]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-vax.c
2002-06-08 Matt Thomas <matt@3am-software.com>
[thirdparty/binutils-gdb.git] / gas / config / tc-vax.c
1 /* tc-vax.c - vax-specific -
2 Copyright 1987, 1991, 1992, 1993, 1994, 1995, 1998, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "as.h"
23
24 #include "vax-inst.h"
25 #include "obstack.h" /* For FRAG_APPEND_1_CHAR macro in "frags.h" */
26 #include "subsegs.h"
27
28 #ifdef OBJ_ELF
29 #include "elf/vax.h"
30 #endif
31
32 /* These chars start a comment anywhere in a source file (except inside
33 another comment */
34 const char comment_chars[] = "#";
35
36 /* These chars only start a comment at the beginning of a line. */
37 /* Note that for the VAX the are the same as comment_chars above. */
38 const char line_comment_chars[] = "#";
39
40 const char line_separator_chars[] = ";";
41
42 /* Chars that can be used to separate mant from exp in floating point nums */
43 const char EXP_CHARS[] = "eE";
44
45 /* Chars that mean this number is a floating point constant */
46 /* as in 0f123.456 */
47 /* or 0H1.234E-12 (see exp chars above) */
48 const char FLT_CHARS[] = "dDfFgGhH";
49
50 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
51 changed in read.c . Ideally it shouldn't have to know about it at all,
52 but nothing is ideal around here. */
53
54 /* Hold details of an operand expression */
55 static expressionS exp_of_operand[VIT_MAX_OPERANDS];
56 static segT seg_of_operand[VIT_MAX_OPERANDS];
57
58 /* A vax instruction after decoding. */
59 static struct vit v;
60
61 /* Hold details of big operands. */
62 LITTLENUM_TYPE big_operand_bits[VIT_MAX_OPERANDS][SIZE_OF_LARGE_NUMBER];
63 FLONUM_TYPE float_operand[VIT_MAX_OPERANDS];
64 /* Above is made to point into big_operand_bits by md_begin(). */
65
66 #ifdef OBJ_ELF
67 #define GLOBAL_OFFSET_TABLE_NAME "_GLOBAL_OFFSET_TABLE_"
68 #define PROCEDURE_LINKAGE_TABLE_NAME "_PROCEDURE_LINKAGE_TABLE_"
69 symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
70 symbolS *PLT_symbol; /* Pre-defined "_PROCEDURE_LINKAGE_TABLE_" */
71 #endif
72
73 int flag_hash_long_names; /* -+ */
74 int flag_one; /* -1 */
75 int flag_show_after_trunc; /* -H */
76 int flag_no_hash_mixed_case; /* -h NUM */
77 #ifdef OBJ_ELF
78 int flag_want_pic; /* -k */
79 #endif
80 \f
81 /*
82 * For VAX, relative addresses of "just the right length" are easy.
83 * The branch displacement is always the last operand, even in
84 * synthetic instructions.
85 * For VAX, we encode the relax_substateTs (in e.g. fr_substate) as:
86 *
87 * 4 3 2 1 0 bit number
88 * ---/ /--+-------+-------+-------+-------+-------+
89 * | what state ? | how long ? |
90 * ---/ /--+-------+-------+-------+-------+-------+
91 *
92 * The "how long" bits are 00=byte, 01=word, 10=long.
93 * This is a Un*x convention.
94 * Not all lengths are legit for a given value of (what state).
95 * The "how long" refers merely to the displacement length.
96 * The address usually has some constant bytes in it as well.
97 *
98
99 groups for VAX address relaxing.
100
101 1. "foo" pc-relative.
102 length of byte, word, long
103
104 2a. J<cond> where <cond> is a simple flag test.
105 length of byte, word, long.
106 VAX opcodes are: (Hex)
107 bneq/bnequ 12
108 beql/beqlu 13
109 bgtr 14
110 bleq 15
111 bgeq 18
112 blss 19
113 bgtru 1a
114 blequ 1b
115 bvc 1c
116 bvs 1d
117 bgequ/bcc 1e
118 blssu/bcs 1f
119 Always, you complement 0th bit to reverse condition.
120 Always, 1-byte opcode, then 1-byte displacement.
121
122 2b. J<cond> where cond tests a memory bit.
123 length of byte, word, long.
124 Vax opcodes are: (Hex)
125 bbs e0
126 bbc e1
127 bbss e2
128 bbcs e3
129 bbsc e4
130 bbcc e5
131 Always, you complement 0th bit to reverse condition.
132 Always, 1-byte opcde, longword-address, byte-address, 1-byte-displacement
133
134 2c. J<cond> where cond tests low-order memory bit
135 length of byte,word,long.
136 Vax opcodes are: (Hex)
137 blbs e8
138 blbc e9
139 Always, you complement 0th bit to reverse condition.
140 Always, 1-byte opcode, longword-address, 1-byte displacement.
141
142 3. Jbs/Jbr.
143 length of byte,word,long.
144 Vax opcodes are: (Hex)
145 bsbb 10
146 brb 11
147 These are like (2) but there is no condition to reverse.
148 Always, 1 byte opcode, then displacement/absolute.
149
150 4a. JacbX
151 length of word, long.
152 Vax opcodes are: (Hex)
153 acbw 3d
154 acbf 4f
155 acbd 6f
156 abcb 9d
157 acbl f1
158 acbg 4ffd
159 acbh 6ffd
160 Always, we cannot reverse the sense of the branch; we have a word
161 displacement.
162 The double-byte op-codes don't hurt: we never want to modify the
163 opcode, so we don't care how many bytes are between the opcode and
164 the operand.
165
166 4b. JXobXXX
167 length of long, long, byte.
168 Vax opcodes are: (Hex)
169 aoblss f2
170 aobleq f3
171 sobgeq f4
172 sobgtr f5
173 Always, we cannot reverse the sense of the branch; we have a byte
174 displacement.
175
176 The only time we need to modify the opcode is for class 2 instructions.
177 After relax() we may complement the lowest order bit of such instruction
178 to reverse sense of branch.
179
180 For class 2 instructions, we store context of "where is the opcode literal".
181 We can change an opcode's lowest order bit without breaking anything else.
182
183 We sometimes store context in the operand literal. This way we can figure out
184 after relax() what the original addressing mode was.
185 */
186 \f
187 /* These displacements are relative to the start address of the
188 displacement. The first letter is Byte, Word. 2nd letter is
189 Forward, Backward. */
190 #define BF (1+ 127)
191 #define BB (1+-128)
192 #define WF (2+ 32767)
193 #define WB (2+-32768)
194 /* Dont need LF, LB because they always reach. [They are coded as 0.] */
195
196 #define C(a,b) ENCODE_RELAX(a,b)
197 /* This macro has no side-effects. */
198 #define ENCODE_RELAX(what,length) (((what) << 2) + (length))
199 #define RELAX_STATE(s) ((s) >> 2)
200 #define RELAX_LENGTH(s) ((s) & 3)
201
202 const relax_typeS md_relax_table[] =
203 {
204 {1, 1, 0, 0}, /* error sentinel 0,0 */
205 {1, 1, 0, 0}, /* unused 0,1 */
206 {1, 1, 0, 0}, /* unused 0,2 */
207 {1, 1, 0, 0}, /* unused 0,3 */
208
209 {BF + 1, BB + 1, 2, C (1, 1)},/* B^"foo" 1,0 */
210 {WF + 1, WB + 1, 3, C (1, 2)},/* W^"foo" 1,1 */
211 {0, 0, 5, 0}, /* L^"foo" 1,2 */
212 {1, 1, 0, 0}, /* unused 1,3 */
213
214 {BF, BB, 1, C (2, 1)}, /* b<cond> B^"foo" 2,0 */
215 {WF + 2, WB + 2, 4, C (2, 2)},/* br.+? brw X 2,1 */
216 {0, 0, 7, 0}, /* br.+? jmp X 2,2 */
217 {1, 1, 0, 0}, /* unused 2,3 */
218
219 {BF, BB, 1, C (3, 1)}, /* brb B^foo 3,0 */
220 {WF, WB, 2, C (3, 2)}, /* brw W^foo 3,1 */
221 {0, 0, 5, 0}, /* Jmp L^foo 3,2 */
222 {1, 1, 0, 0}, /* unused 3,3 */
223
224 {1, 1, 0, 0}, /* unused 4,0 */
225 {WF, WB, 2, C (4, 2)}, /* acb_ ^Wfoo 4,1 */
226 {0, 0, 10, 0}, /* acb_,br,jmp L^foo4,2 */
227 {1, 1, 0, 0}, /* unused 4,3 */
228
229 {BF, BB, 1, C (5, 1)}, /* Xob___,,foo 5,0 */
230 {WF + 4, WB + 4, 6, C (5, 2)},/* Xob.+2,brb.+3,brw5,1 */
231 {0, 0, 9, 0}, /* Xob.+2,brb.+6,jmp5,2 */
232 {1, 1, 0, 0}, /* unused 5,3 */
233 };
234
235 #undef C
236 #undef BF
237 #undef BB
238 #undef WF
239 #undef WB
240
241 void float_cons PARAMS ((int));
242
243 const pseudo_typeS md_pseudo_table[] =
244 {
245 {"dfloat", float_cons, 'd'},
246 {"ffloat", float_cons, 'f'},
247 {"gfloat", float_cons, 'g'},
248 {"hfloat", float_cons, 'h'},
249 {NULL, NULL, 0},
250 };
251
252 #define STATE_PC_RELATIVE (1)
253 #define STATE_CONDITIONAL_BRANCH (2)
254 #define STATE_ALWAYS_BRANCH (3) /* includes BSB... */
255 #define STATE_COMPLEX_BRANCH (4)
256 #define STATE_COMPLEX_HOP (5)
257
258 #define STATE_BYTE (0)
259 #define STATE_WORD (1)
260 #define STATE_LONG (2)
261 #define STATE_UNDF (3) /* Symbol undefined in pass1 */
262
263 #define min(a, b) ((a) < (b) ? (a) : (b))
264
265 int flonum_gen2vax PARAMS ((char format_letter, FLONUM_TYPE * f,
266 LITTLENUM_TYPE * words));
267 static const char *vip_begin PARAMS ((int, const char *, const char *,
268 const char *));
269 static void vip_op_1 PARAMS ((int, const char *));
270 static void vip_op_defaults PARAMS ((const char *, const char *, const char *));
271 static void vip_op PARAMS ((char *, struct vop *));
272 static void vip PARAMS ((struct vit *, char *));
273
274 static int vax_reg_parse PARAMS ((char, char, char, char));
275
276 void
277 md_begin ()
278 {
279 const char *errtxt;
280 FLONUM_TYPE *fP;
281 int i;
282
283 if ((errtxt = vip_begin (1, "$", "*", "`")) != 0)
284 {
285 as_fatal (_("VIP_BEGIN error:%s"), errtxt);
286 }
287
288 for (i = 0, fP = float_operand;
289 fP < float_operand + VIT_MAX_OPERANDS;
290 i++, fP++)
291 {
292 fP->low = &big_operand_bits[i][0];
293 fP->high = &big_operand_bits[i][SIZE_OF_LARGE_NUMBER - 1];
294 }
295 }
296 \f
297 void
298 md_number_to_chars (con, value, nbytes)
299 char con[];
300 valueT value;
301 int nbytes;
302 {
303 number_to_chars_littleendian (con, value, nbytes);
304 }
305
306 /* Fix up some data or instructions after we find out the value of a symbol
307 that they reference. */
308
309 void /* Knows about order of bytes in address. */
310 md_apply_fix3 (fixP, valueP, seg)
311 fixS *fixP;
312 valueT *valueP;
313 segT seg ATTRIBUTE_UNUSED;
314 {
315 valueT value = * valueP;
316 #ifdef BFD_ASSEMBLER
317 if (((fixP->fx_addsy == NULL && fixP->fx_subsy == NULL)
318 && fixP->fx_r_type != BFD_RELOC_32_PLT_PCREL
319 && fixP->fx_r_type != BFD_RELOC_32_GOT_PCREL)
320 || fixP->fx_r_type == NO_RELOC)
321 #endif
322 number_to_chars_littleendian (fixP->fx_where + fixP->fx_frag->fr_literal,
323 value, fixP->fx_size);
324
325 if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0)
326 fixP->fx_done = 1;
327 }
328
329 long
330 md_chars_to_number (con, nbytes)
331 unsigned char con[]; /* Low order byte 1st. */
332 int nbytes; /* Number of bytes in the input. */
333 {
334 long retval;
335 for (retval = 0, con += nbytes - 1; nbytes--; con--)
336 {
337 retval <<= BITS_PER_CHAR;
338 retval |= *con;
339 }
340 return retval;
341 }
342 \f
343 /* vax:md_assemble() emit frags for 1 instruction */
344
345 void
346 md_assemble (instruction_string)
347 char *instruction_string; /* A string: assemble 1 instruction. */
348 {
349 /* Non-zero if operand expression's segment is not known yet. */
350 int is_undefined;
351 /* Non-zero if operand expression's segment is absolute. */
352 int is_absolute;
353
354 int length_code;
355 char *p;
356 /* An operand. Scans all operands. */
357 struct vop *operandP;
358 char *save_input_line_pointer;
359 /* What used to live after an expression. */
360 char c_save;
361 /* 1: instruction_string bad for all passes. */
362 int goofed;
363 /* Points to slot just after last operand. */
364 struct vop *end_operandP;
365 /* Points to expression values for this operand. */
366 expressionS *expP;
367 segT *segP;
368
369 /* These refer to an instruction operand expression. */
370 /* Target segment of the address. */
371 segT to_seg;
372 valueT this_add_number;
373 /* Positive (minuend) symbol. */
374 symbolS *this_add_symbol;
375 /* As a number. */
376 long opcode_as_number;
377 /* Least significant byte 1st. */
378 char *opcode_as_chars;
379 /* As an array of characters. */
380 /* Least significant byte 1st */
381 char *opcode_low_byteP;
382 /* length (bytes) meant by vop_short. */
383 int length;
384 /* 0, or 1 if '@' is in addressing mode. */
385 int at;
386 /* From vop_nbytes: vax_operand_width (in bytes) */
387 int nbytes;
388 FLONUM_TYPE *floatP;
389 LITTLENUM_TYPE literal_float[8];
390 /* Big enough for any floating point literal. */
391
392 vip (&v, instruction_string);
393
394 /*
395 * Now we try to find as many as_warn()s as we can. If we do any as_warn()s
396 * then goofed=1. Notice that we don't make any frags yet.
397 * Should goofed be 1, then this instruction will wedge in any pass,
398 * and we can safely flush it, without causing interpass symbol phase
399 * errors. That is, without changing label values in different passes.
400 */
401 if ((goofed = (*v.vit_error)) != 0)
402 {
403 as_fatal (_("Ignoring statement due to \"%s\""), v.vit_error);
404 }
405 /*
406 * We need to use expression() and friends, which require us to diddle
407 * input_line_pointer. So we save it and restore it later.
408 */
409 save_input_line_pointer = input_line_pointer;
410 for (operandP = v.vit_operand,
411 expP = exp_of_operand,
412 segP = seg_of_operand,
413 floatP = float_operand,
414 end_operandP = v.vit_operand + v.vit_operands;
415
416 operandP < end_operandP;
417
418 operandP++, expP++, segP++, floatP++)
419 { /* for each operand */
420 if (operandP->vop_error)
421 {
422 as_fatal (_("Aborting because statement has \"%s\""), operandP->vop_error);
423 goofed = 1;
424 }
425 else
426 {
427 /* Statement has no syntax goofs: let's sniff the expression. */
428 int can_be_short = 0; /* 1 if a bignum can be reduced to a short literal. */
429
430 input_line_pointer = operandP->vop_expr_begin;
431 c_save = operandP->vop_expr_end[1];
432 operandP->vop_expr_end[1] = '\0';
433 /* If to_seg == SEG_PASS1, expression() will have set need_pass_2 = 1. */
434 *segP = expression (expP);
435 switch (expP->X_op)
436 {
437 case O_absent:
438 /* for BSD4.2 compatibility, missing expression is absolute 0 */
439 expP->X_op = O_constant;
440 expP->X_add_number = 0;
441 /* For SEG_ABSOLUTE, we shouldn't need to set X_op_symbol,
442 X_add_symbol to any particular value. But, we will program
443 defensively. Since this situation occurs rarely so it costs
444 us little to do, and stops Dean worrying about the origin of
445 random bits in expressionS's. */
446 expP->X_add_symbol = NULL;
447 expP->X_op_symbol = NULL;
448 break;
449
450 case O_symbol:
451 case O_constant:
452 break;
453
454 default:
455 /*
456 * Major bug. We can't handle the case of a
457 * SEG_OP expression in a VIT_OPCODE_SYNTHETIC
458 * variable-length instruction.
459 * We don't have a frag type that is smart enough to
460 * relax a SEG_OP, and so we just force all
461 * SEG_OPs to behave like SEG_PASS1s.
462 * Clearly, if there is a demand we can invent a new or
463 * modified frag type and then coding up a frag for this
464 * case will be easy. SEG_OP was invented for the
465 * .words after a CASE opcode, and was never intended for
466 * instruction operands.
467 */
468 need_pass_2 = 1;
469 as_fatal (_("Can't relocate expression"));
470 break;
471
472 case O_big:
473 /* Preserve the bits. */
474 if (expP->X_add_number > 0)
475 {
476 bignum_copy (generic_bignum, expP->X_add_number,
477 floatP->low, SIZE_OF_LARGE_NUMBER);
478 }
479 else
480 {
481 know (expP->X_add_number < 0);
482 flonum_copy (&generic_floating_point_number,
483 floatP);
484 if (strchr ("s i", operandP->vop_short))
485 {
486 /* Could possibly become S^# */
487 flonum_gen2vax (-expP->X_add_number, floatP, literal_float);
488 switch (-expP->X_add_number)
489 {
490 case 'f':
491 can_be_short =
492 (literal_float[0] & 0xFC0F) == 0x4000
493 && literal_float[1] == 0;
494 break;
495
496 case 'd':
497 can_be_short =
498 (literal_float[0] & 0xFC0F) == 0x4000
499 && literal_float[1] == 0
500 && literal_float[2] == 0
501 && literal_float[3] == 0;
502 break;
503
504 case 'g':
505 can_be_short =
506 (literal_float[0] & 0xFF81) == 0x4000
507 && literal_float[1] == 0
508 && literal_float[2] == 0
509 && literal_float[3] == 0;
510 break;
511
512 case 'h':
513 can_be_short = ((literal_float[0] & 0xFFF8) == 0x4000
514 && (literal_float[1] & 0xE000) == 0
515 && literal_float[2] == 0
516 && literal_float[3] == 0
517 && literal_float[4] == 0
518 && literal_float[5] == 0
519 && literal_float[6] == 0
520 && literal_float[7] == 0);
521 break;
522
523 default:
524 BAD_CASE (-expP->X_add_number);
525 break;
526 } /* switch (float type) */
527 } /* if (could want to become S^#...) */
528 } /* bignum or flonum ? */
529
530 if (operandP->vop_short == 's'
531 || operandP->vop_short == 'i'
532 || (operandP->vop_short == ' '
533 && operandP->vop_reg == 0xF
534 && (operandP->vop_mode & 0xE) == 0x8))
535 {
536 /* Saw a '#'. */
537 if (operandP->vop_short == ' ')
538 {
539 /* We must chose S^ or I^. */
540 if (expP->X_add_number > 0)
541 {
542 /* Bignum: Short literal impossible. */
543 operandP->vop_short = 'i';
544 operandP->vop_mode = 8;
545 operandP->vop_reg = 0xF; /* VAX PC. */
546 }
547 else
548 {
549 /* Flonum: Try to do it. */
550 if (can_be_short)
551 {
552 operandP->vop_short = 's';
553 operandP->vop_mode = 0;
554 operandP->vop_ndx = -1;
555 operandP->vop_reg = -1;
556 expP->X_op = O_constant;
557 }
558 else
559 {
560 operandP->vop_short = 'i';
561 operandP->vop_mode = 8;
562 operandP->vop_reg = 0xF; /* VAX PC */
563 }
564 } /* bignum or flonum ? */
565 } /* if #, but no S^ or I^ seen. */
566 /* No more ' ' case: either 's' or 'i'. */
567 if (operandP->vop_short == 's')
568 {
569 /* Wants to be a short literal. */
570 if (expP->X_add_number > 0)
571 {
572 as_warn (_("Bignum not permitted in short literal. Immediate mode assumed."));
573 operandP->vop_short = 'i';
574 operandP->vop_mode = 8;
575 operandP->vop_reg = 0xF; /* VAX PC. */
576 }
577 else
578 {
579 if (!can_be_short)
580 {
581 as_warn (_("Can't do flonum short literal: immediate mode used."));
582 operandP->vop_short = 'i';
583 operandP->vop_mode = 8;
584 operandP->vop_reg = 0xF; /* VAX PC. */
585 }
586 else
587 { /* Encode short literal now. */
588 int temp = 0;
589
590 switch (-expP->X_add_number)
591 {
592 case 'f':
593 case 'd':
594 temp = literal_float[0] >> 4;
595 break;
596
597 case 'g':
598 temp = literal_float[0] >> 1;
599 break;
600
601 case 'h':
602 temp = ((literal_float[0] << 3) & 070)
603 | ((literal_float[1] >> 13) & 07);
604 break;
605
606 default:
607 BAD_CASE (-expP->X_add_number);
608 break;
609 }
610
611 floatP->low[0] = temp & 077;
612 floatP->low[1] = 0;
613 } /* if can be short literal float */
614 } /* flonum or bignum ? */
615 }
616 else
617 { /* I^# seen: set it up if float. */
618 if (expP->X_add_number < 0)
619 {
620 memcpy (floatP->low, literal_float, sizeof (literal_float));
621 }
622 } /* if S^# seen. */
623 }
624 else
625 {
626 as_warn (_("A bignum/flonum may not be a displacement: 0x%lx used"),
627 (expP->X_add_number = 0x80000000L));
628 /* Chosen so luser gets the most offset bits to patch later. */
629 }
630 expP->X_add_number = floatP->low[0]
631 | ((LITTLENUM_MASK & (floatP->low[1])) << LITTLENUM_NUMBER_OF_BITS);
632 /*
633 * For the O_big case we have:
634 * If vop_short == 's' then a short floating literal is in the
635 * lowest 6 bits of floatP -> low [0], which is
636 * big_operand_bits [---] [0].
637 * If vop_short == 'i' then the appropriate number of elements
638 * of big_operand_bits [---] [...] are set up with the correct
639 * bits.
640 * Also, just in case width is byte word or long, we copy the lowest
641 * 32 bits of the number to X_add_number.
642 */
643 break;
644 }
645 if (input_line_pointer != operandP->vop_expr_end + 1)
646 {
647 as_fatal ("Junk at end of expression \"%s\"", input_line_pointer);
648 goofed = 1;
649 }
650 operandP->vop_expr_end[1] = c_save;
651 }
652 } /* for(each operand) */
653
654 input_line_pointer = save_input_line_pointer;
655
656 if (need_pass_2 || goofed)
657 {
658 return;
659 }
660
661 /* Emit op-code. */
662 /* Remember where it is, in case we want to modify the op-code later. */
663 opcode_low_byteP = frag_more (v.vit_opcode_nbytes);
664 memcpy (opcode_low_byteP, v.vit_opcode, v.vit_opcode_nbytes);
665 opcode_as_number = md_chars_to_number (opcode_as_chars = v.vit_opcode, 4);
666 for (operandP = v.vit_operand,
667 expP = exp_of_operand,
668 segP = seg_of_operand,
669 floatP = float_operand,
670 end_operandP = v.vit_operand + v.vit_operands;
671
672 operandP < end_operandP;
673
674 operandP++,
675 floatP++,
676 segP++,
677 expP++)
678 {
679 if (operandP->vop_ndx >= 0)
680 {
681 /* indexed addressing byte */
682 /* Legality of indexed mode already checked: it is OK */
683 FRAG_APPEND_1_CHAR (0x40 + operandP->vop_ndx);
684 } /* if(vop_ndx>=0) */
685
686 /* Here to make main operand frag(s). */
687 this_add_number = expP->X_add_number;
688 this_add_symbol = expP->X_add_symbol;
689 to_seg = *segP;
690 #ifdef BFD_ASSEMBLER
691 is_undefined = (to_seg == undefined_section);
692 is_absolute = (to_seg == absolute_section);
693 #else
694 is_undefined = (to_seg == SEG_UNKNOWN);
695 is_absolute = (to_seg == SEG_ABSOLUTE);
696 #endif
697 at = operandP->vop_mode & 1;
698 length = (operandP->vop_short == 'b'
699 ? 1 : (operandP->vop_short == 'w'
700 ? 2 : (operandP->vop_short == 'l'
701 ? 4 : 0)));
702 nbytes = operandP->vop_nbytes;
703 if (operandP->vop_access == 'b')
704 {
705 if (to_seg == now_seg || is_undefined)
706 {
707 /* If is_undefined, then it might BECOME now_seg. */
708 if (nbytes)
709 {
710 p = frag_more (nbytes);
711 fix_new (frag_now, p - frag_now->fr_literal, nbytes,
712 this_add_symbol, this_add_number, 1, NO_RELOC);
713 }
714 else
715 { /* to_seg==now_seg || to_seg == SEG_UNKNOWN */
716 /* nbytes==0 */
717 length_code = is_undefined ? STATE_UNDF : STATE_BYTE;
718 if (opcode_as_number & VIT_OPCODE_SPECIAL)
719 {
720 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
721 {
722 /* br or jsb */
723 frag_var (rs_machine_dependent, 5, 1,
724 ENCODE_RELAX (STATE_ALWAYS_BRANCH, length_code),
725 this_add_symbol, this_add_number,
726 opcode_low_byteP);
727 }
728 else
729 {
730 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
731 {
732 length_code = STATE_WORD;
733 /* JF: There is no state_byte for this one! */
734 frag_var (rs_machine_dependent, 10, 2,
735 ENCODE_RELAX (STATE_COMPLEX_BRANCH, length_code),
736 this_add_symbol, this_add_number,
737 opcode_low_byteP);
738 }
739 else
740 {
741 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
742 frag_var (rs_machine_dependent, 9, 1,
743 ENCODE_RELAX (STATE_COMPLEX_HOP, length_code),
744 this_add_symbol, this_add_number,
745 opcode_low_byteP);
746 }
747 }
748 }
749 else
750 {
751 know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP);
752 frag_var (rs_machine_dependent, 7, 1,
753 ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, length_code),
754 this_add_symbol, this_add_number,
755 opcode_low_byteP);
756 }
757 }
758 }
759 else
760 {
761 /* to_seg != now_seg && to_seg != SEG_UNKNOWN */
762 /*
763 * --- SEG FLOAT MAY APPEAR HERE ----
764 */
765 if (is_absolute)
766 {
767 if (nbytes)
768 {
769 know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC));
770 p = frag_more (nbytes);
771 /* Conventional relocation. */
772 fix_new (frag_now, p - frag_now->fr_literal, nbytes,
773 #ifdef BFD_ASSEMBLER
774 section_symbol (absolute_section),
775 #else
776 &abs_symbol,
777 #endif
778 this_add_number, 1, NO_RELOC);
779 }
780 else
781 {
782 know (opcode_as_number & VIT_OPCODE_SYNTHETIC);
783 if (opcode_as_number & VIT_OPCODE_SPECIAL)
784 {
785 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
786 {
787 /* br or jsb */
788 *opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG;
789 know (opcode_as_chars[1] == 0);
790 p = frag_more (5);
791 p[0] = VAX_ABSOLUTE_MODE; /* @#... */
792 md_number_to_chars (p + 1, this_add_number, 4);
793 /* Now (eg) JMP @#foo or JSB @#foo. */
794 }
795 else
796 {
797 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
798 {
799 p = frag_more (10);
800 p[0] = 2;
801 p[1] = 0;
802 p[2] = VAX_BRB;
803 p[3] = 6;
804 p[4] = VAX_JMP;
805 p[5] = VAX_ABSOLUTE_MODE; /* @#... */
806 md_number_to_chars (p + 6, this_add_number, 4);
807 /*
808 * Now (eg) ACBx 1f
809 * BRB 2f
810 * 1: JMP @#foo
811 * 2:
812 */
813 }
814 else
815 {
816 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
817 p = frag_more (9);
818 p[0] = 2;
819 p[1] = VAX_BRB;
820 p[2] = 6;
821 p[3] = VAX_JMP;
822 p[4] = VAX_ABSOLUTE_MODE; /* @#... */
823 md_number_to_chars (p + 5, this_add_number, 4);
824 /*
825 * Now (eg) xOBxxx 1f
826 * BRB 2f
827 * 1: JMP @#foo
828 * 2:
829 */
830 }
831 }
832 }
833 else
834 {
835 /* b<cond> */
836 *opcode_low_byteP ^= 1;
837 /* To reverse the condition in a VAX branch,
838 complement the lowest order bit. */
839 p = frag_more (7);
840 p[0] = 6;
841 p[1] = VAX_JMP;
842 p[2] = VAX_ABSOLUTE_MODE; /* @#... */
843 md_number_to_chars (p + 3, this_add_number, 4);
844 /*
845 * Now (eg) BLEQ 1f
846 * JMP @#foo
847 * 1:
848 */
849 }
850 }
851 }
852 else
853 {
854 /* to_seg != now_seg && !is_undefinfed && !is_absolute */
855 if (nbytes > 0)
856 {
857 /* Pc-relative. Conventional relocation. */
858 know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC));
859 p = frag_more (nbytes);
860 fix_new (frag_now, p - frag_now->fr_literal, nbytes,
861 #ifdef BFD_ASSEMBLER
862 section_symbol (absolute_section),
863 #else
864 &abs_symbol,
865 #endif
866 this_add_number, 1, NO_RELOC);
867 }
868 else
869 {
870 know (opcode_as_number & VIT_OPCODE_SYNTHETIC);
871 if (opcode_as_number & VIT_OPCODE_SPECIAL)
872 {
873 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
874 {
875 /* br or jsb */
876 know (opcode_as_chars[1] == 0);
877 *opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG;
878 p = frag_more (5);
879 p[0] = VAX_PC_RELATIVE_MODE;
880 fix_new (frag_now,
881 p + 1 - frag_now->fr_literal, 4,
882 this_add_symbol,
883 this_add_number, 1, NO_RELOC);
884 /* Now eg JMP foo or JSB foo. */
885 }
886 else
887 {
888 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
889 {
890 p = frag_more (10);
891 p[0] = 0;
892 p[1] = 2;
893 p[2] = VAX_BRB;
894 p[3] = 6;
895 p[4] = VAX_JMP;
896 p[5] = VAX_PC_RELATIVE_MODE;
897 fix_new (frag_now,
898 p + 6 - frag_now->fr_literal, 4,
899 this_add_symbol,
900 this_add_number, 1, NO_RELOC);
901 /*
902 * Now (eg) ACBx 1f
903 * BRB 2f
904 * 1: JMP foo
905 * 2:
906 */
907 }
908 else
909 {
910 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
911 p = frag_more (10);
912 p[0] = 2;
913 p[1] = VAX_BRB;
914 p[2] = 6;
915 p[3] = VAX_JMP;
916 p[4] = VAX_PC_RELATIVE_MODE;
917 fix_new (frag_now,
918 p + 5 - frag_now->fr_literal,
919 4, this_add_symbol,
920 this_add_number, 1, NO_RELOC);
921 /*
922 * Now (eg) xOBxxx 1f
923 * BRB 2f
924 * 1: JMP foo
925 * 2:
926 */
927 }
928 }
929 }
930 else
931 {
932 know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP);
933 *opcode_low_byteP ^= 1; /* Reverse branch condition. */
934 p = frag_more (7);
935 p[0] = 6;
936 p[1] = VAX_JMP;
937 p[2] = VAX_PC_RELATIVE_MODE;
938 fix_new (frag_now, p + 3 - frag_now->fr_literal,
939 4, this_add_symbol,
940 this_add_number, 1, NO_RELOC);
941 }
942 }
943 }
944 }
945 }
946 else
947 {
948 know (operandP->vop_access != 'b'); /* So it is ordinary operand. */
949 know (operandP->vop_access != ' '); /* ' ' target-independent: elsewhere. */
950 know (operandP->vop_access == 'a'
951 || operandP->vop_access == 'm'
952 || operandP->vop_access == 'r'
953 || operandP->vop_access == 'v'
954 || operandP->vop_access == 'w');
955 if (operandP->vop_short == 's')
956 {
957 if (is_absolute)
958 {
959 if (this_add_number >= 64)
960 {
961 as_warn (_("Short literal overflow(%ld.), immediate mode assumed."),
962 (long) this_add_number);
963 operandP->vop_short = 'i';
964 operandP->vop_mode = 8;
965 operandP->vop_reg = 0xF;
966 }
967 }
968 else
969 {
970 as_warn (_("Forced short literal to immediate mode. now_seg=%s to_seg=%s"),
971 segment_name (now_seg), segment_name (to_seg));
972 operandP->vop_short = 'i';
973 operandP->vop_mode = 8;
974 operandP->vop_reg = 0xF;
975 }
976 }
977 if (operandP->vop_reg >= 0 && (operandP->vop_mode < 8
978 || (operandP->vop_reg != 0xF && operandP->vop_mode < 10)))
979 {
980 /* One byte operand. */
981 know (operandP->vop_mode > 3);
982 FRAG_APPEND_1_CHAR (operandP->vop_mode << 4 | operandP->vop_reg);
983 /* All 1-bytes except S^# happen here. */
984 }
985 else
986 {
987 /* {@}{q^}foo{(Rn)} or S^#foo */
988 if (operandP->vop_reg == -1 && operandP->vop_short != 's')
989 {
990 /* "{@}{q^}foo" */
991 if (to_seg == now_seg)
992 {
993 if (length == 0)
994 {
995 know (operandP->vop_short == ' ');
996 length_code = STATE_BYTE;
997 #ifdef OBJ_ELF
998 if (S_IS_EXTERNAL (this_add_symbol)
999 || S_IS_WEAK (this_add_symbol))
1000 length_code = STATE_UNDF;
1001 #endif
1002 p = frag_var (rs_machine_dependent, 10, 2,
1003 ENCODE_RELAX (STATE_PC_RELATIVE, length_code),
1004 this_add_symbol, this_add_number,
1005 opcode_low_byteP);
1006 know (operandP->vop_mode == 10 + at);
1007 *p = at << 4;
1008 /* At is the only context we need to carry
1009 to other side of relax() process. Must
1010 be in the correct bit position of VAX
1011 operand spec. byte. */
1012 }
1013 else
1014 {
1015 know (length);
1016 know (operandP->vop_short != ' ');
1017 p = frag_more (length + 1);
1018 p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4);
1019 fix_new (frag_now, p + 1 - frag_now->fr_literal,
1020 length, this_add_symbol,
1021 this_add_number, 1, NO_RELOC);
1022 }
1023 }
1024 else
1025 { /* to_seg != now_seg */
1026 if (this_add_symbol == NULL)
1027 {
1028 know (is_absolute);
1029 /* Do @#foo: simpler relocation than foo-.(pc) anyway. */
1030 p = frag_more (5);
1031 p[0] = VAX_ABSOLUTE_MODE; /* @#... */
1032 md_number_to_chars (p + 1, this_add_number, 4);
1033 if (length && length != 4)
1034 {
1035 as_warn (_("Length specification ignored. Address mode 9F used"));
1036 }
1037 }
1038 else
1039 {
1040 /* {@}{q^}other_seg */
1041 know ((length == 0 && operandP->vop_short == ' ')
1042 || (length > 0 && operandP->vop_short != ' '));
1043 if (is_undefined
1044 #ifdef OBJ_ELF
1045 || S_IS_WEAK(this_add_symbol)
1046 || S_IS_EXTERNAL(this_add_symbol)
1047 #endif
1048 )
1049 {
1050 switch (length)
1051 {
1052 default: length_code = STATE_UNDF; break;
1053 case 1: length_code = STATE_BYTE; break;
1054 case 2: length_code = STATE_WORD; break;
1055 case 4: length_code = STATE_LONG; break;
1056 }
1057 /*
1058 * We have a SEG_UNKNOWN symbol. It might
1059 * turn out to be in the same segment as
1060 * the instruction, permitting relaxation.
1061 */
1062 p = frag_var (rs_machine_dependent, 5, 2,
1063 ENCODE_RELAX (STATE_PC_RELATIVE, length_code),
1064 this_add_symbol, this_add_number,
1065 opcode_low_byteP);
1066 p[0] = at << 4;
1067 }
1068 else
1069 {
1070 if (length == 0)
1071 {
1072 know (operandP->vop_short == ' ');
1073 length = 4; /* Longest possible. */
1074 }
1075 p = frag_more (length + 1);
1076 p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4);
1077 md_number_to_chars (p + 1, this_add_number, length);
1078 fix_new (frag_now,
1079 p + 1 - frag_now->fr_literal,
1080 length, this_add_symbol,
1081 this_add_number, 1, NO_RELOC);
1082 }
1083 }
1084 }
1085 }
1086 else
1087 {
1088 /* {@}{q^}foo(Rn) or S^# or I^# or # */
1089 if (operandP->vop_mode < 0xA)
1090 {
1091 /* # or S^# or I^# */
1092 if (operandP->vop_access == 'v'
1093 || operandP->vop_access == 'a')
1094 {
1095 if (operandP->vop_access == 'v')
1096 as_warn (_("Invalid operand: immediate value used as base address."));
1097 else
1098 as_warn (_("Invalid operand: immediate value used as address."));
1099 /* gcc 2.6.3 is known to generate these in at least
1100 one case. */
1101 }
1102 if (length == 0
1103 && is_absolute && (expP->X_op != O_big)
1104 && operandP->vop_mode == 8 /* No '@'. */
1105 && this_add_number < 64)
1106 {
1107 operandP->vop_short = 's';
1108 }
1109 if (operandP->vop_short == 's')
1110 {
1111 FRAG_APPEND_1_CHAR (this_add_number);
1112 }
1113 else
1114 {
1115 /* I^#... */
1116 know (nbytes);
1117 p = frag_more (nbytes + 1);
1118 know (operandP->vop_reg == 0xF);
1119 #ifdef OBJ_ELF
1120 if (flag_want_pic && operandP->vop_mode == 8
1121 && this_add_symbol != NULL)
1122 {
1123 as_warn (_("Symbol used as immediate operand in PIC mode."));
1124 }
1125 #endif
1126 p[0] = (operandP->vop_mode << 4) | 0xF;
1127 if ((is_absolute) && (expP->X_op != O_big))
1128 {
1129 /*
1130 * If nbytes > 4, then we are scrod. We
1131 * don't know if the high order bytes
1132 * are to be 0xFF or 0x00. BSD4.2 & RMS
1133 * say use 0x00. OK --- but this
1134 * assembler needs ANOTHER rewrite to
1135 * cope properly with this bug. */
1136 md_number_to_chars (p + 1, this_add_number, min (4, nbytes));
1137 if (nbytes > 4)
1138 {
1139 memset (p + 5, '\0', nbytes - 4);
1140 }
1141 }
1142 else
1143 {
1144 if (expP->X_op == O_big)
1145 {
1146 /*
1147 * Problem here is to get the bytes
1148 * in the right order. We stored
1149 * our constant as LITTLENUMs, not
1150 * bytes. */
1151 LITTLENUM_TYPE *lP;
1152
1153 lP = floatP->low;
1154 if (nbytes & 1)
1155 {
1156 know (nbytes == 1);
1157 p[1] = *lP;
1158 }
1159 else
1160 {
1161 for (p++; nbytes; nbytes -= 2, p += 2, lP++)
1162 {
1163 md_number_to_chars (p, *lP, 2);
1164 }
1165 }
1166 }
1167 else
1168 {
1169 fix_new (frag_now, p + 1 - frag_now->fr_literal,
1170 nbytes, this_add_symbol,
1171 this_add_number, 0, NO_RELOC);
1172 }
1173 }
1174 }
1175 }
1176 else
1177 { /* {@}{q^}foo(Rn) */
1178 know ((length == 0 && operandP->vop_short == ' ')
1179 || (length > 0 && operandP->vop_short != ' '));
1180 if (length == 0)
1181 {
1182 if (is_absolute)
1183 {
1184 long test;
1185
1186 test = this_add_number;
1187
1188 if (test < 0)
1189 test = ~test;
1190
1191 length = test & 0xffff8000 ? 4
1192 : test & 0xffffff80 ? 2
1193 : 1;
1194 }
1195 else
1196 {
1197 length = 4;
1198 }
1199 }
1200 p = frag_more (1 + length);
1201 know (operandP->vop_reg >= 0);
1202 p[0] = operandP->vop_reg
1203 | ((at | "?\12\14?\16"[length]) << 4);
1204 if (is_absolute)
1205 {
1206 md_number_to_chars (p + 1, this_add_number, length);
1207 }
1208 else
1209 {
1210 fix_new (frag_now, p + 1 - frag_now->fr_literal,
1211 length, this_add_symbol,
1212 this_add_number, 0, NO_RELOC);
1213 }
1214 }
1215 }
1216 } /* if(single-byte-operand) */
1217 }
1218 } /* for(operandP) */
1219 } /* vax_assemble() */
1220 \f
1221 /* md_estimate_size_before_relax(), called just before relax().
1222 Any symbol that is now undefined will not become defined.
1223 Return the correct fr_subtype in the frag and the growth beyond
1224 fr_fix. */
1225 int
1226 md_estimate_size_before_relax (fragP, segment)
1227 fragS *fragP;
1228 segT segment;
1229 {
1230 if (RELAX_LENGTH (fragP->fr_subtype) == STATE_UNDF)
1231 {
1232 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
1233 #ifdef OBJ_ELF
1234 || S_IS_WEAK (fragP->fr_symbol)
1235 || S_IS_EXTERNAL (fragP->fr_symbol)
1236 #endif
1237 )
1238 {
1239 /* Non-relaxable cases. */
1240 int reloc_type = NO_RELOC;
1241 char *p;
1242 int old_fr_fix;
1243
1244 old_fr_fix = fragP->fr_fix;
1245 p = fragP->fr_literal + old_fr_fix;
1246 #ifdef OBJ_ELF
1247 /*
1248 * If this is to undefined symbol, then if it's an indirect
1249 * reference indicate that is can mutated into a GLOB_DAT
1250 * by the loader. We restrict ourselves to no offset due to
1251 * a limitation in the NetBSD linker.
1252 */
1253 if (GOT_symbol == NULL)
1254 GOT_symbol = symbol_find (GLOBAL_OFFSET_TABLE_NAME);
1255 if (PLT_symbol == NULL)
1256 PLT_symbol = symbol_find (PROCEDURE_LINKAGE_TABLE_NAME);
1257 if ((GOT_symbol == NULL || fragP->fr_symbol != GOT_symbol)
1258 && (PLT_symbol == NULL || fragP->fr_symbol != PLT_symbol)
1259 && fragP->fr_symbol != NULL
1260 && (!S_IS_DEFINED (fragP->fr_symbol)
1261 || S_IS_WEAK (fragP->fr_symbol)
1262 || S_IS_EXTERNAL (fragP->fr_symbol)))
1263 {
1264 if (p[0] & 0x10)
1265 {
1266 if (flag_want_pic)
1267 as_fatal ("PIC reference to %s is indirect.\n",
1268 S_GET_NAME (fragP->fr_symbol));
1269 }
1270 else
1271 {
1272
1273 if (((unsigned char *) fragP->fr_opcode)[0] == VAX_CALLS
1274 || ((unsigned char *) fragP->fr_opcode)[0] == VAX_CALLG
1275 || ((unsigned char *) fragP->fr_opcode)[0] == VAX_JSB
1276 || ((unsigned char *) fragP->fr_opcode)[0] == VAX_JMP
1277 || S_IS_FUNCTION (fragP->fr_symbol))
1278 reloc_type = BFD_RELOC_32_PLT_PCREL;
1279 else
1280 reloc_type = BFD_RELOC_32_GOT_PCREL;
1281 }
1282 }
1283 #endif
1284 switch (RELAX_STATE (fragP->fr_subtype))
1285 {
1286 case STATE_PC_RELATIVE:
1287 p[0] |= VAX_PC_RELATIVE_MODE; /* Preserve @ bit. */
1288 fragP->fr_fix += 1 + 4;
1289 fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol,
1290 fragP->fr_offset, 1, reloc_type);
1291 break;
1292
1293 case STATE_CONDITIONAL_BRANCH:
1294 *fragP->fr_opcode ^= 1; /* Reverse sense of branch. */
1295 p[0] = 6;
1296 p[1] = VAX_JMP;
1297 p[2] = VAX_PC_RELATIVE_MODE; /* ...(PC) */
1298 fragP->fr_fix += 1 + 1 + 1 + 4;
1299 fix_new (fragP, old_fr_fix + 3, 4, fragP->fr_symbol,
1300 fragP->fr_offset, 1, NO_RELOC);
1301 break;
1302
1303 case STATE_COMPLEX_BRANCH:
1304 p[0] = 2;
1305 p[1] = 0;
1306 p[2] = VAX_BRB;
1307 p[3] = 6;
1308 p[4] = VAX_JMP;
1309 p[5] = VAX_PC_RELATIVE_MODE; /* ...(pc) */
1310 fragP->fr_fix += 2 + 2 + 1 + 1 + 4;
1311 fix_new (fragP, old_fr_fix + 6, 4, fragP->fr_symbol,
1312 fragP->fr_offset, 1, NO_RELOC);
1313 break;
1314
1315 case STATE_COMPLEX_HOP:
1316 p[0] = 2;
1317 p[1] = VAX_BRB;
1318 p[2] = 6;
1319 p[3] = VAX_JMP;
1320 p[4] = VAX_PC_RELATIVE_MODE; /* ...(pc) */
1321 fragP->fr_fix += 1 + 2 + 1 + 1 + 4;
1322 fix_new (fragP, old_fr_fix + 5, 4, fragP->fr_symbol,
1323 fragP->fr_offset, 1, NO_RELOC);
1324 break;
1325
1326 case STATE_ALWAYS_BRANCH:
1327 *fragP->fr_opcode += VAX_WIDEN_LONG;
1328 p[0] = VAX_PC_RELATIVE_MODE; /* ...(PC) */
1329 fragP->fr_fix += 1 + 4;
1330 fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol,
1331 fragP->fr_offset, 1, NO_RELOC);
1332 break;
1333
1334 default:
1335 abort ();
1336 }
1337 frag_wane (fragP);
1338
1339 /* Return the growth in the fixed part of the frag. */
1340 return fragP->fr_fix - old_fr_fix;
1341 }
1342
1343 /* Relaxable cases. Set up the initial guess for the variable
1344 part of the frag. */
1345 switch (RELAX_STATE (fragP->fr_subtype))
1346 {
1347 case STATE_PC_RELATIVE:
1348 fragP->fr_subtype = ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE);
1349 break;
1350 case STATE_CONDITIONAL_BRANCH:
1351 fragP->fr_subtype = ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE);
1352 break;
1353 case STATE_COMPLEX_BRANCH:
1354 fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD);
1355 break;
1356 case STATE_COMPLEX_HOP:
1357 fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE);
1358 break;
1359 case STATE_ALWAYS_BRANCH:
1360 fragP->fr_subtype = ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE);
1361 break;
1362 }
1363 }
1364
1365 if (fragP->fr_subtype >= sizeof (md_relax_table) / sizeof (md_relax_table[0]))
1366 abort ();
1367
1368 /* Return the size of the variable part of the frag. */
1369 return md_relax_table[fragP->fr_subtype].rlx_length;
1370 }
1371 \f
1372 /*
1373 * md_convert_frag();
1374 *
1375 * Called after relax() is finished.
1376 * In: Address of frag.
1377 * fr_type == rs_machine_dependent.
1378 * fr_subtype is what the address relaxed to.
1379 *
1380 * Out: Any fixSs and constants are set up.
1381 * Caller will turn frag into a ".space 0".
1382 */
1383 #ifdef BFD_ASSEMBLER
1384 void
1385 md_convert_frag (headers, seg, fragP)
1386 bfd *headers ATTRIBUTE_UNUSED;
1387 segT seg ATTRIBUTE_UNUSED;
1388 fragS *fragP;
1389 #else
1390 void
1391 md_convert_frag (headers, seg, fragP)
1392 object_headers *headers ATTRIBUTE_UNUSED;
1393 segT seg ATTRIBUTE_UNUSED;
1394 fragS *fragP;
1395 #endif
1396 {
1397 char *addressP; /* -> _var to change. */
1398 char *opcodeP; /* -> opcode char(s) to change. */
1399 short int extension = 0; /* Size of relaxed address. */
1400 /* Added to fr_fix: incl. ALL var chars. */
1401 symbolS *symbolP;
1402 long where;
1403
1404 know (fragP->fr_type == rs_machine_dependent);
1405 where = fragP->fr_fix;
1406 addressP = fragP->fr_literal + where;
1407 opcodeP = fragP->fr_opcode;
1408 symbolP = fragP->fr_symbol;
1409 know (symbolP);
1410
1411 switch (fragP->fr_subtype)
1412 {
1413
1414 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE):
1415 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1416 addressP[0] |= 0xAF; /* Byte displacement. */
1417 fix_new (fragP, fragP->fr_fix + 1, 1, fragP->fr_symbol,
1418 fragP->fr_offset, 1, NO_RELOC);
1419 extension = 2;
1420 break;
1421
1422 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_WORD):
1423 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1424 addressP[0] |= 0xCF; /* Word displacement. */
1425 fix_new (fragP, fragP->fr_fix + 1, 2, fragP->fr_symbol,
1426 fragP->fr_offset, 1, NO_RELOC);
1427 extension = 3;
1428 break;
1429
1430 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_LONG):
1431 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1432 addressP[0] |= 0xEF; /* Long word displacement. */
1433 fix_new (fragP, fragP->fr_fix + 1, 4, fragP->fr_symbol,
1434 fragP->fr_offset, 1, NO_RELOC);
1435 extension = 5;
1436 break;
1437
1438 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE):
1439 fix_new (fragP, fragP->fr_fix, 1, fragP->fr_symbol,
1440 fragP->fr_offset, 1, NO_RELOC);
1441 extension = 1;
1442 break;
1443
1444 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD):
1445 opcodeP[0] ^= 1; /* Reverse sense of test. */
1446 addressP[0] = 3;
1447 addressP[1] = VAX_BRW;
1448 fix_new (fragP, fragP->fr_fix + 2, 2, fragP->fr_symbol,
1449 fragP->fr_offset, 1, NO_RELOC);
1450 extension = 4;
1451 break;
1452
1453 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_LONG):
1454 opcodeP[0] ^= 1; /* Reverse sense of test. */
1455 addressP[0] = 6;
1456 addressP[1] = VAX_JMP;
1457 addressP[2] = VAX_PC_RELATIVE_MODE;
1458 fix_new (fragP, fragP->fr_fix + 3, 4, fragP->fr_symbol,
1459 fragP->fr_offset, 1, NO_RELOC);
1460 extension = 7;
1461 break;
1462
1463 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE):
1464 fix_new (fragP, fragP->fr_fix, 1, fragP->fr_symbol,
1465 fragP->fr_offset, 1, NO_RELOC);
1466 extension = 1;
1467 break;
1468
1469 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_WORD):
1470 opcodeP[0] += VAX_WIDEN_WORD; /* brb -> brw, bsbb -> bsbw */
1471 fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol, fragP->fr_offset,
1472 1, NO_RELOC);
1473 extension = 2;
1474 break;
1475
1476 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_LONG):
1477 opcodeP[0] += VAX_WIDEN_LONG; /* brb -> jmp, bsbb -> jsb */
1478 addressP[0] = VAX_PC_RELATIVE_MODE;
1479 fix_new (fragP, fragP->fr_fix + 1, 4, fragP->fr_symbol,
1480 fragP->fr_offset, 1, NO_RELOC);
1481 extension = 5;
1482 break;
1483
1484 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD):
1485 fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol,
1486 fragP->fr_offset, 1, NO_RELOC);
1487 extension = 2;
1488 break;
1489
1490 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_LONG):
1491 addressP[0] = 2;
1492 addressP[1] = 0;
1493 addressP[2] = VAX_BRB;
1494 addressP[3] = 6;
1495 addressP[4] = VAX_JMP;
1496 addressP[5] = VAX_PC_RELATIVE_MODE;
1497 fix_new (fragP, fragP->fr_fix + 6, 4, fragP->fr_symbol,
1498 fragP->fr_offset, 1, NO_RELOC);
1499 extension = 10;
1500 break;
1501
1502 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE):
1503 fix_new (fragP, fragP->fr_fix, 1, fragP->fr_symbol,
1504 fragP->fr_offset, 1, NO_RELOC);
1505 extension = 1;
1506 break;
1507
1508 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_WORD):
1509 addressP[0] = 2;
1510 addressP[1] = VAX_BRB;
1511 addressP[2] = 3;
1512 addressP[3] = VAX_BRW;
1513 fix_new (fragP, fragP->fr_fix + 4, 2, fragP->fr_symbol,
1514 fragP->fr_offset, 1, NO_RELOC);
1515 extension = 6;
1516 break;
1517
1518 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_LONG):
1519 addressP[0] = 2;
1520 addressP[1] = VAX_BRB;
1521 addressP[2] = 6;
1522 addressP[3] = VAX_JMP;
1523 addressP[4] = VAX_PC_RELATIVE_MODE;
1524 fix_new (fragP, fragP->fr_fix + 5, 4, fragP->fr_symbol,
1525 fragP->fr_offset, 1, NO_RELOC);
1526 extension = 9;
1527 break;
1528
1529 default:
1530 BAD_CASE (fragP->fr_subtype);
1531 break;
1532 }
1533 fragP->fr_fix += extension;
1534 } /* md_convert_frag() */
1535
1536 /* Translate internal format of relocation info into target format.
1537
1538 On vax: first 4 bytes are normal unsigned long, next three bytes
1539 are symbolnum, least sig. byte first. Last byte is broken up with
1540 the upper nibble as nuthin, bit 3 as extern, bits 2 & 1 as length, and
1541 bit 0 as pcrel. */
1542 #ifdef comment
1543 void
1544 md_ri_to_chars (the_bytes, ri)
1545 char *the_bytes;
1546 struct reloc_info_generic ri;
1547 {
1548 /* this is easy */
1549 md_number_to_chars (the_bytes, ri.r_address, sizeof (ri.r_address));
1550 /* now the fun stuff */
1551 the_bytes[6] = (ri.r_symbolnum >> 16) & 0x0ff;
1552 the_bytes[5] = (ri.r_symbolnum >> 8) & 0x0ff;
1553 the_bytes[4] = ri.r_symbolnum & 0x0ff;
1554 the_bytes[7] = (((ri.r_extern << 3) & 0x08) | ((ri.r_length << 1) & 0x06) |
1555 ((ri.r_pcrel << 0) & 0x01)) & 0x0F;
1556 }
1557
1558 #endif /* comment */
1559
1560 #ifdef OBJ_AOUT
1561 #ifndef BFD_ASSEMBLER
1562 void
1563 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
1564 char *where;
1565 fixS *fixP;
1566 relax_addressT segment_address_in_file;
1567 {
1568 /*
1569 * In: length of relocation (or of address) in chars: 1, 2 or 4.
1570 * Out: GNU LD relocation length code: 0, 1, or 2.
1571 */
1572
1573 static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
1574 long r_symbolnum;
1575
1576 know (fixP->fx_addsy != NULL);
1577
1578 md_number_to_chars (where,
1579 fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
1580 4);
1581
1582 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
1583 ? S_GET_TYPE (fixP->fx_addsy)
1584 : fixP->fx_addsy->sy_number);
1585
1586 where[6] = (r_symbolnum >> 16) & 0x0ff;
1587 where[5] = (r_symbolnum >> 8) & 0x0ff;
1588 where[4] = r_symbolnum & 0x0ff;
1589 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
1590 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
1591 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
1592 }
1593 #endif /* !BFD_ASSEMBLER */
1594 #endif /* OBJ_AOUT */
1595
1596 /*
1597 * BUGS, GRIPES, APOLOGIA, etc.
1598 *
1599 * The opcode table 'votstrs' needs to be sorted on opcode frequency.
1600 * That is, AFTER we hash it with hash_...(), we want most-used opcodes
1601 * to come out of the hash table faster.
1602 *
1603 * I am sorry to inflict yet another VAX assembler on the world, but
1604 * RMS says we must do everything from scratch, to prevent pin-heads
1605 * restricting this software.
1606 */
1607
1608 /*
1609 * This is a vaguely modular set of routines in C to parse VAX
1610 * assembly code using DEC mnemonics. It is NOT un*x specific.
1611 *
1612 * The idea here is that the assembler has taken care of all:
1613 * labels
1614 * macros
1615 * listing
1616 * pseudo-ops
1617 * line continuation
1618 * comments
1619 * condensing any whitespace down to exactly one space
1620 * and all we have to do is parse 1 line into a vax instruction
1621 * partially formed. We will accept a line, and deliver:
1622 * an error message (hopefully empty)
1623 * a skeleton VAX instruction (tree structure)
1624 * textual pointers to all the operand expressions
1625 * a warning message that notes a silly operand (hopefully empty)
1626 */
1627 \f
1628 /*
1629 * E D I T H I S T O R Y
1630 *
1631 * 17may86 Dean Elsner. Bug if line ends immediately after opcode.
1632 * 30apr86 Dean Elsner. New vip_op() uses arg block so change call.
1633 * 6jan86 Dean Elsner. Crock vip_begin() to call vip_op_defaults().
1634 * 2jan86 Dean Elsner. Invent synthetic opcodes.
1635 * Widen vax_opcodeT to 32 bits. Use a bit for VIT_OPCODE_SYNTHETIC,
1636 * which means this is not a real opcode, it is like a macro; it will
1637 * be relax()ed into 1 or more instructions.
1638 * Use another bit for VIT_OPCODE_SPECIAL if the op-code is not optimised
1639 * like a regular branch instruction. Option added to vip_begin():
1640 * exclude synthetic opcodes. Invent synthetic_votstrs[].
1641 * 31dec85 Dean Elsner. Invent vit_opcode_nbytes.
1642 * Also make vit_opcode into a char[]. We now have n-byte vax opcodes,
1643 * so caller's don't have to know the difference between a 1-byte & a
1644 * 2-byte op-code. Still need vax_opcodeT concept, so we know how
1645 * big an object must be to hold an op.code.
1646 * 30dec85 Dean Elsner. Widen typedef vax_opcodeT in "vax-inst.h"
1647 * because vax opcodes may be 16 bits. Our crufty C compiler was
1648 * happily initialising 8-bit vot_codes with 16-bit numbers!
1649 * (Wouldn't the 'phone company like to compress data so easily!)
1650 * 29dec85 Dean Elsner. New static table vax_operand_width_size[].
1651 * Invented so we know hw many bytes a "I^#42" needs in its immediate
1652 * operand. Revised struct vop in "vax-inst.h": explicitly include
1653 * byte length of each operand, and it's letter-code datum type.
1654 * 17nov85 Dean Elsner. Name Change.
1655 * Due to ar(1) truncating names, we learned the hard way that
1656 * "vax-inst-parse.c" -> "vax-inst-parse." dropping the "o" off
1657 * the archived object name. SO... we shortened the name of this
1658 * source file, and changed the makefile.
1659 */
1660
1661 /* handle of the OPCODE hash table */
1662 static struct hash_control *op_hash;
1663
1664 /*
1665 * In: 1 character, from "bdfghloqpw" being the data-type of an operand
1666 * of a vax instruction.
1667 *
1668 * Out: the length of an operand of that type, in bytes.
1669 * Special branch operands types "-?!" have length 0.
1670 */
1671
1672 static const short int vax_operand_width_size[256] =
1673 {
1674 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1675 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1676 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1677 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1678 0, 0, 1, 0, 8, 0, 4, 8, 16, 0, 0, 0, 4, 0, 0,16, /* ..b.d.fgh...l..o */
1679 0, 8, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* .q.....w........ */
1680 0, 0, 1, 0, 8, 0, 4, 8, 16, 0, 0, 0, 4, 0, 0,16, /* ..b.d.fgh...l..o */
1681 0, 8, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* .q.....w........ */
1682 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1683 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1684 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1685 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1686 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1687 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1688 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1689 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1690 };
1691 \f
1692 /*
1693 * This perversion encodes all the vax opcodes as a bunch of strings.
1694 * RMS says we should build our hash-table at run-time. Hmm.
1695 * Please would someone arrange these in decreasing frequency of opcode?
1696 * Because of the way hash_...() works, the most frequently used opcode
1697 * should be textually first and so on.
1698 *
1699 * Input for this table was 'vax.opcodes', awk(1)ed by 'vax.opcodes.c.awk' .
1700 * So change 'vax.opcodes', then re-generate this table.
1701 */
1702
1703 #include "opcode/vax.h"
1704 \f
1705 /*
1706 * This is a table of optional op-codes. All of them represent
1707 * 'synthetic' instructions that seem popular.
1708 *
1709 * Here we make some pseudo op-codes. Every code has a bit set to say
1710 * it is synthetic. This lets you catch them if you want to
1711 * ban these opcodes. They are mnemonics for "elastic" instructions
1712 * that are supposed to assemble into the fewest bytes needed to do a
1713 * branch, or to do a conditional branch, or whatever.
1714 *
1715 * The opcode is in the usual place [low-order n*8 bits]. This means
1716 * that if you mask off the bucky bits, the usual rules apply about
1717 * how long the opcode is.
1718 *
1719 * All VAX branch displacements come at the end of the instruction.
1720 * For simple branches (1-byte opcode + 1-byte displacement) the last
1721 * operand is coded 'b?' where the "data type" '?' is a clue that we
1722 * may reverse the sense of the branch (complement lowest order bit)
1723 * and branch around a jump. This is by far the most common case.
1724 * That is why the VIT_OPCODE_SYNTHETIC bit is set: it says this is
1725 * a 0-byte op-code followed by 2 or more bytes of operand address.
1726 *
1727 * If the op-code has VIT_OPCODE_SPECIAL set, then we have a more unusual
1728 * case.
1729 *
1730 * For JBSB & JBR the treatment is the similar, except (1) we have a 'bw'
1731 * option before (2) we can directly JSB/JMP because there is no condition.
1732 * These operands have 'b-' as their access/data type.
1733 *
1734 * That leaves a bunch of random opcodes: JACBx, JxOBxxx. In these
1735 * cases, we do the same idea. JACBxxx are all marked with a 'b!'
1736 * JAOBxxx & JSOBxxx are marked with a 'b:'.
1737 *
1738 */
1739 #if (VIT_OPCODE_SYNTHETIC != 0x80000000)
1740 You have just broken the encoding below, which assumes the sign bit
1741 means 'I am an imaginary instruction'.
1742 #endif
1743
1744 #if (VIT_OPCODE_SPECIAL != 0x40000000)
1745 You have just broken the encoding below, which assumes the 0x40 M bit means
1746 'I am not to be "optimised" the way normal branches are'.
1747 #endif
1748
1749 static const struct vot
1750 synthetic_votstrs[] =
1751 {
1752 {"jbsb", {"b-", 0xC0000010}}, /* BSD 4.2 */
1753 /* jsb used already */
1754 {"jbr", {"b-", 0xC0000011}}, /* BSD 4.2 */
1755 {"jr", {"b-", 0xC0000011}}, /* consistent */
1756 {"jneq", {"b?", 0x80000012}},
1757 {"jnequ", {"b?", 0x80000012}},
1758 {"jeql", {"b?", 0x80000013}},
1759 {"jeqlu", {"b?", 0x80000013}},
1760 {"jgtr", {"b?", 0x80000014}},
1761 {"jleq", {"b?", 0x80000015}},
1762 /* un-used opcodes here */
1763 {"jgeq", {"b?", 0x80000018}},
1764 {"jlss", {"b?", 0x80000019}},
1765 {"jgtru", {"b?", 0x8000001a}},
1766 {"jlequ", {"b?", 0x8000001b}},
1767 {"jvc", {"b?", 0x8000001c}},
1768 {"jvs", {"b?", 0x8000001d}},
1769 {"jgequ", {"b?", 0x8000001e}},
1770 {"jcc", {"b?", 0x8000001e}},
1771 {"jlssu", {"b?", 0x8000001f}},
1772 {"jcs", {"b?", 0x8000001f}},
1773
1774 {"jacbw", {"rwrwmwb!", 0xC000003d}},
1775 {"jacbf", {"rfrfmfb!", 0xC000004f}},
1776 {"jacbd", {"rdrdmdb!", 0xC000006f}},
1777 {"jacbb", {"rbrbmbb!", 0xC000009d}},
1778 {"jacbl", {"rlrlmlb!", 0xC00000f1}},
1779 {"jacbg", {"rgrgmgb!", 0xC0004ffd}},
1780 {"jacbh", {"rhrhmhb!", 0xC0006ffd}},
1781
1782 {"jbs", {"rlvbb?", 0x800000e0}},
1783 {"jbc", {"rlvbb?", 0x800000e1}},
1784 {"jbss", {"rlvbb?", 0x800000e2}},
1785 {"jbcs", {"rlvbb?", 0x800000e3}},
1786 {"jbsc", {"rlvbb?", 0x800000e4}},
1787 {"jbcc", {"rlvbb?", 0x800000e5}},
1788 {"jlbs", {"rlb?", 0x800000e8}},
1789 {"jlbc", {"rlb?", 0x800000e9}},
1790
1791 {"jaoblss", {"rlmlb:", 0xC00000f2}},
1792 {"jaobleq", {"rlmlb:", 0xC00000f3}},
1793 {"jsobgeq", {"mlb:", 0xC00000f4}},
1794 {"jsobgtr", {"mlb:", 0xC00000f5}},
1795
1796 /* CASEx has no branch addresses in our conception of it. */
1797 /* You should use ".word ..." statements after the "case ...". */
1798
1799 {"", {"", 0}} /* empty is end sentinel */
1800
1801 }; /* synthetic_votstrs */
1802 \f
1803 /*
1804 * v i p _ b e g i n ( )
1805 *
1806 * Call me once before you decode any lines.
1807 * I decode votstrs into a hash table at op_hash (which I create).
1808 * I return an error text or null.
1809 * If you want, I will include the 'synthetic' jXXX instructions in the
1810 * instruction table.
1811 * You must nominate metacharacters for eg DEC's "#", "@", "^".
1812 */
1813
1814 static const char *
1815 vip_begin (synthetic_too, immediate, indirect, displen)
1816 int synthetic_too; /* 1 means include jXXX op-codes. */
1817 const char *immediate, *indirect, *displen;
1818 {
1819 const struct vot *vP; /* scan votstrs */
1820 const char *retval = 0; /* error text */
1821
1822 op_hash = hash_new ();
1823
1824 for (vP = votstrs; *vP->vot_name && !retval; vP++)
1825 retval = hash_insert (op_hash, vP->vot_name, (PTR) &vP->vot_detail);
1826
1827 if (synthetic_too)
1828 for (vP = synthetic_votstrs; *vP->vot_name && !retval; vP++)
1829 retval = hash_insert (op_hash, vP->vot_name, (PTR) &vP->vot_detail);
1830
1831 #ifndef CONST_TABLE
1832 vip_op_defaults (immediate, indirect, displen);
1833 #endif
1834
1835 return retval;
1836 }
1837
1838 /*
1839 * v i p ( )
1840 *
1841 * This converts a string into a vax instruction.
1842 * The string must be a bare single instruction in dec-vax (with BSD4 frobs)
1843 * format.
1844 * It provides some error messages: at most one fatal error message (which
1845 * stops the scan) and at most one warning message for each operand.
1846 * The vax instruction is returned in exploded form, since we have no
1847 * knowledge of how you parse (or evaluate) your expressions.
1848 * We do however strip off and decode addressing modes and operation
1849 * mnemonic.
1850 *
1851 * The exploded instruction is returned to a struct vit of your choice.
1852 * #include "vax-inst.h" to know what a struct vit is.
1853 *
1854 * This function's value is a string. If it is not "" then an internal
1855 * logic error was found: read this code to assign meaning to the string.
1856 * No argument string should generate such an error string:
1857 * it means a bug in our code, not in the user's text.
1858 *
1859 * You MUST have called vip_begin() once before using this function.
1860 */
1861
1862 static void
1863 vip (vitP, instring)
1864 struct vit *vitP; /* We build an exploded instruction here. */
1865 char *instring; /* Text of a vax instruction: we modify. */
1866 {
1867 /* How to bit-encode this opcode. */
1868 struct vot_wot *vwP;
1869 /* 1/skip whitespace.2/scan vot_how */
1870 char *p;
1871 char *q;
1872 /* counts number of operands seen */
1873 unsigned char count;
1874 /* scan operands in struct vit */
1875 struct vop *operandp;
1876 /* error over all operands */
1877 const char *alloperr;
1878 /* Remember char, (we clobber it with '\0' temporarily). */
1879 char c;
1880 /* Op-code of this instruction. */
1881 vax_opcodeT oc;
1882
1883 if (*instring == ' ')
1884 ++instring; /* Skip leading whitespace. */
1885 for (p = instring; *p && *p != ' '; p++);; /* MUST end in end-of-string or exactly 1 space. */
1886 /* Scanned up to end of operation-code. */
1887 /* Operation-code is ended with whitespace. */
1888 if (p - instring == 0)
1889 {
1890 vitP->vit_error = _("No operator");
1891 count = 0;
1892 memset (vitP->vit_opcode, '\0', sizeof (vitP->vit_opcode));
1893 }
1894 else
1895 {
1896 c = *p;
1897 *p = '\0';
1898 /*
1899 * Here with instring pointing to what better be an op-name, and p
1900 * pointing to character just past that.
1901 * We trust instring points to an op-name, with no whitespace.
1902 */
1903 vwP = (struct vot_wot *) hash_find (op_hash, instring);
1904 *p = c; /* Restore char after op-code. */
1905 if (vwP == 0)
1906 {
1907 vitP->vit_error = _("Unknown operator");
1908 count = 0;
1909 memset (vitP->vit_opcode, '\0', sizeof (vitP->vit_opcode));
1910 }
1911 else
1912 {
1913 /*
1914 * We found a match! So let's pick up as many operands as the
1915 * instruction wants, and even gripe if there are too many.
1916 * We expect comma to seperate each operand.
1917 * We let instring track the text, while p tracks a part of the
1918 * struct vot.
1919 */
1920 const char *howp;
1921 /*
1922 * The lines below know about 2-byte opcodes starting FD,FE or FF.
1923 * They also understand synthetic opcodes. Note:
1924 * we return 32 bits of opcode, including bucky bits, BUT
1925 * an opcode length is either 8 or 16 bits for vit_opcode_nbytes.
1926 */
1927 oc = vwP->vot_code; /* The op-code. */
1928 vitP->vit_opcode_nbytes = (oc & 0xFF) >= 0xFD ? 2 : 1;
1929 md_number_to_chars (vitP->vit_opcode, oc, 4);
1930 count = 0; /* no operands seen yet */
1931 instring = p; /* point just past operation code */
1932 alloperr = "";
1933 for (howp = vwP->vot_how, operandp = vitP->vit_operand;
1934 !(alloperr && *alloperr) && *howp;
1935 operandp++, howp += 2)
1936 {
1937 /*
1938 * Here to parse one operand. Leave instring pointing just
1939 * past any one ',' that marks the end of this operand.
1940 */
1941 if (!howp[1])
1942 as_fatal (_("odd number of bytes in operand description"));
1943 else if (*instring)
1944 {
1945 for (q = instring; (c = *q) && c != ','; q++)
1946 ;
1947 /*
1948 * Q points to ',' or '\0' that ends argument. C is that
1949 * character.
1950 */
1951 *q = 0;
1952 operandp->vop_width = howp[1];
1953 operandp->vop_nbytes = vax_operand_width_size[(unsigned) howp[1]];
1954 operandp->vop_access = howp[0];
1955 vip_op (instring, operandp);
1956 *q = c; /* Restore input text. */
1957 if (operandp->vop_error)
1958 alloperr = _("Bad operand");
1959 instring = q + (c ? 1 : 0); /* next operand (if any) */
1960 count++; /* won another argument, may have an operr */
1961 }
1962 else
1963 alloperr = _("Not enough operands");
1964 }
1965 if (!*alloperr)
1966 {
1967 if (*instring == ' ')
1968 instring++; /* Skip whitespace. */
1969 if (*instring)
1970 alloperr = _("Too many operands");
1971 }
1972 vitP->vit_error = alloperr;
1973 }
1974 }
1975 vitP->vit_operands = count;
1976 }
1977 \f
1978 #ifdef test
1979
1980 /*
1981 * Test program for above.
1982 */
1983
1984 struct vit myvit; /* build an exploded vax instruction here */
1985 char answer[100]; /* human types a line of vax assembler here */
1986 char *mybug; /* "" or an internal logic diagnostic */
1987 int mycount; /* number of operands */
1988 struct vop *myvop; /* scan operands from myvit */
1989 int mysynth; /* 1 means want synthetic opcodes. */
1990 char my_immediate[200];
1991 char my_indirect[200];
1992 char my_displen[200];
1993
1994 main ()
1995 {
1996 char *p;
1997
1998 printf ("0 means no synthetic instructions. ");
1999 printf ("Value for vip_begin? ");
2000 gets (answer);
2001 sscanf (answer, "%d", &mysynth);
2002 printf ("Synthetic opcodes %s be included.\n", mysynth ? "will" : "will not");
2003 printf ("enter immediate symbols eg enter # ");
2004 gets (my_immediate);
2005 printf ("enter indirect symbols eg enter @ ");
2006 gets (my_indirect);
2007 printf ("enter displen symbols eg enter ^ ");
2008 gets (my_displen);
2009 if (p = vip_begin (mysynth, my_immediate, my_indirect, my_displen))
2010 {
2011 error ("vip_begin=%s", p);
2012 }
2013 printf ("An empty input line will quit you from the vax instruction parser\n");
2014 for (;;)
2015 {
2016 printf ("vax instruction: ");
2017 fflush (stdout);
2018 gets (answer);
2019 if (!*answer)
2020 {
2021 break; /* out of for each input text loop */
2022 }
2023 vip (&myvit, answer);
2024 if (*myvit.vit_error)
2025 {
2026 printf ("ERR:\"%s\"\n", myvit.vit_error);
2027 }
2028 printf ("opcode=");
2029 for (mycount = myvit.vit_opcode_nbytes, p = myvit.vit_opcode;
2030 mycount;
2031 mycount--, p++
2032 )
2033 {
2034 printf ("%02x ", *p & 0xFF);
2035 }
2036 printf (" operand count=%d.\n", mycount = myvit.vit_operands);
2037 for (myvop = myvit.vit_operand; mycount; mycount--, myvop++)
2038 {
2039 printf ("mode=%xx reg=%xx ndx=%xx len='%c'=%c%c%d. expr=\"",
2040 myvop->vop_mode, myvop->vop_reg, myvop->vop_ndx,
2041 myvop->vop_short, myvop->vop_access, myvop->vop_width,
2042 myvop->vop_nbytes);
2043 for (p = myvop->vop_expr_begin; p <= myvop->vop_expr_end; p++)
2044 {
2045 putchar (*p);
2046 }
2047 printf ("\"\n");
2048 if (myvop->vop_error)
2049 {
2050 printf (" err:\"%s\"\n", myvop->vop_error);
2051 }
2052 if (myvop->vop_warn)
2053 {
2054 printf (" wrn:\"%s\"\n", myvop->vop_warn);
2055 }
2056 }
2057 }
2058 vip_end ();
2059 exit (EXIT_SUCCESS);
2060 }
2061
2062 #endif /* #ifdef test */
2063
2064 /* end of vax_ins_parse.c */
2065
2066 /* vax_reg_parse.c - convert a VAX register name to a number */
2067
2068 /* Copyright (C) 1987 Free Software Foundation, Inc. A part of GNU. */
2069
2070 /*
2071 * v a x _ r e g _ p a r s e ( )
2072 *
2073 * Take 3 char.s, the last of which may be `\0` (non-existent)
2074 * and return the VAX register number that they represent.
2075 *
2076 * Return -1 if they don't form a register name. Good names return
2077 * a number from 0:15 inclusive.
2078 *
2079 * Case is not important in a name.
2080 *
2081 * Register names understood are:
2082 *
2083 * R0
2084 * R1
2085 * R2
2086 * R3
2087 * R4
2088 * R5
2089 * R6
2090 * R7
2091 * R8
2092 * R9
2093 * R10
2094 * R11
2095 * R12 AP
2096 * R13 FP
2097 * R14 SP
2098 * R15 PC
2099 *
2100 */
2101
2102 #include "safe-ctype.h"
2103 #define AP (12)
2104 #define FP (13)
2105 #define SP (14)
2106 #define PC (15)
2107 \f
2108 int /* return -1 or 0:15 */
2109 vax_reg_parse (c1, c2, c3, c4) /* 3 chars of register name */
2110 char c1, c2, c3, c4; /* c3 == 0 if 2-character reg name */
2111 {
2112 int retval; /* return -1:15 */
2113
2114 retval = -1;
2115
2116 #ifdef OBJ_ELF
2117 if (c1 != '%') /* register prefixes are mandatory for ELF */
2118 return retval;
2119 c1 = c2;
2120 c2 = c3;
2121 c3 = c4;
2122 #endif
2123 #ifdef OBJ_VMS
2124 if (c4 != 0) /* register prefixes are not allowed under VMS */
2125 return retval;
2126 #endif
2127 #ifdef OBJ_AOUT
2128 if (c1 == '%') /* register prefixes are optional under a.out */
2129 {
2130 c1 = c2;
2131 c2 = c3;
2132 c3 = c4;
2133 }
2134 else if (c3 && c4) /* can't be 4 characters long. */
2135 return retval;
2136 #endif
2137
2138 c1 = TOLOWER (c1);
2139 c2 = TOLOWER (c2);
2140 if (ISDIGIT (c2) && c1 == 'r')
2141 {
2142 retval = c2 - '0';
2143 if (ISDIGIT (c3))
2144 {
2145 retval = retval * 10 + c3 - '0';
2146 retval = (retval > 15) ? -1 : retval;
2147 /* clamp the register value to 1 hex digit */
2148 }
2149 else if (c3)
2150 retval = -1; /* c3 must be '\0' or a digit */
2151 }
2152 else if (c3) /* There are no three letter regs */
2153 retval = -1;
2154 else if (c2 == 'p')
2155 {
2156 switch (c1)
2157 {
2158 case 's':
2159 retval = SP;
2160 break;
2161 case 'f':
2162 retval = FP;
2163 break;
2164 case 'a':
2165 retval = AP;
2166 break;
2167 default:
2168 retval = -1;
2169 }
2170 }
2171 else if (c1 == 'p' && c2 == 'c')
2172 retval = PC;
2173 else
2174 retval = -1;
2175 return (retval);
2176 }
2177
2178 /*
2179 * v i p _ o p ( )
2180 *
2181 * Parse a vax operand in DEC assembler notation.
2182 * For speed, expect a string of whitespace to be reduced to a single ' '.
2183 * This is the case for GNU AS, and is easy for other DEC-compatible
2184 * assemblers.
2185 *
2186 * Knowledge about DEC VAX assembler operand notation lives here.
2187 * This doesn't even know what a register name is, except it believes
2188 * all register names are 2 or 3 characters, and lets vax_reg_parse() say
2189 * what number each name represents.
2190 * It does, however, know that PC, SP etc are special registers so it can
2191 * detect addressing modes that are silly for those registers.
2192 *
2193 * Where possible, it delivers 1 fatal or 1 warning message if the operand
2194 * is suspect. Exactly what we test for is still evolving.
2195 */
2196
2197 /*
2198 * B u g s
2199 *
2200 * Arg block.
2201 *
2202 * There were a number of 'mismatched argument type' bugs to vip_op.
2203 * The most general solution is to typedef each (of many) arguments.
2204 * We used instead a typedef'd argument block. This is less modular
2205 * than using seperate return pointers for each result, but runs faster
2206 * on most engines, and seems to keep programmers happy. It will have
2207 * to be done properly if we ever want to use vip_op as a general-purpose
2208 * module (it was designed to be).
2209 *
2210 * G^
2211 *
2212 * Doesn't support DEC "G^" format operands. These always take 5 bytes
2213 * to express, and code as modes 8F or 9F. Reason: "G^" deprives you of
2214 * optimising to (say) a "B^" if you are lucky in the way you link.
2215 * When someone builds a linker smart enough to convert "G^" to "B^", "W^"
2216 * whenever possible, then we should implement it.
2217 * If there is some other use for "G^", feel free to code it in!
2218 *
2219 *
2220 * speed
2221 *
2222 * If I nested if()s more, I could avoid testing (*err) which would save
2223 * time, space and page faults. I didn't nest all those if()s for clarity
2224 * and because I think the mode testing can be re-arranged 1st to test the
2225 * commoner constructs 1st. Does anybody have statistics on this?
2226 *
2227 *
2228 *
2229 * error messages
2230 *
2231 * In future, we should be able to 'compose' error messages in a scratch area
2232 * and give the user MUCH more informative error messages. Although this takes
2233 * a little more code at run-time, it will make this module much more self-
2234 * documenting. As an example of what sucks now: most error messages have
2235 * hardwired into them the DEC VAX metacharacters "#^@" which are nothing like
2236 * the Un*x characters "$`*", that most users will expect from this AS.
2237 */
2238 \f
2239 /*
2240 * The input is a string, ending with '\0'.
2241 *
2242 * We also require a 'hint' of what kind of operand is expected: so
2243 * we can remind caller not to write into literals for instance.
2244 *
2245 * The output is a skeletal instruction.
2246 *
2247 * The algorithm has two parts.
2248 * 1. extract the syntactic features (parse off all the @^#-()+[] mode crud);
2249 * 2. express the @^#-()+[] as some parameters suited to further analysis.
2250 *
2251 * 2nd step is where we detect the googles of possible invalid combinations
2252 * a human (or compiler) might write. Note that if we do a half-way
2253 * decent assembler, we don't know how long to make (eg) displacement
2254 * fields when we first meet them (because they may not have defined values).
2255 * So we must wait until we know how many bits are needed for each address,
2256 * then we can know both length and opcodes of instructions.
2257 * For reason(s) above, we will pass to our caller a 'broken' instruction
2258 * of these major components, from which our caller can generate instructions:
2259 * - displacement length I^ S^ L^ B^ W^ unspecified
2260 * - mode (many)
2261 * - register R0-R15 or absent
2262 * - index register R0-R15 or absent
2263 * - expression text what we don't parse
2264 * - error text(s) why we couldn't understand the operand
2265 */
2266
2267 /*
2268 * To decode output of this, test errtxt. If errtxt[0] == '\0', then
2269 * we had no errors that prevented parsing. Also, if we ever report
2270 * an internal bug, errtxt[0] is set non-zero. So one test tells you
2271 * if the other outputs are to be taken seriously.
2272 */
2273
2274 /*
2275 * Because this module is useful for both VMS and UN*X style assemblers
2276 * and because of the variety of UN*X assemblers we must recognise
2277 * the different conventions for assembler operand notation. For example
2278 * VMS says "#42" for immediate mode, while most UN*X say "$42".
2279 * We permit arbitrary sets of (single) characters to represent the
2280 * 3 concepts that DEC writes '#', '@', '^'.
2281 */
2282
2283 /* character tests */
2284 #define VIP_IMMEDIATE 01 /* Character is like DEC # */
2285 #define VIP_INDIRECT 02 /* Char is like DEC @ */
2286 #define VIP_DISPLEN 04 /* Char is like DEC ^ */
2287
2288 #define IMMEDIATEP(c) (vip_metacharacters [(c)&0xff]&VIP_IMMEDIATE)
2289 #define INDIRECTP(c) (vip_metacharacters [(c)&0xff]&VIP_INDIRECT)
2290 #define DISPLENP(c) (vip_metacharacters [(c)&0xff]&VIP_DISPLEN)
2291
2292 /* We assume 8 bits per byte. Use vip_op_defaults() to set these up BEFORE we
2293 * are ever called.
2294 */
2295
2296 #if defined(CONST_TABLE)
2297 #define _ 0,
2298 #define I VIP_IMMEDIATE,
2299 #define S VIP_INDIRECT,
2300 #define D VIP_DISPLEN,
2301 static const char
2302 vip_metacharacters[256] =
2303 {
2304 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /* ^@ ^A ^B ^C ^D ^E ^F ^G ^H ^I ^J ^K ^L ^M ^N ^O*/
2305 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /* ^P ^Q ^R ^S ^T ^U ^V ^W ^X ^Y ^Z ^[ ^\ ^] ^^ ^_ */
2306 _ _ _ _ I _ _ _ _ _ S _ _ _ _ _ /* sp ! " # $ % & ' ( ) * + , - . / */
2307 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*0 1 2 3 4 5 6 7 8 9 : ; < = > ?*/
2308 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*@ A B C D E F G H I J K L M N O*/
2309 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*P Q R S T U V W X Y Z [ \ ] ^ _*/
2310 D _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*` a b c d e f g h i j k l m n o*/
2311 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*p q r s t u v w x y z { | } ~ ^?*/
2312
2313 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2314 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2315 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2316 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2317 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2318 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2319 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2320 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2321 };
2322 #undef _
2323 #undef I
2324 #undef S
2325 #undef D
2326 #else
2327 static char vip_metacharacters[256];
2328
2329 static void
2330 vip_op_1 (bit, syms)
2331 int bit;
2332 const char *syms;
2333 {
2334 unsigned char t;
2335
2336 while ((t = *syms++) != 0)
2337 vip_metacharacters[t] |= bit;
2338 }
2339
2340 /* Can be called any time. More arguments may appear in future. */
2341 static void
2342 vip_op_defaults (immediate, indirect, displen)
2343 const char *immediate;
2344 const char *indirect;
2345 const char *displen;
2346 {
2347 vip_op_1 (VIP_IMMEDIATE, immediate);
2348 vip_op_1 (VIP_INDIRECT, indirect);
2349 vip_op_1 (VIP_DISPLEN, displen);
2350 }
2351
2352 #endif
2353 \f
2354
2355 /*
2356 * Dec defines the semantics of address modes (and values)
2357 * by a two-letter code, explained here.
2358 *
2359 * letter 1: access type
2360 *
2361 * a address calculation - no data access, registers forbidden
2362 * b branch displacement
2363 * m read - let go of bus - write back "modify"
2364 * r read
2365 * v bit field address: like 'a' but registers are OK
2366 * w write
2367 * space no operator (eg ".long foo") [our convention]
2368 *
2369 * letter 2: data type (i.e. width, alignment)
2370 *
2371 * b byte
2372 * d double precision floating point (D format)
2373 * f single precision floating point (F format)
2374 * g G format floating
2375 * h H format floating
2376 * l longword
2377 * o octaword
2378 * q quadword
2379 * w word
2380 * ? simple synthetic branch operand
2381 * - unconditional synthetic JSB/JSR operand
2382 * ! complex synthetic branch operand
2383 *
2384 * The '-?!' letter 2's are not for external consumption. They are used
2385 * for various assemblers. Generally, all unknown widths are assumed 0.
2386 * We don't limit your choice of width character.
2387 *
2388 * DEC operands are hard work to parse. For example, '@' as the first
2389 * character means indirect (deferred) mode but elswhere it is a shift
2390 * operator.
2391 * The long-winded explanation of how this is supposed to work is
2392 * cancelled. Read a DEC vax manual.
2393 * We try hard not to parse anything that MIGHT be part of the expression
2394 * buried in that syntax. For example if we see @...(Rn) we don't check
2395 * for '-' before the '(' because mode @-(Rn) does not exist.
2396 *
2397 * After parsing we have:
2398 *
2399 * at 1 if leading '@' (or Un*x '*')
2400 * len takes one value from " bilsw". eg B^ -> 'b'.
2401 * hash 1 if leading '#' (or Un*x '$')
2402 * expr_begin, expr_end the expression we did not parse
2403 * even though we don't interpret it, we make use
2404 * of its presence or absence.
2405 * sign -1: -(Rn) 0: absent +1: (Rn)+
2406 * paren 1 if () are around register
2407 * reg major register number 0:15 -1 means absent
2408 * ndx index register number 0:15 -1 means absent
2409 *
2410 * Again, I dare not explain it: just trace ALL the code!
2411 */
2412 \f
2413 static void
2414 vip_op (optext, vopP)
2415 /* user's input string e.g.: "@B^foo@bar(AP)[FP]:" */
2416 char *optext;
2417 /* Input fields: vop_access, vop_width.
2418 Output fields: _ndx, _reg, _mode, _short, _warn,
2419 _error _expr_begin, _expr_end, _nbytes.
2420 vop_nbytes : number of bytes in a datum. */
2421 struct vop *vopP;
2422 {
2423 /* track operand text forward */
2424 char *p;
2425 /* track operand text backward */
2426 char *q;
2427 /* 1 if leading '@' ('*') seen */
2428 int at;
2429 /* one of " bilsw" */
2430 char len;
2431 /* 1 if leading '#' ('$') seen */
2432 int hash;
2433 /* -1, 0 or +1 */
2434 int sign = 0;
2435 /* 1 if () surround register */
2436 int paren = 0;
2437 /* register number, -1:absent */
2438 int reg = 0;
2439 /* index register number -1:absent */
2440 int ndx = 0;
2441 /* report illegal operand, ""==OK */
2442 /* " " is a FAKE error: means we won */
2443 /* ANY err that begins with ' ' is a fake. */
2444 /* " " is converted to "" before return */
2445 const char *err;
2446 /* warn about weird modes pf address */
2447 const char *wrn;
2448 /* preserve q in case we backup */
2449 char *oldq = NULL;
2450 /* build up 4-bit operand mode here */
2451 /* note: index mode is in ndx, this is */
2452 /* the major mode of operand address */
2453 int mode = 0;
2454 /*
2455 * Notice how we move wrong-arg-type bugs INSIDE this module: if we
2456 * get the types wrong below, we lose at compile time rather than at
2457 * lint or run time.
2458 */
2459 char access_mode; /* vop_access. */
2460 char width; /* vop_width. */
2461
2462 access_mode = vopP->vop_access;
2463 width = vopP->vop_width;
2464 /* None of our code bugs (yet), no user text errors, no warnings
2465 even. */
2466 err = wrn = 0;
2467
2468 p = optext;
2469
2470 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2471 p++; /* skip over whitespace */
2472
2473 if ((at = INDIRECTP (*p)) != 0)
2474 { /* 1 if *p=='@'(or '*' for Un*x) */
2475 p++; /* at is determined */
2476 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2477 p++; /* skip over whitespace */
2478 }
2479
2480 /*
2481 * This code is subtle. It tries to detect all legal (letter)'^'
2482 * but it doesn't waste time explicitly testing for premature '\0' because
2483 * this case is rejected as a mismatch against either (letter) or '^'.
2484 */
2485 {
2486 char c;
2487
2488 c = *p;
2489 c = TOLOWER (c);
2490 if (DISPLENP (p[1]) && strchr ("bilws", len = c))
2491 p += 2; /* skip (letter) '^' */
2492 else /* no (letter) '^' seen */
2493 len = ' '; /* len is determined */
2494 }
2495
2496 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2497 p++; /* skip over whitespace */
2498
2499 if ((hash = IMMEDIATEP (*p)) != 0) /* 1 if *p=='#' ('$' for Un*x) */
2500 p++; /* hash is determined */
2501
2502 /*
2503 * p points to what may be the beginning of an expression.
2504 * We have peeled off the front all that is peelable.
2505 * We know at, len, hash.
2506 *
2507 * Lets point q at the end of the text and parse that (backwards).
2508 */
2509
2510 for (q = p; *q; q++)
2511 ;
2512 q--; /* now q points at last char of text */
2513 \f
2514 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2515 q--;
2516 /* reverse over whitespace, but don't */
2517 /* run back over *p */
2518
2519 /*
2520 * As a matter of policy here, we look for [Rn], although both Rn and S^#
2521 * forbid [Rn]. This is because it is easy, and because only a sick
2522 * cyborg would have [...] trailing an expression in a VAX-like assembler.
2523 * A meticulous parser would first check for Rn followed by '(' or '['
2524 * and not parse a trailing ']' if it found another. We just ban expressions
2525 * ending in ']'.
2526 */
2527 if (*q == ']')
2528 {
2529 while (q >= p && *q != '[')
2530 q--;
2531 /* either q<p or we got matching '[' */
2532 if (q < p)
2533 err = _("no '[' to match ']'");
2534 else
2535 {
2536 /*
2537 * Confusers like "[]" will eventually lose with a bad register
2538 * name error. So again we don't need to check for early '\0'.
2539 */
2540 if (q[3] == ']')
2541 ndx = vax_reg_parse (q[1], q[2], 0, 0);
2542 else if (q[4] == ']')
2543 ndx = vax_reg_parse (q[1], q[2], q[3], 0);
2544 else if (q[5] == ']')
2545 ndx = vax_reg_parse (q[1], q[2], q[3], q[4]);
2546 else
2547 ndx = -1;
2548 /*
2549 * Since we saw a ']' we will demand a register name in the [].
2550 * If luser hasn't given us one: be rude.
2551 */
2552 if (ndx < 0)
2553 err = _("bad register in []");
2554 else if (ndx == PC)
2555 err = _("[PC] index banned");
2556 else
2557 q--; /* point q just before "[...]" */
2558 }
2559 }
2560 else
2561 ndx = -1; /* no ']', so no iNDeX register */
2562
2563 /*
2564 * If err = "..." then we lost: run away.
2565 * Otherwise ndx == -1 if there was no "[...]".
2566 * Otherwise, ndx is index register number, and q points before "[...]".
2567 */
2568 \f
2569 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2570 q--;
2571 /* reverse over whitespace, but don't */
2572 /* run back over *p */
2573 if (!err || !*err)
2574 {
2575 sign = 0; /* no ()+ or -() seen yet */
2576
2577 if (q > p + 3 && *q == '+' && q[-1] == ')')
2578 {
2579 sign = 1; /* we saw a ")+" */
2580 q--; /* q points to ')' */
2581 }
2582
2583 if (*q == ')' && q > p + 2)
2584 {
2585 paren = 1; /* assume we have "(...)" */
2586 while (q >= p && *q != '(')
2587 q--;
2588 /* either q<p or we got matching '(' */
2589 if (q < p)
2590 err = _("no '(' to match ')'");
2591 else
2592 {
2593 /*
2594 * Confusers like "()" will eventually lose with a bad register
2595 * name error. So again we don't need to check for early '\0'.
2596 */
2597 if (q[3] == ')')
2598 reg = vax_reg_parse (q[1], q[2], 0, 0);
2599 else if (q[4] == ')')
2600 reg = vax_reg_parse (q[1], q[2], q[3], 0);
2601 else if (q[5] == ')')
2602 reg = vax_reg_parse (q[1], q[2], q[3], q[4]);
2603 else
2604 reg = -1;
2605 /*
2606 * Since we saw a ')' we will demand a register name in the ')'.
2607 * This is nasty: why can't our hypothetical assembler permit
2608 * parenthesised expressions? BECAUSE I AM LAZY! That is why.
2609 * Abuse luser if we didn't spy a register name.
2610 */
2611 if (reg < 0)
2612 {
2613 /* JF allow parenthasized expressions. I hope this works */
2614 paren = 0;
2615 while (*q != ')')
2616 q++;
2617 /* err = "unknown register in ()"; */
2618 }
2619 else
2620 q--; /* point just before '(' of "(...)" */
2621 /*
2622 * If err == "..." then we lost. Run away.
2623 * Otherwise if reg >= 0 then we saw (Rn).
2624 */
2625 }
2626 /*
2627 * If err == "..." then we lost.
2628 * Otherwise paren==1 and reg = register in "()".
2629 */
2630 }
2631 else
2632 paren = 0;
2633 /*
2634 * If err == "..." then we lost.
2635 * Otherwise, q points just before "(Rn)", if any.
2636 * If there was a "(...)" then paren==1, and reg is the register.
2637 */
2638 \f
2639 /*
2640 * We should only seek '-' of "-(...)" if:
2641 * we saw "(...)" paren == 1
2642 * we have no errors so far ! *err
2643 * we did not see '+' of "(...)+" sign < 1
2644 * We don't check len. We want a specific error message later if
2645 * user tries "x^...-(Rn)". This is a feature not a bug.
2646 */
2647 if (!err || !*err)
2648 {
2649 if (paren && sign < 1)/* !sign is adequate test */
2650 {
2651 if (*q == '-')
2652 {
2653 sign = -1;
2654 q--;
2655 }
2656 }
2657 /*
2658 * We have back-tracked over most
2659 * of the crud at the end of an operand.
2660 * Unless err, we know: sign, paren. If paren, we know reg.
2661 * The last case is of an expression "Rn".
2662 * This is worth hunting for if !err, !paren.
2663 * We wouldn't be here if err.
2664 * We remember to save q, in case we didn't want "Rn" anyway.
2665 */
2666 if (!paren)
2667 {
2668 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2669 q--;
2670 /* reverse over whitespace, but don't */
2671 /* run back over *p */
2672 /* room for Rn or Rnn (include prefix) exactly? */
2673 if (q > p && q < p + 4)
2674 reg = vax_reg_parse (p[0], p[1],
2675 q < p + 2 ? 0 : p[2],
2676 q < p + 3 ? 0 : p[3]);
2677 else
2678 reg = -1; /* always comes here if no register at all */
2679 /*
2680 * Here with a definitive reg value.
2681 */
2682 if (reg >= 0)
2683 {
2684 oldq = q;
2685 q = p - 1;
2686 }
2687 }
2688 }
2689 }
2690 /*
2691 * have reg. -1:absent; else 0:15
2692 */
2693
2694 /*
2695 * We have: err, at, len, hash, ndx, sign, paren, reg.
2696 * Also, any remaining expression is from *p through *q inclusive.
2697 * Should there be no expression, q==p-1. So expression length = q-p+1.
2698 * This completes the first part: parsing the operand text.
2699 */
2700 \f
2701 /*
2702 * We now want to boil the data down, checking consistency on the way.
2703 * We want: len, mode, reg, ndx, err, p, q, wrn, bug.
2704 * We will deliver a 4-bit reg, and a 4-bit mode.
2705 */
2706
2707 /*
2708 * Case of branch operand. Different. No L^B^W^I^S^ allowed for instance.
2709 *
2710 * in: at ?
2711 * len ?
2712 * hash ?
2713 * p:q ?
2714 * sign ?
2715 * paren ?
2716 * reg ?
2717 * ndx ?
2718 *
2719 * out: mode 0
2720 * reg -1
2721 * len ' '
2722 * p:q whatever was input
2723 * ndx -1
2724 * err " " or error message, and other outputs trashed
2725 */
2726 /* branch operands have restricted forms */
2727 if ((!err || !*err) && access_mode == 'b')
2728 {
2729 if (at || hash || sign || paren || ndx >= 0 || reg >= 0 || len != ' ')
2730 err = _("invalid branch operand");
2731 else
2732 err = " ";
2733 }
2734 \f
2735 /* Since nobody seems to use it: comment this 'feature'(?) out for now. */
2736 #ifdef NEVER
2737 /*
2738 * Case of stand-alone operand. e.g. ".long foo"
2739 *
2740 * in: at ?
2741 * len ?
2742 * hash ?
2743 * p:q ?
2744 * sign ?
2745 * paren ?
2746 * reg ?
2747 * ndx ?
2748 *
2749 * out: mode 0
2750 * reg -1
2751 * len ' '
2752 * p:q whatever was input
2753 * ndx -1
2754 * err " " or error message, and other outputs trashed
2755 */
2756 if ((!err || !*err) && access_mode == ' ')
2757 {
2758 if (at)
2759 err = _("address prohibits @");
2760 else if (hash)
2761 err = _("address prohibits #");
2762 else if (sign)
2763 {
2764 if (sign < 0)
2765 err = _("address prohibits -()");
2766 else
2767 err = _("address prohibits ()+");
2768 }
2769 else if (paren)
2770 err = _("address prohibits ()");
2771 else if (ndx >= 0)
2772 err = _("address prohibits []");
2773 else if (reg >= 0)
2774 err = _("address prohibits register");
2775 else if (len != ' ')
2776 err = _("address prohibits displacement length specifier");
2777 else
2778 {
2779 err = " "; /* succeed */
2780 mode = 0;
2781 }
2782 }
2783 #endif /*#Ifdef NEVER*/
2784 \f
2785 /*
2786 * Case of S^#.
2787 *
2788 * in: at 0
2789 * len 's' definition
2790 * hash 1 demand
2791 * p:q demand not empty
2792 * sign 0 by paren==0
2793 * paren 0 by "()" scan logic because "S^" seen
2794 * reg -1 or nn by mistake
2795 * ndx -1
2796 *
2797 * out: mode 0
2798 * reg -1
2799 * len 's'
2800 * exp
2801 * ndx -1
2802 */
2803 if ((!err || !*err) && len == 's')
2804 {
2805 if (!hash || paren || at || ndx >= 0)
2806 err = _("invalid operand of S^#");
2807 else
2808 {
2809 if (reg >= 0)
2810 {
2811 /*
2812 * SHIT! we saw S^#Rnn ! put the Rnn back in
2813 * expression. KLUDGE! Use oldq so we don't
2814 * need to know exact length of reg name.
2815 */
2816 q = oldq;
2817 reg = 0;
2818 }
2819 /*
2820 * We have all the expression we will ever get.
2821 */
2822 if (p > q)
2823 err = _("S^# needs expression");
2824 else if (access_mode == 'r')
2825 {
2826 err = " "; /* WIN! */
2827 mode = 0;
2828 }
2829 else
2830 err = _("S^# may only read-access");
2831 }
2832 }
2833 \f
2834 /*
2835 * Case of -(Rn), which is weird case.
2836 *
2837 * in: at 0
2838 * len '
2839 * hash 0
2840 * p:q q<p
2841 * sign -1 by definition
2842 * paren 1 by definition
2843 * reg present by definition
2844 * ndx optional
2845 *
2846 * out: mode 7
2847 * reg present
2848 * len ' '
2849 * exp "" enforce empty expression
2850 * ndx optional warn if same as reg
2851 */
2852 if ((!err || !*err) && sign < 0)
2853 {
2854 if (len != ' ' || hash || at || p <= q)
2855 err = _("invalid operand of -()");
2856 else
2857 {
2858 err = " "; /* win */
2859 mode = 7;
2860 if (reg == PC)
2861 wrn = _("-(PC) unpredictable");
2862 else if (reg == ndx)
2863 wrn = _("[]index same as -()register: unpredictable");
2864 }
2865 }
2866 \f
2867 /*
2868 * We convert "(Rn)" to "@Rn" for our convenience.
2869 * (I hope this is convenient: has someone got a better way to parse this?)
2870 * A side-effect of this is that "@Rn" is a valid operand.
2871 */
2872 if (paren && !sign && !hash && !at && len == ' ' && p > q)
2873 {
2874 at = 1;
2875 paren = 0;
2876 }
2877
2878 /*
2879 * Case of (Rn)+, which is slightly different.
2880 *
2881 * in: at
2882 * len ' '
2883 * hash 0
2884 * p:q q<p
2885 * sign +1 by definition
2886 * paren 1 by definition
2887 * reg present by definition
2888 * ndx optional
2889 *
2890 * out: mode 8+@
2891 * reg present
2892 * len ' '
2893 * exp "" enforce empty expression
2894 * ndx optional warn if same as reg
2895 */
2896 if ((!err || !*err) && sign > 0)
2897 {
2898 if (len != ' ' || hash || p <= q)
2899 err = _("invalid operand of ()+");
2900 else
2901 {
2902 err = " "; /* win */
2903 mode = 8 + (at ? 1 : 0);
2904 if (reg == PC)
2905 wrn = _("(PC)+ unpredictable");
2906 else if (reg == ndx)
2907 wrn = _("[]index same as ()+register: unpredictable");
2908 }
2909 }
2910 \f
2911 /*
2912 * Case of #, without S^.
2913 *
2914 * in: at
2915 * len ' ' or 'i'
2916 * hash 1 by definition
2917 * p:q
2918 * sign 0
2919 * paren 0
2920 * reg absent
2921 * ndx optional
2922 *
2923 * out: mode 8+@
2924 * reg PC
2925 * len ' ' or 'i'
2926 * exp
2927 * ndx optional
2928 */
2929 if ((!err || !*err) && hash)
2930 {
2931 if (len != 'i' && len != ' ')
2932 err = _("# conflicts length");
2933 else if (paren)
2934 err = _("# bars register");
2935 else
2936 {
2937 if (reg >= 0)
2938 {
2939 /*
2940 * SHIT! we saw #Rnn! Put the Rnn back into the expression.
2941 * By using oldq, we don't need to know how long Rnn was.
2942 * KLUDGE!
2943 */
2944 q = oldq;
2945 reg = -1; /* no register any more */
2946 }
2947 err = " "; /* win */
2948
2949 /* JF a bugfix, I think! */
2950 if (at && access_mode == 'a')
2951 vopP->vop_nbytes = 4;
2952
2953 mode = (at ? 9 : 8);
2954 reg = PC;
2955 if ((access_mode == 'm' || access_mode == 'w') && !at)
2956 wrn = _("writing or modifying # is unpredictable");
2957 }
2958 }
2959 /*
2960 * If !*err, then sign == 0
2961 * hash == 0
2962 */
2963 \f
2964 /*
2965 * Case of Rn. We seperate this one because it has a few special
2966 * errors the remaining modes lack.
2967 *
2968 * in: at optional
2969 * len ' '
2970 * hash 0 by program logic
2971 * p:q empty
2972 * sign 0 by program logic
2973 * paren 0 by definition
2974 * reg present by definition
2975 * ndx optional
2976 *
2977 * out: mode 5+@
2978 * reg present
2979 * len ' ' enforce no length
2980 * exp "" enforce empty expression
2981 * ndx optional warn if same as reg
2982 */
2983 if ((!err || !*err) && !paren && reg >= 0)
2984 {
2985 if (len != ' ')
2986 err = _("length not needed");
2987 else if (at)
2988 {
2989 err = " "; /* win */
2990 mode = 6; /* @Rn */
2991 }
2992 else if (ndx >= 0)
2993 err = _("can't []index a register, because it has no address");
2994 else if (access_mode == 'a')
2995 err = _("a register has no address");
2996 else
2997 {
2998 /*
2999 * Idea here is to detect from length of datum
3000 * and from register number if we will touch PC.
3001 * Warn if we do.
3002 * vop_nbytes is number of bytes in operand.
3003 * Compute highest byte affected, compare to PC0.
3004 */
3005 if ((vopP->vop_nbytes + reg * 4) > 60)
3006 wrn = _("PC part of operand unpredictable");
3007 err = " "; /* win */
3008 mode = 5; /* Rn */
3009 }
3010 }
3011 /*
3012 * If !*err, sign == 0
3013 * hash == 0
3014 * paren == 1 OR reg==-1
3015 */
3016 \f
3017 /*
3018 * Rest of cases fit into one bunch.
3019 *
3020 * in: at optional
3021 * len ' ' or 'b' or 'w' or 'l'
3022 * hash 0 by program logic
3023 * p:q expected (empty is not an error)
3024 * sign 0 by program logic
3025 * paren optional
3026 * reg optional
3027 * ndx optional
3028 *
3029 * out: mode 10 + @ + len
3030 * reg optional
3031 * len ' ' or 'b' or 'w' or 'l'
3032 * exp maybe empty
3033 * ndx optional warn if same as reg
3034 */
3035 if (!err || !*err)
3036 {
3037 err = " "; /* win (always) */
3038 mode = 10 + (at ? 1 : 0);
3039 switch (len)
3040 {
3041 case 'l':
3042 mode += 2;
3043 case 'w':
3044 mode += 2;
3045 case ' ': /* assumed B^ until our caller changes it */
3046 case 'b':
3047 break;
3048 }
3049 }
3050
3051 /*
3052 * here with completely specified mode
3053 * len
3054 * reg
3055 * expression p,q
3056 * ndx
3057 */
3058
3059 if (*err == ' ')
3060 err = 0; /* " " is no longer an error */
3061
3062 vopP->vop_mode = mode;
3063 vopP->vop_reg = reg;
3064 vopP->vop_short = len;
3065 vopP->vop_expr_begin = p;
3066 vopP->vop_expr_end = q;
3067 vopP->vop_ndx = ndx;
3068 vopP->vop_error = err;
3069 vopP->vop_warn = wrn;
3070 }
3071 \f
3072 /*
3073
3074 Summary of vip_op outputs.
3075
3076 mode reg len ndx
3077 (Rn) => @Rn
3078 {@}Rn 5+@ n ' ' optional
3079 branch operand 0 -1 ' ' -1
3080 S^#foo 0 -1 's' -1
3081 -(Rn) 7 n ' ' optional
3082 {@}(Rn)+ 8+@ n ' ' optional
3083 {@}#foo, no S^ 8+@ PC " i" optional
3084 {@}{q^}{(Rn)} 10+@+q option " bwl" optional
3085
3086 */
3087 \f
3088 #ifdef TEST /* #Define to use this testbed. */
3089
3090 /*
3091 * Follows a test program for this function.
3092 * We declare arrays non-local in case some of our tiny-minded machines
3093 * default to small stacks. Also, helps with some debuggers.
3094 */
3095
3096 #include <stdio.h>
3097
3098 char answer[100]; /* human types into here */
3099 char *p; /* */
3100 char *myerr;
3101 char *mywrn;
3102 char *mybug;
3103 char myaccess;
3104 char mywidth;
3105 char mymode;
3106 char myreg;
3107 char mylen;
3108 char *myleft;
3109 char *myright;
3110 char myndx;
3111 int my_operand_length;
3112 char my_immediate[200];
3113 char my_indirect[200];
3114 char my_displen[200];
3115
3116 main ()
3117 {
3118 printf ("enter immediate symbols eg enter # ");
3119 gets (my_immediate);
3120 printf ("enter indirect symbols eg enter @ ");
3121 gets (my_indirect);
3122 printf ("enter displen symbols eg enter ^ ");
3123 gets (my_displen);
3124 vip_op_defaults (my_immediate, my_indirect, my_displen);
3125 for (;;)
3126 {
3127 printf ("access,width (eg 'ab' or 'wh') [empty line to quit] : ");
3128 fflush (stdout);
3129 gets (answer);
3130 if (!answer[0])
3131 exit (EXIT_SUCCESS);
3132 myaccess = answer[0];
3133 mywidth = answer[1];
3134 switch (mywidth)
3135 {
3136 case 'b':
3137 my_operand_length = 1;
3138 break;
3139 case 'd':
3140 my_operand_length = 8;
3141 break;
3142 case 'f':
3143 my_operand_length = 4;
3144 break;
3145 case 'g':
3146 my_operand_length = 16;
3147 break;
3148 case 'h':
3149 my_operand_length = 32;
3150 break;
3151 case 'l':
3152 my_operand_length = 4;
3153 break;
3154 case 'o':
3155 my_operand_length = 16;
3156 break;
3157 case 'q':
3158 my_operand_length = 8;
3159 break;
3160 case 'w':
3161 my_operand_length = 2;
3162 break;
3163 case '!':
3164 case '?':
3165 case '-':
3166 my_operand_length = 0;
3167 break;
3168
3169 default:
3170 my_operand_length = 2;
3171 printf ("I dn't understand access width %c\n", mywidth);
3172 break;
3173 }
3174 printf ("VAX assembler instruction operand: ");
3175 fflush (stdout);
3176 gets (answer);
3177 mybug = vip_op (answer, myaccess, mywidth, my_operand_length,
3178 &mymode, &myreg, &mylen, &myleft, &myright, &myndx,
3179 &myerr, &mywrn);
3180 if (*myerr)
3181 {
3182 printf ("error: \"%s\"\n", myerr);
3183 if (*mybug)
3184 printf (" bug: \"%s\"\n", mybug);
3185 }
3186 else
3187 {
3188 if (*mywrn)
3189 printf ("warning: \"%s\"\n", mywrn);
3190 mumble ("mode", mymode);
3191 mumble ("register", myreg);
3192 mumble ("index", myndx);
3193 printf ("width:'%c' ", mylen);
3194 printf ("expression: \"");
3195 while (myleft <= myright)
3196 putchar (*myleft++);
3197 printf ("\"\n");
3198 }
3199 }
3200 }
3201
3202 mumble (text, value)
3203 char *text;
3204 int value;
3205 {
3206 printf ("%s:", text);
3207 if (value >= 0)
3208 printf ("%xx", value);
3209 else
3210 printf ("ABSENT");
3211 printf (" ");
3212 }
3213
3214 #endif /* ifdef TEST */
3215
3216 /* end: vip_op.c */
3217
3218 const int md_short_jump_size = 3;
3219 const int md_long_jump_size = 6;
3220 const int md_reloc_size = 8; /* Size of relocation record */
3221
3222 void
3223 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
3224 char *ptr;
3225 addressT from_addr;
3226 addressT to_addr ATTRIBUTE_UNUSED;
3227 fragS *frag ATTRIBUTE_UNUSED;
3228 symbolS *to_symbol ATTRIBUTE_UNUSED;
3229 {
3230 valueT offset;
3231
3232 /* This former calculation was off by two:
3233 offset = to_addr - (from_addr + 1);
3234 We need to account for the one byte instruction and also its
3235 two byte operand. */
3236 offset = to_addr - (from_addr + 1 + 2);
3237 *ptr++ = VAX_BRW; /* branch with word (16 bit) offset */
3238 md_number_to_chars (ptr, offset, 2);
3239 }
3240
3241 void
3242 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
3243 char *ptr;
3244 addressT from_addr ATTRIBUTE_UNUSED;
3245 addressT to_addr;
3246 fragS *frag;
3247 symbolS *to_symbol;
3248 {
3249 valueT offset;
3250
3251 offset = to_addr - S_GET_VALUE (to_symbol);
3252 *ptr++ = VAX_JMP; /* arbitrary jump */
3253 *ptr++ = VAX_ABSOLUTE_MODE;
3254 md_number_to_chars (ptr, offset, 4);
3255 fix_new (frag, ptr - frag->fr_literal, 4, to_symbol, (long) 0, 0, NO_RELOC);
3256 }
3257 \f
3258 #ifdef OBJ_VMS
3259 const char *md_shortopts = "d:STt:V+1h:Hv::";
3260 #elif defined(OBJ_ELC)
3261 const char *md_shortopts = "d:STt:VkK";
3262 #else
3263 const char *md_shortopts = "d:STt:V";
3264 #endif
3265 struct option md_longopts[] = {
3266 {NULL, no_argument, NULL, 0}
3267 };
3268 size_t md_longopts_size = sizeof (md_longopts);
3269
3270 int
3271 md_parse_option (c, arg)
3272 int c;
3273 char *arg;
3274 {
3275 switch (c)
3276 {
3277 case 'S':
3278 as_warn (_("SYMBOL TABLE not implemented"));
3279 break;
3280
3281 case 'T':
3282 as_warn (_("TOKEN TRACE not implemented"));
3283 break;
3284
3285 case 'd':
3286 as_warn (_("Displacement length %s ignored!"), arg);
3287 break;
3288
3289 case 't':
3290 as_warn (_("I don't need or use temp. file \"%s\"."), arg);
3291 break;
3292
3293 case 'V':
3294 as_warn (_("I don't use an interpass file! -V ignored"));
3295 break;
3296
3297 #ifdef OBJ_VMS
3298 case '+': /* For g++. Hash any name > 31 chars long. */
3299 flag_hash_long_names = 1;
3300 break;
3301
3302 case '1': /* For backward compatibility */
3303 flag_one = 1;
3304 break;
3305
3306 case 'H': /* Show new symbol after hash truncation */
3307 flag_show_after_trunc = 1;
3308 break;
3309
3310 case 'h': /* No hashing of mixed-case names */
3311 {
3312 extern char vms_name_mapping;
3313 vms_name_mapping = atoi (arg);
3314 flag_no_hash_mixed_case = 1;
3315 }
3316 break;
3317
3318 case 'v':
3319 {
3320 extern char *compiler_version_string;
3321 if (!arg || !*arg || access (arg, 0) == 0)
3322 return 0; /* have caller show the assembler version */
3323 compiler_version_string = arg;
3324 }
3325 break;
3326 #endif
3327
3328 #ifdef OBJ_ELF
3329 case 'K':
3330 case 'k':
3331 flag_want_pic = 1;
3332 break; /* -pic, Position Independent Code */
3333 #endif
3334
3335 default:
3336 return 0;
3337 }
3338
3339 return 1;
3340 }
3341
3342 void
3343 md_show_usage (stream)
3344 FILE *stream;
3345 {
3346 fprintf (stream, _("\
3347 VAX options:\n\
3348 -d LENGTH ignored\n\
3349 -J ignored\n\
3350 -S ignored\n\
3351 -t FILE ignored\n\
3352 -T ignored\n\
3353 -V ignored\n"));
3354 #ifdef OBJ_VMS
3355 fprintf (stream, _("\
3356 VMS options:\n\
3357 -+ hash encode names longer than 31 characters\n\
3358 -1 `const' handling compatible with gcc 1.x\n\
3359 -H show new symbol after hash truncation\n\
3360 -h NUM don't hash mixed-case names, and adjust case:\n\
3361 0 = upper, 2 = lower, 3 = preserve case\n\
3362 -v\"VERSION\" code being assembled was produced by compiler \"VERSION\"\n"));
3363 #endif
3364 }
3365 \f
3366 /* We have no need to default values of symbols. */
3367
3368 symbolS *
3369 md_undefined_symbol (name)
3370 char *name ATTRIBUTE_UNUSED;
3371 {
3372 return 0;
3373 }
3374
3375 /* Round up a section size to the appropriate boundary. */
3376 valueT
3377 md_section_align (segment, size)
3378 segT segment ATTRIBUTE_UNUSED;
3379 valueT size;
3380 {
3381 return size; /* Byte alignment is fine */
3382 }
3383
3384 /* Exactly what point is a PC-relative offset relative TO?
3385 On the vax, they're relative to the address of the offset, plus
3386 its size. */
3387 long
3388 md_pcrel_from (fixP)
3389 fixS *fixP;
3390 {
3391 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
3392 }
3393
3394 #ifdef OBJ_AOUT
3395 #ifndef BFD_ASSEMBLER
3396 void
3397 tc_headers_hook(headers)
3398 object_headers *headers;
3399 {
3400 #ifdef TE_NetBSD
3401 N_SET_INFO(headers->header, OMAGIC, M_VAX4K_NETBSD, 0);
3402 headers->header.a_info = htonl(headers->header.a_info);
3403 #endif
3404 }
3405 #endif /* !BFD_ASSEMBLER */
3406 #endif /* OBJ_AOUT */
3407
3408 #ifdef BFD_ASSEMBLER
3409 arelent *
3410 tc_gen_reloc (section, fixp)
3411 asection *section ATTRIBUTE_UNUSED;
3412 fixS *fixp;
3413 {
3414 arelent *reloc;
3415 bfd_reloc_code_real_type code;
3416
3417 if (fixp->fx_tcbit)
3418 abort();
3419
3420 if (fixp->fx_r_type != BFD_RELOC_NONE)
3421 {
3422 code = fixp->fx_r_type;
3423
3424 if (fixp->fx_pcrel)
3425 {
3426 switch (code)
3427 {
3428 case BFD_RELOC_8_PCREL:
3429 case BFD_RELOC_16_PCREL:
3430 case BFD_RELOC_32_PCREL:
3431 #ifdef OBJ_ELF
3432 case BFD_RELOC_8_GOT_PCREL:
3433 case BFD_RELOC_16_GOT_PCREL:
3434 case BFD_RELOC_32_GOT_PCREL:
3435 case BFD_RELOC_8_PLT_PCREL:
3436 case BFD_RELOC_16_PLT_PCREL:
3437 case BFD_RELOC_32_PLT_PCREL:
3438 #endif
3439 break;
3440 default:
3441 as_bad_where (fixp->fx_file, fixp->fx_line,
3442 _("Cannot make %s relocation PC relative"),
3443 bfd_get_reloc_code_name (code));
3444 }
3445 }
3446 }
3447 else
3448 {
3449 #define F(SZ,PCREL) (((SZ) << 1) + (PCREL))
3450 switch (F (fixp->fx_size, fixp->fx_pcrel))
3451 {
3452 #define MAP(SZ,PCREL,TYPE) case F(SZ,PCREL): code = (TYPE); break
3453 MAP (1, 0, BFD_RELOC_8);
3454 MAP (2, 0, BFD_RELOC_16);
3455 MAP (4, 0, BFD_RELOC_32);
3456 MAP (1, 1, BFD_RELOC_8_PCREL);
3457 MAP (2, 1, BFD_RELOC_16_PCREL);
3458 MAP (4, 1, BFD_RELOC_32_PCREL);
3459 default:
3460 abort ();
3461 }
3462 }
3463 #undef F
3464 #undef MAP
3465
3466 reloc = (arelent *) xmalloc (sizeof (arelent));
3467 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
3468 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
3469 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
3470 #ifndef OBJ_ELF
3471 if (fixp->fx_pcrel)
3472 reloc->addend = fixp->fx_addnumber;
3473 else
3474 reloc->addend = 0;
3475 #else
3476 reloc->addend = fixp->fx_offset;
3477 #endif
3478
3479 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
3480 assert (reloc->howto != 0);
3481
3482 return reloc;
3483 }
3484 #endif /* BFD_ASSEMBLER */
3485
3486 /* end of tc-vax.c */