]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloop.c
utils.c (init_gnat_to_gnu): Use typed GC allocation.
[thirdparty/gcc.git] / gcc / cfgloop.c
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "function.h"
29 #include "basic-block.h"
30 #include "toplev.h"
31 #include "cfgloop.h"
32 #include "flags.h"
33 #include "tree.h"
34 #include "tree-flow.h"
35 #include "pointer-set.h"
36 #include "output.h"
37 #include "ggc.h"
38
39 static void flow_loops_cfg_dump (FILE *);
40 \f
41 /* Dump loop related CFG information. */
42
43 static void
44 flow_loops_cfg_dump (FILE *file)
45 {
46 basic_block bb;
47
48 if (!file)
49 return;
50
51 FOR_EACH_BB (bb)
52 {
53 edge succ;
54 edge_iterator ei;
55
56 fprintf (file, ";; %d succs { ", bb->index);
57 FOR_EACH_EDGE (succ, ei, bb->succs)
58 fprintf (file, "%d ", succ->dest->index);
59 fprintf (file, "}\n");
60 }
61 }
62
63 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
64
65 bool
66 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
67 {
68 unsigned odepth = loop_depth (outer);
69
70 return (loop_depth (loop) > odepth
71 && VEC_index (loop_p, loop->superloops, odepth) == outer);
72 }
73
74 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
75 loops within LOOP. */
76
77 struct loop *
78 superloop_at_depth (struct loop *loop, unsigned depth)
79 {
80 unsigned ldepth = loop_depth (loop);
81
82 gcc_assert (depth <= ldepth);
83
84 if (depth == ldepth)
85 return loop;
86
87 return VEC_index (loop_p, loop->superloops, depth);
88 }
89
90 /* Returns the list of the latch edges of LOOP. */
91
92 static VEC (edge, heap) *
93 get_loop_latch_edges (const struct loop *loop)
94 {
95 edge_iterator ei;
96 edge e;
97 VEC (edge, heap) *ret = NULL;
98
99 FOR_EACH_EDGE (e, ei, loop->header->preds)
100 {
101 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
102 VEC_safe_push (edge, heap, ret, e);
103 }
104
105 return ret;
106 }
107
108 /* Dump the loop information specified by LOOP to the stream FILE
109 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
110
111 void
112 flow_loop_dump (const struct loop *loop, FILE *file,
113 void (*loop_dump_aux) (const struct loop *, FILE *, int),
114 int verbose)
115 {
116 basic_block *bbs;
117 unsigned i;
118 VEC (edge, heap) *latches;
119 edge e;
120
121 if (! loop || ! loop->header)
122 return;
123
124 fprintf (file, ";;\n;; Loop %d\n", loop->num);
125
126 fprintf (file, ";; header %d, ", loop->header->index);
127 if (loop->latch)
128 fprintf (file, "latch %d\n", loop->latch->index);
129 else
130 {
131 fprintf (file, "multiple latches:");
132 latches = get_loop_latch_edges (loop);
133 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
134 fprintf (file, " %d", e->src->index);
135 VEC_free (edge, heap, latches);
136 fprintf (file, "\n");
137 }
138
139 fprintf (file, ";; depth %d, outer %ld\n",
140 loop_depth (loop), (long) (loop_outer (loop)
141 ? loop_outer (loop)->num : -1));
142
143 fprintf (file, ";; nodes:");
144 bbs = get_loop_body (loop);
145 for (i = 0; i < loop->num_nodes; i++)
146 fprintf (file, " %d", bbs[i]->index);
147 free (bbs);
148 fprintf (file, "\n");
149
150 if (loop_dump_aux)
151 loop_dump_aux (loop, file, verbose);
152 }
153
154 /* Dump the loop information about loops to the stream FILE,
155 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
156
157 void
158 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
159 {
160 loop_iterator li;
161 struct loop *loop;
162
163 if (!current_loops || ! file)
164 return;
165
166 fprintf (file, ";; %d loops found\n", number_of_loops ());
167
168 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
169 {
170 flow_loop_dump (loop, file, loop_dump_aux, verbose);
171 }
172
173 if (verbose)
174 flow_loops_cfg_dump (file);
175 }
176
177 /* Free data allocated for LOOP. */
178
179 void
180 flow_loop_free (struct loop *loop)
181 {
182 struct loop_exit *exit, *next;
183
184 VEC_free (loop_p, gc, loop->superloops);
185
186 /* Break the list of the loop exit records. They will be freed when the
187 corresponding edge is rescanned or removed, and this avoids
188 accessing the (already released) head of the list stored in the
189 loop structure. */
190 for (exit = loop->exits->next; exit != loop->exits; exit = next)
191 {
192 next = exit->next;
193 exit->next = exit;
194 exit->prev = exit;
195 }
196
197 ggc_free (loop->exits);
198 ggc_free (loop);
199 }
200
201 /* Free all the memory allocated for LOOPS. */
202
203 void
204 flow_loops_free (struct loops *loops)
205 {
206 if (loops->larray)
207 {
208 unsigned i;
209 loop_p loop;
210
211 /* Free the loop descriptors. */
212 for (i = 0; VEC_iterate (loop_p, loops->larray, i, loop); i++)
213 {
214 if (!loop)
215 continue;
216
217 flow_loop_free (loop);
218 }
219
220 VEC_free (loop_p, gc, loops->larray);
221 }
222 }
223
224 /* Find the nodes contained within the LOOP with header HEADER.
225 Return the number of nodes within the loop. */
226
227 int
228 flow_loop_nodes_find (basic_block header, struct loop *loop)
229 {
230 VEC (basic_block, heap) *stack = NULL;
231 int num_nodes = 1;
232 edge latch;
233 edge_iterator latch_ei;
234 unsigned depth = loop_depth (loop);
235
236 header->loop_father = loop;
237 header->loop_depth = depth;
238
239 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
240 {
241 if (latch->src->loop_father == loop
242 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
243 continue;
244
245 num_nodes++;
246 VEC_safe_push (basic_block, heap, stack, latch->src);
247 latch->src->loop_father = loop;
248 latch->src->loop_depth = depth;
249
250 while (!VEC_empty (basic_block, stack))
251 {
252 basic_block node;
253 edge e;
254 edge_iterator ei;
255
256 node = VEC_pop (basic_block, stack);
257
258 FOR_EACH_EDGE (e, ei, node->preds)
259 {
260 basic_block ancestor = e->src;
261
262 if (ancestor->loop_father != loop)
263 {
264 ancestor->loop_father = loop;
265 ancestor->loop_depth = depth;
266 num_nodes++;
267 VEC_safe_push (basic_block, heap, stack, ancestor);
268 }
269 }
270 }
271 }
272 VEC_free (basic_block, heap, stack);
273
274 return num_nodes;
275 }
276
277 /* Records the vector of superloops of the loop LOOP, whose immediate
278 superloop is FATHER. */
279
280 static void
281 establish_preds (struct loop *loop, struct loop *father)
282 {
283 loop_p ploop;
284 unsigned depth = loop_depth (father) + 1;
285 unsigned i;
286
287 VEC_truncate (loop_p, loop->superloops, 0);
288 VEC_reserve (loop_p, gc, loop->superloops, depth);
289 for (i = 0; VEC_iterate (loop_p, father->superloops, i, ploop); i++)
290 VEC_quick_push (loop_p, loop->superloops, ploop);
291 VEC_quick_push (loop_p, loop->superloops, father);
292
293 for (ploop = loop->inner; ploop; ploop = ploop->next)
294 establish_preds (ploop, loop);
295 }
296
297 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
298 added loop. If LOOP has some children, take care of that their
299 pred field will be initialized correctly. */
300
301 void
302 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
303 {
304 loop->next = father->inner;
305 father->inner = loop;
306
307 establish_preds (loop, father);
308 }
309
310 /* Remove LOOP from the loop hierarchy tree. */
311
312 void
313 flow_loop_tree_node_remove (struct loop *loop)
314 {
315 struct loop *prev, *father;
316
317 father = loop_outer (loop);
318
319 /* Remove loop from the list of sons. */
320 if (father->inner == loop)
321 father->inner = loop->next;
322 else
323 {
324 for (prev = father->inner; prev->next != loop; prev = prev->next)
325 continue;
326 prev->next = loop->next;
327 }
328
329 VEC_truncate (loop_p, loop->superloops, 0);
330 }
331
332 /* Allocates and returns new loop structure. */
333
334 struct loop *
335 alloc_loop (void)
336 {
337 struct loop *loop = ggc_alloc_cleared_loop ();
338
339 loop->exits = ggc_alloc_cleared_loop_exit ();
340 loop->exits->next = loop->exits->prev = loop->exits;
341 loop->can_be_parallel = false;
342 loop->single_iv = NULL_TREE;
343
344 return loop;
345 }
346
347 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
348 (including the root of the loop tree). */
349
350 static void
351 init_loops_structure (struct loops *loops, unsigned num_loops)
352 {
353 struct loop *root;
354
355 memset (loops, 0, sizeof *loops);
356 loops->larray = VEC_alloc (loop_p, gc, num_loops);
357
358 /* Dummy loop containing whole function. */
359 root = alloc_loop ();
360 root->num_nodes = n_basic_blocks;
361 root->latch = EXIT_BLOCK_PTR;
362 root->header = ENTRY_BLOCK_PTR;
363 ENTRY_BLOCK_PTR->loop_father = root;
364 EXIT_BLOCK_PTR->loop_father = root;
365
366 VEC_quick_push (loop_p, loops->larray, root);
367 loops->tree_root = root;
368 }
369
370 /* Find all the natural loops in the function and save in LOOPS structure and
371 recalculate loop_depth information in basic block structures.
372 Return the number of natural loops found. */
373
374 int
375 flow_loops_find (struct loops *loops)
376 {
377 int b;
378 int num_loops;
379 edge e;
380 sbitmap headers;
381 int *dfs_order;
382 int *rc_order;
383 basic_block header;
384 basic_block bb;
385
386 /* Ensure that the dominators are computed. */
387 calculate_dominance_info (CDI_DOMINATORS);
388
389 /* Taking care of this degenerate case makes the rest of
390 this code simpler. */
391 if (n_basic_blocks == NUM_FIXED_BLOCKS)
392 {
393 init_loops_structure (loops, 1);
394 return 1;
395 }
396
397 dfs_order = NULL;
398 rc_order = NULL;
399
400 /* Count the number of loop headers. This should be the
401 same as the number of natural loops. */
402 headers = sbitmap_alloc (last_basic_block);
403 sbitmap_zero (headers);
404
405 num_loops = 0;
406 FOR_EACH_BB (header)
407 {
408 edge_iterator ei;
409
410 header->loop_depth = 0;
411
412 /* If we have an abnormal predecessor, do not consider the
413 loop (not worth the problems). */
414 FOR_EACH_EDGE (e, ei, header->preds)
415 if (e->flags & EDGE_ABNORMAL)
416 break;
417 if (e)
418 continue;
419
420 FOR_EACH_EDGE (e, ei, header->preds)
421 {
422 basic_block latch = e->src;
423
424 gcc_assert (!(e->flags & EDGE_ABNORMAL));
425
426 /* Look for back edges where a predecessor is dominated
427 by this block. A natural loop has a single entry
428 node (header) that dominates all the nodes in the
429 loop. It also has single back edge to the header
430 from a latch node. */
431 if (latch != ENTRY_BLOCK_PTR
432 && dominated_by_p (CDI_DOMINATORS, latch, header))
433 {
434 /* Shared headers should be eliminated by now. */
435 SET_BIT (headers, header->index);
436 num_loops++;
437 }
438 }
439 }
440
441 /* Allocate loop structures. */
442 init_loops_structure (loops, num_loops + 1);
443
444 /* Find and record information about all the natural loops
445 in the CFG. */
446 FOR_EACH_BB (bb)
447 bb->loop_father = loops->tree_root;
448
449 if (num_loops)
450 {
451 /* Compute depth first search order of the CFG so that outer
452 natural loops will be found before inner natural loops. */
453 dfs_order = XNEWVEC (int, n_basic_blocks);
454 rc_order = XNEWVEC (int, n_basic_blocks);
455 pre_and_rev_post_order_compute (dfs_order, rc_order, false);
456
457 num_loops = 1;
458
459 for (b = 0; b < n_basic_blocks - NUM_FIXED_BLOCKS; b++)
460 {
461 struct loop *loop;
462 edge_iterator ei;
463
464 /* Search the nodes of the CFG in reverse completion order
465 so that we can find outer loops first. */
466 if (!TEST_BIT (headers, rc_order[b]))
467 continue;
468
469 header = BASIC_BLOCK (rc_order[b]);
470
471 loop = alloc_loop ();
472 VEC_quick_push (loop_p, loops->larray, loop);
473
474 loop->header = header;
475 loop->num = num_loops;
476 num_loops++;
477
478 flow_loop_tree_node_add (header->loop_father, loop);
479 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
480
481 /* Look for the latch for this header block, if it has just a
482 single one. */
483 FOR_EACH_EDGE (e, ei, header->preds)
484 {
485 basic_block latch = e->src;
486
487 if (flow_bb_inside_loop_p (loop, latch))
488 {
489 if (loop->latch != NULL)
490 {
491 /* More than one latch edge. */
492 loop->latch = NULL;
493 break;
494 }
495 loop->latch = latch;
496 }
497 }
498 }
499
500 free (dfs_order);
501 free (rc_order);
502 }
503
504 sbitmap_free (headers);
505
506 loops->exits = NULL;
507 return VEC_length (loop_p, loops->larray);
508 }
509
510 /* Ratio of frequencies of edges so that one of more latch edges is
511 considered to belong to inner loop with same header. */
512 #define HEAVY_EDGE_RATIO 8
513
514 /* Minimum number of samples for that we apply
515 find_subloop_latch_edge_by_profile heuristics. */
516 #define HEAVY_EDGE_MIN_SAMPLES 10
517
518 /* If the profile info is available, finds an edge in LATCHES that much more
519 frequent than the remaining edges. Returns such an edge, or NULL if we do
520 not find one.
521
522 We do not use guessed profile here, only the measured one. The guessed
523 profile is usually too flat and unreliable for this (and it is mostly based
524 on the loop structure of the program, so it does not make much sense to
525 derive the loop structure from it). */
526
527 static edge
528 find_subloop_latch_edge_by_profile (VEC (edge, heap) *latches)
529 {
530 unsigned i;
531 edge e, me = NULL;
532 gcov_type mcount = 0, tcount = 0;
533
534 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
535 {
536 if (e->count > mcount)
537 {
538 me = e;
539 mcount = e->count;
540 }
541 tcount += e->count;
542 }
543
544 if (tcount < HEAVY_EDGE_MIN_SAMPLES
545 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
546 return NULL;
547
548 if (dump_file)
549 fprintf (dump_file,
550 "Found latch edge %d -> %d using profile information.\n",
551 me->src->index, me->dest->index);
552 return me;
553 }
554
555 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
556 on the structure of induction variables. Returns this edge, or NULL if we
557 do not find any.
558
559 We are quite conservative, and look just for an obvious simple innermost
560 loop (which is the case where we would lose the most performance by not
561 disambiguating the loop). More precisely, we look for the following
562 situation: The source of the chosen latch edge dominates sources of all
563 the other latch edges. Additionally, the header does not contain a phi node
564 such that the argument from the chosen edge is equal to the argument from
565 another edge. */
566
567 static edge
568 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, VEC (edge, heap) *latches)
569 {
570 edge e, latch = VEC_index (edge, latches, 0);
571 unsigned i;
572 gimple phi;
573 gimple_stmt_iterator psi;
574 tree lop;
575 basic_block bb;
576
577 /* Find the candidate for the latch edge. */
578 for (i = 1; VEC_iterate (edge, latches, i, e); i++)
579 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
580 latch = e;
581
582 /* Verify that it dominates all the latch edges. */
583 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
584 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
585 return NULL;
586
587 /* Check for a phi node that would deny that this is a latch edge of
588 a subloop. */
589 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
590 {
591 phi = gsi_stmt (psi);
592 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
593
594 /* Ignore the values that are not changed inside the subloop. */
595 if (TREE_CODE (lop) != SSA_NAME
596 || SSA_NAME_DEF_STMT (lop) == phi)
597 continue;
598 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
599 if (!bb || !flow_bb_inside_loop_p (loop, bb))
600 continue;
601
602 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
603 if (e != latch
604 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
605 return NULL;
606 }
607
608 if (dump_file)
609 fprintf (dump_file,
610 "Found latch edge %d -> %d using iv structure.\n",
611 latch->src->index, latch->dest->index);
612 return latch;
613 }
614
615 /* If we can determine that one of the several latch edges of LOOP behaves
616 as a latch edge of a separate subloop, returns this edge. Otherwise
617 returns NULL. */
618
619 static edge
620 find_subloop_latch_edge (struct loop *loop)
621 {
622 VEC (edge, heap) *latches = get_loop_latch_edges (loop);
623 edge latch = NULL;
624
625 if (VEC_length (edge, latches) > 1)
626 {
627 latch = find_subloop_latch_edge_by_profile (latches);
628
629 if (!latch
630 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
631 should use cfghook for this, but it is hard to imagine it would
632 be useful elsewhere. */
633 && current_ir_type () == IR_GIMPLE)
634 latch = find_subloop_latch_edge_by_ivs (loop, latches);
635 }
636
637 VEC_free (edge, heap, latches);
638 return latch;
639 }
640
641 /* Callback for make_forwarder_block. Returns true if the edge E is marked
642 in the set MFB_REIS_SET. */
643
644 static struct pointer_set_t *mfb_reis_set;
645 static bool
646 mfb_redirect_edges_in_set (edge e)
647 {
648 return pointer_set_contains (mfb_reis_set, e);
649 }
650
651 /* Creates a subloop of LOOP with latch edge LATCH. */
652
653 static void
654 form_subloop (struct loop *loop, edge latch)
655 {
656 edge_iterator ei;
657 edge e, new_entry;
658 struct loop *new_loop;
659
660 mfb_reis_set = pointer_set_create ();
661 FOR_EACH_EDGE (e, ei, loop->header->preds)
662 {
663 if (e != latch)
664 pointer_set_insert (mfb_reis_set, e);
665 }
666 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
667 NULL);
668 pointer_set_destroy (mfb_reis_set);
669
670 loop->header = new_entry->src;
671
672 /* Find the blocks and subloops that belong to the new loop, and add it to
673 the appropriate place in the loop tree. */
674 new_loop = alloc_loop ();
675 new_loop->header = new_entry->dest;
676 new_loop->latch = latch->src;
677 add_loop (new_loop, loop);
678 }
679
680 /* Make all the latch edges of LOOP to go to a single forwarder block --
681 a new latch of LOOP. */
682
683 static void
684 merge_latch_edges (struct loop *loop)
685 {
686 VEC (edge, heap) *latches = get_loop_latch_edges (loop);
687 edge latch, e;
688 unsigned i;
689
690 gcc_assert (VEC_length (edge, latches) > 0);
691
692 if (VEC_length (edge, latches) == 1)
693 loop->latch = VEC_index (edge, latches, 0)->src;
694 else
695 {
696 if (dump_file)
697 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
698
699 mfb_reis_set = pointer_set_create ();
700 for (i = 0; VEC_iterate (edge, latches, i, e); i++)
701 pointer_set_insert (mfb_reis_set, e);
702 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
703 NULL);
704 pointer_set_destroy (mfb_reis_set);
705
706 loop->header = latch->dest;
707 loop->latch = latch->src;
708 }
709
710 VEC_free (edge, heap, latches);
711 }
712
713 /* LOOP may have several latch edges. Transform it into (possibly several)
714 loops with single latch edge. */
715
716 static void
717 disambiguate_multiple_latches (struct loop *loop)
718 {
719 edge e;
720
721 /* We eliminate the multiple latches by splitting the header to the forwarder
722 block F and the rest R, and redirecting the edges. There are two cases:
723
724 1) If there is a latch edge E that corresponds to a subloop (we guess
725 that based on profile -- if it is taken much more often than the
726 remaining edges; and on trees, using the information about induction
727 variables of the loops), we redirect E to R, all the remaining edges to
728 F, then rescan the loops and try again for the outer loop.
729 2) If there is no such edge, we redirect all latch edges to F, and the
730 entry edges to R, thus making F the single latch of the loop. */
731
732 if (dump_file)
733 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
734 loop->num);
735
736 /* During latch merging, we may need to redirect the entry edges to a new
737 block. This would cause problems if the entry edge was the one from the
738 entry block. To avoid having to handle this case specially, split
739 such entry edge. */
740 e = find_edge (ENTRY_BLOCK_PTR, loop->header);
741 if (e)
742 split_edge (e);
743
744 while (1)
745 {
746 e = find_subloop_latch_edge (loop);
747 if (!e)
748 break;
749
750 form_subloop (loop, e);
751 }
752
753 merge_latch_edges (loop);
754 }
755
756 /* Split loops with multiple latch edges. */
757
758 void
759 disambiguate_loops_with_multiple_latches (void)
760 {
761 loop_iterator li;
762 struct loop *loop;
763
764 FOR_EACH_LOOP (li, loop, 0)
765 {
766 if (!loop->latch)
767 disambiguate_multiple_latches (loop);
768 }
769 }
770
771 /* Return nonzero if basic block BB belongs to LOOP. */
772 bool
773 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
774 {
775 struct loop *source_loop;
776
777 if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
778 return 0;
779
780 source_loop = bb->loop_father;
781 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
782 }
783
784 /* Enumeration predicate for get_loop_body_with_size. */
785 static bool
786 glb_enum_p (const_basic_block bb, const void *glb_loop)
787 {
788 const struct loop *const loop = (const struct loop *) glb_loop;
789 return (bb != loop->header
790 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
791 }
792
793 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
794 order against direction of edges from latch. Specially, if
795 header != latch, latch is the 1-st block. LOOP cannot be the fake
796 loop tree root, and its size must be at most MAX_SIZE. The blocks
797 in the LOOP body are stored to BODY, and the size of the LOOP is
798 returned. */
799
800 unsigned
801 get_loop_body_with_size (const struct loop *loop, basic_block *body,
802 unsigned max_size)
803 {
804 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
805 body, max_size, loop);
806 }
807
808 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
809 order against direction of edges from latch. Specially, if
810 header != latch, latch is the 1-st block. */
811
812 basic_block *
813 get_loop_body (const struct loop *loop)
814 {
815 basic_block *body, bb;
816 unsigned tv = 0;
817
818 gcc_assert (loop->num_nodes);
819
820 body = XCNEWVEC (basic_block, loop->num_nodes);
821
822 if (loop->latch == EXIT_BLOCK_PTR)
823 {
824 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
825 special-case the fake loop that contains the whole function. */
826 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks);
827 body[tv++] = loop->header;
828 body[tv++] = EXIT_BLOCK_PTR;
829 FOR_EACH_BB (bb)
830 body[tv++] = bb;
831 }
832 else
833 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
834
835 gcc_assert (tv == loop->num_nodes);
836 return body;
837 }
838
839 /* Fills dominance descendants inside LOOP of the basic block BB into
840 array TOVISIT from index *TV. */
841
842 static void
843 fill_sons_in_loop (const struct loop *loop, basic_block bb,
844 basic_block *tovisit, int *tv)
845 {
846 basic_block son, postpone = NULL;
847
848 tovisit[(*tv)++] = bb;
849 for (son = first_dom_son (CDI_DOMINATORS, bb);
850 son;
851 son = next_dom_son (CDI_DOMINATORS, son))
852 {
853 if (!flow_bb_inside_loop_p (loop, son))
854 continue;
855
856 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
857 {
858 postpone = son;
859 continue;
860 }
861 fill_sons_in_loop (loop, son, tovisit, tv);
862 }
863
864 if (postpone)
865 fill_sons_in_loop (loop, postpone, tovisit, tv);
866 }
867
868 /* Gets body of a LOOP (that must be different from the outermost loop)
869 sorted by dominance relation. Additionally, if a basic block s dominates
870 the latch, then only blocks dominated by s are be after it. */
871
872 basic_block *
873 get_loop_body_in_dom_order (const struct loop *loop)
874 {
875 basic_block *tovisit;
876 int tv;
877
878 gcc_assert (loop->num_nodes);
879
880 tovisit = XCNEWVEC (basic_block, loop->num_nodes);
881
882 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
883
884 tv = 0;
885 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
886
887 gcc_assert (tv == (int) loop->num_nodes);
888
889 return tovisit;
890 }
891
892 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
893
894 basic_block *
895 get_loop_body_in_custom_order (const struct loop *loop,
896 int (*bb_comparator) (const void *, const void *))
897 {
898 basic_block *bbs = get_loop_body (loop);
899
900 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
901
902 return bbs;
903 }
904
905 /* Get body of a LOOP in breadth first sort order. */
906
907 basic_block *
908 get_loop_body_in_bfs_order (const struct loop *loop)
909 {
910 basic_block *blocks;
911 basic_block bb;
912 bitmap visited;
913 unsigned int i = 0;
914 unsigned int vc = 1;
915
916 gcc_assert (loop->num_nodes);
917 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
918
919 blocks = XCNEWVEC (basic_block, loop->num_nodes);
920 visited = BITMAP_ALLOC (NULL);
921
922 bb = loop->header;
923 while (i < loop->num_nodes)
924 {
925 edge e;
926 edge_iterator ei;
927
928 if (!bitmap_bit_p (visited, bb->index))
929 {
930 /* This basic block is now visited */
931 bitmap_set_bit (visited, bb->index);
932 blocks[i++] = bb;
933 }
934
935 FOR_EACH_EDGE (e, ei, bb->succs)
936 {
937 if (flow_bb_inside_loop_p (loop, e->dest))
938 {
939 if (!bitmap_bit_p (visited, e->dest->index))
940 {
941 bitmap_set_bit (visited, e->dest->index);
942 blocks[i++] = e->dest;
943 }
944 }
945 }
946
947 gcc_assert (i >= vc);
948
949 bb = blocks[vc++];
950 }
951
952 BITMAP_FREE (visited);
953 return blocks;
954 }
955
956 /* Hash function for struct loop_exit. */
957
958 static hashval_t
959 loop_exit_hash (const void *ex)
960 {
961 const struct loop_exit *const exit = (const struct loop_exit *) ex;
962
963 return htab_hash_pointer (exit->e);
964 }
965
966 /* Equality function for struct loop_exit. Compares with edge. */
967
968 static int
969 loop_exit_eq (const void *ex, const void *e)
970 {
971 const struct loop_exit *const exit = (const struct loop_exit *) ex;
972
973 return exit->e == e;
974 }
975
976 /* Frees the list of loop exit descriptions EX. */
977
978 static void
979 loop_exit_free (void *ex)
980 {
981 struct loop_exit *exit = (struct loop_exit *) ex, *next;
982
983 for (; exit; exit = next)
984 {
985 next = exit->next_e;
986
987 exit->next->prev = exit->prev;
988 exit->prev->next = exit->next;
989
990 ggc_free (exit);
991 }
992 }
993
994 /* Returns the list of records for E as an exit of a loop. */
995
996 static struct loop_exit *
997 get_exit_descriptions (edge e)
998 {
999 return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
1000 htab_hash_pointer (e));
1001 }
1002
1003 /* Updates the lists of loop exits in that E appears.
1004 If REMOVED is true, E is being removed, and we
1005 just remove it from the lists of exits.
1006 If NEW_EDGE is true and E is not a loop exit, we
1007 do not try to remove it from loop exit lists. */
1008
1009 void
1010 rescan_loop_exit (edge e, bool new_edge, bool removed)
1011 {
1012 void **slot;
1013 struct loop_exit *exits = NULL, *exit;
1014 struct loop *aloop, *cloop;
1015
1016 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1017 return;
1018
1019 if (!removed
1020 && e->src->loop_father != NULL
1021 && e->dest->loop_father != NULL
1022 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1023 {
1024 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1025 for (aloop = e->src->loop_father;
1026 aloop != cloop;
1027 aloop = loop_outer (aloop))
1028 {
1029 exit = ggc_alloc_loop_exit ();
1030 exit->e = e;
1031
1032 exit->next = aloop->exits->next;
1033 exit->prev = aloop->exits;
1034 exit->next->prev = exit;
1035 exit->prev->next = exit;
1036
1037 exit->next_e = exits;
1038 exits = exit;
1039 }
1040 }
1041
1042 if (!exits && new_edge)
1043 return;
1044
1045 slot = htab_find_slot_with_hash (current_loops->exits, e,
1046 htab_hash_pointer (e),
1047 exits ? INSERT : NO_INSERT);
1048 if (!slot)
1049 return;
1050
1051 if (exits)
1052 {
1053 if (*slot)
1054 loop_exit_free (*slot);
1055 *slot = exits;
1056 }
1057 else
1058 htab_clear_slot (current_loops->exits, slot);
1059 }
1060
1061 /* For each loop, record list of exit edges, and start maintaining these
1062 lists. */
1063
1064 void
1065 record_loop_exits (void)
1066 {
1067 basic_block bb;
1068 edge_iterator ei;
1069 edge e;
1070
1071 if (!current_loops)
1072 return;
1073
1074 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1075 return;
1076 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1077
1078 gcc_assert (current_loops->exits == NULL);
1079 current_loops->exits = htab_create_ggc (2 * number_of_loops (),
1080 loop_exit_hash, loop_exit_eq,
1081 loop_exit_free);
1082
1083 FOR_EACH_BB (bb)
1084 {
1085 FOR_EACH_EDGE (e, ei, bb->succs)
1086 {
1087 rescan_loop_exit (e, true, false);
1088 }
1089 }
1090 }
1091
1092 /* Dumps information about the exit in *SLOT to FILE.
1093 Callback for htab_traverse. */
1094
1095 static int
1096 dump_recorded_exit (void **slot, void *file)
1097 {
1098 struct loop_exit *exit = (struct loop_exit *) *slot;
1099 unsigned n = 0;
1100 edge e = exit->e;
1101
1102 for (; exit != NULL; exit = exit->next_e)
1103 n++;
1104
1105 fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
1106 e->src->index, e->dest->index, n);
1107
1108 return 1;
1109 }
1110
1111 /* Dumps the recorded exits of loops to FILE. */
1112
1113 extern void dump_recorded_exits (FILE *);
1114 void
1115 dump_recorded_exits (FILE *file)
1116 {
1117 if (!current_loops->exits)
1118 return;
1119 htab_traverse (current_loops->exits, dump_recorded_exit, file);
1120 }
1121
1122 /* Releases lists of loop exits. */
1123
1124 void
1125 release_recorded_exits (void)
1126 {
1127 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
1128 htab_delete (current_loops->exits);
1129 current_loops->exits = NULL;
1130 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
1131 }
1132
1133 /* Returns the list of the exit edges of a LOOP. */
1134
1135 VEC (edge, heap) *
1136 get_loop_exit_edges (const struct loop *loop)
1137 {
1138 VEC (edge, heap) *edges = NULL;
1139 edge e;
1140 unsigned i;
1141 basic_block *body;
1142 edge_iterator ei;
1143 struct loop_exit *exit;
1144
1145 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1146
1147 /* If we maintain the lists of exits, use them. Otherwise we must
1148 scan the body of the loop. */
1149 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1150 {
1151 for (exit = loop->exits->next; exit->e; exit = exit->next)
1152 VEC_safe_push (edge, heap, edges, exit->e);
1153 }
1154 else
1155 {
1156 body = get_loop_body (loop);
1157 for (i = 0; i < loop->num_nodes; i++)
1158 FOR_EACH_EDGE (e, ei, body[i]->succs)
1159 {
1160 if (!flow_bb_inside_loop_p (loop, e->dest))
1161 VEC_safe_push (edge, heap, edges, e);
1162 }
1163 free (body);
1164 }
1165
1166 return edges;
1167 }
1168
1169 /* Counts the number of conditional branches inside LOOP. */
1170
1171 unsigned
1172 num_loop_branches (const struct loop *loop)
1173 {
1174 unsigned i, n;
1175 basic_block * body;
1176
1177 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1178
1179 body = get_loop_body (loop);
1180 n = 0;
1181 for (i = 0; i < loop->num_nodes; i++)
1182 if (EDGE_COUNT (body[i]->succs) >= 2)
1183 n++;
1184 free (body);
1185
1186 return n;
1187 }
1188
1189 /* Adds basic block BB to LOOP. */
1190 void
1191 add_bb_to_loop (basic_block bb, struct loop *loop)
1192 {
1193 unsigned i;
1194 loop_p ploop;
1195 edge_iterator ei;
1196 edge e;
1197
1198 gcc_assert (bb->loop_father == NULL);
1199 bb->loop_father = loop;
1200 bb->loop_depth = loop_depth (loop);
1201 loop->num_nodes++;
1202 for (i = 0; VEC_iterate (loop_p, loop->superloops, i, ploop); i++)
1203 ploop->num_nodes++;
1204
1205 FOR_EACH_EDGE (e, ei, bb->succs)
1206 {
1207 rescan_loop_exit (e, true, false);
1208 }
1209 FOR_EACH_EDGE (e, ei, bb->preds)
1210 {
1211 rescan_loop_exit (e, true, false);
1212 }
1213 }
1214
1215 /* Remove basic block BB from loops. */
1216 void
1217 remove_bb_from_loops (basic_block bb)
1218 {
1219 int i;
1220 struct loop *loop = bb->loop_father;
1221 loop_p ploop;
1222 edge_iterator ei;
1223 edge e;
1224
1225 gcc_assert (loop != NULL);
1226 loop->num_nodes--;
1227 for (i = 0; VEC_iterate (loop_p, loop->superloops, i, ploop); i++)
1228 ploop->num_nodes--;
1229 bb->loop_father = NULL;
1230 bb->loop_depth = 0;
1231
1232 FOR_EACH_EDGE (e, ei, bb->succs)
1233 {
1234 rescan_loop_exit (e, false, true);
1235 }
1236 FOR_EACH_EDGE (e, ei, bb->preds)
1237 {
1238 rescan_loop_exit (e, false, true);
1239 }
1240 }
1241
1242 /* Finds nearest common ancestor in loop tree for given loops. */
1243 struct loop *
1244 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1245 {
1246 unsigned sdepth, ddepth;
1247
1248 if (!loop_s) return loop_d;
1249 if (!loop_d) return loop_s;
1250
1251 sdepth = loop_depth (loop_s);
1252 ddepth = loop_depth (loop_d);
1253
1254 if (sdepth < ddepth)
1255 loop_d = VEC_index (loop_p, loop_d->superloops, sdepth);
1256 else if (sdepth > ddepth)
1257 loop_s = VEC_index (loop_p, loop_s->superloops, ddepth);
1258
1259 while (loop_s != loop_d)
1260 {
1261 loop_s = loop_outer (loop_s);
1262 loop_d = loop_outer (loop_d);
1263 }
1264 return loop_s;
1265 }
1266
1267 /* Removes LOOP from structures and frees its data. */
1268
1269 void
1270 delete_loop (struct loop *loop)
1271 {
1272 /* Remove the loop from structure. */
1273 flow_loop_tree_node_remove (loop);
1274
1275 /* Remove loop from loops array. */
1276 VEC_replace (loop_p, current_loops->larray, loop->num, NULL);
1277
1278 /* Free loop data. */
1279 flow_loop_free (loop);
1280 }
1281
1282 /* Cancels the LOOP; it must be innermost one. */
1283
1284 static void
1285 cancel_loop (struct loop *loop)
1286 {
1287 basic_block *bbs;
1288 unsigned i;
1289 struct loop *outer = loop_outer (loop);
1290
1291 gcc_assert (!loop->inner);
1292
1293 /* Move blocks up one level (they should be removed as soon as possible). */
1294 bbs = get_loop_body (loop);
1295 for (i = 0; i < loop->num_nodes; i++)
1296 bbs[i]->loop_father = outer;
1297
1298 delete_loop (loop);
1299 }
1300
1301 /* Cancels LOOP and all its subloops. */
1302 void
1303 cancel_loop_tree (struct loop *loop)
1304 {
1305 while (loop->inner)
1306 cancel_loop_tree (loop->inner);
1307 cancel_loop (loop);
1308 }
1309
1310 /* Checks that information about loops is correct
1311 -- sizes of loops are all right
1312 -- results of get_loop_body really belong to the loop
1313 -- loop header have just single entry edge and single latch edge
1314 -- loop latches have only single successor that is header of their loop
1315 -- irreducible loops are correctly marked
1316 */
1317 DEBUG_FUNCTION void
1318 verify_loop_structure (void)
1319 {
1320 unsigned *sizes, i, j;
1321 sbitmap irreds;
1322 basic_block *bbs, bb;
1323 struct loop *loop;
1324 int err = 0;
1325 edge e;
1326 unsigned num = number_of_loops ();
1327 loop_iterator li;
1328 struct loop_exit *exit, *mexit;
1329
1330 /* Check sizes. */
1331 sizes = XCNEWVEC (unsigned, num);
1332 sizes[0] = 2;
1333
1334 FOR_EACH_BB (bb)
1335 for (loop = bb->loop_father; loop; loop = loop_outer (loop))
1336 sizes[loop->num]++;
1337
1338 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
1339 {
1340 i = loop->num;
1341
1342 if (loop->num_nodes != sizes[i])
1343 {
1344 error ("size of loop %d should be %d, not %d",
1345 i, sizes[i], loop->num_nodes);
1346 err = 1;
1347 }
1348 }
1349
1350 /* Check get_loop_body. */
1351 FOR_EACH_LOOP (li, loop, 0)
1352 {
1353 bbs = get_loop_body (loop);
1354
1355 for (j = 0; j < loop->num_nodes; j++)
1356 if (!flow_bb_inside_loop_p (loop, bbs[j]))
1357 {
1358 error ("bb %d do not belong to loop %d",
1359 bbs[j]->index, loop->num);
1360 err = 1;
1361 }
1362 free (bbs);
1363 }
1364
1365 /* Check headers and latches. */
1366 FOR_EACH_LOOP (li, loop, 0)
1367 {
1368 i = loop->num;
1369
1370 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1371 && EDGE_COUNT (loop->header->preds) != 2)
1372 {
1373 error ("loop %d's header does not have exactly 2 entries", i);
1374 err = 1;
1375 }
1376 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1377 {
1378 if (!single_succ_p (loop->latch))
1379 {
1380 error ("loop %d's latch does not have exactly 1 successor", i);
1381 err = 1;
1382 }
1383 if (single_succ (loop->latch) != loop->header)
1384 {
1385 error ("loop %d's latch does not have header as successor", i);
1386 err = 1;
1387 }
1388 if (loop->latch->loop_father != loop)
1389 {
1390 error ("loop %d's latch does not belong directly to it", i);
1391 err = 1;
1392 }
1393 }
1394 if (loop->header->loop_father != loop)
1395 {
1396 error ("loop %d's header does not belong directly to it", i);
1397 err = 1;
1398 }
1399 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1400 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1401 {
1402 error ("loop %d's latch is marked as part of irreducible region", i);
1403 err = 1;
1404 }
1405 }
1406
1407 /* Check irreducible loops. */
1408 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1409 {
1410 /* Record old info. */
1411 irreds = sbitmap_alloc (last_basic_block);
1412 FOR_EACH_BB (bb)
1413 {
1414 edge_iterator ei;
1415 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1416 SET_BIT (irreds, bb->index);
1417 else
1418 RESET_BIT (irreds, bb->index);
1419 FOR_EACH_EDGE (e, ei, bb->succs)
1420 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1421 e->flags |= EDGE_ALL_FLAGS + 1;
1422 }
1423
1424 /* Recount it. */
1425 mark_irreducible_loops ();
1426
1427 /* Compare. */
1428 FOR_EACH_BB (bb)
1429 {
1430 edge_iterator ei;
1431
1432 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1433 && !TEST_BIT (irreds, bb->index))
1434 {
1435 error ("basic block %d should be marked irreducible", bb->index);
1436 err = 1;
1437 }
1438 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1439 && TEST_BIT (irreds, bb->index))
1440 {
1441 error ("basic block %d should not be marked irreducible", bb->index);
1442 err = 1;
1443 }
1444 FOR_EACH_EDGE (e, ei, bb->succs)
1445 {
1446 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1447 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1448 {
1449 error ("edge from %d to %d should be marked irreducible",
1450 e->src->index, e->dest->index);
1451 err = 1;
1452 }
1453 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1454 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1455 {
1456 error ("edge from %d to %d should not be marked irreducible",
1457 e->src->index, e->dest->index);
1458 err = 1;
1459 }
1460 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1461 }
1462 }
1463 free (irreds);
1464 }
1465
1466 /* Check the recorded loop exits. */
1467 FOR_EACH_LOOP (li, loop, 0)
1468 {
1469 if (!loop->exits || loop->exits->e != NULL)
1470 {
1471 error ("corrupted head of the exits list of loop %d",
1472 loop->num);
1473 err = 1;
1474 }
1475 else
1476 {
1477 /* Check that the list forms a cycle, and all elements except
1478 for the head are nonnull. */
1479 for (mexit = loop->exits, exit = mexit->next, i = 0;
1480 exit->e && exit != mexit;
1481 exit = exit->next)
1482 {
1483 if (i++ & 1)
1484 mexit = mexit->next;
1485 }
1486
1487 if (exit != loop->exits)
1488 {
1489 error ("corrupted exits list of loop %d", loop->num);
1490 err = 1;
1491 }
1492 }
1493
1494 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1495 {
1496 if (loop->exits->next != loop->exits)
1497 {
1498 error ("nonempty exits list of loop %d, but exits are not recorded",
1499 loop->num);
1500 err = 1;
1501 }
1502 }
1503 }
1504
1505 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1506 {
1507 unsigned n_exits = 0, eloops;
1508
1509 memset (sizes, 0, sizeof (unsigned) * num);
1510 FOR_EACH_BB (bb)
1511 {
1512 edge_iterator ei;
1513 if (bb->loop_father == current_loops->tree_root)
1514 continue;
1515 FOR_EACH_EDGE (e, ei, bb->succs)
1516 {
1517 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1518 continue;
1519
1520 n_exits++;
1521 exit = get_exit_descriptions (e);
1522 if (!exit)
1523 {
1524 error ("Exit %d->%d not recorded",
1525 e->src->index, e->dest->index);
1526 err = 1;
1527 }
1528 eloops = 0;
1529 for (; exit; exit = exit->next_e)
1530 eloops++;
1531
1532 for (loop = bb->loop_father;
1533 loop != e->dest->loop_father;
1534 loop = loop_outer (loop))
1535 {
1536 eloops--;
1537 sizes[loop->num]++;
1538 }
1539
1540 if (eloops != 0)
1541 {
1542 error ("Wrong list of exited loops for edge %d->%d",
1543 e->src->index, e->dest->index);
1544 err = 1;
1545 }
1546 }
1547 }
1548
1549 if (n_exits != htab_elements (current_loops->exits))
1550 {
1551 error ("Too many loop exits recorded");
1552 err = 1;
1553 }
1554
1555 FOR_EACH_LOOP (li, loop, 0)
1556 {
1557 eloops = 0;
1558 for (exit = loop->exits->next; exit->e; exit = exit->next)
1559 eloops++;
1560 if (eloops != sizes[loop->num])
1561 {
1562 error ("%d exits recorded for loop %d (having %d exits)",
1563 eloops, loop->num, sizes[loop->num]);
1564 err = 1;
1565 }
1566 }
1567 }
1568
1569 gcc_assert (!err);
1570
1571 free (sizes);
1572 }
1573
1574 /* Returns latch edge of LOOP. */
1575 edge
1576 loop_latch_edge (const struct loop *loop)
1577 {
1578 return find_edge (loop->latch, loop->header);
1579 }
1580
1581 /* Returns preheader edge of LOOP. */
1582 edge
1583 loop_preheader_edge (const struct loop *loop)
1584 {
1585 edge e;
1586 edge_iterator ei;
1587
1588 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1589
1590 FOR_EACH_EDGE (e, ei, loop->header->preds)
1591 if (e->src != loop->latch)
1592 break;
1593
1594 return e;
1595 }
1596
1597 /* Returns true if E is an exit of LOOP. */
1598
1599 bool
1600 loop_exit_edge_p (const struct loop *loop, const_edge e)
1601 {
1602 return (flow_bb_inside_loop_p (loop, e->src)
1603 && !flow_bb_inside_loop_p (loop, e->dest));
1604 }
1605
1606 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1607 or more than one exit. If loops do not have the exits recorded, NULL
1608 is returned always. */
1609
1610 edge
1611 single_exit (const struct loop *loop)
1612 {
1613 struct loop_exit *exit = loop->exits->next;
1614
1615 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1616 return NULL;
1617
1618 if (exit->e && exit->next == loop->exits)
1619 return exit->e;
1620 else
1621 return NULL;
1622 }
1623
1624 /* Returns true when BB has an edge exiting LOOP. */
1625
1626 bool
1627 is_loop_exit (struct loop *loop, basic_block bb)
1628 {
1629 edge e;
1630 edge_iterator ei;
1631
1632 FOR_EACH_EDGE (e, ei, bb->preds)
1633 if (loop_exit_edge_p (loop, e))
1634 return true;
1635
1636 return false;
1637 }