]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-sparc.c
* elf64-alpha.c (ALPHA_ELF_GOT_ENTRY_RELOCS_XLATED): Defined.
[thirdparty/binutils-gdb.git] / gas / config / tc-sparc.c
1 /* tc-sparc.c -- Assemble for the SPARC
2 Copyright 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001
4 Free Software Foundation, Inc.
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public
18 License along with GAS; see the file COPYING. If not, write
19 to the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <stdio.h>
23
24 #include "as.h"
25 #include "safe-ctype.h"
26 #include "subsegs.h"
27
28 #include "opcode/sparc.h"
29
30 #ifdef OBJ_ELF
31 #include "elf/sparc.h"
32 #include "dwarf2dbg.h"
33 #endif
34
35 static struct sparc_arch *lookup_arch PARAMS ((char *));
36 static void init_default_arch PARAMS ((void));
37 static int sparc_ip PARAMS ((char *, const struct sparc_opcode **));
38 static int in_signed_range PARAMS ((bfd_signed_vma, bfd_signed_vma));
39 static int in_unsigned_range PARAMS ((bfd_vma, bfd_vma));
40 static int in_bitfield_range PARAMS ((bfd_signed_vma, bfd_signed_vma));
41 static int sparc_ffs PARAMS ((unsigned int));
42 static void synthetize_setuw PARAMS ((const struct sparc_opcode *));
43 static void synthetize_setsw PARAMS ((const struct sparc_opcode *));
44 static void synthetize_setx PARAMS ((const struct sparc_opcode *));
45 static bfd_vma BSR PARAMS ((bfd_vma, int));
46 static int cmp_reg_entry PARAMS ((const PTR, const PTR));
47 static int parse_keyword_arg PARAMS ((int (*) (const char *), char **, int *));
48 static int parse_const_expr_arg PARAMS ((char **, int *));
49 static int get_expression PARAMS ((char *str));
50
51 /* Default architecture. */
52 /* ??? The default value should be V8, but sparclite support was added
53 by making it the default. GCC now passes -Asparclite, so maybe sometime in
54 the future we can set this to V8. */
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "sparclite"
57 #endif
58 static char *default_arch = DEFAULT_ARCH;
59
60 /* Non-zero if the initial values of `max_architecture' and `sparc_arch_size'
61 have been set. */
62 static int default_init_p;
63
64 /* Current architecture. We don't bump up unless necessary. */
65 static enum sparc_opcode_arch_val current_architecture = SPARC_OPCODE_ARCH_V6;
66
67 /* The maximum architecture level we can bump up to.
68 In a 32 bit environment, don't allow bumping up to v9 by default.
69 The native assembler works this way. The user is required to pass
70 an explicit argument before we'll create v9 object files. However, if
71 we don't see any v9 insns, a v8plus object file is not created. */
72 static enum sparc_opcode_arch_val max_architecture;
73
74 /* Either 32 or 64, selects file format. */
75 static int sparc_arch_size;
76 /* Initial (default) value, recorded separately in case a user option
77 changes the value before md_show_usage is called. */
78 static int default_arch_size;
79
80 #ifdef OBJ_ELF
81 /* The currently selected v9 memory model. Currently only used for
82 ELF. */
83 static enum { MM_TSO, MM_PSO, MM_RMO } sparc_memory_model = MM_RMO;
84 #endif
85
86 static int architecture_requested;
87 static int warn_on_bump;
88
89 /* If warn_on_bump and the needed architecture is higher than this
90 architecture, issue a warning. */
91 static enum sparc_opcode_arch_val warn_after_architecture;
92
93 /* Non-zero if as should generate error if an undeclared g[23] register
94 has been used in -64. */
95 static int no_undeclared_regs;
96
97 /* Non-zero if we should try to relax jumps and calls. */
98 static int sparc_relax;
99
100 /* Non-zero if we are generating PIC code. */
101 int sparc_pic_code;
102
103 /* Non-zero if we should give an error when misaligned data is seen. */
104 static int enforce_aligned_data;
105
106 extern int target_big_endian;
107
108 static int target_little_endian_data;
109
110 /* Symbols for global registers on v9. */
111 static symbolS *globals[8];
112
113 /* V9 and 86x have big and little endian data, but instructions are always big
114 endian. The sparclet has bi-endian support but both data and insns have
115 the same endianness. Global `target_big_endian' is used for data.
116 The following macro is used for instructions. */
117 #ifndef INSN_BIG_ENDIAN
118 #define INSN_BIG_ENDIAN (target_big_endian \
119 || default_arch_type == sparc86x \
120 || SPARC_OPCODE_ARCH_V9_P (max_architecture))
121 #endif
122
123 /* Handle of the OPCODE hash table. */
124 static struct hash_control *op_hash;
125
126 static int log2 PARAMS ((int));
127 static void s_data1 PARAMS ((void));
128 static void s_seg PARAMS ((int));
129 static void s_proc PARAMS ((int));
130 static void s_reserve PARAMS ((int));
131 static void s_common PARAMS ((int));
132 static void s_empty PARAMS ((int));
133 static void s_uacons PARAMS ((int));
134 static void s_ncons PARAMS ((int));
135 static void s_register PARAMS ((int));
136
137 const pseudo_typeS md_pseudo_table[] =
138 {
139 {"align", s_align_bytes, 0}, /* Defaulting is invalid (0). */
140 {"common", s_common, 0},
141 {"empty", s_empty, 0},
142 {"global", s_globl, 0},
143 {"half", cons, 2},
144 {"nword", s_ncons, 0},
145 {"optim", s_ignore, 0},
146 {"proc", s_proc, 0},
147 {"reserve", s_reserve, 0},
148 {"seg", s_seg, 0},
149 {"skip", s_space, 0},
150 {"word", cons, 4},
151 {"xword", cons, 8},
152 {"uahalf", s_uacons, 2},
153 {"uaword", s_uacons, 4},
154 {"uaxword", s_uacons, 8},
155 #ifdef OBJ_ELF
156 {"file", dwarf2_directive_file, 0},
157 {"loc", dwarf2_directive_loc, 0},
158 /* These are specific to sparc/svr4. */
159 {"2byte", s_uacons, 2},
160 {"4byte", s_uacons, 4},
161 {"8byte", s_uacons, 8},
162 {"register", s_register, 0},
163 #endif
164 {NULL, 0, 0},
165 };
166
167 /* Size of relocation record. */
168 const int md_reloc_size = 12;
169
170 /* This array holds the chars that always start a comment. If the
171 pre-processor is disabled, these aren't very useful. */
172 const char comment_chars[] = "!"; /* JF removed '|' from
173 comment_chars. */
174
175 /* This array holds the chars that only start a comment at the beginning of
176 a line. If the line seems to have the form '# 123 filename'
177 .line and .file directives will appear in the pre-processed output. */
178 /* Note that input_file.c hand checks for '#' at the beginning of the
179 first line of the input file. This is because the compiler outputs
180 #NO_APP at the beginning of its output. */
181 /* Also note that comments started like this one will always
182 work if '/' isn't otherwise defined. */
183 const char line_comment_chars[] = "#";
184
185 const char line_separator_chars[] = ";";
186
187 /* Chars that can be used to separate mant from exp in floating point
188 nums. */
189 const char EXP_CHARS[] = "eE";
190
191 /* Chars that mean this number is a floating point constant.
192 As in 0f12.456
193 or 0d1.2345e12 */
194 const char FLT_CHARS[] = "rRsSfFdDxXpP";
195
196 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
197 changed in read.c. Ideally it shouldn't have to know about it at all,
198 but nothing is ideal around here. */
199
200 #define isoctal(c) ((unsigned) ((c) - '0') < '8')
201
202 struct sparc_it
203 {
204 char *error;
205 unsigned long opcode;
206 struct nlist *nlistp;
207 expressionS exp;
208 expressionS exp2;
209 int pcrel;
210 bfd_reloc_code_real_type reloc;
211 };
212
213 struct sparc_it the_insn, set_insn;
214
215 static void output_insn
216 PARAMS ((const struct sparc_opcode *, struct sparc_it *));
217 \f
218 /* Table of arguments to -A.
219 The sparc_opcode_arch table in sparc-opc.c is insufficient and incorrect
220 for this use. That table is for opcodes only. This table is for opcodes
221 and file formats. */
222
223 enum sparc_arch_types {v6, v7, v8, sparclet, sparclite, sparc86x, v8plus,
224 v8plusa, v9, v9a, v9b, v9_64};
225
226 static struct sparc_arch {
227 char *name;
228 char *opcode_arch;
229 enum sparc_arch_types arch_type;
230 /* Default word size, as specified during configuration.
231 A value of zero means can't be used to specify default architecture. */
232 int default_arch_size;
233 /* Allowable arg to -A? */
234 int user_option_p;
235 } sparc_arch_table[] = {
236 { "v6", "v6", v6, 0, 1 },
237 { "v7", "v7", v7, 0, 1 },
238 { "v8", "v8", v8, 32, 1 },
239 { "sparclet", "sparclet", sparclet, 32, 1 },
240 { "sparclite", "sparclite", sparclite, 32, 1 },
241 { "sparc86x", "sparclite", sparc86x, 32, 1 },
242 { "v8plus", "v9", v9, 0, 1 },
243 { "v8plusa", "v9a", v9, 0, 1 },
244 { "v8plusb", "v9b", v9, 0, 1 },
245 { "v9", "v9", v9, 0, 1 },
246 { "v9a", "v9a", v9, 0, 1 },
247 { "v9b", "v9b", v9, 0, 1 },
248 /* This exists to allow configure.in/Makefile.in to pass one
249 value to specify both the default machine and default word size. */
250 { "v9-64", "v9", v9, 64, 0 },
251 { NULL, NULL, v8, 0, 0 }
252 };
253
254 /* Variant of default_arch */
255 static enum sparc_arch_types default_arch_type;
256
257 static struct sparc_arch *
258 lookup_arch (name)
259 char *name;
260 {
261 struct sparc_arch *sa;
262
263 for (sa = &sparc_arch_table[0]; sa->name != NULL; sa++)
264 if (strcmp (sa->name, name) == 0)
265 break;
266 if (sa->name == NULL)
267 return NULL;
268 return sa;
269 }
270
271 /* Initialize the default opcode arch and word size from the default
272 architecture name. */
273
274 static void
275 init_default_arch ()
276 {
277 struct sparc_arch *sa = lookup_arch (default_arch);
278
279 if (sa == NULL
280 || sa->default_arch_size == 0)
281 as_fatal (_("Invalid default architecture, broken assembler."));
282
283 max_architecture = sparc_opcode_lookup_arch (sa->opcode_arch);
284 if (max_architecture == SPARC_OPCODE_ARCH_BAD)
285 as_fatal (_("Bad opcode table, broken assembler."));
286 default_arch_size = sparc_arch_size = sa->default_arch_size;
287 default_init_p = 1;
288 default_arch_type = sa->arch_type;
289 }
290
291 /* Called by TARGET_FORMAT. */
292
293 const char *
294 sparc_target_format ()
295 {
296 /* We don't get a chance to initialize anything before we're called,
297 so handle that now. */
298 if (! default_init_p)
299 init_default_arch ();
300
301 #ifdef OBJ_AOUT
302 #ifdef TE_NetBSD
303 return "a.out-sparc-netbsd";
304 #else
305 #ifdef TE_SPARCAOUT
306 if (target_big_endian)
307 return "a.out-sunos-big";
308 else if (default_arch_type == sparc86x && target_little_endian_data)
309 return "a.out-sunos-big";
310 else
311 return "a.out-sparc-little";
312 #else
313 return "a.out-sunos-big";
314 #endif
315 #endif
316 #endif
317
318 #ifdef OBJ_BOUT
319 return "b.out.big";
320 #endif
321
322 #ifdef OBJ_COFF
323 #ifdef TE_LYNX
324 return "coff-sparc-lynx";
325 #else
326 return "coff-sparc";
327 #endif
328 #endif
329
330 #ifdef OBJ_ELF
331 return sparc_arch_size == 64 ? "elf64-sparc" : "elf32-sparc";
332 #endif
333
334 abort ();
335 }
336 \f
337 /* md_parse_option
338 * Invocation line includes a switch not recognized by the base assembler.
339 * See if it's a processor-specific option. These are:
340 *
341 * -bump
342 * Warn on architecture bumps. See also -A.
343 *
344 * -Av6, -Av7, -Av8, -Asparclite, -Asparclet
345 * Standard 32 bit architectures.
346 * -Av9, -Av9a, -Av9b
347 * Sparc64 in either a 32 or 64 bit world (-32/-64 says which).
348 * This used to only mean 64 bits, but properly specifying it
349 * complicated gcc's ASM_SPECs, so now opcode selection is
350 * specified orthogonally to word size (except when specifying
351 * the default, but that is an internal implementation detail).
352 * -Av8plus, -Av8plusa, -Av8plusb
353 * Same as -Av9{,a,b}.
354 * -xarch=v8plus, -xarch=v8plusa, -xarch=v8plusb
355 * Same as -Av8plus{,a,b} -32, for compatibility with Sun's
356 * assembler.
357 * -xarch=v9, -xarch=v9a, -xarch=v9b
358 * Same as -Av9{,a,b} -64, for compatibility with Sun's
359 * assembler.
360 *
361 * Select the architecture and possibly the file format.
362 * Instructions or features not supported by the selected
363 * architecture cause fatal errors.
364 *
365 * The default is to start at v6, and bump the architecture up
366 * whenever an instruction is seen at a higher level. In 32 bit
367 * environments, v9 is not bumped up to, the user must pass
368 * -Av8plus{,a,b}.
369 *
370 * If -bump is specified, a warning is printing when bumping to
371 * higher levels.
372 *
373 * If an architecture is specified, all instructions must match
374 * that architecture. Any higher level instructions are flagged
375 * as errors. Note that in the 32 bit environment specifying
376 * -Av8plus does not automatically create a v8plus object file, a
377 * v9 insn must be seen.
378 *
379 * If both an architecture and -bump are specified, the
380 * architecture starts at the specified level, but bumps are
381 * warnings. Note that we can't set `current_architecture' to
382 * the requested level in this case: in the 32 bit environment,
383 * we still must avoid creating v8plus object files unless v9
384 * insns are seen.
385 *
386 * Note:
387 * Bumping between incompatible architectures is always an
388 * error. For example, from sparclite to v9.
389 */
390
391 #ifdef OBJ_ELF
392 CONST char *md_shortopts = "A:K:VQ:sq";
393 #else
394 #ifdef OBJ_AOUT
395 CONST char *md_shortopts = "A:k";
396 #else
397 CONST char *md_shortopts = "A:";
398 #endif
399 #endif
400 struct option md_longopts[] = {
401 #define OPTION_BUMP (OPTION_MD_BASE)
402 {"bump", no_argument, NULL, OPTION_BUMP},
403 #define OPTION_SPARC (OPTION_MD_BASE + 1)
404 {"sparc", no_argument, NULL, OPTION_SPARC},
405 #define OPTION_XARCH (OPTION_MD_BASE + 2)
406 {"xarch", required_argument, NULL, OPTION_XARCH},
407 #ifdef OBJ_ELF
408 #define OPTION_32 (OPTION_MD_BASE + 3)
409 {"32", no_argument, NULL, OPTION_32},
410 #define OPTION_64 (OPTION_MD_BASE + 4)
411 {"64", no_argument, NULL, OPTION_64},
412 #define OPTION_TSO (OPTION_MD_BASE + 5)
413 {"TSO", no_argument, NULL, OPTION_TSO},
414 #define OPTION_PSO (OPTION_MD_BASE + 6)
415 {"PSO", no_argument, NULL, OPTION_PSO},
416 #define OPTION_RMO (OPTION_MD_BASE + 7)
417 {"RMO", no_argument, NULL, OPTION_RMO},
418 #endif
419 #ifdef SPARC_BIENDIAN
420 #define OPTION_LITTLE_ENDIAN (OPTION_MD_BASE + 8)
421 {"EL", no_argument, NULL, OPTION_LITTLE_ENDIAN},
422 #define OPTION_BIG_ENDIAN (OPTION_MD_BASE + 9)
423 {"EB", no_argument, NULL, OPTION_BIG_ENDIAN},
424 #endif
425 #define OPTION_ENFORCE_ALIGNED_DATA (OPTION_MD_BASE + 10)
426 {"enforce-aligned-data", no_argument, NULL, OPTION_ENFORCE_ALIGNED_DATA},
427 #define OPTION_LITTLE_ENDIAN_DATA (OPTION_MD_BASE + 11)
428 {"little-endian-data", no_argument, NULL, OPTION_LITTLE_ENDIAN_DATA},
429 #ifdef OBJ_ELF
430 #define OPTION_NO_UNDECLARED_REGS (OPTION_MD_BASE + 12)
431 {"no-undeclared-regs", no_argument, NULL, OPTION_NO_UNDECLARED_REGS},
432 #define OPTION_UNDECLARED_REGS (OPTION_MD_BASE + 13)
433 {"undeclared-regs", no_argument, NULL, OPTION_UNDECLARED_REGS},
434 #endif
435 #define OPTION_RELAX (OPTION_MD_BASE + 14)
436 {"relax", no_argument, NULL, OPTION_RELAX},
437 #define OPTION_NO_RELAX (OPTION_MD_BASE + 15)
438 {"no-relax", no_argument, NULL, OPTION_NO_RELAX},
439 {NULL, no_argument, NULL, 0}
440 };
441
442 size_t md_longopts_size = sizeof (md_longopts);
443
444 int
445 md_parse_option (c, arg)
446 int c;
447 char *arg;
448 {
449 /* We don't get a chance to initialize anything before we're called,
450 so handle that now. */
451 if (! default_init_p)
452 init_default_arch ();
453
454 switch (c)
455 {
456 case OPTION_BUMP:
457 warn_on_bump = 1;
458 warn_after_architecture = SPARC_OPCODE_ARCH_V6;
459 break;
460
461 case OPTION_XARCH:
462 #ifdef OBJ_ELF
463 if (strncmp (arg, "v9", 2) != 0)
464 md_parse_option (OPTION_32, NULL);
465 else
466 md_parse_option (OPTION_64, NULL);
467 #endif
468 /* Fall through. */
469
470 case 'A':
471 {
472 struct sparc_arch *sa;
473 enum sparc_opcode_arch_val opcode_arch;
474
475 sa = lookup_arch (arg);
476 if (sa == NULL
477 || ! sa->user_option_p)
478 {
479 if (c == OPTION_XARCH)
480 as_bad (_("invalid architecture -xarch=%s"), arg);
481 else
482 as_bad (_("invalid architecture -A%s"), arg);
483 return 0;
484 }
485
486 opcode_arch = sparc_opcode_lookup_arch (sa->opcode_arch);
487 if (opcode_arch == SPARC_OPCODE_ARCH_BAD)
488 as_fatal (_("Bad opcode table, broken assembler."));
489
490 max_architecture = opcode_arch;
491 architecture_requested = 1;
492 }
493 break;
494
495 case OPTION_SPARC:
496 /* Ignore -sparc, used by SunOS make default .s.o rule. */
497 break;
498
499 case OPTION_ENFORCE_ALIGNED_DATA:
500 enforce_aligned_data = 1;
501 break;
502
503 #ifdef SPARC_BIENDIAN
504 case OPTION_LITTLE_ENDIAN:
505 target_big_endian = 0;
506 if (default_arch_type != sparclet)
507 as_fatal ("This target does not support -EL");
508 break;
509 case OPTION_LITTLE_ENDIAN_DATA:
510 target_little_endian_data = 1;
511 target_big_endian = 0;
512 if (default_arch_type != sparc86x
513 && default_arch_type != v9)
514 as_fatal ("This target does not support --little-endian-data");
515 break;
516 case OPTION_BIG_ENDIAN:
517 target_big_endian = 1;
518 break;
519 #endif
520
521 #ifdef OBJ_AOUT
522 case 'k':
523 sparc_pic_code = 1;
524 break;
525 #endif
526
527 #ifdef OBJ_ELF
528 case OPTION_32:
529 case OPTION_64:
530 {
531 const char **list, **l;
532
533 sparc_arch_size = c == OPTION_32 ? 32 : 64;
534 list = bfd_target_list ();
535 for (l = list; *l != NULL; l++)
536 {
537 if (sparc_arch_size == 32)
538 {
539 if (strcmp (*l, "elf32-sparc") == 0)
540 break;
541 }
542 else
543 {
544 if (strcmp (*l, "elf64-sparc") == 0)
545 break;
546 }
547 }
548 if (*l == NULL)
549 as_fatal (_("No compiled in support for %d bit object file format"),
550 sparc_arch_size);
551 free (list);
552 }
553 break;
554
555 case OPTION_TSO:
556 sparc_memory_model = MM_TSO;
557 break;
558
559 case OPTION_PSO:
560 sparc_memory_model = MM_PSO;
561 break;
562
563 case OPTION_RMO:
564 sparc_memory_model = MM_RMO;
565 break;
566
567 case 'V':
568 print_version_id ();
569 break;
570
571 case 'Q':
572 /* Qy - do emit .comment
573 Qn - do not emit .comment. */
574 break;
575
576 case 's':
577 /* Use .stab instead of .stab.excl. */
578 break;
579
580 case 'q':
581 /* quick -- Native assembler does fewer checks. */
582 break;
583
584 case 'K':
585 if (strcmp (arg, "PIC") != 0)
586 as_warn (_("Unrecognized option following -K"));
587 else
588 sparc_pic_code = 1;
589 break;
590
591 case OPTION_NO_UNDECLARED_REGS:
592 no_undeclared_regs = 1;
593 break;
594
595 case OPTION_UNDECLARED_REGS:
596 no_undeclared_regs = 0;
597 break;
598 #endif
599
600 case OPTION_RELAX:
601 sparc_relax = 1;
602 break;
603
604 case OPTION_NO_RELAX:
605 sparc_relax = 0;
606 break;
607
608 default:
609 return 0;
610 }
611
612 return 1;
613 }
614
615 void
616 md_show_usage (stream)
617 FILE *stream;
618 {
619 const struct sparc_arch *arch;
620 int column;
621
622 /* We don't get a chance to initialize anything before we're called,
623 so handle that now. */
624 if (! default_init_p)
625 init_default_arch ();
626
627 fprintf (stream, _("SPARC options:\n"));
628 column = 0;
629 for (arch = &sparc_arch_table[0]; arch->name; arch++)
630 {
631 if (!arch->user_option_p)
632 continue;
633 if (arch != &sparc_arch_table[0])
634 fprintf (stream, " | ");
635 if (column + strlen (arch->name) > 70)
636 {
637 column = 0;
638 fputc ('\n', stream);
639 }
640 column += 5 + 2 + strlen (arch->name);
641 fprintf (stream, "-A%s", arch->name);
642 }
643 for (arch = &sparc_arch_table[0]; arch->name; arch++)
644 {
645 if (!arch->user_option_p)
646 continue;
647 fprintf (stream, " | ");
648 if (column + strlen (arch->name) > 65)
649 {
650 column = 0;
651 fputc ('\n', stream);
652 }
653 column += 5 + 7 + strlen (arch->name);
654 fprintf (stream, "-xarch=%s", arch->name);
655 }
656 fprintf (stream, _("\n\
657 specify variant of SPARC architecture\n\
658 -bump warn when assembler switches architectures\n\
659 -sparc ignored\n\
660 --enforce-aligned-data force .long, etc., to be aligned correctly\n\
661 -relax relax jumps and branches (default)\n\
662 -no-relax avoid changing any jumps and branches\n"));
663 #ifdef OBJ_AOUT
664 fprintf (stream, _("\
665 -k generate PIC\n"));
666 #endif
667 #ifdef OBJ_ELF
668 fprintf (stream, _("\
669 -32 create 32 bit object file\n\
670 -64 create 64 bit object file\n"));
671 fprintf (stream, _("\
672 [default is %d]\n"), default_arch_size);
673 fprintf (stream, _("\
674 -TSO use Total Store Ordering\n\
675 -PSO use Partial Store Ordering\n\
676 -RMO use Relaxed Memory Ordering\n"));
677 fprintf (stream, _("\
678 [default is %s]\n"), (default_arch_size == 64) ? "RMO" : "TSO");
679 fprintf (stream, _("\
680 -KPIC generate PIC\n\
681 -V print assembler version number\n\
682 -undeclared-regs ignore application global register usage without\n\
683 appropriate .register directive (default)\n\
684 -no-undeclared-regs force error on application global register usage\n\
685 without appropriate .register directive\n\
686 -q ignored\n\
687 -Qy, -Qn ignored\n\
688 -s ignored\n"));
689 #endif
690 #ifdef SPARC_BIENDIAN
691 fprintf (stream, _("\
692 -EL generate code for a little endian machine\n\
693 -EB generate code for a big endian machine\n\
694 --little-endian-data generate code for a machine having big endian\n\
695 instructions and little endian data.\n"));
696 #endif
697 }
698 \f
699 /* Native operand size opcode translation. */
700 struct
701 {
702 char *name;
703 char *name32;
704 char *name64;
705 } native_op_table[] =
706 {
707 {"ldn", "ld", "ldx"},
708 {"ldna", "lda", "ldxa"},
709 {"stn", "st", "stx"},
710 {"stna", "sta", "stxa"},
711 {"slln", "sll", "sllx"},
712 {"srln", "srl", "srlx"},
713 {"sran", "sra", "srax"},
714 {"casn", "cas", "casx"},
715 {"casna", "casa", "casxa"},
716 {"clrn", "clr", "clrx"},
717 {NULL, NULL, NULL},
718 };
719 \f
720 /* sparc64 priviledged registers. */
721
722 struct priv_reg_entry
723 {
724 char *name;
725 int regnum;
726 };
727
728 struct priv_reg_entry priv_reg_table[] =
729 {
730 {"tpc", 0},
731 {"tnpc", 1},
732 {"tstate", 2},
733 {"tt", 3},
734 {"tick", 4},
735 {"tba", 5},
736 {"pstate", 6},
737 {"tl", 7},
738 {"pil", 8},
739 {"cwp", 9},
740 {"cansave", 10},
741 {"canrestore", 11},
742 {"cleanwin", 12},
743 {"otherwin", 13},
744 {"wstate", 14},
745 {"fq", 15},
746 {"ver", 31},
747 {"", -1}, /* End marker. */
748 };
749
750 /* v9a specific asrs. */
751
752 struct priv_reg_entry v9a_asr_table[] =
753 {
754 {"tick_cmpr", 23},
755 {"sys_tick_cmpr", 25},
756 {"sys_tick", 24},
757 {"softint", 22},
758 {"set_softint", 20},
759 {"pic", 17},
760 {"pcr", 16},
761 {"gsr", 19},
762 {"dcr", 18},
763 {"clear_softint", 21},
764 {"", -1}, /* End marker. */
765 };
766
767 static int
768 cmp_reg_entry (parg, qarg)
769 const PTR parg;
770 const PTR qarg;
771 {
772 const struct priv_reg_entry *p = (const struct priv_reg_entry *) parg;
773 const struct priv_reg_entry *q = (const struct priv_reg_entry *) qarg;
774
775 return strcmp (q->name, p->name);
776 }
777 \f
778 /* This function is called once, at assembler startup time. It should
779 set up all the tables, etc. that the MD part of the assembler will
780 need. */
781
782 void
783 md_begin ()
784 {
785 register const char *retval = NULL;
786 int lose = 0;
787 register unsigned int i = 0;
788
789 /* We don't get a chance to initialize anything before md_parse_option
790 is called, and it may not be called, so handle default initialization
791 now if not already done. */
792 if (! default_init_p)
793 init_default_arch ();
794
795 op_hash = hash_new ();
796
797 while (i < (unsigned int) sparc_num_opcodes)
798 {
799 const char *name = sparc_opcodes[i].name;
800 retval = hash_insert (op_hash, name, (PTR) &sparc_opcodes[i]);
801 if (retval != NULL)
802 {
803 as_bad (_("Internal error: can't hash `%s': %s\n"),
804 sparc_opcodes[i].name, retval);
805 lose = 1;
806 }
807 do
808 {
809 if (sparc_opcodes[i].match & sparc_opcodes[i].lose)
810 {
811 as_bad (_("Internal error: losing opcode: `%s' \"%s\"\n"),
812 sparc_opcodes[i].name, sparc_opcodes[i].args);
813 lose = 1;
814 }
815 ++i;
816 }
817 while (i < (unsigned int) sparc_num_opcodes
818 && !strcmp (sparc_opcodes[i].name, name));
819 }
820
821 for (i = 0; native_op_table[i].name; i++)
822 {
823 const struct sparc_opcode *insn;
824 char *name = ((sparc_arch_size == 32)
825 ? native_op_table[i].name32
826 : native_op_table[i].name64);
827 insn = (struct sparc_opcode *) hash_find (op_hash, name);
828 if (insn == NULL)
829 {
830 as_bad (_("Internal error: can't find opcode `%s' for `%s'\n"),
831 name, native_op_table[i].name);
832 lose = 1;
833 }
834 else
835 {
836 retval = hash_insert (op_hash, native_op_table[i].name, (PTR) insn);
837 if (retval != NULL)
838 {
839 as_bad (_("Internal error: can't hash `%s': %s\n"),
840 sparc_opcodes[i].name, retval);
841 lose = 1;
842 }
843 }
844 }
845
846 if (lose)
847 as_fatal (_("Broken assembler. No assembly attempted."));
848
849 qsort (priv_reg_table, sizeof (priv_reg_table) / sizeof (priv_reg_table[0]),
850 sizeof (priv_reg_table[0]), cmp_reg_entry);
851
852 /* If -bump, record the architecture level at which we start issuing
853 warnings. The behaviour is different depending upon whether an
854 architecture was explicitly specified. If it wasn't, we issue warnings
855 for all upwards bumps. If it was, we don't start issuing warnings until
856 we need to bump beyond the requested architecture or when we bump between
857 conflicting architectures. */
858
859 if (warn_on_bump
860 && architecture_requested)
861 {
862 /* `max_architecture' records the requested architecture.
863 Issue warnings if we go above it. */
864 warn_after_architecture = max_architecture;
865
866 /* Find the highest architecture level that doesn't conflict with
867 the requested one. */
868 for (max_architecture = SPARC_OPCODE_ARCH_MAX;
869 max_architecture > warn_after_architecture;
870 --max_architecture)
871 if (! SPARC_OPCODE_CONFLICT_P (max_architecture,
872 warn_after_architecture))
873 break;
874 }
875 }
876
877 /* Called after all assembly has been done. */
878
879 void
880 sparc_md_end ()
881 {
882 unsigned long mach = bfd_mach_sparc;
883
884 if (sparc_arch_size == 64)
885 switch (current_architecture)
886 {
887 case SPARC_OPCODE_ARCH_V9A: mach = bfd_mach_sparc_v9a; break;
888 case SPARC_OPCODE_ARCH_V9B: mach = bfd_mach_sparc_v9b; break;
889 default: mach = bfd_mach_sparc_v9; break;
890 }
891 else
892 switch (current_architecture)
893 {
894 case SPARC_OPCODE_ARCH_SPARCLET: mach = bfd_mach_sparc_sparclet; break;
895 case SPARC_OPCODE_ARCH_V9: mach = bfd_mach_sparc_v8plus; break;
896 case SPARC_OPCODE_ARCH_V9A: mach = bfd_mach_sparc_v8plusa; break;
897 case SPARC_OPCODE_ARCH_V9B: mach = bfd_mach_sparc_v8plusb; break;
898 /* The sparclite is treated like a normal sparc. Perhaps it shouldn't
899 be but for now it is (since that's the way it's always been
900 treated). */
901 default: break;
902 }
903 bfd_set_arch_mach (stdoutput, bfd_arch_sparc, mach);
904 }
905 \f
906 /* Return non-zero if VAL is in the range -(MAX+1) to MAX. */
907
908 static INLINE int
909 in_signed_range (val, max)
910 bfd_signed_vma val, max;
911 {
912 if (max <= 0)
913 abort ();
914 /* Sign-extend the value from the architecture word size, so that
915 0xffffffff is always considered -1 on sparc32. */
916 if (sparc_arch_size == 32)
917 {
918 bfd_signed_vma sign = (bfd_signed_vma) 1 << 31;
919 val = ((val & 0xffffffff) ^ sign) - sign;
920 }
921 if (val > max)
922 return 0;
923 if (val < ~max)
924 return 0;
925 return 1;
926 }
927
928 /* Return non-zero if VAL is in the range 0 to MAX. */
929
930 static INLINE int
931 in_unsigned_range (val, max)
932 bfd_vma val, max;
933 {
934 if (val > max)
935 return 0;
936 return 1;
937 }
938
939 /* Return non-zero if VAL is in the range -(MAX/2+1) to MAX.
940 (e.g. -15 to +31). */
941
942 static INLINE int
943 in_bitfield_range (val, max)
944 bfd_signed_vma val, max;
945 {
946 if (max <= 0)
947 abort ();
948 if (val > max)
949 return 0;
950 if (val < ~(max >> 1))
951 return 0;
952 return 1;
953 }
954
955 static int
956 sparc_ffs (mask)
957 unsigned int mask;
958 {
959 int i;
960
961 if (mask == 0)
962 return -1;
963
964 for (i = 0; (mask & 1) == 0; ++i)
965 mask >>= 1;
966 return i;
967 }
968
969 /* Implement big shift right. */
970 static bfd_vma
971 BSR (val, amount)
972 bfd_vma val;
973 int amount;
974 {
975 if (sizeof (bfd_vma) <= 4 && amount >= 32)
976 as_fatal (_("Support for 64-bit arithmetic not compiled in."));
977 return val >> amount;
978 }
979 \f
980 /* For communication between sparc_ip and get_expression. */
981 static char *expr_end;
982
983 /* Values for `special_case'.
984 Instructions that require wierd handling because they're longer than
985 4 bytes. */
986 #define SPECIAL_CASE_NONE 0
987 #define SPECIAL_CASE_SET 1
988 #define SPECIAL_CASE_SETSW 2
989 #define SPECIAL_CASE_SETX 3
990 /* FIXME: sparc-opc.c doesn't have necessary "S" trigger to enable this. */
991 #define SPECIAL_CASE_FDIV 4
992
993 /* Bit masks of various insns. */
994 #define NOP_INSN 0x01000000
995 #define OR_INSN 0x80100000
996 #define XOR_INSN 0x80180000
997 #define FMOVS_INSN 0x81A00020
998 #define SETHI_INSN 0x01000000
999 #define SLLX_INSN 0x81281000
1000 #define SRA_INSN 0x81380000
1001
1002 /* The last instruction to be assembled. */
1003 static const struct sparc_opcode *last_insn;
1004 /* The assembled opcode of `last_insn'. */
1005 static unsigned long last_opcode;
1006 \f
1007 /* Handle the set and setuw synthetic instructions. */
1008
1009 static void
1010 synthetize_setuw (insn)
1011 const struct sparc_opcode *insn;
1012 {
1013 int need_hi22_p = 0;
1014 int rd = (the_insn.opcode & RD (~0)) >> 25;
1015
1016 if (the_insn.exp.X_op == O_constant)
1017 {
1018 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
1019 {
1020 if (sizeof (offsetT) > 4
1021 && (the_insn.exp.X_add_number < 0
1022 || the_insn.exp.X_add_number > (offsetT) 0xffffffff))
1023 as_warn (_("set: number not in 0..4294967295 range"));
1024 }
1025 else
1026 {
1027 if (sizeof (offsetT) > 4
1028 && (the_insn.exp.X_add_number < -(offsetT) 0x80000000
1029 || the_insn.exp.X_add_number > (offsetT) 0xffffffff))
1030 as_warn (_("set: number not in -2147483648..4294967295 range"));
1031 the_insn.exp.X_add_number = (int) the_insn.exp.X_add_number;
1032 }
1033 }
1034
1035 /* See if operand is absolute and small; skip sethi if so. */
1036 if (the_insn.exp.X_op != O_constant
1037 || the_insn.exp.X_add_number >= (1 << 12)
1038 || the_insn.exp.X_add_number < -(1 << 12))
1039 {
1040 the_insn.opcode = (SETHI_INSN | RD (rd)
1041 | ((the_insn.exp.X_add_number >> 10)
1042 & (the_insn.exp.X_op == O_constant
1043 ? 0x3fffff : 0)));
1044 the_insn.reloc = (the_insn.exp.X_op != O_constant
1045 ? BFD_RELOC_HI22 : BFD_RELOC_NONE);
1046 output_insn (insn, &the_insn);
1047 need_hi22_p = 1;
1048 }
1049
1050 /* See if operand has no low-order bits; skip OR if so. */
1051 if (the_insn.exp.X_op != O_constant
1052 || (need_hi22_p && (the_insn.exp.X_add_number & 0x3FF) != 0)
1053 || ! need_hi22_p)
1054 {
1055 the_insn.opcode = (OR_INSN | (need_hi22_p ? RS1 (rd) : 0)
1056 | RD (rd) | IMMED
1057 | (the_insn.exp.X_add_number
1058 & (the_insn.exp.X_op != O_constant
1059 ? 0 : need_hi22_p ? 0x3ff : 0x1fff)));
1060 the_insn.reloc = (the_insn.exp.X_op != O_constant
1061 ? BFD_RELOC_LO10 : BFD_RELOC_NONE);
1062 output_insn (insn, &the_insn);
1063 }
1064 }
1065
1066 /* Handle the setsw synthetic instruction. */
1067
1068 static void
1069 synthetize_setsw (insn)
1070 const struct sparc_opcode *insn;
1071 {
1072 int low32, rd, opc;
1073
1074 rd = (the_insn.opcode & RD (~0)) >> 25;
1075
1076 if (the_insn.exp.X_op != O_constant)
1077 {
1078 synthetize_setuw (insn);
1079
1080 /* Need to sign extend it. */
1081 the_insn.opcode = (SRA_INSN | RS1 (rd) | RD (rd));
1082 the_insn.reloc = BFD_RELOC_NONE;
1083 output_insn (insn, &the_insn);
1084 return;
1085 }
1086
1087 if (sizeof (offsetT) > 4
1088 && (the_insn.exp.X_add_number < -(offsetT) 0x80000000
1089 || the_insn.exp.X_add_number > (offsetT) 0xffffffff))
1090 as_warn (_("setsw: number not in -2147483648..4294967295 range"));
1091
1092 low32 = the_insn.exp.X_add_number;
1093
1094 if (low32 >= 0)
1095 {
1096 synthetize_setuw (insn);
1097 return;
1098 }
1099
1100 opc = OR_INSN;
1101
1102 the_insn.reloc = BFD_RELOC_NONE;
1103 /* See if operand is absolute and small; skip sethi if so. */
1104 if (low32 < -(1 << 12))
1105 {
1106 the_insn.opcode = (SETHI_INSN | RD (rd)
1107 | (((~the_insn.exp.X_add_number) >> 10) & 0x3fffff));
1108 output_insn (insn, &the_insn);
1109 low32 = 0x1c00 | (low32 & 0x3ff);
1110 opc = RS1 (rd) | XOR_INSN;
1111 }
1112
1113 the_insn.opcode = (opc | RD (rd) | IMMED
1114 | (low32 & 0x1fff));
1115 output_insn (insn, &the_insn);
1116 }
1117
1118 /* Handle the setsw synthetic instruction. */
1119
1120 static void
1121 synthetize_setx (insn)
1122 const struct sparc_opcode *insn;
1123 {
1124 int upper32, lower32;
1125 int tmpreg = (the_insn.opcode & RS1 (~0)) >> 14;
1126 int dstreg = (the_insn.opcode & RD (~0)) >> 25;
1127 int upper_dstreg;
1128 int need_hh22_p = 0, need_hm10_p = 0, need_hi22_p = 0, need_lo10_p = 0;
1129 int need_xor10_p = 0;
1130
1131 #define SIGNEXT32(x) ((((x) & 0xffffffff) ^ 0x80000000) - 0x80000000)
1132 lower32 = SIGNEXT32 (the_insn.exp.X_add_number);
1133 upper32 = SIGNEXT32 (BSR (the_insn.exp.X_add_number, 32));
1134 #undef SIGNEXT32
1135
1136 upper_dstreg = tmpreg;
1137 /* The tmp reg should not be the dst reg. */
1138 if (tmpreg == dstreg)
1139 as_warn (_("setx: temporary register same as destination register"));
1140
1141 /* ??? Obviously there are other optimizations we can do
1142 (e.g. sethi+shift for 0x1f0000000) and perhaps we shouldn't be
1143 doing some of these. Later. If you do change things, try to
1144 change all of this to be table driven as well. */
1145 /* What to output depends on the number if it's constant.
1146 Compute that first, then output what we've decided upon. */
1147 if (the_insn.exp.X_op != O_constant)
1148 {
1149 if (sparc_arch_size == 32)
1150 {
1151 /* When arch size is 32, we want setx to be equivalent
1152 to setuw for anything but constants. */
1153 the_insn.exp.X_add_number &= 0xffffffff;
1154 synthetize_setuw (insn);
1155 return;
1156 }
1157 need_hh22_p = need_hm10_p = need_hi22_p = need_lo10_p = 1;
1158 lower32 = 0;
1159 upper32 = 0;
1160 }
1161 else
1162 {
1163 /* Reset X_add_number, we've extracted it as upper32/lower32.
1164 Otherwise fixup_segment will complain about not being able to
1165 write an 8 byte number in a 4 byte field. */
1166 the_insn.exp.X_add_number = 0;
1167
1168 /* Only need hh22 if `or' insn can't handle constant. */
1169 if (upper32 < -(1 << 12) || upper32 >= (1 << 12))
1170 need_hh22_p = 1;
1171
1172 /* Does bottom part (after sethi) have bits? */
1173 if ((need_hh22_p && (upper32 & 0x3ff) != 0)
1174 /* No hh22, but does upper32 still have bits we can't set
1175 from lower32? */
1176 || (! need_hh22_p && upper32 != 0 && upper32 != -1))
1177 need_hm10_p = 1;
1178
1179 /* If the lower half is all zero, we build the upper half directly
1180 into the dst reg. */
1181 if (lower32 != 0
1182 /* Need lower half if number is zero or 0xffffffff00000000. */
1183 || (! need_hh22_p && ! need_hm10_p))
1184 {
1185 /* No need for sethi if `or' insn can handle constant. */
1186 if (lower32 < -(1 << 12) || lower32 >= (1 << 12)
1187 /* Note that we can't use a negative constant in the `or'
1188 insn unless the upper 32 bits are all ones. */
1189 || (lower32 < 0 && upper32 != -1)
1190 || (lower32 >= 0 && upper32 == -1))
1191 need_hi22_p = 1;
1192
1193 if (need_hi22_p && upper32 == -1)
1194 need_xor10_p = 1;
1195
1196 /* Does bottom part (after sethi) have bits? */
1197 else if ((need_hi22_p && (lower32 & 0x3ff) != 0)
1198 /* No sethi. */
1199 || (! need_hi22_p && (lower32 & 0x1fff) != 0)
1200 /* Need `or' if we didn't set anything else. */
1201 || (! need_hi22_p && ! need_hh22_p && ! need_hm10_p))
1202 need_lo10_p = 1;
1203 }
1204 else
1205 /* Output directly to dst reg if lower 32 bits are all zero. */
1206 upper_dstreg = dstreg;
1207 }
1208
1209 if (!upper_dstreg && dstreg)
1210 as_warn (_("setx: illegal temporary register g0"));
1211
1212 if (need_hh22_p)
1213 {
1214 the_insn.opcode = (SETHI_INSN | RD (upper_dstreg)
1215 | ((upper32 >> 10) & 0x3fffff));
1216 the_insn.reloc = (the_insn.exp.X_op != O_constant
1217 ? BFD_RELOC_SPARC_HH22 : BFD_RELOC_NONE);
1218 output_insn (insn, &the_insn);
1219 }
1220
1221 if (need_hi22_p)
1222 {
1223 the_insn.opcode = (SETHI_INSN | RD (dstreg)
1224 | (((need_xor10_p ? ~lower32 : lower32)
1225 >> 10) & 0x3fffff));
1226 the_insn.reloc = (the_insn.exp.X_op != O_constant
1227 ? BFD_RELOC_SPARC_LM22 : BFD_RELOC_NONE);
1228 output_insn (insn, &the_insn);
1229 }
1230
1231 if (need_hm10_p)
1232 {
1233 the_insn.opcode = (OR_INSN
1234 | (need_hh22_p ? RS1 (upper_dstreg) : 0)
1235 | RD (upper_dstreg)
1236 | IMMED
1237 | (upper32 & (need_hh22_p ? 0x3ff : 0x1fff)));
1238 the_insn.reloc = (the_insn.exp.X_op != O_constant
1239 ? BFD_RELOC_SPARC_HM10 : BFD_RELOC_NONE);
1240 output_insn (insn, &the_insn);
1241 }
1242
1243 if (need_lo10_p)
1244 {
1245 /* FIXME: One nice optimization to do here is to OR the low part
1246 with the highpart if hi22 isn't needed and the low part is
1247 positive. */
1248 the_insn.opcode = (OR_INSN | (need_hi22_p ? RS1 (dstreg) : 0)
1249 | RD (dstreg)
1250 | IMMED
1251 | (lower32 & (need_hi22_p ? 0x3ff : 0x1fff)));
1252 the_insn.reloc = (the_insn.exp.X_op != O_constant
1253 ? BFD_RELOC_LO10 : BFD_RELOC_NONE);
1254 output_insn (insn, &the_insn);
1255 }
1256
1257 /* If we needed to build the upper part, shift it into place. */
1258 if (need_hh22_p || need_hm10_p)
1259 {
1260 the_insn.opcode = (SLLX_INSN | RS1 (upper_dstreg) | RD (upper_dstreg)
1261 | IMMED | 32);
1262 the_insn.reloc = BFD_RELOC_NONE;
1263 output_insn (insn, &the_insn);
1264 }
1265
1266 /* To get -1 in upper32, we do sethi %hi(~x), r; xor r, -0x400 | x, r. */
1267 if (need_xor10_p)
1268 {
1269 the_insn.opcode = (XOR_INSN | RS1 (dstreg) | RD (dstreg) | IMMED
1270 | 0x1c00 | (lower32 & 0x3ff));
1271 the_insn.reloc = BFD_RELOC_NONE;
1272 output_insn (insn, &the_insn);
1273 }
1274
1275 /* If we needed to build both upper and lower parts, OR them together. */
1276 else if ((need_hh22_p || need_hm10_p) && (need_hi22_p || need_lo10_p))
1277 {
1278 the_insn.opcode = (OR_INSN | RS1 (dstreg) | RS2 (upper_dstreg)
1279 | RD (dstreg));
1280 the_insn.reloc = BFD_RELOC_NONE;
1281 output_insn (insn, &the_insn);
1282 }
1283 }
1284 \f
1285 /* Main entry point to assemble one instruction. */
1286
1287 void
1288 md_assemble (str)
1289 char *str;
1290 {
1291 const struct sparc_opcode *insn;
1292 int special_case;
1293
1294 know (str);
1295 special_case = sparc_ip (str, &insn);
1296
1297 /* We warn about attempts to put a floating point branch in a delay slot,
1298 unless the delay slot has been annulled. */
1299 if (insn != NULL
1300 && last_insn != NULL
1301 && (insn->flags & F_FBR) != 0
1302 && (last_insn->flags & F_DELAYED) != 0
1303 /* ??? This test isn't completely accurate. We assume anything with
1304 F_{UNBR,CONDBR,FBR} set is annullable. */
1305 && ((last_insn->flags & (F_UNBR | F_CONDBR | F_FBR)) == 0
1306 || (last_opcode & ANNUL) == 0))
1307 as_warn (_("FP branch in delay slot"));
1308
1309 /* SPARC before v9 requires a nop instruction between a floating
1310 point instruction and a floating point branch. We insert one
1311 automatically, with a warning. */
1312 if (max_architecture < SPARC_OPCODE_ARCH_V9
1313 && insn != NULL
1314 && last_insn != NULL
1315 && (insn->flags & F_FBR) != 0
1316 && (last_insn->flags & F_FLOAT) != 0)
1317 {
1318 struct sparc_it nop_insn;
1319
1320 nop_insn.opcode = NOP_INSN;
1321 nop_insn.reloc = BFD_RELOC_NONE;
1322 output_insn (insn, &nop_insn);
1323 as_warn (_("FP branch preceded by FP instruction; NOP inserted"));
1324 }
1325
1326 switch (special_case)
1327 {
1328 case SPECIAL_CASE_NONE:
1329 /* Normal insn. */
1330 output_insn (insn, &the_insn);
1331 break;
1332
1333 case SPECIAL_CASE_SETSW:
1334 synthetize_setsw (insn);
1335 break;
1336
1337 case SPECIAL_CASE_SET:
1338 synthetize_setuw (insn);
1339 break;
1340
1341 case SPECIAL_CASE_SETX:
1342 synthetize_setx (insn);
1343 break;
1344
1345 case SPECIAL_CASE_FDIV:
1346 {
1347 int rd = (the_insn.opcode >> 25) & 0x1f;
1348
1349 output_insn (insn, &the_insn);
1350
1351 /* According to information leaked from Sun, the "fdiv" instructions
1352 on early SPARC machines would produce incorrect results sometimes.
1353 The workaround is to add an fmovs of the destination register to
1354 itself just after the instruction. This was true on machines
1355 with Weitek 1165 float chips, such as the Sun-4/260 and /280. */
1356 assert (the_insn.reloc == BFD_RELOC_NONE);
1357 the_insn.opcode = FMOVS_INSN | rd | RD (rd);
1358 output_insn (insn, &the_insn);
1359 return;
1360 }
1361
1362 default:
1363 as_fatal (_("failed special case insn sanity check"));
1364 }
1365 }
1366
1367 /* Subroutine of md_assemble to do the actual parsing. */
1368
1369 static int
1370 sparc_ip (str, pinsn)
1371 char *str;
1372 const struct sparc_opcode **pinsn;
1373 {
1374 char *error_message = "";
1375 char *s;
1376 const char *args;
1377 char c;
1378 const struct sparc_opcode *insn;
1379 char *argsStart;
1380 unsigned long opcode;
1381 unsigned int mask = 0;
1382 int match = 0;
1383 int comma = 0;
1384 int v9_arg_p;
1385 int special_case = SPECIAL_CASE_NONE;
1386
1387 s = str;
1388 if (ISLOWER (*s))
1389 {
1390 do
1391 ++s;
1392 while (ISLOWER (*s) || ISDIGIT (*s));
1393 }
1394
1395 switch (*s)
1396 {
1397 case '\0':
1398 break;
1399
1400 case ',':
1401 comma = 1;
1402 /* Fall through. */
1403
1404 case ' ':
1405 *s++ = '\0';
1406 break;
1407
1408 default:
1409 as_fatal (_("Unknown opcode: `%s'"), str);
1410 }
1411 insn = (struct sparc_opcode *) hash_find (op_hash, str);
1412 *pinsn = insn;
1413 if (insn == NULL)
1414 {
1415 as_bad (_("Unknown opcode: `%s'"), str);
1416 return special_case;
1417 }
1418 if (comma)
1419 {
1420 *--s = ',';
1421 }
1422
1423 argsStart = s;
1424 for (;;)
1425 {
1426 opcode = insn->match;
1427 memset (&the_insn, '\0', sizeof (the_insn));
1428 the_insn.reloc = BFD_RELOC_NONE;
1429 v9_arg_p = 0;
1430
1431 /* Build the opcode, checking as we go to make sure that the
1432 operands match. */
1433 for (args = insn->args;; ++args)
1434 {
1435 switch (*args)
1436 {
1437 case 'K':
1438 {
1439 int kmask = 0;
1440
1441 /* Parse a series of masks. */
1442 if (*s == '#')
1443 {
1444 while (*s == '#')
1445 {
1446 int mask;
1447
1448 if (! parse_keyword_arg (sparc_encode_membar, &s,
1449 &mask))
1450 {
1451 error_message = _(": invalid membar mask name");
1452 goto error;
1453 }
1454 kmask |= mask;
1455 while (*s == ' ')
1456 ++s;
1457 if (*s == '|' || *s == '+')
1458 ++s;
1459 while (*s == ' ')
1460 ++s;
1461 }
1462 }
1463 else
1464 {
1465 if (! parse_const_expr_arg (&s, &kmask))
1466 {
1467 error_message = _(": invalid membar mask expression");
1468 goto error;
1469 }
1470 if (kmask < 0 || kmask > 127)
1471 {
1472 error_message = _(": invalid membar mask number");
1473 goto error;
1474 }
1475 }
1476
1477 opcode |= MEMBAR (kmask);
1478 continue;
1479 }
1480
1481 case '3':
1482 {
1483 int smask = 0;
1484
1485 if (! parse_const_expr_arg (&s, &smask))
1486 {
1487 error_message = _(": invalid siam mode expression");
1488 goto error;
1489 }
1490 if (smask < 0 || smask > 7)
1491 {
1492 error_message = _(": invalid siam mode number");
1493 goto error;
1494 }
1495 opcode |= smask;
1496 continue;
1497 }
1498
1499 case '*':
1500 {
1501 int fcn = 0;
1502
1503 /* Parse a prefetch function. */
1504 if (*s == '#')
1505 {
1506 if (! parse_keyword_arg (sparc_encode_prefetch, &s, &fcn))
1507 {
1508 error_message = _(": invalid prefetch function name");
1509 goto error;
1510 }
1511 }
1512 else
1513 {
1514 if (! parse_const_expr_arg (&s, &fcn))
1515 {
1516 error_message = _(": invalid prefetch function expression");
1517 goto error;
1518 }
1519 if (fcn < 0 || fcn > 31)
1520 {
1521 error_message = _(": invalid prefetch function number");
1522 goto error;
1523 }
1524 }
1525 opcode |= RD (fcn);
1526 continue;
1527 }
1528
1529 case '!':
1530 case '?':
1531 /* Parse a sparc64 privileged register. */
1532 if (*s == '%')
1533 {
1534 struct priv_reg_entry *p = priv_reg_table;
1535 unsigned int len = 9999999; /* Init to make gcc happy. */
1536
1537 s += 1;
1538 while (p->name[0] > s[0])
1539 p++;
1540 while (p->name[0] == s[0])
1541 {
1542 len = strlen (p->name);
1543 if (strncmp (p->name, s, len) == 0)
1544 break;
1545 p++;
1546 }
1547 if (p->name[0] != s[0])
1548 {
1549 error_message = _(": unrecognizable privileged register");
1550 goto error;
1551 }
1552 if (*args == '?')
1553 opcode |= (p->regnum << 14);
1554 else
1555 opcode |= (p->regnum << 25);
1556 s += len;
1557 continue;
1558 }
1559 else
1560 {
1561 error_message = _(": unrecognizable privileged register");
1562 goto error;
1563 }
1564
1565 case '_':
1566 case '/':
1567 /* Parse a v9a/v9b ancillary state register. */
1568 if (*s == '%')
1569 {
1570 struct priv_reg_entry *p = v9a_asr_table;
1571 unsigned int len = 9999999; /* Init to make gcc happy. */
1572
1573 s += 1;
1574 while (p->name[0] > s[0])
1575 p++;
1576 while (p->name[0] == s[0])
1577 {
1578 len = strlen (p->name);
1579 if (strncmp (p->name, s, len) == 0)
1580 break;
1581 p++;
1582 }
1583 if (p->name[0] != s[0])
1584 {
1585 error_message = _(": unrecognizable v9a or v9b ancillary state register");
1586 goto error;
1587 }
1588 if (*args == '/' && (p->regnum == 20 || p->regnum == 21))
1589 {
1590 error_message = _(": rd on write only ancillary state register");
1591 goto error;
1592 }
1593 if (p->regnum >= 24
1594 && (insn->architecture
1595 & SPARC_OPCODE_ARCH_MASK (SPARC_OPCODE_ARCH_V9A)))
1596 {
1597 /* %sys_tick and %sys_tick_cmpr are v9bnotv9a */
1598 error_message = _(": unrecognizable v9a ancillary state register");
1599 goto error;
1600 }
1601 if (*args == '/')
1602 opcode |= (p->regnum << 14);
1603 else
1604 opcode |= (p->regnum << 25);
1605 s += len;
1606 continue;
1607 }
1608 else
1609 {
1610 error_message = _(": unrecognizable v9a or v9b ancillary state register");
1611 goto error;
1612 }
1613
1614 case 'M':
1615 case 'm':
1616 if (strncmp (s, "%asr", 4) == 0)
1617 {
1618 s += 4;
1619
1620 if (ISDIGIT (*s))
1621 {
1622 long num = 0;
1623
1624 while (ISDIGIT (*s))
1625 {
1626 num = num * 10 + *s - '0';
1627 ++s;
1628 }
1629
1630 if (current_architecture >= SPARC_OPCODE_ARCH_V9)
1631 {
1632 if (num < 16 || 31 < num)
1633 {
1634 error_message = _(": asr number must be between 16 and 31");
1635 goto error;
1636 }
1637 }
1638 else
1639 {
1640 if (num < 0 || 31 < num)
1641 {
1642 error_message = _(": asr number must be between 0 and 31");
1643 goto error;
1644 }
1645 }
1646
1647 opcode |= (*args == 'M' ? RS1 (num) : RD (num));
1648 continue;
1649 }
1650 else
1651 {
1652 error_message = _(": expecting %asrN");
1653 goto error;
1654 }
1655 } /* if %asr */
1656 break;
1657
1658 case 'I':
1659 the_insn.reloc = BFD_RELOC_SPARC_11;
1660 goto immediate;
1661
1662 case 'j':
1663 the_insn.reloc = BFD_RELOC_SPARC_10;
1664 goto immediate;
1665
1666 case 'X':
1667 /* V8 systems don't understand BFD_RELOC_SPARC_5. */
1668 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
1669 the_insn.reloc = BFD_RELOC_SPARC_5;
1670 else
1671 the_insn.reloc = BFD_RELOC_SPARC13;
1672 /* These fields are unsigned, but for upward compatibility,
1673 allow negative values as well. */
1674 goto immediate;
1675
1676 case 'Y':
1677 /* V8 systems don't understand BFD_RELOC_SPARC_6. */
1678 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
1679 the_insn.reloc = BFD_RELOC_SPARC_6;
1680 else
1681 the_insn.reloc = BFD_RELOC_SPARC13;
1682 /* These fields are unsigned, but for upward compatibility,
1683 allow negative values as well. */
1684 goto immediate;
1685
1686 case 'k':
1687 the_insn.reloc = /* RELOC_WDISP2_14 */ BFD_RELOC_SPARC_WDISP16;
1688 the_insn.pcrel = 1;
1689 goto immediate;
1690
1691 case 'G':
1692 the_insn.reloc = BFD_RELOC_SPARC_WDISP19;
1693 the_insn.pcrel = 1;
1694 goto immediate;
1695
1696 case 'N':
1697 if (*s == 'p' && s[1] == 'n')
1698 {
1699 s += 2;
1700 continue;
1701 }
1702 break;
1703
1704 case 'T':
1705 if (*s == 'p' && s[1] == 't')
1706 {
1707 s += 2;
1708 continue;
1709 }
1710 break;
1711
1712 case 'z':
1713 if (*s == ' ')
1714 {
1715 ++s;
1716 }
1717 if (strncmp (s, "%icc", 4) == 0)
1718 {
1719 s += 4;
1720 continue;
1721 }
1722 break;
1723
1724 case 'Z':
1725 if (*s == ' ')
1726 {
1727 ++s;
1728 }
1729 if (strncmp (s, "%xcc", 4) == 0)
1730 {
1731 s += 4;
1732 continue;
1733 }
1734 break;
1735
1736 case '6':
1737 if (*s == ' ')
1738 {
1739 ++s;
1740 }
1741 if (strncmp (s, "%fcc0", 5) == 0)
1742 {
1743 s += 5;
1744 continue;
1745 }
1746 break;
1747
1748 case '7':
1749 if (*s == ' ')
1750 {
1751 ++s;
1752 }
1753 if (strncmp (s, "%fcc1", 5) == 0)
1754 {
1755 s += 5;
1756 continue;
1757 }
1758 break;
1759
1760 case '8':
1761 if (*s == ' ')
1762 {
1763 ++s;
1764 }
1765 if (strncmp (s, "%fcc2", 5) == 0)
1766 {
1767 s += 5;
1768 continue;
1769 }
1770 break;
1771
1772 case '9':
1773 if (*s == ' ')
1774 {
1775 ++s;
1776 }
1777 if (strncmp (s, "%fcc3", 5) == 0)
1778 {
1779 s += 5;
1780 continue;
1781 }
1782 break;
1783
1784 case 'P':
1785 if (strncmp (s, "%pc", 3) == 0)
1786 {
1787 s += 3;
1788 continue;
1789 }
1790 break;
1791
1792 case 'W':
1793 if (strncmp (s, "%tick", 5) == 0)
1794 {
1795 s += 5;
1796 continue;
1797 }
1798 break;
1799
1800 case '\0': /* End of args. */
1801 if (*s == '\0')
1802 {
1803 match = 1;
1804 }
1805 break;
1806
1807 case '+':
1808 if (*s == '+')
1809 {
1810 ++s;
1811 continue;
1812 }
1813 if (*s == '-')
1814 {
1815 continue;
1816 }
1817 break;
1818
1819 case '[': /* These must match exactly. */
1820 case ']':
1821 case ',':
1822 case ' ':
1823 if (*s++ == *args)
1824 continue;
1825 break;
1826
1827 case '#': /* Must be at least one digit. */
1828 if (ISDIGIT (*s++))
1829 {
1830 while (ISDIGIT (*s))
1831 {
1832 ++s;
1833 }
1834 continue;
1835 }
1836 break;
1837
1838 case 'C': /* Coprocessor state register. */
1839 if (strncmp (s, "%csr", 4) == 0)
1840 {
1841 s += 4;
1842 continue;
1843 }
1844 break;
1845
1846 case 'b': /* Next operand is a coprocessor register. */
1847 case 'c':
1848 case 'D':
1849 if (*s++ == '%' && *s++ == 'c' && ISDIGIT (*s))
1850 {
1851 mask = *s++;
1852 if (ISDIGIT (*s))
1853 {
1854 mask = 10 * (mask - '0') + (*s++ - '0');
1855 if (mask >= 32)
1856 {
1857 break;
1858 }
1859 }
1860 else
1861 {
1862 mask -= '0';
1863 }
1864 switch (*args)
1865 {
1866
1867 case 'b':
1868 opcode |= mask << 14;
1869 continue;
1870
1871 case 'c':
1872 opcode |= mask;
1873 continue;
1874
1875 case 'D':
1876 opcode |= mask << 25;
1877 continue;
1878 }
1879 }
1880 break;
1881
1882 case 'r': /* next operand must be a register */
1883 case 'O':
1884 case '1':
1885 case '2':
1886 case 'd':
1887 if (*s++ == '%')
1888 {
1889 switch (c = *s++)
1890 {
1891
1892 case 'f': /* frame pointer */
1893 if (*s++ == 'p')
1894 {
1895 mask = 0x1e;
1896 break;
1897 }
1898 goto error;
1899
1900 case 'g': /* global register */
1901 c = *s++;
1902 if (isoctal (c))
1903 {
1904 mask = c - '0';
1905 break;
1906 }
1907 goto error;
1908
1909 case 'i': /* in register */
1910 c = *s++;
1911 if (isoctal (c))
1912 {
1913 mask = c - '0' + 24;
1914 break;
1915 }
1916 goto error;
1917
1918 case 'l': /* local register */
1919 c = *s++;
1920 if (isoctal (c))
1921 {
1922 mask = (c - '0' + 16);
1923 break;
1924 }
1925 goto error;
1926
1927 case 'o': /* out register */
1928 c = *s++;
1929 if (isoctal (c))
1930 {
1931 mask = (c - '0' + 8);
1932 break;
1933 }
1934 goto error;
1935
1936 case 's': /* stack pointer */
1937 if (*s++ == 'p')
1938 {
1939 mask = 0xe;
1940 break;
1941 }
1942 goto error;
1943
1944 case 'r': /* any register */
1945 if (!ISDIGIT ((c = *s++)))
1946 {
1947 goto error;
1948 }
1949 /* FALLTHROUGH */
1950 case '0':
1951 case '1':
1952 case '2':
1953 case '3':
1954 case '4':
1955 case '5':
1956 case '6':
1957 case '7':
1958 case '8':
1959 case '9':
1960 if (ISDIGIT (*s))
1961 {
1962 if ((c = 10 * (c - '0') + (*s++ - '0')) >= 32)
1963 {
1964 goto error;
1965 }
1966 }
1967 else
1968 {
1969 c -= '0';
1970 }
1971 mask = c;
1972 break;
1973
1974 default:
1975 goto error;
1976 }
1977
1978 if ((mask & ~1) == 2 && sparc_arch_size == 64
1979 && no_undeclared_regs && ! globals[mask])
1980 as_bad (_("detected global register use not covered by .register pseudo-op"));
1981
1982 /* Got the register, now figure out where
1983 it goes in the opcode. */
1984 switch (*args)
1985 {
1986 case '1':
1987 opcode |= mask << 14;
1988 continue;
1989
1990 case '2':
1991 opcode |= mask;
1992 continue;
1993
1994 case 'd':
1995 opcode |= mask << 25;
1996 continue;
1997
1998 case 'r':
1999 opcode |= (mask << 25) | (mask << 14);
2000 continue;
2001
2002 case 'O':
2003 opcode |= (mask << 25) | (mask << 0);
2004 continue;
2005 }
2006 }
2007 break;
2008
2009 case 'e': /* next operand is a floating point register */
2010 case 'v':
2011 case 'V':
2012
2013 case 'f':
2014 case 'B':
2015 case 'R':
2016
2017 case 'g':
2018 case 'H':
2019 case 'J':
2020 {
2021 char format;
2022
2023 if (*s++ == '%'
2024 && ((format = *s) == 'f')
2025 && ISDIGIT (*++s))
2026 {
2027 for (mask = 0; ISDIGIT (*s); ++s)
2028 {
2029 mask = 10 * mask + (*s - '0');
2030 } /* read the number */
2031
2032 if ((*args == 'v'
2033 || *args == 'B'
2034 || *args == 'H')
2035 && (mask & 1))
2036 {
2037 break;
2038 } /* register must be even numbered */
2039
2040 if ((*args == 'V'
2041 || *args == 'R'
2042 || *args == 'J')
2043 && (mask & 3))
2044 {
2045 break;
2046 } /* register must be multiple of 4 */
2047
2048 if (mask >= 64)
2049 {
2050 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
2051 error_message = _(": There are only 64 f registers; [0-63]");
2052 else
2053 error_message = _(": There are only 32 f registers; [0-31]");
2054 goto error;
2055 } /* on error */
2056 else if (mask >= 32)
2057 {
2058 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
2059 {
2060 v9_arg_p = 1;
2061 mask -= 31; /* wrap high bit */
2062 }
2063 else
2064 {
2065 error_message = _(": There are only 32 f registers; [0-31]");
2066 goto error;
2067 }
2068 }
2069 }
2070 else
2071 {
2072 break;
2073 } /* if not an 'f' register. */
2074
2075 switch (*args)
2076 {
2077 case 'v':
2078 case 'V':
2079 case 'e':
2080 opcode |= RS1 (mask);
2081 continue;
2082
2083 case 'f':
2084 case 'B':
2085 case 'R':
2086 opcode |= RS2 (mask);
2087 continue;
2088
2089 case 'g':
2090 case 'H':
2091 case 'J':
2092 opcode |= RD (mask);
2093 continue;
2094 } /* Pack it in. */
2095
2096 know (0);
2097 break;
2098 } /* float arg */
2099
2100 case 'F':
2101 if (strncmp (s, "%fsr", 4) == 0)
2102 {
2103 s += 4;
2104 continue;
2105 }
2106 break;
2107
2108 case '0': /* 64 bit immediate (set, setsw, setx insn) */
2109 the_insn.reloc = BFD_RELOC_NONE; /* reloc handled elsewhere */
2110 goto immediate;
2111
2112 case 'l': /* 22 bit PC relative immediate */
2113 the_insn.reloc = BFD_RELOC_SPARC_WDISP22;
2114 the_insn.pcrel = 1;
2115 goto immediate;
2116
2117 case 'L': /* 30 bit immediate */
2118 the_insn.reloc = BFD_RELOC_32_PCREL_S2;
2119 the_insn.pcrel = 1;
2120 goto immediate;
2121
2122 case 'h':
2123 case 'n': /* 22 bit immediate */
2124 the_insn.reloc = BFD_RELOC_SPARC22;
2125 goto immediate;
2126
2127 case 'i': /* 13 bit immediate */
2128 the_insn.reloc = BFD_RELOC_SPARC13;
2129
2130 /* fallthrough */
2131
2132 immediate:
2133 if (*s == ' ')
2134 s++;
2135
2136 {
2137 char *s1;
2138 char *op_arg = NULL;
2139 expressionS op_exp;
2140 bfd_reloc_code_real_type old_reloc = the_insn.reloc;
2141
2142 /* Check for %hi, etc. */
2143 if (*s == '%')
2144 {
2145 static const struct ops {
2146 /* The name as it appears in assembler. */
2147 char *name;
2148 /* strlen (name), precomputed for speed */
2149 int len;
2150 /* The reloc this pseudo-op translates to. */
2151 int reloc;
2152 /* Non-zero if for v9 only. */
2153 int v9_p;
2154 /* Non-zero if can be used in pc-relative contexts. */
2155 int pcrel_p;/*FIXME:wip*/
2156 } ops[] = {
2157 /* hix/lox must appear before hi/lo so %hix won't be
2158 mistaken for %hi. */
2159 { "hix", 3, BFD_RELOC_SPARC_HIX22, 1, 0 },
2160 { "lox", 3, BFD_RELOC_SPARC_LOX10, 1, 0 },
2161 { "hi", 2, BFD_RELOC_HI22, 0, 1 },
2162 { "lo", 2, BFD_RELOC_LO10, 0, 1 },
2163 { "hh", 2, BFD_RELOC_SPARC_HH22, 1, 1 },
2164 { "hm", 2, BFD_RELOC_SPARC_HM10, 1, 1 },
2165 { "lm", 2, BFD_RELOC_SPARC_LM22, 1, 1 },
2166 { "h44", 3, BFD_RELOC_SPARC_H44, 1, 0 },
2167 { "m44", 3, BFD_RELOC_SPARC_M44, 1, 0 },
2168 { "l44", 3, BFD_RELOC_SPARC_L44, 1, 0 },
2169 { "uhi", 3, BFD_RELOC_SPARC_HH22, 1, 0 },
2170 { "ulo", 3, BFD_RELOC_SPARC_HM10, 1, 0 },
2171 { NULL, 0, 0, 0, 0 }
2172 };
2173 const struct ops *o;
2174
2175 for (o = ops; o->name; o++)
2176 if (strncmp (s + 1, o->name, o->len) == 0)
2177 break;
2178 if (o->name == NULL)
2179 break;
2180
2181 if (s[o->len + 1] != '(')
2182 {
2183 as_bad (_("Illegal operands: %%%s requires arguments in ()"), o->name);
2184 return special_case;
2185 }
2186
2187 op_arg = o->name;
2188 the_insn.reloc = o->reloc;
2189 s += o->len + 2;
2190 v9_arg_p = o->v9_p;
2191 }
2192
2193 /* Note that if the get_expression() fails, we will still
2194 have created U entries in the symbol table for the
2195 'symbols' in the input string. Try not to create U
2196 symbols for registers, etc. */
2197
2198 /* This stuff checks to see if the expression ends in
2199 +%reg. If it does, it removes the register from
2200 the expression, and re-sets 's' to point to the
2201 right place. */
2202
2203 if (op_arg)
2204 {
2205 int npar = 0;
2206
2207 for (s1 = s; *s1 && *s1 != ',' && *s1 != ']'; s1++)
2208 if (*s1 == '(')
2209 npar++;
2210 else if (*s1 == ')')
2211 {
2212 if (!npar)
2213 break;
2214 npar--;
2215 }
2216
2217 if (*s1 != ')')
2218 {
2219 as_bad (_("Illegal operands: %%%s requires arguments in ()"), op_arg);
2220 return special_case;
2221 }
2222
2223 *s1 = '\0';
2224 (void) get_expression (s);
2225 *s1 = ')';
2226 s = s1 + 1;
2227 if (*s == ',' || *s == ']' || !*s)
2228 continue;
2229 if (*s != '+' && *s != '-')
2230 {
2231 as_bad (_("Illegal operands: Can't do arithmetics other than + and - involving %%%s()"), op_arg);
2232 return special_case;
2233 }
2234 *s1 = '0';
2235 s = s1;
2236 op_exp = the_insn.exp;
2237 memset (&the_insn.exp, 0, sizeof (the_insn.exp));
2238 }
2239
2240 for (s1 = s; *s1 && *s1 != ',' && *s1 != ']'; s1++)
2241 ;
2242
2243 if (s1 != s && ISDIGIT (s1[-1]))
2244 {
2245 if (s1[-2] == '%' && s1[-3] == '+')
2246 s1 -= 3;
2247 else if (strchr ("goli0123456789", s1[-2]) && s1[-3] == '%' && s1[-4] == '+')
2248 s1 -= 4;
2249 else
2250 s1 = NULL;
2251 if (s1)
2252 {
2253 *s1 = '\0';
2254 if (op_arg && s1 == s + 1)
2255 the_insn.exp.X_op = O_absent;
2256 else
2257 (void) get_expression (s);
2258 *s1 = '+';
2259 if (op_arg)
2260 *s = ')';
2261 s = s1;
2262 }
2263 }
2264 else
2265 s1 = NULL;
2266
2267 if (!s1)
2268 {
2269 (void) get_expression (s);
2270 if (op_arg)
2271 *s = ')';
2272 s = expr_end;
2273 }
2274
2275 if (op_arg)
2276 {
2277 the_insn.exp2 = the_insn.exp;
2278 the_insn.exp = op_exp;
2279 if (the_insn.exp2.X_op == O_absent)
2280 the_insn.exp2.X_op = O_illegal;
2281 else if (the_insn.exp.X_op == O_absent)
2282 {
2283 the_insn.exp = the_insn.exp2;
2284 the_insn.exp2.X_op = O_illegal;
2285 }
2286 else if (the_insn.exp.X_op == O_constant)
2287 {
2288 valueT val = the_insn.exp.X_add_number;
2289 switch (the_insn.reloc)
2290 {
2291 default:
2292 break;
2293
2294 case BFD_RELOC_SPARC_HH22:
2295 val = BSR (val, 32);
2296 /* Fall through. */
2297
2298 case BFD_RELOC_SPARC_LM22:
2299 case BFD_RELOC_HI22:
2300 val = (val >> 10) & 0x3fffff;
2301 break;
2302
2303 case BFD_RELOC_SPARC_HM10:
2304 val = BSR (val, 32);
2305 /* Fall through. */
2306
2307 case BFD_RELOC_LO10:
2308 val &= 0x3ff;
2309 break;
2310
2311 case BFD_RELOC_SPARC_H44:
2312 val >>= 22;
2313 val &= 0x3fffff;
2314 break;
2315
2316 case BFD_RELOC_SPARC_M44:
2317 val >>= 12;
2318 val &= 0x3ff;
2319 break;
2320
2321 case BFD_RELOC_SPARC_L44:
2322 val &= 0xfff;
2323 break;
2324
2325 case BFD_RELOC_SPARC_HIX22:
2326 val = ~val;
2327 val = (val >> 10) & 0x3fffff;
2328 break;
2329
2330 case BFD_RELOC_SPARC_LOX10:
2331 val = (val & 0x3ff) | 0x1c00;
2332 break;
2333 }
2334 the_insn.exp = the_insn.exp2;
2335 the_insn.exp.X_add_number += val;
2336 the_insn.exp2.X_op = O_illegal;
2337 the_insn.reloc = old_reloc;
2338 }
2339 else if (the_insn.exp2.X_op != O_constant)
2340 {
2341 as_bad (_("Illegal operands: Can't add non-constant expression to %%%s()"), op_arg);
2342 return special_case;
2343 }
2344 else
2345 {
2346 if (old_reloc != BFD_RELOC_SPARC13
2347 || the_insn.reloc != BFD_RELOC_LO10
2348 || sparc_arch_size != 64
2349 || sparc_pic_code)
2350 {
2351 as_bad (_("Illegal operands: Can't do arithmetics involving %%%s() of a relocatable symbol"), op_arg);
2352 return special_case;
2353 }
2354 the_insn.reloc = BFD_RELOC_SPARC_OLO10;
2355 }
2356 }
2357 }
2358 /* Check for constants that don't require emitting a reloc. */
2359 if (the_insn.exp.X_op == O_constant
2360 && the_insn.exp.X_add_symbol == 0
2361 && the_insn.exp.X_op_symbol == 0)
2362 {
2363 /* For pc-relative call instructions, we reject
2364 constants to get better code. */
2365 if (the_insn.pcrel
2366 && the_insn.reloc == BFD_RELOC_32_PCREL_S2
2367 && in_signed_range (the_insn.exp.X_add_number, 0x3fff))
2368 {
2369 error_message = _(": PC-relative operand can't be a constant");
2370 goto error;
2371 }
2372
2373 /* Constants that won't fit are checked in md_apply_fix3
2374 and bfd_install_relocation.
2375 ??? It would be preferable to install the constants
2376 into the insn here and save having to create a fixS
2377 for each one. There already exists code to handle
2378 all the various cases (e.g. in md_apply_fix3 and
2379 bfd_install_relocation) so duplicating all that code
2380 here isn't right. */
2381 }
2382
2383 continue;
2384
2385 case 'a':
2386 if (*s++ == 'a')
2387 {
2388 opcode |= ANNUL;
2389 continue;
2390 }
2391 break;
2392
2393 case 'A':
2394 {
2395 int asi = 0;
2396
2397 /* Parse an asi. */
2398 if (*s == '#')
2399 {
2400 if (! parse_keyword_arg (sparc_encode_asi, &s, &asi))
2401 {
2402 error_message = _(": invalid ASI name");
2403 goto error;
2404 }
2405 }
2406 else
2407 {
2408 if (! parse_const_expr_arg (&s, &asi))
2409 {
2410 error_message = _(": invalid ASI expression");
2411 goto error;
2412 }
2413 if (asi < 0 || asi > 255)
2414 {
2415 error_message = _(": invalid ASI number");
2416 goto error;
2417 }
2418 }
2419 opcode |= ASI (asi);
2420 continue;
2421 } /* Alternate space. */
2422
2423 case 'p':
2424 if (strncmp (s, "%psr", 4) == 0)
2425 {
2426 s += 4;
2427 continue;
2428 }
2429 break;
2430
2431 case 'q': /* Floating point queue. */
2432 if (strncmp (s, "%fq", 3) == 0)
2433 {
2434 s += 3;
2435 continue;
2436 }
2437 break;
2438
2439 case 'Q': /* Coprocessor queue. */
2440 if (strncmp (s, "%cq", 3) == 0)
2441 {
2442 s += 3;
2443 continue;
2444 }
2445 break;
2446
2447 case 'S':
2448 if (strcmp (str, "set") == 0
2449 || strcmp (str, "setuw") == 0)
2450 {
2451 special_case = SPECIAL_CASE_SET;
2452 continue;
2453 }
2454 else if (strcmp (str, "setsw") == 0)
2455 {
2456 special_case = SPECIAL_CASE_SETSW;
2457 continue;
2458 }
2459 else if (strcmp (str, "setx") == 0)
2460 {
2461 special_case = SPECIAL_CASE_SETX;
2462 continue;
2463 }
2464 else if (strncmp (str, "fdiv", 4) == 0)
2465 {
2466 special_case = SPECIAL_CASE_FDIV;
2467 continue;
2468 }
2469 break;
2470
2471 case 'o':
2472 if (strncmp (s, "%asi", 4) != 0)
2473 break;
2474 s += 4;
2475 continue;
2476
2477 case 's':
2478 if (strncmp (s, "%fprs", 5) != 0)
2479 break;
2480 s += 5;
2481 continue;
2482
2483 case 'E':
2484 if (strncmp (s, "%ccr", 4) != 0)
2485 break;
2486 s += 4;
2487 continue;
2488
2489 case 't':
2490 if (strncmp (s, "%tbr", 4) != 0)
2491 break;
2492 s += 4;
2493 continue;
2494
2495 case 'w':
2496 if (strncmp (s, "%wim", 4) != 0)
2497 break;
2498 s += 4;
2499 continue;
2500
2501 case 'x':
2502 {
2503 char *push = input_line_pointer;
2504 expressionS e;
2505
2506 input_line_pointer = s;
2507 expression (&e);
2508 if (e.X_op == O_constant)
2509 {
2510 int n = e.X_add_number;
2511 if (n != e.X_add_number || (n & ~0x1ff) != 0)
2512 as_bad (_("OPF immediate operand out of range (0-0x1ff)"));
2513 else
2514 opcode |= e.X_add_number << 5;
2515 }
2516 else
2517 as_bad (_("non-immediate OPF operand, ignored"));
2518 s = input_line_pointer;
2519 input_line_pointer = push;
2520 continue;
2521 }
2522
2523 case 'y':
2524 if (strncmp (s, "%y", 2) != 0)
2525 break;
2526 s += 2;
2527 continue;
2528
2529 case 'u':
2530 case 'U':
2531 {
2532 /* Parse a sparclet cpreg. */
2533 int cpreg;
2534 if (! parse_keyword_arg (sparc_encode_sparclet_cpreg, &s, &cpreg))
2535 {
2536 error_message = _(": invalid cpreg name");
2537 goto error;
2538 }
2539 opcode |= (*args == 'U' ? RS1 (cpreg) : RD (cpreg));
2540 continue;
2541 }
2542
2543 default:
2544 as_fatal (_("failed sanity check."));
2545 } /* switch on arg code. */
2546
2547 /* Break out of for() loop. */
2548 break;
2549 } /* For each arg that we expect. */
2550
2551 error:
2552 if (match == 0)
2553 {
2554 /* Args don't match. */
2555 if (&insn[1] - sparc_opcodes < sparc_num_opcodes
2556 && (insn->name == insn[1].name
2557 || !strcmp (insn->name, insn[1].name)))
2558 {
2559 ++insn;
2560 s = argsStart;
2561 continue;
2562 }
2563 else
2564 {
2565 as_bad (_("Illegal operands%s"), error_message);
2566 return special_case;
2567 }
2568 }
2569 else
2570 {
2571 /* We have a match. Now see if the architecture is OK. */
2572 int needed_arch_mask = insn->architecture;
2573
2574 if (v9_arg_p)
2575 {
2576 needed_arch_mask &=
2577 ~(SPARC_OPCODE_ARCH_MASK (SPARC_OPCODE_ARCH_V9) - 1);
2578 if (! needed_arch_mask)
2579 needed_arch_mask =
2580 SPARC_OPCODE_ARCH_MASK (SPARC_OPCODE_ARCH_V9);
2581 }
2582
2583 if (needed_arch_mask
2584 & SPARC_OPCODE_SUPPORTED (current_architecture))
2585 /* OK. */
2586 ;
2587 /* Can we bump up the architecture? */
2588 else if (needed_arch_mask
2589 & SPARC_OPCODE_SUPPORTED (max_architecture))
2590 {
2591 enum sparc_opcode_arch_val needed_architecture =
2592 sparc_ffs (SPARC_OPCODE_SUPPORTED (max_architecture)
2593 & needed_arch_mask);
2594
2595 assert (needed_architecture <= SPARC_OPCODE_ARCH_MAX);
2596 if (warn_on_bump
2597 && needed_architecture > warn_after_architecture)
2598 {
2599 as_warn (_("architecture bumped from \"%s\" to \"%s\" on \"%s\""),
2600 sparc_opcode_archs[current_architecture].name,
2601 sparc_opcode_archs[needed_architecture].name,
2602 str);
2603 warn_after_architecture = needed_architecture;
2604 }
2605 current_architecture = needed_architecture;
2606 }
2607 /* Conflict. */
2608 /* ??? This seems to be a bit fragile. What if the next entry in
2609 the opcode table is the one we want and it is supported?
2610 It is possible to arrange the table today so that this can't
2611 happen but what about tomorrow? */
2612 else
2613 {
2614 int arch, printed_one_p = 0;
2615 char *p;
2616 char required_archs[SPARC_OPCODE_ARCH_MAX * 16];
2617
2618 /* Create a list of the architectures that support the insn. */
2619 needed_arch_mask &= ~SPARC_OPCODE_SUPPORTED (max_architecture);
2620 p = required_archs;
2621 arch = sparc_ffs (needed_arch_mask);
2622 while ((1 << arch) <= needed_arch_mask)
2623 {
2624 if ((1 << arch) & needed_arch_mask)
2625 {
2626 if (printed_one_p)
2627 *p++ = '|';
2628 strcpy (p, sparc_opcode_archs[arch].name);
2629 p += strlen (p);
2630 printed_one_p = 1;
2631 }
2632 ++arch;
2633 }
2634
2635 as_bad (_("Architecture mismatch on \"%s\"."), str);
2636 as_tsktsk (_(" (Requires %s; requested architecture is %s.)"),
2637 required_archs,
2638 sparc_opcode_archs[max_architecture].name);
2639 return special_case;
2640 }
2641 } /* If no match. */
2642
2643 break;
2644 } /* Forever looking for a match. */
2645
2646 the_insn.opcode = opcode;
2647 return special_case;
2648 }
2649
2650 /* Parse an argument that can be expressed as a keyword.
2651 (eg: #StoreStore or %ccfr).
2652 The result is a boolean indicating success.
2653 If successful, INPUT_POINTER is updated. */
2654
2655 static int
2656 parse_keyword_arg (lookup_fn, input_pointerP, valueP)
2657 int (*lookup_fn) PARAMS ((const char *));
2658 char **input_pointerP;
2659 int *valueP;
2660 {
2661 int value;
2662 char c, *p, *q;
2663
2664 p = *input_pointerP;
2665 for (q = p + (*p == '#' || *p == '%');
2666 ISALNUM (*q) || *q == '_';
2667 ++q)
2668 continue;
2669 c = *q;
2670 *q = 0;
2671 value = (*lookup_fn) (p);
2672 *q = c;
2673 if (value == -1)
2674 return 0;
2675 *valueP = value;
2676 *input_pointerP = q;
2677 return 1;
2678 }
2679
2680 /* Parse an argument that is a constant expression.
2681 The result is a boolean indicating success. */
2682
2683 static int
2684 parse_const_expr_arg (input_pointerP, valueP)
2685 char **input_pointerP;
2686 int *valueP;
2687 {
2688 char *save = input_line_pointer;
2689 expressionS exp;
2690
2691 input_line_pointer = *input_pointerP;
2692 /* The next expression may be something other than a constant
2693 (say if we're not processing the right variant of the insn).
2694 Don't call expression unless we're sure it will succeed as it will
2695 signal an error (which we want to defer until later). */
2696 /* FIXME: It might be better to define md_operand and have it recognize
2697 things like %asi, etc. but continuing that route through to the end
2698 is a lot of work. */
2699 if (*input_line_pointer == '%')
2700 {
2701 input_line_pointer = save;
2702 return 0;
2703 }
2704 expression (&exp);
2705 *input_pointerP = input_line_pointer;
2706 input_line_pointer = save;
2707 if (exp.X_op != O_constant)
2708 return 0;
2709 *valueP = exp.X_add_number;
2710 return 1;
2711 }
2712
2713 /* Subroutine of sparc_ip to parse an expression. */
2714
2715 static int
2716 get_expression (str)
2717 char *str;
2718 {
2719 char *save_in;
2720 segT seg;
2721
2722 save_in = input_line_pointer;
2723 input_line_pointer = str;
2724 seg = expression (&the_insn.exp);
2725 if (seg != absolute_section
2726 && seg != text_section
2727 && seg != data_section
2728 && seg != bss_section
2729 && seg != undefined_section)
2730 {
2731 the_insn.error = _("bad segment");
2732 expr_end = input_line_pointer;
2733 input_line_pointer = save_in;
2734 return 1;
2735 }
2736 expr_end = input_line_pointer;
2737 input_line_pointer = save_in;
2738 return 0;
2739 }
2740
2741 /* Subroutine of md_assemble to output one insn. */
2742
2743 static void
2744 output_insn (insn, the_insn)
2745 const struct sparc_opcode *insn;
2746 struct sparc_it *the_insn;
2747 {
2748 char *toP = frag_more (4);
2749
2750 /* Put out the opcode. */
2751 if (INSN_BIG_ENDIAN)
2752 number_to_chars_bigendian (toP, (valueT) the_insn->opcode, 4);
2753 else
2754 number_to_chars_littleendian (toP, (valueT) the_insn->opcode, 4);
2755
2756 /* Put out the symbol-dependent stuff. */
2757 if (the_insn->reloc != BFD_RELOC_NONE)
2758 {
2759 fixS *fixP = fix_new_exp (frag_now, /* Which frag. */
2760 (toP - frag_now->fr_literal), /* Where. */
2761 4, /* Size. */
2762 &the_insn->exp,
2763 the_insn->pcrel,
2764 the_insn->reloc);
2765 /* Turn off overflow checking in fixup_segment. We'll do our
2766 own overflow checking in md_apply_fix3. This is necessary because
2767 the insn size is 4 and fixup_segment will signal an overflow for
2768 large 8 byte quantities. */
2769 fixP->fx_no_overflow = 1;
2770 if (the_insn->reloc == BFD_RELOC_SPARC_OLO10)
2771 fixP->tc_fix_data = the_insn->exp2.X_add_number;
2772 }
2773
2774 last_insn = insn;
2775 last_opcode = the_insn->opcode;
2776
2777 #ifdef OBJ_ELF
2778 dwarf2_emit_insn (4);
2779 #endif
2780 }
2781 \f
2782 /* This is identical to the md_atof in m68k.c. I think this is right,
2783 but I'm not sure.
2784
2785 Turn a string in input_line_pointer into a floating point constant
2786 of type TYPE, and store the appropriate bytes in *LITP. The number
2787 of LITTLENUMS emitted is stored in *SIZEP. An error message is
2788 returned, or NULL on OK. */
2789
2790 /* Equal to MAX_PRECISION in atof-ieee.c. */
2791 #define MAX_LITTLENUMS 6
2792
2793 char *
2794 md_atof (type, litP, sizeP)
2795 char type;
2796 char *litP;
2797 int *sizeP;
2798 {
2799 int i, prec;
2800 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2801 char *t;
2802
2803 switch (type)
2804 {
2805 case 'f':
2806 case 'F':
2807 case 's':
2808 case 'S':
2809 prec = 2;
2810 break;
2811
2812 case 'd':
2813 case 'D':
2814 case 'r':
2815 case 'R':
2816 prec = 4;
2817 break;
2818
2819 case 'x':
2820 case 'X':
2821 prec = 6;
2822 break;
2823
2824 case 'p':
2825 case 'P':
2826 prec = 6;
2827 break;
2828
2829 default:
2830 *sizeP = 0;
2831 return _("Bad call to MD_ATOF()");
2832 }
2833
2834 t = atof_ieee (input_line_pointer, type, words);
2835 if (t)
2836 input_line_pointer = t;
2837 *sizeP = prec * sizeof (LITTLENUM_TYPE);
2838
2839 if (target_big_endian)
2840 {
2841 for (i = 0; i < prec; i++)
2842 {
2843 md_number_to_chars (litP, (valueT) words[i],
2844 sizeof (LITTLENUM_TYPE));
2845 litP += sizeof (LITTLENUM_TYPE);
2846 }
2847 }
2848 else
2849 {
2850 for (i = prec - 1; i >= 0; i--)
2851 {
2852 md_number_to_chars (litP, (valueT) words[i],
2853 sizeof (LITTLENUM_TYPE));
2854 litP += sizeof (LITTLENUM_TYPE);
2855 }
2856 }
2857
2858 return 0;
2859 }
2860
2861 /* Write a value out to the object file, using the appropriate
2862 endianness. */
2863
2864 void
2865 md_number_to_chars (buf, val, n)
2866 char *buf;
2867 valueT val;
2868 int n;
2869 {
2870 if (target_big_endian)
2871 number_to_chars_bigendian (buf, val, n);
2872 else if (target_little_endian_data
2873 && ((n == 4 || n == 2) && ~now_seg->flags & SEC_ALLOC))
2874 /* Output debug words, which are not in allocated sections, as big
2875 endian. */
2876 number_to_chars_bigendian (buf, val, n);
2877 else if (target_little_endian_data || ! target_big_endian)
2878 number_to_chars_littleendian (buf, val, n);
2879 }
2880 \f
2881 /* Apply a fixS to the frags, now that we know the value it ought to
2882 hold. */
2883
2884 void
2885 md_apply_fix3 (fixP, valP, segment)
2886 fixS *fixP;
2887 valueT *valP;
2888 segT segment;
2889 {
2890 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
2891 offsetT val = * (offsetT *) valP;
2892 long insn;
2893
2894 assert (fixP->fx_r_type < BFD_RELOC_UNUSED);
2895
2896 fixP->fx_addnumber = val; /* Remember value for emit_reloc. */
2897
2898 #ifdef OBJ_ELF
2899 /* FIXME: SPARC ELF relocations don't use an addend in the data
2900 field itself. This whole approach should be somehow combined
2901 with the calls to bfd_install_relocation. Also, the value passed
2902 in by fixup_segment includes the value of a defined symbol. We
2903 don't want to include the value of an externally visible symbol. */
2904 if (fixP->fx_addsy != NULL)
2905 {
2906 symbolS * sym = fixP->fx_addsy;
2907 segT seg = S_GET_SEGMENT (sym);
2908
2909 if (symbol_used_in_reloc_p (sym)
2910 && (S_IS_EXTERNAL (sym)
2911 || S_IS_WEAK (sym)
2912 || (seg->flags & SEC_MERGE)
2913 || (sparc_pic_code && ! fixP->fx_pcrel)
2914 || (seg != segment
2915 && (((bfd_get_section_flags (stdoutput, seg) & SEC_LINK_ONCE) != 0)
2916 || (strncmp (segment_name (seg),
2917 ".gnu.linkonce",
2918 sizeof ".gnu.linkonce" - 1) == 0))))
2919 && seg != absolute_section
2920 && seg != undefined_section
2921 && ! bfd_is_com_section (seg))
2922 fixP->fx_addnumber -= S_GET_VALUE (sym);
2923
2924 return;
2925 }
2926 #endif
2927
2928 /* This is a hack. There should be a better way to
2929 handle this. Probably in terms of howto fields, once
2930 we can look at these fixups in terms of howtos. */
2931 if (fixP->fx_r_type == BFD_RELOC_32_PCREL_S2 && fixP->fx_addsy)
2932 val += fixP->fx_where + fixP->fx_frag->fr_address;
2933
2934 #ifdef OBJ_AOUT
2935 /* FIXME: More ridiculous gas reloc hacking. If we are going to
2936 generate a reloc, then we just want to let the reloc addend set
2937 the value. We do not want to also stuff the addend into the
2938 object file. Including the addend in the object file works when
2939 doing a static link, because the linker will ignore the object
2940 file contents. However, the dynamic linker does not ignore the
2941 object file contents. */
2942 if (fixP->fx_addsy != NULL
2943 && fixP->fx_r_type != BFD_RELOC_32_PCREL_S2)
2944 val = 0;
2945
2946 /* When generating PIC code, we do not want an addend for a reloc
2947 against a local symbol. We adjust fx_addnumber to cancel out the
2948 value already included in val, and to also cancel out the
2949 adjustment which bfd_install_relocation will create. */
2950 if (sparc_pic_code
2951 && fixP->fx_r_type != BFD_RELOC_32_PCREL_S2
2952 && fixP->fx_addsy != NULL
2953 && ! S_IS_COMMON (fixP->fx_addsy)
2954 && symbol_section_p (fixP->fx_addsy))
2955 fixP->fx_addnumber -= 2 * S_GET_VALUE (fixP->fx_addsy);
2956
2957 /* When generating PIC code, we need to fiddle to get
2958 bfd_install_relocation to do the right thing for a PC relative
2959 reloc against a local symbol which we are going to keep. */
2960 if (sparc_pic_code
2961 && fixP->fx_r_type == BFD_RELOC_32_PCREL_S2
2962 && fixP->fx_addsy != NULL
2963 && (S_IS_EXTERNAL (fixP->fx_addsy)
2964 || S_IS_WEAK (fixP->fx_addsy))
2965 && S_IS_DEFINED (fixP->fx_addsy)
2966 && ! S_IS_COMMON (fixP->fx_addsy))
2967 {
2968 val = 0;
2969 fixP->fx_addnumber -= 2 * S_GET_VALUE (fixP->fx_addsy);
2970 }
2971 #endif
2972
2973 /* If this is a data relocation, just output VAL. */
2974
2975 if (fixP->fx_r_type == BFD_RELOC_16
2976 || fixP->fx_r_type == BFD_RELOC_SPARC_UA16)
2977 {
2978 md_number_to_chars (buf, val, 2);
2979 }
2980 else if (fixP->fx_r_type == BFD_RELOC_32
2981 || fixP->fx_r_type == BFD_RELOC_SPARC_UA32
2982 || fixP->fx_r_type == BFD_RELOC_SPARC_REV32)
2983 {
2984 md_number_to_chars (buf, val, 4);
2985 }
2986 else if (fixP->fx_r_type == BFD_RELOC_64
2987 || fixP->fx_r_type == BFD_RELOC_SPARC_UA64)
2988 {
2989 md_number_to_chars (buf, val, 8);
2990 }
2991 else if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2992 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2993 {
2994 fixP->fx_done = 0;
2995 return;
2996 }
2997 else
2998 {
2999 /* It's a relocation against an instruction. */
3000
3001 if (INSN_BIG_ENDIAN)
3002 insn = bfd_getb32 ((unsigned char *) buf);
3003 else
3004 insn = bfd_getl32 ((unsigned char *) buf);
3005
3006 switch (fixP->fx_r_type)
3007 {
3008 case BFD_RELOC_32_PCREL_S2:
3009 val = val >> 2;
3010 /* FIXME: This increment-by-one deserves a comment of why it's
3011 being done! */
3012 if (! sparc_pic_code
3013 || fixP->fx_addsy == NULL
3014 || symbol_section_p (fixP->fx_addsy))
3015 ++val;
3016
3017 insn |= val & 0x3fffffff;
3018
3019 /* See if we have a delay slot. */
3020 if (sparc_relax && fixP->fx_where + 8 <= fixP->fx_frag->fr_fix)
3021 {
3022 #define G0 0
3023 #define O7 15
3024 #define XCC (2 << 20)
3025 #define COND(x) (((x)&0xf)<<25)
3026 #define CONDA COND(0x8)
3027 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
3028 #define INSN_BA (F2(0,2) | CONDA)
3029 #define INSN_OR F3(2, 0x2, 0)
3030 #define INSN_NOP F2(0,4)
3031
3032 long delay;
3033
3034 /* If the instruction is a call with either:
3035 restore
3036 arithmetic instruction with rd == %o7
3037 where rs1 != %o7 and rs2 if it is register != %o7
3038 then we can optimize if the call destination is near
3039 by changing the call into a branch always. */
3040 if (INSN_BIG_ENDIAN)
3041 delay = bfd_getb32 ((unsigned char *) buf + 4);
3042 else
3043 delay = bfd_getl32 ((unsigned char *) buf + 4);
3044 if ((insn & OP (~0)) != OP (1) || (delay & OP (~0)) != OP (2))
3045 break;
3046 if ((delay & OP3 (~0)) != OP3 (0x3d) /* Restore. */
3047 && ((delay & OP3 (0x28)) != 0 /* Arithmetic. */
3048 || ((delay & RD (~0)) != RD (O7))))
3049 break;
3050 if ((delay & RS1 (~0)) == RS1 (O7)
3051 || ((delay & F3I (~0)) == 0
3052 && (delay & RS2 (~0)) == RS2 (O7)))
3053 break;
3054 /* Ensure the branch will fit into simm22. */
3055 if ((val & 0x3fe00000)
3056 && (val & 0x3fe00000) != 0x3fe00000)
3057 break;
3058 /* Check if the arch is v9 and branch will fit
3059 into simm19. */
3060 if (((val & 0x3c0000) == 0
3061 || (val & 0x3c0000) == 0x3c0000)
3062 && (sparc_arch_size == 64
3063 || current_architecture >= SPARC_OPCODE_ARCH_V9))
3064 /* ba,pt %xcc */
3065 insn = INSN_BPA | (val & 0x7ffff);
3066 else
3067 /* ba */
3068 insn = INSN_BA | (val & 0x3fffff);
3069 if (fixP->fx_where >= 4
3070 && ((delay & (0xffffffff ^ RS1 (~0)))
3071 == (INSN_OR | RD (O7) | RS2 (G0))))
3072 {
3073 long setter;
3074 int reg;
3075
3076 if (INSN_BIG_ENDIAN)
3077 setter = bfd_getb32 ((unsigned char *) buf - 4);
3078 else
3079 setter = bfd_getl32 ((unsigned char *) buf - 4);
3080 if ((setter & (0xffffffff ^ RD (~0)))
3081 != (INSN_OR | RS1 (O7) | RS2 (G0)))
3082 break;
3083 /* The sequence was
3084 or %o7, %g0, %rN
3085 call foo
3086 or %rN, %g0, %o7
3087
3088 If call foo was replaced with ba, replace
3089 or %rN, %g0, %o7 with nop. */
3090 reg = (delay & RS1 (~0)) >> 14;
3091 if (reg != ((setter & RD (~0)) >> 25)
3092 || reg == G0 || reg == O7)
3093 break;
3094
3095 if (INSN_BIG_ENDIAN)
3096 bfd_putb32 (INSN_NOP, (unsigned char *) buf + 4);
3097 else
3098 bfd_putl32 (INSN_NOP, (unsigned char *) buf + 4);
3099 }
3100 }
3101 break;
3102
3103 case BFD_RELOC_SPARC_11:
3104 if (! in_signed_range (val, 0x7ff))
3105 as_bad_where (fixP->fx_file, fixP->fx_line,
3106 _("relocation overflow"));
3107 insn |= val & 0x7ff;
3108 break;
3109
3110 case BFD_RELOC_SPARC_10:
3111 if (! in_signed_range (val, 0x3ff))
3112 as_bad_where (fixP->fx_file, fixP->fx_line,
3113 _("relocation overflow"));
3114 insn |= val & 0x3ff;
3115 break;
3116
3117 case BFD_RELOC_SPARC_7:
3118 if (! in_bitfield_range (val, 0x7f))
3119 as_bad_where (fixP->fx_file, fixP->fx_line,
3120 _("relocation overflow"));
3121 insn |= val & 0x7f;
3122 break;
3123
3124 case BFD_RELOC_SPARC_6:
3125 if (! in_bitfield_range (val, 0x3f))
3126 as_bad_where (fixP->fx_file, fixP->fx_line,
3127 _("relocation overflow"));
3128 insn |= val & 0x3f;
3129 break;
3130
3131 case BFD_RELOC_SPARC_5:
3132 if (! in_bitfield_range (val, 0x1f))
3133 as_bad_where (fixP->fx_file, fixP->fx_line,
3134 _("relocation overflow"));
3135 insn |= val & 0x1f;
3136 break;
3137
3138 case BFD_RELOC_SPARC_WDISP16:
3139 /* FIXME: simplify. */
3140 if (((val > 0) && (val & ~0x3fffc))
3141 || ((val < 0) && (~(val - 1) & ~0x3fffc)))
3142 as_bad_where (fixP->fx_file, fixP->fx_line,
3143 _("relocation overflow"));
3144 /* FIXME: The +1 deserves a comment. */
3145 val = (val >> 2) + 1;
3146 insn |= ((val & 0xc000) << 6) | (val & 0x3fff);
3147 break;
3148
3149 case BFD_RELOC_SPARC_WDISP19:
3150 /* FIXME: simplify. */
3151 if (((val > 0) && (val & ~0x1ffffc))
3152 || ((val < 0) && (~(val - 1) & ~0x1ffffc)))
3153 as_bad_where (fixP->fx_file, fixP->fx_line,
3154 _("relocation overflow"));
3155 /* FIXME: The +1 deserves a comment. */
3156 val = (val >> 2) + 1;
3157 insn |= val & 0x7ffff;
3158 break;
3159
3160 case BFD_RELOC_SPARC_HH22:
3161 val = BSR (val, 32);
3162 /* Fall through. */
3163
3164 case BFD_RELOC_SPARC_LM22:
3165 case BFD_RELOC_HI22:
3166 if (!fixP->fx_addsy)
3167 insn |= (val >> 10) & 0x3fffff;
3168 else
3169 /* FIXME: Need comment explaining why we do this. */
3170 insn &= ~0xffff;
3171 break;
3172
3173 case BFD_RELOC_SPARC22:
3174 if (val & ~0x003fffff)
3175 as_bad_where (fixP->fx_file, fixP->fx_line,
3176 _("relocation overflow"));
3177 insn |= (val & 0x3fffff);
3178 break;
3179
3180 case BFD_RELOC_SPARC_HM10:
3181 val = BSR (val, 32);
3182 /* Fall through. */
3183
3184 case BFD_RELOC_LO10:
3185 if (!fixP->fx_addsy)
3186 insn |= val & 0x3ff;
3187 else
3188 /* FIXME: Need comment explaining why we do this. */
3189 insn &= ~0xff;
3190 break;
3191
3192 case BFD_RELOC_SPARC_OLO10:
3193 val &= 0x3ff;
3194 val += fixP->tc_fix_data;
3195 /* Fall through. */
3196
3197 case BFD_RELOC_SPARC13:
3198 if (! in_signed_range (val, 0x1fff))
3199 as_bad_where (fixP->fx_file, fixP->fx_line,
3200 _("relocation overflow"));
3201 insn |= val & 0x1fff;
3202 break;
3203
3204 case BFD_RELOC_SPARC_WDISP22:
3205 val = (val >> 2) + 1;
3206 /* Fall through. */
3207 case BFD_RELOC_SPARC_BASE22:
3208 insn |= val & 0x3fffff;
3209 break;
3210
3211 case BFD_RELOC_SPARC_H44:
3212 if (!fixP->fx_addsy)
3213 {
3214 bfd_vma tval = val;
3215 tval >>= 22;
3216 insn |= tval & 0x3fffff;
3217 }
3218 break;
3219
3220 case BFD_RELOC_SPARC_M44:
3221 if (!fixP->fx_addsy)
3222 insn |= (val >> 12) & 0x3ff;
3223 break;
3224
3225 case BFD_RELOC_SPARC_L44:
3226 if (!fixP->fx_addsy)
3227 insn |= val & 0xfff;
3228 break;
3229
3230 case BFD_RELOC_SPARC_HIX22:
3231 if (!fixP->fx_addsy)
3232 {
3233 val ^= ~(offsetT) 0;
3234 insn |= (val >> 10) & 0x3fffff;
3235 }
3236 break;
3237
3238 case BFD_RELOC_SPARC_LOX10:
3239 if (!fixP->fx_addsy)
3240 insn |= 0x1c00 | (val & 0x3ff);
3241 break;
3242
3243 case BFD_RELOC_NONE:
3244 default:
3245 as_bad_where (fixP->fx_file, fixP->fx_line,
3246 _("bad or unhandled relocation type: 0x%02x"),
3247 fixP->fx_r_type);
3248 break;
3249 }
3250
3251 if (INSN_BIG_ENDIAN)
3252 bfd_putb32 (insn, (unsigned char *) buf);
3253 else
3254 bfd_putl32 (insn, (unsigned char *) buf);
3255 }
3256
3257 /* Are we finished with this relocation now? */
3258 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
3259 fixP->fx_done = 1;
3260 }
3261
3262 /* Translate internal representation of relocation info to BFD target
3263 format. */
3264
3265 arelent **
3266 tc_gen_reloc (section, fixp)
3267 asection *section;
3268 fixS *fixp;
3269 {
3270 static arelent *relocs[3];
3271 arelent *reloc;
3272 bfd_reloc_code_real_type code;
3273
3274 relocs[0] = reloc = (arelent *) xmalloc (sizeof (arelent));
3275 relocs[1] = NULL;
3276
3277 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
3278 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
3279 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
3280
3281 switch (fixp->fx_r_type)
3282 {
3283 case BFD_RELOC_16:
3284 case BFD_RELOC_32:
3285 case BFD_RELOC_HI22:
3286 case BFD_RELOC_LO10:
3287 case BFD_RELOC_32_PCREL_S2:
3288 case BFD_RELOC_SPARC13:
3289 case BFD_RELOC_SPARC22:
3290 case BFD_RELOC_SPARC_BASE13:
3291 case BFD_RELOC_SPARC_WDISP16:
3292 case BFD_RELOC_SPARC_WDISP19:
3293 case BFD_RELOC_SPARC_WDISP22:
3294 case BFD_RELOC_64:
3295 case BFD_RELOC_SPARC_5:
3296 case BFD_RELOC_SPARC_6:
3297 case BFD_RELOC_SPARC_7:
3298 case BFD_RELOC_SPARC_10:
3299 case BFD_RELOC_SPARC_11:
3300 case BFD_RELOC_SPARC_HH22:
3301 case BFD_RELOC_SPARC_HM10:
3302 case BFD_RELOC_SPARC_LM22:
3303 case BFD_RELOC_SPARC_PC_HH22:
3304 case BFD_RELOC_SPARC_PC_HM10:
3305 case BFD_RELOC_SPARC_PC_LM22:
3306 case BFD_RELOC_SPARC_H44:
3307 case BFD_RELOC_SPARC_M44:
3308 case BFD_RELOC_SPARC_L44:
3309 case BFD_RELOC_SPARC_HIX22:
3310 case BFD_RELOC_SPARC_LOX10:
3311 case BFD_RELOC_SPARC_REV32:
3312 case BFD_RELOC_SPARC_OLO10:
3313 case BFD_RELOC_SPARC_UA16:
3314 case BFD_RELOC_SPARC_UA32:
3315 case BFD_RELOC_SPARC_UA64:
3316 case BFD_RELOC_VTABLE_ENTRY:
3317 case BFD_RELOC_VTABLE_INHERIT:
3318 code = fixp->fx_r_type;
3319 break;
3320 default:
3321 abort ();
3322 return NULL;
3323 }
3324
3325 #if defined (OBJ_ELF) || defined (OBJ_AOUT)
3326 /* If we are generating PIC code, we need to generate a different
3327 set of relocs. */
3328
3329 #ifdef OBJ_ELF
3330 #define GOT_NAME "_GLOBAL_OFFSET_TABLE_"
3331 #else
3332 #define GOT_NAME "__GLOBAL_OFFSET_TABLE_"
3333 #endif
3334
3335 /* This code must be parallel to the OBJ_ELF tc_fix_adjustable. */
3336
3337 if (sparc_pic_code)
3338 {
3339 switch (code)
3340 {
3341 case BFD_RELOC_32_PCREL_S2:
3342 if (! S_IS_DEFINED (fixp->fx_addsy)
3343 || S_IS_COMMON (fixp->fx_addsy)
3344 || S_IS_EXTERNAL (fixp->fx_addsy)
3345 || S_IS_WEAK (fixp->fx_addsy))
3346 code = BFD_RELOC_SPARC_WPLT30;
3347 break;
3348 case BFD_RELOC_HI22:
3349 if (fixp->fx_addsy != NULL
3350 && strcmp (S_GET_NAME (fixp->fx_addsy), GOT_NAME) == 0)
3351 code = BFD_RELOC_SPARC_PC22;
3352 else
3353 code = BFD_RELOC_SPARC_GOT22;
3354 break;
3355 case BFD_RELOC_LO10:
3356 if (fixp->fx_addsy != NULL
3357 && strcmp (S_GET_NAME (fixp->fx_addsy), GOT_NAME) == 0)
3358 code = BFD_RELOC_SPARC_PC10;
3359 else
3360 code = BFD_RELOC_SPARC_GOT10;
3361 break;
3362 case BFD_RELOC_SPARC13:
3363 code = BFD_RELOC_SPARC_GOT13;
3364 break;
3365 default:
3366 break;
3367 }
3368 }
3369 #endif /* defined (OBJ_ELF) || defined (OBJ_AOUT) */
3370
3371 if (code == BFD_RELOC_SPARC_OLO10)
3372 reloc->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_LO10);
3373 else
3374 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
3375 if (reloc->howto == 0)
3376 {
3377 as_bad_where (fixp->fx_file, fixp->fx_line,
3378 _("internal error: can't export reloc type %d (`%s')"),
3379 fixp->fx_r_type, bfd_get_reloc_code_name (code));
3380 xfree (reloc);
3381 relocs[0] = NULL;
3382 return relocs;
3383 }
3384
3385 /* @@ Why fx_addnumber sometimes and fx_offset other times? */
3386 #ifdef OBJ_AOUT
3387
3388 if (reloc->howto->pc_relative == 0
3389 || code == BFD_RELOC_SPARC_PC10
3390 || code == BFD_RELOC_SPARC_PC22)
3391 reloc->addend = fixp->fx_addnumber;
3392 else if (sparc_pic_code
3393 && fixp->fx_r_type == BFD_RELOC_32_PCREL_S2
3394 && fixp->fx_addsy != NULL
3395 && (S_IS_EXTERNAL (fixp->fx_addsy)
3396 || S_IS_WEAK (fixp->fx_addsy))
3397 && S_IS_DEFINED (fixp->fx_addsy)
3398 && ! S_IS_COMMON (fixp->fx_addsy))
3399 reloc->addend = fixp->fx_addnumber;
3400 else
3401 reloc->addend = fixp->fx_offset - reloc->address;
3402
3403 #else /* elf or coff */
3404
3405 if (reloc->howto->pc_relative == 0
3406 || code == BFD_RELOC_SPARC_PC10
3407 || code == BFD_RELOC_SPARC_PC22)
3408 reloc->addend = fixp->fx_addnumber;
3409 else if (symbol_section_p (fixp->fx_addsy))
3410 reloc->addend = (section->vma
3411 + fixp->fx_addnumber
3412 + md_pcrel_from (fixp));
3413 else
3414 reloc->addend = fixp->fx_offset;
3415 #endif
3416
3417 /* We expand R_SPARC_OLO10 to R_SPARC_LO10 and R_SPARC_13
3418 on the same location. */
3419 if (code == BFD_RELOC_SPARC_OLO10)
3420 {
3421 relocs[1] = reloc = (arelent *) xmalloc (sizeof (arelent));
3422 relocs[2] = NULL;
3423
3424 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
3425 *reloc->sym_ptr_ptr
3426 = symbol_get_bfdsym (section_symbol (absolute_section));
3427 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
3428 reloc->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_SPARC13);
3429 reloc->addend = fixp->tc_fix_data;
3430 }
3431
3432 return relocs;
3433 }
3434 \f
3435 /* We have no need to default values of symbols. */
3436
3437 symbolS *
3438 md_undefined_symbol (name)
3439 char *name ATTRIBUTE_UNUSED;
3440 {
3441 return 0;
3442 }
3443
3444 /* Round up a section size to the appropriate boundary. */
3445
3446 valueT
3447 md_section_align (segment, size)
3448 segT segment ATTRIBUTE_UNUSED;
3449 valueT size;
3450 {
3451 #ifndef OBJ_ELF
3452 /* This is not right for ELF; a.out wants it, and COFF will force
3453 the alignment anyways. */
3454 valueT align = ((valueT) 1
3455 << (valueT) bfd_get_section_alignment (stdoutput, segment));
3456 valueT newsize;
3457
3458 /* Turn alignment value into a mask. */
3459 align--;
3460 newsize = (size + align) & ~align;
3461 return newsize;
3462 #else
3463 return size;
3464 #endif
3465 }
3466
3467 /* Exactly what point is a PC-relative offset relative TO?
3468 On the sparc, they're relative to the address of the offset, plus
3469 its size. This gets us to the following instruction.
3470 (??? Is this right? FIXME-SOON) */
3471 long
3472 md_pcrel_from (fixP)
3473 fixS *fixP;
3474 {
3475 long ret;
3476
3477 ret = fixP->fx_where + fixP->fx_frag->fr_address;
3478 if (! sparc_pic_code
3479 || fixP->fx_addsy == NULL
3480 || symbol_section_p (fixP->fx_addsy))
3481 ret += fixP->fx_size;
3482 return ret;
3483 }
3484 \f
3485 /* Return log2 (VALUE), or -1 if VALUE is not an exact positive power
3486 of two. */
3487
3488 static int
3489 log2 (value)
3490 int value;
3491 {
3492 int shift;
3493
3494 if (value <= 0)
3495 return -1;
3496
3497 for (shift = 0; (value & 1) == 0; value >>= 1)
3498 ++shift;
3499
3500 return (value == 1) ? shift : -1;
3501 }
3502
3503 /* Sort of like s_lcomm. */
3504
3505 #ifndef OBJ_ELF
3506 static int max_alignment = 15;
3507 #endif
3508
3509 static void
3510 s_reserve (ignore)
3511 int ignore ATTRIBUTE_UNUSED;
3512 {
3513 char *name;
3514 char *p;
3515 char c;
3516 int align;
3517 int size;
3518 int temp;
3519 symbolS *symbolP;
3520
3521 name = input_line_pointer;
3522 c = get_symbol_end ();
3523 p = input_line_pointer;
3524 *p = c;
3525 SKIP_WHITESPACE ();
3526
3527 if (*input_line_pointer != ',')
3528 {
3529 as_bad (_("Expected comma after name"));
3530 ignore_rest_of_line ();
3531 return;
3532 }
3533
3534 ++input_line_pointer;
3535
3536 if ((size = get_absolute_expression ()) < 0)
3537 {
3538 as_bad (_("BSS length (%d.) <0! Ignored."), size);
3539 ignore_rest_of_line ();
3540 return;
3541 } /* Bad length. */
3542
3543 *p = 0;
3544 symbolP = symbol_find_or_make (name);
3545 *p = c;
3546
3547 if (strncmp (input_line_pointer, ",\"bss\"", 6) != 0
3548 && strncmp (input_line_pointer, ",\".bss\"", 7) != 0)
3549 {
3550 as_bad (_("bad .reserve segment -- expected BSS segment"));
3551 return;
3552 }
3553
3554 if (input_line_pointer[2] == '.')
3555 input_line_pointer += 7;
3556 else
3557 input_line_pointer += 6;
3558 SKIP_WHITESPACE ();
3559
3560 if (*input_line_pointer == ',')
3561 {
3562 ++input_line_pointer;
3563
3564 SKIP_WHITESPACE ();
3565 if (*input_line_pointer == '\n')
3566 {
3567 as_bad (_("missing alignment"));
3568 ignore_rest_of_line ();
3569 return;
3570 }
3571
3572 align = (int) get_absolute_expression ();
3573
3574 #ifndef OBJ_ELF
3575 if (align > max_alignment)
3576 {
3577 align = max_alignment;
3578 as_warn (_("alignment too large; assuming %d"), align);
3579 }
3580 #endif
3581
3582 if (align < 0)
3583 {
3584 as_bad (_("negative alignment"));
3585 ignore_rest_of_line ();
3586 return;
3587 }
3588
3589 if (align != 0)
3590 {
3591 temp = log2 (align);
3592 if (temp < 0)
3593 {
3594 as_bad (_("alignment not a power of 2"));
3595 ignore_rest_of_line ();
3596 return;
3597 }
3598
3599 align = temp;
3600 }
3601
3602 record_alignment (bss_section, align);
3603 }
3604 else
3605 align = 0;
3606
3607 if (!S_IS_DEFINED (symbolP)
3608 #ifdef OBJ_AOUT
3609 && S_GET_OTHER (symbolP) == 0
3610 && S_GET_DESC (symbolP) == 0
3611 #endif
3612 )
3613 {
3614 if (! need_pass_2)
3615 {
3616 char *pfrag;
3617 segT current_seg = now_seg;
3618 subsegT current_subseg = now_subseg;
3619
3620 /* Switch to bss. */
3621 subseg_set (bss_section, 1);
3622
3623 if (align)
3624 /* Do alignment. */
3625 frag_align (align, 0, 0);
3626
3627 /* Detach from old frag. */
3628 if (S_GET_SEGMENT (symbolP) == bss_section)
3629 symbol_get_frag (symbolP)->fr_symbol = NULL;
3630
3631 symbol_set_frag (symbolP, frag_now);
3632 pfrag = frag_var (rs_org, 1, 1, (relax_substateT) 0, symbolP,
3633 (offsetT) size, (char *) 0);
3634 *pfrag = 0;
3635
3636 S_SET_SEGMENT (symbolP, bss_section);
3637
3638 subseg_set (current_seg, current_subseg);
3639
3640 #ifdef OBJ_ELF
3641 S_SET_SIZE (symbolP, size);
3642 #endif
3643 }
3644 }
3645 else
3646 {
3647 as_warn ("Ignoring attempt to re-define symbol %s",
3648 S_GET_NAME (symbolP));
3649 } /* if not redefining. */
3650
3651 demand_empty_rest_of_line ();
3652 }
3653
3654 static void
3655 s_common (ignore)
3656 int ignore ATTRIBUTE_UNUSED;
3657 {
3658 char *name;
3659 char c;
3660 char *p;
3661 int temp, size;
3662 symbolS *symbolP;
3663
3664 name = input_line_pointer;
3665 c = get_symbol_end ();
3666 /* Just after name is now '\0'. */
3667 p = input_line_pointer;
3668 *p = c;
3669 SKIP_WHITESPACE ();
3670 if (*input_line_pointer != ',')
3671 {
3672 as_bad (_("Expected comma after symbol-name"));
3673 ignore_rest_of_line ();
3674 return;
3675 }
3676
3677 /* Skip ','. */
3678 input_line_pointer++;
3679
3680 if ((temp = get_absolute_expression ()) < 0)
3681 {
3682 as_bad (_(".COMMon length (%d.) <0! Ignored."), temp);
3683 ignore_rest_of_line ();
3684 return;
3685 }
3686 size = temp;
3687 *p = 0;
3688 symbolP = symbol_find_or_make (name);
3689 *p = c;
3690 if (S_IS_DEFINED (symbolP) && ! S_IS_COMMON (symbolP))
3691 {
3692 as_bad (_("Ignoring attempt to re-define symbol"));
3693 ignore_rest_of_line ();
3694 return;
3695 }
3696 if (S_GET_VALUE (symbolP) != 0)
3697 {
3698 if (S_GET_VALUE (symbolP) != (valueT) size)
3699 {
3700 as_warn (_("Length of .comm \"%s\" is already %ld. Not changed to %d."),
3701 S_GET_NAME (symbolP), (long) S_GET_VALUE (symbolP), size);
3702 }
3703 }
3704 else
3705 {
3706 #ifndef OBJ_ELF
3707 S_SET_VALUE (symbolP, (valueT) size);
3708 S_SET_EXTERNAL (symbolP);
3709 #endif
3710 }
3711 know (symbol_get_frag (symbolP) == &zero_address_frag);
3712 if (*input_line_pointer != ',')
3713 {
3714 as_bad (_("Expected comma after common length"));
3715 ignore_rest_of_line ();
3716 return;
3717 }
3718 input_line_pointer++;
3719 SKIP_WHITESPACE ();
3720 if (*input_line_pointer != '"')
3721 {
3722 temp = get_absolute_expression ();
3723
3724 #ifndef OBJ_ELF
3725 if (temp > max_alignment)
3726 {
3727 temp = max_alignment;
3728 as_warn (_("alignment too large; assuming %d"), temp);
3729 }
3730 #endif
3731
3732 if (temp < 0)
3733 {
3734 as_bad (_("negative alignment"));
3735 ignore_rest_of_line ();
3736 return;
3737 }
3738
3739 #ifdef OBJ_ELF
3740 if (symbol_get_obj (symbolP)->local)
3741 {
3742 segT old_sec;
3743 int old_subsec;
3744 char *p;
3745 int align;
3746
3747 old_sec = now_seg;
3748 old_subsec = now_subseg;
3749
3750 if (temp == 0)
3751 align = 0;
3752 else
3753 align = log2 (temp);
3754
3755 if (align < 0)
3756 {
3757 as_bad (_("alignment not a power of 2"));
3758 ignore_rest_of_line ();
3759 return;
3760 }
3761
3762 record_alignment (bss_section, align);
3763 subseg_set (bss_section, 0);
3764 if (align)
3765 frag_align (align, 0, 0);
3766 if (S_GET_SEGMENT (symbolP) == bss_section)
3767 symbol_get_frag (symbolP)->fr_symbol = 0;
3768 symbol_set_frag (symbolP, frag_now);
3769 p = frag_var (rs_org, 1, 1, (relax_substateT) 0, symbolP,
3770 (offsetT) size, (char *) 0);
3771 *p = 0;
3772 S_SET_SEGMENT (symbolP, bss_section);
3773 S_CLEAR_EXTERNAL (symbolP);
3774 S_SET_SIZE (symbolP, size);
3775 subseg_set (old_sec, old_subsec);
3776 }
3777 else
3778 #endif /* OBJ_ELF */
3779 {
3780 allocate_common:
3781 S_SET_VALUE (symbolP, (valueT) size);
3782 #ifdef OBJ_ELF
3783 S_SET_ALIGN (symbolP, temp);
3784 S_SET_SIZE (symbolP, size);
3785 #endif
3786 S_SET_EXTERNAL (symbolP);
3787 S_SET_SEGMENT (symbolP, bfd_com_section_ptr);
3788 }
3789 }
3790 else
3791 {
3792 input_line_pointer++;
3793 /* @@ Some use the dot, some don't. Can we get some consistency?? */
3794 if (*input_line_pointer == '.')
3795 input_line_pointer++;
3796 /* @@ Some say data, some say bss. */
3797 if (strncmp (input_line_pointer, "bss\"", 4)
3798 && strncmp (input_line_pointer, "data\"", 5))
3799 {
3800 while (*--input_line_pointer != '"')
3801 ;
3802 input_line_pointer--;
3803 goto bad_common_segment;
3804 }
3805 while (*input_line_pointer++ != '"')
3806 ;
3807 goto allocate_common;
3808 }
3809
3810 #ifdef BFD_ASSEMBLER
3811 symbol_get_bfdsym (symbolP)->flags |= BSF_OBJECT;
3812 #endif
3813
3814 demand_empty_rest_of_line ();
3815 return;
3816
3817 {
3818 bad_common_segment:
3819 p = input_line_pointer;
3820 while (*p && *p != '\n')
3821 p++;
3822 c = *p;
3823 *p = '\0';
3824 as_bad (_("bad .common segment %s"), input_line_pointer + 1);
3825 *p = c;
3826 input_line_pointer = p;
3827 ignore_rest_of_line ();
3828 return;
3829 }
3830 }
3831
3832 /* Handle the .empty pseudo-op. This supresses the warnings about
3833 invalid delay slot usage. */
3834
3835 static void
3836 s_empty (ignore)
3837 int ignore ATTRIBUTE_UNUSED;
3838 {
3839 /* The easy way to implement is to just forget about the last
3840 instruction. */
3841 last_insn = NULL;
3842 }
3843
3844 static void
3845 s_seg (ignore)
3846 int ignore ATTRIBUTE_UNUSED;
3847 {
3848
3849 if (strncmp (input_line_pointer, "\"text\"", 6) == 0)
3850 {
3851 input_line_pointer += 6;
3852 s_text (0);
3853 return;
3854 }
3855 if (strncmp (input_line_pointer, "\"data\"", 6) == 0)
3856 {
3857 input_line_pointer += 6;
3858 s_data (0);
3859 return;
3860 }
3861 if (strncmp (input_line_pointer, "\"data1\"", 7) == 0)
3862 {
3863 input_line_pointer += 7;
3864 s_data1 ();
3865 return;
3866 }
3867 if (strncmp (input_line_pointer, "\"bss\"", 5) == 0)
3868 {
3869 input_line_pointer += 5;
3870 /* We only support 2 segments -- text and data -- for now, so
3871 things in the "bss segment" will have to go into data for now.
3872 You can still allocate SEG_BSS stuff with .lcomm or .reserve. */
3873 subseg_set (data_section, 255); /* FIXME-SOMEDAY. */
3874 return;
3875 }
3876 as_bad (_("Unknown segment type"));
3877 demand_empty_rest_of_line ();
3878 }
3879
3880 static void
3881 s_data1 ()
3882 {
3883 subseg_set (data_section, 1);
3884 demand_empty_rest_of_line ();
3885 }
3886
3887 static void
3888 s_proc (ignore)
3889 int ignore ATTRIBUTE_UNUSED;
3890 {
3891 while (!is_end_of_line[(unsigned char) *input_line_pointer])
3892 {
3893 ++input_line_pointer;
3894 }
3895 ++input_line_pointer;
3896 }
3897
3898 /* This static variable is set by s_uacons to tell sparc_cons_align
3899 that the expession does not need to be aligned. */
3900
3901 static int sparc_no_align_cons = 0;
3902
3903 /* This handles the unaligned space allocation pseudo-ops, such as
3904 .uaword. .uaword is just like .word, but the value does not need
3905 to be aligned. */
3906
3907 static void
3908 s_uacons (bytes)
3909 int bytes;
3910 {
3911 /* Tell sparc_cons_align not to align this value. */
3912 sparc_no_align_cons = 1;
3913 cons (bytes);
3914 sparc_no_align_cons = 0;
3915 }
3916
3917 /* This handles the native word allocation pseudo-op .nword.
3918 For sparc_arch_size 32 it is equivalent to .word, for
3919 sparc_arch_size 64 it is equivalent to .xword. */
3920
3921 static void
3922 s_ncons (bytes)
3923 int bytes ATTRIBUTE_UNUSED;
3924 {
3925 cons (sparc_arch_size == 32 ? 4 : 8);
3926 }
3927
3928 #ifdef OBJ_ELF
3929 /* Handle the SPARC ELF .register pseudo-op. This sets the binding of a
3930 global register.
3931 The syntax is:
3932
3933 .register %g[2367],{#scratch|symbolname|#ignore}
3934 */
3935
3936 static void
3937 s_register (ignore)
3938 int ignore ATTRIBUTE_UNUSED;
3939 {
3940 char c;
3941 int reg;
3942 int flags;
3943 const char *regname;
3944
3945 if (input_line_pointer[0] != '%'
3946 || input_line_pointer[1] != 'g'
3947 || ((input_line_pointer[2] & ~1) != '2'
3948 && (input_line_pointer[2] & ~1) != '6')
3949 || input_line_pointer[3] != ',')
3950 as_bad (_("register syntax is .register %%g[2367],{#scratch|symbolname|#ignore}"));
3951 reg = input_line_pointer[2] - '0';
3952 input_line_pointer += 4;
3953
3954 if (*input_line_pointer == '#')
3955 {
3956 ++input_line_pointer;
3957 regname = input_line_pointer;
3958 c = get_symbol_end ();
3959 if (strcmp (regname, "scratch") && strcmp (regname, "ignore"))
3960 as_bad (_("register syntax is .register %%g[2367],{#scratch|symbolname|#ignore}"));
3961 if (regname[0] == 'i')
3962 regname = NULL;
3963 else
3964 regname = "";
3965 }
3966 else
3967 {
3968 regname = input_line_pointer;
3969 c = get_symbol_end ();
3970 }
3971 if (sparc_arch_size == 64)
3972 {
3973 if (globals[reg])
3974 {
3975 if ((regname && globals[reg] != (symbolS *) 1
3976 && strcmp (S_GET_NAME (globals[reg]), regname))
3977 || ((regname != NULL) ^ (globals[reg] != (symbolS *) 1)))
3978 as_bad (_("redefinition of global register"));
3979 }
3980 else
3981 {
3982 if (regname == NULL)
3983 globals[reg] = (symbolS *) 1;
3984 else
3985 {
3986 if (*regname)
3987 {
3988 if (symbol_find (regname))
3989 as_bad (_("Register symbol %s already defined."),
3990 regname);
3991 }
3992 globals[reg] = symbol_make (regname);
3993 flags = symbol_get_bfdsym (globals[reg])->flags;
3994 if (! *regname)
3995 flags = flags & ~(BSF_GLOBAL|BSF_LOCAL|BSF_WEAK);
3996 if (! (flags & (BSF_GLOBAL|BSF_LOCAL|BSF_WEAK)))
3997 flags |= BSF_GLOBAL;
3998 symbol_get_bfdsym (globals[reg])->flags = flags;
3999 S_SET_VALUE (globals[reg], (valueT) reg);
4000 S_SET_ALIGN (globals[reg], reg);
4001 S_SET_SIZE (globals[reg], 0);
4002 /* Although we actually want undefined_section here,
4003 we have to use absolute_section, because otherwise
4004 generic as code will make it a COM section.
4005 We fix this up in sparc_adjust_symtab. */
4006 S_SET_SEGMENT (globals[reg], absolute_section);
4007 S_SET_OTHER (globals[reg], 0);
4008 elf_symbol (symbol_get_bfdsym (globals[reg]))
4009 ->internal_elf_sym.st_info =
4010 ELF_ST_INFO(STB_GLOBAL, STT_REGISTER);
4011 elf_symbol (symbol_get_bfdsym (globals[reg]))
4012 ->internal_elf_sym.st_shndx = SHN_UNDEF;
4013 }
4014 }
4015 }
4016
4017 *input_line_pointer = c;
4018
4019 demand_empty_rest_of_line ();
4020 }
4021
4022 /* Adjust the symbol table. We set undefined sections for STT_REGISTER
4023 symbols which need it. */
4024
4025 void
4026 sparc_adjust_symtab ()
4027 {
4028 symbolS *sym;
4029
4030 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
4031 {
4032 if (ELF_ST_TYPE (elf_symbol (symbol_get_bfdsym (sym))
4033 ->internal_elf_sym.st_info) != STT_REGISTER)
4034 continue;
4035
4036 if (ELF_ST_TYPE (elf_symbol (symbol_get_bfdsym (sym))
4037 ->internal_elf_sym.st_shndx != SHN_UNDEF))
4038 continue;
4039
4040 S_SET_SEGMENT (sym, undefined_section);
4041 }
4042 }
4043 #endif
4044
4045 /* If the --enforce-aligned-data option is used, we require .word,
4046 et. al., to be aligned correctly. We do it by setting up an
4047 rs_align_code frag, and checking in HANDLE_ALIGN to make sure that
4048 no unexpected alignment was introduced.
4049
4050 The SunOS and Solaris native assemblers enforce aligned data by
4051 default. We don't want to do that, because gcc can deliberately
4052 generate misaligned data if the packed attribute is used. Instead,
4053 we permit misaligned data by default, and permit the user to set an
4054 option to check for it. */
4055
4056 void
4057 sparc_cons_align (nbytes)
4058 int nbytes;
4059 {
4060 int nalign;
4061 char *p;
4062
4063 /* Only do this if we are enforcing aligned data. */
4064 if (! enforce_aligned_data)
4065 return;
4066
4067 /* Don't align if this is an unaligned pseudo-op. */
4068 if (sparc_no_align_cons)
4069 return;
4070
4071 nalign = log2 (nbytes);
4072 if (nalign == 0)
4073 return;
4074
4075 assert (nalign > 0);
4076
4077 if (now_seg == absolute_section)
4078 {
4079 if ((abs_section_offset & ((1 << nalign) - 1)) != 0)
4080 as_bad (_("misaligned data"));
4081 return;
4082 }
4083
4084 p = frag_var (rs_align_test, 1, 1, (relax_substateT) 0,
4085 (symbolS *) NULL, (offsetT) nalign, (char *) NULL);
4086
4087 record_alignment (now_seg, nalign);
4088 }
4089
4090 /* This is called from HANDLE_ALIGN in tc-sparc.h. */
4091
4092 void
4093 sparc_handle_align (fragp)
4094 fragS *fragp;
4095 {
4096 int count, fix;
4097 char *p;
4098
4099 count = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
4100
4101 switch (fragp->fr_type)
4102 {
4103 case rs_align_test:
4104 if (count != 0)
4105 as_bad_where (fragp->fr_file, fragp->fr_line, _("misaligned data"));
4106 break;
4107
4108 case rs_align_code:
4109 p = fragp->fr_literal + fragp->fr_fix;
4110 fix = 0;
4111
4112 if (count & 3)
4113 {
4114 fix = count & 3;
4115 memset (p, 0, fix);
4116 p += fix;
4117 count -= fix;
4118 }
4119
4120 if (SPARC_OPCODE_ARCH_V9_P (max_architecture) && count > 8)
4121 {
4122 unsigned wval = (0x30680000 | count >> 2); /* ba,a,pt %xcc, 1f */
4123 if (INSN_BIG_ENDIAN)
4124 number_to_chars_bigendian (p, wval, 4);
4125 else
4126 number_to_chars_littleendian (p, wval, 4);
4127 p += 4;
4128 count -= 4;
4129 fix += 4;
4130 }
4131
4132 if (INSN_BIG_ENDIAN)
4133 number_to_chars_bigendian (p, 0x01000000, 4);
4134 else
4135 number_to_chars_littleendian (p, 0x01000000, 4);
4136
4137 fragp->fr_fix += fix;
4138 fragp->fr_var = 4;
4139 break;
4140
4141 default:
4142 break;
4143 }
4144 }
4145
4146 #ifdef OBJ_ELF
4147 /* Some special processing for a Sparc ELF file. */
4148
4149 void
4150 sparc_elf_final_processing ()
4151 {
4152 /* Set the Sparc ELF flag bits. FIXME: There should probably be some
4153 sort of BFD interface for this. */
4154 if (sparc_arch_size == 64)
4155 {
4156 switch (sparc_memory_model)
4157 {
4158 case MM_RMO:
4159 elf_elfheader (stdoutput)->e_flags |= EF_SPARCV9_RMO;
4160 break;
4161 case MM_PSO:
4162 elf_elfheader (stdoutput)->e_flags |= EF_SPARCV9_PSO;
4163 break;
4164 default:
4165 break;
4166 }
4167 }
4168 else if (current_architecture >= SPARC_OPCODE_ARCH_V9)
4169 elf_elfheader (stdoutput)->e_flags |= EF_SPARC_32PLUS;
4170 if (current_architecture == SPARC_OPCODE_ARCH_V9A)
4171 elf_elfheader (stdoutput)->e_flags |= EF_SPARC_SUN_US1;
4172 else if (current_architecture == SPARC_OPCODE_ARCH_V9B)
4173 elf_elfheader (stdoutput)->e_flags |= EF_SPARC_SUN_US1|EF_SPARC_SUN_US3;
4174 }
4175 #endif
4176
4177 /* This is called by emit_expr via TC_CONS_FIX_NEW when creating a
4178 reloc for a cons. We could use the definition there, except that
4179 we want to handle little endian relocs specially. */
4180
4181 void
4182 cons_fix_new_sparc (frag, where, nbytes, exp)
4183 fragS *frag;
4184 int where;
4185 unsigned int nbytes;
4186 expressionS *exp;
4187 {
4188 bfd_reloc_code_real_type r;
4189
4190 r = (nbytes == 1 ? BFD_RELOC_8 :
4191 (nbytes == 2 ? BFD_RELOC_16 :
4192 (nbytes == 4 ? BFD_RELOC_32 : BFD_RELOC_64)));
4193
4194 if (target_little_endian_data
4195 && nbytes == 4
4196 && now_seg->flags & SEC_ALLOC)
4197 r = BFD_RELOC_SPARC_REV32;
4198
4199 if (sparc_no_align_cons)
4200 {
4201 switch (nbytes)
4202 {
4203 case 2: r = BFD_RELOC_SPARC_UA16; break;
4204 case 4: r = BFD_RELOC_SPARC_UA32; break;
4205 case 8: r = BFD_RELOC_SPARC_UA64; break;
4206 default: abort ();
4207 }
4208 }
4209
4210 fix_new_exp (frag, where, (int) nbytes, exp, 0, r);
4211 }
4212
4213 #ifdef OBJ_ELF
4214 int
4215 elf32_sparc_force_relocation (fixp)
4216 struct fix *fixp;
4217 {
4218 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
4219 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4220 return 1;
4221
4222 return 0;
4223 }
4224 #endif