1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 This file is part of GAS.
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
28 #include "safe-ctype.h"
30 #include "opcode/mips.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
35 /* Check assumptions made in this file. */
36 typedef char static_assert1
[sizeof (offsetT
) < 8 ? -1 : 1];
37 typedef char static_assert2
[sizeof (valueT
) < 8 ? -1 : 1];
40 #define DBG(x) printf x
45 #define streq(a, b) (strcmp (a, b) == 0)
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR
; }
53 #undef OBJ_PROCESS_STAB
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
67 /* Fix any of them that we actually care about. */
69 #define OUTPUT_FLAVOR mips_output_flavor()
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
78 int mips_flag_mdebug
= -1;
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
84 int mips_flag_pdr
= FALSE
;
86 int mips_flag_pdr
= TRUE
;
91 static char *mips_regmask_frag
;
98 #define PIC_CALL_REG 25
106 #define ILLEGAL_REG (32)
108 #define AT mips_opts.at
110 extern int target_big_endian
;
112 /* The name of the readonly data section. */
113 #define RDATA_SECTION_NAME ".rodata"
115 /* Ways in which an instruction can be "appended" to the output. */
117 /* Just add it normally. */
120 /* Add it normally and then add a nop. */
123 /* Turn an instruction with a delay slot into a "compact" version. */
126 /* Insert the instruction before the last one. */
130 /* Information about an instruction, including its format, operands
134 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
135 const struct mips_opcode
*insn_mo
;
137 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
138 a copy of INSN_MO->match with the operands filled in. If we have
139 decided to use an extended MIPS16 instruction, this includes the
141 unsigned long insn_opcode
;
143 /* The frag that contains the instruction. */
146 /* The offset into FRAG of the first instruction byte. */
149 /* The relocs associated with the instruction, if any. */
152 /* True if this entry cannot be moved from its current position. */
153 unsigned int fixed_p
: 1;
155 /* True if this instruction occurred in a .set noreorder block. */
156 unsigned int noreorder_p
: 1;
158 /* True for mips16 instructions that jump to an absolute address. */
159 unsigned int mips16_absolute_jump_p
: 1;
161 /* True if this instruction is complete. */
162 unsigned int complete_p
: 1;
164 /* True if this instruction is cleared from history by unconditional
166 unsigned int cleared_p
: 1;
169 /* The ABI to use. */
180 /* MIPS ABI we are using for this output file. */
181 static enum mips_abi_level mips_abi
= NO_ABI
;
183 /* Whether or not we have code that can call pic code. */
184 int mips_abicalls
= FALSE
;
186 /* Whether or not we have code which can be put into a shared
188 static bfd_boolean mips_in_shared
= TRUE
;
190 /* This is the set of options which may be modified by the .set
191 pseudo-op. We use a struct so that .set push and .set pop are more
194 struct mips_set_options
196 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
197 if it has not been initialized. Changed by `.set mipsN', and the
198 -mipsN command line option, and the default CPU. */
200 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
201 <asename>', by command line options, and based on the default
204 /* Whether we are assembling for the mips16 processor. 0 if we are
205 not, 1 if we are, and -1 if the value has not been initialized.
206 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
207 -nomips16 command line options, and the default CPU. */
209 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
210 1 if we are, and -1 if the value has not been initialized. Changed
211 by `.set micromips' and `.set nomicromips', and the -mmicromips
212 and -mno-micromips command line options, and the default CPU. */
214 /* Non-zero if we should not reorder instructions. Changed by `.set
215 reorder' and `.set noreorder'. */
217 /* Non-zero if we should not permit the register designated "assembler
218 temporary" to be used in instructions. The value is the register
219 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
220 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 /* Non-zero if we should warn when a macro instruction expands into
223 more than one machine instruction. Changed by `.set nomacro' and
225 int warn_about_macros
;
226 /* Non-zero if we should not move instructions. Changed by `.set
227 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 /* Non-zero if we should not optimize branches by moving the target
230 of the branch into the delay slot. Actually, we don't perform
231 this optimization anyhow. Changed by `.set bopt' and `.set
234 /* Non-zero if we should not autoextend mips16 instructions.
235 Changed by `.set autoextend' and `.set noautoextend'. */
237 /* True if we should only emit 32-bit microMIPS instructions.
238 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
239 and -mno-insn32 command line options. */
241 /* Restrict general purpose registers and floating point registers
242 to 32 bit. This is initially determined when -mgp32 or -mfp32
243 is passed but can changed if the assembler code uses .set mipsN. */
246 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
247 command line option, and the default CPU. */
249 /* True if ".set sym32" is in effect. */
251 /* True if floating-point operations are not allowed. Changed by .set
252 softfloat or .set hardfloat, by command line options -msoft-float or
253 -mhard-float. The default is false. */
254 bfd_boolean soft_float
;
256 /* True if only single-precision floating-point operations are allowed.
257 Changed by .set singlefloat or .set doublefloat, command-line options
258 -msingle-float or -mdouble-float. The default is false. */
259 bfd_boolean single_float
;
262 /* True if -mnan=2008, false if -mnan=legacy. */
263 static bfd_boolean mips_flag_nan2008
= FALSE
;
265 /* This is the struct we use to hold the module level set of options.
266 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
267 fp fields to -1 to indicate that they have not been initialized. */
269 static struct mips_set_options file_mips_opts
=
271 /* isa */ ISA_UNKNOWN
, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
272 /* noreorder */ 0, /* at */ ATREG
, /* warn_about_macros */ 0,
273 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE
,
274 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN
, /* sym32 */ FALSE
,
275 /* soft_float */ FALSE
, /* single_float */ FALSE
278 /* This is similar to file_mips_opts, but for the current set of options. */
280 static struct mips_set_options mips_opts
=
282 /* isa */ ISA_UNKNOWN
, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG
, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE
,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN
, /* sym32 */ FALSE
,
286 /* soft_float */ FALSE
, /* single_float */ FALSE
289 /* The set of ASEs that were selected on the command line, either
290 explicitly via ASE options or implicitly through things like -march. */
291 static unsigned int file_ase
;
293 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
294 static unsigned int file_ase_explicit
;
296 /* These variables are filled in with the masks of registers used.
297 The object format code reads them and puts them in the appropriate
299 unsigned long mips_gprmask
;
300 unsigned long mips_cprmask
[4];
302 /* True if any MIPS16 code was produced. */
303 static int file_ase_mips16
;
305 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
306 || mips_opts.isa == ISA_MIPS32R2 \
307 || mips_opts.isa == ISA_MIPS32R3 \
308 || mips_opts.isa == ISA_MIPS32R5 \
309 || mips_opts.isa == ISA_MIPS64 \
310 || mips_opts.isa == ISA_MIPS64R2 \
311 || mips_opts.isa == ISA_MIPS64R3 \
312 || mips_opts.isa == ISA_MIPS64R5)
314 /* True if any microMIPS code was produced. */
315 static int file_ase_micromips
;
317 /* True if we want to create R_MIPS_JALR for jalr $25. */
319 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
321 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
322 because there's no place for any addend, the only acceptable
323 expression is a bare symbol. */
324 #define MIPS_JALR_HINT_P(EXPR) \
325 (!HAVE_IN_PLACE_ADDENDS \
326 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
329 /* The argument of the -march= flag. The architecture we are assembling. */
330 static const char *mips_arch_string
;
332 /* The argument of the -mtune= flag. The architecture for which we
334 static int mips_tune
= CPU_UNKNOWN
;
335 static const char *mips_tune_string
;
337 /* True when generating 32-bit code for a 64-bit processor. */
338 static int mips_32bitmode
= 0;
340 /* True if the given ABI requires 32-bit registers. */
341 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
343 /* Likewise 64-bit registers. */
344 #define ABI_NEEDS_64BIT_REGS(ABI) \
346 || (ABI) == N64_ABI \
349 /* Return true if ISA supports 64 bit wide gp registers. */
350 #define ISA_HAS_64BIT_REGS(ISA) \
351 ((ISA) == ISA_MIPS3 \
352 || (ISA) == ISA_MIPS4 \
353 || (ISA) == ISA_MIPS5 \
354 || (ISA) == ISA_MIPS64 \
355 || (ISA) == ISA_MIPS64R2 \
356 || (ISA) == ISA_MIPS64R3 \
357 || (ISA) == ISA_MIPS64R5)
359 /* Return true if ISA supports 64 bit wide float registers. */
360 #define ISA_HAS_64BIT_FPRS(ISA) \
361 ((ISA) == ISA_MIPS3 \
362 || (ISA) == ISA_MIPS4 \
363 || (ISA) == ISA_MIPS5 \
364 || (ISA) == ISA_MIPS32R2 \
365 || (ISA) == ISA_MIPS32R3 \
366 || (ISA) == ISA_MIPS32R5 \
367 || (ISA) == ISA_MIPS64 \
368 || (ISA) == ISA_MIPS64R2 \
369 || (ISA) == ISA_MIPS64R3 \
370 || (ISA) == ISA_MIPS64R5 )
372 /* Return true if ISA supports 64-bit right rotate (dror et al.)
374 #define ISA_HAS_DROR(ISA) \
375 ((ISA) == ISA_MIPS64R2 \
376 || (ISA) == ISA_MIPS64R3 \
377 || (ISA) == ISA_MIPS64R5 \
378 || (mips_opts.micromips \
379 && ISA_HAS_64BIT_REGS (ISA)) \
382 /* Return true if ISA supports 32-bit right rotate (ror et al.)
384 #define ISA_HAS_ROR(ISA) \
385 ((ISA) == ISA_MIPS32R2 \
386 || (ISA) == ISA_MIPS32R3 \
387 || (ISA) == ISA_MIPS32R5 \
388 || (ISA) == ISA_MIPS64R2 \
389 || (ISA) == ISA_MIPS64R3 \
390 || (ISA) == ISA_MIPS64R5 \
391 || (mips_opts.ase & ASE_SMARTMIPS) \
392 || mips_opts.micromips \
395 /* Return true if ISA supports single-precision floats in odd registers. */
396 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
397 ((ISA) == ISA_MIPS32 \
398 || (ISA) == ISA_MIPS32R2 \
399 || (ISA) == ISA_MIPS32R3 \
400 || (ISA) == ISA_MIPS32R5 \
401 || (ISA) == ISA_MIPS64 \
402 || (ISA) == ISA_MIPS64R2 \
403 || (ISA) == ISA_MIPS64R3 \
404 || (ISA) == ISA_MIPS64R5)
406 /* Return true if ISA supports move to/from high part of a 64-bit
407 floating-point register. */
408 #define ISA_HAS_MXHC1(ISA) \
409 ((ISA) == ISA_MIPS32R2 \
410 || (ISA) == ISA_MIPS32R3 \
411 || (ISA) == ISA_MIPS32R5 \
412 || (ISA) == ISA_MIPS64R2 \
413 || (ISA) == ISA_MIPS64R3 \
414 || (ISA) == ISA_MIPS64R5)
417 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
422 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
426 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
428 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
430 /* True if relocations are stored in-place. */
431 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
433 /* The ABI-derived address size. */
434 #define HAVE_64BIT_ADDRESSES \
435 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
436 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
438 /* The size of symbolic constants (i.e., expressions of the form
439 "SYMBOL" or "SYMBOL + OFFSET"). */
440 #define HAVE_32BIT_SYMBOLS \
441 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
442 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
444 /* Addresses are loaded in different ways, depending on the address size
445 in use. The n32 ABI Documentation also mandates the use of additions
446 with overflow checking, but existing implementations don't follow it. */
447 #define ADDRESS_ADD_INSN \
448 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
450 #define ADDRESS_ADDI_INSN \
451 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
453 #define ADDRESS_LOAD_INSN \
454 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
456 #define ADDRESS_STORE_INSN \
457 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
459 /* Return true if the given CPU supports the MIPS16 ASE. */
460 #define CPU_HAS_MIPS16(cpu) \
461 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
462 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
464 /* Return true if the given CPU supports the microMIPS ASE. */
465 #define CPU_HAS_MICROMIPS(cpu) 0
467 /* True if CPU has a dror instruction. */
468 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
470 /* True if CPU has a ror instruction. */
471 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
473 /* True if CPU is in the Octeon family */
474 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP || (CPU) == CPU_OCTEON2)
476 /* True if CPU has seq/sne and seqi/snei instructions. */
477 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
479 /* True, if CPU has support for ldc1 and sdc1. */
480 #define CPU_HAS_LDC1_SDC1(CPU) \
481 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
483 /* True if mflo and mfhi can be immediately followed by instructions
484 which write to the HI and LO registers.
486 According to MIPS specifications, MIPS ISAs I, II, and III need
487 (at least) two instructions between the reads of HI/LO and
488 instructions which write them, and later ISAs do not. Contradicting
489 the MIPS specifications, some MIPS IV processor user manuals (e.g.
490 the UM for the NEC Vr5000) document needing the instructions between
491 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
492 MIPS64 and later ISAs to have the interlocks, plus any specific
493 earlier-ISA CPUs for which CPU documentation declares that the
494 instructions are really interlocked. */
495 #define hilo_interlocks \
496 (mips_opts.isa == ISA_MIPS32 \
497 || mips_opts.isa == ISA_MIPS32R2 \
498 || mips_opts.isa == ISA_MIPS32R3 \
499 || mips_opts.isa == ISA_MIPS32R5 \
500 || mips_opts.isa == ISA_MIPS64 \
501 || mips_opts.isa == ISA_MIPS64R2 \
502 || mips_opts.isa == ISA_MIPS64R3 \
503 || mips_opts.isa == ISA_MIPS64R5 \
504 || mips_opts.arch == CPU_R4010 \
505 || mips_opts.arch == CPU_R5900 \
506 || mips_opts.arch == CPU_R10000 \
507 || mips_opts.arch == CPU_R12000 \
508 || mips_opts.arch == CPU_R14000 \
509 || mips_opts.arch == CPU_R16000 \
510 || mips_opts.arch == CPU_RM7000 \
511 || mips_opts.arch == CPU_VR5500 \
512 || mips_opts.micromips \
515 /* Whether the processor uses hardware interlocks to protect reads
516 from the GPRs after they are loaded from memory, and thus does not
517 require nops to be inserted. This applies to instructions marked
518 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
519 level I and microMIPS mode instructions are always interlocked. */
520 #define gpr_interlocks \
521 (mips_opts.isa != ISA_MIPS1 \
522 || mips_opts.arch == CPU_R3900 \
523 || mips_opts.arch == CPU_R5900 \
524 || mips_opts.micromips \
527 /* Whether the processor uses hardware interlocks to avoid delays
528 required by coprocessor instructions, and thus does not require
529 nops to be inserted. This applies to instructions marked
530 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
531 between instructions marked INSN_WRITE_COND_CODE and ones marked
532 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
533 levels I, II, and III and microMIPS mode instructions are always
535 /* Itbl support may require additional care here. */
536 #define cop_interlocks \
537 ((mips_opts.isa != ISA_MIPS1 \
538 && mips_opts.isa != ISA_MIPS2 \
539 && mips_opts.isa != ISA_MIPS3) \
540 || mips_opts.arch == CPU_R4300 \
541 || mips_opts.micromips \
544 /* Whether the processor uses hardware interlocks to protect reads
545 from coprocessor registers after they are loaded from memory, and
546 thus does not require nops to be inserted. This applies to
547 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
548 requires at MIPS ISA level I and microMIPS mode instructions are
549 always interlocked. */
550 #define cop_mem_interlocks \
551 (mips_opts.isa != ISA_MIPS1 \
552 || mips_opts.micromips \
555 /* Is this a mfhi or mflo instruction? */
556 #define MF_HILO_INSN(PINFO) \
557 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
559 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
560 has been selected. This implies, in particular, that addresses of text
561 labels have their LSB set. */
562 #define HAVE_CODE_COMPRESSION \
563 ((mips_opts.mips16 | mips_opts.micromips) != 0)
565 /* The minimum and maximum signed values that can be stored in a GPR. */
566 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
567 #define GPR_SMIN (-GPR_SMAX - 1)
569 /* MIPS PIC level. */
571 enum mips_pic_level mips_pic
;
573 /* 1 if we should generate 32 bit offsets from the $gp register in
574 SVR4_PIC mode. Currently has no meaning in other modes. */
575 static int mips_big_got
= 0;
577 /* 1 if trap instructions should used for overflow rather than break
579 static int mips_trap
= 0;
581 /* 1 if double width floating point constants should not be constructed
582 by assembling two single width halves into two single width floating
583 point registers which just happen to alias the double width destination
584 register. On some architectures this aliasing can be disabled by a bit
585 in the status register, and the setting of this bit cannot be determined
586 automatically at assemble time. */
587 static int mips_disable_float_construction
;
589 /* Non-zero if any .set noreorder directives were used. */
591 static int mips_any_noreorder
;
593 /* Non-zero if nops should be inserted when the register referenced in
594 an mfhi/mflo instruction is read in the next two instructions. */
595 static int mips_7000_hilo_fix
;
597 /* The size of objects in the small data section. */
598 static unsigned int g_switch_value
= 8;
599 /* Whether the -G option was used. */
600 static int g_switch_seen
= 0;
605 /* If we can determine in advance that GP optimization won't be
606 possible, we can skip the relaxation stuff that tries to produce
607 GP-relative references. This makes delay slot optimization work
610 This function can only provide a guess, but it seems to work for
611 gcc output. It needs to guess right for gcc, otherwise gcc
612 will put what it thinks is a GP-relative instruction in a branch
615 I don't know if a fix is needed for the SVR4_PIC mode. I've only
616 fixed it for the non-PIC mode. KR 95/04/07 */
617 static int nopic_need_relax (symbolS
*, int);
619 /* handle of the OPCODE hash table */
620 static struct hash_control
*op_hash
= NULL
;
622 /* The opcode hash table we use for the mips16. */
623 static struct hash_control
*mips16_op_hash
= NULL
;
625 /* The opcode hash table we use for the microMIPS ASE. */
626 static struct hash_control
*micromips_op_hash
= NULL
;
628 /* This array holds the chars that always start a comment. If the
629 pre-processor is disabled, these aren't very useful */
630 const char comment_chars
[] = "#";
632 /* This array holds the chars that only start a comment at the beginning of
633 a line. If the line seems to have the form '# 123 filename'
634 .line and .file directives will appear in the pre-processed output */
635 /* Note that input_file.c hand checks for '#' at the beginning of the
636 first line of the input file. This is because the compiler outputs
637 #NO_APP at the beginning of its output. */
638 /* Also note that C style comments are always supported. */
639 const char line_comment_chars
[] = "#";
641 /* This array holds machine specific line separator characters. */
642 const char line_separator_chars
[] = ";";
644 /* Chars that can be used to separate mant from exp in floating point nums */
645 const char EXP_CHARS
[] = "eE";
647 /* Chars that mean this number is a floating point constant */
650 const char FLT_CHARS
[] = "rRsSfFdDxXpP";
652 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
653 changed in read.c . Ideally it shouldn't have to know about it at all,
654 but nothing is ideal around here.
657 /* Types of printf format used for instruction-related error messages.
658 "I" means int ("%d") and "S" means string ("%s"). */
659 enum mips_insn_error_format
{
665 /* Information about an error that was found while assembling the current
667 struct mips_insn_error
{
668 /* We sometimes need to match an instruction against more than one
669 opcode table entry. Errors found during this matching are reported
670 against a particular syntactic argument rather than against the
671 instruction as a whole. We grade these messages so that errors
672 against argument N have a greater priority than an error against
673 any argument < N, since the former implies that arguments up to N
674 were acceptable and that the opcode entry was therefore a closer match.
675 If several matches report an error against the same argument,
676 we only use that error if it is the same in all cases.
678 min_argnum is the minimum argument number for which an error message
679 should be accepted. It is 0 if MSG is against the instruction as
683 /* The printf()-style message, including its format and arguments. */
684 enum mips_insn_error_format format
;
692 /* The error that should be reported for the current instruction. */
693 static struct mips_insn_error insn_error
;
695 static int auto_align
= 1;
697 /* When outputting SVR4 PIC code, the assembler needs to know the
698 offset in the stack frame from which to restore the $gp register.
699 This is set by the .cprestore pseudo-op, and saved in this
701 static offsetT mips_cprestore_offset
= -1;
703 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
704 more optimizations, it can use a register value instead of a memory-saved
705 offset and even an other register than $gp as global pointer. */
706 static offsetT mips_cpreturn_offset
= -1;
707 static int mips_cpreturn_register
= -1;
708 static int mips_gp_register
= GP
;
709 static int mips_gprel_offset
= 0;
711 /* Whether mips_cprestore_offset has been set in the current function
712 (or whether it has already been warned about, if not). */
713 static int mips_cprestore_valid
= 0;
715 /* This is the register which holds the stack frame, as set by the
716 .frame pseudo-op. This is needed to implement .cprestore. */
717 static int mips_frame_reg
= SP
;
719 /* Whether mips_frame_reg has been set in the current function
720 (or whether it has already been warned about, if not). */
721 static int mips_frame_reg_valid
= 0;
723 /* To output NOP instructions correctly, we need to keep information
724 about the previous two instructions. */
726 /* Whether we are optimizing. The default value of 2 means to remove
727 unneeded NOPs and swap branch instructions when possible. A value
728 of 1 means to not swap branches. A value of 0 means to always
730 static int mips_optimize
= 2;
732 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
733 equivalent to seeing no -g option at all. */
734 static int mips_debug
= 0;
736 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
737 #define MAX_VR4130_NOPS 4
739 /* The maximum number of NOPs needed to fill delay slots. */
740 #define MAX_DELAY_NOPS 2
742 /* The maximum number of NOPs needed for any purpose. */
745 /* A list of previous instructions, with index 0 being the most recent.
746 We need to look back MAX_NOPS instructions when filling delay slots
747 or working around processor errata. We need to look back one
748 instruction further if we're thinking about using history[0] to
749 fill a branch delay slot. */
750 static struct mips_cl_insn history
[1 + MAX_NOPS
];
752 /* Arrays of operands for each instruction. */
753 #define MAX_OPERANDS 6
754 struct mips_operand_array
{
755 const struct mips_operand
*operand
[MAX_OPERANDS
];
757 static struct mips_operand_array
*mips_operands
;
758 static struct mips_operand_array
*mips16_operands
;
759 static struct mips_operand_array
*micromips_operands
;
761 /* Nop instructions used by emit_nop. */
762 static struct mips_cl_insn nop_insn
;
763 static struct mips_cl_insn mips16_nop_insn
;
764 static struct mips_cl_insn micromips_nop16_insn
;
765 static struct mips_cl_insn micromips_nop32_insn
;
767 /* The appropriate nop for the current mode. */
768 #define NOP_INSN (mips_opts.mips16 \
770 : (mips_opts.micromips \
771 ? (mips_opts.insn32 \
772 ? µmips_nop32_insn \
773 : µmips_nop16_insn) \
776 /* The size of NOP_INSN in bytes. */
777 #define NOP_INSN_SIZE ((mips_opts.mips16 \
778 || (mips_opts.micromips && !mips_opts.insn32)) \
781 /* If this is set, it points to a frag holding nop instructions which
782 were inserted before the start of a noreorder section. If those
783 nops turn out to be unnecessary, the size of the frag can be
785 static fragS
*prev_nop_frag
;
787 /* The number of nop instructions we created in prev_nop_frag. */
788 static int prev_nop_frag_holds
;
790 /* The number of nop instructions that we know we need in
792 static int prev_nop_frag_required
;
794 /* The number of instructions we've seen since prev_nop_frag. */
795 static int prev_nop_frag_since
;
797 /* Relocations against symbols are sometimes done in two parts, with a HI
798 relocation and a LO relocation. Each relocation has only 16 bits of
799 space to store an addend. This means that in order for the linker to
800 handle carries correctly, it must be able to locate both the HI and
801 the LO relocation. This means that the relocations must appear in
802 order in the relocation table.
804 In order to implement this, we keep track of each unmatched HI
805 relocation. We then sort them so that they immediately precede the
806 corresponding LO relocation. */
811 struct mips_hi_fixup
*next
;
814 /* The section this fixup is in. */
818 /* The list of unmatched HI relocs. */
820 static struct mips_hi_fixup
*mips_hi_fixup_list
;
822 /* The frag containing the last explicit relocation operator.
823 Null if explicit relocations have not been used. */
825 static fragS
*prev_reloc_op_frag
;
827 /* Map mips16 register numbers to normal MIPS register numbers. */
829 static const unsigned int mips16_to_32_reg_map
[] =
831 16, 17, 2, 3, 4, 5, 6, 7
834 /* Map microMIPS register numbers to normal MIPS register numbers. */
836 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
838 /* The microMIPS registers with type h. */
839 static const unsigned int micromips_to_32_reg_h_map1
[] =
841 5, 5, 6, 4, 4, 4, 4, 4
843 static const unsigned int micromips_to_32_reg_h_map2
[] =
845 6, 7, 7, 21, 22, 5, 6, 7
848 /* The microMIPS registers with type m. */
849 static const unsigned int micromips_to_32_reg_m_map
[] =
851 0, 17, 2, 3, 16, 18, 19, 20
854 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
856 /* Classifies the kind of instructions we're interested in when
857 implementing -mfix-vr4120. */
858 enum fix_vr4120_class
866 NUM_FIX_VR4120_CLASSES
869 /* ...likewise -mfix-loongson2f-jump. */
870 static bfd_boolean mips_fix_loongson2f_jump
;
872 /* ...likewise -mfix-loongson2f-nop. */
873 static bfd_boolean mips_fix_loongson2f_nop
;
875 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
876 static bfd_boolean mips_fix_loongson2f
;
878 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
879 there must be at least one other instruction between an instruction
880 of type X and an instruction of type Y. */
881 static unsigned int vr4120_conflicts
[NUM_FIX_VR4120_CLASSES
];
883 /* True if -mfix-vr4120 is in force. */
884 static int mips_fix_vr4120
;
886 /* ...likewise -mfix-vr4130. */
887 static int mips_fix_vr4130
;
889 /* ...likewise -mfix-24k. */
890 static int mips_fix_24k
;
892 /* ...likewise -mfix-rm7000 */
893 static int mips_fix_rm7000
;
895 /* ...likewise -mfix-cn63xxp1 */
896 static bfd_boolean mips_fix_cn63xxp1
;
898 /* We don't relax branches by default, since this causes us to expand
899 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
900 fail to compute the offset before expanding the macro to the most
901 efficient expansion. */
903 static int mips_relax_branch
;
905 /* The expansion of many macros depends on the type of symbol that
906 they refer to. For example, when generating position-dependent code,
907 a macro that refers to a symbol may have two different expansions,
908 one which uses GP-relative addresses and one which uses absolute
909 addresses. When generating SVR4-style PIC, a macro may have
910 different expansions for local and global symbols.
912 We handle these situations by generating both sequences and putting
913 them in variant frags. In position-dependent code, the first sequence
914 will be the GP-relative one and the second sequence will be the
915 absolute one. In SVR4 PIC, the first sequence will be for global
916 symbols and the second will be for local symbols.
918 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
919 SECOND are the lengths of the two sequences in bytes. These fields
920 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
921 the subtype has the following flags:
924 Set if it has been decided that we should use the second
925 sequence instead of the first.
928 Set in the first variant frag if the macro's second implementation
929 is longer than its first. This refers to the macro as a whole,
930 not an individual relaxation.
933 Set in the first variant frag if the macro appeared in a .set nomacro
934 block and if one alternative requires a warning but the other does not.
937 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
940 RELAX_DELAY_SLOT_16BIT
941 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
944 RELAX_DELAY_SLOT_SIZE_FIRST
945 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
946 the macro is of the wrong size for the branch delay slot.
948 RELAX_DELAY_SLOT_SIZE_SECOND
949 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
950 the macro is of the wrong size for the branch delay slot.
952 The frag's "opcode" points to the first fixup for relaxable code.
954 Relaxable macros are generated using a sequence such as:
956 relax_start (SYMBOL);
957 ... generate first expansion ...
959 ... generate second expansion ...
962 The code and fixups for the unwanted alternative are discarded
963 by md_convert_frag. */
964 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
966 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
967 #define RELAX_SECOND(X) ((X) & 0xff)
968 #define RELAX_USE_SECOND 0x10000
969 #define RELAX_SECOND_LONGER 0x20000
970 #define RELAX_NOMACRO 0x40000
971 #define RELAX_DELAY_SLOT 0x80000
972 #define RELAX_DELAY_SLOT_16BIT 0x100000
973 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
974 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
976 /* Branch without likely bit. If label is out of range, we turn:
978 beq reg1, reg2, label
988 with the following opcode replacements:
995 bltzal <-> bgezal (with jal label instead of j label)
997 Even though keeping the delay slot instruction in the delay slot of
998 the branch would be more efficient, it would be very tricky to do
999 correctly, because we'd have to introduce a variable frag *after*
1000 the delay slot instruction, and expand that instead. Let's do it
1001 the easy way for now, even if the branch-not-taken case now costs
1002 one additional instruction. Out-of-range branches are not supposed
1003 to be common, anyway.
1005 Branch likely. If label is out of range, we turn:
1007 beql reg1, reg2, label
1008 delay slot (annulled if branch not taken)
1017 delay slot (executed only if branch taken)
1020 It would be possible to generate a shorter sequence by losing the
1021 likely bit, generating something like:
1026 delay slot (executed only if branch taken)
1038 bltzall -> bgezal (with jal label instead of j label)
1039 bgezall -> bltzal (ditto)
1042 but it's not clear that it would actually improve performance. */
1043 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1044 ((relax_substateT) \
1047 | ((toofar) ? 0x20 : 0) \
1048 | ((link) ? 0x40 : 0) \
1049 | ((likely) ? 0x80 : 0) \
1050 | ((uncond) ? 0x100 : 0)))
1051 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1052 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1053 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1054 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1055 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1056 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1058 /* For mips16 code, we use an entirely different form of relaxation.
1059 mips16 supports two versions of most instructions which take
1060 immediate values: a small one which takes some small value, and a
1061 larger one which takes a 16 bit value. Since branches also follow
1062 this pattern, relaxing these values is required.
1064 We can assemble both mips16 and normal MIPS code in a single
1065 object. Therefore, we need to support this type of relaxation at
1066 the same time that we support the relaxation described above. We
1067 use the high bit of the subtype field to distinguish these cases.
1069 The information we store for this type of relaxation is the
1070 argument code found in the opcode file for this relocation, whether
1071 the user explicitly requested a small or extended form, and whether
1072 the relocation is in a jump or jal delay slot. That tells us the
1073 size of the value, and how it should be stored. We also store
1074 whether the fragment is considered to be extended or not. We also
1075 store whether this is known to be a branch to a different section,
1076 whether we have tried to relax this frag yet, and whether we have
1077 ever extended a PC relative fragment because of a shift count. */
1078 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1081 | ((small) ? 0x100 : 0) \
1082 | ((ext) ? 0x200 : 0) \
1083 | ((dslot) ? 0x400 : 0) \
1084 | ((jal_dslot) ? 0x800 : 0))
1085 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1086 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1087 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1088 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1089 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1090 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1091 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1092 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1093 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1094 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1095 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1096 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1098 /* For microMIPS code, we use relaxation similar to one we use for
1099 MIPS16 code. Some instructions that take immediate values support
1100 two encodings: a small one which takes some small value, and a
1101 larger one which takes a 16 bit value. As some branches also follow
1102 this pattern, relaxing these values is required.
1104 We can assemble both microMIPS and normal MIPS code in a single
1105 object. Therefore, we need to support this type of relaxation at
1106 the same time that we support the relaxation described above. We
1107 use one of the high bits of the subtype field to distinguish these
1110 The information we store for this type of relaxation is the argument
1111 code found in the opcode file for this relocation, the register
1112 selected as the assembler temporary, whether the branch is
1113 unconditional, whether it is compact, whether it stores the link
1114 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1115 branches to a sequence of instructions is enabled, and whether the
1116 displacement of a branch is too large to fit as an immediate argument
1117 of a 16-bit and a 32-bit branch, respectively. */
1118 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1119 relax32, toofar16, toofar32) \
1122 | (((at) & 0x1f) << 8) \
1123 | ((uncond) ? 0x2000 : 0) \
1124 | ((compact) ? 0x4000 : 0) \
1125 | ((link) ? 0x8000 : 0) \
1126 | ((relax32) ? 0x10000 : 0) \
1127 | ((toofar16) ? 0x20000 : 0) \
1128 | ((toofar32) ? 0x40000 : 0))
1129 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1130 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1131 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1132 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1133 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1134 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1135 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1137 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1138 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1139 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1140 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1141 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1142 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1144 /* Sign-extend 16-bit value X. */
1145 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1147 /* Is the given value a sign-extended 32-bit value? */
1148 #define IS_SEXT_32BIT_NUM(x) \
1149 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1150 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1152 /* Is the given value a sign-extended 16-bit value? */
1153 #define IS_SEXT_16BIT_NUM(x) \
1154 (((x) &~ (offsetT) 0x7fff) == 0 \
1155 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1157 /* Is the given value a sign-extended 12-bit value? */
1158 #define IS_SEXT_12BIT_NUM(x) \
1159 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1161 /* Is the given value a sign-extended 9-bit value? */
1162 #define IS_SEXT_9BIT_NUM(x) \
1163 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1165 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1166 #define IS_ZEXT_32BIT_NUM(x) \
1167 (((x) &~ (offsetT) 0xffffffff) == 0 \
1168 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1170 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1172 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1173 (((STRUCT) >> (SHIFT)) & (MASK))
1175 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1176 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1178 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1179 : EXTRACT_BITS ((INSN).insn_opcode, \
1180 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1181 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1182 EXTRACT_BITS ((INSN).insn_opcode, \
1183 MIPS16OP_MASK_##FIELD, \
1184 MIPS16OP_SH_##FIELD)
1186 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1187 #define MIPS16_EXTEND (0xf000U << 16)
1189 /* Whether or not we are emitting a branch-likely macro. */
1190 static bfd_boolean emit_branch_likely_macro
= FALSE
;
1192 /* Global variables used when generating relaxable macros. See the
1193 comment above RELAX_ENCODE for more details about how relaxation
1196 /* 0 if we're not emitting a relaxable macro.
1197 1 if we're emitting the first of the two relaxation alternatives.
1198 2 if we're emitting the second alternative. */
1201 /* The first relaxable fixup in the current frag. (In other words,
1202 the first fixup that refers to relaxable code.) */
1205 /* sizes[0] says how many bytes of the first alternative are stored in
1206 the current frag. Likewise sizes[1] for the second alternative. */
1207 unsigned int sizes
[2];
1209 /* The symbol on which the choice of sequence depends. */
1213 /* Global variables used to decide whether a macro needs a warning. */
1215 /* True if the macro is in a branch delay slot. */
1216 bfd_boolean delay_slot_p
;
1218 /* Set to the length in bytes required if the macro is in a delay slot
1219 that requires a specific length of instruction, otherwise zero. */
1220 unsigned int delay_slot_length
;
1222 /* For relaxable macros, sizes[0] is the length of the first alternative
1223 in bytes and sizes[1] is the length of the second alternative.
1224 For non-relaxable macros, both elements give the length of the
1226 unsigned int sizes
[2];
1228 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1229 instruction of the first alternative in bytes and first_insn_sizes[1]
1230 is the length of the first instruction of the second alternative.
1231 For non-relaxable macros, both elements give the length of the first
1232 instruction in bytes.
1234 Set to zero if we haven't yet seen the first instruction. */
1235 unsigned int first_insn_sizes
[2];
1237 /* For relaxable macros, insns[0] is the number of instructions for the
1238 first alternative and insns[1] is the number of instructions for the
1241 For non-relaxable macros, both elements give the number of
1242 instructions for the macro. */
1243 unsigned int insns
[2];
1245 /* The first variant frag for this macro. */
1247 } mips_macro_warning
;
1249 /* Prototypes for static functions. */
1251 enum mips_regclass
{ MIPS_GR_REG
, MIPS_FP_REG
, MIPS16_REG
};
1253 static void append_insn
1254 (struct mips_cl_insn
*, expressionS
*, bfd_reloc_code_real_type
*,
1255 bfd_boolean expansionp
);
1256 static void mips_no_prev_insn (void);
1257 static void macro_build (expressionS
*, const char *, const char *, ...);
1258 static void mips16_macro_build
1259 (expressionS
*, const char *, const char *, va_list *);
1260 static void load_register (int, expressionS
*, int);
1261 static void macro_start (void);
1262 static void macro_end (void);
1263 static void macro (struct mips_cl_insn
*ip
, char *str
);
1264 static void mips16_macro (struct mips_cl_insn
* ip
);
1265 static void mips_ip (char *str
, struct mips_cl_insn
* ip
);
1266 static void mips16_ip (char *str
, struct mips_cl_insn
* ip
);
1267 static void mips16_immed
1268 (char *, unsigned int, int, bfd_reloc_code_real_type
, offsetT
,
1269 unsigned int, unsigned long *);
1270 static size_t my_getSmallExpression
1271 (expressionS
*, bfd_reloc_code_real_type
*, char *);
1272 static void my_getExpression (expressionS
*, char *);
1273 static void s_align (int);
1274 static void s_change_sec (int);
1275 static void s_change_section (int);
1276 static void s_cons (int);
1277 static void s_float_cons (int);
1278 static void s_mips_globl (int);
1279 static void s_option (int);
1280 static void s_mipsset (int);
1281 static void s_abicalls (int);
1282 static void s_cpload (int);
1283 static void s_cpsetup (int);
1284 static void s_cplocal (int);
1285 static void s_cprestore (int);
1286 static void s_cpreturn (int);
1287 static void s_dtprelword (int);
1288 static void s_dtpreldword (int);
1289 static void s_tprelword (int);
1290 static void s_tpreldword (int);
1291 static void s_gpvalue (int);
1292 static void s_gpword (int);
1293 static void s_gpdword (int);
1294 static void s_ehword (int);
1295 static void s_cpadd (int);
1296 static void s_insn (int);
1297 static void s_nan (int);
1298 static void md_obj_begin (void);
1299 static void md_obj_end (void);
1300 static void s_mips_ent (int);
1301 static void s_mips_end (int);
1302 static void s_mips_frame (int);
1303 static void s_mips_mask (int reg_type
);
1304 static void s_mips_stab (int);
1305 static void s_mips_weakext (int);
1306 static void s_mips_file (int);
1307 static void s_mips_loc (int);
1308 static bfd_boolean
pic_need_relax (symbolS
*, asection
*);
1309 static int relaxed_branch_length (fragS
*, asection
*, int);
1310 static int relaxed_micromips_16bit_branch_length (fragS
*, asection
*, int);
1311 static int relaxed_micromips_32bit_branch_length (fragS
*, asection
*, int);
1313 /* Table and functions used to map between CPU/ISA names, and
1314 ISA levels, and CPU numbers. */
1316 struct mips_cpu_info
1318 const char *name
; /* CPU or ISA name. */
1319 int flags
; /* MIPS_CPU_* flags. */
1320 int ase
; /* Set of ASEs implemented by the CPU. */
1321 int isa
; /* ISA level. */
1322 int cpu
; /* CPU number (default CPU if ISA). */
1325 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1327 static const struct mips_cpu_info
*mips_parse_cpu (const char *, const char *);
1328 static const struct mips_cpu_info
*mips_cpu_info_from_isa (int);
1329 static const struct mips_cpu_info
*mips_cpu_info_from_arch (int);
1331 /* Command-line options. */
1332 const char *md_shortopts
= "O::g::G:";
1336 OPTION_MARCH
= OPTION_MD_BASE
,
1366 OPTION_NO_SMARTMIPS
,
1374 OPTION_NO_MICROMIPS
,
1377 OPTION_COMPAT_ARCH_BASE
,
1386 OPTION_M7000_HILO_FIX
,
1387 OPTION_MNO_7000_HILO_FIX
,
1391 OPTION_NO_FIX_RM7000
,
1392 OPTION_FIX_LOONGSON2F_JUMP
,
1393 OPTION_NO_FIX_LOONGSON2F_JUMP
,
1394 OPTION_FIX_LOONGSON2F_NOP
,
1395 OPTION_NO_FIX_LOONGSON2F_NOP
,
1397 OPTION_NO_FIX_VR4120
,
1399 OPTION_NO_FIX_VR4130
,
1400 OPTION_FIX_CN63XXP1
,
1401 OPTION_NO_FIX_CN63XXP1
,
1408 OPTION_CONSTRUCT_FLOATS
,
1409 OPTION_NO_CONSTRUCT_FLOATS
,
1412 OPTION_RELAX_BRANCH
,
1413 OPTION_NO_RELAX_BRANCH
,
1422 OPTION_SINGLE_FLOAT
,
1423 OPTION_DOUBLE_FLOAT
,
1436 OPTION_MVXWORKS_PIC
,
1441 struct option md_longopts
[] =
1443 /* Options which specify architecture. */
1444 {"march", required_argument
, NULL
, OPTION_MARCH
},
1445 {"mtune", required_argument
, NULL
, OPTION_MTUNE
},
1446 {"mips0", no_argument
, NULL
, OPTION_MIPS1
},
1447 {"mips1", no_argument
, NULL
, OPTION_MIPS1
},
1448 {"mips2", no_argument
, NULL
, OPTION_MIPS2
},
1449 {"mips3", no_argument
, NULL
, OPTION_MIPS3
},
1450 {"mips4", no_argument
, NULL
, OPTION_MIPS4
},
1451 {"mips5", no_argument
, NULL
, OPTION_MIPS5
},
1452 {"mips32", no_argument
, NULL
, OPTION_MIPS32
},
1453 {"mips64", no_argument
, NULL
, OPTION_MIPS64
},
1454 {"mips32r2", no_argument
, NULL
, OPTION_MIPS32R2
},
1455 {"mips32r3", no_argument
, NULL
, OPTION_MIPS32R3
},
1456 {"mips32r5", no_argument
, NULL
, OPTION_MIPS32R5
},
1457 {"mips64r2", no_argument
, NULL
, OPTION_MIPS64R2
},
1458 {"mips64r3", no_argument
, NULL
, OPTION_MIPS64R3
},
1459 {"mips64r5", no_argument
, NULL
, OPTION_MIPS64R5
},
1461 /* Options which specify Application Specific Extensions (ASEs). */
1462 {"mips16", no_argument
, NULL
, OPTION_MIPS16
},
1463 {"no-mips16", no_argument
, NULL
, OPTION_NO_MIPS16
},
1464 {"mips3d", no_argument
, NULL
, OPTION_MIPS3D
},
1465 {"no-mips3d", no_argument
, NULL
, OPTION_NO_MIPS3D
},
1466 {"mdmx", no_argument
, NULL
, OPTION_MDMX
},
1467 {"no-mdmx", no_argument
, NULL
, OPTION_NO_MDMX
},
1468 {"mdsp", no_argument
, NULL
, OPTION_DSP
},
1469 {"mno-dsp", no_argument
, NULL
, OPTION_NO_DSP
},
1470 {"mmt", no_argument
, NULL
, OPTION_MT
},
1471 {"mno-mt", no_argument
, NULL
, OPTION_NO_MT
},
1472 {"msmartmips", no_argument
, NULL
, OPTION_SMARTMIPS
},
1473 {"mno-smartmips", no_argument
, NULL
, OPTION_NO_SMARTMIPS
},
1474 {"mdspr2", no_argument
, NULL
, OPTION_DSPR2
},
1475 {"mno-dspr2", no_argument
, NULL
, OPTION_NO_DSPR2
},
1476 {"meva", no_argument
, NULL
, OPTION_EVA
},
1477 {"mno-eva", no_argument
, NULL
, OPTION_NO_EVA
},
1478 {"mmicromips", no_argument
, NULL
, OPTION_MICROMIPS
},
1479 {"mno-micromips", no_argument
, NULL
, OPTION_NO_MICROMIPS
},
1480 {"mmcu", no_argument
, NULL
, OPTION_MCU
},
1481 {"mno-mcu", no_argument
, NULL
, OPTION_NO_MCU
},
1482 {"mvirt", no_argument
, NULL
, OPTION_VIRT
},
1483 {"mno-virt", no_argument
, NULL
, OPTION_NO_VIRT
},
1484 {"mmsa", no_argument
, NULL
, OPTION_MSA
},
1485 {"mno-msa", no_argument
, NULL
, OPTION_NO_MSA
},
1486 {"mxpa", no_argument
, NULL
, OPTION_XPA
},
1487 {"mno-xpa", no_argument
, NULL
, OPTION_NO_XPA
},
1489 /* Old-style architecture options. Don't add more of these. */
1490 {"m4650", no_argument
, NULL
, OPTION_M4650
},
1491 {"no-m4650", no_argument
, NULL
, OPTION_NO_M4650
},
1492 {"m4010", no_argument
, NULL
, OPTION_M4010
},
1493 {"no-m4010", no_argument
, NULL
, OPTION_NO_M4010
},
1494 {"m4100", no_argument
, NULL
, OPTION_M4100
},
1495 {"no-m4100", no_argument
, NULL
, OPTION_NO_M4100
},
1496 {"m3900", no_argument
, NULL
, OPTION_M3900
},
1497 {"no-m3900", no_argument
, NULL
, OPTION_NO_M3900
},
1499 /* Options which enable bug fixes. */
1500 {"mfix7000", no_argument
, NULL
, OPTION_M7000_HILO_FIX
},
1501 {"no-fix-7000", no_argument
, NULL
, OPTION_MNO_7000_HILO_FIX
},
1502 {"mno-fix7000", no_argument
, NULL
, OPTION_MNO_7000_HILO_FIX
},
1503 {"mfix-loongson2f-jump", no_argument
, NULL
, OPTION_FIX_LOONGSON2F_JUMP
},
1504 {"mno-fix-loongson2f-jump", no_argument
, NULL
, OPTION_NO_FIX_LOONGSON2F_JUMP
},
1505 {"mfix-loongson2f-nop", no_argument
, NULL
, OPTION_FIX_LOONGSON2F_NOP
},
1506 {"mno-fix-loongson2f-nop", no_argument
, NULL
, OPTION_NO_FIX_LOONGSON2F_NOP
},
1507 {"mfix-vr4120", no_argument
, NULL
, OPTION_FIX_VR4120
},
1508 {"mno-fix-vr4120", no_argument
, NULL
, OPTION_NO_FIX_VR4120
},
1509 {"mfix-vr4130", no_argument
, NULL
, OPTION_FIX_VR4130
},
1510 {"mno-fix-vr4130", no_argument
, NULL
, OPTION_NO_FIX_VR4130
},
1511 {"mfix-24k", no_argument
, NULL
, OPTION_FIX_24K
},
1512 {"mno-fix-24k", no_argument
, NULL
, OPTION_NO_FIX_24K
},
1513 {"mfix-rm7000", no_argument
, NULL
, OPTION_FIX_RM7000
},
1514 {"mno-fix-rm7000", no_argument
, NULL
, OPTION_NO_FIX_RM7000
},
1515 {"mfix-cn63xxp1", no_argument
, NULL
, OPTION_FIX_CN63XXP1
},
1516 {"mno-fix-cn63xxp1", no_argument
, NULL
, OPTION_NO_FIX_CN63XXP1
},
1518 /* Miscellaneous options. */
1519 {"trap", no_argument
, NULL
, OPTION_TRAP
},
1520 {"no-break", no_argument
, NULL
, OPTION_TRAP
},
1521 {"break", no_argument
, NULL
, OPTION_BREAK
},
1522 {"no-trap", no_argument
, NULL
, OPTION_BREAK
},
1523 {"EB", no_argument
, NULL
, OPTION_EB
},
1524 {"EL", no_argument
, NULL
, OPTION_EL
},
1525 {"mfp32", no_argument
, NULL
, OPTION_FP32
},
1526 {"mgp32", no_argument
, NULL
, OPTION_GP32
},
1527 {"construct-floats", no_argument
, NULL
, OPTION_CONSTRUCT_FLOATS
},
1528 {"no-construct-floats", no_argument
, NULL
, OPTION_NO_CONSTRUCT_FLOATS
},
1529 {"mfp64", no_argument
, NULL
, OPTION_FP64
},
1530 {"mgp64", no_argument
, NULL
, OPTION_GP64
},
1531 {"relax-branch", no_argument
, NULL
, OPTION_RELAX_BRANCH
},
1532 {"no-relax-branch", no_argument
, NULL
, OPTION_NO_RELAX_BRANCH
},
1533 {"minsn32", no_argument
, NULL
, OPTION_INSN32
},
1534 {"mno-insn32", no_argument
, NULL
, OPTION_NO_INSN32
},
1535 {"mshared", no_argument
, NULL
, OPTION_MSHARED
},
1536 {"mno-shared", no_argument
, NULL
, OPTION_MNO_SHARED
},
1537 {"msym32", no_argument
, NULL
, OPTION_MSYM32
},
1538 {"mno-sym32", no_argument
, NULL
, OPTION_MNO_SYM32
},
1539 {"msoft-float", no_argument
, NULL
, OPTION_SOFT_FLOAT
},
1540 {"mhard-float", no_argument
, NULL
, OPTION_HARD_FLOAT
},
1541 {"msingle-float", no_argument
, NULL
, OPTION_SINGLE_FLOAT
},
1542 {"mdouble-float", no_argument
, NULL
, OPTION_DOUBLE_FLOAT
},
1544 /* Strictly speaking this next option is ELF specific,
1545 but we allow it for other ports as well in order to
1546 make testing easier. */
1547 {"32", no_argument
, NULL
, OPTION_32
},
1549 /* ELF-specific options. */
1550 {"KPIC", no_argument
, NULL
, OPTION_CALL_SHARED
},
1551 {"call_shared", no_argument
, NULL
, OPTION_CALL_SHARED
},
1552 {"call_nonpic", no_argument
, NULL
, OPTION_CALL_NONPIC
},
1553 {"non_shared", no_argument
, NULL
, OPTION_NON_SHARED
},
1554 {"xgot", no_argument
, NULL
, OPTION_XGOT
},
1555 {"mabi", required_argument
, NULL
, OPTION_MABI
},
1556 {"n32", no_argument
, NULL
, OPTION_N32
},
1557 {"64", no_argument
, NULL
, OPTION_64
},
1558 {"mdebug", no_argument
, NULL
, OPTION_MDEBUG
},
1559 {"no-mdebug", no_argument
, NULL
, OPTION_NO_MDEBUG
},
1560 {"mpdr", no_argument
, NULL
, OPTION_PDR
},
1561 {"mno-pdr", no_argument
, NULL
, OPTION_NO_PDR
},
1562 {"mvxworks-pic", no_argument
, NULL
, OPTION_MVXWORKS_PIC
},
1563 {"mnan", required_argument
, NULL
, OPTION_NAN
},
1565 {NULL
, no_argument
, NULL
, 0}
1567 size_t md_longopts_size
= sizeof (md_longopts
);
1569 /* Information about either an Application Specific Extension or an
1570 optional architecture feature that, for simplicity, we treat in the
1571 same way as an ASE. */
1574 /* The name of the ASE, used in both the command-line and .set options. */
1577 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1578 and 64-bit architectures, the flags here refer to the subset that
1579 is available on both. */
1582 /* The ASE_* flag used for instructions that are available on 64-bit
1583 architectures but that are not included in FLAGS. */
1584 unsigned int flags64
;
1586 /* The command-line options that turn the ASE on and off. */
1590 /* The minimum required architecture revisions for MIPS32, MIPS64,
1591 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1594 int micromips32_rev
;
1595 int micromips64_rev
;
1598 /* A table of all supported ASEs. */
1599 static const struct mips_ase mips_ases
[] = {
1600 { "dsp", ASE_DSP
, ASE_DSP64
,
1601 OPTION_DSP
, OPTION_NO_DSP
,
1604 { "dspr2", ASE_DSP
| ASE_DSPR2
, 0,
1605 OPTION_DSPR2
, OPTION_NO_DSPR2
,
1608 { "eva", ASE_EVA
, 0,
1609 OPTION_EVA
, OPTION_NO_EVA
,
1612 { "mcu", ASE_MCU
, 0,
1613 OPTION_MCU
, OPTION_NO_MCU
,
1616 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1617 { "mdmx", ASE_MDMX
, 0,
1618 OPTION_MDMX
, OPTION_NO_MDMX
,
1621 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1622 { "mips3d", ASE_MIPS3D
, 0,
1623 OPTION_MIPS3D
, OPTION_NO_MIPS3D
,
1627 OPTION_MT
, OPTION_NO_MT
,
1630 { "smartmips", ASE_SMARTMIPS
, 0,
1631 OPTION_SMARTMIPS
, OPTION_NO_SMARTMIPS
,
1634 { "virt", ASE_VIRT
, ASE_VIRT64
,
1635 OPTION_VIRT
, OPTION_NO_VIRT
,
1638 { "msa", ASE_MSA
, ASE_MSA64
,
1639 OPTION_MSA
, OPTION_NO_MSA
,
1642 { "xpa", ASE_XPA
, 0,
1643 OPTION_XPA
, OPTION_NO_XPA
,
1647 /* The set of ASEs that require -mfp64. */
1648 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX)
1650 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1651 static const unsigned int mips_ase_groups
[] = {
1657 The following pseudo-ops from the Kane and Heinrich MIPS book
1658 should be defined here, but are currently unsupported: .alias,
1659 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1661 The following pseudo-ops from the Kane and Heinrich MIPS book are
1662 specific to the type of debugging information being generated, and
1663 should be defined by the object format: .aent, .begin, .bend,
1664 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1667 The following pseudo-ops from the Kane and Heinrich MIPS book are
1668 not MIPS CPU specific, but are also not specific to the object file
1669 format. This file is probably the best place to define them, but
1670 they are not currently supported: .asm0, .endr, .lab, .struct. */
1672 static const pseudo_typeS mips_pseudo_table
[] =
1674 /* MIPS specific pseudo-ops. */
1675 {"option", s_option
, 0},
1676 {"set", s_mipsset
, 0},
1677 {"rdata", s_change_sec
, 'r'},
1678 {"sdata", s_change_sec
, 's'},
1679 {"livereg", s_ignore
, 0},
1680 {"abicalls", s_abicalls
, 0},
1681 {"cpload", s_cpload
, 0},
1682 {"cpsetup", s_cpsetup
, 0},
1683 {"cplocal", s_cplocal
, 0},
1684 {"cprestore", s_cprestore
, 0},
1685 {"cpreturn", s_cpreturn
, 0},
1686 {"dtprelword", s_dtprelword
, 0},
1687 {"dtpreldword", s_dtpreldword
, 0},
1688 {"tprelword", s_tprelword
, 0},
1689 {"tpreldword", s_tpreldword
, 0},
1690 {"gpvalue", s_gpvalue
, 0},
1691 {"gpword", s_gpword
, 0},
1692 {"gpdword", s_gpdword
, 0},
1693 {"ehword", s_ehword
, 0},
1694 {"cpadd", s_cpadd
, 0},
1695 {"insn", s_insn
, 0},
1698 /* Relatively generic pseudo-ops that happen to be used on MIPS
1700 {"asciiz", stringer
, 8 + 1},
1701 {"bss", s_change_sec
, 'b'},
1703 {"half", s_cons
, 1},
1704 {"dword", s_cons
, 3},
1705 {"weakext", s_mips_weakext
, 0},
1706 {"origin", s_org
, 0},
1707 {"repeat", s_rept
, 0},
1709 /* For MIPS this is non-standard, but we define it for consistency. */
1710 {"sbss", s_change_sec
, 'B'},
1712 /* These pseudo-ops are defined in read.c, but must be overridden
1713 here for one reason or another. */
1714 {"align", s_align
, 0},
1715 {"byte", s_cons
, 0},
1716 {"data", s_change_sec
, 'd'},
1717 {"double", s_float_cons
, 'd'},
1718 {"float", s_float_cons
, 'f'},
1719 {"globl", s_mips_globl
, 0},
1720 {"global", s_mips_globl
, 0},
1721 {"hword", s_cons
, 1},
1723 {"long", s_cons
, 2},
1724 {"octa", s_cons
, 4},
1725 {"quad", s_cons
, 3},
1726 {"section", s_change_section
, 0},
1727 {"short", s_cons
, 1},
1728 {"single", s_float_cons
, 'f'},
1729 {"stabd", s_mips_stab
, 'd'},
1730 {"stabn", s_mips_stab
, 'n'},
1731 {"stabs", s_mips_stab
, 's'},
1732 {"text", s_change_sec
, 't'},
1733 {"word", s_cons
, 2},
1735 { "extern", ecoff_directive_extern
, 0},
1740 static const pseudo_typeS mips_nonecoff_pseudo_table
[] =
1742 /* These pseudo-ops should be defined by the object file format.
1743 However, a.out doesn't support them, so we have versions here. */
1744 {"aent", s_mips_ent
, 1},
1745 {"bgnb", s_ignore
, 0},
1746 {"end", s_mips_end
, 0},
1747 {"endb", s_ignore
, 0},
1748 {"ent", s_mips_ent
, 0},
1749 {"file", s_mips_file
, 0},
1750 {"fmask", s_mips_mask
, 'F'},
1751 {"frame", s_mips_frame
, 0},
1752 {"loc", s_mips_loc
, 0},
1753 {"mask", s_mips_mask
, 'R'},
1754 {"verstamp", s_ignore
, 0},
1758 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1759 purpose of the `.dc.a' internal pseudo-op. */
1762 mips_address_bytes (void)
1764 return HAVE_64BIT_ADDRESSES
? 8 : 4;
1767 extern void pop_insert (const pseudo_typeS
*);
1770 mips_pop_insert (void)
1772 pop_insert (mips_pseudo_table
);
1773 if (! ECOFF_DEBUGGING
)
1774 pop_insert (mips_nonecoff_pseudo_table
);
1777 /* Symbols labelling the current insn. */
1779 struct insn_label_list
1781 struct insn_label_list
*next
;
1785 static struct insn_label_list
*free_insn_labels
;
1786 #define label_list tc_segment_info_data.labels
1788 static void mips_clear_insn_labels (void);
1789 static void mips_mark_labels (void);
1790 static void mips_compressed_mark_labels (void);
1793 mips_clear_insn_labels (void)
1795 register struct insn_label_list
**pl
;
1796 segment_info_type
*si
;
1800 for (pl
= &free_insn_labels
; *pl
!= NULL
; pl
= &(*pl
)->next
)
1803 si
= seg_info (now_seg
);
1804 *pl
= si
->label_list
;
1805 si
->label_list
= NULL
;
1809 /* Mark instruction labels in MIPS16/microMIPS mode. */
1812 mips_mark_labels (void)
1814 if (HAVE_CODE_COMPRESSION
)
1815 mips_compressed_mark_labels ();
1818 static char *expr_end
;
1820 /* An expression in a macro instruction. This is set by mips_ip and
1821 mips16_ip and when populated is always an O_constant. */
1823 static expressionS imm_expr
;
1825 /* The relocatable field in an instruction and the relocs associated
1826 with it. These variables are used for instructions like LUI and
1827 JAL as well as true offsets. They are also used for address
1828 operands in macros. */
1830 static expressionS offset_expr
;
1831 static bfd_reloc_code_real_type offset_reloc
[3]
1832 = {BFD_RELOC_UNUSED
, BFD_RELOC_UNUSED
, BFD_RELOC_UNUSED
};
1834 /* This is set to the resulting size of the instruction to be produced
1835 by mips16_ip if an explicit extension is used or by mips_ip if an
1836 explicit size is supplied. */
1838 static unsigned int forced_insn_length
;
1840 /* True if we are assembling an instruction. All dot symbols defined during
1841 this time should be treated as code labels. */
1843 static bfd_boolean mips_assembling_insn
;
1845 /* The pdr segment for per procedure frame/regmask info. Not used for
1848 static segT pdr_seg
;
1850 /* The default target format to use. */
1852 #if defined (TE_FreeBSD)
1853 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1854 #elif defined (TE_TMIPS)
1855 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1857 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1861 mips_target_format (void)
1863 switch (OUTPUT_FLAVOR
)
1865 case bfd_target_elf_flavour
:
1867 if (!HAVE_64BIT_OBJECTS
&& !HAVE_NEWABI
)
1868 return (target_big_endian
1869 ? "elf32-bigmips-vxworks"
1870 : "elf32-littlemips-vxworks");
1872 return (target_big_endian
1873 ? (HAVE_64BIT_OBJECTS
1874 ? ELF_TARGET ("elf64-", "big")
1876 ? ELF_TARGET ("elf32-n", "big")
1877 : ELF_TARGET ("elf32-", "big")))
1878 : (HAVE_64BIT_OBJECTS
1879 ? ELF_TARGET ("elf64-", "little")
1881 ? ELF_TARGET ("elf32-n", "little")
1882 : ELF_TARGET ("elf32-", "little"))));
1889 /* Return the ISA revision that is currently in use, or 0 if we are
1890 generating code for MIPS V or below. */
1895 if (mips_opts
.isa
== ISA_MIPS32R2
|| mips_opts
.isa
== ISA_MIPS64R2
)
1898 if (mips_opts
.isa
== ISA_MIPS32R3
|| mips_opts
.isa
== ISA_MIPS64R3
)
1901 if (mips_opts
.isa
== ISA_MIPS32R5
|| mips_opts
.isa
== ISA_MIPS64R5
)
1904 /* microMIPS implies revision 2 or above. */
1905 if (mips_opts
.micromips
)
1908 if (mips_opts
.isa
== ISA_MIPS32
|| mips_opts
.isa
== ISA_MIPS64
)
1914 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1917 mips_ase_mask (unsigned int flags
)
1921 for (i
= 0; i
< ARRAY_SIZE (mips_ase_groups
); i
++)
1922 if (flags
& mips_ase_groups
[i
])
1923 flags
|= mips_ase_groups
[i
];
1927 /* Check whether the current ISA supports ASE. Issue a warning if
1931 mips_check_isa_supports_ase (const struct mips_ase
*ase
)
1935 static unsigned int warned_isa
;
1936 static unsigned int warned_fp32
;
1938 if (ISA_HAS_64BIT_REGS (mips_opts
.isa
))
1939 min_rev
= mips_opts
.micromips
? ase
->micromips64_rev
: ase
->mips64_rev
;
1941 min_rev
= mips_opts
.micromips
? ase
->micromips32_rev
: ase
->mips32_rev
;
1942 if ((min_rev
< 0 || mips_isa_rev () < min_rev
)
1943 && (warned_isa
& ase
->flags
) != ase
->flags
)
1945 warned_isa
|= ase
->flags
;
1946 base
= mips_opts
.micromips
? "microMIPS" : "MIPS";
1947 size
= ISA_HAS_64BIT_REGS (mips_opts
.isa
) ? 64 : 32;
1949 as_warn (_("the %d-bit %s architecture does not support the"
1950 " `%s' extension"), size
, base
, ase
->name
);
1952 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
1953 ase
->name
, base
, size
, min_rev
);
1955 if ((ase
->flags
& FP64_ASES
)
1956 && mips_opts
.fp
!= 64
1957 && (warned_fp32
& ase
->flags
) != ase
->flags
)
1959 warned_fp32
|= ase
->flags
;
1960 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase
->name
);
1964 /* Check all enabled ASEs to see whether they are supported by the
1965 chosen architecture. */
1968 mips_check_isa_supports_ases (void)
1970 unsigned int i
, mask
;
1972 for (i
= 0; i
< ARRAY_SIZE (mips_ases
); i
++)
1974 mask
= mips_ase_mask (mips_ases
[i
].flags
);
1975 if ((mips_opts
.ase
& mask
) == mips_ases
[i
].flags
)
1976 mips_check_isa_supports_ase (&mips_ases
[i
]);
1980 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
1981 that were affected. */
1984 mips_set_ase (const struct mips_ase
*ase
, bfd_boolean enabled_p
)
1988 mask
= mips_ase_mask (ase
->flags
);
1989 mips_opts
.ase
&= ~mask
;
1991 mips_opts
.ase
|= ase
->flags
;
1995 /* Return the ASE called NAME, or null if none. */
1997 static const struct mips_ase
*
1998 mips_lookup_ase (const char *name
)
2002 for (i
= 0; i
< ARRAY_SIZE (mips_ases
); i
++)
2003 if (strcmp (name
, mips_ases
[i
].name
) == 0)
2004 return &mips_ases
[i
];
2008 /* Return the length of a microMIPS instruction in bytes. If bits of
2009 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
2010 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
2011 major opcode) will require further modifications to the opcode
2014 static inline unsigned int
2015 micromips_insn_length (const struct mips_opcode
*mo
)
2017 return (mo
->mask
>> 16) == 0 ? 2 : 4;
2020 /* Return the length of MIPS16 instruction OPCODE. */
2022 static inline unsigned int
2023 mips16_opcode_length (unsigned long opcode
)
2025 return (opcode
>> 16) == 0 ? 2 : 4;
2028 /* Return the length of instruction INSN. */
2030 static inline unsigned int
2031 insn_length (const struct mips_cl_insn
*insn
)
2033 if (mips_opts
.micromips
)
2034 return micromips_insn_length (insn
->insn_mo
);
2035 else if (mips_opts
.mips16
)
2036 return mips16_opcode_length (insn
->insn_opcode
);
2041 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2044 create_insn (struct mips_cl_insn
*insn
, const struct mips_opcode
*mo
)
2049 insn
->insn_opcode
= mo
->match
;
2052 for (i
= 0; i
< ARRAY_SIZE (insn
->fixp
); i
++)
2053 insn
->fixp
[i
] = NULL
;
2054 insn
->fixed_p
= (mips_opts
.noreorder
> 0);
2055 insn
->noreorder_p
= (mips_opts
.noreorder
> 0);
2056 insn
->mips16_absolute_jump_p
= 0;
2057 insn
->complete_p
= 0;
2058 insn
->cleared_p
= 0;
2061 /* Get a list of all the operands in INSN. */
2063 static const struct mips_operand_array
*
2064 insn_operands (const struct mips_cl_insn
*insn
)
2066 if (insn
->insn_mo
>= &mips_opcodes
[0]
2067 && insn
->insn_mo
< &mips_opcodes
[NUMOPCODES
])
2068 return &mips_operands
[insn
->insn_mo
- &mips_opcodes
[0]];
2070 if (insn
->insn_mo
>= &mips16_opcodes
[0]
2071 && insn
->insn_mo
< &mips16_opcodes
[bfd_mips16_num_opcodes
])
2072 return &mips16_operands
[insn
->insn_mo
- &mips16_opcodes
[0]];
2074 if (insn
->insn_mo
>= µmips_opcodes
[0]
2075 && insn
->insn_mo
< µmips_opcodes
[bfd_micromips_num_opcodes
])
2076 return µmips_operands
[insn
->insn_mo
- µmips_opcodes
[0]];
2081 /* Get a description of operand OPNO of INSN. */
2083 static const struct mips_operand
*
2084 insn_opno (const struct mips_cl_insn
*insn
, unsigned opno
)
2086 const struct mips_operand_array
*operands
;
2088 operands
= insn_operands (insn
);
2089 if (opno
>= MAX_OPERANDS
|| !operands
->operand
[opno
])
2091 return operands
->operand
[opno
];
2094 /* Install UVAL as the value of OPERAND in INSN. */
2097 insn_insert_operand (struct mips_cl_insn
*insn
,
2098 const struct mips_operand
*operand
, unsigned int uval
)
2100 insn
->insn_opcode
= mips_insert_operand (operand
, insn
->insn_opcode
, uval
);
2103 /* Extract the value of OPERAND from INSN. */
2105 static inline unsigned
2106 insn_extract_operand (const struct mips_cl_insn
*insn
,
2107 const struct mips_operand
*operand
)
2109 return mips_extract_operand (operand
, insn
->insn_opcode
);
2112 /* Record the current MIPS16/microMIPS mode in now_seg. */
2115 mips_record_compressed_mode (void)
2117 segment_info_type
*si
;
2119 si
= seg_info (now_seg
);
2120 if (si
->tc_segment_info_data
.mips16
!= mips_opts
.mips16
)
2121 si
->tc_segment_info_data
.mips16
= mips_opts
.mips16
;
2122 if (si
->tc_segment_info_data
.micromips
!= mips_opts
.micromips
)
2123 si
->tc_segment_info_data
.micromips
= mips_opts
.micromips
;
2126 /* Read a standard MIPS instruction from BUF. */
2128 static unsigned long
2129 read_insn (char *buf
)
2131 if (target_big_endian
)
2132 return bfd_getb32 ((bfd_byte
*) buf
);
2134 return bfd_getl32 ((bfd_byte
*) buf
);
2137 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2141 write_insn (char *buf
, unsigned int insn
)
2143 md_number_to_chars (buf
, insn
, 4);
2147 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2148 has length LENGTH. */
2150 static unsigned long
2151 read_compressed_insn (char *buf
, unsigned int length
)
2157 for (i
= 0; i
< length
; i
+= 2)
2160 if (target_big_endian
)
2161 insn
|= bfd_getb16 ((char *) buf
);
2163 insn
|= bfd_getl16 ((char *) buf
);
2169 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2170 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2173 write_compressed_insn (char *buf
, unsigned int insn
, unsigned int length
)
2177 for (i
= 0; i
< length
; i
+= 2)
2178 md_number_to_chars (buf
+ i
, insn
>> ((length
- i
- 2) * 8), 2);
2179 return buf
+ length
;
2182 /* Install INSN at the location specified by its "frag" and "where" fields. */
2185 install_insn (const struct mips_cl_insn
*insn
)
2187 char *f
= insn
->frag
->fr_literal
+ insn
->where
;
2188 if (HAVE_CODE_COMPRESSION
)
2189 write_compressed_insn (f
, insn
->insn_opcode
, insn_length (insn
));
2191 write_insn (f
, insn
->insn_opcode
);
2192 mips_record_compressed_mode ();
2195 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2196 and install the opcode in the new location. */
2199 move_insn (struct mips_cl_insn
*insn
, fragS
*frag
, long where
)
2204 insn
->where
= where
;
2205 for (i
= 0; i
< ARRAY_SIZE (insn
->fixp
); i
++)
2206 if (insn
->fixp
[i
] != NULL
)
2208 insn
->fixp
[i
]->fx_frag
= frag
;
2209 insn
->fixp
[i
]->fx_where
= where
;
2211 install_insn (insn
);
2214 /* Add INSN to the end of the output. */
2217 add_fixed_insn (struct mips_cl_insn
*insn
)
2219 char *f
= frag_more (insn_length (insn
));
2220 move_insn (insn
, frag_now
, f
- frag_now
->fr_literal
);
2223 /* Start a variant frag and move INSN to the start of the variant part,
2224 marking it as fixed. The other arguments are as for frag_var. */
2227 add_relaxed_insn (struct mips_cl_insn
*insn
, int max_chars
, int var
,
2228 relax_substateT subtype
, symbolS
*symbol
, offsetT offset
)
2230 frag_grow (max_chars
);
2231 move_insn (insn
, frag_now
, frag_more (0) - frag_now
->fr_literal
);
2233 frag_var (rs_machine_dependent
, max_chars
, var
,
2234 subtype
, symbol
, offset
, NULL
);
2237 /* Insert N copies of INSN into the history buffer, starting at
2238 position FIRST. Neither FIRST nor N need to be clipped. */
2241 insert_into_history (unsigned int first
, unsigned int n
,
2242 const struct mips_cl_insn
*insn
)
2244 if (mips_relax
.sequence
!= 2)
2248 for (i
= ARRAY_SIZE (history
); i
-- > first
;)
2250 history
[i
] = history
[i
- n
];
2256 /* Clear the error in insn_error. */
2259 clear_insn_error (void)
2261 memset (&insn_error
, 0, sizeof (insn_error
));
2264 /* Possibly record error message MSG for the current instruction.
2265 If the error is about a particular argument, ARGNUM is the 1-based
2266 number of that argument, otherwise it is 0. FORMAT is the format
2267 of MSG. Return true if MSG was used, false if the current message
2271 set_insn_error_format (int argnum
, enum mips_insn_error_format format
,
2276 /* Give priority to errors against specific arguments, and to
2277 the first whole-instruction message. */
2283 /* Keep insn_error if it is against a later argument. */
2284 if (argnum
< insn_error
.min_argnum
)
2287 /* If both errors are against the same argument but are different,
2288 give up on reporting a specific error for this argument.
2289 See the comment about mips_insn_error for details. */
2290 if (argnum
== insn_error
.min_argnum
2292 && strcmp (insn_error
.msg
, msg
) != 0)
2295 insn_error
.min_argnum
+= 1;
2299 insn_error
.min_argnum
= argnum
;
2300 insn_error
.format
= format
;
2301 insn_error
.msg
= msg
;
2305 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2306 as for set_insn_error_format. */
2309 set_insn_error (int argnum
, const char *msg
)
2311 set_insn_error_format (argnum
, ERR_FMT_PLAIN
, msg
);
2314 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2315 as for set_insn_error_format. */
2318 set_insn_error_i (int argnum
, const char *msg
, int i
)
2320 if (set_insn_error_format (argnum
, ERR_FMT_I
, msg
))
2324 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2325 are as for set_insn_error_format. */
2328 set_insn_error_ss (int argnum
, const char *msg
, const char *s1
, const char *s2
)
2330 if (set_insn_error_format (argnum
, ERR_FMT_SS
, msg
))
2332 insn_error
.u
.ss
[0] = s1
;
2333 insn_error
.u
.ss
[1] = s2
;
2337 /* Report the error in insn_error, which is against assembly code STR. */
2340 report_insn_error (const char *str
)
2344 msg
= ACONCAT ((insn_error
.msg
, " `%s'", NULL
));
2345 switch (insn_error
.format
)
2352 as_bad (msg
, insn_error
.u
.i
, str
);
2356 as_bad (msg
, insn_error
.u
.ss
[0], insn_error
.u
.ss
[1], str
);
2361 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2362 the idea is to make it obvious at a glance that each errata is
2366 init_vr4120_conflicts (void)
2368 #define CONFLICT(FIRST, SECOND) \
2369 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2371 /* Errata 21 - [D]DIV[U] after [D]MACC */
2372 CONFLICT (MACC
, DIV
);
2373 CONFLICT (DMACC
, DIV
);
2375 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2376 CONFLICT (DMULT
, DMULT
);
2377 CONFLICT (DMULT
, DMACC
);
2378 CONFLICT (DMACC
, DMULT
);
2379 CONFLICT (DMACC
, DMACC
);
2381 /* Errata 24 - MT{LO,HI} after [D]MACC */
2382 CONFLICT (MACC
, MTHILO
);
2383 CONFLICT (DMACC
, MTHILO
);
2385 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2386 instruction is executed immediately after a MACC or DMACC
2387 instruction, the result of [either instruction] is incorrect." */
2388 CONFLICT (MACC
, MULT
);
2389 CONFLICT (MACC
, DMULT
);
2390 CONFLICT (DMACC
, MULT
);
2391 CONFLICT (DMACC
, DMULT
);
2393 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2394 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2395 DDIV or DDIVU instruction, the result of the MACC or
2396 DMACC instruction is incorrect.". */
2397 CONFLICT (DMULT
, MACC
);
2398 CONFLICT (DMULT
, DMACC
);
2399 CONFLICT (DIV
, MACC
);
2400 CONFLICT (DIV
, DMACC
);
2410 #define RNUM_MASK 0x00000ff
2411 #define RTYPE_MASK 0x0ffff00
2412 #define RTYPE_NUM 0x0000100
2413 #define RTYPE_FPU 0x0000200
2414 #define RTYPE_FCC 0x0000400
2415 #define RTYPE_VEC 0x0000800
2416 #define RTYPE_GP 0x0001000
2417 #define RTYPE_CP0 0x0002000
2418 #define RTYPE_PC 0x0004000
2419 #define RTYPE_ACC 0x0008000
2420 #define RTYPE_CCC 0x0010000
2421 #define RTYPE_VI 0x0020000
2422 #define RTYPE_VF 0x0040000
2423 #define RTYPE_R5900_I 0x0080000
2424 #define RTYPE_R5900_Q 0x0100000
2425 #define RTYPE_R5900_R 0x0200000
2426 #define RTYPE_R5900_ACC 0x0400000
2427 #define RTYPE_MSA 0x0800000
2428 #define RWARN 0x8000000
2430 #define GENERIC_REGISTER_NUMBERS \
2431 {"$0", RTYPE_NUM | 0}, \
2432 {"$1", RTYPE_NUM | 1}, \
2433 {"$2", RTYPE_NUM | 2}, \
2434 {"$3", RTYPE_NUM | 3}, \
2435 {"$4", RTYPE_NUM | 4}, \
2436 {"$5", RTYPE_NUM | 5}, \
2437 {"$6", RTYPE_NUM | 6}, \
2438 {"$7", RTYPE_NUM | 7}, \
2439 {"$8", RTYPE_NUM | 8}, \
2440 {"$9", RTYPE_NUM | 9}, \
2441 {"$10", RTYPE_NUM | 10}, \
2442 {"$11", RTYPE_NUM | 11}, \
2443 {"$12", RTYPE_NUM | 12}, \
2444 {"$13", RTYPE_NUM | 13}, \
2445 {"$14", RTYPE_NUM | 14}, \
2446 {"$15", RTYPE_NUM | 15}, \
2447 {"$16", RTYPE_NUM | 16}, \
2448 {"$17", RTYPE_NUM | 17}, \
2449 {"$18", RTYPE_NUM | 18}, \
2450 {"$19", RTYPE_NUM | 19}, \
2451 {"$20", RTYPE_NUM | 20}, \
2452 {"$21", RTYPE_NUM | 21}, \
2453 {"$22", RTYPE_NUM | 22}, \
2454 {"$23", RTYPE_NUM | 23}, \
2455 {"$24", RTYPE_NUM | 24}, \
2456 {"$25", RTYPE_NUM | 25}, \
2457 {"$26", RTYPE_NUM | 26}, \
2458 {"$27", RTYPE_NUM | 27}, \
2459 {"$28", RTYPE_NUM | 28}, \
2460 {"$29", RTYPE_NUM | 29}, \
2461 {"$30", RTYPE_NUM | 30}, \
2462 {"$31", RTYPE_NUM | 31}
2464 #define FPU_REGISTER_NAMES \
2465 {"$f0", RTYPE_FPU | 0}, \
2466 {"$f1", RTYPE_FPU | 1}, \
2467 {"$f2", RTYPE_FPU | 2}, \
2468 {"$f3", RTYPE_FPU | 3}, \
2469 {"$f4", RTYPE_FPU | 4}, \
2470 {"$f5", RTYPE_FPU | 5}, \
2471 {"$f6", RTYPE_FPU | 6}, \
2472 {"$f7", RTYPE_FPU | 7}, \
2473 {"$f8", RTYPE_FPU | 8}, \
2474 {"$f9", RTYPE_FPU | 9}, \
2475 {"$f10", RTYPE_FPU | 10}, \
2476 {"$f11", RTYPE_FPU | 11}, \
2477 {"$f12", RTYPE_FPU | 12}, \
2478 {"$f13", RTYPE_FPU | 13}, \
2479 {"$f14", RTYPE_FPU | 14}, \
2480 {"$f15", RTYPE_FPU | 15}, \
2481 {"$f16", RTYPE_FPU | 16}, \
2482 {"$f17", RTYPE_FPU | 17}, \
2483 {"$f18", RTYPE_FPU | 18}, \
2484 {"$f19", RTYPE_FPU | 19}, \
2485 {"$f20", RTYPE_FPU | 20}, \
2486 {"$f21", RTYPE_FPU | 21}, \
2487 {"$f22", RTYPE_FPU | 22}, \
2488 {"$f23", RTYPE_FPU | 23}, \
2489 {"$f24", RTYPE_FPU | 24}, \
2490 {"$f25", RTYPE_FPU | 25}, \
2491 {"$f26", RTYPE_FPU | 26}, \
2492 {"$f27", RTYPE_FPU | 27}, \
2493 {"$f28", RTYPE_FPU | 28}, \
2494 {"$f29", RTYPE_FPU | 29}, \
2495 {"$f30", RTYPE_FPU | 30}, \
2496 {"$f31", RTYPE_FPU | 31}
2498 #define FPU_CONDITION_CODE_NAMES \
2499 {"$fcc0", RTYPE_FCC | 0}, \
2500 {"$fcc1", RTYPE_FCC | 1}, \
2501 {"$fcc2", RTYPE_FCC | 2}, \
2502 {"$fcc3", RTYPE_FCC | 3}, \
2503 {"$fcc4", RTYPE_FCC | 4}, \
2504 {"$fcc5", RTYPE_FCC | 5}, \
2505 {"$fcc6", RTYPE_FCC | 6}, \
2506 {"$fcc7", RTYPE_FCC | 7}
2508 #define COPROC_CONDITION_CODE_NAMES \
2509 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2510 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2511 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2512 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2513 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2514 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2515 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2516 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2518 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2519 {"$a4", RTYPE_GP | 8}, \
2520 {"$a5", RTYPE_GP | 9}, \
2521 {"$a6", RTYPE_GP | 10}, \
2522 {"$a7", RTYPE_GP | 11}, \
2523 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2524 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2525 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2526 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2527 {"$t0", RTYPE_GP | 12}, \
2528 {"$t1", RTYPE_GP | 13}, \
2529 {"$t2", RTYPE_GP | 14}, \
2530 {"$t3", RTYPE_GP | 15}
2532 #define O32_SYMBOLIC_REGISTER_NAMES \
2533 {"$t0", RTYPE_GP | 8}, \
2534 {"$t1", RTYPE_GP | 9}, \
2535 {"$t2", RTYPE_GP | 10}, \
2536 {"$t3", RTYPE_GP | 11}, \
2537 {"$t4", RTYPE_GP | 12}, \
2538 {"$t5", RTYPE_GP | 13}, \
2539 {"$t6", RTYPE_GP | 14}, \
2540 {"$t7", RTYPE_GP | 15}, \
2541 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2542 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2543 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2544 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2546 /* Remaining symbolic register names */
2547 #define SYMBOLIC_REGISTER_NAMES \
2548 {"$zero", RTYPE_GP | 0}, \
2549 {"$at", RTYPE_GP | 1}, \
2550 {"$AT", RTYPE_GP | 1}, \
2551 {"$v0", RTYPE_GP | 2}, \
2552 {"$v1", RTYPE_GP | 3}, \
2553 {"$a0", RTYPE_GP | 4}, \
2554 {"$a1", RTYPE_GP | 5}, \
2555 {"$a2", RTYPE_GP | 6}, \
2556 {"$a3", RTYPE_GP | 7}, \
2557 {"$s0", RTYPE_GP | 16}, \
2558 {"$s1", RTYPE_GP | 17}, \
2559 {"$s2", RTYPE_GP | 18}, \
2560 {"$s3", RTYPE_GP | 19}, \
2561 {"$s4", RTYPE_GP | 20}, \
2562 {"$s5", RTYPE_GP | 21}, \
2563 {"$s6", RTYPE_GP | 22}, \
2564 {"$s7", RTYPE_GP | 23}, \
2565 {"$t8", RTYPE_GP | 24}, \
2566 {"$t9", RTYPE_GP | 25}, \
2567 {"$k0", RTYPE_GP | 26}, \
2568 {"$kt0", RTYPE_GP | 26}, \
2569 {"$k1", RTYPE_GP | 27}, \
2570 {"$kt1", RTYPE_GP | 27}, \
2571 {"$gp", RTYPE_GP | 28}, \
2572 {"$sp", RTYPE_GP | 29}, \
2573 {"$s8", RTYPE_GP | 30}, \
2574 {"$fp", RTYPE_GP | 30}, \
2575 {"$ra", RTYPE_GP | 31}
2577 #define MIPS16_SPECIAL_REGISTER_NAMES \
2578 {"$pc", RTYPE_PC | 0}
2580 #define MDMX_VECTOR_REGISTER_NAMES \
2581 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2582 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2583 {"$v2", RTYPE_VEC | 2}, \
2584 {"$v3", RTYPE_VEC | 3}, \
2585 {"$v4", RTYPE_VEC | 4}, \
2586 {"$v5", RTYPE_VEC | 5}, \
2587 {"$v6", RTYPE_VEC | 6}, \
2588 {"$v7", RTYPE_VEC | 7}, \
2589 {"$v8", RTYPE_VEC | 8}, \
2590 {"$v9", RTYPE_VEC | 9}, \
2591 {"$v10", RTYPE_VEC | 10}, \
2592 {"$v11", RTYPE_VEC | 11}, \
2593 {"$v12", RTYPE_VEC | 12}, \
2594 {"$v13", RTYPE_VEC | 13}, \
2595 {"$v14", RTYPE_VEC | 14}, \
2596 {"$v15", RTYPE_VEC | 15}, \
2597 {"$v16", RTYPE_VEC | 16}, \
2598 {"$v17", RTYPE_VEC | 17}, \
2599 {"$v18", RTYPE_VEC | 18}, \
2600 {"$v19", RTYPE_VEC | 19}, \
2601 {"$v20", RTYPE_VEC | 20}, \
2602 {"$v21", RTYPE_VEC | 21}, \
2603 {"$v22", RTYPE_VEC | 22}, \
2604 {"$v23", RTYPE_VEC | 23}, \
2605 {"$v24", RTYPE_VEC | 24}, \
2606 {"$v25", RTYPE_VEC | 25}, \
2607 {"$v26", RTYPE_VEC | 26}, \
2608 {"$v27", RTYPE_VEC | 27}, \
2609 {"$v28", RTYPE_VEC | 28}, \
2610 {"$v29", RTYPE_VEC | 29}, \
2611 {"$v30", RTYPE_VEC | 30}, \
2612 {"$v31", RTYPE_VEC | 31}
2614 #define R5900_I_NAMES \
2615 {"$I", RTYPE_R5900_I | 0}
2617 #define R5900_Q_NAMES \
2618 {"$Q", RTYPE_R5900_Q | 0}
2620 #define R5900_R_NAMES \
2621 {"$R", RTYPE_R5900_R | 0}
2623 #define R5900_ACC_NAMES \
2624 {"$ACC", RTYPE_R5900_ACC | 0 }
2626 #define MIPS_DSP_ACCUMULATOR_NAMES \
2627 {"$ac0", RTYPE_ACC | 0}, \
2628 {"$ac1", RTYPE_ACC | 1}, \
2629 {"$ac2", RTYPE_ACC | 2}, \
2630 {"$ac3", RTYPE_ACC | 3}
2632 static const struct regname reg_names
[] = {
2633 GENERIC_REGISTER_NUMBERS
,
2635 FPU_CONDITION_CODE_NAMES
,
2636 COPROC_CONDITION_CODE_NAMES
,
2638 /* The $txx registers depends on the abi,
2639 these will be added later into the symbol table from
2640 one of the tables below once mips_abi is set after
2641 parsing of arguments from the command line. */
2642 SYMBOLIC_REGISTER_NAMES
,
2644 MIPS16_SPECIAL_REGISTER_NAMES
,
2645 MDMX_VECTOR_REGISTER_NAMES
,
2650 MIPS_DSP_ACCUMULATOR_NAMES
,
2654 static const struct regname reg_names_o32
[] = {
2655 O32_SYMBOLIC_REGISTER_NAMES
,
2659 static const struct regname reg_names_n32n64
[] = {
2660 N32N64_SYMBOLIC_REGISTER_NAMES
,
2664 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2665 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2666 of these register symbols, return the associated vector register,
2667 otherwise return SYMVAL itself. */
2670 mips_prefer_vec_regno (unsigned int symval
)
2672 if ((symval
& -2) == (RTYPE_GP
| 2))
2673 return RTYPE_VEC
| (symval
& 1);
2677 /* Return true if string [S, E) is a valid register name, storing its
2678 symbol value in *SYMVAL_PTR if so. */
2681 mips_parse_register_1 (char *s
, char *e
, unsigned int *symval_ptr
)
2686 /* Terminate name. */
2690 /* Look up the name. */
2691 symbol
= symbol_find (s
);
2694 if (!symbol
|| S_GET_SEGMENT (symbol
) != reg_section
)
2697 *symval_ptr
= S_GET_VALUE (symbol
);
2701 /* Return true if the string at *SPTR is a valid register name. Allow it
2702 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2705 When returning true, move *SPTR past the register, store the
2706 register's symbol value in *SYMVAL_PTR and the channel mask in
2707 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2708 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2709 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2712 mips_parse_register (char **sptr
, unsigned int *symval_ptr
,
2713 unsigned int *channels_ptr
)
2717 unsigned int channels
, symval
, bit
;
2719 /* Find end of name. */
2721 if (is_name_beginner (*e
))
2723 while (is_part_of_name (*e
))
2727 if (!mips_parse_register_1 (s
, e
, &symval
))
2732 /* Eat characters from the end of the string that are valid
2733 channel suffixes. The preceding register must be $ACC or
2734 end with a digit, so there is no ambiguity. */
2737 for (q
= "wzyx"; *q
; q
++, bit
<<= 1)
2738 if (m
> s
&& m
[-1] == *q
)
2745 || !mips_parse_register_1 (s
, m
, &symval
)
2746 || (symval
& (RTYPE_VI
| RTYPE_VF
| RTYPE_R5900_ACC
)) == 0)
2751 *symval_ptr
= symval
;
2753 *channels_ptr
= channels
;
2757 /* Check if SPTR points at a valid register specifier according to TYPES.
2758 If so, then return 1, advance S to consume the specifier and store
2759 the register's number in REGNOP, otherwise return 0. */
2762 reg_lookup (char **s
, unsigned int types
, unsigned int *regnop
)
2766 if (mips_parse_register (s
, ®no
, NULL
))
2768 if (types
& RTYPE_VEC
)
2769 regno
= mips_prefer_vec_regno (regno
);
2778 as_warn (_("unrecognized register name `%s'"), *s
);
2783 return regno
<= RNUM_MASK
;
2786 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2787 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2790 mips_parse_vu0_channels (char *s
, unsigned int *channels
)
2795 for (i
= 0; i
< 4; i
++)
2796 if (*s
== "xyzw"[i
])
2798 *channels
|= 1 << (3 - i
);
2804 /* Token types for parsed operand lists. */
2805 enum mips_operand_token_type
{
2806 /* A plain register, e.g. $f2. */
2809 /* A 4-bit XYZW channel mask. */
2812 /* A constant vector index, e.g. [1]. */
2815 /* A register vector index, e.g. [$2]. */
2818 /* A continuous range of registers, e.g. $s0-$s4. */
2821 /* A (possibly relocated) expression. */
2824 /* A floating-point value. */
2827 /* A single character. This can be '(', ')' or ',', but '(' only appears
2831 /* A doubled character, either "--" or "++". */
2834 /* The end of the operand list. */
2838 /* A parsed operand token. */
2839 struct mips_operand_token
2841 /* The type of token. */
2842 enum mips_operand_token_type type
;
2845 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2848 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2849 unsigned int channels
;
2851 /* The integer value of an OT_INTEGER_INDEX. */
2854 /* The two register symbol values involved in an OT_REG_RANGE. */
2856 unsigned int regno1
;
2857 unsigned int regno2
;
2860 /* The value of an OT_INTEGER. The value is represented as an
2861 expression and the relocation operators that were applied to
2862 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2863 relocation operators were used. */
2866 bfd_reloc_code_real_type relocs
[3];
2869 /* The binary data for an OT_FLOAT constant, and the number of bytes
2872 unsigned char data
[8];
2876 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2881 /* An obstack used to construct lists of mips_operand_tokens. */
2882 static struct obstack mips_operand_tokens
;
2884 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2887 mips_add_token (struct mips_operand_token
*token
,
2888 enum mips_operand_token_type type
)
2891 obstack_grow (&mips_operand_tokens
, token
, sizeof (*token
));
2894 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2895 and OT_REG tokens for them if so, and return a pointer to the first
2896 unconsumed character. Return null otherwise. */
2899 mips_parse_base_start (char *s
)
2901 struct mips_operand_token token
;
2902 unsigned int regno
, channels
;
2903 bfd_boolean decrement_p
;
2909 SKIP_SPACE_TABS (s
);
2911 /* Only match "--" as part of a base expression. In other contexts "--X"
2912 is a double negative. */
2913 decrement_p
= (s
[0] == '-' && s
[1] == '-');
2917 SKIP_SPACE_TABS (s
);
2920 /* Allow a channel specifier because that leads to better error messages
2921 than treating something like "$vf0x++" as an expression. */
2922 if (!mips_parse_register (&s
, ®no
, &channels
))
2926 mips_add_token (&token
, OT_CHAR
);
2931 mips_add_token (&token
, OT_DOUBLE_CHAR
);
2934 token
.u
.regno
= regno
;
2935 mips_add_token (&token
, OT_REG
);
2939 token
.u
.channels
= channels
;
2940 mips_add_token (&token
, OT_CHANNELS
);
2943 /* For consistency, only match "++" as part of base expressions too. */
2944 SKIP_SPACE_TABS (s
);
2945 if (s
[0] == '+' && s
[1] == '+')
2949 mips_add_token (&token
, OT_DOUBLE_CHAR
);
2955 /* Parse one or more tokens from S. Return a pointer to the first
2956 unconsumed character on success. Return null if an error was found
2957 and store the error text in insn_error. FLOAT_FORMAT is as for
2958 mips_parse_arguments. */
2961 mips_parse_argument_token (char *s
, char float_format
)
2963 char *end
, *save_in
, *err
;
2964 unsigned int regno1
, regno2
, channels
;
2965 struct mips_operand_token token
;
2967 /* First look for "($reg", since we want to treat that as an
2968 OT_CHAR and OT_REG rather than an expression. */
2969 end
= mips_parse_base_start (s
);
2973 /* Handle other characters that end up as OT_CHARs. */
2974 if (*s
== ')' || *s
== ',')
2977 mips_add_token (&token
, OT_CHAR
);
2982 /* Handle tokens that start with a register. */
2983 if (mips_parse_register (&s
, ®no1
, &channels
))
2987 /* A register and a VU0 channel suffix. */
2988 token
.u
.regno
= regno1
;
2989 mips_add_token (&token
, OT_REG
);
2991 token
.u
.channels
= channels
;
2992 mips_add_token (&token
, OT_CHANNELS
);
2996 SKIP_SPACE_TABS (s
);
2999 /* A register range. */
3001 SKIP_SPACE_TABS (s
);
3002 if (!mips_parse_register (&s
, ®no2
, NULL
))
3004 set_insn_error (0, _("invalid register range"));
3008 token
.u
.reg_range
.regno1
= regno1
;
3009 token
.u
.reg_range
.regno2
= regno2
;
3010 mips_add_token (&token
, OT_REG_RANGE
);
3014 /* Add the register itself. */
3015 token
.u
.regno
= regno1
;
3016 mips_add_token (&token
, OT_REG
);
3018 /* Check for a vector index. */
3022 SKIP_SPACE_TABS (s
);
3023 if (mips_parse_register (&s
, &token
.u
.regno
, NULL
))
3024 mips_add_token (&token
, OT_REG_INDEX
);
3027 expressionS element
;
3029 my_getExpression (&element
, s
);
3030 if (element
.X_op
!= O_constant
)
3032 set_insn_error (0, _("vector element must be constant"));
3036 token
.u
.index
= element
.X_add_number
;
3037 mips_add_token (&token
, OT_INTEGER_INDEX
);
3039 SKIP_SPACE_TABS (s
);
3042 set_insn_error (0, _("missing `]'"));
3052 /* First try to treat expressions as floats. */
3053 save_in
= input_line_pointer
;
3054 input_line_pointer
= s
;
3055 err
= md_atof (float_format
, (char *) token
.u
.flt
.data
,
3056 &token
.u
.flt
.length
);
3057 end
= input_line_pointer
;
3058 input_line_pointer
= save_in
;
3061 set_insn_error (0, err
);
3066 mips_add_token (&token
, OT_FLOAT
);
3071 /* Treat everything else as an integer expression. */
3072 token
.u
.integer
.relocs
[0] = BFD_RELOC_UNUSED
;
3073 token
.u
.integer
.relocs
[1] = BFD_RELOC_UNUSED
;
3074 token
.u
.integer
.relocs
[2] = BFD_RELOC_UNUSED
;
3075 my_getSmallExpression (&token
.u
.integer
.value
, token
.u
.integer
.relocs
, s
);
3077 mips_add_token (&token
, OT_INTEGER
);
3081 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3082 if expressions should be treated as 32-bit floating-point constants,
3083 'd' if they should be treated as 64-bit floating-point constants,
3084 or 0 if they should be treated as integer expressions (the usual case).
3086 Return a list of tokens on success, otherwise return 0. The caller
3087 must obstack_free the list after use. */
3089 static struct mips_operand_token
*
3090 mips_parse_arguments (char *s
, char float_format
)
3092 struct mips_operand_token token
;
3094 SKIP_SPACE_TABS (s
);
3097 s
= mips_parse_argument_token (s
, float_format
);
3100 obstack_free (&mips_operand_tokens
,
3101 obstack_finish (&mips_operand_tokens
));
3104 SKIP_SPACE_TABS (s
);
3106 mips_add_token (&token
, OT_END
);
3107 return (struct mips_operand_token
*) obstack_finish (&mips_operand_tokens
);
3110 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3111 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3114 is_opcode_valid (const struct mips_opcode
*mo
)
3116 int isa
= mips_opts
.isa
;
3117 int ase
= mips_opts
.ase
;
3121 if (ISA_HAS_64BIT_REGS (mips_opts
.isa
))
3122 for (i
= 0; i
< ARRAY_SIZE (mips_ases
); i
++)
3123 if ((ase
& mips_ases
[i
].flags
) == mips_ases
[i
].flags
)
3124 ase
|= mips_ases
[i
].flags64
;
3126 if (!opcode_is_member (mo
, isa
, ase
, mips_opts
.arch
))
3129 /* Check whether the instruction or macro requires single-precision or
3130 double-precision floating-point support. Note that this information is
3131 stored differently in the opcode table for insns and macros. */
3132 if (mo
->pinfo
== INSN_MACRO
)
3134 fp_s
= mo
->pinfo2
& INSN2_M_FP_S
;
3135 fp_d
= mo
->pinfo2
& INSN2_M_FP_D
;
3139 fp_s
= mo
->pinfo
& FP_S
;
3140 fp_d
= mo
->pinfo
& FP_D
;
3143 if (fp_d
&& (mips_opts
.soft_float
|| mips_opts
.single_float
))
3146 if (fp_s
&& mips_opts
.soft_float
)
3152 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3153 selected ISA and architecture. */
3156 is_opcode_valid_16 (const struct mips_opcode
*mo
)
3158 return opcode_is_member (mo
, mips_opts
.isa
, 0, mips_opts
.arch
);
3161 /* Return TRUE if the size of the microMIPS opcode MO matches one
3162 explicitly requested. Always TRUE in the standard MIPS mode. */
3165 is_size_valid (const struct mips_opcode
*mo
)
3167 if (!mips_opts
.micromips
)
3170 if (mips_opts
.insn32
)
3172 if (mo
->pinfo
!= INSN_MACRO
&& micromips_insn_length (mo
) != 4)
3174 if ((mo
->pinfo2
& INSN2_BRANCH_DELAY_16BIT
) != 0)
3177 if (!forced_insn_length
)
3179 if (mo
->pinfo
== INSN_MACRO
)
3181 return forced_insn_length
== micromips_insn_length (mo
);
3184 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3185 of the preceding instruction. Always TRUE in the standard MIPS mode.
3187 We don't accept macros in 16-bit delay slots to avoid a case where
3188 a macro expansion fails because it relies on a preceding 32-bit real
3189 instruction to have matched and does not handle the operands correctly.
3190 The only macros that may expand to 16-bit instructions are JAL that
3191 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3192 and BGT (that likewise cannot be placed in a delay slot) that decay to
3193 a NOP. In all these cases the macros precede any corresponding real
3194 instruction definitions in the opcode table, so they will match in the
3195 second pass where the size of the delay slot is ignored and therefore
3196 produce correct code. */
3199 is_delay_slot_valid (const struct mips_opcode
*mo
)
3201 if (!mips_opts
.micromips
)
3204 if (mo
->pinfo
== INSN_MACRO
)
3205 return (history
[0].insn_mo
->pinfo2
& INSN2_BRANCH_DELAY_16BIT
) == 0;
3206 if ((history
[0].insn_mo
->pinfo2
& INSN2_BRANCH_DELAY_32BIT
) != 0
3207 && micromips_insn_length (mo
) != 4)
3209 if ((history
[0].insn_mo
->pinfo2
& INSN2_BRANCH_DELAY_16BIT
) != 0
3210 && micromips_insn_length (mo
) != 2)
3216 /* For consistency checking, verify that all bits of OPCODE are specified
3217 either by the match/mask part of the instruction definition, or by the
3218 operand list. Also build up a list of operands in OPERANDS.
3220 INSN_BITS says which bits of the instruction are significant.
3221 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3222 provides the mips_operand description of each operand. DECODE_OPERAND
3223 is null for MIPS16 instructions. */
3226 validate_mips_insn (const struct mips_opcode
*opcode
,
3227 unsigned long insn_bits
,
3228 const struct mips_operand
*(*decode_operand
) (const char *),
3229 struct mips_operand_array
*operands
)
3232 unsigned long used_bits
, doubled
, undefined
, opno
, mask
;
3233 const struct mips_operand
*operand
;
3235 mask
= (opcode
->pinfo
== INSN_MACRO
? 0 : opcode
->mask
);
3236 if ((mask
& opcode
->match
) != opcode
->match
)
3238 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3239 opcode
->name
, opcode
->args
);
3244 if (opcode
->pinfo2
& INSN2_VU0_CHANNEL_SUFFIX
)
3245 used_bits
= mips_insert_operand (&mips_vu0_channel_mask
, used_bits
, -1);
3246 for (s
= opcode
->args
; *s
; ++s
)
3259 if (!decode_operand
)
3260 operand
= decode_mips16_operand (*s
, FALSE
);
3262 operand
= decode_operand (s
);
3263 if (!operand
&& opcode
->pinfo
!= INSN_MACRO
)
3265 as_bad (_("internal: unknown operand type: %s %s"),
3266 opcode
->name
, opcode
->args
);
3269 gas_assert (opno
< MAX_OPERANDS
);
3270 operands
->operand
[opno
] = operand
;
3271 if (operand
&& operand
->type
!= OP_VU0_MATCH_SUFFIX
)
3273 used_bits
= mips_insert_operand (operand
, used_bits
, -1);
3274 if (operand
->type
== OP_MDMX_IMM_REG
)
3275 /* Bit 5 is the format selector (OB vs QH). The opcode table
3276 has separate entries for each format. */
3277 used_bits
&= ~(1 << (operand
->lsb
+ 5));
3278 if (operand
->type
== OP_ENTRY_EXIT_LIST
)
3279 used_bits
&= ~(mask
& 0x700);
3281 /* Skip prefix characters. */
3282 if (decode_operand
&& (*s
== '+' || *s
== 'm'))
3287 doubled
= used_bits
& mask
& insn_bits
;
3290 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3291 " %s %s"), doubled
, opcode
->name
, opcode
->args
);
3295 undefined
= ~used_bits
& insn_bits
;
3296 if (opcode
->pinfo
!= INSN_MACRO
&& undefined
)
3298 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3299 undefined
, opcode
->name
, opcode
->args
);
3302 used_bits
&= ~insn_bits
;
3305 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3306 used_bits
, opcode
->name
, opcode
->args
);
3312 /* The MIPS16 version of validate_mips_insn. */
3315 validate_mips16_insn (const struct mips_opcode
*opcode
,
3316 struct mips_operand_array
*operands
)
3318 if (opcode
->args
[0] == 'a' || opcode
->args
[0] == 'i')
3320 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3321 instruction. Use TMP to describe the full instruction. */
3322 struct mips_opcode tmp
;
3327 return validate_mips_insn (&tmp
, 0xffffffff, 0, operands
);
3329 return validate_mips_insn (opcode
, 0xffff, 0, operands
);
3332 /* The microMIPS version of validate_mips_insn. */
3335 validate_micromips_insn (const struct mips_opcode
*opc
,
3336 struct mips_operand_array
*operands
)
3338 unsigned long insn_bits
;
3339 unsigned long major
;
3340 unsigned int length
;
3342 if (opc
->pinfo
== INSN_MACRO
)
3343 return validate_mips_insn (opc
, 0xffffffff, decode_micromips_operand
,
3346 length
= micromips_insn_length (opc
);
3347 if (length
!= 2 && length
!= 4)
3349 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3350 "%s %s"), length
, opc
->name
, opc
->args
);
3353 major
= opc
->match
>> (10 + 8 * (length
- 2));
3354 if ((length
== 2 && (major
& 7) != 1 && (major
& 6) != 2)
3355 || (length
== 4 && (major
& 7) != 0 && (major
& 4) != 4))
3357 as_bad (_("internal error: bad microMIPS opcode "
3358 "(opcode/length mismatch): %s %s"), opc
->name
, opc
->args
);
3362 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3363 insn_bits
= 1 << 4 * length
;
3364 insn_bits
<<= 4 * length
;
3366 return validate_mips_insn (opc
, insn_bits
, decode_micromips_operand
,
3370 /* This function is called once, at assembler startup time. It should set up
3371 all the tables, etc. that the MD part of the assembler will need. */
3376 const char *retval
= NULL
;
3380 if (mips_pic
!= NO_PIC
)
3382 if (g_switch_seen
&& g_switch_value
!= 0)
3383 as_bad (_("-G may not be used in position-independent code"));
3387 if (! bfd_set_arch_mach (stdoutput
, bfd_arch_mips
, file_mips_opts
.arch
))
3388 as_warn (_("could not set architecture and machine"));
3390 op_hash
= hash_new ();
3392 mips_operands
= XCNEWVEC (struct mips_operand_array
, NUMOPCODES
);
3393 for (i
= 0; i
< NUMOPCODES
;)
3395 const char *name
= mips_opcodes
[i
].name
;
3397 retval
= hash_insert (op_hash
, name
, (void *) &mips_opcodes
[i
]);
3400 fprintf (stderr
, _("internal error: can't hash `%s': %s\n"),
3401 mips_opcodes
[i
].name
, retval
);
3402 /* Probably a memory allocation problem? Give up now. */
3403 as_fatal (_("broken assembler, no assembly attempted"));
3407 if (!validate_mips_insn (&mips_opcodes
[i
], 0xffffffff,
3408 decode_mips_operand
, &mips_operands
[i
]))
3410 if (nop_insn
.insn_mo
== NULL
&& strcmp (name
, "nop") == 0)
3412 create_insn (&nop_insn
, mips_opcodes
+ i
);
3413 if (mips_fix_loongson2f_nop
)
3414 nop_insn
.insn_opcode
= LOONGSON2F_NOP_INSN
;
3415 nop_insn
.fixed_p
= 1;
3419 while ((i
< NUMOPCODES
) && !strcmp (mips_opcodes
[i
].name
, name
));
3422 mips16_op_hash
= hash_new ();
3423 mips16_operands
= XCNEWVEC (struct mips_operand_array
,
3424 bfd_mips16_num_opcodes
);
3427 while (i
< bfd_mips16_num_opcodes
)
3429 const char *name
= mips16_opcodes
[i
].name
;
3431 retval
= hash_insert (mips16_op_hash
, name
, (void *) &mips16_opcodes
[i
]);
3433 as_fatal (_("internal: can't hash `%s': %s"),
3434 mips16_opcodes
[i
].name
, retval
);
3437 if (!validate_mips16_insn (&mips16_opcodes
[i
], &mips16_operands
[i
]))
3439 if (mips16_nop_insn
.insn_mo
== NULL
&& strcmp (name
, "nop") == 0)
3441 create_insn (&mips16_nop_insn
, mips16_opcodes
+ i
);
3442 mips16_nop_insn
.fixed_p
= 1;
3446 while (i
< bfd_mips16_num_opcodes
3447 && strcmp (mips16_opcodes
[i
].name
, name
) == 0);
3450 micromips_op_hash
= hash_new ();
3451 micromips_operands
= XCNEWVEC (struct mips_operand_array
,
3452 bfd_micromips_num_opcodes
);
3455 while (i
< bfd_micromips_num_opcodes
)
3457 const char *name
= micromips_opcodes
[i
].name
;
3459 retval
= hash_insert (micromips_op_hash
, name
,
3460 (void *) µmips_opcodes
[i
]);
3462 as_fatal (_("internal: can't hash `%s': %s"),
3463 micromips_opcodes
[i
].name
, retval
);
3466 struct mips_cl_insn
*micromips_nop_insn
;
3468 if (!validate_micromips_insn (µmips_opcodes
[i
],
3469 µmips_operands
[i
]))
3472 if (micromips_opcodes
[i
].pinfo
!= INSN_MACRO
)
3474 if (micromips_insn_length (micromips_opcodes
+ i
) == 2)
3475 micromips_nop_insn
= µmips_nop16_insn
;
3476 else if (micromips_insn_length (micromips_opcodes
+ i
) == 4)
3477 micromips_nop_insn
= µmips_nop32_insn
;
3481 if (micromips_nop_insn
->insn_mo
== NULL
3482 && strcmp (name
, "nop") == 0)
3484 create_insn (micromips_nop_insn
, micromips_opcodes
+ i
);
3485 micromips_nop_insn
->fixed_p
= 1;
3489 while (++i
< bfd_micromips_num_opcodes
3490 && strcmp (micromips_opcodes
[i
].name
, name
) == 0);
3494 as_fatal (_("broken assembler, no assembly attempted"));
3496 /* We add all the general register names to the symbol table. This
3497 helps us detect invalid uses of them. */
3498 for (i
= 0; reg_names
[i
].name
; i
++)
3499 symbol_table_insert (symbol_new (reg_names
[i
].name
, reg_section
,
3500 reg_names
[i
].num
, /* & RNUM_MASK, */
3501 &zero_address_frag
));
3503 for (i
= 0; reg_names_n32n64
[i
].name
; i
++)
3504 symbol_table_insert (symbol_new (reg_names_n32n64
[i
].name
, reg_section
,
3505 reg_names_n32n64
[i
].num
, /* & RNUM_MASK, */
3506 &zero_address_frag
));
3508 for (i
= 0; reg_names_o32
[i
].name
; i
++)
3509 symbol_table_insert (symbol_new (reg_names_o32
[i
].name
, reg_section
,
3510 reg_names_o32
[i
].num
, /* & RNUM_MASK, */
3511 &zero_address_frag
));
3513 for (i
= 0; i
< 32; i
++)
3517 /* R5900 VU0 floating-point register. */
3518 regname
[sizeof (rename
) - 1] = 0;
3519 snprintf (regname
, sizeof (regname
) - 1, "$vf%d", i
);
3520 symbol_table_insert (symbol_new (regname
, reg_section
,
3521 RTYPE_VF
| i
, &zero_address_frag
));
3523 /* R5900 VU0 integer register. */
3524 snprintf (regname
, sizeof (regname
) - 1, "$vi%d", i
);
3525 symbol_table_insert (symbol_new (regname
, reg_section
,
3526 RTYPE_VI
| i
, &zero_address_frag
));
3529 snprintf (regname
, sizeof (regname
) - 1, "$w%d", i
);
3530 symbol_table_insert (symbol_new (regname
, reg_section
,
3531 RTYPE_MSA
| i
, &zero_address_frag
));
3534 obstack_init (&mips_operand_tokens
);
3536 mips_no_prev_insn ();
3539 mips_cprmask
[0] = 0;
3540 mips_cprmask
[1] = 0;
3541 mips_cprmask
[2] = 0;
3542 mips_cprmask
[3] = 0;
3544 /* set the default alignment for the text section (2**2) */
3545 record_alignment (text_section
, 2);
3547 bfd_set_gp_size (stdoutput
, g_switch_value
);
3549 /* On a native system other than VxWorks, sections must be aligned
3550 to 16 byte boundaries. When configured for an embedded ELF
3551 target, we don't bother. */
3552 if (strncmp (TARGET_OS
, "elf", 3) != 0
3553 && strncmp (TARGET_OS
, "vxworks", 7) != 0)
3555 (void) bfd_set_section_alignment (stdoutput
, text_section
, 4);
3556 (void) bfd_set_section_alignment (stdoutput
, data_section
, 4);
3557 (void) bfd_set_section_alignment (stdoutput
, bss_section
, 4);
3560 /* Create a .reginfo section for register masks and a .mdebug
3561 section for debugging information. */
3569 subseg
= now_subseg
;
3571 /* The ABI says this section should be loaded so that the
3572 running program can access it. However, we don't load it
3573 if we are configured for an embedded target */
3574 flags
= SEC_READONLY
| SEC_DATA
;
3575 if (strncmp (TARGET_OS
, "elf", 3) != 0)
3576 flags
|= SEC_ALLOC
| SEC_LOAD
;
3578 if (mips_abi
!= N64_ABI
)
3580 sec
= subseg_new (".reginfo", (subsegT
) 0);
3582 bfd_set_section_flags (stdoutput
, sec
, flags
);
3583 bfd_set_section_alignment (stdoutput
, sec
, HAVE_NEWABI
? 3 : 2);
3585 mips_regmask_frag
= frag_more (sizeof (Elf32_External_RegInfo
));
3589 /* The 64-bit ABI uses a .MIPS.options section rather than
3590 .reginfo section. */
3591 sec
= subseg_new (".MIPS.options", (subsegT
) 0);
3592 bfd_set_section_flags (stdoutput
, sec
, flags
);
3593 bfd_set_section_alignment (stdoutput
, sec
, 3);
3595 /* Set up the option header. */
3597 Elf_Internal_Options opthdr
;
3600 opthdr
.kind
= ODK_REGINFO
;
3601 opthdr
.size
= (sizeof (Elf_External_Options
)
3602 + sizeof (Elf64_External_RegInfo
));
3605 f
= frag_more (sizeof (Elf_External_Options
));
3606 bfd_mips_elf_swap_options_out (stdoutput
, &opthdr
,
3607 (Elf_External_Options
*) f
);
3609 mips_regmask_frag
= frag_more (sizeof (Elf64_External_RegInfo
));
3613 if (ECOFF_DEBUGGING
)
3615 sec
= subseg_new (".mdebug", (subsegT
) 0);
3616 (void) bfd_set_section_flags (stdoutput
, sec
,
3617 SEC_HAS_CONTENTS
| SEC_READONLY
);
3618 (void) bfd_set_section_alignment (stdoutput
, sec
, 2);
3620 else if (mips_flag_pdr
)
3622 pdr_seg
= subseg_new (".pdr", (subsegT
) 0);
3623 (void) bfd_set_section_flags (stdoutput
, pdr_seg
,
3624 SEC_READONLY
| SEC_RELOC
3626 (void) bfd_set_section_alignment (stdoutput
, pdr_seg
, 2);
3629 subseg_set (seg
, subseg
);
3632 if (! ECOFF_DEBUGGING
)
3635 if (mips_fix_vr4120
)
3636 init_vr4120_conflicts ();
3642 mips_emit_delays ();
3643 if (! ECOFF_DEBUGGING
)
3648 md_assemble (char *str
)
3650 struct mips_cl_insn insn
;
3651 bfd_reloc_code_real_type unused_reloc
[3]
3652 = {BFD_RELOC_UNUSED
, BFD_RELOC_UNUSED
, BFD_RELOC_UNUSED
};
3654 imm_expr
.X_op
= O_absent
;
3655 offset_expr
.X_op
= O_absent
;
3656 offset_reloc
[0] = BFD_RELOC_UNUSED
;
3657 offset_reloc
[1] = BFD_RELOC_UNUSED
;
3658 offset_reloc
[2] = BFD_RELOC_UNUSED
;
3660 mips_mark_labels ();
3661 mips_assembling_insn
= TRUE
;
3662 clear_insn_error ();
3664 if (mips_opts
.mips16
)
3665 mips16_ip (str
, &insn
);
3668 mips_ip (str
, &insn
);
3669 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
3670 str
, insn
.insn_opcode
));
3674 report_insn_error (str
);
3675 else if (insn
.insn_mo
->pinfo
== INSN_MACRO
)
3678 if (mips_opts
.mips16
)
3679 mips16_macro (&insn
);
3686 if (offset_expr
.X_op
!= O_absent
)
3687 append_insn (&insn
, &offset_expr
, offset_reloc
, FALSE
);
3689 append_insn (&insn
, NULL
, unused_reloc
, FALSE
);
3692 mips_assembling_insn
= FALSE
;
3695 /* Convenience functions for abstracting away the differences between
3696 MIPS16 and non-MIPS16 relocations. */
3698 static inline bfd_boolean
3699 mips16_reloc_p (bfd_reloc_code_real_type reloc
)
3703 case BFD_RELOC_MIPS16_JMP
:
3704 case BFD_RELOC_MIPS16_GPREL
:
3705 case BFD_RELOC_MIPS16_GOT16
:
3706 case BFD_RELOC_MIPS16_CALL16
:
3707 case BFD_RELOC_MIPS16_HI16_S
:
3708 case BFD_RELOC_MIPS16_HI16
:
3709 case BFD_RELOC_MIPS16_LO16
:
3717 static inline bfd_boolean
3718 micromips_reloc_p (bfd_reloc_code_real_type reloc
)
3722 case BFD_RELOC_MICROMIPS_7_PCREL_S1
:
3723 case BFD_RELOC_MICROMIPS_10_PCREL_S1
:
3724 case BFD_RELOC_MICROMIPS_16_PCREL_S1
:
3725 case BFD_RELOC_MICROMIPS_GPREL16
:
3726 case BFD_RELOC_MICROMIPS_JMP
:
3727 case BFD_RELOC_MICROMIPS_HI16
:
3728 case BFD_RELOC_MICROMIPS_HI16_S
:
3729 case BFD_RELOC_MICROMIPS_LO16
:
3730 case BFD_RELOC_MICROMIPS_LITERAL
:
3731 case BFD_RELOC_MICROMIPS_GOT16
:
3732 case BFD_RELOC_MICROMIPS_CALL16
:
3733 case BFD_RELOC_MICROMIPS_GOT_HI16
:
3734 case BFD_RELOC_MICROMIPS_GOT_LO16
:
3735 case BFD_RELOC_MICROMIPS_CALL_HI16
:
3736 case BFD_RELOC_MICROMIPS_CALL_LO16
:
3737 case BFD_RELOC_MICROMIPS_SUB
:
3738 case BFD_RELOC_MICROMIPS_GOT_PAGE
:
3739 case BFD_RELOC_MICROMIPS_GOT_OFST
:
3740 case BFD_RELOC_MICROMIPS_GOT_DISP
:
3741 case BFD_RELOC_MICROMIPS_HIGHEST
:
3742 case BFD_RELOC_MICROMIPS_HIGHER
:
3743 case BFD_RELOC_MICROMIPS_SCN_DISP
:
3744 case BFD_RELOC_MICROMIPS_JALR
:
3752 static inline bfd_boolean
3753 jmp_reloc_p (bfd_reloc_code_real_type reloc
)
3755 return reloc
== BFD_RELOC_MIPS_JMP
|| reloc
== BFD_RELOC_MICROMIPS_JMP
;
3758 static inline bfd_boolean
3759 got16_reloc_p (bfd_reloc_code_real_type reloc
)
3761 return (reloc
== BFD_RELOC_MIPS_GOT16
|| reloc
== BFD_RELOC_MIPS16_GOT16
3762 || reloc
== BFD_RELOC_MICROMIPS_GOT16
);
3765 static inline bfd_boolean
3766 hi16_reloc_p (bfd_reloc_code_real_type reloc
)
3768 return (reloc
== BFD_RELOC_HI16_S
|| reloc
== BFD_RELOC_MIPS16_HI16_S
3769 || reloc
== BFD_RELOC_MICROMIPS_HI16_S
);
3772 static inline bfd_boolean
3773 lo16_reloc_p (bfd_reloc_code_real_type reloc
)
3775 return (reloc
== BFD_RELOC_LO16
|| reloc
== BFD_RELOC_MIPS16_LO16
3776 || reloc
== BFD_RELOC_MICROMIPS_LO16
);
3779 static inline bfd_boolean
3780 jalr_reloc_p (bfd_reloc_code_real_type reloc
)
3782 return reloc
== BFD_RELOC_MIPS_JALR
|| reloc
== BFD_RELOC_MICROMIPS_JALR
;
3785 static inline bfd_boolean
3786 gprel16_reloc_p (bfd_reloc_code_real_type reloc
)
3788 return (reloc
== BFD_RELOC_GPREL16
|| reloc
== BFD_RELOC_MIPS16_GPREL
3789 || reloc
== BFD_RELOC_MICROMIPS_GPREL16
);
3792 /* Return true if RELOC is a PC-relative relocation that does not have
3793 full address range. */
3795 static inline bfd_boolean
3796 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc
)
3800 case BFD_RELOC_16_PCREL_S2
:
3801 case BFD_RELOC_MICROMIPS_7_PCREL_S1
:
3802 case BFD_RELOC_MICROMIPS_10_PCREL_S1
:
3803 case BFD_RELOC_MICROMIPS_16_PCREL_S1
:
3806 case BFD_RELOC_32_PCREL
:
3807 return HAVE_64BIT_ADDRESSES
;
3814 /* Return true if the given relocation might need a matching %lo().
3815 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
3816 need a matching %lo() when applied to local symbols. */
3818 static inline bfd_boolean
3819 reloc_needs_lo_p (bfd_reloc_code_real_type reloc
)
3821 return (HAVE_IN_PLACE_ADDENDS
3822 && (hi16_reloc_p (reloc
)
3823 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
3824 all GOT16 relocations evaluate to "G". */
3825 || (got16_reloc_p (reloc
) && mips_pic
!= VXWORKS_PIC
)));
3828 /* Return the type of %lo() reloc needed by RELOC, given that
3829 reloc_needs_lo_p. */
3831 static inline bfd_reloc_code_real_type
3832 matching_lo_reloc (bfd_reloc_code_real_type reloc
)
3834 return (mips16_reloc_p (reloc
) ? BFD_RELOC_MIPS16_LO16
3835 : (micromips_reloc_p (reloc
) ? BFD_RELOC_MICROMIPS_LO16
3839 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
3842 static inline bfd_boolean
3843 fixup_has_matching_lo_p (fixS
*fixp
)
3845 return (fixp
->fx_next
!= NULL
3846 && fixp
->fx_next
->fx_r_type
== matching_lo_reloc (fixp
->fx_r_type
)
3847 && fixp
->fx_addsy
== fixp
->fx_next
->fx_addsy
3848 && fixp
->fx_offset
== fixp
->fx_next
->fx_offset
);
3851 /* Move all labels in LABELS to the current insertion point. TEXT_P
3852 says whether the labels refer to text or data. */
3855 mips_move_labels (struct insn_label_list
*labels
, bfd_boolean text_p
)
3857 struct insn_label_list
*l
;
3860 for (l
= labels
; l
!= NULL
; l
= l
->next
)
3862 gas_assert (S_GET_SEGMENT (l
->label
) == now_seg
);
3863 symbol_set_frag (l
->label
, frag_now
);
3864 val
= (valueT
) frag_now_fix ();
3865 /* MIPS16/microMIPS text labels are stored as odd. */
3866 if (text_p
&& HAVE_CODE_COMPRESSION
)
3868 S_SET_VALUE (l
->label
, val
);
3872 /* Move all labels in insn_labels to the current insertion point
3873 and treat them as text labels. */
3876 mips_move_text_labels (void)
3878 mips_move_labels (seg_info (now_seg
)->label_list
, TRUE
);
3882 s_is_linkonce (symbolS
*sym
, segT from_seg
)
3884 bfd_boolean linkonce
= FALSE
;
3885 segT symseg
= S_GET_SEGMENT (sym
);
3887 if (symseg
!= from_seg
&& !S_IS_LOCAL (sym
))
3889 if ((bfd_get_section_flags (stdoutput
, symseg
) & SEC_LINK_ONCE
))
3891 /* The GNU toolchain uses an extension for ELF: a section
3892 beginning with the magic string .gnu.linkonce is a
3893 linkonce section. */
3894 if (strncmp (segment_name (symseg
), ".gnu.linkonce",
3895 sizeof ".gnu.linkonce" - 1) == 0)
3901 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
3902 linker to handle them specially, such as generating jalx instructions
3903 when needed. We also make them odd for the duration of the assembly,
3904 in order to generate the right sort of code. We will make them even
3905 in the adjust_symtab routine, while leaving them marked. This is
3906 convenient for the debugger and the disassembler. The linker knows
3907 to make them odd again. */
3910 mips_compressed_mark_label (symbolS
*label
)
3912 gas_assert (HAVE_CODE_COMPRESSION
);
3914 if (mips_opts
.mips16
)
3915 S_SET_OTHER (label
, ELF_ST_SET_MIPS16 (S_GET_OTHER (label
)));
3917 S_SET_OTHER (label
, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label
)));
3918 if ((S_GET_VALUE (label
) & 1) == 0
3919 /* Don't adjust the address if the label is global or weak, or
3920 in a link-once section, since we'll be emitting symbol reloc
3921 references to it which will be patched up by the linker, and
3922 the final value of the symbol may or may not be MIPS16/microMIPS. */
3923 && !S_IS_WEAK (label
)
3924 && !S_IS_EXTERNAL (label
)
3925 && !s_is_linkonce (label
, now_seg
))
3926 S_SET_VALUE (label
, S_GET_VALUE (label
) | 1);
3929 /* Mark preceding MIPS16 or microMIPS instruction labels. */
3932 mips_compressed_mark_labels (void)
3934 struct insn_label_list
*l
;
3936 for (l
= seg_info (now_seg
)->label_list
; l
!= NULL
; l
= l
->next
)
3937 mips_compressed_mark_label (l
->label
);
3940 /* End the current frag. Make it a variant frag and record the
3944 relax_close_frag (void)
3946 mips_macro_warning
.first_frag
= frag_now
;
3947 frag_var (rs_machine_dependent
, 0, 0,
3948 RELAX_ENCODE (mips_relax
.sizes
[0], mips_relax
.sizes
[1]),
3949 mips_relax
.symbol
, 0, (char *) mips_relax
.first_fixup
);
3951 memset (&mips_relax
.sizes
, 0, sizeof (mips_relax
.sizes
));
3952 mips_relax
.first_fixup
= 0;
3955 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
3956 See the comment above RELAX_ENCODE for more details. */
3959 relax_start (symbolS
*symbol
)
3961 gas_assert (mips_relax
.sequence
== 0);
3962 mips_relax
.sequence
= 1;
3963 mips_relax
.symbol
= symbol
;
3966 /* Start generating the second version of a relaxable sequence.
3967 See the comment above RELAX_ENCODE for more details. */
3972 gas_assert (mips_relax
.sequence
== 1);
3973 mips_relax
.sequence
= 2;
3976 /* End the current relaxable sequence. */
3981 gas_assert (mips_relax
.sequence
== 2);
3982 relax_close_frag ();
3983 mips_relax
.sequence
= 0;
3986 /* Return true if IP is a delayed branch or jump. */
3988 static inline bfd_boolean
3989 delayed_branch_p (const struct mips_cl_insn
*ip
)
3991 return (ip
->insn_mo
->pinfo
& (INSN_UNCOND_BRANCH_DELAY
3992 | INSN_COND_BRANCH_DELAY
3993 | INSN_COND_BRANCH_LIKELY
)) != 0;
3996 /* Return true if IP is a compact branch or jump. */
3998 static inline bfd_boolean
3999 compact_branch_p (const struct mips_cl_insn
*ip
)
4001 return (ip
->insn_mo
->pinfo2
& (INSN2_UNCOND_BRANCH
4002 | INSN2_COND_BRANCH
)) != 0;
4005 /* Return true if IP is an unconditional branch or jump. */
4007 static inline bfd_boolean
4008 uncond_branch_p (const struct mips_cl_insn
*ip
)
4010 return ((ip
->insn_mo
->pinfo
& INSN_UNCOND_BRANCH_DELAY
) != 0
4011 || (ip
->insn_mo
->pinfo2
& INSN2_UNCOND_BRANCH
) != 0);
4014 /* Return true if IP is a branch-likely instruction. */
4016 static inline bfd_boolean
4017 branch_likely_p (const struct mips_cl_insn
*ip
)
4019 return (ip
->insn_mo
->pinfo
& INSN_COND_BRANCH_LIKELY
) != 0;
4022 /* Return the type of nop that should be used to fill the delay slot
4023 of delayed branch IP. */
4025 static struct mips_cl_insn
*
4026 get_delay_slot_nop (const struct mips_cl_insn
*ip
)
4028 if (mips_opts
.micromips
4029 && (ip
->insn_mo
->pinfo2
& INSN2_BRANCH_DELAY_32BIT
))
4030 return µmips_nop32_insn
;
4034 /* Return a mask that has bit N set if OPCODE reads the register(s)
4038 insn_read_mask (const struct mips_opcode
*opcode
)
4040 return (opcode
->pinfo
& INSN_READ_ALL
) >> INSN_READ_SHIFT
;
4043 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4047 insn_write_mask (const struct mips_opcode
*opcode
)
4049 return (opcode
->pinfo
& INSN_WRITE_ALL
) >> INSN_WRITE_SHIFT
;
4052 /* Return a mask of the registers specified by operand OPERAND of INSN.
4053 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4057 operand_reg_mask (const struct mips_cl_insn
*insn
,
4058 const struct mips_operand
*operand
,
4059 unsigned int type_mask
)
4061 unsigned int uval
, vsel
;
4063 switch (operand
->type
)
4070 case OP_ADDIUSP_INT
:
4071 case OP_ENTRY_EXIT_LIST
:
4072 case OP_REPEAT_DEST_REG
:
4073 case OP_REPEAT_PREV_REG
:
4076 case OP_VU0_MATCH_SUFFIX
:
4081 case OP_OPTIONAL_REG
:
4083 const struct mips_reg_operand
*reg_op
;
4085 reg_op
= (const struct mips_reg_operand
*) operand
;
4086 if (!(type_mask
& (1 << reg_op
->reg_type
)))
4088 uval
= insn_extract_operand (insn
, operand
);
4089 return 1 << mips_decode_reg_operand (reg_op
, uval
);
4094 const struct mips_reg_pair_operand
*pair_op
;
4096 pair_op
= (const struct mips_reg_pair_operand
*) operand
;
4097 if (!(type_mask
& (1 << pair_op
->reg_type
)))
4099 uval
= insn_extract_operand (insn
, operand
);
4100 return (1 << pair_op
->reg1_map
[uval
]) | (1 << pair_op
->reg2_map
[uval
]);
4103 case OP_CLO_CLZ_DEST
:
4104 if (!(type_mask
& (1 << OP_REG_GP
)))
4106 uval
= insn_extract_operand (insn
, operand
);
4107 return (1 << (uval
& 31)) | (1 << (uval
>> 5));
4109 case OP_LWM_SWM_LIST
:
4112 case OP_SAVE_RESTORE_LIST
:
4115 case OP_MDMX_IMM_REG
:
4116 if (!(type_mask
& (1 << OP_REG_VEC
)))
4118 uval
= insn_extract_operand (insn
, operand
);
4120 if ((vsel
& 0x18) == 0x18)
4122 return 1 << (uval
& 31);
4125 if (!(type_mask
& (1 << OP_REG_GP
)))
4127 return 1 << insn_extract_operand (insn
, operand
);
4132 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4133 where bit N of OPNO_MASK is set if operand N should be included.
4134 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4138 insn_reg_mask (const struct mips_cl_insn
*insn
,
4139 unsigned int type_mask
, unsigned int opno_mask
)
4141 unsigned int opno
, reg_mask
;
4145 while (opno_mask
!= 0)
4148 reg_mask
|= operand_reg_mask (insn
, insn_opno (insn
, opno
), type_mask
);
4155 /* Return the mask of core registers that IP reads. */
4158 gpr_read_mask (const struct mips_cl_insn
*ip
)
4160 unsigned long pinfo
, pinfo2
;
4163 mask
= insn_reg_mask (ip
, 1 << OP_REG_GP
, insn_read_mask (ip
->insn_mo
));
4164 pinfo
= ip
->insn_mo
->pinfo
;
4165 pinfo2
= ip
->insn_mo
->pinfo2
;
4166 if (pinfo
& INSN_UDI
)
4168 /* UDI instructions have traditionally been assumed to read RS
4170 mask
|= 1 << EXTRACT_OPERAND (mips_opts
.micromips
, RT
, *ip
);
4171 mask
|= 1 << EXTRACT_OPERAND (mips_opts
.micromips
, RS
, *ip
);
4173 if (pinfo
& INSN_READ_GPR_24
)
4175 if (pinfo2
& INSN2_READ_GPR_16
)
4177 if (pinfo2
& INSN2_READ_SP
)
4179 if (pinfo2
& INSN2_READ_GPR_31
)
4181 /* Don't include register 0. */
4185 /* Return the mask of core registers that IP writes. */
4188 gpr_write_mask (const struct mips_cl_insn
*ip
)
4190 unsigned long pinfo
, pinfo2
;
4193 mask
= insn_reg_mask (ip
, 1 << OP_REG_GP
, insn_write_mask (ip
->insn_mo
));
4194 pinfo
= ip
->insn_mo
->pinfo
;
4195 pinfo2
= ip
->insn_mo
->pinfo2
;
4196 if (pinfo
& INSN_WRITE_GPR_24
)
4198 if (pinfo
& INSN_WRITE_GPR_31
)
4200 if (pinfo
& INSN_UDI
)
4201 /* UDI instructions have traditionally been assumed to write to RD. */
4202 mask
|= 1 << EXTRACT_OPERAND (mips_opts
.micromips
, RD
, *ip
);
4203 if (pinfo2
& INSN2_WRITE_SP
)
4205 /* Don't include register 0. */
4209 /* Return the mask of floating-point registers that IP reads. */
4212 fpr_read_mask (const struct mips_cl_insn
*ip
)
4214 unsigned long pinfo
;
4217 mask
= insn_reg_mask (ip
, ((1 << OP_REG_FP
) | (1 << OP_REG_VEC
)
4218 | (1 << OP_REG_MSA
)),
4219 insn_read_mask (ip
->insn_mo
));
4220 pinfo
= ip
->insn_mo
->pinfo
;
4221 /* Conservatively treat all operands to an FP_D instruction are doubles.
4222 (This is overly pessimistic for things like cvt.d.s.) */
4223 if (FPR_SIZE
!= 64 && (pinfo
& FP_D
))
4228 /* Return the mask of floating-point registers that IP writes. */
4231 fpr_write_mask (const struct mips_cl_insn
*ip
)
4233 unsigned long pinfo
;
4236 mask
= insn_reg_mask (ip
, ((1 << OP_REG_FP
) | (1 << OP_REG_VEC
)
4237 | (1 << OP_REG_MSA
)),
4238 insn_write_mask (ip
->insn_mo
));
4239 pinfo
= ip
->insn_mo
->pinfo
;
4240 /* Conservatively treat all operands to an FP_D instruction are doubles.
4241 (This is overly pessimistic for things like cvt.s.d.) */
4242 if (FPR_SIZE
!= 64 && (pinfo
& FP_D
))
4247 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4248 Check whether that is allowed. */
4251 mips_oddfpreg_ok (const struct mips_opcode
*insn
, int opnum
)
4253 const char *s
= insn
->name
;
4255 if (insn
->pinfo
== INSN_MACRO
)
4256 /* Let a macro pass, we'll catch it later when it is expanded. */
4259 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts
.isa
) || mips_opts
.arch
== CPU_R5900
)
4261 /* Allow odd registers for single-precision ops. */
4262 switch (insn
->pinfo
& (FP_S
| FP_D
))
4273 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4274 s
= strchr (insn
->name
, '.');
4275 if (s
!= NULL
&& opnum
== 2)
4276 s
= strchr (s
+ 1, '.');
4277 return (s
!= NULL
&& (s
[1] == 'w' || s
[1] == 's'));
4280 /* Single-precision coprocessor loads and moves are OK too. */
4281 if ((insn
->pinfo
& FP_S
)
4282 && (insn
->pinfo
& (INSN_COPROC_MEMORY_DELAY
| INSN_STORE_MEMORY
4283 | INSN_LOAD_COPROC_DELAY
| INSN_COPROC_MOVE_DELAY
)))
4289 /* Information about an instruction argument that we're trying to match. */
4290 struct mips_arg_info
4292 /* The instruction so far. */
4293 struct mips_cl_insn
*insn
;
4295 /* The first unconsumed operand token. */
4296 struct mips_operand_token
*token
;
4298 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4301 /* The 1-based argument number, for error reporting. This does not
4302 count elided optional registers, etc.. */
4305 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4306 unsigned int last_regno
;
4308 /* If the first operand was an OP_REG, this is the register that it
4309 specified, otherwise it is ILLEGAL_REG. */
4310 unsigned int dest_regno
;
4312 /* The value of the last OP_INT operand. Only used for OP_MSB,
4313 where it gives the lsb position. */
4314 unsigned int last_op_int
;
4316 /* If true, match routines should assume that no later instruction
4317 alternative matches and should therefore be as accomodating as
4318 possible. Match routines should not report errors if something
4319 is only invalid for !LAX_MATCH. */
4320 bfd_boolean lax_match
;
4322 /* True if a reference to the current AT register was seen. */
4323 bfd_boolean seen_at
;
4326 /* Record that the argument is out of range. */
4329 match_out_of_range (struct mips_arg_info
*arg
)
4331 set_insn_error_i (arg
->argnum
, _("operand %d out of range"), arg
->argnum
);
4334 /* Record that the argument isn't constant but needs to be. */
4337 match_not_constant (struct mips_arg_info
*arg
)
4339 set_insn_error_i (arg
->argnum
, _("operand %d must be constant"),
4343 /* Try to match an OT_CHAR token for character CH. Consume the token
4344 and return true on success, otherwise return false. */
4347 match_char (struct mips_arg_info
*arg
, char ch
)
4349 if (arg
->token
->type
== OT_CHAR
&& arg
->token
->u
.ch
== ch
)
4359 /* Try to get an expression from the next tokens in ARG. Consume the
4360 tokens and return true on success, storing the expression value in
4361 VALUE and relocation types in R. */
4364 match_expression (struct mips_arg_info
*arg
, expressionS
*value
,
4365 bfd_reloc_code_real_type
*r
)
4367 /* If the next token is a '(' that was parsed as being part of a base
4368 expression, assume we have an elided offset. The later match will fail
4369 if this turns out to be wrong. */
4370 if (arg
->token
->type
== OT_CHAR
&& arg
->token
->u
.ch
== '(')
4372 value
->X_op
= O_constant
;
4373 value
->X_add_number
= 0;
4374 r
[0] = r
[1] = r
[2] = BFD_RELOC_UNUSED
;
4378 /* Reject register-based expressions such as "0+$2" and "(($2))".
4379 For plain registers the default error seems more appropriate. */
4380 if (arg
->token
->type
== OT_INTEGER
4381 && arg
->token
->u
.integer
.value
.X_op
== O_register
)
4383 set_insn_error (arg
->argnum
, _("register value used as expression"));
4387 if (arg
->token
->type
== OT_INTEGER
)
4389 *value
= arg
->token
->u
.integer
.value
;
4390 memcpy (r
, arg
->token
->u
.integer
.relocs
, 3 * sizeof (*r
));
4396 (arg
->argnum
, _("operand %d must be an immediate expression"),
4401 /* Try to get a constant expression from the next tokens in ARG. Consume
4402 the tokens and return return true on success, storing the constant value
4403 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4407 match_const_int (struct mips_arg_info
*arg
, offsetT
*value
)
4410 bfd_reloc_code_real_type r
[3];
4412 if (!match_expression (arg
, &ex
, r
))
4415 if (r
[0] == BFD_RELOC_UNUSED
&& ex
.X_op
== O_constant
)
4416 *value
= ex
.X_add_number
;
4419 match_not_constant (arg
);
4425 /* Return the RTYPE_* flags for a register operand of type TYPE that
4426 appears in instruction OPCODE. */
4429 convert_reg_type (const struct mips_opcode
*opcode
,
4430 enum mips_reg_operand_type type
)
4435 return RTYPE_NUM
| RTYPE_GP
;
4438 /* Allow vector register names for MDMX if the instruction is a 64-bit
4439 FPR load, store or move (including moves to and from GPRs). */
4440 if ((mips_opts
.ase
& ASE_MDMX
)
4441 && (opcode
->pinfo
& FP_D
)
4442 && (opcode
->pinfo
& (INSN_COPROC_MOVE_DELAY
4443 | INSN_COPROC_MEMORY_DELAY
4444 | INSN_LOAD_COPROC_DELAY
4446 | INSN_STORE_MEMORY
)))
4447 return RTYPE_FPU
| RTYPE_VEC
;
4451 if (opcode
->pinfo
& (FP_D
| FP_S
))
4452 return RTYPE_CCC
| RTYPE_FCC
;
4456 if (opcode
->membership
& INSN_5400
)
4458 return RTYPE_FPU
| RTYPE_VEC
;
4464 if (opcode
->name
[strlen (opcode
->name
) - 1] == '0')
4465 return RTYPE_NUM
| RTYPE_CP0
;
4472 return RTYPE_NUM
| RTYPE_VI
;
4475 return RTYPE_NUM
| RTYPE_VF
;
4477 case OP_REG_R5900_I
:
4478 return RTYPE_R5900_I
;
4480 case OP_REG_R5900_Q
:
4481 return RTYPE_R5900_Q
;
4483 case OP_REG_R5900_R
:
4484 return RTYPE_R5900_R
;
4486 case OP_REG_R5900_ACC
:
4487 return RTYPE_R5900_ACC
;
4492 case OP_REG_MSA_CTRL
:
4498 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4501 check_regno (struct mips_arg_info
*arg
,
4502 enum mips_reg_operand_type type
, unsigned int regno
)
4504 if (AT
&& type
== OP_REG_GP
&& regno
== AT
)
4505 arg
->seen_at
= TRUE
;
4507 if (type
== OP_REG_FP
4510 && !mips_oddfpreg_ok (arg
->insn
->insn_mo
, arg
->opnum
))
4511 as_warn (_("float register should be even, was %d"), regno
);
4513 if (type
== OP_REG_CCC
)
4518 name
= arg
->insn
->insn_mo
->name
;
4519 length
= strlen (name
);
4520 if ((regno
& 1) != 0
4521 && ((length
>= 3 && strcmp (name
+ length
- 3, ".ps") == 0)
4522 || (length
>= 5 && strncmp (name
+ length
- 5, "any2", 4) == 0)))
4523 as_warn (_("condition code register should be even for %s, was %d"),
4526 if ((regno
& 3) != 0
4527 && (length
>= 5 && strncmp (name
+ length
- 5, "any4", 4) == 0))
4528 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4533 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4534 a register of type TYPE. Return true on success, storing the register
4535 number in *REGNO and warning about any dubious uses. */
4538 match_regno (struct mips_arg_info
*arg
, enum mips_reg_operand_type type
,
4539 unsigned int symval
, unsigned int *regno
)
4541 if (type
== OP_REG_VEC
)
4542 symval
= mips_prefer_vec_regno (symval
);
4543 if (!(symval
& convert_reg_type (arg
->insn
->insn_mo
, type
)))
4546 *regno
= symval
& RNUM_MASK
;
4547 check_regno (arg
, type
, *regno
);
4551 /* Try to interpret the next token in ARG as a register of type TYPE.
4552 Consume the token and return true on success, storing the register
4553 number in *REGNO. Return false on failure. */
4556 match_reg (struct mips_arg_info
*arg
, enum mips_reg_operand_type type
,
4557 unsigned int *regno
)
4559 if (arg
->token
->type
== OT_REG
4560 && match_regno (arg
, type
, arg
->token
->u
.regno
, regno
))
4568 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4569 Consume the token and return true on success, storing the register numbers
4570 in *REGNO1 and *REGNO2. Return false on failure. */
4573 match_reg_range (struct mips_arg_info
*arg
, enum mips_reg_operand_type type
,
4574 unsigned int *regno1
, unsigned int *regno2
)
4576 if (match_reg (arg
, type
, regno1
))
4581 if (arg
->token
->type
== OT_REG_RANGE
4582 && match_regno (arg
, type
, arg
->token
->u
.reg_range
.regno1
, regno1
)
4583 && match_regno (arg
, type
, arg
->token
->u
.reg_range
.regno2
, regno2
)
4584 && *regno1
<= *regno2
)
4592 /* OP_INT matcher. */
4595 match_int_operand (struct mips_arg_info
*arg
,
4596 const struct mips_operand
*operand_base
)
4598 const struct mips_int_operand
*operand
;
4600 int min_val
, max_val
, factor
;
4603 operand
= (const struct mips_int_operand
*) operand_base
;
4604 factor
= 1 << operand
->shift
;
4605 min_val
= mips_int_operand_min (operand
);
4606 max_val
= mips_int_operand_max (operand
);
4608 if (operand_base
->lsb
== 0
4609 && operand_base
->size
== 16
4610 && operand
->shift
== 0
4611 && operand
->bias
== 0
4612 && (operand
->max_val
== 32767 || operand
->max_val
== 65535))
4614 /* The operand can be relocated. */
4615 if (!match_expression (arg
, &offset_expr
, offset_reloc
))
4618 if (offset_reloc
[0] != BFD_RELOC_UNUSED
)
4619 /* Relocation operators were used. Accept the arguent and
4620 leave the relocation value in offset_expr and offset_relocs
4621 for the caller to process. */
4624 if (offset_expr
.X_op
!= O_constant
)
4626 /* Accept non-constant operands if no later alternative matches,
4627 leaving it for the caller to process. */
4628 if (!arg
->lax_match
)
4630 offset_reloc
[0] = BFD_RELOC_LO16
;
4634 /* Clear the global state; we're going to install the operand
4636 sval
= offset_expr
.X_add_number
;
4637 offset_expr
.X_op
= O_absent
;
4639 /* For compatibility with older assemblers, we accept
4640 0x8000-0xffff as signed 16-bit numbers when only
4641 signed numbers are allowed. */
4644 max_val
= ((1 << operand_base
->size
) - 1) << operand
->shift
;
4645 if (!arg
->lax_match
&& sval
<= max_val
)
4651 if (!match_const_int (arg
, &sval
))
4655 arg
->last_op_int
= sval
;
4657 if (sval
< min_val
|| sval
> max_val
|| sval
% factor
)
4659 match_out_of_range (arg
);
4663 uval
= (unsigned int) sval
>> operand
->shift
;
4664 uval
-= operand
->bias
;
4666 /* Handle -mfix-cn63xxp1. */
4668 && mips_fix_cn63xxp1
4669 && !mips_opts
.micromips
4670 && strcmp ("pref", arg
->insn
->insn_mo
->name
) == 0)
4685 /* The rest must be changed to 28. */
4690 insn_insert_operand (arg
->insn
, operand_base
, uval
);
4694 /* OP_MAPPED_INT matcher. */
4697 match_mapped_int_operand (struct mips_arg_info
*arg
,
4698 const struct mips_operand
*operand_base
)
4700 const struct mips_mapped_int_operand
*operand
;
4701 unsigned int uval
, num_vals
;
4704 operand
= (const struct mips_mapped_int_operand
*) operand_base
;
4705 if (!match_const_int (arg
, &sval
))
4708 num_vals
= 1 << operand_base
->size
;
4709 for (uval
= 0; uval
< num_vals
; uval
++)
4710 if (operand
->int_map
[uval
] == sval
)
4712 if (uval
== num_vals
)
4714 match_out_of_range (arg
);
4718 insn_insert_operand (arg
->insn
, operand_base
, uval
);
4722 /* OP_MSB matcher. */
4725 match_msb_operand (struct mips_arg_info
*arg
,
4726 const struct mips_operand
*operand_base
)
4728 const struct mips_msb_operand
*operand
;
4729 int min_val
, max_val
, max_high
;
4730 offsetT size
, sval
, high
;
4732 operand
= (const struct mips_msb_operand
*) operand_base
;
4733 min_val
= operand
->bias
;
4734 max_val
= min_val
+ (1 << operand_base
->size
) - 1;
4735 max_high
= operand
->opsize
;
4737 if (!match_const_int (arg
, &size
))
4740 high
= size
+ arg
->last_op_int
;
4741 sval
= operand
->add_lsb
? high
: size
;
4743 if (size
< 0 || high
> max_high
|| sval
< min_val
|| sval
> max_val
)
4745 match_out_of_range (arg
);
4748 insn_insert_operand (arg
->insn
, operand_base
, sval
- min_val
);
4752 /* OP_REG matcher. */
4755 match_reg_operand (struct mips_arg_info
*arg
,
4756 const struct mips_operand
*operand_base
)
4758 const struct mips_reg_operand
*operand
;
4759 unsigned int regno
, uval
, num_vals
;
4761 operand
= (const struct mips_reg_operand
*) operand_base
;
4762 if (!match_reg (arg
, operand
->reg_type
, ®no
))
4765 if (operand
->reg_map
)
4767 num_vals
= 1 << operand
->root
.size
;
4768 for (uval
= 0; uval
< num_vals
; uval
++)
4769 if (operand
->reg_map
[uval
] == regno
)
4771 if (num_vals
== uval
)
4777 arg
->last_regno
= regno
;
4778 if (arg
->opnum
== 1)
4779 arg
->dest_regno
= regno
;
4780 insn_insert_operand (arg
->insn
, operand_base
, uval
);
4784 /* OP_REG_PAIR matcher. */
4787 match_reg_pair_operand (struct mips_arg_info
*arg
,
4788 const struct mips_operand
*operand_base
)
4790 const struct mips_reg_pair_operand
*operand
;
4791 unsigned int regno1
, regno2
, uval
, num_vals
;
4793 operand
= (const struct mips_reg_pair_operand
*) operand_base
;
4794 if (!match_reg (arg
, operand
->reg_type
, ®no1
)
4795 || !match_char (arg
, ',')
4796 || !match_reg (arg
, operand
->reg_type
, ®no2
))
4799 num_vals
= 1 << operand_base
->size
;
4800 for (uval
= 0; uval
< num_vals
; uval
++)
4801 if (operand
->reg1_map
[uval
] == regno1
&& operand
->reg2_map
[uval
] == regno2
)
4803 if (uval
== num_vals
)
4806 insn_insert_operand (arg
->insn
, operand_base
, uval
);
4810 /* OP_PCREL matcher. The caller chooses the relocation type. */
4813 match_pcrel_operand (struct mips_arg_info
*arg
)
4815 bfd_reloc_code_real_type r
[3];
4817 return match_expression (arg
, &offset_expr
, r
) && r
[0] == BFD_RELOC_UNUSED
;
4820 /* OP_PERF_REG matcher. */
4823 match_perf_reg_operand (struct mips_arg_info
*arg
,
4824 const struct mips_operand
*operand
)
4828 if (!match_const_int (arg
, &sval
))
4833 || (mips_opts
.arch
== CPU_R5900
4834 && (strcmp (arg
->insn
->insn_mo
->name
, "mfps") == 0
4835 || strcmp (arg
->insn
->insn_mo
->name
, "mtps") == 0))))
4837 set_insn_error (arg
->argnum
, _("invalid performance register"));
4841 insn_insert_operand (arg
->insn
, operand
, sval
);
4845 /* OP_ADDIUSP matcher. */
4848 match_addiusp_operand (struct mips_arg_info
*arg
,
4849 const struct mips_operand
*operand
)
4854 if (!match_const_int (arg
, &sval
))
4859 match_out_of_range (arg
);
4864 if (!(sval
>= -258 && sval
<= 257) || (sval
>= -2 && sval
<= 1))
4866 match_out_of_range (arg
);
4870 uval
= (unsigned int) sval
;
4871 uval
= ((uval
>> 1) & ~0xff) | (uval
& 0xff);
4872 insn_insert_operand (arg
->insn
, operand
, uval
);
4876 /* OP_CLO_CLZ_DEST matcher. */
4879 match_clo_clz_dest_operand (struct mips_arg_info
*arg
,
4880 const struct mips_operand
*operand
)
4884 if (!match_reg (arg
, OP_REG_GP
, ®no
))
4887 insn_insert_operand (arg
->insn
, operand
, regno
| (regno
<< 5));
4891 /* OP_LWM_SWM_LIST matcher. */
4894 match_lwm_swm_list_operand (struct mips_arg_info
*arg
,
4895 const struct mips_operand
*operand
)
4897 unsigned int reglist
, sregs
, ra
, regno1
, regno2
;
4898 struct mips_arg_info reset
;
4901 if (!match_reg_range (arg
, OP_REG_GP
, ®no1
, ®no2
))
4905 if (regno2
== FP
&& regno1
>= S0
&& regno1
<= S7
)
4910 reglist
|= ((1U << regno2
<< 1) - 1) & -(1U << regno1
);
4913 while (match_char (arg
, ',')
4914 && match_reg_range (arg
, OP_REG_GP
, ®no1
, ®no2
));
4917 if (operand
->size
== 2)
4919 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
4925 and any permutations of these. */
4926 if ((reglist
& 0xfff1ffff) != 0x80010000)
4929 sregs
= (reglist
>> 17) & 7;
4934 /* The list must include at least one of ra and s0-sN,
4935 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
4936 which are $23 and $30 respectively.) E.g.:
4944 and any permutations of these. */
4945 if ((reglist
& 0x3f00ffff) != 0)
4948 ra
= (reglist
>> 27) & 0x10;
4949 sregs
= ((reglist
>> 22) & 0x100) | ((reglist
>> 16) & 0xff);
4952 if ((sregs
& -sregs
) != sregs
)
4955 insn_insert_operand (arg
->insn
, operand
, (ffs (sregs
) - 1) | ra
);
4959 /* OP_ENTRY_EXIT_LIST matcher. */
4962 match_entry_exit_operand (struct mips_arg_info
*arg
,
4963 const struct mips_operand
*operand
)
4966 bfd_boolean is_exit
;
4968 /* The format is the same for both ENTRY and EXIT, but the constraints
4970 is_exit
= strcmp (arg
->insn
->insn_mo
->name
, "exit") == 0;
4971 mask
= (is_exit
? 7 << 3 : 0);
4974 unsigned int regno1
, regno2
;
4975 bfd_boolean is_freg
;
4977 if (match_reg_range (arg
, OP_REG_GP
, ®no1
, ®no2
))
4979 else if (match_reg_range (arg
, OP_REG_FP
, ®no1
, ®no2
))
4984 if (is_exit
&& is_freg
&& regno1
== 0 && regno2
< 2)
4987 mask
|= (5 + regno2
) << 3;
4989 else if (!is_exit
&& regno1
== 4 && regno2
>= 4 && regno2
<= 7)
4990 mask
|= (regno2
- 3) << 3;
4991 else if (regno1
== 16 && regno2
>= 16 && regno2
<= 17)
4992 mask
|= (regno2
- 15) << 1;
4993 else if (regno1
== RA
&& regno2
== RA
)
4998 while (match_char (arg
, ','));
5000 insn_insert_operand (arg
->insn
, operand
, mask
);
5004 /* OP_SAVE_RESTORE_LIST matcher. */
5007 match_save_restore_list_operand (struct mips_arg_info
*arg
)
5009 unsigned int opcode
, args
, statics
, sregs
;
5010 unsigned int num_frame_sizes
, num_args
, num_statics
, num_sregs
;
5013 opcode
= arg
->insn
->insn_opcode
;
5015 num_frame_sizes
= 0;
5021 unsigned int regno1
, regno2
;
5023 if (arg
->token
->type
== OT_INTEGER
)
5025 /* Handle the frame size. */
5026 if (!match_const_int (arg
, &frame_size
))
5028 num_frame_sizes
+= 1;
5032 if (!match_reg_range (arg
, OP_REG_GP
, ®no1
, ®no2
))
5035 while (regno1
<= regno2
)
5037 if (regno1
>= 4 && regno1
<= 7)
5039 if (num_frame_sizes
== 0)
5041 args
|= 1 << (regno1
- 4);
5043 /* statics $a0-$a3 */
5044 statics
|= 1 << (regno1
- 4);
5046 else if (regno1
>= 16 && regno1
<= 23)
5048 sregs
|= 1 << (regno1
- 16);
5049 else if (regno1
== 30)
5052 else if (regno1
== 31)
5053 /* Add $ra to insn. */
5063 while (match_char (arg
, ','));
5065 /* Encode args/statics combination. */
5068 else if (args
== 0xf)
5069 /* All $a0-$a3 are args. */
5070 opcode
|= MIPS16_ALL_ARGS
<< 16;
5071 else if (statics
== 0xf)
5072 /* All $a0-$a3 are statics. */
5073 opcode
|= MIPS16_ALL_STATICS
<< 16;
5076 /* Count arg registers. */
5086 /* Count static registers. */
5088 while (statics
& 0x8)
5090 statics
= (statics
<< 1) & 0xf;
5096 /* Encode args/statics. */
5097 opcode
|= ((num_args
<< 2) | num_statics
) << 16;
5100 /* Encode $s0/$s1. */
5101 if (sregs
& (1 << 0)) /* $s0 */
5103 if (sregs
& (1 << 1)) /* $s1 */
5107 /* Encode $s2-$s8. */
5116 opcode
|= num_sregs
<< 24;
5118 /* Encode frame size. */
5119 if (num_frame_sizes
== 0)
5121 set_insn_error (arg
->argnum
, _("missing frame size"));
5124 if (num_frame_sizes
> 1)
5126 set_insn_error (arg
->argnum
, _("frame size specified twice"));
5129 if ((frame_size
& 7) != 0 || frame_size
< 0 || frame_size
> 0xff * 8)
5131 set_insn_error (arg
->argnum
, _("invalid frame size"));
5134 if (frame_size
!= 128 || (opcode
>> 16) != 0)
5137 opcode
|= (((frame_size
& 0xf0) << 16)
5138 | (frame_size
& 0x0f));
5141 /* Finally build the instruction. */
5142 if ((opcode
>> 16) != 0 || frame_size
== 0)
5143 opcode
|= MIPS16_EXTEND
;
5144 arg
->insn
->insn_opcode
= opcode
;
5148 /* OP_MDMX_IMM_REG matcher. */
5151 match_mdmx_imm_reg_operand (struct mips_arg_info
*arg
,
5152 const struct mips_operand
*operand
)
5154 unsigned int regno
, uval
;
5156 const struct mips_opcode
*opcode
;
5158 /* The mips_opcode records whether this is an octobyte or quadhalf
5159 instruction. Start out with that bit in place. */
5160 opcode
= arg
->insn
->insn_mo
;
5161 uval
= mips_extract_operand (operand
, opcode
->match
);
5162 is_qh
= (uval
!= 0);
5164 if (arg
->token
->type
== OT_REG
)
5166 if ((opcode
->membership
& INSN_5400
)
5167 && strcmp (opcode
->name
, "rzu.ob") == 0)
5169 set_insn_error_i (arg
->argnum
, _("operand %d must be an immediate"),
5174 if (!match_regno (arg
, OP_REG_VEC
, arg
->token
->u
.regno
, ®no
))
5178 /* Check whether this is a vector register or a broadcast of
5179 a single element. */
5180 if (arg
->token
->type
== OT_INTEGER_INDEX
)
5182 if (arg
->token
->u
.index
> (is_qh
? 3 : 7))
5184 set_insn_error (arg
->argnum
, _("invalid element selector"));
5187 uval
|= arg
->token
->u
.index
<< (is_qh
? 2 : 1) << 5;
5192 /* A full vector. */
5193 if ((opcode
->membership
& INSN_5400
)
5194 && (strcmp (opcode
->name
, "sll.ob") == 0
5195 || strcmp (opcode
->name
, "srl.ob") == 0))
5197 set_insn_error_i (arg
->argnum
, _("operand %d must be scalar"),
5203 uval
|= MDMX_FMTSEL_VEC_QH
<< 5;
5205 uval
|= MDMX_FMTSEL_VEC_OB
<< 5;
5213 if (!match_const_int (arg
, &sval
))
5215 if (sval
< 0 || sval
> 31)
5217 match_out_of_range (arg
);
5220 uval
|= (sval
& 31);
5222 uval
|= MDMX_FMTSEL_IMM_QH
<< 5;
5224 uval
|= MDMX_FMTSEL_IMM_OB
<< 5;
5226 insn_insert_operand (arg
->insn
, operand
, uval
);
5230 /* OP_IMM_INDEX matcher. */
5233 match_imm_index_operand (struct mips_arg_info
*arg
,
5234 const struct mips_operand
*operand
)
5236 unsigned int max_val
;
5238 if (arg
->token
->type
!= OT_INTEGER_INDEX
)
5241 max_val
= (1 << operand
->size
) - 1;
5242 if (arg
->token
->u
.index
> max_val
)
5244 match_out_of_range (arg
);
5247 insn_insert_operand (arg
->insn
, operand
, arg
->token
->u
.index
);
5252 /* OP_REG_INDEX matcher. */
5255 match_reg_index_operand (struct mips_arg_info
*arg
,
5256 const struct mips_operand
*operand
)
5260 if (arg
->token
->type
!= OT_REG_INDEX
)
5263 if (!match_regno (arg
, OP_REG_GP
, arg
->token
->u
.regno
, ®no
))
5266 insn_insert_operand (arg
->insn
, operand
, regno
);
5271 /* OP_PC matcher. */
5274 match_pc_operand (struct mips_arg_info
*arg
)
5276 if (arg
->token
->type
== OT_REG
&& (arg
->token
->u
.regno
& RTYPE_PC
))
5284 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5285 register that we need to match. */
5288 match_tied_reg_operand (struct mips_arg_info
*arg
, unsigned int other_regno
)
5292 return match_reg (arg
, OP_REG_GP
, ®no
) && regno
== other_regno
;
5295 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5296 the length of the value in bytes (4 for float, 8 for double) and
5297 USING_GPRS says whether the destination is a GPR rather than an FPR.
5299 Return the constant in IMM and OFFSET as follows:
5301 - If the constant should be loaded via memory, set IMM to O_absent and
5302 OFFSET to the memory address.
5304 - Otherwise, if the constant should be loaded into two 32-bit registers,
5305 set IMM to the O_constant to load into the high register and OFFSET
5306 to the corresponding value for the low register.
5308 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5310 These constants only appear as the last operand in an instruction,
5311 and every instruction that accepts them in any variant accepts them
5312 in all variants. This means we don't have to worry about backing out
5313 any changes if the instruction does not match. We just match
5314 unconditionally and report an error if the constant is invalid. */
5317 match_float_constant (struct mips_arg_info
*arg
, expressionS
*imm
,
5318 expressionS
*offset
, int length
, bfd_boolean using_gprs
)
5323 const char *newname
;
5324 unsigned char *data
;
5326 /* Where the constant is placed is based on how the MIPS assembler
5329 length == 4 && using_gprs -- immediate value only
5330 length == 8 && using_gprs -- .rdata or immediate value
5331 length == 4 && !using_gprs -- .lit4 or immediate value
5332 length == 8 && !using_gprs -- .lit8 or immediate value
5334 The .lit4 and .lit8 sections are only used if permitted by the
5336 if (arg
->token
->type
!= OT_FLOAT
)
5338 set_insn_error (arg
->argnum
, _("floating-point expression required"));
5342 gas_assert (arg
->token
->u
.flt
.length
== length
);
5343 data
= arg
->token
->u
.flt
.data
;
5346 /* Handle 32-bit constants for which an immediate value is best. */
5349 || g_switch_value
< 4
5350 || (data
[0] == 0 && data
[1] == 0)
5351 || (data
[2] == 0 && data
[3] == 0)))
5353 imm
->X_op
= O_constant
;
5354 if (!target_big_endian
)
5355 imm
->X_add_number
= bfd_getl32 (data
);
5357 imm
->X_add_number
= bfd_getb32 (data
);
5358 offset
->X_op
= O_absent
;
5362 /* Handle 64-bit constants for which an immediate value is best. */
5364 && !mips_disable_float_construction
5365 /* Constants can only be constructed in GPRs and copied
5366 to FPRs if the GPRs are at least as wide as the FPRs.
5367 Force the constant into memory if we are using 64-bit FPRs
5368 but the GPRs are only 32 bits wide. */
5369 /* ??? No longer true with the addition of MTHC1, but this
5370 is legacy code... */
5371 && (using_gprs
|| !(FPR_SIZE
== 64 && GPR_SIZE
== 32))
5372 && ((data
[0] == 0 && data
[1] == 0)
5373 || (data
[2] == 0 && data
[3] == 0))
5374 && ((data
[4] == 0 && data
[5] == 0)
5375 || (data
[6] == 0 && data
[7] == 0)))
5377 /* The value is simple enough to load with a couple of instructions.
5378 If using 32-bit registers, set IMM to the high order 32 bits and
5379 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5381 if (using_gprs
? GPR_SIZE
== 32 : FPR_SIZE
!= 64)
5383 imm
->X_op
= O_constant
;
5384 offset
->X_op
= O_constant
;
5385 if (!target_big_endian
)
5387 imm
->X_add_number
= bfd_getl32 (data
+ 4);
5388 offset
->X_add_number
= bfd_getl32 (data
);
5392 imm
->X_add_number
= bfd_getb32 (data
);
5393 offset
->X_add_number
= bfd_getb32 (data
+ 4);
5395 if (offset
->X_add_number
== 0)
5396 offset
->X_op
= O_absent
;
5400 imm
->X_op
= O_constant
;
5401 if (!target_big_endian
)
5402 imm
->X_add_number
= bfd_getl64 (data
);
5404 imm
->X_add_number
= bfd_getb64 (data
);
5405 offset
->X_op
= O_absent
;
5410 /* Switch to the right section. */
5412 subseg
= now_subseg
;
5415 gas_assert (!using_gprs
&& g_switch_value
>= 4);
5420 if (using_gprs
|| g_switch_value
< 8)
5421 newname
= RDATA_SECTION_NAME
;
5426 new_seg
= subseg_new (newname
, (subsegT
) 0);
5427 bfd_set_section_flags (stdoutput
, new_seg
,
5428 SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
| SEC_DATA
);
5429 frag_align (length
== 4 ? 2 : 3, 0, 0);
5430 if (strncmp (TARGET_OS
, "elf", 3) != 0)
5431 record_alignment (new_seg
, 4);
5433 record_alignment (new_seg
, length
== 4 ? 2 : 3);
5435 as_bad (_("cannot use `%s' in this section"), arg
->insn
->insn_mo
->name
);
5437 /* Set the argument to the current address in the section. */
5438 imm
->X_op
= O_absent
;
5439 offset
->X_op
= O_symbol
;
5440 offset
->X_add_symbol
= symbol_temp_new_now ();
5441 offset
->X_add_number
= 0;
5443 /* Put the floating point number into the section. */
5444 p
= frag_more (length
);
5445 memcpy (p
, data
, length
);
5447 /* Switch back to the original section. */
5448 subseg_set (seg
, subseg
);
5452 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5456 match_vu0_suffix_operand (struct mips_arg_info
*arg
,
5457 const struct mips_operand
*operand
,
5458 bfd_boolean match_p
)
5462 /* The operand can be an XYZW mask or a single 2-bit channel index
5463 (with X being 0). */
5464 gas_assert (operand
->size
== 2 || operand
->size
== 4);
5466 /* The suffix can be omitted when it is already part of the opcode. */
5467 if (arg
->token
->type
!= OT_CHANNELS
)
5470 uval
= arg
->token
->u
.channels
;
5471 if (operand
->size
== 2)
5473 /* Check that a single bit is set and convert it into a 2-bit index. */
5474 if ((uval
& -uval
) != uval
)
5476 uval
= 4 - ffs (uval
);
5479 if (match_p
&& insn_extract_operand (arg
->insn
, operand
) != uval
)
5484 insn_insert_operand (arg
->insn
, operand
, uval
);
5488 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5489 of the argument text if the match is successful, otherwise return null. */
5492 match_operand (struct mips_arg_info
*arg
,
5493 const struct mips_operand
*operand
)
5495 switch (operand
->type
)
5498 return match_int_operand (arg
, operand
);
5501 return match_mapped_int_operand (arg
, operand
);
5504 return match_msb_operand (arg
, operand
);
5507 case OP_OPTIONAL_REG
:
5508 return match_reg_operand (arg
, operand
);
5511 return match_reg_pair_operand (arg
, operand
);
5514 return match_pcrel_operand (arg
);
5517 return match_perf_reg_operand (arg
, operand
);
5519 case OP_ADDIUSP_INT
:
5520 return match_addiusp_operand (arg
, operand
);
5522 case OP_CLO_CLZ_DEST
:
5523 return match_clo_clz_dest_operand (arg
, operand
);
5525 case OP_LWM_SWM_LIST
:
5526 return match_lwm_swm_list_operand (arg
, operand
);
5528 case OP_ENTRY_EXIT_LIST
:
5529 return match_entry_exit_operand (arg
, operand
);
5531 case OP_SAVE_RESTORE_LIST
:
5532 return match_save_restore_list_operand (arg
);
5534 case OP_MDMX_IMM_REG
:
5535 return match_mdmx_imm_reg_operand (arg
, operand
);
5537 case OP_REPEAT_DEST_REG
:
5538 return match_tied_reg_operand (arg
, arg
->dest_regno
);
5540 case OP_REPEAT_PREV_REG
:
5541 return match_tied_reg_operand (arg
, arg
->last_regno
);
5544 return match_pc_operand (arg
);
5547 return match_vu0_suffix_operand (arg
, operand
, FALSE
);
5549 case OP_VU0_MATCH_SUFFIX
:
5550 return match_vu0_suffix_operand (arg
, operand
, TRUE
);
5553 return match_imm_index_operand (arg
, operand
);
5556 return match_reg_index_operand (arg
, operand
);
5561 /* ARG is the state after successfully matching an instruction.
5562 Issue any queued-up warnings. */
5565 check_completed_insn (struct mips_arg_info
*arg
)
5570 as_warn (_("used $at without \".set noat\""));
5572 as_warn (_("used $%u with \".set at=$%u\""), AT
, AT
);
5576 /* Return true if modifying general-purpose register REG needs a delay. */
5579 reg_needs_delay (unsigned int reg
)
5581 unsigned long prev_pinfo
;
5583 prev_pinfo
= history
[0].insn_mo
->pinfo
;
5584 if (!mips_opts
.noreorder
5585 && (((prev_pinfo
& INSN_LOAD_MEMORY
) && !gpr_interlocks
)
5586 || ((prev_pinfo
& INSN_LOAD_COPROC_DELAY
) && !cop_interlocks
))
5587 && (gpr_write_mask (&history
[0]) & (1 << reg
)))
5593 /* Classify an instruction according to the FIX_VR4120_* enumeration.
5594 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
5595 by VR4120 errata. */
5598 classify_vr4120_insn (const char *name
)
5600 if (strncmp (name
, "macc", 4) == 0)
5601 return FIX_VR4120_MACC
;
5602 if (strncmp (name
, "dmacc", 5) == 0)
5603 return FIX_VR4120_DMACC
;
5604 if (strncmp (name
, "mult", 4) == 0)
5605 return FIX_VR4120_MULT
;
5606 if (strncmp (name
, "dmult", 5) == 0)
5607 return FIX_VR4120_DMULT
;
5608 if (strstr (name
, "div"))
5609 return FIX_VR4120_DIV
;
5610 if (strcmp (name
, "mtlo") == 0 || strcmp (name
, "mthi") == 0)
5611 return FIX_VR4120_MTHILO
;
5612 return NUM_FIX_VR4120_CLASSES
;
5615 #define INSN_ERET 0x42000018
5616 #define INSN_DERET 0x4200001f
5617 #define INSN_DMULT 0x1c
5618 #define INSN_DMULTU 0x1d
5620 /* Return the number of instructions that must separate INSN1 and INSN2,
5621 where INSN1 is the earlier instruction. Return the worst-case value
5622 for any INSN2 if INSN2 is null. */
5625 insns_between (const struct mips_cl_insn
*insn1
,
5626 const struct mips_cl_insn
*insn2
)
5628 unsigned long pinfo1
, pinfo2
;
5631 /* If INFO2 is null, pessimistically assume that all flags are set for
5632 the second instruction. */
5633 pinfo1
= insn1
->insn_mo
->pinfo
;
5634 pinfo2
= insn2
? insn2
->insn_mo
->pinfo
: ~0U;
5636 /* For most targets, write-after-read dependencies on the HI and LO
5637 registers must be separated by at least two instructions. */
5638 if (!hilo_interlocks
)
5640 if ((pinfo1
& INSN_READ_LO
) && (pinfo2
& INSN_WRITE_LO
))
5642 if ((pinfo1
& INSN_READ_HI
) && (pinfo2
& INSN_WRITE_HI
))
5646 /* If we're working around r7000 errata, there must be two instructions
5647 between an mfhi or mflo and any instruction that uses the result. */
5648 if (mips_7000_hilo_fix
5649 && !mips_opts
.micromips
5650 && MF_HILO_INSN (pinfo1
)
5651 && (insn2
== NULL
|| (gpr_read_mask (insn2
) & gpr_write_mask (insn1
))))
5654 /* If we're working around 24K errata, one instruction is required
5655 if an ERET or DERET is followed by a branch instruction. */
5656 if (mips_fix_24k
&& !mips_opts
.micromips
)
5658 if (insn1
->insn_opcode
== INSN_ERET
5659 || insn1
->insn_opcode
== INSN_DERET
)
5662 || insn2
->insn_opcode
== INSN_ERET
5663 || insn2
->insn_opcode
== INSN_DERET
5664 || delayed_branch_p (insn2
))
5669 /* If we're working around PMC RM7000 errata, there must be three
5670 nops between a dmult and a load instruction. */
5671 if (mips_fix_rm7000
&& !mips_opts
.micromips
)
5673 if ((insn1
->insn_opcode
& insn1
->insn_mo
->mask
) == INSN_DMULT
5674 || (insn1
->insn_opcode
& insn1
->insn_mo
->mask
) == INSN_DMULTU
)
5676 if (pinfo2
& INSN_LOAD_MEMORY
)
5681 /* If working around VR4120 errata, check for combinations that need
5682 a single intervening instruction. */
5683 if (mips_fix_vr4120
&& !mips_opts
.micromips
)
5685 unsigned int class1
, class2
;
5687 class1
= classify_vr4120_insn (insn1
->insn_mo
->name
);
5688 if (class1
!= NUM_FIX_VR4120_CLASSES
&& vr4120_conflicts
[class1
] != 0)
5692 class2
= classify_vr4120_insn (insn2
->insn_mo
->name
);
5693 if (vr4120_conflicts
[class1
] & (1 << class2
))
5698 if (!HAVE_CODE_COMPRESSION
)
5700 /* Check for GPR or coprocessor load delays. All such delays
5701 are on the RT register. */
5702 /* Itbl support may require additional care here. */
5703 if ((!gpr_interlocks
&& (pinfo1
& INSN_LOAD_MEMORY
))
5704 || (!cop_interlocks
&& (pinfo1
& INSN_LOAD_COPROC_DELAY
)))
5706 if (insn2
== NULL
|| (gpr_read_mask (insn2
) & gpr_write_mask (insn1
)))
5710 /* Check for generic coprocessor hazards.
5712 This case is not handled very well. There is no special
5713 knowledge of CP0 handling, and the coprocessors other than
5714 the floating point unit are not distinguished at all. */
5715 /* Itbl support may require additional care here. FIXME!
5716 Need to modify this to include knowledge about
5717 user specified delays! */
5718 else if ((!cop_interlocks
&& (pinfo1
& INSN_COPROC_MOVE_DELAY
))
5719 || (!cop_mem_interlocks
&& (pinfo1
& INSN_COPROC_MEMORY_DELAY
)))
5721 /* Handle cases where INSN1 writes to a known general coprocessor
5722 register. There must be a one instruction delay before INSN2
5723 if INSN2 reads that register, otherwise no delay is needed. */
5724 mask
= fpr_write_mask (insn1
);
5727 if (!insn2
|| (mask
& fpr_read_mask (insn2
)) != 0)
5732 /* Read-after-write dependencies on the control registers
5733 require a two-instruction gap. */
5734 if ((pinfo1
& INSN_WRITE_COND_CODE
)
5735 && (pinfo2
& INSN_READ_COND_CODE
))
5738 /* We don't know exactly what INSN1 does. If INSN2 is
5739 also a coprocessor instruction, assume there must be
5740 a one instruction gap. */
5741 if (pinfo2
& INSN_COP
)
5746 /* Check for read-after-write dependencies on the coprocessor
5747 control registers in cases where INSN1 does not need a general
5748 coprocessor delay. This means that INSN1 is a floating point
5749 comparison instruction. */
5750 /* Itbl support may require additional care here. */
5751 else if (!cop_interlocks
5752 && (pinfo1
& INSN_WRITE_COND_CODE
)
5753 && (pinfo2
& INSN_READ_COND_CODE
))
5760 /* Return the number of nops that would be needed to work around the
5761 VR4130 mflo/mfhi errata if instruction INSN immediately followed
5762 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
5763 that are contained within the first IGNORE instructions of HIST. */
5766 nops_for_vr4130 (int ignore
, const struct mips_cl_insn
*hist
,
5767 const struct mips_cl_insn
*insn
)
5772 /* Check if the instruction writes to HI or LO. MTHI and MTLO
5773 are not affected by the errata. */
5775 && ((insn
->insn_mo
->pinfo
& (INSN_WRITE_HI
| INSN_WRITE_LO
)) == 0
5776 || strcmp (insn
->insn_mo
->name
, "mtlo") == 0
5777 || strcmp (insn
->insn_mo
->name
, "mthi") == 0))
5780 /* Search for the first MFLO or MFHI. */
5781 for (i
= 0; i
< MAX_VR4130_NOPS
; i
++)
5782 if (MF_HILO_INSN (hist
[i
].insn_mo
->pinfo
))
5784 /* Extract the destination register. */
5785 mask
= gpr_write_mask (&hist
[i
]);
5787 /* No nops are needed if INSN reads that register. */
5788 if (insn
!= NULL
&& (gpr_read_mask (insn
) & mask
) != 0)
5791 /* ...or if any of the intervening instructions do. */
5792 for (j
= 0; j
< i
; j
++)
5793 if (gpr_read_mask (&hist
[j
]) & mask
)
5797 return MAX_VR4130_NOPS
- i
;
5802 #define BASE_REG_EQ(INSN1, INSN2) \
5803 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
5804 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
5806 /* Return the minimum alignment for this store instruction. */
5809 fix_24k_align_to (const struct mips_opcode
*mo
)
5811 if (strcmp (mo
->name
, "sh") == 0)
5814 if (strcmp (mo
->name
, "swc1") == 0
5815 || strcmp (mo
->name
, "swc2") == 0
5816 || strcmp (mo
->name
, "sw") == 0
5817 || strcmp (mo
->name
, "sc") == 0
5818 || strcmp (mo
->name
, "s.s") == 0)
5821 if (strcmp (mo
->name
, "sdc1") == 0
5822 || strcmp (mo
->name
, "sdc2") == 0
5823 || strcmp (mo
->name
, "s.d") == 0)
5830 struct fix_24k_store_info
5832 /* Immediate offset, if any, for this store instruction. */
5834 /* Alignment required by this store instruction. */
5836 /* True for register offsets. */
5837 int register_offset
;
5840 /* Comparison function used by qsort. */
5843 fix_24k_sort (const void *a
, const void *b
)
5845 const struct fix_24k_store_info
*pos1
= a
;
5846 const struct fix_24k_store_info
*pos2
= b
;
5848 return (pos1
->off
- pos2
->off
);
5851 /* INSN is a store instruction. Try to record the store information
5852 in STINFO. Return false if the information isn't known. */
5855 fix_24k_record_store_info (struct fix_24k_store_info
*stinfo
,
5856 const struct mips_cl_insn
*insn
)
5858 /* The instruction must have a known offset. */
5859 if (!insn
->complete_p
|| !strstr (insn
->insn_mo
->args
, "o("))
5862 stinfo
->off
= (insn
->insn_opcode
>> OP_SH_IMMEDIATE
) & OP_MASK_IMMEDIATE
;
5863 stinfo
->align_to
= fix_24k_align_to (insn
->insn_mo
);
5867 /* Return the number of nops that would be needed to work around the 24k
5868 "lost data on stores during refill" errata if instruction INSN
5869 immediately followed the 2 instructions described by HIST.
5870 Ignore hazards that are contained within the first IGNORE
5871 instructions of HIST.
5873 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
5874 for the data cache refills and store data. The following describes
5875 the scenario where the store data could be lost.
5877 * A data cache miss, due to either a load or a store, causing fill
5878 data to be supplied by the memory subsystem
5879 * The first three doublewords of fill data are returned and written
5881 * A sequence of four stores occurs in consecutive cycles around the
5882 final doubleword of the fill:
5886 * Zero, One or more instructions
5889 The four stores A-D must be to different doublewords of the line that
5890 is being filled. The fourth instruction in the sequence above permits
5891 the fill of the final doubleword to be transferred from the FSB into
5892 the cache. In the sequence above, the stores may be either integer
5893 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
5894 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
5895 different doublewords on the line. If the floating point unit is
5896 running in 1:2 mode, it is not possible to create the sequence above
5897 using only floating point store instructions.
5899 In this case, the cache line being filled is incorrectly marked
5900 invalid, thereby losing the data from any store to the line that
5901 occurs between the original miss and the completion of the five
5902 cycle sequence shown above.
5904 The workarounds are:
5906 * Run the data cache in write-through mode.
5907 * Insert a non-store instruction between
5908 Store A and Store B or Store B and Store C. */
5911 nops_for_24k (int ignore
, const struct mips_cl_insn
*hist
,
5912 const struct mips_cl_insn
*insn
)
5914 struct fix_24k_store_info pos
[3];
5915 int align
, i
, base_offset
;
5920 /* If the previous instruction wasn't a store, there's nothing to
5922 if ((hist
[0].insn_mo
->pinfo
& INSN_STORE_MEMORY
) == 0)
5925 /* If the instructions after the previous one are unknown, we have
5926 to assume the worst. */
5930 /* Check whether we are dealing with three consecutive stores. */
5931 if ((insn
->insn_mo
->pinfo
& INSN_STORE_MEMORY
) == 0
5932 || (hist
[1].insn_mo
->pinfo
& INSN_STORE_MEMORY
) == 0)
5935 /* If we don't know the relationship between the store addresses,
5936 assume the worst. */
5937 if (!BASE_REG_EQ (insn
->insn_opcode
, hist
[0].insn_opcode
)
5938 || !BASE_REG_EQ (insn
->insn_opcode
, hist
[1].insn_opcode
))
5941 if (!fix_24k_record_store_info (&pos
[0], insn
)
5942 || !fix_24k_record_store_info (&pos
[1], &hist
[0])
5943 || !fix_24k_record_store_info (&pos
[2], &hist
[1]))
5946 qsort (&pos
, 3, sizeof (struct fix_24k_store_info
), fix_24k_sort
);
5948 /* Pick a value of ALIGN and X such that all offsets are adjusted by
5949 X bytes and such that the base register + X is known to be aligned
5952 if (((insn
->insn_opcode
>> OP_SH_RS
) & OP_MASK_RS
) == SP
)
5956 align
= pos
[0].align_to
;
5957 base_offset
= pos
[0].off
;
5958 for (i
= 1; i
< 3; i
++)
5959 if (align
< pos
[i
].align_to
)
5961 align
= pos
[i
].align_to
;
5962 base_offset
= pos
[i
].off
;
5964 for (i
= 0; i
< 3; i
++)
5965 pos
[i
].off
-= base_offset
;
5968 pos
[0].off
&= ~align
+ 1;
5969 pos
[1].off
&= ~align
+ 1;
5970 pos
[2].off
&= ~align
+ 1;
5972 /* If any two stores write to the same chunk, they also write to the
5973 same doubleword. The offsets are still sorted at this point. */
5974 if (pos
[0].off
== pos
[1].off
|| pos
[1].off
== pos
[2].off
)
5977 /* A range of at least 9 bytes is needed for the stores to be in
5978 non-overlapping doublewords. */
5979 if (pos
[2].off
- pos
[0].off
<= 8)
5982 if (pos
[2].off
- pos
[1].off
>= 24
5983 || pos
[1].off
- pos
[0].off
>= 24
5984 || pos
[2].off
- pos
[0].off
>= 32)
5990 /* Return the number of nops that would be needed if instruction INSN
5991 immediately followed the MAX_NOPS instructions given by HIST,
5992 where HIST[0] is the most recent instruction. Ignore hazards
5993 between INSN and the first IGNORE instructions in HIST.
5995 If INSN is null, return the worse-case number of nops for any
5999 nops_for_insn (int ignore
, const struct mips_cl_insn
*hist
,
6000 const struct mips_cl_insn
*insn
)
6002 int i
, nops
, tmp_nops
;
6005 for (i
= ignore
; i
< MAX_DELAY_NOPS
; i
++)
6007 tmp_nops
= insns_between (hist
+ i
, insn
) - i
;
6008 if (tmp_nops
> nops
)
6012 if (mips_fix_vr4130
&& !mips_opts
.micromips
)
6014 tmp_nops
= nops_for_vr4130 (ignore
, hist
, insn
);
6015 if (tmp_nops
> nops
)
6019 if (mips_fix_24k
&& !mips_opts
.micromips
)
6021 tmp_nops
= nops_for_24k (ignore
, hist
, insn
);
6022 if (tmp_nops
> nops
)
6029 /* The variable arguments provide NUM_INSNS extra instructions that
6030 might be added to HIST. Return the largest number of nops that
6031 would be needed after the extended sequence, ignoring hazards
6032 in the first IGNORE instructions. */
6035 nops_for_sequence (int num_insns
, int ignore
,
6036 const struct mips_cl_insn
*hist
, ...)
6039 struct mips_cl_insn buffer
[MAX_NOPS
];
6040 struct mips_cl_insn
*cursor
;
6043 va_start (args
, hist
);
6044 cursor
= buffer
+ num_insns
;
6045 memcpy (cursor
, hist
, (MAX_NOPS
- num_insns
) * sizeof (*cursor
));
6046 while (cursor
> buffer
)
6047 *--cursor
= *va_arg (args
, const struct mips_cl_insn
*);
6049 nops
= nops_for_insn (ignore
, buffer
, NULL
);
6054 /* Like nops_for_insn, but if INSN is a branch, take into account the
6055 worst-case delay for the branch target. */
6058 nops_for_insn_or_target (int ignore
, const struct mips_cl_insn
*hist
,
6059 const struct mips_cl_insn
*insn
)
6063 nops
= nops_for_insn (ignore
, hist
, insn
);
6064 if (delayed_branch_p (insn
))
6066 tmp_nops
= nops_for_sequence (2, ignore
? ignore
+ 2 : 0,
6067 hist
, insn
, get_delay_slot_nop (insn
));
6068 if (tmp_nops
> nops
)
6071 else if (compact_branch_p (insn
))
6073 tmp_nops
= nops_for_sequence (1, ignore
? ignore
+ 1 : 0, hist
, insn
);
6074 if (tmp_nops
> nops
)
6080 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6083 fix_loongson2f_nop (struct mips_cl_insn
* ip
)
6085 gas_assert (!HAVE_CODE_COMPRESSION
);
6086 if (strcmp (ip
->insn_mo
->name
, "nop") == 0)
6087 ip
->insn_opcode
= LOONGSON2F_NOP_INSN
;
6090 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6091 jr target pc &= 'hffff_ffff_cfff_ffff. */
6094 fix_loongson2f_jump (struct mips_cl_insn
* ip
)
6096 gas_assert (!HAVE_CODE_COMPRESSION
);
6097 if (strcmp (ip
->insn_mo
->name
, "j") == 0
6098 || strcmp (ip
->insn_mo
->name
, "jr") == 0
6099 || strcmp (ip
->insn_mo
->name
, "jalr") == 0)
6107 sreg
= EXTRACT_OPERAND (0, RS
, *ip
);
6108 if (sreg
== ZERO
|| sreg
== KT0
|| sreg
== KT1
|| sreg
== ATREG
)
6111 ep
.X_op
= O_constant
;
6112 ep
.X_add_number
= 0xcfff0000;
6113 macro_build (&ep
, "lui", "t,u", ATREG
, BFD_RELOC_HI16
);
6114 ep
.X_add_number
= 0xffff;
6115 macro_build (&ep
, "ori", "t,r,i", ATREG
, ATREG
, BFD_RELOC_LO16
);
6116 macro_build (NULL
, "and", "d,v,t", sreg
, sreg
, ATREG
);
6121 fix_loongson2f (struct mips_cl_insn
* ip
)
6123 if (mips_fix_loongson2f_nop
)
6124 fix_loongson2f_nop (ip
);
6126 if (mips_fix_loongson2f_jump
)
6127 fix_loongson2f_jump (ip
);
6130 /* IP is a branch that has a delay slot, and we need to fill it
6131 automatically. Return true if we can do that by swapping IP
6132 with the previous instruction.
6133 ADDRESS_EXPR is an operand of the instruction to be used with
6137 can_swap_branch_p (struct mips_cl_insn
*ip
, expressionS
*address_expr
,
6138 bfd_reloc_code_real_type
*reloc_type
)
6140 unsigned long pinfo
, pinfo2
, prev_pinfo
, prev_pinfo2
;
6141 unsigned int gpr_read
, gpr_write
, prev_gpr_read
, prev_gpr_write
;
6142 unsigned int fpr_read
, prev_fpr_write
;
6144 /* -O2 and above is required for this optimization. */
6145 if (mips_optimize
< 2)
6148 /* If we have seen .set volatile or .set nomove, don't optimize. */
6149 if (mips_opts
.nomove
)
6152 /* We can't swap if the previous instruction's position is fixed. */
6153 if (history
[0].fixed_p
)
6156 /* If the previous previous insn was in a .set noreorder, we can't
6157 swap. Actually, the MIPS assembler will swap in this situation.
6158 However, gcc configured -with-gnu-as will generate code like
6166 in which we can not swap the bne and INSN. If gcc is not configured
6167 -with-gnu-as, it does not output the .set pseudo-ops. */
6168 if (history
[1].noreorder_p
)
6171 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6172 This means that the previous instruction was a 4-byte one anyhow. */
6173 if (mips_opts
.mips16
&& history
[0].fixp
[0])
6176 /* If the branch is itself the target of a branch, we can not swap.
6177 We cheat on this; all we check for is whether there is a label on
6178 this instruction. If there are any branches to anything other than
6179 a label, users must use .set noreorder. */
6180 if (seg_info (now_seg
)->label_list
)
6183 /* If the previous instruction is in a variant frag other than this
6184 branch's one, we cannot do the swap. This does not apply to
6185 MIPS16 code, which uses variant frags for different purposes. */
6186 if (!mips_opts
.mips16
6188 && history
[0].frag
->fr_type
== rs_machine_dependent
)
6191 /* We do not swap with instructions that cannot architecturally
6192 be placed in a branch delay slot, such as SYNC or ERET. We
6193 also refrain from swapping with a trap instruction, since it
6194 complicates trap handlers to have the trap instruction be in
6196 prev_pinfo
= history
[0].insn_mo
->pinfo
;
6197 if (prev_pinfo
& INSN_NO_DELAY_SLOT
)
6200 /* Check for conflicts between the branch and the instructions
6201 before the candidate delay slot. */
6202 if (nops_for_insn (0, history
+ 1, ip
) > 0)
6205 /* Check for conflicts between the swapped sequence and the
6206 target of the branch. */
6207 if (nops_for_sequence (2, 0, history
+ 1, ip
, history
) > 0)
6210 /* If the branch reads a register that the previous
6211 instruction sets, we can not swap. */
6212 gpr_read
= gpr_read_mask (ip
);
6213 prev_gpr_write
= gpr_write_mask (&history
[0]);
6214 if (gpr_read
& prev_gpr_write
)
6217 fpr_read
= fpr_read_mask (ip
);
6218 prev_fpr_write
= fpr_write_mask (&history
[0]);
6219 if (fpr_read
& prev_fpr_write
)
6222 /* If the branch writes a register that the previous
6223 instruction sets, we can not swap. */
6224 gpr_write
= gpr_write_mask (ip
);
6225 if (gpr_write
& prev_gpr_write
)
6228 /* If the branch writes a register that the previous
6229 instruction reads, we can not swap. */
6230 prev_gpr_read
= gpr_read_mask (&history
[0]);
6231 if (gpr_write
& prev_gpr_read
)
6234 /* If one instruction sets a condition code and the
6235 other one uses a condition code, we can not swap. */
6236 pinfo
= ip
->insn_mo
->pinfo
;
6237 if ((pinfo
& INSN_READ_COND_CODE
)
6238 && (prev_pinfo
& INSN_WRITE_COND_CODE
))
6240 if ((pinfo
& INSN_WRITE_COND_CODE
)
6241 && (prev_pinfo
& INSN_READ_COND_CODE
))
6244 /* If the previous instruction uses the PC, we can not swap. */
6245 prev_pinfo2
= history
[0].insn_mo
->pinfo2
;
6246 if (prev_pinfo2
& INSN2_READ_PC
)
6249 /* If the previous instruction has an incorrect size for a fixed
6250 branch delay slot in microMIPS mode, we cannot swap. */
6251 pinfo2
= ip
->insn_mo
->pinfo2
;
6252 if (mips_opts
.micromips
6253 && (pinfo2
& INSN2_BRANCH_DELAY_16BIT
)
6254 && insn_length (history
) != 2)
6256 if (mips_opts
.micromips
6257 && (pinfo2
& INSN2_BRANCH_DELAY_32BIT
)
6258 && insn_length (history
) != 4)
6261 /* On R5900 short loops need to be fixed by inserting a nop in
6262 the branch delay slots.
6263 A short loop can be terminated too early. */
6264 if (mips_opts
.arch
== CPU_R5900
6265 /* Check if instruction has a parameter, ignore "j $31". */
6266 && (address_expr
!= NULL
)
6267 /* Parameter must be 16 bit. */
6268 && (*reloc_type
== BFD_RELOC_16_PCREL_S2
)
6269 /* Branch to same segment. */
6270 && (S_GET_SEGMENT(address_expr
->X_add_symbol
) == now_seg
)
6271 /* Branch to same code fragment. */
6272 && (symbol_get_frag(address_expr
->X_add_symbol
) == frag_now
)
6273 /* Can only calculate branch offset if value is known. */
6274 && symbol_constant_p(address_expr
->X_add_symbol
)
6275 /* Check if branch is really conditional. */
6276 && !((ip
->insn_opcode
& 0xffff0000) == 0x10000000 /* beq $0,$0 */
6277 || (ip
->insn_opcode
& 0xffff0000) == 0x04010000 /* bgez $0 */
6278 || (ip
->insn_opcode
& 0xffff0000) == 0x04110000)) /* bgezal $0 */
6281 /* Check if loop is shorter than 6 instructions including
6282 branch and delay slot. */
6283 distance
= frag_now_fix() - S_GET_VALUE(address_expr
->X_add_symbol
);
6290 /* When the loop includes branches or jumps,
6291 it is not a short loop. */
6292 for (i
= 0; i
< (distance
/ 4); i
++)
6294 if ((history
[i
].cleared_p
)
6295 || delayed_branch_p(&history
[i
]))
6303 /* Insert nop after branch to fix short loop. */
6312 /* Decide how we should add IP to the instruction stream.
6313 ADDRESS_EXPR is an operand of the instruction to be used with
6316 static enum append_method
6317 get_append_method (struct mips_cl_insn
*ip
, expressionS
*address_expr
,
6318 bfd_reloc_code_real_type
*reloc_type
)
6320 /* The relaxed version of a macro sequence must be inherently
6322 if (mips_relax
.sequence
== 2)
6325 /* We must not dabble with instructions in a ".set norerorder" block. */
6326 if (mips_opts
.noreorder
)
6329 /* Otherwise, it's our responsibility to fill branch delay slots. */
6330 if (delayed_branch_p (ip
))
6332 if (!branch_likely_p (ip
)
6333 && can_swap_branch_p (ip
, address_expr
, reloc_type
))
6336 if (mips_opts
.mips16
6337 && ISA_SUPPORTS_MIPS16E
6338 && gpr_read_mask (ip
) != 0)
6339 return APPEND_ADD_COMPACT
;
6341 return APPEND_ADD_WITH_NOP
;
6347 /* IP is a MIPS16 instruction whose opcode we have just changed.
6348 Point IP->insn_mo to the new opcode's definition. */
6351 find_altered_mips16_opcode (struct mips_cl_insn
*ip
)
6353 const struct mips_opcode
*mo
, *end
;
6355 end
= &mips16_opcodes
[bfd_mips16_num_opcodes
];
6356 for (mo
= ip
->insn_mo
; mo
< end
; mo
++)
6357 if ((ip
->insn_opcode
& mo
->mask
) == mo
->match
)
6365 /* For microMIPS macros, we need to generate a local number label
6366 as the target of branches. */
6367 #define MICROMIPS_LABEL_CHAR '\037'
6368 static unsigned long micromips_target_label
;
6369 static char micromips_target_name
[32];
6372 micromips_label_name (void)
6374 char *p
= micromips_target_name
;
6375 char symbol_name_temporary
[24];
6383 l
= micromips_target_label
;
6384 #ifdef LOCAL_LABEL_PREFIX
6385 *p
++ = LOCAL_LABEL_PREFIX
;
6388 *p
++ = MICROMIPS_LABEL_CHAR
;
6391 symbol_name_temporary
[i
++] = l
% 10 + '0';
6396 *p
++ = symbol_name_temporary
[--i
];
6399 return micromips_target_name
;
6403 micromips_label_expr (expressionS
*label_expr
)
6405 label_expr
->X_op
= O_symbol
;
6406 label_expr
->X_add_symbol
= symbol_find_or_make (micromips_label_name ());
6407 label_expr
->X_add_number
= 0;
6411 micromips_label_inc (void)
6413 micromips_target_label
++;
6414 *micromips_target_name
= '\0';
6418 micromips_add_label (void)
6422 s
= colon (micromips_label_name ());
6423 micromips_label_inc ();
6424 S_SET_OTHER (s
, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s
)));
6427 /* If assembling microMIPS code, then return the microMIPS reloc
6428 corresponding to the requested one if any. Otherwise return
6429 the reloc unchanged. */
6431 static bfd_reloc_code_real_type
6432 micromips_map_reloc (bfd_reloc_code_real_type reloc
)
6434 static const bfd_reloc_code_real_type relocs
[][2] =
6436 /* Keep sorted incrementally by the left-hand key. */
6437 { BFD_RELOC_16_PCREL_S2
, BFD_RELOC_MICROMIPS_16_PCREL_S1
},
6438 { BFD_RELOC_GPREL16
, BFD_RELOC_MICROMIPS_GPREL16
},
6439 { BFD_RELOC_MIPS_JMP
, BFD_RELOC_MICROMIPS_JMP
},
6440 { BFD_RELOC_HI16
, BFD_RELOC_MICROMIPS_HI16
},
6441 { BFD_RELOC_HI16_S
, BFD_RELOC_MICROMIPS_HI16_S
},
6442 { BFD_RELOC_LO16
, BFD_RELOC_MICROMIPS_LO16
},
6443 { BFD_RELOC_MIPS_LITERAL
, BFD_RELOC_MICROMIPS_LITERAL
},
6444 { BFD_RELOC_MIPS_GOT16
, BFD_RELOC_MICROMIPS_GOT16
},
6445 { BFD_RELOC_MIPS_CALL16
, BFD_RELOC_MICROMIPS_CALL16
},
6446 { BFD_RELOC_MIPS_GOT_HI16
, BFD_RELOC_MICROMIPS_GOT_HI16
},
6447 { BFD_RELOC_MIPS_GOT_LO16
, BFD_RELOC_MICROMIPS_GOT_LO16
},
6448 { BFD_RELOC_MIPS_CALL_HI16
, BFD_RELOC_MICROMIPS_CALL_HI16
},
6449 { BFD_RELOC_MIPS_CALL_LO16
, BFD_RELOC_MICROMIPS_CALL_LO16
},
6450 { BFD_RELOC_MIPS_SUB
, BFD_RELOC_MICROMIPS_SUB
},
6451 { BFD_RELOC_MIPS_GOT_PAGE
, BFD_RELOC_MICROMIPS_GOT_PAGE
},
6452 { BFD_RELOC_MIPS_GOT_OFST
, BFD_RELOC_MICROMIPS_GOT_OFST
},
6453 { BFD_RELOC_MIPS_GOT_DISP
, BFD_RELOC_MICROMIPS_GOT_DISP
},
6454 { BFD_RELOC_MIPS_HIGHEST
, BFD_RELOC_MICROMIPS_HIGHEST
},
6455 { BFD_RELOC_MIPS_HIGHER
, BFD_RELOC_MICROMIPS_HIGHER
},
6456 { BFD_RELOC_MIPS_SCN_DISP
, BFD_RELOC_MICROMIPS_SCN_DISP
},
6457 { BFD_RELOC_MIPS_TLS_GD
, BFD_RELOC_MICROMIPS_TLS_GD
},
6458 { BFD_RELOC_MIPS_TLS_LDM
, BFD_RELOC_MICROMIPS_TLS_LDM
},
6459 { BFD_RELOC_MIPS_TLS_DTPREL_HI16
, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16
},
6460 { BFD_RELOC_MIPS_TLS_DTPREL_LO16
, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16
},
6461 { BFD_RELOC_MIPS_TLS_GOTTPREL
, BFD_RELOC_MICROMIPS_TLS_GOTTPREL
},
6462 { BFD_RELOC_MIPS_TLS_TPREL_HI16
, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16
},
6463 { BFD_RELOC_MIPS_TLS_TPREL_LO16
, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16
}
6465 bfd_reloc_code_real_type r
;
6468 if (!mips_opts
.micromips
)
6470 for (i
= 0; i
< ARRAY_SIZE (relocs
); i
++)
6476 return relocs
[i
][1];
6481 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6482 Return true on success, storing the resolved value in RESULT. */
6485 calculate_reloc (bfd_reloc_code_real_type reloc
, offsetT operand
,
6490 case BFD_RELOC_MIPS_HIGHEST
:
6491 case BFD_RELOC_MICROMIPS_HIGHEST
:
6492 *result
= ((operand
+ 0x800080008000ull
) >> 48) & 0xffff;
6495 case BFD_RELOC_MIPS_HIGHER
:
6496 case BFD_RELOC_MICROMIPS_HIGHER
:
6497 *result
= ((operand
+ 0x80008000ull
) >> 32) & 0xffff;
6500 case BFD_RELOC_HI16_S
:
6501 case BFD_RELOC_MICROMIPS_HI16_S
:
6502 case BFD_RELOC_MIPS16_HI16_S
:
6503 *result
= ((operand
+ 0x8000) >> 16) & 0xffff;
6506 case BFD_RELOC_HI16
:
6507 case BFD_RELOC_MICROMIPS_HI16
:
6508 case BFD_RELOC_MIPS16_HI16
:
6509 *result
= (operand
>> 16) & 0xffff;
6512 case BFD_RELOC_LO16
:
6513 case BFD_RELOC_MICROMIPS_LO16
:
6514 case BFD_RELOC_MIPS16_LO16
:
6515 *result
= operand
& 0xffff;
6518 case BFD_RELOC_UNUSED
:
6527 /* Output an instruction. IP is the instruction information.
6528 ADDRESS_EXPR is an operand of the instruction to be used with
6529 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6530 a macro expansion. */
6533 append_insn (struct mips_cl_insn
*ip
, expressionS
*address_expr
,
6534 bfd_reloc_code_real_type
*reloc_type
, bfd_boolean expansionp
)
6536 unsigned long prev_pinfo2
, pinfo
;
6537 bfd_boolean relaxed_branch
= FALSE
;
6538 enum append_method method
;
6539 bfd_boolean relax32
;
6542 if (mips_fix_loongson2f
&& !HAVE_CODE_COMPRESSION
)
6543 fix_loongson2f (ip
);
6545 file_ase_mips16
|= mips_opts
.mips16
;
6546 file_ase_micromips
|= mips_opts
.micromips
;
6548 prev_pinfo2
= history
[0].insn_mo
->pinfo2
;
6549 pinfo
= ip
->insn_mo
->pinfo
;
6551 if (mips_opts
.micromips
6553 && (((prev_pinfo2
& INSN2_BRANCH_DELAY_16BIT
) != 0
6554 && micromips_insn_length (ip
->insn_mo
) != 2)
6555 || ((prev_pinfo2
& INSN2_BRANCH_DELAY_32BIT
) != 0
6556 && micromips_insn_length (ip
->insn_mo
) != 4)))
6557 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
6558 (prev_pinfo2
& INSN2_BRANCH_DELAY_16BIT
) != 0 ? 16 : 32);
6560 if (address_expr
== NULL
)
6562 else if (reloc_type
[0] <= BFD_RELOC_UNUSED
6563 && reloc_type
[1] == BFD_RELOC_UNUSED
6564 && reloc_type
[2] == BFD_RELOC_UNUSED
6565 && address_expr
->X_op
== O_constant
)
6567 switch (*reloc_type
)
6569 case BFD_RELOC_MIPS_JMP
:
6573 shift
= mips_opts
.micromips
? 1 : 2;
6574 if ((address_expr
->X_add_number
& ((1 << shift
) - 1)) != 0)
6575 as_bad (_("jump to misaligned address (0x%lx)"),
6576 (unsigned long) address_expr
->X_add_number
);
6577 ip
->insn_opcode
|= ((address_expr
->X_add_number
>> shift
)
6583 case BFD_RELOC_MIPS16_JMP
:
6584 if ((address_expr
->X_add_number
& 3) != 0)
6585 as_bad (_("jump to misaligned address (0x%lx)"),
6586 (unsigned long) address_expr
->X_add_number
);
6588 (((address_expr
->X_add_number
& 0x7c0000) << 3)
6589 | ((address_expr
->X_add_number
& 0xf800000) >> 7)
6590 | ((address_expr
->X_add_number
& 0x3fffc) >> 2));
6594 case BFD_RELOC_16_PCREL_S2
:
6598 shift
= mips_opts
.micromips
? 1 : 2;
6599 if ((address_expr
->X_add_number
& ((1 << shift
) - 1)) != 0)
6600 as_bad (_("branch to misaligned address (0x%lx)"),
6601 (unsigned long) address_expr
->X_add_number
);
6602 if (!mips_relax_branch
)
6604 if ((address_expr
->X_add_number
+ (1 << (shift
+ 15)))
6605 & ~((1 << (shift
+ 16)) - 1))
6606 as_bad (_("branch address range overflow (0x%lx)"),
6607 (unsigned long) address_expr
->X_add_number
);
6608 ip
->insn_opcode
|= ((address_expr
->X_add_number
>> shift
)
6618 if (calculate_reloc (*reloc_type
, address_expr
->X_add_number
,
6621 ip
->insn_opcode
|= value
& 0xffff;
6629 if (mips_relax
.sequence
!= 2 && !mips_opts
.noreorder
)
6631 /* There are a lot of optimizations we could do that we don't.
6632 In particular, we do not, in general, reorder instructions.
6633 If you use gcc with optimization, it will reorder
6634 instructions and generally do much more optimization then we
6635 do here; repeating all that work in the assembler would only
6636 benefit hand written assembly code, and does not seem worth
6638 int nops
= (mips_optimize
== 0
6639 ? nops_for_insn (0, history
, NULL
)
6640 : nops_for_insn_or_target (0, history
, ip
));
6644 unsigned long old_frag_offset
;
6647 old_frag
= frag_now
;
6648 old_frag_offset
= frag_now_fix ();
6650 for (i
= 0; i
< nops
; i
++)
6651 add_fixed_insn (NOP_INSN
);
6652 insert_into_history (0, nops
, NOP_INSN
);
6656 listing_prev_line ();
6657 /* We may be at the start of a variant frag. In case we
6658 are, make sure there is enough space for the frag
6659 after the frags created by listing_prev_line. The
6660 argument to frag_grow here must be at least as large
6661 as the argument to all other calls to frag_grow in
6662 this file. We don't have to worry about being in the
6663 middle of a variant frag, because the variants insert
6664 all needed nop instructions themselves. */
6668 mips_move_text_labels ();
6670 #ifndef NO_ECOFF_DEBUGGING
6671 if (ECOFF_DEBUGGING
)
6672 ecoff_fix_loc (old_frag
, old_frag_offset
);
6676 else if (mips_relax
.sequence
!= 2 && prev_nop_frag
!= NULL
)
6680 /* Work out how many nops in prev_nop_frag are needed by IP,
6681 ignoring hazards generated by the first prev_nop_frag_since
6683 nops
= nops_for_insn_or_target (prev_nop_frag_since
, history
, ip
);
6684 gas_assert (nops
<= prev_nop_frag_holds
);
6686 /* Enforce NOPS as a minimum. */
6687 if (nops
> prev_nop_frag_required
)
6688 prev_nop_frag_required
= nops
;
6690 if (prev_nop_frag_holds
== prev_nop_frag_required
)
6692 /* Settle for the current number of nops. Update the history
6693 accordingly (for the benefit of any future .set reorder code). */
6694 prev_nop_frag
= NULL
;
6695 insert_into_history (prev_nop_frag_since
,
6696 prev_nop_frag_holds
, NOP_INSN
);
6700 /* Allow this instruction to replace one of the nops that was
6701 tentatively added to prev_nop_frag. */
6702 prev_nop_frag
->fr_fix
-= NOP_INSN_SIZE
;
6703 prev_nop_frag_holds
--;
6704 prev_nop_frag_since
++;
6708 method
= get_append_method (ip
, address_expr
, reloc_type
);
6709 branch_disp
= method
== APPEND_SWAP
? insn_length (history
) : 0;
6711 dwarf2_emit_insn (0);
6712 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
6713 so "move" the instruction address accordingly.
6715 Also, it doesn't seem appropriate for the assembler to reorder .loc
6716 entries. If this instruction is a branch that we are going to swap
6717 with the previous instruction, the two instructions should be
6718 treated as a unit, and the debug information for both instructions
6719 should refer to the start of the branch sequence. Using the
6720 current position is certainly wrong when swapping a 32-bit branch
6721 and a 16-bit delay slot, since the current position would then be
6722 in the middle of a branch. */
6723 dwarf2_move_insn ((HAVE_CODE_COMPRESSION
? 1 : 0) - branch_disp
);
6725 relax32
= (mips_relax_branch
6726 /* Don't try branch relaxation within .set nomacro, or within
6727 .set noat if we use $at for PIC computations. If it turns
6728 out that the branch was out-of-range, we'll get an error. */
6729 && !mips_opts
.warn_about_macros
6730 && (mips_opts
.at
|| mips_pic
== NO_PIC
)
6731 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
6732 as they have no complementing branches. */
6733 && !(ip
->insn_mo
->ase
& (ASE_MIPS3D
| ASE_DSP64
| ASE_DSP
)));
6735 if (!HAVE_CODE_COMPRESSION
6738 && *reloc_type
== BFD_RELOC_16_PCREL_S2
6739 && delayed_branch_p (ip
))
6741 relaxed_branch
= TRUE
;
6742 add_relaxed_insn (ip
, (relaxed_branch_length
6744 uncond_branch_p (ip
) ? -1
6745 : branch_likely_p (ip
) ? 1
6749 uncond_branch_p (ip
),
6750 branch_likely_p (ip
),
6751 pinfo
& INSN_WRITE_GPR_31
,
6753 address_expr
->X_add_symbol
,
6754 address_expr
->X_add_number
);
6755 *reloc_type
= BFD_RELOC_UNUSED
;
6757 else if (mips_opts
.micromips
6759 && ((relax32
&& *reloc_type
== BFD_RELOC_16_PCREL_S2
)
6760 || *reloc_type
> BFD_RELOC_UNUSED
)
6761 && (delayed_branch_p (ip
) || compact_branch_p (ip
))
6762 /* Don't try branch relaxation when users specify
6763 16-bit/32-bit instructions. */
6764 && !forced_insn_length
)
6766 bfd_boolean relax16
= *reloc_type
> BFD_RELOC_UNUSED
;
6767 int type
= relax16
? *reloc_type
- BFD_RELOC_UNUSED
: 0;
6768 int uncond
= uncond_branch_p (ip
) ? -1 : 0;
6769 int compact
= compact_branch_p (ip
);
6770 int al
= pinfo
& INSN_WRITE_GPR_31
;
6773 gas_assert (address_expr
!= NULL
);
6774 gas_assert (!mips_relax
.sequence
);
6776 relaxed_branch
= TRUE
;
6777 length32
= relaxed_micromips_32bit_branch_length (NULL
, NULL
, uncond
);
6778 add_relaxed_insn (ip
, relax32
? length32
: 4, relax16
? 2 : 4,
6779 RELAX_MICROMIPS_ENCODE (type
, AT
, uncond
, compact
, al
,
6781 address_expr
->X_add_symbol
,
6782 address_expr
->X_add_number
);
6783 *reloc_type
= BFD_RELOC_UNUSED
;
6785 else if (mips_opts
.mips16
&& *reloc_type
> BFD_RELOC_UNUSED
)
6787 /* We need to set up a variant frag. */
6788 gas_assert (address_expr
!= NULL
);
6789 add_relaxed_insn (ip
, 4, 0,
6791 (*reloc_type
- BFD_RELOC_UNUSED
,
6792 forced_insn_length
== 2, forced_insn_length
== 4,
6793 delayed_branch_p (&history
[0]),
6794 history
[0].mips16_absolute_jump_p
),
6795 make_expr_symbol (address_expr
), 0);
6797 else if (mips_opts
.mips16
&& insn_length (ip
) == 2)
6799 if (!delayed_branch_p (ip
))
6800 /* Make sure there is enough room to swap this instruction with
6801 a following jump instruction. */
6803 add_fixed_insn (ip
);
6807 if (mips_opts
.mips16
6808 && mips_opts
.noreorder
6809 && delayed_branch_p (&history
[0]))
6810 as_warn (_("extended instruction in delay slot"));
6812 if (mips_relax
.sequence
)
6814 /* If we've reached the end of this frag, turn it into a variant
6815 frag and record the information for the instructions we've
6817 if (frag_room () < 4)
6818 relax_close_frag ();
6819 mips_relax
.sizes
[mips_relax
.sequence
- 1] += insn_length (ip
);
6822 if (mips_relax
.sequence
!= 2)
6824 if (mips_macro_warning
.first_insn_sizes
[0] == 0)
6825 mips_macro_warning
.first_insn_sizes
[0] = insn_length (ip
);
6826 mips_macro_warning
.sizes
[0] += insn_length (ip
);
6827 mips_macro_warning
.insns
[0]++;
6829 if (mips_relax
.sequence
!= 1)
6831 if (mips_macro_warning
.first_insn_sizes
[1] == 0)
6832 mips_macro_warning
.first_insn_sizes
[1] = insn_length (ip
);
6833 mips_macro_warning
.sizes
[1] += insn_length (ip
);
6834 mips_macro_warning
.insns
[1]++;
6837 if (mips_opts
.mips16
)
6840 ip
->mips16_absolute_jump_p
= (*reloc_type
== BFD_RELOC_MIPS16_JMP
);
6842 add_fixed_insn (ip
);
6845 if (!ip
->complete_p
&& *reloc_type
< BFD_RELOC_UNUSED
)
6847 bfd_reloc_code_real_type final_type
[3];
6848 reloc_howto_type
*howto0
;
6849 reloc_howto_type
*howto
;
6852 /* Perform any necessary conversion to microMIPS relocations
6853 and find out how many relocations there actually are. */
6854 for (i
= 0; i
< 3 && reloc_type
[i
] != BFD_RELOC_UNUSED
; i
++)
6855 final_type
[i
] = micromips_map_reloc (reloc_type
[i
]);
6857 /* In a compound relocation, it is the final (outermost)
6858 operator that determines the relocated field. */
6859 howto
= howto0
= bfd_reloc_type_lookup (stdoutput
, final_type
[i
- 1]);
6864 howto0
= bfd_reloc_type_lookup (stdoutput
, final_type
[0]);
6865 ip
->fixp
[0] = fix_new_exp (ip
->frag
, ip
->where
,
6866 bfd_get_reloc_size (howto
),
6868 howto0
&& howto0
->pc_relative
,
6871 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
6872 if (final_type
[0] == BFD_RELOC_MIPS16_JMP
&& ip
->fixp
[0]->fx_addsy
)
6873 *symbol_get_tc (ip
->fixp
[0]->fx_addsy
) = 1;
6875 /* These relocations can have an addend that won't fit in
6876 4 octets for 64bit assembly. */
6878 && ! howto
->partial_inplace
6879 && (reloc_type
[0] == BFD_RELOC_16
6880 || reloc_type
[0] == BFD_RELOC_32
6881 || reloc_type
[0] == BFD_RELOC_MIPS_JMP
6882 || reloc_type
[0] == BFD_RELOC_GPREL16
6883 || reloc_type
[0] == BFD_RELOC_MIPS_LITERAL
6884 || reloc_type
[0] == BFD_RELOC_GPREL32
6885 || reloc_type
[0] == BFD_RELOC_64
6886 || reloc_type
[0] == BFD_RELOC_CTOR
6887 || reloc_type
[0] == BFD_RELOC_MIPS_SUB
6888 || reloc_type
[0] == BFD_RELOC_MIPS_HIGHEST
6889 || reloc_type
[0] == BFD_RELOC_MIPS_HIGHER
6890 || reloc_type
[0] == BFD_RELOC_MIPS_SCN_DISP
6891 || reloc_type
[0] == BFD_RELOC_MIPS_REL16
6892 || reloc_type
[0] == BFD_RELOC_MIPS_RELGOT
6893 || reloc_type
[0] == BFD_RELOC_MIPS16_GPREL
6894 || hi16_reloc_p (reloc_type
[0])
6895 || lo16_reloc_p (reloc_type
[0])))
6896 ip
->fixp
[0]->fx_no_overflow
= 1;
6898 /* These relocations can have an addend that won't fit in 2 octets. */
6899 if (reloc_type
[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
6900 || reloc_type
[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1
)
6901 ip
->fixp
[0]->fx_no_overflow
= 1;
6903 if (mips_relax
.sequence
)
6905 if (mips_relax
.first_fixup
== 0)
6906 mips_relax
.first_fixup
= ip
->fixp
[0];
6908 else if (reloc_needs_lo_p (*reloc_type
))
6910 struct mips_hi_fixup
*hi_fixup
;
6912 /* Reuse the last entry if it already has a matching %lo. */
6913 hi_fixup
= mips_hi_fixup_list
;
6915 || !fixup_has_matching_lo_p (hi_fixup
->fixp
))
6917 hi_fixup
= ((struct mips_hi_fixup
*)
6918 xmalloc (sizeof (struct mips_hi_fixup
)));
6919 hi_fixup
->next
= mips_hi_fixup_list
;
6920 mips_hi_fixup_list
= hi_fixup
;
6922 hi_fixup
->fixp
= ip
->fixp
[0];
6923 hi_fixup
->seg
= now_seg
;
6926 /* Add fixups for the second and third relocations, if given.
6927 Note that the ABI allows the second relocation to be
6928 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
6929 moment we only use RSS_UNDEF, but we could add support
6930 for the others if it ever becomes necessary. */
6931 for (i
= 1; i
< 3; i
++)
6932 if (reloc_type
[i
] != BFD_RELOC_UNUSED
)
6934 ip
->fixp
[i
] = fix_new (ip
->frag
, ip
->where
,
6935 ip
->fixp
[0]->fx_size
, NULL
, 0,
6936 FALSE
, final_type
[i
]);
6938 /* Use fx_tcbit to mark compound relocs. */
6939 ip
->fixp
[0]->fx_tcbit
= 1;
6940 ip
->fixp
[i
]->fx_tcbit
= 1;
6945 /* Update the register mask information. */
6946 mips_gprmask
|= gpr_read_mask (ip
) | gpr_write_mask (ip
);
6947 mips_cprmask
[1] |= fpr_read_mask (ip
) | fpr_write_mask (ip
);
6952 insert_into_history (0, 1, ip
);
6955 case APPEND_ADD_WITH_NOP
:
6957 struct mips_cl_insn
*nop
;
6959 insert_into_history (0, 1, ip
);
6960 nop
= get_delay_slot_nop (ip
);
6961 add_fixed_insn (nop
);
6962 insert_into_history (0, 1, nop
);
6963 if (mips_relax
.sequence
)
6964 mips_relax
.sizes
[mips_relax
.sequence
- 1] += insn_length (nop
);
6968 case APPEND_ADD_COMPACT
:
6969 /* Convert MIPS16 jr/jalr into a "compact" jump. */
6970 gas_assert (mips_opts
.mips16
);
6971 ip
->insn_opcode
|= 0x0080;
6972 find_altered_mips16_opcode (ip
);
6974 insert_into_history (0, 1, ip
);
6979 struct mips_cl_insn delay
= history
[0];
6980 if (mips_opts
.mips16
)
6982 know (delay
.frag
== ip
->frag
);
6983 move_insn (ip
, delay
.frag
, delay
.where
);
6984 move_insn (&delay
, ip
->frag
, ip
->where
+ insn_length (ip
));
6986 else if (relaxed_branch
|| delay
.frag
!= ip
->frag
)
6988 /* Add the delay slot instruction to the end of the
6989 current frag and shrink the fixed part of the
6990 original frag. If the branch occupies the tail of
6991 the latter, move it backwards to cover the gap. */
6992 delay
.frag
->fr_fix
-= branch_disp
;
6993 if (delay
.frag
== ip
->frag
)
6994 move_insn (ip
, ip
->frag
, ip
->where
- branch_disp
);
6995 add_fixed_insn (&delay
);
6999 move_insn (&delay
, ip
->frag
,
7000 ip
->where
- branch_disp
+ insn_length (ip
));
7001 move_insn (ip
, history
[0].frag
, history
[0].where
);
7005 insert_into_history (0, 1, &delay
);
7010 /* If we have just completed an unconditional branch, clear the history. */
7011 if ((delayed_branch_p (&history
[1]) && uncond_branch_p (&history
[1]))
7012 || (compact_branch_p (&history
[0]) && uncond_branch_p (&history
[0])))
7016 mips_no_prev_insn ();
7018 for (i
= 0; i
< ARRAY_SIZE (history
); i
++)
7019 history
[i
].cleared_p
= 1;
7022 /* We need to emit a label at the end of branch-likely macros. */
7023 if (emit_branch_likely_macro
)
7025 emit_branch_likely_macro
= FALSE
;
7026 micromips_add_label ();
7029 /* We just output an insn, so the next one doesn't have a label. */
7030 mips_clear_insn_labels ();
7033 /* Forget that there was any previous instruction or label.
7034 When BRANCH is true, the branch history is also flushed. */
7037 mips_no_prev_insn (void)
7039 prev_nop_frag
= NULL
;
7040 insert_into_history (0, ARRAY_SIZE (history
), NOP_INSN
);
7041 mips_clear_insn_labels ();
7044 /* This function must be called before we emit something other than
7045 instructions. It is like mips_no_prev_insn except that it inserts
7046 any NOPS that might be needed by previous instructions. */
7049 mips_emit_delays (void)
7051 if (! mips_opts
.noreorder
)
7053 int nops
= nops_for_insn (0, history
, NULL
);
7057 add_fixed_insn (NOP_INSN
);
7058 mips_move_text_labels ();
7061 mips_no_prev_insn ();
7064 /* Start a (possibly nested) noreorder block. */
7067 start_noreorder (void)
7069 if (mips_opts
.noreorder
== 0)
7074 /* None of the instructions before the .set noreorder can be moved. */
7075 for (i
= 0; i
< ARRAY_SIZE (history
); i
++)
7076 history
[i
].fixed_p
= 1;
7078 /* Insert any nops that might be needed between the .set noreorder
7079 block and the previous instructions. We will later remove any
7080 nops that turn out not to be needed. */
7081 nops
= nops_for_insn (0, history
, NULL
);
7084 if (mips_optimize
!= 0)
7086 /* Record the frag which holds the nop instructions, so
7087 that we can remove them if we don't need them. */
7088 frag_grow (nops
* NOP_INSN_SIZE
);
7089 prev_nop_frag
= frag_now
;
7090 prev_nop_frag_holds
= nops
;
7091 prev_nop_frag_required
= 0;
7092 prev_nop_frag_since
= 0;
7095 for (; nops
> 0; --nops
)
7096 add_fixed_insn (NOP_INSN
);
7098 /* Move on to a new frag, so that it is safe to simply
7099 decrease the size of prev_nop_frag. */
7100 frag_wane (frag_now
);
7102 mips_move_text_labels ();
7104 mips_mark_labels ();
7105 mips_clear_insn_labels ();
7107 mips_opts
.noreorder
++;
7108 mips_any_noreorder
= 1;
7111 /* End a nested noreorder block. */
7114 end_noreorder (void)
7116 mips_opts
.noreorder
--;
7117 if (mips_opts
.noreorder
== 0 && prev_nop_frag
!= NULL
)
7119 /* Commit to inserting prev_nop_frag_required nops and go back to
7120 handling nop insertion the .set reorder way. */
7121 prev_nop_frag
->fr_fix
-= ((prev_nop_frag_holds
- prev_nop_frag_required
)
7123 insert_into_history (prev_nop_frag_since
,
7124 prev_nop_frag_required
, NOP_INSN
);
7125 prev_nop_frag
= NULL
;
7129 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7130 higher bits unset. */
7133 normalize_constant_expr (expressionS
*ex
)
7135 if (ex
->X_op
== O_constant
7136 && IS_ZEXT_32BIT_NUM (ex
->X_add_number
))
7137 ex
->X_add_number
= (((ex
->X_add_number
& 0xffffffff) ^ 0x80000000)
7141 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7142 all higher bits unset. */
7145 normalize_address_expr (expressionS
*ex
)
7147 if (((ex
->X_op
== O_constant
&& HAVE_32BIT_ADDRESSES
)
7148 || (ex
->X_op
== O_symbol
&& HAVE_32BIT_SYMBOLS
))
7149 && IS_ZEXT_32BIT_NUM (ex
->X_add_number
))
7150 ex
->X_add_number
= (((ex
->X_add_number
& 0xffffffff) ^ 0x80000000)
7154 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7155 Return true if the match was successful.
7157 OPCODE_EXTRA is a value that should be ORed into the opcode
7158 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7159 there are more alternatives after OPCODE and SOFT_MATCH is
7160 as for mips_arg_info. */
7163 match_insn (struct mips_cl_insn
*insn
, const struct mips_opcode
*opcode
,
7164 struct mips_operand_token
*tokens
, unsigned int opcode_extra
,
7165 bfd_boolean lax_match
, bfd_boolean complete_p
)
7168 struct mips_arg_info arg
;
7169 const struct mips_operand
*operand
;
7172 imm_expr
.X_op
= O_absent
;
7173 offset_expr
.X_op
= O_absent
;
7174 offset_reloc
[0] = BFD_RELOC_UNUSED
;
7175 offset_reloc
[1] = BFD_RELOC_UNUSED
;
7176 offset_reloc
[2] = BFD_RELOC_UNUSED
;
7178 create_insn (insn
, opcode
);
7179 /* When no opcode suffix is specified, assume ".xyzw". */
7180 if ((opcode
->pinfo2
& INSN2_VU0_CHANNEL_SUFFIX
) != 0 && opcode_extra
== 0)
7181 insn
->insn_opcode
|= 0xf << mips_vu0_channel_mask
.lsb
;
7183 insn
->insn_opcode
|= opcode_extra
;
7184 memset (&arg
, 0, sizeof (arg
));
7188 arg
.last_regno
= ILLEGAL_REG
;
7189 arg
.dest_regno
= ILLEGAL_REG
;
7190 arg
.lax_match
= lax_match
;
7191 for (args
= opcode
->args
;; ++args
)
7193 if (arg
.token
->type
== OT_END
)
7195 /* Handle unary instructions in which only one operand is given.
7196 The source is then the same as the destination. */
7197 if (arg
.opnum
== 1 && *args
== ',')
7199 operand
= (mips_opts
.micromips
7200 ? decode_micromips_operand (args
+ 1)
7201 : decode_mips_operand (args
+ 1));
7202 if (operand
&& mips_optional_operand_p (operand
))
7210 /* Treat elided base registers as $0. */
7211 if (strcmp (args
, "(b)") == 0)
7219 /* The register suffix is optional. */
7224 /* Fail the match if there were too few operands. */
7228 /* Successful match. */
7231 clear_insn_error ();
7232 if (arg
.dest_regno
== arg
.last_regno
7233 && strncmp (insn
->insn_mo
->name
, "jalr", 4) == 0)
7237 (0, _("source and destination must be different"));
7238 else if (arg
.last_regno
== 31)
7240 (0, _("a destination register must be supplied"));
7242 else if (arg
.last_regno
== 31
7243 && (strncmp (insn
->insn_mo
->name
, "bltzal", 6) == 0
7244 || strncmp (insn
->insn_mo
->name
, "bgezal", 6) == 0))
7245 set_insn_error (0, _("the source register must not be $31"));
7246 check_completed_insn (&arg
);
7250 /* Fail the match if the line has too many operands. */
7254 /* Handle characters that need to match exactly. */
7255 if (*args
== '(' || *args
== ')' || *args
== ',')
7257 if (match_char (&arg
, *args
))
7264 if (arg
.token
->type
== OT_DOUBLE_CHAR
7265 && arg
.token
->u
.ch
== *args
)
7273 /* Handle special macro operands. Work out the properties of
7282 *offset_reloc
= BFD_RELOC_MIPS_JMP
;
7288 if (!match_const_int (&arg
, &imm_expr
.X_add_number
))
7290 imm_expr
.X_op
= O_constant
;
7292 normalize_constant_expr (&imm_expr
);
7296 if (arg
.token
->type
== OT_CHAR
&& arg
.token
->u
.ch
== '(')
7298 /* Assume that the offset has been elided and that what
7299 we saw was a base register. The match will fail later
7300 if that assumption turns out to be wrong. */
7301 offset_expr
.X_op
= O_constant
;
7302 offset_expr
.X_add_number
= 0;
7306 if (!match_expression (&arg
, &offset_expr
, offset_reloc
))
7308 normalize_address_expr (&offset_expr
);
7313 if (!match_float_constant (&arg
, &imm_expr
, &offset_expr
,
7319 if (!match_float_constant (&arg
, &imm_expr
, &offset_expr
,
7325 if (!match_float_constant (&arg
, &imm_expr
, &offset_expr
,
7331 if (!match_float_constant (&arg
, &imm_expr
, &offset_expr
,
7337 *offset_reloc
= BFD_RELOC_16_PCREL_S2
;
7341 *offset_reloc
= BFD_RELOC_MIPS_JMP
;
7345 gas_assert (mips_opts
.micromips
);
7351 if (!forced_insn_length
)
7352 *offset_reloc
= (int) BFD_RELOC_UNUSED
+ c
;
7354 *offset_reloc
= BFD_RELOC_MICROMIPS_10_PCREL_S1
;
7356 *offset_reloc
= BFD_RELOC_MICROMIPS_7_PCREL_S1
;
7362 operand
= (mips_opts
.micromips
7363 ? decode_micromips_operand (args
)
7364 : decode_mips_operand (args
));
7368 /* Skip prefixes. */
7369 if (*args
== '+' || *args
== 'm')
7372 if (mips_optional_operand_p (operand
)
7374 && (arg
.token
[0].type
!= OT_REG
7375 || arg
.token
[1].type
== OT_END
))
7377 /* Assume that the register has been elided and is the
7378 same as the first operand. */
7383 if (!match_operand (&arg
, operand
))
7388 /* Like match_insn, but for MIPS16. */
7391 match_mips16_insn (struct mips_cl_insn
*insn
, const struct mips_opcode
*opcode
,
7392 struct mips_operand_token
*tokens
)
7395 const struct mips_operand
*operand
;
7396 const struct mips_operand
*ext_operand
;
7397 struct mips_arg_info arg
;
7400 create_insn (insn
, opcode
);
7401 imm_expr
.X_op
= O_absent
;
7402 offset_expr
.X_op
= O_absent
;
7403 offset_reloc
[0] = BFD_RELOC_UNUSED
;
7404 offset_reloc
[1] = BFD_RELOC_UNUSED
;
7405 offset_reloc
[2] = BFD_RELOC_UNUSED
;
7408 memset (&arg
, 0, sizeof (arg
));
7412 arg
.last_regno
= ILLEGAL_REG
;
7413 arg
.dest_regno
= ILLEGAL_REG
;
7415 for (args
= opcode
->args
;; ++args
)
7419 if (arg
.token
->type
== OT_END
)
7423 /* Handle unary instructions in which only one operand is given.
7424 The source is then the same as the destination. */
7425 if (arg
.opnum
== 1 && *args
== ',')
7427 operand
= decode_mips16_operand (args
[1], FALSE
);
7428 if (operand
&& mips_optional_operand_p (operand
))
7436 /* Fail the match if there were too few operands. */
7440 /* Successful match. Stuff the immediate value in now, if
7442 clear_insn_error ();
7443 if (opcode
->pinfo
== INSN_MACRO
)
7445 gas_assert (relax_char
== 0 || relax_char
== 'p');
7446 gas_assert (*offset_reloc
== BFD_RELOC_UNUSED
);
7449 && offset_expr
.X_op
== O_constant
7450 && calculate_reloc (*offset_reloc
,
7451 offset_expr
.X_add_number
,
7454 mips16_immed (NULL
, 0, relax_char
, *offset_reloc
, value
,
7455 forced_insn_length
, &insn
->insn_opcode
);
7456 offset_expr
.X_op
= O_absent
;
7457 *offset_reloc
= BFD_RELOC_UNUSED
;
7459 else if (relax_char
&& *offset_reloc
!= BFD_RELOC_UNUSED
)
7461 if (forced_insn_length
== 2)
7462 set_insn_error (0, _("invalid unextended operand value"));
7463 forced_insn_length
= 4;
7464 insn
->insn_opcode
|= MIPS16_EXTEND
;
7466 else if (relax_char
)
7467 *offset_reloc
= (int) BFD_RELOC_UNUSED
+ relax_char
;
7469 check_completed_insn (&arg
);
7473 /* Fail the match if the line has too many operands. */
7477 /* Handle characters that need to match exactly. */
7478 if (*args
== '(' || *args
== ')' || *args
== ',')
7480 if (match_char (&arg
, *args
))
7498 if (!match_const_int (&arg
, &imm_expr
.X_add_number
))
7500 imm_expr
.X_op
= O_constant
;
7502 normalize_constant_expr (&imm_expr
);
7507 *offset_reloc
= BFD_RELOC_MIPS16_JMP
;
7508 insn
->insn_opcode
<<= 16;
7512 operand
= decode_mips16_operand (c
, FALSE
);
7516 /* '6' is a special case. It is used for BREAK and SDBBP,
7517 whose operands are only meaningful to the software that decodes
7518 them. This means that there is no architectural reason why
7519 they cannot be prefixed by EXTEND, but in practice,
7520 exception handlers will only look at the instruction
7521 itself. We therefore allow '6' to be extended when
7522 disassembling but not when assembling. */
7523 if (operand
->type
!= OP_PCREL
&& c
!= '6')
7525 ext_operand
= decode_mips16_operand (c
, TRUE
);
7526 if (operand
!= ext_operand
)
7528 if (arg
.token
->type
== OT_CHAR
&& arg
.token
->u
.ch
== '(')
7530 offset_expr
.X_op
= O_constant
;
7531 offset_expr
.X_add_number
= 0;
7536 /* We need the OT_INTEGER check because some MIPS16
7537 immediate variants are listed before the register ones. */
7538 if (arg
.token
->type
!= OT_INTEGER
7539 || !match_expression (&arg
, &offset_expr
, offset_reloc
))
7542 /* '8' is used for SLTI(U) and has traditionally not
7543 been allowed to take relocation operators. */
7544 if (offset_reloc
[0] != BFD_RELOC_UNUSED
7545 && (ext_operand
->size
!= 16 || c
== '8'))
7553 if (mips_optional_operand_p (operand
)
7555 && (arg
.token
[0].type
!= OT_REG
7556 || arg
.token
[1].type
== OT_END
))
7558 /* Assume that the register has been elided and is the
7559 same as the first operand. */
7564 if (!match_operand (&arg
, operand
))
7569 /* Record that the current instruction is invalid for the current ISA. */
7572 match_invalid_for_isa (void)
7575 (0, _("opcode not supported on this processor: %s (%s)"),
7576 mips_cpu_info_from_arch (mips_opts
.arch
)->name
,
7577 mips_cpu_info_from_isa (mips_opts
.isa
)->name
);
7580 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
7581 Return true if a definite match or failure was found, storing any match
7582 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
7583 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
7584 tried and failed to match under normal conditions and now want to try a
7585 more relaxed match. */
7588 match_insns (struct mips_cl_insn
*insn
, const struct mips_opcode
*first
,
7589 const struct mips_opcode
*past
, struct mips_operand_token
*tokens
,
7590 int opcode_extra
, bfd_boolean lax_match
)
7592 const struct mips_opcode
*opcode
;
7593 const struct mips_opcode
*invalid_delay_slot
;
7594 bfd_boolean seen_valid_for_isa
, seen_valid_for_size
;
7596 /* Search for a match, ignoring alternatives that don't satisfy the
7597 current ISA or forced_length. */
7598 invalid_delay_slot
= 0;
7599 seen_valid_for_isa
= FALSE
;
7600 seen_valid_for_size
= FALSE
;
7604 gas_assert (strcmp (opcode
->name
, first
->name
) == 0);
7605 if (is_opcode_valid (opcode
))
7607 seen_valid_for_isa
= TRUE
;
7608 if (is_size_valid (opcode
))
7610 bfd_boolean delay_slot_ok
;
7612 seen_valid_for_size
= TRUE
;
7613 delay_slot_ok
= is_delay_slot_valid (opcode
);
7614 if (match_insn (insn
, opcode
, tokens
, opcode_extra
,
7615 lax_match
, delay_slot_ok
))
7619 if (!invalid_delay_slot
)
7620 invalid_delay_slot
= opcode
;
7629 while (opcode
< past
&& strcmp (opcode
->name
, first
->name
) == 0);
7631 /* If the only matches we found had the wrong length for the delay slot,
7632 pick the first such match. We'll issue an appropriate warning later. */
7633 if (invalid_delay_slot
)
7635 if (match_insn (insn
, invalid_delay_slot
, tokens
, opcode_extra
,
7641 /* Handle the case where we didn't try to match an instruction because
7642 all the alternatives were incompatible with the current ISA. */
7643 if (!seen_valid_for_isa
)
7645 match_invalid_for_isa ();
7649 /* Handle the case where we didn't try to match an instruction because
7650 all the alternatives were of the wrong size. */
7651 if (!seen_valid_for_size
)
7653 if (mips_opts
.insn32
)
7654 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
7657 (0, _("unrecognized %d-bit version of microMIPS opcode"),
7658 8 * forced_insn_length
);
7665 /* Like match_insns, but for MIPS16. */
7668 match_mips16_insns (struct mips_cl_insn
*insn
, const struct mips_opcode
*first
,
7669 struct mips_operand_token
*tokens
)
7671 const struct mips_opcode
*opcode
;
7672 bfd_boolean seen_valid_for_isa
;
7674 /* Search for a match, ignoring alternatives that don't satisfy the
7675 current ISA. There are no separate entries for extended forms so
7676 we deal with forced_length later. */
7677 seen_valid_for_isa
= FALSE
;
7681 gas_assert (strcmp (opcode
->name
, first
->name
) == 0);
7682 if (is_opcode_valid_16 (opcode
))
7684 seen_valid_for_isa
= TRUE
;
7685 if (match_mips16_insn (insn
, opcode
, tokens
))
7690 while (opcode
< &mips16_opcodes
[bfd_mips16_num_opcodes
]
7691 && strcmp (opcode
->name
, first
->name
) == 0);
7693 /* Handle the case where we didn't try to match an instruction because
7694 all the alternatives were incompatible with the current ISA. */
7695 if (!seen_valid_for_isa
)
7697 match_invalid_for_isa ();
7704 /* Set up global variables for the start of a new macro. */
7709 memset (&mips_macro_warning
.sizes
, 0, sizeof (mips_macro_warning
.sizes
));
7710 memset (&mips_macro_warning
.first_insn_sizes
, 0,
7711 sizeof (mips_macro_warning
.first_insn_sizes
));
7712 memset (&mips_macro_warning
.insns
, 0, sizeof (mips_macro_warning
.insns
));
7713 mips_macro_warning
.delay_slot_p
= (mips_opts
.noreorder
7714 && delayed_branch_p (&history
[0]));
7715 switch (history
[0].insn_mo
->pinfo2
7716 & (INSN2_BRANCH_DELAY_32BIT
| INSN2_BRANCH_DELAY_16BIT
))
7718 case INSN2_BRANCH_DELAY_32BIT
:
7719 mips_macro_warning
.delay_slot_length
= 4;
7721 case INSN2_BRANCH_DELAY_16BIT
:
7722 mips_macro_warning
.delay_slot_length
= 2;
7725 mips_macro_warning
.delay_slot_length
= 0;
7728 mips_macro_warning
.first_frag
= NULL
;
7731 /* Given that a macro is longer than one instruction or of the wrong size,
7732 return the appropriate warning for it. Return null if no warning is
7733 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
7734 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
7735 and RELAX_NOMACRO. */
7738 macro_warning (relax_substateT subtype
)
7740 if (subtype
& RELAX_DELAY_SLOT
)
7741 return _("macro instruction expanded into multiple instructions"
7742 " in a branch delay slot");
7743 else if (subtype
& RELAX_NOMACRO
)
7744 return _("macro instruction expanded into multiple instructions");
7745 else if (subtype
& (RELAX_DELAY_SLOT_SIZE_FIRST
7746 | RELAX_DELAY_SLOT_SIZE_SECOND
))
7747 return ((subtype
& RELAX_DELAY_SLOT_16BIT
)
7748 ? _("macro instruction expanded into a wrong size instruction"
7749 " in a 16-bit branch delay slot")
7750 : _("macro instruction expanded into a wrong size instruction"
7751 " in a 32-bit branch delay slot"));
7756 /* Finish up a macro. Emit warnings as appropriate. */
7761 /* Relaxation warning flags. */
7762 relax_substateT subtype
= 0;
7764 /* Check delay slot size requirements. */
7765 if (mips_macro_warning
.delay_slot_length
== 2)
7766 subtype
|= RELAX_DELAY_SLOT_16BIT
;
7767 if (mips_macro_warning
.delay_slot_length
!= 0)
7769 if (mips_macro_warning
.delay_slot_length
7770 != mips_macro_warning
.first_insn_sizes
[0])
7771 subtype
|= RELAX_DELAY_SLOT_SIZE_FIRST
;
7772 if (mips_macro_warning
.delay_slot_length
7773 != mips_macro_warning
.first_insn_sizes
[1])
7774 subtype
|= RELAX_DELAY_SLOT_SIZE_SECOND
;
7777 /* Check instruction count requirements. */
7778 if (mips_macro_warning
.insns
[0] > 1 || mips_macro_warning
.insns
[1] > 1)
7780 if (mips_macro_warning
.insns
[1] > mips_macro_warning
.insns
[0])
7781 subtype
|= RELAX_SECOND_LONGER
;
7782 if (mips_opts
.warn_about_macros
)
7783 subtype
|= RELAX_NOMACRO
;
7784 if (mips_macro_warning
.delay_slot_p
)
7785 subtype
|= RELAX_DELAY_SLOT
;
7788 /* If both alternatives fail to fill a delay slot correctly,
7789 emit the warning now. */
7790 if ((subtype
& RELAX_DELAY_SLOT_SIZE_FIRST
) != 0
7791 && (subtype
& RELAX_DELAY_SLOT_SIZE_SECOND
) != 0)
7796 s
= subtype
& (RELAX_DELAY_SLOT_16BIT
7797 | RELAX_DELAY_SLOT_SIZE_FIRST
7798 | RELAX_DELAY_SLOT_SIZE_SECOND
);
7799 msg
= macro_warning (s
);
7801 as_warn ("%s", msg
);
7805 /* If both implementations are longer than 1 instruction, then emit the
7807 if (mips_macro_warning
.insns
[0] > 1 && mips_macro_warning
.insns
[1] > 1)
7812 s
= subtype
& (RELAX_SECOND_LONGER
| RELAX_NOMACRO
| RELAX_DELAY_SLOT
);
7813 msg
= macro_warning (s
);
7815 as_warn ("%s", msg
);
7819 /* If any flags still set, then one implementation might need a warning
7820 and the other either will need one of a different kind or none at all.
7821 Pass any remaining flags over to relaxation. */
7822 if (mips_macro_warning
.first_frag
!= NULL
)
7823 mips_macro_warning
.first_frag
->fr_subtype
|= subtype
;
7826 /* Instruction operand formats used in macros that vary between
7827 standard MIPS and microMIPS code. */
7829 static const char * const brk_fmt
[2][2] = { { "c", "c" }, { "mF", "c" } };
7830 static const char * const cop12_fmt
[2] = { "E,o(b)", "E,~(b)" };
7831 static const char * const jalr_fmt
[2] = { "d,s", "t,s" };
7832 static const char * const lui_fmt
[2] = { "t,u", "s,u" };
7833 static const char * const mem12_fmt
[2] = { "t,o(b)", "t,~(b)" };
7834 static const char * const mfhl_fmt
[2][2] = { { "d", "d" }, { "mj", "s" } };
7835 static const char * const shft_fmt
[2] = { "d,w,<", "t,r,<" };
7836 static const char * const trap_fmt
[2] = { "s,t,q", "s,t,|" };
7838 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7839 #define COP12_FMT (cop12_fmt[mips_opts.micromips])
7840 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
7841 #define LUI_FMT (lui_fmt[mips_opts.micromips])
7842 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7843 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
7844 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
7845 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
7847 /* Read a macro's relocation codes from *ARGS and store them in *R.
7848 The first argument in *ARGS will be either the code for a single
7849 relocation or -1 followed by the three codes that make up a
7850 composite relocation. */
7853 macro_read_relocs (va_list *args
, bfd_reloc_code_real_type
*r
)
7857 next
= va_arg (*args
, int);
7859 r
[0] = (bfd_reloc_code_real_type
) next
;
7862 for (i
= 0; i
< 3; i
++)
7863 r
[i
] = (bfd_reloc_code_real_type
) va_arg (*args
, int);
7864 /* This function is only used for 16-bit relocation fields.
7865 To make the macro code simpler, treat an unrelocated value
7866 in the same way as BFD_RELOC_LO16. */
7867 if (r
[0] == BFD_RELOC_UNUSED
)
7868 r
[0] = BFD_RELOC_LO16
;
7872 /* Build an instruction created by a macro expansion. This is passed
7873 a pointer to the count of instructions created so far, an
7874 expression, the name of the instruction to build, an operand format
7875 string, and corresponding arguments. */
7878 macro_build (expressionS
*ep
, const char *name
, const char *fmt
, ...)
7880 const struct mips_opcode
*mo
= NULL
;
7881 bfd_reloc_code_real_type r
[3];
7882 const struct mips_opcode
*amo
;
7883 const struct mips_operand
*operand
;
7884 struct hash_control
*hash
;
7885 struct mips_cl_insn insn
;
7889 va_start (args
, fmt
);
7891 if (mips_opts
.mips16
)
7893 mips16_macro_build (ep
, name
, fmt
, &args
);
7898 r
[0] = BFD_RELOC_UNUSED
;
7899 r
[1] = BFD_RELOC_UNUSED
;
7900 r
[2] = BFD_RELOC_UNUSED
;
7901 hash
= mips_opts
.micromips
? micromips_op_hash
: op_hash
;
7902 amo
= (struct mips_opcode
*) hash_find (hash
, name
);
7904 gas_assert (strcmp (name
, amo
->name
) == 0);
7908 /* Search until we get a match for NAME. It is assumed here that
7909 macros will never generate MDMX, MIPS-3D, or MT instructions.
7910 We try to match an instruction that fulfils the branch delay
7911 slot instruction length requirement (if any) of the previous
7912 instruction. While doing this we record the first instruction
7913 seen that matches all the other conditions and use it anyway
7914 if the requirement cannot be met; we will issue an appropriate
7915 warning later on. */
7916 if (strcmp (fmt
, amo
->args
) == 0
7917 && amo
->pinfo
!= INSN_MACRO
7918 && is_opcode_valid (amo
)
7919 && is_size_valid (amo
))
7921 if (is_delay_slot_valid (amo
))
7931 gas_assert (amo
->name
);
7933 while (strcmp (name
, amo
->name
) == 0);
7936 create_insn (&insn
, mo
);
7949 macro_read_relocs (&args
, r
);
7950 gas_assert (*r
== BFD_RELOC_GPREL16
7951 || *r
== BFD_RELOC_MIPS_HIGHER
7952 || *r
== BFD_RELOC_HI16_S
7953 || *r
== BFD_RELOC_LO16
7954 || *r
== BFD_RELOC_MIPS_GOT_OFST
);
7958 macro_read_relocs (&args
, r
);
7962 macro_read_relocs (&args
, r
);
7963 gas_assert (ep
!= NULL
7964 && (ep
->X_op
== O_constant
7965 || (ep
->X_op
== O_symbol
7966 && (*r
== BFD_RELOC_MIPS_HIGHEST
7967 || *r
== BFD_RELOC_HI16_S
7968 || *r
== BFD_RELOC_HI16
7969 || *r
== BFD_RELOC_GPREL16
7970 || *r
== BFD_RELOC_MIPS_GOT_HI16
7971 || *r
== BFD_RELOC_MIPS_CALL_HI16
))));
7975 gas_assert (ep
!= NULL
);
7978 * This allows macro() to pass an immediate expression for
7979 * creating short branches without creating a symbol.
7981 * We don't allow branch relaxation for these branches, as
7982 * they should only appear in ".set nomacro" anyway.
7984 if (ep
->X_op
== O_constant
)
7986 /* For microMIPS we always use relocations for branches.
7987 So we should not resolve immediate values. */
7988 gas_assert (!mips_opts
.micromips
);
7990 if ((ep
->X_add_number
& 3) != 0)
7991 as_bad (_("branch to misaligned address (0x%lx)"),
7992 (unsigned long) ep
->X_add_number
);
7993 if ((ep
->X_add_number
+ 0x20000) & ~0x3ffff)
7994 as_bad (_("branch address range overflow (0x%lx)"),
7995 (unsigned long) ep
->X_add_number
);
7996 insn
.insn_opcode
|= (ep
->X_add_number
>> 2) & 0xffff;
8000 *r
= BFD_RELOC_16_PCREL_S2
;
8004 gas_assert (ep
!= NULL
);
8005 *r
= BFD_RELOC_MIPS_JMP
;
8009 operand
= (mips_opts
.micromips
8010 ? decode_micromips_operand (fmt
)
8011 : decode_mips_operand (fmt
));
8015 uval
= va_arg (args
, int);
8016 if (operand
->type
== OP_CLO_CLZ_DEST
)
8017 uval
|= (uval
<< 5);
8018 insn_insert_operand (&insn
, operand
, uval
);
8020 if (*fmt
== '+' || *fmt
== 'm')
8026 gas_assert (*r
== BFD_RELOC_UNUSED
? ep
== NULL
: ep
!= NULL
);
8028 append_insn (&insn
, ep
, r
, TRUE
);
8032 mips16_macro_build (expressionS
*ep
, const char *name
, const char *fmt
,
8035 struct mips_opcode
*mo
;
8036 struct mips_cl_insn insn
;
8037 const struct mips_operand
*operand
;
8038 bfd_reloc_code_real_type r
[3]
8039 = {BFD_RELOC_UNUSED
, BFD_RELOC_UNUSED
, BFD_RELOC_UNUSED
};
8041 mo
= (struct mips_opcode
*) hash_find (mips16_op_hash
, name
);
8043 gas_assert (strcmp (name
, mo
->name
) == 0);
8045 while (strcmp (fmt
, mo
->args
) != 0 || mo
->pinfo
== INSN_MACRO
)
8048 gas_assert (mo
->name
);
8049 gas_assert (strcmp (name
, mo
->name
) == 0);
8052 create_insn (&insn
, mo
);
8090 gas_assert (ep
!= NULL
);
8092 if (ep
->X_op
!= O_constant
)
8093 *r
= (int) BFD_RELOC_UNUSED
+ c
;
8094 else if (calculate_reloc (*r
, ep
->X_add_number
, &value
))
8096 mips16_immed (NULL
, 0, c
, *r
, value
, 0, &insn
.insn_opcode
);
8098 *r
= BFD_RELOC_UNUSED
;
8104 operand
= decode_mips16_operand (c
, FALSE
);
8108 insn_insert_operand (&insn
, operand
, va_arg (*args
, int));
8113 gas_assert (*r
== BFD_RELOC_UNUSED
? ep
== NULL
: ep
!= NULL
);
8115 append_insn (&insn
, ep
, r
, TRUE
);
8119 * Generate a "jalr" instruction with a relocation hint to the called
8120 * function. This occurs in NewABI PIC code.
8123 macro_build_jalr (expressionS
*ep
, int cprestore
)
8125 static const bfd_reloc_code_real_type jalr_relocs
[2]
8126 = { BFD_RELOC_MIPS_JALR
, BFD_RELOC_MICROMIPS_JALR
};
8127 bfd_reloc_code_real_type jalr_reloc
= jalr_relocs
[mips_opts
.micromips
];
8131 if (MIPS_JALR_HINT_P (ep
))
8136 if (mips_opts
.micromips
)
8138 jalr
= ((mips_opts
.noreorder
&& !cprestore
) || mips_opts
.insn32
8139 ? "jalr" : "jalrs");
8140 if (MIPS_JALR_HINT_P (ep
)
8142 || (history
[0].insn_mo
->pinfo2
& INSN2_BRANCH_DELAY_32BIT
))
8143 macro_build (NULL
, jalr
, "t,s", RA
, PIC_CALL_REG
);
8145 macro_build (NULL
, jalr
, "mj", PIC_CALL_REG
);
8148 macro_build (NULL
, "jalr", "d,s", RA
, PIC_CALL_REG
);
8149 if (MIPS_JALR_HINT_P (ep
))
8150 fix_new_exp (frag_now
, f
- frag_now
->fr_literal
, 4, ep
, FALSE
, jalr_reloc
);
8154 * Generate a "lui" instruction.
8157 macro_build_lui (expressionS
*ep
, int regnum
)
8159 gas_assert (! mips_opts
.mips16
);
8161 if (ep
->X_op
!= O_constant
)
8163 gas_assert (ep
->X_op
== O_symbol
);
8164 /* _gp_disp is a special case, used from s_cpload.
8165 __gnu_local_gp is used if mips_no_shared. */
8166 gas_assert (mips_pic
== NO_PIC
8168 && strcmp (S_GET_NAME (ep
->X_add_symbol
), "_gp_disp") == 0)
8169 || (! mips_in_shared
8170 && strcmp (S_GET_NAME (ep
->X_add_symbol
),
8171 "__gnu_local_gp") == 0));
8174 macro_build (ep
, "lui", LUI_FMT
, regnum
, BFD_RELOC_HI16_S
);
8177 /* Generate a sequence of instructions to do a load or store from a constant
8178 offset off of a base register (breg) into/from a target register (treg),
8179 using AT if necessary. */
8181 macro_build_ldst_constoffset (expressionS
*ep
, const char *op
,
8182 int treg
, int breg
, int dbl
)
8184 gas_assert (ep
->X_op
== O_constant
);
8186 /* Sign-extending 32-bit constants makes their handling easier. */
8188 normalize_constant_expr (ep
);
8190 /* Right now, this routine can only handle signed 32-bit constants. */
8191 if (! IS_SEXT_32BIT_NUM(ep
->X_add_number
+ 0x8000))
8192 as_warn (_("operand overflow"));
8194 if (IS_SEXT_16BIT_NUM(ep
->X_add_number
))
8196 /* Signed 16-bit offset will fit in the op. Easy! */
8197 macro_build (ep
, op
, "t,o(b)", treg
, BFD_RELOC_LO16
, breg
);
8201 /* 32-bit offset, need multiple instructions and AT, like:
8202 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8203 addu $tempreg,$tempreg,$breg
8204 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8205 to handle the complete offset. */
8206 macro_build_lui (ep
, AT
);
8207 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", AT
, AT
, breg
);
8208 macro_build (ep
, op
, "t,o(b)", treg
, BFD_RELOC_LO16
, AT
);
8211 as_bad (_("macro used $at after \".set noat\""));
8216 * Generates code to set the $at register to true (one)
8217 * if reg is less than the immediate expression.
8220 set_at (int reg
, int unsignedp
)
8222 if (imm_expr
.X_add_number
>= -0x8000
8223 && imm_expr
.X_add_number
< 0x8000)
8224 macro_build (&imm_expr
, unsignedp
? "sltiu" : "slti", "t,r,j",
8225 AT
, reg
, BFD_RELOC_LO16
);
8228 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
8229 macro_build (NULL
, unsignedp
? "sltu" : "slt", "d,v,t", AT
, reg
, AT
);
8233 /* Count the leading zeroes by performing a binary chop. This is a
8234 bulky bit of source, but performance is a LOT better for the
8235 majority of values than a simple loop to count the bits:
8236 for (lcnt = 0; (lcnt < 32); lcnt++)
8237 if ((v) & (1 << (31 - lcnt)))
8239 However it is not code size friendly, and the gain will drop a bit
8240 on certain cached systems.
8242 #define COUNT_TOP_ZEROES(v) \
8243 (((v) & ~0xffff) == 0 \
8244 ? ((v) & ~0xff) == 0 \
8245 ? ((v) & ~0xf) == 0 \
8246 ? ((v) & ~0x3) == 0 \
8247 ? ((v) & ~0x1) == 0 \
8252 : ((v) & ~0x7) == 0 \
8255 : ((v) & ~0x3f) == 0 \
8256 ? ((v) & ~0x1f) == 0 \
8259 : ((v) & ~0x7f) == 0 \
8262 : ((v) & ~0xfff) == 0 \
8263 ? ((v) & ~0x3ff) == 0 \
8264 ? ((v) & ~0x1ff) == 0 \
8267 : ((v) & ~0x7ff) == 0 \
8270 : ((v) & ~0x3fff) == 0 \
8271 ? ((v) & ~0x1fff) == 0 \
8274 : ((v) & ~0x7fff) == 0 \
8277 : ((v) & ~0xffffff) == 0 \
8278 ? ((v) & ~0xfffff) == 0 \
8279 ? ((v) & ~0x3ffff) == 0 \
8280 ? ((v) & ~0x1ffff) == 0 \
8283 : ((v) & ~0x7ffff) == 0 \
8286 : ((v) & ~0x3fffff) == 0 \
8287 ? ((v) & ~0x1fffff) == 0 \
8290 : ((v) & ~0x7fffff) == 0 \
8293 : ((v) & ~0xfffffff) == 0 \
8294 ? ((v) & ~0x3ffffff) == 0 \
8295 ? ((v) & ~0x1ffffff) == 0 \
8298 : ((v) & ~0x7ffffff) == 0 \
8301 : ((v) & ~0x3fffffff) == 0 \
8302 ? ((v) & ~0x1fffffff) == 0 \
8305 : ((v) & ~0x7fffffff) == 0 \
8310 * This routine generates the least number of instructions necessary to load
8311 * an absolute expression value into a register.
8314 load_register (int reg
, expressionS
*ep
, int dbl
)
8317 expressionS hi32
, lo32
;
8319 if (ep
->X_op
!= O_big
)
8321 gas_assert (ep
->X_op
== O_constant
);
8323 /* Sign-extending 32-bit constants makes their handling easier. */
8325 normalize_constant_expr (ep
);
8327 if (IS_SEXT_16BIT_NUM (ep
->X_add_number
))
8329 /* We can handle 16 bit signed values with an addiu to
8330 $zero. No need to ever use daddiu here, since $zero and
8331 the result are always correct in 32 bit mode. */
8332 macro_build (ep
, "addiu", "t,r,j", reg
, 0, BFD_RELOC_LO16
);
8335 else if (ep
->X_add_number
>= 0 && ep
->X_add_number
< 0x10000)
8337 /* We can handle 16 bit unsigned values with an ori to
8339 macro_build (ep
, "ori", "t,r,i", reg
, 0, BFD_RELOC_LO16
);
8342 else if ((IS_SEXT_32BIT_NUM (ep
->X_add_number
)))
8344 /* 32 bit values require an lui. */
8345 macro_build (ep
, "lui", LUI_FMT
, reg
, BFD_RELOC_HI16
);
8346 if ((ep
->X_add_number
& 0xffff) != 0)
8347 macro_build (ep
, "ori", "t,r,i", reg
, reg
, BFD_RELOC_LO16
);
8352 /* The value is larger than 32 bits. */
8354 if (!dbl
|| GPR_SIZE
== 32)
8358 sprintf_vma (value
, ep
->X_add_number
);
8359 as_bad (_("number (0x%s) larger than 32 bits"), value
);
8360 macro_build (ep
, "addiu", "t,r,j", reg
, 0, BFD_RELOC_LO16
);
8364 if (ep
->X_op
!= O_big
)
8367 hi32
.X_add_number
= (valueT
) hi32
.X_add_number
>> 16;
8368 hi32
.X_add_number
= (valueT
) hi32
.X_add_number
>> 16;
8369 hi32
.X_add_number
&= 0xffffffff;
8371 lo32
.X_add_number
&= 0xffffffff;
8375 gas_assert (ep
->X_add_number
> 2);
8376 if (ep
->X_add_number
== 3)
8377 generic_bignum
[3] = 0;
8378 else if (ep
->X_add_number
> 4)
8379 as_bad (_("number larger than 64 bits"));
8380 lo32
.X_op
= O_constant
;
8381 lo32
.X_add_number
= generic_bignum
[0] + (generic_bignum
[1] << 16);
8382 hi32
.X_op
= O_constant
;
8383 hi32
.X_add_number
= generic_bignum
[2] + (generic_bignum
[3] << 16);
8386 if (hi32
.X_add_number
== 0)
8391 unsigned long hi
, lo
;
8393 if (hi32
.X_add_number
== (offsetT
) 0xffffffff)
8395 if ((lo32
.X_add_number
& 0xffff8000) == 0xffff8000)
8397 macro_build (&lo32
, "addiu", "t,r,j", reg
, 0, BFD_RELOC_LO16
);
8400 if (lo32
.X_add_number
& 0x80000000)
8402 macro_build (&lo32
, "lui", LUI_FMT
, reg
, BFD_RELOC_HI16
);
8403 if (lo32
.X_add_number
& 0xffff)
8404 macro_build (&lo32
, "ori", "t,r,i", reg
, reg
, BFD_RELOC_LO16
);
8409 /* Check for 16bit shifted constant. We know that hi32 is
8410 non-zero, so start the mask on the first bit of the hi32
8415 unsigned long himask
, lomask
;
8419 himask
= 0xffff >> (32 - shift
);
8420 lomask
= (0xffff << shift
) & 0xffffffff;
8424 himask
= 0xffff << (shift
- 32);
8427 if ((hi32
.X_add_number
& ~(offsetT
) himask
) == 0
8428 && (lo32
.X_add_number
& ~(offsetT
) lomask
) == 0)
8432 tmp
.X_op
= O_constant
;
8434 tmp
.X_add_number
= ((hi32
.X_add_number
<< (32 - shift
))
8435 | (lo32
.X_add_number
>> shift
));
8437 tmp
.X_add_number
= hi32
.X_add_number
>> (shift
- 32);
8438 macro_build (&tmp
, "ori", "t,r,i", reg
, 0, BFD_RELOC_LO16
);
8439 macro_build (NULL
, (shift
>= 32) ? "dsll32" : "dsll", SHFT_FMT
,
8440 reg
, reg
, (shift
>= 32) ? shift
- 32 : shift
);
8445 while (shift
<= (64 - 16));
8447 /* Find the bit number of the lowest one bit, and store the
8448 shifted value in hi/lo. */
8449 hi
= (unsigned long) (hi32
.X_add_number
& 0xffffffff);
8450 lo
= (unsigned long) (lo32
.X_add_number
& 0xffffffff);
8454 while ((lo
& 1) == 0)
8459 lo
|= (hi
& (((unsigned long) 1 << bit
) - 1)) << (32 - bit
);
8465 while ((hi
& 1) == 0)
8474 /* Optimize if the shifted value is a (power of 2) - 1. */
8475 if ((hi
== 0 && ((lo
+ 1) & lo
) == 0)
8476 || (lo
== 0xffffffff && ((hi
+ 1) & hi
) == 0))
8478 shift
= COUNT_TOP_ZEROES ((unsigned int) hi32
.X_add_number
);
8483 /* This instruction will set the register to be all
8485 tmp
.X_op
= O_constant
;
8486 tmp
.X_add_number
= (offsetT
) -1;
8487 macro_build (&tmp
, "addiu", "t,r,j", reg
, 0, BFD_RELOC_LO16
);
8491 macro_build (NULL
, (bit
>= 32) ? "dsll32" : "dsll", SHFT_FMT
,
8492 reg
, reg
, (bit
>= 32) ? bit
- 32 : bit
);
8494 macro_build (NULL
, (shift
>= 32) ? "dsrl32" : "dsrl", SHFT_FMT
,
8495 reg
, reg
, (shift
>= 32) ? shift
- 32 : shift
);
8500 /* Sign extend hi32 before calling load_register, because we can
8501 generally get better code when we load a sign extended value. */
8502 if ((hi32
.X_add_number
& 0x80000000) != 0)
8503 hi32
.X_add_number
|= ~(offsetT
) 0xffffffff;
8504 load_register (reg
, &hi32
, 0);
8507 if ((lo32
.X_add_number
& 0xffff0000) == 0)
8511 macro_build (NULL
, "dsll32", SHFT_FMT
, reg
, freg
, 0);
8519 if ((freg
== 0) && (lo32
.X_add_number
== (offsetT
) 0xffffffff))
8521 macro_build (&lo32
, "lui", LUI_FMT
, reg
, BFD_RELOC_HI16
);
8522 macro_build (NULL
, "dsrl32", SHFT_FMT
, reg
, reg
, 0);
8528 macro_build (NULL
, "dsll", SHFT_FMT
, reg
, freg
, 16);
8532 mid16
.X_add_number
>>= 16;
8533 macro_build (&mid16
, "ori", "t,r,i", reg
, freg
, BFD_RELOC_LO16
);
8534 macro_build (NULL
, "dsll", SHFT_FMT
, reg
, reg
, 16);
8537 if ((lo32
.X_add_number
& 0xffff) != 0)
8538 macro_build (&lo32
, "ori", "t,r,i", reg
, freg
, BFD_RELOC_LO16
);
8542 load_delay_nop (void)
8544 if (!gpr_interlocks
)
8545 macro_build (NULL
, "nop", "");
8548 /* Load an address into a register. */
8551 load_address (int reg
, expressionS
*ep
, int *used_at
)
8553 if (ep
->X_op
!= O_constant
8554 && ep
->X_op
!= O_symbol
)
8556 as_bad (_("expression too complex"));
8557 ep
->X_op
= O_constant
;
8560 if (ep
->X_op
== O_constant
)
8562 load_register (reg
, ep
, HAVE_64BIT_ADDRESSES
);
8566 if (mips_pic
== NO_PIC
)
8568 /* If this is a reference to a GP relative symbol, we want
8569 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
8571 lui $reg,<sym> (BFD_RELOC_HI16_S)
8572 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
8573 If we have an addend, we always use the latter form.
8575 With 64bit address space and a usable $at we want
8576 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8577 lui $at,<sym> (BFD_RELOC_HI16_S)
8578 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
8579 daddiu $at,<sym> (BFD_RELOC_LO16)
8583 If $at is already in use, we use a path which is suboptimal
8584 on superscalar processors.
8585 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8586 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
8588 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
8590 daddiu $reg,<sym> (BFD_RELOC_LO16)
8592 For GP relative symbols in 64bit address space we can use
8593 the same sequence as in 32bit address space. */
8594 if (HAVE_64BIT_SYMBOLS
)
8596 if ((valueT
) ep
->X_add_number
<= MAX_GPREL_OFFSET
8597 && !nopic_need_relax (ep
->X_add_symbol
, 1))
8599 relax_start (ep
->X_add_symbol
);
8600 macro_build (ep
, ADDRESS_ADDI_INSN
, "t,r,j", reg
,
8601 mips_gp_register
, BFD_RELOC_GPREL16
);
8605 if (*used_at
== 0 && mips_opts
.at
)
8607 macro_build (ep
, "lui", LUI_FMT
, reg
, BFD_RELOC_MIPS_HIGHEST
);
8608 macro_build (ep
, "lui", LUI_FMT
, AT
, BFD_RELOC_HI16_S
);
8609 macro_build (ep
, "daddiu", "t,r,j", reg
, reg
,
8610 BFD_RELOC_MIPS_HIGHER
);
8611 macro_build (ep
, "daddiu", "t,r,j", AT
, AT
, BFD_RELOC_LO16
);
8612 macro_build (NULL
, "dsll32", SHFT_FMT
, reg
, reg
, 0);
8613 macro_build (NULL
, "daddu", "d,v,t", reg
, reg
, AT
);
8618 macro_build (ep
, "lui", LUI_FMT
, reg
, BFD_RELOC_MIPS_HIGHEST
);
8619 macro_build (ep
, "daddiu", "t,r,j", reg
, reg
,
8620 BFD_RELOC_MIPS_HIGHER
);
8621 macro_build (NULL
, "dsll", SHFT_FMT
, reg
, reg
, 16);
8622 macro_build (ep
, "daddiu", "t,r,j", reg
, reg
, BFD_RELOC_HI16_S
);
8623 macro_build (NULL
, "dsll", SHFT_FMT
, reg
, reg
, 16);
8624 macro_build (ep
, "daddiu", "t,r,j", reg
, reg
, BFD_RELOC_LO16
);
8627 if (mips_relax
.sequence
)
8632 if ((valueT
) ep
->X_add_number
<= MAX_GPREL_OFFSET
8633 && !nopic_need_relax (ep
->X_add_symbol
, 1))
8635 relax_start (ep
->X_add_symbol
);
8636 macro_build (ep
, ADDRESS_ADDI_INSN
, "t,r,j", reg
,
8637 mips_gp_register
, BFD_RELOC_GPREL16
);
8640 macro_build_lui (ep
, reg
);
8641 macro_build (ep
, ADDRESS_ADDI_INSN
, "t,r,j",
8642 reg
, reg
, BFD_RELOC_LO16
);
8643 if (mips_relax
.sequence
)
8647 else if (!mips_big_got
)
8651 /* If this is a reference to an external symbol, we want
8652 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8654 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8656 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
8657 If there is a constant, it must be added in after.
8659 If we have NewABI, we want
8660 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
8661 unless we're referencing a global symbol with a non-zero
8662 offset, in which case cst must be added separately. */
8665 if (ep
->X_add_number
)
8667 ex
.X_add_number
= ep
->X_add_number
;
8668 ep
->X_add_number
= 0;
8669 relax_start (ep
->X_add_symbol
);
8670 macro_build (ep
, ADDRESS_LOAD_INSN
, "t,o(b)", reg
,
8671 BFD_RELOC_MIPS_GOT_DISP
, mips_gp_register
);
8672 if (ex
.X_add_number
< -0x8000 || ex
.X_add_number
>= 0x8000)
8673 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8674 ex
.X_op
= O_constant
;
8675 macro_build (&ex
, ADDRESS_ADDI_INSN
, "t,r,j",
8676 reg
, reg
, BFD_RELOC_LO16
);
8677 ep
->X_add_number
= ex
.X_add_number
;
8680 macro_build (ep
, ADDRESS_LOAD_INSN
, "t,o(b)", reg
,
8681 BFD_RELOC_MIPS_GOT_DISP
, mips_gp_register
);
8682 if (mips_relax
.sequence
)
8687 ex
.X_add_number
= ep
->X_add_number
;
8688 ep
->X_add_number
= 0;
8689 macro_build (ep
, ADDRESS_LOAD_INSN
, "t,o(b)", reg
,
8690 BFD_RELOC_MIPS_GOT16
, mips_gp_register
);
8692 relax_start (ep
->X_add_symbol
);
8694 macro_build (ep
, ADDRESS_ADDI_INSN
, "t,r,j", reg
, reg
,
8698 if (ex
.X_add_number
!= 0)
8700 if (ex
.X_add_number
< -0x8000 || ex
.X_add_number
>= 0x8000)
8701 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8702 ex
.X_op
= O_constant
;
8703 macro_build (&ex
, ADDRESS_ADDI_INSN
, "t,r,j",
8704 reg
, reg
, BFD_RELOC_LO16
);
8708 else if (mips_big_got
)
8712 /* This is the large GOT case. If this is a reference to an
8713 external symbol, we want
8714 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
8716 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
8718 Otherwise, for a reference to a local symbol in old ABI, we want
8719 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8721 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
8722 If there is a constant, it must be added in after.
8724 In the NewABI, for local symbols, with or without offsets, we want:
8725 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
8726 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
8730 ex
.X_add_number
= ep
->X_add_number
;
8731 ep
->X_add_number
= 0;
8732 relax_start (ep
->X_add_symbol
);
8733 macro_build (ep
, "lui", LUI_FMT
, reg
, BFD_RELOC_MIPS_GOT_HI16
);
8734 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
8735 reg
, reg
, mips_gp_register
);
8736 macro_build (ep
, ADDRESS_LOAD_INSN
, "t,o(b)",
8737 reg
, BFD_RELOC_MIPS_GOT_LO16
, reg
);
8738 if (ex
.X_add_number
< -0x8000 || ex
.X_add_number
>= 0x8000)
8739 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8740 else if (ex
.X_add_number
)
8742 ex
.X_op
= O_constant
;
8743 macro_build (&ex
, ADDRESS_ADDI_INSN
, "t,r,j", reg
, reg
,
8747 ep
->X_add_number
= ex
.X_add_number
;
8749 macro_build (ep
, ADDRESS_LOAD_INSN
, "t,o(b)", reg
,
8750 BFD_RELOC_MIPS_GOT_PAGE
, mips_gp_register
);
8751 macro_build (ep
, ADDRESS_ADDI_INSN
, "t,r,j", reg
, reg
,
8752 BFD_RELOC_MIPS_GOT_OFST
);
8757 ex
.X_add_number
= ep
->X_add_number
;
8758 ep
->X_add_number
= 0;
8759 relax_start (ep
->X_add_symbol
);
8760 macro_build (ep
, "lui", LUI_FMT
, reg
, BFD_RELOC_MIPS_GOT_HI16
);
8761 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
8762 reg
, reg
, mips_gp_register
);
8763 macro_build (ep
, ADDRESS_LOAD_INSN
, "t,o(b)",
8764 reg
, BFD_RELOC_MIPS_GOT_LO16
, reg
);
8766 if (reg_needs_delay (mips_gp_register
))
8768 /* We need a nop before loading from $gp. This special
8769 check is required because the lui which starts the main
8770 instruction stream does not refer to $gp, and so will not
8771 insert the nop which may be required. */
8772 macro_build (NULL
, "nop", "");
8774 macro_build (ep
, ADDRESS_LOAD_INSN
, "t,o(b)", reg
,
8775 BFD_RELOC_MIPS_GOT16
, mips_gp_register
);
8777 macro_build (ep
, ADDRESS_ADDI_INSN
, "t,r,j", reg
, reg
,
8781 if (ex
.X_add_number
!= 0)
8783 if (ex
.X_add_number
< -0x8000 || ex
.X_add_number
>= 0x8000)
8784 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8785 ex
.X_op
= O_constant
;
8786 macro_build (&ex
, ADDRESS_ADDI_INSN
, "t,r,j", reg
, reg
,
8794 if (!mips_opts
.at
&& *used_at
== 1)
8795 as_bad (_("macro used $at after \".set noat\""));
8798 /* Move the contents of register SOURCE into register DEST. */
8801 move_register (int dest
, int source
)
8803 /* Prefer to use a 16-bit microMIPS instruction unless the previous
8804 instruction specifically requires a 32-bit one. */
8805 if (mips_opts
.micromips
8806 && !mips_opts
.insn32
8807 && !(history
[0].insn_mo
->pinfo2
& INSN2_BRANCH_DELAY_32BIT
))
8808 macro_build (NULL
, "move", "mp,mj", dest
, source
);
8810 macro_build (NULL
, GPR_SIZE
== 32 ? "addu" : "daddu", "d,v,t",
8814 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
8815 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
8816 The two alternatives are:
8818 Global symbol Local sybmol
8819 ------------- ------------
8820 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
8822 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
8824 load_got_offset emits the first instruction and add_got_offset
8825 emits the second for a 16-bit offset or add_got_offset_hilo emits
8826 a sequence to add a 32-bit offset using a scratch register. */
8829 load_got_offset (int dest
, expressionS
*local
)
8834 global
.X_add_number
= 0;
8836 relax_start (local
->X_add_symbol
);
8837 macro_build (&global
, ADDRESS_LOAD_INSN
, "t,o(b)", dest
,
8838 BFD_RELOC_MIPS_GOT16
, mips_gp_register
);
8840 macro_build (local
, ADDRESS_LOAD_INSN
, "t,o(b)", dest
,
8841 BFD_RELOC_MIPS_GOT16
, mips_gp_register
);
8846 add_got_offset (int dest
, expressionS
*local
)
8850 global
.X_op
= O_constant
;
8851 global
.X_op_symbol
= NULL
;
8852 global
.X_add_symbol
= NULL
;
8853 global
.X_add_number
= local
->X_add_number
;
8855 relax_start (local
->X_add_symbol
);
8856 macro_build (&global
, ADDRESS_ADDI_INSN
, "t,r,j",
8857 dest
, dest
, BFD_RELOC_LO16
);
8859 macro_build (local
, ADDRESS_ADDI_INSN
, "t,r,j", dest
, dest
, BFD_RELOC_LO16
);
8864 add_got_offset_hilo (int dest
, expressionS
*local
, int tmp
)
8867 int hold_mips_optimize
;
8869 global
.X_op
= O_constant
;
8870 global
.X_op_symbol
= NULL
;
8871 global
.X_add_symbol
= NULL
;
8872 global
.X_add_number
= local
->X_add_number
;
8874 relax_start (local
->X_add_symbol
);
8875 load_register (tmp
, &global
, HAVE_64BIT_ADDRESSES
);
8877 /* Set mips_optimize around the lui instruction to avoid
8878 inserting an unnecessary nop after the lw. */
8879 hold_mips_optimize
= mips_optimize
;
8881 macro_build_lui (&global
, tmp
);
8882 mips_optimize
= hold_mips_optimize
;
8883 macro_build (local
, ADDRESS_ADDI_INSN
, "t,r,j", tmp
, tmp
, BFD_RELOC_LO16
);
8886 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", dest
, dest
, tmp
);
8889 /* Emit a sequence of instructions to emulate a branch likely operation.
8890 BR is an ordinary branch corresponding to one to be emulated. BRNEG
8891 is its complementing branch with the original condition negated.
8892 CALL is set if the original branch specified the link operation.
8893 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
8895 Code like this is produced in the noreorder mode:
8900 delay slot (executed only if branch taken)
8908 delay slot (executed only if branch taken)
8911 In the reorder mode the delay slot would be filled with a nop anyway,
8912 so code produced is simply:
8917 This function is used when producing code for the microMIPS ASE that
8918 does not implement branch likely instructions in hardware. */
8921 macro_build_branch_likely (const char *br
, const char *brneg
,
8922 int call
, expressionS
*ep
, const char *fmt
,
8923 unsigned int sreg
, unsigned int treg
)
8925 int noreorder
= mips_opts
.noreorder
;
8928 gas_assert (mips_opts
.micromips
);
8932 micromips_label_expr (&expr1
);
8933 macro_build (&expr1
, brneg
, fmt
, sreg
, treg
);
8934 macro_build (NULL
, "nop", "");
8935 macro_build (ep
, call
? "bal" : "b", "p");
8937 /* Set to true so that append_insn adds a label. */
8938 emit_branch_likely_macro
= TRUE
;
8942 macro_build (ep
, br
, fmt
, sreg
, treg
);
8943 macro_build (NULL
, "nop", "");
8948 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
8949 the condition code tested. EP specifies the branch target. */
8952 macro_build_branch_ccl (int type
, expressionS
*ep
, unsigned int cc
)
8979 macro_build_branch_likely (br
, brneg
, call
, ep
, "N,p", cc
, ZERO
);
8982 /* Emit a two-argument branch macro specified by TYPE, using SREG as
8983 the register tested. EP specifies the branch target. */
8986 macro_build_branch_rs (int type
, expressionS
*ep
, unsigned int sreg
)
8988 const char *brneg
= NULL
;
8998 br
= mips_opts
.micromips
? "bgez" : "bgezl";
9002 gas_assert (mips_opts
.micromips
);
9003 br
= mips_opts
.insn32
? "bgezal" : "bgezals";
9011 br
= mips_opts
.micromips
? "bgtz" : "bgtzl";
9018 br
= mips_opts
.micromips
? "blez" : "blezl";
9025 br
= mips_opts
.micromips
? "bltz" : "bltzl";
9029 gas_assert (mips_opts
.micromips
);
9030 br
= mips_opts
.insn32
? "bltzal" : "bltzals";
9037 if (mips_opts
.micromips
&& brneg
)
9038 macro_build_branch_likely (br
, brneg
, call
, ep
, "s,p", sreg
, ZERO
);
9040 macro_build (ep
, br
, "s,p", sreg
);
9043 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9044 TREG as the registers tested. EP specifies the branch target. */
9047 macro_build_branch_rsrt (int type
, expressionS
*ep
,
9048 unsigned int sreg
, unsigned int treg
)
9050 const char *brneg
= NULL
;
9062 br
= mips_opts
.micromips
? "beq" : "beql";
9071 br
= mips_opts
.micromips
? "bne" : "bnel";
9077 if (mips_opts
.micromips
&& brneg
)
9078 macro_build_branch_likely (br
, brneg
, call
, ep
, "s,t,p", sreg
, treg
);
9080 macro_build (ep
, br
, "s,t,p", sreg
, treg
);
9083 /* Return the high part that should be loaded in order to make the low
9084 part of VALUE accessible using an offset of OFFBITS bits. */
9087 offset_high_part (offsetT value
, unsigned int offbits
)
9094 bias
= 1 << (offbits
- 1);
9095 low_mask
= bias
* 2 - 1;
9096 return (value
+ bias
) & ~low_mask
;
9099 /* Return true if the value stored in offset_expr and offset_reloc
9100 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9101 amount that the caller wants to add without inducing overflow
9102 and ALIGN is the known alignment of the value in bytes. */
9105 small_offset_p (unsigned int range
, unsigned int align
, unsigned int offbits
)
9109 /* Accept any relocation operator if overflow isn't a concern. */
9110 if (range
< align
&& *offset_reloc
!= BFD_RELOC_UNUSED
)
9113 /* These relocations are guaranteed not to overflow in correct links. */
9114 if (*offset_reloc
== BFD_RELOC_MIPS_LITERAL
9115 || gprel16_reloc_p (*offset_reloc
))
9118 if (offset_expr
.X_op
== O_constant
9119 && offset_high_part (offset_expr
.X_add_number
, offbits
) == 0
9120 && offset_high_part (offset_expr
.X_add_number
+ range
, offbits
) == 0)
9127 * This routine implements the seemingly endless macro or synthesized
9128 * instructions and addressing modes in the mips assembly language. Many
9129 * of these macros are simple and are similar to each other. These could
9130 * probably be handled by some kind of table or grammar approach instead of
9131 * this verbose method. Others are not simple macros but are more like
9132 * optimizing code generation.
9133 * One interesting optimization is when several store macros appear
9134 * consecutively that would load AT with the upper half of the same address.
9135 * The ensuing load upper instructions are ommited. This implies some kind
9136 * of global optimization. We currently only optimize within a single macro.
9137 * For many of the load and store macros if the address is specified as a
9138 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9139 * first load register 'at' with zero and use it as the base register. The
9140 * mips assembler simply uses register $zero. Just one tiny optimization
9144 macro (struct mips_cl_insn
*ip
, char *str
)
9146 const struct mips_operand_array
*operands
;
9147 unsigned int breg
, i
;
9148 unsigned int tempreg
;
9151 expressionS label_expr
;
9166 bfd_boolean large_offset
;
9168 int hold_mips_optimize
;
9170 unsigned int op
[MAX_OPERANDS
];
9172 gas_assert (! mips_opts
.mips16
);
9174 operands
= insn_operands (ip
);
9175 for (i
= 0; i
< MAX_OPERANDS
; i
++)
9176 if (operands
->operand
[i
])
9177 op
[i
] = insn_extract_operand (ip
, operands
->operand
[i
]);
9181 mask
= ip
->insn_mo
->mask
;
9183 label_expr
.X_op
= O_constant
;
9184 label_expr
.X_op_symbol
= NULL
;
9185 label_expr
.X_add_symbol
= NULL
;
9186 label_expr
.X_add_number
= 0;
9188 expr1
.X_op
= O_constant
;
9189 expr1
.X_op_symbol
= NULL
;
9190 expr1
.X_add_symbol
= NULL
;
9191 expr1
.X_add_number
= 1;
9207 if (mips_opts
.micromips
)
9208 micromips_label_expr (&label_expr
);
9210 label_expr
.X_add_number
= 8;
9211 macro_build (&label_expr
, "bgez", "s,p", op
[1]);
9213 macro_build (NULL
, "nop", "");
9215 move_register (op
[0], op
[1]);
9216 macro_build (NULL
, dbl
? "dsub" : "sub", "d,v,t", op
[0], 0, op
[1]);
9217 if (mips_opts
.micromips
)
9218 micromips_add_label ();
9235 if (!mips_opts
.micromips
)
9237 if (imm_expr
.X_add_number
>= -0x200
9238 && imm_expr
.X_add_number
< 0x200)
9240 macro_build (NULL
, s
, "t,r,.", op
[0], op
[1],
9241 (int) imm_expr
.X_add_number
);
9250 if (imm_expr
.X_add_number
>= -0x8000
9251 && imm_expr
.X_add_number
< 0x8000)
9253 macro_build (&imm_expr
, s
, "t,r,j", op
[0], op
[1], BFD_RELOC_LO16
);
9258 load_register (AT
, &imm_expr
, dbl
);
9259 macro_build (NULL
, s2
, "d,v,t", op
[0], op
[1], AT
);
9278 if (imm_expr
.X_add_number
>= 0
9279 && imm_expr
.X_add_number
< 0x10000)
9281 if (mask
!= M_NOR_I
)
9282 macro_build (&imm_expr
, s
, "t,r,i", op
[0], op
[1], BFD_RELOC_LO16
);
9285 macro_build (&imm_expr
, "ori", "t,r,i",
9286 op
[0], op
[1], BFD_RELOC_LO16
);
9287 macro_build (NULL
, "nor", "d,v,t", op
[0], op
[0], 0);
9293 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
9294 macro_build (NULL
, s2
, "d,v,t", op
[0], op
[1], AT
);
9298 switch (imm_expr
.X_add_number
)
9301 macro_build (NULL
, "nop", "");
9304 macro_build (NULL
, "packrl.ph", "d,s,t", op
[0], op
[0], op
[1]);
9308 macro_build (NULL
, "balign", "t,s,2", op
[0], op
[1],
9309 (int) imm_expr
.X_add_number
);
9312 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9313 (unsigned long) imm_expr
.X_add_number
);
9322 gas_assert (mips_opts
.micromips
);
9323 macro_build_branch_ccl (mask
, &offset_expr
,
9324 EXTRACT_OPERAND (1, BCC
, *ip
));
9331 if (imm_expr
.X_add_number
== 0)
9337 load_register (op
[1], &imm_expr
, GPR_SIZE
== 64);
9342 macro_build_branch_rsrt (mask
, &offset_expr
, op
[0], op
[1]);
9349 macro_build_branch_rs (likely
? M_BGEZL
: M_BGEZ
, &offset_expr
, op
[0]);
9350 else if (op
[0] == 0)
9351 macro_build_branch_rs (likely
? M_BLEZL
: M_BLEZ
, &offset_expr
, op
[1]);
9355 macro_build (NULL
, "slt", "d,v,t", AT
, op
[0], op
[1]);
9356 macro_build_branch_rsrt (likely
? M_BEQL
: M_BEQ
,
9357 &offset_expr
, AT
, ZERO
);
9367 macro_build_branch_rs (mask
, &offset_expr
, op
[0]);
9373 /* Check for > max integer. */
9374 if (imm_expr
.X_add_number
>= GPR_SMAX
)
9377 /* Result is always false. */
9379 macro_build (NULL
, "nop", "");
9381 macro_build_branch_rsrt (M_BNEL
, &offset_expr
, ZERO
, ZERO
);
9384 ++imm_expr
.X_add_number
;
9388 if (mask
== M_BGEL_I
)
9390 if (imm_expr
.X_add_number
== 0)
9392 macro_build_branch_rs (likely
? M_BGEZL
: M_BGEZ
,
9393 &offset_expr
, op
[0]);
9396 if (imm_expr
.X_add_number
== 1)
9398 macro_build_branch_rs (likely
? M_BGTZL
: M_BGTZ
,
9399 &offset_expr
, op
[0]);
9402 if (imm_expr
.X_add_number
<= GPR_SMIN
)
9405 /* result is always true */
9406 as_warn (_("branch %s is always true"), ip
->insn_mo
->name
);
9407 macro_build (&offset_expr
, "b", "p");
9412 macro_build_branch_rsrt (likely
? M_BEQL
: M_BEQ
,
9413 &offset_expr
, AT
, ZERO
);
9421 else if (op
[0] == 0)
9422 macro_build_branch_rsrt (likely
? M_BEQL
: M_BEQ
,
9423 &offset_expr
, ZERO
, op
[1]);
9427 macro_build (NULL
, "sltu", "d,v,t", AT
, op
[0], op
[1]);
9428 macro_build_branch_rsrt (likely
? M_BEQL
: M_BEQ
,
9429 &offset_expr
, AT
, ZERO
);
9438 && imm_expr
.X_add_number
== -1))
9440 ++imm_expr
.X_add_number
;
9444 if (mask
== M_BGEUL_I
)
9446 if (imm_expr
.X_add_number
== 0)
9448 else if (imm_expr
.X_add_number
== 1)
9449 macro_build_branch_rsrt (likely
? M_BNEL
: M_BNE
,
9450 &offset_expr
, op
[0], ZERO
);
9455 macro_build_branch_rsrt (likely
? M_BEQL
: M_BEQ
,
9456 &offset_expr
, AT
, ZERO
);
9464 macro_build_branch_rs (likely
? M_BGTZL
: M_BGTZ
, &offset_expr
, op
[0]);
9465 else if (op
[0] == 0)
9466 macro_build_branch_rs (likely
? M_BLTZL
: M_BLTZ
, &offset_expr
, op
[1]);
9470 macro_build (NULL
, "slt", "d,v,t", AT
, op
[1], op
[0]);
9471 macro_build_branch_rsrt (likely
? M_BNEL
: M_BNE
,
9472 &offset_expr
, AT
, ZERO
);
9480 macro_build_branch_rsrt (likely
? M_BNEL
: M_BNE
,
9481 &offset_expr
, op
[0], ZERO
);
9482 else if (op
[0] == 0)
9487 macro_build (NULL
, "sltu", "d,v,t", AT
, op
[1], op
[0]);
9488 macro_build_branch_rsrt (likely
? M_BNEL
: M_BNE
,
9489 &offset_expr
, AT
, ZERO
);
9497 macro_build_branch_rs (likely
? M_BLEZL
: M_BLEZ
, &offset_expr
, op
[0]);
9498 else if (op
[0] == 0)
9499 macro_build_branch_rs (likely
? M_BGEZL
: M_BGEZ
, &offset_expr
, op
[1]);
9503 macro_build (NULL
, "slt", "d,v,t", AT
, op
[1], op
[0]);
9504 macro_build_branch_rsrt (likely
? M_BEQL
: M_BEQ
,
9505 &offset_expr
, AT
, ZERO
);
9512 if (imm_expr
.X_add_number
>= GPR_SMAX
)
9514 ++imm_expr
.X_add_number
;
9518 if (mask
== M_BLTL_I
)
9520 if (imm_expr
.X_add_number
== 0)
9521 macro_build_branch_rs (likely
? M_BLTZL
: M_BLTZ
, &offset_expr
, op
[0]);
9522 else if (imm_expr
.X_add_number
== 1)
9523 macro_build_branch_rs (likely
? M_BLEZL
: M_BLEZ
, &offset_expr
, op
[0]);
9528 macro_build_branch_rsrt (likely
? M_BNEL
: M_BNE
,
9529 &offset_expr
, AT
, ZERO
);
9537 macro_build_branch_rsrt (likely
? M_BEQL
: M_BEQ
,
9538 &offset_expr
, op
[0], ZERO
);
9539 else if (op
[0] == 0)
9544 macro_build (NULL
, "sltu", "d,v,t", AT
, op
[1], op
[0]);
9545 macro_build_branch_rsrt (likely
? M_BEQL
: M_BEQ
,
9546 &offset_expr
, AT
, ZERO
);
9555 && imm_expr
.X_add_number
== -1))
9557 ++imm_expr
.X_add_number
;
9561 if (mask
== M_BLTUL_I
)
9563 if (imm_expr
.X_add_number
== 0)
9565 else if (imm_expr
.X_add_number
== 1)
9566 macro_build_branch_rsrt (likely
? M_BEQL
: M_BEQ
,
9567 &offset_expr
, op
[0], ZERO
);
9572 macro_build_branch_rsrt (likely
? M_BNEL
: M_BNE
,
9573 &offset_expr
, AT
, ZERO
);
9581 macro_build_branch_rs (likely
? M_BLTZL
: M_BLTZ
, &offset_expr
, op
[0]);
9582 else if (op
[0] == 0)
9583 macro_build_branch_rs (likely
? M_BGTZL
: M_BGTZ
, &offset_expr
, op
[1]);
9587 macro_build (NULL
, "slt", "d,v,t", AT
, op
[0], op
[1]);
9588 macro_build_branch_rsrt (likely
? M_BNEL
: M_BNE
,
9589 &offset_expr
, AT
, ZERO
);
9598 else if (op
[0] == 0)
9599 macro_build_branch_rsrt (likely
? M_BNEL
: M_BNE
,
9600 &offset_expr
, ZERO
, op
[1]);
9604 macro_build (NULL
, "sltu", "d,v,t", AT
, op
[0], op
[1]);
9605 macro_build_branch_rsrt (likely
? M_BNEL
: M_BNE
,
9606 &offset_expr
, AT
, ZERO
);
9622 as_warn (_("divide by zero"));
9624 macro_build (NULL
, "teq", TRAP_FMT
, ZERO
, ZERO
, 7);
9626 macro_build (NULL
, "break", BRK_FMT
, 7);
9633 macro_build (NULL
, "teq", TRAP_FMT
, op
[2], ZERO
, 7);
9634 macro_build (NULL
, dbl
? "ddiv" : "div", "z,s,t", op
[1], op
[2]);
9638 if (mips_opts
.micromips
)
9639 micromips_label_expr (&label_expr
);
9641 label_expr
.X_add_number
= 8;
9642 macro_build (&label_expr
, "bne", "s,t,p", op
[2], ZERO
);
9643 macro_build (NULL
, dbl
? "ddiv" : "div", "z,s,t", op
[1], op
[2]);
9644 macro_build (NULL
, "break", BRK_FMT
, 7);
9645 if (mips_opts
.micromips
)
9646 micromips_add_label ();
9648 expr1
.X_add_number
= -1;
9650 load_register (AT
, &expr1
, dbl
);
9651 if (mips_opts
.micromips
)
9652 micromips_label_expr (&label_expr
);
9654 label_expr
.X_add_number
= mips_trap
? (dbl
? 12 : 8) : (dbl
? 20 : 16);
9655 macro_build (&label_expr
, "bne", "s,t,p", op
[2], AT
);
9658 expr1
.X_add_number
= 1;
9659 load_register (AT
, &expr1
, dbl
);
9660 macro_build (NULL
, "dsll32", SHFT_FMT
, AT
, AT
, 31);
9664 expr1
.X_add_number
= 0x80000000;
9665 macro_build (&expr1
, "lui", LUI_FMT
, AT
, BFD_RELOC_HI16
);
9669 macro_build (NULL
, "teq", TRAP_FMT
, op
[1], AT
, 6);
9670 /* We want to close the noreorder block as soon as possible, so
9671 that later insns are available for delay slot filling. */
9676 if (mips_opts
.micromips
)
9677 micromips_label_expr (&label_expr
);
9679 label_expr
.X_add_number
= 8;
9680 macro_build (&label_expr
, "bne", "s,t,p", op
[1], AT
);
9681 macro_build (NULL
, "nop", "");
9683 /* We want to close the noreorder block as soon as possible, so
9684 that later insns are available for delay slot filling. */
9687 macro_build (NULL
, "break", BRK_FMT
, 6);
9689 if (mips_opts
.micromips
)
9690 micromips_add_label ();
9691 macro_build (NULL
, s
, MFHL_FMT
, op
[0]);
9730 if (imm_expr
.X_add_number
== 0)
9732 as_warn (_("divide by zero"));
9734 macro_build (NULL
, "teq", TRAP_FMT
, ZERO
, ZERO
, 7);
9736 macro_build (NULL
, "break", BRK_FMT
, 7);
9739 if (imm_expr
.X_add_number
== 1)
9741 if (strcmp (s2
, "mflo") == 0)
9742 move_register (op
[0], op
[1]);
9744 move_register (op
[0], ZERO
);
9747 if (imm_expr
.X_add_number
== -1 && s
[strlen (s
) - 1] != 'u')
9749 if (strcmp (s2
, "mflo") == 0)
9750 macro_build (NULL
, dbl
? "dneg" : "neg", "d,w", op
[0], op
[1]);
9752 move_register (op
[0], ZERO
);
9757 load_register (AT
, &imm_expr
, dbl
);
9758 macro_build (NULL
, s
, "z,s,t", op
[1], AT
);
9759 macro_build (NULL
, s2
, MFHL_FMT
, op
[0]);
9781 macro_build (NULL
, "teq", TRAP_FMT
, op
[2], ZERO
, 7);
9782 macro_build (NULL
, s
, "z,s,t", op
[1], op
[2]);
9783 /* We want to close the noreorder block as soon as possible, so
9784 that later insns are available for delay slot filling. */
9789 if (mips_opts
.micromips
)
9790 micromips_label_expr (&label_expr
);
9792 label_expr
.X_add_number
= 8;
9793 macro_build (&label_expr
, "bne", "s,t,p", op
[2], ZERO
);
9794 macro_build (NULL
, s
, "z,s,t", op
[1], op
[2]);
9796 /* We want to close the noreorder block as soon as possible, so
9797 that later insns are available for delay slot filling. */
9799 macro_build (NULL
, "break", BRK_FMT
, 7);
9800 if (mips_opts
.micromips
)
9801 micromips_add_label ();
9803 macro_build (NULL
, s2
, MFHL_FMT
, op
[0]);
9815 /* Load the address of a symbol into a register. If breg is not
9816 zero, we then add a base register to it. */
9819 if (dbl
&& GPR_SIZE
== 32)
9820 as_warn (_("dla used to load 32-bit register"));
9822 if (!dbl
&& HAVE_64BIT_OBJECTS
)
9823 as_warn (_("la used to load 64-bit address"));
9825 if (small_offset_p (0, align
, 16))
9827 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j", op
[0], breg
,
9828 -1, offset_reloc
[0], offset_reloc
[1], offset_reloc
[2]);
9832 if (mips_opts
.at
&& (op
[0] == breg
))
9840 if (offset_expr
.X_op
!= O_symbol
9841 && offset_expr
.X_op
!= O_constant
)
9843 as_bad (_("expression too complex"));
9844 offset_expr
.X_op
= O_constant
;
9847 if (offset_expr
.X_op
== O_constant
)
9848 load_register (tempreg
, &offset_expr
, HAVE_64BIT_ADDRESSES
);
9849 else if (mips_pic
== NO_PIC
)
9851 /* If this is a reference to a GP relative symbol, we want
9852 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
9854 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
9855 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
9856 If we have a constant, we need two instructions anyhow,
9857 so we may as well always use the latter form.
9859 With 64bit address space and a usable $at we want
9860 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9861 lui $at,<sym> (BFD_RELOC_HI16_S)
9862 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
9863 daddiu $at,<sym> (BFD_RELOC_LO16)
9865 daddu $tempreg,$tempreg,$at
9867 If $at is already in use, we use a path which is suboptimal
9868 on superscalar processors.
9869 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9870 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
9872 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
9874 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
9876 For GP relative symbols in 64bit address space we can use
9877 the same sequence as in 32bit address space. */
9878 if (HAVE_64BIT_SYMBOLS
)
9880 if ((valueT
) offset_expr
.X_add_number
<= MAX_GPREL_OFFSET
9881 && !nopic_need_relax (offset_expr
.X_add_symbol
, 1))
9883 relax_start (offset_expr
.X_add_symbol
);
9884 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j",
9885 tempreg
, mips_gp_register
, BFD_RELOC_GPREL16
);
9889 if (used_at
== 0 && mips_opts
.at
)
9891 macro_build (&offset_expr
, "lui", LUI_FMT
,
9892 tempreg
, BFD_RELOC_MIPS_HIGHEST
);
9893 macro_build (&offset_expr
, "lui", LUI_FMT
,
9894 AT
, BFD_RELOC_HI16_S
);
9895 macro_build (&offset_expr
, "daddiu", "t,r,j",
9896 tempreg
, tempreg
, BFD_RELOC_MIPS_HIGHER
);
9897 macro_build (&offset_expr
, "daddiu", "t,r,j",
9898 AT
, AT
, BFD_RELOC_LO16
);
9899 macro_build (NULL
, "dsll32", SHFT_FMT
, tempreg
, tempreg
, 0);
9900 macro_build (NULL
, "daddu", "d,v,t", tempreg
, tempreg
, AT
);
9905 macro_build (&offset_expr
, "lui", LUI_FMT
,
9906 tempreg
, BFD_RELOC_MIPS_HIGHEST
);
9907 macro_build (&offset_expr
, "daddiu", "t,r,j",
9908 tempreg
, tempreg
, BFD_RELOC_MIPS_HIGHER
);
9909 macro_build (NULL
, "dsll", SHFT_FMT
, tempreg
, tempreg
, 16);
9910 macro_build (&offset_expr
, "daddiu", "t,r,j",
9911 tempreg
, tempreg
, BFD_RELOC_HI16_S
);
9912 macro_build (NULL
, "dsll", SHFT_FMT
, tempreg
, tempreg
, 16);
9913 macro_build (&offset_expr
, "daddiu", "t,r,j",
9914 tempreg
, tempreg
, BFD_RELOC_LO16
);
9917 if (mips_relax
.sequence
)
9922 if ((valueT
) offset_expr
.X_add_number
<= MAX_GPREL_OFFSET
9923 && !nopic_need_relax (offset_expr
.X_add_symbol
, 1))
9925 relax_start (offset_expr
.X_add_symbol
);
9926 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j",
9927 tempreg
, mips_gp_register
, BFD_RELOC_GPREL16
);
9930 if (!IS_SEXT_32BIT_NUM (offset_expr
.X_add_number
))
9931 as_bad (_("offset too large"));
9932 macro_build_lui (&offset_expr
, tempreg
);
9933 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j",
9934 tempreg
, tempreg
, BFD_RELOC_LO16
);
9935 if (mips_relax
.sequence
)
9939 else if (!mips_big_got
&& !HAVE_NEWABI
)
9941 int lw_reloc_type
= (int) BFD_RELOC_MIPS_GOT16
;
9943 /* If this is a reference to an external symbol, and there
9944 is no constant, we want
9945 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9946 or for lca or if tempreg is PIC_CALL_REG
9947 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
9948 For a local symbol, we want
9949 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9951 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
9953 If we have a small constant, and this is a reference to
9954 an external symbol, we want
9955 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9957 addiu $tempreg,$tempreg,<constant>
9958 For a local symbol, we want the same instruction
9959 sequence, but we output a BFD_RELOC_LO16 reloc on the
9962 If we have a large constant, and this is a reference to
9963 an external symbol, we want
9964 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9965 lui $at,<hiconstant>
9966 addiu $at,$at,<loconstant>
9967 addu $tempreg,$tempreg,$at
9968 For a local symbol, we want the same instruction
9969 sequence, but we output a BFD_RELOC_LO16 reloc on the
9973 if (offset_expr
.X_add_number
== 0)
9975 if (mips_pic
== SVR4_PIC
9977 && (call
|| tempreg
== PIC_CALL_REG
))
9978 lw_reloc_type
= (int) BFD_RELOC_MIPS_CALL16
;
9980 relax_start (offset_expr
.X_add_symbol
);
9981 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
9982 lw_reloc_type
, mips_gp_register
);
9985 /* We're going to put in an addu instruction using
9986 tempreg, so we may as well insert the nop right
9991 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
9992 tempreg
, BFD_RELOC_MIPS_GOT16
, mips_gp_register
);
9994 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j",
9995 tempreg
, tempreg
, BFD_RELOC_LO16
);
9997 /* FIXME: If breg == 0, and the next instruction uses
9998 $tempreg, then if this variant case is used an extra
9999 nop will be generated. */
10001 else if (offset_expr
.X_add_number
>= -0x8000
10002 && offset_expr
.X_add_number
< 0x8000)
10004 load_got_offset (tempreg
, &offset_expr
);
10006 add_got_offset (tempreg
, &offset_expr
);
10010 expr1
.X_add_number
= offset_expr
.X_add_number
;
10011 offset_expr
.X_add_number
=
10012 SEXT_16BIT (offset_expr
.X_add_number
);
10013 load_got_offset (tempreg
, &offset_expr
);
10014 offset_expr
.X_add_number
= expr1
.X_add_number
;
10015 /* If we are going to add in a base register, and the
10016 target register and the base register are the same,
10017 then we are using AT as a temporary register. Since
10018 we want to load the constant into AT, we add our
10019 current AT (from the global offset table) and the
10020 register into the register now, and pretend we were
10021 not using a base register. */
10025 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
10030 add_got_offset_hilo (tempreg
, &offset_expr
, AT
);
10034 else if (!mips_big_got
&& HAVE_NEWABI
)
10036 int add_breg_early
= 0;
10038 /* If this is a reference to an external, and there is no
10039 constant, or local symbol (*), with or without a
10041 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10042 or for lca or if tempreg is PIC_CALL_REG
10043 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10045 If we have a small constant, and this is a reference to
10046 an external symbol, we want
10047 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10048 addiu $tempreg,$tempreg,<constant>
10050 If we have a large constant, and this is a reference to
10051 an external symbol, we want
10052 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10053 lui $at,<hiconstant>
10054 addiu $at,$at,<loconstant>
10055 addu $tempreg,$tempreg,$at
10057 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10058 local symbols, even though it introduces an additional
10061 if (offset_expr
.X_add_number
)
10063 expr1
.X_add_number
= offset_expr
.X_add_number
;
10064 offset_expr
.X_add_number
= 0;
10066 relax_start (offset_expr
.X_add_symbol
);
10067 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
10068 BFD_RELOC_MIPS_GOT_DISP
, mips_gp_register
);
10070 if (expr1
.X_add_number
>= -0x8000
10071 && expr1
.X_add_number
< 0x8000)
10073 macro_build (&expr1
, ADDRESS_ADDI_INSN
, "t,r,j",
10074 tempreg
, tempreg
, BFD_RELOC_LO16
);
10076 else if (IS_SEXT_32BIT_NUM (expr1
.X_add_number
+ 0x8000))
10080 /* If we are going to add in a base register, and the
10081 target register and the base register are the same,
10082 then we are using AT as a temporary register. Since
10083 we want to load the constant into AT, we add our
10084 current AT (from the global offset table) and the
10085 register into the register now, and pretend we were
10086 not using a base register. */
10091 gas_assert (tempreg
== AT
);
10092 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
10095 add_breg_early
= 1;
10098 load_register (AT
, &expr1
, HAVE_64BIT_ADDRESSES
);
10099 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
10105 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10108 offset_expr
.X_add_number
= expr1
.X_add_number
;
10110 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
10111 BFD_RELOC_MIPS_GOT_DISP
, mips_gp_register
);
10112 if (add_breg_early
)
10114 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
10115 op
[0], tempreg
, breg
);
10121 else if (breg
== 0 && (call
|| tempreg
== PIC_CALL_REG
))
10123 relax_start (offset_expr
.X_add_symbol
);
10124 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
10125 BFD_RELOC_MIPS_CALL16
, mips_gp_register
);
10127 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
10128 BFD_RELOC_MIPS_GOT_DISP
, mips_gp_register
);
10133 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
10134 BFD_RELOC_MIPS_GOT_DISP
, mips_gp_register
);
10137 else if (mips_big_got
&& !HAVE_NEWABI
)
10140 int lui_reloc_type
= (int) BFD_RELOC_MIPS_GOT_HI16
;
10141 int lw_reloc_type
= (int) BFD_RELOC_MIPS_GOT_LO16
;
10142 int local_reloc_type
= (int) BFD_RELOC_MIPS_GOT16
;
10144 /* This is the large GOT case. If this is a reference to an
10145 external symbol, and there is no constant, we want
10146 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10147 addu $tempreg,$tempreg,$gp
10148 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10149 or for lca or if tempreg is PIC_CALL_REG
10150 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10151 addu $tempreg,$tempreg,$gp
10152 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10153 For a local symbol, we want
10154 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10156 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10158 If we have a small constant, and this is a reference to
10159 an external symbol, we want
10160 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10161 addu $tempreg,$tempreg,$gp
10162 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10164 addiu $tempreg,$tempreg,<constant>
10165 For a local symbol, we want
10166 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10168 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10170 If we have a large constant, and this is a reference to
10171 an external symbol, we want
10172 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10173 addu $tempreg,$tempreg,$gp
10174 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10175 lui $at,<hiconstant>
10176 addiu $at,$at,<loconstant>
10177 addu $tempreg,$tempreg,$at
10178 For a local symbol, we want
10179 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10180 lui $at,<hiconstant>
10181 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10182 addu $tempreg,$tempreg,$at
10185 expr1
.X_add_number
= offset_expr
.X_add_number
;
10186 offset_expr
.X_add_number
= 0;
10187 relax_start (offset_expr
.X_add_symbol
);
10188 gpdelay
= reg_needs_delay (mips_gp_register
);
10189 if (expr1
.X_add_number
== 0 && breg
== 0
10190 && (call
|| tempreg
== PIC_CALL_REG
))
10192 lui_reloc_type
= (int) BFD_RELOC_MIPS_CALL_HI16
;
10193 lw_reloc_type
= (int) BFD_RELOC_MIPS_CALL_LO16
;
10195 macro_build (&offset_expr
, "lui", LUI_FMT
, tempreg
, lui_reloc_type
);
10196 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
10197 tempreg
, tempreg
, mips_gp_register
);
10198 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
10199 tempreg
, lw_reloc_type
, tempreg
);
10200 if (expr1
.X_add_number
== 0)
10204 /* We're going to put in an addu instruction using
10205 tempreg, so we may as well insert the nop right
10210 else if (expr1
.X_add_number
>= -0x8000
10211 && expr1
.X_add_number
< 0x8000)
10214 macro_build (&expr1
, ADDRESS_ADDI_INSN
, "t,r,j",
10215 tempreg
, tempreg
, BFD_RELOC_LO16
);
10221 /* If we are going to add in a base register, and the
10222 target register and the base register are the same,
10223 then we are using AT as a temporary register. Since
10224 we want to load the constant into AT, we add our
10225 current AT (from the global offset table) and the
10226 register into the register now, and pretend we were
10227 not using a base register. */
10232 gas_assert (tempreg
== AT
);
10234 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
10239 load_register (AT
, &expr1
, HAVE_64BIT_ADDRESSES
);
10240 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", dreg
, dreg
, AT
);
10244 offset_expr
.X_add_number
= SEXT_16BIT (expr1
.X_add_number
);
10249 /* This is needed because this instruction uses $gp, but
10250 the first instruction on the main stream does not. */
10251 macro_build (NULL
, "nop", "");
10254 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
10255 local_reloc_type
, mips_gp_register
);
10256 if (expr1
.X_add_number
>= -0x8000
10257 && expr1
.X_add_number
< 0x8000)
10260 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j",
10261 tempreg
, tempreg
, BFD_RELOC_LO16
);
10262 /* FIXME: If add_number is 0, and there was no base
10263 register, the external symbol case ended with a load,
10264 so if the symbol turns out to not be external, and
10265 the next instruction uses tempreg, an unnecessary nop
10266 will be inserted. */
10272 /* We must add in the base register now, as in the
10273 external symbol case. */
10274 gas_assert (tempreg
== AT
);
10276 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
10279 /* We set breg to 0 because we have arranged to add
10280 it in in both cases. */
10284 macro_build_lui (&expr1
, AT
);
10285 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j",
10286 AT
, AT
, BFD_RELOC_LO16
);
10287 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
10288 tempreg
, tempreg
, AT
);
10293 else if (mips_big_got
&& HAVE_NEWABI
)
10295 int lui_reloc_type
= (int) BFD_RELOC_MIPS_GOT_HI16
;
10296 int lw_reloc_type
= (int) BFD_RELOC_MIPS_GOT_LO16
;
10297 int add_breg_early
= 0;
10299 /* This is the large GOT case. If this is a reference to an
10300 external symbol, and there is no constant, we want
10301 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10302 add $tempreg,$tempreg,$gp
10303 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10304 or for lca or if tempreg is PIC_CALL_REG
10305 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10306 add $tempreg,$tempreg,$gp
10307 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10309 If we have a small constant, and this is a reference to
10310 an external symbol, we want
10311 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10312 add $tempreg,$tempreg,$gp
10313 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10314 addi $tempreg,$tempreg,<constant>
10316 If we have a large constant, and this is a reference to
10317 an external symbol, we want
10318 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10319 addu $tempreg,$tempreg,$gp
10320 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10321 lui $at,<hiconstant>
10322 addi $at,$at,<loconstant>
10323 add $tempreg,$tempreg,$at
10325 If we have NewABI, and we know it's a local symbol, we want
10326 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10327 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10328 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10330 relax_start (offset_expr
.X_add_symbol
);
10332 expr1
.X_add_number
= offset_expr
.X_add_number
;
10333 offset_expr
.X_add_number
= 0;
10335 if (expr1
.X_add_number
== 0 && breg
== 0
10336 && (call
|| tempreg
== PIC_CALL_REG
))
10338 lui_reloc_type
= (int) BFD_RELOC_MIPS_CALL_HI16
;
10339 lw_reloc_type
= (int) BFD_RELOC_MIPS_CALL_LO16
;
10341 macro_build (&offset_expr
, "lui", LUI_FMT
, tempreg
, lui_reloc_type
);
10342 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
10343 tempreg
, tempreg
, mips_gp_register
);
10344 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
10345 tempreg
, lw_reloc_type
, tempreg
);
10347 if (expr1
.X_add_number
== 0)
10349 else if (expr1
.X_add_number
>= -0x8000
10350 && expr1
.X_add_number
< 0x8000)
10352 macro_build (&expr1
, ADDRESS_ADDI_INSN
, "t,r,j",
10353 tempreg
, tempreg
, BFD_RELOC_LO16
);
10355 else if (IS_SEXT_32BIT_NUM (expr1
.X_add_number
+ 0x8000))
10359 /* If we are going to add in a base register, and the
10360 target register and the base register are the same,
10361 then we are using AT as a temporary register. Since
10362 we want to load the constant into AT, we add our
10363 current AT (from the global offset table) and the
10364 register into the register now, and pretend we were
10365 not using a base register. */
10370 gas_assert (tempreg
== AT
);
10371 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
10374 add_breg_early
= 1;
10377 load_register (AT
, &expr1
, HAVE_64BIT_ADDRESSES
);
10378 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", dreg
, dreg
, AT
);
10383 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10386 offset_expr
.X_add_number
= expr1
.X_add_number
;
10387 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
10388 BFD_RELOC_MIPS_GOT_PAGE
, mips_gp_register
);
10389 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j", tempreg
,
10390 tempreg
, BFD_RELOC_MIPS_GOT_OFST
);
10391 if (add_breg_early
)
10393 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
10394 op
[0], tempreg
, breg
);
10404 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", op
[0], tempreg
, breg
);
10408 gas_assert (!mips_opts
.micromips
);
10409 macro_build (NULL
, "c2", "C", (op
[0] << 16) | 0x01);
10413 gas_assert (!mips_opts
.micromips
);
10414 macro_build (NULL
, "c2", "C", 0x02);
10418 gas_assert (!mips_opts
.micromips
);
10419 macro_build (NULL
, "c2", "C", (op
[0] << 16) | 0x02);
10423 gas_assert (!mips_opts
.micromips
);
10424 macro_build (NULL
, "c2", "C", 3);
10428 gas_assert (!mips_opts
.micromips
);
10429 macro_build (NULL
, "c2", "C", (op
[0] << 16) | 0x03);
10433 /* The j instruction may not be used in PIC code, since it
10434 requires an absolute address. We convert it to a b
10436 if (mips_pic
== NO_PIC
)
10437 macro_build (&offset_expr
, "j", "a");
10439 macro_build (&offset_expr
, "b", "p");
10442 /* The jal instructions must be handled as macros because when
10443 generating PIC code they expand to multi-instruction
10444 sequences. Normally they are simple instructions. */
10448 /* Fall through. */
10450 gas_assert (mips_opts
.micromips
);
10451 if (mips_opts
.insn32
)
10453 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str
);
10461 /* Fall through. */
10464 if (mips_pic
== NO_PIC
)
10466 s
= jals
? "jalrs" : "jalr";
10467 if (mips_opts
.micromips
10468 && !mips_opts
.insn32
10470 && !(history
[0].insn_mo
->pinfo2
& INSN2_BRANCH_DELAY_32BIT
))
10471 macro_build (NULL
, s
, "mj", op
[1]);
10473 macro_build (NULL
, s
, JALR_FMT
, op
[0], op
[1]);
10477 int cprestore
= (mips_pic
== SVR4_PIC
&& !HAVE_NEWABI
10478 && mips_cprestore_offset
>= 0);
10480 if (op
[1] != PIC_CALL_REG
)
10481 as_warn (_("MIPS PIC call to register other than $25"));
10483 s
= ((mips_opts
.micromips
10484 && !mips_opts
.insn32
10485 && (!mips_opts
.noreorder
|| cprestore
))
10486 ? "jalrs" : "jalr");
10487 if (mips_opts
.micromips
10488 && !mips_opts
.insn32
10490 && !(history
[0].insn_mo
->pinfo2
& INSN2_BRANCH_DELAY_32BIT
))
10491 macro_build (NULL
, s
, "mj", op
[1]);
10493 macro_build (NULL
, s
, JALR_FMT
, op
[0], op
[1]);
10494 if (mips_pic
== SVR4_PIC
&& !HAVE_NEWABI
)
10496 if (mips_cprestore_offset
< 0)
10497 as_warn (_("no .cprestore pseudo-op used in PIC code"));
10500 if (!mips_frame_reg_valid
)
10502 as_warn (_("no .frame pseudo-op used in PIC code"));
10503 /* Quiet this warning. */
10504 mips_frame_reg_valid
= 1;
10506 if (!mips_cprestore_valid
)
10508 as_warn (_("no .cprestore pseudo-op used in PIC code"));
10509 /* Quiet this warning. */
10510 mips_cprestore_valid
= 1;
10512 if (mips_opts
.noreorder
)
10513 macro_build (NULL
, "nop", "");
10514 expr1
.X_add_number
= mips_cprestore_offset
;
10515 macro_build_ldst_constoffset (&expr1
, ADDRESS_LOAD_INSN
,
10518 HAVE_64BIT_ADDRESSES
);
10526 gas_assert (mips_opts
.micromips
);
10527 if (mips_opts
.insn32
)
10529 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str
);
10533 /* Fall through. */
10535 if (mips_pic
== NO_PIC
)
10536 macro_build (&offset_expr
, jals
? "jals" : "jal", "a");
10537 else if (mips_pic
== SVR4_PIC
)
10539 /* If this is a reference to an external symbol, and we are
10540 using a small GOT, we want
10541 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10545 lw $gp,cprestore($sp)
10546 The cprestore value is set using the .cprestore
10547 pseudo-op. If we are using a big GOT, we want
10548 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10550 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
10554 lw $gp,cprestore($sp)
10555 If the symbol is not external, we want
10556 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10558 addiu $25,$25,<sym> (BFD_RELOC_LO16)
10561 lw $gp,cprestore($sp)
10563 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
10564 sequences above, minus nops, unless the symbol is local,
10565 which enables us to use GOT_PAGE/GOT_OFST (big got) or
10571 relax_start (offset_expr
.X_add_symbol
);
10572 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
10573 PIC_CALL_REG
, BFD_RELOC_MIPS_CALL16
,
10576 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
10577 PIC_CALL_REG
, BFD_RELOC_MIPS_GOT_DISP
,
10583 relax_start (offset_expr
.X_add_symbol
);
10584 macro_build (&offset_expr
, "lui", LUI_FMT
, PIC_CALL_REG
,
10585 BFD_RELOC_MIPS_CALL_HI16
);
10586 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", PIC_CALL_REG
,
10587 PIC_CALL_REG
, mips_gp_register
);
10588 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
10589 PIC_CALL_REG
, BFD_RELOC_MIPS_CALL_LO16
,
10592 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
10593 PIC_CALL_REG
, BFD_RELOC_MIPS_GOT_PAGE
,
10595 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j",
10596 PIC_CALL_REG
, PIC_CALL_REG
,
10597 BFD_RELOC_MIPS_GOT_OFST
);
10601 macro_build_jalr (&offset_expr
, 0);
10605 relax_start (offset_expr
.X_add_symbol
);
10608 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
10609 PIC_CALL_REG
, BFD_RELOC_MIPS_CALL16
,
10618 gpdelay
= reg_needs_delay (mips_gp_register
);
10619 macro_build (&offset_expr
, "lui", LUI_FMT
, PIC_CALL_REG
,
10620 BFD_RELOC_MIPS_CALL_HI16
);
10621 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", PIC_CALL_REG
,
10622 PIC_CALL_REG
, mips_gp_register
);
10623 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
10624 PIC_CALL_REG
, BFD_RELOC_MIPS_CALL_LO16
,
10629 macro_build (NULL
, "nop", "");
10631 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
10632 PIC_CALL_REG
, BFD_RELOC_MIPS_GOT16
,
10635 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j",
10636 PIC_CALL_REG
, PIC_CALL_REG
, BFD_RELOC_LO16
);
10638 macro_build_jalr (&offset_expr
, mips_cprestore_offset
>= 0);
10640 if (mips_cprestore_offset
< 0)
10641 as_warn (_("no .cprestore pseudo-op used in PIC code"));
10644 if (!mips_frame_reg_valid
)
10646 as_warn (_("no .frame pseudo-op used in PIC code"));
10647 /* Quiet this warning. */
10648 mips_frame_reg_valid
= 1;
10650 if (!mips_cprestore_valid
)
10652 as_warn (_("no .cprestore pseudo-op used in PIC code"));
10653 /* Quiet this warning. */
10654 mips_cprestore_valid
= 1;
10656 if (mips_opts
.noreorder
)
10657 macro_build (NULL
, "nop", "");
10658 expr1
.X_add_number
= mips_cprestore_offset
;
10659 macro_build_ldst_constoffset (&expr1
, ADDRESS_LOAD_INSN
,
10662 HAVE_64BIT_ADDRESSES
);
10666 else if (mips_pic
== VXWORKS_PIC
)
10667 as_bad (_("non-PIC jump used in PIC library"));
10774 gas_assert (!mips_opts
.micromips
);
10777 /* Itbl support may require additional care here. */
10783 /* Itbl support may require additional care here. */
10789 offbits
= (mips_opts
.micromips
? 12 : 16);
10790 /* Itbl support may require additional care here. */
10794 gas_assert (!mips_opts
.micromips
);
10797 /* Itbl support may require additional care here. */
10803 offbits
= (mips_opts
.micromips
? 12 : 16);
10808 offbits
= (mips_opts
.micromips
? 12 : 16);
10813 /* Itbl support may require additional care here. */
10819 offbits
= (mips_opts
.micromips
? 12 : 16);
10820 /* Itbl support may require additional care here. */
10826 /* Itbl support may require additional care here. */
10832 /* Itbl support may require additional care here. */
10838 offbits
= (mips_opts
.micromips
? 12 : 16);
10843 offbits
= (mips_opts
.micromips
? 12 : 16);
10848 offbits
= (mips_opts
.micromips
? 12 : 16);
10853 offbits
= (mips_opts
.micromips
? 12 : 16);
10858 offbits
= (mips_opts
.micromips
? 12 : 16);
10861 gas_assert (mips_opts
.micromips
);
10868 gas_assert (mips_opts
.micromips
);
10875 gas_assert (mips_opts
.micromips
);
10881 gas_assert (mips_opts
.micromips
);
10888 /* We don't want to use $0 as tempreg. */
10889 if (op
[2] == op
[0] + lp
|| op
[0] + lp
== ZERO
)
10892 tempreg
= op
[0] + lp
;
10908 gas_assert (!mips_opts
.micromips
);
10911 /* Itbl support may require additional care here. */
10917 /* Itbl support may require additional care here. */
10923 offbits
= (mips_opts
.micromips
? 12 : 16);
10924 /* Itbl support may require additional care here. */
10928 gas_assert (!mips_opts
.micromips
);
10931 /* Itbl support may require additional care here. */
10937 offbits
= (mips_opts
.micromips
? 12 : 16);
10942 offbits
= (mips_opts
.micromips
? 12 : 16);
10947 offbits
= (mips_opts
.micromips
? 12 : 16);
10952 offbits
= (mips_opts
.micromips
? 12 : 16);
10956 fmt
= mips_opts
.micromips
? "k,~(b)" : "k,o(b)";
10957 offbits
= (mips_opts
.micromips
? 12 : 16);
10966 fmt
= !mips_opts
.micromips
? "k,o(b)" : "k,~(b)";
10967 offbits
= (mips_opts
.micromips
? 12 : 16);
10978 /* Itbl support may require additional care here. */
10983 offbits
= (mips_opts
.micromips
? 12 : 16);
10984 /* Itbl support may require additional care here. */
10990 /* Itbl support may require additional care here. */
10994 gas_assert (!mips_opts
.micromips
);
10997 /* Itbl support may require additional care here. */
11003 offbits
= (mips_opts
.micromips
? 12 : 16);
11008 offbits
= (mips_opts
.micromips
? 12 : 16);
11011 gas_assert (mips_opts
.micromips
);
11017 gas_assert (mips_opts
.micromips
);
11023 gas_assert (mips_opts
.micromips
);
11029 gas_assert (mips_opts
.micromips
);
11038 if (small_offset_p (0, align
, 16))
11040 /* The first case exists for M_LD_AB and M_SD_AB, which are
11041 macros for o32 but which should act like normal instructions
11044 macro_build (&offset_expr
, s
, fmt
, op
[0], -1, offset_reloc
[0],
11045 offset_reloc
[1], offset_reloc
[2], breg
);
11046 else if (small_offset_p (0, align
, offbits
))
11049 macro_build (NULL
, s
, fmt
, op
[0], breg
);
11051 macro_build (NULL
, s
, fmt
, op
[0],
11052 (int) offset_expr
.X_add_number
, breg
);
11058 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j",
11059 tempreg
, breg
, -1, offset_reloc
[0],
11060 offset_reloc
[1], offset_reloc
[2]);
11062 macro_build (NULL
, s
, fmt
, op
[0], tempreg
);
11064 macro_build (NULL
, s
, fmt
, op
[0], 0, tempreg
);
11072 if (offset_expr
.X_op
!= O_constant
11073 && offset_expr
.X_op
!= O_symbol
)
11075 as_bad (_("expression too complex"));
11076 offset_expr
.X_op
= O_constant
;
11079 if (HAVE_32BIT_ADDRESSES
11080 && !IS_SEXT_32BIT_NUM (offset_expr
.X_add_number
))
11084 sprintf_vma (value
, offset_expr
.X_add_number
);
11085 as_bad (_("number (0x%s) larger than 32 bits"), value
);
11088 /* A constant expression in PIC code can be handled just as it
11089 is in non PIC code. */
11090 if (offset_expr
.X_op
== O_constant
)
11092 expr1
.X_add_number
= offset_high_part (offset_expr
.X_add_number
,
11093 offbits
== 0 ? 16 : offbits
);
11094 offset_expr
.X_add_number
-= expr1
.X_add_number
;
11096 load_register (tempreg
, &expr1
, HAVE_64BIT_ADDRESSES
);
11098 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11099 tempreg
, tempreg
, breg
);
11102 if (offset_expr
.X_add_number
!= 0)
11103 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
,
11104 "t,r,j", tempreg
, tempreg
, BFD_RELOC_LO16
);
11105 macro_build (NULL
, s
, fmt
, op
[0], tempreg
);
11107 else if (offbits
== 16)
11108 macro_build (&offset_expr
, s
, fmt
, op
[0], BFD_RELOC_LO16
, tempreg
);
11110 macro_build (NULL
, s
, fmt
, op
[0],
11111 (int) offset_expr
.X_add_number
, tempreg
);
11113 else if (offbits
!= 16)
11115 /* The offset field is too narrow to be used for a low-part
11116 relocation, so load the whole address into the auxillary
11118 load_address (tempreg
, &offset_expr
, &used_at
);
11120 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11121 tempreg
, tempreg
, breg
);
11123 macro_build (NULL
, s
, fmt
, op
[0], tempreg
);
11125 macro_build (NULL
, s
, fmt
, op
[0], 0, tempreg
);
11127 else if (mips_pic
== NO_PIC
)
11129 /* If this is a reference to a GP relative symbol, and there
11130 is no base register, we want
11131 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11132 Otherwise, if there is no base register, we want
11133 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11134 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11135 If we have a constant, we need two instructions anyhow,
11136 so we always use the latter form.
11138 If we have a base register, and this is a reference to a
11139 GP relative symbol, we want
11140 addu $tempreg,$breg,$gp
11141 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11143 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11144 addu $tempreg,$tempreg,$breg
11145 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11146 With a constant we always use the latter case.
11148 With 64bit address space and no base register and $at usable,
11150 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11151 lui $at,<sym> (BFD_RELOC_HI16_S)
11152 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11155 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11156 If we have a base register, we want
11157 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11158 lui $at,<sym> (BFD_RELOC_HI16_S)
11159 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11163 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11165 Without $at we can't generate the optimal path for superscalar
11166 processors here since this would require two temporary registers.
11167 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11168 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11170 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11172 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11173 If we have a base register, we want
11174 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11175 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11177 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11179 daddu $tempreg,$tempreg,$breg
11180 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11182 For GP relative symbols in 64bit address space we can use
11183 the same sequence as in 32bit address space. */
11184 if (HAVE_64BIT_SYMBOLS
)
11186 if ((valueT
) offset_expr
.X_add_number
<= MAX_GPREL_OFFSET
11187 && !nopic_need_relax (offset_expr
.X_add_symbol
, 1))
11189 relax_start (offset_expr
.X_add_symbol
);
11192 macro_build (&offset_expr
, s
, fmt
, op
[0],
11193 BFD_RELOC_GPREL16
, mips_gp_register
);
11197 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11198 tempreg
, breg
, mips_gp_register
);
11199 macro_build (&offset_expr
, s
, fmt
, op
[0],
11200 BFD_RELOC_GPREL16
, tempreg
);
11205 if (used_at
== 0 && mips_opts
.at
)
11207 macro_build (&offset_expr
, "lui", LUI_FMT
, tempreg
,
11208 BFD_RELOC_MIPS_HIGHEST
);
11209 macro_build (&offset_expr
, "lui", LUI_FMT
, AT
,
11211 macro_build (&offset_expr
, "daddiu", "t,r,j", tempreg
,
11212 tempreg
, BFD_RELOC_MIPS_HIGHER
);
11214 macro_build (NULL
, "daddu", "d,v,t", AT
, AT
, breg
);
11215 macro_build (NULL
, "dsll32", SHFT_FMT
, tempreg
, tempreg
, 0);
11216 macro_build (NULL
, "daddu", "d,v,t", tempreg
, tempreg
, AT
);
11217 macro_build (&offset_expr
, s
, fmt
, op
[0], BFD_RELOC_LO16
,
11223 macro_build (&offset_expr
, "lui", LUI_FMT
, tempreg
,
11224 BFD_RELOC_MIPS_HIGHEST
);
11225 macro_build (&offset_expr
, "daddiu", "t,r,j", tempreg
,
11226 tempreg
, BFD_RELOC_MIPS_HIGHER
);
11227 macro_build (NULL
, "dsll", SHFT_FMT
, tempreg
, tempreg
, 16);
11228 macro_build (&offset_expr
, "daddiu", "t,r,j", tempreg
,
11229 tempreg
, BFD_RELOC_HI16_S
);
11230 macro_build (NULL
, "dsll", SHFT_FMT
, tempreg
, tempreg
, 16);
11232 macro_build (NULL
, "daddu", "d,v,t",
11233 tempreg
, tempreg
, breg
);
11234 macro_build (&offset_expr
, s
, fmt
, op
[0],
11235 BFD_RELOC_LO16
, tempreg
);
11238 if (mips_relax
.sequence
)
11245 if ((valueT
) offset_expr
.X_add_number
<= MAX_GPREL_OFFSET
11246 && !nopic_need_relax (offset_expr
.X_add_symbol
, 1))
11248 relax_start (offset_expr
.X_add_symbol
);
11249 macro_build (&offset_expr
, s
, fmt
, op
[0], BFD_RELOC_GPREL16
,
11253 macro_build_lui (&offset_expr
, tempreg
);
11254 macro_build (&offset_expr
, s
, fmt
, op
[0],
11255 BFD_RELOC_LO16
, tempreg
);
11256 if (mips_relax
.sequence
)
11261 if ((valueT
) offset_expr
.X_add_number
<= MAX_GPREL_OFFSET
11262 && !nopic_need_relax (offset_expr
.X_add_symbol
, 1))
11264 relax_start (offset_expr
.X_add_symbol
);
11265 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11266 tempreg
, breg
, mips_gp_register
);
11267 macro_build (&offset_expr
, s
, fmt
, op
[0],
11268 BFD_RELOC_GPREL16
, tempreg
);
11271 macro_build_lui (&offset_expr
, tempreg
);
11272 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11273 tempreg
, tempreg
, breg
);
11274 macro_build (&offset_expr
, s
, fmt
, op
[0],
11275 BFD_RELOC_LO16
, tempreg
);
11276 if (mips_relax
.sequence
)
11280 else if (!mips_big_got
)
11282 int lw_reloc_type
= (int) BFD_RELOC_MIPS_GOT16
;
11284 /* If this is a reference to an external symbol, we want
11285 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11287 <op> op[0],0($tempreg)
11289 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11291 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11292 <op> op[0],0($tempreg)
11294 For NewABI, we want
11295 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11296 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11298 If there is a base register, we add it to $tempreg before
11299 the <op>. If there is a constant, we stick it in the
11300 <op> instruction. We don't handle constants larger than
11301 16 bits, because we have no way to load the upper 16 bits
11302 (actually, we could handle them for the subset of cases
11303 in which we are not using $at). */
11304 gas_assert (offset_expr
.X_op
== O_symbol
);
11307 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
11308 BFD_RELOC_MIPS_GOT_PAGE
, mips_gp_register
);
11310 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11311 tempreg
, tempreg
, breg
);
11312 macro_build (&offset_expr
, s
, fmt
, op
[0],
11313 BFD_RELOC_MIPS_GOT_OFST
, tempreg
);
11316 expr1
.X_add_number
= offset_expr
.X_add_number
;
11317 offset_expr
.X_add_number
= 0;
11318 if (expr1
.X_add_number
< -0x8000
11319 || expr1
.X_add_number
>= 0x8000)
11320 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11321 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
11322 lw_reloc_type
, mips_gp_register
);
11324 relax_start (offset_expr
.X_add_symbol
);
11326 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j", tempreg
,
11327 tempreg
, BFD_RELOC_LO16
);
11330 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11331 tempreg
, tempreg
, breg
);
11332 macro_build (&expr1
, s
, fmt
, op
[0], BFD_RELOC_LO16
, tempreg
);
11334 else if (mips_big_got
&& !HAVE_NEWABI
)
11338 /* If this is a reference to an external symbol, we want
11339 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11340 addu $tempreg,$tempreg,$gp
11341 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11342 <op> op[0],0($tempreg)
11344 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11346 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11347 <op> op[0],0($tempreg)
11348 If there is a base register, we add it to $tempreg before
11349 the <op>. If there is a constant, we stick it in the
11350 <op> instruction. We don't handle constants larger than
11351 16 bits, because we have no way to load the upper 16 bits
11352 (actually, we could handle them for the subset of cases
11353 in which we are not using $at). */
11354 gas_assert (offset_expr
.X_op
== O_symbol
);
11355 expr1
.X_add_number
= offset_expr
.X_add_number
;
11356 offset_expr
.X_add_number
= 0;
11357 if (expr1
.X_add_number
< -0x8000
11358 || expr1
.X_add_number
>= 0x8000)
11359 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11360 gpdelay
= reg_needs_delay (mips_gp_register
);
11361 relax_start (offset_expr
.X_add_symbol
);
11362 macro_build (&offset_expr
, "lui", LUI_FMT
, tempreg
,
11363 BFD_RELOC_MIPS_GOT_HI16
);
11364 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", tempreg
, tempreg
,
11366 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
11367 BFD_RELOC_MIPS_GOT_LO16
, tempreg
);
11370 macro_build (NULL
, "nop", "");
11371 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
11372 BFD_RELOC_MIPS_GOT16
, mips_gp_register
);
11374 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j", tempreg
,
11375 tempreg
, BFD_RELOC_LO16
);
11379 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11380 tempreg
, tempreg
, breg
);
11381 macro_build (&expr1
, s
, fmt
, op
[0], BFD_RELOC_LO16
, tempreg
);
11383 else if (mips_big_got
&& HAVE_NEWABI
)
11385 /* If this is a reference to an external symbol, we want
11386 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11387 add $tempreg,$tempreg,$gp
11388 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11389 <op> op[0],<ofst>($tempreg)
11390 Otherwise, for local symbols, we want:
11391 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11392 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11393 gas_assert (offset_expr
.X_op
== O_symbol
);
11394 expr1
.X_add_number
= offset_expr
.X_add_number
;
11395 offset_expr
.X_add_number
= 0;
11396 if (expr1
.X_add_number
< -0x8000
11397 || expr1
.X_add_number
>= 0x8000)
11398 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11399 relax_start (offset_expr
.X_add_symbol
);
11400 macro_build (&offset_expr
, "lui", LUI_FMT
, tempreg
,
11401 BFD_RELOC_MIPS_GOT_HI16
);
11402 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", tempreg
, tempreg
,
11404 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
11405 BFD_RELOC_MIPS_GOT_LO16
, tempreg
);
11407 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11408 tempreg
, tempreg
, breg
);
11409 macro_build (&expr1
, s
, fmt
, op
[0], BFD_RELOC_LO16
, tempreg
);
11412 offset_expr
.X_add_number
= expr1
.X_add_number
;
11413 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
11414 BFD_RELOC_MIPS_GOT_PAGE
, mips_gp_register
);
11416 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11417 tempreg
, tempreg
, breg
);
11418 macro_build (&offset_expr
, s
, fmt
, op
[0],
11419 BFD_RELOC_MIPS_GOT_OFST
, tempreg
);
11428 gas_assert (mips_opts
.micromips
);
11429 gas_assert (mips_opts
.insn32
);
11430 start_noreorder ();
11431 macro_build (NULL
, "jr", "s", RA
);
11432 expr1
.X_add_number
= op
[0] << 2;
11433 macro_build (&expr1
, "addiu", "t,r,j", SP
, SP
, BFD_RELOC_LO16
);
11438 gas_assert (mips_opts
.micromips
);
11439 gas_assert (mips_opts
.insn32
);
11440 macro_build (NULL
, "jr", "s", op
[0]);
11441 if (mips_opts
.noreorder
)
11442 macro_build (NULL
, "nop", "");
11447 load_register (op
[0], &imm_expr
, 0);
11451 load_register (op
[0], &imm_expr
, 1);
11455 if (imm_expr
.X_op
== O_constant
)
11458 load_register (AT
, &imm_expr
, 0);
11459 macro_build (NULL
, "mtc1", "t,G", AT
, op
[0]);
11464 gas_assert (imm_expr
.X_op
== O_absent
11465 && offset_expr
.X_op
== O_symbol
11466 && strcmp (segment_name (S_GET_SEGMENT
11467 (offset_expr
.X_add_symbol
)),
11469 && offset_expr
.X_add_number
== 0);
11470 macro_build (&offset_expr
, "lwc1", "T,o(b)", op
[0],
11471 BFD_RELOC_MIPS_LITERAL
, mips_gp_register
);
11476 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
11477 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
11478 order 32 bits of the value and the low order 32 bits are either
11479 zero or in OFFSET_EXPR. */
11480 if (imm_expr
.X_op
== O_constant
)
11482 if (GPR_SIZE
== 64)
11483 load_register (op
[0], &imm_expr
, 1);
11488 if (target_big_endian
)
11500 load_register (hreg
, &imm_expr
, 0);
11503 if (offset_expr
.X_op
== O_absent
)
11504 move_register (lreg
, 0);
11507 gas_assert (offset_expr
.X_op
== O_constant
);
11508 load_register (lreg
, &offset_expr
, 0);
11514 gas_assert (imm_expr
.X_op
== O_absent
);
11516 /* We know that sym is in the .rdata section. First we get the
11517 upper 16 bits of the address. */
11518 if (mips_pic
== NO_PIC
)
11520 macro_build_lui (&offset_expr
, AT
);
11525 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", AT
,
11526 BFD_RELOC_MIPS_GOT16
, mips_gp_register
);
11530 /* Now we load the register(s). */
11531 if (GPR_SIZE
== 64)
11534 macro_build (&offset_expr
, "ld", "t,o(b)", op
[0],
11535 BFD_RELOC_LO16
, AT
);
11540 macro_build (&offset_expr
, "lw", "t,o(b)", op
[0],
11541 BFD_RELOC_LO16
, AT
);
11544 /* FIXME: How in the world do we deal with the possible
11546 offset_expr
.X_add_number
+= 4;
11547 macro_build (&offset_expr
, "lw", "t,o(b)",
11548 op
[0] + 1, BFD_RELOC_LO16
, AT
);
11554 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
11555 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
11556 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
11557 the value and the low order 32 bits are either zero or in
11559 if (imm_expr
.X_op
== O_constant
)
11562 load_register (AT
, &imm_expr
, FPR_SIZE
== 64);
11563 if (FPR_SIZE
== 64)
11565 gas_assert (GPR_SIZE
== 64);
11566 macro_build (NULL
, "dmtc1", "t,S", AT
, op
[0]);
11570 macro_build (NULL
, "mtc1", "t,G", AT
, op
[0] + 1);
11571 if (offset_expr
.X_op
== O_absent
)
11572 macro_build (NULL
, "mtc1", "t,G", 0, op
[0]);
11575 gas_assert (offset_expr
.X_op
== O_constant
);
11576 load_register (AT
, &offset_expr
, 0);
11577 macro_build (NULL
, "mtc1", "t,G", AT
, op
[0]);
11583 gas_assert (imm_expr
.X_op
== O_absent
11584 && offset_expr
.X_op
== O_symbol
11585 && offset_expr
.X_add_number
== 0);
11586 s
= segment_name (S_GET_SEGMENT (offset_expr
.X_add_symbol
));
11587 if (strcmp (s
, ".lit8") == 0)
11589 op
[2] = mips_gp_register
;
11590 offset_reloc
[0] = BFD_RELOC_MIPS_LITERAL
;
11591 offset_reloc
[1] = BFD_RELOC_UNUSED
;
11592 offset_reloc
[2] = BFD_RELOC_UNUSED
;
11596 gas_assert (strcmp (s
, RDATA_SECTION_NAME
) == 0);
11598 if (mips_pic
!= NO_PIC
)
11599 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", AT
,
11600 BFD_RELOC_MIPS_GOT16
, mips_gp_register
);
11603 /* FIXME: This won't work for a 64 bit address. */
11604 macro_build_lui (&offset_expr
, AT
);
11608 offset_reloc
[0] = BFD_RELOC_LO16
;
11609 offset_reloc
[1] = BFD_RELOC_UNUSED
;
11610 offset_reloc
[2] = BFD_RELOC_UNUSED
;
11617 * The MIPS assembler seems to check for X_add_number not
11618 * being double aligned and generating:
11619 * lui at,%hi(foo+1)
11621 * addiu at,at,%lo(foo+1)
11624 * But, the resulting address is the same after relocation so why
11625 * generate the extra instruction?
11627 /* Itbl support may require additional care here. */
11630 if (CPU_HAS_LDC1_SDC1 (mips_opts
.arch
))
11639 gas_assert (!mips_opts
.micromips
);
11640 /* Itbl support may require additional care here. */
11643 if (CPU_HAS_LDC1_SDC1 (mips_opts
.arch
))
11663 if (GPR_SIZE
== 64)
11673 if (GPR_SIZE
== 64)
11681 /* Even on a big endian machine $fn comes before $fn+1. We have
11682 to adjust when loading from memory. We set coproc if we must
11683 load $fn+1 first. */
11684 /* Itbl support may require additional care here. */
11685 if (!target_big_endian
)
11689 if (small_offset_p (0, align
, 16))
11692 if (!small_offset_p (4, align
, 16))
11694 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j", AT
, breg
,
11695 -1, offset_reloc
[0], offset_reloc
[1],
11697 expr1
.X_add_number
= 0;
11701 offset_reloc
[0] = BFD_RELOC_LO16
;
11702 offset_reloc
[1] = BFD_RELOC_UNUSED
;
11703 offset_reloc
[2] = BFD_RELOC_UNUSED
;
11705 if (strcmp (s
, "lw") == 0 && op
[0] == breg
)
11707 ep
->X_add_number
+= 4;
11708 macro_build (ep
, s
, fmt
, op
[0] + 1, -1, offset_reloc
[0],
11709 offset_reloc
[1], offset_reloc
[2], breg
);
11710 ep
->X_add_number
-= 4;
11711 macro_build (ep
, s
, fmt
, op
[0], -1, offset_reloc
[0],
11712 offset_reloc
[1], offset_reloc
[2], breg
);
11716 macro_build (ep
, s
, fmt
, coproc
? op
[0] + 1 : op
[0], -1,
11717 offset_reloc
[0], offset_reloc
[1], offset_reloc
[2],
11719 ep
->X_add_number
+= 4;
11720 macro_build (ep
, s
, fmt
, coproc
? op
[0] : op
[0] + 1, -1,
11721 offset_reloc
[0], offset_reloc
[1], offset_reloc
[2],
11727 if (offset_expr
.X_op
!= O_symbol
11728 && offset_expr
.X_op
!= O_constant
)
11730 as_bad (_("expression too complex"));
11731 offset_expr
.X_op
= O_constant
;
11734 if (HAVE_32BIT_ADDRESSES
11735 && !IS_SEXT_32BIT_NUM (offset_expr
.X_add_number
))
11739 sprintf_vma (value
, offset_expr
.X_add_number
);
11740 as_bad (_("number (0x%s) larger than 32 bits"), value
);
11743 if (mips_pic
== NO_PIC
|| offset_expr
.X_op
== O_constant
)
11745 /* If this is a reference to a GP relative symbol, we want
11746 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11747 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
11748 If we have a base register, we use this
11750 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
11751 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
11752 If this is not a GP relative symbol, we want
11753 lui $at,<sym> (BFD_RELOC_HI16_S)
11754 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
11755 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
11756 If there is a base register, we add it to $at after the
11757 lui instruction. If there is a constant, we always use
11759 if (offset_expr
.X_op
== O_symbol
11760 && (valueT
) offset_expr
.X_add_number
<= MAX_GPREL_OFFSET
11761 && !nopic_need_relax (offset_expr
.X_add_symbol
, 1))
11763 relax_start (offset_expr
.X_add_symbol
);
11766 tempreg
= mips_gp_register
;
11770 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11771 AT
, breg
, mips_gp_register
);
11776 /* Itbl support may require additional care here. */
11777 macro_build (&offset_expr
, s
, fmt
, coproc
? op
[0] + 1 : op
[0],
11778 BFD_RELOC_GPREL16
, tempreg
);
11779 offset_expr
.X_add_number
+= 4;
11781 /* Set mips_optimize to 2 to avoid inserting an
11783 hold_mips_optimize
= mips_optimize
;
11785 /* Itbl support may require additional care here. */
11786 macro_build (&offset_expr
, s
, fmt
, coproc
? op
[0] : op
[0] + 1,
11787 BFD_RELOC_GPREL16
, tempreg
);
11788 mips_optimize
= hold_mips_optimize
;
11792 offset_expr
.X_add_number
-= 4;
11795 if (offset_high_part (offset_expr
.X_add_number
, 16)
11796 != offset_high_part (offset_expr
.X_add_number
+ 4, 16))
11798 load_address (AT
, &offset_expr
, &used_at
);
11799 offset_expr
.X_op
= O_constant
;
11800 offset_expr
.X_add_number
= 0;
11803 macro_build_lui (&offset_expr
, AT
);
11805 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", AT
, breg
, AT
);
11806 /* Itbl support may require additional care here. */
11807 macro_build (&offset_expr
, s
, fmt
, coproc
? op
[0] + 1 : op
[0],
11808 BFD_RELOC_LO16
, AT
);
11809 /* FIXME: How do we handle overflow here? */
11810 offset_expr
.X_add_number
+= 4;
11811 /* Itbl support may require additional care here. */
11812 macro_build (&offset_expr
, s
, fmt
, coproc
? op
[0] : op
[0] + 1,
11813 BFD_RELOC_LO16
, AT
);
11814 if (mips_relax
.sequence
)
11817 else if (!mips_big_got
)
11819 /* If this is a reference to an external symbol, we want
11820 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11823 <op> op[0]+1,4($at)
11825 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11827 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
11828 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
11829 If there is a base register we add it to $at before the
11830 lwc1 instructions. If there is a constant we include it
11831 in the lwc1 instructions. */
11833 expr1
.X_add_number
= offset_expr
.X_add_number
;
11834 if (expr1
.X_add_number
< -0x8000
11835 || expr1
.X_add_number
>= 0x8000 - 4)
11836 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11837 load_got_offset (AT
, &offset_expr
);
11840 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", AT
, breg
, AT
);
11842 /* Set mips_optimize to 2 to avoid inserting an undesired
11844 hold_mips_optimize
= mips_optimize
;
11847 /* Itbl support may require additional care here. */
11848 relax_start (offset_expr
.X_add_symbol
);
11849 macro_build (&expr1
, s
, fmt
, coproc
? op
[0] + 1 : op
[0],
11850 BFD_RELOC_LO16
, AT
);
11851 expr1
.X_add_number
+= 4;
11852 macro_build (&expr1
, s
, fmt
, coproc
? op
[0] : op
[0] + 1,
11853 BFD_RELOC_LO16
, AT
);
11855 macro_build (&offset_expr
, s
, fmt
, coproc
? op
[0] + 1 : op
[0],
11856 BFD_RELOC_LO16
, AT
);
11857 offset_expr
.X_add_number
+= 4;
11858 macro_build (&offset_expr
, s
, fmt
, coproc
? op
[0] : op
[0] + 1,
11859 BFD_RELOC_LO16
, AT
);
11862 mips_optimize
= hold_mips_optimize
;
11864 else if (mips_big_got
)
11868 /* If this is a reference to an external symbol, we want
11869 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11871 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
11874 <op> op[0]+1,4($at)
11876 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11878 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
11879 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
11880 If there is a base register we add it to $at before the
11881 lwc1 instructions. If there is a constant we include it
11882 in the lwc1 instructions. */
11884 expr1
.X_add_number
= offset_expr
.X_add_number
;
11885 offset_expr
.X_add_number
= 0;
11886 if (expr1
.X_add_number
< -0x8000
11887 || expr1
.X_add_number
>= 0x8000 - 4)
11888 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11889 gpdelay
= reg_needs_delay (mips_gp_register
);
11890 relax_start (offset_expr
.X_add_symbol
);
11891 macro_build (&offset_expr
, "lui", LUI_FMT
,
11892 AT
, BFD_RELOC_MIPS_GOT_HI16
);
11893 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11894 AT
, AT
, mips_gp_register
);
11895 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
11896 AT
, BFD_RELOC_MIPS_GOT_LO16
, AT
);
11899 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", AT
, breg
, AT
);
11900 /* Itbl support may require additional care here. */
11901 macro_build (&expr1
, s
, fmt
, coproc
? op
[0] + 1 : op
[0],
11902 BFD_RELOC_LO16
, AT
);
11903 expr1
.X_add_number
+= 4;
11905 /* Set mips_optimize to 2 to avoid inserting an undesired
11907 hold_mips_optimize
= mips_optimize
;
11909 /* Itbl support may require additional care here. */
11910 macro_build (&expr1
, s
, fmt
, coproc
? op
[0] : op
[0] + 1,
11911 BFD_RELOC_LO16
, AT
);
11912 mips_optimize
= hold_mips_optimize
;
11913 expr1
.X_add_number
-= 4;
11916 offset_expr
.X_add_number
= expr1
.X_add_number
;
11918 macro_build (NULL
, "nop", "");
11919 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", AT
,
11920 BFD_RELOC_MIPS_GOT16
, mips_gp_register
);
11923 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", AT
, breg
, AT
);
11924 /* Itbl support may require additional care here. */
11925 macro_build (&offset_expr
, s
, fmt
, coproc
? op
[0] + 1 : op
[0],
11926 BFD_RELOC_LO16
, AT
);
11927 offset_expr
.X_add_number
+= 4;
11929 /* Set mips_optimize to 2 to avoid inserting an undesired
11931 hold_mips_optimize
= mips_optimize
;
11933 /* Itbl support may require additional care here. */
11934 macro_build (&offset_expr
, s
, fmt
, coproc
? op
[0] : op
[0] + 1,
11935 BFD_RELOC_LO16
, AT
);
11936 mips_optimize
= hold_mips_optimize
;
11955 /* New code added to support COPZ instructions.
11956 This code builds table entries out of the macros in mip_opcodes.
11957 R4000 uses interlocks to handle coproc delays.
11958 Other chips (like the R3000) require nops to be inserted for delays.
11960 FIXME: Currently, we require that the user handle delays.
11961 In order to fill delay slots for non-interlocked chips,
11962 we must have a way to specify delays based on the coprocessor.
11963 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
11964 What are the side-effects of the cop instruction?
11965 What cache support might we have and what are its effects?
11966 Both coprocessor & memory require delays. how long???
11967 What registers are read/set/modified?
11969 If an itbl is provided to interpret cop instructions,
11970 this knowledge can be encoded in the itbl spec. */
11984 gas_assert (!mips_opts
.micromips
);
11985 /* For now we just do C (same as Cz). The parameter will be
11986 stored in insn_opcode by mips_ip. */
11987 macro_build (NULL
, s
, "C", (int) ip
->insn_opcode
);
11991 move_register (op
[0], op
[1]);
11995 gas_assert (mips_opts
.micromips
);
11996 gas_assert (mips_opts
.insn32
);
11997 move_register (micromips_to_32_reg_h_map1
[op
[0]],
11998 micromips_to_32_reg_m_map
[op
[1]]);
11999 move_register (micromips_to_32_reg_h_map2
[op
[0]],
12000 micromips_to_32_reg_n_map
[op
[2]]);
12006 if (mips_opts
.arch
== CPU_R5900
)
12007 macro_build (NULL
, dbl
? "dmultu" : "multu", "d,s,t", op
[0], op
[1],
12011 macro_build (NULL
, dbl
? "dmultu" : "multu", "s,t", op
[1], op
[2]);
12012 macro_build (NULL
, "mflo", MFHL_FMT
, op
[0]);
12019 /* The MIPS assembler some times generates shifts and adds. I'm
12020 not trying to be that fancy. GCC should do this for us
12023 load_register (AT
, &imm_expr
, dbl
);
12024 macro_build (NULL
, dbl
? "dmult" : "mult", "s,t", op
[1], AT
);
12025 macro_build (NULL
, "mflo", MFHL_FMT
, op
[0]);
12038 start_noreorder ();
12041 load_register (AT
, &imm_expr
, dbl
);
12042 macro_build (NULL
, dbl
? "dmult" : "mult", "s,t",
12043 op
[1], imm
? AT
: op
[2]);
12044 macro_build (NULL
, "mflo", MFHL_FMT
, op
[0]);
12045 macro_build (NULL
, dbl
? "dsra32" : "sra", SHFT_FMT
, op
[0], op
[0], 31);
12046 macro_build (NULL
, "mfhi", MFHL_FMT
, AT
);
12048 macro_build (NULL
, "tne", TRAP_FMT
, op
[0], AT
, 6);
12051 if (mips_opts
.micromips
)
12052 micromips_label_expr (&label_expr
);
12054 label_expr
.X_add_number
= 8;
12055 macro_build (&label_expr
, "beq", "s,t,p", op
[0], AT
);
12056 macro_build (NULL
, "nop", "");
12057 macro_build (NULL
, "break", BRK_FMT
, 6);
12058 if (mips_opts
.micromips
)
12059 micromips_add_label ();
12062 macro_build (NULL
, "mflo", MFHL_FMT
, op
[0]);
12075 start_noreorder ();
12078 load_register (AT
, &imm_expr
, dbl
);
12079 macro_build (NULL
, dbl
? "dmultu" : "multu", "s,t",
12080 op
[1], imm
? AT
: op
[2]);
12081 macro_build (NULL
, "mfhi", MFHL_FMT
, AT
);
12082 macro_build (NULL
, "mflo", MFHL_FMT
, op
[0]);
12084 macro_build (NULL
, "tne", TRAP_FMT
, AT
, ZERO
, 6);
12087 if (mips_opts
.micromips
)
12088 micromips_label_expr (&label_expr
);
12090 label_expr
.X_add_number
= 8;
12091 macro_build (&label_expr
, "beq", "s,t,p", AT
, ZERO
);
12092 macro_build (NULL
, "nop", "");
12093 macro_build (NULL
, "break", BRK_FMT
, 6);
12094 if (mips_opts
.micromips
)
12095 micromips_add_label ();
12101 if (ISA_HAS_DROR (mips_opts
.isa
) || CPU_HAS_DROR (mips_opts
.arch
))
12103 if (op
[0] == op
[1])
12110 macro_build (NULL
, "dnegu", "d,w", tempreg
, op
[2]);
12111 macro_build (NULL
, "drorv", "d,t,s", op
[0], op
[1], tempreg
);
12115 macro_build (NULL
, "dsubu", "d,v,t", AT
, ZERO
, op
[2]);
12116 macro_build (NULL
, "dsrlv", "d,t,s", AT
, op
[1], AT
);
12117 macro_build (NULL
, "dsllv", "d,t,s", op
[0], op
[1], op
[2]);
12118 macro_build (NULL
, "or", "d,v,t", op
[0], op
[0], AT
);
12122 if (ISA_HAS_ROR (mips_opts
.isa
) || CPU_HAS_ROR (mips_opts
.arch
))
12124 if (op
[0] == op
[1])
12131 macro_build (NULL
, "negu", "d,w", tempreg
, op
[2]);
12132 macro_build (NULL
, "rorv", "d,t,s", op
[0], op
[1], tempreg
);
12136 macro_build (NULL
, "subu", "d,v,t", AT
, ZERO
, op
[2]);
12137 macro_build (NULL
, "srlv", "d,t,s", AT
, op
[1], AT
);
12138 macro_build (NULL
, "sllv", "d,t,s", op
[0], op
[1], op
[2]);
12139 macro_build (NULL
, "or", "d,v,t", op
[0], op
[0], AT
);
12148 rot
= imm_expr
.X_add_number
& 0x3f;
12149 if (ISA_HAS_DROR (mips_opts
.isa
) || CPU_HAS_DROR (mips_opts
.arch
))
12151 rot
= (64 - rot
) & 0x3f;
12153 macro_build (NULL
, "dror32", SHFT_FMT
, op
[0], op
[1], rot
- 32);
12155 macro_build (NULL
, "dror", SHFT_FMT
, op
[0], op
[1], rot
);
12160 macro_build (NULL
, "dsrl", SHFT_FMT
, op
[0], op
[1], 0);
12163 l
= (rot
< 0x20) ? "dsll" : "dsll32";
12164 rr
= ((0x40 - rot
) < 0x20) ? "dsrl" : "dsrl32";
12167 macro_build (NULL
, l
, SHFT_FMT
, AT
, op
[1], rot
);
12168 macro_build (NULL
, rr
, SHFT_FMT
, op
[0], op
[1], (0x20 - rot
) & 0x1f);
12169 macro_build (NULL
, "or", "d,v,t", op
[0], op
[0], AT
);
12177 rot
= imm_expr
.X_add_number
& 0x1f;
12178 if (ISA_HAS_ROR (mips_opts
.isa
) || CPU_HAS_ROR (mips_opts
.arch
))
12180 macro_build (NULL
, "ror", SHFT_FMT
, op
[0], op
[1],
12181 (32 - rot
) & 0x1f);
12186 macro_build (NULL
, "srl", SHFT_FMT
, op
[0], op
[1], 0);
12190 macro_build (NULL
, "sll", SHFT_FMT
, AT
, op
[1], rot
);
12191 macro_build (NULL
, "srl", SHFT_FMT
, op
[0], op
[1], (0x20 - rot
) & 0x1f);
12192 macro_build (NULL
, "or", "d,v,t", op
[0], op
[0], AT
);
12197 if (ISA_HAS_DROR (mips_opts
.isa
) || CPU_HAS_DROR (mips_opts
.arch
))
12199 macro_build (NULL
, "drorv", "d,t,s", op
[0], op
[1], op
[2]);
12203 macro_build (NULL
, "dsubu", "d,v,t", AT
, ZERO
, op
[2]);
12204 macro_build (NULL
, "dsllv", "d,t,s", AT
, op
[1], AT
);
12205 macro_build (NULL
, "dsrlv", "d,t,s", op
[0], op
[1], op
[2]);
12206 macro_build (NULL
, "or", "d,v,t", op
[0], op
[0], AT
);
12210 if (ISA_HAS_ROR (mips_opts
.isa
) || CPU_HAS_ROR (mips_opts
.arch
))
12212 macro_build (NULL
, "rorv", "d,t,s", op
[0], op
[1], op
[2]);
12216 macro_build (NULL
, "subu", "d,v,t", AT
, ZERO
, op
[2]);
12217 macro_build (NULL
, "sllv", "d,t,s", AT
, op
[1], AT
);
12218 macro_build (NULL
, "srlv", "d,t,s", op
[0], op
[1], op
[2]);
12219 macro_build (NULL
, "or", "d,v,t", op
[0], op
[0], AT
);
12228 rot
= imm_expr
.X_add_number
& 0x3f;
12229 if (ISA_HAS_DROR (mips_opts
.isa
) || CPU_HAS_DROR (mips_opts
.arch
))
12232 macro_build (NULL
, "dror32", SHFT_FMT
, op
[0], op
[1], rot
- 32);
12234 macro_build (NULL
, "dror", SHFT_FMT
, op
[0], op
[1], rot
);
12239 macro_build (NULL
, "dsrl", SHFT_FMT
, op
[0], op
[1], 0);
12242 rr
= (rot
< 0x20) ? "dsrl" : "dsrl32";
12243 l
= ((0x40 - rot
) < 0x20) ? "dsll" : "dsll32";
12246 macro_build (NULL
, rr
, SHFT_FMT
, AT
, op
[1], rot
);
12247 macro_build (NULL
, l
, SHFT_FMT
, op
[0], op
[1], (0x20 - rot
) & 0x1f);
12248 macro_build (NULL
, "or", "d,v,t", op
[0], op
[0], AT
);
12256 rot
= imm_expr
.X_add_number
& 0x1f;
12257 if (ISA_HAS_ROR (mips_opts
.isa
) || CPU_HAS_ROR (mips_opts
.arch
))
12259 macro_build (NULL
, "ror", SHFT_FMT
, op
[0], op
[1], rot
);
12264 macro_build (NULL
, "srl", SHFT_FMT
, op
[0], op
[1], 0);
12268 macro_build (NULL
, "srl", SHFT_FMT
, AT
, op
[1], rot
);
12269 macro_build (NULL
, "sll", SHFT_FMT
, op
[0], op
[1], (0x20 - rot
) & 0x1f);
12270 macro_build (NULL
, "or", "d,v,t", op
[0], op
[0], AT
);
12276 macro_build (&expr1
, "sltiu", "t,r,j", op
[0], op
[2], BFD_RELOC_LO16
);
12277 else if (op
[2] == 0)
12278 macro_build (&expr1
, "sltiu", "t,r,j", op
[0], op
[1], BFD_RELOC_LO16
);
12281 macro_build (NULL
, "xor", "d,v,t", op
[0], op
[1], op
[2]);
12282 macro_build (&expr1
, "sltiu", "t,r,j", op
[0], op
[0], BFD_RELOC_LO16
);
12287 if (imm_expr
.X_add_number
== 0)
12289 macro_build (&expr1
, "sltiu", "t,r,j", op
[0], op
[1], BFD_RELOC_LO16
);
12294 as_warn (_("instruction %s: result is always false"),
12295 ip
->insn_mo
->name
);
12296 move_register (op
[0], 0);
12299 if (CPU_HAS_SEQ (mips_opts
.arch
)
12300 && -512 <= imm_expr
.X_add_number
12301 && imm_expr
.X_add_number
< 512)
12303 macro_build (NULL
, "seqi", "t,r,+Q", op
[0], op
[1],
12304 (int) imm_expr
.X_add_number
);
12307 if (imm_expr
.X_add_number
>= 0
12308 && imm_expr
.X_add_number
< 0x10000)
12309 macro_build (&imm_expr
, "xori", "t,r,i", op
[0], op
[1], BFD_RELOC_LO16
);
12310 else if (imm_expr
.X_add_number
> -0x8000
12311 && imm_expr
.X_add_number
< 0)
12313 imm_expr
.X_add_number
= -imm_expr
.X_add_number
;
12314 macro_build (&imm_expr
, GPR_SIZE
== 32 ? "addiu" : "daddiu",
12315 "t,r,j", op
[0], op
[1], BFD_RELOC_LO16
);
12317 else if (CPU_HAS_SEQ (mips_opts
.arch
))
12320 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
12321 macro_build (NULL
, "seq", "d,v,t", op
[0], op
[1], AT
);
12326 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
12327 macro_build (NULL
, "xor", "d,v,t", op
[0], op
[1], AT
);
12330 macro_build (&expr1
, "sltiu", "t,r,j", op
[0], op
[0], BFD_RELOC_LO16
);
12333 case M_SGE
: /* X >= Y <==> not (X < Y) */
12339 macro_build (NULL
, s
, "d,v,t", op
[0], op
[1], op
[2]);
12340 macro_build (&expr1
, "xori", "t,r,i", op
[0], op
[0], BFD_RELOC_LO16
);
12343 case M_SGE_I
: /* X >= I <==> not (X < I) */
12345 if (imm_expr
.X_add_number
>= -0x8000
12346 && imm_expr
.X_add_number
< 0x8000)
12347 macro_build (&imm_expr
, mask
== M_SGE_I
? "slti" : "sltiu", "t,r,j",
12348 op
[0], op
[1], BFD_RELOC_LO16
);
12351 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
12352 macro_build (NULL
, mask
== M_SGE_I
? "slt" : "sltu", "d,v,t",
12356 macro_build (&expr1
, "xori", "t,r,i", op
[0], op
[0], BFD_RELOC_LO16
);
12359 case M_SGT
: /* X > Y <==> Y < X */
12365 macro_build (NULL
, s
, "d,v,t", op
[0], op
[2], op
[1]);
12368 case M_SGT_I
: /* X > I <==> I < X */
12375 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
12376 macro_build (NULL
, s
, "d,v,t", op
[0], AT
, op
[1]);
12379 case M_SLE
: /* X <= Y <==> Y >= X <==> not (Y < X) */
12385 macro_build (NULL
, s
, "d,v,t", op
[0], op
[2], op
[1]);
12386 macro_build (&expr1
, "xori", "t,r,i", op
[0], op
[0], BFD_RELOC_LO16
);
12389 case M_SLE_I
: /* X <= I <==> I >= X <==> not (I < X) */
12396 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
12397 macro_build (NULL
, s
, "d,v,t", op
[0], AT
, op
[1]);
12398 macro_build (&expr1
, "xori", "t,r,i", op
[0], op
[0], BFD_RELOC_LO16
);
12402 if (imm_expr
.X_add_number
>= -0x8000
12403 && imm_expr
.X_add_number
< 0x8000)
12405 macro_build (&imm_expr
, "slti", "t,r,j", op
[0], op
[1],
12410 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
12411 macro_build (NULL
, "slt", "d,v,t", op
[0], op
[1], AT
);
12415 if (imm_expr
.X_add_number
>= -0x8000
12416 && imm_expr
.X_add_number
< 0x8000)
12418 macro_build (&imm_expr
, "sltiu", "t,r,j", op
[0], op
[1],
12423 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
12424 macro_build (NULL
, "sltu", "d,v,t", op
[0], op
[1], AT
);
12429 macro_build (NULL
, "sltu", "d,v,t", op
[0], 0, op
[2]);
12430 else if (op
[2] == 0)
12431 macro_build (NULL
, "sltu", "d,v,t", op
[0], 0, op
[1]);
12434 macro_build (NULL
, "xor", "d,v,t", op
[0], op
[1], op
[2]);
12435 macro_build (NULL
, "sltu", "d,v,t", op
[0], 0, op
[0]);
12440 if (imm_expr
.X_add_number
== 0)
12442 macro_build (NULL
, "sltu", "d,v,t", op
[0], 0, op
[1]);
12447 as_warn (_("instruction %s: result is always true"),
12448 ip
->insn_mo
->name
);
12449 macro_build (&expr1
, GPR_SIZE
== 32 ? "addiu" : "daddiu", "t,r,j",
12450 op
[0], 0, BFD_RELOC_LO16
);
12453 if (CPU_HAS_SEQ (mips_opts
.arch
)
12454 && -512 <= imm_expr
.X_add_number
12455 && imm_expr
.X_add_number
< 512)
12457 macro_build (NULL
, "snei", "t,r,+Q", op
[0], op
[1],
12458 (int) imm_expr
.X_add_number
);
12461 if (imm_expr
.X_add_number
>= 0
12462 && imm_expr
.X_add_number
< 0x10000)
12464 macro_build (&imm_expr
, "xori", "t,r,i", op
[0], op
[1],
12467 else if (imm_expr
.X_add_number
> -0x8000
12468 && imm_expr
.X_add_number
< 0)
12470 imm_expr
.X_add_number
= -imm_expr
.X_add_number
;
12471 macro_build (&imm_expr
, GPR_SIZE
== 32 ? "addiu" : "daddiu",
12472 "t,r,j", op
[0], op
[1], BFD_RELOC_LO16
);
12474 else if (CPU_HAS_SEQ (mips_opts
.arch
))
12477 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
12478 macro_build (NULL
, "sne", "d,v,t", op
[0], op
[1], AT
);
12483 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
12484 macro_build (NULL
, "xor", "d,v,t", op
[0], op
[1], AT
);
12487 macro_build (NULL
, "sltu", "d,v,t", op
[0], 0, op
[0]);
12502 if (!mips_opts
.micromips
)
12504 if (imm_expr
.X_add_number
> -0x200
12505 && imm_expr
.X_add_number
<= 0x200)
12507 macro_build (NULL
, s
, "t,r,.", op
[0], op
[1],
12508 (int) -imm_expr
.X_add_number
);
12517 if (imm_expr
.X_add_number
> -0x8000
12518 && imm_expr
.X_add_number
<= 0x8000)
12520 imm_expr
.X_add_number
= -imm_expr
.X_add_number
;
12521 macro_build (&imm_expr
, s
, "t,r,j", op
[0], op
[1], BFD_RELOC_LO16
);
12526 load_register (AT
, &imm_expr
, dbl
);
12527 macro_build (NULL
, s2
, "d,v,t", op
[0], op
[1], AT
);
12549 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
12550 macro_build (NULL
, s
, "s,t", op
[0], AT
);
12555 gas_assert (!mips_opts
.micromips
);
12556 gas_assert (mips_opts
.isa
== ISA_MIPS1
);
12560 * Is the double cfc1 instruction a bug in the mips assembler;
12561 * or is there a reason for it?
12563 start_noreorder ();
12564 macro_build (NULL
, "cfc1", "t,G", op
[2], RA
);
12565 macro_build (NULL
, "cfc1", "t,G", op
[2], RA
);
12566 macro_build (NULL
, "nop", "");
12567 expr1
.X_add_number
= 3;
12568 macro_build (&expr1
, "ori", "t,r,i", AT
, op
[2], BFD_RELOC_LO16
);
12569 expr1
.X_add_number
= 2;
12570 macro_build (&expr1
, "xori", "t,r,i", AT
, AT
, BFD_RELOC_LO16
);
12571 macro_build (NULL
, "ctc1", "t,G", AT
, RA
);
12572 macro_build (NULL
, "nop", "");
12573 macro_build (NULL
, mask
== M_TRUNCWD
? "cvt.w.d" : "cvt.w.s", "D,S",
12575 macro_build (NULL
, "ctc1", "t,G", op
[2], RA
);
12576 macro_build (NULL
, "nop", "");
12593 offbits
= (mips_opts
.micromips
? 12 : 16);
12599 offbits
= (mips_opts
.micromips
? 12 : 16);
12611 offbits
= (mips_opts
.micromips
? 12 : 16);
12618 offbits
= (mips_opts
.micromips
? 12 : 16);
12624 large_offset
= !small_offset_p (off
, align
, offbits
);
12626 expr1
.X_add_number
= 0;
12631 if (small_offset_p (0, align
, 16))
12632 macro_build (ep
, ADDRESS_ADDI_INSN
, "t,r,j", tempreg
, breg
, -1,
12633 offset_reloc
[0], offset_reloc
[1], offset_reloc
[2]);
12636 load_address (tempreg
, ep
, &used_at
);
12638 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
12639 tempreg
, tempreg
, breg
);
12641 offset_reloc
[0] = BFD_RELOC_LO16
;
12642 offset_reloc
[1] = BFD_RELOC_UNUSED
;
12643 offset_reloc
[2] = BFD_RELOC_UNUSED
;
12648 else if (!ust
&& op
[0] == breg
)
12659 if (!target_big_endian
)
12660 ep
->X_add_number
+= off
;
12662 macro_build (NULL
, s
, "t,~(b)", tempreg
, (int) ep
->X_add_number
, breg
);
12664 macro_build (ep
, s
, "t,o(b)", tempreg
, -1,
12665 offset_reloc
[0], offset_reloc
[1], offset_reloc
[2], breg
);
12667 if (!target_big_endian
)
12668 ep
->X_add_number
-= off
;
12670 ep
->X_add_number
+= off
;
12672 macro_build (NULL
, s2
, "t,~(b)",
12673 tempreg
, (int) ep
->X_add_number
, breg
);
12675 macro_build (ep
, s2
, "t,o(b)", tempreg
, -1,
12676 offset_reloc
[0], offset_reloc
[1], offset_reloc
[2], breg
);
12678 /* If necessary, move the result in tempreg to the final destination. */
12679 if (!ust
&& op
[0] != tempreg
)
12681 /* Protect second load's delay slot. */
12683 move_register (op
[0], tempreg
);
12689 if (target_big_endian
== ust
)
12690 ep
->X_add_number
+= off
;
12691 tempreg
= ust
|| large_offset
? op
[0] : AT
;
12692 macro_build (ep
, s
, "t,o(b)", tempreg
, -1,
12693 offset_reloc
[0], offset_reloc
[1], offset_reloc
[2], breg
);
12695 /* For halfword transfers we need a temporary register to shuffle
12696 bytes. Unfortunately for M_USH_A we have none available before
12697 the next store as AT holds the base address. We deal with this
12698 case by clobbering TREG and then restoring it as with ULH. */
12699 tempreg
= ust
== large_offset
? op
[0] : AT
;
12701 macro_build (NULL
, "srl", SHFT_FMT
, tempreg
, op
[0], 8);
12703 if (target_big_endian
== ust
)
12704 ep
->X_add_number
-= off
;
12706 ep
->X_add_number
+= off
;
12707 macro_build (ep
, s2
, "t,o(b)", tempreg
, -1,
12708 offset_reloc
[0], offset_reloc
[1], offset_reloc
[2], breg
);
12710 /* For M_USH_A re-retrieve the LSB. */
12711 if (ust
&& large_offset
)
12713 if (target_big_endian
)
12714 ep
->X_add_number
+= off
;
12716 ep
->X_add_number
-= off
;
12717 macro_build (&expr1
, "lbu", "t,o(b)", AT
, -1,
12718 offset_reloc
[0], offset_reloc
[1], offset_reloc
[2], AT
);
12720 /* For ULH and M_USH_A OR the LSB in. */
12721 if (!ust
|| large_offset
)
12723 tempreg
= !large_offset
? AT
: op
[0];
12724 macro_build (NULL
, "sll", SHFT_FMT
, tempreg
, tempreg
, 8);
12725 macro_build (NULL
, "or", "d,v,t", op
[0], op
[0], AT
);
12730 /* FIXME: Check if this is one of the itbl macros, since they
12731 are added dynamically. */
12732 as_bad (_("macro %s not implemented yet"), ip
->insn_mo
->name
);
12735 if (!mips_opts
.at
&& used_at
)
12736 as_bad (_("macro used $at after \".set noat\""));
12739 /* Implement macros in mips16 mode. */
12742 mips16_macro (struct mips_cl_insn
*ip
)
12744 const struct mips_operand_array
*operands
;
12749 const char *s
, *s2
, *s3
;
12750 unsigned int op
[MAX_OPERANDS
];
12753 mask
= ip
->insn_mo
->mask
;
12755 operands
= insn_operands (ip
);
12756 for (i
= 0; i
< MAX_OPERANDS
; i
++)
12757 if (operands
->operand
[i
])
12758 op
[i
] = insn_extract_operand (ip
, operands
->operand
[i
]);
12762 expr1
.X_op
= O_constant
;
12763 expr1
.X_op_symbol
= NULL
;
12764 expr1
.X_add_symbol
= NULL
;
12765 expr1
.X_add_number
= 1;
12784 start_noreorder ();
12785 macro_build (NULL
, dbl
? "ddiv" : "div", "0,x,y", op
[1], op
[2]);
12786 expr1
.X_add_number
= 2;
12787 macro_build (&expr1
, "bnez", "x,p", op
[2]);
12788 macro_build (NULL
, "break", "6", 7);
12790 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
12791 since that causes an overflow. We should do that as well,
12792 but I don't see how to do the comparisons without a temporary
12795 macro_build (NULL
, s
, "x", op
[0]);
12814 start_noreorder ();
12815 macro_build (NULL
, s
, "0,x,y", op
[1], op
[2]);
12816 expr1
.X_add_number
= 2;
12817 macro_build (&expr1
, "bnez", "x,p", op
[2]);
12818 macro_build (NULL
, "break", "6", 7);
12820 macro_build (NULL
, s2
, "x", op
[0]);
12826 macro_build (NULL
, dbl
? "dmultu" : "multu", "x,y", op
[1], op
[2]);
12827 macro_build (NULL
, "mflo", "x", op
[0]);
12835 imm_expr
.X_add_number
= -imm_expr
.X_add_number
;
12836 macro_build (&imm_expr
, dbl
? "daddiu" : "addiu", "y,x,4", op
[0], op
[1]);
12840 imm_expr
.X_add_number
= -imm_expr
.X_add_number
;
12841 macro_build (&imm_expr
, "addiu", "x,k", op
[0]);
12845 imm_expr
.X_add_number
= -imm_expr
.X_add_number
;
12846 macro_build (&imm_expr
, "daddiu", "y,j", op
[0]);
12868 goto do_reverse_branch
;
12872 goto do_reverse_branch
;
12884 goto do_reverse_branch
;
12895 macro_build (NULL
, s
, "x,y", op
[0], op
[1]);
12896 macro_build (&offset_expr
, s2
, "p");
12923 goto do_addone_branch_i
;
12928 goto do_addone_branch_i
;
12943 goto do_addone_branch_i
;
12949 do_addone_branch_i
:
12950 ++imm_expr
.X_add_number
;
12953 macro_build (&imm_expr
, s
, s3
, op
[0]);
12954 macro_build (&offset_expr
, s2
, "p");
12958 expr1
.X_add_number
= 0;
12959 macro_build (&expr1
, "slti", "x,8", op
[1]);
12960 if (op
[0] != op
[1])
12961 macro_build (NULL
, "move", "y,X", op
[0], mips16_to_32_reg_map
[op
[1]]);
12962 expr1
.X_add_number
= 2;
12963 macro_build (&expr1
, "bteqz", "p");
12964 macro_build (NULL
, "neg", "x,w", op
[0], op
[0]);
12969 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
12970 opcode bits in *OPCODE_EXTRA. */
12972 static struct mips_opcode
*
12973 mips_lookup_insn (struct hash_control
*hash
, const char *start
,
12974 ssize_t length
, unsigned int *opcode_extra
)
12976 char *name
, *dot
, *p
;
12977 unsigned int mask
, suffix
;
12979 struct mips_opcode
*insn
;
12981 /* Make a copy of the instruction so that we can fiddle with it. */
12982 name
= alloca (length
+ 1);
12983 memcpy (name
, start
, length
);
12984 name
[length
] = '\0';
12986 /* Look up the instruction as-is. */
12987 insn
= (struct mips_opcode
*) hash_find (hash
, name
);
12991 dot
= strchr (name
, '.');
12994 /* Try to interpret the text after the dot as a VU0 channel suffix. */
12995 p
= mips_parse_vu0_channels (dot
+ 1, &mask
);
12996 if (*p
== 0 && mask
!= 0)
12999 insn
= (struct mips_opcode
*) hash_find (hash
, name
);
13001 if (insn
&& (insn
->pinfo2
& INSN2_VU0_CHANNEL_SUFFIX
) != 0)
13003 *opcode_extra
|= mask
<< mips_vu0_channel_mask
.lsb
;
13009 if (mips_opts
.micromips
)
13011 /* See if there's an instruction size override suffix,
13012 either `16' or `32', at the end of the mnemonic proper,
13013 that defines the operation, i.e. before the first `.'
13014 character if any. Strip it and retry. */
13015 opend
= dot
!= NULL
? dot
- name
: length
;
13016 if (opend
>= 3 && name
[opend
- 2] == '1' && name
[opend
- 1] == '6')
13018 else if (name
[opend
- 2] == '3' && name
[opend
- 1] == '2')
13024 memcpy (name
+ opend
- 2, name
+ opend
, length
- opend
+ 1);
13025 insn
= (struct mips_opcode
*) hash_find (hash
, name
);
13028 forced_insn_length
= suffix
;
13037 /* Assemble an instruction into its binary format. If the instruction
13038 is a macro, set imm_expr and offset_expr to the values associated
13039 with "I" and "A" operands respectively. Otherwise store the value
13040 of the relocatable field (if any) in offset_expr. In both cases
13041 set offset_reloc to the relocation operators applied to offset_expr. */
13044 mips_ip (char *str
, struct mips_cl_insn
*insn
)
13046 const struct mips_opcode
*first
, *past
;
13047 struct hash_control
*hash
;
13050 struct mips_operand_token
*tokens
;
13051 unsigned int opcode_extra
;
13053 if (mips_opts
.micromips
)
13055 hash
= micromips_op_hash
;
13056 past
= µmips_opcodes
[bfd_micromips_num_opcodes
];
13061 past
= &mips_opcodes
[NUMOPCODES
];
13063 forced_insn_length
= 0;
13066 /* We first try to match an instruction up to a space or to the end. */
13067 for (end
= 0; str
[end
] != '\0' && !ISSPACE (str
[end
]); end
++)
13070 first
= mips_lookup_insn (hash
, str
, end
, &opcode_extra
);
13073 set_insn_error (0, _("unrecognized opcode"));
13077 if (strcmp (first
->name
, "li.s") == 0)
13079 else if (strcmp (first
->name
, "li.d") == 0)
13083 tokens
= mips_parse_arguments (str
+ end
, format
);
13087 if (!match_insns (insn
, first
, past
, tokens
, opcode_extra
, FALSE
)
13088 && !match_insns (insn
, first
, past
, tokens
, opcode_extra
, TRUE
))
13089 set_insn_error (0, _("invalid operands"));
13091 obstack_free (&mips_operand_tokens
, tokens
);
13094 /* As for mips_ip, but used when assembling MIPS16 code.
13095 Also set forced_insn_length to the resulting instruction size in
13096 bytes if the user explicitly requested a small or extended instruction. */
13099 mips16_ip (char *str
, struct mips_cl_insn
*insn
)
13102 struct mips_opcode
*first
;
13103 struct mips_operand_token
*tokens
;
13105 forced_insn_length
= 0;
13107 for (s
= str
; ISLOWER (*s
); ++s
)
13121 if (s
[1] == 't' && s
[2] == ' ')
13123 forced_insn_length
= 2;
13127 else if (s
[1] == 'e' && s
[2] == ' ')
13129 forced_insn_length
= 4;
13133 /* Fall through. */
13135 set_insn_error (0, _("unrecognized opcode"));
13139 if (mips_opts
.noautoextend
&& !forced_insn_length
)
13140 forced_insn_length
= 2;
13143 first
= (struct mips_opcode
*) hash_find (mips16_op_hash
, str
);
13148 set_insn_error (0, _("unrecognized opcode"));
13152 tokens
= mips_parse_arguments (s
, 0);
13156 if (!match_mips16_insns (insn
, first
, tokens
))
13157 set_insn_error (0, _("invalid operands"));
13159 obstack_free (&mips_operand_tokens
, tokens
);
13162 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13163 NBITS is the number of significant bits in VAL. */
13165 static unsigned long
13166 mips16_immed_extend (offsetT val
, unsigned int nbits
)
13171 extval
= ((val
>> 11) & 0x1f) | (val
& 0x7e0);
13174 else if (nbits
== 15)
13176 extval
= ((val
>> 11) & 0xf) | (val
& 0x7f0);
13181 extval
= ((val
& 0x1f) << 6) | (val
& 0x20);
13184 return (extval
<< 16) | val
;
13187 /* Like decode_mips16_operand, but require the operand to be defined and
13188 require it to be an integer. */
13190 static const struct mips_int_operand
*
13191 mips16_immed_operand (int type
, bfd_boolean extended_p
)
13193 const struct mips_operand
*operand
;
13195 operand
= decode_mips16_operand (type
, extended_p
);
13196 if (!operand
|| (operand
->type
!= OP_INT
&& operand
->type
!= OP_PCREL
))
13198 return (const struct mips_int_operand
*) operand
;
13201 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13204 mips16_immed_in_range_p (const struct mips_int_operand
*operand
,
13205 bfd_reloc_code_real_type reloc
, offsetT sval
)
13207 int min_val
, max_val
;
13209 min_val
= mips_int_operand_min (operand
);
13210 max_val
= mips_int_operand_max (operand
);
13211 if (reloc
!= BFD_RELOC_UNUSED
)
13214 sval
= SEXT_16BIT (sval
);
13219 return (sval
>= min_val
13221 && (sval
& ((1 << operand
->shift
) - 1)) == 0);
13224 /* Install immediate value VAL into MIPS16 instruction *INSN,
13225 extending it if necessary. The instruction in *INSN may
13226 already be extended.
13228 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13229 if none. In the former case, VAL is a 16-bit number with no
13230 defined signedness.
13232 TYPE is the type of the immediate field. USER_INSN_LENGTH
13233 is the length that the user requested, or 0 if none. */
13236 mips16_immed (char *file
, unsigned int line
, int type
,
13237 bfd_reloc_code_real_type reloc
, offsetT val
,
13238 unsigned int user_insn_length
, unsigned long *insn
)
13240 const struct mips_int_operand
*operand
;
13241 unsigned int uval
, length
;
13243 operand
= mips16_immed_operand (type
, FALSE
);
13244 if (!mips16_immed_in_range_p (operand
, reloc
, val
))
13246 /* We need an extended instruction. */
13247 if (user_insn_length
== 2)
13248 as_bad_where (file
, line
, _("invalid unextended operand value"));
13250 *insn
|= MIPS16_EXTEND
;
13252 else if (user_insn_length
== 4)
13254 /* The operand doesn't force an unextended instruction to be extended.
13255 Warn if the user wanted an extended instruction anyway. */
13256 *insn
|= MIPS16_EXTEND
;
13257 as_warn_where (file
, line
,
13258 _("extended operand requested but not required"));
13261 length
= mips16_opcode_length (*insn
);
13264 operand
= mips16_immed_operand (type
, TRUE
);
13265 if (!mips16_immed_in_range_p (operand
, reloc
, val
))
13266 as_bad_where (file
, line
,
13267 _("operand value out of range for instruction"));
13269 uval
= ((unsigned int) val
>> operand
->shift
) - operand
->bias
;
13271 *insn
= mips_insert_operand (&operand
->root
, *insn
, uval
);
13273 *insn
|= mips16_immed_extend (uval
, operand
->root
.size
);
13276 struct percent_op_match
13279 bfd_reloc_code_real_type reloc
;
13282 static const struct percent_op_match mips_percent_op
[] =
13284 {"%lo", BFD_RELOC_LO16
},
13285 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16
},
13286 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16
},
13287 {"%call16", BFD_RELOC_MIPS_CALL16
},
13288 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP
},
13289 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE
},
13290 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST
},
13291 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16
},
13292 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16
},
13293 {"%got", BFD_RELOC_MIPS_GOT16
},
13294 {"%gp_rel", BFD_RELOC_GPREL16
},
13295 {"%half", BFD_RELOC_16
},
13296 {"%highest", BFD_RELOC_MIPS_HIGHEST
},
13297 {"%higher", BFD_RELOC_MIPS_HIGHER
},
13298 {"%neg", BFD_RELOC_MIPS_SUB
},
13299 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD
},
13300 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM
},
13301 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16
},
13302 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16
},
13303 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16
},
13304 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16
},
13305 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL
},
13306 {"%hi", BFD_RELOC_HI16_S
}
13309 static const struct percent_op_match mips16_percent_op
[] =
13311 {"%lo", BFD_RELOC_MIPS16_LO16
},
13312 {"%gprel", BFD_RELOC_MIPS16_GPREL
},
13313 {"%got", BFD_RELOC_MIPS16_GOT16
},
13314 {"%call16", BFD_RELOC_MIPS16_CALL16
},
13315 {"%hi", BFD_RELOC_MIPS16_HI16_S
},
13316 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD
},
13317 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM
},
13318 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16
},
13319 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16
},
13320 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16
},
13321 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16
},
13322 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL
}
13326 /* Return true if *STR points to a relocation operator. When returning true,
13327 move *STR over the operator and store its relocation code in *RELOC.
13328 Leave both *STR and *RELOC alone when returning false. */
13331 parse_relocation (char **str
, bfd_reloc_code_real_type
*reloc
)
13333 const struct percent_op_match
*percent_op
;
13336 if (mips_opts
.mips16
)
13338 percent_op
= mips16_percent_op
;
13339 limit
= ARRAY_SIZE (mips16_percent_op
);
13343 percent_op
= mips_percent_op
;
13344 limit
= ARRAY_SIZE (mips_percent_op
);
13347 for (i
= 0; i
< limit
; i
++)
13348 if (strncasecmp (*str
, percent_op
[i
].str
, strlen (percent_op
[i
].str
)) == 0)
13350 int len
= strlen (percent_op
[i
].str
);
13352 if (!ISSPACE ((*str
)[len
]) && (*str
)[len
] != '(')
13355 *str
+= strlen (percent_op
[i
].str
);
13356 *reloc
= percent_op
[i
].reloc
;
13358 /* Check whether the output BFD supports this relocation.
13359 If not, issue an error and fall back on something safe. */
13360 if (!bfd_reloc_type_lookup (stdoutput
, percent_op
[i
].reloc
))
13362 as_bad (_("relocation %s isn't supported by the current ABI"),
13363 percent_op
[i
].str
);
13364 *reloc
= BFD_RELOC_UNUSED
;
13372 /* Parse string STR as a 16-bit relocatable operand. Store the
13373 expression in *EP and the relocations in the array starting
13374 at RELOC. Return the number of relocation operators used.
13376 On exit, EXPR_END points to the first character after the expression. */
13379 my_getSmallExpression (expressionS
*ep
, bfd_reloc_code_real_type
*reloc
,
13382 bfd_reloc_code_real_type reversed_reloc
[3];
13383 size_t reloc_index
, i
;
13384 int crux_depth
, str_depth
;
13387 /* Search for the start of the main expression, recoding relocations
13388 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13389 of the main expression and with CRUX_DEPTH containing the number
13390 of open brackets at that point. */
13397 crux_depth
= str_depth
;
13399 /* Skip over whitespace and brackets, keeping count of the number
13401 while (*str
== ' ' || *str
== '\t' || *str
== '(')
13406 && reloc_index
< (HAVE_NEWABI
? 3 : 1)
13407 && parse_relocation (&str
, &reversed_reloc
[reloc_index
]));
13409 my_getExpression (ep
, crux
);
13412 /* Match every open bracket. */
13413 while (crux_depth
> 0 && (*str
== ')' || *str
== ' ' || *str
== '\t'))
13417 if (crux_depth
> 0)
13418 as_bad (_("unclosed '('"));
13422 if (reloc_index
!= 0)
13424 prev_reloc_op_frag
= frag_now
;
13425 for (i
= 0; i
< reloc_index
; i
++)
13426 reloc
[i
] = reversed_reloc
[reloc_index
- 1 - i
];
13429 return reloc_index
;
13433 my_getExpression (expressionS
*ep
, char *str
)
13437 save_in
= input_line_pointer
;
13438 input_line_pointer
= str
;
13440 expr_end
= input_line_pointer
;
13441 input_line_pointer
= save_in
;
13445 md_atof (int type
, char *litP
, int *sizeP
)
13447 return ieee_md_atof (type
, litP
, sizeP
, target_big_endian
);
13451 md_number_to_chars (char *buf
, valueT val
, int n
)
13453 if (target_big_endian
)
13454 number_to_chars_bigendian (buf
, val
, n
);
13456 number_to_chars_littleendian (buf
, val
, n
);
13459 static int support_64bit_objects(void)
13461 const char **list
, **l
;
13464 list
= bfd_target_list ();
13465 for (l
= list
; *l
!= NULL
; l
++)
13466 if (strcmp (*l
, ELF_TARGET ("elf64-", "big")) == 0
13467 || strcmp (*l
, ELF_TARGET ("elf64-", "little")) == 0)
13469 yes
= (*l
!= NULL
);
13474 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
13475 NEW_VALUE. Warn if another value was already specified. Note:
13476 we have to defer parsing the -march and -mtune arguments in order
13477 to handle 'from-abi' correctly, since the ABI might be specified
13478 in a later argument. */
13481 mips_set_option_string (const char **string_ptr
, const char *new_value
)
13483 if (*string_ptr
!= 0 && strcasecmp (*string_ptr
, new_value
) != 0)
13484 as_warn (_("a different %s was already specified, is now %s"),
13485 string_ptr
== &mips_arch_string
? "-march" : "-mtune",
13488 *string_ptr
= new_value
;
13492 md_parse_option (int c
, char *arg
)
13496 for (i
= 0; i
< ARRAY_SIZE (mips_ases
); i
++)
13497 if (c
== mips_ases
[i
].option_on
|| c
== mips_ases
[i
].option_off
)
13499 file_ase_explicit
|= mips_set_ase (&mips_ases
[i
],
13500 c
== mips_ases
[i
].option_on
);
13506 case OPTION_CONSTRUCT_FLOATS
:
13507 mips_disable_float_construction
= 0;
13510 case OPTION_NO_CONSTRUCT_FLOATS
:
13511 mips_disable_float_construction
= 1;
13523 target_big_endian
= 1;
13527 target_big_endian
= 0;
13533 else if (arg
[0] == '0')
13535 else if (arg
[0] == '1')
13545 mips_debug
= atoi (arg
);
13549 file_mips_opts
.isa
= ISA_MIPS1
;
13553 file_mips_opts
.isa
= ISA_MIPS2
;
13557 file_mips_opts
.isa
= ISA_MIPS3
;
13561 file_mips_opts
.isa
= ISA_MIPS4
;
13565 file_mips_opts
.isa
= ISA_MIPS5
;
13568 case OPTION_MIPS32
:
13569 file_mips_opts
.isa
= ISA_MIPS32
;
13572 case OPTION_MIPS32R2
:
13573 file_mips_opts
.isa
= ISA_MIPS32R2
;
13576 case OPTION_MIPS32R3
:
13577 file_mips_opts
.isa
= ISA_MIPS32R3
;
13580 case OPTION_MIPS32R5
:
13581 file_mips_opts
.isa
= ISA_MIPS32R5
;
13584 case OPTION_MIPS64R2
:
13585 file_mips_opts
.isa
= ISA_MIPS64R2
;
13588 case OPTION_MIPS64R3
:
13589 file_mips_opts
.isa
= ISA_MIPS64R3
;
13592 case OPTION_MIPS64R5
:
13593 file_mips_opts
.isa
= ISA_MIPS64R5
;
13596 case OPTION_MIPS64
:
13597 file_mips_opts
.isa
= ISA_MIPS64
;
13601 mips_set_option_string (&mips_tune_string
, arg
);
13605 mips_set_option_string (&mips_arch_string
, arg
);
13609 mips_set_option_string (&mips_arch_string
, "4650");
13610 mips_set_option_string (&mips_tune_string
, "4650");
13613 case OPTION_NO_M4650
:
13617 mips_set_option_string (&mips_arch_string
, "4010");
13618 mips_set_option_string (&mips_tune_string
, "4010");
13621 case OPTION_NO_M4010
:
13625 mips_set_option_string (&mips_arch_string
, "4100");
13626 mips_set_option_string (&mips_tune_string
, "4100");
13629 case OPTION_NO_M4100
:
13633 mips_set_option_string (&mips_arch_string
, "3900");
13634 mips_set_option_string (&mips_tune_string
, "3900");
13637 case OPTION_NO_M3900
:
13640 case OPTION_MICROMIPS
:
13641 if (mips_opts
.mips16
== 1)
13643 as_bad (_("-mmicromips cannot be used with -mips16"));
13646 mips_opts
.micromips
= 1;
13647 mips_no_prev_insn ();
13650 case OPTION_NO_MICROMIPS
:
13651 mips_opts
.micromips
= 0;
13652 mips_no_prev_insn ();
13655 case OPTION_MIPS16
:
13656 if (mips_opts
.micromips
== 1)
13658 as_bad (_("-mips16 cannot be used with -micromips"));
13661 mips_opts
.mips16
= 1;
13662 mips_no_prev_insn ();
13665 case OPTION_NO_MIPS16
:
13666 mips_opts
.mips16
= 0;
13667 mips_no_prev_insn ();
13670 case OPTION_FIX_24K
:
13674 case OPTION_NO_FIX_24K
:
13678 case OPTION_FIX_RM7000
:
13679 mips_fix_rm7000
= 1;
13682 case OPTION_NO_FIX_RM7000
:
13683 mips_fix_rm7000
= 0;
13686 case OPTION_FIX_LOONGSON2F_JUMP
:
13687 mips_fix_loongson2f_jump
= TRUE
;
13690 case OPTION_NO_FIX_LOONGSON2F_JUMP
:
13691 mips_fix_loongson2f_jump
= FALSE
;
13694 case OPTION_FIX_LOONGSON2F_NOP
:
13695 mips_fix_loongson2f_nop
= TRUE
;
13698 case OPTION_NO_FIX_LOONGSON2F_NOP
:
13699 mips_fix_loongson2f_nop
= FALSE
;
13702 case OPTION_FIX_VR4120
:
13703 mips_fix_vr4120
= 1;
13706 case OPTION_NO_FIX_VR4120
:
13707 mips_fix_vr4120
= 0;
13710 case OPTION_FIX_VR4130
:
13711 mips_fix_vr4130
= 1;
13714 case OPTION_NO_FIX_VR4130
:
13715 mips_fix_vr4130
= 0;
13718 case OPTION_FIX_CN63XXP1
:
13719 mips_fix_cn63xxp1
= TRUE
;
13722 case OPTION_NO_FIX_CN63XXP1
:
13723 mips_fix_cn63xxp1
= FALSE
;
13726 case OPTION_RELAX_BRANCH
:
13727 mips_relax_branch
= 1;
13730 case OPTION_NO_RELAX_BRANCH
:
13731 mips_relax_branch
= 0;
13734 case OPTION_INSN32
:
13735 mips_opts
.insn32
= TRUE
;
13738 case OPTION_NO_INSN32
:
13739 mips_opts
.insn32
= FALSE
;
13742 case OPTION_MSHARED
:
13743 mips_in_shared
= TRUE
;
13746 case OPTION_MNO_SHARED
:
13747 mips_in_shared
= FALSE
;
13750 case OPTION_MSYM32
:
13751 mips_opts
.sym32
= TRUE
;
13754 case OPTION_MNO_SYM32
:
13755 mips_opts
.sym32
= FALSE
;
13758 /* When generating ELF code, we permit -KPIC and -call_shared to
13759 select SVR4_PIC, and -non_shared to select no PIC. This is
13760 intended to be compatible with Irix 5. */
13761 case OPTION_CALL_SHARED
:
13762 mips_pic
= SVR4_PIC
;
13763 mips_abicalls
= TRUE
;
13766 case OPTION_CALL_NONPIC
:
13768 mips_abicalls
= TRUE
;
13771 case OPTION_NON_SHARED
:
13773 mips_abicalls
= FALSE
;
13776 /* The -xgot option tells the assembler to use 32 bit offsets
13777 when accessing the got in SVR4_PIC mode. It is for Irix
13784 g_switch_value
= atoi (arg
);
13788 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
13791 mips_abi
= O32_ABI
;
13795 mips_abi
= N32_ABI
;
13799 mips_abi
= N64_ABI
;
13800 if (!support_64bit_objects())
13801 as_fatal (_("no compiled in support for 64 bit object file format"));
13805 file_mips_opts
.gp
= 32;
13809 file_mips_opts
.gp
= 64;
13813 file_mips_opts
.fp
= 32;
13817 file_mips_opts
.fp
= 64;
13820 case OPTION_SINGLE_FLOAT
:
13821 file_mips_opts
.single_float
= 1;
13824 case OPTION_DOUBLE_FLOAT
:
13825 file_mips_opts
.single_float
= 0;
13828 case OPTION_SOFT_FLOAT
:
13829 file_mips_opts
.soft_float
= 1;
13832 case OPTION_HARD_FLOAT
:
13833 file_mips_opts
.soft_float
= 0;
13837 if (strcmp (arg
, "32") == 0)
13838 mips_abi
= O32_ABI
;
13839 else if (strcmp (arg
, "o64") == 0)
13840 mips_abi
= O64_ABI
;
13841 else if (strcmp (arg
, "n32") == 0)
13842 mips_abi
= N32_ABI
;
13843 else if (strcmp (arg
, "64") == 0)
13845 mips_abi
= N64_ABI
;
13846 if (! support_64bit_objects())
13847 as_fatal (_("no compiled in support for 64 bit object file "
13850 else if (strcmp (arg
, "eabi") == 0)
13851 mips_abi
= EABI_ABI
;
13854 as_fatal (_("invalid abi -mabi=%s"), arg
);
13859 case OPTION_M7000_HILO_FIX
:
13860 mips_7000_hilo_fix
= TRUE
;
13863 case OPTION_MNO_7000_HILO_FIX
:
13864 mips_7000_hilo_fix
= FALSE
;
13867 case OPTION_MDEBUG
:
13868 mips_flag_mdebug
= TRUE
;
13871 case OPTION_NO_MDEBUG
:
13872 mips_flag_mdebug
= FALSE
;
13876 mips_flag_pdr
= TRUE
;
13879 case OPTION_NO_PDR
:
13880 mips_flag_pdr
= FALSE
;
13883 case OPTION_MVXWORKS_PIC
:
13884 mips_pic
= VXWORKS_PIC
;
13888 if (strcmp (arg
, "2008") == 0)
13889 mips_flag_nan2008
= TRUE
;
13890 else if (strcmp (arg
, "legacy") == 0)
13891 mips_flag_nan2008
= FALSE
;
13894 as_fatal (_("invalid NaN setting -mnan=%s"), arg
);
13903 mips_fix_loongson2f
= mips_fix_loongson2f_nop
|| mips_fix_loongson2f_jump
;
13908 /* Set up globals to generate code for the ISA or processor
13909 described by INFO. */
13912 mips_set_architecture (const struct mips_cpu_info
*info
)
13916 file_mips_opts
.arch
= info
->cpu
;
13917 mips_opts
.arch
= info
->cpu
;
13918 mips_opts
.isa
= info
->isa
;
13923 /* Likewise for tuning. */
13926 mips_set_tune (const struct mips_cpu_info
*info
)
13929 mips_tune
= info
->cpu
;
13934 mips_after_parse_args (void)
13936 const struct mips_cpu_info
*arch_info
= 0;
13937 const struct mips_cpu_info
*tune_info
= 0;
13939 /* GP relative stuff not working for PE */
13940 if (strncmp (TARGET_OS
, "pe", 2) == 0)
13942 if (g_switch_seen
&& g_switch_value
!= 0)
13943 as_bad (_("-G not supported in this configuration"));
13944 g_switch_value
= 0;
13947 if (mips_abi
== NO_ABI
)
13948 mips_abi
= MIPS_DEFAULT_ABI
;
13950 /* The following code determines the architecture and register size.
13951 Similar code was added to GCC 3.3 (see override_options() in
13952 config/mips/mips.c). The GAS and GCC code should be kept in sync
13953 as much as possible. */
13955 if (mips_arch_string
!= 0)
13956 arch_info
= mips_parse_cpu ("-march", mips_arch_string
);
13958 if (file_mips_opts
.isa
!= ISA_UNKNOWN
)
13960 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
13961 ISA level specified by -mipsN, while arch_info->isa contains
13962 the -march selection (if any). */
13963 if (arch_info
!= 0)
13965 /* -march takes precedence over -mipsN, since it is more descriptive.
13966 There's no harm in specifying both as long as the ISA levels
13968 if (file_mips_opts
.isa
!= arch_info
->isa
)
13969 as_bad (_("-%s conflicts with the other architecture options,"
13970 " which imply -%s"),
13971 mips_cpu_info_from_isa (file_mips_opts
.isa
)->name
,
13972 mips_cpu_info_from_isa (arch_info
->isa
)->name
);
13975 arch_info
= mips_cpu_info_from_isa (file_mips_opts
.isa
);
13978 if (arch_info
== 0)
13980 arch_info
= mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT
);
13981 gas_assert (arch_info
);
13984 if (ABI_NEEDS_64BIT_REGS (mips_abi
) && !ISA_HAS_64BIT_REGS (arch_info
->isa
))
13985 as_bad (_("-march=%s is not compatible with the selected ABI"),
13988 mips_set_architecture (arch_info
);
13990 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
13992 if (mips_tune_string
!= 0)
13993 tune_info
= mips_parse_cpu ("-mtune", mips_tune_string
);
13995 if (tune_info
== 0)
13996 mips_set_tune (arch_info
);
13998 mips_set_tune (tune_info
);
14000 if (file_mips_opts
.gp
>= 0)
14002 /* The user specified the size of the integer registers. Make sure
14003 it agrees with the ABI and ISA. */
14004 if (file_mips_opts
.gp
== 64 && !ISA_HAS_64BIT_REGS (mips_opts
.isa
))
14005 as_bad (_("-mgp64 used with a 32-bit processor"));
14006 else if (file_mips_opts
.gp
== 32 && ABI_NEEDS_64BIT_REGS (mips_abi
))
14007 as_bad (_("-mgp32 used with a 64-bit ABI"));
14008 else if (file_mips_opts
.gp
== 64 && ABI_NEEDS_32BIT_REGS (mips_abi
))
14009 as_bad (_("-mgp64 used with a 32-bit ABI"));
14013 /* Infer the integer register size from the ABI and processor.
14014 Restrict ourselves to 32-bit registers if that's all the
14015 processor has, or if the ABI cannot handle 64-bit registers. */
14016 file_mips_opts
.gp
= (ABI_NEEDS_32BIT_REGS (mips_abi
)
14017 || !ISA_HAS_64BIT_REGS (mips_opts
.isa
))
14021 switch (file_mips_opts
.fp
)
14025 /* No user specified float register size.
14026 ??? GAS treats single-float processors as though they had 64-bit
14027 float registers (although it complains when double-precision
14028 instructions are used). As things stand, saying they have 32-bit
14029 registers would lead to spurious "register must be even" messages.
14030 So here we assume float registers are never smaller than the
14032 if (file_mips_opts
.gp
== 64)
14033 /* 64-bit integer registers implies 64-bit float registers. */
14034 file_mips_opts
.fp
= 64;
14035 else if ((mips_opts
.ase
& FP64_ASES
)
14036 && ISA_HAS_64BIT_FPRS (mips_opts
.isa
))
14037 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
14038 file_mips_opts
.fp
= 64;
14040 /* 32-bit float registers. */
14041 file_mips_opts
.fp
= 32;
14044 /* The user specified the size of the float registers. Check if it
14045 agrees with the ABI and ISA. */
14047 if (!ISA_HAS_64BIT_FPRS (mips_opts
.isa
))
14048 as_bad (_("-mfp64 used with a 32-bit fpu"));
14049 else if (ABI_NEEDS_32BIT_REGS (mips_abi
)
14050 && !ISA_HAS_MXHC1 (mips_opts
.isa
))
14051 as_warn (_("-mfp64 used with a 32-bit ABI"));
14054 if (ABI_NEEDS_64BIT_REGS (mips_abi
))
14055 as_warn (_("-mfp32 used with a 64-bit ABI"));
14059 /* End of GCC-shared inference code. */
14061 /* This flag is set when we have a 64-bit capable CPU but use only
14062 32-bit wide registers. Note that EABI does not use it. */
14063 if (ISA_HAS_64BIT_REGS (mips_opts
.isa
)
14064 && ((mips_abi
== NO_ABI
&& file_mips_opts
.gp
== 32)
14065 || mips_abi
== O32_ABI
))
14066 mips_32bitmode
= 1;
14068 if (mips_opts
.isa
== ISA_MIPS1
&& mips_trap
)
14069 as_bad (_("trap exception not supported at ISA 1"));
14071 /* If the selected architecture includes support for ASEs, enable
14072 generation of code for them. */
14073 if (mips_opts
.mips16
== -1)
14074 mips_opts
.mips16
= (CPU_HAS_MIPS16 (file_mips_opts
.arch
)) ? 1 : 0;
14075 if (mips_opts
.micromips
== -1)
14076 mips_opts
.micromips
= (CPU_HAS_MICROMIPS (file_mips_opts
.arch
))
14079 /* MIPS3D and MDMX require 64-bit FPRs, so -mfp32 should stop those
14080 ASEs from being selected implicitly. */
14081 if (file_mips_opts
.fp
!= 64)
14082 file_ase_explicit
|= ASE_MIPS3D
| ASE_MDMX
;
14084 /* If the user didn't explicitly select or deselect a particular ASE,
14085 use the default setting for the CPU. */
14086 mips_opts
.ase
|= (arch_info
->ase
& ~file_ase_explicit
);
14088 file_mips_opts
.isa
= mips_opts
.isa
;
14089 file_mips_opts
.ase
= mips_opts
.ase
;
14090 mips_opts
.gp
= file_mips_opts
.gp
;
14091 mips_opts
.fp
= file_mips_opts
.fp
;
14092 mips_opts
.soft_float
= file_mips_opts
.soft_float
;
14093 mips_opts
.single_float
= file_mips_opts
.single_float
;
14095 mips_check_isa_supports_ases ();
14097 if (mips_flag_mdebug
< 0)
14098 mips_flag_mdebug
= 0;
14102 mips_init_after_args (void)
14104 /* initialize opcodes */
14105 bfd_mips_num_opcodes
= bfd_mips_num_builtin_opcodes
;
14106 mips_opcodes
= (struct mips_opcode
*) mips_builtin_opcodes
;
14110 md_pcrel_from (fixS
*fixP
)
14112 valueT addr
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
14113 switch (fixP
->fx_r_type
)
14115 case BFD_RELOC_MICROMIPS_7_PCREL_S1
:
14116 case BFD_RELOC_MICROMIPS_10_PCREL_S1
:
14117 /* Return the address of the delay slot. */
14120 case BFD_RELOC_MICROMIPS_16_PCREL_S1
:
14121 case BFD_RELOC_MICROMIPS_JMP
:
14122 case BFD_RELOC_16_PCREL_S2
:
14123 case BFD_RELOC_MIPS_JMP
:
14124 /* Return the address of the delay slot. */
14132 /* This is called before the symbol table is processed. In order to
14133 work with gcc when using mips-tfile, we must keep all local labels.
14134 However, in other cases, we want to discard them. If we were
14135 called with -g, but we didn't see any debugging information, it may
14136 mean that gcc is smuggling debugging information through to
14137 mips-tfile, in which case we must generate all local labels. */
14140 mips_frob_file_before_adjust (void)
14142 #ifndef NO_ECOFF_DEBUGGING
14143 if (ECOFF_DEBUGGING
14145 && ! ecoff_debugging_seen
)
14146 flag_keep_locals
= 1;
14150 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14151 the corresponding LO16 reloc. This is called before md_apply_fix and
14152 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14153 relocation operators.
14155 For our purposes, a %lo() expression matches a %got() or %hi()
14158 (a) it refers to the same symbol; and
14159 (b) the offset applied in the %lo() expression is no lower than
14160 the offset applied in the %got() or %hi().
14162 (b) allows us to cope with code like:
14165 lh $4,%lo(foo+2)($4)
14167 ...which is legal on RELA targets, and has a well-defined behaviour
14168 if the user knows that adding 2 to "foo" will not induce a carry to
14171 When several %lo()s match a particular %got() or %hi(), we use the
14172 following rules to distinguish them:
14174 (1) %lo()s with smaller offsets are a better match than %lo()s with
14177 (2) %lo()s with no matching %got() or %hi() are better than those
14178 that already have a matching %got() or %hi().
14180 (3) later %lo()s are better than earlier %lo()s.
14182 These rules are applied in order.
14184 (1) means, among other things, that %lo()s with identical offsets are
14185 chosen if they exist.
14187 (2) means that we won't associate several high-part relocations with
14188 the same low-part relocation unless there's no alternative. Having
14189 several high parts for the same low part is a GNU extension; this rule
14190 allows careful users to avoid it.
14192 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14193 with the last high-part relocation being at the front of the list.
14194 It therefore makes sense to choose the last matching low-part
14195 relocation, all other things being equal. It's also easier
14196 to code that way. */
14199 mips_frob_file (void)
14201 struct mips_hi_fixup
*l
;
14202 bfd_reloc_code_real_type looking_for_rtype
= BFD_RELOC_UNUSED
;
14204 for (l
= mips_hi_fixup_list
; l
!= NULL
; l
= l
->next
)
14206 segment_info_type
*seginfo
;
14207 bfd_boolean matched_lo_p
;
14208 fixS
**hi_pos
, **lo_pos
, **pos
;
14210 gas_assert (reloc_needs_lo_p (l
->fixp
->fx_r_type
));
14212 /* If a GOT16 relocation turns out to be against a global symbol,
14213 there isn't supposed to be a matching LO. Ignore %gots against
14214 constants; we'll report an error for those later. */
14215 if (got16_reloc_p (l
->fixp
->fx_r_type
)
14216 && !(l
->fixp
->fx_addsy
14217 && pic_need_relax (l
->fixp
->fx_addsy
, l
->seg
)))
14220 /* Check quickly whether the next fixup happens to be a matching %lo. */
14221 if (fixup_has_matching_lo_p (l
->fixp
))
14224 seginfo
= seg_info (l
->seg
);
14226 /* Set HI_POS to the position of this relocation in the chain.
14227 Set LO_POS to the position of the chosen low-part relocation.
14228 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14229 relocation that matches an immediately-preceding high-part
14233 matched_lo_p
= FALSE
;
14234 looking_for_rtype
= matching_lo_reloc (l
->fixp
->fx_r_type
);
14236 for (pos
= &seginfo
->fix_root
; *pos
!= NULL
; pos
= &(*pos
)->fx_next
)
14238 if (*pos
== l
->fixp
)
14241 if ((*pos
)->fx_r_type
== looking_for_rtype
14242 && symbol_same_p ((*pos
)->fx_addsy
, l
->fixp
->fx_addsy
)
14243 && (*pos
)->fx_offset
>= l
->fixp
->fx_offset
14245 || (*pos
)->fx_offset
< (*lo_pos
)->fx_offset
14247 && (*pos
)->fx_offset
== (*lo_pos
)->fx_offset
)))
14250 matched_lo_p
= (reloc_needs_lo_p ((*pos
)->fx_r_type
)
14251 && fixup_has_matching_lo_p (*pos
));
14254 /* If we found a match, remove the high-part relocation from its
14255 current position and insert it before the low-part relocation.
14256 Make the offsets match so that fixup_has_matching_lo_p()
14259 We don't warn about unmatched high-part relocations since some
14260 versions of gcc have been known to emit dead "lui ...%hi(...)"
14262 if (lo_pos
!= NULL
)
14264 l
->fixp
->fx_offset
= (*lo_pos
)->fx_offset
;
14265 if (l
->fixp
->fx_next
!= *lo_pos
)
14267 *hi_pos
= l
->fixp
->fx_next
;
14268 l
->fixp
->fx_next
= *lo_pos
;
14276 mips_force_relocation (fixS
*fixp
)
14278 if (generic_force_reloc (fixp
))
14281 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14282 so that the linker relaxation can update targets. */
14283 if (fixp
->fx_r_type
== BFD_RELOC_MICROMIPS_7_PCREL_S1
14284 || fixp
->fx_r_type
== BFD_RELOC_MICROMIPS_10_PCREL_S1
14285 || fixp
->fx_r_type
== BFD_RELOC_MICROMIPS_16_PCREL_S1
)
14291 /* Read the instruction associated with RELOC from BUF. */
14293 static unsigned int
14294 read_reloc_insn (char *buf
, bfd_reloc_code_real_type reloc
)
14296 if (mips16_reloc_p (reloc
) || micromips_reloc_p (reloc
))
14297 return read_compressed_insn (buf
, 4);
14299 return read_insn (buf
);
14302 /* Write instruction INSN to BUF, given that it has been relocated
14306 write_reloc_insn (char *buf
, bfd_reloc_code_real_type reloc
,
14307 unsigned long insn
)
14309 if (mips16_reloc_p (reloc
) || micromips_reloc_p (reloc
))
14310 write_compressed_insn (buf
, insn
, 4);
14312 write_insn (buf
, insn
);
14315 /* Apply a fixup to the object file. */
14318 md_apply_fix (fixS
*fixP
, valueT
*valP
, segT seg ATTRIBUTE_UNUSED
)
14321 unsigned long insn
;
14322 reloc_howto_type
*howto
;
14324 if (fixP
->fx_pcrel
)
14325 switch (fixP
->fx_r_type
)
14327 case BFD_RELOC_16_PCREL_S2
:
14328 case BFD_RELOC_MICROMIPS_7_PCREL_S1
:
14329 case BFD_RELOC_MICROMIPS_10_PCREL_S1
:
14330 case BFD_RELOC_MICROMIPS_16_PCREL_S1
:
14331 case BFD_RELOC_32_PCREL
:
14335 fixP
->fx_r_type
= BFD_RELOC_32_PCREL
;
14339 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
14340 _("PC-relative reference to a different section"));
14344 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14345 that have no MIPS ELF equivalent. */
14346 if (fixP
->fx_r_type
!= BFD_RELOC_8
)
14348 howto
= bfd_reloc_type_lookup (stdoutput
, fixP
->fx_r_type
);
14353 gas_assert (fixP
->fx_size
== 2
14354 || fixP
->fx_size
== 4
14355 || fixP
->fx_r_type
== BFD_RELOC_8
14356 || fixP
->fx_r_type
== BFD_RELOC_16
14357 || fixP
->fx_r_type
== BFD_RELOC_64
14358 || fixP
->fx_r_type
== BFD_RELOC_CTOR
14359 || fixP
->fx_r_type
== BFD_RELOC_MIPS_SUB
14360 || fixP
->fx_r_type
== BFD_RELOC_MICROMIPS_SUB
14361 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
14362 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
14363 || fixP
->fx_r_type
== BFD_RELOC_MIPS_TLS_DTPREL64
);
14365 buf
= fixP
->fx_frag
->fr_literal
+ fixP
->fx_where
;
14367 /* Don't treat parts of a composite relocation as done. There are two
14370 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14371 should nevertheless be emitted if the first part is.
14373 (2) In normal usage, composite relocations are never assembly-time
14374 constants. The easiest way of dealing with the pathological
14375 exceptions is to generate a relocation against STN_UNDEF and
14376 leave everything up to the linker. */
14377 if (fixP
->fx_addsy
== NULL
&& !fixP
->fx_pcrel
&& fixP
->fx_tcbit
== 0)
14380 switch (fixP
->fx_r_type
)
14382 case BFD_RELOC_MIPS_TLS_GD
:
14383 case BFD_RELOC_MIPS_TLS_LDM
:
14384 case BFD_RELOC_MIPS_TLS_DTPREL32
:
14385 case BFD_RELOC_MIPS_TLS_DTPREL64
:
14386 case BFD_RELOC_MIPS_TLS_DTPREL_HI16
:
14387 case BFD_RELOC_MIPS_TLS_DTPREL_LO16
:
14388 case BFD_RELOC_MIPS_TLS_GOTTPREL
:
14389 case BFD_RELOC_MIPS_TLS_TPREL32
:
14390 case BFD_RELOC_MIPS_TLS_TPREL64
:
14391 case BFD_RELOC_MIPS_TLS_TPREL_HI16
:
14392 case BFD_RELOC_MIPS_TLS_TPREL_LO16
:
14393 case BFD_RELOC_MICROMIPS_TLS_GD
:
14394 case BFD_RELOC_MICROMIPS_TLS_LDM
:
14395 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16
:
14396 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16
:
14397 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL
:
14398 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16
:
14399 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16
:
14400 case BFD_RELOC_MIPS16_TLS_GD
:
14401 case BFD_RELOC_MIPS16_TLS_LDM
:
14402 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16
:
14403 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16
:
14404 case BFD_RELOC_MIPS16_TLS_GOTTPREL
:
14405 case BFD_RELOC_MIPS16_TLS_TPREL_HI16
:
14406 case BFD_RELOC_MIPS16_TLS_TPREL_LO16
:
14407 if (!fixP
->fx_addsy
)
14409 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
14410 _("TLS relocation against a constant"));
14413 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
14416 case BFD_RELOC_MIPS_JMP
:
14417 case BFD_RELOC_MIPS_SHIFT5
:
14418 case BFD_RELOC_MIPS_SHIFT6
:
14419 case BFD_RELOC_MIPS_GOT_DISP
:
14420 case BFD_RELOC_MIPS_GOT_PAGE
:
14421 case BFD_RELOC_MIPS_GOT_OFST
:
14422 case BFD_RELOC_MIPS_SUB
:
14423 case BFD_RELOC_MIPS_INSERT_A
:
14424 case BFD_RELOC_MIPS_INSERT_B
:
14425 case BFD_RELOC_MIPS_DELETE
:
14426 case BFD_RELOC_MIPS_HIGHEST
:
14427 case BFD_RELOC_MIPS_HIGHER
:
14428 case BFD_RELOC_MIPS_SCN_DISP
:
14429 case BFD_RELOC_MIPS_REL16
:
14430 case BFD_RELOC_MIPS_RELGOT
:
14431 case BFD_RELOC_MIPS_JALR
:
14432 case BFD_RELOC_HI16
:
14433 case BFD_RELOC_HI16_S
:
14434 case BFD_RELOC_LO16
:
14435 case BFD_RELOC_GPREL16
:
14436 case BFD_RELOC_MIPS_LITERAL
:
14437 case BFD_RELOC_MIPS_CALL16
:
14438 case BFD_RELOC_MIPS_GOT16
:
14439 case BFD_RELOC_GPREL32
:
14440 case BFD_RELOC_MIPS_GOT_HI16
:
14441 case BFD_RELOC_MIPS_GOT_LO16
:
14442 case BFD_RELOC_MIPS_CALL_HI16
:
14443 case BFD_RELOC_MIPS_CALL_LO16
:
14444 case BFD_RELOC_MIPS16_GPREL
:
14445 case BFD_RELOC_MIPS16_GOT16
:
14446 case BFD_RELOC_MIPS16_CALL16
:
14447 case BFD_RELOC_MIPS16_HI16
:
14448 case BFD_RELOC_MIPS16_HI16_S
:
14449 case BFD_RELOC_MIPS16_LO16
:
14450 case BFD_RELOC_MIPS16_JMP
:
14451 case BFD_RELOC_MICROMIPS_JMP
:
14452 case BFD_RELOC_MICROMIPS_GOT_DISP
:
14453 case BFD_RELOC_MICROMIPS_GOT_PAGE
:
14454 case BFD_RELOC_MICROMIPS_GOT_OFST
:
14455 case BFD_RELOC_MICROMIPS_SUB
:
14456 case BFD_RELOC_MICROMIPS_HIGHEST
:
14457 case BFD_RELOC_MICROMIPS_HIGHER
:
14458 case BFD_RELOC_MICROMIPS_SCN_DISP
:
14459 case BFD_RELOC_MICROMIPS_JALR
:
14460 case BFD_RELOC_MICROMIPS_HI16
:
14461 case BFD_RELOC_MICROMIPS_HI16_S
:
14462 case BFD_RELOC_MICROMIPS_LO16
:
14463 case BFD_RELOC_MICROMIPS_GPREL16
:
14464 case BFD_RELOC_MICROMIPS_LITERAL
:
14465 case BFD_RELOC_MICROMIPS_CALL16
:
14466 case BFD_RELOC_MICROMIPS_GOT16
:
14467 case BFD_RELOC_MICROMIPS_GOT_HI16
:
14468 case BFD_RELOC_MICROMIPS_GOT_LO16
:
14469 case BFD_RELOC_MICROMIPS_CALL_HI16
:
14470 case BFD_RELOC_MICROMIPS_CALL_LO16
:
14471 case BFD_RELOC_MIPS_EH
:
14476 if (calculate_reloc (fixP
->fx_r_type
, *valP
, &value
))
14478 insn
= read_reloc_insn (buf
, fixP
->fx_r_type
);
14479 if (mips16_reloc_p (fixP
->fx_r_type
))
14480 insn
|= mips16_immed_extend (value
, 16);
14482 insn
|= (value
& 0xffff);
14483 write_reloc_insn (buf
, fixP
->fx_r_type
, insn
);
14486 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
14487 _("unsupported constant in relocation"));
14492 /* This is handled like BFD_RELOC_32, but we output a sign
14493 extended value if we are only 32 bits. */
14496 if (8 <= sizeof (valueT
))
14497 md_number_to_chars (buf
, *valP
, 8);
14502 if ((*valP
& 0x80000000) != 0)
14506 md_number_to_chars (buf
+ (target_big_endian
? 4 : 0), *valP
, 4);
14507 md_number_to_chars (buf
+ (target_big_endian
? 0 : 4), hiv
, 4);
14512 case BFD_RELOC_RVA
:
14514 case BFD_RELOC_32_PCREL
:
14517 /* If we are deleting this reloc entry, we must fill in the
14518 value now. This can happen if we have a .word which is not
14519 resolved when it appears but is later defined. */
14521 md_number_to_chars (buf
, *valP
, fixP
->fx_size
);
14524 case BFD_RELOC_16_PCREL_S2
:
14525 if ((*valP
& 0x3) != 0)
14526 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
14527 _("branch to misaligned address (%lx)"), (long) *valP
);
14529 /* We need to save the bits in the instruction since fixup_segment()
14530 might be deleting the relocation entry (i.e., a branch within
14531 the current segment). */
14532 if (! fixP
->fx_done
)
14535 /* Update old instruction data. */
14536 insn
= read_insn (buf
);
14538 if (*valP
+ 0x20000 <= 0x3ffff)
14540 insn
|= (*valP
>> 2) & 0xffff;
14541 write_insn (buf
, insn
);
14543 else if (mips_pic
== NO_PIC
14545 && fixP
->fx_frag
->fr_address
>= text_section
->vma
14546 && (fixP
->fx_frag
->fr_address
14547 < text_section
->vma
+ bfd_get_section_size (text_section
))
14548 && ((insn
& 0xffff0000) == 0x10000000 /* beq $0,$0 */
14549 || (insn
& 0xffff0000) == 0x04010000 /* bgez $0 */
14550 || (insn
& 0xffff0000) == 0x04110000)) /* bgezal $0 */
14552 /* The branch offset is too large. If this is an
14553 unconditional branch, and we are not generating PIC code,
14554 we can convert it to an absolute jump instruction. */
14555 if ((insn
& 0xffff0000) == 0x04110000) /* bgezal $0 */
14556 insn
= 0x0c000000; /* jal */
14558 insn
= 0x08000000; /* j */
14559 fixP
->fx_r_type
= BFD_RELOC_MIPS_JMP
;
14561 fixP
->fx_addsy
= section_symbol (text_section
);
14562 *valP
+= md_pcrel_from (fixP
);
14563 write_insn (buf
, insn
);
14567 /* If we got here, we have branch-relaxation disabled,
14568 and there's nothing we can do to fix this instruction
14569 without turning it into a longer sequence. */
14570 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
14571 _("branch out of range"));
14575 case BFD_RELOC_MICROMIPS_7_PCREL_S1
:
14576 case BFD_RELOC_MICROMIPS_10_PCREL_S1
:
14577 case BFD_RELOC_MICROMIPS_16_PCREL_S1
:
14578 /* We adjust the offset back to even. */
14579 if ((*valP
& 0x1) != 0)
14582 if (! fixP
->fx_done
)
14585 /* Should never visit here, because we keep the relocation. */
14589 case BFD_RELOC_VTABLE_INHERIT
:
14592 && !S_IS_DEFINED (fixP
->fx_addsy
)
14593 && !S_IS_WEAK (fixP
->fx_addsy
))
14594 S_SET_WEAK (fixP
->fx_addsy
);
14597 case BFD_RELOC_VTABLE_ENTRY
:
14605 /* Remember value for tc_gen_reloc. */
14606 fixP
->fx_addnumber
= *valP
;
14616 name
= input_line_pointer
;
14617 c
= get_symbol_end ();
14618 p
= (symbolS
*) symbol_find_or_make (name
);
14619 *input_line_pointer
= c
;
14623 /* Align the current frag to a given power of two. If a particular
14624 fill byte should be used, FILL points to an integer that contains
14625 that byte, otherwise FILL is null.
14627 This function used to have the comment:
14629 The MIPS assembler also automatically adjusts any preceding label.
14631 The implementation therefore applied the adjustment to a maximum of
14632 one label. However, other label adjustments are applied to batches
14633 of labels, and adjusting just one caused problems when new labels
14634 were added for the sake of debugging or unwind information.
14635 We therefore adjust all preceding labels (given as LABELS) instead. */
14638 mips_align (int to
, int *fill
, struct insn_label_list
*labels
)
14640 mips_emit_delays ();
14641 mips_record_compressed_mode ();
14642 if (fill
== NULL
&& subseg_text_p (now_seg
))
14643 frag_align_code (to
, 0);
14645 frag_align (to
, fill
? *fill
: 0, 0);
14646 record_alignment (now_seg
, to
);
14647 mips_move_labels (labels
, FALSE
);
14650 /* Align to a given power of two. .align 0 turns off the automatic
14651 alignment used by the data creating pseudo-ops. */
14654 s_align (int x ATTRIBUTE_UNUSED
)
14656 int temp
, fill_value
, *fill_ptr
;
14657 long max_alignment
= 28;
14659 /* o Note that the assembler pulls down any immediately preceding label
14660 to the aligned address.
14661 o It's not documented but auto alignment is reinstated by
14662 a .align pseudo instruction.
14663 o Note also that after auto alignment is turned off the mips assembler
14664 issues an error on attempt to assemble an improperly aligned data item.
14667 temp
= get_absolute_expression ();
14668 if (temp
> max_alignment
)
14669 as_bad (_("alignment too large, %d assumed"), temp
= max_alignment
);
14672 as_warn (_("alignment negative, 0 assumed"));
14675 if (*input_line_pointer
== ',')
14677 ++input_line_pointer
;
14678 fill_value
= get_absolute_expression ();
14679 fill_ptr
= &fill_value
;
14685 segment_info_type
*si
= seg_info (now_seg
);
14686 struct insn_label_list
*l
= si
->label_list
;
14687 /* Auto alignment should be switched on by next section change. */
14689 mips_align (temp
, fill_ptr
, l
);
14696 demand_empty_rest_of_line ();
14700 s_change_sec (int sec
)
14704 /* The ELF backend needs to know that we are changing sections, so
14705 that .previous works correctly. We could do something like check
14706 for an obj_section_change_hook macro, but that might be confusing
14707 as it would not be appropriate to use it in the section changing
14708 functions in read.c, since obj-elf.c intercepts those. FIXME:
14709 This should be cleaner, somehow. */
14710 obj_elf_section_change_hook ();
14712 mips_emit_delays ();
14723 subseg_set (bss_section
, (subsegT
) get_absolute_expression ());
14724 demand_empty_rest_of_line ();
14728 seg
= subseg_new (RDATA_SECTION_NAME
,
14729 (subsegT
) get_absolute_expression ());
14730 bfd_set_section_flags (stdoutput
, seg
, (SEC_ALLOC
| SEC_LOAD
14731 | SEC_READONLY
| SEC_RELOC
14733 if (strncmp (TARGET_OS
, "elf", 3) != 0)
14734 record_alignment (seg
, 4);
14735 demand_empty_rest_of_line ();
14739 seg
= subseg_new (".sdata", (subsegT
) get_absolute_expression ());
14740 bfd_set_section_flags (stdoutput
, seg
,
14741 SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
| SEC_DATA
);
14742 if (strncmp (TARGET_OS
, "elf", 3) != 0)
14743 record_alignment (seg
, 4);
14744 demand_empty_rest_of_line ();
14748 seg
= subseg_new (".sbss", (subsegT
) get_absolute_expression ());
14749 bfd_set_section_flags (stdoutput
, seg
, SEC_ALLOC
);
14750 if (strncmp (TARGET_OS
, "elf", 3) != 0)
14751 record_alignment (seg
, 4);
14752 demand_empty_rest_of_line ();
14760 s_change_section (int ignore ATTRIBUTE_UNUSED
)
14762 char *section_name
;
14767 int section_entry_size
;
14768 int section_alignment
;
14770 section_name
= input_line_pointer
;
14771 c
= get_symbol_end ();
14773 next_c
= *(input_line_pointer
+ 1);
14775 /* Do we have .section Name<,"flags">? */
14776 if (c
!= ',' || (c
== ',' && next_c
== '"'))
14778 /* just after name is now '\0'. */
14779 *input_line_pointer
= c
;
14780 input_line_pointer
= section_name
;
14781 obj_elf_section (ignore
);
14784 input_line_pointer
++;
14786 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
14788 section_type
= get_absolute_expression ();
14791 if (*input_line_pointer
++ == ',')
14792 section_flag
= get_absolute_expression ();
14795 if (*input_line_pointer
++ == ',')
14796 section_entry_size
= get_absolute_expression ();
14798 section_entry_size
= 0;
14799 if (*input_line_pointer
++ == ',')
14800 section_alignment
= get_absolute_expression ();
14802 section_alignment
= 0;
14803 /* FIXME: really ignore? */
14804 (void) section_alignment
;
14806 section_name
= xstrdup (section_name
);
14808 /* When using the generic form of .section (as implemented by obj-elf.c),
14809 there's no way to set the section type to SHT_MIPS_DWARF. Users have
14810 traditionally had to fall back on the more common @progbits instead.
14812 There's nothing really harmful in this, since bfd will correct
14813 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
14814 means that, for backwards compatibility, the special_section entries
14815 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
14817 Even so, we shouldn't force users of the MIPS .section syntax to
14818 incorrectly label the sections as SHT_PROGBITS. The best compromise
14819 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
14820 generic type-checking code. */
14821 if (section_type
== SHT_MIPS_DWARF
)
14822 section_type
= SHT_PROGBITS
;
14824 obj_elf_change_section (section_name
, section_type
, section_flag
,
14825 section_entry_size
, 0, 0, 0);
14827 if (now_seg
->name
!= section_name
)
14828 free (section_name
);
14832 mips_enable_auto_align (void)
14838 s_cons (int log_size
)
14840 segment_info_type
*si
= seg_info (now_seg
);
14841 struct insn_label_list
*l
= si
->label_list
;
14843 mips_emit_delays ();
14844 if (log_size
> 0 && auto_align
)
14845 mips_align (log_size
, 0, l
);
14846 cons (1 << log_size
);
14847 mips_clear_insn_labels ();
14851 s_float_cons (int type
)
14853 segment_info_type
*si
= seg_info (now_seg
);
14854 struct insn_label_list
*l
= si
->label_list
;
14856 mips_emit_delays ();
14861 mips_align (3, 0, l
);
14863 mips_align (2, 0, l
);
14867 mips_clear_insn_labels ();
14870 /* Handle .globl. We need to override it because on Irix 5 you are
14873 where foo is an undefined symbol, to mean that foo should be
14874 considered to be the address of a function. */
14877 s_mips_globl (int x ATTRIBUTE_UNUSED
)
14886 name
= input_line_pointer
;
14887 c
= get_symbol_end ();
14888 symbolP
= symbol_find_or_make (name
);
14889 S_SET_EXTERNAL (symbolP
);
14891 *input_line_pointer
= c
;
14892 SKIP_WHITESPACE ();
14894 /* On Irix 5, every global symbol that is not explicitly labelled as
14895 being a function is apparently labelled as being an object. */
14898 if (!is_end_of_line
[(unsigned char) *input_line_pointer
]
14899 && (*input_line_pointer
!= ','))
14904 secname
= input_line_pointer
;
14905 c
= get_symbol_end ();
14906 sec
= bfd_get_section_by_name (stdoutput
, secname
);
14908 as_bad (_("%s: no such section"), secname
);
14909 *input_line_pointer
= c
;
14911 if (sec
!= NULL
&& (sec
->flags
& SEC_CODE
) != 0)
14912 flag
= BSF_FUNCTION
;
14915 symbol_get_bfdsym (symbolP
)->flags
|= flag
;
14917 c
= *input_line_pointer
;
14920 input_line_pointer
++;
14921 SKIP_WHITESPACE ();
14922 if (is_end_of_line
[(unsigned char) *input_line_pointer
])
14928 demand_empty_rest_of_line ();
14932 s_option (int x ATTRIBUTE_UNUSED
)
14937 opt
= input_line_pointer
;
14938 c
= get_symbol_end ();
14942 /* FIXME: What does this mean? */
14944 else if (strncmp (opt
, "pic", 3) == 0)
14948 i
= atoi (opt
+ 3);
14953 mips_pic
= SVR4_PIC
;
14954 mips_abicalls
= TRUE
;
14957 as_bad (_(".option pic%d not supported"), i
);
14959 if (mips_pic
== SVR4_PIC
)
14961 if (g_switch_seen
&& g_switch_value
!= 0)
14962 as_warn (_("-G may not be used with SVR4 PIC code"));
14963 g_switch_value
= 0;
14964 bfd_set_gp_size (stdoutput
, 0);
14968 as_warn (_("unrecognized option \"%s\""), opt
);
14970 *input_line_pointer
= c
;
14971 demand_empty_rest_of_line ();
14974 /* This structure is used to hold a stack of .set values. */
14976 struct mips_option_stack
14978 struct mips_option_stack
*next
;
14979 struct mips_set_options options
;
14982 static struct mips_option_stack
*mips_opts_stack
;
14984 /* Handle the .set pseudo-op. */
14987 s_mipsset (int x ATTRIBUTE_UNUSED
)
14989 char *name
= input_line_pointer
, ch
;
14990 const struct mips_ase
*ase
;
14992 while (!is_end_of_line
[(unsigned char) *input_line_pointer
])
14993 ++input_line_pointer
;
14994 ch
= *input_line_pointer
;
14995 *input_line_pointer
= '\0';
14997 if (strcmp (name
, "reorder") == 0)
14999 if (mips_opts
.noreorder
)
15002 else if (strcmp (name
, "noreorder") == 0)
15004 if (!mips_opts
.noreorder
)
15005 start_noreorder ();
15007 else if (strncmp (name
, "at=", 3) == 0)
15009 char *s
= name
+ 3;
15011 if (!reg_lookup (&s
, RTYPE_NUM
| RTYPE_GP
, &mips_opts
.at
))
15012 as_bad (_("unrecognized register name `%s'"), s
);
15014 else if (strcmp (name
, "at") == 0)
15016 mips_opts
.at
= ATREG
;
15018 else if (strcmp (name
, "noat") == 0)
15020 mips_opts
.at
= ZERO
;
15022 else if (strcmp (name
, "macro") == 0)
15024 mips_opts
.warn_about_macros
= 0;
15026 else if (strcmp (name
, "nomacro") == 0)
15028 if (mips_opts
.noreorder
== 0)
15029 as_bad (_("`noreorder' must be set before `nomacro'"));
15030 mips_opts
.warn_about_macros
= 1;
15032 else if (strcmp (name
, "move") == 0 || strcmp (name
, "novolatile") == 0)
15034 mips_opts
.nomove
= 0;
15036 else if (strcmp (name
, "nomove") == 0 || strcmp (name
, "volatile") == 0)
15038 mips_opts
.nomove
= 1;
15040 else if (strcmp (name
, "bopt") == 0)
15042 mips_opts
.nobopt
= 0;
15044 else if (strcmp (name
, "nobopt") == 0)
15046 mips_opts
.nobopt
= 1;
15048 else if (strcmp (name
, "gp=default") == 0)
15049 mips_opts
.gp
= file_mips_opts
.gp
;
15050 else if (strcmp (name
, "gp=32") == 0)
15052 else if (strcmp (name
, "gp=64") == 0)
15054 if (!ISA_HAS_64BIT_REGS (mips_opts
.isa
))
15055 as_warn (_("%s isa does not support 64-bit registers"),
15056 mips_cpu_info_from_isa (mips_opts
.isa
)->name
);
15059 else if (strcmp (name
, "fp=default") == 0)
15060 mips_opts
.fp
= file_mips_opts
.fp
;
15061 else if (strcmp (name
, "fp=32") == 0)
15063 else if (strcmp (name
, "fp=64") == 0)
15065 if (!ISA_HAS_64BIT_FPRS (mips_opts
.isa
))
15066 as_warn (_("%s isa does not support 64-bit floating point registers"),
15067 mips_cpu_info_from_isa (mips_opts
.isa
)->name
);
15070 else if (strcmp (name
, "softfloat") == 0)
15071 mips_opts
.soft_float
= 1;
15072 else if (strcmp (name
, "hardfloat") == 0)
15073 mips_opts
.soft_float
= 0;
15074 else if (strcmp (name
, "singlefloat") == 0)
15075 mips_opts
.single_float
= 1;
15076 else if (strcmp (name
, "doublefloat") == 0)
15077 mips_opts
.single_float
= 0;
15078 else if (strcmp (name
, "mips16") == 0
15079 || strcmp (name
, "MIPS-16") == 0)
15081 if (mips_opts
.micromips
== 1)
15082 as_fatal (_("`mips16' cannot be used with `micromips'"));
15083 mips_opts
.mips16
= 1;
15085 else if (strcmp (name
, "nomips16") == 0
15086 || strcmp (name
, "noMIPS-16") == 0)
15087 mips_opts
.mips16
= 0;
15088 else if (strcmp (name
, "micromips") == 0)
15090 if (mips_opts
.mips16
== 1)
15091 as_fatal (_("`micromips' cannot be used with `mips16'"));
15092 mips_opts
.micromips
= 1;
15094 else if (strcmp (name
, "nomicromips") == 0)
15095 mips_opts
.micromips
= 0;
15096 else if (name
[0] == 'n'
15098 && (ase
= mips_lookup_ase (name
+ 2)))
15099 mips_set_ase (ase
, FALSE
);
15100 else if ((ase
= mips_lookup_ase (name
)))
15101 mips_set_ase (ase
, TRUE
);
15102 else if (strncmp (name
, "mips", 4) == 0 || strncmp (name
, "arch=", 5) == 0)
15106 /* Permit the user to change the ISA and architecture on the fly.
15107 Needless to say, misuse can cause serious problems. */
15108 if (strcmp (name
, "mips0") == 0 || strcmp (name
, "arch=default") == 0)
15111 mips_opts
.isa
= file_mips_opts
.isa
;
15112 mips_opts
.arch
= file_mips_opts
.arch
;
15114 else if (strncmp (name
, "arch=", 5) == 0)
15116 const struct mips_cpu_info
*p
;
15118 p
= mips_parse_cpu("internal use", name
+ 5);
15120 as_bad (_("unknown architecture %s"), name
+ 5);
15123 mips_opts
.arch
= p
->cpu
;
15124 mips_opts
.isa
= p
->isa
;
15127 else if (strncmp (name
, "mips", 4) == 0)
15129 const struct mips_cpu_info
*p
;
15131 p
= mips_parse_cpu("internal use", name
);
15133 as_bad (_("unknown ISA level %s"), name
+ 4);
15136 mips_opts
.arch
= p
->cpu
;
15137 mips_opts
.isa
= p
->isa
;
15141 as_bad (_("unknown ISA or architecture %s"), name
);
15143 switch (mips_opts
.isa
)
15164 if (mips_opts
.arch
== CPU_R5900
)
15174 as_bad (_("unknown ISA level %s"), name
+ 4);
15179 mips_opts
.gp
= file_mips_opts
.gp
;
15180 mips_opts
.fp
= file_mips_opts
.fp
;
15183 else if (strcmp (name
, "autoextend") == 0)
15184 mips_opts
.noautoextend
= 0;
15185 else if (strcmp (name
, "noautoextend") == 0)
15186 mips_opts
.noautoextend
= 1;
15187 else if (strcmp (name
, "insn32") == 0)
15188 mips_opts
.insn32
= TRUE
;
15189 else if (strcmp (name
, "noinsn32") == 0)
15190 mips_opts
.insn32
= FALSE
;
15191 else if (strcmp (name
, "push") == 0)
15193 struct mips_option_stack
*s
;
15195 s
= (struct mips_option_stack
*) xmalloc (sizeof *s
);
15196 s
->next
= mips_opts_stack
;
15197 s
->options
= mips_opts
;
15198 mips_opts_stack
= s
;
15200 else if (strcmp (name
, "pop") == 0)
15202 struct mips_option_stack
*s
;
15204 s
= mips_opts_stack
;
15206 as_bad (_(".set pop with no .set push"));
15209 /* If we're changing the reorder mode we need to handle
15210 delay slots correctly. */
15211 if (s
->options
.noreorder
&& ! mips_opts
.noreorder
)
15212 start_noreorder ();
15213 else if (! s
->options
.noreorder
&& mips_opts
.noreorder
)
15216 mips_opts
= s
->options
;
15217 mips_opts_stack
= s
->next
;
15221 else if (strcmp (name
, "sym32") == 0)
15222 mips_opts
.sym32
= TRUE
;
15223 else if (strcmp (name
, "nosym32") == 0)
15224 mips_opts
.sym32
= FALSE
;
15225 else if (strchr (name
, ','))
15227 /* Generic ".set" directive; use the generic handler. */
15228 *input_line_pointer
= ch
;
15229 input_line_pointer
= name
;
15235 as_warn (_("tried to set unrecognized symbol: %s\n"), name
);
15237 mips_check_isa_supports_ases ();
15238 *input_line_pointer
= ch
;
15239 demand_empty_rest_of_line ();
15242 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15243 .option pic2. It means to generate SVR4 PIC calls. */
15246 s_abicalls (int ignore ATTRIBUTE_UNUSED
)
15248 mips_pic
= SVR4_PIC
;
15249 mips_abicalls
= TRUE
;
15251 if (g_switch_seen
&& g_switch_value
!= 0)
15252 as_warn (_("-G may not be used with SVR4 PIC code"));
15253 g_switch_value
= 0;
15255 bfd_set_gp_size (stdoutput
, 0);
15256 demand_empty_rest_of_line ();
15259 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15260 PIC code. It sets the $gp register for the function based on the
15261 function address, which is in the register named in the argument.
15262 This uses a relocation against _gp_disp, which is handled specially
15263 by the linker. The result is:
15264 lui $gp,%hi(_gp_disp)
15265 addiu $gp,$gp,%lo(_gp_disp)
15266 addu $gp,$gp,.cpload argument
15267 The .cpload argument is normally $25 == $t9.
15269 The -mno-shared option changes this to:
15270 lui $gp,%hi(__gnu_local_gp)
15271 addiu $gp,$gp,%lo(__gnu_local_gp)
15272 and the argument is ignored. This saves an instruction, but the
15273 resulting code is not position independent; it uses an absolute
15274 address for __gnu_local_gp. Thus code assembled with -mno-shared
15275 can go into an ordinary executable, but not into a shared library. */
15278 s_cpload (int ignore ATTRIBUTE_UNUSED
)
15284 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15285 .cpload is ignored. */
15286 if (mips_pic
!= SVR4_PIC
|| HAVE_NEWABI
)
15292 if (mips_opts
.mips16
)
15294 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15295 ignore_rest_of_line ();
15299 /* .cpload should be in a .set noreorder section. */
15300 if (mips_opts
.noreorder
== 0)
15301 as_warn (_(".cpload not in noreorder section"));
15303 reg
= tc_get_register (0);
15305 /* If we need to produce a 64-bit address, we are better off using
15306 the default instruction sequence. */
15307 in_shared
= mips_in_shared
|| HAVE_64BIT_SYMBOLS
;
15309 ex
.X_op
= O_symbol
;
15310 ex
.X_add_symbol
= symbol_find_or_make (in_shared
? "_gp_disp" :
15312 ex
.X_op_symbol
= NULL
;
15313 ex
.X_add_number
= 0;
15315 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15316 symbol_get_bfdsym (ex
.X_add_symbol
)->flags
|= BSF_OBJECT
;
15318 mips_mark_labels ();
15319 mips_assembling_insn
= TRUE
;
15322 macro_build_lui (&ex
, mips_gp_register
);
15323 macro_build (&ex
, "addiu", "t,r,j", mips_gp_register
,
15324 mips_gp_register
, BFD_RELOC_LO16
);
15326 macro_build (NULL
, "addu", "d,v,t", mips_gp_register
,
15327 mips_gp_register
, reg
);
15330 mips_assembling_insn
= FALSE
;
15331 demand_empty_rest_of_line ();
15334 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15335 .cpsetup $reg1, offset|$reg2, label
15337 If offset is given, this results in:
15338 sd $gp, offset($sp)
15339 lui $gp, %hi(%neg(%gp_rel(label)))
15340 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15341 daddu $gp, $gp, $reg1
15343 If $reg2 is given, this results in:
15344 daddu $reg2, $gp, $0
15345 lui $gp, %hi(%neg(%gp_rel(label)))
15346 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15347 daddu $gp, $gp, $reg1
15348 $reg1 is normally $25 == $t9.
15350 The -mno-shared option replaces the last three instructions with
15352 addiu $gp,$gp,%lo(_gp) */
15355 s_cpsetup (int ignore ATTRIBUTE_UNUSED
)
15357 expressionS ex_off
;
15358 expressionS ex_sym
;
15361 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
15362 We also need NewABI support. */
15363 if (mips_pic
!= SVR4_PIC
|| ! HAVE_NEWABI
)
15369 if (mips_opts
.mips16
)
15371 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15372 ignore_rest_of_line ();
15376 reg1
= tc_get_register (0);
15377 SKIP_WHITESPACE ();
15378 if (*input_line_pointer
!= ',')
15380 as_bad (_("missing argument separator ',' for .cpsetup"));
15384 ++input_line_pointer
;
15385 SKIP_WHITESPACE ();
15386 if (*input_line_pointer
== '$')
15388 mips_cpreturn_register
= tc_get_register (0);
15389 mips_cpreturn_offset
= -1;
15393 mips_cpreturn_offset
= get_absolute_expression ();
15394 mips_cpreturn_register
= -1;
15396 SKIP_WHITESPACE ();
15397 if (*input_line_pointer
!= ',')
15399 as_bad (_("missing argument separator ',' for .cpsetup"));
15403 ++input_line_pointer
;
15404 SKIP_WHITESPACE ();
15405 expression (&ex_sym
);
15407 mips_mark_labels ();
15408 mips_assembling_insn
= TRUE
;
15411 if (mips_cpreturn_register
== -1)
15413 ex_off
.X_op
= O_constant
;
15414 ex_off
.X_add_symbol
= NULL
;
15415 ex_off
.X_op_symbol
= NULL
;
15416 ex_off
.X_add_number
= mips_cpreturn_offset
;
15418 macro_build (&ex_off
, "sd", "t,o(b)", mips_gp_register
,
15419 BFD_RELOC_LO16
, SP
);
15422 macro_build (NULL
, "daddu", "d,v,t", mips_cpreturn_register
,
15423 mips_gp_register
, 0);
15425 if (mips_in_shared
|| HAVE_64BIT_SYMBOLS
)
15427 macro_build (&ex_sym
, "lui", LUI_FMT
, mips_gp_register
,
15428 -1, BFD_RELOC_GPREL16
, BFD_RELOC_MIPS_SUB
,
15431 macro_build (&ex_sym
, "addiu", "t,r,j", mips_gp_register
,
15432 mips_gp_register
, -1, BFD_RELOC_GPREL16
,
15433 BFD_RELOC_MIPS_SUB
, BFD_RELOC_LO16
);
15435 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", mips_gp_register
,
15436 mips_gp_register
, reg1
);
15442 ex
.X_op
= O_symbol
;
15443 ex
.X_add_symbol
= symbol_find_or_make ("__gnu_local_gp");
15444 ex
.X_op_symbol
= NULL
;
15445 ex
.X_add_number
= 0;
15447 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15448 symbol_get_bfdsym (ex
.X_add_symbol
)->flags
|= BSF_OBJECT
;
15450 macro_build_lui (&ex
, mips_gp_register
);
15451 macro_build (&ex
, "addiu", "t,r,j", mips_gp_register
,
15452 mips_gp_register
, BFD_RELOC_LO16
);
15457 mips_assembling_insn
= FALSE
;
15458 demand_empty_rest_of_line ();
15462 s_cplocal (int ignore ATTRIBUTE_UNUSED
)
15464 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
15465 .cplocal is ignored. */
15466 if (mips_pic
!= SVR4_PIC
|| ! HAVE_NEWABI
)
15472 if (mips_opts
.mips16
)
15474 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
15475 ignore_rest_of_line ();
15479 mips_gp_register
= tc_get_register (0);
15480 demand_empty_rest_of_line ();
15483 /* Handle the .cprestore pseudo-op. This stores $gp into a given
15484 offset from $sp. The offset is remembered, and after making a PIC
15485 call $gp is restored from that location. */
15488 s_cprestore (int ignore ATTRIBUTE_UNUSED
)
15492 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15493 .cprestore is ignored. */
15494 if (mips_pic
!= SVR4_PIC
|| HAVE_NEWABI
)
15500 if (mips_opts
.mips16
)
15502 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
15503 ignore_rest_of_line ();
15507 mips_cprestore_offset
= get_absolute_expression ();
15508 mips_cprestore_valid
= 1;
15510 ex
.X_op
= O_constant
;
15511 ex
.X_add_symbol
= NULL
;
15512 ex
.X_op_symbol
= NULL
;
15513 ex
.X_add_number
= mips_cprestore_offset
;
15515 mips_mark_labels ();
15516 mips_assembling_insn
= TRUE
;
15519 macro_build_ldst_constoffset (&ex
, ADDRESS_STORE_INSN
, mips_gp_register
,
15520 SP
, HAVE_64BIT_ADDRESSES
);
15523 mips_assembling_insn
= FALSE
;
15524 demand_empty_rest_of_line ();
15527 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
15528 was given in the preceding .cpsetup, it results in:
15529 ld $gp, offset($sp)
15531 If a register $reg2 was given there, it results in:
15532 daddu $gp, $reg2, $0 */
15535 s_cpreturn (int ignore ATTRIBUTE_UNUSED
)
15539 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
15540 We also need NewABI support. */
15541 if (mips_pic
!= SVR4_PIC
|| ! HAVE_NEWABI
)
15547 if (mips_opts
.mips16
)
15549 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
15550 ignore_rest_of_line ();
15554 mips_mark_labels ();
15555 mips_assembling_insn
= TRUE
;
15558 if (mips_cpreturn_register
== -1)
15560 ex
.X_op
= O_constant
;
15561 ex
.X_add_symbol
= NULL
;
15562 ex
.X_op_symbol
= NULL
;
15563 ex
.X_add_number
= mips_cpreturn_offset
;
15565 macro_build (&ex
, "ld", "t,o(b)", mips_gp_register
, BFD_RELOC_LO16
, SP
);
15568 macro_build (NULL
, "daddu", "d,v,t", mips_gp_register
,
15569 mips_cpreturn_register
, 0);
15572 mips_assembling_insn
= FALSE
;
15573 demand_empty_rest_of_line ();
15576 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
15577 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
15578 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
15579 debug information or MIPS16 TLS. */
15582 s_tls_rel_directive (const size_t bytes
, const char *dirstr
,
15583 bfd_reloc_code_real_type rtype
)
15590 if (ex
.X_op
!= O_symbol
)
15592 as_bad (_("unsupported use of %s"), dirstr
);
15593 ignore_rest_of_line ();
15596 p
= frag_more (bytes
);
15597 md_number_to_chars (p
, 0, bytes
);
15598 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, bytes
, &ex
, FALSE
, rtype
);
15599 demand_empty_rest_of_line ();
15600 mips_clear_insn_labels ();
15603 /* Handle .dtprelword. */
15606 s_dtprelword (int ignore ATTRIBUTE_UNUSED
)
15608 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32
);
15611 /* Handle .dtpreldword. */
15614 s_dtpreldword (int ignore ATTRIBUTE_UNUSED
)
15616 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64
);
15619 /* Handle .tprelword. */
15622 s_tprelword (int ignore ATTRIBUTE_UNUSED
)
15624 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32
);
15627 /* Handle .tpreldword. */
15630 s_tpreldword (int ignore ATTRIBUTE_UNUSED
)
15632 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64
);
15635 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
15636 code. It sets the offset to use in gp_rel relocations. */
15639 s_gpvalue (int ignore ATTRIBUTE_UNUSED
)
15641 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
15642 We also need NewABI support. */
15643 if (mips_pic
!= SVR4_PIC
|| ! HAVE_NEWABI
)
15649 mips_gprel_offset
= get_absolute_expression ();
15651 demand_empty_rest_of_line ();
15654 /* Handle the .gpword pseudo-op. This is used when generating PIC
15655 code. It generates a 32 bit GP relative reloc. */
15658 s_gpword (int ignore ATTRIBUTE_UNUSED
)
15660 segment_info_type
*si
;
15661 struct insn_label_list
*l
;
15665 /* When not generating PIC code, this is treated as .word. */
15666 if (mips_pic
!= SVR4_PIC
)
15672 si
= seg_info (now_seg
);
15673 l
= si
->label_list
;
15674 mips_emit_delays ();
15676 mips_align (2, 0, l
);
15679 mips_clear_insn_labels ();
15681 if (ex
.X_op
!= O_symbol
|| ex
.X_add_number
!= 0)
15683 as_bad (_("unsupported use of .gpword"));
15684 ignore_rest_of_line ();
15688 md_number_to_chars (p
, 0, 4);
15689 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, 4, &ex
, FALSE
,
15690 BFD_RELOC_GPREL32
);
15692 demand_empty_rest_of_line ();
15696 s_gpdword (int ignore ATTRIBUTE_UNUSED
)
15698 segment_info_type
*si
;
15699 struct insn_label_list
*l
;
15703 /* When not generating PIC code, this is treated as .dword. */
15704 if (mips_pic
!= SVR4_PIC
)
15710 si
= seg_info (now_seg
);
15711 l
= si
->label_list
;
15712 mips_emit_delays ();
15714 mips_align (3, 0, l
);
15717 mips_clear_insn_labels ();
15719 if (ex
.X_op
!= O_symbol
|| ex
.X_add_number
!= 0)
15721 as_bad (_("unsupported use of .gpdword"));
15722 ignore_rest_of_line ();
15726 md_number_to_chars (p
, 0, 8);
15727 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, 4, &ex
, FALSE
,
15728 BFD_RELOC_GPREL32
)->fx_tcbit
= 1;
15730 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
15731 fix_new (frag_now
, p
- frag_now
->fr_literal
, 8, NULL
, 0,
15732 FALSE
, BFD_RELOC_64
)->fx_tcbit
= 1;
15734 demand_empty_rest_of_line ();
15737 /* Handle the .ehword pseudo-op. This is used when generating unwinding
15738 tables. It generates a R_MIPS_EH reloc. */
15741 s_ehword (int ignore ATTRIBUTE_UNUSED
)
15746 mips_emit_delays ();
15749 mips_clear_insn_labels ();
15751 if (ex
.X_op
!= O_symbol
|| ex
.X_add_number
!= 0)
15753 as_bad (_("unsupported use of .ehword"));
15754 ignore_rest_of_line ();
15758 md_number_to_chars (p
, 0, 4);
15759 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, 4, &ex
, FALSE
,
15760 BFD_RELOC_MIPS_EH
);
15762 demand_empty_rest_of_line ();
15765 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
15766 tables in SVR4 PIC code. */
15769 s_cpadd (int ignore ATTRIBUTE_UNUSED
)
15773 /* This is ignored when not generating SVR4 PIC code. */
15774 if (mips_pic
!= SVR4_PIC
)
15780 mips_mark_labels ();
15781 mips_assembling_insn
= TRUE
;
15783 /* Add $gp to the register named as an argument. */
15785 reg
= tc_get_register (0);
15786 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", reg
, reg
, mips_gp_register
);
15789 mips_assembling_insn
= FALSE
;
15790 demand_empty_rest_of_line ();
15793 /* Handle the .insn pseudo-op. This marks instruction labels in
15794 mips16/micromips mode. This permits the linker to handle them specially,
15795 such as generating jalx instructions when needed. We also make
15796 them odd for the duration of the assembly, in order to generate the
15797 right sort of code. We will make them even in the adjust_symtab
15798 routine, while leaving them marked. This is convenient for the
15799 debugger and the disassembler. The linker knows to make them odd
15803 s_insn (int ignore ATTRIBUTE_UNUSED
)
15805 mips_mark_labels ();
15807 demand_empty_rest_of_line ();
15810 /* Handle the .nan pseudo-op. */
15813 s_nan (int ignore ATTRIBUTE_UNUSED
)
15815 static const char str_legacy
[] = "legacy";
15816 static const char str_2008
[] = "2008";
15819 for (i
= 0; !is_end_of_line
[(unsigned char) input_line_pointer
[i
]]; i
++);
15821 if (i
== sizeof (str_2008
) - 1
15822 && memcmp (input_line_pointer
, str_2008
, i
) == 0)
15823 mips_flag_nan2008
= TRUE
;
15824 else if (i
== sizeof (str_legacy
) - 1
15825 && memcmp (input_line_pointer
, str_legacy
, i
) == 0)
15826 mips_flag_nan2008
= FALSE
;
15828 as_bad (_("bad .nan directive"));
15830 input_line_pointer
+= i
;
15831 demand_empty_rest_of_line ();
15834 /* Handle a .stab[snd] directive. Ideally these directives would be
15835 implemented in a transparent way, so that removing them would not
15836 have any effect on the generated instructions. However, s_stab
15837 internally changes the section, so in practice we need to decide
15838 now whether the preceding label marks compressed code. We do not
15839 support changing the compression mode of a label after a .stab*
15840 directive, such as in:
15846 so the current mode wins. */
15849 s_mips_stab (int type
)
15851 mips_mark_labels ();
15855 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
15858 s_mips_weakext (int ignore ATTRIBUTE_UNUSED
)
15865 name
= input_line_pointer
;
15866 c
= get_symbol_end ();
15867 symbolP
= symbol_find_or_make (name
);
15868 S_SET_WEAK (symbolP
);
15869 *input_line_pointer
= c
;
15871 SKIP_WHITESPACE ();
15873 if (! is_end_of_line
[(unsigned char) *input_line_pointer
])
15875 if (S_IS_DEFINED (symbolP
))
15877 as_bad (_("ignoring attempt to redefine symbol %s"),
15878 S_GET_NAME (symbolP
));
15879 ignore_rest_of_line ();
15883 if (*input_line_pointer
== ',')
15885 ++input_line_pointer
;
15886 SKIP_WHITESPACE ();
15890 if (exp
.X_op
!= O_symbol
)
15892 as_bad (_("bad .weakext directive"));
15893 ignore_rest_of_line ();
15896 symbol_set_value_expression (symbolP
, &exp
);
15899 demand_empty_rest_of_line ();
15902 /* Parse a register string into a number. Called from the ECOFF code
15903 to parse .frame. The argument is non-zero if this is the frame
15904 register, so that we can record it in mips_frame_reg. */
15907 tc_get_register (int frame
)
15911 SKIP_WHITESPACE ();
15912 if (! reg_lookup (&input_line_pointer
, RWARN
| RTYPE_NUM
| RTYPE_GP
, ®
))
15916 mips_frame_reg
= reg
!= 0 ? reg
: SP
;
15917 mips_frame_reg_valid
= 1;
15918 mips_cprestore_valid
= 0;
15924 md_section_align (asection
*seg
, valueT addr
)
15926 int align
= bfd_get_section_alignment (stdoutput
, seg
);
15928 /* We don't need to align ELF sections to the full alignment.
15929 However, Irix 5 may prefer that we align them at least to a 16
15930 byte boundary. We don't bother to align the sections if we
15931 are targeted for an embedded system. */
15932 if (strncmp (TARGET_OS
, "elf", 3) == 0)
15937 return ((addr
+ (1 << align
) - 1) & (-1 << align
));
15940 /* Utility routine, called from above as well. If called while the
15941 input file is still being read, it's only an approximation. (For
15942 example, a symbol may later become defined which appeared to be
15943 undefined earlier.) */
15946 nopic_need_relax (symbolS
*sym
, int before_relaxing
)
15951 if (g_switch_value
> 0)
15953 const char *symname
;
15956 /* Find out whether this symbol can be referenced off the $gp
15957 register. It can be if it is smaller than the -G size or if
15958 it is in the .sdata or .sbss section. Certain symbols can
15959 not be referenced off the $gp, although it appears as though
15961 symname
= S_GET_NAME (sym
);
15962 if (symname
!= (const char *) NULL
15963 && (strcmp (symname
, "eprol") == 0
15964 || strcmp (symname
, "etext") == 0
15965 || strcmp (symname
, "_gp") == 0
15966 || strcmp (symname
, "edata") == 0
15967 || strcmp (symname
, "_fbss") == 0
15968 || strcmp (symname
, "_fdata") == 0
15969 || strcmp (symname
, "_ftext") == 0
15970 || strcmp (symname
, "end") == 0
15971 || strcmp (symname
, "_gp_disp") == 0))
15973 else if ((! S_IS_DEFINED (sym
) || S_IS_COMMON (sym
))
15975 #ifndef NO_ECOFF_DEBUGGING
15976 || (symbol_get_obj (sym
)->ecoff_extern_size
!= 0
15977 && (symbol_get_obj (sym
)->ecoff_extern_size
15978 <= g_switch_value
))
15980 /* We must defer this decision until after the whole
15981 file has been read, since there might be a .extern
15982 after the first use of this symbol. */
15983 || (before_relaxing
15984 #ifndef NO_ECOFF_DEBUGGING
15985 && symbol_get_obj (sym
)->ecoff_extern_size
== 0
15987 && S_GET_VALUE (sym
) == 0)
15988 || (S_GET_VALUE (sym
) != 0
15989 && S_GET_VALUE (sym
) <= g_switch_value
)))
15993 const char *segname
;
15995 segname
= segment_name (S_GET_SEGMENT (sym
));
15996 gas_assert (strcmp (segname
, ".lit8") != 0
15997 && strcmp (segname
, ".lit4") != 0);
15998 change
= (strcmp (segname
, ".sdata") != 0
15999 && strcmp (segname
, ".sbss") != 0
16000 && strncmp (segname
, ".sdata.", 7) != 0
16001 && strncmp (segname
, ".sbss.", 6) != 0
16002 && strncmp (segname
, ".gnu.linkonce.sb.", 17) != 0
16003 && strncmp (segname
, ".gnu.linkonce.s.", 16) != 0);
16008 /* We are not optimizing for the $gp register. */
16013 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16016 pic_need_relax (symbolS
*sym
, asection
*segtype
)
16020 /* Handle the case of a symbol equated to another symbol. */
16021 while (symbol_equated_reloc_p (sym
))
16025 /* It's possible to get a loop here in a badly written program. */
16026 n
= symbol_get_value_expression (sym
)->X_add_symbol
;
16032 if (symbol_section_p (sym
))
16035 symsec
= S_GET_SEGMENT (sym
);
16037 /* This must duplicate the test in adjust_reloc_syms. */
16038 return (!bfd_is_und_section (symsec
)
16039 && !bfd_is_abs_section (symsec
)
16040 && !bfd_is_com_section (symsec
)
16041 && !s_is_linkonce (sym
, segtype
)
16042 /* A global or weak symbol is treated as external. */
16043 && (!S_IS_WEAK (sym
) && !S_IS_EXTERNAL (sym
)));
16047 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16048 extended opcode. SEC is the section the frag is in. */
16051 mips16_extended_frag (fragS
*fragp
, asection
*sec
, long stretch
)
16054 const struct mips_int_operand
*operand
;
16059 if (RELAX_MIPS16_USER_SMALL (fragp
->fr_subtype
))
16061 if (RELAX_MIPS16_USER_EXT (fragp
->fr_subtype
))
16064 type
= RELAX_MIPS16_TYPE (fragp
->fr_subtype
);
16065 operand
= mips16_immed_operand (type
, FALSE
);
16067 sym_frag
= symbol_get_frag (fragp
->fr_symbol
);
16068 val
= S_GET_VALUE (fragp
->fr_symbol
);
16069 symsec
= S_GET_SEGMENT (fragp
->fr_symbol
);
16071 if (operand
->root
.type
== OP_PCREL
)
16073 const struct mips_pcrel_operand
*pcrel_op
;
16077 /* We won't have the section when we are called from
16078 mips_relax_frag. However, we will always have been called
16079 from md_estimate_size_before_relax first. If this is a
16080 branch to a different section, we mark it as such. If SEC is
16081 NULL, and the frag is not marked, then it must be a branch to
16082 the same section. */
16083 pcrel_op
= (const struct mips_pcrel_operand
*) operand
;
16086 if (RELAX_MIPS16_LONG_BRANCH (fragp
->fr_subtype
))
16091 /* Must have been called from md_estimate_size_before_relax. */
16094 fragp
->fr_subtype
=
16095 RELAX_MIPS16_MARK_LONG_BRANCH (fragp
->fr_subtype
);
16097 /* FIXME: We should support this, and let the linker
16098 catch branches and loads that are out of range. */
16099 as_bad_where (fragp
->fr_file
, fragp
->fr_line
,
16100 _("unsupported PC relative reference to different section"));
16104 if (fragp
!= sym_frag
&& sym_frag
->fr_address
== 0)
16105 /* Assume non-extended on the first relaxation pass.
16106 The address we have calculated will be bogus if this is
16107 a forward branch to another frag, as the forward frag
16108 will have fr_address == 0. */
16112 /* In this case, we know for sure that the symbol fragment is in
16113 the same section. If the relax_marker of the symbol fragment
16114 differs from the relax_marker of this fragment, we have not
16115 yet adjusted the symbol fragment fr_address. We want to add
16116 in STRETCH in order to get a better estimate of the address.
16117 This particularly matters because of the shift bits. */
16119 && sym_frag
->relax_marker
!= fragp
->relax_marker
)
16123 /* Adjust stretch for any alignment frag. Note that if have
16124 been expanding the earlier code, the symbol may be
16125 defined in what appears to be an earlier frag. FIXME:
16126 This doesn't handle the fr_subtype field, which specifies
16127 a maximum number of bytes to skip when doing an
16129 for (f
= fragp
; f
!= NULL
&& f
!= sym_frag
; f
= f
->fr_next
)
16131 if (f
->fr_type
== rs_align
|| f
->fr_type
== rs_align_code
)
16134 stretch
= - ((- stretch
)
16135 & ~ ((1 << (int) f
->fr_offset
) - 1));
16137 stretch
&= ~ ((1 << (int) f
->fr_offset
) - 1);
16146 addr
= fragp
->fr_address
+ fragp
->fr_fix
;
16148 /* The base address rules are complicated. The base address of
16149 a branch is the following instruction. The base address of a
16150 PC relative load or add is the instruction itself, but if it
16151 is in a delay slot (in which case it can not be extended) use
16152 the address of the instruction whose delay slot it is in. */
16153 if (pcrel_op
->include_isa_bit
)
16157 /* If we are currently assuming that this frag should be
16158 extended, then, the current address is two bytes
16160 if (RELAX_MIPS16_EXTENDED (fragp
->fr_subtype
))
16163 /* Ignore the low bit in the target, since it will be set
16164 for a text label. */
16167 else if (RELAX_MIPS16_JAL_DSLOT (fragp
->fr_subtype
))
16169 else if (RELAX_MIPS16_DSLOT (fragp
->fr_subtype
))
16172 val
-= addr
& -(1 << pcrel_op
->align_log2
);
16174 /* If any of the shifted bits are set, we must use an extended
16175 opcode. If the address depends on the size of this
16176 instruction, this can lead to a loop, so we arrange to always
16177 use an extended opcode. We only check this when we are in
16178 the main relaxation loop, when SEC is NULL. */
16179 if ((val
& ((1 << operand
->shift
) - 1)) != 0 && sec
== NULL
)
16181 fragp
->fr_subtype
=
16182 RELAX_MIPS16_MARK_LONG_BRANCH (fragp
->fr_subtype
);
16186 /* If we are about to mark a frag as extended because the value
16187 is precisely the next value above maxtiny, then there is a
16188 chance of an infinite loop as in the following code:
16193 In this case when the la is extended, foo is 0x3fc bytes
16194 away, so the la can be shrunk, but then foo is 0x400 away, so
16195 the la must be extended. To avoid this loop, we mark the
16196 frag as extended if it was small, and is about to become
16197 extended with the next value above maxtiny. */
16198 maxtiny
= mips_int_operand_max (operand
);
16199 if (val
== maxtiny
+ (1 << operand
->shift
)
16200 && ! RELAX_MIPS16_EXTENDED (fragp
->fr_subtype
)
16203 fragp
->fr_subtype
=
16204 RELAX_MIPS16_MARK_LONG_BRANCH (fragp
->fr_subtype
);
16208 else if (symsec
!= absolute_section
&& sec
!= NULL
)
16209 as_bad_where (fragp
->fr_file
, fragp
->fr_line
, _("unsupported relocation"));
16211 return !mips16_immed_in_range_p (operand
, BFD_RELOC_UNUSED
, val
);
16214 /* Compute the length of a branch sequence, and adjust the
16215 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16216 worst-case length is computed, with UPDATE being used to indicate
16217 whether an unconditional (-1), branch-likely (+1) or regular (0)
16218 branch is to be computed. */
16220 relaxed_branch_length (fragS
*fragp
, asection
*sec
, int update
)
16222 bfd_boolean toofar
;
16226 && S_IS_DEFINED (fragp
->fr_symbol
)
16227 && sec
== S_GET_SEGMENT (fragp
->fr_symbol
))
16232 val
= S_GET_VALUE (fragp
->fr_symbol
) + fragp
->fr_offset
;
16234 addr
= fragp
->fr_address
+ fragp
->fr_fix
+ 4;
16238 toofar
= val
< - (0x8000 << 2) || val
>= (0x8000 << 2);
16241 /* If the symbol is not defined or it's in a different segment,
16242 assume the user knows what's going on and emit a short
16248 if (fragp
&& update
&& toofar
!= RELAX_BRANCH_TOOFAR (fragp
->fr_subtype
))
16250 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp
->fr_subtype
),
16251 RELAX_BRANCH_UNCOND (fragp
->fr_subtype
),
16252 RELAX_BRANCH_LIKELY (fragp
->fr_subtype
),
16253 RELAX_BRANCH_LINK (fragp
->fr_subtype
),
16259 if (fragp
? RELAX_BRANCH_LIKELY (fragp
->fr_subtype
) : (update
> 0))
16262 if (mips_pic
!= NO_PIC
)
16264 /* Additional space for PIC loading of target address. */
16266 if (mips_opts
.isa
== ISA_MIPS1
)
16267 /* Additional space for $at-stabilizing nop. */
16271 /* If branch is conditional. */
16272 if (fragp
? !RELAX_BRANCH_UNCOND (fragp
->fr_subtype
) : (update
>= 0))
16279 /* Compute the length of a branch sequence, and adjust the
16280 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16281 worst-case length is computed, with UPDATE being used to indicate
16282 whether an unconditional (-1), or regular (0) branch is to be
16286 relaxed_micromips_32bit_branch_length (fragS
*fragp
, asection
*sec
, int update
)
16288 bfd_boolean toofar
;
16292 && S_IS_DEFINED (fragp
->fr_symbol
)
16293 && sec
== S_GET_SEGMENT (fragp
->fr_symbol
))
16298 val
= S_GET_VALUE (fragp
->fr_symbol
) + fragp
->fr_offset
;
16299 /* Ignore the low bit in the target, since it will be set
16300 for a text label. */
16301 if ((val
& 1) != 0)
16304 addr
= fragp
->fr_address
+ fragp
->fr_fix
+ 4;
16308 toofar
= val
< - (0x8000 << 1) || val
>= (0x8000 << 1);
16311 /* If the symbol is not defined or it's in a different segment,
16312 assume the user knows what's going on and emit a short
16318 if (fragp
&& update
16319 && toofar
!= RELAX_MICROMIPS_TOOFAR32 (fragp
->fr_subtype
))
16320 fragp
->fr_subtype
= (toofar
16321 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp
->fr_subtype
)
16322 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp
->fr_subtype
));
16327 bfd_boolean compact_known
= fragp
!= NULL
;
16328 bfd_boolean compact
= FALSE
;
16329 bfd_boolean uncond
;
16332 compact
= RELAX_MICROMIPS_COMPACT (fragp
->fr_subtype
);
16334 uncond
= RELAX_MICROMIPS_UNCOND (fragp
->fr_subtype
);
16336 uncond
= update
< 0;
16338 /* If label is out of range, we turn branch <br>:
16340 <br> label # 4 bytes
16346 nop # 2 bytes if compact && !PIC
16349 if (mips_pic
== NO_PIC
&& (!compact_known
|| compact
))
16352 /* If assembling PIC code, we further turn:
16358 lw/ld at, %got(label)(gp) # 4 bytes
16359 d/addiu at, %lo(label) # 4 bytes
16362 if (mips_pic
!= NO_PIC
)
16365 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16367 <brneg> 0f # 4 bytes
16368 nop # 2 bytes if !compact
16371 length
+= (compact_known
&& compact
) ? 4 : 6;
16377 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16378 bit accordingly. */
16381 relaxed_micromips_16bit_branch_length (fragS
*fragp
, asection
*sec
, int update
)
16383 bfd_boolean toofar
;
16386 && S_IS_DEFINED (fragp
->fr_symbol
)
16387 && sec
== S_GET_SEGMENT (fragp
->fr_symbol
))
16393 val
= S_GET_VALUE (fragp
->fr_symbol
) + fragp
->fr_offset
;
16394 /* Ignore the low bit in the target, since it will be set
16395 for a text label. */
16396 if ((val
& 1) != 0)
16399 /* Assume this is a 2-byte branch. */
16400 addr
= fragp
->fr_address
+ fragp
->fr_fix
+ 2;
16402 /* We try to avoid the infinite loop by not adding 2 more bytes for
16407 type
= RELAX_MICROMIPS_TYPE (fragp
->fr_subtype
);
16409 toofar
= val
< - (0x200 << 1) || val
>= (0x200 << 1);
16410 else if (type
== 'E')
16411 toofar
= val
< - (0x40 << 1) || val
>= (0x40 << 1);
16416 /* If the symbol is not defined or it's in a different segment,
16417 we emit a normal 32-bit branch. */
16420 if (fragp
&& update
16421 && toofar
!= RELAX_MICROMIPS_TOOFAR16 (fragp
->fr_subtype
))
16423 = toofar
? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp
->fr_subtype
)
16424 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp
->fr_subtype
);
16432 /* Estimate the size of a frag before relaxing. Unless this is the
16433 mips16, we are not really relaxing here, and the final size is
16434 encoded in the subtype information. For the mips16, we have to
16435 decide whether we are using an extended opcode or not. */
16438 md_estimate_size_before_relax (fragS
*fragp
, asection
*segtype
)
16442 if (RELAX_BRANCH_P (fragp
->fr_subtype
))
16445 fragp
->fr_var
= relaxed_branch_length (fragp
, segtype
, FALSE
);
16447 return fragp
->fr_var
;
16450 if (RELAX_MIPS16_P (fragp
->fr_subtype
))
16451 /* We don't want to modify the EXTENDED bit here; it might get us
16452 into infinite loops. We change it only in mips_relax_frag(). */
16453 return (RELAX_MIPS16_EXTENDED (fragp
->fr_subtype
) ? 4 : 2);
16455 if (RELAX_MICROMIPS_P (fragp
->fr_subtype
))
16459 if (RELAX_MICROMIPS_TYPE (fragp
->fr_subtype
) != 0)
16460 length
= relaxed_micromips_16bit_branch_length (fragp
, segtype
, FALSE
);
16461 if (length
== 4 && RELAX_MICROMIPS_RELAX32 (fragp
->fr_subtype
))
16462 length
= relaxed_micromips_32bit_branch_length (fragp
, segtype
, FALSE
);
16463 fragp
->fr_var
= length
;
16468 if (mips_pic
== NO_PIC
)
16469 change
= nopic_need_relax (fragp
->fr_symbol
, 0);
16470 else if (mips_pic
== SVR4_PIC
)
16471 change
= pic_need_relax (fragp
->fr_symbol
, segtype
);
16472 else if (mips_pic
== VXWORKS_PIC
)
16473 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
16480 fragp
->fr_subtype
|= RELAX_USE_SECOND
;
16481 return -RELAX_FIRST (fragp
->fr_subtype
);
16484 return -RELAX_SECOND (fragp
->fr_subtype
);
16487 /* This is called to see whether a reloc against a defined symbol
16488 should be converted into a reloc against a section. */
16491 mips_fix_adjustable (fixS
*fixp
)
16493 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
16494 || fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
16497 if (fixp
->fx_addsy
== NULL
)
16500 /* If symbol SYM is in a mergeable section, relocations of the form
16501 SYM + 0 can usually be made section-relative. The mergeable data
16502 is then identified by the section offset rather than by the symbol.
16504 However, if we're generating REL LO16 relocations, the offset is split
16505 between the LO16 and parterning high part relocation. The linker will
16506 need to recalculate the complete offset in order to correctly identify
16509 The linker has traditionally not looked for the parterning high part
16510 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
16511 placed anywhere. Rather than break backwards compatibility by changing
16512 this, it seems better not to force the issue, and instead keep the
16513 original symbol. This will work with either linker behavior. */
16514 if ((lo16_reloc_p (fixp
->fx_r_type
)
16515 || reloc_needs_lo_p (fixp
->fx_r_type
))
16516 && HAVE_IN_PLACE_ADDENDS
16517 && (S_GET_SEGMENT (fixp
->fx_addsy
)->flags
& SEC_MERGE
) != 0)
16520 /* There is no place to store an in-place offset for JALR relocations.
16521 Likewise an in-range offset of limited PC-relative relocations may
16522 overflow the in-place relocatable field if recalculated against the
16523 start address of the symbol's containing section. */
16524 if (HAVE_IN_PLACE_ADDENDS
16525 && (limited_pcrel_reloc_p (fixp
->fx_r_type
)
16526 || jalr_reloc_p (fixp
->fx_r_type
)))
16529 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
16530 to a floating-point stub. The same is true for non-R_MIPS16_26
16531 relocations against MIPS16 functions; in this case, the stub becomes
16532 the function's canonical address.
16534 Floating-point stubs are stored in unique .mips16.call.* or
16535 .mips16.fn.* sections. If a stub T for function F is in section S,
16536 the first relocation in section S must be against F; this is how the
16537 linker determines the target function. All relocations that might
16538 resolve to T must also be against F. We therefore have the following
16539 restrictions, which are given in an intentionally-redundant way:
16541 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
16544 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
16545 if that stub might be used.
16547 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
16550 4. We cannot reduce a stub's relocations against MIPS16 symbols if
16551 that stub might be used.
16553 There is a further restriction:
16555 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
16556 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
16557 targets with in-place addends; the relocation field cannot
16558 encode the low bit.
16560 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
16561 against a MIPS16 symbol. We deal with (5) by by not reducing any
16562 such relocations on REL targets.
16564 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
16565 relocation against some symbol R, no relocation against R may be
16566 reduced. (Note that this deals with (2) as well as (1) because
16567 relocations against global symbols will never be reduced on ELF
16568 targets.) This approach is a little simpler than trying to detect
16569 stub sections, and gives the "all or nothing" per-symbol consistency
16570 that we have for MIPS16 symbols. */
16571 if (fixp
->fx_subsy
== NULL
16572 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp
->fx_addsy
))
16573 || *symbol_get_tc (fixp
->fx_addsy
)
16574 || (HAVE_IN_PLACE_ADDENDS
16575 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp
->fx_addsy
))
16576 && jmp_reloc_p (fixp
->fx_r_type
))))
16582 /* Translate internal representation of relocation info to BFD target
16586 tc_gen_reloc (asection
*section ATTRIBUTE_UNUSED
, fixS
*fixp
)
16588 static arelent
*retval
[4];
16590 bfd_reloc_code_real_type code
;
16592 memset (retval
, 0, sizeof(retval
));
16593 reloc
= retval
[0] = (arelent
*) xcalloc (1, sizeof (arelent
));
16594 reloc
->sym_ptr_ptr
= (asymbol
**) xmalloc (sizeof (asymbol
*));
16595 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
16596 reloc
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
16598 if (fixp
->fx_pcrel
)
16600 gas_assert (fixp
->fx_r_type
== BFD_RELOC_16_PCREL_S2
16601 || fixp
->fx_r_type
== BFD_RELOC_MICROMIPS_7_PCREL_S1
16602 || fixp
->fx_r_type
== BFD_RELOC_MICROMIPS_10_PCREL_S1
16603 || fixp
->fx_r_type
== BFD_RELOC_MICROMIPS_16_PCREL_S1
16604 || fixp
->fx_r_type
== BFD_RELOC_32_PCREL
);
16606 /* At this point, fx_addnumber is "symbol offset - pcrel address".
16607 Relocations want only the symbol offset. */
16608 reloc
->addend
= fixp
->fx_addnumber
+ reloc
->address
;
16611 reloc
->addend
= fixp
->fx_addnumber
;
16613 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
16614 entry to be used in the relocation's section offset. */
16615 if (! HAVE_NEWABI
&& fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
16617 reloc
->address
= reloc
->addend
;
16621 code
= fixp
->fx_r_type
;
16623 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
16624 if (reloc
->howto
== NULL
)
16626 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
16627 _("cannot represent %s relocation in this object file"
16629 bfd_get_reloc_code_name (code
));
16636 /* Relax a machine dependent frag. This returns the amount by which
16637 the current size of the frag should change. */
16640 mips_relax_frag (asection
*sec
, fragS
*fragp
, long stretch
)
16642 if (RELAX_BRANCH_P (fragp
->fr_subtype
))
16644 offsetT old_var
= fragp
->fr_var
;
16646 fragp
->fr_var
= relaxed_branch_length (fragp
, sec
, TRUE
);
16648 return fragp
->fr_var
- old_var
;
16651 if (RELAX_MICROMIPS_P (fragp
->fr_subtype
))
16653 offsetT old_var
= fragp
->fr_var
;
16654 offsetT new_var
= 4;
16656 if (RELAX_MICROMIPS_TYPE (fragp
->fr_subtype
) != 0)
16657 new_var
= relaxed_micromips_16bit_branch_length (fragp
, sec
, TRUE
);
16658 if (new_var
== 4 && RELAX_MICROMIPS_RELAX32 (fragp
->fr_subtype
))
16659 new_var
= relaxed_micromips_32bit_branch_length (fragp
, sec
, TRUE
);
16660 fragp
->fr_var
= new_var
;
16662 return new_var
- old_var
;
16665 if (! RELAX_MIPS16_P (fragp
->fr_subtype
))
16668 if (mips16_extended_frag (fragp
, NULL
, stretch
))
16670 if (RELAX_MIPS16_EXTENDED (fragp
->fr_subtype
))
16672 fragp
->fr_subtype
= RELAX_MIPS16_MARK_EXTENDED (fragp
->fr_subtype
);
16677 if (! RELAX_MIPS16_EXTENDED (fragp
->fr_subtype
))
16679 fragp
->fr_subtype
= RELAX_MIPS16_CLEAR_EXTENDED (fragp
->fr_subtype
);
16686 /* Convert a machine dependent frag. */
16689 md_convert_frag (bfd
*abfd ATTRIBUTE_UNUSED
, segT asec
, fragS
*fragp
)
16691 if (RELAX_BRANCH_P (fragp
->fr_subtype
))
16694 unsigned long insn
;
16698 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
16699 insn
= read_insn (buf
);
16701 if (!RELAX_BRANCH_TOOFAR (fragp
->fr_subtype
))
16703 /* We generate a fixup instead of applying it right now
16704 because, if there are linker relaxations, we're going to
16705 need the relocations. */
16706 exp
.X_op
= O_symbol
;
16707 exp
.X_add_symbol
= fragp
->fr_symbol
;
16708 exp
.X_add_number
= fragp
->fr_offset
;
16710 fixp
= fix_new_exp (fragp
, buf
- fragp
->fr_literal
, 4, &exp
, TRUE
,
16711 BFD_RELOC_16_PCREL_S2
);
16712 fixp
->fx_file
= fragp
->fr_file
;
16713 fixp
->fx_line
= fragp
->fr_line
;
16715 buf
= write_insn (buf
, insn
);
16721 as_warn_where (fragp
->fr_file
, fragp
->fr_line
,
16722 _("relaxed out-of-range branch into a jump"));
16724 if (RELAX_BRANCH_UNCOND (fragp
->fr_subtype
))
16727 if (!RELAX_BRANCH_LIKELY (fragp
->fr_subtype
))
16729 /* Reverse the branch. */
16730 switch ((insn
>> 28) & 0xf)
16733 if ((insn
& 0xff000000) == 0x47000000
16734 || (insn
& 0xff600000) == 0x45600000)
16736 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
16737 reversed by tweaking bit 23. */
16738 insn
^= 0x00800000;
16742 /* bc[0-3][tf]l? instructions can have the condition
16743 reversed by tweaking a single TF bit, and their
16744 opcodes all have 0x4???????. */
16745 gas_assert ((insn
& 0xf3e00000) == 0x41000000);
16746 insn
^= 0x00010000;
16751 /* bltz 0x04000000 bgez 0x04010000
16752 bltzal 0x04100000 bgezal 0x04110000 */
16753 gas_assert ((insn
& 0xfc0e0000) == 0x04000000);
16754 insn
^= 0x00010000;
16758 /* beq 0x10000000 bne 0x14000000
16759 blez 0x18000000 bgtz 0x1c000000 */
16760 insn
^= 0x04000000;
16768 if (RELAX_BRANCH_LINK (fragp
->fr_subtype
))
16770 /* Clear the and-link bit. */
16771 gas_assert ((insn
& 0xfc1c0000) == 0x04100000);
16773 /* bltzal 0x04100000 bgezal 0x04110000
16774 bltzall 0x04120000 bgezall 0x04130000 */
16775 insn
&= ~0x00100000;
16778 /* Branch over the branch (if the branch was likely) or the
16779 full jump (not likely case). Compute the offset from the
16780 current instruction to branch to. */
16781 if (RELAX_BRANCH_LIKELY (fragp
->fr_subtype
))
16785 /* How many bytes in instructions we've already emitted? */
16786 i
= buf
- fragp
->fr_literal
- fragp
->fr_fix
;
16787 /* How many bytes in instructions from here to the end? */
16788 i
= fragp
->fr_var
- i
;
16790 /* Convert to instruction count. */
16792 /* Branch counts from the next instruction. */
16795 /* Branch over the jump. */
16796 buf
= write_insn (buf
, insn
);
16799 buf
= write_insn (buf
, 0);
16801 if (RELAX_BRANCH_LIKELY (fragp
->fr_subtype
))
16803 /* beql $0, $0, 2f */
16805 /* Compute the PC offset from the current instruction to
16806 the end of the variable frag. */
16807 /* How many bytes in instructions we've already emitted? */
16808 i
= buf
- fragp
->fr_literal
- fragp
->fr_fix
;
16809 /* How many bytes in instructions from here to the end? */
16810 i
= fragp
->fr_var
- i
;
16811 /* Convert to instruction count. */
16813 /* Don't decrement i, because we want to branch over the
16817 buf
= write_insn (buf
, insn
);
16818 buf
= write_insn (buf
, 0);
16822 if (mips_pic
== NO_PIC
)
16825 insn
= (RELAX_BRANCH_LINK (fragp
->fr_subtype
)
16826 ? 0x0c000000 : 0x08000000);
16827 exp
.X_op
= O_symbol
;
16828 exp
.X_add_symbol
= fragp
->fr_symbol
;
16829 exp
.X_add_number
= fragp
->fr_offset
;
16831 fixp
= fix_new_exp (fragp
, buf
- fragp
->fr_literal
, 4, &exp
,
16832 FALSE
, BFD_RELOC_MIPS_JMP
);
16833 fixp
->fx_file
= fragp
->fr_file
;
16834 fixp
->fx_line
= fragp
->fr_line
;
16836 buf
= write_insn (buf
, insn
);
16840 unsigned long at
= RELAX_BRANCH_AT (fragp
->fr_subtype
);
16842 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
16843 insn
= HAVE_64BIT_ADDRESSES
? 0xdf800000 : 0x8f800000;
16844 insn
|= at
<< OP_SH_RT
;
16845 exp
.X_op
= O_symbol
;
16846 exp
.X_add_symbol
= fragp
->fr_symbol
;
16847 exp
.X_add_number
= fragp
->fr_offset
;
16849 if (fragp
->fr_offset
)
16851 exp
.X_add_symbol
= make_expr_symbol (&exp
);
16852 exp
.X_add_number
= 0;
16855 fixp
= fix_new_exp (fragp
, buf
- fragp
->fr_literal
, 4, &exp
,
16856 FALSE
, BFD_RELOC_MIPS_GOT16
);
16857 fixp
->fx_file
= fragp
->fr_file
;
16858 fixp
->fx_line
= fragp
->fr_line
;
16860 buf
= write_insn (buf
, insn
);
16862 if (mips_opts
.isa
== ISA_MIPS1
)
16864 buf
= write_insn (buf
, 0);
16866 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
16867 insn
= HAVE_64BIT_ADDRESSES
? 0x64000000 : 0x24000000;
16868 insn
|= at
<< OP_SH_RS
| at
<< OP_SH_RT
;
16870 fixp
= fix_new_exp (fragp
, buf
- fragp
->fr_literal
, 4, &exp
,
16871 FALSE
, BFD_RELOC_LO16
);
16872 fixp
->fx_file
= fragp
->fr_file
;
16873 fixp
->fx_line
= fragp
->fr_line
;
16875 buf
= write_insn (buf
, insn
);
16878 if (RELAX_BRANCH_LINK (fragp
->fr_subtype
))
16882 insn
|= at
<< OP_SH_RS
;
16884 buf
= write_insn (buf
, insn
);
16888 fragp
->fr_fix
+= fragp
->fr_var
;
16889 gas_assert (buf
== fragp
->fr_literal
+ fragp
->fr_fix
);
16893 /* Relax microMIPS branches. */
16894 if (RELAX_MICROMIPS_P (fragp
->fr_subtype
))
16896 char *buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
16897 bfd_boolean compact
= RELAX_MICROMIPS_COMPACT (fragp
->fr_subtype
);
16898 bfd_boolean al
= RELAX_MICROMIPS_LINK (fragp
->fr_subtype
);
16899 int type
= RELAX_MICROMIPS_TYPE (fragp
->fr_subtype
);
16900 bfd_boolean short_ds
;
16901 unsigned long insn
;
16905 exp
.X_op
= O_symbol
;
16906 exp
.X_add_symbol
= fragp
->fr_symbol
;
16907 exp
.X_add_number
= fragp
->fr_offset
;
16909 fragp
->fr_fix
+= fragp
->fr_var
;
16911 /* Handle 16-bit branches that fit or are forced to fit. */
16912 if (type
!= 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp
->fr_subtype
))
16914 /* We generate a fixup instead of applying it right now,
16915 because if there is linker relaxation, we're going to
16916 need the relocations. */
16918 fixp
= fix_new_exp (fragp
, buf
- fragp
->fr_literal
, 2, &exp
, TRUE
,
16919 BFD_RELOC_MICROMIPS_10_PCREL_S1
);
16920 else if (type
== 'E')
16921 fixp
= fix_new_exp (fragp
, buf
- fragp
->fr_literal
, 2, &exp
, TRUE
,
16922 BFD_RELOC_MICROMIPS_7_PCREL_S1
);
16926 fixp
->fx_file
= fragp
->fr_file
;
16927 fixp
->fx_line
= fragp
->fr_line
;
16929 /* These relocations can have an addend that won't fit in
16931 fixp
->fx_no_overflow
= 1;
16936 /* Handle 32-bit branches that fit or are forced to fit. */
16937 if (!RELAX_MICROMIPS_RELAX32 (fragp
->fr_subtype
)
16938 || !RELAX_MICROMIPS_TOOFAR32 (fragp
->fr_subtype
))
16940 /* We generate a fixup instead of applying it right now,
16941 because if there is linker relaxation, we're going to
16942 need the relocations. */
16943 fixp
= fix_new_exp (fragp
, buf
- fragp
->fr_literal
, 4, &exp
, TRUE
,
16944 BFD_RELOC_MICROMIPS_16_PCREL_S1
);
16945 fixp
->fx_file
= fragp
->fr_file
;
16946 fixp
->fx_line
= fragp
->fr_line
;
16952 /* Relax 16-bit branches to 32-bit branches. */
16955 insn
= read_compressed_insn (buf
, 2);
16957 if ((insn
& 0xfc00) == 0xcc00) /* b16 */
16958 insn
= 0x94000000; /* beq */
16959 else if ((insn
& 0xdc00) == 0x8c00) /* beqz16/bnez16 */
16961 unsigned long regno
;
16963 regno
= (insn
>> MICROMIPSOP_SH_MD
) & MICROMIPSOP_MASK_MD
;
16964 regno
= micromips_to_32_reg_d_map
[regno
];
16965 insn
= ((insn
& 0x2000) << 16) | 0x94000000; /* beq/bne */
16966 insn
|= regno
<< MICROMIPSOP_SH_RS
;
16971 /* Nothing else to do, just write it out. */
16972 if (!RELAX_MICROMIPS_RELAX32 (fragp
->fr_subtype
)
16973 || !RELAX_MICROMIPS_TOOFAR32 (fragp
->fr_subtype
))
16975 buf
= write_compressed_insn (buf
, insn
, 4);
16976 gas_assert (buf
== fragp
->fr_literal
+ fragp
->fr_fix
);
16981 insn
= read_compressed_insn (buf
, 4);
16983 /* Relax 32-bit branches to a sequence of instructions. */
16984 as_warn_where (fragp
->fr_file
, fragp
->fr_line
,
16985 _("relaxed out-of-range branch into a jump"));
16987 /* Set the short-delay-slot bit. */
16988 short_ds
= al
&& (insn
& 0x02000000) != 0;
16990 if (!RELAX_MICROMIPS_UNCOND (fragp
->fr_subtype
))
16994 /* Reverse the branch. */
16995 if ((insn
& 0xfc000000) == 0x94000000 /* beq */
16996 || (insn
& 0xfc000000) == 0xb4000000) /* bne */
16997 insn
^= 0x20000000;
16998 else if ((insn
& 0xffe00000) == 0x40000000 /* bltz */
16999 || (insn
& 0xffe00000) == 0x40400000 /* bgez */
17000 || (insn
& 0xffe00000) == 0x40800000 /* blez */
17001 || (insn
& 0xffe00000) == 0x40c00000 /* bgtz */
17002 || (insn
& 0xffe00000) == 0x40a00000 /* bnezc */
17003 || (insn
& 0xffe00000) == 0x40e00000 /* beqzc */
17004 || (insn
& 0xffe00000) == 0x40200000 /* bltzal */
17005 || (insn
& 0xffe00000) == 0x40600000 /* bgezal */
17006 || (insn
& 0xffe00000) == 0x42200000 /* bltzals */
17007 || (insn
& 0xffe00000) == 0x42600000) /* bgezals */
17008 insn
^= 0x00400000;
17009 else if ((insn
& 0xffe30000) == 0x43800000 /* bc1f */
17010 || (insn
& 0xffe30000) == 0x43a00000 /* bc1t */
17011 || (insn
& 0xffe30000) == 0x42800000 /* bc2f */
17012 || (insn
& 0xffe30000) == 0x42a00000) /* bc2t */
17013 insn
^= 0x00200000;
17014 else if ((insn
& 0xff000000) == 0x83000000 /* BZ.df
17016 || (insn
& 0xff600000) == 0x81600000) /* BZ.V
17018 insn
^= 0x00800000;
17024 /* Clear the and-link and short-delay-slot bits. */
17025 gas_assert ((insn
& 0xfda00000) == 0x40200000);
17027 /* bltzal 0x40200000 bgezal 0x40600000 */
17028 /* bltzals 0x42200000 bgezals 0x42600000 */
17029 insn
&= ~0x02200000;
17032 /* Make a label at the end for use with the branch. */
17033 l
= symbol_new (micromips_label_name (), asec
, fragp
->fr_fix
, fragp
);
17034 micromips_label_inc ();
17035 S_SET_OTHER (l
, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l
)));
17038 fixp
= fix_new (fragp
, buf
- fragp
->fr_literal
, 4, l
, 0, TRUE
,
17039 BFD_RELOC_MICROMIPS_16_PCREL_S1
);
17040 fixp
->fx_file
= fragp
->fr_file
;
17041 fixp
->fx_line
= fragp
->fr_line
;
17043 /* Branch over the jump. */
17044 buf
= write_compressed_insn (buf
, insn
, 4);
17047 buf
= write_compressed_insn (buf
, 0x0c00, 2);
17050 if (mips_pic
== NO_PIC
)
17052 unsigned long jal
= short_ds
? 0x74000000 : 0xf4000000; /* jal/s */
17054 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17055 insn
= al
? jal
: 0xd4000000;
17057 fixp
= fix_new_exp (fragp
, buf
- fragp
->fr_literal
, 4, &exp
, FALSE
,
17058 BFD_RELOC_MICROMIPS_JMP
);
17059 fixp
->fx_file
= fragp
->fr_file
;
17060 fixp
->fx_line
= fragp
->fr_line
;
17062 buf
= write_compressed_insn (buf
, insn
, 4);
17065 buf
= write_compressed_insn (buf
, 0x0c00, 2);
17069 unsigned long at
= RELAX_MICROMIPS_AT (fragp
->fr_subtype
);
17070 unsigned long jalr
= short_ds
? 0x45e0 : 0x45c0; /* jalr/s */
17071 unsigned long jr
= compact
? 0x45a0 : 0x4580; /* jr/c */
17073 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17074 insn
= HAVE_64BIT_ADDRESSES
? 0xdc1c0000 : 0xfc1c0000;
17075 insn
|= at
<< MICROMIPSOP_SH_RT
;
17077 if (exp
.X_add_number
)
17079 exp
.X_add_symbol
= make_expr_symbol (&exp
);
17080 exp
.X_add_number
= 0;
17083 fixp
= fix_new_exp (fragp
, buf
- fragp
->fr_literal
, 4, &exp
, FALSE
,
17084 BFD_RELOC_MICROMIPS_GOT16
);
17085 fixp
->fx_file
= fragp
->fr_file
;
17086 fixp
->fx_line
= fragp
->fr_line
;
17088 buf
= write_compressed_insn (buf
, insn
, 4);
17090 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17091 insn
= HAVE_64BIT_ADDRESSES
? 0x5c000000 : 0x30000000;
17092 insn
|= at
<< MICROMIPSOP_SH_RT
| at
<< MICROMIPSOP_SH_RS
;
17094 fixp
= fix_new_exp (fragp
, buf
- fragp
->fr_literal
, 4, &exp
, FALSE
,
17095 BFD_RELOC_MICROMIPS_LO16
);
17096 fixp
->fx_file
= fragp
->fr_file
;
17097 fixp
->fx_line
= fragp
->fr_line
;
17099 buf
= write_compressed_insn (buf
, insn
, 4);
17101 /* jr/jrc/jalr/jalrs $at */
17102 insn
= al
? jalr
: jr
;
17103 insn
|= at
<< MICROMIPSOP_SH_MJ
;
17105 buf
= write_compressed_insn (buf
, insn
, 2);
17108 gas_assert (buf
== fragp
->fr_literal
+ fragp
->fr_fix
);
17112 if (RELAX_MIPS16_P (fragp
->fr_subtype
))
17115 const struct mips_int_operand
*operand
;
17118 unsigned int user_length
, length
;
17119 unsigned long insn
;
17122 type
= RELAX_MIPS16_TYPE (fragp
->fr_subtype
);
17123 operand
= mips16_immed_operand (type
, FALSE
);
17125 ext
= RELAX_MIPS16_EXTENDED (fragp
->fr_subtype
);
17126 val
= resolve_symbol_value (fragp
->fr_symbol
);
17127 if (operand
->root
.type
== OP_PCREL
)
17129 const struct mips_pcrel_operand
*pcrel_op
;
17132 pcrel_op
= (const struct mips_pcrel_operand
*) operand
;
17133 addr
= fragp
->fr_address
+ fragp
->fr_fix
;
17135 /* The rules for the base address of a PC relative reloc are
17136 complicated; see mips16_extended_frag. */
17137 if (pcrel_op
->include_isa_bit
)
17142 /* Ignore the low bit in the target, since it will be
17143 set for a text label. */
17146 else if (RELAX_MIPS16_JAL_DSLOT (fragp
->fr_subtype
))
17148 else if (RELAX_MIPS16_DSLOT (fragp
->fr_subtype
))
17151 addr
&= -(1 << pcrel_op
->align_log2
);
17154 /* Make sure the section winds up with the alignment we have
17156 if (operand
->shift
> 0)
17157 record_alignment (asec
, operand
->shift
);
17161 && (RELAX_MIPS16_JAL_DSLOT (fragp
->fr_subtype
)
17162 || RELAX_MIPS16_DSLOT (fragp
->fr_subtype
)))
17163 as_warn_where (fragp
->fr_file
, fragp
->fr_line
,
17164 _("extended instruction in delay slot"));
17166 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
17168 insn
= read_compressed_insn (buf
, 2);
17170 insn
|= MIPS16_EXTEND
;
17172 if (RELAX_MIPS16_USER_EXT (fragp
->fr_subtype
))
17174 else if (RELAX_MIPS16_USER_SMALL (fragp
->fr_subtype
))
17179 mips16_immed (fragp
->fr_file
, fragp
->fr_line
, type
,
17180 BFD_RELOC_UNUSED
, val
, user_length
, &insn
);
17182 length
= (ext
? 4 : 2);
17183 gas_assert (mips16_opcode_length (insn
) == length
);
17184 write_compressed_insn (buf
, insn
, length
);
17185 fragp
->fr_fix
+= length
;
17189 relax_substateT subtype
= fragp
->fr_subtype
;
17190 bfd_boolean second_longer
= (subtype
& RELAX_SECOND_LONGER
) != 0;
17191 bfd_boolean use_second
= (subtype
& RELAX_USE_SECOND
) != 0;
17195 first
= RELAX_FIRST (subtype
);
17196 second
= RELAX_SECOND (subtype
);
17197 fixp
= (fixS
*) fragp
->fr_opcode
;
17199 /* If the delay slot chosen does not match the size of the instruction,
17200 then emit a warning. */
17201 if ((!use_second
&& (subtype
& RELAX_DELAY_SLOT_SIZE_FIRST
) != 0)
17202 || (use_second
&& (subtype
& RELAX_DELAY_SLOT_SIZE_SECOND
) != 0))
17207 s
= subtype
& (RELAX_DELAY_SLOT_16BIT
17208 | RELAX_DELAY_SLOT_SIZE_FIRST
17209 | RELAX_DELAY_SLOT_SIZE_SECOND
);
17210 msg
= macro_warning (s
);
17212 as_warn_where (fragp
->fr_file
, fragp
->fr_line
, "%s", msg
);
17216 /* Possibly emit a warning if we've chosen the longer option. */
17217 if (use_second
== second_longer
)
17223 & (RELAX_SECOND_LONGER
| RELAX_NOMACRO
| RELAX_DELAY_SLOT
));
17224 msg
= macro_warning (s
);
17226 as_warn_where (fragp
->fr_file
, fragp
->fr_line
, "%s", msg
);
17230 /* Go through all the fixups for the first sequence. Disable them
17231 (by marking them as done) if we're going to use the second
17232 sequence instead. */
17234 && fixp
->fx_frag
== fragp
17235 && fixp
->fx_where
< fragp
->fr_fix
- second
)
17237 if (subtype
& RELAX_USE_SECOND
)
17239 fixp
= fixp
->fx_next
;
17242 /* Go through the fixups for the second sequence. Disable them if
17243 we're going to use the first sequence, otherwise adjust their
17244 addresses to account for the relaxation. */
17245 while (fixp
&& fixp
->fx_frag
== fragp
)
17247 if (subtype
& RELAX_USE_SECOND
)
17248 fixp
->fx_where
-= first
;
17251 fixp
= fixp
->fx_next
;
17254 /* Now modify the frag contents. */
17255 if (subtype
& RELAX_USE_SECOND
)
17259 start
= fragp
->fr_literal
+ fragp
->fr_fix
- first
- second
;
17260 memmove (start
, start
+ first
, second
);
17261 fragp
->fr_fix
-= first
;
17264 fragp
->fr_fix
-= second
;
17268 /* This function is called after the relocs have been generated.
17269 We've been storing mips16 text labels as odd. Here we convert them
17270 back to even for the convenience of the debugger. */
17273 mips_frob_file_after_relocs (void)
17276 unsigned int count
, i
;
17278 syms
= bfd_get_outsymbols (stdoutput
);
17279 count
= bfd_get_symcount (stdoutput
);
17280 for (i
= 0; i
< count
; i
++, syms
++)
17281 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms
)->internal_elf_sym
.st_other
)
17282 && ((*syms
)->value
& 1) != 0)
17284 (*syms
)->value
&= ~1;
17285 /* If the symbol has an odd size, it was probably computed
17286 incorrectly, so adjust that as well. */
17287 if ((elf_symbol (*syms
)->internal_elf_sym
.st_size
& 1) != 0)
17288 ++elf_symbol (*syms
)->internal_elf_sym
.st_size
;
17292 /* This function is called whenever a label is defined, including fake
17293 labels instantiated off the dot special symbol. It is used when
17294 handling branch delays; if a branch has a label, we assume we cannot
17295 move it. This also bumps the value of the symbol by 1 in compressed
17299 mips_record_label (symbolS
*sym
)
17301 segment_info_type
*si
= seg_info (now_seg
);
17302 struct insn_label_list
*l
;
17304 if (free_insn_labels
== NULL
)
17305 l
= (struct insn_label_list
*) xmalloc (sizeof *l
);
17308 l
= free_insn_labels
;
17309 free_insn_labels
= l
->next
;
17313 l
->next
= si
->label_list
;
17314 si
->label_list
= l
;
17317 /* This function is called as tc_frob_label() whenever a label is defined
17318 and adds a DWARF-2 record we only want for true labels. */
17321 mips_define_label (symbolS
*sym
)
17323 mips_record_label (sym
);
17324 dwarf2_emit_label (sym
);
17327 /* This function is called by tc_new_dot_label whenever a new dot symbol
17331 mips_add_dot_label (symbolS
*sym
)
17333 mips_record_label (sym
);
17334 if (mips_assembling_insn
&& HAVE_CODE_COMPRESSION
)
17335 mips_compressed_mark_label (sym
);
17338 /* Some special processing for a MIPS ELF file. */
17341 mips_elf_final_processing (void)
17343 /* Write out the register information. */
17344 if (mips_abi
!= N64_ABI
)
17348 s
.ri_gprmask
= mips_gprmask
;
17349 s
.ri_cprmask
[0] = mips_cprmask
[0];
17350 s
.ri_cprmask
[1] = mips_cprmask
[1];
17351 s
.ri_cprmask
[2] = mips_cprmask
[2];
17352 s
.ri_cprmask
[3] = mips_cprmask
[3];
17353 /* The gp_value field is set by the MIPS ELF backend. */
17355 bfd_mips_elf32_swap_reginfo_out (stdoutput
, &s
,
17356 ((Elf32_External_RegInfo
*)
17357 mips_regmask_frag
));
17361 Elf64_Internal_RegInfo s
;
17363 s
.ri_gprmask
= mips_gprmask
;
17365 s
.ri_cprmask
[0] = mips_cprmask
[0];
17366 s
.ri_cprmask
[1] = mips_cprmask
[1];
17367 s
.ri_cprmask
[2] = mips_cprmask
[2];
17368 s
.ri_cprmask
[3] = mips_cprmask
[3];
17369 /* The gp_value field is set by the MIPS ELF backend. */
17371 bfd_mips_elf64_swap_reginfo_out (stdoutput
, &s
,
17372 ((Elf64_External_RegInfo
*)
17373 mips_regmask_frag
));
17376 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
17377 sort of BFD interface for this. */
17378 if (mips_any_noreorder
)
17379 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_NOREORDER
;
17380 if (mips_pic
!= NO_PIC
)
17382 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_PIC
;
17383 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_CPIC
;
17386 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_CPIC
;
17388 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
17389 defined at present; this might need to change in future. */
17390 if (file_ase_mips16
)
17391 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_ARCH_ASE_M16
;
17392 if (file_ase_micromips
)
17393 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_ARCH_ASE_MICROMIPS
;
17394 if (file_ase
& ASE_MDMX
)
17395 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_ARCH_ASE_MDMX
;
17397 /* Set the MIPS ELF ABI flags. */
17398 if (mips_abi
== O32_ABI
&& USE_E_MIPS_ABI_O32
)
17399 elf_elfheader (stdoutput
)->e_flags
|= E_MIPS_ABI_O32
;
17400 else if (mips_abi
== O64_ABI
)
17401 elf_elfheader (stdoutput
)->e_flags
|= E_MIPS_ABI_O64
;
17402 else if (mips_abi
== EABI_ABI
)
17404 if (file_mips_opts
.gp
== 64)
17405 elf_elfheader (stdoutput
)->e_flags
|= E_MIPS_ABI_EABI64
;
17407 elf_elfheader (stdoutput
)->e_flags
|= E_MIPS_ABI_EABI32
;
17409 else if (mips_abi
== N32_ABI
)
17410 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_ABI2
;
17412 /* Nothing to do for N64_ABI. */
17414 if (mips_32bitmode
)
17415 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_32BITMODE
;
17417 if (mips_flag_nan2008
)
17418 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_NAN2008
;
17420 /* 32 bit code with 64 bit FP registers. */
17421 if (file_mips_opts
.fp
== 64 && ABI_NEEDS_32BIT_REGS (mips_abi
))
17422 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_FP64
;
17425 typedef struct proc
{
17427 symbolS
*func_end_sym
;
17428 unsigned long reg_mask
;
17429 unsigned long reg_offset
;
17430 unsigned long fpreg_mask
;
17431 unsigned long fpreg_offset
;
17432 unsigned long frame_offset
;
17433 unsigned long frame_reg
;
17434 unsigned long pc_reg
;
17437 static procS cur_proc
;
17438 static procS
*cur_proc_ptr
;
17439 static int numprocs
;
17441 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
17442 as "2", and a normal nop as "0". */
17444 #define NOP_OPCODE_MIPS 0
17445 #define NOP_OPCODE_MIPS16 1
17446 #define NOP_OPCODE_MICROMIPS 2
17449 mips_nop_opcode (void)
17451 if (seg_info (now_seg
)->tc_segment_info_data
.micromips
)
17452 return NOP_OPCODE_MICROMIPS
;
17453 else if (seg_info (now_seg
)->tc_segment_info_data
.mips16
)
17454 return NOP_OPCODE_MIPS16
;
17456 return NOP_OPCODE_MIPS
;
17459 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
17460 32-bit microMIPS NOPs here (if applicable). */
17463 mips_handle_align (fragS
*fragp
)
17467 int bytes
, size
, excess
;
17470 if (fragp
->fr_type
!= rs_align_code
)
17473 p
= fragp
->fr_literal
+ fragp
->fr_fix
;
17475 switch (nop_opcode
)
17477 case NOP_OPCODE_MICROMIPS
:
17478 opcode
= micromips_nop32_insn
.insn_opcode
;
17481 case NOP_OPCODE_MIPS16
:
17482 opcode
= mips16_nop_insn
.insn_opcode
;
17485 case NOP_OPCODE_MIPS
:
17487 opcode
= nop_insn
.insn_opcode
;
17492 bytes
= fragp
->fr_next
->fr_address
- fragp
->fr_address
- fragp
->fr_fix
;
17493 excess
= bytes
% size
;
17495 /* Handle the leading part if we're not inserting a whole number of
17496 instructions, and make it the end of the fixed part of the frag.
17497 Try to fit in a short microMIPS NOP if applicable and possible,
17498 and use zeroes otherwise. */
17499 gas_assert (excess
< 4);
17500 fragp
->fr_fix
+= excess
;
17505 /* Fall through. */
17507 if (nop_opcode
== NOP_OPCODE_MICROMIPS
&& !mips_opts
.insn32
)
17509 p
= write_compressed_insn (p
, micromips_nop16_insn
.insn_opcode
, 2);
17513 /* Fall through. */
17516 /* Fall through. */
17521 md_number_to_chars (p
, opcode
, size
);
17522 fragp
->fr_var
= size
;
17526 md_obj_begin (void)
17533 /* Check for premature end, nesting errors, etc. */
17535 as_warn (_("missing .end at end of assembly"));
17544 if (*input_line_pointer
== '-')
17546 ++input_line_pointer
;
17549 if (!ISDIGIT (*input_line_pointer
))
17550 as_bad (_("expected simple number"));
17551 if (input_line_pointer
[0] == '0')
17553 if (input_line_pointer
[1] == 'x')
17555 input_line_pointer
+= 2;
17556 while (ISXDIGIT (*input_line_pointer
))
17559 val
|= hex_value (*input_line_pointer
++);
17561 return negative
? -val
: val
;
17565 ++input_line_pointer
;
17566 while (ISDIGIT (*input_line_pointer
))
17569 val
|= *input_line_pointer
++ - '0';
17571 return negative
? -val
: val
;
17574 if (!ISDIGIT (*input_line_pointer
))
17576 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
17577 *input_line_pointer
, *input_line_pointer
);
17578 as_warn (_("invalid number"));
17581 while (ISDIGIT (*input_line_pointer
))
17584 val
+= *input_line_pointer
++ - '0';
17586 return negative
? -val
: val
;
17589 /* The .file directive; just like the usual .file directive, but there
17590 is an initial number which is the ECOFF file index. In the non-ECOFF
17591 case .file implies DWARF-2. */
17594 s_mips_file (int x ATTRIBUTE_UNUSED
)
17596 static int first_file_directive
= 0;
17598 if (ECOFF_DEBUGGING
)
17607 filename
= dwarf2_directive_file (0);
17609 /* Versions of GCC up to 3.1 start files with a ".file"
17610 directive even for stabs output. Make sure that this
17611 ".file" is handled. Note that you need a version of GCC
17612 after 3.1 in order to support DWARF-2 on MIPS. */
17613 if (filename
!= NULL
&& ! first_file_directive
)
17615 (void) new_logical_line (filename
, -1);
17616 s_app_file_string (filename
, 0);
17618 first_file_directive
= 1;
17622 /* The .loc directive, implying DWARF-2. */
17625 s_mips_loc (int x ATTRIBUTE_UNUSED
)
17627 if (!ECOFF_DEBUGGING
)
17628 dwarf2_directive_loc (0);
17631 /* The .end directive. */
17634 s_mips_end (int x ATTRIBUTE_UNUSED
)
17638 /* Following functions need their own .frame and .cprestore directives. */
17639 mips_frame_reg_valid
= 0;
17640 mips_cprestore_valid
= 0;
17642 if (!is_end_of_line
[(unsigned char) *input_line_pointer
])
17645 demand_empty_rest_of_line ();
17650 if ((bfd_get_section_flags (stdoutput
, now_seg
) & SEC_CODE
) == 0)
17651 as_warn (_(".end not in text section"));
17655 as_warn (_(".end directive without a preceding .ent directive"));
17656 demand_empty_rest_of_line ();
17662 gas_assert (S_GET_NAME (p
));
17663 if (strcmp (S_GET_NAME (p
), S_GET_NAME (cur_proc_ptr
->func_sym
)))
17664 as_warn (_(".end symbol does not match .ent symbol"));
17666 if (debug_type
== DEBUG_STABS
)
17667 stabs_generate_asm_endfunc (S_GET_NAME (p
),
17671 as_warn (_(".end directive missing or unknown symbol"));
17673 /* Create an expression to calculate the size of the function. */
17674 if (p
&& cur_proc_ptr
)
17676 OBJ_SYMFIELD_TYPE
*obj
= symbol_get_obj (p
);
17677 expressionS
*exp
= xmalloc (sizeof (expressionS
));
17680 exp
->X_op
= O_subtract
;
17681 exp
->X_add_symbol
= symbol_temp_new_now ();
17682 exp
->X_op_symbol
= p
;
17683 exp
->X_add_number
= 0;
17685 cur_proc_ptr
->func_end_sym
= exp
->X_add_symbol
;
17688 /* Generate a .pdr section. */
17689 if (!ECOFF_DEBUGGING
&& mips_flag_pdr
)
17691 segT saved_seg
= now_seg
;
17692 subsegT saved_subseg
= now_subseg
;
17696 #ifdef md_flush_pending_output
17697 md_flush_pending_output ();
17700 gas_assert (pdr_seg
);
17701 subseg_set (pdr_seg
, 0);
17703 /* Write the symbol. */
17704 exp
.X_op
= O_symbol
;
17705 exp
.X_add_symbol
= p
;
17706 exp
.X_add_number
= 0;
17707 emit_expr (&exp
, 4);
17709 fragp
= frag_more (7 * 4);
17711 md_number_to_chars (fragp
, cur_proc_ptr
->reg_mask
, 4);
17712 md_number_to_chars (fragp
+ 4, cur_proc_ptr
->reg_offset
, 4);
17713 md_number_to_chars (fragp
+ 8, cur_proc_ptr
->fpreg_mask
, 4);
17714 md_number_to_chars (fragp
+ 12, cur_proc_ptr
->fpreg_offset
, 4);
17715 md_number_to_chars (fragp
+ 16, cur_proc_ptr
->frame_offset
, 4);
17716 md_number_to_chars (fragp
+ 20, cur_proc_ptr
->frame_reg
, 4);
17717 md_number_to_chars (fragp
+ 24, cur_proc_ptr
->pc_reg
, 4);
17719 subseg_set (saved_seg
, saved_subseg
);
17722 cur_proc_ptr
= NULL
;
17725 /* The .aent and .ent directives. */
17728 s_mips_ent (int aent
)
17732 symbolP
= get_symbol ();
17733 if (*input_line_pointer
== ',')
17734 ++input_line_pointer
;
17735 SKIP_WHITESPACE ();
17736 if (ISDIGIT (*input_line_pointer
)
17737 || *input_line_pointer
== '-')
17740 if ((bfd_get_section_flags (stdoutput
, now_seg
) & SEC_CODE
) == 0)
17741 as_warn (_(".ent or .aent not in text section"));
17743 if (!aent
&& cur_proc_ptr
)
17744 as_warn (_("missing .end"));
17748 /* This function needs its own .frame and .cprestore directives. */
17749 mips_frame_reg_valid
= 0;
17750 mips_cprestore_valid
= 0;
17752 cur_proc_ptr
= &cur_proc
;
17753 memset (cur_proc_ptr
, '\0', sizeof (procS
));
17755 cur_proc_ptr
->func_sym
= symbolP
;
17759 if (debug_type
== DEBUG_STABS
)
17760 stabs_generate_asm_func (S_GET_NAME (symbolP
),
17761 S_GET_NAME (symbolP
));
17764 symbol_get_bfdsym (symbolP
)->flags
|= BSF_FUNCTION
;
17766 demand_empty_rest_of_line ();
17769 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
17770 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
17771 s_mips_frame is used so that we can set the PDR information correctly.
17772 We can't use the ecoff routines because they make reference to the ecoff
17773 symbol table (in the mdebug section). */
17776 s_mips_frame (int ignore ATTRIBUTE_UNUSED
)
17778 if (ECOFF_DEBUGGING
)
17784 if (cur_proc_ptr
== (procS
*) NULL
)
17786 as_warn (_(".frame outside of .ent"));
17787 demand_empty_rest_of_line ();
17791 cur_proc_ptr
->frame_reg
= tc_get_register (1);
17793 SKIP_WHITESPACE ();
17794 if (*input_line_pointer
++ != ','
17795 || get_absolute_expression_and_terminator (&val
) != ',')
17797 as_warn (_("bad .frame directive"));
17798 --input_line_pointer
;
17799 demand_empty_rest_of_line ();
17803 cur_proc_ptr
->frame_offset
= val
;
17804 cur_proc_ptr
->pc_reg
= tc_get_register (0);
17806 demand_empty_rest_of_line ();
17810 /* The .fmask and .mask directives. If the mdebug section is present
17811 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
17812 embedded targets, s_mips_mask is used so that we can set the PDR
17813 information correctly. We can't use the ecoff routines because they
17814 make reference to the ecoff symbol table (in the mdebug section). */
17817 s_mips_mask (int reg_type
)
17819 if (ECOFF_DEBUGGING
)
17820 s_ignore (reg_type
);
17825 if (cur_proc_ptr
== (procS
*) NULL
)
17827 as_warn (_(".mask/.fmask outside of .ent"));
17828 demand_empty_rest_of_line ();
17832 if (get_absolute_expression_and_terminator (&mask
) != ',')
17834 as_warn (_("bad .mask/.fmask directive"));
17835 --input_line_pointer
;
17836 demand_empty_rest_of_line ();
17840 off
= get_absolute_expression ();
17842 if (reg_type
== 'F')
17844 cur_proc_ptr
->fpreg_mask
= mask
;
17845 cur_proc_ptr
->fpreg_offset
= off
;
17849 cur_proc_ptr
->reg_mask
= mask
;
17850 cur_proc_ptr
->reg_offset
= off
;
17853 demand_empty_rest_of_line ();
17857 /* A table describing all the processors gas knows about. Names are
17858 matched in the order listed.
17860 To ease comparison, please keep this table in the same order as
17861 gcc's mips_cpu_info_table[]. */
17862 static const struct mips_cpu_info mips_cpu_info_table
[] =
17864 /* Entries for generic ISAs */
17865 { "mips1", MIPS_CPU_IS_ISA
, 0, ISA_MIPS1
, CPU_R3000
},
17866 { "mips2", MIPS_CPU_IS_ISA
, 0, ISA_MIPS2
, CPU_R6000
},
17867 { "mips3", MIPS_CPU_IS_ISA
, 0, ISA_MIPS3
, CPU_R4000
},
17868 { "mips4", MIPS_CPU_IS_ISA
, 0, ISA_MIPS4
, CPU_R8000
},
17869 { "mips5", MIPS_CPU_IS_ISA
, 0, ISA_MIPS5
, CPU_MIPS5
},
17870 { "mips32", MIPS_CPU_IS_ISA
, 0, ISA_MIPS32
, CPU_MIPS32
},
17871 { "mips32r2", MIPS_CPU_IS_ISA
, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
17872 { "mips32r3", MIPS_CPU_IS_ISA
, 0, ISA_MIPS32R3
, CPU_MIPS32R3
},
17873 { "mips32r5", MIPS_CPU_IS_ISA
, 0, ISA_MIPS32R5
, CPU_MIPS32R5
},
17874 { "mips64", MIPS_CPU_IS_ISA
, 0, ISA_MIPS64
, CPU_MIPS64
},
17875 { "mips64r2", MIPS_CPU_IS_ISA
, 0, ISA_MIPS64R2
, CPU_MIPS64R2
},
17876 { "mips64r3", MIPS_CPU_IS_ISA
, 0, ISA_MIPS64R3
, CPU_MIPS64R3
},
17877 { "mips64r5", MIPS_CPU_IS_ISA
, 0, ISA_MIPS64R5
, CPU_MIPS64R5
},
17880 { "r3000", 0, 0, ISA_MIPS1
, CPU_R3000
},
17881 { "r2000", 0, 0, ISA_MIPS1
, CPU_R3000
},
17882 { "r3900", 0, 0, ISA_MIPS1
, CPU_R3900
},
17885 { "r6000", 0, 0, ISA_MIPS2
, CPU_R6000
},
17888 { "r4000", 0, 0, ISA_MIPS3
, CPU_R4000
},
17889 { "r4010", 0, 0, ISA_MIPS2
, CPU_R4010
},
17890 { "vr4100", 0, 0, ISA_MIPS3
, CPU_VR4100
},
17891 { "vr4111", 0, 0, ISA_MIPS3
, CPU_R4111
},
17892 { "vr4120", 0, 0, ISA_MIPS3
, CPU_VR4120
},
17893 { "vr4130", 0, 0, ISA_MIPS3
, CPU_VR4120
},
17894 { "vr4181", 0, 0, ISA_MIPS3
, CPU_R4111
},
17895 { "vr4300", 0, 0, ISA_MIPS3
, CPU_R4300
},
17896 { "r4400", 0, 0, ISA_MIPS3
, CPU_R4400
},
17897 { "r4600", 0, 0, ISA_MIPS3
, CPU_R4600
},
17898 { "orion", 0, 0, ISA_MIPS3
, CPU_R4600
},
17899 { "r4650", 0, 0, ISA_MIPS3
, CPU_R4650
},
17900 { "r5900", 0, 0, ISA_MIPS3
, CPU_R5900
},
17901 /* ST Microelectronics Loongson 2E and 2F cores */
17902 { "loongson2e", 0, 0, ISA_MIPS3
, CPU_LOONGSON_2E
},
17903 { "loongson2f", 0, 0, ISA_MIPS3
, CPU_LOONGSON_2F
},
17906 { "r8000", 0, 0, ISA_MIPS4
, CPU_R8000
},
17907 { "r10000", 0, 0, ISA_MIPS4
, CPU_R10000
},
17908 { "r12000", 0, 0, ISA_MIPS4
, CPU_R12000
},
17909 { "r14000", 0, 0, ISA_MIPS4
, CPU_R14000
},
17910 { "r16000", 0, 0, ISA_MIPS4
, CPU_R16000
},
17911 { "vr5000", 0, 0, ISA_MIPS4
, CPU_R5000
},
17912 { "vr5400", 0, 0, ISA_MIPS4
, CPU_VR5400
},
17913 { "vr5500", 0, 0, ISA_MIPS4
, CPU_VR5500
},
17914 { "rm5200", 0, 0, ISA_MIPS4
, CPU_R5000
},
17915 { "rm5230", 0, 0, ISA_MIPS4
, CPU_R5000
},
17916 { "rm5231", 0, 0, ISA_MIPS4
, CPU_R5000
},
17917 { "rm5261", 0, 0, ISA_MIPS4
, CPU_R5000
},
17918 { "rm5721", 0, 0, ISA_MIPS4
, CPU_R5000
},
17919 { "rm7000", 0, 0, ISA_MIPS4
, CPU_RM7000
},
17920 { "rm9000", 0, 0, ISA_MIPS4
, CPU_RM9000
},
17923 { "4kc", 0, 0, ISA_MIPS32
, CPU_MIPS32
},
17924 { "4km", 0, 0, ISA_MIPS32
, CPU_MIPS32
},
17925 { "4kp", 0, 0, ISA_MIPS32
, CPU_MIPS32
},
17926 { "4ksc", 0, ASE_SMARTMIPS
, ISA_MIPS32
, CPU_MIPS32
},
17928 /* MIPS 32 Release 2 */
17929 { "4kec", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
17930 { "4kem", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
17931 { "4kep", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
17932 { "4ksd", 0, ASE_SMARTMIPS
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17933 { "m4k", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
17934 { "m4kp", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
17935 { "m14k", 0, ASE_MCU
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17936 { "m14kc", 0, ASE_MCU
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17937 { "m14ke", 0, ASE_DSP
| ASE_DSPR2
| ASE_MCU
,
17938 ISA_MIPS32R2
, CPU_MIPS32R2
},
17939 { "m14kec", 0, ASE_DSP
| ASE_DSPR2
| ASE_MCU
,
17940 ISA_MIPS32R2
, CPU_MIPS32R2
},
17941 { "24kc", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
17942 { "24kf2_1", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
17943 { "24kf", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
17944 { "24kf1_1", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
17945 /* Deprecated forms of the above. */
17946 { "24kfx", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
17947 { "24kx", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
17948 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
17949 { "24kec", 0, ASE_DSP
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17950 { "24kef2_1", 0, ASE_DSP
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17951 { "24kef", 0, ASE_DSP
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17952 { "24kef1_1", 0, ASE_DSP
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17953 /* Deprecated forms of the above. */
17954 { "24kefx", 0, ASE_DSP
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17955 { "24kex", 0, ASE_DSP
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17956 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
17957 { "34kc", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17958 { "34kf2_1", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17959 { "34kf", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17960 { "34kf1_1", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17961 /* Deprecated forms of the above. */
17962 { "34kfx", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17963 { "34kx", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17964 /* 34Kn is a 34kc without DSP. */
17965 { "34kn", 0, ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17966 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
17967 { "74kc", 0, ASE_DSP
| ASE_DSPR2
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17968 { "74kf2_1", 0, ASE_DSP
| ASE_DSPR2
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17969 { "74kf", 0, ASE_DSP
| ASE_DSPR2
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17970 { "74kf1_1", 0, ASE_DSP
| ASE_DSPR2
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17971 { "74kf3_2", 0, ASE_DSP
| ASE_DSPR2
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17972 /* Deprecated forms of the above. */
17973 { "74kfx", 0, ASE_DSP
| ASE_DSPR2
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17974 { "74kx", 0, ASE_DSP
| ASE_DSPR2
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17975 /* 1004K cores are multiprocessor versions of the 34K. */
17976 { "1004kc", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17977 { "1004kf2_1", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17978 { "1004kf", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17979 { "1004kf1_1", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
17980 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
17981 { "p5600", 0, ASE_VIRT
| ASE_EVA
| ASE_XPA
, ISA_MIPS32R5
, CPU_MIPS32R5
},
17984 { "5kc", 0, 0, ISA_MIPS64
, CPU_MIPS64
},
17985 { "5kf", 0, 0, ISA_MIPS64
, CPU_MIPS64
},
17986 { "20kc", 0, ASE_MIPS3D
, ISA_MIPS64
, CPU_MIPS64
},
17987 { "25kf", 0, ASE_MIPS3D
, ISA_MIPS64
, CPU_MIPS64
},
17989 /* Broadcom SB-1 CPU core */
17990 { "sb1", 0, ASE_MIPS3D
| ASE_MDMX
, ISA_MIPS64
, CPU_SB1
},
17991 /* Broadcom SB-1A CPU core */
17992 { "sb1a", 0, ASE_MIPS3D
| ASE_MDMX
, ISA_MIPS64
, CPU_SB1
},
17994 { "loongson3a", 0, 0, ISA_MIPS64R2
, CPU_LOONGSON_3A
},
17996 /* MIPS 64 Release 2 */
17998 /* Cavium Networks Octeon CPU core */
17999 { "octeon", 0, 0, ISA_MIPS64R2
, CPU_OCTEON
},
18000 { "octeon+", 0, 0, ISA_MIPS64R2
, CPU_OCTEONP
},
18001 { "octeon2", 0, 0, ISA_MIPS64R2
, CPU_OCTEON2
},
18004 { "xlr", 0, 0, ISA_MIPS64
, CPU_XLR
},
18007 XLP is mostly like XLR, with the prominent exception that it is
18008 MIPS64R2 rather than MIPS64. */
18009 { "xlp", 0, 0, ISA_MIPS64R2
, CPU_XLR
},
18012 { NULL
, 0, 0, 0, 0 }
18016 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18017 with a final "000" replaced by "k". Ignore case.
18019 Note: this function is shared between GCC and GAS. */
18022 mips_strict_matching_cpu_name_p (const char *canonical
, const char *given
)
18024 while (*given
!= 0 && TOLOWER (*given
) == TOLOWER (*canonical
))
18025 given
++, canonical
++;
18027 return ((*given
== 0 && *canonical
== 0)
18028 || (strcmp (canonical
, "000") == 0 && strcasecmp (given
, "k") == 0));
18032 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18033 CPU name. We've traditionally allowed a lot of variation here.
18035 Note: this function is shared between GCC and GAS. */
18038 mips_matching_cpu_name_p (const char *canonical
, const char *given
)
18040 /* First see if the name matches exactly, or with a final "000"
18041 turned into "k". */
18042 if (mips_strict_matching_cpu_name_p (canonical
, given
))
18045 /* If not, try comparing based on numerical designation alone.
18046 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18047 if (TOLOWER (*given
) == 'r')
18049 if (!ISDIGIT (*given
))
18052 /* Skip over some well-known prefixes in the canonical name,
18053 hoping to find a number there too. */
18054 if (TOLOWER (canonical
[0]) == 'v' && TOLOWER (canonical
[1]) == 'r')
18056 else if (TOLOWER (canonical
[0]) == 'r' && TOLOWER (canonical
[1]) == 'm')
18058 else if (TOLOWER (canonical
[0]) == 'r')
18061 return mips_strict_matching_cpu_name_p (canonical
, given
);
18065 /* Parse an option that takes the name of a processor as its argument.
18066 OPTION is the name of the option and CPU_STRING is the argument.
18067 Return the corresponding processor enumeration if the CPU_STRING is
18068 recognized, otherwise report an error and return null.
18070 A similar function exists in GCC. */
18072 static const struct mips_cpu_info
*
18073 mips_parse_cpu (const char *option
, const char *cpu_string
)
18075 const struct mips_cpu_info
*p
;
18077 /* 'from-abi' selects the most compatible architecture for the given
18078 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18079 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18080 version. Look first at the -mgp options, if given, otherwise base
18081 the choice on MIPS_DEFAULT_64BIT.
18083 Treat NO_ABI like the EABIs. One reason to do this is that the
18084 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18085 architecture. This code picks MIPS I for 'mips' and MIPS III for
18086 'mips64', just as we did in the days before 'from-abi'. */
18087 if (strcasecmp (cpu_string
, "from-abi") == 0)
18089 if (ABI_NEEDS_32BIT_REGS (mips_abi
))
18090 return mips_cpu_info_from_isa (ISA_MIPS1
);
18092 if (ABI_NEEDS_64BIT_REGS (mips_abi
))
18093 return mips_cpu_info_from_isa (ISA_MIPS3
);
18095 if (file_mips_opts
.gp
>= 0)
18096 return mips_cpu_info_from_isa (file_mips_opts
.gp
== 32
18097 ? ISA_MIPS1
: ISA_MIPS3
);
18099 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18104 /* 'default' has traditionally been a no-op. Probably not very useful. */
18105 if (strcasecmp (cpu_string
, "default") == 0)
18108 for (p
= mips_cpu_info_table
; p
->name
!= 0; p
++)
18109 if (mips_matching_cpu_name_p (p
->name
, cpu_string
))
18112 as_bad (_("bad value (%s) for %s"), cpu_string
, option
);
18116 /* Return the canonical processor information for ISA (a member of the
18117 ISA_MIPS* enumeration). */
18119 static const struct mips_cpu_info
*
18120 mips_cpu_info_from_isa (int isa
)
18124 for (i
= 0; mips_cpu_info_table
[i
].name
!= NULL
; i
++)
18125 if ((mips_cpu_info_table
[i
].flags
& MIPS_CPU_IS_ISA
)
18126 && isa
== mips_cpu_info_table
[i
].isa
)
18127 return (&mips_cpu_info_table
[i
]);
18132 static const struct mips_cpu_info
*
18133 mips_cpu_info_from_arch (int arch
)
18137 for (i
= 0; mips_cpu_info_table
[i
].name
!= NULL
; i
++)
18138 if (arch
== mips_cpu_info_table
[i
].cpu
)
18139 return (&mips_cpu_info_table
[i
]);
18145 show (FILE *stream
, const char *string
, int *col_p
, int *first_p
)
18149 fprintf (stream
, "%24s", "");
18154 fprintf (stream
, ", ");
18158 if (*col_p
+ strlen (string
) > 72)
18160 fprintf (stream
, "\n%24s", "");
18164 fprintf (stream
, "%s", string
);
18165 *col_p
+= strlen (string
);
18171 md_show_usage (FILE *stream
)
18176 fprintf (stream
, _("\
18178 -EB generate big endian output\n\
18179 -EL generate little endian output\n\
18180 -g, -g2 do not remove unneeded NOPs or swap branches\n\
18181 -G NUM allow referencing objects up to NUM bytes\n\
18182 implicitly with the gp register [default 8]\n"));
18183 fprintf (stream
, _("\
18184 -mips1 generate MIPS ISA I instructions\n\
18185 -mips2 generate MIPS ISA II instructions\n\
18186 -mips3 generate MIPS ISA III instructions\n\
18187 -mips4 generate MIPS ISA IV instructions\n\
18188 -mips5 generate MIPS ISA V instructions\n\
18189 -mips32 generate MIPS32 ISA instructions\n\
18190 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
18191 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
18192 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
18193 -mips64 generate MIPS64 ISA instructions\n\
18194 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
18195 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
18196 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
18197 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18201 for (i
= 0; mips_cpu_info_table
[i
].name
!= NULL
; i
++)
18202 show (stream
, mips_cpu_info_table
[i
].name
, &column
, &first
);
18203 show (stream
, "from-abi", &column
, &first
);
18204 fputc ('\n', stream
);
18206 fprintf (stream
, _("\
18207 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18208 -no-mCPU don't generate code specific to CPU.\n\
18209 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18213 show (stream
, "3900", &column
, &first
);
18214 show (stream
, "4010", &column
, &first
);
18215 show (stream
, "4100", &column
, &first
);
18216 show (stream
, "4650", &column
, &first
);
18217 fputc ('\n', stream
);
18219 fprintf (stream
, _("\
18220 -mips16 generate mips16 instructions\n\
18221 -no-mips16 do not generate mips16 instructions\n"));
18222 fprintf (stream
, _("\
18223 -mmicromips generate microMIPS instructions\n\
18224 -mno-micromips do not generate microMIPS instructions\n"));
18225 fprintf (stream
, _("\
18226 -msmartmips generate smartmips instructions\n\
18227 -mno-smartmips do not generate smartmips instructions\n"));
18228 fprintf (stream
, _("\
18229 -mdsp generate DSP instructions\n\
18230 -mno-dsp do not generate DSP instructions\n"));
18231 fprintf (stream
, _("\
18232 -mdspr2 generate DSP R2 instructions\n\
18233 -mno-dspr2 do not generate DSP R2 instructions\n"));
18234 fprintf (stream
, _("\
18235 -mmt generate MT instructions\n\
18236 -mno-mt do not generate MT instructions\n"));
18237 fprintf (stream
, _("\
18238 -mmcu generate MCU instructions\n\
18239 -mno-mcu do not generate MCU instructions\n"));
18240 fprintf (stream
, _("\
18241 -mmsa generate MSA instructions\n\
18242 -mno-msa do not generate MSA instructions\n"));
18243 fprintf (stream
, _("\
18244 -mxpa generate eXtended Physical Address (XPA) instructions\n\
18245 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18246 fprintf (stream
, _("\
18247 -mvirt generate Virtualization instructions\n\
18248 -mno-virt do not generate Virtualization instructions\n"));
18249 fprintf (stream
, _("\
18250 -minsn32 only generate 32-bit microMIPS instructions\n\
18251 -mno-insn32 generate all microMIPS instructions\n"));
18252 fprintf (stream
, _("\
18253 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18254 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
18255 -mfix-vr4120 work around certain VR4120 errata\n\
18256 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
18257 -mfix-24k insert a nop after ERET and DERET instructions\n\
18258 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
18259 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18260 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
18261 -msym32 assume all symbols have 32-bit values\n\
18262 -O0 remove unneeded NOPs, do not swap branches\n\
18263 -O remove unneeded NOPs and swap branches\n\
18264 --trap, --no-break trap exception on div by 0 and mult overflow\n\
18265 --break, --no-trap break exception on div by 0 and mult overflow\n"));
18266 fprintf (stream
, _("\
18267 -mhard-float allow floating-point instructions\n\
18268 -msoft-float do not allow floating-point instructions\n\
18269 -msingle-float only allow 32-bit floating-point operations\n\
18270 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
18271 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
18272 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
18273 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
18277 show (stream
, "legacy", &column
, &first
);
18278 show (stream
, "2008", &column
, &first
);
18280 fputc ('\n', stream
);
18282 fprintf (stream
, _("\
18283 -KPIC, -call_shared generate SVR4 position independent code\n\
18284 -call_nonpic generate non-PIC code that can operate with DSOs\n\
18285 -mvxworks-pic generate VxWorks position independent code\n\
18286 -non_shared do not generate code that can operate with DSOs\n\
18287 -xgot assume a 32 bit GOT\n\
18288 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
18289 -mshared, -mno-shared disable/enable .cpload optimization for\n\
18290 position dependent (non shared) code\n\
18291 -mabi=ABI create ABI conformant object file for:\n"));
18295 show (stream
, "32", &column
, &first
);
18296 show (stream
, "o64", &column
, &first
);
18297 show (stream
, "n32", &column
, &first
);
18298 show (stream
, "64", &column
, &first
);
18299 show (stream
, "eabi", &column
, &first
);
18301 fputc ('\n', stream
);
18303 fprintf (stream
, _("\
18304 -32 create o32 ABI object file (default)\n\
18305 -n32 create n32 ABI object file\n\
18306 -64 create 64 ABI object file\n"));
18311 mips_dwarf2_format (asection
*sec ATTRIBUTE_UNUSED
)
18313 if (HAVE_64BIT_SYMBOLS
)
18314 return dwarf2_format_64bit_irix
;
18316 return dwarf2_format_32bit
;
18321 mips_dwarf2_addr_size (void)
18323 if (HAVE_64BIT_OBJECTS
)
18329 /* Standard calling conventions leave the CFA at SP on entry. */
18331 mips_cfi_frame_initial_instructions (void)
18333 cfi_add_CFA_def_cfa_register (SP
);
18337 tc_mips_regname_to_dw2regnum (char *regname
)
18339 unsigned int regnum
= -1;
18342 if (reg_lookup (®name
, RTYPE_GP
| RTYPE_NUM
, ®
))
18348 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
18349 Given a symbolic attribute NAME, return the proper integer value.
18350 Returns -1 if the attribute is not known. */
18353 mips_convert_symbolic_attribute (const char *name
)
18355 static const struct
18360 attribute_table
[] =
18362 #define T(tag) {#tag, tag}
18363 T (Tag_GNU_MIPS_ABI_FP
),
18364 T (Tag_GNU_MIPS_ABI_MSA
),
18372 for (i
= 0; i
< ARRAY_SIZE (attribute_table
); i
++)
18373 if (streq (name
, attribute_table
[i
].name
))
18374 return attribute_table
[i
].tag
;