]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-vax.c
* config/sh/tm-sh.h (BELIEVE_PCC_PROMOTION): Define, so that
[thirdparty/binutils-gdb.git] / gas / config / tc-vax.c
1 /* tc-vax.c - vax-specific -
2 Copyright (C) 1987, 91, 92, 93, 94, 95, 1998 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 #include "as.h"
22
23 #include "vax-inst.h"
24 #include "obstack.h" /* For FRAG_APPEND_1_CHAR macro in "frags.h" */
25
26 /* These chars start a comment anywhere in a source file (except inside
27 another comment */
28 const char comment_chars[] = "#";
29
30 /* These chars only start a comment at the beginning of a line. */
31 /* Note that for the VAX the are the same as comment_chars above. */
32 const char line_comment_chars[] = "#";
33
34 const char line_separator_chars[] = "";
35
36 /* Chars that can be used to separate mant from exp in floating point nums */
37 const char EXP_CHARS[] = "eE";
38
39 /* Chars that mean this number is a floating point constant */
40 /* as in 0f123.456 */
41 /* or 0H1.234E-12 (see exp chars above) */
42 const char FLT_CHARS[] = "dDfFgGhH";
43
44 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
45 changed in read.c . Ideally it shouldn't have to know about it at all,
46 but nothing is ideal around here. */
47
48 /* Hold details of an operand expression */
49 static expressionS exp_of_operand[VIT_MAX_OPERANDS];
50 static segT seg_of_operand[VIT_MAX_OPERANDS];
51
52 /* A vax instruction after decoding. */
53 static struct vit v;
54
55 /* Hold details of big operands. */
56 LITTLENUM_TYPE big_operand_bits[VIT_MAX_OPERANDS][SIZE_OF_LARGE_NUMBER];
57 FLONUM_TYPE float_operand[VIT_MAX_OPERANDS];
58 /* Above is made to point into big_operand_bits by md_begin(). */
59
60 int flag_hash_long_names; /* -+ */
61 int flag_one; /* -1 */
62 int flag_show_after_trunc; /* -H */
63 int flag_no_hash_mixed_case; /* -h NUM */
64 \f
65 /*
66 * For VAX, relative addresses of "just the right length" are easy.
67 * The branch displacement is always the last operand, even in
68 * synthetic instructions.
69 * For VAX, we encode the relax_substateTs (in e.g. fr_substate) as:
70 *
71 * 4 3 2 1 0 bit number
72 * ---/ /--+-------+-------+-------+-------+-------+
73 * | what state ? | how long ? |
74 * ---/ /--+-------+-------+-------+-------+-------+
75 *
76 * The "how long" bits are 00=byte, 01=word, 10=long.
77 * This is a Un*x convention.
78 * Not all lengths are legit for a given value of (what state).
79 * The "how long" refers merely to the displacement length.
80 * The address usually has some constant bytes in it as well.
81 *
82
83 groups for VAX address relaxing.
84
85 1. "foo" pc-relative.
86 length of byte, word, long
87
88 2a. J<cond> where <cond> is a simple flag test.
89 length of byte, word, long.
90 VAX opcodes are: (Hex)
91 bneq/bnequ 12
92 beql/beqlu 13
93 bgtr 14
94 bleq 15
95 bgeq 18
96 blss 19
97 bgtru 1a
98 blequ 1b
99 bvc 1c
100 bvs 1d
101 bgequ/bcc 1e
102 blssu/bcs 1f
103 Always, you complement 0th bit to reverse condition.
104 Always, 1-byte opcode, then 1-byte displacement.
105
106 2b. J<cond> where cond tests a memory bit.
107 length of byte, word, long.
108 Vax opcodes are: (Hex)
109 bbs e0
110 bbc e1
111 bbss e2
112 bbcs e3
113 bbsc e4
114 bbcc e5
115 bbssi e6
116 bbcci e7
117 Always, you complement 0th bit to reverse condition.
118 Always, 1-byte opcde, longword-address, byte-address, 1-byte-displacement
119
120 2c. J<cond> where cond tests low-order memory bit
121 length of byte,word,long.
122 Vax opcodes are: (Hex)
123 blbs e8
124 blbc e9
125 Always, you complement 0th bit to reverse condition.
126 Always, 1-byte opcode, longword-address, 1-byte displacement.
127
128 3. Jbs/Jbr.
129 length of byte,word,long.
130 Vax opcodes are: (Hex)
131 bsbb 10
132 brb 11
133 These are like (2) but there is no condition to reverse.
134 Always, 1 byte opcode, then displacement/absolute.
135
136 4a. JacbX
137 length of word, long.
138 Vax opcodes are: (Hex)
139 acbw 3d
140 acbf 4f
141 acbd 6f
142 abcb 9d
143 acbl f1
144 acbg 4ffd
145 acbh 6ffd
146 Always, we cannot reverse the sense of the branch; we have a word
147 displacement.
148 The double-byte op-codes don't hurt: we never want to modify the
149 opcode, so we don't care how many bytes are between the opcode and
150 the operand.
151
152 4b. JXobXXX
153 length of long, long, byte.
154 Vax opcodes are: (Hex)
155 aoblss f2
156 aobleq f3
157 sobgeq f4
158 sobgtr f5
159 Always, we cannot reverse the sense of the branch; we have a byte
160 displacement.
161
162 The only time we need to modify the opcode is for class 2 instructions.
163 After relax() we may complement the lowest order bit of such instruction
164 to reverse sense of branch.
165
166 For class 2 instructions, we store context of "where is the opcode literal".
167 We can change an opcode's lowest order bit without breaking anything else.
168
169 We sometimes store context in the operand literal. This way we can figure out
170 after relax() what the original addressing mode was.
171 */
172 \f
173 /* These displacements are relative to the start address of the
174 displacement. The first letter is Byte, Word. 2nd letter is
175 Forward, Backward. */
176 #define BF (1+ 127)
177 #define BB (1+-128)
178 #define WF (2+ 32767)
179 #define WB (2+-32768)
180 /* Dont need LF, LB because they always reach. [They are coded as 0.] */
181
182
183 #define C(a,b) ENCODE_RELAX(a,b)
184 /* This macro has no side-effects. */
185 #define ENCODE_RELAX(what,length) (((what) << 2) + (length))
186
187 const relax_typeS md_relax_table[] =
188 {
189 {1, 1, 0, 0}, /* error sentinel 0,0 */
190 {1, 1, 0, 0}, /* unused 0,1 */
191 {1, 1, 0, 0}, /* unused 0,2 */
192 {1, 1, 0, 0}, /* unused 0,3 */
193 {BF + 1, BB + 1, 2, C (1, 1)},/* B^"foo" 1,0 */
194 {WF + 1, WB + 1, 3, C (1, 2)},/* W^"foo" 1,1 */
195 {0, 0, 5, 0}, /* L^"foo" 1,2 */
196 {1, 1, 0, 0}, /* unused 1,3 */
197 {BF, BB, 1, C (2, 1)}, /* b<cond> B^"foo" 2,0 */
198 {WF + 2, WB + 2, 4, C (2, 2)},/* br.+? brw X 2,1 */
199 {0, 0, 7, 0}, /* br.+? jmp X 2,2 */
200 {1, 1, 0, 0}, /* unused 2,3 */
201 {BF, BB, 1, C (3, 1)}, /* brb B^foo 3,0 */
202 {WF, WB, 2, C (3, 2)}, /* brw W^foo 3,1 */
203 {0, 0, 5, 0}, /* Jmp L^foo 3,2 */
204 {1, 1, 0, 0}, /* unused 3,3 */
205 {1, 1, 0, 0}, /* unused 4,0 */
206 {WF, WB, 2, C (4, 2)}, /* acb_ ^Wfoo 4,1 */
207 {0, 0, 10, 0}, /* acb_,br,jmp L^foo4,2 */
208 {1, 1, 0, 0}, /* unused 4,3 */
209 {BF, BB, 1, C (5, 1)}, /* Xob___,,foo 5,0 */
210 {WF + 4, WB + 4, 6, C (5, 2)},/* Xob.+2,brb.+3,brw5,1 */
211 {0, 0, 9, 0}, /* Xob.+2,brb.+6,jmp5,2 */
212 };
213
214 #undef C
215 #undef BF
216 #undef BB
217 #undef WF
218 #undef WB
219
220 void float_cons ();
221
222 const pseudo_typeS md_pseudo_table[] =
223 {
224 {"dfloat", float_cons, 'd'},
225 {"ffloat", float_cons, 'f'},
226 {"gfloat", float_cons, 'g'},
227 {"hfloat", float_cons, 'h'},
228 {0},
229 };
230
231 #define STATE_PC_RELATIVE (1)
232 #define STATE_CONDITIONAL_BRANCH (2)
233 #define STATE_ALWAYS_BRANCH (3) /* includes BSB... */
234 #define STATE_COMPLEX_BRANCH (4)
235 #define STATE_COMPLEX_HOP (5)
236
237 #define STATE_BYTE (0)
238 #define STATE_WORD (1)
239 #define STATE_LONG (2)
240 #define STATE_UNDF (3) /* Symbol undefined in pass1 */
241
242
243 #define min(a, b) ((a) < (b) ? (a) : (b))
244
245 int flonum_gen2vax PARAMS ((char format_letter, FLONUM_TYPE * f,
246 LITTLENUM_TYPE * words));
247 static const char *vip_begin PARAMS ((int, const char *, const char *,
248 const char *));
249 static void vip_op_defaults PARAMS ((const char *, const char *, const char *));
250 static void vip_op PARAMS ((char *, struct vop *));
251 static void vip PARAMS ((struct vit *, char *));
252
253 void
254 md_begin ()
255 {
256 const char *errtxt;
257 FLONUM_TYPE *fP;
258 int i;
259
260 if ((errtxt = vip_begin (1, "$", "*", "`")) != 0)
261 {
262 as_fatal (_("VIP_BEGIN error:%s"), errtxt);
263 }
264
265 for (i = 0, fP = float_operand;
266 fP < float_operand + VIT_MAX_OPERANDS;
267 i++, fP++)
268 {
269 fP->low = &big_operand_bits[i][0];
270 fP->high = &big_operand_bits[i][SIZE_OF_LARGE_NUMBER - 1];
271 }
272 }
273 \f
274 void
275 md_number_to_chars (con, value, nbytes)
276 char con[];
277 valueT value;
278 int nbytes;
279 {
280 number_to_chars_littleendian (con, value, nbytes);
281 }
282
283 /* Fix up some data or instructions after we find out the value of a symbol
284 that they reference. */
285
286 void /* Knows about order of bytes in address. */
287 md_apply_fix (fixP, value)
288 fixS *fixP;
289 long value;
290 {
291 number_to_chars_littleendian (fixP->fx_where + fixP->fx_frag->fr_literal,
292 (valueT) value, fixP->fx_size);
293 }
294
295 long
296 md_chars_to_number (con, nbytes)
297 unsigned char con[]; /* Low order byte 1st. */
298 int nbytes; /* Number of bytes in the input. */
299 {
300 long retval;
301 for (retval = 0, con += nbytes - 1; nbytes--; con--)
302 {
303 retval <<= BITS_PER_CHAR;
304 retval |= *con;
305 }
306 return retval;
307 }
308 \f
309 /* vax:md_assemble() emit frags for 1 instruction */
310
311 void
312 md_assemble (instruction_string)
313 char *instruction_string; /* A string: assemble 1 instruction. */
314 {
315 /* Non-zero if operand expression's segment is not known yet. */
316 int is_undefined;
317
318 int length_code;
319 char *p;
320 /* An operand. Scans all operands. */
321 struct vop *operandP;
322 char *save_input_line_pointer;
323 /* What used to live after an expression. */
324 char c_save;
325 /* 1: instruction_string bad for all passes. */
326 int goofed;
327 /* Points to slot just after last operand. */
328 struct vop *end_operandP;
329 /* Points to expression values for this operand. */
330 expressionS *expP;
331 segT *segP;
332
333 /* These refer to an instruction operand expression. */
334 /* Target segment of the address. */
335 segT to_seg;
336 valueT this_add_number;
337 /* Positive (minuend) symbol. */
338 struct symbol *this_add_symbol;
339 /* As a number. */
340 long opcode_as_number;
341 /* Least significant byte 1st. */
342 char *opcode_as_chars;
343 /* As an array of characters. */
344 /* Least significant byte 1st */
345 char *opcode_low_byteP;
346 /* length (bytes) meant by vop_short. */
347 int length;
348 /* 0, or 1 if '@' is in addressing mode. */
349 int at;
350 /* From vop_nbytes: vax_operand_width (in bytes) */
351 int nbytes;
352 FLONUM_TYPE *floatP;
353 LITTLENUM_TYPE literal_float[8];
354 /* Big enough for any floating point literal. */
355
356 vip (&v, instruction_string);
357
358 /*
359 * Now we try to find as many as_warn()s as we can. If we do any as_warn()s
360 * then goofed=1. Notice that we don't make any frags yet.
361 * Should goofed be 1, then this instruction will wedge in any pass,
362 * and we can safely flush it, without causing interpass symbol phase
363 * errors. That is, without changing label values in different passes.
364 */
365 if ((goofed = (*v.vit_error)) != 0)
366 {
367 as_warn (_("Ignoring statement due to \"%s\""), v.vit_error);
368 }
369 /*
370 * We need to use expression() and friends, which require us to diddle
371 * input_line_pointer. So we save it and restore it later.
372 */
373 save_input_line_pointer = input_line_pointer;
374 for (operandP = v.vit_operand,
375 expP = exp_of_operand,
376 segP = seg_of_operand,
377 floatP = float_operand,
378 end_operandP = v.vit_operand + v.vit_operands;
379
380 operandP < end_operandP;
381
382 operandP++, expP++, segP++, floatP++)
383 { /* for each operand */
384 if (operandP->vop_error)
385 {
386 as_warn (_("Ignoring statement because \"%s\""), operandP->vop_error);
387 goofed = 1;
388 }
389 else
390 {
391 /* statement has no syntax goofs: lets sniff the expression */
392 int can_be_short = 0; /* 1 if a bignum can be reduced to a short literal. */
393
394 input_line_pointer = operandP->vop_expr_begin;
395 c_save = operandP->vop_expr_end[1];
396 operandP->vop_expr_end[1] = '\0';
397 /* If to_seg == SEG_PASS1, expression() will have set need_pass_2 = 1. */
398 *segP = expression (expP);
399 switch (expP->X_op)
400 {
401 case O_absent:
402 /* for BSD4.2 compatibility, missing expression is absolute 0 */
403 expP->X_op = O_constant;
404 expP->X_add_number = 0;
405 /* For SEG_ABSOLUTE, we shouldn't need to set X_op_symbol,
406 X_add_symbol to any particular value. But, we will program
407 defensively. Since this situation occurs rarely so it costs
408 us little to do, and stops Dean worrying about the origin of
409 random bits in expressionS's. */
410 expP->X_add_symbol = NULL;
411 expP->X_op_symbol = NULL;
412 break;
413
414 case O_symbol:
415 case O_constant:
416 break;
417
418 default:
419 /*
420 * Major bug. We can't handle the case of a
421 * SEG_OP expression in a VIT_OPCODE_SYNTHETIC
422 * variable-length instruction.
423 * We don't have a frag type that is smart enough to
424 * relax a SEG_OP, and so we just force all
425 * SEG_OPs to behave like SEG_PASS1s.
426 * Clearly, if there is a demand we can invent a new or
427 * modified frag type and then coding up a frag for this
428 * case will be easy. SEG_OP was invented for the
429 * .words after a CASE opcode, and was never intended for
430 * instruction operands.
431 */
432 need_pass_2 = 1;
433 as_warn (_("Can't relocate expression"));
434 break;
435
436 case O_big:
437 /* Preserve the bits. */
438 if (expP->X_add_number > 0)
439 {
440 bignum_copy (generic_bignum, expP->X_add_number,
441 floatP->low, SIZE_OF_LARGE_NUMBER);
442 }
443 else
444 {
445 know (expP->X_add_number < 0);
446 flonum_copy (&generic_floating_point_number,
447 floatP);
448 if (strchr ("s i", operandP->vop_short))
449 {
450 /* Could possibly become S^# */
451 flonum_gen2vax (-expP->X_add_number, floatP, literal_float);
452 switch (-expP->X_add_number)
453 {
454 case 'f':
455 can_be_short =
456 (literal_float[0] & 0xFC0F) == 0x4000
457 && literal_float[1] == 0;
458 break;
459
460 case 'd':
461 can_be_short =
462 (literal_float[0] & 0xFC0F) == 0x4000
463 && literal_float[1] == 0
464 && literal_float[2] == 0
465 && literal_float[3] == 0;
466 break;
467
468 case 'g':
469 can_be_short =
470 (literal_float[0] & 0xFF81) == 0x4000
471 && literal_float[1] == 0
472 && literal_float[2] == 0
473 && literal_float[3] == 0;
474 break;
475
476 case 'h':
477 can_be_short = ((literal_float[0] & 0xFFF8) == 0x4000
478 && (literal_float[1] & 0xE000) == 0
479 && literal_float[2] == 0
480 && literal_float[3] == 0
481 && literal_float[4] == 0
482 && literal_float[5] == 0
483 && literal_float[6] == 0
484 && literal_float[7] == 0);
485 break;
486
487 default:
488 BAD_CASE (-expP->X_add_number);
489 break;
490 } /* switch (float type) */
491 } /* if (could want to become S^#...) */
492 } /* bignum or flonum ? */
493
494 if (operandP->vop_short == 's'
495 || operandP->vop_short == 'i'
496 || (operandP->vop_short == ' '
497 && operandP->vop_reg == 0xF
498 && (operandP->vop_mode & 0xE) == 0x8))
499 {
500 /* Saw a '#'. */
501 if (operandP->vop_short == ' ')
502 {
503 /* We must chose S^ or I^. */
504 if (expP->X_add_number > 0)
505 {
506 /* Bignum: Short literal impossible. */
507 operandP->vop_short = 'i';
508 operandP->vop_mode = 8;
509 operandP->vop_reg = 0xF; /* VAX PC. */
510 }
511 else
512 {
513 /* Flonum: Try to do it. */
514 if (can_be_short)
515 {
516 operandP->vop_short = 's';
517 operandP->vop_mode = 0;
518 operandP->vop_ndx = -1;
519 operandP->vop_reg = -1;
520 expP->X_op = O_constant;
521 }
522 else
523 {
524 operandP->vop_short = 'i';
525 operandP->vop_mode = 8;
526 operandP->vop_reg = 0xF; /* VAX PC */
527 }
528 } /* bignum or flonum ? */
529 } /* if #, but no S^ or I^ seen. */
530 /* No more ' ' case: either 's' or 'i'. */
531 if (operandP->vop_short == 's')
532 {
533 /* Wants to be a short literal. */
534 if (expP->X_add_number > 0)
535 {
536 as_warn (_("Bignum not permitted in short literal. Immediate mode assumed."));
537 operandP->vop_short = 'i';
538 operandP->vop_mode = 8;
539 operandP->vop_reg = 0xF; /* VAX PC. */
540 }
541 else
542 {
543 if (!can_be_short)
544 {
545 as_warn (_("Can't do flonum short literal: immediate mode used."));
546 operandP->vop_short = 'i';
547 operandP->vop_mode = 8;
548 operandP->vop_reg = 0xF; /* VAX PC. */
549 }
550 else
551 { /* Encode short literal now. */
552 int temp = 0;
553
554 switch (-expP->X_add_number)
555 {
556 case 'f':
557 case 'd':
558 temp = literal_float[0] >> 4;
559 break;
560
561 case 'g':
562 temp = literal_float[0] >> 1;
563 break;
564
565 case 'h':
566 temp = ((literal_float[0] << 3) & 070)
567 | ((literal_float[1] >> 13) & 07);
568 break;
569
570 default:
571 BAD_CASE (-expP->X_add_number);
572 break;
573 }
574
575 floatP->low[0] = temp & 077;
576 floatP->low[1] = 0;
577 } /* if can be short literal float */
578 } /* flonum or bignum ? */
579 }
580 else
581 { /* I^# seen: set it up if float. */
582 if (expP->X_add_number < 0)
583 {
584 memcpy (floatP->low, literal_float, sizeof (literal_float));
585 }
586 } /* if S^# seen. */
587 }
588 else
589 {
590 as_warn (_("A bignum/flonum may not be a displacement: 0x%lx used"),
591 (expP->X_add_number = 0x80000000L));
592 /* Chosen so luser gets the most offset bits to patch later. */
593 }
594 expP->X_add_number = floatP->low[0]
595 | ((LITTLENUM_MASK & (floatP->low[1])) << LITTLENUM_NUMBER_OF_BITS);
596 /*
597 * For the O_big case we have:
598 * If vop_short == 's' then a short floating literal is in the
599 * lowest 6 bits of floatP -> low [0], which is
600 * big_operand_bits [---] [0].
601 * If vop_short == 'i' then the appropriate number of elements
602 * of big_operand_bits [---] [...] are set up with the correct
603 * bits.
604 * Also, just in case width is byte word or long, we copy the lowest
605 * 32 bits of the number to X_add_number.
606 */
607 break;
608 }
609 if (input_line_pointer != operandP->vop_expr_end + 1)
610 {
611 as_warn ("Junk at end of expression \"%s\"", input_line_pointer);
612 goofed = 1;
613 }
614 operandP->vop_expr_end[1] = c_save;
615 }
616 } /* for(each operand) */
617
618 input_line_pointer = save_input_line_pointer;
619
620 if (need_pass_2 || goofed)
621 {
622 return;
623 }
624
625
626 /* Emit op-code. */
627 /* Remember where it is, in case we want to modify the op-code later. */
628 opcode_low_byteP = frag_more (v.vit_opcode_nbytes);
629 memcpy (opcode_low_byteP, v.vit_opcode, v.vit_opcode_nbytes);
630 opcode_as_number = md_chars_to_number (opcode_as_chars = v.vit_opcode, 4);
631 for (operandP = v.vit_operand,
632 expP = exp_of_operand,
633 segP = seg_of_operand,
634 floatP = float_operand,
635 end_operandP = v.vit_operand + v.vit_operands;
636
637 operandP < end_operandP;
638
639 operandP++,
640 floatP++,
641 segP++,
642 expP++)
643 {
644 if (operandP->vop_ndx >= 0)
645 {
646 /* indexed addressing byte */
647 /* Legality of indexed mode already checked: it is OK */
648 FRAG_APPEND_1_CHAR (0x40 + operandP->vop_ndx);
649 } /* if(vop_ndx>=0) */
650
651 /* Here to make main operand frag(s). */
652 this_add_number = expP->X_add_number;
653 this_add_symbol = expP->X_add_symbol;
654 to_seg = *segP;
655 is_undefined = (to_seg == SEG_UNKNOWN);
656 at = operandP->vop_mode & 1;
657 length = (operandP->vop_short == 'b'
658 ? 1 : (operandP->vop_short == 'w'
659 ? 2 : (operandP->vop_short == 'l'
660 ? 4 : 0)));
661 nbytes = operandP->vop_nbytes;
662 if (operandP->vop_access == 'b')
663 {
664 if (to_seg == now_seg || is_undefined)
665 {
666 /* If is_undefined, then it might BECOME now_seg. */
667 if (nbytes)
668 {
669 p = frag_more (nbytes);
670 fix_new (frag_now, p - frag_now->fr_literal, nbytes,
671 this_add_symbol, this_add_number, 1, NO_RELOC);
672 }
673 else
674 { /* to_seg==now_seg || to_seg == SEG_UNKNOWN */
675 /* nbytes==0 */
676 length_code = is_undefined ? STATE_UNDF : STATE_BYTE;
677 if (opcode_as_number & VIT_OPCODE_SPECIAL)
678 {
679 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
680 {
681 /* br or jsb */
682 frag_var (rs_machine_dependent, 5, 1,
683 ENCODE_RELAX (STATE_ALWAYS_BRANCH, length_code),
684 this_add_symbol, this_add_number,
685 opcode_low_byteP);
686 }
687 else
688 {
689 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
690 {
691 length_code = STATE_WORD;
692 /* JF: There is no state_byte for this one! */
693 frag_var (rs_machine_dependent, 10, 2,
694 ENCODE_RELAX (STATE_COMPLEX_BRANCH, length_code),
695 this_add_symbol, this_add_number,
696 opcode_low_byteP);
697 }
698 else
699 {
700 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
701 frag_var (rs_machine_dependent, 9, 1,
702 ENCODE_RELAX (STATE_COMPLEX_HOP, length_code),
703 this_add_symbol, this_add_number,
704 opcode_low_byteP);
705 }
706 }
707 }
708 else
709 {
710 know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP);
711 frag_var (rs_machine_dependent, 7, 1,
712 ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, length_code),
713 this_add_symbol, this_add_number,
714 opcode_low_byteP);
715 }
716 }
717 }
718 else
719 {
720 /* to_seg != now_seg && to_seg != SEG_UNKNOWN */
721 /*
722 * --- SEG FLOAT MAY APPEAR HERE ----
723 */
724 if (to_seg == SEG_ABSOLUTE)
725 {
726 if (nbytes)
727 {
728 know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC));
729 p = frag_more (nbytes);
730 /* Conventional relocation. */
731 fix_new (frag_now, p - frag_now->fr_literal,
732 nbytes, &abs_symbol, this_add_number,
733 1, NO_RELOC);
734 }
735 else
736 {
737 know (opcode_as_number & VIT_OPCODE_SYNTHETIC);
738 if (opcode_as_number & VIT_OPCODE_SPECIAL)
739 {
740 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
741 {
742 /* br or jsb */
743 *opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG;
744 know (opcode_as_chars[1] == 0);
745 p = frag_more (5);
746 p[0] = VAX_ABSOLUTE_MODE; /* @#... */
747 md_number_to_chars (p + 1, this_add_number, 4);
748 /* Now (eg) JMP @#foo or JSB @#foo. */
749 }
750 else
751 {
752 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
753 {
754 p = frag_more (10);
755 p[0] = 2;
756 p[1] = 0;
757 p[2] = VAX_BRB;
758 p[3] = 6;
759 p[4] = VAX_JMP;
760 p[5] = VAX_ABSOLUTE_MODE; /* @#... */
761 md_number_to_chars (p + 6, this_add_number, 4);
762 /*
763 * Now (eg) ACBx 1f
764 * BRB 2f
765 * 1: JMP @#foo
766 * 2:
767 */
768 }
769 else
770 {
771 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
772 p = frag_more (9);
773 p[0] = 2;
774 p[1] = VAX_BRB;
775 p[2] = 6;
776 p[3] = VAX_JMP;
777 p[4] = VAX_PC_RELATIVE_MODE + 1; /* @#... */
778 md_number_to_chars (p + 5, this_add_number, 4);
779 /*
780 * Now (eg) xOBxxx 1f
781 * BRB 2f
782 * 1: JMP @#foo
783 * 2:
784 */
785 }
786 }
787 }
788 else
789 {
790 /* b<cond> */
791 *opcode_low_byteP ^= 1;
792 /* To reverse the condition in a VAX branch,
793 complement the lowest order bit. */
794 p = frag_more (7);
795 p[0] = 6;
796 p[1] = VAX_JMP;
797 p[2] = VAX_ABSOLUTE_MODE; /* @#... */
798 md_number_to_chars (p + 3, this_add_number, 4);
799 /*
800 * Now (eg) BLEQ 1f
801 * JMP @#foo
802 * 1:
803 */
804 }
805 }
806 }
807 else
808 {
809 /* to_seg != now_seg && to_seg != SEG_UNKNOWN && to_Seg != SEG_ABSOLUTE */
810 if (nbytes > 0)
811 {
812 /* Pc-relative. Conventional relocation. */
813 know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC));
814 p = frag_more (nbytes);
815 fix_new (frag_now, p - frag_now->fr_literal,
816 nbytes, &abs_symbol, this_add_number,
817 1, NO_RELOC);
818 }
819 else
820 {
821 know (opcode_as_number & VIT_OPCODE_SYNTHETIC);
822 if (opcode_as_number & VIT_OPCODE_SPECIAL)
823 {
824 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
825 {
826 /* br or jsb */
827 know (opcode_as_chars[1] == 0);
828 *opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG;
829 p = frag_more (5);
830 p[0] = VAX_PC_RELATIVE_MODE;
831 fix_new (frag_now,
832 p + 1 - frag_now->fr_literal, 4,
833 this_add_symbol,
834 this_add_number, 1, NO_RELOC);
835 /* Now eg JMP foo or JSB foo. */
836 }
837 else
838 {
839 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
840 {
841 p = frag_more (10);
842 p[0] = 0;
843 p[1] = 2;
844 p[2] = VAX_BRB;
845 p[3] = 6;
846 p[4] = VAX_JMP;
847 p[5] = VAX_PC_RELATIVE_MODE;
848 fix_new (frag_now,
849 p + 6 - frag_now->fr_literal, 4,
850 this_add_symbol,
851 this_add_number, 1, NO_RELOC);
852 /*
853 * Now (eg) ACBx 1f
854 * BRB 2f
855 * 1: JMP foo
856 * 2:
857 */
858 }
859 else
860 {
861 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
862 p = frag_more (10);
863 p[0] = 2;
864 p[1] = VAX_BRB;
865 p[2] = 6;
866 p[3] = VAX_JMP;
867 p[4] = VAX_PC_RELATIVE_MODE;
868 fix_new (frag_now,
869 p + 5 - frag_now->fr_literal,
870 4, this_add_symbol,
871 this_add_number, 1, NO_RELOC);
872 /*
873 * Now (eg) xOBxxx 1f
874 * BRB 2f
875 * 1: JMP foo
876 * 2:
877 */
878 }
879 }
880 }
881 else
882 {
883 know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP);
884 *opcode_low_byteP ^= 1; /* Reverse branch condition. */
885 p = frag_more (7);
886 p[0] = 6;
887 p[1] = VAX_JMP;
888 p[2] = VAX_PC_RELATIVE_MODE;
889 fix_new (frag_now, p + 3 - frag_now->fr_literal,
890 4, this_add_symbol,
891 this_add_number, 1, NO_RELOC);
892 }
893 }
894 }
895 }
896 }
897 else
898 {
899 know (operandP->vop_access != 'b'); /* So it is ordinary operand. */
900 know (operandP->vop_access != ' '); /* ' ' target-independent: elsewhere. */
901 know (operandP->vop_access == 'a'
902 || operandP->vop_access == 'm'
903 || operandP->vop_access == 'r'
904 || operandP->vop_access == 'v'
905 || operandP->vop_access == 'w');
906 if (operandP->vop_short == 's')
907 {
908 if (to_seg == SEG_ABSOLUTE)
909 {
910 if (this_add_number >= 64)
911 {
912 as_warn (_("Short literal overflow(%ld.), immediate mode assumed."),
913 (long) this_add_number);
914 operandP->vop_short = 'i';
915 operandP->vop_mode = 8;
916 operandP->vop_reg = 0xF;
917 }
918 }
919 else
920 {
921 as_warn (_("Forced short literal to immediate mode. now_seg=%s to_seg=%s"),
922 segment_name (now_seg), segment_name (to_seg));
923 operandP->vop_short = 'i';
924 operandP->vop_mode = 8;
925 operandP->vop_reg = 0xF;
926 }
927 }
928 if (operandP->vop_reg >= 0 && (operandP->vop_mode < 8
929 || (operandP->vop_reg != 0xF && operandP->vop_mode < 10)))
930 {
931 /* One byte operand. */
932 know (operandP->vop_mode > 3);
933 FRAG_APPEND_1_CHAR (operandP->vop_mode << 4 | operandP->vop_reg);
934 /* All 1-bytes except S^# happen here. */
935 }
936 else
937 {
938 /* {@}{q^}foo{(Rn)} or S^#foo */
939 if (operandP->vop_reg == -1 && operandP->vop_short != 's')
940 {
941 /* "{@}{q^}foo" */
942 if (to_seg == now_seg)
943 {
944 if (length == 0)
945 {
946 know (operandP->vop_short == ' ');
947 p = frag_var (rs_machine_dependent, 10, 2,
948 ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE),
949 this_add_symbol, this_add_number,
950 opcode_low_byteP);
951 know (operandP->vop_mode == 10 + at);
952 *p = at << 4;
953 /* At is the only context we need to carry
954 to other side of relax() process. Must
955 be in the correct bit position of VAX
956 operand spec. byte. */
957 }
958 else
959 {
960 know (length);
961 know (operandP->vop_short != ' ');
962 p = frag_more (length + 1);
963 p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4);
964 fix_new (frag_now, p + 1 - frag_now->fr_literal,
965 length, this_add_symbol,
966 this_add_number, 1, NO_RELOC);
967 }
968 }
969 else
970 { /* to_seg != now_seg */
971 if (this_add_symbol == NULL)
972 {
973 know (to_seg == SEG_ABSOLUTE);
974 /* Do @#foo: simpler relocation than foo-.(pc) anyway. */
975 p = frag_more (5);
976 p[0] = VAX_ABSOLUTE_MODE; /* @#... */
977 md_number_to_chars (p + 1, this_add_number, 4);
978 if (length && length != 4)
979 {
980 as_warn (_("Length specification ignored. Address mode 9F used"));
981 }
982 }
983 else
984 {
985 /* {@}{q^}other_seg */
986 know ((length == 0 && operandP->vop_short == ' ')
987 || (length > 0 && operandP->vop_short != ' '));
988 if (is_undefined)
989 {
990 /*
991 * We have a SEG_UNKNOWN symbol. It might
992 * turn out to be in the same segment as
993 * the instruction, permitting relaxation.
994 */
995 p = frag_var (rs_machine_dependent, 5, 2,
996 ENCODE_RELAX (STATE_PC_RELATIVE, STATE_UNDF),
997 this_add_symbol, this_add_number,
998 0);
999 p[0] = at << 4;
1000 }
1001 else
1002 {
1003 if (length == 0)
1004 {
1005 know (operandP->vop_short == ' ');
1006 length = 4; /* Longest possible. */
1007 }
1008 p = frag_more (length + 1);
1009 p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4);
1010 md_number_to_chars (p + 1, this_add_number, length);
1011 fix_new (frag_now,
1012 p + 1 - frag_now->fr_literal,
1013 length, this_add_symbol,
1014 this_add_number, 1, NO_RELOC);
1015 }
1016 }
1017 }
1018 }
1019 else
1020 {
1021 /* {@}{q^}foo(Rn) or S^# or I^# or # */
1022 if (operandP->vop_mode < 0xA)
1023 {
1024 /* # or S^# or I^# */
1025 if (operandP->vop_access == 'v'
1026 || operandP->vop_access == 'a')
1027 {
1028 if (operandP->vop_access == 'v')
1029 as_warn (_("Invalid operand: immediate value used as base address."));
1030 else
1031 as_warn (_("Invalid operand: immediate value used as address."));
1032 /* gcc 2.6.3 is known to generate these in at least
1033 one case. */
1034 }
1035 if (length == 0
1036 && to_seg == SEG_ABSOLUTE && (expP->X_op != O_big)
1037 && operandP->vop_mode == 8 /* No '@'. */
1038 && this_add_number < 64)
1039 {
1040 operandP->vop_short = 's';
1041 }
1042 if (operandP->vop_short == 's')
1043 {
1044 FRAG_APPEND_1_CHAR (this_add_number);
1045 }
1046 else
1047 {
1048 /* I^#... */
1049 know (nbytes);
1050 p = frag_more (nbytes + 1);
1051 know (operandP->vop_reg == 0xF);
1052 p[0] = (operandP->vop_mode << 4) | 0xF;
1053 if ((to_seg == SEG_ABSOLUTE) && (expP->X_op != O_big))
1054 {
1055 /*
1056 * If nbytes > 4, then we are scrod. We
1057 * don't know if the high order bytes
1058 * are to be 0xFF or 0x00. BSD4.2 & RMS
1059 * say use 0x00. OK --- but this
1060 * assembler needs ANOTHER rewrite to
1061 * cope properly with this bug. */
1062 md_number_to_chars (p + 1, this_add_number, min (4, nbytes));
1063 if (nbytes > 4)
1064 {
1065 memset (p + 5, '\0', nbytes - 4);
1066 }
1067 }
1068 else
1069 {
1070 if (expP->X_op == O_big)
1071 {
1072 /*
1073 * Problem here is to get the bytes
1074 * in the right order. We stored
1075 * our constant as LITTLENUMs, not
1076 * bytes. */
1077 LITTLENUM_TYPE *lP;
1078
1079 lP = floatP->low;
1080 if (nbytes & 1)
1081 {
1082 know (nbytes == 1);
1083 p[1] = *lP;
1084 }
1085 else
1086 {
1087 for (p++; nbytes; nbytes -= 2, p += 2, lP++)
1088 {
1089 md_number_to_chars (p, *lP, 2);
1090 }
1091 }
1092 }
1093 else
1094 {
1095 fix_new (frag_now, p + 1 - frag_now->fr_literal,
1096 nbytes, this_add_symbol,
1097 this_add_number, 0, NO_RELOC);
1098 }
1099 }
1100 }
1101 }
1102 else
1103 { /* {@}{q^}foo(Rn) */
1104 know ((length == 0 && operandP->vop_short == ' ')
1105 || (length > 0 && operandP->vop_short != ' '));
1106 if (length == 0)
1107 {
1108 if (to_seg == SEG_ABSOLUTE)
1109 {
1110 long test;
1111
1112 test = this_add_number;
1113
1114 if (test < 0)
1115 test = ~test;
1116
1117 length = test & 0xffff8000 ? 4
1118 : test & 0xffffff80 ? 2
1119 : 1;
1120 }
1121 else
1122 {
1123 length = 4;
1124 }
1125 }
1126 p = frag_more (1 + length);
1127 know (operandP->vop_reg >= 0);
1128 p[0] = operandP->vop_reg
1129 | ((at | "?\12\14?\16"[length]) << 4);
1130 if (to_seg == SEG_ABSOLUTE)
1131 {
1132 md_number_to_chars (p + 1, this_add_number, length);
1133 }
1134 else
1135 {
1136 fix_new (frag_now, p + 1 - frag_now->fr_literal,
1137 length, this_add_symbol,
1138 this_add_number, 0, NO_RELOC);
1139 }
1140 }
1141 }
1142 } /* if(single-byte-operand) */
1143 }
1144 } /* for(operandP) */
1145 } /* vax_assemble() */
1146 \f
1147 /*
1148 * md_estimate_size_before_relax()
1149 *
1150 * Called just before relax().
1151 * Any symbol that is now undefined will not become defined.
1152 * Return the correct fr_subtype in the frag.
1153 * Return the initial "guess for fr_var" to caller.
1154 * The guess for fr_var is ACTUALLY the growth beyond fr_fix.
1155 * Whatever we do to grow fr_fix or fr_var contributes to our returned value.
1156 * Although it may not be explicit in the frag, pretend fr_var starts with a
1157 * 0 value.
1158 */
1159 int
1160 md_estimate_size_before_relax (fragP, segment)
1161 fragS *fragP;
1162 segT segment;
1163 {
1164 char *p;
1165 int old_fr_fix;
1166
1167 old_fr_fix = fragP->fr_fix;
1168 switch (fragP->fr_subtype)
1169 {
1170 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_UNDF):
1171 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1172 { /* A relaxable case. */
1173 fragP->fr_subtype = ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE);
1174 }
1175 else
1176 {
1177 p = fragP->fr_literal + old_fr_fix;
1178 p[0] |= VAX_PC_RELATIVE_MODE; /* Preserve @ bit. */
1179 fragP->fr_fix += 1 + 4;
1180 fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol,
1181 fragP->fr_offset, 1, NO_RELOC);
1182 frag_wane (fragP);
1183 }
1184 break;
1185
1186 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_UNDF):
1187 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1188 {
1189 fragP->fr_subtype = ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE);
1190 }
1191 else
1192 {
1193 p = fragP->fr_literal + old_fr_fix;
1194 *fragP->fr_opcode ^= 1; /* Reverse sense of branch. */
1195 p[0] = 6;
1196 p[1] = VAX_JMP;
1197 p[2] = VAX_PC_RELATIVE_MODE; /* ...(PC) */
1198 fragP->fr_fix += 1 + 1 + 1 + 4;
1199 fix_new (fragP, old_fr_fix + 3, 4, fragP->fr_symbol,
1200 fragP->fr_offset, 1, NO_RELOC);
1201 frag_wane (fragP);
1202 }
1203 break;
1204
1205 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_UNDF):
1206 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1207 {
1208 fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD);
1209 }
1210 else
1211 {
1212 p = fragP->fr_literal + old_fr_fix;
1213 p[0] = 2;
1214 p[1] = 0;
1215 p[2] = VAX_BRB;
1216 p[3] = 6;
1217 p[4] = VAX_JMP;
1218 p[5] = VAX_PC_RELATIVE_MODE; /* ...(pc) */
1219 fragP->fr_fix += 2 + 2 + 1 + 1 + 4;
1220 fix_new (fragP, old_fr_fix + 6, 4, fragP->fr_symbol,
1221 fragP->fr_offset, 1, NO_RELOC);
1222 frag_wane (fragP);
1223 }
1224 break;
1225
1226 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_UNDF):
1227 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1228 {
1229 fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE);
1230 }
1231 else
1232 {
1233 p = fragP->fr_literal + old_fr_fix;
1234 p[0] = 2;
1235 p[1] = VAX_BRB;
1236 p[2] = 6;
1237 p[3] = VAX_JMP;
1238 p[4] = VAX_PC_RELATIVE_MODE; /* ...(pc) */
1239 fragP->fr_fix += 1 + 2 + 1 + 1 + 4;
1240 fix_new (fragP, old_fr_fix + 5, 4, fragP->fr_symbol,
1241 fragP->fr_offset, 1, NO_RELOC);
1242 frag_wane (fragP);
1243 }
1244 break;
1245
1246 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_UNDF):
1247 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1248 {
1249 fragP->fr_subtype = ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE);
1250 }
1251 else
1252 {
1253 p = fragP->fr_literal + old_fr_fix;
1254 *fragP->fr_opcode += VAX_WIDEN_LONG;
1255 p[0] = VAX_PC_RELATIVE_MODE; /* ...(PC) */
1256 fragP->fr_fix += 1 + 4;
1257 fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol,
1258 fragP->fr_offset, 1, NO_RELOC);
1259 frag_wane (fragP);
1260 }
1261 break;
1262
1263 default:
1264 break;
1265 }
1266 return (fragP->fr_var + fragP->fr_fix - old_fr_fix);
1267 } /* md_estimate_size_before_relax() */
1268 \f
1269 /*
1270 * md_convert_frag();
1271 *
1272 * Called after relax() is finished.
1273 * In: Address of frag.
1274 * fr_type == rs_machine_dependent.
1275 * fr_subtype is what the address relaxed to.
1276 *
1277 * Out: Any fixSs and constants are set up.
1278 * Caller will turn frag into a ".space 0".
1279 */
1280 void
1281 md_convert_frag (headers, seg, fragP)
1282 object_headers *headers;
1283 segT seg;
1284 fragS *fragP;
1285 {
1286 char *addressP; /* -> _var to change. */
1287 char *opcodeP; /* -> opcode char(s) to change. */
1288 short int length_code; /* 2=long 1=word 0=byte */
1289 short int extension = 0; /* Size of relaxed address. */
1290 /* Added to fr_fix: incl. ALL var chars. */
1291 symbolS *symbolP;
1292 long where;
1293 long address_of_var;
1294 /* Where, in file space, is _var of *fragP? */
1295 long target_address = 0;
1296 /* Where, in file space, does addr point? */
1297
1298 know (fragP->fr_type == rs_machine_dependent);
1299 length_code = fragP->fr_subtype & 3; /* depends on ENCODE_RELAX() */
1300 know (length_code >= 0 && length_code < 3);
1301 where = fragP->fr_fix;
1302 addressP = fragP->fr_literal + where;
1303 opcodeP = fragP->fr_opcode;
1304 symbolP = fragP->fr_symbol;
1305 know (symbolP);
1306 target_address = S_GET_VALUE (symbolP) + fragP->fr_offset;
1307 address_of_var = fragP->fr_address + where;
1308
1309 switch (fragP->fr_subtype)
1310 {
1311
1312 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE):
1313 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1314 addressP[0] |= 0xAF; /* Byte displacement. */
1315 addressP[1] = target_address - (address_of_var + 2);
1316 extension = 2;
1317 break;
1318
1319 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_WORD):
1320 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1321 addressP[0] |= 0xCF; /* Word displacement. */
1322 md_number_to_chars (addressP + 1, target_address - (address_of_var + 3), 2);
1323 extension = 3;
1324 break;
1325
1326 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_LONG):
1327 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1328 addressP[0] |= 0xEF; /* Long word displacement. */
1329 md_number_to_chars (addressP + 1, target_address - (address_of_var + 5), 4);
1330 extension = 5;
1331 break;
1332
1333 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE):
1334 addressP[0] = target_address - (address_of_var + 1);
1335 extension = 1;
1336 break;
1337
1338 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD):
1339 opcodeP[0] ^= 1; /* Reverse sense of test. */
1340 addressP[0] = 3;
1341 addressP[1] = VAX_BRB + VAX_WIDEN_WORD;
1342 md_number_to_chars (addressP + 2, target_address - (address_of_var + 4), 2);
1343 extension = 4;
1344 break;
1345
1346 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_LONG):
1347 opcodeP[0] ^= 1; /* Reverse sense of test. */
1348 addressP[0] = 6;
1349 addressP[1] = VAX_JMP;
1350 addressP[2] = VAX_PC_RELATIVE_MODE;
1351 md_number_to_chars (addressP + 3, target_address, 4);
1352 extension = 7;
1353 break;
1354
1355 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE):
1356 addressP[0] = target_address - (address_of_var + 1);
1357 extension = 1;
1358 break;
1359
1360 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_WORD):
1361 opcodeP[0] += VAX_WIDEN_WORD; /* brb -> brw, bsbb -> bsbw */
1362 md_number_to_chars (addressP, target_address - (address_of_var + 2), 2);
1363 extension = 2;
1364 break;
1365
1366 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_LONG):
1367 opcodeP[0] += VAX_WIDEN_LONG; /* brb -> jmp, bsbb -> jsb */
1368 addressP[0] = VAX_PC_RELATIVE_MODE;
1369 md_number_to_chars (addressP + 1, target_address - (address_of_var + 5), 4);
1370 extension = 5;
1371 break;
1372
1373 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD):
1374 md_number_to_chars (addressP, target_address - (address_of_var + 2), 2);
1375 extension = 2;
1376 break;
1377
1378 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_LONG):
1379 addressP[0] = 2;
1380 addressP[1] = 0;
1381 addressP[2] = VAX_BRB;
1382 addressP[3] = 6;
1383 addressP[4] = VAX_JMP;
1384 addressP[5] = VAX_PC_RELATIVE_MODE;
1385 md_number_to_chars (addressP + 6, target_address, 4);
1386 extension = 10;
1387 break;
1388
1389 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE):
1390 addressP[0] = target_address - (address_of_var + 1);
1391 extension = 1;
1392 break;
1393
1394 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_WORD):
1395 addressP[0] = 2;
1396 addressP[1] = VAX_BRB;
1397 addressP[2] = 3;
1398 addressP[3] = VAX_BRW;
1399 md_number_to_chars (addressP + 4, target_address - (address_of_var + 6), 2);
1400 extension = 6;
1401 break;
1402
1403 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_LONG):
1404 addressP[0] = 2;
1405 addressP[1] = VAX_BRB;
1406 addressP[2] = 6;
1407 addressP[3] = VAX_JMP;
1408 addressP[4] = VAX_PC_RELATIVE_MODE;
1409 md_number_to_chars (addressP + 5, target_address, 4);
1410 extension = 9;
1411 break;
1412
1413 default:
1414 BAD_CASE (fragP->fr_subtype);
1415 break;
1416 }
1417 fragP->fr_fix += extension;
1418 } /* md_convert_frag() */
1419
1420 /* Translate internal format of relocation info into target format.
1421
1422 On vax: first 4 bytes are normal unsigned long, next three bytes
1423 are symbolnum, least sig. byte first. Last byte is broken up with
1424 the upper nibble as nuthin, bit 3 as extern, bits 2 & 1 as length, and
1425 bit 0 as pcrel. */
1426 #ifdef comment
1427 void
1428 md_ri_to_chars (the_bytes, ri)
1429 char *the_bytes;
1430 struct reloc_info_generic ri;
1431 {
1432 /* this is easy */
1433 md_number_to_chars (the_bytes, ri.r_address, sizeof (ri.r_address));
1434 /* now the fun stuff */
1435 the_bytes[6] = (ri.r_symbolnum >> 16) & 0x0ff;
1436 the_bytes[5] = (ri.r_symbolnum >> 8) & 0x0ff;
1437 the_bytes[4] = ri.r_symbolnum & 0x0ff;
1438 the_bytes[7] = (((ri.r_extern << 3) & 0x08) | ((ri.r_length << 1) & 0x06) |
1439 ((ri.r_pcrel << 0) & 0x01)) & 0x0F;
1440 }
1441
1442 #endif /* comment */
1443
1444 void
1445 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
1446 char *where;
1447 fixS *fixP;
1448 relax_addressT segment_address_in_file;
1449 {
1450 /*
1451 * In: length of relocation (or of address) in chars: 1, 2 or 4.
1452 * Out: GNU LD relocation length code: 0, 1, or 2.
1453 */
1454
1455 static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
1456 long r_symbolnum;
1457
1458 know (fixP->fx_addsy != NULL);
1459
1460 md_number_to_chars (where,
1461 fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
1462 4);
1463
1464 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
1465 ? S_GET_TYPE (fixP->fx_addsy)
1466 : fixP->fx_addsy->sy_number);
1467
1468 where[6] = (r_symbolnum >> 16) & 0x0ff;
1469 where[5] = (r_symbolnum >> 8) & 0x0ff;
1470 where[4] = r_symbolnum & 0x0ff;
1471 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
1472 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
1473 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
1474 }
1475
1476 /*
1477 * BUGS, GRIPES, APOLOGIA, etc.
1478 *
1479 * The opcode table 'votstrs' needs to be sorted on opcode frequency.
1480 * That is, AFTER we hash it with hash_...(), we want most-used opcodes
1481 * to come out of the hash table faster.
1482 *
1483 * I am sorry to inflict yet another VAX assembler on the world, but
1484 * RMS says we must do everything from scratch, to prevent pin-heads
1485 * restricting this software.
1486 */
1487
1488 /*
1489 * This is a vaguely modular set of routines in C to parse VAX
1490 * assembly code using DEC mnemonics. It is NOT un*x specific.
1491 *
1492 * The idea here is that the assembler has taken care of all:
1493 * labels
1494 * macros
1495 * listing
1496 * pseudo-ops
1497 * line continuation
1498 * comments
1499 * condensing any whitespace down to exactly one space
1500 * and all we have to do is parse 1 line into a vax instruction
1501 * partially formed. We will accept a line, and deliver:
1502 * an error message (hopefully empty)
1503 * a skeleton VAX instruction (tree structure)
1504 * textual pointers to all the operand expressions
1505 * a warning message that notes a silly operand (hopefully empty)
1506 */
1507 \f
1508 /*
1509 * E D I T H I S T O R Y
1510 *
1511 * 17may86 Dean Elsner. Bug if line ends immediately after opcode.
1512 * 30apr86 Dean Elsner. New vip_op() uses arg block so change call.
1513 * 6jan86 Dean Elsner. Crock vip_begin() to call vip_op_defaults().
1514 * 2jan86 Dean Elsner. Invent synthetic opcodes.
1515 * Widen vax_opcodeT to 32 bits. Use a bit for VIT_OPCODE_SYNTHETIC,
1516 * which means this is not a real opcode, it is like a macro; it will
1517 * be relax()ed into 1 or more instructions.
1518 * Use another bit for VIT_OPCODE_SPECIAL if the op-code is not optimised
1519 * like a regular branch instruction. Option added to vip_begin():
1520 * exclude synthetic opcodes. Invent synthetic_votstrs[].
1521 * 31dec85 Dean Elsner. Invent vit_opcode_nbytes.
1522 * Also make vit_opcode into a char[]. We now have n-byte vax opcodes,
1523 * so caller's don't have to know the difference between a 1-byte & a
1524 * 2-byte op-code. Still need vax_opcodeT concept, so we know how
1525 * big an object must be to hold an op.code.
1526 * 30dec85 Dean Elsner. Widen typedef vax_opcodeT in "vax-inst.h"
1527 * because vax opcodes may be 16 bits. Our crufty C compiler was
1528 * happily initialising 8-bit vot_codes with 16-bit numbers!
1529 * (Wouldn't the 'phone company like to compress data so easily!)
1530 * 29dec85 Dean Elsner. New static table vax_operand_width_size[].
1531 * Invented so we know hw many bytes a "I^#42" needs in its immediate
1532 * operand. Revised struct vop in "vax-inst.h": explicitly include
1533 * byte length of each operand, and it's letter-code datum type.
1534 * 17nov85 Dean Elsner. Name Change.
1535 * Due to ar(1) truncating names, we learned the hard way that
1536 * "vax-inst-parse.c" -> "vax-inst-parse." dropping the "o" off
1537 * the archived object name. SO... we shortened the name of this
1538 * source file, and changed the makefile.
1539 */
1540
1541 /* handle of the OPCODE hash table */
1542 static struct hash_control *op_hash;
1543
1544 /*
1545 * In: 1 character, from "bdfghloqpw" being the data-type of an operand
1546 * of a vax instruction.
1547 *
1548 * Out: the length of an operand of that type, in bytes.
1549 * Special branch operands types "-?!" have length 0.
1550 */
1551
1552 static const short int vax_operand_width_size[256] =
1553 {
1554 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1555 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1556 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1557 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1558 0, 0, 1, 0, 8, 0, 4, 8, 16, 0, 0, 0, 4, 0, 0,16, /* ..b.d.fgh...l..o */
1559 0, 8, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* .q.....w........ */
1560 0, 0, 1, 0, 8, 0, 4, 8, 16, 0, 0, 0, 4, 0, 0,16, /* ..b.d.fgh...l..o */
1561 0, 8, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* .q.....w........ */
1562 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1563 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1564 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1565 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1566 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1567 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1568 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1569 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1570 };
1571 \f
1572 /*
1573 * This perversion encodes all the vax opcodes as a bunch of strings.
1574 * RMS says we should build our hash-table at run-time. Hmm.
1575 * Please would someone arrange these in decreasing frequency of opcode?
1576 * Because of the way hash_...() works, the most frequently used opcode
1577 * should be textually first and so on.
1578 *
1579 * Input for this table was 'vax.opcodes', awk(1)ed by 'vax.opcodes.c.awk' .
1580 * So change 'vax.opcodes', then re-generate this table.
1581 */
1582
1583 #include "opcode/vax.h"
1584 \f
1585 /*
1586 * This is a table of optional op-codes. All of them represent
1587 * 'synthetic' instructions that seem popular.
1588 *
1589 * Here we make some pseudo op-codes. Every code has a bit set to say
1590 * it is synthetic. This lets you catch them if you want to
1591 * ban these opcodes. They are mnemonics for "elastic" instructions
1592 * that are supposed to assemble into the fewest bytes needed to do a
1593 * branch, or to do a conditional branch, or whatever.
1594 *
1595 * The opcode is in the usual place [low-order n*8 bits]. This means
1596 * that if you mask off the bucky bits, the usual rules apply about
1597 * how long the opcode is.
1598 *
1599 * All VAX branch displacements come at the end of the instruction.
1600 * For simple branches (1-byte opcode + 1-byte displacement) the last
1601 * operand is coded 'b?' where the "data type" '?' is a clue that we
1602 * may reverse the sense of the branch (complement lowest order bit)
1603 * and branch around a jump. This is by far the most common case.
1604 * That is why the VIT_OPCODE_SYNTHETIC bit is set: it says this is
1605 * a 0-byte op-code followed by 2 or more bytes of operand address.
1606 *
1607 * If the op-code has VIT_OPCODE_SPECIAL set, then we have a more unusual
1608 * case.
1609 *
1610 * For JBSB & JBR the treatment is the similar, except (1) we have a 'bw'
1611 * option before (2) we can directly JSB/JMP because there is no condition.
1612 * These operands have 'b-' as their access/data type.
1613 *
1614 * That leaves a bunch of random opcodes: JACBx, JxOBxxx. In these
1615 * cases, we do the same idea. JACBxxx are all marked with a 'b!'
1616 * JAOBxxx & JSOBxxx are marked with a 'b:'.
1617 *
1618 */
1619 #if (VIT_OPCODE_SYNTHETIC != 0x80000000)
1620 You have just broken the encoding below, which assumes the sign bit
1621 means 'I am an imaginary instruction'.
1622 #endif
1623
1624 #if (VIT_OPCODE_SPECIAL != 0x40000000)
1625 You have just broken the encoding below, which assumes the 0x40 M bit means
1626 'I am not to be "optimised" the way normal branches are'.
1627 #endif
1628
1629 static const struct vot
1630 synthetic_votstrs[] =
1631 {
1632 {"jbsb", {"b-", 0xC0000010}}, /* BSD 4.2 */
1633 /* jsb used already */
1634 {"jbr", {"b-", 0xC0000011}}, /* BSD 4.2 */
1635 {"jr", {"b-", 0xC0000011}}, /* consistent */
1636 {"jneq", {"b?", 0x80000012}},
1637 {"jnequ", {"b?", 0x80000012}},
1638 {"jeql", {"b?", 0x80000013}},
1639 {"jeqlu", {"b?", 0x80000013}},
1640 {"jgtr", {"b?", 0x80000014}},
1641 {"jleq", {"b?", 0x80000015}},
1642 /* un-used opcodes here */
1643 {"jgeq", {"b?", 0x80000018}},
1644 {"jlss", {"b?", 0x80000019}},
1645 {"jgtru", {"b?", 0x8000001a}},
1646 {"jlequ", {"b?", 0x8000001b}},
1647 {"jvc", {"b?", 0x8000001c}},
1648 {"jvs", {"b?", 0x8000001d}},
1649 {"jgequ", {"b?", 0x8000001e}},
1650 {"jcc", {"b?", 0x8000001e}},
1651 {"jlssu", {"b?", 0x8000001f}},
1652 {"jcs", {"b?", 0x8000001f}},
1653
1654 {"jacbw", {"rwrwmwb!", 0xC000003d}},
1655 {"jacbf", {"rfrfmfb!", 0xC000004f}},
1656 {"jacbd", {"rdrdmdb!", 0xC000006f}},
1657 {"jacbb", {"rbrbmbb!", 0xC000009d}},
1658 {"jacbl", {"rlrlmlb!", 0xC00000f1}},
1659 {"jacbg", {"rgrgmgb!", 0xC0004ffd}},
1660 {"jacbh", {"rhrhmhb!", 0xC0006ffd}},
1661
1662 {"jbs", {"rlvbb?", 0x800000e0}},
1663 {"jbc", {"rlvbb?", 0x800000e1}},
1664 {"jbss", {"rlvbb?", 0x800000e2}},
1665 {"jbcs", {"rlvbb?", 0x800000e3}},
1666 {"jbsc", {"rlvbb?", 0x800000e4}},
1667 {"jbcc", {"rlvbb?", 0x800000e5}},
1668 {"jbssi", {"rlvbb?", 0x800000e6}},
1669 {"jbcci", {"rlvbb?", 0x800000e7}},
1670 {"jlbs", {"rlb?", 0x800000e8}},
1671 {"jlbc", {"rlb?", 0x800000e9}},
1672
1673 {"jaoblss", {"rlmlb:", 0xC00000f2}},
1674 {"jaobleq", {"rlmlb:", 0xC00000f3}},
1675 {"jsobgeq", {"mlb:", 0xC00000f4}},
1676 {"jsobgtr", {"mlb:", 0xC00000f5}},
1677
1678 /* CASEx has no branch addresses in our conception of it. */
1679 /* You should use ".word ..." statements after the "case ...". */
1680
1681 {"", {"", 0}} /* empty is end sentinel */
1682
1683 }; /* synthetic_votstrs */
1684 \f
1685 /*
1686 * v i p _ b e g i n ( )
1687 *
1688 * Call me once before you decode any lines.
1689 * I decode votstrs into a hash table at op_hash (which I create).
1690 * I return an error text or null.
1691 * If you want, I will include the 'synthetic' jXXX instructions in the
1692 * instruction table.
1693 * You must nominate metacharacters for eg DEC's "#", "@", "^".
1694 */
1695
1696 static const char *
1697 vip_begin (synthetic_too, immediate, indirect, displen)
1698 int synthetic_too; /* 1 means include jXXX op-codes. */
1699 const char *immediate, *indirect, *displen;
1700 {
1701 const struct vot *vP; /* scan votstrs */
1702 const char *retval = 0; /* error text */
1703
1704 op_hash = hash_new ();
1705
1706 for (vP = votstrs; *vP->vot_name && !retval; vP++)
1707 retval = hash_insert (op_hash, vP->vot_name, (PTR) &vP->vot_detail);
1708
1709 if (synthetic_too)
1710 for (vP = synthetic_votstrs; *vP->vot_name && !retval; vP++)
1711 retval = hash_insert (op_hash, vP->vot_name, (PTR) &vP->vot_detail);
1712
1713 #ifndef CONST_TABLE
1714 vip_op_defaults (immediate, indirect, displen);
1715 #endif
1716
1717 return retval;
1718 }
1719
1720
1721 /*
1722 * v i p ( )
1723 *
1724 * This converts a string into a vax instruction.
1725 * The string must be a bare single instruction in dec-vax (with BSD4 frobs)
1726 * format.
1727 * It provides some error messages: at most one fatal error message (which
1728 * stops the scan) and at most one warning message for each operand.
1729 * The vax instruction is returned in exploded form, since we have no
1730 * knowledge of how you parse (or evaluate) your expressions.
1731 * We do however strip off and decode addressing modes and operation
1732 * mnemonic.
1733 *
1734 * The exploded instruction is returned to a struct vit of your choice.
1735 * #include "vax-inst.h" to know what a struct vit is.
1736 *
1737 * This function's value is a string. If it is not "" then an internal
1738 * logic error was found: read this code to assign meaning to the string.
1739 * No argument string should generate such an error string:
1740 * it means a bug in our code, not in the user's text.
1741 *
1742 * You MUST have called vip_begin() once before using this function.
1743 */
1744
1745 static void
1746 vip (vitP, instring)
1747 struct vit *vitP; /* We build an exploded instruction here. */
1748 char *instring; /* Text of a vax instruction: we modify. */
1749 {
1750 /* How to bit-encode this opcode. */
1751 struct vot_wot *vwP;
1752 /* 1/skip whitespace.2/scan vot_how */
1753 char *p;
1754 char *q;
1755 /* counts number of operands seen */
1756 unsigned char count;
1757 /* scan operands in struct vit */
1758 struct vop *operandp;
1759 /* error over all operands */
1760 const char *alloperr;
1761 /* Remember char, (we clobber it with '\0' temporarily). */
1762 char c;
1763 /* Op-code of this instruction. */
1764 vax_opcodeT oc;
1765
1766 if (*instring == ' ')
1767 ++instring; /* Skip leading whitespace. */
1768 for (p = instring; *p && *p != ' '; p++);; /* MUST end in end-of-string or exactly 1 space. */
1769 /* Scanned up to end of operation-code. */
1770 /* Operation-code is ended with whitespace. */
1771 if (p - instring == 0)
1772 {
1773 vitP->vit_error = _("No operator");
1774 count = 0;
1775 memset (vitP->vit_opcode, '\0', sizeof (vitP->vit_opcode));
1776 }
1777 else
1778 {
1779 c = *p;
1780 *p = '\0';
1781 /*
1782 * Here with instring pointing to what better be an op-name, and p
1783 * pointing to character just past that.
1784 * We trust instring points to an op-name, with no whitespace.
1785 */
1786 vwP = (struct vot_wot *) hash_find (op_hash, instring);
1787 *p = c; /* Restore char after op-code. */
1788 if (vwP == 0)
1789 {
1790 vitP->vit_error = _("Unknown operator");
1791 count = 0;
1792 memset (vitP->vit_opcode, '\0', sizeof (vitP->vit_opcode));
1793 }
1794 else
1795 {
1796 /*
1797 * We found a match! So lets pick up as many operands as the
1798 * instruction wants, and even gripe if there are too many.
1799 * We expect comma to seperate each operand.
1800 * We let instring track the text, while p tracks a part of the
1801 * struct vot.
1802 */
1803 const char *howp;
1804 /*
1805 * The lines below know about 2-byte opcodes starting FD,FE or FF.
1806 * They also understand synthetic opcodes. Note:
1807 * we return 32 bits of opcode, including bucky bits, BUT
1808 * an opcode length is either 8 or 16 bits for vit_opcode_nbytes.
1809 */
1810 oc = vwP->vot_code; /* The op-code. */
1811 vitP->vit_opcode_nbytes = (oc & 0xFF) >= 0xFD ? 2 : 1;
1812 md_number_to_chars (vitP->vit_opcode, oc, 4);
1813 count = 0; /* no operands seen yet */
1814 instring = p; /* point just past operation code */
1815 alloperr = "";
1816 for (howp = vwP->vot_how, operandp = vitP->vit_operand;
1817 !(alloperr && *alloperr) && *howp;
1818 operandp++, howp += 2)
1819 {
1820 /*
1821 * Here to parse one operand. Leave instring pointing just
1822 * past any one ',' that marks the end of this operand.
1823 */
1824 if (!howp[1])
1825 as_fatal (_("odd number of bytes in operand description"));
1826 else if (*instring)
1827 {
1828 for (q = instring; (c = *q) && c != ','; q++)
1829 ;
1830 /*
1831 * Q points to ',' or '\0' that ends argument. C is that
1832 * character.
1833 */
1834 *q = 0;
1835 operandp->vop_width = howp[1];
1836 operandp->vop_nbytes = vax_operand_width_size[(unsigned) howp[1]];
1837 operandp->vop_access = howp[0];
1838 vip_op (instring, operandp);
1839 *q = c; /* Restore input text. */
1840 if (operandp->vop_error)
1841 alloperr = _("Bad operand");
1842 instring = q + (c ? 1 : 0); /* next operand (if any) */
1843 count++; /* won another argument, may have an operr */
1844 }
1845 else
1846 alloperr = _("Not enough operands");
1847 }
1848 if (!*alloperr)
1849 {
1850 if (*instring == ' ')
1851 instring++; /* Skip whitespace. */
1852 if (*instring)
1853 alloperr = _("Too many operands");
1854 }
1855 vitP->vit_error = alloperr;
1856 }
1857 }
1858 vitP->vit_operands = count;
1859 }
1860 \f
1861 #ifdef test
1862
1863 /*
1864 * Test program for above.
1865 */
1866
1867 struct vit myvit; /* build an exploded vax instruction here */
1868 char answer[100]; /* human types a line of vax assembler here */
1869 char *mybug; /* "" or an internal logic diagnostic */
1870 int mycount; /* number of operands */
1871 struct vop *myvop; /* scan operands from myvit */
1872 int mysynth; /* 1 means want synthetic opcodes. */
1873 char my_immediate[200];
1874 char my_indirect[200];
1875 char my_displen[200];
1876
1877 main ()
1878 {
1879 char *p;
1880
1881 printf ("0 means no synthetic instructions. ");
1882 printf ("Value for vip_begin? ");
1883 gets (answer);
1884 sscanf (answer, "%d", &mysynth);
1885 printf ("Synthetic opcodes %s be included.\n", mysynth ? "will" : "will not");
1886 printf ("enter immediate symbols eg enter # ");
1887 gets (my_immediate);
1888 printf ("enter indirect symbols eg enter @ ");
1889 gets (my_indirect);
1890 printf ("enter displen symbols eg enter ^ ");
1891 gets (my_displen);
1892 if (p = vip_begin (mysynth, my_immediate, my_indirect, my_displen))
1893 {
1894 error ("vip_begin=%s", p);
1895 }
1896 printf ("An empty input line will quit you from the vax instruction parser\n");
1897 for (;;)
1898 {
1899 printf ("vax instruction: ");
1900 fflush (stdout);
1901 gets (answer);
1902 if (!*answer)
1903 {
1904 break; /* out of for each input text loop */
1905 }
1906 vip (&myvit, answer);
1907 if (*myvit.vit_error)
1908 {
1909 printf ("ERR:\"%s\"\n", myvit.vit_error);
1910 }
1911 printf ("opcode=");
1912 for (mycount = myvit.vit_opcode_nbytes, p = myvit.vit_opcode;
1913 mycount;
1914 mycount--, p++
1915 )
1916 {
1917 printf ("%02x ", *p & 0xFF);
1918 }
1919 printf (" operand count=%d.\n", mycount = myvit.vit_operands);
1920 for (myvop = myvit.vit_operand; mycount; mycount--, myvop++)
1921 {
1922 printf ("mode=%xx reg=%xx ndx=%xx len='%c'=%c%c%d. expr=\"",
1923 myvop->vop_mode, myvop->vop_reg, myvop->vop_ndx,
1924 myvop->vop_short, myvop->vop_access, myvop->vop_width,
1925 myvop->vop_nbytes);
1926 for (p = myvop->vop_expr_begin; p <= myvop->vop_expr_end; p++)
1927 {
1928 putchar (*p);
1929 }
1930 printf ("\"\n");
1931 if (myvop->vop_error)
1932 {
1933 printf (" err:\"%s\"\n", myvop->vop_error);
1934 }
1935 if (myvop->vop_warn)
1936 {
1937 printf (" wrn:\"%s\"\n", myvop->vop_warn);
1938 }
1939 }
1940 }
1941 vip_end ();
1942 exit (EXIT_SUCCESS);
1943 }
1944
1945 #endif /* #ifdef test */
1946
1947 /* end of vax_ins_parse.c */
1948
1949 /* vax_reg_parse.c - convert a VAX register name to a number */
1950
1951 /* Copyright (C) 1987 Free Software Foundation, Inc. A part of GNU. */
1952
1953 /*
1954 * v a x _ r e g _ p a r s e ( )
1955 *
1956 * Take 3 char.s, the last of which may be `\0` (non-existent)
1957 * and return the VAX register number that they represent.
1958 *
1959 * Return -1 if they don't form a register name. Good names return
1960 * a number from 0:15 inclusive.
1961 *
1962 * Case is not important in a name.
1963 *
1964 * Register names understood are:
1965 *
1966 * R0
1967 * R1
1968 * R2
1969 * R3
1970 * R4
1971 * R5
1972 * R6
1973 * R7
1974 * R8
1975 * R9
1976 * R10
1977 * R11
1978 * R12 AP
1979 * R13 FP
1980 * R14 SP
1981 * R15 PC
1982 *
1983 */
1984
1985 #include <ctype.h>
1986 #define AP (12)
1987 #define FP (13)
1988 #define SP (14)
1989 #define PC (15)
1990 \f
1991 int /* return -1 or 0:15 */
1992 vax_reg_parse (c1, c2, c3) /* 3 chars of register name */
1993 char c1, c2, c3; /* c3 == 0 if 2-character reg name */
1994 {
1995 int retval; /* return -1:15 */
1996
1997 retval = -1;
1998
1999 if (isupper (c1))
2000 c1 = tolower (c1);
2001 if (isupper (c2))
2002 c2 = tolower (c2);
2003 if (isdigit (c2) && c1 == 'r')
2004 {
2005 retval = c2 - '0';
2006 if (isdigit (c3))
2007 {
2008 retval = retval * 10 + c3 - '0';
2009 retval = (retval > 15) ? -1 : retval;
2010 /* clamp the register value to 1 hex digit */
2011 }
2012 else if (c3)
2013 retval = -1; /* c3 must be '\0' or a digit */
2014 }
2015 else if (c3) /* There are no three letter regs */
2016 retval = -1;
2017 else if (c2 == 'p')
2018 {
2019 switch (c1)
2020 {
2021 case 's':
2022 retval = SP;
2023 break;
2024 case 'f':
2025 retval = FP;
2026 break;
2027 case 'a':
2028 retval = AP;
2029 break;
2030 default:
2031 retval = -1;
2032 }
2033 }
2034 else if (c1 == 'p' && c2 == 'c')
2035 retval = PC;
2036 else
2037 retval = -1;
2038 return (retval);
2039 }
2040
2041 /*
2042 * v i p _ o p ( )
2043 *
2044 * Parse a vax operand in DEC assembler notation.
2045 * For speed, expect a string of whitespace to be reduced to a single ' '.
2046 * This is the case for GNU AS, and is easy for other DEC-compatible
2047 * assemblers.
2048 *
2049 * Knowledge about DEC VAX assembler operand notation lives here.
2050 * This doesn't even know what a register name is, except it believes
2051 * all register names are 2 or 3 characters, and lets vax_reg_parse() say
2052 * what number each name represents.
2053 * It does, however, know that PC, SP etc are special registers so it can
2054 * detect addressing modes that are silly for those registers.
2055 *
2056 * Where possible, it delivers 1 fatal or 1 warning message if the operand
2057 * is suspect. Exactly what we test for is still evolving.
2058 */
2059
2060 /*
2061 * B u g s
2062 *
2063 * Arg block.
2064 *
2065 * There were a number of 'mismatched argument type' bugs to vip_op.
2066 * The most general solution is to typedef each (of many) arguments.
2067 * We used instead a typedef'd argument block. This is less modular
2068 * than using seperate return pointers for each result, but runs faster
2069 * on most engines, and seems to keep programmers happy. It will have
2070 * to be done properly if we ever want to use vip_op as a general-purpose
2071 * module (it was designed to be).
2072 *
2073 * G^
2074 *
2075 * Doesn't support DEC "G^" format operands. These always take 5 bytes
2076 * to express, and code as modes 8F or 9F. Reason: "G^" deprives you of
2077 * optimising to (say) a "B^" if you are lucky in the way you link.
2078 * When someone builds a linker smart enough to convert "G^" to "B^", "W^"
2079 * whenever possible, then we should implement it.
2080 * If there is some other use for "G^", feel free to code it in!
2081 *
2082 *
2083 * speed
2084 *
2085 * If I nested if()s more, I could avoid testing (*err) which would save
2086 * time, space and page faults. I didn't nest all those if()s for clarity
2087 * and because I think the mode testing can be re-arranged 1st to test the
2088 * commoner constructs 1st. Does anybody have statistics on this?
2089 *
2090 *
2091 *
2092 * error messages
2093 *
2094 * In future, we should be able to 'compose' error messages in a scratch area
2095 * and give the user MUCH more informative error messages. Although this takes
2096 * a little more code at run-time, it will make this module much more self-
2097 * documenting. As an example of what sucks now: most error messages have
2098 * hardwired into them the DEC VAX metacharacters "#^@" which are nothing like
2099 * the Un*x characters "$`*", that most users will expect from this AS.
2100 */
2101 \f
2102 /*
2103 * The input is a string, ending with '\0'.
2104 *
2105 * We also require a 'hint' of what kind of operand is expected: so
2106 * we can remind caller not to write into literals for instance.
2107 *
2108 * The output is a skeletal instruction.
2109 *
2110 * The algorithm has two parts.
2111 * 1. extract the syntactic features (parse off all the @^#-()+[] mode crud);
2112 * 2. express the @^#-()+[] as some parameters suited to further analysis.
2113 *
2114 * 2nd step is where we detect the googles of possible invalid combinations
2115 * a human (or compiler) might write. Note that if we do a half-way
2116 * decent assembler, we don't know how long to make (eg) displacement
2117 * fields when we first meet them (because they may not have defined values).
2118 * So we must wait until we know how many bits are needed for each address,
2119 * then we can know both length and opcodes of instructions.
2120 * For reason(s) above, we will pass to our caller a 'broken' instruction
2121 * of these major components, from which our caller can generate instructions:
2122 * - displacement length I^ S^ L^ B^ W^ unspecified
2123 * - mode (many)
2124 * - register R0-R15 or absent
2125 * - index register R0-R15 or absent
2126 * - expression text what we don't parse
2127 * - error text(s) why we couldn't understand the operand
2128 */
2129
2130 /*
2131 * To decode output of this, test errtxt. If errtxt[0] == '\0', then
2132 * we had no errors that prevented parsing. Also, if we ever report
2133 * an internal bug, errtxt[0] is set non-zero. So one test tells you
2134 * if the other outputs are to be taken seriously.
2135 */
2136
2137
2138 /*
2139 * Because this module is useful for both VMS and UN*X style assemblers
2140 * and because of the variety of UN*X assemblers we must recognise
2141 * the different conventions for assembler operand notation. For example
2142 * VMS says "#42" for immediate mode, while most UN*X say "$42".
2143 * We permit arbitrary sets of (single) characters to represent the
2144 * 3 concepts that DEC writes '#', '@', '^'.
2145 */
2146
2147 /* character tests */
2148 #define VIP_IMMEDIATE 01 /* Character is like DEC # */
2149 #define VIP_INDIRECT 02 /* Char is like DEC @ */
2150 #define VIP_DISPLEN 04 /* Char is like DEC ^ */
2151
2152 #define IMMEDIATEP(c) (vip_metacharacters [(c)&0xff]&VIP_IMMEDIATE)
2153 #define INDIRECTP(c) (vip_metacharacters [(c)&0xff]&VIP_INDIRECT)
2154 #define DISPLENP(c) (vip_metacharacters [(c)&0xff]&VIP_DISPLEN)
2155
2156 /* We assume 8 bits per byte. Use vip_op_defaults() to set these up BEFORE we
2157 * are ever called.
2158 */
2159
2160 #if defined(CONST_TABLE)
2161 #define _ 0,
2162 #define I VIP_IMMEDIATE,
2163 #define S VIP_INDIRECT,
2164 #define D VIP_DISPLEN,
2165 static const char
2166 vip_metacharacters[256] =
2167 {
2168 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /* ^@ ^A ^B ^C ^D ^E ^F ^G ^H ^I ^J ^K ^L ^M ^N ^O*/
2169 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /* ^P ^Q ^R ^S ^T ^U ^V ^W ^X ^Y ^Z ^[ ^\ ^] ^^ ^_ */
2170 _ _ _ _ I _ _ _ _ _ S _ _ _ _ _ /* sp ! " # $ % & ' ( ) * + , - . / */
2171 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*0 1 2 3 4 5 6 7 8 9 : ; < = > ?*/
2172 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*@ A B C D E F G H I J K L M N O*/
2173 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*P Q R S T U V W X Y Z [ \ ] ^ _*/
2174 D _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*` a b c d e f g h i j k l m n o*/
2175 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*p q r s t u v w x y z { | } ~ ^?*/
2176
2177 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2178 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2179 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2180 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2181 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2182 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2183 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2184 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2185 };
2186 #undef _
2187 #undef I
2188 #undef S
2189 #undef D
2190 #else
2191 static char vip_metacharacters[256];
2192
2193 static void
2194 vip_op_1 (bit, syms)
2195 int bit;
2196 const char *syms;
2197 {
2198 unsigned char t;
2199
2200 while ((t = *syms++) != 0)
2201 vip_metacharacters[t] |= bit;
2202 }
2203
2204 /* Can be called any time. More arguments may appear in future. */
2205 static void
2206 vip_op_defaults (immediate, indirect, displen)
2207 const char *immediate;
2208 const char *indirect;
2209 const char *displen;
2210 {
2211 vip_op_1 (VIP_IMMEDIATE, immediate);
2212 vip_op_1 (VIP_INDIRECT, indirect);
2213 vip_op_1 (VIP_DISPLEN, displen);
2214 }
2215
2216 #endif
2217 \f
2218
2219 /*
2220 * Dec defines the semantics of address modes (and values)
2221 * by a two-letter code, explained here.
2222 *
2223 * letter 1: access type
2224 *
2225 * a address calculation - no data access, registers forbidden
2226 * b branch displacement
2227 * m read - let go of bus - write back "modify"
2228 * r read
2229 * v bit field address: like 'a' but registers are OK
2230 * w write
2231 * space no operator (eg ".long foo") [our convention]
2232 *
2233 * letter 2: data type (i.e. width, alignment)
2234 *
2235 * b byte
2236 * d double precision floating point (D format)
2237 * f single precision floating point (F format)
2238 * g G format floating
2239 * h H format floating
2240 * l longword
2241 * o octaword
2242 * q quadword
2243 * w word
2244 * ? simple synthetic branch operand
2245 * - unconditional synthetic JSB/JSR operand
2246 * ! complex synthetic branch operand
2247 *
2248 * The '-?!' letter 2's are not for external consumption. They are used
2249 * for various assemblers. Generally, all unknown widths are assumed 0.
2250 * We don't limit your choice of width character.
2251 *
2252 * DEC operands are hard work to parse. For example, '@' as the first
2253 * character means indirect (deferred) mode but elswhere it is a shift
2254 * operator.
2255 * The long-winded explanation of how this is supposed to work is
2256 * cancelled. Read a DEC vax manual.
2257 * We try hard not to parse anything that MIGHT be part of the expression
2258 * buried in that syntax. For example if we see @...(Rn) we don't check
2259 * for '-' before the '(' because mode @-(Rn) does not exist.
2260 *
2261 * After parsing we have:
2262 *
2263 * at 1 if leading '@' (or Un*x '*')
2264 * len takes one value from " bilsw". eg B^ -> 'b'.
2265 * hash 1 if leading '#' (or Un*x '$')
2266 * expr_begin, expr_end the expression we did not parse
2267 * even though we don't interpret it, we make use
2268 * of its presence or absence.
2269 * sign -1: -(Rn) 0: absent +1: (Rn)+
2270 * paren 1 if () are around register
2271 * reg major register number 0:15 -1 means absent
2272 * ndx index register number 0:15 -1 means absent
2273 *
2274 * Again, I dare not explain it: just trace ALL the code!
2275 */
2276 \f
2277 static void
2278 vip_op (optext, vopP)
2279 /* user's input string e.g.: "@B^foo@bar(AP)[FP]:" */
2280 char *optext;
2281 /* Input fields: vop_access, vop_width.
2282 Output fields: _ndx, _reg, _mode, _short, _warn,
2283 _error _expr_begin, _expr_end, _nbytes.
2284 vop_nbytes : number of bytes in a datum. */
2285 struct vop *vopP;
2286 {
2287 /* track operand text forward */
2288 char *p;
2289 /* track operand text backward */
2290 char *q;
2291 /* 1 if leading '@' ('*') seen */
2292 int at;
2293 /* one of " bilsw" */
2294 char len;
2295 /* 1 if leading '#' ('$') seen */
2296 int hash;
2297 /* -1, 0 or +1 */
2298 int sign = 0;
2299 /* 1 if () surround register */
2300 int paren = 0;
2301 /* register number, -1:absent */
2302 int reg = 0;
2303 /* index register number -1:absent */
2304 int ndx = 0;
2305 /* report illegal operand, ""==OK */
2306 /* " " is a FAKE error: means we won */
2307 /* ANY err that begins with ' ' is a fake. */
2308 /* " " is converted to "" before return */
2309 const char *err;
2310 /* warn about weird modes pf address */
2311 const char *wrn;
2312 /* preserve q in case we backup */
2313 char *oldq = NULL;
2314 /* build up 4-bit operand mode here */
2315 /* note: index mode is in ndx, this is */
2316 /* the major mode of operand address */
2317 int mode = 0;
2318 /*
2319 * Notice how we move wrong-arg-type bugs INSIDE this module: if we
2320 * get the types wrong below, we lose at compile time rather than at
2321 * lint or run time.
2322 */
2323 char access_mode; /* vop_access. */
2324 char width; /* vop_width. */
2325
2326 access_mode = vopP->vop_access;
2327 width = vopP->vop_width;
2328 /* None of our code bugs (yet), no user text errors, no warnings
2329 even. */
2330 err = wrn = 0;
2331
2332 p = optext;
2333
2334 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2335 p++; /* skip over whitespace */
2336
2337 if ((at = INDIRECTP (*p)) != 0)
2338 { /* 1 if *p=='@'(or '*' for Un*x) */
2339 p++; /* at is determined */
2340 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2341 p++; /* skip over whitespace */
2342 }
2343
2344 /*
2345 * This code is subtle. It tries to detect all legal (letter)'^'
2346 * but it doesn't waste time explicitly testing for premature '\0' because
2347 * this case is rejected as a mismatch against either (letter) or '^'.
2348 */
2349 {
2350 char c;
2351
2352 c = *p;
2353 if (isupper (c))
2354 c = tolower (c);
2355 if (DISPLENP (p[1]) && strchr ("bilws", len = c))
2356 p += 2; /* skip (letter) '^' */
2357 else /* no (letter) '^' seen */
2358 len = ' '; /* len is determined */
2359 }
2360
2361 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2362 p++; /* skip over whitespace */
2363
2364 if ((hash = IMMEDIATEP (*p)) != 0) /* 1 if *p=='#' ('$' for Un*x) */
2365 p++; /* hash is determined */
2366
2367 /*
2368 * p points to what may be the beginning of an expression.
2369 * We have peeled off the front all that is peelable.
2370 * We know at, len, hash.
2371 *
2372 * Lets point q at the end of the text and parse that (backwards).
2373 */
2374
2375 for (q = p; *q; q++)
2376 ;
2377 q--; /* now q points at last char of text */
2378 \f
2379 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2380 q--;
2381 /* reverse over whitespace, but don't */
2382 /* run back over *p */
2383
2384 /*
2385 * As a matter of policy here, we look for [Rn], although both Rn and S^#
2386 * forbid [Rn]. This is because it is easy, and because only a sick
2387 * cyborg would have [...] trailing an expression in a VAX-like assembler.
2388 * A meticulous parser would first check for Rn followed by '(' or '['
2389 * and not parse a trailing ']' if it found another. We just ban expressions
2390 * ending in ']'.
2391 */
2392 if (*q == ']')
2393 {
2394 while (q >= p && *q != '[')
2395 q--;
2396 /* either q<p or we got matching '[' */
2397 if (q < p)
2398 err = _("no '[' to match ']'");
2399 else
2400 {
2401 /*
2402 * Confusers like "[]" will eventually lose with a bad register
2403 * name error. So again we don't need to check for early '\0'.
2404 */
2405 if (q[3] == ']')
2406 ndx = vax_reg_parse (q[1], q[2], 0);
2407 else if (q[4] == ']')
2408 ndx = vax_reg_parse (q[1], q[2], q[3]);
2409 else
2410 ndx = -1;
2411 /*
2412 * Since we saw a ']' we will demand a register name in the [].
2413 * If luser hasn't given us one: be rude.
2414 */
2415 if (ndx < 0)
2416 err = _("bad register in []");
2417 else if (ndx == PC)
2418 err = _("[PC] index banned");
2419 else
2420 q--; /* point q just before "[...]" */
2421 }
2422 }
2423 else
2424 ndx = -1; /* no ']', so no iNDeX register */
2425
2426 /*
2427 * If err = "..." then we lost: run away.
2428 * Otherwise ndx == -1 if there was no "[...]".
2429 * Otherwise, ndx is index register number, and q points before "[...]".
2430 */
2431 \f
2432 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2433 q--;
2434 /* reverse over whitespace, but don't */
2435 /* run back over *p */
2436 if (!err || !*err)
2437 {
2438 sign = 0; /* no ()+ or -() seen yet */
2439
2440 if (q > p + 3 && *q == '+' && q[-1] == ')')
2441 {
2442 sign = 1; /* we saw a ")+" */
2443 q--; /* q points to ')' */
2444 }
2445
2446 if (*q == ')' && q > p + 2)
2447 {
2448 paren = 1; /* assume we have "(...)" */
2449 while (q >= p && *q != '(')
2450 q--;
2451 /* either q<p or we got matching '(' */
2452 if (q < p)
2453 err = _("no '(' to match ')'");
2454 else
2455 {
2456 /*
2457 * Confusers like "()" will eventually lose with a bad register
2458 * name error. So again we don't need to check for early '\0'.
2459 */
2460 if (q[3] == ')')
2461 reg = vax_reg_parse (q[1], q[2], 0);
2462 else if (q[4] == ')')
2463 reg = vax_reg_parse (q[1], q[2], q[3]);
2464 else
2465 reg = -1;
2466 /*
2467 * Since we saw a ')' we will demand a register name in the ')'.
2468 * This is nasty: why can't our hypothetical assembler permit
2469 * parenthesised expressions? BECAUSE I AM LAZY! That is why.
2470 * Abuse luser if we didn't spy a register name.
2471 */
2472 if (reg < 0)
2473 {
2474 /* JF allow parenthasized expressions. I hope this works */
2475 paren = 0;
2476 while (*q != ')')
2477 q++;
2478 /* err = "unknown register in ()"; */
2479 }
2480 else
2481 q--; /* point just before '(' of "(...)" */
2482 /*
2483 * If err == "..." then we lost. Run away.
2484 * Otherwise if reg >= 0 then we saw (Rn).
2485 */
2486 }
2487 /*
2488 * If err == "..." then we lost.
2489 * Otherwise paren==1 and reg = register in "()".
2490 */
2491 }
2492 else
2493 paren = 0;
2494 /*
2495 * If err == "..." then we lost.
2496 * Otherwise, q points just before "(Rn)", if any.
2497 * If there was a "(...)" then paren==1, and reg is the register.
2498 */
2499 \f
2500 /*
2501 * We should only seek '-' of "-(...)" if:
2502 * we saw "(...)" paren == 1
2503 * we have no errors so far ! *err
2504 * we did not see '+' of "(...)+" sign < 1
2505 * We don't check len. We want a specific error message later if
2506 * user tries "x^...-(Rn)". This is a feature not a bug.
2507 */
2508 if (!err || !*err)
2509 {
2510 if (paren && sign < 1)/* !sign is adequate test */
2511 {
2512 if (*q == '-')
2513 {
2514 sign = -1;
2515 q--;
2516 }
2517 }
2518 /*
2519 * We have back-tracked over most
2520 * of the crud at the end of an operand.
2521 * Unless err, we know: sign, paren. If paren, we know reg.
2522 * The last case is of an expression "Rn".
2523 * This is worth hunting for if !err, !paren.
2524 * We wouldn't be here if err.
2525 * We remember to save q, in case we didn't want "Rn" anyway.
2526 */
2527 if (!paren)
2528 {
2529 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2530 q--;
2531 /* reverse over whitespace, but don't */
2532 /* run back over *p */
2533 if (q > p && q < p + 3) /* room for Rn or Rnn exactly? */
2534 reg = vax_reg_parse (p[0], p[1], q < p + 2 ? 0 : p[2]);
2535 else
2536 reg = -1; /* always comes here if no register at all */
2537 /*
2538 * Here with a definitive reg value.
2539 */
2540 if (reg >= 0)
2541 {
2542 oldq = q;
2543 q = p - 1;
2544 }
2545 }
2546 }
2547 }
2548 /*
2549 * have reg. -1:absent; else 0:15
2550 */
2551
2552 /*
2553 * We have: err, at, len, hash, ndx, sign, paren, reg.
2554 * Also, any remaining expression is from *p through *q inclusive.
2555 * Should there be no expression, q==p-1. So expression length = q-p+1.
2556 * This completes the first part: parsing the operand text.
2557 */
2558 \f
2559 /*
2560 * We now want to boil the data down, checking consistency on the way.
2561 * We want: len, mode, reg, ndx, err, p, q, wrn, bug.
2562 * We will deliver a 4-bit reg, and a 4-bit mode.
2563 */
2564
2565 /*
2566 * Case of branch operand. Different. No L^B^W^I^S^ allowed for instance.
2567 *
2568 * in: at ?
2569 * len ?
2570 * hash ?
2571 * p:q ?
2572 * sign ?
2573 * paren ?
2574 * reg ?
2575 * ndx ?
2576 *
2577 * out: mode 0
2578 * reg -1
2579 * len ' '
2580 * p:q whatever was input
2581 * ndx -1
2582 * err " " or error message, and other outputs trashed
2583 */
2584 /* branch operands have restricted forms */
2585 if ((!err || !*err) && access_mode == 'b')
2586 {
2587 if (at || hash || sign || paren || ndx >= 0 || reg >= 0 || len != ' ')
2588 err = _("invalid branch operand");
2589 else
2590 err = " ";
2591 }
2592 \f
2593 /* Since nobody seems to use it: comment this 'feature'(?) out for now. */
2594 #ifdef NEVER
2595 /*
2596 * Case of stand-alone operand. e.g. ".long foo"
2597 *
2598 * in: at ?
2599 * len ?
2600 * hash ?
2601 * p:q ?
2602 * sign ?
2603 * paren ?
2604 * reg ?
2605 * ndx ?
2606 *
2607 * out: mode 0
2608 * reg -1
2609 * len ' '
2610 * p:q whatever was input
2611 * ndx -1
2612 * err " " or error message, and other outputs trashed
2613 */
2614 if ((!err || !*err) && access_mode == ' ')
2615 {
2616 if (at)
2617 err = _("address prohibits @");
2618 else if (hash)
2619 err = _("address prohibits #");
2620 else if (sign)
2621 {
2622 if (sign < 0)
2623 err = _("address prohibits -()");
2624 else
2625 err = _("address prohibits ()+");
2626 }
2627 else if (paren)
2628 err = _("address prohibits ()");
2629 else if (ndx >= 0)
2630 err = _("address prohibits []");
2631 else if (reg >= 0)
2632 err = _("address prohibits register");
2633 else if (len != ' ')
2634 err = _("address prohibits displacement length specifier");
2635 else
2636 {
2637 err = " "; /* succeed */
2638 mode = 0;
2639 }
2640 }
2641 #endif /*#Ifdef NEVER*/
2642 \f
2643 /*
2644 * Case of S^#.
2645 *
2646 * in: at 0
2647 * len 's' definition
2648 * hash 1 demand
2649 * p:q demand not empty
2650 * sign 0 by paren==0
2651 * paren 0 by "()" scan logic because "S^" seen
2652 * reg -1 or nn by mistake
2653 * ndx -1
2654 *
2655 * out: mode 0
2656 * reg -1
2657 * len 's'
2658 * exp
2659 * ndx -1
2660 */
2661 if ((!err || !*err) && len == 's')
2662 {
2663 if (!hash || paren || at || ndx >= 0)
2664 err = _("invalid operand of S^#");
2665 else
2666 {
2667 if (reg >= 0)
2668 {
2669 /*
2670 * SHIT! we saw S^#Rnn ! put the Rnn back in
2671 * expression. KLUDGE! Use oldq so we don't
2672 * need to know exact length of reg name.
2673 */
2674 q = oldq;
2675 reg = 0;
2676 }
2677 /*
2678 * We have all the expression we will ever get.
2679 */
2680 if (p > q)
2681 err = _("S^# needs expression");
2682 else if (access_mode == 'r')
2683 {
2684 err = " "; /* WIN! */
2685 mode = 0;
2686 }
2687 else
2688 err = _("S^# may only read-access");
2689 }
2690 }
2691 \f
2692 /*
2693 * Case of -(Rn), which is weird case.
2694 *
2695 * in: at 0
2696 * len '
2697 * hash 0
2698 * p:q q<p
2699 * sign -1 by definition
2700 * paren 1 by definition
2701 * reg present by definition
2702 * ndx optional
2703 *
2704 * out: mode 7
2705 * reg present
2706 * len ' '
2707 * exp "" enforce empty expression
2708 * ndx optional warn if same as reg
2709 */
2710 if ((!err || !*err) && sign < 0)
2711 {
2712 if (len != ' ' || hash || at || p <= q)
2713 err = _("invalid operand of -()");
2714 else
2715 {
2716 err = " "; /* win */
2717 mode = 7;
2718 if (reg == PC)
2719 wrn = _("-(PC) unpredictable");
2720 else if (reg == ndx)
2721 wrn = _("[]index same as -()register: unpredictable");
2722 }
2723 }
2724 \f
2725 /*
2726 * We convert "(Rn)" to "@Rn" for our convenience.
2727 * (I hope this is convenient: has someone got a better way to parse this?)
2728 * A side-effect of this is that "@Rn" is a valid operand.
2729 */
2730 if (paren && !sign && !hash && !at && len == ' ' && p > q)
2731 {
2732 at = 1;
2733 paren = 0;
2734 }
2735
2736 /*
2737 * Case of (Rn)+, which is slightly different.
2738 *
2739 * in: at
2740 * len ' '
2741 * hash 0
2742 * p:q q<p
2743 * sign +1 by definition
2744 * paren 1 by definition
2745 * reg present by definition
2746 * ndx optional
2747 *
2748 * out: mode 8+@
2749 * reg present
2750 * len ' '
2751 * exp "" enforce empty expression
2752 * ndx optional warn if same as reg
2753 */
2754 if ((!err || !*err) && sign > 0)
2755 {
2756 if (len != ' ' || hash || p <= q)
2757 err = _("invalid operand of ()+");
2758 else
2759 {
2760 err = " "; /* win */
2761 mode = 8 + (at ? 1 : 0);
2762 if (reg == PC)
2763 wrn = _("(PC)+ unpredictable");
2764 else if (reg == ndx)
2765 wrn = _("[]index same as ()+register: unpredictable");
2766 }
2767 }
2768 \f
2769 /*
2770 * Case of #, without S^.
2771 *
2772 * in: at
2773 * len ' ' or 'i'
2774 * hash 1 by definition
2775 * p:q
2776 * sign 0
2777 * paren 0
2778 * reg absent
2779 * ndx optional
2780 *
2781 * out: mode 8+@
2782 * reg PC
2783 * len ' ' or 'i'
2784 * exp
2785 * ndx optional
2786 */
2787 if ((!err || !*err) && hash)
2788 {
2789 if (len != 'i' && len != ' ')
2790 err = _("# conflicts length");
2791 else if (paren)
2792 err = _("# bars register");
2793 else
2794 {
2795 if (reg >= 0)
2796 {
2797 /*
2798 * SHIT! we saw #Rnn! Put the Rnn back into the expression.
2799 * By using oldq, we don't need to know how long Rnn was.
2800 * KLUDGE!
2801 */
2802 q = oldq;
2803 reg = -1; /* no register any more */
2804 }
2805 err = " "; /* win */
2806
2807 /* JF a bugfix, I think! */
2808 if (at && access_mode == 'a')
2809 vopP->vop_nbytes = 4;
2810
2811 mode = (at ? 9 : 8);
2812 reg = PC;
2813 if ((access_mode == 'm' || access_mode == 'w') && !at)
2814 wrn = _("writing or modifying # is unpredictable");
2815 }
2816 }
2817 /*
2818 * If !*err, then sign == 0
2819 * hash == 0
2820 */
2821 \f
2822 /*
2823 * Case of Rn. We seperate this one because it has a few special
2824 * errors the remaining modes lack.
2825 *
2826 * in: at optional
2827 * len ' '
2828 * hash 0 by program logic
2829 * p:q empty
2830 * sign 0 by program logic
2831 * paren 0 by definition
2832 * reg present by definition
2833 * ndx optional
2834 *
2835 * out: mode 5+@
2836 * reg present
2837 * len ' ' enforce no length
2838 * exp "" enforce empty expression
2839 * ndx optional warn if same as reg
2840 */
2841 if ((!err || !*err) && !paren && reg >= 0)
2842 {
2843 if (len != ' ')
2844 err = _("length not needed");
2845 else if (at)
2846 {
2847 err = " "; /* win */
2848 mode = 6; /* @Rn */
2849 }
2850 else if (ndx >= 0)
2851 err = _("can't []index a register, because it has no address");
2852 else if (access_mode == 'a')
2853 err = _("a register has no address");
2854 else
2855 {
2856 /*
2857 * Idea here is to detect from length of datum
2858 * and from register number if we will touch PC.
2859 * Warn if we do.
2860 * vop_nbytes is number of bytes in operand.
2861 * Compute highest byte affected, compare to PC0.
2862 */
2863 if ((vopP->vop_nbytes + reg * 4) > 60)
2864 wrn = _("PC part of operand unpredictable");
2865 err = " "; /* win */
2866 mode = 5; /* Rn */
2867 }
2868 }
2869 /*
2870 * If !*err, sign == 0
2871 * hash == 0
2872 * paren == 1 OR reg==-1
2873 */
2874 \f
2875 /*
2876 * Rest of cases fit into one bunch.
2877 *
2878 * in: at optional
2879 * len ' ' or 'b' or 'w' or 'l'
2880 * hash 0 by program logic
2881 * p:q expected (empty is not an error)
2882 * sign 0 by program logic
2883 * paren optional
2884 * reg optional
2885 * ndx optional
2886 *
2887 * out: mode 10 + @ + len
2888 * reg optional
2889 * len ' ' or 'b' or 'w' or 'l'
2890 * exp maybe empty
2891 * ndx optional warn if same as reg
2892 */
2893 if (!err || !*err)
2894 {
2895 err = " "; /* win (always) */
2896 mode = 10 + (at ? 1 : 0);
2897 switch (len)
2898 {
2899 case 'l':
2900 mode += 2;
2901 case 'w':
2902 mode += 2;
2903 case ' ': /* assumed B^ until our caller changes it */
2904 case 'b':
2905 break;
2906 }
2907 }
2908
2909 /*
2910 * here with completely specified mode
2911 * len
2912 * reg
2913 * expression p,q
2914 * ndx
2915 */
2916
2917 if (*err == ' ')
2918 err = 0; /* " " is no longer an error */
2919
2920 vopP->vop_mode = mode;
2921 vopP->vop_reg = reg;
2922 vopP->vop_short = len;
2923 vopP->vop_expr_begin = p;
2924 vopP->vop_expr_end = q;
2925 vopP->vop_ndx = ndx;
2926 vopP->vop_error = err;
2927 vopP->vop_warn = wrn;
2928 }
2929 \f
2930 /*
2931
2932 Summary of vip_op outputs.
2933
2934 mode reg len ndx
2935 (Rn) => @Rn
2936 {@}Rn 5+@ n ' ' optional
2937 branch operand 0 -1 ' ' -1
2938 S^#foo 0 -1 's' -1
2939 -(Rn) 7 n ' ' optional
2940 {@}(Rn)+ 8+@ n ' ' optional
2941 {@}#foo, no S^ 8+@ PC " i" optional
2942 {@}{q^}{(Rn)} 10+@+q option " bwl" optional
2943
2944 */
2945 \f
2946 #ifdef TEST /* #Define to use this testbed. */
2947
2948 /*
2949 * Follows a test program for this function.
2950 * We declare arrays non-local in case some of our tiny-minded machines
2951 * default to small stacks. Also, helps with some debuggers.
2952 */
2953
2954 #include <stdio.h>
2955
2956 char answer[100]; /* human types into here */
2957 char *p; /* */
2958 char *myerr;
2959 char *mywrn;
2960 char *mybug;
2961 char myaccess;
2962 char mywidth;
2963 char mymode;
2964 char myreg;
2965 char mylen;
2966 char *myleft;
2967 char *myright;
2968 char myndx;
2969 int my_operand_length;
2970 char my_immediate[200];
2971 char my_indirect[200];
2972 char my_displen[200];
2973
2974 main ()
2975 {
2976 printf ("enter immediate symbols eg enter # ");
2977 gets (my_immediate);
2978 printf ("enter indirect symbols eg enter @ ");
2979 gets (my_indirect);
2980 printf ("enter displen symbols eg enter ^ ");
2981 gets (my_displen);
2982 vip_op_defaults (my_immediate, my_indirect, my_displen);
2983 for (;;)
2984 {
2985 printf ("access,width (eg 'ab' or 'wh') [empty line to quit] : ");
2986 fflush (stdout);
2987 gets (answer);
2988 if (!answer[0])
2989 exit (EXIT_SUCCESS);
2990 myaccess = answer[0];
2991 mywidth = answer[1];
2992 switch (mywidth)
2993 {
2994 case 'b':
2995 my_operand_length = 1;
2996 break;
2997 case 'd':
2998 my_operand_length = 8;
2999 break;
3000 case 'f':
3001 my_operand_length = 4;
3002 break;
3003 case 'g':
3004 my_operand_length = 16;
3005 break;
3006 case 'h':
3007 my_operand_length = 32;
3008 break;
3009 case 'l':
3010 my_operand_length = 4;
3011 break;
3012 case 'o':
3013 my_operand_length = 16;
3014 break;
3015 case 'q':
3016 my_operand_length = 8;
3017 break;
3018 case 'w':
3019 my_operand_length = 2;
3020 break;
3021 case '!':
3022 case '?':
3023 case '-':
3024 my_operand_length = 0;
3025 break;
3026
3027 default:
3028 my_operand_length = 2;
3029 printf ("I dn't understand access width %c\n", mywidth);
3030 break;
3031 }
3032 printf ("VAX assembler instruction operand: ");
3033 fflush (stdout);
3034 gets (answer);
3035 mybug = vip_op (answer, myaccess, mywidth, my_operand_length,
3036 &mymode, &myreg, &mylen, &myleft, &myright, &myndx,
3037 &myerr, &mywrn);
3038 if (*myerr)
3039 {
3040 printf ("error: \"%s\"\n", myerr);
3041 if (*mybug)
3042 printf (" bug: \"%s\"\n", mybug);
3043 }
3044 else
3045 {
3046 if (*mywrn)
3047 printf ("warning: \"%s\"\n", mywrn);
3048 mumble ("mode", mymode);
3049 mumble ("register", myreg);
3050 mumble ("index", myndx);
3051 printf ("width:'%c' ", mylen);
3052 printf ("expression: \"");
3053 while (myleft <= myright)
3054 putchar (*myleft++);
3055 printf ("\"\n");
3056 }
3057 }
3058 }
3059
3060 mumble (text, value)
3061 char *text;
3062 int value;
3063 {
3064 printf ("%s:", text);
3065 if (value >= 0)
3066 printf ("%xx", value);
3067 else
3068 printf ("ABSENT");
3069 printf (" ");
3070 }
3071
3072 #endif /* ifdef TEST */
3073
3074 /* end: vip_op.c */
3075
3076 const int md_short_jump_size = 3;
3077 const int md_long_jump_size = 6;
3078 const int md_reloc_size = 8; /* Size of relocation record */
3079
3080 void
3081 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
3082 char *ptr;
3083 addressT from_addr, to_addr;
3084 fragS *frag;
3085 symbolS *to_symbol;
3086 {
3087 valueT offset;
3088
3089 offset = to_addr - (from_addr + 1);
3090 *ptr++ = 0x31;
3091 md_number_to_chars (ptr, offset, 2);
3092 }
3093
3094 void
3095 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
3096 char *ptr;
3097 addressT from_addr, to_addr;
3098 fragS *frag;
3099 symbolS *to_symbol;
3100 {
3101 valueT offset;
3102
3103 offset = to_addr - S_GET_VALUE (to_symbol);
3104 *ptr++ = 0x17;
3105 *ptr++ = 0x9F;
3106 md_number_to_chars (ptr, offset, 4);
3107 fix_new (frag, ptr - frag->fr_literal, 4, to_symbol, (long) 0, 0, NO_RELOC);
3108 }
3109 \f
3110 #ifdef OBJ_VMS
3111 CONST char *md_shortopts = "d:STt:V+1h:Hv::";
3112 #else
3113 CONST char *md_shortopts = "d:STt:V";
3114 #endif
3115 struct option md_longopts[] = {
3116 {NULL, no_argument, NULL, 0}
3117 };
3118 size_t md_longopts_size = sizeof(md_longopts);
3119
3120 int
3121 md_parse_option (c, arg)
3122 int c;
3123 char *arg;
3124 {
3125 switch (c)
3126 {
3127 case 'S':
3128 as_warn (_("SYMBOL TABLE not implemented"));
3129 break;
3130
3131 case 'T':
3132 as_warn (_("TOKEN TRACE not implemented"));
3133 break;
3134
3135 case 'd':
3136 as_warn (_("Displacement length %s ignored!"), arg);
3137 break;
3138
3139 case 't':
3140 as_warn (_("I don't need or use temp. file \"%s\"."), arg);
3141 break;
3142
3143 case 'V':
3144 as_warn (_("I don't use an interpass file! -V ignored"));
3145 break;
3146
3147 #ifdef OBJ_VMS
3148 case '+': /* For g++. Hash any name > 31 chars long. */
3149 flag_hash_long_names = 1;
3150 break;
3151
3152 case '1': /* For backward compatibility */
3153 flag_one = 1;
3154 break;
3155
3156 case 'H': /* Show new symbol after hash truncation */
3157 flag_show_after_trunc = 1;
3158 break;
3159
3160 case 'h': /* No hashing of mixed-case names */
3161 {
3162 extern char vms_name_mapping;
3163 vms_name_mapping = atoi (arg);
3164 flag_no_hash_mixed_case = 1;
3165 }
3166 break;
3167
3168 case 'v':
3169 {
3170 extern char *compiler_version_string;
3171 if (!arg || !*arg || access (arg, 0) == 0)
3172 return 0; /* have caller show the assembler version */
3173 compiler_version_string = arg;
3174 }
3175 break;
3176 #endif
3177
3178 default:
3179 return 0;
3180 }
3181
3182 return 1;
3183 }
3184
3185 void
3186 md_show_usage (stream)
3187 FILE *stream;
3188 {
3189 fprintf(stream, _("\
3190 VAX options:\n\
3191 -d LENGTH ignored\n\
3192 -J ignored\n\
3193 -S ignored\n\
3194 -t FILE ignored\n\
3195 -T ignored\n\
3196 -V ignored\n"));
3197 #ifdef OBJ_VMS
3198 fprintf (stream, _("\
3199 VMS options:\n\
3200 -+ hash encode names longer than 31 characters\n\
3201 -1 `const' handling compatible with gcc 1.x\n\
3202 -H show new symbol after hash truncation\n\
3203 -h NUM don't hash mixed-case names, and adjust case:\n\
3204 0 = upper, 2 = lower, 3 = preserve case\n\
3205 -v\"VERSION\" code being assembled was produced by compiler \"VERSION\"\n"));
3206 #endif
3207 }
3208 \f
3209 /* We have no need to default values of symbols. */
3210
3211 /* ARGSUSED */
3212 symbolS *
3213 md_undefined_symbol (name)
3214 char *name;
3215 {
3216 return 0;
3217 }
3218
3219 /* Round up a section size to the appropriate boundary. */
3220 valueT
3221 md_section_align (segment, size)
3222 segT segment;
3223 valueT size;
3224 {
3225 return size; /* Byte alignment is fine */
3226 }
3227
3228 /* Exactly what point is a PC-relative offset relative TO?
3229 On the vax, they're relative to the address of the offset, plus
3230 its size. (??? Is this right? FIXME-SOON) */
3231 long
3232 md_pcrel_from (fixP)
3233 fixS *fixP;
3234 {
3235 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
3236 }
3237
3238 /* end of tc-vax.c */