]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/doc/c-i386.texi
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2023 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-ISA:: AMD64 ISA vs. Intel64 ISA
41 * i386-Bugs:: AT&T Syntax bugs
42 * i386-Notes:: Notes
43 @end menu
44
45 @node i386-Options
46 @section Options
47
48 @cindex options for i386
49 @cindex options for x86-64
50 @cindex i386 options
51 @cindex x86-64 options
52
53 The i386 version of @code{@value{AS}} has a few machine
54 dependent options:
55
56 @c man begin OPTIONS
57 @table @gcctabopt
58 @cindex @samp{--32} option, i386
59 @cindex @samp{--32} option, x86-64
60 @cindex @samp{--x32} option, i386
61 @cindex @samp{--x32} option, x86-64
62 @cindex @samp{--64} option, i386
63 @cindex @samp{--64} option, x86-64
64 @item --32 | --x32 | --64
65 Select the word size, either 32 bits or 64 bits. @samp{--32}
66 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
67 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68 respectively.
69
70 These options are only available with the ELF object file format, and
71 require that the necessary BFD support has been included (on a 32-bit
72 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73 usage and use x86-64 as target platform).
74
75 @item -n
76 By default, x86 GAS replaces multiple nop instructions used for
77 alignment within code sections with multi-byte nop instructions such
78 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79 byte nop (0x90) is explicitly specified as the fill byte for alignment.
80
81 @cindex @samp{--divide} option, i386
82 @item --divide
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
88
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
96 @code{i8086},
97 @code{i186},
98 @code{i286},
99 @code{i386},
100 @code{i486},
101 @code{i586},
102 @code{i686},
103 @code{pentium},
104 @code{pentiumpro},
105 @code{pentiumii},
106 @code{pentiumiii},
107 @code{pentium4},
108 @code{prescott},
109 @code{nocona},
110 @code{core},
111 @code{core2},
112 @code{corei7},
113 @code{iamcu},
114 @code{k6},
115 @code{k6_2},
116 @code{athlon},
117 @code{opteron},
118 @code{k8},
119 @code{amdfam10},
120 @code{bdver1},
121 @code{bdver2},
122 @code{bdver3},
123 @code{bdver4},
124 @code{znver1},
125 @code{znver2},
126 @code{znver3},
127 @code{znver4},
128 @code{btver1},
129 @code{btver2},
130 @code{generic32} and
131 @code{generic64}.
132
133 In addition to the basic instruction set, the assembler can be told to
134 accept various extension mnemonics. For example,
135 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136 @var{vmx}. The following extensions are currently supported:
137 @code{8087},
138 @code{287},
139 @code{387},
140 @code{687},
141 @code{cmov},
142 @code{fxsr},
143 @code{mmx},
144 @code{sse},
145 @code{sse2},
146 @code{sse3},
147 @code{sse4a},
148 @code{ssse3},
149 @code{sse4.1},
150 @code{sse4.2},
151 @code{sse4},
152 @code{avx},
153 @code{avx2},
154 @code{adx},
155 @code{rdseed},
156 @code{prfchw},
157 @code{smap},
158 @code{mpx},
159 @code{sha},
160 @code{rdpid},
161 @code{ptwrite},
162 @code{cet},
163 @code{gfni},
164 @code{vaes},
165 @code{vpclmulqdq},
166 @code{prefetchwt1},
167 @code{clflushopt},
168 @code{se1},
169 @code{clwb},
170 @code{movdiri},
171 @code{movdir64b},
172 @code{enqcmd},
173 @code{serialize},
174 @code{tsxldtrk},
175 @code{kl},
176 @code{widekl},
177 @code{hreset},
178 @code{avx512f},
179 @code{avx512cd},
180 @code{avx512er},
181 @code{avx512pf},
182 @code{avx512vl},
183 @code{avx512bw},
184 @code{avx512dq},
185 @code{avx512ifma},
186 @code{avx512vbmi},
187 @code{avx512_4fmaps},
188 @code{avx512_4vnniw},
189 @code{avx512_vpopcntdq},
190 @code{avx512_vbmi2},
191 @code{avx512_vnni},
192 @code{avx512_bitalg},
193 @code{avx512_vp2intersect},
194 @code{tdx},
195 @code{avx512_bf16},
196 @code{avx_vnni},
197 @code{avx512_fp16},
198 @code{prefetchi},
199 @code{avx_ifma},
200 @code{avx_vnni_int8},
201 @code{cmpccxadd},
202 @code{wrmsrns},
203 @code{msrlist},
204 @code{avx_ne_convert},
205 @code{rao_int},
206 @code{amx_int8},
207 @code{amx_bf16},
208 @code{amx_fp16},
209 @code{amx_tile},
210 @code{vmx},
211 @code{vmfunc},
212 @code{smx},
213 @code{xsave},
214 @code{xsaveopt},
215 @code{xsavec},
216 @code{xsaves},
217 @code{aes},
218 @code{pclmul},
219 @code{fsgsbase},
220 @code{rdrnd},
221 @code{f16c},
222 @code{bmi2},
223 @code{fma},
224 @code{movbe},
225 @code{ept},
226 @code{lzcnt},
227 @code{popcnt},
228 @code{hle},
229 @code{rtm},
230 @code{tsx},
231 @code{invpcid},
232 @code{clflush},
233 @code{mwaitx},
234 @code{clzero},
235 @code{wbnoinvd},
236 @code{pconfig},
237 @code{waitpkg},
238 @code{uintr},
239 @code{cldemote},
240 @code{rdpru},
241 @code{mcommit},
242 @code{sev_es},
243 @code{lwp},
244 @code{fma4},
245 @code{xop},
246 @code{cx16},
247 @code{syscall},
248 @code{rdtscp},
249 @code{3dnow},
250 @code{3dnowa},
251 @code{sse4a},
252 @code{sse5},
253 @code{snp},
254 @code{invlpgb},
255 @code{tlbsync},
256 @code{svme} and
257 @code{padlock}.
258 Note that these extension mnemonics can be prefixed with @code{no} to revoke
259 the respective (and any dependent) functionality.
260
261 When the @code{.arch} directive is used with @option{-march}, the
262 @code{.arch} directive will take precedent.
263
264 @cindex @samp{-mtune=} option, i386
265 @cindex @samp{-mtune=} option, x86-64
266 @item -mtune=@var{CPU}
267 This option specifies a processor to optimize for. When used in
268 conjunction with the @option{-march} option, only instructions
269 of the processor specified by the @option{-march} option will be
270 generated.
271
272 Valid @var{CPU} values are identical to the processor list of
273 @option{-march=@var{CPU}}.
274
275 @cindex @samp{-msse2avx} option, i386
276 @cindex @samp{-msse2avx} option, x86-64
277 @item -msse2avx
278 This option specifies that the assembler should encode SSE instructions
279 with VEX prefix.
280
281 @cindex @samp{-muse-unaligned-vector-move} option, i386
282 @cindex @samp{-muse-unaligned-vector-move} option, x86-64
283 @item -muse-unaligned-vector-move
284 This option specifies that the assembler should encode aligned vector
285 move as unaligned vector move.
286
287 @cindex @samp{-msse-check=} option, i386
288 @cindex @samp{-msse-check=} option, x86-64
289 @item -msse-check=@var{none}
290 @itemx -msse-check=@var{warning}
291 @itemx -msse-check=@var{error}
292 These options control if the assembler should check SSE instructions.
293 @option{-msse-check=@var{none}} will make the assembler not to check SSE
294 instructions, which is the default. @option{-msse-check=@var{warning}}
295 will make the assembler issue a warning for any SSE instruction.
296 @option{-msse-check=@var{error}} will make the assembler issue an error
297 for any SSE instruction.
298
299 @cindex @samp{-mavxscalar=} option, i386
300 @cindex @samp{-mavxscalar=} option, x86-64
301 @item -mavxscalar=@var{128}
302 @itemx -mavxscalar=@var{256}
303 These options control how the assembler should encode scalar AVX
304 instructions. @option{-mavxscalar=@var{128}} will encode scalar
305 AVX instructions with 128bit vector length, which is the default.
306 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
307 with 256bit vector length.
308
309 WARNING: Don't use this for production code - due to CPU errata the
310 resulting code may not work on certain models.
311
312 @cindex @samp{-mvexwig=} option, i386
313 @cindex @samp{-mvexwig=} option, x86-64
314 @item -mvexwig=@var{0}
315 @itemx -mvexwig=@var{1}
316 These options control how the assembler should encode VEX.W-ignored (WIG)
317 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
318 instructions with vex.w = 0, which is the default.
319 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
320 vex.w = 1.
321
322 WARNING: Don't use this for production code - due to CPU errata the
323 resulting code may not work on certain models.
324
325 @cindex @samp{-mevexlig=} option, i386
326 @cindex @samp{-mevexlig=} option, x86-64
327 @item -mevexlig=@var{128}
328 @itemx -mevexlig=@var{256}
329 @itemx -mevexlig=@var{512}
330 These options control how the assembler should encode length-ignored
331 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
332 EVEX instructions with 128bit vector length, which is the default.
333 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
334 encode LIG EVEX instructions with 256bit and 512bit vector length,
335 respectively.
336
337 @cindex @samp{-mevexwig=} option, i386
338 @cindex @samp{-mevexwig=} option, x86-64
339 @item -mevexwig=@var{0}
340 @itemx -mevexwig=@var{1}
341 These options control how the assembler should encode w-ignored (WIG)
342 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
343 EVEX instructions with evex.w = 0, which is the default.
344 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
345 evex.w = 1.
346
347 @cindex @samp{-mmnemonic=} option, i386
348 @cindex @samp{-mmnemonic=} option, x86-64
349 @item -mmnemonic=@var{att}
350 @itemx -mmnemonic=@var{intel}
351 This option specifies instruction mnemonic for matching instructions.
352 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
353 take precedent.
354
355 @cindex @samp{-msyntax=} option, i386
356 @cindex @samp{-msyntax=} option, x86-64
357 @item -msyntax=@var{att}
358 @itemx -msyntax=@var{intel}
359 This option specifies instruction syntax when processing instructions.
360 The @code{.att_syntax} and @code{.intel_syntax} directives will
361 take precedent.
362
363 @cindex @samp{-mnaked-reg} option, i386
364 @cindex @samp{-mnaked-reg} option, x86-64
365 @item -mnaked-reg
366 This option specifies that registers don't require a @samp{%} prefix.
367 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
368
369 @cindex @samp{-madd-bnd-prefix} option, i386
370 @cindex @samp{-madd-bnd-prefix} option, x86-64
371 @item -madd-bnd-prefix
372 This option forces the assembler to add BND prefix to all branches, even
373 if such prefix was not explicitly specified in the source code.
374
375 @cindex @samp{-mshared} option, i386
376 @cindex @samp{-mshared} option, x86-64
377 @item -mno-shared
378 On ELF target, the assembler normally optimizes out non-PLT relocations
379 against defined non-weak global branch targets with default visibility.
380 The @samp{-mshared} option tells the assembler to generate code which
381 may go into a shared library where all non-weak global branch targets
382 with default visibility can be preempted. The resulting code is
383 slightly bigger. This option only affects the handling of branch
384 instructions.
385
386 @cindex @samp{-mbig-obj} option, i386
387 @cindex @samp{-mbig-obj} option, x86-64
388 @item -mbig-obj
389 On PE/COFF target this option forces the use of big object file
390 format, which allows more than 32768 sections.
391
392 @cindex @samp{-momit-lock-prefix=} option, i386
393 @cindex @samp{-momit-lock-prefix=} option, x86-64
394 @item -momit-lock-prefix=@var{no}
395 @itemx -momit-lock-prefix=@var{yes}
396 These options control how the assembler should encode lock prefix.
397 This option is intended as a workaround for processors, that fail on
398 lock prefix. This option can only be safely used with single-core,
399 single-thread computers
400 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
401 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
402 which is the default.
403
404 @cindex @samp{-mfence-as-lock-add=} option, i386
405 @cindex @samp{-mfence-as-lock-add=} option, x86-64
406 @item -mfence-as-lock-add=@var{no}
407 @itemx -mfence-as-lock-add=@var{yes}
408 These options control how the assembler should encode lfence, mfence and
409 sfence.
410 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
411 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
412 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
413 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
414 sfence as usual, which is the default.
415
416 @cindex @samp{-mrelax-relocations=} option, i386
417 @cindex @samp{-mrelax-relocations=} option, x86-64
418 @item -mrelax-relocations=@var{no}
419 @itemx -mrelax-relocations=@var{yes}
420 These options control whether the assembler should generate relax
421 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
422 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
423 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
424 @option{-mrelax-relocations=@var{no}} will not generate relax
425 relocations. The default can be controlled by a configure option
426 @option{--enable-x86-relax-relocations}.
427
428 @cindex @samp{-malign-branch-boundary=} option, i386
429 @cindex @samp{-malign-branch-boundary=} option, x86-64
430 @item -malign-branch-boundary=@var{NUM}
431 This option controls how the assembler should align branches with segment
432 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
433 no less than 16. Branches will be aligned within @var{NUM} byte
434 boundary. @option{-malign-branch-boundary=0}, which is the default,
435 doesn't align branches.
436
437 @cindex @samp{-malign-branch=} option, i386
438 @cindex @samp{-malign-branch=} option, x86-64
439 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
440 This option specifies types of branches to align. @var{TYPE} is
441 combination of @samp{jcc}, which aligns conditional jumps,
442 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
443 which aligns unconditional jumps, @samp{call} which aligns calls,
444 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
445 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
446
447 @cindex @samp{-malign-branch-prefix-size=} option, i386
448 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
449 @item -malign-branch-prefix-size=@var{NUM}
450 This option specifies the maximum number of prefixes on an instruction
451 to align branches. @var{NUM} should be between 0 and 5. The default
452 @var{NUM} is 5.
453
454 @cindex @samp{-mbranches-within-32B-boundaries} option, i386
455 @cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
456 @item -mbranches-within-32B-boundaries
457 This option aligns conditional jumps, fused conditional jumps and
458 unconditional jumps within 32 byte boundary with up to 5 segment prefixes
459 on an instruction. It is equivalent to
460 @option{-malign-branch-boundary=32}
461 @option{-malign-branch=jcc+fused+jmp}
462 @option{-malign-branch-prefix-size=5}.
463 The default doesn't align branches.
464
465 @cindex @samp{-mlfence-after-load=} option, i386
466 @cindex @samp{-mlfence-after-load=} option, x86-64
467 @item -mlfence-after-load=@var{no}
468 @itemx -mlfence-after-load=@var{yes}
469 These options control whether the assembler should generate lfence
470 after load instructions. @option{-mlfence-after-load=@var{yes}} will
471 generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
472 lfence, which is the default.
473
474 @cindex @samp{-mlfence-before-indirect-branch=} option, i386
475 @cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
476 @item -mlfence-before-indirect-branch=@var{none}
477 @item -mlfence-before-indirect-branch=@var{all}
478 @item -mlfence-before-indirect-branch=@var{register}
479 @itemx -mlfence-before-indirect-branch=@var{memory}
480 These options control whether the assembler should generate lfence
481 before indirect near branch instructions.
482 @option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
483 before indirect near branch via register and issue a warning before
484 indirect near branch via memory.
485 It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
486 there's no explicit @option{-mlfence-before-ret=}.
487 @option{-mlfence-before-indirect-branch=@var{register}} will generate
488 lfence before indirect near branch via register.
489 @option{-mlfence-before-indirect-branch=@var{memory}} will issue a
490 warning before indirect near branch via memory.
491 @option{-mlfence-before-indirect-branch=@var{none}} will not generate
492 lfence nor issue warning, which is the default. Note that lfence won't
493 be generated before indirect near branch via register with
494 @option{-mlfence-after-load=@var{yes}} since lfence will be generated
495 after loading branch target register.
496
497 @cindex @samp{-mlfence-before-ret=} option, i386
498 @cindex @samp{-mlfence-before-ret=} option, x86-64
499 @item -mlfence-before-ret=@var{none}
500 @item -mlfence-before-ret=@var{shl}
501 @item -mlfence-before-ret=@var{or}
502 @item -mlfence-before-ret=@var{yes}
503 @itemx -mlfence-before-ret=@var{not}
504 These options control whether the assembler should generate lfence
505 before ret. @option{-mlfence-before-ret=@var{or}} will generate
506 generate or instruction with lfence.
507 @option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
508 with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
509 instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
510 generate lfence, which is the default.
511
512 @cindex @samp{-mx86-used-note=} option, i386
513 @cindex @samp{-mx86-used-note=} option, x86-64
514 @item -mx86-used-note=@var{no}
515 @itemx -mx86-used-note=@var{yes}
516 These options control whether the assembler should generate
517 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
518 GNU property notes. The default can be controlled by the
519 @option{--enable-x86-used-note} configure option.
520
521 @cindex @samp{-mevexrcig=} option, i386
522 @cindex @samp{-mevexrcig=} option, x86-64
523 @item -mevexrcig=@var{rne}
524 @itemx -mevexrcig=@var{rd}
525 @itemx -mevexrcig=@var{ru}
526 @itemx -mevexrcig=@var{rz}
527 These options control how the assembler should encode SAE-only
528 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
529 of EVEX instruction with 00, which is the default.
530 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
531 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
532 with 01, 10 and 11 RC bits, respectively.
533
534 @cindex @samp{-mamd64} option, x86-64
535 @cindex @samp{-mintel64} option, x86-64
536 @item -mamd64
537 @itemx -mintel64
538 This option specifies that the assembler should accept only AMD64 or
539 Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
540 only and AMD64 ISAs.
541
542 @cindex @samp{-O0} option, i386
543 @cindex @samp{-O0} option, x86-64
544 @cindex @samp{-O} option, i386
545 @cindex @samp{-O} option, x86-64
546 @cindex @samp{-O1} option, i386
547 @cindex @samp{-O1} option, x86-64
548 @cindex @samp{-O2} option, i386
549 @cindex @samp{-O2} option, x86-64
550 @cindex @samp{-Os} option, i386
551 @cindex @samp{-Os} option, x86-64
552 @item -O0 | -O | -O1 | -O2 | -Os
553 Optimize instruction encoding with smaller instruction size. @samp{-O}
554 and @samp{-O1} encode 64-bit register load instructions with 64-bit
555 immediate as 32-bit register load instructions with 31-bit or 32-bits
556 immediates, encode 64-bit register clearing instructions with 32-bit
557 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
558 register clearing instructions with 128-bit VEX vector register
559 clearing instructions, encode 128-bit/256-bit EVEX vector
560 register load/store instructions with VEX vector register load/store
561 instructions, and encode 128-bit/256-bit EVEX packed integer logical
562 instructions with 128-bit/256-bit VEX packed integer logical.
563
564 @samp{-O2} includes @samp{-O1} optimization plus encodes
565 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
566 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
567 instructions with commutative source operands will also have their
568 source operands swapped if this allows using the 2-byte VEX prefix form
569 instead of the 3-byte one. Certain forms of AND as well as OR with the
570 same (register) operand specified twice will also be changed to TEST.
571
572 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
573 and 64-bit register tests with immediate as 8-bit register test with
574 immediate. @samp{-O0} turns off this optimization.
575
576 @end table
577 @c man end
578
579 @node i386-Directives
580 @section x86 specific Directives
581
582 @cindex machine directives, x86
583 @cindex x86 machine directives
584 @table @code
585
586 @cindex @code{lcomm} directive, COFF
587 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
588 Reserve @var{length} (an absolute expression) bytes for a local common
589 denoted by @var{symbol}. The section and value of @var{symbol} are
590 those of the new local common. The addresses are allocated in the bss
591 section, so that at run-time the bytes start off zeroed. Since
592 @var{symbol} is not declared global, it is normally not visible to
593 @code{@value{LD}}. The optional third parameter, @var{alignment},
594 specifies the desired alignment of the symbol in the bss section.
595
596 This directive is only available for COFF based x86 targets.
597
598 @cindex @code{largecomm} directive, ELF
599 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
600 This directive behaves in the same way as the @code{comm} directive
601 except that the data is placed into the @var{.lbss} section instead of
602 the @var{.bss} section @ref{Comm}.
603
604 The directive is intended to be used for data which requires a large
605 amount of space, and it is only available for ELF based x86_64
606 targets.
607
608 @cindex @code{value} directive
609 @item .value @var{expression} [, @var{expression}]
610 This directive behaves in the same way as the @code{.short} directive,
611 taking a series of comma separated expressions and storing them as
612 two-byte wide values into the current section.
613
614 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
615
616 @end table
617
618 @node i386-Syntax
619 @section i386 Syntactical Considerations
620 @menu
621 * i386-Variations:: AT&T Syntax versus Intel Syntax
622 * i386-Chars:: Special Characters
623 @end menu
624
625 @node i386-Variations
626 @subsection AT&T Syntax versus Intel Syntax
627
628 @cindex i386 intel_syntax pseudo op
629 @cindex intel_syntax pseudo op, i386
630 @cindex i386 att_syntax pseudo op
631 @cindex att_syntax pseudo op, i386
632 @cindex i386 syntax compatibility
633 @cindex syntax compatibility, i386
634 @cindex x86-64 intel_syntax pseudo op
635 @cindex intel_syntax pseudo op, x86-64
636 @cindex x86-64 att_syntax pseudo op
637 @cindex att_syntax pseudo op, x86-64
638 @cindex x86-64 syntax compatibility
639 @cindex syntax compatibility, x86-64
640
641 @code{@value{AS}} now supports assembly using Intel assembler syntax.
642 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
643 back to the usual AT&T mode for compatibility with the output of
644 @code{@value{GCC}}. Either of these directives may have an optional
645 argument, @code{prefix}, or @code{noprefix} specifying whether registers
646 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
647 different from Intel syntax. We mention these differences because
648 almost all 80386 documents use Intel syntax. Notable differences
649 between the two syntaxes are:
650
651 @cindex immediate operands, i386
652 @cindex i386 immediate operands
653 @cindex register operands, i386
654 @cindex i386 register operands
655 @cindex jump/call operands, i386
656 @cindex i386 jump/call operands
657 @cindex operand delimiters, i386
658
659 @cindex immediate operands, x86-64
660 @cindex x86-64 immediate operands
661 @cindex register operands, x86-64
662 @cindex x86-64 register operands
663 @cindex jump/call operands, x86-64
664 @cindex x86-64 jump/call operands
665 @cindex operand delimiters, x86-64
666 @itemize @bullet
667 @item
668 AT&T immediate operands are preceded by @samp{$}; Intel immediate
669 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
670 AT&T register operands are preceded by @samp{%}; Intel register operands
671 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
672 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
673
674 @cindex i386 source, destination operands
675 @cindex source, destination operands; i386
676 @cindex x86-64 source, destination operands
677 @cindex source, destination operands; x86-64
678 @item
679 AT&T and Intel syntax use the opposite order for source and destination
680 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
681 @samp{source, dest} convention is maintained for compatibility with
682 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
683 instructions with 2 immediate operands, such as the @samp{enter}
684 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
685
686 @cindex mnemonic suffixes, i386
687 @cindex sizes operands, i386
688 @cindex i386 size suffixes
689 @cindex mnemonic suffixes, x86-64
690 @cindex sizes operands, x86-64
691 @cindex x86-64 size suffixes
692 @item
693 In AT&T syntax the size of memory operands is determined from the last
694 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
695 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
696 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
697 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
698 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
699 no other way to disambiguate an instruction. Intel syntax accomplishes this by
700 prefixing memory operands (@emph{not} the instruction mnemonics) with
701 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
702 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
703 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
704 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
705 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
706
707 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
708 instruction with the 64-bit displacement or immediate operand.
709
710 @cindex return instructions, i386
711 @cindex i386 jump, call, return
712 @cindex return instructions, x86-64
713 @cindex x86-64 jump, call, return
714 @item
715 Immediate form long jumps and calls are
716 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
717 Intel syntax is
718 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
719 instruction
720 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
721 @samp{ret far @var{stack-adjust}}.
722
723 @cindex sections, i386
724 @cindex i386 sections
725 @cindex sections, x86-64
726 @cindex x86-64 sections
727 @item
728 The AT&T assembler does not provide support for multiple section
729 programs. Unix style systems expect all programs to be single sections.
730 @end itemize
731
732 @node i386-Chars
733 @subsection Special Characters
734
735 @cindex line comment character, i386
736 @cindex i386 line comment character
737 The presence of a @samp{#} appearing anywhere on a line indicates the
738 start of a comment that extends to the end of that line.
739
740 If a @samp{#} appears as the first character of a line then the whole
741 line is treated as a comment, but in this case the line can also be a
742 logical line number directive (@pxref{Comments}) or a preprocessor
743 control command (@pxref{Preprocessing}).
744
745 If the @option{--divide} command-line option has not been specified
746 then the @samp{/} character appearing anywhere on a line also
747 introduces a line comment.
748
749 @cindex line separator, i386
750 @cindex statement separator, i386
751 @cindex i386 line separator
752 The @samp{;} character can be used to separate statements on the same
753 line.
754
755 @node i386-Mnemonics
756 @section i386-Mnemonics
757 @subsection Instruction Naming
758
759 @cindex i386 instruction naming
760 @cindex instruction naming, i386
761 @cindex x86-64 instruction naming
762 @cindex instruction naming, x86-64
763
764 Instruction mnemonics are suffixed with one character modifiers which
765 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
766 and @samp{q} specify byte, word, long and quadruple word operands. If
767 no suffix is specified by an instruction then @code{@value{AS}} tries to
768 fill in the missing suffix based on the destination register operand
769 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
770 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
771 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
772 assembler which assumes that a missing mnemonic suffix implies long
773 operand size. (This incompatibility does not affect compiler output
774 since compilers always explicitly specify the mnemonic suffix.)
775
776 When there is no sizing suffix and no (suitable) register operands to
777 deduce the size of memory operands, with a few exceptions and where long
778 operand size is possible in the first place, operand size will default
779 to long in 32- and 64-bit modes. Similarly it will default to short in
780 16-bit mode. Noteworthy exceptions are
781
782 @itemize @bullet
783 @item
784 Instructions with an implicit on-stack operand as well as branches,
785 which default to quad in 64-bit mode.
786
787 @item
788 Sign- and zero-extending moves, which default to byte size source
789 operands.
790
791 @item
792 Floating point insns with integer operands, which default to short (for
793 perhaps historical reasons).
794
795 @item
796 CRC32 with a 64-bit destination, which defaults to a quad source
797 operand.
798
799 @end itemize
800
801 @cindex encoding options, i386
802 @cindex encoding options, x86-64
803
804 Different encoding options can be specified via pseudo prefixes:
805
806 @itemize @bullet
807 @item
808 @samp{@{disp8@}} -- prefer 8-bit displacement.
809
810 @item
811 @samp{@{disp32@}} -- prefer 32-bit displacement.
812
813 @item
814 @samp{@{disp16@}} -- prefer 16-bit displacement.
815
816 @item
817 @samp{@{load@}} -- prefer load-form instruction.
818
819 @item
820 @samp{@{store@}} -- prefer store-form instruction.
821
822 @item
823 @samp{@{vex@}} -- encode with VEX prefix.
824
825 @item
826 @samp{@{vex3@}} -- encode with 3-byte VEX prefix.
827
828 @item
829 @samp{@{evex@}} -- encode with EVEX prefix.
830
831 @item
832 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
833 instructions (x86-64 only). Note that this differs from the @samp{rex}
834 prefix which generates REX prefix unconditionally.
835
836 @item
837 @samp{@{nooptimize@}} -- disable instruction size optimization.
838 @end itemize
839
840 Mnemonics of Intel VNNI/IFMA instructions are encoded with the EVEX prefix
841 by default. The pseudo @samp{@{vex@}} prefix can be used to encode
842 mnemonics of Intel VNNI/IFMA instructions with the VEX prefix.
843
844 @cindex conversion instructions, i386
845 @cindex i386 conversion instructions
846 @cindex conversion instructions, x86-64
847 @cindex x86-64 conversion instructions
848 The Intel-syntax conversion instructions
849
850 @itemize @bullet
851 @item
852 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
853
854 @item
855 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
856
857 @item
858 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
859
860 @item
861 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
862
863 @item
864 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
865 (x86-64 only),
866
867 @item
868 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
869 @samp{%rdx:%rax} (x86-64 only),
870 @end itemize
871
872 @noindent
873 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
874 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
875 instructions.
876
877 @cindex extension instructions, i386
878 @cindex i386 extension instructions
879 @cindex extension instructions, x86-64
880 @cindex x86-64 extension instructions
881 The Intel-syntax extension instructions
882
883 @itemize @bullet
884 @item
885 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
886
887 @item
888 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
889
890 @item
891 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
892 (x86-64 only).
893
894 @item
895 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
896
897 @item
898 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
899 (x86-64 only).
900
901 @item
902 @samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
903 (x86-64 only).
904
905 @item
906 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
907
908 @item
909 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
910
911 @item
912 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
913 (x86-64 only).
914
915 @item
916 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
917
918 @item
919 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
920 (x86-64 only).
921 @end itemize
922
923 @noindent
924 are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
925 @samp{movsbq/movsxb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
926 @samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
927 @samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
928 @samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
929
930 @cindex jump instructions, i386
931 @cindex call instructions, i386
932 @cindex jump instructions, x86-64
933 @cindex call instructions, x86-64
934 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
935 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
936 convention.
937
938 @subsection AT&T Mnemonic versus Intel Mnemonic
939
940 @cindex i386 mnemonic compatibility
941 @cindex mnemonic compatibility, i386
942
943 @code{@value{AS}} supports assembly using Intel mnemonic.
944 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
945 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
946 syntax for compatibility with the output of @code{@value{GCC}}.
947 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
948 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
949 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
950 assembler with different mnemonics from those in Intel IA32 specification.
951 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
952
953 @itemize @bullet
954 @item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
955 register. @samp{movsxd} should be used to encode 16-bit or 32-bit
956 destination register with both AT&T and Intel mnemonics.
957 @end itemize
958
959 @node i386-Regs
960 @section Register Naming
961
962 @cindex i386 registers
963 @cindex registers, i386
964 @cindex x86-64 registers
965 @cindex registers, x86-64
966 Register operands are always prefixed with @samp{%}. The 80386 registers
967 consist of
968
969 @itemize @bullet
970 @item
971 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
972 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
973 frame pointer), and @samp{%esp} (the stack pointer).
974
975 @item
976 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
977 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
978
979 @item
980 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
981 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
982 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
983 @samp{%cx}, and @samp{%dx})
984
985 @item
986 the 6 section registers @samp{%cs} (code section), @samp{%ds}
987 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
988 and @samp{%gs}.
989
990 @item
991 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
992 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
993
994 @item
995 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
996 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
997
998 @item
999 the 2 test registers @samp{%tr6} and @samp{%tr7}.
1000
1001 @item
1002 the 8 floating point register stack @samp{%st} or equivalently
1003 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1004 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
1005 These registers are overloaded by 8 MMX registers @samp{%mm0},
1006 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1007 @samp{%mm6} and @samp{%mm7}.
1008
1009 @item
1010 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
1011 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1012 @end itemize
1013
1014 The AMD x86-64 architecture extends the register set by:
1015
1016 @itemize @bullet
1017 @item
1018 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1019 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1020 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1021 pointer)
1022
1023 @item
1024 the 8 extended registers @samp{%r8}--@samp{%r15}.
1025
1026 @item
1027 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
1028
1029 @item
1030 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
1031
1032 @item
1033 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
1034
1035 @item
1036 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1037
1038 @item
1039 the 8 debug registers: @samp{%db8}--@samp{%db15}.
1040
1041 @item
1042 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1043 @end itemize
1044
1045 With the AVX extensions more registers were made available:
1046
1047 @itemize @bullet
1048
1049 @item
1050 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1051 available in 32-bit mode). The bottom 128 bits are overlaid with the
1052 @samp{xmm0}--@samp{xmm15} registers.
1053
1054 @end itemize
1055
1056 The AVX512 extensions added the following registers:
1057
1058 @itemize @bullet
1059
1060 @item
1061 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1062 available in 32-bit mode). The bottom 128 bits are overlaid with the
1063 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1064 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1065
1066 @item
1067 the 8 mask registers @samp{%k0}--@samp{%k7}.
1068
1069 @end itemize
1070
1071 @node i386-Prefixes
1072 @section Instruction Prefixes
1073
1074 @cindex i386 instruction prefixes
1075 @cindex instruction prefixes, i386
1076 @cindex prefixes, i386
1077 Instruction prefixes are used to modify the following instruction. They
1078 are used to repeat string instructions, to provide section overrides, to
1079 perform bus lock operations, and to change operand and address sizes.
1080 (Most instructions that normally operate on 32-bit operands will use
1081 16-bit operands if the instruction has an ``operand size'' prefix.)
1082 Instruction prefixes are best written on the same line as the instruction
1083 they act upon. For example, the @samp{scas} (scan string) instruction is
1084 repeated with:
1085
1086 @smallexample
1087 repne scas %es:(%edi),%al
1088 @end smallexample
1089
1090 You may also place prefixes on the lines immediately preceding the
1091 instruction, but this circumvents checks that @code{@value{AS}} does
1092 with prefixes, and will not work with all prefixes.
1093
1094 Here is a list of instruction prefixes:
1095
1096 @cindex section override prefixes, i386
1097 @itemize @bullet
1098 @item
1099 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1100 @samp{fs}, @samp{gs}. These are automatically added by specifying
1101 using the @var{section}:@var{memory-operand} form for memory references.
1102
1103 @cindex size prefixes, i386
1104 @item
1105 Operand/Address size prefixes @samp{data16} and @samp{addr16}
1106 change 32-bit operands/addresses into 16-bit operands/addresses,
1107 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1108 @code{.code16} section) into 32-bit operands/addresses. These prefixes
1109 @emph{must} appear on the same line of code as the instruction they
1110 modify. For example, in a 16-bit @code{.code16} section, you might
1111 write:
1112
1113 @smallexample
1114 addr32 jmpl *(%ebx)
1115 @end smallexample
1116
1117 @cindex bus lock prefixes, i386
1118 @cindex inhibiting interrupts, i386
1119 @item
1120 The bus lock prefix @samp{lock} inhibits interrupts during execution of
1121 the instruction it precedes. (This is only valid with certain
1122 instructions; see a 80386 manual for details).
1123
1124 @cindex coprocessor wait, i386
1125 @item
1126 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1127 complete the current instruction. This should never be needed for the
1128 80386/80387 combination.
1129
1130 @cindex repeat prefixes, i386
1131 @item
1132 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1133 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1134 times if the current address size is 16-bits).
1135 @cindex REX prefixes, i386
1136 @item
1137 The @samp{rex} family of prefixes is used by x86-64 to encode
1138 extensions to i386 instruction set. The @samp{rex} prefix has four
1139 bits --- an operand size overwrite (@code{64}) used to change operand size
1140 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1141 register set.
1142
1143 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1144 instruction emits @samp{rex} prefix with all the bits set. By omitting
1145 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1146 prefixes as well. Normally, there is no need to write the prefixes
1147 explicitly, since gas will automatically generate them based on the
1148 instruction operands.
1149 @end itemize
1150
1151 @node i386-Memory
1152 @section Memory References
1153
1154 @cindex i386 memory references
1155 @cindex memory references, i386
1156 @cindex x86-64 memory references
1157 @cindex memory references, x86-64
1158 An Intel syntax indirect memory reference of the form
1159
1160 @smallexample
1161 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1162 @end smallexample
1163
1164 @noindent
1165 is translated into the AT&T syntax
1166
1167 @smallexample
1168 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1169 @end smallexample
1170
1171 @noindent
1172 where @var{base} and @var{index} are the optional 32-bit base and
1173 index registers, @var{disp} is the optional displacement, and
1174 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1175 to calculate the address of the operand. If no @var{scale} is
1176 specified, @var{scale} is taken to be 1. @var{section} specifies the
1177 optional section register for the memory operand, and may override the
1178 default section register (see a 80386 manual for section register
1179 defaults). Note that section overrides in AT&T syntax @emph{must}
1180 be preceded by a @samp{%}. If you specify a section override which
1181 coincides with the default section register, @code{@value{AS}} does @emph{not}
1182 output any section register override prefixes to assemble the given
1183 instruction. Thus, section overrides can be specified to emphasize which
1184 section register is used for a given memory operand.
1185
1186 Here are some examples of Intel and AT&T style memory references:
1187
1188 @table @asis
1189 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1190 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1191 missing, and the default section is used (@samp{%ss} for addressing with
1192 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1193
1194 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1195 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1196 @samp{foo}. All other fields are missing. The section register here
1197 defaults to @samp{%ds}.
1198
1199 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1200 This uses the value pointed to by @samp{foo} as a memory operand.
1201 Note that @var{base} and @var{index} are both missing, but there is only
1202 @emph{one} @samp{,}. This is a syntactic exception.
1203
1204 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1205 This selects the contents of the variable @samp{foo} with section
1206 register @var{section} being @samp{%gs}.
1207 @end table
1208
1209 Absolute (as opposed to PC relative) call and jump operands must be
1210 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1211 always chooses PC relative addressing for jump/call labels.
1212
1213 Any instruction that has a memory operand, but no register operand,
1214 @emph{must} specify its size (byte, word, long, or quadruple) with an
1215 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1216 respectively).
1217
1218 The x86-64 architecture adds an RIP (instruction pointer relative)
1219 addressing. This addressing mode is specified by using @samp{rip} as a
1220 base register. Only constant offsets are valid. For example:
1221
1222 @table @asis
1223 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1224 Points to the address 1234 bytes past the end of the current
1225 instruction.
1226
1227 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1228 Points to the @code{symbol} in RIP relative way, this is shorter than
1229 the default absolute addressing.
1230 @end table
1231
1232 Other addressing modes remain unchanged in x86-64 architecture, except
1233 registers used are 64-bit instead of 32-bit.
1234
1235 @node i386-Jumps
1236 @section Handling of Jump Instructions
1237
1238 @cindex jump optimization, i386
1239 @cindex i386 jump optimization
1240 @cindex jump optimization, x86-64
1241 @cindex x86-64 jump optimization
1242 Jump instructions are always optimized to use the smallest possible
1243 displacements. This is accomplished by using byte (8-bit) displacement
1244 jumps whenever the target is sufficiently close. If a byte displacement
1245 is insufficient a long displacement is used. We do not support
1246 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1247 instruction with the @samp{data16} instruction prefix), since the 80386
1248 insists upon masking @samp{%eip} to 16 bits after the word displacement
1249 is added. (See also @pxref{i386-Arch})
1250
1251 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1252 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1253 displacements, so that if you use these instructions (@code{@value{GCC}} does
1254 not use them) you may get an error message (and incorrect code). The AT&T
1255 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1256 to
1257
1258 @smallexample
1259 jcxz cx_zero
1260 jmp cx_nonzero
1261 cx_zero: jmp foo
1262 cx_nonzero:
1263 @end smallexample
1264
1265 @node i386-Float
1266 @section Floating Point
1267
1268 @cindex i386 floating point
1269 @cindex floating point, i386
1270 @cindex x86-64 floating point
1271 @cindex floating point, x86-64
1272 All 80387 floating point types except packed BCD are supported.
1273 (BCD support may be added without much difficulty). These data
1274 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1275 double (64-bit), and extended (80-bit) precision floating point.
1276 Each supported type has an instruction mnemonic suffix and a constructor
1277 associated with it. Instruction mnemonic suffixes specify the operand's
1278 data type. Constructors build these data types into memory.
1279
1280 @cindex @code{float} directive, i386
1281 @cindex @code{single} directive, i386
1282 @cindex @code{double} directive, i386
1283 @cindex @code{tfloat} directive, i386
1284 @cindex @code{hfloat} directive, i386
1285 @cindex @code{bfloat16} directive, i386
1286 @cindex @code{float} directive, x86-64
1287 @cindex @code{single} directive, x86-64
1288 @cindex @code{double} directive, x86-64
1289 @cindex @code{tfloat} directive, x86-64
1290 @cindex @code{hfloat} directive, x86-64
1291 @cindex @code{bfloat16} directive, x86-64
1292 @itemize @bullet
1293 @item
1294 Floating point constructors are @samp{.float} or @samp{.single},
1295 @samp{.double}, @samp{.tfloat}, @samp{.hfloat}, and @samp{.bfloat16} for 32-,
1296 64-, 80-, and 16-bit (two flavors) formats respectively. The former three
1297 correspond to instruction mnemonic suffixes @samp{s}, @samp{l}, and @samp{t}.
1298 @samp{t} stands for 80-bit (ten byte) real. The 80387 only supports this
1299 format via the @samp{fldt} (load 80-bit real to stack top) and @samp{fstpt}
1300 (store 80-bit real and pop stack) instructions.
1301
1302 @cindex @code{word} directive, i386
1303 @cindex @code{long} directive, i386
1304 @cindex @code{int} directive, i386
1305 @cindex @code{quad} directive, i386
1306 @cindex @code{word} directive, x86-64
1307 @cindex @code{long} directive, x86-64
1308 @cindex @code{int} directive, x86-64
1309 @cindex @code{quad} directive, x86-64
1310 @item
1311 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1312 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1313 corresponding instruction mnemonic suffixes are @samp{s} (short),
1314 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1315 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1316 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1317 stack) instructions.
1318 @end itemize
1319
1320 Register to register operations should not use instruction mnemonic suffixes.
1321 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1322 wrote @samp{fst %st, %st(1)}, since all register to register operations
1323 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1324 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1325 then stores the result in the 4 byte location @samp{mem})
1326
1327 @node i386-SIMD
1328 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1329
1330 @cindex MMX, i386
1331 @cindex 3DNow!, i386
1332 @cindex SIMD, i386
1333 @cindex MMX, x86-64
1334 @cindex 3DNow!, x86-64
1335 @cindex SIMD, x86-64
1336
1337 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1338 instructions for integer data), available on Intel's Pentium MMX
1339 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1340 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1341 instruction set (SIMD instructions for 32-bit floating point data)
1342 available on AMD's K6-2 processor and possibly others in the future.
1343
1344 Currently, @code{@value{AS}} does not support Intel's floating point
1345 SIMD, Katmai (KNI).
1346
1347 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1348 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1349 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1350 floating point values. The MMX registers cannot be used at the same time
1351 as the floating point stack.
1352
1353 See Intel and AMD documentation, keeping in mind that the operand order in
1354 instructions is reversed from the Intel syntax.
1355
1356 @node i386-LWP
1357 @section AMD's Lightweight Profiling Instructions
1358
1359 @cindex LWP, i386
1360 @cindex LWP, x86-64
1361
1362 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1363 instruction set, available on AMD's Family 15h (Orochi) processors.
1364
1365 LWP enables applications to collect and manage performance data, and
1366 react to performance events. The collection of performance data
1367 requires no context switches. LWP runs in the context of a thread and
1368 so several counters can be used independently across multiple threads.
1369 LWP can be used in both 64-bit and legacy 32-bit modes.
1370
1371 For detailed information on the LWP instruction set, see the
1372 @cite{AMD Lightweight Profiling Specification} available at
1373 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1374
1375 @node i386-BMI
1376 @section Bit Manipulation Instructions
1377
1378 @cindex BMI, i386
1379 @cindex BMI, x86-64
1380
1381 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1382
1383 BMI instructions provide several instructions implementing individual
1384 bit manipulation operations such as isolation, masking, setting, or
1385 resetting.
1386
1387 @c Need to add a specification citation here when available.
1388
1389 @node i386-TBM
1390 @section AMD's Trailing Bit Manipulation Instructions
1391
1392 @cindex TBM, i386
1393 @cindex TBM, x86-64
1394
1395 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1396 instruction set, available on AMD's BDVER2 processors (Trinity and
1397 Viperfish).
1398
1399 TBM instructions provide instructions implementing individual bit
1400 manipulation operations such as isolating, masking, setting, resetting,
1401 complementing, and operations on trailing zeros and ones.
1402
1403 @c Need to add a specification citation here when available.
1404
1405 @node i386-16bit
1406 @section Writing 16-bit Code
1407
1408 @cindex i386 16-bit code
1409 @cindex 16-bit code, i386
1410 @cindex real-mode code, i386
1411 @cindex @code{code16gcc} directive, i386
1412 @cindex @code{code16} directive, i386
1413 @cindex @code{code32} directive, i386
1414 @cindex @code{code64} directive, i386
1415 @cindex @code{code64} directive, x86-64
1416 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1417 or 64-bit x86-64 code depending on the default configuration,
1418 it also supports writing code to run in real mode or in 16-bit protected
1419 mode code segments. To do this, put a @samp{.code16} or
1420 @samp{.code16gcc} directive before the assembly language instructions to
1421 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1422 32-bit code with the @samp{.code32} directive or 64-bit code with the
1423 @samp{.code64} directive.
1424
1425 @samp{.code16gcc} provides experimental support for generating 16-bit
1426 code from gcc, and differs from @samp{.code16} in that @samp{call},
1427 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1428 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1429 default to 32-bit size. This is so that the stack pointer is
1430 manipulated in the same way over function calls, allowing access to
1431 function parameters at the same stack offsets as in 32-bit mode.
1432 @samp{.code16gcc} also automatically adds address size prefixes where
1433 necessary to use the 32-bit addressing modes that gcc generates.
1434
1435 The code which @code{@value{AS}} generates in 16-bit mode will not
1436 necessarily run on a 16-bit pre-80386 processor. To write code that
1437 runs on such a processor, you must refrain from using @emph{any} 32-bit
1438 constructs which require @code{@value{AS}} to output address or operand
1439 size prefixes.
1440
1441 Note that writing 16-bit code instructions by explicitly specifying a
1442 prefix or an instruction mnemonic suffix within a 32-bit code section
1443 generates different machine instructions than those generated for a
1444 16-bit code segment. In a 32-bit code section, the following code
1445 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1446 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1447
1448 @smallexample
1449 pushw $4
1450 @end smallexample
1451
1452 The same code in a 16-bit code section would generate the machine
1453 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1454 is correct since the processor default operand size is assumed to be 16
1455 bits in a 16-bit code section.
1456
1457 @node i386-Arch
1458 @section Specifying CPU Architecture
1459
1460 @cindex arch directive, i386
1461 @cindex i386 arch directive
1462 @cindex arch directive, x86-64
1463 @cindex x86-64 arch directive
1464
1465 @code{@value{AS}} may be told to assemble for a particular CPU
1466 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1467 directive enables a warning when gas detects an instruction that is not
1468 supported on the CPU specified. The choices for @var{cpu_type} are:
1469
1470 @multitable @columnfractions .20 .20 .20 .20
1471 @item @samp{default} @tab @samp{push} @tab @samp{pop}
1472 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1473 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1474 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1475 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1476 @item @samp{corei7} @tab @samp{iamcu}
1477 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1478 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1479 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{znver3}
1480 @item @samp{znver4} @tab @samp{btver1} @tab @samp{btver2} @tab @samp{generic32}
1481 @item @samp{generic64} @tab @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1482 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
1483 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1484 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1485 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1486 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1487 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1488 @item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1489 @item @samp{.hle} @tab @samp{.rtm} @tab @samp{.tsx}
1490 @item @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1491 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1492 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1493 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1494 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1495 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1496 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1497 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1498 @item @samp{.tdx} @tab @samp{.avx_vnni} @tab @samp{.avx512_fp16}
1499 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @samp{.ibt}
1500 @item @samp{.prefetchi} @tab @samp{.avx_ifma} @tab @samp{.avx_vnni_int8}
1501 @item @samp{.cmpccxadd} @tab @samp{.wrmsrns} @tab @samp{.msrlist}
1502 @item @samp{.avx_ne_convert} @tab @samp{.rao_int}
1503 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1504 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1505 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
1506 @item @samp{.amx_int8} @tab @samp{.amx_bf16} @tab @samp{.amx_fp16} @tab @samp{.amx_tile}
1507 @item @samp{.kl} @tab @samp{.widekl} @tab @samp{.uintr} @tab @samp{.hreset}
1508 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1509 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1510 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1511 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1512 @item @samp{.mcommit} @tab @samp{.sev_es} @tab @samp{.snp} @tab @samp{.invlpgb}
1513 @item @samp{.tlbsync}
1514 @end multitable
1515
1516 Apart from the warning, there are only two other effects on
1517 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1518 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1519 will automatically use a two byte opcode sequence. The larger three
1520 byte opcode sequence is used on the 486 (and when no architecture is
1521 specified) because it executes faster on the 486. Note that you can
1522 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1523 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1524 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1525 conditional jumps will be promoted when necessary to a two instruction
1526 sequence consisting of a conditional jump of the opposite sense around
1527 an unconditional jump to the target.
1528
1529 Note that the sub-architecture specifiers (starting with a dot) can be prefixed
1530 with @code{no} to revoke the respective (and any dependent) functionality.
1531
1532 Following the CPU architecture (but not a sub-architecture, which are those
1533 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1534 control automatic promotion of conditional jumps. @samp{jumps} is the
1535 default, and enables jump promotion; All external jumps will be of the long
1536 variety, and file-local jumps will be promoted as necessary.
1537 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1538 byte offset jumps, and warns about file-local conditional jumps that
1539 @code{@value{AS}} promotes.
1540 Unconditional jumps are treated as for @samp{jumps}.
1541
1542 For example
1543
1544 @smallexample
1545 .arch i8086,nojumps
1546 @end smallexample
1547
1548 @node i386-ISA
1549 @section AMD64 ISA vs. Intel64 ISA
1550
1551 There are some discrepancies between AMD64 and Intel64 ISAs.
1552
1553 @itemize @bullet
1554 @item For @samp{movsxd} with 16-bit destination register, AMD64
1555 supports 32-bit source operand and Intel64 supports 16-bit source
1556 operand.
1557
1558 @item For far branches (with explicit memory operand), both ISAs support
1559 32- and 16-bit operand size. Intel64 additionally supports 64-bit
1560 operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1561 and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1562 syntax.
1563
1564 @item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1565 and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1566 while Intel64 additionally supports 64-bit operand sise (80-bit memory
1567 operands).
1568
1569 @end itemize
1570
1571 @node i386-Bugs
1572 @section AT&T Syntax bugs
1573
1574 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1575 assemblers, generate floating point instructions with reversed source
1576 and destination registers in certain cases. Unfortunately, gcc and
1577 possibly many other programs use this reversed syntax, so we're stuck
1578 with it.
1579
1580 For example
1581
1582 @smallexample
1583 fsub %st,%st(3)
1584 @end smallexample
1585 @noindent
1586 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1587 than the expected @samp{%st(3) - %st}. This happens with all the
1588 non-commutative arithmetic floating point operations with two register
1589 operands where the source register is @samp{%st} and the destination
1590 register is @samp{%st(i)}.
1591
1592 @node i386-Notes
1593 @section Notes
1594
1595 @cindex i386 @code{mul}, @code{imul} instructions
1596 @cindex @code{mul} instruction, i386
1597 @cindex @code{imul} instruction, i386
1598 @cindex @code{mul} instruction, x86-64
1599 @cindex @code{imul} instruction, x86-64
1600 There is some trickery concerning the @samp{mul} and @samp{imul}
1601 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1602 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1603 for @samp{imul}) can be output only in the one operand form. Thus,
1604 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1605 the expanding multiply would clobber the @samp{%edx} register, and this
1606 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1607 64-bit product in @samp{%edx:%eax}.
1608
1609 We have added a two operand form of @samp{imul} when the first operand
1610 is an immediate mode expression and the second operand is a register.
1611 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1612 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1613 $69, %eax, %eax}.
1614