]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-xtensa.c
2009-01-07 Sterling Augustine <sterling@tensilica.com>
[thirdparty/binutils-gdb.git] / gas / config / tc-xtensa.c
1 /* tc-xtensa.c -- Assemble Xtensa instructions.
2 Copyright 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include <limits.h>
22 #include "as.h"
23 #include "sb.h"
24 #include "safe-ctype.h"
25 #include "tc-xtensa.h"
26 #include "subsegs.h"
27 #include "xtensa-relax.h"
28 #include "dwarf2dbg.h"
29 #include "xtensa-istack.h"
30 #include "struc-symbol.h"
31 #include "xtensa-config.h"
32
33 /* Provide default values for new configuration settings. */
34 #ifndef XSHAL_ABI
35 #define XSHAL_ABI 0
36 #endif
37
38 #ifndef uint32
39 #define uint32 unsigned int
40 #endif
41 #ifndef int32
42 #define int32 signed int
43 #endif
44
45 /* Notes:
46
47 Naming conventions (used somewhat inconsistently):
48 The xtensa_ functions are exported
49 The xg_ functions are internal
50
51 We also have a couple of different extensibility mechanisms.
52 1) The idiom replacement:
53 This is used when a line is first parsed to
54 replace an instruction pattern with another instruction
55 It is currently limited to replacements of instructions
56 with constant operands.
57 2) The xtensa-relax.c mechanism that has stronger instruction
58 replacement patterns. When an instruction's immediate field
59 does not fit the next instruction sequence is attempted.
60 In addition, "narrow" opcodes are supported this way. */
61
62
63 /* Define characters with special meanings to GAS. */
64 const char comment_chars[] = "#";
65 const char line_comment_chars[] = "#";
66 const char line_separator_chars[] = ";";
67 const char EXP_CHARS[] = "eE";
68 const char FLT_CHARS[] = "rRsSfFdDxXpP";
69
70
71 /* Flags to indicate whether the hardware supports the density and
72 absolute literals options. */
73
74 bfd_boolean density_supported = XCHAL_HAVE_DENSITY;
75 bfd_boolean absolute_literals_supported = XSHAL_USE_ABSOLUTE_LITERALS;
76
77 /* Maximum width we would pad an unreachable frag to get alignment. */
78 #define UNREACHABLE_MAX_WIDTH 8
79
80 static vliw_insn cur_vinsn;
81
82 unsigned xtensa_num_pipe_stages;
83 unsigned xtensa_fetch_width = XCHAL_INST_FETCH_WIDTH;
84
85 static enum debug_info_type xt_saved_debug_type = DEBUG_NONE;
86
87 /* Some functions are only valid in the front end. This variable
88 allows us to assert that we haven't crossed over into the
89 back end. */
90 static bfd_boolean past_xtensa_end = FALSE;
91
92 /* Flags for properties of the last instruction in a segment. */
93 #define FLAG_IS_A0_WRITER 0x1
94 #define FLAG_IS_BAD_LOOPEND 0x2
95
96
97 /* We define a special segment names ".literal" to place literals
98 into. The .fini and .init sections are special because they
99 contain code that is moved together by the linker. We give them
100 their own special .fini.literal and .init.literal sections. */
101
102 #define LITERAL_SECTION_NAME xtensa_section_rename (".literal")
103 #define LIT4_SECTION_NAME xtensa_section_rename (".lit4")
104 #define INIT_SECTION_NAME xtensa_section_rename (".init")
105 #define FINI_SECTION_NAME xtensa_section_rename (".fini")
106
107
108 /* This type is used for the directive_stack to keep track of the
109 state of the literal collection pools. If lit_prefix is set, it is
110 used to determine the literal section names; otherwise, the literal
111 sections are determined based on the current text section. The
112 lit_seg and lit4_seg fields cache these literal sections, with the
113 current_text_seg field used a tag to indicate whether the cached
114 values are valid. */
115
116 typedef struct lit_state_struct
117 {
118 char *lit_prefix;
119 segT current_text_seg;
120 segT lit_seg;
121 segT lit4_seg;
122 } lit_state;
123
124 static lit_state default_lit_sections;
125
126
127 /* We keep a list of literal segments. The seg_list type is the node
128 for this list. The literal_head pointer is the head of the list,
129 with the literal_head_h dummy node at the start. */
130
131 typedef struct seg_list_struct
132 {
133 struct seg_list_struct *next;
134 segT seg;
135 } seg_list;
136
137 static seg_list literal_head_h;
138 static seg_list *literal_head = &literal_head_h;
139
140
141 /* Lists of symbols. We keep a list of symbols that label the current
142 instruction, so that we can adjust the symbols when inserting alignment
143 for various instructions. We also keep a list of all the symbols on
144 literals, so that we can fix up those symbols when the literals are
145 later moved into the text sections. */
146
147 typedef struct sym_list_struct
148 {
149 struct sym_list_struct *next;
150 symbolS *sym;
151 } sym_list;
152
153 static sym_list *insn_labels = NULL;
154 static sym_list *free_insn_labels = NULL;
155 static sym_list *saved_insn_labels = NULL;
156
157 static sym_list *literal_syms;
158
159
160 /* Flags to determine whether to prefer const16 or l32r
161 if both options are available. */
162 int prefer_const16 = 0;
163 int prefer_l32r = 0;
164
165 /* Global flag to indicate when we are emitting literals. */
166 int generating_literals = 0;
167
168 /* The following PROPERTY table definitions are copied from
169 <elf/xtensa.h> and must be kept in sync with the code there. */
170
171 /* Flags in the property tables to specify whether blocks of memory
172 are literals, instructions, data, or unreachable. For
173 instructions, blocks that begin loop targets and branch targets are
174 designated. Blocks that do not allow density, instruction
175 reordering or transformation are also specified. Finally, for
176 branch targets, branch target alignment priority is included.
177 Alignment of the next block is specified in the current block
178 and the size of the current block does not include any fill required
179 to align to the next block. */
180
181 #define XTENSA_PROP_LITERAL 0x00000001
182 #define XTENSA_PROP_INSN 0x00000002
183 #define XTENSA_PROP_DATA 0x00000004
184 #define XTENSA_PROP_UNREACHABLE 0x00000008
185 /* Instruction only properties at beginning of code. */
186 #define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010
187 #define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020
188 /* Instruction only properties about code. */
189 #define XTENSA_PROP_INSN_NO_DENSITY 0x00000040
190 #define XTENSA_PROP_INSN_NO_REORDER 0x00000080
191 /* Historically, NO_TRANSFORM was a property of instructions,
192 but it should apply to literals under certain circumstances. */
193 #define XTENSA_PROP_NO_TRANSFORM 0x00000100
194
195 /* Branch target alignment information. This transmits information
196 to the linker optimization about the priority of aligning a
197 particular block for branch target alignment: None, low priority,
198 high priority, or required. These only need to be checked in
199 instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET.
200 Common usage is
201
202 switch (GET_XTENSA_PROP_BT_ALIGN (flags))
203 case XTENSA_PROP_BT_ALIGN_NONE:
204 case XTENSA_PROP_BT_ALIGN_LOW:
205 case XTENSA_PROP_BT_ALIGN_HIGH:
206 case XTENSA_PROP_BT_ALIGN_REQUIRE:
207 */
208 #define XTENSA_PROP_BT_ALIGN_MASK 0x00000600
209
210 /* No branch target alignment. */
211 #define XTENSA_PROP_BT_ALIGN_NONE 0x0
212 /* Low priority branch target alignment. */
213 #define XTENSA_PROP_BT_ALIGN_LOW 0x1
214 /* High priority branch target alignment. */
215 #define XTENSA_PROP_BT_ALIGN_HIGH 0x2
216 /* Required branch target alignment. */
217 #define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3
218
219 #define GET_XTENSA_PROP_BT_ALIGN(flag) \
220 (((unsigned) ((flag) & (XTENSA_PROP_BT_ALIGN_MASK))) >> 9)
221 #define SET_XTENSA_PROP_BT_ALIGN(flag, align) \
222 (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \
223 (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK))
224
225
226 /* Alignment is specified in the block BEFORE the one that needs
227 alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to
228 get the required alignment specified as a power of 2. Use
229 SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required
230 alignment. Be careful of side effects since the SET will evaluate
231 flags twice. Also, note that the SIZE of a block in the property
232 table does not include the alignment size, so the alignment fill
233 must be calculated to determine if two blocks are contiguous.
234 TEXT_ALIGN is not currently implemented but is a placeholder for a
235 possible future implementation. */
236
237 #define XTENSA_PROP_ALIGN 0x00000800
238
239 #define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000
240
241 #define GET_XTENSA_PROP_ALIGNMENT(flag) \
242 (((unsigned) ((flag) & (XTENSA_PROP_ALIGNMENT_MASK))) >> 12)
243 #define SET_XTENSA_PROP_ALIGNMENT(flag, align) \
244 (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \
245 (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK))
246
247 #define XTENSA_PROP_INSN_ABSLIT 0x00020000
248
249
250 /* Structure for saving instruction and alignment per-fragment data
251 that will be written to the object file. This structure is
252 equivalent to the actual data that will be written out to the file
253 but is easier to use. We provide a conversion to file flags
254 in frag_flags_to_number. */
255
256 typedef struct frag_flags_struct frag_flags;
257
258 struct frag_flags_struct
259 {
260 /* is_literal should only be used after xtensa_move_literals.
261 If you need to check if you are generating a literal fragment,
262 then use the generating_literals global. */
263
264 unsigned is_literal : 1;
265 unsigned is_insn : 1;
266 unsigned is_data : 1;
267 unsigned is_unreachable : 1;
268
269 /* is_specific_opcode implies no_transform. */
270 unsigned is_no_transform : 1;
271
272 struct
273 {
274 unsigned is_loop_target : 1;
275 unsigned is_branch_target : 1; /* Branch targets have a priority. */
276 unsigned bt_align_priority : 2;
277
278 unsigned is_no_density : 1;
279 /* no_longcalls flag does not need to be placed in the object file. */
280
281 unsigned is_no_reorder : 1;
282
283 /* Uses absolute literal addressing for l32r. */
284 unsigned is_abslit : 1;
285 } insn;
286 unsigned is_align : 1;
287 unsigned alignment : 5;
288 };
289
290
291 /* Structure for saving information about a block of property data
292 for frags that have the same flags. */
293 struct xtensa_block_info_struct
294 {
295 segT sec;
296 bfd_vma offset;
297 size_t size;
298 frag_flags flags;
299 struct xtensa_block_info_struct *next;
300 };
301
302
303 /* Structure for saving the current state before emitting literals. */
304 typedef struct emit_state_struct
305 {
306 const char *name;
307 segT now_seg;
308 subsegT now_subseg;
309 int generating_literals;
310 } emit_state;
311
312
313 /* Opcode placement information */
314
315 typedef unsigned long long bitfield;
316 #define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit)))
317 #define set_bit(bit, bf) ((bf) |= (0x01ll << (bit)))
318 #define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit)))
319
320 #define MAX_FORMATS 32
321
322 typedef struct op_placement_info_struct
323 {
324 int num_formats;
325 /* A number describing how restrictive the issue is for this
326 opcode. For example, an opcode that fits lots of different
327 formats has a high freedom, as does an opcode that fits
328 only one format but many slots in that format. The most
329 restrictive is the opcode that fits only one slot in one
330 format. */
331 int issuef;
332 xtensa_format narrowest;
333 char narrowest_size;
334 char narrowest_slot;
335
336 /* formats is a bitfield with the Nth bit set
337 if the opcode fits in the Nth xtensa_format. */
338 bitfield formats;
339
340 /* slots[N]'s Mth bit is set if the op fits in the
341 Mth slot of the Nth xtensa_format. */
342 bitfield slots[MAX_FORMATS];
343
344 /* A count of the number of slots in a given format
345 an op can fit (i.e., the bitcount of the slot field above). */
346 char slots_in_format[MAX_FORMATS];
347
348 } op_placement_info, *op_placement_info_table;
349
350 op_placement_info_table op_placement_table;
351
352
353 /* Extra expression types. */
354
355 #define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */
356 #define O_hi16 O_md2 /* use high 16 bits of symbolic value */
357 #define O_lo16 O_md3 /* use low 16 bits of symbolic value */
358 #define O_pcrel O_md4 /* value is a PC-relative offset */
359 #define O_tlsfunc O_md5 /* TLS_FUNC/TLSDESC_FN relocation */
360 #define O_tlsarg O_md6 /* TLS_ARG/TLSDESC_ARG relocation */
361 #define O_tlscall O_md7 /* TLS_CALL relocation */
362 #define O_tpoff O_md8 /* TPOFF relocation */
363 #define O_dtpoff O_md9 /* DTPOFF relocation */
364
365 struct suffix_reloc_map
366 {
367 char *suffix;
368 int length;
369 bfd_reloc_code_real_type reloc;
370 unsigned char operator;
371 };
372
373 #define SUFFIX_MAP(str, reloc, op) { str, sizeof (str) - 1, reloc, op }
374
375 static struct suffix_reloc_map suffix_relocs[] =
376 {
377 SUFFIX_MAP ("l", BFD_RELOC_LO16, O_lo16),
378 SUFFIX_MAP ("h", BFD_RELOC_HI16, O_hi16),
379 SUFFIX_MAP ("plt", BFD_RELOC_XTENSA_PLT, O_pltrel),
380 SUFFIX_MAP ("pcrel", BFD_RELOC_32_PCREL, O_pcrel),
381 SUFFIX_MAP ("tlsfunc", BFD_RELOC_XTENSA_TLS_FUNC, O_tlsfunc),
382 SUFFIX_MAP ("tlsarg", BFD_RELOC_XTENSA_TLS_ARG, O_tlsarg),
383 SUFFIX_MAP ("tlscall", BFD_RELOC_XTENSA_TLS_CALL, O_tlscall),
384 SUFFIX_MAP ("tpoff", BFD_RELOC_XTENSA_TLS_TPOFF, O_tpoff),
385 SUFFIX_MAP ("dtpoff", BFD_RELOC_XTENSA_TLS_DTPOFF, O_dtpoff),
386 { (char *) 0, 0, BFD_RELOC_UNUSED, 0 }
387 };
388
389
390 /* Directives. */
391
392 typedef enum
393 {
394 directive_none = 0,
395 directive_literal,
396 directive_density,
397 directive_transform,
398 directive_freeregs,
399 directive_longcalls,
400 directive_literal_prefix,
401 directive_schedule,
402 directive_absolute_literals,
403 directive_last_directive
404 } directiveE;
405
406 typedef struct
407 {
408 const char *name;
409 bfd_boolean can_be_negated;
410 } directive_infoS;
411
412 const directive_infoS directive_info[] =
413 {
414 { "none", FALSE },
415 { "literal", FALSE },
416 { "density", TRUE },
417 { "transform", TRUE },
418 { "freeregs", FALSE },
419 { "longcalls", TRUE },
420 { "literal_prefix", FALSE },
421 { "schedule", TRUE },
422 { "absolute-literals", TRUE }
423 };
424
425 bfd_boolean directive_state[] =
426 {
427 FALSE, /* none */
428 FALSE, /* literal */
429 #if !XCHAL_HAVE_DENSITY
430 FALSE, /* density */
431 #else
432 TRUE, /* density */
433 #endif
434 TRUE, /* transform */
435 FALSE, /* freeregs */
436 FALSE, /* longcalls */
437 FALSE, /* literal_prefix */
438 FALSE, /* schedule */
439 #if XSHAL_USE_ABSOLUTE_LITERALS
440 TRUE /* absolute_literals */
441 #else
442 FALSE /* absolute_literals */
443 #endif
444 };
445
446
447 /* Directive functions. */
448
449 static void xtensa_begin_directive (int);
450 static void xtensa_end_directive (int);
451 static void xtensa_literal_prefix (void);
452 static void xtensa_literal_position (int);
453 static void xtensa_literal_pseudo (int);
454 static void xtensa_frequency_pseudo (int);
455 static void xtensa_elf_cons (int);
456 static void xtensa_leb128 (int);
457
458 /* Parsing and Idiom Translation. */
459
460 static bfd_reloc_code_real_type xtensa_elf_suffix (char **, expressionS *);
461
462 /* Various Other Internal Functions. */
463
464 extern bfd_boolean xg_is_single_relaxable_insn (TInsn *, TInsn *, bfd_boolean);
465 static bfd_boolean xg_build_to_insn (TInsn *, TInsn *, BuildInstr *);
466 static void xtensa_mark_literal_pool_location (void);
467 static addressT get_expanded_loop_offset (xtensa_opcode);
468 static fragS *get_literal_pool_location (segT);
469 static void set_literal_pool_location (segT, fragS *);
470 static void xtensa_set_frag_assembly_state (fragS *);
471 static void finish_vinsn (vliw_insn *);
472 static bfd_boolean emit_single_op (TInsn *);
473 static int total_frag_text_expansion (fragS *);
474
475 /* Alignment Functions. */
476
477 static int get_text_align_power (unsigned);
478 static int get_text_align_max_fill_size (int, bfd_boolean, bfd_boolean);
479 static int branch_align_power (segT);
480
481 /* Helpers for xtensa_relax_frag(). */
482
483 static long relax_frag_add_nop (fragS *);
484
485 /* Accessors for additional per-subsegment information. */
486
487 static unsigned get_last_insn_flags (segT, subsegT);
488 static void set_last_insn_flags (segT, subsegT, unsigned, bfd_boolean);
489 static float get_subseg_total_freq (segT, subsegT);
490 static float get_subseg_target_freq (segT, subsegT);
491 static void set_subseg_freq (segT, subsegT, float, float);
492
493 /* Segment list functions. */
494
495 static void xtensa_move_literals (void);
496 static void xtensa_reorder_segments (void);
497 static void xtensa_switch_to_literal_fragment (emit_state *);
498 static void xtensa_switch_to_non_abs_literal_fragment (emit_state *);
499 static void xtensa_switch_section_emit_state (emit_state *, segT, subsegT);
500 static void xtensa_restore_emit_state (emit_state *);
501 static segT cache_literal_section (bfd_boolean);
502
503 /* Import from elf32-xtensa.c in BFD library. */
504
505 extern asection *xtensa_make_property_section (asection *, const char *);
506
507 /* op_placement_info functions. */
508
509 static void init_op_placement_info_table (void);
510 extern bfd_boolean opcode_fits_format_slot (xtensa_opcode, xtensa_format, int);
511 static int xg_get_single_size (xtensa_opcode);
512 static xtensa_format xg_get_single_format (xtensa_opcode);
513 static int xg_get_single_slot (xtensa_opcode);
514
515 /* TInsn and IStack functions. */
516
517 static bfd_boolean tinsn_has_symbolic_operands (const TInsn *);
518 static bfd_boolean tinsn_has_invalid_symbolic_operands (const TInsn *);
519 static bfd_boolean tinsn_has_complex_operands (const TInsn *);
520 static bfd_boolean tinsn_to_insnbuf (TInsn *, xtensa_insnbuf);
521 static bfd_boolean tinsn_check_arguments (const TInsn *);
522 static void tinsn_from_chars (TInsn *, char *, int);
523 static void tinsn_immed_from_frag (TInsn *, fragS *, int);
524 static int get_num_stack_text_bytes (IStack *);
525 static int get_num_stack_literal_bytes (IStack *);
526
527 /* vliw_insn functions. */
528
529 static void xg_init_vinsn (vliw_insn *);
530 static void xg_clear_vinsn (vliw_insn *);
531 static bfd_boolean vinsn_has_specific_opcodes (vliw_insn *);
532 static void xg_free_vinsn (vliw_insn *);
533 static bfd_boolean vinsn_to_insnbuf
534 (vliw_insn *, char *, fragS *, bfd_boolean);
535 static void vinsn_from_chars (vliw_insn *, char *);
536
537 /* Expression Utilities. */
538
539 bfd_boolean expr_is_const (const expressionS *);
540 offsetT get_expr_const (const expressionS *);
541 void set_expr_const (expressionS *, offsetT);
542 bfd_boolean expr_is_register (const expressionS *);
543 offsetT get_expr_register (const expressionS *);
544 void set_expr_symbol_offset (expressionS *, symbolS *, offsetT);
545 bfd_boolean expr_is_equal (expressionS *, expressionS *);
546 static void copy_expr (expressionS *, const expressionS *);
547
548 /* Section renaming. */
549
550 static void build_section_rename (const char *);
551
552
553 /* ISA imported from bfd. */
554 extern xtensa_isa xtensa_default_isa;
555
556 extern int target_big_endian;
557
558 static xtensa_opcode xtensa_addi_opcode;
559 static xtensa_opcode xtensa_addmi_opcode;
560 static xtensa_opcode xtensa_call0_opcode;
561 static xtensa_opcode xtensa_call4_opcode;
562 static xtensa_opcode xtensa_call8_opcode;
563 static xtensa_opcode xtensa_call12_opcode;
564 static xtensa_opcode xtensa_callx0_opcode;
565 static xtensa_opcode xtensa_callx4_opcode;
566 static xtensa_opcode xtensa_callx8_opcode;
567 static xtensa_opcode xtensa_callx12_opcode;
568 static xtensa_opcode xtensa_const16_opcode;
569 static xtensa_opcode xtensa_entry_opcode;
570 static xtensa_opcode xtensa_extui_opcode;
571 static xtensa_opcode xtensa_movi_opcode;
572 static xtensa_opcode xtensa_movi_n_opcode;
573 static xtensa_opcode xtensa_isync_opcode;
574 static xtensa_opcode xtensa_j_opcode;
575 static xtensa_opcode xtensa_jx_opcode;
576 static xtensa_opcode xtensa_l32r_opcode;
577 static xtensa_opcode xtensa_loop_opcode;
578 static xtensa_opcode xtensa_loopnez_opcode;
579 static xtensa_opcode xtensa_loopgtz_opcode;
580 static xtensa_opcode xtensa_nop_opcode;
581 static xtensa_opcode xtensa_nop_n_opcode;
582 static xtensa_opcode xtensa_or_opcode;
583 static xtensa_opcode xtensa_ret_opcode;
584 static xtensa_opcode xtensa_ret_n_opcode;
585 static xtensa_opcode xtensa_retw_opcode;
586 static xtensa_opcode xtensa_retw_n_opcode;
587 static xtensa_opcode xtensa_rsr_lcount_opcode;
588 static xtensa_opcode xtensa_waiti_opcode;
589
590 \f
591 /* Command-line Options. */
592
593 bfd_boolean use_literal_section = TRUE;
594 enum flix_level produce_flix = FLIX_ALL;
595 static bfd_boolean align_targets = TRUE;
596 static bfd_boolean warn_unaligned_branch_targets = FALSE;
597 static bfd_boolean has_a0_b_retw = FALSE;
598 static bfd_boolean workaround_a0_b_retw = FALSE;
599 static bfd_boolean workaround_b_j_loop_end = FALSE;
600 static bfd_boolean workaround_short_loop = FALSE;
601 static bfd_boolean maybe_has_short_loop = FALSE;
602 static bfd_boolean workaround_close_loop_end = FALSE;
603 static bfd_boolean maybe_has_close_loop_end = FALSE;
604 static bfd_boolean enforce_three_byte_loop_align = FALSE;
605
606 /* When workaround_short_loops is TRUE, all loops with early exits must
607 have at least 3 instructions. workaround_all_short_loops is a modifier
608 to the workaround_short_loop flag. In addition to the
609 workaround_short_loop actions, all straightline loopgtz and loopnez
610 must have at least 3 instructions. */
611
612 static bfd_boolean workaround_all_short_loops = FALSE;
613
614
615 static void
616 xtensa_setup_hw_workarounds (int earliest, int latest)
617 {
618 if (earliest > latest)
619 as_fatal (_("illegal range of target hardware versions"));
620
621 /* Enable all workarounds for pre-T1050.0 hardware. */
622 if (earliest < 105000 || latest < 105000)
623 {
624 workaround_a0_b_retw |= TRUE;
625 workaround_b_j_loop_end |= TRUE;
626 workaround_short_loop |= TRUE;
627 workaround_close_loop_end |= TRUE;
628 workaround_all_short_loops |= TRUE;
629 enforce_three_byte_loop_align = TRUE;
630 }
631 }
632
633
634 enum
635 {
636 option_density = OPTION_MD_BASE,
637 option_no_density,
638
639 option_flix,
640 option_no_generate_flix,
641 option_no_flix,
642
643 option_relax,
644 option_no_relax,
645
646 option_link_relax,
647 option_no_link_relax,
648
649 option_generics,
650 option_no_generics,
651
652 option_transform,
653 option_no_transform,
654
655 option_text_section_literals,
656 option_no_text_section_literals,
657
658 option_absolute_literals,
659 option_no_absolute_literals,
660
661 option_align_targets,
662 option_no_align_targets,
663
664 option_warn_unaligned_targets,
665
666 option_longcalls,
667 option_no_longcalls,
668
669 option_workaround_a0_b_retw,
670 option_no_workaround_a0_b_retw,
671
672 option_workaround_b_j_loop_end,
673 option_no_workaround_b_j_loop_end,
674
675 option_workaround_short_loop,
676 option_no_workaround_short_loop,
677
678 option_workaround_all_short_loops,
679 option_no_workaround_all_short_loops,
680
681 option_workaround_close_loop_end,
682 option_no_workaround_close_loop_end,
683
684 option_no_workarounds,
685
686 option_rename_section_name,
687
688 option_prefer_l32r,
689 option_prefer_const16,
690
691 option_target_hardware
692 };
693
694 const char *md_shortopts = "";
695
696 struct option md_longopts[] =
697 {
698 { "density", no_argument, NULL, option_density },
699 { "no-density", no_argument, NULL, option_no_density },
700
701 { "flix", no_argument, NULL, option_flix },
702 { "no-generate-flix", no_argument, NULL, option_no_generate_flix },
703 { "no-allow-flix", no_argument, NULL, option_no_flix },
704
705 /* Both "relax" and "generics" are deprecated and treated as equivalent
706 to the "transform" option. */
707 { "relax", no_argument, NULL, option_relax },
708 { "no-relax", no_argument, NULL, option_no_relax },
709 { "generics", no_argument, NULL, option_generics },
710 { "no-generics", no_argument, NULL, option_no_generics },
711
712 { "transform", no_argument, NULL, option_transform },
713 { "no-transform", no_argument, NULL, option_no_transform },
714 { "text-section-literals", no_argument, NULL, option_text_section_literals },
715 { "no-text-section-literals", no_argument, NULL,
716 option_no_text_section_literals },
717 { "absolute-literals", no_argument, NULL, option_absolute_literals },
718 { "no-absolute-literals", no_argument, NULL, option_no_absolute_literals },
719 /* This option was changed from -align-target to -target-align
720 because it conflicted with the "-al" option. */
721 { "target-align", no_argument, NULL, option_align_targets },
722 { "no-target-align", no_argument, NULL, option_no_align_targets },
723 { "warn-unaligned-targets", no_argument, NULL,
724 option_warn_unaligned_targets },
725 { "longcalls", no_argument, NULL, option_longcalls },
726 { "no-longcalls", no_argument, NULL, option_no_longcalls },
727
728 { "no-workaround-a0-b-retw", no_argument, NULL,
729 option_no_workaround_a0_b_retw },
730 { "workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw },
731
732 { "no-workaround-b-j-loop-end", no_argument, NULL,
733 option_no_workaround_b_j_loop_end },
734 { "workaround-b-j-loop-end", no_argument, NULL,
735 option_workaround_b_j_loop_end },
736
737 { "no-workaround-short-loops", no_argument, NULL,
738 option_no_workaround_short_loop },
739 { "workaround-short-loops", no_argument, NULL,
740 option_workaround_short_loop },
741
742 { "no-workaround-all-short-loops", no_argument, NULL,
743 option_no_workaround_all_short_loops },
744 { "workaround-all-short-loop", no_argument, NULL,
745 option_workaround_all_short_loops },
746
747 { "prefer-l32r", no_argument, NULL, option_prefer_l32r },
748 { "prefer-const16", no_argument, NULL, option_prefer_const16 },
749
750 { "no-workarounds", no_argument, NULL, option_no_workarounds },
751
752 { "no-workaround-close-loop-end", no_argument, NULL,
753 option_no_workaround_close_loop_end },
754 { "workaround-close-loop-end", no_argument, NULL,
755 option_workaround_close_loop_end },
756
757 { "rename-section", required_argument, NULL, option_rename_section_name },
758
759 { "link-relax", no_argument, NULL, option_link_relax },
760 { "no-link-relax", no_argument, NULL, option_no_link_relax },
761
762 { "target-hardware", required_argument, NULL, option_target_hardware },
763
764 { NULL, no_argument, NULL, 0 }
765 };
766
767 size_t md_longopts_size = sizeof md_longopts;
768
769
770 int
771 md_parse_option (int c, char *arg)
772 {
773 switch (c)
774 {
775 case option_density:
776 as_warn (_("--density option is ignored"));
777 return 1;
778 case option_no_density:
779 as_warn (_("--no-density option is ignored"));
780 return 1;
781 case option_link_relax:
782 linkrelax = 1;
783 return 1;
784 case option_no_link_relax:
785 linkrelax = 0;
786 return 1;
787 case option_flix:
788 produce_flix = FLIX_ALL;
789 return 1;
790 case option_no_generate_flix:
791 produce_flix = FLIX_NO_GENERATE;
792 return 1;
793 case option_no_flix:
794 produce_flix = FLIX_NONE;
795 return 1;
796 case option_generics:
797 as_warn (_("--generics is deprecated; use --transform instead"));
798 return md_parse_option (option_transform, arg);
799 case option_no_generics:
800 as_warn (_("--no-generics is deprecated; use --no-transform instead"));
801 return md_parse_option (option_no_transform, arg);
802 case option_relax:
803 as_warn (_("--relax is deprecated; use --transform instead"));
804 return md_parse_option (option_transform, arg);
805 case option_no_relax:
806 as_warn (_("--no-relax is deprecated; use --no-transform instead"));
807 return md_parse_option (option_no_transform, arg);
808 case option_longcalls:
809 directive_state[directive_longcalls] = TRUE;
810 return 1;
811 case option_no_longcalls:
812 directive_state[directive_longcalls] = FALSE;
813 return 1;
814 case option_text_section_literals:
815 use_literal_section = FALSE;
816 return 1;
817 case option_no_text_section_literals:
818 use_literal_section = TRUE;
819 return 1;
820 case option_absolute_literals:
821 if (!absolute_literals_supported)
822 {
823 as_fatal (_("--absolute-literals option not supported in this Xtensa configuration"));
824 return 0;
825 }
826 directive_state[directive_absolute_literals] = TRUE;
827 return 1;
828 case option_no_absolute_literals:
829 directive_state[directive_absolute_literals] = FALSE;
830 return 1;
831
832 case option_workaround_a0_b_retw:
833 workaround_a0_b_retw = TRUE;
834 return 1;
835 case option_no_workaround_a0_b_retw:
836 workaround_a0_b_retw = FALSE;
837 return 1;
838 case option_workaround_b_j_loop_end:
839 workaround_b_j_loop_end = TRUE;
840 return 1;
841 case option_no_workaround_b_j_loop_end:
842 workaround_b_j_loop_end = FALSE;
843 return 1;
844
845 case option_workaround_short_loop:
846 workaround_short_loop = TRUE;
847 return 1;
848 case option_no_workaround_short_loop:
849 workaround_short_loop = FALSE;
850 return 1;
851
852 case option_workaround_all_short_loops:
853 workaround_all_short_loops = TRUE;
854 return 1;
855 case option_no_workaround_all_short_loops:
856 workaround_all_short_loops = FALSE;
857 return 1;
858
859 case option_workaround_close_loop_end:
860 workaround_close_loop_end = TRUE;
861 return 1;
862 case option_no_workaround_close_loop_end:
863 workaround_close_loop_end = FALSE;
864 return 1;
865
866 case option_no_workarounds:
867 workaround_a0_b_retw = FALSE;
868 workaround_b_j_loop_end = FALSE;
869 workaround_short_loop = FALSE;
870 workaround_all_short_loops = FALSE;
871 workaround_close_loop_end = FALSE;
872 return 1;
873
874 case option_align_targets:
875 align_targets = TRUE;
876 return 1;
877 case option_no_align_targets:
878 align_targets = FALSE;
879 return 1;
880
881 case option_warn_unaligned_targets:
882 warn_unaligned_branch_targets = TRUE;
883 return 1;
884
885 case option_rename_section_name:
886 build_section_rename (arg);
887 return 1;
888
889 case 'Q':
890 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
891 should be emitted or not. FIXME: Not implemented. */
892 return 1;
893
894 case option_prefer_l32r:
895 if (prefer_const16)
896 as_fatal (_("prefer-l32r conflicts with prefer-const16"));
897 prefer_l32r = 1;
898 return 1;
899
900 case option_prefer_const16:
901 if (prefer_l32r)
902 as_fatal (_("prefer-const16 conflicts with prefer-l32r"));
903 prefer_const16 = 1;
904 return 1;
905
906 case option_target_hardware:
907 {
908 int earliest, latest = 0;
909 if (*arg == 0 || *arg == '-')
910 as_fatal (_("invalid target hardware version"));
911
912 earliest = strtol (arg, &arg, 0);
913
914 if (*arg == 0)
915 latest = earliest;
916 else if (*arg == '-')
917 {
918 if (*++arg == 0)
919 as_fatal (_("invalid target hardware version"));
920 latest = strtol (arg, &arg, 0);
921 }
922 if (*arg != 0)
923 as_fatal (_("invalid target hardware version"));
924
925 xtensa_setup_hw_workarounds (earliest, latest);
926 return 1;
927 }
928
929 case option_transform:
930 /* This option has no affect other than to use the defaults,
931 which are already set. */
932 return 1;
933
934 case option_no_transform:
935 /* This option turns off all transformations of any kind.
936 However, because we want to preserve the state of other
937 directives, we only change its own field. Thus, before
938 you perform any transformation, always check if transform
939 is available. If you use the functions we provide for this
940 purpose, you will be ok. */
941 directive_state[directive_transform] = FALSE;
942 return 1;
943
944 default:
945 return 0;
946 }
947 }
948
949
950 void
951 md_show_usage (FILE *stream)
952 {
953 fputs ("\n\
954 Xtensa options:\n\
955 --[no-]text-section-literals\n\
956 [Do not] put literals in the text section\n\
957 --[no-]absolute-literals\n\
958 [Do not] default to use non-PC-relative literals\n\
959 --[no-]target-align [Do not] try to align branch targets\n\
960 --[no-]longcalls [Do not] emit 32-bit call sequences\n\
961 --[no-]transform [Do not] transform instructions\n\
962 --flix both allow hand-written and generate flix bundles\n\
963 --no-generate-flix allow hand-written but do not generate\n\
964 flix bundles\n\
965 --no-allow-flix neither allow hand-written nor generate\n\
966 flix bundles\n\
967 --rename-section old=new Rename section 'old' to 'new'\n", stream);
968 }
969
970 \f
971 /* Functions related to the list of current label symbols. */
972
973 static void
974 xtensa_add_insn_label (symbolS *sym)
975 {
976 sym_list *l;
977
978 if (!free_insn_labels)
979 l = (sym_list *) xmalloc (sizeof (sym_list));
980 else
981 {
982 l = free_insn_labels;
983 free_insn_labels = l->next;
984 }
985
986 l->sym = sym;
987 l->next = insn_labels;
988 insn_labels = l;
989 }
990
991
992 static void
993 xtensa_clear_insn_labels (void)
994 {
995 sym_list **pl;
996
997 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
998 ;
999 *pl = insn_labels;
1000 insn_labels = NULL;
1001 }
1002
1003
1004 static void
1005 xtensa_move_labels (fragS *new_frag, valueT new_offset)
1006 {
1007 sym_list *lit;
1008
1009 for (lit = insn_labels; lit; lit = lit->next)
1010 {
1011 symbolS *lit_sym = lit->sym;
1012 S_SET_VALUE (lit_sym, new_offset);
1013 symbol_set_frag (lit_sym, new_frag);
1014 }
1015 }
1016
1017 \f
1018 /* Directive data and functions. */
1019
1020 typedef struct state_stackS_struct
1021 {
1022 directiveE directive;
1023 bfd_boolean negated;
1024 bfd_boolean old_state;
1025 const char *file;
1026 unsigned int line;
1027 const void *datum;
1028 struct state_stackS_struct *prev;
1029 } state_stackS;
1030
1031 state_stackS *directive_state_stack;
1032
1033 const pseudo_typeS md_pseudo_table[] =
1034 {
1035 { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */
1036 { "literal_position", xtensa_literal_position, 0 },
1037 { "frame", s_ignore, 0 }, /* Formerly used for STABS debugging. */
1038 { "long", xtensa_elf_cons, 4 },
1039 { "word", xtensa_elf_cons, 4 },
1040 { "4byte", xtensa_elf_cons, 4 },
1041 { "short", xtensa_elf_cons, 2 },
1042 { "2byte", xtensa_elf_cons, 2 },
1043 { "sleb128", xtensa_leb128, 1},
1044 { "uleb128", xtensa_leb128, 0},
1045 { "begin", xtensa_begin_directive, 0 },
1046 { "end", xtensa_end_directive, 0 },
1047 { "literal", xtensa_literal_pseudo, 0 },
1048 { "frequency", xtensa_frequency_pseudo, 0 },
1049 { NULL, 0, 0 },
1050 };
1051
1052
1053 static bfd_boolean
1054 use_transform (void)
1055 {
1056 /* After md_end, you should be checking frag by frag, rather
1057 than state directives. */
1058 assert (!past_xtensa_end);
1059 return directive_state[directive_transform];
1060 }
1061
1062
1063 static bfd_boolean
1064 do_align_targets (void)
1065 {
1066 /* Do not use this function after md_end; just look at align_targets
1067 instead. There is no target-align directive, so alignment is either
1068 enabled for all frags or not done at all. */
1069 assert (!past_xtensa_end);
1070 return align_targets && use_transform ();
1071 }
1072
1073
1074 static void
1075 directive_push (directiveE directive, bfd_boolean negated, const void *datum)
1076 {
1077 char *file;
1078 unsigned int line;
1079 state_stackS *stack = (state_stackS *) xmalloc (sizeof (state_stackS));
1080
1081 as_where (&file, &line);
1082
1083 stack->directive = directive;
1084 stack->negated = negated;
1085 stack->old_state = directive_state[directive];
1086 stack->file = file;
1087 stack->line = line;
1088 stack->datum = datum;
1089 stack->prev = directive_state_stack;
1090 directive_state_stack = stack;
1091
1092 directive_state[directive] = !negated;
1093 }
1094
1095
1096 static void
1097 directive_pop (directiveE *directive,
1098 bfd_boolean *negated,
1099 const char **file,
1100 unsigned int *line,
1101 const void **datum)
1102 {
1103 state_stackS *top = directive_state_stack;
1104
1105 if (!directive_state_stack)
1106 {
1107 as_bad (_("unmatched end directive"));
1108 *directive = directive_none;
1109 return;
1110 }
1111
1112 directive_state[directive_state_stack->directive] = top->old_state;
1113 *directive = top->directive;
1114 *negated = top->negated;
1115 *file = top->file;
1116 *line = top->line;
1117 *datum = top->datum;
1118 directive_state_stack = top->prev;
1119 free (top);
1120 }
1121
1122
1123 static void
1124 directive_balance (void)
1125 {
1126 while (directive_state_stack)
1127 {
1128 directiveE directive;
1129 bfd_boolean negated;
1130 const char *file;
1131 unsigned int line;
1132 const void *datum;
1133
1134 directive_pop (&directive, &negated, &file, &line, &datum);
1135 as_warn_where ((char *) file, line,
1136 _(".begin directive with no matching .end directive"));
1137 }
1138 }
1139
1140
1141 static bfd_boolean
1142 inside_directive (directiveE dir)
1143 {
1144 state_stackS *top = directive_state_stack;
1145
1146 while (top && top->directive != dir)
1147 top = top->prev;
1148
1149 return (top != NULL);
1150 }
1151
1152
1153 static void
1154 get_directive (directiveE *directive, bfd_boolean *negated)
1155 {
1156 int len;
1157 unsigned i;
1158 char *directive_string;
1159
1160 if (strncmp (input_line_pointer, "no-", 3) != 0)
1161 *negated = FALSE;
1162 else
1163 {
1164 *negated = TRUE;
1165 input_line_pointer += 3;
1166 }
1167
1168 len = strspn (input_line_pointer,
1169 "abcdefghijklmnopqrstuvwxyz_-/0123456789.");
1170
1171 /* This code is a hack to make .begin [no-][generics|relax] exactly
1172 equivalent to .begin [no-]transform. We should remove it when
1173 we stop accepting those options. */
1174
1175 if (strncmp (input_line_pointer, "generics", strlen ("generics")) == 0)
1176 {
1177 as_warn (_("[no-]generics is deprecated; use [no-]transform instead"));
1178 directive_string = "transform";
1179 }
1180 else if (strncmp (input_line_pointer, "relax", strlen ("relax")) == 0)
1181 {
1182 as_warn (_("[no-]relax is deprecated; use [no-]transform instead"));
1183 directive_string = "transform";
1184 }
1185 else
1186 directive_string = input_line_pointer;
1187
1188 for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i)
1189 {
1190 if (strncmp (directive_string, directive_info[i].name, len) == 0)
1191 {
1192 input_line_pointer += len;
1193 *directive = (directiveE) i;
1194 if (*negated && !directive_info[i].can_be_negated)
1195 as_bad (_("directive %s cannot be negated"),
1196 directive_info[i].name);
1197 return;
1198 }
1199 }
1200
1201 as_bad (_("unknown directive"));
1202 *directive = (directiveE) XTENSA_UNDEFINED;
1203 }
1204
1205
1206 static void
1207 xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED)
1208 {
1209 directiveE directive;
1210 bfd_boolean negated;
1211 emit_state *state;
1212 lit_state *ls;
1213
1214 get_directive (&directive, &negated);
1215 if (directive == (directiveE) XTENSA_UNDEFINED)
1216 {
1217 discard_rest_of_line ();
1218 return;
1219 }
1220
1221 if (cur_vinsn.inside_bundle)
1222 as_bad (_("directives are not valid inside bundles"));
1223
1224 switch (directive)
1225 {
1226 case directive_literal:
1227 if (!inside_directive (directive_literal))
1228 {
1229 /* Previous labels go with whatever follows this directive, not with
1230 the literal, so save them now. */
1231 saved_insn_labels = insn_labels;
1232 insn_labels = NULL;
1233 }
1234 as_warn (_(".begin literal is deprecated; use .literal instead"));
1235 state = (emit_state *) xmalloc (sizeof (emit_state));
1236 xtensa_switch_to_literal_fragment (state);
1237 directive_push (directive_literal, negated, state);
1238 break;
1239
1240 case directive_literal_prefix:
1241 /* Have to flush pending output because a movi relaxed to an l32r
1242 might produce a literal. */
1243 md_flush_pending_output ();
1244 /* Check to see if the current fragment is a literal
1245 fragment. If it is, then this operation is not allowed. */
1246 if (generating_literals)
1247 {
1248 as_bad (_("cannot set literal_prefix inside literal fragment"));
1249 return;
1250 }
1251
1252 /* Allocate the literal state for this section and push
1253 onto the directive stack. */
1254 ls = xmalloc (sizeof (lit_state));
1255 assert (ls);
1256
1257 *ls = default_lit_sections;
1258 directive_push (directive_literal_prefix, negated, ls);
1259
1260 /* Process the new prefix. */
1261 xtensa_literal_prefix ();
1262 break;
1263
1264 case directive_freeregs:
1265 /* This information is currently unused, but we'll accept the statement
1266 and just discard the rest of the line. This won't check the syntax,
1267 but it will accept every correct freeregs directive. */
1268 input_line_pointer += strcspn (input_line_pointer, "\n");
1269 directive_push (directive_freeregs, negated, 0);
1270 break;
1271
1272 case directive_schedule:
1273 md_flush_pending_output ();
1274 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
1275 frag_now->fr_symbol, frag_now->fr_offset, NULL);
1276 directive_push (directive_schedule, negated, 0);
1277 xtensa_set_frag_assembly_state (frag_now);
1278 break;
1279
1280 case directive_density:
1281 as_warn (_(".begin [no-]density is ignored"));
1282 break;
1283
1284 case directive_absolute_literals:
1285 md_flush_pending_output ();
1286 if (!absolute_literals_supported && !negated)
1287 {
1288 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1289 break;
1290 }
1291 xtensa_set_frag_assembly_state (frag_now);
1292 directive_push (directive, negated, 0);
1293 break;
1294
1295 default:
1296 md_flush_pending_output ();
1297 xtensa_set_frag_assembly_state (frag_now);
1298 directive_push (directive, negated, 0);
1299 break;
1300 }
1301
1302 demand_empty_rest_of_line ();
1303 }
1304
1305
1306 static void
1307 xtensa_end_directive (int ignore ATTRIBUTE_UNUSED)
1308 {
1309 directiveE begin_directive, end_directive;
1310 bfd_boolean begin_negated, end_negated;
1311 const char *file;
1312 unsigned int line;
1313 emit_state *state;
1314 emit_state **state_ptr;
1315 lit_state *s;
1316
1317 if (cur_vinsn.inside_bundle)
1318 as_bad (_("directives are not valid inside bundles"));
1319
1320 get_directive (&end_directive, &end_negated);
1321
1322 md_flush_pending_output ();
1323
1324 switch (end_directive)
1325 {
1326 case (directiveE) XTENSA_UNDEFINED:
1327 discard_rest_of_line ();
1328 return;
1329
1330 case directive_density:
1331 as_warn (_(".end [no-]density is ignored"));
1332 demand_empty_rest_of_line ();
1333 break;
1334
1335 case directive_absolute_literals:
1336 if (!absolute_literals_supported && !end_negated)
1337 {
1338 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1339 demand_empty_rest_of_line ();
1340 return;
1341 }
1342 break;
1343
1344 default:
1345 break;
1346 }
1347
1348 state_ptr = &state; /* use state_ptr to avoid type-punning warning */
1349 directive_pop (&begin_directive, &begin_negated, &file, &line,
1350 (const void **) state_ptr);
1351
1352 if (begin_directive != directive_none)
1353 {
1354 if (begin_directive != end_directive || begin_negated != end_negated)
1355 {
1356 as_bad (_("does not match begin %s%s at %s:%d"),
1357 begin_negated ? "no-" : "",
1358 directive_info[begin_directive].name, file, line);
1359 }
1360 else
1361 {
1362 switch (end_directive)
1363 {
1364 case directive_literal:
1365 frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL);
1366 xtensa_restore_emit_state (state);
1367 xtensa_set_frag_assembly_state (frag_now);
1368 free (state);
1369 if (!inside_directive (directive_literal))
1370 {
1371 /* Restore the list of current labels. */
1372 xtensa_clear_insn_labels ();
1373 insn_labels = saved_insn_labels;
1374 }
1375 break;
1376
1377 case directive_literal_prefix:
1378 /* Restore the default collection sections from saved state. */
1379 s = (lit_state *) state;
1380 assert (s);
1381 default_lit_sections = *s;
1382
1383 /* Free the state storage. */
1384 free (s->lit_prefix);
1385 free (s);
1386 break;
1387
1388 case directive_schedule:
1389 case directive_freeregs:
1390 break;
1391
1392 default:
1393 xtensa_set_frag_assembly_state (frag_now);
1394 break;
1395 }
1396 }
1397 }
1398
1399 demand_empty_rest_of_line ();
1400 }
1401
1402
1403 /* Place an aligned literal fragment at the current location. */
1404
1405 static void
1406 xtensa_literal_position (int ignore ATTRIBUTE_UNUSED)
1407 {
1408 md_flush_pending_output ();
1409
1410 if (inside_directive (directive_literal))
1411 as_warn (_(".literal_position inside literal directive; ignoring"));
1412 xtensa_mark_literal_pool_location ();
1413
1414 demand_empty_rest_of_line ();
1415 xtensa_clear_insn_labels ();
1416 }
1417
1418
1419 /* Support .literal label, expr, ... */
1420
1421 static void
1422 xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED)
1423 {
1424 emit_state state;
1425 char *p, *base_name;
1426 char c;
1427 segT dest_seg;
1428
1429 if (inside_directive (directive_literal))
1430 {
1431 as_bad (_(".literal not allowed inside .begin literal region"));
1432 ignore_rest_of_line ();
1433 return;
1434 }
1435
1436 md_flush_pending_output ();
1437
1438 /* Previous labels go with whatever follows this directive, not with
1439 the literal, so save them now. */
1440 saved_insn_labels = insn_labels;
1441 insn_labels = NULL;
1442
1443 /* If we are using text-section literals, then this is the right value... */
1444 dest_seg = now_seg;
1445
1446 base_name = input_line_pointer;
1447
1448 xtensa_switch_to_literal_fragment (&state);
1449
1450 /* ...but if we aren't using text-section-literals, then we
1451 need to put them in the section we just switched to. */
1452 if (use_literal_section || directive_state[directive_absolute_literals])
1453 dest_seg = now_seg;
1454
1455 /* All literals are aligned to four-byte boundaries. */
1456 frag_align (2, 0, 0);
1457 record_alignment (now_seg, 2);
1458
1459 c = get_symbol_end ();
1460 /* Just after name is now '\0'. */
1461 p = input_line_pointer;
1462 *p = c;
1463 SKIP_WHITESPACE ();
1464
1465 if (*input_line_pointer != ',' && *input_line_pointer != ':')
1466 {
1467 as_bad (_("expected comma or colon after symbol name; "
1468 "rest of line ignored"));
1469 ignore_rest_of_line ();
1470 xtensa_restore_emit_state (&state);
1471 return;
1472 }
1473 *p = 0;
1474
1475 colon (base_name);
1476
1477 *p = c;
1478 input_line_pointer++; /* skip ',' or ':' */
1479
1480 xtensa_elf_cons (4);
1481
1482 xtensa_restore_emit_state (&state);
1483
1484 /* Restore the list of current labels. */
1485 xtensa_clear_insn_labels ();
1486 insn_labels = saved_insn_labels;
1487 }
1488
1489
1490 static void
1491 xtensa_literal_prefix (void)
1492 {
1493 char *name;
1494 int len;
1495
1496 /* Parse the new prefix from the input_line_pointer. */
1497 SKIP_WHITESPACE ();
1498 len = strspn (input_line_pointer,
1499 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1500 "abcdefghijklmnopqrstuvwxyz_/0123456789.$");
1501
1502 /* Get a null-terminated copy of the name. */
1503 name = xmalloc (len + 1);
1504 assert (name);
1505 strncpy (name, input_line_pointer, len);
1506 name[len] = 0;
1507
1508 /* Skip the name in the input line. */
1509 input_line_pointer += len;
1510
1511 default_lit_sections.lit_prefix = name;
1512
1513 /* Clear cached literal sections, since the prefix has changed. */
1514 default_lit_sections.lit_seg = NULL;
1515 default_lit_sections.lit4_seg = NULL;
1516 }
1517
1518
1519 /* Support ".frequency branch_target_frequency fall_through_frequency". */
1520
1521 static void
1522 xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED)
1523 {
1524 float fall_through_f, target_f;
1525
1526 fall_through_f = (float) strtod (input_line_pointer, &input_line_pointer);
1527 if (fall_through_f < 0)
1528 {
1529 as_bad (_("fall through frequency must be greater than 0"));
1530 ignore_rest_of_line ();
1531 return;
1532 }
1533
1534 target_f = (float) strtod (input_line_pointer, &input_line_pointer);
1535 if (target_f < 0)
1536 {
1537 as_bad (_("branch target frequency must be greater than 0"));
1538 ignore_rest_of_line ();
1539 return;
1540 }
1541
1542 set_subseg_freq (now_seg, now_subseg, target_f + fall_through_f, target_f);
1543
1544 demand_empty_rest_of_line ();
1545 }
1546
1547
1548 /* Like normal .long/.short/.word, except support @plt, etc.
1549 Clobbers input_line_pointer, checks end-of-line. */
1550
1551 static void
1552 xtensa_elf_cons (int nbytes)
1553 {
1554 expressionS exp;
1555 bfd_reloc_code_real_type reloc;
1556
1557 md_flush_pending_output ();
1558
1559 if (cur_vinsn.inside_bundle)
1560 as_bad (_("directives are not valid inside bundles"));
1561
1562 if (is_it_end_of_statement ())
1563 {
1564 demand_empty_rest_of_line ();
1565 return;
1566 }
1567
1568 do
1569 {
1570 expression (&exp);
1571 if (exp.X_op == O_symbol
1572 && *input_line_pointer == '@'
1573 && ((reloc = xtensa_elf_suffix (&input_line_pointer, &exp))
1574 != BFD_RELOC_NONE))
1575 {
1576 reloc_howto_type *reloc_howto =
1577 bfd_reloc_type_lookup (stdoutput, reloc);
1578
1579 if (reloc == BFD_RELOC_UNUSED || !reloc_howto)
1580 as_bad (_("unsupported relocation"));
1581 else if ((reloc >= BFD_RELOC_XTENSA_SLOT0_OP
1582 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
1583 || (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
1584 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT))
1585 as_bad (_("opcode-specific %s relocation used outside "
1586 "an instruction"), reloc_howto->name);
1587 else if (nbytes != (int) bfd_get_reloc_size (reloc_howto))
1588 as_bad (_("%s relocations do not fit in %d bytes"),
1589 reloc_howto->name, nbytes);
1590 else if (reloc == BFD_RELOC_XTENSA_TLS_FUNC
1591 || reloc == BFD_RELOC_XTENSA_TLS_ARG
1592 || reloc == BFD_RELOC_XTENSA_TLS_CALL)
1593 as_bad (_("invalid use of %s relocation"), reloc_howto->name);
1594 else
1595 {
1596 char *p = frag_more ((int) nbytes);
1597 xtensa_set_frag_assembly_state (frag_now);
1598 fix_new_exp (frag_now, p - frag_now->fr_literal,
1599 nbytes, &exp, reloc_howto->pc_relative, reloc);
1600 }
1601 }
1602 else
1603 {
1604 xtensa_set_frag_assembly_state (frag_now);
1605 emit_expr (&exp, (unsigned int) nbytes);
1606 }
1607 }
1608 while (*input_line_pointer++ == ',');
1609
1610 input_line_pointer--; /* Put terminator back into stream. */
1611 demand_empty_rest_of_line ();
1612 }
1613
1614 static bfd_boolean is_leb128_expr;
1615
1616 static void
1617 xtensa_leb128 (int sign)
1618 {
1619 is_leb128_expr = TRUE;
1620 s_leb128 (sign);
1621 is_leb128_expr = FALSE;
1622 }
1623
1624 \f
1625 /* Parsing and Idiom Translation. */
1626
1627 /* Parse @plt, etc. and return the desired relocation. */
1628 static bfd_reloc_code_real_type
1629 xtensa_elf_suffix (char **str_p, expressionS *exp_p)
1630 {
1631 char ident[20];
1632 char *str = *str_p;
1633 char *str2;
1634 int ch;
1635 int len;
1636 struct suffix_reloc_map *ptr;
1637
1638 if (*str++ != '@')
1639 return BFD_RELOC_NONE;
1640
1641 for (ch = *str, str2 = ident;
1642 (str2 < ident + sizeof (ident) - 1
1643 && (ISALNUM (ch) || ch == '@'));
1644 ch = *++str)
1645 {
1646 *str2++ = (ISLOWER (ch)) ? ch : TOLOWER (ch);
1647 }
1648
1649 *str2 = '\0';
1650 len = str2 - ident;
1651
1652 ch = ident[0];
1653 for (ptr = &suffix_relocs[0]; ptr->length > 0; ptr++)
1654 if (ch == ptr->suffix[0]
1655 && len == ptr->length
1656 && memcmp (ident, ptr->suffix, ptr->length) == 0)
1657 {
1658 /* Now check for "identifier@suffix+constant". */
1659 if (*str == '-' || *str == '+')
1660 {
1661 char *orig_line = input_line_pointer;
1662 expressionS new_exp;
1663
1664 input_line_pointer = str;
1665 expression (&new_exp);
1666 if (new_exp.X_op == O_constant)
1667 {
1668 exp_p->X_add_number += new_exp.X_add_number;
1669 str = input_line_pointer;
1670 }
1671
1672 if (&input_line_pointer != str_p)
1673 input_line_pointer = orig_line;
1674 }
1675
1676 *str_p = str;
1677 return ptr->reloc;
1678 }
1679
1680 return BFD_RELOC_UNUSED;
1681 }
1682
1683
1684 /* Find the matching operator type. */
1685 static unsigned char
1686 map_suffix_reloc_to_operator (bfd_reloc_code_real_type reloc)
1687 {
1688 struct suffix_reloc_map *sfx;
1689 unsigned char operator = (unsigned char) -1;
1690
1691 for (sfx = &suffix_relocs[0]; sfx->suffix; sfx++)
1692 {
1693 if (sfx->reloc == reloc)
1694 {
1695 operator = sfx->operator;
1696 break;
1697 }
1698 }
1699 assert (operator != (unsigned char) -1);
1700 return operator;
1701 }
1702
1703
1704 /* Find the matching reloc type. */
1705 static bfd_reloc_code_real_type
1706 map_operator_to_reloc (unsigned char operator, bfd_boolean is_literal)
1707 {
1708 struct suffix_reloc_map *sfx;
1709 bfd_reloc_code_real_type reloc = BFD_RELOC_UNUSED;
1710
1711 for (sfx = &suffix_relocs[0]; sfx->suffix; sfx++)
1712 {
1713 if (sfx->operator == operator)
1714 {
1715 reloc = sfx->reloc;
1716 break;
1717 }
1718 }
1719
1720 if (is_literal)
1721 {
1722 if (reloc == BFD_RELOC_XTENSA_TLS_FUNC)
1723 return BFD_RELOC_XTENSA_TLSDESC_FN;
1724 else if (reloc == BFD_RELOC_XTENSA_TLS_ARG)
1725 return BFD_RELOC_XTENSA_TLSDESC_ARG;
1726 }
1727
1728 if (reloc == BFD_RELOC_UNUSED)
1729 return BFD_RELOC_32;
1730
1731 return reloc;
1732 }
1733
1734
1735 static const char *
1736 expression_end (const char *name)
1737 {
1738 while (1)
1739 {
1740 switch (*name)
1741 {
1742 case '}':
1743 case ';':
1744 case '\0':
1745 case ',':
1746 case ':':
1747 return name;
1748 case ' ':
1749 case '\t':
1750 ++name;
1751 continue;
1752 default:
1753 return 0;
1754 }
1755 }
1756 }
1757
1758
1759 #define ERROR_REG_NUM ((unsigned) -1)
1760
1761 static unsigned
1762 tc_get_register (const char *prefix)
1763 {
1764 unsigned reg;
1765 const char *next_expr;
1766 const char *old_line_pointer;
1767
1768 SKIP_WHITESPACE ();
1769 old_line_pointer = input_line_pointer;
1770
1771 if (*input_line_pointer == '$')
1772 ++input_line_pointer;
1773
1774 /* Accept "sp" as a synonym for "a1". */
1775 if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p'
1776 && expression_end (input_line_pointer + 2))
1777 {
1778 input_line_pointer += 2;
1779 return 1; /* AR[1] */
1780 }
1781
1782 while (*input_line_pointer++ == *prefix++)
1783 ;
1784 --input_line_pointer;
1785 --prefix;
1786
1787 if (*prefix)
1788 {
1789 as_bad (_("bad register name: %s"), old_line_pointer);
1790 return ERROR_REG_NUM;
1791 }
1792
1793 if (!ISDIGIT ((unsigned char) *input_line_pointer))
1794 {
1795 as_bad (_("bad register number: %s"), input_line_pointer);
1796 return ERROR_REG_NUM;
1797 }
1798
1799 reg = 0;
1800
1801 while (ISDIGIT ((int) *input_line_pointer))
1802 reg = reg * 10 + *input_line_pointer++ - '0';
1803
1804 if (!(next_expr = expression_end (input_line_pointer)))
1805 {
1806 as_bad (_("bad register name: %s"), old_line_pointer);
1807 return ERROR_REG_NUM;
1808 }
1809
1810 input_line_pointer = (char *) next_expr;
1811
1812 return reg;
1813 }
1814
1815
1816 static void
1817 expression_maybe_register (xtensa_opcode opc, int opnd, expressionS *tok)
1818 {
1819 xtensa_isa isa = xtensa_default_isa;
1820
1821 /* Check if this is an immediate operand. */
1822 if (xtensa_operand_is_register (isa, opc, opnd) == 0)
1823 {
1824 bfd_reloc_code_real_type reloc;
1825 segT t = expression (tok);
1826 if (t == absolute_section
1827 && xtensa_operand_is_PCrelative (isa, opc, opnd) == 1)
1828 {
1829 assert (tok->X_op == O_constant);
1830 tok->X_op = O_symbol;
1831 tok->X_add_symbol = &abs_symbol;
1832 }
1833
1834 if ((tok->X_op == O_constant || tok->X_op == O_symbol)
1835 && ((reloc = xtensa_elf_suffix (&input_line_pointer, tok))
1836 != BFD_RELOC_NONE))
1837 {
1838 switch (reloc)
1839 {
1840 case BFD_RELOC_LO16:
1841 if (tok->X_op == O_constant)
1842 {
1843 tok->X_add_number &= 0xffff;
1844 return;
1845 }
1846 break;
1847 case BFD_RELOC_HI16:
1848 if (tok->X_op == O_constant)
1849 {
1850 tok->X_add_number = ((unsigned) tok->X_add_number) >> 16;
1851 return;
1852 }
1853 break;
1854 case BFD_RELOC_UNUSED:
1855 as_bad (_("unsupported relocation"));
1856 return;
1857 case BFD_RELOC_32_PCREL:
1858 as_bad (_("pcrel relocation not allowed in an instruction"));
1859 return;
1860 default:
1861 break;
1862 }
1863 tok->X_op = map_suffix_reloc_to_operator (reloc);
1864 }
1865 }
1866 else
1867 {
1868 xtensa_regfile opnd_rf = xtensa_operand_regfile (isa, opc, opnd);
1869 unsigned reg = tc_get_register (xtensa_regfile_shortname (isa, opnd_rf));
1870
1871 if (reg != ERROR_REG_NUM) /* Already errored */
1872 {
1873 uint32 buf = reg;
1874 if (xtensa_operand_encode (isa, opc, opnd, &buf))
1875 as_bad (_("register number out of range"));
1876 }
1877
1878 tok->X_op = O_register;
1879 tok->X_add_symbol = 0;
1880 tok->X_add_number = reg;
1881 }
1882 }
1883
1884
1885 /* Split up the arguments for an opcode or pseudo-op. */
1886
1887 static int
1888 tokenize_arguments (char **args, char *str)
1889 {
1890 char *old_input_line_pointer;
1891 bfd_boolean saw_comma = FALSE;
1892 bfd_boolean saw_arg = FALSE;
1893 bfd_boolean saw_colon = FALSE;
1894 int num_args = 0;
1895 char *arg_end, *arg;
1896 int arg_len;
1897
1898 /* Save and restore input_line_pointer around this function. */
1899 old_input_line_pointer = input_line_pointer;
1900 input_line_pointer = str;
1901
1902 while (*input_line_pointer)
1903 {
1904 SKIP_WHITESPACE ();
1905 switch (*input_line_pointer)
1906 {
1907 case '\0':
1908 case '}':
1909 goto fini;
1910
1911 case ':':
1912 input_line_pointer++;
1913 if (saw_comma || saw_colon || !saw_arg)
1914 goto err;
1915 saw_colon = TRUE;
1916 break;
1917
1918 case ',':
1919 input_line_pointer++;
1920 if (saw_comma || saw_colon || !saw_arg)
1921 goto err;
1922 saw_comma = TRUE;
1923 break;
1924
1925 default:
1926 if (!saw_comma && !saw_colon && saw_arg)
1927 goto err;
1928
1929 arg_end = input_line_pointer + 1;
1930 while (!expression_end (arg_end))
1931 arg_end += 1;
1932
1933 arg_len = arg_end - input_line_pointer;
1934 arg = (char *) xmalloc ((saw_colon ? 1 : 0) + arg_len + 1);
1935 args[num_args] = arg;
1936
1937 if (saw_colon)
1938 *arg++ = ':';
1939 strncpy (arg, input_line_pointer, arg_len);
1940 arg[arg_len] = '\0';
1941
1942 input_line_pointer = arg_end;
1943 num_args += 1;
1944 saw_comma = FALSE;
1945 saw_colon = FALSE;
1946 saw_arg = TRUE;
1947 break;
1948 }
1949 }
1950
1951 fini:
1952 if (saw_comma || saw_colon)
1953 goto err;
1954 input_line_pointer = old_input_line_pointer;
1955 return num_args;
1956
1957 err:
1958 if (saw_comma)
1959 as_bad (_("extra comma"));
1960 else if (saw_colon)
1961 as_bad (_("extra colon"));
1962 else if (!saw_arg)
1963 as_bad (_("missing argument"));
1964 else
1965 as_bad (_("missing comma or colon"));
1966 input_line_pointer = old_input_line_pointer;
1967 return -1;
1968 }
1969
1970
1971 /* Parse the arguments to an opcode. Return TRUE on error. */
1972
1973 static bfd_boolean
1974 parse_arguments (TInsn *insn, int num_args, char **arg_strings)
1975 {
1976 expressionS *tok, *last_tok;
1977 xtensa_opcode opcode = insn->opcode;
1978 bfd_boolean had_error = TRUE;
1979 xtensa_isa isa = xtensa_default_isa;
1980 int n, num_regs = 0;
1981 int opcode_operand_count;
1982 int opnd_cnt, last_opnd_cnt;
1983 unsigned int next_reg = 0;
1984 char *old_input_line_pointer;
1985
1986 if (insn->insn_type == ITYPE_LITERAL)
1987 opcode_operand_count = 1;
1988 else
1989 opcode_operand_count = xtensa_opcode_num_operands (isa, opcode);
1990
1991 tok = insn->tok;
1992 memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS);
1993
1994 /* Save and restore input_line_pointer around this function. */
1995 old_input_line_pointer = input_line_pointer;
1996
1997 last_tok = 0;
1998 last_opnd_cnt = -1;
1999 opnd_cnt = 0;
2000
2001 /* Skip invisible operands. */
2002 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0)
2003 {
2004 opnd_cnt += 1;
2005 tok++;
2006 }
2007
2008 for (n = 0; n < num_args; n++)
2009 {
2010 input_line_pointer = arg_strings[n];
2011 if (*input_line_pointer == ':')
2012 {
2013 xtensa_regfile opnd_rf;
2014 input_line_pointer++;
2015 if (num_regs == 0)
2016 goto err;
2017 assert (opnd_cnt > 0);
2018 num_regs--;
2019 opnd_rf = xtensa_operand_regfile (isa, opcode, last_opnd_cnt);
2020 if (next_reg
2021 != tc_get_register (xtensa_regfile_shortname (isa, opnd_rf)))
2022 as_warn (_("incorrect register number, ignoring"));
2023 next_reg++;
2024 }
2025 else
2026 {
2027 if (opnd_cnt >= opcode_operand_count)
2028 {
2029 as_warn (_("too many arguments"));
2030 goto err;
2031 }
2032 assert (opnd_cnt < MAX_INSN_ARGS);
2033
2034 expression_maybe_register (opcode, opnd_cnt, tok);
2035 next_reg = tok->X_add_number + 1;
2036
2037 if (tok->X_op == O_illegal || tok->X_op == O_absent)
2038 goto err;
2039 if (xtensa_operand_is_register (isa, opcode, opnd_cnt) == 1)
2040 {
2041 num_regs = xtensa_operand_num_regs (isa, opcode, opnd_cnt) - 1;
2042 /* minus 1 because we are seeing one right now */
2043 }
2044 else
2045 num_regs = 0;
2046
2047 last_tok = tok;
2048 last_opnd_cnt = opnd_cnt;
2049
2050 do
2051 {
2052 opnd_cnt += 1;
2053 tok++;
2054 }
2055 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0);
2056 }
2057 }
2058
2059 if (num_regs > 0 && ((int) next_reg != last_tok->X_add_number + 1))
2060 goto err;
2061
2062 insn->ntok = tok - insn->tok;
2063 had_error = FALSE;
2064
2065 err:
2066 input_line_pointer = old_input_line_pointer;
2067 return had_error;
2068 }
2069
2070
2071 static int
2072 get_invisible_operands (TInsn *insn)
2073 {
2074 xtensa_isa isa = xtensa_default_isa;
2075 static xtensa_insnbuf slotbuf = NULL;
2076 xtensa_format fmt;
2077 xtensa_opcode opc = insn->opcode;
2078 int slot, opnd, fmt_found;
2079 unsigned val;
2080
2081 if (!slotbuf)
2082 slotbuf = xtensa_insnbuf_alloc (isa);
2083
2084 /* Find format/slot where this can be encoded. */
2085 fmt_found = 0;
2086 slot = 0;
2087 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
2088 {
2089 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
2090 {
2091 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opc) == 0)
2092 {
2093 fmt_found = 1;
2094 break;
2095 }
2096 }
2097 if (fmt_found) break;
2098 }
2099
2100 if (!fmt_found)
2101 {
2102 as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa, opc));
2103 return -1;
2104 }
2105
2106 /* First encode all the visible operands
2107 (to deal with shared field operands). */
2108 for (opnd = 0; opnd < insn->ntok; opnd++)
2109 {
2110 if (xtensa_operand_is_visible (isa, opc, opnd) == 1
2111 && (insn->tok[opnd].X_op == O_register
2112 || insn->tok[opnd].X_op == O_constant))
2113 {
2114 val = insn->tok[opnd].X_add_number;
2115 xtensa_operand_encode (isa, opc, opnd, &val);
2116 xtensa_operand_set_field (isa, opc, opnd, fmt, slot, slotbuf, val);
2117 }
2118 }
2119
2120 /* Then pull out the values for the invisible ones. */
2121 for (opnd = 0; opnd < insn->ntok; opnd++)
2122 {
2123 if (xtensa_operand_is_visible (isa, opc, opnd) == 0)
2124 {
2125 xtensa_operand_get_field (isa, opc, opnd, fmt, slot, slotbuf, &val);
2126 xtensa_operand_decode (isa, opc, opnd, &val);
2127 insn->tok[opnd].X_add_number = val;
2128 if (xtensa_operand_is_register (isa, opc, opnd) == 1)
2129 insn->tok[opnd].X_op = O_register;
2130 else
2131 insn->tok[opnd].X_op = O_constant;
2132 }
2133 }
2134
2135 return 0;
2136 }
2137
2138
2139 static void
2140 xg_reverse_shift_count (char **cnt_argp)
2141 {
2142 char *cnt_arg, *new_arg;
2143 cnt_arg = *cnt_argp;
2144
2145 /* replace the argument with "31-(argument)" */
2146 new_arg = (char *) xmalloc (strlen (cnt_arg) + 6);
2147 sprintf (new_arg, "31-(%s)", cnt_arg);
2148
2149 free (cnt_arg);
2150 *cnt_argp = new_arg;
2151 }
2152
2153
2154 /* If "arg" is a constant expression, return non-zero with the value
2155 in *valp. */
2156
2157 static int
2158 xg_arg_is_constant (char *arg, offsetT *valp)
2159 {
2160 expressionS exp;
2161 char *save_ptr = input_line_pointer;
2162
2163 input_line_pointer = arg;
2164 expression (&exp);
2165 input_line_pointer = save_ptr;
2166
2167 if (exp.X_op == O_constant)
2168 {
2169 *valp = exp.X_add_number;
2170 return 1;
2171 }
2172
2173 return 0;
2174 }
2175
2176
2177 static void
2178 xg_replace_opname (char **popname, char *newop)
2179 {
2180 free (*popname);
2181 *popname = (char *) xmalloc (strlen (newop) + 1);
2182 strcpy (*popname, newop);
2183 }
2184
2185
2186 static int
2187 xg_check_num_args (int *pnum_args,
2188 int expected_num,
2189 char *opname,
2190 char **arg_strings)
2191 {
2192 int num_args = *pnum_args;
2193
2194 if (num_args < expected_num)
2195 {
2196 as_bad (_("not enough operands (%d) for '%s'; expected %d"),
2197 num_args, opname, expected_num);
2198 return -1;
2199 }
2200
2201 if (num_args > expected_num)
2202 {
2203 as_warn (_("too many operands (%d) for '%s'; expected %d"),
2204 num_args, opname, expected_num);
2205 while (num_args-- > expected_num)
2206 {
2207 free (arg_strings[num_args]);
2208 arg_strings[num_args] = 0;
2209 }
2210 *pnum_args = expected_num;
2211 return -1;
2212 }
2213
2214 return 0;
2215 }
2216
2217
2218 /* If the register is not specified as part of the opcode,
2219 then get it from the operand and move it to the opcode. */
2220
2221 static int
2222 xg_translate_sysreg_op (char **popname, int *pnum_args, char **arg_strings)
2223 {
2224 xtensa_isa isa = xtensa_default_isa;
2225 xtensa_sysreg sr;
2226 char *opname, *new_opname;
2227 const char *sr_name;
2228 int is_user, is_write;
2229
2230 opname = *popname;
2231 if (*opname == '_')
2232 opname += 1;
2233 is_user = (opname[1] == 'u');
2234 is_write = (opname[0] == 'w');
2235
2236 /* Opname == [rw]ur or [rwx]sr... */
2237
2238 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2239 return -1;
2240
2241 /* Check if the argument is a symbolic register name. */
2242 sr = xtensa_sysreg_lookup_name (isa, arg_strings[1]);
2243 /* Handle WSR to "INTSET" as a special case. */
2244 if (sr == XTENSA_UNDEFINED && is_write && !is_user
2245 && !strcasecmp (arg_strings[1], "intset"))
2246 sr = xtensa_sysreg_lookup_name (isa, "interrupt");
2247 if (sr == XTENSA_UNDEFINED
2248 || (xtensa_sysreg_is_user (isa, sr) == 1) != is_user)
2249 {
2250 /* Maybe it's a register number.... */
2251 offsetT val;
2252 if (!xg_arg_is_constant (arg_strings[1], &val))
2253 {
2254 as_bad (_("invalid register '%s' for '%s' instruction"),
2255 arg_strings[1], opname);
2256 return -1;
2257 }
2258 sr = xtensa_sysreg_lookup (isa, val, is_user);
2259 if (sr == XTENSA_UNDEFINED)
2260 {
2261 as_bad (_("invalid register number (%ld) for '%s' instruction"),
2262 (long) val, opname);
2263 return -1;
2264 }
2265 }
2266
2267 /* Remove the last argument, which is now part of the opcode. */
2268 free (arg_strings[1]);
2269 arg_strings[1] = 0;
2270 *pnum_args = 1;
2271
2272 /* Translate the opcode. */
2273 sr_name = xtensa_sysreg_name (isa, sr);
2274 /* Another special case for "WSR.INTSET".... */
2275 if (is_write && !is_user && !strcasecmp ("interrupt", sr_name))
2276 sr_name = "intset";
2277 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2278 sprintf (new_opname, "%s.%s", *popname, sr_name);
2279 free (*popname);
2280 *popname = new_opname;
2281
2282 return 0;
2283 }
2284
2285
2286 static int
2287 xtensa_translate_old_userreg_ops (char **popname)
2288 {
2289 xtensa_isa isa = xtensa_default_isa;
2290 xtensa_sysreg sr;
2291 char *opname, *new_opname;
2292 const char *sr_name;
2293 bfd_boolean has_underbar = FALSE;
2294
2295 opname = *popname;
2296 if (opname[0] == '_')
2297 {
2298 has_underbar = TRUE;
2299 opname += 1;
2300 }
2301
2302 sr = xtensa_sysreg_lookup_name (isa, opname + 1);
2303 if (sr != XTENSA_UNDEFINED)
2304 {
2305 /* The new default name ("nnn") is different from the old default
2306 name ("URnnn"). The old default is handled below, and we don't
2307 want to recognize [RW]nnn, so do nothing if the name is the (new)
2308 default. */
2309 static char namebuf[10];
2310 sprintf (namebuf, "%d", xtensa_sysreg_number (isa, sr));
2311 if (strcmp (namebuf, opname + 1) == 0)
2312 return 0;
2313 }
2314 else
2315 {
2316 offsetT val;
2317 char *end;
2318
2319 /* Only continue if the reg name is "URnnn". */
2320 if (opname[1] != 'u' || opname[2] != 'r')
2321 return 0;
2322 val = strtoul (opname + 3, &end, 10);
2323 if (*end != '\0')
2324 return 0;
2325
2326 sr = xtensa_sysreg_lookup (isa, val, 1);
2327 if (sr == XTENSA_UNDEFINED)
2328 {
2329 as_bad (_("invalid register number (%ld) for '%s'"),
2330 (long) val, opname);
2331 return -1;
2332 }
2333 }
2334
2335 /* Translate the opcode. */
2336 sr_name = xtensa_sysreg_name (isa, sr);
2337 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2338 sprintf (new_opname, "%s%cur.%s", (has_underbar ? "_" : ""),
2339 opname[0], sr_name);
2340 free (*popname);
2341 *popname = new_opname;
2342
2343 return 0;
2344 }
2345
2346
2347 static int
2348 xtensa_translate_zero_immed (char *old_op,
2349 char *new_op,
2350 char **popname,
2351 int *pnum_args,
2352 char **arg_strings)
2353 {
2354 char *opname;
2355 offsetT val;
2356
2357 opname = *popname;
2358 assert (opname[0] != '_');
2359
2360 if (strcmp (opname, old_op) != 0)
2361 return 0;
2362
2363 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2364 return -1;
2365 if (xg_arg_is_constant (arg_strings[1], &val) && val == 0)
2366 {
2367 xg_replace_opname (popname, new_op);
2368 free (arg_strings[1]);
2369 arg_strings[1] = arg_strings[2];
2370 arg_strings[2] = 0;
2371 *pnum_args = 2;
2372 }
2373
2374 return 0;
2375 }
2376
2377
2378 /* If the instruction is an idiom (i.e., a built-in macro), translate it.
2379 Returns non-zero if an error was found. */
2380
2381 static int
2382 xg_translate_idioms (char **popname, int *pnum_args, char **arg_strings)
2383 {
2384 char *opname = *popname;
2385 bfd_boolean has_underbar = FALSE;
2386
2387 if (*opname == '_')
2388 {
2389 has_underbar = TRUE;
2390 opname += 1;
2391 }
2392
2393 if (strcmp (opname, "mov") == 0)
2394 {
2395 if (use_transform () && !has_underbar && density_supported)
2396 xg_replace_opname (popname, "mov.n");
2397 else
2398 {
2399 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2400 return -1;
2401 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2402 arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1);
2403 strcpy (arg_strings[2], arg_strings[1]);
2404 *pnum_args = 3;
2405 }
2406 return 0;
2407 }
2408
2409 if (strcmp (opname, "bbsi.l") == 0)
2410 {
2411 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2412 return -1;
2413 xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi"));
2414 if (target_big_endian)
2415 xg_reverse_shift_count (&arg_strings[1]);
2416 return 0;
2417 }
2418
2419 if (strcmp (opname, "bbci.l") == 0)
2420 {
2421 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2422 return -1;
2423 xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci"));
2424 if (target_big_endian)
2425 xg_reverse_shift_count (&arg_strings[1]);
2426 return 0;
2427 }
2428
2429 /* Don't do anything special with NOPs inside FLIX instructions. They
2430 are handled elsewhere. Real NOP instructions are always available
2431 in configurations with FLIX, so this should never be an issue but
2432 check for it anyway. */
2433 if (!cur_vinsn.inside_bundle && xtensa_nop_opcode == XTENSA_UNDEFINED
2434 && strcmp (opname, "nop") == 0)
2435 {
2436 if (use_transform () && !has_underbar && density_supported)
2437 xg_replace_opname (popname, "nop.n");
2438 else
2439 {
2440 if (xg_check_num_args (pnum_args, 0, opname, arg_strings))
2441 return -1;
2442 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2443 arg_strings[0] = (char *) xmalloc (3);
2444 arg_strings[1] = (char *) xmalloc (3);
2445 arg_strings[2] = (char *) xmalloc (3);
2446 strcpy (arg_strings[0], "a1");
2447 strcpy (arg_strings[1], "a1");
2448 strcpy (arg_strings[2], "a1");
2449 *pnum_args = 3;
2450 }
2451 return 0;
2452 }
2453
2454 /* Recognize [RW]UR and [RWX]SR. */
2455 if ((((opname[0] == 'r' || opname[0] == 'w')
2456 && (opname[1] == 'u' || opname[1] == 's'))
2457 || (opname[0] == 'x' && opname[1] == 's'))
2458 && opname[2] == 'r'
2459 && opname[3] == '\0')
2460 return xg_translate_sysreg_op (popname, pnum_args, arg_strings);
2461
2462 /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and
2463 [RW]<name> if <name> is the non-default name of a user register. */
2464 if ((opname[0] == 'r' || opname[0] == 'w')
2465 && xtensa_opcode_lookup (xtensa_default_isa, opname) == XTENSA_UNDEFINED)
2466 return xtensa_translate_old_userreg_ops (popname);
2467
2468 /* Relax branches that don't allow comparisons against an immediate value
2469 of zero to the corresponding branches with implicit zero immediates. */
2470 if (!has_underbar && use_transform ())
2471 {
2472 if (xtensa_translate_zero_immed ("bnei", "bnez", popname,
2473 pnum_args, arg_strings))
2474 return -1;
2475
2476 if (xtensa_translate_zero_immed ("beqi", "beqz", popname,
2477 pnum_args, arg_strings))
2478 return -1;
2479
2480 if (xtensa_translate_zero_immed ("bgei", "bgez", popname,
2481 pnum_args, arg_strings))
2482 return -1;
2483
2484 if (xtensa_translate_zero_immed ("blti", "bltz", popname,
2485 pnum_args, arg_strings))
2486 return -1;
2487 }
2488
2489 return 0;
2490 }
2491
2492 \f
2493 /* Functions for dealing with the Xtensa ISA. */
2494
2495 /* Currently the assembler only allows us to use a single target per
2496 fragment. Because of this, only one operand for a given
2497 instruction may be symbolic. If there is a PC-relative operand,
2498 the last one is chosen. Otherwise, the result is the number of the
2499 last immediate operand, and if there are none of those, we fail and
2500 return -1. */
2501
2502 static int
2503 get_relaxable_immed (xtensa_opcode opcode)
2504 {
2505 int last_immed = -1;
2506 int noperands, opi;
2507
2508 if (opcode == XTENSA_UNDEFINED)
2509 return -1;
2510
2511 noperands = xtensa_opcode_num_operands (xtensa_default_isa, opcode);
2512 for (opi = noperands - 1; opi >= 0; opi--)
2513 {
2514 if (xtensa_operand_is_visible (xtensa_default_isa, opcode, opi) == 0)
2515 continue;
2516 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, opi) == 1)
2517 return opi;
2518 if (last_immed == -1
2519 && xtensa_operand_is_register (xtensa_default_isa, opcode, opi) == 0)
2520 last_immed = opi;
2521 }
2522 return last_immed;
2523 }
2524
2525
2526 static xtensa_opcode
2527 get_opcode_from_buf (const char *buf, int slot)
2528 {
2529 static xtensa_insnbuf insnbuf = NULL;
2530 static xtensa_insnbuf slotbuf = NULL;
2531 xtensa_isa isa = xtensa_default_isa;
2532 xtensa_format fmt;
2533
2534 if (!insnbuf)
2535 {
2536 insnbuf = xtensa_insnbuf_alloc (isa);
2537 slotbuf = xtensa_insnbuf_alloc (isa);
2538 }
2539
2540 xtensa_insnbuf_from_chars (isa, insnbuf, (const unsigned char *) buf, 0);
2541 fmt = xtensa_format_decode (isa, insnbuf);
2542 if (fmt == XTENSA_UNDEFINED)
2543 return XTENSA_UNDEFINED;
2544
2545 if (slot >= xtensa_format_num_slots (isa, fmt))
2546 return XTENSA_UNDEFINED;
2547
2548 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
2549 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
2550 }
2551
2552
2553 #ifdef TENSILICA_DEBUG
2554
2555 /* For debugging, print out the mapping of opcode numbers to opcodes. */
2556
2557 static void
2558 xtensa_print_insn_table (void)
2559 {
2560 int num_opcodes, num_operands;
2561 xtensa_opcode opcode;
2562 xtensa_isa isa = xtensa_default_isa;
2563
2564 num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
2565 for (opcode = 0; opcode < num_opcodes; opcode++)
2566 {
2567 int opn;
2568 fprintf (stderr, "%d: %s: ", opcode, xtensa_opcode_name (isa, opcode));
2569 num_operands = xtensa_opcode_num_operands (isa, opcode);
2570 for (opn = 0; opn < num_operands; opn++)
2571 {
2572 if (xtensa_operand_is_visible (isa, opcode, opn) == 0)
2573 continue;
2574 if (xtensa_operand_is_register (isa, opcode, opn) == 1)
2575 {
2576 xtensa_regfile opnd_rf =
2577 xtensa_operand_regfile (isa, opcode, opn);
2578 fprintf (stderr, "%s ", xtensa_regfile_shortname (isa, opnd_rf));
2579 }
2580 else if (xtensa_operand_is_PCrelative (isa, opcode, opn) == 1)
2581 fputs ("[lLr] ", stderr);
2582 else
2583 fputs ("i ", stderr);
2584 }
2585 fprintf (stderr, "\n");
2586 }
2587 }
2588
2589
2590 static void
2591 print_vliw_insn (xtensa_insnbuf vbuf)
2592 {
2593 xtensa_isa isa = xtensa_default_isa;
2594 xtensa_format f = xtensa_format_decode (isa, vbuf);
2595 xtensa_insnbuf sbuf = xtensa_insnbuf_alloc (isa);
2596 int op;
2597
2598 fprintf (stderr, "format = %d\n", f);
2599
2600 for (op = 0; op < xtensa_format_num_slots (isa, f); op++)
2601 {
2602 xtensa_opcode opcode;
2603 const char *opname;
2604 int operands;
2605
2606 xtensa_format_get_slot (isa, f, op, vbuf, sbuf);
2607 opcode = xtensa_opcode_decode (isa, f, op, sbuf);
2608 opname = xtensa_opcode_name (isa, opcode);
2609
2610 fprintf (stderr, "op in slot %i is %s;\n", op, opname);
2611 fprintf (stderr, " operands = ");
2612 for (operands = 0;
2613 operands < xtensa_opcode_num_operands (isa, opcode);
2614 operands++)
2615 {
2616 unsigned int val;
2617 if (xtensa_operand_is_visible (isa, opcode, operands) == 0)
2618 continue;
2619 xtensa_operand_get_field (isa, opcode, operands, f, op, sbuf, &val);
2620 xtensa_operand_decode (isa, opcode, operands, &val);
2621 fprintf (stderr, "%d ", val);
2622 }
2623 fprintf (stderr, "\n");
2624 }
2625 xtensa_insnbuf_free (isa, sbuf);
2626 }
2627
2628 #endif /* TENSILICA_DEBUG */
2629
2630
2631 static bfd_boolean
2632 is_direct_call_opcode (xtensa_opcode opcode)
2633 {
2634 xtensa_isa isa = xtensa_default_isa;
2635 int n, num_operands;
2636
2637 if (xtensa_opcode_is_call (isa, opcode) != 1)
2638 return FALSE;
2639
2640 num_operands = xtensa_opcode_num_operands (isa, opcode);
2641 for (n = 0; n < num_operands; n++)
2642 {
2643 if (xtensa_operand_is_register (isa, opcode, n) == 0
2644 && xtensa_operand_is_PCrelative (isa, opcode, n) == 1)
2645 return TRUE;
2646 }
2647 return FALSE;
2648 }
2649
2650
2651 /* Convert from BFD relocation type code to slot and operand number.
2652 Returns non-zero on failure. */
2653
2654 static int
2655 decode_reloc (bfd_reloc_code_real_type reloc, int *slot, bfd_boolean *is_alt)
2656 {
2657 if (reloc >= BFD_RELOC_XTENSA_SLOT0_OP
2658 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
2659 {
2660 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_OP;
2661 *is_alt = FALSE;
2662 }
2663 else if (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
2664 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT)
2665 {
2666 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_ALT;
2667 *is_alt = TRUE;
2668 }
2669 else
2670 return -1;
2671
2672 return 0;
2673 }
2674
2675
2676 /* Convert from slot number to BFD relocation type code for the
2677 standard PC-relative relocations. Return BFD_RELOC_NONE on
2678 failure. */
2679
2680 static bfd_reloc_code_real_type
2681 encode_reloc (int slot)
2682 {
2683 if (slot < 0 || slot > 14)
2684 return BFD_RELOC_NONE;
2685
2686 return BFD_RELOC_XTENSA_SLOT0_OP + slot;
2687 }
2688
2689
2690 /* Convert from slot numbers to BFD relocation type code for the
2691 "alternate" relocations. Return BFD_RELOC_NONE on failure. */
2692
2693 static bfd_reloc_code_real_type
2694 encode_alt_reloc (int slot)
2695 {
2696 if (slot < 0 || slot > 14)
2697 return BFD_RELOC_NONE;
2698
2699 return BFD_RELOC_XTENSA_SLOT0_ALT + slot;
2700 }
2701
2702
2703 static void
2704 xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf,
2705 xtensa_format fmt,
2706 int slot,
2707 xtensa_opcode opcode,
2708 int operand,
2709 uint32 value,
2710 const char *file,
2711 unsigned int line)
2712 {
2713 uint32 valbuf = value;
2714
2715 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
2716 {
2717 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, operand)
2718 == 1)
2719 as_bad_where ((char *) file, line,
2720 _("operand %d of '%s' has out of range value '%u'"),
2721 operand + 1,
2722 xtensa_opcode_name (xtensa_default_isa, opcode),
2723 value);
2724 else
2725 as_bad_where ((char *) file, line,
2726 _("operand %d of '%s' has invalid value '%u'"),
2727 operand + 1,
2728 xtensa_opcode_name (xtensa_default_isa, opcode),
2729 value);
2730 return;
2731 }
2732
2733 xtensa_operand_set_field (xtensa_default_isa, opcode, operand, fmt, slot,
2734 slotbuf, valbuf);
2735 }
2736
2737
2738 static uint32
2739 xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf,
2740 xtensa_format fmt,
2741 int slot,
2742 xtensa_opcode opcode,
2743 int opnum)
2744 {
2745 uint32 val = 0;
2746 (void) xtensa_operand_get_field (xtensa_default_isa, opcode, opnum,
2747 fmt, slot, slotbuf, &val);
2748 (void) xtensa_operand_decode (xtensa_default_isa, opcode, opnum, &val);
2749 return val;
2750 }
2751
2752 \f
2753 /* Checks for rules from xtensa-relax tables. */
2754
2755 /* The routine xg_instruction_matches_option_term must return TRUE
2756 when a given option term is true. The meaning of all of the option
2757 terms is given interpretation by this function. */
2758
2759 static bfd_boolean
2760 xg_instruction_matches_option_term (TInsn *insn, const ReqOrOption *option)
2761 {
2762 if (strcmp (option->option_name, "realnop") == 0
2763 || strncmp (option->option_name, "IsaUse", 6) == 0)
2764 {
2765 /* These conditions were evaluated statically when building the
2766 relaxation table. There's no need to reevaluate them now. */
2767 return TRUE;
2768 }
2769 else if (strcmp (option->option_name, "FREEREG") == 0)
2770 return insn->extra_arg.X_op == O_register;
2771 else
2772 {
2773 as_fatal (_("internal error: unknown option name '%s'"),
2774 option->option_name);
2775 }
2776 }
2777
2778
2779 static bfd_boolean
2780 xg_instruction_matches_or_options (TInsn *insn,
2781 const ReqOrOptionList *or_option)
2782 {
2783 const ReqOrOption *option;
2784 /* Must match each of the AND terms. */
2785 for (option = or_option; option != NULL; option = option->next)
2786 {
2787 if (xg_instruction_matches_option_term (insn, option))
2788 return TRUE;
2789 }
2790 return FALSE;
2791 }
2792
2793
2794 static bfd_boolean
2795 xg_instruction_matches_options (TInsn *insn, const ReqOptionList *options)
2796 {
2797 const ReqOption *req_options;
2798 /* Must match each of the AND terms. */
2799 for (req_options = options;
2800 req_options != NULL;
2801 req_options = req_options->next)
2802 {
2803 /* Must match one of the OR clauses. */
2804 if (!xg_instruction_matches_or_options (insn,
2805 req_options->or_option_terms))
2806 return FALSE;
2807 }
2808 return TRUE;
2809 }
2810
2811
2812 /* Return the transition rule that matches or NULL if none matches. */
2813
2814 static bfd_boolean
2815 xg_instruction_matches_rule (TInsn *insn, TransitionRule *rule)
2816 {
2817 PreconditionList *condition_l;
2818
2819 if (rule->opcode != insn->opcode)
2820 return FALSE;
2821
2822 for (condition_l = rule->conditions;
2823 condition_l != NULL;
2824 condition_l = condition_l->next)
2825 {
2826 expressionS *exp1;
2827 expressionS *exp2;
2828 Precondition *cond = condition_l->precond;
2829
2830 switch (cond->typ)
2831 {
2832 case OP_CONSTANT:
2833 /* The expression must be the constant. */
2834 assert (cond->op_num < insn->ntok);
2835 exp1 = &insn->tok[cond->op_num];
2836 if (expr_is_const (exp1))
2837 {
2838 switch (cond->cmp)
2839 {
2840 case OP_EQUAL:
2841 if (get_expr_const (exp1) != cond->op_data)
2842 return FALSE;
2843 break;
2844 case OP_NOTEQUAL:
2845 if (get_expr_const (exp1) == cond->op_data)
2846 return FALSE;
2847 break;
2848 default:
2849 return FALSE;
2850 }
2851 }
2852 else if (expr_is_register (exp1))
2853 {
2854 switch (cond->cmp)
2855 {
2856 case OP_EQUAL:
2857 if (get_expr_register (exp1) != cond->op_data)
2858 return FALSE;
2859 break;
2860 case OP_NOTEQUAL:
2861 if (get_expr_register (exp1) == cond->op_data)
2862 return FALSE;
2863 break;
2864 default:
2865 return FALSE;
2866 }
2867 }
2868 else
2869 return FALSE;
2870 break;
2871
2872 case OP_OPERAND:
2873 assert (cond->op_num < insn->ntok);
2874 assert (cond->op_data < insn->ntok);
2875 exp1 = &insn->tok[cond->op_num];
2876 exp2 = &insn->tok[cond->op_data];
2877
2878 switch (cond->cmp)
2879 {
2880 case OP_EQUAL:
2881 if (!expr_is_equal (exp1, exp2))
2882 return FALSE;
2883 break;
2884 case OP_NOTEQUAL:
2885 if (expr_is_equal (exp1, exp2))
2886 return FALSE;
2887 break;
2888 }
2889 break;
2890
2891 case OP_LITERAL:
2892 case OP_LABEL:
2893 default:
2894 return FALSE;
2895 }
2896 }
2897 if (!xg_instruction_matches_options (insn, rule->options))
2898 return FALSE;
2899
2900 return TRUE;
2901 }
2902
2903
2904 static int
2905 transition_rule_cmp (const TransitionRule *a, const TransitionRule *b)
2906 {
2907 bfd_boolean a_greater = FALSE;
2908 bfd_boolean b_greater = FALSE;
2909
2910 ReqOptionList *l_a = a->options;
2911 ReqOptionList *l_b = b->options;
2912
2913 /* We only care if they both are the same except for
2914 a const16 vs. an l32r. */
2915
2916 while (l_a && l_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2917 {
2918 ReqOrOptionList *l_or_a = l_a->or_option_terms;
2919 ReqOrOptionList *l_or_b = l_b->or_option_terms;
2920 while (l_or_a && l_or_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2921 {
2922 if (l_or_a->is_true != l_or_b->is_true)
2923 return 0;
2924 if (strcmp (l_or_a->option_name, l_or_b->option_name) != 0)
2925 {
2926 /* This is the case we care about. */
2927 if (strcmp (l_or_a->option_name, "IsaUseConst16") == 0
2928 && strcmp (l_or_b->option_name, "IsaUseL32R") == 0)
2929 {
2930 if (prefer_const16)
2931 a_greater = TRUE;
2932 else
2933 b_greater = TRUE;
2934 }
2935 else if (strcmp (l_or_a->option_name, "IsaUseL32R") == 0
2936 && strcmp (l_or_b->option_name, "IsaUseConst16") == 0)
2937 {
2938 if (prefer_const16)
2939 b_greater = TRUE;
2940 else
2941 a_greater = TRUE;
2942 }
2943 else
2944 return 0;
2945 }
2946 l_or_a = l_or_a->next;
2947 l_or_b = l_or_b->next;
2948 }
2949 if (l_or_a || l_or_b)
2950 return 0;
2951
2952 l_a = l_a->next;
2953 l_b = l_b->next;
2954 }
2955 if (l_a || l_b)
2956 return 0;
2957
2958 /* Incomparable if the substitution was used differently in two cases. */
2959 if (a_greater && b_greater)
2960 return 0;
2961
2962 if (b_greater)
2963 return 1;
2964 if (a_greater)
2965 return -1;
2966
2967 return 0;
2968 }
2969
2970
2971 static TransitionRule *
2972 xg_instruction_match (TInsn *insn)
2973 {
2974 TransitionTable *table = xg_build_simplify_table (&transition_rule_cmp);
2975 TransitionList *l;
2976 assert (insn->opcode < table->num_opcodes);
2977
2978 /* Walk through all of the possible transitions. */
2979 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2980 {
2981 TransitionRule *rule = l->rule;
2982 if (xg_instruction_matches_rule (insn, rule))
2983 return rule;
2984 }
2985 return NULL;
2986 }
2987
2988 \f
2989 /* Various Other Internal Functions. */
2990
2991 static bfd_boolean
2992 is_unique_insn_expansion (TransitionRule *r)
2993 {
2994 if (!r->to_instr || r->to_instr->next != NULL)
2995 return FALSE;
2996 if (r->to_instr->typ != INSTR_INSTR)
2997 return FALSE;
2998 return TRUE;
2999 }
3000
3001
3002 /* Check if there is exactly one relaxation for INSN that converts it to
3003 another instruction of equal or larger size. If so, and if TARG is
3004 non-null, go ahead and generate the relaxed instruction into TARG. If
3005 NARROW_ONLY is true, then only consider relaxations that widen a narrow
3006 instruction, i.e., ignore relaxations that convert to an instruction of
3007 equal size. In some contexts where this function is used, only
3008 a single widening is allowed and the NARROW_ONLY argument is used to
3009 exclude cases like ADDI being "widened" to an ADDMI, which may
3010 later be relaxed to an ADDMI/ADDI pair. */
3011
3012 bfd_boolean
3013 xg_is_single_relaxable_insn (TInsn *insn, TInsn *targ, bfd_boolean narrow_only)
3014 {
3015 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3016 TransitionList *l;
3017 TransitionRule *match = 0;
3018
3019 assert (insn->insn_type == ITYPE_INSN);
3020 assert (insn->opcode < table->num_opcodes);
3021
3022 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3023 {
3024 TransitionRule *rule = l->rule;
3025
3026 if (xg_instruction_matches_rule (insn, rule)
3027 && is_unique_insn_expansion (rule)
3028 && (xg_get_single_size (insn->opcode) + (narrow_only ? 1 : 0)
3029 <= xg_get_single_size (rule->to_instr->opcode)))
3030 {
3031 if (match)
3032 return FALSE;
3033 match = rule;
3034 }
3035 }
3036 if (!match)
3037 return FALSE;
3038
3039 if (targ)
3040 xg_build_to_insn (targ, insn, match->to_instr);
3041 return TRUE;
3042 }
3043
3044
3045 /* Return the maximum number of bytes this opcode can expand to. */
3046
3047 static int
3048 xg_get_max_insn_widen_size (xtensa_opcode opcode)
3049 {
3050 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3051 TransitionList *l;
3052 int max_size = xg_get_single_size (opcode);
3053
3054 assert (opcode < table->num_opcodes);
3055
3056 for (l = table->table[opcode]; l != NULL; l = l->next)
3057 {
3058 TransitionRule *rule = l->rule;
3059 BuildInstr *build_list;
3060 int this_size = 0;
3061
3062 if (!rule)
3063 continue;
3064 build_list = rule->to_instr;
3065 if (is_unique_insn_expansion (rule))
3066 {
3067 assert (build_list->typ == INSTR_INSTR);
3068 this_size = xg_get_max_insn_widen_size (build_list->opcode);
3069 }
3070 else
3071 for (; build_list != NULL; build_list = build_list->next)
3072 {
3073 switch (build_list->typ)
3074 {
3075 case INSTR_INSTR:
3076 this_size += xg_get_single_size (build_list->opcode);
3077 break;
3078 case INSTR_LITERAL_DEF:
3079 case INSTR_LABEL_DEF:
3080 default:
3081 break;
3082 }
3083 }
3084 if (this_size > max_size)
3085 max_size = this_size;
3086 }
3087 return max_size;
3088 }
3089
3090
3091 /* Return the maximum number of literal bytes this opcode can generate. */
3092
3093 static int
3094 xg_get_max_insn_widen_literal_size (xtensa_opcode opcode)
3095 {
3096 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3097 TransitionList *l;
3098 int max_size = 0;
3099
3100 assert (opcode < table->num_opcodes);
3101
3102 for (l = table->table[opcode]; l != NULL; l = l->next)
3103 {
3104 TransitionRule *rule = l->rule;
3105 BuildInstr *build_list;
3106 int this_size = 0;
3107
3108 if (!rule)
3109 continue;
3110 build_list = rule->to_instr;
3111 if (is_unique_insn_expansion (rule))
3112 {
3113 assert (build_list->typ == INSTR_INSTR);
3114 this_size = xg_get_max_insn_widen_literal_size (build_list->opcode);
3115 }
3116 else
3117 for (; build_list != NULL; build_list = build_list->next)
3118 {
3119 switch (build_list->typ)
3120 {
3121 case INSTR_LITERAL_DEF:
3122 /* Hard-coded 4-byte literal. */
3123 this_size += 4;
3124 break;
3125 case INSTR_INSTR:
3126 case INSTR_LABEL_DEF:
3127 default:
3128 break;
3129 }
3130 }
3131 if (this_size > max_size)
3132 max_size = this_size;
3133 }
3134 return max_size;
3135 }
3136
3137
3138 static bfd_boolean
3139 xg_is_relaxable_insn (TInsn *insn, int lateral_steps)
3140 {
3141 int steps_taken = 0;
3142 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3143 TransitionList *l;
3144
3145 assert (insn->insn_type == ITYPE_INSN);
3146 assert (insn->opcode < table->num_opcodes);
3147
3148 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3149 {
3150 TransitionRule *rule = l->rule;
3151
3152 if (xg_instruction_matches_rule (insn, rule))
3153 {
3154 if (steps_taken == lateral_steps)
3155 return TRUE;
3156 steps_taken++;
3157 }
3158 }
3159 return FALSE;
3160 }
3161
3162
3163 static symbolS *
3164 get_special_literal_symbol (void)
3165 {
3166 static symbolS *sym = NULL;
3167
3168 if (sym == NULL)
3169 sym = symbol_find_or_make ("SPECIAL_LITERAL0\001");
3170 return sym;
3171 }
3172
3173
3174 static symbolS *
3175 get_special_label_symbol (void)
3176 {
3177 static symbolS *sym = NULL;
3178
3179 if (sym == NULL)
3180 sym = symbol_find_or_make ("SPECIAL_LABEL0\001");
3181 return sym;
3182 }
3183
3184
3185 static bfd_boolean
3186 xg_valid_literal_expression (const expressionS *exp)
3187 {
3188 switch (exp->X_op)
3189 {
3190 case O_constant:
3191 case O_symbol:
3192 case O_big:
3193 case O_uminus:
3194 case O_subtract:
3195 case O_pltrel:
3196 case O_pcrel:
3197 case O_tlsfunc:
3198 case O_tlsarg:
3199 case O_tpoff:
3200 case O_dtpoff:
3201 return TRUE;
3202 default:
3203 return FALSE;
3204 }
3205 }
3206
3207
3208 /* This will check to see if the value can be converted into the
3209 operand type. It will return TRUE if it does not fit. */
3210
3211 static bfd_boolean
3212 xg_check_operand (int32 value, xtensa_opcode opcode, int operand)
3213 {
3214 uint32 valbuf = value;
3215 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
3216 return TRUE;
3217 return FALSE;
3218 }
3219
3220
3221 /* Assumes: All immeds are constants. Check that all constants fit
3222 into their immeds; return FALSE if not. */
3223
3224 static bfd_boolean
3225 xg_immeds_fit (const TInsn *insn)
3226 {
3227 xtensa_isa isa = xtensa_default_isa;
3228 int i;
3229
3230 int n = insn->ntok;
3231 assert (insn->insn_type == ITYPE_INSN);
3232 for (i = 0; i < n; ++i)
3233 {
3234 const expressionS *expr = &insn->tok[i];
3235 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3236 continue;
3237
3238 switch (expr->X_op)
3239 {
3240 case O_register:
3241 case O_constant:
3242 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3243 return FALSE;
3244 break;
3245
3246 default:
3247 /* The symbol should have a fixup associated with it. */
3248 assert (FALSE);
3249 break;
3250 }
3251 }
3252 return TRUE;
3253 }
3254
3255
3256 /* This should only be called after we have an initial
3257 estimate of the addresses. */
3258
3259 static bfd_boolean
3260 xg_symbolic_immeds_fit (const TInsn *insn,
3261 segT pc_seg,
3262 fragS *pc_frag,
3263 offsetT pc_offset,
3264 long stretch)
3265 {
3266 xtensa_isa isa = xtensa_default_isa;
3267 symbolS *symbolP;
3268 fragS *sym_frag;
3269 offsetT target, pc;
3270 uint32 new_offset;
3271 int i;
3272 int n = insn->ntok;
3273
3274 assert (insn->insn_type == ITYPE_INSN);
3275
3276 for (i = 0; i < n; ++i)
3277 {
3278 const expressionS *expr = &insn->tok[i];
3279 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3280 continue;
3281
3282 switch (expr->X_op)
3283 {
3284 case O_register:
3285 case O_constant:
3286 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3287 return FALSE;
3288 break;
3289
3290 case O_lo16:
3291 case O_hi16:
3292 /* Check for the worst case. */
3293 if (xg_check_operand (0xffff, insn->opcode, i))
3294 return FALSE;
3295 break;
3296
3297 case O_symbol:
3298 /* We only allow symbols for PC-relative references.
3299 If pc_frag == 0, then we don't have frag locations yet. */
3300 if (pc_frag == 0
3301 || xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 0)
3302 return FALSE;
3303
3304 /* If it is a weak symbol or a symbol in a different section,
3305 it cannot be known to fit at assembly time. */
3306 if (S_IS_WEAK (expr->X_add_symbol)
3307 || S_GET_SEGMENT (expr->X_add_symbol) != pc_seg)
3308 {
3309 /* For a direct call with --no-longcalls, be optimistic and
3310 assume it will be in range. If the symbol is weak and
3311 undefined, it may remain undefined at link-time, in which
3312 case it will have a zero value and almost certainly be out
3313 of range for a direct call; thus, relax for undefined weak
3314 symbols even if longcalls is not enabled. */
3315 if (is_direct_call_opcode (insn->opcode)
3316 && ! pc_frag->tc_frag_data.use_longcalls
3317 && (! S_IS_WEAK (expr->X_add_symbol)
3318 || S_IS_DEFINED (expr->X_add_symbol)))
3319 return TRUE;
3320
3321 return FALSE;
3322 }
3323
3324 symbolP = expr->X_add_symbol;
3325 sym_frag = symbol_get_frag (symbolP);
3326 target = S_GET_VALUE (symbolP) + expr->X_add_number;
3327 pc = pc_frag->fr_address + pc_offset;
3328
3329 /* If frag has yet to be reached on this pass, assume it
3330 will move by STRETCH just as we did. If this is not so,
3331 it will be because some frag between grows, and that will
3332 force another pass. Beware zero-length frags. There
3333 should be a faster way to do this. */
3334
3335 if (stretch != 0
3336 && sym_frag->relax_marker != pc_frag->relax_marker
3337 && S_GET_SEGMENT (symbolP) == pc_seg)
3338 {
3339 target += stretch;
3340 }
3341
3342 new_offset = target;
3343 xtensa_operand_do_reloc (isa, insn->opcode, i, &new_offset, pc);
3344 if (xg_check_operand (new_offset, insn->opcode, i))
3345 return FALSE;
3346 break;
3347
3348 default:
3349 /* The symbol should have a fixup associated with it. */
3350 return FALSE;
3351 }
3352 }
3353
3354 return TRUE;
3355 }
3356
3357
3358 /* Return TRUE on success. */
3359
3360 static bfd_boolean
3361 xg_build_to_insn (TInsn *targ, TInsn *insn, BuildInstr *bi)
3362 {
3363 BuildOp *op;
3364 symbolS *sym;
3365
3366 tinsn_init (targ);
3367 targ->debug_line = insn->debug_line;
3368 targ->loc_directive_seen = insn->loc_directive_seen;
3369 switch (bi->typ)
3370 {
3371 case INSTR_INSTR:
3372 op = bi->ops;
3373 targ->opcode = bi->opcode;
3374 targ->insn_type = ITYPE_INSN;
3375 targ->is_specific_opcode = FALSE;
3376
3377 for (; op != NULL; op = op->next)
3378 {
3379 int op_num = op->op_num;
3380 int op_data = op->op_data;
3381
3382 assert (op->op_num < MAX_INSN_ARGS);
3383
3384 if (targ->ntok <= op_num)
3385 targ->ntok = op_num + 1;
3386
3387 switch (op->typ)
3388 {
3389 case OP_CONSTANT:
3390 set_expr_const (&targ->tok[op_num], op_data);
3391 break;
3392 case OP_OPERAND:
3393 assert (op_data < insn->ntok);
3394 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3395 break;
3396 case OP_FREEREG:
3397 if (insn->extra_arg.X_op != O_register)
3398 return FALSE;
3399 copy_expr (&targ->tok[op_num], &insn->extra_arg);
3400 break;
3401 case OP_LITERAL:
3402 sym = get_special_literal_symbol ();
3403 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3404 if (insn->tok[op_data].X_op == O_tlsfunc
3405 || insn->tok[op_data].X_op == O_tlsarg)
3406 copy_expr (&targ->extra_arg, &insn->tok[op_data]);
3407 break;
3408 case OP_LABEL:
3409 sym = get_special_label_symbol ();
3410 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3411 break;
3412 case OP_OPERAND_HI16U:
3413 case OP_OPERAND_LOW16U:
3414 assert (op_data < insn->ntok);
3415 if (expr_is_const (&insn->tok[op_data]))
3416 {
3417 long val;
3418 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3419 val = xg_apply_userdef_op_fn (op->typ,
3420 targ->tok[op_num].
3421 X_add_number);
3422 targ->tok[op_num].X_add_number = val;
3423 }
3424 else
3425 {
3426 /* For const16 we can create relocations for these. */
3427 if (targ->opcode == XTENSA_UNDEFINED
3428 || (targ->opcode != xtensa_const16_opcode))
3429 return FALSE;
3430 assert (op_data < insn->ntok);
3431 /* Need to build a O_lo16 or O_hi16. */
3432 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3433 if (targ->tok[op_num].X_op == O_symbol)
3434 {
3435 if (op->typ == OP_OPERAND_HI16U)
3436 targ->tok[op_num].X_op = O_hi16;
3437 else if (op->typ == OP_OPERAND_LOW16U)
3438 targ->tok[op_num].X_op = O_lo16;
3439 else
3440 return FALSE;
3441 }
3442 }
3443 break;
3444 default:
3445 /* currently handles:
3446 OP_OPERAND_LOW8
3447 OP_OPERAND_HI24S
3448 OP_OPERAND_F32MINUS */
3449 if (xg_has_userdef_op_fn (op->typ))
3450 {
3451 assert (op_data < insn->ntok);
3452 if (expr_is_const (&insn->tok[op_data]))
3453 {
3454 long val;
3455 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3456 val = xg_apply_userdef_op_fn (op->typ,
3457 targ->tok[op_num].
3458 X_add_number);
3459 targ->tok[op_num].X_add_number = val;
3460 }
3461 else
3462 return FALSE; /* We cannot use a relocation for this. */
3463 break;
3464 }
3465 assert (0);
3466 break;
3467 }
3468 }
3469 break;
3470
3471 case INSTR_LITERAL_DEF:
3472 op = bi->ops;
3473 targ->opcode = XTENSA_UNDEFINED;
3474 targ->insn_type = ITYPE_LITERAL;
3475 targ->is_specific_opcode = FALSE;
3476 for (; op != NULL; op = op->next)
3477 {
3478 int op_num = op->op_num;
3479 int op_data = op->op_data;
3480 assert (op->op_num < MAX_INSN_ARGS);
3481
3482 if (targ->ntok <= op_num)
3483 targ->ntok = op_num + 1;
3484
3485 switch (op->typ)
3486 {
3487 case OP_OPERAND:
3488 assert (op_data < insn->ntok);
3489 /* We can only pass resolvable literals through. */
3490 if (!xg_valid_literal_expression (&insn->tok[op_data]))
3491 return FALSE;
3492 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3493 break;
3494 case OP_LITERAL:
3495 case OP_CONSTANT:
3496 case OP_LABEL:
3497 default:
3498 assert (0);
3499 break;
3500 }
3501 }
3502 break;
3503
3504 case INSTR_LABEL_DEF:
3505 op = bi->ops;
3506 targ->opcode = XTENSA_UNDEFINED;
3507 targ->insn_type = ITYPE_LABEL;
3508 targ->is_specific_opcode = FALSE;
3509 /* Literal with no ops is a label? */
3510 assert (op == NULL);
3511 break;
3512
3513 default:
3514 assert (0);
3515 }
3516
3517 return TRUE;
3518 }
3519
3520
3521 /* Return TRUE on success. */
3522
3523 static bfd_boolean
3524 xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi)
3525 {
3526 for (; bi != NULL; bi = bi->next)
3527 {
3528 TInsn *next_insn = istack_push_space (istack);
3529
3530 if (!xg_build_to_insn (next_insn, insn, bi))
3531 return FALSE;
3532 }
3533 return TRUE;
3534 }
3535
3536
3537 /* Return TRUE on valid expansion. */
3538
3539 static bfd_boolean
3540 xg_expand_to_stack (IStack *istack, TInsn *insn, int lateral_steps)
3541 {
3542 int stack_size = istack->ninsn;
3543 int steps_taken = 0;
3544 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3545 TransitionList *l;
3546
3547 assert (insn->insn_type == ITYPE_INSN);
3548 assert (insn->opcode < table->num_opcodes);
3549
3550 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3551 {
3552 TransitionRule *rule = l->rule;
3553
3554 if (xg_instruction_matches_rule (insn, rule))
3555 {
3556 if (lateral_steps == steps_taken)
3557 {
3558 int i;
3559
3560 /* This is it. Expand the rule to the stack. */
3561 if (!xg_build_to_stack (istack, insn, rule->to_instr))
3562 return FALSE;
3563
3564 /* Check to see if it fits. */
3565 for (i = stack_size; i < istack->ninsn; i++)
3566 {
3567 TInsn *insn = &istack->insn[i];
3568
3569 if (insn->insn_type == ITYPE_INSN
3570 && !tinsn_has_symbolic_operands (insn)
3571 && !xg_immeds_fit (insn))
3572 {
3573 istack->ninsn = stack_size;
3574 return FALSE;
3575 }
3576 }
3577 return TRUE;
3578 }
3579 steps_taken++;
3580 }
3581 }
3582 return FALSE;
3583 }
3584
3585 \f
3586 /* Relax the assembly instruction at least "min_steps".
3587 Return the number of steps taken.
3588
3589 For relaxation to correctly terminate, every relaxation chain must
3590 terminate in one of two ways:
3591
3592 1. If the chain from one instruction to the next consists entirely of
3593 single instructions, then the chain *must* handle all possible
3594 immediates without failing. It must not ever fail because an
3595 immediate is out of range. The MOVI.N -> MOVI -> L32R relaxation
3596 chain is one example. L32R loads 32 bits, and there cannot be an
3597 immediate larger than 32 bits, so it satisfies this condition.
3598 Single instruction relaxation chains are as defined by
3599 xg_is_single_relaxable_instruction.
3600
3601 2. Otherwise, the chain must end in a multi-instruction expansion: e.g.,
3602 BNEZ.N -> BNEZ -> BNEZ.W15 -> BENZ.N/J
3603
3604 Strictly speaking, in most cases you can violate condition 1 and be OK
3605 -- in particular when the last two instructions have the same single
3606 size. But nevertheless, you should guarantee the above two conditions.
3607
3608 We could fix this so that single-instruction expansions correctly
3609 terminate when they can't handle the range, but the error messages are
3610 worse, and it actually turns out that in every case but one (18-bit wide
3611 branches), you need a multi-instruction expansion to get the full range
3612 anyway. And because 18-bit branches are handled identically to 15-bit
3613 branches, there isn't any point in changing it. */
3614
3615 static int
3616 xg_assembly_relax (IStack *istack,
3617 TInsn *insn,
3618 segT pc_seg,
3619 fragS *pc_frag, /* if pc_frag == 0, not pc-relative */
3620 offsetT pc_offset, /* offset in fragment */
3621 int min_steps, /* minimum conversion steps */
3622 long stretch) /* number of bytes stretched so far */
3623 {
3624 int steps_taken = 0;
3625
3626 /* Some of its immeds don't fit. Try to build a relaxed version.
3627 This may go through a couple of stages of single instruction
3628 transformations before we get there. */
3629
3630 TInsn single_target;
3631 TInsn current_insn;
3632 int lateral_steps = 0;
3633 int istack_size = istack->ninsn;
3634
3635 if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch)
3636 && steps_taken >= min_steps)
3637 {
3638 istack_push (istack, insn);
3639 return steps_taken;
3640 }
3641 current_insn = *insn;
3642
3643 /* Walk through all of the single instruction expansions. */
3644 while (xg_is_single_relaxable_insn (&current_insn, &single_target, FALSE))
3645 {
3646 steps_taken++;
3647 if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset,
3648 stretch))
3649 {
3650 if (steps_taken >= min_steps)
3651 {
3652 istack_push (istack, &single_target);
3653 return steps_taken;
3654 }
3655 }
3656 current_insn = single_target;
3657 }
3658
3659 /* Now check for a multi-instruction expansion. */
3660 while (xg_is_relaxable_insn (&current_insn, lateral_steps))
3661 {
3662 if (xg_symbolic_immeds_fit (&current_insn, pc_seg, pc_frag, pc_offset,
3663 stretch))
3664 {
3665 if (steps_taken >= min_steps)
3666 {
3667 istack_push (istack, &current_insn);
3668 return steps_taken;
3669 }
3670 }
3671 steps_taken++;
3672 if (xg_expand_to_stack (istack, &current_insn, lateral_steps))
3673 {
3674 if (steps_taken >= min_steps)
3675 return steps_taken;
3676 }
3677 lateral_steps++;
3678 istack->ninsn = istack_size;
3679 }
3680
3681 /* It's not going to work -- use the original. */
3682 istack_push (istack, insn);
3683 return steps_taken;
3684 }
3685
3686
3687 static void
3688 xg_finish_frag (char *last_insn,
3689 enum xtensa_relax_statesE frag_state,
3690 enum xtensa_relax_statesE slot0_state,
3691 int max_growth,
3692 bfd_boolean is_insn)
3693 {
3694 /* Finish off this fragment so that it has at LEAST the desired
3695 max_growth. If it doesn't fit in this fragment, close this one
3696 and start a new one. In either case, return a pointer to the
3697 beginning of the growth area. */
3698
3699 fragS *old_frag;
3700
3701 frag_grow (max_growth);
3702 old_frag = frag_now;
3703
3704 frag_now->fr_opcode = last_insn;
3705 if (is_insn)
3706 frag_now->tc_frag_data.is_insn = TRUE;
3707
3708 frag_var (rs_machine_dependent, max_growth, max_growth,
3709 frag_state, frag_now->fr_symbol, frag_now->fr_offset, last_insn);
3710
3711 old_frag->tc_frag_data.slot_subtypes[0] = slot0_state;
3712 xtensa_set_frag_assembly_state (frag_now);
3713
3714 /* Just to make sure that we did not split it up. */
3715 assert (old_frag->fr_next == frag_now);
3716 }
3717
3718
3719 /* Return TRUE if the target frag is one of the next non-empty frags. */
3720
3721 static bfd_boolean
3722 is_next_frag_target (const fragS *fragP, const fragS *target)
3723 {
3724 if (fragP == NULL)
3725 return FALSE;
3726
3727 for (; fragP; fragP = fragP->fr_next)
3728 {
3729 if (fragP == target)
3730 return TRUE;
3731 if (fragP->fr_fix != 0)
3732 return FALSE;
3733 if (fragP->fr_type == rs_fill && fragP->fr_offset != 0)
3734 return FALSE;
3735 if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code)
3736 && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0))
3737 return FALSE;
3738 if (fragP->fr_type == rs_space)
3739 return FALSE;
3740 }
3741 return FALSE;
3742 }
3743
3744
3745 static bfd_boolean
3746 is_branch_jmp_to_next (TInsn *insn, fragS *fragP)
3747 {
3748 xtensa_isa isa = xtensa_default_isa;
3749 int i;
3750 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3751 int target_op = -1;
3752 symbolS *sym;
3753 fragS *target_frag;
3754
3755 if (xtensa_opcode_is_branch (isa, insn->opcode) != 1
3756 && xtensa_opcode_is_jump (isa, insn->opcode) != 1)
3757 return FALSE;
3758
3759 for (i = 0; i < num_ops; i++)
3760 {
3761 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1)
3762 {
3763 target_op = i;
3764 break;
3765 }
3766 }
3767 if (target_op == -1)
3768 return FALSE;
3769
3770 if (insn->ntok <= target_op)
3771 return FALSE;
3772
3773 if (insn->tok[target_op].X_op != O_symbol)
3774 return FALSE;
3775
3776 sym = insn->tok[target_op].X_add_symbol;
3777 if (sym == NULL)
3778 return FALSE;
3779
3780 if (insn->tok[target_op].X_add_number != 0)
3781 return FALSE;
3782
3783 target_frag = symbol_get_frag (sym);
3784 if (target_frag == NULL)
3785 return FALSE;
3786
3787 if (is_next_frag_target (fragP->fr_next, target_frag)
3788 && S_GET_VALUE (sym) == target_frag->fr_address)
3789 return TRUE;
3790
3791 return FALSE;
3792 }
3793
3794
3795 static void
3796 xg_add_branch_and_loop_targets (TInsn *insn)
3797 {
3798 xtensa_isa isa = xtensa_default_isa;
3799 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3800
3801 if (xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3802 {
3803 int i = 1;
3804 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3805 && insn->tok[i].X_op == O_symbol)
3806 symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE;
3807 return;
3808 }
3809
3810 if (xtensa_opcode_is_branch (isa, insn->opcode) == 1
3811 || xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3812 {
3813 int i;
3814
3815 for (i = 0; i < insn->ntok && i < num_ops; i++)
3816 {
3817 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3818 && insn->tok[i].X_op == O_symbol)
3819 {
3820 symbolS *sym = insn->tok[i].X_add_symbol;
3821 symbol_get_tc (sym)->is_branch_target = TRUE;
3822 if (S_IS_DEFINED (sym))
3823 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
3824 }
3825 }
3826 }
3827 }
3828
3829
3830 /* Return FALSE if no error. */
3831
3832 static bfd_boolean
3833 xg_build_token_insn (BuildInstr *instr_spec, TInsn *old_insn, TInsn *new_insn)
3834 {
3835 int num_ops = 0;
3836 BuildOp *b_op;
3837
3838 switch (instr_spec->typ)
3839 {
3840 case INSTR_INSTR:
3841 new_insn->insn_type = ITYPE_INSN;
3842 new_insn->opcode = instr_spec->opcode;
3843 break;
3844 case INSTR_LITERAL_DEF:
3845 new_insn->insn_type = ITYPE_LITERAL;
3846 new_insn->opcode = XTENSA_UNDEFINED;
3847 break;
3848 case INSTR_LABEL_DEF:
3849 abort ();
3850 }
3851 new_insn->is_specific_opcode = FALSE;
3852 new_insn->debug_line = old_insn->debug_line;
3853 new_insn->loc_directive_seen = old_insn->loc_directive_seen;
3854
3855 for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next)
3856 {
3857 expressionS *exp;
3858 const expressionS *src_exp;
3859
3860 num_ops++;
3861 switch (b_op->typ)
3862 {
3863 case OP_CONSTANT:
3864 /* The expression must be the constant. */
3865 assert (b_op->op_num < MAX_INSN_ARGS);
3866 exp = &new_insn->tok[b_op->op_num];
3867 set_expr_const (exp, b_op->op_data);
3868 break;
3869
3870 case OP_OPERAND:
3871 assert (b_op->op_num < MAX_INSN_ARGS);
3872 assert (b_op->op_data < (unsigned) old_insn->ntok);
3873 src_exp = &old_insn->tok[b_op->op_data];
3874 exp = &new_insn->tok[b_op->op_num];
3875 copy_expr (exp, src_exp);
3876 break;
3877
3878 case OP_LITERAL:
3879 case OP_LABEL:
3880 as_bad (_("can't handle generation of literal/labels yet"));
3881 assert (0);
3882
3883 default:
3884 as_bad (_("can't handle undefined OP TYPE"));
3885 assert (0);
3886 }
3887 }
3888
3889 new_insn->ntok = num_ops;
3890 return FALSE;
3891 }
3892
3893
3894 /* Return TRUE if it was simplified. */
3895
3896 static bfd_boolean
3897 xg_simplify_insn (TInsn *old_insn, TInsn *new_insn)
3898 {
3899 TransitionRule *rule;
3900 BuildInstr *insn_spec;
3901
3902 if (old_insn->is_specific_opcode || !density_supported)
3903 return FALSE;
3904
3905 rule = xg_instruction_match (old_insn);
3906 if (rule == NULL)
3907 return FALSE;
3908
3909 insn_spec = rule->to_instr;
3910 /* There should only be one. */
3911 assert (insn_spec != NULL);
3912 assert (insn_spec->next == NULL);
3913 if (insn_spec->next != NULL)
3914 return FALSE;
3915
3916 xg_build_token_insn (insn_spec, old_insn, new_insn);
3917
3918 return TRUE;
3919 }
3920
3921
3922 /* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i ->
3923 l32i.n. (2) Check the number of operands. (3) Place the instruction
3924 tokens into the stack or relax it and place multiple
3925 instructions/literals onto the stack. Return FALSE if no error. */
3926
3927 static bfd_boolean
3928 xg_expand_assembly_insn (IStack *istack, TInsn *orig_insn)
3929 {
3930 int noperands;
3931 TInsn new_insn;
3932 bfd_boolean do_expand;
3933
3934 tinsn_init (&new_insn);
3935
3936 /* Narrow it if we can. xg_simplify_insn now does all the
3937 appropriate checking (e.g., for the density option). */
3938 if (xg_simplify_insn (orig_insn, &new_insn))
3939 orig_insn = &new_insn;
3940
3941 noperands = xtensa_opcode_num_operands (xtensa_default_isa,
3942 orig_insn->opcode);
3943 if (orig_insn->ntok < noperands)
3944 {
3945 as_bad (_("found %d operands for '%s': Expected %d"),
3946 orig_insn->ntok,
3947 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3948 noperands);
3949 return TRUE;
3950 }
3951 if (orig_insn->ntok > noperands)
3952 as_warn (_("found too many (%d) operands for '%s': Expected %d"),
3953 orig_insn->ntok,
3954 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3955 noperands);
3956
3957 /* If there are not enough operands, we will assert above. If there
3958 are too many, just cut out the extras here. */
3959 orig_insn->ntok = noperands;
3960
3961 if (tinsn_has_invalid_symbolic_operands (orig_insn))
3962 return TRUE;
3963
3964 /* Special case for extui opcode which has constraints not handled
3965 by the ordinary operand encoding checks. The number of operands
3966 and related syntax issues have already been checked. */
3967 if (orig_insn->opcode == xtensa_extui_opcode)
3968 {
3969 int shiftimm = orig_insn->tok[2].X_add_number;
3970 int maskimm = orig_insn->tok[3].X_add_number;
3971 if (shiftimm + maskimm > 32)
3972 {
3973 as_bad (_("immediate operands sum to greater than 32"));
3974 return TRUE;
3975 }
3976 }
3977
3978 /* If the instruction will definitely need to be relaxed, it is better
3979 to expand it now for better scheduling. Decide whether to expand
3980 now.... */
3981 do_expand = (!orig_insn->is_specific_opcode && use_transform ());
3982
3983 /* Calls should be expanded to longcalls only in the backend relaxation
3984 so that the assembly scheduler will keep the L32R/CALLX instructions
3985 adjacent. */
3986 if (is_direct_call_opcode (orig_insn->opcode))
3987 do_expand = FALSE;
3988
3989 if (tinsn_has_symbolic_operands (orig_insn))
3990 {
3991 /* The values of symbolic operands are not known yet, so only expand
3992 now if an operand is "complex" (e.g., difference of symbols) and
3993 will have to be stored as a literal regardless of the value. */
3994 if (!tinsn_has_complex_operands (orig_insn))
3995 do_expand = FALSE;
3996 }
3997 else if (xg_immeds_fit (orig_insn))
3998 do_expand = FALSE;
3999
4000 if (do_expand)
4001 xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0);
4002 else
4003 istack_push (istack, orig_insn);
4004
4005 return FALSE;
4006 }
4007
4008
4009 /* Return TRUE if the section flags are marked linkonce
4010 or the name is .gnu.linkonce.*. */
4011
4012 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
4013
4014 static bfd_boolean
4015 get_is_linkonce_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec)
4016 {
4017 flagword flags, link_once_flags;
4018
4019 flags = bfd_get_section_flags (abfd, sec);
4020 link_once_flags = (flags & SEC_LINK_ONCE);
4021
4022 /* Flags might not be set yet. */
4023 if (!link_once_flags
4024 && strncmp (segment_name (sec), ".gnu.linkonce.", linkonce_len) == 0)
4025 link_once_flags = SEC_LINK_ONCE;
4026
4027 return (link_once_flags != 0);
4028 }
4029
4030
4031 static void
4032 xtensa_add_literal_sym (symbolS *sym)
4033 {
4034 sym_list *l;
4035
4036 l = (sym_list *) xmalloc (sizeof (sym_list));
4037 l->sym = sym;
4038 l->next = literal_syms;
4039 literal_syms = l;
4040 }
4041
4042
4043 static symbolS *
4044 xtensa_create_literal_symbol (segT sec, fragS *frag)
4045 {
4046 static int lit_num = 0;
4047 static char name[256];
4048 symbolS *symbolP;
4049
4050 sprintf (name, ".L_lit_sym%d", lit_num);
4051
4052 /* Create a local symbol. If it is in a linkonce section, we have to
4053 be careful to make sure that if it is used in a relocation that the
4054 symbol will be in the output file. */
4055 if (get_is_linkonce_section (stdoutput, sec))
4056 {
4057 symbolP = symbol_new (name, sec, 0, frag);
4058 S_CLEAR_EXTERNAL (symbolP);
4059 /* symbolP->local = 1; */
4060 }
4061 else
4062 symbolP = symbol_new (name, sec, 0, frag);
4063
4064 xtensa_add_literal_sym (symbolP);
4065
4066 lit_num++;
4067 return symbolP;
4068 }
4069
4070
4071 /* Currently all literals that are generated here are 32-bit L32R targets. */
4072
4073 static symbolS *
4074 xg_assemble_literal (/* const */ TInsn *insn)
4075 {
4076 emit_state state;
4077 symbolS *lit_sym = NULL;
4078 bfd_reloc_code_real_type reloc;
4079 bfd_boolean pcrel = FALSE;
4080 char *p;
4081
4082 /* size = 4 for L32R. It could easily be larger when we move to
4083 larger constants. Add a parameter later. */
4084 offsetT litsize = 4;
4085 offsetT litalign = 2; /* 2^2 = 4 */
4086 expressionS saved_loc;
4087 expressionS * emit_val;
4088
4089 set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ());
4090
4091 assert (insn->insn_type == ITYPE_LITERAL);
4092 assert (insn->ntok == 1); /* must be only one token here */
4093
4094 xtensa_switch_to_literal_fragment (&state);
4095
4096 emit_val = &insn->tok[0];
4097 if (emit_val->X_op == O_big)
4098 {
4099 int size = emit_val->X_add_number * CHARS_PER_LITTLENUM;
4100 if (size > litsize)
4101 {
4102 /* This happens when someone writes a "movi a2, big_number". */
4103 as_bad_where (frag_now->fr_file, frag_now->fr_line,
4104 _("invalid immediate"));
4105 xtensa_restore_emit_state (&state);
4106 return NULL;
4107 }
4108 }
4109
4110 /* Force a 4-byte align here. Note that this opens a new frag, so all
4111 literals done with this function have a frag to themselves. That's
4112 important for the way text section literals work. */
4113 frag_align (litalign, 0, 0);
4114 record_alignment (now_seg, litalign);
4115
4116 switch (emit_val->X_op)
4117 {
4118 case O_pcrel:
4119 pcrel = TRUE;
4120 /* fall through */
4121 case O_pltrel:
4122 case O_tlsfunc:
4123 case O_tlsarg:
4124 case O_tpoff:
4125 case O_dtpoff:
4126 p = frag_more (litsize);
4127 xtensa_set_frag_assembly_state (frag_now);
4128 reloc = map_operator_to_reloc (emit_val->X_op, TRUE);
4129 if (emit_val->X_add_symbol)
4130 emit_val->X_op = O_symbol;
4131 else
4132 emit_val->X_op = O_constant;
4133 fix_new_exp (frag_now, p - frag_now->fr_literal,
4134 litsize, emit_val, pcrel, reloc);
4135 break;
4136
4137 default:
4138 emit_expr (emit_val, litsize);
4139 break;
4140 }
4141
4142 assert (frag_now->tc_frag_data.literal_frag == NULL);
4143 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4144 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4145 lit_sym = frag_now->fr_symbol;
4146
4147 /* Go back. */
4148 xtensa_restore_emit_state (&state);
4149 return lit_sym;
4150 }
4151
4152
4153 static void
4154 xg_assemble_literal_space (/* const */ int size, int slot)
4155 {
4156 emit_state state;
4157 /* We might have to do something about this alignment. It only
4158 takes effect if something is placed here. */
4159 offsetT litalign = 2; /* 2^2 = 4 */
4160 fragS *lit_saved_frag;
4161
4162 assert (size % 4 == 0);
4163
4164 xtensa_switch_to_literal_fragment (&state);
4165
4166 /* Force a 4-byte align here. */
4167 frag_align (litalign, 0, 0);
4168 record_alignment (now_seg, litalign);
4169
4170 frag_grow (size);
4171
4172 lit_saved_frag = frag_now;
4173 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4174 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4175 xg_finish_frag (0, RELAX_LITERAL, 0, size, FALSE);
4176
4177 /* Go back. */
4178 xtensa_restore_emit_state (&state);
4179 frag_now->tc_frag_data.literal_frags[slot] = lit_saved_frag;
4180 }
4181
4182
4183 /* Put in a fixup record based on the opcode.
4184 Return TRUE on success. */
4185
4186 static bfd_boolean
4187 xg_add_opcode_fix (TInsn *tinsn,
4188 int opnum,
4189 xtensa_format fmt,
4190 int slot,
4191 expressionS *expr,
4192 fragS *fragP,
4193 offsetT offset)
4194 {
4195 xtensa_opcode opcode = tinsn->opcode;
4196 bfd_reloc_code_real_type reloc;
4197 reloc_howto_type *howto;
4198 int fmt_length;
4199 fixS *the_fix;
4200
4201 reloc = BFD_RELOC_NONE;
4202
4203 /* First try the special cases for "alternate" relocs. */
4204 if (opcode == xtensa_l32r_opcode)
4205 {
4206 if (fragP->tc_frag_data.use_absolute_literals)
4207 reloc = encode_alt_reloc (slot);
4208 }
4209 else if (opcode == xtensa_const16_opcode)
4210 {
4211 if (expr->X_op == O_lo16)
4212 {
4213 reloc = encode_reloc (slot);
4214 expr->X_op = O_symbol;
4215 }
4216 else if (expr->X_op == O_hi16)
4217 {
4218 reloc = encode_alt_reloc (slot);
4219 expr->X_op = O_symbol;
4220 }
4221 }
4222
4223 if (opnum != get_relaxable_immed (opcode))
4224 {
4225 as_bad (_("invalid relocation for operand %i of '%s'"),
4226 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
4227 return FALSE;
4228 }
4229
4230 /* Handle erroneous "@h" and "@l" expressions here before they propagate
4231 into the symbol table where the generic portions of the assembler
4232 won't know what to do with them. */
4233 if (expr->X_op == O_lo16 || expr->X_op == O_hi16)
4234 {
4235 as_bad (_("invalid expression for operand %i of '%s'"),
4236 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
4237 return FALSE;
4238 }
4239
4240 /* Next try the generic relocs. */
4241 if (reloc == BFD_RELOC_NONE)
4242 reloc = encode_reloc (slot);
4243 if (reloc == BFD_RELOC_NONE)
4244 {
4245 as_bad (_("invalid relocation in instruction slot %i"), slot);
4246 return FALSE;
4247 }
4248
4249 howto = bfd_reloc_type_lookup (stdoutput, reloc);
4250 if (!howto)
4251 {
4252 as_bad (_("undefined symbol for opcode \"%s\""),
4253 xtensa_opcode_name (xtensa_default_isa, opcode));
4254 return FALSE;
4255 }
4256
4257 fmt_length = xtensa_format_length (xtensa_default_isa, fmt);
4258 the_fix = fix_new_exp (fragP, offset, fmt_length, expr,
4259 howto->pc_relative, reloc);
4260 the_fix->fx_no_overflow = 1;
4261 the_fix->tc_fix_data.X_add_symbol = expr->X_add_symbol;
4262 the_fix->tc_fix_data.X_add_number = expr->X_add_number;
4263 the_fix->tc_fix_data.slot = slot;
4264
4265 return TRUE;
4266 }
4267
4268
4269 static bfd_boolean
4270 xg_emit_insn_to_buf (TInsn *tinsn,
4271 char *buf,
4272 fragS *fragP,
4273 offsetT offset,
4274 bfd_boolean build_fix)
4275 {
4276 static xtensa_insnbuf insnbuf = NULL;
4277 bfd_boolean has_symbolic_immed = FALSE;
4278 bfd_boolean ok = TRUE;
4279
4280 if (!insnbuf)
4281 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4282
4283 has_symbolic_immed = tinsn_to_insnbuf (tinsn, insnbuf);
4284 if (has_symbolic_immed && build_fix)
4285 {
4286 /* Add a fixup. */
4287 xtensa_format fmt = xg_get_single_format (tinsn->opcode);
4288 int slot = xg_get_single_slot (tinsn->opcode);
4289 int opnum = get_relaxable_immed (tinsn->opcode);
4290 expressionS *exp = &tinsn->tok[opnum];
4291
4292 if (!xg_add_opcode_fix (tinsn, opnum, fmt, slot, exp, fragP, offset))
4293 ok = FALSE;
4294 }
4295 fragP->tc_frag_data.is_insn = TRUE;
4296 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4297 (unsigned char *) buf, 0);
4298 return ok;
4299 }
4300
4301
4302 static void
4303 xg_resolve_literals (TInsn *insn, symbolS *lit_sym)
4304 {
4305 symbolS *sym = get_special_literal_symbol ();
4306 int i;
4307 if (lit_sym == 0)
4308 return;
4309 assert (insn->insn_type == ITYPE_INSN);
4310 for (i = 0; i < insn->ntok; i++)
4311 if (insn->tok[i].X_add_symbol == sym)
4312 insn->tok[i].X_add_symbol = lit_sym;
4313
4314 }
4315
4316
4317 static void
4318 xg_resolve_labels (TInsn *insn, symbolS *label_sym)
4319 {
4320 symbolS *sym = get_special_label_symbol ();
4321 int i;
4322 for (i = 0; i < insn->ntok; i++)
4323 if (insn->tok[i].X_add_symbol == sym)
4324 insn->tok[i].X_add_symbol = label_sym;
4325
4326 }
4327
4328
4329 /* Return TRUE if the instruction can write to the specified
4330 integer register. */
4331
4332 static bfd_boolean
4333 is_register_writer (const TInsn *insn, const char *regset, int regnum)
4334 {
4335 int i;
4336 int num_ops;
4337 xtensa_isa isa = xtensa_default_isa;
4338
4339 num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
4340
4341 for (i = 0; i < num_ops; i++)
4342 {
4343 char inout;
4344 inout = xtensa_operand_inout (isa, insn->opcode, i);
4345 if ((inout == 'o' || inout == 'm')
4346 && xtensa_operand_is_register (isa, insn->opcode, i) == 1)
4347 {
4348 xtensa_regfile opnd_rf =
4349 xtensa_operand_regfile (isa, insn->opcode, i);
4350 if (!strcmp (xtensa_regfile_shortname (isa, opnd_rf), regset))
4351 {
4352 if ((insn->tok[i].X_op == O_register)
4353 && (insn->tok[i].X_add_number == regnum))
4354 return TRUE;
4355 }
4356 }
4357 }
4358 return FALSE;
4359 }
4360
4361
4362 static bfd_boolean
4363 is_bad_loopend_opcode (const TInsn *tinsn)
4364 {
4365 xtensa_opcode opcode = tinsn->opcode;
4366
4367 if (opcode == XTENSA_UNDEFINED)
4368 return FALSE;
4369
4370 if (opcode == xtensa_call0_opcode
4371 || opcode == xtensa_callx0_opcode
4372 || opcode == xtensa_call4_opcode
4373 || opcode == xtensa_callx4_opcode
4374 || opcode == xtensa_call8_opcode
4375 || opcode == xtensa_callx8_opcode
4376 || opcode == xtensa_call12_opcode
4377 || opcode == xtensa_callx12_opcode
4378 || opcode == xtensa_isync_opcode
4379 || opcode == xtensa_ret_opcode
4380 || opcode == xtensa_ret_n_opcode
4381 || opcode == xtensa_retw_opcode
4382 || opcode == xtensa_retw_n_opcode
4383 || opcode == xtensa_waiti_opcode
4384 || opcode == xtensa_rsr_lcount_opcode)
4385 return TRUE;
4386
4387 return FALSE;
4388 }
4389
4390
4391 /* Labels that begin with ".Ln" or ".LM" are unaligned.
4392 This allows the debugger to add unaligned labels.
4393 Also, the assembler generates stabs labels that need
4394 not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */
4395
4396 static bfd_boolean
4397 is_unaligned_label (symbolS *sym)
4398 {
4399 const char *name = S_GET_NAME (sym);
4400 static size_t fake_size = 0;
4401
4402 if (name
4403 && name[0] == '.'
4404 && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M'))
4405 return TRUE;
4406
4407 /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */
4408 if (fake_size == 0)
4409 fake_size = strlen (FAKE_LABEL_NAME);
4410
4411 if (name
4412 && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0
4413 && (name[fake_size] == 'F'
4414 || name[fake_size] == 'L'
4415 || (name[fake_size] == 'e'
4416 && strncmp ("endfunc", name+fake_size, 7) == 0)))
4417 return TRUE;
4418
4419 return FALSE;
4420 }
4421
4422
4423 static fragS *
4424 next_non_empty_frag (const fragS *fragP)
4425 {
4426 fragS *next_fragP = fragP->fr_next;
4427
4428 /* Sometimes an empty will end up here due storage allocation issues.
4429 So we have to skip until we find something legit. */
4430 while (next_fragP && next_fragP->fr_fix == 0)
4431 next_fragP = next_fragP->fr_next;
4432
4433 if (next_fragP == NULL || next_fragP->fr_fix == 0)
4434 return NULL;
4435
4436 return next_fragP;
4437 }
4438
4439
4440 static bfd_boolean
4441 next_frag_opcode_is_loop (const fragS *fragP, xtensa_opcode *opcode)
4442 {
4443 xtensa_opcode out_opcode;
4444 const fragS *next_fragP = next_non_empty_frag (fragP);
4445
4446 if (next_fragP == NULL)
4447 return FALSE;
4448
4449 out_opcode = get_opcode_from_buf (next_fragP->fr_literal, 0);
4450 if (xtensa_opcode_is_loop (xtensa_default_isa, out_opcode) == 1)
4451 {
4452 *opcode = out_opcode;
4453 return TRUE;
4454 }
4455 return FALSE;
4456 }
4457
4458
4459 static int
4460 frag_format_size (const fragS *fragP)
4461 {
4462 static xtensa_insnbuf insnbuf = NULL;
4463 xtensa_isa isa = xtensa_default_isa;
4464 xtensa_format fmt;
4465 int fmt_size;
4466
4467 if (!insnbuf)
4468 insnbuf = xtensa_insnbuf_alloc (isa);
4469
4470 if (fragP == NULL)
4471 return XTENSA_UNDEFINED;
4472
4473 xtensa_insnbuf_from_chars (isa, insnbuf,
4474 (unsigned char *) fragP->fr_literal, 0);
4475
4476 fmt = xtensa_format_decode (isa, insnbuf);
4477 if (fmt == XTENSA_UNDEFINED)
4478 return XTENSA_UNDEFINED;
4479 fmt_size = xtensa_format_length (isa, fmt);
4480
4481 /* If the next format won't be changing due to relaxation, just
4482 return the length of the first format. */
4483 if (fragP->fr_opcode != fragP->fr_literal)
4484 return fmt_size;
4485
4486 /* If during relaxation we have to pull an instruction out of a
4487 multi-slot instruction, we will return the more conservative
4488 number. This works because alignment on bigger instructions
4489 is more restrictive than alignment on smaller instructions.
4490 This is more conservative than we would like, but it happens
4491 infrequently. */
4492
4493 if (xtensa_format_num_slots (xtensa_default_isa, fmt) > 1)
4494 return fmt_size;
4495
4496 /* If we aren't doing one of our own relaxations or it isn't
4497 slot-based, then the insn size won't change. */
4498 if (fragP->fr_type != rs_machine_dependent)
4499 return fmt_size;
4500 if (fragP->fr_subtype != RELAX_SLOTS)
4501 return fmt_size;
4502
4503 /* If an instruction is about to grow, return the longer size. */
4504 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP1
4505 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP2
4506 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP3)
4507 {
4508 /* For most frags at RELAX_IMMED_STEPX, with X > 0, the first
4509 instruction in the relaxed version is of length 3. (The case
4510 where we have to pull the instruction out of a FLIX bundle
4511 is handled conservatively above.) However, frags with opcodes
4512 that are expanding to wide branches end up having formats that
4513 are not determinable by the RELAX_IMMED_STEPX enumeration, and
4514 we can't tell directly what format the relaxer picked. This
4515 is a wart in the design of the relaxer that should someday be
4516 fixed, but would require major changes, or at least should
4517 be accompanied by major changes to make use of that data.
4518
4519 In any event, we can tell that we are expanding from a single-slot
4520 three-byte format to a wider one with the logic below. */
4521
4522 if (fmt_size <= 3 && fragP->tc_frag_data.text_expansion[0] != 3)
4523 return 3 + fragP->tc_frag_data.text_expansion[0];
4524 else
4525 return 3;
4526 }
4527
4528 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
4529 return 2 + fragP->tc_frag_data.text_expansion[0];
4530
4531 return fmt_size;
4532 }
4533
4534
4535 static int
4536 next_frag_format_size (const fragS *fragP)
4537 {
4538 const fragS *next_fragP = next_non_empty_frag (fragP);
4539 return frag_format_size (next_fragP);
4540 }
4541
4542
4543 /* In early Xtensa Processors, for reasons that are unclear, the ISA
4544 required two-byte instructions to be treated as three-byte instructions
4545 for loop instruction alignment. This restriction was removed beginning
4546 with Xtensa LX. Now the only requirement on loop instruction alignment
4547 is that the first instruction of the loop must appear at an address that
4548 does not cross a fetch boundary. */
4549
4550 static int
4551 get_loop_align_size (int insn_size)
4552 {
4553 if (insn_size == XTENSA_UNDEFINED)
4554 return xtensa_fetch_width;
4555
4556 if (enforce_three_byte_loop_align && insn_size == 2)
4557 return 3;
4558
4559 return insn_size;
4560 }
4561
4562
4563 /* If the next legit fragment is an end-of-loop marker,
4564 switch its state so it will instantiate a NOP. */
4565
4566 static void
4567 update_next_frag_state (fragS *fragP)
4568 {
4569 fragS *next_fragP = fragP->fr_next;
4570 fragS *new_target = NULL;
4571
4572 if (align_targets)
4573 {
4574 /* We are guaranteed there will be one of these... */
4575 while (!(next_fragP->fr_type == rs_machine_dependent
4576 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4577 || next_fragP->fr_subtype == RELAX_UNREACHABLE)))
4578 next_fragP = next_fragP->fr_next;
4579
4580 assert (next_fragP->fr_type == rs_machine_dependent
4581 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4582 || next_fragP->fr_subtype == RELAX_UNREACHABLE));
4583
4584 /* ...and one of these. */
4585 new_target = next_fragP->fr_next;
4586 while (!(new_target->fr_type == rs_machine_dependent
4587 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4588 || new_target->fr_subtype == RELAX_DESIRE_ALIGN)))
4589 new_target = new_target->fr_next;
4590
4591 assert (new_target->fr_type == rs_machine_dependent
4592 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4593 || new_target->fr_subtype == RELAX_DESIRE_ALIGN));
4594 }
4595
4596 while (next_fragP && next_fragP->fr_fix == 0)
4597 {
4598 if (next_fragP->fr_type == rs_machine_dependent
4599 && next_fragP->fr_subtype == RELAX_LOOP_END)
4600 {
4601 next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP;
4602 return;
4603 }
4604
4605 next_fragP = next_fragP->fr_next;
4606 }
4607 }
4608
4609
4610 static bfd_boolean
4611 next_frag_is_branch_target (const fragS *fragP)
4612 {
4613 /* Sometimes an empty will end up here due to storage allocation issues,
4614 so we have to skip until we find something legit. */
4615 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4616 {
4617 if (fragP->tc_frag_data.is_branch_target)
4618 return TRUE;
4619 if (fragP->fr_fix != 0)
4620 break;
4621 }
4622 return FALSE;
4623 }
4624
4625
4626 static bfd_boolean
4627 next_frag_is_loop_target (const fragS *fragP)
4628 {
4629 /* Sometimes an empty will end up here due storage allocation issues.
4630 So we have to skip until we find something legit. */
4631 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4632 {
4633 if (fragP->tc_frag_data.is_loop_target)
4634 return TRUE;
4635 if (fragP->fr_fix != 0)
4636 break;
4637 }
4638 return FALSE;
4639 }
4640
4641
4642 static addressT
4643 next_frag_pre_opcode_bytes (const fragS *fragp)
4644 {
4645 const fragS *next_fragp = fragp->fr_next;
4646 xtensa_opcode next_opcode;
4647
4648 if (!next_frag_opcode_is_loop (fragp, &next_opcode))
4649 return 0;
4650
4651 /* Sometimes an empty will end up here due to storage allocation issues,
4652 so we have to skip until we find something legit. */
4653 while (next_fragp->fr_fix == 0)
4654 next_fragp = next_fragp->fr_next;
4655
4656 if (next_fragp->fr_type != rs_machine_dependent)
4657 return 0;
4658
4659 /* There is some implicit knowledge encoded in here.
4660 The LOOP instructions that are NOT RELAX_IMMED have
4661 been relaxed. Note that we can assume that the LOOP
4662 instruction is in slot 0 because loops aren't bundleable. */
4663 if (next_fragp->tc_frag_data.slot_subtypes[0] > RELAX_IMMED)
4664 return get_expanded_loop_offset (next_opcode);
4665
4666 return 0;
4667 }
4668
4669
4670 /* Mark a location where we can later insert literal frags. Update
4671 the section's literal_pool_loc, so subsequent literals can be
4672 placed nearest to their use. */
4673
4674 static void
4675 xtensa_mark_literal_pool_location (void)
4676 {
4677 /* Any labels pointing to the current location need
4678 to be adjusted to after the literal pool. */
4679 emit_state s;
4680 fragS *pool_location;
4681
4682 if (use_literal_section)
4683 return;
4684
4685 /* We stash info in these frags so we can later move the literal's
4686 fixes into this frchain's fix list. */
4687 pool_location = frag_now;
4688 frag_now->tc_frag_data.lit_frchain = frchain_now;
4689 frag_now->tc_frag_data.literal_frag = frag_now;
4690 frag_variant (rs_machine_dependent, 0, 0,
4691 RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL);
4692 xtensa_set_frag_assembly_state (frag_now);
4693 frag_now->tc_frag_data.lit_seg = now_seg;
4694 frag_variant (rs_machine_dependent, 0, 0,
4695 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
4696 xtensa_set_frag_assembly_state (frag_now);
4697
4698 /* Now put a frag into the literal pool that points to this location. */
4699 set_literal_pool_location (now_seg, pool_location);
4700 xtensa_switch_to_non_abs_literal_fragment (&s);
4701 frag_align (2, 0, 0);
4702 record_alignment (now_seg, 2);
4703
4704 /* Close whatever frag is there. */
4705 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4706 xtensa_set_frag_assembly_state (frag_now);
4707 frag_now->tc_frag_data.literal_frag = pool_location;
4708 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4709 xtensa_restore_emit_state (&s);
4710 xtensa_set_frag_assembly_state (frag_now);
4711 }
4712
4713
4714 /* Build a nop of the correct size into tinsn. */
4715
4716 static void
4717 build_nop (TInsn *tinsn, int size)
4718 {
4719 tinsn_init (tinsn);
4720 switch (size)
4721 {
4722 case 2:
4723 tinsn->opcode = xtensa_nop_n_opcode;
4724 tinsn->ntok = 0;
4725 if (tinsn->opcode == XTENSA_UNDEFINED)
4726 as_fatal (_("opcode 'NOP.N' unavailable in this configuration"));
4727 break;
4728
4729 case 3:
4730 if (xtensa_nop_opcode == XTENSA_UNDEFINED)
4731 {
4732 tinsn->opcode = xtensa_or_opcode;
4733 set_expr_const (&tinsn->tok[0], 1);
4734 set_expr_const (&tinsn->tok[1], 1);
4735 set_expr_const (&tinsn->tok[2], 1);
4736 tinsn->ntok = 3;
4737 }
4738 else
4739 tinsn->opcode = xtensa_nop_opcode;
4740
4741 assert (tinsn->opcode != XTENSA_UNDEFINED);
4742 }
4743 }
4744
4745
4746 /* Assemble a NOP of the requested size in the buffer. User must have
4747 allocated "buf" with at least "size" bytes. */
4748
4749 static void
4750 assemble_nop (int size, char *buf)
4751 {
4752 static xtensa_insnbuf insnbuf = NULL;
4753 TInsn tinsn;
4754
4755 build_nop (&tinsn, size);
4756
4757 if (!insnbuf)
4758 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4759
4760 tinsn_to_insnbuf (&tinsn, insnbuf);
4761 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4762 (unsigned char *) buf, 0);
4763 }
4764
4765
4766 /* Return the number of bytes for the offset of the expanded loop
4767 instruction. This should be incorporated into the relaxation
4768 specification but is hard-coded here. This is used to auto-align
4769 the loop instruction. It is invalid to call this function if the
4770 configuration does not have loops or if the opcode is not a loop
4771 opcode. */
4772
4773 static addressT
4774 get_expanded_loop_offset (xtensa_opcode opcode)
4775 {
4776 /* This is the OFFSET of the loop instruction in the expanded loop.
4777 This MUST correspond directly to the specification of the loop
4778 expansion. It will be validated on fragment conversion. */
4779 assert (opcode != XTENSA_UNDEFINED);
4780 if (opcode == xtensa_loop_opcode)
4781 return 0;
4782 if (opcode == xtensa_loopnez_opcode)
4783 return 3;
4784 if (opcode == xtensa_loopgtz_opcode)
4785 return 6;
4786 as_fatal (_("get_expanded_loop_offset: invalid opcode"));
4787 return 0;
4788 }
4789
4790
4791 static fragS *
4792 get_literal_pool_location (segT seg)
4793 {
4794 return seg_info (seg)->tc_segment_info_data.literal_pool_loc;
4795 }
4796
4797
4798 static void
4799 set_literal_pool_location (segT seg, fragS *literal_pool_loc)
4800 {
4801 seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc;
4802 }
4803
4804
4805 /* Set frag assembly state should be called when a new frag is
4806 opened and after a frag has been closed. */
4807
4808 static void
4809 xtensa_set_frag_assembly_state (fragS *fragP)
4810 {
4811 if (!density_supported)
4812 fragP->tc_frag_data.is_no_density = TRUE;
4813
4814 /* This function is called from subsegs_finish, which is called
4815 after xtensa_end, so we can't use "use_transform" or
4816 "use_schedule" here. */
4817 if (!directive_state[directive_transform])
4818 fragP->tc_frag_data.is_no_transform = TRUE;
4819 if (directive_state[directive_longcalls])
4820 fragP->tc_frag_data.use_longcalls = TRUE;
4821 fragP->tc_frag_data.use_absolute_literals =
4822 directive_state[directive_absolute_literals];
4823 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4824 }
4825
4826
4827 static bfd_boolean
4828 relaxable_section (asection *sec)
4829 {
4830 return ((sec->flags & SEC_DEBUGGING) == 0
4831 && strcmp (sec->name, ".eh_frame") != 0);
4832 }
4833
4834
4835 static void
4836 xtensa_mark_frags_for_org (void)
4837 {
4838 segT *seclist;
4839
4840 /* Walk over each fragment of all of the current segments. If we find
4841 a .org frag in any of the segments, mark all frags prior to it as
4842 "no transform", which will prevent linker optimizations from messing
4843 up the .org distance. This should be done after
4844 xtensa_find_unmarked_state_frags, because we don't want to worry here
4845 about that function trashing the data we save here. */
4846
4847 for (seclist = &stdoutput->sections;
4848 seclist && *seclist;
4849 seclist = &(*seclist)->next)
4850 {
4851 segT sec = *seclist;
4852 segment_info_type *seginfo;
4853 fragS *fragP;
4854 flagword flags;
4855 flags = bfd_get_section_flags (stdoutput, sec);
4856 if (flags & SEC_DEBUGGING)
4857 continue;
4858 if (!(flags & SEC_ALLOC))
4859 continue;
4860
4861 seginfo = seg_info (sec);
4862 if (seginfo && seginfo->frchainP)
4863 {
4864 fragS *last_fragP = seginfo->frchainP->frch_root;
4865 for (fragP = seginfo->frchainP->frch_root; fragP;
4866 fragP = fragP->fr_next)
4867 {
4868 /* cvt_frag_to_fill has changed the fr_type of org frags to
4869 rs_fill, so use the value as cached in rs_subtype here. */
4870 if (fragP->fr_subtype == RELAX_ORG)
4871 {
4872 while (last_fragP != fragP->fr_next)
4873 {
4874 last_fragP->tc_frag_data.is_no_transform = TRUE;
4875 last_fragP = last_fragP->fr_next;
4876 }
4877 }
4878 }
4879 }
4880 }
4881 }
4882
4883
4884 static void
4885 xtensa_find_unmarked_state_frags (void)
4886 {
4887 segT *seclist;
4888
4889 /* Walk over each fragment of all of the current segments. For each
4890 unmarked fragment, mark it with the same info as the previous
4891 fragment. */
4892 for (seclist = &stdoutput->sections;
4893 seclist && *seclist;
4894 seclist = &(*seclist)->next)
4895 {
4896 segT sec = *seclist;
4897 segment_info_type *seginfo;
4898 fragS *fragP;
4899 flagword flags;
4900 flags = bfd_get_section_flags (stdoutput, sec);
4901 if (flags & SEC_DEBUGGING)
4902 continue;
4903 if (!(flags & SEC_ALLOC))
4904 continue;
4905
4906 seginfo = seg_info (sec);
4907 if (seginfo && seginfo->frchainP)
4908 {
4909 fragS *last_fragP = 0;
4910 for (fragP = seginfo->frchainP->frch_root; fragP;
4911 fragP = fragP->fr_next)
4912 {
4913 if (fragP->fr_fix != 0
4914 && !fragP->tc_frag_data.is_assembly_state_set)
4915 {
4916 if (last_fragP == 0)
4917 {
4918 as_warn_where (fragP->fr_file, fragP->fr_line,
4919 _("assembly state not set for first frag in section %s"),
4920 sec->name);
4921 }
4922 else
4923 {
4924 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4925 fragP->tc_frag_data.is_no_density =
4926 last_fragP->tc_frag_data.is_no_density;
4927 fragP->tc_frag_data.is_no_transform =
4928 last_fragP->tc_frag_data.is_no_transform;
4929 fragP->tc_frag_data.use_longcalls =
4930 last_fragP->tc_frag_data.use_longcalls;
4931 fragP->tc_frag_data.use_absolute_literals =
4932 last_fragP->tc_frag_data.use_absolute_literals;
4933 }
4934 }
4935 if (fragP->tc_frag_data.is_assembly_state_set)
4936 last_fragP = fragP;
4937 }
4938 }
4939 }
4940 }
4941
4942
4943 static void
4944 xtensa_find_unaligned_branch_targets (bfd *abfd ATTRIBUTE_UNUSED,
4945 asection *sec,
4946 void *unused ATTRIBUTE_UNUSED)
4947 {
4948 flagword flags = bfd_get_section_flags (abfd, sec);
4949 segment_info_type *seginfo = seg_info (sec);
4950 fragS *frag = seginfo->frchainP->frch_root;
4951
4952 if (flags & SEC_CODE)
4953 {
4954 xtensa_isa isa = xtensa_default_isa;
4955 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4956 while (frag != NULL)
4957 {
4958 if (frag->tc_frag_data.is_branch_target)
4959 {
4960 int op_size;
4961 addressT branch_align, frag_addr;
4962 xtensa_format fmt;
4963
4964 xtensa_insnbuf_from_chars
4965 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
4966 fmt = xtensa_format_decode (isa, insnbuf);
4967 op_size = xtensa_format_length (isa, fmt);
4968 branch_align = 1 << branch_align_power (sec);
4969 frag_addr = frag->fr_address % branch_align;
4970 if (frag_addr + op_size > branch_align)
4971 as_warn_where (frag->fr_file, frag->fr_line,
4972 _("unaligned branch target: %d bytes at 0x%lx"),
4973 op_size, (long) frag->fr_address);
4974 }
4975 frag = frag->fr_next;
4976 }
4977 xtensa_insnbuf_free (isa, insnbuf);
4978 }
4979 }
4980
4981
4982 static void
4983 xtensa_find_unaligned_loops (bfd *abfd ATTRIBUTE_UNUSED,
4984 asection *sec,
4985 void *unused ATTRIBUTE_UNUSED)
4986 {
4987 flagword flags = bfd_get_section_flags (abfd, sec);
4988 segment_info_type *seginfo = seg_info (sec);
4989 fragS *frag = seginfo->frchainP->frch_root;
4990 xtensa_isa isa = xtensa_default_isa;
4991
4992 if (flags & SEC_CODE)
4993 {
4994 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4995 while (frag != NULL)
4996 {
4997 if (frag->tc_frag_data.is_first_loop_insn)
4998 {
4999 int op_size;
5000 addressT frag_addr;
5001 xtensa_format fmt;
5002
5003 xtensa_insnbuf_from_chars
5004 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
5005 fmt = xtensa_format_decode (isa, insnbuf);
5006 op_size = xtensa_format_length (isa, fmt);
5007 frag_addr = frag->fr_address % xtensa_fetch_width;
5008
5009 if (frag_addr + op_size > xtensa_fetch_width)
5010 as_warn_where (frag->fr_file, frag->fr_line,
5011 _("unaligned loop: %d bytes at 0x%lx"),
5012 op_size, (long) frag->fr_address);
5013 }
5014 frag = frag->fr_next;
5015 }
5016 xtensa_insnbuf_free (isa, insnbuf);
5017 }
5018 }
5019
5020
5021 static int
5022 xg_apply_fix_value (fixS *fixP, valueT val)
5023 {
5024 xtensa_isa isa = xtensa_default_isa;
5025 static xtensa_insnbuf insnbuf = NULL;
5026 static xtensa_insnbuf slotbuf = NULL;
5027 xtensa_format fmt;
5028 int slot;
5029 bfd_boolean alt_reloc;
5030 xtensa_opcode opcode;
5031 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5032
5033 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc)
5034 || alt_reloc)
5035 as_fatal (_("unexpected fix"));
5036
5037 if (!insnbuf)
5038 {
5039 insnbuf = xtensa_insnbuf_alloc (isa);
5040 slotbuf = xtensa_insnbuf_alloc (isa);
5041 }
5042
5043 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
5044 fmt = xtensa_format_decode (isa, insnbuf);
5045 if (fmt == XTENSA_UNDEFINED)
5046 as_fatal (_("undecodable fix"));
5047 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5048 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5049 if (opcode == XTENSA_UNDEFINED)
5050 as_fatal (_("undecodable fix"));
5051
5052 /* CONST16 immediates are not PC-relative, despite the fact that we
5053 reuse the normal PC-relative operand relocations for the low part
5054 of a CONST16 operand. */
5055 if (opcode == xtensa_const16_opcode)
5056 return 0;
5057
5058 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode,
5059 get_relaxable_immed (opcode), val,
5060 fixP->fx_file, fixP->fx_line);
5061
5062 xtensa_format_set_slot (isa, fmt, slot, insnbuf, slotbuf);
5063 xtensa_insnbuf_to_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
5064
5065 return 1;
5066 }
5067
5068 \f
5069 /* External Functions and Other GAS Hooks. */
5070
5071 const char *
5072 xtensa_target_format (void)
5073 {
5074 return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le");
5075 }
5076
5077
5078 void
5079 xtensa_file_arch_init (bfd *abfd)
5080 {
5081 bfd_set_private_flags (abfd, 0x100 | 0x200);
5082 }
5083
5084
5085 void
5086 md_number_to_chars (char *buf, valueT val, int n)
5087 {
5088 if (target_big_endian)
5089 number_to_chars_bigendian (buf, val, n);
5090 else
5091 number_to_chars_littleendian (buf, val, n);
5092 }
5093
5094
5095 /* This function is called once, at assembler startup time. It should
5096 set up all the tables, etc. that the MD part of the assembler will
5097 need. */
5098
5099 void
5100 md_begin (void)
5101 {
5102 segT current_section = now_seg;
5103 int current_subsec = now_subseg;
5104 xtensa_isa isa;
5105
5106 xtensa_default_isa = xtensa_isa_init (0, 0);
5107 isa = xtensa_default_isa;
5108
5109 linkrelax = 1;
5110
5111 /* Set up the literal sections. */
5112 memset (&default_lit_sections, 0, sizeof (default_lit_sections));
5113
5114 subseg_set (current_section, current_subsec);
5115
5116 xg_init_vinsn (&cur_vinsn);
5117
5118 xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi");
5119 xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi");
5120 xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0");
5121 xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4");
5122 xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8");
5123 xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12");
5124 xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0");
5125 xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4");
5126 xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8");
5127 xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12");
5128 xtensa_const16_opcode = xtensa_opcode_lookup (isa, "const16");
5129 xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry");
5130 xtensa_extui_opcode = xtensa_opcode_lookup (isa, "extui");
5131 xtensa_movi_opcode = xtensa_opcode_lookup (isa, "movi");
5132 xtensa_movi_n_opcode = xtensa_opcode_lookup (isa, "movi.n");
5133 xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync");
5134 xtensa_j_opcode = xtensa_opcode_lookup (isa, "j");
5135 xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx");
5136 xtensa_l32r_opcode = xtensa_opcode_lookup (isa, "l32r");
5137 xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop");
5138 xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez");
5139 xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz");
5140 xtensa_nop_opcode = xtensa_opcode_lookup (isa, "nop");
5141 xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n");
5142 xtensa_or_opcode = xtensa_opcode_lookup (isa, "or");
5143 xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret");
5144 xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n");
5145 xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw");
5146 xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n");
5147 xtensa_rsr_lcount_opcode = xtensa_opcode_lookup (isa, "rsr.lcount");
5148 xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti");
5149
5150 xtensa_num_pipe_stages = xtensa_isa_num_pipe_stages (isa);
5151
5152 init_op_placement_info_table ();
5153
5154 /* Set up the assembly state. */
5155 if (!frag_now->tc_frag_data.is_assembly_state_set)
5156 xtensa_set_frag_assembly_state (frag_now);
5157 }
5158
5159
5160 /* TC_INIT_FIX_DATA hook */
5161
5162 void
5163 xtensa_init_fix_data (fixS *x)
5164 {
5165 x->tc_fix_data.slot = 0;
5166 x->tc_fix_data.X_add_symbol = NULL;
5167 x->tc_fix_data.X_add_number = 0;
5168 }
5169
5170
5171 /* tc_frob_label hook */
5172
5173 void
5174 xtensa_frob_label (symbolS *sym)
5175 {
5176 float freq;
5177
5178 if (cur_vinsn.inside_bundle)
5179 {
5180 as_bad (_("labels are not valid inside bundles"));
5181 return;
5182 }
5183
5184 freq = get_subseg_target_freq (now_seg, now_subseg);
5185
5186 /* Since the label was already attached to a frag associated with the
5187 previous basic block, it now needs to be reset to the current frag. */
5188 symbol_set_frag (sym, frag_now);
5189 S_SET_VALUE (sym, (valueT) frag_now_fix ());
5190
5191 if (generating_literals)
5192 xtensa_add_literal_sym (sym);
5193 else
5194 xtensa_add_insn_label (sym);
5195
5196 if (symbol_get_tc (sym)->is_loop_target)
5197 {
5198 if ((get_last_insn_flags (now_seg, now_subseg)
5199 & FLAG_IS_BAD_LOOPEND) != 0)
5200 as_bad (_("invalid last instruction for a zero-overhead loop"));
5201
5202 xtensa_set_frag_assembly_state (frag_now);
5203 frag_var (rs_machine_dependent, 4, 4, RELAX_LOOP_END,
5204 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5205
5206 xtensa_set_frag_assembly_state (frag_now);
5207 xtensa_move_labels (frag_now, 0);
5208 }
5209
5210 /* No target aligning in the absolute section. */
5211 if (now_seg != absolute_section
5212 && do_align_targets ()
5213 && !is_unaligned_label (sym)
5214 && !generating_literals)
5215 {
5216 xtensa_set_frag_assembly_state (frag_now);
5217
5218 frag_var (rs_machine_dependent,
5219 0, (int) freq,
5220 RELAX_DESIRE_ALIGN_IF_TARGET,
5221 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5222 xtensa_set_frag_assembly_state (frag_now);
5223 xtensa_move_labels (frag_now, 0);
5224 }
5225
5226 /* We need to mark the following properties even if we aren't aligning. */
5227
5228 /* If the label is already known to be a branch target, i.e., a
5229 forward branch, mark the frag accordingly. Backward branches
5230 are handled by xg_add_branch_and_loop_targets. */
5231 if (symbol_get_tc (sym)->is_branch_target)
5232 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
5233
5234 /* Loops only go forward, so they can be identified here. */
5235 if (symbol_get_tc (sym)->is_loop_target)
5236 symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE;
5237
5238 dwarf2_emit_label (sym);
5239 }
5240
5241
5242 /* tc_unrecognized_line hook */
5243
5244 int
5245 xtensa_unrecognized_line (int ch)
5246 {
5247 switch (ch)
5248 {
5249 case '{' :
5250 if (cur_vinsn.inside_bundle == 0)
5251 {
5252 /* PR8110: Cannot emit line number info inside a FLIX bundle
5253 when using --gstabs. Temporarily disable debug info. */
5254 generate_lineno_debug ();
5255 if (debug_type == DEBUG_STABS)
5256 {
5257 xt_saved_debug_type = debug_type;
5258 debug_type = DEBUG_NONE;
5259 }
5260
5261 cur_vinsn.inside_bundle = 1;
5262 }
5263 else
5264 {
5265 as_bad (_("extra opening brace"));
5266 return 0;
5267 }
5268 break;
5269
5270 case '}' :
5271 if (cur_vinsn.inside_bundle)
5272 finish_vinsn (&cur_vinsn);
5273 else
5274 {
5275 as_bad (_("extra closing brace"));
5276 return 0;
5277 }
5278 break;
5279 default:
5280 as_bad (_("syntax error"));
5281 return 0;
5282 }
5283 return 1;
5284 }
5285
5286
5287 /* md_flush_pending_output hook */
5288
5289 void
5290 xtensa_flush_pending_output (void)
5291 {
5292 /* This line fixes a bug where automatically generated gstabs info
5293 separates a function label from its entry instruction, ending up
5294 with the literal position between the function label and the entry
5295 instruction and crashing code. It only happens with --gstabs and
5296 --text-section-literals, and when several other obscure relaxation
5297 conditions are met. */
5298 if (outputting_stabs_line_debug)
5299 return;
5300
5301 if (cur_vinsn.inside_bundle)
5302 as_bad (_("missing closing brace"));
5303
5304 /* If there is a non-zero instruction fragment, close it. */
5305 if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn)
5306 {
5307 frag_wane (frag_now);
5308 frag_new (0);
5309 xtensa_set_frag_assembly_state (frag_now);
5310 }
5311 frag_now->tc_frag_data.is_insn = FALSE;
5312
5313 xtensa_clear_insn_labels ();
5314 }
5315
5316
5317 /* We had an error while parsing an instruction. The string might look
5318 like this: "insn arg1, arg2 }". If so, we need to see the closing
5319 brace and reset some fields. Otherwise, the vinsn never gets closed
5320 and the num_slots field will grow past the end of the array of slots,
5321 and bad things happen. */
5322
5323 static void
5324 error_reset_cur_vinsn (void)
5325 {
5326 if (cur_vinsn.inside_bundle)
5327 {
5328 if (*input_line_pointer == '}'
5329 || *(input_line_pointer - 1) == '}'
5330 || *(input_line_pointer - 2) == '}')
5331 xg_clear_vinsn (&cur_vinsn);
5332 }
5333 }
5334
5335
5336 void
5337 md_assemble (char *str)
5338 {
5339 xtensa_isa isa = xtensa_default_isa;
5340 char *opname;
5341 unsigned opnamelen;
5342 bfd_boolean has_underbar = FALSE;
5343 char *arg_strings[MAX_INSN_ARGS];
5344 int num_args;
5345 TInsn orig_insn; /* Original instruction from the input. */
5346
5347 tinsn_init (&orig_insn);
5348
5349 /* Split off the opcode. */
5350 opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789.");
5351 opname = xmalloc (opnamelen + 1);
5352 memcpy (opname, str, opnamelen);
5353 opname[opnamelen] = '\0';
5354
5355 num_args = tokenize_arguments (arg_strings, str + opnamelen);
5356 if (num_args == -1)
5357 {
5358 as_bad (_("syntax error"));
5359 return;
5360 }
5361
5362 if (xg_translate_idioms (&opname, &num_args, arg_strings))
5363 return;
5364
5365 /* Check for an underbar prefix. */
5366 if (*opname == '_')
5367 {
5368 has_underbar = TRUE;
5369 opname += 1;
5370 }
5371
5372 orig_insn.insn_type = ITYPE_INSN;
5373 orig_insn.ntok = 0;
5374 orig_insn.is_specific_opcode = (has_underbar || !use_transform ());
5375 orig_insn.opcode = xtensa_opcode_lookup (isa, opname);
5376
5377 /* Special case: Check for "CALLXn.TLS" psuedo op. If found, grab its
5378 extra argument and set the opcode to "CALLXn". */
5379 if (orig_insn.opcode == XTENSA_UNDEFINED
5380 && strncasecmp (opname, "callx", 5) == 0)
5381 {
5382 unsigned long window_size;
5383 char *suffix;
5384
5385 window_size = strtoul (opname + 5, &suffix, 10);
5386 if (suffix != opname + 5
5387 && (window_size == 0
5388 || window_size == 4
5389 || window_size == 8
5390 || window_size == 12)
5391 && strcasecmp (suffix, ".tls") == 0)
5392 {
5393 switch (window_size)
5394 {
5395 case 0: orig_insn.opcode = xtensa_callx0_opcode; break;
5396 case 4: orig_insn.opcode = xtensa_callx4_opcode; break;
5397 case 8: orig_insn.opcode = xtensa_callx8_opcode; break;
5398 case 12: orig_insn.opcode = xtensa_callx12_opcode; break;
5399 }
5400
5401 if (num_args != 2)
5402 as_bad (_("wrong number of operands for '%s'"), opname);
5403 else
5404 {
5405 bfd_reloc_code_real_type reloc;
5406 char *old_input_line_pointer;
5407 expressionS *tok = &orig_insn.extra_arg;
5408 segT t;
5409
5410 old_input_line_pointer = input_line_pointer;
5411 input_line_pointer = arg_strings[num_args - 1];
5412
5413 t = expression (tok);
5414 if (tok->X_op == O_symbol
5415 && ((reloc = xtensa_elf_suffix (&input_line_pointer, tok))
5416 == BFD_RELOC_XTENSA_TLS_CALL))
5417 tok->X_op = map_suffix_reloc_to_operator (reloc);
5418 else
5419 as_bad (_("bad relocation expression for '%s'"), opname);
5420
5421 input_line_pointer = old_input_line_pointer;
5422 num_args -= 1;
5423 }
5424 }
5425 }
5426
5427 /* Special case: Check for "j.l" psuedo op. */
5428 if (orig_insn.opcode == XTENSA_UNDEFINED
5429 && strncasecmp (opname, "j.l", 3) == 0)
5430 {
5431 if (num_args != 2)
5432 as_bad (_("wrong number of operands for '%s'"), opname);
5433 else
5434 {
5435 char *old_input_line_pointer;
5436 expressionS *tok = &orig_insn.extra_arg;
5437
5438 old_input_line_pointer = input_line_pointer;
5439 input_line_pointer = arg_strings[num_args - 1];
5440
5441 expression_maybe_register (xtensa_jx_opcode, 0, tok);
5442 input_line_pointer = old_input_line_pointer;
5443
5444 num_args -= 1;
5445 orig_insn.opcode = xtensa_j_opcode;
5446 }
5447 }
5448
5449 if (orig_insn.opcode == XTENSA_UNDEFINED)
5450 {
5451 xtensa_format fmt = xtensa_format_lookup (isa, opname);
5452 if (fmt == XTENSA_UNDEFINED)
5453 {
5454 as_bad (_("unknown opcode or format name '%s'"), opname);
5455 error_reset_cur_vinsn ();
5456 return;
5457 }
5458 if (!cur_vinsn.inside_bundle)
5459 {
5460 as_bad (_("format names only valid inside bundles"));
5461 error_reset_cur_vinsn ();
5462 return;
5463 }
5464 if (cur_vinsn.format != XTENSA_UNDEFINED)
5465 as_warn (_("multiple formats specified for one bundle; using '%s'"),
5466 opname);
5467 cur_vinsn.format = fmt;
5468 free (has_underbar ? opname - 1 : opname);
5469 error_reset_cur_vinsn ();
5470 return;
5471 }
5472
5473 /* Parse the arguments. */
5474 if (parse_arguments (&orig_insn, num_args, arg_strings))
5475 {
5476 as_bad (_("syntax error"));
5477 error_reset_cur_vinsn ();
5478 return;
5479 }
5480
5481 /* Free the opcode and argument strings, now that they've been parsed. */
5482 free (has_underbar ? opname - 1 : opname);
5483 opname = 0;
5484 while (num_args-- > 0)
5485 free (arg_strings[num_args]);
5486
5487 /* Get expressions for invisible operands. */
5488 if (get_invisible_operands (&orig_insn))
5489 {
5490 error_reset_cur_vinsn ();
5491 return;
5492 }
5493
5494 /* Check for the right number and type of arguments. */
5495 if (tinsn_check_arguments (&orig_insn))
5496 {
5497 error_reset_cur_vinsn ();
5498 return;
5499 }
5500
5501 /* Record the line number for each TInsn, because a FLIX bundle may be
5502 spread across multiple input lines and individual instructions may be
5503 moved around in some cases. */
5504 orig_insn.loc_directive_seen = dwarf2_loc_directive_seen;
5505 dwarf2_where (&orig_insn.debug_line);
5506 dwarf2_consume_line_info ();
5507
5508 xg_add_branch_and_loop_targets (&orig_insn);
5509
5510 /* Check that immediate value for ENTRY is >= 16. */
5511 if (orig_insn.opcode == xtensa_entry_opcode && orig_insn.ntok >= 3)
5512 {
5513 expressionS *exp = &orig_insn.tok[2];
5514 if (exp->X_op == O_constant && exp->X_add_number < 16)
5515 as_warn (_("entry instruction with stack decrement < 16"));
5516 }
5517
5518 /* Finish it off:
5519 assemble_tokens (opcode, tok, ntok);
5520 expand the tokens from the orig_insn into the
5521 stack of instructions that will not expand
5522 unless required at relaxation time. */
5523
5524 if (!cur_vinsn.inside_bundle)
5525 emit_single_op (&orig_insn);
5526 else /* We are inside a bundle. */
5527 {
5528 cur_vinsn.slots[cur_vinsn.num_slots] = orig_insn;
5529 cur_vinsn.num_slots++;
5530 if (*input_line_pointer == '}'
5531 || *(input_line_pointer - 1) == '}'
5532 || *(input_line_pointer - 2) == '}')
5533 finish_vinsn (&cur_vinsn);
5534 }
5535
5536 /* We've just emitted a new instruction so clear the list of labels. */
5537 xtensa_clear_insn_labels ();
5538 }
5539
5540
5541 /* HANDLE_ALIGN hook */
5542
5543 /* For a .align directive, we mark the previous block with the alignment
5544 information. This will be placed in the object file in the
5545 property section corresponding to this section. */
5546
5547 void
5548 xtensa_handle_align (fragS *fragP)
5549 {
5550 if (linkrelax
5551 && ! fragP->tc_frag_data.is_literal
5552 && (fragP->fr_type == rs_align
5553 || fragP->fr_type == rs_align_code)
5554 && fragP->fr_address + fragP->fr_fix > 0
5555 && fragP->fr_offset > 0
5556 && now_seg != bss_section)
5557 {
5558 fragP->tc_frag_data.is_align = TRUE;
5559 fragP->tc_frag_data.alignment = fragP->fr_offset;
5560 }
5561
5562 if (fragP->fr_type == rs_align_test)
5563 {
5564 int count;
5565 count = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5566 if (count != 0)
5567 as_bad_where (fragP->fr_file, fragP->fr_line,
5568 _("unaligned entry instruction"));
5569 }
5570
5571 if (linkrelax && fragP->fr_type == rs_org)
5572 fragP->fr_subtype = RELAX_ORG;
5573 }
5574
5575
5576 /* TC_FRAG_INIT hook */
5577
5578 void
5579 xtensa_frag_init (fragS *frag)
5580 {
5581 xtensa_set_frag_assembly_state (frag);
5582 }
5583
5584
5585 symbolS *
5586 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
5587 {
5588 return NULL;
5589 }
5590
5591
5592 /* Round up a section size to the appropriate boundary. */
5593
5594 valueT
5595 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
5596 {
5597 return size; /* Byte alignment is fine. */
5598 }
5599
5600
5601 long
5602 md_pcrel_from (fixS *fixP)
5603 {
5604 char *insn_p;
5605 static xtensa_insnbuf insnbuf = NULL;
5606 static xtensa_insnbuf slotbuf = NULL;
5607 int opnum;
5608 uint32 opnd_value;
5609 xtensa_opcode opcode;
5610 xtensa_format fmt;
5611 int slot;
5612 xtensa_isa isa = xtensa_default_isa;
5613 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
5614 bfd_boolean alt_reloc;
5615
5616 if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND)
5617 return 0;
5618
5619 if (fixP->fx_r_type == BFD_RELOC_32_PCREL)
5620 return addr;
5621
5622 if (!insnbuf)
5623 {
5624 insnbuf = xtensa_insnbuf_alloc (isa);
5625 slotbuf = xtensa_insnbuf_alloc (isa);
5626 }
5627
5628 insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where];
5629 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) insn_p, 0);
5630 fmt = xtensa_format_decode (isa, insnbuf);
5631
5632 if (fmt == XTENSA_UNDEFINED)
5633 as_fatal (_("bad instruction format"));
5634
5635 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc) != 0)
5636 as_fatal (_("invalid relocation"));
5637
5638 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5639 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5640
5641 /* Check for "alternate" relocations (operand not specified). None
5642 of the current uses for these are really PC-relative. */
5643 if (alt_reloc || opcode == xtensa_const16_opcode)
5644 {
5645 if (opcode != xtensa_l32r_opcode
5646 && opcode != xtensa_const16_opcode)
5647 as_fatal (_("invalid relocation for '%s' instruction"),
5648 xtensa_opcode_name (isa, opcode));
5649 return 0;
5650 }
5651
5652 opnum = get_relaxable_immed (opcode);
5653 opnd_value = 0;
5654 if (xtensa_operand_is_PCrelative (isa, opcode, opnum) != 1
5655 || xtensa_operand_do_reloc (isa, opcode, opnum, &opnd_value, addr))
5656 {
5657 as_bad_where (fixP->fx_file,
5658 fixP->fx_line,
5659 _("invalid relocation for operand %d of '%s'"),
5660 opnum, xtensa_opcode_name (isa, opcode));
5661 return 0;
5662 }
5663 return 0 - opnd_value;
5664 }
5665
5666
5667 /* TC_FORCE_RELOCATION hook */
5668
5669 int
5670 xtensa_force_relocation (fixS *fix)
5671 {
5672 switch (fix->fx_r_type)
5673 {
5674 case BFD_RELOC_XTENSA_ASM_EXPAND:
5675 case BFD_RELOC_XTENSA_SLOT0_ALT:
5676 case BFD_RELOC_XTENSA_SLOT1_ALT:
5677 case BFD_RELOC_XTENSA_SLOT2_ALT:
5678 case BFD_RELOC_XTENSA_SLOT3_ALT:
5679 case BFD_RELOC_XTENSA_SLOT4_ALT:
5680 case BFD_RELOC_XTENSA_SLOT5_ALT:
5681 case BFD_RELOC_XTENSA_SLOT6_ALT:
5682 case BFD_RELOC_XTENSA_SLOT7_ALT:
5683 case BFD_RELOC_XTENSA_SLOT8_ALT:
5684 case BFD_RELOC_XTENSA_SLOT9_ALT:
5685 case BFD_RELOC_XTENSA_SLOT10_ALT:
5686 case BFD_RELOC_XTENSA_SLOT11_ALT:
5687 case BFD_RELOC_XTENSA_SLOT12_ALT:
5688 case BFD_RELOC_XTENSA_SLOT13_ALT:
5689 case BFD_RELOC_XTENSA_SLOT14_ALT:
5690 return 1;
5691 default:
5692 break;
5693 }
5694
5695 if (linkrelax && fix->fx_addsy
5696 && relaxable_section (S_GET_SEGMENT (fix->fx_addsy)))
5697 return 1;
5698
5699 return generic_force_reloc (fix);
5700 }
5701
5702
5703 /* TC_VALIDATE_FIX_SUB hook */
5704
5705 int
5706 xtensa_validate_fix_sub (fixS *fix)
5707 {
5708 segT add_symbol_segment, sub_symbol_segment;
5709
5710 /* The difference of two symbols should be resolved by the assembler when
5711 linkrelax is not set. If the linker may relax the section containing
5712 the symbols, then an Xtensa DIFF relocation must be generated so that
5713 the linker knows to adjust the difference value. */
5714 if (!linkrelax || fix->fx_addsy == NULL)
5715 return 0;
5716
5717 /* Make sure both symbols are in the same segment, and that segment is
5718 "normal" and relaxable. If the segment is not "normal", then the
5719 fix is not valid. If the segment is not "relaxable", then the fix
5720 should have been handled earlier. */
5721 add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy);
5722 if (! SEG_NORMAL (add_symbol_segment) ||
5723 ! relaxable_section (add_symbol_segment))
5724 return 0;
5725 sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy);
5726 return (sub_symbol_segment == add_symbol_segment);
5727 }
5728
5729
5730 /* NO_PSEUDO_DOT hook */
5731
5732 /* This function has nothing to do with pseudo dots, but this is the
5733 nearest macro to where the check needs to take place. FIXME: This
5734 seems wrong. */
5735
5736 bfd_boolean
5737 xtensa_check_inside_bundle (void)
5738 {
5739 if (cur_vinsn.inside_bundle && input_line_pointer[-1] == '.')
5740 as_bad (_("directives are not valid inside bundles"));
5741
5742 /* This function must always return FALSE because it is called via a
5743 macro that has nothing to do with bundling. */
5744 return FALSE;
5745 }
5746
5747
5748 /* md_elf_section_change_hook */
5749
5750 void
5751 xtensa_elf_section_change_hook (void)
5752 {
5753 /* Set up the assembly state. */
5754 if (!frag_now->tc_frag_data.is_assembly_state_set)
5755 xtensa_set_frag_assembly_state (frag_now);
5756 }
5757
5758
5759 /* tc_fix_adjustable hook */
5760
5761 bfd_boolean
5762 xtensa_fix_adjustable (fixS *fixP)
5763 {
5764 /* An offset is not allowed in combination with the difference of two
5765 symbols, but that cannot be easily detected after a local symbol
5766 has been adjusted to a (section+offset) form. Return 0 so that such
5767 an fix will not be adjusted. */
5768 if (fixP->fx_subsy && fixP->fx_addsy && fixP->fx_offset
5769 && relaxable_section (S_GET_SEGMENT (fixP->fx_subsy)))
5770 return 0;
5771
5772 /* We need the symbol name for the VTABLE entries. */
5773 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
5774 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5775 return 0;
5776
5777 return 1;
5778 }
5779
5780
5781 /* tc_symbol_new_hook */
5782
5783 symbolS *expr_symbols = NULL;
5784
5785 void
5786 xtensa_symbol_new_hook (symbolS *sym)
5787 {
5788 if (is_leb128_expr && S_GET_SEGMENT (sym) == expr_section)
5789 {
5790 symbol_get_tc (sym)->next_expr_symbol = expr_symbols;
5791 expr_symbols = sym;
5792 }
5793 }
5794
5795
5796 void
5797 md_apply_fix (fixS *fixP, valueT *valP, segT seg)
5798 {
5799 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5800 valueT val = 0;
5801
5802 /* Subtracted symbols are only allowed for a few relocation types, and
5803 unless linkrelax is enabled, they should not make it to this point. */
5804 if (fixP->fx_subsy && !(linkrelax && (fixP->fx_r_type == BFD_RELOC_32
5805 || fixP->fx_r_type == BFD_RELOC_16
5806 || fixP->fx_r_type == BFD_RELOC_8)))
5807 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex"));
5808
5809 switch (fixP->fx_r_type)
5810 {
5811 case BFD_RELOC_32_PCREL:
5812 case BFD_RELOC_32:
5813 case BFD_RELOC_16:
5814 case BFD_RELOC_8:
5815 if (fixP->fx_subsy)
5816 {
5817 switch (fixP->fx_r_type)
5818 {
5819 case BFD_RELOC_8:
5820 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF8;
5821 break;
5822 case BFD_RELOC_16:
5823 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF16;
5824 break;
5825 case BFD_RELOC_32:
5826 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF32;
5827 break;
5828 default:
5829 break;
5830 }
5831
5832 /* An offset is only allowed when it results from adjusting a
5833 local symbol into a section-relative offset. If the offset
5834 came from the original expression, tc_fix_adjustable will have
5835 prevented the fix from being converted to a section-relative
5836 form so that we can flag the error here. */
5837 if (fixP->fx_offset != 0 && !symbol_section_p (fixP->fx_addsy))
5838 as_bad_where (fixP->fx_file, fixP->fx_line,
5839 _("cannot represent subtraction with an offset"));
5840
5841 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5842 - S_GET_VALUE (fixP->fx_subsy));
5843
5844 /* The difference value gets written out, and the DIFF reloc
5845 identifies the address of the subtracted symbol (i.e., the one
5846 with the lowest address). */
5847 *valP = val;
5848 fixP->fx_offset -= val;
5849 fixP->fx_subsy = NULL;
5850 }
5851 else if (! fixP->fx_addsy)
5852 {
5853 val = *valP;
5854 fixP->fx_done = 1;
5855 }
5856 /* fall through */
5857
5858 case BFD_RELOC_XTENSA_PLT:
5859 md_number_to_chars (fixpos, val, fixP->fx_size);
5860 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
5861 break;
5862
5863 case BFD_RELOC_XTENSA_TLSDESC_FN:
5864 case BFD_RELOC_XTENSA_TLSDESC_ARG:
5865 case BFD_RELOC_XTENSA_TLS_TPOFF:
5866 case BFD_RELOC_XTENSA_TLS_DTPOFF:
5867 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5868 md_number_to_chars (fixpos, 0, fixP->fx_size);
5869 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
5870 break;
5871
5872 case BFD_RELOC_XTENSA_SLOT0_OP:
5873 case BFD_RELOC_XTENSA_SLOT1_OP:
5874 case BFD_RELOC_XTENSA_SLOT2_OP:
5875 case BFD_RELOC_XTENSA_SLOT3_OP:
5876 case BFD_RELOC_XTENSA_SLOT4_OP:
5877 case BFD_RELOC_XTENSA_SLOT5_OP:
5878 case BFD_RELOC_XTENSA_SLOT6_OP:
5879 case BFD_RELOC_XTENSA_SLOT7_OP:
5880 case BFD_RELOC_XTENSA_SLOT8_OP:
5881 case BFD_RELOC_XTENSA_SLOT9_OP:
5882 case BFD_RELOC_XTENSA_SLOT10_OP:
5883 case BFD_RELOC_XTENSA_SLOT11_OP:
5884 case BFD_RELOC_XTENSA_SLOT12_OP:
5885 case BFD_RELOC_XTENSA_SLOT13_OP:
5886 case BFD_RELOC_XTENSA_SLOT14_OP:
5887 if (linkrelax)
5888 {
5889 /* Write the tentative value of a PC-relative relocation to a
5890 local symbol into the instruction. The value will be ignored
5891 by the linker, and it makes the object file disassembly
5892 readable when all branch targets are encoded in relocations. */
5893
5894 assert (fixP->fx_addsy);
5895 if (S_GET_SEGMENT (fixP->fx_addsy) == seg
5896 && !S_FORCE_RELOC (fixP->fx_addsy, 1))
5897 {
5898 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5899 - md_pcrel_from (fixP));
5900 (void) xg_apply_fix_value (fixP, val);
5901 }
5902 }
5903 else if (! fixP->fx_addsy)
5904 {
5905 val = *valP;
5906 if (xg_apply_fix_value (fixP, val))
5907 fixP->fx_done = 1;
5908 }
5909 break;
5910
5911 case BFD_RELOC_XTENSA_ASM_EXPAND:
5912 case BFD_RELOC_XTENSA_TLS_FUNC:
5913 case BFD_RELOC_XTENSA_TLS_ARG:
5914 case BFD_RELOC_XTENSA_TLS_CALL:
5915 case BFD_RELOC_XTENSA_SLOT0_ALT:
5916 case BFD_RELOC_XTENSA_SLOT1_ALT:
5917 case BFD_RELOC_XTENSA_SLOT2_ALT:
5918 case BFD_RELOC_XTENSA_SLOT3_ALT:
5919 case BFD_RELOC_XTENSA_SLOT4_ALT:
5920 case BFD_RELOC_XTENSA_SLOT5_ALT:
5921 case BFD_RELOC_XTENSA_SLOT6_ALT:
5922 case BFD_RELOC_XTENSA_SLOT7_ALT:
5923 case BFD_RELOC_XTENSA_SLOT8_ALT:
5924 case BFD_RELOC_XTENSA_SLOT9_ALT:
5925 case BFD_RELOC_XTENSA_SLOT10_ALT:
5926 case BFD_RELOC_XTENSA_SLOT11_ALT:
5927 case BFD_RELOC_XTENSA_SLOT12_ALT:
5928 case BFD_RELOC_XTENSA_SLOT13_ALT:
5929 case BFD_RELOC_XTENSA_SLOT14_ALT:
5930 /* These all need to be resolved at link-time. Do nothing now. */
5931 break;
5932
5933 case BFD_RELOC_VTABLE_INHERIT:
5934 case BFD_RELOC_VTABLE_ENTRY:
5935 fixP->fx_done = 0;
5936 break;
5937
5938 default:
5939 as_bad (_("unhandled local relocation fix %s"),
5940 bfd_get_reloc_code_name (fixP->fx_r_type));
5941 }
5942 }
5943
5944
5945 char *
5946 md_atof (int type, char *litP, int *sizeP)
5947 {
5948 return ieee_md_atof (type, litP, sizeP, target_big_endian);
5949 }
5950
5951
5952 int
5953 md_estimate_size_before_relax (fragS *fragP, segT seg ATTRIBUTE_UNUSED)
5954 {
5955 return total_frag_text_expansion (fragP);
5956 }
5957
5958
5959 /* Translate internal representation of relocation info to BFD target
5960 format. */
5961
5962 arelent *
5963 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
5964 {
5965 arelent *reloc;
5966
5967 reloc = (arelent *) xmalloc (sizeof (arelent));
5968 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5969 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5970 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
5971
5972 /* Make sure none of our internal relocations make it this far.
5973 They'd better have been fully resolved by this point. */
5974 assert ((int) fixp->fx_r_type > 0);
5975
5976 reloc->addend = fixp->fx_offset;
5977
5978 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
5979 if (reloc->howto == NULL)
5980 {
5981 as_bad_where (fixp->fx_file, fixp->fx_line,
5982 _("cannot represent `%s' relocation in object file"),
5983 bfd_get_reloc_code_name (fixp->fx_r_type));
5984 free (reloc->sym_ptr_ptr);
5985 free (reloc);
5986 return NULL;
5987 }
5988
5989 if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
5990 as_fatal (_("internal error; cannot generate `%s' relocation"),
5991 bfd_get_reloc_code_name (fixp->fx_r_type));
5992
5993 return reloc;
5994 }
5995
5996 \f
5997 /* Checks for resource conflicts between instructions. */
5998
5999 /* The func unit stuff could be implemented as bit-vectors rather
6000 than the iterative approach here. If it ends up being too
6001 slow, we will switch it. */
6002
6003 resource_table *
6004 new_resource_table (void *data,
6005 int cycles,
6006 int nu,
6007 unit_num_copies_func uncf,
6008 opcode_num_units_func onuf,
6009 opcode_funcUnit_use_unit_func ouuf,
6010 opcode_funcUnit_use_stage_func ousf)
6011 {
6012 int i;
6013 resource_table *rt = (resource_table *) xmalloc (sizeof (resource_table));
6014 rt->data = data;
6015 rt->cycles = cycles;
6016 rt->allocated_cycles = cycles;
6017 rt->num_units = nu;
6018 rt->unit_num_copies = uncf;
6019 rt->opcode_num_units = onuf;
6020 rt->opcode_unit_use = ouuf;
6021 rt->opcode_unit_stage = ousf;
6022
6023 rt->units = (unsigned char **) xcalloc (cycles, sizeof (unsigned char *));
6024 for (i = 0; i < cycles; i++)
6025 rt->units[i] = (unsigned char *) xcalloc (nu, sizeof (unsigned char));
6026
6027 return rt;
6028 }
6029
6030
6031 void
6032 clear_resource_table (resource_table *rt)
6033 {
6034 int i, j;
6035 for (i = 0; i < rt->allocated_cycles; i++)
6036 for (j = 0; j < rt->num_units; j++)
6037 rt->units[i][j] = 0;
6038 }
6039
6040
6041 /* We never shrink it, just fake it into thinking so. */
6042
6043 void
6044 resize_resource_table (resource_table *rt, int cycles)
6045 {
6046 int i, old_cycles;
6047
6048 rt->cycles = cycles;
6049 if (cycles <= rt->allocated_cycles)
6050 return;
6051
6052 old_cycles = rt->allocated_cycles;
6053 rt->allocated_cycles = cycles;
6054
6055 rt->units = xrealloc (rt->units,
6056 rt->allocated_cycles * sizeof (unsigned char *));
6057 for (i = 0; i < old_cycles; i++)
6058 rt->units[i] = xrealloc (rt->units[i],
6059 rt->num_units * sizeof (unsigned char));
6060 for (i = old_cycles; i < cycles; i++)
6061 rt->units[i] = xcalloc (rt->num_units, sizeof (unsigned char));
6062 }
6063
6064
6065 bfd_boolean
6066 resources_available (resource_table *rt, xtensa_opcode opcode, int cycle)
6067 {
6068 int i;
6069 int uses = (rt->opcode_num_units) (rt->data, opcode);
6070
6071 for (i = 0; i < uses; i++)
6072 {
6073 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6074 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6075 int copies_in_use = rt->units[stage + cycle][unit];
6076 int copies = (rt->unit_num_copies) (rt->data, unit);
6077 if (copies_in_use >= copies)
6078 return FALSE;
6079 }
6080 return TRUE;
6081 }
6082
6083
6084 void
6085 reserve_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
6086 {
6087 int i;
6088 int uses = (rt->opcode_num_units) (rt->data, opcode);
6089
6090 for (i = 0; i < uses; i++)
6091 {
6092 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6093 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6094 /* Note that this allows resources to be oversubscribed. That's
6095 essential to the way the optional scheduler works.
6096 resources_available reports when a resource is over-subscribed,
6097 so it's easy to tell. */
6098 rt->units[stage + cycle][unit]++;
6099 }
6100 }
6101
6102
6103 void
6104 release_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
6105 {
6106 int i;
6107 int uses = (rt->opcode_num_units) (rt->data, opcode);
6108
6109 for (i = 0; i < uses; i++)
6110 {
6111 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6112 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6113 assert (rt->units[stage + cycle][unit] > 0);
6114 rt->units[stage + cycle][unit]--;
6115 }
6116 }
6117
6118
6119 /* Wrapper functions make parameterized resource reservation
6120 more convenient. */
6121
6122 int
6123 opcode_funcUnit_use_unit (void *data, xtensa_opcode opcode, int idx)
6124 {
6125 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
6126 return use->unit;
6127 }
6128
6129
6130 int
6131 opcode_funcUnit_use_stage (void *data, xtensa_opcode opcode, int idx)
6132 {
6133 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
6134 return use->stage;
6135 }
6136
6137
6138 /* Note that this function does not check issue constraints, but
6139 solely whether the hardware is available to execute the given
6140 instructions together. It also doesn't check if the tinsns
6141 write the same state, or access the same tieports. That is
6142 checked by check_t1_t2_reads_and_writes. */
6143
6144 static bfd_boolean
6145 resources_conflict (vliw_insn *vinsn)
6146 {
6147 int i;
6148 static resource_table *rt = NULL;
6149
6150 /* This is the most common case by far. Optimize it. */
6151 if (vinsn->num_slots == 1)
6152 return FALSE;
6153
6154 if (rt == NULL)
6155 {
6156 xtensa_isa isa = xtensa_default_isa;
6157 rt = new_resource_table
6158 (isa, xtensa_num_pipe_stages,
6159 xtensa_isa_num_funcUnits (isa),
6160 (unit_num_copies_func) xtensa_funcUnit_num_copies,
6161 (opcode_num_units_func) xtensa_opcode_num_funcUnit_uses,
6162 opcode_funcUnit_use_unit,
6163 opcode_funcUnit_use_stage);
6164 }
6165
6166 clear_resource_table (rt);
6167
6168 for (i = 0; i < vinsn->num_slots; i++)
6169 {
6170 if (!resources_available (rt, vinsn->slots[i].opcode, 0))
6171 return TRUE;
6172 reserve_resources (rt, vinsn->slots[i].opcode, 0);
6173 }
6174
6175 return FALSE;
6176 }
6177
6178 \f
6179 /* finish_vinsn, emit_single_op and helper functions. */
6180
6181 static bfd_boolean find_vinsn_conflicts (vliw_insn *);
6182 static xtensa_format xg_find_narrowest_format (vliw_insn *);
6183 static void xg_assemble_vliw_tokens (vliw_insn *);
6184
6185
6186 /* We have reached the end of a bundle; emit into the frag. */
6187
6188 static void
6189 finish_vinsn (vliw_insn *vinsn)
6190 {
6191 IStack slotstack;
6192 int i;
6193 char *file_name;
6194 unsigned line;
6195
6196 if (find_vinsn_conflicts (vinsn))
6197 {
6198 xg_clear_vinsn (vinsn);
6199 return;
6200 }
6201
6202 /* First, find a format that works. */
6203 if (vinsn->format == XTENSA_UNDEFINED)
6204 vinsn->format = xg_find_narrowest_format (vinsn);
6205
6206 if (xtensa_format_num_slots (xtensa_default_isa, vinsn->format) > 1
6207 && produce_flix == FLIX_NONE)
6208 {
6209 as_bad (_("The option \"--no-allow-flix\" prohibits multi-slot flix."));
6210 xg_clear_vinsn (vinsn);
6211 return;
6212 }
6213
6214 if (vinsn->format == XTENSA_UNDEFINED)
6215 {
6216 as_where (&file_name, &line);
6217 as_bad_where (file_name, line,
6218 _("couldn't find a valid instruction format"));
6219 fprintf (stderr, _(" ops were: "));
6220 for (i = 0; i < vinsn->num_slots; i++)
6221 fprintf (stderr, _(" %s;"),
6222 xtensa_opcode_name (xtensa_default_isa,
6223 vinsn->slots[i].opcode));
6224 fprintf (stderr, _("\n"));
6225 xg_clear_vinsn (vinsn);
6226 return;
6227 }
6228
6229 if (vinsn->num_slots
6230 != xtensa_format_num_slots (xtensa_default_isa, vinsn->format))
6231 {
6232 as_bad (_("format '%s' allows %d slots, but there are %d opcodes"),
6233 xtensa_format_name (xtensa_default_isa, vinsn->format),
6234 xtensa_format_num_slots (xtensa_default_isa, vinsn->format),
6235 vinsn->num_slots);
6236 xg_clear_vinsn (vinsn);
6237 return;
6238 }
6239
6240 if (resources_conflict (vinsn))
6241 {
6242 as_where (&file_name, &line);
6243 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6244 fprintf (stderr, " ops were: ");
6245 for (i = 0; i < vinsn->num_slots; i++)
6246 fprintf (stderr, " %s;",
6247 xtensa_opcode_name (xtensa_default_isa,
6248 vinsn->slots[i].opcode));
6249 fprintf (stderr, "\n");
6250 xg_clear_vinsn (vinsn);
6251 return;
6252 }
6253
6254 for (i = 0; i < vinsn->num_slots; i++)
6255 {
6256 if (vinsn->slots[i].opcode != XTENSA_UNDEFINED)
6257 {
6258 symbolS *lit_sym = NULL;
6259 int j;
6260 bfd_boolean e = FALSE;
6261 bfd_boolean saved_density = density_supported;
6262
6263 /* We don't want to narrow ops inside multi-slot bundles. */
6264 if (vinsn->num_slots > 1)
6265 density_supported = FALSE;
6266
6267 istack_init (&slotstack);
6268 if (vinsn->slots[i].opcode == xtensa_nop_opcode)
6269 {
6270 vinsn->slots[i].opcode =
6271 xtensa_format_slot_nop_opcode (xtensa_default_isa,
6272 vinsn->format, i);
6273 vinsn->slots[i].ntok = 0;
6274 }
6275
6276 if (xg_expand_assembly_insn (&slotstack, &vinsn->slots[i]))
6277 {
6278 e = TRUE;
6279 continue;
6280 }
6281
6282 density_supported = saved_density;
6283
6284 if (e)
6285 {
6286 xg_clear_vinsn (vinsn);
6287 return;
6288 }
6289
6290 for (j = 0; j < slotstack.ninsn; j++)
6291 {
6292 TInsn *insn = &slotstack.insn[j];
6293 if (insn->insn_type == ITYPE_LITERAL)
6294 {
6295 assert (lit_sym == NULL);
6296 lit_sym = xg_assemble_literal (insn);
6297 }
6298 else
6299 {
6300 assert (insn->insn_type == ITYPE_INSN);
6301 if (lit_sym)
6302 xg_resolve_literals (insn, lit_sym);
6303 if (j != slotstack.ninsn - 1)
6304 emit_single_op (insn);
6305 }
6306 }
6307
6308 if (vinsn->num_slots > 1)
6309 {
6310 if (opcode_fits_format_slot
6311 (slotstack.insn[slotstack.ninsn - 1].opcode,
6312 vinsn->format, i))
6313 {
6314 vinsn->slots[i] = slotstack.insn[slotstack.ninsn - 1];
6315 }
6316 else
6317 {
6318 emit_single_op (&slotstack.insn[slotstack.ninsn - 1]);
6319 if (vinsn->format == XTENSA_UNDEFINED)
6320 vinsn->slots[i].opcode = xtensa_nop_opcode;
6321 else
6322 vinsn->slots[i].opcode
6323 = xtensa_format_slot_nop_opcode (xtensa_default_isa,
6324 vinsn->format, i);
6325
6326 vinsn->slots[i].ntok = 0;
6327 }
6328 }
6329 else
6330 {
6331 vinsn->slots[0] = slotstack.insn[slotstack.ninsn - 1];
6332 vinsn->format = XTENSA_UNDEFINED;
6333 }
6334 }
6335 }
6336
6337 /* Now check resource conflicts on the modified bundle. */
6338 if (resources_conflict (vinsn))
6339 {
6340 as_where (&file_name, &line);
6341 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6342 fprintf (stderr, " ops were: ");
6343 for (i = 0; i < vinsn->num_slots; i++)
6344 fprintf (stderr, " %s;",
6345 xtensa_opcode_name (xtensa_default_isa,
6346 vinsn->slots[i].opcode));
6347 fprintf (stderr, "\n");
6348 xg_clear_vinsn (vinsn);
6349 return;
6350 }
6351
6352 /* First, find a format that works. */
6353 if (vinsn->format == XTENSA_UNDEFINED)
6354 vinsn->format = xg_find_narrowest_format (vinsn);
6355
6356 xg_assemble_vliw_tokens (vinsn);
6357
6358 xg_clear_vinsn (vinsn);
6359 }
6360
6361
6362 /* Given an vliw instruction, what conflicts are there in register
6363 usage and in writes to states and queues?
6364
6365 This function does two things:
6366 1. Reports an error when a vinsn contains illegal combinations
6367 of writes to registers states or queues.
6368 2. Marks individual tinsns as not relaxable if the combination
6369 contains antidependencies.
6370
6371 Job 2 handles things like swap semantics in instructions that need
6372 to be relaxed. For example,
6373
6374 addi a0, a1, 100000
6375
6376 normally would be relaxed to
6377
6378 l32r a0, some_label
6379 add a0, a1, a0
6380
6381 _but_, if the above instruction is bundled with an a0 reader, e.g.,
6382
6383 { addi a0, a1, 10000 ; add a2, a0, a4 ; }
6384
6385 then we can't relax it into
6386
6387 l32r a0, some_label
6388 { add a0, a1, a0 ; add a2, a0, a4 ; }
6389
6390 because the value of a0 is trashed before the second add can read it. */
6391
6392 static char check_t1_t2_reads_and_writes (TInsn *, TInsn *);
6393
6394 static bfd_boolean
6395 find_vinsn_conflicts (vliw_insn *vinsn)
6396 {
6397 int i, j;
6398 int branches = 0;
6399 xtensa_isa isa = xtensa_default_isa;
6400
6401 assert (!past_xtensa_end);
6402
6403 for (i = 0 ; i < vinsn->num_slots; i++)
6404 {
6405 TInsn *op1 = &vinsn->slots[i];
6406 if (op1->is_specific_opcode)
6407 op1->keep_wide = TRUE;
6408 else
6409 op1->keep_wide = FALSE;
6410 }
6411
6412 for (i = 0 ; i < vinsn->num_slots; i++)
6413 {
6414 TInsn *op1 = &vinsn->slots[i];
6415
6416 if (xtensa_opcode_is_branch (isa, op1->opcode) == 1)
6417 branches++;
6418
6419 for (j = 0; j < vinsn->num_slots; j++)
6420 {
6421 if (i != j)
6422 {
6423 TInsn *op2 = &vinsn->slots[j];
6424 char conflict_type = check_t1_t2_reads_and_writes (op1, op2);
6425 switch (conflict_type)
6426 {
6427 case 'c':
6428 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"),
6429 xtensa_opcode_name (isa, op1->opcode), i,
6430 xtensa_opcode_name (isa, op2->opcode), j);
6431 return TRUE;
6432 case 'd':
6433 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"),
6434 xtensa_opcode_name (isa, op1->opcode), i,
6435 xtensa_opcode_name (isa, op2->opcode), j);
6436 return TRUE;
6437 case 'e':
6438 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same port"),
6439 xtensa_opcode_name (isa, op1->opcode), i,
6440 xtensa_opcode_name (isa, op2->opcode), j);
6441 return TRUE;
6442 case 'f':
6443 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile port accesses"),
6444 xtensa_opcode_name (isa, op1->opcode), i,
6445 xtensa_opcode_name (isa, op2->opcode), j);
6446 return TRUE;
6447 default:
6448 /* Everything is OK. */
6449 break;
6450 }
6451 op2->is_specific_opcode = (op2->is_specific_opcode
6452 || conflict_type == 'a');
6453 }
6454 }
6455 }
6456
6457 if (branches > 1)
6458 {
6459 as_bad (_("multiple branches or jumps in the same bundle"));
6460 return TRUE;
6461 }
6462
6463 return FALSE;
6464 }
6465
6466
6467 /* Check how the state used by t1 and t2 relate.
6468 Cases found are:
6469
6470 case A: t1 reads a register t2 writes (an antidependency within a bundle)
6471 case B: no relationship between what is read and written (both could
6472 read the same reg though)
6473 case C: t1 writes a register t2 writes (a register conflict within a
6474 bundle)
6475 case D: t1 writes a state that t2 also writes
6476 case E: t1 writes a tie queue that t2 also writes
6477 case F: two volatile queue accesses
6478 */
6479
6480 static char
6481 check_t1_t2_reads_and_writes (TInsn *t1, TInsn *t2)
6482 {
6483 xtensa_isa isa = xtensa_default_isa;
6484 xtensa_regfile t1_regfile, t2_regfile;
6485 int t1_reg, t2_reg;
6486 int t1_base_reg, t1_last_reg;
6487 int t2_base_reg, t2_last_reg;
6488 char t1_inout, t2_inout;
6489 int i, j;
6490 char conflict = 'b';
6491 int t1_states;
6492 int t2_states;
6493 int t1_interfaces;
6494 int t2_interfaces;
6495 bfd_boolean t1_volatile = FALSE;
6496 bfd_boolean t2_volatile = FALSE;
6497
6498 /* Check registers. */
6499 for (j = 0; j < t2->ntok; j++)
6500 {
6501 if (xtensa_operand_is_register (isa, t2->opcode, j) != 1)
6502 continue;
6503
6504 t2_regfile = xtensa_operand_regfile (isa, t2->opcode, j);
6505 t2_base_reg = t2->tok[j].X_add_number;
6506 t2_last_reg = t2_base_reg + xtensa_operand_num_regs (isa, t2->opcode, j);
6507
6508 for (i = 0; i < t1->ntok; i++)
6509 {
6510 if (xtensa_operand_is_register (isa, t1->opcode, i) != 1)
6511 continue;
6512
6513 t1_regfile = xtensa_operand_regfile (isa, t1->opcode, i);
6514
6515 if (t1_regfile != t2_regfile)
6516 continue;
6517
6518 t1_inout = xtensa_operand_inout (isa, t1->opcode, i);
6519 t2_inout = xtensa_operand_inout (isa, t2->opcode, j);
6520
6521 if (xtensa_operand_is_known_reg (isa, t1->opcode, i) == 0
6522 || xtensa_operand_is_known_reg (isa, t2->opcode, j) == 0)
6523 {
6524 if (t1_inout == 'm' || t1_inout == 'o'
6525 || t2_inout == 'm' || t2_inout == 'o')
6526 {
6527 conflict = 'a';
6528 continue;
6529 }
6530 }
6531
6532 t1_base_reg = t1->tok[i].X_add_number;
6533 t1_last_reg = (t1_base_reg
6534 + xtensa_operand_num_regs (isa, t1->opcode, i));
6535
6536 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
6537 {
6538 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
6539 {
6540 if (t1_reg != t2_reg)
6541 continue;
6542
6543 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6544 {
6545 conflict = 'a';
6546 continue;
6547 }
6548
6549 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6550 {
6551 conflict = 'a';
6552 continue;
6553 }
6554
6555 if (t1_inout != 'i' && t2_inout != 'i')
6556 return 'c';
6557 }
6558 }
6559 }
6560 }
6561
6562 /* Check states. */
6563 t1_states = xtensa_opcode_num_stateOperands (isa, t1->opcode);
6564 t2_states = xtensa_opcode_num_stateOperands (isa, t2->opcode);
6565 for (j = 0; j < t2_states; j++)
6566 {
6567 xtensa_state t2_so = xtensa_stateOperand_state (isa, t2->opcode, j);
6568 t2_inout = xtensa_stateOperand_inout (isa, t2->opcode, j);
6569 for (i = 0; i < t1_states; i++)
6570 {
6571 xtensa_state t1_so = xtensa_stateOperand_state (isa, t1->opcode, i);
6572 t1_inout = xtensa_stateOperand_inout (isa, t1->opcode, i);
6573 if (t1_so != t2_so || xtensa_state_is_shared_or (isa, t1_so) == 1)
6574 continue;
6575
6576 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6577 {
6578 conflict = 'a';
6579 continue;
6580 }
6581
6582 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6583 {
6584 conflict = 'a';
6585 continue;
6586 }
6587
6588 if (t1_inout != 'i' && t2_inout != 'i')
6589 return 'd';
6590 }
6591 }
6592
6593 /* Check tieports. */
6594 t1_interfaces = xtensa_opcode_num_interfaceOperands (isa, t1->opcode);
6595 t2_interfaces = xtensa_opcode_num_interfaceOperands (isa, t2->opcode);
6596 for (j = 0; j < t2_interfaces; j++)
6597 {
6598 xtensa_interface t2_int
6599 = xtensa_interfaceOperand_interface (isa, t2->opcode, j);
6600 int t2_class = xtensa_interface_class_id (isa, t2_int);
6601
6602 t2_inout = xtensa_interface_inout (isa, t2_int);
6603 if (xtensa_interface_has_side_effect (isa, t2_int) == 1)
6604 t2_volatile = TRUE;
6605
6606 for (i = 0; i < t1_interfaces; i++)
6607 {
6608 xtensa_interface t1_int
6609 = xtensa_interfaceOperand_interface (isa, t1->opcode, j);
6610 int t1_class = xtensa_interface_class_id (isa, t1_int);
6611
6612 t1_inout = xtensa_interface_inout (isa, t1_int);
6613 if (xtensa_interface_has_side_effect (isa, t1_int) == 1)
6614 t1_volatile = TRUE;
6615
6616 if (t1_volatile && t2_volatile && (t1_class == t2_class))
6617 return 'f';
6618
6619 if (t1_int != t2_int)
6620 continue;
6621
6622 if (t2_inout == 'i' && t1_inout == 'o')
6623 {
6624 conflict = 'a';
6625 continue;
6626 }
6627
6628 if (t1_inout == 'i' && t2_inout == 'o')
6629 {
6630 conflict = 'a';
6631 continue;
6632 }
6633
6634 if (t1_inout != 'i' && t2_inout != 'i')
6635 return 'e';
6636 }
6637 }
6638
6639 return conflict;
6640 }
6641
6642
6643 static xtensa_format
6644 xg_find_narrowest_format (vliw_insn *vinsn)
6645 {
6646 /* Right now we assume that the ops within the vinsn are properly
6647 ordered for the slots that the programmer wanted them in. In
6648 other words, we don't rearrange the ops in hopes of finding a
6649 better format. The scheduler handles that. */
6650
6651 xtensa_isa isa = xtensa_default_isa;
6652 xtensa_format format;
6653 vliw_insn v_copy = *vinsn;
6654 xtensa_opcode nop_opcode = xtensa_nop_opcode;
6655
6656 if (vinsn->num_slots == 1)
6657 return xg_get_single_format (vinsn->slots[0].opcode);
6658
6659 for (format = 0; format < xtensa_isa_num_formats (isa); format++)
6660 {
6661 v_copy = *vinsn;
6662 if (xtensa_format_num_slots (isa, format) == v_copy.num_slots)
6663 {
6664 int slot;
6665 int fit = 0;
6666 for (slot = 0; slot < v_copy.num_slots; slot++)
6667 {
6668 if (v_copy.slots[slot].opcode == nop_opcode)
6669 {
6670 v_copy.slots[slot].opcode =
6671 xtensa_format_slot_nop_opcode (isa, format, slot);
6672 v_copy.slots[slot].ntok = 0;
6673 }
6674
6675 if (opcode_fits_format_slot (v_copy.slots[slot].opcode,
6676 format, slot))
6677 fit++;
6678 else if (v_copy.num_slots > 1)
6679 {
6680 TInsn widened;
6681 /* Try the widened version. */
6682 if (!v_copy.slots[slot].keep_wide
6683 && !v_copy.slots[slot].is_specific_opcode
6684 && xg_is_single_relaxable_insn (&v_copy.slots[slot],
6685 &widened, TRUE)
6686 && opcode_fits_format_slot (widened.opcode,
6687 format, slot))
6688 {
6689 v_copy.slots[slot] = widened;
6690 fit++;
6691 }
6692 }
6693 }
6694 if (fit == v_copy.num_slots)
6695 {
6696 *vinsn = v_copy;
6697 xtensa_format_encode (isa, format, vinsn->insnbuf);
6698 vinsn->format = format;
6699 break;
6700 }
6701 }
6702 }
6703
6704 if (format == xtensa_isa_num_formats (isa))
6705 return XTENSA_UNDEFINED;
6706
6707 return format;
6708 }
6709
6710
6711 /* Return the additional space needed in a frag
6712 for possible relaxations of any ops in a VLIW insn.
6713 Also fill out the relaxations that might be required of
6714 each tinsn in the vinsn. */
6715
6716 static int
6717 relaxation_requirements (vliw_insn *vinsn, bfd_boolean *pfinish_frag)
6718 {
6719 bfd_boolean finish_frag = FALSE;
6720 int extra_space = 0;
6721 int slot;
6722
6723 for (slot = 0; slot < vinsn->num_slots; slot++)
6724 {
6725 TInsn *tinsn = &vinsn->slots[slot];
6726 if (!tinsn_has_symbolic_operands (tinsn))
6727 {
6728 /* A narrow instruction could be widened later to help
6729 alignment issues. */
6730 if (xg_is_single_relaxable_insn (tinsn, 0, TRUE)
6731 && !tinsn->is_specific_opcode
6732 && vinsn->num_slots == 1)
6733 {
6734 /* Difference in bytes between narrow and wide insns... */
6735 extra_space += 1;
6736 tinsn->subtype = RELAX_NARROW;
6737 }
6738 }
6739 else
6740 {
6741 if (workaround_b_j_loop_end
6742 && tinsn->opcode == xtensa_jx_opcode
6743 && use_transform ())
6744 {
6745 /* Add 2 of these. */
6746 extra_space += 3; /* for the nop size */
6747 tinsn->subtype = RELAX_ADD_NOP_IF_PRE_LOOP_END;
6748 }
6749
6750 /* Need to assemble it with space for the relocation. */
6751 if (xg_is_relaxable_insn (tinsn, 0)
6752 && !tinsn->is_specific_opcode)
6753 {
6754 int max_size = xg_get_max_insn_widen_size (tinsn->opcode);
6755 int max_literal_size =
6756 xg_get_max_insn_widen_literal_size (tinsn->opcode);
6757
6758 tinsn->literal_space = max_literal_size;
6759
6760 tinsn->subtype = RELAX_IMMED;
6761 extra_space += max_size;
6762 }
6763 else
6764 {
6765 /* A fix record will be added for this instruction prior
6766 to relaxation, so make it end the frag. */
6767 finish_frag = TRUE;
6768 }
6769 }
6770 }
6771 *pfinish_frag = finish_frag;
6772 return extra_space;
6773 }
6774
6775
6776 static void
6777 bundle_tinsn (TInsn *tinsn, vliw_insn *vinsn)
6778 {
6779 xtensa_isa isa = xtensa_default_isa;
6780 int slot, chosen_slot;
6781
6782 vinsn->format = xg_get_single_format (tinsn->opcode);
6783 assert (vinsn->format != XTENSA_UNDEFINED);
6784 vinsn->num_slots = xtensa_format_num_slots (isa, vinsn->format);
6785
6786 chosen_slot = xg_get_single_slot (tinsn->opcode);
6787 for (slot = 0; slot < vinsn->num_slots; slot++)
6788 {
6789 if (slot == chosen_slot)
6790 vinsn->slots[slot] = *tinsn;
6791 else
6792 {
6793 vinsn->slots[slot].opcode =
6794 xtensa_format_slot_nop_opcode (isa, vinsn->format, slot);
6795 vinsn->slots[slot].ntok = 0;
6796 vinsn->slots[slot].insn_type = ITYPE_INSN;
6797 }
6798 }
6799 }
6800
6801
6802 static bfd_boolean
6803 emit_single_op (TInsn *orig_insn)
6804 {
6805 int i;
6806 IStack istack; /* put instructions into here */
6807 symbolS *lit_sym = NULL;
6808 symbolS *label_sym = NULL;
6809
6810 istack_init (&istack);
6811
6812 /* Special-case for "movi aX, foo" which is guaranteed to need relaxing.
6813 Because the scheduling and bundling characteristics of movi and
6814 l32r or const16 are so different, we can do much better if we relax
6815 it prior to scheduling and bundling, rather than after. */
6816 if ((orig_insn->opcode == xtensa_movi_opcode
6817 || orig_insn->opcode == xtensa_movi_n_opcode)
6818 && !cur_vinsn.inside_bundle
6819 && (orig_insn->tok[1].X_op == O_symbol
6820 || orig_insn->tok[1].X_op == O_pltrel
6821 || orig_insn->tok[1].X_op == O_tlsfunc
6822 || orig_insn->tok[1].X_op == O_tlsarg
6823 || orig_insn->tok[1].X_op == O_tpoff
6824 || orig_insn->tok[1].X_op == O_dtpoff)
6825 && !orig_insn->is_specific_opcode && use_transform ())
6826 xg_assembly_relax (&istack, orig_insn, now_seg, frag_now, 0, 1, 0);
6827 else
6828 if (xg_expand_assembly_insn (&istack, orig_insn))
6829 return TRUE;
6830
6831 for (i = 0; i < istack.ninsn; i++)
6832 {
6833 TInsn *insn = &istack.insn[i];
6834 switch (insn->insn_type)
6835 {
6836 case ITYPE_LITERAL:
6837 assert (lit_sym == NULL);
6838 lit_sym = xg_assemble_literal (insn);
6839 break;
6840 case ITYPE_LABEL:
6841 {
6842 static int relaxed_sym_idx = 0;
6843 char *label = xmalloc (strlen (FAKE_LABEL_NAME) + 12);
6844 sprintf (label, "%s_rl_%x", FAKE_LABEL_NAME, relaxed_sym_idx++);
6845 colon (label);
6846 assert (label_sym == NULL);
6847 label_sym = symbol_find_or_make (label);
6848 assert (label_sym);
6849 free (label);
6850 }
6851 break;
6852 case ITYPE_INSN:
6853 {
6854 vliw_insn v;
6855 if (lit_sym)
6856 xg_resolve_literals (insn, lit_sym);
6857 if (label_sym)
6858 xg_resolve_labels (insn, label_sym);
6859 xg_init_vinsn (&v);
6860 bundle_tinsn (insn, &v);
6861 finish_vinsn (&v);
6862 xg_free_vinsn (&v);
6863 }
6864 break;
6865 default:
6866 assert (0);
6867 break;
6868 }
6869 }
6870 return FALSE;
6871 }
6872
6873
6874 static int
6875 total_frag_text_expansion (fragS *fragP)
6876 {
6877 int slot;
6878 int total_expansion = 0;
6879
6880 for (slot = 0; slot < MAX_SLOTS; slot++)
6881 total_expansion += fragP->tc_frag_data.text_expansion[slot];
6882
6883 return total_expansion;
6884 }
6885
6886
6887 /* Emit a vliw instruction to the current fragment. */
6888
6889 static void
6890 xg_assemble_vliw_tokens (vliw_insn *vinsn)
6891 {
6892 bfd_boolean finish_frag;
6893 bfd_boolean is_jump = FALSE;
6894 bfd_boolean is_branch = FALSE;
6895 xtensa_isa isa = xtensa_default_isa;
6896 int insn_size;
6897 int extra_space;
6898 char *f = NULL;
6899 int slot;
6900 struct dwarf2_line_info debug_line;
6901 bfd_boolean loc_directive_seen = FALSE;
6902 TInsn *tinsn;
6903
6904 memset (&debug_line, 0, sizeof (struct dwarf2_line_info));
6905
6906 if (generating_literals)
6907 {
6908 static int reported = 0;
6909 if (reported < 4)
6910 as_bad_where (frag_now->fr_file, frag_now->fr_line,
6911 _("cannot assemble into a literal fragment"));
6912 if (reported == 3)
6913 as_bad (_("..."));
6914 reported++;
6915 return;
6916 }
6917
6918 if (frag_now_fix () != 0
6919 && (! frag_now->tc_frag_data.is_insn
6920 || (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6921 || !use_transform () != frag_now->tc_frag_data.is_no_transform
6922 || (directive_state[directive_longcalls]
6923 != frag_now->tc_frag_data.use_longcalls)
6924 || (directive_state[directive_absolute_literals]
6925 != frag_now->tc_frag_data.use_absolute_literals)))
6926 {
6927 frag_wane (frag_now);
6928 frag_new (0);
6929 xtensa_set_frag_assembly_state (frag_now);
6930 }
6931
6932 if (workaround_a0_b_retw
6933 && vinsn->num_slots == 1
6934 && (get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0
6935 && xtensa_opcode_is_branch (isa, vinsn->slots[0].opcode) == 1
6936 && use_transform ())
6937 {
6938 has_a0_b_retw = TRUE;
6939
6940 /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW.
6941 After the first assembly pass we will check all of them and
6942 add a nop if needed. */
6943 frag_now->tc_frag_data.is_insn = TRUE;
6944 frag_var (rs_machine_dependent, 4, 4,
6945 RELAX_ADD_NOP_IF_A0_B_RETW,
6946 frag_now->fr_symbol,
6947 frag_now->fr_offset,
6948 NULL);
6949 xtensa_set_frag_assembly_state (frag_now);
6950 frag_now->tc_frag_data.is_insn = TRUE;
6951 frag_var (rs_machine_dependent, 4, 4,
6952 RELAX_ADD_NOP_IF_A0_B_RETW,
6953 frag_now->fr_symbol,
6954 frag_now->fr_offset,
6955 NULL);
6956 xtensa_set_frag_assembly_state (frag_now);
6957 }
6958
6959 for (slot = 0; slot < vinsn->num_slots; slot++)
6960 {
6961 tinsn = &vinsn->slots[slot];
6962
6963 /* See if the instruction implies an aligned section. */
6964 if (xtensa_opcode_is_loop (isa, tinsn->opcode) == 1)
6965 record_alignment (now_seg, 2);
6966
6967 /* Determine the best line number for debug info. */
6968 if ((tinsn->loc_directive_seen || !loc_directive_seen)
6969 && (tinsn->debug_line.filenum != debug_line.filenum
6970 || tinsn->debug_line.line < debug_line.line
6971 || tinsn->debug_line.column < debug_line.column))
6972 debug_line = tinsn->debug_line;
6973 if (tinsn->loc_directive_seen)
6974 loc_directive_seen = TRUE;
6975 }
6976
6977 /* Special cases for instructions that force an alignment... */
6978 /* None of these opcodes are bundle-able. */
6979 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1)
6980 {
6981 int max_fill;
6982
6983 /* Remember the symbol that marks the end of the loop in the frag
6984 that marks the start of the loop. This way we can easily find
6985 the end of the loop at the beginning, without adding special code
6986 to mark the loop instructions themselves. */
6987 symbolS *target_sym = NULL;
6988 if (vinsn->slots[0].tok[1].X_op == O_symbol)
6989 target_sym = vinsn->slots[0].tok[1].X_add_symbol;
6990
6991 xtensa_set_frag_assembly_state (frag_now);
6992 frag_now->tc_frag_data.is_insn = TRUE;
6993
6994 max_fill = get_text_align_max_fill_size
6995 (get_text_align_power (xtensa_fetch_width),
6996 TRUE, frag_now->tc_frag_data.is_no_density);
6997
6998 if (use_transform ())
6999 frag_var (rs_machine_dependent, max_fill, max_fill,
7000 RELAX_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
7001 else
7002 frag_var (rs_machine_dependent, 0, 0,
7003 RELAX_CHECK_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
7004 xtensa_set_frag_assembly_state (frag_now);
7005 }
7006
7007 if (vinsn->slots[0].opcode == xtensa_entry_opcode
7008 && !vinsn->slots[0].is_specific_opcode)
7009 {
7010 xtensa_mark_literal_pool_location ();
7011 xtensa_move_labels (frag_now, 0);
7012 frag_var (rs_align_test, 1, 1, 0, NULL, 2, NULL);
7013 }
7014
7015 if (vinsn->num_slots == 1)
7016 {
7017 if (workaround_a0_b_retw && use_transform ())
7018 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER,
7019 is_register_writer (&vinsn->slots[0], "a", 0));
7020
7021 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND,
7022 is_bad_loopend_opcode (&vinsn->slots[0]));
7023 }
7024 else
7025 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, FALSE);
7026
7027 insn_size = xtensa_format_length (isa, vinsn->format);
7028
7029 extra_space = relaxation_requirements (vinsn, &finish_frag);
7030
7031 /* vinsn_to_insnbuf will produce the error. */
7032 if (vinsn->format != XTENSA_UNDEFINED)
7033 {
7034 f = frag_more (insn_size + extra_space);
7035 xtensa_set_frag_assembly_state (frag_now);
7036 frag_now->tc_frag_data.is_insn = TRUE;
7037 }
7038
7039 vinsn_to_insnbuf (vinsn, f, frag_now, FALSE);
7040 if (vinsn->format == XTENSA_UNDEFINED)
7041 return;
7042
7043 xtensa_insnbuf_to_chars (isa, vinsn->insnbuf, (unsigned char *) f, 0);
7044
7045 if (debug_type == DEBUG_DWARF2 || loc_directive_seen)
7046 dwarf2_gen_line_info (frag_now_fix () - (insn_size + extra_space),
7047 &debug_line);
7048
7049 for (slot = 0; slot < vinsn->num_slots; slot++)
7050 {
7051 tinsn = &vinsn->slots[slot];
7052 frag_now->tc_frag_data.slot_subtypes[slot] = tinsn->subtype;
7053 frag_now->tc_frag_data.slot_symbols[slot] = tinsn->symbol;
7054 frag_now->tc_frag_data.slot_offsets[slot] = tinsn->offset;
7055 frag_now->tc_frag_data.literal_frags[slot] = tinsn->literal_frag;
7056 if (tinsn->literal_space != 0)
7057 xg_assemble_literal_space (tinsn->literal_space, slot);
7058 frag_now->tc_frag_data.free_reg[slot] = tinsn->extra_arg;
7059
7060 if (tinsn->subtype == RELAX_NARROW)
7061 assert (vinsn->num_slots == 1);
7062 if (xtensa_opcode_is_jump (isa, tinsn->opcode) == 1)
7063 is_jump = TRUE;
7064 if (xtensa_opcode_is_branch (isa, tinsn->opcode) == 1)
7065 is_branch = TRUE;
7066
7067 if (tinsn->subtype || tinsn->symbol || tinsn->offset
7068 || tinsn->literal_frag || is_jump || is_branch)
7069 finish_frag = TRUE;
7070 }
7071
7072 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
7073 frag_now->tc_frag_data.is_specific_opcode = TRUE;
7074
7075 if (finish_frag)
7076 {
7077 frag_variant (rs_machine_dependent,
7078 extra_space, extra_space, RELAX_SLOTS,
7079 frag_now->fr_symbol, frag_now->fr_offset, f);
7080 xtensa_set_frag_assembly_state (frag_now);
7081 }
7082
7083 /* Special cases for loops:
7084 close_loop_end should be inserted AFTER short_loop.
7085 Make sure that CLOSE loops are processed BEFORE short_loops
7086 when converting them. */
7087
7088 /* "short_loop": Add a NOP if the loop is < 4 bytes. */
7089 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1
7090 && !vinsn->slots[0].is_specific_opcode)
7091 {
7092 if (workaround_short_loop && use_transform ())
7093 {
7094 maybe_has_short_loop = TRUE;
7095 frag_now->tc_frag_data.is_insn = TRUE;
7096 frag_var (rs_machine_dependent, 4, 4,
7097 RELAX_ADD_NOP_IF_SHORT_LOOP,
7098 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7099 frag_now->tc_frag_data.is_insn = TRUE;
7100 frag_var (rs_machine_dependent, 4, 4,
7101 RELAX_ADD_NOP_IF_SHORT_LOOP,
7102 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7103 }
7104
7105 /* "close_loop_end": Add up to 12 bytes of NOPs to keep a
7106 loop at least 12 bytes away from another loop's end. */
7107 if (workaround_close_loop_end && use_transform ())
7108 {
7109 maybe_has_close_loop_end = TRUE;
7110 frag_now->tc_frag_data.is_insn = TRUE;
7111 frag_var (rs_machine_dependent, 12, 12,
7112 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
7113 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7114 }
7115 }
7116
7117 if (use_transform ())
7118 {
7119 if (is_jump)
7120 {
7121 assert (finish_frag);
7122 frag_var (rs_machine_dependent,
7123 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
7124 RELAX_UNREACHABLE,
7125 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7126 xtensa_set_frag_assembly_state (frag_now);
7127 }
7128 else if (is_branch && do_align_targets ())
7129 {
7130 assert (finish_frag);
7131 frag_var (rs_machine_dependent,
7132 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
7133 RELAX_MAYBE_UNREACHABLE,
7134 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7135 xtensa_set_frag_assembly_state (frag_now);
7136 frag_var (rs_machine_dependent,
7137 0, 0,
7138 RELAX_MAYBE_DESIRE_ALIGN,
7139 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7140 xtensa_set_frag_assembly_state (frag_now);
7141 }
7142 }
7143
7144 /* Now, if the original opcode was a call... */
7145 if (do_align_targets ()
7146 && xtensa_opcode_is_call (isa, vinsn->slots[0].opcode) == 1)
7147 {
7148 float freq = get_subseg_total_freq (now_seg, now_subseg);
7149 frag_now->tc_frag_data.is_insn = TRUE;
7150 frag_var (rs_machine_dependent, 4, (int) freq, RELAX_DESIRE_ALIGN,
7151 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7152 xtensa_set_frag_assembly_state (frag_now);
7153 }
7154
7155 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
7156 {
7157 frag_wane (frag_now);
7158 frag_new (0);
7159 xtensa_set_frag_assembly_state (frag_now);
7160 }
7161 }
7162
7163 \f
7164 /* xtensa_end and helper functions. */
7165
7166 static void xtensa_cleanup_align_frags (void);
7167 static void xtensa_fix_target_frags (void);
7168 static void xtensa_mark_narrow_branches (void);
7169 static void xtensa_mark_zcl_first_insns (void);
7170 static void xtensa_mark_difference_of_two_symbols (void);
7171 static void xtensa_fix_a0_b_retw_frags (void);
7172 static void xtensa_fix_b_j_loop_end_frags (void);
7173 static void xtensa_fix_close_loop_end_frags (void);
7174 static void xtensa_fix_short_loop_frags (void);
7175 static void xtensa_sanity_check (void);
7176 static void xtensa_add_config_info (void);
7177
7178 void
7179 xtensa_end (void)
7180 {
7181 directive_balance ();
7182 xtensa_flush_pending_output ();
7183
7184 past_xtensa_end = TRUE;
7185
7186 xtensa_move_literals ();
7187
7188 xtensa_reorder_segments ();
7189 xtensa_cleanup_align_frags ();
7190 xtensa_fix_target_frags ();
7191 if (workaround_a0_b_retw && has_a0_b_retw)
7192 xtensa_fix_a0_b_retw_frags ();
7193 if (workaround_b_j_loop_end)
7194 xtensa_fix_b_j_loop_end_frags ();
7195
7196 /* "close_loop_end" should be processed BEFORE "short_loop". */
7197 if (workaround_close_loop_end && maybe_has_close_loop_end)
7198 xtensa_fix_close_loop_end_frags ();
7199
7200 if (workaround_short_loop && maybe_has_short_loop)
7201 xtensa_fix_short_loop_frags ();
7202 if (align_targets)
7203 xtensa_mark_narrow_branches ();
7204 xtensa_mark_zcl_first_insns ();
7205
7206 xtensa_sanity_check ();
7207
7208 xtensa_add_config_info ();
7209 }
7210
7211
7212 static void
7213 xtensa_cleanup_align_frags (void)
7214 {
7215 frchainS *frchP;
7216 asection *s;
7217
7218 for (s = stdoutput->sections; s; s = s->next)
7219 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7220 {
7221 fragS *fragP;
7222 /* Walk over all of the fragments in a subsection. */
7223 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7224 {
7225 if ((fragP->fr_type == rs_align
7226 || fragP->fr_type == rs_align_code
7227 || (fragP->fr_type == rs_machine_dependent
7228 && (fragP->fr_subtype == RELAX_DESIRE_ALIGN
7229 || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)))
7230 && fragP->fr_fix == 0)
7231 {
7232 fragS *next = fragP->fr_next;
7233
7234 while (next
7235 && next->fr_fix == 0
7236 && next->fr_type == rs_machine_dependent
7237 && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7238 {
7239 frag_wane (next);
7240 next = next->fr_next;
7241 }
7242 }
7243 /* If we don't widen branch targets, then they
7244 will be easier to align. */
7245 if (fragP->tc_frag_data.is_branch_target
7246 && fragP->fr_opcode == fragP->fr_literal
7247 && fragP->fr_type == rs_machine_dependent
7248 && fragP->fr_subtype == RELAX_SLOTS
7249 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
7250 frag_wane (fragP);
7251 if (fragP->fr_type == rs_machine_dependent
7252 && fragP->fr_subtype == RELAX_UNREACHABLE)
7253 fragP->tc_frag_data.is_unreachable = TRUE;
7254 }
7255 }
7256 }
7257
7258
7259 /* Re-process all of the fragments looking to convert all of the
7260 RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch
7261 target in the next fragment, convert this to RELAX_DESIRE_ALIGN.
7262 Otherwise, convert to a .fill 0. */
7263
7264 static void
7265 xtensa_fix_target_frags (void)
7266 {
7267 frchainS *frchP;
7268 asection *s;
7269
7270 /* When this routine is called, all of the subsections are still intact
7271 so we walk over subsections instead of sections. */
7272 for (s = stdoutput->sections; s; s = s->next)
7273 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7274 {
7275 fragS *fragP;
7276
7277 /* Walk over all of the fragments in a subsection. */
7278 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7279 {
7280 if (fragP->fr_type == rs_machine_dependent
7281 && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7282 {
7283 if (next_frag_is_branch_target (fragP))
7284 fragP->fr_subtype = RELAX_DESIRE_ALIGN;
7285 else
7286 frag_wane (fragP);
7287 }
7288 }
7289 }
7290 }
7291
7292
7293 static bfd_boolean is_narrow_branch_guaranteed_in_range (fragS *, TInsn *);
7294
7295 static void
7296 xtensa_mark_narrow_branches (void)
7297 {
7298 frchainS *frchP;
7299 asection *s;
7300
7301 for (s = stdoutput->sections; s; s = s->next)
7302 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7303 {
7304 fragS *fragP;
7305 /* Walk over all of the fragments in a subsection. */
7306 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7307 {
7308 if (fragP->fr_type == rs_machine_dependent
7309 && fragP->fr_subtype == RELAX_SLOTS
7310 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
7311 {
7312 vliw_insn vinsn;
7313
7314 vinsn_from_chars (&vinsn, fragP->fr_opcode);
7315 tinsn_immed_from_frag (&vinsn.slots[0], fragP, 0);
7316
7317 if (vinsn.num_slots == 1
7318 && xtensa_opcode_is_branch (xtensa_default_isa,
7319 vinsn.slots[0].opcode) == 1
7320 && xg_get_single_size (vinsn.slots[0].opcode) == 2
7321 && is_narrow_branch_guaranteed_in_range (fragP,
7322 &vinsn.slots[0]))
7323 {
7324 fragP->fr_subtype = RELAX_SLOTS;
7325 fragP->tc_frag_data.slot_subtypes[0] = RELAX_NARROW;
7326 fragP->tc_frag_data.is_aligning_branch = 1;
7327 }
7328 }
7329 }
7330 }
7331 }
7332
7333
7334 /* A branch is typically widened only when its target is out of
7335 range. However, we would like to widen them to align a subsequent
7336 branch target when possible.
7337
7338 Because the branch relaxation code is so convoluted, the optimal solution
7339 (combining the two cases) is difficult to get right in all circumstances.
7340 We therefore go with an "almost as good" solution, where we only
7341 use for alignment narrow branches that definitely will not expand to a
7342 jump and a branch. These functions find and mark these cases. */
7343
7344 /* The range in bytes of BNEZ.N and BEQZ.N. The target operand is encoded
7345 as PC + 4 + imm6, where imm6 is a 6-bit immediate ranging from 0 to 63.
7346 We start counting beginning with the frag after the 2-byte branch, so the
7347 maximum offset is (4 - 2) + 63 = 65. */
7348 #define MAX_IMMED6 65
7349
7350 static offsetT unrelaxed_frag_max_size (fragS *);
7351
7352 static bfd_boolean
7353 is_narrow_branch_guaranteed_in_range (fragS *fragP, TInsn *tinsn)
7354 {
7355 const expressionS *expr = &tinsn->tok[1];
7356 symbolS *symbolP = expr->X_add_symbol;
7357 offsetT max_distance = expr->X_add_number;
7358 fragS *target_frag;
7359
7360 if (expr->X_op != O_symbol)
7361 return FALSE;
7362
7363 target_frag = symbol_get_frag (symbolP);
7364
7365 max_distance += (S_GET_VALUE (symbolP) - target_frag->fr_address);
7366 if (is_branch_jmp_to_next (tinsn, fragP))
7367 return FALSE;
7368
7369 /* The branch doesn't branch over it's own frag,
7370 but over the subsequent ones. */
7371 fragP = fragP->fr_next;
7372 while (fragP != NULL && fragP != target_frag && max_distance <= MAX_IMMED6)
7373 {
7374 max_distance += unrelaxed_frag_max_size (fragP);
7375 fragP = fragP->fr_next;
7376 }
7377 if (max_distance <= MAX_IMMED6 && fragP == target_frag)
7378 return TRUE;
7379 return FALSE;
7380 }
7381
7382
7383 static void
7384 xtensa_mark_zcl_first_insns (void)
7385 {
7386 frchainS *frchP;
7387 asection *s;
7388
7389 for (s = stdoutput->sections; s; s = s->next)
7390 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7391 {
7392 fragS *fragP;
7393 /* Walk over all of the fragments in a subsection. */
7394 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7395 {
7396 if (fragP->fr_type == rs_machine_dependent
7397 && (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
7398 || fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))
7399 {
7400 /* Find the loop frag. */
7401 fragS *targ_frag = next_non_empty_frag (fragP);
7402 /* Find the first insn frag. */
7403 targ_frag = next_non_empty_frag (targ_frag);
7404
7405 /* Of course, sometimes (mostly for toy test cases) a
7406 zero-cost loop instruction is the last in a section. */
7407 if (targ_frag)
7408 {
7409 targ_frag->tc_frag_data.is_first_loop_insn = TRUE;
7410 /* Do not widen a frag that is the first instruction of a
7411 zero-cost loop. It makes that loop harder to align. */
7412 if (targ_frag->fr_type == rs_machine_dependent
7413 && targ_frag->fr_subtype == RELAX_SLOTS
7414 && (targ_frag->tc_frag_data.slot_subtypes[0]
7415 == RELAX_NARROW))
7416 {
7417 if (targ_frag->tc_frag_data.is_aligning_branch)
7418 targ_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
7419 else
7420 {
7421 frag_wane (targ_frag);
7422 targ_frag->tc_frag_data.slot_subtypes[0] = 0;
7423 }
7424 }
7425 }
7426 if (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)
7427 frag_wane (fragP);
7428 }
7429 }
7430 }
7431 }
7432
7433
7434 /* When a difference-of-symbols expression is encoded as a uleb128 or
7435 sleb128 value, the linker is unable to adjust that value to account for
7436 link-time relaxation. Mark all the code between such symbols so that
7437 its size cannot be changed by linker relaxation. */
7438
7439 static void
7440 xtensa_mark_difference_of_two_symbols (void)
7441 {
7442 symbolS *expr_sym;
7443
7444 for (expr_sym = expr_symbols; expr_sym;
7445 expr_sym = symbol_get_tc (expr_sym)->next_expr_symbol)
7446 {
7447 expressionS *expr = symbol_get_value_expression (expr_sym);
7448
7449 if (expr->X_op == O_subtract)
7450 {
7451 symbolS *left = expr->X_add_symbol;
7452 symbolS *right = expr->X_op_symbol;
7453
7454 /* Difference of two symbols not in the same section
7455 are handled with relocations in the linker. */
7456 if (S_GET_SEGMENT (left) == S_GET_SEGMENT (right))
7457 {
7458 fragS *start;
7459 fragS *end;
7460
7461 if (symbol_get_frag (left)->fr_address
7462 <= symbol_get_frag (right)->fr_address)
7463 {
7464 start = symbol_get_frag (left);
7465 end = symbol_get_frag (right);
7466 }
7467 else
7468 {
7469 start = symbol_get_frag (right);
7470 end = symbol_get_frag (left);
7471 }
7472 do
7473 {
7474 start->tc_frag_data.is_no_transform = 1;
7475 start = start->fr_next;
7476 }
7477 while (start && start->fr_address < end->fr_address);
7478 }
7479 }
7480 }
7481 }
7482
7483
7484 /* Re-process all of the fragments looking to convert all of the
7485 RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a
7486 conditional branch or a retw/retw.n, convert this frag to one that
7487 will generate a NOP. In any case close it off with a .fill 0. */
7488
7489 static bfd_boolean next_instrs_are_b_retw (fragS *);
7490
7491 static void
7492 xtensa_fix_a0_b_retw_frags (void)
7493 {
7494 frchainS *frchP;
7495 asection *s;
7496
7497 /* When this routine is called, all of the subsections are still intact
7498 so we walk over subsections instead of sections. */
7499 for (s = stdoutput->sections; s; s = s->next)
7500 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7501 {
7502 fragS *fragP;
7503
7504 /* Walk over all of the fragments in a subsection. */
7505 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7506 {
7507 if (fragP->fr_type == rs_machine_dependent
7508 && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW)
7509 {
7510 if (next_instrs_are_b_retw (fragP))
7511 {
7512 if (fragP->tc_frag_data.is_no_transform)
7513 as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata"));
7514 else
7515 relax_frag_add_nop (fragP);
7516 }
7517 frag_wane (fragP);
7518 }
7519 }
7520 }
7521 }
7522
7523
7524 static bfd_boolean
7525 next_instrs_are_b_retw (fragS *fragP)
7526 {
7527 xtensa_opcode opcode;
7528 xtensa_format fmt;
7529 const fragS *next_fragP = next_non_empty_frag (fragP);
7530 static xtensa_insnbuf insnbuf = NULL;
7531 static xtensa_insnbuf slotbuf = NULL;
7532 xtensa_isa isa = xtensa_default_isa;
7533 int offset = 0;
7534 int slot;
7535 bfd_boolean branch_seen = FALSE;
7536
7537 if (!insnbuf)
7538 {
7539 insnbuf = xtensa_insnbuf_alloc (isa);
7540 slotbuf = xtensa_insnbuf_alloc (isa);
7541 }
7542
7543 if (next_fragP == NULL)
7544 return FALSE;
7545
7546 /* Check for the conditional branch. */
7547 xtensa_insnbuf_from_chars
7548 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
7549 fmt = xtensa_format_decode (isa, insnbuf);
7550 if (fmt == XTENSA_UNDEFINED)
7551 return FALSE;
7552
7553 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
7554 {
7555 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
7556 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
7557
7558 branch_seen = (branch_seen
7559 || xtensa_opcode_is_branch (isa, opcode) == 1);
7560 }
7561
7562 if (!branch_seen)
7563 return FALSE;
7564
7565 offset += xtensa_format_length (isa, fmt);
7566 if (offset == next_fragP->fr_fix)
7567 {
7568 next_fragP = next_non_empty_frag (next_fragP);
7569 offset = 0;
7570 }
7571
7572 if (next_fragP == NULL)
7573 return FALSE;
7574
7575 /* Check for the retw/retw.n. */
7576 xtensa_insnbuf_from_chars
7577 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
7578 fmt = xtensa_format_decode (isa, insnbuf);
7579
7580 /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we
7581 have no problems. */
7582 if (fmt == XTENSA_UNDEFINED
7583 || xtensa_format_num_slots (isa, fmt) != 1)
7584 return FALSE;
7585
7586 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7587 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7588
7589 if (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode)
7590 return TRUE;
7591
7592 return FALSE;
7593 }
7594
7595
7596 /* Re-process all of the fragments looking to convert all of the
7597 RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a
7598 loop end label, convert this frag to one that will generate a NOP.
7599 In any case close it off with a .fill 0. */
7600
7601 static bfd_boolean next_instr_is_loop_end (fragS *);
7602
7603 static void
7604 xtensa_fix_b_j_loop_end_frags (void)
7605 {
7606 frchainS *frchP;
7607 asection *s;
7608
7609 /* When this routine is called, all of the subsections are still intact
7610 so we walk over subsections instead of sections. */
7611 for (s = stdoutput->sections; s; s = s->next)
7612 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7613 {
7614 fragS *fragP;
7615
7616 /* Walk over all of the fragments in a subsection. */
7617 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7618 {
7619 if (fragP->fr_type == rs_machine_dependent
7620 && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END)
7621 {
7622 if (next_instr_is_loop_end (fragP))
7623 {
7624 if (fragP->tc_frag_data.is_no_transform)
7625 as_bad (_("branching or jumping to a loop end may trigger hardware errata"));
7626 else
7627 relax_frag_add_nop (fragP);
7628 }
7629 frag_wane (fragP);
7630 }
7631 }
7632 }
7633 }
7634
7635
7636 static bfd_boolean
7637 next_instr_is_loop_end (fragS *fragP)
7638 {
7639 const fragS *next_fragP;
7640
7641 if (next_frag_is_loop_target (fragP))
7642 return FALSE;
7643
7644 next_fragP = next_non_empty_frag (fragP);
7645 if (next_fragP == NULL)
7646 return FALSE;
7647
7648 if (!next_frag_is_loop_target (next_fragP))
7649 return FALSE;
7650
7651 /* If the size is >= 3 then there is more than one instruction here.
7652 The hardware bug will not fire. */
7653 if (next_fragP->fr_fix > 3)
7654 return FALSE;
7655
7656 return TRUE;
7657 }
7658
7659
7660 /* Re-process all of the fragments looking to convert all of the
7661 RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is
7662 not MY loop's loop end within 12 bytes, add enough nops here to
7663 make it at least 12 bytes away. In any case close it off with a
7664 .fill 0. */
7665
7666 static offsetT min_bytes_to_other_loop_end
7667 (fragS *, fragS *, offsetT);
7668
7669 static void
7670 xtensa_fix_close_loop_end_frags (void)
7671 {
7672 frchainS *frchP;
7673 asection *s;
7674
7675 /* When this routine is called, all of the subsections are still intact
7676 so we walk over subsections instead of sections. */
7677 for (s = stdoutput->sections; s; s = s->next)
7678 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7679 {
7680 fragS *fragP;
7681
7682 fragS *current_target = NULL;
7683
7684 /* Walk over all of the fragments in a subsection. */
7685 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7686 {
7687 if (fragP->fr_type == rs_machine_dependent
7688 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
7689 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
7690 current_target = symbol_get_frag (fragP->fr_symbol);
7691
7692 if (current_target
7693 && fragP->fr_type == rs_machine_dependent
7694 && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END)
7695 {
7696 offsetT min_bytes;
7697 int bytes_added = 0;
7698
7699 #define REQUIRED_LOOP_DIVIDING_BYTES 12
7700 /* Max out at 12. */
7701 min_bytes = min_bytes_to_other_loop_end
7702 (fragP->fr_next, current_target, REQUIRED_LOOP_DIVIDING_BYTES);
7703
7704 if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES)
7705 {
7706 if (fragP->tc_frag_data.is_no_transform)
7707 as_bad (_("loop end too close to another loop end may trigger hardware errata"));
7708 else
7709 {
7710 while (min_bytes + bytes_added
7711 < REQUIRED_LOOP_DIVIDING_BYTES)
7712 {
7713 int length = 3;
7714
7715 if (fragP->fr_var < length)
7716 as_fatal (_("fr_var %lu < length %d"),
7717 (long) fragP->fr_var, length);
7718 else
7719 {
7720 assemble_nop (length,
7721 fragP->fr_literal + fragP->fr_fix);
7722 fragP->fr_fix += length;
7723 fragP->fr_var -= length;
7724 }
7725 bytes_added += length;
7726 }
7727 }
7728 }
7729 frag_wane (fragP);
7730 }
7731 assert (fragP->fr_type != rs_machine_dependent
7732 || fragP->fr_subtype != RELAX_ADD_NOP_IF_CLOSE_LOOP_END);
7733 }
7734 }
7735 }
7736
7737
7738 static offsetT unrelaxed_frag_min_size (fragS *);
7739
7740 static offsetT
7741 min_bytes_to_other_loop_end (fragS *fragP,
7742 fragS *current_target,
7743 offsetT max_size)
7744 {
7745 offsetT offset = 0;
7746 fragS *current_fragP;
7747
7748 for (current_fragP = fragP;
7749 current_fragP;
7750 current_fragP = current_fragP->fr_next)
7751 {
7752 if (current_fragP->tc_frag_data.is_loop_target
7753 && current_fragP != current_target)
7754 return offset;
7755
7756 offset += unrelaxed_frag_min_size (current_fragP);
7757
7758 if (offset >= max_size)
7759 return max_size;
7760 }
7761 return max_size;
7762 }
7763
7764
7765 static offsetT
7766 unrelaxed_frag_min_size (fragS *fragP)
7767 {
7768 offsetT size = fragP->fr_fix;
7769
7770 /* Add fill size. */
7771 if (fragP->fr_type == rs_fill)
7772 size += fragP->fr_offset;
7773
7774 return size;
7775 }
7776
7777
7778 static offsetT
7779 unrelaxed_frag_max_size (fragS *fragP)
7780 {
7781 offsetT size = fragP->fr_fix;
7782 switch (fragP->fr_type)
7783 {
7784 case 0:
7785 /* Empty frags created by the obstack allocation scheme
7786 end up with type 0. */
7787 break;
7788 case rs_fill:
7789 case rs_org:
7790 case rs_space:
7791 size += fragP->fr_offset;
7792 break;
7793 case rs_align:
7794 case rs_align_code:
7795 case rs_align_test:
7796 case rs_leb128:
7797 case rs_cfa:
7798 case rs_dwarf2dbg:
7799 /* No further adjustments needed. */
7800 break;
7801 case rs_machine_dependent:
7802 if (fragP->fr_subtype != RELAX_DESIRE_ALIGN)
7803 size += fragP->fr_var;
7804 break;
7805 default:
7806 /* We had darn well better know how big it is. */
7807 assert (0);
7808 break;
7809 }
7810
7811 return size;
7812 }
7813
7814
7815 /* Re-process all of the fragments looking to convert all
7816 of the RELAX_ADD_NOP_IF_SHORT_LOOP. If:
7817
7818 A)
7819 1) the instruction size count to the loop end label
7820 is too short (<= 2 instructions),
7821 2) loop has a jump or branch in it
7822
7823 or B)
7824 1) workaround_all_short_loops is TRUE
7825 2) The generating loop was a 'loopgtz' or 'loopnez'
7826 3) the instruction size count to the loop end label is too short
7827 (<= 2 instructions)
7828 then convert this frag (and maybe the next one) to generate a NOP.
7829 In any case close it off with a .fill 0. */
7830
7831 static int count_insns_to_loop_end (fragS *, bfd_boolean, int);
7832 static bfd_boolean branch_before_loop_end (fragS *);
7833
7834 static void
7835 xtensa_fix_short_loop_frags (void)
7836 {
7837 frchainS *frchP;
7838 asection *s;
7839
7840 /* When this routine is called, all of the subsections are still intact
7841 so we walk over subsections instead of sections. */
7842 for (s = stdoutput->sections; s; s = s->next)
7843 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7844 {
7845 fragS *fragP;
7846 fragS *current_target = NULL;
7847 xtensa_opcode current_opcode = XTENSA_UNDEFINED;
7848
7849 /* Walk over all of the fragments in a subsection. */
7850 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7851 {
7852 if (fragP->fr_type == rs_machine_dependent
7853 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
7854 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
7855 {
7856 TInsn t_insn;
7857 fragS *loop_frag = next_non_empty_frag (fragP);
7858 tinsn_from_chars (&t_insn, loop_frag->fr_opcode, 0);
7859 current_target = symbol_get_frag (fragP->fr_symbol);
7860 current_opcode = t_insn.opcode;
7861 assert (xtensa_opcode_is_loop (xtensa_default_isa,
7862 current_opcode) == 1);
7863 }
7864
7865 if (fragP->fr_type == rs_machine_dependent
7866 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7867 {
7868 if (count_insns_to_loop_end (fragP->fr_next, TRUE, 3) < 3
7869 && (branch_before_loop_end (fragP->fr_next)
7870 || (workaround_all_short_loops
7871 && current_opcode != XTENSA_UNDEFINED
7872 && current_opcode != xtensa_loop_opcode)))
7873 {
7874 if (fragP->tc_frag_data.is_no_transform)
7875 as_bad (_("loop containing less than three instructions may trigger hardware errata"));
7876 else
7877 relax_frag_add_nop (fragP);
7878 }
7879 frag_wane (fragP);
7880 }
7881 }
7882 }
7883 }
7884
7885
7886 static int unrelaxed_frag_min_insn_count (fragS *);
7887
7888 static int
7889 count_insns_to_loop_end (fragS *base_fragP,
7890 bfd_boolean count_relax_add,
7891 int max_count)
7892 {
7893 fragS *fragP = NULL;
7894 int insn_count = 0;
7895
7896 fragP = base_fragP;
7897
7898 for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next)
7899 {
7900 insn_count += unrelaxed_frag_min_insn_count (fragP);
7901 if (insn_count >= max_count)
7902 return max_count;
7903
7904 if (count_relax_add)
7905 {
7906 if (fragP->fr_type == rs_machine_dependent
7907 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7908 {
7909 /* In order to add the appropriate number of
7910 NOPs, we count an instruction for downstream
7911 occurrences. */
7912 insn_count++;
7913 if (insn_count >= max_count)
7914 return max_count;
7915 }
7916 }
7917 }
7918 return insn_count;
7919 }
7920
7921
7922 static int
7923 unrelaxed_frag_min_insn_count (fragS *fragP)
7924 {
7925 xtensa_isa isa = xtensa_default_isa;
7926 static xtensa_insnbuf insnbuf = NULL;
7927 int insn_count = 0;
7928 int offset = 0;
7929
7930 if (!fragP->tc_frag_data.is_insn)
7931 return insn_count;
7932
7933 if (!insnbuf)
7934 insnbuf = xtensa_insnbuf_alloc (isa);
7935
7936 /* Decode the fixed instructions. */
7937 while (offset < fragP->fr_fix)
7938 {
7939 xtensa_format fmt;
7940
7941 xtensa_insnbuf_from_chars
7942 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
7943 fmt = xtensa_format_decode (isa, insnbuf);
7944
7945 if (fmt == XTENSA_UNDEFINED)
7946 {
7947 as_fatal (_("undecodable instruction in instruction frag"));
7948 return insn_count;
7949 }
7950 offset += xtensa_format_length (isa, fmt);
7951 insn_count++;
7952 }
7953
7954 return insn_count;
7955 }
7956
7957
7958 static bfd_boolean unrelaxed_frag_has_b_j (fragS *);
7959
7960 static bfd_boolean
7961 branch_before_loop_end (fragS *base_fragP)
7962 {
7963 fragS *fragP;
7964
7965 for (fragP = base_fragP;
7966 fragP && !fragP->tc_frag_data.is_loop_target;
7967 fragP = fragP->fr_next)
7968 {
7969 if (unrelaxed_frag_has_b_j (fragP))
7970 return TRUE;
7971 }
7972 return FALSE;
7973 }
7974
7975
7976 static bfd_boolean
7977 unrelaxed_frag_has_b_j (fragS *fragP)
7978 {
7979 static xtensa_insnbuf insnbuf = NULL;
7980 xtensa_isa isa = xtensa_default_isa;
7981 int offset = 0;
7982
7983 if (!fragP->tc_frag_data.is_insn)
7984 return FALSE;
7985
7986 if (!insnbuf)
7987 insnbuf = xtensa_insnbuf_alloc (isa);
7988
7989 /* Decode the fixed instructions. */
7990 while (offset < fragP->fr_fix)
7991 {
7992 xtensa_format fmt;
7993 int slot;
7994
7995 xtensa_insnbuf_from_chars
7996 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
7997 fmt = xtensa_format_decode (isa, insnbuf);
7998 if (fmt == XTENSA_UNDEFINED)
7999 return FALSE;
8000
8001 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
8002 {
8003 xtensa_opcode opcode =
8004 get_opcode_from_buf (fragP->fr_literal + offset, slot);
8005 if (xtensa_opcode_is_branch (isa, opcode) == 1
8006 || xtensa_opcode_is_jump (isa, opcode) == 1)
8007 return TRUE;
8008 }
8009 offset += xtensa_format_length (isa, fmt);
8010 }
8011 return FALSE;
8012 }
8013
8014
8015 /* Checks to be made after initial assembly but before relaxation. */
8016
8017 static bfd_boolean is_empty_loop (const TInsn *, fragS *);
8018 static bfd_boolean is_local_forward_loop (const TInsn *, fragS *);
8019
8020 static void
8021 xtensa_sanity_check (void)
8022 {
8023 char *file_name;
8024 unsigned line;
8025 frchainS *frchP;
8026 asection *s;
8027
8028 as_where (&file_name, &line);
8029 for (s = stdoutput->sections; s; s = s->next)
8030 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8031 {
8032 fragS *fragP;
8033
8034 /* Walk over all of the fragments in a subsection. */
8035 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8036 {
8037 if (fragP->fr_type == rs_machine_dependent
8038 && fragP->fr_subtype == RELAX_SLOTS
8039 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
8040 {
8041 static xtensa_insnbuf insnbuf = NULL;
8042 TInsn t_insn;
8043
8044 if (fragP->fr_opcode != NULL)
8045 {
8046 if (!insnbuf)
8047 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
8048 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
8049 tinsn_immed_from_frag (&t_insn, fragP, 0);
8050
8051 if (xtensa_opcode_is_loop (xtensa_default_isa,
8052 t_insn.opcode) == 1)
8053 {
8054 if (is_empty_loop (&t_insn, fragP))
8055 {
8056 new_logical_line (fragP->fr_file, fragP->fr_line);
8057 as_bad (_("invalid empty loop"));
8058 }
8059 if (!is_local_forward_loop (&t_insn, fragP))
8060 {
8061 new_logical_line (fragP->fr_file, fragP->fr_line);
8062 as_bad (_("loop target does not follow "
8063 "loop instruction in section"));
8064 }
8065 }
8066 }
8067 }
8068 }
8069 }
8070 new_logical_line (file_name, line);
8071 }
8072
8073
8074 #define LOOP_IMMED_OPN 1
8075
8076 /* Return TRUE if the loop target is the next non-zero fragment. */
8077
8078 static bfd_boolean
8079 is_empty_loop (const TInsn *insn, fragS *fragP)
8080 {
8081 const expressionS *expr;
8082 symbolS *symbolP;
8083 fragS *next_fragP;
8084
8085 if (insn->insn_type != ITYPE_INSN)
8086 return FALSE;
8087
8088 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
8089 return FALSE;
8090
8091 if (insn->ntok <= LOOP_IMMED_OPN)
8092 return FALSE;
8093
8094 expr = &insn->tok[LOOP_IMMED_OPN];
8095
8096 if (expr->X_op != O_symbol)
8097 return FALSE;
8098
8099 symbolP = expr->X_add_symbol;
8100 if (!symbolP)
8101 return FALSE;
8102
8103 if (symbol_get_frag (symbolP) == NULL)
8104 return FALSE;
8105
8106 if (S_GET_VALUE (symbolP) != 0)
8107 return FALSE;
8108
8109 /* Walk through the zero-size fragments from this one. If we find
8110 the target fragment, then this is a zero-size loop. */
8111
8112 for (next_fragP = fragP->fr_next;
8113 next_fragP != NULL;
8114 next_fragP = next_fragP->fr_next)
8115 {
8116 if (next_fragP == symbol_get_frag (symbolP))
8117 return TRUE;
8118 if (next_fragP->fr_fix != 0)
8119 return FALSE;
8120 }
8121 return FALSE;
8122 }
8123
8124
8125 static bfd_boolean
8126 is_local_forward_loop (const TInsn *insn, fragS *fragP)
8127 {
8128 const expressionS *expr;
8129 symbolS *symbolP;
8130 fragS *next_fragP;
8131
8132 if (insn->insn_type != ITYPE_INSN)
8133 return FALSE;
8134
8135 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
8136 return FALSE;
8137
8138 if (insn->ntok <= LOOP_IMMED_OPN)
8139 return FALSE;
8140
8141 expr = &insn->tok[LOOP_IMMED_OPN];
8142
8143 if (expr->X_op != O_symbol)
8144 return FALSE;
8145
8146 symbolP = expr->X_add_symbol;
8147 if (!symbolP)
8148 return FALSE;
8149
8150 if (symbol_get_frag (symbolP) == NULL)
8151 return FALSE;
8152
8153 /* Walk through fragments until we find the target.
8154 If we do not find the target, then this is an invalid loop. */
8155
8156 for (next_fragP = fragP->fr_next;
8157 next_fragP != NULL;
8158 next_fragP = next_fragP->fr_next)
8159 {
8160 if (next_fragP == symbol_get_frag (symbolP))
8161 return TRUE;
8162 }
8163
8164 return FALSE;
8165 }
8166
8167
8168 #define XTINFO_NAME "Xtensa_Info"
8169 #define XTINFO_NAMESZ 12
8170 #define XTINFO_TYPE 1
8171
8172 static void
8173 xtensa_add_config_info (void)
8174 {
8175 asection *info_sec;
8176 char *data, *p;
8177 int sz;
8178
8179 info_sec = subseg_new (".xtensa.info", 0);
8180 bfd_set_section_flags (stdoutput, info_sec, SEC_HAS_CONTENTS | SEC_READONLY);
8181
8182 data = xmalloc (100);
8183 sprintf (data, "USE_ABSOLUTE_LITERALS=%d\nABI=%d\n",
8184 XSHAL_USE_ABSOLUTE_LITERALS, XSHAL_ABI);
8185 sz = strlen (data) + 1;
8186
8187 /* Add enough null terminators to pad to a word boundary. */
8188 do
8189 data[sz++] = 0;
8190 while ((sz & 3) != 0);
8191
8192 /* Follow the standard note section layout:
8193 First write the length of the name string. */
8194 p = frag_more (4);
8195 md_number_to_chars (p, (valueT) XTINFO_NAMESZ, 4);
8196
8197 /* Next comes the length of the "descriptor", i.e., the actual data. */
8198 p = frag_more (4);
8199 md_number_to_chars (p, (valueT) sz, 4);
8200
8201 /* Write the note type. */
8202 p = frag_more (4);
8203 md_number_to_chars (p, (valueT) XTINFO_TYPE, 4);
8204
8205 /* Write the name field. */
8206 p = frag_more (XTINFO_NAMESZ);
8207 memcpy (p, XTINFO_NAME, XTINFO_NAMESZ);
8208
8209 /* Finally, write the descriptor. */
8210 p = frag_more (sz);
8211 memcpy (p, data, sz);
8212
8213 free (data);
8214 }
8215
8216 \f
8217 /* Alignment Functions. */
8218
8219 static int
8220 get_text_align_power (unsigned target_size)
8221 {
8222 if (target_size <= 4)
8223 return 2;
8224 assert (target_size == 8);
8225 return 3;
8226 }
8227
8228
8229 static int
8230 get_text_align_max_fill_size (int align_pow,
8231 bfd_boolean use_nops,
8232 bfd_boolean use_no_density)
8233 {
8234 if (!use_nops)
8235 return (1 << align_pow);
8236 if (use_no_density)
8237 return 3 * (1 << align_pow);
8238
8239 return 1 + (1 << align_pow);
8240 }
8241
8242
8243 /* Calculate the minimum bytes of fill needed at "address" to align a
8244 target instruction of size "target_size" so that it does not cross a
8245 power-of-two boundary specified by "align_pow". If "use_nops" is FALSE,
8246 the fill can be an arbitrary number of bytes. Otherwise, the space must
8247 be filled by NOP instructions. */
8248
8249 static int
8250 get_text_align_fill_size (addressT address,
8251 int align_pow,
8252 int target_size,
8253 bfd_boolean use_nops,
8254 bfd_boolean use_no_density)
8255 {
8256 addressT alignment, fill, fill_limit, fill_step;
8257 bfd_boolean skip_one = FALSE;
8258
8259 alignment = (1 << align_pow);
8260 assert (target_size > 0 && alignment >= (addressT) target_size);
8261
8262 if (!use_nops)
8263 {
8264 fill_limit = alignment;
8265 fill_step = 1;
8266 }
8267 else if (!use_no_density)
8268 {
8269 /* Combine 2- and 3-byte NOPs to fill anything larger than one. */
8270 fill_limit = alignment * 2;
8271 fill_step = 1;
8272 skip_one = TRUE;
8273 }
8274 else
8275 {
8276 /* Fill with 3-byte NOPs -- can only fill multiples of 3. */
8277 fill_limit = alignment * 3;
8278 fill_step = 3;
8279 }
8280
8281 /* Try all fill sizes until finding one that works. */
8282 for (fill = 0; fill < fill_limit; fill += fill_step)
8283 {
8284 if (skip_one && fill == 1)
8285 continue;
8286 if ((address + fill) >> align_pow
8287 == (address + fill + target_size - 1) >> align_pow)
8288 return fill;
8289 }
8290 assert (0);
8291 return 0;
8292 }
8293
8294
8295 static int
8296 branch_align_power (segT sec)
8297 {
8298 /* If the Xtensa processor has a fetch width of 8 bytes, and the section
8299 is aligned to at least an 8-byte boundary, then a branch target need
8300 only fit within an 8-byte aligned block of memory to avoid a stall.
8301 Otherwise, try to fit branch targets within 4-byte aligned blocks
8302 (which may be insufficient, e.g., if the section has no alignment, but
8303 it's good enough). */
8304 if (xtensa_fetch_width == 8)
8305 {
8306 if (get_recorded_alignment (sec) >= 3)
8307 return 3;
8308 }
8309 else
8310 assert (xtensa_fetch_width == 4);
8311
8312 return 2;
8313 }
8314
8315
8316 /* This will assert if it is not possible. */
8317
8318 static int
8319 get_text_align_nop_count (offsetT fill_size, bfd_boolean use_no_density)
8320 {
8321 int count = 0;
8322
8323 if (use_no_density)
8324 {
8325 assert (fill_size % 3 == 0);
8326 return (fill_size / 3);
8327 }
8328
8329 assert (fill_size != 1); /* Bad argument. */
8330
8331 while (fill_size > 1)
8332 {
8333 int insn_size = 3;
8334 if (fill_size == 2 || fill_size == 4)
8335 insn_size = 2;
8336 fill_size -= insn_size;
8337 count++;
8338 }
8339 assert (fill_size != 1); /* Bad algorithm. */
8340 return count;
8341 }
8342
8343
8344 static int
8345 get_text_align_nth_nop_size (offsetT fill_size,
8346 int n,
8347 bfd_boolean use_no_density)
8348 {
8349 int count = 0;
8350
8351 if (use_no_density)
8352 return 3;
8353
8354 assert (fill_size != 1); /* Bad argument. */
8355
8356 while (fill_size > 1)
8357 {
8358 int insn_size = 3;
8359 if (fill_size == 2 || fill_size == 4)
8360 insn_size = 2;
8361 fill_size -= insn_size;
8362 count++;
8363 if (n + 1 == count)
8364 return insn_size;
8365 }
8366 assert (0);
8367 return 0;
8368 }
8369
8370
8371 /* For the given fragment, find the appropriate address
8372 for it to begin at if we are using NOPs to align it. */
8373
8374 static addressT
8375 get_noop_aligned_address (fragS *fragP, addressT address)
8376 {
8377 /* The rule is: get next fragment's FIRST instruction. Find
8378 the smallest number of bytes that need to be added to
8379 ensure that the next fragment's FIRST instruction will fit
8380 in a single word.
8381
8382 E.G., 2 bytes : 0, 1, 2 mod 4
8383 3 bytes: 0, 1 mod 4
8384
8385 If the FIRST instruction MIGHT be relaxed,
8386 assume that it will become a 3-byte instruction.
8387
8388 Note again here that LOOP instructions are not bundleable,
8389 and this relaxation only applies to LOOP opcodes. */
8390
8391 int fill_size = 0;
8392 int first_insn_size;
8393 int loop_insn_size;
8394 addressT pre_opcode_bytes;
8395 int align_power;
8396 fragS *first_insn;
8397 xtensa_opcode opcode;
8398 bfd_boolean is_loop;
8399
8400 assert (fragP->fr_type == rs_machine_dependent);
8401 assert (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE);
8402
8403 /* Find the loop frag. */
8404 first_insn = next_non_empty_frag (fragP);
8405 /* Now find the first insn frag. */
8406 first_insn = next_non_empty_frag (first_insn);
8407
8408 is_loop = next_frag_opcode_is_loop (fragP, &opcode);
8409 assert (is_loop);
8410 loop_insn_size = xg_get_single_size (opcode);
8411
8412 pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP);
8413 pre_opcode_bytes += loop_insn_size;
8414
8415 /* For loops, the alignment depends on the size of the
8416 instruction following the loop, not the LOOP instruction. */
8417
8418 if (first_insn == NULL)
8419 first_insn_size = xtensa_fetch_width;
8420 else
8421 first_insn_size = get_loop_align_size (frag_format_size (first_insn));
8422
8423 /* If it was 8, then we'll need a larger alignment for the section. */
8424 align_power = get_text_align_power (first_insn_size);
8425 record_alignment (now_seg, align_power);
8426
8427 fill_size = get_text_align_fill_size
8428 (address + pre_opcode_bytes, align_power, first_insn_size, TRUE,
8429 fragP->tc_frag_data.is_no_density);
8430
8431 return address + fill_size;
8432 }
8433
8434
8435 /* 3 mechanisms for relaxing an alignment:
8436
8437 Align to a power of 2.
8438 Align so the next fragment's instruction does not cross a word boundary.
8439 Align the current instruction so that if the next instruction
8440 were 3 bytes, it would not cross a word boundary.
8441
8442 We can align with:
8443
8444 zeros - This is easy; always insert zeros.
8445 nops - 3-byte and 2-byte instructions
8446 2 - 2-byte nop
8447 3 - 3-byte nop
8448 4 - 2 2-byte nops
8449 >=5 : 3-byte instruction + fn (n-3)
8450 widening - widen previous instructions. */
8451
8452 static offsetT
8453 get_aligned_diff (fragS *fragP, addressT address, offsetT *max_diff)
8454 {
8455 addressT target_address, loop_insn_offset;
8456 int target_size;
8457 xtensa_opcode loop_opcode;
8458 bfd_boolean is_loop;
8459 int align_power;
8460 offsetT opt_diff;
8461 offsetT branch_align;
8462 fragS *loop_frag;
8463
8464 assert (fragP->fr_type == rs_machine_dependent);
8465 switch (fragP->fr_subtype)
8466 {
8467 case RELAX_DESIRE_ALIGN:
8468 target_size = next_frag_format_size (fragP);
8469 if (target_size == XTENSA_UNDEFINED)
8470 target_size = 3;
8471 align_power = branch_align_power (now_seg);
8472 branch_align = 1 << align_power;
8473 /* Don't count on the section alignment being as large as the target. */
8474 if (target_size > branch_align)
8475 target_size = branch_align;
8476 opt_diff = get_text_align_fill_size (address, align_power,
8477 target_size, FALSE, FALSE);
8478
8479 *max_diff = (opt_diff + branch_align
8480 - (target_size + ((address + opt_diff) % branch_align)));
8481 assert (*max_diff >= opt_diff);
8482 return opt_diff;
8483
8484 case RELAX_ALIGN_NEXT_OPCODE:
8485 /* The next non-empty frag after this one holds the LOOP instruction
8486 that needs to be aligned. The required alignment depends on the
8487 size of the next non-empty frag after the loop frag, i.e., the
8488 first instruction in the loop. */
8489 loop_frag = next_non_empty_frag (fragP);
8490 target_size = get_loop_align_size (next_frag_format_size (loop_frag));
8491 loop_insn_offset = 0;
8492 is_loop = next_frag_opcode_is_loop (fragP, &loop_opcode);
8493 assert (is_loop);
8494
8495 /* If the loop has been expanded then the LOOP instruction
8496 could be at an offset from this fragment. */
8497 if (loop_frag->tc_frag_data.slot_subtypes[0] != RELAX_IMMED)
8498 loop_insn_offset = get_expanded_loop_offset (loop_opcode);
8499
8500 /* In an ideal world, which is what we are shooting for here,
8501 we wouldn't need to use any NOPs immediately prior to the
8502 LOOP instruction. If this approach fails, relax_frag_loop_align
8503 will call get_noop_aligned_address. */
8504 target_address =
8505 address + loop_insn_offset + xg_get_single_size (loop_opcode);
8506 align_power = get_text_align_power (target_size);
8507 opt_diff = get_text_align_fill_size (target_address, align_power,
8508 target_size, FALSE, FALSE);
8509
8510 *max_diff = xtensa_fetch_width
8511 - ((target_address + opt_diff) % xtensa_fetch_width)
8512 - target_size + opt_diff;
8513 assert (*max_diff >= opt_diff);
8514 return opt_diff;
8515
8516 default:
8517 break;
8518 }
8519 assert (0);
8520 return 0;
8521 }
8522
8523 \f
8524 /* md_relax_frag Hook and Helper Functions. */
8525
8526 static long relax_frag_loop_align (fragS *, long);
8527 static long relax_frag_for_align (fragS *, long);
8528 static long relax_frag_immed
8529 (segT, fragS *, long, int, xtensa_format, int, int *, bfd_boolean);
8530
8531
8532 /* Return the number of bytes added to this fragment, given that the
8533 input has been stretched already by "stretch". */
8534
8535 long
8536 xtensa_relax_frag (fragS *fragP, long stretch, int *stretched_p)
8537 {
8538 xtensa_isa isa = xtensa_default_isa;
8539 int unreported = fragP->tc_frag_data.unreported_expansion;
8540 long new_stretch = 0;
8541 char *file_name;
8542 unsigned line;
8543 int lit_size;
8544 static xtensa_insnbuf vbuf = NULL;
8545 int slot, num_slots;
8546 xtensa_format fmt;
8547
8548 as_where (&file_name, &line);
8549 new_logical_line (fragP->fr_file, fragP->fr_line);
8550
8551 fragP->tc_frag_data.unreported_expansion = 0;
8552
8553 switch (fragP->fr_subtype)
8554 {
8555 case RELAX_ALIGN_NEXT_OPCODE:
8556 /* Always convert. */
8557 if (fragP->tc_frag_data.relax_seen)
8558 new_stretch = relax_frag_loop_align (fragP, stretch);
8559 break;
8560
8561 case RELAX_LOOP_END:
8562 /* Do nothing. */
8563 break;
8564
8565 case RELAX_LOOP_END_ADD_NOP:
8566 /* Add a NOP and switch to .fill 0. */
8567 new_stretch = relax_frag_add_nop (fragP);
8568 frag_wane (fragP);
8569 break;
8570
8571 case RELAX_DESIRE_ALIGN:
8572 /* Do nothing. The narrowing before this frag will either align
8573 it or not. */
8574 break;
8575
8576 case RELAX_LITERAL:
8577 case RELAX_LITERAL_FINAL:
8578 return 0;
8579
8580 case RELAX_LITERAL_NR:
8581 lit_size = 4;
8582 fragP->fr_subtype = RELAX_LITERAL_FINAL;
8583 assert (unreported == lit_size);
8584 memset (&fragP->fr_literal[fragP->fr_fix], 0, 4);
8585 fragP->fr_var -= lit_size;
8586 fragP->fr_fix += lit_size;
8587 new_stretch = 4;
8588 break;
8589
8590 case RELAX_SLOTS:
8591 if (vbuf == NULL)
8592 vbuf = xtensa_insnbuf_alloc (isa);
8593
8594 xtensa_insnbuf_from_chars
8595 (isa, vbuf, (unsigned char *) fragP->fr_opcode, 0);
8596 fmt = xtensa_format_decode (isa, vbuf);
8597 num_slots = xtensa_format_num_slots (isa, fmt);
8598
8599 for (slot = 0; slot < num_slots; slot++)
8600 {
8601 switch (fragP->tc_frag_data.slot_subtypes[slot])
8602 {
8603 case RELAX_NARROW:
8604 if (fragP->tc_frag_data.relax_seen)
8605 new_stretch += relax_frag_for_align (fragP, stretch);
8606 break;
8607
8608 case RELAX_IMMED:
8609 case RELAX_IMMED_STEP1:
8610 case RELAX_IMMED_STEP2:
8611 case RELAX_IMMED_STEP3:
8612 /* Place the immediate. */
8613 new_stretch += relax_frag_immed
8614 (now_seg, fragP, stretch,
8615 fragP->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
8616 fmt, slot, stretched_p, FALSE);
8617 break;
8618
8619 default:
8620 /* This is OK; see the note in xg_assemble_vliw_tokens. */
8621 break;
8622 }
8623 }
8624 break;
8625
8626 case RELAX_LITERAL_POOL_BEGIN:
8627 case RELAX_LITERAL_POOL_END:
8628 case RELAX_MAYBE_UNREACHABLE:
8629 case RELAX_MAYBE_DESIRE_ALIGN:
8630 /* No relaxation required. */
8631 break;
8632
8633 case RELAX_FILL_NOP:
8634 case RELAX_UNREACHABLE:
8635 if (fragP->tc_frag_data.relax_seen)
8636 new_stretch += relax_frag_for_align (fragP, stretch);
8637 break;
8638
8639 default:
8640 as_bad (_("bad relaxation state"));
8641 }
8642
8643 /* Tell gas we need another relaxation pass. */
8644 if (! fragP->tc_frag_data.relax_seen)
8645 {
8646 fragP->tc_frag_data.relax_seen = TRUE;
8647 *stretched_p = 1;
8648 }
8649
8650 new_logical_line (file_name, line);
8651 return new_stretch;
8652 }
8653
8654
8655 static long
8656 relax_frag_loop_align (fragS *fragP, long stretch)
8657 {
8658 addressT old_address, old_next_address, old_size;
8659 addressT new_address, new_next_address, new_size;
8660 addressT growth;
8661
8662 /* All the frags with relax_frag_for_alignment prior to this one in the
8663 section have been done, hopefully eliminating the need for a NOP here.
8664 But, this will put it in if necessary. */
8665
8666 /* Calculate the old address of this fragment and the next fragment. */
8667 old_address = fragP->fr_address - stretch;
8668 old_next_address = (fragP->fr_address - stretch + fragP->fr_fix +
8669 fragP->tc_frag_data.text_expansion[0]);
8670 old_size = old_next_address - old_address;
8671
8672 /* Calculate the new address of this fragment and the next fragment. */
8673 new_address = fragP->fr_address;
8674 new_next_address =
8675 get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix);
8676 new_size = new_next_address - new_address;
8677
8678 growth = new_size - old_size;
8679
8680 /* Fix up the text_expansion field and return the new growth. */
8681 fragP->tc_frag_data.text_expansion[0] += growth;
8682 return growth;
8683 }
8684
8685
8686 /* Add a NOP instruction. */
8687
8688 static long
8689 relax_frag_add_nop (fragS *fragP)
8690 {
8691 char *nop_buf = fragP->fr_literal + fragP->fr_fix;
8692 int length = fragP->tc_frag_data.is_no_density ? 3 : 2;
8693 assemble_nop (length, nop_buf);
8694 fragP->tc_frag_data.is_insn = TRUE;
8695
8696 if (fragP->fr_var < length)
8697 {
8698 as_fatal (_("fr_var (%ld) < length (%d)"), (long) fragP->fr_var, length);
8699 return 0;
8700 }
8701
8702 fragP->fr_fix += length;
8703 fragP->fr_var -= length;
8704 return length;
8705 }
8706
8707
8708 static long future_alignment_required (fragS *, long);
8709
8710 static long
8711 relax_frag_for_align (fragS *fragP, long stretch)
8712 {
8713 /* Overview of the relaxation procedure for alignment:
8714 We can widen with NOPs or by widening instructions or by filling
8715 bytes after jump instructions. Find the opportune places and widen
8716 them if necessary. */
8717
8718 long stretch_me;
8719 long diff;
8720
8721 assert (fragP->fr_subtype == RELAX_FILL_NOP
8722 || fragP->fr_subtype == RELAX_UNREACHABLE
8723 || (fragP->fr_subtype == RELAX_SLOTS
8724 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW));
8725
8726 stretch_me = future_alignment_required (fragP, stretch);
8727 diff = stretch_me - fragP->tc_frag_data.text_expansion[0];
8728 if (diff == 0)
8729 return 0;
8730
8731 if (diff < 0)
8732 {
8733 /* We expanded on a previous pass. Can we shrink now? */
8734 long shrink = fragP->tc_frag_data.text_expansion[0] - stretch_me;
8735 if (shrink <= stretch && stretch > 0)
8736 {
8737 fragP->tc_frag_data.text_expansion[0] = stretch_me;
8738 return -shrink;
8739 }
8740 return 0;
8741 }
8742
8743 /* Below here, diff > 0. */
8744 fragP->tc_frag_data.text_expansion[0] = stretch_me;
8745
8746 return diff;
8747 }
8748
8749
8750 /* Return the address of the next frag that should be aligned.
8751
8752 By "address" we mean the address it _would_ be at if there
8753 is no action taken to align it between here and the target frag.
8754 In other words, if no narrows and no fill nops are used between
8755 here and the frag to align, _even_if_ some of the frags we use
8756 to align targets have already expanded on a previous relaxation
8757 pass.
8758
8759 Also, count each frag that may be used to help align the target.
8760
8761 Return 0 if there are no frags left in the chain that need to be
8762 aligned. */
8763
8764 static addressT
8765 find_address_of_next_align_frag (fragS **fragPP,
8766 int *wide_nops,
8767 int *narrow_nops,
8768 int *widens,
8769 bfd_boolean *paddable)
8770 {
8771 fragS *fragP = *fragPP;
8772 addressT address = fragP->fr_address;
8773
8774 /* Do not reset the counts to 0. */
8775
8776 while (fragP)
8777 {
8778 /* Limit this to a small search. */
8779 if (*widens >= (int) xtensa_fetch_width)
8780 {
8781 *fragPP = fragP;
8782 return 0;
8783 }
8784 address += fragP->fr_fix;
8785
8786 if (fragP->fr_type == rs_fill)
8787 address += fragP->fr_offset * fragP->fr_var;
8788 else if (fragP->fr_type == rs_machine_dependent)
8789 {
8790 switch (fragP->fr_subtype)
8791 {
8792 case RELAX_UNREACHABLE:
8793 *paddable = TRUE;
8794 break;
8795
8796 case RELAX_FILL_NOP:
8797 (*wide_nops)++;
8798 if (!fragP->tc_frag_data.is_no_density)
8799 (*narrow_nops)++;
8800 break;
8801
8802 case RELAX_SLOTS:
8803 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8804 {
8805 (*widens)++;
8806 break;
8807 }
8808 address += total_frag_text_expansion (fragP);;
8809 break;
8810
8811 case RELAX_IMMED:
8812 address += fragP->tc_frag_data.text_expansion[0];
8813 break;
8814
8815 case RELAX_ALIGN_NEXT_OPCODE:
8816 case RELAX_DESIRE_ALIGN:
8817 *fragPP = fragP;
8818 return address;
8819
8820 case RELAX_MAYBE_UNREACHABLE:
8821 case RELAX_MAYBE_DESIRE_ALIGN:
8822 /* Do nothing. */
8823 break;
8824
8825 default:
8826 /* Just punt if we don't know the type. */
8827 *fragPP = fragP;
8828 return 0;
8829 }
8830 }
8831 else
8832 {
8833 /* Just punt if we don't know the type. */
8834 *fragPP = fragP;
8835 return 0;
8836 }
8837 fragP = fragP->fr_next;
8838 }
8839
8840 *fragPP = fragP;
8841 return 0;
8842 }
8843
8844
8845 static long bytes_to_stretch (fragS *, int, int, int, int);
8846
8847 static long
8848 future_alignment_required (fragS *fragP, long stretch ATTRIBUTE_UNUSED)
8849 {
8850 fragS *this_frag = fragP;
8851 long address;
8852 int num_widens = 0;
8853 int wide_nops = 0;
8854 int narrow_nops = 0;
8855 bfd_boolean paddable = FALSE;
8856 offsetT local_opt_diff;
8857 offsetT opt_diff;
8858 offsetT max_diff;
8859 int stretch_amount = 0;
8860 int local_stretch_amount;
8861 int global_stretch_amount;
8862
8863 address = find_address_of_next_align_frag
8864 (&fragP, &wide_nops, &narrow_nops, &num_widens, &paddable);
8865
8866 if (!address)
8867 {
8868 if (this_frag->tc_frag_data.is_aligning_branch)
8869 this_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
8870 else
8871 frag_wane (this_frag);
8872 }
8873 else
8874 {
8875 local_opt_diff = get_aligned_diff (fragP, address, &max_diff);
8876 opt_diff = local_opt_diff;
8877 assert (opt_diff >= 0);
8878 assert (max_diff >= opt_diff);
8879 if (max_diff == 0)
8880 return 0;
8881
8882 if (fragP)
8883 fragP = fragP->fr_next;
8884
8885 while (fragP && opt_diff < max_diff && address)
8886 {
8887 /* We only use these to determine if we can exit early
8888 because there will be plenty of ways to align future
8889 align frags. */
8890 int glob_widens = 0;
8891 int dnn = 0;
8892 int dw = 0;
8893 bfd_boolean glob_pad = 0;
8894 address = find_address_of_next_align_frag
8895 (&fragP, &glob_widens, &dnn, &dw, &glob_pad);
8896 /* If there is a padable portion, then skip. */
8897 if (glob_pad || glob_widens >= (1 << branch_align_power (now_seg)))
8898 address = 0;
8899
8900 if (address)
8901 {
8902 offsetT next_m_diff;
8903 offsetT next_o_diff;
8904
8905 /* Downrange frags haven't had stretch added to them yet. */
8906 address += stretch;
8907
8908 /* The address also includes any text expansion from this
8909 frag in a previous pass, but we don't want that. */
8910 address -= this_frag->tc_frag_data.text_expansion[0];
8911
8912 /* Assume we are going to move at least opt_diff. In
8913 reality, we might not be able to, but assuming that
8914 we will helps catch cases where moving opt_diff pushes
8915 the next target from aligned to unaligned. */
8916 address += opt_diff;
8917
8918 next_o_diff = get_aligned_diff (fragP, address, &next_m_diff);
8919
8920 /* Now cleanup for the adjustments to address. */
8921 next_o_diff += opt_diff;
8922 next_m_diff += opt_diff;
8923 if (next_o_diff <= max_diff && next_o_diff > opt_diff)
8924 opt_diff = next_o_diff;
8925 if (next_m_diff < max_diff)
8926 max_diff = next_m_diff;
8927 fragP = fragP->fr_next;
8928 }
8929 }
8930
8931 /* If there are enough wideners in between, do it. */
8932 if (paddable)
8933 {
8934 if (this_frag->fr_subtype == RELAX_UNREACHABLE)
8935 {
8936 assert (opt_diff <= UNREACHABLE_MAX_WIDTH);
8937 return opt_diff;
8938 }
8939 return 0;
8940 }
8941 local_stretch_amount
8942 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
8943 num_widens, local_opt_diff);
8944 global_stretch_amount
8945 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
8946 num_widens, opt_diff);
8947 /* If the condition below is true, then the frag couldn't
8948 stretch the correct amount for the global case, so we just
8949 optimize locally. We'll rely on the subsequent frags to get
8950 the correct alignment in the global case. */
8951 if (global_stretch_amount < local_stretch_amount)
8952 stretch_amount = local_stretch_amount;
8953 else
8954 stretch_amount = global_stretch_amount;
8955
8956 if (this_frag->fr_subtype == RELAX_SLOTS
8957 && this_frag->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8958 assert (stretch_amount <= 1);
8959 else if (this_frag->fr_subtype == RELAX_FILL_NOP)
8960 {
8961 if (this_frag->tc_frag_data.is_no_density)
8962 assert (stretch_amount == 3 || stretch_amount == 0);
8963 else
8964 assert (stretch_amount <= 3);
8965 }
8966 }
8967 return stretch_amount;
8968 }
8969
8970
8971 /* The idea: widen everything you can to get a target or loop aligned,
8972 then start using NOPs.
8973
8974 When we must have a NOP, here is a table of how we decide
8975 (so you don't have to fight through the control flow below):
8976
8977 wide_nops = the number of wide NOPs available for aligning
8978 narrow_nops = the number of narrow NOPs available for aligning
8979 (a subset of wide_nops)
8980 widens = the number of narrow instructions that should be widened
8981
8982 Desired wide narrow
8983 Diff nop nop widens
8984 1 0 0 1
8985 2 0 1 0
8986 3a 1 0 0
8987 b 0 1 1 (case 3a makes this case unnecessary)
8988 4a 1 0 1
8989 b 0 2 0
8990 c 0 1 2 (case 4a makes this case unnecessary)
8991 5a 1 0 2
8992 b 1 1 0
8993 c 0 2 1 (case 5b makes this case unnecessary)
8994 6a 2 0 0
8995 b 1 0 3
8996 c 0 1 4 (case 6b makes this case unnecessary)
8997 d 1 1 1 (case 6a makes this case unnecessary)
8998 e 0 2 2 (case 6a makes this case unnecessary)
8999 f 0 3 0 (case 6a makes this case unnecessary)
9000 7a 1 0 4
9001 b 2 0 1
9002 c 1 1 2 (case 7b makes this case unnecessary)
9003 d 0 1 5 (case 7a makes this case unnecessary)
9004 e 0 2 3 (case 7b makes this case unnecessary)
9005 f 0 3 1 (case 7b makes this case unnecessary)
9006 g 1 2 1 (case 7b makes this case unnecessary)
9007 */
9008
9009 static long
9010 bytes_to_stretch (fragS *this_frag,
9011 int wide_nops,
9012 int narrow_nops,
9013 int num_widens,
9014 int desired_diff)
9015 {
9016 int bytes_short = desired_diff - num_widens;
9017
9018 assert (desired_diff >= 0 && desired_diff < 8);
9019 if (desired_diff == 0)
9020 return 0;
9021
9022 assert (wide_nops > 0 || num_widens > 0);
9023
9024 /* Always prefer widening to NOP-filling. */
9025 if (bytes_short < 0)
9026 {
9027 /* There are enough RELAX_NARROW frags after this one
9028 to align the target without widening this frag in any way. */
9029 return 0;
9030 }
9031
9032 if (bytes_short == 0)
9033 {
9034 /* Widen every narrow between here and the align target
9035 and the align target will be properly aligned. */
9036 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9037 return 0;
9038 else
9039 return 1;
9040 }
9041
9042 /* From here we will need at least one NOP to get an alignment.
9043 However, we may not be able to align at all, in which case,
9044 don't widen. */
9045 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9046 {
9047 switch (desired_diff)
9048 {
9049 case 1:
9050 return 0;
9051 case 2:
9052 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 1)
9053 return 2; /* case 2 */
9054 return 0;
9055 case 3:
9056 if (wide_nops > 1)
9057 return 0;
9058 else
9059 return 3; /* case 3a */
9060 case 4:
9061 if (num_widens >= 1 && wide_nops == 1)
9062 return 3; /* case 4a */
9063 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 2)
9064 return 2; /* case 4b */
9065 return 0;
9066 case 5:
9067 if (num_widens >= 2 && wide_nops == 1)
9068 return 3; /* case 5a */
9069 /* We will need two nops. Are there enough nops
9070 between here and the align target? */
9071 if (wide_nops < 2 || narrow_nops == 0)
9072 return 0;
9073 /* Are there other nops closer that can serve instead? */
9074 if (wide_nops > 2 && narrow_nops > 1)
9075 return 0;
9076 /* Take the density one first, because there might not be
9077 another density one available. */
9078 if (!this_frag->tc_frag_data.is_no_density)
9079 return 2; /* case 5b narrow */
9080 else
9081 return 3; /* case 5b wide */
9082 return 0;
9083 case 6:
9084 if (wide_nops == 2)
9085 return 3; /* case 6a */
9086 else if (num_widens >= 3 && wide_nops == 1)
9087 return 3; /* case 6b */
9088 return 0;
9089 case 7:
9090 if (wide_nops == 1 && num_widens >= 4)
9091 return 3; /* case 7a */
9092 else if (wide_nops == 2 && num_widens >= 1)
9093 return 3; /* case 7b */
9094 return 0;
9095 default:
9096 assert (0);
9097 }
9098 }
9099 else
9100 {
9101 /* We will need a NOP no matter what, but should we widen
9102 this instruction to help?
9103
9104 This is a RELAX_NARROW frag. */
9105 switch (desired_diff)
9106 {
9107 case 1:
9108 assert (0);
9109 return 0;
9110 case 2:
9111 case 3:
9112 return 0;
9113 case 4:
9114 if (wide_nops >= 1 && num_widens == 1)
9115 return 1; /* case 4a */
9116 return 0;
9117 case 5:
9118 if (wide_nops >= 1 && num_widens == 2)
9119 return 1; /* case 5a */
9120 return 0;
9121 case 6:
9122 if (wide_nops >= 2)
9123 return 0; /* case 6a */
9124 else if (wide_nops >= 1 && num_widens == 3)
9125 return 1; /* case 6b */
9126 return 0;
9127 case 7:
9128 if (wide_nops >= 1 && num_widens == 4)
9129 return 1; /* case 7a */
9130 else if (wide_nops >= 2 && num_widens == 1)
9131 return 1; /* case 7b */
9132 return 0;
9133 default:
9134 assert (0);
9135 return 0;
9136 }
9137 }
9138 assert (0);
9139 return 0;
9140 }
9141
9142
9143 static long
9144 relax_frag_immed (segT segP,
9145 fragS *fragP,
9146 long stretch,
9147 int min_steps,
9148 xtensa_format fmt,
9149 int slot,
9150 int *stretched_p,
9151 bfd_boolean estimate_only)
9152 {
9153 TInsn tinsn;
9154 int old_size;
9155 bfd_boolean negatable_branch = FALSE;
9156 bfd_boolean branch_jmp_to_next = FALSE;
9157 bfd_boolean from_wide_insn = FALSE;
9158 xtensa_isa isa = xtensa_default_isa;
9159 IStack istack;
9160 offsetT frag_offset;
9161 int num_steps;
9162 int num_text_bytes, num_literal_bytes;
9163 int literal_diff, total_text_diff, this_text_diff;
9164
9165 assert (fragP->fr_opcode != NULL);
9166
9167 xg_clear_vinsn (&cur_vinsn);
9168 vinsn_from_chars (&cur_vinsn, fragP->fr_opcode);
9169 if (cur_vinsn.num_slots > 1)
9170 from_wide_insn = TRUE;
9171
9172 tinsn = cur_vinsn.slots[slot];
9173 tinsn_immed_from_frag (&tinsn, fragP, slot);
9174
9175 if (estimate_only && xtensa_opcode_is_loop (isa, tinsn.opcode) == 1)
9176 return 0;
9177
9178 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
9179 branch_jmp_to_next = is_branch_jmp_to_next (&tinsn, fragP);
9180
9181 negatable_branch = (xtensa_opcode_is_branch (isa, tinsn.opcode) == 1);
9182
9183 old_size = xtensa_format_length (isa, fmt);
9184
9185 /* Special case: replace a branch to the next instruction with a NOP.
9186 This is required to work around a hardware bug in T1040.0 and also
9187 serves as an optimization. */
9188
9189 if (branch_jmp_to_next
9190 && ((old_size == 2) || (old_size == 3))
9191 && !next_frag_is_loop_target (fragP))
9192 return 0;
9193
9194 /* Here is the fun stuff: Get the immediate field from this
9195 instruction. If it fits, we are done. If not, find the next
9196 instruction sequence that fits. */
9197
9198 frag_offset = fragP->fr_opcode - fragP->fr_literal;
9199 istack_init (&istack);
9200 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, frag_offset,
9201 min_steps, stretch);
9202 assert (num_steps >= min_steps && num_steps <= RELAX_IMMED_MAXSTEPS);
9203
9204 fragP->tc_frag_data.slot_subtypes[slot] = (int) RELAX_IMMED + num_steps;
9205
9206 /* Figure out the number of bytes needed. */
9207 num_literal_bytes = get_num_stack_literal_bytes (&istack);
9208 literal_diff
9209 = num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
9210 num_text_bytes = get_num_stack_text_bytes (&istack);
9211
9212 if (from_wide_insn)
9213 {
9214 int first = 0;
9215 while (istack.insn[first].opcode == XTENSA_UNDEFINED)
9216 first++;
9217
9218 num_text_bytes += old_size;
9219 if (opcode_fits_format_slot (istack.insn[first].opcode, fmt, slot))
9220 num_text_bytes -= xg_get_single_size (istack.insn[first].opcode);
9221 else
9222 {
9223 /* The first instruction in the relaxed sequence will go after
9224 the current wide instruction, and thus its symbolic immediates
9225 might not fit. */
9226
9227 istack_init (&istack);
9228 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP,
9229 frag_offset + old_size,
9230 min_steps, stretch + old_size);
9231 assert (num_steps >= min_steps && num_steps <= RELAX_IMMED_MAXSTEPS);
9232
9233 fragP->tc_frag_data.slot_subtypes[slot]
9234 = (int) RELAX_IMMED + num_steps;
9235
9236 num_literal_bytes = get_num_stack_literal_bytes (&istack);
9237 literal_diff
9238 = num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
9239
9240 num_text_bytes = get_num_stack_text_bytes (&istack) + old_size;
9241 }
9242 }
9243
9244 total_text_diff = num_text_bytes - old_size;
9245 this_text_diff = total_text_diff - fragP->tc_frag_data.text_expansion[slot];
9246
9247 /* It MUST get larger. If not, we could get an infinite loop. */
9248 assert (num_text_bytes >= 0);
9249 assert (literal_diff >= 0);
9250 assert (total_text_diff >= 0);
9251
9252 fragP->tc_frag_data.text_expansion[slot] = total_text_diff;
9253 fragP->tc_frag_data.literal_expansion[slot] = num_literal_bytes;
9254 assert (fragP->tc_frag_data.text_expansion[slot] >= 0);
9255 assert (fragP->tc_frag_data.literal_expansion[slot] >= 0);
9256
9257 /* Find the associated expandable literal for this. */
9258 if (literal_diff != 0)
9259 {
9260 fragS *lit_fragP = fragP->tc_frag_data.literal_frags[slot];
9261 if (lit_fragP)
9262 {
9263 assert (literal_diff == 4);
9264 lit_fragP->tc_frag_data.unreported_expansion += literal_diff;
9265
9266 /* We expect that the literal section state has NOT been
9267 modified yet. */
9268 assert (lit_fragP->fr_type == rs_machine_dependent
9269 && lit_fragP->fr_subtype == RELAX_LITERAL);
9270 lit_fragP->fr_subtype = RELAX_LITERAL_NR;
9271
9272 /* We need to mark this section for another iteration
9273 of relaxation. */
9274 (*stretched_p)++;
9275 }
9276 }
9277
9278 if (negatable_branch && istack.ninsn > 1)
9279 update_next_frag_state (fragP);
9280
9281 return this_text_diff;
9282 }
9283
9284 \f
9285 /* md_convert_frag Hook and Helper Functions. */
9286
9287 static void convert_frag_align_next_opcode (fragS *);
9288 static void convert_frag_narrow (segT, fragS *, xtensa_format, int);
9289 static void convert_frag_fill_nop (fragS *);
9290 static void convert_frag_immed (segT, fragS *, int, xtensa_format, int);
9291
9292 void
9293 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec, fragS *fragp)
9294 {
9295 static xtensa_insnbuf vbuf = NULL;
9296 xtensa_isa isa = xtensa_default_isa;
9297 int slot;
9298 int num_slots;
9299 xtensa_format fmt;
9300 char *file_name;
9301 unsigned line;
9302
9303 as_where (&file_name, &line);
9304 new_logical_line (fragp->fr_file, fragp->fr_line);
9305
9306 switch (fragp->fr_subtype)
9307 {
9308 case RELAX_ALIGN_NEXT_OPCODE:
9309 /* Always convert. */
9310 convert_frag_align_next_opcode (fragp);
9311 break;
9312
9313 case RELAX_DESIRE_ALIGN:
9314 /* Do nothing. If not aligned already, too bad. */
9315 break;
9316
9317 case RELAX_LITERAL:
9318 case RELAX_LITERAL_FINAL:
9319 break;
9320
9321 case RELAX_SLOTS:
9322 if (vbuf == NULL)
9323 vbuf = xtensa_insnbuf_alloc (isa);
9324
9325 xtensa_insnbuf_from_chars
9326 (isa, vbuf, (unsigned char *) fragp->fr_opcode, 0);
9327 fmt = xtensa_format_decode (isa, vbuf);
9328 num_slots = xtensa_format_num_slots (isa, fmt);
9329
9330 for (slot = 0; slot < num_slots; slot++)
9331 {
9332 switch (fragp->tc_frag_data.slot_subtypes[slot])
9333 {
9334 case RELAX_NARROW:
9335 convert_frag_narrow (sec, fragp, fmt, slot);
9336 break;
9337
9338 case RELAX_IMMED:
9339 case RELAX_IMMED_STEP1:
9340 case RELAX_IMMED_STEP2:
9341 case RELAX_IMMED_STEP3:
9342 /* Place the immediate. */
9343 convert_frag_immed
9344 (sec, fragp,
9345 fragp->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
9346 fmt, slot);
9347 break;
9348
9349 default:
9350 /* This is OK because some slots could have
9351 relaxations and others have none. */
9352 break;
9353 }
9354 }
9355 break;
9356
9357 case RELAX_UNREACHABLE:
9358 memset (&fragp->fr_literal[fragp->fr_fix], 0, fragp->fr_var);
9359 fragp->fr_fix += fragp->tc_frag_data.text_expansion[0];
9360 fragp->fr_var -= fragp->tc_frag_data.text_expansion[0];
9361 frag_wane (fragp);
9362 break;
9363
9364 case RELAX_MAYBE_UNREACHABLE:
9365 case RELAX_MAYBE_DESIRE_ALIGN:
9366 frag_wane (fragp);
9367 break;
9368
9369 case RELAX_FILL_NOP:
9370 convert_frag_fill_nop (fragp);
9371 break;
9372
9373 case RELAX_LITERAL_NR:
9374 if (use_literal_section)
9375 {
9376 /* This should have been handled during relaxation. When
9377 relaxing a code segment, literals sometimes need to be
9378 added to the corresponding literal segment. If that
9379 literal segment has already been relaxed, then we end up
9380 in this situation. Marking the literal segments as data
9381 would make this happen less often (since GAS always relaxes
9382 code before data), but we could still get into trouble if
9383 there are instructions in a segment that is not marked as
9384 containing code. Until we can implement a better solution,
9385 cheat and adjust the addresses of all the following frags.
9386 This could break subsequent alignments, but the linker's
9387 literal coalescing will do that anyway. */
9388
9389 fragS *f;
9390 fragp->fr_subtype = RELAX_LITERAL_FINAL;
9391 assert (fragp->tc_frag_data.unreported_expansion == 4);
9392 memset (&fragp->fr_literal[fragp->fr_fix], 0, 4);
9393 fragp->fr_var -= 4;
9394 fragp->fr_fix += 4;
9395 for (f = fragp->fr_next; f; f = f->fr_next)
9396 f->fr_address += 4;
9397 }
9398 else
9399 as_bad (_("invalid relaxation fragment result"));
9400 break;
9401 }
9402
9403 fragp->fr_var = 0;
9404 new_logical_line (file_name, line);
9405 }
9406
9407
9408 static void
9409 convert_frag_align_next_opcode (fragS *fragp)
9410 {
9411 char *nop_buf; /* Location for Writing. */
9412 bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density;
9413 addressT aligned_address;
9414 offsetT fill_size;
9415 int nop, nop_count;
9416
9417 aligned_address = get_noop_aligned_address (fragp, fragp->fr_address +
9418 fragp->fr_fix);
9419 fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix);
9420 nop_count = get_text_align_nop_count (fill_size, use_no_density);
9421 nop_buf = fragp->fr_literal + fragp->fr_fix;
9422
9423 for (nop = 0; nop < nop_count; nop++)
9424 {
9425 int nop_size;
9426 nop_size = get_text_align_nth_nop_size (fill_size, nop, use_no_density);
9427
9428 assemble_nop (nop_size, nop_buf);
9429 nop_buf += nop_size;
9430 }
9431
9432 fragp->fr_fix += fill_size;
9433 fragp->fr_var -= fill_size;
9434 }
9435
9436
9437 static void
9438 convert_frag_narrow (segT segP, fragS *fragP, xtensa_format fmt, int slot)
9439 {
9440 TInsn tinsn, single_target;
9441 int size, old_size, diff;
9442 offsetT frag_offset;
9443
9444 assert (slot == 0);
9445 tinsn_from_chars (&tinsn, fragP->fr_opcode, 0);
9446
9447 if (fragP->tc_frag_data.is_aligning_branch == 1)
9448 {
9449 assert (fragP->tc_frag_data.text_expansion[0] == 1
9450 || fragP->tc_frag_data.text_expansion[0] == 0);
9451 convert_frag_immed (segP, fragP, fragP->tc_frag_data.text_expansion[0],
9452 fmt, slot);
9453 return;
9454 }
9455
9456 if (fragP->tc_frag_data.text_expansion[0] == 0)
9457 {
9458 /* No conversion. */
9459 fragP->fr_var = 0;
9460 return;
9461 }
9462
9463 assert (fragP->fr_opcode != NULL);
9464
9465 /* Frags in this relaxation state should only contain
9466 single instruction bundles. */
9467 tinsn_immed_from_frag (&tinsn, fragP, 0);
9468
9469 /* Just convert it to a wide form.... */
9470 size = 0;
9471 old_size = xg_get_single_size (tinsn.opcode);
9472
9473 tinsn_init (&single_target);
9474 frag_offset = fragP->fr_opcode - fragP->fr_literal;
9475
9476 if (! xg_is_single_relaxable_insn (&tinsn, &single_target, FALSE))
9477 {
9478 as_bad (_("unable to widen instruction"));
9479 return;
9480 }
9481
9482 size = xg_get_single_size (single_target.opcode);
9483 xg_emit_insn_to_buf (&single_target, fragP->fr_opcode, fragP,
9484 frag_offset, TRUE);
9485
9486 diff = size - old_size;
9487 assert (diff >= 0);
9488 assert (diff <= fragP->fr_var);
9489 fragP->fr_var -= diff;
9490 fragP->fr_fix += diff;
9491
9492 /* clean it up */
9493 fragP->fr_var = 0;
9494 }
9495
9496
9497 static void
9498 convert_frag_fill_nop (fragS *fragP)
9499 {
9500 char *loc = &fragP->fr_literal[fragP->fr_fix];
9501 int size = fragP->tc_frag_data.text_expansion[0];
9502 assert ((unsigned) size == (fragP->fr_next->fr_address
9503 - fragP->fr_address - fragP->fr_fix));
9504 if (size == 0)
9505 {
9506 /* No conversion. */
9507 fragP->fr_var = 0;
9508 return;
9509 }
9510 assemble_nop (size, loc);
9511 fragP->tc_frag_data.is_insn = TRUE;
9512 fragP->fr_var -= size;
9513 fragP->fr_fix += size;
9514 frag_wane (fragP);
9515 }
9516
9517
9518 static fixS *fix_new_exp_in_seg
9519 (segT, subsegT, fragS *, int, int, expressionS *, int,
9520 bfd_reloc_code_real_type);
9521 static void convert_frag_immed_finish_loop (segT, fragS *, TInsn *);
9522
9523 static void
9524 convert_frag_immed (segT segP,
9525 fragS *fragP,
9526 int min_steps,
9527 xtensa_format fmt,
9528 int slot)
9529 {
9530 char *immed_instr = fragP->fr_opcode;
9531 TInsn orig_tinsn;
9532 bfd_boolean expanded = FALSE;
9533 bfd_boolean branch_jmp_to_next = FALSE;
9534 char *fr_opcode = fragP->fr_opcode;
9535 xtensa_isa isa = xtensa_default_isa;
9536 bfd_boolean from_wide_insn = FALSE;
9537 int bytes;
9538 bfd_boolean is_loop;
9539
9540 assert (fr_opcode != NULL);
9541
9542 xg_clear_vinsn (&cur_vinsn);
9543
9544 vinsn_from_chars (&cur_vinsn, fr_opcode);
9545 if (cur_vinsn.num_slots > 1)
9546 from_wide_insn = TRUE;
9547
9548 orig_tinsn = cur_vinsn.slots[slot];
9549 tinsn_immed_from_frag (&orig_tinsn, fragP, slot);
9550
9551 is_loop = xtensa_opcode_is_loop (xtensa_default_isa, orig_tinsn.opcode) == 1;
9552
9553 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
9554 branch_jmp_to_next = is_branch_jmp_to_next (&orig_tinsn, fragP);
9555
9556 if (branch_jmp_to_next && !next_frag_is_loop_target (fragP))
9557 {
9558 /* Conversion just inserts a NOP and marks the fix as completed. */
9559 bytes = xtensa_format_length (isa, fmt);
9560 if (bytes >= 4)
9561 {
9562 cur_vinsn.slots[slot].opcode =
9563 xtensa_format_slot_nop_opcode (isa, cur_vinsn.format, slot);
9564 cur_vinsn.slots[slot].ntok = 0;
9565 }
9566 else
9567 {
9568 bytes += fragP->tc_frag_data.text_expansion[0];
9569 assert (bytes == 2 || bytes == 3);
9570 build_nop (&cur_vinsn.slots[0], bytes);
9571 fragP->fr_fix += fragP->tc_frag_data.text_expansion[0];
9572 }
9573 vinsn_to_insnbuf (&cur_vinsn, fr_opcode, frag_now, TRUE);
9574 xtensa_insnbuf_to_chars
9575 (isa, cur_vinsn.insnbuf, (unsigned char *) fr_opcode, 0);
9576 fragP->fr_var = 0;
9577 }
9578 else
9579 {
9580 /* Here is the fun stuff: Get the immediate field from this
9581 instruction. If it fits, we're done. If not, find the next
9582 instruction sequence that fits. */
9583
9584 IStack istack;
9585 int i;
9586 symbolS *lit_sym = NULL;
9587 int total_size = 0;
9588 int target_offset = 0;
9589 int old_size;
9590 int diff;
9591 symbolS *gen_label = NULL;
9592 offsetT frag_offset;
9593 bfd_boolean first = TRUE;
9594 bfd_boolean last_is_jump;
9595
9596 /* It does not fit. Find something that does and
9597 convert immediately. */
9598 frag_offset = fr_opcode - fragP->fr_literal;
9599 istack_init (&istack);
9600 xg_assembly_relax (&istack, &orig_tinsn,
9601 segP, fragP, frag_offset, min_steps, 0);
9602
9603 old_size = xtensa_format_length (isa, fmt);
9604
9605 /* Assemble this right inline. */
9606
9607 /* First, create the mapping from a label name to the REAL label. */
9608 target_offset = 0;
9609 for (i = 0; i < istack.ninsn; i++)
9610 {
9611 TInsn *tinsn = &istack.insn[i];
9612 fragS *lit_frag;
9613
9614 switch (tinsn->insn_type)
9615 {
9616 case ITYPE_LITERAL:
9617 if (lit_sym != NULL)
9618 as_bad (_("multiple literals in expansion"));
9619 /* First find the appropriate space in the literal pool. */
9620 lit_frag = fragP->tc_frag_data.literal_frags[slot];
9621 if (lit_frag == NULL)
9622 as_bad (_("no registered fragment for literal"));
9623 if (tinsn->ntok != 1)
9624 as_bad (_("number of literal tokens != 1"));
9625
9626 /* Set the literal symbol and add a fixup. */
9627 lit_sym = lit_frag->fr_symbol;
9628 break;
9629
9630 case ITYPE_LABEL:
9631 if (align_targets && !is_loop)
9632 {
9633 fragS *unreach = fragP->fr_next;
9634 while (!(unreach->fr_type == rs_machine_dependent
9635 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9636 || unreach->fr_subtype == RELAX_UNREACHABLE)))
9637 {
9638 unreach = unreach->fr_next;
9639 }
9640
9641 assert (unreach->fr_type == rs_machine_dependent
9642 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9643 || unreach->fr_subtype == RELAX_UNREACHABLE));
9644
9645 target_offset += unreach->tc_frag_data.text_expansion[0];
9646 }
9647 assert (gen_label == NULL);
9648 gen_label = symbol_new (FAKE_LABEL_NAME, now_seg,
9649 fr_opcode - fragP->fr_literal
9650 + target_offset, fragP);
9651 break;
9652
9653 case ITYPE_INSN:
9654 if (first && from_wide_insn)
9655 {
9656 target_offset += xtensa_format_length (isa, fmt);
9657 first = FALSE;
9658 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9659 target_offset += xg_get_single_size (tinsn->opcode);
9660 }
9661 else
9662 target_offset += xg_get_single_size (tinsn->opcode);
9663 break;
9664 }
9665 }
9666
9667 total_size = 0;
9668 first = TRUE;
9669 last_is_jump = FALSE;
9670 for (i = 0; i < istack.ninsn; i++)
9671 {
9672 TInsn *tinsn = &istack.insn[i];
9673 fragS *lit_frag;
9674 int size;
9675 segT target_seg;
9676 bfd_reloc_code_real_type reloc_type;
9677
9678 switch (tinsn->insn_type)
9679 {
9680 case ITYPE_LITERAL:
9681 lit_frag = fragP->tc_frag_data.literal_frags[slot];
9682 /* Already checked. */
9683 assert (lit_frag != NULL);
9684 assert (lit_sym != NULL);
9685 assert (tinsn->ntok == 1);
9686 /* Add a fixup. */
9687 target_seg = S_GET_SEGMENT (lit_sym);
9688 assert (target_seg);
9689 reloc_type = map_operator_to_reloc (tinsn->tok[0].X_op, TRUE);
9690 fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4,
9691 &tinsn->tok[0], FALSE, reloc_type);
9692 break;
9693
9694 case ITYPE_LABEL:
9695 break;
9696
9697 case ITYPE_INSN:
9698 xg_resolve_labels (tinsn, gen_label);
9699 xg_resolve_literals (tinsn, lit_sym);
9700 if (from_wide_insn && first)
9701 {
9702 first = FALSE;
9703 if (opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9704 {
9705 cur_vinsn.slots[slot] = *tinsn;
9706 }
9707 else
9708 {
9709 cur_vinsn.slots[slot].opcode =
9710 xtensa_format_slot_nop_opcode (isa, fmt, slot);
9711 cur_vinsn.slots[slot].ntok = 0;
9712 }
9713 vinsn_to_insnbuf (&cur_vinsn, immed_instr, fragP, TRUE);
9714 xtensa_insnbuf_to_chars (isa, cur_vinsn.insnbuf,
9715 (unsigned char *) immed_instr, 0);
9716 fragP->tc_frag_data.is_insn = TRUE;
9717 size = xtensa_format_length (isa, fmt);
9718 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9719 {
9720 xg_emit_insn_to_buf
9721 (tinsn, immed_instr + size, fragP,
9722 immed_instr - fragP->fr_literal + size, TRUE);
9723 size += xg_get_single_size (tinsn->opcode);
9724 }
9725 }
9726 else
9727 {
9728 size = xg_get_single_size (tinsn->opcode);
9729 xg_emit_insn_to_buf (tinsn, immed_instr, fragP,
9730 immed_instr - fragP->fr_literal, TRUE);
9731 }
9732 immed_instr += size;
9733 total_size += size;
9734 break;
9735 }
9736 }
9737
9738 diff = total_size - old_size;
9739 assert (diff >= 0);
9740 if (diff != 0)
9741 expanded = TRUE;
9742 assert (diff <= fragP->fr_var);
9743 fragP->fr_var -= diff;
9744 fragP->fr_fix += diff;
9745 }
9746
9747 /* Check for undefined immediates in LOOP instructions. */
9748 if (is_loop)
9749 {
9750 symbolS *sym;
9751 sym = orig_tinsn.tok[1].X_add_symbol;
9752 if (sym != NULL && !S_IS_DEFINED (sym))
9753 {
9754 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9755 return;
9756 }
9757 sym = orig_tinsn.tok[1].X_op_symbol;
9758 if (sym != NULL && !S_IS_DEFINED (sym))
9759 {
9760 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9761 return;
9762 }
9763 }
9764
9765 if (expanded && xtensa_opcode_is_loop (isa, orig_tinsn.opcode) == 1)
9766 convert_frag_immed_finish_loop (segP, fragP, &orig_tinsn);
9767
9768 if (expanded && is_direct_call_opcode (orig_tinsn.opcode))
9769 {
9770 /* Add an expansion note on the expanded instruction. */
9771 fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4,
9772 &orig_tinsn.tok[0], TRUE,
9773 BFD_RELOC_XTENSA_ASM_EXPAND);
9774 }
9775 }
9776
9777
9778 /* Add a new fix expression into the desired segment. We have to
9779 switch to that segment to do this. */
9780
9781 static fixS *
9782 fix_new_exp_in_seg (segT new_seg,
9783 subsegT new_subseg,
9784 fragS *frag,
9785 int where,
9786 int size,
9787 expressionS *exp,
9788 int pcrel,
9789 bfd_reloc_code_real_type r_type)
9790 {
9791 fixS *new_fix;
9792 segT seg = now_seg;
9793 subsegT subseg = now_subseg;
9794
9795 assert (new_seg != 0);
9796 subseg_set (new_seg, new_subseg);
9797
9798 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
9799 subseg_set (seg, subseg);
9800 return new_fix;
9801 }
9802
9803
9804 /* Relax a loop instruction so that it can span loop >256 bytes.
9805
9806 loop as, .L1
9807 .L0:
9808 rsr as, LEND
9809 wsr as, LBEG
9810 addi as, as, lo8 (label-.L1)
9811 addmi as, as, mid8 (label-.L1)
9812 wsr as, LEND
9813 isync
9814 rsr as, LCOUNT
9815 addi as, as, 1
9816 .L1:
9817 <<body>>
9818 label:
9819 */
9820
9821 static void
9822 convert_frag_immed_finish_loop (segT segP, fragS *fragP, TInsn *tinsn)
9823 {
9824 TInsn loop_insn;
9825 TInsn addi_insn;
9826 TInsn addmi_insn;
9827 unsigned long target;
9828 static xtensa_insnbuf insnbuf = NULL;
9829 unsigned int loop_length, loop_length_hi, loop_length_lo;
9830 xtensa_isa isa = xtensa_default_isa;
9831 addressT loop_offset;
9832 addressT addi_offset = 9;
9833 addressT addmi_offset = 12;
9834 fragS *next_fragP;
9835 int target_count;
9836
9837 if (!insnbuf)
9838 insnbuf = xtensa_insnbuf_alloc (isa);
9839
9840 /* Get the loop offset. */
9841 loop_offset = get_expanded_loop_offset (tinsn->opcode);
9842
9843 /* Validate that there really is a LOOP at the loop_offset. Because
9844 loops are not bundleable, we can assume that the instruction will be
9845 in slot 0. */
9846 tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset, 0);
9847 tinsn_immed_from_frag (&loop_insn, fragP, 0);
9848
9849 assert (xtensa_opcode_is_loop (isa, loop_insn.opcode) == 1);
9850 addi_offset += loop_offset;
9851 addmi_offset += loop_offset;
9852
9853 assert (tinsn->ntok == 2);
9854 if (tinsn->tok[1].X_op == O_constant)
9855 target = tinsn->tok[1].X_add_number;
9856 else if (tinsn->tok[1].X_op == O_symbol)
9857 {
9858 /* Find the fragment. */
9859 symbolS *sym = tinsn->tok[1].X_add_symbol;
9860 assert (S_GET_SEGMENT (sym) == segP
9861 || S_GET_SEGMENT (sym) == absolute_section);
9862 target = (S_GET_VALUE (sym) + tinsn->tok[1].X_add_number);
9863 }
9864 else
9865 {
9866 as_bad (_("invalid expression evaluation type %d"), tinsn->tok[1].X_op);
9867 target = 0;
9868 }
9869
9870 loop_length = target - (fragP->fr_address + fragP->fr_fix);
9871 loop_length_hi = loop_length & ~0x0ff;
9872 loop_length_lo = loop_length & 0x0ff;
9873 if (loop_length_lo >= 128)
9874 {
9875 loop_length_lo -= 256;
9876 loop_length_hi += 256;
9877 }
9878
9879 /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most
9880 32512. If the loop is larger than that, then we just fail. */
9881 if (loop_length_hi > 32512)
9882 as_bad_where (fragP->fr_file, fragP->fr_line,
9883 _("loop too long for LOOP instruction"));
9884
9885 tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset, 0);
9886 assert (addi_insn.opcode == xtensa_addi_opcode);
9887
9888 tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset, 0);
9889 assert (addmi_insn.opcode == xtensa_addmi_opcode);
9890
9891 set_expr_const (&addi_insn.tok[2], loop_length_lo);
9892 tinsn_to_insnbuf (&addi_insn, insnbuf);
9893
9894 fragP->tc_frag_data.is_insn = TRUE;
9895 xtensa_insnbuf_to_chars
9896 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addi_offset, 0);
9897
9898 set_expr_const (&addmi_insn.tok[2], loop_length_hi);
9899 tinsn_to_insnbuf (&addmi_insn, insnbuf);
9900 xtensa_insnbuf_to_chars
9901 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addmi_offset, 0);
9902
9903 /* Walk through all of the frags from here to the loop end
9904 and mark them as no_transform to keep them from being modified
9905 by the linker. If we ever have a relocation for the
9906 addi/addmi of the difference of two symbols we can remove this. */
9907
9908 target_count = 0;
9909 for (next_fragP = fragP; next_fragP != NULL;
9910 next_fragP = next_fragP->fr_next)
9911 {
9912 next_fragP->tc_frag_data.is_no_transform = TRUE;
9913 if (next_fragP->tc_frag_data.is_loop_target)
9914 target_count++;
9915 if (target_count == 2)
9916 break;
9917 }
9918 }
9919
9920 \f
9921 /* A map that keeps information on a per-subsegment basis. This is
9922 maintained during initial assembly, but is invalid once the
9923 subsegments are smashed together. I.E., it cannot be used during
9924 the relaxation. */
9925
9926 typedef struct subseg_map_struct
9927 {
9928 /* the key */
9929 segT seg;
9930 subsegT subseg;
9931
9932 /* the data */
9933 unsigned flags;
9934 float total_freq; /* fall-through + branch target frequency */
9935 float target_freq; /* branch target frequency alone */
9936
9937 struct subseg_map_struct *next;
9938 } subseg_map;
9939
9940
9941 static subseg_map *sseg_map = NULL;
9942
9943 static subseg_map *
9944 get_subseg_info (segT seg, subsegT subseg)
9945 {
9946 subseg_map *subseg_e;
9947
9948 for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next)
9949 {
9950 if (seg == subseg_e->seg && subseg == subseg_e->subseg)
9951 break;
9952 }
9953 return subseg_e;
9954 }
9955
9956
9957 static subseg_map *
9958 add_subseg_info (segT seg, subsegT subseg)
9959 {
9960 subseg_map *subseg_e = (subseg_map *) xmalloc (sizeof (subseg_map));
9961 memset (subseg_e, 0, sizeof (subseg_map));
9962 subseg_e->seg = seg;
9963 subseg_e->subseg = subseg;
9964 subseg_e->flags = 0;
9965 /* Start off considering every branch target very important. */
9966 subseg_e->target_freq = 1.0;
9967 subseg_e->total_freq = 1.0;
9968 subseg_e->next = sseg_map;
9969 sseg_map = subseg_e;
9970 return subseg_e;
9971 }
9972
9973
9974 static unsigned
9975 get_last_insn_flags (segT seg, subsegT subseg)
9976 {
9977 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9978 if (subseg_e)
9979 return subseg_e->flags;
9980 return 0;
9981 }
9982
9983
9984 static void
9985 set_last_insn_flags (segT seg,
9986 subsegT subseg,
9987 unsigned fl,
9988 bfd_boolean val)
9989 {
9990 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9991 if (! subseg_e)
9992 subseg_e = add_subseg_info (seg, subseg);
9993 if (val)
9994 subseg_e->flags |= fl;
9995 else
9996 subseg_e->flags &= ~fl;
9997 }
9998
9999
10000 static float
10001 get_subseg_total_freq (segT seg, subsegT subseg)
10002 {
10003 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10004 if (subseg_e)
10005 return subseg_e->total_freq;
10006 return 1.0;
10007 }
10008
10009
10010 static float
10011 get_subseg_target_freq (segT seg, subsegT subseg)
10012 {
10013 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10014 if (subseg_e)
10015 return subseg_e->target_freq;
10016 return 1.0;
10017 }
10018
10019
10020 static void
10021 set_subseg_freq (segT seg, subsegT subseg, float total_f, float target_f)
10022 {
10023 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10024 if (! subseg_e)
10025 subseg_e = add_subseg_info (seg, subseg);
10026 subseg_e->total_freq = total_f;
10027 subseg_e->target_freq = target_f;
10028 }
10029
10030 \f
10031 /* Segment Lists and emit_state Stuff. */
10032
10033 static void
10034 xtensa_move_seg_list_to_beginning (seg_list *head)
10035 {
10036 head = head->next;
10037 while (head)
10038 {
10039 segT literal_section = head->seg;
10040
10041 /* Move the literal section to the front of the section list. */
10042 assert (literal_section);
10043 if (literal_section != stdoutput->sections)
10044 {
10045 bfd_section_list_remove (stdoutput, literal_section);
10046 bfd_section_list_prepend (stdoutput, literal_section);
10047 }
10048 head = head->next;
10049 }
10050 }
10051
10052
10053 static void mark_literal_frags (seg_list *);
10054
10055 static void
10056 xtensa_move_literals (void)
10057 {
10058 seg_list *segment;
10059 frchainS *frchain_from, *frchain_to;
10060 fragS *search_frag, *next_frag, *last_frag, *literal_pool, *insert_after;
10061 fragS **frag_splice;
10062 emit_state state;
10063 segT dest_seg;
10064 fixS *fix, *next_fix, **fix_splice;
10065 sym_list *lit;
10066
10067 mark_literal_frags (literal_head->next);
10068
10069 if (use_literal_section)
10070 return;
10071
10072 for (segment = literal_head->next; segment; segment = segment->next)
10073 {
10074 /* Keep the literals for .init and .fini in separate sections. */
10075 if (!strcmp (segment_name (segment->seg), INIT_SECTION_NAME)
10076 || !strcmp (segment_name (segment->seg), FINI_SECTION_NAME))
10077 continue;
10078
10079 frchain_from = seg_info (segment->seg)->frchainP;
10080 search_frag = frchain_from->frch_root;
10081 literal_pool = NULL;
10082 frchain_to = NULL;
10083 frag_splice = &(frchain_from->frch_root);
10084
10085 while (!search_frag->tc_frag_data.literal_frag)
10086 {
10087 assert (search_frag->fr_fix == 0
10088 || search_frag->fr_type == rs_align);
10089 search_frag = search_frag->fr_next;
10090 }
10091
10092 assert (search_frag->tc_frag_data.literal_frag->fr_subtype
10093 == RELAX_LITERAL_POOL_BEGIN);
10094 xtensa_switch_section_emit_state (&state, segment->seg, 0);
10095
10096 /* Make sure that all the frags in this series are closed, and
10097 that there is at least one left over of zero-size. This
10098 prevents us from making a segment with an frchain without any
10099 frags in it. */
10100 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
10101 xtensa_set_frag_assembly_state (frag_now);
10102 last_frag = frag_now;
10103 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
10104 xtensa_set_frag_assembly_state (frag_now);
10105
10106 while (search_frag != frag_now)
10107 {
10108 next_frag = search_frag->fr_next;
10109
10110 /* First, move the frag out of the literal section and
10111 to the appropriate place. */
10112 if (search_frag->tc_frag_data.literal_frag)
10113 {
10114 literal_pool = search_frag->tc_frag_data.literal_frag;
10115 assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN);
10116 frchain_to = literal_pool->tc_frag_data.lit_frchain;
10117 assert (frchain_to);
10118 }
10119 insert_after = literal_pool->tc_frag_data.literal_frag;
10120 dest_seg = insert_after->fr_next->tc_frag_data.lit_seg;
10121
10122 *frag_splice = next_frag;
10123 search_frag->fr_next = insert_after->fr_next;
10124 insert_after->fr_next = search_frag;
10125 search_frag->tc_frag_data.lit_seg = dest_seg;
10126 literal_pool->tc_frag_data.literal_frag = search_frag;
10127
10128 /* Now move any fixups associated with this frag to the
10129 right section. */
10130 fix = frchain_from->fix_root;
10131 fix_splice = &(frchain_from->fix_root);
10132 while (fix)
10133 {
10134 next_fix = fix->fx_next;
10135 if (fix->fx_frag == search_frag)
10136 {
10137 *fix_splice = next_fix;
10138 fix->fx_next = frchain_to->fix_root;
10139 frchain_to->fix_root = fix;
10140 if (frchain_to->fix_tail == NULL)
10141 frchain_to->fix_tail = fix;
10142 }
10143 else
10144 fix_splice = &(fix->fx_next);
10145 fix = next_fix;
10146 }
10147 search_frag = next_frag;
10148 }
10149
10150 if (frchain_from->fix_root != NULL)
10151 {
10152 frchain_from = seg_info (segment->seg)->frchainP;
10153 as_warn (_("fixes not all moved from %s"), segment->seg->name);
10154
10155 assert (frchain_from->fix_root == NULL);
10156 }
10157 frchain_from->fix_tail = NULL;
10158 xtensa_restore_emit_state (&state);
10159 }
10160
10161 /* Now fix up the SEGMENT value for all the literal symbols. */
10162 for (lit = literal_syms; lit; lit = lit->next)
10163 {
10164 symbolS *lit_sym = lit->sym;
10165 segT dest_seg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg;
10166 if (dest_seg)
10167 S_SET_SEGMENT (lit_sym, dest_seg);
10168 }
10169 }
10170
10171
10172 /* Walk over all the frags for segments in a list and mark them as
10173 containing literals. As clunky as this is, we can't rely on frag_var
10174 and frag_variant to get called in all situations. */
10175
10176 static void
10177 mark_literal_frags (seg_list *segment)
10178 {
10179 frchainS *frchain_from;
10180 fragS *search_frag;
10181
10182 while (segment)
10183 {
10184 frchain_from = seg_info (segment->seg)->frchainP;
10185 search_frag = frchain_from->frch_root;
10186 while (search_frag)
10187 {
10188 search_frag->tc_frag_data.is_literal = TRUE;
10189 search_frag = search_frag->fr_next;
10190 }
10191 segment = segment->next;
10192 }
10193 }
10194
10195
10196 static void
10197 xtensa_reorder_seg_list (seg_list *head, segT after)
10198 {
10199 /* Move all of the sections in the section list to come
10200 after "after" in the gnu segment list. */
10201
10202 head = head->next;
10203 while (head)
10204 {
10205 segT literal_section = head->seg;
10206
10207 /* Move the literal section after "after". */
10208 assert (literal_section);
10209 if (literal_section != after)
10210 {
10211 bfd_section_list_remove (stdoutput, literal_section);
10212 bfd_section_list_insert_after (stdoutput, after, literal_section);
10213 }
10214
10215 head = head->next;
10216 }
10217 }
10218
10219
10220 /* Push all the literal segments to the end of the gnu list. */
10221
10222 static void
10223 xtensa_reorder_segments (void)
10224 {
10225 segT sec;
10226 segT last_sec = 0;
10227 int old_count = 0;
10228 int new_count = 0;
10229
10230 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
10231 {
10232 last_sec = sec;
10233 old_count++;
10234 }
10235
10236 /* Now that we have the last section, push all the literal
10237 sections to the end. */
10238 xtensa_reorder_seg_list (literal_head, last_sec);
10239
10240 /* Now perform the final error check. */
10241 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
10242 new_count++;
10243 assert (new_count == old_count);
10244 }
10245
10246
10247 /* Change the emit state (seg, subseg, and frag related stuff) to the
10248 correct location. Return a emit_state which can be passed to
10249 xtensa_restore_emit_state to return to current fragment. */
10250
10251 static void
10252 xtensa_switch_to_literal_fragment (emit_state *result)
10253 {
10254 if (directive_state[directive_absolute_literals])
10255 {
10256 segT lit4_seg = cache_literal_section (TRUE);
10257 xtensa_switch_section_emit_state (result, lit4_seg, 0);
10258 }
10259 else
10260 xtensa_switch_to_non_abs_literal_fragment (result);
10261
10262 /* Do a 4-byte align here. */
10263 frag_align (2, 0, 0);
10264 record_alignment (now_seg, 2);
10265 }
10266
10267
10268 static void
10269 xtensa_switch_to_non_abs_literal_fragment (emit_state *result)
10270 {
10271 static bfd_boolean recursive = FALSE;
10272 fragS *pool_location = get_literal_pool_location (now_seg);
10273 segT lit_seg;
10274 bfd_boolean is_init =
10275 (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME));
10276 bfd_boolean is_fini =
10277 (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME));
10278
10279 if (pool_location == NULL
10280 && !use_literal_section
10281 && !recursive
10282 && !is_init && ! is_fini)
10283 {
10284 as_bad (_("literal pool location required for text-section-literals; specify with .literal_position"));
10285
10286 /* When we mark a literal pool location, we want to put a frag in
10287 the literal pool that points to it. But to do that, we want to
10288 switch_to_literal_fragment. But literal sections don't have
10289 literal pools, so their location is always null, so we would
10290 recurse forever. This is kind of hacky, but it works. */
10291
10292 recursive = TRUE;
10293 xtensa_mark_literal_pool_location ();
10294 recursive = FALSE;
10295 }
10296
10297 lit_seg = cache_literal_section (FALSE);
10298 xtensa_switch_section_emit_state (result, lit_seg, 0);
10299
10300 if (!use_literal_section
10301 && !is_init && !is_fini
10302 && get_literal_pool_location (now_seg) != pool_location)
10303 {
10304 /* Close whatever frag is there. */
10305 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
10306 xtensa_set_frag_assembly_state (frag_now);
10307 frag_now->tc_frag_data.literal_frag = pool_location;
10308 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
10309 xtensa_set_frag_assembly_state (frag_now);
10310 }
10311 }
10312
10313
10314 /* Call this function before emitting data into the literal section.
10315 This is a helper function for xtensa_switch_to_literal_fragment.
10316 This is similar to a .section new_now_seg subseg. */
10317
10318 static void
10319 xtensa_switch_section_emit_state (emit_state *state,
10320 segT new_now_seg,
10321 subsegT new_now_subseg)
10322 {
10323 state->name = now_seg->name;
10324 state->now_seg = now_seg;
10325 state->now_subseg = now_subseg;
10326 state->generating_literals = generating_literals;
10327 generating_literals++;
10328 subseg_set (new_now_seg, new_now_subseg);
10329 }
10330
10331
10332 /* Use to restore the emitting into the normal place. */
10333
10334 static void
10335 xtensa_restore_emit_state (emit_state *state)
10336 {
10337 generating_literals = state->generating_literals;
10338 subseg_set (state->now_seg, state->now_subseg);
10339 }
10340
10341
10342 /* Predicate function used to look up a section in a particular group. */
10343
10344 static bfd_boolean
10345 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10346 {
10347 const char *gname = inf;
10348 const char *group_name = elf_group_name (sec);
10349
10350 return (group_name == gname
10351 || (group_name != NULL
10352 && gname != NULL
10353 && strcmp (group_name, gname) == 0));
10354 }
10355
10356
10357 /* Get the literal section to be used for the current text section.
10358 The result may be cached in the default_lit_sections structure. */
10359
10360 static segT
10361 cache_literal_section (bfd_boolean use_abs_literals)
10362 {
10363 const char *text_name, *group_name = 0;
10364 char *base_name, *name, *suffix;
10365 segT *pcached;
10366 segT seg, current_section;
10367 int current_subsec;
10368 bfd_boolean linkonce = FALSE;
10369
10370 /* Save the current section/subsection. */
10371 current_section = now_seg;
10372 current_subsec = now_subseg;
10373
10374 /* Clear the cached values if they are no longer valid. */
10375 if (now_seg != default_lit_sections.current_text_seg)
10376 {
10377 default_lit_sections.current_text_seg = now_seg;
10378 default_lit_sections.lit_seg = NULL;
10379 default_lit_sections.lit4_seg = NULL;
10380 }
10381
10382 /* Check if the literal section is already cached. */
10383 if (use_abs_literals)
10384 pcached = &default_lit_sections.lit4_seg;
10385 else
10386 pcached = &default_lit_sections.lit_seg;
10387
10388 if (*pcached)
10389 return *pcached;
10390
10391 text_name = default_lit_sections.lit_prefix;
10392 if (! text_name || ! *text_name)
10393 {
10394 text_name = segment_name (current_section);
10395 group_name = elf_group_name (current_section);
10396 linkonce = (current_section->flags & SEC_LINK_ONCE) != 0;
10397 }
10398
10399 base_name = use_abs_literals ? ".lit4" : ".literal";
10400 if (group_name)
10401 {
10402 name = xmalloc (strlen (base_name) + strlen (group_name) + 2);
10403 sprintf (name, "%s.%s", base_name, group_name);
10404 }
10405 else if (strncmp (text_name, ".gnu.linkonce.", linkonce_len) == 0)
10406 {
10407 suffix = strchr (text_name + linkonce_len, '.');
10408
10409 name = xmalloc (linkonce_len + strlen (base_name) + 1
10410 + (suffix ? strlen (suffix) : 0));
10411 strcpy (name, ".gnu.linkonce");
10412 strcat (name, base_name);
10413 if (suffix)
10414 strcat (name, suffix);
10415 linkonce = TRUE;
10416 }
10417 else
10418 {
10419 /* If the section name ends with ".text", then replace that suffix
10420 instead of appending an additional suffix. */
10421 size_t len = strlen (text_name);
10422 if (len >= 5 && strcmp (text_name + len - 5, ".text") == 0)
10423 len -= 5;
10424
10425 name = xmalloc (len + strlen (base_name) + 1);
10426 strcpy (name, text_name);
10427 strcpy (name + len, base_name);
10428 }
10429
10430 /* Canonicalize section names to allow renaming literal sections.
10431 The group name, if any, came from the current text section and
10432 has already been canonicalized. */
10433 name = tc_canonicalize_symbol_name (name);
10434
10435 seg = bfd_get_section_by_name_if (stdoutput, name, match_section_group,
10436 (void *) group_name);
10437 if (! seg)
10438 {
10439 flagword flags;
10440
10441 seg = subseg_force_new (name, 0);
10442
10443 if (! use_abs_literals)
10444 {
10445 /* Add the newly created literal segment to the list. */
10446 seg_list *n = (seg_list *) xmalloc (sizeof (seg_list));
10447 n->seg = seg;
10448 n->next = literal_head->next;
10449 literal_head->next = n;
10450 }
10451
10452 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_ALLOC | SEC_LOAD
10453 | (linkonce ? (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD) : 0)
10454 | (use_abs_literals ? SEC_DATA : SEC_CODE));
10455
10456 elf_group_name (seg) = group_name;
10457
10458 bfd_set_section_flags (stdoutput, seg, flags);
10459 bfd_set_section_alignment (stdoutput, seg, 2);
10460 }
10461
10462 *pcached = seg;
10463 subseg_set (current_section, current_subsec);
10464 return seg;
10465 }
10466
10467 \f
10468 /* Property Tables Stuff. */
10469
10470 #define XTENSA_INSN_SEC_NAME ".xt.insn"
10471 #define XTENSA_LIT_SEC_NAME ".xt.lit"
10472 #define XTENSA_PROP_SEC_NAME ".xt.prop"
10473
10474 typedef bfd_boolean (*frag_predicate) (const fragS *);
10475 typedef void (*frag_flags_fn) (const fragS *, frag_flags *);
10476
10477 static bfd_boolean get_frag_is_literal (const fragS *);
10478 static void xtensa_create_property_segments
10479 (frag_predicate, frag_predicate, const char *, xt_section_type);
10480 static void xtensa_create_xproperty_segments
10481 (frag_flags_fn, const char *, xt_section_type);
10482 static bfd_boolean exclude_section_from_property_tables (segT);
10483 static bfd_boolean section_has_property (segT, frag_predicate);
10484 static bfd_boolean section_has_xproperty (segT, frag_flags_fn);
10485 static void add_xt_block_frags
10486 (segT, xtensa_block_info **, frag_predicate, frag_predicate);
10487 static bfd_boolean xtensa_frag_flags_is_empty (const frag_flags *);
10488 static void xtensa_frag_flags_init (frag_flags *);
10489 static void get_frag_property_flags (const fragS *, frag_flags *);
10490 static bfd_vma frag_flags_to_number (const frag_flags *);
10491 static void add_xt_prop_frags (segT, xtensa_block_info **, frag_flags_fn);
10492
10493 /* Set up property tables after relaxation. */
10494
10495 void
10496 xtensa_post_relax_hook (void)
10497 {
10498 xtensa_move_seg_list_to_beginning (literal_head);
10499
10500 xtensa_find_unmarked_state_frags ();
10501 xtensa_mark_frags_for_org ();
10502 xtensa_mark_difference_of_two_symbols ();
10503
10504 xtensa_create_property_segments (get_frag_is_literal,
10505 NULL,
10506 XTENSA_LIT_SEC_NAME,
10507 xt_literal_sec);
10508 xtensa_create_xproperty_segments (get_frag_property_flags,
10509 XTENSA_PROP_SEC_NAME,
10510 xt_prop_sec);
10511
10512 if (warn_unaligned_branch_targets)
10513 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_branch_targets, 0);
10514 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_loops, 0);
10515 }
10516
10517
10518 /* This function is only meaningful after xtensa_move_literals. */
10519
10520 static bfd_boolean
10521 get_frag_is_literal (const fragS *fragP)
10522 {
10523 assert (fragP != NULL);
10524 return fragP->tc_frag_data.is_literal;
10525 }
10526
10527
10528 static void
10529 xtensa_create_property_segments (frag_predicate property_function,
10530 frag_predicate end_property_function,
10531 const char *section_name_base,
10532 xt_section_type sec_type)
10533 {
10534 segT *seclist;
10535
10536 /* Walk over all of the current segments.
10537 Walk over each fragment
10538 For each non-empty fragment,
10539 Build a property record (append where possible). */
10540
10541 for (seclist = &stdoutput->sections;
10542 seclist && *seclist;
10543 seclist = &(*seclist)->next)
10544 {
10545 segT sec = *seclist;
10546
10547 if (exclude_section_from_property_tables (sec))
10548 continue;
10549
10550 if (section_has_property (sec, property_function))
10551 {
10552 segment_info_type *xt_seg_info;
10553 xtensa_block_info **xt_blocks;
10554 segT prop_sec = xtensa_make_property_section (sec, section_name_base);
10555
10556 prop_sec->output_section = prop_sec;
10557 subseg_set (prop_sec, 0);
10558 xt_seg_info = seg_info (prop_sec);
10559 xt_blocks = &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10560
10561 /* Walk over all of the frchains here and add new sections. */
10562 add_xt_block_frags (sec, xt_blocks, property_function,
10563 end_property_function);
10564 }
10565 }
10566
10567 /* Now we fill them out.... */
10568
10569 for (seclist = &stdoutput->sections;
10570 seclist && *seclist;
10571 seclist = &(*seclist)->next)
10572 {
10573 segment_info_type *seginfo;
10574 xtensa_block_info *block;
10575 segT sec = *seclist;
10576
10577 seginfo = seg_info (sec);
10578 block = seginfo->tc_segment_info_data.blocks[sec_type];
10579
10580 if (block)
10581 {
10582 xtensa_block_info *cur_block;
10583 int num_recs = 0;
10584 bfd_size_type rec_size;
10585
10586 for (cur_block = block; cur_block; cur_block = cur_block->next)
10587 num_recs++;
10588
10589 rec_size = num_recs * 8;
10590 bfd_set_section_size (stdoutput, sec, rec_size);
10591
10592 if (num_recs)
10593 {
10594 char *frag_data;
10595 int i;
10596
10597 subseg_set (sec, 0);
10598 frag_data = frag_more (rec_size);
10599 cur_block = block;
10600 for (i = 0; i < num_recs; i++)
10601 {
10602 fixS *fix;
10603
10604 /* Write the fixup. */
10605 assert (cur_block);
10606 fix = fix_new (frag_now, i * 8, 4,
10607 section_symbol (cur_block->sec),
10608 cur_block->offset,
10609 FALSE, BFD_RELOC_32);
10610 fix->fx_file = "<internal>";
10611 fix->fx_line = 0;
10612
10613 /* Write the length. */
10614 md_number_to_chars (&frag_data[4 + i * 8],
10615 cur_block->size, 4);
10616 cur_block = cur_block->next;
10617 }
10618 frag_wane (frag_now);
10619 frag_new (0);
10620 frag_wane (frag_now);
10621 }
10622 }
10623 }
10624 }
10625
10626
10627 static void
10628 xtensa_create_xproperty_segments (frag_flags_fn flag_fn,
10629 const char *section_name_base,
10630 xt_section_type sec_type)
10631 {
10632 segT *seclist;
10633
10634 /* Walk over all of the current segments.
10635 Walk over each fragment.
10636 For each fragment that has instructions,
10637 build an instruction record (append where possible). */
10638
10639 for (seclist = &stdoutput->sections;
10640 seclist && *seclist;
10641 seclist = &(*seclist)->next)
10642 {
10643 segT sec = *seclist;
10644
10645 if (exclude_section_from_property_tables (sec))
10646 continue;
10647
10648 if (section_has_xproperty (sec, flag_fn))
10649 {
10650 segment_info_type *xt_seg_info;
10651 xtensa_block_info **xt_blocks;
10652 segT prop_sec = xtensa_make_property_section (sec, section_name_base);
10653
10654 prop_sec->output_section = prop_sec;
10655 subseg_set (prop_sec, 0);
10656 xt_seg_info = seg_info (prop_sec);
10657 xt_blocks = &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10658
10659 /* Walk over all of the frchains here and add new sections. */
10660 add_xt_prop_frags (sec, xt_blocks, flag_fn);
10661 }
10662 }
10663
10664 /* Now we fill them out.... */
10665
10666 for (seclist = &stdoutput->sections;
10667 seclist && *seclist;
10668 seclist = &(*seclist)->next)
10669 {
10670 segment_info_type *seginfo;
10671 xtensa_block_info *block;
10672 segT sec = *seclist;
10673
10674 seginfo = seg_info (sec);
10675 block = seginfo->tc_segment_info_data.blocks[sec_type];
10676
10677 if (block)
10678 {
10679 xtensa_block_info *cur_block;
10680 int num_recs = 0;
10681 bfd_size_type rec_size;
10682
10683 for (cur_block = block; cur_block; cur_block = cur_block->next)
10684 num_recs++;
10685
10686 rec_size = num_recs * (8 + 4);
10687 bfd_set_section_size (stdoutput, sec, rec_size);
10688 /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */
10689
10690 if (num_recs)
10691 {
10692 char *frag_data;
10693 int i;
10694
10695 subseg_set (sec, 0);
10696 frag_data = frag_more (rec_size);
10697 cur_block = block;
10698 for (i = 0; i < num_recs; i++)
10699 {
10700 fixS *fix;
10701
10702 /* Write the fixup. */
10703 assert (cur_block);
10704 fix = fix_new (frag_now, i * 12, 4,
10705 section_symbol (cur_block->sec),
10706 cur_block->offset,
10707 FALSE, BFD_RELOC_32);
10708 fix->fx_file = "<internal>";
10709 fix->fx_line = 0;
10710
10711 /* Write the length. */
10712 md_number_to_chars (&frag_data[4 + i * 12],
10713 cur_block->size, 4);
10714 md_number_to_chars (&frag_data[8 + i * 12],
10715 frag_flags_to_number (&cur_block->flags),
10716 4);
10717 cur_block = cur_block->next;
10718 }
10719 frag_wane (frag_now);
10720 frag_new (0);
10721 frag_wane (frag_now);
10722 }
10723 }
10724 }
10725 }
10726
10727
10728 static bfd_boolean
10729 exclude_section_from_property_tables (segT sec)
10730 {
10731 flagword flags = bfd_get_section_flags (stdoutput, sec);
10732
10733 /* Sections that don't contribute to the memory footprint are excluded. */
10734 if ((flags & SEC_DEBUGGING)
10735 || !(flags & SEC_ALLOC)
10736 || (flags & SEC_MERGE))
10737 return TRUE;
10738
10739 /* Linker cie and fde optimizations mess up property entries for
10740 eh_frame sections, but there is nothing inside them relevant to
10741 property tables anyway. */
10742 if (strcmp (sec->name, ".eh_frame") == 0)
10743 return TRUE;
10744
10745 return FALSE;
10746 }
10747
10748
10749 static bfd_boolean
10750 section_has_property (segT sec, frag_predicate property_function)
10751 {
10752 segment_info_type *seginfo = seg_info (sec);
10753 fragS *fragP;
10754
10755 if (seginfo && seginfo->frchainP)
10756 {
10757 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10758 {
10759 if (property_function (fragP)
10760 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10761 return TRUE;
10762 }
10763 }
10764 return FALSE;
10765 }
10766
10767
10768 static bfd_boolean
10769 section_has_xproperty (segT sec, frag_flags_fn property_function)
10770 {
10771 segment_info_type *seginfo = seg_info (sec);
10772 fragS *fragP;
10773
10774 if (seginfo && seginfo->frchainP)
10775 {
10776 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10777 {
10778 frag_flags prop_flags;
10779 property_function (fragP, &prop_flags);
10780 if (!xtensa_frag_flags_is_empty (&prop_flags))
10781 return TRUE;
10782 }
10783 }
10784 return FALSE;
10785 }
10786
10787
10788 /* Two types of block sections exist right now: literal and insns. */
10789
10790 static void
10791 add_xt_block_frags (segT sec,
10792 xtensa_block_info **xt_block,
10793 frag_predicate property_function,
10794 frag_predicate end_property_function)
10795 {
10796 bfd_vma seg_offset;
10797 fragS *fragP;
10798
10799 /* Build it if needed. */
10800 while (*xt_block != NULL)
10801 xt_block = &(*xt_block)->next;
10802 /* We are either at NULL at the beginning or at the end. */
10803
10804 /* Walk through the frags. */
10805 seg_offset = 0;
10806
10807 if (seg_info (sec)->frchainP)
10808 {
10809 for (fragP = seg_info (sec)->frchainP->frch_root;
10810 fragP;
10811 fragP = fragP->fr_next)
10812 {
10813 if (property_function (fragP)
10814 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10815 {
10816 if (*xt_block != NULL)
10817 {
10818 if ((*xt_block)->offset + (*xt_block)->size
10819 == fragP->fr_address)
10820 (*xt_block)->size += fragP->fr_fix;
10821 else
10822 xt_block = &((*xt_block)->next);
10823 }
10824 if (*xt_block == NULL)
10825 {
10826 xtensa_block_info *new_block = (xtensa_block_info *)
10827 xmalloc (sizeof (xtensa_block_info));
10828 new_block->sec = sec;
10829 new_block->offset = fragP->fr_address;
10830 new_block->size = fragP->fr_fix;
10831 new_block->next = NULL;
10832 xtensa_frag_flags_init (&new_block->flags);
10833 *xt_block = new_block;
10834 }
10835 if (end_property_function
10836 && end_property_function (fragP))
10837 {
10838 xt_block = &((*xt_block)->next);
10839 }
10840 }
10841 }
10842 }
10843 }
10844
10845
10846 /* Break the encapsulation of add_xt_prop_frags here. */
10847
10848 static bfd_boolean
10849 xtensa_frag_flags_is_empty (const frag_flags *prop_flags)
10850 {
10851 if (prop_flags->is_literal
10852 || prop_flags->is_insn
10853 || prop_flags->is_data
10854 || prop_flags->is_unreachable)
10855 return FALSE;
10856 return TRUE;
10857 }
10858
10859
10860 static void
10861 xtensa_frag_flags_init (frag_flags *prop_flags)
10862 {
10863 memset (prop_flags, 0, sizeof (frag_flags));
10864 }
10865
10866
10867 static void
10868 get_frag_property_flags (const fragS *fragP, frag_flags *prop_flags)
10869 {
10870 xtensa_frag_flags_init (prop_flags);
10871 if (fragP->tc_frag_data.is_literal)
10872 prop_flags->is_literal = TRUE;
10873 if (fragP->tc_frag_data.is_specific_opcode
10874 || fragP->tc_frag_data.is_no_transform)
10875 {
10876 prop_flags->is_no_transform = TRUE;
10877 if (xtensa_frag_flags_is_empty (prop_flags))
10878 prop_flags->is_data = TRUE;
10879 }
10880 if (fragP->tc_frag_data.is_unreachable)
10881 prop_flags->is_unreachable = TRUE;
10882 else if (fragP->tc_frag_data.is_insn)
10883 {
10884 prop_flags->is_insn = TRUE;
10885 if (fragP->tc_frag_data.is_loop_target)
10886 prop_flags->insn.is_loop_target = TRUE;
10887 if (fragP->tc_frag_data.is_branch_target)
10888 prop_flags->insn.is_branch_target = TRUE;
10889 if (fragP->tc_frag_data.is_no_density)
10890 prop_flags->insn.is_no_density = TRUE;
10891 if (fragP->tc_frag_data.use_absolute_literals)
10892 prop_flags->insn.is_abslit = TRUE;
10893 }
10894 if (fragP->tc_frag_data.is_align)
10895 {
10896 prop_flags->is_align = TRUE;
10897 prop_flags->alignment = fragP->tc_frag_data.alignment;
10898 if (xtensa_frag_flags_is_empty (prop_flags))
10899 prop_flags->is_data = TRUE;
10900 }
10901 }
10902
10903
10904 static bfd_vma
10905 frag_flags_to_number (const frag_flags *prop_flags)
10906 {
10907 bfd_vma num = 0;
10908 if (prop_flags->is_literal)
10909 num |= XTENSA_PROP_LITERAL;
10910 if (prop_flags->is_insn)
10911 num |= XTENSA_PROP_INSN;
10912 if (prop_flags->is_data)
10913 num |= XTENSA_PROP_DATA;
10914 if (prop_flags->is_unreachable)
10915 num |= XTENSA_PROP_UNREACHABLE;
10916 if (prop_flags->insn.is_loop_target)
10917 num |= XTENSA_PROP_INSN_LOOP_TARGET;
10918 if (prop_flags->insn.is_branch_target)
10919 {
10920 num |= XTENSA_PROP_INSN_BRANCH_TARGET;
10921 num = SET_XTENSA_PROP_BT_ALIGN (num, prop_flags->insn.bt_align_priority);
10922 }
10923
10924 if (prop_flags->insn.is_no_density)
10925 num |= XTENSA_PROP_INSN_NO_DENSITY;
10926 if (prop_flags->is_no_transform)
10927 num |= XTENSA_PROP_NO_TRANSFORM;
10928 if (prop_flags->insn.is_no_reorder)
10929 num |= XTENSA_PROP_INSN_NO_REORDER;
10930 if (prop_flags->insn.is_abslit)
10931 num |= XTENSA_PROP_INSN_ABSLIT;
10932
10933 if (prop_flags->is_align)
10934 {
10935 num |= XTENSA_PROP_ALIGN;
10936 num = SET_XTENSA_PROP_ALIGNMENT (num, prop_flags->alignment);
10937 }
10938
10939 return num;
10940 }
10941
10942
10943 static bfd_boolean
10944 xtensa_frag_flags_combinable (const frag_flags *prop_flags_1,
10945 const frag_flags *prop_flags_2)
10946 {
10947 /* Cannot combine with an end marker. */
10948
10949 if (prop_flags_1->is_literal != prop_flags_2->is_literal)
10950 return FALSE;
10951 if (prop_flags_1->is_insn != prop_flags_2->is_insn)
10952 return FALSE;
10953 if (prop_flags_1->is_data != prop_flags_2->is_data)
10954 return FALSE;
10955
10956 if (prop_flags_1->is_insn)
10957 {
10958 /* Properties of the beginning of the frag. */
10959 if (prop_flags_2->insn.is_loop_target)
10960 return FALSE;
10961 if (prop_flags_2->insn.is_branch_target)
10962 return FALSE;
10963 if (prop_flags_1->insn.is_no_density !=
10964 prop_flags_2->insn.is_no_density)
10965 return FALSE;
10966 if (prop_flags_1->is_no_transform !=
10967 prop_flags_2->is_no_transform)
10968 return FALSE;
10969 if (prop_flags_1->insn.is_no_reorder !=
10970 prop_flags_2->insn.is_no_reorder)
10971 return FALSE;
10972 if (prop_flags_1->insn.is_abslit !=
10973 prop_flags_2->insn.is_abslit)
10974 return FALSE;
10975 }
10976
10977 if (prop_flags_1->is_align)
10978 return FALSE;
10979
10980 return TRUE;
10981 }
10982
10983
10984 static bfd_vma
10985 xt_block_aligned_size (const xtensa_block_info *xt_block)
10986 {
10987 bfd_vma end_addr;
10988 unsigned align_bits;
10989
10990 if (!xt_block->flags.is_align)
10991 return xt_block->size;
10992
10993 end_addr = xt_block->offset + xt_block->size;
10994 align_bits = xt_block->flags.alignment;
10995 end_addr = ((end_addr + ((1 << align_bits) -1)) >> align_bits) << align_bits;
10996 return end_addr - xt_block->offset;
10997 }
10998
10999
11000 static bfd_boolean
11001 xtensa_xt_block_combine (xtensa_block_info *xt_block,
11002 const xtensa_block_info *xt_block_2)
11003 {
11004 if (xt_block->sec != xt_block_2->sec)
11005 return FALSE;
11006 if (xt_block->offset + xt_block_aligned_size (xt_block)
11007 != xt_block_2->offset)
11008 return FALSE;
11009
11010 if (xt_block_2->size == 0
11011 && (!xt_block_2->flags.is_unreachable
11012 || xt_block->flags.is_unreachable))
11013 {
11014 if (xt_block_2->flags.is_align
11015 && xt_block->flags.is_align)
11016 {
11017 /* Nothing needed. */
11018 if (xt_block->flags.alignment >= xt_block_2->flags.alignment)
11019 return TRUE;
11020 }
11021 else
11022 {
11023 if (xt_block_2->flags.is_align)
11024 {
11025 /* Push alignment to previous entry. */
11026 xt_block->flags.is_align = xt_block_2->flags.is_align;
11027 xt_block->flags.alignment = xt_block_2->flags.alignment;
11028 }
11029 return TRUE;
11030 }
11031 }
11032 if (!xtensa_frag_flags_combinable (&xt_block->flags,
11033 &xt_block_2->flags))
11034 return FALSE;
11035
11036 xt_block->size += xt_block_2->size;
11037
11038 if (xt_block_2->flags.is_align)
11039 {
11040 xt_block->flags.is_align = TRUE;
11041 xt_block->flags.alignment = xt_block_2->flags.alignment;
11042 }
11043
11044 return TRUE;
11045 }
11046
11047
11048 static void
11049 add_xt_prop_frags (segT sec,
11050 xtensa_block_info **xt_block,
11051 frag_flags_fn property_function)
11052 {
11053 bfd_vma seg_offset;
11054 fragS *fragP;
11055
11056 /* Build it if needed. */
11057 while (*xt_block != NULL)
11058 {
11059 xt_block = &(*xt_block)->next;
11060 }
11061 /* We are either at NULL at the beginning or at the end. */
11062
11063 /* Walk through the frags. */
11064 seg_offset = 0;
11065
11066 if (seg_info (sec)->frchainP)
11067 {
11068 for (fragP = seg_info (sec)->frchainP->frch_root; fragP;
11069 fragP = fragP->fr_next)
11070 {
11071 xtensa_block_info tmp_block;
11072 tmp_block.sec = sec;
11073 tmp_block.offset = fragP->fr_address;
11074 tmp_block.size = fragP->fr_fix;
11075 tmp_block.next = NULL;
11076 property_function (fragP, &tmp_block.flags);
11077
11078 if (!xtensa_frag_flags_is_empty (&tmp_block.flags))
11079 /* && fragP->fr_fix != 0) */
11080 {
11081 if ((*xt_block) == NULL
11082 || !xtensa_xt_block_combine (*xt_block, &tmp_block))
11083 {
11084 xtensa_block_info *new_block;
11085 if ((*xt_block) != NULL)
11086 xt_block = &(*xt_block)->next;
11087 new_block = (xtensa_block_info *)
11088 xmalloc (sizeof (xtensa_block_info));
11089 *new_block = tmp_block;
11090 *xt_block = new_block;
11091 }
11092 }
11093 }
11094 }
11095 }
11096
11097 \f
11098 /* op_placement_info_table */
11099
11100 /* op_placement_info makes it easier to determine which
11101 ops can go in which slots. */
11102
11103 static void
11104 init_op_placement_info_table (void)
11105 {
11106 xtensa_isa isa = xtensa_default_isa;
11107 xtensa_insnbuf ibuf = xtensa_insnbuf_alloc (isa);
11108 xtensa_opcode opcode;
11109 xtensa_format fmt;
11110 int slot;
11111 int num_opcodes = xtensa_isa_num_opcodes (isa);
11112
11113 op_placement_table = (op_placement_info_table)
11114 xmalloc (sizeof (op_placement_info) * num_opcodes);
11115 assert (xtensa_isa_num_formats (isa) < MAX_FORMATS);
11116
11117 for (opcode = 0; opcode < num_opcodes; opcode++)
11118 {
11119 op_placement_info *opi = &op_placement_table[opcode];
11120 /* FIXME: Make tinsn allocation dynamic. */
11121 if (xtensa_opcode_num_operands (isa, opcode) > MAX_INSN_ARGS)
11122 as_fatal (_("too many operands in instruction"));
11123 opi->narrowest = XTENSA_UNDEFINED;
11124 opi->narrowest_size = 0x7F;
11125 opi->narrowest_slot = 0;
11126 opi->formats = 0;
11127 opi->num_formats = 0;
11128 opi->issuef = 0;
11129 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
11130 {
11131 opi->slots[fmt] = 0;
11132 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
11133 {
11134 if (xtensa_opcode_encode (isa, fmt, slot, ibuf, opcode) == 0)
11135 {
11136 int fmt_length = xtensa_format_length (isa, fmt);
11137 opi->issuef++;
11138 set_bit (fmt, opi->formats);
11139 set_bit (slot, opi->slots[fmt]);
11140 if (fmt_length < opi->narrowest_size
11141 || (fmt_length == opi->narrowest_size
11142 && (xtensa_format_num_slots (isa, fmt)
11143 < xtensa_format_num_slots (isa,
11144 opi->narrowest))))
11145 {
11146 opi->narrowest = fmt;
11147 opi->narrowest_size = fmt_length;
11148 opi->narrowest_slot = slot;
11149 }
11150 }
11151 }
11152 if (opi->formats)
11153 opi->num_formats++;
11154 }
11155 }
11156 xtensa_insnbuf_free (isa, ibuf);
11157 }
11158
11159
11160 bfd_boolean
11161 opcode_fits_format_slot (xtensa_opcode opcode, xtensa_format fmt, int slot)
11162 {
11163 return bit_is_set (slot, op_placement_table[opcode].slots[fmt]);
11164 }
11165
11166
11167 /* If the opcode is available in a single slot format, return its size. */
11168
11169 static int
11170 xg_get_single_size (xtensa_opcode opcode)
11171 {
11172 return op_placement_table[opcode].narrowest_size;
11173 }
11174
11175
11176 static xtensa_format
11177 xg_get_single_format (xtensa_opcode opcode)
11178 {
11179 return op_placement_table[opcode].narrowest;
11180 }
11181
11182
11183 static int
11184 xg_get_single_slot (xtensa_opcode opcode)
11185 {
11186 return op_placement_table[opcode].narrowest_slot;
11187 }
11188
11189 \f
11190 /* Instruction Stack Functions (from "xtensa-istack.h"). */
11191
11192 void
11193 istack_init (IStack *stack)
11194 {
11195 memset (stack, 0, sizeof (IStack));
11196 stack->ninsn = 0;
11197 }
11198
11199
11200 bfd_boolean
11201 istack_empty (IStack *stack)
11202 {
11203 return (stack->ninsn == 0);
11204 }
11205
11206
11207 bfd_boolean
11208 istack_full (IStack *stack)
11209 {
11210 return (stack->ninsn == MAX_ISTACK);
11211 }
11212
11213
11214 /* Return a pointer to the top IStack entry.
11215 It is an error to call this if istack_empty () is TRUE. */
11216
11217 TInsn *
11218 istack_top (IStack *stack)
11219 {
11220 int rec = stack->ninsn - 1;
11221 assert (!istack_empty (stack));
11222 return &stack->insn[rec];
11223 }
11224
11225
11226 /* Add a new TInsn to an IStack.
11227 It is an error to call this if istack_full () is TRUE. */
11228
11229 void
11230 istack_push (IStack *stack, TInsn *insn)
11231 {
11232 int rec = stack->ninsn;
11233 assert (!istack_full (stack));
11234 stack->insn[rec] = *insn;
11235 stack->ninsn++;
11236 }
11237
11238
11239 /* Clear space for the next TInsn on the IStack and return a pointer
11240 to it. It is an error to call this if istack_full () is TRUE. */
11241
11242 TInsn *
11243 istack_push_space (IStack *stack)
11244 {
11245 int rec = stack->ninsn;
11246 TInsn *insn;
11247 assert (!istack_full (stack));
11248 insn = &stack->insn[rec];
11249 tinsn_init (insn);
11250 stack->ninsn++;
11251 return insn;
11252 }
11253
11254
11255 /* Remove the last pushed instruction. It is an error to call this if
11256 istack_empty () returns TRUE. */
11257
11258 void
11259 istack_pop (IStack *stack)
11260 {
11261 int rec = stack->ninsn - 1;
11262 assert (!istack_empty (stack));
11263 stack->ninsn--;
11264 tinsn_init (&stack->insn[rec]);
11265 }
11266
11267 \f
11268 /* TInsn functions. */
11269
11270 void
11271 tinsn_init (TInsn *dst)
11272 {
11273 memset (dst, 0, sizeof (TInsn));
11274 }
11275
11276
11277 /* Return TRUE if ANY of the operands in the insn are symbolic. */
11278
11279 static bfd_boolean
11280 tinsn_has_symbolic_operands (const TInsn *insn)
11281 {
11282 int i;
11283 int n = insn->ntok;
11284
11285 assert (insn->insn_type == ITYPE_INSN);
11286
11287 for (i = 0; i < n; ++i)
11288 {
11289 switch (insn->tok[i].X_op)
11290 {
11291 case O_register:
11292 case O_constant:
11293 break;
11294 default:
11295 return TRUE;
11296 }
11297 }
11298 return FALSE;
11299 }
11300
11301
11302 bfd_boolean
11303 tinsn_has_invalid_symbolic_operands (const TInsn *insn)
11304 {
11305 xtensa_isa isa = xtensa_default_isa;
11306 int i;
11307 int n = insn->ntok;
11308
11309 assert (insn->insn_type == ITYPE_INSN);
11310
11311 for (i = 0; i < n; ++i)
11312 {
11313 switch (insn->tok[i].X_op)
11314 {
11315 case O_register:
11316 case O_constant:
11317 break;
11318 case O_big:
11319 case O_illegal:
11320 case O_absent:
11321 /* Errors for these types are caught later. */
11322 break;
11323 case O_hi16:
11324 case O_lo16:
11325 default:
11326 /* Symbolic immediates are only allowed on the last immediate
11327 operand. At this time, CONST16 is the only opcode where we
11328 support non-PC-relative relocations. */
11329 if (i != get_relaxable_immed (insn->opcode)
11330 || (xtensa_operand_is_PCrelative (isa, insn->opcode, i) != 1
11331 && insn->opcode != xtensa_const16_opcode))
11332 {
11333 as_bad (_("invalid symbolic operand"));
11334 return TRUE;
11335 }
11336 }
11337 }
11338 return FALSE;
11339 }
11340
11341
11342 /* For assembly code with complex expressions (e.g. subtraction),
11343 we have to build them in the literal pool so that
11344 their results are calculated correctly after relaxation.
11345 The relaxation only handles expressions that
11346 boil down to SYMBOL + OFFSET. */
11347
11348 static bfd_boolean
11349 tinsn_has_complex_operands (const TInsn *insn)
11350 {
11351 int i;
11352 int n = insn->ntok;
11353 assert (insn->insn_type == ITYPE_INSN);
11354 for (i = 0; i < n; ++i)
11355 {
11356 switch (insn->tok[i].X_op)
11357 {
11358 case O_register:
11359 case O_constant:
11360 case O_symbol:
11361 case O_lo16:
11362 case O_hi16:
11363 break;
11364 default:
11365 return TRUE;
11366 }
11367 }
11368 return FALSE;
11369 }
11370
11371
11372 /* Encode a TInsn opcode and its constant operands into slotbuf.
11373 Return TRUE if there is a symbol in the immediate field. This
11374 function assumes that:
11375 1) The number of operands are correct.
11376 2) The insn_type is ITYPE_INSN.
11377 3) The opcode can be encoded in the specified format and slot.
11378 4) Operands are either O_constant or O_symbol, and all constants fit. */
11379
11380 static bfd_boolean
11381 tinsn_to_slotbuf (xtensa_format fmt,
11382 int slot,
11383 TInsn *tinsn,
11384 xtensa_insnbuf slotbuf)
11385 {
11386 xtensa_isa isa = xtensa_default_isa;
11387 xtensa_opcode opcode = tinsn->opcode;
11388 bfd_boolean has_fixup = FALSE;
11389 int noperands = xtensa_opcode_num_operands (isa, opcode);
11390 int i;
11391
11392 assert (tinsn->insn_type == ITYPE_INSN);
11393 if (noperands != tinsn->ntok)
11394 as_fatal (_("operand number mismatch"));
11395
11396 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opcode))
11397 {
11398 as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""),
11399 xtensa_opcode_name (isa, opcode), xtensa_format_name (isa, fmt));
11400 return FALSE;
11401 }
11402
11403 for (i = 0; i < noperands; i++)
11404 {
11405 expressionS *expr = &tinsn->tok[i];
11406 int rc;
11407 unsigned line;
11408 char *file_name;
11409 uint32 opnd_value;
11410
11411 switch (expr->X_op)
11412 {
11413 case O_register:
11414 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11415 break;
11416 /* The register number has already been checked in
11417 expression_maybe_register, so we don't need to check here. */
11418 opnd_value = expr->X_add_number;
11419 (void) xtensa_operand_encode (isa, opcode, i, &opnd_value);
11420 rc = xtensa_operand_set_field (isa, opcode, i, fmt, slot, slotbuf,
11421 opnd_value);
11422 if (rc != 0)
11423 as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa));
11424 break;
11425
11426 case O_constant:
11427 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11428 break;
11429 as_where (&file_name, &line);
11430 /* It is a constant and we called this function
11431 then we have to try to fit it. */
11432 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, i,
11433 expr->X_add_number, file_name, line);
11434 break;
11435
11436 default:
11437 has_fixup = TRUE;
11438 break;
11439 }
11440 }
11441
11442 return has_fixup;
11443 }
11444
11445
11446 /* Encode a single TInsn into an insnbuf. If the opcode can only be encoded
11447 into a multi-slot instruction, fill the other slots with NOPs.
11448 Return TRUE if there is a symbol in the immediate field. See also the
11449 assumptions listed for tinsn_to_slotbuf. */
11450
11451 static bfd_boolean
11452 tinsn_to_insnbuf (TInsn *tinsn, xtensa_insnbuf insnbuf)
11453 {
11454 static xtensa_insnbuf slotbuf = 0;
11455 static vliw_insn vinsn;
11456 xtensa_isa isa = xtensa_default_isa;
11457 bfd_boolean has_fixup = FALSE;
11458 int i;
11459
11460 if (!slotbuf)
11461 {
11462 slotbuf = xtensa_insnbuf_alloc (isa);
11463 xg_init_vinsn (&vinsn);
11464 }
11465
11466 xg_clear_vinsn (&vinsn);
11467
11468 bundle_tinsn (tinsn, &vinsn);
11469
11470 xtensa_format_encode (isa, vinsn.format, insnbuf);
11471
11472 for (i = 0; i < vinsn.num_slots; i++)
11473 {
11474 /* Only one slot may have a fix-up because the rest contains NOPs. */
11475 has_fixup |=
11476 tinsn_to_slotbuf (vinsn.format, i, &vinsn.slots[i], vinsn.slotbuf[i]);
11477 xtensa_format_set_slot (isa, vinsn.format, i, insnbuf, vinsn.slotbuf[i]);
11478 }
11479
11480 return has_fixup;
11481 }
11482
11483
11484 /* Check the instruction arguments. Return TRUE on failure. */
11485
11486 static bfd_boolean
11487 tinsn_check_arguments (const TInsn *insn)
11488 {
11489 xtensa_isa isa = xtensa_default_isa;
11490 xtensa_opcode opcode = insn->opcode;
11491 xtensa_regfile t1_regfile, t2_regfile;
11492 int t1_reg, t2_reg;
11493 int t1_base_reg, t1_last_reg;
11494 int t2_base_reg, t2_last_reg;
11495 char t1_inout, t2_inout;
11496 int i, j;
11497
11498 if (opcode == XTENSA_UNDEFINED)
11499 {
11500 as_bad (_("invalid opcode"));
11501 return TRUE;
11502 }
11503
11504 if (xtensa_opcode_num_operands (isa, opcode) > insn->ntok)
11505 {
11506 as_bad (_("too few operands"));
11507 return TRUE;
11508 }
11509
11510 if (xtensa_opcode_num_operands (isa, opcode) < insn->ntok)
11511 {
11512 as_bad (_("too many operands"));
11513 return TRUE;
11514 }
11515
11516 /* Check registers. */
11517 for (j = 0; j < insn->ntok; j++)
11518 {
11519 if (xtensa_operand_is_register (isa, insn->opcode, j) != 1)
11520 continue;
11521
11522 t2_regfile = xtensa_operand_regfile (isa, insn->opcode, j);
11523 t2_base_reg = insn->tok[j].X_add_number;
11524 t2_last_reg
11525 = t2_base_reg + xtensa_operand_num_regs (isa, insn->opcode, j);
11526
11527 for (i = 0; i < insn->ntok; i++)
11528 {
11529 if (i == j)
11530 continue;
11531
11532 if (xtensa_operand_is_register (isa, insn->opcode, i) != 1)
11533 continue;
11534
11535 t1_regfile = xtensa_operand_regfile (isa, insn->opcode, i);
11536
11537 if (t1_regfile != t2_regfile)
11538 continue;
11539
11540 t1_inout = xtensa_operand_inout (isa, insn->opcode, i);
11541 t2_inout = xtensa_operand_inout (isa, insn->opcode, j);
11542
11543 t1_base_reg = insn->tok[i].X_add_number;
11544 t1_last_reg = (t1_base_reg
11545 + xtensa_operand_num_regs (isa, insn->opcode, i));
11546
11547 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
11548 {
11549 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
11550 {
11551 if (t1_reg != t2_reg)
11552 continue;
11553
11554 if (t1_inout != 'i' && t2_inout != 'i')
11555 {
11556 as_bad (_("multiple writes to the same register"));
11557 return TRUE;
11558 }
11559 }
11560 }
11561 }
11562 }
11563 return FALSE;
11564 }
11565
11566
11567 /* Load an instruction from its encoded form. */
11568
11569 static void
11570 tinsn_from_chars (TInsn *tinsn, char *f, int slot)
11571 {
11572 vliw_insn vinsn;
11573
11574 xg_init_vinsn (&vinsn);
11575 vinsn_from_chars (&vinsn, f);
11576
11577 *tinsn = vinsn.slots[slot];
11578 xg_free_vinsn (&vinsn);
11579 }
11580
11581
11582 static void
11583 tinsn_from_insnbuf (TInsn *tinsn,
11584 xtensa_insnbuf slotbuf,
11585 xtensa_format fmt,
11586 int slot)
11587 {
11588 int i;
11589 xtensa_isa isa = xtensa_default_isa;
11590
11591 /* Find the immed. */
11592 tinsn_init (tinsn);
11593 tinsn->insn_type = ITYPE_INSN;
11594 tinsn->is_specific_opcode = FALSE; /* must not be specific */
11595 tinsn->opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
11596 tinsn->ntok = xtensa_opcode_num_operands (isa, tinsn->opcode);
11597 for (i = 0; i < tinsn->ntok; i++)
11598 {
11599 set_expr_const (&tinsn->tok[i],
11600 xtensa_insnbuf_get_operand (slotbuf, fmt, slot,
11601 tinsn->opcode, i));
11602 }
11603 }
11604
11605
11606 /* Read the value of the relaxable immed from the fr_symbol and fr_offset. */
11607
11608 static void
11609 tinsn_immed_from_frag (TInsn *tinsn, fragS *fragP, int slot)
11610 {
11611 xtensa_opcode opcode = tinsn->opcode;
11612 int opnum;
11613
11614 if (fragP->tc_frag_data.slot_symbols[slot])
11615 {
11616 opnum = get_relaxable_immed (opcode);
11617 assert (opnum >= 0);
11618 set_expr_symbol_offset (&tinsn->tok[opnum],
11619 fragP->tc_frag_data.slot_symbols[slot],
11620 fragP->tc_frag_data.slot_offsets[slot]);
11621 }
11622 tinsn->extra_arg = fragP->tc_frag_data.free_reg[slot];
11623 }
11624
11625
11626 static int
11627 get_num_stack_text_bytes (IStack *istack)
11628 {
11629 int i;
11630 int text_bytes = 0;
11631
11632 for (i = 0; i < istack->ninsn; i++)
11633 {
11634 TInsn *tinsn = &istack->insn[i];
11635 if (tinsn->insn_type == ITYPE_INSN)
11636 text_bytes += xg_get_single_size (tinsn->opcode);
11637 }
11638 return text_bytes;
11639 }
11640
11641
11642 static int
11643 get_num_stack_literal_bytes (IStack *istack)
11644 {
11645 int i;
11646 int lit_bytes = 0;
11647
11648 for (i = 0; i < istack->ninsn; i++)
11649 {
11650 TInsn *tinsn = &istack->insn[i];
11651 if (tinsn->insn_type == ITYPE_LITERAL && tinsn->ntok == 1)
11652 lit_bytes += 4;
11653 }
11654 return lit_bytes;
11655 }
11656
11657 \f
11658 /* vliw_insn functions. */
11659
11660 static void
11661 xg_init_vinsn (vliw_insn *v)
11662 {
11663 int i;
11664 xtensa_isa isa = xtensa_default_isa;
11665
11666 xg_clear_vinsn (v);
11667
11668 v->insnbuf = xtensa_insnbuf_alloc (isa);
11669 if (v->insnbuf == NULL)
11670 as_fatal (_("out of memory"));
11671
11672 for (i = 0; i < MAX_SLOTS; i++)
11673 {
11674 v->slotbuf[i] = xtensa_insnbuf_alloc (isa);
11675 if (v->slotbuf[i] == NULL)
11676 as_fatal (_("out of memory"));
11677 }
11678 }
11679
11680
11681 static void
11682 xg_clear_vinsn (vliw_insn *v)
11683 {
11684 int i;
11685
11686 memset (v, 0, offsetof (vliw_insn, insnbuf));
11687
11688 v->format = XTENSA_UNDEFINED;
11689 v->num_slots = 0;
11690 v->inside_bundle = FALSE;
11691
11692 if (xt_saved_debug_type != DEBUG_NONE)
11693 debug_type = xt_saved_debug_type;
11694
11695 for (i = 0; i < MAX_SLOTS; i++)
11696 v->slots[i].opcode = XTENSA_UNDEFINED;
11697 }
11698
11699
11700 static bfd_boolean
11701 vinsn_has_specific_opcodes (vliw_insn *v)
11702 {
11703 int i;
11704
11705 for (i = 0; i < v->num_slots; i++)
11706 {
11707 if (v->slots[i].is_specific_opcode)
11708 return TRUE;
11709 }
11710 return FALSE;
11711 }
11712
11713
11714 static void
11715 xg_free_vinsn (vliw_insn *v)
11716 {
11717 int i;
11718 xtensa_insnbuf_free (xtensa_default_isa, v->insnbuf);
11719 for (i = 0; i < MAX_SLOTS; i++)
11720 xtensa_insnbuf_free (xtensa_default_isa, v->slotbuf[i]);
11721 }
11722
11723
11724 /* Encode a vliw_insn into an insnbuf. Return TRUE if there are any symbolic
11725 operands. See also the assumptions listed for tinsn_to_slotbuf. */
11726
11727 static bfd_boolean
11728 vinsn_to_insnbuf (vliw_insn *vinsn,
11729 char *frag_offset,
11730 fragS *fragP,
11731 bfd_boolean record_fixup)
11732 {
11733 xtensa_isa isa = xtensa_default_isa;
11734 xtensa_format fmt = vinsn->format;
11735 xtensa_insnbuf insnbuf = vinsn->insnbuf;
11736 int slot;
11737 bfd_boolean has_fixup = FALSE;
11738
11739 xtensa_format_encode (isa, fmt, insnbuf);
11740
11741 for (slot = 0; slot < vinsn->num_slots; slot++)
11742 {
11743 TInsn *tinsn = &vinsn->slots[slot];
11744 expressionS *extra_arg = &tinsn->extra_arg;
11745 bfd_boolean tinsn_has_fixup =
11746 tinsn_to_slotbuf (vinsn->format, slot, tinsn,
11747 vinsn->slotbuf[slot]);
11748
11749 xtensa_format_set_slot (isa, fmt, slot,
11750 insnbuf, vinsn->slotbuf[slot]);
11751 if (extra_arg->X_op != O_illegal && extra_arg->X_op != O_register)
11752 {
11753 if (vinsn->num_slots != 1)
11754 as_bad (_("TLS relocation not allowed in FLIX bundle"));
11755 else if (record_fixup)
11756 /* Instructions that generate TLS relocations should always be
11757 relaxed in the front-end. If "record_fixup" is set, then this
11758 function is being called during back-end relaxation, so flag
11759 the unexpected behavior as an error. */
11760 as_bad (_("unexpected TLS relocation"));
11761 else
11762 fix_new (fragP, frag_offset - fragP->fr_literal,
11763 xtensa_format_length (isa, fmt),
11764 extra_arg->X_add_symbol, extra_arg->X_add_number,
11765 FALSE, map_operator_to_reloc (extra_arg->X_op, FALSE));
11766 }
11767 if (tinsn_has_fixup)
11768 {
11769 int i;
11770 xtensa_opcode opcode = tinsn->opcode;
11771 int noperands = xtensa_opcode_num_operands (isa, opcode);
11772 has_fixup = TRUE;
11773
11774 for (i = 0; i < noperands; i++)
11775 {
11776 expressionS* expr = &tinsn->tok[i];
11777 switch (expr->X_op)
11778 {
11779 case O_symbol:
11780 case O_lo16:
11781 case O_hi16:
11782 if (get_relaxable_immed (opcode) == i)
11783 {
11784 /* Add a fix record for the instruction, except if this
11785 function is being called prior to relaxation, i.e.,
11786 if record_fixup is false, and the instruction might
11787 be relaxed later. */
11788 if (record_fixup
11789 || tinsn->is_specific_opcode
11790 || !xg_is_relaxable_insn (tinsn, 0))
11791 {
11792 xg_add_opcode_fix (tinsn, i, fmt, slot, expr, fragP,
11793 frag_offset - fragP->fr_literal);
11794 }
11795 else
11796 {
11797 if (expr->X_op != O_symbol)
11798 as_bad (_("invalid operand"));
11799 tinsn->symbol = expr->X_add_symbol;
11800 tinsn->offset = expr->X_add_number;
11801 }
11802 }
11803 else
11804 as_bad (_("symbolic operand not allowed"));
11805 break;
11806
11807 case O_constant:
11808 case O_register:
11809 break;
11810
11811 default:
11812 as_bad (_("expression too complex"));
11813 break;
11814 }
11815 }
11816 }
11817 }
11818
11819 return has_fixup;
11820 }
11821
11822
11823 static void
11824 vinsn_from_chars (vliw_insn *vinsn, char *f)
11825 {
11826 static xtensa_insnbuf insnbuf = NULL;
11827 static xtensa_insnbuf slotbuf = NULL;
11828 int i;
11829 xtensa_format fmt;
11830 xtensa_isa isa = xtensa_default_isa;
11831
11832 if (!insnbuf)
11833 {
11834 insnbuf = xtensa_insnbuf_alloc (isa);
11835 slotbuf = xtensa_insnbuf_alloc (isa);
11836 }
11837
11838 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) f, 0);
11839 fmt = xtensa_format_decode (isa, insnbuf);
11840 if (fmt == XTENSA_UNDEFINED)
11841 as_fatal (_("cannot decode instruction format"));
11842 vinsn->format = fmt;
11843 vinsn->num_slots = xtensa_format_num_slots (isa, fmt);
11844
11845 for (i = 0; i < vinsn->num_slots; i++)
11846 {
11847 TInsn *tinsn = &vinsn->slots[i];
11848 xtensa_format_get_slot (isa, fmt, i, insnbuf, slotbuf);
11849 tinsn_from_insnbuf (tinsn, slotbuf, fmt, i);
11850 }
11851 }
11852
11853 \f
11854 /* Expression utilities. */
11855
11856 /* Return TRUE if the expression is an integer constant. */
11857
11858 bfd_boolean
11859 expr_is_const (const expressionS *s)
11860 {
11861 return (s->X_op == O_constant);
11862 }
11863
11864
11865 /* Get the expression constant.
11866 Calling this is illegal if expr_is_const () returns TRUE. */
11867
11868 offsetT
11869 get_expr_const (const expressionS *s)
11870 {
11871 assert (expr_is_const (s));
11872 return s->X_add_number;
11873 }
11874
11875
11876 /* Set the expression to a constant value. */
11877
11878 void
11879 set_expr_const (expressionS *s, offsetT val)
11880 {
11881 s->X_op = O_constant;
11882 s->X_add_number = val;
11883 s->X_add_symbol = NULL;
11884 s->X_op_symbol = NULL;
11885 }
11886
11887
11888 bfd_boolean
11889 expr_is_register (const expressionS *s)
11890 {
11891 return (s->X_op == O_register);
11892 }
11893
11894
11895 /* Get the expression constant.
11896 Calling this is illegal if expr_is_const () returns TRUE. */
11897
11898 offsetT
11899 get_expr_register (const expressionS *s)
11900 {
11901 assert (expr_is_register (s));
11902 return s->X_add_number;
11903 }
11904
11905
11906 /* Set the expression to a symbol + constant offset. */
11907
11908 void
11909 set_expr_symbol_offset (expressionS *s, symbolS *sym, offsetT offset)
11910 {
11911 s->X_op = O_symbol;
11912 s->X_add_symbol = sym;
11913 s->X_op_symbol = NULL; /* unused */
11914 s->X_add_number = offset;
11915 }
11916
11917
11918 /* Return TRUE if the two expressions are equal. */
11919
11920 bfd_boolean
11921 expr_is_equal (expressionS *s1, expressionS *s2)
11922 {
11923 if (s1->X_op != s2->X_op)
11924 return FALSE;
11925 if (s1->X_add_symbol != s2->X_add_symbol)
11926 return FALSE;
11927 if (s1->X_op_symbol != s2->X_op_symbol)
11928 return FALSE;
11929 if (s1->X_add_number != s2->X_add_number)
11930 return FALSE;
11931 return TRUE;
11932 }
11933
11934
11935 static void
11936 copy_expr (expressionS *dst, const expressionS *src)
11937 {
11938 memcpy (dst, src, sizeof (expressionS));
11939 }
11940
11941 \f
11942 /* Support for the "--rename-section" option. */
11943
11944 struct rename_section_struct
11945 {
11946 char *old_name;
11947 char *new_name;
11948 struct rename_section_struct *next;
11949 };
11950
11951 static struct rename_section_struct *section_rename;
11952
11953
11954 /* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add
11955 entries to the section_rename list. Note: Specifying multiple
11956 renamings separated by colons is not documented and is retained only
11957 for backward compatibility. */
11958
11959 static void
11960 build_section_rename (const char *arg)
11961 {
11962 struct rename_section_struct *r;
11963 char *this_arg = NULL;
11964 char *next_arg = NULL;
11965
11966 for (this_arg = xstrdup (arg); this_arg != NULL; this_arg = next_arg)
11967 {
11968 char *old_name, *new_name;
11969
11970 if (this_arg)
11971 {
11972 next_arg = strchr (this_arg, ':');
11973 if (next_arg)
11974 {
11975 *next_arg = '\0';
11976 next_arg++;
11977 }
11978 }
11979
11980 old_name = this_arg;
11981 new_name = strchr (this_arg, '=');
11982
11983 if (*old_name == '\0')
11984 {
11985 as_warn (_("ignoring extra '-rename-section' delimiter ':'"));
11986 continue;
11987 }
11988 if (!new_name || new_name[1] == '\0')
11989 {
11990 as_warn (_("ignoring invalid '-rename-section' specification: '%s'"),
11991 old_name);
11992 continue;
11993 }
11994 *new_name = '\0';
11995 new_name++;
11996
11997 /* Check for invalid section renaming. */
11998 for (r = section_rename; r != NULL; r = r->next)
11999 {
12000 if (strcmp (r->old_name, old_name) == 0)
12001 as_bad (_("section %s renamed multiple times"), old_name);
12002 if (strcmp (r->new_name, new_name) == 0)
12003 as_bad (_("multiple sections remapped to output section %s"),
12004 new_name);
12005 }
12006
12007 /* Now add it. */
12008 r = (struct rename_section_struct *)
12009 xmalloc (sizeof (struct rename_section_struct));
12010 r->old_name = xstrdup (old_name);
12011 r->new_name = xstrdup (new_name);
12012 r->next = section_rename;
12013 section_rename = r;
12014 }
12015 }
12016
12017
12018 char *
12019 xtensa_section_rename (char *name)
12020 {
12021 struct rename_section_struct *r = section_rename;
12022
12023 for (r = section_rename; r != NULL; r = r->next)
12024 {
12025 if (strcmp (r->old_name, name) == 0)
12026 return r->new_name;
12027 }
12028
12029 return name;
12030 }