]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-ns32k.c
* config/atof-ieee.c, config/obj-coff.c, config/obj-elf.c,
[thirdparty/binutils-gdb.git] / gas / config / tc-ns32k.c
1 /* ns32k.c -- Assemble on the National Semiconductor 32k series
2 Copyright 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /*#define SHOW_NUM 1*//* Uncomment for debugging. */
24
25 #include <stdio.h>
26
27 #include "as.h"
28 #include "opcode/ns32k.h"
29
30 #include "obstack.h"
31
32 /* Macros. */
33 #define IIF_ENTRIES 13 /* Number of entries in iif. */
34 #define PRIVATE_SIZE 256 /* Size of my garbage memory. */
35 #define MAX_ARGS 4
36 #define DEFAULT -1 /* addr_mode returns this value when
37 plain constant or label is
38 encountered. */
39
40 #define IIF(ptr,a1,c1,e1,g1,i1,k1,m1,o1,q1,s1,u1) \
41 iif.iifP[ptr].type= a1; \
42 iif.iifP[ptr].size= c1; \
43 iif.iifP[ptr].object= e1; \
44 iif.iifP[ptr].object_adjust= g1; \
45 iif.iifP[ptr].pcrel= i1; \
46 iif.iifP[ptr].pcrel_adjust= k1; \
47 iif.iifP[ptr].im_disp= m1; \
48 iif.iifP[ptr].relax_substate= o1; \
49 iif.iifP[ptr].bit_fixP= q1; \
50 iif.iifP[ptr].addr_mode= s1; \
51 iif.iifP[ptr].bsr= u1;
52
53 #ifdef SEQUENT_COMPATABILITY
54 #define LINE_COMMENT_CHARS "|"
55 #define ABSOLUTE_PREFIX '@'
56 #define IMMEDIATE_PREFIX '#'
57 #endif
58
59 #ifndef LINE_COMMENT_CHARS
60 #define LINE_COMMENT_CHARS "#"
61 #endif
62
63 const char comment_chars[] = "#";
64 const char line_comment_chars[] = LINE_COMMENT_CHARS;
65 const char line_separator_chars[] = ";";
66 static int default_disp_size = 4; /* Displacement size for external refs. */
67
68 #if !defined(ABSOLUTE_PREFIX) && !defined(IMMEDIATE_PREFIX)
69 #define ABSOLUTE_PREFIX '@' /* One or the other MUST be defined. */
70 #endif
71
72 struct addr_mode
73 {
74 signed char mode; /* Addressing mode of operand (0-31). */
75 signed char scaled_mode; /* Mode combined with scaled mode. */
76 char scaled_reg; /* Register used in scaled+1 (1-8). */
77 char float_flag; /* Set if R0..R7 was F0..F7 ie a
78 floating-point-register. */
79 char am_size; /* Estimated max size of general addr-mode
80 parts. */
81 char im_disp; /* If im_disp==1 we have a displacement. */
82 char pcrel; /* 1 if pcrel, this is really redundant info. */
83 char disp_suffix[2]; /* Length of displacement(s), 0=undefined. */
84 char *disp[2]; /* Pointer(s) at displacement(s)
85 or immediates(s) (ascii). */
86 char index_byte; /* Index byte. */
87 };
88 typedef struct addr_mode addr_modeS;
89
90 char *freeptr, *freeptr_static; /* Points at some number of free bytes. */
91 struct hash_control *inst_hash_handle;
92
93 struct ns32k_opcode *desc; /* Pointer at description of instruction. */
94 addr_modeS addr_modeP;
95 const char EXP_CHARS[] = "eE";
96 const char FLT_CHARS[] = "fd"; /* We don't want to support lowercase,
97 do we? */
98
99 /* UPPERCASE denotes live names when an instruction is built, IIF is
100 used as an intermediate form to store the actual parts of the
101 instruction. A ns32k machine instruction can be divided into a
102 couple of sub PARTs. When an instruction is assembled the
103 appropriate PART get an assignment. When an IIF has been completed
104 it is converted to a FRAGment as specified in AS.H. */
105
106 /* Internal structs. */
107 struct ns32k_option
108 {
109 char *pattern;
110 unsigned long or;
111 unsigned long and;
112 };
113
114 typedef struct
115 {
116 int type; /* How to interpret object. */
117 int size; /* Estimated max size of object. */
118 unsigned long object; /* Binary data. */
119 int object_adjust; /* Number added to object. */
120 int pcrel; /* True if object is pcrel. */
121 int pcrel_adjust; /* Length in bytes from the instruction
122 start to the displacement. */
123 int im_disp; /* True if the object is a displacement. */
124 relax_substateT relax_substate; /* Initial relaxsubstate. */
125 bit_fixS *bit_fixP; /* Pointer at bit_fix struct. */
126 int addr_mode; /* What addrmode do we associate with this
127 iif-entry. */
128 char bsr; /* Sequent hack. */
129 } iif_entryT; /* Internal Instruction Format. */
130
131 struct int_ins_form
132 {
133 int instr_size; /* Max size of instruction in bytes. */
134 iif_entryT iifP[IIF_ENTRIES + 1];
135 };
136
137 struct int_ins_form iif;
138 expressionS exprP;
139 char *input_line_pointer;
140
141 /* Description of the PARTs in IIF
142 object[n]:
143 0 total length in bytes of entries in iif
144 1 opcode
145 2 index_byte_a
146 3 index_byte_b
147 4 disp_a_1
148 5 disp_a_2
149 6 disp_b_1
150 7 disp_b_2
151 8 imm_a
152 9 imm_b
153 10 implied1
154 11 implied2
155
156 For every entry there is a datalength in bytes. This is stored in size[n].
157 0, the objectlength is not explicitly given by the instruction
158 and the operand is undefined. This is a case for relaxation.
159 Reserve 4 bytes for the final object.
160
161 1, the entry contains one byte
162 2, the entry contains two bytes
163 3, the entry contains three bytes
164 4, the entry contains four bytes
165 etc
166
167 Furthermore, every entry has a data type identifier in type[n].
168
169 0, the entry is void, ignore it.
170 1, the entry is a binary number.
171 2, the entry is a pointer at an expression.
172 Where expression may be as simple as a single '1',
173 and as complicated as foo-bar+12,
174 foo and bar may be undefined but suffixed by :{b|w|d} to
175 control the length of the object.
176
177 3, the entry is a pointer at a bignum struct
178
179 The low-order-byte corresponds to low physical memory.
180 Obviously a FRAGment must be created for each valid disp in PART whose
181 datalength is undefined (to bad) .
182 The case where just the expression is undefined is less severe and is
183 handled by fix. Here the number of bytes in the objectfile is known.
184 With this representation we simplify the assembly and separates the
185 machine dependent/independent parts in a more clean way (said OE). */
186 \f
187 struct ns32k_option opt1[] = /* restore, exit. */
188 {
189 {"r0", 0x80, 0xff},
190 {"r1", 0x40, 0xff},
191 {"r2", 0x20, 0xff},
192 {"r3", 0x10, 0xff},
193 {"r4", 0x08, 0xff},
194 {"r5", 0x04, 0xff},
195 {"r6", 0x02, 0xff},
196 {"r7", 0x01, 0xff},
197 {0, 0x00, 0xff}
198 };
199 struct ns32k_option opt2[] = /* save, enter. */
200 {
201 {"r0", 0x01, 0xff},
202 {"r1", 0x02, 0xff},
203 {"r2", 0x04, 0xff},
204 {"r3", 0x08, 0xff},
205 {"r4", 0x10, 0xff},
206 {"r5", 0x20, 0xff},
207 {"r6", 0x40, 0xff},
208 {"r7", 0x80, 0xff},
209 {0, 0x00, 0xff}
210 };
211 struct ns32k_option opt3[] = /* setcfg. */
212 {
213 {"c", 0x8, 0xff},
214 {"m", 0x4, 0xff},
215 {"f", 0x2, 0xff},
216 {"i", 0x1, 0xff},
217 {0, 0x0, 0xff}
218 };
219 struct ns32k_option opt4[] = /* cinv. */
220 {
221 {"a", 0x4, 0xff},
222 {"i", 0x2, 0xff},
223 {"d", 0x1, 0xff},
224 {0, 0x0, 0xff}
225 };
226 struct ns32k_option opt5[] = /* String inst. */
227 {
228 {"b", 0x2, 0xff},
229 {"u", 0xc, 0xff},
230 {"w", 0x4, 0xff},
231 {0, 0x0, 0xff}
232 };
233 struct ns32k_option opt6[] = /* Plain reg ext,cvtp etc. */
234 {
235 {"r0", 0x00, 0xff},
236 {"r1", 0x01, 0xff},
237 {"r2", 0x02, 0xff},
238 {"r3", 0x03, 0xff},
239 {"r4", 0x04, 0xff},
240 {"r5", 0x05, 0xff},
241 {"r6", 0x06, 0xff},
242 {"r7", 0x07, 0xff},
243 {0, 0x00, 0xff}
244 };
245
246 #if !defined(NS32032) && !defined(NS32532)
247 #define NS32532
248 #endif
249
250 struct ns32k_option cpureg_532[] = /* lpr spr. */
251 {
252 {"us", 0x0, 0xff},
253 {"dcr", 0x1, 0xff},
254 {"bpc", 0x2, 0xff},
255 {"dsr", 0x3, 0xff},
256 {"car", 0x4, 0xff},
257 {"fp", 0x8, 0xff},
258 {"sp", 0x9, 0xff},
259 {"sb", 0xa, 0xff},
260 {"usp", 0xb, 0xff},
261 {"cfg", 0xc, 0xff},
262 {"psr", 0xd, 0xff},
263 {"intbase", 0xe, 0xff},
264 {"mod", 0xf, 0xff},
265 {0, 0x00, 0xff}
266 };
267 struct ns32k_option mmureg_532[] = /* lmr smr. */
268 {
269 {"mcr", 0x9, 0xff},
270 {"msr", 0xa, 0xff},
271 {"tear", 0xb, 0xff},
272 {"ptb0", 0xc, 0xff},
273 {"ptb1", 0xd, 0xff},
274 {"ivar0", 0xe, 0xff},
275 {"ivar1", 0xf, 0xff},
276 {0, 0x0, 0xff}
277 };
278
279 struct ns32k_option cpureg_032[] = /* lpr spr. */
280 {
281 {"upsr", 0x0, 0xff},
282 {"fp", 0x8, 0xff},
283 {"sp", 0x9, 0xff},
284 {"sb", 0xa, 0xff},
285 {"psr", 0xd, 0xff},
286 {"intbase", 0xe, 0xff},
287 {"mod", 0xf, 0xff},
288 {0, 0x0, 0xff}
289 };
290 struct ns32k_option mmureg_032[] = /* lmr smr. */
291 {
292 {"bpr0", 0x0, 0xff},
293 {"bpr1", 0x1, 0xff},
294 {"pf0", 0x4, 0xff},
295 {"pf1", 0x5, 0xff},
296 {"sc", 0x8, 0xff},
297 {"msr", 0xa, 0xff},
298 {"bcnt", 0xb, 0xff},
299 {"ptb0", 0xc, 0xff},
300 {"ptb1", 0xd, 0xff},
301 {"eia", 0xf, 0xff},
302 {0, 0x0, 0xff}
303 };
304
305 #if defined(NS32532)
306 struct ns32k_option *cpureg = cpureg_532;
307 struct ns32k_option *mmureg = mmureg_532;
308 #else
309 struct ns32k_option *cpureg = cpureg_032;
310 struct ns32k_option *mmureg = mmureg_032;
311 #endif
312 \f
313
314 const pseudo_typeS md_pseudo_table[] =
315 { /* So far empty. */
316 {0, 0, 0}
317 };
318
319 #define IND(x,y) (((x)<<2)+(y))
320
321 /* Those are index's to relax groups in md_relax_table ie it must be
322 multiplied by 4 to point at a group start. Viz IND(x,y) Se function
323 relax_segment in write.c for more info. */
324
325 #define BRANCH 1
326 #define PCREL 2
327
328 /* Those are index's to entries in a relax group. */
329
330 #define BYTE 0
331 #define WORD 1
332 #define DOUBLE 2
333 #define UNDEF 3
334 /* Those limits are calculated from the displacement start in memory.
335 The ns32k uses the beginning of the instruction as displacement
336 base. This type of displacements could be handled here by moving
337 the limit window up or down. I choose to use an internal
338 displacement base-adjust as there are other routines that must
339 consider this. Also, as we have two various offset-adjusts in the
340 ns32k (acb versus br/brs/jsr/bcond), two set of limits would have
341 had to be used. Now we dont have to think about that. */
342
343 const relax_typeS md_relax_table[] =
344 {
345 {1, 1, 0, 0},
346 {1, 1, 0, 0},
347 {1, 1, 0, 0},
348 {1, 1, 0, 0},
349
350 {(63), (-64), 1, IND (BRANCH, WORD)},
351 {(8192), (-8192), 2, IND (BRANCH, DOUBLE)},
352 {0, 0, 4, 0},
353 {1, 1, 0, 0}
354 };
355
356 /* Array used to test if mode contains displacements.
357 Value is true if mode contains displacement. */
358
359 char disp_test[] =
360 {0, 0, 0, 0, 0, 0, 0, 0,
361 1, 1, 1, 1, 1, 1, 1, 1,
362 1, 1, 1, 0, 0, 1, 1, 0,
363 1, 1, 1, 1, 1, 1, 1, 1};
364
365 /* Array used to calculate max size of displacements. */
366
367 char disp_size[] =
368 {4, 1, 2, 0, 4};
369 \f
370 static void evaluate_expr PARAMS ((expressionS * resultP, char *));
371 static void md_number_to_disp PARAMS ((char *, long, int));
372 static void md_number_to_imm PARAMS ((char *, long, int));
373 static void md_number_to_field PARAMS ((char *, long, bit_fixS *));
374
375 /* Parse a general operand into an addressingmode struct
376
377 In: pointer at operand in ascii form
378 pointer at addr_mode struct for result
379 the level of recursion. (always 0 or 1)
380
381 Out: data in addr_mode struct. */
382
383 static int addr_mode PARAMS ((char *, addr_modeS *, int));
384
385 static int
386 addr_mode (operand, addr_modeP, recursive_level)
387 char *operand;
388 addr_modeS *addr_modeP;
389 int recursive_level;
390 {
391 char *str;
392 int i;
393 int strl;
394 int mode;
395 int j;
396
397 mode = DEFAULT; /* Default. */
398 addr_modeP->scaled_mode = 0; /* Why not. */
399 addr_modeP->scaled_reg = 0; /* If 0, not scaled index. */
400 addr_modeP->float_flag = 0;
401 addr_modeP->am_size = 0;
402 addr_modeP->im_disp = 0;
403 addr_modeP->pcrel = 0; /* Not set in this function. */
404 addr_modeP->disp_suffix[0] = 0;
405 addr_modeP->disp_suffix[1] = 0;
406 addr_modeP->disp[0] = NULL;
407 addr_modeP->disp[1] = NULL;
408 str = operand;
409
410 if (str[0] == 0)
411 return 0;
412
413 strl = strlen (str);
414
415 switch (str[0])
416 {
417 /* The following three case statements controls the mode-chars
418 this is the place to ed if you want to change them. */
419 #ifdef ABSOLUTE_PREFIX
420 case ABSOLUTE_PREFIX:
421 if (str[strl - 1] == ']')
422 break;
423 addr_modeP->mode = 21; /* absolute */
424 addr_modeP->disp[0] = str + 1;
425 return -1;
426 #endif
427 #ifdef IMMEDIATE_PREFIX
428 case IMMEDIATE_PREFIX:
429 if (str[strl - 1] == ']')
430 break;
431 addr_modeP->mode = 20; /* immediate */
432 addr_modeP->disp[0] = str + 1;
433 return -1;
434 #endif
435 case '.':
436 if (str[strl - 1] != ']')
437 {
438 switch (str[1])
439 {
440 case '-':
441 case '+':
442 if (str[2] != '\000')
443 {
444 addr_modeP->mode = 27; /* pc-relative */
445 addr_modeP->disp[0] = str + 2;
446 return -1;
447 }
448 default:
449 as_bad (_("Invalid syntax in PC-relative addressing mode"));
450 return 0;
451 }
452 }
453 break;
454 case 'e':
455 if (str[strl - 1] != ']')
456 {
457 if ((!strncmp (str, "ext(", 4)) && strl > 7)
458 { /* external */
459 addr_modeP->disp[0] = str + 4;
460 i = 0;
461 j = 2;
462 do
463 { /* disp[0]'s termination point. */
464 j += 1;
465 if (str[j] == '(')
466 i++;
467 if (str[j] == ')')
468 i--;
469 }
470 while (j < strl && i != 0);
471 if (i != 0 || !(str[j + 1] == '-' || str[j + 1] == '+'))
472 {
473 as_bad (_("Invalid syntax in External addressing mode"));
474 return (0);
475 }
476 str[j] = '\000'; /* null terminate disp[0] */
477 addr_modeP->disp[1] = str + j + 2;
478 addr_modeP->mode = 22;
479 return -1;
480 }
481 }
482 break;
483
484 default:
485 ;
486 }
487
488 strl = strlen (str);
489
490 switch (strl)
491 {
492 case 2:
493 switch (str[0])
494 {
495 case 'f':
496 addr_modeP->float_flag = 1;
497 /* Drop through. */
498 case 'r':
499 if (str[1] >= '0' && str[1] < '8')
500 {
501 addr_modeP->mode = str[1] - '0';
502 return -1;
503 }
504 break;
505 default:
506 break;
507 }
508 /* Drop through. */
509
510 case 3:
511 if (!strncmp (str, "tos", 3))
512 {
513 addr_modeP->mode = 23; /* TopOfStack */
514 return -1;
515 }
516 break;
517
518 default:
519 break;
520 }
521
522 if (strl > 4)
523 {
524 if (str[strl - 1] == ')')
525 {
526 if (str[strl - 2] == ')')
527 {
528 if (!strncmp (&str[strl - 5], "(fp", 3))
529 mode = 16; /* Memory Relative. */
530 else if (!strncmp (&str[strl - 5], "(sp", 3))
531 mode = 17;
532 else if (!strncmp (&str[strl - 5], "(sb", 3))
533 mode = 18;
534
535 if (mode != DEFAULT)
536 {
537 /* Memory relative. */
538 addr_modeP->mode = mode;
539 j = strl - 5; /* Temp for end of disp[0]. */
540 i = 0;
541
542 do
543 {
544 strl -= 1;
545 if (str[strl] == ')')
546 i++;
547 if (str[strl] == '(')
548 i--;
549 }
550 while (strl > -1 && i != 0);
551
552 if (i != 0)
553 {
554 as_bad (_("Invalid syntax in Memory Relative addressing mode"));
555 return (0);
556 }
557
558 addr_modeP->disp[1] = str;
559 addr_modeP->disp[0] = str + strl + 1;
560 str[j] = '\000'; /* Null terminate disp[0] . */
561 str[strl] = '\000'; /* Null terminate disp[1]. */
562
563 return -1;
564 }
565 }
566
567 switch (str[strl - 3])
568 {
569 case 'r':
570 case 'R':
571 if (str[strl - 2] >= '0'
572 && str[strl - 2] < '8'
573 && str[strl - 4] == '(')
574 {
575 addr_modeP->mode = str[strl - 2] - '0' + 8;
576 addr_modeP->disp[0] = str;
577 str[strl - 4] = 0;
578 return -1; /* reg rel */
579 }
580 /* Drop through. */
581
582 default:
583 if (!strncmp (&str[strl - 4], "(fp", 3))
584 mode = 24;
585 else if (!strncmp (&str[strl - 4], "(sp", 3))
586 mode = 25;
587 else if (!strncmp (&str[strl - 4], "(sb", 3))
588 mode = 26;
589 else if (!strncmp (&str[strl - 4], "(pc", 3))
590 mode = 27;
591
592 if (mode != DEFAULT)
593 {
594 addr_modeP->mode = mode;
595 addr_modeP->disp[0] = str;
596 str[strl - 4] = '\0';
597
598 return -1; /* Memory space. */
599 }
600 }
601 }
602
603 /* No trailing ')' do we have a ']' ? */
604 if (str[strl - 1] == ']')
605 {
606 switch (str[strl - 2])
607 {
608 case 'b':
609 mode = 28;
610 break;
611 case 'w':
612 mode = 29;
613 break;
614 case 'd':
615 mode = 30;
616 break;
617 case 'q':
618 mode = 31;
619 break;
620 default:
621 as_bad (_("Invalid scaled-indexed mode, use (b,w,d,q)"));
622
623 if (str[strl - 3] != ':' || str[strl - 6] != '['
624 || str[strl - 5] == 'r' || str[strl - 4] < '0'
625 || str[strl - 4] > '7')
626 as_bad (_("Syntax in scaled-indexed mode, use [Rn:m] where n=[0..7] m={b,w,d,q}"));
627 } /* Scaled index. */
628
629 if (recursive_level > 0)
630 {
631 as_bad (_("Scaled-indexed addressing mode combined with scaled-index"));
632 return 0;
633 }
634
635 addr_modeP->am_size += 1; /* scaled index byte. */
636 j = str[strl - 4] - '0'; /* store temporary. */
637 str[strl - 6] = '\000'; /* nullterminate for recursive call. */
638 i = addr_mode (str, addr_modeP, 1);
639
640 if (!i || addr_modeP->mode == 20)
641 {
642 as_bad (_("Invalid or illegal addressing mode combined with scaled-index"));
643 return 0;
644 }
645
646 addr_modeP->scaled_mode = addr_modeP->mode; /* Store the inferior mode. */
647 addr_modeP->mode = mode;
648 addr_modeP->scaled_reg = j + 1;
649
650 return -1;
651 }
652 }
653
654 addr_modeP->mode = DEFAULT; /* Default to whatever. */
655 addr_modeP->disp[0] = str;
656
657 return -1;
658 }
659 \f
660 /* ptr points at string addr_modeP points at struct with result This
661 routine calls addr_mode to determine the general addr.mode of the
662 operand. When this is ready it parses the displacements for size
663 specifying suffixes and determines size of immediate mode via
664 ns32k-opcode. Also builds index bytes if needed. */
665
666 static int get_addr_mode PARAMS ((char *, addr_modeS *));
667 static int
668 get_addr_mode (ptr, addr_modeP)
669 char *ptr;
670 addr_modeS *addr_modeP;
671 {
672 int tmp;
673
674 addr_mode (ptr, addr_modeP, 0);
675
676 if (addr_modeP->mode == DEFAULT || addr_modeP->scaled_mode == -1)
677 {
678 /* Resolve ambiguous operands, this shouldn't be necessary if
679 one uses standard NSC operand syntax. But the sequent
680 compiler doesn't!!! This finds a proper addressing mode
681 if it is implicitly stated. See ns32k-opcode.h. */
682 (void) evaluate_expr (&exprP, ptr); /* This call takes time Sigh! */
683
684 if (addr_modeP->mode == DEFAULT)
685 {
686 if (exprP.X_add_symbol || exprP.X_op_symbol)
687 addr_modeP->mode = desc->default_model; /* We have a label. */
688 else
689 addr_modeP->mode = desc->default_modec; /* We have a constant. */
690 }
691 else
692 {
693 if (exprP.X_add_symbol || exprP.X_op_symbol)
694 addr_modeP->scaled_mode = desc->default_model;
695 else
696 addr_modeP->scaled_mode = desc->default_modec;
697 }
698
699 /* Must put this mess down in addr_mode to handle the scaled
700 case better. */
701 }
702
703 /* It appears as the sequent compiler wants an absolute when we have
704 a label without @. Constants becomes immediates besides the addr
705 case. Think it does so with local labels too, not optimum, pcrel
706 is better. When I have time I will make gas check this and
707 select pcrel when possible Actually that is trivial. */
708 if ((tmp = addr_modeP->scaled_reg))
709 { /* Build indexbyte. */
710 tmp--; /* Remember regnumber comes incremented for
711 flagpurpose. */
712 tmp |= addr_modeP->scaled_mode << 3;
713 addr_modeP->index_byte = (char) tmp;
714 addr_modeP->am_size += 1;
715 }
716
717 assert (addr_modeP->mode >= 0);
718 if (disp_test[(unsigned int) addr_modeP->mode])
719 {
720 char c;
721 char suffix;
722 char suffix_sub;
723 int i;
724 char *toP;
725 char *fromP;
726
727 /* There was a displacement, probe for length specifying suffix. */
728 addr_modeP->pcrel = 0;
729
730 assert(addr_modeP->mode >= 0);
731 if (disp_test[(unsigned int) addr_modeP->mode])
732 {
733 /* There is a displacement. */
734 if (addr_modeP->mode == 27 || addr_modeP->scaled_mode == 27)
735 /* Do we have pcrel. mode. */
736 addr_modeP->pcrel = 1;
737
738 addr_modeP->im_disp = 1;
739
740 for (i = 0; i < 2; i++)
741 {
742 suffix_sub = suffix = 0;
743
744 if ((toP = addr_modeP->disp[i]))
745 {
746 /* Suffix of expression, the largest size rules. */
747 fromP = toP;
748
749 while ((c = *fromP++))
750 {
751 *toP++ = c;
752 if (c == ':')
753 {
754 switch (*fromP)
755 {
756 case '\0':
757 as_warn (_("Premature end of suffix -- Defaulting to d"));
758 suffix = 4;
759 continue;
760 case 'b':
761 suffix_sub = 1;
762 break;
763 case 'w':
764 suffix_sub = 2;
765 break;
766 case 'd':
767 suffix_sub = 4;
768 break;
769 default:
770 as_warn (_("Bad suffix after ':' use {b|w|d} Defaulting to d"));
771 suffix = 4;
772 }
773
774 fromP ++;
775 toP --; /* So we write over the ':' */
776
777 if (suffix < suffix_sub)
778 suffix = suffix_sub;
779 }
780 }
781
782 *toP = '\0'; /* Terminate properly. */
783 addr_modeP->disp_suffix[i] = suffix;
784 addr_modeP->am_size += suffix ? suffix : 4;
785 }
786 }
787 }
788 }
789 else
790 {
791 if (addr_modeP->mode == 20)
792 {
793 /* Look in ns32k_opcode for size. */
794 addr_modeP->disp_suffix[0] = addr_modeP->am_size = desc->im_size;
795 addr_modeP->im_disp = 0;
796 }
797 }
798
799 return addr_modeP->mode;
800 }
801
802 /* Read an optionlist. */
803
804 static void optlist PARAMS ((char *, struct ns32k_option *, unsigned long *));
805 static void
806 optlist (str, optionP, default_map)
807 char *str; /* The string to extract options from. */
808 struct ns32k_option *optionP; /* How to search the string. */
809 unsigned long *default_map; /* Default pattern and output. */
810 {
811 int i, j, k, strlen1, strlen2;
812 char *patternP, *strP;
813
814 strlen1 = strlen (str);
815
816 if (strlen1 < 1)
817 as_fatal (_("Very short instr to option, ie you can't do it on a NULLstr"));
818
819 for (i = 0; optionP[i].pattern != 0; i++)
820 {
821 strlen2 = strlen (optionP[i].pattern);
822
823 for (j = 0; j < strlen1; j++)
824 {
825 patternP = optionP[i].pattern;
826 strP = &str[j];
827
828 for (k = 0; k < strlen2; k++)
829 {
830 if (*(strP++) != *(patternP++))
831 break;
832 }
833
834 if (k == strlen2)
835 { /* match */
836 *default_map |= optionP[i].or;
837 *default_map &= optionP[i].and;
838 }
839 }
840 }
841 }
842
843 /* Search struct for symbols.
844 This function is used to get the short integer form of reg names in
845 the instructions lmr, smr, lpr, spr return true if str is found in
846 list. */
847
848 static int list_search PARAMS ((char *, struct ns32k_option *, unsigned long *));
849
850 static int
851 list_search (str, optionP, default_map)
852 char *str; /* The string to match. */
853 struct ns32k_option *optionP; /* List to search. */
854 unsigned long *default_map; /* Default pattern and output. */
855 {
856 int i;
857
858 for (i = 0; optionP[i].pattern != 0; i++)
859 {
860 if (!strncmp (optionP[i].pattern, str, 20))
861 {
862 /* Use strncmp to be safe. */
863 *default_map |= optionP[i].or;
864 *default_map &= optionP[i].and;
865
866 return -1;
867 }
868 }
869
870 as_bad (_("No such entry in list. (cpu/mmu register)"));
871 return 0;
872 }
873
874 static void
875 evaluate_expr (resultP, ptr)
876 expressionS *resultP;
877 char *ptr;
878 {
879 char *tmp_line;
880
881 tmp_line = input_line_pointer;
882 input_line_pointer = ptr;
883 expression (resultP);
884 input_line_pointer = tmp_line;
885 }
886 \f
887 /* Convert operands to iif-format and adds bitfields to the opcode.
888 Operands are parsed in such an order that the opcode is updated from
889 its most significant bit, that is when the operand need to alter the
890 opcode.
891 Be careful not to put to objects in the same iif-slot. */
892
893 static void encode_operand
894 PARAMS ((int, char **, const char *, const char *, char, char));
895
896 static void
897 encode_operand (argc, argv, operandsP, suffixP, im_size, opcode_bit_ptr)
898 int argc;
899 char **argv;
900 const char *operandsP;
901 const char *suffixP;
902 char im_size ATTRIBUTE_UNUSED;
903 char opcode_bit_ptr;
904 {
905 int i, j;
906 char d;
907 int pcrel, b, loop, pcrel_adjust;
908 unsigned long tmp;
909
910 for (loop = 0; loop < argc; loop++)
911 {
912 /* What operand are we supposed to work on. */
913 i = operandsP[loop << 1] - '1';
914 if (i > 3)
915 as_fatal (_("Internal consistency error. check ns32k-opcode.h"));
916
917 pcrel = 0;
918 pcrel_adjust = 0;
919 tmp = 0;
920
921 switch ((d = operandsP[(loop << 1) + 1]))
922 {
923 case 'f': /* Operand of sfsr turns out to be a nasty
924 specialcase. */
925 opcode_bit_ptr -= 5;
926 case 'Z': /* Float not immediate. */
927 case 'F': /* 32 bit float general form. */
928 case 'L': /* 64 bit float. */
929 case 'I': /* Integer not immediate. */
930 case 'B': /* Byte */
931 case 'W': /* Word */
932 case 'D': /* Double-word. */
933 case 'A': /* Double-word gen-address-form ie no regs
934 allowed. */
935 get_addr_mode (argv[i], &addr_modeP);
936
937 if ((addr_modeP.mode == 20) &&
938 (d == 'I' || d == 'Z' || d == 'A'))
939 as_fatal (d == 'A'? _("Address of immediate operand"):
940 _("Invalid immediate write operand."));
941
942 if (opcode_bit_ptr == desc->opcode_size)
943 b = 4;
944 else
945 b = 6;
946
947 for (j = b; j < (b + 2); j++)
948 {
949 if (addr_modeP.disp[j - b])
950 {
951 IIF (j,
952 2,
953 addr_modeP.disp_suffix[j - b],
954 (unsigned long) addr_modeP.disp[j - b],
955 0,
956 addr_modeP.pcrel,
957 iif.instr_size,
958 addr_modeP.im_disp,
959 IND (BRANCH, BYTE),
960 NULL,
961 (addr_modeP.scaled_reg ? addr_modeP.scaled_mode
962 : addr_modeP.mode),
963 0);
964 }
965 }
966
967 opcode_bit_ptr -= 5;
968 iif.iifP[1].object |= ((long) addr_modeP.mode) << opcode_bit_ptr;
969
970 if (addr_modeP.scaled_reg)
971 {
972 j = b / 2;
973 IIF (j, 1, 1, (unsigned long) addr_modeP.index_byte,
974 0, 0, 0, 0, 0, NULL, -1, 0);
975 }
976 break;
977
978 case 'b': /* Multiple instruction disp. */
979 freeptr++; /* OVE:this is an useful hack. */
980 sprintf (freeptr, "((%s-1)*%d)", argv[i], desc->im_size);
981 argv[i] = freeptr;
982 pcrel -= 1; /* Make pcrel 0 in spite of what case 'p':
983 wants. */
984 /* fall thru */
985 case 'p': /* Displacement - pc relative addressing. */
986 pcrel += 1;
987 /* fall thru */
988 case 'd': /* Displacement. */
989 iif.instr_size += suffixP[i] ? suffixP[i] : 4;
990 IIF (12, 2, suffixP[i], (unsigned long) argv[i], 0,
991 pcrel, pcrel_adjust, 1, IND (BRANCH, BYTE), NULL, -1, 0);
992 break;
993 case 'H': /* Sequent-hack: the linker wants a bit set
994 when bsr. */
995 pcrel = 1;
996 iif.instr_size += suffixP[i] ? suffixP[i] : 4;
997 IIF (12, 2, suffixP[i], (unsigned long) argv[i], 0,
998 pcrel, pcrel_adjust, 1, IND (BRANCH, BYTE), NULL, -1, 1);
999 break;
1000 case 'q': /* quick */
1001 opcode_bit_ptr -= 4;
1002 IIF (11, 2, 42, (unsigned long) argv[i], 0, 0, 0, 0, 0,
1003 bit_fix_new (4, opcode_bit_ptr, -8, 7, 0, 1, 0), -1, 0);
1004 break;
1005 case 'r': /* Register number (3 bits). */
1006 list_search (argv[i], opt6, &tmp);
1007 opcode_bit_ptr -= 3;
1008 iif.iifP[1].object |= tmp << opcode_bit_ptr;
1009 break;
1010 case 'O': /* Setcfg instruction optionslist. */
1011 optlist (argv[i], opt3, &tmp);
1012 opcode_bit_ptr -= 4;
1013 iif.iifP[1].object |= tmp << 15;
1014 break;
1015 case 'C': /* Cinv instruction optionslist. */
1016 optlist (argv[i], opt4, &tmp);
1017 opcode_bit_ptr -= 4;
1018 iif.iifP[1].object |= tmp << 15; /* Insert the regtype in opcode. */
1019 break;
1020 case 'S': /* String instruction options list. */
1021 optlist (argv[i], opt5, &tmp);
1022 opcode_bit_ptr -= 4;
1023 iif.iifP[1].object |= tmp << 15;
1024 break;
1025 case 'u':
1026 case 'U': /* Register list. */
1027 IIF (10, 1, 1, 0, 0, 0, 0, 0, 0, NULL, -1, 0);
1028 switch (operandsP[(i << 1) + 1])
1029 {
1030 case 'u': /* Restore, exit. */
1031 optlist (argv[i], opt1, &iif.iifP[10].object);
1032 break;
1033 case 'U': /* Save, enter. */
1034 optlist (argv[i], opt2, &iif.iifP[10].object);
1035 break;
1036 }
1037 iif.instr_size += 1;
1038 break;
1039 case 'M': /* MMU register. */
1040 list_search (argv[i], mmureg, &tmp);
1041 opcode_bit_ptr -= 4;
1042 iif.iifP[1].object |= tmp << opcode_bit_ptr;
1043 break;
1044 case 'P': /* CPU register. */
1045 list_search (argv[i], cpureg, &tmp);
1046 opcode_bit_ptr -= 4;
1047 iif.iifP[1].object |= tmp << opcode_bit_ptr;
1048 break;
1049 case 'g': /* Inss exts. */
1050 iif.instr_size += 1; /* 1 byte is allocated after the opcode. */
1051 IIF (10, 2, 1,
1052 (unsigned long) argv[i], /* i always 2 here. */
1053 0, 0, 0, 0, 0,
1054 bit_fix_new (3, 5, 0, 7, 0, 0, 0), /* A bit_fix is targeted to
1055 the byte. */
1056 -1, 0);
1057 break;
1058 case 'G':
1059 IIF (11, 2, 42,
1060 (unsigned long) argv[i], /* i always 3 here. */
1061 0, 0, 0, 0, 0,
1062 bit_fix_new (5, 0, 1, 32, -1, 0, -1), -1, 0);
1063 break;
1064 case 'i':
1065 iif.instr_size += 1;
1066 b = 2 + i; /* Put the extension byte after opcode. */
1067 IIF (b, 2, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0);
1068 break;
1069 default:
1070 as_fatal (_("Bad opcode-table-option, check in file ns32k-opcode.h"));
1071 }
1072 }
1073 }
1074 \f
1075 /* in: instruction line
1076 out: internal structure of instruction
1077 that has been prepared for direct conversion to fragment(s) and
1078 fixes in a systematical fashion
1079 Return-value = recursive_level. */
1080 /* Build iif of one assembly text line. */
1081
1082 static int parse PARAMS ((const char *, int));
1083
1084 static int
1085 parse (line, recursive_level)
1086 const char *line;
1087 int recursive_level;
1088 {
1089 const char *lineptr;
1090 char c, suffix_separator;
1091 int i;
1092 unsigned int argc;
1093 int arg_type;
1094 char sqr, sep;
1095 char suffix[MAX_ARGS], *argv[MAX_ARGS]; /* No more than 4 operands. */
1096
1097 if (recursive_level <= 0)
1098 {
1099 /* Called from md_assemble. */
1100 for (lineptr = line; (*lineptr) != '\0' && (*lineptr) != ' '; lineptr++)
1101 continue;
1102
1103 c = *lineptr;
1104 *(char *) lineptr = '\0';
1105
1106 if (!(desc = (struct ns32k_opcode *) hash_find (inst_hash_handle, line)))
1107 as_fatal (_("No such opcode"));
1108
1109 *(char *) lineptr = c;
1110 }
1111 else
1112 {
1113 lineptr = line;
1114 }
1115
1116 argc = 0;
1117
1118 if (*desc->operands)
1119 {
1120 if (*lineptr++ != '\0')
1121 {
1122 sqr = '[';
1123 sep = ',';
1124
1125 while (*lineptr != '\0')
1126 {
1127 if (desc->operands[argc << 1])
1128 {
1129 suffix[argc] = 0;
1130 arg_type = desc->operands[(argc << 1) + 1];
1131
1132 switch (arg_type)
1133 {
1134 case 'd':
1135 case 'b':
1136 case 'p':
1137 case 'H':
1138 /* The operand is supposed to be a displacement. */
1139 /* Hackwarning: do not forget to update the 4
1140 cases above when editing ns32k-opcode.h. */
1141 suffix_separator = ':';
1142 break;
1143 default:
1144 /* If this char occurs we loose. */
1145 suffix_separator = '\255';
1146 break;
1147 }
1148
1149 suffix[argc] = 0; /* 0 when no ':' is encountered. */
1150 argv[argc] = freeptr;
1151 *freeptr = '\0';
1152
1153 while ((c = *lineptr) != '\0' && c != sep)
1154 {
1155 if (c == sqr)
1156 {
1157 if (sqr == '[')
1158 {
1159 sqr = ']';
1160 sep = '\0';
1161 }
1162 else
1163 {
1164 sqr = '[';
1165 sep = ',';
1166 }
1167 }
1168
1169 if (c == suffix_separator)
1170 {
1171 /* ':' - label/suffix separator. */
1172 switch (lineptr[1])
1173 {
1174 case 'b':
1175 suffix[argc] = 1;
1176 break;
1177 case 'w':
1178 suffix[argc] = 2;
1179 break;
1180 case 'd':
1181 suffix[argc] = 4;
1182 break;
1183 default:
1184 as_warn (_("Bad suffix, defaulting to d"));
1185 suffix[argc] = 4;
1186 if (lineptr[1] == '\0' || lineptr[1] == sep)
1187 {
1188 lineptr += 1;
1189 continue;
1190 }
1191 break;
1192 }
1193
1194 lineptr += 2;
1195 continue;
1196 }
1197
1198 *freeptr++ = c;
1199 lineptr++;
1200 }
1201
1202 *freeptr++ = '\0';
1203 argc += 1;
1204
1205 if (*lineptr == '\0')
1206 continue;
1207
1208 lineptr += 1;
1209 }
1210 else
1211 {
1212 as_fatal (_("Too many operands passed to instruction"));
1213 }
1214 }
1215 }
1216 }
1217
1218 if (argc != strlen (desc->operands) / 2)
1219 {
1220 if (strlen (desc->default_args))
1221 {
1222 /* We can apply default, don't goof. */
1223 if (parse (desc->default_args, 1) != 1)
1224 /* Check error in default. */
1225 as_fatal (_("Wrong numbers of operands in default, check ns32k-opcodes.h"));
1226 }
1227 else
1228 {
1229 as_fatal (_("Wrong number of operands"));
1230 }
1231 }
1232
1233 for (i = 0; i < IIF_ENTRIES; i++)
1234 /* Mark all entries as void. */
1235 iif.iifP[i].type = 0;
1236
1237 /* Build opcode iif-entry. */
1238 iif.instr_size = desc->opcode_size / 8;
1239 IIF (1, 1, iif.instr_size, desc->opcode_seed, 0, 0, 0, 0, 0, 0, -1, 0);
1240
1241 /* This call encodes operands to iif format. */
1242 if (argc)
1243 {
1244 encode_operand (argc,
1245 argv,
1246 &desc->operands[0],
1247 &suffix[0],
1248 desc->im_size,
1249 desc->opcode_size);
1250 }
1251 return recursive_level;
1252 }
1253 \f
1254 /* Convert iif to fragments. From this point we start to dribble with
1255 functions in other files than this one.(Except hash.c) So, if it's
1256 possible to make an iif for an other CPU, you don't need to know
1257 what frags, relax, obstacks, etc is in order to port this
1258 assembler. You only need to know if it's possible to reduce your
1259 cpu-instruction to iif-format (takes some work) and adopt the other
1260 md_? parts according to given instructions Note that iif was
1261 invented for the clean ns32k`s architecture. */
1262
1263 /* GAS for the ns32k has a problem. PC relative displacements are
1264 relative to the address of the opcode, not the address of the
1265 operand. We used to keep track of the offset between the operand
1266 and the opcode in pcrel_adjust for each frag and each fix. However,
1267 we get into trouble where there are two or more pc-relative
1268 operands and the size of the first one can't be determined. Then in
1269 the relax phase, the size of the first operand will change and
1270 pcrel_adjust will no longer be correct. The current solution is
1271 keep a pointer to the frag with the opcode in it and the offset in
1272 that frag for each frag and each fix. Then, when needed, we can
1273 always figure out how far it is between the opcode and the pcrel
1274 object. See also md_pcrel_adjust and md_fix_pcrel_adjust. For
1275 objects not part of an instruction, the pointer to the opcode frag
1276 is always zero. */
1277
1278 static void convert_iif PARAMS ((void));
1279 static void
1280 convert_iif ()
1281 {
1282 int i;
1283 bit_fixS *j;
1284 fragS *inst_frag;
1285 unsigned int inst_offset;
1286 char *inst_opcode;
1287 char *memP;
1288 int l;
1289 int k;
1290 char type;
1291 char size = 0;
1292
1293 frag_grow (iif.instr_size); /* This is important. */
1294 memP = frag_more (0);
1295 inst_opcode = memP;
1296 inst_offset = (memP - frag_now->fr_literal);
1297 inst_frag = frag_now;
1298
1299 for (i = 0; i < IIF_ENTRIES; i++)
1300 {
1301 if ((type = iif.iifP[i].type))
1302 {
1303 /* The object exist, so handle it. */
1304 switch (size = iif.iifP[i].size)
1305 {
1306 case 42:
1307 size = 0;
1308 /* It's a bitfix that operates on an existing object. */
1309 if (iif.iifP[i].bit_fixP->fx_bit_base)
1310 /* Expand fx_bit_base to point at opcode. */
1311 iif.iifP[i].bit_fixP->fx_bit_base = (long) inst_opcode;
1312 /* Fall through. */
1313
1314 case 8: /* bignum or doublefloat. */
1315 case 1:
1316 case 2:
1317 case 3:
1318 case 4:
1319 /* The final size in objectmemory is known. */
1320 memP = frag_more (size);
1321 j = iif.iifP[i].bit_fixP;
1322
1323 switch (type)
1324 {
1325 case 1: /* The object is pure binary. */
1326 if (j)
1327 {
1328 md_number_to_field(memP, exprP.X_add_number, j);
1329 }
1330 else if (iif.iifP[i].pcrel)
1331 {
1332 fix_new_ns32k (frag_now,
1333 (long) (memP - frag_now->fr_literal),
1334 size,
1335 0,
1336 iif.iifP[i].object,
1337 iif.iifP[i].pcrel,
1338 iif.iifP[i].im_disp,
1339 0,
1340 iif.iifP[i].bsr, /* Sequent hack. */
1341 inst_frag, inst_offset);
1342 }
1343 else
1344 {
1345 /* Good, just put them bytes out. */
1346 switch (iif.iifP[i].im_disp)
1347 {
1348 case 0:
1349 md_number_to_chars (memP, iif.iifP[i].object, size);
1350 break;
1351 case 1:
1352 md_number_to_disp (memP, iif.iifP[i].object, size);
1353 break;
1354 default:
1355 as_fatal (_("iif convert internal pcrel/binary"));
1356 }
1357 }
1358 break;
1359
1360 case 2:
1361 /* The object is a pointer at an expression, so
1362 unpack it, note that bignums may result from the
1363 expression. */
1364 evaluate_expr (&exprP, (char *) iif.iifP[i].object);
1365 if (exprP.X_op == O_big || size == 8)
1366 {
1367 if ((k = exprP.X_add_number) > 0)
1368 {
1369 /* We have a bignum ie a quad. This can only
1370 happens in a long suffixed instruction. */
1371 if (k * 2 > size)
1372 as_bad (_("Bignum too big for long"));
1373
1374 if (k == 3)
1375 memP += 2;
1376
1377 for (l = 0; k > 0; k--, l += 2)
1378 md_number_to_chars (memP + l,
1379 generic_bignum[l >> 1],
1380 sizeof (LITTLENUM_TYPE));
1381 }
1382 else
1383 {
1384 /* flonum. */
1385 LITTLENUM_TYPE words[4];
1386
1387 switch (size)
1388 {
1389 case 4:
1390 gen_to_words (words, 2, 8);
1391 md_number_to_imm (memP, (long) words[0],
1392 sizeof (LITTLENUM_TYPE));
1393 md_number_to_imm (memP + sizeof (LITTLENUM_TYPE),
1394 (long) words[1],
1395 sizeof (LITTLENUM_TYPE));
1396 break;
1397 case 8:
1398 gen_to_words (words, 4, 11);
1399 md_number_to_imm (memP, (long) words[0],
1400 sizeof (LITTLENUM_TYPE));
1401 md_number_to_imm (memP + sizeof (LITTLENUM_TYPE),
1402 (long) words[1],
1403 sizeof (LITTLENUM_TYPE));
1404 md_number_to_imm ((memP + 2
1405 * sizeof (LITTLENUM_TYPE)),
1406 (long) words[2],
1407 sizeof (LITTLENUM_TYPE));
1408 md_number_to_imm ((memP + 3
1409 * sizeof (LITTLENUM_TYPE)),
1410 (long) words[3],
1411 sizeof (LITTLENUM_TYPE));
1412 break;
1413 }
1414 }
1415 break;
1416 }
1417 if (exprP.X_add_symbol ||
1418 exprP.X_op_symbol ||
1419 iif.iifP[i].pcrel)
1420 {
1421 /* The expression was undefined due to an
1422 undefined label. Create a fix so we can fix
1423 the object later. */
1424 exprP.X_add_number += iif.iifP[i].object_adjust;
1425 fix_new_ns32k_exp (frag_now,
1426 (long) (memP - frag_now->fr_literal),
1427 size,
1428 &exprP,
1429 iif.iifP[i].pcrel,
1430 iif.iifP[i].im_disp,
1431 j,
1432 iif.iifP[i].bsr,
1433 inst_frag, inst_offset);
1434 }
1435 else if (j)
1436 {
1437 md_number_to_field(memP, exprP.X_add_number, j);
1438 }
1439 else
1440 {
1441 /* Good, just put them bytes out. */
1442 switch (iif.iifP[i].im_disp)
1443 {
1444 case 0:
1445 md_number_to_imm (memP, exprP.X_add_number, size);
1446 break;
1447 case 1:
1448 md_number_to_disp (memP, exprP.X_add_number, size);
1449 break;
1450 default:
1451 as_fatal (_("iif convert internal pcrel/pointer"));
1452 }
1453 }
1454 break;
1455 default:
1456 as_fatal (_("Internal logic error in iif.iifP[n].type"));
1457 }
1458 break;
1459
1460 case 0:
1461 /* Too bad, the object may be undefined as far as its
1462 final nsize in object memory is concerned. The size
1463 of the object in objectmemory is not explicitly
1464 given. If the object is defined its length can be
1465 determined and a fix can replace the frag. */
1466 {
1467 evaluate_expr (&exprP, (char *) iif.iifP[i].object);
1468
1469 if ((exprP.X_add_symbol || exprP.X_op_symbol) &&
1470 !iif.iifP[i].pcrel)
1471 {
1472 /* Size is unknown until link time so have to default. */
1473 size = default_disp_size; /* Normally 4 bytes. */
1474 memP = frag_more (size);
1475 fix_new_ns32k_exp (frag_now,
1476 (long) (memP - frag_now->fr_literal),
1477 size,
1478 &exprP,
1479 0, /* never iif.iifP[i].pcrel, */
1480 1, /* always iif.iifP[i].im_disp */
1481 (bit_fixS *) 0, 0,
1482 inst_frag,
1483 inst_offset);
1484 break; /* Exit this absolute hack. */
1485 }
1486
1487 if (exprP.X_add_symbol || exprP.X_op_symbol)
1488 {
1489 /* Frag it. */
1490 if (exprP.X_op_symbol)
1491 {
1492 /* We cant relax this case. */
1493 as_fatal (_("Can't relax difference"));
1494 }
1495 else
1496 {
1497 /* Size is not important. This gets fixed by
1498 relax, but we assume 0 in what follows. */
1499 memP = frag_more (4); /* Max size. */
1500 size = 0;
1501
1502 {
1503 fragS *old_frag = frag_now;
1504 frag_variant (rs_machine_dependent,
1505 4, /* Max size. */
1506 0, /* Size. */
1507 IND (BRANCH, UNDEF), /* Expecting
1508 the worst. */
1509 exprP.X_add_symbol,
1510 exprP.X_add_number,
1511 inst_opcode);
1512 frag_opcode_frag (old_frag) = inst_frag;
1513 frag_opcode_offset (old_frag) = inst_offset;
1514 frag_bsr (old_frag) = iif.iifP[i].bsr;
1515 }
1516 }
1517 }
1518 else
1519 {
1520 /* This duplicates code in md_number_to_disp. */
1521 if (-64 <= exprP.X_add_number && exprP.X_add_number <= 63)
1522 {
1523 size = 1;
1524 }
1525 else
1526 {
1527 if (-8192 <= exprP.X_add_number
1528 && exprP.X_add_number <= 8191)
1529 {
1530 size = 2;
1531 }
1532 else
1533 {
1534 if (-0x20000000 <= exprP.X_add_number
1535 && exprP.X_add_number<=0x1fffffff)
1536 {
1537 size = 4;
1538 }
1539 else
1540 {
1541 as_bad (_("Displacement to large for :d"));
1542 size = 4;
1543 }
1544 }
1545 }
1546
1547 memP = frag_more (size);
1548 md_number_to_disp (memP, exprP.X_add_number, size);
1549 }
1550 }
1551 break;
1552
1553 default:
1554 as_fatal (_("Internal logic error in iif.iifP[].type"));
1555 }
1556 }
1557 }
1558 }
1559 \f
1560 #ifdef BFD_ASSEMBLER
1561 /* This functionality should really be in the bfd library. */
1562 static bfd_reloc_code_real_type
1563 reloc (int size, int pcrel, int type)
1564 {
1565 int length, index;
1566 bfd_reloc_code_real_type relocs[] =
1567 {
1568 BFD_RELOC_NS32K_IMM_8,
1569 BFD_RELOC_NS32K_IMM_16,
1570 BFD_RELOC_NS32K_IMM_32,
1571 BFD_RELOC_NS32K_IMM_8_PCREL,
1572 BFD_RELOC_NS32K_IMM_16_PCREL,
1573 BFD_RELOC_NS32K_IMM_32_PCREL,
1574
1575 /* ns32k displacements. */
1576 BFD_RELOC_NS32K_DISP_8,
1577 BFD_RELOC_NS32K_DISP_16,
1578 BFD_RELOC_NS32K_DISP_32,
1579 BFD_RELOC_NS32K_DISP_8_PCREL,
1580 BFD_RELOC_NS32K_DISP_16_PCREL,
1581 BFD_RELOC_NS32K_DISP_32_PCREL,
1582
1583 /* Normal 2's complement. */
1584 BFD_RELOC_8,
1585 BFD_RELOC_16,
1586 BFD_RELOC_32,
1587 BFD_RELOC_8_PCREL,
1588 BFD_RELOC_16_PCREL,
1589 BFD_RELOC_32_PCREL
1590 };
1591
1592 switch (size)
1593 {
1594 case 1:
1595 length = 0;
1596 break;
1597 case 2:
1598 length = 1;
1599 break;
1600 case 4:
1601 length = 2;
1602 break;
1603 default:
1604 length = -1;
1605 break;
1606 }
1607
1608 index = length + 3 * pcrel + 6 * type;
1609
1610 if (index >= 0 && (unsigned int) index < sizeof (relocs) / sizeof (relocs[0]))
1611 return relocs[index];
1612
1613 if (pcrel)
1614 as_bad (_("Can not do %d byte pc-relative relocation for storage type %d"),
1615 size, type);
1616 else
1617 as_bad (_("Can not do %d byte relocation for storage type %d"),
1618 size, type);
1619
1620 return BFD_RELOC_NONE;
1621
1622 }
1623 #endif
1624
1625 void
1626 md_assemble (line)
1627 char *line;
1628 {
1629 freeptr = freeptr_static;
1630 parse (line, 0); /* Explode line to more fix form in iif. */
1631 convert_iif (); /* Convert iif to frags, fix's etc. */
1632 #ifdef SHOW_NUM
1633 printf (" \t\t\t%s\n", line);
1634 #endif
1635 }
1636
1637 void
1638 md_begin ()
1639 {
1640 /* Build a hashtable of the instructions. */
1641 const struct ns32k_opcode *ptr;
1642 const char *stat;
1643 const struct ns32k_opcode *endop;
1644
1645 inst_hash_handle = hash_new ();
1646
1647 endop = ns32k_opcodes + sizeof (ns32k_opcodes) / sizeof (ns32k_opcodes[0]);
1648 for (ptr = ns32k_opcodes; ptr < endop; ptr++)
1649 {
1650 if ((stat = hash_insert (inst_hash_handle, ptr->name, (char *) ptr)))
1651 /* Fatal. */
1652 as_fatal (_("Can't hash %s: %s"), ptr->name, stat);
1653 }
1654
1655 /* Some private space please! */
1656 freeptr_static = (char *) malloc (PRIVATE_SIZE);
1657 }
1658
1659 /* Must be equal to MAX_PRECISON in atof-ieee.c. */
1660 #define MAX_LITTLENUMS 6
1661
1662 /* Turn the string pointed to by litP into a floating point constant
1663 of type TYPE, and emit the appropriate bytes. The number of
1664 LITTLENUMS emitted is stored in *SIZEP. An error message is
1665 returned, or NULL on OK. */
1666
1667 char *
1668 md_atof (type, litP, sizeP)
1669 char type;
1670 char *litP;
1671 int *sizeP;
1672 {
1673 int prec;
1674 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1675 LITTLENUM_TYPE *wordP;
1676 char *t;
1677
1678 switch (type)
1679 {
1680 case 'f':
1681 prec = 2;
1682 break;
1683
1684 case 'd':
1685 prec = 4;
1686 break;
1687 default:
1688 *sizeP = 0;
1689 return _("Bad call to MD_ATOF()");
1690 }
1691
1692 t = atof_ieee (input_line_pointer, type, words);
1693 if (t)
1694 input_line_pointer = t;
1695
1696 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1697
1698 for (wordP = words + prec; prec--;)
1699 {
1700 md_number_to_chars (litP, (long) (*--wordP), sizeof (LITTLENUM_TYPE));
1701 litP += sizeof (LITTLENUM_TYPE);
1702 }
1703
1704 return 0;
1705 }
1706 \f
1707 /* Convert number to chars in correct order. */
1708
1709 void
1710 md_number_to_chars (buf, value, nbytes)
1711 char *buf;
1712 valueT value;
1713 int nbytes;
1714 {
1715 number_to_chars_littleendian (buf, value, nbytes);
1716 }
1717
1718 /* This is a variant of md_numbers_to_chars. The reason for its'
1719 existence is the fact that ns32k uses Huffman coded
1720 displacements. This implies that the bit order is reversed in
1721 displacements and that they are prefixed with a size-tag.
1722
1723 binary: msb -> lsb
1724 0xxxxxxx byte
1725 10xxxxxx xxxxxxxx word
1726 11xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx double word
1727
1728 This must be taken care of and we do it here! */
1729
1730 static void
1731 md_number_to_disp (buf, val, n)
1732 char *buf;
1733 long val;
1734 char n;
1735 {
1736 switch (n)
1737 {
1738 case 1:
1739 if (val < -64 || val > 63)
1740 as_bad (_("value of %ld out of byte displacement range."), val);
1741 val &= 0x7f;
1742 #ifdef SHOW_NUM
1743 printf ("%x ", val & 0xff);
1744 #endif
1745 *buf++ = val;
1746 break;
1747 case 2:
1748 if (val < -8192 || val > 8191)
1749 as_bad (_("value of %ld out of word displacement range."), val);
1750 val &= 0x3fff;
1751 val |= 0x8000;
1752 #ifdef SHOW_NUM
1753 printf ("%x ", val >> 8 & 0xff);
1754 #endif
1755 *buf++ = (val >> 8);
1756 #ifdef SHOW_NUM
1757 printf ("%x ", val & 0xff);
1758 #endif
1759 *buf++ = val;
1760 break;
1761 case 4:
1762 if (val < -0x20000000 || val >= 0x20000000)
1763 as_bad (_("value of %ld out of double word displacement range."), val);
1764 val |= 0xc0000000;
1765 #ifdef SHOW_NUM
1766 printf ("%x ", val >> 24 & 0xff);
1767 #endif
1768 *buf++ = (val >> 24);
1769 #ifdef SHOW_NUM
1770 printf ("%x ", val >> 16 & 0xff);
1771 #endif
1772 *buf++ = (val >> 16);
1773 #ifdef SHOW_NUM
1774 printf ("%x ", val >> 8 & 0xff);
1775 #endif
1776 *buf++ = (val >> 8);
1777 #ifdef SHOW_NUM
1778 printf ("%x ", val & 0xff);
1779 #endif
1780 *buf++ = val;
1781 break;
1782 default:
1783 as_fatal (_("Internal logic error. line %d, file \"%s\""),
1784 __LINE__, __FILE__);
1785 }
1786 }
1787
1788 static void
1789 md_number_to_imm (buf, val, n)
1790 char *buf;
1791 long val;
1792 char n;
1793 {
1794 switch (n)
1795 {
1796 case 1:
1797 #ifdef SHOW_NUM
1798 printf ("%x ", val & 0xff);
1799 #endif
1800 *buf++ = val;
1801 break;
1802 case 2:
1803 #ifdef SHOW_NUM
1804 printf ("%x ", val >> 8 & 0xff);
1805 #endif
1806 *buf++ = (val >> 8);
1807 #ifdef SHOW_NUM
1808 printf ("%x ", val & 0xff);
1809 #endif
1810 *buf++ = val;
1811 break;
1812 case 4:
1813 #ifdef SHOW_NUM
1814 printf ("%x ", val >> 24 & 0xff);
1815 #endif
1816 *buf++ = (val >> 24);
1817 #ifdef SHOW_NUM
1818 printf ("%x ", val >> 16 & 0xff);
1819 #endif
1820 *buf++ = (val >> 16);
1821 #ifdef SHOW_NUM
1822 printf ("%x ", val >> 8 & 0xff);
1823 #endif
1824 *buf++ = (val >> 8);
1825 #ifdef SHOW_NUM
1826 printf ("%x ", val & 0xff);
1827 #endif
1828 *buf++ = val;
1829 break;
1830 default:
1831 as_fatal (_("Internal logic error. line %d, file \"%s\""),
1832 __LINE__, __FILE__);
1833 }
1834 }
1835
1836 /* Fast bitfiddling support. */
1837 /* Mask used to zero bitfield before oring in the true field. */
1838
1839 static unsigned long l_mask[] =
1840 {
1841 0xffffffff, 0xfffffffe, 0xfffffffc, 0xfffffff8,
1842 0xfffffff0, 0xffffffe0, 0xffffffc0, 0xffffff80,
1843 0xffffff00, 0xfffffe00, 0xfffffc00, 0xfffff800,
1844 0xfffff000, 0xffffe000, 0xffffc000, 0xffff8000,
1845 0xffff0000, 0xfffe0000, 0xfffc0000, 0xfff80000,
1846 0xfff00000, 0xffe00000, 0xffc00000, 0xff800000,
1847 0xff000000, 0xfe000000, 0xfc000000, 0xf8000000,
1848 0xf0000000, 0xe0000000, 0xc0000000, 0x80000000,
1849 };
1850 static unsigned long r_mask[] =
1851 {
1852 0x00000000, 0x00000001, 0x00000003, 0x00000007,
1853 0x0000000f, 0x0000001f, 0x0000003f, 0x0000007f,
1854 0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff,
1855 0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff,
1856 0x0000ffff, 0x0001ffff, 0x0003ffff, 0x0007ffff,
1857 0x000fffff, 0x001fffff, 0x003fffff, 0x007fffff,
1858 0x00ffffff, 0x01ffffff, 0x03ffffff, 0x07ffffff,
1859 0x0fffffff, 0x1fffffff, 0x3fffffff, 0x7fffffff,
1860 };
1861 #define MASK_BITS 31
1862 /* Insert bitfield described by field_ptr and val at buf
1863 This routine is written for modification of the first 4 bytes pointed
1864 to by buf, to yield speed.
1865 The ifdef stuff is for selection between a ns32k-dependent routine
1866 and a general version. (My advice: use the general version!). */
1867
1868 static void
1869 md_number_to_field (buf, val, field_ptr)
1870 char *buf;
1871 long val;
1872 bit_fixS *field_ptr;
1873 {
1874 unsigned long object;
1875 unsigned long mask;
1876 /* Define ENDIAN on a ns32k machine. */
1877 #ifdef ENDIAN
1878 unsigned long *mem_ptr;
1879 #else
1880 char *mem_ptr;
1881 #endif
1882
1883 if (field_ptr->fx_bit_min <= val && val <= field_ptr->fx_bit_max)
1884 {
1885 #ifdef ENDIAN
1886 if (field_ptr->fx_bit_base)
1887 /* Override buf. */
1888 mem_ptr = (unsigned long *) field_ptr->fx_bit_base;
1889 else
1890 mem_ptr = (unsigned long *) buf;
1891
1892 mem_ptr = ((unsigned long *)
1893 ((char *) mem_ptr + field_ptr->fx_bit_base_adj));
1894 #else
1895 if (field_ptr->fx_bit_base)
1896 mem_ptr = (char *) field_ptr->fx_bit_base;
1897 else
1898 mem_ptr = buf;
1899
1900 mem_ptr += field_ptr->fx_bit_base_adj;
1901 #endif
1902 #ifdef ENDIAN
1903 /* We have a nice ns32k machine with lowbyte at low-physical mem. */
1904 object = *mem_ptr; /* get some bytes */
1905 #else /* OVE Goof! the machine is a m68k or dito. */
1906 /* That takes more byte fiddling. */
1907 object = 0;
1908 object |= mem_ptr[3] & 0xff;
1909 object <<= 8;
1910 object |= mem_ptr[2] & 0xff;
1911 object <<= 8;
1912 object |= mem_ptr[1] & 0xff;
1913 object <<= 8;
1914 object |= mem_ptr[0] & 0xff;
1915 #endif
1916 mask = 0;
1917 mask |= (r_mask[field_ptr->fx_bit_offset]);
1918 mask |= (l_mask[field_ptr->fx_bit_offset + field_ptr->fx_bit_size]);
1919 object &= mask;
1920 val += field_ptr->fx_bit_add;
1921 object |= ((val << field_ptr->fx_bit_offset) & (mask ^ 0xffffffff));
1922 #ifdef ENDIAN
1923 *mem_ptr = object;
1924 #else
1925 mem_ptr[0] = (char) object;
1926 object >>= 8;
1927 mem_ptr[1] = (char) object;
1928 object >>= 8;
1929 mem_ptr[2] = (char) object;
1930 object >>= 8;
1931 mem_ptr[3] = (char) object;
1932 #endif
1933 }
1934 else
1935 {
1936 as_bad (_("Bit field out of range"));
1937 }
1938 }
1939
1940 int
1941 md_pcrel_adjust (fragP)
1942 fragS *fragP;
1943 {
1944 fragS *opcode_frag;
1945 addressT opcode_address;
1946 unsigned int offset;
1947
1948 opcode_frag = frag_opcode_frag (fragP);
1949 if (opcode_frag == 0)
1950 return 0;
1951
1952 offset = frag_opcode_offset (fragP);
1953 opcode_address = offset + opcode_frag->fr_address;
1954
1955 return fragP->fr_address + fragP->fr_fix - opcode_address;
1956 }
1957
1958 static int md_fix_pcrel_adjust PARAMS ((fixS *fixP));
1959 static int
1960 md_fix_pcrel_adjust (fixP)
1961 fixS *fixP;
1962 {
1963 fragS *opcode_frag;
1964 addressT opcode_address;
1965 unsigned int offset;
1966
1967 opcode_frag = fix_opcode_frag (fixP);
1968 if (opcode_frag == 0)
1969 return 0;
1970
1971 offset = fix_opcode_offset (fixP);
1972 opcode_address = offset + opcode_frag->fr_address;
1973
1974 return fixP->fx_where + fixP->fx_frag->fr_address - opcode_address;
1975 }
1976
1977 /* Apply a fixS (fixup of an instruction or data that we didn't have
1978 enough info to complete immediately) to the data in a frag.
1979
1980 On the ns32k, everything is in a different format, so we have broken
1981 out separate functions for each kind of thing we could be fixing.
1982 They all get called from here. */
1983
1984 void
1985 md_apply_fix3 (fixP, valP, seg)
1986 fixS *fixP;
1987 valueT * valP;
1988 segT seg ATTRIBUTE_UNUSED;
1989 {
1990 long val = * (long *) valP;
1991 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
1992
1993 if (fix_bit_fixP (fixP))
1994 {
1995 /* Bitfields to fix, sigh. */
1996 md_number_to_field (buf, val, fix_bit_fixP (fixP));
1997 }
1998 else switch (fix_im_disp (fixP))
1999 {
2000 case 0:
2001 /* Immediate field. */
2002 md_number_to_imm (buf, val, fixP->fx_size);
2003 break;
2004
2005 case 1:
2006 /* Displacement field. */
2007 /* Calculate offset. */
2008 md_number_to_disp (buf,
2009 (fixP->fx_pcrel ? val + md_fix_pcrel_adjust (fixP)
2010 : val), fixP->fx_size);
2011 break;
2012
2013 case 2:
2014 /* Pointer in a data object. */
2015 md_number_to_chars (buf, val, fixP->fx_size);
2016 break;
2017 }
2018
2019 if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0)
2020 fixP->fx_done = 1;
2021 }
2022 \f
2023 /* Convert a relaxed displacement to ditto in final output. */
2024
2025 #ifndef BFD_ASSEMBLER
2026 void
2027 md_convert_frag (headers, sec, fragP)
2028 object_headers *headers;
2029 segT sec;
2030 fragS *fragP;
2031 #else
2032 void
2033 md_convert_frag (abfd, sec, fragP)
2034 bfd *abfd ATTRIBUTE_UNUSED;
2035 segT sec ATTRIBUTE_UNUSED;
2036 fragS *fragP;
2037 #endif
2038 {
2039 long disp;
2040 long ext = 0;
2041 /* Address in gas core of the place to store the displacement. */
2042 char *buffer_address = fragP->fr_fix + fragP->fr_literal;
2043 /* Address in object code of the displacement. */
2044 int object_address;
2045
2046 switch (fragP->fr_subtype)
2047 {
2048 case IND (BRANCH, BYTE):
2049 ext = 1;
2050 break;
2051 case IND (BRANCH, WORD):
2052 ext = 2;
2053 break;
2054 case IND (BRANCH, DOUBLE):
2055 ext = 4;
2056 break;
2057 }
2058
2059 if (ext == 0)
2060 return;
2061
2062 know (fragP->fr_symbol);
2063
2064 object_address = fragP->fr_fix + fragP->fr_address;
2065
2066 /* The displacement of the address, from current location. */
2067 disp = (S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset) - object_address;
2068 disp += md_pcrel_adjust (fragP);
2069
2070 md_number_to_disp (buffer_address, (long) disp, (int) ext);
2071 fragP->fr_fix += ext;
2072 }
2073
2074 /* This function returns the estimated size a variable object will occupy,
2075 one can say that we tries to guess the size of the objects before we
2076 actually know it. */
2077
2078 int
2079 md_estimate_size_before_relax (fragP, segment)
2080 fragS *fragP;
2081 segT segment;
2082 {
2083 if (fragP->fr_subtype == IND (BRANCH, UNDEF))
2084 {
2085 if (S_GET_SEGMENT (fragP->fr_symbol) != segment)
2086 {
2087 /* We don't relax symbols defined in another segment. The
2088 thing to do is to assume the object will occupy 4 bytes. */
2089 fix_new_ns32k (fragP,
2090 (int) (fragP->fr_fix),
2091 4,
2092 fragP->fr_symbol,
2093 fragP->fr_offset,
2094 1,
2095 1,
2096 0,
2097 frag_bsr(fragP), /* Sequent hack. */
2098 frag_opcode_frag (fragP),
2099 frag_opcode_offset (fragP));
2100 fragP->fr_fix += 4;
2101 frag_wane (fragP);
2102 return 4;
2103 }
2104
2105 /* Relaxable case. Set up the initial guess for the variable
2106 part of the frag. */
2107 fragP->fr_subtype = IND (BRANCH, BYTE);
2108 }
2109
2110 if (fragP->fr_subtype >= sizeof (md_relax_table) / sizeof (md_relax_table[0]))
2111 abort ();
2112
2113 /* Return the size of the variable part of the frag. */
2114 return md_relax_table[fragP->fr_subtype].rlx_length;
2115 }
2116
2117 int md_short_jump_size = 3;
2118 int md_long_jump_size = 5;
2119 const int md_reloc_size = 8; /* Size of relocation record. */
2120
2121 void
2122 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
2123 char *ptr;
2124 addressT from_addr, to_addr;
2125 fragS *frag ATTRIBUTE_UNUSED;
2126 symbolS *to_symbol ATTRIBUTE_UNUSED;
2127 {
2128 valueT offset;
2129
2130 offset = to_addr - from_addr;
2131 md_number_to_chars (ptr, (valueT) 0xEA, 1);
2132 md_number_to_disp (ptr + 1, (valueT) offset, 2);
2133 }
2134
2135 void
2136 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
2137 char *ptr;
2138 addressT from_addr, to_addr;
2139 fragS *frag ATTRIBUTE_UNUSED;
2140 symbolS *to_symbol ATTRIBUTE_UNUSED;
2141 {
2142 valueT offset;
2143
2144 offset = to_addr - from_addr;
2145 md_number_to_chars (ptr, (valueT) 0xEA, 1);
2146 md_number_to_disp (ptr + 1, (valueT) offset, 4);
2147 }
2148 \f
2149 const char *md_shortopts = "m:";
2150
2151 struct option md_longopts[] =
2152 {
2153 #define OPTION_DISP_SIZE (OPTION_MD_BASE)
2154 {"disp-size-default", required_argument , NULL, OPTION_DISP_SIZE},
2155 {NULL, no_argument, NULL, 0}
2156 };
2157
2158 size_t md_longopts_size = sizeof (md_longopts);
2159
2160 int
2161 md_parse_option (c, arg)
2162 int c;
2163 char *arg;
2164 {
2165 switch (c)
2166 {
2167 case 'm':
2168 if (!strcmp (arg, "32032"))
2169 {
2170 cpureg = cpureg_032;
2171 mmureg = mmureg_032;
2172 }
2173 else if (!strcmp (arg, "32532"))
2174 {
2175 cpureg = cpureg_532;
2176 mmureg = mmureg_532;
2177 }
2178 else
2179 {
2180 as_warn (_("invalid architecture option -m%s, ignored"), arg);
2181 return 0;
2182 }
2183 break;
2184 case OPTION_DISP_SIZE:
2185 {
2186 int size = atoi(arg);
2187 switch (size)
2188 {
2189 case 1: case 2: case 4:
2190 default_disp_size = size;
2191 break;
2192 default:
2193 as_warn (_("invalid default displacement size \"%s\". Defaulting to %d."),
2194 arg, default_disp_size);
2195 }
2196 break;
2197 }
2198
2199 default:
2200 return 0;
2201 }
2202
2203 return 1;
2204 }
2205
2206 void
2207 md_show_usage (stream)
2208 FILE *stream;
2209 {
2210 fprintf (stream, _("\
2211 NS32K options:\n\
2212 -m32032 | -m32532 select variant of NS32K architecture\n\
2213 --disp-size-default=<1|2|4>\n"));
2214 }
2215 \f
2216 /* Create a bit_fixS in obstack 'notes'.
2217 This struct is used to profile the normal fix. If the bit_fixP is a
2218 valid pointer (not NULL) the bit_fix data will be used to format
2219 the fix. */
2220
2221 bit_fixS *
2222 bit_fix_new (size, offset, min, max, add, base_type, base_adj)
2223 char size; /* Length of bitfield. */
2224 char offset; /* Bit offset to bitfield. */
2225 long min; /* Signextended min for bitfield. */
2226 long max; /* Signextended max for bitfield. */
2227 long add; /* Add mask, used for huffman prefix. */
2228 long base_type; /* 0 or 1, if 1 it's exploded to opcode ptr. */
2229 long base_adj;
2230 {
2231 bit_fixS *bit_fixP;
2232
2233 bit_fixP = (bit_fixS *) obstack_alloc (&notes, sizeof (bit_fixS));
2234
2235 bit_fixP->fx_bit_size = size;
2236 bit_fixP->fx_bit_offset = offset;
2237 bit_fixP->fx_bit_base = base_type;
2238 bit_fixP->fx_bit_base_adj = base_adj;
2239 bit_fixP->fx_bit_max = max;
2240 bit_fixP->fx_bit_min = min;
2241 bit_fixP->fx_bit_add = add;
2242
2243 return bit_fixP;
2244 }
2245
2246 void
2247 fix_new_ns32k (frag, where, size, add_symbol, offset, pcrel,
2248 im_disp, bit_fixP, bsr, opcode_frag, opcode_offset)
2249 fragS *frag; /* Which frag? */
2250 int where; /* Where in that frag? */
2251 int size; /* 1, 2 or 4 usually. */
2252 symbolS *add_symbol; /* X_add_symbol. */
2253 long offset; /* X_add_number. */
2254 int pcrel; /* True if PC-relative relocation. */
2255 char im_disp; /* True if the value to write is a
2256 displacement. */
2257 bit_fixS *bit_fixP; /* Pointer at struct of bit_fix's, ignored if
2258 NULL. */
2259 char bsr; /* Sequent-linker-hack: 1 when relocobject is
2260 a bsr. */
2261 fragS *opcode_frag;
2262 unsigned int opcode_offset;
2263 {
2264 fixS *fixP = fix_new (frag, where, size, add_symbol,
2265 offset, pcrel,
2266 #ifdef BFD_ASSEMBLER
2267 bit_fixP ? NO_RELOC : reloc (size, pcrel, im_disp)
2268 #else
2269 NO_RELOC
2270 #endif
2271 );
2272
2273 fix_opcode_frag (fixP) = opcode_frag;
2274 fix_opcode_offset (fixP) = opcode_offset;
2275 fix_im_disp (fixP) = im_disp;
2276 fix_bsr (fixP) = bsr;
2277 fix_bit_fixP (fixP) = bit_fixP;
2278 /* We have a MD overflow check for displacements. */
2279 fixP->fx_no_overflow = (im_disp != 0);
2280 }
2281
2282 void
2283 fix_new_ns32k_exp (frag, where, size, exp, pcrel,
2284 im_disp, bit_fixP, bsr, opcode_frag, opcode_offset)
2285 fragS *frag; /* Which frag? */
2286 int where; /* Where in that frag? */
2287 int size; /* 1, 2 or 4 usually. */
2288 expressionS *exp; /* Expression. */
2289 int pcrel; /* True if PC-relative relocation. */
2290 char im_disp; /* True if the value to write is a
2291 displacement. */
2292 bit_fixS *bit_fixP; /* Pointer at struct of bit_fix's, ignored if
2293 NULL. */
2294 char bsr; /* Sequent-linker-hack: 1 when relocobject is
2295 a bsr. */
2296 fragS *opcode_frag;
2297 unsigned int opcode_offset;
2298 {
2299 fixS *fixP = fix_new_exp (frag, where, size, exp, pcrel,
2300 #ifdef BFD_ASSEMBLER
2301 bit_fixP ? NO_RELOC : reloc (size, pcrel, im_disp)
2302 #else
2303 NO_RELOC
2304 #endif
2305 );
2306
2307 fix_opcode_frag (fixP) = opcode_frag;
2308 fix_opcode_offset (fixP) = opcode_offset;
2309 fix_im_disp (fixP) = im_disp;
2310 fix_bsr (fixP) = bsr;
2311 fix_bit_fixP (fixP) = bit_fixP;
2312 /* We have a MD overflow check for displacements. */
2313 fixP->fx_no_overflow = (im_disp != 0);
2314 }
2315
2316 /* This is TC_CONS_FIX_NEW, called by emit_expr in read.c. */
2317
2318 void
2319 cons_fix_new_ns32k (frag, where, size, exp)
2320 fragS *frag; /* Which frag? */
2321 int where; /* Where in that frag? */
2322 int size; /* 1, 2 or 4 usually. */
2323 expressionS *exp; /* Expression. */
2324 {
2325 fix_new_ns32k_exp (frag, where, size, exp,
2326 0, 2, 0, 0, 0, 0);
2327 }
2328
2329 /* We have no need to default values of symbols. */
2330
2331 symbolS *
2332 md_undefined_symbol (name)
2333 char *name ATTRIBUTE_UNUSED;
2334 {
2335 return 0;
2336 }
2337
2338 /* Round up a section size to the appropriate boundary. */
2339
2340 valueT
2341 md_section_align (segment, size)
2342 segT segment ATTRIBUTE_UNUSED;
2343 valueT size;
2344 {
2345 return size; /* Byte alignment is fine. */
2346 }
2347
2348 /* Exactly what point is a PC-relative offset relative TO? On the
2349 ns32k, they're relative to the start of the instruction. */
2350
2351 long
2352 md_pcrel_from (fixP)
2353 fixS *fixP;
2354 {
2355 long res;
2356
2357 res = fixP->fx_where + fixP->fx_frag->fr_address;
2358 #ifdef SEQUENT_COMPATABILITY
2359 if (frag_bsr (fixP->fx_frag))
2360 res += 0x12 /* FOO Kludge alert! */
2361 #endif
2362 return res;
2363 }
2364
2365 #ifdef BFD_ASSEMBLER
2366
2367 arelent *
2368 tc_gen_reloc (section, fixp)
2369 asection *section ATTRIBUTE_UNUSED;
2370 fixS *fixp;
2371 {
2372 arelent *rel;
2373 bfd_reloc_code_real_type code;
2374
2375 code = reloc (fixp->fx_size, fixp->fx_pcrel, fix_im_disp (fixp));
2376
2377 rel = (arelent *) xmalloc (sizeof (arelent));
2378 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
2379 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2380 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
2381 if (fixp->fx_pcrel)
2382 rel->addend = fixp->fx_addnumber;
2383 else
2384 rel->addend = 0;
2385
2386 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
2387 if (!rel->howto)
2388 {
2389 const char *name;
2390
2391 name = S_GET_NAME (fixp->fx_addsy);
2392 if (name == NULL)
2393 name = _("<unknown>");
2394 as_fatal (_("Cannot find relocation type for symbol %s, code %d"),
2395 name, (int) code);
2396 }
2397
2398 return rel;
2399 }
2400 #else /* BFD_ASSEMBLER */
2401
2402 #ifdef OBJ_AOUT
2403 void
2404 cons_fix_new_ns32k (where, fixP, segment_address_in_file)
2405 char *where;
2406 struct fix *fixP;
2407 relax_addressT segment_address_in_file;
2408 {
2409 /* In: Length of relocation (or of address) in chars: 1, 2 or 4.
2410 Out: GNU LD relocation length code: 0, 1, or 2. */
2411
2412 static unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
2413 long r_symbolnum;
2414
2415 know (fixP->fx_addsy != NULL);
2416
2417 md_number_to_chars (where,
2418 fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
2419 4);
2420
2421 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
2422 ? S_GET_TYPE (fixP->fx_addsy)
2423 : fixP->fx_addsy->sy_number);
2424
2425 md_number_to_chars (where + 4,
2426 ((long) (r_symbolnum)
2427 | (long) (fixP->fx_pcrel << 24)
2428 | (long) (nbytes_r_length[fixP->fx_size] << 25)
2429 | (long) ((!S_IS_DEFINED (fixP->fx_addsy)) << 27)
2430 | (long) (fix_bsr (fixP) << 28)
2431 | (long) (fix_im_disp (fixP) << 29)),
2432 4);
2433 }
2434
2435 #endif /* OBJ_AOUT */
2436 #endif /* BFD_ASSEMBLER */