]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/doc/c-arm.texi
[binutils][arm] BFloat16 enablement [4/X]
[thirdparty/binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright (C) 1996-2019 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4
5 @ifset GENERIC
6 @page
7 @node ARM-Dependent
8 @chapter ARM Dependent Features
9 @end ifset
10
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter ARM Dependent Features
14 @end ifclear
15
16 @cindex ARM support
17 @cindex Thumb support
18 @menu
19 * ARM Options:: Options
20 * ARM Syntax:: Syntax
21 * ARM Floating Point:: Floating Point
22 * ARM Directives:: ARM Machine Directives
23 * ARM Opcodes:: Opcodes
24 * ARM Mapping Symbols:: Mapping Symbols
25 * ARM Unwinding Tutorial:: Unwinding
26 @end menu
27
28 @node ARM Options
29 @section Options
30 @cindex ARM options (none)
31 @cindex options for ARM (none)
32
33 @table @code
34
35 @cindex @code{-mcpu=} command-line option, ARM
36 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
37 This option specifies the target processor. The assembler will issue an
38 error message if an attempt is made to assemble an instruction which
39 will not execute on the target processor. The following processor names are
40 recognized:
41 @code{arm1},
42 @code{arm2},
43 @code{arm250},
44 @code{arm3},
45 @code{arm6},
46 @code{arm60},
47 @code{arm600},
48 @code{arm610},
49 @code{arm620},
50 @code{arm7},
51 @code{arm7m},
52 @code{arm7d},
53 @code{arm7dm},
54 @code{arm7di},
55 @code{arm7dmi},
56 @code{arm70},
57 @code{arm700},
58 @code{arm700i},
59 @code{arm710},
60 @code{arm710t},
61 @code{arm720},
62 @code{arm720t},
63 @code{arm740t},
64 @code{arm710c},
65 @code{arm7100},
66 @code{arm7500},
67 @code{arm7500fe},
68 @code{arm7t},
69 @code{arm7tdmi},
70 @code{arm7tdmi-s},
71 @code{arm8},
72 @code{arm810},
73 @code{strongarm},
74 @code{strongarm1},
75 @code{strongarm110},
76 @code{strongarm1100},
77 @code{strongarm1110},
78 @code{arm9},
79 @code{arm920},
80 @code{arm920t},
81 @code{arm922t},
82 @code{arm940t},
83 @code{arm9tdmi},
84 @code{fa526} (Faraday FA526 processor),
85 @code{fa626} (Faraday FA626 processor),
86 @code{arm9e},
87 @code{arm926e},
88 @code{arm926ej-s},
89 @code{arm946e-r0},
90 @code{arm946e},
91 @code{arm946e-s},
92 @code{arm966e-r0},
93 @code{arm966e},
94 @code{arm966e-s},
95 @code{arm968e-s},
96 @code{arm10t},
97 @code{arm10tdmi},
98 @code{arm10e},
99 @code{arm1020},
100 @code{arm1020t},
101 @code{arm1020e},
102 @code{arm1022e},
103 @code{arm1026ej-s},
104 @code{fa606te} (Faraday FA606TE processor),
105 @code{fa616te} (Faraday FA616TE processor),
106 @code{fa626te} (Faraday FA626TE processor),
107 @code{fmp626} (Faraday FMP626 processor),
108 @code{fa726te} (Faraday FA726TE processor),
109 @code{arm1136j-s},
110 @code{arm1136jf-s},
111 @code{arm1156t2-s},
112 @code{arm1156t2f-s},
113 @code{arm1176jz-s},
114 @code{arm1176jzf-s},
115 @code{mpcore},
116 @code{mpcorenovfp},
117 @code{cortex-a5},
118 @code{cortex-a7},
119 @code{cortex-a8},
120 @code{cortex-a9},
121 @code{cortex-a15},
122 @code{cortex-a17},
123 @code{cortex-a32},
124 @code{cortex-a35},
125 @code{cortex-a53},
126 @code{cortex-a55},
127 @code{cortex-a57},
128 @code{cortex-a72},
129 @code{cortex-a73},
130 @code{cortex-a75},
131 @code{cortex-a76},
132 @code{cortex-a76ae},
133 @code{cortex-a77},
134 @code{ares},
135 @code{cortex-r4},
136 @code{cortex-r4f},
137 @code{cortex-r5},
138 @code{cortex-r7},
139 @code{cortex-r8},
140 @code{cortex-r52},
141 @code{cortex-m35p},
142 @code{cortex-m33},
143 @code{cortex-m23},
144 @code{cortex-m7},
145 @code{cortex-m4},
146 @code{cortex-m3},
147 @code{cortex-m1},
148 @code{cortex-m0},
149 @code{cortex-m0plus},
150 @code{exynos-m1},
151 @code{marvell-pj4},
152 @code{marvell-whitney},
153 @code{neoverse-n1},
154 @code{xgene1},
155 @code{xgene2},
156 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
157 @code{i80200} (Intel XScale processor)
158 @code{iwmmxt} (Intel XScale processor with Wireless MMX technology coprocessor)
159 and
160 @code{xscale}.
161 The special name @code{all} may be used to allow the
162 assembler to accept instructions valid for any ARM processor.
163
164 In addition to the basic instruction set, the assembler can be told to
165 accept various extension mnemonics that extend the processor using the
166 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
167 is equivalent to specifying @code{-mcpu=ep9312}.
168
169 Multiple extensions may be specified, separated by a @code{+}. The
170 extensions should be specified in ascending alphabetical order.
171
172 Some extensions may be restricted to particular architectures; this is
173 documented in the list of extensions below.
174
175 Extension mnemonics may also be removed from those the assembler accepts.
176 This is done be prepending @code{no} to the option that adds the extension.
177 Extensions that are removed should be listed after all extensions which have
178 been added, again in ascending alphabetical order. For example,
179 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
180
181
182 The following extensions are currently supported:
183 @code{bf16} (BFloat16 extensions for v8.6-A architecture),
184 @code{crc}
185 @code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
186 @code{dotprod} (Dot Product Extensions for v8.2-A architecture, implies @code{fp+simd}),
187 @code{fp} (Floating Point Extensions for v8-A architecture),
188 @code{fp16} (FP16 Extensions for v8.2-A architecture, implies @code{fp}),
189 @code{fp16fml} (FP16 Floating Point Multiplication Variant Extensions for v8.2-A architecture, implies @code{fp16}),
190 @code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
191 @code{iwmmxt},
192 @code{iwmmxt2},
193 @code{xscale},
194 @code{maverick},
195 @code{mp} (Multiprocessing Extensions for v7-A and v7-R
196 architectures),
197 @code{os} (Operating System for v6M architecture),
198 @code{predres} (Execution and Data Prediction Restriction Instruction for
199 v8-A architectures, added by default from v8.5-A),
200 @code{sb} (Speculation Barrier Instruction for v8-A architectures, added by
201 default from v8.5-A),
202 @code{sec} (Security Extensions for v6K and v7-A architectures),
203 @code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
204 @code{virt} (Virtualization Extensions for v7-A architecture, implies
205 @code{idiv}),
206 @code{pan} (Privileged Access Never Extensions for v8-A architecture),
207 @code{ras} (Reliability, Availability and Serviceability extensions
208 for v8-A architecture),
209 @code{rdma} (ARMv8.1 Advanced SIMD extensions for v8-A architecture, implies
210 @code{simd})
211 and
212 @code{xscale}.
213
214 @cindex @code{-march=} command-line option, ARM
215 @item -march=@var{architecture}[+@var{extension}@dots{}]
216 This option specifies the target architecture. The assembler will issue
217 an error message if an attempt is made to assemble an instruction which
218 will not execute on the target architecture. The following architecture
219 names are recognized:
220 @code{armv1},
221 @code{armv2},
222 @code{armv2a},
223 @code{armv2s},
224 @code{armv3},
225 @code{armv3m},
226 @code{armv4},
227 @code{armv4xm},
228 @code{armv4t},
229 @code{armv4txm},
230 @code{armv5},
231 @code{armv5t},
232 @code{armv5txm},
233 @code{armv5te},
234 @code{armv5texp},
235 @code{armv6},
236 @code{armv6j},
237 @code{armv6k},
238 @code{armv6z},
239 @code{armv6kz},
240 @code{armv6-m},
241 @code{armv6s-m},
242 @code{armv7},
243 @code{armv7-a},
244 @code{armv7ve},
245 @code{armv7-r},
246 @code{armv7-m},
247 @code{armv7e-m},
248 @code{armv8-a},
249 @code{armv8.1-a},
250 @code{armv8.2-a},
251 @code{armv8.3-a},
252 @code{armv8-r},
253 @code{armv8.4-a},
254 @code{armv8.5-a},
255 @code{armv8-m.base},
256 @code{armv8-m.main},
257 @code{armv8.1-m.main},
258 @code{armv8.6-a},
259 @code{iwmmxt},
260 @code{iwmmxt2}
261 and
262 @code{xscale}.
263 If both @code{-mcpu} and
264 @code{-march} are specified, the assembler will use
265 the setting for @code{-mcpu}.
266
267 The architecture option can be extended with a set extension options. These
268 extensions are context sensitive, i.e. the same extension may mean different
269 things when used with different architectures. When used together with a
270 @code{-mfpu} option, the union of both feature enablement is taken.
271 See their availability and meaning below:
272
273 For @code{armv5te}, @code{armv5texp}, @code{armv5tej}, @code{armv6}, @code{armv6j}, @code{armv6k}, @code{armv6z}, @code{armv6kz}, @code{armv6zk}, @code{armv6t2}, @code{armv6kt2} and @code{armv6zt2}:
274
275 @code{+fp}: Enables VFPv2 instructions.
276 @code{+nofp}: Disables all FPU instrunctions.
277
278 For @code{armv7}:
279
280 @code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
281 @code{+nofp}: Disables all FPU instructions.
282
283 For @code{armv7-a}:
284
285 @code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
286 @code{+vfpv3-d16}: Alias for @code{+fp}.
287 @code{+vfpv3}: Enables VFPv3 instructions with 32 double-word registers.
288 @code{+vfpv3-d16-fp16}: Enables VFPv3 with half precision floating-point
289 conversion instructions and 16 double-word registers.
290 @code{+vfpv3-fp16}: Enables VFPv3 with half precision floating-point conversion
291 instructions and 32 double-word registers.
292 @code{+vfpv4-d16}: Enables VFPv4 instructions with 16 double-word registers.
293 @code{+vfpv4}: Enables VFPv4 instructions with 32 double-word registers.
294 @code{+simd}: Enables VFPv3 and NEONv1 instructions with 32 double-word
295 registers.
296 @code{+neon}: Alias for @code{+simd}.
297 @code{+neon-vfpv3}: Alias for @code{+simd}.
298 @code{+neon-fp16}: Enables VFPv3, half precision floating-point conversion and
299 NEONv1 instructions with 32 double-word registers.
300 @code{+neon-vfpv4}: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
301 double-word registers.
302 @code{+mp}: Enables Multiprocessing Extensions.
303 @code{+sec}: Enables Security Extensions.
304 @code{+nofp}: Disables all FPU and NEON instructions.
305 @code{+nosimd}: Disables all NEON instructions.
306
307 For @code{armv7ve}:
308
309 @code{+fp}: Enables VFPv4 instructions with 16 double-word registers.
310 @code{+vfpv4-d16}: Alias for @code{+fp}.
311 @code{+vfpv3-d16}: Enables VFPv3 instructions with 16 double-word registers.
312 @code{+vfpv3}: Enables VFPv3 instructions with 32 double-word registers.
313 @code{+vfpv3-d16-fp16}: Enables VFPv3 with half precision floating-point
314 conversion instructions and 16 double-word registers.
315 @code{+vfpv3-fp16}: Enables VFPv3 with half precision floating-point conversion
316 instructions and 32 double-word registers.
317 @code{+vfpv4}: Enables VFPv4 instructions with 32 double-word registers.
318 @code{+simd}: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
319 double-word registers.
320 @code{+neon-vfpv4}: Alias for @code{+simd}.
321 @code{+neon}: Enables VFPv3 and NEONv1 instructions with 32 double-word
322 registers.
323 @code{+neon-vfpv3}: Alias for @code{+neon}.
324 @code{+neon-fp16}: Enables VFPv3, half precision floating-point conversion and
325 NEONv1 instructions with 32 double-word registers.
326 double-word registers.
327 @code{+nofp}: Disables all FPU and NEON instructions.
328 @code{+nosimd}: Disables all NEON instructions.
329
330 For @code{armv7-r}:
331
332 @code{+fp.sp}: Enables single-precision only VFPv3 instructions with 16
333 double-word registers.
334 @code{+vfpv3xd}: Alias for @code{+fp.sp}.
335 @code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
336 @code{+vfpv3-d16}: Alias for @code{+fp}.
337 @code{+vfpv3xd-fp16}: Enables single-precision only VFPv3 and half
338 floating-point conversion instructions with 16 double-word registers.
339 @code{+vfpv3-d16-fp16}: Enables VFPv3 and half precision floating-point
340 conversion instructions with 16 double-word registers.
341 @code{+idiv}: Enables integer division instructions in ARM mode.
342 @code{+nofp}: Disables all FPU instructions.
343
344 For @code{armv7e-m}:
345
346 @code{+fp}: Enables single-precision only VFPv4 instructions with 16
347 double-word registers.
348 @code{+vfpvf4-sp-d16}: Alias for @code{+fp}.
349 @code{+fpv5}: Enables single-precision only VFPv5 instructions with 16
350 double-word registers.
351 @code{+fp.dp}: Enables VFPv5 instructions with 16 double-word registers.
352 @code{+fpv5-d16"}: Alias for @code{+fp.dp}.
353 @code{+nofp}: Disables all FPU instructions.
354
355 For @code{armv8-m.main}:
356
357 @code{+dsp}: Enables DSP Extension.
358 @code{+fp}: Enables single-precision only VFPv5 instructions with 16
359 double-word registers.
360 @code{+fp.dp}: Enables VFPv5 instructions with 16 double-word registers.
361 @code{+nofp}: Disables all FPU instructions.
362 @code{+nodsp}: Disables DSP Extension.
363
364 For @code{armv8.1-m.main}:
365
366 @code{+dsp}: Enables DSP Extension.
367 @code{+fp}: Enables single and half precision scalar Floating Point Extensions
368 for Armv8.1-M Mainline with 16 double-word registers.
369 @code{+fp.dp}: Enables double precision scalar Floating Point Extensions for
370 Armv8.1-M Mainline, implies @code{+fp}.
371 @code{+mve}: Enables integer only M-profile Vector Extension for
372 Armv8.1-M Mainline, implies @code{+dsp}.
373 @code{+mve.fp}: Enables Floating Point M-profile Vector Extension for
374 Armv8.1-M Mainline, implies @code{+mve} and @code{+fp}.
375 @code{+nofp}: Disables all FPU instructions.
376 @code{+nodsp}: Disables DSP Extension.
377 @code{+nomve}: Disables all M-profile Vector Extensions.
378
379 For @code{armv8-a}:
380
381 @code{+crc}: Enables CRC32 Extension.
382 @code{+simd}: Enables VFP and NEON for Armv8-A.
383 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
384 @code{+simd}.
385 @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
386 @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
387 for Armv8-A.
388 @code{+nofp}: Disables all FPU, NEON and Cryptography Extensions.
389 @code{+nocrypto}: Disables Cryptography Extensions.
390
391 For @code{armv8.1-a}:
392
393 @code{+simd}: Enables VFP and NEON for Armv8.1-A.
394 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
395 @code{+simd}.
396 @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
397 @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
398 for Armv8-A.
399 @code{+nofp}: Disables all FPU, NEON and Cryptography Extensions.
400 @code{+nocrypto}: Disables Cryptography Extensions.
401
402 For @code{armv8.2-a} and @code{armv8.3-a}:
403
404 @code{+simd}: Enables VFP and NEON for Armv8.1-A.
405 @code{+fp16}: Enables FP16 Extension for Armv8.2-A, implies @code{+simd}.
406 @code{+fp16fml}: Enables FP16 Floating Point Multiplication Variant Extensions
407 for Armv8.2-A, implies @code{+fp16}.
408 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
409 @code{+simd}.
410 @code{+dotprod}: Enables Dot Product Extensions for Armv8.2-A, implies
411 @code{+simd}.
412 @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
413 @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
414 for Armv8-A.
415 @code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
416 @code{+nocrypto}: Disables Cryptography Extensions.
417
418 For @code{armv8.4-a}:
419
420 @code{+simd}: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions for
421 Armv8.2-A.
422 @code{+fp16}: Enables FP16 Floating Point and Floating Point Multiplication
423 Variant Extensions for Armv8.2-A, implies @code{+simd}.
424 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
425 @code{+simd}.
426 @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
427 @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
428 for Armv8-A.
429 @code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
430 @code{+nocryptp}: Disables Cryptography Extensions.
431
432 For @code{armv8.5-a}:
433
434 @code{+simd}: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions for
435 Armv8.2-A.
436 @code{+fp16}: Enables FP16 Floating Point and Floating Point Multiplication
437 Variant Extensions for Armv8.2-A, implies @code{+simd}.
438 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
439 @code{+simd}.
440 @code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
441 @code{+nocryptp}: Disables Cryptography Extensions.
442
443
444 @cindex @code{-mfpu=} command-line option, ARM
445 @item -mfpu=@var{floating-point-format}
446
447 This option specifies the floating point format to assemble for. The
448 assembler will issue an error message if an attempt is made to assemble
449 an instruction which will not execute on the target floating point unit.
450 The following format options are recognized:
451 @code{softfpa},
452 @code{fpe},
453 @code{fpe2},
454 @code{fpe3},
455 @code{fpa},
456 @code{fpa10},
457 @code{fpa11},
458 @code{arm7500fe},
459 @code{softvfp},
460 @code{softvfp+vfp},
461 @code{vfp},
462 @code{vfp10},
463 @code{vfp10-r0},
464 @code{vfp9},
465 @code{vfpxd},
466 @code{vfpv2},
467 @code{vfpv3},
468 @code{vfpv3-fp16},
469 @code{vfpv3-d16},
470 @code{vfpv3-d16-fp16},
471 @code{vfpv3xd},
472 @code{vfpv3xd-d16},
473 @code{vfpv4},
474 @code{vfpv4-d16},
475 @code{fpv4-sp-d16},
476 @code{fpv5-sp-d16},
477 @code{fpv5-d16},
478 @code{fp-armv8},
479 @code{arm1020t},
480 @code{arm1020e},
481 @code{arm1136jf-s},
482 @code{maverick},
483 @code{neon},
484 @code{neon-vfpv3},
485 @code{neon-fp16},
486 @code{neon-vfpv4},
487 @code{neon-fp-armv8},
488 @code{crypto-neon-fp-armv8},
489 @code{neon-fp-armv8.1}
490 and
491 @code{crypto-neon-fp-armv8.1}.
492
493 In addition to determining which instructions are assembled, this option
494 also affects the way in which the @code{.double} assembler directive behaves
495 when assembling little-endian code.
496
497 The default is dependent on the processor selected. For Architecture 5 or
498 later, the default is to assemble for VFP instructions; for earlier
499 architectures the default is to assemble for FPA instructions.
500
501 @cindex @code{-mfp16-format=} command-line option
502 @item -mfp16-format=@var{format}
503 This option specifies the half-precision floating point format to use
504 when assembling floating point numbers emitted by the @code{.float16}
505 directive.
506 The following format options are recognized:
507 @code{ieee},
508 @code{alternative}.
509 If @code{ieee} is specified then the IEEE 754-2008 half-precision floating
510 point format is used, if @code{alternative} is specified then the Arm
511 alternative half-precision format is used. If this option is set on the
512 command line then the format is fixed and cannot be changed with
513 the @code{float16_format} directive. If this value is not set then
514 the IEEE 754-2008 format is used until the format is explicitly set with
515 the @code{float16_format} directive.
516
517 @cindex @code{-mthumb} command-line option, ARM
518 @item -mthumb
519 This option specifies that the assembler should start assembling Thumb
520 instructions; that is, it should behave as though the file starts with a
521 @code{.code 16} directive.
522
523 @cindex @code{-mthumb-interwork} command-line option, ARM
524 @item -mthumb-interwork
525 This option specifies that the output generated by the assembler should
526 be marked as supporting interworking. It also affects the behaviour
527 of the @code{ADR} and @code{ADRL} pseudo opcodes.
528
529 @cindex @code{-mimplicit-it} command-line option, ARM
530 @item -mimplicit-it=never
531 @itemx -mimplicit-it=always
532 @itemx -mimplicit-it=arm
533 @itemx -mimplicit-it=thumb
534 The @code{-mimplicit-it} option controls the behavior of the assembler when
535 conditional instructions are not enclosed in IT blocks.
536 There are four possible behaviors.
537 If @code{never} is specified, such constructs cause a warning in ARM
538 code and an error in Thumb-2 code.
539 If @code{always} is specified, such constructs are accepted in both
540 ARM and Thumb-2 code, where the IT instruction is added implicitly.
541 If @code{arm} is specified, such constructs are accepted in ARM code
542 and cause an error in Thumb-2 code.
543 If @code{thumb} is specified, such constructs cause a warning in ARM
544 code and are accepted in Thumb-2 code. If you omit this option, the
545 behavior is equivalent to @code{-mimplicit-it=arm}.
546
547 @cindex @code{-mapcs-26} command-line option, ARM
548 @cindex @code{-mapcs-32} command-line option, ARM
549 @item -mapcs-26
550 @itemx -mapcs-32
551 These options specify that the output generated by the assembler should
552 be marked as supporting the indicated version of the Arm Procedure.
553 Calling Standard.
554
555 @cindex @code{-matpcs} command-line option, ARM
556 @item -matpcs
557 This option specifies that the output generated by the assembler should
558 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
559 enabled this option will cause the assembler to create an empty
560 debugging section in the object file called .arm.atpcs. Debuggers can
561 use this to determine the ABI being used by.
562
563 @cindex @code{-mapcs-float} command-line option, ARM
564 @item -mapcs-float
565 This indicates the floating point variant of the APCS should be
566 used. In this variant floating point arguments are passed in FP
567 registers rather than integer registers.
568
569 @cindex @code{-mapcs-reentrant} command-line option, ARM
570 @item -mapcs-reentrant
571 This indicates that the reentrant variant of the APCS should be used.
572 This variant supports position independent code.
573
574 @cindex @code{-mfloat-abi=} command-line option, ARM
575 @item -mfloat-abi=@var{abi}
576 This option specifies that the output generated by the assembler should be
577 marked as using specified floating point ABI.
578 The following values are recognized:
579 @code{soft},
580 @code{softfp}
581 and
582 @code{hard}.
583
584 @cindex @code{-eabi=} command-line option, ARM
585 @item -meabi=@var{ver}
586 This option specifies which EABI version the produced object files should
587 conform to.
588 The following values are recognized:
589 @code{gnu},
590 @code{4}
591 and
592 @code{5}.
593
594 @cindex @code{-EB} command-line option, ARM
595 @item -EB
596 This option specifies that the output generated by the assembler should
597 be marked as being encoded for a big-endian processor.
598
599 Note: If a program is being built for a system with big-endian data
600 and little-endian instructions then it should be assembled with the
601 @option{-EB} option, (all of it, code and data) and then linked with
602 the @option{--be8} option. This will reverse the endianness of the
603 instructions back to little-endian, but leave the data as big-endian.
604
605 @cindex @code{-EL} command-line option, ARM
606 @item -EL
607 This option specifies that the output generated by the assembler should
608 be marked as being encoded for a little-endian processor.
609
610 @cindex @code{-k} command-line option, ARM
611 @cindex PIC code generation for ARM
612 @item -k
613 This option specifies that the output of the assembler should be marked
614 as position-independent code (PIC).
615
616 @cindex @code{--fix-v4bx} command-line option, ARM
617 @item --fix-v4bx
618 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
619 the linker option of the same name.
620
621 @cindex @code{-mwarn-deprecated} command-line option, ARM
622 @item -mwarn-deprecated
623 @itemx -mno-warn-deprecated
624 Enable or disable warnings about using deprecated options or
625 features. The default is to warn.
626
627 @cindex @code{-mccs} command-line option, ARM
628 @item -mccs
629 Turns on CodeComposer Studio assembly syntax compatibility mode.
630
631 @cindex @code{-mwarn-syms} command-line option, ARM
632 @item -mwarn-syms
633 @itemx -mno-warn-syms
634 Enable or disable warnings about symbols that match the names of ARM
635 instructions. The default is to warn.
636
637 @end table
638
639
640 @node ARM Syntax
641 @section Syntax
642 @menu
643 * ARM-Instruction-Set:: Instruction Set
644 * ARM-Chars:: Special Characters
645 * ARM-Regs:: Register Names
646 * ARM-Relocations:: Relocations
647 * ARM-Neon-Alignment:: NEON Alignment Specifiers
648 @end menu
649
650 @node ARM-Instruction-Set
651 @subsection Instruction Set Syntax
652 Two slightly different syntaxes are support for ARM and THUMB
653 instructions. The default, @code{divided}, uses the old style where
654 ARM and THUMB instructions had their own, separate syntaxes. The new,
655 @code{unified} syntax, which can be selected via the @code{.syntax}
656 directive, and has the following main features:
657
658 @itemize @bullet
659 @item
660 Immediate operands do not require a @code{#} prefix.
661
662 @item
663 The @code{IT} instruction may appear, and if it does it is validated
664 against subsequent conditional affixes. In ARM mode it does not
665 generate machine code, in THUMB mode it does.
666
667 @item
668 For ARM instructions the conditional affixes always appear at the end
669 of the instruction. For THUMB instructions conditional affixes can be
670 used, but only inside the scope of an @code{IT} instruction.
671
672 @item
673 All of the instructions new to the V6T2 architecture (and later) are
674 available. (Only a few such instructions can be written in the
675 @code{divided} syntax).
676
677 @item
678 The @code{.N} and @code{.W} suffixes are recognized and honored.
679
680 @item
681 All instructions set the flags if and only if they have an @code{s}
682 affix.
683 @end itemize
684
685 @node ARM-Chars
686 @subsection Special Characters
687
688 @cindex line comment character, ARM
689 @cindex ARM line comment character
690 The presence of a @samp{@@} anywhere on a line indicates the start of
691 a comment that extends to the end of that line.
692
693 If a @samp{#} appears as the first character of a line then the whole
694 line is treated as a comment, but in this case the line could also be
695 a logical line number directive (@pxref{Comments}) or a preprocessor
696 control command (@pxref{Preprocessing}).
697
698 @cindex line separator, ARM
699 @cindex statement separator, ARM
700 @cindex ARM line separator
701 The @samp{;} character can be used instead of a newline to separate
702 statements.
703
704 @cindex immediate character, ARM
705 @cindex ARM immediate character
706 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
707
708 @cindex identifiers, ARM
709 @cindex ARM identifiers
710 *TODO* Explain about /data modifier on symbols.
711
712 @node ARM-Regs
713 @subsection Register Names
714
715 @cindex ARM register names
716 @cindex register names, ARM
717 *TODO* Explain about ARM register naming, and the predefined names.
718
719 @node ARM-Relocations
720 @subsection ARM relocation generation
721
722 @cindex data relocations, ARM
723 @cindex ARM data relocations
724 Specific data relocations can be generated by putting the relocation name
725 in parentheses after the symbol name. For example:
726
727 @smallexample
728 .word foo(TARGET1)
729 @end smallexample
730
731 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
732 @var{foo}.
733 The following relocations are supported:
734 @code{GOT},
735 @code{GOTOFF},
736 @code{TARGET1},
737 @code{TARGET2},
738 @code{SBREL},
739 @code{TLSGD},
740 @code{TLSLDM},
741 @code{TLSLDO},
742 @code{TLSDESC},
743 @code{TLSCALL},
744 @code{GOTTPOFF},
745 @code{GOT_PREL}
746 and
747 @code{TPOFF}.
748
749 For compatibility with older toolchains the assembler also accepts
750 @code{(PLT)} after branch targets. On legacy targets this will
751 generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
752 targets it will encode either the @samp{R_ARM_CALL} or
753 @samp{R_ARM_JUMP24} relocation, as appropriate.
754
755 @cindex MOVW and MOVT relocations, ARM
756 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
757 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
758 respectively. For example to load the 32-bit address of foo into r0:
759
760 @smallexample
761 MOVW r0, #:lower16:foo
762 MOVT r0, #:upper16:foo
763 @end smallexample
764
765 Relocations @samp{R_ARM_THM_ALU_ABS_G0_NC}, @samp{R_ARM_THM_ALU_ABS_G1_NC},
766 @samp{R_ARM_THM_ALU_ABS_G2_NC} and @samp{R_ARM_THM_ALU_ABS_G3_NC} can be
767 generated by prefixing the value with @samp{#:lower0_7:#},
768 @samp{#:lower8_15:#}, @samp{#:upper0_7:#} and @samp{#:upper8_15:#}
769 respectively. For example to load the 32-bit address of foo into r0:
770
771 @smallexample
772 MOVS r0, #:upper8_15:#foo
773 LSLS r0, r0, #8
774 ADDS r0, #:upper0_7:#foo
775 LSLS r0, r0, #8
776 ADDS r0, #:lower8_15:#foo
777 LSLS r0, r0, #8
778 ADDS r0, #:lower0_7:#foo
779 @end smallexample
780
781 @node ARM-Neon-Alignment
782 @subsection NEON Alignment Specifiers
783
784 @cindex alignment for NEON instructions
785 Some NEON load/store instructions allow an optional address
786 alignment qualifier.
787 The ARM documentation specifies that this is indicated by
788 @samp{@@ @var{align}}. However GAS already interprets
789 the @samp{@@} character as a "line comment" start,
790 so @samp{: @var{align}} is used instead. For example:
791
792 @smallexample
793 vld1.8 @{q0@}, [r0, :128]
794 @end smallexample
795
796 @node ARM Floating Point
797 @section Floating Point
798
799 @cindex floating point, ARM (@sc{ieee})
800 @cindex ARM floating point (@sc{ieee})
801 The ARM family uses @sc{ieee} floating-point numbers.
802
803 @node ARM Directives
804 @section ARM Machine Directives
805
806 @cindex machine directives, ARM
807 @cindex ARM machine directives
808 @table @code
809
810 @c AAAAAAAAAAAAAAAAAAAAAAAAA
811
812 @ifclear ELF
813 @cindex @code{.2byte} directive, ARM
814 @cindex @code{.4byte} directive, ARM
815 @cindex @code{.8byte} directive, ARM
816 @item .2byte @var{expression} [, @var{expression}]*
817 @itemx .4byte @var{expression} [, @var{expression}]*
818 @itemx .8byte @var{expression} [, @var{expression}]*
819 These directives write 2, 4 or 8 byte values to the output section.
820 @end ifclear
821
822 @cindex @code{.align} directive, ARM
823 @item .align @var{expression} [, @var{expression}]
824 This is the generic @var{.align} directive. For the ARM however if the
825 first argument is zero (ie no alignment is needed) the assembler will
826 behave as if the argument had been 2 (ie pad to the next four byte
827 boundary). This is for compatibility with ARM's own assembler.
828
829 @cindex @code{.arch} directive, ARM
830 @item .arch @var{name}
831 Select the target architecture. Valid values for @var{name} are the same as
832 for the @option{-march} command-line option without the instruction set
833 extension.
834
835 Specifying @code{.arch} clears any previously selected architecture
836 extensions.
837
838 @cindex @code{.arch_extension} directive, ARM
839 @item .arch_extension @var{name}
840 Add or remove an architecture extension to the target architecture. Valid
841 values for @var{name} are the same as those accepted as architectural
842 extensions by the @option{-mcpu} and @option{-march} command-line options.
843
844 @code{.arch_extension} may be used multiple times to add or remove extensions
845 incrementally to the architecture being compiled for.
846
847 @cindex @code{.arm} directive, ARM
848 @item .arm
849 This performs the same action as @var{.code 32}.
850
851 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
852
853 @cindex @code{.bss} directive, ARM
854 @item .bss
855 This directive switches to the @code{.bss} section.
856
857 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
858
859 @cindex @code{.cantunwind} directive, ARM
860 @item .cantunwind
861 Prevents unwinding through the current function. No personality routine
862 or exception table data is required or permitted.
863
864 @cindex @code{.code} directive, ARM
865 @item .code @code{[16|32]}
866 This directive selects the instruction set being generated. The value 16
867 selects Thumb, with the value 32 selecting ARM.
868
869 @cindex @code{.cpu} directive, ARM
870 @item .cpu @var{name}
871 Select the target processor. Valid values for @var{name} are the same as
872 for the @option{-mcpu} command-line option without the instruction set
873 extension.
874
875 Specifying @code{.cpu} clears any previously selected architecture
876 extensions.
877
878 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
879
880 @cindex @code{.dn} and @code{.qn} directives, ARM
881 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
882 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
883
884 The @code{dn} and @code{qn} directives are used to create typed
885 and/or indexed register aliases for use in Advanced SIMD Extension
886 (Neon) instructions. The former should be used to create aliases
887 of double-precision registers, and the latter to create aliases of
888 quad-precision registers.
889
890 If these directives are used to create typed aliases, those aliases can
891 be used in Neon instructions instead of writing types after the mnemonic
892 or after each operand. For example:
893
894 @smallexample
895 x .dn d2.f32
896 y .dn d3.f32
897 z .dn d4.f32[1]
898 vmul x,y,z
899 @end smallexample
900
901 This is equivalent to writing the following:
902
903 @smallexample
904 vmul.f32 d2,d3,d4[1]
905 @end smallexample
906
907 Aliases created using @code{dn} or @code{qn} can be destroyed using
908 @code{unreq}.
909
910 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
911
912 @cindex @code{.eabi_attribute} directive, ARM
913 @item .eabi_attribute @var{tag}, @var{value}
914 Set the EABI object attribute @var{tag} to @var{value}.
915
916 The @var{tag} is either an attribute number, or one of the following:
917 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
918 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
919 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
920 @code{Tag_Advanced_SIMD_arch}, @code{Tag_MVE_arch}, @code{Tag_PCS_config},
921 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
922 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
923 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
924 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
925 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
926 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
927 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
928 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
929 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
930 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
931 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
932 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
933 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
934 @code{Tag_conformance}, @code{Tag_T2EE_use},
935 @code{Tag_Virtualization_use}
936
937 The @var{value} is either a @code{number}, @code{"string"}, or
938 @code{number, "string"} depending on the tag.
939
940 Note - the following legacy values are also accepted by @var{tag}:
941 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
942 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
943
944 @cindex @code{.even} directive, ARM
945 @item .even
946 This directive aligns to an even-numbered address.
947
948 @cindex @code{.extend} directive, ARM
949 @cindex @code{.ldouble} directive, ARM
950 @item .extend @var{expression} [, @var{expression}]*
951 @itemx .ldouble @var{expression} [, @var{expression}]*
952 These directives write 12byte long double floating-point values to the
953 output section. These are not compatible with current ARM processors
954 or ABIs.
955
956 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
957
958 @cindex @code{.float16} directive, ARM
959 @item .float16 @var{value [,...,value_n]}
960 Place the half precision floating point representation of one or more
961 floating-point values into the current section. The exact format of the
962 encoding is specified by @code{.float16_format}. If the format has not
963 been explicitly set yet (either via the @code{.float16_format} directive or
964 the command line option) then the IEEE 754-2008 format is used.
965
966 @cindex @code{.float16_format} directive, ARM
967 @item .float16_format @var{format}
968 Set the format to use when encoding float16 values emitted by
969 the @code{.float16} directive.
970 Once the format has been set it cannot be changed.
971 @code{format} should be one of the following: @code{ieee} (encode in
972 the IEEE 754-2008 half precision format) or @code{alternative} (encode in
973 the Arm alternative half precision format).
974
975 @anchor{arm_fnend}
976 @cindex @code{.fnend} directive, ARM
977 @item .fnend
978 Marks the end of a function with an unwind table entry. The unwind index
979 table entry is created when this directive is processed.
980
981 If no personality routine has been specified then standard personality
982 routine 0 or 1 will be used, depending on the number of unwind opcodes
983 required.
984
985 @anchor{arm_fnstart}
986 @cindex @code{.fnstart} directive, ARM
987 @item .fnstart
988 Marks the start of a function with an unwind table entry.
989
990 @cindex @code{.force_thumb} directive, ARM
991 @item .force_thumb
992 This directive forces the selection of Thumb instructions, even if the
993 target processor does not support those instructions
994
995 @cindex @code{.fpu} directive, ARM
996 @item .fpu @var{name}
997 Select the floating-point unit to assemble for. Valid values for @var{name}
998 are the same as for the @option{-mfpu} command-line option.
999
1000 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
1001 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
1002
1003 @cindex @code{.handlerdata} directive, ARM
1004 @item .handlerdata
1005 Marks the end of the current function, and the start of the exception table
1006 entry for that function. Anything between this directive and the
1007 @code{.fnend} directive will be added to the exception table entry.
1008
1009 Must be preceded by a @code{.personality} or @code{.personalityindex}
1010 directive.
1011
1012 @c IIIIIIIIIIIIIIIIIIIIIIIIII
1013
1014 @cindex @code{.inst} directive, ARM
1015 @item .inst @var{opcode} [ , @dots{} ]
1016 @itemx .inst.n @var{opcode} [ , @dots{} ]
1017 @itemx .inst.w @var{opcode} [ , @dots{} ]
1018 Generates the instruction corresponding to the numerical value @var{opcode}.
1019 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
1020 specified explicitly, overriding the normal encoding rules.
1021
1022 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
1023 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
1024 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
1025
1026 @item .ldouble @var{expression} [, @var{expression}]*
1027 See @code{.extend}.
1028
1029 @cindex @code{.ltorg} directive, ARM
1030 @item .ltorg
1031 This directive causes the current contents of the literal pool to be
1032 dumped into the current section (which is assumed to be the .text
1033 section) at the current location (aligned to a word boundary).
1034 @code{GAS} maintains a separate literal pool for each section and each
1035 sub-section. The @code{.ltorg} directive will only affect the literal
1036 pool of the current section and sub-section. At the end of assembly
1037 all remaining, un-empty literal pools will automatically be dumped.
1038
1039 Note - older versions of @code{GAS} would dump the current literal
1040 pool any time a section change occurred. This is no longer done, since
1041 it prevents accurate control of the placement of literal pools.
1042
1043 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
1044
1045 @cindex @code{.movsp} directive, ARM
1046 @item .movsp @var{reg} [, #@var{offset}]
1047 Tell the unwinder that @var{reg} contains an offset from the current
1048 stack pointer. If @var{offset} is not specified then it is assumed to be
1049 zero.
1050
1051 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
1052 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
1053
1054 @cindex @code{.object_arch} directive, ARM
1055 @item .object_arch @var{name}
1056 Override the architecture recorded in the EABI object attribute section.
1057 Valid values for @var{name} are the same as for the @code{.arch} directive.
1058 Typically this is useful when code uses runtime detection of CPU features.
1059
1060 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
1061
1062 @cindex @code{.packed} directive, ARM
1063 @item .packed @var{expression} [, @var{expression}]*
1064 This directive writes 12-byte packed floating-point values to the
1065 output section. These are not compatible with current ARM processors
1066 or ABIs.
1067
1068 @anchor{arm_pad}
1069 @cindex @code{.pad} directive, ARM
1070 @item .pad #@var{count}
1071 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
1072 A positive value indicates the function prologue allocated stack space by
1073 decrementing the stack pointer.
1074
1075 @cindex @code{.personality} directive, ARM
1076 @item .personality @var{name}
1077 Sets the personality routine for the current function to @var{name}.
1078
1079 @cindex @code{.personalityindex} directive, ARM
1080 @item .personalityindex @var{index}
1081 Sets the personality routine for the current function to the EABI standard
1082 routine number @var{index}
1083
1084 @cindex @code{.pool} directive, ARM
1085 @item .pool
1086 This is a synonym for .ltorg.
1087
1088 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
1089 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
1090
1091 @cindex @code{.req} directive, ARM
1092 @item @var{name} .req @var{register name}
1093 This creates an alias for @var{register name} called @var{name}. For
1094 example:
1095
1096 @smallexample
1097 foo .req r0
1098 @end smallexample
1099
1100 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
1101
1102 @anchor{arm_save}
1103 @cindex @code{.save} directive, ARM
1104 @item .save @var{reglist}
1105 Generate unwinder annotations to restore the registers in @var{reglist}.
1106 The format of @var{reglist} is the same as the corresponding store-multiple
1107 instruction.
1108
1109 @smallexample
1110 @exdent @emph{core registers}
1111 .save @{r4, r5, r6, lr@}
1112 stmfd sp!, @{r4, r5, r6, lr@}
1113 @exdent @emph{FPA registers}
1114 .save f4, 2
1115 sfmfd f4, 2, [sp]!
1116 @exdent @emph{VFP registers}
1117 .save @{d8, d9, d10@}
1118 fstmdx sp!, @{d8, d9, d10@}
1119 @exdent @emph{iWMMXt registers}
1120 .save @{wr10, wr11@}
1121 wstrd wr11, [sp, #-8]!
1122 wstrd wr10, [sp, #-8]!
1123 or
1124 .save wr11
1125 wstrd wr11, [sp, #-8]!
1126 .save wr10
1127 wstrd wr10, [sp, #-8]!
1128 @end smallexample
1129
1130 @anchor{arm_setfp}
1131 @cindex @code{.setfp} directive, ARM
1132 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
1133 Make all unwinder annotations relative to a frame pointer. Without this
1134 the unwinder will use offsets from the stack pointer.
1135
1136 The syntax of this directive is the same as the @code{add} or @code{mov}
1137 instruction used to set the frame pointer. @var{spreg} must be either
1138 @code{sp} or mentioned in a previous @code{.movsp} directive.
1139
1140 @smallexample
1141 .movsp ip
1142 mov ip, sp
1143 @dots{}
1144 .setfp fp, ip, #4
1145 add fp, ip, #4
1146 @end smallexample
1147
1148 @cindex @code{.secrel32} directive, ARM
1149 @item .secrel32 @var{expression} [, @var{expression}]*
1150 This directive emits relocations that evaluate to the section-relative
1151 offset of each expression's symbol. This directive is only supported
1152 for PE targets.
1153
1154 @cindex @code{.syntax} directive, ARM
1155 @item .syntax [@code{unified} | @code{divided}]
1156 This directive sets the Instruction Set Syntax as described in the
1157 @ref{ARM-Instruction-Set} section.
1158
1159 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
1160
1161 @cindex @code{.thumb} directive, ARM
1162 @item .thumb
1163 This performs the same action as @var{.code 16}.
1164
1165 @cindex @code{.thumb_func} directive, ARM
1166 @item .thumb_func
1167 This directive specifies that the following symbol is the name of a
1168 Thumb encoded function. This information is necessary in order to allow
1169 the assembler and linker to generate correct code for interworking
1170 between Arm and Thumb instructions and should be used even if
1171 interworking is not going to be performed. The presence of this
1172 directive also implies @code{.thumb}
1173
1174 This directive is not necessary when generating EABI objects. On these
1175 targets the encoding is implicit when generating Thumb code.
1176
1177 @cindex @code{.thumb_set} directive, ARM
1178 @item .thumb_set
1179 This performs the equivalent of a @code{.set} directive in that it
1180 creates a symbol which is an alias for another symbol (possibly not yet
1181 defined). This directive also has the added property in that it marks
1182 the aliased symbol as being a thumb function entry point, in the same
1183 way that the @code{.thumb_func} directive does.
1184
1185 @cindex @code{.tlsdescseq} directive, ARM
1186 @item .tlsdescseq @var{tls-variable}
1187 This directive is used to annotate parts of an inlined TLS descriptor
1188 trampoline. Normally the trampoline is provided by the linker, and
1189 this directive is not needed.
1190
1191 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
1192
1193 @cindex @code{.unreq} directive, ARM
1194 @item .unreq @var{alias-name}
1195 This undefines a register alias which was previously defined using the
1196 @code{req}, @code{dn} or @code{qn} directives. For example:
1197
1198 @smallexample
1199 foo .req r0
1200 .unreq foo
1201 @end smallexample
1202
1203 An error occurs if the name is undefined. Note - this pseudo op can
1204 be used to delete builtin in register name aliases (eg 'r0'). This
1205 should only be done if it is really necessary.
1206
1207 @cindex @code{.unwind_raw} directive, ARM
1208 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
1209 Insert one of more arbitrary unwind opcode bytes, which are known to adjust
1210 the stack pointer by @var{offset} bytes.
1211
1212 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
1213 @code{.save @{r0@}}
1214
1215 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
1216
1217 @cindex @code{.vsave} directive, ARM
1218 @item .vsave @var{vfp-reglist}
1219 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
1220 using FLDMD. Also works for VFPv3 registers
1221 that are to be restored using VLDM.
1222 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
1223 instruction.
1224
1225 @smallexample
1226 @exdent @emph{VFP registers}
1227 .vsave @{d8, d9, d10@}
1228 fstmdd sp!, @{d8, d9, d10@}
1229 @exdent @emph{VFPv3 registers}
1230 .vsave @{d15, d16, d17@}
1231 vstm sp!, @{d15, d16, d17@}
1232 @end smallexample
1233
1234 Since FLDMX and FSTMX are now deprecated, this directive should be
1235 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
1236
1237 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
1238 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
1239 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
1240 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
1241
1242 @end table
1243
1244 @node ARM Opcodes
1245 @section Opcodes
1246
1247 @cindex ARM opcodes
1248 @cindex opcodes for ARM
1249 @code{@value{AS}} implements all the standard ARM opcodes. It also
1250 implements several pseudo opcodes, including several synthetic load
1251 instructions.
1252
1253 @table @code
1254
1255 @cindex @code{NOP} pseudo op, ARM
1256 @item NOP
1257 @smallexample
1258 nop
1259 @end smallexample
1260
1261 This pseudo op will always evaluate to a legal ARM instruction that does
1262 nothing. Currently it will evaluate to MOV r0, r0.
1263
1264 @cindex @code{LDR reg,=<label>} pseudo op, ARM
1265 @item LDR
1266 @smallexample
1267 ldr <register> , = <expression>
1268 @end smallexample
1269
1270 If expression evaluates to a numeric constant then a MOV or MVN
1271 instruction will be used in place of the LDR instruction, if the
1272 constant can be generated by either of these instructions. Otherwise
1273 the constant will be placed into the nearest literal pool (if it not
1274 already there) and a PC relative LDR instruction will be generated.
1275
1276 @cindex @code{ADR reg,<label>} pseudo op, ARM
1277 @item ADR
1278 @smallexample
1279 adr <register> <label>
1280 @end smallexample
1281
1282 This instruction will load the address of @var{label} into the indicated
1283 register. The instruction will evaluate to a PC relative ADD or SUB
1284 instruction depending upon where the label is located. If the label is
1285 out of range, or if it is not defined in the same file (and section) as
1286 the ADR instruction, then an error will be generated. This instruction
1287 will not make use of the literal pool.
1288
1289 If @var{label} is a thumb function symbol, and thumb interworking has
1290 been enabled via the @option{-mthumb-interwork} option then the bottom
1291 bit of the value stored into @var{register} will be set. This allows
1292 the following sequence to work as expected:
1293
1294 @smallexample
1295 adr r0, thumb_function
1296 blx r0
1297 @end smallexample
1298
1299 @cindex @code{ADRL reg,<label>} pseudo op, ARM
1300 @item ADRL
1301 @smallexample
1302 adrl <register> <label>
1303 @end smallexample
1304
1305 This instruction will load the address of @var{label} into the indicated
1306 register. The instruction will evaluate to one or two PC relative ADD
1307 or SUB instructions depending upon where the label is located. If a
1308 second instruction is not needed a NOP instruction will be generated in
1309 its place, so that this instruction is always 8 bytes long.
1310
1311 If the label is out of range, or if it is not defined in the same file
1312 (and section) as the ADRL instruction, then an error will be generated.
1313 This instruction will not make use of the literal pool.
1314
1315 If @var{label} is a thumb function symbol, and thumb interworking has
1316 been enabled via the @option{-mthumb-interwork} option then the bottom
1317 bit of the value stored into @var{register} will be set.
1318
1319 @end table
1320
1321 For information on the ARM or Thumb instruction sets, see @cite{ARM
1322 Software Development Toolkit Reference Manual}, Advanced RISC Machines
1323 Ltd.
1324
1325 @node ARM Mapping Symbols
1326 @section Mapping Symbols
1327
1328 The ARM ELF specification requires that special symbols be inserted
1329 into object files to mark certain features:
1330
1331 @table @code
1332
1333 @cindex @code{$a}
1334 @item $a
1335 At the start of a region of code containing ARM instructions.
1336
1337 @cindex @code{$t}
1338 @item $t
1339 At the start of a region of code containing THUMB instructions.
1340
1341 @cindex @code{$d}
1342 @item $d
1343 At the start of a region of data.
1344
1345 @end table
1346
1347 The assembler will automatically insert these symbols for you - there
1348 is no need to code them yourself. Support for tagging symbols ($b,
1349 $f, $p and $m) which is also mentioned in the current ARM ELF
1350 specification is not implemented. This is because they have been
1351 dropped from the new EABI and so tools cannot rely upon their
1352 presence.
1353
1354 @node ARM Unwinding Tutorial
1355 @section Unwinding
1356
1357 The ABI for the ARM Architecture specifies a standard format for
1358 exception unwind information. This information is used when an
1359 exception is thrown to determine where control should be transferred.
1360 In particular, the unwind information is used to determine which
1361 function called the function that threw the exception, and which
1362 function called that one, and so forth. This information is also used
1363 to restore the values of callee-saved registers in the function
1364 catching the exception.
1365
1366 If you are writing functions in assembly code, and those functions
1367 call other functions that throw exceptions, you must use assembly
1368 pseudo ops to ensure that appropriate exception unwind information is
1369 generated. Otherwise, if one of the functions called by your assembly
1370 code throws an exception, the run-time library will be unable to
1371 unwind the stack through your assembly code and your program will not
1372 behave correctly.
1373
1374 To illustrate the use of these pseudo ops, we will examine the code
1375 that G++ generates for the following C++ input:
1376
1377 @verbatim
1378 void callee (int *);
1379
1380 int
1381 caller ()
1382 {
1383 int i;
1384 callee (&i);
1385 return i;
1386 }
1387 @end verbatim
1388
1389 This example does not show how to throw or catch an exception from
1390 assembly code. That is a much more complex operation and should
1391 always be done in a high-level language, such as C++, that directly
1392 supports exceptions.
1393
1394 The code generated by one particular version of G++ when compiling the
1395 example above is:
1396
1397 @verbatim
1398 _Z6callerv:
1399 .fnstart
1400 .LFB2:
1401 @ Function supports interworking.
1402 @ args = 0, pretend = 0, frame = 8
1403 @ frame_needed = 1, uses_anonymous_args = 0
1404 stmfd sp!, {fp, lr}
1405 .save {fp, lr}
1406 .LCFI0:
1407 .setfp fp, sp, #4
1408 add fp, sp, #4
1409 .LCFI1:
1410 .pad #8
1411 sub sp, sp, #8
1412 .LCFI2:
1413 sub r3, fp, #8
1414 mov r0, r3
1415 bl _Z6calleePi
1416 ldr r3, [fp, #-8]
1417 mov r0, r3
1418 sub sp, fp, #4
1419 ldmfd sp!, {fp, lr}
1420 bx lr
1421 .LFE2:
1422 .fnend
1423 @end verbatim
1424
1425 Of course, the sequence of instructions varies based on the options
1426 you pass to GCC and on the version of GCC in use. The exact
1427 instructions are not important since we are focusing on the pseudo ops
1428 that are used to generate unwind information.
1429
1430 An important assumption made by the unwinder is that the stack frame
1431 does not change during the body of the function. In particular, since
1432 we assume that the assembly code does not itself throw an exception,
1433 the only point where an exception can be thrown is from a call, such
1434 as the @code{bl} instruction above. At each call site, the same saved
1435 registers (including @code{lr}, which indicates the return address)
1436 must be located in the same locations relative to the frame pointer.
1437
1438 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1439 op appears immediately before the first instruction of the function
1440 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1441 op appears immediately after the last instruction of the function.
1442 These pseudo ops specify the range of the function.
1443
1444 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1445 @code{.pad}) matters; their exact locations are irrelevant. In the
1446 example above, the compiler emits the pseudo ops with particular
1447 instructions. That makes it easier to understand the code, but it is
1448 not required for correctness. It would work just as well to emit all
1449 of the pseudo ops other than @code{.fnend} in the same order, but
1450 immediately after @code{.fnstart}.
1451
1452 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1453 indicates registers that have been saved to the stack so that they can
1454 be restored before the function returns. The argument to the
1455 @code{.save} pseudo op is a list of registers to save. If a register
1456 is ``callee-saved'' (as specified by the ABI) and is modified by the
1457 function you are writing, then your code must save the value before it
1458 is modified and restore the original value before the function
1459 returns. If an exception is thrown, the run-time library restores the
1460 values of these registers from their locations on the stack before
1461 returning control to the exception handler. (Of course, if an
1462 exception is not thrown, the function that contains the @code{.save}
1463 pseudo op restores these registers in the function epilogue, as is
1464 done with the @code{ldmfd} instruction above.)
1465
1466 You do not have to save callee-saved registers at the very beginning
1467 of the function and you do not need to use the @code{.save} pseudo op
1468 immediately following the point at which the registers are saved.
1469 However, if you modify a callee-saved register, you must save it on
1470 the stack before modifying it and before calling any functions which
1471 might throw an exception. And, you must use the @code{.save} pseudo
1472 op to indicate that you have done so.
1473
1474 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1475 modification of the stack pointer that does not save any registers.
1476 The argument is the number of bytes (in decimal) that are subtracted
1477 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1478 subtracting from the stack pointer increases the size of the stack.)
1479
1480 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1481 indicates the register that contains the frame pointer. The first
1482 argument is the register that is set, which is typically @code{fp}.
1483 The second argument indicates the register from which the frame
1484 pointer takes its value. The third argument, if present, is the value
1485 (in decimal) added to the register specified by the second argument to
1486 compute the value of the frame pointer. You should not modify the
1487 frame pointer in the body of the function.
1488
1489 If you do not use a frame pointer, then you should not use the
1490 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1491 should avoid modifying the stack pointer outside of the function
1492 prologue. Otherwise, the run-time library will be unable to find
1493 saved registers when it is unwinding the stack.
1494
1495 The pseudo ops described above are sufficient for writing assembly
1496 code that calls functions which may throw exceptions. If you need to
1497 know more about the object-file format used to represent unwind
1498 information, you may consult the @cite{Exception Handling ABI for the
1499 ARM Architecture} available from @uref{http://infocenter.arm.com}.
1500