]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/itbl-ops.c
* ChangeLog: Fix typos.
[thirdparty/binutils-gdb.git] / gas / itbl-ops.c
1 /* itbl-ops.c
2 Copyright 1997, 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 /*======================================================================*/
22 /*
23 * Herein lies the support for dynamic specification of processor
24 * instructions and registers. Mnemonics, values, and formats for each
25 * instruction and register are specified in an ascii file consisting of
26 * table entries. The grammar for the table is defined in the document
27 * "Processor instruction table specification".
28 *
29 * Instructions use the gnu assembler syntax, with the addition of
30 * allowing mnemonics for register.
31 * Eg. "func $2,reg3,0x100,symbol ; comment"
32 * func - opcode name
33 * $n - register n
34 * reg3 - mnemonic for processor's register defined in table
35 * 0xddd..d - immediate value
36 * symbol - address of label or external symbol
37 *
38 * First, itbl_parse reads in the table of register and instruction
39 * names and formats, and builds a list of entries for each
40 * processor/type combination. lex and yacc are used to parse
41 * the entries in the table and call functions defined here to
42 * add each entry to our list.
43 *
44 * Then, when assembling or disassembling, these functions are called to
45 * 1) get information on a processor's registers and
46 * 2) assemble/disassemble an instruction.
47 * To assemble(disassemble) an instruction, the function
48 * itbl_assemble(itbl_disassemble) is called to search the list of
49 * instruction entries, and if a match is found, uses the format
50 * described in the instruction entry structure to complete the action.
51 *
52 * Eg. Suppose we have a Mips coprocessor "cop3" with data register "d2"
53 * and we want to define function "pig" which takes two operands.
54 *
55 * Given the table entries:
56 * "p3 insn pig 0x1:24-21 dreg:20-16 immed:15-0"
57 * "p3 dreg d2 0x2"
58 * and that the instruction encoding for coprocessor pz has encoding:
59 * #define MIPS_ENCODE_COP_NUM(z) ((0x21|(z<<1))<<25)
60 * #define ITBL_ENCODE_PNUM(pnum) MIPS_ENCODE_COP_NUM(pnum)
61 *
62 * a structure to describe the instruction might look something like:
63 * struct itbl_entry = {
64 * e_processor processor = e_p3
65 * e_type type = e_insn
66 * char *name = "pig"
67 * uint value = 0x1
68 * uint flags = 0
69 * struct itbl_range range = 24-21
70 * struct itbl_field *field = {
71 * e_type type = e_dreg
72 * struct itbl_range range = 20-16
73 * struct itbl_field *next = {
74 * e_type type = e_immed
75 * struct itbl_range range = 15-0
76 * struct itbl_field *next = 0
77 * };
78 * };
79 * struct itbl_entry *next = 0
80 * };
81 *
82 * And the assembler instructions:
83 * "pig d2,0x100"
84 * "pig $2,0x100"
85 *
86 * would both assemble to the hex value:
87 * "0x4e220100"
88 *
89 */
90
91 #include <stdio.h>
92 #include <stdlib.h>
93 #include <string.h>
94 #include "itbl-ops.h"
95 #include <itbl-parse.h>
96
97 /* #define DEBUG */
98
99 #ifdef DEBUG
100 #include <assert.h>
101 #define ASSERT(x) assert(x)
102 #define DBG(x) printf x
103 #else
104 #define ASSERT(x)
105 #define DBG(x)
106 #endif
107
108 #ifndef min
109 #define min(a,b) (a<b?a:b)
110 #endif
111
112 int itbl_have_entries = 0;
113
114 /*======================================================================*/
115 /* structures for keeping itbl format entries */
116
117 struct itbl_range {
118 int sbit; /* mask starting bit position */
119 int ebit; /* mask ending bit position */
120 };
121
122 struct itbl_field {
123 e_type type; /* dreg/creg/greg/immed/symb */
124 struct itbl_range range; /* field's bitfield range within instruction */
125 unsigned long flags; /* field flags */
126 struct itbl_field *next; /* next field in list */
127 };
128
129 /* These structures define the instructions and registers for a processor.
130 * If the type is an instruction, the structure defines the format of an
131 * instruction where the fields are the list of operands.
132 * The flags field below uses the same values as those defined in the
133 * gnu assembler and are machine specific. */
134 struct itbl_entry {
135 e_processor processor; /* processor number */
136 e_type type; /* dreg/creg/greg/insn */
137 char *name; /* mnemionic name for insn/register */
138 unsigned long value; /* opcode/instruction mask/register number */
139 unsigned long flags; /* effects of the instruction */
140 struct itbl_range range; /* bit range within instruction for value */
141 struct itbl_field *fields; /* list of operand definitions (if any) */
142 struct itbl_entry *next; /* next entry */
143 };
144
145 /* local data and structures */
146
147 static int itbl_num_opcodes = 0;
148 /* Array of entries for each processor and entry type */
149 static struct itbl_entry *entries[e_nprocs][e_ntypes] = {
150 {0, 0, 0, 0, 0, 0},
151 {0, 0, 0, 0, 0, 0},
152 {0, 0, 0, 0, 0, 0},
153 {0, 0, 0, 0, 0, 0}
154 };
155
156 /* local prototypes */
157 static unsigned long build_opcode PARAMS ((struct itbl_entry *e));
158 static e_type get_type PARAMS ((int yytype));
159 static e_processor get_processor PARAMS ((int yyproc));
160 static struct itbl_entry **get_entries PARAMS ((e_processor processor,
161 e_type type));
162 static struct itbl_entry *find_entry_byname PARAMS ((e_processor processor,
163 e_type type, char *name));
164 static struct itbl_entry *find_entry_byval PARAMS ((e_processor processor,
165 e_type type, unsigned long val, struct itbl_range *r));
166 static struct itbl_entry *alloc_entry PARAMS ((e_processor processor,
167 e_type type, char *name, unsigned long value));
168 static unsigned long apply_range PARAMS ((unsigned long value,
169 struct itbl_range r));
170 static unsigned long extract_range PARAMS ((unsigned long value,
171 struct itbl_range r));
172 static struct itbl_field *alloc_field PARAMS ((e_type type, int sbit,
173 int ebit, unsigned long flags));
174
175 /*======================================================================*/
176 /* Interfaces to the parser */
177
178 /* Open the table and use lex and yacc to parse the entries.
179 * Return 1 for failure; 0 for success. */
180
181 int
182 itbl_parse (char *insntbl)
183 {
184 extern FILE *yyin;
185 extern int yyparse (void);
186
187 yyin = fopen (insntbl, FOPEN_RT);
188 if (yyin == 0)
189 {
190 printf ("Can't open processor instruction specification file \"%s\"\n",
191 insntbl);
192 return 1;
193 }
194
195 while (yyparse ())
196 ;
197
198 fclose (yyin);
199 itbl_have_entries = 1;
200 return 0;
201 }
202
203 /* Add a register entry */
204
205 struct itbl_entry *
206 itbl_add_reg (int yyprocessor, int yytype, char *regname,
207 int regnum)
208 {
209 #if 0
210 #include "as.h"
211 #include "symbols.h"
212 /* Since register names don't have a prefix, we put them in the symbol table so
213 they can't be used as symbols. This also simplifies argument parsing as
214 we can let gas parse registers for us. The recorded register number is
215 regnum. */
216 /* Use symbol_create here instead of symbol_new so we don't try to
217 output registers into the object file's symbol table. */
218 symbol_table_insert (symbol_create (regname, reg_section,
219 regnum, &zero_address_frag));
220 #endif
221 return alloc_entry (get_processor (yyprocessor), get_type (yytype), regname,
222 (unsigned long) regnum);
223 }
224
225 /* Add an instruction entry */
226
227 struct itbl_entry *
228 itbl_add_insn (int yyprocessor, char *name, unsigned long value,
229 int sbit, int ebit, unsigned long flags)
230 {
231 struct itbl_entry *e;
232 e = alloc_entry (get_processor (yyprocessor), e_insn, name, value);
233 if (e)
234 {
235 e->range.sbit = sbit;
236 e->range.ebit = ebit;
237 e->flags = flags;
238 itbl_num_opcodes++;
239 }
240 return e;
241 }
242
243 /* Add an operand to an instruction entry */
244
245 struct itbl_field *
246 itbl_add_operand (struct itbl_entry *e, int yytype, int sbit,
247 int ebit, unsigned long flags)
248 {
249 struct itbl_field *f, **last_f;
250 if (!e)
251 return 0;
252 /* Add to end of fields' list. */
253 f = alloc_field (get_type (yytype), sbit, ebit, flags);
254 if (f)
255 {
256 last_f = &e->fields;
257 while (*last_f)
258 last_f = &(*last_f)->next;
259 *last_f = f;
260 f->next = 0;
261 }
262 return f;
263 }
264
265 /*======================================================================*/
266 /* Interfaces for assembler and disassembler */
267
268 #ifndef STAND_ALONE
269 #include "as.h"
270 #include "symbols.h"
271 static void append_insns_as_macros (void);
272
273 /* Initialize for gas. */
274
275 void
276 itbl_init (void)
277 {
278 struct itbl_entry *e, **es;
279 e_processor procn;
280 e_type type;
281
282 if (!itbl_have_entries)
283 return;
284
285 /* Since register names don't have a prefix, put them in the symbol table so
286 they can't be used as symbols. This simplifies argument parsing as
287 we can let gas parse registers for us. */
288 /* Use symbol_create instead of symbol_new so we don't try to
289 output registers into the object file's symbol table. */
290
291 for (type = e_regtype0; type < e_nregtypes; type++)
292 for (procn = e_p0; procn < e_nprocs; procn++)
293 {
294 es = get_entries (procn, type);
295 for (e = *es; e; e = e->next)
296 {
297 symbol_table_insert (symbol_create (e->name, reg_section,
298 e->value, &zero_address_frag));
299 }
300 }
301 append_insns_as_macros ();
302 }
303
304 /* Append insns to opcodes table and increase number of opcodes
305 * Structure of opcodes table:
306 * struct itbl_opcode
307 * {
308 * const char *name;
309 * const char *args; - string describing the arguments.
310 * unsigned long match; - opcode, or ISA level if pinfo=INSN_MACRO
311 * unsigned long mask; - opcode mask, or macro id if pinfo=INSN_MACRO
312 * unsigned long pinfo; - insn flags, or INSN_MACRO
313 * };
314 * examples:
315 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t },
316 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO },
317 */
318
319 static char *form_args (struct itbl_entry *e);
320 static void
321 append_insns_as_macros (void)
322 {
323 struct ITBL_OPCODE_STRUCT *new_opcodes, *o;
324 struct itbl_entry *e, **es;
325 int n, id, size, new_size, new_num_opcodes;
326
327 if (!itbl_have_entries)
328 return;
329
330 if (!itbl_num_opcodes) /* no new instructions to add! */
331 {
332 return;
333 }
334 DBG (("previous num_opcodes=%d\n", ITBL_NUM_OPCODES));
335
336 new_num_opcodes = ITBL_NUM_OPCODES + itbl_num_opcodes;
337 ASSERT (new_num_opcodes >= itbl_num_opcodes);
338
339 size = sizeof (struct ITBL_OPCODE_STRUCT) * ITBL_NUM_OPCODES;
340 ASSERT (size >= 0);
341 DBG (("I get=%d\n", size / sizeof (ITBL_OPCODES[0])));
342
343 new_size = sizeof (struct ITBL_OPCODE_STRUCT) * new_num_opcodes;
344 ASSERT (new_size > size);
345
346 /* FIXME since ITBL_OPCODES culd be a static table,
347 we can't realloc or delete the old memory. */
348 new_opcodes = (struct ITBL_OPCODE_STRUCT *) malloc (new_size);
349 if (!new_opcodes)
350 {
351 printf (_("Unable to allocate memory for new instructions\n"));
352 return;
353 }
354 if (size) /* copy preexisting opcodes table */
355 memcpy (new_opcodes, ITBL_OPCODES, size);
356
357 /* FIXME! some NUMOPCODES are calculated expressions.
358 These need to be changed before itbls can be supported. */
359
360 id = ITBL_NUM_MACROS; /* begin the next macro id after the last */
361 o = &new_opcodes[ITBL_NUM_OPCODES]; /* append macro to opcodes list */
362 for (n = e_p0; n < e_nprocs; n++)
363 {
364 es = get_entries (n, e_insn);
365 for (e = *es; e; e = e->next)
366 {
367 /* name, args, mask, match, pinfo
368 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t },
369 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO },
370 * Construct args from itbl_fields.
371 */
372 o->name = e->name;
373 o->args = strdup (form_args (e));
374 o->mask = apply_range (e->value, e->range);
375 /* FIXME how to catch during assembly? */
376 /* mask to identify this insn */
377 o->match = apply_range (e->value, e->range);
378 o->pinfo = 0;
379
380 #ifdef USE_MACROS
381 o->mask = id++; /* FIXME how to catch during assembly? */
382 o->match = 0; /* for macros, the insn_isa number */
383 o->pinfo = INSN_MACRO;
384 #endif
385
386 /* Don't add instructions which caused an error */
387 if (o->args)
388 o++;
389 else
390 new_num_opcodes--;
391 }
392 }
393 ITBL_OPCODES = new_opcodes;
394 ITBL_NUM_OPCODES = new_num_opcodes;
395
396 /* FIXME
397 At this point, we can free the entries, as they should have
398 been added to the assembler's tables.
399 Don't free name though, since name is being used by the new
400 opcodes table.
401
402 Eventually, we should also free the new opcodes table itself
403 on exit.
404 */
405 }
406
407 static char *
408 form_args (struct itbl_entry *e)
409 {
410 static char s[31];
411 char c = 0, *p = s;
412 struct itbl_field *f;
413
414 ASSERT (e);
415 for (f = e->fields; f; f = f->next)
416 {
417 switch (f->type)
418 {
419 case e_dreg:
420 c = 'd';
421 break;
422 case e_creg:
423 c = 't';
424 break;
425 case e_greg:
426 c = 's';
427 break;
428 case e_immed:
429 c = 'i';
430 break;
431 case e_addr:
432 c = 'a';
433 break;
434 default:
435 c = 0; /* ignore; unknown field type */
436 }
437 if (c)
438 {
439 if (p != s)
440 *p++ = ',';
441 *p++ = c;
442 }
443 }
444 *p = 0;
445 return s;
446 }
447 #endif /* !STAND_ALONE */
448
449 /* Get processor's register name from val */
450
451 int
452 itbl_get_reg_val (char *name, unsigned long *pval)
453 {
454 e_type t;
455 e_processor p;
456
457 for (p = e_p0; p < e_nprocs; p++)
458 {
459 for (t = e_regtype0; t < e_nregtypes; t++)
460 {
461 if (itbl_get_val (p, t, name, pval))
462 return 1;
463 }
464 }
465 return 0;
466 }
467
468 char *
469 itbl_get_name (e_processor processor, e_type type, unsigned long val)
470 {
471 struct itbl_entry *r;
472 /* type depends on instruction passed */
473 r = find_entry_byval (processor, type, val, 0);
474 if (r)
475 return r->name;
476 else
477 return 0; /* error; invalid operand */
478 }
479
480 /* Get processor's register value from name */
481
482 int
483 itbl_get_val (e_processor processor, e_type type, char *name,
484 unsigned long *pval)
485 {
486 struct itbl_entry *r;
487 /* type depends on instruction passed */
488 r = find_entry_byname (processor, type, name);
489 if (r == NULL)
490 return 0;
491 *pval = r->value;
492 return 1;
493 }
494
495 /* Assemble instruction "name" with operands "s".
496 * name - name of instruction
497 * s - operands
498 * returns - long word for assembled instruction */
499
500 unsigned long
501 itbl_assemble (char *name, char *s)
502 {
503 unsigned long opcode;
504 struct itbl_entry *e = NULL;
505 struct itbl_field *f;
506 char *n;
507 int processor;
508
509 if (!name || !*name)
510 return 0; /* error! must have an opcode name/expr */
511
512 /* find entry in list of instructions for all processors */
513 for (processor = 0; processor < e_nprocs; processor++)
514 {
515 e = find_entry_byname (processor, e_insn, name);
516 if (e)
517 break;
518 }
519 if (!e)
520 return 0; /* opcode not in table; invalid instruction */
521 opcode = build_opcode (e);
522
523 /* parse opcode's args (if any) */
524 for (f = e->fields; f; f = f->next) /* for each arg, ... */
525 {
526 struct itbl_entry *r;
527 unsigned long value;
528 if (!s || !*s)
529 return 0; /* error - not enough operands */
530 n = itbl_get_field (&s);
531 /* n should be in form $n or 0xhhh (are symbol names valid?? */
532 switch (f->type)
533 {
534 case e_dreg:
535 case e_creg:
536 case e_greg:
537 /* Accept either a string name
538 * or '$' followed by the register number */
539 if (*n == '$')
540 {
541 n++;
542 value = strtol (n, 0, 10);
543 /* FIXME! could have "0l"... then what?? */
544 if (value == 0 && *n != '0')
545 return 0; /* error; invalid operand */
546 }
547 else
548 {
549 r = find_entry_byname (e->processor, f->type, n);
550 if (r)
551 value = r->value;
552 else
553 return 0; /* error; invalid operand */
554 }
555 break;
556 case e_addr:
557 /* use assembler's symbol table to find symbol */
558 /* FIXME!! Do we need this?
559 if so, what about relocs??
560 my_getExpression (&imm_expr, s);
561 return 0; /-* error; invalid operand *-/
562 break;
563 */
564 /* If not a symbol, fall thru to IMMED */
565 case e_immed:
566 if (*n == '0' && *(n + 1) == 'x') /* hex begins 0x... */
567 {
568 n += 2;
569 value = strtol (n, 0, 16);
570 /* FIXME! could have "0xl"... then what?? */
571 }
572 else
573 {
574 value = strtol (n, 0, 10);
575 /* FIXME! could have "0l"... then what?? */
576 if (value == 0 && *n != '0')
577 return 0; /* error; invalid operand */
578 }
579 break;
580 default:
581 return 0; /* error; invalid field spec */
582 }
583 opcode |= apply_range (value, f->range);
584 }
585 if (s && *s)
586 return 0; /* error - too many operands */
587 return opcode; /* done! */
588 }
589
590 /* Disassemble instruction "insn".
591 * insn - instruction
592 * s - buffer to hold disassembled instruction
593 * returns - 1 if succeeded; 0 if failed
594 */
595
596 int
597 itbl_disassemble (char *s, unsigned long insn)
598 {
599 e_processor processor;
600 struct itbl_entry *e;
601 struct itbl_field *f;
602
603 if (!ITBL_IS_INSN (insn))
604 return 0; /* error */
605 processor = get_processor (ITBL_DECODE_PNUM (insn));
606
607 /* find entry in list */
608 e = find_entry_byval (processor, e_insn, insn, 0);
609 if (!e)
610 return 0; /* opcode not in table; invalid instruction */
611 strcpy (s, e->name);
612
613 /* Parse insn's args (if any). */
614 for (f = e->fields; f; f = f->next) /* for each arg, ... */
615 {
616 struct itbl_entry *r;
617 unsigned long value;
618
619 if (f == e->fields) /* First operand is preceded by tab. */
620 strcat (s, "\t");
621 else /* ','s separate following operands. */
622 strcat (s, ",");
623 value = extract_range (insn, f->range);
624 /* n should be in form $n or 0xhhh (are symbol names valid?? */
625 switch (f->type)
626 {
627 case e_dreg:
628 case e_creg:
629 case e_greg:
630 /* Accept either a string name
631 or '$' followed by the register number. */
632 r = find_entry_byval (e->processor, f->type, value, &f->range);
633 if (r)
634 strcat (s, r->name);
635 else
636 sprintf (s, "%s$%lu", s, value);
637 break;
638 case e_addr:
639 /* Use assembler's symbol table to find symbol. */
640 /* FIXME!! Do we need this? If so, what about relocs?? */
641 /* If not a symbol, fall through to IMMED. */
642 case e_immed:
643 sprintf (s, "%s0x%lx", s, value);
644 break;
645 default:
646 return 0; /* error; invalid field spec */
647 }
648 }
649 return 1; /* Done! */
650 }
651
652 /*======================================================================*/
653 /*
654 * Local functions for manipulating private structures containing
655 * the names and format for the new instructions and registers
656 * for each processor.
657 */
658
659 /* Calculate instruction's opcode and function values from entry */
660
661 static unsigned long
662 build_opcode (struct itbl_entry *e)
663 {
664 unsigned long opcode;
665
666 opcode = apply_range (e->value, e->range);
667 opcode |= ITBL_ENCODE_PNUM (e->processor);
668 return opcode;
669 }
670
671 /* Calculate absolute value given the relative value and bit position range
672 * within the instruction.
673 * The range is inclusive where 0 is least significant bit.
674 * A range of { 24, 20 } will have a mask of
675 * bit 3 2 1
676 * pos: 1098 7654 3210 9876 5432 1098 7654 3210
677 * bin: 0000 0001 1111 0000 0000 0000 0000 0000
678 * hex: 0 1 f 0 0 0 0 0
679 * mask: 0x01f00000.
680 */
681
682 static unsigned long
683 apply_range (unsigned long rval, struct itbl_range r)
684 {
685 unsigned long mask;
686 unsigned long aval;
687 int len = MAX_BITPOS - r.sbit;
688
689 ASSERT (r.sbit >= r.ebit);
690 ASSERT (MAX_BITPOS >= r.sbit);
691 ASSERT (r.ebit >= 0);
692
693 /* create mask by truncating 1s by shifting */
694 mask = 0xffffffff << len;
695 mask = mask >> len;
696 mask = mask >> r.ebit;
697 mask = mask << r.ebit;
698
699 aval = (rval << r.ebit) & mask;
700 return aval;
701 }
702
703 /* Calculate relative value given the absolute value and bit position range
704 * within the instruction. */
705
706 static unsigned long
707 extract_range (unsigned long aval, struct itbl_range r)
708 {
709 unsigned long mask;
710 unsigned long rval;
711 int len = MAX_BITPOS - r.sbit;
712
713 /* create mask by truncating 1s by shifting */
714 mask = 0xffffffff << len;
715 mask = mask >> len;
716 mask = mask >> r.ebit;
717 mask = mask << r.ebit;
718
719 rval = (aval & mask) >> r.ebit;
720 return rval;
721 }
722
723 /* Extract processor's assembly instruction field name from s;
724 * forms are "n args" "n,args" or "n" */
725 /* Return next argument from string pointer "s" and advance s.
726 * delimiters are " ,()" */
727
728 char *
729 itbl_get_field (char **S)
730 {
731 static char n[128];
732 char *s;
733 int len;
734
735 s = *S;
736 if (!s || !*s)
737 return 0;
738 /* FIXME: This is a weird set of delimiters. */
739 len = strcspn (s, " \t,()");
740 ASSERT (128 > len + 1);
741 strncpy (n, s, len);
742 n[len] = 0;
743 if (s[len] == '\0')
744 s = 0; /* no more args */
745 else
746 s += len + 1; /* advance to next arg */
747
748 *S = s;
749 return n;
750 }
751
752 /* Search entries for a given processor and type
753 * to find one matching the name "n".
754 * Return a pointer to the entry */
755
756 static struct itbl_entry *
757 find_entry_byname (e_processor processor,
758 e_type type, char *n)
759 {
760 struct itbl_entry *e, **es;
761
762 es = get_entries (processor, type);
763 for (e = *es; e; e = e->next) /* for each entry, ... */
764 {
765 if (!strcmp (e->name, n))
766 return e;
767 }
768 return 0;
769 }
770
771 /* Search entries for a given processor and type
772 * to find one matching the value "val" for the range "r".
773 * Return a pointer to the entry.
774 * This function is used for disassembling fields of an instruction.
775 */
776
777 static struct itbl_entry *
778 find_entry_byval (e_processor processor, e_type type,
779 unsigned long val, struct itbl_range *r)
780 {
781 struct itbl_entry *e, **es;
782 unsigned long eval;
783
784 es = get_entries (processor, type);
785 for (e = *es; e; e = e->next) /* for each entry, ... */
786 {
787 if (processor != e->processor)
788 continue;
789 /* For insns, we might not know the range of the opcode,
790 * so a range of 0 will allow this routine to match against
791 * the range of the entry to be compared with.
792 * This could cause ambiguities.
793 * For operands, we get an extracted value and a range.
794 */
795 /* if range is 0, mask val against the range of the compared entry. */
796 if (r == 0) /* if no range passed, must be whole 32-bits
797 * so create 32-bit value from entry's range */
798 {
799 eval = apply_range (e->value, e->range);
800 val &= apply_range (0xffffffff, e->range);
801 }
802 else if ((r->sbit == e->range.sbit && r->ebit == e->range.ebit)
803 || (e->range.sbit == 0 && e->range.ebit == 0))
804 {
805 eval = apply_range (e->value, *r);
806 val = apply_range (val, *r);
807 }
808 else
809 continue;
810 if (val == eval)
811 return e;
812 }
813 return 0;
814 }
815
816 /* Return a pointer to the list of entries for a given processor and type. */
817
818 static struct itbl_entry **
819 get_entries (e_processor processor, e_type type)
820 {
821 return &entries[processor][type];
822 }
823
824 /* Return an integral value for the processor passed from yyparse. */
825
826 static e_processor
827 get_processor (int yyproc)
828 {
829 /* translate from yacc's processor to enum */
830 if (yyproc >= e_p0 && yyproc < e_nprocs)
831 return (e_processor) yyproc;
832 return e_invproc; /* error; invalid processor */
833 }
834
835 /* Return an integral value for the entry type passed from yyparse. */
836
837 static e_type
838 get_type (int yytype)
839 {
840 switch (yytype)
841 {
842 /* translate from yacc's type to enum */
843 case INSN:
844 return e_insn;
845 case DREG:
846 return e_dreg;
847 case CREG:
848 return e_creg;
849 case GREG:
850 return e_greg;
851 case ADDR:
852 return e_addr;
853 case IMMED:
854 return e_immed;
855 default:
856 return e_invtype; /* error; invalid type */
857 }
858 }
859
860 /* Allocate and initialize an entry */
861
862 static struct itbl_entry *
863 alloc_entry (e_processor processor, e_type type,
864 char *name, unsigned long value)
865 {
866 struct itbl_entry *e, **es;
867 if (!name)
868 return 0;
869 e = (struct itbl_entry *) malloc (sizeof (struct itbl_entry));
870 if (e)
871 {
872 memset (e, 0, sizeof (struct itbl_entry));
873 e->name = (char *) malloc (sizeof (strlen (name)) + 1);
874 if (e->name)
875 strcpy (e->name, name);
876 e->processor = processor;
877 e->type = type;
878 e->value = value;
879 es = get_entries (e->processor, e->type);
880 e->next = *es;
881 *es = e;
882 }
883 return e;
884 }
885
886 /* Allocate and initialize an entry's field */
887
888 static struct itbl_field *
889 alloc_field (e_type type, int sbit, int ebit,
890 unsigned long flags)
891 {
892 struct itbl_field *f;
893 f = (struct itbl_field *) malloc (sizeof (struct itbl_field));
894 if (f)
895 {
896 memset (f, 0, sizeof (struct itbl_field));
897 f->type = type;
898 f->range.sbit = sbit;
899 f->range.ebit = ebit;
900 f->flags = flags;
901 }
902 return f;
903 }