]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-mips.c
Re-work register size macros for MIPS.
[thirdparty/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92
93 #define ZERO 0
94 #define ATREG 1
95 #define S0 16
96 #define S7 23
97 #define TREG 24
98 #define PIC_CALL_REG 25
99 #define KT0 26
100 #define KT1 27
101 #define GP 28
102 #define SP 29
103 #define FP 30
104 #define RA 31
105
106 #define ILLEGAL_REG (32)
107
108 #define AT mips_opts.at
109
110 extern int target_big_endian;
111
112 /* The name of the readonly data section. */
113 #define RDATA_SECTION_NAME ".rodata"
114
115 /* Ways in which an instruction can be "appended" to the output. */
116 enum append_method {
117 /* Just add it normally. */
118 APPEND_ADD,
119
120 /* Add it normally and then add a nop. */
121 APPEND_ADD_WITH_NOP,
122
123 /* Turn an instruction with a delay slot into a "compact" version. */
124 APPEND_ADD_COMPACT,
125
126 /* Insert the instruction before the last one. */
127 APPEND_SWAP
128 };
129
130 /* Information about an instruction, including its format, operands
131 and fixups. */
132 struct mips_cl_insn
133 {
134 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
135 const struct mips_opcode *insn_mo;
136
137 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
138 a copy of INSN_MO->match with the operands filled in. If we have
139 decided to use an extended MIPS16 instruction, this includes the
140 extension. */
141 unsigned long insn_opcode;
142
143 /* The frag that contains the instruction. */
144 struct frag *frag;
145
146 /* The offset into FRAG of the first instruction byte. */
147 long where;
148
149 /* The relocs associated with the instruction, if any. */
150 fixS *fixp[3];
151
152 /* True if this entry cannot be moved from its current position. */
153 unsigned int fixed_p : 1;
154
155 /* True if this instruction occurred in a .set noreorder block. */
156 unsigned int noreorder_p : 1;
157
158 /* True for mips16 instructions that jump to an absolute address. */
159 unsigned int mips16_absolute_jump_p : 1;
160
161 /* True if this instruction is complete. */
162 unsigned int complete_p : 1;
163
164 /* True if this instruction is cleared from history by unconditional
165 branch. */
166 unsigned int cleared_p : 1;
167 };
168
169 /* The ABI to use. */
170 enum mips_abi_level
171 {
172 NO_ABI = 0,
173 O32_ABI,
174 O64_ABI,
175 N32_ABI,
176 N64_ABI,
177 EABI_ABI
178 };
179
180 /* MIPS ABI we are using for this output file. */
181 static enum mips_abi_level mips_abi = NO_ABI;
182
183 /* Whether or not we have code that can call pic code. */
184 int mips_abicalls = FALSE;
185
186 /* Whether or not we have code which can be put into a shared
187 library. */
188 static bfd_boolean mips_in_shared = TRUE;
189
190 /* This is the set of options which may be modified by the .set
191 pseudo-op. We use a struct so that .set push and .set pop are more
192 reliable. */
193
194 struct mips_set_options
195 {
196 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
197 if it has not been initialized. Changed by `.set mipsN', and the
198 -mipsN command line option, and the default CPU. */
199 int isa;
200 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
201 <asename>', by command line options, and based on the default
202 architecture. */
203 int ase;
204 /* Whether we are assembling for the mips16 processor. 0 if we are
205 not, 1 if we are, and -1 if the value has not been initialized.
206 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
207 -nomips16 command line options, and the default CPU. */
208 int mips16;
209 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
210 1 if we are, and -1 if the value has not been initialized. Changed
211 by `.set micromips' and `.set nomicromips', and the -mmicromips
212 and -mno-micromips command line options, and the default CPU. */
213 int micromips;
214 /* Non-zero if we should not reorder instructions. Changed by `.set
215 reorder' and `.set noreorder'. */
216 int noreorder;
217 /* Non-zero if we should not permit the register designated "assembler
218 temporary" to be used in instructions. The value is the register
219 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
220 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
221 unsigned int at;
222 /* Non-zero if we should warn when a macro instruction expands into
223 more than one machine instruction. Changed by `.set nomacro' and
224 `.set macro'. */
225 int warn_about_macros;
226 /* Non-zero if we should not move instructions. Changed by `.set
227 move', `.set volatile', `.set nomove', and `.set novolatile'. */
228 int nomove;
229 /* Non-zero if we should not optimize branches by moving the target
230 of the branch into the delay slot. Actually, we don't perform
231 this optimization anyhow. Changed by `.set bopt' and `.set
232 nobopt'. */
233 int nobopt;
234 /* Non-zero if we should not autoextend mips16 instructions.
235 Changed by `.set autoextend' and `.set noautoextend'. */
236 int noautoextend;
237 /* True if we should only emit 32-bit microMIPS instructions.
238 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
239 and -mno-insn32 command line options. */
240 bfd_boolean insn32;
241 /* Restrict general purpose registers and floating point registers
242 to 32 bit. This is initially determined when -mgp32 or -mfp32
243 is passed but can changed if the assembler code uses .set mipsN. */
244 int gp;
245 int fp;
246 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
247 command line option, and the default CPU. */
248 int arch;
249 /* True if ".set sym32" is in effect. */
250 bfd_boolean sym32;
251 /* True if floating-point operations are not allowed. Changed by .set
252 softfloat or .set hardfloat, by command line options -msoft-float or
253 -mhard-float. The default is false. */
254 bfd_boolean soft_float;
255
256 /* True if only single-precision floating-point operations are allowed.
257 Changed by .set singlefloat or .set doublefloat, command-line options
258 -msingle-float or -mdouble-float. The default is false. */
259 bfd_boolean single_float;
260 };
261
262 /* True if -mnan=2008, false if -mnan=legacy. */
263 static bfd_boolean mips_flag_nan2008 = FALSE;
264
265 /* This is the struct we use to hold the module level set of options.
266 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
267 fp fields to -1 to indicate that they have not been initialized. */
268
269 static struct mips_set_options file_mips_opts =
270 {
271 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
272 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
273 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
274 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
275 /* soft_float */ FALSE, /* single_float */ FALSE
276 };
277
278 /* This is similar to file_mips_opts, but for the current set of options. */
279
280 static struct mips_set_options mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE
287 };
288
289 /* The set of ASEs that were selected on the command line, either
290 explicitly via ASE options or implicitly through things like -march. */
291 static unsigned int file_ase;
292
293 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
294 static unsigned int file_ase_explicit;
295
296 /* These variables are filled in with the masks of registers used.
297 The object format code reads them and puts them in the appropriate
298 place. */
299 unsigned long mips_gprmask;
300 unsigned long mips_cprmask[4];
301
302 /* True if any MIPS16 code was produced. */
303 static int file_ase_mips16;
304
305 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
306 || mips_opts.isa == ISA_MIPS32R2 \
307 || mips_opts.isa == ISA_MIPS32R3 \
308 || mips_opts.isa == ISA_MIPS32R5 \
309 || mips_opts.isa == ISA_MIPS64 \
310 || mips_opts.isa == ISA_MIPS64R2 \
311 || mips_opts.isa == ISA_MIPS64R3 \
312 || mips_opts.isa == ISA_MIPS64R5)
313
314 /* True if any microMIPS code was produced. */
315 static int file_ase_micromips;
316
317 /* True if we want to create R_MIPS_JALR for jalr $25. */
318 #ifdef TE_IRIX
319 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
320 #else
321 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
322 because there's no place for any addend, the only acceptable
323 expression is a bare symbol. */
324 #define MIPS_JALR_HINT_P(EXPR) \
325 (!HAVE_IN_PLACE_ADDENDS \
326 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
327 #endif
328
329 /* The argument of the -march= flag. The architecture we are assembling. */
330 static const char *mips_arch_string;
331
332 /* The argument of the -mtune= flag. The architecture for which we
333 are optimizing. */
334 static int mips_tune = CPU_UNKNOWN;
335 static const char *mips_tune_string;
336
337 /* True when generating 32-bit code for a 64-bit processor. */
338 static int mips_32bitmode = 0;
339
340 /* True if the given ABI requires 32-bit registers. */
341 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
342
343 /* Likewise 64-bit registers. */
344 #define ABI_NEEDS_64BIT_REGS(ABI) \
345 ((ABI) == N32_ABI \
346 || (ABI) == N64_ABI \
347 || (ABI) == O64_ABI)
348
349 /* Return true if ISA supports 64 bit wide gp registers. */
350 #define ISA_HAS_64BIT_REGS(ISA) \
351 ((ISA) == ISA_MIPS3 \
352 || (ISA) == ISA_MIPS4 \
353 || (ISA) == ISA_MIPS5 \
354 || (ISA) == ISA_MIPS64 \
355 || (ISA) == ISA_MIPS64R2 \
356 || (ISA) == ISA_MIPS64R3 \
357 || (ISA) == ISA_MIPS64R5)
358
359 /* Return true if ISA supports 64 bit wide float registers. */
360 #define ISA_HAS_64BIT_FPRS(ISA) \
361 ((ISA) == ISA_MIPS3 \
362 || (ISA) == ISA_MIPS4 \
363 || (ISA) == ISA_MIPS5 \
364 || (ISA) == ISA_MIPS32R2 \
365 || (ISA) == ISA_MIPS32R3 \
366 || (ISA) == ISA_MIPS32R5 \
367 || (ISA) == ISA_MIPS64 \
368 || (ISA) == ISA_MIPS64R2 \
369 || (ISA) == ISA_MIPS64R3 \
370 || (ISA) == ISA_MIPS64R5 )
371
372 /* Return true if ISA supports 64-bit right rotate (dror et al.)
373 instructions. */
374 #define ISA_HAS_DROR(ISA) \
375 ((ISA) == ISA_MIPS64R2 \
376 || (ISA) == ISA_MIPS64R3 \
377 || (ISA) == ISA_MIPS64R5 \
378 || (mips_opts.micromips \
379 && ISA_HAS_64BIT_REGS (ISA)) \
380 )
381
382 /* Return true if ISA supports 32-bit right rotate (ror et al.)
383 instructions. */
384 #define ISA_HAS_ROR(ISA) \
385 ((ISA) == ISA_MIPS32R2 \
386 || (ISA) == ISA_MIPS32R3 \
387 || (ISA) == ISA_MIPS32R5 \
388 || (ISA) == ISA_MIPS64R2 \
389 || (ISA) == ISA_MIPS64R3 \
390 || (ISA) == ISA_MIPS64R5 \
391 || (mips_opts.ase & ASE_SMARTMIPS) \
392 || mips_opts.micromips \
393 )
394
395 /* Return true if ISA supports single-precision floats in odd registers. */
396 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
397 ((ISA) == ISA_MIPS32 \
398 || (ISA) == ISA_MIPS32R2 \
399 || (ISA) == ISA_MIPS32R3 \
400 || (ISA) == ISA_MIPS32R5 \
401 || (ISA) == ISA_MIPS64 \
402 || (ISA) == ISA_MIPS64R2 \
403 || (ISA) == ISA_MIPS64R3 \
404 || (ISA) == ISA_MIPS64R5)
405
406 /* Return true if ISA supports move to/from high part of a 64-bit
407 floating-point register. */
408 #define ISA_HAS_MXHC1(ISA) \
409 ((ISA) == ISA_MIPS32R2 \
410 || (ISA) == ISA_MIPS32R3 \
411 || (ISA) == ISA_MIPS32R5 \
412 || (ISA) == ISA_MIPS64R2 \
413 || (ISA) == ISA_MIPS64R3 \
414 || (ISA) == ISA_MIPS64R5)
415
416 #define GPR_SIZE \
417 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
418 ? 32 \
419 : mips_opts.gp)
420
421 #define FPR_SIZE \
422 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
423 ? 32 \
424 : mips_opts.fp)
425
426 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
427
428 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
429
430 /* True if relocations are stored in-place. */
431 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
432
433 /* The ABI-derived address size. */
434 #define HAVE_64BIT_ADDRESSES \
435 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
436 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
437
438 /* The size of symbolic constants (i.e., expressions of the form
439 "SYMBOL" or "SYMBOL + OFFSET"). */
440 #define HAVE_32BIT_SYMBOLS \
441 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
442 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
443
444 /* Addresses are loaded in different ways, depending on the address size
445 in use. The n32 ABI Documentation also mandates the use of additions
446 with overflow checking, but existing implementations don't follow it. */
447 #define ADDRESS_ADD_INSN \
448 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
449
450 #define ADDRESS_ADDI_INSN \
451 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
452
453 #define ADDRESS_LOAD_INSN \
454 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
455
456 #define ADDRESS_STORE_INSN \
457 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
458
459 /* Return true if the given CPU supports the MIPS16 ASE. */
460 #define CPU_HAS_MIPS16(cpu) \
461 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
462 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
463
464 /* Return true if the given CPU supports the microMIPS ASE. */
465 #define CPU_HAS_MICROMIPS(cpu) 0
466
467 /* True if CPU has a dror instruction. */
468 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
469
470 /* True if CPU has a ror instruction. */
471 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
472
473 /* True if CPU is in the Octeon family */
474 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP || (CPU) == CPU_OCTEON2)
475
476 /* True if CPU has seq/sne and seqi/snei instructions. */
477 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
478
479 /* True, if CPU has support for ldc1 and sdc1. */
480 #define CPU_HAS_LDC1_SDC1(CPU) \
481 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
482
483 /* True if mflo and mfhi can be immediately followed by instructions
484 which write to the HI and LO registers.
485
486 According to MIPS specifications, MIPS ISAs I, II, and III need
487 (at least) two instructions between the reads of HI/LO and
488 instructions which write them, and later ISAs do not. Contradicting
489 the MIPS specifications, some MIPS IV processor user manuals (e.g.
490 the UM for the NEC Vr5000) document needing the instructions between
491 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
492 MIPS64 and later ISAs to have the interlocks, plus any specific
493 earlier-ISA CPUs for which CPU documentation declares that the
494 instructions are really interlocked. */
495 #define hilo_interlocks \
496 (mips_opts.isa == ISA_MIPS32 \
497 || mips_opts.isa == ISA_MIPS32R2 \
498 || mips_opts.isa == ISA_MIPS32R3 \
499 || mips_opts.isa == ISA_MIPS32R5 \
500 || mips_opts.isa == ISA_MIPS64 \
501 || mips_opts.isa == ISA_MIPS64R2 \
502 || mips_opts.isa == ISA_MIPS64R3 \
503 || mips_opts.isa == ISA_MIPS64R5 \
504 || mips_opts.arch == CPU_R4010 \
505 || mips_opts.arch == CPU_R5900 \
506 || mips_opts.arch == CPU_R10000 \
507 || mips_opts.arch == CPU_R12000 \
508 || mips_opts.arch == CPU_R14000 \
509 || mips_opts.arch == CPU_R16000 \
510 || mips_opts.arch == CPU_RM7000 \
511 || mips_opts.arch == CPU_VR5500 \
512 || mips_opts.micromips \
513 )
514
515 /* Whether the processor uses hardware interlocks to protect reads
516 from the GPRs after they are loaded from memory, and thus does not
517 require nops to be inserted. This applies to instructions marked
518 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
519 level I and microMIPS mode instructions are always interlocked. */
520 #define gpr_interlocks \
521 (mips_opts.isa != ISA_MIPS1 \
522 || mips_opts.arch == CPU_R3900 \
523 || mips_opts.arch == CPU_R5900 \
524 || mips_opts.micromips \
525 )
526
527 /* Whether the processor uses hardware interlocks to avoid delays
528 required by coprocessor instructions, and thus does not require
529 nops to be inserted. This applies to instructions marked
530 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
531 between instructions marked INSN_WRITE_COND_CODE and ones marked
532 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
533 levels I, II, and III and microMIPS mode instructions are always
534 interlocked. */
535 /* Itbl support may require additional care here. */
536 #define cop_interlocks \
537 ((mips_opts.isa != ISA_MIPS1 \
538 && mips_opts.isa != ISA_MIPS2 \
539 && mips_opts.isa != ISA_MIPS3) \
540 || mips_opts.arch == CPU_R4300 \
541 || mips_opts.micromips \
542 )
543
544 /* Whether the processor uses hardware interlocks to protect reads
545 from coprocessor registers after they are loaded from memory, and
546 thus does not require nops to be inserted. This applies to
547 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
548 requires at MIPS ISA level I and microMIPS mode instructions are
549 always interlocked. */
550 #define cop_mem_interlocks \
551 (mips_opts.isa != ISA_MIPS1 \
552 || mips_opts.micromips \
553 )
554
555 /* Is this a mfhi or mflo instruction? */
556 #define MF_HILO_INSN(PINFO) \
557 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
558
559 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
560 has been selected. This implies, in particular, that addresses of text
561 labels have their LSB set. */
562 #define HAVE_CODE_COMPRESSION \
563 ((mips_opts.mips16 | mips_opts.micromips) != 0)
564
565 /* The minimum and maximum signed values that can be stored in a GPR. */
566 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
567 #define GPR_SMIN (-GPR_SMAX - 1)
568
569 /* MIPS PIC level. */
570
571 enum mips_pic_level mips_pic;
572
573 /* 1 if we should generate 32 bit offsets from the $gp register in
574 SVR4_PIC mode. Currently has no meaning in other modes. */
575 static int mips_big_got = 0;
576
577 /* 1 if trap instructions should used for overflow rather than break
578 instructions. */
579 static int mips_trap = 0;
580
581 /* 1 if double width floating point constants should not be constructed
582 by assembling two single width halves into two single width floating
583 point registers which just happen to alias the double width destination
584 register. On some architectures this aliasing can be disabled by a bit
585 in the status register, and the setting of this bit cannot be determined
586 automatically at assemble time. */
587 static int mips_disable_float_construction;
588
589 /* Non-zero if any .set noreorder directives were used. */
590
591 static int mips_any_noreorder;
592
593 /* Non-zero if nops should be inserted when the register referenced in
594 an mfhi/mflo instruction is read in the next two instructions. */
595 static int mips_7000_hilo_fix;
596
597 /* The size of objects in the small data section. */
598 static unsigned int g_switch_value = 8;
599 /* Whether the -G option was used. */
600 static int g_switch_seen = 0;
601
602 #define N_RMASK 0xc4
603 #define N_VFP 0xd4
604
605 /* If we can determine in advance that GP optimization won't be
606 possible, we can skip the relaxation stuff that tries to produce
607 GP-relative references. This makes delay slot optimization work
608 better.
609
610 This function can only provide a guess, but it seems to work for
611 gcc output. It needs to guess right for gcc, otherwise gcc
612 will put what it thinks is a GP-relative instruction in a branch
613 delay slot.
614
615 I don't know if a fix is needed for the SVR4_PIC mode. I've only
616 fixed it for the non-PIC mode. KR 95/04/07 */
617 static int nopic_need_relax (symbolS *, int);
618
619 /* handle of the OPCODE hash table */
620 static struct hash_control *op_hash = NULL;
621
622 /* The opcode hash table we use for the mips16. */
623 static struct hash_control *mips16_op_hash = NULL;
624
625 /* The opcode hash table we use for the microMIPS ASE. */
626 static struct hash_control *micromips_op_hash = NULL;
627
628 /* This array holds the chars that always start a comment. If the
629 pre-processor is disabled, these aren't very useful */
630 const char comment_chars[] = "#";
631
632 /* This array holds the chars that only start a comment at the beginning of
633 a line. If the line seems to have the form '# 123 filename'
634 .line and .file directives will appear in the pre-processed output */
635 /* Note that input_file.c hand checks for '#' at the beginning of the
636 first line of the input file. This is because the compiler outputs
637 #NO_APP at the beginning of its output. */
638 /* Also note that C style comments are always supported. */
639 const char line_comment_chars[] = "#";
640
641 /* This array holds machine specific line separator characters. */
642 const char line_separator_chars[] = ";";
643
644 /* Chars that can be used to separate mant from exp in floating point nums */
645 const char EXP_CHARS[] = "eE";
646
647 /* Chars that mean this number is a floating point constant */
648 /* As in 0f12.456 */
649 /* or 0d1.2345e12 */
650 const char FLT_CHARS[] = "rRsSfFdDxXpP";
651
652 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
653 changed in read.c . Ideally it shouldn't have to know about it at all,
654 but nothing is ideal around here.
655 */
656
657 /* Types of printf format used for instruction-related error messages.
658 "I" means int ("%d") and "S" means string ("%s"). */
659 enum mips_insn_error_format {
660 ERR_FMT_PLAIN,
661 ERR_FMT_I,
662 ERR_FMT_SS,
663 };
664
665 /* Information about an error that was found while assembling the current
666 instruction. */
667 struct mips_insn_error {
668 /* We sometimes need to match an instruction against more than one
669 opcode table entry. Errors found during this matching are reported
670 against a particular syntactic argument rather than against the
671 instruction as a whole. We grade these messages so that errors
672 against argument N have a greater priority than an error against
673 any argument < N, since the former implies that arguments up to N
674 were acceptable and that the opcode entry was therefore a closer match.
675 If several matches report an error against the same argument,
676 we only use that error if it is the same in all cases.
677
678 min_argnum is the minimum argument number for which an error message
679 should be accepted. It is 0 if MSG is against the instruction as
680 a whole. */
681 int min_argnum;
682
683 /* The printf()-style message, including its format and arguments. */
684 enum mips_insn_error_format format;
685 const char *msg;
686 union {
687 int i;
688 const char *ss[2];
689 } u;
690 };
691
692 /* The error that should be reported for the current instruction. */
693 static struct mips_insn_error insn_error;
694
695 static int auto_align = 1;
696
697 /* When outputting SVR4 PIC code, the assembler needs to know the
698 offset in the stack frame from which to restore the $gp register.
699 This is set by the .cprestore pseudo-op, and saved in this
700 variable. */
701 static offsetT mips_cprestore_offset = -1;
702
703 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
704 more optimizations, it can use a register value instead of a memory-saved
705 offset and even an other register than $gp as global pointer. */
706 static offsetT mips_cpreturn_offset = -1;
707 static int mips_cpreturn_register = -1;
708 static int mips_gp_register = GP;
709 static int mips_gprel_offset = 0;
710
711 /* Whether mips_cprestore_offset has been set in the current function
712 (or whether it has already been warned about, if not). */
713 static int mips_cprestore_valid = 0;
714
715 /* This is the register which holds the stack frame, as set by the
716 .frame pseudo-op. This is needed to implement .cprestore. */
717 static int mips_frame_reg = SP;
718
719 /* Whether mips_frame_reg has been set in the current function
720 (or whether it has already been warned about, if not). */
721 static int mips_frame_reg_valid = 0;
722
723 /* To output NOP instructions correctly, we need to keep information
724 about the previous two instructions. */
725
726 /* Whether we are optimizing. The default value of 2 means to remove
727 unneeded NOPs and swap branch instructions when possible. A value
728 of 1 means to not swap branches. A value of 0 means to always
729 insert NOPs. */
730 static int mips_optimize = 2;
731
732 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
733 equivalent to seeing no -g option at all. */
734 static int mips_debug = 0;
735
736 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
737 #define MAX_VR4130_NOPS 4
738
739 /* The maximum number of NOPs needed to fill delay slots. */
740 #define MAX_DELAY_NOPS 2
741
742 /* The maximum number of NOPs needed for any purpose. */
743 #define MAX_NOPS 4
744
745 /* A list of previous instructions, with index 0 being the most recent.
746 We need to look back MAX_NOPS instructions when filling delay slots
747 or working around processor errata. We need to look back one
748 instruction further if we're thinking about using history[0] to
749 fill a branch delay slot. */
750 static struct mips_cl_insn history[1 + MAX_NOPS];
751
752 /* Arrays of operands for each instruction. */
753 #define MAX_OPERANDS 6
754 struct mips_operand_array {
755 const struct mips_operand *operand[MAX_OPERANDS];
756 };
757 static struct mips_operand_array *mips_operands;
758 static struct mips_operand_array *mips16_operands;
759 static struct mips_operand_array *micromips_operands;
760
761 /* Nop instructions used by emit_nop. */
762 static struct mips_cl_insn nop_insn;
763 static struct mips_cl_insn mips16_nop_insn;
764 static struct mips_cl_insn micromips_nop16_insn;
765 static struct mips_cl_insn micromips_nop32_insn;
766
767 /* The appropriate nop for the current mode. */
768 #define NOP_INSN (mips_opts.mips16 \
769 ? &mips16_nop_insn \
770 : (mips_opts.micromips \
771 ? (mips_opts.insn32 \
772 ? &micromips_nop32_insn \
773 : &micromips_nop16_insn) \
774 : &nop_insn))
775
776 /* The size of NOP_INSN in bytes. */
777 #define NOP_INSN_SIZE ((mips_opts.mips16 \
778 || (mips_opts.micromips && !mips_opts.insn32)) \
779 ? 2 : 4)
780
781 /* If this is set, it points to a frag holding nop instructions which
782 were inserted before the start of a noreorder section. If those
783 nops turn out to be unnecessary, the size of the frag can be
784 decreased. */
785 static fragS *prev_nop_frag;
786
787 /* The number of nop instructions we created in prev_nop_frag. */
788 static int prev_nop_frag_holds;
789
790 /* The number of nop instructions that we know we need in
791 prev_nop_frag. */
792 static int prev_nop_frag_required;
793
794 /* The number of instructions we've seen since prev_nop_frag. */
795 static int prev_nop_frag_since;
796
797 /* Relocations against symbols are sometimes done in two parts, with a HI
798 relocation and a LO relocation. Each relocation has only 16 bits of
799 space to store an addend. This means that in order for the linker to
800 handle carries correctly, it must be able to locate both the HI and
801 the LO relocation. This means that the relocations must appear in
802 order in the relocation table.
803
804 In order to implement this, we keep track of each unmatched HI
805 relocation. We then sort them so that they immediately precede the
806 corresponding LO relocation. */
807
808 struct mips_hi_fixup
809 {
810 /* Next HI fixup. */
811 struct mips_hi_fixup *next;
812 /* This fixup. */
813 fixS *fixp;
814 /* The section this fixup is in. */
815 segT seg;
816 };
817
818 /* The list of unmatched HI relocs. */
819
820 static struct mips_hi_fixup *mips_hi_fixup_list;
821
822 /* The frag containing the last explicit relocation operator.
823 Null if explicit relocations have not been used. */
824
825 static fragS *prev_reloc_op_frag;
826
827 /* Map mips16 register numbers to normal MIPS register numbers. */
828
829 static const unsigned int mips16_to_32_reg_map[] =
830 {
831 16, 17, 2, 3, 4, 5, 6, 7
832 };
833
834 /* Map microMIPS register numbers to normal MIPS register numbers. */
835
836 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
837
838 /* The microMIPS registers with type h. */
839 static const unsigned int micromips_to_32_reg_h_map1[] =
840 {
841 5, 5, 6, 4, 4, 4, 4, 4
842 };
843 static const unsigned int micromips_to_32_reg_h_map2[] =
844 {
845 6, 7, 7, 21, 22, 5, 6, 7
846 };
847
848 /* The microMIPS registers with type m. */
849 static const unsigned int micromips_to_32_reg_m_map[] =
850 {
851 0, 17, 2, 3, 16, 18, 19, 20
852 };
853
854 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
855
856 /* Classifies the kind of instructions we're interested in when
857 implementing -mfix-vr4120. */
858 enum fix_vr4120_class
859 {
860 FIX_VR4120_MACC,
861 FIX_VR4120_DMACC,
862 FIX_VR4120_MULT,
863 FIX_VR4120_DMULT,
864 FIX_VR4120_DIV,
865 FIX_VR4120_MTHILO,
866 NUM_FIX_VR4120_CLASSES
867 };
868
869 /* ...likewise -mfix-loongson2f-jump. */
870 static bfd_boolean mips_fix_loongson2f_jump;
871
872 /* ...likewise -mfix-loongson2f-nop. */
873 static bfd_boolean mips_fix_loongson2f_nop;
874
875 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
876 static bfd_boolean mips_fix_loongson2f;
877
878 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
879 there must be at least one other instruction between an instruction
880 of type X and an instruction of type Y. */
881 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
882
883 /* True if -mfix-vr4120 is in force. */
884 static int mips_fix_vr4120;
885
886 /* ...likewise -mfix-vr4130. */
887 static int mips_fix_vr4130;
888
889 /* ...likewise -mfix-24k. */
890 static int mips_fix_24k;
891
892 /* ...likewise -mfix-rm7000 */
893 static int mips_fix_rm7000;
894
895 /* ...likewise -mfix-cn63xxp1 */
896 static bfd_boolean mips_fix_cn63xxp1;
897
898 /* We don't relax branches by default, since this causes us to expand
899 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
900 fail to compute the offset before expanding the macro to the most
901 efficient expansion. */
902
903 static int mips_relax_branch;
904 \f
905 /* The expansion of many macros depends on the type of symbol that
906 they refer to. For example, when generating position-dependent code,
907 a macro that refers to a symbol may have two different expansions,
908 one which uses GP-relative addresses and one which uses absolute
909 addresses. When generating SVR4-style PIC, a macro may have
910 different expansions for local and global symbols.
911
912 We handle these situations by generating both sequences and putting
913 them in variant frags. In position-dependent code, the first sequence
914 will be the GP-relative one and the second sequence will be the
915 absolute one. In SVR4 PIC, the first sequence will be for global
916 symbols and the second will be for local symbols.
917
918 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
919 SECOND are the lengths of the two sequences in bytes. These fields
920 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
921 the subtype has the following flags:
922
923 RELAX_USE_SECOND
924 Set if it has been decided that we should use the second
925 sequence instead of the first.
926
927 RELAX_SECOND_LONGER
928 Set in the first variant frag if the macro's second implementation
929 is longer than its first. This refers to the macro as a whole,
930 not an individual relaxation.
931
932 RELAX_NOMACRO
933 Set in the first variant frag if the macro appeared in a .set nomacro
934 block and if one alternative requires a warning but the other does not.
935
936 RELAX_DELAY_SLOT
937 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
938 delay slot.
939
940 RELAX_DELAY_SLOT_16BIT
941 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
942 16-bit instruction.
943
944 RELAX_DELAY_SLOT_SIZE_FIRST
945 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
946 the macro is of the wrong size for the branch delay slot.
947
948 RELAX_DELAY_SLOT_SIZE_SECOND
949 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
950 the macro is of the wrong size for the branch delay slot.
951
952 The frag's "opcode" points to the first fixup for relaxable code.
953
954 Relaxable macros are generated using a sequence such as:
955
956 relax_start (SYMBOL);
957 ... generate first expansion ...
958 relax_switch ();
959 ... generate second expansion ...
960 relax_end ();
961
962 The code and fixups for the unwanted alternative are discarded
963 by md_convert_frag. */
964 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
965
966 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
967 #define RELAX_SECOND(X) ((X) & 0xff)
968 #define RELAX_USE_SECOND 0x10000
969 #define RELAX_SECOND_LONGER 0x20000
970 #define RELAX_NOMACRO 0x40000
971 #define RELAX_DELAY_SLOT 0x80000
972 #define RELAX_DELAY_SLOT_16BIT 0x100000
973 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
974 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
975
976 /* Branch without likely bit. If label is out of range, we turn:
977
978 beq reg1, reg2, label
979 delay slot
980
981 into
982
983 bne reg1, reg2, 0f
984 nop
985 j label
986 0: delay slot
987
988 with the following opcode replacements:
989
990 beq <-> bne
991 blez <-> bgtz
992 bltz <-> bgez
993 bc1f <-> bc1t
994
995 bltzal <-> bgezal (with jal label instead of j label)
996
997 Even though keeping the delay slot instruction in the delay slot of
998 the branch would be more efficient, it would be very tricky to do
999 correctly, because we'd have to introduce a variable frag *after*
1000 the delay slot instruction, and expand that instead. Let's do it
1001 the easy way for now, even if the branch-not-taken case now costs
1002 one additional instruction. Out-of-range branches are not supposed
1003 to be common, anyway.
1004
1005 Branch likely. If label is out of range, we turn:
1006
1007 beql reg1, reg2, label
1008 delay slot (annulled if branch not taken)
1009
1010 into
1011
1012 beql reg1, reg2, 1f
1013 nop
1014 beql $0, $0, 2f
1015 nop
1016 1: j[al] label
1017 delay slot (executed only if branch taken)
1018 2:
1019
1020 It would be possible to generate a shorter sequence by losing the
1021 likely bit, generating something like:
1022
1023 bne reg1, reg2, 0f
1024 nop
1025 j[al] label
1026 delay slot (executed only if branch taken)
1027 0:
1028
1029 beql -> bne
1030 bnel -> beq
1031 blezl -> bgtz
1032 bgtzl -> blez
1033 bltzl -> bgez
1034 bgezl -> bltz
1035 bc1fl -> bc1t
1036 bc1tl -> bc1f
1037
1038 bltzall -> bgezal (with jal label instead of j label)
1039 bgezall -> bltzal (ditto)
1040
1041
1042 but it's not clear that it would actually improve performance. */
1043 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1044 ((relax_substateT) \
1045 (0xc0000000 \
1046 | ((at) & 0x1f) \
1047 | ((toofar) ? 0x20 : 0) \
1048 | ((link) ? 0x40 : 0) \
1049 | ((likely) ? 0x80 : 0) \
1050 | ((uncond) ? 0x100 : 0)))
1051 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1052 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1053 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1054 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1055 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1056 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1057
1058 /* For mips16 code, we use an entirely different form of relaxation.
1059 mips16 supports two versions of most instructions which take
1060 immediate values: a small one which takes some small value, and a
1061 larger one which takes a 16 bit value. Since branches also follow
1062 this pattern, relaxing these values is required.
1063
1064 We can assemble both mips16 and normal MIPS code in a single
1065 object. Therefore, we need to support this type of relaxation at
1066 the same time that we support the relaxation described above. We
1067 use the high bit of the subtype field to distinguish these cases.
1068
1069 The information we store for this type of relaxation is the
1070 argument code found in the opcode file for this relocation, whether
1071 the user explicitly requested a small or extended form, and whether
1072 the relocation is in a jump or jal delay slot. That tells us the
1073 size of the value, and how it should be stored. We also store
1074 whether the fragment is considered to be extended or not. We also
1075 store whether this is known to be a branch to a different section,
1076 whether we have tried to relax this frag yet, and whether we have
1077 ever extended a PC relative fragment because of a shift count. */
1078 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1079 (0x80000000 \
1080 | ((type) & 0xff) \
1081 | ((small) ? 0x100 : 0) \
1082 | ((ext) ? 0x200 : 0) \
1083 | ((dslot) ? 0x400 : 0) \
1084 | ((jal_dslot) ? 0x800 : 0))
1085 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1086 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1087 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1088 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1089 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1090 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1091 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1092 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1093 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1094 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1095 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1096 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1097
1098 /* For microMIPS code, we use relaxation similar to one we use for
1099 MIPS16 code. Some instructions that take immediate values support
1100 two encodings: a small one which takes some small value, and a
1101 larger one which takes a 16 bit value. As some branches also follow
1102 this pattern, relaxing these values is required.
1103
1104 We can assemble both microMIPS and normal MIPS code in a single
1105 object. Therefore, we need to support this type of relaxation at
1106 the same time that we support the relaxation described above. We
1107 use one of the high bits of the subtype field to distinguish these
1108 cases.
1109
1110 The information we store for this type of relaxation is the argument
1111 code found in the opcode file for this relocation, the register
1112 selected as the assembler temporary, whether the branch is
1113 unconditional, whether it is compact, whether it stores the link
1114 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1115 branches to a sequence of instructions is enabled, and whether the
1116 displacement of a branch is too large to fit as an immediate argument
1117 of a 16-bit and a 32-bit branch, respectively. */
1118 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1119 relax32, toofar16, toofar32) \
1120 (0x40000000 \
1121 | ((type) & 0xff) \
1122 | (((at) & 0x1f) << 8) \
1123 | ((uncond) ? 0x2000 : 0) \
1124 | ((compact) ? 0x4000 : 0) \
1125 | ((link) ? 0x8000 : 0) \
1126 | ((relax32) ? 0x10000 : 0) \
1127 | ((toofar16) ? 0x20000 : 0) \
1128 | ((toofar32) ? 0x40000 : 0))
1129 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1130 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1131 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1132 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1133 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1134 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1135 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1136
1137 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1138 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1139 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1140 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1141 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1142 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1143
1144 /* Sign-extend 16-bit value X. */
1145 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1146
1147 /* Is the given value a sign-extended 32-bit value? */
1148 #define IS_SEXT_32BIT_NUM(x) \
1149 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1150 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1151
1152 /* Is the given value a sign-extended 16-bit value? */
1153 #define IS_SEXT_16BIT_NUM(x) \
1154 (((x) &~ (offsetT) 0x7fff) == 0 \
1155 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1156
1157 /* Is the given value a sign-extended 12-bit value? */
1158 #define IS_SEXT_12BIT_NUM(x) \
1159 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1160
1161 /* Is the given value a sign-extended 9-bit value? */
1162 #define IS_SEXT_9BIT_NUM(x) \
1163 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1164
1165 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1166 #define IS_ZEXT_32BIT_NUM(x) \
1167 (((x) &~ (offsetT) 0xffffffff) == 0 \
1168 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1169
1170 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1171 SHIFT places. */
1172 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1173 (((STRUCT) >> (SHIFT)) & (MASK))
1174
1175 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1176 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1177 (!(MICROMIPS) \
1178 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1179 : EXTRACT_BITS ((INSN).insn_opcode, \
1180 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1181 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1182 EXTRACT_BITS ((INSN).insn_opcode, \
1183 MIPS16OP_MASK_##FIELD, \
1184 MIPS16OP_SH_##FIELD)
1185
1186 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1187 #define MIPS16_EXTEND (0xf000U << 16)
1188 \f
1189 /* Whether or not we are emitting a branch-likely macro. */
1190 static bfd_boolean emit_branch_likely_macro = FALSE;
1191
1192 /* Global variables used when generating relaxable macros. See the
1193 comment above RELAX_ENCODE for more details about how relaxation
1194 is used. */
1195 static struct {
1196 /* 0 if we're not emitting a relaxable macro.
1197 1 if we're emitting the first of the two relaxation alternatives.
1198 2 if we're emitting the second alternative. */
1199 int sequence;
1200
1201 /* The first relaxable fixup in the current frag. (In other words,
1202 the first fixup that refers to relaxable code.) */
1203 fixS *first_fixup;
1204
1205 /* sizes[0] says how many bytes of the first alternative are stored in
1206 the current frag. Likewise sizes[1] for the second alternative. */
1207 unsigned int sizes[2];
1208
1209 /* The symbol on which the choice of sequence depends. */
1210 symbolS *symbol;
1211 } mips_relax;
1212 \f
1213 /* Global variables used to decide whether a macro needs a warning. */
1214 static struct {
1215 /* True if the macro is in a branch delay slot. */
1216 bfd_boolean delay_slot_p;
1217
1218 /* Set to the length in bytes required if the macro is in a delay slot
1219 that requires a specific length of instruction, otherwise zero. */
1220 unsigned int delay_slot_length;
1221
1222 /* For relaxable macros, sizes[0] is the length of the first alternative
1223 in bytes and sizes[1] is the length of the second alternative.
1224 For non-relaxable macros, both elements give the length of the
1225 macro in bytes. */
1226 unsigned int sizes[2];
1227
1228 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1229 instruction of the first alternative in bytes and first_insn_sizes[1]
1230 is the length of the first instruction of the second alternative.
1231 For non-relaxable macros, both elements give the length of the first
1232 instruction in bytes.
1233
1234 Set to zero if we haven't yet seen the first instruction. */
1235 unsigned int first_insn_sizes[2];
1236
1237 /* For relaxable macros, insns[0] is the number of instructions for the
1238 first alternative and insns[1] is the number of instructions for the
1239 second alternative.
1240
1241 For non-relaxable macros, both elements give the number of
1242 instructions for the macro. */
1243 unsigned int insns[2];
1244
1245 /* The first variant frag for this macro. */
1246 fragS *first_frag;
1247 } mips_macro_warning;
1248 \f
1249 /* Prototypes for static functions. */
1250
1251 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1252
1253 static void append_insn
1254 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1255 bfd_boolean expansionp);
1256 static void mips_no_prev_insn (void);
1257 static void macro_build (expressionS *, const char *, const char *, ...);
1258 static void mips16_macro_build
1259 (expressionS *, const char *, const char *, va_list *);
1260 static void load_register (int, expressionS *, int);
1261 static void macro_start (void);
1262 static void macro_end (void);
1263 static void macro (struct mips_cl_insn *ip, char *str);
1264 static void mips16_macro (struct mips_cl_insn * ip);
1265 static void mips_ip (char *str, struct mips_cl_insn * ip);
1266 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1267 static void mips16_immed
1268 (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1269 unsigned int, unsigned long *);
1270 static size_t my_getSmallExpression
1271 (expressionS *, bfd_reloc_code_real_type *, char *);
1272 static void my_getExpression (expressionS *, char *);
1273 static void s_align (int);
1274 static void s_change_sec (int);
1275 static void s_change_section (int);
1276 static void s_cons (int);
1277 static void s_float_cons (int);
1278 static void s_mips_globl (int);
1279 static void s_option (int);
1280 static void s_mipsset (int);
1281 static void s_abicalls (int);
1282 static void s_cpload (int);
1283 static void s_cpsetup (int);
1284 static void s_cplocal (int);
1285 static void s_cprestore (int);
1286 static void s_cpreturn (int);
1287 static void s_dtprelword (int);
1288 static void s_dtpreldword (int);
1289 static void s_tprelword (int);
1290 static void s_tpreldword (int);
1291 static void s_gpvalue (int);
1292 static void s_gpword (int);
1293 static void s_gpdword (int);
1294 static void s_ehword (int);
1295 static void s_cpadd (int);
1296 static void s_insn (int);
1297 static void s_nan (int);
1298 static void md_obj_begin (void);
1299 static void md_obj_end (void);
1300 static void s_mips_ent (int);
1301 static void s_mips_end (int);
1302 static void s_mips_frame (int);
1303 static void s_mips_mask (int reg_type);
1304 static void s_mips_stab (int);
1305 static void s_mips_weakext (int);
1306 static void s_mips_file (int);
1307 static void s_mips_loc (int);
1308 static bfd_boolean pic_need_relax (symbolS *, asection *);
1309 static int relaxed_branch_length (fragS *, asection *, int);
1310 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1311 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1312
1313 /* Table and functions used to map between CPU/ISA names, and
1314 ISA levels, and CPU numbers. */
1315
1316 struct mips_cpu_info
1317 {
1318 const char *name; /* CPU or ISA name. */
1319 int flags; /* MIPS_CPU_* flags. */
1320 int ase; /* Set of ASEs implemented by the CPU. */
1321 int isa; /* ISA level. */
1322 int cpu; /* CPU number (default CPU if ISA). */
1323 };
1324
1325 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1326
1327 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1328 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1329 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1330 \f
1331 /* Command-line options. */
1332 const char *md_shortopts = "O::g::G:";
1333
1334 enum options
1335 {
1336 OPTION_MARCH = OPTION_MD_BASE,
1337 OPTION_MTUNE,
1338 OPTION_MIPS1,
1339 OPTION_MIPS2,
1340 OPTION_MIPS3,
1341 OPTION_MIPS4,
1342 OPTION_MIPS5,
1343 OPTION_MIPS32,
1344 OPTION_MIPS64,
1345 OPTION_MIPS32R2,
1346 OPTION_MIPS32R3,
1347 OPTION_MIPS32R5,
1348 OPTION_MIPS64R2,
1349 OPTION_MIPS64R3,
1350 OPTION_MIPS64R5,
1351 OPTION_MIPS16,
1352 OPTION_NO_MIPS16,
1353 OPTION_MIPS3D,
1354 OPTION_NO_MIPS3D,
1355 OPTION_MDMX,
1356 OPTION_NO_MDMX,
1357 OPTION_DSP,
1358 OPTION_NO_DSP,
1359 OPTION_MT,
1360 OPTION_NO_MT,
1361 OPTION_VIRT,
1362 OPTION_NO_VIRT,
1363 OPTION_MSA,
1364 OPTION_NO_MSA,
1365 OPTION_SMARTMIPS,
1366 OPTION_NO_SMARTMIPS,
1367 OPTION_DSPR2,
1368 OPTION_NO_DSPR2,
1369 OPTION_EVA,
1370 OPTION_NO_EVA,
1371 OPTION_XPA,
1372 OPTION_NO_XPA,
1373 OPTION_MICROMIPS,
1374 OPTION_NO_MICROMIPS,
1375 OPTION_MCU,
1376 OPTION_NO_MCU,
1377 OPTION_COMPAT_ARCH_BASE,
1378 OPTION_M4650,
1379 OPTION_NO_M4650,
1380 OPTION_M4010,
1381 OPTION_NO_M4010,
1382 OPTION_M4100,
1383 OPTION_NO_M4100,
1384 OPTION_M3900,
1385 OPTION_NO_M3900,
1386 OPTION_M7000_HILO_FIX,
1387 OPTION_MNO_7000_HILO_FIX,
1388 OPTION_FIX_24K,
1389 OPTION_NO_FIX_24K,
1390 OPTION_FIX_RM7000,
1391 OPTION_NO_FIX_RM7000,
1392 OPTION_FIX_LOONGSON2F_JUMP,
1393 OPTION_NO_FIX_LOONGSON2F_JUMP,
1394 OPTION_FIX_LOONGSON2F_NOP,
1395 OPTION_NO_FIX_LOONGSON2F_NOP,
1396 OPTION_FIX_VR4120,
1397 OPTION_NO_FIX_VR4120,
1398 OPTION_FIX_VR4130,
1399 OPTION_NO_FIX_VR4130,
1400 OPTION_FIX_CN63XXP1,
1401 OPTION_NO_FIX_CN63XXP1,
1402 OPTION_TRAP,
1403 OPTION_BREAK,
1404 OPTION_EB,
1405 OPTION_EL,
1406 OPTION_FP32,
1407 OPTION_GP32,
1408 OPTION_CONSTRUCT_FLOATS,
1409 OPTION_NO_CONSTRUCT_FLOATS,
1410 OPTION_FP64,
1411 OPTION_GP64,
1412 OPTION_RELAX_BRANCH,
1413 OPTION_NO_RELAX_BRANCH,
1414 OPTION_INSN32,
1415 OPTION_NO_INSN32,
1416 OPTION_MSHARED,
1417 OPTION_MNO_SHARED,
1418 OPTION_MSYM32,
1419 OPTION_MNO_SYM32,
1420 OPTION_SOFT_FLOAT,
1421 OPTION_HARD_FLOAT,
1422 OPTION_SINGLE_FLOAT,
1423 OPTION_DOUBLE_FLOAT,
1424 OPTION_32,
1425 OPTION_CALL_SHARED,
1426 OPTION_CALL_NONPIC,
1427 OPTION_NON_SHARED,
1428 OPTION_XGOT,
1429 OPTION_MABI,
1430 OPTION_N32,
1431 OPTION_64,
1432 OPTION_MDEBUG,
1433 OPTION_NO_MDEBUG,
1434 OPTION_PDR,
1435 OPTION_NO_PDR,
1436 OPTION_MVXWORKS_PIC,
1437 OPTION_NAN,
1438 OPTION_END_OF_ENUM
1439 };
1440
1441 struct option md_longopts[] =
1442 {
1443 /* Options which specify architecture. */
1444 {"march", required_argument, NULL, OPTION_MARCH},
1445 {"mtune", required_argument, NULL, OPTION_MTUNE},
1446 {"mips0", no_argument, NULL, OPTION_MIPS1},
1447 {"mips1", no_argument, NULL, OPTION_MIPS1},
1448 {"mips2", no_argument, NULL, OPTION_MIPS2},
1449 {"mips3", no_argument, NULL, OPTION_MIPS3},
1450 {"mips4", no_argument, NULL, OPTION_MIPS4},
1451 {"mips5", no_argument, NULL, OPTION_MIPS5},
1452 {"mips32", no_argument, NULL, OPTION_MIPS32},
1453 {"mips64", no_argument, NULL, OPTION_MIPS64},
1454 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1455 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1456 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1457 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1458 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1459 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1460
1461 /* Options which specify Application Specific Extensions (ASEs). */
1462 {"mips16", no_argument, NULL, OPTION_MIPS16},
1463 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1464 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1465 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1466 {"mdmx", no_argument, NULL, OPTION_MDMX},
1467 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1468 {"mdsp", no_argument, NULL, OPTION_DSP},
1469 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1470 {"mmt", no_argument, NULL, OPTION_MT},
1471 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1472 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1473 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1474 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1475 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1476 {"meva", no_argument, NULL, OPTION_EVA},
1477 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1478 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1479 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1480 {"mmcu", no_argument, NULL, OPTION_MCU},
1481 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1482 {"mvirt", no_argument, NULL, OPTION_VIRT},
1483 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1484 {"mmsa", no_argument, NULL, OPTION_MSA},
1485 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1486 {"mxpa", no_argument, NULL, OPTION_XPA},
1487 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1488
1489 /* Old-style architecture options. Don't add more of these. */
1490 {"m4650", no_argument, NULL, OPTION_M4650},
1491 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1492 {"m4010", no_argument, NULL, OPTION_M4010},
1493 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1494 {"m4100", no_argument, NULL, OPTION_M4100},
1495 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1496 {"m3900", no_argument, NULL, OPTION_M3900},
1497 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1498
1499 /* Options which enable bug fixes. */
1500 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1501 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1502 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1503 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1504 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1505 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1506 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1507 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1508 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1509 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1510 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1511 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1512 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1513 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1514 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1515 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1516 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1517
1518 /* Miscellaneous options. */
1519 {"trap", no_argument, NULL, OPTION_TRAP},
1520 {"no-break", no_argument, NULL, OPTION_TRAP},
1521 {"break", no_argument, NULL, OPTION_BREAK},
1522 {"no-trap", no_argument, NULL, OPTION_BREAK},
1523 {"EB", no_argument, NULL, OPTION_EB},
1524 {"EL", no_argument, NULL, OPTION_EL},
1525 {"mfp32", no_argument, NULL, OPTION_FP32},
1526 {"mgp32", no_argument, NULL, OPTION_GP32},
1527 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1528 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1529 {"mfp64", no_argument, NULL, OPTION_FP64},
1530 {"mgp64", no_argument, NULL, OPTION_GP64},
1531 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1532 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1533 {"minsn32", no_argument, NULL, OPTION_INSN32},
1534 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1535 {"mshared", no_argument, NULL, OPTION_MSHARED},
1536 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1537 {"msym32", no_argument, NULL, OPTION_MSYM32},
1538 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1539 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1540 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1541 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1542 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1543
1544 /* Strictly speaking this next option is ELF specific,
1545 but we allow it for other ports as well in order to
1546 make testing easier. */
1547 {"32", no_argument, NULL, OPTION_32},
1548
1549 /* ELF-specific options. */
1550 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1551 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1552 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1553 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1554 {"xgot", no_argument, NULL, OPTION_XGOT},
1555 {"mabi", required_argument, NULL, OPTION_MABI},
1556 {"n32", no_argument, NULL, OPTION_N32},
1557 {"64", no_argument, NULL, OPTION_64},
1558 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1559 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1560 {"mpdr", no_argument, NULL, OPTION_PDR},
1561 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1562 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1563 {"mnan", required_argument, NULL, OPTION_NAN},
1564
1565 {NULL, no_argument, NULL, 0}
1566 };
1567 size_t md_longopts_size = sizeof (md_longopts);
1568 \f
1569 /* Information about either an Application Specific Extension or an
1570 optional architecture feature that, for simplicity, we treat in the
1571 same way as an ASE. */
1572 struct mips_ase
1573 {
1574 /* The name of the ASE, used in both the command-line and .set options. */
1575 const char *name;
1576
1577 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1578 and 64-bit architectures, the flags here refer to the subset that
1579 is available on both. */
1580 unsigned int flags;
1581
1582 /* The ASE_* flag used for instructions that are available on 64-bit
1583 architectures but that are not included in FLAGS. */
1584 unsigned int flags64;
1585
1586 /* The command-line options that turn the ASE on and off. */
1587 int option_on;
1588 int option_off;
1589
1590 /* The minimum required architecture revisions for MIPS32, MIPS64,
1591 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1592 int mips32_rev;
1593 int mips64_rev;
1594 int micromips32_rev;
1595 int micromips64_rev;
1596 };
1597
1598 /* A table of all supported ASEs. */
1599 static const struct mips_ase mips_ases[] = {
1600 { "dsp", ASE_DSP, ASE_DSP64,
1601 OPTION_DSP, OPTION_NO_DSP,
1602 2, 2, 2, 2 },
1603
1604 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1605 OPTION_DSPR2, OPTION_NO_DSPR2,
1606 2, 2, 2, 2 },
1607
1608 { "eva", ASE_EVA, 0,
1609 OPTION_EVA, OPTION_NO_EVA,
1610 2, 2, 2, 2 },
1611
1612 { "mcu", ASE_MCU, 0,
1613 OPTION_MCU, OPTION_NO_MCU,
1614 2, 2, 2, 2 },
1615
1616 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1617 { "mdmx", ASE_MDMX, 0,
1618 OPTION_MDMX, OPTION_NO_MDMX,
1619 -1, 1, -1, -1 },
1620
1621 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1622 { "mips3d", ASE_MIPS3D, 0,
1623 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1624 2, 1, -1, -1 },
1625
1626 { "mt", ASE_MT, 0,
1627 OPTION_MT, OPTION_NO_MT,
1628 2, 2, -1, -1 },
1629
1630 { "smartmips", ASE_SMARTMIPS, 0,
1631 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1632 1, -1, -1, -1 },
1633
1634 { "virt", ASE_VIRT, ASE_VIRT64,
1635 OPTION_VIRT, OPTION_NO_VIRT,
1636 2, 2, 2, 2 },
1637
1638 { "msa", ASE_MSA, ASE_MSA64,
1639 OPTION_MSA, OPTION_NO_MSA,
1640 2, 2, 2, 2 },
1641
1642 { "xpa", ASE_XPA, 0,
1643 OPTION_XPA, OPTION_NO_XPA,
1644 2, 2, -1, -1 }
1645 };
1646
1647 /* The set of ASEs that require -mfp64. */
1648 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX)
1649
1650 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1651 static const unsigned int mips_ase_groups[] = {
1652 ASE_DSP | ASE_DSPR2
1653 };
1654 \f
1655 /* Pseudo-op table.
1656
1657 The following pseudo-ops from the Kane and Heinrich MIPS book
1658 should be defined here, but are currently unsupported: .alias,
1659 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1660
1661 The following pseudo-ops from the Kane and Heinrich MIPS book are
1662 specific to the type of debugging information being generated, and
1663 should be defined by the object format: .aent, .begin, .bend,
1664 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1665 .vreg.
1666
1667 The following pseudo-ops from the Kane and Heinrich MIPS book are
1668 not MIPS CPU specific, but are also not specific to the object file
1669 format. This file is probably the best place to define them, but
1670 they are not currently supported: .asm0, .endr, .lab, .struct. */
1671
1672 static const pseudo_typeS mips_pseudo_table[] =
1673 {
1674 /* MIPS specific pseudo-ops. */
1675 {"option", s_option, 0},
1676 {"set", s_mipsset, 0},
1677 {"rdata", s_change_sec, 'r'},
1678 {"sdata", s_change_sec, 's'},
1679 {"livereg", s_ignore, 0},
1680 {"abicalls", s_abicalls, 0},
1681 {"cpload", s_cpload, 0},
1682 {"cpsetup", s_cpsetup, 0},
1683 {"cplocal", s_cplocal, 0},
1684 {"cprestore", s_cprestore, 0},
1685 {"cpreturn", s_cpreturn, 0},
1686 {"dtprelword", s_dtprelword, 0},
1687 {"dtpreldword", s_dtpreldword, 0},
1688 {"tprelword", s_tprelword, 0},
1689 {"tpreldword", s_tpreldword, 0},
1690 {"gpvalue", s_gpvalue, 0},
1691 {"gpword", s_gpword, 0},
1692 {"gpdword", s_gpdword, 0},
1693 {"ehword", s_ehword, 0},
1694 {"cpadd", s_cpadd, 0},
1695 {"insn", s_insn, 0},
1696 {"nan", s_nan, 0},
1697
1698 /* Relatively generic pseudo-ops that happen to be used on MIPS
1699 chips. */
1700 {"asciiz", stringer, 8 + 1},
1701 {"bss", s_change_sec, 'b'},
1702 {"err", s_err, 0},
1703 {"half", s_cons, 1},
1704 {"dword", s_cons, 3},
1705 {"weakext", s_mips_weakext, 0},
1706 {"origin", s_org, 0},
1707 {"repeat", s_rept, 0},
1708
1709 /* For MIPS this is non-standard, but we define it for consistency. */
1710 {"sbss", s_change_sec, 'B'},
1711
1712 /* These pseudo-ops are defined in read.c, but must be overridden
1713 here for one reason or another. */
1714 {"align", s_align, 0},
1715 {"byte", s_cons, 0},
1716 {"data", s_change_sec, 'd'},
1717 {"double", s_float_cons, 'd'},
1718 {"float", s_float_cons, 'f'},
1719 {"globl", s_mips_globl, 0},
1720 {"global", s_mips_globl, 0},
1721 {"hword", s_cons, 1},
1722 {"int", s_cons, 2},
1723 {"long", s_cons, 2},
1724 {"octa", s_cons, 4},
1725 {"quad", s_cons, 3},
1726 {"section", s_change_section, 0},
1727 {"short", s_cons, 1},
1728 {"single", s_float_cons, 'f'},
1729 {"stabd", s_mips_stab, 'd'},
1730 {"stabn", s_mips_stab, 'n'},
1731 {"stabs", s_mips_stab, 's'},
1732 {"text", s_change_sec, 't'},
1733 {"word", s_cons, 2},
1734
1735 { "extern", ecoff_directive_extern, 0},
1736
1737 { NULL, NULL, 0 },
1738 };
1739
1740 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1741 {
1742 /* These pseudo-ops should be defined by the object file format.
1743 However, a.out doesn't support them, so we have versions here. */
1744 {"aent", s_mips_ent, 1},
1745 {"bgnb", s_ignore, 0},
1746 {"end", s_mips_end, 0},
1747 {"endb", s_ignore, 0},
1748 {"ent", s_mips_ent, 0},
1749 {"file", s_mips_file, 0},
1750 {"fmask", s_mips_mask, 'F'},
1751 {"frame", s_mips_frame, 0},
1752 {"loc", s_mips_loc, 0},
1753 {"mask", s_mips_mask, 'R'},
1754 {"verstamp", s_ignore, 0},
1755 { NULL, NULL, 0 },
1756 };
1757
1758 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1759 purpose of the `.dc.a' internal pseudo-op. */
1760
1761 int
1762 mips_address_bytes (void)
1763 {
1764 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1765 }
1766
1767 extern void pop_insert (const pseudo_typeS *);
1768
1769 void
1770 mips_pop_insert (void)
1771 {
1772 pop_insert (mips_pseudo_table);
1773 if (! ECOFF_DEBUGGING)
1774 pop_insert (mips_nonecoff_pseudo_table);
1775 }
1776 \f
1777 /* Symbols labelling the current insn. */
1778
1779 struct insn_label_list
1780 {
1781 struct insn_label_list *next;
1782 symbolS *label;
1783 };
1784
1785 static struct insn_label_list *free_insn_labels;
1786 #define label_list tc_segment_info_data.labels
1787
1788 static void mips_clear_insn_labels (void);
1789 static void mips_mark_labels (void);
1790 static void mips_compressed_mark_labels (void);
1791
1792 static inline void
1793 mips_clear_insn_labels (void)
1794 {
1795 register struct insn_label_list **pl;
1796 segment_info_type *si;
1797
1798 if (now_seg)
1799 {
1800 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1801 ;
1802
1803 si = seg_info (now_seg);
1804 *pl = si->label_list;
1805 si->label_list = NULL;
1806 }
1807 }
1808
1809 /* Mark instruction labels in MIPS16/microMIPS mode. */
1810
1811 static inline void
1812 mips_mark_labels (void)
1813 {
1814 if (HAVE_CODE_COMPRESSION)
1815 mips_compressed_mark_labels ();
1816 }
1817 \f
1818 static char *expr_end;
1819
1820 /* An expression in a macro instruction. This is set by mips_ip and
1821 mips16_ip and when populated is always an O_constant. */
1822
1823 static expressionS imm_expr;
1824
1825 /* The relocatable field in an instruction and the relocs associated
1826 with it. These variables are used for instructions like LUI and
1827 JAL as well as true offsets. They are also used for address
1828 operands in macros. */
1829
1830 static expressionS offset_expr;
1831 static bfd_reloc_code_real_type offset_reloc[3]
1832 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1833
1834 /* This is set to the resulting size of the instruction to be produced
1835 by mips16_ip if an explicit extension is used or by mips_ip if an
1836 explicit size is supplied. */
1837
1838 static unsigned int forced_insn_length;
1839
1840 /* True if we are assembling an instruction. All dot symbols defined during
1841 this time should be treated as code labels. */
1842
1843 static bfd_boolean mips_assembling_insn;
1844
1845 /* The pdr segment for per procedure frame/regmask info. Not used for
1846 ECOFF debugging. */
1847
1848 static segT pdr_seg;
1849
1850 /* The default target format to use. */
1851
1852 #if defined (TE_FreeBSD)
1853 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1854 #elif defined (TE_TMIPS)
1855 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1856 #else
1857 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1858 #endif
1859
1860 const char *
1861 mips_target_format (void)
1862 {
1863 switch (OUTPUT_FLAVOR)
1864 {
1865 case bfd_target_elf_flavour:
1866 #ifdef TE_VXWORKS
1867 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1868 return (target_big_endian
1869 ? "elf32-bigmips-vxworks"
1870 : "elf32-littlemips-vxworks");
1871 #endif
1872 return (target_big_endian
1873 ? (HAVE_64BIT_OBJECTS
1874 ? ELF_TARGET ("elf64-", "big")
1875 : (HAVE_NEWABI
1876 ? ELF_TARGET ("elf32-n", "big")
1877 : ELF_TARGET ("elf32-", "big")))
1878 : (HAVE_64BIT_OBJECTS
1879 ? ELF_TARGET ("elf64-", "little")
1880 : (HAVE_NEWABI
1881 ? ELF_TARGET ("elf32-n", "little")
1882 : ELF_TARGET ("elf32-", "little"))));
1883 default:
1884 abort ();
1885 return NULL;
1886 }
1887 }
1888
1889 /* Return the ISA revision that is currently in use, or 0 if we are
1890 generating code for MIPS V or below. */
1891
1892 static int
1893 mips_isa_rev (void)
1894 {
1895 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1896 return 2;
1897
1898 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1899 return 3;
1900
1901 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1902 return 5;
1903
1904 /* microMIPS implies revision 2 or above. */
1905 if (mips_opts.micromips)
1906 return 2;
1907
1908 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1909 return 1;
1910
1911 return 0;
1912 }
1913
1914 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1915
1916 static unsigned int
1917 mips_ase_mask (unsigned int flags)
1918 {
1919 unsigned int i;
1920
1921 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1922 if (flags & mips_ase_groups[i])
1923 flags |= mips_ase_groups[i];
1924 return flags;
1925 }
1926
1927 /* Check whether the current ISA supports ASE. Issue a warning if
1928 appropriate. */
1929
1930 static void
1931 mips_check_isa_supports_ase (const struct mips_ase *ase)
1932 {
1933 const char *base;
1934 int min_rev, size;
1935 static unsigned int warned_isa;
1936 static unsigned int warned_fp32;
1937
1938 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
1939 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
1940 else
1941 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
1942 if ((min_rev < 0 || mips_isa_rev () < min_rev)
1943 && (warned_isa & ase->flags) != ase->flags)
1944 {
1945 warned_isa |= ase->flags;
1946 base = mips_opts.micromips ? "microMIPS" : "MIPS";
1947 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
1948 if (min_rev < 0)
1949 as_warn (_("the %d-bit %s architecture does not support the"
1950 " `%s' extension"), size, base, ase->name);
1951 else
1952 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
1953 ase->name, base, size, min_rev);
1954 }
1955 if ((ase->flags & FP64_ASES)
1956 && mips_opts.fp != 64
1957 && (warned_fp32 & ase->flags) != ase->flags)
1958 {
1959 warned_fp32 |= ase->flags;
1960 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
1961 }
1962 }
1963
1964 /* Check all enabled ASEs to see whether they are supported by the
1965 chosen architecture. */
1966
1967 static void
1968 mips_check_isa_supports_ases (void)
1969 {
1970 unsigned int i, mask;
1971
1972 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
1973 {
1974 mask = mips_ase_mask (mips_ases[i].flags);
1975 if ((mips_opts.ase & mask) == mips_ases[i].flags)
1976 mips_check_isa_supports_ase (&mips_ases[i]);
1977 }
1978 }
1979
1980 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
1981 that were affected. */
1982
1983 static unsigned int
1984 mips_set_ase (const struct mips_ase *ase, bfd_boolean enabled_p)
1985 {
1986 unsigned int mask;
1987
1988 mask = mips_ase_mask (ase->flags);
1989 mips_opts.ase &= ~mask;
1990 if (enabled_p)
1991 mips_opts.ase |= ase->flags;
1992 return mask;
1993 }
1994
1995 /* Return the ASE called NAME, or null if none. */
1996
1997 static const struct mips_ase *
1998 mips_lookup_ase (const char *name)
1999 {
2000 unsigned int i;
2001
2002 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2003 if (strcmp (name, mips_ases[i].name) == 0)
2004 return &mips_ases[i];
2005 return NULL;
2006 }
2007
2008 /* Return the length of a microMIPS instruction in bytes. If bits of
2009 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
2010 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
2011 major opcode) will require further modifications to the opcode
2012 table. */
2013
2014 static inline unsigned int
2015 micromips_insn_length (const struct mips_opcode *mo)
2016 {
2017 return (mo->mask >> 16) == 0 ? 2 : 4;
2018 }
2019
2020 /* Return the length of MIPS16 instruction OPCODE. */
2021
2022 static inline unsigned int
2023 mips16_opcode_length (unsigned long opcode)
2024 {
2025 return (opcode >> 16) == 0 ? 2 : 4;
2026 }
2027
2028 /* Return the length of instruction INSN. */
2029
2030 static inline unsigned int
2031 insn_length (const struct mips_cl_insn *insn)
2032 {
2033 if (mips_opts.micromips)
2034 return micromips_insn_length (insn->insn_mo);
2035 else if (mips_opts.mips16)
2036 return mips16_opcode_length (insn->insn_opcode);
2037 else
2038 return 4;
2039 }
2040
2041 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2042
2043 static void
2044 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2045 {
2046 size_t i;
2047
2048 insn->insn_mo = mo;
2049 insn->insn_opcode = mo->match;
2050 insn->frag = NULL;
2051 insn->where = 0;
2052 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2053 insn->fixp[i] = NULL;
2054 insn->fixed_p = (mips_opts.noreorder > 0);
2055 insn->noreorder_p = (mips_opts.noreorder > 0);
2056 insn->mips16_absolute_jump_p = 0;
2057 insn->complete_p = 0;
2058 insn->cleared_p = 0;
2059 }
2060
2061 /* Get a list of all the operands in INSN. */
2062
2063 static const struct mips_operand_array *
2064 insn_operands (const struct mips_cl_insn *insn)
2065 {
2066 if (insn->insn_mo >= &mips_opcodes[0]
2067 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2068 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2069
2070 if (insn->insn_mo >= &mips16_opcodes[0]
2071 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2072 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2073
2074 if (insn->insn_mo >= &micromips_opcodes[0]
2075 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2076 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2077
2078 abort ();
2079 }
2080
2081 /* Get a description of operand OPNO of INSN. */
2082
2083 static const struct mips_operand *
2084 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2085 {
2086 const struct mips_operand_array *operands;
2087
2088 operands = insn_operands (insn);
2089 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2090 abort ();
2091 return operands->operand[opno];
2092 }
2093
2094 /* Install UVAL as the value of OPERAND in INSN. */
2095
2096 static inline void
2097 insn_insert_operand (struct mips_cl_insn *insn,
2098 const struct mips_operand *operand, unsigned int uval)
2099 {
2100 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2101 }
2102
2103 /* Extract the value of OPERAND from INSN. */
2104
2105 static inline unsigned
2106 insn_extract_operand (const struct mips_cl_insn *insn,
2107 const struct mips_operand *operand)
2108 {
2109 return mips_extract_operand (operand, insn->insn_opcode);
2110 }
2111
2112 /* Record the current MIPS16/microMIPS mode in now_seg. */
2113
2114 static void
2115 mips_record_compressed_mode (void)
2116 {
2117 segment_info_type *si;
2118
2119 si = seg_info (now_seg);
2120 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2121 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2122 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2123 si->tc_segment_info_data.micromips = mips_opts.micromips;
2124 }
2125
2126 /* Read a standard MIPS instruction from BUF. */
2127
2128 static unsigned long
2129 read_insn (char *buf)
2130 {
2131 if (target_big_endian)
2132 return bfd_getb32 ((bfd_byte *) buf);
2133 else
2134 return bfd_getl32 ((bfd_byte *) buf);
2135 }
2136
2137 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2138 the next byte. */
2139
2140 static char *
2141 write_insn (char *buf, unsigned int insn)
2142 {
2143 md_number_to_chars (buf, insn, 4);
2144 return buf + 4;
2145 }
2146
2147 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2148 has length LENGTH. */
2149
2150 static unsigned long
2151 read_compressed_insn (char *buf, unsigned int length)
2152 {
2153 unsigned long insn;
2154 unsigned int i;
2155
2156 insn = 0;
2157 for (i = 0; i < length; i += 2)
2158 {
2159 insn <<= 16;
2160 if (target_big_endian)
2161 insn |= bfd_getb16 ((char *) buf);
2162 else
2163 insn |= bfd_getl16 ((char *) buf);
2164 buf += 2;
2165 }
2166 return insn;
2167 }
2168
2169 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2170 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2171
2172 static char *
2173 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2174 {
2175 unsigned int i;
2176
2177 for (i = 0; i < length; i += 2)
2178 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2179 return buf + length;
2180 }
2181
2182 /* Install INSN at the location specified by its "frag" and "where" fields. */
2183
2184 static void
2185 install_insn (const struct mips_cl_insn *insn)
2186 {
2187 char *f = insn->frag->fr_literal + insn->where;
2188 if (HAVE_CODE_COMPRESSION)
2189 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2190 else
2191 write_insn (f, insn->insn_opcode);
2192 mips_record_compressed_mode ();
2193 }
2194
2195 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2196 and install the opcode in the new location. */
2197
2198 static void
2199 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2200 {
2201 size_t i;
2202
2203 insn->frag = frag;
2204 insn->where = where;
2205 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2206 if (insn->fixp[i] != NULL)
2207 {
2208 insn->fixp[i]->fx_frag = frag;
2209 insn->fixp[i]->fx_where = where;
2210 }
2211 install_insn (insn);
2212 }
2213
2214 /* Add INSN to the end of the output. */
2215
2216 static void
2217 add_fixed_insn (struct mips_cl_insn *insn)
2218 {
2219 char *f = frag_more (insn_length (insn));
2220 move_insn (insn, frag_now, f - frag_now->fr_literal);
2221 }
2222
2223 /* Start a variant frag and move INSN to the start of the variant part,
2224 marking it as fixed. The other arguments are as for frag_var. */
2225
2226 static void
2227 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2228 relax_substateT subtype, symbolS *symbol, offsetT offset)
2229 {
2230 frag_grow (max_chars);
2231 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2232 insn->fixed_p = 1;
2233 frag_var (rs_machine_dependent, max_chars, var,
2234 subtype, symbol, offset, NULL);
2235 }
2236
2237 /* Insert N copies of INSN into the history buffer, starting at
2238 position FIRST. Neither FIRST nor N need to be clipped. */
2239
2240 static void
2241 insert_into_history (unsigned int first, unsigned int n,
2242 const struct mips_cl_insn *insn)
2243 {
2244 if (mips_relax.sequence != 2)
2245 {
2246 unsigned int i;
2247
2248 for (i = ARRAY_SIZE (history); i-- > first;)
2249 if (i >= first + n)
2250 history[i] = history[i - n];
2251 else
2252 history[i] = *insn;
2253 }
2254 }
2255
2256 /* Clear the error in insn_error. */
2257
2258 static void
2259 clear_insn_error (void)
2260 {
2261 memset (&insn_error, 0, sizeof (insn_error));
2262 }
2263
2264 /* Possibly record error message MSG for the current instruction.
2265 If the error is about a particular argument, ARGNUM is the 1-based
2266 number of that argument, otherwise it is 0. FORMAT is the format
2267 of MSG. Return true if MSG was used, false if the current message
2268 was kept. */
2269
2270 static bfd_boolean
2271 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2272 const char *msg)
2273 {
2274 if (argnum == 0)
2275 {
2276 /* Give priority to errors against specific arguments, and to
2277 the first whole-instruction message. */
2278 if (insn_error.msg)
2279 return FALSE;
2280 }
2281 else
2282 {
2283 /* Keep insn_error if it is against a later argument. */
2284 if (argnum < insn_error.min_argnum)
2285 return FALSE;
2286
2287 /* If both errors are against the same argument but are different,
2288 give up on reporting a specific error for this argument.
2289 See the comment about mips_insn_error for details. */
2290 if (argnum == insn_error.min_argnum
2291 && insn_error.msg
2292 && strcmp (insn_error.msg, msg) != 0)
2293 {
2294 insn_error.msg = 0;
2295 insn_error.min_argnum += 1;
2296 return FALSE;
2297 }
2298 }
2299 insn_error.min_argnum = argnum;
2300 insn_error.format = format;
2301 insn_error.msg = msg;
2302 return TRUE;
2303 }
2304
2305 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2306 as for set_insn_error_format. */
2307
2308 static void
2309 set_insn_error (int argnum, const char *msg)
2310 {
2311 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2312 }
2313
2314 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2315 as for set_insn_error_format. */
2316
2317 static void
2318 set_insn_error_i (int argnum, const char *msg, int i)
2319 {
2320 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2321 insn_error.u.i = i;
2322 }
2323
2324 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2325 are as for set_insn_error_format. */
2326
2327 static void
2328 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2329 {
2330 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2331 {
2332 insn_error.u.ss[0] = s1;
2333 insn_error.u.ss[1] = s2;
2334 }
2335 }
2336
2337 /* Report the error in insn_error, which is against assembly code STR. */
2338
2339 static void
2340 report_insn_error (const char *str)
2341 {
2342 const char *msg;
2343
2344 msg = ACONCAT ((insn_error.msg, " `%s'", NULL));
2345 switch (insn_error.format)
2346 {
2347 case ERR_FMT_PLAIN:
2348 as_bad (msg, str);
2349 break;
2350
2351 case ERR_FMT_I:
2352 as_bad (msg, insn_error.u.i, str);
2353 break;
2354
2355 case ERR_FMT_SS:
2356 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2357 break;
2358 }
2359 }
2360
2361 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2362 the idea is to make it obvious at a glance that each errata is
2363 included. */
2364
2365 static void
2366 init_vr4120_conflicts (void)
2367 {
2368 #define CONFLICT(FIRST, SECOND) \
2369 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2370
2371 /* Errata 21 - [D]DIV[U] after [D]MACC */
2372 CONFLICT (MACC, DIV);
2373 CONFLICT (DMACC, DIV);
2374
2375 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2376 CONFLICT (DMULT, DMULT);
2377 CONFLICT (DMULT, DMACC);
2378 CONFLICT (DMACC, DMULT);
2379 CONFLICT (DMACC, DMACC);
2380
2381 /* Errata 24 - MT{LO,HI} after [D]MACC */
2382 CONFLICT (MACC, MTHILO);
2383 CONFLICT (DMACC, MTHILO);
2384
2385 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2386 instruction is executed immediately after a MACC or DMACC
2387 instruction, the result of [either instruction] is incorrect." */
2388 CONFLICT (MACC, MULT);
2389 CONFLICT (MACC, DMULT);
2390 CONFLICT (DMACC, MULT);
2391 CONFLICT (DMACC, DMULT);
2392
2393 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2394 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2395 DDIV or DDIVU instruction, the result of the MACC or
2396 DMACC instruction is incorrect.". */
2397 CONFLICT (DMULT, MACC);
2398 CONFLICT (DMULT, DMACC);
2399 CONFLICT (DIV, MACC);
2400 CONFLICT (DIV, DMACC);
2401
2402 #undef CONFLICT
2403 }
2404
2405 struct regname {
2406 const char *name;
2407 unsigned int num;
2408 };
2409
2410 #define RNUM_MASK 0x00000ff
2411 #define RTYPE_MASK 0x0ffff00
2412 #define RTYPE_NUM 0x0000100
2413 #define RTYPE_FPU 0x0000200
2414 #define RTYPE_FCC 0x0000400
2415 #define RTYPE_VEC 0x0000800
2416 #define RTYPE_GP 0x0001000
2417 #define RTYPE_CP0 0x0002000
2418 #define RTYPE_PC 0x0004000
2419 #define RTYPE_ACC 0x0008000
2420 #define RTYPE_CCC 0x0010000
2421 #define RTYPE_VI 0x0020000
2422 #define RTYPE_VF 0x0040000
2423 #define RTYPE_R5900_I 0x0080000
2424 #define RTYPE_R5900_Q 0x0100000
2425 #define RTYPE_R5900_R 0x0200000
2426 #define RTYPE_R5900_ACC 0x0400000
2427 #define RTYPE_MSA 0x0800000
2428 #define RWARN 0x8000000
2429
2430 #define GENERIC_REGISTER_NUMBERS \
2431 {"$0", RTYPE_NUM | 0}, \
2432 {"$1", RTYPE_NUM | 1}, \
2433 {"$2", RTYPE_NUM | 2}, \
2434 {"$3", RTYPE_NUM | 3}, \
2435 {"$4", RTYPE_NUM | 4}, \
2436 {"$5", RTYPE_NUM | 5}, \
2437 {"$6", RTYPE_NUM | 6}, \
2438 {"$7", RTYPE_NUM | 7}, \
2439 {"$8", RTYPE_NUM | 8}, \
2440 {"$9", RTYPE_NUM | 9}, \
2441 {"$10", RTYPE_NUM | 10}, \
2442 {"$11", RTYPE_NUM | 11}, \
2443 {"$12", RTYPE_NUM | 12}, \
2444 {"$13", RTYPE_NUM | 13}, \
2445 {"$14", RTYPE_NUM | 14}, \
2446 {"$15", RTYPE_NUM | 15}, \
2447 {"$16", RTYPE_NUM | 16}, \
2448 {"$17", RTYPE_NUM | 17}, \
2449 {"$18", RTYPE_NUM | 18}, \
2450 {"$19", RTYPE_NUM | 19}, \
2451 {"$20", RTYPE_NUM | 20}, \
2452 {"$21", RTYPE_NUM | 21}, \
2453 {"$22", RTYPE_NUM | 22}, \
2454 {"$23", RTYPE_NUM | 23}, \
2455 {"$24", RTYPE_NUM | 24}, \
2456 {"$25", RTYPE_NUM | 25}, \
2457 {"$26", RTYPE_NUM | 26}, \
2458 {"$27", RTYPE_NUM | 27}, \
2459 {"$28", RTYPE_NUM | 28}, \
2460 {"$29", RTYPE_NUM | 29}, \
2461 {"$30", RTYPE_NUM | 30}, \
2462 {"$31", RTYPE_NUM | 31}
2463
2464 #define FPU_REGISTER_NAMES \
2465 {"$f0", RTYPE_FPU | 0}, \
2466 {"$f1", RTYPE_FPU | 1}, \
2467 {"$f2", RTYPE_FPU | 2}, \
2468 {"$f3", RTYPE_FPU | 3}, \
2469 {"$f4", RTYPE_FPU | 4}, \
2470 {"$f5", RTYPE_FPU | 5}, \
2471 {"$f6", RTYPE_FPU | 6}, \
2472 {"$f7", RTYPE_FPU | 7}, \
2473 {"$f8", RTYPE_FPU | 8}, \
2474 {"$f9", RTYPE_FPU | 9}, \
2475 {"$f10", RTYPE_FPU | 10}, \
2476 {"$f11", RTYPE_FPU | 11}, \
2477 {"$f12", RTYPE_FPU | 12}, \
2478 {"$f13", RTYPE_FPU | 13}, \
2479 {"$f14", RTYPE_FPU | 14}, \
2480 {"$f15", RTYPE_FPU | 15}, \
2481 {"$f16", RTYPE_FPU | 16}, \
2482 {"$f17", RTYPE_FPU | 17}, \
2483 {"$f18", RTYPE_FPU | 18}, \
2484 {"$f19", RTYPE_FPU | 19}, \
2485 {"$f20", RTYPE_FPU | 20}, \
2486 {"$f21", RTYPE_FPU | 21}, \
2487 {"$f22", RTYPE_FPU | 22}, \
2488 {"$f23", RTYPE_FPU | 23}, \
2489 {"$f24", RTYPE_FPU | 24}, \
2490 {"$f25", RTYPE_FPU | 25}, \
2491 {"$f26", RTYPE_FPU | 26}, \
2492 {"$f27", RTYPE_FPU | 27}, \
2493 {"$f28", RTYPE_FPU | 28}, \
2494 {"$f29", RTYPE_FPU | 29}, \
2495 {"$f30", RTYPE_FPU | 30}, \
2496 {"$f31", RTYPE_FPU | 31}
2497
2498 #define FPU_CONDITION_CODE_NAMES \
2499 {"$fcc0", RTYPE_FCC | 0}, \
2500 {"$fcc1", RTYPE_FCC | 1}, \
2501 {"$fcc2", RTYPE_FCC | 2}, \
2502 {"$fcc3", RTYPE_FCC | 3}, \
2503 {"$fcc4", RTYPE_FCC | 4}, \
2504 {"$fcc5", RTYPE_FCC | 5}, \
2505 {"$fcc6", RTYPE_FCC | 6}, \
2506 {"$fcc7", RTYPE_FCC | 7}
2507
2508 #define COPROC_CONDITION_CODE_NAMES \
2509 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2510 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2511 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2512 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2513 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2514 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2515 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2516 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2517
2518 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2519 {"$a4", RTYPE_GP | 8}, \
2520 {"$a5", RTYPE_GP | 9}, \
2521 {"$a6", RTYPE_GP | 10}, \
2522 {"$a7", RTYPE_GP | 11}, \
2523 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2524 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2525 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2526 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2527 {"$t0", RTYPE_GP | 12}, \
2528 {"$t1", RTYPE_GP | 13}, \
2529 {"$t2", RTYPE_GP | 14}, \
2530 {"$t3", RTYPE_GP | 15}
2531
2532 #define O32_SYMBOLIC_REGISTER_NAMES \
2533 {"$t0", RTYPE_GP | 8}, \
2534 {"$t1", RTYPE_GP | 9}, \
2535 {"$t2", RTYPE_GP | 10}, \
2536 {"$t3", RTYPE_GP | 11}, \
2537 {"$t4", RTYPE_GP | 12}, \
2538 {"$t5", RTYPE_GP | 13}, \
2539 {"$t6", RTYPE_GP | 14}, \
2540 {"$t7", RTYPE_GP | 15}, \
2541 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2542 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2543 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2544 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2545
2546 /* Remaining symbolic register names */
2547 #define SYMBOLIC_REGISTER_NAMES \
2548 {"$zero", RTYPE_GP | 0}, \
2549 {"$at", RTYPE_GP | 1}, \
2550 {"$AT", RTYPE_GP | 1}, \
2551 {"$v0", RTYPE_GP | 2}, \
2552 {"$v1", RTYPE_GP | 3}, \
2553 {"$a0", RTYPE_GP | 4}, \
2554 {"$a1", RTYPE_GP | 5}, \
2555 {"$a2", RTYPE_GP | 6}, \
2556 {"$a3", RTYPE_GP | 7}, \
2557 {"$s0", RTYPE_GP | 16}, \
2558 {"$s1", RTYPE_GP | 17}, \
2559 {"$s2", RTYPE_GP | 18}, \
2560 {"$s3", RTYPE_GP | 19}, \
2561 {"$s4", RTYPE_GP | 20}, \
2562 {"$s5", RTYPE_GP | 21}, \
2563 {"$s6", RTYPE_GP | 22}, \
2564 {"$s7", RTYPE_GP | 23}, \
2565 {"$t8", RTYPE_GP | 24}, \
2566 {"$t9", RTYPE_GP | 25}, \
2567 {"$k0", RTYPE_GP | 26}, \
2568 {"$kt0", RTYPE_GP | 26}, \
2569 {"$k1", RTYPE_GP | 27}, \
2570 {"$kt1", RTYPE_GP | 27}, \
2571 {"$gp", RTYPE_GP | 28}, \
2572 {"$sp", RTYPE_GP | 29}, \
2573 {"$s8", RTYPE_GP | 30}, \
2574 {"$fp", RTYPE_GP | 30}, \
2575 {"$ra", RTYPE_GP | 31}
2576
2577 #define MIPS16_SPECIAL_REGISTER_NAMES \
2578 {"$pc", RTYPE_PC | 0}
2579
2580 #define MDMX_VECTOR_REGISTER_NAMES \
2581 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2582 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2583 {"$v2", RTYPE_VEC | 2}, \
2584 {"$v3", RTYPE_VEC | 3}, \
2585 {"$v4", RTYPE_VEC | 4}, \
2586 {"$v5", RTYPE_VEC | 5}, \
2587 {"$v6", RTYPE_VEC | 6}, \
2588 {"$v7", RTYPE_VEC | 7}, \
2589 {"$v8", RTYPE_VEC | 8}, \
2590 {"$v9", RTYPE_VEC | 9}, \
2591 {"$v10", RTYPE_VEC | 10}, \
2592 {"$v11", RTYPE_VEC | 11}, \
2593 {"$v12", RTYPE_VEC | 12}, \
2594 {"$v13", RTYPE_VEC | 13}, \
2595 {"$v14", RTYPE_VEC | 14}, \
2596 {"$v15", RTYPE_VEC | 15}, \
2597 {"$v16", RTYPE_VEC | 16}, \
2598 {"$v17", RTYPE_VEC | 17}, \
2599 {"$v18", RTYPE_VEC | 18}, \
2600 {"$v19", RTYPE_VEC | 19}, \
2601 {"$v20", RTYPE_VEC | 20}, \
2602 {"$v21", RTYPE_VEC | 21}, \
2603 {"$v22", RTYPE_VEC | 22}, \
2604 {"$v23", RTYPE_VEC | 23}, \
2605 {"$v24", RTYPE_VEC | 24}, \
2606 {"$v25", RTYPE_VEC | 25}, \
2607 {"$v26", RTYPE_VEC | 26}, \
2608 {"$v27", RTYPE_VEC | 27}, \
2609 {"$v28", RTYPE_VEC | 28}, \
2610 {"$v29", RTYPE_VEC | 29}, \
2611 {"$v30", RTYPE_VEC | 30}, \
2612 {"$v31", RTYPE_VEC | 31}
2613
2614 #define R5900_I_NAMES \
2615 {"$I", RTYPE_R5900_I | 0}
2616
2617 #define R5900_Q_NAMES \
2618 {"$Q", RTYPE_R5900_Q | 0}
2619
2620 #define R5900_R_NAMES \
2621 {"$R", RTYPE_R5900_R | 0}
2622
2623 #define R5900_ACC_NAMES \
2624 {"$ACC", RTYPE_R5900_ACC | 0 }
2625
2626 #define MIPS_DSP_ACCUMULATOR_NAMES \
2627 {"$ac0", RTYPE_ACC | 0}, \
2628 {"$ac1", RTYPE_ACC | 1}, \
2629 {"$ac2", RTYPE_ACC | 2}, \
2630 {"$ac3", RTYPE_ACC | 3}
2631
2632 static const struct regname reg_names[] = {
2633 GENERIC_REGISTER_NUMBERS,
2634 FPU_REGISTER_NAMES,
2635 FPU_CONDITION_CODE_NAMES,
2636 COPROC_CONDITION_CODE_NAMES,
2637
2638 /* The $txx registers depends on the abi,
2639 these will be added later into the symbol table from
2640 one of the tables below once mips_abi is set after
2641 parsing of arguments from the command line. */
2642 SYMBOLIC_REGISTER_NAMES,
2643
2644 MIPS16_SPECIAL_REGISTER_NAMES,
2645 MDMX_VECTOR_REGISTER_NAMES,
2646 R5900_I_NAMES,
2647 R5900_Q_NAMES,
2648 R5900_R_NAMES,
2649 R5900_ACC_NAMES,
2650 MIPS_DSP_ACCUMULATOR_NAMES,
2651 {0, 0}
2652 };
2653
2654 static const struct regname reg_names_o32[] = {
2655 O32_SYMBOLIC_REGISTER_NAMES,
2656 {0, 0}
2657 };
2658
2659 static const struct regname reg_names_n32n64[] = {
2660 N32N64_SYMBOLIC_REGISTER_NAMES,
2661 {0, 0}
2662 };
2663
2664 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2665 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2666 of these register symbols, return the associated vector register,
2667 otherwise return SYMVAL itself. */
2668
2669 static unsigned int
2670 mips_prefer_vec_regno (unsigned int symval)
2671 {
2672 if ((symval & -2) == (RTYPE_GP | 2))
2673 return RTYPE_VEC | (symval & 1);
2674 return symval;
2675 }
2676
2677 /* Return true if string [S, E) is a valid register name, storing its
2678 symbol value in *SYMVAL_PTR if so. */
2679
2680 static bfd_boolean
2681 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2682 {
2683 char save_c;
2684 symbolS *symbol;
2685
2686 /* Terminate name. */
2687 save_c = *e;
2688 *e = '\0';
2689
2690 /* Look up the name. */
2691 symbol = symbol_find (s);
2692 *e = save_c;
2693
2694 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2695 return FALSE;
2696
2697 *symval_ptr = S_GET_VALUE (symbol);
2698 return TRUE;
2699 }
2700
2701 /* Return true if the string at *SPTR is a valid register name. Allow it
2702 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2703 is nonnull.
2704
2705 When returning true, move *SPTR past the register, store the
2706 register's symbol value in *SYMVAL_PTR and the channel mask in
2707 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2708 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2709 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2710
2711 static bfd_boolean
2712 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2713 unsigned int *channels_ptr)
2714 {
2715 char *s, *e, *m;
2716 const char *q;
2717 unsigned int channels, symval, bit;
2718
2719 /* Find end of name. */
2720 s = e = *sptr;
2721 if (is_name_beginner (*e))
2722 ++e;
2723 while (is_part_of_name (*e))
2724 ++e;
2725
2726 channels = 0;
2727 if (!mips_parse_register_1 (s, e, &symval))
2728 {
2729 if (!channels_ptr)
2730 return FALSE;
2731
2732 /* Eat characters from the end of the string that are valid
2733 channel suffixes. The preceding register must be $ACC or
2734 end with a digit, so there is no ambiguity. */
2735 bit = 1;
2736 m = e;
2737 for (q = "wzyx"; *q; q++, bit <<= 1)
2738 if (m > s && m[-1] == *q)
2739 {
2740 --m;
2741 channels |= bit;
2742 }
2743
2744 if (channels == 0
2745 || !mips_parse_register_1 (s, m, &symval)
2746 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2747 return FALSE;
2748 }
2749
2750 *sptr = e;
2751 *symval_ptr = symval;
2752 if (channels_ptr)
2753 *channels_ptr = channels;
2754 return TRUE;
2755 }
2756
2757 /* Check if SPTR points at a valid register specifier according to TYPES.
2758 If so, then return 1, advance S to consume the specifier and store
2759 the register's number in REGNOP, otherwise return 0. */
2760
2761 static int
2762 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2763 {
2764 unsigned int regno;
2765
2766 if (mips_parse_register (s, &regno, NULL))
2767 {
2768 if (types & RTYPE_VEC)
2769 regno = mips_prefer_vec_regno (regno);
2770 if (regno & types)
2771 regno &= RNUM_MASK;
2772 else
2773 regno = ~0;
2774 }
2775 else
2776 {
2777 if (types & RWARN)
2778 as_warn (_("unrecognized register name `%s'"), *s);
2779 regno = ~0;
2780 }
2781 if (regnop)
2782 *regnop = regno;
2783 return regno <= RNUM_MASK;
2784 }
2785
2786 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2787 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2788
2789 static char *
2790 mips_parse_vu0_channels (char *s, unsigned int *channels)
2791 {
2792 unsigned int i;
2793
2794 *channels = 0;
2795 for (i = 0; i < 4; i++)
2796 if (*s == "xyzw"[i])
2797 {
2798 *channels |= 1 << (3 - i);
2799 ++s;
2800 }
2801 return s;
2802 }
2803
2804 /* Token types for parsed operand lists. */
2805 enum mips_operand_token_type {
2806 /* A plain register, e.g. $f2. */
2807 OT_REG,
2808
2809 /* A 4-bit XYZW channel mask. */
2810 OT_CHANNELS,
2811
2812 /* A constant vector index, e.g. [1]. */
2813 OT_INTEGER_INDEX,
2814
2815 /* A register vector index, e.g. [$2]. */
2816 OT_REG_INDEX,
2817
2818 /* A continuous range of registers, e.g. $s0-$s4. */
2819 OT_REG_RANGE,
2820
2821 /* A (possibly relocated) expression. */
2822 OT_INTEGER,
2823
2824 /* A floating-point value. */
2825 OT_FLOAT,
2826
2827 /* A single character. This can be '(', ')' or ',', but '(' only appears
2828 before OT_REGs. */
2829 OT_CHAR,
2830
2831 /* A doubled character, either "--" or "++". */
2832 OT_DOUBLE_CHAR,
2833
2834 /* The end of the operand list. */
2835 OT_END
2836 };
2837
2838 /* A parsed operand token. */
2839 struct mips_operand_token
2840 {
2841 /* The type of token. */
2842 enum mips_operand_token_type type;
2843 union
2844 {
2845 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2846 unsigned int regno;
2847
2848 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2849 unsigned int channels;
2850
2851 /* The integer value of an OT_INTEGER_INDEX. */
2852 addressT index;
2853
2854 /* The two register symbol values involved in an OT_REG_RANGE. */
2855 struct {
2856 unsigned int regno1;
2857 unsigned int regno2;
2858 } reg_range;
2859
2860 /* The value of an OT_INTEGER. The value is represented as an
2861 expression and the relocation operators that were applied to
2862 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2863 relocation operators were used. */
2864 struct {
2865 expressionS value;
2866 bfd_reloc_code_real_type relocs[3];
2867 } integer;
2868
2869 /* The binary data for an OT_FLOAT constant, and the number of bytes
2870 in the constant. */
2871 struct {
2872 unsigned char data[8];
2873 int length;
2874 } flt;
2875
2876 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2877 char ch;
2878 } u;
2879 };
2880
2881 /* An obstack used to construct lists of mips_operand_tokens. */
2882 static struct obstack mips_operand_tokens;
2883
2884 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2885
2886 static void
2887 mips_add_token (struct mips_operand_token *token,
2888 enum mips_operand_token_type type)
2889 {
2890 token->type = type;
2891 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2892 }
2893
2894 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2895 and OT_REG tokens for them if so, and return a pointer to the first
2896 unconsumed character. Return null otherwise. */
2897
2898 static char *
2899 mips_parse_base_start (char *s)
2900 {
2901 struct mips_operand_token token;
2902 unsigned int regno, channels;
2903 bfd_boolean decrement_p;
2904
2905 if (*s != '(')
2906 return 0;
2907
2908 ++s;
2909 SKIP_SPACE_TABS (s);
2910
2911 /* Only match "--" as part of a base expression. In other contexts "--X"
2912 is a double negative. */
2913 decrement_p = (s[0] == '-' && s[1] == '-');
2914 if (decrement_p)
2915 {
2916 s += 2;
2917 SKIP_SPACE_TABS (s);
2918 }
2919
2920 /* Allow a channel specifier because that leads to better error messages
2921 than treating something like "$vf0x++" as an expression. */
2922 if (!mips_parse_register (&s, &regno, &channels))
2923 return 0;
2924
2925 token.u.ch = '(';
2926 mips_add_token (&token, OT_CHAR);
2927
2928 if (decrement_p)
2929 {
2930 token.u.ch = '-';
2931 mips_add_token (&token, OT_DOUBLE_CHAR);
2932 }
2933
2934 token.u.regno = regno;
2935 mips_add_token (&token, OT_REG);
2936
2937 if (channels)
2938 {
2939 token.u.channels = channels;
2940 mips_add_token (&token, OT_CHANNELS);
2941 }
2942
2943 /* For consistency, only match "++" as part of base expressions too. */
2944 SKIP_SPACE_TABS (s);
2945 if (s[0] == '+' && s[1] == '+')
2946 {
2947 s += 2;
2948 token.u.ch = '+';
2949 mips_add_token (&token, OT_DOUBLE_CHAR);
2950 }
2951
2952 return s;
2953 }
2954
2955 /* Parse one or more tokens from S. Return a pointer to the first
2956 unconsumed character on success. Return null if an error was found
2957 and store the error text in insn_error. FLOAT_FORMAT is as for
2958 mips_parse_arguments. */
2959
2960 static char *
2961 mips_parse_argument_token (char *s, char float_format)
2962 {
2963 char *end, *save_in, *err;
2964 unsigned int regno1, regno2, channels;
2965 struct mips_operand_token token;
2966
2967 /* First look for "($reg", since we want to treat that as an
2968 OT_CHAR and OT_REG rather than an expression. */
2969 end = mips_parse_base_start (s);
2970 if (end)
2971 return end;
2972
2973 /* Handle other characters that end up as OT_CHARs. */
2974 if (*s == ')' || *s == ',')
2975 {
2976 token.u.ch = *s;
2977 mips_add_token (&token, OT_CHAR);
2978 ++s;
2979 return s;
2980 }
2981
2982 /* Handle tokens that start with a register. */
2983 if (mips_parse_register (&s, &regno1, &channels))
2984 {
2985 if (channels)
2986 {
2987 /* A register and a VU0 channel suffix. */
2988 token.u.regno = regno1;
2989 mips_add_token (&token, OT_REG);
2990
2991 token.u.channels = channels;
2992 mips_add_token (&token, OT_CHANNELS);
2993 return s;
2994 }
2995
2996 SKIP_SPACE_TABS (s);
2997 if (*s == '-')
2998 {
2999 /* A register range. */
3000 ++s;
3001 SKIP_SPACE_TABS (s);
3002 if (!mips_parse_register (&s, &regno2, NULL))
3003 {
3004 set_insn_error (0, _("invalid register range"));
3005 return 0;
3006 }
3007
3008 token.u.reg_range.regno1 = regno1;
3009 token.u.reg_range.regno2 = regno2;
3010 mips_add_token (&token, OT_REG_RANGE);
3011 return s;
3012 }
3013
3014 /* Add the register itself. */
3015 token.u.regno = regno1;
3016 mips_add_token (&token, OT_REG);
3017
3018 /* Check for a vector index. */
3019 if (*s == '[')
3020 {
3021 ++s;
3022 SKIP_SPACE_TABS (s);
3023 if (mips_parse_register (&s, &token.u.regno, NULL))
3024 mips_add_token (&token, OT_REG_INDEX);
3025 else
3026 {
3027 expressionS element;
3028
3029 my_getExpression (&element, s);
3030 if (element.X_op != O_constant)
3031 {
3032 set_insn_error (0, _("vector element must be constant"));
3033 return 0;
3034 }
3035 s = expr_end;
3036 token.u.index = element.X_add_number;
3037 mips_add_token (&token, OT_INTEGER_INDEX);
3038 }
3039 SKIP_SPACE_TABS (s);
3040 if (*s != ']')
3041 {
3042 set_insn_error (0, _("missing `]'"));
3043 return 0;
3044 }
3045 ++s;
3046 }
3047 return s;
3048 }
3049
3050 if (float_format)
3051 {
3052 /* First try to treat expressions as floats. */
3053 save_in = input_line_pointer;
3054 input_line_pointer = s;
3055 err = md_atof (float_format, (char *) token.u.flt.data,
3056 &token.u.flt.length);
3057 end = input_line_pointer;
3058 input_line_pointer = save_in;
3059 if (err && *err)
3060 {
3061 set_insn_error (0, err);
3062 return 0;
3063 }
3064 if (s != end)
3065 {
3066 mips_add_token (&token, OT_FLOAT);
3067 return end;
3068 }
3069 }
3070
3071 /* Treat everything else as an integer expression. */
3072 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3073 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3074 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3075 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3076 s = expr_end;
3077 mips_add_token (&token, OT_INTEGER);
3078 return s;
3079 }
3080
3081 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3082 if expressions should be treated as 32-bit floating-point constants,
3083 'd' if they should be treated as 64-bit floating-point constants,
3084 or 0 if they should be treated as integer expressions (the usual case).
3085
3086 Return a list of tokens on success, otherwise return 0. The caller
3087 must obstack_free the list after use. */
3088
3089 static struct mips_operand_token *
3090 mips_parse_arguments (char *s, char float_format)
3091 {
3092 struct mips_operand_token token;
3093
3094 SKIP_SPACE_TABS (s);
3095 while (*s)
3096 {
3097 s = mips_parse_argument_token (s, float_format);
3098 if (!s)
3099 {
3100 obstack_free (&mips_operand_tokens,
3101 obstack_finish (&mips_operand_tokens));
3102 return 0;
3103 }
3104 SKIP_SPACE_TABS (s);
3105 }
3106 mips_add_token (&token, OT_END);
3107 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3108 }
3109
3110 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3111 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3112
3113 static bfd_boolean
3114 is_opcode_valid (const struct mips_opcode *mo)
3115 {
3116 int isa = mips_opts.isa;
3117 int ase = mips_opts.ase;
3118 int fp_s, fp_d;
3119 unsigned int i;
3120
3121 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3122 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3123 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3124 ase |= mips_ases[i].flags64;
3125
3126 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3127 return FALSE;
3128
3129 /* Check whether the instruction or macro requires single-precision or
3130 double-precision floating-point support. Note that this information is
3131 stored differently in the opcode table for insns and macros. */
3132 if (mo->pinfo == INSN_MACRO)
3133 {
3134 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3135 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3136 }
3137 else
3138 {
3139 fp_s = mo->pinfo & FP_S;
3140 fp_d = mo->pinfo & FP_D;
3141 }
3142
3143 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3144 return FALSE;
3145
3146 if (fp_s && mips_opts.soft_float)
3147 return FALSE;
3148
3149 return TRUE;
3150 }
3151
3152 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3153 selected ISA and architecture. */
3154
3155 static bfd_boolean
3156 is_opcode_valid_16 (const struct mips_opcode *mo)
3157 {
3158 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3159 }
3160
3161 /* Return TRUE if the size of the microMIPS opcode MO matches one
3162 explicitly requested. Always TRUE in the standard MIPS mode. */
3163
3164 static bfd_boolean
3165 is_size_valid (const struct mips_opcode *mo)
3166 {
3167 if (!mips_opts.micromips)
3168 return TRUE;
3169
3170 if (mips_opts.insn32)
3171 {
3172 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3173 return FALSE;
3174 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3175 return FALSE;
3176 }
3177 if (!forced_insn_length)
3178 return TRUE;
3179 if (mo->pinfo == INSN_MACRO)
3180 return FALSE;
3181 return forced_insn_length == micromips_insn_length (mo);
3182 }
3183
3184 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3185 of the preceding instruction. Always TRUE in the standard MIPS mode.
3186
3187 We don't accept macros in 16-bit delay slots to avoid a case where
3188 a macro expansion fails because it relies on a preceding 32-bit real
3189 instruction to have matched and does not handle the operands correctly.
3190 The only macros that may expand to 16-bit instructions are JAL that
3191 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3192 and BGT (that likewise cannot be placed in a delay slot) that decay to
3193 a NOP. In all these cases the macros precede any corresponding real
3194 instruction definitions in the opcode table, so they will match in the
3195 second pass where the size of the delay slot is ignored and therefore
3196 produce correct code. */
3197
3198 static bfd_boolean
3199 is_delay_slot_valid (const struct mips_opcode *mo)
3200 {
3201 if (!mips_opts.micromips)
3202 return TRUE;
3203
3204 if (mo->pinfo == INSN_MACRO)
3205 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3206 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3207 && micromips_insn_length (mo) != 4)
3208 return FALSE;
3209 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3210 && micromips_insn_length (mo) != 2)
3211 return FALSE;
3212
3213 return TRUE;
3214 }
3215
3216 /* For consistency checking, verify that all bits of OPCODE are specified
3217 either by the match/mask part of the instruction definition, or by the
3218 operand list. Also build up a list of operands in OPERANDS.
3219
3220 INSN_BITS says which bits of the instruction are significant.
3221 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3222 provides the mips_operand description of each operand. DECODE_OPERAND
3223 is null for MIPS16 instructions. */
3224
3225 static int
3226 validate_mips_insn (const struct mips_opcode *opcode,
3227 unsigned long insn_bits,
3228 const struct mips_operand *(*decode_operand) (const char *),
3229 struct mips_operand_array *operands)
3230 {
3231 const char *s;
3232 unsigned long used_bits, doubled, undefined, opno, mask;
3233 const struct mips_operand *operand;
3234
3235 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3236 if ((mask & opcode->match) != opcode->match)
3237 {
3238 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3239 opcode->name, opcode->args);
3240 return 0;
3241 }
3242 used_bits = 0;
3243 opno = 0;
3244 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3245 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3246 for (s = opcode->args; *s; ++s)
3247 switch (*s)
3248 {
3249 case ',':
3250 case '(':
3251 case ')':
3252 break;
3253
3254 case '#':
3255 s++;
3256 break;
3257
3258 default:
3259 if (!decode_operand)
3260 operand = decode_mips16_operand (*s, FALSE);
3261 else
3262 operand = decode_operand (s);
3263 if (!operand && opcode->pinfo != INSN_MACRO)
3264 {
3265 as_bad (_("internal: unknown operand type: %s %s"),
3266 opcode->name, opcode->args);
3267 return 0;
3268 }
3269 gas_assert (opno < MAX_OPERANDS);
3270 operands->operand[opno] = operand;
3271 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3272 {
3273 used_bits = mips_insert_operand (operand, used_bits, -1);
3274 if (operand->type == OP_MDMX_IMM_REG)
3275 /* Bit 5 is the format selector (OB vs QH). The opcode table
3276 has separate entries for each format. */
3277 used_bits &= ~(1 << (operand->lsb + 5));
3278 if (operand->type == OP_ENTRY_EXIT_LIST)
3279 used_bits &= ~(mask & 0x700);
3280 }
3281 /* Skip prefix characters. */
3282 if (decode_operand && (*s == '+' || *s == 'm'))
3283 ++s;
3284 opno += 1;
3285 break;
3286 }
3287 doubled = used_bits & mask & insn_bits;
3288 if (doubled)
3289 {
3290 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3291 " %s %s"), doubled, opcode->name, opcode->args);
3292 return 0;
3293 }
3294 used_bits |= mask;
3295 undefined = ~used_bits & insn_bits;
3296 if (opcode->pinfo != INSN_MACRO && undefined)
3297 {
3298 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3299 undefined, opcode->name, opcode->args);
3300 return 0;
3301 }
3302 used_bits &= ~insn_bits;
3303 if (used_bits)
3304 {
3305 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3306 used_bits, opcode->name, opcode->args);
3307 return 0;
3308 }
3309 return 1;
3310 }
3311
3312 /* The MIPS16 version of validate_mips_insn. */
3313
3314 static int
3315 validate_mips16_insn (const struct mips_opcode *opcode,
3316 struct mips_operand_array *operands)
3317 {
3318 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3319 {
3320 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3321 instruction. Use TMP to describe the full instruction. */
3322 struct mips_opcode tmp;
3323
3324 tmp = *opcode;
3325 tmp.match <<= 16;
3326 tmp.mask <<= 16;
3327 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3328 }
3329 return validate_mips_insn (opcode, 0xffff, 0, operands);
3330 }
3331
3332 /* The microMIPS version of validate_mips_insn. */
3333
3334 static int
3335 validate_micromips_insn (const struct mips_opcode *opc,
3336 struct mips_operand_array *operands)
3337 {
3338 unsigned long insn_bits;
3339 unsigned long major;
3340 unsigned int length;
3341
3342 if (opc->pinfo == INSN_MACRO)
3343 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3344 operands);
3345
3346 length = micromips_insn_length (opc);
3347 if (length != 2 && length != 4)
3348 {
3349 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3350 "%s %s"), length, opc->name, opc->args);
3351 return 0;
3352 }
3353 major = opc->match >> (10 + 8 * (length - 2));
3354 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3355 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3356 {
3357 as_bad (_("internal error: bad microMIPS opcode "
3358 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3359 return 0;
3360 }
3361
3362 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3363 insn_bits = 1 << 4 * length;
3364 insn_bits <<= 4 * length;
3365 insn_bits -= 1;
3366 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3367 operands);
3368 }
3369
3370 /* This function is called once, at assembler startup time. It should set up
3371 all the tables, etc. that the MD part of the assembler will need. */
3372
3373 void
3374 md_begin (void)
3375 {
3376 const char *retval = NULL;
3377 int i = 0;
3378 int broken = 0;
3379
3380 if (mips_pic != NO_PIC)
3381 {
3382 if (g_switch_seen && g_switch_value != 0)
3383 as_bad (_("-G may not be used in position-independent code"));
3384 g_switch_value = 0;
3385 }
3386
3387 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3388 as_warn (_("could not set architecture and machine"));
3389
3390 op_hash = hash_new ();
3391
3392 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3393 for (i = 0; i < NUMOPCODES;)
3394 {
3395 const char *name = mips_opcodes[i].name;
3396
3397 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3398 if (retval != NULL)
3399 {
3400 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3401 mips_opcodes[i].name, retval);
3402 /* Probably a memory allocation problem? Give up now. */
3403 as_fatal (_("broken assembler, no assembly attempted"));
3404 }
3405 do
3406 {
3407 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3408 decode_mips_operand, &mips_operands[i]))
3409 broken = 1;
3410 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3411 {
3412 create_insn (&nop_insn, mips_opcodes + i);
3413 if (mips_fix_loongson2f_nop)
3414 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3415 nop_insn.fixed_p = 1;
3416 }
3417 ++i;
3418 }
3419 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3420 }
3421
3422 mips16_op_hash = hash_new ();
3423 mips16_operands = XCNEWVEC (struct mips_operand_array,
3424 bfd_mips16_num_opcodes);
3425
3426 i = 0;
3427 while (i < bfd_mips16_num_opcodes)
3428 {
3429 const char *name = mips16_opcodes[i].name;
3430
3431 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3432 if (retval != NULL)
3433 as_fatal (_("internal: can't hash `%s': %s"),
3434 mips16_opcodes[i].name, retval);
3435 do
3436 {
3437 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3438 broken = 1;
3439 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3440 {
3441 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3442 mips16_nop_insn.fixed_p = 1;
3443 }
3444 ++i;
3445 }
3446 while (i < bfd_mips16_num_opcodes
3447 && strcmp (mips16_opcodes[i].name, name) == 0);
3448 }
3449
3450 micromips_op_hash = hash_new ();
3451 micromips_operands = XCNEWVEC (struct mips_operand_array,
3452 bfd_micromips_num_opcodes);
3453
3454 i = 0;
3455 while (i < bfd_micromips_num_opcodes)
3456 {
3457 const char *name = micromips_opcodes[i].name;
3458
3459 retval = hash_insert (micromips_op_hash, name,
3460 (void *) &micromips_opcodes[i]);
3461 if (retval != NULL)
3462 as_fatal (_("internal: can't hash `%s': %s"),
3463 micromips_opcodes[i].name, retval);
3464 do
3465 {
3466 struct mips_cl_insn *micromips_nop_insn;
3467
3468 if (!validate_micromips_insn (&micromips_opcodes[i],
3469 &micromips_operands[i]))
3470 broken = 1;
3471
3472 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3473 {
3474 if (micromips_insn_length (micromips_opcodes + i) == 2)
3475 micromips_nop_insn = &micromips_nop16_insn;
3476 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3477 micromips_nop_insn = &micromips_nop32_insn;
3478 else
3479 continue;
3480
3481 if (micromips_nop_insn->insn_mo == NULL
3482 && strcmp (name, "nop") == 0)
3483 {
3484 create_insn (micromips_nop_insn, micromips_opcodes + i);
3485 micromips_nop_insn->fixed_p = 1;
3486 }
3487 }
3488 }
3489 while (++i < bfd_micromips_num_opcodes
3490 && strcmp (micromips_opcodes[i].name, name) == 0);
3491 }
3492
3493 if (broken)
3494 as_fatal (_("broken assembler, no assembly attempted"));
3495
3496 /* We add all the general register names to the symbol table. This
3497 helps us detect invalid uses of them. */
3498 for (i = 0; reg_names[i].name; i++)
3499 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3500 reg_names[i].num, /* & RNUM_MASK, */
3501 &zero_address_frag));
3502 if (HAVE_NEWABI)
3503 for (i = 0; reg_names_n32n64[i].name; i++)
3504 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3505 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3506 &zero_address_frag));
3507 else
3508 for (i = 0; reg_names_o32[i].name; i++)
3509 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3510 reg_names_o32[i].num, /* & RNUM_MASK, */
3511 &zero_address_frag));
3512
3513 for (i = 0; i < 32; i++)
3514 {
3515 char regname[7];
3516
3517 /* R5900 VU0 floating-point register. */
3518 regname[sizeof (rename) - 1] = 0;
3519 snprintf (regname, sizeof (regname) - 1, "$vf%d", i);
3520 symbol_table_insert (symbol_new (regname, reg_section,
3521 RTYPE_VF | i, &zero_address_frag));
3522
3523 /* R5900 VU0 integer register. */
3524 snprintf (regname, sizeof (regname) - 1, "$vi%d", i);
3525 symbol_table_insert (symbol_new (regname, reg_section,
3526 RTYPE_VI | i, &zero_address_frag));
3527
3528 /* MSA register. */
3529 snprintf (regname, sizeof (regname) - 1, "$w%d", i);
3530 symbol_table_insert (symbol_new (regname, reg_section,
3531 RTYPE_MSA | i, &zero_address_frag));
3532 }
3533
3534 obstack_init (&mips_operand_tokens);
3535
3536 mips_no_prev_insn ();
3537
3538 mips_gprmask = 0;
3539 mips_cprmask[0] = 0;
3540 mips_cprmask[1] = 0;
3541 mips_cprmask[2] = 0;
3542 mips_cprmask[3] = 0;
3543
3544 /* set the default alignment for the text section (2**2) */
3545 record_alignment (text_section, 2);
3546
3547 bfd_set_gp_size (stdoutput, g_switch_value);
3548
3549 /* On a native system other than VxWorks, sections must be aligned
3550 to 16 byte boundaries. When configured for an embedded ELF
3551 target, we don't bother. */
3552 if (strncmp (TARGET_OS, "elf", 3) != 0
3553 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3554 {
3555 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3556 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3557 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3558 }
3559
3560 /* Create a .reginfo section for register masks and a .mdebug
3561 section for debugging information. */
3562 {
3563 segT seg;
3564 subsegT subseg;
3565 flagword flags;
3566 segT sec;
3567
3568 seg = now_seg;
3569 subseg = now_subseg;
3570
3571 /* The ABI says this section should be loaded so that the
3572 running program can access it. However, we don't load it
3573 if we are configured for an embedded target */
3574 flags = SEC_READONLY | SEC_DATA;
3575 if (strncmp (TARGET_OS, "elf", 3) != 0)
3576 flags |= SEC_ALLOC | SEC_LOAD;
3577
3578 if (mips_abi != N64_ABI)
3579 {
3580 sec = subseg_new (".reginfo", (subsegT) 0);
3581
3582 bfd_set_section_flags (stdoutput, sec, flags);
3583 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3584
3585 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3586 }
3587 else
3588 {
3589 /* The 64-bit ABI uses a .MIPS.options section rather than
3590 .reginfo section. */
3591 sec = subseg_new (".MIPS.options", (subsegT) 0);
3592 bfd_set_section_flags (stdoutput, sec, flags);
3593 bfd_set_section_alignment (stdoutput, sec, 3);
3594
3595 /* Set up the option header. */
3596 {
3597 Elf_Internal_Options opthdr;
3598 char *f;
3599
3600 opthdr.kind = ODK_REGINFO;
3601 opthdr.size = (sizeof (Elf_External_Options)
3602 + sizeof (Elf64_External_RegInfo));
3603 opthdr.section = 0;
3604 opthdr.info = 0;
3605 f = frag_more (sizeof (Elf_External_Options));
3606 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3607 (Elf_External_Options *) f);
3608
3609 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3610 }
3611 }
3612
3613 if (ECOFF_DEBUGGING)
3614 {
3615 sec = subseg_new (".mdebug", (subsegT) 0);
3616 (void) bfd_set_section_flags (stdoutput, sec,
3617 SEC_HAS_CONTENTS | SEC_READONLY);
3618 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3619 }
3620 else if (mips_flag_pdr)
3621 {
3622 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3623 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3624 SEC_READONLY | SEC_RELOC
3625 | SEC_DEBUGGING);
3626 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3627 }
3628
3629 subseg_set (seg, subseg);
3630 }
3631
3632 if (! ECOFF_DEBUGGING)
3633 md_obj_begin ();
3634
3635 if (mips_fix_vr4120)
3636 init_vr4120_conflicts ();
3637 }
3638
3639 void
3640 md_mips_end (void)
3641 {
3642 mips_emit_delays ();
3643 if (! ECOFF_DEBUGGING)
3644 md_obj_end ();
3645 }
3646
3647 void
3648 md_assemble (char *str)
3649 {
3650 struct mips_cl_insn insn;
3651 bfd_reloc_code_real_type unused_reloc[3]
3652 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3653
3654 imm_expr.X_op = O_absent;
3655 offset_expr.X_op = O_absent;
3656 offset_reloc[0] = BFD_RELOC_UNUSED;
3657 offset_reloc[1] = BFD_RELOC_UNUSED;
3658 offset_reloc[2] = BFD_RELOC_UNUSED;
3659
3660 mips_mark_labels ();
3661 mips_assembling_insn = TRUE;
3662 clear_insn_error ();
3663
3664 if (mips_opts.mips16)
3665 mips16_ip (str, &insn);
3666 else
3667 {
3668 mips_ip (str, &insn);
3669 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
3670 str, insn.insn_opcode));
3671 }
3672
3673 if (insn_error.msg)
3674 report_insn_error (str);
3675 else if (insn.insn_mo->pinfo == INSN_MACRO)
3676 {
3677 macro_start ();
3678 if (mips_opts.mips16)
3679 mips16_macro (&insn);
3680 else
3681 macro (&insn, str);
3682 macro_end ();
3683 }
3684 else
3685 {
3686 if (offset_expr.X_op != O_absent)
3687 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
3688 else
3689 append_insn (&insn, NULL, unused_reloc, FALSE);
3690 }
3691
3692 mips_assembling_insn = FALSE;
3693 }
3694
3695 /* Convenience functions for abstracting away the differences between
3696 MIPS16 and non-MIPS16 relocations. */
3697
3698 static inline bfd_boolean
3699 mips16_reloc_p (bfd_reloc_code_real_type reloc)
3700 {
3701 switch (reloc)
3702 {
3703 case BFD_RELOC_MIPS16_JMP:
3704 case BFD_RELOC_MIPS16_GPREL:
3705 case BFD_RELOC_MIPS16_GOT16:
3706 case BFD_RELOC_MIPS16_CALL16:
3707 case BFD_RELOC_MIPS16_HI16_S:
3708 case BFD_RELOC_MIPS16_HI16:
3709 case BFD_RELOC_MIPS16_LO16:
3710 return TRUE;
3711
3712 default:
3713 return FALSE;
3714 }
3715 }
3716
3717 static inline bfd_boolean
3718 micromips_reloc_p (bfd_reloc_code_real_type reloc)
3719 {
3720 switch (reloc)
3721 {
3722 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
3723 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
3724 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
3725 case BFD_RELOC_MICROMIPS_GPREL16:
3726 case BFD_RELOC_MICROMIPS_JMP:
3727 case BFD_RELOC_MICROMIPS_HI16:
3728 case BFD_RELOC_MICROMIPS_HI16_S:
3729 case BFD_RELOC_MICROMIPS_LO16:
3730 case BFD_RELOC_MICROMIPS_LITERAL:
3731 case BFD_RELOC_MICROMIPS_GOT16:
3732 case BFD_RELOC_MICROMIPS_CALL16:
3733 case BFD_RELOC_MICROMIPS_GOT_HI16:
3734 case BFD_RELOC_MICROMIPS_GOT_LO16:
3735 case BFD_RELOC_MICROMIPS_CALL_HI16:
3736 case BFD_RELOC_MICROMIPS_CALL_LO16:
3737 case BFD_RELOC_MICROMIPS_SUB:
3738 case BFD_RELOC_MICROMIPS_GOT_PAGE:
3739 case BFD_RELOC_MICROMIPS_GOT_OFST:
3740 case BFD_RELOC_MICROMIPS_GOT_DISP:
3741 case BFD_RELOC_MICROMIPS_HIGHEST:
3742 case BFD_RELOC_MICROMIPS_HIGHER:
3743 case BFD_RELOC_MICROMIPS_SCN_DISP:
3744 case BFD_RELOC_MICROMIPS_JALR:
3745 return TRUE;
3746
3747 default:
3748 return FALSE;
3749 }
3750 }
3751
3752 static inline bfd_boolean
3753 jmp_reloc_p (bfd_reloc_code_real_type reloc)
3754 {
3755 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
3756 }
3757
3758 static inline bfd_boolean
3759 got16_reloc_p (bfd_reloc_code_real_type reloc)
3760 {
3761 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
3762 || reloc == BFD_RELOC_MICROMIPS_GOT16);
3763 }
3764
3765 static inline bfd_boolean
3766 hi16_reloc_p (bfd_reloc_code_real_type reloc)
3767 {
3768 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
3769 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
3770 }
3771
3772 static inline bfd_boolean
3773 lo16_reloc_p (bfd_reloc_code_real_type reloc)
3774 {
3775 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
3776 || reloc == BFD_RELOC_MICROMIPS_LO16);
3777 }
3778
3779 static inline bfd_boolean
3780 jalr_reloc_p (bfd_reloc_code_real_type reloc)
3781 {
3782 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
3783 }
3784
3785 static inline bfd_boolean
3786 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
3787 {
3788 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
3789 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
3790 }
3791
3792 /* Return true if RELOC is a PC-relative relocation that does not have
3793 full address range. */
3794
3795 static inline bfd_boolean
3796 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
3797 {
3798 switch (reloc)
3799 {
3800 case BFD_RELOC_16_PCREL_S2:
3801 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
3802 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
3803 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
3804 return TRUE;
3805
3806 case BFD_RELOC_32_PCREL:
3807 return HAVE_64BIT_ADDRESSES;
3808
3809 default:
3810 return FALSE;
3811 }
3812 }
3813
3814 /* Return true if the given relocation might need a matching %lo().
3815 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
3816 need a matching %lo() when applied to local symbols. */
3817
3818 static inline bfd_boolean
3819 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
3820 {
3821 return (HAVE_IN_PLACE_ADDENDS
3822 && (hi16_reloc_p (reloc)
3823 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
3824 all GOT16 relocations evaluate to "G". */
3825 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
3826 }
3827
3828 /* Return the type of %lo() reloc needed by RELOC, given that
3829 reloc_needs_lo_p. */
3830
3831 static inline bfd_reloc_code_real_type
3832 matching_lo_reloc (bfd_reloc_code_real_type reloc)
3833 {
3834 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
3835 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
3836 : BFD_RELOC_LO16));
3837 }
3838
3839 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
3840 relocation. */
3841
3842 static inline bfd_boolean
3843 fixup_has_matching_lo_p (fixS *fixp)
3844 {
3845 return (fixp->fx_next != NULL
3846 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
3847 && fixp->fx_addsy == fixp->fx_next->fx_addsy
3848 && fixp->fx_offset == fixp->fx_next->fx_offset);
3849 }
3850
3851 /* Move all labels in LABELS to the current insertion point. TEXT_P
3852 says whether the labels refer to text or data. */
3853
3854 static void
3855 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
3856 {
3857 struct insn_label_list *l;
3858 valueT val;
3859
3860 for (l = labels; l != NULL; l = l->next)
3861 {
3862 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
3863 symbol_set_frag (l->label, frag_now);
3864 val = (valueT) frag_now_fix ();
3865 /* MIPS16/microMIPS text labels are stored as odd. */
3866 if (text_p && HAVE_CODE_COMPRESSION)
3867 ++val;
3868 S_SET_VALUE (l->label, val);
3869 }
3870 }
3871
3872 /* Move all labels in insn_labels to the current insertion point
3873 and treat them as text labels. */
3874
3875 static void
3876 mips_move_text_labels (void)
3877 {
3878 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
3879 }
3880
3881 static bfd_boolean
3882 s_is_linkonce (symbolS *sym, segT from_seg)
3883 {
3884 bfd_boolean linkonce = FALSE;
3885 segT symseg = S_GET_SEGMENT (sym);
3886
3887 if (symseg != from_seg && !S_IS_LOCAL (sym))
3888 {
3889 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
3890 linkonce = TRUE;
3891 /* The GNU toolchain uses an extension for ELF: a section
3892 beginning with the magic string .gnu.linkonce is a
3893 linkonce section. */
3894 if (strncmp (segment_name (symseg), ".gnu.linkonce",
3895 sizeof ".gnu.linkonce" - 1) == 0)
3896 linkonce = TRUE;
3897 }
3898 return linkonce;
3899 }
3900
3901 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
3902 linker to handle them specially, such as generating jalx instructions
3903 when needed. We also make them odd for the duration of the assembly,
3904 in order to generate the right sort of code. We will make them even
3905 in the adjust_symtab routine, while leaving them marked. This is
3906 convenient for the debugger and the disassembler. The linker knows
3907 to make them odd again. */
3908
3909 static void
3910 mips_compressed_mark_label (symbolS *label)
3911 {
3912 gas_assert (HAVE_CODE_COMPRESSION);
3913
3914 if (mips_opts.mips16)
3915 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
3916 else
3917 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
3918 if ((S_GET_VALUE (label) & 1) == 0
3919 /* Don't adjust the address if the label is global or weak, or
3920 in a link-once section, since we'll be emitting symbol reloc
3921 references to it which will be patched up by the linker, and
3922 the final value of the symbol may or may not be MIPS16/microMIPS. */
3923 && !S_IS_WEAK (label)
3924 && !S_IS_EXTERNAL (label)
3925 && !s_is_linkonce (label, now_seg))
3926 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
3927 }
3928
3929 /* Mark preceding MIPS16 or microMIPS instruction labels. */
3930
3931 static void
3932 mips_compressed_mark_labels (void)
3933 {
3934 struct insn_label_list *l;
3935
3936 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
3937 mips_compressed_mark_label (l->label);
3938 }
3939
3940 /* End the current frag. Make it a variant frag and record the
3941 relaxation info. */
3942
3943 static void
3944 relax_close_frag (void)
3945 {
3946 mips_macro_warning.first_frag = frag_now;
3947 frag_var (rs_machine_dependent, 0, 0,
3948 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
3949 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
3950
3951 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
3952 mips_relax.first_fixup = 0;
3953 }
3954
3955 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
3956 See the comment above RELAX_ENCODE for more details. */
3957
3958 static void
3959 relax_start (symbolS *symbol)
3960 {
3961 gas_assert (mips_relax.sequence == 0);
3962 mips_relax.sequence = 1;
3963 mips_relax.symbol = symbol;
3964 }
3965
3966 /* Start generating the second version of a relaxable sequence.
3967 See the comment above RELAX_ENCODE for more details. */
3968
3969 static void
3970 relax_switch (void)
3971 {
3972 gas_assert (mips_relax.sequence == 1);
3973 mips_relax.sequence = 2;
3974 }
3975
3976 /* End the current relaxable sequence. */
3977
3978 static void
3979 relax_end (void)
3980 {
3981 gas_assert (mips_relax.sequence == 2);
3982 relax_close_frag ();
3983 mips_relax.sequence = 0;
3984 }
3985
3986 /* Return true if IP is a delayed branch or jump. */
3987
3988 static inline bfd_boolean
3989 delayed_branch_p (const struct mips_cl_insn *ip)
3990 {
3991 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
3992 | INSN_COND_BRANCH_DELAY
3993 | INSN_COND_BRANCH_LIKELY)) != 0;
3994 }
3995
3996 /* Return true if IP is a compact branch or jump. */
3997
3998 static inline bfd_boolean
3999 compact_branch_p (const struct mips_cl_insn *ip)
4000 {
4001 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4002 | INSN2_COND_BRANCH)) != 0;
4003 }
4004
4005 /* Return true if IP is an unconditional branch or jump. */
4006
4007 static inline bfd_boolean
4008 uncond_branch_p (const struct mips_cl_insn *ip)
4009 {
4010 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4011 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4012 }
4013
4014 /* Return true if IP is a branch-likely instruction. */
4015
4016 static inline bfd_boolean
4017 branch_likely_p (const struct mips_cl_insn *ip)
4018 {
4019 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4020 }
4021
4022 /* Return the type of nop that should be used to fill the delay slot
4023 of delayed branch IP. */
4024
4025 static struct mips_cl_insn *
4026 get_delay_slot_nop (const struct mips_cl_insn *ip)
4027 {
4028 if (mips_opts.micromips
4029 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4030 return &micromips_nop32_insn;
4031 return NOP_INSN;
4032 }
4033
4034 /* Return a mask that has bit N set if OPCODE reads the register(s)
4035 in operand N. */
4036
4037 static unsigned int
4038 insn_read_mask (const struct mips_opcode *opcode)
4039 {
4040 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4041 }
4042
4043 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4044 in operand N. */
4045
4046 static unsigned int
4047 insn_write_mask (const struct mips_opcode *opcode)
4048 {
4049 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4050 }
4051
4052 /* Return a mask of the registers specified by operand OPERAND of INSN.
4053 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4054 is set. */
4055
4056 static unsigned int
4057 operand_reg_mask (const struct mips_cl_insn *insn,
4058 const struct mips_operand *operand,
4059 unsigned int type_mask)
4060 {
4061 unsigned int uval, vsel;
4062
4063 switch (operand->type)
4064 {
4065 case OP_INT:
4066 case OP_MAPPED_INT:
4067 case OP_MSB:
4068 case OP_PCREL:
4069 case OP_PERF_REG:
4070 case OP_ADDIUSP_INT:
4071 case OP_ENTRY_EXIT_LIST:
4072 case OP_REPEAT_DEST_REG:
4073 case OP_REPEAT_PREV_REG:
4074 case OP_PC:
4075 case OP_VU0_SUFFIX:
4076 case OP_VU0_MATCH_SUFFIX:
4077 case OP_IMM_INDEX:
4078 abort ();
4079
4080 case OP_REG:
4081 case OP_OPTIONAL_REG:
4082 {
4083 const struct mips_reg_operand *reg_op;
4084
4085 reg_op = (const struct mips_reg_operand *) operand;
4086 if (!(type_mask & (1 << reg_op->reg_type)))
4087 return 0;
4088 uval = insn_extract_operand (insn, operand);
4089 return 1 << mips_decode_reg_operand (reg_op, uval);
4090 }
4091
4092 case OP_REG_PAIR:
4093 {
4094 const struct mips_reg_pair_operand *pair_op;
4095
4096 pair_op = (const struct mips_reg_pair_operand *) operand;
4097 if (!(type_mask & (1 << pair_op->reg_type)))
4098 return 0;
4099 uval = insn_extract_operand (insn, operand);
4100 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4101 }
4102
4103 case OP_CLO_CLZ_DEST:
4104 if (!(type_mask & (1 << OP_REG_GP)))
4105 return 0;
4106 uval = insn_extract_operand (insn, operand);
4107 return (1 << (uval & 31)) | (1 << (uval >> 5));
4108
4109 case OP_LWM_SWM_LIST:
4110 abort ();
4111
4112 case OP_SAVE_RESTORE_LIST:
4113 abort ();
4114
4115 case OP_MDMX_IMM_REG:
4116 if (!(type_mask & (1 << OP_REG_VEC)))
4117 return 0;
4118 uval = insn_extract_operand (insn, operand);
4119 vsel = uval >> 5;
4120 if ((vsel & 0x18) == 0x18)
4121 return 0;
4122 return 1 << (uval & 31);
4123
4124 case OP_REG_INDEX:
4125 if (!(type_mask & (1 << OP_REG_GP)))
4126 return 0;
4127 return 1 << insn_extract_operand (insn, operand);
4128 }
4129 abort ();
4130 }
4131
4132 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4133 where bit N of OPNO_MASK is set if operand N should be included.
4134 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4135 is set. */
4136
4137 static unsigned int
4138 insn_reg_mask (const struct mips_cl_insn *insn,
4139 unsigned int type_mask, unsigned int opno_mask)
4140 {
4141 unsigned int opno, reg_mask;
4142
4143 opno = 0;
4144 reg_mask = 0;
4145 while (opno_mask != 0)
4146 {
4147 if (opno_mask & 1)
4148 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4149 opno_mask >>= 1;
4150 opno += 1;
4151 }
4152 return reg_mask;
4153 }
4154
4155 /* Return the mask of core registers that IP reads. */
4156
4157 static unsigned int
4158 gpr_read_mask (const struct mips_cl_insn *ip)
4159 {
4160 unsigned long pinfo, pinfo2;
4161 unsigned int mask;
4162
4163 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4164 pinfo = ip->insn_mo->pinfo;
4165 pinfo2 = ip->insn_mo->pinfo2;
4166 if (pinfo & INSN_UDI)
4167 {
4168 /* UDI instructions have traditionally been assumed to read RS
4169 and RT. */
4170 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4171 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4172 }
4173 if (pinfo & INSN_READ_GPR_24)
4174 mask |= 1 << 24;
4175 if (pinfo2 & INSN2_READ_GPR_16)
4176 mask |= 1 << 16;
4177 if (pinfo2 & INSN2_READ_SP)
4178 mask |= 1 << SP;
4179 if (pinfo2 & INSN2_READ_GPR_31)
4180 mask |= 1 << 31;
4181 /* Don't include register 0. */
4182 return mask & ~1;
4183 }
4184
4185 /* Return the mask of core registers that IP writes. */
4186
4187 static unsigned int
4188 gpr_write_mask (const struct mips_cl_insn *ip)
4189 {
4190 unsigned long pinfo, pinfo2;
4191 unsigned int mask;
4192
4193 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4194 pinfo = ip->insn_mo->pinfo;
4195 pinfo2 = ip->insn_mo->pinfo2;
4196 if (pinfo & INSN_WRITE_GPR_24)
4197 mask |= 1 << 24;
4198 if (pinfo & INSN_WRITE_GPR_31)
4199 mask |= 1 << 31;
4200 if (pinfo & INSN_UDI)
4201 /* UDI instructions have traditionally been assumed to write to RD. */
4202 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4203 if (pinfo2 & INSN2_WRITE_SP)
4204 mask |= 1 << SP;
4205 /* Don't include register 0. */
4206 return mask & ~1;
4207 }
4208
4209 /* Return the mask of floating-point registers that IP reads. */
4210
4211 static unsigned int
4212 fpr_read_mask (const struct mips_cl_insn *ip)
4213 {
4214 unsigned long pinfo;
4215 unsigned int mask;
4216
4217 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4218 | (1 << OP_REG_MSA)),
4219 insn_read_mask (ip->insn_mo));
4220 pinfo = ip->insn_mo->pinfo;
4221 /* Conservatively treat all operands to an FP_D instruction are doubles.
4222 (This is overly pessimistic for things like cvt.d.s.) */
4223 if (FPR_SIZE != 64 && (pinfo & FP_D))
4224 mask |= mask << 1;
4225 return mask;
4226 }
4227
4228 /* Return the mask of floating-point registers that IP writes. */
4229
4230 static unsigned int
4231 fpr_write_mask (const struct mips_cl_insn *ip)
4232 {
4233 unsigned long pinfo;
4234 unsigned int mask;
4235
4236 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4237 | (1 << OP_REG_MSA)),
4238 insn_write_mask (ip->insn_mo));
4239 pinfo = ip->insn_mo->pinfo;
4240 /* Conservatively treat all operands to an FP_D instruction are doubles.
4241 (This is overly pessimistic for things like cvt.s.d.) */
4242 if (FPR_SIZE != 64 && (pinfo & FP_D))
4243 mask |= mask << 1;
4244 return mask;
4245 }
4246
4247 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4248 Check whether that is allowed. */
4249
4250 static bfd_boolean
4251 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4252 {
4253 const char *s = insn->name;
4254
4255 if (insn->pinfo == INSN_MACRO)
4256 /* Let a macro pass, we'll catch it later when it is expanded. */
4257 return TRUE;
4258
4259 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa) || mips_opts.arch == CPU_R5900)
4260 {
4261 /* Allow odd registers for single-precision ops. */
4262 switch (insn->pinfo & (FP_S | FP_D))
4263 {
4264 case FP_S:
4265 case 0:
4266 return TRUE;
4267 case FP_D:
4268 return FALSE;
4269 default:
4270 break;
4271 }
4272
4273 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4274 s = strchr (insn->name, '.');
4275 if (s != NULL && opnum == 2)
4276 s = strchr (s + 1, '.');
4277 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
4278 }
4279
4280 /* Single-precision coprocessor loads and moves are OK too. */
4281 if ((insn->pinfo & FP_S)
4282 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
4283 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
4284 return TRUE;
4285
4286 return FALSE;
4287 }
4288
4289 /* Information about an instruction argument that we're trying to match. */
4290 struct mips_arg_info
4291 {
4292 /* The instruction so far. */
4293 struct mips_cl_insn *insn;
4294
4295 /* The first unconsumed operand token. */
4296 struct mips_operand_token *token;
4297
4298 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4299 int opnum;
4300
4301 /* The 1-based argument number, for error reporting. This does not
4302 count elided optional registers, etc.. */
4303 int argnum;
4304
4305 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4306 unsigned int last_regno;
4307
4308 /* If the first operand was an OP_REG, this is the register that it
4309 specified, otherwise it is ILLEGAL_REG. */
4310 unsigned int dest_regno;
4311
4312 /* The value of the last OP_INT operand. Only used for OP_MSB,
4313 where it gives the lsb position. */
4314 unsigned int last_op_int;
4315
4316 /* If true, match routines should assume that no later instruction
4317 alternative matches and should therefore be as accomodating as
4318 possible. Match routines should not report errors if something
4319 is only invalid for !LAX_MATCH. */
4320 bfd_boolean lax_match;
4321
4322 /* True if a reference to the current AT register was seen. */
4323 bfd_boolean seen_at;
4324 };
4325
4326 /* Record that the argument is out of range. */
4327
4328 static void
4329 match_out_of_range (struct mips_arg_info *arg)
4330 {
4331 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4332 }
4333
4334 /* Record that the argument isn't constant but needs to be. */
4335
4336 static void
4337 match_not_constant (struct mips_arg_info *arg)
4338 {
4339 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4340 arg->argnum);
4341 }
4342
4343 /* Try to match an OT_CHAR token for character CH. Consume the token
4344 and return true on success, otherwise return false. */
4345
4346 static bfd_boolean
4347 match_char (struct mips_arg_info *arg, char ch)
4348 {
4349 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4350 {
4351 ++arg->token;
4352 if (ch == ',')
4353 arg->argnum += 1;
4354 return TRUE;
4355 }
4356 return FALSE;
4357 }
4358
4359 /* Try to get an expression from the next tokens in ARG. Consume the
4360 tokens and return true on success, storing the expression value in
4361 VALUE and relocation types in R. */
4362
4363 static bfd_boolean
4364 match_expression (struct mips_arg_info *arg, expressionS *value,
4365 bfd_reloc_code_real_type *r)
4366 {
4367 /* If the next token is a '(' that was parsed as being part of a base
4368 expression, assume we have an elided offset. The later match will fail
4369 if this turns out to be wrong. */
4370 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4371 {
4372 value->X_op = O_constant;
4373 value->X_add_number = 0;
4374 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4375 return TRUE;
4376 }
4377
4378 /* Reject register-based expressions such as "0+$2" and "(($2))".
4379 For plain registers the default error seems more appropriate. */
4380 if (arg->token->type == OT_INTEGER
4381 && arg->token->u.integer.value.X_op == O_register)
4382 {
4383 set_insn_error (arg->argnum, _("register value used as expression"));
4384 return FALSE;
4385 }
4386
4387 if (arg->token->type == OT_INTEGER)
4388 {
4389 *value = arg->token->u.integer.value;
4390 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4391 ++arg->token;
4392 return TRUE;
4393 }
4394
4395 set_insn_error_i
4396 (arg->argnum, _("operand %d must be an immediate expression"),
4397 arg->argnum);
4398 return FALSE;
4399 }
4400
4401 /* Try to get a constant expression from the next tokens in ARG. Consume
4402 the tokens and return return true on success, storing the constant value
4403 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4404 error. */
4405
4406 static bfd_boolean
4407 match_const_int (struct mips_arg_info *arg, offsetT *value)
4408 {
4409 expressionS ex;
4410 bfd_reloc_code_real_type r[3];
4411
4412 if (!match_expression (arg, &ex, r))
4413 return FALSE;
4414
4415 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4416 *value = ex.X_add_number;
4417 else
4418 {
4419 match_not_constant (arg);
4420 return FALSE;
4421 }
4422 return TRUE;
4423 }
4424
4425 /* Return the RTYPE_* flags for a register operand of type TYPE that
4426 appears in instruction OPCODE. */
4427
4428 static unsigned int
4429 convert_reg_type (const struct mips_opcode *opcode,
4430 enum mips_reg_operand_type type)
4431 {
4432 switch (type)
4433 {
4434 case OP_REG_GP:
4435 return RTYPE_NUM | RTYPE_GP;
4436
4437 case OP_REG_FP:
4438 /* Allow vector register names for MDMX if the instruction is a 64-bit
4439 FPR load, store or move (including moves to and from GPRs). */
4440 if ((mips_opts.ase & ASE_MDMX)
4441 && (opcode->pinfo & FP_D)
4442 && (opcode->pinfo & (INSN_COPROC_MOVE_DELAY
4443 | INSN_COPROC_MEMORY_DELAY
4444 | INSN_LOAD_COPROC_DELAY
4445 | INSN_LOAD_MEMORY
4446 | INSN_STORE_MEMORY)))
4447 return RTYPE_FPU | RTYPE_VEC;
4448 return RTYPE_FPU;
4449
4450 case OP_REG_CCC:
4451 if (opcode->pinfo & (FP_D | FP_S))
4452 return RTYPE_CCC | RTYPE_FCC;
4453 return RTYPE_CCC;
4454
4455 case OP_REG_VEC:
4456 if (opcode->membership & INSN_5400)
4457 return RTYPE_FPU;
4458 return RTYPE_FPU | RTYPE_VEC;
4459
4460 case OP_REG_ACC:
4461 return RTYPE_ACC;
4462
4463 case OP_REG_COPRO:
4464 if (opcode->name[strlen (opcode->name) - 1] == '0')
4465 return RTYPE_NUM | RTYPE_CP0;
4466 return RTYPE_NUM;
4467
4468 case OP_REG_HW:
4469 return RTYPE_NUM;
4470
4471 case OP_REG_VI:
4472 return RTYPE_NUM | RTYPE_VI;
4473
4474 case OP_REG_VF:
4475 return RTYPE_NUM | RTYPE_VF;
4476
4477 case OP_REG_R5900_I:
4478 return RTYPE_R5900_I;
4479
4480 case OP_REG_R5900_Q:
4481 return RTYPE_R5900_Q;
4482
4483 case OP_REG_R5900_R:
4484 return RTYPE_R5900_R;
4485
4486 case OP_REG_R5900_ACC:
4487 return RTYPE_R5900_ACC;
4488
4489 case OP_REG_MSA:
4490 return RTYPE_MSA;
4491
4492 case OP_REG_MSA_CTRL:
4493 return RTYPE_NUM;
4494 }
4495 abort ();
4496 }
4497
4498 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4499
4500 static void
4501 check_regno (struct mips_arg_info *arg,
4502 enum mips_reg_operand_type type, unsigned int regno)
4503 {
4504 if (AT && type == OP_REG_GP && regno == AT)
4505 arg->seen_at = TRUE;
4506
4507 if (type == OP_REG_FP
4508 && (regno & 1) != 0
4509 && FPR_SIZE != 64
4510 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4511 as_warn (_("float register should be even, was %d"), regno);
4512
4513 if (type == OP_REG_CCC)
4514 {
4515 const char *name;
4516 size_t length;
4517
4518 name = arg->insn->insn_mo->name;
4519 length = strlen (name);
4520 if ((regno & 1) != 0
4521 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4522 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4523 as_warn (_("condition code register should be even for %s, was %d"),
4524 name, regno);
4525
4526 if ((regno & 3) != 0
4527 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4528 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4529 name, regno);
4530 }
4531 }
4532
4533 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4534 a register of type TYPE. Return true on success, storing the register
4535 number in *REGNO and warning about any dubious uses. */
4536
4537 static bfd_boolean
4538 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4539 unsigned int symval, unsigned int *regno)
4540 {
4541 if (type == OP_REG_VEC)
4542 symval = mips_prefer_vec_regno (symval);
4543 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4544 return FALSE;
4545
4546 *regno = symval & RNUM_MASK;
4547 check_regno (arg, type, *regno);
4548 return TRUE;
4549 }
4550
4551 /* Try to interpret the next token in ARG as a register of type TYPE.
4552 Consume the token and return true on success, storing the register
4553 number in *REGNO. Return false on failure. */
4554
4555 static bfd_boolean
4556 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4557 unsigned int *regno)
4558 {
4559 if (arg->token->type == OT_REG
4560 && match_regno (arg, type, arg->token->u.regno, regno))
4561 {
4562 ++arg->token;
4563 return TRUE;
4564 }
4565 return FALSE;
4566 }
4567
4568 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4569 Consume the token and return true on success, storing the register numbers
4570 in *REGNO1 and *REGNO2. Return false on failure. */
4571
4572 static bfd_boolean
4573 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4574 unsigned int *regno1, unsigned int *regno2)
4575 {
4576 if (match_reg (arg, type, regno1))
4577 {
4578 *regno2 = *regno1;
4579 return TRUE;
4580 }
4581 if (arg->token->type == OT_REG_RANGE
4582 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4583 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4584 && *regno1 <= *regno2)
4585 {
4586 ++arg->token;
4587 return TRUE;
4588 }
4589 return FALSE;
4590 }
4591
4592 /* OP_INT matcher. */
4593
4594 static bfd_boolean
4595 match_int_operand (struct mips_arg_info *arg,
4596 const struct mips_operand *operand_base)
4597 {
4598 const struct mips_int_operand *operand;
4599 unsigned int uval;
4600 int min_val, max_val, factor;
4601 offsetT sval;
4602
4603 operand = (const struct mips_int_operand *) operand_base;
4604 factor = 1 << operand->shift;
4605 min_val = mips_int_operand_min (operand);
4606 max_val = mips_int_operand_max (operand);
4607
4608 if (operand_base->lsb == 0
4609 && operand_base->size == 16
4610 && operand->shift == 0
4611 && operand->bias == 0
4612 && (operand->max_val == 32767 || operand->max_val == 65535))
4613 {
4614 /* The operand can be relocated. */
4615 if (!match_expression (arg, &offset_expr, offset_reloc))
4616 return FALSE;
4617
4618 if (offset_reloc[0] != BFD_RELOC_UNUSED)
4619 /* Relocation operators were used. Accept the arguent and
4620 leave the relocation value in offset_expr and offset_relocs
4621 for the caller to process. */
4622 return TRUE;
4623
4624 if (offset_expr.X_op != O_constant)
4625 {
4626 /* Accept non-constant operands if no later alternative matches,
4627 leaving it for the caller to process. */
4628 if (!arg->lax_match)
4629 return FALSE;
4630 offset_reloc[0] = BFD_RELOC_LO16;
4631 return TRUE;
4632 }
4633
4634 /* Clear the global state; we're going to install the operand
4635 ourselves. */
4636 sval = offset_expr.X_add_number;
4637 offset_expr.X_op = O_absent;
4638
4639 /* For compatibility with older assemblers, we accept
4640 0x8000-0xffff as signed 16-bit numbers when only
4641 signed numbers are allowed. */
4642 if (sval > max_val)
4643 {
4644 max_val = ((1 << operand_base->size) - 1) << operand->shift;
4645 if (!arg->lax_match && sval <= max_val)
4646 return FALSE;
4647 }
4648 }
4649 else
4650 {
4651 if (!match_const_int (arg, &sval))
4652 return FALSE;
4653 }
4654
4655 arg->last_op_int = sval;
4656
4657 if (sval < min_val || sval > max_val || sval % factor)
4658 {
4659 match_out_of_range (arg);
4660 return FALSE;
4661 }
4662
4663 uval = (unsigned int) sval >> operand->shift;
4664 uval -= operand->bias;
4665
4666 /* Handle -mfix-cn63xxp1. */
4667 if (arg->opnum == 1
4668 && mips_fix_cn63xxp1
4669 && !mips_opts.micromips
4670 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
4671 switch (uval)
4672 {
4673 case 5:
4674 case 25:
4675 case 26:
4676 case 27:
4677 case 28:
4678 case 29:
4679 case 30:
4680 case 31:
4681 /* These are ok. */
4682 break;
4683
4684 default:
4685 /* The rest must be changed to 28. */
4686 uval = 28;
4687 break;
4688 }
4689
4690 insn_insert_operand (arg->insn, operand_base, uval);
4691 return TRUE;
4692 }
4693
4694 /* OP_MAPPED_INT matcher. */
4695
4696 static bfd_boolean
4697 match_mapped_int_operand (struct mips_arg_info *arg,
4698 const struct mips_operand *operand_base)
4699 {
4700 const struct mips_mapped_int_operand *operand;
4701 unsigned int uval, num_vals;
4702 offsetT sval;
4703
4704 operand = (const struct mips_mapped_int_operand *) operand_base;
4705 if (!match_const_int (arg, &sval))
4706 return FALSE;
4707
4708 num_vals = 1 << operand_base->size;
4709 for (uval = 0; uval < num_vals; uval++)
4710 if (operand->int_map[uval] == sval)
4711 break;
4712 if (uval == num_vals)
4713 {
4714 match_out_of_range (arg);
4715 return FALSE;
4716 }
4717
4718 insn_insert_operand (arg->insn, operand_base, uval);
4719 return TRUE;
4720 }
4721
4722 /* OP_MSB matcher. */
4723
4724 static bfd_boolean
4725 match_msb_operand (struct mips_arg_info *arg,
4726 const struct mips_operand *operand_base)
4727 {
4728 const struct mips_msb_operand *operand;
4729 int min_val, max_val, max_high;
4730 offsetT size, sval, high;
4731
4732 operand = (const struct mips_msb_operand *) operand_base;
4733 min_val = operand->bias;
4734 max_val = min_val + (1 << operand_base->size) - 1;
4735 max_high = operand->opsize;
4736
4737 if (!match_const_int (arg, &size))
4738 return FALSE;
4739
4740 high = size + arg->last_op_int;
4741 sval = operand->add_lsb ? high : size;
4742
4743 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
4744 {
4745 match_out_of_range (arg);
4746 return FALSE;
4747 }
4748 insn_insert_operand (arg->insn, operand_base, sval - min_val);
4749 return TRUE;
4750 }
4751
4752 /* OP_REG matcher. */
4753
4754 static bfd_boolean
4755 match_reg_operand (struct mips_arg_info *arg,
4756 const struct mips_operand *operand_base)
4757 {
4758 const struct mips_reg_operand *operand;
4759 unsigned int regno, uval, num_vals;
4760
4761 operand = (const struct mips_reg_operand *) operand_base;
4762 if (!match_reg (arg, operand->reg_type, &regno))
4763 return FALSE;
4764
4765 if (operand->reg_map)
4766 {
4767 num_vals = 1 << operand->root.size;
4768 for (uval = 0; uval < num_vals; uval++)
4769 if (operand->reg_map[uval] == regno)
4770 break;
4771 if (num_vals == uval)
4772 return FALSE;
4773 }
4774 else
4775 uval = regno;
4776
4777 arg->last_regno = regno;
4778 if (arg->opnum == 1)
4779 arg->dest_regno = regno;
4780 insn_insert_operand (arg->insn, operand_base, uval);
4781 return TRUE;
4782 }
4783
4784 /* OP_REG_PAIR matcher. */
4785
4786 static bfd_boolean
4787 match_reg_pair_operand (struct mips_arg_info *arg,
4788 const struct mips_operand *operand_base)
4789 {
4790 const struct mips_reg_pair_operand *operand;
4791 unsigned int regno1, regno2, uval, num_vals;
4792
4793 operand = (const struct mips_reg_pair_operand *) operand_base;
4794 if (!match_reg (arg, operand->reg_type, &regno1)
4795 || !match_char (arg, ',')
4796 || !match_reg (arg, operand->reg_type, &regno2))
4797 return FALSE;
4798
4799 num_vals = 1 << operand_base->size;
4800 for (uval = 0; uval < num_vals; uval++)
4801 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
4802 break;
4803 if (uval == num_vals)
4804 return FALSE;
4805
4806 insn_insert_operand (arg->insn, operand_base, uval);
4807 return TRUE;
4808 }
4809
4810 /* OP_PCREL matcher. The caller chooses the relocation type. */
4811
4812 static bfd_boolean
4813 match_pcrel_operand (struct mips_arg_info *arg)
4814 {
4815 bfd_reloc_code_real_type r[3];
4816
4817 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
4818 }
4819
4820 /* OP_PERF_REG matcher. */
4821
4822 static bfd_boolean
4823 match_perf_reg_operand (struct mips_arg_info *arg,
4824 const struct mips_operand *operand)
4825 {
4826 offsetT sval;
4827
4828 if (!match_const_int (arg, &sval))
4829 return FALSE;
4830
4831 if (sval != 0
4832 && (sval != 1
4833 || (mips_opts.arch == CPU_R5900
4834 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
4835 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
4836 {
4837 set_insn_error (arg->argnum, _("invalid performance register"));
4838 return FALSE;
4839 }
4840
4841 insn_insert_operand (arg->insn, operand, sval);
4842 return TRUE;
4843 }
4844
4845 /* OP_ADDIUSP matcher. */
4846
4847 static bfd_boolean
4848 match_addiusp_operand (struct mips_arg_info *arg,
4849 const struct mips_operand *operand)
4850 {
4851 offsetT sval;
4852 unsigned int uval;
4853
4854 if (!match_const_int (arg, &sval))
4855 return FALSE;
4856
4857 if (sval % 4)
4858 {
4859 match_out_of_range (arg);
4860 return FALSE;
4861 }
4862
4863 sval /= 4;
4864 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
4865 {
4866 match_out_of_range (arg);
4867 return FALSE;
4868 }
4869
4870 uval = (unsigned int) sval;
4871 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
4872 insn_insert_operand (arg->insn, operand, uval);
4873 return TRUE;
4874 }
4875
4876 /* OP_CLO_CLZ_DEST matcher. */
4877
4878 static bfd_boolean
4879 match_clo_clz_dest_operand (struct mips_arg_info *arg,
4880 const struct mips_operand *operand)
4881 {
4882 unsigned int regno;
4883
4884 if (!match_reg (arg, OP_REG_GP, &regno))
4885 return FALSE;
4886
4887 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
4888 return TRUE;
4889 }
4890
4891 /* OP_LWM_SWM_LIST matcher. */
4892
4893 static bfd_boolean
4894 match_lwm_swm_list_operand (struct mips_arg_info *arg,
4895 const struct mips_operand *operand)
4896 {
4897 unsigned int reglist, sregs, ra, regno1, regno2;
4898 struct mips_arg_info reset;
4899
4900 reglist = 0;
4901 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
4902 return FALSE;
4903 do
4904 {
4905 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
4906 {
4907 reglist |= 1 << FP;
4908 regno2 = S7;
4909 }
4910 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
4911 reset = *arg;
4912 }
4913 while (match_char (arg, ',')
4914 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
4915 *arg = reset;
4916
4917 if (operand->size == 2)
4918 {
4919 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
4920
4921 s0, ra
4922 s0, s1, ra, s2, s3
4923 s0-s2, ra
4924
4925 and any permutations of these. */
4926 if ((reglist & 0xfff1ffff) != 0x80010000)
4927 return FALSE;
4928
4929 sregs = (reglist >> 17) & 7;
4930 ra = 0;
4931 }
4932 else
4933 {
4934 /* The list must include at least one of ra and s0-sN,
4935 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
4936 which are $23 and $30 respectively.) E.g.:
4937
4938 ra
4939 s0
4940 ra, s0, s1, s2
4941 s0-s8
4942 s0-s5, ra
4943
4944 and any permutations of these. */
4945 if ((reglist & 0x3f00ffff) != 0)
4946 return FALSE;
4947
4948 ra = (reglist >> 27) & 0x10;
4949 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
4950 }
4951 sregs += 1;
4952 if ((sregs & -sregs) != sregs)
4953 return FALSE;
4954
4955 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
4956 return TRUE;
4957 }
4958
4959 /* OP_ENTRY_EXIT_LIST matcher. */
4960
4961 static unsigned int
4962 match_entry_exit_operand (struct mips_arg_info *arg,
4963 const struct mips_operand *operand)
4964 {
4965 unsigned int mask;
4966 bfd_boolean is_exit;
4967
4968 /* The format is the same for both ENTRY and EXIT, but the constraints
4969 are different. */
4970 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
4971 mask = (is_exit ? 7 << 3 : 0);
4972 do
4973 {
4974 unsigned int regno1, regno2;
4975 bfd_boolean is_freg;
4976
4977 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
4978 is_freg = FALSE;
4979 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
4980 is_freg = TRUE;
4981 else
4982 return FALSE;
4983
4984 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
4985 {
4986 mask &= ~(7 << 3);
4987 mask |= (5 + regno2) << 3;
4988 }
4989 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
4990 mask |= (regno2 - 3) << 3;
4991 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
4992 mask |= (regno2 - 15) << 1;
4993 else if (regno1 == RA && regno2 == RA)
4994 mask |= 1;
4995 else
4996 return FALSE;
4997 }
4998 while (match_char (arg, ','));
4999
5000 insn_insert_operand (arg->insn, operand, mask);
5001 return TRUE;
5002 }
5003
5004 /* OP_SAVE_RESTORE_LIST matcher. */
5005
5006 static bfd_boolean
5007 match_save_restore_list_operand (struct mips_arg_info *arg)
5008 {
5009 unsigned int opcode, args, statics, sregs;
5010 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5011 offsetT frame_size;
5012
5013 opcode = arg->insn->insn_opcode;
5014 frame_size = 0;
5015 num_frame_sizes = 0;
5016 args = 0;
5017 statics = 0;
5018 sregs = 0;
5019 do
5020 {
5021 unsigned int regno1, regno2;
5022
5023 if (arg->token->type == OT_INTEGER)
5024 {
5025 /* Handle the frame size. */
5026 if (!match_const_int (arg, &frame_size))
5027 return FALSE;
5028 num_frame_sizes += 1;
5029 }
5030 else
5031 {
5032 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5033 return FALSE;
5034
5035 while (regno1 <= regno2)
5036 {
5037 if (regno1 >= 4 && regno1 <= 7)
5038 {
5039 if (num_frame_sizes == 0)
5040 /* args $a0-$a3 */
5041 args |= 1 << (regno1 - 4);
5042 else
5043 /* statics $a0-$a3 */
5044 statics |= 1 << (regno1 - 4);
5045 }
5046 else if (regno1 >= 16 && regno1 <= 23)
5047 /* $s0-$s7 */
5048 sregs |= 1 << (regno1 - 16);
5049 else if (regno1 == 30)
5050 /* $s8 */
5051 sregs |= 1 << 8;
5052 else if (regno1 == 31)
5053 /* Add $ra to insn. */
5054 opcode |= 0x40;
5055 else
5056 return FALSE;
5057 regno1 += 1;
5058 if (regno1 == 24)
5059 regno1 = 30;
5060 }
5061 }
5062 }
5063 while (match_char (arg, ','));
5064
5065 /* Encode args/statics combination. */
5066 if (args & statics)
5067 return FALSE;
5068 else if (args == 0xf)
5069 /* All $a0-$a3 are args. */
5070 opcode |= MIPS16_ALL_ARGS << 16;
5071 else if (statics == 0xf)
5072 /* All $a0-$a3 are statics. */
5073 opcode |= MIPS16_ALL_STATICS << 16;
5074 else
5075 {
5076 /* Count arg registers. */
5077 num_args = 0;
5078 while (args & 0x1)
5079 {
5080 args >>= 1;
5081 num_args += 1;
5082 }
5083 if (args != 0)
5084 return FALSE;
5085
5086 /* Count static registers. */
5087 num_statics = 0;
5088 while (statics & 0x8)
5089 {
5090 statics = (statics << 1) & 0xf;
5091 num_statics += 1;
5092 }
5093 if (statics != 0)
5094 return FALSE;
5095
5096 /* Encode args/statics. */
5097 opcode |= ((num_args << 2) | num_statics) << 16;
5098 }
5099
5100 /* Encode $s0/$s1. */
5101 if (sregs & (1 << 0)) /* $s0 */
5102 opcode |= 0x20;
5103 if (sregs & (1 << 1)) /* $s1 */
5104 opcode |= 0x10;
5105 sregs >>= 2;
5106
5107 /* Encode $s2-$s8. */
5108 num_sregs = 0;
5109 while (sregs & 1)
5110 {
5111 sregs >>= 1;
5112 num_sregs += 1;
5113 }
5114 if (sregs != 0)
5115 return FALSE;
5116 opcode |= num_sregs << 24;
5117
5118 /* Encode frame size. */
5119 if (num_frame_sizes == 0)
5120 {
5121 set_insn_error (arg->argnum, _("missing frame size"));
5122 return FALSE;
5123 }
5124 if (num_frame_sizes > 1)
5125 {
5126 set_insn_error (arg->argnum, _("frame size specified twice"));
5127 return FALSE;
5128 }
5129 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5130 {
5131 set_insn_error (arg->argnum, _("invalid frame size"));
5132 return FALSE;
5133 }
5134 if (frame_size != 128 || (opcode >> 16) != 0)
5135 {
5136 frame_size /= 8;
5137 opcode |= (((frame_size & 0xf0) << 16)
5138 | (frame_size & 0x0f));
5139 }
5140
5141 /* Finally build the instruction. */
5142 if ((opcode >> 16) != 0 || frame_size == 0)
5143 opcode |= MIPS16_EXTEND;
5144 arg->insn->insn_opcode = opcode;
5145 return TRUE;
5146 }
5147
5148 /* OP_MDMX_IMM_REG matcher. */
5149
5150 static bfd_boolean
5151 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5152 const struct mips_operand *operand)
5153 {
5154 unsigned int regno, uval;
5155 bfd_boolean is_qh;
5156 const struct mips_opcode *opcode;
5157
5158 /* The mips_opcode records whether this is an octobyte or quadhalf
5159 instruction. Start out with that bit in place. */
5160 opcode = arg->insn->insn_mo;
5161 uval = mips_extract_operand (operand, opcode->match);
5162 is_qh = (uval != 0);
5163
5164 if (arg->token->type == OT_REG)
5165 {
5166 if ((opcode->membership & INSN_5400)
5167 && strcmp (opcode->name, "rzu.ob") == 0)
5168 {
5169 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5170 arg->argnum);
5171 return FALSE;
5172 }
5173
5174 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5175 return FALSE;
5176 ++arg->token;
5177
5178 /* Check whether this is a vector register or a broadcast of
5179 a single element. */
5180 if (arg->token->type == OT_INTEGER_INDEX)
5181 {
5182 if (arg->token->u.index > (is_qh ? 3 : 7))
5183 {
5184 set_insn_error (arg->argnum, _("invalid element selector"));
5185 return FALSE;
5186 }
5187 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5188 ++arg->token;
5189 }
5190 else
5191 {
5192 /* A full vector. */
5193 if ((opcode->membership & INSN_5400)
5194 && (strcmp (opcode->name, "sll.ob") == 0
5195 || strcmp (opcode->name, "srl.ob") == 0))
5196 {
5197 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5198 arg->argnum);
5199 return FALSE;
5200 }
5201
5202 if (is_qh)
5203 uval |= MDMX_FMTSEL_VEC_QH << 5;
5204 else
5205 uval |= MDMX_FMTSEL_VEC_OB << 5;
5206 }
5207 uval |= regno;
5208 }
5209 else
5210 {
5211 offsetT sval;
5212
5213 if (!match_const_int (arg, &sval))
5214 return FALSE;
5215 if (sval < 0 || sval > 31)
5216 {
5217 match_out_of_range (arg);
5218 return FALSE;
5219 }
5220 uval |= (sval & 31);
5221 if (is_qh)
5222 uval |= MDMX_FMTSEL_IMM_QH << 5;
5223 else
5224 uval |= MDMX_FMTSEL_IMM_OB << 5;
5225 }
5226 insn_insert_operand (arg->insn, operand, uval);
5227 return TRUE;
5228 }
5229
5230 /* OP_IMM_INDEX matcher. */
5231
5232 static bfd_boolean
5233 match_imm_index_operand (struct mips_arg_info *arg,
5234 const struct mips_operand *operand)
5235 {
5236 unsigned int max_val;
5237
5238 if (arg->token->type != OT_INTEGER_INDEX)
5239 return FALSE;
5240
5241 max_val = (1 << operand->size) - 1;
5242 if (arg->token->u.index > max_val)
5243 {
5244 match_out_of_range (arg);
5245 return FALSE;
5246 }
5247 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5248 ++arg->token;
5249 return TRUE;
5250 }
5251
5252 /* OP_REG_INDEX matcher. */
5253
5254 static bfd_boolean
5255 match_reg_index_operand (struct mips_arg_info *arg,
5256 const struct mips_operand *operand)
5257 {
5258 unsigned int regno;
5259
5260 if (arg->token->type != OT_REG_INDEX)
5261 return FALSE;
5262
5263 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5264 return FALSE;
5265
5266 insn_insert_operand (arg->insn, operand, regno);
5267 ++arg->token;
5268 return TRUE;
5269 }
5270
5271 /* OP_PC matcher. */
5272
5273 static bfd_boolean
5274 match_pc_operand (struct mips_arg_info *arg)
5275 {
5276 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5277 {
5278 ++arg->token;
5279 return TRUE;
5280 }
5281 return FALSE;
5282 }
5283
5284 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5285 register that we need to match. */
5286
5287 static bfd_boolean
5288 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5289 {
5290 unsigned int regno;
5291
5292 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5293 }
5294
5295 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5296 the length of the value in bytes (4 for float, 8 for double) and
5297 USING_GPRS says whether the destination is a GPR rather than an FPR.
5298
5299 Return the constant in IMM and OFFSET as follows:
5300
5301 - If the constant should be loaded via memory, set IMM to O_absent and
5302 OFFSET to the memory address.
5303
5304 - Otherwise, if the constant should be loaded into two 32-bit registers,
5305 set IMM to the O_constant to load into the high register and OFFSET
5306 to the corresponding value for the low register.
5307
5308 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5309
5310 These constants only appear as the last operand in an instruction,
5311 and every instruction that accepts them in any variant accepts them
5312 in all variants. This means we don't have to worry about backing out
5313 any changes if the instruction does not match. We just match
5314 unconditionally and report an error if the constant is invalid. */
5315
5316 static bfd_boolean
5317 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5318 expressionS *offset, int length, bfd_boolean using_gprs)
5319 {
5320 char *p;
5321 segT seg, new_seg;
5322 subsegT subseg;
5323 const char *newname;
5324 unsigned char *data;
5325
5326 /* Where the constant is placed is based on how the MIPS assembler
5327 does things:
5328
5329 length == 4 && using_gprs -- immediate value only
5330 length == 8 && using_gprs -- .rdata or immediate value
5331 length == 4 && !using_gprs -- .lit4 or immediate value
5332 length == 8 && !using_gprs -- .lit8 or immediate value
5333
5334 The .lit4 and .lit8 sections are only used if permitted by the
5335 -G argument. */
5336 if (arg->token->type != OT_FLOAT)
5337 {
5338 set_insn_error (arg->argnum, _("floating-point expression required"));
5339 return FALSE;
5340 }
5341
5342 gas_assert (arg->token->u.flt.length == length);
5343 data = arg->token->u.flt.data;
5344 ++arg->token;
5345
5346 /* Handle 32-bit constants for which an immediate value is best. */
5347 if (length == 4
5348 && (using_gprs
5349 || g_switch_value < 4
5350 || (data[0] == 0 && data[1] == 0)
5351 || (data[2] == 0 && data[3] == 0)))
5352 {
5353 imm->X_op = O_constant;
5354 if (!target_big_endian)
5355 imm->X_add_number = bfd_getl32 (data);
5356 else
5357 imm->X_add_number = bfd_getb32 (data);
5358 offset->X_op = O_absent;
5359 return TRUE;
5360 }
5361
5362 /* Handle 64-bit constants for which an immediate value is best. */
5363 if (length == 8
5364 && !mips_disable_float_construction
5365 /* Constants can only be constructed in GPRs and copied
5366 to FPRs if the GPRs are at least as wide as the FPRs.
5367 Force the constant into memory if we are using 64-bit FPRs
5368 but the GPRs are only 32 bits wide. */
5369 /* ??? No longer true with the addition of MTHC1, but this
5370 is legacy code... */
5371 && (using_gprs || !(FPR_SIZE == 64 && GPR_SIZE == 32))
5372 && ((data[0] == 0 && data[1] == 0)
5373 || (data[2] == 0 && data[3] == 0))
5374 && ((data[4] == 0 && data[5] == 0)
5375 || (data[6] == 0 && data[7] == 0)))
5376 {
5377 /* The value is simple enough to load with a couple of instructions.
5378 If using 32-bit registers, set IMM to the high order 32 bits and
5379 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5380 64 bit constant. */
5381 if (using_gprs ? GPR_SIZE == 32 : FPR_SIZE != 64)
5382 {
5383 imm->X_op = O_constant;
5384 offset->X_op = O_constant;
5385 if (!target_big_endian)
5386 {
5387 imm->X_add_number = bfd_getl32 (data + 4);
5388 offset->X_add_number = bfd_getl32 (data);
5389 }
5390 else
5391 {
5392 imm->X_add_number = bfd_getb32 (data);
5393 offset->X_add_number = bfd_getb32 (data + 4);
5394 }
5395 if (offset->X_add_number == 0)
5396 offset->X_op = O_absent;
5397 }
5398 else
5399 {
5400 imm->X_op = O_constant;
5401 if (!target_big_endian)
5402 imm->X_add_number = bfd_getl64 (data);
5403 else
5404 imm->X_add_number = bfd_getb64 (data);
5405 offset->X_op = O_absent;
5406 }
5407 return TRUE;
5408 }
5409
5410 /* Switch to the right section. */
5411 seg = now_seg;
5412 subseg = now_subseg;
5413 if (length == 4)
5414 {
5415 gas_assert (!using_gprs && g_switch_value >= 4);
5416 newname = ".lit4";
5417 }
5418 else
5419 {
5420 if (using_gprs || g_switch_value < 8)
5421 newname = RDATA_SECTION_NAME;
5422 else
5423 newname = ".lit8";
5424 }
5425
5426 new_seg = subseg_new (newname, (subsegT) 0);
5427 bfd_set_section_flags (stdoutput, new_seg,
5428 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5429 frag_align (length == 4 ? 2 : 3, 0, 0);
5430 if (strncmp (TARGET_OS, "elf", 3) != 0)
5431 record_alignment (new_seg, 4);
5432 else
5433 record_alignment (new_seg, length == 4 ? 2 : 3);
5434 if (seg == now_seg)
5435 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5436
5437 /* Set the argument to the current address in the section. */
5438 imm->X_op = O_absent;
5439 offset->X_op = O_symbol;
5440 offset->X_add_symbol = symbol_temp_new_now ();
5441 offset->X_add_number = 0;
5442
5443 /* Put the floating point number into the section. */
5444 p = frag_more (length);
5445 memcpy (p, data, length);
5446
5447 /* Switch back to the original section. */
5448 subseg_set (seg, subseg);
5449 return TRUE;
5450 }
5451
5452 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5453 them. */
5454
5455 static bfd_boolean
5456 match_vu0_suffix_operand (struct mips_arg_info *arg,
5457 const struct mips_operand *operand,
5458 bfd_boolean match_p)
5459 {
5460 unsigned int uval;
5461
5462 /* The operand can be an XYZW mask or a single 2-bit channel index
5463 (with X being 0). */
5464 gas_assert (operand->size == 2 || operand->size == 4);
5465
5466 /* The suffix can be omitted when it is already part of the opcode. */
5467 if (arg->token->type != OT_CHANNELS)
5468 return match_p;
5469
5470 uval = arg->token->u.channels;
5471 if (operand->size == 2)
5472 {
5473 /* Check that a single bit is set and convert it into a 2-bit index. */
5474 if ((uval & -uval) != uval)
5475 return FALSE;
5476 uval = 4 - ffs (uval);
5477 }
5478
5479 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5480 return FALSE;
5481
5482 ++arg->token;
5483 if (!match_p)
5484 insn_insert_operand (arg->insn, operand, uval);
5485 return TRUE;
5486 }
5487
5488 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5489 of the argument text if the match is successful, otherwise return null. */
5490
5491 static bfd_boolean
5492 match_operand (struct mips_arg_info *arg,
5493 const struct mips_operand *operand)
5494 {
5495 switch (operand->type)
5496 {
5497 case OP_INT:
5498 return match_int_operand (arg, operand);
5499
5500 case OP_MAPPED_INT:
5501 return match_mapped_int_operand (arg, operand);
5502
5503 case OP_MSB:
5504 return match_msb_operand (arg, operand);
5505
5506 case OP_REG:
5507 case OP_OPTIONAL_REG:
5508 return match_reg_operand (arg, operand);
5509
5510 case OP_REG_PAIR:
5511 return match_reg_pair_operand (arg, operand);
5512
5513 case OP_PCREL:
5514 return match_pcrel_operand (arg);
5515
5516 case OP_PERF_REG:
5517 return match_perf_reg_operand (arg, operand);
5518
5519 case OP_ADDIUSP_INT:
5520 return match_addiusp_operand (arg, operand);
5521
5522 case OP_CLO_CLZ_DEST:
5523 return match_clo_clz_dest_operand (arg, operand);
5524
5525 case OP_LWM_SWM_LIST:
5526 return match_lwm_swm_list_operand (arg, operand);
5527
5528 case OP_ENTRY_EXIT_LIST:
5529 return match_entry_exit_operand (arg, operand);
5530
5531 case OP_SAVE_RESTORE_LIST:
5532 return match_save_restore_list_operand (arg);
5533
5534 case OP_MDMX_IMM_REG:
5535 return match_mdmx_imm_reg_operand (arg, operand);
5536
5537 case OP_REPEAT_DEST_REG:
5538 return match_tied_reg_operand (arg, arg->dest_regno);
5539
5540 case OP_REPEAT_PREV_REG:
5541 return match_tied_reg_operand (arg, arg->last_regno);
5542
5543 case OP_PC:
5544 return match_pc_operand (arg);
5545
5546 case OP_VU0_SUFFIX:
5547 return match_vu0_suffix_operand (arg, operand, FALSE);
5548
5549 case OP_VU0_MATCH_SUFFIX:
5550 return match_vu0_suffix_operand (arg, operand, TRUE);
5551
5552 case OP_IMM_INDEX:
5553 return match_imm_index_operand (arg, operand);
5554
5555 case OP_REG_INDEX:
5556 return match_reg_index_operand (arg, operand);
5557 }
5558 abort ();
5559 }
5560
5561 /* ARG is the state after successfully matching an instruction.
5562 Issue any queued-up warnings. */
5563
5564 static void
5565 check_completed_insn (struct mips_arg_info *arg)
5566 {
5567 if (arg->seen_at)
5568 {
5569 if (AT == ATREG)
5570 as_warn (_("used $at without \".set noat\""));
5571 else
5572 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
5573 }
5574 }
5575
5576 /* Return true if modifying general-purpose register REG needs a delay. */
5577
5578 static bfd_boolean
5579 reg_needs_delay (unsigned int reg)
5580 {
5581 unsigned long prev_pinfo;
5582
5583 prev_pinfo = history[0].insn_mo->pinfo;
5584 if (!mips_opts.noreorder
5585 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
5586 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY) && !cop_interlocks))
5587 && (gpr_write_mask (&history[0]) & (1 << reg)))
5588 return TRUE;
5589
5590 return FALSE;
5591 }
5592
5593 /* Classify an instruction according to the FIX_VR4120_* enumeration.
5594 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
5595 by VR4120 errata. */
5596
5597 static unsigned int
5598 classify_vr4120_insn (const char *name)
5599 {
5600 if (strncmp (name, "macc", 4) == 0)
5601 return FIX_VR4120_MACC;
5602 if (strncmp (name, "dmacc", 5) == 0)
5603 return FIX_VR4120_DMACC;
5604 if (strncmp (name, "mult", 4) == 0)
5605 return FIX_VR4120_MULT;
5606 if (strncmp (name, "dmult", 5) == 0)
5607 return FIX_VR4120_DMULT;
5608 if (strstr (name, "div"))
5609 return FIX_VR4120_DIV;
5610 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
5611 return FIX_VR4120_MTHILO;
5612 return NUM_FIX_VR4120_CLASSES;
5613 }
5614
5615 #define INSN_ERET 0x42000018
5616 #define INSN_DERET 0x4200001f
5617 #define INSN_DMULT 0x1c
5618 #define INSN_DMULTU 0x1d
5619
5620 /* Return the number of instructions that must separate INSN1 and INSN2,
5621 where INSN1 is the earlier instruction. Return the worst-case value
5622 for any INSN2 if INSN2 is null. */
5623
5624 static unsigned int
5625 insns_between (const struct mips_cl_insn *insn1,
5626 const struct mips_cl_insn *insn2)
5627 {
5628 unsigned long pinfo1, pinfo2;
5629 unsigned int mask;
5630
5631 /* If INFO2 is null, pessimistically assume that all flags are set for
5632 the second instruction. */
5633 pinfo1 = insn1->insn_mo->pinfo;
5634 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
5635
5636 /* For most targets, write-after-read dependencies on the HI and LO
5637 registers must be separated by at least two instructions. */
5638 if (!hilo_interlocks)
5639 {
5640 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
5641 return 2;
5642 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
5643 return 2;
5644 }
5645
5646 /* If we're working around r7000 errata, there must be two instructions
5647 between an mfhi or mflo and any instruction that uses the result. */
5648 if (mips_7000_hilo_fix
5649 && !mips_opts.micromips
5650 && MF_HILO_INSN (pinfo1)
5651 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
5652 return 2;
5653
5654 /* If we're working around 24K errata, one instruction is required
5655 if an ERET or DERET is followed by a branch instruction. */
5656 if (mips_fix_24k && !mips_opts.micromips)
5657 {
5658 if (insn1->insn_opcode == INSN_ERET
5659 || insn1->insn_opcode == INSN_DERET)
5660 {
5661 if (insn2 == NULL
5662 || insn2->insn_opcode == INSN_ERET
5663 || insn2->insn_opcode == INSN_DERET
5664 || delayed_branch_p (insn2))
5665 return 1;
5666 }
5667 }
5668
5669 /* If we're working around PMC RM7000 errata, there must be three
5670 nops between a dmult and a load instruction. */
5671 if (mips_fix_rm7000 && !mips_opts.micromips)
5672 {
5673 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
5674 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
5675 {
5676 if (pinfo2 & INSN_LOAD_MEMORY)
5677 return 3;
5678 }
5679 }
5680
5681 /* If working around VR4120 errata, check for combinations that need
5682 a single intervening instruction. */
5683 if (mips_fix_vr4120 && !mips_opts.micromips)
5684 {
5685 unsigned int class1, class2;
5686
5687 class1 = classify_vr4120_insn (insn1->insn_mo->name);
5688 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
5689 {
5690 if (insn2 == NULL)
5691 return 1;
5692 class2 = classify_vr4120_insn (insn2->insn_mo->name);
5693 if (vr4120_conflicts[class1] & (1 << class2))
5694 return 1;
5695 }
5696 }
5697
5698 if (!HAVE_CODE_COMPRESSION)
5699 {
5700 /* Check for GPR or coprocessor load delays. All such delays
5701 are on the RT register. */
5702 /* Itbl support may require additional care here. */
5703 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
5704 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
5705 {
5706 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
5707 return 1;
5708 }
5709
5710 /* Check for generic coprocessor hazards.
5711
5712 This case is not handled very well. There is no special
5713 knowledge of CP0 handling, and the coprocessors other than
5714 the floating point unit are not distinguished at all. */
5715 /* Itbl support may require additional care here. FIXME!
5716 Need to modify this to include knowledge about
5717 user specified delays! */
5718 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
5719 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
5720 {
5721 /* Handle cases where INSN1 writes to a known general coprocessor
5722 register. There must be a one instruction delay before INSN2
5723 if INSN2 reads that register, otherwise no delay is needed. */
5724 mask = fpr_write_mask (insn1);
5725 if (mask != 0)
5726 {
5727 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
5728 return 1;
5729 }
5730 else
5731 {
5732 /* Read-after-write dependencies on the control registers
5733 require a two-instruction gap. */
5734 if ((pinfo1 & INSN_WRITE_COND_CODE)
5735 && (pinfo2 & INSN_READ_COND_CODE))
5736 return 2;
5737
5738 /* We don't know exactly what INSN1 does. If INSN2 is
5739 also a coprocessor instruction, assume there must be
5740 a one instruction gap. */
5741 if (pinfo2 & INSN_COP)
5742 return 1;
5743 }
5744 }
5745
5746 /* Check for read-after-write dependencies on the coprocessor
5747 control registers in cases where INSN1 does not need a general
5748 coprocessor delay. This means that INSN1 is a floating point
5749 comparison instruction. */
5750 /* Itbl support may require additional care here. */
5751 else if (!cop_interlocks
5752 && (pinfo1 & INSN_WRITE_COND_CODE)
5753 && (pinfo2 & INSN_READ_COND_CODE))
5754 return 1;
5755 }
5756
5757 return 0;
5758 }
5759
5760 /* Return the number of nops that would be needed to work around the
5761 VR4130 mflo/mfhi errata if instruction INSN immediately followed
5762 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
5763 that are contained within the first IGNORE instructions of HIST. */
5764
5765 static int
5766 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
5767 const struct mips_cl_insn *insn)
5768 {
5769 int i, j;
5770 unsigned int mask;
5771
5772 /* Check if the instruction writes to HI or LO. MTHI and MTLO
5773 are not affected by the errata. */
5774 if (insn != 0
5775 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
5776 || strcmp (insn->insn_mo->name, "mtlo") == 0
5777 || strcmp (insn->insn_mo->name, "mthi") == 0))
5778 return 0;
5779
5780 /* Search for the first MFLO or MFHI. */
5781 for (i = 0; i < MAX_VR4130_NOPS; i++)
5782 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
5783 {
5784 /* Extract the destination register. */
5785 mask = gpr_write_mask (&hist[i]);
5786
5787 /* No nops are needed if INSN reads that register. */
5788 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
5789 return 0;
5790
5791 /* ...or if any of the intervening instructions do. */
5792 for (j = 0; j < i; j++)
5793 if (gpr_read_mask (&hist[j]) & mask)
5794 return 0;
5795
5796 if (i >= ignore)
5797 return MAX_VR4130_NOPS - i;
5798 }
5799 return 0;
5800 }
5801
5802 #define BASE_REG_EQ(INSN1, INSN2) \
5803 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
5804 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
5805
5806 /* Return the minimum alignment for this store instruction. */
5807
5808 static int
5809 fix_24k_align_to (const struct mips_opcode *mo)
5810 {
5811 if (strcmp (mo->name, "sh") == 0)
5812 return 2;
5813
5814 if (strcmp (mo->name, "swc1") == 0
5815 || strcmp (mo->name, "swc2") == 0
5816 || strcmp (mo->name, "sw") == 0
5817 || strcmp (mo->name, "sc") == 0
5818 || strcmp (mo->name, "s.s") == 0)
5819 return 4;
5820
5821 if (strcmp (mo->name, "sdc1") == 0
5822 || strcmp (mo->name, "sdc2") == 0
5823 || strcmp (mo->name, "s.d") == 0)
5824 return 8;
5825
5826 /* sb, swl, swr */
5827 return 1;
5828 }
5829
5830 struct fix_24k_store_info
5831 {
5832 /* Immediate offset, if any, for this store instruction. */
5833 short off;
5834 /* Alignment required by this store instruction. */
5835 int align_to;
5836 /* True for register offsets. */
5837 int register_offset;
5838 };
5839
5840 /* Comparison function used by qsort. */
5841
5842 static int
5843 fix_24k_sort (const void *a, const void *b)
5844 {
5845 const struct fix_24k_store_info *pos1 = a;
5846 const struct fix_24k_store_info *pos2 = b;
5847
5848 return (pos1->off - pos2->off);
5849 }
5850
5851 /* INSN is a store instruction. Try to record the store information
5852 in STINFO. Return false if the information isn't known. */
5853
5854 static bfd_boolean
5855 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
5856 const struct mips_cl_insn *insn)
5857 {
5858 /* The instruction must have a known offset. */
5859 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
5860 return FALSE;
5861
5862 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
5863 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
5864 return TRUE;
5865 }
5866
5867 /* Return the number of nops that would be needed to work around the 24k
5868 "lost data on stores during refill" errata if instruction INSN
5869 immediately followed the 2 instructions described by HIST.
5870 Ignore hazards that are contained within the first IGNORE
5871 instructions of HIST.
5872
5873 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
5874 for the data cache refills and store data. The following describes
5875 the scenario where the store data could be lost.
5876
5877 * A data cache miss, due to either a load or a store, causing fill
5878 data to be supplied by the memory subsystem
5879 * The first three doublewords of fill data are returned and written
5880 into the cache
5881 * A sequence of four stores occurs in consecutive cycles around the
5882 final doubleword of the fill:
5883 * Store A
5884 * Store B
5885 * Store C
5886 * Zero, One or more instructions
5887 * Store D
5888
5889 The four stores A-D must be to different doublewords of the line that
5890 is being filled. The fourth instruction in the sequence above permits
5891 the fill of the final doubleword to be transferred from the FSB into
5892 the cache. In the sequence above, the stores may be either integer
5893 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
5894 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
5895 different doublewords on the line. If the floating point unit is
5896 running in 1:2 mode, it is not possible to create the sequence above
5897 using only floating point store instructions.
5898
5899 In this case, the cache line being filled is incorrectly marked
5900 invalid, thereby losing the data from any store to the line that
5901 occurs between the original miss and the completion of the five
5902 cycle sequence shown above.
5903
5904 The workarounds are:
5905
5906 * Run the data cache in write-through mode.
5907 * Insert a non-store instruction between
5908 Store A and Store B or Store B and Store C. */
5909
5910 static int
5911 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
5912 const struct mips_cl_insn *insn)
5913 {
5914 struct fix_24k_store_info pos[3];
5915 int align, i, base_offset;
5916
5917 if (ignore >= 2)
5918 return 0;
5919
5920 /* If the previous instruction wasn't a store, there's nothing to
5921 worry about. */
5922 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
5923 return 0;
5924
5925 /* If the instructions after the previous one are unknown, we have
5926 to assume the worst. */
5927 if (!insn)
5928 return 1;
5929
5930 /* Check whether we are dealing with three consecutive stores. */
5931 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
5932 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
5933 return 0;
5934
5935 /* If we don't know the relationship between the store addresses,
5936 assume the worst. */
5937 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
5938 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
5939 return 1;
5940
5941 if (!fix_24k_record_store_info (&pos[0], insn)
5942 || !fix_24k_record_store_info (&pos[1], &hist[0])
5943 || !fix_24k_record_store_info (&pos[2], &hist[1]))
5944 return 1;
5945
5946 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
5947
5948 /* Pick a value of ALIGN and X such that all offsets are adjusted by
5949 X bytes and such that the base register + X is known to be aligned
5950 to align bytes. */
5951
5952 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
5953 align = 8;
5954 else
5955 {
5956 align = pos[0].align_to;
5957 base_offset = pos[0].off;
5958 for (i = 1; i < 3; i++)
5959 if (align < pos[i].align_to)
5960 {
5961 align = pos[i].align_to;
5962 base_offset = pos[i].off;
5963 }
5964 for (i = 0; i < 3; i++)
5965 pos[i].off -= base_offset;
5966 }
5967
5968 pos[0].off &= ~align + 1;
5969 pos[1].off &= ~align + 1;
5970 pos[2].off &= ~align + 1;
5971
5972 /* If any two stores write to the same chunk, they also write to the
5973 same doubleword. The offsets are still sorted at this point. */
5974 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
5975 return 0;
5976
5977 /* A range of at least 9 bytes is needed for the stores to be in
5978 non-overlapping doublewords. */
5979 if (pos[2].off - pos[0].off <= 8)
5980 return 0;
5981
5982 if (pos[2].off - pos[1].off >= 24
5983 || pos[1].off - pos[0].off >= 24
5984 || pos[2].off - pos[0].off >= 32)
5985 return 0;
5986
5987 return 1;
5988 }
5989
5990 /* Return the number of nops that would be needed if instruction INSN
5991 immediately followed the MAX_NOPS instructions given by HIST,
5992 where HIST[0] is the most recent instruction. Ignore hazards
5993 between INSN and the first IGNORE instructions in HIST.
5994
5995 If INSN is null, return the worse-case number of nops for any
5996 instruction. */
5997
5998 static int
5999 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6000 const struct mips_cl_insn *insn)
6001 {
6002 int i, nops, tmp_nops;
6003
6004 nops = 0;
6005 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6006 {
6007 tmp_nops = insns_between (hist + i, insn) - i;
6008 if (tmp_nops > nops)
6009 nops = tmp_nops;
6010 }
6011
6012 if (mips_fix_vr4130 && !mips_opts.micromips)
6013 {
6014 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6015 if (tmp_nops > nops)
6016 nops = tmp_nops;
6017 }
6018
6019 if (mips_fix_24k && !mips_opts.micromips)
6020 {
6021 tmp_nops = nops_for_24k (ignore, hist, insn);
6022 if (tmp_nops > nops)
6023 nops = tmp_nops;
6024 }
6025
6026 return nops;
6027 }
6028
6029 /* The variable arguments provide NUM_INSNS extra instructions that
6030 might be added to HIST. Return the largest number of nops that
6031 would be needed after the extended sequence, ignoring hazards
6032 in the first IGNORE instructions. */
6033
6034 static int
6035 nops_for_sequence (int num_insns, int ignore,
6036 const struct mips_cl_insn *hist, ...)
6037 {
6038 va_list args;
6039 struct mips_cl_insn buffer[MAX_NOPS];
6040 struct mips_cl_insn *cursor;
6041 int nops;
6042
6043 va_start (args, hist);
6044 cursor = buffer + num_insns;
6045 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6046 while (cursor > buffer)
6047 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6048
6049 nops = nops_for_insn (ignore, buffer, NULL);
6050 va_end (args);
6051 return nops;
6052 }
6053
6054 /* Like nops_for_insn, but if INSN is a branch, take into account the
6055 worst-case delay for the branch target. */
6056
6057 static int
6058 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6059 const struct mips_cl_insn *insn)
6060 {
6061 int nops, tmp_nops;
6062
6063 nops = nops_for_insn (ignore, hist, insn);
6064 if (delayed_branch_p (insn))
6065 {
6066 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6067 hist, insn, get_delay_slot_nop (insn));
6068 if (tmp_nops > nops)
6069 nops = tmp_nops;
6070 }
6071 else if (compact_branch_p (insn))
6072 {
6073 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6074 if (tmp_nops > nops)
6075 nops = tmp_nops;
6076 }
6077 return nops;
6078 }
6079
6080 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6081
6082 static void
6083 fix_loongson2f_nop (struct mips_cl_insn * ip)
6084 {
6085 gas_assert (!HAVE_CODE_COMPRESSION);
6086 if (strcmp (ip->insn_mo->name, "nop") == 0)
6087 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6088 }
6089
6090 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6091 jr target pc &= 'hffff_ffff_cfff_ffff. */
6092
6093 static void
6094 fix_loongson2f_jump (struct mips_cl_insn * ip)
6095 {
6096 gas_assert (!HAVE_CODE_COMPRESSION);
6097 if (strcmp (ip->insn_mo->name, "j") == 0
6098 || strcmp (ip->insn_mo->name, "jr") == 0
6099 || strcmp (ip->insn_mo->name, "jalr") == 0)
6100 {
6101 int sreg;
6102 expressionS ep;
6103
6104 if (! mips_opts.at)
6105 return;
6106
6107 sreg = EXTRACT_OPERAND (0, RS, *ip);
6108 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6109 return;
6110
6111 ep.X_op = O_constant;
6112 ep.X_add_number = 0xcfff0000;
6113 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6114 ep.X_add_number = 0xffff;
6115 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6116 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6117 }
6118 }
6119
6120 static void
6121 fix_loongson2f (struct mips_cl_insn * ip)
6122 {
6123 if (mips_fix_loongson2f_nop)
6124 fix_loongson2f_nop (ip);
6125
6126 if (mips_fix_loongson2f_jump)
6127 fix_loongson2f_jump (ip);
6128 }
6129
6130 /* IP is a branch that has a delay slot, and we need to fill it
6131 automatically. Return true if we can do that by swapping IP
6132 with the previous instruction.
6133 ADDRESS_EXPR is an operand of the instruction to be used with
6134 RELOC_TYPE. */
6135
6136 static bfd_boolean
6137 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6138 bfd_reloc_code_real_type *reloc_type)
6139 {
6140 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6141 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6142 unsigned int fpr_read, prev_fpr_write;
6143
6144 /* -O2 and above is required for this optimization. */
6145 if (mips_optimize < 2)
6146 return FALSE;
6147
6148 /* If we have seen .set volatile or .set nomove, don't optimize. */
6149 if (mips_opts.nomove)
6150 return FALSE;
6151
6152 /* We can't swap if the previous instruction's position is fixed. */
6153 if (history[0].fixed_p)
6154 return FALSE;
6155
6156 /* If the previous previous insn was in a .set noreorder, we can't
6157 swap. Actually, the MIPS assembler will swap in this situation.
6158 However, gcc configured -with-gnu-as will generate code like
6159
6160 .set noreorder
6161 lw $4,XXX
6162 .set reorder
6163 INSN
6164 bne $4,$0,foo
6165
6166 in which we can not swap the bne and INSN. If gcc is not configured
6167 -with-gnu-as, it does not output the .set pseudo-ops. */
6168 if (history[1].noreorder_p)
6169 return FALSE;
6170
6171 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6172 This means that the previous instruction was a 4-byte one anyhow. */
6173 if (mips_opts.mips16 && history[0].fixp[0])
6174 return FALSE;
6175
6176 /* If the branch is itself the target of a branch, we can not swap.
6177 We cheat on this; all we check for is whether there is a label on
6178 this instruction. If there are any branches to anything other than
6179 a label, users must use .set noreorder. */
6180 if (seg_info (now_seg)->label_list)
6181 return FALSE;
6182
6183 /* If the previous instruction is in a variant frag other than this
6184 branch's one, we cannot do the swap. This does not apply to
6185 MIPS16 code, which uses variant frags for different purposes. */
6186 if (!mips_opts.mips16
6187 && history[0].frag
6188 && history[0].frag->fr_type == rs_machine_dependent)
6189 return FALSE;
6190
6191 /* We do not swap with instructions that cannot architecturally
6192 be placed in a branch delay slot, such as SYNC or ERET. We
6193 also refrain from swapping with a trap instruction, since it
6194 complicates trap handlers to have the trap instruction be in
6195 a delay slot. */
6196 prev_pinfo = history[0].insn_mo->pinfo;
6197 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6198 return FALSE;
6199
6200 /* Check for conflicts between the branch and the instructions
6201 before the candidate delay slot. */
6202 if (nops_for_insn (0, history + 1, ip) > 0)
6203 return FALSE;
6204
6205 /* Check for conflicts between the swapped sequence and the
6206 target of the branch. */
6207 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6208 return FALSE;
6209
6210 /* If the branch reads a register that the previous
6211 instruction sets, we can not swap. */
6212 gpr_read = gpr_read_mask (ip);
6213 prev_gpr_write = gpr_write_mask (&history[0]);
6214 if (gpr_read & prev_gpr_write)
6215 return FALSE;
6216
6217 fpr_read = fpr_read_mask (ip);
6218 prev_fpr_write = fpr_write_mask (&history[0]);
6219 if (fpr_read & prev_fpr_write)
6220 return FALSE;
6221
6222 /* If the branch writes a register that the previous
6223 instruction sets, we can not swap. */
6224 gpr_write = gpr_write_mask (ip);
6225 if (gpr_write & prev_gpr_write)
6226 return FALSE;
6227
6228 /* If the branch writes a register that the previous
6229 instruction reads, we can not swap. */
6230 prev_gpr_read = gpr_read_mask (&history[0]);
6231 if (gpr_write & prev_gpr_read)
6232 return FALSE;
6233
6234 /* If one instruction sets a condition code and the
6235 other one uses a condition code, we can not swap. */
6236 pinfo = ip->insn_mo->pinfo;
6237 if ((pinfo & INSN_READ_COND_CODE)
6238 && (prev_pinfo & INSN_WRITE_COND_CODE))
6239 return FALSE;
6240 if ((pinfo & INSN_WRITE_COND_CODE)
6241 && (prev_pinfo & INSN_READ_COND_CODE))
6242 return FALSE;
6243
6244 /* If the previous instruction uses the PC, we can not swap. */
6245 prev_pinfo2 = history[0].insn_mo->pinfo2;
6246 if (prev_pinfo2 & INSN2_READ_PC)
6247 return FALSE;
6248
6249 /* If the previous instruction has an incorrect size for a fixed
6250 branch delay slot in microMIPS mode, we cannot swap. */
6251 pinfo2 = ip->insn_mo->pinfo2;
6252 if (mips_opts.micromips
6253 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6254 && insn_length (history) != 2)
6255 return FALSE;
6256 if (mips_opts.micromips
6257 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6258 && insn_length (history) != 4)
6259 return FALSE;
6260
6261 /* On R5900 short loops need to be fixed by inserting a nop in
6262 the branch delay slots.
6263 A short loop can be terminated too early. */
6264 if (mips_opts.arch == CPU_R5900
6265 /* Check if instruction has a parameter, ignore "j $31". */
6266 && (address_expr != NULL)
6267 /* Parameter must be 16 bit. */
6268 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6269 /* Branch to same segment. */
6270 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
6271 /* Branch to same code fragment. */
6272 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
6273 /* Can only calculate branch offset if value is known. */
6274 && symbol_constant_p(address_expr->X_add_symbol)
6275 /* Check if branch is really conditional. */
6276 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6277 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6278 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6279 {
6280 int distance;
6281 /* Check if loop is shorter than 6 instructions including
6282 branch and delay slot. */
6283 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
6284 if (distance <= 20)
6285 {
6286 int i;
6287 int rv;
6288
6289 rv = FALSE;
6290 /* When the loop includes branches or jumps,
6291 it is not a short loop. */
6292 for (i = 0; i < (distance / 4); i++)
6293 {
6294 if ((history[i].cleared_p)
6295 || delayed_branch_p(&history[i]))
6296 {
6297 rv = TRUE;
6298 break;
6299 }
6300 }
6301 if (rv == FALSE)
6302 {
6303 /* Insert nop after branch to fix short loop. */
6304 return FALSE;
6305 }
6306 }
6307 }
6308
6309 return TRUE;
6310 }
6311
6312 /* Decide how we should add IP to the instruction stream.
6313 ADDRESS_EXPR is an operand of the instruction to be used with
6314 RELOC_TYPE. */
6315
6316 static enum append_method
6317 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6318 bfd_reloc_code_real_type *reloc_type)
6319 {
6320 /* The relaxed version of a macro sequence must be inherently
6321 hazard-free. */
6322 if (mips_relax.sequence == 2)
6323 return APPEND_ADD;
6324
6325 /* We must not dabble with instructions in a ".set norerorder" block. */
6326 if (mips_opts.noreorder)
6327 return APPEND_ADD;
6328
6329 /* Otherwise, it's our responsibility to fill branch delay slots. */
6330 if (delayed_branch_p (ip))
6331 {
6332 if (!branch_likely_p (ip)
6333 && can_swap_branch_p (ip, address_expr, reloc_type))
6334 return APPEND_SWAP;
6335
6336 if (mips_opts.mips16
6337 && ISA_SUPPORTS_MIPS16E
6338 && gpr_read_mask (ip) != 0)
6339 return APPEND_ADD_COMPACT;
6340
6341 return APPEND_ADD_WITH_NOP;
6342 }
6343
6344 return APPEND_ADD;
6345 }
6346
6347 /* IP is a MIPS16 instruction whose opcode we have just changed.
6348 Point IP->insn_mo to the new opcode's definition. */
6349
6350 static void
6351 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6352 {
6353 const struct mips_opcode *mo, *end;
6354
6355 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6356 for (mo = ip->insn_mo; mo < end; mo++)
6357 if ((ip->insn_opcode & mo->mask) == mo->match)
6358 {
6359 ip->insn_mo = mo;
6360 return;
6361 }
6362 abort ();
6363 }
6364
6365 /* For microMIPS macros, we need to generate a local number label
6366 as the target of branches. */
6367 #define MICROMIPS_LABEL_CHAR '\037'
6368 static unsigned long micromips_target_label;
6369 static char micromips_target_name[32];
6370
6371 static char *
6372 micromips_label_name (void)
6373 {
6374 char *p = micromips_target_name;
6375 char symbol_name_temporary[24];
6376 unsigned long l;
6377 int i;
6378
6379 if (*p)
6380 return p;
6381
6382 i = 0;
6383 l = micromips_target_label;
6384 #ifdef LOCAL_LABEL_PREFIX
6385 *p++ = LOCAL_LABEL_PREFIX;
6386 #endif
6387 *p++ = 'L';
6388 *p++ = MICROMIPS_LABEL_CHAR;
6389 do
6390 {
6391 symbol_name_temporary[i++] = l % 10 + '0';
6392 l /= 10;
6393 }
6394 while (l != 0);
6395 while (i > 0)
6396 *p++ = symbol_name_temporary[--i];
6397 *p = '\0';
6398
6399 return micromips_target_name;
6400 }
6401
6402 static void
6403 micromips_label_expr (expressionS *label_expr)
6404 {
6405 label_expr->X_op = O_symbol;
6406 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6407 label_expr->X_add_number = 0;
6408 }
6409
6410 static void
6411 micromips_label_inc (void)
6412 {
6413 micromips_target_label++;
6414 *micromips_target_name = '\0';
6415 }
6416
6417 static void
6418 micromips_add_label (void)
6419 {
6420 symbolS *s;
6421
6422 s = colon (micromips_label_name ());
6423 micromips_label_inc ();
6424 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6425 }
6426
6427 /* If assembling microMIPS code, then return the microMIPS reloc
6428 corresponding to the requested one if any. Otherwise return
6429 the reloc unchanged. */
6430
6431 static bfd_reloc_code_real_type
6432 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6433 {
6434 static const bfd_reloc_code_real_type relocs[][2] =
6435 {
6436 /* Keep sorted incrementally by the left-hand key. */
6437 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6438 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6439 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6440 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6441 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6442 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6443 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6444 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6445 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6446 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6447 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6448 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6449 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6450 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6451 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6452 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6453 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6454 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6455 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6456 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6457 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6458 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6459 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6460 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6461 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6462 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6463 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6464 };
6465 bfd_reloc_code_real_type r;
6466 size_t i;
6467
6468 if (!mips_opts.micromips)
6469 return reloc;
6470 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6471 {
6472 r = relocs[i][0];
6473 if (r > reloc)
6474 return reloc;
6475 if (r == reloc)
6476 return relocs[i][1];
6477 }
6478 return reloc;
6479 }
6480
6481 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6482 Return true on success, storing the resolved value in RESULT. */
6483
6484 static bfd_boolean
6485 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6486 offsetT *result)
6487 {
6488 switch (reloc)
6489 {
6490 case BFD_RELOC_MIPS_HIGHEST:
6491 case BFD_RELOC_MICROMIPS_HIGHEST:
6492 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6493 return TRUE;
6494
6495 case BFD_RELOC_MIPS_HIGHER:
6496 case BFD_RELOC_MICROMIPS_HIGHER:
6497 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6498 return TRUE;
6499
6500 case BFD_RELOC_HI16_S:
6501 case BFD_RELOC_MICROMIPS_HI16_S:
6502 case BFD_RELOC_MIPS16_HI16_S:
6503 *result = ((operand + 0x8000) >> 16) & 0xffff;
6504 return TRUE;
6505
6506 case BFD_RELOC_HI16:
6507 case BFD_RELOC_MICROMIPS_HI16:
6508 case BFD_RELOC_MIPS16_HI16:
6509 *result = (operand >> 16) & 0xffff;
6510 return TRUE;
6511
6512 case BFD_RELOC_LO16:
6513 case BFD_RELOC_MICROMIPS_LO16:
6514 case BFD_RELOC_MIPS16_LO16:
6515 *result = operand & 0xffff;
6516 return TRUE;
6517
6518 case BFD_RELOC_UNUSED:
6519 *result = operand;
6520 return TRUE;
6521
6522 default:
6523 return FALSE;
6524 }
6525 }
6526
6527 /* Output an instruction. IP is the instruction information.
6528 ADDRESS_EXPR is an operand of the instruction to be used with
6529 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6530 a macro expansion. */
6531
6532 static void
6533 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
6534 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
6535 {
6536 unsigned long prev_pinfo2, pinfo;
6537 bfd_boolean relaxed_branch = FALSE;
6538 enum append_method method;
6539 bfd_boolean relax32;
6540 int branch_disp;
6541
6542 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
6543 fix_loongson2f (ip);
6544
6545 file_ase_mips16 |= mips_opts.mips16;
6546 file_ase_micromips |= mips_opts.micromips;
6547
6548 prev_pinfo2 = history[0].insn_mo->pinfo2;
6549 pinfo = ip->insn_mo->pinfo;
6550
6551 if (mips_opts.micromips
6552 && !expansionp
6553 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
6554 && micromips_insn_length (ip->insn_mo) != 2)
6555 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
6556 && micromips_insn_length (ip->insn_mo) != 4)))
6557 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
6558 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
6559
6560 if (address_expr == NULL)
6561 ip->complete_p = 1;
6562 else if (reloc_type[0] <= BFD_RELOC_UNUSED
6563 && reloc_type[1] == BFD_RELOC_UNUSED
6564 && reloc_type[2] == BFD_RELOC_UNUSED
6565 && address_expr->X_op == O_constant)
6566 {
6567 switch (*reloc_type)
6568 {
6569 case BFD_RELOC_MIPS_JMP:
6570 {
6571 int shift;
6572
6573 shift = mips_opts.micromips ? 1 : 2;
6574 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
6575 as_bad (_("jump to misaligned address (0x%lx)"),
6576 (unsigned long) address_expr->X_add_number);
6577 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
6578 & 0x3ffffff);
6579 ip->complete_p = 1;
6580 }
6581 break;
6582
6583 case BFD_RELOC_MIPS16_JMP:
6584 if ((address_expr->X_add_number & 3) != 0)
6585 as_bad (_("jump to misaligned address (0x%lx)"),
6586 (unsigned long) address_expr->X_add_number);
6587 ip->insn_opcode |=
6588 (((address_expr->X_add_number & 0x7c0000) << 3)
6589 | ((address_expr->X_add_number & 0xf800000) >> 7)
6590 | ((address_expr->X_add_number & 0x3fffc) >> 2));
6591 ip->complete_p = 1;
6592 break;
6593
6594 case BFD_RELOC_16_PCREL_S2:
6595 {
6596 int shift;
6597
6598 shift = mips_opts.micromips ? 1 : 2;
6599 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
6600 as_bad (_("branch to misaligned address (0x%lx)"),
6601 (unsigned long) address_expr->X_add_number);
6602 if (!mips_relax_branch)
6603 {
6604 if ((address_expr->X_add_number + (1 << (shift + 15)))
6605 & ~((1 << (shift + 16)) - 1))
6606 as_bad (_("branch address range overflow (0x%lx)"),
6607 (unsigned long) address_expr->X_add_number);
6608 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
6609 & 0xffff);
6610 }
6611 }
6612 break;
6613
6614 default:
6615 {
6616 offsetT value;
6617
6618 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
6619 &value))
6620 {
6621 ip->insn_opcode |= value & 0xffff;
6622 ip->complete_p = 1;
6623 }
6624 }
6625 break;
6626 }
6627 }
6628
6629 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
6630 {
6631 /* There are a lot of optimizations we could do that we don't.
6632 In particular, we do not, in general, reorder instructions.
6633 If you use gcc with optimization, it will reorder
6634 instructions and generally do much more optimization then we
6635 do here; repeating all that work in the assembler would only
6636 benefit hand written assembly code, and does not seem worth
6637 it. */
6638 int nops = (mips_optimize == 0
6639 ? nops_for_insn (0, history, NULL)
6640 : nops_for_insn_or_target (0, history, ip));
6641 if (nops > 0)
6642 {
6643 fragS *old_frag;
6644 unsigned long old_frag_offset;
6645 int i;
6646
6647 old_frag = frag_now;
6648 old_frag_offset = frag_now_fix ();
6649
6650 for (i = 0; i < nops; i++)
6651 add_fixed_insn (NOP_INSN);
6652 insert_into_history (0, nops, NOP_INSN);
6653
6654 if (listing)
6655 {
6656 listing_prev_line ();
6657 /* We may be at the start of a variant frag. In case we
6658 are, make sure there is enough space for the frag
6659 after the frags created by listing_prev_line. The
6660 argument to frag_grow here must be at least as large
6661 as the argument to all other calls to frag_grow in
6662 this file. We don't have to worry about being in the
6663 middle of a variant frag, because the variants insert
6664 all needed nop instructions themselves. */
6665 frag_grow (40);
6666 }
6667
6668 mips_move_text_labels ();
6669
6670 #ifndef NO_ECOFF_DEBUGGING
6671 if (ECOFF_DEBUGGING)
6672 ecoff_fix_loc (old_frag, old_frag_offset);
6673 #endif
6674 }
6675 }
6676 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
6677 {
6678 int nops;
6679
6680 /* Work out how many nops in prev_nop_frag are needed by IP,
6681 ignoring hazards generated by the first prev_nop_frag_since
6682 instructions. */
6683 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
6684 gas_assert (nops <= prev_nop_frag_holds);
6685
6686 /* Enforce NOPS as a minimum. */
6687 if (nops > prev_nop_frag_required)
6688 prev_nop_frag_required = nops;
6689
6690 if (prev_nop_frag_holds == prev_nop_frag_required)
6691 {
6692 /* Settle for the current number of nops. Update the history
6693 accordingly (for the benefit of any future .set reorder code). */
6694 prev_nop_frag = NULL;
6695 insert_into_history (prev_nop_frag_since,
6696 prev_nop_frag_holds, NOP_INSN);
6697 }
6698 else
6699 {
6700 /* Allow this instruction to replace one of the nops that was
6701 tentatively added to prev_nop_frag. */
6702 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
6703 prev_nop_frag_holds--;
6704 prev_nop_frag_since++;
6705 }
6706 }
6707
6708 method = get_append_method (ip, address_expr, reloc_type);
6709 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
6710
6711 dwarf2_emit_insn (0);
6712 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
6713 so "move" the instruction address accordingly.
6714
6715 Also, it doesn't seem appropriate for the assembler to reorder .loc
6716 entries. If this instruction is a branch that we are going to swap
6717 with the previous instruction, the two instructions should be
6718 treated as a unit, and the debug information for both instructions
6719 should refer to the start of the branch sequence. Using the
6720 current position is certainly wrong when swapping a 32-bit branch
6721 and a 16-bit delay slot, since the current position would then be
6722 in the middle of a branch. */
6723 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
6724
6725 relax32 = (mips_relax_branch
6726 /* Don't try branch relaxation within .set nomacro, or within
6727 .set noat if we use $at for PIC computations. If it turns
6728 out that the branch was out-of-range, we'll get an error. */
6729 && !mips_opts.warn_about_macros
6730 && (mips_opts.at || mips_pic == NO_PIC)
6731 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
6732 as they have no complementing branches. */
6733 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
6734
6735 if (!HAVE_CODE_COMPRESSION
6736 && address_expr
6737 && relax32
6738 && *reloc_type == BFD_RELOC_16_PCREL_S2
6739 && delayed_branch_p (ip))
6740 {
6741 relaxed_branch = TRUE;
6742 add_relaxed_insn (ip, (relaxed_branch_length
6743 (NULL, NULL,
6744 uncond_branch_p (ip) ? -1
6745 : branch_likely_p (ip) ? 1
6746 : 0)), 4,
6747 RELAX_BRANCH_ENCODE
6748 (AT,
6749 uncond_branch_p (ip),
6750 branch_likely_p (ip),
6751 pinfo & INSN_WRITE_GPR_31,
6752 0),
6753 address_expr->X_add_symbol,
6754 address_expr->X_add_number);
6755 *reloc_type = BFD_RELOC_UNUSED;
6756 }
6757 else if (mips_opts.micromips
6758 && address_expr
6759 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
6760 || *reloc_type > BFD_RELOC_UNUSED)
6761 && (delayed_branch_p (ip) || compact_branch_p (ip))
6762 /* Don't try branch relaxation when users specify
6763 16-bit/32-bit instructions. */
6764 && !forced_insn_length)
6765 {
6766 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
6767 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
6768 int uncond = uncond_branch_p (ip) ? -1 : 0;
6769 int compact = compact_branch_p (ip);
6770 int al = pinfo & INSN_WRITE_GPR_31;
6771 int length32;
6772
6773 gas_assert (address_expr != NULL);
6774 gas_assert (!mips_relax.sequence);
6775
6776 relaxed_branch = TRUE;
6777 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
6778 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
6779 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
6780 relax32, 0, 0),
6781 address_expr->X_add_symbol,
6782 address_expr->X_add_number);
6783 *reloc_type = BFD_RELOC_UNUSED;
6784 }
6785 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
6786 {
6787 /* We need to set up a variant frag. */
6788 gas_assert (address_expr != NULL);
6789 add_relaxed_insn (ip, 4, 0,
6790 RELAX_MIPS16_ENCODE
6791 (*reloc_type - BFD_RELOC_UNUSED,
6792 forced_insn_length == 2, forced_insn_length == 4,
6793 delayed_branch_p (&history[0]),
6794 history[0].mips16_absolute_jump_p),
6795 make_expr_symbol (address_expr), 0);
6796 }
6797 else if (mips_opts.mips16 && insn_length (ip) == 2)
6798 {
6799 if (!delayed_branch_p (ip))
6800 /* Make sure there is enough room to swap this instruction with
6801 a following jump instruction. */
6802 frag_grow (6);
6803 add_fixed_insn (ip);
6804 }
6805 else
6806 {
6807 if (mips_opts.mips16
6808 && mips_opts.noreorder
6809 && delayed_branch_p (&history[0]))
6810 as_warn (_("extended instruction in delay slot"));
6811
6812 if (mips_relax.sequence)
6813 {
6814 /* If we've reached the end of this frag, turn it into a variant
6815 frag and record the information for the instructions we've
6816 written so far. */
6817 if (frag_room () < 4)
6818 relax_close_frag ();
6819 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
6820 }
6821
6822 if (mips_relax.sequence != 2)
6823 {
6824 if (mips_macro_warning.first_insn_sizes[0] == 0)
6825 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
6826 mips_macro_warning.sizes[0] += insn_length (ip);
6827 mips_macro_warning.insns[0]++;
6828 }
6829 if (mips_relax.sequence != 1)
6830 {
6831 if (mips_macro_warning.first_insn_sizes[1] == 0)
6832 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
6833 mips_macro_warning.sizes[1] += insn_length (ip);
6834 mips_macro_warning.insns[1]++;
6835 }
6836
6837 if (mips_opts.mips16)
6838 {
6839 ip->fixed_p = 1;
6840 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
6841 }
6842 add_fixed_insn (ip);
6843 }
6844
6845 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
6846 {
6847 bfd_reloc_code_real_type final_type[3];
6848 reloc_howto_type *howto0;
6849 reloc_howto_type *howto;
6850 int i;
6851
6852 /* Perform any necessary conversion to microMIPS relocations
6853 and find out how many relocations there actually are. */
6854 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
6855 final_type[i] = micromips_map_reloc (reloc_type[i]);
6856
6857 /* In a compound relocation, it is the final (outermost)
6858 operator that determines the relocated field. */
6859 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
6860 if (!howto)
6861 abort ();
6862
6863 if (i > 1)
6864 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
6865 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
6866 bfd_get_reloc_size (howto),
6867 address_expr,
6868 howto0 && howto0->pc_relative,
6869 final_type[0]);
6870
6871 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
6872 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
6873 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
6874
6875 /* These relocations can have an addend that won't fit in
6876 4 octets for 64bit assembly. */
6877 if (GPR_SIZE == 64
6878 && ! howto->partial_inplace
6879 && (reloc_type[0] == BFD_RELOC_16
6880 || reloc_type[0] == BFD_RELOC_32
6881 || reloc_type[0] == BFD_RELOC_MIPS_JMP
6882 || reloc_type[0] == BFD_RELOC_GPREL16
6883 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
6884 || reloc_type[0] == BFD_RELOC_GPREL32
6885 || reloc_type[0] == BFD_RELOC_64
6886 || reloc_type[0] == BFD_RELOC_CTOR
6887 || reloc_type[0] == BFD_RELOC_MIPS_SUB
6888 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
6889 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
6890 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
6891 || reloc_type[0] == BFD_RELOC_MIPS_REL16
6892 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
6893 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
6894 || hi16_reloc_p (reloc_type[0])
6895 || lo16_reloc_p (reloc_type[0])))
6896 ip->fixp[0]->fx_no_overflow = 1;
6897
6898 /* These relocations can have an addend that won't fit in 2 octets. */
6899 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
6900 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
6901 ip->fixp[0]->fx_no_overflow = 1;
6902
6903 if (mips_relax.sequence)
6904 {
6905 if (mips_relax.first_fixup == 0)
6906 mips_relax.first_fixup = ip->fixp[0];
6907 }
6908 else if (reloc_needs_lo_p (*reloc_type))
6909 {
6910 struct mips_hi_fixup *hi_fixup;
6911
6912 /* Reuse the last entry if it already has a matching %lo. */
6913 hi_fixup = mips_hi_fixup_list;
6914 if (hi_fixup == 0
6915 || !fixup_has_matching_lo_p (hi_fixup->fixp))
6916 {
6917 hi_fixup = ((struct mips_hi_fixup *)
6918 xmalloc (sizeof (struct mips_hi_fixup)));
6919 hi_fixup->next = mips_hi_fixup_list;
6920 mips_hi_fixup_list = hi_fixup;
6921 }
6922 hi_fixup->fixp = ip->fixp[0];
6923 hi_fixup->seg = now_seg;
6924 }
6925
6926 /* Add fixups for the second and third relocations, if given.
6927 Note that the ABI allows the second relocation to be
6928 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
6929 moment we only use RSS_UNDEF, but we could add support
6930 for the others if it ever becomes necessary. */
6931 for (i = 1; i < 3; i++)
6932 if (reloc_type[i] != BFD_RELOC_UNUSED)
6933 {
6934 ip->fixp[i] = fix_new (ip->frag, ip->where,
6935 ip->fixp[0]->fx_size, NULL, 0,
6936 FALSE, final_type[i]);
6937
6938 /* Use fx_tcbit to mark compound relocs. */
6939 ip->fixp[0]->fx_tcbit = 1;
6940 ip->fixp[i]->fx_tcbit = 1;
6941 }
6942 }
6943 install_insn (ip);
6944
6945 /* Update the register mask information. */
6946 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
6947 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
6948
6949 switch (method)
6950 {
6951 case APPEND_ADD:
6952 insert_into_history (0, 1, ip);
6953 break;
6954
6955 case APPEND_ADD_WITH_NOP:
6956 {
6957 struct mips_cl_insn *nop;
6958
6959 insert_into_history (0, 1, ip);
6960 nop = get_delay_slot_nop (ip);
6961 add_fixed_insn (nop);
6962 insert_into_history (0, 1, nop);
6963 if (mips_relax.sequence)
6964 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
6965 }
6966 break;
6967
6968 case APPEND_ADD_COMPACT:
6969 /* Convert MIPS16 jr/jalr into a "compact" jump. */
6970 gas_assert (mips_opts.mips16);
6971 ip->insn_opcode |= 0x0080;
6972 find_altered_mips16_opcode (ip);
6973 install_insn (ip);
6974 insert_into_history (0, 1, ip);
6975 break;
6976
6977 case APPEND_SWAP:
6978 {
6979 struct mips_cl_insn delay = history[0];
6980 if (mips_opts.mips16)
6981 {
6982 know (delay.frag == ip->frag);
6983 move_insn (ip, delay.frag, delay.where);
6984 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
6985 }
6986 else if (relaxed_branch || delay.frag != ip->frag)
6987 {
6988 /* Add the delay slot instruction to the end of the
6989 current frag and shrink the fixed part of the
6990 original frag. If the branch occupies the tail of
6991 the latter, move it backwards to cover the gap. */
6992 delay.frag->fr_fix -= branch_disp;
6993 if (delay.frag == ip->frag)
6994 move_insn (ip, ip->frag, ip->where - branch_disp);
6995 add_fixed_insn (&delay);
6996 }
6997 else
6998 {
6999 move_insn (&delay, ip->frag,
7000 ip->where - branch_disp + insn_length (ip));
7001 move_insn (ip, history[0].frag, history[0].where);
7002 }
7003 history[0] = *ip;
7004 delay.fixed_p = 1;
7005 insert_into_history (0, 1, &delay);
7006 }
7007 break;
7008 }
7009
7010 /* If we have just completed an unconditional branch, clear the history. */
7011 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7012 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7013 {
7014 unsigned int i;
7015
7016 mips_no_prev_insn ();
7017
7018 for (i = 0; i < ARRAY_SIZE (history); i++)
7019 history[i].cleared_p = 1;
7020 }
7021
7022 /* We need to emit a label at the end of branch-likely macros. */
7023 if (emit_branch_likely_macro)
7024 {
7025 emit_branch_likely_macro = FALSE;
7026 micromips_add_label ();
7027 }
7028
7029 /* We just output an insn, so the next one doesn't have a label. */
7030 mips_clear_insn_labels ();
7031 }
7032
7033 /* Forget that there was any previous instruction or label.
7034 When BRANCH is true, the branch history is also flushed. */
7035
7036 static void
7037 mips_no_prev_insn (void)
7038 {
7039 prev_nop_frag = NULL;
7040 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7041 mips_clear_insn_labels ();
7042 }
7043
7044 /* This function must be called before we emit something other than
7045 instructions. It is like mips_no_prev_insn except that it inserts
7046 any NOPS that might be needed by previous instructions. */
7047
7048 void
7049 mips_emit_delays (void)
7050 {
7051 if (! mips_opts.noreorder)
7052 {
7053 int nops = nops_for_insn (0, history, NULL);
7054 if (nops > 0)
7055 {
7056 while (nops-- > 0)
7057 add_fixed_insn (NOP_INSN);
7058 mips_move_text_labels ();
7059 }
7060 }
7061 mips_no_prev_insn ();
7062 }
7063
7064 /* Start a (possibly nested) noreorder block. */
7065
7066 static void
7067 start_noreorder (void)
7068 {
7069 if (mips_opts.noreorder == 0)
7070 {
7071 unsigned int i;
7072 int nops;
7073
7074 /* None of the instructions before the .set noreorder can be moved. */
7075 for (i = 0; i < ARRAY_SIZE (history); i++)
7076 history[i].fixed_p = 1;
7077
7078 /* Insert any nops that might be needed between the .set noreorder
7079 block and the previous instructions. We will later remove any
7080 nops that turn out not to be needed. */
7081 nops = nops_for_insn (0, history, NULL);
7082 if (nops > 0)
7083 {
7084 if (mips_optimize != 0)
7085 {
7086 /* Record the frag which holds the nop instructions, so
7087 that we can remove them if we don't need them. */
7088 frag_grow (nops * NOP_INSN_SIZE);
7089 prev_nop_frag = frag_now;
7090 prev_nop_frag_holds = nops;
7091 prev_nop_frag_required = 0;
7092 prev_nop_frag_since = 0;
7093 }
7094
7095 for (; nops > 0; --nops)
7096 add_fixed_insn (NOP_INSN);
7097
7098 /* Move on to a new frag, so that it is safe to simply
7099 decrease the size of prev_nop_frag. */
7100 frag_wane (frag_now);
7101 frag_new (0);
7102 mips_move_text_labels ();
7103 }
7104 mips_mark_labels ();
7105 mips_clear_insn_labels ();
7106 }
7107 mips_opts.noreorder++;
7108 mips_any_noreorder = 1;
7109 }
7110
7111 /* End a nested noreorder block. */
7112
7113 static void
7114 end_noreorder (void)
7115 {
7116 mips_opts.noreorder--;
7117 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7118 {
7119 /* Commit to inserting prev_nop_frag_required nops and go back to
7120 handling nop insertion the .set reorder way. */
7121 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7122 * NOP_INSN_SIZE);
7123 insert_into_history (prev_nop_frag_since,
7124 prev_nop_frag_required, NOP_INSN);
7125 prev_nop_frag = NULL;
7126 }
7127 }
7128
7129 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7130 higher bits unset. */
7131
7132 static void
7133 normalize_constant_expr (expressionS *ex)
7134 {
7135 if (ex->X_op == O_constant
7136 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7137 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7138 - 0x80000000);
7139 }
7140
7141 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7142 all higher bits unset. */
7143
7144 static void
7145 normalize_address_expr (expressionS *ex)
7146 {
7147 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7148 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7149 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7150 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7151 - 0x80000000);
7152 }
7153
7154 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7155 Return true if the match was successful.
7156
7157 OPCODE_EXTRA is a value that should be ORed into the opcode
7158 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7159 there are more alternatives after OPCODE and SOFT_MATCH is
7160 as for mips_arg_info. */
7161
7162 static bfd_boolean
7163 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7164 struct mips_operand_token *tokens, unsigned int opcode_extra,
7165 bfd_boolean lax_match, bfd_boolean complete_p)
7166 {
7167 const char *args;
7168 struct mips_arg_info arg;
7169 const struct mips_operand *operand;
7170 char c;
7171
7172 imm_expr.X_op = O_absent;
7173 offset_expr.X_op = O_absent;
7174 offset_reloc[0] = BFD_RELOC_UNUSED;
7175 offset_reloc[1] = BFD_RELOC_UNUSED;
7176 offset_reloc[2] = BFD_RELOC_UNUSED;
7177
7178 create_insn (insn, opcode);
7179 /* When no opcode suffix is specified, assume ".xyzw". */
7180 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7181 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7182 else
7183 insn->insn_opcode |= opcode_extra;
7184 memset (&arg, 0, sizeof (arg));
7185 arg.insn = insn;
7186 arg.token = tokens;
7187 arg.argnum = 1;
7188 arg.last_regno = ILLEGAL_REG;
7189 arg.dest_regno = ILLEGAL_REG;
7190 arg.lax_match = lax_match;
7191 for (args = opcode->args;; ++args)
7192 {
7193 if (arg.token->type == OT_END)
7194 {
7195 /* Handle unary instructions in which only one operand is given.
7196 The source is then the same as the destination. */
7197 if (arg.opnum == 1 && *args == ',')
7198 {
7199 operand = (mips_opts.micromips
7200 ? decode_micromips_operand (args + 1)
7201 : decode_mips_operand (args + 1));
7202 if (operand && mips_optional_operand_p (operand))
7203 {
7204 arg.token = tokens;
7205 arg.argnum = 1;
7206 continue;
7207 }
7208 }
7209
7210 /* Treat elided base registers as $0. */
7211 if (strcmp (args, "(b)") == 0)
7212 args += 3;
7213
7214 if (args[0] == '+')
7215 switch (args[1])
7216 {
7217 case 'K':
7218 case 'N':
7219 /* The register suffix is optional. */
7220 args += 2;
7221 break;
7222 }
7223
7224 /* Fail the match if there were too few operands. */
7225 if (*args)
7226 return FALSE;
7227
7228 /* Successful match. */
7229 if (!complete_p)
7230 return TRUE;
7231 clear_insn_error ();
7232 if (arg.dest_regno == arg.last_regno
7233 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7234 {
7235 if (arg.opnum == 2)
7236 set_insn_error
7237 (0, _("source and destination must be different"));
7238 else if (arg.last_regno == 31)
7239 set_insn_error
7240 (0, _("a destination register must be supplied"));
7241 }
7242 else if (arg.last_regno == 31
7243 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7244 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7245 set_insn_error (0, _("the source register must not be $31"));
7246 check_completed_insn (&arg);
7247 return TRUE;
7248 }
7249
7250 /* Fail the match if the line has too many operands. */
7251 if (*args == 0)
7252 return FALSE;
7253
7254 /* Handle characters that need to match exactly. */
7255 if (*args == '(' || *args == ')' || *args == ',')
7256 {
7257 if (match_char (&arg, *args))
7258 continue;
7259 return FALSE;
7260 }
7261 if (*args == '#')
7262 {
7263 ++args;
7264 if (arg.token->type == OT_DOUBLE_CHAR
7265 && arg.token->u.ch == *args)
7266 {
7267 ++arg.token;
7268 continue;
7269 }
7270 return FALSE;
7271 }
7272
7273 /* Handle special macro operands. Work out the properties of
7274 other operands. */
7275 arg.opnum += 1;
7276 switch (*args)
7277 {
7278 case '+':
7279 switch (args[1])
7280 {
7281 case 'i':
7282 *offset_reloc = BFD_RELOC_MIPS_JMP;
7283 break;
7284 }
7285 break;
7286
7287 case 'I':
7288 if (!match_const_int (&arg, &imm_expr.X_add_number))
7289 return FALSE;
7290 imm_expr.X_op = O_constant;
7291 if (GPR_SIZE == 32)
7292 normalize_constant_expr (&imm_expr);
7293 continue;
7294
7295 case 'A':
7296 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7297 {
7298 /* Assume that the offset has been elided and that what
7299 we saw was a base register. The match will fail later
7300 if that assumption turns out to be wrong. */
7301 offset_expr.X_op = O_constant;
7302 offset_expr.X_add_number = 0;
7303 }
7304 else
7305 {
7306 if (!match_expression (&arg, &offset_expr, offset_reloc))
7307 return FALSE;
7308 normalize_address_expr (&offset_expr);
7309 }
7310 continue;
7311
7312 case 'F':
7313 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7314 8, TRUE))
7315 return FALSE;
7316 continue;
7317
7318 case 'L':
7319 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7320 8, FALSE))
7321 return FALSE;
7322 continue;
7323
7324 case 'f':
7325 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7326 4, TRUE))
7327 return FALSE;
7328 continue;
7329
7330 case 'l':
7331 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7332 4, FALSE))
7333 return FALSE;
7334 continue;
7335
7336 case 'p':
7337 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7338 break;
7339
7340 case 'a':
7341 *offset_reloc = BFD_RELOC_MIPS_JMP;
7342 break;
7343
7344 case 'm':
7345 gas_assert (mips_opts.micromips);
7346 c = args[1];
7347 switch (c)
7348 {
7349 case 'D':
7350 case 'E':
7351 if (!forced_insn_length)
7352 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7353 else if (c == 'D')
7354 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7355 else
7356 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7357 break;
7358 }
7359 break;
7360 }
7361
7362 operand = (mips_opts.micromips
7363 ? decode_micromips_operand (args)
7364 : decode_mips_operand (args));
7365 if (!operand)
7366 abort ();
7367
7368 /* Skip prefixes. */
7369 if (*args == '+' || *args == 'm')
7370 args++;
7371
7372 if (mips_optional_operand_p (operand)
7373 && args[1] == ','
7374 && (arg.token[0].type != OT_REG
7375 || arg.token[1].type == OT_END))
7376 {
7377 /* Assume that the register has been elided and is the
7378 same as the first operand. */
7379 arg.token = tokens;
7380 arg.argnum = 1;
7381 }
7382
7383 if (!match_operand (&arg, operand))
7384 return FALSE;
7385 }
7386 }
7387
7388 /* Like match_insn, but for MIPS16. */
7389
7390 static bfd_boolean
7391 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7392 struct mips_operand_token *tokens)
7393 {
7394 const char *args;
7395 const struct mips_operand *operand;
7396 const struct mips_operand *ext_operand;
7397 struct mips_arg_info arg;
7398 int relax_char;
7399
7400 create_insn (insn, opcode);
7401 imm_expr.X_op = O_absent;
7402 offset_expr.X_op = O_absent;
7403 offset_reloc[0] = BFD_RELOC_UNUSED;
7404 offset_reloc[1] = BFD_RELOC_UNUSED;
7405 offset_reloc[2] = BFD_RELOC_UNUSED;
7406 relax_char = 0;
7407
7408 memset (&arg, 0, sizeof (arg));
7409 arg.insn = insn;
7410 arg.token = tokens;
7411 arg.argnum = 1;
7412 arg.last_regno = ILLEGAL_REG;
7413 arg.dest_regno = ILLEGAL_REG;
7414 relax_char = 0;
7415 for (args = opcode->args;; ++args)
7416 {
7417 int c;
7418
7419 if (arg.token->type == OT_END)
7420 {
7421 offsetT value;
7422
7423 /* Handle unary instructions in which only one operand is given.
7424 The source is then the same as the destination. */
7425 if (arg.opnum == 1 && *args == ',')
7426 {
7427 operand = decode_mips16_operand (args[1], FALSE);
7428 if (operand && mips_optional_operand_p (operand))
7429 {
7430 arg.token = tokens;
7431 arg.argnum = 1;
7432 continue;
7433 }
7434 }
7435
7436 /* Fail the match if there were too few operands. */
7437 if (*args)
7438 return FALSE;
7439
7440 /* Successful match. Stuff the immediate value in now, if
7441 we can. */
7442 clear_insn_error ();
7443 if (opcode->pinfo == INSN_MACRO)
7444 {
7445 gas_assert (relax_char == 0 || relax_char == 'p');
7446 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7447 }
7448 else if (relax_char
7449 && offset_expr.X_op == O_constant
7450 && calculate_reloc (*offset_reloc,
7451 offset_expr.X_add_number,
7452 &value))
7453 {
7454 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7455 forced_insn_length, &insn->insn_opcode);
7456 offset_expr.X_op = O_absent;
7457 *offset_reloc = BFD_RELOC_UNUSED;
7458 }
7459 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7460 {
7461 if (forced_insn_length == 2)
7462 set_insn_error (0, _("invalid unextended operand value"));
7463 forced_insn_length = 4;
7464 insn->insn_opcode |= MIPS16_EXTEND;
7465 }
7466 else if (relax_char)
7467 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7468
7469 check_completed_insn (&arg);
7470 return TRUE;
7471 }
7472
7473 /* Fail the match if the line has too many operands. */
7474 if (*args == 0)
7475 return FALSE;
7476
7477 /* Handle characters that need to match exactly. */
7478 if (*args == '(' || *args == ')' || *args == ',')
7479 {
7480 if (match_char (&arg, *args))
7481 continue;
7482 return FALSE;
7483 }
7484
7485 arg.opnum += 1;
7486 c = *args;
7487 switch (c)
7488 {
7489 case 'p':
7490 case 'q':
7491 case 'A':
7492 case 'B':
7493 case 'E':
7494 relax_char = c;
7495 break;
7496
7497 case 'I':
7498 if (!match_const_int (&arg, &imm_expr.X_add_number))
7499 return FALSE;
7500 imm_expr.X_op = O_constant;
7501 if (GPR_SIZE == 32)
7502 normalize_constant_expr (&imm_expr);
7503 continue;
7504
7505 case 'a':
7506 case 'i':
7507 *offset_reloc = BFD_RELOC_MIPS16_JMP;
7508 insn->insn_opcode <<= 16;
7509 break;
7510 }
7511
7512 operand = decode_mips16_operand (c, FALSE);
7513 if (!operand)
7514 abort ();
7515
7516 /* '6' is a special case. It is used for BREAK and SDBBP,
7517 whose operands are only meaningful to the software that decodes
7518 them. This means that there is no architectural reason why
7519 they cannot be prefixed by EXTEND, but in practice,
7520 exception handlers will only look at the instruction
7521 itself. We therefore allow '6' to be extended when
7522 disassembling but not when assembling. */
7523 if (operand->type != OP_PCREL && c != '6')
7524 {
7525 ext_operand = decode_mips16_operand (c, TRUE);
7526 if (operand != ext_operand)
7527 {
7528 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7529 {
7530 offset_expr.X_op = O_constant;
7531 offset_expr.X_add_number = 0;
7532 relax_char = c;
7533 continue;
7534 }
7535
7536 /* We need the OT_INTEGER check because some MIPS16
7537 immediate variants are listed before the register ones. */
7538 if (arg.token->type != OT_INTEGER
7539 || !match_expression (&arg, &offset_expr, offset_reloc))
7540 return FALSE;
7541
7542 /* '8' is used for SLTI(U) and has traditionally not
7543 been allowed to take relocation operators. */
7544 if (offset_reloc[0] != BFD_RELOC_UNUSED
7545 && (ext_operand->size != 16 || c == '8'))
7546 return FALSE;
7547
7548 relax_char = c;
7549 continue;
7550 }
7551 }
7552
7553 if (mips_optional_operand_p (operand)
7554 && args[1] == ','
7555 && (arg.token[0].type != OT_REG
7556 || arg.token[1].type == OT_END))
7557 {
7558 /* Assume that the register has been elided and is the
7559 same as the first operand. */
7560 arg.token = tokens;
7561 arg.argnum = 1;
7562 }
7563
7564 if (!match_operand (&arg, operand))
7565 return FALSE;
7566 }
7567 }
7568
7569 /* Record that the current instruction is invalid for the current ISA. */
7570
7571 static void
7572 match_invalid_for_isa (void)
7573 {
7574 set_insn_error_ss
7575 (0, _("opcode not supported on this processor: %s (%s)"),
7576 mips_cpu_info_from_arch (mips_opts.arch)->name,
7577 mips_cpu_info_from_isa (mips_opts.isa)->name);
7578 }
7579
7580 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
7581 Return true if a definite match or failure was found, storing any match
7582 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
7583 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
7584 tried and failed to match under normal conditions and now want to try a
7585 more relaxed match. */
7586
7587 static bfd_boolean
7588 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
7589 const struct mips_opcode *past, struct mips_operand_token *tokens,
7590 int opcode_extra, bfd_boolean lax_match)
7591 {
7592 const struct mips_opcode *opcode;
7593 const struct mips_opcode *invalid_delay_slot;
7594 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
7595
7596 /* Search for a match, ignoring alternatives that don't satisfy the
7597 current ISA or forced_length. */
7598 invalid_delay_slot = 0;
7599 seen_valid_for_isa = FALSE;
7600 seen_valid_for_size = FALSE;
7601 opcode = first;
7602 do
7603 {
7604 gas_assert (strcmp (opcode->name, first->name) == 0);
7605 if (is_opcode_valid (opcode))
7606 {
7607 seen_valid_for_isa = TRUE;
7608 if (is_size_valid (opcode))
7609 {
7610 bfd_boolean delay_slot_ok;
7611
7612 seen_valid_for_size = TRUE;
7613 delay_slot_ok = is_delay_slot_valid (opcode);
7614 if (match_insn (insn, opcode, tokens, opcode_extra,
7615 lax_match, delay_slot_ok))
7616 {
7617 if (!delay_slot_ok)
7618 {
7619 if (!invalid_delay_slot)
7620 invalid_delay_slot = opcode;
7621 }
7622 else
7623 return TRUE;
7624 }
7625 }
7626 }
7627 ++opcode;
7628 }
7629 while (opcode < past && strcmp (opcode->name, first->name) == 0);
7630
7631 /* If the only matches we found had the wrong length for the delay slot,
7632 pick the first such match. We'll issue an appropriate warning later. */
7633 if (invalid_delay_slot)
7634 {
7635 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
7636 lax_match, TRUE))
7637 return TRUE;
7638 abort ();
7639 }
7640
7641 /* Handle the case where we didn't try to match an instruction because
7642 all the alternatives were incompatible with the current ISA. */
7643 if (!seen_valid_for_isa)
7644 {
7645 match_invalid_for_isa ();
7646 return TRUE;
7647 }
7648
7649 /* Handle the case where we didn't try to match an instruction because
7650 all the alternatives were of the wrong size. */
7651 if (!seen_valid_for_size)
7652 {
7653 if (mips_opts.insn32)
7654 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
7655 else
7656 set_insn_error_i
7657 (0, _("unrecognized %d-bit version of microMIPS opcode"),
7658 8 * forced_insn_length);
7659 return TRUE;
7660 }
7661
7662 return FALSE;
7663 }
7664
7665 /* Like match_insns, but for MIPS16. */
7666
7667 static bfd_boolean
7668 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
7669 struct mips_operand_token *tokens)
7670 {
7671 const struct mips_opcode *opcode;
7672 bfd_boolean seen_valid_for_isa;
7673
7674 /* Search for a match, ignoring alternatives that don't satisfy the
7675 current ISA. There are no separate entries for extended forms so
7676 we deal with forced_length later. */
7677 seen_valid_for_isa = FALSE;
7678 opcode = first;
7679 do
7680 {
7681 gas_assert (strcmp (opcode->name, first->name) == 0);
7682 if (is_opcode_valid_16 (opcode))
7683 {
7684 seen_valid_for_isa = TRUE;
7685 if (match_mips16_insn (insn, opcode, tokens))
7686 return TRUE;
7687 }
7688 ++opcode;
7689 }
7690 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
7691 && strcmp (opcode->name, first->name) == 0);
7692
7693 /* Handle the case where we didn't try to match an instruction because
7694 all the alternatives were incompatible with the current ISA. */
7695 if (!seen_valid_for_isa)
7696 {
7697 match_invalid_for_isa ();
7698 return TRUE;
7699 }
7700
7701 return FALSE;
7702 }
7703
7704 /* Set up global variables for the start of a new macro. */
7705
7706 static void
7707 macro_start (void)
7708 {
7709 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
7710 memset (&mips_macro_warning.first_insn_sizes, 0,
7711 sizeof (mips_macro_warning.first_insn_sizes));
7712 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
7713 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
7714 && delayed_branch_p (&history[0]));
7715 switch (history[0].insn_mo->pinfo2
7716 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
7717 {
7718 case INSN2_BRANCH_DELAY_32BIT:
7719 mips_macro_warning.delay_slot_length = 4;
7720 break;
7721 case INSN2_BRANCH_DELAY_16BIT:
7722 mips_macro_warning.delay_slot_length = 2;
7723 break;
7724 default:
7725 mips_macro_warning.delay_slot_length = 0;
7726 break;
7727 }
7728 mips_macro_warning.first_frag = NULL;
7729 }
7730
7731 /* Given that a macro is longer than one instruction or of the wrong size,
7732 return the appropriate warning for it. Return null if no warning is
7733 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
7734 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
7735 and RELAX_NOMACRO. */
7736
7737 static const char *
7738 macro_warning (relax_substateT subtype)
7739 {
7740 if (subtype & RELAX_DELAY_SLOT)
7741 return _("macro instruction expanded into multiple instructions"
7742 " in a branch delay slot");
7743 else if (subtype & RELAX_NOMACRO)
7744 return _("macro instruction expanded into multiple instructions");
7745 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
7746 | RELAX_DELAY_SLOT_SIZE_SECOND))
7747 return ((subtype & RELAX_DELAY_SLOT_16BIT)
7748 ? _("macro instruction expanded into a wrong size instruction"
7749 " in a 16-bit branch delay slot")
7750 : _("macro instruction expanded into a wrong size instruction"
7751 " in a 32-bit branch delay slot"));
7752 else
7753 return 0;
7754 }
7755
7756 /* Finish up a macro. Emit warnings as appropriate. */
7757
7758 static void
7759 macro_end (void)
7760 {
7761 /* Relaxation warning flags. */
7762 relax_substateT subtype = 0;
7763
7764 /* Check delay slot size requirements. */
7765 if (mips_macro_warning.delay_slot_length == 2)
7766 subtype |= RELAX_DELAY_SLOT_16BIT;
7767 if (mips_macro_warning.delay_slot_length != 0)
7768 {
7769 if (mips_macro_warning.delay_slot_length
7770 != mips_macro_warning.first_insn_sizes[0])
7771 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
7772 if (mips_macro_warning.delay_slot_length
7773 != mips_macro_warning.first_insn_sizes[1])
7774 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
7775 }
7776
7777 /* Check instruction count requirements. */
7778 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
7779 {
7780 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
7781 subtype |= RELAX_SECOND_LONGER;
7782 if (mips_opts.warn_about_macros)
7783 subtype |= RELAX_NOMACRO;
7784 if (mips_macro_warning.delay_slot_p)
7785 subtype |= RELAX_DELAY_SLOT;
7786 }
7787
7788 /* If both alternatives fail to fill a delay slot correctly,
7789 emit the warning now. */
7790 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
7791 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
7792 {
7793 relax_substateT s;
7794 const char *msg;
7795
7796 s = subtype & (RELAX_DELAY_SLOT_16BIT
7797 | RELAX_DELAY_SLOT_SIZE_FIRST
7798 | RELAX_DELAY_SLOT_SIZE_SECOND);
7799 msg = macro_warning (s);
7800 if (msg != NULL)
7801 as_warn ("%s", msg);
7802 subtype &= ~s;
7803 }
7804
7805 /* If both implementations are longer than 1 instruction, then emit the
7806 warning now. */
7807 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
7808 {
7809 relax_substateT s;
7810 const char *msg;
7811
7812 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
7813 msg = macro_warning (s);
7814 if (msg != NULL)
7815 as_warn ("%s", msg);
7816 subtype &= ~s;
7817 }
7818
7819 /* If any flags still set, then one implementation might need a warning
7820 and the other either will need one of a different kind or none at all.
7821 Pass any remaining flags over to relaxation. */
7822 if (mips_macro_warning.first_frag != NULL)
7823 mips_macro_warning.first_frag->fr_subtype |= subtype;
7824 }
7825
7826 /* Instruction operand formats used in macros that vary between
7827 standard MIPS and microMIPS code. */
7828
7829 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
7830 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
7831 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
7832 static const char * const lui_fmt[2] = { "t,u", "s,u" };
7833 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
7834 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
7835 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
7836 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
7837
7838 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7839 #define COP12_FMT (cop12_fmt[mips_opts.micromips])
7840 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
7841 #define LUI_FMT (lui_fmt[mips_opts.micromips])
7842 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7843 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
7844 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
7845 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
7846
7847 /* Read a macro's relocation codes from *ARGS and store them in *R.
7848 The first argument in *ARGS will be either the code for a single
7849 relocation or -1 followed by the three codes that make up a
7850 composite relocation. */
7851
7852 static void
7853 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
7854 {
7855 int i, next;
7856
7857 next = va_arg (*args, int);
7858 if (next >= 0)
7859 r[0] = (bfd_reloc_code_real_type) next;
7860 else
7861 {
7862 for (i = 0; i < 3; i++)
7863 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
7864 /* This function is only used for 16-bit relocation fields.
7865 To make the macro code simpler, treat an unrelocated value
7866 in the same way as BFD_RELOC_LO16. */
7867 if (r[0] == BFD_RELOC_UNUSED)
7868 r[0] = BFD_RELOC_LO16;
7869 }
7870 }
7871
7872 /* Build an instruction created by a macro expansion. This is passed
7873 a pointer to the count of instructions created so far, an
7874 expression, the name of the instruction to build, an operand format
7875 string, and corresponding arguments. */
7876
7877 static void
7878 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
7879 {
7880 const struct mips_opcode *mo = NULL;
7881 bfd_reloc_code_real_type r[3];
7882 const struct mips_opcode *amo;
7883 const struct mips_operand *operand;
7884 struct hash_control *hash;
7885 struct mips_cl_insn insn;
7886 va_list args;
7887 unsigned int uval;
7888
7889 va_start (args, fmt);
7890
7891 if (mips_opts.mips16)
7892 {
7893 mips16_macro_build (ep, name, fmt, &args);
7894 va_end (args);
7895 return;
7896 }
7897
7898 r[0] = BFD_RELOC_UNUSED;
7899 r[1] = BFD_RELOC_UNUSED;
7900 r[2] = BFD_RELOC_UNUSED;
7901 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
7902 amo = (struct mips_opcode *) hash_find (hash, name);
7903 gas_assert (amo);
7904 gas_assert (strcmp (name, amo->name) == 0);
7905
7906 do
7907 {
7908 /* Search until we get a match for NAME. It is assumed here that
7909 macros will never generate MDMX, MIPS-3D, or MT instructions.
7910 We try to match an instruction that fulfils the branch delay
7911 slot instruction length requirement (if any) of the previous
7912 instruction. While doing this we record the first instruction
7913 seen that matches all the other conditions and use it anyway
7914 if the requirement cannot be met; we will issue an appropriate
7915 warning later on. */
7916 if (strcmp (fmt, amo->args) == 0
7917 && amo->pinfo != INSN_MACRO
7918 && is_opcode_valid (amo)
7919 && is_size_valid (amo))
7920 {
7921 if (is_delay_slot_valid (amo))
7922 {
7923 mo = amo;
7924 break;
7925 }
7926 else if (!mo)
7927 mo = amo;
7928 }
7929
7930 ++amo;
7931 gas_assert (amo->name);
7932 }
7933 while (strcmp (name, amo->name) == 0);
7934
7935 gas_assert (mo);
7936 create_insn (&insn, mo);
7937 for (; *fmt; ++fmt)
7938 {
7939 switch (*fmt)
7940 {
7941 case ',':
7942 case '(':
7943 case ')':
7944 case 'z':
7945 break;
7946
7947 case 'i':
7948 case 'j':
7949 macro_read_relocs (&args, r);
7950 gas_assert (*r == BFD_RELOC_GPREL16
7951 || *r == BFD_RELOC_MIPS_HIGHER
7952 || *r == BFD_RELOC_HI16_S
7953 || *r == BFD_RELOC_LO16
7954 || *r == BFD_RELOC_MIPS_GOT_OFST);
7955 break;
7956
7957 case 'o':
7958 macro_read_relocs (&args, r);
7959 break;
7960
7961 case 'u':
7962 macro_read_relocs (&args, r);
7963 gas_assert (ep != NULL
7964 && (ep->X_op == O_constant
7965 || (ep->X_op == O_symbol
7966 && (*r == BFD_RELOC_MIPS_HIGHEST
7967 || *r == BFD_RELOC_HI16_S
7968 || *r == BFD_RELOC_HI16
7969 || *r == BFD_RELOC_GPREL16
7970 || *r == BFD_RELOC_MIPS_GOT_HI16
7971 || *r == BFD_RELOC_MIPS_CALL_HI16))));
7972 break;
7973
7974 case 'p':
7975 gas_assert (ep != NULL);
7976
7977 /*
7978 * This allows macro() to pass an immediate expression for
7979 * creating short branches without creating a symbol.
7980 *
7981 * We don't allow branch relaxation for these branches, as
7982 * they should only appear in ".set nomacro" anyway.
7983 */
7984 if (ep->X_op == O_constant)
7985 {
7986 /* For microMIPS we always use relocations for branches.
7987 So we should not resolve immediate values. */
7988 gas_assert (!mips_opts.micromips);
7989
7990 if ((ep->X_add_number & 3) != 0)
7991 as_bad (_("branch to misaligned address (0x%lx)"),
7992 (unsigned long) ep->X_add_number);
7993 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
7994 as_bad (_("branch address range overflow (0x%lx)"),
7995 (unsigned long) ep->X_add_number);
7996 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
7997 ep = NULL;
7998 }
7999 else
8000 *r = BFD_RELOC_16_PCREL_S2;
8001 break;
8002
8003 case 'a':
8004 gas_assert (ep != NULL);
8005 *r = BFD_RELOC_MIPS_JMP;
8006 break;
8007
8008 default:
8009 operand = (mips_opts.micromips
8010 ? decode_micromips_operand (fmt)
8011 : decode_mips_operand (fmt));
8012 if (!operand)
8013 abort ();
8014
8015 uval = va_arg (args, int);
8016 if (operand->type == OP_CLO_CLZ_DEST)
8017 uval |= (uval << 5);
8018 insn_insert_operand (&insn, operand, uval);
8019
8020 if (*fmt == '+' || *fmt == 'm')
8021 ++fmt;
8022 break;
8023 }
8024 }
8025 va_end (args);
8026 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8027
8028 append_insn (&insn, ep, r, TRUE);
8029 }
8030
8031 static void
8032 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8033 va_list *args)
8034 {
8035 struct mips_opcode *mo;
8036 struct mips_cl_insn insn;
8037 const struct mips_operand *operand;
8038 bfd_reloc_code_real_type r[3]
8039 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8040
8041 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8042 gas_assert (mo);
8043 gas_assert (strcmp (name, mo->name) == 0);
8044
8045 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8046 {
8047 ++mo;
8048 gas_assert (mo->name);
8049 gas_assert (strcmp (name, mo->name) == 0);
8050 }
8051
8052 create_insn (&insn, mo);
8053 for (; *fmt; ++fmt)
8054 {
8055 int c;
8056
8057 c = *fmt;
8058 switch (c)
8059 {
8060 case ',':
8061 case '(':
8062 case ')':
8063 break;
8064
8065 case '0':
8066 case 'S':
8067 case 'P':
8068 case 'R':
8069 break;
8070
8071 case '<':
8072 case '>':
8073 case '4':
8074 case '5':
8075 case 'H':
8076 case 'W':
8077 case 'D':
8078 case 'j':
8079 case '8':
8080 case 'V':
8081 case 'C':
8082 case 'U':
8083 case 'k':
8084 case 'K':
8085 case 'p':
8086 case 'q':
8087 {
8088 offsetT value;
8089
8090 gas_assert (ep != NULL);
8091
8092 if (ep->X_op != O_constant)
8093 *r = (int) BFD_RELOC_UNUSED + c;
8094 else if (calculate_reloc (*r, ep->X_add_number, &value))
8095 {
8096 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8097 ep = NULL;
8098 *r = BFD_RELOC_UNUSED;
8099 }
8100 }
8101 break;
8102
8103 default:
8104 operand = decode_mips16_operand (c, FALSE);
8105 if (!operand)
8106 abort ();
8107
8108 insn_insert_operand (&insn, operand, va_arg (*args, int));
8109 break;
8110 }
8111 }
8112
8113 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8114
8115 append_insn (&insn, ep, r, TRUE);
8116 }
8117
8118 /*
8119 * Generate a "jalr" instruction with a relocation hint to the called
8120 * function. This occurs in NewABI PIC code.
8121 */
8122 static void
8123 macro_build_jalr (expressionS *ep, int cprestore)
8124 {
8125 static const bfd_reloc_code_real_type jalr_relocs[2]
8126 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8127 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8128 const char *jalr;
8129 char *f = NULL;
8130
8131 if (MIPS_JALR_HINT_P (ep))
8132 {
8133 frag_grow (8);
8134 f = frag_more (0);
8135 }
8136 if (mips_opts.micromips)
8137 {
8138 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8139 ? "jalr" : "jalrs");
8140 if (MIPS_JALR_HINT_P (ep)
8141 || mips_opts.insn32
8142 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8143 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8144 else
8145 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8146 }
8147 else
8148 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8149 if (MIPS_JALR_HINT_P (ep))
8150 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8151 }
8152
8153 /*
8154 * Generate a "lui" instruction.
8155 */
8156 static void
8157 macro_build_lui (expressionS *ep, int regnum)
8158 {
8159 gas_assert (! mips_opts.mips16);
8160
8161 if (ep->X_op != O_constant)
8162 {
8163 gas_assert (ep->X_op == O_symbol);
8164 /* _gp_disp is a special case, used from s_cpload.
8165 __gnu_local_gp is used if mips_no_shared. */
8166 gas_assert (mips_pic == NO_PIC
8167 || (! HAVE_NEWABI
8168 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8169 || (! mips_in_shared
8170 && strcmp (S_GET_NAME (ep->X_add_symbol),
8171 "__gnu_local_gp") == 0));
8172 }
8173
8174 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8175 }
8176
8177 /* Generate a sequence of instructions to do a load or store from a constant
8178 offset off of a base register (breg) into/from a target register (treg),
8179 using AT if necessary. */
8180 static void
8181 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8182 int treg, int breg, int dbl)
8183 {
8184 gas_assert (ep->X_op == O_constant);
8185
8186 /* Sign-extending 32-bit constants makes their handling easier. */
8187 if (!dbl)
8188 normalize_constant_expr (ep);
8189
8190 /* Right now, this routine can only handle signed 32-bit constants. */
8191 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8192 as_warn (_("operand overflow"));
8193
8194 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8195 {
8196 /* Signed 16-bit offset will fit in the op. Easy! */
8197 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8198 }
8199 else
8200 {
8201 /* 32-bit offset, need multiple instructions and AT, like:
8202 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8203 addu $tempreg,$tempreg,$breg
8204 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8205 to handle the complete offset. */
8206 macro_build_lui (ep, AT);
8207 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8208 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8209
8210 if (!mips_opts.at)
8211 as_bad (_("macro used $at after \".set noat\""));
8212 }
8213 }
8214
8215 /* set_at()
8216 * Generates code to set the $at register to true (one)
8217 * if reg is less than the immediate expression.
8218 */
8219 static void
8220 set_at (int reg, int unsignedp)
8221 {
8222 if (imm_expr.X_add_number >= -0x8000
8223 && imm_expr.X_add_number < 0x8000)
8224 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8225 AT, reg, BFD_RELOC_LO16);
8226 else
8227 {
8228 load_register (AT, &imm_expr, GPR_SIZE == 64);
8229 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8230 }
8231 }
8232
8233 /* Count the leading zeroes by performing a binary chop. This is a
8234 bulky bit of source, but performance is a LOT better for the
8235 majority of values than a simple loop to count the bits:
8236 for (lcnt = 0; (lcnt < 32); lcnt++)
8237 if ((v) & (1 << (31 - lcnt)))
8238 break;
8239 However it is not code size friendly, and the gain will drop a bit
8240 on certain cached systems.
8241 */
8242 #define COUNT_TOP_ZEROES(v) \
8243 (((v) & ~0xffff) == 0 \
8244 ? ((v) & ~0xff) == 0 \
8245 ? ((v) & ~0xf) == 0 \
8246 ? ((v) & ~0x3) == 0 \
8247 ? ((v) & ~0x1) == 0 \
8248 ? !(v) \
8249 ? 32 \
8250 : 31 \
8251 : 30 \
8252 : ((v) & ~0x7) == 0 \
8253 ? 29 \
8254 : 28 \
8255 : ((v) & ~0x3f) == 0 \
8256 ? ((v) & ~0x1f) == 0 \
8257 ? 27 \
8258 : 26 \
8259 : ((v) & ~0x7f) == 0 \
8260 ? 25 \
8261 : 24 \
8262 : ((v) & ~0xfff) == 0 \
8263 ? ((v) & ~0x3ff) == 0 \
8264 ? ((v) & ~0x1ff) == 0 \
8265 ? 23 \
8266 : 22 \
8267 : ((v) & ~0x7ff) == 0 \
8268 ? 21 \
8269 : 20 \
8270 : ((v) & ~0x3fff) == 0 \
8271 ? ((v) & ~0x1fff) == 0 \
8272 ? 19 \
8273 : 18 \
8274 : ((v) & ~0x7fff) == 0 \
8275 ? 17 \
8276 : 16 \
8277 : ((v) & ~0xffffff) == 0 \
8278 ? ((v) & ~0xfffff) == 0 \
8279 ? ((v) & ~0x3ffff) == 0 \
8280 ? ((v) & ~0x1ffff) == 0 \
8281 ? 15 \
8282 : 14 \
8283 : ((v) & ~0x7ffff) == 0 \
8284 ? 13 \
8285 : 12 \
8286 : ((v) & ~0x3fffff) == 0 \
8287 ? ((v) & ~0x1fffff) == 0 \
8288 ? 11 \
8289 : 10 \
8290 : ((v) & ~0x7fffff) == 0 \
8291 ? 9 \
8292 : 8 \
8293 : ((v) & ~0xfffffff) == 0 \
8294 ? ((v) & ~0x3ffffff) == 0 \
8295 ? ((v) & ~0x1ffffff) == 0 \
8296 ? 7 \
8297 : 6 \
8298 : ((v) & ~0x7ffffff) == 0 \
8299 ? 5 \
8300 : 4 \
8301 : ((v) & ~0x3fffffff) == 0 \
8302 ? ((v) & ~0x1fffffff) == 0 \
8303 ? 3 \
8304 : 2 \
8305 : ((v) & ~0x7fffffff) == 0 \
8306 ? 1 \
8307 : 0)
8308
8309 /* load_register()
8310 * This routine generates the least number of instructions necessary to load
8311 * an absolute expression value into a register.
8312 */
8313 static void
8314 load_register (int reg, expressionS *ep, int dbl)
8315 {
8316 int freg;
8317 expressionS hi32, lo32;
8318
8319 if (ep->X_op != O_big)
8320 {
8321 gas_assert (ep->X_op == O_constant);
8322
8323 /* Sign-extending 32-bit constants makes their handling easier. */
8324 if (!dbl)
8325 normalize_constant_expr (ep);
8326
8327 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8328 {
8329 /* We can handle 16 bit signed values with an addiu to
8330 $zero. No need to ever use daddiu here, since $zero and
8331 the result are always correct in 32 bit mode. */
8332 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8333 return;
8334 }
8335 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8336 {
8337 /* We can handle 16 bit unsigned values with an ori to
8338 $zero. */
8339 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8340 return;
8341 }
8342 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8343 {
8344 /* 32 bit values require an lui. */
8345 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8346 if ((ep->X_add_number & 0xffff) != 0)
8347 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8348 return;
8349 }
8350 }
8351
8352 /* The value is larger than 32 bits. */
8353
8354 if (!dbl || GPR_SIZE == 32)
8355 {
8356 char value[32];
8357
8358 sprintf_vma (value, ep->X_add_number);
8359 as_bad (_("number (0x%s) larger than 32 bits"), value);
8360 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8361 return;
8362 }
8363
8364 if (ep->X_op != O_big)
8365 {
8366 hi32 = *ep;
8367 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8368 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8369 hi32.X_add_number &= 0xffffffff;
8370 lo32 = *ep;
8371 lo32.X_add_number &= 0xffffffff;
8372 }
8373 else
8374 {
8375 gas_assert (ep->X_add_number > 2);
8376 if (ep->X_add_number == 3)
8377 generic_bignum[3] = 0;
8378 else if (ep->X_add_number > 4)
8379 as_bad (_("number larger than 64 bits"));
8380 lo32.X_op = O_constant;
8381 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8382 hi32.X_op = O_constant;
8383 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8384 }
8385
8386 if (hi32.X_add_number == 0)
8387 freg = 0;
8388 else
8389 {
8390 int shift, bit;
8391 unsigned long hi, lo;
8392
8393 if (hi32.X_add_number == (offsetT) 0xffffffff)
8394 {
8395 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8396 {
8397 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8398 return;
8399 }
8400 if (lo32.X_add_number & 0x80000000)
8401 {
8402 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8403 if (lo32.X_add_number & 0xffff)
8404 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8405 return;
8406 }
8407 }
8408
8409 /* Check for 16bit shifted constant. We know that hi32 is
8410 non-zero, so start the mask on the first bit of the hi32
8411 value. */
8412 shift = 17;
8413 do
8414 {
8415 unsigned long himask, lomask;
8416
8417 if (shift < 32)
8418 {
8419 himask = 0xffff >> (32 - shift);
8420 lomask = (0xffff << shift) & 0xffffffff;
8421 }
8422 else
8423 {
8424 himask = 0xffff << (shift - 32);
8425 lomask = 0;
8426 }
8427 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8428 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8429 {
8430 expressionS tmp;
8431
8432 tmp.X_op = O_constant;
8433 if (shift < 32)
8434 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8435 | (lo32.X_add_number >> shift));
8436 else
8437 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8438 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8439 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8440 reg, reg, (shift >= 32) ? shift - 32 : shift);
8441 return;
8442 }
8443 ++shift;
8444 }
8445 while (shift <= (64 - 16));
8446
8447 /* Find the bit number of the lowest one bit, and store the
8448 shifted value in hi/lo. */
8449 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8450 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8451 if (lo != 0)
8452 {
8453 bit = 0;
8454 while ((lo & 1) == 0)
8455 {
8456 lo >>= 1;
8457 ++bit;
8458 }
8459 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8460 hi >>= bit;
8461 }
8462 else
8463 {
8464 bit = 32;
8465 while ((hi & 1) == 0)
8466 {
8467 hi >>= 1;
8468 ++bit;
8469 }
8470 lo = hi;
8471 hi = 0;
8472 }
8473
8474 /* Optimize if the shifted value is a (power of 2) - 1. */
8475 if ((hi == 0 && ((lo + 1) & lo) == 0)
8476 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
8477 {
8478 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
8479 if (shift != 0)
8480 {
8481 expressionS tmp;
8482
8483 /* This instruction will set the register to be all
8484 ones. */
8485 tmp.X_op = O_constant;
8486 tmp.X_add_number = (offsetT) -1;
8487 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8488 if (bit != 0)
8489 {
8490 bit += shift;
8491 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8492 reg, reg, (bit >= 32) ? bit - 32 : bit);
8493 }
8494 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
8495 reg, reg, (shift >= 32) ? shift - 32 : shift);
8496 return;
8497 }
8498 }
8499
8500 /* Sign extend hi32 before calling load_register, because we can
8501 generally get better code when we load a sign extended value. */
8502 if ((hi32.X_add_number & 0x80000000) != 0)
8503 hi32.X_add_number |= ~(offsetT) 0xffffffff;
8504 load_register (reg, &hi32, 0);
8505 freg = reg;
8506 }
8507 if ((lo32.X_add_number & 0xffff0000) == 0)
8508 {
8509 if (freg != 0)
8510 {
8511 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
8512 freg = reg;
8513 }
8514 }
8515 else
8516 {
8517 expressionS mid16;
8518
8519 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
8520 {
8521 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8522 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
8523 return;
8524 }
8525
8526 if (freg != 0)
8527 {
8528 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
8529 freg = reg;
8530 }
8531 mid16 = lo32;
8532 mid16.X_add_number >>= 16;
8533 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
8534 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
8535 freg = reg;
8536 }
8537 if ((lo32.X_add_number & 0xffff) != 0)
8538 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
8539 }
8540
8541 static inline void
8542 load_delay_nop (void)
8543 {
8544 if (!gpr_interlocks)
8545 macro_build (NULL, "nop", "");
8546 }
8547
8548 /* Load an address into a register. */
8549
8550 static void
8551 load_address (int reg, expressionS *ep, int *used_at)
8552 {
8553 if (ep->X_op != O_constant
8554 && ep->X_op != O_symbol)
8555 {
8556 as_bad (_("expression too complex"));
8557 ep->X_op = O_constant;
8558 }
8559
8560 if (ep->X_op == O_constant)
8561 {
8562 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
8563 return;
8564 }
8565
8566 if (mips_pic == NO_PIC)
8567 {
8568 /* If this is a reference to a GP relative symbol, we want
8569 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
8570 Otherwise we want
8571 lui $reg,<sym> (BFD_RELOC_HI16_S)
8572 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
8573 If we have an addend, we always use the latter form.
8574
8575 With 64bit address space and a usable $at we want
8576 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8577 lui $at,<sym> (BFD_RELOC_HI16_S)
8578 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
8579 daddiu $at,<sym> (BFD_RELOC_LO16)
8580 dsll32 $reg,0
8581 daddu $reg,$reg,$at
8582
8583 If $at is already in use, we use a path which is suboptimal
8584 on superscalar processors.
8585 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8586 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
8587 dsll $reg,16
8588 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
8589 dsll $reg,16
8590 daddiu $reg,<sym> (BFD_RELOC_LO16)
8591
8592 For GP relative symbols in 64bit address space we can use
8593 the same sequence as in 32bit address space. */
8594 if (HAVE_64BIT_SYMBOLS)
8595 {
8596 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
8597 && !nopic_need_relax (ep->X_add_symbol, 1))
8598 {
8599 relax_start (ep->X_add_symbol);
8600 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
8601 mips_gp_register, BFD_RELOC_GPREL16);
8602 relax_switch ();
8603 }
8604
8605 if (*used_at == 0 && mips_opts.at)
8606 {
8607 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
8608 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
8609 macro_build (ep, "daddiu", "t,r,j", reg, reg,
8610 BFD_RELOC_MIPS_HIGHER);
8611 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
8612 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
8613 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
8614 *used_at = 1;
8615 }
8616 else
8617 {
8618 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
8619 macro_build (ep, "daddiu", "t,r,j", reg, reg,
8620 BFD_RELOC_MIPS_HIGHER);
8621 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
8622 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
8623 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
8624 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
8625 }
8626
8627 if (mips_relax.sequence)
8628 relax_end ();
8629 }
8630 else
8631 {
8632 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
8633 && !nopic_need_relax (ep->X_add_symbol, 1))
8634 {
8635 relax_start (ep->X_add_symbol);
8636 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
8637 mips_gp_register, BFD_RELOC_GPREL16);
8638 relax_switch ();
8639 }
8640 macro_build_lui (ep, reg);
8641 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
8642 reg, reg, BFD_RELOC_LO16);
8643 if (mips_relax.sequence)
8644 relax_end ();
8645 }
8646 }
8647 else if (!mips_big_got)
8648 {
8649 expressionS ex;
8650
8651 /* If this is a reference to an external symbol, we want
8652 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8653 Otherwise we want
8654 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8655 nop
8656 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
8657 If there is a constant, it must be added in after.
8658
8659 If we have NewABI, we want
8660 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
8661 unless we're referencing a global symbol with a non-zero
8662 offset, in which case cst must be added separately. */
8663 if (HAVE_NEWABI)
8664 {
8665 if (ep->X_add_number)
8666 {
8667 ex.X_add_number = ep->X_add_number;
8668 ep->X_add_number = 0;
8669 relax_start (ep->X_add_symbol);
8670 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
8671 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
8672 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
8673 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8674 ex.X_op = O_constant;
8675 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
8676 reg, reg, BFD_RELOC_LO16);
8677 ep->X_add_number = ex.X_add_number;
8678 relax_switch ();
8679 }
8680 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
8681 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
8682 if (mips_relax.sequence)
8683 relax_end ();
8684 }
8685 else
8686 {
8687 ex.X_add_number = ep->X_add_number;
8688 ep->X_add_number = 0;
8689 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
8690 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8691 load_delay_nop ();
8692 relax_start (ep->X_add_symbol);
8693 relax_switch ();
8694 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
8695 BFD_RELOC_LO16);
8696 relax_end ();
8697
8698 if (ex.X_add_number != 0)
8699 {
8700 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
8701 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8702 ex.X_op = O_constant;
8703 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
8704 reg, reg, BFD_RELOC_LO16);
8705 }
8706 }
8707 }
8708 else if (mips_big_got)
8709 {
8710 expressionS ex;
8711
8712 /* This is the large GOT case. If this is a reference to an
8713 external symbol, we want
8714 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
8715 addu $reg,$reg,$gp
8716 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
8717
8718 Otherwise, for a reference to a local symbol in old ABI, we want
8719 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8720 nop
8721 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
8722 If there is a constant, it must be added in after.
8723
8724 In the NewABI, for local symbols, with or without offsets, we want:
8725 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
8726 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
8727 */
8728 if (HAVE_NEWABI)
8729 {
8730 ex.X_add_number = ep->X_add_number;
8731 ep->X_add_number = 0;
8732 relax_start (ep->X_add_symbol);
8733 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
8734 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8735 reg, reg, mips_gp_register);
8736 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
8737 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
8738 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
8739 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8740 else if (ex.X_add_number)
8741 {
8742 ex.X_op = O_constant;
8743 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
8744 BFD_RELOC_LO16);
8745 }
8746
8747 ep->X_add_number = ex.X_add_number;
8748 relax_switch ();
8749 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
8750 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
8751 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
8752 BFD_RELOC_MIPS_GOT_OFST);
8753 relax_end ();
8754 }
8755 else
8756 {
8757 ex.X_add_number = ep->X_add_number;
8758 ep->X_add_number = 0;
8759 relax_start (ep->X_add_symbol);
8760 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
8761 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8762 reg, reg, mips_gp_register);
8763 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
8764 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
8765 relax_switch ();
8766 if (reg_needs_delay (mips_gp_register))
8767 {
8768 /* We need a nop before loading from $gp. This special
8769 check is required because the lui which starts the main
8770 instruction stream does not refer to $gp, and so will not
8771 insert the nop which may be required. */
8772 macro_build (NULL, "nop", "");
8773 }
8774 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
8775 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8776 load_delay_nop ();
8777 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
8778 BFD_RELOC_LO16);
8779 relax_end ();
8780
8781 if (ex.X_add_number != 0)
8782 {
8783 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
8784 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8785 ex.X_op = O_constant;
8786 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
8787 BFD_RELOC_LO16);
8788 }
8789 }
8790 }
8791 else
8792 abort ();
8793
8794 if (!mips_opts.at && *used_at == 1)
8795 as_bad (_("macro used $at after \".set noat\""));
8796 }
8797
8798 /* Move the contents of register SOURCE into register DEST. */
8799
8800 static void
8801 move_register (int dest, int source)
8802 {
8803 /* Prefer to use a 16-bit microMIPS instruction unless the previous
8804 instruction specifically requires a 32-bit one. */
8805 if (mips_opts.micromips
8806 && !mips_opts.insn32
8807 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8808 macro_build (NULL, "move", "mp,mj", dest, source);
8809 else
8810 macro_build (NULL, GPR_SIZE == 32 ? "addu" : "daddu", "d,v,t",
8811 dest, source, 0);
8812 }
8813
8814 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
8815 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
8816 The two alternatives are:
8817
8818 Global symbol Local sybmol
8819 ------------- ------------
8820 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
8821 ... ...
8822 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
8823
8824 load_got_offset emits the first instruction and add_got_offset
8825 emits the second for a 16-bit offset or add_got_offset_hilo emits
8826 a sequence to add a 32-bit offset using a scratch register. */
8827
8828 static void
8829 load_got_offset (int dest, expressionS *local)
8830 {
8831 expressionS global;
8832
8833 global = *local;
8834 global.X_add_number = 0;
8835
8836 relax_start (local->X_add_symbol);
8837 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
8838 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8839 relax_switch ();
8840 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
8841 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8842 relax_end ();
8843 }
8844
8845 static void
8846 add_got_offset (int dest, expressionS *local)
8847 {
8848 expressionS global;
8849
8850 global.X_op = O_constant;
8851 global.X_op_symbol = NULL;
8852 global.X_add_symbol = NULL;
8853 global.X_add_number = local->X_add_number;
8854
8855 relax_start (local->X_add_symbol);
8856 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
8857 dest, dest, BFD_RELOC_LO16);
8858 relax_switch ();
8859 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
8860 relax_end ();
8861 }
8862
8863 static void
8864 add_got_offset_hilo (int dest, expressionS *local, int tmp)
8865 {
8866 expressionS global;
8867 int hold_mips_optimize;
8868
8869 global.X_op = O_constant;
8870 global.X_op_symbol = NULL;
8871 global.X_add_symbol = NULL;
8872 global.X_add_number = local->X_add_number;
8873
8874 relax_start (local->X_add_symbol);
8875 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
8876 relax_switch ();
8877 /* Set mips_optimize around the lui instruction to avoid
8878 inserting an unnecessary nop after the lw. */
8879 hold_mips_optimize = mips_optimize;
8880 mips_optimize = 2;
8881 macro_build_lui (&global, tmp);
8882 mips_optimize = hold_mips_optimize;
8883 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
8884 relax_end ();
8885
8886 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
8887 }
8888
8889 /* Emit a sequence of instructions to emulate a branch likely operation.
8890 BR is an ordinary branch corresponding to one to be emulated. BRNEG
8891 is its complementing branch with the original condition negated.
8892 CALL is set if the original branch specified the link operation.
8893 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
8894
8895 Code like this is produced in the noreorder mode:
8896
8897 BRNEG <args>, 1f
8898 nop
8899 b <sym>
8900 delay slot (executed only if branch taken)
8901 1:
8902
8903 or, if CALL is set:
8904
8905 BRNEG <args>, 1f
8906 nop
8907 bal <sym>
8908 delay slot (executed only if branch taken)
8909 1:
8910
8911 In the reorder mode the delay slot would be filled with a nop anyway,
8912 so code produced is simply:
8913
8914 BR <args>, <sym>
8915 nop
8916
8917 This function is used when producing code for the microMIPS ASE that
8918 does not implement branch likely instructions in hardware. */
8919
8920 static void
8921 macro_build_branch_likely (const char *br, const char *brneg,
8922 int call, expressionS *ep, const char *fmt,
8923 unsigned int sreg, unsigned int treg)
8924 {
8925 int noreorder = mips_opts.noreorder;
8926 expressionS expr1;
8927
8928 gas_assert (mips_opts.micromips);
8929 start_noreorder ();
8930 if (noreorder)
8931 {
8932 micromips_label_expr (&expr1);
8933 macro_build (&expr1, brneg, fmt, sreg, treg);
8934 macro_build (NULL, "nop", "");
8935 macro_build (ep, call ? "bal" : "b", "p");
8936
8937 /* Set to true so that append_insn adds a label. */
8938 emit_branch_likely_macro = TRUE;
8939 }
8940 else
8941 {
8942 macro_build (ep, br, fmt, sreg, treg);
8943 macro_build (NULL, "nop", "");
8944 }
8945 end_noreorder ();
8946 }
8947
8948 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
8949 the condition code tested. EP specifies the branch target. */
8950
8951 static void
8952 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
8953 {
8954 const int call = 0;
8955 const char *brneg;
8956 const char *br;
8957
8958 switch (type)
8959 {
8960 case M_BC1FL:
8961 br = "bc1f";
8962 brneg = "bc1t";
8963 break;
8964 case M_BC1TL:
8965 br = "bc1t";
8966 brneg = "bc1f";
8967 break;
8968 case M_BC2FL:
8969 br = "bc2f";
8970 brneg = "bc2t";
8971 break;
8972 case M_BC2TL:
8973 br = "bc2t";
8974 brneg = "bc2f";
8975 break;
8976 default:
8977 abort ();
8978 }
8979 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
8980 }
8981
8982 /* Emit a two-argument branch macro specified by TYPE, using SREG as
8983 the register tested. EP specifies the branch target. */
8984
8985 static void
8986 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
8987 {
8988 const char *brneg = NULL;
8989 const char *br;
8990 int call = 0;
8991
8992 switch (type)
8993 {
8994 case M_BGEZ:
8995 br = "bgez";
8996 break;
8997 case M_BGEZL:
8998 br = mips_opts.micromips ? "bgez" : "bgezl";
8999 brneg = "bltz";
9000 break;
9001 case M_BGEZALL:
9002 gas_assert (mips_opts.micromips);
9003 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9004 brneg = "bltz";
9005 call = 1;
9006 break;
9007 case M_BGTZ:
9008 br = "bgtz";
9009 break;
9010 case M_BGTZL:
9011 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9012 brneg = "blez";
9013 break;
9014 case M_BLEZ:
9015 br = "blez";
9016 break;
9017 case M_BLEZL:
9018 br = mips_opts.micromips ? "blez" : "blezl";
9019 brneg = "bgtz";
9020 break;
9021 case M_BLTZ:
9022 br = "bltz";
9023 break;
9024 case M_BLTZL:
9025 br = mips_opts.micromips ? "bltz" : "bltzl";
9026 brneg = "bgez";
9027 break;
9028 case M_BLTZALL:
9029 gas_assert (mips_opts.micromips);
9030 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9031 brneg = "bgez";
9032 call = 1;
9033 break;
9034 default:
9035 abort ();
9036 }
9037 if (mips_opts.micromips && brneg)
9038 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9039 else
9040 macro_build (ep, br, "s,p", sreg);
9041 }
9042
9043 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9044 TREG as the registers tested. EP specifies the branch target. */
9045
9046 static void
9047 macro_build_branch_rsrt (int type, expressionS *ep,
9048 unsigned int sreg, unsigned int treg)
9049 {
9050 const char *brneg = NULL;
9051 const int call = 0;
9052 const char *br;
9053
9054 switch (type)
9055 {
9056 case M_BEQ:
9057 case M_BEQ_I:
9058 br = "beq";
9059 break;
9060 case M_BEQL:
9061 case M_BEQL_I:
9062 br = mips_opts.micromips ? "beq" : "beql";
9063 brneg = "bne";
9064 break;
9065 case M_BNE:
9066 case M_BNE_I:
9067 br = "bne";
9068 break;
9069 case M_BNEL:
9070 case M_BNEL_I:
9071 br = mips_opts.micromips ? "bne" : "bnel";
9072 brneg = "beq";
9073 break;
9074 default:
9075 abort ();
9076 }
9077 if (mips_opts.micromips && brneg)
9078 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9079 else
9080 macro_build (ep, br, "s,t,p", sreg, treg);
9081 }
9082
9083 /* Return the high part that should be loaded in order to make the low
9084 part of VALUE accessible using an offset of OFFBITS bits. */
9085
9086 static offsetT
9087 offset_high_part (offsetT value, unsigned int offbits)
9088 {
9089 offsetT bias;
9090 addressT low_mask;
9091
9092 if (offbits == 0)
9093 return value;
9094 bias = 1 << (offbits - 1);
9095 low_mask = bias * 2 - 1;
9096 return (value + bias) & ~low_mask;
9097 }
9098
9099 /* Return true if the value stored in offset_expr and offset_reloc
9100 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9101 amount that the caller wants to add without inducing overflow
9102 and ALIGN is the known alignment of the value in bytes. */
9103
9104 static bfd_boolean
9105 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9106 {
9107 if (offbits == 16)
9108 {
9109 /* Accept any relocation operator if overflow isn't a concern. */
9110 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9111 return TRUE;
9112
9113 /* These relocations are guaranteed not to overflow in correct links. */
9114 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9115 || gprel16_reloc_p (*offset_reloc))
9116 return TRUE;
9117 }
9118 if (offset_expr.X_op == O_constant
9119 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9120 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9121 return TRUE;
9122 return FALSE;
9123 }
9124
9125 /*
9126 * Build macros
9127 * This routine implements the seemingly endless macro or synthesized
9128 * instructions and addressing modes in the mips assembly language. Many
9129 * of these macros are simple and are similar to each other. These could
9130 * probably be handled by some kind of table or grammar approach instead of
9131 * this verbose method. Others are not simple macros but are more like
9132 * optimizing code generation.
9133 * One interesting optimization is when several store macros appear
9134 * consecutively that would load AT with the upper half of the same address.
9135 * The ensuing load upper instructions are ommited. This implies some kind
9136 * of global optimization. We currently only optimize within a single macro.
9137 * For many of the load and store macros if the address is specified as a
9138 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9139 * first load register 'at' with zero and use it as the base register. The
9140 * mips assembler simply uses register $zero. Just one tiny optimization
9141 * we're missing.
9142 */
9143 static void
9144 macro (struct mips_cl_insn *ip, char *str)
9145 {
9146 const struct mips_operand_array *operands;
9147 unsigned int breg, i;
9148 unsigned int tempreg;
9149 int mask;
9150 int used_at = 0;
9151 expressionS label_expr;
9152 expressionS expr1;
9153 expressionS *ep;
9154 const char *s;
9155 const char *s2;
9156 const char *fmt;
9157 int likely = 0;
9158 int coproc = 0;
9159 int offbits = 16;
9160 int call = 0;
9161 int jals = 0;
9162 int dbl = 0;
9163 int imm = 0;
9164 int ust = 0;
9165 int lp = 0;
9166 bfd_boolean large_offset;
9167 int off;
9168 int hold_mips_optimize;
9169 unsigned int align;
9170 unsigned int op[MAX_OPERANDS];
9171
9172 gas_assert (! mips_opts.mips16);
9173
9174 operands = insn_operands (ip);
9175 for (i = 0; i < MAX_OPERANDS; i++)
9176 if (operands->operand[i])
9177 op[i] = insn_extract_operand (ip, operands->operand[i]);
9178 else
9179 op[i] = -1;
9180
9181 mask = ip->insn_mo->mask;
9182
9183 label_expr.X_op = O_constant;
9184 label_expr.X_op_symbol = NULL;
9185 label_expr.X_add_symbol = NULL;
9186 label_expr.X_add_number = 0;
9187
9188 expr1.X_op = O_constant;
9189 expr1.X_op_symbol = NULL;
9190 expr1.X_add_symbol = NULL;
9191 expr1.X_add_number = 1;
9192 align = 1;
9193
9194 switch (mask)
9195 {
9196 case M_DABS:
9197 dbl = 1;
9198 case M_ABS:
9199 /* bgez $a0,1f
9200 move v0,$a0
9201 sub v0,$zero,$a0
9202 1:
9203 */
9204
9205 start_noreorder ();
9206
9207 if (mips_opts.micromips)
9208 micromips_label_expr (&label_expr);
9209 else
9210 label_expr.X_add_number = 8;
9211 macro_build (&label_expr, "bgez", "s,p", op[1]);
9212 if (op[0] == op[1])
9213 macro_build (NULL, "nop", "");
9214 else
9215 move_register (op[0], op[1]);
9216 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9217 if (mips_opts.micromips)
9218 micromips_add_label ();
9219
9220 end_noreorder ();
9221 break;
9222
9223 case M_ADD_I:
9224 s = "addi";
9225 s2 = "add";
9226 goto do_addi;
9227 case M_ADDU_I:
9228 s = "addiu";
9229 s2 = "addu";
9230 goto do_addi;
9231 case M_DADD_I:
9232 dbl = 1;
9233 s = "daddi";
9234 s2 = "dadd";
9235 if (!mips_opts.micromips)
9236 goto do_addi;
9237 if (imm_expr.X_add_number >= -0x200
9238 && imm_expr.X_add_number < 0x200)
9239 {
9240 macro_build (NULL, s, "t,r,.", op[0], op[1],
9241 (int) imm_expr.X_add_number);
9242 break;
9243 }
9244 goto do_addi_i;
9245 case M_DADDU_I:
9246 dbl = 1;
9247 s = "daddiu";
9248 s2 = "daddu";
9249 do_addi:
9250 if (imm_expr.X_add_number >= -0x8000
9251 && imm_expr.X_add_number < 0x8000)
9252 {
9253 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9254 break;
9255 }
9256 do_addi_i:
9257 used_at = 1;
9258 load_register (AT, &imm_expr, dbl);
9259 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9260 break;
9261
9262 case M_AND_I:
9263 s = "andi";
9264 s2 = "and";
9265 goto do_bit;
9266 case M_OR_I:
9267 s = "ori";
9268 s2 = "or";
9269 goto do_bit;
9270 case M_NOR_I:
9271 s = "";
9272 s2 = "nor";
9273 goto do_bit;
9274 case M_XOR_I:
9275 s = "xori";
9276 s2 = "xor";
9277 do_bit:
9278 if (imm_expr.X_add_number >= 0
9279 && imm_expr.X_add_number < 0x10000)
9280 {
9281 if (mask != M_NOR_I)
9282 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9283 else
9284 {
9285 macro_build (&imm_expr, "ori", "t,r,i",
9286 op[0], op[1], BFD_RELOC_LO16);
9287 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9288 }
9289 break;
9290 }
9291
9292 used_at = 1;
9293 load_register (AT, &imm_expr, GPR_SIZE == 64);
9294 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9295 break;
9296
9297 case M_BALIGN:
9298 switch (imm_expr.X_add_number)
9299 {
9300 case 0:
9301 macro_build (NULL, "nop", "");
9302 break;
9303 case 2:
9304 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9305 break;
9306 case 1:
9307 case 3:
9308 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9309 (int) imm_expr.X_add_number);
9310 break;
9311 default:
9312 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9313 (unsigned long) imm_expr.X_add_number);
9314 break;
9315 }
9316 break;
9317
9318 case M_BC1FL:
9319 case M_BC1TL:
9320 case M_BC2FL:
9321 case M_BC2TL:
9322 gas_assert (mips_opts.micromips);
9323 macro_build_branch_ccl (mask, &offset_expr,
9324 EXTRACT_OPERAND (1, BCC, *ip));
9325 break;
9326
9327 case M_BEQ_I:
9328 case M_BEQL_I:
9329 case M_BNE_I:
9330 case M_BNEL_I:
9331 if (imm_expr.X_add_number == 0)
9332 op[1] = 0;
9333 else
9334 {
9335 op[1] = AT;
9336 used_at = 1;
9337 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9338 }
9339 /* Fall through. */
9340 case M_BEQL:
9341 case M_BNEL:
9342 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9343 break;
9344
9345 case M_BGEL:
9346 likely = 1;
9347 case M_BGE:
9348 if (op[1] == 0)
9349 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9350 else if (op[0] == 0)
9351 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9352 else
9353 {
9354 used_at = 1;
9355 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9356 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9357 &offset_expr, AT, ZERO);
9358 }
9359 break;
9360
9361 case M_BGEZL:
9362 case M_BGEZALL:
9363 case M_BGTZL:
9364 case M_BLEZL:
9365 case M_BLTZL:
9366 case M_BLTZALL:
9367 macro_build_branch_rs (mask, &offset_expr, op[0]);
9368 break;
9369
9370 case M_BGTL_I:
9371 likely = 1;
9372 case M_BGT_I:
9373 /* Check for > max integer. */
9374 if (imm_expr.X_add_number >= GPR_SMAX)
9375 {
9376 do_false:
9377 /* Result is always false. */
9378 if (! likely)
9379 macro_build (NULL, "nop", "");
9380 else
9381 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9382 break;
9383 }
9384 ++imm_expr.X_add_number;
9385 /* FALLTHROUGH */
9386 case M_BGE_I:
9387 case M_BGEL_I:
9388 if (mask == M_BGEL_I)
9389 likely = 1;
9390 if (imm_expr.X_add_number == 0)
9391 {
9392 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9393 &offset_expr, op[0]);
9394 break;
9395 }
9396 if (imm_expr.X_add_number == 1)
9397 {
9398 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9399 &offset_expr, op[0]);
9400 break;
9401 }
9402 if (imm_expr.X_add_number <= GPR_SMIN)
9403 {
9404 do_true:
9405 /* result is always true */
9406 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9407 macro_build (&offset_expr, "b", "p");
9408 break;
9409 }
9410 used_at = 1;
9411 set_at (op[0], 0);
9412 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9413 &offset_expr, AT, ZERO);
9414 break;
9415
9416 case M_BGEUL:
9417 likely = 1;
9418 case M_BGEU:
9419 if (op[1] == 0)
9420 goto do_true;
9421 else if (op[0] == 0)
9422 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9423 &offset_expr, ZERO, op[1]);
9424 else
9425 {
9426 used_at = 1;
9427 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9428 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9429 &offset_expr, AT, ZERO);
9430 }
9431 break;
9432
9433 case M_BGTUL_I:
9434 likely = 1;
9435 case M_BGTU_I:
9436 if (op[0] == 0
9437 || (GPR_SIZE == 32
9438 && imm_expr.X_add_number == -1))
9439 goto do_false;
9440 ++imm_expr.X_add_number;
9441 /* FALLTHROUGH */
9442 case M_BGEU_I:
9443 case M_BGEUL_I:
9444 if (mask == M_BGEUL_I)
9445 likely = 1;
9446 if (imm_expr.X_add_number == 0)
9447 goto do_true;
9448 else if (imm_expr.X_add_number == 1)
9449 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9450 &offset_expr, op[0], ZERO);
9451 else
9452 {
9453 used_at = 1;
9454 set_at (op[0], 1);
9455 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9456 &offset_expr, AT, ZERO);
9457 }
9458 break;
9459
9460 case M_BGTL:
9461 likely = 1;
9462 case M_BGT:
9463 if (op[1] == 0)
9464 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9465 else if (op[0] == 0)
9466 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
9467 else
9468 {
9469 used_at = 1;
9470 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
9471 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9472 &offset_expr, AT, ZERO);
9473 }
9474 break;
9475
9476 case M_BGTUL:
9477 likely = 1;
9478 case M_BGTU:
9479 if (op[1] == 0)
9480 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9481 &offset_expr, op[0], ZERO);
9482 else if (op[0] == 0)
9483 goto do_false;
9484 else
9485 {
9486 used_at = 1;
9487 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
9488 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9489 &offset_expr, AT, ZERO);
9490 }
9491 break;
9492
9493 case M_BLEL:
9494 likely = 1;
9495 case M_BLE:
9496 if (op[1] == 0)
9497 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
9498 else if (op[0] == 0)
9499 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
9500 else
9501 {
9502 used_at = 1;
9503 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
9504 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9505 &offset_expr, AT, ZERO);
9506 }
9507 break;
9508
9509 case M_BLEL_I:
9510 likely = 1;
9511 case M_BLE_I:
9512 if (imm_expr.X_add_number >= GPR_SMAX)
9513 goto do_true;
9514 ++imm_expr.X_add_number;
9515 /* FALLTHROUGH */
9516 case M_BLT_I:
9517 case M_BLTL_I:
9518 if (mask == M_BLTL_I)
9519 likely = 1;
9520 if (imm_expr.X_add_number == 0)
9521 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
9522 else if (imm_expr.X_add_number == 1)
9523 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
9524 else
9525 {
9526 used_at = 1;
9527 set_at (op[0], 0);
9528 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9529 &offset_expr, AT, ZERO);
9530 }
9531 break;
9532
9533 case M_BLEUL:
9534 likely = 1;
9535 case M_BLEU:
9536 if (op[1] == 0)
9537 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9538 &offset_expr, op[0], ZERO);
9539 else if (op[0] == 0)
9540 goto do_true;
9541 else
9542 {
9543 used_at = 1;
9544 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
9545 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9546 &offset_expr, AT, ZERO);
9547 }
9548 break;
9549
9550 case M_BLEUL_I:
9551 likely = 1;
9552 case M_BLEU_I:
9553 if (op[0] == 0
9554 || (GPR_SIZE == 32
9555 && imm_expr.X_add_number == -1))
9556 goto do_true;
9557 ++imm_expr.X_add_number;
9558 /* FALLTHROUGH */
9559 case M_BLTU_I:
9560 case M_BLTUL_I:
9561 if (mask == M_BLTUL_I)
9562 likely = 1;
9563 if (imm_expr.X_add_number == 0)
9564 goto do_false;
9565 else if (imm_expr.X_add_number == 1)
9566 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9567 &offset_expr, op[0], ZERO);
9568 else
9569 {
9570 used_at = 1;
9571 set_at (op[0], 1);
9572 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9573 &offset_expr, AT, ZERO);
9574 }
9575 break;
9576
9577 case M_BLTL:
9578 likely = 1;
9579 case M_BLT:
9580 if (op[1] == 0)
9581 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
9582 else if (op[0] == 0)
9583 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
9584 else
9585 {
9586 used_at = 1;
9587 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9588 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9589 &offset_expr, AT, ZERO);
9590 }
9591 break;
9592
9593 case M_BLTUL:
9594 likely = 1;
9595 case M_BLTU:
9596 if (op[1] == 0)
9597 goto do_false;
9598 else if (op[0] == 0)
9599 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9600 &offset_expr, ZERO, op[1]);
9601 else
9602 {
9603 used_at = 1;
9604 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9605 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9606 &offset_expr, AT, ZERO);
9607 }
9608 break;
9609
9610 case M_DDIV_3:
9611 dbl = 1;
9612 case M_DIV_3:
9613 s = "mflo";
9614 goto do_div3;
9615 case M_DREM_3:
9616 dbl = 1;
9617 case M_REM_3:
9618 s = "mfhi";
9619 do_div3:
9620 if (op[2] == 0)
9621 {
9622 as_warn (_("divide by zero"));
9623 if (mips_trap)
9624 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
9625 else
9626 macro_build (NULL, "break", BRK_FMT, 7);
9627 break;
9628 }
9629
9630 start_noreorder ();
9631 if (mips_trap)
9632 {
9633 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
9634 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
9635 }
9636 else
9637 {
9638 if (mips_opts.micromips)
9639 micromips_label_expr (&label_expr);
9640 else
9641 label_expr.X_add_number = 8;
9642 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
9643 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
9644 macro_build (NULL, "break", BRK_FMT, 7);
9645 if (mips_opts.micromips)
9646 micromips_add_label ();
9647 }
9648 expr1.X_add_number = -1;
9649 used_at = 1;
9650 load_register (AT, &expr1, dbl);
9651 if (mips_opts.micromips)
9652 micromips_label_expr (&label_expr);
9653 else
9654 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
9655 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
9656 if (dbl)
9657 {
9658 expr1.X_add_number = 1;
9659 load_register (AT, &expr1, dbl);
9660 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
9661 }
9662 else
9663 {
9664 expr1.X_add_number = 0x80000000;
9665 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
9666 }
9667 if (mips_trap)
9668 {
9669 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
9670 /* We want to close the noreorder block as soon as possible, so
9671 that later insns are available for delay slot filling. */
9672 end_noreorder ();
9673 }
9674 else
9675 {
9676 if (mips_opts.micromips)
9677 micromips_label_expr (&label_expr);
9678 else
9679 label_expr.X_add_number = 8;
9680 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
9681 macro_build (NULL, "nop", "");
9682
9683 /* We want to close the noreorder block as soon as possible, so
9684 that later insns are available for delay slot filling. */
9685 end_noreorder ();
9686
9687 macro_build (NULL, "break", BRK_FMT, 6);
9688 }
9689 if (mips_opts.micromips)
9690 micromips_add_label ();
9691 macro_build (NULL, s, MFHL_FMT, op[0]);
9692 break;
9693
9694 case M_DIV_3I:
9695 s = "div";
9696 s2 = "mflo";
9697 goto do_divi;
9698 case M_DIVU_3I:
9699 s = "divu";
9700 s2 = "mflo";
9701 goto do_divi;
9702 case M_REM_3I:
9703 s = "div";
9704 s2 = "mfhi";
9705 goto do_divi;
9706 case M_REMU_3I:
9707 s = "divu";
9708 s2 = "mfhi";
9709 goto do_divi;
9710 case M_DDIV_3I:
9711 dbl = 1;
9712 s = "ddiv";
9713 s2 = "mflo";
9714 goto do_divi;
9715 case M_DDIVU_3I:
9716 dbl = 1;
9717 s = "ddivu";
9718 s2 = "mflo";
9719 goto do_divi;
9720 case M_DREM_3I:
9721 dbl = 1;
9722 s = "ddiv";
9723 s2 = "mfhi";
9724 goto do_divi;
9725 case M_DREMU_3I:
9726 dbl = 1;
9727 s = "ddivu";
9728 s2 = "mfhi";
9729 do_divi:
9730 if (imm_expr.X_add_number == 0)
9731 {
9732 as_warn (_("divide by zero"));
9733 if (mips_trap)
9734 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
9735 else
9736 macro_build (NULL, "break", BRK_FMT, 7);
9737 break;
9738 }
9739 if (imm_expr.X_add_number == 1)
9740 {
9741 if (strcmp (s2, "mflo") == 0)
9742 move_register (op[0], op[1]);
9743 else
9744 move_register (op[0], ZERO);
9745 break;
9746 }
9747 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
9748 {
9749 if (strcmp (s2, "mflo") == 0)
9750 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
9751 else
9752 move_register (op[0], ZERO);
9753 break;
9754 }
9755
9756 used_at = 1;
9757 load_register (AT, &imm_expr, dbl);
9758 macro_build (NULL, s, "z,s,t", op[1], AT);
9759 macro_build (NULL, s2, MFHL_FMT, op[0]);
9760 break;
9761
9762 case M_DIVU_3:
9763 s = "divu";
9764 s2 = "mflo";
9765 goto do_divu3;
9766 case M_REMU_3:
9767 s = "divu";
9768 s2 = "mfhi";
9769 goto do_divu3;
9770 case M_DDIVU_3:
9771 s = "ddivu";
9772 s2 = "mflo";
9773 goto do_divu3;
9774 case M_DREMU_3:
9775 s = "ddivu";
9776 s2 = "mfhi";
9777 do_divu3:
9778 start_noreorder ();
9779 if (mips_trap)
9780 {
9781 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
9782 macro_build (NULL, s, "z,s,t", op[1], op[2]);
9783 /* We want to close the noreorder block as soon as possible, so
9784 that later insns are available for delay slot filling. */
9785 end_noreorder ();
9786 }
9787 else
9788 {
9789 if (mips_opts.micromips)
9790 micromips_label_expr (&label_expr);
9791 else
9792 label_expr.X_add_number = 8;
9793 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
9794 macro_build (NULL, s, "z,s,t", op[1], op[2]);
9795
9796 /* We want to close the noreorder block as soon as possible, so
9797 that later insns are available for delay slot filling. */
9798 end_noreorder ();
9799 macro_build (NULL, "break", BRK_FMT, 7);
9800 if (mips_opts.micromips)
9801 micromips_add_label ();
9802 }
9803 macro_build (NULL, s2, MFHL_FMT, op[0]);
9804 break;
9805
9806 case M_DLCA_AB:
9807 dbl = 1;
9808 case M_LCA_AB:
9809 call = 1;
9810 goto do_la;
9811 case M_DLA_AB:
9812 dbl = 1;
9813 case M_LA_AB:
9814 do_la:
9815 /* Load the address of a symbol into a register. If breg is not
9816 zero, we then add a base register to it. */
9817
9818 breg = op[2];
9819 if (dbl && GPR_SIZE == 32)
9820 as_warn (_("dla used to load 32-bit register"));
9821
9822 if (!dbl && HAVE_64BIT_OBJECTS)
9823 as_warn (_("la used to load 64-bit address"));
9824
9825 if (small_offset_p (0, align, 16))
9826 {
9827 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
9828 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
9829 break;
9830 }
9831
9832 if (mips_opts.at && (op[0] == breg))
9833 {
9834 tempreg = AT;
9835 used_at = 1;
9836 }
9837 else
9838 tempreg = op[0];
9839
9840 if (offset_expr.X_op != O_symbol
9841 && offset_expr.X_op != O_constant)
9842 {
9843 as_bad (_("expression too complex"));
9844 offset_expr.X_op = O_constant;
9845 }
9846
9847 if (offset_expr.X_op == O_constant)
9848 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
9849 else if (mips_pic == NO_PIC)
9850 {
9851 /* If this is a reference to a GP relative symbol, we want
9852 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
9853 Otherwise we want
9854 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
9855 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
9856 If we have a constant, we need two instructions anyhow,
9857 so we may as well always use the latter form.
9858
9859 With 64bit address space and a usable $at we want
9860 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9861 lui $at,<sym> (BFD_RELOC_HI16_S)
9862 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
9863 daddiu $at,<sym> (BFD_RELOC_LO16)
9864 dsll32 $tempreg,0
9865 daddu $tempreg,$tempreg,$at
9866
9867 If $at is already in use, we use a path which is suboptimal
9868 on superscalar processors.
9869 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9870 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
9871 dsll $tempreg,16
9872 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
9873 dsll $tempreg,16
9874 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
9875
9876 For GP relative symbols in 64bit address space we can use
9877 the same sequence as in 32bit address space. */
9878 if (HAVE_64BIT_SYMBOLS)
9879 {
9880 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
9881 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
9882 {
9883 relax_start (offset_expr.X_add_symbol);
9884 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9885 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
9886 relax_switch ();
9887 }
9888
9889 if (used_at == 0 && mips_opts.at)
9890 {
9891 macro_build (&offset_expr, "lui", LUI_FMT,
9892 tempreg, BFD_RELOC_MIPS_HIGHEST);
9893 macro_build (&offset_expr, "lui", LUI_FMT,
9894 AT, BFD_RELOC_HI16_S);
9895 macro_build (&offset_expr, "daddiu", "t,r,j",
9896 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
9897 macro_build (&offset_expr, "daddiu", "t,r,j",
9898 AT, AT, BFD_RELOC_LO16);
9899 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
9900 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
9901 used_at = 1;
9902 }
9903 else
9904 {
9905 macro_build (&offset_expr, "lui", LUI_FMT,
9906 tempreg, BFD_RELOC_MIPS_HIGHEST);
9907 macro_build (&offset_expr, "daddiu", "t,r,j",
9908 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
9909 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
9910 macro_build (&offset_expr, "daddiu", "t,r,j",
9911 tempreg, tempreg, BFD_RELOC_HI16_S);
9912 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
9913 macro_build (&offset_expr, "daddiu", "t,r,j",
9914 tempreg, tempreg, BFD_RELOC_LO16);
9915 }
9916
9917 if (mips_relax.sequence)
9918 relax_end ();
9919 }
9920 else
9921 {
9922 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
9923 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
9924 {
9925 relax_start (offset_expr.X_add_symbol);
9926 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9927 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
9928 relax_switch ();
9929 }
9930 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
9931 as_bad (_("offset too large"));
9932 macro_build_lui (&offset_expr, tempreg);
9933 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9934 tempreg, tempreg, BFD_RELOC_LO16);
9935 if (mips_relax.sequence)
9936 relax_end ();
9937 }
9938 }
9939 else if (!mips_big_got && !HAVE_NEWABI)
9940 {
9941 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
9942
9943 /* If this is a reference to an external symbol, and there
9944 is no constant, we want
9945 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9946 or for lca or if tempreg is PIC_CALL_REG
9947 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
9948 For a local symbol, we want
9949 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9950 nop
9951 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
9952
9953 If we have a small constant, and this is a reference to
9954 an external symbol, we want
9955 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9956 nop
9957 addiu $tempreg,$tempreg,<constant>
9958 For a local symbol, we want the same instruction
9959 sequence, but we output a BFD_RELOC_LO16 reloc on the
9960 addiu instruction.
9961
9962 If we have a large constant, and this is a reference to
9963 an external symbol, we want
9964 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9965 lui $at,<hiconstant>
9966 addiu $at,$at,<loconstant>
9967 addu $tempreg,$tempreg,$at
9968 For a local symbol, we want the same instruction
9969 sequence, but we output a BFD_RELOC_LO16 reloc on the
9970 addiu instruction.
9971 */
9972
9973 if (offset_expr.X_add_number == 0)
9974 {
9975 if (mips_pic == SVR4_PIC
9976 && breg == 0
9977 && (call || tempreg == PIC_CALL_REG))
9978 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
9979
9980 relax_start (offset_expr.X_add_symbol);
9981 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9982 lw_reloc_type, mips_gp_register);
9983 if (breg != 0)
9984 {
9985 /* We're going to put in an addu instruction using
9986 tempreg, so we may as well insert the nop right
9987 now. */
9988 load_delay_nop ();
9989 }
9990 relax_switch ();
9991 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9992 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
9993 load_delay_nop ();
9994 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9995 tempreg, tempreg, BFD_RELOC_LO16);
9996 relax_end ();
9997 /* FIXME: If breg == 0, and the next instruction uses
9998 $tempreg, then if this variant case is used an extra
9999 nop will be generated. */
10000 }
10001 else if (offset_expr.X_add_number >= -0x8000
10002 && offset_expr.X_add_number < 0x8000)
10003 {
10004 load_got_offset (tempreg, &offset_expr);
10005 load_delay_nop ();
10006 add_got_offset (tempreg, &offset_expr);
10007 }
10008 else
10009 {
10010 expr1.X_add_number = offset_expr.X_add_number;
10011 offset_expr.X_add_number =
10012 SEXT_16BIT (offset_expr.X_add_number);
10013 load_got_offset (tempreg, &offset_expr);
10014 offset_expr.X_add_number = expr1.X_add_number;
10015 /* If we are going to add in a base register, and the
10016 target register and the base register are the same,
10017 then we are using AT as a temporary register. Since
10018 we want to load the constant into AT, we add our
10019 current AT (from the global offset table) and the
10020 register into the register now, and pretend we were
10021 not using a base register. */
10022 if (breg == op[0])
10023 {
10024 load_delay_nop ();
10025 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10026 op[0], AT, breg);
10027 breg = 0;
10028 tempreg = op[0];
10029 }
10030 add_got_offset_hilo (tempreg, &offset_expr, AT);
10031 used_at = 1;
10032 }
10033 }
10034 else if (!mips_big_got && HAVE_NEWABI)
10035 {
10036 int add_breg_early = 0;
10037
10038 /* If this is a reference to an external, and there is no
10039 constant, or local symbol (*), with or without a
10040 constant, we want
10041 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10042 or for lca or if tempreg is PIC_CALL_REG
10043 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10044
10045 If we have a small constant, and this is a reference to
10046 an external symbol, we want
10047 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10048 addiu $tempreg,$tempreg,<constant>
10049
10050 If we have a large constant, and this is a reference to
10051 an external symbol, we want
10052 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10053 lui $at,<hiconstant>
10054 addiu $at,$at,<loconstant>
10055 addu $tempreg,$tempreg,$at
10056
10057 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10058 local symbols, even though it introduces an additional
10059 instruction. */
10060
10061 if (offset_expr.X_add_number)
10062 {
10063 expr1.X_add_number = offset_expr.X_add_number;
10064 offset_expr.X_add_number = 0;
10065
10066 relax_start (offset_expr.X_add_symbol);
10067 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10068 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10069
10070 if (expr1.X_add_number >= -0x8000
10071 && expr1.X_add_number < 0x8000)
10072 {
10073 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10074 tempreg, tempreg, BFD_RELOC_LO16);
10075 }
10076 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10077 {
10078 unsigned int dreg;
10079
10080 /* If we are going to add in a base register, and the
10081 target register and the base register are the same,
10082 then we are using AT as a temporary register. Since
10083 we want to load the constant into AT, we add our
10084 current AT (from the global offset table) and the
10085 register into the register now, and pretend we were
10086 not using a base register. */
10087 if (breg != op[0])
10088 dreg = tempreg;
10089 else
10090 {
10091 gas_assert (tempreg == AT);
10092 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10093 op[0], AT, breg);
10094 dreg = op[0];
10095 add_breg_early = 1;
10096 }
10097
10098 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10099 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10100 dreg, dreg, AT);
10101
10102 used_at = 1;
10103 }
10104 else
10105 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10106
10107 relax_switch ();
10108 offset_expr.X_add_number = expr1.X_add_number;
10109
10110 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10111 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10112 if (add_breg_early)
10113 {
10114 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10115 op[0], tempreg, breg);
10116 breg = 0;
10117 tempreg = op[0];
10118 }
10119 relax_end ();
10120 }
10121 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10122 {
10123 relax_start (offset_expr.X_add_symbol);
10124 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10125 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10126 relax_switch ();
10127 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10128 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10129 relax_end ();
10130 }
10131 else
10132 {
10133 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10134 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10135 }
10136 }
10137 else if (mips_big_got && !HAVE_NEWABI)
10138 {
10139 int gpdelay;
10140 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10141 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10142 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10143
10144 /* This is the large GOT case. If this is a reference to an
10145 external symbol, and there is no constant, we want
10146 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10147 addu $tempreg,$tempreg,$gp
10148 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10149 or for lca or if tempreg is PIC_CALL_REG
10150 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10151 addu $tempreg,$tempreg,$gp
10152 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10153 For a local symbol, we want
10154 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10155 nop
10156 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10157
10158 If we have a small constant, and this is a reference to
10159 an external symbol, we want
10160 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10161 addu $tempreg,$tempreg,$gp
10162 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10163 nop
10164 addiu $tempreg,$tempreg,<constant>
10165 For a local symbol, we want
10166 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10167 nop
10168 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10169
10170 If we have a large constant, and this is a reference to
10171 an external symbol, we want
10172 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10173 addu $tempreg,$tempreg,$gp
10174 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10175 lui $at,<hiconstant>
10176 addiu $at,$at,<loconstant>
10177 addu $tempreg,$tempreg,$at
10178 For a local symbol, we want
10179 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10180 lui $at,<hiconstant>
10181 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10182 addu $tempreg,$tempreg,$at
10183 */
10184
10185 expr1.X_add_number = offset_expr.X_add_number;
10186 offset_expr.X_add_number = 0;
10187 relax_start (offset_expr.X_add_symbol);
10188 gpdelay = reg_needs_delay (mips_gp_register);
10189 if (expr1.X_add_number == 0 && breg == 0
10190 && (call || tempreg == PIC_CALL_REG))
10191 {
10192 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10193 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10194 }
10195 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10196 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10197 tempreg, tempreg, mips_gp_register);
10198 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10199 tempreg, lw_reloc_type, tempreg);
10200 if (expr1.X_add_number == 0)
10201 {
10202 if (breg != 0)
10203 {
10204 /* We're going to put in an addu instruction using
10205 tempreg, so we may as well insert the nop right
10206 now. */
10207 load_delay_nop ();
10208 }
10209 }
10210 else if (expr1.X_add_number >= -0x8000
10211 && expr1.X_add_number < 0x8000)
10212 {
10213 load_delay_nop ();
10214 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10215 tempreg, tempreg, BFD_RELOC_LO16);
10216 }
10217 else
10218 {
10219 unsigned int dreg;
10220
10221 /* If we are going to add in a base register, and the
10222 target register and the base register are the same,
10223 then we are using AT as a temporary register. Since
10224 we want to load the constant into AT, we add our
10225 current AT (from the global offset table) and the
10226 register into the register now, and pretend we were
10227 not using a base register. */
10228 if (breg != op[0])
10229 dreg = tempreg;
10230 else
10231 {
10232 gas_assert (tempreg == AT);
10233 load_delay_nop ();
10234 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10235 op[0], AT, breg);
10236 dreg = op[0];
10237 }
10238
10239 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10240 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10241
10242 used_at = 1;
10243 }
10244 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10245 relax_switch ();
10246
10247 if (gpdelay)
10248 {
10249 /* This is needed because this instruction uses $gp, but
10250 the first instruction on the main stream does not. */
10251 macro_build (NULL, "nop", "");
10252 }
10253
10254 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10255 local_reloc_type, mips_gp_register);
10256 if (expr1.X_add_number >= -0x8000
10257 && expr1.X_add_number < 0x8000)
10258 {
10259 load_delay_nop ();
10260 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10261 tempreg, tempreg, BFD_RELOC_LO16);
10262 /* FIXME: If add_number is 0, and there was no base
10263 register, the external symbol case ended with a load,
10264 so if the symbol turns out to not be external, and
10265 the next instruction uses tempreg, an unnecessary nop
10266 will be inserted. */
10267 }
10268 else
10269 {
10270 if (breg == op[0])
10271 {
10272 /* We must add in the base register now, as in the
10273 external symbol case. */
10274 gas_assert (tempreg == AT);
10275 load_delay_nop ();
10276 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10277 op[0], AT, breg);
10278 tempreg = op[0];
10279 /* We set breg to 0 because we have arranged to add
10280 it in in both cases. */
10281 breg = 0;
10282 }
10283
10284 macro_build_lui (&expr1, AT);
10285 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10286 AT, AT, BFD_RELOC_LO16);
10287 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10288 tempreg, tempreg, AT);
10289 used_at = 1;
10290 }
10291 relax_end ();
10292 }
10293 else if (mips_big_got && HAVE_NEWABI)
10294 {
10295 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10296 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10297 int add_breg_early = 0;
10298
10299 /* This is the large GOT case. If this is a reference to an
10300 external symbol, and there is no constant, we want
10301 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10302 add $tempreg,$tempreg,$gp
10303 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10304 or for lca or if tempreg is PIC_CALL_REG
10305 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10306 add $tempreg,$tempreg,$gp
10307 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10308
10309 If we have a small constant, and this is a reference to
10310 an external symbol, we want
10311 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10312 add $tempreg,$tempreg,$gp
10313 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10314 addi $tempreg,$tempreg,<constant>
10315
10316 If we have a large constant, and this is a reference to
10317 an external symbol, we want
10318 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10319 addu $tempreg,$tempreg,$gp
10320 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10321 lui $at,<hiconstant>
10322 addi $at,$at,<loconstant>
10323 add $tempreg,$tempreg,$at
10324
10325 If we have NewABI, and we know it's a local symbol, we want
10326 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10327 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10328 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10329
10330 relax_start (offset_expr.X_add_symbol);
10331
10332 expr1.X_add_number = offset_expr.X_add_number;
10333 offset_expr.X_add_number = 0;
10334
10335 if (expr1.X_add_number == 0 && breg == 0
10336 && (call || tempreg == PIC_CALL_REG))
10337 {
10338 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10339 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10340 }
10341 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10342 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10343 tempreg, tempreg, mips_gp_register);
10344 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10345 tempreg, lw_reloc_type, tempreg);
10346
10347 if (expr1.X_add_number == 0)
10348 ;
10349 else if (expr1.X_add_number >= -0x8000
10350 && expr1.X_add_number < 0x8000)
10351 {
10352 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10353 tempreg, tempreg, BFD_RELOC_LO16);
10354 }
10355 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10356 {
10357 unsigned int dreg;
10358
10359 /* If we are going to add in a base register, and the
10360 target register and the base register are the same,
10361 then we are using AT as a temporary register. Since
10362 we want to load the constant into AT, we add our
10363 current AT (from the global offset table) and the
10364 register into the register now, and pretend we were
10365 not using a base register. */
10366 if (breg != op[0])
10367 dreg = tempreg;
10368 else
10369 {
10370 gas_assert (tempreg == AT);
10371 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10372 op[0], AT, breg);
10373 dreg = op[0];
10374 add_breg_early = 1;
10375 }
10376
10377 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10378 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10379
10380 used_at = 1;
10381 }
10382 else
10383 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10384
10385 relax_switch ();
10386 offset_expr.X_add_number = expr1.X_add_number;
10387 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10388 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10389 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10390 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10391 if (add_breg_early)
10392 {
10393 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10394 op[0], tempreg, breg);
10395 breg = 0;
10396 tempreg = op[0];
10397 }
10398 relax_end ();
10399 }
10400 else
10401 abort ();
10402
10403 if (breg != 0)
10404 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10405 break;
10406
10407 case M_MSGSND:
10408 gas_assert (!mips_opts.micromips);
10409 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10410 break;
10411
10412 case M_MSGLD:
10413 gas_assert (!mips_opts.micromips);
10414 macro_build (NULL, "c2", "C", 0x02);
10415 break;
10416
10417 case M_MSGLD_T:
10418 gas_assert (!mips_opts.micromips);
10419 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10420 break;
10421
10422 case M_MSGWAIT:
10423 gas_assert (!mips_opts.micromips);
10424 macro_build (NULL, "c2", "C", 3);
10425 break;
10426
10427 case M_MSGWAIT_T:
10428 gas_assert (!mips_opts.micromips);
10429 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10430 break;
10431
10432 case M_J_A:
10433 /* The j instruction may not be used in PIC code, since it
10434 requires an absolute address. We convert it to a b
10435 instruction. */
10436 if (mips_pic == NO_PIC)
10437 macro_build (&offset_expr, "j", "a");
10438 else
10439 macro_build (&offset_expr, "b", "p");
10440 break;
10441
10442 /* The jal instructions must be handled as macros because when
10443 generating PIC code they expand to multi-instruction
10444 sequences. Normally they are simple instructions. */
10445 case M_JALS_1:
10446 op[1] = op[0];
10447 op[0] = RA;
10448 /* Fall through. */
10449 case M_JALS_2:
10450 gas_assert (mips_opts.micromips);
10451 if (mips_opts.insn32)
10452 {
10453 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10454 break;
10455 }
10456 jals = 1;
10457 goto jal;
10458 case M_JAL_1:
10459 op[1] = op[0];
10460 op[0] = RA;
10461 /* Fall through. */
10462 case M_JAL_2:
10463 jal:
10464 if (mips_pic == NO_PIC)
10465 {
10466 s = jals ? "jalrs" : "jalr";
10467 if (mips_opts.micromips
10468 && !mips_opts.insn32
10469 && op[0] == RA
10470 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
10471 macro_build (NULL, s, "mj", op[1]);
10472 else
10473 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
10474 }
10475 else
10476 {
10477 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
10478 && mips_cprestore_offset >= 0);
10479
10480 if (op[1] != PIC_CALL_REG)
10481 as_warn (_("MIPS PIC call to register other than $25"));
10482
10483 s = ((mips_opts.micromips
10484 && !mips_opts.insn32
10485 && (!mips_opts.noreorder || cprestore))
10486 ? "jalrs" : "jalr");
10487 if (mips_opts.micromips
10488 && !mips_opts.insn32
10489 && op[0] == RA
10490 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
10491 macro_build (NULL, s, "mj", op[1]);
10492 else
10493 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
10494 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
10495 {
10496 if (mips_cprestore_offset < 0)
10497 as_warn (_("no .cprestore pseudo-op used in PIC code"));
10498 else
10499 {
10500 if (!mips_frame_reg_valid)
10501 {
10502 as_warn (_("no .frame pseudo-op used in PIC code"));
10503 /* Quiet this warning. */
10504 mips_frame_reg_valid = 1;
10505 }
10506 if (!mips_cprestore_valid)
10507 {
10508 as_warn (_("no .cprestore pseudo-op used in PIC code"));
10509 /* Quiet this warning. */
10510 mips_cprestore_valid = 1;
10511 }
10512 if (mips_opts.noreorder)
10513 macro_build (NULL, "nop", "");
10514 expr1.X_add_number = mips_cprestore_offset;
10515 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
10516 mips_gp_register,
10517 mips_frame_reg,
10518 HAVE_64BIT_ADDRESSES);
10519 }
10520 }
10521 }
10522
10523 break;
10524
10525 case M_JALS_A:
10526 gas_assert (mips_opts.micromips);
10527 if (mips_opts.insn32)
10528 {
10529 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10530 break;
10531 }
10532 jals = 1;
10533 /* Fall through. */
10534 case M_JAL_A:
10535 if (mips_pic == NO_PIC)
10536 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
10537 else if (mips_pic == SVR4_PIC)
10538 {
10539 /* If this is a reference to an external symbol, and we are
10540 using a small GOT, we want
10541 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10542 nop
10543 jalr $ra,$25
10544 nop
10545 lw $gp,cprestore($sp)
10546 The cprestore value is set using the .cprestore
10547 pseudo-op. If we are using a big GOT, we want
10548 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10549 addu $25,$25,$gp
10550 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
10551 nop
10552 jalr $ra,$25
10553 nop
10554 lw $gp,cprestore($sp)
10555 If the symbol is not external, we want
10556 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10557 nop
10558 addiu $25,$25,<sym> (BFD_RELOC_LO16)
10559 jalr $ra,$25
10560 nop
10561 lw $gp,cprestore($sp)
10562
10563 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
10564 sequences above, minus nops, unless the symbol is local,
10565 which enables us to use GOT_PAGE/GOT_OFST (big got) or
10566 GOT_DISP. */
10567 if (HAVE_NEWABI)
10568 {
10569 if (!mips_big_got)
10570 {
10571 relax_start (offset_expr.X_add_symbol);
10572 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10573 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
10574 mips_gp_register);
10575 relax_switch ();
10576 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10577 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
10578 mips_gp_register);
10579 relax_end ();
10580 }
10581 else
10582 {
10583 relax_start (offset_expr.X_add_symbol);
10584 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
10585 BFD_RELOC_MIPS_CALL_HI16);
10586 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
10587 PIC_CALL_REG, mips_gp_register);
10588 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10589 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
10590 PIC_CALL_REG);
10591 relax_switch ();
10592 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10593 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
10594 mips_gp_register);
10595 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10596 PIC_CALL_REG, PIC_CALL_REG,
10597 BFD_RELOC_MIPS_GOT_OFST);
10598 relax_end ();
10599 }
10600
10601 macro_build_jalr (&offset_expr, 0);
10602 }
10603 else
10604 {
10605 relax_start (offset_expr.X_add_symbol);
10606 if (!mips_big_got)
10607 {
10608 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10609 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
10610 mips_gp_register);
10611 load_delay_nop ();
10612 relax_switch ();
10613 }
10614 else
10615 {
10616 int gpdelay;
10617
10618 gpdelay = reg_needs_delay (mips_gp_register);
10619 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
10620 BFD_RELOC_MIPS_CALL_HI16);
10621 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
10622 PIC_CALL_REG, mips_gp_register);
10623 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10624 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
10625 PIC_CALL_REG);
10626 load_delay_nop ();
10627 relax_switch ();
10628 if (gpdelay)
10629 macro_build (NULL, "nop", "");
10630 }
10631 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10632 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
10633 mips_gp_register);
10634 load_delay_nop ();
10635 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10636 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
10637 relax_end ();
10638 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
10639
10640 if (mips_cprestore_offset < 0)
10641 as_warn (_("no .cprestore pseudo-op used in PIC code"));
10642 else
10643 {
10644 if (!mips_frame_reg_valid)
10645 {
10646 as_warn (_("no .frame pseudo-op used in PIC code"));
10647 /* Quiet this warning. */
10648 mips_frame_reg_valid = 1;
10649 }
10650 if (!mips_cprestore_valid)
10651 {
10652 as_warn (_("no .cprestore pseudo-op used in PIC code"));
10653 /* Quiet this warning. */
10654 mips_cprestore_valid = 1;
10655 }
10656 if (mips_opts.noreorder)
10657 macro_build (NULL, "nop", "");
10658 expr1.X_add_number = mips_cprestore_offset;
10659 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
10660 mips_gp_register,
10661 mips_frame_reg,
10662 HAVE_64BIT_ADDRESSES);
10663 }
10664 }
10665 }
10666 else if (mips_pic == VXWORKS_PIC)
10667 as_bad (_("non-PIC jump used in PIC library"));
10668 else
10669 abort ();
10670
10671 break;
10672
10673 case M_LBUE_AB:
10674 s = "lbue";
10675 fmt = "t,+j(b)";
10676 offbits = 9;
10677 goto ld_st;
10678 case M_LHUE_AB:
10679 s = "lhue";
10680 fmt = "t,+j(b)";
10681 offbits = 9;
10682 goto ld_st;
10683 case M_LBE_AB:
10684 s = "lbe";
10685 fmt = "t,+j(b)";
10686 offbits = 9;
10687 goto ld_st;
10688 case M_LHE_AB:
10689 s = "lhe";
10690 fmt = "t,+j(b)";
10691 offbits = 9;
10692 goto ld_st;
10693 case M_LLE_AB:
10694 s = "lle";
10695 fmt = "t,+j(b)";
10696 offbits = 9;
10697 goto ld_st;
10698 case M_LWE_AB:
10699 s = "lwe";
10700 fmt = "t,+j(b)";
10701 offbits = 9;
10702 goto ld_st;
10703 case M_LWLE_AB:
10704 s = "lwle";
10705 fmt = "t,+j(b)";
10706 offbits = 9;
10707 goto ld_st;
10708 case M_LWRE_AB:
10709 s = "lwre";
10710 fmt = "t,+j(b)";
10711 offbits = 9;
10712 goto ld_st;
10713 case M_SBE_AB:
10714 s = "sbe";
10715 fmt = "t,+j(b)";
10716 offbits = 9;
10717 goto ld_st;
10718 case M_SCE_AB:
10719 s = "sce";
10720 fmt = "t,+j(b)";
10721 offbits = 9;
10722 goto ld_st;
10723 case M_SHE_AB:
10724 s = "she";
10725 fmt = "t,+j(b)";
10726 offbits = 9;
10727 goto ld_st;
10728 case M_SWE_AB:
10729 s = "swe";
10730 fmt = "t,+j(b)";
10731 offbits = 9;
10732 goto ld_st;
10733 case M_SWLE_AB:
10734 s = "swle";
10735 fmt = "t,+j(b)";
10736 offbits = 9;
10737 goto ld_st;
10738 case M_SWRE_AB:
10739 s = "swre";
10740 fmt = "t,+j(b)";
10741 offbits = 9;
10742 goto ld_st;
10743 case M_ACLR_AB:
10744 s = "aclr";
10745 fmt = "\\,~(b)";
10746 offbits = 12;
10747 goto ld_st;
10748 case M_ASET_AB:
10749 s = "aset";
10750 fmt = "\\,~(b)";
10751 offbits = 12;
10752 goto ld_st;
10753 case M_LB_AB:
10754 s = "lb";
10755 fmt = "t,o(b)";
10756 goto ld;
10757 case M_LBU_AB:
10758 s = "lbu";
10759 fmt = "t,o(b)";
10760 goto ld;
10761 case M_LH_AB:
10762 s = "lh";
10763 fmt = "t,o(b)";
10764 goto ld;
10765 case M_LHU_AB:
10766 s = "lhu";
10767 fmt = "t,o(b)";
10768 goto ld;
10769 case M_LW_AB:
10770 s = "lw";
10771 fmt = "t,o(b)";
10772 goto ld;
10773 case M_LWC0_AB:
10774 gas_assert (!mips_opts.micromips);
10775 s = "lwc0";
10776 fmt = "E,o(b)";
10777 /* Itbl support may require additional care here. */
10778 coproc = 1;
10779 goto ld_st;
10780 case M_LWC1_AB:
10781 s = "lwc1";
10782 fmt = "T,o(b)";
10783 /* Itbl support may require additional care here. */
10784 coproc = 1;
10785 goto ld_st;
10786 case M_LWC2_AB:
10787 s = "lwc2";
10788 fmt = COP12_FMT;
10789 offbits = (mips_opts.micromips ? 12 : 16);
10790 /* Itbl support may require additional care here. */
10791 coproc = 1;
10792 goto ld_st;
10793 case M_LWC3_AB:
10794 gas_assert (!mips_opts.micromips);
10795 s = "lwc3";
10796 fmt = "E,o(b)";
10797 /* Itbl support may require additional care here. */
10798 coproc = 1;
10799 goto ld_st;
10800 case M_LWL_AB:
10801 s = "lwl";
10802 fmt = MEM12_FMT;
10803 offbits = (mips_opts.micromips ? 12 : 16);
10804 goto ld_st;
10805 case M_LWR_AB:
10806 s = "lwr";
10807 fmt = MEM12_FMT;
10808 offbits = (mips_opts.micromips ? 12 : 16);
10809 goto ld_st;
10810 case M_LDC1_AB:
10811 s = "ldc1";
10812 fmt = "T,o(b)";
10813 /* Itbl support may require additional care here. */
10814 coproc = 1;
10815 goto ld_st;
10816 case M_LDC2_AB:
10817 s = "ldc2";
10818 fmt = COP12_FMT;
10819 offbits = (mips_opts.micromips ? 12 : 16);
10820 /* Itbl support may require additional care here. */
10821 coproc = 1;
10822 goto ld_st;
10823 case M_LQC2_AB:
10824 s = "lqc2";
10825 fmt = "+7,o(b)";
10826 /* Itbl support may require additional care here. */
10827 coproc = 1;
10828 goto ld_st;
10829 case M_LDC3_AB:
10830 s = "ldc3";
10831 fmt = "E,o(b)";
10832 /* Itbl support may require additional care here. */
10833 coproc = 1;
10834 goto ld_st;
10835 case M_LDL_AB:
10836 s = "ldl";
10837 fmt = MEM12_FMT;
10838 offbits = (mips_opts.micromips ? 12 : 16);
10839 goto ld_st;
10840 case M_LDR_AB:
10841 s = "ldr";
10842 fmt = MEM12_FMT;
10843 offbits = (mips_opts.micromips ? 12 : 16);
10844 goto ld_st;
10845 case M_LL_AB:
10846 s = "ll";
10847 fmt = MEM12_FMT;
10848 offbits = (mips_opts.micromips ? 12 : 16);
10849 goto ld;
10850 case M_LLD_AB:
10851 s = "lld";
10852 fmt = MEM12_FMT;
10853 offbits = (mips_opts.micromips ? 12 : 16);
10854 goto ld;
10855 case M_LWU_AB:
10856 s = "lwu";
10857 fmt = MEM12_FMT;
10858 offbits = (mips_opts.micromips ? 12 : 16);
10859 goto ld;
10860 case M_LWP_AB:
10861 gas_assert (mips_opts.micromips);
10862 s = "lwp";
10863 fmt = "t,~(b)";
10864 offbits = 12;
10865 lp = 1;
10866 goto ld;
10867 case M_LDP_AB:
10868 gas_assert (mips_opts.micromips);
10869 s = "ldp";
10870 fmt = "t,~(b)";
10871 offbits = 12;
10872 lp = 1;
10873 goto ld;
10874 case M_LWM_AB:
10875 gas_assert (mips_opts.micromips);
10876 s = "lwm";
10877 fmt = "n,~(b)";
10878 offbits = 12;
10879 goto ld_st;
10880 case M_LDM_AB:
10881 gas_assert (mips_opts.micromips);
10882 s = "ldm";
10883 fmt = "n,~(b)";
10884 offbits = 12;
10885 goto ld_st;
10886
10887 ld:
10888 /* We don't want to use $0 as tempreg. */
10889 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
10890 goto ld_st;
10891 else
10892 tempreg = op[0] + lp;
10893 goto ld_noat;
10894
10895 case M_SB_AB:
10896 s = "sb";
10897 fmt = "t,o(b)";
10898 goto ld_st;
10899 case M_SH_AB:
10900 s = "sh";
10901 fmt = "t,o(b)";
10902 goto ld_st;
10903 case M_SW_AB:
10904 s = "sw";
10905 fmt = "t,o(b)";
10906 goto ld_st;
10907 case M_SWC0_AB:
10908 gas_assert (!mips_opts.micromips);
10909 s = "swc0";
10910 fmt = "E,o(b)";
10911 /* Itbl support may require additional care here. */
10912 coproc = 1;
10913 goto ld_st;
10914 case M_SWC1_AB:
10915 s = "swc1";
10916 fmt = "T,o(b)";
10917 /* Itbl support may require additional care here. */
10918 coproc = 1;
10919 goto ld_st;
10920 case M_SWC2_AB:
10921 s = "swc2";
10922 fmt = COP12_FMT;
10923 offbits = (mips_opts.micromips ? 12 : 16);
10924 /* Itbl support may require additional care here. */
10925 coproc = 1;
10926 goto ld_st;
10927 case M_SWC3_AB:
10928 gas_assert (!mips_opts.micromips);
10929 s = "swc3";
10930 fmt = "E,o(b)";
10931 /* Itbl support may require additional care here. */
10932 coproc = 1;
10933 goto ld_st;
10934 case M_SWL_AB:
10935 s = "swl";
10936 fmt = MEM12_FMT;
10937 offbits = (mips_opts.micromips ? 12 : 16);
10938 goto ld_st;
10939 case M_SWR_AB:
10940 s = "swr";
10941 fmt = MEM12_FMT;
10942 offbits = (mips_opts.micromips ? 12 : 16);
10943 goto ld_st;
10944 case M_SC_AB:
10945 s = "sc";
10946 fmt = MEM12_FMT;
10947 offbits = (mips_opts.micromips ? 12 : 16);
10948 goto ld_st;
10949 case M_SCD_AB:
10950 s = "scd";
10951 fmt = MEM12_FMT;
10952 offbits = (mips_opts.micromips ? 12 : 16);
10953 goto ld_st;
10954 case M_CACHE_AB:
10955 s = "cache";
10956 fmt = mips_opts.micromips ? "k,~(b)" : "k,o(b)";
10957 offbits = (mips_opts.micromips ? 12 : 16);
10958 goto ld_st;
10959 case M_CACHEE_AB:
10960 s = "cachee";
10961 fmt = "k,+j(b)";
10962 offbits = 9;
10963 goto ld_st;
10964 case M_PREF_AB:
10965 s = "pref";
10966 fmt = !mips_opts.micromips ? "k,o(b)" : "k,~(b)";
10967 offbits = (mips_opts.micromips ? 12 : 16);
10968 goto ld_st;
10969 case M_PREFE_AB:
10970 s = "prefe";
10971 fmt = "k,+j(b)";
10972 offbits = 9;
10973 goto ld_st;
10974 case M_SDC1_AB:
10975 s = "sdc1";
10976 fmt = "T,o(b)";
10977 coproc = 1;
10978 /* Itbl support may require additional care here. */
10979 goto ld_st;
10980 case M_SDC2_AB:
10981 s = "sdc2";
10982 fmt = COP12_FMT;
10983 offbits = (mips_opts.micromips ? 12 : 16);
10984 /* Itbl support may require additional care here. */
10985 coproc = 1;
10986 goto ld_st;
10987 case M_SQC2_AB:
10988 s = "sqc2";
10989 fmt = "+7,o(b)";
10990 /* Itbl support may require additional care here. */
10991 coproc = 1;
10992 goto ld_st;
10993 case M_SDC3_AB:
10994 gas_assert (!mips_opts.micromips);
10995 s = "sdc3";
10996 fmt = "E,o(b)";
10997 /* Itbl support may require additional care here. */
10998 coproc = 1;
10999 goto ld_st;
11000 case M_SDL_AB:
11001 s = "sdl";
11002 fmt = MEM12_FMT;
11003 offbits = (mips_opts.micromips ? 12 : 16);
11004 goto ld_st;
11005 case M_SDR_AB:
11006 s = "sdr";
11007 fmt = MEM12_FMT;
11008 offbits = (mips_opts.micromips ? 12 : 16);
11009 goto ld_st;
11010 case M_SWP_AB:
11011 gas_assert (mips_opts.micromips);
11012 s = "swp";
11013 fmt = "t,~(b)";
11014 offbits = 12;
11015 goto ld_st;
11016 case M_SDP_AB:
11017 gas_assert (mips_opts.micromips);
11018 s = "sdp";
11019 fmt = "t,~(b)";
11020 offbits = 12;
11021 goto ld_st;
11022 case M_SWM_AB:
11023 gas_assert (mips_opts.micromips);
11024 s = "swm";
11025 fmt = "n,~(b)";
11026 offbits = 12;
11027 goto ld_st;
11028 case M_SDM_AB:
11029 gas_assert (mips_opts.micromips);
11030 s = "sdm";
11031 fmt = "n,~(b)";
11032 offbits = 12;
11033
11034 ld_st:
11035 tempreg = AT;
11036 ld_noat:
11037 breg = op[2];
11038 if (small_offset_p (0, align, 16))
11039 {
11040 /* The first case exists for M_LD_AB and M_SD_AB, which are
11041 macros for o32 but which should act like normal instructions
11042 otherwise. */
11043 if (offbits == 16)
11044 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11045 offset_reloc[1], offset_reloc[2], breg);
11046 else if (small_offset_p (0, align, offbits))
11047 {
11048 if (offbits == 0)
11049 macro_build (NULL, s, fmt, op[0], breg);
11050 else
11051 macro_build (NULL, s, fmt, op[0],
11052 (int) offset_expr.X_add_number, breg);
11053 }
11054 else
11055 {
11056 if (tempreg == AT)
11057 used_at = 1;
11058 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11059 tempreg, breg, -1, offset_reloc[0],
11060 offset_reloc[1], offset_reloc[2]);
11061 if (offbits == 0)
11062 macro_build (NULL, s, fmt, op[0], tempreg);
11063 else
11064 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11065 }
11066 break;
11067 }
11068
11069 if (tempreg == AT)
11070 used_at = 1;
11071
11072 if (offset_expr.X_op != O_constant
11073 && offset_expr.X_op != O_symbol)
11074 {
11075 as_bad (_("expression too complex"));
11076 offset_expr.X_op = O_constant;
11077 }
11078
11079 if (HAVE_32BIT_ADDRESSES
11080 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11081 {
11082 char value [32];
11083
11084 sprintf_vma (value, offset_expr.X_add_number);
11085 as_bad (_("number (0x%s) larger than 32 bits"), value);
11086 }
11087
11088 /* A constant expression in PIC code can be handled just as it
11089 is in non PIC code. */
11090 if (offset_expr.X_op == O_constant)
11091 {
11092 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11093 offbits == 0 ? 16 : offbits);
11094 offset_expr.X_add_number -= expr1.X_add_number;
11095
11096 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11097 if (breg != 0)
11098 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11099 tempreg, tempreg, breg);
11100 if (offbits == 0)
11101 {
11102 if (offset_expr.X_add_number != 0)
11103 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11104 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11105 macro_build (NULL, s, fmt, op[0], tempreg);
11106 }
11107 else if (offbits == 16)
11108 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11109 else
11110 macro_build (NULL, s, fmt, op[0],
11111 (int) offset_expr.X_add_number, tempreg);
11112 }
11113 else if (offbits != 16)
11114 {
11115 /* The offset field is too narrow to be used for a low-part
11116 relocation, so load the whole address into the auxillary
11117 register. */
11118 load_address (tempreg, &offset_expr, &used_at);
11119 if (breg != 0)
11120 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11121 tempreg, tempreg, breg);
11122 if (offbits == 0)
11123 macro_build (NULL, s, fmt, op[0], tempreg);
11124 else
11125 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11126 }
11127 else if (mips_pic == NO_PIC)
11128 {
11129 /* If this is a reference to a GP relative symbol, and there
11130 is no base register, we want
11131 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11132 Otherwise, if there is no base register, we want
11133 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11134 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11135 If we have a constant, we need two instructions anyhow,
11136 so we always use the latter form.
11137
11138 If we have a base register, and this is a reference to a
11139 GP relative symbol, we want
11140 addu $tempreg,$breg,$gp
11141 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11142 Otherwise we want
11143 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11144 addu $tempreg,$tempreg,$breg
11145 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11146 With a constant we always use the latter case.
11147
11148 With 64bit address space and no base register and $at usable,
11149 we want
11150 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11151 lui $at,<sym> (BFD_RELOC_HI16_S)
11152 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11153 dsll32 $tempreg,0
11154 daddu $tempreg,$at
11155 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11156 If we have a base register, we want
11157 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11158 lui $at,<sym> (BFD_RELOC_HI16_S)
11159 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11160 daddu $at,$breg
11161 dsll32 $tempreg,0
11162 daddu $tempreg,$at
11163 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11164
11165 Without $at we can't generate the optimal path for superscalar
11166 processors here since this would require two temporary registers.
11167 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11168 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11169 dsll $tempreg,16
11170 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11171 dsll $tempreg,16
11172 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11173 If we have a base register, we want
11174 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11175 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11176 dsll $tempreg,16
11177 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11178 dsll $tempreg,16
11179 daddu $tempreg,$tempreg,$breg
11180 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11181
11182 For GP relative symbols in 64bit address space we can use
11183 the same sequence as in 32bit address space. */
11184 if (HAVE_64BIT_SYMBOLS)
11185 {
11186 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11187 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11188 {
11189 relax_start (offset_expr.X_add_symbol);
11190 if (breg == 0)
11191 {
11192 macro_build (&offset_expr, s, fmt, op[0],
11193 BFD_RELOC_GPREL16, mips_gp_register);
11194 }
11195 else
11196 {
11197 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11198 tempreg, breg, mips_gp_register);
11199 macro_build (&offset_expr, s, fmt, op[0],
11200 BFD_RELOC_GPREL16, tempreg);
11201 }
11202 relax_switch ();
11203 }
11204
11205 if (used_at == 0 && mips_opts.at)
11206 {
11207 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11208 BFD_RELOC_MIPS_HIGHEST);
11209 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11210 BFD_RELOC_HI16_S);
11211 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11212 tempreg, BFD_RELOC_MIPS_HIGHER);
11213 if (breg != 0)
11214 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11215 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11216 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11217 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11218 tempreg);
11219 used_at = 1;
11220 }
11221 else
11222 {
11223 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11224 BFD_RELOC_MIPS_HIGHEST);
11225 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11226 tempreg, BFD_RELOC_MIPS_HIGHER);
11227 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11228 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11229 tempreg, BFD_RELOC_HI16_S);
11230 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11231 if (breg != 0)
11232 macro_build (NULL, "daddu", "d,v,t",
11233 tempreg, tempreg, breg);
11234 macro_build (&offset_expr, s, fmt, op[0],
11235 BFD_RELOC_LO16, tempreg);
11236 }
11237
11238 if (mips_relax.sequence)
11239 relax_end ();
11240 break;
11241 }
11242
11243 if (breg == 0)
11244 {
11245 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11246 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11247 {
11248 relax_start (offset_expr.X_add_symbol);
11249 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11250 mips_gp_register);
11251 relax_switch ();
11252 }
11253 macro_build_lui (&offset_expr, tempreg);
11254 macro_build (&offset_expr, s, fmt, op[0],
11255 BFD_RELOC_LO16, tempreg);
11256 if (mips_relax.sequence)
11257 relax_end ();
11258 }
11259 else
11260 {
11261 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11262 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11263 {
11264 relax_start (offset_expr.X_add_symbol);
11265 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11266 tempreg, breg, mips_gp_register);
11267 macro_build (&offset_expr, s, fmt, op[0],
11268 BFD_RELOC_GPREL16, tempreg);
11269 relax_switch ();
11270 }
11271 macro_build_lui (&offset_expr, tempreg);
11272 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11273 tempreg, tempreg, breg);
11274 macro_build (&offset_expr, s, fmt, op[0],
11275 BFD_RELOC_LO16, tempreg);
11276 if (mips_relax.sequence)
11277 relax_end ();
11278 }
11279 }
11280 else if (!mips_big_got)
11281 {
11282 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11283
11284 /* If this is a reference to an external symbol, we want
11285 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11286 nop
11287 <op> op[0],0($tempreg)
11288 Otherwise we want
11289 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11290 nop
11291 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11292 <op> op[0],0($tempreg)
11293
11294 For NewABI, we want
11295 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11296 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11297
11298 If there is a base register, we add it to $tempreg before
11299 the <op>. If there is a constant, we stick it in the
11300 <op> instruction. We don't handle constants larger than
11301 16 bits, because we have no way to load the upper 16 bits
11302 (actually, we could handle them for the subset of cases
11303 in which we are not using $at). */
11304 gas_assert (offset_expr.X_op == O_symbol);
11305 if (HAVE_NEWABI)
11306 {
11307 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11308 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11309 if (breg != 0)
11310 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11311 tempreg, tempreg, breg);
11312 macro_build (&offset_expr, s, fmt, op[0],
11313 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11314 break;
11315 }
11316 expr1.X_add_number = offset_expr.X_add_number;
11317 offset_expr.X_add_number = 0;
11318 if (expr1.X_add_number < -0x8000
11319 || expr1.X_add_number >= 0x8000)
11320 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11321 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11322 lw_reloc_type, mips_gp_register);
11323 load_delay_nop ();
11324 relax_start (offset_expr.X_add_symbol);
11325 relax_switch ();
11326 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11327 tempreg, BFD_RELOC_LO16);
11328 relax_end ();
11329 if (breg != 0)
11330 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11331 tempreg, tempreg, breg);
11332 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11333 }
11334 else if (mips_big_got && !HAVE_NEWABI)
11335 {
11336 int gpdelay;
11337
11338 /* If this is a reference to an external symbol, we want
11339 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11340 addu $tempreg,$tempreg,$gp
11341 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11342 <op> op[0],0($tempreg)
11343 Otherwise we want
11344 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11345 nop
11346 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11347 <op> op[0],0($tempreg)
11348 If there is a base register, we add it to $tempreg before
11349 the <op>. If there is a constant, we stick it in the
11350 <op> instruction. We don't handle constants larger than
11351 16 bits, because we have no way to load the upper 16 bits
11352 (actually, we could handle them for the subset of cases
11353 in which we are not using $at). */
11354 gas_assert (offset_expr.X_op == O_symbol);
11355 expr1.X_add_number = offset_expr.X_add_number;
11356 offset_expr.X_add_number = 0;
11357 if (expr1.X_add_number < -0x8000
11358 || expr1.X_add_number >= 0x8000)
11359 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11360 gpdelay = reg_needs_delay (mips_gp_register);
11361 relax_start (offset_expr.X_add_symbol);
11362 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11363 BFD_RELOC_MIPS_GOT_HI16);
11364 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11365 mips_gp_register);
11366 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11367 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11368 relax_switch ();
11369 if (gpdelay)
11370 macro_build (NULL, "nop", "");
11371 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11372 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11373 load_delay_nop ();
11374 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11375 tempreg, BFD_RELOC_LO16);
11376 relax_end ();
11377
11378 if (breg != 0)
11379 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11380 tempreg, tempreg, breg);
11381 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11382 }
11383 else if (mips_big_got && HAVE_NEWABI)
11384 {
11385 /* If this is a reference to an external symbol, we want
11386 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11387 add $tempreg,$tempreg,$gp
11388 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11389 <op> op[0],<ofst>($tempreg)
11390 Otherwise, for local symbols, we want:
11391 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11392 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11393 gas_assert (offset_expr.X_op == O_symbol);
11394 expr1.X_add_number = offset_expr.X_add_number;
11395 offset_expr.X_add_number = 0;
11396 if (expr1.X_add_number < -0x8000
11397 || expr1.X_add_number >= 0x8000)
11398 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11399 relax_start (offset_expr.X_add_symbol);
11400 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11401 BFD_RELOC_MIPS_GOT_HI16);
11402 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11403 mips_gp_register);
11404 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11405 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11406 if (breg != 0)
11407 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11408 tempreg, tempreg, breg);
11409 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11410
11411 relax_switch ();
11412 offset_expr.X_add_number = expr1.X_add_number;
11413 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11414 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11415 if (breg != 0)
11416 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11417 tempreg, tempreg, breg);
11418 macro_build (&offset_expr, s, fmt, op[0],
11419 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11420 relax_end ();
11421 }
11422 else
11423 abort ();
11424
11425 break;
11426
11427 case M_JRADDIUSP:
11428 gas_assert (mips_opts.micromips);
11429 gas_assert (mips_opts.insn32);
11430 start_noreorder ();
11431 macro_build (NULL, "jr", "s", RA);
11432 expr1.X_add_number = op[0] << 2;
11433 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11434 end_noreorder ();
11435 break;
11436
11437 case M_JRC:
11438 gas_assert (mips_opts.micromips);
11439 gas_assert (mips_opts.insn32);
11440 macro_build (NULL, "jr", "s", op[0]);
11441 if (mips_opts.noreorder)
11442 macro_build (NULL, "nop", "");
11443 break;
11444
11445 case M_LI:
11446 case M_LI_S:
11447 load_register (op[0], &imm_expr, 0);
11448 break;
11449
11450 case M_DLI:
11451 load_register (op[0], &imm_expr, 1);
11452 break;
11453
11454 case M_LI_SS:
11455 if (imm_expr.X_op == O_constant)
11456 {
11457 used_at = 1;
11458 load_register (AT, &imm_expr, 0);
11459 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
11460 break;
11461 }
11462 else
11463 {
11464 gas_assert (imm_expr.X_op == O_absent
11465 && offset_expr.X_op == O_symbol
11466 && strcmp (segment_name (S_GET_SEGMENT
11467 (offset_expr.X_add_symbol)),
11468 ".lit4") == 0
11469 && offset_expr.X_add_number == 0);
11470 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
11471 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
11472 break;
11473 }
11474
11475 case M_LI_D:
11476 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
11477 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
11478 order 32 bits of the value and the low order 32 bits are either
11479 zero or in OFFSET_EXPR. */
11480 if (imm_expr.X_op == O_constant)
11481 {
11482 if (GPR_SIZE == 64)
11483 load_register (op[0], &imm_expr, 1);
11484 else
11485 {
11486 int hreg, lreg;
11487
11488 if (target_big_endian)
11489 {
11490 hreg = op[0];
11491 lreg = op[0] + 1;
11492 }
11493 else
11494 {
11495 hreg = op[0] + 1;
11496 lreg = op[0];
11497 }
11498
11499 if (hreg <= 31)
11500 load_register (hreg, &imm_expr, 0);
11501 if (lreg <= 31)
11502 {
11503 if (offset_expr.X_op == O_absent)
11504 move_register (lreg, 0);
11505 else
11506 {
11507 gas_assert (offset_expr.X_op == O_constant);
11508 load_register (lreg, &offset_expr, 0);
11509 }
11510 }
11511 }
11512 break;
11513 }
11514 gas_assert (imm_expr.X_op == O_absent);
11515
11516 /* We know that sym is in the .rdata section. First we get the
11517 upper 16 bits of the address. */
11518 if (mips_pic == NO_PIC)
11519 {
11520 macro_build_lui (&offset_expr, AT);
11521 used_at = 1;
11522 }
11523 else
11524 {
11525 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
11526 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11527 used_at = 1;
11528 }
11529
11530 /* Now we load the register(s). */
11531 if (GPR_SIZE == 64)
11532 {
11533 used_at = 1;
11534 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
11535 BFD_RELOC_LO16, AT);
11536 }
11537 else
11538 {
11539 used_at = 1;
11540 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
11541 BFD_RELOC_LO16, AT);
11542 if (op[0] != RA)
11543 {
11544 /* FIXME: How in the world do we deal with the possible
11545 overflow here? */
11546 offset_expr.X_add_number += 4;
11547 macro_build (&offset_expr, "lw", "t,o(b)",
11548 op[0] + 1, BFD_RELOC_LO16, AT);
11549 }
11550 }
11551 break;
11552
11553 case M_LI_DD:
11554 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
11555 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
11556 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
11557 the value and the low order 32 bits are either zero or in
11558 OFFSET_EXPR. */
11559 if (imm_expr.X_op == O_constant)
11560 {
11561 used_at = 1;
11562 load_register (AT, &imm_expr, FPR_SIZE == 64);
11563 if (FPR_SIZE == 64)
11564 {
11565 gas_assert (GPR_SIZE == 64);
11566 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
11567 }
11568 else
11569 {
11570 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
11571 if (offset_expr.X_op == O_absent)
11572 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
11573 else
11574 {
11575 gas_assert (offset_expr.X_op == O_constant);
11576 load_register (AT, &offset_expr, 0);
11577 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
11578 }
11579 }
11580 break;
11581 }
11582
11583 gas_assert (imm_expr.X_op == O_absent
11584 && offset_expr.X_op == O_symbol
11585 && offset_expr.X_add_number == 0);
11586 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
11587 if (strcmp (s, ".lit8") == 0)
11588 {
11589 op[2] = mips_gp_register;
11590 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
11591 offset_reloc[1] = BFD_RELOC_UNUSED;
11592 offset_reloc[2] = BFD_RELOC_UNUSED;
11593 }
11594 else
11595 {
11596 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
11597 used_at = 1;
11598 if (mips_pic != NO_PIC)
11599 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
11600 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11601 else
11602 {
11603 /* FIXME: This won't work for a 64 bit address. */
11604 macro_build_lui (&offset_expr, AT);
11605 }
11606
11607 op[2] = AT;
11608 offset_reloc[0] = BFD_RELOC_LO16;
11609 offset_reloc[1] = BFD_RELOC_UNUSED;
11610 offset_reloc[2] = BFD_RELOC_UNUSED;
11611 }
11612 align = 8;
11613 /* Fall through */
11614
11615 case M_L_DAB:
11616 /*
11617 * The MIPS assembler seems to check for X_add_number not
11618 * being double aligned and generating:
11619 * lui at,%hi(foo+1)
11620 * addu at,at,v1
11621 * addiu at,at,%lo(foo+1)
11622 * lwc1 f2,0(at)
11623 * lwc1 f3,4(at)
11624 * But, the resulting address is the same after relocation so why
11625 * generate the extra instruction?
11626 */
11627 /* Itbl support may require additional care here. */
11628 coproc = 1;
11629 fmt = "T,o(b)";
11630 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
11631 {
11632 s = "ldc1";
11633 goto ld_st;
11634 }
11635 s = "lwc1";
11636 goto ldd_std;
11637
11638 case M_S_DAB:
11639 gas_assert (!mips_opts.micromips);
11640 /* Itbl support may require additional care here. */
11641 coproc = 1;
11642 fmt = "T,o(b)";
11643 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
11644 {
11645 s = "sdc1";
11646 goto ld_st;
11647 }
11648 s = "swc1";
11649 goto ldd_std;
11650
11651 case M_LQ_AB:
11652 fmt = "t,o(b)";
11653 s = "lq";
11654 goto ld;
11655
11656 case M_SQ_AB:
11657 fmt = "t,o(b)";
11658 s = "sq";
11659 goto ld_st;
11660
11661 case M_LD_AB:
11662 fmt = "t,o(b)";
11663 if (GPR_SIZE == 64)
11664 {
11665 s = "ld";
11666 goto ld;
11667 }
11668 s = "lw";
11669 goto ldd_std;
11670
11671 case M_SD_AB:
11672 fmt = "t,o(b)";
11673 if (GPR_SIZE == 64)
11674 {
11675 s = "sd";
11676 goto ld_st;
11677 }
11678 s = "sw";
11679
11680 ldd_std:
11681 /* Even on a big endian machine $fn comes before $fn+1. We have
11682 to adjust when loading from memory. We set coproc if we must
11683 load $fn+1 first. */
11684 /* Itbl support may require additional care here. */
11685 if (!target_big_endian)
11686 coproc = 0;
11687
11688 breg = op[2];
11689 if (small_offset_p (0, align, 16))
11690 {
11691 ep = &offset_expr;
11692 if (!small_offset_p (4, align, 16))
11693 {
11694 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
11695 -1, offset_reloc[0], offset_reloc[1],
11696 offset_reloc[2]);
11697 expr1.X_add_number = 0;
11698 ep = &expr1;
11699 breg = AT;
11700 used_at = 1;
11701 offset_reloc[0] = BFD_RELOC_LO16;
11702 offset_reloc[1] = BFD_RELOC_UNUSED;
11703 offset_reloc[2] = BFD_RELOC_UNUSED;
11704 }
11705 if (strcmp (s, "lw") == 0 && op[0] == breg)
11706 {
11707 ep->X_add_number += 4;
11708 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
11709 offset_reloc[1], offset_reloc[2], breg);
11710 ep->X_add_number -= 4;
11711 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
11712 offset_reloc[1], offset_reloc[2], breg);
11713 }
11714 else
11715 {
11716 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
11717 offset_reloc[0], offset_reloc[1], offset_reloc[2],
11718 breg);
11719 ep->X_add_number += 4;
11720 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
11721 offset_reloc[0], offset_reloc[1], offset_reloc[2],
11722 breg);
11723 }
11724 break;
11725 }
11726
11727 if (offset_expr.X_op != O_symbol
11728 && offset_expr.X_op != O_constant)
11729 {
11730 as_bad (_("expression too complex"));
11731 offset_expr.X_op = O_constant;
11732 }
11733
11734 if (HAVE_32BIT_ADDRESSES
11735 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11736 {
11737 char value [32];
11738
11739 sprintf_vma (value, offset_expr.X_add_number);
11740 as_bad (_("number (0x%s) larger than 32 bits"), value);
11741 }
11742
11743 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
11744 {
11745 /* If this is a reference to a GP relative symbol, we want
11746 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11747 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
11748 If we have a base register, we use this
11749 addu $at,$breg,$gp
11750 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
11751 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
11752 If this is not a GP relative symbol, we want
11753 lui $at,<sym> (BFD_RELOC_HI16_S)
11754 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
11755 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
11756 If there is a base register, we add it to $at after the
11757 lui instruction. If there is a constant, we always use
11758 the last case. */
11759 if (offset_expr.X_op == O_symbol
11760 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11761 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11762 {
11763 relax_start (offset_expr.X_add_symbol);
11764 if (breg == 0)
11765 {
11766 tempreg = mips_gp_register;
11767 }
11768 else
11769 {
11770 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11771 AT, breg, mips_gp_register);
11772 tempreg = AT;
11773 used_at = 1;
11774 }
11775
11776 /* Itbl support may require additional care here. */
11777 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
11778 BFD_RELOC_GPREL16, tempreg);
11779 offset_expr.X_add_number += 4;
11780
11781 /* Set mips_optimize to 2 to avoid inserting an
11782 undesired nop. */
11783 hold_mips_optimize = mips_optimize;
11784 mips_optimize = 2;
11785 /* Itbl support may require additional care here. */
11786 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
11787 BFD_RELOC_GPREL16, tempreg);
11788 mips_optimize = hold_mips_optimize;
11789
11790 relax_switch ();
11791
11792 offset_expr.X_add_number -= 4;
11793 }
11794 used_at = 1;
11795 if (offset_high_part (offset_expr.X_add_number, 16)
11796 != offset_high_part (offset_expr.X_add_number + 4, 16))
11797 {
11798 load_address (AT, &offset_expr, &used_at);
11799 offset_expr.X_op = O_constant;
11800 offset_expr.X_add_number = 0;
11801 }
11802 else
11803 macro_build_lui (&offset_expr, AT);
11804 if (breg != 0)
11805 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
11806 /* Itbl support may require additional care here. */
11807 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
11808 BFD_RELOC_LO16, AT);
11809 /* FIXME: How do we handle overflow here? */
11810 offset_expr.X_add_number += 4;
11811 /* Itbl support may require additional care here. */
11812 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
11813 BFD_RELOC_LO16, AT);
11814 if (mips_relax.sequence)
11815 relax_end ();
11816 }
11817 else if (!mips_big_got)
11818 {
11819 /* If this is a reference to an external symbol, we want
11820 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11821 nop
11822 <op> op[0],0($at)
11823 <op> op[0]+1,4($at)
11824 Otherwise we want
11825 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11826 nop
11827 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
11828 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
11829 If there is a base register we add it to $at before the
11830 lwc1 instructions. If there is a constant we include it
11831 in the lwc1 instructions. */
11832 used_at = 1;
11833 expr1.X_add_number = offset_expr.X_add_number;
11834 if (expr1.X_add_number < -0x8000
11835 || expr1.X_add_number >= 0x8000 - 4)
11836 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11837 load_got_offset (AT, &offset_expr);
11838 load_delay_nop ();
11839 if (breg != 0)
11840 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
11841
11842 /* Set mips_optimize to 2 to avoid inserting an undesired
11843 nop. */
11844 hold_mips_optimize = mips_optimize;
11845 mips_optimize = 2;
11846
11847 /* Itbl support may require additional care here. */
11848 relax_start (offset_expr.X_add_symbol);
11849 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
11850 BFD_RELOC_LO16, AT);
11851 expr1.X_add_number += 4;
11852 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
11853 BFD_RELOC_LO16, AT);
11854 relax_switch ();
11855 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
11856 BFD_RELOC_LO16, AT);
11857 offset_expr.X_add_number += 4;
11858 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
11859 BFD_RELOC_LO16, AT);
11860 relax_end ();
11861
11862 mips_optimize = hold_mips_optimize;
11863 }
11864 else if (mips_big_got)
11865 {
11866 int gpdelay;
11867
11868 /* If this is a reference to an external symbol, we want
11869 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11870 addu $at,$at,$gp
11871 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
11872 nop
11873 <op> op[0],0($at)
11874 <op> op[0]+1,4($at)
11875 Otherwise we want
11876 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11877 nop
11878 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
11879 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
11880 If there is a base register we add it to $at before the
11881 lwc1 instructions. If there is a constant we include it
11882 in the lwc1 instructions. */
11883 used_at = 1;
11884 expr1.X_add_number = offset_expr.X_add_number;
11885 offset_expr.X_add_number = 0;
11886 if (expr1.X_add_number < -0x8000
11887 || expr1.X_add_number >= 0x8000 - 4)
11888 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11889 gpdelay = reg_needs_delay (mips_gp_register);
11890 relax_start (offset_expr.X_add_symbol);
11891 macro_build (&offset_expr, "lui", LUI_FMT,
11892 AT, BFD_RELOC_MIPS_GOT_HI16);
11893 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11894 AT, AT, mips_gp_register);
11895 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11896 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
11897 load_delay_nop ();
11898 if (breg != 0)
11899 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
11900 /* Itbl support may require additional care here. */
11901 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
11902 BFD_RELOC_LO16, AT);
11903 expr1.X_add_number += 4;
11904
11905 /* Set mips_optimize to 2 to avoid inserting an undesired
11906 nop. */
11907 hold_mips_optimize = mips_optimize;
11908 mips_optimize = 2;
11909 /* Itbl support may require additional care here. */
11910 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
11911 BFD_RELOC_LO16, AT);
11912 mips_optimize = hold_mips_optimize;
11913 expr1.X_add_number -= 4;
11914
11915 relax_switch ();
11916 offset_expr.X_add_number = expr1.X_add_number;
11917 if (gpdelay)
11918 macro_build (NULL, "nop", "");
11919 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
11920 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11921 load_delay_nop ();
11922 if (breg != 0)
11923 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
11924 /* Itbl support may require additional care here. */
11925 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
11926 BFD_RELOC_LO16, AT);
11927 offset_expr.X_add_number += 4;
11928
11929 /* Set mips_optimize to 2 to avoid inserting an undesired
11930 nop. */
11931 hold_mips_optimize = mips_optimize;
11932 mips_optimize = 2;
11933 /* Itbl support may require additional care here. */
11934 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
11935 BFD_RELOC_LO16, AT);
11936 mips_optimize = hold_mips_optimize;
11937 relax_end ();
11938 }
11939 else
11940 abort ();
11941
11942 break;
11943
11944 case M_SAA_AB:
11945 s = "saa";
11946 offbits = 0;
11947 fmt = "t,(b)";
11948 goto ld_st;
11949 case M_SAAD_AB:
11950 s = "saad";
11951 offbits = 0;
11952 fmt = "t,(b)";
11953 goto ld_st;
11954
11955 /* New code added to support COPZ instructions.
11956 This code builds table entries out of the macros in mip_opcodes.
11957 R4000 uses interlocks to handle coproc delays.
11958 Other chips (like the R3000) require nops to be inserted for delays.
11959
11960 FIXME: Currently, we require that the user handle delays.
11961 In order to fill delay slots for non-interlocked chips,
11962 we must have a way to specify delays based on the coprocessor.
11963 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
11964 What are the side-effects of the cop instruction?
11965 What cache support might we have and what are its effects?
11966 Both coprocessor & memory require delays. how long???
11967 What registers are read/set/modified?
11968
11969 If an itbl is provided to interpret cop instructions,
11970 this knowledge can be encoded in the itbl spec. */
11971
11972 case M_COP0:
11973 s = "c0";
11974 goto copz;
11975 case M_COP1:
11976 s = "c1";
11977 goto copz;
11978 case M_COP2:
11979 s = "c2";
11980 goto copz;
11981 case M_COP3:
11982 s = "c3";
11983 copz:
11984 gas_assert (!mips_opts.micromips);
11985 /* For now we just do C (same as Cz). The parameter will be
11986 stored in insn_opcode by mips_ip. */
11987 macro_build (NULL, s, "C", (int) ip->insn_opcode);
11988 break;
11989
11990 case M_MOVE:
11991 move_register (op[0], op[1]);
11992 break;
11993
11994 case M_MOVEP:
11995 gas_assert (mips_opts.micromips);
11996 gas_assert (mips_opts.insn32);
11997 move_register (micromips_to_32_reg_h_map1[op[0]],
11998 micromips_to_32_reg_m_map[op[1]]);
11999 move_register (micromips_to_32_reg_h_map2[op[0]],
12000 micromips_to_32_reg_n_map[op[2]]);
12001 break;
12002
12003 case M_DMUL:
12004 dbl = 1;
12005 case M_MUL:
12006 if (mips_opts.arch == CPU_R5900)
12007 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12008 op[2]);
12009 else
12010 {
12011 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12012 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12013 }
12014 break;
12015
12016 case M_DMUL_I:
12017 dbl = 1;
12018 case M_MUL_I:
12019 /* The MIPS assembler some times generates shifts and adds. I'm
12020 not trying to be that fancy. GCC should do this for us
12021 anyway. */
12022 used_at = 1;
12023 load_register (AT, &imm_expr, dbl);
12024 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12025 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12026 break;
12027
12028 case M_DMULO_I:
12029 dbl = 1;
12030 case M_MULO_I:
12031 imm = 1;
12032 goto do_mulo;
12033
12034 case M_DMULO:
12035 dbl = 1;
12036 case M_MULO:
12037 do_mulo:
12038 start_noreorder ();
12039 used_at = 1;
12040 if (imm)
12041 load_register (AT, &imm_expr, dbl);
12042 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12043 op[1], imm ? AT : op[2]);
12044 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12045 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12046 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12047 if (mips_trap)
12048 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12049 else
12050 {
12051 if (mips_opts.micromips)
12052 micromips_label_expr (&label_expr);
12053 else
12054 label_expr.X_add_number = 8;
12055 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12056 macro_build (NULL, "nop", "");
12057 macro_build (NULL, "break", BRK_FMT, 6);
12058 if (mips_opts.micromips)
12059 micromips_add_label ();
12060 }
12061 end_noreorder ();
12062 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12063 break;
12064
12065 case M_DMULOU_I:
12066 dbl = 1;
12067 case M_MULOU_I:
12068 imm = 1;
12069 goto do_mulou;
12070
12071 case M_DMULOU:
12072 dbl = 1;
12073 case M_MULOU:
12074 do_mulou:
12075 start_noreorder ();
12076 used_at = 1;
12077 if (imm)
12078 load_register (AT, &imm_expr, dbl);
12079 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12080 op[1], imm ? AT : op[2]);
12081 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12082 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12083 if (mips_trap)
12084 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12085 else
12086 {
12087 if (mips_opts.micromips)
12088 micromips_label_expr (&label_expr);
12089 else
12090 label_expr.X_add_number = 8;
12091 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12092 macro_build (NULL, "nop", "");
12093 macro_build (NULL, "break", BRK_FMT, 6);
12094 if (mips_opts.micromips)
12095 micromips_add_label ();
12096 }
12097 end_noreorder ();
12098 break;
12099
12100 case M_DROL:
12101 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12102 {
12103 if (op[0] == op[1])
12104 {
12105 tempreg = AT;
12106 used_at = 1;
12107 }
12108 else
12109 tempreg = op[0];
12110 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12111 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12112 break;
12113 }
12114 used_at = 1;
12115 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12116 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12117 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12118 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12119 break;
12120
12121 case M_ROL:
12122 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12123 {
12124 if (op[0] == op[1])
12125 {
12126 tempreg = AT;
12127 used_at = 1;
12128 }
12129 else
12130 tempreg = op[0];
12131 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12132 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12133 break;
12134 }
12135 used_at = 1;
12136 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12137 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12138 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12139 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12140 break;
12141
12142 case M_DROL_I:
12143 {
12144 unsigned int rot;
12145 char *l;
12146 char *rr;
12147
12148 rot = imm_expr.X_add_number & 0x3f;
12149 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12150 {
12151 rot = (64 - rot) & 0x3f;
12152 if (rot >= 32)
12153 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12154 else
12155 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12156 break;
12157 }
12158 if (rot == 0)
12159 {
12160 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12161 break;
12162 }
12163 l = (rot < 0x20) ? "dsll" : "dsll32";
12164 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12165 rot &= 0x1f;
12166 used_at = 1;
12167 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12168 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12169 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12170 }
12171 break;
12172
12173 case M_ROL_I:
12174 {
12175 unsigned int rot;
12176
12177 rot = imm_expr.X_add_number & 0x1f;
12178 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12179 {
12180 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12181 (32 - rot) & 0x1f);
12182 break;
12183 }
12184 if (rot == 0)
12185 {
12186 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12187 break;
12188 }
12189 used_at = 1;
12190 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12191 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12192 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12193 }
12194 break;
12195
12196 case M_DROR:
12197 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12198 {
12199 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12200 break;
12201 }
12202 used_at = 1;
12203 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12204 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12205 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12206 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12207 break;
12208
12209 case M_ROR:
12210 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12211 {
12212 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12213 break;
12214 }
12215 used_at = 1;
12216 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12217 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12218 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12219 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12220 break;
12221
12222 case M_DROR_I:
12223 {
12224 unsigned int rot;
12225 char *l;
12226 char *rr;
12227
12228 rot = imm_expr.X_add_number & 0x3f;
12229 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12230 {
12231 if (rot >= 32)
12232 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12233 else
12234 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12235 break;
12236 }
12237 if (rot == 0)
12238 {
12239 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12240 break;
12241 }
12242 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12243 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12244 rot &= 0x1f;
12245 used_at = 1;
12246 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12247 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12248 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12249 }
12250 break;
12251
12252 case M_ROR_I:
12253 {
12254 unsigned int rot;
12255
12256 rot = imm_expr.X_add_number & 0x1f;
12257 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12258 {
12259 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12260 break;
12261 }
12262 if (rot == 0)
12263 {
12264 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12265 break;
12266 }
12267 used_at = 1;
12268 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12269 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12270 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12271 }
12272 break;
12273
12274 case M_SEQ:
12275 if (op[1] == 0)
12276 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12277 else if (op[2] == 0)
12278 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12279 else
12280 {
12281 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12282 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12283 }
12284 break;
12285
12286 case M_SEQ_I:
12287 if (imm_expr.X_add_number == 0)
12288 {
12289 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12290 break;
12291 }
12292 if (op[1] == 0)
12293 {
12294 as_warn (_("instruction %s: result is always false"),
12295 ip->insn_mo->name);
12296 move_register (op[0], 0);
12297 break;
12298 }
12299 if (CPU_HAS_SEQ (mips_opts.arch)
12300 && -512 <= imm_expr.X_add_number
12301 && imm_expr.X_add_number < 512)
12302 {
12303 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12304 (int) imm_expr.X_add_number);
12305 break;
12306 }
12307 if (imm_expr.X_add_number >= 0
12308 && imm_expr.X_add_number < 0x10000)
12309 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12310 else if (imm_expr.X_add_number > -0x8000
12311 && imm_expr.X_add_number < 0)
12312 {
12313 imm_expr.X_add_number = -imm_expr.X_add_number;
12314 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12315 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12316 }
12317 else if (CPU_HAS_SEQ (mips_opts.arch))
12318 {
12319 used_at = 1;
12320 load_register (AT, &imm_expr, GPR_SIZE == 64);
12321 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12322 break;
12323 }
12324 else
12325 {
12326 load_register (AT, &imm_expr, GPR_SIZE == 64);
12327 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12328 used_at = 1;
12329 }
12330 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12331 break;
12332
12333 case M_SGE: /* X >= Y <==> not (X < Y) */
12334 s = "slt";
12335 goto sge;
12336 case M_SGEU:
12337 s = "sltu";
12338 sge:
12339 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12340 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12341 break;
12342
12343 case M_SGE_I: /* X >= I <==> not (X < I) */
12344 case M_SGEU_I:
12345 if (imm_expr.X_add_number >= -0x8000
12346 && imm_expr.X_add_number < 0x8000)
12347 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12348 op[0], op[1], BFD_RELOC_LO16);
12349 else
12350 {
12351 load_register (AT, &imm_expr, GPR_SIZE == 64);
12352 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12353 op[0], op[1], AT);
12354 used_at = 1;
12355 }
12356 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12357 break;
12358
12359 case M_SGT: /* X > Y <==> Y < X */
12360 s = "slt";
12361 goto sgt;
12362 case M_SGTU:
12363 s = "sltu";
12364 sgt:
12365 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12366 break;
12367
12368 case M_SGT_I: /* X > I <==> I < X */
12369 s = "slt";
12370 goto sgti;
12371 case M_SGTU_I:
12372 s = "sltu";
12373 sgti:
12374 used_at = 1;
12375 load_register (AT, &imm_expr, GPR_SIZE == 64);
12376 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12377 break;
12378
12379 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12380 s = "slt";
12381 goto sle;
12382 case M_SLEU:
12383 s = "sltu";
12384 sle:
12385 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12386 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12387 break;
12388
12389 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12390 s = "slt";
12391 goto slei;
12392 case M_SLEU_I:
12393 s = "sltu";
12394 slei:
12395 used_at = 1;
12396 load_register (AT, &imm_expr, GPR_SIZE == 64);
12397 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12398 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12399 break;
12400
12401 case M_SLT_I:
12402 if (imm_expr.X_add_number >= -0x8000
12403 && imm_expr.X_add_number < 0x8000)
12404 {
12405 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12406 BFD_RELOC_LO16);
12407 break;
12408 }
12409 used_at = 1;
12410 load_register (AT, &imm_expr, GPR_SIZE == 64);
12411 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
12412 break;
12413
12414 case M_SLTU_I:
12415 if (imm_expr.X_add_number >= -0x8000
12416 && imm_expr.X_add_number < 0x8000)
12417 {
12418 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
12419 BFD_RELOC_LO16);
12420 break;
12421 }
12422 used_at = 1;
12423 load_register (AT, &imm_expr, GPR_SIZE == 64);
12424 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
12425 break;
12426
12427 case M_SNE:
12428 if (op[1] == 0)
12429 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12430 else if (op[2] == 0)
12431 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12432 else
12433 {
12434 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12435 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
12436 }
12437 break;
12438
12439 case M_SNE_I:
12440 if (imm_expr.X_add_number == 0)
12441 {
12442 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12443 break;
12444 }
12445 if (op[1] == 0)
12446 {
12447 as_warn (_("instruction %s: result is always true"),
12448 ip->insn_mo->name);
12449 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
12450 op[0], 0, BFD_RELOC_LO16);
12451 break;
12452 }
12453 if (CPU_HAS_SEQ (mips_opts.arch)
12454 && -512 <= imm_expr.X_add_number
12455 && imm_expr.X_add_number < 512)
12456 {
12457 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
12458 (int) imm_expr.X_add_number);
12459 break;
12460 }
12461 if (imm_expr.X_add_number >= 0
12462 && imm_expr.X_add_number < 0x10000)
12463 {
12464 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
12465 BFD_RELOC_LO16);
12466 }
12467 else if (imm_expr.X_add_number > -0x8000
12468 && imm_expr.X_add_number < 0)
12469 {
12470 imm_expr.X_add_number = -imm_expr.X_add_number;
12471 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12472 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12473 }
12474 else if (CPU_HAS_SEQ (mips_opts.arch))
12475 {
12476 used_at = 1;
12477 load_register (AT, &imm_expr, GPR_SIZE == 64);
12478 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
12479 break;
12480 }
12481 else
12482 {
12483 load_register (AT, &imm_expr, GPR_SIZE == 64);
12484 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12485 used_at = 1;
12486 }
12487 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
12488 break;
12489
12490 case M_SUB_I:
12491 s = "addi";
12492 s2 = "sub";
12493 goto do_subi;
12494 case M_SUBU_I:
12495 s = "addiu";
12496 s2 = "subu";
12497 goto do_subi;
12498 case M_DSUB_I:
12499 dbl = 1;
12500 s = "daddi";
12501 s2 = "dsub";
12502 if (!mips_opts.micromips)
12503 goto do_subi;
12504 if (imm_expr.X_add_number > -0x200
12505 && imm_expr.X_add_number <= 0x200)
12506 {
12507 macro_build (NULL, s, "t,r,.", op[0], op[1],
12508 (int) -imm_expr.X_add_number);
12509 break;
12510 }
12511 goto do_subi_i;
12512 case M_DSUBU_I:
12513 dbl = 1;
12514 s = "daddiu";
12515 s2 = "dsubu";
12516 do_subi:
12517 if (imm_expr.X_add_number > -0x8000
12518 && imm_expr.X_add_number <= 0x8000)
12519 {
12520 imm_expr.X_add_number = -imm_expr.X_add_number;
12521 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12522 break;
12523 }
12524 do_subi_i:
12525 used_at = 1;
12526 load_register (AT, &imm_expr, dbl);
12527 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
12528 break;
12529
12530 case M_TEQ_I:
12531 s = "teq";
12532 goto trap;
12533 case M_TGE_I:
12534 s = "tge";
12535 goto trap;
12536 case M_TGEU_I:
12537 s = "tgeu";
12538 goto trap;
12539 case M_TLT_I:
12540 s = "tlt";
12541 goto trap;
12542 case M_TLTU_I:
12543 s = "tltu";
12544 goto trap;
12545 case M_TNE_I:
12546 s = "tne";
12547 trap:
12548 used_at = 1;
12549 load_register (AT, &imm_expr, GPR_SIZE == 64);
12550 macro_build (NULL, s, "s,t", op[0], AT);
12551 break;
12552
12553 case M_TRUNCWS:
12554 case M_TRUNCWD:
12555 gas_assert (!mips_opts.micromips);
12556 gas_assert (mips_opts.isa == ISA_MIPS1);
12557 used_at = 1;
12558
12559 /*
12560 * Is the double cfc1 instruction a bug in the mips assembler;
12561 * or is there a reason for it?
12562 */
12563 start_noreorder ();
12564 macro_build (NULL, "cfc1", "t,G", op[2], RA);
12565 macro_build (NULL, "cfc1", "t,G", op[2], RA);
12566 macro_build (NULL, "nop", "");
12567 expr1.X_add_number = 3;
12568 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
12569 expr1.X_add_number = 2;
12570 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
12571 macro_build (NULL, "ctc1", "t,G", AT, RA);
12572 macro_build (NULL, "nop", "");
12573 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
12574 op[0], op[1]);
12575 macro_build (NULL, "ctc1", "t,G", op[2], RA);
12576 macro_build (NULL, "nop", "");
12577 end_noreorder ();
12578 break;
12579
12580 case M_ULH_AB:
12581 s = "lb";
12582 s2 = "lbu";
12583 off = 1;
12584 goto uld_st;
12585 case M_ULHU_AB:
12586 s = "lbu";
12587 s2 = "lbu";
12588 off = 1;
12589 goto uld_st;
12590 case M_ULW_AB:
12591 s = "lwl";
12592 s2 = "lwr";
12593 offbits = (mips_opts.micromips ? 12 : 16);
12594 off = 3;
12595 goto uld_st;
12596 case M_ULD_AB:
12597 s = "ldl";
12598 s2 = "ldr";
12599 offbits = (mips_opts.micromips ? 12 : 16);
12600 off = 7;
12601 goto uld_st;
12602 case M_USH_AB:
12603 s = "sb";
12604 s2 = "sb";
12605 off = 1;
12606 ust = 1;
12607 goto uld_st;
12608 case M_USW_AB:
12609 s = "swl";
12610 s2 = "swr";
12611 offbits = (mips_opts.micromips ? 12 : 16);
12612 off = 3;
12613 ust = 1;
12614 goto uld_st;
12615 case M_USD_AB:
12616 s = "sdl";
12617 s2 = "sdr";
12618 offbits = (mips_opts.micromips ? 12 : 16);
12619 off = 7;
12620 ust = 1;
12621
12622 uld_st:
12623 breg = op[2];
12624 large_offset = !small_offset_p (off, align, offbits);
12625 ep = &offset_expr;
12626 expr1.X_add_number = 0;
12627 if (large_offset)
12628 {
12629 used_at = 1;
12630 tempreg = AT;
12631 if (small_offset_p (0, align, 16))
12632 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
12633 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
12634 else
12635 {
12636 load_address (tempreg, ep, &used_at);
12637 if (breg != 0)
12638 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12639 tempreg, tempreg, breg);
12640 }
12641 offset_reloc[0] = BFD_RELOC_LO16;
12642 offset_reloc[1] = BFD_RELOC_UNUSED;
12643 offset_reloc[2] = BFD_RELOC_UNUSED;
12644 breg = tempreg;
12645 tempreg = op[0];
12646 ep = &expr1;
12647 }
12648 else if (!ust && op[0] == breg)
12649 {
12650 used_at = 1;
12651 tempreg = AT;
12652 }
12653 else
12654 tempreg = op[0];
12655
12656 if (off == 1)
12657 goto ulh_sh;
12658
12659 if (!target_big_endian)
12660 ep->X_add_number += off;
12661 if (offbits == 12)
12662 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
12663 else
12664 macro_build (ep, s, "t,o(b)", tempreg, -1,
12665 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
12666
12667 if (!target_big_endian)
12668 ep->X_add_number -= off;
12669 else
12670 ep->X_add_number += off;
12671 if (offbits == 12)
12672 macro_build (NULL, s2, "t,~(b)",
12673 tempreg, (int) ep->X_add_number, breg);
12674 else
12675 macro_build (ep, s2, "t,o(b)", tempreg, -1,
12676 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
12677
12678 /* If necessary, move the result in tempreg to the final destination. */
12679 if (!ust && op[0] != tempreg)
12680 {
12681 /* Protect second load's delay slot. */
12682 load_delay_nop ();
12683 move_register (op[0], tempreg);
12684 }
12685 break;
12686
12687 ulh_sh:
12688 used_at = 1;
12689 if (target_big_endian == ust)
12690 ep->X_add_number += off;
12691 tempreg = ust || large_offset ? op[0] : AT;
12692 macro_build (ep, s, "t,o(b)", tempreg, -1,
12693 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
12694
12695 /* For halfword transfers we need a temporary register to shuffle
12696 bytes. Unfortunately for M_USH_A we have none available before
12697 the next store as AT holds the base address. We deal with this
12698 case by clobbering TREG and then restoring it as with ULH. */
12699 tempreg = ust == large_offset ? op[0] : AT;
12700 if (ust)
12701 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
12702
12703 if (target_big_endian == ust)
12704 ep->X_add_number -= off;
12705 else
12706 ep->X_add_number += off;
12707 macro_build (ep, s2, "t,o(b)", tempreg, -1,
12708 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
12709
12710 /* For M_USH_A re-retrieve the LSB. */
12711 if (ust && large_offset)
12712 {
12713 if (target_big_endian)
12714 ep->X_add_number += off;
12715 else
12716 ep->X_add_number -= off;
12717 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
12718 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
12719 }
12720 /* For ULH and M_USH_A OR the LSB in. */
12721 if (!ust || large_offset)
12722 {
12723 tempreg = !large_offset ? AT : op[0];
12724 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
12725 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12726 }
12727 break;
12728
12729 default:
12730 /* FIXME: Check if this is one of the itbl macros, since they
12731 are added dynamically. */
12732 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
12733 break;
12734 }
12735 if (!mips_opts.at && used_at)
12736 as_bad (_("macro used $at after \".set noat\""));
12737 }
12738
12739 /* Implement macros in mips16 mode. */
12740
12741 static void
12742 mips16_macro (struct mips_cl_insn *ip)
12743 {
12744 const struct mips_operand_array *operands;
12745 int mask;
12746 int tmp;
12747 expressionS expr1;
12748 int dbl;
12749 const char *s, *s2, *s3;
12750 unsigned int op[MAX_OPERANDS];
12751 unsigned int i;
12752
12753 mask = ip->insn_mo->mask;
12754
12755 operands = insn_operands (ip);
12756 for (i = 0; i < MAX_OPERANDS; i++)
12757 if (operands->operand[i])
12758 op[i] = insn_extract_operand (ip, operands->operand[i]);
12759 else
12760 op[i] = -1;
12761
12762 expr1.X_op = O_constant;
12763 expr1.X_op_symbol = NULL;
12764 expr1.X_add_symbol = NULL;
12765 expr1.X_add_number = 1;
12766
12767 dbl = 0;
12768
12769 switch (mask)
12770 {
12771 default:
12772 abort ();
12773
12774 case M_DDIV_3:
12775 dbl = 1;
12776 case M_DIV_3:
12777 s = "mflo";
12778 goto do_div3;
12779 case M_DREM_3:
12780 dbl = 1;
12781 case M_REM_3:
12782 s = "mfhi";
12783 do_div3:
12784 start_noreorder ();
12785 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
12786 expr1.X_add_number = 2;
12787 macro_build (&expr1, "bnez", "x,p", op[2]);
12788 macro_build (NULL, "break", "6", 7);
12789
12790 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
12791 since that causes an overflow. We should do that as well,
12792 but I don't see how to do the comparisons without a temporary
12793 register. */
12794 end_noreorder ();
12795 macro_build (NULL, s, "x", op[0]);
12796 break;
12797
12798 case M_DIVU_3:
12799 s = "divu";
12800 s2 = "mflo";
12801 goto do_divu3;
12802 case M_REMU_3:
12803 s = "divu";
12804 s2 = "mfhi";
12805 goto do_divu3;
12806 case M_DDIVU_3:
12807 s = "ddivu";
12808 s2 = "mflo";
12809 goto do_divu3;
12810 case M_DREMU_3:
12811 s = "ddivu";
12812 s2 = "mfhi";
12813 do_divu3:
12814 start_noreorder ();
12815 macro_build (NULL, s, "0,x,y", op[1], op[2]);
12816 expr1.X_add_number = 2;
12817 macro_build (&expr1, "bnez", "x,p", op[2]);
12818 macro_build (NULL, "break", "6", 7);
12819 end_noreorder ();
12820 macro_build (NULL, s2, "x", op[0]);
12821 break;
12822
12823 case M_DMUL:
12824 dbl = 1;
12825 case M_MUL:
12826 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
12827 macro_build (NULL, "mflo", "x", op[0]);
12828 break;
12829
12830 case M_DSUBU_I:
12831 dbl = 1;
12832 goto do_subu;
12833 case M_SUBU_I:
12834 do_subu:
12835 imm_expr.X_add_number = -imm_expr.X_add_number;
12836 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
12837 break;
12838
12839 case M_SUBU_I_2:
12840 imm_expr.X_add_number = -imm_expr.X_add_number;
12841 macro_build (&imm_expr, "addiu", "x,k", op[0]);
12842 break;
12843
12844 case M_DSUBU_I_2:
12845 imm_expr.X_add_number = -imm_expr.X_add_number;
12846 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
12847 break;
12848
12849 case M_BEQ:
12850 s = "cmp";
12851 s2 = "bteqz";
12852 goto do_branch;
12853 case M_BNE:
12854 s = "cmp";
12855 s2 = "btnez";
12856 goto do_branch;
12857 case M_BLT:
12858 s = "slt";
12859 s2 = "btnez";
12860 goto do_branch;
12861 case M_BLTU:
12862 s = "sltu";
12863 s2 = "btnez";
12864 goto do_branch;
12865 case M_BLE:
12866 s = "slt";
12867 s2 = "bteqz";
12868 goto do_reverse_branch;
12869 case M_BLEU:
12870 s = "sltu";
12871 s2 = "bteqz";
12872 goto do_reverse_branch;
12873 case M_BGE:
12874 s = "slt";
12875 s2 = "bteqz";
12876 goto do_branch;
12877 case M_BGEU:
12878 s = "sltu";
12879 s2 = "bteqz";
12880 goto do_branch;
12881 case M_BGT:
12882 s = "slt";
12883 s2 = "btnez";
12884 goto do_reverse_branch;
12885 case M_BGTU:
12886 s = "sltu";
12887 s2 = "btnez";
12888
12889 do_reverse_branch:
12890 tmp = op[1];
12891 op[1] = op[0];
12892 op[0] = tmp;
12893
12894 do_branch:
12895 macro_build (NULL, s, "x,y", op[0], op[1]);
12896 macro_build (&offset_expr, s2, "p");
12897 break;
12898
12899 case M_BEQ_I:
12900 s = "cmpi";
12901 s2 = "bteqz";
12902 s3 = "x,U";
12903 goto do_branch_i;
12904 case M_BNE_I:
12905 s = "cmpi";
12906 s2 = "btnez";
12907 s3 = "x,U";
12908 goto do_branch_i;
12909 case M_BLT_I:
12910 s = "slti";
12911 s2 = "btnez";
12912 s3 = "x,8";
12913 goto do_branch_i;
12914 case M_BLTU_I:
12915 s = "sltiu";
12916 s2 = "btnez";
12917 s3 = "x,8";
12918 goto do_branch_i;
12919 case M_BLE_I:
12920 s = "slti";
12921 s2 = "btnez";
12922 s3 = "x,8";
12923 goto do_addone_branch_i;
12924 case M_BLEU_I:
12925 s = "sltiu";
12926 s2 = "btnez";
12927 s3 = "x,8";
12928 goto do_addone_branch_i;
12929 case M_BGE_I:
12930 s = "slti";
12931 s2 = "bteqz";
12932 s3 = "x,8";
12933 goto do_branch_i;
12934 case M_BGEU_I:
12935 s = "sltiu";
12936 s2 = "bteqz";
12937 s3 = "x,8";
12938 goto do_branch_i;
12939 case M_BGT_I:
12940 s = "slti";
12941 s2 = "bteqz";
12942 s3 = "x,8";
12943 goto do_addone_branch_i;
12944 case M_BGTU_I:
12945 s = "sltiu";
12946 s2 = "bteqz";
12947 s3 = "x,8";
12948
12949 do_addone_branch_i:
12950 ++imm_expr.X_add_number;
12951
12952 do_branch_i:
12953 macro_build (&imm_expr, s, s3, op[0]);
12954 macro_build (&offset_expr, s2, "p");
12955 break;
12956
12957 case M_ABS:
12958 expr1.X_add_number = 0;
12959 macro_build (&expr1, "slti", "x,8", op[1]);
12960 if (op[0] != op[1])
12961 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
12962 expr1.X_add_number = 2;
12963 macro_build (&expr1, "bteqz", "p");
12964 macro_build (NULL, "neg", "x,w", op[0], op[0]);
12965 break;
12966 }
12967 }
12968
12969 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
12970 opcode bits in *OPCODE_EXTRA. */
12971
12972 static struct mips_opcode *
12973 mips_lookup_insn (struct hash_control *hash, const char *start,
12974 ssize_t length, unsigned int *opcode_extra)
12975 {
12976 char *name, *dot, *p;
12977 unsigned int mask, suffix;
12978 ssize_t opend;
12979 struct mips_opcode *insn;
12980
12981 /* Make a copy of the instruction so that we can fiddle with it. */
12982 name = alloca (length + 1);
12983 memcpy (name, start, length);
12984 name[length] = '\0';
12985
12986 /* Look up the instruction as-is. */
12987 insn = (struct mips_opcode *) hash_find (hash, name);
12988 if (insn)
12989 return insn;
12990
12991 dot = strchr (name, '.');
12992 if (dot && dot[1])
12993 {
12994 /* Try to interpret the text after the dot as a VU0 channel suffix. */
12995 p = mips_parse_vu0_channels (dot + 1, &mask);
12996 if (*p == 0 && mask != 0)
12997 {
12998 *dot = 0;
12999 insn = (struct mips_opcode *) hash_find (hash, name);
13000 *dot = '.';
13001 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13002 {
13003 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13004 return insn;
13005 }
13006 }
13007 }
13008
13009 if (mips_opts.micromips)
13010 {
13011 /* See if there's an instruction size override suffix,
13012 either `16' or `32', at the end of the mnemonic proper,
13013 that defines the operation, i.e. before the first `.'
13014 character if any. Strip it and retry. */
13015 opend = dot != NULL ? dot - name : length;
13016 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13017 suffix = 2;
13018 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13019 suffix = 4;
13020 else
13021 suffix = 0;
13022 if (suffix)
13023 {
13024 memcpy (name + opend - 2, name + opend, length - opend + 1);
13025 insn = (struct mips_opcode *) hash_find (hash, name);
13026 if (insn)
13027 {
13028 forced_insn_length = suffix;
13029 return insn;
13030 }
13031 }
13032 }
13033
13034 return NULL;
13035 }
13036
13037 /* Assemble an instruction into its binary format. If the instruction
13038 is a macro, set imm_expr and offset_expr to the values associated
13039 with "I" and "A" operands respectively. Otherwise store the value
13040 of the relocatable field (if any) in offset_expr. In both cases
13041 set offset_reloc to the relocation operators applied to offset_expr. */
13042
13043 static void
13044 mips_ip (char *str, struct mips_cl_insn *insn)
13045 {
13046 const struct mips_opcode *first, *past;
13047 struct hash_control *hash;
13048 char format;
13049 size_t end;
13050 struct mips_operand_token *tokens;
13051 unsigned int opcode_extra;
13052
13053 if (mips_opts.micromips)
13054 {
13055 hash = micromips_op_hash;
13056 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13057 }
13058 else
13059 {
13060 hash = op_hash;
13061 past = &mips_opcodes[NUMOPCODES];
13062 }
13063 forced_insn_length = 0;
13064 opcode_extra = 0;
13065
13066 /* We first try to match an instruction up to a space or to the end. */
13067 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13068 continue;
13069
13070 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13071 if (first == NULL)
13072 {
13073 set_insn_error (0, _("unrecognized opcode"));
13074 return;
13075 }
13076
13077 if (strcmp (first->name, "li.s") == 0)
13078 format = 'f';
13079 else if (strcmp (first->name, "li.d") == 0)
13080 format = 'd';
13081 else
13082 format = 0;
13083 tokens = mips_parse_arguments (str + end, format);
13084 if (!tokens)
13085 return;
13086
13087 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13088 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13089 set_insn_error (0, _("invalid operands"));
13090
13091 obstack_free (&mips_operand_tokens, tokens);
13092 }
13093
13094 /* As for mips_ip, but used when assembling MIPS16 code.
13095 Also set forced_insn_length to the resulting instruction size in
13096 bytes if the user explicitly requested a small or extended instruction. */
13097
13098 static void
13099 mips16_ip (char *str, struct mips_cl_insn *insn)
13100 {
13101 char *end, *s, c;
13102 struct mips_opcode *first;
13103 struct mips_operand_token *tokens;
13104
13105 forced_insn_length = 0;
13106
13107 for (s = str; ISLOWER (*s); ++s)
13108 ;
13109 end = s;
13110 c = *end;
13111 switch (c)
13112 {
13113 case '\0':
13114 break;
13115
13116 case ' ':
13117 s++;
13118 break;
13119
13120 case '.':
13121 if (s[1] == 't' && s[2] == ' ')
13122 {
13123 forced_insn_length = 2;
13124 s += 3;
13125 break;
13126 }
13127 else if (s[1] == 'e' && s[2] == ' ')
13128 {
13129 forced_insn_length = 4;
13130 s += 3;
13131 break;
13132 }
13133 /* Fall through. */
13134 default:
13135 set_insn_error (0, _("unrecognized opcode"));
13136 return;
13137 }
13138
13139 if (mips_opts.noautoextend && !forced_insn_length)
13140 forced_insn_length = 2;
13141
13142 *end = 0;
13143 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13144 *end = c;
13145
13146 if (!first)
13147 {
13148 set_insn_error (0, _("unrecognized opcode"));
13149 return;
13150 }
13151
13152 tokens = mips_parse_arguments (s, 0);
13153 if (!tokens)
13154 return;
13155
13156 if (!match_mips16_insns (insn, first, tokens))
13157 set_insn_error (0, _("invalid operands"));
13158
13159 obstack_free (&mips_operand_tokens, tokens);
13160 }
13161
13162 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13163 NBITS is the number of significant bits in VAL. */
13164
13165 static unsigned long
13166 mips16_immed_extend (offsetT val, unsigned int nbits)
13167 {
13168 int extval;
13169 if (nbits == 16)
13170 {
13171 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13172 val &= 0x1f;
13173 }
13174 else if (nbits == 15)
13175 {
13176 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13177 val &= 0xf;
13178 }
13179 else
13180 {
13181 extval = ((val & 0x1f) << 6) | (val & 0x20);
13182 val = 0;
13183 }
13184 return (extval << 16) | val;
13185 }
13186
13187 /* Like decode_mips16_operand, but require the operand to be defined and
13188 require it to be an integer. */
13189
13190 static const struct mips_int_operand *
13191 mips16_immed_operand (int type, bfd_boolean extended_p)
13192 {
13193 const struct mips_operand *operand;
13194
13195 operand = decode_mips16_operand (type, extended_p);
13196 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13197 abort ();
13198 return (const struct mips_int_operand *) operand;
13199 }
13200
13201 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13202
13203 static bfd_boolean
13204 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13205 bfd_reloc_code_real_type reloc, offsetT sval)
13206 {
13207 int min_val, max_val;
13208
13209 min_val = mips_int_operand_min (operand);
13210 max_val = mips_int_operand_max (operand);
13211 if (reloc != BFD_RELOC_UNUSED)
13212 {
13213 if (min_val < 0)
13214 sval = SEXT_16BIT (sval);
13215 else
13216 sval &= 0xffff;
13217 }
13218
13219 return (sval >= min_val
13220 && sval <= max_val
13221 && (sval & ((1 << operand->shift) - 1)) == 0);
13222 }
13223
13224 /* Install immediate value VAL into MIPS16 instruction *INSN,
13225 extending it if necessary. The instruction in *INSN may
13226 already be extended.
13227
13228 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13229 if none. In the former case, VAL is a 16-bit number with no
13230 defined signedness.
13231
13232 TYPE is the type of the immediate field. USER_INSN_LENGTH
13233 is the length that the user requested, or 0 if none. */
13234
13235 static void
13236 mips16_immed (char *file, unsigned int line, int type,
13237 bfd_reloc_code_real_type reloc, offsetT val,
13238 unsigned int user_insn_length, unsigned long *insn)
13239 {
13240 const struct mips_int_operand *operand;
13241 unsigned int uval, length;
13242
13243 operand = mips16_immed_operand (type, FALSE);
13244 if (!mips16_immed_in_range_p (operand, reloc, val))
13245 {
13246 /* We need an extended instruction. */
13247 if (user_insn_length == 2)
13248 as_bad_where (file, line, _("invalid unextended operand value"));
13249 else
13250 *insn |= MIPS16_EXTEND;
13251 }
13252 else if (user_insn_length == 4)
13253 {
13254 /* The operand doesn't force an unextended instruction to be extended.
13255 Warn if the user wanted an extended instruction anyway. */
13256 *insn |= MIPS16_EXTEND;
13257 as_warn_where (file, line,
13258 _("extended operand requested but not required"));
13259 }
13260
13261 length = mips16_opcode_length (*insn);
13262 if (length == 4)
13263 {
13264 operand = mips16_immed_operand (type, TRUE);
13265 if (!mips16_immed_in_range_p (operand, reloc, val))
13266 as_bad_where (file, line,
13267 _("operand value out of range for instruction"));
13268 }
13269 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13270 if (length == 2)
13271 *insn = mips_insert_operand (&operand->root, *insn, uval);
13272 else
13273 *insn |= mips16_immed_extend (uval, operand->root.size);
13274 }
13275 \f
13276 struct percent_op_match
13277 {
13278 const char *str;
13279 bfd_reloc_code_real_type reloc;
13280 };
13281
13282 static const struct percent_op_match mips_percent_op[] =
13283 {
13284 {"%lo", BFD_RELOC_LO16},
13285 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13286 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13287 {"%call16", BFD_RELOC_MIPS_CALL16},
13288 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13289 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13290 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13291 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13292 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13293 {"%got", BFD_RELOC_MIPS_GOT16},
13294 {"%gp_rel", BFD_RELOC_GPREL16},
13295 {"%half", BFD_RELOC_16},
13296 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13297 {"%higher", BFD_RELOC_MIPS_HIGHER},
13298 {"%neg", BFD_RELOC_MIPS_SUB},
13299 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13300 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13301 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13302 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13303 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13304 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13305 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13306 {"%hi", BFD_RELOC_HI16_S}
13307 };
13308
13309 static const struct percent_op_match mips16_percent_op[] =
13310 {
13311 {"%lo", BFD_RELOC_MIPS16_LO16},
13312 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13313 {"%got", BFD_RELOC_MIPS16_GOT16},
13314 {"%call16", BFD_RELOC_MIPS16_CALL16},
13315 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13316 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13317 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13318 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13319 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13320 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13321 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13322 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13323 };
13324
13325
13326 /* Return true if *STR points to a relocation operator. When returning true,
13327 move *STR over the operator and store its relocation code in *RELOC.
13328 Leave both *STR and *RELOC alone when returning false. */
13329
13330 static bfd_boolean
13331 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13332 {
13333 const struct percent_op_match *percent_op;
13334 size_t limit, i;
13335
13336 if (mips_opts.mips16)
13337 {
13338 percent_op = mips16_percent_op;
13339 limit = ARRAY_SIZE (mips16_percent_op);
13340 }
13341 else
13342 {
13343 percent_op = mips_percent_op;
13344 limit = ARRAY_SIZE (mips_percent_op);
13345 }
13346
13347 for (i = 0; i < limit; i++)
13348 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13349 {
13350 int len = strlen (percent_op[i].str);
13351
13352 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13353 continue;
13354
13355 *str += strlen (percent_op[i].str);
13356 *reloc = percent_op[i].reloc;
13357
13358 /* Check whether the output BFD supports this relocation.
13359 If not, issue an error and fall back on something safe. */
13360 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13361 {
13362 as_bad (_("relocation %s isn't supported by the current ABI"),
13363 percent_op[i].str);
13364 *reloc = BFD_RELOC_UNUSED;
13365 }
13366 return TRUE;
13367 }
13368 return FALSE;
13369 }
13370
13371
13372 /* Parse string STR as a 16-bit relocatable operand. Store the
13373 expression in *EP and the relocations in the array starting
13374 at RELOC. Return the number of relocation operators used.
13375
13376 On exit, EXPR_END points to the first character after the expression. */
13377
13378 static size_t
13379 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13380 char *str)
13381 {
13382 bfd_reloc_code_real_type reversed_reloc[3];
13383 size_t reloc_index, i;
13384 int crux_depth, str_depth;
13385 char *crux;
13386
13387 /* Search for the start of the main expression, recoding relocations
13388 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13389 of the main expression and with CRUX_DEPTH containing the number
13390 of open brackets at that point. */
13391 reloc_index = -1;
13392 str_depth = 0;
13393 do
13394 {
13395 reloc_index++;
13396 crux = str;
13397 crux_depth = str_depth;
13398
13399 /* Skip over whitespace and brackets, keeping count of the number
13400 of brackets. */
13401 while (*str == ' ' || *str == '\t' || *str == '(')
13402 if (*str++ == '(')
13403 str_depth++;
13404 }
13405 while (*str == '%'
13406 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13407 && parse_relocation (&str, &reversed_reloc[reloc_index]));
13408
13409 my_getExpression (ep, crux);
13410 str = expr_end;
13411
13412 /* Match every open bracket. */
13413 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
13414 if (*str++ == ')')
13415 crux_depth--;
13416
13417 if (crux_depth > 0)
13418 as_bad (_("unclosed '('"));
13419
13420 expr_end = str;
13421
13422 if (reloc_index != 0)
13423 {
13424 prev_reloc_op_frag = frag_now;
13425 for (i = 0; i < reloc_index; i++)
13426 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13427 }
13428
13429 return reloc_index;
13430 }
13431
13432 static void
13433 my_getExpression (expressionS *ep, char *str)
13434 {
13435 char *save_in;
13436
13437 save_in = input_line_pointer;
13438 input_line_pointer = str;
13439 expression (ep);
13440 expr_end = input_line_pointer;
13441 input_line_pointer = save_in;
13442 }
13443
13444 char *
13445 md_atof (int type, char *litP, int *sizeP)
13446 {
13447 return ieee_md_atof (type, litP, sizeP, target_big_endian);
13448 }
13449
13450 void
13451 md_number_to_chars (char *buf, valueT val, int n)
13452 {
13453 if (target_big_endian)
13454 number_to_chars_bigendian (buf, val, n);
13455 else
13456 number_to_chars_littleendian (buf, val, n);
13457 }
13458 \f
13459 static int support_64bit_objects(void)
13460 {
13461 const char **list, **l;
13462 int yes;
13463
13464 list = bfd_target_list ();
13465 for (l = list; *l != NULL; l++)
13466 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
13467 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
13468 break;
13469 yes = (*l != NULL);
13470 free (list);
13471 return yes;
13472 }
13473
13474 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
13475 NEW_VALUE. Warn if another value was already specified. Note:
13476 we have to defer parsing the -march and -mtune arguments in order
13477 to handle 'from-abi' correctly, since the ABI might be specified
13478 in a later argument. */
13479
13480 static void
13481 mips_set_option_string (const char **string_ptr, const char *new_value)
13482 {
13483 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
13484 as_warn (_("a different %s was already specified, is now %s"),
13485 string_ptr == &mips_arch_string ? "-march" : "-mtune",
13486 new_value);
13487
13488 *string_ptr = new_value;
13489 }
13490
13491 int
13492 md_parse_option (int c, char *arg)
13493 {
13494 unsigned int i;
13495
13496 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
13497 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
13498 {
13499 file_ase_explicit |= mips_set_ase (&mips_ases[i],
13500 c == mips_ases[i].option_on);
13501 return 1;
13502 }
13503
13504 switch (c)
13505 {
13506 case OPTION_CONSTRUCT_FLOATS:
13507 mips_disable_float_construction = 0;
13508 break;
13509
13510 case OPTION_NO_CONSTRUCT_FLOATS:
13511 mips_disable_float_construction = 1;
13512 break;
13513
13514 case OPTION_TRAP:
13515 mips_trap = 1;
13516 break;
13517
13518 case OPTION_BREAK:
13519 mips_trap = 0;
13520 break;
13521
13522 case OPTION_EB:
13523 target_big_endian = 1;
13524 break;
13525
13526 case OPTION_EL:
13527 target_big_endian = 0;
13528 break;
13529
13530 case 'O':
13531 if (arg == NULL)
13532 mips_optimize = 1;
13533 else if (arg[0] == '0')
13534 mips_optimize = 0;
13535 else if (arg[0] == '1')
13536 mips_optimize = 1;
13537 else
13538 mips_optimize = 2;
13539 break;
13540
13541 case 'g':
13542 if (arg == NULL)
13543 mips_debug = 2;
13544 else
13545 mips_debug = atoi (arg);
13546 break;
13547
13548 case OPTION_MIPS1:
13549 file_mips_opts.isa = ISA_MIPS1;
13550 break;
13551
13552 case OPTION_MIPS2:
13553 file_mips_opts.isa = ISA_MIPS2;
13554 break;
13555
13556 case OPTION_MIPS3:
13557 file_mips_opts.isa = ISA_MIPS3;
13558 break;
13559
13560 case OPTION_MIPS4:
13561 file_mips_opts.isa = ISA_MIPS4;
13562 break;
13563
13564 case OPTION_MIPS5:
13565 file_mips_opts.isa = ISA_MIPS5;
13566 break;
13567
13568 case OPTION_MIPS32:
13569 file_mips_opts.isa = ISA_MIPS32;
13570 break;
13571
13572 case OPTION_MIPS32R2:
13573 file_mips_opts.isa = ISA_MIPS32R2;
13574 break;
13575
13576 case OPTION_MIPS32R3:
13577 file_mips_opts.isa = ISA_MIPS32R3;
13578 break;
13579
13580 case OPTION_MIPS32R5:
13581 file_mips_opts.isa = ISA_MIPS32R5;
13582 break;
13583
13584 case OPTION_MIPS64R2:
13585 file_mips_opts.isa = ISA_MIPS64R2;
13586 break;
13587
13588 case OPTION_MIPS64R3:
13589 file_mips_opts.isa = ISA_MIPS64R3;
13590 break;
13591
13592 case OPTION_MIPS64R5:
13593 file_mips_opts.isa = ISA_MIPS64R5;
13594 break;
13595
13596 case OPTION_MIPS64:
13597 file_mips_opts.isa = ISA_MIPS64;
13598 break;
13599
13600 case OPTION_MTUNE:
13601 mips_set_option_string (&mips_tune_string, arg);
13602 break;
13603
13604 case OPTION_MARCH:
13605 mips_set_option_string (&mips_arch_string, arg);
13606 break;
13607
13608 case OPTION_M4650:
13609 mips_set_option_string (&mips_arch_string, "4650");
13610 mips_set_option_string (&mips_tune_string, "4650");
13611 break;
13612
13613 case OPTION_NO_M4650:
13614 break;
13615
13616 case OPTION_M4010:
13617 mips_set_option_string (&mips_arch_string, "4010");
13618 mips_set_option_string (&mips_tune_string, "4010");
13619 break;
13620
13621 case OPTION_NO_M4010:
13622 break;
13623
13624 case OPTION_M4100:
13625 mips_set_option_string (&mips_arch_string, "4100");
13626 mips_set_option_string (&mips_tune_string, "4100");
13627 break;
13628
13629 case OPTION_NO_M4100:
13630 break;
13631
13632 case OPTION_M3900:
13633 mips_set_option_string (&mips_arch_string, "3900");
13634 mips_set_option_string (&mips_tune_string, "3900");
13635 break;
13636
13637 case OPTION_NO_M3900:
13638 break;
13639
13640 case OPTION_MICROMIPS:
13641 if (mips_opts.mips16 == 1)
13642 {
13643 as_bad (_("-mmicromips cannot be used with -mips16"));
13644 return 0;
13645 }
13646 mips_opts.micromips = 1;
13647 mips_no_prev_insn ();
13648 break;
13649
13650 case OPTION_NO_MICROMIPS:
13651 mips_opts.micromips = 0;
13652 mips_no_prev_insn ();
13653 break;
13654
13655 case OPTION_MIPS16:
13656 if (mips_opts.micromips == 1)
13657 {
13658 as_bad (_("-mips16 cannot be used with -micromips"));
13659 return 0;
13660 }
13661 mips_opts.mips16 = 1;
13662 mips_no_prev_insn ();
13663 break;
13664
13665 case OPTION_NO_MIPS16:
13666 mips_opts.mips16 = 0;
13667 mips_no_prev_insn ();
13668 break;
13669
13670 case OPTION_FIX_24K:
13671 mips_fix_24k = 1;
13672 break;
13673
13674 case OPTION_NO_FIX_24K:
13675 mips_fix_24k = 0;
13676 break;
13677
13678 case OPTION_FIX_RM7000:
13679 mips_fix_rm7000 = 1;
13680 break;
13681
13682 case OPTION_NO_FIX_RM7000:
13683 mips_fix_rm7000 = 0;
13684 break;
13685
13686 case OPTION_FIX_LOONGSON2F_JUMP:
13687 mips_fix_loongson2f_jump = TRUE;
13688 break;
13689
13690 case OPTION_NO_FIX_LOONGSON2F_JUMP:
13691 mips_fix_loongson2f_jump = FALSE;
13692 break;
13693
13694 case OPTION_FIX_LOONGSON2F_NOP:
13695 mips_fix_loongson2f_nop = TRUE;
13696 break;
13697
13698 case OPTION_NO_FIX_LOONGSON2F_NOP:
13699 mips_fix_loongson2f_nop = FALSE;
13700 break;
13701
13702 case OPTION_FIX_VR4120:
13703 mips_fix_vr4120 = 1;
13704 break;
13705
13706 case OPTION_NO_FIX_VR4120:
13707 mips_fix_vr4120 = 0;
13708 break;
13709
13710 case OPTION_FIX_VR4130:
13711 mips_fix_vr4130 = 1;
13712 break;
13713
13714 case OPTION_NO_FIX_VR4130:
13715 mips_fix_vr4130 = 0;
13716 break;
13717
13718 case OPTION_FIX_CN63XXP1:
13719 mips_fix_cn63xxp1 = TRUE;
13720 break;
13721
13722 case OPTION_NO_FIX_CN63XXP1:
13723 mips_fix_cn63xxp1 = FALSE;
13724 break;
13725
13726 case OPTION_RELAX_BRANCH:
13727 mips_relax_branch = 1;
13728 break;
13729
13730 case OPTION_NO_RELAX_BRANCH:
13731 mips_relax_branch = 0;
13732 break;
13733
13734 case OPTION_INSN32:
13735 mips_opts.insn32 = TRUE;
13736 break;
13737
13738 case OPTION_NO_INSN32:
13739 mips_opts.insn32 = FALSE;
13740 break;
13741
13742 case OPTION_MSHARED:
13743 mips_in_shared = TRUE;
13744 break;
13745
13746 case OPTION_MNO_SHARED:
13747 mips_in_shared = FALSE;
13748 break;
13749
13750 case OPTION_MSYM32:
13751 mips_opts.sym32 = TRUE;
13752 break;
13753
13754 case OPTION_MNO_SYM32:
13755 mips_opts.sym32 = FALSE;
13756 break;
13757
13758 /* When generating ELF code, we permit -KPIC and -call_shared to
13759 select SVR4_PIC, and -non_shared to select no PIC. This is
13760 intended to be compatible with Irix 5. */
13761 case OPTION_CALL_SHARED:
13762 mips_pic = SVR4_PIC;
13763 mips_abicalls = TRUE;
13764 break;
13765
13766 case OPTION_CALL_NONPIC:
13767 mips_pic = NO_PIC;
13768 mips_abicalls = TRUE;
13769 break;
13770
13771 case OPTION_NON_SHARED:
13772 mips_pic = NO_PIC;
13773 mips_abicalls = FALSE;
13774 break;
13775
13776 /* The -xgot option tells the assembler to use 32 bit offsets
13777 when accessing the got in SVR4_PIC mode. It is for Irix
13778 compatibility. */
13779 case OPTION_XGOT:
13780 mips_big_got = 1;
13781 break;
13782
13783 case 'G':
13784 g_switch_value = atoi (arg);
13785 g_switch_seen = 1;
13786 break;
13787
13788 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
13789 and -mabi=64. */
13790 case OPTION_32:
13791 mips_abi = O32_ABI;
13792 break;
13793
13794 case OPTION_N32:
13795 mips_abi = N32_ABI;
13796 break;
13797
13798 case OPTION_64:
13799 mips_abi = N64_ABI;
13800 if (!support_64bit_objects())
13801 as_fatal (_("no compiled in support for 64 bit object file format"));
13802 break;
13803
13804 case OPTION_GP32:
13805 file_mips_opts.gp = 32;
13806 break;
13807
13808 case OPTION_GP64:
13809 file_mips_opts.gp = 64;
13810 break;
13811
13812 case OPTION_FP32:
13813 file_mips_opts.fp = 32;
13814 break;
13815
13816 case OPTION_FP64:
13817 file_mips_opts.fp = 64;
13818 break;
13819
13820 case OPTION_SINGLE_FLOAT:
13821 file_mips_opts.single_float = 1;
13822 break;
13823
13824 case OPTION_DOUBLE_FLOAT:
13825 file_mips_opts.single_float = 0;
13826 break;
13827
13828 case OPTION_SOFT_FLOAT:
13829 file_mips_opts.soft_float = 1;
13830 break;
13831
13832 case OPTION_HARD_FLOAT:
13833 file_mips_opts.soft_float = 0;
13834 break;
13835
13836 case OPTION_MABI:
13837 if (strcmp (arg, "32") == 0)
13838 mips_abi = O32_ABI;
13839 else if (strcmp (arg, "o64") == 0)
13840 mips_abi = O64_ABI;
13841 else if (strcmp (arg, "n32") == 0)
13842 mips_abi = N32_ABI;
13843 else if (strcmp (arg, "64") == 0)
13844 {
13845 mips_abi = N64_ABI;
13846 if (! support_64bit_objects())
13847 as_fatal (_("no compiled in support for 64 bit object file "
13848 "format"));
13849 }
13850 else if (strcmp (arg, "eabi") == 0)
13851 mips_abi = EABI_ABI;
13852 else
13853 {
13854 as_fatal (_("invalid abi -mabi=%s"), arg);
13855 return 0;
13856 }
13857 break;
13858
13859 case OPTION_M7000_HILO_FIX:
13860 mips_7000_hilo_fix = TRUE;
13861 break;
13862
13863 case OPTION_MNO_7000_HILO_FIX:
13864 mips_7000_hilo_fix = FALSE;
13865 break;
13866
13867 case OPTION_MDEBUG:
13868 mips_flag_mdebug = TRUE;
13869 break;
13870
13871 case OPTION_NO_MDEBUG:
13872 mips_flag_mdebug = FALSE;
13873 break;
13874
13875 case OPTION_PDR:
13876 mips_flag_pdr = TRUE;
13877 break;
13878
13879 case OPTION_NO_PDR:
13880 mips_flag_pdr = FALSE;
13881 break;
13882
13883 case OPTION_MVXWORKS_PIC:
13884 mips_pic = VXWORKS_PIC;
13885 break;
13886
13887 case OPTION_NAN:
13888 if (strcmp (arg, "2008") == 0)
13889 mips_flag_nan2008 = TRUE;
13890 else if (strcmp (arg, "legacy") == 0)
13891 mips_flag_nan2008 = FALSE;
13892 else
13893 {
13894 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
13895 return 0;
13896 }
13897 break;
13898
13899 default:
13900 return 0;
13901 }
13902
13903 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
13904
13905 return 1;
13906 }
13907 \f
13908 /* Set up globals to generate code for the ISA or processor
13909 described by INFO. */
13910
13911 static void
13912 mips_set_architecture (const struct mips_cpu_info *info)
13913 {
13914 if (info != 0)
13915 {
13916 file_mips_opts.arch = info->cpu;
13917 mips_opts.arch = info->cpu;
13918 mips_opts.isa = info->isa;
13919 }
13920 }
13921
13922
13923 /* Likewise for tuning. */
13924
13925 static void
13926 mips_set_tune (const struct mips_cpu_info *info)
13927 {
13928 if (info != 0)
13929 mips_tune = info->cpu;
13930 }
13931
13932
13933 void
13934 mips_after_parse_args (void)
13935 {
13936 const struct mips_cpu_info *arch_info = 0;
13937 const struct mips_cpu_info *tune_info = 0;
13938
13939 /* GP relative stuff not working for PE */
13940 if (strncmp (TARGET_OS, "pe", 2) == 0)
13941 {
13942 if (g_switch_seen && g_switch_value != 0)
13943 as_bad (_("-G not supported in this configuration"));
13944 g_switch_value = 0;
13945 }
13946
13947 if (mips_abi == NO_ABI)
13948 mips_abi = MIPS_DEFAULT_ABI;
13949
13950 /* The following code determines the architecture and register size.
13951 Similar code was added to GCC 3.3 (see override_options() in
13952 config/mips/mips.c). The GAS and GCC code should be kept in sync
13953 as much as possible. */
13954
13955 if (mips_arch_string != 0)
13956 arch_info = mips_parse_cpu ("-march", mips_arch_string);
13957
13958 if (file_mips_opts.isa != ISA_UNKNOWN)
13959 {
13960 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
13961 ISA level specified by -mipsN, while arch_info->isa contains
13962 the -march selection (if any). */
13963 if (arch_info != 0)
13964 {
13965 /* -march takes precedence over -mipsN, since it is more descriptive.
13966 There's no harm in specifying both as long as the ISA levels
13967 are the same. */
13968 if (file_mips_opts.isa != arch_info->isa)
13969 as_bad (_("-%s conflicts with the other architecture options,"
13970 " which imply -%s"),
13971 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
13972 mips_cpu_info_from_isa (arch_info->isa)->name);
13973 }
13974 else
13975 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
13976 }
13977
13978 if (arch_info == 0)
13979 {
13980 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
13981 gas_assert (arch_info);
13982 }
13983
13984 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
13985 as_bad (_("-march=%s is not compatible with the selected ABI"),
13986 arch_info->name);
13987
13988 mips_set_architecture (arch_info);
13989
13990 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
13991 processor. */
13992 if (mips_tune_string != 0)
13993 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
13994
13995 if (tune_info == 0)
13996 mips_set_tune (arch_info);
13997 else
13998 mips_set_tune (tune_info);
13999
14000 if (file_mips_opts.gp >= 0)
14001 {
14002 /* The user specified the size of the integer registers. Make sure
14003 it agrees with the ABI and ISA. */
14004 if (file_mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
14005 as_bad (_("-mgp64 used with a 32-bit processor"));
14006 else if (file_mips_opts.gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
14007 as_bad (_("-mgp32 used with a 64-bit ABI"));
14008 else if (file_mips_opts.gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
14009 as_bad (_("-mgp64 used with a 32-bit ABI"));
14010 }
14011 else
14012 {
14013 /* Infer the integer register size from the ABI and processor.
14014 Restrict ourselves to 32-bit registers if that's all the
14015 processor has, or if the ABI cannot handle 64-bit registers. */
14016 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
14017 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
14018 ? 32 : 64;
14019 }
14020
14021 switch (file_mips_opts.fp)
14022 {
14023 default:
14024 case -1:
14025 /* No user specified float register size.
14026 ??? GAS treats single-float processors as though they had 64-bit
14027 float registers (although it complains when double-precision
14028 instructions are used). As things stand, saying they have 32-bit
14029 registers would lead to spurious "register must be even" messages.
14030 So here we assume float registers are never smaller than the
14031 integer ones. */
14032 if (file_mips_opts.gp == 64)
14033 /* 64-bit integer registers implies 64-bit float registers. */
14034 file_mips_opts.fp = 64;
14035 else if ((mips_opts.ase & FP64_ASES)
14036 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
14037 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
14038 file_mips_opts.fp = 64;
14039 else
14040 /* 32-bit float registers. */
14041 file_mips_opts.fp = 32;
14042 break;
14043
14044 /* The user specified the size of the float registers. Check if it
14045 agrees with the ABI and ISA. */
14046 case 64:
14047 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
14048 as_bad (_("-mfp64 used with a 32-bit fpu"));
14049 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
14050 && !ISA_HAS_MXHC1 (mips_opts.isa))
14051 as_warn (_("-mfp64 used with a 32-bit ABI"));
14052 break;
14053 case 32:
14054 if (ABI_NEEDS_64BIT_REGS (mips_abi))
14055 as_warn (_("-mfp32 used with a 64-bit ABI"));
14056 break;
14057 }
14058
14059 /* End of GCC-shared inference code. */
14060
14061 /* This flag is set when we have a 64-bit capable CPU but use only
14062 32-bit wide registers. Note that EABI does not use it. */
14063 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
14064 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
14065 || mips_abi == O32_ABI))
14066 mips_32bitmode = 1;
14067
14068 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
14069 as_bad (_("trap exception not supported at ISA 1"));
14070
14071 /* If the selected architecture includes support for ASEs, enable
14072 generation of code for them. */
14073 if (mips_opts.mips16 == -1)
14074 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
14075 if (mips_opts.micromips == -1)
14076 mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
14077 ? 1 : 0;
14078
14079 /* MIPS3D and MDMX require 64-bit FPRs, so -mfp32 should stop those
14080 ASEs from being selected implicitly. */
14081 if (file_mips_opts.fp != 64)
14082 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX;
14083
14084 /* If the user didn't explicitly select or deselect a particular ASE,
14085 use the default setting for the CPU. */
14086 mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
14087
14088 file_mips_opts.isa = mips_opts.isa;
14089 file_mips_opts.ase = mips_opts.ase;
14090 mips_opts.gp = file_mips_opts.gp;
14091 mips_opts.fp = file_mips_opts.fp;
14092 mips_opts.soft_float = file_mips_opts.soft_float;
14093 mips_opts.single_float = file_mips_opts.single_float;
14094
14095 mips_check_isa_supports_ases ();
14096
14097 if (mips_flag_mdebug < 0)
14098 mips_flag_mdebug = 0;
14099 }
14100 \f
14101 void
14102 mips_init_after_args (void)
14103 {
14104 /* initialize opcodes */
14105 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14106 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14107 }
14108
14109 long
14110 md_pcrel_from (fixS *fixP)
14111 {
14112 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14113 switch (fixP->fx_r_type)
14114 {
14115 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14116 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14117 /* Return the address of the delay slot. */
14118 return addr + 2;
14119
14120 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14121 case BFD_RELOC_MICROMIPS_JMP:
14122 case BFD_RELOC_16_PCREL_S2:
14123 case BFD_RELOC_MIPS_JMP:
14124 /* Return the address of the delay slot. */
14125 return addr + 4;
14126
14127 default:
14128 return addr;
14129 }
14130 }
14131
14132 /* This is called before the symbol table is processed. In order to
14133 work with gcc when using mips-tfile, we must keep all local labels.
14134 However, in other cases, we want to discard them. If we were
14135 called with -g, but we didn't see any debugging information, it may
14136 mean that gcc is smuggling debugging information through to
14137 mips-tfile, in which case we must generate all local labels. */
14138
14139 void
14140 mips_frob_file_before_adjust (void)
14141 {
14142 #ifndef NO_ECOFF_DEBUGGING
14143 if (ECOFF_DEBUGGING
14144 && mips_debug != 0
14145 && ! ecoff_debugging_seen)
14146 flag_keep_locals = 1;
14147 #endif
14148 }
14149
14150 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14151 the corresponding LO16 reloc. This is called before md_apply_fix and
14152 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14153 relocation operators.
14154
14155 For our purposes, a %lo() expression matches a %got() or %hi()
14156 expression if:
14157
14158 (a) it refers to the same symbol; and
14159 (b) the offset applied in the %lo() expression is no lower than
14160 the offset applied in the %got() or %hi().
14161
14162 (b) allows us to cope with code like:
14163
14164 lui $4,%hi(foo)
14165 lh $4,%lo(foo+2)($4)
14166
14167 ...which is legal on RELA targets, and has a well-defined behaviour
14168 if the user knows that adding 2 to "foo" will not induce a carry to
14169 the high 16 bits.
14170
14171 When several %lo()s match a particular %got() or %hi(), we use the
14172 following rules to distinguish them:
14173
14174 (1) %lo()s with smaller offsets are a better match than %lo()s with
14175 higher offsets.
14176
14177 (2) %lo()s with no matching %got() or %hi() are better than those
14178 that already have a matching %got() or %hi().
14179
14180 (3) later %lo()s are better than earlier %lo()s.
14181
14182 These rules are applied in order.
14183
14184 (1) means, among other things, that %lo()s with identical offsets are
14185 chosen if they exist.
14186
14187 (2) means that we won't associate several high-part relocations with
14188 the same low-part relocation unless there's no alternative. Having
14189 several high parts for the same low part is a GNU extension; this rule
14190 allows careful users to avoid it.
14191
14192 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14193 with the last high-part relocation being at the front of the list.
14194 It therefore makes sense to choose the last matching low-part
14195 relocation, all other things being equal. It's also easier
14196 to code that way. */
14197
14198 void
14199 mips_frob_file (void)
14200 {
14201 struct mips_hi_fixup *l;
14202 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14203
14204 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14205 {
14206 segment_info_type *seginfo;
14207 bfd_boolean matched_lo_p;
14208 fixS **hi_pos, **lo_pos, **pos;
14209
14210 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14211
14212 /* If a GOT16 relocation turns out to be against a global symbol,
14213 there isn't supposed to be a matching LO. Ignore %gots against
14214 constants; we'll report an error for those later. */
14215 if (got16_reloc_p (l->fixp->fx_r_type)
14216 && !(l->fixp->fx_addsy
14217 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14218 continue;
14219
14220 /* Check quickly whether the next fixup happens to be a matching %lo. */
14221 if (fixup_has_matching_lo_p (l->fixp))
14222 continue;
14223
14224 seginfo = seg_info (l->seg);
14225
14226 /* Set HI_POS to the position of this relocation in the chain.
14227 Set LO_POS to the position of the chosen low-part relocation.
14228 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14229 relocation that matches an immediately-preceding high-part
14230 relocation. */
14231 hi_pos = NULL;
14232 lo_pos = NULL;
14233 matched_lo_p = FALSE;
14234 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14235
14236 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14237 {
14238 if (*pos == l->fixp)
14239 hi_pos = pos;
14240
14241 if ((*pos)->fx_r_type == looking_for_rtype
14242 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14243 && (*pos)->fx_offset >= l->fixp->fx_offset
14244 && (lo_pos == NULL
14245 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14246 || (!matched_lo_p
14247 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14248 lo_pos = pos;
14249
14250 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14251 && fixup_has_matching_lo_p (*pos));
14252 }
14253
14254 /* If we found a match, remove the high-part relocation from its
14255 current position and insert it before the low-part relocation.
14256 Make the offsets match so that fixup_has_matching_lo_p()
14257 will return true.
14258
14259 We don't warn about unmatched high-part relocations since some
14260 versions of gcc have been known to emit dead "lui ...%hi(...)"
14261 instructions. */
14262 if (lo_pos != NULL)
14263 {
14264 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14265 if (l->fixp->fx_next != *lo_pos)
14266 {
14267 *hi_pos = l->fixp->fx_next;
14268 l->fixp->fx_next = *lo_pos;
14269 *lo_pos = l->fixp;
14270 }
14271 }
14272 }
14273 }
14274
14275 int
14276 mips_force_relocation (fixS *fixp)
14277 {
14278 if (generic_force_reloc (fixp))
14279 return 1;
14280
14281 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14282 so that the linker relaxation can update targets. */
14283 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14284 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14285 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14286 return 1;
14287
14288 return 0;
14289 }
14290
14291 /* Read the instruction associated with RELOC from BUF. */
14292
14293 static unsigned int
14294 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14295 {
14296 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14297 return read_compressed_insn (buf, 4);
14298 else
14299 return read_insn (buf);
14300 }
14301
14302 /* Write instruction INSN to BUF, given that it has been relocated
14303 by RELOC. */
14304
14305 static void
14306 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14307 unsigned long insn)
14308 {
14309 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14310 write_compressed_insn (buf, insn, 4);
14311 else
14312 write_insn (buf, insn);
14313 }
14314
14315 /* Apply a fixup to the object file. */
14316
14317 void
14318 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14319 {
14320 char *buf;
14321 unsigned long insn;
14322 reloc_howto_type *howto;
14323
14324 if (fixP->fx_pcrel)
14325 switch (fixP->fx_r_type)
14326 {
14327 case BFD_RELOC_16_PCREL_S2:
14328 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14329 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14330 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14331 case BFD_RELOC_32_PCREL:
14332 break;
14333
14334 case BFD_RELOC_32:
14335 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14336 break;
14337
14338 default:
14339 as_bad_where (fixP->fx_file, fixP->fx_line,
14340 _("PC-relative reference to a different section"));
14341 break;
14342 }
14343
14344 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14345 that have no MIPS ELF equivalent. */
14346 if (fixP->fx_r_type != BFD_RELOC_8)
14347 {
14348 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14349 if (!howto)
14350 return;
14351 }
14352
14353 gas_assert (fixP->fx_size == 2
14354 || fixP->fx_size == 4
14355 || fixP->fx_r_type == BFD_RELOC_8
14356 || fixP->fx_r_type == BFD_RELOC_16
14357 || fixP->fx_r_type == BFD_RELOC_64
14358 || fixP->fx_r_type == BFD_RELOC_CTOR
14359 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14360 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14361 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14362 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14363 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
14364
14365 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14366
14367 /* Don't treat parts of a composite relocation as done. There are two
14368 reasons for this:
14369
14370 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14371 should nevertheless be emitted if the first part is.
14372
14373 (2) In normal usage, composite relocations are never assembly-time
14374 constants. The easiest way of dealing with the pathological
14375 exceptions is to generate a relocation against STN_UNDEF and
14376 leave everything up to the linker. */
14377 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14378 fixP->fx_done = 1;
14379
14380 switch (fixP->fx_r_type)
14381 {
14382 case BFD_RELOC_MIPS_TLS_GD:
14383 case BFD_RELOC_MIPS_TLS_LDM:
14384 case BFD_RELOC_MIPS_TLS_DTPREL32:
14385 case BFD_RELOC_MIPS_TLS_DTPREL64:
14386 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14387 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14388 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14389 case BFD_RELOC_MIPS_TLS_TPREL32:
14390 case BFD_RELOC_MIPS_TLS_TPREL64:
14391 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14392 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14393 case BFD_RELOC_MICROMIPS_TLS_GD:
14394 case BFD_RELOC_MICROMIPS_TLS_LDM:
14395 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14396 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14397 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14398 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14399 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14400 case BFD_RELOC_MIPS16_TLS_GD:
14401 case BFD_RELOC_MIPS16_TLS_LDM:
14402 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14403 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14404 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14405 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14406 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14407 if (!fixP->fx_addsy)
14408 {
14409 as_bad_where (fixP->fx_file, fixP->fx_line,
14410 _("TLS relocation against a constant"));
14411 break;
14412 }
14413 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14414 /* fall through */
14415
14416 case BFD_RELOC_MIPS_JMP:
14417 case BFD_RELOC_MIPS_SHIFT5:
14418 case BFD_RELOC_MIPS_SHIFT6:
14419 case BFD_RELOC_MIPS_GOT_DISP:
14420 case BFD_RELOC_MIPS_GOT_PAGE:
14421 case BFD_RELOC_MIPS_GOT_OFST:
14422 case BFD_RELOC_MIPS_SUB:
14423 case BFD_RELOC_MIPS_INSERT_A:
14424 case BFD_RELOC_MIPS_INSERT_B:
14425 case BFD_RELOC_MIPS_DELETE:
14426 case BFD_RELOC_MIPS_HIGHEST:
14427 case BFD_RELOC_MIPS_HIGHER:
14428 case BFD_RELOC_MIPS_SCN_DISP:
14429 case BFD_RELOC_MIPS_REL16:
14430 case BFD_RELOC_MIPS_RELGOT:
14431 case BFD_RELOC_MIPS_JALR:
14432 case BFD_RELOC_HI16:
14433 case BFD_RELOC_HI16_S:
14434 case BFD_RELOC_LO16:
14435 case BFD_RELOC_GPREL16:
14436 case BFD_RELOC_MIPS_LITERAL:
14437 case BFD_RELOC_MIPS_CALL16:
14438 case BFD_RELOC_MIPS_GOT16:
14439 case BFD_RELOC_GPREL32:
14440 case BFD_RELOC_MIPS_GOT_HI16:
14441 case BFD_RELOC_MIPS_GOT_LO16:
14442 case BFD_RELOC_MIPS_CALL_HI16:
14443 case BFD_RELOC_MIPS_CALL_LO16:
14444 case BFD_RELOC_MIPS16_GPREL:
14445 case BFD_RELOC_MIPS16_GOT16:
14446 case BFD_RELOC_MIPS16_CALL16:
14447 case BFD_RELOC_MIPS16_HI16:
14448 case BFD_RELOC_MIPS16_HI16_S:
14449 case BFD_RELOC_MIPS16_LO16:
14450 case BFD_RELOC_MIPS16_JMP:
14451 case BFD_RELOC_MICROMIPS_JMP:
14452 case BFD_RELOC_MICROMIPS_GOT_DISP:
14453 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14454 case BFD_RELOC_MICROMIPS_GOT_OFST:
14455 case BFD_RELOC_MICROMIPS_SUB:
14456 case BFD_RELOC_MICROMIPS_HIGHEST:
14457 case BFD_RELOC_MICROMIPS_HIGHER:
14458 case BFD_RELOC_MICROMIPS_SCN_DISP:
14459 case BFD_RELOC_MICROMIPS_JALR:
14460 case BFD_RELOC_MICROMIPS_HI16:
14461 case BFD_RELOC_MICROMIPS_HI16_S:
14462 case BFD_RELOC_MICROMIPS_LO16:
14463 case BFD_RELOC_MICROMIPS_GPREL16:
14464 case BFD_RELOC_MICROMIPS_LITERAL:
14465 case BFD_RELOC_MICROMIPS_CALL16:
14466 case BFD_RELOC_MICROMIPS_GOT16:
14467 case BFD_RELOC_MICROMIPS_GOT_HI16:
14468 case BFD_RELOC_MICROMIPS_GOT_LO16:
14469 case BFD_RELOC_MICROMIPS_CALL_HI16:
14470 case BFD_RELOC_MICROMIPS_CALL_LO16:
14471 case BFD_RELOC_MIPS_EH:
14472 if (fixP->fx_done)
14473 {
14474 offsetT value;
14475
14476 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14477 {
14478 insn = read_reloc_insn (buf, fixP->fx_r_type);
14479 if (mips16_reloc_p (fixP->fx_r_type))
14480 insn |= mips16_immed_extend (value, 16);
14481 else
14482 insn |= (value & 0xffff);
14483 write_reloc_insn (buf, fixP->fx_r_type, insn);
14484 }
14485 else
14486 as_bad_where (fixP->fx_file, fixP->fx_line,
14487 _("unsupported constant in relocation"));
14488 }
14489 break;
14490
14491 case BFD_RELOC_64:
14492 /* This is handled like BFD_RELOC_32, but we output a sign
14493 extended value if we are only 32 bits. */
14494 if (fixP->fx_done)
14495 {
14496 if (8 <= sizeof (valueT))
14497 md_number_to_chars (buf, *valP, 8);
14498 else
14499 {
14500 valueT hiv;
14501
14502 if ((*valP & 0x80000000) != 0)
14503 hiv = 0xffffffff;
14504 else
14505 hiv = 0;
14506 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14507 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
14508 }
14509 }
14510 break;
14511
14512 case BFD_RELOC_RVA:
14513 case BFD_RELOC_32:
14514 case BFD_RELOC_32_PCREL:
14515 case BFD_RELOC_16:
14516 case BFD_RELOC_8:
14517 /* If we are deleting this reloc entry, we must fill in the
14518 value now. This can happen if we have a .word which is not
14519 resolved when it appears but is later defined. */
14520 if (fixP->fx_done)
14521 md_number_to_chars (buf, *valP, fixP->fx_size);
14522 break;
14523
14524 case BFD_RELOC_16_PCREL_S2:
14525 if ((*valP & 0x3) != 0)
14526 as_bad_where (fixP->fx_file, fixP->fx_line,
14527 _("branch to misaligned address (%lx)"), (long) *valP);
14528
14529 /* We need to save the bits in the instruction since fixup_segment()
14530 might be deleting the relocation entry (i.e., a branch within
14531 the current segment). */
14532 if (! fixP->fx_done)
14533 break;
14534
14535 /* Update old instruction data. */
14536 insn = read_insn (buf);
14537
14538 if (*valP + 0x20000 <= 0x3ffff)
14539 {
14540 insn |= (*valP >> 2) & 0xffff;
14541 write_insn (buf, insn);
14542 }
14543 else if (mips_pic == NO_PIC
14544 && fixP->fx_done
14545 && fixP->fx_frag->fr_address >= text_section->vma
14546 && (fixP->fx_frag->fr_address
14547 < text_section->vma + bfd_get_section_size (text_section))
14548 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
14549 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
14550 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
14551 {
14552 /* The branch offset is too large. If this is an
14553 unconditional branch, and we are not generating PIC code,
14554 we can convert it to an absolute jump instruction. */
14555 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
14556 insn = 0x0c000000; /* jal */
14557 else
14558 insn = 0x08000000; /* j */
14559 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
14560 fixP->fx_done = 0;
14561 fixP->fx_addsy = section_symbol (text_section);
14562 *valP += md_pcrel_from (fixP);
14563 write_insn (buf, insn);
14564 }
14565 else
14566 {
14567 /* If we got here, we have branch-relaxation disabled,
14568 and there's nothing we can do to fix this instruction
14569 without turning it into a longer sequence. */
14570 as_bad_where (fixP->fx_file, fixP->fx_line,
14571 _("branch out of range"));
14572 }
14573 break;
14574
14575 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14576 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14577 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14578 /* We adjust the offset back to even. */
14579 if ((*valP & 0x1) != 0)
14580 --(*valP);
14581
14582 if (! fixP->fx_done)
14583 break;
14584
14585 /* Should never visit here, because we keep the relocation. */
14586 abort ();
14587 break;
14588
14589 case BFD_RELOC_VTABLE_INHERIT:
14590 fixP->fx_done = 0;
14591 if (fixP->fx_addsy
14592 && !S_IS_DEFINED (fixP->fx_addsy)
14593 && !S_IS_WEAK (fixP->fx_addsy))
14594 S_SET_WEAK (fixP->fx_addsy);
14595 break;
14596
14597 case BFD_RELOC_VTABLE_ENTRY:
14598 fixP->fx_done = 0;
14599 break;
14600
14601 default:
14602 abort ();
14603 }
14604
14605 /* Remember value for tc_gen_reloc. */
14606 fixP->fx_addnumber = *valP;
14607 }
14608
14609 static symbolS *
14610 get_symbol (void)
14611 {
14612 int c;
14613 char *name;
14614 symbolS *p;
14615
14616 name = input_line_pointer;
14617 c = get_symbol_end ();
14618 p = (symbolS *) symbol_find_or_make (name);
14619 *input_line_pointer = c;
14620 return p;
14621 }
14622
14623 /* Align the current frag to a given power of two. If a particular
14624 fill byte should be used, FILL points to an integer that contains
14625 that byte, otherwise FILL is null.
14626
14627 This function used to have the comment:
14628
14629 The MIPS assembler also automatically adjusts any preceding label.
14630
14631 The implementation therefore applied the adjustment to a maximum of
14632 one label. However, other label adjustments are applied to batches
14633 of labels, and adjusting just one caused problems when new labels
14634 were added for the sake of debugging or unwind information.
14635 We therefore adjust all preceding labels (given as LABELS) instead. */
14636
14637 static void
14638 mips_align (int to, int *fill, struct insn_label_list *labels)
14639 {
14640 mips_emit_delays ();
14641 mips_record_compressed_mode ();
14642 if (fill == NULL && subseg_text_p (now_seg))
14643 frag_align_code (to, 0);
14644 else
14645 frag_align (to, fill ? *fill : 0, 0);
14646 record_alignment (now_seg, to);
14647 mips_move_labels (labels, FALSE);
14648 }
14649
14650 /* Align to a given power of two. .align 0 turns off the automatic
14651 alignment used by the data creating pseudo-ops. */
14652
14653 static void
14654 s_align (int x ATTRIBUTE_UNUSED)
14655 {
14656 int temp, fill_value, *fill_ptr;
14657 long max_alignment = 28;
14658
14659 /* o Note that the assembler pulls down any immediately preceding label
14660 to the aligned address.
14661 o It's not documented but auto alignment is reinstated by
14662 a .align pseudo instruction.
14663 o Note also that after auto alignment is turned off the mips assembler
14664 issues an error on attempt to assemble an improperly aligned data item.
14665 We don't. */
14666
14667 temp = get_absolute_expression ();
14668 if (temp > max_alignment)
14669 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
14670 else if (temp < 0)
14671 {
14672 as_warn (_("alignment negative, 0 assumed"));
14673 temp = 0;
14674 }
14675 if (*input_line_pointer == ',')
14676 {
14677 ++input_line_pointer;
14678 fill_value = get_absolute_expression ();
14679 fill_ptr = &fill_value;
14680 }
14681 else
14682 fill_ptr = 0;
14683 if (temp)
14684 {
14685 segment_info_type *si = seg_info (now_seg);
14686 struct insn_label_list *l = si->label_list;
14687 /* Auto alignment should be switched on by next section change. */
14688 auto_align = 1;
14689 mips_align (temp, fill_ptr, l);
14690 }
14691 else
14692 {
14693 auto_align = 0;
14694 }
14695
14696 demand_empty_rest_of_line ();
14697 }
14698
14699 static void
14700 s_change_sec (int sec)
14701 {
14702 segT seg;
14703
14704 /* The ELF backend needs to know that we are changing sections, so
14705 that .previous works correctly. We could do something like check
14706 for an obj_section_change_hook macro, but that might be confusing
14707 as it would not be appropriate to use it in the section changing
14708 functions in read.c, since obj-elf.c intercepts those. FIXME:
14709 This should be cleaner, somehow. */
14710 obj_elf_section_change_hook ();
14711
14712 mips_emit_delays ();
14713
14714 switch (sec)
14715 {
14716 case 't':
14717 s_text (0);
14718 break;
14719 case 'd':
14720 s_data (0);
14721 break;
14722 case 'b':
14723 subseg_set (bss_section, (subsegT) get_absolute_expression ());
14724 demand_empty_rest_of_line ();
14725 break;
14726
14727 case 'r':
14728 seg = subseg_new (RDATA_SECTION_NAME,
14729 (subsegT) get_absolute_expression ());
14730 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
14731 | SEC_READONLY | SEC_RELOC
14732 | SEC_DATA));
14733 if (strncmp (TARGET_OS, "elf", 3) != 0)
14734 record_alignment (seg, 4);
14735 demand_empty_rest_of_line ();
14736 break;
14737
14738 case 's':
14739 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
14740 bfd_set_section_flags (stdoutput, seg,
14741 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
14742 if (strncmp (TARGET_OS, "elf", 3) != 0)
14743 record_alignment (seg, 4);
14744 demand_empty_rest_of_line ();
14745 break;
14746
14747 case 'B':
14748 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
14749 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
14750 if (strncmp (TARGET_OS, "elf", 3) != 0)
14751 record_alignment (seg, 4);
14752 demand_empty_rest_of_line ();
14753 break;
14754 }
14755
14756 auto_align = 1;
14757 }
14758
14759 void
14760 s_change_section (int ignore ATTRIBUTE_UNUSED)
14761 {
14762 char *section_name;
14763 char c;
14764 char next_c = 0;
14765 int section_type;
14766 int section_flag;
14767 int section_entry_size;
14768 int section_alignment;
14769
14770 section_name = input_line_pointer;
14771 c = get_symbol_end ();
14772 if (c)
14773 next_c = *(input_line_pointer + 1);
14774
14775 /* Do we have .section Name<,"flags">? */
14776 if (c != ',' || (c == ',' && next_c == '"'))
14777 {
14778 /* just after name is now '\0'. */
14779 *input_line_pointer = c;
14780 input_line_pointer = section_name;
14781 obj_elf_section (ignore);
14782 return;
14783 }
14784 input_line_pointer++;
14785
14786 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
14787 if (c == ',')
14788 section_type = get_absolute_expression ();
14789 else
14790 section_type = 0;
14791 if (*input_line_pointer++ == ',')
14792 section_flag = get_absolute_expression ();
14793 else
14794 section_flag = 0;
14795 if (*input_line_pointer++ == ',')
14796 section_entry_size = get_absolute_expression ();
14797 else
14798 section_entry_size = 0;
14799 if (*input_line_pointer++ == ',')
14800 section_alignment = get_absolute_expression ();
14801 else
14802 section_alignment = 0;
14803 /* FIXME: really ignore? */
14804 (void) section_alignment;
14805
14806 section_name = xstrdup (section_name);
14807
14808 /* When using the generic form of .section (as implemented by obj-elf.c),
14809 there's no way to set the section type to SHT_MIPS_DWARF. Users have
14810 traditionally had to fall back on the more common @progbits instead.
14811
14812 There's nothing really harmful in this, since bfd will correct
14813 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
14814 means that, for backwards compatibility, the special_section entries
14815 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
14816
14817 Even so, we shouldn't force users of the MIPS .section syntax to
14818 incorrectly label the sections as SHT_PROGBITS. The best compromise
14819 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
14820 generic type-checking code. */
14821 if (section_type == SHT_MIPS_DWARF)
14822 section_type = SHT_PROGBITS;
14823
14824 obj_elf_change_section (section_name, section_type, section_flag,
14825 section_entry_size, 0, 0, 0);
14826
14827 if (now_seg->name != section_name)
14828 free (section_name);
14829 }
14830
14831 void
14832 mips_enable_auto_align (void)
14833 {
14834 auto_align = 1;
14835 }
14836
14837 static void
14838 s_cons (int log_size)
14839 {
14840 segment_info_type *si = seg_info (now_seg);
14841 struct insn_label_list *l = si->label_list;
14842
14843 mips_emit_delays ();
14844 if (log_size > 0 && auto_align)
14845 mips_align (log_size, 0, l);
14846 cons (1 << log_size);
14847 mips_clear_insn_labels ();
14848 }
14849
14850 static void
14851 s_float_cons (int type)
14852 {
14853 segment_info_type *si = seg_info (now_seg);
14854 struct insn_label_list *l = si->label_list;
14855
14856 mips_emit_delays ();
14857
14858 if (auto_align)
14859 {
14860 if (type == 'd')
14861 mips_align (3, 0, l);
14862 else
14863 mips_align (2, 0, l);
14864 }
14865
14866 float_cons (type);
14867 mips_clear_insn_labels ();
14868 }
14869
14870 /* Handle .globl. We need to override it because on Irix 5 you are
14871 permitted to say
14872 .globl foo .text
14873 where foo is an undefined symbol, to mean that foo should be
14874 considered to be the address of a function. */
14875
14876 static void
14877 s_mips_globl (int x ATTRIBUTE_UNUSED)
14878 {
14879 char *name;
14880 int c;
14881 symbolS *symbolP;
14882 flagword flag;
14883
14884 do
14885 {
14886 name = input_line_pointer;
14887 c = get_symbol_end ();
14888 symbolP = symbol_find_or_make (name);
14889 S_SET_EXTERNAL (symbolP);
14890
14891 *input_line_pointer = c;
14892 SKIP_WHITESPACE ();
14893
14894 /* On Irix 5, every global symbol that is not explicitly labelled as
14895 being a function is apparently labelled as being an object. */
14896 flag = BSF_OBJECT;
14897
14898 if (!is_end_of_line[(unsigned char) *input_line_pointer]
14899 && (*input_line_pointer != ','))
14900 {
14901 char *secname;
14902 asection *sec;
14903
14904 secname = input_line_pointer;
14905 c = get_symbol_end ();
14906 sec = bfd_get_section_by_name (stdoutput, secname);
14907 if (sec == NULL)
14908 as_bad (_("%s: no such section"), secname);
14909 *input_line_pointer = c;
14910
14911 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
14912 flag = BSF_FUNCTION;
14913 }
14914
14915 symbol_get_bfdsym (symbolP)->flags |= flag;
14916
14917 c = *input_line_pointer;
14918 if (c == ',')
14919 {
14920 input_line_pointer++;
14921 SKIP_WHITESPACE ();
14922 if (is_end_of_line[(unsigned char) *input_line_pointer])
14923 c = '\n';
14924 }
14925 }
14926 while (c == ',');
14927
14928 demand_empty_rest_of_line ();
14929 }
14930
14931 static void
14932 s_option (int x ATTRIBUTE_UNUSED)
14933 {
14934 char *opt;
14935 char c;
14936
14937 opt = input_line_pointer;
14938 c = get_symbol_end ();
14939
14940 if (*opt == 'O')
14941 {
14942 /* FIXME: What does this mean? */
14943 }
14944 else if (strncmp (opt, "pic", 3) == 0)
14945 {
14946 int i;
14947
14948 i = atoi (opt + 3);
14949 if (i == 0)
14950 mips_pic = NO_PIC;
14951 else if (i == 2)
14952 {
14953 mips_pic = SVR4_PIC;
14954 mips_abicalls = TRUE;
14955 }
14956 else
14957 as_bad (_(".option pic%d not supported"), i);
14958
14959 if (mips_pic == SVR4_PIC)
14960 {
14961 if (g_switch_seen && g_switch_value != 0)
14962 as_warn (_("-G may not be used with SVR4 PIC code"));
14963 g_switch_value = 0;
14964 bfd_set_gp_size (stdoutput, 0);
14965 }
14966 }
14967 else
14968 as_warn (_("unrecognized option \"%s\""), opt);
14969
14970 *input_line_pointer = c;
14971 demand_empty_rest_of_line ();
14972 }
14973
14974 /* This structure is used to hold a stack of .set values. */
14975
14976 struct mips_option_stack
14977 {
14978 struct mips_option_stack *next;
14979 struct mips_set_options options;
14980 };
14981
14982 static struct mips_option_stack *mips_opts_stack;
14983
14984 /* Handle the .set pseudo-op. */
14985
14986 static void
14987 s_mipsset (int x ATTRIBUTE_UNUSED)
14988 {
14989 char *name = input_line_pointer, ch;
14990 const struct mips_ase *ase;
14991
14992 while (!is_end_of_line[(unsigned char) *input_line_pointer])
14993 ++input_line_pointer;
14994 ch = *input_line_pointer;
14995 *input_line_pointer = '\0';
14996
14997 if (strcmp (name, "reorder") == 0)
14998 {
14999 if (mips_opts.noreorder)
15000 end_noreorder ();
15001 }
15002 else if (strcmp (name, "noreorder") == 0)
15003 {
15004 if (!mips_opts.noreorder)
15005 start_noreorder ();
15006 }
15007 else if (strncmp (name, "at=", 3) == 0)
15008 {
15009 char *s = name + 3;
15010
15011 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15012 as_bad (_("unrecognized register name `%s'"), s);
15013 }
15014 else if (strcmp (name, "at") == 0)
15015 {
15016 mips_opts.at = ATREG;
15017 }
15018 else if (strcmp (name, "noat") == 0)
15019 {
15020 mips_opts.at = ZERO;
15021 }
15022 else if (strcmp (name, "macro") == 0)
15023 {
15024 mips_opts.warn_about_macros = 0;
15025 }
15026 else if (strcmp (name, "nomacro") == 0)
15027 {
15028 if (mips_opts.noreorder == 0)
15029 as_bad (_("`noreorder' must be set before `nomacro'"));
15030 mips_opts.warn_about_macros = 1;
15031 }
15032 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15033 {
15034 mips_opts.nomove = 0;
15035 }
15036 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15037 {
15038 mips_opts.nomove = 1;
15039 }
15040 else if (strcmp (name, "bopt") == 0)
15041 {
15042 mips_opts.nobopt = 0;
15043 }
15044 else if (strcmp (name, "nobopt") == 0)
15045 {
15046 mips_opts.nobopt = 1;
15047 }
15048 else if (strcmp (name, "gp=default") == 0)
15049 mips_opts.gp = file_mips_opts.gp;
15050 else if (strcmp (name, "gp=32") == 0)
15051 mips_opts.gp = 32;
15052 else if (strcmp (name, "gp=64") == 0)
15053 {
15054 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
15055 as_warn (_("%s isa does not support 64-bit registers"),
15056 mips_cpu_info_from_isa (mips_opts.isa)->name);
15057 mips_opts.gp = 64;
15058 }
15059 else if (strcmp (name, "fp=default") == 0)
15060 mips_opts.fp = file_mips_opts.fp;
15061 else if (strcmp (name, "fp=32") == 0)
15062 mips_opts.fp = 32;
15063 else if (strcmp (name, "fp=64") == 0)
15064 {
15065 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
15066 as_warn (_("%s isa does not support 64-bit floating point registers"),
15067 mips_cpu_info_from_isa (mips_opts.isa)->name);
15068 mips_opts.fp = 64;
15069 }
15070 else if (strcmp (name, "softfloat") == 0)
15071 mips_opts.soft_float = 1;
15072 else if (strcmp (name, "hardfloat") == 0)
15073 mips_opts.soft_float = 0;
15074 else if (strcmp (name, "singlefloat") == 0)
15075 mips_opts.single_float = 1;
15076 else if (strcmp (name, "doublefloat") == 0)
15077 mips_opts.single_float = 0;
15078 else if (strcmp (name, "mips16") == 0
15079 || strcmp (name, "MIPS-16") == 0)
15080 {
15081 if (mips_opts.micromips == 1)
15082 as_fatal (_("`mips16' cannot be used with `micromips'"));
15083 mips_opts.mips16 = 1;
15084 }
15085 else if (strcmp (name, "nomips16") == 0
15086 || strcmp (name, "noMIPS-16") == 0)
15087 mips_opts.mips16 = 0;
15088 else if (strcmp (name, "micromips") == 0)
15089 {
15090 if (mips_opts.mips16 == 1)
15091 as_fatal (_("`micromips' cannot be used with `mips16'"));
15092 mips_opts.micromips = 1;
15093 }
15094 else if (strcmp (name, "nomicromips") == 0)
15095 mips_opts.micromips = 0;
15096 else if (name[0] == 'n'
15097 && name[1] == 'o'
15098 && (ase = mips_lookup_ase (name + 2)))
15099 mips_set_ase (ase, FALSE);
15100 else if ((ase = mips_lookup_ase (name)))
15101 mips_set_ase (ase, TRUE);
15102 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
15103 {
15104 int reset = 0;
15105
15106 /* Permit the user to change the ISA and architecture on the fly.
15107 Needless to say, misuse can cause serious problems. */
15108 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15109 {
15110 reset = 1;
15111 mips_opts.isa = file_mips_opts.isa;
15112 mips_opts.arch = file_mips_opts.arch;
15113 }
15114 else if (strncmp (name, "arch=", 5) == 0)
15115 {
15116 const struct mips_cpu_info *p;
15117
15118 p = mips_parse_cpu("internal use", name + 5);
15119 if (!p)
15120 as_bad (_("unknown architecture %s"), name + 5);
15121 else
15122 {
15123 mips_opts.arch = p->cpu;
15124 mips_opts.isa = p->isa;
15125 }
15126 }
15127 else if (strncmp (name, "mips", 4) == 0)
15128 {
15129 const struct mips_cpu_info *p;
15130
15131 p = mips_parse_cpu("internal use", name);
15132 if (!p)
15133 as_bad (_("unknown ISA level %s"), name + 4);
15134 else
15135 {
15136 mips_opts.arch = p->cpu;
15137 mips_opts.isa = p->isa;
15138 }
15139 }
15140 else
15141 as_bad (_("unknown ISA or architecture %s"), name);
15142
15143 switch (mips_opts.isa)
15144 {
15145 case 0:
15146 break;
15147 case ISA_MIPS1:
15148 case ISA_MIPS2:
15149 case ISA_MIPS32:
15150 case ISA_MIPS32R2:
15151 case ISA_MIPS32R3:
15152 case ISA_MIPS32R5:
15153 mips_opts.gp = 32;
15154 mips_opts.fp = 32;
15155 break;
15156 case ISA_MIPS3:
15157 case ISA_MIPS4:
15158 case ISA_MIPS5:
15159 case ISA_MIPS64:
15160 case ISA_MIPS64R2:
15161 case ISA_MIPS64R3:
15162 case ISA_MIPS64R5:
15163 mips_opts.gp = 64;
15164 if (mips_opts.arch == CPU_R5900)
15165 {
15166 mips_opts.fp = 32;
15167 }
15168 else
15169 {
15170 mips_opts.fp = 64;
15171 }
15172 break;
15173 default:
15174 as_bad (_("unknown ISA level %s"), name + 4);
15175 break;
15176 }
15177 if (reset)
15178 {
15179 mips_opts.gp = file_mips_opts.gp;
15180 mips_opts.fp = file_mips_opts.fp;
15181 }
15182 }
15183 else if (strcmp (name, "autoextend") == 0)
15184 mips_opts.noautoextend = 0;
15185 else if (strcmp (name, "noautoextend") == 0)
15186 mips_opts.noautoextend = 1;
15187 else if (strcmp (name, "insn32") == 0)
15188 mips_opts.insn32 = TRUE;
15189 else if (strcmp (name, "noinsn32") == 0)
15190 mips_opts.insn32 = FALSE;
15191 else if (strcmp (name, "push") == 0)
15192 {
15193 struct mips_option_stack *s;
15194
15195 s = (struct mips_option_stack *) xmalloc (sizeof *s);
15196 s->next = mips_opts_stack;
15197 s->options = mips_opts;
15198 mips_opts_stack = s;
15199 }
15200 else if (strcmp (name, "pop") == 0)
15201 {
15202 struct mips_option_stack *s;
15203
15204 s = mips_opts_stack;
15205 if (s == NULL)
15206 as_bad (_(".set pop with no .set push"));
15207 else
15208 {
15209 /* If we're changing the reorder mode we need to handle
15210 delay slots correctly. */
15211 if (s->options.noreorder && ! mips_opts.noreorder)
15212 start_noreorder ();
15213 else if (! s->options.noreorder && mips_opts.noreorder)
15214 end_noreorder ();
15215
15216 mips_opts = s->options;
15217 mips_opts_stack = s->next;
15218 free (s);
15219 }
15220 }
15221 else if (strcmp (name, "sym32") == 0)
15222 mips_opts.sym32 = TRUE;
15223 else if (strcmp (name, "nosym32") == 0)
15224 mips_opts.sym32 = FALSE;
15225 else if (strchr (name, ','))
15226 {
15227 /* Generic ".set" directive; use the generic handler. */
15228 *input_line_pointer = ch;
15229 input_line_pointer = name;
15230 s_set (0);
15231 return;
15232 }
15233 else
15234 {
15235 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15236 }
15237 mips_check_isa_supports_ases ();
15238 *input_line_pointer = ch;
15239 demand_empty_rest_of_line ();
15240 }
15241
15242 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15243 .option pic2. It means to generate SVR4 PIC calls. */
15244
15245 static void
15246 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15247 {
15248 mips_pic = SVR4_PIC;
15249 mips_abicalls = TRUE;
15250
15251 if (g_switch_seen && g_switch_value != 0)
15252 as_warn (_("-G may not be used with SVR4 PIC code"));
15253 g_switch_value = 0;
15254
15255 bfd_set_gp_size (stdoutput, 0);
15256 demand_empty_rest_of_line ();
15257 }
15258
15259 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15260 PIC code. It sets the $gp register for the function based on the
15261 function address, which is in the register named in the argument.
15262 This uses a relocation against _gp_disp, which is handled specially
15263 by the linker. The result is:
15264 lui $gp,%hi(_gp_disp)
15265 addiu $gp,$gp,%lo(_gp_disp)
15266 addu $gp,$gp,.cpload argument
15267 The .cpload argument is normally $25 == $t9.
15268
15269 The -mno-shared option changes this to:
15270 lui $gp,%hi(__gnu_local_gp)
15271 addiu $gp,$gp,%lo(__gnu_local_gp)
15272 and the argument is ignored. This saves an instruction, but the
15273 resulting code is not position independent; it uses an absolute
15274 address for __gnu_local_gp. Thus code assembled with -mno-shared
15275 can go into an ordinary executable, but not into a shared library. */
15276
15277 static void
15278 s_cpload (int ignore ATTRIBUTE_UNUSED)
15279 {
15280 expressionS ex;
15281 int reg;
15282 int in_shared;
15283
15284 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15285 .cpload is ignored. */
15286 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15287 {
15288 s_ignore (0);
15289 return;
15290 }
15291
15292 if (mips_opts.mips16)
15293 {
15294 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15295 ignore_rest_of_line ();
15296 return;
15297 }
15298
15299 /* .cpload should be in a .set noreorder section. */
15300 if (mips_opts.noreorder == 0)
15301 as_warn (_(".cpload not in noreorder section"));
15302
15303 reg = tc_get_register (0);
15304
15305 /* If we need to produce a 64-bit address, we are better off using
15306 the default instruction sequence. */
15307 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15308
15309 ex.X_op = O_symbol;
15310 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15311 "__gnu_local_gp");
15312 ex.X_op_symbol = NULL;
15313 ex.X_add_number = 0;
15314
15315 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15316 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15317
15318 mips_mark_labels ();
15319 mips_assembling_insn = TRUE;
15320
15321 macro_start ();
15322 macro_build_lui (&ex, mips_gp_register);
15323 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15324 mips_gp_register, BFD_RELOC_LO16);
15325 if (in_shared)
15326 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15327 mips_gp_register, reg);
15328 macro_end ();
15329
15330 mips_assembling_insn = FALSE;
15331 demand_empty_rest_of_line ();
15332 }
15333
15334 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15335 .cpsetup $reg1, offset|$reg2, label
15336
15337 If offset is given, this results in:
15338 sd $gp, offset($sp)
15339 lui $gp, %hi(%neg(%gp_rel(label)))
15340 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15341 daddu $gp, $gp, $reg1
15342
15343 If $reg2 is given, this results in:
15344 daddu $reg2, $gp, $0
15345 lui $gp, %hi(%neg(%gp_rel(label)))
15346 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15347 daddu $gp, $gp, $reg1
15348 $reg1 is normally $25 == $t9.
15349
15350 The -mno-shared option replaces the last three instructions with
15351 lui $gp,%hi(_gp)
15352 addiu $gp,$gp,%lo(_gp) */
15353
15354 static void
15355 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
15356 {
15357 expressionS ex_off;
15358 expressionS ex_sym;
15359 int reg1;
15360
15361 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
15362 We also need NewABI support. */
15363 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15364 {
15365 s_ignore (0);
15366 return;
15367 }
15368
15369 if (mips_opts.mips16)
15370 {
15371 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15372 ignore_rest_of_line ();
15373 return;
15374 }
15375
15376 reg1 = tc_get_register (0);
15377 SKIP_WHITESPACE ();
15378 if (*input_line_pointer != ',')
15379 {
15380 as_bad (_("missing argument separator ',' for .cpsetup"));
15381 return;
15382 }
15383 else
15384 ++input_line_pointer;
15385 SKIP_WHITESPACE ();
15386 if (*input_line_pointer == '$')
15387 {
15388 mips_cpreturn_register = tc_get_register (0);
15389 mips_cpreturn_offset = -1;
15390 }
15391 else
15392 {
15393 mips_cpreturn_offset = get_absolute_expression ();
15394 mips_cpreturn_register = -1;
15395 }
15396 SKIP_WHITESPACE ();
15397 if (*input_line_pointer != ',')
15398 {
15399 as_bad (_("missing argument separator ',' for .cpsetup"));
15400 return;
15401 }
15402 else
15403 ++input_line_pointer;
15404 SKIP_WHITESPACE ();
15405 expression (&ex_sym);
15406
15407 mips_mark_labels ();
15408 mips_assembling_insn = TRUE;
15409
15410 macro_start ();
15411 if (mips_cpreturn_register == -1)
15412 {
15413 ex_off.X_op = O_constant;
15414 ex_off.X_add_symbol = NULL;
15415 ex_off.X_op_symbol = NULL;
15416 ex_off.X_add_number = mips_cpreturn_offset;
15417
15418 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
15419 BFD_RELOC_LO16, SP);
15420 }
15421 else
15422 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
15423 mips_gp_register, 0);
15424
15425 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
15426 {
15427 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
15428 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
15429 BFD_RELOC_HI16_S);
15430
15431 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
15432 mips_gp_register, -1, BFD_RELOC_GPREL16,
15433 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
15434
15435 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
15436 mips_gp_register, reg1);
15437 }
15438 else
15439 {
15440 expressionS ex;
15441
15442 ex.X_op = O_symbol;
15443 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
15444 ex.X_op_symbol = NULL;
15445 ex.X_add_number = 0;
15446
15447 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15448 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15449
15450 macro_build_lui (&ex, mips_gp_register);
15451 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15452 mips_gp_register, BFD_RELOC_LO16);
15453 }
15454
15455 macro_end ();
15456
15457 mips_assembling_insn = FALSE;
15458 demand_empty_rest_of_line ();
15459 }
15460
15461 static void
15462 s_cplocal (int ignore ATTRIBUTE_UNUSED)
15463 {
15464 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
15465 .cplocal is ignored. */
15466 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15467 {
15468 s_ignore (0);
15469 return;
15470 }
15471
15472 if (mips_opts.mips16)
15473 {
15474 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
15475 ignore_rest_of_line ();
15476 return;
15477 }
15478
15479 mips_gp_register = tc_get_register (0);
15480 demand_empty_rest_of_line ();
15481 }
15482
15483 /* Handle the .cprestore pseudo-op. This stores $gp into a given
15484 offset from $sp. The offset is remembered, and after making a PIC
15485 call $gp is restored from that location. */
15486
15487 static void
15488 s_cprestore (int ignore ATTRIBUTE_UNUSED)
15489 {
15490 expressionS ex;
15491
15492 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15493 .cprestore is ignored. */
15494 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15495 {
15496 s_ignore (0);
15497 return;
15498 }
15499
15500 if (mips_opts.mips16)
15501 {
15502 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
15503 ignore_rest_of_line ();
15504 return;
15505 }
15506
15507 mips_cprestore_offset = get_absolute_expression ();
15508 mips_cprestore_valid = 1;
15509
15510 ex.X_op = O_constant;
15511 ex.X_add_symbol = NULL;
15512 ex.X_op_symbol = NULL;
15513 ex.X_add_number = mips_cprestore_offset;
15514
15515 mips_mark_labels ();
15516 mips_assembling_insn = TRUE;
15517
15518 macro_start ();
15519 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
15520 SP, HAVE_64BIT_ADDRESSES);
15521 macro_end ();
15522
15523 mips_assembling_insn = FALSE;
15524 demand_empty_rest_of_line ();
15525 }
15526
15527 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
15528 was given in the preceding .cpsetup, it results in:
15529 ld $gp, offset($sp)
15530
15531 If a register $reg2 was given there, it results in:
15532 daddu $gp, $reg2, $0 */
15533
15534 static void
15535 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
15536 {
15537 expressionS ex;
15538
15539 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
15540 We also need NewABI support. */
15541 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15542 {
15543 s_ignore (0);
15544 return;
15545 }
15546
15547 if (mips_opts.mips16)
15548 {
15549 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
15550 ignore_rest_of_line ();
15551 return;
15552 }
15553
15554 mips_mark_labels ();
15555 mips_assembling_insn = TRUE;
15556
15557 macro_start ();
15558 if (mips_cpreturn_register == -1)
15559 {
15560 ex.X_op = O_constant;
15561 ex.X_add_symbol = NULL;
15562 ex.X_op_symbol = NULL;
15563 ex.X_add_number = mips_cpreturn_offset;
15564
15565 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
15566 }
15567 else
15568 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
15569 mips_cpreturn_register, 0);
15570 macro_end ();
15571
15572 mips_assembling_insn = FALSE;
15573 demand_empty_rest_of_line ();
15574 }
15575
15576 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
15577 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
15578 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
15579 debug information or MIPS16 TLS. */
15580
15581 static void
15582 s_tls_rel_directive (const size_t bytes, const char *dirstr,
15583 bfd_reloc_code_real_type rtype)
15584 {
15585 expressionS ex;
15586 char *p;
15587
15588 expression (&ex);
15589
15590 if (ex.X_op != O_symbol)
15591 {
15592 as_bad (_("unsupported use of %s"), dirstr);
15593 ignore_rest_of_line ();
15594 }
15595
15596 p = frag_more (bytes);
15597 md_number_to_chars (p, 0, bytes);
15598 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
15599 demand_empty_rest_of_line ();
15600 mips_clear_insn_labels ();
15601 }
15602
15603 /* Handle .dtprelword. */
15604
15605 static void
15606 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
15607 {
15608 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
15609 }
15610
15611 /* Handle .dtpreldword. */
15612
15613 static void
15614 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
15615 {
15616 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
15617 }
15618
15619 /* Handle .tprelword. */
15620
15621 static void
15622 s_tprelword (int ignore ATTRIBUTE_UNUSED)
15623 {
15624 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
15625 }
15626
15627 /* Handle .tpreldword. */
15628
15629 static void
15630 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
15631 {
15632 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
15633 }
15634
15635 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
15636 code. It sets the offset to use in gp_rel relocations. */
15637
15638 static void
15639 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
15640 {
15641 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
15642 We also need NewABI support. */
15643 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15644 {
15645 s_ignore (0);
15646 return;
15647 }
15648
15649 mips_gprel_offset = get_absolute_expression ();
15650
15651 demand_empty_rest_of_line ();
15652 }
15653
15654 /* Handle the .gpword pseudo-op. This is used when generating PIC
15655 code. It generates a 32 bit GP relative reloc. */
15656
15657 static void
15658 s_gpword (int ignore ATTRIBUTE_UNUSED)
15659 {
15660 segment_info_type *si;
15661 struct insn_label_list *l;
15662 expressionS ex;
15663 char *p;
15664
15665 /* When not generating PIC code, this is treated as .word. */
15666 if (mips_pic != SVR4_PIC)
15667 {
15668 s_cons (2);
15669 return;
15670 }
15671
15672 si = seg_info (now_seg);
15673 l = si->label_list;
15674 mips_emit_delays ();
15675 if (auto_align)
15676 mips_align (2, 0, l);
15677
15678 expression (&ex);
15679 mips_clear_insn_labels ();
15680
15681 if (ex.X_op != O_symbol || ex.X_add_number != 0)
15682 {
15683 as_bad (_("unsupported use of .gpword"));
15684 ignore_rest_of_line ();
15685 }
15686
15687 p = frag_more (4);
15688 md_number_to_chars (p, 0, 4);
15689 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
15690 BFD_RELOC_GPREL32);
15691
15692 demand_empty_rest_of_line ();
15693 }
15694
15695 static void
15696 s_gpdword (int ignore ATTRIBUTE_UNUSED)
15697 {
15698 segment_info_type *si;
15699 struct insn_label_list *l;
15700 expressionS ex;
15701 char *p;
15702
15703 /* When not generating PIC code, this is treated as .dword. */
15704 if (mips_pic != SVR4_PIC)
15705 {
15706 s_cons (3);
15707 return;
15708 }
15709
15710 si = seg_info (now_seg);
15711 l = si->label_list;
15712 mips_emit_delays ();
15713 if (auto_align)
15714 mips_align (3, 0, l);
15715
15716 expression (&ex);
15717 mips_clear_insn_labels ();
15718
15719 if (ex.X_op != O_symbol || ex.X_add_number != 0)
15720 {
15721 as_bad (_("unsupported use of .gpdword"));
15722 ignore_rest_of_line ();
15723 }
15724
15725 p = frag_more (8);
15726 md_number_to_chars (p, 0, 8);
15727 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
15728 BFD_RELOC_GPREL32)->fx_tcbit = 1;
15729
15730 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
15731 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
15732 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
15733
15734 demand_empty_rest_of_line ();
15735 }
15736
15737 /* Handle the .ehword pseudo-op. This is used when generating unwinding
15738 tables. It generates a R_MIPS_EH reloc. */
15739
15740 static void
15741 s_ehword (int ignore ATTRIBUTE_UNUSED)
15742 {
15743 expressionS ex;
15744 char *p;
15745
15746 mips_emit_delays ();
15747
15748 expression (&ex);
15749 mips_clear_insn_labels ();
15750
15751 if (ex.X_op != O_symbol || ex.X_add_number != 0)
15752 {
15753 as_bad (_("unsupported use of .ehword"));
15754 ignore_rest_of_line ();
15755 }
15756
15757 p = frag_more (4);
15758 md_number_to_chars (p, 0, 4);
15759 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
15760 BFD_RELOC_MIPS_EH);
15761
15762 demand_empty_rest_of_line ();
15763 }
15764
15765 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
15766 tables in SVR4 PIC code. */
15767
15768 static void
15769 s_cpadd (int ignore ATTRIBUTE_UNUSED)
15770 {
15771 int reg;
15772
15773 /* This is ignored when not generating SVR4 PIC code. */
15774 if (mips_pic != SVR4_PIC)
15775 {
15776 s_ignore (0);
15777 return;
15778 }
15779
15780 mips_mark_labels ();
15781 mips_assembling_insn = TRUE;
15782
15783 /* Add $gp to the register named as an argument. */
15784 macro_start ();
15785 reg = tc_get_register (0);
15786 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
15787 macro_end ();
15788
15789 mips_assembling_insn = FALSE;
15790 demand_empty_rest_of_line ();
15791 }
15792
15793 /* Handle the .insn pseudo-op. This marks instruction labels in
15794 mips16/micromips mode. This permits the linker to handle them specially,
15795 such as generating jalx instructions when needed. We also make
15796 them odd for the duration of the assembly, in order to generate the
15797 right sort of code. We will make them even in the adjust_symtab
15798 routine, while leaving them marked. This is convenient for the
15799 debugger and the disassembler. The linker knows to make them odd
15800 again. */
15801
15802 static void
15803 s_insn (int ignore ATTRIBUTE_UNUSED)
15804 {
15805 mips_mark_labels ();
15806
15807 demand_empty_rest_of_line ();
15808 }
15809
15810 /* Handle the .nan pseudo-op. */
15811
15812 static void
15813 s_nan (int ignore ATTRIBUTE_UNUSED)
15814 {
15815 static const char str_legacy[] = "legacy";
15816 static const char str_2008[] = "2008";
15817 size_t i;
15818
15819 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
15820
15821 if (i == sizeof (str_2008) - 1
15822 && memcmp (input_line_pointer, str_2008, i) == 0)
15823 mips_flag_nan2008 = TRUE;
15824 else if (i == sizeof (str_legacy) - 1
15825 && memcmp (input_line_pointer, str_legacy, i) == 0)
15826 mips_flag_nan2008 = FALSE;
15827 else
15828 as_bad (_("bad .nan directive"));
15829
15830 input_line_pointer += i;
15831 demand_empty_rest_of_line ();
15832 }
15833
15834 /* Handle a .stab[snd] directive. Ideally these directives would be
15835 implemented in a transparent way, so that removing them would not
15836 have any effect on the generated instructions. However, s_stab
15837 internally changes the section, so in practice we need to decide
15838 now whether the preceding label marks compressed code. We do not
15839 support changing the compression mode of a label after a .stab*
15840 directive, such as in:
15841
15842 foo:
15843 .stabs ...
15844 .set mips16
15845
15846 so the current mode wins. */
15847
15848 static void
15849 s_mips_stab (int type)
15850 {
15851 mips_mark_labels ();
15852 s_stab (type);
15853 }
15854
15855 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
15856
15857 static void
15858 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
15859 {
15860 char *name;
15861 int c;
15862 symbolS *symbolP;
15863 expressionS exp;
15864
15865 name = input_line_pointer;
15866 c = get_symbol_end ();
15867 symbolP = symbol_find_or_make (name);
15868 S_SET_WEAK (symbolP);
15869 *input_line_pointer = c;
15870
15871 SKIP_WHITESPACE ();
15872
15873 if (! is_end_of_line[(unsigned char) *input_line_pointer])
15874 {
15875 if (S_IS_DEFINED (symbolP))
15876 {
15877 as_bad (_("ignoring attempt to redefine symbol %s"),
15878 S_GET_NAME (symbolP));
15879 ignore_rest_of_line ();
15880 return;
15881 }
15882
15883 if (*input_line_pointer == ',')
15884 {
15885 ++input_line_pointer;
15886 SKIP_WHITESPACE ();
15887 }
15888
15889 expression (&exp);
15890 if (exp.X_op != O_symbol)
15891 {
15892 as_bad (_("bad .weakext directive"));
15893 ignore_rest_of_line ();
15894 return;
15895 }
15896 symbol_set_value_expression (symbolP, &exp);
15897 }
15898
15899 demand_empty_rest_of_line ();
15900 }
15901
15902 /* Parse a register string into a number. Called from the ECOFF code
15903 to parse .frame. The argument is non-zero if this is the frame
15904 register, so that we can record it in mips_frame_reg. */
15905
15906 int
15907 tc_get_register (int frame)
15908 {
15909 unsigned int reg;
15910
15911 SKIP_WHITESPACE ();
15912 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
15913 reg = 0;
15914 if (frame)
15915 {
15916 mips_frame_reg = reg != 0 ? reg : SP;
15917 mips_frame_reg_valid = 1;
15918 mips_cprestore_valid = 0;
15919 }
15920 return reg;
15921 }
15922
15923 valueT
15924 md_section_align (asection *seg, valueT addr)
15925 {
15926 int align = bfd_get_section_alignment (stdoutput, seg);
15927
15928 /* We don't need to align ELF sections to the full alignment.
15929 However, Irix 5 may prefer that we align them at least to a 16
15930 byte boundary. We don't bother to align the sections if we
15931 are targeted for an embedded system. */
15932 if (strncmp (TARGET_OS, "elf", 3) == 0)
15933 return addr;
15934 if (align > 4)
15935 align = 4;
15936
15937 return ((addr + (1 << align) - 1) & (-1 << align));
15938 }
15939
15940 /* Utility routine, called from above as well. If called while the
15941 input file is still being read, it's only an approximation. (For
15942 example, a symbol may later become defined which appeared to be
15943 undefined earlier.) */
15944
15945 static int
15946 nopic_need_relax (symbolS *sym, int before_relaxing)
15947 {
15948 if (sym == 0)
15949 return 0;
15950
15951 if (g_switch_value > 0)
15952 {
15953 const char *symname;
15954 int change;
15955
15956 /* Find out whether this symbol can be referenced off the $gp
15957 register. It can be if it is smaller than the -G size or if
15958 it is in the .sdata or .sbss section. Certain symbols can
15959 not be referenced off the $gp, although it appears as though
15960 they can. */
15961 symname = S_GET_NAME (sym);
15962 if (symname != (const char *) NULL
15963 && (strcmp (symname, "eprol") == 0
15964 || strcmp (symname, "etext") == 0
15965 || strcmp (symname, "_gp") == 0
15966 || strcmp (symname, "edata") == 0
15967 || strcmp (symname, "_fbss") == 0
15968 || strcmp (symname, "_fdata") == 0
15969 || strcmp (symname, "_ftext") == 0
15970 || strcmp (symname, "end") == 0
15971 || strcmp (symname, "_gp_disp") == 0))
15972 change = 1;
15973 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
15974 && (0
15975 #ifndef NO_ECOFF_DEBUGGING
15976 || (symbol_get_obj (sym)->ecoff_extern_size != 0
15977 && (symbol_get_obj (sym)->ecoff_extern_size
15978 <= g_switch_value))
15979 #endif
15980 /* We must defer this decision until after the whole
15981 file has been read, since there might be a .extern
15982 after the first use of this symbol. */
15983 || (before_relaxing
15984 #ifndef NO_ECOFF_DEBUGGING
15985 && symbol_get_obj (sym)->ecoff_extern_size == 0
15986 #endif
15987 && S_GET_VALUE (sym) == 0)
15988 || (S_GET_VALUE (sym) != 0
15989 && S_GET_VALUE (sym) <= g_switch_value)))
15990 change = 0;
15991 else
15992 {
15993 const char *segname;
15994
15995 segname = segment_name (S_GET_SEGMENT (sym));
15996 gas_assert (strcmp (segname, ".lit8") != 0
15997 && strcmp (segname, ".lit4") != 0);
15998 change = (strcmp (segname, ".sdata") != 0
15999 && strcmp (segname, ".sbss") != 0
16000 && strncmp (segname, ".sdata.", 7) != 0
16001 && strncmp (segname, ".sbss.", 6) != 0
16002 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16003 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16004 }
16005 return change;
16006 }
16007 else
16008 /* We are not optimizing for the $gp register. */
16009 return 1;
16010 }
16011
16012
16013 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16014
16015 static bfd_boolean
16016 pic_need_relax (symbolS *sym, asection *segtype)
16017 {
16018 asection *symsec;
16019
16020 /* Handle the case of a symbol equated to another symbol. */
16021 while (symbol_equated_reloc_p (sym))
16022 {
16023 symbolS *n;
16024
16025 /* It's possible to get a loop here in a badly written program. */
16026 n = symbol_get_value_expression (sym)->X_add_symbol;
16027 if (n == sym)
16028 break;
16029 sym = n;
16030 }
16031
16032 if (symbol_section_p (sym))
16033 return TRUE;
16034
16035 symsec = S_GET_SEGMENT (sym);
16036
16037 /* This must duplicate the test in adjust_reloc_syms. */
16038 return (!bfd_is_und_section (symsec)
16039 && !bfd_is_abs_section (symsec)
16040 && !bfd_is_com_section (symsec)
16041 && !s_is_linkonce (sym, segtype)
16042 /* A global or weak symbol is treated as external. */
16043 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
16044 }
16045
16046
16047 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16048 extended opcode. SEC is the section the frag is in. */
16049
16050 static int
16051 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
16052 {
16053 int type;
16054 const struct mips_int_operand *operand;
16055 offsetT val;
16056 segT symsec;
16057 fragS *sym_frag;
16058
16059 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16060 return 0;
16061 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16062 return 1;
16063
16064 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16065 operand = mips16_immed_operand (type, FALSE);
16066
16067 sym_frag = symbol_get_frag (fragp->fr_symbol);
16068 val = S_GET_VALUE (fragp->fr_symbol);
16069 symsec = S_GET_SEGMENT (fragp->fr_symbol);
16070
16071 if (operand->root.type == OP_PCREL)
16072 {
16073 const struct mips_pcrel_operand *pcrel_op;
16074 addressT addr;
16075 offsetT maxtiny;
16076
16077 /* We won't have the section when we are called from
16078 mips_relax_frag. However, we will always have been called
16079 from md_estimate_size_before_relax first. If this is a
16080 branch to a different section, we mark it as such. If SEC is
16081 NULL, and the frag is not marked, then it must be a branch to
16082 the same section. */
16083 pcrel_op = (const struct mips_pcrel_operand *) operand;
16084 if (sec == NULL)
16085 {
16086 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16087 return 1;
16088 }
16089 else
16090 {
16091 /* Must have been called from md_estimate_size_before_relax. */
16092 if (symsec != sec)
16093 {
16094 fragp->fr_subtype =
16095 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16096
16097 /* FIXME: We should support this, and let the linker
16098 catch branches and loads that are out of range. */
16099 as_bad_where (fragp->fr_file, fragp->fr_line,
16100 _("unsupported PC relative reference to different section"));
16101
16102 return 1;
16103 }
16104 if (fragp != sym_frag && sym_frag->fr_address == 0)
16105 /* Assume non-extended on the first relaxation pass.
16106 The address we have calculated will be bogus if this is
16107 a forward branch to another frag, as the forward frag
16108 will have fr_address == 0. */
16109 return 0;
16110 }
16111
16112 /* In this case, we know for sure that the symbol fragment is in
16113 the same section. If the relax_marker of the symbol fragment
16114 differs from the relax_marker of this fragment, we have not
16115 yet adjusted the symbol fragment fr_address. We want to add
16116 in STRETCH in order to get a better estimate of the address.
16117 This particularly matters because of the shift bits. */
16118 if (stretch != 0
16119 && sym_frag->relax_marker != fragp->relax_marker)
16120 {
16121 fragS *f;
16122
16123 /* Adjust stretch for any alignment frag. Note that if have
16124 been expanding the earlier code, the symbol may be
16125 defined in what appears to be an earlier frag. FIXME:
16126 This doesn't handle the fr_subtype field, which specifies
16127 a maximum number of bytes to skip when doing an
16128 alignment. */
16129 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16130 {
16131 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16132 {
16133 if (stretch < 0)
16134 stretch = - ((- stretch)
16135 & ~ ((1 << (int) f->fr_offset) - 1));
16136 else
16137 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16138 if (stretch == 0)
16139 break;
16140 }
16141 }
16142 if (f != NULL)
16143 val += stretch;
16144 }
16145
16146 addr = fragp->fr_address + fragp->fr_fix;
16147
16148 /* The base address rules are complicated. The base address of
16149 a branch is the following instruction. The base address of a
16150 PC relative load or add is the instruction itself, but if it
16151 is in a delay slot (in which case it can not be extended) use
16152 the address of the instruction whose delay slot it is in. */
16153 if (pcrel_op->include_isa_bit)
16154 {
16155 addr += 2;
16156
16157 /* If we are currently assuming that this frag should be
16158 extended, then, the current address is two bytes
16159 higher. */
16160 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16161 addr += 2;
16162
16163 /* Ignore the low bit in the target, since it will be set
16164 for a text label. */
16165 val &= -2;
16166 }
16167 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16168 addr -= 4;
16169 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16170 addr -= 2;
16171
16172 val -= addr & -(1 << pcrel_op->align_log2);
16173
16174 /* If any of the shifted bits are set, we must use an extended
16175 opcode. If the address depends on the size of this
16176 instruction, this can lead to a loop, so we arrange to always
16177 use an extended opcode. We only check this when we are in
16178 the main relaxation loop, when SEC is NULL. */
16179 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
16180 {
16181 fragp->fr_subtype =
16182 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16183 return 1;
16184 }
16185
16186 /* If we are about to mark a frag as extended because the value
16187 is precisely the next value above maxtiny, then there is a
16188 chance of an infinite loop as in the following code:
16189 la $4,foo
16190 .skip 1020
16191 .align 2
16192 foo:
16193 In this case when the la is extended, foo is 0x3fc bytes
16194 away, so the la can be shrunk, but then foo is 0x400 away, so
16195 the la must be extended. To avoid this loop, we mark the
16196 frag as extended if it was small, and is about to become
16197 extended with the next value above maxtiny. */
16198 maxtiny = mips_int_operand_max (operand);
16199 if (val == maxtiny + (1 << operand->shift)
16200 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16201 && sec == NULL)
16202 {
16203 fragp->fr_subtype =
16204 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16205 return 1;
16206 }
16207 }
16208 else if (symsec != absolute_section && sec != NULL)
16209 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16210
16211 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16212 }
16213
16214 /* Compute the length of a branch sequence, and adjust the
16215 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16216 worst-case length is computed, with UPDATE being used to indicate
16217 whether an unconditional (-1), branch-likely (+1) or regular (0)
16218 branch is to be computed. */
16219 static int
16220 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16221 {
16222 bfd_boolean toofar;
16223 int length;
16224
16225 if (fragp
16226 && S_IS_DEFINED (fragp->fr_symbol)
16227 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16228 {
16229 addressT addr;
16230 offsetT val;
16231
16232 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16233
16234 addr = fragp->fr_address + fragp->fr_fix + 4;
16235
16236 val -= addr;
16237
16238 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16239 }
16240 else if (fragp)
16241 /* If the symbol is not defined or it's in a different segment,
16242 assume the user knows what's going on and emit a short
16243 branch. */
16244 toofar = FALSE;
16245 else
16246 toofar = TRUE;
16247
16248 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16249 fragp->fr_subtype
16250 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16251 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16252 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16253 RELAX_BRANCH_LINK (fragp->fr_subtype),
16254 toofar);
16255
16256 length = 4;
16257 if (toofar)
16258 {
16259 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16260 length += 8;
16261
16262 if (mips_pic != NO_PIC)
16263 {
16264 /* Additional space for PIC loading of target address. */
16265 length += 8;
16266 if (mips_opts.isa == ISA_MIPS1)
16267 /* Additional space for $at-stabilizing nop. */
16268 length += 4;
16269 }
16270
16271 /* If branch is conditional. */
16272 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16273 length += 8;
16274 }
16275
16276 return length;
16277 }
16278
16279 /* Compute the length of a branch sequence, and adjust the
16280 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16281 worst-case length is computed, with UPDATE being used to indicate
16282 whether an unconditional (-1), or regular (0) branch is to be
16283 computed. */
16284
16285 static int
16286 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16287 {
16288 bfd_boolean toofar;
16289 int length;
16290
16291 if (fragp
16292 && S_IS_DEFINED (fragp->fr_symbol)
16293 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16294 {
16295 addressT addr;
16296 offsetT val;
16297
16298 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16299 /* Ignore the low bit in the target, since it will be set
16300 for a text label. */
16301 if ((val & 1) != 0)
16302 --val;
16303
16304 addr = fragp->fr_address + fragp->fr_fix + 4;
16305
16306 val -= addr;
16307
16308 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16309 }
16310 else if (fragp)
16311 /* If the symbol is not defined or it's in a different segment,
16312 assume the user knows what's going on and emit a short
16313 branch. */
16314 toofar = FALSE;
16315 else
16316 toofar = TRUE;
16317
16318 if (fragp && update
16319 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16320 fragp->fr_subtype = (toofar
16321 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16322 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16323
16324 length = 4;
16325 if (toofar)
16326 {
16327 bfd_boolean compact_known = fragp != NULL;
16328 bfd_boolean compact = FALSE;
16329 bfd_boolean uncond;
16330
16331 if (compact_known)
16332 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16333 if (fragp)
16334 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16335 else
16336 uncond = update < 0;
16337
16338 /* If label is out of range, we turn branch <br>:
16339
16340 <br> label # 4 bytes
16341 0:
16342
16343 into:
16344
16345 j label # 4 bytes
16346 nop # 2 bytes if compact && !PIC
16347 0:
16348 */
16349 if (mips_pic == NO_PIC && (!compact_known || compact))
16350 length += 2;
16351
16352 /* If assembling PIC code, we further turn:
16353
16354 j label # 4 bytes
16355
16356 into:
16357
16358 lw/ld at, %got(label)(gp) # 4 bytes
16359 d/addiu at, %lo(label) # 4 bytes
16360 jr/c at # 2 bytes
16361 */
16362 if (mips_pic != NO_PIC)
16363 length += 6;
16364
16365 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16366
16367 <brneg> 0f # 4 bytes
16368 nop # 2 bytes if !compact
16369 */
16370 if (!uncond)
16371 length += (compact_known && compact) ? 4 : 6;
16372 }
16373
16374 return length;
16375 }
16376
16377 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16378 bit accordingly. */
16379
16380 static int
16381 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16382 {
16383 bfd_boolean toofar;
16384
16385 if (fragp
16386 && S_IS_DEFINED (fragp->fr_symbol)
16387 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16388 {
16389 addressT addr;
16390 offsetT val;
16391 int type;
16392
16393 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16394 /* Ignore the low bit in the target, since it will be set
16395 for a text label. */
16396 if ((val & 1) != 0)
16397 --val;
16398
16399 /* Assume this is a 2-byte branch. */
16400 addr = fragp->fr_address + fragp->fr_fix + 2;
16401
16402 /* We try to avoid the infinite loop by not adding 2 more bytes for
16403 long branches. */
16404
16405 val -= addr;
16406
16407 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16408 if (type == 'D')
16409 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
16410 else if (type == 'E')
16411 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
16412 else
16413 abort ();
16414 }
16415 else
16416 /* If the symbol is not defined or it's in a different segment,
16417 we emit a normal 32-bit branch. */
16418 toofar = TRUE;
16419
16420 if (fragp && update
16421 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16422 fragp->fr_subtype
16423 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
16424 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
16425
16426 if (toofar)
16427 return 4;
16428
16429 return 2;
16430 }
16431
16432 /* Estimate the size of a frag before relaxing. Unless this is the
16433 mips16, we are not really relaxing here, and the final size is
16434 encoded in the subtype information. For the mips16, we have to
16435 decide whether we are using an extended opcode or not. */
16436
16437 int
16438 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
16439 {
16440 int change;
16441
16442 if (RELAX_BRANCH_P (fragp->fr_subtype))
16443 {
16444
16445 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
16446
16447 return fragp->fr_var;
16448 }
16449
16450 if (RELAX_MIPS16_P (fragp->fr_subtype))
16451 /* We don't want to modify the EXTENDED bit here; it might get us
16452 into infinite loops. We change it only in mips_relax_frag(). */
16453 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
16454
16455 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
16456 {
16457 int length = 4;
16458
16459 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
16460 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
16461 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
16462 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
16463 fragp->fr_var = length;
16464
16465 return length;
16466 }
16467
16468 if (mips_pic == NO_PIC)
16469 change = nopic_need_relax (fragp->fr_symbol, 0);
16470 else if (mips_pic == SVR4_PIC)
16471 change = pic_need_relax (fragp->fr_symbol, segtype);
16472 else if (mips_pic == VXWORKS_PIC)
16473 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
16474 change = 0;
16475 else
16476 abort ();
16477
16478 if (change)
16479 {
16480 fragp->fr_subtype |= RELAX_USE_SECOND;
16481 return -RELAX_FIRST (fragp->fr_subtype);
16482 }
16483 else
16484 return -RELAX_SECOND (fragp->fr_subtype);
16485 }
16486
16487 /* This is called to see whether a reloc against a defined symbol
16488 should be converted into a reloc against a section. */
16489
16490 int
16491 mips_fix_adjustable (fixS *fixp)
16492 {
16493 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
16494 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
16495 return 0;
16496
16497 if (fixp->fx_addsy == NULL)
16498 return 1;
16499
16500 /* If symbol SYM is in a mergeable section, relocations of the form
16501 SYM + 0 can usually be made section-relative. The mergeable data
16502 is then identified by the section offset rather than by the symbol.
16503
16504 However, if we're generating REL LO16 relocations, the offset is split
16505 between the LO16 and parterning high part relocation. The linker will
16506 need to recalculate the complete offset in order to correctly identify
16507 the merge data.
16508
16509 The linker has traditionally not looked for the parterning high part
16510 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
16511 placed anywhere. Rather than break backwards compatibility by changing
16512 this, it seems better not to force the issue, and instead keep the
16513 original symbol. This will work with either linker behavior. */
16514 if ((lo16_reloc_p (fixp->fx_r_type)
16515 || reloc_needs_lo_p (fixp->fx_r_type))
16516 && HAVE_IN_PLACE_ADDENDS
16517 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
16518 return 0;
16519
16520 /* There is no place to store an in-place offset for JALR relocations.
16521 Likewise an in-range offset of limited PC-relative relocations may
16522 overflow the in-place relocatable field if recalculated against the
16523 start address of the symbol's containing section. */
16524 if (HAVE_IN_PLACE_ADDENDS
16525 && (limited_pcrel_reloc_p (fixp->fx_r_type)
16526 || jalr_reloc_p (fixp->fx_r_type)))
16527 return 0;
16528
16529 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
16530 to a floating-point stub. The same is true for non-R_MIPS16_26
16531 relocations against MIPS16 functions; in this case, the stub becomes
16532 the function's canonical address.
16533
16534 Floating-point stubs are stored in unique .mips16.call.* or
16535 .mips16.fn.* sections. If a stub T for function F is in section S,
16536 the first relocation in section S must be against F; this is how the
16537 linker determines the target function. All relocations that might
16538 resolve to T must also be against F. We therefore have the following
16539 restrictions, which are given in an intentionally-redundant way:
16540
16541 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
16542 symbols.
16543
16544 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
16545 if that stub might be used.
16546
16547 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
16548 symbols.
16549
16550 4. We cannot reduce a stub's relocations against MIPS16 symbols if
16551 that stub might be used.
16552
16553 There is a further restriction:
16554
16555 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
16556 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
16557 targets with in-place addends; the relocation field cannot
16558 encode the low bit.
16559
16560 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
16561 against a MIPS16 symbol. We deal with (5) by by not reducing any
16562 such relocations on REL targets.
16563
16564 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
16565 relocation against some symbol R, no relocation against R may be
16566 reduced. (Note that this deals with (2) as well as (1) because
16567 relocations against global symbols will never be reduced on ELF
16568 targets.) This approach is a little simpler than trying to detect
16569 stub sections, and gives the "all or nothing" per-symbol consistency
16570 that we have for MIPS16 symbols. */
16571 if (fixp->fx_subsy == NULL
16572 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
16573 || *symbol_get_tc (fixp->fx_addsy)
16574 || (HAVE_IN_PLACE_ADDENDS
16575 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
16576 && jmp_reloc_p (fixp->fx_r_type))))
16577 return 0;
16578
16579 return 1;
16580 }
16581
16582 /* Translate internal representation of relocation info to BFD target
16583 format. */
16584
16585 arelent **
16586 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
16587 {
16588 static arelent *retval[4];
16589 arelent *reloc;
16590 bfd_reloc_code_real_type code;
16591
16592 memset (retval, 0, sizeof(retval));
16593 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
16594 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
16595 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
16596 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
16597
16598 if (fixp->fx_pcrel)
16599 {
16600 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
16601 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
16602 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
16603 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
16604 || fixp->fx_r_type == BFD_RELOC_32_PCREL);
16605
16606 /* At this point, fx_addnumber is "symbol offset - pcrel address".
16607 Relocations want only the symbol offset. */
16608 reloc->addend = fixp->fx_addnumber + reloc->address;
16609 }
16610 else
16611 reloc->addend = fixp->fx_addnumber;
16612
16613 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
16614 entry to be used in the relocation's section offset. */
16615 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
16616 {
16617 reloc->address = reloc->addend;
16618 reloc->addend = 0;
16619 }
16620
16621 code = fixp->fx_r_type;
16622
16623 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
16624 if (reloc->howto == NULL)
16625 {
16626 as_bad_where (fixp->fx_file, fixp->fx_line,
16627 _("cannot represent %s relocation in this object file"
16628 " format"),
16629 bfd_get_reloc_code_name (code));
16630 retval[0] = NULL;
16631 }
16632
16633 return retval;
16634 }
16635
16636 /* Relax a machine dependent frag. This returns the amount by which
16637 the current size of the frag should change. */
16638
16639 int
16640 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
16641 {
16642 if (RELAX_BRANCH_P (fragp->fr_subtype))
16643 {
16644 offsetT old_var = fragp->fr_var;
16645
16646 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
16647
16648 return fragp->fr_var - old_var;
16649 }
16650
16651 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
16652 {
16653 offsetT old_var = fragp->fr_var;
16654 offsetT new_var = 4;
16655
16656 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
16657 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
16658 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
16659 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
16660 fragp->fr_var = new_var;
16661
16662 return new_var - old_var;
16663 }
16664
16665 if (! RELAX_MIPS16_P (fragp->fr_subtype))
16666 return 0;
16667
16668 if (mips16_extended_frag (fragp, NULL, stretch))
16669 {
16670 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16671 return 0;
16672 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
16673 return 2;
16674 }
16675 else
16676 {
16677 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16678 return 0;
16679 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
16680 return -2;
16681 }
16682
16683 return 0;
16684 }
16685
16686 /* Convert a machine dependent frag. */
16687
16688 void
16689 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
16690 {
16691 if (RELAX_BRANCH_P (fragp->fr_subtype))
16692 {
16693 char *buf;
16694 unsigned long insn;
16695 expressionS exp;
16696 fixS *fixp;
16697
16698 buf = fragp->fr_literal + fragp->fr_fix;
16699 insn = read_insn (buf);
16700
16701 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16702 {
16703 /* We generate a fixup instead of applying it right now
16704 because, if there are linker relaxations, we're going to
16705 need the relocations. */
16706 exp.X_op = O_symbol;
16707 exp.X_add_symbol = fragp->fr_symbol;
16708 exp.X_add_number = fragp->fr_offset;
16709
16710 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
16711 BFD_RELOC_16_PCREL_S2);
16712 fixp->fx_file = fragp->fr_file;
16713 fixp->fx_line = fragp->fr_line;
16714
16715 buf = write_insn (buf, insn);
16716 }
16717 else
16718 {
16719 int i;
16720
16721 as_warn_where (fragp->fr_file, fragp->fr_line,
16722 _("relaxed out-of-range branch into a jump"));
16723
16724 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
16725 goto uncond;
16726
16727 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
16728 {
16729 /* Reverse the branch. */
16730 switch ((insn >> 28) & 0xf)
16731 {
16732 case 4:
16733 if ((insn & 0xff000000) == 0x47000000
16734 || (insn & 0xff600000) == 0x45600000)
16735 {
16736 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
16737 reversed by tweaking bit 23. */
16738 insn ^= 0x00800000;
16739 }
16740 else
16741 {
16742 /* bc[0-3][tf]l? instructions can have the condition
16743 reversed by tweaking a single TF bit, and their
16744 opcodes all have 0x4???????. */
16745 gas_assert ((insn & 0xf3e00000) == 0x41000000);
16746 insn ^= 0x00010000;
16747 }
16748 break;
16749
16750 case 0:
16751 /* bltz 0x04000000 bgez 0x04010000
16752 bltzal 0x04100000 bgezal 0x04110000 */
16753 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
16754 insn ^= 0x00010000;
16755 break;
16756
16757 case 1:
16758 /* beq 0x10000000 bne 0x14000000
16759 blez 0x18000000 bgtz 0x1c000000 */
16760 insn ^= 0x04000000;
16761 break;
16762
16763 default:
16764 abort ();
16765 }
16766 }
16767
16768 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
16769 {
16770 /* Clear the and-link bit. */
16771 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
16772
16773 /* bltzal 0x04100000 bgezal 0x04110000
16774 bltzall 0x04120000 bgezall 0x04130000 */
16775 insn &= ~0x00100000;
16776 }
16777
16778 /* Branch over the branch (if the branch was likely) or the
16779 full jump (not likely case). Compute the offset from the
16780 current instruction to branch to. */
16781 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
16782 i = 16;
16783 else
16784 {
16785 /* How many bytes in instructions we've already emitted? */
16786 i = buf - fragp->fr_literal - fragp->fr_fix;
16787 /* How many bytes in instructions from here to the end? */
16788 i = fragp->fr_var - i;
16789 }
16790 /* Convert to instruction count. */
16791 i >>= 2;
16792 /* Branch counts from the next instruction. */
16793 i--;
16794 insn |= i;
16795 /* Branch over the jump. */
16796 buf = write_insn (buf, insn);
16797
16798 /* nop */
16799 buf = write_insn (buf, 0);
16800
16801 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
16802 {
16803 /* beql $0, $0, 2f */
16804 insn = 0x50000000;
16805 /* Compute the PC offset from the current instruction to
16806 the end of the variable frag. */
16807 /* How many bytes in instructions we've already emitted? */
16808 i = buf - fragp->fr_literal - fragp->fr_fix;
16809 /* How many bytes in instructions from here to the end? */
16810 i = fragp->fr_var - i;
16811 /* Convert to instruction count. */
16812 i >>= 2;
16813 /* Don't decrement i, because we want to branch over the
16814 delay slot. */
16815 insn |= i;
16816
16817 buf = write_insn (buf, insn);
16818 buf = write_insn (buf, 0);
16819 }
16820
16821 uncond:
16822 if (mips_pic == NO_PIC)
16823 {
16824 /* j or jal. */
16825 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
16826 ? 0x0c000000 : 0x08000000);
16827 exp.X_op = O_symbol;
16828 exp.X_add_symbol = fragp->fr_symbol;
16829 exp.X_add_number = fragp->fr_offset;
16830
16831 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
16832 FALSE, BFD_RELOC_MIPS_JMP);
16833 fixp->fx_file = fragp->fr_file;
16834 fixp->fx_line = fragp->fr_line;
16835
16836 buf = write_insn (buf, insn);
16837 }
16838 else
16839 {
16840 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
16841
16842 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
16843 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
16844 insn |= at << OP_SH_RT;
16845 exp.X_op = O_symbol;
16846 exp.X_add_symbol = fragp->fr_symbol;
16847 exp.X_add_number = fragp->fr_offset;
16848
16849 if (fragp->fr_offset)
16850 {
16851 exp.X_add_symbol = make_expr_symbol (&exp);
16852 exp.X_add_number = 0;
16853 }
16854
16855 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
16856 FALSE, BFD_RELOC_MIPS_GOT16);
16857 fixp->fx_file = fragp->fr_file;
16858 fixp->fx_line = fragp->fr_line;
16859
16860 buf = write_insn (buf, insn);
16861
16862 if (mips_opts.isa == ISA_MIPS1)
16863 /* nop */
16864 buf = write_insn (buf, 0);
16865
16866 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
16867 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
16868 insn |= at << OP_SH_RS | at << OP_SH_RT;
16869
16870 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
16871 FALSE, BFD_RELOC_LO16);
16872 fixp->fx_file = fragp->fr_file;
16873 fixp->fx_line = fragp->fr_line;
16874
16875 buf = write_insn (buf, insn);
16876
16877 /* j(al)r $at. */
16878 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
16879 insn = 0x0000f809;
16880 else
16881 insn = 0x00000008;
16882 insn |= at << OP_SH_RS;
16883
16884 buf = write_insn (buf, insn);
16885 }
16886 }
16887
16888 fragp->fr_fix += fragp->fr_var;
16889 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
16890 return;
16891 }
16892
16893 /* Relax microMIPS branches. */
16894 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
16895 {
16896 char *buf = fragp->fr_literal + fragp->fr_fix;
16897 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16898 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
16899 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16900 bfd_boolean short_ds;
16901 unsigned long insn;
16902 expressionS exp;
16903 fixS *fixp;
16904
16905 exp.X_op = O_symbol;
16906 exp.X_add_symbol = fragp->fr_symbol;
16907 exp.X_add_number = fragp->fr_offset;
16908
16909 fragp->fr_fix += fragp->fr_var;
16910
16911 /* Handle 16-bit branches that fit or are forced to fit. */
16912 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16913 {
16914 /* We generate a fixup instead of applying it right now,
16915 because if there is linker relaxation, we're going to
16916 need the relocations. */
16917 if (type == 'D')
16918 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
16919 BFD_RELOC_MICROMIPS_10_PCREL_S1);
16920 else if (type == 'E')
16921 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
16922 BFD_RELOC_MICROMIPS_7_PCREL_S1);
16923 else
16924 abort ();
16925
16926 fixp->fx_file = fragp->fr_file;
16927 fixp->fx_line = fragp->fr_line;
16928
16929 /* These relocations can have an addend that won't fit in
16930 2 octets. */
16931 fixp->fx_no_overflow = 1;
16932
16933 return;
16934 }
16935
16936 /* Handle 32-bit branches that fit or are forced to fit. */
16937 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
16938 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16939 {
16940 /* We generate a fixup instead of applying it right now,
16941 because if there is linker relaxation, we're going to
16942 need the relocations. */
16943 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
16944 BFD_RELOC_MICROMIPS_16_PCREL_S1);
16945 fixp->fx_file = fragp->fr_file;
16946 fixp->fx_line = fragp->fr_line;
16947
16948 if (type == 0)
16949 return;
16950 }
16951
16952 /* Relax 16-bit branches to 32-bit branches. */
16953 if (type != 0)
16954 {
16955 insn = read_compressed_insn (buf, 2);
16956
16957 if ((insn & 0xfc00) == 0xcc00) /* b16 */
16958 insn = 0x94000000; /* beq */
16959 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
16960 {
16961 unsigned long regno;
16962
16963 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
16964 regno = micromips_to_32_reg_d_map [regno];
16965 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
16966 insn |= regno << MICROMIPSOP_SH_RS;
16967 }
16968 else
16969 abort ();
16970
16971 /* Nothing else to do, just write it out. */
16972 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
16973 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16974 {
16975 buf = write_compressed_insn (buf, insn, 4);
16976 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
16977 return;
16978 }
16979 }
16980 else
16981 insn = read_compressed_insn (buf, 4);
16982
16983 /* Relax 32-bit branches to a sequence of instructions. */
16984 as_warn_where (fragp->fr_file, fragp->fr_line,
16985 _("relaxed out-of-range branch into a jump"));
16986
16987 /* Set the short-delay-slot bit. */
16988 short_ds = al && (insn & 0x02000000) != 0;
16989
16990 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
16991 {
16992 symbolS *l;
16993
16994 /* Reverse the branch. */
16995 if ((insn & 0xfc000000) == 0x94000000 /* beq */
16996 || (insn & 0xfc000000) == 0xb4000000) /* bne */
16997 insn ^= 0x20000000;
16998 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
16999 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17000 || (insn & 0xffe00000) == 0x40800000 /* blez */
17001 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17002 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17003 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17004 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17005 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17006 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17007 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17008 insn ^= 0x00400000;
17009 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17010 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17011 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17012 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17013 insn ^= 0x00200000;
17014 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17015 BNZ.df */
17016 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17017 BNZ.V */
17018 insn ^= 0x00800000;
17019 else
17020 abort ();
17021
17022 if (al)
17023 {
17024 /* Clear the and-link and short-delay-slot bits. */
17025 gas_assert ((insn & 0xfda00000) == 0x40200000);
17026
17027 /* bltzal 0x40200000 bgezal 0x40600000 */
17028 /* bltzals 0x42200000 bgezals 0x42600000 */
17029 insn &= ~0x02200000;
17030 }
17031
17032 /* Make a label at the end for use with the branch. */
17033 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17034 micromips_label_inc ();
17035 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
17036
17037 /* Refer to it. */
17038 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17039 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17040 fixp->fx_file = fragp->fr_file;
17041 fixp->fx_line = fragp->fr_line;
17042
17043 /* Branch over the jump. */
17044 buf = write_compressed_insn (buf, insn, 4);
17045 if (!compact)
17046 /* nop */
17047 buf = write_compressed_insn (buf, 0x0c00, 2);
17048 }
17049
17050 if (mips_pic == NO_PIC)
17051 {
17052 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17053
17054 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17055 insn = al ? jal : 0xd4000000;
17056
17057 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17058 BFD_RELOC_MICROMIPS_JMP);
17059 fixp->fx_file = fragp->fr_file;
17060 fixp->fx_line = fragp->fr_line;
17061
17062 buf = write_compressed_insn (buf, insn, 4);
17063 if (compact)
17064 /* nop */
17065 buf = write_compressed_insn (buf, 0x0c00, 2);
17066 }
17067 else
17068 {
17069 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
17070 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17071 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
17072
17073 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17074 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17075 insn |= at << MICROMIPSOP_SH_RT;
17076
17077 if (exp.X_add_number)
17078 {
17079 exp.X_add_symbol = make_expr_symbol (&exp);
17080 exp.X_add_number = 0;
17081 }
17082
17083 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17084 BFD_RELOC_MICROMIPS_GOT16);
17085 fixp->fx_file = fragp->fr_file;
17086 fixp->fx_line = fragp->fr_line;
17087
17088 buf = write_compressed_insn (buf, insn, 4);
17089
17090 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17091 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17092 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17093
17094 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17095 BFD_RELOC_MICROMIPS_LO16);
17096 fixp->fx_file = fragp->fr_file;
17097 fixp->fx_line = fragp->fr_line;
17098
17099 buf = write_compressed_insn (buf, insn, 4);
17100
17101 /* jr/jrc/jalr/jalrs $at */
17102 insn = al ? jalr : jr;
17103 insn |= at << MICROMIPSOP_SH_MJ;
17104
17105 buf = write_compressed_insn (buf, insn, 2);
17106 }
17107
17108 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17109 return;
17110 }
17111
17112 if (RELAX_MIPS16_P (fragp->fr_subtype))
17113 {
17114 int type;
17115 const struct mips_int_operand *operand;
17116 offsetT val;
17117 char *buf;
17118 unsigned int user_length, length;
17119 unsigned long insn;
17120 bfd_boolean ext;
17121
17122 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17123 operand = mips16_immed_operand (type, FALSE);
17124
17125 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
17126 val = resolve_symbol_value (fragp->fr_symbol);
17127 if (operand->root.type == OP_PCREL)
17128 {
17129 const struct mips_pcrel_operand *pcrel_op;
17130 addressT addr;
17131
17132 pcrel_op = (const struct mips_pcrel_operand *) operand;
17133 addr = fragp->fr_address + fragp->fr_fix;
17134
17135 /* The rules for the base address of a PC relative reloc are
17136 complicated; see mips16_extended_frag. */
17137 if (pcrel_op->include_isa_bit)
17138 {
17139 addr += 2;
17140 if (ext)
17141 addr += 2;
17142 /* Ignore the low bit in the target, since it will be
17143 set for a text label. */
17144 val &= -2;
17145 }
17146 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17147 addr -= 4;
17148 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17149 addr -= 2;
17150
17151 addr &= -(1 << pcrel_op->align_log2);
17152 val -= addr;
17153
17154 /* Make sure the section winds up with the alignment we have
17155 assumed. */
17156 if (operand->shift > 0)
17157 record_alignment (asec, operand->shift);
17158 }
17159
17160 if (ext
17161 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17162 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17163 as_warn_where (fragp->fr_file, fragp->fr_line,
17164 _("extended instruction in delay slot"));
17165
17166 buf = fragp->fr_literal + fragp->fr_fix;
17167
17168 insn = read_compressed_insn (buf, 2);
17169 if (ext)
17170 insn |= MIPS16_EXTEND;
17171
17172 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17173 user_length = 4;
17174 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17175 user_length = 2;
17176 else
17177 user_length = 0;
17178
17179 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17180 BFD_RELOC_UNUSED, val, user_length, &insn);
17181
17182 length = (ext ? 4 : 2);
17183 gas_assert (mips16_opcode_length (insn) == length);
17184 write_compressed_insn (buf, insn, length);
17185 fragp->fr_fix += length;
17186 }
17187 else
17188 {
17189 relax_substateT subtype = fragp->fr_subtype;
17190 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17191 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
17192 int first, second;
17193 fixS *fixp;
17194
17195 first = RELAX_FIRST (subtype);
17196 second = RELAX_SECOND (subtype);
17197 fixp = (fixS *) fragp->fr_opcode;
17198
17199 /* If the delay slot chosen does not match the size of the instruction,
17200 then emit a warning. */
17201 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17202 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17203 {
17204 relax_substateT s;
17205 const char *msg;
17206
17207 s = subtype & (RELAX_DELAY_SLOT_16BIT
17208 | RELAX_DELAY_SLOT_SIZE_FIRST
17209 | RELAX_DELAY_SLOT_SIZE_SECOND);
17210 msg = macro_warning (s);
17211 if (msg != NULL)
17212 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17213 subtype &= ~s;
17214 }
17215
17216 /* Possibly emit a warning if we've chosen the longer option. */
17217 if (use_second == second_longer)
17218 {
17219 relax_substateT s;
17220 const char *msg;
17221
17222 s = (subtype
17223 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17224 msg = macro_warning (s);
17225 if (msg != NULL)
17226 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17227 subtype &= ~s;
17228 }
17229
17230 /* Go through all the fixups for the first sequence. Disable them
17231 (by marking them as done) if we're going to use the second
17232 sequence instead. */
17233 while (fixp
17234 && fixp->fx_frag == fragp
17235 && fixp->fx_where < fragp->fr_fix - second)
17236 {
17237 if (subtype & RELAX_USE_SECOND)
17238 fixp->fx_done = 1;
17239 fixp = fixp->fx_next;
17240 }
17241
17242 /* Go through the fixups for the second sequence. Disable them if
17243 we're going to use the first sequence, otherwise adjust their
17244 addresses to account for the relaxation. */
17245 while (fixp && fixp->fx_frag == fragp)
17246 {
17247 if (subtype & RELAX_USE_SECOND)
17248 fixp->fx_where -= first;
17249 else
17250 fixp->fx_done = 1;
17251 fixp = fixp->fx_next;
17252 }
17253
17254 /* Now modify the frag contents. */
17255 if (subtype & RELAX_USE_SECOND)
17256 {
17257 char *start;
17258
17259 start = fragp->fr_literal + fragp->fr_fix - first - second;
17260 memmove (start, start + first, second);
17261 fragp->fr_fix -= first;
17262 }
17263 else
17264 fragp->fr_fix -= second;
17265 }
17266 }
17267
17268 /* This function is called after the relocs have been generated.
17269 We've been storing mips16 text labels as odd. Here we convert them
17270 back to even for the convenience of the debugger. */
17271
17272 void
17273 mips_frob_file_after_relocs (void)
17274 {
17275 asymbol **syms;
17276 unsigned int count, i;
17277
17278 syms = bfd_get_outsymbols (stdoutput);
17279 count = bfd_get_symcount (stdoutput);
17280 for (i = 0; i < count; i++, syms++)
17281 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17282 && ((*syms)->value & 1) != 0)
17283 {
17284 (*syms)->value &= ~1;
17285 /* If the symbol has an odd size, it was probably computed
17286 incorrectly, so adjust that as well. */
17287 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17288 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17289 }
17290 }
17291
17292 /* This function is called whenever a label is defined, including fake
17293 labels instantiated off the dot special symbol. It is used when
17294 handling branch delays; if a branch has a label, we assume we cannot
17295 move it. This also bumps the value of the symbol by 1 in compressed
17296 code. */
17297
17298 static void
17299 mips_record_label (symbolS *sym)
17300 {
17301 segment_info_type *si = seg_info (now_seg);
17302 struct insn_label_list *l;
17303
17304 if (free_insn_labels == NULL)
17305 l = (struct insn_label_list *) xmalloc (sizeof *l);
17306 else
17307 {
17308 l = free_insn_labels;
17309 free_insn_labels = l->next;
17310 }
17311
17312 l->label = sym;
17313 l->next = si->label_list;
17314 si->label_list = l;
17315 }
17316
17317 /* This function is called as tc_frob_label() whenever a label is defined
17318 and adds a DWARF-2 record we only want for true labels. */
17319
17320 void
17321 mips_define_label (symbolS *sym)
17322 {
17323 mips_record_label (sym);
17324 dwarf2_emit_label (sym);
17325 }
17326
17327 /* This function is called by tc_new_dot_label whenever a new dot symbol
17328 is defined. */
17329
17330 void
17331 mips_add_dot_label (symbolS *sym)
17332 {
17333 mips_record_label (sym);
17334 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17335 mips_compressed_mark_label (sym);
17336 }
17337 \f
17338 /* Some special processing for a MIPS ELF file. */
17339
17340 void
17341 mips_elf_final_processing (void)
17342 {
17343 /* Write out the register information. */
17344 if (mips_abi != N64_ABI)
17345 {
17346 Elf32_RegInfo s;
17347
17348 s.ri_gprmask = mips_gprmask;
17349 s.ri_cprmask[0] = mips_cprmask[0];
17350 s.ri_cprmask[1] = mips_cprmask[1];
17351 s.ri_cprmask[2] = mips_cprmask[2];
17352 s.ri_cprmask[3] = mips_cprmask[3];
17353 /* The gp_value field is set by the MIPS ELF backend. */
17354
17355 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
17356 ((Elf32_External_RegInfo *)
17357 mips_regmask_frag));
17358 }
17359 else
17360 {
17361 Elf64_Internal_RegInfo s;
17362
17363 s.ri_gprmask = mips_gprmask;
17364 s.ri_pad = 0;
17365 s.ri_cprmask[0] = mips_cprmask[0];
17366 s.ri_cprmask[1] = mips_cprmask[1];
17367 s.ri_cprmask[2] = mips_cprmask[2];
17368 s.ri_cprmask[3] = mips_cprmask[3];
17369 /* The gp_value field is set by the MIPS ELF backend. */
17370
17371 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
17372 ((Elf64_External_RegInfo *)
17373 mips_regmask_frag));
17374 }
17375
17376 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
17377 sort of BFD interface for this. */
17378 if (mips_any_noreorder)
17379 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
17380 if (mips_pic != NO_PIC)
17381 {
17382 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
17383 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
17384 }
17385 if (mips_abicalls)
17386 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
17387
17388 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
17389 defined at present; this might need to change in future. */
17390 if (file_ase_mips16)
17391 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
17392 if (file_ase_micromips)
17393 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
17394 if (file_ase & ASE_MDMX)
17395 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
17396
17397 /* Set the MIPS ELF ABI flags. */
17398 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
17399 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
17400 else if (mips_abi == O64_ABI)
17401 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
17402 else if (mips_abi == EABI_ABI)
17403 {
17404 if (file_mips_opts.gp == 64)
17405 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
17406 else
17407 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
17408 }
17409 else if (mips_abi == N32_ABI)
17410 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
17411
17412 /* Nothing to do for N64_ABI. */
17413
17414 if (mips_32bitmode)
17415 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
17416
17417 if (mips_flag_nan2008)
17418 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
17419
17420 /* 32 bit code with 64 bit FP registers. */
17421 if (file_mips_opts.fp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
17422 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
17423 }
17424 \f
17425 typedef struct proc {
17426 symbolS *func_sym;
17427 symbolS *func_end_sym;
17428 unsigned long reg_mask;
17429 unsigned long reg_offset;
17430 unsigned long fpreg_mask;
17431 unsigned long fpreg_offset;
17432 unsigned long frame_offset;
17433 unsigned long frame_reg;
17434 unsigned long pc_reg;
17435 } procS;
17436
17437 static procS cur_proc;
17438 static procS *cur_proc_ptr;
17439 static int numprocs;
17440
17441 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
17442 as "2", and a normal nop as "0". */
17443
17444 #define NOP_OPCODE_MIPS 0
17445 #define NOP_OPCODE_MIPS16 1
17446 #define NOP_OPCODE_MICROMIPS 2
17447
17448 char
17449 mips_nop_opcode (void)
17450 {
17451 if (seg_info (now_seg)->tc_segment_info_data.micromips)
17452 return NOP_OPCODE_MICROMIPS;
17453 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
17454 return NOP_OPCODE_MIPS16;
17455 else
17456 return NOP_OPCODE_MIPS;
17457 }
17458
17459 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
17460 32-bit microMIPS NOPs here (if applicable). */
17461
17462 void
17463 mips_handle_align (fragS *fragp)
17464 {
17465 char nop_opcode;
17466 char *p;
17467 int bytes, size, excess;
17468 valueT opcode;
17469
17470 if (fragp->fr_type != rs_align_code)
17471 return;
17472
17473 p = fragp->fr_literal + fragp->fr_fix;
17474 nop_opcode = *p;
17475 switch (nop_opcode)
17476 {
17477 case NOP_OPCODE_MICROMIPS:
17478 opcode = micromips_nop32_insn.insn_opcode;
17479 size = 4;
17480 break;
17481 case NOP_OPCODE_MIPS16:
17482 opcode = mips16_nop_insn.insn_opcode;
17483 size = 2;
17484 break;
17485 case NOP_OPCODE_MIPS:
17486 default:
17487 opcode = nop_insn.insn_opcode;
17488 size = 4;
17489 break;
17490 }
17491
17492 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
17493 excess = bytes % size;
17494
17495 /* Handle the leading part if we're not inserting a whole number of
17496 instructions, and make it the end of the fixed part of the frag.
17497 Try to fit in a short microMIPS NOP if applicable and possible,
17498 and use zeroes otherwise. */
17499 gas_assert (excess < 4);
17500 fragp->fr_fix += excess;
17501 switch (excess)
17502 {
17503 case 3:
17504 *p++ = '\0';
17505 /* Fall through. */
17506 case 2:
17507 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
17508 {
17509 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
17510 break;
17511 }
17512 *p++ = '\0';
17513 /* Fall through. */
17514 case 1:
17515 *p++ = '\0';
17516 /* Fall through. */
17517 case 0:
17518 break;
17519 }
17520
17521 md_number_to_chars (p, opcode, size);
17522 fragp->fr_var = size;
17523 }
17524
17525 static void
17526 md_obj_begin (void)
17527 {
17528 }
17529
17530 static void
17531 md_obj_end (void)
17532 {
17533 /* Check for premature end, nesting errors, etc. */
17534 if (cur_proc_ptr)
17535 as_warn (_("missing .end at end of assembly"));
17536 }
17537
17538 static long
17539 get_number (void)
17540 {
17541 int negative = 0;
17542 long val = 0;
17543
17544 if (*input_line_pointer == '-')
17545 {
17546 ++input_line_pointer;
17547 negative = 1;
17548 }
17549 if (!ISDIGIT (*input_line_pointer))
17550 as_bad (_("expected simple number"));
17551 if (input_line_pointer[0] == '0')
17552 {
17553 if (input_line_pointer[1] == 'x')
17554 {
17555 input_line_pointer += 2;
17556 while (ISXDIGIT (*input_line_pointer))
17557 {
17558 val <<= 4;
17559 val |= hex_value (*input_line_pointer++);
17560 }
17561 return negative ? -val : val;
17562 }
17563 else
17564 {
17565 ++input_line_pointer;
17566 while (ISDIGIT (*input_line_pointer))
17567 {
17568 val <<= 3;
17569 val |= *input_line_pointer++ - '0';
17570 }
17571 return negative ? -val : val;
17572 }
17573 }
17574 if (!ISDIGIT (*input_line_pointer))
17575 {
17576 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
17577 *input_line_pointer, *input_line_pointer);
17578 as_warn (_("invalid number"));
17579 return -1;
17580 }
17581 while (ISDIGIT (*input_line_pointer))
17582 {
17583 val *= 10;
17584 val += *input_line_pointer++ - '0';
17585 }
17586 return negative ? -val : val;
17587 }
17588
17589 /* The .file directive; just like the usual .file directive, but there
17590 is an initial number which is the ECOFF file index. In the non-ECOFF
17591 case .file implies DWARF-2. */
17592
17593 static void
17594 s_mips_file (int x ATTRIBUTE_UNUSED)
17595 {
17596 static int first_file_directive = 0;
17597
17598 if (ECOFF_DEBUGGING)
17599 {
17600 get_number ();
17601 s_app_file (0);
17602 }
17603 else
17604 {
17605 char *filename;
17606
17607 filename = dwarf2_directive_file (0);
17608
17609 /* Versions of GCC up to 3.1 start files with a ".file"
17610 directive even for stabs output. Make sure that this
17611 ".file" is handled. Note that you need a version of GCC
17612 after 3.1 in order to support DWARF-2 on MIPS. */
17613 if (filename != NULL && ! first_file_directive)
17614 {
17615 (void) new_logical_line (filename, -1);
17616 s_app_file_string (filename, 0);
17617 }
17618 first_file_directive = 1;
17619 }
17620 }
17621
17622 /* The .loc directive, implying DWARF-2. */
17623
17624 static void
17625 s_mips_loc (int x ATTRIBUTE_UNUSED)
17626 {
17627 if (!ECOFF_DEBUGGING)
17628 dwarf2_directive_loc (0);
17629 }
17630
17631 /* The .end directive. */
17632
17633 static void
17634 s_mips_end (int x ATTRIBUTE_UNUSED)
17635 {
17636 symbolS *p;
17637
17638 /* Following functions need their own .frame and .cprestore directives. */
17639 mips_frame_reg_valid = 0;
17640 mips_cprestore_valid = 0;
17641
17642 if (!is_end_of_line[(unsigned char) *input_line_pointer])
17643 {
17644 p = get_symbol ();
17645 demand_empty_rest_of_line ();
17646 }
17647 else
17648 p = NULL;
17649
17650 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
17651 as_warn (_(".end not in text section"));
17652
17653 if (!cur_proc_ptr)
17654 {
17655 as_warn (_(".end directive without a preceding .ent directive"));
17656 demand_empty_rest_of_line ();
17657 return;
17658 }
17659
17660 if (p != NULL)
17661 {
17662 gas_assert (S_GET_NAME (p));
17663 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
17664 as_warn (_(".end symbol does not match .ent symbol"));
17665
17666 if (debug_type == DEBUG_STABS)
17667 stabs_generate_asm_endfunc (S_GET_NAME (p),
17668 S_GET_NAME (p));
17669 }
17670 else
17671 as_warn (_(".end directive missing or unknown symbol"));
17672
17673 /* Create an expression to calculate the size of the function. */
17674 if (p && cur_proc_ptr)
17675 {
17676 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
17677 expressionS *exp = xmalloc (sizeof (expressionS));
17678
17679 obj->size = exp;
17680 exp->X_op = O_subtract;
17681 exp->X_add_symbol = symbol_temp_new_now ();
17682 exp->X_op_symbol = p;
17683 exp->X_add_number = 0;
17684
17685 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
17686 }
17687
17688 /* Generate a .pdr section. */
17689 if (!ECOFF_DEBUGGING && mips_flag_pdr)
17690 {
17691 segT saved_seg = now_seg;
17692 subsegT saved_subseg = now_subseg;
17693 expressionS exp;
17694 char *fragp;
17695
17696 #ifdef md_flush_pending_output
17697 md_flush_pending_output ();
17698 #endif
17699
17700 gas_assert (pdr_seg);
17701 subseg_set (pdr_seg, 0);
17702
17703 /* Write the symbol. */
17704 exp.X_op = O_symbol;
17705 exp.X_add_symbol = p;
17706 exp.X_add_number = 0;
17707 emit_expr (&exp, 4);
17708
17709 fragp = frag_more (7 * 4);
17710
17711 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
17712 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
17713 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
17714 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
17715 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
17716 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
17717 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
17718
17719 subseg_set (saved_seg, saved_subseg);
17720 }
17721
17722 cur_proc_ptr = NULL;
17723 }
17724
17725 /* The .aent and .ent directives. */
17726
17727 static void
17728 s_mips_ent (int aent)
17729 {
17730 symbolS *symbolP;
17731
17732 symbolP = get_symbol ();
17733 if (*input_line_pointer == ',')
17734 ++input_line_pointer;
17735 SKIP_WHITESPACE ();
17736 if (ISDIGIT (*input_line_pointer)
17737 || *input_line_pointer == '-')
17738 get_number ();
17739
17740 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
17741 as_warn (_(".ent or .aent not in text section"));
17742
17743 if (!aent && cur_proc_ptr)
17744 as_warn (_("missing .end"));
17745
17746 if (!aent)
17747 {
17748 /* This function needs its own .frame and .cprestore directives. */
17749 mips_frame_reg_valid = 0;
17750 mips_cprestore_valid = 0;
17751
17752 cur_proc_ptr = &cur_proc;
17753 memset (cur_proc_ptr, '\0', sizeof (procS));
17754
17755 cur_proc_ptr->func_sym = symbolP;
17756
17757 ++numprocs;
17758
17759 if (debug_type == DEBUG_STABS)
17760 stabs_generate_asm_func (S_GET_NAME (symbolP),
17761 S_GET_NAME (symbolP));
17762 }
17763
17764 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
17765
17766 demand_empty_rest_of_line ();
17767 }
17768
17769 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
17770 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
17771 s_mips_frame is used so that we can set the PDR information correctly.
17772 We can't use the ecoff routines because they make reference to the ecoff
17773 symbol table (in the mdebug section). */
17774
17775 static void
17776 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
17777 {
17778 if (ECOFF_DEBUGGING)
17779 s_ignore (ignore);
17780 else
17781 {
17782 long val;
17783
17784 if (cur_proc_ptr == (procS *) NULL)
17785 {
17786 as_warn (_(".frame outside of .ent"));
17787 demand_empty_rest_of_line ();
17788 return;
17789 }
17790
17791 cur_proc_ptr->frame_reg = tc_get_register (1);
17792
17793 SKIP_WHITESPACE ();
17794 if (*input_line_pointer++ != ','
17795 || get_absolute_expression_and_terminator (&val) != ',')
17796 {
17797 as_warn (_("bad .frame directive"));
17798 --input_line_pointer;
17799 demand_empty_rest_of_line ();
17800 return;
17801 }
17802
17803 cur_proc_ptr->frame_offset = val;
17804 cur_proc_ptr->pc_reg = tc_get_register (0);
17805
17806 demand_empty_rest_of_line ();
17807 }
17808 }
17809
17810 /* The .fmask and .mask directives. If the mdebug section is present
17811 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
17812 embedded targets, s_mips_mask is used so that we can set the PDR
17813 information correctly. We can't use the ecoff routines because they
17814 make reference to the ecoff symbol table (in the mdebug section). */
17815
17816 static void
17817 s_mips_mask (int reg_type)
17818 {
17819 if (ECOFF_DEBUGGING)
17820 s_ignore (reg_type);
17821 else
17822 {
17823 long mask, off;
17824
17825 if (cur_proc_ptr == (procS *) NULL)
17826 {
17827 as_warn (_(".mask/.fmask outside of .ent"));
17828 demand_empty_rest_of_line ();
17829 return;
17830 }
17831
17832 if (get_absolute_expression_and_terminator (&mask) != ',')
17833 {
17834 as_warn (_("bad .mask/.fmask directive"));
17835 --input_line_pointer;
17836 demand_empty_rest_of_line ();
17837 return;
17838 }
17839
17840 off = get_absolute_expression ();
17841
17842 if (reg_type == 'F')
17843 {
17844 cur_proc_ptr->fpreg_mask = mask;
17845 cur_proc_ptr->fpreg_offset = off;
17846 }
17847 else
17848 {
17849 cur_proc_ptr->reg_mask = mask;
17850 cur_proc_ptr->reg_offset = off;
17851 }
17852
17853 demand_empty_rest_of_line ();
17854 }
17855 }
17856
17857 /* A table describing all the processors gas knows about. Names are
17858 matched in the order listed.
17859
17860 To ease comparison, please keep this table in the same order as
17861 gcc's mips_cpu_info_table[]. */
17862 static const struct mips_cpu_info mips_cpu_info_table[] =
17863 {
17864 /* Entries for generic ISAs */
17865 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
17866 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
17867 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
17868 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
17869 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
17870 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
17871 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17872 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
17873 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
17874 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
17875 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
17876 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
17877 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
17878
17879 /* MIPS I */
17880 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
17881 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
17882 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
17883
17884 /* MIPS II */
17885 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
17886
17887 /* MIPS III */
17888 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
17889 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
17890 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
17891 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
17892 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
17893 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
17894 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
17895 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
17896 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
17897 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
17898 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
17899 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
17900 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
17901 /* ST Microelectronics Loongson 2E and 2F cores */
17902 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
17903 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
17904
17905 /* MIPS IV */
17906 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
17907 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
17908 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
17909 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
17910 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
17911 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
17912 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
17913 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
17914 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
17915 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
17916 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
17917 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
17918 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
17919 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
17920 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
17921
17922 /* MIPS 32 */
17923 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
17924 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
17925 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
17926 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
17927
17928 /* MIPS 32 Release 2 */
17929 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17930 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17931 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17932 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
17933 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17934 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17935 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
17936 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
17937 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
17938 ISA_MIPS32R2, CPU_MIPS32R2 },
17939 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
17940 ISA_MIPS32R2, CPU_MIPS32R2 },
17941 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17942 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17943 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17944 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17945 /* Deprecated forms of the above. */
17946 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17947 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17948 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
17949 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17950 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17951 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17952 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17953 /* Deprecated forms of the above. */
17954 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17955 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17956 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
17957 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17958 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17959 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17960 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17961 /* Deprecated forms of the above. */
17962 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17963 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17964 /* 34Kn is a 34kc without DSP. */
17965 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17966 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
17967 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17968 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17969 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17970 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17971 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17972 /* Deprecated forms of the above. */
17973 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17974 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17975 /* 1004K cores are multiprocessor versions of the 34K. */
17976 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17977 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17978 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17979 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17980 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
17981 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
17982
17983 /* MIPS 64 */
17984 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
17985 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
17986 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
17987 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
17988
17989 /* Broadcom SB-1 CPU core */
17990 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
17991 /* Broadcom SB-1A CPU core */
17992 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
17993
17994 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
17995
17996 /* MIPS 64 Release 2 */
17997
17998 /* Cavium Networks Octeon CPU core */
17999 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18000 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18001 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
18002
18003 /* RMI Xlr */
18004 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
18005
18006 /* Broadcom XLP.
18007 XLP is mostly like XLR, with the prominent exception that it is
18008 MIPS64R2 rather than MIPS64. */
18009 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
18010
18011 /* End marker */
18012 { NULL, 0, 0, 0, 0 }
18013 };
18014
18015
18016 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18017 with a final "000" replaced by "k". Ignore case.
18018
18019 Note: this function is shared between GCC and GAS. */
18020
18021 static bfd_boolean
18022 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
18023 {
18024 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18025 given++, canonical++;
18026
18027 return ((*given == 0 && *canonical == 0)
18028 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18029 }
18030
18031
18032 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18033 CPU name. We've traditionally allowed a lot of variation here.
18034
18035 Note: this function is shared between GCC and GAS. */
18036
18037 static bfd_boolean
18038 mips_matching_cpu_name_p (const char *canonical, const char *given)
18039 {
18040 /* First see if the name matches exactly, or with a final "000"
18041 turned into "k". */
18042 if (mips_strict_matching_cpu_name_p (canonical, given))
18043 return TRUE;
18044
18045 /* If not, try comparing based on numerical designation alone.
18046 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18047 if (TOLOWER (*given) == 'r')
18048 given++;
18049 if (!ISDIGIT (*given))
18050 return FALSE;
18051
18052 /* Skip over some well-known prefixes in the canonical name,
18053 hoping to find a number there too. */
18054 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18055 canonical += 2;
18056 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18057 canonical += 2;
18058 else if (TOLOWER (canonical[0]) == 'r')
18059 canonical += 1;
18060
18061 return mips_strict_matching_cpu_name_p (canonical, given);
18062 }
18063
18064
18065 /* Parse an option that takes the name of a processor as its argument.
18066 OPTION is the name of the option and CPU_STRING is the argument.
18067 Return the corresponding processor enumeration if the CPU_STRING is
18068 recognized, otherwise report an error and return null.
18069
18070 A similar function exists in GCC. */
18071
18072 static const struct mips_cpu_info *
18073 mips_parse_cpu (const char *option, const char *cpu_string)
18074 {
18075 const struct mips_cpu_info *p;
18076
18077 /* 'from-abi' selects the most compatible architecture for the given
18078 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18079 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18080 version. Look first at the -mgp options, if given, otherwise base
18081 the choice on MIPS_DEFAULT_64BIT.
18082
18083 Treat NO_ABI like the EABIs. One reason to do this is that the
18084 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18085 architecture. This code picks MIPS I for 'mips' and MIPS III for
18086 'mips64', just as we did in the days before 'from-abi'. */
18087 if (strcasecmp (cpu_string, "from-abi") == 0)
18088 {
18089 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18090 return mips_cpu_info_from_isa (ISA_MIPS1);
18091
18092 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18093 return mips_cpu_info_from_isa (ISA_MIPS3);
18094
18095 if (file_mips_opts.gp >= 0)
18096 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
18097 ? ISA_MIPS1 : ISA_MIPS3);
18098
18099 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18100 ? ISA_MIPS3
18101 : ISA_MIPS1);
18102 }
18103
18104 /* 'default' has traditionally been a no-op. Probably not very useful. */
18105 if (strcasecmp (cpu_string, "default") == 0)
18106 return 0;
18107
18108 for (p = mips_cpu_info_table; p->name != 0; p++)
18109 if (mips_matching_cpu_name_p (p->name, cpu_string))
18110 return p;
18111
18112 as_bad (_("bad value (%s) for %s"), cpu_string, option);
18113 return 0;
18114 }
18115
18116 /* Return the canonical processor information for ISA (a member of the
18117 ISA_MIPS* enumeration). */
18118
18119 static const struct mips_cpu_info *
18120 mips_cpu_info_from_isa (int isa)
18121 {
18122 int i;
18123
18124 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18125 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
18126 && isa == mips_cpu_info_table[i].isa)
18127 return (&mips_cpu_info_table[i]);
18128
18129 return NULL;
18130 }
18131
18132 static const struct mips_cpu_info *
18133 mips_cpu_info_from_arch (int arch)
18134 {
18135 int i;
18136
18137 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18138 if (arch == mips_cpu_info_table[i].cpu)
18139 return (&mips_cpu_info_table[i]);
18140
18141 return NULL;
18142 }
18143 \f
18144 static void
18145 show (FILE *stream, const char *string, int *col_p, int *first_p)
18146 {
18147 if (*first_p)
18148 {
18149 fprintf (stream, "%24s", "");
18150 *col_p = 24;
18151 }
18152 else
18153 {
18154 fprintf (stream, ", ");
18155 *col_p += 2;
18156 }
18157
18158 if (*col_p + strlen (string) > 72)
18159 {
18160 fprintf (stream, "\n%24s", "");
18161 *col_p = 24;
18162 }
18163
18164 fprintf (stream, "%s", string);
18165 *col_p += strlen (string);
18166
18167 *first_p = 0;
18168 }
18169
18170 void
18171 md_show_usage (FILE *stream)
18172 {
18173 int column, first;
18174 size_t i;
18175
18176 fprintf (stream, _("\
18177 MIPS options:\n\
18178 -EB generate big endian output\n\
18179 -EL generate little endian output\n\
18180 -g, -g2 do not remove unneeded NOPs or swap branches\n\
18181 -G NUM allow referencing objects up to NUM bytes\n\
18182 implicitly with the gp register [default 8]\n"));
18183 fprintf (stream, _("\
18184 -mips1 generate MIPS ISA I instructions\n\
18185 -mips2 generate MIPS ISA II instructions\n\
18186 -mips3 generate MIPS ISA III instructions\n\
18187 -mips4 generate MIPS ISA IV instructions\n\
18188 -mips5 generate MIPS ISA V instructions\n\
18189 -mips32 generate MIPS32 ISA instructions\n\
18190 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
18191 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
18192 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
18193 -mips64 generate MIPS64 ISA instructions\n\
18194 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
18195 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
18196 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
18197 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18198
18199 first = 1;
18200
18201 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18202 show (stream, mips_cpu_info_table[i].name, &column, &first);
18203 show (stream, "from-abi", &column, &first);
18204 fputc ('\n', stream);
18205
18206 fprintf (stream, _("\
18207 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18208 -no-mCPU don't generate code specific to CPU.\n\
18209 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18210
18211 first = 1;
18212
18213 show (stream, "3900", &column, &first);
18214 show (stream, "4010", &column, &first);
18215 show (stream, "4100", &column, &first);
18216 show (stream, "4650", &column, &first);
18217 fputc ('\n', stream);
18218
18219 fprintf (stream, _("\
18220 -mips16 generate mips16 instructions\n\
18221 -no-mips16 do not generate mips16 instructions\n"));
18222 fprintf (stream, _("\
18223 -mmicromips generate microMIPS instructions\n\
18224 -mno-micromips do not generate microMIPS instructions\n"));
18225 fprintf (stream, _("\
18226 -msmartmips generate smartmips instructions\n\
18227 -mno-smartmips do not generate smartmips instructions\n"));
18228 fprintf (stream, _("\
18229 -mdsp generate DSP instructions\n\
18230 -mno-dsp do not generate DSP instructions\n"));
18231 fprintf (stream, _("\
18232 -mdspr2 generate DSP R2 instructions\n\
18233 -mno-dspr2 do not generate DSP R2 instructions\n"));
18234 fprintf (stream, _("\
18235 -mmt generate MT instructions\n\
18236 -mno-mt do not generate MT instructions\n"));
18237 fprintf (stream, _("\
18238 -mmcu generate MCU instructions\n\
18239 -mno-mcu do not generate MCU instructions\n"));
18240 fprintf (stream, _("\
18241 -mmsa generate MSA instructions\n\
18242 -mno-msa do not generate MSA instructions\n"));
18243 fprintf (stream, _("\
18244 -mxpa generate eXtended Physical Address (XPA) instructions\n\
18245 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18246 fprintf (stream, _("\
18247 -mvirt generate Virtualization instructions\n\
18248 -mno-virt do not generate Virtualization instructions\n"));
18249 fprintf (stream, _("\
18250 -minsn32 only generate 32-bit microMIPS instructions\n\
18251 -mno-insn32 generate all microMIPS instructions\n"));
18252 fprintf (stream, _("\
18253 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18254 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
18255 -mfix-vr4120 work around certain VR4120 errata\n\
18256 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
18257 -mfix-24k insert a nop after ERET and DERET instructions\n\
18258 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
18259 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18260 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
18261 -msym32 assume all symbols have 32-bit values\n\
18262 -O0 remove unneeded NOPs, do not swap branches\n\
18263 -O remove unneeded NOPs and swap branches\n\
18264 --trap, --no-break trap exception on div by 0 and mult overflow\n\
18265 --break, --no-trap break exception on div by 0 and mult overflow\n"));
18266 fprintf (stream, _("\
18267 -mhard-float allow floating-point instructions\n\
18268 -msoft-float do not allow floating-point instructions\n\
18269 -msingle-float only allow 32-bit floating-point operations\n\
18270 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
18271 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
18272 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
18273 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
18274
18275 first = 1;
18276
18277 show (stream, "legacy", &column, &first);
18278 show (stream, "2008", &column, &first);
18279
18280 fputc ('\n', stream);
18281
18282 fprintf (stream, _("\
18283 -KPIC, -call_shared generate SVR4 position independent code\n\
18284 -call_nonpic generate non-PIC code that can operate with DSOs\n\
18285 -mvxworks-pic generate VxWorks position independent code\n\
18286 -non_shared do not generate code that can operate with DSOs\n\
18287 -xgot assume a 32 bit GOT\n\
18288 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
18289 -mshared, -mno-shared disable/enable .cpload optimization for\n\
18290 position dependent (non shared) code\n\
18291 -mabi=ABI create ABI conformant object file for:\n"));
18292
18293 first = 1;
18294
18295 show (stream, "32", &column, &first);
18296 show (stream, "o64", &column, &first);
18297 show (stream, "n32", &column, &first);
18298 show (stream, "64", &column, &first);
18299 show (stream, "eabi", &column, &first);
18300
18301 fputc ('\n', stream);
18302
18303 fprintf (stream, _("\
18304 -32 create o32 ABI object file (default)\n\
18305 -n32 create n32 ABI object file\n\
18306 -64 create 64 ABI object file\n"));
18307 }
18308
18309 #ifdef TE_IRIX
18310 enum dwarf2_format
18311 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
18312 {
18313 if (HAVE_64BIT_SYMBOLS)
18314 return dwarf2_format_64bit_irix;
18315 else
18316 return dwarf2_format_32bit;
18317 }
18318 #endif
18319
18320 int
18321 mips_dwarf2_addr_size (void)
18322 {
18323 if (HAVE_64BIT_OBJECTS)
18324 return 8;
18325 else
18326 return 4;
18327 }
18328
18329 /* Standard calling conventions leave the CFA at SP on entry. */
18330 void
18331 mips_cfi_frame_initial_instructions (void)
18332 {
18333 cfi_add_CFA_def_cfa_register (SP);
18334 }
18335
18336 int
18337 tc_mips_regname_to_dw2regnum (char *regname)
18338 {
18339 unsigned int regnum = -1;
18340 unsigned int reg;
18341
18342 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
18343 regnum = reg;
18344
18345 return regnum;
18346 }
18347
18348 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
18349 Given a symbolic attribute NAME, return the proper integer value.
18350 Returns -1 if the attribute is not known. */
18351
18352 int
18353 mips_convert_symbolic_attribute (const char *name)
18354 {
18355 static const struct
18356 {
18357 const char * name;
18358 const int tag;
18359 }
18360 attribute_table[] =
18361 {
18362 #define T(tag) {#tag, tag}
18363 T (Tag_GNU_MIPS_ABI_FP),
18364 T (Tag_GNU_MIPS_ABI_MSA),
18365 #undef T
18366 };
18367 unsigned int i;
18368
18369 if (name == NULL)
18370 return -1;
18371
18372 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
18373 if (streq (name, attribute_table[i].name))
18374 return attribute_table[i].tag;
18375
18376 return -1;
18377 }