "%s %s"), length, opc->name, opc->args);
3434 return 0;
3435 }
3436 major = opc->match >> (10 + 8 * (length - 2));
3437 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3438 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3439 {
3440 as_bad (_("internal error: bad microMIPS opcode "
3441 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3442 return 0;
3443 }
3444
3445 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3446 insn_bits = 1 << 4 * length;
3447 insn_bits <<= 4 * length;
3448 insn_bits -= 1;
3449 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3450 operands);
3451 }
3452
3453 /* This function is called once, at assembler startup time. It should set up
3454 all the tables, etc. that the MD part of the assembler will need. */
3455
3456 void
3457 md_begin (void)
3458 {
3459 const char *retval = NULL;
3460 int i = 0;
3461 int broken = 0;
3462
3463 if (mips_pic != NO_PIC)
3464 {
3465 if (g_switch_seen && g_switch_value != 0)
3466 as_bad (_("-G may not be used in position-independent code"));
3467 g_switch_value = 0;
3468 }
3469 else if (mips_abicalls)
3470 {
3471 if (g_switch_seen && g_switch_value != 0)
3472 as_bad (_("-G may not be used with abicalls"));
3473 g_switch_value = 0;
3474 }
3475
3476 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3477 as_warn (_("could not set architecture and machine"));
3478
3479 op_hash = hash_new ();
3480
3481 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3482 for (i = 0; i < NUMOPCODES;)
3483 {
3484 const char *name = mips_opcodes[i].name;
3485
3486 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3487 if (retval != NULL)
3488 {
3489 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3490 mips_opcodes[i].name, retval);
3491 /* Probably a memory allocation problem? Give up now. */
3492 as_fatal (_("broken assembler, no assembly attempted"));
3493 }
3494 do
3495 {
3496 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3497 decode_mips_operand, &mips_operands[i]))
3498 broken = 1;
3499 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3500 {
3501 create_insn (&nop_insn, mips_opcodes + i);
3502 if (mips_fix_loongson2f_nop)
3503 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3504 nop_insn.fixed_p = 1;
3505 }
3506 ++i;
3507 }
3508 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3509 }
3510
3511 mips16_op_hash = hash_new ();
3512 mips16_operands = XCNEWVEC (struct mips_operand_array,
3513 bfd_mips16_num_opcodes);
3514
3515 i = 0;
3516 while (i < bfd_mips16_num_opcodes)
3517 {
3518 const char *name = mips16_opcodes[i].name;
3519
3520 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3521 if (retval != NULL)
3522 as_fatal (_("internal: can't hash `%s': %s"),
3523 mips16_opcodes[i].name, retval);
3524 do
3525 {
3526 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3527 broken = 1;
3528 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3529 {
3530 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3531 mips16_nop_insn.fixed_p = 1;
3532 }
3533 ++i;
3534 }
3535 while (i < bfd_mips16_num_opcodes
3536 && strcmp (mips16_opcodes[i].name, name) == 0);
3537 }
3538
3539 micromips_op_hash = hash_new ();
3540 micromips_operands = XCNEWVEC (struct mips_operand_array,
3541 bfd_micromips_num_opcodes);
3542
3543 i = 0;
3544 while (i < bfd_micromips_num_opcodes)
3545 {
3546 const char *name = micromips_opcodes[i].name;
3547
3548 retval = hash_insert (micromips_op_hash, name,
3549 (void *) &micromips_opcodes[i]);
3550 if (retval != NULL)
3551 as_fatal (_("internal: can't hash `%s': %s"),
3552 micromips_opcodes[i].name, retval);
3553 do
3554 {
3555 struct mips_cl_insn *micromips_nop_insn;
3556
3557 if (!validate_micromips_insn (&micromips_opcodes[i],
3558 &micromips_operands[i]))
3559 broken = 1;
3560
3561 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3562 {
3563 if (micromips_insn_length (micromips_opcodes + i) == 2)
3564 micromips_nop_insn = &micromips_nop16_insn;
3565 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3566 micromips_nop_insn = &micromips_nop32_insn;
3567 else
3568 continue;
3569
3570 if (micromips_nop_insn->insn_mo == NULL
3571 && strcmp (name, "nop") == 0)
3572 {
3573 create_insn (micromips_nop_insn, micromips_opcodes + i);
3574 micromips_nop_insn->fixed_p = 1;
3575 }
3576 }
3577 }
3578 while (++i < bfd_micromips_num_opcodes
3579 && strcmp (micromips_opcodes[i].name, name) == 0);
3580 }
3581
3582 if (broken)
3583 as_fatal (_("broken assembler, no assembly attempted"));
3584
3585 /* We add all the general register names to the symbol table. This
3586 helps us detect invalid uses of them. */
3587 for (i = 0; reg_names[i].name; i++)
3588 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3589 reg_names[i].num, /* & RNUM_MASK, */
3590 &zero_address_frag));
3591 if (HAVE_NEWABI)
3592 for (i = 0; reg_names_n32n64[i].name; i++)
3593 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3594 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3595 &zero_address_frag));
3596 else
3597 for (i = 0; reg_names_o32[i].name; i++)
3598 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3599 reg_names_o32[i].num, /* & RNUM_MASK, */
3600 &zero_address_frag));
3601
3602 for (i = 0; i < 32; i++)
3603 {
3604 char regname[7];
3605
3606 /* R5900 VU0 floating-point register. */
3607 regname[sizeof (rename) - 1] = 0;
3608 snprintf (regname, sizeof (regname) - 1, "$vf%d", i);
3609 symbol_table_insert (symbol_new (regname, reg_section,
3610 RTYPE_VF | i, &zero_address_frag));
3611
3612 /* R5900 VU0 integer register. */
3613 snprintf (regname, sizeof (regname) - 1, "$vi%d", i);
3614 symbol_table_insert (symbol_new (regname, reg_section,
3615 RTYPE_VI | i, &zero_address_frag));
3616
3617 /* MSA register. */
3618 snprintf (regname, sizeof (regname) - 1, "$w%d", i);
3619 symbol_table_insert (symbol_new (regname, reg_section,
3620 RTYPE_MSA | i, &zero_address_frag));
3621 }
3622
3623 obstack_init (&mips_operand_tokens);
3624
3625 mips_no_prev_insn ();
3626
3627 mips_gprmask = 0;
3628 mips_cprmask[0] = 0;
3629 mips_cprmask[1] = 0;
3630 mips_cprmask[2] = 0;
3631 mips_cprmask[3] = 0;
3632
3633 /* set the default alignment for the text section (2**2) */
3634 record_alignment (text_section, 2);
3635
3636 bfd_set_gp_size (stdoutput, g_switch_value);
3637
3638 /* On a native system other than VxWorks, sections must be aligned
3639 to 16 byte boundaries. When configured for an embedded ELF
3640 target, we don't bother. */
3641 if (strncmp (TARGET_OS, "elf", 3) != 0
3642 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3643 {
3644 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3645 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3646 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3647 }
3648
3649 /* Create a .reginfo section for register masks and a .mdebug
3650 section for debugging information. */
3651 {
3652 segT seg;
3653 subsegT subseg;
3654 flagword flags;
3655 segT sec;
3656
3657 seg = now_seg;
3658 subseg = now_subseg;
3659
3660 /* The ABI says this section should be loaded so that the
3661 running program can access it. However, we don't load it
3662 if we are configured for an embedded target */
3663 flags = SEC_READONLY | SEC_DATA;
3664 if (strncmp (TARGET_OS, "elf", 3) != 0)
3665 flags |= SEC_ALLOC | SEC_LOAD;
3666
3667 if (mips_abi != N64_ABI)
3668 {
3669 sec = subseg_new (".reginfo", (subsegT) 0);
3670
3671 bfd_set_section_flags (stdoutput, sec, flags);
3672 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3673
3674 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3675 }
3676 else
3677 {
3678 /* The 64-bit ABI uses a .MIPS.options section rather than
3679 .reginfo section. */
3680 sec = subseg_new (".MIPS.options", (subsegT) 0);
3681 bfd_set_section_flags (stdoutput, sec, flags);
3682 bfd_set_section_alignment (stdoutput, sec, 3);
3683
3684 /* Set up the option header. */
3685 {
3686 Elf_Internal_Options opthdr;
3687 char *f;
3688
3689 opthdr.kind = ODK_REGINFO;
3690 opthdr.size = (sizeof (Elf_External_Options)
3691 + sizeof (Elf64_External_RegInfo));
3692 opthdr.section = 0;
3693 opthdr.info = 0;
3694 f = frag_more (sizeof (Elf_External_Options));
3695 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3696 (Elf_External_Options *) f);
3697
3698 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3699 }
3700 }
3701
3702 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3703 bfd_set_section_flags (stdoutput, sec,
3704 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3705 bfd_set_section_alignment (stdoutput, sec, 3);
3706 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3707
3708 if (ECOFF_DEBUGGING)
3709 {
3710 sec = subseg_new (".mdebug", (subsegT) 0);
3711 (void) bfd_set_section_flags (stdoutput, sec,
3712 SEC_HAS_CONTENTS | SEC_READONLY);
3713 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3714 }
3715 else if (mips_flag_pdr)
3716 {
3717 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3718 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3719 SEC_READONLY | SEC_RELOC
3720 | SEC_DEBUGGING);
3721 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3722 }
3723
3724 subseg_set (seg, subseg);
3725 }
3726
3727 if (mips_fix_vr4120)
3728 init_vr4120_conflicts ();
3729 }
3730
3731 static inline void
3732 fpabi_incompatible_with (int fpabi, const char *what)
3733 {
3734 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3735 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3736 }
3737
3738 static inline void
3739 fpabi_requires (int fpabi, const char *what)
3740 {
3741 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3742 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3743 }
3744
3745 /* Check -mabi and register sizes against the specified FP ABI. */
3746 static void
3747 check_fpabi (int fpabi)
3748 {
3749 switch (fpabi)
3750 {
3751 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3752 if (file_mips_opts.soft_float)
3753 fpabi_incompatible_with (fpabi, "softfloat");
3754 else if (file_mips_opts.single_float)
3755 fpabi_incompatible_with (fpabi, "singlefloat");
3756 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3757 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3758 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3759 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3760 break;
3761
3762 case Val_GNU_MIPS_ABI_FP_XX:
3763 if (mips_abi != O32_ABI)
3764 fpabi_requires (fpabi, "-mabi=32");
3765 else if (file_mips_opts.soft_float)
3766 fpabi_incompatible_with (fpabi, "softfloat");
3767 else if (file_mips_opts.single_float)
3768 fpabi_incompatible_with (fpabi, "singlefloat");
3769 else if (file_mips_opts.fp != 0)
3770 fpabi_requires (fpabi, "fp=xx");
3771 break;
3772
3773 case Val_GNU_MIPS_ABI_FP_64A:
3774 case Val_GNU_MIPS_ABI_FP_64:
3775 if (mips_abi != O32_ABI)
3776 fpabi_requires (fpabi, "-mabi=32");
3777 else if (file_mips_opts.soft_float)
3778 fpabi_incompatible_with (fpabi, "softfloat");
3779 else if (file_mips_opts.single_float)
3780 fpabi_incompatible_with (fpabi, "singlefloat");
3781 else if (file_mips_opts.fp != 64)
3782 fpabi_requires (fpabi, "fp=64");
3783 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3784 fpabi_incompatible_with (fpabi, "nooddspreg");
3785 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3786 fpabi_requires (fpabi, "nooddspreg");
3787 break;
3788
3789 case Val_GNU_MIPS_ABI_FP_SINGLE:
3790 if (file_mips_opts.soft_float)
3791 fpabi_incompatible_with (fpabi, "softfloat");
3792 else if (!file_mips_opts.single_float)
3793 fpabi_requires (fpabi, "singlefloat");
3794 break;
3795
3796 case Val_GNU_MIPS_ABI_FP_SOFT:
3797 if (!file_mips_opts.soft_float)
3798 fpabi_requires (fpabi, "softfloat");
3799 break;
3800
3801 case Val_GNU_MIPS_ABI_FP_OLD_64:
3802 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3803 Tag_GNU_MIPS_ABI_FP, fpabi);
3804 break;
3805
3806 case Val_GNU_MIPS_ABI_FP_NAN2008:
3807 /* Silently ignore compatibility value. */
3808 break;
3809
3810 default:
3811 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3812 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3813 break;
3814 }
3815 }
3816
3817 /* Perform consistency checks on the current options. */
3818
3819 static void
3820 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3821 {
3822 /* Check the size of integer registers agrees with the ABI and ISA. */
3823 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3824 as_bad (_("`gp=64' used with a 32-bit processor"));
3825 else if (abi_checks
3826 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3827 as_bad (_("`gp=32' used with a 64-bit ABI"));
3828 else if (abi_checks
3829 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3830 as_bad (_("`gp=64' used with a 32-bit ABI"));
3831
3832 /* Check the size of the float registers agrees with the ABI and ISA. */
3833 switch (opts->fp)
3834 {
3835 case 0:
3836 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3837 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3838 else if (opts->single_float == 1)
3839 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3840 break;
3841 case 64:
3842 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3843 as_bad (_("`fp=64' used with a 32-bit fpu"));
3844 else if (abi_checks
3845 && ABI_NEEDS_32BIT_REGS (mips_abi)
3846 && !ISA_HAS_MXHC1 (opts->isa))
3847 as_warn (_("`fp=64' used with a 32-bit ABI"));
3848 break;
3849 case 32:
3850 if (abi_checks
3851 && ABI_NEEDS_64BIT_REGS (mips_abi))
3852 as_warn (_("`fp=32' used with a 64-bit ABI"));
3853 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3854 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3855 break;
3856 default:
3857 as_bad (_("Unknown size of floating point registers"));
3858 break;
3859 }
3860
3861 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3862 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3863
3864 if (opts->micromips == 1 && opts->mips16 == 1)
3865 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3866 else if (ISA_IS_R6 (opts->isa)
3867 && (opts->micromips == 1
3868 || opts->mips16 == 1))
3869 as_fatal (_("`%s' cannot be used with `%s'"),
3870 opts->micromips ? "micromips" : "mips16",
3871 mips_cpu_info_from_isa (opts->isa)->name);
3872
3873 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3874 as_fatal (_("branch relaxation is not supported in `%s'"),
3875 mips_cpu_info_from_isa (opts->isa)->name);
3876 }
3877
3878 /* Perform consistency checks on the module level options exactly once.
3879 This is a deferred check that happens:
3880 at the first .set directive
3881 or, at the first pseudo op that generates code (inc .dc.a)
3882 or, at the first instruction
3883 or, at the end. */
3884
3885 static void
3886 file_mips_check_options (void)
3887 {
3888 const struct mips_cpu_info *arch_info = 0;
3889
3890 if (file_mips_opts_checked)
3891 return;
3892
3893 /* The following code determines the register size.
3894 Similar code was added to GCC 3.3 (see override_options() in
3895 config/mips/mips.c). The GAS and GCC code should be kept in sync
3896 as much as possible. */
3897
3898 if (file_mips_opts.gp < 0)
3899 {
3900 /* Infer the integer register size from the ABI and processor.
3901 Restrict ourselves to 32-bit registers if that's all the
3902 processor has, or if the ABI cannot handle 64-bit registers. */
3903 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3904 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3905 ? 32 : 64;
3906 }
3907
3908 if (file_mips_opts.fp < 0)
3909 {
3910 /* No user specified float register size.
3911 ??? GAS treats single-float processors as though they had 64-bit
3912 float registers (although it complains when double-precision
3913 instructions are used). As things stand, saying they have 32-bit
3914 registers would lead to spurious "register must be even" messages.
3915 So here we assume float registers are never smaller than the
3916 integer ones. */
3917 if (file_mips_opts.gp == 64)
3918 /* 64-bit integer registers implies 64-bit float registers. */
3919 file_mips_opts.fp = 64;
3920 else if ((file_mips_opts.ase & FP64_ASES)
3921 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3922 /* Handle ASEs that require 64-bit float registers, if possible. */
3923 file_mips_opts.fp = 64;
3924 else if (ISA_IS_R6 (mips_opts.isa))
3925 /* R6 implies 64-bit float registers. */
3926 file_mips_opts.fp = 64;
3927 else
3928 /* 32-bit float registers. */
3929 file_mips_opts.fp = 32;
3930 }
3931
3932 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3933
3934 /* Disable operations on odd-numbered floating-point registers by default
3935 when using the FPXX ABI. */
3936 if (file_mips_opts.oddspreg < 0)
3937 {
3938 if (file_mips_opts.fp == 0)
3939 file_mips_opts.oddspreg = 0;
3940 else
3941 file_mips_opts.oddspreg = 1;
3942 }
3943
3944 /* End of GCC-shared inference code. */
3945
3946 /* This flag is set when we have a 64-bit capable CPU but use only
3947 32-bit wide registers. Note that EABI does not use it. */
3948 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3949 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3950 || mips_abi == O32_ABI))
3951 mips_32bitmode = 1;
3952
3953 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3954 as_bad (_("trap exception not supported at ISA 1"));
3955
3956 /* If the selected architecture includes support for ASEs, enable
3957 generation of code for them. */
3958 if (file_mips_opts.mips16 == -1)
3959 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3960 if (file_mips_opts.micromips == -1)
3961 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3962 ? 1 : 0;
3963
3964 if (mips_nan2008 == -1)
3965 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3966 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3967 as_fatal (_("`%s' does not support legacy NaN"),
3968 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3969
3970 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3971 being selected implicitly. */
3972 if (file_mips_opts.fp != 64)
3973 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3974
3975 /* If the user didn't explicitly select or deselect a particular ASE,
3976 use the default setting for the CPU. */
3977 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3978
3979 /* Set up the current options. These may change throughout assembly. */
3980 mips_opts = file_mips_opts;
3981
3982 mips_check_isa_supports_ases ();
3983 mips_check_options (&file_mips_opts, TRUE);
3984 file_mips_opts_checked = TRUE;
3985
3986 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3987 as_warn (_("could not set architecture and machine"));
3988 }
3989
3990 void
3991 md_assemble (char *str)
3992 {
3993 struct mips_cl_insn insn;
3994 bfd_reloc_code_real_type unused_reloc[3]
3995 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3996
3997 file_mips_check_options ();
3998
3999 imm_expr.X_op = O_absent;
4000 offset_expr.X_op = O_absent;
4001 offset_reloc[0] = BFD_RELOC_UNUSED;
4002 offset_reloc[1] = BFD_RELOC_UNUSED;
4003 offset_reloc[2] = BFD_RELOC_UNUSED;
4004
4005 mips_mark_labels ();
4006 mips_assembling_insn = TRUE;
4007 clear_insn_error ();
4008
4009 if (mips_opts.mips16)
4010 mips16_ip (str, &insn);
4011 else
4012 {
4013 mips_ip (str, &insn);
4014 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4015 str, insn.insn_opcode));
4016 }
4017
4018 if (insn_error.msg)
4019 report_insn_error (str);
4020 else if (insn.insn_mo->pinfo == INSN_MACRO)
4021 {
4022 macro_start ();
4023 if (mips_opts.mips16)
4024 mips16_macro (&insn);
4025 else
4026 macro (&insn, str);
4027 macro_end ();
4028 }
4029 else
4030 {
4031 if (offset_expr.X_op != O_absent)
4032 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4033 else
4034 append_insn (&insn, NULL, unused_reloc, FALSE);
4035 }
4036
4037 mips_assembling_insn = FALSE;
4038 }
4039
4040 /* Convenience functions for abstracting away the differences between
4041 MIPS16 and non-MIPS16 relocations. */
4042
4043 static inline bfd_boolean
4044 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4045 {
4046 switch (reloc)
4047 {
4048 case BFD_RELOC_MIPS16_JMP:
4049 case BFD_RELOC_MIPS16_GPREL:
4050 case BFD_RELOC_MIPS16_GOT16:
4051 case BFD_RELOC_MIPS16_CALL16:
4052 case BFD_RELOC_MIPS16_HI16_S:
4053 case BFD_RELOC_MIPS16_HI16:
4054 case BFD_RELOC_MIPS16_LO16:
4055 return TRUE;
4056
4057 default:
4058 return FALSE;
4059 }
4060 }
4061
4062 static inline bfd_boolean
4063 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4064 {
4065 switch (reloc)
4066 {
4067 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4068 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4069 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4070 case BFD_RELOC_MICROMIPS_GPREL16:
4071 case BFD_RELOC_MICROMIPS_JMP:
4072 case BFD_RELOC_MICROMIPS_HI16:
4073 case BFD_RELOC_MICROMIPS_HI16_S:
4074 case BFD_RELOC_MICROMIPS_LO16:
4075 case BFD_RELOC_MICROMIPS_LITERAL:
4076 case BFD_RELOC_MICROMIPS_GOT16:
4077 case BFD_RELOC_MICROMIPS_CALL16:
4078 case BFD_RELOC_MICROMIPS_GOT_HI16:
4079 case BFD_RELOC_MICROMIPS_GOT_LO16:
4080 case BFD_RELOC_MICROMIPS_CALL_HI16:
4081 case BFD_RELOC_MICROMIPS_CALL_LO16:
4082 case BFD_RELOC_MICROMIPS_SUB:
4083 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4084 case BFD_RELOC_MICROMIPS_GOT_OFST:
4085 case BFD_RELOC_MICROMIPS_GOT_DISP:
4086 case BFD_RELOC_MICROMIPS_HIGHEST:
4087 case BFD_RELOC_MICROMIPS_HIGHER:
4088 case BFD_RELOC_MICROMIPS_SCN_DISP:
4089 case BFD_RELOC_MICROMIPS_JALR:
4090 return TRUE;
4091
4092 default:
4093 return FALSE;
4094 }
4095 }
4096
4097 static inline bfd_boolean
4098 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4099 {
4100 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4101 }
4102
4103 static inline bfd_boolean
4104 got16_reloc_p (bfd_reloc_code_real_type reloc)
4105 {
4106 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4107 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4108 }
4109
4110 static inline bfd_boolean
4111 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4112 {
4113 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4114 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4115 }
4116
4117 static inline bfd_boolean
4118 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4119 {
4120 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4121 || reloc == BFD_RELOC_MICROMIPS_LO16);
4122 }
4123
4124 static inline bfd_boolean
4125 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4126 {
4127 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4128 }
4129
4130 static inline bfd_boolean
4131 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4132 {
4133 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4134 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4135 }
4136
4137 /* Return true if RELOC is a PC-relative relocation that does not have
4138 full address range. */
4139
4140 static inline bfd_boolean
4141 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4142 {
4143 switch (reloc)
4144 {
4145 case BFD_RELOC_16_PCREL_S2:
4146 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4147 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4148 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4149 case BFD_RELOC_MIPS_21_PCREL_S2:
4150 case BFD_RELOC_MIPS_26_PCREL_S2:
4151 case BFD_RELOC_MIPS_18_PCREL_S3:
4152 case BFD_RELOC_MIPS_19_PCREL_S2:
4153 return TRUE;
4154
4155 case BFD_RELOC_32_PCREL:
4156 case BFD_RELOC_HI16_S_PCREL:
4157 case BFD_RELOC_LO16_PCREL:
4158 return HAVE_64BIT_ADDRESSES;
4159
4160 default:
4161 return FALSE;
4162 }
4163 }
4164
4165 /* Return true if the given relocation might need a matching %lo().
4166 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4167 need a matching %lo() when applied to local symbols. */
4168
4169 static inline bfd_boolean
4170 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4171 {
4172 return (HAVE_IN_PLACE_ADDENDS
4173 && (hi16_reloc_p (reloc)
4174 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4175 all GOT16 relocations evaluate to "G". */
4176 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4177 }
4178
4179 /* Return the type of %lo() reloc needed by RELOC, given that
4180 reloc_needs_lo_p. */
4181
4182 static inline bfd_reloc_code_real_type
4183 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4184 {
4185 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4186 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4187 : BFD_RELOC_LO16));
4188 }
4189
4190 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4191 relocation. */
4192
4193 static inline bfd_boolean
4194 fixup_has_matching_lo_p (fixS *fixp)
4195 {
4196 return (fixp->fx_next != NULL
4197 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4198 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4199 && fixp->fx_offset == fixp->fx_next->fx_offset);
4200 }
4201
4202 /* Move all labels in LABELS to the current insertion point. TEXT_P
4203 says whether the labels refer to text or data. */
4204
4205 static void
4206 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4207 {
4208 struct insn_label_list *l;
4209 valueT val;
4210
4211 for (l = labels; l != NULL; l = l->next)
4212 {
4213 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4214 symbol_set_frag (l->label, frag_now);
4215 val = (valueT) frag_now_fix ();
4216 /* MIPS16/microMIPS text labels are stored as odd. */
4217 if (text_p && HAVE_CODE_COMPRESSION)
4218 ++val;
4219 S_SET_VALUE (l->label, val);
4220 }
4221 }
4222
4223 /* Move all labels in insn_labels to the current insertion point
4224 and treat them as text labels. */
4225
4226 static void
4227 mips_move_text_labels (void)
4228 {
4229 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4230 }
4231
4232 static bfd_boolean
4233 s_is_linkonce (symbolS *sym, segT from_seg)
4234 {
4235 bfd_boolean linkonce = FALSE;
4236 segT symseg = S_GET_SEGMENT (sym);
4237
4238 if (symseg != from_seg && !S_IS_LOCAL (sym))
4239 {
4240 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4241 linkonce = TRUE;
4242 /* The GNU toolchain uses an extension for ELF: a section
4243 beginning with the magic string .gnu.linkonce is a
4244 linkonce section. */
4245 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4246 sizeof ".gnu.linkonce" - 1) == 0)
4247 linkonce = TRUE;
4248 }
4249 return linkonce;
4250 }
4251
4252 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4253 linker to handle them specially, such as generating jalx instructions
4254 when needed. We also make them odd for the duration of the assembly,
4255 in order to generate the right sort of code. We will make them even
4256 in the adjust_symtab routine, while leaving them marked. This is
4257 convenient for the debugger and the disassembler. The linker knows
4258 to make them odd again. */
4259
4260 static void
4261 mips_compressed_mark_label (symbolS *label)
4262 {
4263 gas_assert (HAVE_CODE_COMPRESSION);
4264
4265 if (mips_opts.mips16)
4266 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4267 else
4268 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4269 if ((S_GET_VALUE (label) & 1) == 0
4270 /* Don't adjust the address if the label is global or weak, or
4271 in a link-once section, since we'll be emitting symbol reloc
4272 references to it which will be patched up by the linker, and
4273 the final value of the symbol may or may not be MIPS16/microMIPS. */
4274 && !S_IS_WEAK (label)
4275 && !S_IS_EXTERNAL (label)
4276 && !s_is_linkonce (label, now_seg))
4277 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4278 }
4279
4280 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4281
4282 static void
4283 mips_compressed_mark_labels (void)
4284 {
4285 struct insn_label_list *l;
4286
4287 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4288 mips_compressed_mark_label (l->label);
4289 }
4290
4291 /* End the current frag. Make it a variant frag and record the
4292 relaxation info. */
4293
4294 static void
4295 relax_close_frag (void)
4296 {
4297 mips_macro_warning.first_frag = frag_now;
4298 frag_var (rs_machine_dependent, 0, 0,
4299 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4300 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4301
4302 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4303 mips_relax.first_fixup = 0;
4304 }
4305
4306 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4307 See the comment above RELAX_ENCODE for more details. */
4308
4309 static void
4310 relax_start (symbolS *symbol)
4311 {
4312 gas_assert (mips_relax.sequence == 0);
4313 mips_relax.sequence = 1;
4314 mips_relax.symbol = symbol;
4315 }
4316
4317 /* Start generating the second version of a relaxable sequence.
4318 See the comment above RELAX_ENCODE for more details. */
4319
4320 static void
4321 relax_switch (void)
4322 {
4323 gas_assert (mips_relax.sequence == 1);
4324 mips_relax.sequence = 2;
4325 }
4326
4327 /* End the current relaxable sequence. */
4328
4329 static void
4330 relax_end (void)
4331 {
4332 gas_assert (mips_relax.sequence == 2);
4333 relax_close_frag ();
4334 mips_relax.sequence = 0;
4335 }
4336
4337 /* Return true if IP is a delayed branch or jump. */
4338
4339 static inline bfd_boolean
4340 delayed_branch_p (const struct mips_cl_insn *ip)
4341 {
4342 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4343 | INSN_COND_BRANCH_DELAY
4344 | INSN_COND_BRANCH_LIKELY)) != 0;
4345 }
4346
4347 /* Return true if IP is a compact branch or jump. */
4348
4349 static inline bfd_boolean
4350 compact_branch_p (const struct mips_cl_insn *ip)
4351 {
4352 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4353 | INSN2_COND_BRANCH)) != 0;
4354 }
4355
4356 /* Return true if IP is an unconditional branch or jump. */
4357
4358 static inline bfd_boolean
4359 uncond_branch_p (const struct mips_cl_insn *ip)
4360 {
4361 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4362 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4363 }
4364
4365 /* Return true if IP is a branch-likely instruction. */
4366
4367 static inline bfd_boolean
4368 branch_likely_p (const struct mips_cl_insn *ip)
4369 {
4370 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4371 }
4372
4373 /* Return the type of nop that should be used to fill the delay slot
4374 of delayed branch IP. */
4375
4376 static struct mips_cl_insn *
4377 get_delay_slot_nop (const struct mips_cl_insn *ip)
4378 {
4379 if (mips_opts.micromips
4380 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4381 return &micromips_nop32_insn;
4382 return NOP_INSN;
4383 }
4384
4385 /* Return a mask that has bit N set if OPCODE reads the register(s)
4386 in operand N. */
4387
4388 static unsigned int
4389 insn_read_mask (const struct mips_opcode *opcode)
4390 {
4391 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4392 }
4393
4394 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4395 in operand N. */
4396
4397 static unsigned int
4398 insn_write_mask (const struct mips_opcode *opcode)
4399 {
4400 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4401 }
4402
4403 /* Return a mask of the registers specified by operand OPERAND of INSN.
4404 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4405 is set. */
4406
4407 static unsigned int
4408 operand_reg_mask (const struct mips_cl_insn *insn,
4409 const struct mips_operand *operand,
4410 unsigned int type_mask)
4411 {
4412 unsigned int uval, vsel;
4413
4414 switch (operand->type)
4415 {
4416 case OP_INT:
4417 case OP_MAPPED_INT:
4418 case OP_MSB:
4419 case OP_PCREL:
4420 case OP_PERF_REG:
4421 case OP_ADDIUSP_INT:
4422 case OP_ENTRY_EXIT_LIST:
4423 case OP_REPEAT_DEST_REG:
4424 case OP_REPEAT_PREV_REG:
4425 case OP_PC:
4426 case OP_VU0_SUFFIX:
4427 case OP_VU0_MATCH_SUFFIX:
4428 case OP_IMM_INDEX:
4429 abort ();
4430
4431 case OP_REG:
4432 case OP_OPTIONAL_REG:
4433 {
4434 const struct mips_reg_operand *reg_op;
4435
4436 reg_op = (const struct mips_reg_operand *) operand;
4437 if (!(type_mask & (1 << reg_op->reg_type)))
4438 return 0;
4439 uval = insn_extract_operand (insn, operand);
4440 return 1 << mips_decode_reg_operand (reg_op, uval);
4441 }
4442
4443 case OP_REG_PAIR:
4444 {
4445 const struct mips_reg_pair_operand *pair_op;
4446
4447 pair_op = (const struct mips_reg_pair_operand *) operand;
4448 if (!(type_mask & (1 << pair_op->reg_type)))
4449 return 0;
4450 uval = insn_extract_operand (insn, operand);
4451 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4452 }
4453
4454 case OP_CLO_CLZ_DEST:
4455 if (!(type_mask & (1 << OP_REG_GP)))
4456 return 0;
4457 uval = insn_extract_operand (insn, operand);
4458 return (1 << (uval & 31)) | (1 << (uval >> 5));
4459
4460 case OP_SAME_RS_RT:
4461 if (!(type_mask & (1 << OP_REG_GP)))
4462 return 0;
4463 uval = insn_extract_operand (insn, operand);
4464 gas_assert ((uval & 31) == (uval >> 5));
4465 return 1 << (uval & 31);
4466
4467 case OP_CHECK_PREV:
4468 case OP_NON_ZERO_REG:
4469 if (!(type_mask & (1 << OP_REG_GP)))
4470 return 0;
4471 uval = insn_extract_operand (insn, operand);
4472 return 1 << (uval & 31);
4473
4474 case OP_LWM_SWM_LIST:
4475 abort ();
4476
4477 case OP_SAVE_RESTORE_LIST:
4478 abort ();
4479
4480 case OP_MDMX_IMM_REG:
4481 if (!(type_mask & (1 << OP_REG_VEC)))
4482 return 0;
4483 uval = insn_extract_operand (insn, operand);
4484 vsel = uval >> 5;
4485 if ((vsel & 0x18) == 0x18)
4486 return 0;
4487 return 1 << (uval & 31);
4488
4489 case OP_REG_INDEX:
4490 if (!(type_mask & (1 << OP_REG_GP)))
4491 return 0;
4492 return 1 << insn_extract_operand (insn, operand);
4493 }
4494 abort ();
4495 }
4496
4497 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4498 where bit N of OPNO_MASK is set if operand N should be included.
4499 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4500 is set. */
4501
4502 static unsigned int
4503 insn_reg_mask (const struct mips_cl_insn *insn,
4504 unsigned int type_mask, unsigned int opno_mask)
4505 {
4506 unsigned int opno, reg_mask;
4507
4508 opno = 0;
4509 reg_mask = 0;
4510 while (opno_mask != 0)
4511 {
4512 if (opno_mask & 1)
4513 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4514 opno_mask >>= 1;
4515 opno += 1;
4516 }
4517 return reg_mask;
4518 }
4519
4520 /* Return the mask of core registers that IP reads. */
4521
4522 static unsigned int
4523 gpr_read_mask (const struct mips_cl_insn *ip)
4524 {
4525 unsigned long pinfo, pinfo2;
4526 unsigned int mask;
4527
4528 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4529 pinfo = ip->insn_mo->pinfo;
4530 pinfo2 = ip->insn_mo->pinfo2;
4531 if (pinfo & INSN_UDI)
4532 {
4533 /* UDI instructions have traditionally been assumed to read RS
4534 and RT. */
4535 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4536 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4537 }
4538 if (pinfo & INSN_READ_GPR_24)
4539 mask |= 1 << 24;
4540 if (pinfo2 & INSN2_READ_GPR_16)
4541 mask |= 1 << 16;
4542 if (pinfo2 & INSN2_READ_SP)
4543 mask |= 1 << SP;
4544 if (pinfo2 & INSN2_READ_GPR_31)
4545 mask |= 1 << 31;
4546 /* Don't include register 0. */
4547 return mask & ~1;
4548 }
4549
4550 /* Return the mask of core registers that IP writes. */
4551
4552 static unsigned int
4553 gpr_write_mask (const struct mips_cl_insn *ip)
4554 {
4555 unsigned long pinfo, pinfo2;
4556 unsigned int mask;
4557
4558 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4559 pinfo = ip->insn_mo->pinfo;
4560 pinfo2 = ip->insn_mo->pinfo2;
4561 if (pinfo & INSN_WRITE_GPR_24)
4562 mask |= 1 << 24;
4563 if (pinfo & INSN_WRITE_GPR_31)
4564 mask |= 1 << 31;
4565 if (pinfo & INSN_UDI)
4566 /* UDI instructions have traditionally been assumed to write to RD. */
4567 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4568 if (pinfo2 & INSN2_WRITE_SP)
4569 mask |= 1 << SP;
4570 /* Don't include register 0. */
4571 return mask & ~1;
4572 }
4573
4574 /* Return the mask of floating-point registers that IP reads. */
4575
4576 static unsigned int
4577 fpr_read_mask (const struct mips_cl_insn *ip)
4578 {
4579 unsigned long pinfo;
4580 unsigned int mask;
4581
4582 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4583 | (1 << OP_REG_MSA)),
4584 insn_read_mask (ip->insn_mo));
4585 pinfo = ip->insn_mo->pinfo;
4586 /* Conservatively treat all operands to an FP_D instruction are doubles.
4587 (This is overly pessimistic for things like cvt.d.s.) */
4588 if (FPR_SIZE != 64 && (pinfo & FP_D))
4589 mask |= mask << 1;
4590 return mask;
4591 }
4592
4593 /* Return the mask of floating-point registers that IP writes. */
4594
4595 static unsigned int
4596 fpr_write_mask (const struct mips_cl_insn *ip)
4597 {
4598 unsigned long pinfo;
4599 unsigned int mask;
4600
4601 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4602 | (1 << OP_REG_MSA)),
4603 insn_write_mask (ip->insn_mo));
4604 pinfo = ip->insn_mo->pinfo;
4605 /* Conservatively treat all operands to an FP_D instruction are doubles.
4606 (This is overly pessimistic for things like cvt.s.d.) */
4607 if (FPR_SIZE != 64 && (pinfo & FP_D))
4608 mask |= mask << 1;
4609 return mask;
4610 }
4611
4612 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4613 Check whether that is allowed. */
4614
4615 static bfd_boolean
4616 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4617 {
4618 const char *s = insn->name;
4619 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4620 || FPR_SIZE == 64)
4621 && mips_opts.oddspreg;
4622
4623 if (insn->pinfo == INSN_MACRO)
4624 /* Let a macro pass, we'll catch it later when it is expanded. */
4625 return TRUE;
4626
4627 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4628 otherwise it depends on oddspreg. */
4629 if ((insn->pinfo & FP_S)
4630 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4631 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4632 return FPR_SIZE == 32 || oddspreg;
4633
4634 /* Allow odd registers for single-precision ops and double-precision if the
4635 floating-point registers are 64-bit wide. */
4636 switch (insn->pinfo & (FP_S | FP_D))
4637 {
4638 case FP_S:
4639 case 0:
4640 return oddspreg;
4641 case FP_D:
4642 return FPR_SIZE == 64;
4643 default:
4644 break;
4645 }
4646
4647 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4648 s = strchr (insn->name, '.');
4649 if (s != NULL && opnum == 2)
4650 s = strchr (s + 1, '.');
4651 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4652 return oddspreg;
4653
4654 return FPR_SIZE == 64;
4655 }
4656
4657 /* Information about an instruction argument that we're trying to match. */
4658 struct mips_arg_info
4659 {
4660 /* The instruction so far. */
4661 struct mips_cl_insn *insn;
4662
4663 /* The first unconsumed operand token. */
4664 struct mips_operand_token *token;
4665
4666 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4667 int opnum;
4668
4669 /* The 1-based argument number, for error reporting. This does not
4670 count elided optional registers, etc.. */
4671 int argnum;
4672
4673 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4674 unsigned int last_regno;
4675
4676 /* If the first operand was an OP_REG, this is the register that it
4677 specified, otherwise it is ILLEGAL_REG. */
4678 unsigned int dest_regno;
4679
4680 /* The value of the last OP_INT operand. Only used for OP_MSB,
4681 where it gives the lsb position. */
4682 unsigned int last_op_int;
4683
4684 /* If true, match routines should assume that no later instruction
4685 alternative matches and should therefore be as accomodating as
4686 possible. Match routines should not report errors if something
4687 is only invalid for !LAX_MATCH. */
4688 bfd_boolean lax_match;
4689
4690 /* True if a reference to the current AT register was seen. */
4691 bfd_boolean seen_at;
4692 };
4693
4694 /* Record that the argument is out of range. */
4695
4696 static void
4697 match_out_of_range (struct mips_arg_info *arg)
4698 {
4699 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4700 }
4701
4702 /* Record that the argument isn't constant but needs to be. */
4703
4704 static void
4705 match_not_constant (struct mips_arg_info *arg)
4706 {
4707 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4708 arg->argnum);
4709 }
4710
4711 /* Try to match an OT_CHAR token for character CH. Consume the token
4712 and return true on success, otherwise return false. */
4713
4714 static bfd_boolean
4715 match_char (struct mips_arg_info *arg, char ch)
4716 {
4717 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4718 {
4719 ++arg->token;
4720 if (ch == ',')
4721 arg->argnum += 1;
4722 return TRUE;
4723 }
4724 return FALSE;
4725 }
4726
4727 /* Try to get an expression from the next tokens in ARG. Consume the
4728 tokens and return true on success, storing the expression value in
4729 VALUE and relocation types in R. */
4730
4731 static bfd_boolean
4732 match_expression (struct mips_arg_info *arg, expressionS *value,
4733 bfd_reloc_code_real_type *r)
4734 {
4735 /* If the next token is a '(' that was parsed as being part of a base
4736 expression, assume we have an elided offset. The later match will fail
4737 if this turns out to be wrong. */
4738 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4739 {
4740 value->X_op = O_constant;
4741 value->X_add_number = 0;
4742 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4743 return TRUE;
4744 }
4745
4746 /* Reject register-based expressions such as "0+$2" and "(($2))".
4747 For plain registers the default error seems more appropriate. */
4748 if (arg->token->type == OT_INTEGER
4749 && arg->token->u.integer.value.X_op == O_register)
4750 {
4751 set_insn_error (arg->argnum, _("register value used as expression"));
4752 return FALSE;
4753 }
4754
4755 if (arg->token->type == OT_INTEGER)
4756 {
4757 *value = arg->token->u.integer.value;
4758 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4759 ++arg->token;
4760 return TRUE;
4761 }
4762
4763 set_insn_error_i
4764 (arg->argnum, _("operand %d must be an immediate expression"),
4765 arg->argnum);
4766 return FALSE;
4767 }
4768
4769 /* Try to get a constant expression from the next tokens in ARG. Consume
4770 the tokens and return return true on success, storing the constant value
4771 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4772 error. */
4773
4774 static bfd_boolean
4775 match_const_int (struct mips_arg_info *arg, offsetT *value)
4776 {
4777 expressionS ex;
4778 bfd_reloc_code_real_type r[3];
4779
4780 if (!match_expression (arg, &ex, r))
4781 return FALSE;
4782
4783 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4784 *value = ex.X_add_number;
4785 else
4786 {
4787 match_not_constant (arg);
4788 return FALSE;
4789 }
4790 return TRUE;
4791 }
4792
4793 /* Return the RTYPE_* flags for a register operand of type TYPE that
4794 appears in instruction OPCODE. */
4795
4796 static unsigned int
4797 convert_reg_type (const struct mips_opcode *opcode,
4798 enum mips_reg_operand_type type)
4799 {
4800 switch (type)
4801 {
4802 case OP_REG_GP:
4803 return RTYPE_NUM | RTYPE_GP;
4804
4805 case OP_REG_FP:
4806 /* Allow vector register names for MDMX if the instruction is a 64-bit
4807 FPR load, store or move (including moves to and from GPRs). */
4808 if ((mips_opts.ase & ASE_MDMX)
4809 && (opcode->pinfo & FP_D)
4810 && (opcode->pinfo & (INSN_COPROC_MOVE
4811 | INSN_COPROC_MEMORY_DELAY
4812 | INSN_LOAD_COPROC
4813 | INSN_LOAD_MEMORY
4814 | INSN_STORE_MEMORY)))
4815 return RTYPE_FPU | RTYPE_VEC;
4816 return RTYPE_FPU;
4817
4818 case OP_REG_CCC:
4819 if (opcode->pinfo & (FP_D | FP_S))
4820 return RTYPE_CCC | RTYPE_FCC;
4821 return RTYPE_CCC;
4822
4823 case OP_REG_VEC:
4824 if (opcode->membership & INSN_5400)
4825 return RTYPE_FPU;
4826 return RTYPE_FPU | RTYPE_VEC;
4827
4828 case OP_REG_ACC:
4829 return RTYPE_ACC;
4830
4831 case OP_REG_COPRO:
4832 if (opcode->name[strlen (opcode->name) - 1] == '0')
4833 return RTYPE_NUM | RTYPE_CP0;
4834 return RTYPE_NUM;
4835
4836 case OP_REG_HW:
4837 return RTYPE_NUM;
4838
4839 case OP_REG_VI:
4840 return RTYPE_NUM | RTYPE_VI;
4841
4842 case OP_REG_VF:
4843 return RTYPE_NUM | RTYPE_VF;
4844
4845 case OP_REG_R5900_I:
4846 return RTYPE_R5900_I;
4847
4848 case OP_REG_R5900_Q:
4849 return RTYPE_R5900_Q;
4850
4851 case OP_REG_R5900_R:
4852 return RTYPE_R5900_R;
4853
4854 case OP_REG_R5900_ACC:
4855 return RTYPE_R5900_ACC;
4856
4857 case OP_REG_MSA:
4858 return RTYPE_MSA;
4859
4860 case OP_REG_MSA_CTRL:
4861 return RTYPE_NUM;
4862 }
4863 abort ();
4864 }
4865
4866 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4867
4868 static void
4869 check_regno (struct mips_arg_info *arg,
4870 enum mips_reg_operand_type type, unsigned int regno)
4871 {
4872 if (AT && type == OP_REG_GP && regno == AT)
4873 arg->seen_at = TRUE;
4874
4875 if (type == OP_REG_FP
4876 && (regno & 1) != 0
4877 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4878 {
4879 /* This was a warning prior to introducing O32 FPXX and FP64 support
4880 so maintain a warning for FP32 but raise an error for the new
4881 cases. */
4882 if (FPR_SIZE == 32)
4883 as_warn (_("float register should be even, was %d"), regno);
4884 else
4885 as_bad (_("float register should be even, was %d"), regno);
4886 }
4887
4888 if (type == OP_REG_CCC)
4889 {
4890 const char *name;
4891 size_t length;
4892
4893 name = arg->insn->insn_mo->name;
4894 length = strlen (name);
4895 if ((regno & 1) != 0
4896 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4897 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4898 as_warn (_("condition code register should be even for %s, was %d"),
4899 name, regno);
4900
4901 if ((regno & 3) != 0
4902 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4903 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4904 name, regno);
4905 }
4906 }
4907
4908 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4909 a register of type TYPE. Return true on success, storing the register
4910 number in *REGNO and warning about any dubious uses. */
4911
4912 static bfd_boolean
4913 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4914 unsigned int symval, unsigned int *regno)
4915 {
4916 if (type == OP_REG_VEC)
4917 symval = mips_prefer_vec_regno (symval);
4918 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4919 return FALSE;
4920
4921 *regno = symval & RNUM_MASK;
4922 check_regno (arg, type, *regno);
4923 return TRUE;
4924 }
4925
4926 /* Try to interpret the next token in ARG as a register of type TYPE.
4927 Consume the token and return true on success, storing the register
4928 number in *REGNO. Return false on failure. */
4929
4930 static bfd_boolean
4931 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4932 unsigned int *regno)
4933 {
4934 if (arg->token->type == OT_REG
4935 && match_regno (arg, type, arg->token->u.regno, regno))
4936 {
4937 ++arg->token;
4938 return TRUE;
4939 }
4940 return FALSE;
4941 }
4942
4943 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4944 Consume the token and return true on success, storing the register numbers
4945 in *REGNO1 and *REGNO2. Return false on failure. */
4946
4947 static bfd_boolean
4948 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4949 unsigned int *regno1, unsigned int *regno2)
4950 {
4951 if (match_reg (arg, type, regno1))
4952 {
4953 *regno2 = *regno1;
4954 return TRUE;
4955 }
4956 if (arg->token->type == OT_REG_RANGE
4957 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4958 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4959 && *regno1 <= *regno2)
4960 {
4961 ++arg->token;
4962 return TRUE;
4963 }
4964 return FALSE;
4965 }
4966
4967 /* OP_INT matcher. */
4968
4969 static bfd_boolean
4970 match_int_operand (struct mips_arg_info *arg,
4971 const struct mips_operand *operand_base)
4972 {
4973 const struct mips_int_operand *operand;
4974 unsigned int uval;
4975 int min_val, max_val, factor;
4976 offsetT sval;
4977
4978 operand = (const struct mips_int_operand *) operand_base;
4979 factor = 1 << operand->shift;
4980 min_val = mips_int_operand_min (operand);
4981 max_val = mips_int_operand_max (operand);
4982
4983 if (operand_base->lsb == 0
4984 && operand_base->size == 16
4985 && operand->shift == 0
4986 && operand->bias == 0
4987 && (operand->max_val == 32767 || operand->max_val == 65535))
4988 {
4989 /* The operand can be relocated. */
4990 if (!match_expression (arg, &offset_expr, offset_reloc))
4991 return FALSE;
4992
4993 if (offset_reloc[0] != BFD_RELOC_UNUSED)
4994 /* Relocation operators were used. Accept the arguent and
4995 leave the relocation value in offset_expr and offset_relocs
4996 for the caller to process. */
4997 return TRUE;
4998
4999 if (offset_expr.X_op != O_constant)
5000 {
5001 /* Accept non-constant operands if no later alternative matches,
5002 leaving it for the caller to process. */
5003 if (!arg->lax_match)
5004 return FALSE;
5005 offset_reloc[0] = BFD_RELOC_LO16;
5006 return TRUE;
5007 }
5008
5009 /* Clear the global state; we're going to install the operand
5010 ourselves. */
5011 sval = offset_expr.X_add_number;
5012 offset_expr.X_op = O_absent;
5013
5014 /* For compatibility with older assemblers, we accept
5015 0x8000-0xffff as signed 16-bit numbers when only
5016 signed numbers are allowed. */
5017 if (sval > max_val)
5018 {
5019 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5020 if (!arg->lax_match && sval <= max_val)
5021 return FALSE;
5022 }
5023 }
5024 else
5025 {
5026 if (!match_const_int (arg, &sval))
5027 return FALSE;
5028 }
5029
5030 arg->last_op_int = sval;
5031
5032 if (sval < min_val || sval > max_val || sval % factor)
5033 {
5034 match_out_of_range (arg);
5035 return FALSE;
5036 }
5037
5038 uval = (unsigned int) sval >> operand->shift;
5039 uval -= operand->bias;
5040
5041 /* Handle -mfix-cn63xxp1. */
5042 if (arg->opnum == 1
5043 && mips_fix_cn63xxp1
5044 && !mips_opts.micromips
5045 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5046 switch (uval)
5047 {
5048 case 5:
5049 case 25:
5050 case 26:
5051 case 27:
5052 case 28:
5053 case 29:
5054 case 30:
5055 case 31:
5056 /* These are ok. */
5057 break;
5058
5059 default:
5060 /* The rest must be changed to 28. */
5061 uval = 28;
5062 break;
5063 }
5064
5065 insn_insert_operand (arg->insn, operand_base, uval);
5066 return TRUE;
5067 }
5068
5069 /* OP_MAPPED_INT matcher. */
5070
5071 static bfd_boolean
5072 match_mapped_int_operand (struct mips_arg_info *arg,
5073 const struct mips_operand *operand_base)
5074 {
5075 const struct mips_mapped_int_operand *operand;
5076 unsigned int uval, num_vals;
5077 offsetT sval;
5078
5079 operand = (const struct mips_mapped_int_operand *) operand_base;
5080 if (!match_const_int (arg, &sval))
5081 return FALSE;
5082
5083 num_vals = 1 << operand_base->size;
5084 for (uval = 0; uval < num_vals; uval++)
5085 if (operand->int_map[uval] == sval)
5086 break;
5087 if (uval == num_vals)
5088 {
5089 match_out_of_range (arg);
5090 return FALSE;
5091 }
5092
5093 insn_insert_operand (arg->insn, operand_base, uval);
5094 return TRUE;
5095 }
5096
5097 /* OP_MSB matcher. */
5098
5099 static bfd_boolean
5100 match_msb_operand (struct mips_arg_info *arg,
5101 const struct mips_operand *operand_base)
5102 {
5103 const struct mips_msb_operand *operand;
5104 int min_val, max_val, max_high;
5105 offsetT size, sval, high;
5106
5107 operand = (const struct mips_msb_operand *) operand_base;
5108 min_val = operand->bias;
5109 max_val = min_val + (1 << operand_base->size) - 1;
5110 max_high = operand->opsize;
5111
5112 if (!match_const_int (arg, &size))
5113 return FALSE;
5114
5115 high = size + arg->last_op_int;
5116 sval = operand->add_lsb ? high : size;
5117
5118 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5119 {
5120 match_out_of_range (arg);
5121 return FALSE;
5122 }
5123 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5124 return TRUE;
5125 }
5126
5127 /* OP_REG matcher. */
5128
5129 static bfd_boolean
5130 match_reg_operand (struct mips_arg_info *arg,
5131 const struct mips_operand *operand_base)
5132 {
5133 const struct mips_reg_operand *operand;
5134 unsigned int regno, uval, num_vals;
5135
5136 operand = (const struct mips_reg_operand *) operand_base;
5137 if (!match_reg (arg, operand->reg_type, &regno))
5138 return FALSE;
5139
5140 if (operand->reg_map)
5141 {
5142 num_vals = 1 << operand->root.size;
5143 for (uval = 0; uval < num_vals; uval++)
5144 if (operand->reg_map[uval] == regno)
5145 break;
5146 if (num_vals == uval)
5147 return FALSE;
5148 }
5149 else
5150 uval = regno;
5151
5152 arg->last_regno = regno;
5153 if (arg->opnum == 1)
5154 arg->dest_regno = regno;
5155 insn_insert_operand (arg->insn, operand_base, uval);
5156 return TRUE;
5157 }
5158
5159 /* OP_REG_PAIR matcher. */
5160
5161 static bfd_boolean
5162 match_reg_pair_operand (struct mips_arg_info *arg,
5163 const struct mips_operand *operand_base)
5164 {
5165 const struct mips_reg_pair_operand *operand;
5166 unsigned int regno1, regno2, uval, num_vals;
5167
5168 operand = (const struct mips_reg_pair_operand *) operand_base;
5169 if (!match_reg (arg, operand->reg_type, &regno1)
5170 || !match_char (arg, ',')
5171 || !match_reg (arg, operand->reg_type, &regno2))
5172 return FALSE;
5173
5174 num_vals = 1 << operand_base->size;
5175 for (uval = 0; uval < num_vals; uval++)
5176 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5177 break;
5178 if (uval == num_vals)
5179 return FALSE;
5180
5181 insn_insert_operand (arg->insn, operand_base, uval);
5182 return TRUE;
5183 }
5184
5185 /* OP_PCREL matcher. The caller chooses the relocation type. */
5186
5187 static bfd_boolean
5188 match_pcrel_operand (struct mips_arg_info *arg)
5189 {
5190 bfd_reloc_code_real_type r[3];
5191
5192 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5193 }
5194
5195 /* OP_PERF_REG matcher. */
5196
5197 static bfd_boolean
5198 match_perf_reg_operand (struct mips_arg_info *arg,
5199 const struct mips_operand *operand)
5200 {
5201 offsetT sval;
5202
5203 if (!match_const_int (arg, &sval))
5204 return FALSE;
5205
5206 if (sval != 0
5207 && (sval != 1
5208 || (mips_opts.arch == CPU_R5900
5209 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5210 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5211 {
5212 set_insn_error (arg->argnum, _("invalid performance register"));
5213 return FALSE;
5214 }
5215
5216 insn_insert_operand (arg->insn, operand, sval);
5217 return TRUE;
5218 }
5219
5220 /* OP_ADDIUSP matcher. */
5221
5222 static bfd_boolean
5223 match_addiusp_operand (struct mips_arg_info *arg,
5224 const struct mips_operand *operand)
5225 {
5226 offsetT sval;
5227 unsigned int uval;
5228
5229 if (!match_const_int (arg, &sval))
5230 return FALSE;
5231
5232 if (sval % 4)
5233 {
5234 match_out_of_range (arg);
5235 return FALSE;
5236 }
5237
5238 sval /= 4;
5239 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5240 {
5241 match_out_of_range (arg);
5242 return FALSE;
5243 }
5244
5245 uval = (unsigned int) sval;
5246 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5247 insn_insert_operand (arg->insn, operand, uval);
5248 return TRUE;
5249 }
5250
5251 /* OP_CLO_CLZ_DEST matcher. */
5252
5253 static bfd_boolean
5254 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5255 const struct mips_operand *operand)
5256 {
5257 unsigned int regno;
5258
5259 if (!match_reg (arg, OP_REG_GP, &regno))
5260 return FALSE;
5261
5262 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5263 return TRUE;
5264 }
5265
5266 /* OP_CHECK_PREV matcher. */
5267
5268 static bfd_boolean
5269 match_check_prev_operand (struct mips_arg_info *arg,
5270 const struct mips_operand *operand_base)
5271 {
5272 const struct mips_check_prev_operand *operand;
5273 unsigned int regno;
5274
5275 operand = (const struct mips_check_prev_operand *) operand_base;
5276
5277 if (!match_reg (arg, OP_REG_GP, &regno))
5278 return FALSE;
5279
5280 if (!operand->zero_ok && regno == 0)
5281 return FALSE;
5282
5283 if ((operand->less_than_ok && regno < arg->last_regno)
5284 || (operand->greater_than_ok && regno > arg->last_regno)
5285 || (operand->equal_ok && regno == arg->last_regno))
5286 {
5287 arg->last_regno = regno;
5288 insn_insert_operand (arg->insn, operand_base, regno);
5289 return TRUE;
5290 }
5291
5292 return FALSE;
5293 }
5294
5295 /* OP_SAME_RS_RT matcher. */
5296
5297 static bfd_boolean
5298 match_same_rs_rt_operand (struct mips_arg_info *arg,
5299 const struct mips_operand *operand)
5300 {
5301 unsigned int regno;
5302
5303 if (!match_reg (arg, OP_REG_GP, &regno))
5304 return FALSE;
5305
5306 if (regno == 0)
5307 {
5308 set_insn_error (arg->argnum, _("the source register must not be $0"));
5309 return FALSE;
5310 }
5311
5312 arg->last_regno = regno;
5313
5314 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5315 return TRUE;
5316 }
5317
5318 /* OP_LWM_SWM_LIST matcher. */
5319
5320 static bfd_boolean
5321 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5322 const struct mips_operand *operand)
5323 {
5324 unsigned int reglist, sregs, ra, regno1, regno2;
5325 struct mips_arg_info reset;
5326
5327 reglist = 0;
5328 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5329 return FALSE;
5330 do
5331 {
5332 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5333 {
5334 reglist |= 1 << FP;
5335 regno2 = S7;
5336 }
5337 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5338 reset = *arg;
5339 }
5340 while (match_char (arg, ',')
5341 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5342 *arg = reset;
5343
5344 if (operand->size == 2)
5345 {
5346 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5347
5348 s0, ra
5349 s0, s1, ra, s2, s3
5350 s0-s2, ra
5351
5352 and any permutations of these. */
5353 if ((reglist & 0xfff1ffff) != 0x80010000)
5354 return FALSE;
5355
5356 sregs = (reglist >> 17) & 7;
5357 ra = 0;
5358 }
5359 else
5360 {
5361 /* The list must include at least one of ra and s0-sN,
5362 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5363 which are $23 and $30 respectively.) E.g.:
5364
5365 ra
5366 s0
5367 ra, s0, s1, s2
5368 s0-s8
5369 s0-s5, ra
5370
5371 and any permutations of these. */
5372 if ((reglist & 0x3f00ffff) != 0)
5373 return FALSE;
5374
5375 ra = (reglist >> 27) & 0x10;
5376 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5377 }
5378 sregs += 1;
5379 if ((sregs & -sregs) != sregs)
5380 return FALSE;
5381
5382 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5383 return TRUE;
5384 }
5385
5386 /* OP_ENTRY_EXIT_LIST matcher. */
5387
5388 static unsigned int
5389 match_entry_exit_operand (struct mips_arg_info *arg,
5390 const struct mips_operand *operand)
5391 {
5392 unsigned int mask;
5393 bfd_boolean is_exit;
5394
5395 /* The format is the same for both ENTRY and EXIT, but the constraints
5396 are different. */
5397 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5398 mask = (is_exit ? 7 << 3 : 0);
5399 do
5400 {
5401 unsigned int regno1, regno2;
5402 bfd_boolean is_freg;
5403
5404 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5405 is_freg = FALSE;
5406 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5407 is_freg = TRUE;
5408 else
5409 return FALSE;
5410
5411 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5412 {
5413 mask &= ~(7 << 3);
5414 mask |= (5 + regno2) << 3;
5415 }
5416 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5417 mask |= (regno2 - 3) << 3;
5418 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5419 mask |= (regno2 - 15) << 1;
5420 else if (regno1 == RA && regno2 == RA)
5421 mask |= 1;
5422 else
5423 return FALSE;
5424 }
5425 while (match_char (arg, ','));
5426
5427 insn_insert_operand (arg->insn, operand, mask);
5428 return TRUE;
5429 }
5430
5431 /* OP_SAVE_RESTORE_LIST matcher. */
5432
5433 static bfd_boolean
5434 match_save_restore_list_operand (struct mips_arg_info *arg)
5435 {
5436 unsigned int opcode, args, statics, sregs;
5437 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5438 offsetT frame_size;
5439
5440 opcode = arg->insn->insn_opcode;
5441 frame_size = 0;
5442 num_frame_sizes = 0;
5443 args = 0;
5444 statics = 0;
5445 sregs = 0;
5446 do
5447 {
5448 unsigned int regno1, regno2;
5449
5450 if (arg->token->type == OT_INTEGER)
5451 {
5452 /* Handle the frame size. */
5453 if (!match_const_int (arg, &frame_size))
5454 return FALSE;
5455 num_frame_sizes += 1;
5456 }
5457 else
5458 {
5459 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5460 return FALSE;
5461
5462 while (regno1 <= regno2)
5463 {
5464 if (regno1 >= 4 && regno1 <= 7)
5465 {
5466 if (num_frame_sizes == 0)
5467 /* args $a0-$a3 */
5468 args |= 1 << (regno1 - 4);
5469 else
5470 /* statics $a0-$a3 */
5471 statics |= 1 << (regno1 - 4);
5472 }
5473 else if (regno1 >= 16 && regno1 <= 23)
5474 /* $s0-$s7 */
5475 sregs |= 1 << (regno1 - 16);
5476 else if (regno1 == 30)
5477 /* $s8 */
5478 sregs |= 1 << 8;
5479 else if (regno1 == 31)
5480 /* Add $ra to insn. */
5481 opcode |= 0x40;
5482 else
5483 return FALSE;
5484 regno1 += 1;
5485 if (regno1 == 24)
5486 regno1 = 30;
5487 }
5488 }
5489 }
5490 while (match_char (arg, ','));
5491
5492 /* Encode args/statics combination. */
5493 if (args & statics)
5494 return FALSE;
5495 else if (args == 0xf)
5496 /* All $a0-$a3 are args. */
5497 opcode |= MIPS16_ALL_ARGS << 16;
5498 else if (statics == 0xf)
5499 /* All $a0-$a3 are statics. */
5500 opcode |= MIPS16_ALL_STATICS << 16;
5501 else
5502 {
5503 /* Count arg registers. */
5504 num_args = 0;
5505 while (args & 0x1)
5506 {
5507 args >>= 1;
5508 num_args += 1;
5509 }
5510 if (args != 0)
5511 return FALSE;
5512
5513 /* Count static registers. */
5514 num_statics = 0;
5515 while (statics & 0x8)
5516 {
5517 statics = (statics << 1) & 0xf;
5518 num_statics += 1;
5519 }
5520 if (statics != 0)
5521 return FALSE;
5522
5523 /* Encode args/statics. */
5524 opcode |= ((num_args << 2) | num_statics) << 16;
5525 }
5526
5527 /* Encode $s0/$s1. */
5528 if (sregs & (1 << 0)) /* $s0 */
5529 opcode |= 0x20;
5530 if (sregs & (1 << 1)) /* $s1 */
5531 opcode |= 0x10;
5532 sregs >>= 2;
5533
5534 /* Encode $s2-$s8. */
5535 num_sregs = 0;
5536 while (sregs & 1)
5537 {
5538 sregs >>= 1;
5539 num_sregs += 1;
5540 }
5541 if (sregs != 0)
5542 return FALSE;
5543 opcode |= num_sregs << 24;
5544
5545 /* Encode frame size. */
5546 if (num_frame_sizes == 0)
5547 {
5548 set_insn_error (arg->argnum, _("missing frame size"));
5549 return FALSE;
5550 }
5551 if (num_frame_sizes > 1)
5552 {
5553 set_insn_error (arg->argnum, _("frame size specified twice"));
5554 return FALSE;
5555 }
5556 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5557 {
5558 set_insn_error (arg->argnum, _("invalid frame size"));
5559 return FALSE;
5560 }
5561 if (frame_size != 128 || (opcode >> 16) != 0)
5562 {
5563 frame_size /= 8;
5564 opcode |= (((frame_size & 0xf0) << 16)
5565 | (frame_size & 0x0f));
5566 }
5567
5568 /* Finally build the instruction. */
5569 if ((opcode >> 16) != 0 || frame_size == 0)
5570 opcode |= MIPS16_EXTEND;
5571 arg->insn->insn_opcode = opcode;
5572 return TRUE;
5573 }
5574
5575 /* OP_MDMX_IMM_REG matcher. */
5576
5577 static bfd_boolean
5578 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5579 const struct mips_operand *operand)
5580 {
5581 unsigned int regno, uval;
5582 bfd_boolean is_qh;
5583 const struct mips_opcode *opcode;
5584
5585 /* The mips_opcode records whether this is an octobyte or quadhalf
5586 instruction. Start out with that bit in place. */
5587 opcode = arg->insn->insn_mo;
5588 uval = mips_extract_operand (operand, opcode->match);
5589 is_qh = (uval != 0);
5590
5591 if (arg->token->type == OT_REG)
5592 {
5593 if ((opcode->membership & INSN_5400)
5594 && strcmp (opcode->name, "rzu.ob") == 0)
5595 {
5596 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5597 arg->argnum);
5598 return FALSE;
5599 }
5600
5601 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5602 return FALSE;
5603 ++arg->token;
5604
5605 /* Check whether this is a vector register or a broadcast of
5606 a single element. */
5607 if (arg->token->type == OT_INTEGER_INDEX)
5608 {
5609 if (arg->token->u.index > (is_qh ? 3 : 7))
5610 {
5611 set_insn_error (arg->argnum, _("invalid element selector"));
5612 return FALSE;
5613 }
5614 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5615 ++arg->token;
5616 }
5617 else
5618 {
5619 /* A full vector. */
5620 if ((opcode->membership & INSN_5400)
5621 && (strcmp (opcode->name, "sll.ob") == 0
5622 || strcmp (opcode->name, "srl.ob") == 0))
5623 {
5624 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5625 arg->argnum);
5626 return FALSE;
5627 }
5628
5629 if (is_qh)
5630 uval |= MDMX_FMTSEL_VEC_QH << 5;
5631 else
5632 uval |= MDMX_FMTSEL_VEC_OB << 5;
5633 }
5634 uval |= regno;
5635 }
5636 else
5637 {
5638 offsetT sval;
5639
5640 if (!match_const_int (arg, &sval))
5641 return FALSE;
5642 if (sval < 0 || sval > 31)
5643 {
5644 match_out_of_range (arg);
5645 return FALSE;
5646 }
5647 uval |= (sval & 31);
5648 if (is_qh)
5649 uval |= MDMX_FMTSEL_IMM_QH << 5;
5650 else
5651 uval |= MDMX_FMTSEL_IMM_OB << 5;
5652 }
5653 insn_insert_operand (arg->insn, operand, uval);
5654 return TRUE;
5655 }
5656
5657 /* OP_IMM_INDEX matcher. */
5658
5659 static bfd_boolean
5660 match_imm_index_operand (struct mips_arg_info *arg,
5661 const struct mips_operand *operand)
5662 {
5663 unsigned int max_val;
5664
5665 if (arg->token->type != OT_INTEGER_INDEX)
5666 return FALSE;
5667
5668 max_val = (1 << operand->size) - 1;
5669 if (arg->token->u.index > max_val)
5670 {
5671 match_out_of_range (arg);
5672 return FALSE;
5673 }
5674 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5675 ++arg->token;
5676 return TRUE;
5677 }
5678
5679 /* OP_REG_INDEX matcher. */
5680
5681 static bfd_boolean
5682 match_reg_index_operand (struct mips_arg_info *arg,
5683 const struct mips_operand *operand)
5684 {
5685 unsigned int regno;
5686
5687 if (arg->token->type != OT_REG_INDEX)
5688 return FALSE;
5689
5690 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5691 return FALSE;
5692
5693 insn_insert_operand (arg->insn, operand, regno);
5694 ++arg->token;
5695 return TRUE;
5696 }
5697
5698 /* OP_PC matcher. */
5699
5700 static bfd_boolean
5701 match_pc_operand (struct mips_arg_info *arg)
5702 {
5703 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5704 {
5705 ++arg->token;
5706 return TRUE;
5707 }
5708 return FALSE;
5709 }
5710
5711 /* OP_NON_ZERO_REG matcher. */
5712
5713 static bfd_boolean
5714 match_non_zero_reg_operand (struct mips_arg_info *arg,
5715 const struct mips_operand *operand)
5716 {
5717 unsigned int regno;
5718
5719 if (!match_reg (arg, OP_REG_GP, &regno))
5720 return FALSE;
5721
5722 if (regno == 0)
5723 return FALSE;
5724
5725 arg->last_regno = regno;
5726 insn_insert_operand (arg->insn, operand, regno);
5727 return TRUE;
5728 }
5729
5730 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5731 register that we need to match. */
5732
5733 static bfd_boolean
5734 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5735 {
5736 unsigned int regno;
5737
5738 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5739 }
5740
5741 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5742 the length of the value in bytes (4 for float, 8 for double) and
5743 USING_GPRS says whether the destination is a GPR rather than an FPR.
5744
5745 Return the constant in IMM and OFFSET as follows:
5746
5747 - If the constant should be loaded via memory, set IMM to O_absent and
5748 OFFSET to the memory address.
5749
5750 - Otherwise, if the constant should be loaded into two 32-bit registers,
5751 set IMM to the O_constant to load into the high register and OFFSET
5752 to the corresponding value for the low register.
5753
5754 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5755
5756 These constants only appear as the last operand in an instruction,
5757 and every instruction that accepts them in any variant accepts them
5758 in all variants. This means we don't have to worry about backing out
5759 any changes if the instruction does not match. We just match
5760 unconditionally and report an error if the constant is invalid. */
5761
5762 static bfd_boolean
5763 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5764 expressionS *offset, int length, bfd_boolean using_gprs)
5765 {
5766 char *p;
5767 segT seg, new_seg;
5768 subsegT subseg;
5769 const char *newname;
5770 unsigned char *data;
5771
5772 /* Where the constant is placed is based on how the MIPS assembler
5773 does things:
5774
5775 length == 4 && using_gprs -- immediate value only
5776 length == 8 && using_gprs -- .rdata or immediate value
5777 length == 4 && !using_gprs -- .lit4 or immediate value
5778 length == 8 && !using_gprs -- .lit8 or immediate value
5779
5780 The .lit4 and .lit8 sections are only used if permitted by the
5781 -G argument. */
5782 if (arg->token->type != OT_FLOAT)
5783 {
5784 set_insn_error (arg->argnum, _("floating-point expression required"));
5785 return FALSE;
5786 }
5787
5788 gas_assert (arg->token->u.flt.length == length);
5789 data = arg->token->u.flt.data;
5790 ++arg->token;
5791
5792 /* Handle 32-bit constants for which an immediate value is best. */
5793 if (length == 4
5794 && (using_gprs
5795 || g_switch_value < 4
5796 || (data[0] == 0 && data[1] == 0)
5797 || (data[2] == 0 && data[3] == 0)))
5798 {
5799 imm->X_op = O_constant;
5800 if (!target_big_endian)
5801 imm->X_add_number = bfd_getl32 (data);
5802 else
5803 imm->X_add_number = bfd_getb32 (data);
5804 offset->X_op = O_absent;
5805 return TRUE;
5806 }
5807
5808 /* Handle 64-bit constants for which an immediate value is best. */
5809 if (length == 8
5810 && !mips_disable_float_construction
5811 /* Constants can only be constructed in GPRs and copied to FPRs if the
5812 GPRs are at least as wide as the FPRs or MTHC1 is available.
5813 Unlike most tests for 32-bit floating-point registers this check
5814 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5815 permit 64-bit moves without MXHC1.
5816 Force the constant into memory otherwise. */
5817 && (using_gprs
5818 || GPR_SIZE == 64
5819 || ISA_HAS_MXHC1 (mips_opts.isa)
5820 || FPR_SIZE == 32)
5821 && ((data[0] == 0 && data[1] == 0)
5822 || (data[2] == 0 && data[3] == 0))
5823 && ((data[4] == 0 && data[5] == 0)
5824 || (data[6] == 0 && data[7] == 0)))
5825 {
5826 /* The value is simple enough to load with a couple of instructions.
5827 If using 32-bit registers, set IMM to the high order 32 bits and
5828 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5829 64 bit constant. */
5830 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5831 {
5832 imm->X_op = O_constant;
5833 offset->X_op = O_constant;
5834 if (!target_big_endian)
5835 {
5836 imm->X_add_number = bfd_getl32 (data + 4);
5837 offset->X_add_number = bfd_getl32 (data);
5838 }
5839 else
5840 {
5841 imm->X_add_number = bfd_getb32 (data);
5842 offset->X_add_number = bfd_getb32 (data + 4);
5843 }
5844 if (offset->X_add_number == 0)
5845 offset->X_op = O_absent;
5846 }
5847 else
5848 {
5849 imm->X_op = O_constant;
5850 if (!target_big_endian)
5851 imm->X_add_number = bfd_getl64 (data);
5852 else
5853 imm->X_add_number = bfd_getb64 (data);
5854 offset->X_op = O_absent;
5855 }
5856 return TRUE;
5857 }
5858
5859 /* Switch to the right section. */
5860 seg = now_seg;
5861 subseg = now_subseg;
5862 if (length == 4)
5863 {
5864 gas_assert (!using_gprs && g_switch_value >= 4);
5865 newname = ".lit4";
5866 }
5867 else
5868 {
5869 if (using_gprs || g_switch_value < 8)
5870 newname = RDATA_SECTION_NAME;
5871 else
5872 newname = ".lit8";
5873 }
5874
5875 new_seg = subseg_new (newname, (subsegT) 0);
5876 bfd_set_section_flags (stdoutput, new_seg,
5877 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5878 frag_align (length == 4 ? 2 : 3, 0, 0);
5879 if (strncmp (TARGET_OS, "elf", 3) != 0)
5880 record_alignment (new_seg, 4);
5881 else
5882 record_alignment (new_seg, length == 4 ? 2 : 3);
5883 if (seg == now_seg)
5884 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5885
5886 /* Set the argument to the current address in the section. */
5887 imm->X_op = O_absent;
5888 offset->X_op = O_symbol;
5889 offset->X_add_symbol = symbol_temp_new_now ();
5890 offset->X_add_number = 0;
5891
5892 /* Put the floating point number into the section. */
5893 p = frag_more (length);
5894 memcpy (p, data, length);
5895
5896 /* Switch back to the original section. */
5897 subseg_set (seg, subseg);
5898 return TRUE;
5899 }
5900
5901 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5902 them. */
5903
5904 static bfd_boolean
5905 match_vu0_suffix_operand (struct mips_arg_info *arg,
5906 const struct mips_operand *operand,
5907 bfd_boolean match_p)
5908 {
5909 unsigned int uval;
5910
5911 /* The operand can be an XYZW mask or a single 2-bit channel index
5912 (with X being 0). */
5913 gas_assert (operand->size == 2 || operand->size == 4);
5914
5915 /* The suffix can be omitted when it is already part of the opcode. */
5916 if (arg->token->type != OT_CHANNELS)
5917 return match_p;
5918
5919 uval = arg->token->u.channels;
5920 if (operand->size == 2)
5921 {
5922 /* Check that a single bit is set and convert it into a 2-bit index. */
5923 if ((uval & -uval) != uval)
5924 return FALSE;
5925 uval = 4 - ffs (uval);
5926 }
5927
5928 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5929 return FALSE;
5930
5931 ++arg->token;
5932 if (!match_p)
5933 insn_insert_operand (arg->insn, operand, uval);
5934 return TRUE;
5935 }
5936
5937 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5938 of the argument text if the match is successful, otherwise return null. */
5939
5940 static bfd_boolean
5941 match_operand (struct mips_arg_info *arg,
5942 const struct mips_operand *operand)
5943 {
5944 switch (operand->type)
5945 {
5946 case OP_INT:
5947 return match_int_operand (arg, operand);
5948
5949 case OP_MAPPED_INT:
5950 return match_mapped_int_operand (arg, operand);
5951
5952 case OP_MSB:
5953 return match_msb_operand (arg, operand);
5954
5955 case OP_REG:
5956 case OP_OPTIONAL_REG:
5957 return match_reg_operand (arg, operand);
5958
5959 case OP_REG_PAIR:
5960 return match_reg_pair_operand (arg, operand);
5961
5962 case OP_PCREL:
5963 return match_pcrel_operand (arg);
5964
5965 case OP_PERF_REG:
5966 return match_perf_reg_operand (arg, operand);
5967
5968 case OP_ADDIUSP_INT:
5969 return match_addiusp_operand (arg, operand);
5970
5971 case OP_CLO_CLZ_DEST:
5972 return match_clo_clz_dest_operand (arg, operand);
5973
5974 case OP_LWM_SWM_LIST:
5975 return match_lwm_swm_list_operand (arg, operand);
5976
5977 case OP_ENTRY_EXIT_LIST:
5978 return match_entry_exit_operand (arg, operand);
5979
5980 case OP_SAVE_RESTORE_LIST:
5981 return match_save_restore_list_operand (arg);
5982
5983 case OP_MDMX_IMM_REG:
5984 return match_mdmx_imm_reg_operand (arg, operand);
5985
5986 case OP_REPEAT_DEST_REG:
5987 return match_tied_reg_operand (arg, arg->dest_regno);
5988
5989 case OP_REPEAT_PREV_REG:
5990 return match_tied_reg_operand (arg, arg->last_regno);
5991
5992 case OP_PC:
5993 return match_pc_operand (arg);
5994
5995 case OP_VU0_SUFFIX:
5996 return match_vu0_suffix_operand (arg, operand, FALSE);
5997
5998 case OP_VU0_MATCH_SUFFIX:
5999 return match_vu0_suffix_operand (arg, operand, TRUE);
6000
6001 case OP_IMM_INDEX:
6002 return match_imm_index_operand (arg, operand);
6003
6004 case OP_REG_INDEX:
6005 return match_reg_index_operand (arg, operand);
6006
6007 case OP_SAME_RS_RT:
6008 return match_same_rs_rt_operand (arg, operand);
6009
6010 case OP_CHECK_PREV:
6011 return match_check_prev_operand (arg, operand);
6012
6013 case OP_NON_ZERO_REG:
6014 return match_non_zero_reg_operand (arg, operand);
6015 }
6016 abort ();
6017 }
6018
6019 /* ARG is the state after successfully matching an instruction.
6020 Issue any queued-up warnings. */
6021
6022 static void
6023 check_completed_insn (struct mips_arg_info *arg)
6024 {
6025 if (arg->seen_at)
6026 {
6027 if (AT == ATREG)
6028 as_warn (_("used $at without \".set noat\""));
6029 else
6030 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6031 }
6032 }
6033
6034 /* Return true if modifying general-purpose register REG needs a delay. */
6035
6036 static bfd_boolean
6037 reg_needs_delay (unsigned int reg)
6038 {
6039 unsigned long prev_pinfo;
6040
6041 prev_pinfo = history[0].insn_mo->pinfo;
6042 if (!mips_opts.noreorder
6043 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6044 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6045 && (gpr_write_mask (&history[0]) & (1 << reg)))
6046 return TRUE;
6047
6048 return FALSE;
6049 }
6050
6051 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6052 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6053 by VR4120 errata. */
6054
6055 static unsigned int
6056 classify_vr4120_insn (const char *name)
6057 {
6058 if (strncmp (name, "macc", 4) == 0)
6059 return FIX_VR4120_MACC;
6060 if (strncmp (name, "dmacc", 5) == 0)
6061 return FIX_VR4120_DMACC;
6062 if (strncmp (name, "mult", 4) == 0)
6063 return FIX_VR4120_MULT;
6064 if (strncmp (name, "dmult", 5) == 0)
6065 return FIX_VR4120_DMULT;
6066 if (strstr (name, "div"))
6067 return FIX_VR4120_DIV;
6068 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6069 return FIX_VR4120_MTHILO;
6070 return NUM_FIX_VR4120_CLASSES;
6071 }
6072
6073 #define INSN_ERET 0x42000018
6074 #define INSN_DERET 0x4200001f
6075 #define INSN_DMULT 0x1c
6076 #define INSN_DMULTU 0x1d
6077
6078 /* Return the number of instructions that must separate INSN1 and INSN2,
6079 where INSN1 is the earlier instruction. Return the worst-case value
6080 for any INSN2 if INSN2 is null. */
6081
6082 static unsigned int
6083 insns_between (const struct mips_cl_insn *insn1,
6084 const struct mips_cl_insn *insn2)
6085 {
6086 unsigned long pinfo1, pinfo2;
6087 unsigned int mask;
6088
6089 /* If INFO2 is null, pessimistically assume that all flags are set for
6090 the second instruction. */
6091 pinfo1 = insn1->insn_mo->pinfo;
6092 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6093
6094 /* For most targets, write-after-read dependencies on the HI and LO
6095 registers must be separated by at least two instructions. */
6096 if (!hilo_interlocks)
6097 {
6098 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6099 return 2;
6100 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6101 return 2;
6102 }
6103
6104 /* If we're working around r7000 errata, there must be two instructions
6105 between an mfhi or mflo and any instruction that uses the result. */
6106 if (mips_7000_hilo_fix
6107 && !mips_opts.micromips
6108 && MF_HILO_INSN (pinfo1)
6109 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6110 return 2;
6111
6112 /* If we're working around 24K errata, one instruction is required
6113 if an ERET or DERET is followed by a branch instruction. */
6114 if (mips_fix_24k && !mips_opts.micromips)
6115 {
6116 if (insn1->insn_opcode == INSN_ERET
6117 || insn1->insn_opcode == INSN_DERET)
6118 {
6119 if (insn2 == NULL
6120 || insn2->insn_opcode == INSN_ERET
6121 || insn2->insn_opcode == INSN_DERET
6122 || delayed_branch_p (insn2))
6123 return 1;
6124 }
6125 }
6126
6127 /* If we're working around PMC RM7000 errata, there must be three
6128 nops between a dmult and a load instruction. */
6129 if (mips_fix_rm7000 && !mips_opts.micromips)
6130 {
6131 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6132 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6133 {
6134 if (pinfo2 & INSN_LOAD_MEMORY)
6135 return 3;
6136 }
6137 }
6138
6139 /* If working around VR4120 errata, check for combinations that need
6140 a single intervening instruction. */
6141 if (mips_fix_vr4120 && !mips_opts.micromips)
6142 {
6143 unsigned int class1, class2;
6144
6145 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6146 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6147 {
6148 if (insn2 == NULL)
6149 return 1;
6150 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6151 if (vr4120_conflicts[class1] & (1 << class2))
6152 return 1;
6153 }
6154 }
6155
6156 if (!HAVE_CODE_COMPRESSION)
6157 {
6158 /* Check for GPR or coprocessor load delays. All such delays
6159 are on the RT register. */
6160 /* Itbl support may require additional care here. */
6161 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6162 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6163 {
6164 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6165 return 1;
6166 }
6167
6168 /* Check for generic coprocessor hazards.
6169
6170 This case is not handled very well. There is no special
6171 knowledge of CP0 handling, and the coprocessors other than
6172 the floating point unit are not distinguished at all. */
6173 /* Itbl support may require additional care here. FIXME!
6174 Need to modify this to include knowledge about
6175 user specified delays! */
6176 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6177 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6178 {
6179 /* Handle cases where INSN1 writes to a known general coprocessor
6180 register. There must be a one instruction delay before INSN2
6181 if INSN2 reads that register, otherwise no delay is needed. */
6182 mask = fpr_write_mask (insn1);
6183 if (mask != 0)
6184 {
6185 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6186 return 1;
6187 }
6188 else
6189 {
6190 /* Read-after-write dependencies on the control registers
6191 require a two-instruction gap. */
6192 if ((pinfo1 & INSN_WRITE_COND_CODE)
6193 && (pinfo2 & INSN_READ_COND_CODE))
6194 return 2;
6195
6196 /* We don't know exactly what INSN1 does. If INSN2 is
6197 also a coprocessor instruction, assume there must be
6198 a one instruction gap. */
6199 if (pinfo2 & INSN_COP)
6200 return 1;
6201 }
6202 }
6203
6204 /* Check for read-after-write dependencies on the coprocessor
6205 control registers in cases where INSN1 does not need a general
6206 coprocessor delay. This means that INSN1 is a floating point
6207 comparison instruction. */
6208 /* Itbl support may require additional care here. */
6209 else if (!cop_interlocks
6210 && (pinfo1 & INSN_WRITE_COND_CODE)
6211 && (pinfo2 & INSN_READ_COND_CODE))
6212 return 1;
6213 }
6214
6215 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6216 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6217 and pause. */
6218 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6219 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6220 || (insn2 && delayed_branch_p (insn2))))
6221 return 1;
6222
6223 return 0;
6224 }
6225
6226 /* Return the number of nops that would be needed to work around the
6227 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6228 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6229 that are contained within the first IGNORE instructions of HIST. */
6230
6231 static int
6232 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6233 const struct mips_cl_insn *insn)
6234 {
6235 int i, j;
6236 unsigned int mask;
6237
6238 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6239 are not affected by the errata. */
6240 if (insn != 0
6241 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6242 || strcmp (insn->insn_mo->name, "mtlo") == 0
6243 || strcmp (insn->insn_mo->name, "mthi") == 0))
6244 return 0;
6245
6246 /* Search for the first MFLO or MFHI. */
6247 for (i = 0; i < MAX_VR4130_NOPS; i++)
6248 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6249 {
6250 /* Extract the destination register. */
6251 mask = gpr_write_mask (&hist[i]);
6252
6253 /* No nops are needed if INSN reads that register. */
6254 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6255 return 0;
6256
6257 /* ...or if any of the intervening instructions do. */
6258 for (j = 0; j < i; j++)
6259 if (gpr_read_mask (&hist[j]) & mask)
6260 return 0;
6261
6262 if (i >= ignore)
6263 return MAX_VR4130_NOPS - i;
6264 }
6265 return 0;
6266 }
6267
6268 #define BASE_REG_EQ(INSN1, INSN2) \
6269 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6270 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6271
6272 /* Return the minimum alignment for this store instruction. */
6273
6274 static int
6275 fix_24k_align_to (const struct mips_opcode *mo)
6276 {
6277 if (strcmp (mo->name, "sh") == 0)
6278 return 2;
6279
6280 if (strcmp (mo->name, "swc1") == 0
6281 || strcmp (mo->name, "swc2") == 0
6282 || strcmp (mo->name, "sw") == 0
6283 || strcmp (mo->name, "sc") == 0
6284 || strcmp (mo->name, "s.s") == 0)
6285 return 4;
6286
6287 if (strcmp (mo->name, "sdc1") == 0
6288 || strcmp (mo->name, "sdc2") == 0
6289 || strcmp (mo->name, "s.d") == 0)
6290 return 8;
6291
6292 /* sb, swl, swr */
6293 return 1;
6294 }
6295
6296 struct fix_24k_store_info
6297 {
6298 /* Immediate offset, if any, for this store instruction. */
6299 short off;
6300 /* Alignment required by this store instruction. */
6301 int align_to;
6302 /* True for register offsets. */
6303 int register_offset;
6304 };
6305
6306 /* Comparison function used by qsort. */
6307
6308 static int
6309 fix_24k_sort (const void *a, const void *b)
6310 {
6311 const struct fix_24k_store_info *pos1 = a;
6312 const struct fix_24k_store_info *pos2 = b;
6313
6314 return (pos1->off - pos2->off);
6315 }
6316
6317 /* INSN is a store instruction. Try to record the store information
6318 in STINFO. Return false if the information isn't known. */
6319
6320 static bfd_boolean
6321 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6322 const struct mips_cl_insn *insn)
6323 {
6324 /* The instruction must have a known offset. */
6325 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6326 return FALSE;
6327
6328 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6329 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6330 return TRUE;
6331 }
6332
6333 /* Return the number of nops that would be needed to work around the 24k
6334 "lost data on stores during refill" errata if instruction INSN
6335 immediately followed the 2 instructions described by HIST.
6336 Ignore hazards that are contained within the first IGNORE
6337 instructions of HIST.
6338
6339 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6340 for the data cache refills and store data. The following describes
6341 the scenario where the store data could be lost.
6342
6343 * A data cache miss, due to either a load or a store, causing fill
6344 data to be supplied by the memory subsystem
6345 * The first three doublewords of fill data are returned and written
6346 into the cache
6347 * A sequence of four stores occurs in consecutive cycles around the
6348 final doubleword of the fill:
6349 * Store A
6350 * Store B
6351 * Store C
6352 * Zero, One or more instructions
6353 * Store D
6354
6355 The four stores A-D must be to different doublewords of the line that
6356 is being filled. The fourth instruction in the sequence above permits
6357 the fill of the final doubleword to be transferred from the FSB into
6358 the cache. In the sequence above, the stores may be either integer
6359 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6360 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6361 different doublewords on the line. If the floating point unit is
6362 running in 1:2 mode, it is not possible to create the sequence above
6363 using only floating point store instructions.
6364
6365 In this case, the cache line being filled is incorrectly marked
6366 invalid, thereby losing the data from any store to the line that
6367 occurs between the original miss and the completion of the five
6368 cycle sequence shown above.
6369
6370 The workarounds are:
6371
6372 * Run the data cache in write-through mode.
6373 * Insert a non-store instruction between
6374 Store A and Store B or Store B and Store C. */
6375
6376 static int
6377 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6378 const struct mips_cl_insn *insn)
6379 {
6380 struct fix_24k_store_info pos[3];
6381 int align, i, base_offset;
6382
6383 if (ignore >= 2)
6384 return 0;
6385
6386 /* If the previous instruction wasn't a store, there's nothing to
6387 worry about. */
6388 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6389 return 0;
6390
6391 /* If the instructions after the previous one are unknown, we have
6392 to assume the worst. */
6393 if (!insn)
6394 return 1;
6395
6396 /* Check whether we are dealing with three consecutive stores. */
6397 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6398 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6399 return 0;
6400
6401 /* If we don't know the relationship between the store addresses,
6402 assume the worst. */
6403 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6404 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6405 return 1;
6406
6407 if (!fix_24k_record_store_info (&pos[0], insn)
6408 || !fix_24k_record_store_info (&pos[1], &hist[0])
6409 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6410 return 1;
6411
6412 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6413
6414 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6415 X bytes and such that the base register + X is known to be aligned
6416 to align bytes. */
6417
6418 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6419 align = 8;
6420 else
6421 {
6422 align = pos[0].align_to;
6423 base_offset = pos[0].off;
6424 for (i = 1; i < 3; i++)
6425 if (align < pos[i].align_to)
6426 {
6427 align = pos[i].align_to;
6428 base_offset = pos[i].off;
6429 }
6430 for (i = 0; i < 3; i++)
6431 pos[i].off -= base_offset;
6432 }
6433
6434 pos[0].off &= ~align + 1;
6435 pos[1].off &= ~align + 1;
6436 pos[2].off &= ~align + 1;
6437
6438 /* If any two stores write to the same chunk, they also write to the
6439 same doubleword. The offsets are still sorted at this point. */
6440 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6441 return 0;
6442
6443 /* A range of at least 9 bytes is needed for the stores to be in
6444 non-overlapping doublewords. */
6445 if (pos[2].off - pos[0].off <= 8)
6446 return 0;
6447
6448 if (pos[2].off - pos[1].off >= 24
6449 || pos[1].off - pos[0].off >= 24
6450 || pos[2].off - pos[0].off >= 32)
6451 return 0;
6452
6453 return 1;
6454 }
6455
6456 /* Return the number of nops that would be needed if instruction INSN
6457 immediately followed the MAX_NOPS instructions given by HIST,
6458 where HIST[0] is the most recent instruction. Ignore hazards
6459 between INSN and the first IGNORE instructions in HIST.
6460
6461 If INSN is null, return the worse-case number of nops for any
6462 instruction. */
6463
6464 static int
6465 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6466 const struct mips_cl_insn *insn)
6467 {
6468 int i, nops, tmp_nops;
6469
6470 nops = 0;
6471 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6472 {
6473 tmp_nops = insns_between (hist + i, insn) - i;
6474 if (tmp_nops > nops)
6475 nops = tmp_nops;
6476 }
6477
6478 if (mips_fix_vr4130 && !mips_opts.micromips)
6479 {
6480 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6481 if (tmp_nops > nops)
6482 nops = tmp_nops;
6483 }
6484
6485 if (mips_fix_24k && !mips_opts.micromips)
6486 {
6487 tmp_nops = nops_for_24k (ignore, hist, insn);
6488 if (tmp_nops > nops)
6489 nops = tmp_nops;
6490 }
6491
6492 return nops;
6493 }
6494
6495 /* The variable arguments provide NUM_INSNS extra instructions that
6496 might be added to HIST. Return the largest number of nops that
6497 would be needed after the extended sequence, ignoring hazards
6498 in the first IGNORE instructions. */
6499
6500 static int
6501 nops_for_sequence (int num_insns, int ignore,
6502 const struct mips_cl_insn *hist, ...)
6503 {
6504 va_list args;
6505 struct mips_cl_insn buffer[MAX_NOPS];
6506 struct mips_cl_insn *cursor;
6507 int nops;
6508
6509 va_start (args, hist);
6510 cursor = buffer + num_insns;
6511 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6512 while (cursor > buffer)
6513 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6514
6515 nops = nops_for_insn (ignore, buffer, NULL);
6516 va_end (args);
6517 return nops;
6518 }
6519
6520 /* Like nops_for_insn, but if INSN is a branch, take into account the
6521 worst-case delay for the branch target. */
6522
6523 static int
6524 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6525 const struct mips_cl_insn *insn)
6526 {
6527 int nops, tmp_nops;
6528
6529 nops = nops_for_insn (ignore, hist, insn);
6530 if (delayed_branch_p (insn))
6531 {
6532 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6533 hist, insn, get_delay_slot_nop (insn));
6534 if (tmp_nops > nops)
6535 nops = tmp_nops;
6536 }
6537 else if (compact_branch_p (insn))
6538 {
6539 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6540 if (tmp_nops > nops)
6541 nops = tmp_nops;
6542 }
6543 return nops;
6544 }
6545
6546 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6547
6548 static void
6549 fix_loongson2f_nop (struct mips_cl_insn * ip)
6550 {
6551 gas_assert (!HAVE_CODE_COMPRESSION);
6552 if (strcmp (ip->insn_mo->name, "nop") == 0)
6553 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6554 }
6555
6556 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6557 jr target pc &= 'hffff_ffff_cfff_ffff. */
6558
6559 static void
6560 fix_loongson2f_jump (struct mips_cl_insn * ip)
6561 {
6562 gas_assert (!HAVE_CODE_COMPRESSION);
6563 if (strcmp (ip->insn_mo->name, "j") == 0
6564 || strcmp (ip->insn_mo->name, "jr") == 0
6565 || strcmp (ip->insn_mo->name, "jalr") == 0)
6566 {
6567 int sreg;
6568 expressionS ep;
6569
6570 if (! mips_opts.at)
6571 return;
6572
6573 sreg = EXTRACT_OPERAND (0, RS, *ip);
6574 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6575 return;
6576
6577 ep.X_op = O_constant;
6578 ep.X_add_number = 0xcfff0000;
6579 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6580 ep.X_add_number = 0xffff;
6581 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6582 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6583 }
6584 }
6585
6586 static void
6587 fix_loongson2f (struct mips_cl_insn * ip)
6588 {
6589 if (mips_fix_loongson2f_nop)
6590 fix_loongson2f_nop (ip);
6591
6592 if (mips_fix_loongson2f_jump)
6593 fix_loongson2f_jump (ip);
6594 }
6595
6596 /* IP is a branch that has a delay slot, and we need to fill it
6597 automatically. Return true if we can do that by swapping IP
6598 with the previous instruction.
6599 ADDRESS_EXPR is an operand of the instruction to be used with
6600 RELOC_TYPE. */
6601
6602 static bfd_boolean
6603 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6604 bfd_reloc_code_real_type *reloc_type)
6605 {
6606 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6607 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6608 unsigned int fpr_read, prev_fpr_write;
6609
6610 /* -O2 and above is required for this optimization. */
6611 if (mips_optimize < 2)
6612 return FALSE;
6613
6614 /* If we have seen .set volatile or .set nomove, don't optimize. */
6615 if (mips_opts.nomove)
6616 return FALSE;
6617
6618 /* We can't swap if the previous instruction's position is fixed. */
6619 if (history[0].fixed_p)
6620 return FALSE;
6621
6622 /* If the previous previous insn was in a .set noreorder, we can't
6623 swap. Actually, the MIPS assembler will swap in this situation.
6624 However, gcc configured -with-gnu-as will generate code like
6625
6626 .set noreorder
6627 lw $4,XXX
6628 .set reorder
6629 INSN
6630 bne $4,$0,foo
6631
6632 in which we can not swap the bne and INSN. If gcc is not configured
6633 -with-gnu-as, it does not output the .set pseudo-ops. */
6634 if (history[1].noreorder_p)
6635 return FALSE;
6636
6637 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6638 This means that the previous instruction was a 4-byte one anyhow. */
6639 if (mips_opts.mips16 && history[0].fixp[0])
6640 return FALSE;
6641
6642 /* If the branch is itself the target of a branch, we can not swap.
6643 We cheat on this; all we check for is whether there is a label on
6644 this instruction. If there are any branches to anything other than
6645 a label, users must use .set noreorder. */
6646 if (seg_info (now_seg)->label_list)
6647 return FALSE;
6648
6649 /* If the previous instruction is in a variant frag other than this
6650 branch's one, we cannot do the swap. This does not apply to
6651 MIPS16 code, which uses variant frags for different purposes. */
6652 if (!mips_opts.mips16
6653 && history[0].frag
6654 && history[0].frag->fr_type == rs_machine_dependent)
6655 return FALSE;
6656
6657 /* We do not swap with instructions that cannot architecturally
6658 be placed in a branch delay slot, such as SYNC or ERET. We
6659 also refrain from swapping with a trap instruction, since it
6660 complicates trap handlers to have the trap instruction be in
6661 a delay slot. */
6662 prev_pinfo = history[0].insn_mo->pinfo;
6663 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6664 return FALSE;
6665
6666 /* Check for conflicts between the branch and the instructions
6667 before the candidate delay slot. */
6668 if (nops_for_insn (0, history + 1, ip) > 0)
6669 return FALSE;
6670
6671 /* Check for conflicts between the swapped sequence and the
6672 target of the branch. */
6673 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6674 return FALSE;
6675
6676 /* If the branch reads a register that the previous
6677 instruction sets, we can not swap. */
6678 gpr_read = gpr_read_mask (ip);
6679 prev_gpr_write = gpr_write_mask (&history[0]);
6680 if (gpr_read & prev_gpr_write)
6681 return FALSE;
6682
6683 fpr_read = fpr_read_mask (ip);
6684 prev_fpr_write = fpr_write_mask (&history[0]);
6685 if (fpr_read & prev_fpr_write)
6686 return FALSE;
6687
6688 /* If the branch writes a register that the previous
6689 instruction sets, we can not swap. */
6690 gpr_write = gpr_write_mask (ip);
6691 if (gpr_write & prev_gpr_write)
6692 return FALSE;
6693
6694 /* If the branch writes a register that the previous
6695 instruction reads, we can not swap. */
6696 prev_gpr_read = gpr_read_mask (&history[0]);
6697 if (gpr_write & prev_gpr_read)
6698 return FALSE;
6699
6700 /* If one instruction sets a condition code and the
6701 other one uses a condition code, we can not swap. */
6702 pinfo = ip->insn_mo->pinfo;
6703 if ((pinfo & INSN_READ_COND_CODE)
6704 && (prev_pinfo & INSN_WRITE_COND_CODE))
6705 return FALSE;
6706 if ((pinfo & INSN_WRITE_COND_CODE)
6707 && (prev_pinfo & INSN_READ_COND_CODE))
6708 return FALSE;
6709
6710 /* If the previous instruction uses the PC, we can not swap. */
6711 prev_pinfo2 = history[0].insn_mo->pinfo2;
6712 if (prev_pinfo2 & INSN2_READ_PC)
6713 return FALSE;
6714
6715 /* If the previous instruction has an incorrect size for a fixed
6716 branch delay slot in microMIPS mode, we cannot swap. */
6717 pinfo2 = ip->insn_mo->pinfo2;
6718 if (mips_opts.micromips
6719 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6720 && insn_length (history) != 2)
6721 return FALSE;
6722 if (mips_opts.micromips
6723 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6724 && insn_length (history) != 4)
6725 return FALSE;
6726
6727 /* On R5900 short loops need to be fixed by inserting a nop in
6728 the branch delay slots.
6729 A short loop can be terminated too early. */
6730 if (mips_opts.arch == CPU_R5900
6731 /* Check if instruction has a parameter, ignore "j $31". */
6732 && (address_expr != NULL)
6733 /* Parameter must be 16 bit. */
6734 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6735 /* Branch to same segment. */
6736 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6737 /* Branch to same code fragment. */
6738 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6739 /* Can only calculate branch offset if value is known. */
6740 && symbol_constant_p (address_expr->X_add_symbol)
6741 /* Check if branch is really conditional. */
6742 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6743 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6744 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6745 {
6746 int distance;
6747 /* Check if loop is shorter than 6 instructions including
6748 branch and delay slot. */
6749 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6750 if (distance <= 20)
6751 {
6752 int i;
6753 int rv;
6754
6755 rv = FALSE;
6756 /* When the loop includes branches or jumps,
6757 it is not a short loop. */
6758 for (i = 0; i < (distance / 4); i++)
6759 {
6760 if ((history[i].cleared_p)
6761 || delayed_branch_p (&history[i]))
6762 {
6763 rv = TRUE;
6764 break;
6765 }
6766 }
6767 if (rv == FALSE)
6768 {
6769 /* Insert nop after branch to fix short loop. */
6770 return FALSE;
6771 }
6772 }
6773 }
6774
6775 return TRUE;
6776 }
6777
6778 /* Decide how we should add IP to the instruction stream.
6779 ADDRESS_EXPR is an operand of the instruction to be used with
6780 RELOC_TYPE. */
6781
6782 static enum append_method
6783 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6784 bfd_reloc_code_real_type *reloc_type)
6785 {
6786 /* The relaxed version of a macro sequence must be inherently
6787 hazard-free. */
6788 if (mips_relax.sequence == 2)
6789 return APPEND_ADD;
6790
6791 /* We must not dabble with instructions in a ".set norerorder" block. */
6792 if (mips_opts.noreorder)
6793 return APPEND_ADD;
6794
6795 /* Otherwise, it's our responsibility to fill branch delay slots. */
6796 if (delayed_branch_p (ip))
6797 {
6798 if (!branch_likely_p (ip)
6799 && can_swap_branch_p (ip, address_expr, reloc_type))
6800 return APPEND_SWAP;
6801
6802 if (mips_opts.mips16
6803 && ISA_SUPPORTS_MIPS16E
6804 && gpr_read_mask (ip) != 0)
6805 return APPEND_ADD_COMPACT;
6806
6807 return APPEND_ADD_WITH_NOP;
6808 }
6809
6810 return APPEND_ADD;
6811 }
6812
6813 /* IP is a MIPS16 instruction whose opcode we have just changed.
6814 Point IP->insn_mo to the new opcode's definition. */
6815
6816 static void
6817 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6818 {
6819 const struct mips_opcode *mo, *end;
6820
6821 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6822 for (mo = ip->insn_mo; mo < end; mo++)
6823 if ((ip->insn_opcode & mo->mask) == mo->match)
6824 {
6825 ip->insn_mo = mo;
6826 return;
6827 }
6828 abort ();
6829 }
6830
6831 /* For microMIPS macros, we need to generate a local number label
6832 as the target of branches. */
6833 #define MICROMIPS_LABEL_CHAR '\037'
6834 static unsigned long micromips_target_label;
6835 static char micromips_target_name[32];
6836
6837 static char *
6838 micromips_label_name (void)
6839 {
6840 char *p = micromips_target_name;
6841 char symbol_name_temporary[24];
6842 unsigned long l;
6843 int i;
6844
6845 if (*p)
6846 return p;
6847
6848 i = 0;
6849 l = micromips_target_label;
6850 #ifdef LOCAL_LABEL_PREFIX
6851 *p++ = LOCAL_LABEL_PREFIX;
6852 #endif
6853 *p++ = 'L';
6854 *p++ = MICROMIPS_LABEL_CHAR;
6855 do
6856 {
6857 symbol_name_temporary[i++] = l % 10 + '0';
6858 l /= 10;
6859 }
6860 while (l != 0);
6861 while (i > 0)
6862 *p++ = symbol_name_temporary[--i];
6863 *p = '\0';
6864
6865 return micromips_target_name;
6866 }
6867
6868 static void
6869 micromips_label_expr (expressionS *label_expr)
6870 {
6871 label_expr->X_op = O_symbol;
6872 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6873 label_expr->X_add_number = 0;
6874 }
6875
6876 static void
6877 micromips_label_inc (void)
6878 {
6879 micromips_target_label++;
6880 *micromips_target_name = '\0';
6881 }
6882
6883 static void
6884 micromips_add_label (void)
6885 {
6886 symbolS *s;
6887
6888 s = colon (micromips_label_name ());
6889 micromips_label_inc ();
6890 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6891 }
6892
6893 /* If assembling microMIPS code, then return the microMIPS reloc
6894 corresponding to the requested one if any. Otherwise return
6895 the reloc unchanged. */
6896
6897 static bfd_reloc_code_real_type
6898 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6899 {
6900 static const bfd_reloc_code_real_type relocs[][2] =
6901 {
6902 /* Keep sorted incrementally by the left-hand key. */
6903 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6904 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6905 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6906 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6907 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6908 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6909 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6910 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6911 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6912 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6913 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6914 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6915 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6916 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6917 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6918 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6919 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6920 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6921 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6922 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6923 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6924 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6925 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6926 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6927 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6928 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6929 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6930 };
6931 bfd_reloc_code_real_type r;
6932 size_t i;
6933
6934 if (!mips_opts.micromips)
6935 return reloc;
6936 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6937 {
6938 r = relocs[i][0];
6939 if (r > reloc)
6940 return reloc;
6941 if (r == reloc)
6942 return relocs[i][1];
6943 }
6944 return reloc;
6945 }
6946
6947 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6948 Return true on success, storing the resolved value in RESULT. */
6949
6950 static bfd_boolean
6951 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6952 offsetT *result)
6953 {
6954 switch (reloc)
6955 {
6956 case BFD_RELOC_MIPS_HIGHEST:
6957 case BFD_RELOC_MICROMIPS_HIGHEST:
6958 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6959 return TRUE;
6960
6961 case BFD_RELOC_MIPS_HIGHER:
6962 case BFD_RELOC_MICROMIPS_HIGHER:
6963 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6964 return TRUE;
6965
6966 case BFD_RELOC_HI16_S:
6967 case BFD_RELOC_MICROMIPS_HI16_S:
6968 case BFD_RELOC_MIPS16_HI16_S:
6969 *result = ((operand + 0x8000) >> 16) & 0xffff;
6970 return TRUE;
6971
6972 case BFD_RELOC_HI16:
6973 case BFD_RELOC_MICROMIPS_HI16:
6974 case BFD_RELOC_MIPS16_HI16:
6975 *result = (operand >> 16) & 0xffff;
6976 return TRUE;
6977
6978 case BFD_RELOC_LO16:
6979 case BFD_RELOC_MICROMIPS_LO16:
6980 case BFD_RELOC_MIPS16_LO16:
6981 *result = operand & 0xffff;
6982 return TRUE;
6983
6984 case BFD_RELOC_UNUSED:
6985 *result = operand;
6986 return TRUE;
6987
6988 default:
6989 return FALSE;
6990 }
6991 }
6992
6993 /* Output an instruction. IP is the instruction information.
6994 ADDRESS_EXPR is an operand of the instruction to be used with
6995 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6996 a macro expansion. */
6997
6998 static void
6999 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7000 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7001 {
7002 unsigned long prev_pinfo2, pinfo;
7003 bfd_boolean relaxed_branch = FALSE;
7004 enum append_method method;
7005 bfd_boolean relax32;
7006 int branch_disp;
7007
7008 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7009 fix_loongson2f (ip);
7010
7011 file_ase_mips16 |= mips_opts.mips16;
7012 file_ase_micromips |= mips_opts.micromips;
7013
7014 prev_pinfo2 = history[0].insn_mo->pinfo2;
7015 pinfo = ip->insn_mo->pinfo;
7016
7017 if (mips_opts.micromips
7018 && !expansionp
7019 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7020 && micromips_insn_length (ip->insn_mo) != 2)
7021 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7022 && micromips_insn_length (ip->insn_mo) != 4)))
7023 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7024 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7025
7026 if (address_expr == NULL)
7027 ip->complete_p = 1;
7028 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7029 && reloc_type[1] == BFD_RELOC_UNUSED
7030 && reloc_type[2] == BFD_RELOC_UNUSED
7031 && address_expr->X_op == O_constant)
7032 {
7033 switch (*reloc_type)
7034 {
7035 case BFD_RELOC_MIPS_JMP:
7036 {
7037 int shift;
7038
7039 shift = mips_opts.micromips ? 1 : 2;
7040 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7041 as_bad (_("jump to misaligned address (0x%lx)"),
7042 (unsigned long) address_expr->X_add_number);
7043 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7044 & 0x3ffffff);
7045 ip->complete_p = 1;
7046 }
7047 break;
7048
7049 case BFD_RELOC_MIPS16_JMP:
7050 if ((address_expr->X_add_number & 3) != 0)
7051 as_bad (_("jump to misaligned address (0x%lx)"),
7052 (unsigned long) address_expr->X_add_number);
7053 ip->insn_opcode |=
7054 (((address_expr->X_add_number & 0x7c0000) << 3)
7055 | ((address_expr->X_add_number & 0xf800000) >> 7)
7056 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7057 ip->complete_p = 1;
7058 break;
7059
7060 case BFD_RELOC_16_PCREL_S2:
7061 {
7062 int shift;
7063
7064 shift = mips_opts.micromips ? 1 : 2;
7065 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7066 as_bad (_("branch to misaligned address (0x%lx)"),
7067 (unsigned long) address_expr->X_add_number);
7068 if (!mips_relax_branch)
7069 {
7070 if ((address_expr->X_add_number + (1 << (shift + 15)))
7071 & ~((1 << (shift + 16)) - 1))
7072 as_bad (_("branch address range overflow (0x%lx)"),
7073 (unsigned long) address_expr->X_add_number);
7074 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7075 & 0xffff);
7076 }
7077 }
7078 break;
7079
7080 case BFD_RELOC_MIPS_21_PCREL_S2:
7081 {
7082 int shift;
7083
7084 shift = 2;
7085 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7086 as_bad (_("branch to misaligned address (0x%lx)"),
7087 (unsigned long) address_expr->X_add_number);
7088 if ((address_expr->X_add_number + (1 << (shift + 20)))
7089 & ~((1 << (shift + 21)) - 1))
7090 as_bad (_("branch address range overflow (0x%lx)"),
7091 (unsigned long) address_expr->X_add_number);
7092 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7093 & 0x1fffff);
7094 }
7095 break;
7096
7097 case BFD_RELOC_MIPS_26_PCREL_S2:
7098 {
7099 int shift;
7100
7101 shift = 2;
7102 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7103 as_bad (_("branch to misaligned address (0x%lx)"),
7104 (unsigned long) address_expr->X_add_number);
7105 if ((address_expr->X_add_number + (1 << (shift + 25)))
7106 & ~((1 << (shift + 26)) - 1))
7107 as_bad (_("branch address range overflow (0x%lx)"),
7108 (unsigned long) address_expr->X_add_number);
7109 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7110 & 0x3ffffff);
7111 }
7112 break;
7113
7114 default:
7115 {
7116 offsetT value;
7117
7118 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7119 &value))
7120 {
7121 ip->insn_opcode |= value & 0xffff;
7122 ip->complete_p = 1;
7123 }
7124 }
7125 break;
7126 }
7127 }
7128
7129 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7130 {
7131 /* There are a lot of optimizations we could do that we don't.
7132 In particular, we do not, in general, reorder instructions.
7133 If you use gcc with optimization, it will reorder
7134 instructions and generally do much more optimization then we
7135 do here; repeating all that work in the assembler would only
7136 benefit hand written assembly code, and does not seem worth
7137 it. */
7138 int nops = (mips_optimize == 0
7139 ? nops_for_insn (0, history, NULL)
7140 : nops_for_insn_or_target (0, history, ip));
7141 if (nops > 0)
7142 {
7143 fragS *old_frag;
7144 unsigned long old_frag_offset;
7145 int i;
7146
7147 old_frag = frag_now;
7148 old_frag_offset = frag_now_fix ();
7149
7150 for (i = 0; i < nops; i++)
7151 add_fixed_insn (NOP_INSN);
7152 insert_into_history (0, nops, NOP_INSN);
7153
7154 if (listing)
7155 {
7156 listing_prev_line ();
7157 /* We may be at the start of a variant frag. In case we
7158 are, make sure there is enough space for the frag
7159 after the frags created by listing_prev_line. The
7160 argument to frag_grow here must be at least as large
7161 as the argument to all other calls to frag_grow in
7162 this file. We don't have to worry about being in the
7163 middle of a variant frag, because the variants insert
7164 all needed nop instructions themselves. */
7165 frag_grow (40);
7166 }
7167
7168 mips_move_text_labels ();
7169
7170 #ifndef NO_ECOFF_DEBUGGING
7171 if (ECOFF_DEBUGGING)
7172 ecoff_fix_loc (old_frag, old_frag_offset);
7173 #endif
7174 }
7175 }
7176 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7177 {
7178 int nops;
7179
7180 /* Work out how many nops in prev_nop_frag are needed by IP,
7181 ignoring hazards generated by the first prev_nop_frag_since
7182 instructions. */
7183 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7184 gas_assert (nops <= prev_nop_frag_holds);
7185
7186 /* Enforce NOPS as a minimum. */
7187 if (nops > prev_nop_frag_required)
7188 prev_nop_frag_required = nops;
7189
7190 if (prev_nop_frag_holds == prev_nop_frag_required)
7191 {
7192 /* Settle for the current number of nops. Update the history
7193 accordingly (for the benefit of any future .set reorder code). */
7194 prev_nop_frag = NULL;
7195 insert_into_history (prev_nop_frag_since,
7196 prev_nop_frag_holds, NOP_INSN);
7197 }
7198 else
7199 {
7200 /* Allow this instruction to replace one of the nops that was
7201 tentatively added to prev_nop_frag. */
7202 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7203 prev_nop_frag_holds--;
7204 prev_nop_frag_since++;
7205 }
7206 }
7207
7208 method = get_append_method (ip, address_expr, reloc_type);
7209 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7210
7211 dwarf2_emit_insn (0);
7212 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7213 so "move" the instruction address accordingly.
7214
7215 Also, it doesn't seem appropriate for the assembler to reorder .loc
7216 entries. If this instruction is a branch that we are going to swap
7217 with the previous instruction, the two instructions should be
7218 treated as a unit, and the debug information for both instructions
7219 should refer to the start of the branch sequence. Using the
7220 current position is certainly wrong when swapping a 32-bit branch
7221 and a 16-bit delay slot, since the current position would then be
7222 in the middle of a branch. */
7223 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7224
7225 relax32 = (mips_relax_branch
7226 /* Don't try branch relaxation within .set nomacro, or within
7227 .set noat if we use $at for PIC computations. If it turns
7228 out that the branch was out-of-range, we'll get an error. */
7229 && !mips_opts.warn_about_macros
7230 && (mips_opts.at || mips_pic == NO_PIC)
7231 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7232 as they have no complementing branches. */
7233 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7234
7235 if (!HAVE_CODE_COMPRESSION
7236 && address_expr
7237 && relax32
7238 && *reloc_type == BFD_RELOC_16_PCREL_S2
7239 && delayed_branch_p (ip))
7240 {
7241 relaxed_branch = TRUE;
7242 add_relaxed_insn (ip, (relaxed_branch_length
7243 (NULL, NULL,
7244 uncond_branch_p (ip) ? -1
7245 : branch_likely_p (ip) ? 1
7246 : 0)), 4,
7247 RELAX_BRANCH_ENCODE
7248 (AT,
7249 uncond_branch_p (ip),
7250 branch_likely_p (ip),
7251 pinfo & INSN_WRITE_GPR_31,
7252 0),
7253 address_expr->X_add_symbol,
7254 address_expr->X_add_number);
7255 *reloc_type = BFD_RELOC_UNUSED;
7256 }
7257 else if (mips_opts.micromips
7258 && address_expr
7259 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7260 || *reloc_type > BFD_RELOC_UNUSED)
7261 && (delayed_branch_p (ip) || compact_branch_p (ip))
7262 /* Don't try branch relaxation when users specify
7263 16-bit/32-bit instructions. */
7264 && !forced_insn_length)
7265 {
7266 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7267 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7268 int uncond = uncond_branch_p (ip) ? -1 : 0;
7269 int compact = compact_branch_p (ip);
7270 int al = pinfo & INSN_WRITE_GPR_31;
7271 int length32;
7272
7273 gas_assert (address_expr != NULL);
7274 gas_assert (!mips_relax.sequence);
7275
7276 relaxed_branch = TRUE;
7277 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7278 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
7279 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7280 relax32, 0, 0),
7281 address_expr->X_add_symbol,
7282 address_expr->X_add_number);
7283 *reloc_type = BFD_RELOC_UNUSED;
7284 }
7285 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7286 {
7287 /* We need to set up a variant frag. */
7288 gas_assert (address_expr != NULL);
7289 add_relaxed_insn (ip, 4, 0,
7290 RELAX_MIPS16_ENCODE
7291 (*reloc_type - BFD_RELOC_UNUSED,
7292 forced_insn_length == 2, forced_insn_length == 4,
7293 delayed_branch_p (&history[0]),
7294 history[0].mips16_absolute_jump_p),
7295 make_expr_symbol (address_expr), 0);
7296 }
7297 else if (mips_opts.mips16 && insn_length (ip) == 2)
7298 {
7299 if (!delayed_branch_p (ip))
7300 /* Make sure there is enough room to swap this instruction with
7301 a following jump instruction. */
7302 frag_grow (6);
7303 add_fixed_insn (ip);
7304 }
7305 else
7306 {
7307 if (mips_opts.mips16
7308 && mips_opts.noreorder
7309 && delayed_branch_p (&history[0]))
7310 as_warn (_("extended instruction in delay slot"));
7311
7312 if (mips_relax.sequence)
7313 {
7314 /* If we've reached the end of this frag, turn it into a variant
7315 frag and record the information for the instructions we've
7316 written so far. */
7317 if (frag_room () < 4)
7318 relax_close_frag ();
7319 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7320 }
7321
7322 if (mips_relax.sequence != 2)
7323 {
7324 if (mips_macro_warning.first_insn_sizes[0] == 0)
7325 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7326 mips_macro_warning.sizes[0] += insn_length (ip);
7327 mips_macro_warning.insns[0]++;
7328 }
7329 if (mips_relax.sequence != 1)
7330 {
7331 if (mips_macro_warning.first_insn_sizes[1] == 0)
7332 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7333 mips_macro_warning.sizes[1] += insn_length (ip);
7334 mips_macro_warning.insns[1]++;
7335 }
7336
7337 if (mips_opts.mips16)
7338 {
7339 ip->fixed_p = 1;
7340 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7341 }
7342 add_fixed_insn (ip);
7343 }
7344
7345 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7346 {
7347 bfd_reloc_code_real_type final_type[3];
7348 reloc_howto_type *howto0;
7349 reloc_howto_type *howto;
7350 int i;
7351
7352 /* Perform any necessary conversion to microMIPS relocations
7353 and find out how many relocations there actually are. */
7354 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7355 final_type[i] = micromips_map_reloc (reloc_type[i]);
7356
7357 /* In a compound relocation, it is the final (outermost)
7358 operator that determines the relocated field. */
7359 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7360 if (!howto)
7361 abort ();
7362
7363 if (i > 1)
7364 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7365 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7366 bfd_get_reloc_size (howto),
7367 address_expr,
7368 howto0 && howto0->pc_relative,
7369 final_type[0]);
7370
7371 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7372 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7373 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7374
7375 /* These relocations can have an addend that won't fit in
7376 4 octets for 64bit assembly. */
7377 if (GPR_SIZE == 64
7378 && ! howto->partial_inplace
7379 && (reloc_type[0] == BFD_RELOC_16
7380 || reloc_type[0] == BFD_RELOC_32
7381 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7382 || reloc_type[0] == BFD_RELOC_GPREL16
7383 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7384 || reloc_type[0] == BFD_RELOC_GPREL32
7385 || reloc_type[0] == BFD_RELOC_64
7386 || reloc_type[0] == BFD_RELOC_CTOR
7387 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7388 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7389 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7390 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7391 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7392 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7393 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7394 || hi16_reloc_p (reloc_type[0])
7395 || lo16_reloc_p (reloc_type[0])))
7396 ip->fixp[0]->fx_no_overflow = 1;
7397
7398 /* These relocations can have an addend that won't fit in 2 octets. */
7399 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7400 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7401 ip->fixp[0]->fx_no_overflow = 1;
7402
7403 if (mips_relax.sequence)
7404 {
7405 if (mips_relax.first_fixup == 0)
7406 mips_relax.first_fixup = ip->fixp[0];
7407 }
7408 else if (reloc_needs_lo_p (*reloc_type))
7409 {
7410 struct mips_hi_fixup *hi_fixup;
7411
7412 /* Reuse the last entry if it already has a matching %lo. */
7413 hi_fixup = mips_hi_fixup_list;
7414 if (hi_fixup == 0
7415 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7416 {
7417 hi_fixup = XNEW (struct mips_hi_fixup);
7418 hi_fixup->next = mips_hi_fixup_list;
7419 mips_hi_fixup_list = hi_fixup;
7420 }
7421 hi_fixup->fixp = ip->fixp[0];
7422 hi_fixup->seg = now_seg;
7423 }
7424
7425 /* Add fixups for the second and third relocations, if given.
7426 Note that the ABI allows the second relocation to be
7427 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7428 moment we only use RSS_UNDEF, but we could add support
7429 for the others if it ever becomes necessary. */
7430 for (i = 1; i < 3; i++)
7431 if (reloc_type[i] != BFD_RELOC_UNUSED)
7432 {
7433 ip->fixp[i] = fix_new (ip->frag, ip->where,
7434 ip->fixp[0]->fx_size, NULL, 0,
7435 FALSE, final_type[i]);
7436
7437 /* Use fx_tcbit to mark compound relocs. */
7438 ip->fixp[0]->fx_tcbit = 1;
7439 ip->fixp[i]->fx_tcbit = 1;
7440 }
7441 }
7442 install_insn (ip);
7443
7444 /* Update the register mask information. */
7445 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7446 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7447
7448 switch (method)
7449 {
7450 case APPEND_ADD:
7451 insert_into_history (0, 1, ip);
7452 break;
7453
7454 case APPEND_ADD_WITH_NOP:
7455 {
7456 struct mips_cl_insn *nop;
7457
7458 insert_into_history (0, 1, ip);
7459 nop = get_delay_slot_nop (ip);
7460 add_fixed_insn (nop);
7461 insert_into_history (0, 1, nop);
7462 if (mips_relax.sequence)
7463 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7464 }
7465 break;
7466
7467 case APPEND_ADD_COMPACT:
7468 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7469 gas_assert (mips_opts.mips16);
7470 ip->insn_opcode |= 0x0080;
7471 find_altered_mips16_opcode (ip);
7472 install_insn (ip);
7473 insert_into_history (0, 1, ip);
7474 break;
7475
7476 case APPEND_SWAP:
7477 {
7478 struct mips_cl_insn delay = history[0];
7479 if (mips_opts.mips16)
7480 {
7481 know (delay.frag == ip->frag);
7482 move_insn (ip, delay.frag, delay.where);
7483 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7484 }
7485 else if (relaxed_branch || delay.frag != ip->frag)
7486 {
7487 /* Add the delay slot instruction to the end of the
7488 current frag and shrink the fixed part of the
7489 original frag. If the branch occupies the tail of
7490 the latter, move it backwards to cover the gap. */
7491 delay.frag->fr_fix -= branch_disp;
7492 if (delay.frag == ip->frag)
7493 move_insn (ip, ip->frag, ip->where - branch_disp);
7494 add_fixed_insn (&delay);
7495 }
7496 else
7497 {
7498 move_insn (&delay, ip->frag,
7499 ip->where - branch_disp + insn_length (ip));
7500 move_insn (ip, history[0].frag, history[0].where);
7501 }
7502 history[0] = *ip;
7503 delay.fixed_p = 1;
7504 insert_into_history (0, 1, &delay);
7505 }
7506 break;
7507 }
7508
7509 /* If we have just completed an unconditional branch, clear the history. */
7510 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7511 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7512 {
7513 unsigned int i;
7514
7515 mips_no_prev_insn ();
7516
7517 for (i = 0; i < ARRAY_SIZE (history); i++)
7518 history[i].cleared_p = 1;
7519 }
7520
7521 /* We need to emit a label at the end of branch-likely macros. */
7522 if (emit_branch_likely_macro)
7523 {
7524 emit_branch_likely_macro = FALSE;
7525 micromips_add_label ();
7526 }
7527
7528 /* We just output an insn, so the next one doesn't have a label. */
7529 mips_clear_insn_labels ();
7530 }
7531
7532 /* Forget that there was any previous instruction or label.
7533 When BRANCH is true, the branch history is also flushed. */
7534
7535 static void
7536 mips_no_prev_insn (void)
7537 {
7538 prev_nop_frag = NULL;
7539 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7540 mips_clear_insn_labels ();
7541 }
7542
7543 /* This function must be called before we emit something other than
7544 instructions. It is like mips_no_prev_insn except that it inserts
7545 any NOPS that might be needed by previous instructions. */
7546
7547 void
7548 mips_emit_delays (void)
7549 {
7550 if (! mips_opts.noreorder)
7551 {
7552 int nops = nops_for_insn (0, history, NULL);
7553 if (nops > 0)
7554 {
7555 while (nops-- > 0)
7556 add_fixed_insn (NOP_INSN);
7557 mips_move_text_labels ();
7558 }
7559 }
7560 mips_no_prev_insn ();
7561 }
7562
7563 /* Start a (possibly nested) noreorder block. */
7564
7565 static void
7566 start_noreorder (void)
7567 {
7568 if (mips_opts.noreorder == 0)
7569 {
7570 unsigned int i;
7571 int nops;
7572
7573 /* None of the instructions before the .set noreorder can be moved. */
7574 for (i = 0; i < ARRAY_SIZE (history); i++)
7575 history[i].fixed_p = 1;
7576
7577 /* Insert any nops that might be needed between the .set noreorder
7578 block and the previous instructions. We will later remove any
7579 nops that turn out not to be needed. */
7580 nops = nops_for_insn (0, history, NULL);
7581 if (nops > 0)
7582 {
7583 if (mips_optimize != 0)
7584 {
7585 /* Record the frag which holds the nop instructions, so
7586 that we can remove them if we don't need them. */
7587 frag_grow (nops * NOP_INSN_SIZE);
7588 prev_nop_frag = frag_now;
7589 prev_nop_frag_holds = nops;
7590 prev_nop_frag_required = 0;
7591 prev_nop_frag_since = 0;
7592 }
7593
7594 for (; nops > 0; --nops)
7595 add_fixed_insn (NOP_INSN);
7596
7597 /* Move on to a new frag, so that it is safe to simply
7598 decrease the size of prev_nop_frag. */
7599 frag_wane (frag_now);
7600 frag_new (0);
7601 mips_move_text_labels ();
7602 }
7603 mips_mark_labels ();
7604 mips_clear_insn_labels ();
7605 }
7606 mips_opts.noreorder++;
7607 mips_any_noreorder = 1;
7608 }
7609
7610 /* End a nested noreorder block. */
7611
7612 static void
7613 end_noreorder (void)
7614 {
7615 mips_opts.noreorder--;
7616 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7617 {
7618 /* Commit to inserting prev_nop_frag_required nops and go back to
7619 handling nop insertion the .set reorder way. */
7620 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7621 * NOP_INSN_SIZE);
7622 insert_into_history (prev_nop_frag_since,
7623 prev_nop_frag_required, NOP_INSN);
7624 prev_nop_frag = NULL;
7625 }
7626 }
7627
7628 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7629 higher bits unset. */
7630
7631 static void
7632 normalize_constant_expr (expressionS *ex)
7633 {
7634 if (ex->X_op == O_constant
7635 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7636 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7637 - 0x80000000);
7638 }
7639
7640 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7641 all higher bits unset. */
7642
7643 static void
7644 normalize_address_expr (expressionS *ex)
7645 {
7646 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7647 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7648 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7649 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7650 - 0x80000000);
7651 }
7652
7653 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7654 Return true if the match was successful.
7655
7656 OPCODE_EXTRA is a value that should be ORed into the opcode
7657 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7658 there are more alternatives after OPCODE and SOFT_MATCH is
7659 as for mips_arg_info. */
7660
7661 static bfd_boolean
7662 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7663 struct mips_operand_token *tokens, unsigned int opcode_extra,
7664 bfd_boolean lax_match, bfd_boolean complete_p)
7665 {
7666 const char *args;
7667 struct mips_arg_info arg;
7668 const struct mips_operand *operand;
7669 char c;
7670
7671 imm_expr.X_op = O_absent;
7672 offset_expr.X_op = O_absent;
7673 offset_reloc[0] = BFD_RELOC_UNUSED;
7674 offset_reloc[1] = BFD_RELOC_UNUSED;
7675 offset_reloc[2] = BFD_RELOC_UNUSED;
7676
7677 create_insn (insn, opcode);
7678 /* When no opcode suffix is specified, assume ".xyzw". */
7679 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7680 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7681 else
7682 insn->insn_opcode |= opcode_extra;
7683 memset (&arg, 0, sizeof (arg));
7684 arg.insn = insn;
7685 arg.token = tokens;
7686 arg.argnum = 1;
7687 arg.last_regno = ILLEGAL_REG;
7688 arg.dest_regno = ILLEGAL_REG;
7689 arg.lax_match = lax_match;
7690 for (args = opcode->args;; ++args)
7691 {
7692 if (arg.token->type == OT_END)
7693 {
7694 /* Handle unary instructions in which only one operand is given.
7695 The source is then the same as the destination. */
7696 if (arg.opnum == 1 && *args == ',')
7697 {
7698 operand = (mips_opts.micromips
7699 ? decode_micromips_operand (args + 1)
7700 : decode_mips_operand (args + 1));
7701 if (operand && mips_optional_operand_p (operand))
7702 {
7703 arg.token = tokens;
7704 arg.argnum = 1;
7705 continue;
7706 }
7707 }
7708
7709 /* Treat elided base registers as $0. */
7710 if (strcmp (args, "(b)") == 0)
7711 args += 3;
7712
7713 if (args[0] == '+')
7714 switch (args[1])
7715 {
7716 case 'K':
7717 case 'N':
7718 /* The register suffix is optional. */
7719 args += 2;
7720 break;
7721 }
7722
7723 /* Fail the match if there were too few operands. */
7724 if (*args)
7725 return FALSE;
7726
7727 /* Successful match. */
7728 if (!complete_p)
7729 return TRUE;
7730 clear_insn_error ();
7731 if (arg.dest_regno == arg.last_regno
7732 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7733 {
7734 if (arg.opnum == 2)
7735 set_insn_error
7736 (0, _("source and destination must be different"));
7737 else if (arg.last_regno == 31)
7738 set_insn_error
7739 (0, _("a destination register must be supplied"));
7740 }
7741 else if (arg.last_regno == 31
7742 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7743 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7744 set_insn_error (0, _("the source register must not be $31"));
7745 check_completed_insn (&arg);
7746 return TRUE;
7747 }
7748
7749 /* Fail the match if the line has too many operands. */
7750 if (*args == 0)
7751 return FALSE;
7752
7753 /* Handle characters that need to match exactly. */
7754 if (*args == '(' || *args == ')' || *args == ',')
7755 {
7756 if (match_char (&arg, *args))
7757 continue;
7758 return FALSE;
7759 }
7760 if (*args == '#')
7761 {
7762 ++args;
7763 if (arg.token->type == OT_DOUBLE_CHAR
7764 && arg.token->u.ch == *args)
7765 {
7766 ++arg.token;
7767 continue;
7768 }
7769 return FALSE;
7770 }
7771
7772 /* Handle special macro operands. Work out the properties of
7773 other operands. */
7774 arg.opnum += 1;
7775 switch (*args)
7776 {
7777 case '-':
7778 switch (args[1])
7779 {
7780 case 'A':
7781 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7782 break;
7783
7784 case 'B':
7785 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7786 break;
7787 }
7788 break;
7789
7790 case '+':
7791 switch (args[1])
7792 {
7793 case 'i':
7794 *offset_reloc = BFD_RELOC_MIPS_JMP;
7795 break;
7796
7797 case '\'':
7798 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7799 break;
7800
7801 case '\"':
7802 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7803 break;
7804 }
7805 break;
7806
7807 case 'I':
7808 if (!match_const_int (&arg, &imm_expr.X_add_number))
7809 return FALSE;
7810 imm_expr.X_op = O_constant;
7811 if (GPR_SIZE == 32)
7812 normalize_constant_expr (&imm_expr);
7813 continue;
7814
7815 case 'A':
7816 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7817 {
7818 /* Assume that the offset has been elided and that what
7819 we saw was a base register. The match will fail later
7820 if that assumption turns out to be wrong. */
7821 offset_expr.X_op = O_constant;
7822 offset_expr.X_add_number = 0;
7823 }
7824 else
7825 {
7826 if (!match_expression (&arg, &offset_expr, offset_reloc))
7827 return FALSE;
7828 normalize_address_expr (&offset_expr);
7829 }
7830 continue;
7831
7832 case 'F':
7833 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7834 8, TRUE))
7835 return FALSE;
7836 continue;
7837
7838 case 'L':
7839 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7840 8, FALSE))
7841 return FALSE;
7842 continue;
7843
7844 case 'f':
7845 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7846 4, TRUE))
7847 return FALSE;
7848 continue;
7849
7850 case 'l':
7851 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7852 4, FALSE))
7853 return FALSE;
7854 continue;
7855
7856 case 'p':
7857 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7858 break;
7859
7860 case 'a':
7861 *offset_reloc = BFD_RELOC_MIPS_JMP;
7862 break;
7863
7864 case 'm':
7865 gas_assert (mips_opts.micromips);
7866 c = args[1];
7867 switch (c)
7868 {
7869 case 'D':
7870 case 'E':
7871 if (!forced_insn_length)
7872 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7873 else if (c == 'D')
7874 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7875 else
7876 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7877 break;
7878 }
7879 break;
7880 }
7881
7882 operand = (mips_opts.micromips
7883 ? decode_micromips_operand (args)
7884 : decode_mips_operand (args));
7885 if (!operand)
7886 abort ();
7887
7888 /* Skip prefixes. */
7889 if (*args == '+' || *args == 'm' || *args == '-')
7890 args++;
7891
7892 if (mips_optional_operand_p (operand)
7893 && args[1] == ','
7894 && (arg.token[0].type != OT_REG
7895 || arg.token[1].type == OT_END))
7896 {
7897 /* Assume that the register has been elided and is the
7898 same as the first operand. */
7899 arg.token = tokens;
7900 arg.argnum = 1;
7901 }
7902
7903 if (!match_operand (&arg, operand))
7904 return FALSE;
7905 }
7906 }
7907
7908 /* Like match_insn, but for MIPS16. */
7909
7910 static bfd_boolean
7911 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7912 struct mips_operand_token *tokens)
7913 {
7914 const char *args;
7915 const struct mips_operand *operand;
7916 const struct mips_operand *ext_operand;
7917 struct mips_arg_info arg;
7918 int relax_char;
7919
7920 create_insn (insn, opcode);
7921 imm_expr.X_op = O_absent;
7922 offset_expr.X_op = O_absent;
7923 offset_reloc[0] = BFD_RELOC_UNUSED;
7924 offset_reloc[1] = BFD_RELOC_UNUSED;
7925 offset_reloc[2] = BFD_RELOC_UNUSED;
7926 relax_char = 0;
7927
7928 memset (&arg, 0, sizeof (arg));
7929 arg.insn = insn;
7930 arg.token = tokens;
7931 arg.argnum = 1;
7932 arg.last_regno = ILLEGAL_REG;
7933 arg.dest_regno = ILLEGAL_REG;
7934 relax_char = 0;
7935 for (args = opcode->args;; ++args)
7936 {
7937 int c;
7938
7939 if (arg.token->type == OT_END)
7940 {
7941 offsetT value;
7942
7943 /* Handle unary instructions in which only one operand is given.
7944 The source is then the same as the destination. */
7945 if (arg.opnum == 1 && *args == ',')
7946 {
7947 operand = decode_mips16_operand (args[1], FALSE);
7948 if (operand && mips_optional_operand_p (operand))
7949 {
7950 arg.token = tokens;
7951 arg.argnum = 1;
7952 continue;
7953 }
7954 }
7955
7956 /* Fail the match if there were too few operands. */
7957 if (*args)
7958 return FALSE;
7959
7960 /* Successful match. Stuff the immediate value in now, if
7961 we can. */
7962 clear_insn_error ();
7963 if (opcode->pinfo == INSN_MACRO)
7964 {
7965 gas_assert (relax_char == 0 || relax_char == 'p');
7966 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7967 }
7968 else if (relax_char
7969 && offset_expr.X_op == O_constant
7970 && calculate_reloc (*offset_reloc,
7971 offset_expr.X_add_number,
7972 &value))
7973 {
7974 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7975 forced_insn_length, &insn->insn_opcode);
7976 offset_expr.X_op = O_absent;
7977 *offset_reloc = BFD_RELOC_UNUSED;
7978 }
7979 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7980 {
7981 if (forced_insn_length == 2)
7982 set_insn_error (0, _("invalid unextended operand value"));
7983 forced_insn_length = 4;
7984 insn->insn_opcode |= MIPS16_EXTEND;
7985 }
7986 else if (relax_char)
7987 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7988
7989 check_completed_insn (&arg);
7990 return TRUE;
7991 }
7992
7993 /* Fail the match if the line has too many operands. */
7994 if (*args == 0)
7995 return FALSE;
7996
7997 /* Handle characters that need to match exactly. */
7998 if (*args == '(' || *args == ')' || *args == ',')
7999 {
8000 if (match_char (&arg, *args))
8001 continue;
8002 return FALSE;
8003 }
8004
8005 arg.opnum += 1;
8006 c = *args;
8007 switch (c)
8008 {
8009 case 'p':
8010 case 'q':
8011 case 'A':
8012 case 'B':
8013 case 'E':
8014 relax_char = c;
8015 break;
8016
8017 case 'I':
8018 if (!match_const_int (&arg, &imm_expr.X_add_number))
8019 return FALSE;
8020 imm_expr.X_op = O_constant;
8021 if (GPR_SIZE == 32)
8022 normalize_constant_expr (&imm_expr);
8023 continue;
8024
8025 case 'a':
8026 case 'i':
8027 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8028 insn->insn_opcode <<= 16;
8029 break;
8030 }
8031
8032 operand = decode_mips16_operand (c, FALSE);
8033 if (!operand)
8034 abort ();
8035
8036 /* '6' is a special case. It is used for BREAK and SDBBP,
8037 whose operands are only meaningful to the software that decodes
8038 them. This means that there is no architectural reason why
8039 they cannot be prefixed by EXTEND, but in practice,
8040 exception handlers will only look at the instruction
8041 itself. We therefore allow '6' to be extended when
8042 disassembling but not when assembling. */
8043 if (operand->type != OP_PCREL && c != '6')
8044 {
8045 ext_operand = decode_mips16_operand (c, TRUE);
8046 if (operand != ext_operand)
8047 {
8048 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8049 {
8050 offset_expr.X_op = O_constant;
8051 offset_expr.X_add_number = 0;
8052 relax_char = c;
8053 continue;
8054 }
8055
8056 /* We need the OT_INTEGER check because some MIPS16
8057 immediate variants are listed before the register ones. */
8058 if (arg.token->type != OT_INTEGER
8059 || !match_expression (&arg, &offset_expr, offset_reloc))
8060 return FALSE;
8061
8062 /* '8' is used for SLTI(U) and has traditionally not
8063 been allowed to take relocation operators. */
8064 if (offset_reloc[0] != BFD_RELOC_UNUSED
8065 && (ext_operand->size != 16 || c == '8'))
8066 return FALSE;
8067
8068 relax_char = c;
8069 continue;
8070 }
8071 }
8072
8073 if (mips_optional_operand_p (operand)
8074 && args[1] == ','
8075 && (arg.token[0].type != OT_REG
8076 || arg.token[1].type == OT_END))
8077 {
8078 /* Assume that the register has been elided and is the
8079 same as the first operand. */
8080 arg.token = tokens;
8081 arg.argnum = 1;
8082 }
8083
8084 if (!match_operand (&arg, operand))
8085 return FALSE;
8086 }
8087 }
8088
8089 /* Record that the current instruction is invalid for the current ISA. */
8090
8091 static void
8092 match_invalid_for_isa (void)
8093 {
8094 set_insn_error_ss
8095 (0, _("opcode not supported on this processor: %s (%s)"),
8096 mips_cpu_info_from_arch (mips_opts.arch)->name,
8097 mips_cpu_info_from_isa (mips_opts.isa)->name);
8098 }
8099
8100 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8101 Return true if a definite match or failure was found, storing any match
8102 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8103 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8104 tried and failed to match under normal conditions and now want to try a
8105 more relaxed match. */
8106
8107 static bfd_boolean
8108 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8109 const struct mips_opcode *past, struct mips_operand_token *tokens,
8110 int opcode_extra, bfd_boolean lax_match)
8111 {
8112 const struct mips_opcode *opcode;
8113 const struct mips_opcode *invalid_delay_slot;
8114 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8115
8116 /* Search for a match, ignoring alternatives that don't satisfy the
8117 current ISA or forced_length. */
8118 invalid_delay_slot = 0;
8119 seen_valid_for_isa = FALSE;
8120 seen_valid_for_size = FALSE;
8121 opcode = first;
8122 do
8123 {
8124 gas_assert (strcmp (opcode->name, first->name) == 0);
8125 if (is_opcode_valid (opcode))
8126 {
8127 seen_valid_for_isa = TRUE;
8128 if (is_size_valid (opcode))
8129 {
8130 bfd_boolean delay_slot_ok;
8131
8132 seen_valid_for_size = TRUE;
8133 delay_slot_ok = is_delay_slot_valid (opcode);
8134 if (match_insn (insn, opcode, tokens, opcode_extra,
8135 lax_match, delay_slot_ok))
8136 {
8137 if (!delay_slot_ok)
8138 {
8139 if (!invalid_delay_slot)
8140 invalid_delay_slot = opcode;
8141 }
8142 else
8143 return TRUE;
8144 }
8145 }
8146 }
8147 ++opcode;
8148 }
8149 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8150
8151 /* If the only matches we found had the wrong length for the delay slot,
8152 pick the first such match. We'll issue an appropriate warning later. */
8153 if (invalid_delay_slot)
8154 {
8155 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8156 lax_match, TRUE))
8157 return TRUE;
8158 abort ();
8159 }
8160
8161 /* Handle the case where we didn't try to match an instruction because
8162 all the alternatives were incompatible with the current ISA. */
8163 if (!seen_valid_for_isa)
8164 {
8165 match_invalid_for_isa ();
8166 return TRUE;
8167 }
8168
8169 /* Handle the case where we didn't try to match an instruction because
8170 all the alternatives were of the wrong size. */
8171 if (!seen_valid_for_size)
8172 {
8173 if (mips_opts.insn32)
8174 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8175 else
8176 set_insn_error_i
8177 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8178 8 * forced_insn_length);
8179 return TRUE;
8180 }
8181
8182 return FALSE;
8183 }
8184
8185 /* Like match_insns, but for MIPS16. */
8186
8187 static bfd_boolean
8188 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8189 struct mips_operand_token *tokens)
8190 {
8191 const struct mips_opcode *opcode;
8192 bfd_boolean seen_valid_for_isa;
8193
8194 /* Search for a match, ignoring alternatives that don't satisfy the
8195 current ISA. There are no separate entries for extended forms so
8196 we deal with forced_length later. */
8197 seen_valid_for_isa = FALSE;
8198 opcode = first;
8199 do
8200 {
8201 gas_assert (strcmp (opcode->name, first->name) == 0);
8202 if (is_opcode_valid_16 (opcode))
8203 {
8204 seen_valid_for_isa = TRUE;
8205 if (match_mips16_insn (insn, opcode, tokens))
8206 return TRUE;
8207 }
8208 ++opcode;
8209 }
8210 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8211 && strcmp (opcode->name, first->name) == 0);
8212
8213 /* Handle the case where we didn't try to match an instruction because
8214 all the alternatives were incompatible with the current ISA. */
8215 if (!seen_valid_for_isa)
8216 {
8217 match_invalid_for_isa ();
8218 return TRUE;
8219 }
8220
8221 return FALSE;
8222 }
8223
8224 /* Set up global variables for the start of a new macro. */
8225
8226 static void
8227 macro_start (void)
8228 {
8229 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8230 memset (&mips_macro_warning.first_insn_sizes, 0,
8231 sizeof (mips_macro_warning.first_insn_sizes));
8232 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8233 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8234 && delayed_branch_p (&history[0]));
8235 switch (history[0].insn_mo->pinfo2
8236 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8237 {
8238 case INSN2_BRANCH_DELAY_32BIT:
8239 mips_macro_warning.delay_slot_length = 4;
8240 break;
8241 case INSN2_BRANCH_DELAY_16BIT:
8242 mips_macro_warning.delay_slot_length = 2;
8243 break;
8244 default:
8245 mips_macro_warning.delay_slot_length = 0;
8246 break;
8247 }
8248 mips_macro_warning.first_frag = NULL;
8249 }
8250
8251 /* Given that a macro is longer than one instruction or of the wrong size,
8252 return the appropriate warning for it. Return null if no warning is
8253 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8254 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8255 and RELAX_NOMACRO. */
8256
8257 static const char *
8258 macro_warning (relax_substateT subtype)
8259 {
8260 if (subtype & RELAX_DELAY_SLOT)
8261 return _("macro instruction expanded into multiple instructions"
8262 " in a branch delay slot");
8263 else if (subtype & RELAX_NOMACRO)
8264 return _("macro instruction expanded into multiple instructions");
8265 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8266 | RELAX_DELAY_SLOT_SIZE_SECOND))
8267 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8268 ? _("macro instruction expanded into a wrong size instruction"
8269 " in a 16-bit branch delay slot")
8270 : _("macro instruction expanded into a wrong size instruction"
8271 " in a 32-bit branch delay slot"));
8272 else
8273 return 0;
8274 }
8275
8276 /* Finish up a macro. Emit warnings as appropriate. */
8277
8278 static void
8279 macro_end (void)
8280 {
8281 /* Relaxation warning flags. */
8282 relax_substateT subtype = 0;
8283
8284 /* Check delay slot size requirements. */
8285 if (mips_macro_warning.delay_slot_length == 2)
8286 subtype |= RELAX_DELAY_SLOT_16BIT;
8287 if (mips_macro_warning.delay_slot_length != 0)
8288 {
8289 if (mips_macro_warning.delay_slot_length
8290 != mips_macro_warning.first_insn_sizes[0])
8291 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8292 if (mips_macro_warning.delay_slot_length
8293 != mips_macro_warning.first_insn_sizes[1])
8294 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8295 }
8296
8297 /* Check instruction count requirements. */
8298 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8299 {
8300 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8301 subtype |= RELAX_SECOND_LONGER;
8302 if (mips_opts.warn_about_macros)
8303 subtype |= RELAX_NOMACRO;
8304 if (mips_macro_warning.delay_slot_p)
8305 subtype |= RELAX_DELAY_SLOT;
8306 }
8307
8308 /* If both alternatives fail to fill a delay slot correctly,
8309 emit the warning now. */
8310 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8311 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8312 {
8313 relax_substateT s;
8314 const char *msg;
8315
8316 s = subtype & (RELAX_DELAY_SLOT_16BIT
8317 | RELAX_DELAY_SLOT_SIZE_FIRST
8318 | RELAX_DELAY_SLOT_SIZE_SECOND);
8319 msg = macro_warning (s);
8320 if (msg != NULL)
8321 as_warn ("%s", msg);
8322 subtype &= ~s;
8323 }
8324
8325 /* If both implementations are longer than 1 instruction, then emit the
8326 warning now. */
8327 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8328 {
8329 relax_substateT s;
8330 const char *msg;
8331
8332 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8333 msg = macro_warning (s);
8334 if (msg != NULL)
8335 as_warn ("%s", msg);
8336 subtype &= ~s;
8337 }
8338
8339 /* If any flags still set, then one implementation might need a warning
8340 and the other either will need one of a different kind or none at all.
8341 Pass any remaining flags over to relaxation. */
8342 if (mips_macro_warning.first_frag != NULL)
8343 mips_macro_warning.first_frag->fr_subtype |= subtype;
8344 }
8345
8346 /* Instruction operand formats used in macros that vary between
8347 standard MIPS and microMIPS code. */
8348
8349 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8350 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8351 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8352 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8353 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8354 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8355 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8356 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8357
8358 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8359 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8360 : cop12_fmt[mips_opts.micromips])
8361 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8362 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8363 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8364 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8365 : mem12_fmt[mips_opts.micromips])
8366 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8367 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8368 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8369
8370 /* Read a macro's relocation codes from *ARGS and store them in *R.
8371 The first argument in *ARGS will be either the code for a single
8372 relocation or -1 followed by the three codes that make up a
8373 composite relocation. */
8374
8375 static void
8376 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8377 {
8378 int i, next;
8379
8380 next = va_arg (*args, int);
8381 if (next >= 0)
8382 r[0] = (bfd_reloc_code_real_type) next;
8383 else
8384 {
8385 for (i = 0; i < 3; i++)
8386 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8387 /* This function is only used for 16-bit relocation fields.
8388 To make the macro code simpler, treat an unrelocated value
8389 in the same way as BFD_RELOC_LO16. */
8390 if (r[0] == BFD_RELOC_UNUSED)
8391 r[0] = BFD_RELOC_LO16;
8392 }
8393 }
8394
8395 /* Build an instruction created by a macro expansion. This is passed
8396 a pointer to the count of instructions created so far, an
8397 expression, the name of the instruction to build, an operand format
8398 string, and corresponding arguments. */
8399
8400 static void
8401 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8402 {
8403 const struct mips_opcode *mo = NULL;
8404 bfd_reloc_code_real_type r[3];
8405 const struct mips_opcode *amo;
8406 const struct mips_operand *operand;
8407 struct hash_control *hash;
8408 struct mips_cl_insn insn;
8409 va_list args;
8410 unsigned int uval;
8411
8412 va_start (args, fmt);
8413
8414 if (mips_opts.mips16)
8415 {
8416 mips16_macro_build (ep, name, fmt, &args);
8417 va_end (args);
8418 return;
8419 }
8420
8421 r[0] = BFD_RELOC_UNUSED;
8422 r[1] = BFD_RELOC_UNUSED;
8423 r[2] = BFD_RELOC_UNUSED;
8424 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8425 amo = (struct mips_opcode *) hash_find (hash, name);
8426 gas_assert (amo);
8427 gas_assert (strcmp (name, amo->name) == 0);
8428
8429 do
8430 {
8431 /* Search until we get a match for NAME. It is assumed here that
8432 macros will never generate MDMX, MIPS-3D, or MT instructions.
8433 We try to match an instruction that fulfils the branch delay
8434 slot instruction length requirement (if any) of the previous
8435 instruction. While doing this we record the first instruction
8436 seen that matches all the other conditions and use it anyway
8437 if the requirement cannot be met; we will issue an appropriate
8438 warning later on. */
8439 if (strcmp (fmt, amo->args) == 0
8440 && amo->pinfo != INSN_MACRO
8441 && is_opcode_valid (amo)
8442 && is_size_valid (amo))
8443 {
8444 if (is_delay_slot_valid (amo))
8445 {
8446 mo = amo;
8447 break;
8448 }
8449 else if (!mo)
8450 mo = amo;
8451 }
8452
8453 ++amo;
8454 gas_assert (amo->name);
8455 }
8456 while (strcmp (name, amo->name) == 0);
8457
8458 gas_assert (mo);
8459 create_insn (&insn, mo);
8460 for (; *fmt; ++fmt)
8461 {
8462 switch (*fmt)
8463 {
8464 case ',':
8465 case '(':
8466 case ')':
8467 case 'z':
8468 break;
8469
8470 case 'i':
8471 case 'j':
8472 macro_read_relocs (&args, r);
8473 gas_assert (*r == BFD_RELOC_GPREL16
8474 || *r == BFD_RELOC_MIPS_HIGHER
8475 || *r == BFD_RELOC_HI16_S
8476 || *r == BFD_RELOC_LO16
8477 || *r == BFD_RELOC_MIPS_GOT_OFST);
8478 break;
8479
8480 case 'o':
8481 macro_read_relocs (&args, r);
8482 break;
8483
8484 case 'u':
8485 macro_read_relocs (&args, r);
8486 gas_assert (ep != NULL
8487 && (ep->X_op == O_constant
8488 || (ep->X_op == O_symbol
8489 && (*r == BFD_RELOC_MIPS_HIGHEST
8490 || *r == BFD_RELOC_HI16_S
8491 || *r == BFD_RELOC_HI16
8492 || *r == BFD_RELOC_GPREL16
8493 || *r == BFD_RELOC_MIPS_GOT_HI16
8494 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8495 break;
8496
8497 case 'p':
8498 gas_assert (ep != NULL);
8499
8500 /*
8501 * This allows macro() to pass an immediate expression for
8502 * creating short branches without creating a symbol.
8503 *
8504 * We don't allow branch relaxation for these branches, as
8505 * they should only appear in ".set nomacro" anyway.
8506 */
8507 if (ep->X_op == O_constant)
8508 {
8509 /* For microMIPS we always use relocations for branches.
8510 So we should not resolve immediate values. */
8511 gas_assert (!mips_opts.micromips);
8512
8513 if ((ep->X_add_number & 3) != 0)
8514 as_bad (_("branch to misaligned address (0x%lx)"),
8515 (unsigned long) ep->X_add_number);
8516 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8517 as_bad (_("branch address range overflow (0x%lx)"),
8518 (unsigned long) ep->X_add_number);
8519 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8520 ep = NULL;
8521 }
8522 else
8523 *r = BFD_RELOC_16_PCREL_S2;
8524 break;
8525
8526 case 'a':
8527 gas_assert (ep != NULL);
8528 *r = BFD_RELOC_MIPS_JMP;
8529 break;
8530
8531 default:
8532 operand = (mips_opts.micromips
8533 ? decode_micromips_operand (fmt)
8534 : decode_mips_operand (fmt));
8535 if (!operand)
8536 abort ();
8537
8538 uval = va_arg (args, int);
8539 if (operand->type == OP_CLO_CLZ_DEST)
8540 uval |= (uval << 5);
8541 insn_insert_operand (&insn, operand, uval);
8542
8543 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8544 ++fmt;
8545 break;
8546 }
8547 }
8548 va_end (args);
8549 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8550
8551 append_insn (&insn, ep, r, TRUE);
8552 }
8553
8554 static void
8555 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8556 va_list *args)
8557 {
8558 struct mips_opcode *mo;
8559 struct mips_cl_insn insn;
8560 const struct mips_operand *operand;
8561 bfd_reloc_code_real_type r[3]
8562 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8563
8564 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8565 gas_assert (mo);
8566 gas_assert (strcmp (name, mo->name) == 0);
8567
8568 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8569 {
8570 ++mo;
8571 gas_assert (mo->name);
8572 gas_assert (strcmp (name, mo->name) == 0);
8573 }
8574
8575 create_insn (&insn, mo);
8576 for (; *fmt; ++fmt)
8577 {
8578 int c;
8579
8580 c = *fmt;
8581 switch (c)
8582 {
8583 case ',':
8584 case '(':
8585 case ')':
8586 break;
8587
8588 case '0':
8589 case 'S':
8590 case 'P':
8591 case 'R':
8592 break;
8593
8594 case '<':
8595 case '>':
8596 case '4':
8597 case '5':
8598 case 'H':
8599 case 'W':
8600 case 'D':
8601 case 'j':
8602 case '8':
8603 case 'V':
8604 case 'C':
8605 case 'U':
8606 case 'k':
8607 case 'K':
8608 case 'p':
8609 case 'q':
8610 {
8611 offsetT value;
8612
8613 gas_assert (ep != NULL);
8614
8615 if (ep->X_op != O_constant)
8616 *r = (int) BFD_RELOC_UNUSED + c;
8617 else if (calculate_reloc (*r, ep->X_add_number, &value))
8618 {
8619 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8620 ep = NULL;
8621 *r = BFD_RELOC_UNUSED;
8622 }
8623 }
8624 break;
8625
8626 default:
8627 operand = decode_mips16_operand (c, FALSE);
8628 if (!operand)
8629 abort ();
8630
8631 insn_insert_operand (&insn, operand, va_arg (*args, int));
8632 break;
8633 }
8634 }
8635
8636 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8637
8638 append_insn (&insn, ep, r, TRUE);
8639 }
8640
8641 /*
8642 * Generate a "jalr" instruction with a relocation hint to the called
8643 * function. This occurs in NewABI PIC code.
8644 */
8645 static void
8646 macro_build_jalr (expressionS *ep, int cprestore)
8647 {
8648 static const bfd_reloc_code_real_type jalr_relocs[2]
8649 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8650 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8651 const char *jalr;
8652 char *f = NULL;
8653
8654 if (MIPS_JALR_HINT_P (ep))
8655 {
8656 frag_grow (8);
8657 f = frag_more (0);
8658 }
8659 if (mips_opts.micromips)
8660 {
8661 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8662 ? "jalr" : "jalrs");
8663 if (MIPS_JALR_HINT_P (ep)
8664 || mips_opts.insn32
8665 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8666 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8667 else
8668 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8669 }
8670 else
8671 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8672 if (MIPS_JALR_HINT_P (ep))
8673 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8674 }
8675
8676 /*
8677 * Generate a "lui" instruction.
8678 */
8679 static void
8680 macro_build_lui (expressionS *ep, int regnum)
8681 {
8682 gas_assert (! mips_opts.mips16);
8683
8684 if (ep->X_op != O_constant)
8685 {
8686 gas_assert (ep->X_op == O_symbol);
8687 /* _gp_disp is a special case, used from s_cpload.
8688 __gnu_local_gp is used if mips_no_shared. */
8689 gas_assert (mips_pic == NO_PIC
8690 || (! HAVE_NEWABI
8691 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8692 || (! mips_in_shared
8693 && strcmp (S_GET_NAME (ep->X_add_symbol),
8694 "__gnu_local_gp") == 0));
8695 }
8696
8697 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8698 }
8699
8700 /* Generate a sequence of instructions to do a load or store from a constant
8701 offset off of a base register (breg) into/from a target register (treg),
8702 using AT if necessary. */
8703 static void
8704 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8705 int treg, int breg, int dbl)
8706 {
8707 gas_assert (ep->X_op == O_constant);
8708
8709 /* Sign-extending 32-bit constants makes their handling easier. */
8710 if (!dbl)
8711 normalize_constant_expr (ep);
8712
8713 /* Right now, this routine can only handle signed 32-bit constants. */
8714 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8715 as_warn (_("operand overflow"));
8716
8717 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8718 {
8719 /* Signed 16-bit offset will fit in the op. Easy! */
8720 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8721 }
8722 else
8723 {
8724 /* 32-bit offset, need multiple instructions and AT, like:
8725 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8726 addu $tempreg,$tempreg,$breg
8727 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8728 to handle the complete offset. */
8729 macro_build_lui (ep, AT);
8730 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8731 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8732
8733 if (!mips_opts.at)
8734 as_bad (_("macro used $at after \".set noat\""));
8735 }
8736 }
8737
8738 /* set_at()
8739 * Generates code to set the $at register to true (one)
8740 * if reg is less than the immediate expression.
8741 */
8742 static void
8743 set_at (int reg, int unsignedp)
8744 {
8745 if (imm_expr.X_add_number >= -0x8000
8746 && imm_expr.X_add_number < 0x8000)
8747 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8748 AT, reg, BFD_RELOC_LO16);
8749 else
8750 {
8751 load_register (AT, &imm_expr, GPR_SIZE == 64);
8752 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8753 }
8754 }
8755
8756 /* Count the leading zeroes by performing a binary chop. This is a
8757 bulky bit of source, but performance is a LOT better for the
8758 majority of values than a simple loop to count the bits:
8759 for (lcnt = 0; (lcnt < 32); lcnt++)
8760 if ((v) & (1 << (31 - lcnt)))
8761 break;
8762 However it is not code size friendly, and the gain will drop a bit
8763 on certain cached systems.
8764 */
8765 #define COUNT_TOP_ZEROES(v) \
8766 (((v) & ~0xffff) == 0 \
8767 ? ((v) & ~0xff) == 0 \
8768 ? ((v) & ~0xf) == 0 \
8769 ? ((v) & ~0x3) == 0 \
8770 ? ((v) & ~0x1) == 0 \
8771 ? !(v) \
8772 ? 32 \
8773 : 31 \
8774 : 30 \
8775 : ((v) & ~0x7) == 0 \
8776 ? 29 \
8777 : 28 \
8778 : ((v) & ~0x3f) == 0 \
8779 ? ((v) & ~0x1f) == 0 \
8780 ? 27 \
8781 : 26 \
8782 : ((v) & ~0x7f) == 0 \
8783 ? 25 \
8784 : 24 \
8785 : ((v) & ~0xfff) == 0 \
8786 ? ((v) & ~0x3ff) == 0 \
8787 ? ((v) & ~0x1ff) == 0 \
8788 ? 23 \
8789 : 22 \
8790 : ((v) & ~0x7ff) == 0 \
8791 ? 21 \
8792 : 20 \
8793 : ((v) & ~0x3fff) == 0 \
8794 ? ((v) & ~0x1fff) == 0 \
8795 ? 19 \
8796 : 18 \
8797 : ((v) & ~0x7fff) == 0 \
8798 ? 17 \
8799 : 16 \
8800 : ((v) & ~0xffffff) == 0 \
8801 ? ((v) & ~0xfffff) == 0 \
8802 ? ((v) & ~0x3ffff) == 0 \
8803 ? ((v) & ~0x1ffff) == 0 \
8804 ? 15 \
8805 : 14 \
8806 : ((v) & ~0x7ffff) == 0 \
8807 ? 13 \
8808 : 12 \
8809 : ((v) & ~0x3fffff) == 0 \
8810 ? ((v) & ~0x1fffff) == 0 \
8811 ? 11 \
8812 : 10 \
8813 : ((v) & ~0x7fffff) == 0 \
8814 ? 9 \
8815 : 8 \
8816 : ((v) & ~0xfffffff) == 0 \
8817 ? ((v) & ~0x3ffffff) == 0 \
8818 ? ((v) & ~0x1ffffff) == 0 \
8819 ? 7 \
8820 : 6 \
8821 : ((v) & ~0x7ffffff) == 0 \
8822 ? 5 \
8823 : 4 \
8824 : ((v) & ~0x3fffffff) == 0 \
8825 ? ((v) & ~0x1fffffff) == 0 \
8826 ? 3 \
8827 : 2 \
8828 : ((v) & ~0x7fffffff) == 0 \
8829 ? 1 \
8830 : 0)
8831
8832 /* load_register()
8833 * This routine generates the least number of instructions necessary to load
8834 * an absolute expression value into a register.
8835 */
8836 static void
8837 load_register (int reg, expressionS *ep, int dbl)
8838 {
8839 int freg;
8840 expressionS hi32, lo32;
8841
8842 if (ep->X_op != O_big)
8843 {
8844 gas_assert (ep->X_op == O_constant);
8845
8846 /* Sign-extending 32-bit constants makes their handling easier. */
8847 if (!dbl)
8848 normalize_constant_expr (ep);
8849
8850 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8851 {
8852 /* We can handle 16 bit signed values with an addiu to
8853 $zero. No need to ever use daddiu here, since $zero and
8854 the result are always correct in 32 bit mode. */
8855 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8856 return;
8857 }
8858 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8859 {
8860 /* We can handle 16 bit unsigned values with an ori to
8861 $zero. */
8862 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8863 return;
8864 }
8865 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8866 {
8867 /* 32 bit values require an lui. */
8868 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8869 if ((ep->X_add_number & 0xffff) != 0)
8870 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8871 return;
8872 }
8873 }
8874
8875 /* The value is larger than 32 bits. */
8876
8877 if (!dbl || GPR_SIZE == 32)
8878 {
8879 char value[32];
8880
8881 sprintf_vma (value, ep->X_add_number);
8882 as_bad (_("number (0x%s) larger than 32 bits"), value);
8883 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8884 return;
8885 }
8886
8887 if (ep->X_op != O_big)
8888 {
8889 hi32 = *ep;
8890 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8891 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8892 hi32.X_add_number &= 0xffffffff;
8893 lo32 = *ep;
8894 lo32.X_add_number &= 0xffffffff;
8895 }
8896 else
8897 {
8898 gas_assert (ep->X_add_number > 2);
8899 if (ep->X_add_number == 3)
8900 generic_bignum[3] = 0;
8901 else if (ep->X_add_number > 4)
8902 as_bad (_("number larger than 64 bits"));
8903 lo32.X_op = O_constant;
8904 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8905 hi32.X_op = O_constant;
8906 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8907 }
8908
8909 if (hi32.X_add_number == 0)
8910 freg = 0;
8911 else
8912 {
8913 int shift, bit;
8914 unsigned long hi, lo;
8915
8916 if (hi32.X_add_number == (offsetT) 0xffffffff)
8917 {
8918 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8919 {
8920 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8921 return;
8922 }
8923 if (lo32.X_add_number & 0x80000000)
8924 {
8925 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8926 if (lo32.X_add_number & 0xffff)
8927 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8928 return;
8929 }
8930 }
8931
8932 /* Check for 16bit shifted constant. We know that hi32 is
8933 non-zero, so start the mask on the first bit of the hi32
8934 value. */
8935 shift = 17;
8936 do
8937 {
8938 unsigned long himask, lomask;
8939
8940 if (shift < 32)
8941 {
8942 himask = 0xffff >> (32 - shift);
8943 lomask = (0xffff << shift) & 0xffffffff;
8944 }
8945 else
8946 {
8947 himask = 0xffff << (shift - 32);
8948 lomask = 0;
8949 }
8950 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8951 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8952 {
8953 expressionS tmp;
8954
8955 tmp.X_op = O_constant;
8956 if (shift < 32)
8957 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8958 | (lo32.X_add_number >> shift));
8959 else
8960 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8961 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8962 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8963 reg, reg, (shift >= 32) ? shift - 32 : shift);
8964 return;
8965 }
8966 ++shift;
8967 }
8968 while (shift <= (64 - 16));
8969
8970 /* Find the bit number of the lowest one bit, and store the
8971 shifted value in hi/lo. */
8972 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8973 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8974 if (lo != 0)
8975 {
8976 bit = 0;
8977 while ((lo & 1) == 0)
8978 {
8979 lo >>= 1;
8980 ++bit;
8981 }
8982 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8983 hi >>= bit;
8984 }
8985 else
8986 {
8987 bit = 32;
8988 while ((hi & 1) == 0)
8989 {
8990 hi >>= 1;
8991 ++bit;
8992 }
8993 lo = hi;
8994 hi = 0;
8995 }
8996
8997 /* Optimize if the shifted value is a (power of 2) - 1. */
8998 if ((hi == 0 && ((lo + 1) & lo) == 0)
8999 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9000 {
9001 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9002 if (shift != 0)
9003 {
9004 expressionS tmp;
9005
9006 /* This instruction will set the register to be all
9007 ones. */
9008 tmp.X_op = O_constant;
9009 tmp.X_add_number = (offsetT) -1;
9010 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9011 if (bit != 0)
9012 {
9013 bit += shift;
9014 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9015 reg, reg, (bit >= 32) ? bit - 32 : bit);
9016 }
9017 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9018 reg, reg, (shift >= 32) ? shift - 32 : shift);
9019 return;
9020 }
9021 }
9022
9023 /* Sign extend hi32 before calling load_register, because we can
9024 generally get better code when we load a sign extended value. */
9025 if ((hi32.X_add_number & 0x80000000) != 0)
9026 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9027 load_register (reg, &hi32, 0);
9028 freg = reg;
9029 }
9030 if ((lo32.X_add_number & 0xffff0000) == 0)
9031 {
9032 if (freg != 0)
9033 {
9034 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9035 freg = reg;
9036 }
9037 }
9038 else
9039 {
9040 expressionS mid16;
9041
9042 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9043 {
9044 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9045 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9046 return;
9047 }
9048
9049 if (freg != 0)
9050 {
9051 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9052 freg = reg;
9053 }
9054 mid16 = lo32;
9055 mid16.X_add_number >>= 16;
9056 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9057 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9058 freg = reg;
9059 }
9060 if ((lo32.X_add_number & 0xffff) != 0)
9061 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9062 }
9063
9064 static inline void
9065 load_delay_nop (void)
9066 {
9067 if (!gpr_interlocks)
9068 macro_build (NULL, "nop", "");
9069 }
9070
9071 /* Load an address into a register. */
9072
9073 static void
9074 load_address (int reg, expressionS *ep, int *used_at)
9075 {
9076 if (ep->X_op != O_constant
9077 && ep->X_op != O_symbol)
9078 {
9079 as_bad (_("expression too complex"));
9080 ep->X_op = O_constant;
9081 }
9082
9083 if (ep->X_op == O_constant)
9084 {
9085 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9086 return;
9087 }
9088
9089 if (mips_pic == NO_PIC)
9090 {
9091 /* If this is a reference to a GP relative symbol, we want
9092 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9093 Otherwise we want
9094 lui $reg,<sym> (BFD_RELOC_HI16_S)
9095 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9096 If we have an addend, we always use the latter form.
9097
9098 With 64bit address space and a usable $at we want
9099 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9100 lui $at,<sym> (BFD_RELOC_HI16_S)
9101 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9102 daddiu $at,<sym> (BFD_RELOC_LO16)
9103 dsll32 $reg,0
9104 daddu $reg,$reg,$at
9105
9106 If $at is already in use, we use a path which is suboptimal
9107 on superscalar processors.
9108 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9109 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9110 dsll $reg,16
9111 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9112 dsll $reg,16
9113 daddiu $reg,<sym> (BFD_RELOC_LO16)
9114
9115 For GP relative symbols in 64bit address space we can use
9116 the same sequence as in 32bit address space. */
9117 if (HAVE_64BIT_SYMBOLS)
9118 {
9119 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9120 && !nopic_need_relax (ep->X_add_symbol, 1))
9121 {
9122 relax_start (ep->X_add_symbol);
9123 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9124 mips_gp_register, BFD_RELOC_GPREL16);
9125 relax_switch ();
9126 }
9127
9128 if (*used_at == 0 && mips_opts.at)
9129 {
9130 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9131 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9132 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9133 BFD_RELOC_MIPS_HIGHER);
9134 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9135 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9136 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9137 *used_at = 1;
9138 }
9139 else
9140 {
9141 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9142 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9143 BFD_RELOC_MIPS_HIGHER);
9144 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9145 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9146 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9147 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9148 }
9149
9150 if (mips_relax.sequence)
9151 relax_end ();
9152 }
9153 else
9154 {
9155 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9156 && !nopic_need_relax (ep->X_add_symbol, 1))
9157 {
9158 relax_start (ep->X_add_symbol);
9159 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9160 mips_gp_register, BFD_RELOC_GPREL16);
9161 relax_switch ();
9162 }
9163 macro_build_lui (ep, reg);
9164 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9165 reg, reg, BFD_RELOC_LO16);
9166 if (mips_relax.sequence)
9167 relax_end ();
9168 }
9169 }
9170 else if (!mips_big_got)
9171 {
9172 expressionS ex;
9173
9174 /* If this is a reference to an external symbol, we want
9175 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9176 Otherwise we want
9177 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9178 nop
9179 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9180 If there is a constant, it must be added in after.
9181
9182 If we have NewABI, we want
9183 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9184 unless we're referencing a global symbol with a non-zero
9185 offset, in which case cst must be added separately. */
9186 if (HAVE_NEWABI)
9187 {
9188 if (ep->X_add_number)
9189 {
9190 ex.X_add_number = ep->X_add_number;
9191 ep->X_add_number = 0;
9192 relax_start (ep->X_add_symbol);
9193 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9194 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9195 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9196 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9197 ex.X_op = O_constant;
9198 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9199 reg, reg, BFD_RELOC_LO16);
9200 ep->X_add_number = ex.X_add_number;
9201 relax_switch ();
9202 }
9203 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9204 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9205 if (mips_relax.sequence)
9206 relax_end ();
9207 }
9208 else
9209 {
9210 ex.X_add_number = ep->X_add_number;
9211 ep->X_add_number = 0;
9212 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9213 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9214 load_delay_nop ();
9215 relax_start (ep->X_add_symbol);
9216 relax_switch ();
9217 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9218 BFD_RELOC_LO16);
9219 relax_end ();
9220
9221 if (ex.X_add_number != 0)
9222 {
9223 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9224 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9225 ex.X_op = O_constant;
9226 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9227 reg, reg, BFD_RELOC_LO16);
9228 }
9229 }
9230 }
9231 else if (mips_big_got)
9232 {
9233 expressionS ex;
9234
9235 /* This is the large GOT case. If this is a reference to an
9236 external symbol, we want
9237 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9238 addu $reg,$reg,$gp
9239 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9240
9241 Otherwise, for a reference to a local symbol in old ABI, we want
9242 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9243 nop
9244 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9245 If there is a constant, it must be added in after.
9246
9247 In the NewABI, for local symbols, with or without offsets, we want:
9248 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9249 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9250 */
9251 if (HAVE_NEWABI)
9252 {
9253 ex.X_add_number = ep->X_add_number;
9254 ep->X_add_number = 0;
9255 relax_start (ep->X_add_symbol);
9256 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9257 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9258 reg, reg, mips_gp_register);
9259 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9260 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9261 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9262 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9263 else if (ex.X_add_number)
9264 {
9265 ex.X_op = O_constant;
9266 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9267 BFD_RELOC_LO16);
9268 }
9269
9270 ep->X_add_number = ex.X_add_number;
9271 relax_switch ();
9272 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9273 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9274 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9275 BFD_RELOC_MIPS_GOT_OFST);
9276 relax_end ();
9277 }
9278 else
9279 {
9280 ex.X_add_number = ep->X_add_number;
9281 ep->X_add_number = 0;
9282 relax_start (ep->X_add_symbol);
9283 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9284 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9285 reg, reg, mips_gp_register);
9286 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9287 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9288 relax_switch ();
9289 if (reg_needs_delay (mips_gp_register))
9290 {
9291 /* We need a nop before loading from $gp. This special
9292 check is required because the lui which starts the main
9293 instruction stream does not refer to $gp, and so will not
9294 insert the nop which may be required. */
9295 macro_build (NULL, "nop", "");
9296 }
9297 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9298 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9299 load_delay_nop ();
9300 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9301 BFD_RELOC_LO16);
9302 relax_end ();
9303
9304 if (ex.X_add_number != 0)
9305 {
9306 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9307 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9308 ex.X_op = O_constant;
9309 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9310 BFD_RELOC_LO16);
9311 }
9312 }
9313 }
9314 else
9315 abort ();
9316
9317 if (!mips_opts.at && *used_at == 1)
9318 as_bad (_("macro used $at after \".set noat\""));
9319 }
9320
9321 /* Move the contents of register SOURCE into register DEST. */
9322
9323 static void
9324 move_register (int dest, int source)
9325 {
9326 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9327 instruction specifically requires a 32-bit one. */
9328 if (mips_opts.micromips
9329 && !mips_opts.insn32
9330 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9331 macro_build (NULL, "move", "mp,mj", dest, source);
9332 else
9333 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9334 }
9335
9336 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9337 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9338 The two alternatives are:
9339
9340 Global symbol Local sybmol
9341 ------------- ------------
9342 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9343 ... ...
9344 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9345
9346 load_got_offset emits the first instruction and add_got_offset
9347 emits the second for a 16-bit offset or add_got_offset_hilo emits
9348 a sequence to add a 32-bit offset using a scratch register. */
9349
9350 static void
9351 load_got_offset (int dest, expressionS *local)
9352 {
9353 expressionS global;
9354
9355 global = *local;
9356 global.X_add_number = 0;
9357
9358 relax_start (local->X_add_symbol);
9359 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9360 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9361 relax_switch ();
9362 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9363 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9364 relax_end ();
9365 }
9366
9367 static void
9368 add_got_offset (int dest, expressionS *local)
9369 {
9370 expressionS global;
9371
9372 global.X_op = O_constant;
9373 global.X_op_symbol = NULL;
9374 global.X_add_symbol = NULL;
9375 global.X_add_number = local->X_add_number;
9376
9377 relax_start (local->X_add_symbol);
9378 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9379 dest, dest, BFD_RELOC_LO16);
9380 relax_switch ();
9381 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9382 relax_end ();
9383 }
9384
9385 static void
9386 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9387 {
9388 expressionS global;
9389 int hold_mips_optimize;
9390
9391 global.X_op = O_constant;
9392 global.X_op_symbol = NULL;
9393 global.X_add_symbol = NULL;
9394 global.X_add_number = local->X_add_number;
9395
9396 relax_start (local->X_add_symbol);
9397 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9398 relax_switch ();
9399 /* Set mips_optimize around the lui instruction to avoid
9400 inserting an unnecessary nop after the lw. */
9401 hold_mips_optimize = mips_optimize;
9402 mips_optimize = 2;
9403 macro_build_lui (&global, tmp);
9404 mips_optimize = hold_mips_optimize;
9405 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9406 relax_end ();
9407
9408 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9409 }
9410
9411 /* Emit a sequence of instructions to emulate a branch likely operation.
9412 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9413 is its complementing branch with the original condition negated.
9414 CALL is set if the original branch specified the link operation.
9415 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9416
9417 Code like this is produced in the noreorder mode:
9418
9419 BRNEG <args>, 1f
9420 nop
9421 b <sym>
9422 delay slot (executed only if branch taken)
9423 1:
9424
9425 or, if CALL is set:
9426
9427 BRNEG <args>, 1f
9428 nop
9429 bal <sym>
9430 delay slot (executed only if branch taken)
9431 1:
9432
9433 In the reorder mode the delay slot would be filled with a nop anyway,
9434 so code produced is simply:
9435
9436 BR <args>, <sym>
9437 nop
9438
9439 This function is used when producing code for the microMIPS ASE that
9440 does not implement branch likely instructions in hardware. */
9441
9442 static void
9443 macro_build_branch_likely (const char *br, const char *brneg,
9444 int call, expressionS *ep, const char *fmt,
9445 unsigned int sreg, unsigned int treg)
9446 {
9447 int noreorder = mips_opts.noreorder;
9448 expressionS expr1;
9449
9450 gas_assert (mips_opts.micromips);
9451 start_noreorder ();
9452 if (noreorder)
9453 {
9454 micromips_label_expr (&expr1);
9455 macro_build (&expr1, brneg, fmt, sreg, treg);
9456 macro_build (NULL, "nop", "");
9457 macro_build (ep, call ? "bal" : "b", "p");
9458
9459 /* Set to true so that append_insn adds a label. */
9460 emit_branch_likely_macro = TRUE;
9461 }
9462 else
9463 {
9464 macro_build (ep, br, fmt, sreg, treg);
9465 macro_build (NULL, "nop", "");
9466 }
9467 end_noreorder ();
9468 }
9469
9470 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9471 the condition code tested. EP specifies the branch target. */
9472
9473 static void
9474 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9475 {
9476 const int call = 0;
9477 const char *brneg;
9478 const char *br;
9479
9480 switch (type)
9481 {
9482 case M_BC1FL:
9483 br = "bc1f";
9484 brneg = "bc1t";
9485 break;
9486 case M_BC1TL:
9487 br = "bc1t";
9488 brneg = "bc1f";
9489 break;
9490 case M_BC2FL:
9491 br = "bc2f";
9492 brneg = "bc2t";
9493 break;
9494 case M_BC2TL:
9495 br = "bc2t";
9496 brneg = "bc2f";
9497 break;
9498 default:
9499 abort ();
9500 }
9501 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9502 }
9503
9504 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9505 the register tested. EP specifies the branch target. */
9506
9507 static void
9508 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9509 {
9510 const char *brneg = NULL;
9511 const char *br;
9512 int call = 0;
9513
9514 switch (type)
9515 {
9516 case M_BGEZ:
9517 br = "bgez";
9518 break;
9519 case M_BGEZL:
9520 br = mips_opts.micromips ? "bgez" : "bgezl";
9521 brneg = "bltz";
9522 break;
9523 case M_BGEZALL:
9524 gas_assert (mips_opts.micromips);
9525 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9526 brneg = "bltz";
9527 call = 1;
9528 break;
9529 case M_BGTZ:
9530 br = "bgtz";
9531 break;
9532 case M_BGTZL:
9533 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9534 brneg = "blez";
9535 break;
9536 case M_BLEZ:
9537 br = "blez";
9538 break;
9539 case M_BLEZL:
9540 br = mips_opts.micromips ? "blez" : "blezl";
9541 brneg = "bgtz";
9542 break;
9543 case M_BLTZ:
9544 br = "bltz";
9545 break;
9546 case M_BLTZL:
9547 br = mips_opts.micromips ? "bltz" : "bltzl";
9548 brneg = "bgez";
9549 break;
9550 case M_BLTZALL:
9551 gas_assert (mips_opts.micromips);
9552 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9553 brneg = "bgez";
9554 call = 1;
9555 break;
9556 default:
9557 abort ();
9558 }
9559 if (mips_opts.micromips && brneg)
9560 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9561 else
9562 macro_build (ep, br, "s,p", sreg);
9563 }
9564
9565 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9566 TREG as the registers tested. EP specifies the branch target. */
9567
9568 static void
9569 macro_build_branch_rsrt (int type, expressionS *ep,
9570 unsigned int sreg, unsigned int treg)
9571 {
9572 const char *brneg = NULL;
9573 const int call = 0;
9574 const char *br;
9575
9576 switch (type)
9577 {
9578 case M_BEQ:
9579 case M_BEQ_I:
9580 br = "beq";
9581 break;
9582 case M_BEQL:
9583 case M_BEQL_I:
9584 br = mips_opts.micromips ? "beq" : "beql";
9585 brneg = "bne";
9586 break;
9587 case M_BNE:
9588 case M_BNE_I:
9589 br = "bne";
9590 break;
9591 case M_BNEL:
9592 case M_BNEL_I:
9593 br = mips_opts.micromips ? "bne" : "bnel";
9594 brneg = "beq";
9595 break;
9596 default:
9597 abort ();
9598 }
9599 if (mips_opts.micromips && brneg)
9600 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9601 else
9602 macro_build (ep, br, "s,t,p", sreg, treg);
9603 }
9604
9605 /* Return the high part that should be loaded in order to make the low
9606 part of VALUE accessible using an offset of OFFBITS bits. */
9607
9608 static offsetT
9609 offset_high_part (offsetT value, unsigned int offbits)
9610 {
9611 offsetT bias;
9612 addressT low_mask;
9613
9614 if (offbits == 0)
9615 return value;
9616 bias = 1 << (offbits - 1);
9617 low_mask = bias * 2 - 1;
9618 return (value + bias) & ~low_mask;
9619 }
9620
9621 /* Return true if the value stored in offset_expr and offset_reloc
9622 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9623 amount that the caller wants to add without inducing overflow
9624 and ALIGN is the known alignment of the value in bytes. */
9625
9626 static bfd_boolean
9627 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9628 {
9629 if (offbits == 16)
9630 {
9631 /* Accept any relocation operator if overflow isn't a concern. */
9632 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9633 return TRUE;
9634
9635 /* These relocations are guaranteed not to overflow in correct links. */
9636 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9637 || gprel16_reloc_p (*offset_reloc))
9638 return TRUE;
9639 }
9640 if (offset_expr.X_op == O_constant
9641 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9642 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9643 return TRUE;
9644 return FALSE;
9645 }
9646
9647 /*
9648 * Build macros
9649 * This routine implements the seemingly endless macro or synthesized
9650 * instructions and addressing modes in the mips assembly language. Many
9651 * of these macros are simple and are similar to each other. These could
9652 * probably be handled by some kind of table or grammar approach instead of
9653 * this verbose method. Others are not simple macros but are more like
9654 * optimizing code generation.
9655 * One interesting optimization is when several store macros appear
9656 * consecutively that would load AT with the upper half of the same address.
9657 * The ensuing load upper instructions are ommited. This implies some kind
9658 * of global optimization. We currently only optimize within a single macro.
9659 * For many of the load and store macros if the address is specified as a
9660 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9661 * first load register 'at' with zero and use it as the base register. The
9662 * mips assembler simply uses register $zero. Just one tiny optimization
9663 * we're missing.
9664 */
9665 static void
9666 macro (struct mips_cl_insn *ip, char *str)
9667 {
9668 const struct mips_operand_array *operands;
9669 unsigned int breg, i;
9670 unsigned int tempreg;
9671 int mask;
9672 int used_at = 0;
9673 expressionS label_expr;
9674 expressionS expr1;
9675 expressionS *ep;
9676 const char *s;
9677 const char *s2;
9678 const char *fmt;
9679 int likely = 0;
9680 int coproc = 0;
9681 int offbits = 16;
9682 int call = 0;
9683 int jals = 0;
9684 int dbl = 0;
9685 int imm = 0;
9686 int ust = 0;
9687 int lp = 0;
9688 bfd_boolean large_offset;
9689 int off;
9690 int hold_mips_optimize;
9691 unsigned int align;
9692 unsigned int op[MAX_OPERANDS];
9693
9694 gas_assert (! mips_opts.mips16);
9695
9696 operands = insn_operands (ip);
9697 for (i = 0; i < MAX_OPERANDS; i++)
9698 if (operands->operand[i])
9699 op[i] = insn_extract_operand (ip, operands->operand[i]);
9700 else
9701 op[i] = -1;
9702
9703 mask = ip->insn_mo->mask;
9704
9705 label_expr.X_op = O_constant;
9706 label_expr.X_op_symbol = NULL;
9707 label_expr.X_add_symbol = NULL;
9708 label_expr.X_add_number = 0;
9709
9710 expr1.X_op = O_constant;
9711 expr1.X_op_symbol = NULL;
9712 expr1.X_add_symbol = NULL;
9713 expr1.X_add_number = 1;
9714 align = 1;
9715
9716 switch (mask)
9717 {
9718 case M_DABS:
9719 dbl = 1;
9720 case M_ABS:
9721 /* bgez $a0,1f
9722 move v0,$a0
9723 sub v0,$zero,$a0
9724 1:
9725 */
9726
9727 start_noreorder ();
9728
9729 if (mips_opts.micromips)
9730 micromips_label_expr (&label_expr);
9731 else
9732 label_expr.X_add_number = 8;
9733 macro_build (&label_expr, "bgez", "s,p", op[1]);
9734 if (op[0] == op[1])
9735 macro_build (NULL, "nop", "");
9736 else
9737 move_register (op[0], op[1]);
9738 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9739 if (mips_opts.micromips)
9740 micromips_add_label ();
9741
9742 end_noreorder ();
9743 break;
9744
9745 case M_ADD_I:
9746 s = "addi";
9747 s2 = "add";
9748 goto do_addi;
9749 case M_ADDU_I:
9750 s = "addiu";
9751 s2 = "addu";
9752 goto do_addi;
9753 case M_DADD_I:
9754 dbl = 1;
9755 s = "daddi";
9756 s2 = "dadd";
9757 if (!mips_opts.micromips)
9758 goto do_addi;
9759 if (imm_expr.X_add_number >= -0x200
9760 && imm_expr.X_add_number < 0x200)
9761 {
9762 macro_build (NULL, s, "t,r,.", op[0], op[1],
9763 (int) imm_expr.X_add_number);
9764 break;
9765 }
9766 goto do_addi_i;
9767 case M_DADDU_I:
9768 dbl = 1;
9769 s = "daddiu";
9770 s2 = "daddu";
9771 do_addi:
9772 if (imm_expr.X_add_number >= -0x8000
9773 && imm_expr.X_add_number < 0x8000)
9774 {
9775 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9776 break;
9777 }
9778 do_addi_i:
9779 used_at = 1;
9780 load_register (AT, &imm_expr, dbl);
9781 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9782 break;
9783
9784 case M_AND_I:
9785 s = "andi";
9786 s2 = "and";
9787 goto do_bit;
9788 case M_OR_I:
9789 s = "ori";
9790 s2 = "or";
9791 goto do_bit;
9792 case M_NOR_I:
9793 s = "";
9794 s2 = "nor";
9795 goto do_bit;
9796 case M_XOR_I:
9797 s = "xori";
9798 s2 = "xor";
9799 do_bit:
9800 if (imm_expr.X_add_number >= 0
9801 && imm_expr.X_add_number < 0x10000)
9802 {
9803 if (mask != M_NOR_I)
9804 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9805 else
9806 {
9807 macro_build (&imm_expr, "ori", "t,r,i",
9808 op[0], op[1], BFD_RELOC_LO16);
9809 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9810 }
9811 break;
9812 }
9813
9814 used_at = 1;
9815 load_register (AT, &imm_expr, GPR_SIZE == 64);
9816 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9817 break;
9818
9819 case M_BALIGN:
9820 switch (imm_expr.X_add_number)
9821 {
9822 case 0:
9823 macro_build (NULL, "nop", "");
9824 break;
9825 case 2:
9826 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9827 break;
9828 case 1:
9829 case 3:
9830 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9831 (int) imm_expr.X_add_number);
9832 break;
9833 default:
9834 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9835 (unsigned long) imm_expr.X_add_number);
9836 break;
9837 }
9838 break;
9839
9840 case M_BC1FL:
9841 case M_BC1TL:
9842 case M_BC2FL:
9843 case M_BC2TL:
9844 gas_assert (mips_opts.micromips);
9845 macro_build_branch_ccl (mask, &offset_expr,
9846 EXTRACT_OPERAND (1, BCC, *ip));
9847 break;
9848
9849 case M_BEQ_I:
9850 case M_BEQL_I:
9851 case M_BNE_I:
9852 case M_BNEL_I:
9853 if (imm_expr.X_add_number == 0)
9854 op[1] = 0;
9855 else
9856 {
9857 op[1] = AT;
9858 used_at = 1;
9859 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9860 }
9861 /* Fall through. */
9862 case M_BEQL:
9863 case M_BNEL:
9864 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9865 break;
9866
9867 case M_BGEL:
9868 likely = 1;
9869 case M_BGE:
9870 if (op[1] == 0)
9871 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9872 else if (op[0] == 0)
9873 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9874 else
9875 {
9876 used_at = 1;
9877 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9878 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9879 &offset_expr, AT, ZERO);
9880 }
9881 break;
9882
9883 case M_BGEZL:
9884 case M_BGEZALL:
9885 case M_BGTZL:
9886 case M_BLEZL:
9887 case M_BLTZL:
9888 case M_BLTZALL:
9889 macro_build_branch_rs (mask, &offset_expr, op[0]);
9890 break;
9891
9892 case M_BGTL_I:
9893 likely = 1;
9894 case M_BGT_I:
9895 /* Check for > max integer. */
9896 if (imm_expr.X_add_number >= GPR_SMAX)
9897 {
9898 do_false:
9899 /* Result is always false. */
9900 if (! likely)
9901 macro_build (NULL, "nop", "");
9902 else
9903 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9904 break;
9905 }
9906 ++imm_expr.X_add_number;
9907 /* FALLTHROUGH */
9908 case M_BGE_I:
9909 case M_BGEL_I:
9910 if (mask == M_BGEL_I)
9911 likely = 1;
9912 if (imm_expr.X_add_number == 0)
9913 {
9914 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9915 &offset_expr, op[0]);
9916 break;
9917 }
9918 if (imm_expr.X_add_number == 1)
9919 {
9920 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9921 &offset_expr, op[0]);
9922 break;
9923 }
9924 if (imm_expr.X_add_number <= GPR_SMIN)
9925 {
9926 do_true:
9927 /* result is always true */
9928 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9929 macro_build (&offset_expr, "b", "p");
9930 break;
9931 }
9932 used_at = 1;
9933 set_at (op[0], 0);
9934 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9935 &offset_expr, AT, ZERO);
9936 break;
9937
9938 case M_BGEUL:
9939 likely = 1;
9940 case M_BGEU:
9941 if (op[1] == 0)
9942 goto do_true;
9943 else if (op[0] == 0)
9944 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9945 &offset_expr, ZERO, op[1]);
9946 else
9947 {
9948 used_at = 1;
9949 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9950 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9951 &offset_expr, AT, ZERO);
9952 }
9953 break;
9954
9955 case M_BGTUL_I:
9956 likely = 1;
9957 case M_BGTU_I:
9958 if (op[0] == 0
9959 || (GPR_SIZE == 32
9960 && imm_expr.X_add_number == -1))
9961 goto do_false;
9962 ++imm_expr.X_add_number;
9963 /* FALLTHROUGH */
9964 case M_BGEU_I:
9965 case M_BGEUL_I:
9966 if (mask == M_BGEUL_I)
9967 likely = 1;
9968 if (imm_expr.X_add_number == 0)
9969 goto do_true;
9970 else if (imm_expr.X_add_number == 1)
9971 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9972 &offset_expr, op[0], ZERO);
9973 else
9974 {
9975 used_at = 1;
9976 set_at (op[0], 1);
9977 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9978 &offset_expr, AT, ZERO);
9979 }
9980 break;
9981
9982 case M_BGTL:
9983 likely = 1;
9984 case M_BGT:
9985 if (op[1] == 0)
9986 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9987 else if (op[0] == 0)
9988 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
9989 else
9990 {
9991 used_at = 1;
9992 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
9993 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9994 &offset_expr, AT, ZERO);
9995 }
9996 break;
9997
9998 case M_BGTUL:
9999 likely = 1;
10000 case M_BGTU:
10001 if (op[1] == 0)
10002 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10003 &offset_expr, op[0], ZERO);
10004 else if (op[0] == 0)
10005 goto do_false;
10006 else
10007 {
10008 used_at = 1;
10009 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10010 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10011 &offset_expr, AT, ZERO);
10012 }
10013 break;
10014
10015 case M_BLEL:
10016 likely = 1;
10017 case M_BLE:
10018 if (op[1] == 0)
10019 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10020 else if (op[0] == 0)
10021 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10022 else
10023 {
10024 used_at = 1;
10025 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10026 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10027 &offset_expr, AT, ZERO);
10028 }
10029 break;
10030
10031 case M_BLEL_I:
10032 likely = 1;
10033 case M_BLE_I:
10034 if (imm_expr.X_add_number >= GPR_SMAX)
10035 goto do_true;
10036 ++imm_expr.X_add_number;
10037 /* FALLTHROUGH */
10038 case M_BLT_I:
10039 case M_BLTL_I:
10040 if (mask == M_BLTL_I)
10041 likely = 1;
10042 if (imm_expr.X_add_number == 0)
10043 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10044 else if (imm_expr.X_add_number == 1)
10045 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10046 else
10047 {
10048 used_at = 1;
10049 set_at (op[0], 0);
10050 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10051 &offset_expr, AT, ZERO);
10052 }
10053 break;
10054
10055 case M_BLEUL:
10056 likely = 1;
10057 case M_BLEU:
10058 if (op[1] == 0)
10059 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10060 &offset_expr, op[0], ZERO);
10061 else if (op[0] == 0)
10062 goto do_true;
10063 else
10064 {
10065 used_at = 1;
10066 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10067 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10068 &offset_expr, AT, ZERO);
10069 }
10070 break;
10071
10072 case M_BLEUL_I:
10073 likely = 1;
10074 case M_BLEU_I:
10075 if (op[0] == 0
10076 || (GPR_SIZE == 32
10077 && imm_expr.X_add_number == -1))
10078 goto do_true;
10079 ++imm_expr.X_add_number;
10080 /* FALLTHROUGH */
10081 case M_BLTU_I:
10082 case M_BLTUL_I:
10083 if (mask == M_BLTUL_I)
10084 likely = 1;
10085 if (imm_expr.X_add_number == 0)
10086 goto do_false;
10087 else if (imm_expr.X_add_number == 1)
10088 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10089 &offset_expr, op[0], ZERO);
10090 else
10091 {
10092 used_at = 1;
10093 set_at (op[0], 1);
10094 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10095 &offset_expr, AT, ZERO);
10096 }
10097 break;
10098
10099 case M_BLTL:
10100 likely = 1;
10101 case M_BLT:
10102 if (op[1] == 0)
10103 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10104 else if (op[0] == 0)
10105 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10106 else
10107 {
10108 used_at = 1;
10109 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10110 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10111 &offset_expr, AT, ZERO);
10112 }
10113 break;
10114
10115 case M_BLTUL:
10116 likely = 1;
10117 case M_BLTU:
10118 if (op[1] == 0)
10119 goto do_false;
10120 else if (op[0] == 0)
10121 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10122 &offset_expr, ZERO, op[1]);
10123 else
10124 {
10125 used_at = 1;
10126 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10127 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10128 &offset_expr, AT, ZERO);
10129 }
10130 break;
10131
10132 case M_DDIV_3:
10133 dbl = 1;
10134 case M_DIV_3:
10135 s = "mflo";
10136 goto do_div3;
10137 case M_DREM_3:
10138 dbl = 1;
10139 case M_REM_3:
10140 s = "mfhi";
10141 do_div3:
10142 if (op[2] == 0)
10143 {
10144 as_warn (_("divide by zero"));
10145 if (mips_trap)
10146 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10147 else
10148 macro_build (NULL, "break", BRK_FMT, 7);
10149 break;
10150 }
10151
10152 start_noreorder ();
10153 if (mips_trap)
10154 {
10155 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10156 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10157 }
10158 else
10159 {
10160 if (mips_opts.micromips)
10161 micromips_label_expr (&label_expr);
10162 else
10163 label_expr.X_add_number = 8;
10164 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10165 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10166 macro_build (NULL, "break", BRK_FMT, 7);
10167 if (mips_opts.micromips)
10168 micromips_add_label ();
10169 }
10170 expr1.X_add_number = -1;
10171 used_at = 1;
10172 load_register (AT, &expr1, dbl);
10173 if (mips_opts.micromips)
10174 micromips_label_expr (&label_expr);
10175 else
10176 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10177 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10178 if (dbl)
10179 {
10180 expr1.X_add_number = 1;
10181 load_register (AT, &expr1, dbl);
10182 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10183 }
10184 else
10185 {
10186 expr1.X_add_number = 0x80000000;
10187 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10188 }
10189 if (mips_trap)
10190 {
10191 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10192 /* We want to close the noreorder block as soon as possible, so
10193 that later insns are available for delay slot filling. */
10194 end_noreorder ();
10195 }
10196 else
10197 {
10198 if (mips_opts.micromips)
10199 micromips_label_expr (&label_expr);
10200 else
10201 label_expr.X_add_number = 8;
10202 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10203 macro_build (NULL, "nop", "");
10204
10205 /* We want to close the noreorder block as soon as possible, so
10206 that later insns are available for delay slot filling. */
10207 end_noreorder ();
10208
10209 macro_build (NULL, "break", BRK_FMT, 6);
10210 }
10211 if (mips_opts.micromips)
10212 micromips_add_label ();
10213 macro_build (NULL, s, MFHL_FMT, op[0]);
10214 break;
10215
10216 case M_DIV_3I:
10217 s = "div";
10218 s2 = "mflo";
10219 goto do_divi;
10220 case M_DIVU_3I:
10221 s = "divu";
10222 s2 = "mflo";
10223 goto do_divi;
10224 case M_REM_3I:
10225 s = "div";
10226 s2 = "mfhi";
10227 goto do_divi;
10228 case M_REMU_3I:
10229 s = "divu";
10230 s2 = "mfhi";
10231 goto do_divi;
10232 case M_DDIV_3I:
10233 dbl = 1;
10234 s = "ddiv";
10235 s2 = "mflo";
10236 goto do_divi;
10237 case M_DDIVU_3I:
10238 dbl = 1;
10239 s = "ddivu";
10240 s2 = "mflo";
10241 goto do_divi;
10242 case M_DREM_3I:
10243 dbl = 1;
10244 s = "ddiv";
10245 s2 = "mfhi";
10246 goto do_divi;
10247 case M_DREMU_3I:
10248 dbl = 1;
10249 s = "ddivu";
10250 s2 = "mfhi";
10251 do_divi:
10252 if (imm_expr.X_add_number == 0)
10253 {
10254 as_warn (_("divide by zero"));
10255 if (mips_trap)
10256 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10257 else
10258 macro_build (NULL, "break", BRK_FMT, 7);
10259 break;
10260 }
10261 if (imm_expr.X_add_number == 1)
10262 {
10263 if (strcmp (s2, "mflo") == 0)
10264 move_register (op[0], op[1]);
10265 else
10266 move_register (op[0], ZERO);
10267 break;
10268 }
10269 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10270 {
10271 if (strcmp (s2, "mflo") == 0)
10272 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10273 else
10274 move_register (op[0], ZERO);
10275 break;
10276 }
10277
10278 used_at = 1;
10279 load_register (AT, &imm_expr, dbl);
10280 macro_build (NULL, s, "z,s,t", op[1], AT);
10281 macro_build (NULL, s2, MFHL_FMT, op[0]);
10282 break;
10283
10284 case M_DIVU_3:
10285 s = "divu";
10286 s2 = "mflo";
10287 goto do_divu3;
10288 case M_REMU_3:
10289 s = "divu";
10290 s2 = "mfhi";
10291 goto do_divu3;
10292 case M_DDIVU_3:
10293 s = "ddivu";
10294 s2 = "mflo";
10295 goto do_divu3;
10296 case M_DREMU_3:
10297 s = "ddivu";
10298 s2 = "mfhi";
10299 do_divu3:
10300 start_noreorder ();
10301 if (mips_trap)
10302 {
10303 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10304 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10305 /* We want to close the noreorder block as soon as possible, so
10306 that later insns are available for delay slot filling. */
10307 end_noreorder ();
10308 }
10309 else
10310 {
10311 if (mips_opts.micromips)
10312 micromips_label_expr (&label_expr);
10313 else
10314 label_expr.X_add_number = 8;
10315 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10316 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10317
10318 /* We want to close the noreorder block as soon as possible, so
10319 that later insns are available for delay slot filling. */
10320 end_noreorder ();
10321 macro_build (NULL, "break", BRK_FMT, 7);
10322 if (mips_opts.micromips)
10323 micromips_add_label ();
10324 }
10325 macro_build (NULL, s2, MFHL_FMT, op[0]);
10326 break;
10327
10328 case M_DLCA_AB:
10329 dbl = 1;
10330 case M_LCA_AB:
10331 call = 1;
10332 goto do_la;
10333 case M_DLA_AB:
10334 dbl = 1;
10335 case M_LA_AB:
10336 do_la:
10337 /* Load the address of a symbol into a register. If breg is not
10338 zero, we then add a base register to it. */
10339
10340 breg = op[2];
10341 if (dbl && GPR_SIZE == 32)
10342 as_warn (_("dla used to load 32-bit register; recommend using la "
10343 "instead"));
10344
10345 if (!dbl && HAVE_64BIT_OBJECTS)
10346 as_warn (_("la used to load 64-bit address; recommend using dla "
10347 "instead"));
10348
10349 if (small_offset_p (0, align, 16))
10350 {
10351 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10352 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10353 break;
10354 }
10355
10356 if (mips_opts.at && (op[0] == breg))
10357 {
10358 tempreg = AT;
10359 used_at = 1;
10360 }
10361 else
10362 tempreg = op[0];
10363
10364 if (offset_expr.X_op != O_symbol
10365 && offset_expr.X_op != O_constant)
10366 {
10367 as_bad (_("expression too complex"));
10368 offset_expr.X_op = O_constant;
10369 }
10370
10371 if (offset_expr.X_op == O_constant)
10372 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10373 else if (mips_pic == NO_PIC)
10374 {
10375 /* If this is a reference to a GP relative symbol, we want
10376 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10377 Otherwise we want
10378 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10379 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10380 If we have a constant, we need two instructions anyhow,
10381 so we may as well always use the latter form.
10382
10383 With 64bit address space and a usable $at we want
10384 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10385 lui $at,<sym> (BFD_RELOC_HI16_S)
10386 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10387 daddiu $at,<sym> (BFD_RELOC_LO16)
10388 dsll32 $tempreg,0
10389 daddu $tempreg,$tempreg,$at
10390
10391 If $at is already in use, we use a path which is suboptimal
10392 on superscalar processors.
10393 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10394 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10395 dsll $tempreg,16
10396 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10397 dsll $tempreg,16
10398 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10399
10400 For GP relative symbols in 64bit address space we can use
10401 the same sequence as in 32bit address space. */
10402 if (HAVE_64BIT_SYMBOLS)
10403 {
10404 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10405 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10406 {
10407 relax_start (offset_expr.X_add_symbol);
10408 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10409 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10410 relax_switch ();
10411 }
10412
10413 if (used_at == 0 && mips_opts.at)
10414 {
10415 macro_build (&offset_expr, "lui", LUI_FMT,
10416 tempreg, BFD_RELOC_MIPS_HIGHEST);
10417 macro_build (&offset_expr, "lui", LUI_FMT,
10418 AT, BFD_RELOC_HI16_S);
10419 macro_build (&offset_expr, "daddiu", "t,r,j",
10420 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10421 macro_build (&offset_expr, "daddiu", "t,r,j",
10422 AT, AT, BFD_RELOC_LO16);
10423 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10424 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10425 used_at = 1;
10426 }
10427 else
10428 {
10429 macro_build (&offset_expr, "lui", LUI_FMT,
10430 tempreg, BFD_RELOC_MIPS_HIGHEST);
10431 macro_build (&offset_expr, "daddiu", "t,r,j",
10432 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10433 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10434 macro_build (&offset_expr, "daddiu", "t,r,j",
10435 tempreg, tempreg, BFD_RELOC_HI16_S);
10436 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10437 macro_build (&offset_expr, "daddiu", "t,r,j",
10438 tempreg, tempreg, BFD_RELOC_LO16);
10439 }
10440
10441 if (mips_relax.sequence)
10442 relax_end ();
10443 }
10444 else
10445 {
10446 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10447 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10448 {
10449 relax_start (offset_expr.X_add_symbol);
10450 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10451 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10452 relax_switch ();
10453 }
10454 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10455 as_bad (_("offset too large"));
10456 macro_build_lui (&offset_expr, tempreg);
10457 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10458 tempreg, tempreg, BFD_RELOC_LO16);
10459 if (mips_relax.sequence)
10460 relax_end ();
10461 }
10462 }
10463 else if (!mips_big_got && !HAVE_NEWABI)
10464 {
10465 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10466
10467 /* If this is a reference to an external symbol, and there
10468 is no constant, we want
10469 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10470 or for lca or if tempreg is PIC_CALL_REG
10471 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10472 For a local symbol, we want
10473 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10474 nop
10475 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10476
10477 If we have a small constant, and this is a reference to
10478 an external symbol, we want
10479 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10480 nop
10481 addiu $tempreg,$tempreg,<constant>
10482 For a local symbol, we want the same instruction
10483 sequence, but we output a BFD_RELOC_LO16 reloc on the
10484 addiu instruction.
10485
10486 If we have a large constant, and this is a reference to
10487 an external symbol, we want
10488 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10489 lui $at,<hiconstant>
10490 addiu $at,$at,<loconstant>
10491 addu $tempreg,$tempreg,$at
10492 For a local symbol, we want the same instruction
10493 sequence, but we output a BFD_RELOC_LO16 reloc on the
10494 addiu instruction.
10495 */
10496
10497 if (offset_expr.X_add_number == 0)
10498 {
10499 if (mips_pic == SVR4_PIC
10500 && breg == 0
10501 && (call || tempreg == PIC_CALL_REG))
10502 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10503
10504 relax_start (offset_expr.X_add_symbol);
10505 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10506 lw_reloc_type, mips_gp_register);
10507 if (breg != 0)
10508 {
10509 /* We're going to put in an addu instruction using
10510 tempreg, so we may as well insert the nop right
10511 now. */
10512 load_delay_nop ();
10513 }
10514 relax_switch ();
10515 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10516 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10517 load_delay_nop ();
10518 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10519 tempreg, tempreg, BFD_RELOC_LO16);
10520 relax_end ();
10521 /* FIXME: If breg == 0, and the next instruction uses
10522 $tempreg, then if this variant case is used an extra
10523 nop will be generated. */
10524 }
10525 else if (offset_expr.X_add_number >= -0x8000
10526 && offset_expr.X_add_number < 0x8000)
10527 {
10528 load_got_offset (tempreg, &offset_expr);
10529 load_delay_nop ();
10530 add_got_offset (tempreg, &offset_expr);
10531 }
10532 else
10533 {
10534 expr1.X_add_number = offset_expr.X_add_number;
10535 offset_expr.X_add_number =
10536 SEXT_16BIT (offset_expr.X_add_number);
10537 load_got_offset (tempreg, &offset_expr);
10538 offset_expr.X_add_number = expr1.X_add_number;
10539 /* If we are going to add in a base register, and the
10540 target register and the base register are the same,
10541 then we are using AT as a temporary register. Since
10542 we want to load the constant into AT, we add our
10543 current AT (from the global offset table) and the
10544 register into the register now, and pretend we were
10545 not using a base register. */
10546 if (breg == op[0])
10547 {
10548 load_delay_nop ();
10549 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10550 op[0], AT, breg);
10551 breg = 0;
10552 tempreg = op[0];
10553 }
10554 add_got_offset_hilo (tempreg, &offset_expr, AT);
10555 used_at = 1;
10556 }
10557 }
10558 else if (!mips_big_got && HAVE_NEWABI)
10559 {
10560 int add_breg_early = 0;
10561
10562 /* If this is a reference to an external, and there is no
10563 constant, or local symbol (*), with or without a
10564 constant, we want
10565 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10566 or for lca or if tempreg is PIC_CALL_REG
10567 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10568
10569 If we have a small constant, and this is a reference to
10570 an external symbol, we want
10571 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10572 addiu $tempreg,$tempreg,<constant>
10573
10574 If we have a large constant, and this is a reference to
10575 an external symbol, we want
10576 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10577 lui $at,<hiconstant>
10578 addiu $at,$at,<loconstant>
10579 addu $tempreg,$tempreg,$at
10580
10581 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10582 local symbols, even though it introduces an additional
10583 instruction. */
10584
10585 if (offset_expr.X_add_number)
10586 {
10587 expr1.X_add_number = offset_expr.X_add_number;
10588 offset_expr.X_add_number = 0;
10589
10590 relax_start (offset_expr.X_add_symbol);
10591 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10592 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10593
10594 if (expr1.X_add_number >= -0x8000
10595 && expr1.X_add_number < 0x8000)
10596 {
10597 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10598 tempreg, tempreg, BFD_RELOC_LO16);
10599 }
10600 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10601 {
10602 unsigned int dreg;
10603
10604 /* If we are going to add in a base register, and the
10605 target register and the base register are the same,
10606 then we are using AT as a temporary register. Since
10607 we want to load the constant into AT, we add our
10608 current AT (from the global offset table) and the
10609 register into the register now, and pretend we were
10610 not using a base register. */
10611 if (breg != op[0])
10612 dreg = tempreg;
10613 else
10614 {
10615 gas_assert (tempreg == AT);
10616 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10617 op[0], AT, breg);
10618 dreg = op[0];
10619 add_breg_early = 1;
10620 }
10621
10622 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10623 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10624 dreg, dreg, AT);
10625
10626 used_at = 1;
10627 }
10628 else
10629 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10630
10631 relax_switch ();
10632 offset_expr.X_add_number = expr1.X_add_number;
10633
10634 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10635 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10636 if (add_breg_early)
10637 {
10638 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10639 op[0], tempreg, breg);
10640 breg = 0;
10641 tempreg = op[0];
10642 }
10643 relax_end ();
10644 }
10645 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10646 {
10647 relax_start (offset_expr.X_add_symbol);
10648 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10649 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10650 relax_switch ();
10651 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10652 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10653 relax_end ();
10654 }
10655 else
10656 {
10657 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10658 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10659 }
10660 }
10661 else if (mips_big_got && !HAVE_NEWABI)
10662 {
10663 int gpdelay;
10664 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10665 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10666 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10667
10668 /* This is the large GOT case. If this is a reference to an
10669 external symbol, and there is no constant, we want
10670 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10671 addu $tempreg,$tempreg,$gp
10672 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10673 or for lca or if tempreg is PIC_CALL_REG
10674 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10675 addu $tempreg,$tempreg,$gp
10676 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10677 For a local symbol, we want
10678 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10679 nop
10680 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10681
10682 If we have a small constant, and this is a reference to
10683 an external symbol, we want
10684 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10685 addu $tempreg,$tempreg,$gp
10686 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10687 nop
10688 addiu $tempreg,$tempreg,<constant>
10689 For a local symbol, we want
10690 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10691 nop
10692 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10693
10694 If we have a large constant, and this is a reference to
10695 an external symbol, we want
10696 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10697 addu $tempreg,$tempreg,$gp
10698 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10699 lui $at,<hiconstant>
10700 addiu $at,$at,<loconstant>
10701 addu $tempreg,$tempreg,$at
10702 For a local symbol, we want
10703 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10704 lui $at,<hiconstant>
10705 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10706 addu $tempreg,$tempreg,$at
10707 */
10708
10709 expr1.X_add_number = offset_expr.X_add_number;
10710 offset_expr.X_add_number = 0;
10711 relax_start (offset_expr.X_add_symbol);
10712 gpdelay = reg_needs_delay (mips_gp_register);
10713 if (expr1.X_add_number == 0 && breg == 0
10714 && (call || tempreg == PIC_CALL_REG))
10715 {
10716 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10717 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10718 }
10719 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10720 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10721 tempreg, tempreg, mips_gp_register);
10722 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10723 tempreg, lw_reloc_type, tempreg);
10724 if (expr1.X_add_number == 0)
10725 {
10726 if (breg != 0)
10727 {
10728 /* We're going to put in an addu instruction using
10729 tempreg, so we may as well insert the nop right
10730 now. */
10731 load_delay_nop ();
10732 }
10733 }
10734 else if (expr1.X_add_number >= -0x8000
10735 && expr1.X_add_number < 0x8000)
10736 {
10737 load_delay_nop ();
10738 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10739 tempreg, tempreg, BFD_RELOC_LO16);
10740 }
10741 else
10742 {
10743 unsigned int dreg;
10744
10745 /* If we are going to add in a base register, and the
10746 target register and the base register are the same,
10747 then we are using AT as a temporary register. Since
10748 we want to load the constant into AT, we add our
10749 current AT (from the global offset table) and the
10750 register into the register now, and pretend we were
10751 not using a base register. */
10752 if (breg != op[0])
10753 dreg = tempreg;
10754 else
10755 {
10756 gas_assert (tempreg == AT);
10757 load_delay_nop ();
10758 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10759 op[0], AT, breg);
10760 dreg = op[0];
10761 }
10762
10763 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10764 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10765
10766 used_at = 1;
10767 }
10768 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10769 relax_switch ();
10770
10771 if (gpdelay)
10772 {
10773 /* This is needed because this instruction uses $gp, but
10774 the first instruction on the main stream does not. */
10775 macro_build (NULL, "nop", "");
10776 }
10777
10778 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10779 local_reloc_type, mips_gp_register);
10780 if (expr1.X_add_number >= -0x8000
10781 && expr1.X_add_number < 0x8000)
10782 {
10783 load_delay_nop ();
10784 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10785 tempreg, tempreg, BFD_RELOC_LO16);
10786 /* FIXME: If add_number is 0, and there was no base
10787 register, the external symbol case ended with a load,
10788 so if the symbol turns out to not be external, and
10789 the next instruction uses tempreg, an unnecessary nop
10790 will be inserted. */
10791 }
10792 else
10793 {
10794 if (breg == op[0])
10795 {
10796 /* We must add in the base register now, as in the
10797 external symbol case. */
10798 gas_assert (tempreg == AT);
10799 load_delay_nop ();
10800 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10801 op[0], AT, breg);
10802 tempreg = op[0];
10803 /* We set breg to 0 because we have arranged to add
10804 it in in both cases. */
10805 breg = 0;
10806 }
10807
10808 macro_build_lui (&expr1, AT);
10809 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10810 AT, AT, BFD_RELOC_LO16);
10811 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10812 tempreg, tempreg, AT);
10813 used_at = 1;
10814 }
10815 relax_end ();
10816 }
10817 else if (mips_big_got && HAVE_NEWABI)
10818 {
10819 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10820 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10821 int add_breg_early = 0;
10822
10823 /* This is the large GOT case. If this is a reference to an
10824 external symbol, and there is no constant, we want
10825 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10826 add $tempreg,$tempreg,$gp
10827 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10828 or for lca or if tempreg is PIC_CALL_REG
10829 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10830 add $tempreg,$tempreg,$gp
10831 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10832
10833 If we have a small constant, and this is a reference to
10834 an external symbol, we want
10835 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10836 add $tempreg,$tempreg,$gp
10837 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10838 addi $tempreg,$tempreg,<constant>
10839
10840 If we have a large constant, and this is a reference to
10841 an external symbol, we want
10842 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10843 addu $tempreg,$tempreg,$gp
10844 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10845 lui $at,<hiconstant>
10846 addi $at,$at,<loconstant>
10847 add $tempreg,$tempreg,$at
10848
10849 If we have NewABI, and we know it's a local symbol, we want
10850 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10851 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10852 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10853
10854 relax_start (offset_expr.X_add_symbol);
10855
10856 expr1.X_add_number = offset_expr.X_add_number;
10857 offset_expr.X_add_number = 0;
10858
10859 if (expr1.X_add_number == 0 && breg == 0
10860 && (call || tempreg == PIC_CALL_REG))
10861 {
10862 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10863 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10864 }
10865 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10866 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10867 tempreg, tempreg, mips_gp_register);
10868 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10869 tempreg, lw_reloc_type, tempreg);
10870
10871 if (expr1.X_add_number == 0)
10872 ;
10873 else if (expr1.X_add_number >= -0x8000
10874 && expr1.X_add_number < 0x8000)
10875 {
10876 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10877 tempreg, tempreg, BFD_RELOC_LO16);
10878 }
10879 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10880 {
10881 unsigned int dreg;
10882
10883 /* If we are going to add in a base register, and the
10884 target register and the base register are the same,
10885 then we are using AT as a temporary register. Since
10886 we want to load the constant into AT, we add our
10887 current AT (from the global offset table) and the
10888 register into the register now, and pretend we were
10889 not using a base register. */
10890 if (breg != op[0])
10891 dreg = tempreg;
10892 else
10893 {
10894 gas_assert (tempreg == AT);
10895 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10896 op[0], AT, breg);
10897 dreg = op[0];
10898 add_breg_early = 1;
10899 }
10900
10901 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10902 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10903
10904 used_at = 1;
10905 }
10906 else
10907 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10908
10909 relax_switch ();
10910 offset_expr.X_add_number = expr1.X_add_number;
10911 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10912 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10913 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10914 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10915 if (add_breg_early)
10916 {
10917 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10918 op[0], tempreg, breg);
10919 breg = 0;
10920 tempreg = op[0];
10921 }
10922 relax_end ();
10923 }
10924 else
10925 abort ();
10926
10927 if (breg != 0)
10928 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10929 break;
10930
10931 case M_MSGSND:
10932 gas_assert (!mips_opts.micromips);
10933 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10934 break;
10935
10936 case M_MSGLD:
10937 gas_assert (!mips_opts.micromips);
10938 macro_build (NULL, "c2", "C", 0x02);
10939 break;
10940
10941 case M_MSGLD_T:
10942 gas_assert (!mips_opts.micromips);
10943 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10944 break;
10945
10946 case M_MSGWAIT:
10947 gas_assert (!mips_opts.micromips);
10948 macro_build (NULL, "c2", "C", 3);
10949 break;
10950
10951 case M_MSGWAIT_T:
10952 gas_assert (!mips_opts.micromips);
10953 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10954 break;
10955
10956 case M_J_A:
10957 /* The j instruction may not be used in PIC code, since it
10958 requires an absolute address. We convert it to a b
10959 instruction. */
10960 if (mips_pic == NO_PIC)
10961 macro_build (&offset_expr, "j", "a");
10962 else
10963 macro_build (&offset_expr, "b", "p");
10964 break;
10965
10966 /* The jal instructions must be handled as macros because when
10967 generating PIC code they expand to multi-instruction
10968 sequences. Normally they are simple instructions. */
10969 case M_JALS_1:
10970 op[1] = op[0];
10971 op[0] = RA;
10972 /* Fall through. */
10973 case M_JALS_2:
10974 gas_assert (mips_opts.micromips);
10975 if (mips_opts.insn32)
10976 {
10977 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10978 break;
10979 }
10980 jals = 1;
10981 goto jal;
10982 case M_JAL_1:
10983 op[1] = op[0];
10984 op[0] = RA;
10985 /* Fall through. */
10986 case M_JAL_2:
10987 jal:
10988 if (mips_pic == NO_PIC)
10989 {
10990 s = jals ? "jalrs" : "jalr";
10991 if (mips_opts.micromips
10992 && !mips_opts.insn32
10993 && op[0] == RA
10994 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
10995 macro_build (NULL, s, "mj", op[1]);
10996 else
10997 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
10998 }
10999 else
11000 {
11001 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11002 && mips_cprestore_offset >= 0);
11003
11004 if (op[1] != PIC_CALL_REG)
11005 as_warn (_("MIPS PIC call to register other than $25"));
11006
11007 s = ((mips_opts.micromips
11008 && !mips_opts.insn32
11009 && (!mips_opts.noreorder || cprestore))
11010 ? "jalrs" : "jalr");
11011 if (mips_opts.micromips
11012 && !mips_opts.insn32
11013 && op[0] == RA
11014 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11015 macro_build (NULL, s, "mj", op[1]);
11016 else
11017 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11018 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11019 {
11020 if (mips_cprestore_offset < 0)
11021 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11022 else
11023 {
11024 if (!mips_frame_reg_valid)
11025 {
11026 as_warn (_("no .frame pseudo-op used in PIC code"));
11027 /* Quiet this warning. */
11028 mips_frame_reg_valid = 1;
11029 }
11030 if (!mips_cprestore_valid)
11031 {
11032 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11033 /* Quiet this warning. */
11034 mips_cprestore_valid = 1;
11035 }
11036 if (mips_opts.noreorder)
11037 macro_build (NULL, "nop", "");
11038 expr1.X_add_number = mips_cprestore_offset;
11039 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11040 mips_gp_register,
11041 mips_frame_reg,
11042 HAVE_64BIT_ADDRESSES);
11043 }
11044 }
11045 }
11046
11047 break;
11048
11049 case M_JALS_A:
11050 gas_assert (mips_opts.micromips);
11051 if (mips_opts.insn32)
11052 {
11053 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11054 break;
11055 }
11056 jals = 1;
11057 /* Fall through. */
11058 case M_JAL_A:
11059 if (mips_pic == NO_PIC)
11060 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11061 else if (mips_pic == SVR4_PIC)
11062 {
11063 /* If this is a reference to an external symbol, and we are
11064 using a small GOT, we want
11065 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11066 nop
11067 jalr $ra,$25
11068 nop
11069 lw $gp,cprestore($sp)
11070 The cprestore value is set using the .cprestore
11071 pseudo-op. If we are using a big GOT, we want
11072 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11073 addu $25,$25,$gp
11074 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11075 nop
11076 jalr $ra,$25
11077 nop
11078 lw $gp,cprestore($sp)
11079 If the symbol is not external, we want
11080 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11081 nop
11082 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11083 jalr $ra,$25
11084 nop
11085 lw $gp,cprestore($sp)
11086
11087 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11088 sequences above, minus nops, unless the symbol is local,
11089 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11090 GOT_DISP. */
11091 if (HAVE_NEWABI)
11092 {
11093 if (!mips_big_got)
11094 {
11095 relax_start (offset_expr.X_add_symbol);
11096 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11097 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11098 mips_gp_register);
11099 relax_switch ();
11100 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11101 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11102 mips_gp_register);
11103 relax_end ();
11104 }
11105 else
11106 {
11107 relax_start (offset_expr.X_add_symbol);
11108 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11109 BFD_RELOC_MIPS_CALL_HI16);
11110 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11111 PIC_CALL_REG, mips_gp_register);
11112 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11113 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11114 PIC_CALL_REG);
11115 relax_switch ();
11116 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11117 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11118 mips_gp_register);
11119 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11120 PIC_CALL_REG, PIC_CALL_REG,
11121 BFD_RELOC_MIPS_GOT_OFST);
11122 relax_end ();
11123 }
11124
11125 macro_build_jalr (&offset_expr, 0);
11126 }
11127 else
11128 {
11129 relax_start (offset_expr.X_add_symbol);
11130 if (!mips_big_got)
11131 {
11132 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11133 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11134 mips_gp_register);
11135 load_delay_nop ();
11136 relax_switch ();
11137 }
11138 else
11139 {
11140 int gpdelay;
11141
11142 gpdelay = reg_needs_delay (mips_gp_register);
11143 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11144 BFD_RELOC_MIPS_CALL_HI16);
11145 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11146 PIC_CALL_REG, mips_gp_register);
11147 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11148 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11149 PIC_CALL_REG);
11150 load_delay_nop ();
11151 relax_switch ();
11152 if (gpdelay)
11153 macro_build (NULL, "nop", "");
11154 }
11155 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11156 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11157 mips_gp_register);
11158 load_delay_nop ();
11159 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11160 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11161 relax_end ();
11162 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11163
11164 if (mips_cprestore_offset < 0)
11165 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11166 else
11167 {
11168 if (!mips_frame_reg_valid)
11169 {
11170 as_warn (_("no .frame pseudo-op used in PIC code"));
11171 /* Quiet this warning. */
11172 mips_frame_reg_valid = 1;
11173 }
11174 if (!mips_cprestore_valid)
11175 {
11176 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11177 /* Quiet this warning. */
11178 mips_cprestore_valid = 1;
11179 }
11180 if (mips_opts.noreorder)
11181 macro_build (NULL, "nop", "");
11182 expr1.X_add_number = mips_cprestore_offset;
11183 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11184 mips_gp_register,
11185 mips_frame_reg,
11186 HAVE_64BIT_ADDRESSES);
11187 }
11188 }
11189 }
11190 else if (mips_pic == VXWORKS_PIC)
11191 as_bad (_("non-PIC jump used in PIC library"));
11192 else
11193 abort ();
11194
11195 break;
11196
11197 case M_LBUE_AB:
11198 s = "lbue";
11199 fmt = "t,+j(b)";
11200 offbits = 9;
11201 goto ld_st;
11202 case M_LHUE_AB:
11203 s = "lhue";
11204 fmt = "t,+j(b)";
11205 offbits = 9;
11206 goto ld_st;
11207 case M_LBE_AB:
11208 s = "lbe";
11209 fmt = "t,+j(b)";
11210 offbits = 9;
11211 goto ld_st;
11212 case M_LHE_AB:
11213 s = "lhe";
11214 fmt = "t,+j(b)";
11215 offbits = 9;
11216 goto ld_st;
11217 case M_LLE_AB:
11218 s = "lle";
11219 fmt = "t,+j(b)";
11220 offbits = 9;
11221 goto ld_st;
11222 case M_LWE_AB:
11223 s = "lwe";
11224 fmt = "t,+j(b)";
11225 offbits = 9;
11226 goto ld_st;
11227 case M_LWLE_AB:
11228 s = "lwle";
11229 fmt = "t,+j(b)";
11230 offbits = 9;
11231 goto ld_st;
11232 case M_LWRE_AB:
11233 s = "lwre";
11234 fmt = "t,+j(b)";
11235 offbits = 9;
11236 goto ld_st;
11237 case M_SBE_AB:
11238 s = "sbe";
11239 fmt = "t,+j(b)";
11240 offbits = 9;
11241 goto ld_st;
11242 case M_SCE_AB:
11243 s = "sce";
11244 fmt = "t,+j(b)";
11245 offbits = 9;
11246 goto ld_st;
11247 case M_SHE_AB:
11248 s = "she";
11249 fmt = "t,+j(b)";
11250 offbits = 9;
11251 goto ld_st;
11252 case M_SWE_AB:
11253 s = "swe";
11254 fmt = "t,+j(b)";
11255 offbits = 9;
11256 goto ld_st;
11257 case M_SWLE_AB:
11258 s = "swle";
11259 fmt = "t,+j(b)";
11260 offbits = 9;
11261 goto ld_st;
11262 case M_SWRE_AB:
11263 s = "swre";
11264 fmt = "t,+j(b)";
11265 offbits = 9;
11266 goto ld_st;
11267 case M_ACLR_AB:
11268 s = "aclr";
11269 fmt = "\\,~(b)";
11270 offbits = 12;
11271 goto ld_st;
11272 case M_ASET_AB:
11273 s = "aset";
11274 fmt = "\\,~(b)";
11275 offbits = 12;
11276 goto ld_st;
11277 case M_LB_AB:
11278 s = "lb";
11279 fmt = "t,o(b)";
11280 goto ld;
11281 case M_LBU_AB:
11282 s = "lbu";
11283 fmt = "t,o(b)";
11284 goto ld;
11285 case M_LH_AB:
11286 s = "lh";
11287 fmt = "t,o(b)";
11288 goto ld;
11289 case M_LHU_AB:
11290 s = "lhu";
11291 fmt = "t,o(b)";
11292 goto ld;
11293 case M_LW_AB:
11294 s = "lw";
11295 fmt = "t,o(b)";
11296 goto ld;
11297 case M_LWC0_AB:
11298 gas_assert (!mips_opts.micromips);
11299 s = "lwc0";
11300 fmt = "E,o(b)";
11301 /* Itbl support may require additional care here. */
11302 coproc = 1;
11303 goto ld_st;
11304 case M_LWC1_AB:
11305 s = "lwc1";
11306 fmt = "T,o(b)";
11307 /* Itbl support may require additional care here. */
11308 coproc = 1;
11309 goto ld_st;
11310 case M_LWC2_AB:
11311 s = "lwc2";
11312 fmt = COP12_FMT;
11313 offbits = (mips_opts.micromips ? 12
11314 : ISA_IS_R6 (mips_opts.isa) ? 11
11315 : 16);
11316 /* Itbl support may require additional care here. */
11317 coproc = 1;
11318 goto ld_st;
11319 case M_LWC3_AB:
11320 gas_assert (!mips_opts.micromips);
11321 s = "lwc3";
11322 fmt = "E,o(b)";
11323 /* Itbl support may require additional care here. */
11324 coproc = 1;
11325 goto ld_st;
11326 case M_LWL_AB:
11327 s = "lwl";
11328 fmt = MEM12_FMT;
11329 offbits = (mips_opts.micromips ? 12 : 16);
11330 goto ld_st;
11331 case M_LWR_AB:
11332 s = "lwr";
11333 fmt = MEM12_FMT;
11334 offbits = (mips_opts.micromips ? 12 : 16);
11335 goto ld_st;
11336 case M_LDC1_AB:
11337 s = "ldc1";
11338 fmt = "T,o(b)";
11339 /* Itbl support may require additional care here. */
11340 coproc = 1;
11341 goto ld_st;
11342 case M_LDC2_AB:
11343 s = "ldc2";
11344 fmt = COP12_FMT;
11345 offbits = (mips_opts.micromips ? 12
11346 : ISA_IS_R6 (mips_opts.isa) ? 11
11347 : 16);
11348 /* Itbl support may require additional care here. */
11349 coproc = 1;
11350 goto ld_st;
11351 case M_LQC2_AB:
11352 s = "lqc2";
11353 fmt = "+7,o(b)";
11354 /* Itbl support may require additional care here. */
11355 coproc = 1;
11356 goto ld_st;
11357 case M_LDC3_AB:
11358 s = "ldc3";
11359 fmt = "E,o(b)";
11360 /* Itbl support may require additional care here. */
11361 coproc = 1;
11362 goto ld_st;
11363 case M_LDL_AB:
11364 s = "ldl";
11365 fmt = MEM12_FMT;
11366 offbits = (mips_opts.micromips ? 12 : 16);
11367 goto ld_st;
11368 case M_LDR_AB:
11369 s = "ldr";
11370 fmt = MEM12_FMT;
11371 offbits = (mips_opts.micromips ? 12 : 16);
11372 goto ld_st;
11373 case M_LL_AB:
11374 s = "ll";
11375 fmt = LL_SC_FMT;
11376 offbits = (mips_opts.micromips ? 12
11377 : ISA_IS_R6 (mips_opts.isa) ? 9
11378 : 16);
11379 goto ld;
11380 case M_LLD_AB:
11381 s = "lld";
11382 fmt = LL_SC_FMT;
11383 offbits = (mips_opts.micromips ? 12
11384 : ISA_IS_R6 (mips_opts.isa) ? 9
11385 : 16);
11386 goto ld;
11387 case M_LWU_AB:
11388 s = "lwu";
11389 fmt = MEM12_FMT;
11390 offbits = (mips_opts.micromips ? 12 : 16);
11391 goto ld;
11392 case M_LWP_AB:
11393 gas_assert (mips_opts.micromips);
11394 s = "lwp";
11395 fmt = "t,~(b)";
11396 offbits = 12;
11397 lp = 1;
11398 goto ld;
11399 case M_LDP_AB:
11400 gas_assert (mips_opts.micromips);
11401 s = "ldp";
11402 fmt = "t,~(b)";
11403 offbits = 12;
11404 lp = 1;
11405 goto ld;
11406 case M_LWM_AB:
11407 gas_assert (mips_opts.micromips);
11408 s = "lwm";
11409 fmt = "n,~(b)";
11410 offbits = 12;
11411 goto ld_st;
11412 case M_LDM_AB:
11413 gas_assert (mips_opts.micromips);
11414 s = "ldm";
11415 fmt = "n,~(b)";
11416 offbits = 12;
11417 goto ld_st;
11418
11419 ld:
11420 /* We don't want to use $0 as tempreg. */
11421 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11422 goto ld_st;
11423 else
11424 tempreg = op[0] + lp;
11425 goto ld_noat;
11426
11427 case M_SB_AB:
11428 s = "sb";
11429 fmt = "t,o(b)";
11430 goto ld_st;
11431 case M_SH_AB:
11432 s = "sh";
11433 fmt = "t,o(b)";
11434 goto ld_st;
11435 case M_SW_AB:
11436 s = "sw";
11437 fmt = "t,o(b)";
11438 goto ld_st;
11439 case M_SWC0_AB:
11440 gas_assert (!mips_opts.micromips);
11441 s = "swc0";
11442 fmt = "E,o(b)";
11443 /* Itbl support may require additional care here. */
11444 coproc = 1;
11445 goto ld_st;
11446 case M_SWC1_AB:
11447 s = "swc1";
11448 fmt = "T,o(b)";
11449 /* Itbl support may require additional care here. */
11450 coproc = 1;
11451 goto ld_st;
11452 case M_SWC2_AB:
11453 s = "swc2";
11454 fmt = COP12_FMT;
11455 offbits = (mips_opts.micromips ? 12
11456 : ISA_IS_R6 (mips_opts.isa) ? 11
11457 : 16);
11458 /* Itbl support may require additional care here. */
11459 coproc = 1;
11460 goto ld_st;
11461 case M_SWC3_AB:
11462 gas_assert (!mips_opts.micromips);
11463 s = "swc3";
11464 fmt = "E,o(b)";
11465 /* Itbl support may require additional care here. */
11466 coproc = 1;
11467 goto ld_st;
11468 case M_SWL_AB:
11469 s = "swl";
11470 fmt = MEM12_FMT;
11471 offbits = (mips_opts.micromips ? 12 : 16);
11472 goto ld_st;
11473 case M_SWR_AB:
11474 s = "swr";
11475 fmt = MEM12_FMT;
11476 offbits = (mips_opts.micromips ? 12 : 16);
11477 goto ld_st;
11478 case M_SC_AB:
11479 s = "sc";
11480 fmt = LL_SC_FMT;
11481 offbits = (mips_opts.micromips ? 12
11482 : ISA_IS_R6 (mips_opts.isa) ? 9
11483 : 16);
11484 goto ld_st;
11485 case M_SCD_AB:
11486 s = "scd";
11487 fmt = LL_SC_FMT;
11488 offbits = (mips_opts.micromips ? 12
11489 : ISA_IS_R6 (mips_opts.isa) ? 9
11490 : 16);
11491 goto ld_st;
11492 case M_CACHE_AB:
11493 s = "cache";
11494 fmt = (mips_opts.micromips ? "k,~(b)"
11495 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11496 : "k,o(b)");
11497 offbits = (mips_opts.micromips ? 12
11498 : ISA_IS_R6 (mips_opts.isa) ? 9
11499 : 16);
11500 goto ld_st;
11501 case M_CACHEE_AB:
11502 s = "cachee";
11503 fmt = "k,+j(b)";
11504 offbits = 9;
11505 goto ld_st;
11506 case M_PREF_AB:
11507 s = "pref";
11508 fmt = (mips_opts.micromips ? "k,~(b)"
11509 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11510 : "k,o(b)");
11511 offbits = (mips_opts.micromips ? 12
11512 : ISA_IS_R6 (mips_opts.isa) ? 9
11513 : 16);
11514 goto ld_st;
11515 case M_PREFE_AB:
11516 s = "prefe";
11517 fmt = "k,+j(b)";
11518 offbits = 9;
11519 goto ld_st;
11520 case M_SDC1_AB:
11521 s = "sdc1";
11522 fmt = "T,o(b)";
11523 coproc = 1;
11524 /* Itbl support may require additional care here. */
11525 goto ld_st;
11526 case M_SDC2_AB:
11527 s = "sdc2";
11528 fmt = COP12_FMT;
11529 offbits = (mips_opts.micromips ? 12
11530 : ISA_IS_R6 (mips_opts.isa) ? 11
11531 : 16);
11532 /* Itbl support may require additional care here. */
11533 coproc = 1;
11534 goto ld_st;
11535 case M_SQC2_AB:
11536 s = "sqc2";
11537 fmt = "+7,o(b)";
11538 /* Itbl support may require additional care here. */
11539 coproc = 1;
11540 goto ld_st;
11541 case M_SDC3_AB:
11542 gas_assert (!mips_opts.micromips);
11543 s = "sdc3";
11544 fmt = "E,o(b)";
11545 /* Itbl support may require additional care here. */
11546 coproc = 1;
11547 goto ld_st;
11548 case M_SDL_AB:
11549 s = "sdl";
11550 fmt = MEM12_FMT;
11551 offbits = (mips_opts.micromips ? 12 : 16);
11552 goto ld_st;
11553 case M_SDR_AB:
11554 s = "sdr";
11555 fmt = MEM12_FMT;
11556 offbits = (mips_opts.micromips ? 12 : 16);
11557 goto ld_st;
11558 case M_SWP_AB:
11559 gas_assert (mips_opts.micromips);
11560 s = "swp";
11561 fmt = "t,~(b)";
11562 offbits = 12;
11563 goto ld_st;
11564 case M_SDP_AB:
11565 gas_assert (mips_opts.micromips);
11566 s = "sdp";
11567 fmt = "t,~(b)";
11568 offbits = 12;
11569 goto ld_st;
11570 case M_SWM_AB:
11571 gas_assert (mips_opts.micromips);
11572 s = "swm";
11573 fmt = "n,~(b)";
11574 offbits = 12;
11575 goto ld_st;
11576 case M_SDM_AB:
11577 gas_assert (mips_opts.micromips);
11578 s = "sdm";
11579 fmt = "n,~(b)";
11580 offbits = 12;
11581
11582 ld_st:
11583 tempreg = AT;
11584 ld_noat:
11585 breg = op[2];
11586 if (small_offset_p (0, align, 16))
11587 {
11588 /* The first case exists for M_LD_AB and M_SD_AB, which are
11589 macros for o32 but which should act like normal instructions
11590 otherwise. */
11591 if (offbits == 16)
11592 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11593 offset_reloc[1], offset_reloc[2], breg);
11594 else if (small_offset_p (0, align, offbits))
11595 {
11596 if (offbits == 0)
11597 macro_build (NULL, s, fmt, op[0], breg);
11598 else
11599 macro_build (NULL, s, fmt, op[0],
11600 (int) offset_expr.X_add_number, breg);
11601 }
11602 else
11603 {
11604 if (tempreg == AT)
11605 used_at = 1;
11606 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11607 tempreg, breg, -1, offset_reloc[0],
11608 offset_reloc[1], offset_reloc[2]);
11609 if (offbits == 0)
11610 macro_build (NULL, s, fmt, op[0], tempreg);
11611 else
11612 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11613 }
11614 break;
11615 }
11616
11617 if (tempreg == AT)
11618 used_at = 1;
11619
11620 if (offset_expr.X_op != O_constant
11621 && offset_expr.X_op != O_symbol)
11622 {
11623 as_bad (_("expression too complex"));
11624 offset_expr.X_op = O_constant;
11625 }
11626
11627 if (HAVE_32BIT_ADDRESSES
11628 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11629 {
11630 char value [32];
11631
11632 sprintf_vma (value, offset_expr.X_add_number);
11633 as_bad (_("number (0x%s) larger than 32 bits"), value);
11634 }
11635
11636 /* A constant expression in PIC code can be handled just as it
11637 is in non PIC code. */
11638 if (offset_expr.X_op == O_constant)
11639 {
11640 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11641 offbits == 0 ? 16 : offbits);
11642 offset_expr.X_add_number -= expr1.X_add_number;
11643
11644 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11645 if (breg != 0)
11646 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11647 tempreg, tempreg, breg);
11648 if (offbits == 0)
11649 {
11650 if (offset_expr.X_add_number != 0)
11651 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11652 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11653 macro_build (NULL, s, fmt, op[0], tempreg);
11654 }
11655 else if (offbits == 16)
11656 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11657 else
11658 macro_build (NULL, s, fmt, op[0],
11659 (int) offset_expr.X_add_number, tempreg);
11660 }
11661 else if (offbits != 16)
11662 {
11663 /* The offset field is too narrow to be used for a low-part
11664 relocation, so load the whole address into the auxillary
11665 register. */
11666 load_address (tempreg, &offset_expr, &used_at);
11667 if (breg != 0)
11668 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11669 tempreg, tempreg, breg);
11670 if (offbits == 0)
11671 macro_build (NULL, s, fmt, op[0], tempreg);
11672 else
11673 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11674 }
11675 else if (mips_pic == NO_PIC)
11676 {
11677 /* If this is a reference to a GP relative symbol, and there
11678 is no base register, we want
11679 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11680 Otherwise, if there is no base register, we want
11681 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11682 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11683 If we have a constant, we need two instructions anyhow,
11684 so we always use the latter form.
11685
11686 If we have a base register, and this is a reference to a
11687 GP relative symbol, we want
11688 addu $tempreg,$breg,$gp
11689 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11690 Otherwise we want
11691 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11692 addu $tempreg,$tempreg,$breg
11693 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11694 With a constant we always use the latter case.
11695
11696 With 64bit address space and no base register and $at usable,
11697 we want
11698 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11699 lui $at,<sym> (BFD_RELOC_HI16_S)
11700 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11701 dsll32 $tempreg,0
11702 daddu $tempreg,$at
11703 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11704 If we have a base register, we want
11705 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11706 lui $at,<sym> (BFD_RELOC_HI16_S)
11707 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11708 daddu $at,$breg
11709 dsll32 $tempreg,0
11710 daddu $tempreg,$at
11711 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11712
11713 Without $at we can't generate the optimal path for superscalar
11714 processors here since this would require two temporary registers.
11715 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11716 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11717 dsll $tempreg,16
11718 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11719 dsll $tempreg,16
11720 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11721 If we have a base register, we want
11722 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11723 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11724 dsll $tempreg,16
11725 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11726 dsll $tempreg,16
11727 daddu $tempreg,$tempreg,$breg
11728 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11729
11730 For GP relative symbols in 64bit address space we can use
11731 the same sequence as in 32bit address space. */
11732 if (HAVE_64BIT_SYMBOLS)
11733 {
11734 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11735 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11736 {
11737 relax_start (offset_expr.X_add_symbol);
11738 if (breg == 0)
11739 {
11740 macro_build (&offset_expr, s, fmt, op[0],
11741 BFD_RELOC_GPREL16, mips_gp_register);
11742 }
11743 else
11744 {
11745 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11746 tempreg, breg, mips_gp_register);
11747 macro_build (&offset_expr, s, fmt, op[0],
11748 BFD_RELOC_GPREL16, tempreg);
11749 }
11750 relax_switch ();
11751 }
11752
11753 if (used_at == 0 && mips_opts.at)
11754 {
11755 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11756 BFD_RELOC_MIPS_HIGHEST);
11757 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11758 BFD_RELOC_HI16_S);
11759 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11760 tempreg, BFD_RELOC_MIPS_HIGHER);
11761 if (breg != 0)
11762 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11763 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11764 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11765 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11766 tempreg);
11767 used_at = 1;
11768 }
11769 else
11770 {
11771 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11772 BFD_RELOC_MIPS_HIGHEST);
11773 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11774 tempreg, BFD_RELOC_MIPS_HIGHER);
11775 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11776 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11777 tempreg, BFD_RELOC_HI16_S);
11778 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11779 if (breg != 0)
11780 macro_build (NULL, "daddu", "d,v,t",
11781 tempreg, tempreg, breg);
11782 macro_build (&offset_expr, s, fmt, op[0],
11783 BFD_RELOC_LO16, tempreg);
11784 }
11785
11786 if (mips_relax.sequence)
11787 relax_end ();
11788 break;
11789 }
11790
11791 if (breg == 0)
11792 {
11793 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11794 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11795 {
11796 relax_start (offset_expr.X_add_symbol);
11797 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11798 mips_gp_register);
11799 relax_switch ();
11800 }
11801 macro_build_lui (&offset_expr, tempreg);
11802 macro_build (&offset_expr, s, fmt, op[0],
11803 BFD_RELOC_LO16, tempreg);
11804 if (mips_relax.sequence)
11805 relax_end ();
11806 }
11807 else
11808 {
11809 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11810 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11811 {
11812 relax_start (offset_expr.X_add_symbol);
11813 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11814 tempreg, breg, mips_gp_register);
11815 macro_build (&offset_expr, s, fmt, op[0],
11816 BFD_RELOC_GPREL16, tempreg);
11817 relax_switch ();
11818 }
11819 macro_build_lui (&offset_expr, tempreg);
11820 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11821 tempreg, tempreg, breg);
11822 macro_build (&offset_expr, s, fmt, op[0],
11823 BFD_RELOC_LO16, tempreg);
11824 if (mips_relax.sequence)
11825 relax_end ();
11826 }
11827 }
11828 else if (!mips_big_got)
11829 {
11830 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11831
11832 /* If this is a reference to an external symbol, we want
11833 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11834 nop
11835 <op> op[0],0($tempreg)
11836 Otherwise we want
11837 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11838 nop
11839 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11840 <op> op[0],0($tempreg)
11841
11842 For NewABI, we want
11843 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11844 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11845
11846 If there is a base register, we add it to $tempreg before
11847 the <op>. If there is a constant, we stick it in the
11848 <op> instruction. We don't handle constants larger than
11849 16 bits, because we have no way to load the upper 16 bits
11850 (actually, we could handle them for the subset of cases
11851 in which we are not using $at). */
11852 gas_assert (offset_expr.X_op == O_symbol);
11853 if (HAVE_NEWABI)
11854 {
11855 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11856 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11857 if (breg != 0)
11858 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11859 tempreg, tempreg, breg);
11860 macro_build (&offset_expr, s, fmt, op[0],
11861 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11862 break;
11863 }
11864 expr1.X_add_number = offset_expr.X_add_number;
11865 offset_expr.X_add_number = 0;
11866 if (expr1.X_add_number < -0x8000
11867 || expr1.X_add_number >= 0x8000)
11868 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11869 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11870 lw_reloc_type, mips_gp_register);
11871 load_delay_nop ();
11872 relax_start (offset_expr.X_add_symbol);
11873 relax_switch ();
11874 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11875 tempreg, BFD_RELOC_LO16);
11876 relax_end ();
11877 if (breg != 0)
11878 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11879 tempreg, tempreg, breg);
11880 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11881 }
11882 else if (mips_big_got && !HAVE_NEWABI)
11883 {
11884 int gpdelay;
11885
11886 /* If this is a reference to an external symbol, we want
11887 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11888 addu $tempreg,$tempreg,$gp
11889 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11890 <op> op[0],0($tempreg)
11891 Otherwise we want
11892 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11893 nop
11894 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11895 <op> op[0],0($tempreg)
11896 If there is a base register, we add it to $tempreg before
11897 the <op>. If there is a constant, we stick it in the
11898 <op> instruction. We don't handle constants larger than
11899 16 bits, because we have no way to load the upper 16 bits
11900 (actually, we could handle them for the subset of cases
11901 in which we are not using $at). */
11902 gas_assert (offset_expr.X_op == O_symbol);
11903 expr1.X_add_number = offset_expr.X_add_number;
11904 offset_expr.X_add_number = 0;
11905 if (expr1.X_add_number < -0x8000
11906 || expr1.X_add_number >= 0x8000)
11907 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11908 gpdelay = reg_needs_delay (mips_gp_register);
11909 relax_start (offset_expr.X_add_symbol);
11910 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11911 BFD_RELOC_MIPS_GOT_HI16);
11912 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11913 mips_gp_register);
11914 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11915 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11916 relax_switch ();
11917 if (gpdelay)
11918 macro_build (NULL, "nop", "");
11919 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11920 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11921 load_delay_nop ();
11922 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11923 tempreg, BFD_RELOC_LO16);
11924 relax_end ();
11925
11926 if (breg != 0)
11927 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11928 tempreg, tempreg, breg);
11929 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11930 }
11931 else if (mips_big_got && HAVE_NEWABI)
11932 {
11933 /* If this is a reference to an external symbol, we want
11934 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11935 add $tempreg,$tempreg,$gp
11936 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11937 <op> op[0],<ofst>($tempreg)
11938 Otherwise, for local symbols, we want:
11939 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11940 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11941 gas_assert (offset_expr.X_op == O_symbol);
11942 expr1.X_add_number = offset_expr.X_add_number;
11943 offset_expr.X_add_number = 0;
11944 if (expr1.X_add_number < -0x8000
11945 || expr1.X_add_number >= 0x8000)
11946 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11947 relax_start (offset_expr.X_add_symbol);
11948 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11949 BFD_RELOC_MIPS_GOT_HI16);
11950 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11951 mips_gp_register);
11952 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11953 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11954 if (breg != 0)
11955 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11956 tempreg, tempreg, breg);
11957 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11958
11959 relax_switch ();
11960 offset_expr.X_add_number = expr1.X_add_number;
11961 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11962 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11963 if (breg != 0)
11964 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11965 tempreg, tempreg, breg);
11966 macro_build (&offset_expr, s, fmt, op[0],
11967 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11968 relax_end ();
11969 }
11970 else
11971 abort ();
11972
11973 break;
11974
11975 case M_JRADDIUSP:
11976 gas_assert (mips_opts.micromips);
11977 gas_assert (mips_opts.insn32);
11978 start_noreorder ();
11979 macro_build (NULL, "jr", "s", RA);
11980 expr1.X_add_number = op[0] << 2;
11981 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11982 end_noreorder ();
11983 break;
11984
11985 case M_JRC:
11986 gas_assert (mips_opts.micromips);
11987 gas_assert (mips_opts.insn32);
11988 macro_build (NULL, "jr", "s", op[0]);
11989 if (mips_opts.noreorder)
11990 macro_build (NULL, "nop", "");
11991 break;
11992
11993 case M_LI:
11994 case M_LI_S:
11995 load_register (op[0], &imm_expr, 0);
11996 break;
11997
11998 case M_DLI:
11999 load_register (op[0], &imm_expr, 1);
12000 break;
12001
12002 case M_LI_SS:
12003 if (imm_expr.X_op == O_constant)
12004 {
12005 used_at = 1;
12006 load_register (AT, &imm_expr, 0);
12007 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12008 break;
12009 }
12010 else
12011 {
12012 gas_assert (imm_expr.X_op == O_absent
12013 && offset_expr.X_op == O_symbol
12014 && strcmp (segment_name (S_GET_SEGMENT
12015 (offset_expr.X_add_symbol)),
12016 ".lit4") == 0
12017 && offset_expr.X_add_number == 0);
12018 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12019 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12020 break;
12021 }
12022
12023 case M_LI_D:
12024 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12025 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12026 order 32 bits of the value and the low order 32 bits are either
12027 zero or in OFFSET_EXPR. */
12028 if (imm_expr.X_op == O_constant)
12029 {
12030 if (GPR_SIZE == 64)
12031 load_register (op[0], &imm_expr, 1);
12032 else
12033 {
12034 int hreg, lreg;
12035
12036 if (target_big_endian)
12037 {
12038 hreg = op[0];
12039 lreg = op[0] + 1;
12040 }
12041 else
12042 {
12043 hreg = op[0] + 1;
12044 lreg = op[0];
12045 }
12046
12047 if (hreg <= 31)
12048 load_register (hreg, &imm_expr, 0);
12049 if (lreg <= 31)
12050 {
12051 if (offset_expr.X_op == O_absent)
12052 move_register (lreg, 0);
12053 else
12054 {
12055 gas_assert (offset_expr.X_op == O_constant);
12056 load_register (lreg, &offset_expr, 0);
12057 }
12058 }
12059 }
12060 break;
12061 }
12062 gas_assert (imm_expr.X_op == O_absent);
12063
12064 /* We know that sym is in the .rdata section. First we get the
12065 upper 16 bits of the address. */
12066 if (mips_pic == NO_PIC)
12067 {
12068 macro_build_lui (&offset_expr, AT);
12069 used_at = 1;
12070 }
12071 else
12072 {
12073 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12074 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12075 used_at = 1;
12076 }
12077
12078 /* Now we load the register(s). */
12079 if (GPR_SIZE == 64)
12080 {
12081 used_at = 1;
12082 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12083 BFD_RELOC_LO16, AT);
12084 }
12085 else
12086 {
12087 used_at = 1;
12088 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12089 BFD_RELOC_LO16, AT);
12090 if (op[0] != RA)
12091 {
12092 /* FIXME: How in the world do we deal with the possible
12093 overflow here? */
12094 offset_expr.X_add_number += 4;
12095 macro_build (&offset_expr, "lw", "t,o(b)",
12096 op[0] + 1, BFD_RELOC_LO16, AT);
12097 }
12098 }
12099 break;
12100
12101 case M_LI_DD:
12102 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12103 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12104 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12105 the value and the low order 32 bits are either zero or in
12106 OFFSET_EXPR. */
12107 if (imm_expr.X_op == O_constant)
12108 {
12109 used_at = 1;
12110 load_register (AT, &imm_expr, FPR_SIZE == 64);
12111 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12112 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12113 else
12114 {
12115 if (ISA_HAS_MXHC1 (mips_opts.isa))
12116 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12117 else if (FPR_SIZE != 32)
12118 as_bad (_("Unable to generate `%s' compliant code "
12119 "without mthc1"),
12120 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12121 else
12122 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12123 if (offset_expr.X_op == O_absent)
12124 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12125 else
12126 {
12127 gas_assert (offset_expr.X_op == O_constant);
12128 load_register (AT, &offset_expr, 0);
12129 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12130 }
12131 }
12132 break;
12133 }
12134
12135 gas_assert (imm_expr.X_op == O_absent
12136 && offset_expr.X_op == O_symbol
12137 && offset_expr.X_add_number == 0);
12138 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12139 if (strcmp (s, ".lit8") == 0)
12140 {
12141 op[2] = mips_gp_register;
12142 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12143 offset_reloc[1] = BFD_RELOC_UNUSED;
12144 offset_reloc[2] = BFD_RELOC_UNUSED;
12145 }
12146 else
12147 {
12148 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12149 used_at = 1;
12150 if (mips_pic != NO_PIC)
12151 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12152 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12153 else
12154 {
12155 /* FIXME: This won't work for a 64 bit address. */
12156 macro_build_lui (&offset_expr, AT);
12157 }
12158
12159 op[2] = AT;
12160 offset_reloc[0] = BFD_RELOC_LO16;
12161 offset_reloc[1] = BFD_RELOC_UNUSED;
12162 offset_reloc[2] = BFD_RELOC_UNUSED;
12163 }
12164 align = 8;
12165 /* Fall through */
12166
12167 case M_L_DAB:
12168 /*
12169 * The MIPS assembler seems to check for X_add_number not
12170 * being double aligned and generating:
12171 * lui at,%hi(foo+1)
12172 * addu at,at,v1
12173 * addiu at,at,%lo(foo+1)
12174 * lwc1 f2,0(at)
12175 * lwc1 f3,4(at)
12176 * But, the resulting address is the same after relocation so why
12177 * generate the extra instruction?
12178 */
12179 /* Itbl support may require additional care here. */
12180 coproc = 1;
12181 fmt = "T,o(b)";
12182 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12183 {
12184 s = "ldc1";
12185 goto ld_st;
12186 }
12187 s = "lwc1";
12188 goto ldd_std;
12189
12190 case M_S_DAB:
12191 gas_assert (!mips_opts.micromips);
12192 /* Itbl support may require additional care here. */
12193 coproc = 1;
12194 fmt = "T,o(b)";
12195 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12196 {
12197 s = "sdc1";
12198 goto ld_st;
12199 }
12200 s = "swc1";
12201 goto ldd_std;
12202
12203 case M_LQ_AB:
12204 fmt = "t,o(b)";
12205 s = "lq";
12206 goto ld;
12207
12208 case M_SQ_AB:
12209 fmt = "t,o(b)";
12210 s = "sq";
12211 goto ld_st;
12212
12213 case M_LD_AB:
12214 fmt = "t,o(b)";
12215 if (GPR_SIZE == 64)
12216 {
12217 s = "ld";
12218 goto ld;
12219 }
12220 s = "lw";
12221 goto ldd_std;
12222
12223 case M_SD_AB:
12224 fmt = "t,o(b)";
12225 if (GPR_SIZE == 64)
12226 {
12227 s = "sd";
12228 goto ld_st;
12229 }
12230 s = "sw";
12231
12232 ldd_std:
12233 /* Even on a big endian machine $fn comes before $fn+1. We have
12234 to adjust when loading from memory. We set coproc if we must
12235 load $fn+1 first. */
12236 /* Itbl support may require additional care here. */
12237 if (!target_big_endian)
12238 coproc = 0;
12239
12240 breg = op[2];
12241 if (small_offset_p (0, align, 16))
12242 {
12243 ep = &offset_expr;
12244 if (!small_offset_p (4, align, 16))
12245 {
12246 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12247 -1, offset_reloc[0], offset_reloc[1],
12248 offset_reloc[2]);
12249 expr1.X_add_number = 0;
12250 ep = &expr1;
12251 breg = AT;
12252 used_at = 1;
12253 offset_reloc[0] = BFD_RELOC_LO16;
12254 offset_reloc[1] = BFD_RELOC_UNUSED;
12255 offset_reloc[2] = BFD_RELOC_UNUSED;
12256 }
12257 if (strcmp (s, "lw") == 0 && op[0] == breg)
12258 {
12259 ep->X_add_number += 4;
12260 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12261 offset_reloc[1], offset_reloc[2], breg);
12262 ep->X_add_number -= 4;
12263 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12264 offset_reloc[1], offset_reloc[2], breg);
12265 }
12266 else
12267 {
12268 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12269 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12270 breg);
12271 ep->X_add_number += 4;
12272 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12273 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12274 breg);
12275 }
12276 break;
12277 }
12278
12279 if (offset_expr.X_op != O_symbol
12280 && offset_expr.X_op != O_constant)
12281 {
12282 as_bad (_("expression too complex"));
12283 offset_expr.X_op = O_constant;
12284 }
12285
12286 if (HAVE_32BIT_ADDRESSES
12287 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12288 {
12289 char value [32];
12290
12291 sprintf_vma (value, offset_expr.X_add_number);
12292 as_bad (_("number (0x%s) larger than 32 bits"), value);
12293 }
12294
12295 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12296 {
12297 /* If this is a reference to a GP relative symbol, we want
12298 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12299 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12300 If we have a base register, we use this
12301 addu $at,$breg,$gp
12302 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12303 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12304 If this is not a GP relative symbol, we want
12305 lui $at,<sym> (BFD_RELOC_HI16_S)
12306 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12307 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12308 If there is a base register, we add it to $at after the
12309 lui instruction. If there is a constant, we always use
12310 the last case. */
12311 if (offset_expr.X_op == O_symbol
12312 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12313 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12314 {
12315 relax_start (offset_expr.X_add_symbol);
12316 if (breg == 0)
12317 {
12318 tempreg = mips_gp_register;
12319 }
12320 else
12321 {
12322 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12323 AT, breg, mips_gp_register);
12324 tempreg = AT;
12325 used_at = 1;
12326 }
12327
12328 /* Itbl support may require additional care here. */
12329 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12330 BFD_RELOC_GPREL16, tempreg);
12331 offset_expr.X_add_number += 4;
12332
12333 /* Set mips_optimize to 2 to avoid inserting an
12334 undesired nop. */
12335 hold_mips_optimize = mips_optimize;
12336 mips_optimize = 2;
12337 /* Itbl support may require additional care here. */
12338 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12339 BFD_RELOC_GPREL16, tempreg);
12340 mips_optimize = hold_mips_optimize;
12341
12342 relax_switch ();
12343
12344 offset_expr.X_add_number -= 4;
12345 }
12346 used_at = 1;
12347 if (offset_high_part (offset_expr.X_add_number, 16)
12348 != offset_high_part (offset_expr.X_add_number + 4, 16))
12349 {
12350 load_address (AT, &offset_expr, &used_at);
12351 offset_expr.X_op = O_constant;
12352 offset_expr.X_add_number = 0;
12353 }
12354 else
12355 macro_build_lui (&offset_expr, AT);
12356 if (breg != 0)
12357 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12358 /* Itbl support may require additional care here. */
12359 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12360 BFD_RELOC_LO16, AT);
12361 /* FIXME: How do we handle overflow here? */
12362 offset_expr.X_add_number += 4;
12363 /* Itbl support may require additional care here. */
12364 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12365 BFD_RELOC_LO16, AT);
12366 if (mips_relax.sequence)
12367 relax_end ();
12368 }
12369 else if (!mips_big_got)
12370 {
12371 /* If this is a reference to an external symbol, we want
12372 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12373 nop
12374 <op> op[0],0($at)
12375 <op> op[0]+1,4($at)
12376 Otherwise we want
12377 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12378 nop
12379 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12380 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12381 If there is a base register we add it to $at before the
12382 lwc1 instructions. If there is a constant we include it
12383 in the lwc1 instructions. */
12384 used_at = 1;
12385 expr1.X_add_number = offset_expr.X_add_number;
12386 if (expr1.X_add_number < -0x8000
12387 || expr1.X_add_number >= 0x8000 - 4)
12388 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12389 load_got_offset (AT, &offset_expr);
12390 load_delay_nop ();
12391 if (breg != 0)
12392 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12393
12394 /* Set mips_optimize to 2 to avoid inserting an undesired
12395 nop. */
12396 hold_mips_optimize = mips_optimize;
12397 mips_optimize = 2;
12398
12399 /* Itbl support may require additional care here. */
12400 relax_start (offset_expr.X_add_symbol);
12401 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12402 BFD_RELOC_LO16, AT);
12403 expr1.X_add_number += 4;
12404 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12405 BFD_RELOC_LO16, AT);
12406 relax_switch ();
12407 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12408 BFD_RELOC_LO16, AT);
12409 offset_expr.X_add_number += 4;
12410 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12411 BFD_RELOC_LO16, AT);
12412 relax_end ();
12413
12414 mips_optimize = hold_mips_optimize;
12415 }
12416 else if (mips_big_got)
12417 {
12418 int gpdelay;
12419
12420 /* If this is a reference to an external symbol, we want
12421 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12422 addu $at,$at,$gp
12423 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12424 nop
12425 <op> op[0],0($at)
12426 <op> op[0]+1,4($at)
12427 Otherwise we want
12428 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12429 nop
12430 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12431 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12432 If there is a base register we add it to $at before the
12433 lwc1 instructions. If there is a constant we include it
12434 in the lwc1 instructions. */
12435 used_at = 1;
12436 expr1.X_add_number = offset_expr.X_add_number;
12437 offset_expr.X_add_number = 0;
12438 if (expr1.X_add_number < -0x8000
12439 || expr1.X_add_number >= 0x8000 - 4)
12440 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12441 gpdelay = reg_needs_delay (mips_gp_register);
12442 relax_start (offset_expr.X_add_symbol);
12443 macro_build (&offset_expr, "lui", LUI_FMT,
12444 AT, BFD_RELOC_MIPS_GOT_HI16);
12445 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12446 AT, AT, mips_gp_register);
12447 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12448 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12449 load_delay_nop ();
12450 if (breg != 0)
12451 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12452 /* Itbl support may require additional care here. */
12453 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12454 BFD_RELOC_LO16, AT);
12455 expr1.X_add_number += 4;
12456
12457 /* Set mips_optimize to 2 to avoid inserting an undesired
12458 nop. */
12459 hold_mips_optimize = mips_optimize;
12460 mips_optimize = 2;
12461 /* Itbl support may require additional care here. */
12462 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12463 BFD_RELOC_LO16, AT);
12464 mips_optimize = hold_mips_optimize;
12465 expr1.X_add_number -= 4;
12466
12467 relax_switch ();
12468 offset_expr.X_add_number = expr1.X_add_number;
12469 if (gpdelay)
12470 macro_build (NULL, "nop", "");
12471 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12472 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12473 load_delay_nop ();
12474 if (breg != 0)
12475 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12476 /* Itbl support may require additional care here. */
12477 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12478 BFD_RELOC_LO16, AT);
12479 offset_expr.X_add_number += 4;
12480
12481 /* Set mips_optimize to 2 to avoid inserting an undesired
12482 nop. */
12483 hold_mips_optimize = mips_optimize;
12484 mips_optimize = 2;
12485 /* Itbl support may require additional care here. */
12486 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12487 BFD_RELOC_LO16, AT);
12488 mips_optimize = hold_mips_optimize;
12489 relax_end ();
12490 }
12491 else
12492 abort ();
12493
12494 break;
12495
12496 case M_SAA_AB:
12497 s = "saa";
12498 goto saa_saad;
12499 case M_SAAD_AB:
12500 s = "saad";
12501 saa_saad:
12502 gas_assert (!mips_opts.micromips);
12503 offbits = 0;
12504 fmt = "t,(b)";
12505 goto ld_st;
12506
12507 /* New code added to support COPZ instructions.
12508 This code builds table entries out of the macros in mip_opcodes.
12509 R4000 uses interlocks to handle coproc delays.
12510 Other chips (like the R3000) require nops to be inserted for delays.
12511
12512 FIXME: Currently, we require that the user handle delays.
12513 In order to fill delay slots for non-interlocked chips,
12514 we must have a way to specify delays based on the coprocessor.
12515 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12516 What are the side-effects of the cop instruction?
12517 What cache support might we have and what are its effects?
12518 Both coprocessor & memory require delays. how long???
12519 What registers are read/set/modified?
12520
12521 If an itbl is provided to interpret cop instructions,
12522 this knowledge can be encoded in the itbl spec. */
12523
12524 case M_COP0:
12525 s = "c0";
12526 goto copz;
12527 case M_COP1:
12528 s = "c1";
12529 goto copz;
12530 case M_COP2:
12531 s = "c2";
12532 goto copz;
12533 case M_COP3:
12534 s = "c3";
12535 copz:
12536 gas_assert (!mips_opts.micromips);
12537 /* For now we just do C (same as Cz). The parameter will be
12538 stored in insn_opcode by mips_ip. */
12539 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12540 break;
12541
12542 case M_MOVE:
12543 move_register (op[0], op[1]);
12544 break;
12545
12546 case M_MOVEP:
12547 gas_assert (mips_opts.micromips);
12548 gas_assert (mips_opts.insn32);
12549 move_register (micromips_to_32_reg_h_map1[op[0]],
12550 micromips_to_32_reg_m_map[op[1]]);
12551 move_register (micromips_to_32_reg_h_map2[op[0]],
12552 micromips_to_32_reg_n_map[op[2]]);
12553 break;
12554
12555 case M_DMUL:
12556 dbl = 1;
12557 case M_MUL:
12558 if (mips_opts.arch == CPU_R5900)
12559 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12560 op[2]);
12561 else
12562 {
12563 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12564 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12565 }
12566 break;
12567
12568 case M_DMUL_I:
12569 dbl = 1;
12570 case M_MUL_I:
12571 /* The MIPS assembler some times generates shifts and adds. I'm
12572 not trying to be that fancy. GCC should do this for us
12573 anyway. */
12574 used_at = 1;
12575 load_register (AT, &imm_expr, dbl);
12576 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12577 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12578 break;
12579
12580 case M_DMULO_I:
12581 dbl = 1;
12582 case M_MULO_I:
12583 imm = 1;
12584 goto do_mulo;
12585
12586 case M_DMULO:
12587 dbl = 1;
12588 case M_MULO:
12589 do_mulo:
12590 start_noreorder ();
12591 used_at = 1;
12592 if (imm)
12593 load_register (AT, &imm_expr, dbl);
12594 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12595 op[1], imm ? AT : op[2]);
12596 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12597 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12598 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12599 if (mips_trap)
12600 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12601 else
12602 {
12603 if (mips_opts.micromips)
12604 micromips_label_expr (&label_expr);
12605 else
12606 label_expr.X_add_number = 8;
12607 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12608 macro_build (NULL, "nop", "");
12609 macro_build (NULL, "break", BRK_FMT, 6);
12610 if (mips_opts.micromips)
12611 micromips_add_label ();
12612 }
12613 end_noreorder ();
12614 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12615 break;
12616
12617 case M_DMULOU_I:
12618 dbl = 1;
12619 case M_MULOU_I:
12620 imm = 1;
12621 goto do_mulou;
12622
12623 case M_DMULOU:
12624 dbl = 1;
12625 case M_MULOU:
12626 do_mulou:
12627 start_noreorder ();
12628 used_at = 1;
12629 if (imm)
12630 load_register (AT, &imm_expr, dbl);
12631 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12632 op[1], imm ? AT : op[2]);
12633 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12634 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12635 if (mips_trap)
12636 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12637 else
12638 {
12639 if (mips_opts.micromips)
12640 micromips_label_expr (&label_expr);
12641 else
12642 label_expr.X_add_number = 8;
12643 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12644 macro_build (NULL, "nop", "");
12645 macro_build (NULL, "break", BRK_FMT, 6);
12646 if (mips_opts.micromips)
12647 micromips_add_label ();
12648 }
12649 end_noreorder ();
12650 break;
12651
12652 case M_DROL:
12653 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12654 {
12655 if (op[0] == op[1])
12656 {
12657 tempreg = AT;
12658 used_at = 1;
12659 }
12660 else
12661 tempreg = op[0];
12662 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12663 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12664 break;
12665 }
12666 used_at = 1;
12667 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12668 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12669 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12670 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12671 break;
12672
12673 case M_ROL:
12674 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12675 {
12676 if (op[0] == op[1])
12677 {
12678 tempreg = AT;
12679 used_at = 1;
12680 }
12681 else
12682 tempreg = op[0];
12683 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12684 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12685 break;
12686 }
12687 used_at = 1;
12688 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12689 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12690 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12691 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12692 break;
12693
12694 case M_DROL_I:
12695 {
12696 unsigned int rot;
12697 const char *l;
12698 const char *rr;
12699
12700 rot = imm_expr.X_add_number & 0x3f;
12701 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12702 {
12703 rot = (64 - rot) & 0x3f;
12704 if (rot >= 32)
12705 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12706 else
12707 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12708 break;
12709 }
12710 if (rot == 0)
12711 {
12712 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12713 break;
12714 }
12715 l = (rot < 0x20) ? "dsll" : "dsll32";
12716 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12717 rot &= 0x1f;
12718 used_at = 1;
12719 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12720 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12721 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12722 }
12723 break;
12724
12725 case M_ROL_I:
12726 {
12727 unsigned int rot;
12728
12729 rot = imm_expr.X_add_number & 0x1f;
12730 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12731 {
12732 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12733 (32 - rot) & 0x1f);
12734 break;
12735 }
12736 if (rot == 0)
12737 {
12738 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12739 break;
12740 }
12741 used_at = 1;
12742 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12743 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12744 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12745 }
12746 break;
12747
12748 case M_DROR:
12749 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12750 {
12751 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12752 break;
12753 }
12754 used_at = 1;
12755 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12756 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12757 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12758 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12759 break;
12760
12761 case M_ROR:
12762 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12763 {
12764 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12765 break;
12766 }
12767 used_at = 1;
12768 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12769 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12770 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12771 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12772 break;
12773
12774 case M_DROR_I:
12775 {
12776 unsigned int rot;
12777 const char *l;
12778 const char *rr;
12779
12780 rot = imm_expr.X_add_number & 0x3f;
12781 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12782 {
12783 if (rot >= 32)
12784 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12785 else
12786 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12787 break;
12788 }
12789 if (rot == 0)
12790 {
12791 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12792 break;
12793 }
12794 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12795 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12796 rot &= 0x1f;
12797 used_at = 1;
12798 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12799 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12800 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12801 }
12802 break;
12803
12804 case M_ROR_I:
12805 {
12806 unsigned int rot;
12807
12808 rot = imm_expr.X_add_number & 0x1f;
12809 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12810 {
12811 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12812 break;
12813 }
12814 if (rot == 0)
12815 {
12816 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12817 break;
12818 }
12819 used_at = 1;
12820 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12821 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12822 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12823 }
12824 break;
12825
12826 case M_SEQ:
12827 if (op[1] == 0)
12828 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12829 else if (op[2] == 0)
12830 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12831 else
12832 {
12833 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12834 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12835 }
12836 break;
12837
12838 case M_SEQ_I:
12839 if (imm_expr.X_add_number == 0)
12840 {
12841 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12842 break;
12843 }
12844 if (op[1] == 0)
12845 {
12846 as_warn (_("instruction %s: result is always false"),
12847 ip->insn_mo->name);
12848 move_register (op[0], 0);
12849 break;
12850 }
12851 if (CPU_HAS_SEQ (mips_opts.arch)
12852 && -512 <= imm_expr.X_add_number
12853 && imm_expr.X_add_number < 512)
12854 {
12855 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12856 (int) imm_expr.X_add_number);
12857 break;
12858 }
12859 if (imm_expr.X_add_number >= 0
12860 && imm_expr.X_add_number < 0x10000)
12861 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12862 else if (imm_expr.X_add_number > -0x8000
12863 && imm_expr.X_add_number < 0)
12864 {
12865 imm_expr.X_add_number = -imm_expr.X_add_number;
12866 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12867 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12868 }
12869 else if (CPU_HAS_SEQ (mips_opts.arch))
12870 {
12871 used_at = 1;
12872 load_register (AT, &imm_expr, GPR_SIZE == 64);
12873 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12874 break;
12875 }
12876 else
12877 {
12878 load_register (AT, &imm_expr, GPR_SIZE == 64);
12879 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12880 used_at = 1;
12881 }
12882 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12883 break;
12884
12885 case M_SGE: /* X >= Y <==> not (X < Y) */
12886 s = "slt";
12887 goto sge;
12888 case M_SGEU:
12889 s = "sltu";
12890 sge:
12891 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12892 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12893 break;
12894
12895 case M_SGE_I: /* X >= I <==> not (X < I) */
12896 case M_SGEU_I:
12897 if (imm_expr.X_add_number >= -0x8000
12898 && imm_expr.X_add_number < 0x8000)
12899 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12900 op[0], op[1], BFD_RELOC_LO16);
12901 else
12902 {
12903 load_register (AT, &imm_expr, GPR_SIZE == 64);
12904 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12905 op[0], op[1], AT);
12906 used_at = 1;
12907 }
12908 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12909 break;
12910
12911 case M_SGT: /* X > Y <==> Y < X */
12912 s = "slt";
12913 goto sgt;
12914 case M_SGTU:
12915 s = "sltu";
12916 sgt:
12917 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12918 break;
12919
12920 case M_SGT_I: /* X > I <==> I < X */
12921 s = "slt";
12922 goto sgti;
12923 case M_SGTU_I:
12924 s = "sltu";
12925 sgti:
12926 used_at = 1;
12927 load_register (AT, &imm_expr, GPR_SIZE == 64);
12928 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12929 break;
12930
12931 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12932 s = "slt";
12933 goto sle;
12934 case M_SLEU:
12935 s = "sltu";
12936 sle:
12937 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12938 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12939 break;
12940
12941 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12942 s = "slt";
12943 goto slei;
12944 case M_SLEU_I:
12945 s = "sltu";
12946 slei:
12947 used_at = 1;
12948 load_register (AT, &imm_expr, GPR_SIZE == 64);
12949 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12950 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12951 break;
12952
12953 case M_SLT_I:
12954 if (imm_expr.X_add_number >= -0x8000
12955 && imm_expr.X_add_number < 0x8000)
12956 {
12957 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12958 BFD_RELOC_LO16);
12959 break;
12960 }
12961 used_at = 1;
12962 load_register (AT, &imm_expr, GPR_SIZE == 64);
12963 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
12964 break;
12965
12966 case M_SLTU_I:
12967 if (imm_expr.X_add_number >= -0x8000
12968 && imm_expr.X_add_number < 0x8000)
12969 {
12970 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
12971 BFD_RELOC_LO16);
12972 break;
12973 }
12974 used_at = 1;
12975 load_register (AT, &imm_expr, GPR_SIZE == 64);
12976 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
12977 break;
12978
12979 case M_SNE:
12980 if (op[1] == 0)
12981 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12982 else if (op[2] == 0)
12983 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12984 else
12985 {
12986 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12987 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
12988 }
12989 break;
12990
12991 case M_SNE_I:
12992 if (imm_expr.X_add_number == 0)
12993 {
12994 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12995 break;
12996 }
12997 if (op[1] == 0)
12998 {
12999 as_warn (_("instruction %s: result is always true"),
13000 ip->insn_mo->name);
13001 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13002 op[0], 0, BFD_RELOC_LO16);
13003 break;
13004 }
13005 if (CPU_HAS_SEQ (mips_opts.arch)
13006 && -512 <= imm_expr.X_add_number
13007 && imm_expr.X_add_number < 512)
13008 {
13009 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13010 (int) imm_expr.X_add_number);
13011 break;
13012 }
13013 if (imm_expr.X_add_number >= 0
13014 && imm_expr.X_add_number < 0x10000)
13015 {
13016 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13017 BFD_RELOC_LO16);
13018 }
13019 else if (imm_expr.X_add_number > -0x8000
13020 && imm_expr.X_add_number < 0)
13021 {
13022 imm_expr.X_add_number = -imm_expr.X_add_number;
13023 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13024 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13025 }
13026 else if (CPU_HAS_SEQ (mips_opts.arch))
13027 {
13028 used_at = 1;
13029 load_register (AT, &imm_expr, GPR_SIZE == 64);
13030 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13031 break;
13032 }
13033 else
13034 {
13035 load_register (AT, &imm_expr, GPR_SIZE == 64);
13036 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13037 used_at = 1;
13038 }
13039 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13040 break;
13041
13042 case M_SUB_I:
13043 s = "addi";
13044 s2 = "sub";
13045 goto do_subi;
13046 case M_SUBU_I:
13047 s = "addiu";
13048 s2 = "subu";
13049 goto do_subi;
13050 case M_DSUB_I:
13051 dbl = 1;
13052 s = "daddi";
13053 s2 = "dsub";
13054 if (!mips_opts.micromips)
13055 goto do_subi;
13056 if (imm_expr.X_add_number > -0x200
13057 && imm_expr.X_add_number <= 0x200)
13058 {
13059 macro_build (NULL, s, "t,r,.", op[0], op[1],
13060 (int) -imm_expr.X_add_number);
13061 break;
13062 }
13063 goto do_subi_i;
13064 case M_DSUBU_I:
13065 dbl = 1;
13066 s = "daddiu";
13067 s2 = "dsubu";
13068 do_subi:
13069 if (imm_expr.X_add_number > -0x8000
13070 && imm_expr.X_add_number <= 0x8000)
13071 {
13072 imm_expr.X_add_number = -imm_expr.X_add_number;
13073 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13074 break;
13075 }
13076 do_subi_i:
13077 used_at = 1;
13078 load_register (AT, &imm_expr, dbl);
13079 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13080 break;
13081
13082 case M_TEQ_I:
13083 s = "teq";
13084 goto trap;
13085 case M_TGE_I:
13086 s = "tge";
13087 goto trap;
13088 case M_TGEU_I:
13089 s = "tgeu";
13090 goto trap;
13091 case M_TLT_I:
13092 s = "tlt";
13093 goto trap;
13094 case M_TLTU_I:
13095 s = "tltu";
13096 goto trap;
13097 case M_TNE_I:
13098 s = "tne";
13099 trap:
13100 used_at = 1;
13101 load_register (AT, &imm_expr, GPR_SIZE == 64);
13102 macro_build (NULL, s, "s,t", op[0], AT);
13103 break;
13104
13105 case M_TRUNCWS:
13106 case M_TRUNCWD:
13107 gas_assert (!mips_opts.micromips);
13108 gas_assert (mips_opts.isa == ISA_MIPS1);
13109 used_at = 1;
13110
13111 /*
13112 * Is the double cfc1 instruction a bug in the mips assembler;
13113 * or is there a reason for it?
13114 */
13115 start_noreorder ();
13116 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13117 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13118 macro_build (NULL, "nop", "");
13119 expr1.X_add_number = 3;
13120 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13121 expr1.X_add_number = 2;
13122 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13123 macro_build (NULL, "ctc1", "t,G", AT, RA);
13124 macro_build (NULL, "nop", "");
13125 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13126 op[0], op[1]);
13127 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13128 macro_build (NULL, "nop", "");
13129 end_noreorder ();
13130 break;
13131
13132 case M_ULH_AB:
13133 s = "lb";
13134 s2 = "lbu";
13135 off = 1;
13136 goto uld_st;
13137 case M_ULHU_AB:
13138 s = "lbu";
13139 s2 = "lbu";
13140 off = 1;
13141 goto uld_st;
13142 case M_ULW_AB:
13143 s = "lwl";
13144 s2 = "lwr";
13145 offbits = (mips_opts.micromips ? 12 : 16);
13146 off = 3;
13147 goto uld_st;
13148 case M_ULD_AB:
13149 s = "ldl";
13150 s2 = "ldr";
13151 offbits = (mips_opts.micromips ? 12 : 16);
13152 off = 7;
13153 goto uld_st;
13154 case M_USH_AB:
13155 s = "sb";
13156 s2 = "sb";
13157 off = 1;
13158 ust = 1;
13159 goto uld_st;
13160 case M_USW_AB:
13161 s = "swl";
13162 s2 = "swr";
13163 offbits = (mips_opts.micromips ? 12 : 16);
13164 off = 3;
13165 ust = 1;
13166 goto uld_st;
13167 case M_USD_AB:
13168 s = "sdl";
13169 s2 = "sdr";
13170 offbits = (mips_opts.micromips ? 12 : 16);
13171 off = 7;
13172 ust = 1;
13173
13174 uld_st:
13175 breg = op[2];
13176 large_offset = !small_offset_p (off, align, offbits);
13177 ep = &offset_expr;
13178 expr1.X_add_number = 0;
13179 if (large_offset)
13180 {
13181 used_at = 1;
13182 tempreg = AT;
13183 if (small_offset_p (0, align, 16))
13184 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13185 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13186 else
13187 {
13188 load_address (tempreg, ep, &used_at);
13189 if (breg != 0)
13190 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13191 tempreg, tempreg, breg);
13192 }
13193 offset_reloc[0] = BFD_RELOC_LO16;
13194 offset_reloc[1] = BFD_RELOC_UNUSED;
13195 offset_reloc[2] = BFD_RELOC_UNUSED;
13196 breg = tempreg;
13197 tempreg = op[0];
13198 ep = &expr1;
13199 }
13200 else if (!ust && op[0] == breg)
13201 {
13202 used_at = 1;
13203 tempreg = AT;
13204 }
13205 else
13206 tempreg = op[0];
13207
13208 if (off == 1)
13209 goto ulh_sh;
13210
13211 if (!target_big_endian)
13212 ep->X_add_number += off;
13213 if (offbits == 12)
13214 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13215 else
13216 macro_build (ep, s, "t,o(b)", tempreg, -1,
13217 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13218
13219 if (!target_big_endian)
13220 ep->X_add_number -= off;
13221 else
13222 ep->X_add_number += off;
13223 if (offbits == 12)
13224 macro_build (NULL, s2, "t,~(b)",
13225 tempreg, (int) ep->X_add_number, breg);
13226 else
13227 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13228 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13229
13230 /* If necessary, move the result in tempreg to the final destination. */
13231 if (!ust && op[0] != tempreg)
13232 {
13233 /* Protect second load's delay slot. */
13234 load_delay_nop ();
13235 move_register (op[0], tempreg);
13236 }
13237 break;
13238
13239 ulh_sh:
13240 used_at = 1;
13241 if (target_big_endian == ust)
13242 ep->X_add_number += off;
13243 tempreg = ust || large_offset ? op[0] : AT;
13244 macro_build (ep, s, "t,o(b)", tempreg, -1,
13245 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13246
13247 /* For halfword transfers we need a temporary register to shuffle
13248 bytes. Unfortunately for M_USH_A we have none available before
13249 the next store as AT holds the base address. We deal with this
13250 case by clobbering TREG and then restoring it as with ULH. */
13251 tempreg = ust == large_offset ? op[0] : AT;
13252 if (ust)
13253 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13254
13255 if (target_big_endian == ust)
13256 ep->X_add_number -= off;
13257 else
13258 ep->X_add_number += off;
13259 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13260 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13261
13262 /* For M_USH_A re-retrieve the LSB. */
13263 if (ust && large_offset)
13264 {
13265 if (target_big_endian)
13266 ep->X_add_number += off;
13267 else
13268 ep->X_add_number -= off;
13269 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13270 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13271 }
13272 /* For ULH and M_USH_A OR the LSB in. */
13273 if (!ust || large_offset)
13274 {
13275 tempreg = !large_offset ? AT : op[0];
13276 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13277 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13278 }
13279 break;
13280
13281 default:
13282 /* FIXME: Check if this is one of the itbl macros, since they
13283 are added dynamically. */
13284 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13285 break;
13286 }
13287 if (!mips_opts.at && used_at)
13288 as_bad (_("macro used $at after \".set noat\""));
13289 }
13290
13291 /* Implement macros in mips16 mode. */
13292
13293 static void
13294 mips16_macro (struct mips_cl_insn *ip)
13295 {
13296 const struct mips_operand_array *operands;
13297 int mask;
13298 int tmp;
13299 expressionS expr1;
13300 int dbl;
13301 const char *s, *s2, *s3;
13302 unsigned int op[MAX_OPERANDS];
13303 unsigned int i;
13304
13305 mask = ip->insn_mo->mask;
13306
13307 operands = insn_operands (ip);
13308 for (i = 0; i < MAX_OPERANDS; i++)
13309 if (operands->operand[i])
13310 op[i] = insn_extract_operand (ip, operands->operand[i]);
13311 else
13312 op[i] = -1;
13313
13314 expr1.X_op = O_constant;
13315 expr1.X_op_symbol = NULL;
13316 expr1.X_add_symbol = NULL;
13317 expr1.X_add_number = 1;
13318
13319 dbl = 0;
13320
13321 switch (mask)
13322 {
13323 default:
13324 abort ();
13325
13326 case M_DDIV_3:
13327 dbl = 1;
13328 case M_DIV_3:
13329 s = "mflo";
13330 goto do_div3;
13331 case M_DREM_3:
13332 dbl = 1;
13333 case M_REM_3:
13334 s = "mfhi";
13335 do_div3:
13336 start_noreorder ();
13337 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13338 expr1.X_add_number = 2;
13339 macro_build (&expr1, "bnez", "x,p", op[2]);
13340 macro_build (NULL, "break", "6", 7);
13341
13342 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13343 since that causes an overflow. We should do that as well,
13344 but I don't see how to do the comparisons without a temporary
13345 register. */
13346 end_noreorder ();
13347 macro_build (NULL, s, "x", op[0]);
13348 break;
13349
13350 case M_DIVU_3:
13351 s = "divu";
13352 s2 = "mflo";
13353 goto do_divu3;
13354 case M_REMU_3:
13355 s = "divu";
13356 s2 = "mfhi";
13357 goto do_divu3;
13358 case M_DDIVU_3:
13359 s = "ddivu";
13360 s2 = "mflo";
13361 goto do_divu3;
13362 case M_DREMU_3:
13363 s = "ddivu";
13364 s2 = "mfhi";
13365 do_divu3:
13366 start_noreorder ();
13367 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13368 expr1.X_add_number = 2;
13369 macro_build (&expr1, "bnez", "x,p", op[2]);
13370 macro_build (NULL, "break", "6", 7);
13371 end_noreorder ();
13372 macro_build (NULL, s2, "x", op[0]);
13373 break;
13374
13375 case M_DMUL:
13376 dbl = 1;
13377 case M_MUL:
13378 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13379 macro_build (NULL, "mflo", "x", op[0]);
13380 break;
13381
13382 case M_DSUBU_I:
13383 dbl = 1;
13384 goto do_subu;
13385 case M_SUBU_I:
13386 do_subu:
13387 imm_expr.X_add_number = -imm_expr.X_add_number;
13388 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13389 break;
13390
13391 case M_SUBU_I_2:
13392 imm_expr.X_add_number = -imm_expr.X_add_number;
13393 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13394 break;
13395
13396 case M_DSUBU_I_2:
13397 imm_expr.X_add_number = -imm_expr.X_add_number;
13398 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13399 break;
13400
13401 case M_BEQ:
13402 s = "cmp";
13403 s2 = "bteqz";
13404 goto do_branch;
13405 case M_BNE:
13406 s = "cmp";
13407 s2 = "btnez";
13408 goto do_branch;
13409 case M_BLT:
13410 s = "slt";
13411 s2 = "btnez";
13412 goto do_branch;
13413 case M_BLTU:
13414 s = "sltu";
13415 s2 = "btnez";
13416 goto do_branch;
13417 case M_BLE:
13418 s = "slt";
13419 s2 = "bteqz";
13420 goto do_reverse_branch;
13421 case M_BLEU:
13422 s = "sltu";
13423 s2 = "bteqz";
13424 goto do_reverse_branch;
13425 case M_BGE:
13426 s = "slt";
13427 s2 = "bteqz";
13428 goto do_branch;
13429 case M_BGEU:
13430 s = "sltu";
13431 s2 = "bteqz";
13432 goto do_branch;
13433 case M_BGT:
13434 s = "slt";
13435 s2 = "btnez";
13436 goto do_reverse_branch;
13437 case M_BGTU:
13438 s = "sltu";
13439 s2 = "btnez";
13440
13441 do_reverse_branch:
13442 tmp = op[1];
13443 op[1] = op[0];
13444 op[0] = tmp;
13445
13446 do_branch:
13447 macro_build (NULL, s, "x,y", op[0], op[1]);
13448 macro_build (&offset_expr, s2, "p");
13449 break;
13450
13451 case M_BEQ_I:
13452 s = "cmpi";
13453 s2 = "bteqz";
13454 s3 = "x,U";
13455 goto do_branch_i;
13456 case M_BNE_I:
13457 s = "cmpi";
13458 s2 = "btnez";
13459 s3 = "x,U";
13460 goto do_branch_i;
13461 case M_BLT_I:
13462 s = "slti";
13463 s2 = "btnez";
13464 s3 = "x,8";
13465 goto do_branch_i;
13466 case M_BLTU_I:
13467 s = "sltiu";
13468 s2 = "btnez";
13469 s3 = "x,8";
13470 goto do_branch_i;
13471 case M_BLE_I:
13472 s = "slti";
13473 s2 = "btnez";
13474 s3 = "x,8";
13475 goto do_addone_branch_i;
13476 case M_BLEU_I:
13477 s = "sltiu";
13478 s2 = "btnez";
13479 s3 = "x,8";
13480 goto do_addone_branch_i;
13481 case M_BGE_I:
13482 s = "slti";
13483 s2 = "bteqz";
13484 s3 = "x,8";
13485 goto do_branch_i;
13486 case M_BGEU_I:
13487 s = "sltiu";
13488 s2 = "bteqz";
13489 s3 = "x,8";
13490 goto do_branch_i;
13491 case M_BGT_I:
13492 s = "slti";
13493 s2 = "bteqz";
13494 s3 = "x,8";
13495 goto do_addone_branch_i;
13496 case M_BGTU_I:
13497 s = "sltiu";
13498 s2 = "bteqz";
13499 s3 = "x,8";
13500
13501 do_addone_branch_i:
13502 ++imm_expr.X_add_number;
13503
13504 do_branch_i:
13505 macro_build (&imm_expr, s, s3, op[0]);
13506 macro_build (&offset_expr, s2, "p");
13507 break;
13508
13509 case M_ABS:
13510 expr1.X_add_number = 0;
13511 macro_build (&expr1, "slti", "x,8", op[1]);
13512 if (op[0] != op[1])
13513 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13514 expr1.X_add_number = 2;
13515 macro_build (&expr1, "bteqz", "p");
13516 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13517 break;
13518 }
13519 }
13520
13521 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13522 opcode bits in *OPCODE_EXTRA. */
13523
13524 static struct mips_opcode *
13525 mips_lookup_insn (struct hash_control *hash, const char *start,
13526 ssize_t length, unsigned int *opcode_extra)
13527 {
13528 char *name, *dot, *p;
13529 unsigned int mask, suffix;
13530 ssize_t opend;
13531 struct mips_opcode *insn;
13532
13533 /* Make a copy of the instruction so that we can fiddle with it. */
13534 name = xstrndup (start, length);
13535
13536 /* Look up the instruction as-is. */
13537 insn = (struct mips_opcode *) hash_find (hash, name);
13538 if (insn)
13539 goto end;
13540
13541 dot = strchr (name, '.');
13542 if (dot && dot[1])
13543 {
13544 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13545 p = mips_parse_vu0_channels (dot + 1, &mask);
13546 if (*p == 0 && mask != 0)
13547 {
13548 *dot = 0;
13549 insn = (struct mips_opcode *) hash_find (hash, name);
13550 *dot = '.';
13551 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13552 {
13553 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13554 goto end;
13555 }
13556 }
13557 }
13558
13559 if (mips_opts.micromips)
13560 {
13561 /* See if there's an instruction size override suffix,
13562 either `16' or `32', at the end of the mnemonic proper,
13563 that defines the operation, i.e. before the first `.'
13564 character if any. Strip it and retry. */
13565 opend = dot != NULL ? dot - name : length;
13566 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13567 suffix = 2;
13568 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13569 suffix = 4;
13570 else
13571 suffix = 0;
13572 if (suffix)
13573 {
13574 memcpy (name + opend - 2, name + opend, length - opend + 1);
13575 insn = (struct mips_opcode *) hash_find (hash, name);
13576 if (insn)
13577 {
13578 forced_insn_length = suffix;
13579 goto end;
13580 }
13581 }
13582 }
13583
13584 insn = NULL;
13585 end:
13586 free (name);
13587 return insn;
13588 }
13589
13590 /* Assemble an instruction into its binary format. If the instruction
13591 is a macro, set imm_expr and offset_expr to the values associated
13592 with "I" and "A" operands respectively. Otherwise store the value
13593 of the relocatable field (if any) in offset_expr. In both cases
13594 set offset_reloc to the relocation operators applied to offset_expr. */
13595
13596 static void
13597 mips_ip (char *str, struct mips_cl_insn *insn)
13598 {
13599 const struct mips_opcode *first, *past;
13600 struct hash_control *hash;
13601 char format;
13602 size_t end;
13603 struct mips_operand_token *tokens;
13604 unsigned int opcode_extra;
13605
13606 if (mips_opts.micromips)
13607 {
13608 hash = micromips_op_hash;
13609 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13610 }
13611 else
13612 {
13613 hash = op_hash;
13614 past = &mips_opcodes[NUMOPCODES];
13615 }
13616 forced_insn_length = 0;
13617 opcode_extra = 0;
13618
13619 /* We first try to match an instruction up to a space or to the end. */
13620 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13621 continue;
13622
13623 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13624 if (first == NULL)
13625 {
13626 set_insn_error (0, _("unrecognized opcode"));
13627 return;
13628 }
13629
13630 if (strcmp (first->name, "li.s") == 0)
13631 format = 'f';
13632 else if (strcmp (first->name, "li.d") == 0)
13633 format = 'd';
13634 else
13635 format = 0;
13636 tokens = mips_parse_arguments (str + end, format);
13637 if (!tokens)
13638 return;
13639
13640 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13641 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13642 set_insn_error (0, _("invalid operands"));
13643
13644 obstack_free (&mips_operand_tokens, tokens);
13645 }
13646
13647 /* As for mips_ip, but used when assembling MIPS16 code.
13648 Also set forced_insn_length to the resulting instruction size in
13649 bytes if the user explicitly requested a small or extended instruction. */
13650
13651 static void
13652 mips16_ip (char *str, struct mips_cl_insn *insn)
13653 {
13654 char *end, *s, c;
13655 struct mips_opcode *first;
13656 struct mips_operand_token *tokens;
13657
13658 forced_insn_length = 0;
13659
13660 for (s = str; ISLOWER (*s); ++s)
13661 ;
13662 end = s;
13663 c = *end;
13664 switch (c)
13665 {
13666 case '\0':
13667 break;
13668
13669 case ' ':
13670 s++;
13671 break;
13672
13673 case '.':
13674 if (s[1] == 't' && s[2] == ' ')
13675 {
13676 forced_insn_length = 2;
13677 s += 3;
13678 break;
13679 }
13680 else if (s[1] == 'e' && s[2] == ' ')
13681 {
13682 forced_insn_length = 4;
13683 s += 3;
13684 break;
13685 }
13686 /* Fall through. */
13687 default:
13688 set_insn_error (0, _("unrecognized opcode"));
13689 return;
13690 }
13691
13692 if (mips_opts.noautoextend && !forced_insn_length)
13693 forced_insn_length = 2;
13694
13695 *end = 0;
13696 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13697 *end = c;
13698
13699 if (!first)
13700 {
13701 set_insn_error (0, _("unrecognized opcode"));
13702 return;
13703 }
13704
13705 tokens = mips_parse_arguments (s, 0);
13706 if (!tokens)
13707 return;
13708
13709 if (!match_mips16_insns (insn, first, tokens))
13710 set_insn_error (0, _("invalid operands"));
13711
13712 obstack_free (&mips_operand_tokens, tokens);
13713 }
13714
13715 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13716 NBITS is the number of significant bits in VAL. */
13717
13718 static unsigned long
13719 mips16_immed_extend (offsetT val, unsigned int nbits)
13720 {
13721 int extval;
13722 if (nbits == 16)
13723 {
13724 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13725 val &= 0x1f;
13726 }
13727 else if (nbits == 15)
13728 {
13729 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13730 val &= 0xf;
13731 }
13732 else
13733 {
13734 extval = ((val & 0x1f) << 6) | (val & 0x20);
13735 val = 0;
13736 }
13737 return (extval << 16) | val;
13738 }
13739
13740 /* Like decode_mips16_operand, but require the operand to be defined and
13741 require it to be an integer. */
13742
13743 static const struct mips_int_operand *
13744 mips16_immed_operand (int type, bfd_boolean extended_p)
13745 {
13746 const struct mips_operand *operand;
13747
13748 operand = decode_mips16_operand (type, extended_p);
13749 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13750 abort ();
13751 return (const struct mips_int_operand *) operand;
13752 }
13753
13754 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13755
13756 static bfd_boolean
13757 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13758 bfd_reloc_code_real_type reloc, offsetT sval)
13759 {
13760 int min_val, max_val;
13761
13762 min_val = mips_int_operand_min (operand);
13763 max_val = mips_int_operand_max (operand);
13764 if (reloc != BFD_RELOC_UNUSED)
13765 {
13766 if (min_val < 0)
13767 sval = SEXT_16BIT (sval);
13768 else
13769 sval &= 0xffff;
13770 }
13771
13772 return (sval >= min_val
13773 && sval <= max_val
13774 && (sval & ((1 << operand->shift) - 1)) == 0);
13775 }
13776
13777 /* Install immediate value VAL into MIPS16 instruction *INSN,
13778 extending it if necessary. The instruction in *INSN may
13779 already be extended.
13780
13781 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13782 if none. In the former case, VAL is a 16-bit number with no
13783 defined signedness.
13784
13785 TYPE is the type of the immediate field. USER_INSN_LENGTH
13786 is the length that the user requested, or 0 if none. */
13787
13788 static void
13789 mips16_immed (const char *file, unsigned int line, int type,
13790 bfd_reloc_code_real_type reloc, offsetT val,
13791 unsigned int user_insn_length, unsigned long *insn)
13792 {
13793 const struct mips_int_operand *operand;
13794 unsigned int uval, length;
13795
13796 operand = mips16_immed_operand (type, FALSE);
13797 if (!mips16_immed_in_range_p (operand, reloc, val))
13798 {
13799 /* We need an extended instruction. */
13800 if (user_insn_length == 2)
13801 as_bad_where (file, line, _("invalid unextended operand value"));
13802 else
13803 *insn |= MIPS16_EXTEND;
13804 }
13805 else if (user_insn_length == 4)
13806 {
13807 /* The operand doesn't force an unextended instruction to be extended.
13808 Warn if the user wanted an extended instruction anyway. */
13809 *insn |= MIPS16_EXTEND;
13810 as_warn_where (file, line,
13811 _("extended operand requested but not required"));
13812 }
13813
13814 length = mips16_opcode_length (*insn);
13815 if (length == 4)
13816 {
13817 operand = mips16_immed_operand (type, TRUE);
13818 if (!mips16_immed_in_range_p (operand, reloc, val))
13819 as_bad_where (file, line,
13820 _("operand value out of range for instruction"));
13821 }
13822 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13823 if (length == 2)
13824 *insn = mips_insert_operand (&operand->root, *insn, uval);
13825 else
13826 *insn |= mips16_immed_extend (uval, operand->root.size);
13827 }
13828 \f
13829 struct percent_op_match
13830 {
13831 const char *str;
13832 bfd_reloc_code_real_type reloc;
13833 };
13834
13835 static const struct percent_op_match mips_percent_op[] =
13836 {
13837 {"%lo", BFD_RELOC_LO16},
13838 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13839 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13840 {"%call16", BFD_RELOC_MIPS_CALL16},
13841 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13842 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13843 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13844 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13845 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13846 {"%got", BFD_RELOC_MIPS_GOT16},
13847 {"%gp_rel", BFD_RELOC_GPREL16},
13848 {"%half", BFD_RELOC_16},
13849 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13850 {"%higher", BFD_RELOC_MIPS_HIGHER},
13851 {"%neg", BFD_RELOC_MIPS_SUB},
13852 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13853 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13854 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13855 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13856 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13857 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13858 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13859 {"%hi", BFD_RELOC_HI16_S},
13860 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13861 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
13862 };
13863
13864 static const struct percent_op_match mips16_percent_op[] =
13865 {
13866 {"%lo", BFD_RELOC_MIPS16_LO16},
13867 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13868 {"%got", BFD_RELOC_MIPS16_GOT16},
13869 {"%call16", BFD_RELOC_MIPS16_CALL16},
13870 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13871 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13872 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13873 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13874 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13875 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13876 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13877 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13878 };
13879
13880
13881 /* Return true if *STR points to a relocation operator. When returning true,
13882 move *STR over the operator and store its relocation code in *RELOC.
13883 Leave both *STR and *RELOC alone when returning false. */
13884
13885 static bfd_boolean
13886 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13887 {
13888 const struct percent_op_match *percent_op;
13889 size_t limit, i;
13890
13891 if (mips_opts.mips16)
13892 {
13893 percent_op = mips16_percent_op;
13894 limit = ARRAY_SIZE (mips16_percent_op);
13895 }
13896 else
13897 {
13898 percent_op = mips_percent_op;
13899 limit = ARRAY_SIZE (mips_percent_op);
13900 }
13901
13902 for (i = 0; i < limit; i++)
13903 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13904 {
13905 int len = strlen (percent_op[i].str);
13906
13907 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13908 continue;
13909
13910 *str += strlen (percent_op[i].str);
13911 *reloc = percent_op[i].reloc;
13912
13913 /* Check whether the output BFD supports this relocation.
13914 If not, issue an error and fall back on something safe. */
13915 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13916 {
13917 as_bad (_("relocation %s isn't supported by the current ABI"),
13918 percent_op[i].str);
13919 *reloc = BFD_RELOC_UNUSED;
13920 }
13921 return TRUE;
13922 }
13923 return FALSE;
13924 }
13925
13926
13927 /* Parse string STR as a 16-bit relocatable operand. Store the
13928 expression in *EP and the relocations in the array starting
13929 at RELOC. Return the number of relocation operators used.
13930
13931 On exit, EXPR_END points to the first character after the expression. */
13932
13933 static size_t
13934 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13935 char *str)
13936 {
13937 bfd_reloc_code_real_type reversed_reloc[3];
13938 size_t reloc_index, i;
13939 int crux_depth, str_depth;
13940 char *crux;
13941
13942 /* Search for the start of the main expression, recoding relocations
13943 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13944 of the main expression and with CRUX_DEPTH containing the number
13945 of open brackets at that point. */
13946 reloc_index = -1;
13947 str_depth = 0;
13948 do
13949 {
13950 reloc_index++;
13951 crux = str;
13952 crux_depth = str_depth;
13953
13954 /* Skip over whitespace and brackets, keeping count of the number
13955 of brackets. */
13956 while (*str == ' ' || *str == '\t' || *str == '(')
13957 if (*str++ == '(')
13958 str_depth++;
13959 }
13960 while (*str == '%'
13961 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13962 && parse_relocation (&str, &reversed_reloc[reloc_index]));
13963
13964 my_getExpression (ep, crux);
13965 str = expr_end;
13966
13967 /* Match every open bracket. */
13968 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
13969 if (*str++ == ')')
13970 crux_depth--;
13971
13972 if (crux_depth > 0)
13973 as_bad (_("unclosed '('"));
13974
13975 expr_end = str;
13976
13977 if (reloc_index != 0)
13978 {
13979 prev_reloc_op_frag = frag_now;
13980 for (i = 0; i < reloc_index; i++)
13981 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13982 }
13983
13984 return reloc_index;
13985 }
13986
13987 static void
13988 my_getExpression (expressionS *ep, char *str)
13989 {
13990 char *save_in;
13991
13992 save_in = input_line_pointer;
13993 input_line_pointer = str;
13994 expression (ep);
13995 expr_end = input_line_pointer;
13996 input_line_pointer = save_in;
13997 }
13998
13999 const char *
14000 md_atof (int type, char *litP, int *sizeP)
14001 {
14002 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14003 }
14004
14005 void
14006 md_number_to_chars (char *buf, valueT val, int n)
14007 {
14008 if (target_big_endian)
14009 number_to_chars_bigendian (buf, val, n);
14010 else
14011 number_to_chars_littleendian (buf, val, n);
14012 }
14013 \f
14014 static int support_64bit_objects(void)
14015 {
14016 const char **list, **l;
14017 int yes;
14018
14019 list = bfd_target_list ();
14020 for (l = list; *l != NULL; l++)
14021 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14022 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14023 break;
14024 yes = (*l != NULL);
14025 free (list);
14026 return yes;
14027 }
14028
14029 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14030 NEW_VALUE. Warn if another value was already specified. Note:
14031 we have to defer parsing the -march and -mtune arguments in order
14032 to handle 'from-abi' correctly, since the ABI might be specified
14033 in a later argument. */
14034
14035 static void
14036 mips_set_option_string (const char **string_ptr, const char *new_value)
14037 {
14038 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14039 as_warn (_("a different %s was already specified, is now %s"),
14040 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14041 new_value);
14042
14043 *string_ptr = new_value;
14044 }
14045
14046 int
14047 md_parse_option (int c, const char *arg)
14048 {
14049 unsigned int i;
14050
14051 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14052 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14053 {
14054 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14055 c == mips_ases[i].option_on);
14056 return 1;
14057 }
14058
14059 switch (c)
14060 {
14061 case OPTION_CONSTRUCT_FLOATS:
14062 mips_disable_float_construction = 0;
14063 break;
14064
14065 case OPTION_NO_CONSTRUCT_FLOATS:
14066 mips_disable_float_construction = 1;
14067 break;
14068
14069 case OPTION_TRAP:
14070 mips_trap = 1;
14071 break;
14072
14073 case OPTION_BREAK:
14074 mips_trap = 0;
14075 break;
14076
14077 case OPTION_EB:
14078 target_big_endian = 1;
14079 break;
14080
14081 case OPTION_EL:
14082 target_big_endian = 0;
14083 break;
14084
14085 case 'O':
14086 if (arg == NULL)
14087 mips_optimize = 1;
14088 else if (arg[0] == '0')
14089 mips_optimize = 0;
14090 else if (arg[0] == '1')
14091 mips_optimize = 1;
14092 else
14093 mips_optimize = 2;
14094 break;
14095
14096 case 'g':
14097 if (arg == NULL)
14098 mips_debug = 2;
14099 else
14100 mips_debug = atoi (arg);
14101 break;
14102
14103 case OPTION_MIPS1:
14104 file_mips_opts.isa = ISA_MIPS1;
14105 break;
14106
14107 case OPTION_MIPS2:
14108 file_mips_opts.isa = ISA_MIPS2;
14109 break;
14110
14111 case OPTION_MIPS3:
14112 file_mips_opts.isa = ISA_MIPS3;
14113 break;
14114
14115 case OPTION_MIPS4:
14116 file_mips_opts.isa = ISA_MIPS4;
14117 break;
14118
14119 case OPTION_MIPS5:
14120 file_mips_opts.isa = ISA_MIPS5;
14121 break;
14122
14123 case OPTION_MIPS32:
14124 file_mips_opts.isa = ISA_MIPS32;
14125 break;
14126
14127 case OPTION_MIPS32R2:
14128 file_mips_opts.isa = ISA_MIPS32R2;
14129 break;
14130
14131 case OPTION_MIPS32R3:
14132 file_mips_opts.isa = ISA_MIPS32R3;
14133 break;
14134
14135 case OPTION_MIPS32R5:
14136 file_mips_opts.isa = ISA_MIPS32R5;
14137 break;
14138
14139 case OPTION_MIPS32R6:
14140 file_mips_opts.isa = ISA_MIPS32R6;
14141 break;
14142
14143 case OPTION_MIPS64R2:
14144 file_mips_opts.isa = ISA_MIPS64R2;
14145 break;
14146
14147 case OPTION_MIPS64R3:
14148 file_mips_opts.isa = ISA_MIPS64R3;
14149 break;
14150
14151 case OPTION_MIPS64R5:
14152 file_mips_opts.isa = ISA_MIPS64R5;
14153 break;
14154
14155 case OPTION_MIPS64R6:
14156 file_mips_opts.isa = ISA_MIPS64R6;
14157 break;
14158
14159 case OPTION_MIPS64:
14160 file_mips_opts.isa = ISA_MIPS64;
14161 break;
14162
14163 case OPTION_MTUNE:
14164 mips_set_option_string (&mips_tune_string, arg);
14165 break;
14166
14167 case OPTION_MARCH:
14168 mips_set_option_string (&mips_arch_string, arg);
14169 break;
14170
14171 case OPTION_M4650:
14172 mips_set_option_string (&mips_arch_string, "4650");
14173 mips_set_option_string (&mips_tune_string, "4650");
14174 break;
14175
14176 case OPTION_NO_M4650:
14177 break;
14178
14179 case OPTION_M4010:
14180 mips_set_option_string (&mips_arch_string, "4010");
14181 mips_set_option_string (&mips_tune_string, "4010");
14182 break;
14183
14184 case OPTION_NO_M4010:
14185 break;
14186
14187 case OPTION_M4100:
14188 mips_set_option_string (&mips_arch_string, "4100");
14189 mips_set_option_string (&mips_tune_string, "4100");
14190 break;
14191
14192 case OPTION_NO_M4100:
14193 break;
14194
14195 case OPTION_M3900:
14196 mips_set_option_string (&mips_arch_string, "3900");
14197 mips_set_option_string (&mips_tune_string, "3900");
14198 break;
14199
14200 case OPTION_NO_M3900:
14201 break;
14202
14203 case OPTION_MICROMIPS:
14204 if (file_mips_opts.mips16 == 1)
14205 {
14206 as_bad (_("-mmicromips cannot be used with -mips16"));
14207 return 0;
14208 }
14209 file_mips_opts.micromips = 1;
14210 mips_no_prev_insn ();
14211 break;
14212
14213 case OPTION_NO_MICROMIPS:
14214 file_mips_opts.micromips = 0;
14215 mips_no_prev_insn ();
14216 break;
14217
14218 case OPTION_MIPS16:
14219 if (file_mips_opts.micromips == 1)
14220 {
14221 as_bad (_("-mips16 cannot be used with -micromips"));
14222 return 0;
14223 }
14224 file_mips_opts.mips16 = 1;
14225 mips_no_prev_insn ();
14226 break;
14227
14228 case OPTION_NO_MIPS16:
14229 file_mips_opts.mips16 = 0;
14230 mips_no_prev_insn ();
14231 break;
14232
14233 case OPTION_FIX_24K:
14234 mips_fix_24k = 1;
14235 break;
14236
14237 case OPTION_NO_FIX_24K:
14238 mips_fix_24k = 0;
14239 break;
14240
14241 case OPTION_FIX_RM7000:
14242 mips_fix_rm7000 = 1;
14243 break;
14244
14245 case OPTION_NO_FIX_RM7000:
14246 mips_fix_rm7000 = 0;
14247 break;
14248
14249 case OPTION_FIX_LOONGSON2F_JUMP:
14250 mips_fix_loongson2f_jump = TRUE;
14251 break;
14252
14253 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14254 mips_fix_loongson2f_jump = FALSE;
14255 break;
14256
14257 case OPTION_FIX_LOONGSON2F_NOP:
14258 mips_fix_loongson2f_nop = TRUE;
14259 break;
14260
14261 case OPTION_NO_FIX_LOONGSON2F_NOP:
14262 mips_fix_loongson2f_nop = FALSE;
14263 break;
14264
14265 case OPTION_FIX_VR4120:
14266 mips_fix_vr4120 = 1;
14267 break;
14268
14269 case OPTION_NO_FIX_VR4120:
14270 mips_fix_vr4120 = 0;
14271 break;
14272
14273 case OPTION_FIX_VR4130:
14274 mips_fix_vr4130 = 1;
14275 break;
14276
14277 case OPTION_NO_FIX_VR4130:
14278 mips_fix_vr4130 = 0;
14279 break;
14280
14281 case OPTION_FIX_CN63XXP1:
14282 mips_fix_cn63xxp1 = TRUE;
14283 break;
14284
14285 case OPTION_NO_FIX_CN63XXP1:
14286 mips_fix_cn63xxp1 = FALSE;
14287 break;
14288
14289 case OPTION_RELAX_BRANCH:
14290 mips_relax_branch = 1;
14291 break;
14292
14293 case OPTION_NO_RELAX_BRANCH:
14294 mips_relax_branch = 0;
14295 break;
14296
14297 case OPTION_INSN32:
14298 file_mips_opts.insn32 = TRUE;
14299 break;
14300
14301 case OPTION_NO_INSN32:
14302 file_mips_opts.insn32 = FALSE;
14303 break;
14304
14305 case OPTION_MSHARED:
14306 mips_in_shared = TRUE;
14307 break;
14308
14309 case OPTION_MNO_SHARED:
14310 mips_in_shared = FALSE;
14311 break;
14312
14313 case OPTION_MSYM32:
14314 file_mips_opts.sym32 = TRUE;
14315 break;
14316
14317 case OPTION_MNO_SYM32:
14318 file_mips_opts.sym32 = FALSE;
14319 break;
14320
14321 /* When generating ELF code, we permit -KPIC and -call_shared to
14322 select SVR4_PIC, and -non_shared to select no PIC. This is
14323 intended to be compatible with Irix 5. */
14324 case OPTION_CALL_SHARED:
14325 mips_pic = SVR4_PIC;
14326 mips_abicalls = TRUE;
14327 break;
14328
14329 case OPTION_CALL_NONPIC:
14330 mips_pic = NO_PIC;
14331 mips_abicalls = TRUE;
14332 break;
14333
14334 case OPTION_NON_SHARED:
14335 mips_pic = NO_PIC;
14336 mips_abicalls = FALSE;
14337 break;
14338
14339 /* The -xgot option tells the assembler to use 32 bit offsets
14340 when accessing the got in SVR4_PIC mode. It is for Irix
14341 compatibility. */
14342 case OPTION_XGOT:
14343 mips_big_got = 1;
14344 break;
14345
14346 case 'G':
14347 g_switch_value = atoi (arg);
14348 g_switch_seen = 1;
14349 break;
14350
14351 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14352 and -mabi=64. */
14353 case OPTION_32:
14354 mips_abi = O32_ABI;
14355 break;
14356
14357 case OPTION_N32:
14358 mips_abi = N32_ABI;
14359 break;
14360
14361 case OPTION_64:
14362 mips_abi = N64_ABI;
14363 if (!support_64bit_objects())
14364 as_fatal (_("no compiled in support for 64 bit object file format"));
14365 break;
14366
14367 case OPTION_GP32:
14368 file_mips_opts.gp = 32;
14369 break;
14370
14371 case OPTION_GP64:
14372 file_mips_opts.gp = 64;
14373 break;
14374
14375 case OPTION_FP32:
14376 file_mips_opts.fp = 32;
14377 break;
14378
14379 case OPTION_FPXX:
14380 file_mips_opts.fp = 0;
14381 break;
14382
14383 case OPTION_FP64:
14384 file_mips_opts.fp = 64;
14385 break;
14386
14387 case OPTION_ODD_SPREG:
14388 file_mips_opts.oddspreg = 1;
14389 break;
14390
14391 case OPTION_NO_ODD_SPREG:
14392 file_mips_opts.oddspreg = 0;
14393 break;
14394
14395 case OPTION_SINGLE_FLOAT:
14396 file_mips_opts.single_float = 1;
14397 break;
14398
14399 case OPTION_DOUBLE_FLOAT:
14400 file_mips_opts.single_float = 0;
14401 break;
14402
14403 case OPTION_SOFT_FLOAT:
14404 file_mips_opts.soft_float = 1;
14405 break;
14406
14407 case OPTION_HARD_FLOAT:
14408 file_mips_opts.soft_float = 0;
14409 break;
14410
14411 case OPTION_MABI:
14412 if (strcmp (arg, "32") == 0)
14413 mips_abi = O32_ABI;
14414 else if (strcmp (arg, "o64") == 0)
14415 mips_abi = O64_ABI;
14416 else if (strcmp (arg, "n32") == 0)
14417 mips_abi = N32_ABI;
14418 else if (strcmp (arg, "64") == 0)
14419 {
14420 mips_abi = N64_ABI;
14421 if (! support_64bit_objects())
14422 as_fatal (_("no compiled in support for 64 bit object file "
14423 "format"));
14424 }
14425 else if (strcmp (arg, "eabi") == 0)
14426 mips_abi = EABI_ABI;
14427 else
14428 {
14429 as_fatal (_("invalid abi -mabi=%s"), arg);
14430 return 0;
14431 }
14432 break;
14433
14434 case OPTION_M7000_HILO_FIX:
14435 mips_7000_hilo_fix = TRUE;
14436 break;
14437
14438 case OPTION_MNO_7000_HILO_FIX:
14439 mips_7000_hilo_fix = FALSE;
14440 break;
14441
14442 case OPTION_MDEBUG:
14443 mips_flag_mdebug = TRUE;
14444 break;
14445
14446 case OPTION_NO_MDEBUG:
14447 mips_flag_mdebug = FALSE;
14448 break;
14449
14450 case OPTION_PDR:
14451 mips_flag_pdr = TRUE;
14452 break;
14453
14454 case OPTION_NO_PDR:
14455 mips_flag_pdr = FALSE;
14456 break;
14457
14458 case OPTION_MVXWORKS_PIC:
14459 mips_pic = VXWORKS_PIC;
14460 break;
14461
14462 case OPTION_NAN:
14463 if (strcmp (arg, "2008") == 0)
14464 mips_nan2008 = 1;
14465 else if (strcmp (arg, "legacy") == 0)
14466 mips_nan2008 = 0;
14467 else
14468 {
14469 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14470 return 0;
14471 }
14472 break;
14473
14474 default:
14475 return 0;
14476 }
14477
14478 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14479
14480 return 1;
14481 }
14482 \f
14483 /* Set up globals to tune for the ISA or processor described by INFO. */
14484
14485 static void
14486 mips_set_tune (const struct mips_cpu_info *info)
14487 {
14488 if (info != 0)
14489 mips_tune = info->cpu;
14490 }
14491
14492
14493 void
14494 mips_after_parse_args (void)
14495 {
14496 const struct mips_cpu_info *arch_info = 0;
14497 const struct mips_cpu_info *tune_info = 0;
14498
14499 /* GP relative stuff not working for PE */
14500 if (strncmp (TARGET_OS, "pe", 2) == 0)
14501 {
14502 if (g_switch_seen && g_switch_value != 0)
14503 as_bad (_("-G not supported in this configuration"));
14504 g_switch_value = 0;
14505 }
14506
14507 if (mips_abi == NO_ABI)
14508 mips_abi = MIPS_DEFAULT_ABI;
14509
14510 /* The following code determines the architecture.
14511 Similar code was added to GCC 3.3 (see override_options() in
14512 config/mips/mips.c). The GAS and GCC code should be kept in sync
14513 as much as possible. */
14514
14515 if (mips_arch_string != 0)
14516 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14517
14518 if (file_mips_opts.isa != ISA_UNKNOWN)
14519 {
14520 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14521 ISA level specified by -mipsN, while arch_info->isa contains
14522 the -march selection (if any). */
14523 if (arch_info != 0)
14524 {
14525 /* -march takes precedence over -mipsN, since it is more descriptive.
14526 There's no harm in specifying both as long as the ISA levels
14527 are the same. */
14528 if (file_mips_opts.isa != arch_info->isa)
14529 as_bad (_("-%s conflicts with the other architecture options,"
14530 " which imply -%s"),
14531 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14532 mips_cpu_info_from_isa (arch_info->isa)->name);
14533 }
14534 else
14535 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14536 }
14537
14538 if (arch_info == 0)
14539 {
14540 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14541 gas_assert (arch_info);
14542 }
14543
14544 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14545 as_bad (_("-march=%s is not compatible with the selected ABI"),
14546 arch_info->name);
14547
14548 file_mips_opts.arch = arch_info->cpu;
14549 file_mips_opts.isa = arch_info->isa;
14550
14551 /* Set up initial mips_opts state. */
14552 mips_opts = file_mips_opts;
14553
14554 /* The register size inference code is now placed in
14555 file_mips_check_options. */
14556
14557 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14558 processor. */
14559 if (mips_tune_string != 0)
14560 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14561
14562 if (tune_info == 0)
14563 mips_set_tune (arch_info);
14564 else
14565 mips_set_tune (tune_info);
14566
14567 if (mips_flag_mdebug < 0)
14568 mips_flag_mdebug = 0;
14569 }
14570 \f
14571 void
14572 mips_init_after_args (void)
14573 {
14574 /* initialize opcodes */
14575 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14576 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14577 }
14578
14579 long
14580 md_pcrel_from (fixS *fixP)
14581 {
14582 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14583 switch (fixP->fx_r_type)
14584 {
14585 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14586 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14587 /* Return the address of the delay slot. */
14588 return addr + 2;
14589
14590 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14591 case BFD_RELOC_MICROMIPS_JMP:
14592 case BFD_RELOC_16_PCREL_S2:
14593 case BFD_RELOC_MIPS_21_PCREL_S2:
14594 case BFD_RELOC_MIPS_26_PCREL_S2:
14595 case BFD_RELOC_MIPS_JMP:
14596 /* Return the address of the delay slot. */
14597 return addr + 4;
14598
14599 default:
14600 return addr;
14601 }
14602 }
14603
14604 /* This is called before the symbol table is processed. In order to
14605 work with gcc when using mips-tfile, we must keep all local labels.
14606 However, in other cases, we want to discard them. If we were
14607 called with -g, but we didn't see any debugging information, it may
14608 mean that gcc is smuggling debugging information through to
14609 mips-tfile, in which case we must generate all local labels. */
14610
14611 void
14612 mips_frob_file_before_adjust (void)
14613 {
14614 #ifndef NO_ECOFF_DEBUGGING
14615 if (ECOFF_DEBUGGING
14616 && mips_debug != 0
14617 && ! ecoff_debugging_seen)
14618 flag_keep_locals = 1;
14619 #endif
14620 }
14621
14622 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14623 the corresponding LO16 reloc. This is called before md_apply_fix and
14624 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14625 relocation operators.
14626
14627 For our purposes, a %lo() expression matches a %got() or %hi()
14628 expression if:
14629
14630 (a) it refers to the same symbol; and
14631 (b) the offset applied in the %lo() expression is no lower than
14632 the offset applied in the %got() or %hi().
14633
14634 (b) allows us to cope with code like:
14635
14636 lui $4,%hi(foo)
14637 lh $4,%lo(foo+2)($4)
14638
14639 ...which is legal on RELA targets, and has a well-defined behaviour
14640 if the user knows that adding 2 to "foo" will not induce a carry to
14641 the high 16 bits.
14642
14643 When several %lo()s match a particular %got() or %hi(), we use the
14644 following rules to distinguish them:
14645
14646 (1) %lo()s with smaller offsets are a better match than %lo()s with
14647 higher offsets.
14648
14649 (2) %lo()s with no matching %got() or %hi() are better than those
14650 that already have a matching %got() or %hi().
14651
14652 (3) later %lo()s are better than earlier %lo()s.
14653
14654 These rules are applied in order.
14655
14656 (1) means, among other things, that %lo()s with identical offsets are
14657 chosen if they exist.
14658
14659 (2) means that we won't associate several high-part relocations with
14660 the same low-part relocation unless there's no alternative. Having
14661 several high parts for the same low part is a GNU extension; this rule
14662 allows careful users to avoid it.
14663
14664 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14665 with the last high-part relocation being at the front of the list.
14666 It therefore makes sense to choose the last matching low-part
14667 relocation, all other things being equal. It's also easier
14668 to code that way. */
14669
14670 void
14671 mips_frob_file (void)
14672 {
14673 struct mips_hi_fixup *l;
14674 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14675
14676 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14677 {
14678 segment_info_type *seginfo;
14679 bfd_boolean matched_lo_p;
14680 fixS **hi_pos, **lo_pos, **pos;
14681
14682 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14683
14684 /* If a GOT16 relocation turns out to be against a global symbol,
14685 there isn't supposed to be a matching LO. Ignore %gots against
14686 constants; we'll report an error for those later. */
14687 if (got16_reloc_p (l->fixp->fx_r_type)
14688 && !(l->fixp->fx_addsy
14689 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14690 continue;
14691
14692 /* Check quickly whether the next fixup happens to be a matching %lo. */
14693 if (fixup_has_matching_lo_p (l->fixp))
14694 continue;
14695
14696 seginfo = seg_info (l->seg);
14697
14698 /* Set HI_POS to the position of this relocation in the chain.
14699 Set LO_POS to the position of the chosen low-part relocation.
14700 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14701 relocation that matches an immediately-preceding high-part
14702 relocation. */
14703 hi_pos = NULL;
14704 lo_pos = NULL;
14705 matched_lo_p = FALSE;
14706 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14707
14708 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14709 {
14710 if (*pos == l->fixp)
14711 hi_pos = pos;
14712
14713 if ((*pos)->fx_r_type == looking_for_rtype
14714 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14715 && (*pos)->fx_offset >= l->fixp->fx_offset
14716 && (lo_pos == NULL
14717 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14718 || (!matched_lo_p
14719 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14720 lo_pos = pos;
14721
14722 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14723 && fixup_has_matching_lo_p (*pos));
14724 }
14725
14726 /* If we found a match, remove the high-part relocation from its
14727 current position and insert it before the low-part relocation.
14728 Make the offsets match so that fixup_has_matching_lo_p()
14729 will return true.
14730
14731 We don't warn about unmatched high-part relocations since some
14732 versions of gcc have been known to emit dead "lui ...%hi(...)"
14733 instructions. */
14734 if (lo_pos != NULL)
14735 {
14736 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14737 if (l->fixp->fx_next != *lo_pos)
14738 {
14739 *hi_pos = l->fixp->fx_next;
14740 l->fixp->fx_next = *lo_pos;
14741 *lo_pos = l->fixp;
14742 }
14743 }
14744 }
14745 }
14746
14747 int
14748 mips_force_relocation (fixS *fixp)
14749 {
14750 if (generic_force_reloc (fixp))
14751 return 1;
14752
14753 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14754 so that the linker relaxation can update targets. */
14755 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14756 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14757 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14758 return 1;
14759
14760 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14761 if (ISA_IS_R6 (mips_opts.isa)
14762 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14763 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14764 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14765 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14766 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14767 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14768 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14769 return 1;
14770
14771 return 0;
14772 }
14773
14774 /* Read the instruction associated with RELOC from BUF. */
14775
14776 static unsigned int
14777 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14778 {
14779 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14780 return read_compressed_insn (buf, 4);
14781 else
14782 return read_insn (buf);
14783 }
14784
14785 /* Write instruction INSN to BUF, given that it has been relocated
14786 by RELOC. */
14787
14788 static void
14789 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14790 unsigned long insn)
14791 {
14792 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14793 write_compressed_insn (buf, insn, 4);
14794 else
14795 write_insn (buf, insn);
14796 }
14797
14798 /* Apply a fixup to the object file. */
14799
14800 void
14801 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14802 {
14803 char *buf;
14804 unsigned long insn;
14805 reloc_howto_type *howto;
14806
14807 if (fixP->fx_pcrel)
14808 switch (fixP->fx_r_type)
14809 {
14810 case BFD_RELOC_16_PCREL_S2:
14811 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14812 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14813 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14814 case BFD_RELOC_32_PCREL:
14815 case BFD_RELOC_MIPS_21_PCREL_S2:
14816 case BFD_RELOC_MIPS_26_PCREL_S2:
14817 case BFD_RELOC_MIPS_18_PCREL_S3:
14818 case BFD_RELOC_MIPS_19_PCREL_S2:
14819 case BFD_RELOC_HI16_S_PCREL:
14820 case BFD_RELOC_LO16_PCREL:
14821 break;
14822
14823 case BFD_RELOC_32:
14824 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14825 break;
14826
14827 default:
14828 as_bad_where (fixP->fx_file, fixP->fx_line,
14829 _("PC-relative reference to a different section"));
14830 break;
14831 }
14832
14833 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14834 that have no MIPS ELF equivalent. */
14835 if (fixP->fx_r_type != BFD_RELOC_8)
14836 {
14837 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14838 if (!howto)
14839 return;
14840 }
14841
14842 gas_assert (fixP->fx_size == 2
14843 || fixP->fx_size == 4
14844 || fixP->fx_r_type == BFD_RELOC_8
14845 || fixP->fx_r_type == BFD_RELOC_16
14846 || fixP->fx_r_type == BFD_RELOC_64
14847 || fixP->fx_r_type == BFD_RELOC_CTOR
14848 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14849 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14850 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14851 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14852 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14853 || fixP->fx_r_type == BFD_RELOC_NONE);
14854
14855 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14856
14857 /* Don't treat parts of a composite relocation as done. There are two
14858 reasons for this:
14859
14860 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14861 should nevertheless be emitted if the first part is.
14862
14863 (2) In normal usage, composite relocations are never assembly-time
14864 constants. The easiest way of dealing with the pathological
14865 exceptions is to generate a relocation against STN_UNDEF and
14866 leave everything up to the linker. */
14867 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14868 fixP->fx_done = 1;
14869
14870 switch (fixP->fx_r_type)
14871 {
14872 case BFD_RELOC_MIPS_TLS_GD:
14873 case BFD_RELOC_MIPS_TLS_LDM:
14874 case BFD_RELOC_MIPS_TLS_DTPREL32:
14875 case BFD_RELOC_MIPS_TLS_DTPREL64:
14876 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14877 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14878 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14879 case BFD_RELOC_MIPS_TLS_TPREL32:
14880 case BFD_RELOC_MIPS_TLS_TPREL64:
14881 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14882 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14883 case BFD_RELOC_MICROMIPS_TLS_GD:
14884 case BFD_RELOC_MICROMIPS_TLS_LDM:
14885 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14886 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14887 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14888 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14889 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14890 case BFD_RELOC_MIPS16_TLS_GD:
14891 case BFD_RELOC_MIPS16_TLS_LDM:
14892 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14893 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14894 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14895 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14896 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14897 if (!fixP->fx_addsy)
14898 {
14899 as_bad_where (fixP->fx_file, fixP->fx_line,
14900 _("TLS relocation against a constant"));
14901 break;
14902 }
14903 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14904 /* fall through */
14905
14906 case BFD_RELOC_MIPS_JMP:
14907 case BFD_RELOC_MIPS_SHIFT5:
14908 case BFD_RELOC_MIPS_SHIFT6:
14909 case BFD_RELOC_MIPS_GOT_DISP:
14910 case BFD_RELOC_MIPS_GOT_PAGE:
14911 case BFD_RELOC_MIPS_GOT_OFST:
14912 case BFD_RELOC_MIPS_SUB:
14913 case BFD_RELOC_MIPS_INSERT_A:
14914 case BFD_RELOC_MIPS_INSERT_B:
14915 case BFD_RELOC_MIPS_DELETE:
14916 case BFD_RELOC_MIPS_HIGHEST:
14917 case BFD_RELOC_MIPS_HIGHER:
14918 case BFD_RELOC_MIPS_SCN_DISP:
14919 case BFD_RELOC_MIPS_REL16:
14920 case BFD_RELOC_MIPS_RELGOT:
14921 case BFD_RELOC_MIPS_JALR:
14922 case BFD_RELOC_HI16:
14923 case BFD_RELOC_HI16_S:
14924 case BFD_RELOC_LO16:
14925 case BFD_RELOC_GPREL16:
14926 case BFD_RELOC_MIPS_LITERAL:
14927 case BFD_RELOC_MIPS_CALL16:
14928 case BFD_RELOC_MIPS_GOT16:
14929 case BFD_RELOC_GPREL32:
14930 case BFD_RELOC_MIPS_GOT_HI16:
14931 case BFD_RELOC_MIPS_GOT_LO16:
14932 case BFD_RELOC_MIPS_CALL_HI16:
14933 case BFD_RELOC_MIPS_CALL_LO16:
14934 case BFD_RELOC_MIPS16_GPREL:
14935 case BFD_RELOC_MIPS16_GOT16:
14936 case BFD_RELOC_MIPS16_CALL16:
14937 case BFD_RELOC_MIPS16_HI16:
14938 case BFD_RELOC_MIPS16_HI16_S:
14939 case BFD_RELOC_MIPS16_LO16:
14940 case BFD_RELOC_MIPS16_JMP:
14941 case BFD_RELOC_MICROMIPS_JMP:
14942 case BFD_RELOC_MICROMIPS_GOT_DISP:
14943 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14944 case BFD_RELOC_MICROMIPS_GOT_OFST:
14945 case BFD_RELOC_MICROMIPS_SUB:
14946 case BFD_RELOC_MICROMIPS_HIGHEST:
14947 case BFD_RELOC_MICROMIPS_HIGHER:
14948 case BFD_RELOC_MICROMIPS_SCN_DISP:
14949 case BFD_RELOC_MICROMIPS_JALR:
14950 case BFD_RELOC_MICROMIPS_HI16:
14951 case BFD_RELOC_MICROMIPS_HI16_S:
14952 case BFD_RELOC_MICROMIPS_LO16:
14953 case BFD_RELOC_MICROMIPS_GPREL16:
14954 case BFD_RELOC_MICROMIPS_LITERAL:
14955 case BFD_RELOC_MICROMIPS_CALL16:
14956 case BFD_RELOC_MICROMIPS_GOT16:
14957 case BFD_RELOC_MICROMIPS_GOT_HI16:
14958 case BFD_RELOC_MICROMIPS_GOT_LO16:
14959 case BFD_RELOC_MICROMIPS_CALL_HI16:
14960 case BFD_RELOC_MICROMIPS_CALL_LO16:
14961 case BFD_RELOC_MIPS_EH:
14962 if (fixP->fx_done)
14963 {
14964 offsetT value;
14965
14966 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14967 {
14968 insn = read_reloc_insn (buf, fixP->fx_r_type);
14969 if (mips16_reloc_p (fixP->fx_r_type))
14970 insn |= mips16_immed_extend (value, 16);
14971 else
14972 insn |= (value & 0xffff);
14973 write_reloc_insn (buf, fixP->fx_r_type, insn);
14974 }
14975 else
14976 as_bad_where (fixP->fx_file, fixP->fx_line,
14977 _("unsupported constant in relocation"));
14978 }
14979 break;
14980
14981 case BFD_RELOC_64:
14982 /* This is handled like BFD_RELOC_32, but we output a sign
14983 extended value if we are only 32 bits. */
14984 if (fixP->fx_done)
14985 {
14986 if (8 <= sizeof (valueT))
14987 md_number_to_chars (buf, *valP, 8);
14988 else
14989 {
14990 valueT hiv;
14991
14992 if ((*valP & 0x80000000) != 0)
14993 hiv = 0xffffffff;
14994 else
14995 hiv = 0;
14996 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14997 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
14998 }
14999 }
15000 break;
15001
15002 case BFD_RELOC_RVA:
15003 case BFD_RELOC_32:
15004 case BFD_RELOC_32_PCREL:
15005 case BFD_RELOC_16:
15006 case BFD_RELOC_8:
15007 /* If we are deleting this reloc entry, we must fill in the
15008 value now. This can happen if we have a .word which is not
15009 resolved when it appears but is later defined. */
15010 if (fixP->fx_done)
15011 md_number_to_chars (buf, *valP, fixP->fx_size);
15012 break;
15013
15014 case BFD_RELOC_MIPS_21_PCREL_S2:
15015 case BFD_RELOC_MIPS_26_PCREL_S2:
15016 if ((*valP & 0x3) != 0)
15017 as_bad_where (fixP->fx_file, fixP->fx_line,
15018 _("branch to misaligned address (%lx)"), (long) *valP);
15019
15020 gas_assert (!fixP->fx_done);
15021 break;
15022
15023 case BFD_RELOC_MIPS_18_PCREL_S3:
15024 if ((S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15025 as_bad_where (fixP->fx_file, fixP->fx_line,
15026 _("PC-relative access using misaligned symbol (%lx)"),
15027 (long) S_GET_VALUE (fixP->fx_addsy));
15028 if ((fixP->fx_offset & 0x7) != 0)
15029 as_bad_where (fixP->fx_file, fixP->fx_line,
15030 _("PC-relative access using misaligned offset (%lx)"),
15031 (long) fixP->fx_offset);
15032
15033 gas_assert (!fixP->fx_done);
15034 break;
15035
15036 case BFD_RELOC_MIPS_19_PCREL_S2:
15037 if ((*valP & 0x3) != 0)
15038 as_bad_where (fixP->fx_file, fixP->fx_line,
15039 _("PC-relative access to misaligned address (%lx)"),
15040 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15041
15042 gas_assert (!fixP->fx_done);
15043 break;
15044
15045 case BFD_RELOC_HI16_S_PCREL:
15046 case BFD_RELOC_LO16_PCREL:
15047 gas_assert (!fixP->fx_done);
15048 break;
15049
15050 case BFD_RELOC_16_PCREL_S2:
15051 if ((*valP & 0x3) != 0)
15052 as_bad_where (fixP->fx_file, fixP->fx_line,
15053 _("branch to misaligned address (%lx)"), (long) *valP);
15054
15055 /* We need to save the bits in the instruction since fixup_segment()
15056 might be deleting the relocation entry (i.e., a branch within
15057 the current segment). */
15058 if (! fixP->fx_done)
15059 break;
15060
15061 /* Update old instruction data. */
15062 insn = read_insn (buf);
15063
15064 if (*valP + 0x20000 <= 0x3ffff)
15065 {
15066 insn |= (*valP >> 2) & 0xffff;
15067 write_insn (buf, insn);
15068 }
15069 else if (mips_pic == NO_PIC
15070 && fixP->fx_done
15071 && fixP->fx_frag->fr_address >= text_section->vma
15072 && (fixP->fx_frag->fr_address
15073 < text_section->vma + bfd_get_section_size (text_section))
15074 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15075 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15076 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15077 {
15078 /* The branch offset is too large. If this is an
15079 unconditional branch, and we are not generating PIC code,
15080 we can convert it to an absolute jump instruction. */
15081 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15082 insn = 0x0c000000; /* jal */
15083 else
15084 insn = 0x08000000; /* j */
15085 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15086 fixP->fx_done = 0;
15087 fixP->fx_addsy = section_symbol (text_section);
15088 *valP += md_pcrel_from (fixP);
15089 write_insn (buf, insn);
15090 }
15091 else
15092 {
15093 /* If we got here, we have branch-relaxation disabled,
15094 and there's nothing we can do to fix this instruction
15095 without turning it into a longer sequence. */
15096 as_bad_where (fixP->fx_file, fixP->fx_line,
15097 _("branch out of range"));
15098 }
15099 break;
15100
15101 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15102 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15103 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15104 /* We adjust the offset back to even. */
15105 if ((*valP & 0x1) != 0)
15106 --(*valP);
15107
15108 if (! fixP->fx_done)
15109 break;
15110
15111 /* Should never visit here, because we keep the relocation. */
15112 abort ();
15113 break;
15114
15115 case BFD_RELOC_VTABLE_INHERIT:
15116 fixP->fx_done = 0;
15117 if (fixP->fx_addsy
15118 && !S_IS_DEFINED (fixP->fx_addsy)
15119 && !S_IS_WEAK (fixP->fx_addsy))
15120 S_SET_WEAK (fixP->fx_addsy);
15121 break;
15122
15123 case BFD_RELOC_NONE:
15124 case BFD_RELOC_VTABLE_ENTRY:
15125 fixP->fx_done = 0;
15126 break;
15127
15128 default:
15129 abort ();
15130 }
15131
15132 /* Remember value for tc_gen_reloc. */
15133 fixP->fx_addnumber = *valP;
15134 }
15135
15136 static symbolS *
15137 get_symbol (void)
15138 {
15139 int c;
15140 char *name;
15141 symbolS *p;
15142
15143 c = get_symbol_name (&name);
15144 p = (symbolS *) symbol_find_or_make (name);
15145 (void) restore_line_pointer (c);
15146 return p;
15147 }
15148
15149 /* Align the current frag to a given power of two. If a particular
15150 fill byte should be used, FILL points to an integer that contains
15151 that byte, otherwise FILL is null.
15152
15153 This function used to have the comment:
15154
15155 The MIPS assembler also automatically adjusts any preceding label.
15156
15157 The implementation therefore applied the adjustment to a maximum of
15158 one label. However, other label adjustments are applied to batches
15159 of labels, and adjusting just one caused problems when new labels
15160 were added for the sake of debugging or unwind information.
15161 We therefore adjust all preceding labels (given as LABELS) instead. */
15162
15163 static void
15164 mips_align (int to, int *fill, struct insn_label_list *labels)
15165 {
15166 mips_emit_delays ();
15167 mips_record_compressed_mode ();
15168 if (fill == NULL && subseg_text_p (now_seg))
15169 frag_align_code (to, 0);
15170 else
15171 frag_align (to, fill ? *fill : 0, 0);
15172 record_alignment (now_seg, to);
15173 mips_move_labels (labels, FALSE);
15174 }
15175
15176 /* Align to a given power of two. .align 0 turns off the automatic
15177 alignment used by the data creating pseudo-ops. */
15178
15179 static void
15180 s_align (int x ATTRIBUTE_UNUSED)
15181 {
15182 int temp, fill_value, *fill_ptr;
15183 long max_alignment = 28;
15184
15185 /* o Note that the assembler pulls down any immediately preceding label
15186 to the aligned address.
15187 o It's not documented but auto alignment is reinstated by
15188 a .align pseudo instruction.
15189 o Note also that after auto alignment is turned off the mips assembler
15190 issues an error on attempt to assemble an improperly aligned data item.
15191 We don't. */
15192
15193 temp = get_absolute_expression ();
15194 if (temp > max_alignment)
15195 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15196 else if (temp < 0)
15197 {
15198 as_warn (_("alignment negative, 0 assumed"));
15199 temp = 0;
15200 }
15201 if (*input_line_pointer == ',')
15202 {
15203 ++input_line_pointer;
15204 fill_value = get_absolute_expression ();
15205 fill_ptr = &fill_value;
15206 }
15207 else
15208 fill_ptr = 0;
15209 if (temp)
15210 {
15211 segment_info_type *si = seg_info (now_seg);
15212 struct insn_label_list *l = si->label_list;
15213 /* Auto alignment should be switched on by next section change. */
15214 auto_align = 1;
15215 mips_align (temp, fill_ptr, l);
15216 }
15217 else
15218 {
15219 auto_align = 0;
15220 }
15221
15222 demand_empty_rest_of_line ();
15223 }
15224
15225 static void
15226 s_change_sec (int sec)
15227 {
15228 segT seg;
15229
15230 /* The ELF backend needs to know that we are changing sections, so
15231 that .previous works correctly. We could do something like check
15232 for an obj_section_change_hook macro, but that might be confusing
15233 as it would not be appropriate to use it in the section changing
15234 functions in read.c, since obj-elf.c intercepts those. FIXME:
15235 This should be cleaner, somehow. */
15236 obj_elf_section_change_hook ();
15237
15238 mips_emit_delays ();
15239
15240 switch (sec)
15241 {
15242 case 't':
15243 s_text (0);
15244 break;
15245 case 'd':
15246 s_data (0);
15247 break;
15248 case 'b':
15249 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15250 demand_empty_rest_of_line ();
15251 break;
15252
15253 case 'r':
15254 seg = subseg_new (RDATA_SECTION_NAME,
15255 (subsegT) get_absolute_expression ());
15256 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15257 | SEC_READONLY | SEC_RELOC
15258 | SEC_DATA));
15259 if (strncmp (TARGET_OS, "elf", 3) != 0)
15260 record_alignment (seg, 4);
15261 demand_empty_rest_of_line ();
15262 break;
15263
15264 case 's':
15265 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15266 bfd_set_section_flags (stdoutput, seg,
15267 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15268 if (strncmp (TARGET_OS, "elf", 3) != 0)
15269 record_alignment (seg, 4);
15270 demand_empty_rest_of_line ();
15271 break;
15272
15273 case 'B':
15274 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15275 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15276 if (strncmp (TARGET_OS, "elf", 3) != 0)
15277 record_alignment (seg, 4);
15278 demand_empty_rest_of_line ();
15279 break;
15280 }
15281
15282 auto_align = 1;
15283 }
15284
15285 void
15286 s_change_section (int ignore ATTRIBUTE_UNUSED)
15287 {
15288 char *saved_ilp;
15289 char *section_name;
15290 char c, endc;
15291 char next_c = 0;
15292 int section_type;
15293 int section_flag;
15294 int section_entry_size;
15295 int section_alignment;
15296
15297 saved_ilp = input_line_pointer;
15298 endc = get_symbol_name (&section_name);
15299 c = (endc == '"' ? input_line_pointer[1] : endc);
15300 if (c)
15301 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15302
15303 /* Do we have .section Name<,"flags">? */
15304 if (c != ',' || (c == ',' && next_c == '"'))
15305 {
15306 /* Just after name is now '\0'. */
15307 (void) restore_line_pointer (endc);
15308 input_line_pointer = saved_ilp;
15309 obj_elf_section (ignore);
15310 return;
15311 }
15312
15313 section_name = xstrdup (section_name);
15314 c = restore_line_pointer (endc);
15315
15316 input_line_pointer++;
15317
15318 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15319 if (c == ',')
15320 section_type = get_absolute_expression ();
15321 else
15322 section_type = 0;
15323
15324 if (*input_line_pointer++ == ',')
15325 section_flag = get_absolute_expression ();
15326 else
15327 section_flag = 0;
15328
15329 if (*input_line_pointer++ == ',')
15330 section_entry_size = get_absolute_expression ();
15331 else
15332 section_entry_size = 0;
15333
15334 if (*input_line_pointer++ == ',')
15335 section_alignment = get_absolute_expression ();
15336 else
15337 section_alignment = 0;
15338
15339 /* FIXME: really ignore? */
15340 (void) section_alignment;
15341
15342 /* When using the generic form of .section (as implemented by obj-elf.c),
15343 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15344 traditionally had to fall back on the more common @progbits instead.
15345
15346 There's nothing really harmful in this, since bfd will correct
15347 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15348 means that, for backwards compatibility, the special_section entries
15349 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15350
15351 Even so, we shouldn't force users of the MIPS .section syntax to
15352 incorrectly label the sections as SHT_PROGBITS. The best compromise
15353 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15354 generic type-checking code. */
15355 if (section_type == SHT_MIPS_DWARF)
15356 section_type = SHT_PROGBITS;
15357
15358 obj_elf_change_section (section_name, section_type, section_flag,
15359 section_entry_size, 0, 0, 0);
15360
15361 if (now_seg->name != section_name)
15362 free (section_name);
15363 }
15364
15365 void
15366 mips_enable_auto_align (void)
15367 {
15368 auto_align = 1;
15369 }
15370
15371 static void
15372 s_cons (int log_size)
15373 {
15374 segment_info_type *si = seg_info (now_seg);
15375 struct insn_label_list *l = si->label_list;
15376
15377 mips_emit_delays ();
15378 if (log_size > 0 && auto_align)
15379 mips_align (log_size, 0, l);
15380 cons (1 << log_size);
15381 mips_clear_insn_labels ();
15382 }
15383
15384 static void
15385 s_float_cons (int type)
15386 {
15387 segment_info_type *si = seg_info (now_seg);
15388 struct insn_label_list *l = si->label_list;
15389
15390 mips_emit_delays ();
15391
15392 if (auto_align)
15393 {
15394 if (type == 'd')
15395 mips_align (3, 0, l);
15396 else
15397 mips_align (2, 0, l);
15398 }
15399
15400 float_cons (type);
15401 mips_clear_insn_labels ();
15402 }
15403
15404 /* Handle .globl. We need to override it because on Irix 5 you are
15405 permitted to say
15406 .globl foo .text
15407 where foo is an undefined symbol, to mean that foo should be
15408 considered to be the address of a function. */
15409
15410 static void
15411 s_mips_globl (int x ATTRIBUTE_UNUSED)
15412 {
15413 char *name;
15414 int c;
15415 symbolS *symbolP;
15416 flagword flag;
15417
15418 do
15419 {
15420 c = get_symbol_name (&name);
15421 symbolP = symbol_find_or_make (name);
15422 S_SET_EXTERNAL (symbolP);
15423
15424 *input_line_pointer = c;
15425 SKIP_WHITESPACE_AFTER_NAME ();
15426
15427 /* On Irix 5, every global symbol that is not explicitly labelled as
15428 being a function is apparently labelled as being an object. */
15429 flag = BSF_OBJECT;
15430
15431 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15432 && (*input_line_pointer != ','))
15433 {
15434 char *secname;
15435 asection *sec;
15436
15437 c = get_symbol_name (&secname);
15438 sec = bfd_get_section_by_name (stdoutput, secname);
15439 if (sec == NULL)
15440 as_bad (_("%s: no such section"), secname);
15441 (void) restore_line_pointer (c);
15442
15443 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15444 flag = BSF_FUNCTION;
15445 }
15446
15447 symbol_get_bfdsym (symbolP)->flags |= flag;
15448
15449 c = *input_line_pointer;
15450 if (c == ',')
15451 {
15452 input_line_pointer++;
15453 SKIP_WHITESPACE ();
15454 if (is_end_of_line[(unsigned char) *input_line_pointer])
15455 c = '\n';
15456 }
15457 }
15458 while (c == ',');
15459
15460 demand_empty_rest_of_line ();
15461 }
15462
15463 static void
15464 s_option (int x ATTRIBUTE_UNUSED)
15465 {
15466 char *opt;
15467 char c;
15468
15469 c = get_symbol_name (&opt);
15470
15471 if (*opt == 'O')
15472 {
15473 /* FIXME: What does this mean? */
15474 }
15475 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
15476 {
15477 int i;
15478
15479 i = atoi (opt + 3);
15480 if (i != 0 && i != 2)
15481 as_bad (_(".option pic%d not supported"), i);
15482 else if (mips_pic == VXWORKS_PIC)
15483 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15484 else if (i == 0)
15485 mips_pic = NO_PIC;
15486 else if (i == 2)
15487 {
15488 mips_pic = SVR4_PIC;
15489 mips_abicalls = TRUE;
15490 }
15491
15492 if (mips_pic == SVR4_PIC)
15493 {
15494 if (g_switch_seen && g_switch_value != 0)
15495 as_warn (_("-G may not be used with SVR4 PIC code"));
15496 g_switch_value = 0;
15497 bfd_set_gp_size (stdoutput, 0);
15498 }
15499 }
15500 else
15501 as_warn (_("unrecognized option \"%s\""), opt);
15502
15503 (void) restore_line_pointer (c);
15504 demand_empty_rest_of_line ();
15505 }
15506
15507 /* This structure is used to hold a stack of .set values. */
15508
15509 struct mips_option_stack
15510 {
15511 struct mips_option_stack *next;
15512 struct mips_set_options options;
15513 };
15514
15515 static struct mips_option_stack *mips_opts_stack;
15516
15517 static bfd_boolean
15518 parse_code_option (char * name)
15519 {
15520 const struct mips_ase *ase;
15521 if (strncmp (name, "at=", 3) == 0)
15522 {
15523 char *s = name + 3;
15524
15525 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15526 as_bad (_("unrecognized register name `%s'"), s);
15527 }
15528 else if (strcmp (name, "at") == 0)
15529 mips_opts.at = ATREG;
15530 else if (strcmp (name, "noat") == 0)
15531 mips_opts.at = ZERO;
15532 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15533 mips_opts.nomove = 0;
15534 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15535 mips_opts.nomove = 1;
15536 else if (strcmp (name, "bopt") == 0)
15537 mips_opts.nobopt = 0;
15538 else if (strcmp (name, "nobopt") == 0)
15539 mips_opts.nobopt = 1;
15540 else if (strcmp (name, "gp=32") == 0)
15541 mips_opts.gp = 32;
15542 else if (strcmp (name, "gp=64") == 0)
15543 mips_opts.gp = 64;
15544 else if (strcmp (name, "fp=32") == 0)
15545 mips_opts.fp = 32;
15546 else if (strcmp (name, "fp=xx") == 0)
15547 mips_opts.fp = 0;
15548 else if (strcmp (name, "fp=64") == 0)
15549 mips_opts.fp = 64;
15550 else if (strcmp (name, "softfloat") == 0)
15551 mips_opts.soft_float = 1;
15552 else if (strcmp (name, "hardfloat") == 0)
15553 mips_opts.soft_float = 0;
15554 else if (strcmp (name, "singlefloat") == 0)
15555 mips_opts.single_float = 1;
15556 else if (strcmp (name, "doublefloat") == 0)
15557 mips_opts.single_float = 0;
15558 else if (strcmp (name, "nooddspreg") == 0)
15559 mips_opts.oddspreg = 0;
15560 else if (strcmp (name, "oddspreg") == 0)
15561 mips_opts.oddspreg = 1;
15562 else if (strcmp (name, "mips16") == 0
15563 || strcmp (name, "MIPS-16") == 0)
15564 mips_opts.mips16 = 1;
15565 else if (strcmp (name, "nomips16") == 0
15566 || strcmp (name, "noMIPS-16") == 0)
15567 mips_opts.mips16 = 0;
15568 else if (strcmp (name, "micromips") == 0)
15569 mips_opts.micromips = 1;
15570 else if (strcmp (name, "nomicromips") == 0)
15571 mips_opts.micromips = 0;
15572 else if (name[0] == 'n'
15573 && name[1] == 'o'
15574 && (ase = mips_lookup_ase (name + 2)))
15575 mips_set_ase (ase, &mips_opts, FALSE);
15576 else if ((ase = mips_lookup_ase (name)))
15577 mips_set_ase (ase, &mips_opts, TRUE);
15578 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
15579 {
15580 /* Permit the user to change the ISA and architecture on the fly.
15581 Needless to say, misuse can cause serious problems. */
15582 if (strncmp (name, "arch=", 5) == 0)
15583 {
15584 const struct mips_cpu_info *p;
15585
15586 p = mips_parse_cpu ("internal use", name + 5);
15587 if (!p)
15588 as_bad (_("unknown architecture %s"), name + 5);
15589 else
15590 {
15591 mips_opts.arch = p->cpu;
15592 mips_opts.isa = p->isa;
15593 }
15594 }
15595 else if (strncmp (name, "mips", 4) == 0)
15596 {
15597 const struct mips_cpu_info *p;
15598
15599 p = mips_parse_cpu ("internal use", name);
15600 if (!p)
15601 as_bad (_("unknown ISA level %s"), name + 4);
15602 else
15603 {
15604 mips_opts.arch = p->cpu;
15605 mips_opts.isa = p->isa;
15606 }
15607 }
15608 else
15609 as_bad (_("unknown ISA or architecture %s"), name);
15610 }
15611 else if (strcmp (name, "autoextend") == 0)
15612 mips_opts.noautoextend = 0;
15613 else if (strcmp (name, "noautoextend") == 0)
15614 mips_opts.noautoextend = 1;
15615 else if (strcmp (name, "insn32") == 0)
15616 mips_opts.insn32 = TRUE;
15617 else if (strcmp (name, "noinsn32") == 0)
15618 mips_opts.insn32 = FALSE;
15619 else if (strcmp (name, "sym32") == 0)
15620 mips_opts.sym32 = TRUE;
15621 else if (strcmp (name, "nosym32") == 0)
15622 mips_opts.sym32 = FALSE;
15623 else
15624 return FALSE;
15625 return TRUE;
15626 }
15627
15628 /* Handle the .set pseudo-op. */
15629
15630 static void
15631 s_mipsset (int x ATTRIBUTE_UNUSED)
15632 {
15633 char *name = input_line_pointer, ch;
15634 int prev_isa = mips_opts.isa;
15635
15636 file_mips_check_options ();
15637
15638 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15639 ++input_line_pointer;
15640 ch = *input_line_pointer;
15641 *input_line_pointer = '\0';
15642
15643 if (strchr (name, ','))
15644 {
15645 /* Generic ".set" directive; use the generic handler. */
15646 *input_line_pointer = ch;
15647 input_line_pointer = name;
15648 s_set (0);
15649 return;
15650 }
15651
15652 if (strcmp (name, "reorder") == 0)
15653 {
15654 if (mips_opts.noreorder)
15655 end_noreorder ();
15656 }
15657 else if (strcmp (name, "noreorder") == 0)
15658 {
15659 if (!mips_opts.noreorder)
15660 start_noreorder ();
15661 }
15662 else if (strcmp (name, "macro") == 0)
15663 mips_opts.warn_about_macros = 0;
15664 else if (strcmp (name, "nomacro") == 0)
15665 {
15666 if (mips_opts.noreorder == 0)
15667 as_bad (_("`noreorder' must be set before `nomacro'"));
15668 mips_opts.warn_about_macros = 1;
15669 }
15670 else if (strcmp (name, "gp=default") == 0)
15671 mips_opts.gp = file_mips_opts.gp;
15672 else if (strcmp (name, "fp=default") == 0)
15673 mips_opts.fp = file_mips_opts.fp;
15674 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15675 {
15676 mips_opts.isa = file_mips_opts.isa;
15677 mips_opts.arch = file_mips_opts.arch;
15678 mips_opts.gp = file_mips_opts.gp;
15679 mips_opts.fp = file_mips_opts.fp;
15680 }
15681 else if (strcmp (name, "push") == 0)
15682 {
15683 struct mips_option_stack *s;
15684
15685 s = XNEW (struct mips_option_stack);
15686 s->next = mips_opts_stack;
15687 s->options = mips_opts;
15688 mips_opts_stack = s;
15689 }
15690 else if (strcmp (name, "pop") == 0)
15691 {
15692 struct mips_option_stack *s;
15693
15694 s = mips_opts_stack;
15695 if (s == NULL)
15696 as_bad (_(".set pop with no .set push"));
15697 else
15698 {
15699 /* If we're changing the reorder mode we need to handle
15700 delay slots correctly. */
15701 if (s->options.noreorder && ! mips_opts.noreorder)
15702 start_noreorder ();
15703 else if (! s->options.noreorder && mips_opts.noreorder)
15704 end_noreorder ();
15705
15706 mips_opts = s->options;
15707 mips_opts_stack = s->next;
15708 free (s);
15709 }
15710 }
15711 else if (!parse_code_option (name))
15712 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15713
15714 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15715 registers based on what is supported by the arch/cpu. */
15716 if (mips_opts.isa != prev_isa)
15717 {
15718 switch (mips_opts.isa)
15719 {
15720 case 0:
15721 break;
15722 case ISA_MIPS1:
15723 /* MIPS I cannot support FPXX. */
15724 mips_opts.fp = 32;
15725 /* fall-through. */
15726 case ISA_MIPS2:
15727 case ISA_MIPS32:
15728 case ISA_MIPS32R2:
15729 case ISA_MIPS32R3:
15730 case ISA_MIPS32R5:
15731 mips_opts.gp = 32;
15732 if (mips_opts.fp != 0)
15733 mips_opts.fp = 32;
15734 break;
15735 case ISA_MIPS32R6:
15736 mips_opts.gp = 32;
15737 mips_opts.fp = 64;
15738 break;
15739 case ISA_MIPS3:
15740 case ISA_MIPS4:
15741 case ISA_MIPS5:
15742 case ISA_MIPS64:
15743 case ISA_MIPS64R2:
15744 case ISA_MIPS64R3:
15745 case ISA_MIPS64R5:
15746 case ISA_MIPS64R6:
15747 mips_opts.gp = 64;
15748 if (mips_opts.fp != 0)
15749 {
15750 if (mips_opts.arch == CPU_R5900)
15751 mips_opts.fp = 32;
15752 else
15753 mips_opts.fp = 64;
15754 }
15755 break;
15756 default:
15757 as_bad (_("unknown ISA level %s"), name + 4);
15758 break;
15759 }
15760 }
15761
15762 mips_check_options (&mips_opts, FALSE);
15763
15764 mips_check_isa_supports_ases ();
15765 *input_line_pointer = ch;
15766 demand_empty_rest_of_line ();
15767 }
15768
15769 /* Handle the .module pseudo-op. */
15770
15771 static void
15772 s_module (int ignore ATTRIBUTE_UNUSED)
15773 {
15774 char *name = input_line_pointer, ch;
15775
15776 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15777 ++input_line_pointer;
15778 ch = *input_line_pointer;
15779 *input_line_pointer = '\0';
15780
15781 if (!file_mips_opts_checked)
15782 {
15783 if (!parse_code_option (name))
15784 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15785
15786 /* Update module level settings from mips_opts. */
15787 file_mips_opts = mips_opts;
15788 }
15789 else
15790 as_bad (_(".module is not permitted after generating code"));
15791
15792 *input_line_pointer = ch;
15793 demand_empty_rest_of_line ();
15794 }
15795
15796 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15797 .option pic2. It means to generate SVR4 PIC calls. */
15798
15799 static void
15800 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15801 {
15802 mips_pic = SVR4_PIC;
15803 mips_abicalls = TRUE;
15804
15805 if (g_switch_seen && g_switch_value != 0)
15806 as_warn (_("-G may not be used with SVR4 PIC code"));
15807 g_switch_value = 0;
15808
15809 bfd_set_gp_size (stdoutput, 0);
15810 demand_empty_rest_of_line ();
15811 }
15812
15813 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15814 PIC code. It sets the $gp register for the function based on the
15815 function address, which is in the register named in the argument.
15816 This uses a relocation against _gp_disp, which is handled specially
15817 by the linker. The result is:
15818 lui $gp,%hi(_gp_disp)
15819 addiu $gp,$gp,%lo(_gp_disp)
15820 addu $gp,$gp,.cpload argument
15821 The .cpload argument is normally $25 == $t9.
15822
15823 The -mno-shared option changes this to:
15824 lui $gp,%hi(__gnu_local_gp)
15825 addiu $gp,$gp,%lo(__gnu_local_gp)
15826 and the argument is ignored. This saves an instruction, but the
15827 resulting code is not position independent; it uses an absolute
15828 address for __gnu_local_gp. Thus code assembled with -mno-shared
15829 can go into an ordinary executable, but not into a shared library. */
15830
15831 static void
15832 s_cpload (int ignore ATTRIBUTE_UNUSED)
15833 {
15834 expressionS ex;
15835 int reg;
15836 int in_shared;
15837
15838 file_mips_check_options ();
15839
15840 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15841 .cpload is ignored. */
15842 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15843 {
15844 s_ignore (0);
15845 return;
15846 }
15847
15848 if (mips_opts.mips16)
15849 {
15850 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15851 ignore_rest_of_line ();
15852 return;
15853 }
15854
15855 /* .cpload should be in a .set noreorder section. */
15856 if (mips_opts.noreorder == 0)
15857 as_warn (_(".cpload not in noreorder section"));
15858
15859 reg = tc_get_register (0);
15860
15861 /* If we need to produce a 64-bit address, we are better off using
15862 the default instruction sequence. */
15863 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15864
15865 ex.X_op = O_symbol;
15866 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15867 "__gnu_local_gp");
15868 ex.X_op_symbol = NULL;
15869 ex.X_add_number = 0;
15870
15871 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15872 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15873
15874 mips_mark_labels ();
15875 mips_assembling_insn = TRUE;
15876
15877 macro_start ();
15878 macro_build_lui (&ex, mips_gp_register);
15879 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15880 mips_gp_register, BFD_RELOC_LO16);
15881 if (in_shared)
15882 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15883 mips_gp_register, reg);
15884 macro_end ();
15885
15886 mips_assembling_insn = FALSE;
15887 demand_empty_rest_of_line ();
15888 }
15889
15890 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15891 .cpsetup $reg1, offset|$reg2, label
15892
15893 If offset is given, this results in:
15894 sd $gp, offset($sp)
15895 lui $gp, %hi(%neg(%gp_rel(label)))
15896 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15897 daddu $gp, $gp, $reg1
15898
15899 If $reg2 is given, this results in:
15900 or $reg2, $gp, $0
15901 lui $gp, %hi(%neg(%gp_rel(label)))
15902 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15903 daddu $gp, $gp, $reg1
15904 $reg1 is normally $25 == $t9.
15905
15906 The -mno-shared option replaces the last three instructions with
15907 lui $gp,%hi(_gp)
15908 addiu $gp,$gp,%lo(_gp) */
15909
15910 static void
15911 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
15912 {
15913 expressionS ex_off;
15914 expressionS ex_sym;
15915 int reg1;
15916
15917 file_mips_check_options ();
15918
15919 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
15920 We also need NewABI support. */
15921 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15922 {
15923 s_ignore (0);
15924 return;
15925 }
15926
15927 if (mips_opts.mips16)
15928 {
15929 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15930 ignore_rest_of_line ();
15931 return;
15932 }
15933
15934 reg1 = tc_get_register (0);
15935 SKIP_WHITESPACE ();
15936 if (*input_line_pointer != ',')
15937 {
15938 as_bad (_("missing argument separator ',' for .cpsetup"));
15939 return;
15940 }
15941 else
15942 ++input_line_pointer;
15943 SKIP_WHITESPACE ();
15944 if (*input_line_pointer == '$')
15945 {
15946 mips_cpreturn_register = tc_get_register (0);
15947 mips_cpreturn_offset = -1;
15948 }
15949 else
15950 {
15951 mips_cpreturn_offset = get_absolute_expression ();
15952 mips_cpreturn_register = -1;
15953 }
15954 SKIP_WHITESPACE ();
15955 if (*input_line_pointer != ',')
15956 {
15957 as_bad (_("missing argument separator ',' for .cpsetup"));
15958 return;
15959 }
15960 else
15961 ++input_line_pointer;
15962 SKIP_WHITESPACE ();
15963 expression (&ex_sym);
15964
15965 mips_mark_labels ();
15966 mips_assembling_insn = TRUE;
15967
15968 macro_start ();
15969 if (mips_cpreturn_register == -1)
15970 {
15971 ex_off.X_op = O_constant;
15972 ex_off.X_add_symbol = NULL;
15973 ex_off.X_op_symbol = NULL;
15974 ex_off.X_add_number = mips_cpreturn_offset;
15975
15976 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
15977 BFD_RELOC_LO16, SP);
15978 }
15979 else
15980 move_register (mips_cpreturn_register, mips_gp_register);
15981
15982 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
15983 {
15984 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
15985 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
15986 BFD_RELOC_HI16_S);
15987
15988 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
15989 mips_gp_register, -1, BFD_RELOC_GPREL16,
15990 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
15991
15992 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
15993 mips_gp_register, reg1);
15994 }
15995 else
15996 {
15997 expressionS ex;
15998
15999 ex.X_op = O_symbol;
16000 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16001 ex.X_op_symbol = NULL;
16002 ex.X_add_number = 0;
16003
16004 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16005 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16006
16007 macro_build_lui (&ex, mips_gp_register);
16008 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16009 mips_gp_register, BFD_RELOC_LO16);
16010 }
16011
16012 macro_end ();
16013
16014 mips_assembling_insn = FALSE;
16015 demand_empty_rest_of_line ();
16016 }
16017
16018 static void
16019 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16020 {
16021 file_mips_check_options ();
16022
16023 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16024 .cplocal is ignored. */
16025 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16026 {
16027 s_ignore (0);
16028 return;
16029 }
16030
16031 if (mips_opts.mips16)
16032 {
16033 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16034 ignore_rest_of_line ();
16035 return;
16036 }
16037
16038 mips_gp_register = tc_get_register (0);
16039 demand_empty_rest_of_line ();
16040 }
16041
16042 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16043 offset from $sp. The offset is remembered, and after making a PIC
16044 call $gp is restored from that location. */
16045
16046 static void
16047 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16048 {
16049 expressionS ex;
16050
16051 file_mips_check_options ();
16052
16053 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16054 .cprestore is ignored. */
16055 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16056 {
16057 s_ignore (0);
16058 return;
16059 }
16060
16061 if (mips_opts.mips16)
16062 {
16063 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16064 ignore_rest_of_line ();
16065 return;
16066 }
16067
16068 mips_cprestore_offset = get_absolute_expression ();
16069 mips_cprestore_valid = 1;
16070
16071 ex.X_op = O_constant;
16072 ex.X_add_symbol = NULL;
16073 ex.X_op_symbol = NULL;
16074 ex.X_add_number = mips_cprestore_offset;
16075
16076 mips_mark_labels ();
16077 mips_assembling_insn = TRUE;
16078
16079 macro_start ();
16080 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16081 SP, HAVE_64BIT_ADDRESSES);
16082 macro_end ();
16083
16084 mips_assembling_insn = FALSE;
16085 demand_empty_rest_of_line ();
16086 }
16087
16088 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16089 was given in the preceding .cpsetup, it results in:
16090 ld $gp, offset($sp)
16091
16092 If a register $reg2 was given there, it results in:
16093 or $gp, $reg2, $0 */
16094
16095 static void
16096 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16097 {
16098 expressionS ex;
16099
16100 file_mips_check_options ();
16101
16102 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16103 We also need NewABI support. */
16104 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16105 {
16106 s_ignore (0);
16107 return;
16108 }
16109
16110 if (mips_opts.mips16)
16111 {
16112 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16113 ignore_rest_of_line ();
16114 return;
16115 }
16116
16117 mips_mark_labels ();
16118 mips_assembling_insn = TRUE;
16119
16120 macro_start ();
16121 if (mips_cpreturn_register == -1)
16122 {
16123 ex.X_op = O_constant;
16124 ex.X_add_symbol = NULL;
16125 ex.X_op_symbol = NULL;
16126 ex.X_add_number = mips_cpreturn_offset;
16127
16128 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16129 }
16130 else
16131 move_register (mips_gp_register, mips_cpreturn_register);
16132
16133 macro_end ();
16134
16135 mips_assembling_insn = FALSE;
16136 demand_empty_rest_of_line ();
16137 }
16138
16139 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16140 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16141 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16142 debug information or MIPS16 TLS. */
16143
16144 static void
16145 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16146 bfd_reloc_code_real_type rtype)
16147 {
16148 expressionS ex;
16149 char *p;
16150
16151 expression (&ex);
16152
16153 if (ex.X_op != O_symbol)
16154 {
16155 as_bad (_("unsupported use of %s"), dirstr);
16156 ignore_rest_of_line ();
16157 }
16158
16159 p = frag_more (bytes);
16160 md_number_to_chars (p, 0, bytes);
16161 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16162 demand_empty_rest_of_line ();
16163 mips_clear_insn_labels ();
16164 }
16165
16166 /* Handle .dtprelword. */
16167
16168 static void
16169 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16170 {
16171 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16172 }
16173
16174 /* Handle .dtpreldword. */
16175
16176 static void
16177 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16178 {
16179 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16180 }
16181
16182 /* Handle .tprelword. */
16183
16184 static void
16185 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16186 {
16187 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16188 }
16189
16190 /* Handle .tpreldword. */
16191
16192 static void
16193 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16194 {
16195 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16196 }
16197
16198 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16199 code. It sets the offset to use in gp_rel relocations. */
16200
16201 static void
16202 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16203 {
16204 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16205 We also need NewABI support. */
16206 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16207 {
16208 s_ignore (0);
16209 return;
16210 }
16211
16212 mips_gprel_offset = get_absolute_expression ();
16213
16214 demand_empty_rest_of_line ();
16215 }
16216
16217 /* Handle the .gpword pseudo-op. This is used when generating PIC
16218 code. It generates a 32 bit GP relative reloc. */
16219
16220 static void
16221 s_gpword (int ignore ATTRIBUTE_UNUSED)
16222 {
16223 segment_info_type *si;
16224 struct insn_label_list *l;
16225 expressionS ex;
16226 char *p;
16227
16228 /* When not generating PIC code, this is treated as .word. */
16229 if (mips_pic != SVR4_PIC)
16230 {
16231 s_cons (2);
16232 return;
16233 }
16234
16235 si = seg_info (now_seg);
16236 l = si->label_list;
16237 mips_emit_delays ();
16238 if (auto_align)
16239 mips_align (2, 0, l);
16240
16241 expression (&ex);
16242 mips_clear_insn_labels ();
16243
16244 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16245 {
16246 as_bad (_("unsupported use of .gpword"));
16247 ignore_rest_of_line ();
16248 }
16249
16250 p = frag_more (4);
16251 md_number_to_chars (p, 0, 4);
16252 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16253 BFD_RELOC_GPREL32);
16254
16255 demand_empty_rest_of_line ();
16256 }
16257
16258 static void
16259 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16260 {
16261 segment_info_type *si;
16262 struct insn_label_list *l;
16263 expressionS ex;
16264 char *p;
16265
16266 /* When not generating PIC code, this is treated as .dword. */
16267 if (mips_pic != SVR4_PIC)
16268 {
16269 s_cons (3);
16270 return;
16271 }
16272
16273 si = seg_info (now_seg);
16274 l = si->label_list;
16275 mips_emit_delays ();
16276 if (auto_align)
16277 mips_align (3, 0, l);
16278
16279 expression (&ex);
16280 mips_clear_insn_labels ();
16281
16282 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16283 {
16284 as_bad (_("unsupported use of .gpdword"));
16285 ignore_rest_of_line ();
16286 }
16287
16288 p = frag_more (8);
16289 md_number_to_chars (p, 0, 8);
16290 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16291 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16292
16293 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16294 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16295 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16296
16297 demand_empty_rest_of_line ();
16298 }
16299
16300 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16301 tables. It generates a R_MIPS_EH reloc. */
16302
16303 static void
16304 s_ehword (int ignore ATTRIBUTE_UNUSED)
16305 {
16306 expressionS ex;
16307 char *p;
16308
16309 mips_emit_delays ();
16310
16311 expression (&ex);
16312 mips_clear_insn_labels ();
16313
16314 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16315 {
16316 as_bad (_("unsupported use of .ehword"));
16317 ignore_rest_of_line ();
16318 }
16319
16320 p = frag_more (4);
16321 md_number_to_chars (p, 0, 4);
16322 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16323 BFD_RELOC_32_PCREL);
16324
16325 demand_empty_rest_of_line ();
16326 }
16327
16328 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16329 tables in SVR4 PIC code. */
16330
16331 static void
16332 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16333 {
16334 int reg;
16335
16336 file_mips_check_options ();
16337
16338 /* This is ignored when not generating SVR4 PIC code. */
16339 if (mips_pic != SVR4_PIC)
16340 {
16341 s_ignore (0);
16342 return;
16343 }
16344
16345 mips_mark_labels ();
16346 mips_assembling_insn = TRUE;
16347
16348 /* Add $gp to the register named as an argument. */
16349 macro_start ();
16350 reg = tc_get_register (0);
16351 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16352 macro_end ();
16353
16354 mips_assembling_insn = FALSE;
16355 demand_empty_rest_of_line ();
16356 }
16357
16358 /* Handle the .insn pseudo-op. This marks instruction labels in
16359 mips16/micromips mode. This permits the linker to handle them specially,
16360 such as generating jalx instructions when needed. We also make
16361 them odd for the duration of the assembly, in order to generate the
16362 right sort of code. We will make them even in the adjust_symtab
16363 routine, while leaving them marked. This is convenient for the
16364 debugger and the disassembler. The linker knows to make them odd
16365 again. */
16366
16367 static void
16368 s_insn (int ignore ATTRIBUTE_UNUSED)
16369 {
16370 file_mips_check_options ();
16371 file_ase_mips16 |= mips_opts.mips16;
16372 file_ase_micromips |= mips_opts.micromips;
16373
16374 mips_mark_labels ();
16375
16376 demand_empty_rest_of_line ();
16377 }
16378
16379 /* Handle the .nan pseudo-op. */
16380
16381 static void
16382 s_nan (int ignore ATTRIBUTE_UNUSED)
16383 {
16384 static const char str_legacy[] = "legacy";
16385 static const char str_2008[] = "2008";
16386 size_t i;
16387
16388 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16389
16390 if (i == sizeof (str_2008) - 1
16391 && memcmp (input_line_pointer, str_2008, i) == 0)
16392 mips_nan2008 = 1;
16393 else if (i == sizeof (str_legacy) - 1
16394 && memcmp (input_line_pointer, str_legacy, i) == 0)
16395 {
16396 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16397 mips_nan2008 = 0;
16398 else
16399 as_bad (_("`%s' does not support legacy NaN"),
16400 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16401 }
16402 else
16403 as_bad (_("bad .nan directive"));
16404
16405 input_line_pointer += i;
16406 demand_empty_rest_of_line ();
16407 }
16408
16409 /* Handle a .stab[snd] directive. Ideally these directives would be
16410 implemented in a transparent way, so that removing them would not
16411 have any effect on the generated instructions. However, s_stab
16412 internally changes the section, so in practice we need to decide
16413 now whether the preceding label marks compressed code. We do not
16414 support changing the compression mode of a label after a .stab*
16415 directive, such as in:
16416
16417 foo:
16418 .stabs ...
16419 .set mips16
16420
16421 so the current mode wins. */
16422
16423 static void
16424 s_mips_stab (int type)
16425 {
16426 mips_mark_labels ();
16427 s_stab (type);
16428 }
16429
16430 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16431
16432 static void
16433 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16434 {
16435 char *name;
16436 int c;
16437 symbolS *symbolP;
16438 expressionS exp;
16439
16440 c = get_symbol_name (&name);
16441 symbolP = symbol_find_or_make (name);
16442 S_SET_WEAK (symbolP);
16443 *input_line_pointer = c;
16444
16445 SKIP_WHITESPACE_AFTER_NAME ();
16446
16447 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16448 {
16449 if (S_IS_DEFINED (symbolP))
16450 {
16451 as_bad (_("ignoring attempt to redefine symbol %s"),
16452 S_GET_NAME (symbolP));
16453 ignore_rest_of_line ();
16454 return;
16455 }
16456
16457 if (*input_line_pointer == ',')
16458 {
16459 ++input_line_pointer;
16460 SKIP_WHITESPACE ();
16461 }
16462
16463 expression (&exp);
16464 if (exp.X_op != O_symbol)
16465 {
16466 as_bad (_("bad .weakext directive"));
16467 ignore_rest_of_line ();
16468 return;
16469 }
16470 symbol_set_value_expression (symbolP, &exp);
16471 }
16472
16473 demand_empty_rest_of_line ();
16474 }
16475
16476 /* Parse a register string into a number. Called from the ECOFF code
16477 to parse .frame. The argument is non-zero if this is the frame
16478 register, so that we can record it in mips_frame_reg. */
16479
16480 int
16481 tc_get_register (int frame)
16482 {
16483 unsigned int reg;
16484
16485 SKIP_WHITESPACE ();
16486 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16487 reg = 0;
16488 if (frame)
16489 {
16490 mips_frame_reg = reg != 0 ? reg : SP;
16491 mips_frame_reg_valid = 1;
16492 mips_cprestore_valid = 0;
16493 }
16494 return reg;
16495 }
16496
16497 valueT
16498 md_section_align (asection *seg, valueT addr)
16499 {
16500 int align = bfd_get_section_alignment (stdoutput, seg);
16501
16502 /* We don't need to align ELF sections to the full alignment.
16503 However, Irix 5 may prefer that we align them at least to a 16
16504 byte boundary. We don't bother to align the sections if we
16505 are targeted for an embedded system. */
16506 if (strncmp (TARGET_OS, "elf", 3) == 0)
16507 return addr;
16508 if (align > 4)
16509 align = 4;
16510
16511 return ((addr + (1 << align) - 1) & -(1 << align));
16512 }
16513
16514 /* Utility routine, called from above as well. If called while the
16515 input file is still being read, it's only an approximation. (For
16516 example, a symbol may later become defined which appeared to be
16517 undefined earlier.) */
16518
16519 static int
16520 nopic_need_relax (symbolS *sym, int before_relaxing)
16521 {
16522 if (sym == 0)
16523 return 0;
16524
16525 if (g_switch_value > 0)
16526 {
16527 const char *symname;
16528 int change;
16529
16530 /* Find out whether this symbol can be referenced off the $gp
16531 register. It can be if it is smaller than the -G size or if
16532 it is in the .sdata or .sbss section. Certain symbols can
16533 not be referenced off the $gp, although it appears as though
16534 they can. */
16535 symname = S_GET_NAME (sym);
16536 if (symname != (const char *) NULL
16537 && (strcmp (symname, "eprol") == 0
16538 || strcmp (symname, "etext") == 0
16539 || strcmp (symname, "_gp") == 0
16540 || strcmp (symname, "edata") == 0
16541 || strcmp (symname, "_fbss") == 0
16542 || strcmp (symname, "_fdata") == 0
16543 || strcmp (symname, "_ftext") == 0
16544 || strcmp (symname, "end") == 0
16545 || strcmp (symname, "_gp_disp") == 0))
16546 change = 1;
16547 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16548 && (0
16549 #ifndef NO_ECOFF_DEBUGGING
16550 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16551 && (symbol_get_obj (sym)->ecoff_extern_size
16552 <= g_switch_value))
16553 #endif
16554 /* We must defer this decision until after the whole
16555 file has been read, since there might be a .extern
16556 after the first use of this symbol. */
16557 || (before_relaxing
16558 #ifndef NO_ECOFF_DEBUGGING
16559 && symbol_get_obj (sym)->ecoff_extern_size == 0
16560 #endif
16561 && S_GET_VALUE (sym) == 0)
16562 || (S_GET_VALUE (sym) != 0
16563 && S_GET_VALUE (sym) <= g_switch_value)))
16564 change = 0;
16565 else
16566 {
16567 const char *segname;
16568
16569 segname = segment_name (S_GET_SEGMENT (sym));
16570 gas_assert (strcmp (segname, ".lit8") != 0
16571 && strcmp (segname, ".lit4") != 0);
16572 change = (strcmp (segname, ".sdata") != 0
16573 && strcmp (segname, ".sbss") != 0
16574 && strncmp (segname, ".sdata.", 7) != 0
16575 && strncmp (segname, ".sbss.", 6) != 0
16576 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16577 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16578 }
16579 return change;
16580 }
16581 else
16582 /* We are not optimizing for the $gp register. */
16583 return 1;
16584 }
16585
16586
16587 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16588
16589 static bfd_boolean
16590 pic_need_relax (symbolS *sym, asection *segtype)
16591 {
16592 asection *symsec;
16593
16594 /* Handle the case of a symbol equated to another symbol. */
16595 while (symbol_equated_reloc_p (sym))
16596 {
16597 symbolS *n;
16598
16599 /* It's possible to get a loop here in a badly written program. */
16600 n = symbol_get_value_expression (sym)->X_add_symbol;
16601 if (n == sym)
16602 break;
16603 sym = n;
16604 }
16605
16606 if (symbol_section_p (sym))
16607 return TRUE;
16608
16609 symsec = S_GET_SEGMENT (sym);
16610
16611 /* This must duplicate the test in adjust_reloc_syms. */
16612 return (!bfd_is_und_section (symsec)
16613 && !bfd_is_abs_section (symsec)
16614 && !bfd_is_com_section (symsec)
16615 && !s_is_linkonce (sym, segtype)
16616 /* A global or weak symbol is treated as external. */
16617 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
16618 }
16619
16620
16621 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16622 extended opcode. SEC is the section the frag is in. */
16623
16624 static int
16625 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
16626 {
16627 int type;
16628 const struct mips_int_operand *operand;
16629 offsetT val;
16630 segT symsec;
16631 fragS *sym_frag;
16632
16633 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16634 return 0;
16635 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16636 return 1;
16637
16638 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16639 operand = mips16_immed_operand (type, FALSE);
16640
16641 sym_frag = symbol_get_frag (fragp->fr_symbol);
16642 val = S_GET_VALUE (fragp->fr_symbol);
16643 symsec = S_GET_SEGMENT (fragp->fr_symbol);
16644
16645 if (operand->root.type == OP_PCREL)
16646 {
16647 const struct mips_pcrel_operand *pcrel_op;
16648 addressT addr;
16649 offsetT maxtiny;
16650
16651 /* We won't have the section when we are called from
16652 mips_relax_frag. However, we will always have been called
16653 from md_estimate_size_before_relax first. If this is a
16654 branch to a different section, we mark it as such. If SEC is
16655 NULL, and the frag is not marked, then it must be a branch to
16656 the same section. */
16657 pcrel_op = (const struct mips_pcrel_operand *) operand;
16658 if (sec == NULL)
16659 {
16660 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16661 return 1;
16662 }
16663 else
16664 {
16665 /* Must have been called from md_estimate_size_before_relax. */
16666 if (symsec != sec)
16667 {
16668 fragp->fr_subtype =
16669 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16670
16671 /* FIXME: We should support this, and let the linker
16672 catch branches and loads that are out of range. */
16673 as_bad_where (fragp->fr_file, fragp->fr_line,
16674 _("unsupported PC relative reference to different section"));
16675
16676 return 1;
16677 }
16678 if (fragp != sym_frag && sym_frag->fr_address == 0)
16679 /* Assume non-extended on the first relaxation pass.
16680 The address we have calculated will be bogus if this is
16681 a forward branch to another frag, as the forward frag
16682 will have fr_address == 0. */
16683 return 0;
16684 }
16685
16686 /* In this case, we know for sure that the symbol fragment is in
16687 the same section. If the relax_marker of the symbol fragment
16688 differs from the relax_marker of this fragment, we have not
16689 yet adjusted the symbol fragment fr_address. We want to add
16690 in STRETCH in order to get a better estimate of the address.
16691 This particularly matters because of the shift bits. */
16692 if (stretch != 0
16693 && sym_frag->relax_marker != fragp->relax_marker)
16694 {
16695 fragS *f;
16696
16697 /* Adjust stretch for any alignment frag. Note that if have
16698 been expanding the earlier code, the symbol may be
16699 defined in what appears to be an earlier frag. FIXME:
16700 This doesn't handle the fr_subtype field, which specifies
16701 a maximum number of bytes to skip when doing an
16702 alignment. */
16703 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16704 {
16705 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16706 {
16707 if (stretch < 0)
16708 stretch = - ((- stretch)
16709 & ~ ((1 << (int) f->fr_offset) - 1));
16710 else
16711 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16712 if (stretch == 0)
16713 break;
16714 }
16715 }
16716 if (f != NULL)
16717 val += stretch;
16718 }
16719
16720 addr = fragp->fr_address + fragp->fr_fix;
16721
16722 /* The base address rules are complicated. The base address of
16723 a branch is the following instruction. The base address of a
16724 PC relative load or add is the instruction itself, but if it
16725 is in a delay slot (in which case it can not be extended) use
16726 the address of the instruction whose delay slot it is in. */
16727 if (pcrel_op->include_isa_bit)
16728 {
16729 addr += 2;
16730
16731 /* If we are currently assuming that this frag should be
16732 extended, then, the current address is two bytes
16733 higher. */
16734 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16735 addr += 2;
16736
16737 /* Ignore the low bit in the target, since it will be set
16738 for a text label. */
16739 val &= -2;
16740 }
16741 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16742 addr -= 4;
16743 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16744 addr -= 2;
16745
16746 val -= addr & -(1 << pcrel_op->align_log2);
16747
16748 /* If any of the shifted bits are set, we must use an extended
16749 opcode. If the address depends on the size of this
16750 instruction, this can lead to a loop, so we arrange to always
16751 use an extended opcode. We only check this when we are in
16752 the main relaxation loop, when SEC is NULL. */
16753 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
16754 {
16755 fragp->fr_subtype =
16756 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16757 return 1;
16758 }
16759
16760 /* If we are about to mark a frag as extended because the value
16761 is precisely the next value above maxtiny, then there is a
16762 chance of an infinite loop as in the following code:
16763 la $4,foo
16764 .skip 1020
16765 .align 2
16766 foo:
16767 In this case when the la is extended, foo is 0x3fc bytes
16768 away, so the la can be shrunk, but then foo is 0x400 away, so
16769 the la must be extended. To avoid this loop, we mark the
16770 frag as extended if it was small, and is about to become
16771 extended with the next value above maxtiny. */
16772 maxtiny = mips_int_operand_max (operand);
16773 if (val == maxtiny + (1 << operand->shift)
16774 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16775 && sec == NULL)
16776 {
16777 fragp->fr_subtype =
16778 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16779 return 1;
16780 }
16781 }
16782 else if (symsec != absolute_section && sec != NULL)
16783 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16784
16785 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16786 }
16787
16788 /* Compute the length of a branch sequence, and adjust the
16789 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16790 worst-case length is computed, with UPDATE being used to indicate
16791 whether an unconditional (-1), branch-likely (+1) or regular (0)
16792 branch is to be computed. */
16793 static int
16794 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16795 {
16796 bfd_boolean toofar;
16797 int length;
16798
16799 if (fragp
16800 && S_IS_DEFINED (fragp->fr_symbol)
16801 && !S_IS_WEAK (fragp->fr_symbol)
16802 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16803 {
16804 addressT addr;
16805 offsetT val;
16806
16807 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16808
16809 addr = fragp->fr_address + fragp->fr_fix + 4;
16810
16811 val -= addr;
16812
16813 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16814 }
16815 else
16816 /* If the symbol is not defined or it's in a different segment,
16817 we emit the long sequence. */
16818 toofar = TRUE;
16819
16820 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16821 fragp->fr_subtype
16822 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16823 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16824 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16825 RELAX_BRANCH_LINK (fragp->fr_subtype),
16826 toofar);
16827
16828 length = 4;
16829 if (toofar)
16830 {
16831 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16832 length += 8;
16833
16834 if (mips_pic != NO_PIC)
16835 {
16836 /* Additional space for PIC loading of target address. */
16837 length += 8;
16838 if (mips_opts.isa == ISA_MIPS1)
16839 /* Additional space for $at-stabilizing nop. */
16840 length += 4;
16841 }
16842
16843 /* If branch is conditional. */
16844 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16845 length += 8;
16846 }
16847
16848 return length;
16849 }
16850
16851 /* Compute the length of a branch sequence, and adjust the
16852 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16853 worst-case length is computed, with UPDATE being used to indicate
16854 whether an unconditional (-1), or regular (0) branch is to be
16855 computed. */
16856
16857 static int
16858 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16859 {
16860 bfd_boolean toofar;
16861 int length;
16862
16863 if (fragp
16864 && S_IS_DEFINED (fragp->fr_symbol)
16865 && !S_IS_WEAK (fragp->fr_symbol)
16866 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16867 {
16868 addressT addr;
16869 offsetT val;
16870
16871 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16872 /* Ignore the low bit in the target, since it will be set
16873 for a text label. */
16874 if ((val & 1) != 0)
16875 --val;
16876
16877 addr = fragp->fr_address + fragp->fr_fix + 4;
16878
16879 val -= addr;
16880
16881 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16882 }
16883 else
16884 /* If the symbol is not defined or it's in a different segment,
16885 we emit the long sequence. */
16886 toofar = TRUE;
16887
16888 if (fragp && update
16889 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16890 fragp->fr_subtype = (toofar
16891 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16892 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16893
16894 length = 4;
16895 if (toofar)
16896 {
16897 bfd_boolean compact_known = fragp != NULL;
16898 bfd_boolean compact = FALSE;
16899 bfd_boolean uncond;
16900
16901 if (compact_known)
16902 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16903 if (fragp)
16904 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16905 else
16906 uncond = update < 0;
16907
16908 /* If label is out of range, we turn branch <br>:
16909
16910 <br> label # 4 bytes
16911 0:
16912
16913 into:
16914
16915 j label # 4 bytes
16916 nop # 2 bytes if compact && !PIC
16917 0:
16918 */
16919 if (mips_pic == NO_PIC && (!compact_known || compact))
16920 length += 2;
16921
16922 /* If assembling PIC code, we further turn:
16923
16924 j label # 4 bytes
16925
16926 into:
16927
16928 lw/ld at, %got(label)(gp) # 4 bytes
16929 d/addiu at, %lo(label) # 4 bytes
16930 jr/c at # 2 bytes
16931 */
16932 if (mips_pic != NO_PIC)
16933 length += 6;
16934
16935 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16936
16937 <brneg> 0f # 4 bytes
16938 nop # 2 bytes if !compact
16939 */
16940 if (!uncond)
16941 length += (compact_known && compact) ? 4 : 6;
16942 }
16943
16944 return length;
16945 }
16946
16947 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16948 bit accordingly. */
16949
16950 static int
16951 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16952 {
16953 bfd_boolean toofar;
16954
16955 if (fragp
16956 && S_IS_DEFINED (fragp->fr_symbol)
16957 && !S_IS_WEAK (fragp->fr_symbol)
16958 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16959 {
16960 addressT addr;
16961 offsetT val;
16962 int type;
16963
16964 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16965 /* Ignore the low bit in the target, since it will be set
16966 for a text label. */
16967 if ((val & 1) != 0)
16968 --val;
16969
16970 /* Assume this is a 2-byte branch. */
16971 addr = fragp->fr_address + fragp->fr_fix + 2;
16972
16973 /* We try to avoid the infinite loop by not adding 2 more bytes for
16974 long branches. */
16975
16976 val -= addr;
16977
16978 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16979 if (type == 'D')
16980 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
16981 else if (type == 'E')
16982 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
16983 else
16984 abort ();
16985 }
16986 else
16987 /* If the symbol is not defined or it's in a different segment,
16988 we emit a normal 32-bit branch. */
16989 toofar = TRUE;
16990
16991 if (fragp && update
16992 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16993 fragp->fr_subtype
16994 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
16995 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
16996
16997 if (toofar)
16998 return 4;
16999
17000 return 2;
17001 }
17002
17003 /* Estimate the size of a frag before relaxing. Unless this is the
17004 mips16, we are not really relaxing here, and the final size is
17005 encoded in the subtype information. For the mips16, we have to
17006 decide whether we are using an extended opcode or not. */
17007
17008 int
17009 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17010 {
17011 int change;
17012
17013 if (RELAX_BRANCH_P (fragp->fr_subtype))
17014 {
17015
17016 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17017
17018 return fragp->fr_var;
17019 }
17020
17021 if (RELAX_MIPS16_P (fragp->fr_subtype))
17022 /* We don't want to modify the EXTENDED bit here; it might get us
17023 into infinite loops. We change it only in mips_relax_frag(). */
17024 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17025
17026 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17027 {
17028 int length = 4;
17029
17030 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17031 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17032 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17033 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17034 fragp->fr_var = length;
17035
17036 return length;
17037 }
17038
17039 if (mips_pic == NO_PIC)
17040 change = nopic_need_relax (fragp->fr_symbol, 0);
17041 else if (mips_pic == SVR4_PIC)
17042 change = pic_need_relax (fragp->fr_symbol, segtype);
17043 else if (mips_pic == VXWORKS_PIC)
17044 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17045 change = 0;
17046 else
17047 abort ();
17048
17049 if (change)
17050 {
17051 fragp->fr_subtype |= RELAX_USE_SECOND;
17052 return -RELAX_FIRST (fragp->fr_subtype);
17053 }
17054 else
17055 return -RELAX_SECOND (fragp->fr_subtype);
17056 }
17057
17058 /* This is called to see whether a reloc against a defined symbol
17059 should be converted into a reloc against a section. */
17060
17061 int
17062 mips_fix_adjustable (fixS *fixp)
17063 {
17064 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17065 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17066 return 0;
17067
17068 if (fixp->fx_addsy == NULL)
17069 return 1;
17070
17071 /* Allow relocs used for EH tables. */
17072 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17073 return 1;
17074
17075 /* If symbol SYM is in a mergeable section, relocations of the form
17076 SYM + 0 can usually be made section-relative. The mergeable data
17077 is then identified by the section offset rather than by the symbol.
17078
17079 However, if we're generating REL LO16 relocations, the offset is split
17080 between the LO16 and parterning high part relocation. The linker will
17081 need to recalculate the complete offset in order to correctly identify
17082 the merge data.
17083
17084 The linker has traditionally not looked for the parterning high part
17085 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17086 placed anywhere. Rather than break backwards compatibility by changing
17087 this, it seems better not to force the issue, and instead keep the
17088 original symbol. This will work with either linker behavior. */
17089 if ((lo16_reloc_p (fixp->fx_r_type)
17090 || reloc_needs_lo_p (fixp->fx_r_type))
17091 && HAVE_IN_PLACE_ADDENDS
17092 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17093 return 0;
17094
17095 /* There is no place to store an in-place offset for JALR relocations.
17096 Likewise an in-range offset of limited PC-relative relocations may
17097 overflow the in-place relocatable field if recalculated against the
17098 start address of the symbol's containing section.
17099
17100 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17101 section relative to allow linker relaxations to be performed later on. */
17102 if ((HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (mips_opts.isa))
17103 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17104 || jalr_reloc_p (fixp->fx_r_type)))
17105 return 0;
17106
17107 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17108 to a floating-point stub. The same is true for non-R_MIPS16_26
17109 relocations against MIPS16 functions; in this case, the stub becomes
17110 the function's canonical address.
17111
17112 Floating-point stubs are stored in unique .mips16.call.* or
17113 .mips16.fn.* sections. If a stub T for function F is in section S,
17114 the first relocation in section S must be against F; this is how the
17115 linker determines the target function. All relocations that might
17116 resolve to T must also be against F. We therefore have the following
17117 restrictions, which are given in an intentionally-redundant way:
17118
17119 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17120 symbols.
17121
17122 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17123 if that stub might be used.
17124
17125 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17126 symbols.
17127
17128 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17129 that stub might be used.
17130
17131 There is a further restriction:
17132
17133 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17134 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17135 targets with in-place addends; the relocation field cannot
17136 encode the low bit.
17137
17138 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17139 against a MIPS16 symbol. We deal with (5) by by not reducing any
17140 such relocations on REL targets.
17141
17142 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17143 relocation against some symbol R, no relocation against R may be
17144 reduced. (Note that this deals with (2) as well as (1) because
17145 relocations against global symbols will never be reduced on ELF
17146 targets.) This approach is a little simpler than trying to detect
17147 stub sections, and gives the "all or nothing" per-symbol consistency
17148 that we have for MIPS16 symbols. */
17149 if (fixp->fx_subsy == NULL
17150 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17151 || *symbol_get_tc (fixp->fx_addsy)
17152 || (HAVE_IN_PLACE_ADDENDS
17153 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17154 && jmp_reloc_p (fixp->fx_r_type))))
17155 return 0;
17156
17157 return 1;
17158 }
17159
17160 /* Translate internal representation of relocation info to BFD target
17161 format. */
17162
17163 arelent **
17164 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17165 {
17166 static arelent *retval[4];
17167 arelent *reloc;
17168 bfd_reloc_code_real_type code;
17169
17170 memset (retval, 0, sizeof(retval));
17171 reloc = retval[0] = XCNEW (arelent);
17172 reloc->sym_ptr_ptr = XNEW (asymbol *);
17173 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17174 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17175
17176 if (fixp->fx_pcrel)
17177 {
17178 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17179 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17180 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17181 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17182 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17183 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17184 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17185 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17186 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17187 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17188 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17189
17190 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17191 Relocations want only the symbol offset. */
17192 reloc->addend = fixp->fx_addnumber + reloc->address;
17193 }
17194 else
17195 reloc->addend = fixp->fx_addnumber;
17196
17197 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17198 entry to be used in the relocation's section offset. */
17199 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17200 {
17201 reloc->address = reloc->addend;
17202 reloc->addend = 0;
17203 }
17204
17205 code = fixp->fx_r_type;
17206
17207 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17208 if (reloc->howto == NULL)
17209 {
17210 as_bad_where (fixp->fx_file, fixp->fx_line,
17211 _("cannot represent %s relocation in this object file"
17212 " format"),
17213 bfd_get_reloc_code_name (code));
17214 retval[0] = NULL;
17215 }
17216
17217 return retval;
17218 }
17219
17220 /* Relax a machine dependent frag. This returns the amount by which
17221 the current size of the frag should change. */
17222
17223 int
17224 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17225 {
17226 if (RELAX_BRANCH_P (fragp->fr_subtype))
17227 {
17228 offsetT old_var = fragp->fr_var;
17229
17230 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17231
17232 return fragp->fr_var - old_var;
17233 }
17234
17235 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17236 {
17237 offsetT old_var = fragp->fr_var;
17238 offsetT new_var = 4;
17239
17240 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17241 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17242 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17243 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17244 fragp->fr_var = new_var;
17245
17246 return new_var - old_var;
17247 }
17248
17249 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17250 return 0;
17251
17252 if (mips16_extended_frag (fragp, NULL, stretch))
17253 {
17254 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17255 return 0;
17256 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17257 return 2;
17258 }
17259 else
17260 {
17261 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17262 return 0;
17263 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17264 return -2;
17265 }
17266
17267 return 0;
17268 }
17269
17270 /* Convert a machine dependent frag. */
17271
17272 void
17273 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17274 {
17275 if (RELAX_BRANCH_P (fragp->fr_subtype))
17276 {
17277 char *buf;
17278 unsigned long insn;
17279 expressionS exp;
17280 fixS *fixp;
17281
17282 buf = fragp->fr_literal + fragp->fr_fix;
17283 insn = read_insn (buf);
17284
17285 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17286 {
17287 /* We generate a fixup instead of applying it right now
17288 because, if there are linker relaxations, we're going to
17289 need the relocations. */
17290 exp.X_op = O_symbol;
17291 exp.X_add_symbol = fragp->fr_symbol;
17292 exp.X_add_number = fragp->fr_offset;
17293
17294 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17295 BFD_RELOC_16_PCREL_S2);
17296 fixp->fx_file = fragp->fr_file;
17297 fixp->fx_line = fragp->fr_line;
17298
17299 buf = write_insn (buf, insn);
17300 }
17301 else
17302 {
17303 int i;
17304
17305 as_warn_where (fragp->fr_file, fragp->fr_line,
17306 _("relaxed out-of-range branch into a jump"));
17307
17308 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17309 goto uncond;
17310
17311 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17312 {
17313 /* Reverse the branch. */
17314 switch ((insn >> 28) & 0xf)
17315 {
17316 case 4:
17317 if ((insn & 0xff000000) == 0x47000000
17318 || (insn & 0xff600000) == 0x45600000)
17319 {
17320 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17321 reversed by tweaking bit 23. */
17322 insn ^= 0x00800000;
17323 }
17324 else
17325 {
17326 /* bc[0-3][tf]l? instructions can have the condition
17327 reversed by tweaking a single TF bit, and their
17328 opcodes all have 0x4???????. */
17329 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17330 insn ^= 0x00010000;
17331 }
17332 break;
17333
17334 case 0:
17335 /* bltz 0x04000000 bgez 0x04010000
17336 bltzal 0x04100000 bgezal 0x04110000 */
17337 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17338 insn ^= 0x00010000;
17339 break;
17340
17341 case 1:
17342 /* beq 0x10000000 bne 0x14000000
17343 blez 0x18000000 bgtz 0x1c000000 */
17344 insn ^= 0x04000000;
17345 break;
17346
17347 default:
17348 abort ();
17349 }
17350 }
17351
17352 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17353 {
17354 /* Clear the and-link bit. */
17355 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17356
17357 /* bltzal 0x04100000 bgezal 0x04110000
17358 bltzall 0x04120000 bgezall 0x04130000 */
17359 insn &= ~0x00100000;
17360 }
17361
17362 /* Branch over the branch (if the branch was likely) or the
17363 full jump (not likely case). Compute the offset from the
17364 current instruction to branch to. */
17365 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17366 i = 16;
17367 else
17368 {
17369 /* How many bytes in instructions we've already emitted? */
17370 i = buf - fragp->fr_literal - fragp->fr_fix;
17371 /* How many bytes in instructions from here to the end? */
17372 i = fragp->fr_var - i;
17373 }
17374 /* Convert to instruction count. */
17375 i >>= 2;
17376 /* Branch counts from the next instruction. */
17377 i--;
17378 insn |= i;
17379 /* Branch over the jump. */
17380 buf = write_insn (buf, insn);
17381
17382 /* nop */
17383 buf = write_insn (buf, 0);
17384
17385 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17386 {
17387 /* beql $0, $0, 2f */
17388 insn = 0x50000000;
17389 /* Compute the PC offset from the current instruction to
17390 the end of the variable frag. */
17391 /* How many bytes in instructions we've already emitted? */
17392 i = buf - fragp->fr_literal - fragp->fr_fix;
17393 /* How many bytes in instructions from here to the end? */
17394 i = fragp->fr_var - i;
17395 /* Convert to instruction count. */
17396 i >>= 2;
17397 /* Don't decrement i, because we want to branch over the
17398 delay slot. */
17399 insn |= i;
17400
17401 buf = write_insn (buf, insn);
17402 buf = write_insn (buf, 0);
17403 }
17404
17405 uncond:
17406 if (mips_pic == NO_PIC)
17407 {
17408 /* j or jal. */
17409 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17410 ? 0x0c000000 : 0x08000000);
17411 exp.X_op = O_symbol;
17412 exp.X_add_symbol = fragp->fr_symbol;
17413 exp.X_add_number = fragp->fr_offset;
17414
17415 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17416 FALSE, BFD_RELOC_MIPS_JMP);
17417 fixp->fx_file = fragp->fr_file;
17418 fixp->fx_line = fragp->fr_line;
17419
17420 buf = write_insn (buf, insn);
17421 }
17422 else
17423 {
17424 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17425
17426 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17427 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17428 insn |= at << OP_SH_RT;
17429 exp.X_op = O_symbol;
17430 exp.X_add_symbol = fragp->fr_symbol;
17431 exp.X_add_number = fragp->fr_offset;
17432
17433 if (fragp->fr_offset)
17434 {
17435 exp.X_add_symbol = make_expr_symbol (&exp);
17436 exp.X_add_number = 0;
17437 }
17438
17439 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17440 FALSE, BFD_RELOC_MIPS_GOT16);
17441 fixp->fx_file = fragp->fr_file;
17442 fixp->fx_line = fragp->fr_line;
17443
17444 buf = write_insn (buf, insn);
17445
17446 if (mips_opts.isa == ISA_MIPS1)
17447 /* nop */
17448 buf = write_insn (buf, 0);
17449
17450 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17451 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17452 insn |= at << OP_SH_RS | at << OP_SH_RT;
17453
17454 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17455 FALSE, BFD_RELOC_LO16);
17456 fixp->fx_file = fragp->fr_file;
17457 fixp->fx_line = fragp->fr_line;
17458
17459 buf = write_insn (buf, insn);
17460
17461 /* j(al)r $at. */
17462 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17463 insn = 0x0000f809;
17464 else
17465 insn = 0x00000008;
17466 insn |= at << OP_SH_RS;
17467
17468 buf = write_insn (buf, insn);
17469 }
17470 }
17471
17472 fragp->fr_fix += fragp->fr_var;
17473 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17474 return;
17475 }
17476
17477 /* Relax microMIPS branches. */
17478 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17479 {
17480 char *buf = fragp->fr_literal + fragp->fr_fix;
17481 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17482 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17483 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17484 bfd_boolean short_ds;
17485 unsigned long insn;
17486 expressionS exp;
17487 fixS *fixp;
17488
17489 exp.X_op = O_symbol;
17490 exp.X_add_symbol = fragp->fr_symbol;
17491 exp.X_add_number = fragp->fr_offset;
17492
17493 fragp->fr_fix += fragp->fr_var;
17494
17495 /* Handle 16-bit branches that fit or are forced to fit. */
17496 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17497 {
17498 /* We generate a fixup instead of applying it right now,
17499 because if there is linker relaxation, we're going to
17500 need the relocations. */
17501 if (type == 'D')
17502 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17503 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17504 else if (type == 'E')
17505 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17506 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17507 else
17508 abort ();
17509
17510 fixp->fx_file = fragp->fr_file;
17511 fixp->fx_line = fragp->fr_line;
17512
17513 /* These relocations can have an addend that won't fit in
17514 2 octets. */
17515 fixp->fx_no_overflow = 1;
17516
17517 return;
17518 }
17519
17520 /* Handle 32-bit branches that fit or are forced to fit. */
17521 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17522 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17523 {
17524 /* We generate a fixup instead of applying it right now,
17525 because if there is linker relaxation, we're going to
17526 need the relocations. */
17527 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17528 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17529 fixp->fx_file = fragp->fr_file;
17530 fixp->fx_line = fragp->fr_line;
17531
17532 if (type == 0)
17533 return;
17534 }
17535
17536 /* Relax 16-bit branches to 32-bit branches. */
17537 if (type != 0)
17538 {
17539 insn = read_compressed_insn (buf, 2);
17540
17541 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17542 insn = 0x94000000; /* beq */
17543 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17544 {
17545 unsigned long regno;
17546
17547 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17548 regno = micromips_to_32_reg_d_map [regno];
17549 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17550 insn |= regno << MICROMIPSOP_SH_RS;
17551 }
17552 else
17553 abort ();
17554
17555 /* Nothing else to do, just write it out. */
17556 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17557 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17558 {
17559 buf = write_compressed_insn (buf, insn, 4);
17560 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17561 return;
17562 }
17563 }
17564 else
17565 insn = read_compressed_insn (buf, 4);
17566
17567 /* Relax 32-bit branches to a sequence of instructions. */
17568 as_warn_where (fragp->fr_file, fragp->fr_line,
17569 _("relaxed out-of-range branch into a jump"));
17570
17571 /* Set the short-delay-slot bit. */
17572 short_ds = al && (insn & 0x02000000) != 0;
17573
17574 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17575 {
17576 symbolS *l;
17577
17578 /* Reverse the branch. */
17579 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17580 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17581 insn ^= 0x20000000;
17582 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17583 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17584 || (insn & 0xffe00000) == 0x40800000 /* blez */
17585 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17586 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17587 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17588 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17589 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17590 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17591 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17592 insn ^= 0x00400000;
17593 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17594 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17595 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17596 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17597 insn ^= 0x00200000;
17598 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17599 BNZ.df */
17600 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17601 BNZ.V */
17602 insn ^= 0x00800000;
17603 else
17604 abort ();
17605
17606 if (al)
17607 {
17608 /* Clear the and-link and short-delay-slot bits. */
17609 gas_assert ((insn & 0xfda00000) == 0x40200000);
17610
17611 /* bltzal 0x40200000 bgezal 0x40600000 */
17612 /* bltzals 0x42200000 bgezals 0x42600000 */
17613 insn &= ~0x02200000;
17614 }
17615
17616 /* Make a label at the end for use with the branch. */
17617 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17618 micromips_label_inc ();
17619 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
17620
17621 /* Refer to it. */
17622 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17623 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17624 fixp->fx_file = fragp->fr_file;
17625 fixp->fx_line = fragp->fr_line;
17626
17627 /* Branch over the jump. */
17628 buf = write_compressed_insn (buf, insn, 4);
17629 if (!compact)
17630 /* nop */
17631 buf = write_compressed_insn (buf, 0x0c00, 2);
17632 }
17633
17634 if (mips_pic == NO_PIC)
17635 {
17636 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17637
17638 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17639 insn = al ? jal : 0xd4000000;
17640
17641 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17642 BFD_RELOC_MICROMIPS_JMP);
17643 fixp->fx_file = fragp->fr_file;
17644 fixp->fx_line = fragp->fr_line;
17645
17646 buf = write_compressed_insn (buf, insn, 4);
17647 if (compact)
17648 /* nop */
17649 buf = write_compressed_insn (buf, 0x0c00, 2);
17650 }
17651 else
17652 {
17653 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
17654 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17655 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
17656
17657 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17658 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17659 insn |= at << MICROMIPSOP_SH_RT;
17660
17661 if (exp.X_add_number)
17662 {
17663 exp.X_add_symbol = make_expr_symbol (&exp);
17664 exp.X_add_number = 0;
17665 }
17666
17667 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17668 BFD_RELOC_MICROMIPS_GOT16);
17669 fixp->fx_file = fragp->fr_file;
17670 fixp->fx_line = fragp->fr_line;
17671
17672 buf = write_compressed_insn (buf, insn, 4);
17673
17674 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17675 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17676 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17677
17678 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17679 BFD_RELOC_MICROMIPS_LO16);
17680 fixp->fx_file = fragp->fr_file;
17681 fixp->fx_line = fragp->fr_line;
17682
17683 buf = write_compressed_insn (buf, insn, 4);
17684
17685 /* jr/jrc/jalr/jalrs $at */
17686 insn = al ? jalr : jr;
17687 insn |= at << MICROMIPSOP_SH_MJ;
17688
17689 buf = write_compressed_insn (buf, insn, 2);
17690 }
17691
17692 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17693 return;
17694 }
17695
17696 if (RELAX_MIPS16_P (fragp->fr_subtype))
17697 {
17698 int type;
17699 const struct mips_int_operand *operand;
17700 offsetT val;
17701 char *buf;
17702 unsigned int user_length, length;
17703 unsigned long insn;
17704 bfd_boolean ext;
17705
17706 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17707 operand = mips16_immed_operand (type, FALSE);
17708
17709 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
17710 val = resolve_symbol_value (fragp->fr_symbol);
17711 if (operand->root.type == OP_PCREL)
17712 {
17713 const struct mips_pcrel_operand *pcrel_op;
17714 addressT addr;
17715
17716 pcrel_op = (const struct mips_pcrel_operand *) operand;
17717 addr = fragp->fr_address + fragp->fr_fix;
17718
17719 /* The rules for the base address of a PC relative reloc are
17720 complicated; see mips16_extended_frag. */
17721 if (pcrel_op->include_isa_bit)
17722 {
17723 addr += 2;
17724 if (ext)
17725 addr += 2;
17726 /* Ignore the low bit in the target, since it will be
17727 set for a text label. */
17728 val &= -2;
17729 }
17730 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17731 addr -= 4;
17732 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17733 addr -= 2;
17734
17735 addr &= -(1 << pcrel_op->align_log2);
17736 val -= addr;
17737
17738 /* Make sure the section winds up with the alignment we have
17739 assumed. */
17740 if (operand->shift > 0)
17741 record_alignment (asec, operand->shift);
17742 }
17743
17744 if (ext
17745 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17746 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17747 as_warn_where (fragp->fr_file, fragp->fr_line,
17748 _("extended instruction in delay slot"));
17749
17750 buf = fragp->fr_literal + fragp->fr_fix;
17751
17752 insn = read_compressed_insn (buf, 2);
17753 if (ext)
17754 insn |= MIPS16_EXTEND;
17755
17756 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17757 user_length = 4;
17758 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17759 user_length = 2;
17760 else
17761 user_length = 0;
17762
17763 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17764 BFD_RELOC_UNUSED, val, user_length, &insn);
17765
17766 length = (ext ? 4 : 2);
17767 gas_assert (mips16_opcode_length (insn) == length);
17768 write_compressed_insn (buf, insn, length);
17769 fragp->fr_fix += length;
17770 }
17771 else
17772 {
17773 relax_substateT subtype = fragp->fr_subtype;
17774 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17775 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
17776 int first, second;
17777 fixS *fixp;
17778
17779 first = RELAX_FIRST (subtype);
17780 second = RELAX_SECOND (subtype);
17781 fixp = (fixS *) fragp->fr_opcode;
17782
17783 /* If the delay slot chosen does not match the size of the instruction,
17784 then emit a warning. */
17785 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17786 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17787 {
17788 relax_substateT s;
17789 const char *msg;
17790
17791 s = subtype & (RELAX_DELAY_SLOT_16BIT
17792 | RELAX_DELAY_SLOT_SIZE_FIRST
17793 | RELAX_DELAY_SLOT_SIZE_SECOND);
17794 msg = macro_warning (s);
17795 if (msg != NULL)
17796 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17797 subtype &= ~s;
17798 }
17799
17800 /* Possibly emit a warning if we've chosen the longer option. */
17801 if (use_second == second_longer)
17802 {
17803 relax_substateT s;
17804 const char *msg;
17805
17806 s = (subtype
17807 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17808 msg = macro_warning (s);
17809 if (msg != NULL)
17810 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17811 subtype &= ~s;
17812 }
17813
17814 /* Go through all the fixups for the first sequence. Disable them
17815 (by marking them as done) if we're going to use the second
17816 sequence instead. */
17817 while (fixp
17818 && fixp->fx_frag == fragp
17819 && fixp->fx_where < fragp->fr_fix - second)
17820 {
17821 if (subtype & RELAX_USE_SECOND)
17822 fixp->fx_done = 1;
17823 fixp = fixp->fx_next;
17824 }
17825
17826 /* Go through the fixups for the second sequence. Disable them if
17827 we're going to use the first sequence, otherwise adjust their
17828 addresses to account for the relaxation. */
17829 while (fixp && fixp->fx_frag == fragp)
17830 {
17831 if (subtype & RELAX_USE_SECOND)
17832 fixp->fx_where -= first;
17833 else
17834 fixp->fx_done = 1;
17835 fixp = fixp->fx_next;
17836 }
17837
17838 /* Now modify the frag contents. */
17839 if (subtype & RELAX_USE_SECOND)
17840 {
17841 char *start;
17842
17843 start = fragp->fr_literal + fragp->fr_fix - first - second;
17844 memmove (start, start + first, second);
17845 fragp->fr_fix -= first;
17846 }
17847 else
17848 fragp->fr_fix -= second;
17849 }
17850 }
17851
17852 /* This function is called after the relocs have been generated.
17853 We've been storing mips16 text labels as odd. Here we convert them
17854 back to even for the convenience of the debugger. */
17855
17856 void
17857 mips_frob_file_after_relocs (void)
17858 {
17859 asymbol **syms;
17860 unsigned int count, i;
17861
17862 syms = bfd_get_outsymbols (stdoutput);
17863 count = bfd_get_symcount (stdoutput);
17864 for (i = 0; i < count; i++, syms++)
17865 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17866 && ((*syms)->value & 1) != 0)
17867 {
17868 (*syms)->value &= ~1;
17869 /* If the symbol has an odd size, it was probably computed
17870 incorrectly, so adjust that as well. */
17871 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17872 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17873 }
17874 }
17875
17876 /* This function is called whenever a label is defined, including fake
17877 labels instantiated off the dot special symbol. It is used when
17878 handling branch delays; if a branch has a label, we assume we cannot
17879 move it. This also bumps the value of the symbol by 1 in compressed
17880 code. */
17881
17882 static void
17883 mips_record_label (symbolS *sym)
17884 {
17885 segment_info_type *si = seg_info (now_seg);
17886 struct insn_label_list *l;
17887
17888 if (free_insn_labels == NULL)
17889 l = XNEW (struct insn_label_list);
17890 else
17891 {
17892 l = free_insn_labels;
17893 free_insn_labels = l->next;
17894 }
17895
17896 l->label = sym;
17897 l->next = si->label_list;
17898 si->label_list = l;
17899 }
17900
17901 /* This function is called as tc_frob_label() whenever a label is defined
17902 and adds a DWARF-2 record we only want for true labels. */
17903
17904 void
17905 mips_define_label (symbolS *sym)
17906 {
17907 mips_record_label (sym);
17908 dwarf2_emit_label (sym);
17909 }
17910
17911 /* This function is called by tc_new_dot_label whenever a new dot symbol
17912 is defined. */
17913
17914 void
17915 mips_add_dot_label (symbolS *sym)
17916 {
17917 mips_record_label (sym);
17918 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17919 mips_compressed_mark_label (sym);
17920 }
17921 \f
17922 /* Converting ASE flags from internal to .MIPS.abiflags values. */
17923 static unsigned int
17924 mips_convert_ase_flags (int ase)
17925 {
17926 unsigned int ext_ases = 0;
17927
17928 if (ase & ASE_DSP)
17929 ext_ases |= AFL_ASE_DSP;
17930 if (ase & ASE_DSPR2)
17931 ext_ases |= AFL_ASE_DSPR2;
17932 if (ase & ASE_EVA)
17933 ext_ases |= AFL_ASE_EVA;
17934 if (ase & ASE_MCU)
17935 ext_ases |= AFL_ASE_MCU;
17936 if (ase & ASE_MDMX)
17937 ext_ases |= AFL_ASE_MDMX;
17938 if (ase & ASE_MIPS3D)
17939 ext_ases |= AFL_ASE_MIPS3D;
17940 if (ase & ASE_MT)
17941 ext_ases |= AFL_ASE_MT;
17942 if (ase & ASE_SMARTMIPS)
17943 ext_ases |= AFL_ASE_SMARTMIPS;
17944 if (ase & ASE_VIRT)
17945 ext_ases |= AFL_ASE_VIRT;
17946 if (ase & ASE_MSA)
17947 ext_ases |= AFL_ASE_MSA;
17948 if (ase & ASE_XPA)
17949 ext_ases |= AFL_ASE_XPA;
17950
17951 return ext_ases;
17952 }
17953 /* Some special processing for a MIPS ELF file. */
17954
17955 void
17956 mips_elf_final_processing (void)
17957 {
17958 int fpabi;
17959 Elf_Internal_ABIFlags_v0 flags;
17960
17961 flags.version = 0;
17962 flags.isa_rev = 0;
17963 switch (file_mips_opts.isa)
17964 {
17965 case INSN_ISA1:
17966 flags.isa_level = 1;
17967 break;
17968 case INSN_ISA2:
17969 flags.isa_level = 2;
17970 break;
17971 case INSN_ISA3:
17972 flags.isa_level = 3;
17973 break;
17974 case INSN_ISA4:
17975 flags.isa_level = 4;
17976 break;
17977 case INSN_ISA5:
17978 flags.isa_level = 5;
17979 break;
17980 case INSN_ISA32:
17981 flags.isa_level = 32;
17982 flags.isa_rev = 1;
17983 break;
17984 case INSN_ISA32R2:
17985 flags.isa_level = 32;
17986 flags.isa_rev = 2;
17987 break;
17988 case INSN_ISA32R3:
17989 flags.isa_level = 32;
17990 flags.isa_rev = 3;
17991 break;
17992 case INSN_ISA32R5:
17993 flags.isa_level = 32;
17994 flags.isa_rev = 5;
17995 break;
17996 case INSN_ISA32R6:
17997 flags.isa_level = 32;
17998 flags.isa_rev = 6;
17999 break;
18000 case INSN_ISA64:
18001 flags.isa_level = 64;
18002 flags.isa_rev = 1;
18003 break;
18004 case INSN_ISA64R2:
18005 flags.isa_level = 64;
18006 flags.isa_rev = 2;
18007 break;
18008 case INSN_ISA64R3:
18009 flags.isa_level = 64;
18010 flags.isa_rev = 3;
18011 break;
18012 case INSN_ISA64R5:
18013 flags.isa_level = 64;
18014 flags.isa_rev = 5;
18015 break;
18016 case INSN_ISA64R6:
18017 flags.isa_level = 64;
18018 flags.isa_rev = 6;
18019 break;
18020 }
18021
18022 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18023 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18024 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18025 : (file_mips_opts.fp == 64) ? AFL_REG_64
18026 : AFL_REG_32;
18027 flags.cpr2_size = AFL_REG_NONE;
18028 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18029 Tag_GNU_MIPS_ABI_FP);
18030 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18031 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18032 if (file_ase_mips16)
18033 flags.ases |= AFL_ASE_MIPS16;
18034 if (file_ase_micromips)
18035 flags.ases |= AFL_ASE_MICROMIPS;
18036 flags.flags1 = 0;
18037 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18038 || file_mips_opts.fp == 64)
18039 && file_mips_opts.oddspreg)
18040 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18041 flags.flags2 = 0;
18042
18043 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18044 ((Elf_External_ABIFlags_v0 *)
18045 mips_flags_frag));
18046
18047 /* Write out the register information. */
18048 if (mips_abi != N64_ABI)
18049 {
18050 Elf32_RegInfo s;
18051
18052 s.ri_gprmask = mips_gprmask;
18053 s.ri_cprmask[0] = mips_cprmask[0];
18054 s.ri_cprmask[1] = mips_cprmask[1];
18055 s.ri_cprmask[2] = mips_cprmask[2];
18056 s.ri_cprmask[3] = mips_cprmask[3];
18057 /* The gp_value field is set by the MIPS ELF backend. */
18058
18059 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18060 ((Elf32_External_RegInfo *)
18061 mips_regmask_frag));
18062 }
18063 else
18064 {
18065 Elf64_Internal_RegInfo s;
18066
18067 s.ri_gprmask = mips_gprmask;
18068 s.ri_pad = 0;
18069 s.ri_cprmask[0] = mips_cprmask[0];
18070 s.ri_cprmask[1] = mips_cprmask[1];
18071 s.ri_cprmask[2] = mips_cprmask[2];
18072 s.ri_cprmask[3] = mips_cprmask[3];
18073 /* The gp_value field is set by the MIPS ELF backend. */
18074
18075 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18076 ((Elf64_External_RegInfo *)
18077 mips_regmask_frag));
18078 }
18079
18080 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18081 sort of BFD interface for this. */
18082 if (mips_any_noreorder)
18083 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18084 if (mips_pic != NO_PIC)
18085 {
18086 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18087 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18088 }
18089 if (mips_abicalls)
18090 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18091
18092 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18093 defined at present; this might need to change in future. */
18094 if (file_ase_mips16)
18095 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18096 if (file_ase_micromips)
18097 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18098 if (file_mips_opts.ase & ASE_MDMX)
18099 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18100
18101 /* Set the MIPS ELF ABI flags. */
18102 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18103 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18104 else if (mips_abi == O64_ABI)
18105 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18106 else if (mips_abi == EABI_ABI)
18107 {
18108 if (file_mips_opts.gp == 64)
18109 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18110 else
18111 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18112 }
18113 else if (mips_abi == N32_ABI)
18114 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18115
18116 /* Nothing to do for N64_ABI. */
18117
18118 if (mips_32bitmode)
18119 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18120
18121 if (mips_nan2008 == 1)
18122 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18123
18124 /* 32 bit code with 64 bit FP registers. */
18125 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18126 Tag_GNU_MIPS_ABI_FP);
18127 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18128 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18129 }
18130 \f
18131 typedef struct proc {
18132 symbolS *func_sym;
18133 symbolS *func_end_sym;
18134 unsigned long reg_mask;
18135 unsigned long reg_offset;
18136 unsigned long fpreg_mask;
18137 unsigned long fpreg_offset;
18138 unsigned long frame_offset;
18139 unsigned long frame_reg;
18140 unsigned long pc_reg;
18141 } procS;
18142
18143 static procS cur_proc;
18144 static procS *cur_proc_ptr;
18145 static int numprocs;
18146
18147 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18148 as "2", and a normal nop as "0". */
18149
18150 #define NOP_OPCODE_MIPS 0
18151 #define NOP_OPCODE_MIPS16 1
18152 #define NOP_OPCODE_MICROMIPS 2
18153
18154 char
18155 mips_nop_opcode (void)
18156 {
18157 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18158 return NOP_OPCODE_MICROMIPS;
18159 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18160 return NOP_OPCODE_MIPS16;
18161 else
18162 return NOP_OPCODE_MIPS;
18163 }
18164
18165 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18166 32-bit microMIPS NOPs here (if applicable). */
18167
18168 void
18169 mips_handle_align (fragS *fragp)
18170 {
18171 char nop_opcode;
18172 char *p;
18173 int bytes, size, excess;
18174 valueT opcode;
18175
18176 if (fragp->fr_type != rs_align_code)
18177 return;
18178
18179 p = fragp->fr_literal + fragp->fr_fix;
18180 nop_opcode = *p;
18181 switch (nop_opcode)
18182 {
18183 case NOP_OPCODE_MICROMIPS:
18184 opcode = micromips_nop32_insn.insn_opcode;
18185 size = 4;
18186 break;
18187 case NOP_OPCODE_MIPS16:
18188 opcode = mips16_nop_insn.insn_opcode;
18189 size = 2;
18190 break;
18191 case NOP_OPCODE_MIPS:
18192 default:
18193 opcode = nop_insn.insn_opcode;
18194 size = 4;
18195 break;
18196 }
18197
18198 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18199 excess = bytes % size;
18200
18201 /* Handle the leading part if we're not inserting a whole number of
18202 instructions, and make it the end of the fixed part of the frag.
18203 Try to fit in a short microMIPS NOP if applicable and possible,
18204 and use zeroes otherwise. */
18205 gas_assert (excess < 4);
18206 fragp->fr_fix += excess;
18207 switch (excess)
18208 {
18209 case 3:
18210 *p++ = '\0';
18211 /* Fall through. */
18212 case 2:
18213 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18214 {
18215 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18216 break;
18217 }
18218 *p++ = '\0';
18219 /* Fall through. */
18220 case 1:
18221 *p++ = '\0';
18222 /* Fall through. */
18223 case 0:
18224 break;
18225 }
18226
18227 md_number_to_chars (p, opcode, size);
18228 fragp->fr_var = size;
18229 }
18230
18231 static long
18232 get_number (void)
18233 {
18234 int negative = 0;
18235 long val = 0;
18236
18237 if (*input_line_pointer == '-')
18238 {
18239 ++input_line_pointer;
18240 negative = 1;
18241 }
18242 if (!ISDIGIT (*input_line_pointer))
18243 as_bad (_("expected simple number"));
18244 if (input_line_pointer[0] == '0')
18245 {
18246 if (input_line_pointer[1] == 'x')
18247 {
18248 input_line_pointer += 2;
18249 while (ISXDIGIT (*input_line_pointer))
18250 {
18251 val <<= 4;
18252 val |= hex_value (*input_line_pointer++);
18253 }
18254 return negative ? -val : val;
18255 }
18256 else
18257 {
18258 ++input_line_pointer;
18259 while (ISDIGIT (*input_line_pointer))
18260 {
18261 val <<= 3;
18262 val |= *input_line_pointer++ - '0';
18263 }
18264 return negative ? -val : val;
18265 }
18266 }
18267 if (!ISDIGIT (*input_line_pointer))
18268 {
18269 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18270 *input_line_pointer, *input_line_pointer);
18271 as_warn (_("invalid number"));
18272 return -1;
18273 }
18274 while (ISDIGIT (*input_line_pointer))
18275 {
18276 val *= 10;
18277 val += *input_line_pointer++ - '0';
18278 }
18279 return negative ? -val : val;
18280 }
18281
18282 /* The .file directive; just like the usual .file directive, but there
18283 is an initial number which is the ECOFF file index. In the non-ECOFF
18284 case .file implies DWARF-2. */
18285
18286 static void
18287 s_mips_file (int x ATTRIBUTE_UNUSED)
18288 {
18289 static int first_file_directive = 0;
18290
18291 if (ECOFF_DEBUGGING)
18292 {
18293 get_number ();
18294 s_app_file (0);
18295 }
18296 else
18297 {
18298 char *filename;
18299
18300 filename = dwarf2_directive_file (0);
18301
18302 /* Versions of GCC up to 3.1 start files with a ".file"
18303 directive even for stabs output. Make sure that this
18304 ".file" is handled. Note that you need a version of GCC
18305 after 3.1 in order to support DWARF-2 on MIPS. */
18306 if (filename != NULL && ! first_file_directive)
18307 {
18308 (void) new_logical_line (filename, -1);
18309 s_app_file_string (filename, 0);
18310 }
18311 first_file_directive = 1;
18312 }
18313 }
18314
18315 /* The .loc directive, implying DWARF-2. */
18316
18317 static void
18318 s_mips_loc (int x ATTRIBUTE_UNUSED)
18319 {
18320 if (!ECOFF_DEBUGGING)
18321 dwarf2_directive_loc (0);
18322 }
18323
18324 /* The .end directive. */
18325
18326 static void
18327 s_mips_end (int x ATTRIBUTE_UNUSED)
18328 {
18329 symbolS *p;
18330
18331 /* Following functions need their own .frame and .cprestore directives. */
18332 mips_frame_reg_valid = 0;
18333 mips_cprestore_valid = 0;
18334
18335 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18336 {
18337 p = get_symbol ();
18338 demand_empty_rest_of_line ();
18339 }
18340 else
18341 p = NULL;
18342
18343 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18344 as_warn (_(".end not in text section"));
18345
18346 if (!cur_proc_ptr)
18347 {
18348 as_warn (_(".end directive without a preceding .ent directive"));
18349 demand_empty_rest_of_line ();
18350 return;
18351 }
18352
18353 if (p != NULL)
18354 {
18355 gas_assert (S_GET_NAME (p));
18356 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18357 as_warn (_(".end symbol does not match .ent symbol"));
18358
18359 if (debug_type == DEBUG_STABS)
18360 stabs_generate_asm_endfunc (S_GET_NAME (p),
18361 S_GET_NAME (p));
18362 }
18363 else
18364 as_warn (_(".end directive missing or unknown symbol"));
18365
18366 /* Create an expression to calculate the size of the function. */
18367 if (p && cur_proc_ptr)
18368 {
18369 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18370 expressionS *exp = XNEW (expressionS);
18371
18372 obj->size = exp;
18373 exp->X_op = O_subtract;
18374 exp->X_add_symbol = symbol_temp_new_now ();
18375 exp->X_op_symbol = p;
18376 exp->X_add_number = 0;
18377
18378 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18379 }
18380
18381 /* Generate a .pdr section. */
18382 if (!ECOFF_DEBUGGING && mips_flag_pdr)
18383 {
18384 segT saved_seg = now_seg;
18385 subsegT saved_subseg = now_subseg;
18386 expressionS exp;
18387 char *fragp;
18388
18389 #ifdef md_flush_pending_output
18390 md_flush_pending_output ();
18391 #endif
18392
18393 gas_assert (pdr_seg);
18394 subseg_set (pdr_seg, 0);
18395
18396 /* Write the symbol. */
18397 exp.X_op = O_symbol;
18398 exp.X_add_symbol = p;
18399 exp.X_add_number = 0;
18400 emit_expr (&exp, 4);
18401
18402 fragp = frag_more (7 * 4);
18403
18404 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18405 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18406 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18407 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18408 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18409 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18410 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
18411
18412 subseg_set (saved_seg, saved_subseg);
18413 }
18414
18415 cur_proc_ptr = NULL;
18416 }
18417
18418 /* The .aent and .ent directives. */
18419
18420 static void
18421 s_mips_ent (int aent)
18422 {
18423 symbolS *symbolP;
18424
18425 symbolP = get_symbol ();
18426 if (*input_line_pointer == ',')
18427 ++input_line_pointer;
18428 SKIP_WHITESPACE ();
18429 if (ISDIGIT (*input_line_pointer)
18430 || *input_line_pointer == '-')
18431 get_number ();
18432
18433 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18434 as_warn (_(".ent or .aent not in text section"));
18435
18436 if (!aent && cur_proc_ptr)
18437 as_warn (_("missing .end"));
18438
18439 if (!aent)
18440 {
18441 /* This function needs its own .frame and .cprestore directives. */
18442 mips_frame_reg_valid = 0;
18443 mips_cprestore_valid = 0;
18444
18445 cur_proc_ptr = &cur_proc;
18446 memset (cur_proc_ptr, '\0', sizeof (procS));
18447
18448 cur_proc_ptr->func_sym = symbolP;
18449
18450 ++numprocs;
18451
18452 if (debug_type == DEBUG_STABS)
18453 stabs_generate_asm_func (S_GET_NAME (symbolP),
18454 S_GET_NAME (symbolP));
18455 }
18456
18457 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18458
18459 demand_empty_rest_of_line ();
18460 }
18461
18462 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
18463 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
18464 s_mips_frame is used so that we can set the PDR information correctly.
18465 We can't use the ecoff routines because they make reference to the ecoff
18466 symbol table (in the mdebug section). */
18467
18468 static void
18469 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
18470 {
18471 if (ECOFF_DEBUGGING)
18472 s_ignore (ignore);
18473 else
18474 {
18475 long val;
18476
18477 if (cur_proc_ptr == (procS *) NULL)
18478 {
18479 as_warn (_(".frame outside of .ent"));
18480 demand_empty_rest_of_line ();
18481 return;
18482 }
18483
18484 cur_proc_ptr->frame_reg = tc_get_register (1);
18485
18486 SKIP_WHITESPACE ();
18487 if (*input_line_pointer++ != ','
18488 || get_absolute_expression_and_terminator (&val) != ',')
18489 {
18490 as_warn (_("bad .frame directive"));
18491 --input_line_pointer;
18492 demand_empty_rest_of_line ();
18493 return;
18494 }
18495
18496 cur_proc_ptr->frame_offset = val;
18497 cur_proc_ptr->pc_reg = tc_get_register (0);
18498
18499 demand_empty_rest_of_line ();
18500 }
18501 }
18502
18503 /* The .fmask and .mask directives. If the mdebug section is present
18504 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
18505 embedded targets, s_mips_mask is used so that we can set the PDR
18506 information correctly. We can't use the ecoff routines because they
18507 make reference to the ecoff symbol table (in the mdebug section). */
18508
18509 static void
18510 s_mips_mask (int reg_type)
18511 {
18512 if (ECOFF_DEBUGGING)
18513 s_ignore (reg_type);
18514 else
18515 {
18516 long mask, off;
18517
18518 if (cur_proc_ptr == (procS *) NULL)
18519 {
18520 as_warn (_(".mask/.fmask outside of .ent"));
18521 demand_empty_rest_of_line ();
18522 return;
18523 }
18524
18525 if (get_absolute_expression_and_terminator (&mask) != ',')
18526 {
18527 as_warn (_("bad .mask/.fmask directive"));
18528 --input_line_pointer;
18529 demand_empty_rest_of_line ();
18530 return;
18531 }
18532
18533 off = get_absolute_expression ();
18534
18535 if (reg_type == 'F')
18536 {
18537 cur_proc_ptr->fpreg_mask = mask;
18538 cur_proc_ptr->fpreg_offset = off;
18539 }
18540 else
18541 {
18542 cur_proc_ptr->reg_mask = mask;
18543 cur_proc_ptr->reg_offset = off;
18544 }
18545
18546 demand_empty_rest_of_line ();
18547 }
18548 }
18549
18550 /* A table describing all the processors gas knows about. Names are
18551 matched in the order listed.
18552
18553 To ease comparison, please keep this table in the same order as
18554 gcc's mips_cpu_info_table[]. */
18555 static const struct mips_cpu_info mips_cpu_info_table[] =
18556 {
18557 /* Entries for generic ISAs */
18558 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18559 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18560 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18561 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18562 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18563 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18564 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18565 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18566 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
18567 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
18568 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18569 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
18570 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18571 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
18572 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
18573
18574 /* MIPS I */
18575 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18576 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18577 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
18578
18579 /* MIPS II */
18580 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
18581
18582 /* MIPS III */
18583 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18584 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18585 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18586 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18587 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18588 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18589 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18590 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18591 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18592 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18593 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18594 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18595 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
18596 /* ST Microelectronics Loongson 2E and 2F cores */
18597 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18598 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
18599
18600 /* MIPS IV */
18601 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18602 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18603 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18604 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18605 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18606 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18607 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18608 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18609 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18610 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18611 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18612 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18613 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18614 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18615 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
18616
18617 /* MIPS 32 */
18618 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18619 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18620 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18621 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
18622
18623 /* MIPS 32 Release 2 */
18624 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18625 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18626 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18627 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18628 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18629 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18630 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18631 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18632 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18633 ISA_MIPS32R2, CPU_MIPS32R2 },
18634 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18635 ISA_MIPS32R2, CPU_MIPS32R2 },
18636 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18637 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18638 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18639 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18640 /* Deprecated forms of the above. */
18641 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18642 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18643 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
18644 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18645 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18646 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18647 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18648 /* Deprecated forms of the above. */
18649 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18650 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18651 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
18652 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18653 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18654 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18655 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18656 /* Deprecated forms of the above. */
18657 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18658 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18659 /* 34Kn is a 34kc without DSP. */
18660 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18661 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
18662 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18663 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18664 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18665 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18666 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18667 /* Deprecated forms of the above. */
18668 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18669 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18670 /* 1004K cores are multiprocessor versions of the 34K. */
18671 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18672 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18673 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18674 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18675 /* interaptiv is the new name for 1004kf */
18676 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18677 /* M5100 family */
18678 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18679 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18680 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
18681 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
18682
18683 /* MIPS 64 */
18684 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18685 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18686 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18687 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18688
18689 /* Broadcom SB-1 CPU core */
18690 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18691 /* Broadcom SB-1A CPU core */
18692 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18693
18694 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
18695
18696 /* MIPS 64 Release 2 */
18697
18698 /* Cavium Networks Octeon CPU core */
18699 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18700 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18701 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
18702 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
18703
18704 /* RMI Xlr */
18705 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
18706
18707 /* Broadcom XLP.
18708 XLP is mostly like XLR, with the prominent exception that it is
18709 MIPS64R2 rather than MIPS64. */
18710 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
18711
18712 /* i6400. */
18713 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18714
18715 /* End marker */
18716 { NULL, 0, 0, 0, 0 }
18717 };
18718
18719
18720 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18721 with a final "000" replaced by "k". Ignore case.
18722
18723 Note: this function is shared between GCC and GAS. */
18724
18725 static bfd_boolean
18726 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
18727 {
18728 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18729 given++, canonical++;
18730
18731 return ((*given == 0 && *canonical == 0)
18732 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18733 }
18734
18735
18736 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18737 CPU name. We've traditionally allowed a lot of variation here.
18738
18739 Note: this function is shared between GCC and GAS. */
18740
18741 static bfd_boolean
18742 mips_matching_cpu_name_p (const char *canonical, const char *given)
18743 {
18744 /* First see if the name matches exactly, or with a final "000"
18745 turned into "k". */
18746 if (mips_strict_matching_cpu_name_p (canonical, given))
18747 return TRUE;
18748
18749 /* If not, try comparing based on numerical designation alone.
18750 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18751 if (TOLOWER (*given) == 'r')
18752 given++;
18753 if (!ISDIGIT (*given))
18754 return FALSE;
18755
18756 /* Skip over some well-known prefixes in the canonical name,
18757 hoping to find a number there too. */
18758 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18759 canonical += 2;
18760 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18761 canonical += 2;
18762 else if (TOLOWER (canonical[0]) == 'r')
18763 canonical += 1;
18764
18765 return mips_strict_matching_cpu_name_p (canonical, given);
18766 }
18767
18768
18769 /* Parse an option that takes the name of a processor as its argument.
18770 OPTION is the name of the option and CPU_STRING is the argument.
18771 Return the corresponding processor enumeration if the CPU_STRING is
18772 recognized, otherwise report an error and return null.
18773
18774 A similar function exists in GCC. */
18775
18776 static const struct mips_cpu_info *
18777 mips_parse_cpu (const char *option, const char *cpu_string)
18778 {
18779 const struct mips_cpu_info *p;
18780
18781 /* 'from-abi' selects the most compatible architecture for the given
18782 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18783 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18784 version. Look first at the -mgp options, if given, otherwise base
18785 the choice on MIPS_DEFAULT_64BIT.
18786
18787 Treat NO_ABI like the EABIs. One reason to do this is that the
18788 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18789 architecture. This code picks MIPS I for 'mips' and MIPS III for
18790 'mips64', just as we did in the days before 'from-abi'. */
18791 if (strcasecmp (cpu_string, "from-abi") == 0)
18792 {
18793 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18794 return mips_cpu_info_from_isa (ISA_MIPS1);
18795
18796 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18797 return mips_cpu_info_from_isa (ISA_MIPS3);
18798
18799 if (file_mips_opts.gp >= 0)
18800 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
18801 ? ISA_MIPS1 : ISA_MIPS3);
18802
18803 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18804 ? ISA_MIPS3
18805 : ISA_MIPS1);
18806 }
18807
18808 /* 'default' has traditionally been a no-op. Probably not very useful. */
18809 if (strcasecmp (cpu_string, "default") == 0)
18810 return 0;
18811
18812 for (p = mips_cpu_info_table; p->name != 0; p++)
18813 if (mips_matching_cpu_name_p (p->name, cpu_string))
18814 return p;
18815
18816 as_bad (_("bad value (%s) for %s"), cpu_string, option);
18817 return 0;
18818 }
18819
18820 /* Return the canonical processor information for ISA (a member of the
18821 ISA_MIPS* enumeration). */
18822
18823 static const struct mips_cpu_info *
18824 mips_cpu_info_from_isa (int isa)
18825 {
18826 int i;
18827
18828 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18829 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
18830 && isa == mips_cpu_info_table[i].isa)
18831 return (&mips_cpu_info_table[i]);
18832
18833 return NULL;
18834 }
18835
18836 static const struct mips_cpu_info *
18837 mips_cpu_info_from_arch (int arch)
18838 {
18839 int i;
18840
18841 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18842 if (arch == mips_cpu_info_table[i].cpu)
18843 return (&mips_cpu_info_table[i]);
18844
18845 return NULL;
18846 }
18847 \f
18848 static void
18849 show (FILE *stream, const char *string, int *col_p, int *first_p)
18850 {
18851 if (*first_p)
18852 {
18853 fprintf (stream, "%24s", "");
18854 *col_p = 24;
18855 }
18856 else
18857 {
18858 fprintf (stream, ", ");
18859 *col_p += 2;
18860 }
18861
18862 if (*col_p + strlen (string) > 72)
18863 {
18864 fprintf (stream, "\n%24s", "");
18865 *col_p = 24;
18866 }
18867
18868 fprintf (stream, "%s", string);
18869 *col_p += strlen (string);
18870
18871 *first_p = 0;
18872 }
18873
18874 void
18875 md_show_usage (FILE *stream)
18876 {
18877 int column, first;
18878 size_t i;
18879
18880 fprintf (stream, _("\
18881 MIPS options:\n\
18882 -EB generate big endian output\n\
18883 -EL generate little endian output\n\
18884 -g, -g2 do not remove unneeded NOPs or swap branches\n\
18885 -G NUM allow referencing objects up to NUM bytes\n\
18886 implicitly with the gp register [default 8]\n"));
18887 fprintf (stream, _("\
18888 -mips1 generate MIPS ISA I instructions\n\
18889 -mips2 generate MIPS ISA II instructions\n\
18890 -mips3 generate MIPS ISA III instructions\n\
18891 -mips4 generate MIPS ISA IV instructions\n\
18892 -mips5 generate MIPS ISA V instructions\n\
18893 -mips32 generate MIPS32 ISA instructions\n\
18894 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
18895 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
18896 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
18897 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
18898 -mips64 generate MIPS64 ISA instructions\n\
18899 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
18900 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
18901 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
18902 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
18903 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18904
18905 first = 1;
18906
18907 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18908 show (stream, mips_cpu_info_table[i].name, &column, &first);
18909 show (stream, "from-abi", &column, &first);
18910 fputc ('\n', stream);
18911
18912 fprintf (stream, _("\
18913 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18914 -no-mCPU don't generate code specific to CPU.\n\
18915 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18916
18917 first = 1;
18918
18919 show (stream, "3900", &column, &first);
18920 show (stream, "4010", &column, &first);
18921 show (stream, "4100", &column, &first);
18922 show (stream, "4650", &column, &first);
18923 fputc ('\n', stream);
18924
18925 fprintf (stream, _("\
18926 -mips16 generate mips16 instructions\n\
18927 -no-mips16 do not generate mips16 instructions\n"));
18928 fprintf (stream, _("\
18929 -mmicromips generate microMIPS instructions\n\
18930 -mno-micromips do not generate microMIPS instructions\n"));
18931 fprintf (stream, _("\
18932 -msmartmips generate smartmips instructions\n\
18933 -mno-smartmips do not generate smartmips instructions\n"));
18934 fprintf (stream, _("\
18935 -mdsp generate DSP instructions\n\
18936 -mno-dsp do not generate DSP instructions\n"));
18937 fprintf (stream, _("\
18938 -mdspr2 generate DSP R2 instructions\n\
18939 -mno-dspr2 do not generate DSP R2 instructions\n"));
18940 fprintf (stream, _("\
18941 -mmt generate MT instructions\n\
18942 -mno-mt do not generate MT instructions\n"));
18943 fprintf (stream, _("\
18944 -mmcu generate MCU instructions\n\
18945 -mno-mcu do not generate MCU instructions\n"));
18946 fprintf (stream, _("\
18947 -mmsa generate MSA instructions\n\
18948 -mno-msa do not generate MSA instructions\n"));
18949 fprintf (stream, _("\
18950 -mxpa generate eXtended Physical Address (XPA) instructions\n\
18951 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18952 fprintf (stream, _("\
18953 -mvirt generate Virtualization instructions\n\
18954 -mno-virt do not generate Virtualization instructions\n"));
18955 fprintf (stream, _("\
18956 -minsn32 only generate 32-bit microMIPS instructions\n\
18957 -mno-insn32 generate all microMIPS instructions\n"));
18958 fprintf (stream, _("\
18959 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18960 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
18961 -mfix-vr4120 work around certain VR4120 errata\n\
18962 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
18963 -mfix-24k insert a nop after ERET and DERET instructions\n\
18964 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
18965 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18966 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
18967 -msym32 assume all symbols have 32-bit values\n\
18968 -O0 remove unneeded NOPs, do not swap branches\n\
18969 -O remove unneeded NOPs and swap branches\n\
18970 --trap, --no-break trap exception on div by 0 and mult overflow\n\
18971 --break, --no-trap break exception on div by 0 and mult overflow\n"));
18972 fprintf (stream, _("\
18973 -mhard-float allow floating-point instructions\n\
18974 -msoft-float do not allow floating-point instructions\n\
18975 -msingle-float only allow 32-bit floating-point operations\n\
18976 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
18977 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
18978 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
18979 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
18980
18981 first = 1;
18982
18983 show (stream, "legacy", &column, &first);
18984 show (stream, "2008", &column, &first);
18985
18986 fputc ('\n', stream);
18987
18988 fprintf (stream, _("\
18989 -KPIC, -call_shared generate SVR4 position independent code\n\
18990 -call_nonpic generate non-PIC code that can operate with DSOs\n\
18991 -mvxworks-pic generate VxWorks position independent code\n\
18992 -non_shared do not generate code that can operate with DSOs\n\
18993 -xgot assume a 32 bit GOT\n\
18994 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
18995 -mshared, -mno-shared disable/enable .cpload optimization for\n\
18996 position dependent (non shared) code\n\
18997 -mabi=ABI create ABI conformant object file for:\n"));
18998
18999 first = 1;
19000
19001 show (stream, "32", &column, &first);
19002 show (stream, "o64", &column, &first);
19003 show (stream, "n32", &column, &first);
19004 show (stream, "64", &column, &first);
19005 show (stream, "eabi", &column, &first);
19006
19007 fputc ('\n', stream);
19008
19009 fprintf (stream, _("\
19010 -32 create o32 ABI object file (default)\n\
19011 -n32 create n32 ABI object file\n\
19012 -64 create 64 ABI object file\n"));
19013 }
19014
19015 #ifdef TE_IRIX
19016 enum dwarf2_format
19017 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19018 {
19019 if (HAVE_64BIT_SYMBOLS)
19020 return dwarf2_format_64bit_irix;
19021 else
19022 return dwarf2_format_32bit;
19023 }
19024 #endif
19025
19026 int
19027 mips_dwarf2_addr_size (void)
19028 {
19029 if (HAVE_64BIT_OBJECTS)
19030 return 8;
19031 else
19032 return 4;
19033 }
19034
19035 /* Standard calling conventions leave the CFA at SP on entry. */
19036 void
19037 mips_cfi_frame_initial_instructions (void)
19038 {
19039 cfi_add_CFA_def_cfa_register (SP);
19040 }
19041
19042 int
19043 tc_mips_regname_to_dw2regnum (char *regname)
19044 {
19045 unsigned int regnum = -1;
19046 unsigned int reg;
19047
19048 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19049 regnum = reg;
19050
19051 return regnum;
19052 }
19053
19054 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19055 Given a symbolic attribute NAME, return the proper integer value.
19056 Returns -1 if the attribute is not known. */
19057
19058 int
19059 mips_convert_symbolic_attribute (const char *name)
19060 {
19061 static const struct
19062 {
19063 const char * name;
19064 const int tag;
19065 }
19066 attribute_table[] =
19067 {
19068 #define T(tag) {#tag, tag}
19069 T (Tag_GNU_MIPS_ABI_FP),
19070 T (Tag_GNU_MIPS_ABI_MSA),
19071 #undef T
19072 };
19073 unsigned int i;
19074
19075 if (name == NULL)
19076 return -1;
19077
19078 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19079 if (streq (name, attribute_table[i].name))
19080 return attribute_table[i].tag;
19081
19082 return -1;
19083 }
19084
19085 void
19086 md_mips_end (void)
19087 {
19088 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19089
19090 mips_emit_delays ();
19091 if (cur_proc_ptr)
19092 as_warn (_("missing .end at end of assembly"));
19093
19094 /* Just in case no code was emitted, do the consistency check. */
19095 file_mips_check_options ();
19096
19097 /* Set a floating-point ABI if the user did not. */
19098 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19099 {
19100 /* Perform consistency checks on the floating-point ABI. */
19101 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19102 Tag_GNU_MIPS_ABI_FP);
19103 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19104 check_fpabi (fpabi);
19105 }
19106 else
19107 {
19108 /* Soft-float gets precedence over single-float, the two options should
19109 not be used together so this should not matter. */
19110 if (file_mips_opts.soft_float == 1)
19111 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19112 /* Single-float gets precedence over all double_float cases. */
19113 else if (file_mips_opts.single_float == 1)
19114 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19115 else
19116 {
19117 switch (file_mips_opts.fp)
19118 {
19119 case 32:
19120 if (file_mips_opts.gp == 32)
19121 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19122 break;
19123 case 0:
19124 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19125 break;
19126 case 64:
19127 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19128 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19129 else if (file_mips_opts.gp == 32)
19130 fpabi = Val_GNU_MIPS_ABI_FP_64;
19131 else
19132 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19133 break;
19134 }
19135 }
19136
19137 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19138 Tag_GNU_MIPS_ABI_FP, fpabi);
19139 }
19140 }
19141
19142 /* Returns the relocation type required for a particular CFI encoding. */
19143
19144 bfd_reloc_code_real_type
19145 mips_cfi_reloc_for_encoding (int encoding)
19146 {
19147 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19148 return BFD_RELOC_32_PCREL;
19149 else return BFD_RELOC_NONE;
19150 }