]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/doc/c-arm.texi
Document .Nbyte assembler directives
[thirdparty/binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright (C) 1996-2017 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4
5 @ifset GENERIC
6 @page
7 @node ARM-Dependent
8 @chapter ARM Dependent Features
9 @end ifset
10
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter ARM Dependent Features
14 @end ifclear
15
16 @cindex ARM support
17 @cindex Thumb support
18 @menu
19 * ARM Options:: Options
20 * ARM Syntax:: Syntax
21 * ARM Floating Point:: Floating Point
22 * ARM Directives:: ARM Machine Directives
23 * ARM Opcodes:: Opcodes
24 * ARM Mapping Symbols:: Mapping Symbols
25 * ARM Unwinding Tutorial:: Unwinding
26 @end menu
27
28 @node ARM Options
29 @section Options
30 @cindex ARM options (none)
31 @cindex options for ARM (none)
32
33 @table @code
34
35 @cindex @code{-mcpu=} command line option, ARM
36 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
37 This option specifies the target processor. The assembler will issue an
38 error message if an attempt is made to assemble an instruction which
39 will not execute on the target processor. The following processor names are
40 recognized:
41 @code{arm1},
42 @code{arm2},
43 @code{arm250},
44 @code{arm3},
45 @code{arm6},
46 @code{arm60},
47 @code{arm600},
48 @code{arm610},
49 @code{arm620},
50 @code{arm7},
51 @code{arm7m},
52 @code{arm7d},
53 @code{arm7dm},
54 @code{arm7di},
55 @code{arm7dmi},
56 @code{arm70},
57 @code{arm700},
58 @code{arm700i},
59 @code{arm710},
60 @code{arm710t},
61 @code{arm720},
62 @code{arm720t},
63 @code{arm740t},
64 @code{arm710c},
65 @code{arm7100},
66 @code{arm7500},
67 @code{arm7500fe},
68 @code{arm7t},
69 @code{arm7tdmi},
70 @code{arm7tdmi-s},
71 @code{arm8},
72 @code{arm810},
73 @code{strongarm},
74 @code{strongarm1},
75 @code{strongarm110},
76 @code{strongarm1100},
77 @code{strongarm1110},
78 @code{arm9},
79 @code{arm920},
80 @code{arm920t},
81 @code{arm922t},
82 @code{arm940t},
83 @code{arm9tdmi},
84 @code{fa526} (Faraday FA526 processor),
85 @code{fa626} (Faraday FA626 processor),
86 @code{arm9e},
87 @code{arm926e},
88 @code{arm926ej-s},
89 @code{arm946e-r0},
90 @code{arm946e},
91 @code{arm946e-s},
92 @code{arm966e-r0},
93 @code{arm966e},
94 @code{arm966e-s},
95 @code{arm968e-s},
96 @code{arm10t},
97 @code{arm10tdmi},
98 @code{arm10e},
99 @code{arm1020},
100 @code{arm1020t},
101 @code{arm1020e},
102 @code{arm1022e},
103 @code{arm1026ej-s},
104 @code{fa606te} (Faraday FA606TE processor),
105 @code{fa616te} (Faraday FA616TE processor),
106 @code{fa626te} (Faraday FA626TE processor),
107 @code{fmp626} (Faraday FMP626 processor),
108 @code{fa726te} (Faraday FA726TE processor),
109 @code{arm1136j-s},
110 @code{arm1136jf-s},
111 @code{arm1156t2-s},
112 @code{arm1156t2f-s},
113 @code{arm1176jz-s},
114 @code{arm1176jzf-s},
115 @code{mpcore},
116 @code{mpcorenovfp},
117 @code{cortex-a5},
118 @code{cortex-a7},
119 @code{cortex-a8},
120 @code{cortex-a9},
121 @code{cortex-a15},
122 @code{cortex-a17},
123 @code{cortex-a32},
124 @code{cortex-a35},
125 @code{cortex-a53},
126 @code{cortex-a57},
127 @code{cortex-a72},
128 @code{cortex-a73},
129 @code{cortex-r4},
130 @code{cortex-r4f},
131 @code{cortex-r5},
132 @code{cortex-r7},
133 @code{cortex-r8},
134 @code{cortex-m33},
135 @code{cortex-m23},
136 @code{cortex-m7},
137 @code{cortex-m4},
138 @code{cortex-m3},
139 @code{cortex-m1},
140 @code{cortex-m0},
141 @code{cortex-m0plus},
142 @code{exynos-m1},
143 @code{marvell-pj4},
144 @code{marvell-whitney},
145 @code{falkor},
146 @code{qdf24xx},
147 @code{xgene1},
148 @code{xgene2},
149 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
150 @code{i80200} (Intel XScale processor)
151 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
152 and
153 @code{xscale}.
154 The special name @code{all} may be used to allow the
155 assembler to accept instructions valid for any ARM processor.
156
157 In addition to the basic instruction set, the assembler can be told to
158 accept various extension mnemonics that extend the processor using the
159 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
160 is equivalent to specifying @code{-mcpu=ep9312}.
161
162 Multiple extensions may be specified, separated by a @code{+}. The
163 extensions should be specified in ascending alphabetical order.
164
165 Some extensions may be restricted to particular architectures; this is
166 documented in the list of extensions below.
167
168 Extension mnemonics may also be removed from those the assembler accepts.
169 This is done be prepending @code{no} to the option that adds the extension.
170 Extensions that are removed should be listed after all extensions which have
171 been added, again in ascending alphabetical order. For example,
172 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
173
174
175 The following extensions are currently supported:
176 @code{crc}
177 @code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
178 @code{fp} (Floating Point Extensions for v8-A architecture),
179 @code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
180 @code{iwmmxt},
181 @code{iwmmxt2},
182 @code{xscale},
183 @code{maverick},
184 @code{mp} (Multiprocessing Extensions for v7-A and v7-R
185 architectures),
186 @code{os} (Operating System for v6M architecture),
187 @code{sec} (Security Extensions for v6K and v7-A architectures),
188 @code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
189 @code{virt} (Virtualization Extensions for v7-A architecture, implies
190 @code{idiv}),
191 @code{pan} (Privileged Access Never Extensions for v8-A architecture),
192 @code{ras} (Reliability, Availability and Serviceability extensions
193 for v8-A architecture),
194 @code{rdma} (ARMv8.1 Advanced SIMD extensions for v8-A architecture, implies
195 @code{simd})
196 and
197 @code{xscale}.
198
199 @cindex @code{-march=} command line option, ARM
200 @item -march=@var{architecture}[+@var{extension}@dots{}]
201 This option specifies the target architecture. The assembler will issue
202 an error message if an attempt is made to assemble an instruction which
203 will not execute on the target architecture. The following architecture
204 names are recognized:
205 @code{armv1},
206 @code{armv2},
207 @code{armv2a},
208 @code{armv2s},
209 @code{armv3},
210 @code{armv3m},
211 @code{armv4},
212 @code{armv4xm},
213 @code{armv4t},
214 @code{armv4txm},
215 @code{armv5},
216 @code{armv5t},
217 @code{armv5txm},
218 @code{armv5te},
219 @code{armv5texp},
220 @code{armv6},
221 @code{armv6j},
222 @code{armv6k},
223 @code{armv6z},
224 @code{armv6kz},
225 @code{armv6-m},
226 @code{armv6s-m},
227 @code{armv7},
228 @code{armv7-a},
229 @code{armv7ve},
230 @code{armv7-r},
231 @code{armv7-m},
232 @code{armv7e-m},
233 @code{armv8-a},
234 @code{armv8.1-a},
235 @code{armv8.2-a},
236 @code{armv8.3-a},
237 @code{iwmmxt}
238 @code{iwmmxt2}
239 and
240 @code{xscale}.
241 If both @code{-mcpu} and
242 @code{-march} are specified, the assembler will use
243 the setting for @code{-mcpu}.
244
245 The architecture option can be extended with the same instruction set
246 extension options as the @code{-mcpu} option.
247
248 @cindex @code{-mfpu=} command line option, ARM
249 @item -mfpu=@var{floating-point-format}
250
251 This option specifies the floating point format to assemble for. The
252 assembler will issue an error message if an attempt is made to assemble
253 an instruction which will not execute on the target floating point unit.
254 The following format options are recognized:
255 @code{softfpa},
256 @code{fpe},
257 @code{fpe2},
258 @code{fpe3},
259 @code{fpa},
260 @code{fpa10},
261 @code{fpa11},
262 @code{arm7500fe},
263 @code{softvfp},
264 @code{softvfp+vfp},
265 @code{vfp},
266 @code{vfp10},
267 @code{vfp10-r0},
268 @code{vfp9},
269 @code{vfpxd},
270 @code{vfpv2},
271 @code{vfpv3},
272 @code{vfpv3-fp16},
273 @code{vfpv3-d16},
274 @code{vfpv3-d16-fp16},
275 @code{vfpv3xd},
276 @code{vfpv3xd-d16},
277 @code{vfpv4},
278 @code{vfpv4-d16},
279 @code{fpv4-sp-d16},
280 @code{fpv5-sp-d16},
281 @code{fpv5-d16},
282 @code{fp-armv8},
283 @code{arm1020t},
284 @code{arm1020e},
285 @code{arm1136jf-s},
286 @code{maverick},
287 @code{neon},
288 @code{neon-vfpv4},
289 @code{neon-fp-armv8},
290 @code{crypto-neon-fp-armv8},
291 @code{neon-fp-armv8.1}
292 and
293 @code{crypto-neon-fp-armv8.1}.
294
295 In addition to determining which instructions are assembled, this option
296 also affects the way in which the @code{.double} assembler directive behaves
297 when assembling little-endian code.
298
299 The default is dependent on the processor selected. For Architecture 5 or
300 later, the default is to assembler for VFP instructions; for earlier
301 architectures the default is to assemble for FPA instructions.
302
303 @cindex @code{-mthumb} command line option, ARM
304 @item -mthumb
305 This option specifies that the assembler should start assembling Thumb
306 instructions; that is, it should behave as though the file starts with a
307 @code{.code 16} directive.
308
309 @cindex @code{-mthumb-interwork} command line option, ARM
310 @item -mthumb-interwork
311 This option specifies that the output generated by the assembler should
312 be marked as supporting interworking.
313
314 @cindex @code{-mimplicit-it} command line option, ARM
315 @item -mimplicit-it=never
316 @itemx -mimplicit-it=always
317 @itemx -mimplicit-it=arm
318 @itemx -mimplicit-it=thumb
319 The @code{-mimplicit-it} option controls the behavior of the assembler when
320 conditional instructions are not enclosed in IT blocks.
321 There are four possible behaviors.
322 If @code{never} is specified, such constructs cause a warning in ARM
323 code and an error in Thumb-2 code.
324 If @code{always} is specified, such constructs are accepted in both
325 ARM and Thumb-2 code, where the IT instruction is added implicitly.
326 If @code{arm} is specified, such constructs are accepted in ARM code
327 and cause an error in Thumb-2 code.
328 If @code{thumb} is specified, such constructs cause a warning in ARM
329 code and are accepted in Thumb-2 code. If you omit this option, the
330 behavior is equivalent to @code{-mimplicit-it=arm}.
331
332 @cindex @code{-mapcs-26} command line option, ARM
333 @cindex @code{-mapcs-32} command line option, ARM
334 @item -mapcs-26
335 @itemx -mapcs-32
336 These options specify that the output generated by the assembler should
337 be marked as supporting the indicated version of the Arm Procedure.
338 Calling Standard.
339
340 @cindex @code{-matpcs} command line option, ARM
341 @item -matpcs
342 This option specifies that the output generated by the assembler should
343 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
344 enabled this option will cause the assembler to create an empty
345 debugging section in the object file called .arm.atpcs. Debuggers can
346 use this to determine the ABI being used by.
347
348 @cindex @code{-mapcs-float} command line option, ARM
349 @item -mapcs-float
350 This indicates the floating point variant of the APCS should be
351 used. In this variant floating point arguments are passed in FP
352 registers rather than integer registers.
353
354 @cindex @code{-mapcs-reentrant} command line option, ARM
355 @item -mapcs-reentrant
356 This indicates that the reentrant variant of the APCS should be used.
357 This variant supports position independent code.
358
359 @cindex @code{-mfloat-abi=} command line option, ARM
360 @item -mfloat-abi=@var{abi}
361 This option specifies that the output generated by the assembler should be
362 marked as using specified floating point ABI.
363 The following values are recognized:
364 @code{soft},
365 @code{softfp}
366 and
367 @code{hard}.
368
369 @cindex @code{-eabi=} command line option, ARM
370 @item -meabi=@var{ver}
371 This option specifies which EABI version the produced object files should
372 conform to.
373 The following values are recognized:
374 @code{gnu},
375 @code{4}
376 and
377 @code{5}.
378
379 @cindex @code{-EB} command line option, ARM
380 @item -EB
381 This option specifies that the output generated by the assembler should
382 be marked as being encoded for a big-endian processor.
383
384 Note: If a program is being built for a system with big-endian data
385 and little-endian instructions then it should be assembled with the
386 @option{-EB} option, (all of it, code and data) and then linked with
387 the @option{--be8} option. This will reverse the endianness of the
388 instructions back to little-endian, but leave the data as big-endian.
389
390 @cindex @code{-EL} command line option, ARM
391 @item -EL
392 This option specifies that the output generated by the assembler should
393 be marked as being encoded for a little-endian processor.
394
395 @cindex @code{-k} command line option, ARM
396 @cindex PIC code generation for ARM
397 @item -k
398 This option specifies that the output of the assembler should be marked
399 as position-independent code (PIC).
400
401 @cindex @code{--fix-v4bx} command line option, ARM
402 @item --fix-v4bx
403 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
404 the linker option of the same name.
405
406 @cindex @code{-mwarn-deprecated} command line option, ARM
407 @item -mwarn-deprecated
408 @itemx -mno-warn-deprecated
409 Enable or disable warnings about using deprecated options or
410 features. The default is to warn.
411
412 @cindex @code{-mccs} command line option, ARM
413 @item -mccs
414 Turns on CodeComposer Studio assembly syntax compatibility mode.
415
416 @cindex @code{-mwarn-syms} command line option, ARM
417 @item -mwarn-syms
418 @itemx -mno-warn-syms
419 Enable or disable warnings about symbols that match the names of ARM
420 instructions. The default is to warn.
421
422 @end table
423
424
425 @node ARM Syntax
426 @section Syntax
427 @menu
428 * ARM-Instruction-Set:: Instruction Set
429 * ARM-Chars:: Special Characters
430 * ARM-Regs:: Register Names
431 * ARM-Relocations:: Relocations
432 * ARM-Neon-Alignment:: NEON Alignment Specifiers
433 @end menu
434
435 @node ARM-Instruction-Set
436 @subsection Instruction Set Syntax
437 Two slightly different syntaxes are support for ARM and THUMB
438 instructions. The default, @code{divided}, uses the old style where
439 ARM and THUMB instructions had their own, separate syntaxes. The new,
440 @code{unified} syntax, which can be selected via the @code{.syntax}
441 directive, and has the following main features:
442
443 @itemize @bullet
444 @item
445 Immediate operands do not require a @code{#} prefix.
446
447 @item
448 The @code{IT} instruction may appear, and if it does it is validated
449 against subsequent conditional affixes. In ARM mode it does not
450 generate machine code, in THUMB mode it does.
451
452 @item
453 For ARM instructions the conditional affixes always appear at the end
454 of the instruction. For THUMB instructions conditional affixes can be
455 used, but only inside the scope of an @code{IT} instruction.
456
457 @item
458 All of the instructions new to the V6T2 architecture (and later) are
459 available. (Only a few such instructions can be written in the
460 @code{divided} syntax).
461
462 @item
463 The @code{.N} and @code{.W} suffixes are recognized and honored.
464
465 @item
466 All instructions set the flags if and only if they have an @code{s}
467 affix.
468 @end itemize
469
470 @node ARM-Chars
471 @subsection Special Characters
472
473 @cindex line comment character, ARM
474 @cindex ARM line comment character
475 The presence of a @samp{@@} anywhere on a line indicates the start of
476 a comment that extends to the end of that line.
477
478 If a @samp{#} appears as the first character of a line then the whole
479 line is treated as a comment, but in this case the line could also be
480 a logical line number directive (@pxref{Comments}) or a preprocessor
481 control command (@pxref{Preprocessing}).
482
483 @cindex line separator, ARM
484 @cindex statement separator, ARM
485 @cindex ARM line separator
486 The @samp{;} character can be used instead of a newline to separate
487 statements.
488
489 @cindex immediate character, ARM
490 @cindex ARM immediate character
491 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
492
493 @cindex identifiers, ARM
494 @cindex ARM identifiers
495 *TODO* Explain about /data modifier on symbols.
496
497 @node ARM-Regs
498 @subsection Register Names
499
500 @cindex ARM register names
501 @cindex register names, ARM
502 *TODO* Explain about ARM register naming, and the predefined names.
503
504 @node ARM-Relocations
505 @subsection ARM relocation generation
506
507 @cindex data relocations, ARM
508 @cindex ARM data relocations
509 Specific data relocations can be generated by putting the relocation name
510 in parentheses after the symbol name. For example:
511
512 @smallexample
513 .word foo(TARGET1)
514 @end smallexample
515
516 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
517 @var{foo}.
518 The following relocations are supported:
519 @code{GOT},
520 @code{GOTOFF},
521 @code{TARGET1},
522 @code{TARGET2},
523 @code{SBREL},
524 @code{TLSGD},
525 @code{TLSLDM},
526 @code{TLSLDO},
527 @code{TLSDESC},
528 @code{TLSCALL},
529 @code{GOTTPOFF},
530 @code{GOT_PREL}
531 and
532 @code{TPOFF}.
533
534 For compatibility with older toolchains the assembler also accepts
535 @code{(PLT)} after branch targets. On legacy targets this will
536 generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
537 targets it will encode either the @samp{R_ARM_CALL} or
538 @samp{R_ARM_JUMP24} relocation, as appropriate.
539
540 @cindex MOVW and MOVT relocations, ARM
541 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
542 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
543 respectively. For example to load the 32-bit address of foo into r0:
544
545 @smallexample
546 MOVW r0, #:lower16:foo
547 MOVT r0, #:upper16:foo
548 @end smallexample
549
550 Relocations @samp{R_ARM_THM_ALU_ABS_G0_NC}, @samp{R_ARM_THM_ALU_ABS_G1_NC},
551 @samp{R_ARM_THM_ALU_ABS_G2_NC} and @samp{R_ARM_THM_ALU_ABS_G3_NC} can be
552 generated by prefixing the value with @samp{#:lower0_7:#},
553 @samp{#:lower8_15:#}, @samp{#:upper0_7:#} and @samp{#:upper8_15:#}
554 respectively. For example to load the 32-bit address of foo into r0:
555
556 @smallexample
557 MOVS r0, #:upper8_15:#foo
558 LSLS r0, r0, #8
559 ADDS r0, #:upper0_7:#foo
560 LSLS r0, r0, #8
561 ADDS r0, #:lower8_15:#foo
562 LSLS r0, r0, #8
563 ADDS r0, #:lower0_7:#foo
564 @end smallexample
565
566 @node ARM-Neon-Alignment
567 @subsection NEON Alignment Specifiers
568
569 @cindex alignment for NEON instructions
570 Some NEON load/store instructions allow an optional address
571 alignment qualifier.
572 The ARM documentation specifies that this is indicated by
573 @samp{@@ @var{align}}. However GAS already interprets
574 the @samp{@@} character as a "line comment" start,
575 so @samp{: @var{align}} is used instead. For example:
576
577 @smallexample
578 vld1.8 @{q0@}, [r0, :128]
579 @end smallexample
580
581 @node ARM Floating Point
582 @section Floating Point
583
584 @cindex floating point, ARM (@sc{ieee})
585 @cindex ARM floating point (@sc{ieee})
586 The ARM family uses @sc{ieee} floating-point numbers.
587
588 @node ARM Directives
589 @section ARM Machine Directives
590
591 @cindex machine directives, ARM
592 @cindex ARM machine directives
593 @table @code
594
595 @c AAAAAAAAAAAAAAAAAAAAAAAAA
596
597 @ifclear ELF
598 @cindex @code{.2byte} directive, ARM
599 @cindex @code{.4byte} directive, ARM
600 @cindex @code{.8byte} directive, ARM
601 @item .2byte @var{expression} [, @var{expression}]*
602 @itemx .4byte @var{expression} [, @var{expression}]*
603 @itemx .8byte @var{expression} [, @var{expression}]*
604 These directives write 2, 4 or 8 byte values to the output section.
605 @end ifclear
606
607 @cindex @code{.align} directive, ARM
608 @item .align @var{expression} [, @var{expression}]
609 This is the generic @var{.align} directive. For the ARM however if the
610 first argument is zero (ie no alignment is needed) the assembler will
611 behave as if the argument had been 2 (ie pad to the next four byte
612 boundary). This is for compatibility with ARM's own assembler.
613
614 @cindex @code{.arch} directive, ARM
615 @item .arch @var{name}
616 Select the target architecture. Valid values for @var{name} are the same as
617 for the @option{-march} commandline option.
618
619 Specifying @code{.arch} clears any previously selected architecture
620 extensions.
621
622 @cindex @code{.arch_extension} directive, ARM
623 @item .arch_extension @var{name}
624 Add or remove an architecture extension to the target architecture. Valid
625 values for @var{name} are the same as those accepted as architectural
626 extensions by the @option{-mcpu} commandline option.
627
628 @code{.arch_extension} may be used multiple times to add or remove extensions
629 incrementally to the architecture being compiled for.
630
631 @cindex @code{.arm} directive, ARM
632 @item .arm
633 This performs the same action as @var{.code 32}.
634
635 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
636
637 @cindex @code{.bss} directive, ARM
638 @item .bss
639 This directive switches to the @code{.bss} section.
640
641 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
642
643 @cindex @code{.cantunwind} directive, ARM
644 @item .cantunwind
645 Prevents unwinding through the current function. No personality routine
646 or exception table data is required or permitted.
647
648 @cindex @code{.code} directive, ARM
649 @item .code @code{[16|32]}
650 This directive selects the instruction set being generated. The value 16
651 selects Thumb, with the value 32 selecting ARM.
652
653 @cindex @code{.cpu} directive, ARM
654 @item .cpu @var{name}
655 Select the target processor. Valid values for @var{name} are the same as
656 for the @option{-mcpu} commandline option.
657
658 Specifying @code{.cpu} clears any previously selected architecture
659 extensions.
660
661 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
662
663 @cindex @code{.dn} and @code{.qn} directives, ARM
664 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
665 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
666
667 The @code{dn} and @code{qn} directives are used to create typed
668 and/or indexed register aliases for use in Advanced SIMD Extension
669 (Neon) instructions. The former should be used to create aliases
670 of double-precision registers, and the latter to create aliases of
671 quad-precision registers.
672
673 If these directives are used to create typed aliases, those aliases can
674 be used in Neon instructions instead of writing types after the mnemonic
675 or after each operand. For example:
676
677 @smallexample
678 x .dn d2.f32
679 y .dn d3.f32
680 z .dn d4.f32[1]
681 vmul x,y,z
682 @end smallexample
683
684 This is equivalent to writing the following:
685
686 @smallexample
687 vmul.f32 d2,d3,d4[1]
688 @end smallexample
689
690 Aliases created using @code{dn} or @code{qn} can be destroyed using
691 @code{unreq}.
692
693 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
694
695 @cindex @code{.eabi_attribute} directive, ARM
696 @item .eabi_attribute @var{tag}, @var{value}
697 Set the EABI object attribute @var{tag} to @var{value}.
698
699 The @var{tag} is either an attribute number, or one of the following:
700 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
701 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
702 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
703 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
704 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
705 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
706 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
707 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
708 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
709 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
710 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
711 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
712 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
713 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
714 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
715 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
716 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
717 @code{Tag_conformance}, @code{Tag_T2EE_use},
718 @code{Tag_Virtualization_use}
719
720 The @var{value} is either a @code{number}, @code{"string"}, or
721 @code{number, "string"} depending on the tag.
722
723 Note - the following legacy values are also accepted by @var{tag}:
724 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
725 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
726
727 @cindex @code{.even} directive, ARM
728 @item .even
729 This directive aligns to an even-numbered address.
730
731 @cindex @code{.extend} directive, ARM
732 @cindex @code{.ldouble} directive, ARM
733 @item .extend @var{expression} [, @var{expression}]*
734 @itemx .ldouble @var{expression} [, @var{expression}]*
735 These directives write 12byte long double floating-point values to the
736 output section. These are not compatible with current ARM processors
737 or ABIs.
738
739 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
740
741 @anchor{arm_fnend}
742 @cindex @code{.fnend} directive, ARM
743 @item .fnend
744 Marks the end of a function with an unwind table entry. The unwind index
745 table entry is created when this directive is processed.
746
747 If no personality routine has been specified then standard personality
748 routine 0 or 1 will be used, depending on the number of unwind opcodes
749 required.
750
751 @anchor{arm_fnstart}
752 @cindex @code{.fnstart} directive, ARM
753 @item .fnstart
754 Marks the start of a function with an unwind table entry.
755
756 @cindex @code{.force_thumb} directive, ARM
757 @item .force_thumb
758 This directive forces the selection of Thumb instructions, even if the
759 target processor does not support those instructions
760
761 @cindex @code{.fpu} directive, ARM
762 @item .fpu @var{name}
763 Select the floating-point unit to assemble for. Valid values for @var{name}
764 are the same as for the @option{-mfpu} commandline option.
765
766 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
767 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
768
769 @cindex @code{.handlerdata} directive, ARM
770 @item .handlerdata
771 Marks the end of the current function, and the start of the exception table
772 entry for that function. Anything between this directive and the
773 @code{.fnend} directive will be added to the exception table entry.
774
775 Must be preceded by a @code{.personality} or @code{.personalityindex}
776 directive.
777
778 @c IIIIIIIIIIIIIIIIIIIIIIIIII
779
780 @cindex @code{.inst} directive, ARM
781 @item .inst @var{opcode} [ , @dots{} ]
782 @itemx .inst.n @var{opcode} [ , @dots{} ]
783 @itemx .inst.w @var{opcode} [ , @dots{} ]
784 Generates the instruction corresponding to the numerical value @var{opcode}.
785 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
786 specified explicitly, overriding the normal encoding rules.
787
788 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
789 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
790 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
791
792 @item .ldouble @var{expression} [, @var{expression}]*
793 See @code{.extend}.
794
795 @cindex @code{.ltorg} directive, ARM
796 @item .ltorg
797 This directive causes the current contents of the literal pool to be
798 dumped into the current section (which is assumed to be the .text
799 section) at the current location (aligned to a word boundary).
800 @code{GAS} maintains a separate literal pool for each section and each
801 sub-section. The @code{.ltorg} directive will only affect the literal
802 pool of the current section and sub-section. At the end of assembly
803 all remaining, un-empty literal pools will automatically be dumped.
804
805 Note - older versions of @code{GAS} would dump the current literal
806 pool any time a section change occurred. This is no longer done, since
807 it prevents accurate control of the placement of literal pools.
808
809 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
810
811 @cindex @code{.movsp} directive, ARM
812 @item .movsp @var{reg} [, #@var{offset}]
813 Tell the unwinder that @var{reg} contains an offset from the current
814 stack pointer. If @var{offset} is not specified then it is assumed to be
815 zero.
816
817 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
818 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
819
820 @cindex @code{.object_arch} directive, ARM
821 @item .object_arch @var{name}
822 Override the architecture recorded in the EABI object attribute section.
823 Valid values for @var{name} are the same as for the @code{.arch} directive.
824 Typically this is useful when code uses runtime detection of CPU features.
825
826 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
827
828 @cindex @code{.packed} directive, ARM
829 @item .packed @var{expression} [, @var{expression}]*
830 This directive writes 12-byte packed floating-point values to the
831 output section. These are not compatible with current ARM processors
832 or ABIs.
833
834 @anchor{arm_pad}
835 @cindex @code{.pad} directive, ARM
836 @item .pad #@var{count}
837 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
838 A positive value indicates the function prologue allocated stack space by
839 decrementing the stack pointer.
840
841 @cindex @code{.personality} directive, ARM
842 @item .personality @var{name}
843 Sets the personality routine for the current function to @var{name}.
844
845 @cindex @code{.personalityindex} directive, ARM
846 @item .personalityindex @var{index}
847 Sets the personality routine for the current function to the EABI standard
848 routine number @var{index}
849
850 @cindex @code{.pool} directive, ARM
851 @item .pool
852 This is a synonym for .ltorg.
853
854 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
855 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
856
857 @cindex @code{.req} directive, ARM
858 @item @var{name} .req @var{register name}
859 This creates an alias for @var{register name} called @var{name}. For
860 example:
861
862 @smallexample
863 foo .req r0
864 @end smallexample
865
866 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
867
868 @anchor{arm_save}
869 @cindex @code{.save} directive, ARM
870 @item .save @var{reglist}
871 Generate unwinder annotations to restore the registers in @var{reglist}.
872 The format of @var{reglist} is the same as the corresponding store-multiple
873 instruction.
874
875 @smallexample
876 @exdent @emph{core registers}
877 .save @{r4, r5, r6, lr@}
878 stmfd sp!, @{r4, r5, r6, lr@}
879 @exdent @emph{FPA registers}
880 .save f4, 2
881 sfmfd f4, 2, [sp]!
882 @exdent @emph{VFP registers}
883 .save @{d8, d9, d10@}
884 fstmdx sp!, @{d8, d9, d10@}
885 @exdent @emph{iWMMXt registers}
886 .save @{wr10, wr11@}
887 wstrd wr11, [sp, #-8]!
888 wstrd wr10, [sp, #-8]!
889 or
890 .save wr11
891 wstrd wr11, [sp, #-8]!
892 .save wr10
893 wstrd wr10, [sp, #-8]!
894 @end smallexample
895
896 @anchor{arm_setfp}
897 @cindex @code{.setfp} directive, ARM
898 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
899 Make all unwinder annotations relative to a frame pointer. Without this
900 the unwinder will use offsets from the stack pointer.
901
902 The syntax of this directive is the same as the @code{add} or @code{mov}
903 instruction used to set the frame pointer. @var{spreg} must be either
904 @code{sp} or mentioned in a previous @code{.movsp} directive.
905
906 @smallexample
907 .movsp ip
908 mov ip, sp
909 @dots{}
910 .setfp fp, ip, #4
911 add fp, ip, #4
912 @end smallexample
913
914 @cindex @code{.secrel32} directive, ARM
915 @item .secrel32 @var{expression} [, @var{expression}]*
916 This directive emits relocations that evaluate to the section-relative
917 offset of each expression's symbol. This directive is only supported
918 for PE targets.
919
920 @cindex @code{.syntax} directive, ARM
921 @item .syntax [@code{unified} | @code{divided}]
922 This directive sets the Instruction Set Syntax as described in the
923 @ref{ARM-Instruction-Set} section.
924
925 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
926
927 @cindex @code{.thumb} directive, ARM
928 @item .thumb
929 This performs the same action as @var{.code 16}.
930
931 @cindex @code{.thumb_func} directive, ARM
932 @item .thumb_func
933 This directive specifies that the following symbol is the name of a
934 Thumb encoded function. This information is necessary in order to allow
935 the assembler and linker to generate correct code for interworking
936 between Arm and Thumb instructions and should be used even if
937 interworking is not going to be performed. The presence of this
938 directive also implies @code{.thumb}
939
940 This directive is not necessary when generating EABI objects. On these
941 targets the encoding is implicit when generating Thumb code.
942
943 @cindex @code{.thumb_set} directive, ARM
944 @item .thumb_set
945 This performs the equivalent of a @code{.set} directive in that it
946 creates a symbol which is an alias for another symbol (possibly not yet
947 defined). This directive also has the added property in that it marks
948 the aliased symbol as being a thumb function entry point, in the same
949 way that the @code{.thumb_func} directive does.
950
951 @cindex @code{.tlsdescseq} directive, ARM
952 @item .tlsdescseq @var{tls-variable}
953 This directive is used to annotate parts of an inlined TLS descriptor
954 trampoline. Normally the trampoline is provided by the linker, and
955 this directive is not needed.
956
957 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
958
959 @cindex @code{.unreq} directive, ARM
960 @item .unreq @var{alias-name}
961 This undefines a register alias which was previously defined using the
962 @code{req}, @code{dn} or @code{qn} directives. For example:
963
964 @smallexample
965 foo .req r0
966 .unreq foo
967 @end smallexample
968
969 An error occurs if the name is undefined. Note - this pseudo op can
970 be used to delete builtin in register name aliases (eg 'r0'). This
971 should only be done if it is really necessary.
972
973 @cindex @code{.unwind_raw} directive, ARM
974 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
975 Insert one of more arbitrary unwind opcode bytes, which are known to adjust
976 the stack pointer by @var{offset} bytes.
977
978 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
979 @code{.save @{r0@}}
980
981 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
982
983 @cindex @code{.vsave} directive, ARM
984 @item .vsave @var{vfp-reglist}
985 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
986 using FLDMD. Also works for VFPv3 registers
987 that are to be restored using VLDM.
988 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
989 instruction.
990
991 @smallexample
992 @exdent @emph{VFP registers}
993 .vsave @{d8, d9, d10@}
994 fstmdd sp!, @{d8, d9, d10@}
995 @exdent @emph{VFPv3 registers}
996 .vsave @{d15, d16, d17@}
997 vstm sp!, @{d15, d16, d17@}
998 @end smallexample
999
1000 Since FLDMX and FSTMX are now deprecated, this directive should be
1001 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
1002
1003 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
1004 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
1005 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
1006 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
1007
1008 @end table
1009
1010 @node ARM Opcodes
1011 @section Opcodes
1012
1013 @cindex ARM opcodes
1014 @cindex opcodes for ARM
1015 @code{@value{AS}} implements all the standard ARM opcodes. It also
1016 implements several pseudo opcodes, including several synthetic load
1017 instructions.
1018
1019 @table @code
1020
1021 @cindex @code{NOP} pseudo op, ARM
1022 @item NOP
1023 @smallexample
1024 nop
1025 @end smallexample
1026
1027 This pseudo op will always evaluate to a legal ARM instruction that does
1028 nothing. Currently it will evaluate to MOV r0, r0.
1029
1030 @cindex @code{LDR reg,=<label>} pseudo op, ARM
1031 @item LDR
1032 @smallexample
1033 ldr <register> , = <expression>
1034 @end smallexample
1035
1036 If expression evaluates to a numeric constant then a MOV or MVN
1037 instruction will be used in place of the LDR instruction, if the
1038 constant can be generated by either of these instructions. Otherwise
1039 the constant will be placed into the nearest literal pool (if it not
1040 already there) and a PC relative LDR instruction will be generated.
1041
1042 @cindex @code{ADR reg,<label>} pseudo op, ARM
1043 @item ADR
1044 @smallexample
1045 adr <register> <label>
1046 @end smallexample
1047
1048 This instruction will load the address of @var{label} into the indicated
1049 register. The instruction will evaluate to a PC relative ADD or SUB
1050 instruction depending upon where the label is located. If the label is
1051 out of range, or if it is not defined in the same file (and section) as
1052 the ADR instruction, then an error will be generated. This instruction
1053 will not make use of the literal pool.
1054
1055 @cindex @code{ADRL reg,<label>} pseudo op, ARM
1056 @item ADRL
1057 @smallexample
1058 adrl <register> <label>
1059 @end smallexample
1060
1061 This instruction will load the address of @var{label} into the indicated
1062 register. The instruction will evaluate to one or two PC relative ADD
1063 or SUB instructions depending upon where the label is located. If a
1064 second instruction is not needed a NOP instruction will be generated in
1065 its place, so that this instruction is always 8 bytes long.
1066
1067 If the label is out of range, or if it is not defined in the same file
1068 (and section) as the ADRL instruction, then an error will be generated.
1069 This instruction will not make use of the literal pool.
1070
1071 @end table
1072
1073 For information on the ARM or Thumb instruction sets, see @cite{ARM
1074 Software Development Toolkit Reference Manual}, Advanced RISC Machines
1075 Ltd.
1076
1077 @node ARM Mapping Symbols
1078 @section Mapping Symbols
1079
1080 The ARM ELF specification requires that special symbols be inserted
1081 into object files to mark certain features:
1082
1083 @table @code
1084
1085 @cindex @code{$a}
1086 @item $a
1087 At the start of a region of code containing ARM instructions.
1088
1089 @cindex @code{$t}
1090 @item $t
1091 At the start of a region of code containing THUMB instructions.
1092
1093 @cindex @code{$d}
1094 @item $d
1095 At the start of a region of data.
1096
1097 @end table
1098
1099 The assembler will automatically insert these symbols for you - there
1100 is no need to code them yourself. Support for tagging symbols ($b,
1101 $f, $p and $m) which is also mentioned in the current ARM ELF
1102 specification is not implemented. This is because they have been
1103 dropped from the new EABI and so tools cannot rely upon their
1104 presence.
1105
1106 @node ARM Unwinding Tutorial
1107 @section Unwinding
1108
1109 The ABI for the ARM Architecture specifies a standard format for
1110 exception unwind information. This information is used when an
1111 exception is thrown to determine where control should be transferred.
1112 In particular, the unwind information is used to determine which
1113 function called the function that threw the exception, and which
1114 function called that one, and so forth. This information is also used
1115 to restore the values of callee-saved registers in the function
1116 catching the exception.
1117
1118 If you are writing functions in assembly code, and those functions
1119 call other functions that throw exceptions, you must use assembly
1120 pseudo ops to ensure that appropriate exception unwind information is
1121 generated. Otherwise, if one of the functions called by your assembly
1122 code throws an exception, the run-time library will be unable to
1123 unwind the stack through your assembly code and your program will not
1124 behave correctly.
1125
1126 To illustrate the use of these pseudo ops, we will examine the code
1127 that G++ generates for the following C++ input:
1128
1129 @verbatim
1130 void callee (int *);
1131
1132 int
1133 caller ()
1134 {
1135 int i;
1136 callee (&i);
1137 return i;
1138 }
1139 @end verbatim
1140
1141 This example does not show how to throw or catch an exception from
1142 assembly code. That is a much more complex operation and should
1143 always be done in a high-level language, such as C++, that directly
1144 supports exceptions.
1145
1146 The code generated by one particular version of G++ when compiling the
1147 example above is:
1148
1149 @verbatim
1150 _Z6callerv:
1151 .fnstart
1152 .LFB2:
1153 @ Function supports interworking.
1154 @ args = 0, pretend = 0, frame = 8
1155 @ frame_needed = 1, uses_anonymous_args = 0
1156 stmfd sp!, {fp, lr}
1157 .save {fp, lr}
1158 .LCFI0:
1159 .setfp fp, sp, #4
1160 add fp, sp, #4
1161 .LCFI1:
1162 .pad #8
1163 sub sp, sp, #8
1164 .LCFI2:
1165 sub r3, fp, #8
1166 mov r0, r3
1167 bl _Z6calleePi
1168 ldr r3, [fp, #-8]
1169 mov r0, r3
1170 sub sp, fp, #4
1171 ldmfd sp!, {fp, lr}
1172 bx lr
1173 .LFE2:
1174 .fnend
1175 @end verbatim
1176
1177 Of course, the sequence of instructions varies based on the options
1178 you pass to GCC and on the version of GCC in use. The exact
1179 instructions are not important since we are focusing on the pseudo ops
1180 that are used to generate unwind information.
1181
1182 An important assumption made by the unwinder is that the stack frame
1183 does not change during the body of the function. In particular, since
1184 we assume that the assembly code does not itself throw an exception,
1185 the only point where an exception can be thrown is from a call, such
1186 as the @code{bl} instruction above. At each call site, the same saved
1187 registers (including @code{lr}, which indicates the return address)
1188 must be located in the same locations relative to the frame pointer.
1189
1190 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1191 op appears immediately before the first instruction of the function
1192 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1193 op appears immediately after the last instruction of the function.
1194 These pseudo ops specify the range of the function.
1195
1196 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1197 @code{.pad}) matters; their exact locations are irrelevant. In the
1198 example above, the compiler emits the pseudo ops with particular
1199 instructions. That makes it easier to understand the code, but it is
1200 not required for correctness. It would work just as well to emit all
1201 of the pseudo ops other than @code{.fnend} in the same order, but
1202 immediately after @code{.fnstart}.
1203
1204 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1205 indicates registers that have been saved to the stack so that they can
1206 be restored before the function returns. The argument to the
1207 @code{.save} pseudo op is a list of registers to save. If a register
1208 is ``callee-saved'' (as specified by the ABI) and is modified by the
1209 function you are writing, then your code must save the value before it
1210 is modified and restore the original value before the function
1211 returns. If an exception is thrown, the run-time library restores the
1212 values of these registers from their locations on the stack before
1213 returning control to the exception handler. (Of course, if an
1214 exception is not thrown, the function that contains the @code{.save}
1215 pseudo op restores these registers in the function epilogue, as is
1216 done with the @code{ldmfd} instruction above.)
1217
1218 You do not have to save callee-saved registers at the very beginning
1219 of the function and you do not need to use the @code{.save} pseudo op
1220 immediately following the point at which the registers are saved.
1221 However, if you modify a callee-saved register, you must save it on
1222 the stack before modifying it and before calling any functions which
1223 might throw an exception. And, you must use the @code{.save} pseudo
1224 op to indicate that you have done so.
1225
1226 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1227 modification of the stack pointer that does not save any registers.
1228 The argument is the number of bytes (in decimal) that are subtracted
1229 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1230 subtracting from the stack pointer increases the size of the stack.)
1231
1232 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1233 indicates the register that contains the frame pointer. The first
1234 argument is the register that is set, which is typically @code{fp}.
1235 The second argument indicates the register from which the frame
1236 pointer takes its value. The third argument, if present, is the value
1237 (in decimal) added to the register specified by the second argument to
1238 compute the value of the frame pointer. You should not modify the
1239 frame pointer in the body of the function.
1240
1241 If you do not use a frame pointer, then you should not use the
1242 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1243 should avoid modifying the stack pointer outside of the function
1244 prologue. Otherwise, the run-time library will be unable to find
1245 saved registers when it is unwinding the stack.
1246
1247 The pseudo ops described above are sufficient for writing assembly
1248 code that calls functions which may throw exceptions. If you need to
1249 know more about the object-file format used to represent unwind
1250 information, you may consult the @cite{Exception Handling ABI for the
1251 ARM Architecture} available from @uref{http://infocenter.arm.com}.
1252