]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-mn10300.c
2007-10-08 Pierre Muller <muller@ics.u-strasbg.fr>
[thirdparty/binutils-gdb.git] / gas / config / tc-mn10300.c
1 /* tc-mn10300.c -- Assembler code for the Matsushita 10300
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007 Free Software Foundation, Inc.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "as.h"
23 #include "safe-ctype.h"
24 #include "subsegs.h"
25 #include "opcode/mn10300.h"
26 #include "dwarf2dbg.h"
27 \f
28 /* Structure to hold information about predefined registers. */
29 struct reg_name
30 {
31 const char *name;
32 int value;
33 };
34
35 /* Generic assembler global variables which must be defined by all
36 targets. */
37
38 /* Characters which always start a comment. */
39 const char comment_chars[] = "#";
40
41 /* Characters which start a comment at the beginning of a line. */
42 const char line_comment_chars[] = ";#";
43
44 /* Characters which may be used to separate multiple commands on a
45 single line. */
46 const char line_separator_chars[] = ";";
47
48 /* Characters which are used to indicate an exponent in a floating
49 point number. */
50 const char EXP_CHARS[] = "eE";
51
52 /* Characters which mean that a number is a floating point constant,
53 as in 0d1.0. */
54 const char FLT_CHARS[] = "dD";
55 \f
56 const relax_typeS md_relax_table[] =
57 {
58 /* The plus values for the bCC and fBCC instructions in the table below
59 are because the branch instruction is translated into a jump
60 instruction that is now +2 or +3 bytes further on in memory, and the
61 correct size of jump instruction must be selected. */
62 /* bCC relaxing */
63 {0x7f, -0x80, 2, 1},
64 {0x7fff + 2, -0x8000 + 2, 5, 2},
65 {0x7fffffff, -0x80000000, 7, 0},
66
67 /* bCC relaxing (uncommon cases for 3byte length instructions) */
68 {0x7f, -0x80, 3, 4},
69 {0x7fff + 3, -0x8000 + 3, 6, 5},
70 {0x7fffffff, -0x80000000, 8, 0},
71
72 /* call relaxing */
73 {0x7fff, -0x8000, 5, 7},
74 {0x7fffffff, -0x80000000, 7, 0},
75
76 /* calls relaxing */
77 {0x7fff, -0x8000, 4, 9},
78 {0x7fffffff, -0x80000000, 6, 0},
79
80 /* jmp relaxing */
81 {0x7f, -0x80, 2, 11},
82 {0x7fff, -0x8000, 3, 12},
83 {0x7fffffff, -0x80000000, 5, 0},
84
85 /* fbCC relaxing */
86 {0x7f, -0x80, 3, 14},
87 {0x7fff + 3, -0x8000 + 3, 6, 15},
88 {0x7fffffff, -0x80000000, 8, 0},
89
90 };
91
92 /* Local functions. */
93 static void mn10300_insert_operand PARAMS ((unsigned long *, unsigned long *,
94 const struct mn10300_operand *,
95 offsetT, char *, unsigned,
96 unsigned));
97 static unsigned long check_operand PARAMS ((unsigned long,
98 const struct mn10300_operand *,
99 offsetT));
100 static int reg_name_search PARAMS ((const struct reg_name *, int, const char *));
101 static bfd_boolean data_register_name PARAMS ((expressionS *expressionP));
102 static bfd_boolean address_register_name PARAMS ((expressionS *expressionP));
103 static bfd_boolean other_register_name PARAMS ((expressionS *expressionP));
104 static bfd_boolean r_register_name PARAMS ((expressionS *expressionP));
105 static bfd_boolean xr_register_name PARAMS ((expressionS *expressionP));
106 static void set_arch_mach PARAMS ((int));
107
108 /* Set linkrelax here to avoid fixups in most sections. */
109 int linkrelax = 1;
110
111 static int current_machine;
112
113 /* Fixups. */
114 #define MAX_INSN_FIXUPS (5)
115 struct mn10300_fixup
116 {
117 expressionS exp;
118 int opindex;
119 bfd_reloc_code_real_type reloc;
120 };
121 struct mn10300_fixup fixups[MAX_INSN_FIXUPS];
122 static int fc;
123
124 /* We must store the value of each register operand so that we can
125 verify that certain registers do not match. */
126 int mn10300_reg_operands[MN10300_MAX_OPERANDS];
127 \f
128 const char *md_shortopts = "";
129 struct option md_longopts[] = {
130 {NULL, no_argument, NULL, 0}
131 };
132 size_t md_longopts_size = sizeof (md_longopts);
133
134 /* The target specific pseudo-ops which we support. */
135 const pseudo_typeS md_pseudo_table[] =
136 {
137 { "am30", set_arch_mach, AM30 },
138 { "am33", set_arch_mach, AM33 },
139 { "am33_2", (void (*) PARAMS ((int))) set_arch_mach, AM33_2 },
140 { "mn10300", set_arch_mach, MN103 },
141 {NULL, 0, 0}
142 };
143
144 #define HAVE_AM33_2 (current_machine == AM33_2)
145 #define HAVE_AM33 (current_machine == AM33 || HAVE_AM33_2)
146 #define HAVE_AM30 (current_machine == AM30)
147
148 /* Opcode hash table. */
149 static struct hash_control *mn10300_hash;
150
151 /* This table is sorted. Suitable for searching by a binary search. */
152 static const struct reg_name data_registers[] =
153 {
154 { "d0", 0 },
155 { "d1", 1 },
156 { "d2", 2 },
157 { "d3", 3 },
158 };
159 #define DATA_REG_NAME_CNT \
160 (sizeof (data_registers) / sizeof (struct reg_name))
161
162 static const struct reg_name address_registers[] =
163 {
164 { "a0", 0 },
165 { "a1", 1 },
166 { "a2", 2 },
167 { "a3", 3 },
168 };
169
170 #define ADDRESS_REG_NAME_CNT \
171 (sizeof (address_registers) / sizeof (struct reg_name))
172
173 static const struct reg_name r_registers[] =
174 {
175 { "a0", 8 },
176 { "a1", 9 },
177 { "a2", 10 },
178 { "a3", 11 },
179 { "d0", 12 },
180 { "d1", 13 },
181 { "d2", 14 },
182 { "d3", 15 },
183 { "e0", 0 },
184 { "e1", 1 },
185 { "e10", 10 },
186 { "e11", 11 },
187 { "e12", 12 },
188 { "e13", 13 },
189 { "e14", 14 },
190 { "e15", 15 },
191 { "e2", 2 },
192 { "e3", 3 },
193 { "e4", 4 },
194 { "e5", 5 },
195 { "e6", 6 },
196 { "e7", 7 },
197 { "e8", 8 },
198 { "e9", 9 },
199 { "r0", 0 },
200 { "r1", 1 },
201 { "r10", 10 },
202 { "r11", 11 },
203 { "r12", 12 },
204 { "r13", 13 },
205 { "r14", 14 },
206 { "r15", 15 },
207 { "r2", 2 },
208 { "r3", 3 },
209 { "r4", 4 },
210 { "r5", 5 },
211 { "r6", 6 },
212 { "r7", 7 },
213 { "r8", 8 },
214 { "r9", 9 },
215 };
216
217 #define R_REG_NAME_CNT \
218 (sizeof (r_registers) / sizeof (struct reg_name))
219
220 static const struct reg_name xr_registers[] =
221 {
222 { "mcrh", 2 },
223 { "mcrl", 3 },
224 { "mcvf", 4 },
225 { "mdrq", 1 },
226 { "sp", 0 },
227 { "xr0", 0 },
228 { "xr1", 1 },
229 { "xr10", 10 },
230 { "xr11", 11 },
231 { "xr12", 12 },
232 { "xr13", 13 },
233 { "xr14", 14 },
234 { "xr15", 15 },
235 { "xr2", 2 },
236 { "xr3", 3 },
237 { "xr4", 4 },
238 { "xr5", 5 },
239 { "xr6", 6 },
240 { "xr7", 7 },
241 { "xr8", 8 },
242 { "xr9", 9 },
243 };
244
245 #define XR_REG_NAME_CNT \
246 (sizeof (xr_registers) / sizeof (struct reg_name))
247
248 /* We abuse the `value' field, that would be otherwise unused, to
249 encode the architecture on which (access to) the register was
250 introduced. FIXME: we should probably warn when we encounter a
251 register name when assembling for an architecture that doesn't
252 support it, before parsing it as a symbol name. */
253 static const struct reg_name other_registers[] =
254 {
255 { "epsw", AM33 },
256 { "mdr", 0 },
257 { "pc", AM33 },
258 { "psw", 0 },
259 { "sp", 0 },
260 };
261
262 #define OTHER_REG_NAME_CNT \
263 (sizeof (other_registers) / sizeof (struct reg_name))
264
265 static const struct reg_name float_registers[] =
266 {
267 { "fs0", 0 },
268 { "fs1", 1 },
269 { "fs10", 10 },
270 { "fs11", 11 },
271 { "fs12", 12 },
272 { "fs13", 13 },
273 { "fs14", 14 },
274 { "fs15", 15 },
275 { "fs16", 16 },
276 { "fs17", 17 },
277 { "fs18", 18 },
278 { "fs19", 19 },
279 { "fs2", 2 },
280 { "fs20", 20 },
281 { "fs21", 21 },
282 { "fs22", 22 },
283 { "fs23", 23 },
284 { "fs24", 24 },
285 { "fs25", 25 },
286 { "fs26", 26 },
287 { "fs27", 27 },
288 { "fs28", 28 },
289 { "fs29", 29 },
290 { "fs3", 3 },
291 { "fs30", 30 },
292 { "fs31", 31 },
293 { "fs4", 4 },
294 { "fs5", 5 },
295 { "fs6", 6 },
296 { "fs7", 7 },
297 { "fs8", 8 },
298 { "fs9", 9 },
299 };
300
301 #define FLOAT_REG_NAME_CNT \
302 (sizeof (float_registers) / sizeof (struct reg_name))
303
304 static const struct reg_name double_registers[] =
305 {
306 { "fd0", 0 },
307 { "fd10", 10 },
308 { "fd12", 12 },
309 { "fd14", 14 },
310 { "fd16", 16 },
311 { "fd18", 18 },
312 { "fd2", 2 },
313 { "fd20", 20 },
314 { "fd22", 22 },
315 { "fd24", 24 },
316 { "fd26", 26 },
317 { "fd28", 28 },
318 { "fd30", 30 },
319 { "fd4", 4 },
320 { "fd6", 6 },
321 { "fd8", 8 },
322 };
323
324 #define DOUBLE_REG_NAME_CNT \
325 (sizeof (double_registers) / sizeof (struct reg_name))
326
327
328 /* reg_name_search does a binary search of the given register table
329 to see if "name" is a valid regiter name. Returns the register
330 number from the array on success, or -1 on failure. */
331
332 static int
333 reg_name_search (regs, regcount, name)
334 const struct reg_name *regs;
335 int regcount;
336 const char *name;
337 {
338 int middle, low, high;
339 int cmp;
340
341 low = 0;
342 high = regcount - 1;
343
344 do
345 {
346 middle = (low + high) / 2;
347 cmp = strcasecmp (name, regs[middle].name);
348 if (cmp < 0)
349 high = middle - 1;
350 else if (cmp > 0)
351 low = middle + 1;
352 else
353 return regs[middle].value;
354 }
355 while (low <= high);
356 return -1;
357 }
358
359 /* Summary of register_name().
360 *
361 * in: Input_line_pointer points to 1st char of operand.
362 *
363 * out: An expressionS.
364 * The operand may have been a register: in this case, X_op == O_register,
365 * X_add_number is set to the register number, and truth is returned.
366 * Input_line_pointer->(next non-blank) char after operand, or is in
367 * its original state.
368 */
369
370 static bfd_boolean
371 r_register_name (expressionP)
372 expressionS *expressionP;
373 {
374 int reg_number;
375 char *name;
376 char *start;
377 char c;
378
379 /* Find the spelling of the operand. */
380 start = name = input_line_pointer;
381
382 c = get_symbol_end ();
383 reg_number = reg_name_search (r_registers, R_REG_NAME_CNT, name);
384
385 /* Put back the delimiting char. */
386 *input_line_pointer = c;
387
388 /* Look to see if it's in the register table. */
389 if (reg_number >= 0)
390 {
391 expressionP->X_op = O_register;
392 expressionP->X_add_number = reg_number;
393
394 /* Make the rest nice. */
395 expressionP->X_add_symbol = NULL;
396 expressionP->X_op_symbol = NULL;
397
398 return TRUE;
399 }
400
401 /* Reset the line as if we had not done anything. */
402 input_line_pointer = start;
403 return FALSE;
404 }
405
406 /* Summary of register_name().
407 *
408 * in: Input_line_pointer points to 1st char of operand.
409 *
410 * out: An expressionS.
411 * The operand may have been a register: in this case, X_op == O_register,
412 * X_add_number is set to the register number, and truth is returned.
413 * Input_line_pointer->(next non-blank) char after operand, or is in
414 * its original state.
415 */
416
417 static bfd_boolean
418 xr_register_name (expressionP)
419 expressionS *expressionP;
420 {
421 int reg_number;
422 char *name;
423 char *start;
424 char c;
425
426 /* Find the spelling of the operand. */
427 start = name = input_line_pointer;
428
429 c = get_symbol_end ();
430 reg_number = reg_name_search (xr_registers, XR_REG_NAME_CNT, name);
431
432 /* Put back the delimiting char. */
433 *input_line_pointer = c;
434
435 /* Look to see if it's in the register table. */
436 if (reg_number >= 0)
437 {
438 expressionP->X_op = O_register;
439 expressionP->X_add_number = reg_number;
440
441 /* Make the rest nice. */
442 expressionP->X_add_symbol = NULL;
443 expressionP->X_op_symbol = NULL;
444
445 return TRUE;
446 }
447
448 /* Reset the line as if we had not done anything. */
449 input_line_pointer = start;
450 return FALSE;
451 }
452
453 /* Summary of register_name().
454 *
455 * in: Input_line_pointer points to 1st char of operand.
456 *
457 * out: An expressionS.
458 * The operand may have been a register: in this case, X_op == O_register,
459 * X_add_number is set to the register number, and truth is returned.
460 * Input_line_pointer->(next non-blank) char after operand, or is in
461 * its original state.
462 */
463
464 static bfd_boolean
465 data_register_name (expressionP)
466 expressionS *expressionP;
467 {
468 int reg_number;
469 char *name;
470 char *start;
471 char c;
472
473 /* Find the spelling of the operand. */
474 start = name = input_line_pointer;
475
476 c = get_symbol_end ();
477 reg_number = reg_name_search (data_registers, DATA_REG_NAME_CNT, name);
478
479 /* Put back the delimiting char. */
480 *input_line_pointer = c;
481
482 /* Look to see if it's in the register table. */
483 if (reg_number >= 0)
484 {
485 expressionP->X_op = O_register;
486 expressionP->X_add_number = reg_number;
487
488 /* Make the rest nice. */
489 expressionP->X_add_symbol = NULL;
490 expressionP->X_op_symbol = NULL;
491
492 return TRUE;
493 }
494
495 /* Reset the line as if we had not done anything. */
496 input_line_pointer = start;
497 return FALSE;
498 }
499
500 /* Summary of register_name().
501 *
502 * in: Input_line_pointer points to 1st char of operand.
503 *
504 * out: An expressionS.
505 * The operand may have been a register: in this case, X_op == O_register,
506 * X_add_number is set to the register number, and truth is returned.
507 * Input_line_pointer->(next non-blank) char after operand, or is in
508 * its original state.
509 */
510
511 static bfd_boolean
512 address_register_name (expressionP)
513 expressionS *expressionP;
514 {
515 int reg_number;
516 char *name;
517 char *start;
518 char c;
519
520 /* Find the spelling of the operand. */
521 start = name = input_line_pointer;
522
523 c = get_symbol_end ();
524 reg_number = reg_name_search (address_registers, ADDRESS_REG_NAME_CNT, name);
525
526 /* Put back the delimiting char. */
527 *input_line_pointer = c;
528
529 /* Look to see if it's in the register table. */
530 if (reg_number >= 0)
531 {
532 expressionP->X_op = O_register;
533 expressionP->X_add_number = reg_number;
534
535 /* Make the rest nice. */
536 expressionP->X_add_symbol = NULL;
537 expressionP->X_op_symbol = NULL;
538
539 return TRUE;
540 }
541
542 /* Reset the line as if we had not done anything. */
543 input_line_pointer = start;
544 return FALSE;
545 }
546
547 /* Summary of register_name().
548 *
549 * in: Input_line_pointer points to 1st char of operand.
550 *
551 * out: An expressionS.
552 * The operand may have been a register: in this case, X_op == O_register,
553 * X_add_number is set to the register number, and truth is returned.
554 * Input_line_pointer->(next non-blank) char after operand, or is in
555 * its original state.
556 */
557
558 static bfd_boolean
559 other_register_name (expressionP)
560 expressionS *expressionP;
561 {
562 int reg_number;
563 char *name;
564 char *start;
565 char c;
566
567 /* Find the spelling of the operand. */
568 start = name = input_line_pointer;
569
570 c = get_symbol_end ();
571 reg_number = reg_name_search (other_registers, OTHER_REG_NAME_CNT, name);
572
573 /* Put back the delimiting char. */
574 *input_line_pointer = c;
575
576 /* Look to see if it's in the register table. */
577 if (reg_number == 0
578 || (reg_number == AM33 && HAVE_AM33))
579 {
580 expressionP->X_op = O_register;
581 expressionP->X_add_number = 0;
582
583 /* Make the rest nice. */
584 expressionP->X_add_symbol = NULL;
585 expressionP->X_op_symbol = NULL;
586
587 return TRUE;
588 }
589
590 /* Reset the line as if we had not done anything. */
591 input_line_pointer = start;
592 return FALSE;
593 }
594
595 static bfd_boolean double_register_name PARAMS ((expressionS *));
596 static bfd_boolean float_register_name PARAMS ((expressionS *));
597
598 /* Summary of float_register_name:
599
600 in: Input_line_pointer points to 1st char of operand.
601
602 out: A expressionS.
603 The operand may have been a register: in this case, X_op == O_register,
604 X_add_number is set to the register number, and truth is returned.
605 Input_line_pointer->(next non-blank) char after operand, or is in
606 its original state. */
607
608 static bfd_boolean
609 float_register_name (expressionP)
610 expressionS *expressionP;
611 {
612 int reg_number;
613 char *name;
614 char *start;
615 char c;
616
617 /* Find the spelling of the operand. */
618 start = name = input_line_pointer;
619
620 c = get_symbol_end ();
621 reg_number = reg_name_search (float_registers, FLOAT_REG_NAME_CNT, name);
622
623 /* Put back the delimiting char. */
624 * input_line_pointer = c;
625
626 /* Look to see if it's in the register table. */
627 if (reg_number >= 0)
628 {
629 expressionP->X_op = O_register;
630 expressionP->X_add_number = reg_number;
631
632 /* Make the rest nice. */
633 expressionP->X_add_symbol = NULL;
634 expressionP->X_op_symbol = NULL;
635
636 return TRUE;
637 }
638
639 /* Reset the line as if we had not done anything. */
640 input_line_pointer = start;
641 return FALSE;
642 }
643
644 /* Summary of double_register_name:
645
646 in: Input_line_pointer points to 1st char of operand.
647
648 out: A expressionS.
649 The operand may have been a register: in this case, X_op == O_register,
650 X_add_number is set to the register number, and truth is returned.
651 Input_line_pointer->(next non-blank) char after operand, or is in
652 its original state. */
653
654 static bfd_boolean
655 double_register_name (expressionP)
656 expressionS *expressionP;
657 {
658 int reg_number;
659 char *name;
660 char *start;
661 char c;
662
663 /* Find the spelling of the operand. */
664 start = name = input_line_pointer;
665
666 c = get_symbol_end ();
667 reg_number = reg_name_search (double_registers, DOUBLE_REG_NAME_CNT, name);
668
669 /* Put back the delimiting char. */
670 * input_line_pointer = c;
671
672 /* Look to see if it's in the register table. */
673 if (reg_number >= 0)
674 {
675 expressionP->X_op = O_register;
676 expressionP->X_add_number = reg_number;
677
678 /* Make the rest nice. */
679 expressionP->X_add_symbol = NULL;
680 expressionP->X_op_symbol = NULL;
681
682 return TRUE;
683 }
684
685 /* Reset the line as if we had not done anything. */
686 input_line_pointer = start;
687 return FALSE;
688 }
689
690 void
691 md_show_usage (stream)
692 FILE *stream;
693 {
694 fprintf (stream, _("MN10300 assembler options:\n\
695 none yet\n"));
696 }
697
698 int
699 md_parse_option (c, arg)
700 int c ATTRIBUTE_UNUSED;
701 char *arg ATTRIBUTE_UNUSED;
702 {
703 return 0;
704 }
705
706 symbolS *
707 md_undefined_symbol (name)
708 char *name ATTRIBUTE_UNUSED;
709 {
710 return 0;
711 }
712
713 char *
714 md_atof (type, litp, sizep)
715 int type;
716 char *litp;
717 int *sizep;
718 {
719 int prec;
720 LITTLENUM_TYPE words[4];
721 char *t;
722 int i;
723
724 switch (type)
725 {
726 case 'f':
727 prec = 2;
728 break;
729
730 case 'd':
731 prec = 4;
732 break;
733
734 default:
735 *sizep = 0;
736 return "bad call to md_atof";
737 }
738
739 t = atof_ieee (input_line_pointer, type, words);
740 if (t)
741 input_line_pointer = t;
742
743 *sizep = prec * 2;
744
745 for (i = prec - 1; i >= 0; i--)
746 {
747 md_number_to_chars (litp, (valueT) words[i], 2);
748 litp += 2;
749 }
750
751 return NULL;
752 }
753
754 void
755 md_convert_frag (abfd, sec, fragP)
756 bfd *abfd ATTRIBUTE_UNUSED;
757 asection *sec;
758 fragS *fragP;
759 {
760 static unsigned long label_count = 0;
761 char buf[40];
762
763 subseg_change (sec, 0);
764 if (fragP->fr_subtype == 0)
765 {
766 fix_new (fragP, fragP->fr_fix + 1, 1, fragP->fr_symbol,
767 fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
768 fragP->fr_var = 0;
769 fragP->fr_fix += 2;
770 }
771 else if (fragP->fr_subtype == 1)
772 {
773 /* Reverse the condition of the first branch. */
774 int offset = fragP->fr_fix;
775 int opcode = fragP->fr_literal[offset] & 0xff;
776
777 switch (opcode)
778 {
779 case 0xc8:
780 opcode = 0xc9;
781 break;
782 case 0xc9:
783 opcode = 0xc8;
784 break;
785 case 0xc0:
786 opcode = 0xc2;
787 break;
788 case 0xc2:
789 opcode = 0xc0;
790 break;
791 case 0xc3:
792 opcode = 0xc1;
793 break;
794 case 0xc1:
795 opcode = 0xc3;
796 break;
797 case 0xc4:
798 opcode = 0xc6;
799 break;
800 case 0xc6:
801 opcode = 0xc4;
802 break;
803 case 0xc7:
804 opcode = 0xc5;
805 break;
806 case 0xc5:
807 opcode = 0xc7;
808 break;
809 default:
810 abort ();
811 }
812 fragP->fr_literal[offset] = opcode;
813
814 /* Create a fixup for the reversed conditional branch. */
815 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
816 fix_new (fragP, fragP->fr_fix + 1, 1,
817 symbol_new (buf, sec, 0, fragP->fr_next),
818 fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
819
820 /* Now create the unconditional branch + fixup to the
821 final target. */
822 fragP->fr_literal[offset + 2] = 0xcc;
823 fix_new (fragP, fragP->fr_fix + 3, 2, fragP->fr_symbol,
824 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
825 fragP->fr_var = 0;
826 fragP->fr_fix += 5;
827 }
828 else if (fragP->fr_subtype == 2)
829 {
830 /* Reverse the condition of the first branch. */
831 int offset = fragP->fr_fix;
832 int opcode = fragP->fr_literal[offset] & 0xff;
833
834 switch (opcode)
835 {
836 case 0xc8:
837 opcode = 0xc9;
838 break;
839 case 0xc9:
840 opcode = 0xc8;
841 break;
842 case 0xc0:
843 opcode = 0xc2;
844 break;
845 case 0xc2:
846 opcode = 0xc0;
847 break;
848 case 0xc3:
849 opcode = 0xc1;
850 break;
851 case 0xc1:
852 opcode = 0xc3;
853 break;
854 case 0xc4:
855 opcode = 0xc6;
856 break;
857 case 0xc6:
858 opcode = 0xc4;
859 break;
860 case 0xc7:
861 opcode = 0xc5;
862 break;
863 case 0xc5:
864 opcode = 0xc7;
865 break;
866 default:
867 abort ();
868 }
869 fragP->fr_literal[offset] = opcode;
870
871 /* Create a fixup for the reversed conditional branch. */
872 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
873 fix_new (fragP, fragP->fr_fix + 1, 1,
874 symbol_new (buf, sec, 0, fragP->fr_next),
875 fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
876
877 /* Now create the unconditional branch + fixup to the
878 final target. */
879 fragP->fr_literal[offset + 2] = 0xdc;
880 fix_new (fragP, fragP->fr_fix + 3, 4, fragP->fr_symbol,
881 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
882 fragP->fr_var = 0;
883 fragP->fr_fix += 7;
884 }
885 else if (fragP->fr_subtype == 3)
886 {
887 fix_new (fragP, fragP->fr_fix + 2, 1, fragP->fr_symbol,
888 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
889 fragP->fr_var = 0;
890 fragP->fr_fix += 3;
891 }
892 else if (fragP->fr_subtype == 4)
893 {
894 /* Reverse the condition of the first branch. */
895 int offset = fragP->fr_fix;
896 int opcode = fragP->fr_literal[offset + 1] & 0xff;
897
898 switch (opcode)
899 {
900 case 0xe8:
901 opcode = 0xe9;
902 break;
903 case 0xe9:
904 opcode = 0xe8;
905 break;
906 case 0xea:
907 opcode = 0xeb;
908 break;
909 case 0xeb:
910 opcode = 0xea;
911 break;
912 default:
913 abort ();
914 }
915 fragP->fr_literal[offset + 1] = opcode;
916
917 /* Create a fixup for the reversed conditional branch. */
918 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
919 fix_new (fragP, fragP->fr_fix + 2, 1,
920 symbol_new (buf, sec, 0, fragP->fr_next),
921 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
922
923 /* Now create the unconditional branch + fixup to the
924 final target. */
925 fragP->fr_literal[offset + 3] = 0xcc;
926 fix_new (fragP, fragP->fr_fix + 4, 2, fragP->fr_symbol,
927 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
928 fragP->fr_var = 0;
929 fragP->fr_fix += 6;
930 }
931 else if (fragP->fr_subtype == 5)
932 {
933 /* Reverse the condition of the first branch. */
934 int offset = fragP->fr_fix;
935 int opcode = fragP->fr_literal[offset + 1] & 0xff;
936
937 switch (opcode)
938 {
939 case 0xe8:
940 opcode = 0xe9;
941 break;
942 case 0xea:
943 opcode = 0xeb;
944 break;
945 case 0xeb:
946 opcode = 0xea;
947 break;
948 default:
949 abort ();
950 }
951 fragP->fr_literal[offset + 1] = opcode;
952
953 /* Create a fixup for the reversed conditional branch. */
954 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
955 fix_new (fragP, fragP->fr_fix + 2, 1,
956 symbol_new (buf, sec, 0, fragP->fr_next),
957 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
958
959 /* Now create the unconditional branch + fixup to the
960 final target. */
961 fragP->fr_literal[offset + 3] = 0xdc;
962 fix_new (fragP, fragP->fr_fix + 4, 4, fragP->fr_symbol,
963 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
964 fragP->fr_var = 0;
965 fragP->fr_fix += 8;
966 }
967 else if (fragP->fr_subtype == 6)
968 {
969 int offset = fragP->fr_fix;
970 fragP->fr_literal[offset] = 0xcd;
971 fix_new (fragP, fragP->fr_fix + 1, 2, fragP->fr_symbol,
972 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
973 fragP->fr_var = 0;
974 fragP->fr_fix += 5;
975 }
976 else if (fragP->fr_subtype == 7)
977 {
978 int offset = fragP->fr_fix;
979 fragP->fr_literal[offset] = 0xdd;
980 fragP->fr_literal[offset + 5] = fragP->fr_literal[offset + 3];
981 fragP->fr_literal[offset + 6] = fragP->fr_literal[offset + 4];
982
983 fix_new (fragP, fragP->fr_fix + 1, 4, fragP->fr_symbol,
984 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
985 fragP->fr_var = 0;
986 fragP->fr_fix += 7;
987 }
988 else if (fragP->fr_subtype == 8)
989 {
990 int offset = fragP->fr_fix;
991 fragP->fr_literal[offset] = 0xfa;
992 fragP->fr_literal[offset + 1] = 0xff;
993 fix_new (fragP, fragP->fr_fix + 2, 2, fragP->fr_symbol,
994 fragP->fr_offset + 2, 1, BFD_RELOC_16_PCREL);
995 fragP->fr_var = 0;
996 fragP->fr_fix += 4;
997 }
998 else if (fragP->fr_subtype == 9)
999 {
1000 int offset = fragP->fr_fix;
1001 fragP->fr_literal[offset] = 0xfc;
1002 fragP->fr_literal[offset + 1] = 0xff;
1003
1004 fix_new (fragP, fragP->fr_fix + 2, 4, fragP->fr_symbol,
1005 fragP->fr_offset + 2, 1, BFD_RELOC_32_PCREL);
1006 fragP->fr_var = 0;
1007 fragP->fr_fix += 6;
1008 }
1009 else if (fragP->fr_subtype == 10)
1010 {
1011 fragP->fr_literal[fragP->fr_fix] = 0xca;
1012 fix_new (fragP, fragP->fr_fix + 1, 1, fragP->fr_symbol,
1013 fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
1014 fragP->fr_var = 0;
1015 fragP->fr_fix += 2;
1016 }
1017 else if (fragP->fr_subtype == 11)
1018 {
1019 int offset = fragP->fr_fix;
1020 fragP->fr_literal[offset] = 0xcc;
1021
1022 fix_new (fragP, fragP->fr_fix + 1, 2, fragP->fr_symbol,
1023 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
1024 fragP->fr_var = 0;
1025 fragP->fr_fix += 3;
1026 }
1027 else if (fragP->fr_subtype == 12)
1028 {
1029 int offset = fragP->fr_fix;
1030 fragP->fr_literal[offset] = 0xdc;
1031
1032 fix_new (fragP, fragP->fr_fix + 1, 4, fragP->fr_symbol,
1033 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
1034 fragP->fr_var = 0;
1035 fragP->fr_fix += 5;
1036 }
1037 else if (fragP->fr_subtype == 13)
1038 {
1039 fix_new (fragP, fragP->fr_fix + 2, 1, fragP->fr_symbol,
1040 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
1041 fragP->fr_var = 0;
1042 fragP->fr_fix += 3;
1043 }
1044 else if (fragP->fr_subtype == 14)
1045 {
1046 /* Reverse the condition of the first branch. */
1047 int offset = fragP->fr_fix;
1048 int opcode = fragP->fr_literal[offset + 1] & 0xff;
1049
1050 switch (opcode)
1051 {
1052 case 0xd0:
1053 opcode = 0xd1;
1054 break;
1055 case 0xd1:
1056 opcode = 0xd0;
1057 break;
1058 case 0xd2:
1059 opcode = 0xdc;
1060 break;
1061 case 0xd3:
1062 opcode = 0xdb;
1063 break;
1064 case 0xd4:
1065 opcode = 0xda;
1066 break;
1067 case 0xd5:
1068 opcode = 0xd9;
1069 break;
1070 case 0xd6:
1071 opcode = 0xd8;
1072 break;
1073 case 0xd7:
1074 opcode = 0xdd;
1075 break;
1076 case 0xd8:
1077 opcode = 0xd6;
1078 break;
1079 case 0xd9:
1080 opcode = 0xd5;
1081 break;
1082 case 0xda:
1083 opcode = 0xd4;
1084 break;
1085 case 0xdb:
1086 opcode = 0xd3;
1087 break;
1088 case 0xdc:
1089 opcode = 0xd2;
1090 break;
1091 case 0xdd:
1092 opcode = 0xd7;
1093 break;
1094 default:
1095 abort ();
1096 }
1097 fragP->fr_literal[offset + 1] = opcode;
1098
1099 /* Create a fixup for the reversed conditional branch. */
1100 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
1101 fix_new (fragP, fragP->fr_fix + 2, 1,
1102 symbol_new (buf, sec, 0, fragP->fr_next),
1103 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
1104
1105 /* Now create the unconditional branch + fixup to the
1106 final target. */
1107 fragP->fr_literal[offset + 3] = 0xcc;
1108 fix_new (fragP, fragP->fr_fix + 4, 2, fragP->fr_symbol,
1109 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
1110 fragP->fr_var = 0;
1111 fragP->fr_fix += 6;
1112 }
1113 else if (fragP->fr_subtype == 15)
1114 {
1115 /* Reverse the condition of the first branch. */
1116 int offset = fragP->fr_fix;
1117 int opcode = fragP->fr_literal[offset + 1] & 0xff;
1118
1119 switch (opcode)
1120 {
1121 case 0xd0:
1122 opcode = 0xd1;
1123 break;
1124 case 0xd1:
1125 opcode = 0xd0;
1126 break;
1127 case 0xd2:
1128 opcode = 0xdc;
1129 break;
1130 case 0xd3:
1131 opcode = 0xdb;
1132 break;
1133 case 0xd4:
1134 opcode = 0xda;
1135 break;
1136 case 0xd5:
1137 opcode = 0xd9;
1138 break;
1139 case 0xd6:
1140 opcode = 0xd8;
1141 break;
1142 case 0xd7:
1143 opcode = 0xdd;
1144 break;
1145 case 0xd8:
1146 opcode = 0xd6;
1147 break;
1148 case 0xd9:
1149 opcode = 0xd5;
1150 break;
1151 case 0xda:
1152 opcode = 0xd4;
1153 break;
1154 case 0xdb:
1155 opcode = 0xd3;
1156 break;
1157 case 0xdc:
1158 opcode = 0xd2;
1159 break;
1160 case 0xdd:
1161 opcode = 0xd7;
1162 break;
1163 default:
1164 abort ();
1165 }
1166 fragP->fr_literal[offset + 1] = opcode;
1167
1168 /* Create a fixup for the reversed conditional branch. */
1169 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
1170 fix_new (fragP, fragP->fr_fix + 2, 1,
1171 symbol_new (buf, sec, 0, fragP->fr_next),
1172 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
1173
1174 /* Now create the unconditional branch + fixup to the
1175 final target. */
1176 fragP->fr_literal[offset + 3] = 0xdc;
1177 fix_new (fragP, fragP->fr_fix + 4, 4, fragP->fr_symbol,
1178 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
1179 fragP->fr_var = 0;
1180 fragP->fr_fix += 8;
1181 }
1182 else
1183 abort ();
1184 }
1185
1186 valueT
1187 md_section_align (seg, addr)
1188 asection *seg;
1189 valueT addr;
1190 {
1191 int align = bfd_get_section_alignment (stdoutput, seg);
1192 return ((addr + (1 << align) - 1) & (-1 << align));
1193 }
1194
1195 void
1196 md_begin ()
1197 {
1198 char *prev_name = "";
1199 register const struct mn10300_opcode *op;
1200
1201 mn10300_hash = hash_new ();
1202
1203 /* Insert unique names into hash table. The MN10300 instruction set
1204 has many identical opcode names that have different opcodes based
1205 on the operands. This hash table then provides a quick index to
1206 the first opcode with a particular name in the opcode table. */
1207
1208 op = mn10300_opcodes;
1209 while (op->name)
1210 {
1211 if (strcmp (prev_name, op->name))
1212 {
1213 prev_name = (char *) op->name;
1214 hash_insert (mn10300_hash, op->name, (char *) op);
1215 }
1216 op++;
1217 }
1218
1219 /* Set the default machine type. */
1220 #ifdef TE_LINUX
1221 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mn10300, AM33_2))
1222 as_warn (_("could not set architecture and machine"));
1223
1224 current_machine = AM33_2;
1225 #else
1226 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mn10300, MN103))
1227 as_warn (_("could not set architecture and machine"));
1228
1229 current_machine = MN103;
1230 #endif
1231 }
1232
1233 static symbolS *GOT_symbol;
1234
1235 static inline int mn10300_check_fixup PARAMS ((struct mn10300_fixup *));
1236 static inline int mn10300_PIC_related_p PARAMS ((symbolS *));
1237
1238 static inline int
1239 mn10300_PIC_related_p (sym)
1240 symbolS *sym;
1241 {
1242 expressionS *exp;
1243
1244 if (! sym)
1245 return 0;
1246
1247 if (sym == GOT_symbol)
1248 return 1;
1249
1250 exp = symbol_get_value_expression (sym);
1251
1252 return (exp->X_op == O_PIC_reloc
1253 || mn10300_PIC_related_p (exp->X_add_symbol)
1254 || mn10300_PIC_related_p (exp->X_op_symbol));
1255 }
1256
1257 static inline int
1258 mn10300_check_fixup (fixup)
1259 struct mn10300_fixup *fixup;
1260 {
1261 expressionS *exp = &fixup->exp;
1262
1263 repeat:
1264 switch (exp->X_op)
1265 {
1266 case O_add:
1267 case O_subtract: /* If we're sufficiently unlucky that the label
1268 and the expression that references it happen
1269 to end up in different frags, the subtract
1270 won't be simplified within expression(). */
1271 /* The PIC-related operand must be the first operand of a sum. */
1272 if (exp != &fixup->exp || mn10300_PIC_related_p (exp->X_op_symbol))
1273 return 1;
1274
1275 if (exp->X_add_symbol && exp->X_add_symbol == GOT_symbol)
1276 fixup->reloc = BFD_RELOC_32_GOT_PCREL;
1277
1278 exp = symbol_get_value_expression (exp->X_add_symbol);
1279 goto repeat;
1280
1281 case O_symbol:
1282 if (exp->X_add_symbol && exp->X_add_symbol == GOT_symbol)
1283 fixup->reloc = BFD_RELOC_32_GOT_PCREL;
1284 break;
1285
1286 case O_PIC_reloc:
1287 fixup->reloc = exp->X_md;
1288 exp->X_op = O_symbol;
1289 if (fixup->reloc == BFD_RELOC_32_PLT_PCREL
1290 && fixup->opindex >= 0
1291 && (mn10300_operands[fixup->opindex].flags
1292 & MN10300_OPERAND_RELAX))
1293 return 1;
1294 break;
1295
1296 default:
1297 return (mn10300_PIC_related_p (exp->X_add_symbol)
1298 || mn10300_PIC_related_p (exp->X_op_symbol));
1299 }
1300
1301 return 0;
1302 }
1303
1304 void
1305 mn10300_cons_fix_new (frag, off, size, exp)
1306 fragS *frag;
1307 int off, size;
1308 expressionS *exp;
1309 {
1310 struct mn10300_fixup fixup;
1311
1312 fixup.opindex = -1;
1313 fixup.exp = *exp;
1314 fixup.reloc = BFD_RELOC_UNUSED;
1315
1316 mn10300_check_fixup (&fixup);
1317
1318 if (fixup.reloc == BFD_RELOC_MN10300_GOT32)
1319 switch (size)
1320 {
1321 case 2:
1322 fixup.reloc = BFD_RELOC_MN10300_GOT16;
1323 break;
1324
1325 case 3:
1326 fixup.reloc = BFD_RELOC_MN10300_GOT24;
1327 break;
1328
1329 case 4:
1330 break;
1331
1332 default:
1333 goto error;
1334 }
1335 else if (fixup.reloc == BFD_RELOC_UNUSED)
1336 switch (size)
1337 {
1338 case 1:
1339 fixup.reloc = BFD_RELOC_8;
1340 break;
1341
1342 case 2:
1343 fixup.reloc = BFD_RELOC_16;
1344 break;
1345
1346 case 3:
1347 fixup.reloc = BFD_RELOC_24;
1348 break;
1349
1350 case 4:
1351 fixup.reloc = BFD_RELOC_32;
1352 break;
1353
1354 default:
1355 goto error;
1356 }
1357 else if (size != 4)
1358 {
1359 error:
1360 as_bad (_("unsupported BFD relocation size %u"), size);
1361 fixup.reloc = BFD_RELOC_UNUSED;
1362 }
1363
1364 fix_new_exp (frag, off, size, &fixup.exp, 0, fixup.reloc);
1365 }
1366
1367 void
1368 md_assemble (str)
1369 char *str;
1370 {
1371 char *s;
1372 struct mn10300_opcode *opcode;
1373 struct mn10300_opcode *next_opcode;
1374 const unsigned char *opindex_ptr;
1375 int next_opindex, relaxable;
1376 unsigned long insn, extension, size = 0;
1377 char *f;
1378 int i;
1379 int match;
1380
1381 /* Get the opcode. */
1382 for (s = str; *s != '\0' && !ISSPACE (*s); s++)
1383 ;
1384 if (*s != '\0')
1385 *s++ = '\0';
1386
1387 /* Find the first opcode with the proper name. */
1388 opcode = (struct mn10300_opcode *) hash_find (mn10300_hash, str);
1389 if (opcode == NULL)
1390 {
1391 as_bad (_("Unrecognized opcode: `%s'"), str);
1392 return;
1393 }
1394
1395 str = s;
1396 while (ISSPACE (*str))
1397 ++str;
1398
1399 input_line_pointer = str;
1400
1401 for (;;)
1402 {
1403 const char *errmsg;
1404 int op_idx;
1405 char *hold;
1406 int extra_shift = 0;
1407
1408 errmsg = _("Invalid opcode/operands");
1409
1410 /* Reset the array of register operands. */
1411 memset (mn10300_reg_operands, -1, sizeof (mn10300_reg_operands));
1412
1413 relaxable = 0;
1414 fc = 0;
1415 match = 0;
1416 next_opindex = 0;
1417 insn = opcode->opcode;
1418 extension = 0;
1419
1420 /* If the instruction is not available on the current machine
1421 then it can not possibly match. */
1422 if (opcode->machine
1423 && !(opcode->machine == AM33_2 && HAVE_AM33_2)
1424 && !(opcode->machine == AM33 && HAVE_AM33)
1425 && !(opcode->machine == AM30 && HAVE_AM30))
1426 goto error;
1427
1428 for (op_idx = 1, opindex_ptr = opcode->operands;
1429 *opindex_ptr != 0;
1430 opindex_ptr++, op_idx++)
1431 {
1432 const struct mn10300_operand *operand;
1433 expressionS ex;
1434
1435 if (next_opindex == 0)
1436 {
1437 operand = &mn10300_operands[*opindex_ptr];
1438 }
1439 else
1440 {
1441 operand = &mn10300_operands[next_opindex];
1442 next_opindex = 0;
1443 }
1444
1445 while (*str == ' ' || *str == ',')
1446 ++str;
1447
1448 if (operand->flags & MN10300_OPERAND_RELAX)
1449 relaxable = 1;
1450
1451 /* Gather the operand. */
1452 hold = input_line_pointer;
1453 input_line_pointer = str;
1454
1455 if (operand->flags & MN10300_OPERAND_PAREN)
1456 {
1457 if (*input_line_pointer != ')' && *input_line_pointer != '(')
1458 {
1459 input_line_pointer = hold;
1460 str = hold;
1461 goto error;
1462 }
1463 input_line_pointer++;
1464 goto keep_going;
1465 }
1466 /* See if we can match the operands. */
1467 else if (operand->flags & MN10300_OPERAND_DREG)
1468 {
1469 if (!data_register_name (&ex))
1470 {
1471 input_line_pointer = hold;
1472 str = hold;
1473 goto error;
1474 }
1475 }
1476 else if (operand->flags & MN10300_OPERAND_AREG)
1477 {
1478 if (!address_register_name (&ex))
1479 {
1480 input_line_pointer = hold;
1481 str = hold;
1482 goto error;
1483 }
1484 }
1485 else if (operand->flags & MN10300_OPERAND_SP)
1486 {
1487 char *start = input_line_pointer;
1488 char c = get_symbol_end ();
1489
1490 if (strcasecmp (start, "sp") != 0)
1491 {
1492 *input_line_pointer = c;
1493 input_line_pointer = hold;
1494 str = hold;
1495 goto error;
1496 }
1497 *input_line_pointer = c;
1498 goto keep_going;
1499 }
1500 else if (operand->flags & MN10300_OPERAND_RREG)
1501 {
1502 if (!r_register_name (&ex))
1503 {
1504 input_line_pointer = hold;
1505 str = hold;
1506 goto error;
1507 }
1508 }
1509 else if (operand->flags & MN10300_OPERAND_XRREG)
1510 {
1511 if (!xr_register_name (&ex))
1512 {
1513 input_line_pointer = hold;
1514 str = hold;
1515 goto error;
1516 }
1517 }
1518 else if (operand->flags & MN10300_OPERAND_FSREG)
1519 {
1520 if (!float_register_name (&ex))
1521 {
1522 input_line_pointer = hold;
1523 str = hold;
1524 goto error;
1525 }
1526 }
1527 else if (operand->flags & MN10300_OPERAND_FDREG)
1528 {
1529 if (!double_register_name (&ex))
1530 {
1531 input_line_pointer = hold;
1532 str = hold;
1533 goto error;
1534 }
1535 }
1536 else if (operand->flags & MN10300_OPERAND_FPCR)
1537 {
1538 char *start = input_line_pointer;
1539 char c = get_symbol_end ();
1540
1541 if (strcasecmp (start, "fpcr") != 0)
1542 {
1543 *input_line_pointer = c;
1544 input_line_pointer = hold;
1545 str = hold;
1546 goto error;
1547 }
1548 *input_line_pointer = c;
1549 goto keep_going;
1550 }
1551 else if (operand->flags & MN10300_OPERAND_USP)
1552 {
1553 char *start = input_line_pointer;
1554 char c = get_symbol_end ();
1555
1556 if (strcasecmp (start, "usp") != 0)
1557 {
1558 *input_line_pointer = c;
1559 input_line_pointer = hold;
1560 str = hold;
1561 goto error;
1562 }
1563 *input_line_pointer = c;
1564 goto keep_going;
1565 }
1566 else if (operand->flags & MN10300_OPERAND_SSP)
1567 {
1568 char *start = input_line_pointer;
1569 char c = get_symbol_end ();
1570
1571 if (strcasecmp (start, "ssp") != 0)
1572 {
1573 *input_line_pointer = c;
1574 input_line_pointer = hold;
1575 str = hold;
1576 goto error;
1577 }
1578 *input_line_pointer = c;
1579 goto keep_going;
1580 }
1581 else if (operand->flags & MN10300_OPERAND_MSP)
1582 {
1583 char *start = input_line_pointer;
1584 char c = get_symbol_end ();
1585
1586 if (strcasecmp (start, "msp") != 0)
1587 {
1588 *input_line_pointer = c;
1589 input_line_pointer = hold;
1590 str = hold;
1591 goto error;
1592 }
1593 *input_line_pointer = c;
1594 goto keep_going;
1595 }
1596 else if (operand->flags & MN10300_OPERAND_PC)
1597 {
1598 char *start = input_line_pointer;
1599 char c = get_symbol_end ();
1600
1601 if (strcasecmp (start, "pc") != 0)
1602 {
1603 *input_line_pointer = c;
1604 input_line_pointer = hold;
1605 str = hold;
1606 goto error;
1607 }
1608 *input_line_pointer = c;
1609 goto keep_going;
1610 }
1611 else if (operand->flags & MN10300_OPERAND_EPSW)
1612 {
1613 char *start = input_line_pointer;
1614 char c = get_symbol_end ();
1615
1616 if (strcasecmp (start, "epsw") != 0)
1617 {
1618 *input_line_pointer = c;
1619 input_line_pointer = hold;
1620 str = hold;
1621 goto error;
1622 }
1623 *input_line_pointer = c;
1624 goto keep_going;
1625 }
1626 else if (operand->flags & MN10300_OPERAND_PLUS)
1627 {
1628 if (*input_line_pointer != '+')
1629 {
1630 input_line_pointer = hold;
1631 str = hold;
1632 goto error;
1633 }
1634 input_line_pointer++;
1635 goto keep_going;
1636 }
1637 else if (operand->flags & MN10300_OPERAND_PSW)
1638 {
1639 char *start = input_line_pointer;
1640 char c = get_symbol_end ();
1641
1642 if (strcasecmp (start, "psw") != 0)
1643 {
1644 *input_line_pointer = c;
1645 input_line_pointer = hold;
1646 str = hold;
1647 goto error;
1648 }
1649 *input_line_pointer = c;
1650 goto keep_going;
1651 }
1652 else if (operand->flags & MN10300_OPERAND_MDR)
1653 {
1654 char *start = input_line_pointer;
1655 char c = get_symbol_end ();
1656
1657 if (strcasecmp (start, "mdr") != 0)
1658 {
1659 *input_line_pointer = c;
1660 input_line_pointer = hold;
1661 str = hold;
1662 goto error;
1663 }
1664 *input_line_pointer = c;
1665 goto keep_going;
1666 }
1667 else if (operand->flags & MN10300_OPERAND_REG_LIST)
1668 {
1669 unsigned int value = 0;
1670 if (*input_line_pointer != '[')
1671 {
1672 input_line_pointer = hold;
1673 str = hold;
1674 goto error;
1675 }
1676
1677 /* Eat the '['. */
1678 input_line_pointer++;
1679
1680 /* We used to reject a null register list here; however,
1681 we accept it now so the compiler can emit "call"
1682 instructions for all calls to named functions.
1683
1684 The linker can then fill in the appropriate bits for the
1685 register list and stack size or change the instruction
1686 into a "calls" if using "call" is not profitable. */
1687 while (*input_line_pointer != ']')
1688 {
1689 char *start;
1690 char c;
1691
1692 if (*input_line_pointer == ',')
1693 input_line_pointer++;
1694
1695 start = input_line_pointer;
1696 c = get_symbol_end ();
1697
1698 if (strcasecmp (start, "d2") == 0)
1699 {
1700 value |= 0x80;
1701 *input_line_pointer = c;
1702 }
1703 else if (strcasecmp (start, "d3") == 0)
1704 {
1705 value |= 0x40;
1706 *input_line_pointer = c;
1707 }
1708 else if (strcasecmp (start, "a2") == 0)
1709 {
1710 value |= 0x20;
1711 *input_line_pointer = c;
1712 }
1713 else if (strcasecmp (start, "a3") == 0)
1714 {
1715 value |= 0x10;
1716 *input_line_pointer = c;
1717 }
1718 else if (strcasecmp (start, "other") == 0)
1719 {
1720 value |= 0x08;
1721 *input_line_pointer = c;
1722 }
1723 else if (HAVE_AM33
1724 && strcasecmp (start, "exreg0") == 0)
1725 {
1726 value |= 0x04;
1727 *input_line_pointer = c;
1728 }
1729 else if (HAVE_AM33
1730 && strcasecmp (start, "exreg1") == 0)
1731 {
1732 value |= 0x02;
1733 *input_line_pointer = c;
1734 }
1735 else if (HAVE_AM33
1736 && strcasecmp (start, "exother") == 0)
1737 {
1738 value |= 0x01;
1739 *input_line_pointer = c;
1740 }
1741 else if (HAVE_AM33
1742 && strcasecmp (start, "all") == 0)
1743 {
1744 value |= 0xff;
1745 *input_line_pointer = c;
1746 }
1747 else
1748 {
1749 input_line_pointer = hold;
1750 str = hold;
1751 goto error;
1752 }
1753 }
1754 input_line_pointer++;
1755 mn10300_insert_operand (&insn, &extension, operand,
1756 value, (char *) NULL, 0, 0);
1757 goto keep_going;
1758
1759 }
1760 else if (data_register_name (&ex))
1761 {
1762 input_line_pointer = hold;
1763 str = hold;
1764 goto error;
1765 }
1766 else if (address_register_name (&ex))
1767 {
1768 input_line_pointer = hold;
1769 str = hold;
1770 goto error;
1771 }
1772 else if (other_register_name (&ex))
1773 {
1774 input_line_pointer = hold;
1775 str = hold;
1776 goto error;
1777 }
1778 else if (HAVE_AM33 && r_register_name (&ex))
1779 {
1780 input_line_pointer = hold;
1781 str = hold;
1782 goto error;
1783 }
1784 else if (HAVE_AM33 && xr_register_name (&ex))
1785 {
1786 input_line_pointer = hold;
1787 str = hold;
1788 goto error;
1789 }
1790 else if (HAVE_AM33_2 && float_register_name (&ex))
1791 {
1792 input_line_pointer = hold;
1793 str = hold;
1794 goto error;
1795 }
1796 else if (HAVE_AM33_2 && double_register_name (&ex))
1797 {
1798 input_line_pointer = hold;
1799 str = hold;
1800 goto error;
1801 }
1802 else if (*str == ')' || *str == '(')
1803 {
1804 input_line_pointer = hold;
1805 str = hold;
1806 goto error;
1807 }
1808 else
1809 {
1810 expression (&ex);
1811 }
1812
1813 switch (ex.X_op)
1814 {
1815 case O_illegal:
1816 errmsg = _("illegal operand");
1817 goto error;
1818 case O_absent:
1819 errmsg = _("missing operand");
1820 goto error;
1821 case O_register:
1822 {
1823 int mask;
1824
1825 mask = MN10300_OPERAND_DREG | MN10300_OPERAND_AREG;
1826 if (HAVE_AM33)
1827 mask |= MN10300_OPERAND_RREG | MN10300_OPERAND_XRREG;
1828 if (HAVE_AM33_2)
1829 mask |= MN10300_OPERAND_FSREG | MN10300_OPERAND_FDREG;
1830 if ((operand->flags & mask) == 0)
1831 {
1832 input_line_pointer = hold;
1833 str = hold;
1834 goto error;
1835 }
1836
1837 if (opcode->format == FMT_D1 || opcode->format == FMT_S1)
1838 extra_shift = 8;
1839 else if (opcode->format == FMT_D2
1840 || opcode->format == FMT_D4
1841 || opcode->format == FMT_S2
1842 || opcode->format == FMT_S4
1843 || opcode->format == FMT_S6
1844 || opcode->format == FMT_D5)
1845 extra_shift = 16;
1846 else if (opcode->format == FMT_D7)
1847 extra_shift = 8;
1848 else if (opcode->format == FMT_D8 || opcode->format == FMT_D9)
1849 extra_shift = 8;
1850 else
1851 extra_shift = 0;
1852
1853 mn10300_insert_operand (&insn, &extension, operand,
1854 ex.X_add_number, (char *) NULL,
1855 0, extra_shift);
1856
1857 /* And note the register number in the register array. */
1858 mn10300_reg_operands[op_idx - 1] = ex.X_add_number;
1859 break;
1860 }
1861
1862 case O_constant:
1863 /* If this operand can be promoted, and it doesn't
1864 fit into the allocated bitfield for this insn,
1865 then promote it (ie this opcode does not match). */
1866 if (operand->flags
1867 & (MN10300_OPERAND_PROMOTE | MN10300_OPERAND_RELAX)
1868 && !check_operand (insn, operand, ex.X_add_number))
1869 {
1870 input_line_pointer = hold;
1871 str = hold;
1872 goto error;
1873 }
1874
1875 mn10300_insert_operand (&insn, &extension, operand,
1876 ex.X_add_number, (char *) NULL,
1877 0, 0);
1878 break;
1879
1880 default:
1881 /* If this operand can be promoted, then this opcode didn't
1882 match since we can't know if it needed promotion! */
1883 if (operand->flags & MN10300_OPERAND_PROMOTE)
1884 {
1885 input_line_pointer = hold;
1886 str = hold;
1887 goto error;
1888 }
1889
1890 /* We need to generate a fixup for this expression. */
1891 if (fc >= MAX_INSN_FIXUPS)
1892 as_fatal (_("too many fixups"));
1893 fixups[fc].exp = ex;
1894 fixups[fc].opindex = *opindex_ptr;
1895 fixups[fc].reloc = BFD_RELOC_UNUSED;
1896 if (mn10300_check_fixup (& fixups[fc]))
1897 goto error;
1898 ++fc;
1899 break;
1900 }
1901
1902 keep_going:
1903 str = input_line_pointer;
1904 input_line_pointer = hold;
1905
1906 while (*str == ' ' || *str == ',')
1907 ++str;
1908
1909 }
1910
1911 /* Make sure we used all the operands! */
1912 if (*str != ',')
1913 match = 1;
1914
1915 /* If this instruction has registers that must not match, verify
1916 that they do indeed not match. */
1917 if (opcode->no_match_operands)
1918 {
1919 int i;
1920
1921 /* Look at each operand to see if it's marked. */
1922 for (i = 0; i < MN10300_MAX_OPERANDS; i++)
1923 {
1924 if ((1 << i) & opcode->no_match_operands)
1925 {
1926 int j;
1927
1928 /* operand I is marked. Check that it does not match any
1929 operands > I which are marked. */
1930 for (j = i + 1; j < MN10300_MAX_OPERANDS; j++)
1931 {
1932 if (((1 << j) & opcode->no_match_operands)
1933 && mn10300_reg_operands[i] == mn10300_reg_operands[j])
1934 {
1935 errmsg = _("Invalid register specification.");
1936 match = 0;
1937 goto error;
1938 }
1939 }
1940 }
1941 }
1942 }
1943
1944 error:
1945 if (match == 0)
1946 {
1947 next_opcode = opcode + 1;
1948 if (!strcmp (next_opcode->name, opcode->name))
1949 {
1950 opcode = next_opcode;
1951 continue;
1952 }
1953
1954 as_bad ("%s", errmsg);
1955 return;
1956 }
1957 break;
1958 }
1959
1960 while (ISSPACE (*str))
1961 ++str;
1962
1963 if (*str != '\0')
1964 as_bad (_("junk at end of line: `%s'"), str);
1965
1966 input_line_pointer = str;
1967
1968 /* Determine the size of the instruction. */
1969 if (opcode->format == FMT_S0)
1970 size = 1;
1971
1972 if (opcode->format == FMT_S1 || opcode->format == FMT_D0)
1973 size = 2;
1974
1975 if (opcode->format == FMT_S2 || opcode->format == FMT_D1)
1976 size = 3;
1977
1978 if (opcode->format == FMT_D6)
1979 size = 3;
1980
1981 if (opcode->format == FMT_D7 || opcode->format == FMT_D10)
1982 size = 4;
1983
1984 if (opcode->format == FMT_D8)
1985 size = 6;
1986
1987 if (opcode->format == FMT_D9)
1988 size = 7;
1989
1990 if (opcode->format == FMT_S4)
1991 size = 5;
1992
1993 if (opcode->format == FMT_S6 || opcode->format == FMT_D5)
1994 size = 7;
1995
1996 if (opcode->format == FMT_D2)
1997 size = 4;
1998
1999 if (opcode->format == FMT_D3)
2000 size = 5;
2001
2002 if (opcode->format == FMT_D4)
2003 size = 6;
2004
2005 if (relaxable && fc > 0)
2006 {
2007 /* On a 64-bit host the size of an 'int' is not the same
2008 as the size of a pointer, so we need a union to convert
2009 the opindex field of the fr_cgen structure into a char *
2010 so that it can be stored in the frag. We do not have
2011 to worry about loosing accuracy as we are not going to
2012 be even close to the 32bit limit of the int. */
2013 union
2014 {
2015 int opindex;
2016 char * ptr;
2017 }
2018 opindex_converter;
2019 int type;
2020
2021 /* We want to anchor the line info to the previous frag (if
2022 there isn't one, create it), so that, when the insn is
2023 resized, we still get the right address for the beginning of
2024 the region. */
2025 f = frag_more (0);
2026 dwarf2_emit_insn (0);
2027
2028 /* bCC */
2029 if (size == 2)
2030 {
2031 /* Handle bra specially. Basically treat it like jmp so
2032 that we automatically handle 8, 16 and 32 bit offsets
2033 correctly as well as jumps to an undefined address.
2034
2035 It is also important to not treat it like other bCC
2036 instructions since the long forms of bra is different
2037 from other bCC instructions. */
2038 if (opcode->opcode == 0xca00)
2039 type = 10;
2040 else
2041 type = 0;
2042 }
2043 /* call */
2044 else if (size == 5)
2045 type = 6;
2046 /* calls */
2047 else if (size == 4)
2048 type = 8;
2049 /* jmp */
2050 else if (size == 3 && opcode->opcode == 0xcc0000)
2051 type = 10;
2052 else if (size == 3 && (opcode->opcode & 0xfff000) == 0xf8d000)
2053 type = 13;
2054 /* bCC (uncommon cases) */
2055 else
2056 type = 3;
2057
2058 opindex_converter.opindex = fixups[0].opindex;
2059 f = frag_var (rs_machine_dependent, 8, 8 - size, type,
2060 fixups[0].exp.X_add_symbol,
2061 fixups[0].exp.X_add_number,
2062 opindex_converter.ptr);
2063
2064 /* This is pretty hokey. We basically just care about the
2065 opcode, so we have to write out the first word big endian.
2066
2067 The exception is "call", which has two operands that we
2068 care about.
2069
2070 The first operand (the register list) happens to be in the
2071 first instruction word, and will be in the right place if
2072 we output the first word in big endian mode.
2073
2074 The second operand (stack size) is in the extension word,
2075 and we want it to appear as the first character in the extension
2076 word (as it appears in memory). Luckily, writing the extension
2077 word in big endian format will do what we want. */
2078 number_to_chars_bigendian (f, insn, size > 4 ? 4 : size);
2079 if (size > 8)
2080 {
2081 number_to_chars_bigendian (f + 4, extension, 4);
2082 number_to_chars_bigendian (f + 8, 0, size - 8);
2083 }
2084 else if (size > 4)
2085 number_to_chars_bigendian (f + 4, extension, size - 4);
2086 }
2087 else
2088 {
2089 /* Allocate space for the instruction. */
2090 f = frag_more (size);
2091
2092 /* Fill in bytes for the instruction. Note that opcode fields
2093 are written big-endian, 16 & 32bit immediates are written
2094 little endian. Egad. */
2095 if (opcode->format == FMT_S0
2096 || opcode->format == FMT_S1
2097 || opcode->format == FMT_D0
2098 || opcode->format == FMT_D6
2099 || opcode->format == FMT_D7
2100 || opcode->format == FMT_D10
2101 || opcode->format == FMT_D1)
2102 {
2103 number_to_chars_bigendian (f, insn, size);
2104 }
2105 else if (opcode->format == FMT_S2
2106 && opcode->opcode != 0xdf0000
2107 && opcode->opcode != 0xde0000)
2108 {
2109 /* A format S2 instruction that is _not_ "ret" and "retf". */
2110 number_to_chars_bigendian (f, (insn >> 16) & 0xff, 1);
2111 number_to_chars_littleendian (f + 1, insn & 0xffff, 2);
2112 }
2113 else if (opcode->format == FMT_S2)
2114 {
2115 /* This must be a ret or retf, which is written entirely in
2116 big-endian format. */
2117 number_to_chars_bigendian (f, insn, 3);
2118 }
2119 else if (opcode->format == FMT_S4
2120 && opcode->opcode != 0xdc000000)
2121 {
2122 /* This must be a format S4 "call" instruction. What a pain. */
2123 unsigned long temp = (insn >> 8) & 0xffff;
2124 number_to_chars_bigendian (f, (insn >> 24) & 0xff, 1);
2125 number_to_chars_littleendian (f + 1, temp, 2);
2126 number_to_chars_bigendian (f + 3, insn & 0xff, 1);
2127 number_to_chars_bigendian (f + 4, extension & 0xff, 1);
2128 }
2129 else if (opcode->format == FMT_S4)
2130 {
2131 /* This must be a format S4 "jmp" instruction. */
2132 unsigned long temp = ((insn & 0xffffff) << 8) | (extension & 0xff);
2133 number_to_chars_bigendian (f, (insn >> 24) & 0xff, 1);
2134 number_to_chars_littleendian (f + 1, temp, 4);
2135 }
2136 else if (opcode->format == FMT_S6)
2137 {
2138 unsigned long temp = ((insn & 0xffffff) << 8)
2139 | ((extension >> 16) & 0xff);
2140 number_to_chars_bigendian (f, (insn >> 24) & 0xff, 1);
2141 number_to_chars_littleendian (f + 1, temp, 4);
2142 number_to_chars_bigendian (f + 5, (extension >> 8) & 0xff, 1);
2143 number_to_chars_bigendian (f + 6, extension & 0xff, 1);
2144 }
2145 else if (opcode->format == FMT_D2
2146 && opcode->opcode != 0xfaf80000
2147 && opcode->opcode != 0xfaf00000
2148 && opcode->opcode != 0xfaf40000)
2149 {
2150 /* A format D2 instruction where the 16bit immediate is
2151 really a single 16bit value, not two 8bit values. */
2152 number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
2153 number_to_chars_littleendian (f + 2, insn & 0xffff, 2);
2154 }
2155 else if (opcode->format == FMT_D2)
2156 {
2157 /* A format D2 instruction where the 16bit immediate
2158 is really two 8bit immediates. */
2159 number_to_chars_bigendian (f, insn, 4);
2160 }
2161 else if (opcode->format == FMT_D3)
2162 {
2163 number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
2164 number_to_chars_littleendian (f + 2, insn & 0xffff, 2);
2165 number_to_chars_bigendian (f + 4, extension & 0xff, 1);
2166 }
2167 else if (opcode->format == FMT_D4)
2168 {
2169 unsigned long temp = ((insn & 0xffff) << 16) | (extension & 0xffff);
2170
2171 number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
2172 number_to_chars_littleendian (f + 2, temp, 4);
2173 }
2174 else if (opcode->format == FMT_D5)
2175 {
2176 unsigned long temp = (((insn & 0xffff) << 16)
2177 | ((extension >> 8) & 0xffff));
2178
2179 number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
2180 number_to_chars_littleendian (f + 2, temp, 4);
2181 number_to_chars_bigendian (f + 6, extension & 0xff, 1);
2182 }
2183 else if (opcode->format == FMT_D8)
2184 {
2185 unsigned long temp = ((insn & 0xff) << 16) | (extension & 0xffff);
2186
2187 number_to_chars_bigendian (f, (insn >> 8) & 0xffffff, 3);
2188 number_to_chars_bigendian (f + 3, (temp & 0xff), 1);
2189 number_to_chars_littleendian (f + 4, temp >> 8, 2);
2190 }
2191 else if (opcode->format == FMT_D9)
2192 {
2193 unsigned long temp = ((insn & 0xff) << 24) | (extension & 0xffffff);
2194
2195 number_to_chars_bigendian (f, (insn >> 8) & 0xffffff, 3);
2196 number_to_chars_littleendian (f + 3, temp, 4);
2197 }
2198
2199 /* Create any fixups. */
2200 for (i = 0; i < fc; i++)
2201 {
2202 const struct mn10300_operand *operand;
2203
2204 operand = &mn10300_operands[fixups[i].opindex];
2205 if (fixups[i].reloc != BFD_RELOC_UNUSED
2206 && fixups[i].reloc != BFD_RELOC_32_GOT_PCREL
2207 && fixups[i].reloc != BFD_RELOC_32_GOTOFF
2208 && fixups[i].reloc != BFD_RELOC_32_PLT_PCREL
2209 && fixups[i].reloc != BFD_RELOC_MN10300_GOT32)
2210 {
2211 reloc_howto_type *reloc_howto;
2212 int size;
2213 int offset;
2214 fixS *fixP;
2215
2216 reloc_howto = bfd_reloc_type_lookup (stdoutput,
2217 fixups[i].reloc);
2218
2219 if (!reloc_howto)
2220 abort ();
2221
2222 size = bfd_get_reloc_size (reloc_howto);
2223
2224 if (size < 1 || size > 4)
2225 abort ();
2226
2227 offset = 4 - size;
2228 fixP = fix_new_exp (frag_now, f - frag_now->fr_literal + offset,
2229 size, &fixups[i].exp,
2230 reloc_howto->pc_relative,
2231 fixups[i].reloc);
2232 }
2233 else
2234 {
2235 int reloc, pcrel, reloc_size, offset;
2236 fixS *fixP;
2237
2238 reloc = BFD_RELOC_NONE;
2239 if (fixups[i].reloc != BFD_RELOC_UNUSED)
2240 reloc = fixups[i].reloc;
2241 /* How big is the reloc? Remember SPLIT relocs are
2242 implicitly 32bits. */
2243 if ((operand->flags & MN10300_OPERAND_SPLIT) != 0)
2244 reloc_size = 32;
2245 else if ((operand->flags & MN10300_OPERAND_24BIT) != 0)
2246 reloc_size = 24;
2247 else
2248 reloc_size = operand->bits;
2249
2250 /* Is the reloc pc-relative? */
2251 pcrel = (operand->flags & MN10300_OPERAND_PCREL) != 0;
2252 if (reloc != BFD_RELOC_NONE)
2253 pcrel = bfd_reloc_type_lookup (stdoutput, reloc)->pc_relative;
2254
2255 offset = size - (reloc_size + operand->shift) / 8;
2256
2257 /* Choose a proper BFD relocation type. */
2258 if (reloc != BFD_RELOC_NONE)
2259 ;
2260 else if (pcrel)
2261 {
2262 if (reloc_size == 32)
2263 reloc = BFD_RELOC_32_PCREL;
2264 else if (reloc_size == 16)
2265 reloc = BFD_RELOC_16_PCREL;
2266 else if (reloc_size == 8)
2267 reloc = BFD_RELOC_8_PCREL;
2268 else
2269 abort ();
2270 }
2271 else
2272 {
2273 if (reloc_size == 32)
2274 reloc = BFD_RELOC_32;
2275 else if (reloc_size == 16)
2276 reloc = BFD_RELOC_16;
2277 else if (reloc_size == 8)
2278 reloc = BFD_RELOC_8;
2279 else
2280 abort ();
2281 }
2282
2283 fixP = fix_new_exp (frag_now, f - frag_now->fr_literal + offset,
2284 reloc_size / 8, &fixups[i].exp, pcrel,
2285 ((bfd_reloc_code_real_type) reloc));
2286
2287 if (pcrel)
2288 fixP->fx_offset += offset;
2289 }
2290 }
2291
2292 dwarf2_emit_insn (size);
2293 }
2294 }
2295
2296 /* If while processing a fixup, a reloc really needs to be created
2297 then it is done here. */
2298
2299 arelent *
2300 tc_gen_reloc (seg, fixp)
2301 asection *seg ATTRIBUTE_UNUSED;
2302 fixS *fixp;
2303 {
2304 arelent *reloc;
2305 reloc = (arelent *) xmalloc (sizeof (arelent));
2306
2307 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
2308 if (reloc->howto == (reloc_howto_type *) NULL)
2309 {
2310 as_bad_where (fixp->fx_file, fixp->fx_line,
2311 _("reloc %d not supported by object file format"),
2312 (int) fixp->fx_r_type);
2313 return NULL;
2314 }
2315 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2316
2317 if (fixp->fx_subsy
2318 && S_GET_SEGMENT (fixp->fx_subsy) == absolute_section)
2319 {
2320 fixp->fx_offset -= S_GET_VALUE (fixp->fx_subsy);
2321 fixp->fx_subsy = 0;
2322 }
2323
2324 if (fixp->fx_addsy && fixp->fx_subsy)
2325 {
2326 reloc->sym_ptr_ptr = NULL;
2327
2328 /* If we got a difference between two symbols, and the
2329 subtracted symbol is in the current section, use a
2330 PC-relative relocation. If both symbols are in the same
2331 section, the difference would have already been simplified
2332 to a constant. */
2333 if (S_GET_SEGMENT (fixp->fx_subsy) == seg)
2334 {
2335 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
2336 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2337 reloc->addend = (reloc->address - S_GET_VALUE (fixp->fx_subsy)
2338 + fixp->fx_offset);
2339
2340 switch (fixp->fx_r_type)
2341 {
2342 case BFD_RELOC_8:
2343 reloc->howto = bfd_reloc_type_lookup (stdoutput,
2344 BFD_RELOC_8_PCREL);
2345 return reloc;
2346
2347 case BFD_RELOC_16:
2348 reloc->howto = bfd_reloc_type_lookup (stdoutput,
2349 BFD_RELOC_16_PCREL);
2350 return reloc;
2351
2352 case BFD_RELOC_24:
2353 reloc->howto = bfd_reloc_type_lookup (stdoutput,
2354 BFD_RELOC_24_PCREL);
2355 return reloc;
2356
2357 case BFD_RELOC_32:
2358 reloc->howto = bfd_reloc_type_lookup (stdoutput,
2359 BFD_RELOC_32_PCREL);
2360 return reloc;
2361
2362 default:
2363 /* Try to compute the absolute value below. */
2364 break;
2365 }
2366 }
2367
2368 if ((S_GET_SEGMENT (fixp->fx_addsy) != S_GET_SEGMENT (fixp->fx_subsy))
2369 || S_GET_SEGMENT (fixp->fx_addsy) == undefined_section)
2370 {
2371 as_bad_where (fixp->fx_file, fixp->fx_line,
2372 "Difference of symbols in different sections is not supported");
2373 }
2374 else
2375 {
2376 char *fixpos = fixp->fx_where + fixp->fx_frag->fr_literal;
2377
2378 reloc->addend = (S_GET_VALUE (fixp->fx_addsy)
2379 - S_GET_VALUE (fixp->fx_subsy) + fixp->fx_offset);
2380
2381 switch (fixp->fx_r_type)
2382 {
2383 case BFD_RELOC_8:
2384 md_number_to_chars (fixpos, reloc->addend, 1);
2385 break;
2386
2387 case BFD_RELOC_16:
2388 md_number_to_chars (fixpos, reloc->addend, 2);
2389 break;
2390
2391 case BFD_RELOC_24:
2392 md_number_to_chars (fixpos, reloc->addend, 3);
2393 break;
2394
2395 case BFD_RELOC_32:
2396 md_number_to_chars (fixpos, reloc->addend, 4);
2397 break;
2398
2399 default:
2400 reloc->sym_ptr_ptr
2401 = (asymbol **) bfd_abs_section_ptr->symbol_ptr_ptr;
2402 return reloc;
2403 }
2404 }
2405
2406 if (reloc->sym_ptr_ptr)
2407 free (reloc->sym_ptr_ptr);
2408 free (reloc);
2409 return NULL;
2410 }
2411 else
2412 {
2413 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
2414 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2415 reloc->addend = fixp->fx_offset;
2416 }
2417 return reloc;
2418 }
2419
2420 int
2421 md_estimate_size_before_relax (fragp, seg)
2422 fragS *fragp;
2423 asection *seg;
2424 {
2425 if (fragp->fr_subtype == 6
2426 && (!S_IS_DEFINED (fragp->fr_symbol)
2427 || seg != S_GET_SEGMENT (fragp->fr_symbol)))
2428 fragp->fr_subtype = 7;
2429 else if (fragp->fr_subtype == 8
2430 && (!S_IS_DEFINED (fragp->fr_symbol)
2431 || seg != S_GET_SEGMENT (fragp->fr_symbol)))
2432 fragp->fr_subtype = 9;
2433 else if (fragp->fr_subtype == 10
2434 && (!S_IS_DEFINED (fragp->fr_symbol)
2435 || seg != S_GET_SEGMENT (fragp->fr_symbol)))
2436 fragp->fr_subtype = 12;
2437
2438 if (fragp->fr_subtype == 13)
2439 return 3;
2440 if (fragp->fr_subtype >= sizeof (md_relax_table) / sizeof (md_relax_table[0]))
2441 abort ();
2442
2443 return md_relax_table[fragp->fr_subtype].rlx_length;
2444 }
2445
2446 long
2447 md_pcrel_from (fixp)
2448 fixS *fixp;
2449 {
2450 if (fixp->fx_addsy != (symbolS *) NULL && !S_IS_DEFINED (fixp->fx_addsy))
2451 {
2452 /* The symbol is undefined. Let the linker figure it out. */
2453 return 0;
2454 }
2455 return fixp->fx_frag->fr_address + fixp->fx_where;
2456 }
2457
2458 void
2459 md_apply_fix (fixP, valP, seg)
2460 fixS * fixP;
2461 valueT * valP;
2462 segT seg;
2463 {
2464 char * fixpos = fixP->fx_where + fixP->fx_frag->fr_literal;
2465 int size = 0;
2466 int value = (int) * valP;
2467
2468 assert (fixP->fx_r_type < BFD_RELOC_UNUSED);
2469
2470 /* This should never happen. */
2471 if (seg->flags & SEC_ALLOC)
2472 abort ();
2473
2474 /* The value we are passed in *valuep includes the symbol values.
2475 If we are doing this relocation the code in write.c is going to
2476 call bfd_install_relocation, which is also going to use the symbol
2477 value. That means that if the reloc is fully resolved we want to
2478 use *valuep since bfd_install_relocation is not being used.
2479
2480 However, if the reloc is not fully resolved we do not want to use
2481 *valuep, and must use fx_offset instead. However, if the reloc
2482 is PC relative, we do want to use *valuep since it includes the
2483 result of md_pcrel_from. */
2484 if (fixP->fx_addsy != (symbolS *) NULL && ! fixP->fx_pcrel)
2485 value = fixP->fx_offset;
2486
2487 /* If the fix is relative to a symbol which is not defined, or not
2488 in the same segment as the fix, we cannot resolve it here. */
2489 if (fixP->fx_addsy != NULL
2490 && (! S_IS_DEFINED (fixP->fx_addsy)
2491 || (S_GET_SEGMENT (fixP->fx_addsy) != seg)))
2492 {
2493 fixP->fx_done = 0;
2494 return;
2495 }
2496
2497 switch (fixP->fx_r_type)
2498 {
2499 case BFD_RELOC_8:
2500 case BFD_RELOC_8_PCREL:
2501 size = 1;
2502 break;
2503
2504 case BFD_RELOC_16:
2505 case BFD_RELOC_16_PCREL:
2506 size = 2;
2507 break;
2508
2509 case BFD_RELOC_32:
2510 case BFD_RELOC_32_PCREL:
2511 size = 4;
2512 break;
2513
2514 case BFD_RELOC_VTABLE_INHERIT:
2515 case BFD_RELOC_VTABLE_ENTRY:
2516 fixP->fx_done = 0;
2517 return;
2518
2519 case BFD_RELOC_NONE:
2520 default:
2521 as_bad_where (fixP->fx_file, fixP->fx_line,
2522 _("Bad relocation fixup type (%d)"), fixP->fx_r_type);
2523 }
2524
2525 md_number_to_chars (fixpos, value, size);
2526
2527 /* If a symbol remains, pass the fixup, as a reloc, onto the linker. */
2528 if (fixP->fx_addsy == NULL)
2529 fixP->fx_done = 1;
2530 }
2531
2532 /* Return zero if the fixup in fixp should be left alone and not
2533 adjusted. */
2534
2535 bfd_boolean
2536 mn10300_fix_adjustable (fixp)
2537 struct fix *fixp;
2538 {
2539 if (TC_FORCE_RELOCATION_LOCAL (fixp))
2540 return 0;
2541
2542 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2543 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2544 return 0;
2545
2546 /* Do not adjust relocations involving symbols in code sections,
2547 because it breaks linker relaxations. This could be fixed in the
2548 linker, but this fix is simpler, and it pretty much only affects
2549 object size a little bit. */
2550 if (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_CODE)
2551 return 0;
2552
2553 /* Likewise, do not adjust symbols that won't be merged, or debug
2554 symbols, because they too break relaxation. We do want to adjust
2555 other mergable symbols, like .rodata, because code relaxations
2556 need section-relative symbols to properly relax them. */
2557 if (! (S_GET_SEGMENT(fixp->fx_addsy)->flags & SEC_MERGE))
2558 return 0;
2559 if (strncmp (S_GET_SEGMENT (fixp->fx_addsy)->name, ".debug", 6) == 0)
2560 return 0;
2561
2562 return 1;
2563 }
2564
2565 /* Insert an operand value into an instruction. */
2566
2567 static void
2568 mn10300_insert_operand (insnp, extensionp, operand, val, file, line, shift)
2569 unsigned long *insnp;
2570 unsigned long *extensionp;
2571 const struct mn10300_operand *operand;
2572 offsetT val;
2573 char *file;
2574 unsigned int line;
2575 unsigned int shift;
2576 {
2577 /* No need to check 32bit operands for a bit. Note that
2578 MN10300_OPERAND_SPLIT is an implicit 32bit operand. */
2579 if (operand->bits != 32
2580 && (operand->flags & MN10300_OPERAND_SPLIT) == 0)
2581 {
2582 long min, max;
2583 offsetT test;
2584 int bits;
2585
2586 bits = operand->bits;
2587 if (operand->flags & MN10300_OPERAND_24BIT)
2588 bits = 24;
2589
2590 if ((operand->flags & MN10300_OPERAND_SIGNED) != 0)
2591 {
2592 max = (1 << (bits - 1)) - 1;
2593 min = - (1 << (bits - 1));
2594 }
2595 else
2596 {
2597 max = (1 << bits) - 1;
2598 min = 0;
2599 }
2600
2601 test = val;
2602
2603 if (test < (offsetT) min || test > (offsetT) max)
2604 as_warn_value_out_of_range (_("operand"), test, (offsetT) min, (offsetT) max, file, line);
2605 }
2606
2607 if ((operand->flags & MN10300_OPERAND_SPLIT) != 0)
2608 {
2609 *insnp |= (val >> (32 - operand->bits)) & ((1 << operand->bits) - 1);
2610 *extensionp |= ((val & ((1 << (32 - operand->bits)) - 1))
2611 << operand->shift);
2612 }
2613 else if ((operand->flags & MN10300_OPERAND_24BIT) != 0)
2614 {
2615 *insnp |= (val >> (24 - operand->bits)) & ((1 << operand->bits) - 1);
2616 *extensionp |= ((val & ((1 << (24 - operand->bits)) - 1))
2617 << operand->shift);
2618 }
2619 else if ((operand->flags & (MN10300_OPERAND_FSREG | MN10300_OPERAND_FDREG)))
2620 {
2621 /* See devo/opcodes/m10300-opc.c just before #define FSM0 for an
2622 explanation of these variables. Note that FMT-implied shifts
2623 are not taken into account for FP registers. */
2624 unsigned long mask_low, mask_high;
2625 int shl_low, shr_high, shl_high;
2626
2627 switch (operand->bits)
2628 {
2629 case 5:
2630 /* Handle regular FP registers. */
2631 if (operand->shift >= 0)
2632 {
2633 /* This is an `m' register. */
2634 shl_low = operand->shift;
2635 shl_high = 8 + (8 & shl_low) + (shl_low & 4) / 4;
2636 }
2637 else
2638 {
2639 /* This is an `n' register. */
2640 shl_low = -operand->shift;
2641 shl_high = shl_low / 4;
2642 }
2643
2644 mask_low = 0x0f;
2645 mask_high = 0x10;
2646 shr_high = 4;
2647 break;
2648
2649 case 3:
2650 /* Handle accumulators. */
2651 shl_low = -operand->shift;
2652 shl_high = 0;
2653 mask_low = 0x03;
2654 mask_high = 0x04;
2655 shr_high = 2;
2656 break;
2657
2658 default:
2659 abort ();
2660 }
2661 *insnp |= ((((val & mask_high) >> shr_high) << shl_high)
2662 | ((val & mask_low) << shl_low));
2663 }
2664 else if ((operand->flags & MN10300_OPERAND_EXTENDED) == 0)
2665 {
2666 *insnp |= (((long) val & ((1 << operand->bits) - 1))
2667 << (operand->shift + shift));
2668
2669 if ((operand->flags & MN10300_OPERAND_REPEATED) != 0)
2670 *insnp |= (((long) val & ((1 << operand->bits) - 1))
2671 << (operand->shift + shift + operand->bits));
2672 }
2673 else
2674 {
2675 *extensionp |= (((long) val & ((1 << operand->bits) - 1))
2676 << (operand->shift + shift));
2677
2678 if ((operand->flags & MN10300_OPERAND_REPEATED) != 0)
2679 *extensionp |= (((long) val & ((1 << operand->bits) - 1))
2680 << (operand->shift + shift + operand->bits));
2681 }
2682 }
2683
2684 static unsigned long
2685 check_operand (insn, operand, val)
2686 unsigned long insn ATTRIBUTE_UNUSED;
2687 const struct mn10300_operand *operand;
2688 offsetT val;
2689 {
2690 /* No need to check 32bit operands for a bit. Note that
2691 MN10300_OPERAND_SPLIT is an implicit 32bit operand. */
2692 if (operand->bits != 32
2693 && (operand->flags & MN10300_OPERAND_SPLIT) == 0)
2694 {
2695 long min, max;
2696 offsetT test;
2697 int bits;
2698
2699 bits = operand->bits;
2700 if (operand->flags & MN10300_OPERAND_24BIT)
2701 bits = 24;
2702
2703 if ((operand->flags & MN10300_OPERAND_SIGNED) != 0)
2704 {
2705 max = (1 << (bits - 1)) - 1;
2706 min = - (1 << (bits - 1));
2707 }
2708 else
2709 {
2710 max = (1 << bits) - 1;
2711 min = 0;
2712 }
2713
2714 test = val;
2715
2716 if (test < (offsetT) min || test > (offsetT) max)
2717 return 0;
2718 else
2719 return 1;
2720 }
2721 return 1;
2722 }
2723
2724 static void
2725 set_arch_mach (mach)
2726 int mach;
2727 {
2728 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mn10300, mach))
2729 as_warn (_("could not set architecture and machine"));
2730
2731 current_machine = mach;
2732 }
2733
2734 static inline char * mn10300_end_of_match PARAMS ((char *, char *));
2735
2736 static inline char *
2737 mn10300_end_of_match (cont, what)
2738 char *cont, *what;
2739 {
2740 int len = strlen (what);
2741
2742 if (strncmp (cont, what, strlen (what)) == 0
2743 && ! is_part_of_name (cont[len]))
2744 return cont + len;
2745
2746 return NULL;
2747 }
2748
2749 int
2750 mn10300_parse_name (name, exprP, mode, nextcharP)
2751 char const *name;
2752 expressionS *exprP;
2753 enum expr_mode mode;
2754 char *nextcharP;
2755 {
2756 char *next = input_line_pointer;
2757 char *next_end;
2758 int reloc_type;
2759 segT segment;
2760
2761 exprP->X_op_symbol = NULL;
2762
2763 if (strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
2764 {
2765 if (! GOT_symbol)
2766 GOT_symbol = symbol_find_or_make (name);
2767
2768 exprP->X_add_symbol = GOT_symbol;
2769 no_suffix:
2770 /* If we have an absolute symbol or a reg,
2771 then we know its value now. */
2772 segment = S_GET_SEGMENT (exprP->X_add_symbol);
2773 if (mode != expr_defer && segment == absolute_section)
2774 {
2775 exprP->X_op = O_constant;
2776 exprP->X_add_number = S_GET_VALUE (exprP->X_add_symbol);
2777 exprP->X_add_symbol = NULL;
2778 }
2779 else if (mode != expr_defer && segment == reg_section)
2780 {
2781 exprP->X_op = O_register;
2782 exprP->X_add_number = S_GET_VALUE (exprP->X_add_symbol);
2783 exprP->X_add_symbol = NULL;
2784 }
2785 else
2786 {
2787 exprP->X_op = O_symbol;
2788 exprP->X_add_number = 0;
2789 }
2790
2791 return 1;
2792 }
2793
2794 exprP->X_add_symbol = symbol_find_or_make (name);
2795
2796 if (*nextcharP != '@')
2797 goto no_suffix;
2798 else if ((next_end = mn10300_end_of_match (next + 1, "GOTOFF")))
2799 reloc_type = BFD_RELOC_32_GOTOFF;
2800 else if ((next_end = mn10300_end_of_match (next + 1, "GOT")))
2801 reloc_type = BFD_RELOC_MN10300_GOT32;
2802 else if ((next_end = mn10300_end_of_match (next + 1, "PLT")))
2803 reloc_type = BFD_RELOC_32_PLT_PCREL;
2804 else
2805 goto no_suffix;
2806
2807 *input_line_pointer = *nextcharP;
2808 input_line_pointer = next_end;
2809 *nextcharP = *input_line_pointer;
2810 *input_line_pointer = '\0';
2811
2812 exprP->X_op = O_PIC_reloc;
2813 exprP->X_add_number = 0;
2814 exprP->X_md = reloc_type;
2815
2816 return 1;
2817 }