]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-xtensa.c
xtensa: fix gas trampolines regression
[thirdparty/binutils-gdb.git] / gas / config / tc-xtensa.c
1 /* tc-xtensa.c -- Assemble Xtensa instructions.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "as.h"
22 #include <limits.h>
23 #include "sb.h"
24 #include "safe-ctype.h"
25 #include "tc-xtensa.h"
26 #include "subsegs.h"
27 #include "xtensa-relax.h"
28 #include "dwarf2dbg.h"
29 #include "xtensa-istack.h"
30 #include "struc-symbol.h"
31 #include "xtensa-config.h"
32
33 /* Provide default values for new configuration settings. */
34 #ifndef XSHAL_ABI
35 #define XSHAL_ABI 0
36 #endif
37
38 #ifndef uint32
39 #define uint32 unsigned int
40 #endif
41 #ifndef int32
42 #define int32 signed int
43 #endif
44
45 /* Notes:
46
47 Naming conventions (used somewhat inconsistently):
48 The xtensa_ functions are exported
49 The xg_ functions are internal
50
51 We also have a couple of different extensibility mechanisms.
52 1) The idiom replacement:
53 This is used when a line is first parsed to
54 replace an instruction pattern with another instruction
55 It is currently limited to replacements of instructions
56 with constant operands.
57 2) The xtensa-relax.c mechanism that has stronger instruction
58 replacement patterns. When an instruction's immediate field
59 does not fit the next instruction sequence is attempted.
60 In addition, "narrow" opcodes are supported this way. */
61
62
63 /* Define characters with special meanings to GAS. */
64 const char comment_chars[] = "#";
65 const char line_comment_chars[] = "#";
66 const char line_separator_chars[] = ";";
67 const char EXP_CHARS[] = "eE";
68 const char FLT_CHARS[] = "rRsSfFdDxXpP";
69
70
71 /* Flags to indicate whether the hardware supports the density and
72 absolute literals options. */
73
74 bfd_boolean density_supported = XCHAL_HAVE_DENSITY;
75 bfd_boolean absolute_literals_supported = XSHAL_USE_ABSOLUTE_LITERALS;
76
77 static vliw_insn cur_vinsn;
78
79 unsigned xtensa_num_pipe_stages;
80 unsigned xtensa_fetch_width = XCHAL_INST_FETCH_WIDTH;
81
82 static enum debug_info_type xt_saved_debug_type = DEBUG_NONE;
83
84 /* Some functions are only valid in the front end. This variable
85 allows us to assert that we haven't crossed over into the
86 back end. */
87 static bfd_boolean past_xtensa_end = FALSE;
88
89 /* Flags for properties of the last instruction in a segment. */
90 #define FLAG_IS_A0_WRITER 0x1
91 #define FLAG_IS_BAD_LOOPEND 0x2
92
93
94 /* We define a special segment names ".literal" to place literals
95 into. The .fini and .init sections are special because they
96 contain code that is moved together by the linker. We give them
97 their own special .fini.literal and .init.literal sections. */
98
99 #define LITERAL_SECTION_NAME xtensa_section_rename (".literal")
100 #define LIT4_SECTION_NAME xtensa_section_rename (".lit4")
101 #define INIT_SECTION_NAME xtensa_section_rename (".init")
102 #define FINI_SECTION_NAME xtensa_section_rename (".fini")
103
104
105 /* This type is used for the directive_stack to keep track of the
106 state of the literal collection pools. If lit_prefix is set, it is
107 used to determine the literal section names; otherwise, the literal
108 sections are determined based on the current text section. The
109 lit_seg and lit4_seg fields cache these literal sections, with the
110 current_text_seg field used a tag to indicate whether the cached
111 values are valid. */
112
113 typedef struct lit_state_struct
114 {
115 char *lit_prefix;
116 segT current_text_seg;
117 segT lit_seg;
118 segT lit4_seg;
119 } lit_state;
120
121 static lit_state default_lit_sections;
122
123
124 /* We keep a list of literal segments. The seg_list type is the node
125 for this list. The literal_head pointer is the head of the list,
126 with the literal_head_h dummy node at the start. */
127
128 typedef struct seg_list_struct
129 {
130 struct seg_list_struct *next;
131 segT seg;
132 } seg_list;
133
134 static seg_list literal_head_h;
135 static seg_list *literal_head = &literal_head_h;
136
137
138 /* Lists of symbols. We keep a list of symbols that label the current
139 instruction, so that we can adjust the symbols when inserting alignment
140 for various instructions. We also keep a list of all the symbols on
141 literals, so that we can fix up those symbols when the literals are
142 later moved into the text sections. */
143
144 typedef struct sym_list_struct
145 {
146 struct sym_list_struct *next;
147 symbolS *sym;
148 } sym_list;
149
150 static sym_list *insn_labels = NULL;
151 static sym_list *free_insn_labels = NULL;
152 static sym_list *saved_insn_labels = NULL;
153
154 static sym_list *literal_syms;
155
156
157 /* Flags to determine whether to prefer const16 or l32r
158 if both options are available. */
159 int prefer_const16 = 0;
160 int prefer_l32r = 0;
161
162 /* Global flag to indicate when we are emitting literals. */
163 int generating_literals = 0;
164
165 /* The following PROPERTY table definitions are copied from
166 <elf/xtensa.h> and must be kept in sync with the code there. */
167
168 /* Flags in the property tables to specify whether blocks of memory
169 are literals, instructions, data, or unreachable. For
170 instructions, blocks that begin loop targets and branch targets are
171 designated. Blocks that do not allow density, instruction
172 reordering or transformation are also specified. Finally, for
173 branch targets, branch target alignment priority is included.
174 Alignment of the next block is specified in the current block
175 and the size of the current block does not include any fill required
176 to align to the next block. */
177
178 #define XTENSA_PROP_LITERAL 0x00000001
179 #define XTENSA_PROP_INSN 0x00000002
180 #define XTENSA_PROP_DATA 0x00000004
181 #define XTENSA_PROP_UNREACHABLE 0x00000008
182 /* Instruction only properties at beginning of code. */
183 #define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010
184 #define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020
185 /* Instruction only properties about code. */
186 #define XTENSA_PROP_INSN_NO_DENSITY 0x00000040
187 #define XTENSA_PROP_INSN_NO_REORDER 0x00000080
188 /* Historically, NO_TRANSFORM was a property of instructions,
189 but it should apply to literals under certain circumstances. */
190 #define XTENSA_PROP_NO_TRANSFORM 0x00000100
191
192 /* Branch target alignment information. This transmits information
193 to the linker optimization about the priority of aligning a
194 particular block for branch target alignment: None, low priority,
195 high priority, or required. These only need to be checked in
196 instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET.
197 Common usage is
198
199 switch (GET_XTENSA_PROP_BT_ALIGN (flags))
200 case XTENSA_PROP_BT_ALIGN_NONE:
201 case XTENSA_PROP_BT_ALIGN_LOW:
202 case XTENSA_PROP_BT_ALIGN_HIGH:
203 case XTENSA_PROP_BT_ALIGN_REQUIRE:
204 */
205 #define XTENSA_PROP_BT_ALIGN_MASK 0x00000600
206
207 /* No branch target alignment. */
208 #define XTENSA_PROP_BT_ALIGN_NONE 0x0
209 /* Low priority branch target alignment. */
210 #define XTENSA_PROP_BT_ALIGN_LOW 0x1
211 /* High priority branch target alignment. */
212 #define XTENSA_PROP_BT_ALIGN_HIGH 0x2
213 /* Required branch target alignment. */
214 #define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3
215
216 #define GET_XTENSA_PROP_BT_ALIGN(flag) \
217 (((unsigned) ((flag) & (XTENSA_PROP_BT_ALIGN_MASK))) >> 9)
218 #define SET_XTENSA_PROP_BT_ALIGN(flag, align) \
219 (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \
220 (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK))
221
222
223 /* Alignment is specified in the block BEFORE the one that needs
224 alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to
225 get the required alignment specified as a power of 2. Use
226 SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required
227 alignment. Be careful of side effects since the SET will evaluate
228 flags twice. Also, note that the SIZE of a block in the property
229 table does not include the alignment size, so the alignment fill
230 must be calculated to determine if two blocks are contiguous.
231 TEXT_ALIGN is not currently implemented but is a placeholder for a
232 possible future implementation. */
233
234 #define XTENSA_PROP_ALIGN 0x00000800
235
236 #define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000
237
238 #define GET_XTENSA_PROP_ALIGNMENT(flag) \
239 (((unsigned) ((flag) & (XTENSA_PROP_ALIGNMENT_MASK))) >> 12)
240 #define SET_XTENSA_PROP_ALIGNMENT(flag, align) \
241 (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \
242 (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK))
243
244 #define XTENSA_PROP_INSN_ABSLIT 0x00020000
245
246
247 /* Structure for saving instruction and alignment per-fragment data
248 that will be written to the object file. This structure is
249 equivalent to the actual data that will be written out to the file
250 but is easier to use. We provide a conversion to file flags
251 in frag_flags_to_number. */
252
253 typedef struct frag_flags_struct frag_flags;
254
255 struct frag_flags_struct
256 {
257 /* is_literal should only be used after xtensa_move_literals.
258 If you need to check if you are generating a literal fragment,
259 then use the generating_literals global. */
260
261 unsigned is_literal : 1;
262 unsigned is_insn : 1;
263 unsigned is_data : 1;
264 unsigned is_unreachable : 1;
265
266 /* is_specific_opcode implies no_transform. */
267 unsigned is_no_transform : 1;
268
269 struct
270 {
271 unsigned is_loop_target : 1;
272 unsigned is_branch_target : 1; /* Branch targets have a priority. */
273 unsigned bt_align_priority : 2;
274
275 unsigned is_no_density : 1;
276 /* no_longcalls flag does not need to be placed in the object file. */
277
278 unsigned is_no_reorder : 1;
279
280 /* Uses absolute literal addressing for l32r. */
281 unsigned is_abslit : 1;
282 } insn;
283 unsigned is_align : 1;
284 unsigned alignment : 5;
285 };
286
287
288 /* Structure for saving information about a block of property data
289 for frags that have the same flags. */
290 struct xtensa_block_info_struct
291 {
292 segT sec;
293 bfd_vma offset;
294 size_t size;
295 frag_flags flags;
296 struct xtensa_block_info_struct *next;
297 };
298
299
300 /* Structure for saving the current state before emitting literals. */
301 typedef struct emit_state_struct
302 {
303 const char *name;
304 segT now_seg;
305 subsegT now_subseg;
306 int generating_literals;
307 } emit_state;
308
309
310 /* Opcode placement information */
311
312 typedef unsigned long long bitfield;
313 #define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit)))
314 #define set_bit(bit, bf) ((bf) |= (0x01ll << (bit)))
315 #define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit)))
316
317 #define MAX_FORMATS 32
318
319 typedef struct op_placement_info_struct
320 {
321 int num_formats;
322 /* A number describing how restrictive the issue is for this
323 opcode. For example, an opcode that fits lots of different
324 formats has a high freedom, as does an opcode that fits
325 only one format but many slots in that format. The most
326 restrictive is the opcode that fits only one slot in one
327 format. */
328 int issuef;
329 xtensa_format narrowest;
330 char narrowest_size;
331 char narrowest_slot;
332
333 /* formats is a bitfield with the Nth bit set
334 if the opcode fits in the Nth xtensa_format. */
335 bitfield formats;
336
337 /* slots[N]'s Mth bit is set if the op fits in the
338 Mth slot of the Nth xtensa_format. */
339 bitfield slots[MAX_FORMATS];
340
341 /* A count of the number of slots in a given format
342 an op can fit (i.e., the bitcount of the slot field above). */
343 char slots_in_format[MAX_FORMATS];
344
345 } op_placement_info, *op_placement_info_table;
346
347 op_placement_info_table op_placement_table;
348
349
350 /* Extra expression types. */
351
352 #define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */
353 #define O_hi16 O_md2 /* use high 16 bits of symbolic value */
354 #define O_lo16 O_md3 /* use low 16 bits of symbolic value */
355 #define O_pcrel O_md4 /* value is a PC-relative offset */
356 #define O_tlsfunc O_md5 /* TLS_FUNC/TLSDESC_FN relocation */
357 #define O_tlsarg O_md6 /* TLS_ARG/TLSDESC_ARG relocation */
358 #define O_tlscall O_md7 /* TLS_CALL relocation */
359 #define O_tpoff O_md8 /* TPOFF relocation */
360 #define O_dtpoff O_md9 /* DTPOFF relocation */
361
362 struct suffix_reloc_map
363 {
364 char *suffix;
365 int length;
366 bfd_reloc_code_real_type reloc;
367 unsigned char operator;
368 };
369
370 #define SUFFIX_MAP(str, reloc, op) { str, sizeof (str) - 1, reloc, op }
371
372 static struct suffix_reloc_map suffix_relocs[] =
373 {
374 SUFFIX_MAP ("l", BFD_RELOC_LO16, O_lo16),
375 SUFFIX_MAP ("h", BFD_RELOC_HI16, O_hi16),
376 SUFFIX_MAP ("plt", BFD_RELOC_XTENSA_PLT, O_pltrel),
377 SUFFIX_MAP ("pcrel", BFD_RELOC_32_PCREL, O_pcrel),
378 SUFFIX_MAP ("tlsfunc", BFD_RELOC_XTENSA_TLS_FUNC, O_tlsfunc),
379 SUFFIX_MAP ("tlsarg", BFD_RELOC_XTENSA_TLS_ARG, O_tlsarg),
380 SUFFIX_MAP ("tlscall", BFD_RELOC_XTENSA_TLS_CALL, O_tlscall),
381 SUFFIX_MAP ("tpoff", BFD_RELOC_XTENSA_TLS_TPOFF, O_tpoff),
382 SUFFIX_MAP ("dtpoff", BFD_RELOC_XTENSA_TLS_DTPOFF, O_dtpoff),
383 { (char *) 0, 0, BFD_RELOC_UNUSED, 0 }
384 };
385
386
387 /* Directives. */
388
389 typedef enum
390 {
391 directive_none = 0,
392 directive_literal,
393 directive_density,
394 directive_transform,
395 directive_freeregs,
396 directive_longcalls,
397 directive_literal_prefix,
398 directive_schedule,
399 directive_absolute_literals,
400 directive_last_directive
401 } directiveE;
402
403 typedef struct
404 {
405 const char *name;
406 bfd_boolean can_be_negated;
407 } directive_infoS;
408
409 const directive_infoS directive_info[] =
410 {
411 { "none", FALSE },
412 { "literal", FALSE },
413 { "density", TRUE },
414 { "transform", TRUE },
415 { "freeregs", FALSE },
416 { "longcalls", TRUE },
417 { "literal_prefix", FALSE },
418 { "schedule", TRUE },
419 { "absolute-literals", TRUE }
420 };
421
422 bfd_boolean directive_state[] =
423 {
424 FALSE, /* none */
425 FALSE, /* literal */
426 #if !XCHAL_HAVE_DENSITY
427 FALSE, /* density */
428 #else
429 TRUE, /* density */
430 #endif
431 TRUE, /* transform */
432 FALSE, /* freeregs */
433 FALSE, /* longcalls */
434 FALSE, /* literal_prefix */
435 FALSE, /* schedule */
436 #if XSHAL_USE_ABSOLUTE_LITERALS
437 TRUE /* absolute_literals */
438 #else
439 FALSE /* absolute_literals */
440 #endif
441 };
442
443
444 /* Directive functions. */
445
446 static void xtensa_begin_directive (int);
447 static void xtensa_end_directive (int);
448 static void xtensa_literal_prefix (void);
449 static void xtensa_literal_position (int);
450 static void xtensa_literal_pseudo (int);
451 static void xtensa_frequency_pseudo (int);
452 static void xtensa_elf_cons (int);
453 static void xtensa_leb128 (int);
454
455 /* Parsing and Idiom Translation. */
456
457 static bfd_reloc_code_real_type xtensa_elf_suffix (char **, expressionS *);
458
459 /* Various Other Internal Functions. */
460
461 extern bfd_boolean xg_is_single_relaxable_insn (TInsn *, TInsn *, bfd_boolean);
462 static bfd_boolean xg_build_to_insn (TInsn *, TInsn *, BuildInstr *);
463 static void xtensa_mark_literal_pool_location (void);
464 static addressT get_expanded_loop_offset (xtensa_opcode);
465 static fragS *get_literal_pool_location (segT);
466 static void set_literal_pool_location (segT, fragS *);
467 static void xtensa_set_frag_assembly_state (fragS *);
468 static void finish_vinsn (vliw_insn *);
469 static bfd_boolean emit_single_op (TInsn *);
470 static int total_frag_text_expansion (fragS *);
471 static bfd_boolean use_trampolines = TRUE;
472 static void xtensa_check_frag_count (void);
473 static void xtensa_create_trampoline_frag (bfd_boolean);
474 static void xtensa_maybe_create_trampoline_frag (void);
475 struct trampoline_frag;
476 static int init_trampoline_frag (struct trampoline_frag *);
477
478 /* Alignment Functions. */
479
480 static int get_text_align_power (unsigned);
481 static int get_text_align_max_fill_size (int, bfd_boolean, bfd_boolean);
482 static int branch_align_power (segT);
483
484 /* Helpers for xtensa_relax_frag(). */
485
486 static long relax_frag_add_nop (fragS *);
487
488 /* Accessors for additional per-subsegment information. */
489
490 static unsigned get_last_insn_flags (segT, subsegT);
491 static void set_last_insn_flags (segT, subsegT, unsigned, bfd_boolean);
492 static float get_subseg_total_freq (segT, subsegT);
493 static float get_subseg_target_freq (segT, subsegT);
494 static void set_subseg_freq (segT, subsegT, float, float);
495
496 /* Segment list functions. */
497
498 static void xtensa_move_literals (void);
499 static void xtensa_reorder_segments (void);
500 static void xtensa_switch_to_literal_fragment (emit_state *);
501 static void xtensa_switch_to_non_abs_literal_fragment (emit_state *);
502 static void xtensa_switch_section_emit_state (emit_state *, segT, subsegT);
503 static void xtensa_restore_emit_state (emit_state *);
504 static segT cache_literal_section (bfd_boolean);
505
506 /* Import from elf32-xtensa.c in BFD library. */
507
508 extern asection *xtensa_make_property_section (asection *, const char *);
509
510 /* op_placement_info functions. */
511
512 static void init_op_placement_info_table (void);
513 extern bfd_boolean opcode_fits_format_slot (xtensa_opcode, xtensa_format, int);
514 static int xg_get_single_size (xtensa_opcode);
515 static xtensa_format xg_get_single_format (xtensa_opcode);
516 static int xg_get_single_slot (xtensa_opcode);
517
518 /* TInsn and IStack functions. */
519
520 static bfd_boolean tinsn_has_symbolic_operands (const TInsn *);
521 static bfd_boolean tinsn_has_invalid_symbolic_operands (const TInsn *);
522 static bfd_boolean tinsn_has_complex_operands (const TInsn *);
523 static bfd_boolean tinsn_to_insnbuf (TInsn *, xtensa_insnbuf);
524 static bfd_boolean tinsn_check_arguments (const TInsn *);
525 static void tinsn_from_chars (TInsn *, char *, int);
526 static void tinsn_immed_from_frag (TInsn *, fragS *, int);
527 static int get_num_stack_text_bytes (IStack *);
528 static int get_num_stack_literal_bytes (IStack *);
529 static bfd_boolean tinsn_to_slotbuf (xtensa_format, int, TInsn *, xtensa_insnbuf);
530
531 /* vliw_insn functions. */
532
533 static void xg_init_vinsn (vliw_insn *);
534 static void xg_copy_vinsn (vliw_insn *, vliw_insn *);
535 static void xg_clear_vinsn (vliw_insn *);
536 static bfd_boolean vinsn_has_specific_opcodes (vliw_insn *);
537 static void xg_free_vinsn (vliw_insn *);
538 static bfd_boolean vinsn_to_insnbuf
539 (vliw_insn *, char *, fragS *, bfd_boolean);
540 static void vinsn_from_chars (vliw_insn *, char *);
541
542 /* Expression Utilities. */
543
544 bfd_boolean expr_is_const (const expressionS *);
545 offsetT get_expr_const (const expressionS *);
546 void set_expr_const (expressionS *, offsetT);
547 bfd_boolean expr_is_register (const expressionS *);
548 offsetT get_expr_register (const expressionS *);
549 void set_expr_symbol_offset (expressionS *, symbolS *, offsetT);
550 bfd_boolean expr_is_equal (expressionS *, expressionS *);
551 static void copy_expr (expressionS *, const expressionS *);
552
553 /* Section renaming. */
554
555 static void build_section_rename (const char *);
556
557
558 /* ISA imported from bfd. */
559 extern xtensa_isa xtensa_default_isa;
560
561 extern int target_big_endian;
562
563 static xtensa_opcode xtensa_addi_opcode;
564 static xtensa_opcode xtensa_addmi_opcode;
565 static xtensa_opcode xtensa_call0_opcode;
566 static xtensa_opcode xtensa_call4_opcode;
567 static xtensa_opcode xtensa_call8_opcode;
568 static xtensa_opcode xtensa_call12_opcode;
569 static xtensa_opcode xtensa_callx0_opcode;
570 static xtensa_opcode xtensa_callx4_opcode;
571 static xtensa_opcode xtensa_callx8_opcode;
572 static xtensa_opcode xtensa_callx12_opcode;
573 static xtensa_opcode xtensa_const16_opcode;
574 static xtensa_opcode xtensa_entry_opcode;
575 static xtensa_opcode xtensa_extui_opcode;
576 static xtensa_opcode xtensa_movi_opcode;
577 static xtensa_opcode xtensa_movi_n_opcode;
578 static xtensa_opcode xtensa_isync_opcode;
579 static xtensa_opcode xtensa_j_opcode;
580 static xtensa_opcode xtensa_jx_opcode;
581 static xtensa_opcode xtensa_l32r_opcode;
582 static xtensa_opcode xtensa_loop_opcode;
583 static xtensa_opcode xtensa_loopnez_opcode;
584 static xtensa_opcode xtensa_loopgtz_opcode;
585 static xtensa_opcode xtensa_nop_opcode;
586 static xtensa_opcode xtensa_nop_n_opcode;
587 static xtensa_opcode xtensa_or_opcode;
588 static xtensa_opcode xtensa_ret_opcode;
589 static xtensa_opcode xtensa_ret_n_opcode;
590 static xtensa_opcode xtensa_retw_opcode;
591 static xtensa_opcode xtensa_retw_n_opcode;
592 static xtensa_opcode xtensa_rsr_lcount_opcode;
593 static xtensa_opcode xtensa_waiti_opcode;
594 static int config_max_slots = 0;
595
596 \f
597 /* Command-line Options. */
598
599 bfd_boolean use_literal_section = TRUE;
600 enum flix_level produce_flix = FLIX_ALL;
601 static bfd_boolean align_targets = TRUE;
602 static bfd_boolean warn_unaligned_branch_targets = FALSE;
603 static bfd_boolean has_a0_b_retw = FALSE;
604 static bfd_boolean workaround_a0_b_retw = FALSE;
605 static bfd_boolean workaround_b_j_loop_end = FALSE;
606 static bfd_boolean workaround_short_loop = FALSE;
607 static bfd_boolean maybe_has_short_loop = FALSE;
608 static bfd_boolean workaround_close_loop_end = FALSE;
609 static bfd_boolean maybe_has_close_loop_end = FALSE;
610 static bfd_boolean enforce_three_byte_loop_align = FALSE;
611
612 /* When workaround_short_loops is TRUE, all loops with early exits must
613 have at least 3 instructions. workaround_all_short_loops is a modifier
614 to the workaround_short_loop flag. In addition to the
615 workaround_short_loop actions, all straightline loopgtz and loopnez
616 must have at least 3 instructions. */
617
618 static bfd_boolean workaround_all_short_loops = FALSE;
619
620
621 static void
622 xtensa_setup_hw_workarounds (int earliest, int latest)
623 {
624 if (earliest > latest)
625 as_fatal (_("illegal range of target hardware versions"));
626
627 /* Enable all workarounds for pre-T1050.0 hardware. */
628 if (earliest < 105000 || latest < 105000)
629 {
630 workaround_a0_b_retw |= TRUE;
631 workaround_b_j_loop_end |= TRUE;
632 workaround_short_loop |= TRUE;
633 workaround_close_loop_end |= TRUE;
634 workaround_all_short_loops |= TRUE;
635 enforce_three_byte_loop_align = TRUE;
636 }
637 }
638
639
640 enum
641 {
642 option_density = OPTION_MD_BASE,
643 option_no_density,
644
645 option_flix,
646 option_no_generate_flix,
647 option_no_flix,
648
649 option_relax,
650 option_no_relax,
651
652 option_link_relax,
653 option_no_link_relax,
654
655 option_generics,
656 option_no_generics,
657
658 option_transform,
659 option_no_transform,
660
661 option_text_section_literals,
662 option_no_text_section_literals,
663
664 option_absolute_literals,
665 option_no_absolute_literals,
666
667 option_align_targets,
668 option_no_align_targets,
669
670 option_warn_unaligned_targets,
671
672 option_longcalls,
673 option_no_longcalls,
674
675 option_workaround_a0_b_retw,
676 option_no_workaround_a0_b_retw,
677
678 option_workaround_b_j_loop_end,
679 option_no_workaround_b_j_loop_end,
680
681 option_workaround_short_loop,
682 option_no_workaround_short_loop,
683
684 option_workaround_all_short_loops,
685 option_no_workaround_all_short_loops,
686
687 option_workaround_close_loop_end,
688 option_no_workaround_close_loop_end,
689
690 option_no_workarounds,
691
692 option_rename_section_name,
693
694 option_prefer_l32r,
695 option_prefer_const16,
696
697 option_target_hardware,
698
699 option_trampolines,
700 option_no_trampolines,
701 };
702
703 const char *md_shortopts = "";
704
705 struct option md_longopts[] =
706 {
707 { "density", no_argument, NULL, option_density },
708 { "no-density", no_argument, NULL, option_no_density },
709
710 { "flix", no_argument, NULL, option_flix },
711 { "no-generate-flix", no_argument, NULL, option_no_generate_flix },
712 { "no-allow-flix", no_argument, NULL, option_no_flix },
713
714 /* Both "relax" and "generics" are deprecated and treated as equivalent
715 to the "transform" option. */
716 { "relax", no_argument, NULL, option_relax },
717 { "no-relax", no_argument, NULL, option_no_relax },
718 { "generics", no_argument, NULL, option_generics },
719 { "no-generics", no_argument, NULL, option_no_generics },
720
721 { "transform", no_argument, NULL, option_transform },
722 { "no-transform", no_argument, NULL, option_no_transform },
723 { "text-section-literals", no_argument, NULL, option_text_section_literals },
724 { "no-text-section-literals", no_argument, NULL,
725 option_no_text_section_literals },
726 { "absolute-literals", no_argument, NULL, option_absolute_literals },
727 { "no-absolute-literals", no_argument, NULL, option_no_absolute_literals },
728 /* This option was changed from -align-target to -target-align
729 because it conflicted with the "-al" option. */
730 { "target-align", no_argument, NULL, option_align_targets },
731 { "no-target-align", no_argument, NULL, option_no_align_targets },
732 { "warn-unaligned-targets", no_argument, NULL,
733 option_warn_unaligned_targets },
734 { "longcalls", no_argument, NULL, option_longcalls },
735 { "no-longcalls", no_argument, NULL, option_no_longcalls },
736
737 { "no-workaround-a0-b-retw", no_argument, NULL,
738 option_no_workaround_a0_b_retw },
739 { "workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw },
740
741 { "no-workaround-b-j-loop-end", no_argument, NULL,
742 option_no_workaround_b_j_loop_end },
743 { "workaround-b-j-loop-end", no_argument, NULL,
744 option_workaround_b_j_loop_end },
745
746 { "no-workaround-short-loops", no_argument, NULL,
747 option_no_workaround_short_loop },
748 { "workaround-short-loops", no_argument, NULL,
749 option_workaround_short_loop },
750
751 { "no-workaround-all-short-loops", no_argument, NULL,
752 option_no_workaround_all_short_loops },
753 { "workaround-all-short-loop", no_argument, NULL,
754 option_workaround_all_short_loops },
755
756 { "prefer-l32r", no_argument, NULL, option_prefer_l32r },
757 { "prefer-const16", no_argument, NULL, option_prefer_const16 },
758
759 { "no-workarounds", no_argument, NULL, option_no_workarounds },
760
761 { "no-workaround-close-loop-end", no_argument, NULL,
762 option_no_workaround_close_loop_end },
763 { "workaround-close-loop-end", no_argument, NULL,
764 option_workaround_close_loop_end },
765
766 { "rename-section", required_argument, NULL, option_rename_section_name },
767
768 { "link-relax", no_argument, NULL, option_link_relax },
769 { "no-link-relax", no_argument, NULL, option_no_link_relax },
770
771 { "target-hardware", required_argument, NULL, option_target_hardware },
772
773 { "trampolines", no_argument, NULL, option_trampolines },
774 { "no-trampolines", no_argument, NULL, option_no_trampolines },
775
776 { NULL, no_argument, NULL, 0 }
777 };
778
779 size_t md_longopts_size = sizeof md_longopts;
780
781
782 int
783 md_parse_option (int c, char *arg)
784 {
785 switch (c)
786 {
787 case option_density:
788 as_warn (_("--density option is ignored"));
789 return 1;
790 case option_no_density:
791 as_warn (_("--no-density option is ignored"));
792 return 1;
793 case option_link_relax:
794 linkrelax = 1;
795 return 1;
796 case option_no_link_relax:
797 linkrelax = 0;
798 return 1;
799 case option_flix:
800 produce_flix = FLIX_ALL;
801 return 1;
802 case option_no_generate_flix:
803 produce_flix = FLIX_NO_GENERATE;
804 return 1;
805 case option_no_flix:
806 produce_flix = FLIX_NONE;
807 return 1;
808 case option_generics:
809 as_warn (_("--generics is deprecated; use --transform instead"));
810 return md_parse_option (option_transform, arg);
811 case option_no_generics:
812 as_warn (_("--no-generics is deprecated; use --no-transform instead"));
813 return md_parse_option (option_no_transform, arg);
814 case option_relax:
815 as_warn (_("--relax is deprecated; use --transform instead"));
816 return md_parse_option (option_transform, arg);
817 case option_no_relax:
818 as_warn (_("--no-relax is deprecated; use --no-transform instead"));
819 return md_parse_option (option_no_transform, arg);
820 case option_longcalls:
821 directive_state[directive_longcalls] = TRUE;
822 return 1;
823 case option_no_longcalls:
824 directive_state[directive_longcalls] = FALSE;
825 return 1;
826 case option_text_section_literals:
827 use_literal_section = FALSE;
828 return 1;
829 case option_no_text_section_literals:
830 use_literal_section = TRUE;
831 return 1;
832 case option_absolute_literals:
833 if (!absolute_literals_supported)
834 {
835 as_fatal (_("--absolute-literals option not supported in this Xtensa configuration"));
836 return 0;
837 }
838 directive_state[directive_absolute_literals] = TRUE;
839 return 1;
840 case option_no_absolute_literals:
841 directive_state[directive_absolute_literals] = FALSE;
842 return 1;
843
844 case option_workaround_a0_b_retw:
845 workaround_a0_b_retw = TRUE;
846 return 1;
847 case option_no_workaround_a0_b_retw:
848 workaround_a0_b_retw = FALSE;
849 return 1;
850 case option_workaround_b_j_loop_end:
851 workaround_b_j_loop_end = TRUE;
852 return 1;
853 case option_no_workaround_b_j_loop_end:
854 workaround_b_j_loop_end = FALSE;
855 return 1;
856
857 case option_workaround_short_loop:
858 workaround_short_loop = TRUE;
859 return 1;
860 case option_no_workaround_short_loop:
861 workaround_short_loop = FALSE;
862 return 1;
863
864 case option_workaround_all_short_loops:
865 workaround_all_short_loops = TRUE;
866 return 1;
867 case option_no_workaround_all_short_loops:
868 workaround_all_short_loops = FALSE;
869 return 1;
870
871 case option_workaround_close_loop_end:
872 workaround_close_loop_end = TRUE;
873 return 1;
874 case option_no_workaround_close_loop_end:
875 workaround_close_loop_end = FALSE;
876 return 1;
877
878 case option_no_workarounds:
879 workaround_a0_b_retw = FALSE;
880 workaround_b_j_loop_end = FALSE;
881 workaround_short_loop = FALSE;
882 workaround_all_short_loops = FALSE;
883 workaround_close_loop_end = FALSE;
884 return 1;
885
886 case option_align_targets:
887 align_targets = TRUE;
888 return 1;
889 case option_no_align_targets:
890 align_targets = FALSE;
891 return 1;
892
893 case option_warn_unaligned_targets:
894 warn_unaligned_branch_targets = TRUE;
895 return 1;
896
897 case option_rename_section_name:
898 build_section_rename (arg);
899 return 1;
900
901 case 'Q':
902 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
903 should be emitted or not. FIXME: Not implemented. */
904 return 1;
905
906 case option_prefer_l32r:
907 if (prefer_const16)
908 as_fatal (_("prefer-l32r conflicts with prefer-const16"));
909 prefer_l32r = 1;
910 return 1;
911
912 case option_prefer_const16:
913 if (prefer_l32r)
914 as_fatal (_("prefer-const16 conflicts with prefer-l32r"));
915 prefer_const16 = 1;
916 return 1;
917
918 case option_target_hardware:
919 {
920 int earliest, latest = 0;
921 if (*arg == 0 || *arg == '-')
922 as_fatal (_("invalid target hardware version"));
923
924 earliest = strtol (arg, &arg, 0);
925
926 if (*arg == 0)
927 latest = earliest;
928 else if (*arg == '-')
929 {
930 if (*++arg == 0)
931 as_fatal (_("invalid target hardware version"));
932 latest = strtol (arg, &arg, 0);
933 }
934 if (*arg != 0)
935 as_fatal (_("invalid target hardware version"));
936
937 xtensa_setup_hw_workarounds (earliest, latest);
938 return 1;
939 }
940
941 case option_transform:
942 /* This option has no affect other than to use the defaults,
943 which are already set. */
944 return 1;
945
946 case option_no_transform:
947 /* This option turns off all transformations of any kind.
948 However, because we want to preserve the state of other
949 directives, we only change its own field. Thus, before
950 you perform any transformation, always check if transform
951 is available. If you use the functions we provide for this
952 purpose, you will be ok. */
953 directive_state[directive_transform] = FALSE;
954 return 1;
955
956 case option_trampolines:
957 use_trampolines = TRUE;
958 return 1;
959
960 case option_no_trampolines:
961 use_trampolines = FALSE;
962 return 1;
963
964 default:
965 return 0;
966 }
967 }
968
969
970 void
971 md_show_usage (FILE *stream)
972 {
973 fputs ("\n\
974 Xtensa options:\n\
975 --[no-]text-section-literals\n\
976 [Do not] put literals in the text section\n\
977 --[no-]absolute-literals\n\
978 [Do not] default to use non-PC-relative literals\n\
979 --[no-]target-align [Do not] try to align branch targets\n\
980 --[no-]longcalls [Do not] emit 32-bit call sequences\n\
981 --[no-]transform [Do not] transform instructions\n\
982 --flix both allow hand-written and generate flix bundles\n\
983 --no-generate-flix allow hand-written but do not generate\n\
984 flix bundles\n\
985 --no-allow-flix neither allow hand-written nor generate\n\
986 flix bundles\n\
987 --rename-section old=new Rename section 'old' to 'new'\n\
988 --[no-]trampolines [Do not] generate trampolines (jumps to jumps)\n\
989 when jumps do not reach their targets\n", stream);
990 }
991
992 \f
993 /* Functions related to the list of current label symbols. */
994
995 static void
996 xtensa_add_insn_label (symbolS *sym)
997 {
998 sym_list *l;
999
1000 if (!free_insn_labels)
1001 l = (sym_list *) xmalloc (sizeof (sym_list));
1002 else
1003 {
1004 l = free_insn_labels;
1005 free_insn_labels = l->next;
1006 }
1007
1008 l->sym = sym;
1009 l->next = insn_labels;
1010 insn_labels = l;
1011 }
1012
1013
1014 static void
1015 xtensa_clear_insn_labels (void)
1016 {
1017 sym_list **pl;
1018
1019 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1020 ;
1021 *pl = insn_labels;
1022 insn_labels = NULL;
1023 }
1024
1025
1026 static void
1027 xtensa_move_labels (fragS *new_frag, valueT new_offset)
1028 {
1029 sym_list *lit;
1030
1031 for (lit = insn_labels; lit; lit = lit->next)
1032 {
1033 symbolS *lit_sym = lit->sym;
1034 S_SET_VALUE (lit_sym, new_offset);
1035 symbol_set_frag (lit_sym, new_frag);
1036 }
1037 }
1038
1039 \f
1040 /* Directive data and functions. */
1041
1042 typedef struct state_stackS_struct
1043 {
1044 directiveE directive;
1045 bfd_boolean negated;
1046 bfd_boolean old_state;
1047 const char *file;
1048 unsigned int line;
1049 const void *datum;
1050 struct state_stackS_struct *prev;
1051 } state_stackS;
1052
1053 state_stackS *directive_state_stack;
1054
1055 const pseudo_typeS md_pseudo_table[] =
1056 {
1057 { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */
1058 { "literal_position", xtensa_literal_position, 0 },
1059 { "frame", s_ignore, 0 }, /* Formerly used for STABS debugging. */
1060 { "long", xtensa_elf_cons, 4 },
1061 { "word", xtensa_elf_cons, 4 },
1062 { "4byte", xtensa_elf_cons, 4 },
1063 { "short", xtensa_elf_cons, 2 },
1064 { "2byte", xtensa_elf_cons, 2 },
1065 { "sleb128", xtensa_leb128, 1},
1066 { "uleb128", xtensa_leb128, 0},
1067 { "begin", xtensa_begin_directive, 0 },
1068 { "end", xtensa_end_directive, 0 },
1069 { "literal", xtensa_literal_pseudo, 0 },
1070 { "frequency", xtensa_frequency_pseudo, 0 },
1071 { NULL, 0, 0 },
1072 };
1073
1074
1075 static bfd_boolean
1076 use_transform (void)
1077 {
1078 /* After md_end, you should be checking frag by frag, rather
1079 than state directives. */
1080 gas_assert (!past_xtensa_end);
1081 return directive_state[directive_transform];
1082 }
1083
1084
1085 static bfd_boolean
1086 do_align_targets (void)
1087 {
1088 /* Do not use this function after md_end; just look at align_targets
1089 instead. There is no target-align directive, so alignment is either
1090 enabled for all frags or not done at all. */
1091 gas_assert (!past_xtensa_end);
1092 return align_targets && use_transform ();
1093 }
1094
1095
1096 static void
1097 directive_push (directiveE directive, bfd_boolean negated, const void *datum)
1098 {
1099 char *file;
1100 unsigned int line;
1101 state_stackS *stack = (state_stackS *) xmalloc (sizeof (state_stackS));
1102
1103 as_where (&file, &line);
1104
1105 stack->directive = directive;
1106 stack->negated = negated;
1107 stack->old_state = directive_state[directive];
1108 stack->file = file;
1109 stack->line = line;
1110 stack->datum = datum;
1111 stack->prev = directive_state_stack;
1112 directive_state_stack = stack;
1113
1114 directive_state[directive] = !negated;
1115 }
1116
1117
1118 static void
1119 directive_pop (directiveE *directive,
1120 bfd_boolean *negated,
1121 const char **file,
1122 unsigned int *line,
1123 const void **datum)
1124 {
1125 state_stackS *top = directive_state_stack;
1126
1127 if (!directive_state_stack)
1128 {
1129 as_bad (_("unmatched end directive"));
1130 *directive = directive_none;
1131 return;
1132 }
1133
1134 directive_state[directive_state_stack->directive] = top->old_state;
1135 *directive = top->directive;
1136 *negated = top->negated;
1137 *file = top->file;
1138 *line = top->line;
1139 *datum = top->datum;
1140 directive_state_stack = top->prev;
1141 free (top);
1142 }
1143
1144
1145 static void
1146 directive_balance (void)
1147 {
1148 while (directive_state_stack)
1149 {
1150 directiveE directive;
1151 bfd_boolean negated;
1152 const char *file;
1153 unsigned int line;
1154 const void *datum;
1155
1156 directive_pop (&directive, &negated, &file, &line, &datum);
1157 as_warn_where ((char *) file, line,
1158 _(".begin directive with no matching .end directive"));
1159 }
1160 }
1161
1162
1163 static bfd_boolean
1164 inside_directive (directiveE dir)
1165 {
1166 state_stackS *top = directive_state_stack;
1167
1168 while (top && top->directive != dir)
1169 top = top->prev;
1170
1171 return (top != NULL);
1172 }
1173
1174
1175 static void
1176 get_directive (directiveE *directive, bfd_boolean *negated)
1177 {
1178 int len;
1179 unsigned i;
1180 char *directive_string;
1181
1182 if (strncmp (input_line_pointer, "no-", 3) != 0)
1183 *negated = FALSE;
1184 else
1185 {
1186 *negated = TRUE;
1187 input_line_pointer += 3;
1188 }
1189
1190 len = strspn (input_line_pointer,
1191 "abcdefghijklmnopqrstuvwxyz_-/0123456789.");
1192
1193 /* This code is a hack to make .begin [no-][generics|relax] exactly
1194 equivalent to .begin [no-]transform. We should remove it when
1195 we stop accepting those options. */
1196
1197 if (strncmp (input_line_pointer, "generics", strlen ("generics")) == 0)
1198 {
1199 as_warn (_("[no-]generics is deprecated; use [no-]transform instead"));
1200 directive_string = "transform";
1201 }
1202 else if (strncmp (input_line_pointer, "relax", strlen ("relax")) == 0)
1203 {
1204 as_warn (_("[no-]relax is deprecated; use [no-]transform instead"));
1205 directive_string = "transform";
1206 }
1207 else
1208 directive_string = input_line_pointer;
1209
1210 for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i)
1211 {
1212 if (strncmp (directive_string, directive_info[i].name, len) == 0)
1213 {
1214 input_line_pointer += len;
1215 *directive = (directiveE) i;
1216 if (*negated && !directive_info[i].can_be_negated)
1217 as_bad (_("directive %s cannot be negated"),
1218 directive_info[i].name);
1219 return;
1220 }
1221 }
1222
1223 as_bad (_("unknown directive"));
1224 *directive = (directiveE) XTENSA_UNDEFINED;
1225 }
1226
1227
1228 static void
1229 xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED)
1230 {
1231 directiveE directive;
1232 bfd_boolean negated;
1233 emit_state *state;
1234 lit_state *ls;
1235
1236 get_directive (&directive, &negated);
1237 if (directive == (directiveE) XTENSA_UNDEFINED)
1238 {
1239 discard_rest_of_line ();
1240 return;
1241 }
1242
1243 if (cur_vinsn.inside_bundle)
1244 as_bad (_("directives are not valid inside bundles"));
1245
1246 switch (directive)
1247 {
1248 case directive_literal:
1249 if (!inside_directive (directive_literal))
1250 {
1251 /* Previous labels go with whatever follows this directive, not with
1252 the literal, so save them now. */
1253 saved_insn_labels = insn_labels;
1254 insn_labels = NULL;
1255 }
1256 as_warn (_(".begin literal is deprecated; use .literal instead"));
1257 state = (emit_state *) xmalloc (sizeof (emit_state));
1258 xtensa_switch_to_literal_fragment (state);
1259 directive_push (directive_literal, negated, state);
1260 break;
1261
1262 case directive_literal_prefix:
1263 /* Have to flush pending output because a movi relaxed to an l32r
1264 might produce a literal. */
1265 md_flush_pending_output ();
1266 /* Check to see if the current fragment is a literal
1267 fragment. If it is, then this operation is not allowed. */
1268 if (generating_literals)
1269 {
1270 as_bad (_("cannot set literal_prefix inside literal fragment"));
1271 return;
1272 }
1273
1274 /* Allocate the literal state for this section and push
1275 onto the directive stack. */
1276 ls = xmalloc (sizeof (lit_state));
1277 gas_assert (ls);
1278
1279 *ls = default_lit_sections;
1280 directive_push (directive_literal_prefix, negated, ls);
1281
1282 /* Process the new prefix. */
1283 xtensa_literal_prefix ();
1284 break;
1285
1286 case directive_freeregs:
1287 /* This information is currently unused, but we'll accept the statement
1288 and just discard the rest of the line. This won't check the syntax,
1289 but it will accept every correct freeregs directive. */
1290 input_line_pointer += strcspn (input_line_pointer, "\n");
1291 directive_push (directive_freeregs, negated, 0);
1292 break;
1293
1294 case directive_schedule:
1295 md_flush_pending_output ();
1296 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
1297 frag_now->fr_symbol, frag_now->fr_offset, NULL);
1298 directive_push (directive_schedule, negated, 0);
1299 xtensa_set_frag_assembly_state (frag_now);
1300 break;
1301
1302 case directive_density:
1303 as_warn (_(".begin [no-]density is ignored"));
1304 break;
1305
1306 case directive_absolute_literals:
1307 md_flush_pending_output ();
1308 if (!absolute_literals_supported && !negated)
1309 {
1310 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1311 break;
1312 }
1313 xtensa_set_frag_assembly_state (frag_now);
1314 directive_push (directive, negated, 0);
1315 break;
1316
1317 default:
1318 md_flush_pending_output ();
1319 xtensa_set_frag_assembly_state (frag_now);
1320 directive_push (directive, negated, 0);
1321 break;
1322 }
1323
1324 demand_empty_rest_of_line ();
1325 }
1326
1327
1328 static void
1329 xtensa_end_directive (int ignore ATTRIBUTE_UNUSED)
1330 {
1331 directiveE begin_directive, end_directive;
1332 bfd_boolean begin_negated, end_negated;
1333 const char *file;
1334 unsigned int line;
1335 emit_state *state;
1336 emit_state **state_ptr;
1337 lit_state *s;
1338
1339 if (cur_vinsn.inside_bundle)
1340 as_bad (_("directives are not valid inside bundles"));
1341
1342 get_directive (&end_directive, &end_negated);
1343
1344 md_flush_pending_output ();
1345
1346 switch ((int) end_directive)
1347 {
1348 case XTENSA_UNDEFINED:
1349 discard_rest_of_line ();
1350 return;
1351
1352 case (int) directive_density:
1353 as_warn (_(".end [no-]density is ignored"));
1354 demand_empty_rest_of_line ();
1355 break;
1356
1357 case (int) directive_absolute_literals:
1358 if (!absolute_literals_supported && !end_negated)
1359 {
1360 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1361 demand_empty_rest_of_line ();
1362 return;
1363 }
1364 break;
1365
1366 default:
1367 break;
1368 }
1369
1370 state_ptr = &state; /* use state_ptr to avoid type-punning warning */
1371 directive_pop (&begin_directive, &begin_negated, &file, &line,
1372 (const void **) state_ptr);
1373
1374 if (begin_directive != directive_none)
1375 {
1376 if (begin_directive != end_directive || begin_negated != end_negated)
1377 {
1378 as_bad (_("does not match begin %s%s at %s:%d"),
1379 begin_negated ? "no-" : "",
1380 directive_info[begin_directive].name, file, line);
1381 }
1382 else
1383 {
1384 switch (end_directive)
1385 {
1386 case directive_literal:
1387 frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL);
1388 xtensa_restore_emit_state (state);
1389 xtensa_set_frag_assembly_state (frag_now);
1390 free (state);
1391 if (!inside_directive (directive_literal))
1392 {
1393 /* Restore the list of current labels. */
1394 xtensa_clear_insn_labels ();
1395 insn_labels = saved_insn_labels;
1396 }
1397 break;
1398
1399 case directive_literal_prefix:
1400 /* Restore the default collection sections from saved state. */
1401 s = (lit_state *) state;
1402 gas_assert (s);
1403 default_lit_sections = *s;
1404
1405 /* Free the state storage. */
1406 free (s->lit_prefix);
1407 free (s);
1408 break;
1409
1410 case directive_schedule:
1411 case directive_freeregs:
1412 break;
1413
1414 default:
1415 xtensa_set_frag_assembly_state (frag_now);
1416 break;
1417 }
1418 }
1419 }
1420
1421 demand_empty_rest_of_line ();
1422 }
1423
1424
1425 /* Place an aligned literal fragment at the current location. */
1426
1427 static void
1428 xtensa_literal_position (int ignore ATTRIBUTE_UNUSED)
1429 {
1430 md_flush_pending_output ();
1431
1432 if (inside_directive (directive_literal))
1433 as_warn (_(".literal_position inside literal directive; ignoring"));
1434 xtensa_mark_literal_pool_location ();
1435
1436 demand_empty_rest_of_line ();
1437 xtensa_clear_insn_labels ();
1438 }
1439
1440
1441 /* Support .literal label, expr, ... */
1442
1443 static void
1444 xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED)
1445 {
1446 emit_state state;
1447 char *p, *base_name;
1448 char c;
1449 segT dest_seg;
1450
1451 if (inside_directive (directive_literal))
1452 {
1453 as_bad (_(".literal not allowed inside .begin literal region"));
1454 ignore_rest_of_line ();
1455 return;
1456 }
1457
1458 md_flush_pending_output ();
1459
1460 /* Previous labels go with whatever follows this directive, not with
1461 the literal, so save them now. */
1462 saved_insn_labels = insn_labels;
1463 insn_labels = NULL;
1464
1465 /* If we are using text-section literals, then this is the right value... */
1466 dest_seg = now_seg;
1467
1468 base_name = input_line_pointer;
1469
1470 xtensa_switch_to_literal_fragment (&state);
1471
1472 /* ...but if we aren't using text-section-literals, then we
1473 need to put them in the section we just switched to. */
1474 if (use_literal_section || directive_state[directive_absolute_literals])
1475 dest_seg = now_seg;
1476
1477 /* FIXME, despite the previous comments, dest_seg is unused... */
1478 (void) dest_seg;
1479
1480 /* All literals are aligned to four-byte boundaries. */
1481 frag_align (2, 0, 0);
1482 record_alignment (now_seg, 2);
1483
1484 c = get_symbol_end ();
1485 /* Just after name is now '\0'. */
1486 p = input_line_pointer;
1487 *p = c;
1488 SKIP_WHITESPACE ();
1489
1490 if (*input_line_pointer != ',' && *input_line_pointer != ':')
1491 {
1492 as_bad (_("expected comma or colon after symbol name; "
1493 "rest of line ignored"));
1494 ignore_rest_of_line ();
1495 xtensa_restore_emit_state (&state);
1496 return;
1497 }
1498 *p = 0;
1499
1500 colon (base_name);
1501
1502 *p = c;
1503 input_line_pointer++; /* skip ',' or ':' */
1504
1505 xtensa_elf_cons (4);
1506
1507 xtensa_restore_emit_state (&state);
1508
1509 /* Restore the list of current labels. */
1510 xtensa_clear_insn_labels ();
1511 insn_labels = saved_insn_labels;
1512 }
1513
1514
1515 static void
1516 xtensa_literal_prefix (void)
1517 {
1518 char *name;
1519 int len;
1520
1521 /* Parse the new prefix from the input_line_pointer. */
1522 SKIP_WHITESPACE ();
1523 len = strspn (input_line_pointer,
1524 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1525 "abcdefghijklmnopqrstuvwxyz_/0123456789.$");
1526
1527 /* Get a null-terminated copy of the name. */
1528 name = xmalloc (len + 1);
1529 gas_assert (name);
1530 strncpy (name, input_line_pointer, len);
1531 name[len] = 0;
1532
1533 /* Skip the name in the input line. */
1534 input_line_pointer += len;
1535
1536 default_lit_sections.lit_prefix = name;
1537
1538 /* Clear cached literal sections, since the prefix has changed. */
1539 default_lit_sections.lit_seg = NULL;
1540 default_lit_sections.lit4_seg = NULL;
1541 }
1542
1543
1544 /* Support ".frequency branch_target_frequency fall_through_frequency". */
1545
1546 static void
1547 xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED)
1548 {
1549 float fall_through_f, target_f;
1550
1551 fall_through_f = (float) strtod (input_line_pointer, &input_line_pointer);
1552 if (fall_through_f < 0)
1553 {
1554 as_bad (_("fall through frequency must be greater than 0"));
1555 ignore_rest_of_line ();
1556 return;
1557 }
1558
1559 target_f = (float) strtod (input_line_pointer, &input_line_pointer);
1560 if (target_f < 0)
1561 {
1562 as_bad (_("branch target frequency must be greater than 0"));
1563 ignore_rest_of_line ();
1564 return;
1565 }
1566
1567 set_subseg_freq (now_seg, now_subseg, target_f + fall_through_f, target_f);
1568
1569 demand_empty_rest_of_line ();
1570 }
1571
1572
1573 /* Like normal .long/.short/.word, except support @plt, etc.
1574 Clobbers input_line_pointer, checks end-of-line. */
1575
1576 static void
1577 xtensa_elf_cons (int nbytes)
1578 {
1579 expressionS exp;
1580 bfd_reloc_code_real_type reloc;
1581
1582 md_flush_pending_output ();
1583
1584 if (cur_vinsn.inside_bundle)
1585 as_bad (_("directives are not valid inside bundles"));
1586
1587 if (is_it_end_of_statement ())
1588 {
1589 demand_empty_rest_of_line ();
1590 return;
1591 }
1592
1593 do
1594 {
1595 expression (&exp);
1596 if (exp.X_op == O_symbol
1597 && *input_line_pointer == '@'
1598 && ((reloc = xtensa_elf_suffix (&input_line_pointer, &exp))
1599 != BFD_RELOC_NONE))
1600 {
1601 reloc_howto_type *reloc_howto =
1602 bfd_reloc_type_lookup (stdoutput, reloc);
1603
1604 if (reloc == BFD_RELOC_UNUSED || !reloc_howto)
1605 as_bad (_("unsupported relocation"));
1606 else if ((reloc >= BFD_RELOC_XTENSA_SLOT0_OP
1607 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
1608 || (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
1609 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT))
1610 as_bad (_("opcode-specific %s relocation used outside "
1611 "an instruction"), reloc_howto->name);
1612 else if (nbytes != (int) bfd_get_reloc_size (reloc_howto))
1613 as_bad (_("%s relocations do not fit in %d bytes"),
1614 reloc_howto->name, nbytes);
1615 else if (reloc == BFD_RELOC_XTENSA_TLS_FUNC
1616 || reloc == BFD_RELOC_XTENSA_TLS_ARG
1617 || reloc == BFD_RELOC_XTENSA_TLS_CALL)
1618 as_bad (_("invalid use of %s relocation"), reloc_howto->name);
1619 else
1620 {
1621 char *p = frag_more ((int) nbytes);
1622 xtensa_set_frag_assembly_state (frag_now);
1623 fix_new_exp (frag_now, p - frag_now->fr_literal,
1624 nbytes, &exp, reloc_howto->pc_relative, reloc);
1625 }
1626 }
1627 else
1628 {
1629 xtensa_set_frag_assembly_state (frag_now);
1630 emit_expr (&exp, (unsigned int) nbytes);
1631 }
1632 }
1633 while (*input_line_pointer++ == ',');
1634
1635 input_line_pointer--; /* Put terminator back into stream. */
1636 demand_empty_rest_of_line ();
1637 }
1638
1639 static bfd_boolean is_leb128_expr;
1640
1641 static void
1642 xtensa_leb128 (int sign)
1643 {
1644 is_leb128_expr = TRUE;
1645 s_leb128 (sign);
1646 is_leb128_expr = FALSE;
1647 }
1648
1649 \f
1650 /* Parsing and Idiom Translation. */
1651
1652 /* Parse @plt, etc. and return the desired relocation. */
1653 static bfd_reloc_code_real_type
1654 xtensa_elf_suffix (char **str_p, expressionS *exp_p)
1655 {
1656 char ident[20];
1657 char *str = *str_p;
1658 char *str2;
1659 int ch;
1660 int len;
1661 struct suffix_reloc_map *ptr;
1662
1663 if (*str++ != '@')
1664 return BFD_RELOC_NONE;
1665
1666 for (ch = *str, str2 = ident;
1667 (str2 < ident + sizeof (ident) - 1
1668 && (ISALNUM (ch) || ch == '@'));
1669 ch = *++str)
1670 {
1671 *str2++ = (ISLOWER (ch)) ? ch : TOLOWER (ch);
1672 }
1673
1674 *str2 = '\0';
1675 len = str2 - ident;
1676
1677 ch = ident[0];
1678 for (ptr = &suffix_relocs[0]; ptr->length > 0; ptr++)
1679 if (ch == ptr->suffix[0]
1680 && len == ptr->length
1681 && memcmp (ident, ptr->suffix, ptr->length) == 0)
1682 {
1683 /* Now check for "identifier@suffix+constant". */
1684 if (*str == '-' || *str == '+')
1685 {
1686 char *orig_line = input_line_pointer;
1687 expressionS new_exp;
1688
1689 input_line_pointer = str;
1690 expression (&new_exp);
1691 if (new_exp.X_op == O_constant)
1692 {
1693 exp_p->X_add_number += new_exp.X_add_number;
1694 str = input_line_pointer;
1695 }
1696
1697 if (&input_line_pointer != str_p)
1698 input_line_pointer = orig_line;
1699 }
1700
1701 *str_p = str;
1702 return ptr->reloc;
1703 }
1704
1705 return BFD_RELOC_UNUSED;
1706 }
1707
1708
1709 /* Find the matching operator type. */
1710 static unsigned char
1711 map_suffix_reloc_to_operator (bfd_reloc_code_real_type reloc)
1712 {
1713 struct suffix_reloc_map *sfx;
1714 unsigned char operator = (unsigned char) -1;
1715
1716 for (sfx = &suffix_relocs[0]; sfx->suffix; sfx++)
1717 {
1718 if (sfx->reloc == reloc)
1719 {
1720 operator = sfx->operator;
1721 break;
1722 }
1723 }
1724 gas_assert (operator != (unsigned char) -1);
1725 return operator;
1726 }
1727
1728
1729 /* Find the matching reloc type. */
1730 static bfd_reloc_code_real_type
1731 map_operator_to_reloc (unsigned char operator, bfd_boolean is_literal)
1732 {
1733 struct suffix_reloc_map *sfx;
1734 bfd_reloc_code_real_type reloc = BFD_RELOC_UNUSED;
1735
1736 for (sfx = &suffix_relocs[0]; sfx->suffix; sfx++)
1737 {
1738 if (sfx->operator == operator)
1739 {
1740 reloc = sfx->reloc;
1741 break;
1742 }
1743 }
1744
1745 if (is_literal)
1746 {
1747 if (reloc == BFD_RELOC_XTENSA_TLS_FUNC)
1748 return BFD_RELOC_XTENSA_TLSDESC_FN;
1749 else if (reloc == BFD_RELOC_XTENSA_TLS_ARG)
1750 return BFD_RELOC_XTENSA_TLSDESC_ARG;
1751 }
1752
1753 if (reloc == BFD_RELOC_UNUSED)
1754 return BFD_RELOC_32;
1755
1756 return reloc;
1757 }
1758
1759
1760 static const char *
1761 expression_end (const char *name)
1762 {
1763 while (1)
1764 {
1765 switch (*name)
1766 {
1767 case '}':
1768 case ';':
1769 case '\0':
1770 case ',':
1771 case ':':
1772 return name;
1773 case ' ':
1774 case '\t':
1775 ++name;
1776 continue;
1777 default:
1778 return 0;
1779 }
1780 }
1781 }
1782
1783
1784 #define ERROR_REG_NUM ((unsigned) -1)
1785
1786 static unsigned
1787 tc_get_register (const char *prefix)
1788 {
1789 unsigned reg;
1790 const char *next_expr;
1791 const char *old_line_pointer;
1792
1793 SKIP_WHITESPACE ();
1794 old_line_pointer = input_line_pointer;
1795
1796 if (*input_line_pointer == '$')
1797 ++input_line_pointer;
1798
1799 /* Accept "sp" as a synonym for "a1". */
1800 if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p'
1801 && expression_end (input_line_pointer + 2))
1802 {
1803 input_line_pointer += 2;
1804 return 1; /* AR[1] */
1805 }
1806
1807 while (*input_line_pointer++ == *prefix++)
1808 ;
1809 --input_line_pointer;
1810 --prefix;
1811
1812 if (*prefix)
1813 {
1814 as_bad (_("bad register name: %s"), old_line_pointer);
1815 return ERROR_REG_NUM;
1816 }
1817
1818 if (!ISDIGIT ((unsigned char) *input_line_pointer))
1819 {
1820 as_bad (_("bad register number: %s"), input_line_pointer);
1821 return ERROR_REG_NUM;
1822 }
1823
1824 reg = 0;
1825
1826 while (ISDIGIT ((int) *input_line_pointer))
1827 reg = reg * 10 + *input_line_pointer++ - '0';
1828
1829 if (!(next_expr = expression_end (input_line_pointer)))
1830 {
1831 as_bad (_("bad register name: %s"), old_line_pointer);
1832 return ERROR_REG_NUM;
1833 }
1834
1835 input_line_pointer = (char *) next_expr;
1836
1837 return reg;
1838 }
1839
1840
1841 static void
1842 expression_maybe_register (xtensa_opcode opc, int opnd, expressionS *tok)
1843 {
1844 xtensa_isa isa = xtensa_default_isa;
1845
1846 /* Check if this is an immediate operand. */
1847 if (xtensa_operand_is_register (isa, opc, opnd) == 0)
1848 {
1849 bfd_reloc_code_real_type reloc;
1850 segT t = expression (tok);
1851
1852 if (t == absolute_section
1853 && xtensa_operand_is_PCrelative (isa, opc, opnd) == 1)
1854 {
1855 gas_assert (tok->X_op == O_constant);
1856 tok->X_op = O_symbol;
1857 tok->X_add_symbol = &abs_symbol;
1858 }
1859
1860 if ((tok->X_op == O_constant || tok->X_op == O_symbol)
1861 && ((reloc = xtensa_elf_suffix (&input_line_pointer, tok))
1862 != BFD_RELOC_NONE))
1863 {
1864 switch (reloc)
1865 {
1866 case BFD_RELOC_LO16:
1867 if (tok->X_op == O_constant)
1868 {
1869 tok->X_add_number &= 0xffff;
1870 return;
1871 }
1872 break;
1873 case BFD_RELOC_HI16:
1874 if (tok->X_op == O_constant)
1875 {
1876 tok->X_add_number = ((unsigned) tok->X_add_number) >> 16;
1877 return;
1878 }
1879 break;
1880 case BFD_RELOC_UNUSED:
1881 as_bad (_("unsupported relocation"));
1882 return;
1883 case BFD_RELOC_32_PCREL:
1884 as_bad (_("pcrel relocation not allowed in an instruction"));
1885 return;
1886 default:
1887 break;
1888 }
1889 tok->X_op = map_suffix_reloc_to_operator (reloc);
1890 }
1891 }
1892 else
1893 {
1894 xtensa_regfile opnd_rf = xtensa_operand_regfile (isa, opc, opnd);
1895 unsigned reg = tc_get_register (xtensa_regfile_shortname (isa, opnd_rf));
1896
1897 if (reg != ERROR_REG_NUM) /* Already errored */
1898 {
1899 uint32 buf = reg;
1900 if (xtensa_operand_encode (isa, opc, opnd, &buf))
1901 as_bad (_("register number out of range"));
1902 }
1903
1904 tok->X_op = O_register;
1905 tok->X_add_symbol = 0;
1906 tok->X_add_number = reg;
1907 }
1908 }
1909
1910
1911 /* Split up the arguments for an opcode or pseudo-op. */
1912
1913 static int
1914 tokenize_arguments (char **args, char *str)
1915 {
1916 char *old_input_line_pointer;
1917 bfd_boolean saw_comma = FALSE;
1918 bfd_boolean saw_arg = FALSE;
1919 bfd_boolean saw_colon = FALSE;
1920 int num_args = 0;
1921 char *arg_end, *arg;
1922 int arg_len;
1923
1924 /* Save and restore input_line_pointer around this function. */
1925 old_input_line_pointer = input_line_pointer;
1926 input_line_pointer = str;
1927
1928 while (*input_line_pointer)
1929 {
1930 SKIP_WHITESPACE ();
1931 switch (*input_line_pointer)
1932 {
1933 case '\0':
1934 case '}':
1935 goto fini;
1936
1937 case ':':
1938 input_line_pointer++;
1939 if (saw_comma || saw_colon || !saw_arg)
1940 goto err;
1941 saw_colon = TRUE;
1942 break;
1943
1944 case ',':
1945 input_line_pointer++;
1946 if (saw_comma || saw_colon || !saw_arg)
1947 goto err;
1948 saw_comma = TRUE;
1949 break;
1950
1951 default:
1952 if (!saw_comma && !saw_colon && saw_arg)
1953 goto err;
1954
1955 arg_end = input_line_pointer + 1;
1956 while (!expression_end (arg_end))
1957 arg_end += 1;
1958
1959 arg_len = arg_end - input_line_pointer;
1960 arg = (char *) xmalloc ((saw_colon ? 1 : 0) + arg_len + 1);
1961 args[num_args] = arg;
1962
1963 if (saw_colon)
1964 *arg++ = ':';
1965 strncpy (arg, input_line_pointer, arg_len);
1966 arg[arg_len] = '\0';
1967
1968 input_line_pointer = arg_end;
1969 num_args += 1;
1970 saw_comma = FALSE;
1971 saw_colon = FALSE;
1972 saw_arg = TRUE;
1973 break;
1974 }
1975 }
1976
1977 fini:
1978 if (saw_comma || saw_colon)
1979 goto err;
1980 input_line_pointer = old_input_line_pointer;
1981 return num_args;
1982
1983 err:
1984 if (saw_comma)
1985 as_bad (_("extra comma"));
1986 else if (saw_colon)
1987 as_bad (_("extra colon"));
1988 else if (!saw_arg)
1989 as_bad (_("missing argument"));
1990 else
1991 as_bad (_("missing comma or colon"));
1992 input_line_pointer = old_input_line_pointer;
1993 return -1;
1994 }
1995
1996
1997 /* Parse the arguments to an opcode. Return TRUE on error. */
1998
1999 static bfd_boolean
2000 parse_arguments (TInsn *insn, int num_args, char **arg_strings)
2001 {
2002 expressionS *tok, *last_tok;
2003 xtensa_opcode opcode = insn->opcode;
2004 bfd_boolean had_error = TRUE;
2005 xtensa_isa isa = xtensa_default_isa;
2006 int n, num_regs = 0;
2007 int opcode_operand_count;
2008 int opnd_cnt, last_opnd_cnt;
2009 unsigned int next_reg = 0;
2010 char *old_input_line_pointer;
2011
2012 if (insn->insn_type == ITYPE_LITERAL)
2013 opcode_operand_count = 1;
2014 else
2015 opcode_operand_count = xtensa_opcode_num_operands (isa, opcode);
2016
2017 tok = insn->tok;
2018 memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS);
2019
2020 /* Save and restore input_line_pointer around this function. */
2021 old_input_line_pointer = input_line_pointer;
2022
2023 last_tok = 0;
2024 last_opnd_cnt = -1;
2025 opnd_cnt = 0;
2026
2027 /* Skip invisible operands. */
2028 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0)
2029 {
2030 opnd_cnt += 1;
2031 tok++;
2032 }
2033
2034 for (n = 0; n < num_args; n++)
2035 {
2036 input_line_pointer = arg_strings[n];
2037 if (*input_line_pointer == ':')
2038 {
2039 xtensa_regfile opnd_rf;
2040 input_line_pointer++;
2041 if (num_regs == 0)
2042 goto err;
2043 gas_assert (opnd_cnt > 0);
2044 num_regs--;
2045 opnd_rf = xtensa_operand_regfile (isa, opcode, last_opnd_cnt);
2046 if (next_reg
2047 != tc_get_register (xtensa_regfile_shortname (isa, opnd_rf)))
2048 as_warn (_("incorrect register number, ignoring"));
2049 next_reg++;
2050 }
2051 else
2052 {
2053 if (opnd_cnt >= opcode_operand_count)
2054 {
2055 as_warn (_("too many arguments"));
2056 goto err;
2057 }
2058 gas_assert (opnd_cnt < MAX_INSN_ARGS);
2059
2060 expression_maybe_register (opcode, opnd_cnt, tok);
2061 next_reg = tok->X_add_number + 1;
2062
2063 if (tok->X_op == O_illegal || tok->X_op == O_absent)
2064 goto err;
2065 if (xtensa_operand_is_register (isa, opcode, opnd_cnt) == 1)
2066 {
2067 num_regs = xtensa_operand_num_regs (isa, opcode, opnd_cnt) - 1;
2068 /* minus 1 because we are seeing one right now */
2069 }
2070 else
2071 num_regs = 0;
2072
2073 last_tok = tok;
2074 last_opnd_cnt = opnd_cnt;
2075 demand_empty_rest_of_line ();
2076
2077 do
2078 {
2079 opnd_cnt += 1;
2080 tok++;
2081 }
2082 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0);
2083 }
2084 }
2085
2086 if (num_regs > 0 && ((int) next_reg != last_tok->X_add_number + 1))
2087 goto err;
2088
2089 insn->ntok = tok - insn->tok;
2090 had_error = FALSE;
2091
2092 err:
2093 input_line_pointer = old_input_line_pointer;
2094 return had_error;
2095 }
2096
2097
2098 static int
2099 get_invisible_operands (TInsn *insn)
2100 {
2101 xtensa_isa isa = xtensa_default_isa;
2102 static xtensa_insnbuf slotbuf = NULL;
2103 xtensa_format fmt;
2104 xtensa_opcode opc = insn->opcode;
2105 int slot, opnd, fmt_found;
2106 unsigned val;
2107
2108 if (!slotbuf)
2109 slotbuf = xtensa_insnbuf_alloc (isa);
2110
2111 /* Find format/slot where this can be encoded. */
2112 fmt_found = 0;
2113 slot = 0;
2114 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
2115 {
2116 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
2117 {
2118 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opc) == 0)
2119 {
2120 fmt_found = 1;
2121 break;
2122 }
2123 }
2124 if (fmt_found) break;
2125 }
2126
2127 if (!fmt_found)
2128 {
2129 as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa, opc));
2130 return -1;
2131 }
2132
2133 /* First encode all the visible operands
2134 (to deal with shared field operands). */
2135 for (opnd = 0; opnd < insn->ntok; opnd++)
2136 {
2137 if (xtensa_operand_is_visible (isa, opc, opnd) == 1
2138 && (insn->tok[opnd].X_op == O_register
2139 || insn->tok[opnd].X_op == O_constant))
2140 {
2141 val = insn->tok[opnd].X_add_number;
2142 xtensa_operand_encode (isa, opc, opnd, &val);
2143 xtensa_operand_set_field (isa, opc, opnd, fmt, slot, slotbuf, val);
2144 }
2145 }
2146
2147 /* Then pull out the values for the invisible ones. */
2148 for (opnd = 0; opnd < insn->ntok; opnd++)
2149 {
2150 if (xtensa_operand_is_visible (isa, opc, opnd) == 0)
2151 {
2152 xtensa_operand_get_field (isa, opc, opnd, fmt, slot, slotbuf, &val);
2153 xtensa_operand_decode (isa, opc, opnd, &val);
2154 insn->tok[opnd].X_add_number = val;
2155 if (xtensa_operand_is_register (isa, opc, opnd) == 1)
2156 insn->tok[opnd].X_op = O_register;
2157 else
2158 insn->tok[opnd].X_op = O_constant;
2159 }
2160 }
2161
2162 return 0;
2163 }
2164
2165
2166 static void
2167 xg_reverse_shift_count (char **cnt_argp)
2168 {
2169 char *cnt_arg, *new_arg;
2170 cnt_arg = *cnt_argp;
2171
2172 /* replace the argument with "31-(argument)" */
2173 new_arg = (char *) xmalloc (strlen (cnt_arg) + 6);
2174 sprintf (new_arg, "31-(%s)", cnt_arg);
2175
2176 free (cnt_arg);
2177 *cnt_argp = new_arg;
2178 }
2179
2180
2181 /* If "arg" is a constant expression, return non-zero with the value
2182 in *valp. */
2183
2184 static int
2185 xg_arg_is_constant (char *arg, offsetT *valp)
2186 {
2187 expressionS exp;
2188 char *save_ptr = input_line_pointer;
2189
2190 input_line_pointer = arg;
2191 expression (&exp);
2192 input_line_pointer = save_ptr;
2193
2194 if (exp.X_op == O_constant)
2195 {
2196 *valp = exp.X_add_number;
2197 return 1;
2198 }
2199
2200 return 0;
2201 }
2202
2203
2204 static void
2205 xg_replace_opname (char **popname, char *newop)
2206 {
2207 free (*popname);
2208 *popname = (char *) xmalloc (strlen (newop) + 1);
2209 strcpy (*popname, newop);
2210 }
2211
2212
2213 static int
2214 xg_check_num_args (int *pnum_args,
2215 int expected_num,
2216 char *opname,
2217 char **arg_strings)
2218 {
2219 int num_args = *pnum_args;
2220
2221 if (num_args < expected_num)
2222 {
2223 as_bad (_("not enough operands (%d) for '%s'; expected %d"),
2224 num_args, opname, expected_num);
2225 return -1;
2226 }
2227
2228 if (num_args > expected_num)
2229 {
2230 as_warn (_("too many operands (%d) for '%s'; expected %d"),
2231 num_args, opname, expected_num);
2232 while (num_args-- > expected_num)
2233 {
2234 free (arg_strings[num_args]);
2235 arg_strings[num_args] = 0;
2236 }
2237 *pnum_args = expected_num;
2238 return -1;
2239 }
2240
2241 return 0;
2242 }
2243
2244
2245 /* If the register is not specified as part of the opcode,
2246 then get it from the operand and move it to the opcode. */
2247
2248 static int
2249 xg_translate_sysreg_op (char **popname, int *pnum_args, char **arg_strings)
2250 {
2251 xtensa_isa isa = xtensa_default_isa;
2252 xtensa_sysreg sr;
2253 char *opname, *new_opname;
2254 const char *sr_name;
2255 int is_user, is_write;
2256
2257 opname = *popname;
2258 if (*opname == '_')
2259 opname += 1;
2260 is_user = (opname[1] == 'u');
2261 is_write = (opname[0] == 'w');
2262
2263 /* Opname == [rw]ur or [rwx]sr... */
2264
2265 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2266 return -1;
2267
2268 /* Check if the argument is a symbolic register name. */
2269 sr = xtensa_sysreg_lookup_name (isa, arg_strings[1]);
2270 /* Handle WSR to "INTSET" as a special case. */
2271 if (sr == XTENSA_UNDEFINED && is_write && !is_user
2272 && !strcasecmp (arg_strings[1], "intset"))
2273 sr = xtensa_sysreg_lookup_name (isa, "interrupt");
2274 if (sr == XTENSA_UNDEFINED
2275 || (xtensa_sysreg_is_user (isa, sr) == 1) != is_user)
2276 {
2277 /* Maybe it's a register number.... */
2278 offsetT val;
2279 if (!xg_arg_is_constant (arg_strings[1], &val))
2280 {
2281 as_bad (_("invalid register '%s' for '%s' instruction"),
2282 arg_strings[1], opname);
2283 return -1;
2284 }
2285 sr = xtensa_sysreg_lookup (isa, val, is_user);
2286 if (sr == XTENSA_UNDEFINED)
2287 {
2288 as_bad (_("invalid register number (%ld) for '%s' instruction"),
2289 (long) val, opname);
2290 return -1;
2291 }
2292 }
2293
2294 /* Remove the last argument, which is now part of the opcode. */
2295 free (arg_strings[1]);
2296 arg_strings[1] = 0;
2297 *pnum_args = 1;
2298
2299 /* Translate the opcode. */
2300 sr_name = xtensa_sysreg_name (isa, sr);
2301 /* Another special case for "WSR.INTSET".... */
2302 if (is_write && !is_user && !strcasecmp ("interrupt", sr_name))
2303 sr_name = "intset";
2304 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2305 sprintf (new_opname, "%s.%s", *popname, sr_name);
2306 free (*popname);
2307 *popname = new_opname;
2308
2309 return 0;
2310 }
2311
2312
2313 static int
2314 xtensa_translate_old_userreg_ops (char **popname)
2315 {
2316 xtensa_isa isa = xtensa_default_isa;
2317 xtensa_sysreg sr;
2318 char *opname, *new_opname;
2319 const char *sr_name;
2320 bfd_boolean has_underbar = FALSE;
2321
2322 opname = *popname;
2323 if (opname[0] == '_')
2324 {
2325 has_underbar = TRUE;
2326 opname += 1;
2327 }
2328
2329 sr = xtensa_sysreg_lookup_name (isa, opname + 1);
2330 if (sr != XTENSA_UNDEFINED)
2331 {
2332 /* The new default name ("nnn") is different from the old default
2333 name ("URnnn"). The old default is handled below, and we don't
2334 want to recognize [RW]nnn, so do nothing if the name is the (new)
2335 default. */
2336 static char namebuf[10];
2337 sprintf (namebuf, "%d", xtensa_sysreg_number (isa, sr));
2338 if (strcmp (namebuf, opname + 1) == 0)
2339 return 0;
2340 }
2341 else
2342 {
2343 offsetT val;
2344 char *end;
2345
2346 /* Only continue if the reg name is "URnnn". */
2347 if (opname[1] != 'u' || opname[2] != 'r')
2348 return 0;
2349 val = strtoul (opname + 3, &end, 10);
2350 if (*end != '\0')
2351 return 0;
2352
2353 sr = xtensa_sysreg_lookup (isa, val, 1);
2354 if (sr == XTENSA_UNDEFINED)
2355 {
2356 as_bad (_("invalid register number (%ld) for '%s'"),
2357 (long) val, opname);
2358 return -1;
2359 }
2360 }
2361
2362 /* Translate the opcode. */
2363 sr_name = xtensa_sysreg_name (isa, sr);
2364 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2365 sprintf (new_opname, "%s%cur.%s", (has_underbar ? "_" : ""),
2366 opname[0], sr_name);
2367 free (*popname);
2368 *popname = new_opname;
2369
2370 return 0;
2371 }
2372
2373
2374 static int
2375 xtensa_translate_zero_immed (char *old_op,
2376 char *new_op,
2377 char **popname,
2378 int *pnum_args,
2379 char **arg_strings)
2380 {
2381 char *opname;
2382 offsetT val;
2383
2384 opname = *popname;
2385 gas_assert (opname[0] != '_');
2386
2387 if (strcmp (opname, old_op) != 0)
2388 return 0;
2389
2390 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2391 return -1;
2392 if (xg_arg_is_constant (arg_strings[1], &val) && val == 0)
2393 {
2394 xg_replace_opname (popname, new_op);
2395 free (arg_strings[1]);
2396 arg_strings[1] = arg_strings[2];
2397 arg_strings[2] = 0;
2398 *pnum_args = 2;
2399 }
2400
2401 return 0;
2402 }
2403
2404
2405 /* If the instruction is an idiom (i.e., a built-in macro), translate it.
2406 Returns non-zero if an error was found. */
2407
2408 static int
2409 xg_translate_idioms (char **popname, int *pnum_args, char **arg_strings)
2410 {
2411 char *opname = *popname;
2412 bfd_boolean has_underbar = FALSE;
2413
2414 if (*opname == '_')
2415 {
2416 has_underbar = TRUE;
2417 opname += 1;
2418 }
2419
2420 if (strcmp (opname, "mov") == 0)
2421 {
2422 if (use_transform () && !has_underbar && density_supported)
2423 xg_replace_opname (popname, "mov.n");
2424 else
2425 {
2426 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2427 return -1;
2428 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2429 arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1);
2430 strcpy (arg_strings[2], arg_strings[1]);
2431 *pnum_args = 3;
2432 }
2433 return 0;
2434 }
2435
2436 if (strcmp (opname, "bbsi.l") == 0)
2437 {
2438 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2439 return -1;
2440 xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi"));
2441 if (target_big_endian)
2442 xg_reverse_shift_count (&arg_strings[1]);
2443 return 0;
2444 }
2445
2446 if (strcmp (opname, "bbci.l") == 0)
2447 {
2448 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2449 return -1;
2450 xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci"));
2451 if (target_big_endian)
2452 xg_reverse_shift_count (&arg_strings[1]);
2453 return 0;
2454 }
2455
2456 /* Don't do anything special with NOPs inside FLIX instructions. They
2457 are handled elsewhere. Real NOP instructions are always available
2458 in configurations with FLIX, so this should never be an issue but
2459 check for it anyway. */
2460 if (!cur_vinsn.inside_bundle && xtensa_nop_opcode == XTENSA_UNDEFINED
2461 && strcmp (opname, "nop") == 0)
2462 {
2463 if (use_transform () && !has_underbar && density_supported)
2464 xg_replace_opname (popname, "nop.n");
2465 else
2466 {
2467 if (xg_check_num_args (pnum_args, 0, opname, arg_strings))
2468 return -1;
2469 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2470 arg_strings[0] = (char *) xmalloc (3);
2471 arg_strings[1] = (char *) xmalloc (3);
2472 arg_strings[2] = (char *) xmalloc (3);
2473 strcpy (arg_strings[0], "a1");
2474 strcpy (arg_strings[1], "a1");
2475 strcpy (arg_strings[2], "a1");
2476 *pnum_args = 3;
2477 }
2478 return 0;
2479 }
2480
2481 /* Recognize [RW]UR and [RWX]SR. */
2482 if ((((opname[0] == 'r' || opname[0] == 'w')
2483 && (opname[1] == 'u' || opname[1] == 's'))
2484 || (opname[0] == 'x' && opname[1] == 's'))
2485 && opname[2] == 'r'
2486 && opname[3] == '\0')
2487 return xg_translate_sysreg_op (popname, pnum_args, arg_strings);
2488
2489 /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and
2490 [RW]<name> if <name> is the non-default name of a user register. */
2491 if ((opname[0] == 'r' || opname[0] == 'w')
2492 && xtensa_opcode_lookup (xtensa_default_isa, opname) == XTENSA_UNDEFINED)
2493 return xtensa_translate_old_userreg_ops (popname);
2494
2495 /* Relax branches that don't allow comparisons against an immediate value
2496 of zero to the corresponding branches with implicit zero immediates. */
2497 if (!has_underbar && use_transform ())
2498 {
2499 if (xtensa_translate_zero_immed ("bnei", "bnez", popname,
2500 pnum_args, arg_strings))
2501 return -1;
2502
2503 if (xtensa_translate_zero_immed ("beqi", "beqz", popname,
2504 pnum_args, arg_strings))
2505 return -1;
2506
2507 if (xtensa_translate_zero_immed ("bgei", "bgez", popname,
2508 pnum_args, arg_strings))
2509 return -1;
2510
2511 if (xtensa_translate_zero_immed ("blti", "bltz", popname,
2512 pnum_args, arg_strings))
2513 return -1;
2514 }
2515
2516 return 0;
2517 }
2518
2519 \f
2520 /* Functions for dealing with the Xtensa ISA. */
2521
2522 /* Currently the assembler only allows us to use a single target per
2523 fragment. Because of this, only one operand for a given
2524 instruction may be symbolic. If there is a PC-relative operand,
2525 the last one is chosen. Otherwise, the result is the number of the
2526 last immediate operand, and if there are none of those, we fail and
2527 return -1. */
2528
2529 static int
2530 get_relaxable_immed (xtensa_opcode opcode)
2531 {
2532 int last_immed = -1;
2533 int noperands, opi;
2534
2535 if (opcode == XTENSA_UNDEFINED)
2536 return -1;
2537
2538 noperands = xtensa_opcode_num_operands (xtensa_default_isa, opcode);
2539 for (opi = noperands - 1; opi >= 0; opi--)
2540 {
2541 if (xtensa_operand_is_visible (xtensa_default_isa, opcode, opi) == 0)
2542 continue;
2543 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, opi) == 1)
2544 return opi;
2545 if (last_immed == -1
2546 && xtensa_operand_is_register (xtensa_default_isa, opcode, opi) == 0)
2547 last_immed = opi;
2548 }
2549 return last_immed;
2550 }
2551
2552
2553 static xtensa_opcode
2554 get_opcode_from_buf (const char *buf, int slot)
2555 {
2556 static xtensa_insnbuf insnbuf = NULL;
2557 static xtensa_insnbuf slotbuf = NULL;
2558 xtensa_isa isa = xtensa_default_isa;
2559 xtensa_format fmt;
2560
2561 if (!insnbuf)
2562 {
2563 insnbuf = xtensa_insnbuf_alloc (isa);
2564 slotbuf = xtensa_insnbuf_alloc (isa);
2565 }
2566
2567 xtensa_insnbuf_from_chars (isa, insnbuf, (const unsigned char *) buf, 0);
2568 fmt = xtensa_format_decode (isa, insnbuf);
2569 if (fmt == XTENSA_UNDEFINED)
2570 return XTENSA_UNDEFINED;
2571
2572 if (slot >= xtensa_format_num_slots (isa, fmt))
2573 return XTENSA_UNDEFINED;
2574
2575 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
2576 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
2577 }
2578
2579
2580 #ifdef TENSILICA_DEBUG
2581
2582 /* For debugging, print out the mapping of opcode numbers to opcodes. */
2583
2584 static void
2585 xtensa_print_insn_table (void)
2586 {
2587 int num_opcodes, num_operands;
2588 xtensa_opcode opcode;
2589 xtensa_isa isa = xtensa_default_isa;
2590
2591 num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
2592 for (opcode = 0; opcode < num_opcodes; opcode++)
2593 {
2594 int opn;
2595 fprintf (stderr, "%d: %s: ", opcode, xtensa_opcode_name (isa, opcode));
2596 num_operands = xtensa_opcode_num_operands (isa, opcode);
2597 for (opn = 0; opn < num_operands; opn++)
2598 {
2599 if (xtensa_operand_is_visible (isa, opcode, opn) == 0)
2600 continue;
2601 if (xtensa_operand_is_register (isa, opcode, opn) == 1)
2602 {
2603 xtensa_regfile opnd_rf =
2604 xtensa_operand_regfile (isa, opcode, opn);
2605 fprintf (stderr, "%s ", xtensa_regfile_shortname (isa, opnd_rf));
2606 }
2607 else if (xtensa_operand_is_PCrelative (isa, opcode, opn) == 1)
2608 fputs ("[lLr] ", stderr);
2609 else
2610 fputs ("i ", stderr);
2611 }
2612 fprintf (stderr, "\n");
2613 }
2614 }
2615
2616
2617 static void
2618 print_vliw_insn (xtensa_insnbuf vbuf)
2619 {
2620 xtensa_isa isa = xtensa_default_isa;
2621 xtensa_format f = xtensa_format_decode (isa, vbuf);
2622 xtensa_insnbuf sbuf = xtensa_insnbuf_alloc (isa);
2623 int op;
2624
2625 fprintf (stderr, "format = %d\n", f);
2626
2627 for (op = 0; op < xtensa_format_num_slots (isa, f); op++)
2628 {
2629 xtensa_opcode opcode;
2630 const char *opname;
2631 int operands;
2632
2633 xtensa_format_get_slot (isa, f, op, vbuf, sbuf);
2634 opcode = xtensa_opcode_decode (isa, f, op, sbuf);
2635 opname = xtensa_opcode_name (isa, opcode);
2636
2637 fprintf (stderr, "op in slot %i is %s;\n", op, opname);
2638 fprintf (stderr, " operands = ");
2639 for (operands = 0;
2640 operands < xtensa_opcode_num_operands (isa, opcode);
2641 operands++)
2642 {
2643 unsigned int val;
2644 if (xtensa_operand_is_visible (isa, opcode, operands) == 0)
2645 continue;
2646 xtensa_operand_get_field (isa, opcode, operands, f, op, sbuf, &val);
2647 xtensa_operand_decode (isa, opcode, operands, &val);
2648 fprintf (stderr, "%d ", val);
2649 }
2650 fprintf (stderr, "\n");
2651 }
2652 xtensa_insnbuf_free (isa, sbuf);
2653 }
2654
2655 #endif /* TENSILICA_DEBUG */
2656
2657
2658 static bfd_boolean
2659 is_direct_call_opcode (xtensa_opcode opcode)
2660 {
2661 xtensa_isa isa = xtensa_default_isa;
2662 int n, num_operands;
2663
2664 if (xtensa_opcode_is_call (isa, opcode) != 1)
2665 return FALSE;
2666
2667 num_operands = xtensa_opcode_num_operands (isa, opcode);
2668 for (n = 0; n < num_operands; n++)
2669 {
2670 if (xtensa_operand_is_register (isa, opcode, n) == 0
2671 && xtensa_operand_is_PCrelative (isa, opcode, n) == 1)
2672 return TRUE;
2673 }
2674 return FALSE;
2675 }
2676
2677
2678 /* Convert from BFD relocation type code to slot and operand number.
2679 Returns non-zero on failure. */
2680
2681 static int
2682 decode_reloc (bfd_reloc_code_real_type reloc, int *slot, bfd_boolean *is_alt)
2683 {
2684 if (reloc >= BFD_RELOC_XTENSA_SLOT0_OP
2685 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
2686 {
2687 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_OP;
2688 *is_alt = FALSE;
2689 }
2690 else if (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
2691 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT)
2692 {
2693 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_ALT;
2694 *is_alt = TRUE;
2695 }
2696 else
2697 return -1;
2698
2699 return 0;
2700 }
2701
2702
2703 /* Convert from slot number to BFD relocation type code for the
2704 standard PC-relative relocations. Return BFD_RELOC_NONE on
2705 failure. */
2706
2707 static bfd_reloc_code_real_type
2708 encode_reloc (int slot)
2709 {
2710 if (slot < 0 || slot > 14)
2711 return BFD_RELOC_NONE;
2712
2713 return BFD_RELOC_XTENSA_SLOT0_OP + slot;
2714 }
2715
2716
2717 /* Convert from slot numbers to BFD relocation type code for the
2718 "alternate" relocations. Return BFD_RELOC_NONE on failure. */
2719
2720 static bfd_reloc_code_real_type
2721 encode_alt_reloc (int slot)
2722 {
2723 if (slot < 0 || slot > 14)
2724 return BFD_RELOC_NONE;
2725
2726 return BFD_RELOC_XTENSA_SLOT0_ALT + slot;
2727 }
2728
2729
2730 static void
2731 xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf,
2732 xtensa_format fmt,
2733 int slot,
2734 xtensa_opcode opcode,
2735 int operand,
2736 uint32 value,
2737 const char *file,
2738 unsigned int line)
2739 {
2740 uint32 valbuf = value;
2741
2742 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
2743 {
2744 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, operand)
2745 == 1)
2746 as_bad_where ((char *) file, line,
2747 _("operand %d of '%s' has out of range value '%u'"),
2748 operand + 1,
2749 xtensa_opcode_name (xtensa_default_isa, opcode),
2750 value);
2751 else
2752 as_bad_where ((char *) file, line,
2753 _("operand %d of '%s' has invalid value '%u'"),
2754 operand + 1,
2755 xtensa_opcode_name (xtensa_default_isa, opcode),
2756 value);
2757 return;
2758 }
2759
2760 xtensa_operand_set_field (xtensa_default_isa, opcode, operand, fmt, slot,
2761 slotbuf, valbuf);
2762 }
2763
2764
2765 static uint32
2766 xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf,
2767 xtensa_format fmt,
2768 int slot,
2769 xtensa_opcode opcode,
2770 int opnum)
2771 {
2772 uint32 val = 0;
2773 (void) xtensa_operand_get_field (xtensa_default_isa, opcode, opnum,
2774 fmt, slot, slotbuf, &val);
2775 (void) xtensa_operand_decode (xtensa_default_isa, opcode, opnum, &val);
2776 return val;
2777 }
2778
2779 \f
2780 /* Checks for rules from xtensa-relax tables. */
2781
2782 /* The routine xg_instruction_matches_option_term must return TRUE
2783 when a given option term is true. The meaning of all of the option
2784 terms is given interpretation by this function. */
2785
2786 static bfd_boolean
2787 xg_instruction_matches_option_term (TInsn *insn, const ReqOrOption *option)
2788 {
2789 if (strcmp (option->option_name, "realnop") == 0
2790 || strncmp (option->option_name, "IsaUse", 6) == 0)
2791 {
2792 /* These conditions were evaluated statically when building the
2793 relaxation table. There's no need to reevaluate them now. */
2794 return TRUE;
2795 }
2796 else if (strcmp (option->option_name, "FREEREG") == 0)
2797 return insn->extra_arg.X_op == O_register;
2798 else
2799 {
2800 as_fatal (_("internal error: unknown option name '%s'"),
2801 option->option_name);
2802 }
2803 }
2804
2805
2806 static bfd_boolean
2807 xg_instruction_matches_or_options (TInsn *insn,
2808 const ReqOrOptionList *or_option)
2809 {
2810 const ReqOrOption *option;
2811 /* Must match each of the AND terms. */
2812 for (option = or_option; option != NULL; option = option->next)
2813 {
2814 if (xg_instruction_matches_option_term (insn, option))
2815 return TRUE;
2816 }
2817 return FALSE;
2818 }
2819
2820
2821 static bfd_boolean
2822 xg_instruction_matches_options (TInsn *insn, const ReqOptionList *options)
2823 {
2824 const ReqOption *req_options;
2825 /* Must match each of the AND terms. */
2826 for (req_options = options;
2827 req_options != NULL;
2828 req_options = req_options->next)
2829 {
2830 /* Must match one of the OR clauses. */
2831 if (!xg_instruction_matches_or_options (insn,
2832 req_options->or_option_terms))
2833 return FALSE;
2834 }
2835 return TRUE;
2836 }
2837
2838
2839 /* Return the transition rule that matches or NULL if none matches. */
2840
2841 static bfd_boolean
2842 xg_instruction_matches_rule (TInsn *insn, TransitionRule *rule)
2843 {
2844 PreconditionList *condition_l;
2845
2846 if (rule->opcode != insn->opcode)
2847 return FALSE;
2848
2849 for (condition_l = rule->conditions;
2850 condition_l != NULL;
2851 condition_l = condition_l->next)
2852 {
2853 expressionS *exp1;
2854 expressionS *exp2;
2855 Precondition *cond = condition_l->precond;
2856
2857 switch (cond->typ)
2858 {
2859 case OP_CONSTANT:
2860 /* The expression must be the constant. */
2861 gas_assert (cond->op_num < insn->ntok);
2862 exp1 = &insn->tok[cond->op_num];
2863 if (expr_is_const (exp1))
2864 {
2865 switch (cond->cmp)
2866 {
2867 case OP_EQUAL:
2868 if (get_expr_const (exp1) != cond->op_data)
2869 return FALSE;
2870 break;
2871 case OP_NOTEQUAL:
2872 if (get_expr_const (exp1) == cond->op_data)
2873 return FALSE;
2874 break;
2875 default:
2876 return FALSE;
2877 }
2878 }
2879 else if (expr_is_register (exp1))
2880 {
2881 switch (cond->cmp)
2882 {
2883 case OP_EQUAL:
2884 if (get_expr_register (exp1) != cond->op_data)
2885 return FALSE;
2886 break;
2887 case OP_NOTEQUAL:
2888 if (get_expr_register (exp1) == cond->op_data)
2889 return FALSE;
2890 break;
2891 default:
2892 return FALSE;
2893 }
2894 }
2895 else
2896 return FALSE;
2897 break;
2898
2899 case OP_OPERAND:
2900 gas_assert (cond->op_num < insn->ntok);
2901 gas_assert (cond->op_data < insn->ntok);
2902 exp1 = &insn->tok[cond->op_num];
2903 exp2 = &insn->tok[cond->op_data];
2904
2905 switch (cond->cmp)
2906 {
2907 case OP_EQUAL:
2908 if (!expr_is_equal (exp1, exp2))
2909 return FALSE;
2910 break;
2911 case OP_NOTEQUAL:
2912 if (expr_is_equal (exp1, exp2))
2913 return FALSE;
2914 break;
2915 }
2916 break;
2917
2918 case OP_LITERAL:
2919 case OP_LABEL:
2920 default:
2921 return FALSE;
2922 }
2923 }
2924 if (!xg_instruction_matches_options (insn, rule->options))
2925 return FALSE;
2926
2927 return TRUE;
2928 }
2929
2930
2931 static int
2932 transition_rule_cmp (const TransitionRule *a, const TransitionRule *b)
2933 {
2934 bfd_boolean a_greater = FALSE;
2935 bfd_boolean b_greater = FALSE;
2936
2937 ReqOptionList *l_a = a->options;
2938 ReqOptionList *l_b = b->options;
2939
2940 /* We only care if they both are the same except for
2941 a const16 vs. an l32r. */
2942
2943 while (l_a && l_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2944 {
2945 ReqOrOptionList *l_or_a = l_a->or_option_terms;
2946 ReqOrOptionList *l_or_b = l_b->or_option_terms;
2947 while (l_or_a && l_or_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2948 {
2949 if (l_or_a->is_true != l_or_b->is_true)
2950 return 0;
2951 if (strcmp (l_or_a->option_name, l_or_b->option_name) != 0)
2952 {
2953 /* This is the case we care about. */
2954 if (strcmp (l_or_a->option_name, "IsaUseConst16") == 0
2955 && strcmp (l_or_b->option_name, "IsaUseL32R") == 0)
2956 {
2957 if (prefer_const16)
2958 a_greater = TRUE;
2959 else
2960 b_greater = TRUE;
2961 }
2962 else if (strcmp (l_or_a->option_name, "IsaUseL32R") == 0
2963 && strcmp (l_or_b->option_name, "IsaUseConst16") == 0)
2964 {
2965 if (prefer_const16)
2966 b_greater = TRUE;
2967 else
2968 a_greater = TRUE;
2969 }
2970 else
2971 return 0;
2972 }
2973 l_or_a = l_or_a->next;
2974 l_or_b = l_or_b->next;
2975 }
2976 if (l_or_a || l_or_b)
2977 return 0;
2978
2979 l_a = l_a->next;
2980 l_b = l_b->next;
2981 }
2982 if (l_a || l_b)
2983 return 0;
2984
2985 /* Incomparable if the substitution was used differently in two cases. */
2986 if (a_greater && b_greater)
2987 return 0;
2988
2989 if (b_greater)
2990 return 1;
2991 if (a_greater)
2992 return -1;
2993
2994 return 0;
2995 }
2996
2997
2998 static TransitionRule *
2999 xg_instruction_match (TInsn *insn)
3000 {
3001 TransitionTable *table = xg_build_simplify_table (&transition_rule_cmp);
3002 TransitionList *l;
3003 gas_assert (insn->opcode < table->num_opcodes);
3004
3005 /* Walk through all of the possible transitions. */
3006 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3007 {
3008 TransitionRule *rule = l->rule;
3009 if (xg_instruction_matches_rule (insn, rule))
3010 return rule;
3011 }
3012 return NULL;
3013 }
3014
3015 \f
3016 /* Various Other Internal Functions. */
3017
3018 static bfd_boolean
3019 is_unique_insn_expansion (TransitionRule *r)
3020 {
3021 if (!r->to_instr || r->to_instr->next != NULL)
3022 return FALSE;
3023 if (r->to_instr->typ != INSTR_INSTR)
3024 return FALSE;
3025 return TRUE;
3026 }
3027
3028
3029 /* Check if there is exactly one relaxation for INSN that converts it to
3030 another instruction of equal or larger size. If so, and if TARG is
3031 non-null, go ahead and generate the relaxed instruction into TARG. If
3032 NARROW_ONLY is true, then only consider relaxations that widen a narrow
3033 instruction, i.e., ignore relaxations that convert to an instruction of
3034 equal size. In some contexts where this function is used, only
3035 a single widening is allowed and the NARROW_ONLY argument is used to
3036 exclude cases like ADDI being "widened" to an ADDMI, which may
3037 later be relaxed to an ADDMI/ADDI pair. */
3038
3039 bfd_boolean
3040 xg_is_single_relaxable_insn (TInsn *insn, TInsn *targ, bfd_boolean narrow_only)
3041 {
3042 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3043 TransitionList *l;
3044 TransitionRule *match = 0;
3045
3046 gas_assert (insn->insn_type == ITYPE_INSN);
3047 gas_assert (insn->opcode < table->num_opcodes);
3048
3049 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3050 {
3051 TransitionRule *rule = l->rule;
3052
3053 if (xg_instruction_matches_rule (insn, rule)
3054 && is_unique_insn_expansion (rule)
3055 && (xg_get_single_size (insn->opcode) + (narrow_only ? 1 : 0)
3056 <= xg_get_single_size (rule->to_instr->opcode)))
3057 {
3058 if (match)
3059 return FALSE;
3060 match = rule;
3061 }
3062 }
3063 if (!match)
3064 return FALSE;
3065
3066 if (targ)
3067 xg_build_to_insn (targ, insn, match->to_instr);
3068 return TRUE;
3069 }
3070
3071
3072 /* Return the maximum number of bytes this opcode can expand to. */
3073
3074 static int
3075 xg_get_max_insn_widen_size (xtensa_opcode opcode)
3076 {
3077 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3078 TransitionList *l;
3079 int max_size = xg_get_single_size (opcode);
3080
3081 gas_assert (opcode < table->num_opcodes);
3082
3083 for (l = table->table[opcode]; l != NULL; l = l->next)
3084 {
3085 TransitionRule *rule = l->rule;
3086 BuildInstr *build_list;
3087 int this_size = 0;
3088
3089 if (!rule)
3090 continue;
3091 build_list = rule->to_instr;
3092 if (is_unique_insn_expansion (rule))
3093 {
3094 gas_assert (build_list->typ == INSTR_INSTR);
3095 this_size = xg_get_max_insn_widen_size (build_list->opcode);
3096 }
3097 else
3098 for (; build_list != NULL; build_list = build_list->next)
3099 {
3100 switch (build_list->typ)
3101 {
3102 case INSTR_INSTR:
3103 this_size += xg_get_single_size (build_list->opcode);
3104 break;
3105 case INSTR_LITERAL_DEF:
3106 case INSTR_LABEL_DEF:
3107 default:
3108 break;
3109 }
3110 }
3111 if (this_size > max_size)
3112 max_size = this_size;
3113 }
3114 return max_size;
3115 }
3116
3117
3118 /* Return the maximum number of literal bytes this opcode can generate. */
3119
3120 static int
3121 xg_get_max_insn_widen_literal_size (xtensa_opcode opcode)
3122 {
3123 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3124 TransitionList *l;
3125 int max_size = 0;
3126
3127 gas_assert (opcode < table->num_opcodes);
3128
3129 for (l = table->table[opcode]; l != NULL; l = l->next)
3130 {
3131 TransitionRule *rule = l->rule;
3132 BuildInstr *build_list;
3133 int this_size = 0;
3134
3135 if (!rule)
3136 continue;
3137 build_list = rule->to_instr;
3138 if (is_unique_insn_expansion (rule))
3139 {
3140 gas_assert (build_list->typ == INSTR_INSTR);
3141 this_size = xg_get_max_insn_widen_literal_size (build_list->opcode);
3142 }
3143 else
3144 for (; build_list != NULL; build_list = build_list->next)
3145 {
3146 switch (build_list->typ)
3147 {
3148 case INSTR_LITERAL_DEF:
3149 /* Hard-coded 4-byte literal. */
3150 this_size += 4;
3151 break;
3152 case INSTR_INSTR:
3153 case INSTR_LABEL_DEF:
3154 default:
3155 break;
3156 }
3157 }
3158 if (this_size > max_size)
3159 max_size = this_size;
3160 }
3161 return max_size;
3162 }
3163
3164
3165 static bfd_boolean
3166 xg_is_relaxable_insn (TInsn *insn, int lateral_steps)
3167 {
3168 int steps_taken = 0;
3169 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3170 TransitionList *l;
3171
3172 gas_assert (insn->insn_type == ITYPE_INSN);
3173 gas_assert (insn->opcode < table->num_opcodes);
3174
3175 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3176 {
3177 TransitionRule *rule = l->rule;
3178
3179 if (xg_instruction_matches_rule (insn, rule))
3180 {
3181 if (steps_taken == lateral_steps)
3182 return TRUE;
3183 steps_taken++;
3184 }
3185 }
3186 return FALSE;
3187 }
3188
3189
3190 static symbolS *
3191 get_special_literal_symbol (void)
3192 {
3193 static symbolS *sym = NULL;
3194
3195 if (sym == NULL)
3196 sym = symbol_find_or_make ("SPECIAL_LITERAL0\001");
3197 return sym;
3198 }
3199
3200
3201 static symbolS *
3202 get_special_label_symbol (void)
3203 {
3204 static symbolS *sym = NULL;
3205
3206 if (sym == NULL)
3207 sym = symbol_find_or_make ("SPECIAL_LABEL0\001");
3208 return sym;
3209 }
3210
3211
3212 static bfd_boolean
3213 xg_valid_literal_expression (const expressionS *exp)
3214 {
3215 switch (exp->X_op)
3216 {
3217 case O_constant:
3218 case O_symbol:
3219 case O_big:
3220 case O_uminus:
3221 case O_subtract:
3222 case O_pltrel:
3223 case O_pcrel:
3224 case O_tlsfunc:
3225 case O_tlsarg:
3226 case O_tpoff:
3227 case O_dtpoff:
3228 return TRUE;
3229 default:
3230 return FALSE;
3231 }
3232 }
3233
3234
3235 /* This will check to see if the value can be converted into the
3236 operand type. It will return TRUE if it does not fit. */
3237
3238 static bfd_boolean
3239 xg_check_operand (int32 value, xtensa_opcode opcode, int operand)
3240 {
3241 uint32 valbuf = value;
3242 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
3243 return TRUE;
3244 return FALSE;
3245 }
3246
3247
3248 /* Assumes: All immeds are constants. Check that all constants fit
3249 into their immeds; return FALSE if not. */
3250
3251 static bfd_boolean
3252 xg_immeds_fit (const TInsn *insn)
3253 {
3254 xtensa_isa isa = xtensa_default_isa;
3255 int i;
3256
3257 int n = insn->ntok;
3258 gas_assert (insn->insn_type == ITYPE_INSN);
3259 for (i = 0; i < n; ++i)
3260 {
3261 const expressionS *exp = &insn->tok[i];
3262
3263 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3264 continue;
3265
3266 switch (exp->X_op)
3267 {
3268 case O_register:
3269 case O_constant:
3270 if (xg_check_operand (exp->X_add_number, insn->opcode, i))
3271 return FALSE;
3272 break;
3273
3274 default:
3275 /* The symbol should have a fixup associated with it. */
3276 gas_assert (FALSE);
3277 break;
3278 }
3279 }
3280 return TRUE;
3281 }
3282
3283
3284 /* This should only be called after we have an initial
3285 estimate of the addresses. */
3286
3287 static bfd_boolean
3288 xg_symbolic_immeds_fit (const TInsn *insn,
3289 segT pc_seg,
3290 fragS *pc_frag,
3291 offsetT pc_offset,
3292 long stretch)
3293 {
3294 xtensa_isa isa = xtensa_default_isa;
3295 symbolS *symbolP;
3296 fragS *sym_frag;
3297 offsetT target, pc;
3298 uint32 new_offset;
3299 int i;
3300 int n = insn->ntok;
3301
3302 gas_assert (insn->insn_type == ITYPE_INSN);
3303
3304 for (i = 0; i < n; ++i)
3305 {
3306 const expressionS *exp = &insn->tok[i];
3307
3308 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3309 continue;
3310
3311 switch (exp->X_op)
3312 {
3313 case O_register:
3314 case O_constant:
3315 if (xg_check_operand (exp->X_add_number, insn->opcode, i))
3316 return FALSE;
3317 break;
3318
3319 case O_lo16:
3320 case O_hi16:
3321 /* Check for the worst case. */
3322 if (xg_check_operand (0xffff, insn->opcode, i))
3323 return FALSE;
3324 break;
3325
3326 case O_symbol:
3327 /* We only allow symbols for PC-relative references.
3328 If pc_frag == 0, then we don't have frag locations yet. */
3329 if (pc_frag == 0
3330 || xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 0)
3331 return FALSE;
3332
3333 /* If it is a weak symbol or a symbol in a different section,
3334 it cannot be known to fit at assembly time. */
3335 if (S_IS_WEAK (exp->X_add_symbol)
3336 || S_GET_SEGMENT (exp->X_add_symbol) != pc_seg)
3337 {
3338 /* For a direct call with --no-longcalls, be optimistic and
3339 assume it will be in range. If the symbol is weak and
3340 undefined, it may remain undefined at link-time, in which
3341 case it will have a zero value and almost certainly be out
3342 of range for a direct call; thus, relax for undefined weak
3343 symbols even if longcalls is not enabled. */
3344 if (is_direct_call_opcode (insn->opcode)
3345 && ! pc_frag->tc_frag_data.use_longcalls
3346 && (! S_IS_WEAK (exp->X_add_symbol)
3347 || S_IS_DEFINED (exp->X_add_symbol)))
3348 return TRUE;
3349
3350 return FALSE;
3351 }
3352
3353 symbolP = exp->X_add_symbol;
3354 sym_frag = symbol_get_frag (symbolP);
3355 target = S_GET_VALUE (symbolP) + exp->X_add_number;
3356 pc = pc_frag->fr_address + pc_offset;
3357
3358 /* If frag has yet to be reached on this pass, assume it
3359 will move by STRETCH just as we did. If this is not so,
3360 it will be because some frag between grows, and that will
3361 force another pass. Beware zero-length frags. There
3362 should be a faster way to do this. */
3363
3364 if (stretch != 0
3365 && sym_frag->relax_marker != pc_frag->relax_marker
3366 && S_GET_SEGMENT (symbolP) == pc_seg)
3367 {
3368 target += stretch;
3369 }
3370
3371 new_offset = target;
3372 xtensa_operand_do_reloc (isa, insn->opcode, i, &new_offset, pc);
3373 if (xg_check_operand (new_offset, insn->opcode, i))
3374 return FALSE;
3375 break;
3376
3377 default:
3378 /* The symbol should have a fixup associated with it. */
3379 return FALSE;
3380 }
3381 }
3382
3383 return TRUE;
3384 }
3385
3386
3387 /* Return TRUE on success. */
3388
3389 static bfd_boolean
3390 xg_build_to_insn (TInsn *targ, TInsn *insn, BuildInstr *bi)
3391 {
3392 BuildOp *op;
3393 symbolS *sym;
3394
3395 tinsn_init (targ);
3396 targ->debug_line = insn->debug_line;
3397 targ->loc_directive_seen = insn->loc_directive_seen;
3398 switch (bi->typ)
3399 {
3400 case INSTR_INSTR:
3401 op = bi->ops;
3402 targ->opcode = bi->opcode;
3403 targ->insn_type = ITYPE_INSN;
3404 targ->is_specific_opcode = FALSE;
3405
3406 for (; op != NULL; op = op->next)
3407 {
3408 int op_num = op->op_num;
3409 int op_data = op->op_data;
3410
3411 gas_assert (op->op_num < MAX_INSN_ARGS);
3412
3413 if (targ->ntok <= op_num)
3414 targ->ntok = op_num + 1;
3415
3416 switch (op->typ)
3417 {
3418 case OP_CONSTANT:
3419 set_expr_const (&targ->tok[op_num], op_data);
3420 break;
3421 case OP_OPERAND:
3422 gas_assert (op_data < insn->ntok);
3423 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3424 break;
3425 case OP_FREEREG:
3426 if (insn->extra_arg.X_op != O_register)
3427 return FALSE;
3428 copy_expr (&targ->tok[op_num], &insn->extra_arg);
3429 break;
3430 case OP_LITERAL:
3431 sym = get_special_literal_symbol ();
3432 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3433 if (insn->tok[op_data].X_op == O_tlsfunc
3434 || insn->tok[op_data].X_op == O_tlsarg)
3435 copy_expr (&targ->extra_arg, &insn->tok[op_data]);
3436 break;
3437 case OP_LABEL:
3438 sym = get_special_label_symbol ();
3439 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3440 break;
3441 case OP_OPERAND_HI16U:
3442 case OP_OPERAND_LOW16U:
3443 gas_assert (op_data < insn->ntok);
3444 if (expr_is_const (&insn->tok[op_data]))
3445 {
3446 long val;
3447 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3448 val = xg_apply_userdef_op_fn (op->typ,
3449 targ->tok[op_num].
3450 X_add_number);
3451 targ->tok[op_num].X_add_number = val;
3452 }
3453 else
3454 {
3455 /* For const16 we can create relocations for these. */
3456 if (targ->opcode == XTENSA_UNDEFINED
3457 || (targ->opcode != xtensa_const16_opcode))
3458 return FALSE;
3459 gas_assert (op_data < insn->ntok);
3460 /* Need to build a O_lo16 or O_hi16. */
3461 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3462 if (targ->tok[op_num].X_op == O_symbol)
3463 {
3464 if (op->typ == OP_OPERAND_HI16U)
3465 targ->tok[op_num].X_op = O_hi16;
3466 else if (op->typ == OP_OPERAND_LOW16U)
3467 targ->tok[op_num].X_op = O_lo16;
3468 else
3469 return FALSE;
3470 }
3471 }
3472 break;
3473 default:
3474 /* currently handles:
3475 OP_OPERAND_LOW8
3476 OP_OPERAND_HI24S
3477 OP_OPERAND_F32MINUS */
3478 if (xg_has_userdef_op_fn (op->typ))
3479 {
3480 gas_assert (op_data < insn->ntok);
3481 if (expr_is_const (&insn->tok[op_data]))
3482 {
3483 long val;
3484 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3485 val = xg_apply_userdef_op_fn (op->typ,
3486 targ->tok[op_num].
3487 X_add_number);
3488 targ->tok[op_num].X_add_number = val;
3489 }
3490 else
3491 return FALSE; /* We cannot use a relocation for this. */
3492 break;
3493 }
3494 gas_assert (0);
3495 break;
3496 }
3497 }
3498 break;
3499
3500 case INSTR_LITERAL_DEF:
3501 op = bi->ops;
3502 targ->opcode = XTENSA_UNDEFINED;
3503 targ->insn_type = ITYPE_LITERAL;
3504 targ->is_specific_opcode = FALSE;
3505 for (; op != NULL; op = op->next)
3506 {
3507 int op_num = op->op_num;
3508 int op_data = op->op_data;
3509 gas_assert (op->op_num < MAX_INSN_ARGS);
3510
3511 if (targ->ntok <= op_num)
3512 targ->ntok = op_num + 1;
3513
3514 switch (op->typ)
3515 {
3516 case OP_OPERAND:
3517 gas_assert (op_data < insn->ntok);
3518 /* We can only pass resolvable literals through. */
3519 if (!xg_valid_literal_expression (&insn->tok[op_data]))
3520 return FALSE;
3521 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3522 break;
3523 case OP_LITERAL:
3524 case OP_CONSTANT:
3525 case OP_LABEL:
3526 default:
3527 gas_assert (0);
3528 break;
3529 }
3530 }
3531 break;
3532
3533 case INSTR_LABEL_DEF:
3534 op = bi->ops;
3535 targ->opcode = XTENSA_UNDEFINED;
3536 targ->insn_type = ITYPE_LABEL;
3537 targ->is_specific_opcode = FALSE;
3538 /* Literal with no ops is a label? */
3539 gas_assert (op == NULL);
3540 break;
3541
3542 default:
3543 gas_assert (0);
3544 }
3545
3546 return TRUE;
3547 }
3548
3549
3550 /* Return TRUE on success. */
3551
3552 static bfd_boolean
3553 xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi)
3554 {
3555 for (; bi != NULL; bi = bi->next)
3556 {
3557 TInsn *next_insn = istack_push_space (istack);
3558
3559 if (!xg_build_to_insn (next_insn, insn, bi))
3560 return FALSE;
3561 }
3562 return TRUE;
3563 }
3564
3565
3566 /* Return TRUE on valid expansion. */
3567
3568 static bfd_boolean
3569 xg_expand_to_stack (IStack *istack, TInsn *insn, int lateral_steps)
3570 {
3571 int stack_size = istack->ninsn;
3572 int steps_taken = 0;
3573 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3574 TransitionList *l;
3575
3576 gas_assert (insn->insn_type == ITYPE_INSN);
3577 gas_assert (insn->opcode < table->num_opcodes);
3578
3579 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3580 {
3581 TransitionRule *rule = l->rule;
3582
3583 if (xg_instruction_matches_rule (insn, rule))
3584 {
3585 if (lateral_steps == steps_taken)
3586 {
3587 int i;
3588
3589 /* This is it. Expand the rule to the stack. */
3590 if (!xg_build_to_stack (istack, insn, rule->to_instr))
3591 return FALSE;
3592
3593 /* Check to see if it fits. */
3594 for (i = stack_size; i < istack->ninsn; i++)
3595 {
3596 TInsn *tinsn = &istack->insn[i];
3597
3598 if (tinsn->insn_type == ITYPE_INSN
3599 && !tinsn_has_symbolic_operands (tinsn)
3600 && !xg_immeds_fit (tinsn))
3601 {
3602 istack->ninsn = stack_size;
3603 return FALSE;
3604 }
3605 }
3606 return TRUE;
3607 }
3608 steps_taken++;
3609 }
3610 }
3611 return FALSE;
3612 }
3613
3614 \f
3615 /* Relax the assembly instruction at least "min_steps".
3616 Return the number of steps taken.
3617
3618 For relaxation to correctly terminate, every relaxation chain must
3619 terminate in one of two ways:
3620
3621 1. If the chain from one instruction to the next consists entirely of
3622 single instructions, then the chain *must* handle all possible
3623 immediates without failing. It must not ever fail because an
3624 immediate is out of range. The MOVI.N -> MOVI -> L32R relaxation
3625 chain is one example. L32R loads 32 bits, and there cannot be an
3626 immediate larger than 32 bits, so it satisfies this condition.
3627 Single instruction relaxation chains are as defined by
3628 xg_is_single_relaxable_instruction.
3629
3630 2. Otherwise, the chain must end in a multi-instruction expansion: e.g.,
3631 BNEZ.N -> BNEZ -> BNEZ.W15 -> BENZ.N/J
3632
3633 Strictly speaking, in most cases you can violate condition 1 and be OK
3634 -- in particular when the last two instructions have the same single
3635 size. But nevertheless, you should guarantee the above two conditions.
3636
3637 We could fix this so that single-instruction expansions correctly
3638 terminate when they can't handle the range, but the error messages are
3639 worse, and it actually turns out that in every case but one (18-bit wide
3640 branches), you need a multi-instruction expansion to get the full range
3641 anyway. And because 18-bit branches are handled identically to 15-bit
3642 branches, there isn't any point in changing it. */
3643
3644 static int
3645 xg_assembly_relax (IStack *istack,
3646 TInsn *insn,
3647 segT pc_seg,
3648 fragS *pc_frag, /* if pc_frag == 0, not pc-relative */
3649 offsetT pc_offset, /* offset in fragment */
3650 int min_steps, /* minimum conversion steps */
3651 long stretch) /* number of bytes stretched so far */
3652 {
3653 int steps_taken = 0;
3654
3655 /* Some of its immeds don't fit. Try to build a relaxed version.
3656 This may go through a couple of stages of single instruction
3657 transformations before we get there. */
3658
3659 TInsn single_target;
3660 TInsn current_insn;
3661 int lateral_steps = 0;
3662 int istack_size = istack->ninsn;
3663
3664 if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch)
3665 && steps_taken >= min_steps)
3666 {
3667 istack_push (istack, insn);
3668 return steps_taken;
3669 }
3670 current_insn = *insn;
3671
3672 /* Walk through all of the single instruction expansions. */
3673 while (xg_is_single_relaxable_insn (&current_insn, &single_target, FALSE))
3674 {
3675 steps_taken++;
3676 if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset,
3677 stretch))
3678 {
3679 if (steps_taken >= min_steps)
3680 {
3681 istack_push (istack, &single_target);
3682 return steps_taken;
3683 }
3684 }
3685 current_insn = single_target;
3686 }
3687
3688 /* Now check for a multi-instruction expansion. */
3689 while (xg_is_relaxable_insn (&current_insn, lateral_steps))
3690 {
3691 if (xg_symbolic_immeds_fit (&current_insn, pc_seg, pc_frag, pc_offset,
3692 stretch))
3693 {
3694 if (steps_taken >= min_steps)
3695 {
3696 istack_push (istack, &current_insn);
3697 return steps_taken;
3698 }
3699 }
3700 steps_taken++;
3701 if (xg_expand_to_stack (istack, &current_insn, lateral_steps))
3702 {
3703 if (steps_taken >= min_steps)
3704 return steps_taken;
3705 }
3706 lateral_steps++;
3707 istack->ninsn = istack_size;
3708 }
3709
3710 /* It's not going to work -- use the original. */
3711 istack_push (istack, insn);
3712 return steps_taken;
3713 }
3714
3715
3716 static void
3717 xg_finish_frag (char *last_insn,
3718 enum xtensa_relax_statesE frag_state,
3719 enum xtensa_relax_statesE slot0_state,
3720 int max_growth,
3721 bfd_boolean is_insn)
3722 {
3723 /* Finish off this fragment so that it has at LEAST the desired
3724 max_growth. If it doesn't fit in this fragment, close this one
3725 and start a new one. In either case, return a pointer to the
3726 beginning of the growth area. */
3727
3728 fragS *old_frag;
3729
3730 frag_grow (max_growth);
3731 old_frag = frag_now;
3732
3733 frag_now->fr_opcode = last_insn;
3734 if (is_insn)
3735 frag_now->tc_frag_data.is_insn = TRUE;
3736
3737 frag_var (rs_machine_dependent, max_growth, max_growth,
3738 frag_state, frag_now->fr_symbol, frag_now->fr_offset, last_insn);
3739
3740 old_frag->tc_frag_data.slot_subtypes[0] = slot0_state;
3741 xtensa_set_frag_assembly_state (frag_now);
3742
3743 /* Just to make sure that we did not split it up. */
3744 gas_assert (old_frag->fr_next == frag_now);
3745 }
3746
3747
3748 /* Return TRUE if the target frag is one of the next non-empty frags. */
3749
3750 static bfd_boolean
3751 is_next_frag_target (const fragS *fragP, const fragS *target)
3752 {
3753 if (fragP == NULL)
3754 return FALSE;
3755
3756 for (; fragP; fragP = fragP->fr_next)
3757 {
3758 if (fragP == target)
3759 return TRUE;
3760 if (fragP->fr_fix != 0)
3761 return FALSE;
3762 if (fragP->fr_type == rs_fill && fragP->fr_offset != 0)
3763 return FALSE;
3764 if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code)
3765 && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0))
3766 return FALSE;
3767 if (fragP->fr_type == rs_space)
3768 return FALSE;
3769 }
3770 return FALSE;
3771 }
3772
3773
3774 static bfd_boolean
3775 is_branch_jmp_to_next (TInsn *insn, fragS *fragP)
3776 {
3777 xtensa_isa isa = xtensa_default_isa;
3778 int i;
3779 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3780 int target_op = -1;
3781 symbolS *sym;
3782 fragS *target_frag;
3783
3784 if (xtensa_opcode_is_branch (isa, insn->opcode) != 1
3785 && xtensa_opcode_is_jump (isa, insn->opcode) != 1)
3786 return FALSE;
3787
3788 for (i = 0; i < num_ops; i++)
3789 {
3790 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1)
3791 {
3792 target_op = i;
3793 break;
3794 }
3795 }
3796 if (target_op == -1)
3797 return FALSE;
3798
3799 if (insn->ntok <= target_op)
3800 return FALSE;
3801
3802 if (insn->tok[target_op].X_op != O_symbol)
3803 return FALSE;
3804
3805 sym = insn->tok[target_op].X_add_symbol;
3806 if (sym == NULL)
3807 return FALSE;
3808
3809 if (insn->tok[target_op].X_add_number != 0)
3810 return FALSE;
3811
3812 target_frag = symbol_get_frag (sym);
3813 if (target_frag == NULL)
3814 return FALSE;
3815
3816 if (is_next_frag_target (fragP->fr_next, target_frag)
3817 && S_GET_VALUE (sym) == target_frag->fr_address)
3818 return TRUE;
3819
3820 return FALSE;
3821 }
3822
3823
3824 static void
3825 xg_add_branch_and_loop_targets (TInsn *insn)
3826 {
3827 xtensa_isa isa = xtensa_default_isa;
3828 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3829
3830 if (xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3831 {
3832 int i = 1;
3833 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3834 && insn->tok[i].X_op == O_symbol)
3835 symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE;
3836 return;
3837 }
3838
3839 if (xtensa_opcode_is_branch (isa, insn->opcode) == 1
3840 || xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3841 {
3842 int i;
3843
3844 for (i = 0; i < insn->ntok && i < num_ops; i++)
3845 {
3846 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3847 && insn->tok[i].X_op == O_symbol)
3848 {
3849 symbolS *sym = insn->tok[i].X_add_symbol;
3850 symbol_get_tc (sym)->is_branch_target = TRUE;
3851 if (S_IS_DEFINED (sym))
3852 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
3853 }
3854 }
3855 }
3856 }
3857
3858
3859 /* Return FALSE if no error. */
3860
3861 static bfd_boolean
3862 xg_build_token_insn (BuildInstr *instr_spec, TInsn *old_insn, TInsn *new_insn)
3863 {
3864 int num_ops = 0;
3865 BuildOp *b_op;
3866
3867 switch (instr_spec->typ)
3868 {
3869 case INSTR_INSTR:
3870 new_insn->insn_type = ITYPE_INSN;
3871 new_insn->opcode = instr_spec->opcode;
3872 break;
3873 case INSTR_LITERAL_DEF:
3874 new_insn->insn_type = ITYPE_LITERAL;
3875 new_insn->opcode = XTENSA_UNDEFINED;
3876 break;
3877 case INSTR_LABEL_DEF:
3878 abort ();
3879 }
3880 new_insn->is_specific_opcode = FALSE;
3881 new_insn->debug_line = old_insn->debug_line;
3882 new_insn->loc_directive_seen = old_insn->loc_directive_seen;
3883
3884 for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next)
3885 {
3886 expressionS *exp;
3887 const expressionS *src_exp;
3888
3889 num_ops++;
3890 switch (b_op->typ)
3891 {
3892 case OP_CONSTANT:
3893 /* The expression must be the constant. */
3894 gas_assert (b_op->op_num < MAX_INSN_ARGS);
3895 exp = &new_insn->tok[b_op->op_num];
3896 set_expr_const (exp, b_op->op_data);
3897 break;
3898
3899 case OP_OPERAND:
3900 gas_assert (b_op->op_num < MAX_INSN_ARGS);
3901 gas_assert (b_op->op_data < (unsigned) old_insn->ntok);
3902 src_exp = &old_insn->tok[b_op->op_data];
3903 exp = &new_insn->tok[b_op->op_num];
3904 copy_expr (exp, src_exp);
3905 break;
3906
3907 case OP_LITERAL:
3908 case OP_LABEL:
3909 as_bad (_("can't handle generation of literal/labels yet"));
3910 gas_assert (0);
3911
3912 default:
3913 as_bad (_("can't handle undefined OP TYPE"));
3914 gas_assert (0);
3915 }
3916 }
3917
3918 new_insn->ntok = num_ops;
3919 return FALSE;
3920 }
3921
3922
3923 /* Return TRUE if it was simplified. */
3924
3925 static bfd_boolean
3926 xg_simplify_insn (TInsn *old_insn, TInsn *new_insn)
3927 {
3928 TransitionRule *rule;
3929 BuildInstr *insn_spec;
3930
3931 if (old_insn->is_specific_opcode || !density_supported)
3932 return FALSE;
3933
3934 rule = xg_instruction_match (old_insn);
3935 if (rule == NULL)
3936 return FALSE;
3937
3938 insn_spec = rule->to_instr;
3939 /* There should only be one. */
3940 gas_assert (insn_spec != NULL);
3941 gas_assert (insn_spec->next == NULL);
3942 if (insn_spec->next != NULL)
3943 return FALSE;
3944
3945 xg_build_token_insn (insn_spec, old_insn, new_insn);
3946
3947 return TRUE;
3948 }
3949
3950
3951 /* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i ->
3952 l32i.n. (2) Check the number of operands. (3) Place the instruction
3953 tokens into the stack or relax it and place multiple
3954 instructions/literals onto the stack. Return FALSE if no error. */
3955
3956 static bfd_boolean
3957 xg_expand_assembly_insn (IStack *istack, TInsn *orig_insn)
3958 {
3959 int noperands;
3960 TInsn new_insn;
3961 bfd_boolean do_expand;
3962
3963 tinsn_init (&new_insn);
3964
3965 /* Narrow it if we can. xg_simplify_insn now does all the
3966 appropriate checking (e.g., for the density option). */
3967 if (xg_simplify_insn (orig_insn, &new_insn))
3968 orig_insn = &new_insn;
3969
3970 noperands = xtensa_opcode_num_operands (xtensa_default_isa,
3971 orig_insn->opcode);
3972 if (orig_insn->ntok < noperands)
3973 {
3974 as_bad (_("found %d operands for '%s': Expected %d"),
3975 orig_insn->ntok,
3976 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3977 noperands);
3978 return TRUE;
3979 }
3980 if (orig_insn->ntok > noperands)
3981 as_warn (_("found too many (%d) operands for '%s': Expected %d"),
3982 orig_insn->ntok,
3983 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3984 noperands);
3985
3986 /* If there are not enough operands, we will assert above. If there
3987 are too many, just cut out the extras here. */
3988 orig_insn->ntok = noperands;
3989
3990 if (tinsn_has_invalid_symbolic_operands (orig_insn))
3991 return TRUE;
3992
3993 /* Special case for extui opcode which has constraints not handled
3994 by the ordinary operand encoding checks. The number of operands
3995 and related syntax issues have already been checked. */
3996 if (orig_insn->opcode == xtensa_extui_opcode)
3997 {
3998 int shiftimm = orig_insn->tok[2].X_add_number;
3999 int maskimm = orig_insn->tok[3].X_add_number;
4000 if (shiftimm + maskimm > 32)
4001 {
4002 as_bad (_("immediate operands sum to greater than 32"));
4003 return TRUE;
4004 }
4005 }
4006
4007 /* If the instruction will definitely need to be relaxed, it is better
4008 to expand it now for better scheduling. Decide whether to expand
4009 now.... */
4010 do_expand = (!orig_insn->is_specific_opcode && use_transform ());
4011
4012 /* Calls should be expanded to longcalls only in the backend relaxation
4013 so that the assembly scheduler will keep the L32R/CALLX instructions
4014 adjacent. */
4015 if (is_direct_call_opcode (orig_insn->opcode))
4016 do_expand = FALSE;
4017
4018 if (tinsn_has_symbolic_operands (orig_insn))
4019 {
4020 /* The values of symbolic operands are not known yet, so only expand
4021 now if an operand is "complex" (e.g., difference of symbols) and
4022 will have to be stored as a literal regardless of the value. */
4023 if (!tinsn_has_complex_operands (orig_insn))
4024 do_expand = FALSE;
4025 }
4026 else if (xg_immeds_fit (orig_insn))
4027 do_expand = FALSE;
4028
4029 if (do_expand)
4030 xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0);
4031 else
4032 istack_push (istack, orig_insn);
4033
4034 return FALSE;
4035 }
4036
4037
4038 /* Return TRUE if the section flags are marked linkonce
4039 or the name is .gnu.linkonce.*. */
4040
4041 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
4042
4043 static bfd_boolean
4044 get_is_linkonce_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec)
4045 {
4046 flagword flags, link_once_flags;
4047
4048 flags = bfd_get_section_flags (abfd, sec);
4049 link_once_flags = (flags & SEC_LINK_ONCE);
4050
4051 /* Flags might not be set yet. */
4052 if (!link_once_flags
4053 && strncmp (segment_name (sec), ".gnu.linkonce.", linkonce_len) == 0)
4054 link_once_flags = SEC_LINK_ONCE;
4055
4056 return (link_once_flags != 0);
4057 }
4058
4059
4060 static void
4061 xtensa_add_literal_sym (symbolS *sym)
4062 {
4063 sym_list *l;
4064
4065 l = (sym_list *) xmalloc (sizeof (sym_list));
4066 l->sym = sym;
4067 l->next = literal_syms;
4068 literal_syms = l;
4069 }
4070
4071
4072 static symbolS *
4073 xtensa_create_literal_symbol (segT sec, fragS *frag)
4074 {
4075 static int lit_num = 0;
4076 static char name[256];
4077 symbolS *symbolP;
4078
4079 sprintf (name, ".L_lit_sym%d", lit_num);
4080
4081 /* Create a local symbol. If it is in a linkonce section, we have to
4082 be careful to make sure that if it is used in a relocation that the
4083 symbol will be in the output file. */
4084 if (get_is_linkonce_section (stdoutput, sec))
4085 {
4086 symbolP = symbol_new (name, sec, 0, frag);
4087 S_CLEAR_EXTERNAL (symbolP);
4088 /* symbolP->local = 1; */
4089 }
4090 else
4091 symbolP = symbol_new (name, sec, 0, frag);
4092
4093 xtensa_add_literal_sym (symbolP);
4094
4095 lit_num++;
4096 return symbolP;
4097 }
4098
4099
4100 /* Currently all literals that are generated here are 32-bit L32R targets. */
4101
4102 static symbolS *
4103 xg_assemble_literal (/* const */ TInsn *insn)
4104 {
4105 emit_state state;
4106 symbolS *lit_sym = NULL;
4107 bfd_reloc_code_real_type reloc;
4108 bfd_boolean pcrel = FALSE;
4109 char *p;
4110
4111 /* size = 4 for L32R. It could easily be larger when we move to
4112 larger constants. Add a parameter later. */
4113 offsetT litsize = 4;
4114 offsetT litalign = 2; /* 2^2 = 4 */
4115 expressionS saved_loc;
4116 expressionS * emit_val;
4117
4118 set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ());
4119
4120 gas_assert (insn->insn_type == ITYPE_LITERAL);
4121 gas_assert (insn->ntok == 1); /* must be only one token here */
4122
4123 xtensa_switch_to_literal_fragment (&state);
4124
4125 emit_val = &insn->tok[0];
4126 if (emit_val->X_op == O_big)
4127 {
4128 int size = emit_val->X_add_number * CHARS_PER_LITTLENUM;
4129 if (size > litsize)
4130 {
4131 /* This happens when someone writes a "movi a2, big_number". */
4132 as_bad_where (frag_now->fr_file, frag_now->fr_line,
4133 _("invalid immediate"));
4134 xtensa_restore_emit_state (&state);
4135 return NULL;
4136 }
4137 }
4138
4139 /* Force a 4-byte align here. Note that this opens a new frag, so all
4140 literals done with this function have a frag to themselves. That's
4141 important for the way text section literals work. */
4142 frag_align (litalign, 0, 0);
4143 record_alignment (now_seg, litalign);
4144
4145 switch (emit_val->X_op)
4146 {
4147 case O_pcrel:
4148 pcrel = TRUE;
4149 /* fall through */
4150 case O_pltrel:
4151 case O_tlsfunc:
4152 case O_tlsarg:
4153 case O_tpoff:
4154 case O_dtpoff:
4155 p = frag_more (litsize);
4156 xtensa_set_frag_assembly_state (frag_now);
4157 reloc = map_operator_to_reloc (emit_val->X_op, TRUE);
4158 if (emit_val->X_add_symbol)
4159 emit_val->X_op = O_symbol;
4160 else
4161 emit_val->X_op = O_constant;
4162 fix_new_exp (frag_now, p - frag_now->fr_literal,
4163 litsize, emit_val, pcrel, reloc);
4164 break;
4165
4166 default:
4167 emit_expr (emit_val, litsize);
4168 break;
4169 }
4170
4171 gas_assert (frag_now->tc_frag_data.literal_frag == NULL);
4172 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4173 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4174 lit_sym = frag_now->fr_symbol;
4175
4176 /* Go back. */
4177 xtensa_restore_emit_state (&state);
4178 return lit_sym;
4179 }
4180
4181
4182 static void
4183 xg_assemble_literal_space (/* const */ int size, int slot)
4184 {
4185 emit_state state;
4186 /* We might have to do something about this alignment. It only
4187 takes effect if something is placed here. */
4188 offsetT litalign = 2; /* 2^2 = 4 */
4189 fragS *lit_saved_frag;
4190
4191 gas_assert (size % 4 == 0);
4192
4193 xtensa_switch_to_literal_fragment (&state);
4194
4195 /* Force a 4-byte align here. */
4196 frag_align (litalign, 0, 0);
4197 record_alignment (now_seg, litalign);
4198
4199 frag_grow (size);
4200
4201 lit_saved_frag = frag_now;
4202 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4203 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4204 xg_finish_frag (0, RELAX_LITERAL, 0, size, FALSE);
4205
4206 /* Go back. */
4207 xtensa_restore_emit_state (&state);
4208 frag_now->tc_frag_data.literal_frags[slot] = lit_saved_frag;
4209 }
4210
4211
4212 /* Put in a fixup record based on the opcode.
4213 Return TRUE on success. */
4214
4215 static bfd_boolean
4216 xg_add_opcode_fix (TInsn *tinsn,
4217 int opnum,
4218 xtensa_format fmt,
4219 int slot,
4220 expressionS *exp,
4221 fragS *fragP,
4222 offsetT offset)
4223 {
4224 xtensa_opcode opcode = tinsn->opcode;
4225 bfd_reloc_code_real_type reloc;
4226 reloc_howto_type *howto;
4227 int fmt_length;
4228 fixS *the_fix;
4229
4230 reloc = BFD_RELOC_NONE;
4231
4232 /* First try the special cases for "alternate" relocs. */
4233 if (opcode == xtensa_l32r_opcode)
4234 {
4235 if (fragP->tc_frag_data.use_absolute_literals)
4236 reloc = encode_alt_reloc (slot);
4237 }
4238 else if (opcode == xtensa_const16_opcode)
4239 {
4240 if (exp->X_op == O_lo16)
4241 {
4242 reloc = encode_reloc (slot);
4243 exp->X_op = O_symbol;
4244 }
4245 else if (exp->X_op == O_hi16)
4246 {
4247 reloc = encode_alt_reloc (slot);
4248 exp->X_op = O_symbol;
4249 }
4250 }
4251
4252 if (opnum != get_relaxable_immed (opcode))
4253 {
4254 as_bad (_("invalid relocation for operand %i of '%s'"),
4255 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
4256 return FALSE;
4257 }
4258
4259 /* Handle erroneous "@h" and "@l" expressions here before they propagate
4260 into the symbol table where the generic portions of the assembler
4261 won't know what to do with them. */
4262 if (exp->X_op == O_lo16 || exp->X_op == O_hi16)
4263 {
4264 as_bad (_("invalid expression for operand %i of '%s'"),
4265 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
4266 return FALSE;
4267 }
4268
4269 /* Next try the generic relocs. */
4270 if (reloc == BFD_RELOC_NONE)
4271 reloc = encode_reloc (slot);
4272 if (reloc == BFD_RELOC_NONE)
4273 {
4274 as_bad (_("invalid relocation in instruction slot %i"), slot);
4275 return FALSE;
4276 }
4277
4278 howto = bfd_reloc_type_lookup (stdoutput, reloc);
4279 if (!howto)
4280 {
4281 as_bad (_("undefined symbol for opcode \"%s\""),
4282 xtensa_opcode_name (xtensa_default_isa, opcode));
4283 return FALSE;
4284 }
4285
4286 fmt_length = xtensa_format_length (xtensa_default_isa, fmt);
4287 the_fix = fix_new_exp (fragP, offset, fmt_length, exp,
4288 howto->pc_relative, reloc);
4289 the_fix->fx_no_overflow = 1;
4290 the_fix->tc_fix_data.X_add_symbol = exp->X_add_symbol;
4291 the_fix->tc_fix_data.X_add_number = exp->X_add_number;
4292 the_fix->tc_fix_data.slot = slot;
4293
4294 return TRUE;
4295 }
4296
4297
4298 static bfd_boolean
4299 xg_emit_insn_to_buf (TInsn *tinsn,
4300 char *buf,
4301 fragS *fragP,
4302 offsetT offset,
4303 bfd_boolean build_fix)
4304 {
4305 static xtensa_insnbuf insnbuf = NULL;
4306 bfd_boolean has_symbolic_immed = FALSE;
4307 bfd_boolean ok = TRUE;
4308
4309 if (!insnbuf)
4310 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4311
4312 has_symbolic_immed = tinsn_to_insnbuf (tinsn, insnbuf);
4313 if (has_symbolic_immed && build_fix)
4314 {
4315 /* Add a fixup. */
4316 xtensa_format fmt = xg_get_single_format (tinsn->opcode);
4317 int slot = xg_get_single_slot (tinsn->opcode);
4318 int opnum = get_relaxable_immed (tinsn->opcode);
4319 expressionS *exp = &tinsn->tok[opnum];
4320
4321 if (!xg_add_opcode_fix (tinsn, opnum, fmt, slot, exp, fragP, offset))
4322 ok = FALSE;
4323 }
4324 fragP->tc_frag_data.is_insn = TRUE;
4325 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4326 (unsigned char *) buf, 0);
4327 return ok;
4328 }
4329
4330
4331 static void
4332 xg_resolve_literals (TInsn *insn, symbolS *lit_sym)
4333 {
4334 symbolS *sym = get_special_literal_symbol ();
4335 int i;
4336 if (lit_sym == 0)
4337 return;
4338 gas_assert (insn->insn_type == ITYPE_INSN);
4339 for (i = 0; i < insn->ntok; i++)
4340 if (insn->tok[i].X_add_symbol == sym)
4341 insn->tok[i].X_add_symbol = lit_sym;
4342
4343 }
4344
4345
4346 static void
4347 xg_resolve_labels (TInsn *insn, symbolS *label_sym)
4348 {
4349 symbolS *sym = get_special_label_symbol ();
4350 int i;
4351 for (i = 0; i < insn->ntok; i++)
4352 if (insn->tok[i].X_add_symbol == sym)
4353 insn->tok[i].X_add_symbol = label_sym;
4354
4355 }
4356
4357
4358 /* Return TRUE if the instruction can write to the specified
4359 integer register. */
4360
4361 static bfd_boolean
4362 is_register_writer (const TInsn *insn, const char *regset, int regnum)
4363 {
4364 int i;
4365 int num_ops;
4366 xtensa_isa isa = xtensa_default_isa;
4367
4368 num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
4369
4370 for (i = 0; i < num_ops; i++)
4371 {
4372 char inout;
4373 inout = xtensa_operand_inout (isa, insn->opcode, i);
4374 if ((inout == 'o' || inout == 'm')
4375 && xtensa_operand_is_register (isa, insn->opcode, i) == 1)
4376 {
4377 xtensa_regfile opnd_rf =
4378 xtensa_operand_regfile (isa, insn->opcode, i);
4379 if (!strcmp (xtensa_regfile_shortname (isa, opnd_rf), regset))
4380 {
4381 if ((insn->tok[i].X_op == O_register)
4382 && (insn->tok[i].X_add_number == regnum))
4383 return TRUE;
4384 }
4385 }
4386 }
4387 return FALSE;
4388 }
4389
4390
4391 static bfd_boolean
4392 is_bad_loopend_opcode (const TInsn *tinsn)
4393 {
4394 xtensa_opcode opcode = tinsn->opcode;
4395
4396 if (opcode == XTENSA_UNDEFINED)
4397 return FALSE;
4398
4399 if (opcode == xtensa_call0_opcode
4400 || opcode == xtensa_callx0_opcode
4401 || opcode == xtensa_call4_opcode
4402 || opcode == xtensa_callx4_opcode
4403 || opcode == xtensa_call8_opcode
4404 || opcode == xtensa_callx8_opcode
4405 || opcode == xtensa_call12_opcode
4406 || opcode == xtensa_callx12_opcode
4407 || opcode == xtensa_isync_opcode
4408 || opcode == xtensa_ret_opcode
4409 || opcode == xtensa_ret_n_opcode
4410 || opcode == xtensa_retw_opcode
4411 || opcode == xtensa_retw_n_opcode
4412 || opcode == xtensa_waiti_opcode
4413 || opcode == xtensa_rsr_lcount_opcode)
4414 return TRUE;
4415
4416 return FALSE;
4417 }
4418
4419
4420 /* Labels that begin with ".Ln" or ".LM" are unaligned.
4421 This allows the debugger to add unaligned labels.
4422 Also, the assembler generates stabs labels that need
4423 not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */
4424
4425 static bfd_boolean
4426 is_unaligned_label (symbolS *sym)
4427 {
4428 const char *name = S_GET_NAME (sym);
4429 static size_t fake_size = 0;
4430
4431 if (name
4432 && name[0] == '.'
4433 && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M'))
4434 return TRUE;
4435
4436 /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */
4437 if (fake_size == 0)
4438 fake_size = strlen (FAKE_LABEL_NAME);
4439
4440 if (name
4441 && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0
4442 && (name[fake_size] == 'F'
4443 || name[fake_size] == 'L'
4444 || (name[fake_size] == 'e'
4445 && strncmp ("endfunc", name+fake_size, 7) == 0)))
4446 return TRUE;
4447
4448 return FALSE;
4449 }
4450
4451
4452 static fragS *
4453 next_non_empty_frag (const fragS *fragP)
4454 {
4455 fragS *next_fragP = fragP->fr_next;
4456
4457 /* Sometimes an empty will end up here due storage allocation issues.
4458 So we have to skip until we find something legit. */
4459 while (next_fragP && next_fragP->fr_fix == 0)
4460 next_fragP = next_fragP->fr_next;
4461
4462 if (next_fragP == NULL || next_fragP->fr_fix == 0)
4463 return NULL;
4464
4465 return next_fragP;
4466 }
4467
4468
4469 static bfd_boolean
4470 next_frag_opcode_is_loop (const fragS *fragP, xtensa_opcode *opcode)
4471 {
4472 xtensa_opcode out_opcode;
4473 const fragS *next_fragP = next_non_empty_frag (fragP);
4474
4475 if (next_fragP == NULL)
4476 return FALSE;
4477
4478 out_opcode = get_opcode_from_buf (next_fragP->fr_literal, 0);
4479 if (xtensa_opcode_is_loop (xtensa_default_isa, out_opcode) == 1)
4480 {
4481 *opcode = out_opcode;
4482 return TRUE;
4483 }
4484 return FALSE;
4485 }
4486
4487
4488 static int
4489 frag_format_size (const fragS *fragP)
4490 {
4491 static xtensa_insnbuf insnbuf = NULL;
4492 xtensa_isa isa = xtensa_default_isa;
4493 xtensa_format fmt;
4494 int fmt_size;
4495
4496 if (!insnbuf)
4497 insnbuf = xtensa_insnbuf_alloc (isa);
4498
4499 if (fragP == NULL)
4500 return XTENSA_UNDEFINED;
4501
4502 xtensa_insnbuf_from_chars (isa, insnbuf,
4503 (unsigned char *) fragP->fr_literal, 0);
4504
4505 fmt = xtensa_format_decode (isa, insnbuf);
4506 if (fmt == XTENSA_UNDEFINED)
4507 return XTENSA_UNDEFINED;
4508 fmt_size = xtensa_format_length (isa, fmt);
4509
4510 /* If the next format won't be changing due to relaxation, just
4511 return the length of the first format. */
4512 if (fragP->fr_opcode != fragP->fr_literal)
4513 return fmt_size;
4514
4515 /* If during relaxation we have to pull an instruction out of a
4516 multi-slot instruction, we will return the more conservative
4517 number. This works because alignment on bigger instructions
4518 is more restrictive than alignment on smaller instructions.
4519 This is more conservative than we would like, but it happens
4520 infrequently. */
4521
4522 if (xtensa_format_num_slots (xtensa_default_isa, fmt) > 1)
4523 return fmt_size;
4524
4525 /* If we aren't doing one of our own relaxations or it isn't
4526 slot-based, then the insn size won't change. */
4527 if (fragP->fr_type != rs_machine_dependent)
4528 return fmt_size;
4529 if (fragP->fr_subtype != RELAX_SLOTS)
4530 return fmt_size;
4531
4532 /* If an instruction is about to grow, return the longer size. */
4533 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP1
4534 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP2
4535 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP3)
4536 {
4537 /* For most frags at RELAX_IMMED_STEPX, with X > 0, the first
4538 instruction in the relaxed version is of length 3. (The case
4539 where we have to pull the instruction out of a FLIX bundle
4540 is handled conservatively above.) However, frags with opcodes
4541 that are expanding to wide branches end up having formats that
4542 are not determinable by the RELAX_IMMED_STEPX enumeration, and
4543 we can't tell directly what format the relaxer picked. This
4544 is a wart in the design of the relaxer that should someday be
4545 fixed, but would require major changes, or at least should
4546 be accompanied by major changes to make use of that data.
4547
4548 In any event, we can tell that we are expanding from a single-slot
4549 format to a wider one with the logic below. */
4550
4551 int i;
4552 int relaxed_size = fmt_size + fragP->tc_frag_data.text_expansion[0];
4553
4554 for (i = 0; i < xtensa_isa_num_formats (isa); i++)
4555 {
4556 if (relaxed_size == xtensa_format_length (isa, i))
4557 return relaxed_size;
4558 }
4559
4560 return 3;
4561 }
4562
4563 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
4564 return 2 + fragP->tc_frag_data.text_expansion[0];
4565
4566 return fmt_size;
4567 }
4568
4569
4570 static int
4571 next_frag_format_size (const fragS *fragP)
4572 {
4573 const fragS *next_fragP = next_non_empty_frag (fragP);
4574 return frag_format_size (next_fragP);
4575 }
4576
4577
4578 /* In early Xtensa Processors, for reasons that are unclear, the ISA
4579 required two-byte instructions to be treated as three-byte instructions
4580 for loop instruction alignment. This restriction was removed beginning
4581 with Xtensa LX. Now the only requirement on loop instruction alignment
4582 is that the first instruction of the loop must appear at an address that
4583 does not cross a fetch boundary. */
4584
4585 static int
4586 get_loop_align_size (int insn_size)
4587 {
4588 if (insn_size == XTENSA_UNDEFINED)
4589 return xtensa_fetch_width;
4590
4591 if (enforce_three_byte_loop_align && insn_size == 2)
4592 return 3;
4593
4594 return insn_size;
4595 }
4596
4597
4598 /* If the next legit fragment is an end-of-loop marker,
4599 switch its state so it will instantiate a NOP. */
4600
4601 static void
4602 update_next_frag_state (fragS *fragP)
4603 {
4604 fragS *next_fragP = fragP->fr_next;
4605 fragS *new_target = NULL;
4606
4607 if (align_targets)
4608 {
4609 /* We are guaranteed there will be one of these... */
4610 while (!(next_fragP->fr_type == rs_machine_dependent
4611 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4612 || next_fragP->fr_subtype == RELAX_UNREACHABLE)))
4613 next_fragP = next_fragP->fr_next;
4614
4615 gas_assert (next_fragP->fr_type == rs_machine_dependent
4616 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4617 || next_fragP->fr_subtype == RELAX_UNREACHABLE));
4618
4619 /* ...and one of these. */
4620 new_target = next_fragP->fr_next;
4621 while (!(new_target->fr_type == rs_machine_dependent
4622 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4623 || new_target->fr_subtype == RELAX_DESIRE_ALIGN)))
4624 new_target = new_target->fr_next;
4625
4626 gas_assert (new_target->fr_type == rs_machine_dependent
4627 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4628 || new_target->fr_subtype == RELAX_DESIRE_ALIGN));
4629 }
4630
4631 while (next_fragP && next_fragP->fr_fix == 0)
4632 {
4633 if (next_fragP->fr_type == rs_machine_dependent
4634 && next_fragP->fr_subtype == RELAX_LOOP_END)
4635 {
4636 next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP;
4637 return;
4638 }
4639
4640 next_fragP = next_fragP->fr_next;
4641 }
4642 }
4643
4644
4645 static bfd_boolean
4646 next_frag_is_branch_target (const fragS *fragP)
4647 {
4648 /* Sometimes an empty will end up here due to storage allocation issues,
4649 so we have to skip until we find something legit. */
4650 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4651 {
4652 if (fragP->tc_frag_data.is_branch_target)
4653 return TRUE;
4654 if (fragP->fr_fix != 0)
4655 break;
4656 }
4657 return FALSE;
4658 }
4659
4660
4661 static bfd_boolean
4662 next_frag_is_loop_target (const fragS *fragP)
4663 {
4664 /* Sometimes an empty will end up here due storage allocation issues.
4665 So we have to skip until we find something legit. */
4666 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4667 {
4668 if (fragP->tc_frag_data.is_loop_target)
4669 return TRUE;
4670 if (fragP->fr_fix != 0)
4671 break;
4672 }
4673 return FALSE;
4674 }
4675
4676
4677 /* As specified in the relaxation table, when a loop instruction is
4678 relaxed, there are 24 bytes between the loop instruction itself and
4679 the first instruction in the loop. */
4680
4681 #define RELAXED_LOOP_INSN_BYTES 24
4682
4683 static addressT
4684 next_frag_pre_opcode_bytes (const fragS *fragp)
4685 {
4686 const fragS *next_fragp = fragp->fr_next;
4687 xtensa_opcode next_opcode;
4688
4689 if (!next_frag_opcode_is_loop (fragp, &next_opcode))
4690 return 0;
4691
4692 /* Sometimes an empty will end up here due to storage allocation issues,
4693 so we have to skip until we find something legit. */
4694 while (next_fragp->fr_fix == 0)
4695 next_fragp = next_fragp->fr_next;
4696
4697 if (next_fragp->fr_type != rs_machine_dependent)
4698 return 0;
4699
4700 /* There is some implicit knowledge encoded in here.
4701 The LOOP instructions that are NOT RELAX_IMMED have
4702 been relaxed. Note that we can assume that the LOOP
4703 instruction is in slot 0 because loops aren't bundleable. */
4704 if (next_fragp->tc_frag_data.slot_subtypes[0] > RELAX_IMMED)
4705 return get_expanded_loop_offset (next_opcode) + RELAXED_LOOP_INSN_BYTES;
4706
4707 return 0;
4708 }
4709
4710
4711 /* Mark a location where we can later insert literal frags. Update
4712 the section's literal_pool_loc, so subsequent literals can be
4713 placed nearest to their use. */
4714
4715 static void
4716 xtensa_mark_literal_pool_location (void)
4717 {
4718 /* Any labels pointing to the current location need
4719 to be adjusted to after the literal pool. */
4720 emit_state s;
4721 fragS *pool_location;
4722
4723 if (use_literal_section)
4724 return;
4725
4726 /* We stash info in these frags so we can later move the literal's
4727 fixes into this frchain's fix list. */
4728 pool_location = frag_now;
4729 frag_now->tc_frag_data.lit_frchain = frchain_now;
4730 frag_now->tc_frag_data.literal_frag = frag_now;
4731 frag_variant (rs_machine_dependent, 0, 0,
4732 RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL);
4733 xtensa_set_frag_assembly_state (frag_now);
4734 frag_now->tc_frag_data.lit_seg = now_seg;
4735 frag_variant (rs_machine_dependent, 0, 0,
4736 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
4737 xtensa_set_frag_assembly_state (frag_now);
4738
4739 /* Now put a frag into the literal pool that points to this location. */
4740 set_literal_pool_location (now_seg, pool_location);
4741 xtensa_switch_to_non_abs_literal_fragment (&s);
4742 frag_align (2, 0, 0);
4743 record_alignment (now_seg, 2);
4744
4745 /* Close whatever frag is there. */
4746 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4747 xtensa_set_frag_assembly_state (frag_now);
4748 frag_now->tc_frag_data.literal_frag = pool_location;
4749 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4750 xtensa_restore_emit_state (&s);
4751 xtensa_set_frag_assembly_state (frag_now);
4752 }
4753
4754
4755 /* Build a nop of the correct size into tinsn. */
4756
4757 static void
4758 build_nop (TInsn *tinsn, int size)
4759 {
4760 tinsn_init (tinsn);
4761 switch (size)
4762 {
4763 case 2:
4764 tinsn->opcode = xtensa_nop_n_opcode;
4765 tinsn->ntok = 0;
4766 if (tinsn->opcode == XTENSA_UNDEFINED)
4767 as_fatal (_("opcode 'NOP.N' unavailable in this configuration"));
4768 break;
4769
4770 case 3:
4771 if (xtensa_nop_opcode == XTENSA_UNDEFINED)
4772 {
4773 tinsn->opcode = xtensa_or_opcode;
4774 set_expr_const (&tinsn->tok[0], 1);
4775 set_expr_const (&tinsn->tok[1], 1);
4776 set_expr_const (&tinsn->tok[2], 1);
4777 tinsn->ntok = 3;
4778 }
4779 else
4780 tinsn->opcode = xtensa_nop_opcode;
4781
4782 gas_assert (tinsn->opcode != XTENSA_UNDEFINED);
4783 }
4784 }
4785
4786
4787 /* Assemble a NOP of the requested size in the buffer. User must have
4788 allocated "buf" with at least "size" bytes. */
4789
4790 static void
4791 assemble_nop (int size, char *buf)
4792 {
4793 static xtensa_insnbuf insnbuf = NULL;
4794 TInsn tinsn;
4795
4796 build_nop (&tinsn, size);
4797
4798 if (!insnbuf)
4799 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4800
4801 tinsn_to_insnbuf (&tinsn, insnbuf);
4802 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4803 (unsigned char *) buf, 0);
4804 }
4805
4806
4807 /* Return the number of bytes for the offset of the expanded loop
4808 instruction. This should be incorporated into the relaxation
4809 specification but is hard-coded here. This is used to auto-align
4810 the loop instruction. It is invalid to call this function if the
4811 configuration does not have loops or if the opcode is not a loop
4812 opcode. */
4813
4814 static addressT
4815 get_expanded_loop_offset (xtensa_opcode opcode)
4816 {
4817 /* This is the OFFSET of the loop instruction in the expanded loop.
4818 This MUST correspond directly to the specification of the loop
4819 expansion. It will be validated on fragment conversion. */
4820 gas_assert (opcode != XTENSA_UNDEFINED);
4821 if (opcode == xtensa_loop_opcode)
4822 return 0;
4823 if (opcode == xtensa_loopnez_opcode)
4824 return 3;
4825 if (opcode == xtensa_loopgtz_opcode)
4826 return 6;
4827 as_fatal (_("get_expanded_loop_offset: invalid opcode"));
4828 return 0;
4829 }
4830
4831
4832 static fragS *
4833 get_literal_pool_location (segT seg)
4834 {
4835 return seg_info (seg)->tc_segment_info_data.literal_pool_loc;
4836 }
4837
4838
4839 static void
4840 set_literal_pool_location (segT seg, fragS *literal_pool_loc)
4841 {
4842 seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc;
4843 }
4844
4845
4846 /* Set frag assembly state should be called when a new frag is
4847 opened and after a frag has been closed. */
4848
4849 static void
4850 xtensa_set_frag_assembly_state (fragS *fragP)
4851 {
4852 if (!density_supported)
4853 fragP->tc_frag_data.is_no_density = TRUE;
4854
4855 /* This function is called from subsegs_finish, which is called
4856 after xtensa_end, so we can't use "use_transform" or
4857 "use_schedule" here. */
4858 if (!directive_state[directive_transform])
4859 fragP->tc_frag_data.is_no_transform = TRUE;
4860 if (directive_state[directive_longcalls])
4861 fragP->tc_frag_data.use_longcalls = TRUE;
4862 fragP->tc_frag_data.use_absolute_literals =
4863 directive_state[directive_absolute_literals];
4864 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4865 }
4866
4867
4868 static bfd_boolean
4869 relaxable_section (asection *sec)
4870 {
4871 return ((sec->flags & SEC_DEBUGGING) == 0
4872 && strcmp (sec->name, ".eh_frame") != 0);
4873 }
4874
4875
4876 static void
4877 xtensa_mark_frags_for_org (void)
4878 {
4879 segT *seclist;
4880
4881 /* Walk over each fragment of all of the current segments. If we find
4882 a .org frag in any of the segments, mark all frags prior to it as
4883 "no transform", which will prevent linker optimizations from messing
4884 up the .org distance. This should be done after
4885 xtensa_find_unmarked_state_frags, because we don't want to worry here
4886 about that function trashing the data we save here. */
4887
4888 for (seclist = &stdoutput->sections;
4889 seclist && *seclist;
4890 seclist = &(*seclist)->next)
4891 {
4892 segT sec = *seclist;
4893 segment_info_type *seginfo;
4894 fragS *fragP;
4895 flagword flags;
4896 flags = bfd_get_section_flags (stdoutput, sec);
4897 if (flags & SEC_DEBUGGING)
4898 continue;
4899 if (!(flags & SEC_ALLOC))
4900 continue;
4901
4902 seginfo = seg_info (sec);
4903 if (seginfo && seginfo->frchainP)
4904 {
4905 fragS *last_fragP = seginfo->frchainP->frch_root;
4906 for (fragP = seginfo->frchainP->frch_root; fragP;
4907 fragP = fragP->fr_next)
4908 {
4909 /* cvt_frag_to_fill has changed the fr_type of org frags to
4910 rs_fill, so use the value as cached in rs_subtype here. */
4911 if (fragP->fr_subtype == RELAX_ORG)
4912 {
4913 while (last_fragP != fragP->fr_next)
4914 {
4915 last_fragP->tc_frag_data.is_no_transform = TRUE;
4916 last_fragP = last_fragP->fr_next;
4917 }
4918 }
4919 }
4920 }
4921 }
4922 }
4923
4924
4925 static void
4926 xtensa_find_unmarked_state_frags (void)
4927 {
4928 segT *seclist;
4929
4930 /* Walk over each fragment of all of the current segments. For each
4931 unmarked fragment, mark it with the same info as the previous
4932 fragment. */
4933 for (seclist = &stdoutput->sections;
4934 seclist && *seclist;
4935 seclist = &(*seclist)->next)
4936 {
4937 segT sec = *seclist;
4938 segment_info_type *seginfo;
4939 fragS *fragP;
4940 flagword flags;
4941 flags = bfd_get_section_flags (stdoutput, sec);
4942 if (flags & SEC_DEBUGGING)
4943 continue;
4944 if (!(flags & SEC_ALLOC))
4945 continue;
4946
4947 seginfo = seg_info (sec);
4948 if (seginfo && seginfo->frchainP)
4949 {
4950 fragS *last_fragP = 0;
4951 for (fragP = seginfo->frchainP->frch_root; fragP;
4952 fragP = fragP->fr_next)
4953 {
4954 if (fragP->fr_fix != 0
4955 && !fragP->tc_frag_data.is_assembly_state_set)
4956 {
4957 if (last_fragP == 0)
4958 {
4959 as_warn_where (fragP->fr_file, fragP->fr_line,
4960 _("assembly state not set for first frag in section %s"),
4961 sec->name);
4962 }
4963 else
4964 {
4965 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4966 fragP->tc_frag_data.is_no_density =
4967 last_fragP->tc_frag_data.is_no_density;
4968 fragP->tc_frag_data.is_no_transform =
4969 last_fragP->tc_frag_data.is_no_transform;
4970 fragP->tc_frag_data.use_longcalls =
4971 last_fragP->tc_frag_data.use_longcalls;
4972 fragP->tc_frag_data.use_absolute_literals =
4973 last_fragP->tc_frag_data.use_absolute_literals;
4974 }
4975 }
4976 if (fragP->tc_frag_data.is_assembly_state_set)
4977 last_fragP = fragP;
4978 }
4979 }
4980 }
4981 }
4982
4983
4984 static void
4985 xtensa_find_unaligned_branch_targets (bfd *abfd ATTRIBUTE_UNUSED,
4986 asection *sec,
4987 void *unused ATTRIBUTE_UNUSED)
4988 {
4989 flagword flags = bfd_get_section_flags (abfd, sec);
4990 segment_info_type *seginfo = seg_info (sec);
4991 fragS *frag = seginfo->frchainP->frch_root;
4992
4993 if (flags & SEC_CODE)
4994 {
4995 xtensa_isa isa = xtensa_default_isa;
4996 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4997 while (frag != NULL)
4998 {
4999 if (frag->tc_frag_data.is_branch_target)
5000 {
5001 int op_size;
5002 addressT branch_align, frag_addr;
5003 xtensa_format fmt;
5004
5005 xtensa_insnbuf_from_chars
5006 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
5007 fmt = xtensa_format_decode (isa, insnbuf);
5008 op_size = xtensa_format_length (isa, fmt);
5009 branch_align = 1 << branch_align_power (sec);
5010 frag_addr = frag->fr_address % branch_align;
5011 if (frag_addr + op_size > branch_align)
5012 as_warn_where (frag->fr_file, frag->fr_line,
5013 _("unaligned branch target: %d bytes at 0x%lx"),
5014 op_size, (long) frag->fr_address);
5015 }
5016 frag = frag->fr_next;
5017 }
5018 xtensa_insnbuf_free (isa, insnbuf);
5019 }
5020 }
5021
5022
5023 static void
5024 xtensa_find_unaligned_loops (bfd *abfd ATTRIBUTE_UNUSED,
5025 asection *sec,
5026 void *unused ATTRIBUTE_UNUSED)
5027 {
5028 flagword flags = bfd_get_section_flags (abfd, sec);
5029 segment_info_type *seginfo = seg_info (sec);
5030 fragS *frag = seginfo->frchainP->frch_root;
5031 xtensa_isa isa = xtensa_default_isa;
5032
5033 if (flags & SEC_CODE)
5034 {
5035 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
5036 while (frag != NULL)
5037 {
5038 if (frag->tc_frag_data.is_first_loop_insn)
5039 {
5040 int op_size;
5041 addressT frag_addr;
5042 xtensa_format fmt;
5043
5044 if (frag->fr_fix == 0)
5045 frag = next_non_empty_frag (frag);
5046
5047 if (frag)
5048 {
5049 xtensa_insnbuf_from_chars
5050 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
5051 fmt = xtensa_format_decode (isa, insnbuf);
5052 op_size = xtensa_format_length (isa, fmt);
5053 frag_addr = frag->fr_address % xtensa_fetch_width;
5054
5055 if (frag_addr + op_size > xtensa_fetch_width)
5056 as_warn_where (frag->fr_file, frag->fr_line,
5057 _("unaligned loop: %d bytes at 0x%lx"),
5058 op_size, (long) frag->fr_address);
5059 }
5060 }
5061 frag = frag->fr_next;
5062 }
5063 xtensa_insnbuf_free (isa, insnbuf);
5064 }
5065 }
5066
5067
5068 static int
5069 xg_apply_fix_value (fixS *fixP, valueT val)
5070 {
5071 xtensa_isa isa = xtensa_default_isa;
5072 static xtensa_insnbuf insnbuf = NULL;
5073 static xtensa_insnbuf slotbuf = NULL;
5074 xtensa_format fmt;
5075 int slot;
5076 bfd_boolean alt_reloc;
5077 xtensa_opcode opcode;
5078 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5079
5080 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc)
5081 || alt_reloc)
5082 as_fatal (_("unexpected fix"));
5083
5084 if (!insnbuf)
5085 {
5086 insnbuf = xtensa_insnbuf_alloc (isa);
5087 slotbuf = xtensa_insnbuf_alloc (isa);
5088 }
5089
5090 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
5091 fmt = xtensa_format_decode (isa, insnbuf);
5092 if (fmt == XTENSA_UNDEFINED)
5093 as_fatal (_("undecodable fix"));
5094 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5095 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5096 if (opcode == XTENSA_UNDEFINED)
5097 as_fatal (_("undecodable fix"));
5098
5099 /* CONST16 immediates are not PC-relative, despite the fact that we
5100 reuse the normal PC-relative operand relocations for the low part
5101 of a CONST16 operand. */
5102 if (opcode == xtensa_const16_opcode)
5103 return 0;
5104
5105 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode,
5106 get_relaxable_immed (opcode), val,
5107 fixP->fx_file, fixP->fx_line);
5108
5109 xtensa_format_set_slot (isa, fmt, slot, insnbuf, slotbuf);
5110 xtensa_insnbuf_to_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
5111
5112 return 1;
5113 }
5114
5115 \f
5116 /* External Functions and Other GAS Hooks. */
5117
5118 const char *
5119 xtensa_target_format (void)
5120 {
5121 return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le");
5122 }
5123
5124
5125 void
5126 xtensa_file_arch_init (bfd *abfd)
5127 {
5128 bfd_set_private_flags (abfd, 0x100 | 0x200);
5129 }
5130
5131
5132 void
5133 md_number_to_chars (char *buf, valueT val, int n)
5134 {
5135 if (target_big_endian)
5136 number_to_chars_bigendian (buf, val, n);
5137 else
5138 number_to_chars_littleendian (buf, val, n);
5139 }
5140
5141
5142 /* This function is called once, at assembler startup time. It should
5143 set up all the tables, etc. that the MD part of the assembler will
5144 need. */
5145
5146 void
5147 md_begin (void)
5148 {
5149 segT current_section = now_seg;
5150 int current_subsec = now_subseg;
5151 xtensa_isa isa;
5152 int i;
5153
5154 xtensa_default_isa = xtensa_isa_init (0, 0);
5155 isa = xtensa_default_isa;
5156
5157 linkrelax = 1;
5158
5159 /* Set up the literal sections. */
5160 memset (&default_lit_sections, 0, sizeof (default_lit_sections));
5161
5162 subseg_set (current_section, current_subsec);
5163
5164 xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi");
5165 xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi");
5166 xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0");
5167 xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4");
5168 xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8");
5169 xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12");
5170 xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0");
5171 xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4");
5172 xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8");
5173 xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12");
5174 xtensa_const16_opcode = xtensa_opcode_lookup (isa, "const16");
5175 xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry");
5176 xtensa_extui_opcode = xtensa_opcode_lookup (isa, "extui");
5177 xtensa_movi_opcode = xtensa_opcode_lookup (isa, "movi");
5178 xtensa_movi_n_opcode = xtensa_opcode_lookup (isa, "movi.n");
5179 xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync");
5180 xtensa_j_opcode = xtensa_opcode_lookup (isa, "j");
5181 xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx");
5182 xtensa_l32r_opcode = xtensa_opcode_lookup (isa, "l32r");
5183 xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop");
5184 xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez");
5185 xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz");
5186 xtensa_nop_opcode = xtensa_opcode_lookup (isa, "nop");
5187 xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n");
5188 xtensa_or_opcode = xtensa_opcode_lookup (isa, "or");
5189 xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret");
5190 xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n");
5191 xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw");
5192 xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n");
5193 xtensa_rsr_lcount_opcode = xtensa_opcode_lookup (isa, "rsr.lcount");
5194 xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti");
5195
5196 for (i = 0; i < xtensa_isa_num_formats (isa); i++)
5197 {
5198 int format_slots = xtensa_format_num_slots (isa, i);
5199 if (format_slots > config_max_slots)
5200 config_max_slots = format_slots;
5201 }
5202
5203 xg_init_vinsn (&cur_vinsn);
5204
5205 xtensa_num_pipe_stages = xtensa_isa_num_pipe_stages (isa);
5206
5207 init_op_placement_info_table ();
5208
5209 /* Set up the assembly state. */
5210 if (!frag_now->tc_frag_data.is_assembly_state_set)
5211 xtensa_set_frag_assembly_state (frag_now);
5212 }
5213
5214
5215 /* TC_INIT_FIX_DATA hook */
5216
5217 void
5218 xtensa_init_fix_data (fixS *x)
5219 {
5220 x->tc_fix_data.slot = 0;
5221 x->tc_fix_data.X_add_symbol = NULL;
5222 x->tc_fix_data.X_add_number = 0;
5223 }
5224
5225
5226 /* tc_frob_label hook */
5227
5228 void
5229 xtensa_frob_label (symbolS *sym)
5230 {
5231 float freq;
5232
5233 if (cur_vinsn.inside_bundle)
5234 {
5235 as_bad (_("labels are not valid inside bundles"));
5236 return;
5237 }
5238
5239 freq = get_subseg_target_freq (now_seg, now_subseg);
5240
5241 /* Since the label was already attached to a frag associated with the
5242 previous basic block, it now needs to be reset to the current frag. */
5243 symbol_set_frag (sym, frag_now);
5244 S_SET_VALUE (sym, (valueT) frag_now_fix ());
5245
5246 if (generating_literals)
5247 xtensa_add_literal_sym (sym);
5248 else
5249 xtensa_add_insn_label (sym);
5250
5251 if (symbol_get_tc (sym)->is_loop_target)
5252 {
5253 if ((get_last_insn_flags (now_seg, now_subseg)
5254 & FLAG_IS_BAD_LOOPEND) != 0)
5255 as_bad (_("invalid last instruction for a zero-overhead loop"));
5256
5257 xtensa_set_frag_assembly_state (frag_now);
5258 frag_var (rs_machine_dependent, 4, 4, RELAX_LOOP_END,
5259 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5260
5261 xtensa_set_frag_assembly_state (frag_now);
5262 xtensa_move_labels (frag_now, 0);
5263 }
5264
5265 /* No target aligning in the absolute section. */
5266 if (now_seg != absolute_section
5267 && !is_unaligned_label (sym)
5268 && !generating_literals)
5269 {
5270 xtensa_set_frag_assembly_state (frag_now);
5271
5272 if (do_align_targets ())
5273 frag_var (rs_machine_dependent, 0, (int) freq,
5274 RELAX_DESIRE_ALIGN_IF_TARGET, frag_now->fr_symbol,
5275 frag_now->fr_offset, NULL);
5276 else
5277 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
5278 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5279 xtensa_set_frag_assembly_state (frag_now);
5280 xtensa_move_labels (frag_now, 0);
5281 }
5282
5283 /* We need to mark the following properties even if we aren't aligning. */
5284
5285 /* If the label is already known to be a branch target, i.e., a
5286 forward branch, mark the frag accordingly. Backward branches
5287 are handled by xg_add_branch_and_loop_targets. */
5288 if (symbol_get_tc (sym)->is_branch_target)
5289 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
5290
5291 /* Loops only go forward, so they can be identified here. */
5292 if (symbol_get_tc (sym)->is_loop_target)
5293 symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE;
5294
5295 dwarf2_emit_label (sym);
5296 }
5297
5298
5299 /* tc_unrecognized_line hook */
5300
5301 int
5302 xtensa_unrecognized_line (int ch)
5303 {
5304 switch (ch)
5305 {
5306 case '{' :
5307 if (cur_vinsn.inside_bundle == 0)
5308 {
5309 /* PR8110: Cannot emit line number info inside a FLIX bundle
5310 when using --gstabs. Temporarily disable debug info. */
5311 generate_lineno_debug ();
5312 if (debug_type == DEBUG_STABS)
5313 {
5314 xt_saved_debug_type = debug_type;
5315 debug_type = DEBUG_NONE;
5316 }
5317
5318 cur_vinsn.inside_bundle = 1;
5319 }
5320 else
5321 {
5322 as_bad (_("extra opening brace"));
5323 return 0;
5324 }
5325 break;
5326
5327 case '}' :
5328 if (cur_vinsn.inside_bundle)
5329 finish_vinsn (&cur_vinsn);
5330 else
5331 {
5332 as_bad (_("extra closing brace"));
5333 return 0;
5334 }
5335 break;
5336 default:
5337 as_bad (_("syntax error"));
5338 return 0;
5339 }
5340 return 1;
5341 }
5342
5343
5344 /* md_flush_pending_output hook */
5345
5346 void
5347 xtensa_flush_pending_output (void)
5348 {
5349 /* This line fixes a bug where automatically generated gstabs info
5350 separates a function label from its entry instruction, ending up
5351 with the literal position between the function label and the entry
5352 instruction and crashing code. It only happens with --gstabs and
5353 --text-section-literals, and when several other obscure relaxation
5354 conditions are met. */
5355 if (outputting_stabs_line_debug)
5356 return;
5357
5358 if (cur_vinsn.inside_bundle)
5359 as_bad (_("missing closing brace"));
5360
5361 /* If there is a non-zero instruction fragment, close it. */
5362 if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn)
5363 {
5364 frag_wane (frag_now);
5365 frag_new (0);
5366 xtensa_set_frag_assembly_state (frag_now);
5367 }
5368 frag_now->tc_frag_data.is_insn = FALSE;
5369
5370 xtensa_clear_insn_labels ();
5371 }
5372
5373
5374 /* We had an error while parsing an instruction. The string might look
5375 like this: "insn arg1, arg2 }". If so, we need to see the closing
5376 brace and reset some fields. Otherwise, the vinsn never gets closed
5377 and the num_slots field will grow past the end of the array of slots,
5378 and bad things happen. */
5379
5380 static void
5381 error_reset_cur_vinsn (void)
5382 {
5383 if (cur_vinsn.inside_bundle)
5384 {
5385 if (*input_line_pointer == '}'
5386 || *(input_line_pointer - 1) == '}'
5387 || *(input_line_pointer - 2) == '}')
5388 xg_clear_vinsn (&cur_vinsn);
5389 }
5390 }
5391
5392
5393 void
5394 md_assemble (char *str)
5395 {
5396 xtensa_isa isa = xtensa_default_isa;
5397 char *opname;
5398 unsigned opnamelen;
5399 bfd_boolean has_underbar = FALSE;
5400 char *arg_strings[MAX_INSN_ARGS];
5401 int num_args;
5402 TInsn orig_insn; /* Original instruction from the input. */
5403
5404 tinsn_init (&orig_insn);
5405
5406 /* Split off the opcode. */
5407 opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789.");
5408 opname = xmalloc (opnamelen + 1);
5409 memcpy (opname, str, opnamelen);
5410 opname[opnamelen] = '\0';
5411
5412 num_args = tokenize_arguments (arg_strings, str + opnamelen);
5413 if (num_args == -1)
5414 {
5415 as_bad (_("syntax error"));
5416 return;
5417 }
5418
5419 if (xg_translate_idioms (&opname, &num_args, arg_strings))
5420 return;
5421
5422 /* Check for an underbar prefix. */
5423 if (*opname == '_')
5424 {
5425 has_underbar = TRUE;
5426 opname += 1;
5427 }
5428
5429 orig_insn.insn_type = ITYPE_INSN;
5430 orig_insn.ntok = 0;
5431 orig_insn.is_specific_opcode = (has_underbar || !use_transform ());
5432 orig_insn.opcode = xtensa_opcode_lookup (isa, opname);
5433
5434 /* Special case: Check for "CALLXn.TLS" psuedo op. If found, grab its
5435 extra argument and set the opcode to "CALLXn". */
5436 if (orig_insn.opcode == XTENSA_UNDEFINED
5437 && strncasecmp (opname, "callx", 5) == 0)
5438 {
5439 unsigned long window_size;
5440 char *suffix;
5441
5442 window_size = strtoul (opname + 5, &suffix, 10);
5443 if (suffix != opname + 5
5444 && (window_size == 0
5445 || window_size == 4
5446 || window_size == 8
5447 || window_size == 12)
5448 && strcasecmp (suffix, ".tls") == 0)
5449 {
5450 switch (window_size)
5451 {
5452 case 0: orig_insn.opcode = xtensa_callx0_opcode; break;
5453 case 4: orig_insn.opcode = xtensa_callx4_opcode; break;
5454 case 8: orig_insn.opcode = xtensa_callx8_opcode; break;
5455 case 12: orig_insn.opcode = xtensa_callx12_opcode; break;
5456 }
5457
5458 if (num_args != 2)
5459 as_bad (_("wrong number of operands for '%s'"), opname);
5460 else
5461 {
5462 bfd_reloc_code_real_type reloc;
5463 char *old_input_line_pointer;
5464 expressionS *tok = &orig_insn.extra_arg;
5465
5466 old_input_line_pointer = input_line_pointer;
5467 input_line_pointer = arg_strings[num_args - 1];
5468
5469 expression (tok);
5470 if (tok->X_op == O_symbol
5471 && ((reloc = xtensa_elf_suffix (&input_line_pointer, tok))
5472 == BFD_RELOC_XTENSA_TLS_CALL))
5473 tok->X_op = map_suffix_reloc_to_operator (reloc);
5474 else
5475 as_bad (_("bad relocation expression for '%s'"), opname);
5476
5477 input_line_pointer = old_input_line_pointer;
5478 num_args -= 1;
5479 }
5480 }
5481 }
5482
5483 /* Special case: Check for "j.l" psuedo op. */
5484 if (orig_insn.opcode == XTENSA_UNDEFINED
5485 && strncasecmp (opname, "j.l", 3) == 0)
5486 {
5487 if (num_args != 2)
5488 as_bad (_("wrong number of operands for '%s'"), opname);
5489 else
5490 {
5491 char *old_input_line_pointer;
5492 expressionS *tok = &orig_insn.extra_arg;
5493
5494 old_input_line_pointer = input_line_pointer;
5495 input_line_pointer = arg_strings[num_args - 1];
5496
5497 expression_maybe_register (xtensa_jx_opcode, 0, tok);
5498 input_line_pointer = old_input_line_pointer;
5499
5500 num_args -= 1;
5501 orig_insn.opcode = xtensa_j_opcode;
5502 }
5503 }
5504
5505 if (orig_insn.opcode == XTENSA_UNDEFINED)
5506 {
5507 xtensa_format fmt = xtensa_format_lookup (isa, opname);
5508 if (fmt == XTENSA_UNDEFINED)
5509 {
5510 as_bad (_("unknown opcode or format name '%s'"), opname);
5511 error_reset_cur_vinsn ();
5512 return;
5513 }
5514 if (!cur_vinsn.inside_bundle)
5515 {
5516 as_bad (_("format names only valid inside bundles"));
5517 error_reset_cur_vinsn ();
5518 return;
5519 }
5520 if (cur_vinsn.format != XTENSA_UNDEFINED)
5521 as_warn (_("multiple formats specified for one bundle; using '%s'"),
5522 opname);
5523 cur_vinsn.format = fmt;
5524 free (has_underbar ? opname - 1 : opname);
5525 error_reset_cur_vinsn ();
5526 return;
5527 }
5528
5529 /* Parse the arguments. */
5530 if (parse_arguments (&orig_insn, num_args, arg_strings))
5531 {
5532 as_bad (_("syntax error"));
5533 error_reset_cur_vinsn ();
5534 return;
5535 }
5536
5537 /* Free the opcode and argument strings, now that they've been parsed. */
5538 free (has_underbar ? opname - 1 : opname);
5539 opname = 0;
5540 while (num_args-- > 0)
5541 free (arg_strings[num_args]);
5542
5543 /* Get expressions for invisible operands. */
5544 if (get_invisible_operands (&orig_insn))
5545 {
5546 error_reset_cur_vinsn ();
5547 return;
5548 }
5549
5550 /* Check for the right number and type of arguments. */
5551 if (tinsn_check_arguments (&orig_insn))
5552 {
5553 error_reset_cur_vinsn ();
5554 return;
5555 }
5556
5557 /* Record the line number for each TInsn, because a FLIX bundle may be
5558 spread across multiple input lines and individual instructions may be
5559 moved around in some cases. */
5560 orig_insn.loc_directive_seen = dwarf2_loc_directive_seen;
5561 dwarf2_where (&orig_insn.debug_line);
5562 dwarf2_consume_line_info ();
5563
5564 xg_add_branch_and_loop_targets (&orig_insn);
5565
5566 /* Check that immediate value for ENTRY is >= 16. */
5567 if (orig_insn.opcode == xtensa_entry_opcode && orig_insn.ntok >= 3)
5568 {
5569 expressionS *exp = &orig_insn.tok[2];
5570 if (exp->X_op == O_constant && exp->X_add_number < 16)
5571 as_warn (_("entry instruction with stack decrement < 16"));
5572 }
5573
5574 /* Finish it off:
5575 assemble_tokens (opcode, tok, ntok);
5576 expand the tokens from the orig_insn into the
5577 stack of instructions that will not expand
5578 unless required at relaxation time. */
5579
5580 if (!cur_vinsn.inside_bundle)
5581 emit_single_op (&orig_insn);
5582 else /* We are inside a bundle. */
5583 {
5584 cur_vinsn.slots[cur_vinsn.num_slots] = orig_insn;
5585 cur_vinsn.num_slots++;
5586 if (*input_line_pointer == '}'
5587 || *(input_line_pointer - 1) == '}'
5588 || *(input_line_pointer - 2) == '}')
5589 finish_vinsn (&cur_vinsn);
5590 }
5591
5592 /* We've just emitted a new instruction so clear the list of labels. */
5593 xtensa_clear_insn_labels ();
5594
5595 xtensa_check_frag_count ();
5596 }
5597
5598
5599 /* HANDLE_ALIGN hook */
5600
5601 /* For a .align directive, we mark the previous block with the alignment
5602 information. This will be placed in the object file in the
5603 property section corresponding to this section. */
5604
5605 void
5606 xtensa_handle_align (fragS *fragP)
5607 {
5608 if (linkrelax
5609 && ! fragP->tc_frag_data.is_literal
5610 && (fragP->fr_type == rs_align
5611 || fragP->fr_type == rs_align_code)
5612 && fragP->fr_offset > 0
5613 && now_seg != bss_section)
5614 {
5615 fragP->tc_frag_data.is_align = TRUE;
5616 fragP->tc_frag_data.alignment = fragP->fr_offset;
5617 }
5618
5619 if (fragP->fr_type == rs_align_test)
5620 {
5621 int count;
5622 count = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5623 if (count != 0)
5624 as_bad_where (fragP->fr_file, fragP->fr_line,
5625 _("unaligned entry instruction"));
5626 }
5627
5628 if (linkrelax && fragP->fr_type == rs_org)
5629 fragP->fr_subtype = RELAX_ORG;
5630 }
5631
5632
5633 /* TC_FRAG_INIT hook */
5634
5635 void
5636 xtensa_frag_init (fragS *frag)
5637 {
5638 xtensa_set_frag_assembly_state (frag);
5639 }
5640
5641
5642 symbolS *
5643 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
5644 {
5645 return NULL;
5646 }
5647
5648
5649 /* Round up a section size to the appropriate boundary. */
5650
5651 valueT
5652 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
5653 {
5654 return size; /* Byte alignment is fine. */
5655 }
5656
5657
5658 long
5659 md_pcrel_from (fixS *fixP)
5660 {
5661 char *insn_p;
5662 static xtensa_insnbuf insnbuf = NULL;
5663 static xtensa_insnbuf slotbuf = NULL;
5664 int opnum;
5665 uint32 opnd_value;
5666 xtensa_opcode opcode;
5667 xtensa_format fmt;
5668 int slot;
5669 xtensa_isa isa = xtensa_default_isa;
5670 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
5671 bfd_boolean alt_reloc;
5672
5673 if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND)
5674 return 0;
5675
5676 if (fixP->fx_r_type == BFD_RELOC_32_PCREL)
5677 return addr;
5678
5679 if (!insnbuf)
5680 {
5681 insnbuf = xtensa_insnbuf_alloc (isa);
5682 slotbuf = xtensa_insnbuf_alloc (isa);
5683 }
5684
5685 insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where];
5686 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) insn_p, 0);
5687 fmt = xtensa_format_decode (isa, insnbuf);
5688
5689 if (fmt == XTENSA_UNDEFINED)
5690 as_fatal (_("bad instruction format"));
5691
5692 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc) != 0)
5693 as_fatal (_("invalid relocation"));
5694
5695 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5696 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5697
5698 /* Check for "alternate" relocations (operand not specified). None
5699 of the current uses for these are really PC-relative. */
5700 if (alt_reloc || opcode == xtensa_const16_opcode)
5701 {
5702 if (opcode != xtensa_l32r_opcode
5703 && opcode != xtensa_const16_opcode)
5704 as_fatal (_("invalid relocation for '%s' instruction"),
5705 xtensa_opcode_name (isa, opcode));
5706 return 0;
5707 }
5708
5709 opnum = get_relaxable_immed (opcode);
5710 opnd_value = 0;
5711 if (xtensa_operand_is_PCrelative (isa, opcode, opnum) != 1
5712 || xtensa_operand_do_reloc (isa, opcode, opnum, &opnd_value, addr))
5713 {
5714 as_bad_where (fixP->fx_file,
5715 fixP->fx_line,
5716 _("invalid relocation for operand %d of '%s'"),
5717 opnum, xtensa_opcode_name (isa, opcode));
5718 return 0;
5719 }
5720 return 0 - opnd_value;
5721 }
5722
5723
5724 /* TC_FORCE_RELOCATION hook */
5725
5726 int
5727 xtensa_force_relocation (fixS *fix)
5728 {
5729 switch (fix->fx_r_type)
5730 {
5731 case BFD_RELOC_XTENSA_ASM_EXPAND:
5732 case BFD_RELOC_XTENSA_SLOT0_ALT:
5733 case BFD_RELOC_XTENSA_SLOT1_ALT:
5734 case BFD_RELOC_XTENSA_SLOT2_ALT:
5735 case BFD_RELOC_XTENSA_SLOT3_ALT:
5736 case BFD_RELOC_XTENSA_SLOT4_ALT:
5737 case BFD_RELOC_XTENSA_SLOT5_ALT:
5738 case BFD_RELOC_XTENSA_SLOT6_ALT:
5739 case BFD_RELOC_XTENSA_SLOT7_ALT:
5740 case BFD_RELOC_XTENSA_SLOT8_ALT:
5741 case BFD_RELOC_XTENSA_SLOT9_ALT:
5742 case BFD_RELOC_XTENSA_SLOT10_ALT:
5743 case BFD_RELOC_XTENSA_SLOT11_ALT:
5744 case BFD_RELOC_XTENSA_SLOT12_ALT:
5745 case BFD_RELOC_XTENSA_SLOT13_ALT:
5746 case BFD_RELOC_XTENSA_SLOT14_ALT:
5747 return 1;
5748 default:
5749 break;
5750 }
5751
5752 if (linkrelax && fix->fx_addsy
5753 && relaxable_section (S_GET_SEGMENT (fix->fx_addsy)))
5754 return 1;
5755
5756 return generic_force_reloc (fix);
5757 }
5758
5759
5760 /* TC_VALIDATE_FIX_SUB hook */
5761
5762 int
5763 xtensa_validate_fix_sub (fixS *fix)
5764 {
5765 segT add_symbol_segment, sub_symbol_segment;
5766
5767 /* The difference of two symbols should be resolved by the assembler when
5768 linkrelax is not set. If the linker may relax the section containing
5769 the symbols, then an Xtensa DIFF relocation must be generated so that
5770 the linker knows to adjust the difference value. */
5771 if (!linkrelax || fix->fx_addsy == NULL)
5772 return 0;
5773
5774 /* Make sure both symbols are in the same segment, and that segment is
5775 "normal" and relaxable. If the segment is not "normal", then the
5776 fix is not valid. If the segment is not "relaxable", then the fix
5777 should have been handled earlier. */
5778 add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy);
5779 if (! SEG_NORMAL (add_symbol_segment) ||
5780 ! relaxable_section (add_symbol_segment))
5781 return 0;
5782 sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy);
5783 return (sub_symbol_segment == add_symbol_segment);
5784 }
5785
5786
5787 /* NO_PSEUDO_DOT hook */
5788
5789 /* This function has nothing to do with pseudo dots, but this is the
5790 nearest macro to where the check needs to take place. FIXME: This
5791 seems wrong. */
5792
5793 bfd_boolean
5794 xtensa_check_inside_bundle (void)
5795 {
5796 if (cur_vinsn.inside_bundle && input_line_pointer[-1] == '.')
5797 as_bad (_("directives are not valid inside bundles"));
5798
5799 /* This function must always return FALSE because it is called via a
5800 macro that has nothing to do with bundling. */
5801 return FALSE;
5802 }
5803
5804
5805 /* md_elf_section_change_hook */
5806
5807 void
5808 xtensa_elf_section_change_hook (void)
5809 {
5810 /* Set up the assembly state. */
5811 if (!frag_now->tc_frag_data.is_assembly_state_set)
5812 xtensa_set_frag_assembly_state (frag_now);
5813 }
5814
5815
5816 /* tc_fix_adjustable hook */
5817
5818 bfd_boolean
5819 xtensa_fix_adjustable (fixS *fixP)
5820 {
5821 /* We need the symbol name for the VTABLE entries. */
5822 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
5823 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5824 return 0;
5825
5826 return 1;
5827 }
5828
5829
5830 /* tc_symbol_new_hook */
5831
5832 symbolS *expr_symbols = NULL;
5833
5834 void
5835 xtensa_symbol_new_hook (symbolS *sym)
5836 {
5837 if (is_leb128_expr && S_GET_SEGMENT (sym) == expr_section)
5838 {
5839 symbol_get_tc (sym)->next_expr_symbol = expr_symbols;
5840 expr_symbols = sym;
5841 }
5842 }
5843
5844
5845 void
5846 md_apply_fix (fixS *fixP, valueT *valP, segT seg)
5847 {
5848 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5849 valueT val = 0;
5850
5851 /* Subtracted symbols are only allowed for a few relocation types, and
5852 unless linkrelax is enabled, they should not make it to this point. */
5853 if (fixP->fx_subsy && !(linkrelax && (fixP->fx_r_type == BFD_RELOC_32
5854 || fixP->fx_r_type == BFD_RELOC_16
5855 || fixP->fx_r_type == BFD_RELOC_8)))
5856 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex"));
5857
5858 switch (fixP->fx_r_type)
5859 {
5860 case BFD_RELOC_32_PCREL:
5861 case BFD_RELOC_32:
5862 case BFD_RELOC_16:
5863 case BFD_RELOC_8:
5864 if (fixP->fx_subsy)
5865 {
5866 switch (fixP->fx_r_type)
5867 {
5868 case BFD_RELOC_8:
5869 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF8;
5870 fixP->fx_signed = 1;
5871 break;
5872 case BFD_RELOC_16:
5873 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF16;
5874 fixP->fx_signed = 1;
5875 break;
5876 case BFD_RELOC_32:
5877 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF32;
5878 fixP->fx_signed = 1;
5879 break;
5880 default:
5881 break;
5882 }
5883
5884 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5885 - S_GET_VALUE (fixP->fx_subsy));
5886
5887 /* The difference value gets written out, and the DIFF reloc
5888 identifies the address of the subtracted symbol (i.e., the one
5889 with the lowest address). */
5890 *valP = val;
5891 fixP->fx_offset -= val;
5892 fixP->fx_subsy = NULL;
5893 }
5894 else if (! fixP->fx_addsy)
5895 {
5896 val = *valP;
5897 fixP->fx_done = 1;
5898 }
5899 /* fall through */
5900
5901 case BFD_RELOC_XTENSA_PLT:
5902 md_number_to_chars (fixpos, val, fixP->fx_size);
5903 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
5904 break;
5905
5906 case BFD_RELOC_XTENSA_TLSDESC_FN:
5907 case BFD_RELOC_XTENSA_TLSDESC_ARG:
5908 case BFD_RELOC_XTENSA_TLS_TPOFF:
5909 case BFD_RELOC_XTENSA_TLS_DTPOFF:
5910 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5911 md_number_to_chars (fixpos, 0, fixP->fx_size);
5912 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
5913 break;
5914
5915 case BFD_RELOC_XTENSA_SLOT0_OP:
5916 case BFD_RELOC_XTENSA_SLOT1_OP:
5917 case BFD_RELOC_XTENSA_SLOT2_OP:
5918 case BFD_RELOC_XTENSA_SLOT3_OP:
5919 case BFD_RELOC_XTENSA_SLOT4_OP:
5920 case BFD_RELOC_XTENSA_SLOT5_OP:
5921 case BFD_RELOC_XTENSA_SLOT6_OP:
5922 case BFD_RELOC_XTENSA_SLOT7_OP:
5923 case BFD_RELOC_XTENSA_SLOT8_OP:
5924 case BFD_RELOC_XTENSA_SLOT9_OP:
5925 case BFD_RELOC_XTENSA_SLOT10_OP:
5926 case BFD_RELOC_XTENSA_SLOT11_OP:
5927 case BFD_RELOC_XTENSA_SLOT12_OP:
5928 case BFD_RELOC_XTENSA_SLOT13_OP:
5929 case BFD_RELOC_XTENSA_SLOT14_OP:
5930 if (linkrelax)
5931 {
5932 /* Write the tentative value of a PC-relative relocation to a
5933 local symbol into the instruction. The value will be ignored
5934 by the linker, and it makes the object file disassembly
5935 readable when all branch targets are encoded in relocations. */
5936
5937 gas_assert (fixP->fx_addsy);
5938 if (S_GET_SEGMENT (fixP->fx_addsy) == seg
5939 && !S_FORCE_RELOC (fixP->fx_addsy, 1))
5940 {
5941 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5942 - md_pcrel_from (fixP));
5943 (void) xg_apply_fix_value (fixP, val);
5944 }
5945 }
5946 else if (! fixP->fx_addsy)
5947 {
5948 val = *valP;
5949 if (xg_apply_fix_value (fixP, val))
5950 fixP->fx_done = 1;
5951 }
5952 break;
5953
5954 case BFD_RELOC_XTENSA_ASM_EXPAND:
5955 case BFD_RELOC_XTENSA_TLS_FUNC:
5956 case BFD_RELOC_XTENSA_TLS_ARG:
5957 case BFD_RELOC_XTENSA_TLS_CALL:
5958 case BFD_RELOC_XTENSA_SLOT0_ALT:
5959 case BFD_RELOC_XTENSA_SLOT1_ALT:
5960 case BFD_RELOC_XTENSA_SLOT2_ALT:
5961 case BFD_RELOC_XTENSA_SLOT3_ALT:
5962 case BFD_RELOC_XTENSA_SLOT4_ALT:
5963 case BFD_RELOC_XTENSA_SLOT5_ALT:
5964 case BFD_RELOC_XTENSA_SLOT6_ALT:
5965 case BFD_RELOC_XTENSA_SLOT7_ALT:
5966 case BFD_RELOC_XTENSA_SLOT8_ALT:
5967 case BFD_RELOC_XTENSA_SLOT9_ALT:
5968 case BFD_RELOC_XTENSA_SLOT10_ALT:
5969 case BFD_RELOC_XTENSA_SLOT11_ALT:
5970 case BFD_RELOC_XTENSA_SLOT12_ALT:
5971 case BFD_RELOC_XTENSA_SLOT13_ALT:
5972 case BFD_RELOC_XTENSA_SLOT14_ALT:
5973 /* These all need to be resolved at link-time. Do nothing now. */
5974 break;
5975
5976 case BFD_RELOC_VTABLE_INHERIT:
5977 case BFD_RELOC_VTABLE_ENTRY:
5978 fixP->fx_done = 0;
5979 break;
5980
5981 default:
5982 as_bad (_("unhandled local relocation fix %s"),
5983 bfd_get_reloc_code_name (fixP->fx_r_type));
5984 }
5985 }
5986
5987
5988 char *
5989 md_atof (int type, char *litP, int *sizeP)
5990 {
5991 return ieee_md_atof (type, litP, sizeP, target_big_endian);
5992 }
5993
5994
5995 int
5996 md_estimate_size_before_relax (fragS *fragP, segT seg ATTRIBUTE_UNUSED)
5997 {
5998 return total_frag_text_expansion (fragP);
5999 }
6000
6001
6002 /* Translate internal representation of relocation info to BFD target
6003 format. */
6004
6005 arelent *
6006 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
6007 {
6008 arelent *reloc;
6009
6010 reloc = (arelent *) xmalloc (sizeof (arelent));
6011 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
6012 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6013 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
6014
6015 /* Make sure none of our internal relocations make it this far.
6016 They'd better have been fully resolved by this point. */
6017 gas_assert ((int) fixp->fx_r_type > 0);
6018
6019 reloc->addend = fixp->fx_offset;
6020
6021 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
6022 if (reloc->howto == NULL)
6023 {
6024 as_bad_where (fixp->fx_file, fixp->fx_line,
6025 _("cannot represent `%s' relocation in object file"),
6026 bfd_get_reloc_code_name (fixp->fx_r_type));
6027 free (reloc->sym_ptr_ptr);
6028 free (reloc);
6029 return NULL;
6030 }
6031
6032 if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
6033 as_fatal (_("internal error; cannot generate `%s' relocation"),
6034 bfd_get_reloc_code_name (fixp->fx_r_type));
6035
6036 return reloc;
6037 }
6038
6039 \f
6040 /* Checks for resource conflicts between instructions. */
6041
6042 /* The func unit stuff could be implemented as bit-vectors rather
6043 than the iterative approach here. If it ends up being too
6044 slow, we will switch it. */
6045
6046 resource_table *
6047 new_resource_table (void *data,
6048 int cycles,
6049 int nu,
6050 unit_num_copies_func uncf,
6051 opcode_num_units_func onuf,
6052 opcode_funcUnit_use_unit_func ouuf,
6053 opcode_funcUnit_use_stage_func ousf)
6054 {
6055 int i;
6056 resource_table *rt = (resource_table *) xmalloc (sizeof (resource_table));
6057 rt->data = data;
6058 rt->cycles = cycles;
6059 rt->allocated_cycles = cycles;
6060 rt->num_units = nu;
6061 rt->unit_num_copies = uncf;
6062 rt->opcode_num_units = onuf;
6063 rt->opcode_unit_use = ouuf;
6064 rt->opcode_unit_stage = ousf;
6065
6066 rt->units = (unsigned char **) xcalloc (cycles, sizeof (unsigned char *));
6067 for (i = 0; i < cycles; i++)
6068 rt->units[i] = (unsigned char *) xcalloc (nu, sizeof (unsigned char));
6069
6070 return rt;
6071 }
6072
6073
6074 void
6075 clear_resource_table (resource_table *rt)
6076 {
6077 int i, j;
6078 for (i = 0; i < rt->allocated_cycles; i++)
6079 for (j = 0; j < rt->num_units; j++)
6080 rt->units[i][j] = 0;
6081 }
6082
6083
6084 /* We never shrink it, just fake it into thinking so. */
6085
6086 void
6087 resize_resource_table (resource_table *rt, int cycles)
6088 {
6089 int i, old_cycles;
6090
6091 rt->cycles = cycles;
6092 if (cycles <= rt->allocated_cycles)
6093 return;
6094
6095 old_cycles = rt->allocated_cycles;
6096 rt->allocated_cycles = cycles;
6097
6098 rt->units = xrealloc (rt->units,
6099 rt->allocated_cycles * sizeof (unsigned char *));
6100 for (i = 0; i < old_cycles; i++)
6101 rt->units[i] = xrealloc (rt->units[i],
6102 rt->num_units * sizeof (unsigned char));
6103 for (i = old_cycles; i < cycles; i++)
6104 rt->units[i] = xcalloc (rt->num_units, sizeof (unsigned char));
6105 }
6106
6107
6108 bfd_boolean
6109 resources_available (resource_table *rt, xtensa_opcode opcode, int cycle)
6110 {
6111 int i;
6112 int uses = (rt->opcode_num_units) (rt->data, opcode);
6113
6114 for (i = 0; i < uses; i++)
6115 {
6116 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6117 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6118 int copies_in_use = rt->units[stage + cycle][unit];
6119 int copies = (rt->unit_num_copies) (rt->data, unit);
6120 if (copies_in_use >= copies)
6121 return FALSE;
6122 }
6123 return TRUE;
6124 }
6125
6126
6127 void
6128 reserve_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
6129 {
6130 int i;
6131 int uses = (rt->opcode_num_units) (rt->data, opcode);
6132
6133 for (i = 0; i < uses; i++)
6134 {
6135 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6136 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6137 /* Note that this allows resources to be oversubscribed. That's
6138 essential to the way the optional scheduler works.
6139 resources_available reports when a resource is over-subscribed,
6140 so it's easy to tell. */
6141 rt->units[stage + cycle][unit]++;
6142 }
6143 }
6144
6145
6146 void
6147 release_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
6148 {
6149 int i;
6150 int uses = (rt->opcode_num_units) (rt->data, opcode);
6151
6152 for (i = 0; i < uses; i++)
6153 {
6154 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6155 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6156 gas_assert (rt->units[stage + cycle][unit] > 0);
6157 rt->units[stage + cycle][unit]--;
6158 }
6159 }
6160
6161
6162 /* Wrapper functions make parameterized resource reservation
6163 more convenient. */
6164
6165 int
6166 opcode_funcUnit_use_unit (void *data, xtensa_opcode opcode, int idx)
6167 {
6168 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
6169 return use->unit;
6170 }
6171
6172
6173 int
6174 opcode_funcUnit_use_stage (void *data, xtensa_opcode opcode, int idx)
6175 {
6176 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
6177 return use->stage;
6178 }
6179
6180
6181 /* Note that this function does not check issue constraints, but
6182 solely whether the hardware is available to execute the given
6183 instructions together. It also doesn't check if the tinsns
6184 write the same state, or access the same tieports. That is
6185 checked by check_t1_t2_reads_and_writes. */
6186
6187 static bfd_boolean
6188 resources_conflict (vliw_insn *vinsn)
6189 {
6190 int i;
6191 static resource_table *rt = NULL;
6192
6193 /* This is the most common case by far. Optimize it. */
6194 if (vinsn->num_slots == 1)
6195 return FALSE;
6196
6197 if (rt == NULL)
6198 {
6199 xtensa_isa isa = xtensa_default_isa;
6200 rt = new_resource_table
6201 (isa, xtensa_num_pipe_stages,
6202 xtensa_isa_num_funcUnits (isa),
6203 (unit_num_copies_func) xtensa_funcUnit_num_copies,
6204 (opcode_num_units_func) xtensa_opcode_num_funcUnit_uses,
6205 opcode_funcUnit_use_unit,
6206 opcode_funcUnit_use_stage);
6207 }
6208
6209 clear_resource_table (rt);
6210
6211 for (i = 0; i < vinsn->num_slots; i++)
6212 {
6213 if (!resources_available (rt, vinsn->slots[i].opcode, 0))
6214 return TRUE;
6215 reserve_resources (rt, vinsn->slots[i].opcode, 0);
6216 }
6217
6218 return FALSE;
6219 }
6220
6221 \f
6222 /* finish_vinsn, emit_single_op and helper functions. */
6223
6224 static bfd_boolean find_vinsn_conflicts (vliw_insn *);
6225 static xtensa_format xg_find_narrowest_format (vliw_insn *);
6226 static void xg_assemble_vliw_tokens (vliw_insn *);
6227
6228
6229 /* We have reached the end of a bundle; emit into the frag. */
6230
6231 static void
6232 finish_vinsn (vliw_insn *vinsn)
6233 {
6234 IStack slotstack;
6235 int i;
6236 char *file_name;
6237 unsigned line;
6238
6239 if (find_vinsn_conflicts (vinsn))
6240 {
6241 xg_clear_vinsn (vinsn);
6242 return;
6243 }
6244
6245 /* First, find a format that works. */
6246 if (vinsn->format == XTENSA_UNDEFINED)
6247 vinsn->format = xg_find_narrowest_format (vinsn);
6248
6249 if (xtensa_format_num_slots (xtensa_default_isa, vinsn->format) > 1
6250 && produce_flix == FLIX_NONE)
6251 {
6252 as_bad (_("The option \"--no-allow-flix\" prohibits multi-slot flix."));
6253 xg_clear_vinsn (vinsn);
6254 return;
6255 }
6256
6257 if (vinsn->format == XTENSA_UNDEFINED)
6258 {
6259 as_where (&file_name, &line);
6260 as_bad_where (file_name, line,
6261 _("couldn't find a valid instruction format"));
6262 fprintf (stderr, _(" ops were: "));
6263 for (i = 0; i < vinsn->num_slots; i++)
6264 fprintf (stderr, _(" %s;"),
6265 xtensa_opcode_name (xtensa_default_isa,
6266 vinsn->slots[i].opcode));
6267 fprintf (stderr, _("\n"));
6268 xg_clear_vinsn (vinsn);
6269 return;
6270 }
6271
6272 if (vinsn->num_slots
6273 != xtensa_format_num_slots (xtensa_default_isa, vinsn->format))
6274 {
6275 as_bad (_("format '%s' allows %d slots, but there are %d opcodes"),
6276 xtensa_format_name (xtensa_default_isa, vinsn->format),
6277 xtensa_format_num_slots (xtensa_default_isa, vinsn->format),
6278 vinsn->num_slots);
6279 xg_clear_vinsn (vinsn);
6280 return;
6281 }
6282
6283 if (resources_conflict (vinsn))
6284 {
6285 as_where (&file_name, &line);
6286 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6287 fprintf (stderr, " ops were: ");
6288 for (i = 0; i < vinsn->num_slots; i++)
6289 fprintf (stderr, " %s;",
6290 xtensa_opcode_name (xtensa_default_isa,
6291 vinsn->slots[i].opcode));
6292 fprintf (stderr, "\n");
6293 xg_clear_vinsn (vinsn);
6294 return;
6295 }
6296
6297 for (i = 0; i < vinsn->num_slots; i++)
6298 {
6299 if (vinsn->slots[i].opcode != XTENSA_UNDEFINED)
6300 {
6301 symbolS *lit_sym = NULL;
6302 int j;
6303 bfd_boolean e = FALSE;
6304 bfd_boolean saved_density = density_supported;
6305
6306 /* We don't want to narrow ops inside multi-slot bundles. */
6307 if (vinsn->num_slots > 1)
6308 density_supported = FALSE;
6309
6310 istack_init (&slotstack);
6311 if (vinsn->slots[i].opcode == xtensa_nop_opcode)
6312 {
6313 vinsn->slots[i].opcode =
6314 xtensa_format_slot_nop_opcode (xtensa_default_isa,
6315 vinsn->format, i);
6316 vinsn->slots[i].ntok = 0;
6317 }
6318
6319 if (xg_expand_assembly_insn (&slotstack, &vinsn->slots[i]))
6320 {
6321 e = TRUE;
6322 continue;
6323 }
6324
6325 density_supported = saved_density;
6326
6327 if (e)
6328 {
6329 xg_clear_vinsn (vinsn);
6330 return;
6331 }
6332
6333 for (j = 0; j < slotstack.ninsn; j++)
6334 {
6335 TInsn *insn = &slotstack.insn[j];
6336 if (insn->insn_type == ITYPE_LITERAL)
6337 {
6338 gas_assert (lit_sym == NULL);
6339 lit_sym = xg_assemble_literal (insn);
6340 }
6341 else
6342 {
6343 gas_assert (insn->insn_type == ITYPE_INSN);
6344 if (lit_sym)
6345 xg_resolve_literals (insn, lit_sym);
6346 if (j != slotstack.ninsn - 1)
6347 emit_single_op (insn);
6348 }
6349 }
6350
6351 if (vinsn->num_slots > 1)
6352 {
6353 if (opcode_fits_format_slot
6354 (slotstack.insn[slotstack.ninsn - 1].opcode,
6355 vinsn->format, i))
6356 {
6357 vinsn->slots[i] = slotstack.insn[slotstack.ninsn - 1];
6358 }
6359 else
6360 {
6361 emit_single_op (&slotstack.insn[slotstack.ninsn - 1]);
6362 if (vinsn->format == XTENSA_UNDEFINED)
6363 vinsn->slots[i].opcode = xtensa_nop_opcode;
6364 else
6365 vinsn->slots[i].opcode
6366 = xtensa_format_slot_nop_opcode (xtensa_default_isa,
6367 vinsn->format, i);
6368
6369 vinsn->slots[i].ntok = 0;
6370 }
6371 }
6372 else
6373 {
6374 vinsn->slots[0] = slotstack.insn[slotstack.ninsn - 1];
6375 vinsn->format = XTENSA_UNDEFINED;
6376 }
6377 }
6378 }
6379
6380 /* Now check resource conflicts on the modified bundle. */
6381 if (resources_conflict (vinsn))
6382 {
6383 as_where (&file_name, &line);
6384 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6385 fprintf (stderr, " ops were: ");
6386 for (i = 0; i < vinsn->num_slots; i++)
6387 fprintf (stderr, " %s;",
6388 xtensa_opcode_name (xtensa_default_isa,
6389 vinsn->slots[i].opcode));
6390 fprintf (stderr, "\n");
6391 xg_clear_vinsn (vinsn);
6392 return;
6393 }
6394
6395 /* First, find a format that works. */
6396 if (vinsn->format == XTENSA_UNDEFINED)
6397 vinsn->format = xg_find_narrowest_format (vinsn);
6398
6399 xg_assemble_vliw_tokens (vinsn);
6400
6401 xg_clear_vinsn (vinsn);
6402
6403 xtensa_check_frag_count ();
6404 }
6405
6406
6407 /* Given an vliw instruction, what conflicts are there in register
6408 usage and in writes to states and queues?
6409
6410 This function does two things:
6411 1. Reports an error when a vinsn contains illegal combinations
6412 of writes to registers states or queues.
6413 2. Marks individual tinsns as not relaxable if the combination
6414 contains antidependencies.
6415
6416 Job 2 handles things like swap semantics in instructions that need
6417 to be relaxed. For example,
6418
6419 addi a0, a1, 100000
6420
6421 normally would be relaxed to
6422
6423 l32r a0, some_label
6424 add a0, a1, a0
6425
6426 _but_, if the above instruction is bundled with an a0 reader, e.g.,
6427
6428 { addi a0, a1, 10000 ; add a2, a0, a4 ; }
6429
6430 then we can't relax it into
6431
6432 l32r a0, some_label
6433 { add a0, a1, a0 ; add a2, a0, a4 ; }
6434
6435 because the value of a0 is trashed before the second add can read it. */
6436
6437 static char check_t1_t2_reads_and_writes (TInsn *, TInsn *);
6438
6439 static bfd_boolean
6440 find_vinsn_conflicts (vliw_insn *vinsn)
6441 {
6442 int i, j;
6443 int branches = 0;
6444 xtensa_isa isa = xtensa_default_isa;
6445
6446 gas_assert (!past_xtensa_end);
6447
6448 for (i = 0 ; i < vinsn->num_slots; i++)
6449 {
6450 TInsn *op1 = &vinsn->slots[i];
6451 if (op1->is_specific_opcode)
6452 op1->keep_wide = TRUE;
6453 else
6454 op1->keep_wide = FALSE;
6455 }
6456
6457 for (i = 0 ; i < vinsn->num_slots; i++)
6458 {
6459 TInsn *op1 = &vinsn->slots[i];
6460
6461 if (xtensa_opcode_is_branch (isa, op1->opcode) == 1)
6462 branches++;
6463
6464 for (j = 0; j < vinsn->num_slots; j++)
6465 {
6466 if (i != j)
6467 {
6468 TInsn *op2 = &vinsn->slots[j];
6469 char conflict_type = check_t1_t2_reads_and_writes (op1, op2);
6470 switch (conflict_type)
6471 {
6472 case 'c':
6473 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"),
6474 xtensa_opcode_name (isa, op1->opcode), i,
6475 xtensa_opcode_name (isa, op2->opcode), j);
6476 return TRUE;
6477 case 'd':
6478 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"),
6479 xtensa_opcode_name (isa, op1->opcode), i,
6480 xtensa_opcode_name (isa, op2->opcode), j);
6481 return TRUE;
6482 case 'e':
6483 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same port"),
6484 xtensa_opcode_name (isa, op1->opcode), i,
6485 xtensa_opcode_name (isa, op2->opcode), j);
6486 return TRUE;
6487 case 'f':
6488 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile port accesses"),
6489 xtensa_opcode_name (isa, op1->opcode), i,
6490 xtensa_opcode_name (isa, op2->opcode), j);
6491 return TRUE;
6492 default:
6493 /* Everything is OK. */
6494 break;
6495 }
6496 op2->is_specific_opcode = (op2->is_specific_opcode
6497 || conflict_type == 'a');
6498 }
6499 }
6500 }
6501
6502 if (branches > 1)
6503 {
6504 as_bad (_("multiple branches or jumps in the same bundle"));
6505 return TRUE;
6506 }
6507
6508 return FALSE;
6509 }
6510
6511
6512 /* Check how the state used by t1 and t2 relate.
6513 Cases found are:
6514
6515 case A: t1 reads a register t2 writes (an antidependency within a bundle)
6516 case B: no relationship between what is read and written (both could
6517 read the same reg though)
6518 case C: t1 writes a register t2 writes (a register conflict within a
6519 bundle)
6520 case D: t1 writes a state that t2 also writes
6521 case E: t1 writes a tie queue that t2 also writes
6522 case F: two volatile queue accesses
6523 */
6524
6525 static char
6526 check_t1_t2_reads_and_writes (TInsn *t1, TInsn *t2)
6527 {
6528 xtensa_isa isa = xtensa_default_isa;
6529 xtensa_regfile t1_regfile, t2_regfile;
6530 int t1_reg, t2_reg;
6531 int t1_base_reg, t1_last_reg;
6532 int t2_base_reg, t2_last_reg;
6533 char t1_inout, t2_inout;
6534 int i, j;
6535 char conflict = 'b';
6536 int t1_states;
6537 int t2_states;
6538 int t1_interfaces;
6539 int t2_interfaces;
6540 bfd_boolean t1_volatile = FALSE;
6541 bfd_boolean t2_volatile = FALSE;
6542
6543 /* Check registers. */
6544 for (j = 0; j < t2->ntok; j++)
6545 {
6546 if (xtensa_operand_is_register (isa, t2->opcode, j) != 1)
6547 continue;
6548
6549 t2_regfile = xtensa_operand_regfile (isa, t2->opcode, j);
6550 t2_base_reg = t2->tok[j].X_add_number;
6551 t2_last_reg = t2_base_reg + xtensa_operand_num_regs (isa, t2->opcode, j);
6552
6553 for (i = 0; i < t1->ntok; i++)
6554 {
6555 if (xtensa_operand_is_register (isa, t1->opcode, i) != 1)
6556 continue;
6557
6558 t1_regfile = xtensa_operand_regfile (isa, t1->opcode, i);
6559
6560 if (t1_regfile != t2_regfile)
6561 continue;
6562
6563 t1_inout = xtensa_operand_inout (isa, t1->opcode, i);
6564 t2_inout = xtensa_operand_inout (isa, t2->opcode, j);
6565
6566 if (xtensa_operand_is_known_reg (isa, t1->opcode, i) == 0
6567 || xtensa_operand_is_known_reg (isa, t2->opcode, j) == 0)
6568 {
6569 if (t1_inout == 'm' || t1_inout == 'o'
6570 || t2_inout == 'm' || t2_inout == 'o')
6571 {
6572 conflict = 'a';
6573 continue;
6574 }
6575 }
6576
6577 t1_base_reg = t1->tok[i].X_add_number;
6578 t1_last_reg = (t1_base_reg
6579 + xtensa_operand_num_regs (isa, t1->opcode, i));
6580
6581 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
6582 {
6583 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
6584 {
6585 if (t1_reg != t2_reg)
6586 continue;
6587
6588 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6589 {
6590 conflict = 'a';
6591 continue;
6592 }
6593
6594 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6595 {
6596 conflict = 'a';
6597 continue;
6598 }
6599
6600 if (t1_inout != 'i' && t2_inout != 'i')
6601 return 'c';
6602 }
6603 }
6604 }
6605 }
6606
6607 /* Check states. */
6608 t1_states = xtensa_opcode_num_stateOperands (isa, t1->opcode);
6609 t2_states = xtensa_opcode_num_stateOperands (isa, t2->opcode);
6610 for (j = 0; j < t2_states; j++)
6611 {
6612 xtensa_state t2_so = xtensa_stateOperand_state (isa, t2->opcode, j);
6613 t2_inout = xtensa_stateOperand_inout (isa, t2->opcode, j);
6614 for (i = 0; i < t1_states; i++)
6615 {
6616 xtensa_state t1_so = xtensa_stateOperand_state (isa, t1->opcode, i);
6617 t1_inout = xtensa_stateOperand_inout (isa, t1->opcode, i);
6618 if (t1_so != t2_so || xtensa_state_is_shared_or (isa, t1_so) == 1)
6619 continue;
6620
6621 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6622 {
6623 conflict = 'a';
6624 continue;
6625 }
6626
6627 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6628 {
6629 conflict = 'a';
6630 continue;
6631 }
6632
6633 if (t1_inout != 'i' && t2_inout != 'i')
6634 return 'd';
6635 }
6636 }
6637
6638 /* Check tieports. */
6639 t1_interfaces = xtensa_opcode_num_interfaceOperands (isa, t1->opcode);
6640 t2_interfaces = xtensa_opcode_num_interfaceOperands (isa, t2->opcode);
6641 for (j = 0; j < t2_interfaces; j++)
6642 {
6643 xtensa_interface t2_int
6644 = xtensa_interfaceOperand_interface (isa, t2->opcode, j);
6645 int t2_class = xtensa_interface_class_id (isa, t2_int);
6646
6647 t2_inout = xtensa_interface_inout (isa, t2_int);
6648 if (xtensa_interface_has_side_effect (isa, t2_int) == 1)
6649 t2_volatile = TRUE;
6650
6651 for (i = 0; i < t1_interfaces; i++)
6652 {
6653 xtensa_interface t1_int
6654 = xtensa_interfaceOperand_interface (isa, t1->opcode, j);
6655 int t1_class = xtensa_interface_class_id (isa, t1_int);
6656
6657 t1_inout = xtensa_interface_inout (isa, t1_int);
6658 if (xtensa_interface_has_side_effect (isa, t1_int) == 1)
6659 t1_volatile = TRUE;
6660
6661 if (t1_volatile && t2_volatile && (t1_class == t2_class))
6662 return 'f';
6663
6664 if (t1_int != t2_int)
6665 continue;
6666
6667 if (t2_inout == 'i' && t1_inout == 'o')
6668 {
6669 conflict = 'a';
6670 continue;
6671 }
6672
6673 if (t1_inout == 'i' && t2_inout == 'o')
6674 {
6675 conflict = 'a';
6676 continue;
6677 }
6678
6679 if (t1_inout != 'i' && t2_inout != 'i')
6680 return 'e';
6681 }
6682 }
6683
6684 return conflict;
6685 }
6686
6687
6688 static xtensa_format
6689 xg_find_narrowest_format (vliw_insn *vinsn)
6690 {
6691 /* Right now we assume that the ops within the vinsn are properly
6692 ordered for the slots that the programmer wanted them in. In
6693 other words, we don't rearrange the ops in hopes of finding a
6694 better format. The scheduler handles that. */
6695
6696 xtensa_isa isa = xtensa_default_isa;
6697 xtensa_format format;
6698 xtensa_opcode nop_opcode = xtensa_nop_opcode;
6699
6700 if (vinsn->num_slots == 1)
6701 return xg_get_single_format (vinsn->slots[0].opcode);
6702
6703 for (format = 0; format < xtensa_isa_num_formats (isa); format++)
6704 {
6705 vliw_insn v_copy;
6706 xg_copy_vinsn (&v_copy, vinsn);
6707 if (xtensa_format_num_slots (isa, format) == v_copy.num_slots)
6708 {
6709 int slot;
6710 int fit = 0;
6711 for (slot = 0; slot < v_copy.num_slots; slot++)
6712 {
6713 if (v_copy.slots[slot].opcode == nop_opcode)
6714 {
6715 v_copy.slots[slot].opcode =
6716 xtensa_format_slot_nop_opcode (isa, format, slot);
6717 v_copy.slots[slot].ntok = 0;
6718 }
6719
6720 if (opcode_fits_format_slot (v_copy.slots[slot].opcode,
6721 format, slot))
6722 fit++;
6723 else if (v_copy.num_slots > 1)
6724 {
6725 TInsn widened;
6726 /* Try the widened version. */
6727 if (!v_copy.slots[slot].keep_wide
6728 && !v_copy.slots[slot].is_specific_opcode
6729 && xg_is_single_relaxable_insn (&v_copy.slots[slot],
6730 &widened, TRUE)
6731 && opcode_fits_format_slot (widened.opcode,
6732 format, slot))
6733 {
6734 v_copy.slots[slot] = widened;
6735 fit++;
6736 }
6737 }
6738 }
6739 if (fit == v_copy.num_slots)
6740 {
6741 xg_copy_vinsn (vinsn, &v_copy);
6742 xtensa_format_encode (isa, format, vinsn->insnbuf);
6743 vinsn->format = format;
6744 break;
6745 }
6746 }
6747 }
6748
6749 if (format == xtensa_isa_num_formats (isa))
6750 return XTENSA_UNDEFINED;
6751
6752 return format;
6753 }
6754
6755
6756 /* Return the additional space needed in a frag
6757 for possible relaxations of any ops in a VLIW insn.
6758 Also fill out the relaxations that might be required of
6759 each tinsn in the vinsn. */
6760
6761 static int
6762 relaxation_requirements (vliw_insn *vinsn, bfd_boolean *pfinish_frag)
6763 {
6764 bfd_boolean finish_frag = FALSE;
6765 int extra_space = 0;
6766 int slot;
6767
6768 for (slot = 0; slot < vinsn->num_slots; slot++)
6769 {
6770 TInsn *tinsn = &vinsn->slots[slot];
6771 if (!tinsn_has_symbolic_operands (tinsn))
6772 {
6773 /* A narrow instruction could be widened later to help
6774 alignment issues. */
6775 if (xg_is_single_relaxable_insn (tinsn, 0, TRUE)
6776 && !tinsn->is_specific_opcode
6777 && vinsn->num_slots == 1)
6778 {
6779 /* Difference in bytes between narrow and wide insns... */
6780 extra_space += 1;
6781 tinsn->subtype = RELAX_NARROW;
6782 }
6783 }
6784 else
6785 {
6786 if (workaround_b_j_loop_end
6787 && tinsn->opcode == xtensa_jx_opcode
6788 && use_transform ())
6789 {
6790 /* Add 2 of these. */
6791 extra_space += 3; /* for the nop size */
6792 tinsn->subtype = RELAX_ADD_NOP_IF_PRE_LOOP_END;
6793 }
6794
6795 /* Need to assemble it with space for the relocation. */
6796 if (xg_is_relaxable_insn (tinsn, 0)
6797 && !tinsn->is_specific_opcode)
6798 {
6799 int max_size = xg_get_max_insn_widen_size (tinsn->opcode);
6800 int max_literal_size =
6801 xg_get_max_insn_widen_literal_size (tinsn->opcode);
6802
6803 tinsn->literal_space = max_literal_size;
6804
6805 tinsn->subtype = RELAX_IMMED;
6806 extra_space += max_size;
6807 }
6808 else
6809 {
6810 /* A fix record will be added for this instruction prior
6811 to relaxation, so make it end the frag. */
6812 finish_frag = TRUE;
6813 }
6814 }
6815 }
6816 *pfinish_frag = finish_frag;
6817 return extra_space;
6818 }
6819
6820
6821 static void
6822 bundle_tinsn (TInsn *tinsn, vliw_insn *vinsn)
6823 {
6824 xtensa_isa isa = xtensa_default_isa;
6825 int slot, chosen_slot;
6826
6827 vinsn->format = xg_get_single_format (tinsn->opcode);
6828 gas_assert (vinsn->format != XTENSA_UNDEFINED);
6829 vinsn->num_slots = xtensa_format_num_slots (isa, vinsn->format);
6830
6831 chosen_slot = xg_get_single_slot (tinsn->opcode);
6832 for (slot = 0; slot < vinsn->num_slots; slot++)
6833 {
6834 if (slot == chosen_slot)
6835 vinsn->slots[slot] = *tinsn;
6836 else
6837 {
6838 vinsn->slots[slot].opcode =
6839 xtensa_format_slot_nop_opcode (isa, vinsn->format, slot);
6840 vinsn->slots[slot].ntok = 0;
6841 vinsn->slots[slot].insn_type = ITYPE_INSN;
6842 }
6843 }
6844 }
6845
6846
6847 static bfd_boolean
6848 emit_single_op (TInsn *orig_insn)
6849 {
6850 int i;
6851 IStack istack; /* put instructions into here */
6852 symbolS *lit_sym = NULL;
6853 symbolS *label_sym = NULL;
6854
6855 istack_init (&istack);
6856
6857 /* Special-case for "movi aX, foo" which is guaranteed to need relaxing.
6858 Because the scheduling and bundling characteristics of movi and
6859 l32r or const16 are so different, we can do much better if we relax
6860 it prior to scheduling and bundling, rather than after. */
6861 if ((orig_insn->opcode == xtensa_movi_opcode
6862 || orig_insn->opcode == xtensa_movi_n_opcode)
6863 && !cur_vinsn.inside_bundle
6864 && (orig_insn->tok[1].X_op == O_symbol
6865 || orig_insn->tok[1].X_op == O_pltrel
6866 || orig_insn->tok[1].X_op == O_tlsfunc
6867 || orig_insn->tok[1].X_op == O_tlsarg
6868 || orig_insn->tok[1].X_op == O_tpoff
6869 || orig_insn->tok[1].X_op == O_dtpoff)
6870 && !orig_insn->is_specific_opcode && use_transform ())
6871 xg_assembly_relax (&istack, orig_insn, now_seg, frag_now, 0, 1, 0);
6872 else
6873 if (xg_expand_assembly_insn (&istack, orig_insn))
6874 return TRUE;
6875
6876 for (i = 0; i < istack.ninsn; i++)
6877 {
6878 TInsn *insn = &istack.insn[i];
6879 switch (insn->insn_type)
6880 {
6881 case ITYPE_LITERAL:
6882 gas_assert (lit_sym == NULL);
6883 lit_sym = xg_assemble_literal (insn);
6884 break;
6885 case ITYPE_LABEL:
6886 {
6887 static int relaxed_sym_idx = 0;
6888 char *label = xmalloc (strlen (FAKE_LABEL_NAME) + 12);
6889 sprintf (label, "%s_rl_%x", FAKE_LABEL_NAME, relaxed_sym_idx++);
6890 colon (label);
6891 gas_assert (label_sym == NULL);
6892 label_sym = symbol_find_or_make (label);
6893 gas_assert (label_sym);
6894 free (label);
6895 }
6896 break;
6897 case ITYPE_INSN:
6898 {
6899 vliw_insn v;
6900 if (lit_sym)
6901 xg_resolve_literals (insn, lit_sym);
6902 if (label_sym)
6903 xg_resolve_labels (insn, label_sym);
6904 xg_init_vinsn (&v);
6905 bundle_tinsn (insn, &v);
6906 finish_vinsn (&v);
6907 xg_free_vinsn (&v);
6908 }
6909 break;
6910 default:
6911 gas_assert (0);
6912 break;
6913 }
6914 }
6915 return FALSE;
6916 }
6917
6918
6919 static int
6920 total_frag_text_expansion (fragS *fragP)
6921 {
6922 int slot;
6923 int total_expansion = 0;
6924
6925 for (slot = 0; slot < config_max_slots; slot++)
6926 total_expansion += fragP->tc_frag_data.text_expansion[slot];
6927
6928 return total_expansion;
6929 }
6930
6931
6932 /* Emit a vliw instruction to the current fragment. */
6933
6934 static void
6935 xg_assemble_vliw_tokens (vliw_insn *vinsn)
6936 {
6937 bfd_boolean finish_frag;
6938 bfd_boolean is_jump = FALSE;
6939 bfd_boolean is_branch = FALSE;
6940 xtensa_isa isa = xtensa_default_isa;
6941 int insn_size;
6942 int extra_space;
6943 char *f = NULL;
6944 int slot;
6945 struct dwarf2_line_info debug_line;
6946 bfd_boolean loc_directive_seen = FALSE;
6947 TInsn *tinsn;
6948
6949 memset (&debug_line, 0, sizeof (struct dwarf2_line_info));
6950
6951 if (generating_literals)
6952 {
6953 static int reported = 0;
6954 if (reported < 4)
6955 as_bad_where (frag_now->fr_file, frag_now->fr_line,
6956 _("cannot assemble into a literal fragment"));
6957 if (reported == 3)
6958 as_bad (_("..."));
6959 reported++;
6960 return;
6961 }
6962
6963 if (frag_now_fix () != 0
6964 && (! frag_now->tc_frag_data.is_insn
6965 || (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6966 || (!use_transform ()) != frag_now->tc_frag_data.is_no_transform
6967 || (directive_state[directive_longcalls]
6968 != frag_now->tc_frag_data.use_longcalls)
6969 || (directive_state[directive_absolute_literals]
6970 != frag_now->tc_frag_data.use_absolute_literals)))
6971 {
6972 frag_wane (frag_now);
6973 frag_new (0);
6974 xtensa_set_frag_assembly_state (frag_now);
6975 }
6976
6977 if (workaround_a0_b_retw
6978 && vinsn->num_slots == 1
6979 && (get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0
6980 && xtensa_opcode_is_branch (isa, vinsn->slots[0].opcode) == 1
6981 && use_transform ())
6982 {
6983 has_a0_b_retw = TRUE;
6984
6985 /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW.
6986 After the first assembly pass we will check all of them and
6987 add a nop if needed. */
6988 frag_now->tc_frag_data.is_insn = TRUE;
6989 frag_var (rs_machine_dependent, 4, 4,
6990 RELAX_ADD_NOP_IF_A0_B_RETW,
6991 frag_now->fr_symbol,
6992 frag_now->fr_offset,
6993 NULL);
6994 xtensa_set_frag_assembly_state (frag_now);
6995 frag_now->tc_frag_data.is_insn = TRUE;
6996 frag_var (rs_machine_dependent, 4, 4,
6997 RELAX_ADD_NOP_IF_A0_B_RETW,
6998 frag_now->fr_symbol,
6999 frag_now->fr_offset,
7000 NULL);
7001 xtensa_set_frag_assembly_state (frag_now);
7002 }
7003
7004 for (slot = 0; slot < vinsn->num_slots; slot++)
7005 {
7006 tinsn = &vinsn->slots[slot];
7007
7008 /* See if the instruction implies an aligned section. */
7009 if (xtensa_opcode_is_loop (isa, tinsn->opcode) == 1)
7010 record_alignment (now_seg, 2);
7011
7012 /* Determine the best line number for debug info. */
7013 if ((tinsn->loc_directive_seen || !loc_directive_seen)
7014 && (tinsn->debug_line.filenum != debug_line.filenum
7015 || tinsn->debug_line.line < debug_line.line
7016 || tinsn->debug_line.column < debug_line.column))
7017 debug_line = tinsn->debug_line;
7018 if (tinsn->loc_directive_seen)
7019 loc_directive_seen = TRUE;
7020 }
7021
7022 /* Special cases for instructions that force an alignment... */
7023 /* None of these opcodes are bundle-able. */
7024 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1)
7025 {
7026 int max_fill;
7027
7028 /* Remember the symbol that marks the end of the loop in the frag
7029 that marks the start of the loop. This way we can easily find
7030 the end of the loop at the beginning, without adding special code
7031 to mark the loop instructions themselves. */
7032 symbolS *target_sym = NULL;
7033 if (vinsn->slots[0].tok[1].X_op == O_symbol)
7034 target_sym = vinsn->slots[0].tok[1].X_add_symbol;
7035
7036 xtensa_set_frag_assembly_state (frag_now);
7037 frag_now->tc_frag_data.is_insn = TRUE;
7038
7039 max_fill = get_text_align_max_fill_size
7040 (get_text_align_power (xtensa_fetch_width),
7041 TRUE, frag_now->tc_frag_data.is_no_density);
7042
7043 if (use_transform ())
7044 frag_var (rs_machine_dependent, max_fill, max_fill,
7045 RELAX_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
7046 else
7047 frag_var (rs_machine_dependent, 0, 0,
7048 RELAX_CHECK_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
7049 xtensa_set_frag_assembly_state (frag_now);
7050 }
7051
7052 if (vinsn->slots[0].opcode == xtensa_entry_opcode
7053 && !vinsn->slots[0].is_specific_opcode)
7054 {
7055 xtensa_mark_literal_pool_location ();
7056 xtensa_move_labels (frag_now, 0);
7057 frag_var (rs_align_test, 1, 1, 0, NULL, 2, NULL);
7058 }
7059
7060 if (vinsn->num_slots == 1)
7061 {
7062 if (workaround_a0_b_retw && use_transform ())
7063 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER,
7064 is_register_writer (&vinsn->slots[0], "a", 0));
7065
7066 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND,
7067 is_bad_loopend_opcode (&vinsn->slots[0]));
7068 }
7069 else
7070 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, FALSE);
7071
7072 insn_size = xtensa_format_length (isa, vinsn->format);
7073
7074 extra_space = relaxation_requirements (vinsn, &finish_frag);
7075
7076 /* vinsn_to_insnbuf will produce the error. */
7077 if (vinsn->format != XTENSA_UNDEFINED)
7078 {
7079 f = frag_more (insn_size + extra_space);
7080 xtensa_set_frag_assembly_state (frag_now);
7081 frag_now->tc_frag_data.is_insn = TRUE;
7082 }
7083
7084 vinsn_to_insnbuf (vinsn, f, frag_now, FALSE);
7085 if (vinsn->format == XTENSA_UNDEFINED)
7086 return;
7087
7088 xtensa_insnbuf_to_chars (isa, vinsn->insnbuf, (unsigned char *) f, 0);
7089
7090 if (debug_type == DEBUG_DWARF2 || loc_directive_seen)
7091 dwarf2_gen_line_info (frag_now_fix () - (insn_size + extra_space),
7092 &debug_line);
7093
7094 for (slot = 0; slot < vinsn->num_slots; slot++)
7095 {
7096 tinsn = &vinsn->slots[slot];
7097 frag_now->tc_frag_data.slot_subtypes[slot] = tinsn->subtype;
7098 frag_now->tc_frag_data.slot_symbols[slot] = tinsn->symbol;
7099 frag_now->tc_frag_data.slot_offsets[slot] = tinsn->offset;
7100 frag_now->tc_frag_data.literal_frags[slot] = tinsn->literal_frag;
7101 if (tinsn->literal_space != 0)
7102 xg_assemble_literal_space (tinsn->literal_space, slot);
7103 frag_now->tc_frag_data.free_reg[slot] = tinsn->extra_arg;
7104
7105 if (tinsn->subtype == RELAX_NARROW)
7106 gas_assert (vinsn->num_slots == 1);
7107 if (xtensa_opcode_is_jump (isa, tinsn->opcode) == 1)
7108 is_jump = TRUE;
7109 if (xtensa_opcode_is_branch (isa, tinsn->opcode) == 1)
7110 is_branch = TRUE;
7111
7112 if (tinsn->subtype || tinsn->symbol || tinsn->offset
7113 || tinsn->literal_frag || is_jump || is_branch)
7114 finish_frag = TRUE;
7115 }
7116
7117 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
7118 frag_now->tc_frag_data.is_specific_opcode = TRUE;
7119
7120 if (finish_frag)
7121 {
7122 frag_variant (rs_machine_dependent,
7123 extra_space, extra_space, RELAX_SLOTS,
7124 frag_now->fr_symbol, frag_now->fr_offset, f);
7125 xtensa_set_frag_assembly_state (frag_now);
7126 }
7127
7128 /* Special cases for loops:
7129 close_loop_end should be inserted AFTER short_loop.
7130 Make sure that CLOSE loops are processed BEFORE short_loops
7131 when converting them. */
7132
7133 /* "short_loop": Add a NOP if the loop is < 4 bytes. */
7134 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1
7135 && !vinsn->slots[0].is_specific_opcode)
7136 {
7137 if (workaround_short_loop && use_transform ())
7138 {
7139 maybe_has_short_loop = TRUE;
7140 frag_now->tc_frag_data.is_insn = TRUE;
7141 frag_var (rs_machine_dependent, 4, 4,
7142 RELAX_ADD_NOP_IF_SHORT_LOOP,
7143 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7144 frag_now->tc_frag_data.is_insn = TRUE;
7145 frag_var (rs_machine_dependent, 4, 4,
7146 RELAX_ADD_NOP_IF_SHORT_LOOP,
7147 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7148 }
7149
7150 /* "close_loop_end": Add up to 12 bytes of NOPs to keep a
7151 loop at least 12 bytes away from another loop's end. */
7152 if (workaround_close_loop_end && use_transform ())
7153 {
7154 maybe_has_close_loop_end = TRUE;
7155 frag_now->tc_frag_data.is_insn = TRUE;
7156 frag_var (rs_machine_dependent, 12, 12,
7157 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
7158 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7159 }
7160 }
7161
7162 if (use_transform ())
7163 {
7164 if (is_jump)
7165 {
7166 gas_assert (finish_frag);
7167 frag_var (rs_machine_dependent,
7168 xtensa_fetch_width, xtensa_fetch_width,
7169 RELAX_UNREACHABLE,
7170 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7171 xtensa_set_frag_assembly_state (frag_now);
7172 xtensa_maybe_create_trampoline_frag ();
7173 }
7174 else if (is_branch && do_align_targets ())
7175 {
7176 gas_assert (finish_frag);
7177 frag_var (rs_machine_dependent,
7178 xtensa_fetch_width, xtensa_fetch_width,
7179 RELAX_MAYBE_UNREACHABLE,
7180 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7181 xtensa_set_frag_assembly_state (frag_now);
7182 frag_var (rs_machine_dependent,
7183 0, 0,
7184 RELAX_MAYBE_DESIRE_ALIGN,
7185 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7186 xtensa_set_frag_assembly_state (frag_now);
7187 }
7188 }
7189
7190 /* Now, if the original opcode was a call... */
7191 if (do_align_targets ()
7192 && xtensa_opcode_is_call (isa, vinsn->slots[0].opcode) == 1)
7193 {
7194 float freq = get_subseg_total_freq (now_seg, now_subseg);
7195 frag_now->tc_frag_data.is_insn = TRUE;
7196 frag_var (rs_machine_dependent, 4, (int) freq, RELAX_DESIRE_ALIGN,
7197 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7198 xtensa_set_frag_assembly_state (frag_now);
7199 }
7200
7201 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
7202 {
7203 frag_wane (frag_now);
7204 frag_new (0);
7205 xtensa_set_frag_assembly_state (frag_now);
7206 }
7207 }
7208
7209 \f
7210 /* xtensa_end and helper functions. */
7211
7212 static void xtensa_cleanup_align_frags (void);
7213 static void xtensa_fix_target_frags (void);
7214 static void xtensa_mark_narrow_branches (void);
7215 static void xtensa_mark_zcl_first_insns (void);
7216 static void xtensa_mark_difference_of_two_symbols (void);
7217 static void xtensa_fix_a0_b_retw_frags (void);
7218 static void xtensa_fix_b_j_loop_end_frags (void);
7219 static void xtensa_fix_close_loop_end_frags (void);
7220 static void xtensa_fix_short_loop_frags (void);
7221 static void xtensa_sanity_check (void);
7222 static void xtensa_add_config_info (void);
7223
7224 void
7225 xtensa_end (void)
7226 {
7227 directive_balance ();
7228 xtensa_flush_pending_output ();
7229
7230 past_xtensa_end = TRUE;
7231
7232 xtensa_move_literals ();
7233
7234 xtensa_reorder_segments ();
7235 xtensa_cleanup_align_frags ();
7236 xtensa_fix_target_frags ();
7237 if (workaround_a0_b_retw && has_a0_b_retw)
7238 xtensa_fix_a0_b_retw_frags ();
7239 if (workaround_b_j_loop_end)
7240 xtensa_fix_b_j_loop_end_frags ();
7241
7242 /* "close_loop_end" should be processed BEFORE "short_loop". */
7243 if (workaround_close_loop_end && maybe_has_close_loop_end)
7244 xtensa_fix_close_loop_end_frags ();
7245
7246 if (workaround_short_loop && maybe_has_short_loop)
7247 xtensa_fix_short_loop_frags ();
7248 if (align_targets)
7249 xtensa_mark_narrow_branches ();
7250 xtensa_mark_zcl_first_insns ();
7251
7252 xtensa_sanity_check ();
7253
7254 xtensa_add_config_info ();
7255
7256 xtensa_check_frag_count ();
7257 }
7258
7259
7260 struct trampoline_frag
7261 {
7262 struct trampoline_frag *next;
7263 bfd_boolean needs_jump_around;
7264 fragS *fragP;
7265 fixS *fixP;
7266 };
7267
7268 struct trampoline_seg
7269 {
7270 struct trampoline_seg *next;
7271 asection *seg;
7272 struct trampoline_frag trampoline_list;
7273 };
7274
7275 static struct trampoline_seg trampoline_seg_list;
7276 #define J_RANGE (128 * 1024)
7277
7278 static int unreachable_count = 0;
7279
7280
7281 static void
7282 xtensa_maybe_create_trampoline_frag (void)
7283 {
7284 if (!use_trampolines)
7285 return;
7286
7287 /* We create an area for possible trampolines every 10 unreachable frags.
7288 These are preferred over the ones not preceded by an unreachable frag,
7289 because we don't have to jump around them. This function is called after
7290 each RELAX_UNREACHABLE frag is created. */
7291
7292 if (++unreachable_count > 10)
7293 {
7294 xtensa_create_trampoline_frag (FALSE);
7295 clear_frag_count ();
7296 unreachable_count = 0;
7297 }
7298 }
7299
7300 static void
7301 xtensa_check_frag_count (void)
7302 {
7303 if (!use_trampolines || frag_now->tc_frag_data.is_no_transform)
7304 return;
7305
7306 /* We create an area for possible trampolines every 8000 frags or so. This
7307 is an estimate based on the max range of a "j" insn (+/-128K) divided
7308 by a typical frag byte count (16), minus a few for safety. This function
7309 is called after each source line is processed. */
7310
7311 if (get_frag_count () > 8000)
7312 {
7313 xtensa_create_trampoline_frag (TRUE);
7314 clear_frag_count ();
7315 unreachable_count = 0;
7316 }
7317 }
7318
7319 static xtensa_insnbuf trampoline_buf = NULL;
7320 static xtensa_insnbuf trampoline_slotbuf = NULL;
7321
7322 #define TRAMPOLINE_FRAG_SIZE 3000
7323
7324 static void
7325 xtensa_create_trampoline_frag (bfd_boolean needs_jump_around)
7326 {
7327 /* Emit a frag where we can place intermediate jump instructions,
7328 in case we need to jump farther than 128K bytes.
7329 Each jump instruction takes three bytes.
7330 We allocate enough for 1000 trampolines in each frag.
7331 If that's not enough, oh well. */
7332
7333 struct trampoline_seg *ts = trampoline_seg_list.next;
7334 struct trampoline_frag *tf;
7335 char *varP;
7336 fragS *fragP;
7337 int size = TRAMPOLINE_FRAG_SIZE;
7338
7339 for ( ; ts; ts = ts->next)
7340 {
7341 if (ts->seg == now_seg)
7342 break;
7343 }
7344
7345 if (ts == NULL)
7346 {
7347 ts = (struct trampoline_seg *)xcalloc(sizeof (struct trampoline_seg), 1);
7348 ts->next = trampoline_seg_list.next;
7349 trampoline_seg_list.next = ts;
7350 ts->seg = now_seg;
7351 }
7352
7353 frag_wane (frag_now);
7354 frag_new (0);
7355 xtensa_set_frag_assembly_state (frag_now);
7356 varP = frag_var (rs_machine_dependent, size, size, RELAX_TRAMPOLINE, NULL, 0, NULL);
7357 fragP = (fragS *)(varP - SIZEOF_STRUCT_FRAG);
7358 if (trampoline_buf == NULL)
7359 {
7360 trampoline_buf = xtensa_insnbuf_alloc (xtensa_default_isa);
7361 trampoline_slotbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
7362 }
7363 tf = (struct trampoline_frag *)xmalloc(sizeof (struct trampoline_frag));
7364 tf->next = ts->trampoline_list.next;
7365 ts->trampoline_list.next = tf;
7366 tf->needs_jump_around = needs_jump_around;
7367 tf->fragP = fragP;
7368 tf->fixP = NULL;
7369 }
7370
7371
7372 static struct trampoline_seg *
7373 find_trampoline_seg (asection *seg)
7374 {
7375 struct trampoline_seg *ts = trampoline_seg_list.next;
7376
7377 for ( ; ts; ts = ts->next)
7378 {
7379 if (ts->seg == seg)
7380 return ts;
7381 }
7382
7383 return NULL;
7384 }
7385
7386
7387 void dump_trampolines (void);
7388
7389 void
7390 dump_trampolines (void)
7391 {
7392 struct trampoline_seg *ts = trampoline_seg_list.next;
7393
7394 for ( ; ts; ts = ts->next)
7395 {
7396 asection *seg = ts->seg;
7397
7398 if (seg == NULL)
7399 continue;
7400 fprintf(stderr, "SECTION %s\n", seg->name);
7401 struct trampoline_frag *tf = ts->trampoline_list.next;
7402 for ( ; tf; tf = tf->next)
7403 {
7404 if (tf->fragP == NULL)
7405 continue;
7406 fprintf(stderr, " 0x%08x: fix=%d, jump_around=%s\n",
7407 (int)tf->fragP->fr_address, (int)tf->fragP->fr_fix,
7408 tf->needs_jump_around ? "T" : "F");
7409 }
7410 }
7411 }
7412
7413 static void
7414 xtensa_cleanup_align_frags (void)
7415 {
7416 frchainS *frchP;
7417 asection *s;
7418
7419 for (s = stdoutput->sections; s; s = s->next)
7420 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7421 {
7422 fragS *fragP;
7423 /* Walk over all of the fragments in a subsection. */
7424 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7425 {
7426 if ((fragP->fr_type == rs_align
7427 || fragP->fr_type == rs_align_code
7428 || (fragP->fr_type == rs_machine_dependent
7429 && (fragP->fr_subtype == RELAX_DESIRE_ALIGN
7430 || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)))
7431 && fragP->fr_fix == 0)
7432 {
7433 fragS *next = fragP->fr_next;
7434
7435 while (next
7436 && next->fr_fix == 0
7437 && next->fr_type == rs_machine_dependent
7438 && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7439 {
7440 frag_wane (next);
7441 next = next->fr_next;
7442 }
7443 }
7444 /* If we don't widen branch targets, then they
7445 will be easier to align. */
7446 if (fragP->tc_frag_data.is_branch_target
7447 && fragP->fr_opcode == fragP->fr_literal
7448 && fragP->fr_type == rs_machine_dependent
7449 && fragP->fr_subtype == RELAX_SLOTS
7450 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
7451 frag_wane (fragP);
7452 if (fragP->fr_type == rs_machine_dependent
7453 && fragP->fr_subtype == RELAX_UNREACHABLE)
7454 fragP->tc_frag_data.is_unreachable = TRUE;
7455 }
7456 }
7457 }
7458
7459
7460 /* Re-process all of the fragments looking to convert all of the
7461 RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch
7462 target in the next fragment, convert this to RELAX_DESIRE_ALIGN.
7463 Otherwise, convert to a .fill 0. */
7464
7465 static void
7466 xtensa_fix_target_frags (void)
7467 {
7468 frchainS *frchP;
7469 asection *s;
7470
7471 /* When this routine is called, all of the subsections are still intact
7472 so we walk over subsections instead of sections. */
7473 for (s = stdoutput->sections; s; s = s->next)
7474 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7475 {
7476 fragS *fragP;
7477
7478 /* Walk over all of the fragments in a subsection. */
7479 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7480 {
7481 if (fragP->fr_type == rs_machine_dependent
7482 && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7483 {
7484 if (next_frag_is_branch_target (fragP))
7485 fragP->fr_subtype = RELAX_DESIRE_ALIGN;
7486 else
7487 frag_wane (fragP);
7488 }
7489 }
7490 }
7491 }
7492
7493
7494 static bfd_boolean is_narrow_branch_guaranteed_in_range (fragS *, TInsn *);
7495
7496 static void
7497 xtensa_mark_narrow_branches (void)
7498 {
7499 frchainS *frchP;
7500 asection *s;
7501
7502 for (s = stdoutput->sections; s; s = s->next)
7503 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7504 {
7505 fragS *fragP;
7506 /* Walk over all of the fragments in a subsection. */
7507 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7508 {
7509 if (fragP->fr_type == rs_machine_dependent
7510 && fragP->fr_subtype == RELAX_SLOTS
7511 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
7512 {
7513 vliw_insn vinsn;
7514
7515 vinsn_from_chars (&vinsn, fragP->fr_opcode);
7516 tinsn_immed_from_frag (&vinsn.slots[0], fragP, 0);
7517
7518 if (vinsn.num_slots == 1
7519 && xtensa_opcode_is_branch (xtensa_default_isa,
7520 vinsn.slots[0].opcode) == 1
7521 && xg_get_single_size (vinsn.slots[0].opcode) == 2
7522 && is_narrow_branch_guaranteed_in_range (fragP,
7523 &vinsn.slots[0]))
7524 {
7525 fragP->fr_subtype = RELAX_SLOTS;
7526 fragP->tc_frag_data.slot_subtypes[0] = RELAX_NARROW;
7527 fragP->tc_frag_data.is_aligning_branch = 1;
7528 }
7529 }
7530 }
7531 }
7532 }
7533
7534
7535 /* A branch is typically widened only when its target is out of
7536 range. However, we would like to widen them to align a subsequent
7537 branch target when possible.
7538
7539 Because the branch relaxation code is so convoluted, the optimal solution
7540 (combining the two cases) is difficult to get right in all circumstances.
7541 We therefore go with an "almost as good" solution, where we only
7542 use for alignment narrow branches that definitely will not expand to a
7543 jump and a branch. These functions find and mark these cases. */
7544
7545 /* The range in bytes of BNEZ.N and BEQZ.N. The target operand is encoded
7546 as PC + 4 + imm6, where imm6 is a 6-bit immediate ranging from 0 to 63.
7547 We start counting beginning with the frag after the 2-byte branch, so the
7548 maximum offset is (4 - 2) + 63 = 65. */
7549 #define MAX_IMMED6 65
7550
7551 static offsetT unrelaxed_frag_max_size (fragS *);
7552
7553 static bfd_boolean
7554 is_narrow_branch_guaranteed_in_range (fragS *fragP, TInsn *tinsn)
7555 {
7556 const expressionS *exp = &tinsn->tok[1];
7557 symbolS *symbolP = exp->X_add_symbol;
7558 offsetT max_distance = exp->X_add_number;
7559 fragS *target_frag;
7560
7561 if (exp->X_op != O_symbol)
7562 return FALSE;
7563
7564 target_frag = symbol_get_frag (symbolP);
7565
7566 max_distance += (S_GET_VALUE (symbolP) - target_frag->fr_address);
7567 if (is_branch_jmp_to_next (tinsn, fragP))
7568 return FALSE;
7569
7570 /* The branch doesn't branch over it's own frag,
7571 but over the subsequent ones. */
7572 fragP = fragP->fr_next;
7573 while (fragP != NULL && fragP != target_frag && max_distance <= MAX_IMMED6)
7574 {
7575 max_distance += unrelaxed_frag_max_size (fragP);
7576 fragP = fragP->fr_next;
7577 }
7578 if (max_distance <= MAX_IMMED6 && fragP == target_frag)
7579 return TRUE;
7580 return FALSE;
7581 }
7582
7583
7584 static void
7585 xtensa_mark_zcl_first_insns (void)
7586 {
7587 frchainS *frchP;
7588 asection *s;
7589
7590 for (s = stdoutput->sections; s; s = s->next)
7591 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7592 {
7593 fragS *fragP;
7594 /* Walk over all of the fragments in a subsection. */
7595 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7596 {
7597 if (fragP->fr_type == rs_machine_dependent
7598 && (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
7599 || fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))
7600 {
7601 /* Find the loop frag. */
7602 fragS *loop_frag = next_non_empty_frag (fragP);
7603 /* Find the first insn frag. */
7604 fragS *targ_frag = next_non_empty_frag (loop_frag);
7605
7606 /* Handle a corner case that comes up in hardware
7607 diagnostics. The original assembly looks like this:
7608
7609 loop aX, LabelA
7610 <empty_frag>--not found by next_non_empty_frag
7611 loop aY, LabelB
7612
7613 Depending on the start address, the assembler may or
7614 may not change it to look something like this:
7615
7616 loop aX, LabelA
7617 nop--frag isn't empty anymore
7618 loop aY, LabelB
7619
7620 So set up to check the alignment of the nop if it
7621 exists */
7622 while (loop_frag != targ_frag)
7623 {
7624 if (loop_frag->fr_type == rs_machine_dependent
7625 && (loop_frag->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
7626 || loop_frag->fr_subtype
7627 == RELAX_CHECK_ALIGN_NEXT_OPCODE))
7628 targ_frag = loop_frag;
7629 else
7630 loop_frag = loop_frag->fr_next;
7631 }
7632
7633 /* Of course, sometimes (mostly for toy test cases) a
7634 zero-cost loop instruction is the last in a section. */
7635 if (targ_frag)
7636 {
7637 targ_frag->tc_frag_data.is_first_loop_insn = TRUE;
7638 /* Do not widen a frag that is the first instruction of a
7639 zero-cost loop. It makes that loop harder to align. */
7640 if (targ_frag->fr_type == rs_machine_dependent
7641 && targ_frag->fr_subtype == RELAX_SLOTS
7642 && (targ_frag->tc_frag_data.slot_subtypes[0]
7643 == RELAX_NARROW))
7644 {
7645 if (targ_frag->tc_frag_data.is_aligning_branch)
7646 targ_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
7647 else
7648 {
7649 frag_wane (targ_frag);
7650 targ_frag->tc_frag_data.slot_subtypes[0] = 0;
7651 }
7652 }
7653 }
7654 if (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)
7655 frag_wane (fragP);
7656 }
7657 }
7658 }
7659 }
7660
7661
7662 /* When a difference-of-symbols expression is encoded as a uleb128 or
7663 sleb128 value, the linker is unable to adjust that value to account for
7664 link-time relaxation. Mark all the code between such symbols so that
7665 its size cannot be changed by linker relaxation. */
7666
7667 static void
7668 xtensa_mark_difference_of_two_symbols (void)
7669 {
7670 symbolS *expr_sym;
7671
7672 for (expr_sym = expr_symbols; expr_sym;
7673 expr_sym = symbol_get_tc (expr_sym)->next_expr_symbol)
7674 {
7675 expressionS *exp = symbol_get_value_expression (expr_sym);
7676
7677 if (exp->X_op == O_subtract)
7678 {
7679 symbolS *left = exp->X_add_symbol;
7680 symbolS *right = exp->X_op_symbol;
7681
7682 /* Difference of two symbols not in the same section
7683 are handled with relocations in the linker. */
7684 if (S_GET_SEGMENT (left) == S_GET_SEGMENT (right))
7685 {
7686 fragS *start;
7687 fragS *end;
7688 fragS *walk;
7689
7690 if (symbol_get_frag (left)->fr_address
7691 <= symbol_get_frag (right)->fr_address)
7692 {
7693 start = symbol_get_frag (left);
7694 end = symbol_get_frag (right);
7695 }
7696 else
7697 {
7698 start = symbol_get_frag (right);
7699 end = symbol_get_frag (left);
7700 }
7701
7702 if (start->tc_frag_data.no_transform_end != NULL)
7703 walk = start->tc_frag_data.no_transform_end;
7704 else
7705 walk = start;
7706 do
7707 {
7708 walk->tc_frag_data.is_no_transform = 1;
7709 walk = walk->fr_next;
7710 }
7711 while (walk && walk->fr_address < end->fr_address);
7712
7713 start->tc_frag_data.no_transform_end = walk;
7714 }
7715 }
7716 }
7717 }
7718
7719
7720 /* Re-process all of the fragments looking to convert all of the
7721 RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a
7722 conditional branch or a retw/retw.n, convert this frag to one that
7723 will generate a NOP. In any case close it off with a .fill 0. */
7724
7725 static bfd_boolean next_instrs_are_b_retw (fragS *);
7726
7727 static void
7728 xtensa_fix_a0_b_retw_frags (void)
7729 {
7730 frchainS *frchP;
7731 asection *s;
7732
7733 /* When this routine is called, all of the subsections are still intact
7734 so we walk over subsections instead of sections. */
7735 for (s = stdoutput->sections; s; s = s->next)
7736 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7737 {
7738 fragS *fragP;
7739
7740 /* Walk over all of the fragments in a subsection. */
7741 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7742 {
7743 if (fragP->fr_type == rs_machine_dependent
7744 && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW)
7745 {
7746 if (next_instrs_are_b_retw (fragP))
7747 {
7748 if (fragP->tc_frag_data.is_no_transform)
7749 as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata"));
7750 else
7751 relax_frag_add_nop (fragP);
7752 }
7753 frag_wane (fragP);
7754 }
7755 }
7756 }
7757 }
7758
7759
7760 static bfd_boolean
7761 next_instrs_are_b_retw (fragS *fragP)
7762 {
7763 xtensa_opcode opcode;
7764 xtensa_format fmt;
7765 const fragS *next_fragP = next_non_empty_frag (fragP);
7766 static xtensa_insnbuf insnbuf = NULL;
7767 static xtensa_insnbuf slotbuf = NULL;
7768 xtensa_isa isa = xtensa_default_isa;
7769 int offset = 0;
7770 int slot;
7771 bfd_boolean branch_seen = FALSE;
7772
7773 if (!insnbuf)
7774 {
7775 insnbuf = xtensa_insnbuf_alloc (isa);
7776 slotbuf = xtensa_insnbuf_alloc (isa);
7777 }
7778
7779 if (next_fragP == NULL)
7780 return FALSE;
7781
7782 /* Check for the conditional branch. */
7783 xtensa_insnbuf_from_chars
7784 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
7785 fmt = xtensa_format_decode (isa, insnbuf);
7786 if (fmt == XTENSA_UNDEFINED)
7787 return FALSE;
7788
7789 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
7790 {
7791 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
7792 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
7793
7794 branch_seen = (branch_seen
7795 || xtensa_opcode_is_branch (isa, opcode) == 1);
7796 }
7797
7798 if (!branch_seen)
7799 return FALSE;
7800
7801 offset += xtensa_format_length (isa, fmt);
7802 if (offset == next_fragP->fr_fix)
7803 {
7804 next_fragP = next_non_empty_frag (next_fragP);
7805 offset = 0;
7806 }
7807
7808 if (next_fragP == NULL)
7809 return FALSE;
7810
7811 /* Check for the retw/retw.n. */
7812 xtensa_insnbuf_from_chars
7813 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
7814 fmt = xtensa_format_decode (isa, insnbuf);
7815
7816 /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we
7817 have no problems. */
7818 if (fmt == XTENSA_UNDEFINED
7819 || xtensa_format_num_slots (isa, fmt) != 1)
7820 return FALSE;
7821
7822 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7823 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7824
7825 if (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode)
7826 return TRUE;
7827
7828 return FALSE;
7829 }
7830
7831
7832 /* Re-process all of the fragments looking to convert all of the
7833 RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a
7834 loop end label, convert this frag to one that will generate a NOP.
7835 In any case close it off with a .fill 0. */
7836
7837 static bfd_boolean next_instr_is_loop_end (fragS *);
7838
7839 static void
7840 xtensa_fix_b_j_loop_end_frags (void)
7841 {
7842 frchainS *frchP;
7843 asection *s;
7844
7845 /* When this routine is called, all of the subsections are still intact
7846 so we walk over subsections instead of sections. */
7847 for (s = stdoutput->sections; s; s = s->next)
7848 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7849 {
7850 fragS *fragP;
7851
7852 /* Walk over all of the fragments in a subsection. */
7853 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7854 {
7855 if (fragP->fr_type == rs_machine_dependent
7856 && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END)
7857 {
7858 if (next_instr_is_loop_end (fragP))
7859 {
7860 if (fragP->tc_frag_data.is_no_transform)
7861 as_bad (_("branching or jumping to a loop end may trigger hardware errata"));
7862 else
7863 relax_frag_add_nop (fragP);
7864 }
7865 frag_wane (fragP);
7866 }
7867 }
7868 }
7869 }
7870
7871
7872 static bfd_boolean
7873 next_instr_is_loop_end (fragS *fragP)
7874 {
7875 const fragS *next_fragP;
7876
7877 if (next_frag_is_loop_target (fragP))
7878 return FALSE;
7879
7880 next_fragP = next_non_empty_frag (fragP);
7881 if (next_fragP == NULL)
7882 return FALSE;
7883
7884 if (!next_frag_is_loop_target (next_fragP))
7885 return FALSE;
7886
7887 /* If the size is >= 3 then there is more than one instruction here.
7888 The hardware bug will not fire. */
7889 if (next_fragP->fr_fix > 3)
7890 return FALSE;
7891
7892 return TRUE;
7893 }
7894
7895
7896 /* Re-process all of the fragments looking to convert all of the
7897 RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is
7898 not MY loop's loop end within 12 bytes, add enough nops here to
7899 make it at least 12 bytes away. In any case close it off with a
7900 .fill 0. */
7901
7902 static offsetT min_bytes_to_other_loop_end
7903 (fragS *, fragS *, offsetT);
7904
7905 static void
7906 xtensa_fix_close_loop_end_frags (void)
7907 {
7908 frchainS *frchP;
7909 asection *s;
7910
7911 /* When this routine is called, all of the subsections are still intact
7912 so we walk over subsections instead of sections. */
7913 for (s = stdoutput->sections; s; s = s->next)
7914 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7915 {
7916 fragS *fragP;
7917
7918 fragS *current_target = NULL;
7919
7920 /* Walk over all of the fragments in a subsection. */
7921 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7922 {
7923 if (fragP->fr_type == rs_machine_dependent
7924 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
7925 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
7926 current_target = symbol_get_frag (fragP->fr_symbol);
7927
7928 if (current_target
7929 && fragP->fr_type == rs_machine_dependent
7930 && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END)
7931 {
7932 offsetT min_bytes;
7933 int bytes_added = 0;
7934
7935 #define REQUIRED_LOOP_DIVIDING_BYTES 12
7936 /* Max out at 12. */
7937 min_bytes = min_bytes_to_other_loop_end
7938 (fragP->fr_next, current_target, REQUIRED_LOOP_DIVIDING_BYTES);
7939
7940 if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES)
7941 {
7942 if (fragP->tc_frag_data.is_no_transform)
7943 as_bad (_("loop end too close to another loop end may trigger hardware errata"));
7944 else
7945 {
7946 while (min_bytes + bytes_added
7947 < REQUIRED_LOOP_DIVIDING_BYTES)
7948 {
7949 int length = 3;
7950
7951 if (fragP->fr_var < length)
7952 as_fatal (_("fr_var %lu < length %d"),
7953 (long) fragP->fr_var, length);
7954 else
7955 {
7956 assemble_nop (length,
7957 fragP->fr_literal + fragP->fr_fix);
7958 fragP->fr_fix += length;
7959 fragP->fr_var -= length;
7960 }
7961 bytes_added += length;
7962 }
7963 }
7964 }
7965 frag_wane (fragP);
7966 }
7967 gas_assert (fragP->fr_type != rs_machine_dependent
7968 || fragP->fr_subtype != RELAX_ADD_NOP_IF_CLOSE_LOOP_END);
7969 }
7970 }
7971 }
7972
7973
7974 static offsetT unrelaxed_frag_min_size (fragS *);
7975
7976 static offsetT
7977 min_bytes_to_other_loop_end (fragS *fragP,
7978 fragS *current_target,
7979 offsetT max_size)
7980 {
7981 offsetT offset = 0;
7982 fragS *current_fragP;
7983
7984 for (current_fragP = fragP;
7985 current_fragP;
7986 current_fragP = current_fragP->fr_next)
7987 {
7988 if (current_fragP->tc_frag_data.is_loop_target
7989 && current_fragP != current_target)
7990 return offset;
7991
7992 offset += unrelaxed_frag_min_size (current_fragP);
7993
7994 if (offset >= max_size)
7995 return max_size;
7996 }
7997 return max_size;
7998 }
7999
8000
8001 static offsetT
8002 unrelaxed_frag_min_size (fragS *fragP)
8003 {
8004 offsetT size = fragP->fr_fix;
8005
8006 /* Add fill size. */
8007 if (fragP->fr_type == rs_fill)
8008 size += fragP->fr_offset;
8009
8010 return size;
8011 }
8012
8013
8014 static offsetT
8015 unrelaxed_frag_max_size (fragS *fragP)
8016 {
8017 offsetT size = fragP->fr_fix;
8018 switch (fragP->fr_type)
8019 {
8020 case 0:
8021 /* Empty frags created by the obstack allocation scheme
8022 end up with type 0. */
8023 break;
8024 case rs_fill:
8025 case rs_org:
8026 case rs_space:
8027 size += fragP->fr_offset;
8028 break;
8029 case rs_align:
8030 case rs_align_code:
8031 case rs_align_test:
8032 case rs_leb128:
8033 case rs_cfa:
8034 case rs_dwarf2dbg:
8035 /* No further adjustments needed. */
8036 break;
8037 case rs_machine_dependent:
8038 if (fragP->fr_subtype != RELAX_DESIRE_ALIGN)
8039 size += fragP->fr_var;
8040 break;
8041 default:
8042 /* We had darn well better know how big it is. */
8043 gas_assert (0);
8044 break;
8045 }
8046
8047 return size;
8048 }
8049
8050
8051 /* Re-process all of the fragments looking to convert all
8052 of the RELAX_ADD_NOP_IF_SHORT_LOOP. If:
8053
8054 A)
8055 1) the instruction size count to the loop end label
8056 is too short (<= 2 instructions),
8057 2) loop has a jump or branch in it
8058
8059 or B)
8060 1) workaround_all_short_loops is TRUE
8061 2) The generating loop was a 'loopgtz' or 'loopnez'
8062 3) the instruction size count to the loop end label is too short
8063 (<= 2 instructions)
8064 then convert this frag (and maybe the next one) to generate a NOP.
8065 In any case close it off with a .fill 0. */
8066
8067 static int count_insns_to_loop_end (fragS *, bfd_boolean, int);
8068 static bfd_boolean branch_before_loop_end (fragS *);
8069
8070 static void
8071 xtensa_fix_short_loop_frags (void)
8072 {
8073 frchainS *frchP;
8074 asection *s;
8075
8076 /* When this routine is called, all of the subsections are still intact
8077 so we walk over subsections instead of sections. */
8078 for (s = stdoutput->sections; s; s = s->next)
8079 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8080 {
8081 fragS *fragP;
8082 xtensa_opcode current_opcode = XTENSA_UNDEFINED;
8083
8084 /* Walk over all of the fragments in a subsection. */
8085 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8086 {
8087 if (fragP->fr_type == rs_machine_dependent
8088 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
8089 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
8090 {
8091 TInsn t_insn;
8092 fragS *loop_frag = next_non_empty_frag (fragP);
8093 tinsn_from_chars (&t_insn, loop_frag->fr_opcode, 0);
8094 current_opcode = t_insn.opcode;
8095 gas_assert (xtensa_opcode_is_loop (xtensa_default_isa,
8096 current_opcode) == 1);
8097 }
8098
8099 if (fragP->fr_type == rs_machine_dependent
8100 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
8101 {
8102 if (count_insns_to_loop_end (fragP->fr_next, TRUE, 3) < 3
8103 && (branch_before_loop_end (fragP->fr_next)
8104 || (workaround_all_short_loops
8105 && current_opcode != XTENSA_UNDEFINED
8106 && current_opcode != xtensa_loop_opcode)))
8107 {
8108 if (fragP->tc_frag_data.is_no_transform)
8109 as_bad (_("loop containing less than three instructions may trigger hardware errata"));
8110 else
8111 relax_frag_add_nop (fragP);
8112 }
8113 frag_wane (fragP);
8114 }
8115 }
8116 }
8117 }
8118
8119
8120 static int unrelaxed_frag_min_insn_count (fragS *);
8121
8122 static int
8123 count_insns_to_loop_end (fragS *base_fragP,
8124 bfd_boolean count_relax_add,
8125 int max_count)
8126 {
8127 fragS *fragP = NULL;
8128 int insn_count = 0;
8129
8130 fragP = base_fragP;
8131
8132 for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next)
8133 {
8134 insn_count += unrelaxed_frag_min_insn_count (fragP);
8135 if (insn_count >= max_count)
8136 return max_count;
8137
8138 if (count_relax_add)
8139 {
8140 if (fragP->fr_type == rs_machine_dependent
8141 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
8142 {
8143 /* In order to add the appropriate number of
8144 NOPs, we count an instruction for downstream
8145 occurrences. */
8146 insn_count++;
8147 if (insn_count >= max_count)
8148 return max_count;
8149 }
8150 }
8151 }
8152 return insn_count;
8153 }
8154
8155
8156 static int
8157 unrelaxed_frag_min_insn_count (fragS *fragP)
8158 {
8159 xtensa_isa isa = xtensa_default_isa;
8160 static xtensa_insnbuf insnbuf = NULL;
8161 int insn_count = 0;
8162 int offset = 0;
8163
8164 if (!fragP->tc_frag_data.is_insn)
8165 return insn_count;
8166
8167 if (!insnbuf)
8168 insnbuf = xtensa_insnbuf_alloc (isa);
8169
8170 /* Decode the fixed instructions. */
8171 while (offset < fragP->fr_fix)
8172 {
8173 xtensa_format fmt;
8174
8175 xtensa_insnbuf_from_chars
8176 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
8177 fmt = xtensa_format_decode (isa, insnbuf);
8178
8179 if (fmt == XTENSA_UNDEFINED)
8180 {
8181 as_fatal (_("undecodable instruction in instruction frag"));
8182 return insn_count;
8183 }
8184 offset += xtensa_format_length (isa, fmt);
8185 insn_count++;
8186 }
8187
8188 return insn_count;
8189 }
8190
8191
8192 static bfd_boolean unrelaxed_frag_has_b_j (fragS *);
8193
8194 static bfd_boolean
8195 branch_before_loop_end (fragS *base_fragP)
8196 {
8197 fragS *fragP;
8198
8199 for (fragP = base_fragP;
8200 fragP && !fragP->tc_frag_data.is_loop_target;
8201 fragP = fragP->fr_next)
8202 {
8203 if (unrelaxed_frag_has_b_j (fragP))
8204 return TRUE;
8205 }
8206 return FALSE;
8207 }
8208
8209
8210 static bfd_boolean
8211 unrelaxed_frag_has_b_j (fragS *fragP)
8212 {
8213 static xtensa_insnbuf insnbuf = NULL;
8214 xtensa_isa isa = xtensa_default_isa;
8215 int offset = 0;
8216
8217 if (!fragP->tc_frag_data.is_insn)
8218 return FALSE;
8219
8220 if (!insnbuf)
8221 insnbuf = xtensa_insnbuf_alloc (isa);
8222
8223 /* Decode the fixed instructions. */
8224 while (offset < fragP->fr_fix)
8225 {
8226 xtensa_format fmt;
8227 int slot;
8228
8229 xtensa_insnbuf_from_chars
8230 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
8231 fmt = xtensa_format_decode (isa, insnbuf);
8232 if (fmt == XTENSA_UNDEFINED)
8233 return FALSE;
8234
8235 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
8236 {
8237 xtensa_opcode opcode =
8238 get_opcode_from_buf (fragP->fr_literal + offset, slot);
8239 if (xtensa_opcode_is_branch (isa, opcode) == 1
8240 || xtensa_opcode_is_jump (isa, opcode) == 1)
8241 return TRUE;
8242 }
8243 offset += xtensa_format_length (isa, fmt);
8244 }
8245 return FALSE;
8246 }
8247
8248
8249 /* Checks to be made after initial assembly but before relaxation. */
8250
8251 static bfd_boolean is_empty_loop (const TInsn *, fragS *);
8252 static bfd_boolean is_local_forward_loop (const TInsn *, fragS *);
8253
8254 static void
8255 xtensa_sanity_check (void)
8256 {
8257 char *file_name;
8258 unsigned line;
8259 frchainS *frchP;
8260 asection *s;
8261
8262 as_where (&file_name, &line);
8263 for (s = stdoutput->sections; s; s = s->next)
8264 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8265 {
8266 fragS *fragP;
8267
8268 /* Walk over all of the fragments in a subsection. */
8269 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8270 {
8271 if (fragP->fr_type == rs_machine_dependent
8272 && fragP->fr_subtype == RELAX_SLOTS
8273 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
8274 {
8275 static xtensa_insnbuf insnbuf = NULL;
8276 TInsn t_insn;
8277
8278 if (fragP->fr_opcode != NULL)
8279 {
8280 if (!insnbuf)
8281 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
8282 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
8283 tinsn_immed_from_frag (&t_insn, fragP, 0);
8284
8285 if (xtensa_opcode_is_loop (xtensa_default_isa,
8286 t_insn.opcode) == 1)
8287 {
8288 if (is_empty_loop (&t_insn, fragP))
8289 {
8290 new_logical_line (fragP->fr_file, fragP->fr_line);
8291 as_bad (_("invalid empty loop"));
8292 }
8293 if (!is_local_forward_loop (&t_insn, fragP))
8294 {
8295 new_logical_line (fragP->fr_file, fragP->fr_line);
8296 as_bad (_("loop target does not follow "
8297 "loop instruction in section"));
8298 }
8299 }
8300 }
8301 }
8302 }
8303 }
8304 new_logical_line (file_name, line);
8305 }
8306
8307
8308 #define LOOP_IMMED_OPN 1
8309
8310 /* Return TRUE if the loop target is the next non-zero fragment. */
8311
8312 static bfd_boolean
8313 is_empty_loop (const TInsn *insn, fragS *fragP)
8314 {
8315 const expressionS *exp;
8316 symbolS *symbolP;
8317 fragS *next_fragP;
8318
8319 if (insn->insn_type != ITYPE_INSN)
8320 return FALSE;
8321
8322 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
8323 return FALSE;
8324
8325 if (insn->ntok <= LOOP_IMMED_OPN)
8326 return FALSE;
8327
8328 exp = &insn->tok[LOOP_IMMED_OPN];
8329
8330 if (exp->X_op != O_symbol)
8331 return FALSE;
8332
8333 symbolP = exp->X_add_symbol;
8334 if (!symbolP)
8335 return FALSE;
8336
8337 if (symbol_get_frag (symbolP) == NULL)
8338 return FALSE;
8339
8340 if (S_GET_VALUE (symbolP) != 0)
8341 return FALSE;
8342
8343 /* Walk through the zero-size fragments from this one. If we find
8344 the target fragment, then this is a zero-size loop. */
8345
8346 for (next_fragP = fragP->fr_next;
8347 next_fragP != NULL;
8348 next_fragP = next_fragP->fr_next)
8349 {
8350 if (next_fragP == symbol_get_frag (symbolP))
8351 return TRUE;
8352 if (next_fragP->fr_fix != 0)
8353 return FALSE;
8354 }
8355 return FALSE;
8356 }
8357
8358
8359 static bfd_boolean
8360 is_local_forward_loop (const TInsn *insn, fragS *fragP)
8361 {
8362 const expressionS *exp;
8363 symbolS *symbolP;
8364 fragS *next_fragP;
8365
8366 if (insn->insn_type != ITYPE_INSN)
8367 return FALSE;
8368
8369 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
8370 return FALSE;
8371
8372 if (insn->ntok <= LOOP_IMMED_OPN)
8373 return FALSE;
8374
8375 exp = &insn->tok[LOOP_IMMED_OPN];
8376
8377 if (exp->X_op != O_symbol)
8378 return FALSE;
8379
8380 symbolP = exp->X_add_symbol;
8381 if (!symbolP)
8382 return FALSE;
8383
8384 if (symbol_get_frag (symbolP) == NULL)
8385 return FALSE;
8386
8387 /* Walk through fragments until we find the target.
8388 If we do not find the target, then this is an invalid loop. */
8389
8390 for (next_fragP = fragP->fr_next;
8391 next_fragP != NULL;
8392 next_fragP = next_fragP->fr_next)
8393 {
8394 if (next_fragP == symbol_get_frag (symbolP))
8395 return TRUE;
8396 }
8397
8398 return FALSE;
8399 }
8400
8401
8402 #define XTINFO_NAME "Xtensa_Info"
8403 #define XTINFO_NAMESZ 12
8404 #define XTINFO_TYPE 1
8405
8406 static void
8407 xtensa_add_config_info (void)
8408 {
8409 asection *info_sec;
8410 char *data, *p;
8411 int sz;
8412
8413 info_sec = subseg_new (".xtensa.info", 0);
8414 bfd_set_section_flags (stdoutput, info_sec, SEC_HAS_CONTENTS | SEC_READONLY);
8415
8416 data = xmalloc (100);
8417 sprintf (data, "USE_ABSOLUTE_LITERALS=%d\nABI=%d\n",
8418 XSHAL_USE_ABSOLUTE_LITERALS, XSHAL_ABI);
8419 sz = strlen (data) + 1;
8420
8421 /* Add enough null terminators to pad to a word boundary. */
8422 do
8423 data[sz++] = 0;
8424 while ((sz & 3) != 0);
8425
8426 /* Follow the standard note section layout:
8427 First write the length of the name string. */
8428 p = frag_more (4);
8429 md_number_to_chars (p, (valueT) XTINFO_NAMESZ, 4);
8430
8431 /* Next comes the length of the "descriptor", i.e., the actual data. */
8432 p = frag_more (4);
8433 md_number_to_chars (p, (valueT) sz, 4);
8434
8435 /* Write the note type. */
8436 p = frag_more (4);
8437 md_number_to_chars (p, (valueT) XTINFO_TYPE, 4);
8438
8439 /* Write the name field. */
8440 p = frag_more (XTINFO_NAMESZ);
8441 memcpy (p, XTINFO_NAME, XTINFO_NAMESZ);
8442
8443 /* Finally, write the descriptor. */
8444 p = frag_more (sz);
8445 memcpy (p, data, sz);
8446
8447 free (data);
8448 }
8449
8450 \f
8451 /* Alignment Functions. */
8452
8453 static int
8454 get_text_align_power (unsigned target_size)
8455 {
8456 if (target_size <= 4)
8457 return 2;
8458
8459 if (target_size <= 8)
8460 return 3;
8461
8462 if (target_size <= 16)
8463 return 4;
8464
8465 if (target_size <= 32)
8466 return 5;
8467
8468 if (target_size <= 64)
8469 return 6;
8470
8471 if (target_size <= 128)
8472 return 7;
8473
8474 if (target_size <= 256)
8475 return 8;
8476
8477 if (target_size <= 512)
8478 return 9;
8479
8480 if (target_size <= 1024)
8481 return 10;
8482
8483 gas_assert (0);
8484 return 0;
8485 }
8486
8487
8488 static int
8489 get_text_align_max_fill_size (int align_pow,
8490 bfd_boolean use_nops,
8491 bfd_boolean use_no_density)
8492 {
8493 if (!use_nops)
8494 return (1 << align_pow);
8495 if (use_no_density)
8496 return 3 * (1 << align_pow);
8497
8498 return 1 + (1 << align_pow);
8499 }
8500
8501
8502 /* Calculate the minimum bytes of fill needed at "address" to align a
8503 target instruction of size "target_size" so that it does not cross a
8504 power-of-two boundary specified by "align_pow". If "use_nops" is FALSE,
8505 the fill can be an arbitrary number of bytes. Otherwise, the space must
8506 be filled by NOP instructions. */
8507
8508 static int
8509 get_text_align_fill_size (addressT address,
8510 int align_pow,
8511 int target_size,
8512 bfd_boolean use_nops,
8513 bfd_boolean use_no_density)
8514 {
8515 addressT alignment, fill, fill_limit, fill_step;
8516 bfd_boolean skip_one = FALSE;
8517
8518 alignment = (1 << align_pow);
8519 gas_assert (target_size > 0 && alignment >= (addressT) target_size);
8520
8521 if (!use_nops)
8522 {
8523 fill_limit = alignment;
8524 fill_step = 1;
8525 }
8526 else if (!use_no_density)
8527 {
8528 /* Combine 2- and 3-byte NOPs to fill anything larger than one. */
8529 fill_limit = alignment * 2;
8530 fill_step = 1;
8531 skip_one = TRUE;
8532 }
8533 else
8534 {
8535 /* Fill with 3-byte NOPs -- can only fill multiples of 3. */
8536 fill_limit = alignment * 3;
8537 fill_step = 3;
8538 }
8539
8540 /* Try all fill sizes until finding one that works. */
8541 for (fill = 0; fill < fill_limit; fill += fill_step)
8542 {
8543 if (skip_one && fill == 1)
8544 continue;
8545 if ((address + fill) >> align_pow
8546 == (address + fill + target_size - 1) >> align_pow)
8547 return fill;
8548 }
8549 gas_assert (0);
8550 return 0;
8551 }
8552
8553
8554 static int
8555 branch_align_power (segT sec)
8556 {
8557 /* If the Xtensa processor has a fetch width of X, and
8558 the section is aligned to at least that boundary, then a branch
8559 target need only fit within that aligned block of memory to avoid
8560 a stall. Otherwise, try to fit branch targets within 4-byte
8561 aligned blocks (which may be insufficient, e.g., if the section
8562 has no alignment, but it's good enough). */
8563 int fetch_align = get_text_align_power(xtensa_fetch_width);
8564 int sec_align = get_recorded_alignment (sec);
8565
8566 if (sec_align >= fetch_align)
8567 return fetch_align;
8568
8569 return 2;
8570 }
8571
8572
8573 /* This will assert if it is not possible. */
8574
8575 static int
8576 get_text_align_nop_count (offsetT fill_size, bfd_boolean use_no_density)
8577 {
8578 int count = 0;
8579
8580 if (use_no_density)
8581 {
8582 gas_assert (fill_size % 3 == 0);
8583 return (fill_size / 3);
8584 }
8585
8586 gas_assert (fill_size != 1); /* Bad argument. */
8587
8588 while (fill_size > 1)
8589 {
8590 int insn_size = 3;
8591 if (fill_size == 2 || fill_size == 4)
8592 insn_size = 2;
8593 fill_size -= insn_size;
8594 count++;
8595 }
8596 gas_assert (fill_size != 1); /* Bad algorithm. */
8597 return count;
8598 }
8599
8600
8601 static int
8602 get_text_align_nth_nop_size (offsetT fill_size,
8603 int n,
8604 bfd_boolean use_no_density)
8605 {
8606 int count = 0;
8607
8608 if (use_no_density)
8609 return 3;
8610
8611 gas_assert (fill_size != 1); /* Bad argument. */
8612
8613 while (fill_size > 1)
8614 {
8615 int insn_size = 3;
8616 if (fill_size == 2 || fill_size == 4)
8617 insn_size = 2;
8618 fill_size -= insn_size;
8619 count++;
8620 if (n + 1 == count)
8621 return insn_size;
8622 }
8623 gas_assert (0);
8624 return 0;
8625 }
8626
8627
8628 /* For the given fragment, find the appropriate address
8629 for it to begin at if we are using NOPs to align it. */
8630
8631 static addressT
8632 get_noop_aligned_address (fragS *fragP, addressT address)
8633 {
8634 /* The rule is: get next fragment's FIRST instruction. Find
8635 the smallest number of bytes that need to be added to
8636 ensure that the next fragment's FIRST instruction will fit
8637 in a single word.
8638
8639 E.G., 2 bytes : 0, 1, 2 mod 4
8640 3 bytes: 0, 1 mod 4
8641
8642 If the FIRST instruction MIGHT be relaxed,
8643 assume that it will become a 3-byte instruction.
8644
8645 Note again here that LOOP instructions are not bundleable,
8646 and this relaxation only applies to LOOP opcodes. */
8647
8648 int fill_size = 0;
8649 int first_insn_size;
8650 int loop_insn_size;
8651 addressT pre_opcode_bytes;
8652 int align_power;
8653 fragS *first_insn;
8654 xtensa_opcode opcode;
8655 bfd_boolean is_loop;
8656
8657 gas_assert (fragP->fr_type == rs_machine_dependent);
8658 gas_assert (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE);
8659
8660 /* Find the loop frag. */
8661 first_insn = next_non_empty_frag (fragP);
8662 /* Now find the first insn frag. */
8663 first_insn = next_non_empty_frag (first_insn);
8664
8665 is_loop = next_frag_opcode_is_loop (fragP, &opcode);
8666 gas_assert (is_loop);
8667 loop_insn_size = xg_get_single_size (opcode);
8668
8669 pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP);
8670 pre_opcode_bytes += loop_insn_size;
8671
8672 /* For loops, the alignment depends on the size of the
8673 instruction following the loop, not the LOOP instruction. */
8674
8675 if (first_insn == NULL)
8676 first_insn_size = xtensa_fetch_width;
8677 else
8678 first_insn_size = get_loop_align_size (frag_format_size (first_insn));
8679
8680 /* If it was 8, then we'll need a larger alignment for the section. */
8681 align_power = get_text_align_power (first_insn_size);
8682 record_alignment (now_seg, align_power);
8683
8684 fill_size = get_text_align_fill_size
8685 (address + pre_opcode_bytes, align_power, first_insn_size, TRUE,
8686 fragP->tc_frag_data.is_no_density);
8687
8688 return address + fill_size;
8689 }
8690
8691
8692 /* 3 mechanisms for relaxing an alignment:
8693
8694 Align to a power of 2.
8695 Align so the next fragment's instruction does not cross a word boundary.
8696 Align the current instruction so that if the next instruction
8697 were 3 bytes, it would not cross a word boundary.
8698
8699 We can align with:
8700
8701 zeros - This is easy; always insert zeros.
8702 nops - 3-byte and 2-byte instructions
8703 2 - 2-byte nop
8704 3 - 3-byte nop
8705 4 - 2 2-byte nops
8706 >=5 : 3-byte instruction + fn (n-3)
8707 widening - widen previous instructions. */
8708
8709 static offsetT
8710 get_aligned_diff (fragS *fragP, addressT address, offsetT *max_diff)
8711 {
8712 addressT target_address, loop_insn_offset;
8713 int target_size;
8714 xtensa_opcode loop_opcode;
8715 bfd_boolean is_loop;
8716 int align_power;
8717 offsetT opt_diff;
8718 offsetT branch_align;
8719 fragS *loop_frag;
8720
8721 gas_assert (fragP->fr_type == rs_machine_dependent);
8722 switch (fragP->fr_subtype)
8723 {
8724 case RELAX_DESIRE_ALIGN:
8725 target_size = next_frag_format_size (fragP);
8726 if (target_size == XTENSA_UNDEFINED)
8727 target_size = 3;
8728 align_power = branch_align_power (now_seg);
8729 branch_align = 1 << align_power;
8730 /* Don't count on the section alignment being as large as the target. */
8731 if (target_size > branch_align)
8732 target_size = branch_align;
8733 opt_diff = get_text_align_fill_size (address, align_power,
8734 target_size, FALSE, FALSE);
8735
8736 *max_diff = (opt_diff + branch_align
8737 - (target_size + ((address + opt_diff) % branch_align)));
8738 gas_assert (*max_diff >= opt_diff);
8739 return opt_diff;
8740
8741 case RELAX_ALIGN_NEXT_OPCODE:
8742 /* The next non-empty frag after this one holds the LOOP instruction
8743 that needs to be aligned. The required alignment depends on the
8744 size of the next non-empty frag after the loop frag, i.e., the
8745 first instruction in the loop. */
8746 loop_frag = next_non_empty_frag (fragP);
8747 target_size = get_loop_align_size (next_frag_format_size (loop_frag));
8748 loop_insn_offset = 0;
8749 is_loop = next_frag_opcode_is_loop (fragP, &loop_opcode);
8750 gas_assert (is_loop);
8751
8752 /* If the loop has been expanded then the LOOP instruction
8753 could be at an offset from this fragment. */
8754 if (loop_frag->tc_frag_data.slot_subtypes[0] != RELAX_IMMED)
8755 loop_insn_offset = get_expanded_loop_offset (loop_opcode);
8756
8757 /* In an ideal world, which is what we are shooting for here,
8758 we wouldn't need to use any NOPs immediately prior to the
8759 LOOP instruction. If this approach fails, relax_frag_loop_align
8760 will call get_noop_aligned_address. */
8761 target_address =
8762 address + loop_insn_offset + xg_get_single_size (loop_opcode);
8763 align_power = get_text_align_power (target_size);
8764 opt_diff = get_text_align_fill_size (target_address, align_power,
8765 target_size, FALSE, FALSE);
8766
8767 *max_diff = xtensa_fetch_width
8768 - ((target_address + opt_diff) % xtensa_fetch_width)
8769 - target_size + opt_diff;
8770 gas_assert (*max_diff >= opt_diff);
8771 return opt_diff;
8772
8773 default:
8774 break;
8775 }
8776 gas_assert (0);
8777 return 0;
8778 }
8779
8780 \f
8781 /* md_relax_frag Hook and Helper Functions. */
8782
8783 static long relax_frag_loop_align (fragS *, long);
8784 static long relax_frag_for_align (fragS *, long);
8785 static long relax_frag_immed
8786 (segT, fragS *, long, int, xtensa_format, int, int *, bfd_boolean);
8787
8788 typedef struct cached_fixup cached_fixupS;
8789 struct cached_fixup
8790 {
8791 int addr;
8792 int target;
8793 int delta;
8794 fixS *fixP;
8795 };
8796
8797 typedef struct fixup_cache fixup_cacheS;
8798 struct fixup_cache
8799 {
8800 cached_fixupS *fixups;
8801 unsigned n_fixups;
8802 unsigned n_max;
8803
8804 segT seg;
8805 fragS *first_frag;
8806 };
8807
8808 static int fixup_order (const void *a, const void *b)
8809 {
8810 const cached_fixupS *pa = a;
8811 const cached_fixupS *pb = b;
8812
8813 if (pa->addr == pb->addr)
8814 {
8815 if (pa->target == pb->target)
8816 {
8817 if (pa->fixP->fx_r_type == pb->fixP->fx_r_type)
8818 return 0;
8819 return pa->fixP->fx_r_type < pb->fixP->fx_r_type ? -1 : 1;
8820 }
8821 return pa->target - pb->target;
8822 }
8823 return pa->addr - pb->addr;
8824 }
8825
8826 static bfd_boolean xtensa_make_cached_fixup (cached_fixupS *o, fixS *fixP)
8827 {
8828 xtensa_isa isa = xtensa_default_isa;
8829 int addr = fixP->fx_frag->fr_address;
8830 int target;
8831 int delta;
8832 symbolS *s = fixP->fx_addsy;
8833 int slot;
8834 xtensa_format fmt;
8835 xtensa_opcode opcode;
8836
8837 if (fixP->fx_r_type < BFD_RELOC_XTENSA_SLOT0_OP ||
8838 fixP->fx_r_type > BFD_RELOC_XTENSA_SLOT14_OP)
8839 return FALSE;
8840 target = S_GET_VALUE (s);
8841 delta = target - addr;
8842
8843 if (abs(delta) < J_RANGE / 2)
8844 return FALSE;
8845
8846 xtensa_insnbuf_from_chars (isa, trampoline_buf,
8847 (unsigned char *) fixP->fx_frag->fr_literal +
8848 fixP->fx_where, 0);
8849 fmt = xtensa_format_decode (isa, trampoline_buf);
8850 gas_assert (fmt != XTENSA_UNDEFINED);
8851 slot = fixP->tc_fix_data.slot;
8852 xtensa_format_get_slot (isa, fmt, slot, trampoline_buf, trampoline_slotbuf);
8853 opcode = xtensa_opcode_decode (isa, fmt, slot, trampoline_slotbuf);
8854 if (opcode != xtensa_j_opcode)
8855 return FALSE;
8856
8857 o->addr = addr;
8858 o->target = target;
8859 o->delta = delta;
8860 o->fixP = fixP;
8861
8862 return TRUE;
8863 }
8864
8865 static void xtensa_realloc_fixup_cache (fixup_cacheS *cache, unsigned add)
8866 {
8867 if (cache->n_fixups + add > cache->n_max)
8868 {
8869 cache->n_max = (cache->n_fixups + add) * 2;
8870 cache->fixups = xrealloc (cache->fixups,
8871 sizeof (*cache->fixups) * cache->n_max);
8872 }
8873 }
8874
8875 static void xtensa_cache_relaxable_fixups (fixup_cacheS *cache,
8876 segment_info_type *seginfo)
8877 {
8878 fixS *fixP;
8879
8880 cache->n_fixups = 0;
8881
8882 for (fixP = seginfo->fix_root; fixP ; fixP = fixP->fx_next)
8883 {
8884 xtensa_realloc_fixup_cache (cache, 1);
8885
8886 if (xtensa_make_cached_fixup (cache->fixups + cache->n_fixups, fixP))
8887 ++cache->n_fixups;
8888 }
8889 qsort (cache->fixups, cache->n_fixups, sizeof (*cache->fixups), fixup_order);
8890 }
8891
8892 static unsigned xtensa_find_first_cached_fixup (const fixup_cacheS *cache,
8893 int addr)
8894 {
8895 unsigned a = 0;
8896 unsigned b = cache->n_fixups;
8897
8898 while (b - a > 1)
8899 {
8900 unsigned c = (a + b) / 2;
8901
8902 if (cache->fixups[c].addr < addr)
8903 a = c;
8904 else
8905 b = c;
8906 }
8907 return a;
8908 }
8909
8910 static void xtensa_delete_cached_fixup (fixup_cacheS *cache, unsigned i)
8911 {
8912 memmove (cache->fixups + i, cache->fixups + i + 1,
8913 (cache->n_fixups - i - 1) * sizeof (*cache->fixups));
8914 --cache->n_fixups;
8915 }
8916
8917 static bfd_boolean xtensa_add_cached_fixup (fixup_cacheS *cache, fixS *fixP)
8918 {
8919 cached_fixupS o;
8920 unsigned i;
8921
8922 if (!xtensa_make_cached_fixup (&o, fixP))
8923 return FALSE;
8924 xtensa_realloc_fixup_cache (cache, 1);
8925 i = xtensa_find_first_cached_fixup (cache, o.addr);
8926 if (i < cache->n_fixups)
8927 {
8928 ++i;
8929 memmove (cache->fixups + i + 1, cache->fixups + i,
8930 (cache->n_fixups - i) * sizeof (*cache->fixups));
8931 }
8932 cache->fixups[i] = o;
8933 ++cache->n_fixups;
8934 return TRUE;
8935 }
8936
8937 /* Return the number of bytes added to this fragment, given that the
8938 input has been stretched already by "stretch". */
8939
8940 long
8941 xtensa_relax_frag (fragS *fragP, long stretch, int *stretched_p)
8942 {
8943 xtensa_isa isa = xtensa_default_isa;
8944 int unreported = fragP->tc_frag_data.unreported_expansion;
8945 long new_stretch = 0;
8946 char *file_name;
8947 unsigned line;
8948 int lit_size;
8949 static xtensa_insnbuf vbuf = NULL;
8950 int slot, num_slots;
8951 xtensa_format fmt;
8952
8953 as_where (&file_name, &line);
8954 new_logical_line (fragP->fr_file, fragP->fr_line);
8955
8956 fragP->tc_frag_data.unreported_expansion = 0;
8957
8958 switch (fragP->fr_subtype)
8959 {
8960 case RELAX_ALIGN_NEXT_OPCODE:
8961 /* Always convert. */
8962 if (fragP->tc_frag_data.relax_seen)
8963 new_stretch = relax_frag_loop_align (fragP, stretch);
8964 break;
8965
8966 case RELAX_LOOP_END:
8967 /* Do nothing. */
8968 break;
8969
8970 case RELAX_LOOP_END_ADD_NOP:
8971 /* Add a NOP and switch to .fill 0. */
8972 new_stretch = relax_frag_add_nop (fragP);
8973 frag_wane (fragP);
8974 break;
8975
8976 case RELAX_DESIRE_ALIGN:
8977 /* Do nothing. The narrowing before this frag will either align
8978 it or not. */
8979 break;
8980
8981 case RELAX_LITERAL:
8982 case RELAX_LITERAL_FINAL:
8983 return 0;
8984
8985 case RELAX_LITERAL_NR:
8986 lit_size = 4;
8987 fragP->fr_subtype = RELAX_LITERAL_FINAL;
8988 gas_assert (unreported == lit_size);
8989 memset (&fragP->fr_literal[fragP->fr_fix], 0, 4);
8990 fragP->fr_var -= lit_size;
8991 fragP->fr_fix += lit_size;
8992 new_stretch = 4;
8993 break;
8994
8995 case RELAX_SLOTS:
8996 if (vbuf == NULL)
8997 vbuf = xtensa_insnbuf_alloc (isa);
8998
8999 xtensa_insnbuf_from_chars
9000 (isa, vbuf, (unsigned char *) fragP->fr_opcode, 0);
9001 fmt = xtensa_format_decode (isa, vbuf);
9002 num_slots = xtensa_format_num_slots (isa, fmt);
9003
9004 for (slot = 0; slot < num_slots; slot++)
9005 {
9006 switch (fragP->tc_frag_data.slot_subtypes[slot])
9007 {
9008 case RELAX_NARROW:
9009 if (fragP->tc_frag_data.relax_seen)
9010 new_stretch += relax_frag_for_align (fragP, stretch);
9011 break;
9012
9013 case RELAX_IMMED:
9014 case RELAX_IMMED_STEP1:
9015 case RELAX_IMMED_STEP2:
9016 case RELAX_IMMED_STEP3:
9017 /* Place the immediate. */
9018 new_stretch += relax_frag_immed
9019 (now_seg, fragP, stretch,
9020 fragP->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
9021 fmt, slot, stretched_p, FALSE);
9022 break;
9023
9024 default:
9025 /* This is OK; see the note in xg_assemble_vliw_tokens. */
9026 break;
9027 }
9028 }
9029 break;
9030
9031 case RELAX_LITERAL_POOL_BEGIN:
9032 case RELAX_LITERAL_POOL_END:
9033 case RELAX_MAYBE_UNREACHABLE:
9034 case RELAX_MAYBE_DESIRE_ALIGN:
9035 /* No relaxation required. */
9036 break;
9037
9038 case RELAX_FILL_NOP:
9039 case RELAX_UNREACHABLE:
9040 if (fragP->tc_frag_data.relax_seen)
9041 new_stretch += relax_frag_for_align (fragP, stretch);
9042 break;
9043
9044 case RELAX_TRAMPOLINE:
9045 if (fragP->tc_frag_data.relax_seen)
9046 {
9047 static fixup_cacheS fixup_cache;
9048 segment_info_type *seginfo = seg_info (now_seg);
9049 int trampaddr = fragP->fr_address + fragP->fr_fix;
9050 int searchaddr = trampaddr < J_RANGE ? 0 : trampaddr - J_RANGE;
9051 unsigned i;
9052
9053 if (now_seg != fixup_cache.seg ||
9054 fragP == fixup_cache.first_frag ||
9055 fixup_cache.first_frag == NULL)
9056 {
9057 xtensa_cache_relaxable_fixups (&fixup_cache, seginfo);
9058 fixup_cache.seg = now_seg;
9059 fixup_cache.first_frag = fragP;
9060 }
9061
9062 /* Scan for jumps that will not reach. */
9063 for (i = xtensa_find_first_cached_fixup (&fixup_cache, searchaddr);
9064 i < fixup_cache.n_fixups; ++i)
9065
9066 {
9067 fixS *fixP = fixup_cache.fixups[i].fixP;
9068 int target = fixup_cache.fixups[i].target;
9069 int addr = fixup_cache.fixups[i].addr;
9070 int delta = fixup_cache.fixups[i].delta + stretch;
9071
9072 trampaddr = fragP->fr_address + fragP->fr_fix;
9073
9074 if (addr + J_RANGE < trampaddr)
9075 continue;
9076 if (addr > trampaddr + J_RANGE)
9077 break;
9078 if (abs (delta) < J_RANGE)
9079 continue;
9080
9081 slot = fixP->tc_fix_data.slot;
9082
9083 if (delta > J_RANGE || delta < -1 * J_RANGE)
9084 { /* Found an out-of-range jump; scan the list of trampolines for the best match. */
9085 struct trampoline_seg *ts = find_trampoline_seg (now_seg);
9086 struct trampoline_frag *tf = ts->trampoline_list.next;
9087 struct trampoline_frag *prev = &ts->trampoline_list;
9088 int lower = (target < addr) ? target : addr;
9089 int upper = (target > addr) ? target : addr;
9090 int midpoint = lower + (upper - lower) / 2;
9091
9092 if ((upper - lower) > 2 * J_RANGE)
9093 {
9094 /* One trampoline won't suffice; we need multiple jumps.
9095 Jump to the trampoline that's farthest, but still in
9096 range relative to the original "j" instruction. */
9097 for ( ; tf; prev = tf, tf = tf->next )
9098 {
9099 int this_addr = tf->fragP->fr_address + tf->fragP->fr_fix;
9100 int next_addr = (tf->next) ? tf->next->fragP->fr_address + tf->next->fragP->fr_fix : 0 ;
9101
9102 if (addr == lower)
9103 {
9104 /* Forward jump. */
9105 if (this_addr - addr < J_RANGE)
9106 break;
9107 }
9108 else
9109 {
9110 /* Backward jump. */
9111 if (next_addr == 0 || addr - next_addr > J_RANGE)
9112 break;
9113 }
9114 }
9115 }
9116 else
9117 {
9118 struct trampoline_frag *best_tf = NULL;
9119 int best_delta = 0;
9120
9121 for ( ; tf; prev = tf, tf = tf->next )
9122 {
9123 int this_addr = tf->fragP->fr_address + tf->fragP->fr_fix;
9124 int this_delta = abs (this_addr - midpoint);
9125
9126 if (!best_tf || this_delta < best_delta)
9127 {
9128 best_tf = tf;
9129 best_delta = this_delta;
9130 }
9131 }
9132 tf = best_tf;
9133 }
9134 if (tf->fragP == fragP)
9135 {
9136 if (abs (addr - trampaddr) < J_RANGE)
9137 { /* The trampoline is in range of original; fix it! */
9138 fixS *newfixP;
9139 int offset;
9140 TInsn insn;
9141 symbolS *lsym;
9142 fragS *fP; /* The out-of-range jump. */
9143
9144 new_stretch += init_trampoline_frag (tf);
9145 offset = fragP->fr_fix; /* Where to assemble the j insn. */
9146 lsym = fragP->fr_symbol;
9147 fP = fixP->fx_frag;
9148 /* Assemble a jump to the target label here. */
9149 tinsn_init (&insn);
9150 insn.insn_type = ITYPE_INSN;
9151 insn.opcode = xtensa_j_opcode;
9152 insn.ntok = 1;
9153 set_expr_symbol_offset (&insn.tok[0], lsym, offset);
9154 fmt = xg_get_single_format (xtensa_j_opcode);
9155 tinsn_to_slotbuf (fmt, 0, &insn, trampoline_slotbuf);
9156 xtensa_format_set_slot (isa, fmt, 0, trampoline_buf, trampoline_slotbuf);
9157 xtensa_insnbuf_to_chars (isa, trampoline_buf, (unsigned char *)fragP->fr_literal + offset, 3);
9158 fragP->fr_fix += 3;
9159 fragP->fr_var -= 3;
9160 /* Add a fix-up for the original j insn. */
9161 newfixP = fix_new (fP, fixP->fx_where, fixP->fx_size, lsym, fragP->fr_fix - 3, TRUE, fixP->fx_r_type);
9162 newfixP->fx_no_overflow = 1;
9163 newfixP->tc_fix_data.X_add_symbol = lsym;
9164 newfixP->tc_fix_data.X_add_number = offset;
9165 newfixP->tc_fix_data.slot = slot;
9166
9167 xtensa_delete_cached_fixup (&fixup_cache, i);
9168 xtensa_add_cached_fixup (&fixup_cache, newfixP);
9169
9170 /* Move the fix-up from the original j insn to this one. */
9171 fixP->fx_frag = fragP;
9172 fixP->fx_where = fragP->fr_fix - 3;
9173 fixP->tc_fix_data.slot = 0;
9174
9175 xtensa_add_cached_fixup (&fixup_cache, fixP);
9176
9177 /* re-do current fixup */
9178 --i;
9179
9180 /* Adjust the jump around this trampoline (if present). */
9181 if (tf->fixP != NULL)
9182 {
9183 tf->fixP->fx_offset += 3;
9184 }
9185 new_stretch += 3;
9186 fragP->tc_frag_data.relax_seen = FALSE; /* Need another pass. */
9187 /* Do we have room for more? */
9188 if (fragP->fr_var < 3)
9189 { /* No, convert to fill. */
9190 frag_wane (fragP);
9191 fragP->fr_subtype = 0;
9192 /* Remove from the trampoline_list. */
9193 prev->next = tf->next;
9194 if (fragP == fixup_cache.first_frag)
9195 fixup_cache.first_frag = NULL;
9196 break;
9197 }
9198 }
9199 }
9200 }
9201 }
9202 }
9203 break;
9204
9205 default:
9206 as_bad (_("bad relaxation state"));
9207 }
9208
9209 /* Tell gas we need another relaxation pass. */
9210 if (! fragP->tc_frag_data.relax_seen)
9211 {
9212 fragP->tc_frag_data.relax_seen = TRUE;
9213 *stretched_p = 1;
9214 }
9215
9216 new_logical_line (file_name, line);
9217 return new_stretch;
9218 }
9219
9220
9221 static long
9222 relax_frag_loop_align (fragS *fragP, long stretch)
9223 {
9224 addressT old_address, old_next_address, old_size;
9225 addressT new_address, new_next_address, new_size;
9226 addressT growth;
9227
9228 /* All the frags with relax_frag_for_alignment prior to this one in the
9229 section have been done, hopefully eliminating the need for a NOP here.
9230 But, this will put it in if necessary. */
9231
9232 /* Calculate the old address of this fragment and the next fragment. */
9233 old_address = fragP->fr_address - stretch;
9234 old_next_address = (fragP->fr_address - stretch + fragP->fr_fix +
9235 fragP->tc_frag_data.text_expansion[0]);
9236 old_size = old_next_address - old_address;
9237
9238 /* Calculate the new address of this fragment and the next fragment. */
9239 new_address = fragP->fr_address;
9240 new_next_address =
9241 get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix);
9242 new_size = new_next_address - new_address;
9243
9244 growth = new_size - old_size;
9245
9246 /* Fix up the text_expansion field and return the new growth. */
9247 fragP->tc_frag_data.text_expansion[0] += growth;
9248 return growth;
9249 }
9250
9251
9252 /* Add a NOP instruction. */
9253
9254 static long
9255 relax_frag_add_nop (fragS *fragP)
9256 {
9257 char *nop_buf = fragP->fr_literal + fragP->fr_fix;
9258 int length = fragP->tc_frag_data.is_no_density ? 3 : 2;
9259 assemble_nop (length, nop_buf);
9260 fragP->tc_frag_data.is_insn = TRUE;
9261
9262 if (fragP->fr_var < length)
9263 {
9264 as_fatal (_("fr_var (%ld) < length (%d)"), (long) fragP->fr_var, length);
9265 return 0;
9266 }
9267
9268 fragP->fr_fix += length;
9269 fragP->fr_var -= length;
9270 return length;
9271 }
9272
9273
9274 static long future_alignment_required (fragS *, long);
9275
9276 static long
9277 relax_frag_for_align (fragS *fragP, long stretch)
9278 {
9279 /* Overview of the relaxation procedure for alignment:
9280 We can widen with NOPs or by widening instructions or by filling
9281 bytes after jump instructions. Find the opportune places and widen
9282 them if necessary. */
9283
9284 long stretch_me;
9285 long diff;
9286
9287 gas_assert (fragP->fr_subtype == RELAX_FILL_NOP
9288 || fragP->fr_subtype == RELAX_UNREACHABLE
9289 || (fragP->fr_subtype == RELAX_SLOTS
9290 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW));
9291
9292 stretch_me = future_alignment_required (fragP, stretch);
9293 diff = stretch_me - fragP->tc_frag_data.text_expansion[0];
9294 if (diff == 0)
9295 return 0;
9296
9297 if (diff < 0)
9298 {
9299 /* We expanded on a previous pass. Can we shrink now? */
9300 long shrink = fragP->tc_frag_data.text_expansion[0] - stretch_me;
9301 if (shrink <= stretch && stretch > 0)
9302 {
9303 fragP->tc_frag_data.text_expansion[0] = stretch_me;
9304 return -shrink;
9305 }
9306 return 0;
9307 }
9308
9309 /* Below here, diff > 0. */
9310 fragP->tc_frag_data.text_expansion[0] = stretch_me;
9311
9312 return diff;
9313 }
9314
9315
9316 /* Return the address of the next frag that should be aligned.
9317
9318 By "address" we mean the address it _would_ be at if there
9319 is no action taken to align it between here and the target frag.
9320 In other words, if no narrows and no fill nops are used between
9321 here and the frag to align, _even_if_ some of the frags we use
9322 to align targets have already expanded on a previous relaxation
9323 pass.
9324
9325 Also, count each frag that may be used to help align the target.
9326
9327 Return 0 if there are no frags left in the chain that need to be
9328 aligned. */
9329
9330 static addressT
9331 find_address_of_next_align_frag (fragS **fragPP,
9332 int *wide_nops,
9333 int *narrow_nops,
9334 int *widens,
9335 bfd_boolean *paddable)
9336 {
9337 fragS *fragP = *fragPP;
9338 addressT address = fragP->fr_address;
9339
9340 /* Do not reset the counts to 0. */
9341
9342 while (fragP)
9343 {
9344 /* Limit this to a small search. */
9345 if (*widens >= (int) xtensa_fetch_width)
9346 {
9347 *fragPP = fragP;
9348 return 0;
9349 }
9350 address += fragP->fr_fix;
9351
9352 if (fragP->fr_type == rs_fill)
9353 address += fragP->fr_offset * fragP->fr_var;
9354 else if (fragP->fr_type == rs_machine_dependent)
9355 {
9356 switch (fragP->fr_subtype)
9357 {
9358 case RELAX_UNREACHABLE:
9359 *paddable = TRUE;
9360 break;
9361
9362 case RELAX_FILL_NOP:
9363 (*wide_nops)++;
9364 if (!fragP->tc_frag_data.is_no_density)
9365 (*narrow_nops)++;
9366 break;
9367
9368 case RELAX_SLOTS:
9369 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
9370 {
9371 (*widens)++;
9372 break;
9373 }
9374 address += total_frag_text_expansion (fragP);
9375 break;
9376
9377 case RELAX_IMMED:
9378 address += fragP->tc_frag_data.text_expansion[0];
9379 break;
9380
9381 case RELAX_ALIGN_NEXT_OPCODE:
9382 case RELAX_DESIRE_ALIGN:
9383 *fragPP = fragP;
9384 return address;
9385
9386 case RELAX_MAYBE_UNREACHABLE:
9387 case RELAX_MAYBE_DESIRE_ALIGN:
9388 /* Do nothing. */
9389 break;
9390
9391 default:
9392 /* Just punt if we don't know the type. */
9393 *fragPP = fragP;
9394 return 0;
9395 }
9396 }
9397 else
9398 {
9399 /* Just punt if we don't know the type. */
9400 *fragPP = fragP;
9401 return 0;
9402 }
9403 fragP = fragP->fr_next;
9404 }
9405
9406 *fragPP = fragP;
9407 return 0;
9408 }
9409
9410
9411 static long bytes_to_stretch (fragS *, int, int, int, int);
9412
9413 static long
9414 future_alignment_required (fragS *fragP, long stretch ATTRIBUTE_UNUSED)
9415 {
9416 fragS *this_frag = fragP;
9417 long address;
9418 int num_widens = 0;
9419 int wide_nops = 0;
9420 int narrow_nops = 0;
9421 bfd_boolean paddable = FALSE;
9422 offsetT local_opt_diff;
9423 offsetT opt_diff;
9424 offsetT max_diff;
9425 int stretch_amount = 0;
9426 int local_stretch_amount;
9427 int global_stretch_amount;
9428
9429 address = find_address_of_next_align_frag
9430 (&fragP, &wide_nops, &narrow_nops, &num_widens, &paddable);
9431
9432 if (!address)
9433 {
9434 if (this_frag->tc_frag_data.is_aligning_branch)
9435 this_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
9436 else
9437 frag_wane (this_frag);
9438 }
9439 else
9440 {
9441 local_opt_diff = get_aligned_diff (fragP, address, &max_diff);
9442 opt_diff = local_opt_diff;
9443 gas_assert (opt_diff >= 0);
9444 gas_assert (max_diff >= opt_diff);
9445 if (max_diff == 0)
9446 return 0;
9447
9448 if (fragP)
9449 fragP = fragP->fr_next;
9450
9451 while (fragP && opt_diff < max_diff && address)
9452 {
9453 /* We only use these to determine if we can exit early
9454 because there will be plenty of ways to align future
9455 align frags. */
9456 int glob_widens = 0;
9457 int dnn = 0;
9458 int dw = 0;
9459 bfd_boolean glob_pad = 0;
9460 address = find_address_of_next_align_frag
9461 (&fragP, &glob_widens, &dnn, &dw, &glob_pad);
9462 /* If there is a padable portion, then skip. */
9463 if (glob_pad || glob_widens >= (1 << branch_align_power (now_seg)))
9464 address = 0;
9465
9466 if (address)
9467 {
9468 offsetT next_m_diff;
9469 offsetT next_o_diff;
9470
9471 /* Downrange frags haven't had stretch added to them yet. */
9472 address += stretch;
9473
9474 /* The address also includes any text expansion from this
9475 frag in a previous pass, but we don't want that. */
9476 address -= this_frag->tc_frag_data.text_expansion[0];
9477
9478 /* Assume we are going to move at least opt_diff. In
9479 reality, we might not be able to, but assuming that
9480 we will helps catch cases where moving opt_diff pushes
9481 the next target from aligned to unaligned. */
9482 address += opt_diff;
9483
9484 next_o_diff = get_aligned_diff (fragP, address, &next_m_diff);
9485
9486 /* Now cleanup for the adjustments to address. */
9487 next_o_diff += opt_diff;
9488 next_m_diff += opt_diff;
9489 if (next_o_diff <= max_diff && next_o_diff > opt_diff)
9490 opt_diff = next_o_diff;
9491 if (next_m_diff < max_diff)
9492 max_diff = next_m_diff;
9493 fragP = fragP->fr_next;
9494 }
9495 }
9496
9497 /* If there are enough wideners in between, do it. */
9498 if (paddable)
9499 {
9500 if (this_frag->fr_subtype == RELAX_UNREACHABLE)
9501 {
9502 gas_assert (opt_diff <= (signed) xtensa_fetch_width);
9503 return opt_diff;
9504 }
9505 return 0;
9506 }
9507 local_stretch_amount
9508 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
9509 num_widens, local_opt_diff);
9510 global_stretch_amount
9511 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
9512 num_widens, opt_diff);
9513 /* If the condition below is true, then the frag couldn't
9514 stretch the correct amount for the global case, so we just
9515 optimize locally. We'll rely on the subsequent frags to get
9516 the correct alignment in the global case. */
9517 if (global_stretch_amount < local_stretch_amount)
9518 stretch_amount = local_stretch_amount;
9519 else
9520 stretch_amount = global_stretch_amount;
9521
9522 if (this_frag->fr_subtype == RELAX_SLOTS
9523 && this_frag->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
9524 gas_assert (stretch_amount <= 1);
9525 else if (this_frag->fr_subtype == RELAX_FILL_NOP)
9526 {
9527 if (this_frag->tc_frag_data.is_no_density)
9528 gas_assert (stretch_amount == 3 || stretch_amount == 0);
9529 else
9530 gas_assert (stretch_amount <= 3);
9531 }
9532 }
9533 return stretch_amount;
9534 }
9535
9536
9537 /* The idea: widen everything you can to get a target or loop aligned,
9538 then start using NOPs.
9539
9540 wide_nops = the number of wide NOPs available for aligning
9541 narrow_nops = the number of narrow NOPs available for aligning
9542 (a subset of wide_nops)
9543 widens = the number of narrow instructions that should be widened
9544
9545 */
9546
9547 static long
9548 bytes_to_stretch (fragS *this_frag,
9549 int wide_nops,
9550 int narrow_nops,
9551 int num_widens,
9552 int desired_diff)
9553 {
9554 int nops_needed;
9555 int nop_bytes;
9556 int extra_bytes;
9557 int bytes_short = desired_diff - num_widens;
9558
9559 gas_assert (desired_diff >= 0
9560 && desired_diff < (signed) xtensa_fetch_width);
9561 if (desired_diff == 0)
9562 return 0;
9563
9564 gas_assert (wide_nops > 0 || num_widens > 0);
9565
9566 /* Always prefer widening to NOP-filling. */
9567 if (bytes_short < 0)
9568 {
9569 /* There are enough RELAX_NARROW frags after this one
9570 to align the target without widening this frag in any way. */
9571 return 0;
9572 }
9573
9574 if (bytes_short == 0)
9575 {
9576 /* Widen every narrow between here and the align target
9577 and the align target will be properly aligned. */
9578 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9579 return 0;
9580 else
9581 return 1;
9582 }
9583
9584 /* From here we will need at least one NOP to get an alignment.
9585 However, we may not be able to align at all, in which case,
9586 don't widen. */
9587 nops_needed = desired_diff / 3;
9588
9589 /* If there aren't enough nops, don't widen. */
9590 if (nops_needed > wide_nops)
9591 return 0;
9592
9593 /* First try it with all wide nops. */
9594 nop_bytes = nops_needed * 3;
9595 extra_bytes = desired_diff - nop_bytes;
9596
9597 if (nop_bytes + num_widens >= desired_diff)
9598 {
9599 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9600 return 3;
9601 else if (num_widens == extra_bytes)
9602 return 1;
9603 return 0;
9604 }
9605
9606 /* Add a narrow nop. */
9607 nops_needed++;
9608 nop_bytes += 2;
9609 extra_bytes -= 2;
9610 if (narrow_nops == 0 || nops_needed > wide_nops)
9611 return 0;
9612
9613 if (nop_bytes + num_widens >= desired_diff && extra_bytes >= 0)
9614 {
9615 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9616 return !this_frag->tc_frag_data.is_no_density ? 2 : 3;
9617 else if (num_widens == extra_bytes)
9618 return 1;
9619 return 0;
9620 }
9621
9622 /* Replace a wide nop with a narrow nop--we can get here if
9623 extra_bytes was negative in the previous conditional. */
9624 if (narrow_nops == 1)
9625 return 0;
9626 nop_bytes--;
9627 extra_bytes++;
9628 if (nop_bytes + num_widens >= desired_diff)
9629 {
9630 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9631 return !this_frag->tc_frag_data.is_no_density ? 2 : 3;
9632 else if (num_widens == extra_bytes)
9633 return 1;
9634 return 0;
9635 }
9636
9637 /* If we can't satisfy any of the above cases, then we can't align
9638 using padding or fill nops. */
9639 return 0;
9640 }
9641
9642
9643 static struct trampoline_frag *
9644 search_trampolines (TInsn *tinsn, fragS *fragP, bfd_boolean unreachable_only)
9645 {
9646 struct trampoline_seg *ts = find_trampoline_seg (now_seg);
9647 struct trampoline_frag *tf = (ts) ? ts->trampoline_list.next : NULL;
9648 struct trampoline_frag *best_tf = NULL;
9649 int best_delta = 0;
9650 int best_addr = 0;
9651 symbolS *sym = tinsn->tok[0].X_add_symbol;
9652 offsetT target = S_GET_VALUE (sym) + tinsn->tok[0].X_add_number;
9653 offsetT addr = fragP->fr_address;
9654 offsetT lower = (addr < target) ? addr : target;
9655 offsetT upper = (addr > target) ? addr : target;
9656 int delta = upper - lower;
9657 offsetT midpoint = lower + delta / 2;
9658 int this_delta = -1;
9659 int this_addr = -1;
9660
9661 if (delta > 2 * J_RANGE)
9662 {
9663 /* One trampoline won't do; we need multiple.
9664 Choose the farthest trampoline that's still in range of the original
9665 and let a later pass finish the job. */
9666 for ( ; tf; tf = tf->next)
9667 {
9668 int next_addr = (tf->next) ? tf->next->fragP->fr_address + tf->next->fragP->fr_fix : 0;
9669
9670 this_addr = tf->fragP->fr_address + tf->fragP->fr_fix;
9671 if (lower == addr)
9672 {
9673 /* Forward jump. */
9674 if (this_addr - addr < J_RANGE)
9675 break;
9676 }
9677 else
9678 {
9679 /* Backward jump. */
9680 if (next_addr == 0 || addr - next_addr > J_RANGE)
9681 break;
9682 }
9683 }
9684 if (abs (addr - this_addr) < J_RANGE)
9685 return tf;
9686
9687 return NULL;
9688 }
9689 for ( ; tf; tf = tf->next)
9690 {
9691 this_addr = tf->fragP->fr_address + tf->fragP->fr_fix;
9692 this_delta = abs (this_addr - midpoint);
9693 if (unreachable_only && tf->needs_jump_around)
9694 continue;
9695 if (!best_tf || this_delta < best_delta)
9696 {
9697 best_tf = tf;
9698 best_delta = this_delta;
9699 best_addr = this_addr;
9700 }
9701 }
9702
9703 if (best_tf &&
9704 best_delta < J_RANGE &&
9705 abs(best_addr - lower) < J_RANGE &&
9706 abs(best_addr - upper) < J_RANGE)
9707 return best_tf;
9708
9709 return NULL; /* No suitable trampoline found. */
9710 }
9711
9712
9713 static struct trampoline_frag *
9714 get_best_trampoline (TInsn *tinsn, fragS *fragP)
9715 {
9716 struct trampoline_frag *tf = NULL;
9717
9718 tf = search_trampolines (tinsn, fragP, TRUE); /* Try unreachable first. */
9719
9720 if (tf == NULL)
9721 tf = search_trampolines (tinsn, fragP, FALSE); /* Try ones needing a jump-around, too. */
9722
9723 return tf;
9724 }
9725
9726
9727 static void
9728 check_and_update_trampolines (void)
9729 {
9730 struct trampoline_seg *ts = find_trampoline_seg (now_seg);
9731 struct trampoline_frag *tf = ts->trampoline_list.next;
9732 struct trampoline_frag *prev = &ts->trampoline_list;
9733
9734 for ( ; tf; prev = tf, tf = tf->next)
9735 {
9736 if (tf->fragP->fr_var < 3)
9737 {
9738 frag_wane (tf->fragP);
9739 prev->next = tf->next;
9740 tf->fragP = NULL;
9741 }
9742 }
9743 }
9744
9745
9746 static int
9747 init_trampoline_frag (struct trampoline_frag *trampP)
9748 {
9749 fragS *fp = trampP->fragP;
9750 int growth = 0;
9751
9752 if (fp->fr_fix == 0)
9753 {
9754 symbolS *lsym;
9755 char label[10 + 2 * sizeof(fp)];
9756 sprintf (label, ".L0_TR_%p", fp);
9757
9758 lsym = (symbolS *)local_symbol_make (label, now_seg, 0, fp);
9759 fp->fr_symbol = lsym;
9760 if (trampP->needs_jump_around)
9761 {
9762 /* Add a jump around this block of jumps, in case
9763 control flows into this block. */
9764 fixS *fixP;
9765 TInsn insn;
9766 xtensa_format fmt;
9767 xtensa_isa isa = xtensa_default_isa;
9768
9769 fp->tc_frag_data.is_insn = 1;
9770 /* Assemble a jump insn. */
9771 tinsn_init (&insn);
9772 insn.insn_type = ITYPE_INSN;
9773 insn.opcode = xtensa_j_opcode;
9774 insn.ntok = 1;
9775 set_expr_symbol_offset (&insn.tok[0], lsym, 3);
9776 fmt = xg_get_single_format (xtensa_j_opcode);
9777 tinsn_to_slotbuf (fmt, 0, &insn, trampoline_slotbuf);
9778 xtensa_format_set_slot (isa, fmt, 0, trampoline_buf, trampoline_slotbuf);
9779 xtensa_insnbuf_to_chars (isa, trampoline_buf, (unsigned char *)fp->fr_literal, 3);
9780 fp->fr_fix += 3;
9781 fp->fr_var -= 3;
9782 growth = 3;
9783 fixP = fix_new (fp, 0, 3, lsym, 3, TRUE, BFD_RELOC_XTENSA_SLOT0_OP);
9784 trampP->fixP = fixP;
9785 }
9786 }
9787 return growth;
9788 }
9789
9790
9791 static int
9792 add_jump_to_trampoline (struct trampoline_frag *trampP, fragS *origfrag)
9793 {
9794 fragS *tramp = trampP->fragP;
9795 fixS *fixP;
9796 int offset = tramp->fr_fix; /* Where to assemble the j insn. */
9797 TInsn insn;
9798 symbolS *lsym;
9799 symbolS *tsym;
9800 int toffset;
9801 xtensa_format fmt;
9802 xtensa_isa isa = xtensa_default_isa;
9803 int growth = 0;
9804
9805 lsym = tramp->fr_symbol;
9806 /* Assemble a jump to the target label in the trampoline frag. */
9807 tsym = origfrag->tc_frag_data.slot_symbols[0];
9808 toffset = origfrag-> tc_frag_data.slot_offsets[0];
9809 tinsn_init (&insn);
9810 insn.insn_type = ITYPE_INSN;
9811 insn.opcode = xtensa_j_opcode;
9812 insn.ntok = 1;
9813 set_expr_symbol_offset (&insn.tok[0], tsym, toffset);
9814 fmt = xg_get_single_format (xtensa_j_opcode);
9815 tinsn_to_slotbuf (fmt, 0, &insn, trampoline_slotbuf);
9816 xtensa_format_set_slot (isa, fmt, 0, trampoline_buf, trampoline_slotbuf);
9817 xtensa_insnbuf_to_chars (isa, trampoline_buf, (unsigned char *)tramp->fr_literal + offset, 3);
9818 tramp->fr_fix += 3;
9819 tramp->fr_var -= 3;
9820 growth = 3;
9821 /* add a fix-up for the trampoline jump. */
9822 fixP = fix_new (tramp, tramp->fr_fix - 3, 3, tsym, toffset, TRUE, BFD_RELOC_XTENSA_SLOT0_OP);
9823 /* Modify the jump at the start of this trampoline to point past the newly-added jump. */
9824 fixP = trampP->fixP;
9825 if (fixP)
9826 fixP->fx_offset += 3;
9827 /* Modify the original j to point here. */
9828 origfrag->tc_frag_data.slot_symbols[0] = lsym;
9829 origfrag->tc_frag_data.slot_offsets[0] = tramp->fr_fix - 3;
9830 /* If trampoline is full, remove it from the list. */
9831 check_and_update_trampolines ();
9832
9833 return growth;
9834 }
9835
9836
9837 static long
9838 relax_frag_immed (segT segP,
9839 fragS *fragP,
9840 long stretch,
9841 int min_steps,
9842 xtensa_format fmt,
9843 int slot,
9844 int *stretched_p,
9845 bfd_boolean estimate_only)
9846 {
9847 TInsn tinsn;
9848 int old_size;
9849 bfd_boolean negatable_branch = FALSE;
9850 bfd_boolean branch_jmp_to_next = FALSE;
9851 bfd_boolean from_wide_insn = FALSE;
9852 xtensa_isa isa = xtensa_default_isa;
9853 IStack istack;
9854 offsetT frag_offset;
9855 int num_steps;
9856 int num_text_bytes, num_literal_bytes;
9857 int literal_diff, total_text_diff, this_text_diff;
9858
9859 gas_assert (fragP->fr_opcode != NULL);
9860
9861 xg_clear_vinsn (&cur_vinsn);
9862 vinsn_from_chars (&cur_vinsn, fragP->fr_opcode);
9863 if (cur_vinsn.num_slots > 1)
9864 from_wide_insn = TRUE;
9865
9866 tinsn = cur_vinsn.slots[slot];
9867 tinsn_immed_from_frag (&tinsn, fragP, slot);
9868
9869 if (estimate_only && xtensa_opcode_is_loop (isa, tinsn.opcode) == 1)
9870 return 0;
9871
9872 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
9873 branch_jmp_to_next = is_branch_jmp_to_next (&tinsn, fragP);
9874
9875 negatable_branch = (xtensa_opcode_is_branch (isa, tinsn.opcode) == 1);
9876
9877 old_size = xtensa_format_length (isa, fmt);
9878
9879 /* Special case: replace a branch to the next instruction with a NOP.
9880 This is required to work around a hardware bug in T1040.0 and also
9881 serves as an optimization. */
9882
9883 if (branch_jmp_to_next
9884 && ((old_size == 2) || (old_size == 3))
9885 && !next_frag_is_loop_target (fragP))
9886 return 0;
9887
9888 /* Here is the fun stuff: Get the immediate field from this
9889 instruction. If it fits, we are done. If not, find the next
9890 instruction sequence that fits. */
9891
9892 frag_offset = fragP->fr_opcode - fragP->fr_literal;
9893 istack_init (&istack);
9894 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, frag_offset,
9895 min_steps, stretch);
9896 gas_assert (num_steps >= min_steps && num_steps <= RELAX_IMMED_MAXSTEPS);
9897
9898 fragP->tc_frag_data.slot_subtypes[slot] = (int) RELAX_IMMED + num_steps;
9899
9900 /* Figure out the number of bytes needed. */
9901 num_literal_bytes = get_num_stack_literal_bytes (&istack);
9902 literal_diff
9903 = num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
9904 num_text_bytes = get_num_stack_text_bytes (&istack);
9905
9906 if (from_wide_insn)
9907 {
9908 int first = 0;
9909 while (istack.insn[first].opcode == XTENSA_UNDEFINED)
9910 first++;
9911
9912 num_text_bytes += old_size;
9913 if (opcode_fits_format_slot (istack.insn[first].opcode, fmt, slot))
9914 num_text_bytes -= xg_get_single_size (istack.insn[first].opcode);
9915 else
9916 {
9917 /* The first instruction in the relaxed sequence will go after
9918 the current wide instruction, and thus its symbolic immediates
9919 might not fit. */
9920
9921 istack_init (&istack);
9922 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP,
9923 frag_offset + old_size,
9924 min_steps, stretch + old_size);
9925 gas_assert (num_steps >= min_steps && num_steps <= RELAX_IMMED_MAXSTEPS);
9926
9927 fragP->tc_frag_data.slot_subtypes[slot]
9928 = (int) RELAX_IMMED + num_steps;
9929
9930 num_literal_bytes = get_num_stack_literal_bytes (&istack);
9931 literal_diff
9932 = num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
9933
9934 num_text_bytes = get_num_stack_text_bytes (&istack) + old_size;
9935 }
9936 }
9937
9938 total_text_diff = num_text_bytes - old_size;
9939 this_text_diff = total_text_diff - fragP->tc_frag_data.text_expansion[slot];
9940
9941 /* It MUST get larger. If not, we could get an infinite loop. */
9942 gas_assert (num_text_bytes >= 0);
9943 gas_assert (literal_diff >= 0);
9944 gas_assert (total_text_diff >= 0);
9945
9946 fragP->tc_frag_data.text_expansion[slot] = total_text_diff;
9947 fragP->tc_frag_data.literal_expansion[slot] = num_literal_bytes;
9948 gas_assert (fragP->tc_frag_data.text_expansion[slot] >= 0);
9949 gas_assert (fragP->tc_frag_data.literal_expansion[slot] >= 0);
9950
9951 /* Find the associated expandable literal for this. */
9952 if (literal_diff != 0)
9953 {
9954 fragS *lit_fragP = fragP->tc_frag_data.literal_frags[slot];
9955 if (lit_fragP)
9956 {
9957 gas_assert (literal_diff == 4);
9958 lit_fragP->tc_frag_data.unreported_expansion += literal_diff;
9959
9960 /* We expect that the literal section state has NOT been
9961 modified yet. */
9962 gas_assert (lit_fragP->fr_type == rs_machine_dependent
9963 && lit_fragP->fr_subtype == RELAX_LITERAL);
9964 lit_fragP->fr_subtype = RELAX_LITERAL_NR;
9965
9966 /* We need to mark this section for another iteration
9967 of relaxation. */
9968 (*stretched_p)++;
9969 }
9970 }
9971
9972 if (negatable_branch && istack.ninsn > 1)
9973 update_next_frag_state (fragP);
9974
9975 /* If last insn is a jump, and it cannot reach its target, try to find a trampoline. */
9976 if (istack.ninsn > 2 &&
9977 istack.insn[istack.ninsn - 1].insn_type == ITYPE_LABEL &&
9978 istack.insn[istack.ninsn - 2].insn_type == ITYPE_INSN &&
9979 istack.insn[istack.ninsn - 2].opcode == xtensa_j_opcode)
9980 {
9981 TInsn *jinsn = &istack.insn[istack.ninsn - 2];
9982
9983 if (!xg_symbolic_immeds_fit (jinsn, segP, fragP, fragP->fr_offset, total_text_diff))
9984 {
9985 struct trampoline_frag *tf = get_best_trampoline (jinsn, fragP);
9986
9987 if (tf)
9988 {
9989 this_text_diff += init_trampoline_frag (tf);
9990 this_text_diff += add_jump_to_trampoline (tf, fragP);
9991 }
9992 else
9993 {
9994 /* If target symbol is undefined, assume it will reach once linked. */
9995 expressionS *exp = &istack.insn[istack.ninsn - 2].tok[0];
9996
9997 if (exp->X_op == O_symbol && S_IS_DEFINED (exp->X_add_symbol))
9998 {
9999 as_bad_where (fragP->fr_file, fragP->fr_line,
10000 _("jump target out of range; no usable trampoline found"));
10001 }
10002 }
10003 }
10004 }
10005
10006 return this_text_diff;
10007 }
10008
10009 \f
10010 /* md_convert_frag Hook and Helper Functions. */
10011
10012 static void convert_frag_align_next_opcode (fragS *);
10013 static void convert_frag_narrow (segT, fragS *, xtensa_format, int);
10014 static void convert_frag_fill_nop (fragS *);
10015 static void convert_frag_immed (segT, fragS *, int, xtensa_format, int);
10016
10017 void
10018 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec, fragS *fragp)
10019 {
10020 static xtensa_insnbuf vbuf = NULL;
10021 xtensa_isa isa = xtensa_default_isa;
10022 int slot;
10023 int num_slots;
10024 xtensa_format fmt;
10025 char *file_name;
10026 unsigned line;
10027
10028 as_where (&file_name, &line);
10029 new_logical_line (fragp->fr_file, fragp->fr_line);
10030
10031 switch (fragp->fr_subtype)
10032 {
10033 case RELAX_ALIGN_NEXT_OPCODE:
10034 /* Always convert. */
10035 convert_frag_align_next_opcode (fragp);
10036 break;
10037
10038 case RELAX_DESIRE_ALIGN:
10039 /* Do nothing. If not aligned already, too bad. */
10040 break;
10041
10042 case RELAX_LITERAL:
10043 case RELAX_LITERAL_FINAL:
10044 break;
10045
10046 case RELAX_SLOTS:
10047 if (vbuf == NULL)
10048 vbuf = xtensa_insnbuf_alloc (isa);
10049
10050 xtensa_insnbuf_from_chars
10051 (isa, vbuf, (unsigned char *) fragp->fr_opcode, 0);
10052 fmt = xtensa_format_decode (isa, vbuf);
10053 num_slots = xtensa_format_num_slots (isa, fmt);
10054
10055 for (slot = 0; slot < num_slots; slot++)
10056 {
10057 switch (fragp->tc_frag_data.slot_subtypes[slot])
10058 {
10059 case RELAX_NARROW:
10060 convert_frag_narrow (sec, fragp, fmt, slot);
10061 break;
10062
10063 case RELAX_IMMED:
10064 case RELAX_IMMED_STEP1:
10065 case RELAX_IMMED_STEP2:
10066 case RELAX_IMMED_STEP3:
10067 /* Place the immediate. */
10068 convert_frag_immed
10069 (sec, fragp,
10070 fragp->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
10071 fmt, slot);
10072 break;
10073
10074 default:
10075 /* This is OK because some slots could have
10076 relaxations and others have none. */
10077 break;
10078 }
10079 }
10080 break;
10081
10082 case RELAX_UNREACHABLE:
10083 memset (&fragp->fr_literal[fragp->fr_fix], 0, fragp->fr_var);
10084 fragp->fr_fix += fragp->tc_frag_data.text_expansion[0];
10085 fragp->fr_var -= fragp->tc_frag_data.text_expansion[0];
10086 frag_wane (fragp);
10087 break;
10088
10089 case RELAX_MAYBE_UNREACHABLE:
10090 case RELAX_MAYBE_DESIRE_ALIGN:
10091 frag_wane (fragp);
10092 break;
10093
10094 case RELAX_FILL_NOP:
10095 convert_frag_fill_nop (fragp);
10096 break;
10097
10098 case RELAX_LITERAL_NR:
10099 if (use_literal_section)
10100 {
10101 /* This should have been handled during relaxation. When
10102 relaxing a code segment, literals sometimes need to be
10103 added to the corresponding literal segment. If that
10104 literal segment has already been relaxed, then we end up
10105 in this situation. Marking the literal segments as data
10106 would make this happen less often (since GAS always relaxes
10107 code before data), but we could still get into trouble if
10108 there are instructions in a segment that is not marked as
10109 containing code. Until we can implement a better solution,
10110 cheat and adjust the addresses of all the following frags.
10111 This could break subsequent alignments, but the linker's
10112 literal coalescing will do that anyway. */
10113
10114 fragS *f;
10115 fragp->fr_subtype = RELAX_LITERAL_FINAL;
10116 gas_assert (fragp->tc_frag_data.unreported_expansion == 4);
10117 memset (&fragp->fr_literal[fragp->fr_fix], 0, 4);
10118 fragp->fr_var -= 4;
10119 fragp->fr_fix += 4;
10120 for (f = fragp->fr_next; f; f = f->fr_next)
10121 f->fr_address += 4;
10122 }
10123 else
10124 as_bad (_("invalid relaxation fragment result"));
10125 break;
10126
10127 case RELAX_TRAMPOLINE:
10128 break;
10129 }
10130
10131 fragp->fr_var = 0;
10132 new_logical_line (file_name, line);
10133 }
10134
10135
10136 static void
10137 convert_frag_align_next_opcode (fragS *fragp)
10138 {
10139 char *nop_buf; /* Location for Writing. */
10140 bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density;
10141 addressT aligned_address;
10142 offsetT fill_size;
10143 int nop, nop_count;
10144
10145 aligned_address = get_noop_aligned_address (fragp, fragp->fr_address +
10146 fragp->fr_fix);
10147 fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix);
10148 nop_count = get_text_align_nop_count (fill_size, use_no_density);
10149 nop_buf = fragp->fr_literal + fragp->fr_fix;
10150
10151 for (nop = 0; nop < nop_count; nop++)
10152 {
10153 int nop_size;
10154 nop_size = get_text_align_nth_nop_size (fill_size, nop, use_no_density);
10155
10156 assemble_nop (nop_size, nop_buf);
10157 nop_buf += nop_size;
10158 }
10159
10160 fragp->fr_fix += fill_size;
10161 fragp->fr_var -= fill_size;
10162 }
10163
10164
10165 static void
10166 convert_frag_narrow (segT segP, fragS *fragP, xtensa_format fmt, int slot)
10167 {
10168 TInsn tinsn, single_target;
10169 int size, old_size, diff;
10170 offsetT frag_offset;
10171
10172 gas_assert (slot == 0);
10173 tinsn_from_chars (&tinsn, fragP->fr_opcode, 0);
10174
10175 if (fragP->tc_frag_data.is_aligning_branch == 1)
10176 {
10177 gas_assert (fragP->tc_frag_data.text_expansion[0] == 1
10178 || fragP->tc_frag_data.text_expansion[0] == 0);
10179 convert_frag_immed (segP, fragP, fragP->tc_frag_data.text_expansion[0],
10180 fmt, slot);
10181 return;
10182 }
10183
10184 if (fragP->tc_frag_data.text_expansion[0] == 0)
10185 {
10186 /* No conversion. */
10187 fragP->fr_var = 0;
10188 return;
10189 }
10190
10191 gas_assert (fragP->fr_opcode != NULL);
10192
10193 /* Frags in this relaxation state should only contain
10194 single instruction bundles. */
10195 tinsn_immed_from_frag (&tinsn, fragP, 0);
10196
10197 /* Just convert it to a wide form.... */
10198 size = 0;
10199 old_size = xg_get_single_size (tinsn.opcode);
10200
10201 tinsn_init (&single_target);
10202 frag_offset = fragP->fr_opcode - fragP->fr_literal;
10203
10204 if (! xg_is_single_relaxable_insn (&tinsn, &single_target, FALSE))
10205 {
10206 as_bad (_("unable to widen instruction"));
10207 return;
10208 }
10209
10210 size = xg_get_single_size (single_target.opcode);
10211 xg_emit_insn_to_buf (&single_target, fragP->fr_opcode, fragP,
10212 frag_offset, TRUE);
10213
10214 diff = size - old_size;
10215 gas_assert (diff >= 0);
10216 gas_assert (diff <= fragP->fr_var);
10217 fragP->fr_var -= diff;
10218 fragP->fr_fix += diff;
10219
10220 /* clean it up */
10221 fragP->fr_var = 0;
10222 }
10223
10224
10225 static void
10226 convert_frag_fill_nop (fragS *fragP)
10227 {
10228 char *loc = &fragP->fr_literal[fragP->fr_fix];
10229 int size = fragP->tc_frag_data.text_expansion[0];
10230 gas_assert ((unsigned) size == (fragP->fr_next->fr_address
10231 - fragP->fr_address - fragP->fr_fix));
10232 if (size == 0)
10233 {
10234 /* No conversion. */
10235 fragP->fr_var = 0;
10236 return;
10237 }
10238 assemble_nop (size, loc);
10239 fragP->tc_frag_data.is_insn = TRUE;
10240 fragP->fr_var -= size;
10241 fragP->fr_fix += size;
10242 frag_wane (fragP);
10243 }
10244
10245
10246 static fixS *fix_new_exp_in_seg
10247 (segT, subsegT, fragS *, int, int, expressionS *, int,
10248 bfd_reloc_code_real_type);
10249 static void convert_frag_immed_finish_loop (segT, fragS *, TInsn *);
10250
10251 static void
10252 convert_frag_immed (segT segP,
10253 fragS *fragP,
10254 int min_steps,
10255 xtensa_format fmt,
10256 int slot)
10257 {
10258 char *immed_instr = fragP->fr_opcode;
10259 TInsn orig_tinsn;
10260 bfd_boolean expanded = FALSE;
10261 bfd_boolean branch_jmp_to_next = FALSE;
10262 char *fr_opcode = fragP->fr_opcode;
10263 xtensa_isa isa = xtensa_default_isa;
10264 bfd_boolean from_wide_insn = FALSE;
10265 int bytes;
10266 bfd_boolean is_loop;
10267
10268 gas_assert (fr_opcode != NULL);
10269
10270 xg_clear_vinsn (&cur_vinsn);
10271
10272 vinsn_from_chars (&cur_vinsn, fr_opcode);
10273 if (cur_vinsn.num_slots > 1)
10274 from_wide_insn = TRUE;
10275
10276 orig_tinsn = cur_vinsn.slots[slot];
10277 tinsn_immed_from_frag (&orig_tinsn, fragP, slot);
10278
10279 is_loop = xtensa_opcode_is_loop (xtensa_default_isa, orig_tinsn.opcode) == 1;
10280
10281 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
10282 branch_jmp_to_next = is_branch_jmp_to_next (&orig_tinsn, fragP);
10283
10284 if (branch_jmp_to_next && !next_frag_is_loop_target (fragP))
10285 {
10286 /* Conversion just inserts a NOP and marks the fix as completed. */
10287 bytes = xtensa_format_length (isa, fmt);
10288 if (bytes >= 4)
10289 {
10290 cur_vinsn.slots[slot].opcode =
10291 xtensa_format_slot_nop_opcode (isa, cur_vinsn.format, slot);
10292 cur_vinsn.slots[slot].ntok = 0;
10293 }
10294 else
10295 {
10296 bytes += fragP->tc_frag_data.text_expansion[0];
10297 gas_assert (bytes == 2 || bytes == 3);
10298 build_nop (&cur_vinsn.slots[0], bytes);
10299 fragP->fr_fix += fragP->tc_frag_data.text_expansion[0];
10300 }
10301 vinsn_to_insnbuf (&cur_vinsn, fr_opcode, frag_now, TRUE);
10302 xtensa_insnbuf_to_chars
10303 (isa, cur_vinsn.insnbuf, (unsigned char *) fr_opcode, 0);
10304 fragP->fr_var = 0;
10305 }
10306 else
10307 {
10308 /* Here is the fun stuff: Get the immediate field from this
10309 instruction. If it fits, we're done. If not, find the next
10310 instruction sequence that fits. */
10311
10312 IStack istack;
10313 int i;
10314 symbolS *lit_sym = NULL;
10315 int total_size = 0;
10316 int target_offset = 0;
10317 int old_size;
10318 int diff;
10319 symbolS *gen_label = NULL;
10320 offsetT frag_offset;
10321 bfd_boolean first = TRUE;
10322
10323 /* It does not fit. Find something that does and
10324 convert immediately. */
10325 frag_offset = fr_opcode - fragP->fr_literal;
10326 istack_init (&istack);
10327 xg_assembly_relax (&istack, &orig_tinsn,
10328 segP, fragP, frag_offset, min_steps, 0);
10329
10330 old_size = xtensa_format_length (isa, fmt);
10331
10332 /* Assemble this right inline. */
10333
10334 /* First, create the mapping from a label name to the REAL label. */
10335 target_offset = 0;
10336 for (i = 0; i < istack.ninsn; i++)
10337 {
10338 TInsn *tinsn = &istack.insn[i];
10339 fragS *lit_frag;
10340
10341 switch (tinsn->insn_type)
10342 {
10343 case ITYPE_LITERAL:
10344 if (lit_sym != NULL)
10345 as_bad (_("multiple literals in expansion"));
10346 /* First find the appropriate space in the literal pool. */
10347 lit_frag = fragP->tc_frag_data.literal_frags[slot];
10348 if (lit_frag == NULL)
10349 as_bad (_("no registered fragment for literal"));
10350 if (tinsn->ntok != 1)
10351 as_bad (_("number of literal tokens != 1"));
10352
10353 /* Set the literal symbol and add a fixup. */
10354 lit_sym = lit_frag->fr_symbol;
10355 break;
10356
10357 case ITYPE_LABEL:
10358 if (align_targets && !is_loop)
10359 {
10360 fragS *unreach = fragP->fr_next;
10361 while (!(unreach->fr_type == rs_machine_dependent
10362 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
10363 || unreach->fr_subtype == RELAX_UNREACHABLE)))
10364 {
10365 unreach = unreach->fr_next;
10366 }
10367
10368 gas_assert (unreach->fr_type == rs_machine_dependent
10369 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
10370 || unreach->fr_subtype == RELAX_UNREACHABLE));
10371
10372 target_offset += unreach->tc_frag_data.text_expansion[0];
10373 }
10374 gas_assert (gen_label == NULL);
10375 gen_label = symbol_new (FAKE_LABEL_NAME, now_seg,
10376 fr_opcode - fragP->fr_literal
10377 + target_offset, fragP);
10378 break;
10379
10380 case ITYPE_INSN:
10381 if (first && from_wide_insn)
10382 {
10383 target_offset += xtensa_format_length (isa, fmt);
10384 first = FALSE;
10385 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
10386 target_offset += xg_get_single_size (tinsn->opcode);
10387 }
10388 else
10389 target_offset += xg_get_single_size (tinsn->opcode);
10390 break;
10391 }
10392 }
10393
10394 total_size = 0;
10395 first = TRUE;
10396 for (i = 0; i < istack.ninsn; i++)
10397 {
10398 TInsn *tinsn = &istack.insn[i];
10399 fragS *lit_frag;
10400 int size;
10401 segT target_seg;
10402 bfd_reloc_code_real_type reloc_type;
10403
10404 switch (tinsn->insn_type)
10405 {
10406 case ITYPE_LITERAL:
10407 lit_frag = fragP->tc_frag_data.literal_frags[slot];
10408 /* Already checked. */
10409 gas_assert (lit_frag != NULL);
10410 gas_assert (lit_sym != NULL);
10411 gas_assert (tinsn->ntok == 1);
10412 /* Add a fixup. */
10413 target_seg = S_GET_SEGMENT (lit_sym);
10414 gas_assert (target_seg);
10415 reloc_type = map_operator_to_reloc (tinsn->tok[0].X_op, TRUE);
10416 fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4,
10417 &tinsn->tok[0], FALSE, reloc_type);
10418 break;
10419
10420 case ITYPE_LABEL:
10421 break;
10422
10423 case ITYPE_INSN:
10424 xg_resolve_labels (tinsn, gen_label);
10425 xg_resolve_literals (tinsn, lit_sym);
10426 if (from_wide_insn && first)
10427 {
10428 first = FALSE;
10429 if (opcode_fits_format_slot (tinsn->opcode, fmt, slot))
10430 {
10431 cur_vinsn.slots[slot] = *tinsn;
10432 }
10433 else
10434 {
10435 cur_vinsn.slots[slot].opcode =
10436 xtensa_format_slot_nop_opcode (isa, fmt, slot);
10437 cur_vinsn.slots[slot].ntok = 0;
10438 }
10439 vinsn_to_insnbuf (&cur_vinsn, immed_instr, fragP, TRUE);
10440 xtensa_insnbuf_to_chars (isa, cur_vinsn.insnbuf,
10441 (unsigned char *) immed_instr, 0);
10442 fragP->tc_frag_data.is_insn = TRUE;
10443 size = xtensa_format_length (isa, fmt);
10444 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
10445 {
10446 xg_emit_insn_to_buf
10447 (tinsn, immed_instr + size, fragP,
10448 immed_instr - fragP->fr_literal + size, TRUE);
10449 size += xg_get_single_size (tinsn->opcode);
10450 }
10451 }
10452 else
10453 {
10454 size = xg_get_single_size (tinsn->opcode);
10455 xg_emit_insn_to_buf (tinsn, immed_instr, fragP,
10456 immed_instr - fragP->fr_literal, TRUE);
10457 }
10458 immed_instr += size;
10459 total_size += size;
10460 break;
10461 }
10462 }
10463
10464 diff = total_size - old_size;
10465 gas_assert (diff >= 0);
10466 if (diff != 0)
10467 expanded = TRUE;
10468 gas_assert (diff <= fragP->fr_var);
10469 fragP->fr_var -= diff;
10470 fragP->fr_fix += diff;
10471 }
10472
10473 /* Check for undefined immediates in LOOP instructions. */
10474 if (is_loop)
10475 {
10476 symbolS *sym;
10477 sym = orig_tinsn.tok[1].X_add_symbol;
10478 if (sym != NULL && !S_IS_DEFINED (sym))
10479 {
10480 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
10481 return;
10482 }
10483 sym = orig_tinsn.tok[1].X_op_symbol;
10484 if (sym != NULL && !S_IS_DEFINED (sym))
10485 {
10486 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
10487 return;
10488 }
10489 }
10490
10491 if (expanded && xtensa_opcode_is_loop (isa, orig_tinsn.opcode) == 1)
10492 convert_frag_immed_finish_loop (segP, fragP, &orig_tinsn);
10493
10494 if (expanded && is_direct_call_opcode (orig_tinsn.opcode))
10495 {
10496 /* Add an expansion note on the expanded instruction. */
10497 fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4,
10498 &orig_tinsn.tok[0], TRUE,
10499 BFD_RELOC_XTENSA_ASM_EXPAND);
10500 }
10501 }
10502
10503
10504 /* Add a new fix expression into the desired segment. We have to
10505 switch to that segment to do this. */
10506
10507 static fixS *
10508 fix_new_exp_in_seg (segT new_seg,
10509 subsegT new_subseg,
10510 fragS *frag,
10511 int where,
10512 int size,
10513 expressionS *exp,
10514 int pcrel,
10515 bfd_reloc_code_real_type r_type)
10516 {
10517 fixS *new_fix;
10518 segT seg = now_seg;
10519 subsegT subseg = now_subseg;
10520
10521 gas_assert (new_seg != 0);
10522 subseg_set (new_seg, new_subseg);
10523
10524 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
10525 subseg_set (seg, subseg);
10526 return new_fix;
10527 }
10528
10529
10530 /* Relax a loop instruction so that it can span loop >256 bytes.
10531
10532 loop as, .L1
10533 .L0:
10534 rsr as, LEND
10535 wsr as, LBEG
10536 addi as, as, lo8 (label-.L1)
10537 addmi as, as, mid8 (label-.L1)
10538 wsr as, LEND
10539 isync
10540 rsr as, LCOUNT
10541 addi as, as, 1
10542 .L1:
10543 <<body>>
10544 label:
10545 */
10546
10547 static void
10548 convert_frag_immed_finish_loop (segT segP, fragS *fragP, TInsn *tinsn)
10549 {
10550 TInsn loop_insn;
10551 TInsn addi_insn;
10552 TInsn addmi_insn;
10553 unsigned long target;
10554 static xtensa_insnbuf insnbuf = NULL;
10555 unsigned int loop_length, loop_length_hi, loop_length_lo;
10556 xtensa_isa isa = xtensa_default_isa;
10557 addressT loop_offset;
10558 addressT addi_offset = 9;
10559 addressT addmi_offset = 12;
10560 fragS *next_fragP;
10561 int target_count;
10562
10563 if (!insnbuf)
10564 insnbuf = xtensa_insnbuf_alloc (isa);
10565
10566 /* Get the loop offset. */
10567 loop_offset = get_expanded_loop_offset (tinsn->opcode);
10568
10569 /* Validate that there really is a LOOP at the loop_offset. Because
10570 loops are not bundleable, we can assume that the instruction will be
10571 in slot 0. */
10572 tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset, 0);
10573 tinsn_immed_from_frag (&loop_insn, fragP, 0);
10574
10575 gas_assert (xtensa_opcode_is_loop (isa, loop_insn.opcode) == 1);
10576 addi_offset += loop_offset;
10577 addmi_offset += loop_offset;
10578
10579 gas_assert (tinsn->ntok == 2);
10580 if (tinsn->tok[1].X_op == O_constant)
10581 target = tinsn->tok[1].X_add_number;
10582 else if (tinsn->tok[1].X_op == O_symbol)
10583 {
10584 /* Find the fragment. */
10585 symbolS *sym = tinsn->tok[1].X_add_symbol;
10586 gas_assert (S_GET_SEGMENT (sym) == segP
10587 || S_GET_SEGMENT (sym) == absolute_section);
10588 target = (S_GET_VALUE (sym) + tinsn->tok[1].X_add_number);
10589 }
10590 else
10591 {
10592 as_bad (_("invalid expression evaluation type %d"), tinsn->tok[1].X_op);
10593 target = 0;
10594 }
10595
10596 loop_length = target - (fragP->fr_address + fragP->fr_fix);
10597 loop_length_hi = loop_length & ~0x0ff;
10598 loop_length_lo = loop_length & 0x0ff;
10599 if (loop_length_lo >= 128)
10600 {
10601 loop_length_lo -= 256;
10602 loop_length_hi += 256;
10603 }
10604
10605 /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most
10606 32512. If the loop is larger than that, then we just fail. */
10607 if (loop_length_hi > 32512)
10608 as_bad_where (fragP->fr_file, fragP->fr_line,
10609 _("loop too long for LOOP instruction"));
10610
10611 tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset, 0);
10612 gas_assert (addi_insn.opcode == xtensa_addi_opcode);
10613
10614 tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset, 0);
10615 gas_assert (addmi_insn.opcode == xtensa_addmi_opcode);
10616
10617 set_expr_const (&addi_insn.tok[2], loop_length_lo);
10618 tinsn_to_insnbuf (&addi_insn, insnbuf);
10619
10620 fragP->tc_frag_data.is_insn = TRUE;
10621 xtensa_insnbuf_to_chars
10622 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addi_offset, 0);
10623
10624 set_expr_const (&addmi_insn.tok[2], loop_length_hi);
10625 tinsn_to_insnbuf (&addmi_insn, insnbuf);
10626 xtensa_insnbuf_to_chars
10627 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addmi_offset, 0);
10628
10629 /* Walk through all of the frags from here to the loop end
10630 and mark them as no_transform to keep them from being modified
10631 by the linker. If we ever have a relocation for the
10632 addi/addmi of the difference of two symbols we can remove this. */
10633
10634 target_count = 0;
10635 for (next_fragP = fragP; next_fragP != NULL;
10636 next_fragP = next_fragP->fr_next)
10637 {
10638 next_fragP->tc_frag_data.is_no_transform = TRUE;
10639 if (next_fragP->tc_frag_data.is_loop_target)
10640 target_count++;
10641 if (target_count == 2)
10642 break;
10643 }
10644 }
10645
10646 \f
10647 /* A map that keeps information on a per-subsegment basis. This is
10648 maintained during initial assembly, but is invalid once the
10649 subsegments are smashed together. I.E., it cannot be used during
10650 the relaxation. */
10651
10652 typedef struct subseg_map_struct
10653 {
10654 /* the key */
10655 segT seg;
10656 subsegT subseg;
10657
10658 /* the data */
10659 unsigned flags;
10660 float total_freq; /* fall-through + branch target frequency */
10661 float target_freq; /* branch target frequency alone */
10662
10663 struct subseg_map_struct *next;
10664 } subseg_map;
10665
10666
10667 static subseg_map *sseg_map = NULL;
10668
10669 static subseg_map *
10670 get_subseg_info (segT seg, subsegT subseg)
10671 {
10672 subseg_map *subseg_e;
10673
10674 for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next)
10675 {
10676 if (seg == subseg_e->seg && subseg == subseg_e->subseg)
10677 break;
10678 }
10679 return subseg_e;
10680 }
10681
10682
10683 static subseg_map *
10684 add_subseg_info (segT seg, subsegT subseg)
10685 {
10686 subseg_map *subseg_e = (subseg_map *) xmalloc (sizeof (subseg_map));
10687 memset (subseg_e, 0, sizeof (subseg_map));
10688 subseg_e->seg = seg;
10689 subseg_e->subseg = subseg;
10690 subseg_e->flags = 0;
10691 /* Start off considering every branch target very important. */
10692 subseg_e->target_freq = 1.0;
10693 subseg_e->total_freq = 1.0;
10694 subseg_e->next = sseg_map;
10695 sseg_map = subseg_e;
10696 return subseg_e;
10697 }
10698
10699
10700 static unsigned
10701 get_last_insn_flags (segT seg, subsegT subseg)
10702 {
10703 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10704 if (subseg_e)
10705 return subseg_e->flags;
10706 return 0;
10707 }
10708
10709
10710 static void
10711 set_last_insn_flags (segT seg,
10712 subsegT subseg,
10713 unsigned fl,
10714 bfd_boolean val)
10715 {
10716 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10717 if (! subseg_e)
10718 subseg_e = add_subseg_info (seg, subseg);
10719 if (val)
10720 subseg_e->flags |= fl;
10721 else
10722 subseg_e->flags &= ~fl;
10723 }
10724
10725
10726 static float
10727 get_subseg_total_freq (segT seg, subsegT subseg)
10728 {
10729 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10730 if (subseg_e)
10731 return subseg_e->total_freq;
10732 return 1.0;
10733 }
10734
10735
10736 static float
10737 get_subseg_target_freq (segT seg, subsegT subseg)
10738 {
10739 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10740 if (subseg_e)
10741 return subseg_e->target_freq;
10742 return 1.0;
10743 }
10744
10745
10746 static void
10747 set_subseg_freq (segT seg, subsegT subseg, float total_f, float target_f)
10748 {
10749 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10750 if (! subseg_e)
10751 subseg_e = add_subseg_info (seg, subseg);
10752 subseg_e->total_freq = total_f;
10753 subseg_e->target_freq = target_f;
10754 }
10755
10756 \f
10757 /* Segment Lists and emit_state Stuff. */
10758
10759 static void
10760 xtensa_move_seg_list_to_beginning (seg_list *head)
10761 {
10762 head = head->next;
10763 while (head)
10764 {
10765 segT literal_section = head->seg;
10766
10767 /* Move the literal section to the front of the section list. */
10768 gas_assert (literal_section);
10769 if (literal_section != stdoutput->sections)
10770 {
10771 bfd_section_list_remove (stdoutput, literal_section);
10772 bfd_section_list_prepend (stdoutput, literal_section);
10773 }
10774 head = head->next;
10775 }
10776 }
10777
10778
10779 static void mark_literal_frags (seg_list *);
10780
10781 static void
10782 xtensa_move_literals (void)
10783 {
10784 seg_list *segment;
10785 frchainS *frchain_from, *frchain_to;
10786 fragS *search_frag, *next_frag, *literal_pool, *insert_after;
10787 fragS **frag_splice;
10788 emit_state state;
10789 segT dest_seg;
10790 fixS *fix, *next_fix, **fix_splice;
10791 sym_list *lit;
10792
10793 mark_literal_frags (literal_head->next);
10794
10795 if (use_literal_section)
10796 return;
10797
10798 for (segment = literal_head->next; segment; segment = segment->next)
10799 {
10800 /* Keep the literals for .init and .fini in separate sections. */
10801 if (!strcmp (segment_name (segment->seg), INIT_SECTION_NAME)
10802 || !strcmp (segment_name (segment->seg), FINI_SECTION_NAME))
10803 continue;
10804
10805 frchain_from = seg_info (segment->seg)->frchainP;
10806 search_frag = frchain_from->frch_root;
10807 literal_pool = NULL;
10808 frchain_to = NULL;
10809 frag_splice = &(frchain_from->frch_root);
10810
10811 while (!search_frag->tc_frag_data.literal_frag)
10812 {
10813 gas_assert (search_frag->fr_fix == 0
10814 || search_frag->fr_type == rs_align);
10815 search_frag = search_frag->fr_next;
10816 }
10817
10818 gas_assert (search_frag->tc_frag_data.literal_frag->fr_subtype
10819 == RELAX_LITERAL_POOL_BEGIN);
10820 xtensa_switch_section_emit_state (&state, segment->seg, 0);
10821
10822 /* Make sure that all the frags in this series are closed, and
10823 that there is at least one left over of zero-size. This
10824 prevents us from making a segment with an frchain without any
10825 frags in it. */
10826 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
10827 xtensa_set_frag_assembly_state (frag_now);
10828 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
10829 xtensa_set_frag_assembly_state (frag_now);
10830
10831 while (search_frag != frag_now)
10832 {
10833 next_frag = search_frag->fr_next;
10834
10835 /* First, move the frag out of the literal section and
10836 to the appropriate place. */
10837 if (search_frag->tc_frag_data.literal_frag)
10838 {
10839 literal_pool = search_frag->tc_frag_data.literal_frag;
10840 gas_assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN);
10841 frchain_to = literal_pool->tc_frag_data.lit_frchain;
10842 gas_assert (frchain_to);
10843 }
10844 insert_after = literal_pool->tc_frag_data.literal_frag;
10845 dest_seg = insert_after->fr_next->tc_frag_data.lit_seg;
10846
10847 *frag_splice = next_frag;
10848 search_frag->fr_next = insert_after->fr_next;
10849 insert_after->fr_next = search_frag;
10850 search_frag->tc_frag_data.lit_seg = dest_seg;
10851 literal_pool->tc_frag_data.literal_frag = search_frag;
10852
10853 /* Now move any fixups associated with this frag to the
10854 right section. */
10855 fix = frchain_from->fix_root;
10856 fix_splice = &(frchain_from->fix_root);
10857 while (fix)
10858 {
10859 next_fix = fix->fx_next;
10860 if (fix->fx_frag == search_frag)
10861 {
10862 *fix_splice = next_fix;
10863 fix->fx_next = frchain_to->fix_root;
10864 frchain_to->fix_root = fix;
10865 if (frchain_to->fix_tail == NULL)
10866 frchain_to->fix_tail = fix;
10867 }
10868 else
10869 fix_splice = &(fix->fx_next);
10870 fix = next_fix;
10871 }
10872 search_frag = next_frag;
10873 }
10874
10875 if (frchain_from->fix_root != NULL)
10876 {
10877 frchain_from = seg_info (segment->seg)->frchainP;
10878 as_warn (_("fixes not all moved from %s"), segment->seg->name);
10879
10880 gas_assert (frchain_from->fix_root == NULL);
10881 }
10882 frchain_from->fix_tail = NULL;
10883 xtensa_restore_emit_state (&state);
10884 }
10885
10886 /* Now fix up the SEGMENT value for all the literal symbols. */
10887 for (lit = literal_syms; lit; lit = lit->next)
10888 {
10889 symbolS *lit_sym = lit->sym;
10890 segT dseg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg;
10891 if (dseg)
10892 S_SET_SEGMENT (lit_sym, dseg);
10893 }
10894 }
10895
10896
10897 /* Walk over all the frags for segments in a list and mark them as
10898 containing literals. As clunky as this is, we can't rely on frag_var
10899 and frag_variant to get called in all situations. */
10900
10901 static void
10902 mark_literal_frags (seg_list *segment)
10903 {
10904 frchainS *frchain_from;
10905 fragS *search_frag;
10906
10907 while (segment)
10908 {
10909 frchain_from = seg_info (segment->seg)->frchainP;
10910 search_frag = frchain_from->frch_root;
10911 while (search_frag)
10912 {
10913 search_frag->tc_frag_data.is_literal = TRUE;
10914 search_frag = search_frag->fr_next;
10915 }
10916 segment = segment->next;
10917 }
10918 }
10919
10920
10921 static void
10922 xtensa_reorder_seg_list (seg_list *head, segT after)
10923 {
10924 /* Move all of the sections in the section list to come
10925 after "after" in the gnu segment list. */
10926
10927 head = head->next;
10928 while (head)
10929 {
10930 segT literal_section = head->seg;
10931
10932 /* Move the literal section after "after". */
10933 gas_assert (literal_section);
10934 if (literal_section != after)
10935 {
10936 bfd_section_list_remove (stdoutput, literal_section);
10937 bfd_section_list_insert_after (stdoutput, after, literal_section);
10938 }
10939
10940 head = head->next;
10941 }
10942 }
10943
10944
10945 /* Push all the literal segments to the end of the gnu list. */
10946
10947 static void
10948 xtensa_reorder_segments (void)
10949 {
10950 segT sec;
10951 segT last_sec = 0;
10952 int old_count = 0;
10953 int new_count = 0;
10954
10955 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
10956 {
10957 last_sec = sec;
10958 old_count++;
10959 }
10960
10961 /* Now that we have the last section, push all the literal
10962 sections to the end. */
10963 xtensa_reorder_seg_list (literal_head, last_sec);
10964
10965 /* Now perform the final error check. */
10966 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
10967 new_count++;
10968 gas_assert (new_count == old_count);
10969 }
10970
10971
10972 /* Change the emit state (seg, subseg, and frag related stuff) to the
10973 correct location. Return a emit_state which can be passed to
10974 xtensa_restore_emit_state to return to current fragment. */
10975
10976 static void
10977 xtensa_switch_to_literal_fragment (emit_state *result)
10978 {
10979 if (directive_state[directive_absolute_literals])
10980 {
10981 segT lit4_seg = cache_literal_section (TRUE);
10982 xtensa_switch_section_emit_state (result, lit4_seg, 0);
10983 }
10984 else
10985 xtensa_switch_to_non_abs_literal_fragment (result);
10986
10987 /* Do a 4-byte align here. */
10988 frag_align (2, 0, 0);
10989 record_alignment (now_seg, 2);
10990 }
10991
10992
10993 static void
10994 xtensa_switch_to_non_abs_literal_fragment (emit_state *result)
10995 {
10996 static bfd_boolean recursive = FALSE;
10997 fragS *pool_location = get_literal_pool_location (now_seg);
10998 segT lit_seg;
10999 bfd_boolean is_init =
11000 (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME));
11001 bfd_boolean is_fini =
11002 (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME));
11003
11004 if (pool_location == NULL
11005 && !use_literal_section
11006 && !recursive
11007 && !is_init && ! is_fini)
11008 {
11009 as_bad (_("literal pool location required for text-section-literals; specify with .literal_position"));
11010
11011 /* When we mark a literal pool location, we want to put a frag in
11012 the literal pool that points to it. But to do that, we want to
11013 switch_to_literal_fragment. But literal sections don't have
11014 literal pools, so their location is always null, so we would
11015 recurse forever. This is kind of hacky, but it works. */
11016
11017 recursive = TRUE;
11018 xtensa_mark_literal_pool_location ();
11019 recursive = FALSE;
11020 }
11021
11022 lit_seg = cache_literal_section (FALSE);
11023 xtensa_switch_section_emit_state (result, lit_seg, 0);
11024
11025 if (!use_literal_section
11026 && !is_init && !is_fini
11027 && get_literal_pool_location (now_seg) != pool_location)
11028 {
11029 /* Close whatever frag is there. */
11030 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
11031 xtensa_set_frag_assembly_state (frag_now);
11032 frag_now->tc_frag_data.literal_frag = pool_location;
11033 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
11034 xtensa_set_frag_assembly_state (frag_now);
11035 }
11036 }
11037
11038
11039 /* Call this function before emitting data into the literal section.
11040 This is a helper function for xtensa_switch_to_literal_fragment.
11041 This is similar to a .section new_now_seg subseg. */
11042
11043 static void
11044 xtensa_switch_section_emit_state (emit_state *state,
11045 segT new_now_seg,
11046 subsegT new_now_subseg)
11047 {
11048 state->name = now_seg->name;
11049 state->now_seg = now_seg;
11050 state->now_subseg = now_subseg;
11051 state->generating_literals = generating_literals;
11052 generating_literals++;
11053 subseg_set (new_now_seg, new_now_subseg);
11054 }
11055
11056
11057 /* Use to restore the emitting into the normal place. */
11058
11059 static void
11060 xtensa_restore_emit_state (emit_state *state)
11061 {
11062 generating_literals = state->generating_literals;
11063 subseg_set (state->now_seg, state->now_subseg);
11064 }
11065
11066
11067 /* Predicate function used to look up a section in a particular group. */
11068
11069 static bfd_boolean
11070 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11071 {
11072 const char *gname = inf;
11073 const char *group_name = elf_group_name (sec);
11074
11075 return (group_name == gname
11076 || (group_name != NULL
11077 && gname != NULL
11078 && strcmp (group_name, gname) == 0));
11079 }
11080
11081
11082 /* Get the literal section to be used for the current text section.
11083 The result may be cached in the default_lit_sections structure. */
11084
11085 static segT
11086 cache_literal_section (bfd_boolean use_abs_literals)
11087 {
11088 const char *text_name, *group_name = 0;
11089 char *base_name, *name, *suffix;
11090 segT *pcached;
11091 segT seg, current_section;
11092 int current_subsec;
11093 bfd_boolean linkonce = FALSE;
11094
11095 /* Save the current section/subsection. */
11096 current_section = now_seg;
11097 current_subsec = now_subseg;
11098
11099 /* Clear the cached values if they are no longer valid. */
11100 if (now_seg != default_lit_sections.current_text_seg)
11101 {
11102 default_lit_sections.current_text_seg = now_seg;
11103 default_lit_sections.lit_seg = NULL;
11104 default_lit_sections.lit4_seg = NULL;
11105 }
11106
11107 /* Check if the literal section is already cached. */
11108 if (use_abs_literals)
11109 pcached = &default_lit_sections.lit4_seg;
11110 else
11111 pcached = &default_lit_sections.lit_seg;
11112
11113 if (*pcached)
11114 return *pcached;
11115
11116 text_name = default_lit_sections.lit_prefix;
11117 if (! text_name || ! *text_name)
11118 {
11119 text_name = segment_name (current_section);
11120 group_name = elf_group_name (current_section);
11121 linkonce = (current_section->flags & SEC_LINK_ONCE) != 0;
11122 }
11123
11124 base_name = use_abs_literals ? ".lit4" : ".literal";
11125 if (group_name)
11126 {
11127 name = xmalloc (strlen (base_name) + strlen (group_name) + 2);
11128 sprintf (name, "%s.%s", base_name, group_name);
11129 }
11130 else if (strncmp (text_name, ".gnu.linkonce.", linkonce_len) == 0)
11131 {
11132 suffix = strchr (text_name + linkonce_len, '.');
11133
11134 name = xmalloc (linkonce_len + strlen (base_name) + 1
11135 + (suffix ? strlen (suffix) : 0));
11136 strcpy (name, ".gnu.linkonce");
11137 strcat (name, base_name);
11138 if (suffix)
11139 strcat (name, suffix);
11140 linkonce = TRUE;
11141 }
11142 else
11143 {
11144 /* If the section name begins or ends with ".text", then replace
11145 that portion instead of appending an additional suffix. */
11146 size_t len = strlen (text_name);
11147 if (len >= 5
11148 && (strcmp (text_name + len - 5, ".text") == 0
11149 || strncmp (text_name, ".text", 5) == 0))
11150 len -= 5;
11151
11152 name = xmalloc (len + strlen (base_name) + 1);
11153 if (strncmp (text_name, ".text", 5) == 0)
11154 {
11155 strcpy (name, base_name);
11156 strcat (name, text_name + 5);
11157 }
11158 else
11159 {
11160 strcpy (name, text_name);
11161 strcpy (name + len, base_name);
11162 }
11163 }
11164
11165 /* Canonicalize section names to allow renaming literal sections.
11166 The group name, if any, came from the current text section and
11167 has already been canonicalized. */
11168 name = tc_canonicalize_symbol_name (name);
11169
11170 seg = bfd_get_section_by_name_if (stdoutput, name, match_section_group,
11171 (void *) group_name);
11172 if (! seg)
11173 {
11174 flagword flags;
11175
11176 seg = subseg_force_new (name, 0);
11177
11178 if (! use_abs_literals)
11179 {
11180 /* Add the newly created literal segment to the list. */
11181 seg_list *n = (seg_list *) xmalloc (sizeof (seg_list));
11182 n->seg = seg;
11183 n->next = literal_head->next;
11184 literal_head->next = n;
11185 }
11186
11187 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_ALLOC | SEC_LOAD
11188 | (linkonce ? (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD) : 0)
11189 | (use_abs_literals ? SEC_DATA : SEC_CODE));
11190
11191 elf_group_name (seg) = group_name;
11192
11193 bfd_set_section_flags (stdoutput, seg, flags);
11194 bfd_set_section_alignment (stdoutput, seg, 2);
11195 }
11196
11197 *pcached = seg;
11198 subseg_set (current_section, current_subsec);
11199 return seg;
11200 }
11201
11202 \f
11203 /* Property Tables Stuff. */
11204
11205 #define XTENSA_INSN_SEC_NAME ".xt.insn"
11206 #define XTENSA_LIT_SEC_NAME ".xt.lit"
11207 #define XTENSA_PROP_SEC_NAME ".xt.prop"
11208
11209 typedef bfd_boolean (*frag_predicate) (const fragS *);
11210 typedef void (*frag_flags_fn) (const fragS *, frag_flags *);
11211
11212 static bfd_boolean get_frag_is_literal (const fragS *);
11213 static void xtensa_create_property_segments
11214 (frag_predicate, frag_predicate, const char *, xt_section_type);
11215 static void xtensa_create_xproperty_segments
11216 (frag_flags_fn, const char *, xt_section_type);
11217 static bfd_boolean exclude_section_from_property_tables (segT);
11218 static bfd_boolean section_has_property (segT, frag_predicate);
11219 static bfd_boolean section_has_xproperty (segT, frag_flags_fn);
11220 static void add_xt_block_frags
11221 (segT, xtensa_block_info **, frag_predicate, frag_predicate);
11222 static bfd_boolean xtensa_frag_flags_is_empty (const frag_flags *);
11223 static void xtensa_frag_flags_init (frag_flags *);
11224 static void get_frag_property_flags (const fragS *, frag_flags *);
11225 static flagword frag_flags_to_number (const frag_flags *);
11226 static void add_xt_prop_frags (segT, xtensa_block_info **, frag_flags_fn);
11227
11228 /* Set up property tables after relaxation. */
11229
11230 void
11231 xtensa_post_relax_hook (void)
11232 {
11233 xtensa_move_seg_list_to_beginning (literal_head);
11234
11235 xtensa_find_unmarked_state_frags ();
11236 xtensa_mark_frags_for_org ();
11237 xtensa_mark_difference_of_two_symbols ();
11238
11239 xtensa_create_property_segments (get_frag_is_literal,
11240 NULL,
11241 XTENSA_LIT_SEC_NAME,
11242 xt_literal_sec);
11243 xtensa_create_xproperty_segments (get_frag_property_flags,
11244 XTENSA_PROP_SEC_NAME,
11245 xt_prop_sec);
11246
11247 if (warn_unaligned_branch_targets)
11248 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_branch_targets, 0);
11249 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_loops, 0);
11250 }
11251
11252
11253 /* This function is only meaningful after xtensa_move_literals. */
11254
11255 static bfd_boolean
11256 get_frag_is_literal (const fragS *fragP)
11257 {
11258 gas_assert (fragP != NULL);
11259 return fragP->tc_frag_data.is_literal;
11260 }
11261
11262
11263 static void
11264 xtensa_create_property_segments (frag_predicate property_function,
11265 frag_predicate end_property_function,
11266 const char *section_name_base,
11267 xt_section_type sec_type)
11268 {
11269 segT *seclist;
11270
11271 /* Walk over all of the current segments.
11272 Walk over each fragment
11273 For each non-empty fragment,
11274 Build a property record (append where possible). */
11275
11276 for (seclist = &stdoutput->sections;
11277 seclist && *seclist;
11278 seclist = &(*seclist)->next)
11279 {
11280 segT sec = *seclist;
11281
11282 if (exclude_section_from_property_tables (sec))
11283 continue;
11284
11285 if (section_has_property (sec, property_function))
11286 {
11287 segment_info_type *xt_seg_info;
11288 xtensa_block_info **xt_blocks;
11289 segT prop_sec = xtensa_make_property_section (sec, section_name_base);
11290
11291 prop_sec->output_section = prop_sec;
11292 subseg_set (prop_sec, 0);
11293 xt_seg_info = seg_info (prop_sec);
11294 xt_blocks = &xt_seg_info->tc_segment_info_data.blocks[sec_type];
11295
11296 /* Walk over all of the frchains here and add new sections. */
11297 add_xt_block_frags (sec, xt_blocks, property_function,
11298 end_property_function);
11299 }
11300 }
11301
11302 /* Now we fill them out.... */
11303
11304 for (seclist = &stdoutput->sections;
11305 seclist && *seclist;
11306 seclist = &(*seclist)->next)
11307 {
11308 segment_info_type *seginfo;
11309 xtensa_block_info *block;
11310 segT sec = *seclist;
11311
11312 seginfo = seg_info (sec);
11313 block = seginfo->tc_segment_info_data.blocks[sec_type];
11314
11315 if (block)
11316 {
11317 xtensa_block_info *cur_block;
11318 int num_recs = 0;
11319 bfd_size_type rec_size;
11320
11321 for (cur_block = block; cur_block; cur_block = cur_block->next)
11322 num_recs++;
11323
11324 rec_size = num_recs * 8;
11325 bfd_set_section_size (stdoutput, sec, rec_size);
11326
11327 if (num_recs)
11328 {
11329 char *frag_data;
11330 int i;
11331
11332 subseg_set (sec, 0);
11333 frag_data = frag_more (rec_size);
11334 cur_block = block;
11335 for (i = 0; i < num_recs; i++)
11336 {
11337 fixS *fix;
11338
11339 /* Write the fixup. */
11340 gas_assert (cur_block);
11341 fix = fix_new (frag_now, i * 8, 4,
11342 section_symbol (cur_block->sec),
11343 cur_block->offset,
11344 FALSE, BFD_RELOC_32);
11345 fix->fx_file = "<internal>";
11346 fix->fx_line = 0;
11347
11348 /* Write the length. */
11349 md_number_to_chars (&frag_data[4 + i * 8],
11350 cur_block->size, 4);
11351 cur_block = cur_block->next;
11352 }
11353 frag_wane (frag_now);
11354 frag_new (0);
11355 frag_wane (frag_now);
11356 }
11357 }
11358 }
11359 }
11360
11361
11362 static void
11363 xtensa_create_xproperty_segments (frag_flags_fn flag_fn,
11364 const char *section_name_base,
11365 xt_section_type sec_type)
11366 {
11367 segT *seclist;
11368
11369 /* Walk over all of the current segments.
11370 Walk over each fragment.
11371 For each fragment that has instructions,
11372 build an instruction record (append where possible). */
11373
11374 for (seclist = &stdoutput->sections;
11375 seclist && *seclist;
11376 seclist = &(*seclist)->next)
11377 {
11378 segT sec = *seclist;
11379
11380 if (exclude_section_from_property_tables (sec))
11381 continue;
11382
11383 if (section_has_xproperty (sec, flag_fn))
11384 {
11385 segment_info_type *xt_seg_info;
11386 xtensa_block_info **xt_blocks;
11387 segT prop_sec = xtensa_make_property_section (sec, section_name_base);
11388
11389 prop_sec->output_section = prop_sec;
11390 subseg_set (prop_sec, 0);
11391 xt_seg_info = seg_info (prop_sec);
11392 xt_blocks = &xt_seg_info->tc_segment_info_data.blocks[sec_type];
11393
11394 /* Walk over all of the frchains here and add new sections. */
11395 add_xt_prop_frags (sec, xt_blocks, flag_fn);
11396 }
11397 }
11398
11399 /* Now we fill them out.... */
11400
11401 for (seclist = &stdoutput->sections;
11402 seclist && *seclist;
11403 seclist = &(*seclist)->next)
11404 {
11405 segment_info_type *seginfo;
11406 xtensa_block_info *block;
11407 segT sec = *seclist;
11408
11409 seginfo = seg_info (sec);
11410 block = seginfo->tc_segment_info_data.blocks[sec_type];
11411
11412 if (block)
11413 {
11414 xtensa_block_info *cur_block;
11415 int num_recs = 0;
11416 bfd_size_type rec_size;
11417
11418 for (cur_block = block; cur_block; cur_block = cur_block->next)
11419 num_recs++;
11420
11421 rec_size = num_recs * (8 + 4);
11422 bfd_set_section_size (stdoutput, sec, rec_size);
11423 /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */
11424
11425 if (num_recs)
11426 {
11427 char *frag_data;
11428 int i;
11429
11430 subseg_set (sec, 0);
11431 frag_data = frag_more (rec_size);
11432 cur_block = block;
11433 for (i = 0; i < num_recs; i++)
11434 {
11435 fixS *fix;
11436
11437 /* Write the fixup. */
11438 gas_assert (cur_block);
11439 fix = fix_new (frag_now, i * 12, 4,
11440 section_symbol (cur_block->sec),
11441 cur_block->offset,
11442 FALSE, BFD_RELOC_32);
11443 fix->fx_file = "<internal>";
11444 fix->fx_line = 0;
11445
11446 /* Write the length. */
11447 md_number_to_chars (&frag_data[4 + i * 12],
11448 cur_block->size, 4);
11449 md_number_to_chars (&frag_data[8 + i * 12],
11450 frag_flags_to_number (&cur_block->flags),
11451 sizeof (flagword));
11452 cur_block = cur_block->next;
11453 }
11454 frag_wane (frag_now);
11455 frag_new (0);
11456 frag_wane (frag_now);
11457 }
11458 }
11459 }
11460 }
11461
11462
11463 static bfd_boolean
11464 exclude_section_from_property_tables (segT sec)
11465 {
11466 flagword flags = bfd_get_section_flags (stdoutput, sec);
11467
11468 /* Sections that don't contribute to the memory footprint are excluded. */
11469 if ((flags & SEC_DEBUGGING)
11470 || !(flags & SEC_ALLOC)
11471 || (flags & SEC_MERGE))
11472 return TRUE;
11473
11474 /* Linker cie and fde optimizations mess up property entries for
11475 eh_frame sections, but there is nothing inside them relevant to
11476 property tables anyway. */
11477 if (strcmp (sec->name, ".eh_frame") == 0)
11478 return TRUE;
11479
11480 return FALSE;
11481 }
11482
11483
11484 static bfd_boolean
11485 section_has_property (segT sec, frag_predicate property_function)
11486 {
11487 segment_info_type *seginfo = seg_info (sec);
11488 fragS *fragP;
11489
11490 if (seginfo && seginfo->frchainP)
11491 {
11492 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
11493 {
11494 if (property_function (fragP)
11495 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
11496 return TRUE;
11497 }
11498 }
11499 return FALSE;
11500 }
11501
11502
11503 static bfd_boolean
11504 section_has_xproperty (segT sec, frag_flags_fn property_function)
11505 {
11506 segment_info_type *seginfo = seg_info (sec);
11507 fragS *fragP;
11508
11509 if (seginfo && seginfo->frchainP)
11510 {
11511 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
11512 {
11513 frag_flags prop_flags;
11514 property_function (fragP, &prop_flags);
11515 if (!xtensa_frag_flags_is_empty (&prop_flags))
11516 return TRUE;
11517 }
11518 }
11519 return FALSE;
11520 }
11521
11522
11523 /* Two types of block sections exist right now: literal and insns. */
11524
11525 static void
11526 add_xt_block_frags (segT sec,
11527 xtensa_block_info **xt_block,
11528 frag_predicate property_function,
11529 frag_predicate end_property_function)
11530 {
11531 fragS *fragP;
11532
11533 /* Build it if needed. */
11534 while (*xt_block != NULL)
11535 xt_block = &(*xt_block)->next;
11536 /* We are either at NULL at the beginning or at the end. */
11537
11538 /* Walk through the frags. */
11539 if (seg_info (sec)->frchainP)
11540 {
11541 for (fragP = seg_info (sec)->frchainP->frch_root;
11542 fragP;
11543 fragP = fragP->fr_next)
11544 {
11545 if (property_function (fragP)
11546 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
11547 {
11548 if (*xt_block != NULL)
11549 {
11550 if ((*xt_block)->offset + (*xt_block)->size
11551 == fragP->fr_address)
11552 (*xt_block)->size += fragP->fr_fix;
11553 else
11554 xt_block = &((*xt_block)->next);
11555 }
11556 if (*xt_block == NULL)
11557 {
11558 xtensa_block_info *new_block = (xtensa_block_info *)
11559 xmalloc (sizeof (xtensa_block_info));
11560 new_block->sec = sec;
11561 new_block->offset = fragP->fr_address;
11562 new_block->size = fragP->fr_fix;
11563 new_block->next = NULL;
11564 xtensa_frag_flags_init (&new_block->flags);
11565 *xt_block = new_block;
11566 }
11567 if (end_property_function
11568 && end_property_function (fragP))
11569 {
11570 xt_block = &((*xt_block)->next);
11571 }
11572 }
11573 }
11574 }
11575 }
11576
11577
11578 /* Break the encapsulation of add_xt_prop_frags here. */
11579
11580 static bfd_boolean
11581 xtensa_frag_flags_is_empty (const frag_flags *prop_flags)
11582 {
11583 if (prop_flags->is_literal
11584 || prop_flags->is_insn
11585 || prop_flags->is_data
11586 || prop_flags->is_unreachable)
11587 return FALSE;
11588 return TRUE;
11589 }
11590
11591
11592 static void
11593 xtensa_frag_flags_init (frag_flags *prop_flags)
11594 {
11595 memset (prop_flags, 0, sizeof (frag_flags));
11596 }
11597
11598
11599 static void
11600 get_frag_property_flags (const fragS *fragP, frag_flags *prop_flags)
11601 {
11602 xtensa_frag_flags_init (prop_flags);
11603 if (fragP->tc_frag_data.is_literal)
11604 prop_flags->is_literal = TRUE;
11605 if (fragP->tc_frag_data.is_specific_opcode
11606 || fragP->tc_frag_data.is_no_transform)
11607 {
11608 prop_flags->is_no_transform = TRUE;
11609 if (xtensa_frag_flags_is_empty (prop_flags))
11610 prop_flags->is_data = TRUE;
11611 }
11612 if (fragP->tc_frag_data.is_unreachable)
11613 prop_flags->is_unreachable = TRUE;
11614 else if (fragP->tc_frag_data.is_insn)
11615 {
11616 prop_flags->is_insn = TRUE;
11617 if (fragP->tc_frag_data.is_loop_target)
11618 prop_flags->insn.is_loop_target = TRUE;
11619 if (fragP->tc_frag_data.is_branch_target)
11620 prop_flags->insn.is_branch_target = TRUE;
11621 if (fragP->tc_frag_data.is_no_density)
11622 prop_flags->insn.is_no_density = TRUE;
11623 if (fragP->tc_frag_data.use_absolute_literals)
11624 prop_flags->insn.is_abslit = TRUE;
11625 }
11626 if (fragP->tc_frag_data.is_align)
11627 {
11628 prop_flags->is_align = TRUE;
11629 prop_flags->alignment = fragP->tc_frag_data.alignment;
11630 if (xtensa_frag_flags_is_empty (prop_flags))
11631 prop_flags->is_data = TRUE;
11632 }
11633 }
11634
11635
11636 static flagword
11637 frag_flags_to_number (const frag_flags *prop_flags)
11638 {
11639 flagword num = 0;
11640 if (prop_flags->is_literal)
11641 num |= XTENSA_PROP_LITERAL;
11642 if (prop_flags->is_insn)
11643 num |= XTENSA_PROP_INSN;
11644 if (prop_flags->is_data)
11645 num |= XTENSA_PROP_DATA;
11646 if (prop_flags->is_unreachable)
11647 num |= XTENSA_PROP_UNREACHABLE;
11648 if (prop_flags->insn.is_loop_target)
11649 num |= XTENSA_PROP_INSN_LOOP_TARGET;
11650 if (prop_flags->insn.is_branch_target)
11651 {
11652 num |= XTENSA_PROP_INSN_BRANCH_TARGET;
11653 num = SET_XTENSA_PROP_BT_ALIGN (num, prop_flags->insn.bt_align_priority);
11654 }
11655
11656 if (prop_flags->insn.is_no_density)
11657 num |= XTENSA_PROP_INSN_NO_DENSITY;
11658 if (prop_flags->is_no_transform)
11659 num |= XTENSA_PROP_NO_TRANSFORM;
11660 if (prop_flags->insn.is_no_reorder)
11661 num |= XTENSA_PROP_INSN_NO_REORDER;
11662 if (prop_flags->insn.is_abslit)
11663 num |= XTENSA_PROP_INSN_ABSLIT;
11664
11665 if (prop_flags->is_align)
11666 {
11667 num |= XTENSA_PROP_ALIGN;
11668 num = SET_XTENSA_PROP_ALIGNMENT (num, prop_flags->alignment);
11669 }
11670
11671 return num;
11672 }
11673
11674
11675 static bfd_boolean
11676 xtensa_frag_flags_combinable (const frag_flags *prop_flags_1,
11677 const frag_flags *prop_flags_2)
11678 {
11679 /* Cannot combine with an end marker. */
11680
11681 if (prop_flags_1->is_literal != prop_flags_2->is_literal)
11682 return FALSE;
11683 if (prop_flags_1->is_insn != prop_flags_2->is_insn)
11684 return FALSE;
11685 if (prop_flags_1->is_data != prop_flags_2->is_data)
11686 return FALSE;
11687
11688 if (prop_flags_1->is_insn)
11689 {
11690 /* Properties of the beginning of the frag. */
11691 if (prop_flags_2->insn.is_loop_target)
11692 return FALSE;
11693 if (prop_flags_2->insn.is_branch_target)
11694 return FALSE;
11695 if (prop_flags_1->insn.is_no_density !=
11696 prop_flags_2->insn.is_no_density)
11697 return FALSE;
11698 if (prop_flags_1->is_no_transform !=
11699 prop_flags_2->is_no_transform)
11700 return FALSE;
11701 if (prop_flags_1->insn.is_no_reorder !=
11702 prop_flags_2->insn.is_no_reorder)
11703 return FALSE;
11704 if (prop_flags_1->insn.is_abslit !=
11705 prop_flags_2->insn.is_abslit)
11706 return FALSE;
11707 }
11708
11709 if (prop_flags_1->is_align)
11710 return FALSE;
11711
11712 return TRUE;
11713 }
11714
11715
11716 static bfd_vma
11717 xt_block_aligned_size (const xtensa_block_info *xt_block)
11718 {
11719 bfd_vma end_addr;
11720 unsigned align_bits;
11721
11722 if (!xt_block->flags.is_align)
11723 return xt_block->size;
11724
11725 end_addr = xt_block->offset + xt_block->size;
11726 align_bits = xt_block->flags.alignment;
11727 end_addr = ((end_addr + ((1 << align_bits) -1)) >> align_bits) << align_bits;
11728 return end_addr - xt_block->offset;
11729 }
11730
11731
11732 static bfd_boolean
11733 xtensa_xt_block_combine (xtensa_block_info *xt_block,
11734 const xtensa_block_info *xt_block_2)
11735 {
11736 if (xt_block->sec != xt_block_2->sec)
11737 return FALSE;
11738 if (xt_block->offset + xt_block_aligned_size (xt_block)
11739 != xt_block_2->offset)
11740 return FALSE;
11741
11742 if (xt_block_2->size == 0
11743 && (!xt_block_2->flags.is_unreachable
11744 || xt_block->flags.is_unreachable))
11745 {
11746 if (xt_block_2->flags.is_align
11747 && xt_block->flags.is_align)
11748 {
11749 /* Nothing needed. */
11750 if (xt_block->flags.alignment >= xt_block_2->flags.alignment)
11751 return TRUE;
11752 }
11753 else
11754 {
11755 if (xt_block_2->flags.is_align)
11756 {
11757 /* Push alignment to previous entry. */
11758 xt_block->flags.is_align = xt_block_2->flags.is_align;
11759 xt_block->flags.alignment = xt_block_2->flags.alignment;
11760 }
11761 return TRUE;
11762 }
11763 }
11764 if (!xtensa_frag_flags_combinable (&xt_block->flags,
11765 &xt_block_2->flags))
11766 return FALSE;
11767
11768 xt_block->size += xt_block_2->size;
11769
11770 if (xt_block_2->flags.is_align)
11771 {
11772 xt_block->flags.is_align = TRUE;
11773 xt_block->flags.alignment = xt_block_2->flags.alignment;
11774 }
11775
11776 return TRUE;
11777 }
11778
11779
11780 static void
11781 add_xt_prop_frags (segT sec,
11782 xtensa_block_info **xt_block,
11783 frag_flags_fn property_function)
11784 {
11785 fragS *fragP;
11786
11787 /* Build it if needed. */
11788 while (*xt_block != NULL)
11789 {
11790 xt_block = &(*xt_block)->next;
11791 }
11792 /* We are either at NULL at the beginning or at the end. */
11793
11794 /* Walk through the frags. */
11795 if (seg_info (sec)->frchainP)
11796 {
11797 for (fragP = seg_info (sec)->frchainP->frch_root; fragP;
11798 fragP = fragP->fr_next)
11799 {
11800 xtensa_block_info tmp_block;
11801 tmp_block.sec = sec;
11802 tmp_block.offset = fragP->fr_address;
11803 tmp_block.size = fragP->fr_fix;
11804 tmp_block.next = NULL;
11805 property_function (fragP, &tmp_block.flags);
11806
11807 if (!xtensa_frag_flags_is_empty (&tmp_block.flags))
11808 /* && fragP->fr_fix != 0) */
11809 {
11810 if ((*xt_block) == NULL
11811 || !xtensa_xt_block_combine (*xt_block, &tmp_block))
11812 {
11813 xtensa_block_info *new_block;
11814 if ((*xt_block) != NULL)
11815 xt_block = &(*xt_block)->next;
11816 new_block = (xtensa_block_info *)
11817 xmalloc (sizeof (xtensa_block_info));
11818 *new_block = tmp_block;
11819 *xt_block = new_block;
11820 }
11821 }
11822 }
11823 }
11824 }
11825
11826 \f
11827 /* op_placement_info_table */
11828
11829 /* op_placement_info makes it easier to determine which
11830 ops can go in which slots. */
11831
11832 static void
11833 init_op_placement_info_table (void)
11834 {
11835 xtensa_isa isa = xtensa_default_isa;
11836 xtensa_insnbuf ibuf = xtensa_insnbuf_alloc (isa);
11837 xtensa_opcode opcode;
11838 xtensa_format fmt;
11839 int slot;
11840 int num_opcodes = xtensa_isa_num_opcodes (isa);
11841
11842 op_placement_table = (op_placement_info_table)
11843 xmalloc (sizeof (op_placement_info) * num_opcodes);
11844 gas_assert (xtensa_isa_num_formats (isa) < MAX_FORMATS);
11845
11846 for (opcode = 0; opcode < num_opcodes; opcode++)
11847 {
11848 op_placement_info *opi = &op_placement_table[opcode];
11849 /* FIXME: Make tinsn allocation dynamic. */
11850 if (xtensa_opcode_num_operands (isa, opcode) > MAX_INSN_ARGS)
11851 as_fatal (_("too many operands in instruction"));
11852 opi->narrowest = XTENSA_UNDEFINED;
11853 opi->narrowest_size = 0x7F;
11854 opi->narrowest_slot = 0;
11855 opi->formats = 0;
11856 opi->num_formats = 0;
11857 opi->issuef = 0;
11858 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
11859 {
11860 opi->slots[fmt] = 0;
11861 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
11862 {
11863 if (xtensa_opcode_encode (isa, fmt, slot, ibuf, opcode) == 0)
11864 {
11865 int fmt_length = xtensa_format_length (isa, fmt);
11866 opi->issuef++;
11867 set_bit (fmt, opi->formats);
11868 set_bit (slot, opi->slots[fmt]);
11869 if (fmt_length < opi->narrowest_size
11870 || (fmt_length == opi->narrowest_size
11871 && (xtensa_format_num_slots (isa, fmt)
11872 < xtensa_format_num_slots (isa,
11873 opi->narrowest))))
11874 {
11875 opi->narrowest = fmt;
11876 opi->narrowest_size = fmt_length;
11877 opi->narrowest_slot = slot;
11878 }
11879 }
11880 }
11881 if (opi->formats)
11882 opi->num_formats++;
11883 }
11884 }
11885 xtensa_insnbuf_free (isa, ibuf);
11886 }
11887
11888
11889 bfd_boolean
11890 opcode_fits_format_slot (xtensa_opcode opcode, xtensa_format fmt, int slot)
11891 {
11892 return bit_is_set (slot, op_placement_table[opcode].slots[fmt]);
11893 }
11894
11895
11896 /* If the opcode is available in a single slot format, return its size. */
11897
11898 static int
11899 xg_get_single_size (xtensa_opcode opcode)
11900 {
11901 return op_placement_table[opcode].narrowest_size;
11902 }
11903
11904
11905 static xtensa_format
11906 xg_get_single_format (xtensa_opcode opcode)
11907 {
11908 return op_placement_table[opcode].narrowest;
11909 }
11910
11911
11912 static int
11913 xg_get_single_slot (xtensa_opcode opcode)
11914 {
11915 return op_placement_table[opcode].narrowest_slot;
11916 }
11917
11918 \f
11919 /* Instruction Stack Functions (from "xtensa-istack.h"). */
11920
11921 void
11922 istack_init (IStack *stack)
11923 {
11924 stack->ninsn = 0;
11925 }
11926
11927
11928 bfd_boolean
11929 istack_empty (IStack *stack)
11930 {
11931 return (stack->ninsn == 0);
11932 }
11933
11934
11935 bfd_boolean
11936 istack_full (IStack *stack)
11937 {
11938 return (stack->ninsn == MAX_ISTACK);
11939 }
11940
11941
11942 /* Return a pointer to the top IStack entry.
11943 It is an error to call this if istack_empty () is TRUE. */
11944
11945 TInsn *
11946 istack_top (IStack *stack)
11947 {
11948 int rec = stack->ninsn - 1;
11949 gas_assert (!istack_empty (stack));
11950 return &stack->insn[rec];
11951 }
11952
11953
11954 /* Add a new TInsn to an IStack.
11955 It is an error to call this if istack_full () is TRUE. */
11956
11957 void
11958 istack_push (IStack *stack, TInsn *insn)
11959 {
11960 int rec = stack->ninsn;
11961 gas_assert (!istack_full (stack));
11962 stack->insn[rec] = *insn;
11963 stack->ninsn++;
11964 }
11965
11966
11967 /* Clear space for the next TInsn on the IStack and return a pointer
11968 to it. It is an error to call this if istack_full () is TRUE. */
11969
11970 TInsn *
11971 istack_push_space (IStack *stack)
11972 {
11973 int rec = stack->ninsn;
11974 TInsn *insn;
11975 gas_assert (!istack_full (stack));
11976 insn = &stack->insn[rec];
11977 tinsn_init (insn);
11978 stack->ninsn++;
11979 return insn;
11980 }
11981
11982
11983 /* Remove the last pushed instruction. It is an error to call this if
11984 istack_empty () returns TRUE. */
11985
11986 void
11987 istack_pop (IStack *stack)
11988 {
11989 int rec = stack->ninsn - 1;
11990 gas_assert (!istack_empty (stack));
11991 stack->ninsn--;
11992 tinsn_init (&stack->insn[rec]);
11993 }
11994
11995 \f
11996 /* TInsn functions. */
11997
11998 void
11999 tinsn_init (TInsn *dst)
12000 {
12001 memset (dst, 0, sizeof (TInsn));
12002 }
12003
12004
12005 /* Return TRUE if ANY of the operands in the insn are symbolic. */
12006
12007 static bfd_boolean
12008 tinsn_has_symbolic_operands (const TInsn *insn)
12009 {
12010 int i;
12011 int n = insn->ntok;
12012
12013 gas_assert (insn->insn_type == ITYPE_INSN);
12014
12015 for (i = 0; i < n; ++i)
12016 {
12017 switch (insn->tok[i].X_op)
12018 {
12019 case O_register:
12020 case O_constant:
12021 break;
12022 default:
12023 return TRUE;
12024 }
12025 }
12026 return FALSE;
12027 }
12028
12029
12030 bfd_boolean
12031 tinsn_has_invalid_symbolic_operands (const TInsn *insn)
12032 {
12033 xtensa_isa isa = xtensa_default_isa;
12034 int i;
12035 int n = insn->ntok;
12036
12037 gas_assert (insn->insn_type == ITYPE_INSN);
12038
12039 for (i = 0; i < n; ++i)
12040 {
12041 switch (insn->tok[i].X_op)
12042 {
12043 case O_register:
12044 case O_constant:
12045 break;
12046 case O_big:
12047 case O_illegal:
12048 case O_absent:
12049 /* Errors for these types are caught later. */
12050 break;
12051 case O_hi16:
12052 case O_lo16:
12053 default:
12054 /* Symbolic immediates are only allowed on the last immediate
12055 operand. At this time, CONST16 is the only opcode where we
12056 support non-PC-relative relocations. */
12057 if (i != get_relaxable_immed (insn->opcode)
12058 || (xtensa_operand_is_PCrelative (isa, insn->opcode, i) != 1
12059 && insn->opcode != xtensa_const16_opcode))
12060 {
12061 as_bad (_("invalid symbolic operand"));
12062 return TRUE;
12063 }
12064 }
12065 }
12066 return FALSE;
12067 }
12068
12069
12070 /* For assembly code with complex expressions (e.g. subtraction),
12071 we have to build them in the literal pool so that
12072 their results are calculated correctly after relaxation.
12073 The relaxation only handles expressions that
12074 boil down to SYMBOL + OFFSET. */
12075
12076 static bfd_boolean
12077 tinsn_has_complex_operands (const TInsn *insn)
12078 {
12079 int i;
12080 int n = insn->ntok;
12081 gas_assert (insn->insn_type == ITYPE_INSN);
12082 for (i = 0; i < n; ++i)
12083 {
12084 switch (insn->tok[i].X_op)
12085 {
12086 case O_register:
12087 case O_constant:
12088 case O_symbol:
12089 case O_lo16:
12090 case O_hi16:
12091 break;
12092 default:
12093 return TRUE;
12094 }
12095 }
12096 return FALSE;
12097 }
12098
12099
12100 /* Encode a TInsn opcode and its constant operands into slotbuf.
12101 Return TRUE if there is a symbol in the immediate field. This
12102 function assumes that:
12103 1) The number of operands are correct.
12104 2) The insn_type is ITYPE_INSN.
12105 3) The opcode can be encoded in the specified format and slot.
12106 4) Operands are either O_constant or O_symbol, and all constants fit. */
12107
12108 static bfd_boolean
12109 tinsn_to_slotbuf (xtensa_format fmt,
12110 int slot,
12111 TInsn *tinsn,
12112 xtensa_insnbuf slotbuf)
12113 {
12114 xtensa_isa isa = xtensa_default_isa;
12115 xtensa_opcode opcode = tinsn->opcode;
12116 bfd_boolean has_fixup = FALSE;
12117 int noperands = xtensa_opcode_num_operands (isa, opcode);
12118 int i;
12119
12120 gas_assert (tinsn->insn_type == ITYPE_INSN);
12121 if (noperands != tinsn->ntok)
12122 as_fatal (_("operand number mismatch"));
12123
12124 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opcode))
12125 {
12126 as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""),
12127 xtensa_opcode_name (isa, opcode), xtensa_format_name (isa, fmt));
12128 return FALSE;
12129 }
12130
12131 for (i = 0; i < noperands; i++)
12132 {
12133 expressionS *exp = &tinsn->tok[i];
12134 int rc;
12135 unsigned line;
12136 char *file_name;
12137 uint32 opnd_value;
12138
12139 switch (exp->X_op)
12140 {
12141 case O_register:
12142 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
12143 break;
12144 /* The register number has already been checked in
12145 expression_maybe_register, so we don't need to check here. */
12146 opnd_value = exp->X_add_number;
12147 (void) xtensa_operand_encode (isa, opcode, i, &opnd_value);
12148 rc = xtensa_operand_set_field (isa, opcode, i, fmt, slot, slotbuf,
12149 opnd_value);
12150 if (rc != 0)
12151 as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa));
12152 break;
12153
12154 case O_constant:
12155 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
12156 break;
12157 as_where (&file_name, &line);
12158 /* It is a constant and we called this function
12159 then we have to try to fit it. */
12160 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, i,
12161 exp->X_add_number, file_name, line);
12162 break;
12163
12164 default:
12165 has_fixup = TRUE;
12166 break;
12167 }
12168 }
12169
12170 return has_fixup;
12171 }
12172
12173
12174 /* Encode a single TInsn into an insnbuf. If the opcode can only be encoded
12175 into a multi-slot instruction, fill the other slots with NOPs.
12176 Return TRUE if there is a symbol in the immediate field. See also the
12177 assumptions listed for tinsn_to_slotbuf. */
12178
12179 static bfd_boolean
12180 tinsn_to_insnbuf (TInsn *tinsn, xtensa_insnbuf insnbuf)
12181 {
12182 static xtensa_insnbuf slotbuf = 0;
12183 static vliw_insn vinsn;
12184 xtensa_isa isa = xtensa_default_isa;
12185 bfd_boolean has_fixup = FALSE;
12186 int i;
12187
12188 if (!slotbuf)
12189 {
12190 slotbuf = xtensa_insnbuf_alloc (isa);
12191 xg_init_vinsn (&vinsn);
12192 }
12193
12194 xg_clear_vinsn (&vinsn);
12195
12196 bundle_tinsn (tinsn, &vinsn);
12197
12198 xtensa_format_encode (isa, vinsn.format, insnbuf);
12199
12200 for (i = 0; i < vinsn.num_slots; i++)
12201 {
12202 /* Only one slot may have a fix-up because the rest contains NOPs. */
12203 has_fixup |=
12204 tinsn_to_slotbuf (vinsn.format, i, &vinsn.slots[i], vinsn.slotbuf[i]);
12205 xtensa_format_set_slot (isa, vinsn.format, i, insnbuf, vinsn.slotbuf[i]);
12206 }
12207
12208 return has_fixup;
12209 }
12210
12211
12212 /* Check the instruction arguments. Return TRUE on failure. */
12213
12214 static bfd_boolean
12215 tinsn_check_arguments (const TInsn *insn)
12216 {
12217 xtensa_isa isa = xtensa_default_isa;
12218 xtensa_opcode opcode = insn->opcode;
12219 xtensa_regfile t1_regfile, t2_regfile;
12220 int t1_reg, t2_reg;
12221 int t1_base_reg, t1_last_reg;
12222 int t2_base_reg, t2_last_reg;
12223 char t1_inout, t2_inout;
12224 int i, j;
12225
12226 if (opcode == XTENSA_UNDEFINED)
12227 {
12228 as_bad (_("invalid opcode"));
12229 return TRUE;
12230 }
12231
12232 if (xtensa_opcode_num_operands (isa, opcode) > insn->ntok)
12233 {
12234 as_bad (_("too few operands"));
12235 return TRUE;
12236 }
12237
12238 if (xtensa_opcode_num_operands (isa, opcode) < insn->ntok)
12239 {
12240 as_bad (_("too many operands"));
12241 return TRUE;
12242 }
12243
12244 /* Check registers. */
12245 for (j = 0; j < insn->ntok; j++)
12246 {
12247 if (xtensa_operand_is_register (isa, insn->opcode, j) != 1)
12248 continue;
12249
12250 t2_regfile = xtensa_operand_regfile (isa, insn->opcode, j);
12251 t2_base_reg = insn->tok[j].X_add_number;
12252 t2_last_reg
12253 = t2_base_reg + xtensa_operand_num_regs (isa, insn->opcode, j);
12254
12255 for (i = 0; i < insn->ntok; i++)
12256 {
12257 if (i == j)
12258 continue;
12259
12260 if (xtensa_operand_is_register (isa, insn->opcode, i) != 1)
12261 continue;
12262
12263 t1_regfile = xtensa_operand_regfile (isa, insn->opcode, i);
12264
12265 if (t1_regfile != t2_regfile)
12266 continue;
12267
12268 t1_inout = xtensa_operand_inout (isa, insn->opcode, i);
12269 t2_inout = xtensa_operand_inout (isa, insn->opcode, j);
12270
12271 t1_base_reg = insn->tok[i].X_add_number;
12272 t1_last_reg = (t1_base_reg
12273 + xtensa_operand_num_regs (isa, insn->opcode, i));
12274
12275 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
12276 {
12277 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
12278 {
12279 if (t1_reg != t2_reg)
12280 continue;
12281
12282 if (t1_inout != 'i' && t2_inout != 'i')
12283 {
12284 as_bad (_("multiple writes to the same register"));
12285 return TRUE;
12286 }
12287 }
12288 }
12289 }
12290 }
12291 return FALSE;
12292 }
12293
12294
12295 /* Load an instruction from its encoded form. */
12296
12297 static void
12298 tinsn_from_chars (TInsn *tinsn, char *f, int slot)
12299 {
12300 vliw_insn vinsn;
12301
12302 xg_init_vinsn (&vinsn);
12303 vinsn_from_chars (&vinsn, f);
12304
12305 *tinsn = vinsn.slots[slot];
12306 xg_free_vinsn (&vinsn);
12307 }
12308
12309
12310 static void
12311 tinsn_from_insnbuf (TInsn *tinsn,
12312 xtensa_insnbuf slotbuf,
12313 xtensa_format fmt,
12314 int slot)
12315 {
12316 int i;
12317 xtensa_isa isa = xtensa_default_isa;
12318
12319 /* Find the immed. */
12320 tinsn_init (tinsn);
12321 tinsn->insn_type = ITYPE_INSN;
12322 tinsn->is_specific_opcode = FALSE; /* must not be specific */
12323 tinsn->opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
12324 tinsn->ntok = xtensa_opcode_num_operands (isa, tinsn->opcode);
12325 for (i = 0; i < tinsn->ntok; i++)
12326 {
12327 set_expr_const (&tinsn->tok[i],
12328 xtensa_insnbuf_get_operand (slotbuf, fmt, slot,
12329 tinsn->opcode, i));
12330 }
12331 }
12332
12333
12334 /* Read the value of the relaxable immed from the fr_symbol and fr_offset. */
12335
12336 static void
12337 tinsn_immed_from_frag (TInsn *tinsn, fragS *fragP, int slot)
12338 {
12339 xtensa_opcode opcode = tinsn->opcode;
12340 int opnum;
12341
12342 if (fragP->tc_frag_data.slot_symbols[slot])
12343 {
12344 opnum = get_relaxable_immed (opcode);
12345 gas_assert (opnum >= 0);
12346 set_expr_symbol_offset (&tinsn->tok[opnum],
12347 fragP->tc_frag_data.slot_symbols[slot],
12348 fragP->tc_frag_data.slot_offsets[slot]);
12349 }
12350 tinsn->extra_arg = fragP->tc_frag_data.free_reg[slot];
12351 }
12352
12353
12354 static int
12355 get_num_stack_text_bytes (IStack *istack)
12356 {
12357 int i;
12358 int text_bytes = 0;
12359
12360 for (i = 0; i < istack->ninsn; i++)
12361 {
12362 TInsn *tinsn = &istack->insn[i];
12363 if (tinsn->insn_type == ITYPE_INSN)
12364 text_bytes += xg_get_single_size (tinsn->opcode);
12365 }
12366 return text_bytes;
12367 }
12368
12369
12370 static int
12371 get_num_stack_literal_bytes (IStack *istack)
12372 {
12373 int i;
12374 int lit_bytes = 0;
12375
12376 for (i = 0; i < istack->ninsn; i++)
12377 {
12378 TInsn *tinsn = &istack->insn[i];
12379 if (tinsn->insn_type == ITYPE_LITERAL && tinsn->ntok == 1)
12380 lit_bytes += 4;
12381 }
12382 return lit_bytes;
12383 }
12384
12385 \f
12386 /* vliw_insn functions. */
12387
12388 static void
12389 xg_init_vinsn (vliw_insn *v)
12390 {
12391 int i;
12392 xtensa_isa isa = xtensa_default_isa;
12393
12394 xg_clear_vinsn (v);
12395
12396 v->insnbuf = xtensa_insnbuf_alloc (isa);
12397 if (v->insnbuf == NULL)
12398 as_fatal (_("out of memory"));
12399
12400 for (i = 0; i < config_max_slots; i++)
12401 {
12402 v->slotbuf[i] = xtensa_insnbuf_alloc (isa);
12403 if (v->slotbuf[i] == NULL)
12404 as_fatal (_("out of memory"));
12405 }
12406 }
12407
12408
12409 static void
12410 xg_clear_vinsn (vliw_insn *v)
12411 {
12412 int i;
12413
12414 memset (v, 0, offsetof (vliw_insn, slots)
12415 + sizeof(TInsn) * config_max_slots);
12416
12417 v->format = XTENSA_UNDEFINED;
12418 v->num_slots = 0;
12419 v->inside_bundle = FALSE;
12420
12421 if (xt_saved_debug_type != DEBUG_NONE)
12422 debug_type = xt_saved_debug_type;
12423
12424 for (i = 0; i < config_max_slots; i++)
12425 v->slots[i].opcode = XTENSA_UNDEFINED;
12426 }
12427
12428
12429 static void
12430 xg_copy_vinsn (vliw_insn *dst, vliw_insn *src)
12431 {
12432 memcpy (dst, src,
12433 offsetof(vliw_insn, slots) + src->num_slots * sizeof(TInsn));
12434 dst->insnbuf = src->insnbuf;
12435 memcpy (dst->slotbuf, src->slotbuf, src->num_slots * sizeof(xtensa_insnbuf));
12436 }
12437
12438
12439 static bfd_boolean
12440 vinsn_has_specific_opcodes (vliw_insn *v)
12441 {
12442 int i;
12443
12444 for (i = 0; i < v->num_slots; i++)
12445 {
12446 if (v->slots[i].is_specific_opcode)
12447 return TRUE;
12448 }
12449 return FALSE;
12450 }
12451
12452
12453 static void
12454 xg_free_vinsn (vliw_insn *v)
12455 {
12456 int i;
12457 xtensa_insnbuf_free (xtensa_default_isa, v->insnbuf);
12458 for (i = 0; i < config_max_slots; i++)
12459 xtensa_insnbuf_free (xtensa_default_isa, v->slotbuf[i]);
12460 }
12461
12462
12463 /* Encode a vliw_insn into an insnbuf. Return TRUE if there are any symbolic
12464 operands. See also the assumptions listed for tinsn_to_slotbuf. */
12465
12466 static bfd_boolean
12467 vinsn_to_insnbuf (vliw_insn *vinsn,
12468 char *frag_offset,
12469 fragS *fragP,
12470 bfd_boolean record_fixup)
12471 {
12472 xtensa_isa isa = xtensa_default_isa;
12473 xtensa_format fmt = vinsn->format;
12474 xtensa_insnbuf insnbuf = vinsn->insnbuf;
12475 int slot;
12476 bfd_boolean has_fixup = FALSE;
12477
12478 xtensa_format_encode (isa, fmt, insnbuf);
12479
12480 for (slot = 0; slot < vinsn->num_slots; slot++)
12481 {
12482 TInsn *tinsn = &vinsn->slots[slot];
12483 expressionS *extra_arg = &tinsn->extra_arg;
12484 bfd_boolean tinsn_has_fixup =
12485 tinsn_to_slotbuf (vinsn->format, slot, tinsn,
12486 vinsn->slotbuf[slot]);
12487
12488 xtensa_format_set_slot (isa, fmt, slot,
12489 insnbuf, vinsn->slotbuf[slot]);
12490 if (extra_arg->X_op != O_illegal && extra_arg->X_op != O_register)
12491 {
12492 if (vinsn->num_slots != 1)
12493 as_bad (_("TLS relocation not allowed in FLIX bundle"));
12494 else if (record_fixup)
12495 /* Instructions that generate TLS relocations should always be
12496 relaxed in the front-end. If "record_fixup" is set, then this
12497 function is being called during back-end relaxation, so flag
12498 the unexpected behavior as an error. */
12499 as_bad (_("unexpected TLS relocation"));
12500 else
12501 fix_new (fragP, frag_offset - fragP->fr_literal,
12502 xtensa_format_length (isa, fmt),
12503 extra_arg->X_add_symbol, extra_arg->X_add_number,
12504 FALSE, map_operator_to_reloc (extra_arg->X_op, FALSE));
12505 }
12506 if (tinsn_has_fixup)
12507 {
12508 int i;
12509 xtensa_opcode opcode = tinsn->opcode;
12510 int noperands = xtensa_opcode_num_operands (isa, opcode);
12511 has_fixup = TRUE;
12512
12513 for (i = 0; i < noperands; i++)
12514 {
12515 expressionS* exp = &tinsn->tok[i];
12516 switch (exp->X_op)
12517 {
12518 case O_symbol:
12519 case O_lo16:
12520 case O_hi16:
12521 if (get_relaxable_immed (opcode) == i)
12522 {
12523 /* Add a fix record for the instruction, except if this
12524 function is being called prior to relaxation, i.e.,
12525 if record_fixup is false, and the instruction might
12526 be relaxed later. */
12527 if (record_fixup
12528 || tinsn->is_specific_opcode
12529 || !xg_is_relaxable_insn (tinsn, 0))
12530 {
12531 xg_add_opcode_fix (tinsn, i, fmt, slot, exp, fragP,
12532 frag_offset - fragP->fr_literal);
12533 }
12534 else
12535 {
12536 if (exp->X_op != O_symbol)
12537 as_bad (_("invalid operand"));
12538 tinsn->symbol = exp->X_add_symbol;
12539 tinsn->offset = exp->X_add_number;
12540 }
12541 }
12542 else
12543 as_bad (_("symbolic operand not allowed"));
12544 break;
12545
12546 case O_constant:
12547 case O_register:
12548 break;
12549
12550 default:
12551 as_bad (_("expression too complex"));
12552 break;
12553 }
12554 }
12555 }
12556 }
12557
12558 return has_fixup;
12559 }
12560
12561
12562 static void
12563 vinsn_from_chars (vliw_insn *vinsn, char *f)
12564 {
12565 static xtensa_insnbuf insnbuf = NULL;
12566 static xtensa_insnbuf slotbuf = NULL;
12567 int i;
12568 xtensa_format fmt;
12569 xtensa_isa isa = xtensa_default_isa;
12570
12571 if (!insnbuf)
12572 {
12573 insnbuf = xtensa_insnbuf_alloc (isa);
12574 slotbuf = xtensa_insnbuf_alloc (isa);
12575 }
12576
12577 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) f, 0);
12578 fmt = xtensa_format_decode (isa, insnbuf);
12579 if (fmt == XTENSA_UNDEFINED)
12580 as_fatal (_("cannot decode instruction format"));
12581 vinsn->format = fmt;
12582 vinsn->num_slots = xtensa_format_num_slots (isa, fmt);
12583
12584 for (i = 0; i < vinsn->num_slots; i++)
12585 {
12586 TInsn *tinsn = &vinsn->slots[i];
12587 xtensa_format_get_slot (isa, fmt, i, insnbuf, slotbuf);
12588 tinsn_from_insnbuf (tinsn, slotbuf, fmt, i);
12589 }
12590 }
12591
12592 \f
12593 /* Expression utilities. */
12594
12595 /* Return TRUE if the expression is an integer constant. */
12596
12597 bfd_boolean
12598 expr_is_const (const expressionS *s)
12599 {
12600 return (s->X_op == O_constant);
12601 }
12602
12603
12604 /* Get the expression constant.
12605 Calling this is illegal if expr_is_const () returns TRUE. */
12606
12607 offsetT
12608 get_expr_const (const expressionS *s)
12609 {
12610 gas_assert (expr_is_const (s));
12611 return s->X_add_number;
12612 }
12613
12614
12615 /* Set the expression to a constant value. */
12616
12617 void
12618 set_expr_const (expressionS *s, offsetT val)
12619 {
12620 s->X_op = O_constant;
12621 s->X_add_number = val;
12622 s->X_add_symbol = NULL;
12623 s->X_op_symbol = NULL;
12624 }
12625
12626
12627 bfd_boolean
12628 expr_is_register (const expressionS *s)
12629 {
12630 return (s->X_op == O_register);
12631 }
12632
12633
12634 /* Get the expression constant.
12635 Calling this is illegal if expr_is_const () returns TRUE. */
12636
12637 offsetT
12638 get_expr_register (const expressionS *s)
12639 {
12640 gas_assert (expr_is_register (s));
12641 return s->X_add_number;
12642 }
12643
12644
12645 /* Set the expression to a symbol + constant offset. */
12646
12647 void
12648 set_expr_symbol_offset (expressionS *s, symbolS *sym, offsetT offset)
12649 {
12650 s->X_op = O_symbol;
12651 s->X_add_symbol = sym;
12652 s->X_op_symbol = NULL; /* unused */
12653 s->X_add_number = offset;
12654 }
12655
12656
12657 /* Return TRUE if the two expressions are equal. */
12658
12659 bfd_boolean
12660 expr_is_equal (expressionS *s1, expressionS *s2)
12661 {
12662 if (s1->X_op != s2->X_op)
12663 return FALSE;
12664 if (s1->X_add_symbol != s2->X_add_symbol)
12665 return FALSE;
12666 if (s1->X_op_symbol != s2->X_op_symbol)
12667 return FALSE;
12668 if (s1->X_add_number != s2->X_add_number)
12669 return FALSE;
12670 return TRUE;
12671 }
12672
12673
12674 static void
12675 copy_expr (expressionS *dst, const expressionS *src)
12676 {
12677 memcpy (dst, src, sizeof (expressionS));
12678 }
12679
12680 \f
12681 /* Support for the "--rename-section" option. */
12682
12683 struct rename_section_struct
12684 {
12685 char *old_name;
12686 char *new_name;
12687 struct rename_section_struct *next;
12688 };
12689
12690 static struct rename_section_struct *section_rename;
12691
12692
12693 /* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add
12694 entries to the section_rename list. Note: Specifying multiple
12695 renamings separated by colons is not documented and is retained only
12696 for backward compatibility. */
12697
12698 static void
12699 build_section_rename (const char *arg)
12700 {
12701 struct rename_section_struct *r;
12702 char *this_arg = NULL;
12703 char *next_arg = NULL;
12704
12705 for (this_arg = xstrdup (arg); this_arg != NULL; this_arg = next_arg)
12706 {
12707 char *old_name, *new_name;
12708
12709 if (this_arg)
12710 {
12711 next_arg = strchr (this_arg, ':');
12712 if (next_arg)
12713 {
12714 *next_arg = '\0';
12715 next_arg++;
12716 }
12717 }
12718
12719 old_name = this_arg;
12720 new_name = strchr (this_arg, '=');
12721
12722 if (*old_name == '\0')
12723 {
12724 as_warn (_("ignoring extra '-rename-section' delimiter ':'"));
12725 continue;
12726 }
12727 if (!new_name || new_name[1] == '\0')
12728 {
12729 as_warn (_("ignoring invalid '-rename-section' specification: '%s'"),
12730 old_name);
12731 continue;
12732 }
12733 *new_name = '\0';
12734 new_name++;
12735
12736 /* Check for invalid section renaming. */
12737 for (r = section_rename; r != NULL; r = r->next)
12738 {
12739 if (strcmp (r->old_name, old_name) == 0)
12740 as_bad (_("section %s renamed multiple times"), old_name);
12741 if (strcmp (r->new_name, new_name) == 0)
12742 as_bad (_("multiple sections remapped to output section %s"),
12743 new_name);
12744 }
12745
12746 /* Now add it. */
12747 r = (struct rename_section_struct *)
12748 xmalloc (sizeof (struct rename_section_struct));
12749 r->old_name = xstrdup (old_name);
12750 r->new_name = xstrdup (new_name);
12751 r->next = section_rename;
12752 section_rename = r;
12753 }
12754 }
12755
12756
12757 char *
12758 xtensa_section_rename (char *name)
12759 {
12760 struct rename_section_struct *r = section_rename;
12761
12762 for (r = section_rename; r != NULL; r = r->next)
12763 {
12764 if (strcmp (r->old_name, name) == 0)
12765 return r->new_name;
12766 }
12767
12768 return name;
12769 }