]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/alpha/alpha.h
target.def (legitimate_constant_p): New hook.
[thirdparty/gcc.git] / gcc / config / alpha / alpha.h
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2004, 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* Target CPU builtins. */
24 #define TARGET_CPU_CPP_BUILTINS() \
25 do \
26 { \
27 builtin_define ("__alpha"); \
28 builtin_define ("__alpha__"); \
29 builtin_assert ("cpu=alpha"); \
30 builtin_assert ("machine=alpha"); \
31 if (TARGET_CIX) \
32 { \
33 builtin_define ("__alpha_cix__"); \
34 builtin_assert ("cpu=cix"); \
35 } \
36 if (TARGET_FIX) \
37 { \
38 builtin_define ("__alpha_fix__"); \
39 builtin_assert ("cpu=fix"); \
40 } \
41 if (TARGET_BWX) \
42 { \
43 builtin_define ("__alpha_bwx__"); \
44 builtin_assert ("cpu=bwx"); \
45 } \
46 if (TARGET_MAX) \
47 { \
48 builtin_define ("__alpha_max__"); \
49 builtin_assert ("cpu=max"); \
50 } \
51 if (alpha_cpu == PROCESSOR_EV6) \
52 { \
53 builtin_define ("__alpha_ev6__"); \
54 builtin_assert ("cpu=ev6"); \
55 } \
56 else if (alpha_cpu == PROCESSOR_EV5) \
57 { \
58 builtin_define ("__alpha_ev5__"); \
59 builtin_assert ("cpu=ev5"); \
60 } \
61 else /* Presumably ev4. */ \
62 { \
63 builtin_define ("__alpha_ev4__"); \
64 builtin_assert ("cpu=ev4"); \
65 } \
66 if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT) \
67 builtin_define ("_IEEE_FP"); \
68 if (TARGET_IEEE_WITH_INEXACT) \
69 builtin_define ("_IEEE_FP_INEXACT"); \
70 if (TARGET_LONG_DOUBLE_128) \
71 builtin_define ("__LONG_DOUBLE_128__"); \
72 \
73 /* Macros dependent on the C dialect. */ \
74 SUBTARGET_LANGUAGE_CPP_BUILTINS(); \
75 } while (0)
76
77 #ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
78 #define SUBTARGET_LANGUAGE_CPP_BUILTINS() \
79 do \
80 { \
81 if (preprocessing_asm_p ()) \
82 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
83 else if (c_dialect_cxx ()) \
84 { \
85 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
86 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
87 } \
88 else \
89 builtin_define_std ("LANGUAGE_C"); \
90 if (c_dialect_objc ()) \
91 { \
92 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
93 builtin_define ("__LANGUAGE_OBJECTIVE_C__"); \
94 } \
95 } \
96 while (0)
97 #endif
98
99 /* Run-time compilation parameters selecting different hardware subsets. */
100
101 /* Which processor to schedule for. The cpu attribute defines a list that
102 mirrors this list, so changes to alpha.md must be made at the same time. */
103
104 enum processor_type
105 {
106 PROCESSOR_EV4, /* 2106[46]{a,} */
107 PROCESSOR_EV5, /* 21164{a,pc,} */
108 PROCESSOR_EV6, /* 21264 */
109 PROCESSOR_MAX
110 };
111
112 extern enum processor_type alpha_cpu;
113 extern enum processor_type alpha_tune;
114
115 enum alpha_trap_precision
116 {
117 ALPHA_TP_PROG, /* No precision (default). */
118 ALPHA_TP_FUNC, /* Trap contained within originating function. */
119 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
120 };
121
122 enum alpha_fp_rounding_mode
123 {
124 ALPHA_FPRM_NORM, /* Normal rounding mode. */
125 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
126 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
127 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
128 };
129
130 enum alpha_fp_trap_mode
131 {
132 ALPHA_FPTM_N, /* Normal trap mode. */
133 ALPHA_FPTM_U, /* Underflow traps enabled. */
134 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
135 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
136 };
137
138 extern enum alpha_trap_precision alpha_tp;
139 extern enum alpha_fp_rounding_mode alpha_fprm;
140 extern enum alpha_fp_trap_mode alpha_fptm;
141
142 /* Invert the easy way to make options work. */
143 #define TARGET_FP (!TARGET_SOFT_FP)
144
145 /* These are for target os support and cannot be changed at runtime. */
146 #define TARGET_ABI_OPEN_VMS 0
147 #define TARGET_ABI_OSF (!TARGET_ABI_OPEN_VMS)
148
149 #ifndef TARGET_AS_CAN_SUBTRACT_LABELS
150 #define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
151 #endif
152 #ifndef TARGET_AS_SLASH_BEFORE_SUFFIX
153 #define TARGET_AS_SLASH_BEFORE_SUFFIX TARGET_GAS
154 #endif
155 #ifndef TARGET_CAN_FAULT_IN_PROLOGUE
156 #define TARGET_CAN_FAULT_IN_PROLOGUE 0
157 #endif
158 #ifndef TARGET_HAS_XFLOATING_LIBS
159 #define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
160 #endif
161 #ifndef TARGET_PROFILING_NEEDS_GP
162 #define TARGET_PROFILING_NEEDS_GP 0
163 #endif
164 #ifndef TARGET_LD_BUGGY_LDGP
165 #define TARGET_LD_BUGGY_LDGP 0
166 #endif
167 #ifndef TARGET_FIXUP_EV5_PREFETCH
168 #define TARGET_FIXUP_EV5_PREFETCH 0
169 #endif
170 #ifndef HAVE_AS_TLS
171 #define HAVE_AS_TLS 0
172 #endif
173
174 #define TARGET_DEFAULT MASK_FPREGS
175
176 #ifndef TARGET_CPU_DEFAULT
177 #define TARGET_CPU_DEFAULT 0
178 #endif
179
180 #ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
181 #ifdef HAVE_AS_EXPLICIT_RELOCS
182 #define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
183 #define TARGET_SUPPORT_ARCH 1
184 #else
185 #define TARGET_DEFAULT_EXPLICIT_RELOCS 0
186 #endif
187 #endif
188
189 #ifndef TARGET_SUPPORT_ARCH
190 #define TARGET_SUPPORT_ARCH 0
191 #endif
192
193 /* Support for a compile-time default CPU, et cetera. The rules are:
194 --with-cpu is ignored if -mcpu is specified.
195 --with-tune is ignored if -mtune is specified. */
196 #define OPTION_DEFAULT_SPECS \
197 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
198 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }
199
200 \f
201 /* target machine storage layout */
202
203 /* Define the size of `int'. The default is the same as the word size. */
204 #define INT_TYPE_SIZE 32
205
206 /* Define the size of `long long'. The default is the twice the word size. */
207 #define LONG_LONG_TYPE_SIZE 64
208
209 /* The two floating-point formats we support are S-floating, which is
210 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
211 and `long double' are T. */
212
213 #define FLOAT_TYPE_SIZE 32
214 #define DOUBLE_TYPE_SIZE 64
215 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
216
217 /* Define this to set long double type size to use in libgcc2.c, which can
218 not depend on target_flags. */
219 #ifdef __LONG_DOUBLE_128__
220 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
221 #else
222 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
223 #endif
224
225 /* Work around target_flags dependency in ada/targtyps.c. */
226 #define WIDEST_HARDWARE_FP_SIZE 64
227
228 #define WCHAR_TYPE "unsigned int"
229 #define WCHAR_TYPE_SIZE 32
230
231 /* Define this macro if it is advisable to hold scalars in registers
232 in a wider mode than that declared by the program. In such cases,
233 the value is constrained to be within the bounds of the declared
234 type, but kept valid in the wider mode. The signedness of the
235 extension may differ from that of the type.
236
237 For Alpha, we always store objects in a full register. 32-bit integers
238 are always sign-extended, but smaller objects retain their signedness.
239
240 Note that small vector types can get mapped onto integer modes at the
241 whim of not appearing in alpha-modes.def. We never promoted these
242 values before; don't do so now that we've trimmed the set of modes to
243 those actually implemented in the backend. */
244
245 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
246 if (GET_MODE_CLASS (MODE) == MODE_INT \
247 && (TYPE == NULL || TREE_CODE (TYPE) != VECTOR_TYPE) \
248 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
249 { \
250 if ((MODE) == SImode) \
251 (UNSIGNEDP) = 0; \
252 (MODE) = DImode; \
253 }
254
255 /* Define this if most significant bit is lowest numbered
256 in instructions that operate on numbered bit-fields.
257
258 There are no such instructions on the Alpha, but the documentation
259 is little endian. */
260 #define BITS_BIG_ENDIAN 0
261
262 /* Define this if most significant byte of a word is the lowest numbered.
263 This is false on the Alpha. */
264 #define BYTES_BIG_ENDIAN 0
265
266 /* Define this if most significant word of a multiword number is lowest
267 numbered.
268
269 For Alpha we can decide arbitrarily since there are no machine instructions
270 for them. Might as well be consistent with bytes. */
271 #define WORDS_BIG_ENDIAN 0
272
273 /* Width of a word, in units (bytes). */
274 #define UNITS_PER_WORD 8
275
276 /* Width in bits of a pointer.
277 See also the macro `Pmode' defined below. */
278 #define POINTER_SIZE 64
279
280 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
281 #define PARM_BOUNDARY 64
282
283 /* Boundary (in *bits*) on which stack pointer should be aligned. */
284 #define STACK_BOUNDARY 128
285
286 /* Allocation boundary (in *bits*) for the code of a function. */
287 #define FUNCTION_BOUNDARY 32
288
289 /* Alignment of field after `int : 0' in a structure. */
290 #define EMPTY_FIELD_BOUNDARY 64
291
292 /* Every structure's size must be a multiple of this. */
293 #define STRUCTURE_SIZE_BOUNDARY 8
294
295 /* A bit-field declared as `int' forces `int' alignment for the struct. */
296 #define PCC_BITFIELD_TYPE_MATTERS 1
297
298 /* No data type wants to be aligned rounder than this. */
299 #define BIGGEST_ALIGNMENT 128
300
301 /* For atomic access to objects, must have at least 32-bit alignment
302 unless the machine has byte operations. */
303 #define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
304
305 /* Align all constants and variables to at least a word boundary so
306 we can pick up pieces of them faster. */
307 /* ??? Only if block-move stuff knows about different source/destination
308 alignment. */
309 #if 0
310 #define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
311 #define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
312 #endif
313
314 /* Set this nonzero if move instructions will actually fail to work
315 when given unaligned data.
316
317 Since we get an error message when we do one, call them invalid. */
318
319 #define STRICT_ALIGNMENT 1
320
321 /* Set this nonzero if unaligned move instructions are extremely slow.
322
323 On the Alpha, they trap. */
324
325 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
326
327 /* Standard register usage. */
328
329 /* Number of actual hardware registers.
330 The hardware registers are assigned numbers for the compiler
331 from 0 to just below FIRST_PSEUDO_REGISTER.
332 All registers that the compiler knows about must be given numbers,
333 even those that are not normally considered general registers.
334
335 We define all 32 integer registers, even though $31 is always zero,
336 and all 32 floating-point registers, even though $f31 is also
337 always zero. We do not bother defining the FP status register and
338 there are no other registers.
339
340 Since $31 is always zero, we will use register number 31 as the
341 argument pointer. It will never appear in the generated code
342 because we will always be eliminating it in favor of the stack
343 pointer or hardware frame pointer.
344
345 Likewise, we use $f31 for the frame pointer, which will always
346 be eliminated in favor of the hardware frame pointer or the
347 stack pointer. */
348
349 #define FIRST_PSEUDO_REGISTER 64
350
351 /* 1 for registers that have pervasive standard uses
352 and are not available for the register allocator. */
353
354 #define FIXED_REGISTERS \
355 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
356 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
357 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
358 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
359
360 /* 1 for registers not available across function calls.
361 These must include the FIXED_REGISTERS and also any
362 registers that can be used without being saved.
363 The latter must include the registers where values are returned
364 and the register where structure-value addresses are passed.
365 Aside from that, you can include as many other registers as you like. */
366 #define CALL_USED_REGISTERS \
367 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
368 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
369 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
370 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
371
372 /* List the order in which to allocate registers. Each register must be
373 listed once, even those in FIXED_REGISTERS. */
374
375 #define REG_ALLOC_ORDER { \
376 1, 2, 3, 4, 5, 6, 7, 8, /* nonsaved integer registers */ \
377 22, 23, 24, 25, 28, /* likewise */ \
378 0, /* likewise, but return value */ \
379 21, 20, 19, 18, 17, 16, /* likewise, but input args */ \
380 27, /* likewise, but OSF procedure value */ \
381 \
382 42, 43, 44, 45, 46, 47, /* nonsaved floating-point registers */ \
383 54, 55, 56, 57, 58, 59, /* likewise */ \
384 60, 61, 62, /* likewise */ \
385 32, 33, /* likewise, but return values */ \
386 53, 52, 51, 50, 49, 48, /* likewise, but input args */ \
387 \
388 9, 10, 11, 12, 13, 14, /* saved integer registers */ \
389 26, /* return address */ \
390 15, /* hard frame pointer */ \
391 \
392 34, 35, 36, 37, 38, 39, /* saved floating-point registers */ \
393 40, 41, /* likewise */ \
394 \
395 29, 30, 31, 63 /* gp, sp, ap, sfp */ \
396 }
397
398 /* Return number of consecutive hard regs needed starting at reg REGNO
399 to hold something of mode MODE.
400 This is ordinarily the length in words of a value of mode MODE
401 but can be less for certain modes in special long registers. */
402
403 #define HARD_REGNO_NREGS(REGNO, MODE) \
404 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
405
406 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
407 On Alpha, the integer registers can hold any mode. The floating-point
408 registers can hold 64-bit integers as well, but not smaller values. */
409
410 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
411 (IN_RANGE ((REGNO), 32, 62) \
412 ? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode \
413 || (MODE) == SCmode || (MODE) == DCmode \
414 : 1)
415
416 /* A C expression that is nonzero if a value of mode
417 MODE1 is accessible in mode MODE2 without copying.
418
419 This asymmetric test is true when MODE1 could be put
420 in an FP register but MODE2 could not. */
421
422 #define MODES_TIEABLE_P(MODE1, MODE2) \
423 (HARD_REGNO_MODE_OK (32, (MODE1)) \
424 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
425 : 1)
426
427 /* Specify the registers used for certain standard purposes.
428 The values of these macros are register numbers. */
429
430 /* Alpha pc isn't overloaded on a register that the compiler knows about. */
431 /* #define PC_REGNUM */
432
433 /* Register to use for pushing function arguments. */
434 #define STACK_POINTER_REGNUM 30
435
436 /* Base register for access to local variables of the function. */
437 #define HARD_FRAME_POINTER_REGNUM 15
438
439 /* Base register for access to arguments of the function. */
440 #define ARG_POINTER_REGNUM 31
441
442 /* Base register for access to local variables of function. */
443 #define FRAME_POINTER_REGNUM 63
444
445 /* Register in which static-chain is passed to a function.
446
447 For the Alpha, this is based on an example; the calling sequence
448 doesn't seem to specify this. */
449 #define STATIC_CHAIN_REGNUM 1
450
451 /* The register number of the register used to address a table of
452 static data addresses in memory. */
453 #define PIC_OFFSET_TABLE_REGNUM 29
454
455 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
456 is clobbered by calls. */
457 /* ??? It is and it isn't. It's required to be valid for a given
458 function when the function returns. It isn't clobbered by
459 current_file functions. Moreover, we do not expose the ldgp
460 until after reload, so we're probably safe. */
461 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
462 \f
463 /* Define the classes of registers for register constraints in the
464 machine description. Also define ranges of constants.
465
466 One of the classes must always be named ALL_REGS and include all hard regs.
467 If there is more than one class, another class must be named NO_REGS
468 and contain no registers.
469
470 The name GENERAL_REGS must be the name of a class (or an alias for
471 another name such as ALL_REGS). This is the class of registers
472 that is allowed by "g" or "r" in a register constraint.
473 Also, registers outside this class are allocated only when
474 instructions express preferences for them.
475
476 The classes must be numbered in nondecreasing order; that is,
477 a larger-numbered class must never be contained completely
478 in a smaller-numbered class.
479
480 For any two classes, it is very desirable that there be another
481 class that represents their union. */
482
483 enum reg_class {
484 NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
485 GENERAL_REGS, FLOAT_REGS, ALL_REGS,
486 LIM_REG_CLASSES
487 };
488
489 #define N_REG_CLASSES (int) LIM_REG_CLASSES
490
491 /* Give names of register classes as strings for dump file. */
492
493 #define REG_CLASS_NAMES \
494 {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG", \
495 "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
496
497 /* Define which registers fit in which classes.
498 This is an initializer for a vector of HARD_REG_SET
499 of length N_REG_CLASSES. */
500
501 #define REG_CLASS_CONTENTS \
502 { {0x00000000, 0x00000000}, /* NO_REGS */ \
503 {0x00000001, 0x00000000}, /* R0_REG */ \
504 {0x01000000, 0x00000000}, /* R24_REG */ \
505 {0x02000000, 0x00000000}, /* R25_REG */ \
506 {0x08000000, 0x00000000}, /* R27_REG */ \
507 {0xffffffff, 0x80000000}, /* GENERAL_REGS */ \
508 {0x00000000, 0x7fffffff}, /* FLOAT_REGS */ \
509 {0xffffffff, 0xffffffff} }
510
511 /* The same information, inverted:
512 Return the class number of the smallest class containing
513 reg number REGNO. This could be a conditional expression
514 or could index an array. */
515
516 #define REGNO_REG_CLASS(REGNO) \
517 ((REGNO) == 0 ? R0_REG \
518 : (REGNO) == 24 ? R24_REG \
519 : (REGNO) == 25 ? R25_REG \
520 : (REGNO) == 27 ? R27_REG \
521 : IN_RANGE ((REGNO), 32, 62) ? FLOAT_REGS \
522 : GENERAL_REGS)
523
524 /* The class value for index registers, and the one for base regs. */
525 #define INDEX_REG_CLASS NO_REGS
526 #define BASE_REG_CLASS GENERAL_REGS
527
528 /* Given an rtx X being reloaded into a reg required to be
529 in class CLASS, return the class of reg to actually use.
530 In general this is just CLASS; but on some machines
531 in some cases it is preferable to use a more restrictive class. */
532
533 #define PREFERRED_RELOAD_CLASS alpha_preferred_reload_class
534
535 /* If we are copying between general and FP registers, we need a memory
536 location unless the FIX extension is available. */
537
538 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
539 (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
540 || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
541
542 /* Specify the mode to be used for memory when a secondary memory
543 location is needed. If MODE is floating-point, use it. Otherwise,
544 widen to a word like the default. This is needed because we always
545 store integers in FP registers in quadword format. This whole
546 area is very tricky! */
547 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
548 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
549 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
550 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
551
552 /* Return the maximum number of consecutive registers
553 needed to represent mode MODE in a register of class CLASS. */
554
555 #define CLASS_MAX_NREGS(CLASS, MODE) \
556 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
557
558 /* Return the class of registers that cannot change mode from FROM to TO. */
559
560 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
561 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
562 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
563
564 /* Define the cost of moving between registers of various classes. Moving
565 between FLOAT_REGS and anything else except float regs is expensive.
566 In fact, we make it quite expensive because we really don't want to
567 do these moves unless it is clearly worth it. Optimizations may
568 reduce the impact of not being able to allocate a pseudo to a
569 hard register. */
570
571 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
572 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 \
573 : TARGET_FIX ? ((CLASS1) == FLOAT_REGS ? 6 : 8) \
574 : 4+2*alpha_memory_latency)
575
576 /* A C expressions returning the cost of moving data of MODE from a register to
577 or from memory.
578
579 On the Alpha, bump this up a bit. */
580
581 extern int alpha_memory_latency;
582 #define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
583
584 /* Provide the cost of a branch. Exact meaning under development. */
585 #define BRANCH_COST(speed_p, predictable_p) 5
586 \f
587 /* Stack layout; function entry, exit and calling. */
588
589 /* Define this if pushing a word on the stack
590 makes the stack pointer a smaller address. */
591 #define STACK_GROWS_DOWNWARD
592
593 /* Define this to nonzero if the nominal address of the stack frame
594 is at the high-address end of the local variables;
595 that is, each additional local variable allocated
596 goes at a more negative offset in the frame. */
597 /* #define FRAME_GROWS_DOWNWARD 0 */
598
599 /* Offset within stack frame to start allocating local variables at.
600 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
601 first local allocated. Otherwise, it is the offset to the BEGINNING
602 of the first local allocated. */
603
604 #define STARTING_FRAME_OFFSET 0
605
606 /* If we generate an insn to push BYTES bytes,
607 this says how many the stack pointer really advances by.
608 On Alpha, don't define this because there are no push insns. */
609 /* #define PUSH_ROUNDING(BYTES) */
610
611 /* Define this to be nonzero if stack checking is built into the ABI. */
612 #define STACK_CHECK_BUILTIN 1
613
614 /* Define this if the maximum size of all the outgoing args is to be
615 accumulated and pushed during the prologue. The amount can be
616 found in the variable crtl->outgoing_args_size. */
617 #define ACCUMULATE_OUTGOING_ARGS 1
618
619 /* Offset of first parameter from the argument pointer register value. */
620
621 #define FIRST_PARM_OFFSET(FNDECL) 0
622
623 /* Definitions for register eliminations.
624
625 We have two registers that can be eliminated on the Alpha. First, the
626 frame pointer register can often be eliminated in favor of the stack
627 pointer register. Secondly, the argument pointer register can always be
628 eliminated; it is replaced with either the stack or frame pointer. */
629
630 /* This is an array of structures. Each structure initializes one pair
631 of eliminable registers. The "from" register number is given first,
632 followed by "to". Eliminations of the same "from" register are listed
633 in order of preference. */
634
635 #define ELIMINABLE_REGS \
636 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
637 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
638 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
639 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
640
641 /* Round up to a multiple of 16 bytes. */
642 #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
643
644 /* Define the offset between two registers, one to be eliminated, and the other
645 its replacement, at the start of a routine. */
646 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
647 ((OFFSET) = alpha_initial_elimination_offset(FROM, TO))
648
649 /* Define this if stack space is still allocated for a parameter passed
650 in a register. */
651 /* #define REG_PARM_STACK_SPACE */
652
653 /* Define how to find the value returned by a function.
654 VALTYPE is the data type of the value (as a tree).
655 If the precise function being called is known, FUNC is its FUNCTION_DECL;
656 otherwise, FUNC is 0.
657
658 On Alpha the value is found in $0 for integer functions and
659 $f0 for floating-point functions. */
660
661 #define FUNCTION_VALUE(VALTYPE, FUNC) \
662 function_value (VALTYPE, FUNC, VOIDmode)
663
664 /* Define how to find the value returned by a library function
665 assuming the value has mode MODE. */
666
667 #define LIBCALL_VALUE(MODE) \
668 function_value (NULL, NULL, MODE)
669
670 /* 1 if N is a possible register number for a function value
671 as seen by the caller. */
672
673 #define FUNCTION_VALUE_REGNO_P(N) \
674 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
675
676 /* 1 if N is a possible register number for function argument passing.
677 On Alpha, these are $16-$21 and $f16-$f21. */
678
679 #define FUNCTION_ARG_REGNO_P(N) \
680 (IN_RANGE ((N), 16, 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
681 \f
682 /* Define a data type for recording info about an argument list
683 during the scan of that argument list. This data type should
684 hold all necessary information about the function itself
685 and about the args processed so far, enough to enable macros
686 such as FUNCTION_ARG to determine where the next arg should go.
687
688 On Alpha, this is a single integer, which is a number of words
689 of arguments scanned so far.
690 Thus 6 or more means all following args should go on the stack. */
691
692 #define CUMULATIVE_ARGS int
693
694 /* Initialize a variable CUM of type CUMULATIVE_ARGS
695 for a call to a function whose data type is FNTYPE.
696 For a library call, FNTYPE is 0. */
697
698 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
699 (CUM) = 0
700
701 /* Define intermediate macro to compute the size (in registers) of an argument
702 for the Alpha. */
703
704 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
705 ((MODE) == TFmode || (MODE) == TCmode ? 1 \
706 : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
707 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
708
709 /* Make (or fake) .linkage entry for function call.
710 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
711
712 /* This macro defines the start of an assembly comment. */
713
714 #define ASM_COMMENT_START " #"
715
716 /* This macro produces the initial definition of a function. */
717
718 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
719 alpha_start_function(FILE,NAME,DECL);
720
721 /* This macro closes up a function definition for the assembler. */
722
723 #define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
724 alpha_end_function(FILE,NAME,DECL)
725
726 /* Output any profiling code before the prologue. */
727
728 #define PROFILE_BEFORE_PROLOGUE 1
729
730 /* Never use profile counters. */
731
732 #define NO_PROFILE_COUNTERS 1
733
734 /* Output assembler code to FILE to increment profiler label # LABELNO
735 for profiling a function entry. Under OSF/1, profiling is enabled
736 by simply passing -pg to the assembler and linker. */
737
738 #define FUNCTION_PROFILER(FILE, LABELNO)
739
740 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
741 the stack pointer does not matter. The value is tested only in
742 functions that have frame pointers.
743 No definition is equivalent to always zero. */
744
745 #define EXIT_IGNORE_STACK 1
746
747 /* Define registers used by the epilogue and return instruction. */
748
749 #define EPILOGUE_USES(REGNO) ((REGNO) == 26)
750 \f
751 /* Length in units of the trampoline for entering a nested function. */
752
753 #define TRAMPOLINE_SIZE 32
754
755 /* The alignment of a trampoline, in bits. */
756
757 #define TRAMPOLINE_ALIGNMENT 64
758
759 /* A C expression whose value is RTL representing the value of the return
760 address for the frame COUNT steps up from the current frame.
761 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
762 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
763
764 #define RETURN_ADDR_RTX alpha_return_addr
765
766 /* Provide a definition of DWARF_FRAME_REGNUM here so that fallback unwinders
767 can use DWARF_ALT_FRAME_RETURN_COLUMN defined below. This is just the same
768 as the default definition in dwarf2out.c. */
769 #undef DWARF_FRAME_REGNUM
770 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
771
772 /* Before the prologue, RA lives in $26. */
773 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
774 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
775 #define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
776 #define DWARF_ZERO_REG 31
777
778 /* Describe how we implement __builtin_eh_return. */
779 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
780 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 28)
781 #define EH_RETURN_HANDLER_RTX \
782 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
783 crtl->outgoing_args_size))
784 \f
785 /* Addressing modes, and classification of registers for them. */
786
787 /* Macros to check register numbers against specific register classes. */
788
789 /* These assume that REGNO is a hard or pseudo reg number.
790 They give nonzero only if REGNO is a hard reg of the suitable class
791 or a pseudo reg currently allocated to a suitable hard reg.
792 Since they use reg_renumber, they are safe only once reg_renumber
793 has been allocated, which happens in local-alloc.c. */
794
795 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
796 #define REGNO_OK_FOR_BASE_P(REGNO) \
797 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
798 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
799 \f
800 /* Maximum number of registers that can appear in a valid memory address. */
801 #define MAX_REGS_PER_ADDRESS 1
802
803 /* Recognize any constant value that is a valid address. For the Alpha,
804 there are only constants none since we want to use LDA to load any
805 symbolic addresses into registers. */
806
807 #define CONSTANT_ADDRESS_P(X) \
808 (CONST_INT_P (X) \
809 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
810
811 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
812 and check its validity for a certain class.
813 We have two alternate definitions for each of them.
814 The usual definition accepts all pseudo regs; the other rejects
815 them unless they have been allocated suitable hard regs.
816 The symbol REG_OK_STRICT causes the latter definition to be used.
817
818 Most source files want to accept pseudo regs in the hope that
819 they will get allocated to the class that the insn wants them to be in.
820 Source files for reload pass need to be strict.
821 After reload, it makes no difference, since pseudo regs have
822 been eliminated by then. */
823
824 /* Nonzero if X is a hard reg that can be used as an index
825 or if it is a pseudo reg. */
826 #define REG_OK_FOR_INDEX_P(X) 0
827
828 /* Nonzero if X is a hard reg that can be used as a base reg
829 or if it is a pseudo reg. */
830 #define NONSTRICT_REG_OK_FOR_BASE_P(X) \
831 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
832
833 /* ??? Nonzero if X is the frame pointer, or some virtual register
834 that may eliminate to the frame pointer. These will be allowed to
835 have offsets greater than 32K. This is done because register
836 elimination offsets will change the hi/lo split, and if we split
837 before reload, we will require additional instructions. */
838 #define NONSTRICT_REG_OK_FP_BASE_P(X) \
839 (REGNO (X) == 31 || REGNO (X) == 63 \
840 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
841 && REGNO (X) < LAST_VIRTUAL_POINTER_REGISTER))
842
843 /* Nonzero if X is a hard reg that can be used as a base reg. */
844 #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
845
846 #ifdef REG_OK_STRICT
847 #define REG_OK_FOR_BASE_P(X) STRICT_REG_OK_FOR_BASE_P (X)
848 #else
849 #define REG_OK_FOR_BASE_P(X) NONSTRICT_REG_OK_FOR_BASE_P (X)
850 #endif
851 \f
852 /* Try a machine-dependent way of reloading an illegitimate address
853 operand. If we find one, push the reload and jump to WIN. This
854 macro is used in only one place: `find_reloads_address' in reload.c. */
855
856 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
857 do { \
858 rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
859 if (new_x) \
860 { \
861 X = new_x; \
862 goto WIN; \
863 } \
864 } while (0)
865
866 /* Go to LABEL if ADDR (a legitimate address expression)
867 has an effect that depends on the machine mode it is used for.
868 On the Alpha this is true only for the unaligned modes. We can
869 simplify this test since we know that the address must be valid. */
870
871 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
872 { if (GET_CODE (ADDR) == AND) goto LABEL; }
873 \f
874 /* Specify the machine mode that this machine uses
875 for the index in the tablejump instruction. */
876 #define CASE_VECTOR_MODE SImode
877
878 /* Define as C expression which evaluates to nonzero if the tablejump
879 instruction expects the table to contain offsets from the address of the
880 table.
881
882 Do not define this if the table should contain absolute addresses.
883 On the Alpha, the table is really GP-relative, not relative to the PC
884 of the table, but we pretend that it is PC-relative; this should be OK,
885 but we should try to find some better way sometime. */
886 #define CASE_VECTOR_PC_RELATIVE 1
887
888 /* Define this as 1 if `char' should by default be signed; else as 0. */
889 #define DEFAULT_SIGNED_CHAR 1
890
891 /* Max number of bytes we can move to or from memory
892 in one reasonably fast instruction. */
893
894 #define MOVE_MAX 8
895
896 /* If a memory-to-memory move would take MOVE_RATIO or more simple
897 move-instruction pairs, we will do a movmem or libcall instead.
898
899 Without byte/word accesses, we want no more than four instructions;
900 with, several single byte accesses are better. */
901
902 #define MOVE_RATIO(speed) (TARGET_BWX ? 7 : 2)
903
904 /* Largest number of bytes of an object that can be placed in a register.
905 On the Alpha we have plenty of registers, so use TImode. */
906 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
907
908 /* Nonzero if access to memory by bytes is no faster than for words.
909 Also nonzero if doing byte operations (specifically shifts) in registers
910 is undesirable.
911
912 On the Alpha, we want to not use the byte operation and instead use
913 masking operations to access fields; these will save instructions. */
914
915 #define SLOW_BYTE_ACCESS 1
916
917 /* Define if operations between registers always perform the operation
918 on the full register even if a narrower mode is specified. */
919 #define WORD_REGISTER_OPERATIONS
920
921 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
922 will either zero-extend or sign-extend. The value of this macro should
923 be the code that says which one of the two operations is implicitly
924 done, UNKNOWN if none. */
925 #define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
926
927 /* Define if loading short immediate values into registers sign extends. */
928 #define SHORT_IMMEDIATES_SIGN_EXTEND
929
930 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
931 is done just by pretending it is already truncated. */
932 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
933
934 /* The CIX ctlz and cttz instructions return 64 for zero. */
935 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
936 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
937
938 /* Define the value returned by a floating-point comparison instruction. */
939
940 #define FLOAT_STORE_FLAG_VALUE(MODE) \
941 REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
942
943 /* Canonicalize a comparison from one we don't have to one we do have. */
944
945 #define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
946 do { \
947 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
948 && (REG_P (OP1) || (OP1) == const0_rtx)) \
949 { \
950 rtx tem = (OP0); \
951 (OP0) = (OP1); \
952 (OP1) = tem; \
953 (CODE) = swap_condition (CODE); \
954 } \
955 if (((CODE) == LT || (CODE) == LTU) \
956 && CONST_INT_P (OP1) && INTVAL (OP1) == 256) \
957 { \
958 (CODE) = (CODE) == LT ? LE : LEU; \
959 (OP1) = GEN_INT (255); \
960 } \
961 } while (0)
962
963 /* Specify the machine mode that pointers have.
964 After generation of rtl, the compiler makes no further distinction
965 between pointers and any other objects of this machine mode. */
966 #define Pmode DImode
967
968 /* Mode of a function address in a call instruction (for indexing purposes). */
969
970 #define FUNCTION_MODE Pmode
971
972 /* Define this if addresses of constant functions
973 shouldn't be put through pseudo regs where they can be cse'd.
974 Desirable on machines where ordinary constants are expensive
975 but a CALL with constant address is cheap.
976
977 We define this on the Alpha so that gen_call and gen_call_value
978 get to see the SYMBOL_REF (for the hint field of the jsr). It will
979 then copy it into a register, thus actually letting the address be
980 cse'ed. */
981
982 #define NO_FUNCTION_CSE
983
984 /* Define this to be nonzero if shift instructions ignore all but the low-order
985 few bits. */
986 #define SHIFT_COUNT_TRUNCATED 1
987 \f
988 /* Control the assembler format that we output. */
989
990 /* Output to assembler file text saying following lines
991 may contain character constants, extra white space, comments, etc. */
992 #define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
993
994 /* Output to assembler file text saying following lines
995 no longer contain unusual constructs. */
996 #define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
997
998 #define TEXT_SECTION_ASM_OP "\t.text"
999
1000 /* Output before read-only data. */
1001
1002 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
1003
1004 /* Output before writable data. */
1005
1006 #define DATA_SECTION_ASM_OP "\t.data"
1007
1008 /* How to refer to registers in assembler output.
1009 This sequence is indexed by compiler's hard-register-number (see above). */
1010
1011 #define REGISTER_NAMES \
1012 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1013 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1014 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
1015 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1016 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1017 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1018 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1019 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1020
1021 /* Strip name encoding when emitting labels. */
1022
1023 #define ASM_OUTPUT_LABELREF(STREAM, NAME) \
1024 do { \
1025 const char *name_ = NAME; \
1026 if (*name_ == '@' || *name_ == '%') \
1027 name_ += 2; \
1028 if (*name_ == '*') \
1029 name_++; \
1030 else \
1031 fputs (user_label_prefix, STREAM); \
1032 fputs (name_, STREAM); \
1033 } while (0)
1034
1035 /* Globalizing directive for a label. */
1036 #define GLOBAL_ASM_OP "\t.globl "
1037
1038 /* The prefix to add to user-visible assembler symbols. */
1039
1040 #define USER_LABEL_PREFIX ""
1041
1042 /* This is how to output a label for a jump table. Arguments are the same as
1043 for (*targetm.asm_out.internal_label), except the insn for the jump table is
1044 passed. */
1045
1046 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1047 { ASM_OUTPUT_ALIGN (FILE, 2); (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); }
1048
1049 /* This is how to store into the string LABEL
1050 the symbol_ref name of an internal numbered label where
1051 PREFIX is the class of label and NUM is the number within the class.
1052 This is suitable for output with `assemble_name'. */
1053
1054 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1055 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1056
1057 /* We use the default ASCII-output routine, except that we don't write more
1058 than 50 characters since the assembler doesn't support very long lines. */
1059
1060 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1061 do { \
1062 FILE *_hide_asm_out_file = (MYFILE); \
1063 const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
1064 int _hide_thissize = (MYLENGTH); \
1065 int _size_so_far = 0; \
1066 { \
1067 FILE *asm_out_file = _hide_asm_out_file; \
1068 const unsigned char *p = _hide_p; \
1069 int thissize = _hide_thissize; \
1070 int i; \
1071 fprintf (asm_out_file, "\t.ascii \""); \
1072 \
1073 for (i = 0; i < thissize; i++) \
1074 { \
1075 register int c = p[i]; \
1076 \
1077 if (_size_so_far ++ > 50 && i < thissize - 4) \
1078 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1079 \
1080 if (c == '\"' || c == '\\') \
1081 putc ('\\', asm_out_file); \
1082 if (c >= ' ' && c < 0177) \
1083 putc (c, asm_out_file); \
1084 else \
1085 { \
1086 fprintf (asm_out_file, "\\%o", c); \
1087 /* After an octal-escape, if a digit follows, \
1088 terminate one string constant and start another. \
1089 The VAX assembler fails to stop reading the escape \
1090 after three digits, so this is the only way we \
1091 can get it to parse the data properly. */ \
1092 if (i < thissize - 1 && ISDIGIT (p[i + 1])) \
1093 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1094 } \
1095 } \
1096 fprintf (asm_out_file, "\"\n"); \
1097 } \
1098 } \
1099 while (0)
1100
1101 /* This is how to output an element of a case-vector that is relative. */
1102
1103 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1104 fprintf (FILE, "\t.gprel32 $L%d\n", (VALUE))
1105
1106 /* This is how to output an assembler line
1107 that says to advance the location counter
1108 to a multiple of 2**LOG bytes. */
1109
1110 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1111 if ((LOG) != 0) \
1112 fprintf (FILE, "\t.align %d\n", LOG);
1113
1114 /* This is how to advance the location counter by SIZE bytes. */
1115
1116 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1117 fprintf (FILE, "\t.space "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1118
1119 /* This says how to output an assembler line
1120 to define a global common symbol. */
1121
1122 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1123 ( fputs ("\t.comm ", (FILE)), \
1124 assemble_name ((FILE), (NAME)), \
1125 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1126
1127 /* This says how to output an assembler line
1128 to define a local common symbol. */
1129
1130 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1131 ( fputs ("\t.lcomm ", (FILE)), \
1132 assemble_name ((FILE), (NAME)), \
1133 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1134 \f
1135
1136 /* Print operand X (an rtx) in assembler syntax to file FILE.
1137 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1138 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1139
1140 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1141
1142 /* Determine which codes are valid without a following integer. These must
1143 not be alphabetic.
1144
1145 ~ Generates the name of the current function.
1146
1147 / Generates the instruction suffix. The TRAP_SUFFIX and ROUND_SUFFIX
1148 attributes are examined to determine what is appropriate.
1149
1150 , Generates single precision suffix for floating point
1151 instructions (s for IEEE, f for VAX)
1152
1153 - Generates double precision suffix for floating point
1154 instructions (t for IEEE, g for VAX)
1155 */
1156
1157 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1158 ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
1159 || (CODE) == '#' || (CODE) == '*' || (CODE) == '&')
1160
1161 /* Print a memory address as an operand to reference that memory location. */
1162
1163 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1164 print_operand_address((FILE), (ADDR))
1165 \f
1166 /* Tell collect that the object format is ECOFF. */
1167 #define OBJECT_FORMAT_COFF
1168 #define EXTENDED_COFF
1169
1170 /* If we use NM, pass -g to it so it only lists globals. */
1171 #define NM_FLAGS "-pg"
1172
1173 /* Definitions for debugging. */
1174
1175 #define SDB_DEBUGGING_INFO 1 /* generate info for mips-tfile */
1176 #define DBX_DEBUGGING_INFO 1 /* generate embedded stabs */
1177 #define MIPS_DEBUGGING_INFO 1 /* MIPS specific debugging info */
1178
1179 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
1180 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
1181 #endif
1182
1183
1184 /* Correct the offset of automatic variables and arguments. Note that
1185 the Alpha debug format wants all automatic variables and arguments
1186 to be in terms of two different offsets from the virtual frame pointer,
1187 which is the stack pointer before any adjustment in the function.
1188 The offset for the argument pointer is fixed for the native compiler,
1189 it is either zero (for the no arguments case) or large enough to hold
1190 all argument registers.
1191 The offset for the auto pointer is the fourth argument to the .frame
1192 directive (local_offset).
1193 To stay compatible with the native tools we use the same offsets
1194 from the virtual frame pointer and adjust the debugger arg/auto offsets
1195 accordingly. These debugger offsets are set up in output_prolog. */
1196
1197 extern long alpha_arg_offset;
1198 extern long alpha_auto_offset;
1199 #define DEBUGGER_AUTO_OFFSET(X) \
1200 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1201 #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1202
1203 /* mips-tfile doesn't understand .stabd directives. */
1204 #define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
1205 dbxout_begin_stabn_sline (LINE); \
1206 dbxout_stab_value_internal_label ("LM", &COUNTER); \
1207 } while (0)
1208
1209 /* We want to use MIPS-style .loc directives for SDB line numbers. */
1210 extern int num_source_filenames;
1211 #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
1212 fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
1213
1214 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
1215 alpha_output_filename (STREAM, NAME)
1216
1217 /* mips-tfile.c limits us to strings of one page. We must underestimate this
1218 number, because the real length runs past this up to the next
1219 continuation point. This is really a dbxout.c bug. */
1220 #define DBX_CONTIN_LENGTH 3000
1221
1222 /* By default, turn on GDB extensions. */
1223 #define DEFAULT_GDB_EXTENSIONS 1
1224
1225 /* Stabs-in-ECOFF can't handle dbxout_function_end(). */
1226 #define NO_DBX_FUNCTION_END 1
1227
1228 /* If we are smuggling stabs through the ALPHA ECOFF object
1229 format, put a comment in front of the .stab<x> operation so
1230 that the ALPHA assembler does not choke. The mips-tfile program
1231 will correctly put the stab into the object file. */
1232
1233 #define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1234 #define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1235 #define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
1236
1237 /* Forward references to tags are allowed. */
1238 #define SDB_ALLOW_FORWARD_REFERENCES
1239
1240 /* Unknown tags are also allowed. */
1241 #define SDB_ALLOW_UNKNOWN_REFERENCES
1242
1243 #define PUT_SDB_DEF(a) \
1244 do { \
1245 fprintf (asm_out_file, "\t%s.def\t", \
1246 (TARGET_GAS) ? "" : "#"); \
1247 ASM_OUTPUT_LABELREF (asm_out_file, a); \
1248 fputc (';', asm_out_file); \
1249 } while (0)
1250
1251 #define PUT_SDB_PLAIN_DEF(a) \
1252 do { \
1253 fprintf (asm_out_file, "\t%s.def\t.%s;", \
1254 (TARGET_GAS) ? "" : "#", (a)); \
1255 } while (0)
1256
1257 #define PUT_SDB_TYPE(a) \
1258 do { \
1259 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
1260 } while (0)
1261
1262 /* For block start and end, we create labels, so that
1263 later we can figure out where the correct offset is.
1264 The normal .ent/.end serve well enough for functions,
1265 so those are just commented out. */
1266
1267 extern int sdb_label_count; /* block start/end next label # */
1268
1269 #define PUT_SDB_BLOCK_START(LINE) \
1270 do { \
1271 fprintf (asm_out_file, \
1272 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
1273 sdb_label_count, \
1274 (TARGET_GAS) ? "" : "#", \
1275 sdb_label_count, \
1276 (LINE)); \
1277 sdb_label_count++; \
1278 } while (0)
1279
1280 #define PUT_SDB_BLOCK_END(LINE) \
1281 do { \
1282 fprintf (asm_out_file, \
1283 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
1284 sdb_label_count, \
1285 (TARGET_GAS) ? "" : "#", \
1286 sdb_label_count, \
1287 (LINE)); \
1288 sdb_label_count++; \
1289 } while (0)
1290
1291 #define PUT_SDB_FUNCTION_START(LINE)
1292
1293 #define PUT_SDB_FUNCTION_END(LINE)
1294
1295 #define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
1296
1297 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
1298 mips-tdump.c to print them out.
1299
1300 These must match the corresponding definitions in gdb/mipsread.c.
1301 Unfortunately, gcc and gdb do not currently share any directories. */
1302
1303 #define CODE_MASK 0x8F300
1304 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
1305 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
1306 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
1307
1308 /* Override some mips-tfile definitions. */
1309
1310 #define SHASH_SIZE 511
1311 #define THASH_SIZE 55
1312
1313 /* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
1314
1315 #define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
1316
1317 /* The system headers under Alpha systems are generally C++-aware. */
1318 #define NO_IMPLICIT_EXTERN_C