]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/itbl-ops.c
* itbl-ops.c (itbl_entry): Remove unnecessary and excessively long initialization.
[thirdparty/binutils-gdb.git] / gas / itbl-ops.c
1 /* itbl-ops.c
2 Copyright 1997, 1999, 2000, 2001, 2002, 2003, 2005, 2006
3 Free Software Foundation, Inc.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /*======================================================================*/
23 /*
24 * Herein lies the support for dynamic specification of processor
25 * instructions and registers. Mnemonics, values, and formats for each
26 * instruction and register are specified in an ascii file consisting of
27 * table entries. The grammar for the table is defined in the document
28 * "Processor instruction table specification".
29 *
30 * Instructions use the gnu assembler syntax, with the addition of
31 * allowing mnemonics for register.
32 * Eg. "func $2,reg3,0x100,symbol ; comment"
33 * func - opcode name
34 * $n - register n
35 * reg3 - mnemonic for processor's register defined in table
36 * 0xddd..d - immediate value
37 * symbol - address of label or external symbol
38 *
39 * First, itbl_parse reads in the table of register and instruction
40 * names and formats, and builds a list of entries for each
41 * processor/type combination. lex and yacc are used to parse
42 * the entries in the table and call functions defined here to
43 * add each entry to our list.
44 *
45 * Then, when assembling or disassembling, these functions are called to
46 * 1) get information on a processor's registers and
47 * 2) assemble/disassemble an instruction.
48 * To assemble(disassemble) an instruction, the function
49 * itbl_assemble(itbl_disassemble) is called to search the list of
50 * instruction entries, and if a match is found, uses the format
51 * described in the instruction entry structure to complete the action.
52 *
53 * Eg. Suppose we have a Mips coprocessor "cop3" with data register "d2"
54 * and we want to define function "pig" which takes two operands.
55 *
56 * Given the table entries:
57 * "p3 insn pig 0x1:24-21 dreg:20-16 immed:15-0"
58 * "p3 dreg d2 0x2"
59 * and that the instruction encoding for coprocessor pz has encoding:
60 * #define MIPS_ENCODE_COP_NUM(z) ((0x21|(z<<1))<<25)
61 * #define ITBL_ENCODE_PNUM(pnum) MIPS_ENCODE_COP_NUM(pnum)
62 *
63 * a structure to describe the instruction might look something like:
64 * struct itbl_entry = {
65 * e_processor processor = e_p3
66 * e_type type = e_insn
67 * char *name = "pig"
68 * uint value = 0x1
69 * uint flags = 0
70 * struct itbl_range range = 24-21
71 * struct itbl_field *field = {
72 * e_type type = e_dreg
73 * struct itbl_range range = 20-16
74 * struct itbl_field *next = {
75 * e_type type = e_immed
76 * struct itbl_range range = 15-0
77 * struct itbl_field *next = 0
78 * };
79 * };
80 * struct itbl_entry *next = 0
81 * };
82 *
83 * And the assembler instructions:
84 * "pig d2,0x100"
85 * "pig $2,0x100"
86 *
87 * would both assemble to the hex value:
88 * "0x4e220100"
89 *
90 */
91
92 #include "as.h"
93 #include "itbl-ops.h"
94 #include <itbl-parse.h>
95
96 /* #define DEBUG */
97
98 #ifdef DEBUG
99 #include <assert.h>
100 #define ASSERT(x) assert(x)
101 #define DBG(x) printf x
102 #else
103 #define ASSERT(x)
104 #define DBG(x)
105 #endif
106
107 #ifndef min
108 #define min(a,b) (a<b?a:b)
109 #endif
110
111 int itbl_have_entries = 0;
112
113 /*======================================================================*/
114 /* structures for keeping itbl format entries */
115
116 struct itbl_range {
117 int sbit; /* mask starting bit position */
118 int ebit; /* mask ending bit position */
119 };
120
121 struct itbl_field {
122 e_type type; /* dreg/creg/greg/immed/symb */
123 struct itbl_range range; /* field's bitfield range within instruction */
124 unsigned long flags; /* field flags */
125 struct itbl_field *next; /* next field in list */
126 };
127
128 /* These structures define the instructions and registers for a processor.
129 * If the type is an instruction, the structure defines the format of an
130 * instruction where the fields are the list of operands.
131 * The flags field below uses the same values as those defined in the
132 * gnu assembler and are machine specific. */
133 struct itbl_entry {
134 e_processor processor; /* processor number */
135 e_type type; /* dreg/creg/greg/insn */
136 char *name; /* mnemionic name for insn/register */
137 unsigned long value; /* opcode/instruction mask/register number */
138 unsigned long flags; /* effects of the instruction */
139 struct itbl_range range; /* bit range within instruction for value */
140 struct itbl_field *fields; /* list of operand definitions (if any) */
141 struct itbl_entry *next; /* next entry */
142 };
143
144 /* local data and structures */
145
146 static int itbl_num_opcodes = 0;
147 /* Array of entries for each processor and entry type */
148 static struct itbl_entry *entries[e_nprocs][e_ntypes];
149
150 /* local prototypes */
151 static unsigned long build_opcode (struct itbl_entry *e);
152 static e_type get_type (int yytype);
153 static e_processor get_processor (int yyproc);
154 static struct itbl_entry **get_entries (e_processor processor,
155 e_type type);
156 static struct itbl_entry *find_entry_byname (e_processor processor,
157 e_type type, char *name);
158 static struct itbl_entry *find_entry_byval (e_processor processor,
159 e_type type, unsigned long val, struct itbl_range *r);
160 static struct itbl_entry *alloc_entry (e_processor processor,
161 e_type type, char *name, unsigned long value);
162 static unsigned long apply_range (unsigned long value, struct itbl_range r);
163 static unsigned long extract_range (unsigned long value, struct itbl_range r);
164 static struct itbl_field *alloc_field (e_type type, int sbit,
165 int ebit, unsigned long flags);
166
167 /*======================================================================*/
168 /* Interfaces to the parser */
169
170 /* Open the table and use lex and yacc to parse the entries.
171 * Return 1 for failure; 0 for success. */
172
173 int
174 itbl_parse (char *insntbl)
175 {
176 extern FILE *yyin;
177 extern int yyparse (void);
178
179 yyin = fopen (insntbl, FOPEN_RT);
180 if (yyin == 0)
181 {
182 printf ("Can't open processor instruction specification file \"%s\"\n",
183 insntbl);
184 return 1;
185 }
186
187 while (yyparse ())
188 ;
189
190 fclose (yyin);
191 itbl_have_entries = 1;
192 return 0;
193 }
194
195 /* Add a register entry */
196
197 struct itbl_entry *
198 itbl_add_reg (int yyprocessor, int yytype, char *regname,
199 int regnum)
200 {
201 return alloc_entry (get_processor (yyprocessor), get_type (yytype), regname,
202 (unsigned long) regnum);
203 }
204
205 /* Add an instruction entry */
206
207 struct itbl_entry *
208 itbl_add_insn (int yyprocessor, char *name, unsigned long value,
209 int sbit, int ebit, unsigned long flags)
210 {
211 struct itbl_entry *e;
212 e = alloc_entry (get_processor (yyprocessor), e_insn, name, value);
213 if (e)
214 {
215 e->range.sbit = sbit;
216 e->range.ebit = ebit;
217 e->flags = flags;
218 itbl_num_opcodes++;
219 }
220 return e;
221 }
222
223 /* Add an operand to an instruction entry */
224
225 struct itbl_field *
226 itbl_add_operand (struct itbl_entry *e, int yytype, int sbit,
227 int ebit, unsigned long flags)
228 {
229 struct itbl_field *f, **last_f;
230 if (!e)
231 return 0;
232 /* Add to end of fields' list. */
233 f = alloc_field (get_type (yytype), sbit, ebit, flags);
234 if (f)
235 {
236 last_f = &e->fields;
237 while (*last_f)
238 last_f = &(*last_f)->next;
239 *last_f = f;
240 f->next = 0;
241 }
242 return f;
243 }
244
245 /*======================================================================*/
246 /* Interfaces for assembler and disassembler */
247
248 #ifndef STAND_ALONE
249 static void append_insns_as_macros (void);
250
251 /* Initialize for gas. */
252
253 void
254 itbl_init (void)
255 {
256 struct itbl_entry *e, **es;
257 e_processor procn;
258 e_type type;
259
260 if (!itbl_have_entries)
261 return;
262
263 /* Since register names don't have a prefix, put them in the symbol table so
264 they can't be used as symbols. This simplifies argument parsing as
265 we can let gas parse registers for us. */
266 /* Use symbol_create instead of symbol_new so we don't try to
267 output registers into the object file's symbol table. */
268
269 for (type = e_regtype0; type < e_nregtypes; type++)
270 for (procn = e_p0; procn < e_nprocs; procn++)
271 {
272 es = get_entries (procn, type);
273 for (e = *es; e; e = e->next)
274 {
275 symbol_table_insert (symbol_create (e->name, reg_section,
276 e->value, &zero_address_frag));
277 }
278 }
279 append_insns_as_macros ();
280 }
281
282 /* Append insns to opcodes table and increase number of opcodes
283 * Structure of opcodes table:
284 * struct itbl_opcode
285 * {
286 * const char *name;
287 * const char *args; - string describing the arguments.
288 * unsigned long match; - opcode, or ISA level if pinfo=INSN_MACRO
289 * unsigned long mask; - opcode mask, or macro id if pinfo=INSN_MACRO
290 * unsigned long pinfo; - insn flags, or INSN_MACRO
291 * };
292 * examples:
293 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t },
294 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO },
295 */
296
297 static char *form_args (struct itbl_entry *e);
298 static void
299 append_insns_as_macros (void)
300 {
301 struct ITBL_OPCODE_STRUCT *new_opcodes, *o;
302 struct itbl_entry *e, **es;
303 int n, id, size, new_size, new_num_opcodes;
304
305 if (!itbl_have_entries)
306 return;
307
308 if (!itbl_num_opcodes) /* no new instructions to add! */
309 {
310 return;
311 }
312 DBG (("previous num_opcodes=%d\n", ITBL_NUM_OPCODES));
313
314 new_num_opcodes = ITBL_NUM_OPCODES + itbl_num_opcodes;
315 ASSERT (new_num_opcodes >= itbl_num_opcodes);
316
317 size = sizeof (struct ITBL_OPCODE_STRUCT) * ITBL_NUM_OPCODES;
318 ASSERT (size >= 0);
319 DBG (("I get=%d\n", size / sizeof (ITBL_OPCODES[0])));
320
321 new_size = sizeof (struct ITBL_OPCODE_STRUCT) * new_num_opcodes;
322 ASSERT (new_size > size);
323
324 /* FIXME since ITBL_OPCODES culd be a static table,
325 we can't realloc or delete the old memory. */
326 new_opcodes = (struct ITBL_OPCODE_STRUCT *) malloc (new_size);
327 if (!new_opcodes)
328 {
329 printf (_("Unable to allocate memory for new instructions\n"));
330 return;
331 }
332 if (size) /* copy preexisting opcodes table */
333 memcpy (new_opcodes, ITBL_OPCODES, size);
334
335 /* FIXME! some NUMOPCODES are calculated expressions.
336 These need to be changed before itbls can be supported. */
337
338 id = ITBL_NUM_MACROS; /* begin the next macro id after the last */
339 o = &new_opcodes[ITBL_NUM_OPCODES]; /* append macro to opcodes list */
340 for (n = e_p0; n < e_nprocs; n++)
341 {
342 es = get_entries (n, e_insn);
343 for (e = *es; e; e = e->next)
344 {
345 /* name, args, mask, match, pinfo
346 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t },
347 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO },
348 * Construct args from itbl_fields.
349 */
350 o->name = e->name;
351 o->args = strdup (form_args (e));
352 o->mask = apply_range (e->value, e->range);
353 /* FIXME how to catch during assembly? */
354 /* mask to identify this insn */
355 o->match = apply_range (e->value, e->range);
356 o->pinfo = 0;
357
358 #ifdef USE_MACROS
359 o->mask = id++; /* FIXME how to catch during assembly? */
360 o->match = 0; /* for macros, the insn_isa number */
361 o->pinfo = INSN_MACRO;
362 #endif
363
364 /* Don't add instructions which caused an error */
365 if (o->args)
366 o++;
367 else
368 new_num_opcodes--;
369 }
370 }
371 ITBL_OPCODES = new_opcodes;
372 ITBL_NUM_OPCODES = new_num_opcodes;
373
374 /* FIXME
375 At this point, we can free the entries, as they should have
376 been added to the assembler's tables.
377 Don't free name though, since name is being used by the new
378 opcodes table.
379
380 Eventually, we should also free the new opcodes table itself
381 on exit.
382 */
383 }
384
385 static char *
386 form_args (struct itbl_entry *e)
387 {
388 static char s[31];
389 char c = 0, *p = s;
390 struct itbl_field *f;
391
392 ASSERT (e);
393 for (f = e->fields; f; f = f->next)
394 {
395 switch (f->type)
396 {
397 case e_dreg:
398 c = 'd';
399 break;
400 case e_creg:
401 c = 't';
402 break;
403 case e_greg:
404 c = 's';
405 break;
406 case e_immed:
407 c = 'i';
408 break;
409 case e_addr:
410 c = 'a';
411 break;
412 default:
413 c = 0; /* ignore; unknown field type */
414 }
415 if (c)
416 {
417 if (p != s)
418 *p++ = ',';
419 *p++ = c;
420 }
421 }
422 *p = 0;
423 return s;
424 }
425 #endif /* !STAND_ALONE */
426
427 /* Get processor's register name from val */
428
429 int
430 itbl_get_reg_val (char *name, unsigned long *pval)
431 {
432 e_type t;
433 e_processor p;
434
435 for (p = e_p0; p < e_nprocs; p++)
436 {
437 for (t = e_regtype0; t < e_nregtypes; t++)
438 {
439 if (itbl_get_val (p, t, name, pval))
440 return 1;
441 }
442 }
443 return 0;
444 }
445
446 char *
447 itbl_get_name (e_processor processor, e_type type, unsigned long val)
448 {
449 struct itbl_entry *r;
450 /* type depends on instruction passed */
451 r = find_entry_byval (processor, type, val, 0);
452 if (r)
453 return r->name;
454 else
455 return 0; /* error; invalid operand */
456 }
457
458 /* Get processor's register value from name */
459
460 int
461 itbl_get_val (e_processor processor, e_type type, char *name,
462 unsigned long *pval)
463 {
464 struct itbl_entry *r;
465 /* type depends on instruction passed */
466 r = find_entry_byname (processor, type, name);
467 if (r == NULL)
468 return 0;
469 *pval = r->value;
470 return 1;
471 }
472
473 /* Assemble instruction "name" with operands "s".
474 * name - name of instruction
475 * s - operands
476 * returns - long word for assembled instruction */
477
478 unsigned long
479 itbl_assemble (char *name, char *s)
480 {
481 unsigned long opcode;
482 struct itbl_entry *e = NULL;
483 struct itbl_field *f;
484 char *n;
485 int processor;
486
487 if (!name || !*name)
488 return 0; /* error! must have an opcode name/expr */
489
490 /* find entry in list of instructions for all processors */
491 for (processor = 0; processor < e_nprocs; processor++)
492 {
493 e = find_entry_byname (processor, e_insn, name);
494 if (e)
495 break;
496 }
497 if (!e)
498 return 0; /* opcode not in table; invalid instruction */
499 opcode = build_opcode (e);
500
501 /* parse opcode's args (if any) */
502 for (f = e->fields; f; f = f->next) /* for each arg, ... */
503 {
504 struct itbl_entry *r;
505 unsigned long value;
506 if (!s || !*s)
507 return 0; /* error - not enough operands */
508 n = itbl_get_field (&s);
509 /* n should be in form $n or 0xhhh (are symbol names valid?? */
510 switch (f->type)
511 {
512 case e_dreg:
513 case e_creg:
514 case e_greg:
515 /* Accept either a string name
516 * or '$' followed by the register number */
517 if (*n == '$')
518 {
519 n++;
520 value = strtol (n, 0, 10);
521 /* FIXME! could have "0l"... then what?? */
522 if (value == 0 && *n != '0')
523 return 0; /* error; invalid operand */
524 }
525 else
526 {
527 r = find_entry_byname (e->processor, f->type, n);
528 if (r)
529 value = r->value;
530 else
531 return 0; /* error; invalid operand */
532 }
533 break;
534 case e_addr:
535 /* use assembler's symbol table to find symbol */
536 /* FIXME!! Do we need this?
537 if so, what about relocs??
538 my_getExpression (&imm_expr, s);
539 return 0; /-* error; invalid operand *-/
540 break;
541 */
542 /* If not a symbol, fall thru to IMMED */
543 case e_immed:
544 if (*n == '0' && *(n + 1) == 'x') /* hex begins 0x... */
545 {
546 n += 2;
547 value = strtol (n, 0, 16);
548 /* FIXME! could have "0xl"... then what?? */
549 }
550 else
551 {
552 value = strtol (n, 0, 10);
553 /* FIXME! could have "0l"... then what?? */
554 if (value == 0 && *n != '0')
555 return 0; /* error; invalid operand */
556 }
557 break;
558 default:
559 return 0; /* error; invalid field spec */
560 }
561 opcode |= apply_range (value, f->range);
562 }
563 if (s && *s)
564 return 0; /* error - too many operands */
565 return opcode; /* done! */
566 }
567
568 /* Disassemble instruction "insn".
569 * insn - instruction
570 * s - buffer to hold disassembled instruction
571 * returns - 1 if succeeded; 0 if failed
572 */
573
574 int
575 itbl_disassemble (char *s, unsigned long insn)
576 {
577 e_processor processor;
578 struct itbl_entry *e;
579 struct itbl_field *f;
580
581 if (!ITBL_IS_INSN (insn))
582 return 0; /* error */
583 processor = get_processor (ITBL_DECODE_PNUM (insn));
584
585 /* find entry in list */
586 e = find_entry_byval (processor, e_insn, insn, 0);
587 if (!e)
588 return 0; /* opcode not in table; invalid instruction */
589 strcpy (s, e->name);
590
591 /* Parse insn's args (if any). */
592 for (f = e->fields; f; f = f->next) /* for each arg, ... */
593 {
594 struct itbl_entry *r;
595 unsigned long value;
596
597 if (f == e->fields) /* First operand is preceded by tab. */
598 strcat (s, "\t");
599 else /* ','s separate following operands. */
600 strcat (s, ",");
601 value = extract_range (insn, f->range);
602 /* n should be in form $n or 0xhhh (are symbol names valid?? */
603 switch (f->type)
604 {
605 case e_dreg:
606 case e_creg:
607 case e_greg:
608 /* Accept either a string name
609 or '$' followed by the register number. */
610 r = find_entry_byval (e->processor, f->type, value, &f->range);
611 if (r)
612 strcat (s, r->name);
613 else
614 sprintf (s, "%s$%lu", s, value);
615 break;
616 case e_addr:
617 /* Use assembler's symbol table to find symbol. */
618 /* FIXME!! Do we need this? If so, what about relocs?? */
619 /* If not a symbol, fall through to IMMED. */
620 case e_immed:
621 sprintf (s, "%s0x%lx", s, value);
622 break;
623 default:
624 return 0; /* error; invalid field spec */
625 }
626 }
627 return 1; /* Done! */
628 }
629
630 /*======================================================================*/
631 /*
632 * Local functions for manipulating private structures containing
633 * the names and format for the new instructions and registers
634 * for each processor.
635 */
636
637 /* Calculate instruction's opcode and function values from entry */
638
639 static unsigned long
640 build_opcode (struct itbl_entry *e)
641 {
642 unsigned long opcode;
643
644 opcode = apply_range (e->value, e->range);
645 opcode |= ITBL_ENCODE_PNUM (e->processor);
646 return opcode;
647 }
648
649 /* Calculate absolute value given the relative value and bit position range
650 * within the instruction.
651 * The range is inclusive where 0 is least significant bit.
652 * A range of { 24, 20 } will have a mask of
653 * bit 3 2 1
654 * pos: 1098 7654 3210 9876 5432 1098 7654 3210
655 * bin: 0000 0001 1111 0000 0000 0000 0000 0000
656 * hex: 0 1 f 0 0 0 0 0
657 * mask: 0x01f00000.
658 */
659
660 static unsigned long
661 apply_range (unsigned long rval, struct itbl_range r)
662 {
663 unsigned long mask;
664 unsigned long aval;
665 int len = MAX_BITPOS - r.sbit;
666
667 ASSERT (r.sbit >= r.ebit);
668 ASSERT (MAX_BITPOS >= r.sbit);
669 ASSERT (r.ebit >= 0);
670
671 /* create mask by truncating 1s by shifting */
672 mask = 0xffffffff << len;
673 mask = mask >> len;
674 mask = mask >> r.ebit;
675 mask = mask << r.ebit;
676
677 aval = (rval << r.ebit) & mask;
678 return aval;
679 }
680
681 /* Calculate relative value given the absolute value and bit position range
682 * within the instruction. */
683
684 static unsigned long
685 extract_range (unsigned long aval, struct itbl_range r)
686 {
687 unsigned long mask;
688 unsigned long rval;
689 int len = MAX_BITPOS - r.sbit;
690
691 /* create mask by truncating 1s by shifting */
692 mask = 0xffffffff << len;
693 mask = mask >> len;
694 mask = mask >> r.ebit;
695 mask = mask << r.ebit;
696
697 rval = (aval & mask) >> r.ebit;
698 return rval;
699 }
700
701 /* Extract processor's assembly instruction field name from s;
702 * forms are "n args" "n,args" or "n" */
703 /* Return next argument from string pointer "s" and advance s.
704 * delimiters are " ,()" */
705
706 char *
707 itbl_get_field (char **S)
708 {
709 static char n[128];
710 char *s;
711 int len;
712
713 s = *S;
714 if (!s || !*s)
715 return 0;
716 /* FIXME: This is a weird set of delimiters. */
717 len = strcspn (s, " \t,()");
718 ASSERT (128 > len + 1);
719 strncpy (n, s, len);
720 n[len] = 0;
721 if (s[len] == '\0')
722 s = 0; /* no more args */
723 else
724 s += len + 1; /* advance to next arg */
725
726 *S = s;
727 return n;
728 }
729
730 /* Search entries for a given processor and type
731 * to find one matching the name "n".
732 * Return a pointer to the entry */
733
734 static struct itbl_entry *
735 find_entry_byname (e_processor processor,
736 e_type type, char *n)
737 {
738 struct itbl_entry *e, **es;
739
740 es = get_entries (processor, type);
741 for (e = *es; e; e = e->next) /* for each entry, ... */
742 {
743 if (!strcmp (e->name, n))
744 return e;
745 }
746 return 0;
747 }
748
749 /* Search entries for a given processor and type
750 * to find one matching the value "val" for the range "r".
751 * Return a pointer to the entry.
752 * This function is used for disassembling fields of an instruction.
753 */
754
755 static struct itbl_entry *
756 find_entry_byval (e_processor processor, e_type type,
757 unsigned long val, struct itbl_range *r)
758 {
759 struct itbl_entry *e, **es;
760 unsigned long eval;
761
762 es = get_entries (processor, type);
763 for (e = *es; e; e = e->next) /* for each entry, ... */
764 {
765 if (processor != e->processor)
766 continue;
767 /* For insns, we might not know the range of the opcode,
768 * so a range of 0 will allow this routine to match against
769 * the range of the entry to be compared with.
770 * This could cause ambiguities.
771 * For operands, we get an extracted value and a range.
772 */
773 /* if range is 0, mask val against the range of the compared entry. */
774 if (r == 0) /* if no range passed, must be whole 32-bits
775 * so create 32-bit value from entry's range */
776 {
777 eval = apply_range (e->value, e->range);
778 val &= apply_range (0xffffffff, e->range);
779 }
780 else if ((r->sbit == e->range.sbit && r->ebit == e->range.ebit)
781 || (e->range.sbit == 0 && e->range.ebit == 0))
782 {
783 eval = apply_range (e->value, *r);
784 val = apply_range (val, *r);
785 }
786 else
787 continue;
788 if (val == eval)
789 return e;
790 }
791 return 0;
792 }
793
794 /* Return a pointer to the list of entries for a given processor and type. */
795
796 static struct itbl_entry **
797 get_entries (e_processor processor, e_type type)
798 {
799 return &entries[processor][type];
800 }
801
802 /* Return an integral value for the processor passed from yyparse. */
803
804 static e_processor
805 get_processor (int yyproc)
806 {
807 /* translate from yacc's processor to enum */
808 if (yyproc >= e_p0 && yyproc < e_nprocs)
809 return (e_processor) yyproc;
810 return e_invproc; /* error; invalid processor */
811 }
812
813 /* Return an integral value for the entry type passed from yyparse. */
814
815 static e_type
816 get_type (int yytype)
817 {
818 switch (yytype)
819 {
820 /* translate from yacc's type to enum */
821 case INSN:
822 return e_insn;
823 case DREG:
824 return e_dreg;
825 case CREG:
826 return e_creg;
827 case GREG:
828 return e_greg;
829 case ADDR:
830 return e_addr;
831 case IMMED:
832 return e_immed;
833 default:
834 return e_invtype; /* error; invalid type */
835 }
836 }
837
838 /* Allocate and initialize an entry */
839
840 static struct itbl_entry *
841 alloc_entry (e_processor processor, e_type type,
842 char *name, unsigned long value)
843 {
844 struct itbl_entry *e, **es;
845 if (!name)
846 return 0;
847 e = (struct itbl_entry *) malloc (sizeof (struct itbl_entry));
848 if (e)
849 {
850 memset (e, 0, sizeof (struct itbl_entry));
851 e->name = (char *) malloc (sizeof (strlen (name)) + 1);
852 if (e->name)
853 strcpy (e->name, name);
854 e->processor = processor;
855 e->type = type;
856 e->value = value;
857 es = get_entries (e->processor, e->type);
858 e->next = *es;
859 *es = e;
860 }
861 return e;
862 }
863
864 /* Allocate and initialize an entry's field */
865
866 static struct itbl_field *
867 alloc_field (e_type type, int sbit, int ebit,
868 unsigned long flags)
869 {
870 struct itbl_field *f;
871 f = (struct itbl_field *) malloc (sizeof (struct itbl_field));
872 if (f)
873 {
874 memset (f, 0, sizeof (struct itbl_field));
875 f->type = type;
876 f->range.sbit = sbit;
877 f->range.ebit = ebit;
878 f->flags = flags;
879 }
880 return f;
881 }