]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/alpha/alpha.h
Preparatory work for PR target/21623:
[thirdparty/gcc.git] / gcc / config / alpha / alpha.h
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /* Target CPU builtins. */
24 #define TARGET_CPU_CPP_BUILTINS() \
25 do \
26 { \
27 builtin_define ("__alpha"); \
28 builtin_define ("__alpha__"); \
29 builtin_assert ("cpu=alpha"); \
30 builtin_assert ("machine=alpha"); \
31 if (TARGET_CIX) \
32 { \
33 builtin_define ("__alpha_cix__"); \
34 builtin_assert ("cpu=cix"); \
35 } \
36 if (TARGET_FIX) \
37 { \
38 builtin_define ("__alpha_fix__"); \
39 builtin_assert ("cpu=fix"); \
40 } \
41 if (TARGET_BWX) \
42 { \
43 builtin_define ("__alpha_bwx__"); \
44 builtin_assert ("cpu=bwx"); \
45 } \
46 if (TARGET_MAX) \
47 { \
48 builtin_define ("__alpha_max__"); \
49 builtin_assert ("cpu=max"); \
50 } \
51 if (alpha_cpu == PROCESSOR_EV6) \
52 { \
53 builtin_define ("__alpha_ev6__"); \
54 builtin_assert ("cpu=ev6"); \
55 } \
56 else if (alpha_cpu == PROCESSOR_EV5) \
57 { \
58 builtin_define ("__alpha_ev5__"); \
59 builtin_assert ("cpu=ev5"); \
60 } \
61 else /* Presumably ev4. */ \
62 { \
63 builtin_define ("__alpha_ev4__"); \
64 builtin_assert ("cpu=ev4"); \
65 } \
66 if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT) \
67 builtin_define ("_IEEE_FP"); \
68 if (TARGET_IEEE_WITH_INEXACT) \
69 builtin_define ("_IEEE_FP_INEXACT"); \
70 if (TARGET_LONG_DOUBLE_128) \
71 builtin_define ("__LONG_DOUBLE_128__"); \
72 \
73 /* Macros dependent on the C dialect. */ \
74 SUBTARGET_LANGUAGE_CPP_BUILTINS(); \
75 } while (0)
76
77 #ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
78 #define SUBTARGET_LANGUAGE_CPP_BUILTINS() \
79 do \
80 { \
81 if (preprocessing_asm_p ()) \
82 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
83 else if (c_dialect_cxx ()) \
84 { \
85 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
86 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
87 } \
88 else \
89 builtin_define_std ("LANGUAGE_C"); \
90 if (c_dialect_objc ()) \
91 { \
92 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
93 builtin_define ("__LANGUAGE_OBJECTIVE_C__"); \
94 } \
95 } \
96 while (0)
97 #endif
98
99 #define CPP_SPEC "%(cpp_subtarget)"
100
101 #ifndef CPP_SUBTARGET_SPEC
102 #define CPP_SUBTARGET_SPEC ""
103 #endif
104
105 #define WORD_SWITCH_TAKES_ARG(STR) \
106 (!strcmp (STR, "rpath") || DEFAULT_WORD_SWITCH_TAKES_ARG(STR))
107
108 /* Print subsidiary information on the compiler version in use. */
109 #define TARGET_VERSION
110
111 /* Run-time compilation parameters selecting different hardware subsets. */
112
113 /* Which processor to schedule for. The cpu attribute defines a list that
114 mirrors this list, so changes to alpha.md must be made at the same time. */
115
116 enum processor_type
117 {
118 PROCESSOR_EV4, /* 2106[46]{a,} */
119 PROCESSOR_EV5, /* 21164{a,pc,} */
120 PROCESSOR_EV6, /* 21264 */
121 PROCESSOR_MAX
122 };
123
124 extern enum processor_type alpha_cpu;
125 extern enum processor_type alpha_tune;
126
127 enum alpha_trap_precision
128 {
129 ALPHA_TP_PROG, /* No precision (default). */
130 ALPHA_TP_FUNC, /* Trap contained within originating function. */
131 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
132 };
133
134 enum alpha_fp_rounding_mode
135 {
136 ALPHA_FPRM_NORM, /* Normal rounding mode. */
137 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
138 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
139 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
140 };
141
142 enum alpha_fp_trap_mode
143 {
144 ALPHA_FPTM_N, /* Normal trap mode. */
145 ALPHA_FPTM_U, /* Underflow traps enabled. */
146 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
147 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
148 };
149
150 extern int target_flags;
151
152 extern enum alpha_trap_precision alpha_tp;
153 extern enum alpha_fp_rounding_mode alpha_fprm;
154 extern enum alpha_fp_trap_mode alpha_fptm;
155
156 /* Invert the easy way to make options work. */
157 #define TARGET_FP (!TARGET_SOFT_FP)
158
159 /* These are for target os support and cannot be changed at runtime. */
160 #define TARGET_ABI_WINDOWS_NT 0
161 #define TARGET_ABI_OPEN_VMS 0
162 #define TARGET_ABI_UNICOSMK 0
163 #define TARGET_ABI_OSF (!TARGET_ABI_WINDOWS_NT \
164 && !TARGET_ABI_OPEN_VMS \
165 && !TARGET_ABI_UNICOSMK)
166
167 #ifndef TARGET_AS_CAN_SUBTRACT_LABELS
168 #define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
169 #endif
170 #ifndef TARGET_AS_SLASH_BEFORE_SUFFIX
171 #define TARGET_AS_SLASH_BEFORE_SUFFIX TARGET_GAS
172 #endif
173 #ifndef TARGET_CAN_FAULT_IN_PROLOGUE
174 #define TARGET_CAN_FAULT_IN_PROLOGUE 0
175 #endif
176 #ifndef TARGET_HAS_XFLOATING_LIBS
177 #define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
178 #endif
179 #ifndef TARGET_PROFILING_NEEDS_GP
180 #define TARGET_PROFILING_NEEDS_GP 0
181 #endif
182 #ifndef TARGET_LD_BUGGY_LDGP
183 #define TARGET_LD_BUGGY_LDGP 0
184 #endif
185 #ifndef TARGET_FIXUP_EV5_PREFETCH
186 #define TARGET_FIXUP_EV5_PREFETCH 0
187 #endif
188 #ifndef HAVE_AS_TLS
189 #define HAVE_AS_TLS 0
190 #endif
191
192 #define TARGET_DEFAULT MASK_FPREGS
193
194 #ifndef TARGET_CPU_DEFAULT
195 #define TARGET_CPU_DEFAULT 0
196 #endif
197
198 #ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
199 #ifdef HAVE_AS_EXPLICIT_RELOCS
200 #define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
201 #define TARGET_SUPPORT_ARCH 1
202 #else
203 #define TARGET_DEFAULT_EXPLICIT_RELOCS 0
204 #endif
205 #endif
206
207 #ifndef TARGET_SUPPORT_ARCH
208 #define TARGET_SUPPORT_ARCH 0
209 #endif
210
211 /* Support for a compile-time default CPU, et cetera. The rules are:
212 --with-cpu is ignored if -mcpu is specified.
213 --with-tune is ignored if -mtune is specified. */
214 #define OPTION_DEFAULT_SPECS \
215 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
216 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }
217
218 /* This macro defines names of additional specifications to put in the
219 specs that can be used in various specifications like CC1_SPEC. Its
220 definition is an initializer with a subgrouping for each command option.
221
222 Each subgrouping contains a string constant, that defines the
223 specification name, and a string constant that used by the GCC driver
224 program.
225
226 Do not define this macro if it does not need to do anything. */
227
228 #ifndef SUBTARGET_EXTRA_SPECS
229 #define SUBTARGET_EXTRA_SPECS
230 #endif
231
232 #define EXTRA_SPECS \
233 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
234 SUBTARGET_EXTRA_SPECS
235
236
237 /* Sometimes certain combinations of command options do not make sense
238 on a particular target machine. You can define a macro
239 `OVERRIDE_OPTIONS' to take account of this. This macro, if
240 defined, is executed once just after all the command options have
241 been parsed.
242
243 On the Alpha, it is used to translate target-option strings into
244 numeric values. */
245
246 #define OVERRIDE_OPTIONS override_options ()
247
248
249 /* Define this macro to change register usage conditional on target flags.
250
251 On the Alpha, we use this to disable the floating-point registers when
252 they don't exist. */
253
254 #define CONDITIONAL_REGISTER_USAGE \
255 { \
256 int i; \
257 if (! TARGET_FPREGS) \
258 for (i = 32; i < 63; i++) \
259 fixed_regs[i] = call_used_regs[i] = 1; \
260 }
261
262
263 /* Show we can debug even without a frame pointer. */
264 #define CAN_DEBUG_WITHOUT_FP
265 \f
266 /* target machine storage layout */
267
268 /* Define the size of `int'. The default is the same as the word size. */
269 #define INT_TYPE_SIZE 32
270
271 /* Define the size of `long long'. The default is the twice the word size. */
272 #define LONG_LONG_TYPE_SIZE 64
273
274 /* We're IEEE unless someone says to use VAX. */
275 #define TARGET_FLOAT_FORMAT \
276 (TARGET_FLOAT_VAX ? VAX_FLOAT_FORMAT : IEEE_FLOAT_FORMAT)
277
278 /* The two floating-point formats we support are S-floating, which is
279 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
280 and `long double' are T. */
281
282 #define FLOAT_TYPE_SIZE 32
283 #define DOUBLE_TYPE_SIZE 64
284 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
285
286 /* Define this to set long double type size to use in libgcc2.c, which can
287 not depend on target_flags. */
288 #ifdef __LONG_DOUBLE_128__
289 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
290 #else
291 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
292 #endif
293
294 /* Work around target_flags dependency in ada/targtyps.c. */
295 #define WIDEST_HARDWARE_FP_SIZE 64
296
297 #define WCHAR_TYPE "unsigned int"
298 #define WCHAR_TYPE_SIZE 32
299
300 /* Define this macro if it is advisable to hold scalars in registers
301 in a wider mode than that declared by the program. In such cases,
302 the value is constrained to be within the bounds of the declared
303 type, but kept valid in the wider mode. The signedness of the
304 extension may differ from that of the type.
305
306 For Alpha, we always store objects in a full register. 32-bit integers
307 are always sign-extended, but smaller objects retain their signedness.
308
309 Note that small vector types can get mapped onto integer modes at the
310 whim of not appearing in alpha-modes.def. We never promoted these
311 values before; don't do so now that we've trimmed the set of modes to
312 those actually implemented in the backend. */
313
314 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
315 if (GET_MODE_CLASS (MODE) == MODE_INT \
316 && (TYPE == NULL || TREE_CODE (TYPE) != VECTOR_TYPE) \
317 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
318 { \
319 if ((MODE) == SImode) \
320 (UNSIGNEDP) = 0; \
321 (MODE) = DImode; \
322 }
323
324 /* Define this if most significant bit is lowest numbered
325 in instructions that operate on numbered bit-fields.
326
327 There are no such instructions on the Alpha, but the documentation
328 is little endian. */
329 #define BITS_BIG_ENDIAN 0
330
331 /* Define this if most significant byte of a word is the lowest numbered.
332 This is false on the Alpha. */
333 #define BYTES_BIG_ENDIAN 0
334
335 /* Define this if most significant word of a multiword number is lowest
336 numbered.
337
338 For Alpha we can decide arbitrarily since there are no machine instructions
339 for them. Might as well be consistent with bytes. */
340 #define WORDS_BIG_ENDIAN 0
341
342 /* Width of a word, in units (bytes). */
343 #define UNITS_PER_WORD 8
344
345 /* Width in bits of a pointer.
346 See also the macro `Pmode' defined below. */
347 #define POINTER_SIZE 64
348
349 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
350 #define PARM_BOUNDARY 64
351
352 /* Boundary (in *bits*) on which stack pointer should be aligned. */
353 #define STACK_BOUNDARY 128
354
355 /* Allocation boundary (in *bits*) for the code of a function. */
356 #define FUNCTION_BOUNDARY 32
357
358 /* Alignment of field after `int : 0' in a structure. */
359 #define EMPTY_FIELD_BOUNDARY 64
360
361 /* Every structure's size must be a multiple of this. */
362 #define STRUCTURE_SIZE_BOUNDARY 8
363
364 /* A bit-field declared as `int' forces `int' alignment for the struct. */
365 #define PCC_BITFIELD_TYPE_MATTERS 1
366
367 /* No data type wants to be aligned rounder than this. */
368 #define BIGGEST_ALIGNMENT 128
369
370 /* For atomic access to objects, must have at least 32-bit alignment
371 unless the machine has byte operations. */
372 #define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
373
374 /* Align all constants and variables to at least a word boundary so
375 we can pick up pieces of them faster. */
376 /* ??? Only if block-move stuff knows about different source/destination
377 alignment. */
378 #if 0
379 #define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
380 #define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
381 #endif
382
383 /* Set this nonzero if move instructions will actually fail to work
384 when given unaligned data.
385
386 Since we get an error message when we do one, call them invalid. */
387
388 #define STRICT_ALIGNMENT 1
389
390 /* Set this nonzero if unaligned move instructions are extremely slow.
391
392 On the Alpha, they trap. */
393
394 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
395
396 /* Standard register usage. */
397
398 /* Number of actual hardware registers.
399 The hardware registers are assigned numbers for the compiler
400 from 0 to just below FIRST_PSEUDO_REGISTER.
401 All registers that the compiler knows about must be given numbers,
402 even those that are not normally considered general registers.
403
404 We define all 32 integer registers, even though $31 is always zero,
405 and all 32 floating-point registers, even though $f31 is also
406 always zero. We do not bother defining the FP status register and
407 there are no other registers.
408
409 Since $31 is always zero, we will use register number 31 as the
410 argument pointer. It will never appear in the generated code
411 because we will always be eliminating it in favor of the stack
412 pointer or hardware frame pointer.
413
414 Likewise, we use $f31 for the frame pointer, which will always
415 be eliminated in favor of the hardware frame pointer or the
416 stack pointer. */
417
418 #define FIRST_PSEUDO_REGISTER 64
419
420 /* 1 for registers that have pervasive standard uses
421 and are not available for the register allocator. */
422
423 #define FIXED_REGISTERS \
424 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
425 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
426 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
427 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
428
429 /* 1 for registers not available across function calls.
430 These must include the FIXED_REGISTERS and also any
431 registers that can be used without being saved.
432 The latter must include the registers where values are returned
433 and the register where structure-value addresses are passed.
434 Aside from that, you can include as many other registers as you like. */
435 #define CALL_USED_REGISTERS \
436 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
437 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
438 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
439 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
440
441 /* List the order in which to allocate registers. Each register must be
442 listed once, even those in FIXED_REGISTERS. */
443
444 #define REG_ALLOC_ORDER { \
445 1, 2, 3, 4, 5, 6, 7, 8, /* nonsaved integer registers */ \
446 22, 23, 24, 25, 28, /* likewise */ \
447 0, /* likewise, but return value */ \
448 21, 20, 19, 18, 17, 16, /* likewise, but input args */ \
449 27, /* likewise, but OSF procedure value */ \
450 \
451 42, 43, 44, 45, 46, 47, /* nonsaved floating-point registers */ \
452 54, 55, 56, 57, 58, 59, /* likewise */ \
453 60, 61, 62, /* likewise */ \
454 32, 33, /* likewise, but return values */ \
455 53, 52, 51, 50, 49, 48, /* likewise, but input args */ \
456 \
457 9, 10, 11, 12, 13, 14, /* saved integer registers */ \
458 26, /* return address */ \
459 15, /* hard frame pointer */ \
460 \
461 34, 35, 36, 37, 38, 39, /* saved floating-point registers */ \
462 40, 41, /* likewise */ \
463 \
464 29, 30, 31, 63 /* gp, sp, ap, sfp */ \
465 }
466
467 /* Return number of consecutive hard regs needed starting at reg REGNO
468 to hold something of mode MODE.
469 This is ordinarily the length in words of a value of mode MODE
470 but can be less for certain modes in special long registers. */
471
472 #define HARD_REGNO_NREGS(REGNO, MODE) \
473 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
474
475 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
476 On Alpha, the integer registers can hold any mode. The floating-point
477 registers can hold 64-bit integers as well, but not smaller values. */
478
479 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
480 ((REGNO) >= 32 && (REGNO) <= 62 \
481 ? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode \
482 || (MODE) == SCmode || (MODE) == DCmode \
483 : 1)
484
485 /* A C expression that is nonzero if a value of mode
486 MODE1 is accessible in mode MODE2 without copying.
487
488 This asymmetric test is true when MODE1 could be put
489 in an FP register but MODE2 could not. */
490
491 #define MODES_TIEABLE_P(MODE1, MODE2) \
492 (HARD_REGNO_MODE_OK (32, (MODE1)) \
493 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
494 : 1)
495
496 /* Specify the registers used for certain standard purposes.
497 The values of these macros are register numbers. */
498
499 /* Alpha pc isn't overloaded on a register that the compiler knows about. */
500 /* #define PC_REGNUM */
501
502 /* Register to use for pushing function arguments. */
503 #define STACK_POINTER_REGNUM 30
504
505 /* Base register for access to local variables of the function. */
506 #define HARD_FRAME_POINTER_REGNUM 15
507
508 /* Value should be nonzero if functions must have frame pointers.
509 Zero means the frame pointer need not be set up (and parms
510 may be accessed via the stack pointer) in functions that seem suitable.
511 This is computed in `reload', in reload1.c. */
512 #define FRAME_POINTER_REQUIRED 0
513
514 /* Base register for access to arguments of the function. */
515 #define ARG_POINTER_REGNUM 31
516
517 /* Base register for access to local variables of function. */
518 #define FRAME_POINTER_REGNUM 63
519
520 /* Register in which static-chain is passed to a function.
521
522 For the Alpha, this is based on an example; the calling sequence
523 doesn't seem to specify this. */
524 #define STATIC_CHAIN_REGNUM 1
525
526 /* The register number of the register used to address a table of
527 static data addresses in memory. */
528 #define PIC_OFFSET_TABLE_REGNUM 29
529
530 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
531 is clobbered by calls. */
532 /* ??? It is and it isn't. It's required to be valid for a given
533 function when the function returns. It isn't clobbered by
534 current_file functions. Moreover, we do not expose the ldgp
535 until after reload, so we're probably safe. */
536 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
537 \f
538 /* Define the classes of registers for register constraints in the
539 machine description. Also define ranges of constants.
540
541 One of the classes must always be named ALL_REGS and include all hard regs.
542 If there is more than one class, another class must be named NO_REGS
543 and contain no registers.
544
545 The name GENERAL_REGS must be the name of a class (or an alias for
546 another name such as ALL_REGS). This is the class of registers
547 that is allowed by "g" or "r" in a register constraint.
548 Also, registers outside this class are allocated only when
549 instructions express preferences for them.
550
551 The classes must be numbered in nondecreasing order; that is,
552 a larger-numbered class must never be contained completely
553 in a smaller-numbered class.
554
555 For any two classes, it is very desirable that there be another
556 class that represents their union. */
557
558 enum reg_class {
559 NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
560 GENERAL_REGS, FLOAT_REGS, ALL_REGS,
561 LIM_REG_CLASSES
562 };
563
564 #define N_REG_CLASSES (int) LIM_REG_CLASSES
565
566 /* Give names of register classes as strings for dump file. */
567
568 #define REG_CLASS_NAMES \
569 {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG", \
570 "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
571
572 /* Define which registers fit in which classes.
573 This is an initializer for a vector of HARD_REG_SET
574 of length N_REG_CLASSES. */
575
576 #define REG_CLASS_CONTENTS \
577 { {0x00000000, 0x00000000}, /* NO_REGS */ \
578 {0x00000001, 0x00000000}, /* R0_REG */ \
579 {0x01000000, 0x00000000}, /* R24_REG */ \
580 {0x02000000, 0x00000000}, /* R25_REG */ \
581 {0x08000000, 0x00000000}, /* R27_REG */ \
582 {0xffffffff, 0x80000000}, /* GENERAL_REGS */ \
583 {0x00000000, 0x7fffffff}, /* FLOAT_REGS */ \
584 {0xffffffff, 0xffffffff} }
585
586 /* The same information, inverted:
587 Return the class number of the smallest class containing
588 reg number REGNO. This could be a conditional expression
589 or could index an array. */
590
591 #define REGNO_REG_CLASS(REGNO) \
592 ((REGNO) == 0 ? R0_REG \
593 : (REGNO) == 24 ? R24_REG \
594 : (REGNO) == 25 ? R25_REG \
595 : (REGNO) == 27 ? R27_REG \
596 : (REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS \
597 : GENERAL_REGS)
598
599 /* The class value for index registers, and the one for base regs. */
600 #define INDEX_REG_CLASS NO_REGS
601 #define BASE_REG_CLASS GENERAL_REGS
602
603 /* Get reg_class from a letter such as appears in the machine description. */
604
605 #define REG_CLASS_FROM_LETTER(C) \
606 ((C) == 'a' ? R24_REG \
607 : (C) == 'b' ? R25_REG \
608 : (C) == 'c' ? R27_REG \
609 : (C) == 'f' ? FLOAT_REGS \
610 : (C) == 'v' ? R0_REG \
611 : NO_REGS)
612
613 /* Define this macro to change register usage conditional on target flags. */
614 /* #define CONDITIONAL_REGISTER_USAGE */
615
616 /* The letters I, J, K, L, M, N, O, and P in a register constraint string
617 can be used to stand for particular ranges of immediate operands.
618 This macro defines what the ranges are.
619 C is the letter, and VALUE is a constant value.
620 Return 1 if VALUE is in the range specified by C.
621
622 For Alpha:
623 `I' is used for the range of constants most insns can contain.
624 `J' is the constant zero.
625 `K' is used for the constant in an LDA insn.
626 `L' is used for the constant in a LDAH insn.
627 `M' is used for the constants that can be AND'ed with using a ZAP insn.
628 `N' is used for complemented 8-bit constants.
629 `O' is used for negated 8-bit constants.
630 `P' is used for the constants 1, 2 and 3. */
631
632 #define CONST_OK_FOR_LETTER_P alpha_const_ok_for_letter_p
633
634 /* Similar, but for floating or large integer constants, and defining letters
635 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
636
637 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
638 that is the operand of a ZAP insn. */
639
640 #define CONST_DOUBLE_OK_FOR_LETTER_P alpha_const_double_ok_for_letter_p
641
642 /* Optional extra constraints for this machine.
643
644 For the Alpha, `Q' means that this is a memory operand but not a
645 reference to an unaligned location.
646
647 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
648 function.
649
650 'S' is a 6-bit constant (valid for a shift insn).
651
652 'T' is a HIGH.
653
654 'U' is a symbolic operand.
655
656 'W' is a vector zero. */
657
658 #define EXTRA_CONSTRAINT alpha_extra_constraint
659
660 /* Given an rtx X being reloaded into a reg required to be
661 in class CLASS, return the class of reg to actually use.
662 In general this is just CLASS; but on some machines
663 in some cases it is preferable to use a more restrictive class. */
664
665 #define PREFERRED_RELOAD_CLASS alpha_preferred_reload_class
666
667 /* Loading and storing HImode or QImode values to and from memory
668 usually requires a scratch register. The exceptions are loading
669 QImode and HImode from an aligned address to a general register
670 unless byte instructions are permitted.
671 We also cannot load an unaligned address or a paradoxical SUBREG into an
672 FP register. */
673
674 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
675 alpha_secondary_reload_class((CLASS), (MODE), (IN), 1)
676
677 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
678 alpha_secondary_reload_class((CLASS), (MODE), (OUT), 0)
679
680 /* If we are copying between general and FP registers, we need a memory
681 location unless the FIX extension is available. */
682
683 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
684 (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
685 || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
686
687 /* Specify the mode to be used for memory when a secondary memory
688 location is needed. If MODE is floating-point, use it. Otherwise,
689 widen to a word like the default. This is needed because we always
690 store integers in FP registers in quadword format. This whole
691 area is very tricky! */
692 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
693 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
694 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
695 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
696
697 /* Return the maximum number of consecutive registers
698 needed to represent mode MODE in a register of class CLASS. */
699
700 #define CLASS_MAX_NREGS(CLASS, MODE) \
701 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
702
703 /* Return the class of registers that cannot change mode from FROM to TO. */
704
705 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
706 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
707 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
708
709 /* Define the cost of moving between registers of various classes. Moving
710 between FLOAT_REGS and anything else except float regs is expensive.
711 In fact, we make it quite expensive because we really don't want to
712 do these moves unless it is clearly worth it. Optimizations may
713 reduce the impact of not being able to allocate a pseudo to a
714 hard register. */
715
716 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
717 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 \
718 : TARGET_FIX ? ((CLASS1) == FLOAT_REGS ? 6 : 8) \
719 : 4+2*alpha_memory_latency)
720
721 /* A C expressions returning the cost of moving data of MODE from a register to
722 or from memory.
723
724 On the Alpha, bump this up a bit. */
725
726 extern int alpha_memory_latency;
727 #define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
728
729 /* Provide the cost of a branch. Exact meaning under development. */
730 #define BRANCH_COST 5
731 \f
732 /* Stack layout; function entry, exit and calling. */
733
734 /* Define this if pushing a word on the stack
735 makes the stack pointer a smaller address. */
736 #define STACK_GROWS_DOWNWARD
737
738 /* Define this to nonzero if the nominal address of the stack frame
739 is at the high-address end of the local variables;
740 that is, each additional local variable allocated
741 goes at a more negative offset in the frame. */
742 /* #define FRAME_GROWS_DOWNWARD 0 */
743
744 /* Offset within stack frame to start allocating local variables at.
745 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
746 first local allocated. Otherwise, it is the offset to the BEGINNING
747 of the first local allocated. */
748
749 #define STARTING_FRAME_OFFSET 0
750
751 /* If we generate an insn to push BYTES bytes,
752 this says how many the stack pointer really advances by.
753 On Alpha, don't define this because there are no push insns. */
754 /* #define PUSH_ROUNDING(BYTES) */
755
756 /* Define this to be nonzero if stack checking is built into the ABI. */
757 #define STACK_CHECK_BUILTIN 1
758
759 /* Define this if the maximum size of all the outgoing args is to be
760 accumulated and pushed during the prologue. The amount can be
761 found in the variable current_function_outgoing_args_size. */
762 #define ACCUMULATE_OUTGOING_ARGS 1
763
764 /* Offset of first parameter from the argument pointer register value. */
765
766 #define FIRST_PARM_OFFSET(FNDECL) 0
767
768 /* Definitions for register eliminations.
769
770 We have two registers that can be eliminated on the Alpha. First, the
771 frame pointer register can often be eliminated in favor of the stack
772 pointer register. Secondly, the argument pointer register can always be
773 eliminated; it is replaced with either the stack or frame pointer. */
774
775 /* This is an array of structures. Each structure initializes one pair
776 of eliminable registers. The "from" register number is given first,
777 followed by "to". Eliminations of the same "from" register are listed
778 in order of preference. */
779
780 #define ELIMINABLE_REGS \
781 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
782 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
783 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
784 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
785
786 /* Given FROM and TO register numbers, say whether this elimination is allowed.
787 Frame pointer elimination is automatically handled.
788
789 All eliminations are valid since the cases where FP can't be
790 eliminated are already handled. */
791
792 #define CAN_ELIMINATE(FROM, TO) 1
793
794 /* Round up to a multiple of 16 bytes. */
795 #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
796
797 /* Define the offset between two registers, one to be eliminated, and the other
798 its replacement, at the start of a routine. */
799 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
800 ((OFFSET) = alpha_initial_elimination_offset(FROM, TO))
801
802 /* Define this if stack space is still allocated for a parameter passed
803 in a register. */
804 /* #define REG_PARM_STACK_SPACE */
805
806 /* Value is the number of bytes of arguments automatically
807 popped when returning from a subroutine call.
808 FUNDECL is the declaration node of the function (as a tree),
809 FUNTYPE is the data type of the function (as a tree),
810 or for a library call it is an identifier node for the subroutine name.
811 SIZE is the number of bytes of arguments passed on the stack. */
812
813 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
814
815 /* Define how to find the value returned by a function.
816 VALTYPE is the data type of the value (as a tree).
817 If the precise function being called is known, FUNC is its FUNCTION_DECL;
818 otherwise, FUNC is 0.
819
820 On Alpha the value is found in $0 for integer functions and
821 $f0 for floating-point functions. */
822
823 #define FUNCTION_VALUE(VALTYPE, FUNC) \
824 function_value (VALTYPE, FUNC, VOIDmode)
825
826 /* Define how to find the value returned by a library function
827 assuming the value has mode MODE. */
828
829 #define LIBCALL_VALUE(MODE) \
830 function_value (NULL, NULL, MODE)
831
832 /* 1 if N is a possible register number for a function value
833 as seen by the caller. */
834
835 #define FUNCTION_VALUE_REGNO_P(N) \
836 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
837
838 /* 1 if N is a possible register number for function argument passing.
839 On Alpha, these are $16-$21 and $f16-$f21. */
840
841 #define FUNCTION_ARG_REGNO_P(N) \
842 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
843 \f
844 /* Define a data type for recording info about an argument list
845 during the scan of that argument list. This data type should
846 hold all necessary information about the function itself
847 and about the args processed so far, enough to enable macros
848 such as FUNCTION_ARG to determine where the next arg should go.
849
850 On Alpha, this is a single integer, which is a number of words
851 of arguments scanned so far.
852 Thus 6 or more means all following args should go on the stack. */
853
854 #define CUMULATIVE_ARGS int
855
856 /* Initialize a variable CUM of type CUMULATIVE_ARGS
857 for a call to a function whose data type is FNTYPE.
858 For a library call, FNTYPE is 0. */
859
860 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
861 (CUM) = 0
862
863 /* Define intermediate macro to compute the size (in registers) of an argument
864 for the Alpha. */
865
866 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
867 ((MODE) == TFmode || (MODE) == TCmode ? 1 \
868 : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
869 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
870
871 /* Update the data in CUM to advance over an argument
872 of mode MODE and data type TYPE.
873 (TYPE is null for libcalls where that information may not be available.) */
874
875 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
876 ((CUM) += \
877 (targetm.calls.must_pass_in_stack (MODE, TYPE)) \
878 ? 6 : ALPHA_ARG_SIZE (MODE, TYPE, NAMED))
879
880 /* Determine where to put an argument to a function.
881 Value is zero to push the argument on the stack,
882 or a hard register in which to store the argument.
883
884 MODE is the argument's machine mode.
885 TYPE is the data type of the argument (as a tree).
886 This is null for libcalls where that information may
887 not be available.
888 CUM is a variable of type CUMULATIVE_ARGS which gives info about
889 the preceding args and about the function being called.
890 NAMED is nonzero if this argument is a named parameter
891 (otherwise it is an extra parameter matching an ellipsis).
892
893 On Alpha the first 6 words of args are normally in registers
894 and the rest are pushed. */
895
896 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
897 function_arg((CUM), (MODE), (TYPE), (NAMED))
898
899 /* Try to output insns to set TARGET equal to the constant C if it can be
900 done in less than N insns. Do all computations in MODE. Returns the place
901 where the output has been placed if it can be done and the insns have been
902 emitted. If it would take more than N insns, zero is returned and no
903 insns and emitted. */
904
905 /* Define the information needed to generate branch and scc insns. This is
906 stored from the compare operation. Note that we can't use "rtx" here
907 since it hasn't been defined! */
908
909 struct alpha_compare
910 {
911 struct rtx_def *op0, *op1;
912 int fp_p;
913 };
914
915 extern struct alpha_compare alpha_compare;
916
917 /* Make (or fake) .linkage entry for function call.
918 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
919
920 /* This macro defines the start of an assembly comment. */
921
922 #define ASM_COMMENT_START " #"
923
924 /* This macro produces the initial definition of a function. */
925
926 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
927 alpha_start_function(FILE,NAME,DECL);
928
929 /* This macro closes up a function definition for the assembler. */
930
931 #define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
932 alpha_end_function(FILE,NAME,DECL)
933
934 /* Output any profiling code before the prologue. */
935
936 #define PROFILE_BEFORE_PROLOGUE 1
937
938 /* Never use profile counters. */
939
940 #define NO_PROFILE_COUNTERS 1
941
942 /* Output assembler code to FILE to increment profiler label # LABELNO
943 for profiling a function entry. Under OSF/1, profiling is enabled
944 by simply passing -pg to the assembler and linker. */
945
946 #define FUNCTION_PROFILER(FILE, LABELNO)
947
948 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
949 the stack pointer does not matter. The value is tested only in
950 functions that have frame pointers.
951 No definition is equivalent to always zero. */
952
953 #define EXIT_IGNORE_STACK 1
954
955 /* Define registers used by the epilogue and return instruction. */
956
957 #define EPILOGUE_USES(REGNO) ((REGNO) == 26)
958 \f
959 /* Output assembler code for a block containing the constant parts
960 of a trampoline, leaving space for the variable parts.
961
962 The trampoline should set the static chain pointer to value placed
963 into the trampoline and should branch to the specified routine.
964 Note that $27 has been set to the address of the trampoline, so we can
965 use it for addressability of the two data items. */
966
967 #define TRAMPOLINE_TEMPLATE(FILE) \
968 do { \
969 fprintf (FILE, "\tldq $1,24($27)\n"); \
970 fprintf (FILE, "\tldq $27,16($27)\n"); \
971 fprintf (FILE, "\tjmp $31,($27),0\n"); \
972 fprintf (FILE, "\tnop\n"); \
973 fprintf (FILE, "\t.quad 0,0\n"); \
974 } while (0)
975
976 /* Section in which to place the trampoline. On Alpha, instructions
977 may only be placed in a text segment. */
978
979 #define TRAMPOLINE_SECTION text_section
980
981 /* Length in units of the trampoline for entering a nested function. */
982
983 #define TRAMPOLINE_SIZE 32
984
985 /* The alignment of a trampoline, in bits. */
986
987 #define TRAMPOLINE_ALIGNMENT 64
988
989 /* Emit RTL insns to initialize the variable parts of a trampoline.
990 FNADDR is an RTX for the address of the function's pure code.
991 CXT is an RTX for the static chain value for the function. */
992
993 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
994 alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
995
996 /* A C expression whose value is RTL representing the value of the return
997 address for the frame COUNT steps up from the current frame.
998 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
999 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
1000
1001 #define RETURN_ADDR_RTX alpha_return_addr
1002
1003 /* Before the prologue, RA lives in $26. */
1004 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
1005 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
1006 #define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
1007 #define DWARF_ZERO_REG 31
1008
1009 /* Describe how we implement __builtin_eh_return. */
1010 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
1011 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 28)
1012 #define EH_RETURN_HANDLER_RTX \
1013 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1014 current_function_outgoing_args_size))
1015 \f
1016 /* Addressing modes, and classification of registers for them. */
1017
1018 /* Macros to check register numbers against specific register classes. */
1019
1020 /* These assume that REGNO is a hard or pseudo reg number.
1021 They give nonzero only if REGNO is a hard reg of the suitable class
1022 or a pseudo reg currently allocated to a suitable hard reg.
1023 Since they use reg_renumber, they are safe only once reg_renumber
1024 has been allocated, which happens in local-alloc.c. */
1025
1026 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
1027 #define REGNO_OK_FOR_BASE_P(REGNO) \
1028 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1029 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1030 \f
1031 /* Maximum number of registers that can appear in a valid memory address. */
1032 #define MAX_REGS_PER_ADDRESS 1
1033
1034 /* Recognize any constant value that is a valid address. For the Alpha,
1035 there are only constants none since we want to use LDA to load any
1036 symbolic addresses into registers. */
1037
1038 #define CONSTANT_ADDRESS_P(X) \
1039 (GET_CODE (X) == CONST_INT \
1040 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1041
1042 /* Include all constant integers and constant doubles, but not
1043 floating-point, except for floating-point zero. */
1044
1045 #define LEGITIMATE_CONSTANT_P alpha_legitimate_constant_p
1046
1047 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1048 and check its validity for a certain class.
1049 We have two alternate definitions for each of them.
1050 The usual definition accepts all pseudo regs; the other rejects
1051 them unless they have been allocated suitable hard regs.
1052 The symbol REG_OK_STRICT causes the latter definition to be used.
1053
1054 Most source files want to accept pseudo regs in the hope that
1055 they will get allocated to the class that the insn wants them to be in.
1056 Source files for reload pass need to be strict.
1057 After reload, it makes no difference, since pseudo regs have
1058 been eliminated by then. */
1059
1060 /* Nonzero if X is a hard reg that can be used as an index
1061 or if it is a pseudo reg. */
1062 #define REG_OK_FOR_INDEX_P(X) 0
1063
1064 /* Nonzero if X is a hard reg that can be used as a base reg
1065 or if it is a pseudo reg. */
1066 #define NONSTRICT_REG_OK_FOR_BASE_P(X) \
1067 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1068
1069 /* ??? Nonzero if X is the frame pointer, or some virtual register
1070 that may eliminate to the frame pointer. These will be allowed to
1071 have offsets greater than 32K. This is done because register
1072 elimination offsets will change the hi/lo split, and if we split
1073 before reload, we will require additional instructions. */
1074 #define NONSTRICT_REG_OK_FP_BASE_P(X) \
1075 (REGNO (X) == 31 || REGNO (X) == 63 \
1076 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
1077 && REGNO (X) < LAST_VIRTUAL_REGISTER))
1078
1079 /* Nonzero if X is a hard reg that can be used as a base reg. */
1080 #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1081
1082 #ifdef REG_OK_STRICT
1083 #define REG_OK_FOR_BASE_P(X) STRICT_REG_OK_FOR_BASE_P (X)
1084 #else
1085 #define REG_OK_FOR_BASE_P(X) NONSTRICT_REG_OK_FOR_BASE_P (X)
1086 #endif
1087 \f
1088 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1089 valid memory address for an instruction. */
1090
1091 #ifdef REG_OK_STRICT
1092 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
1093 do { \
1094 if (alpha_legitimate_address_p (MODE, X, 1)) \
1095 goto WIN; \
1096 } while (0)
1097 #else
1098 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN) \
1099 do { \
1100 if (alpha_legitimate_address_p (MODE, X, 0)) \
1101 goto WIN; \
1102 } while (0)
1103 #endif
1104
1105 /* Try machine-dependent ways of modifying an illegitimate address
1106 to be legitimate. If we find one, return the new, valid address.
1107 This macro is used in only one place: `memory_address' in explow.c. */
1108
1109 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1110 do { \
1111 rtx new_x = alpha_legitimize_address (X, NULL_RTX, MODE); \
1112 if (new_x) \
1113 { \
1114 X = new_x; \
1115 goto WIN; \
1116 } \
1117 } while (0)
1118
1119 /* Try a machine-dependent way of reloading an illegitimate address
1120 operand. If we find one, push the reload and jump to WIN. This
1121 macro is used in only one place: `find_reloads_address' in reload.c. */
1122
1123 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
1124 do { \
1125 rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
1126 if (new_x) \
1127 { \
1128 X = new_x; \
1129 goto WIN; \
1130 } \
1131 } while (0)
1132
1133 /* Go to LABEL if ADDR (a legitimate address expression)
1134 has an effect that depends on the machine mode it is used for.
1135 On the Alpha this is true only for the unaligned modes. We can
1136 simplify this test since we know that the address must be valid. */
1137
1138 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1139 { if (GET_CODE (ADDR) == AND) goto LABEL; }
1140 \f
1141 /* Specify the machine mode that this machine uses
1142 for the index in the tablejump instruction. */
1143 #define CASE_VECTOR_MODE SImode
1144
1145 /* Define as C expression which evaluates to nonzero if the tablejump
1146 instruction expects the table to contain offsets from the address of the
1147 table.
1148
1149 Do not define this if the table should contain absolute addresses.
1150 On the Alpha, the table is really GP-relative, not relative to the PC
1151 of the table, but we pretend that it is PC-relative; this should be OK,
1152 but we should try to find some better way sometime. */
1153 #define CASE_VECTOR_PC_RELATIVE 1
1154
1155 /* Define this as 1 if `char' should by default be signed; else as 0. */
1156 #define DEFAULT_SIGNED_CHAR 1
1157
1158 /* Max number of bytes we can move to or from memory
1159 in one reasonably fast instruction. */
1160
1161 #define MOVE_MAX 8
1162
1163 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1164 move-instruction pairs, we will do a movmem or libcall instead.
1165
1166 Without byte/word accesses, we want no more than four instructions;
1167 with, several single byte accesses are better. */
1168
1169 #define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1170
1171 /* Largest number of bytes of an object that can be placed in a register.
1172 On the Alpha we have plenty of registers, so use TImode. */
1173 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1174
1175 /* Nonzero if access to memory by bytes is no faster than for words.
1176 Also nonzero if doing byte operations (specifically shifts) in registers
1177 is undesirable.
1178
1179 On the Alpha, we want to not use the byte operation and instead use
1180 masking operations to access fields; these will save instructions. */
1181
1182 #define SLOW_BYTE_ACCESS 1
1183
1184 /* Define if operations between registers always perform the operation
1185 on the full register even if a narrower mode is specified. */
1186 #define WORD_REGISTER_OPERATIONS
1187
1188 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1189 will either zero-extend or sign-extend. The value of this macro should
1190 be the code that says which one of the two operations is implicitly
1191 done, UNKNOWN if none. */
1192 #define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1193
1194 /* Define if loading short immediate values into registers sign extends. */
1195 #define SHORT_IMMEDIATES_SIGN_EXTEND
1196
1197 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1198 is done just by pretending it is already truncated. */
1199 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1200
1201 /* The CIX ctlz and cttz instructions return 64 for zero. */
1202 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
1203 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
1204
1205 /* Define the value returned by a floating-point comparison instruction. */
1206
1207 #define FLOAT_STORE_FLAG_VALUE(MODE) \
1208 REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
1209
1210 /* Canonicalize a comparison from one we don't have to one we do have. */
1211
1212 #define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1213 do { \
1214 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1215 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1216 { \
1217 rtx tem = (OP0); \
1218 (OP0) = (OP1); \
1219 (OP1) = tem; \
1220 (CODE) = swap_condition (CODE); \
1221 } \
1222 if (((CODE) == LT || (CODE) == LTU) \
1223 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1224 { \
1225 (CODE) = (CODE) == LT ? LE : LEU; \
1226 (OP1) = GEN_INT (255); \
1227 } \
1228 } while (0)
1229
1230 /* Specify the machine mode that pointers have.
1231 After generation of rtl, the compiler makes no further distinction
1232 between pointers and any other objects of this machine mode. */
1233 #define Pmode DImode
1234
1235 /* Mode of a function address in a call instruction (for indexing purposes). */
1236
1237 #define FUNCTION_MODE Pmode
1238
1239 /* Define this if addresses of constant functions
1240 shouldn't be put through pseudo regs where they can be cse'd.
1241 Desirable on machines where ordinary constants are expensive
1242 but a CALL with constant address is cheap.
1243
1244 We define this on the Alpha so that gen_call and gen_call_value
1245 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1246 then copy it into a register, thus actually letting the address be
1247 cse'ed. */
1248
1249 #define NO_FUNCTION_CSE
1250
1251 /* Define this to be nonzero if shift instructions ignore all but the low-order
1252 few bits. */
1253 #define SHIFT_COUNT_TRUNCATED 1
1254 \f
1255 /* Control the assembler format that we output. */
1256
1257 /* Output to assembler file text saying following lines
1258 may contain character constants, extra white space, comments, etc. */
1259 #define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
1260
1261 /* Output to assembler file text saying following lines
1262 no longer contain unusual constructs. */
1263 #define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
1264
1265 #define TEXT_SECTION_ASM_OP "\t.text"
1266
1267 /* Output before read-only data. */
1268
1269 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
1270
1271 /* Output before writable data. */
1272
1273 #define DATA_SECTION_ASM_OP "\t.data"
1274
1275 /* How to refer to registers in assembler output.
1276 This sequence is indexed by compiler's hard-register-number (see above). */
1277
1278 #define REGISTER_NAMES \
1279 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1280 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1281 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
1282 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1283 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1284 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1285 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1286 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1287
1288 /* Strip name encoding when emitting labels. */
1289
1290 #define ASM_OUTPUT_LABELREF(STREAM, NAME) \
1291 do { \
1292 const char *name_ = NAME; \
1293 if (*name_ == '@' || *name_ == '%') \
1294 name_ += 2; \
1295 if (*name_ == '*') \
1296 name_++; \
1297 else \
1298 fputs (user_label_prefix, STREAM); \
1299 fputs (name_, STREAM); \
1300 } while (0)
1301
1302 /* Globalizing directive for a label. */
1303 #define GLOBAL_ASM_OP "\t.globl "
1304
1305 /* The prefix to add to user-visible assembler symbols. */
1306
1307 #define USER_LABEL_PREFIX ""
1308
1309 /* This is how to output a label for a jump table. Arguments are the same as
1310 for (*targetm.asm_out.internal_label), except the insn for the jump table is
1311 passed. */
1312
1313 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1314 { ASM_OUTPUT_ALIGN (FILE, 2); (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); }
1315
1316 /* This is how to store into the string LABEL
1317 the symbol_ref name of an internal numbered label where
1318 PREFIX is the class of label and NUM is the number within the class.
1319 This is suitable for output with `assemble_name'. */
1320
1321 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1322 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1323
1324 /* We use the default ASCII-output routine, except that we don't write more
1325 than 50 characters since the assembler doesn't support very long lines. */
1326
1327 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1328 do { \
1329 FILE *_hide_asm_out_file = (MYFILE); \
1330 const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
1331 int _hide_thissize = (MYLENGTH); \
1332 int _size_so_far = 0; \
1333 { \
1334 FILE *asm_out_file = _hide_asm_out_file; \
1335 const unsigned char *p = _hide_p; \
1336 int thissize = _hide_thissize; \
1337 int i; \
1338 fprintf (asm_out_file, "\t.ascii \""); \
1339 \
1340 for (i = 0; i < thissize; i++) \
1341 { \
1342 register int c = p[i]; \
1343 \
1344 if (_size_so_far ++ > 50 && i < thissize - 4) \
1345 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1346 \
1347 if (c == '\"' || c == '\\') \
1348 putc ('\\', asm_out_file); \
1349 if (c >= ' ' && c < 0177) \
1350 putc (c, asm_out_file); \
1351 else \
1352 { \
1353 fprintf (asm_out_file, "\\%o", c); \
1354 /* After an octal-escape, if a digit follows, \
1355 terminate one string constant and start another. \
1356 The VAX assembler fails to stop reading the escape \
1357 after three digits, so this is the only way we \
1358 can get it to parse the data properly. */ \
1359 if (i < thissize - 1 && ISDIGIT (p[i + 1])) \
1360 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1361 } \
1362 } \
1363 fprintf (asm_out_file, "\"\n"); \
1364 } \
1365 } \
1366 while (0)
1367
1368 /* This is how to output an element of a case-vector that is relative. */
1369
1370 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1371 fprintf (FILE, "\t.%s $L%d\n", TARGET_ABI_WINDOWS_NT ? "long" : "gprel32", \
1372 (VALUE))
1373
1374 /* This is how to output an assembler line
1375 that says to advance the location counter
1376 to a multiple of 2**LOG bytes. */
1377
1378 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1379 if ((LOG) != 0) \
1380 fprintf (FILE, "\t.align %d\n", LOG);
1381
1382 /* This is how to advance the location counter by SIZE bytes. */
1383
1384 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1385 fprintf (FILE, "\t.space "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1386
1387 /* This says how to output an assembler line
1388 to define a global common symbol. */
1389
1390 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1391 ( fputs ("\t.comm ", (FILE)), \
1392 assemble_name ((FILE), (NAME)), \
1393 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1394
1395 /* This says how to output an assembler line
1396 to define a local common symbol. */
1397
1398 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1399 ( fputs ("\t.lcomm ", (FILE)), \
1400 assemble_name ((FILE), (NAME)), \
1401 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1402 \f
1403
1404 /* Print operand X (an rtx) in assembler syntax to file FILE.
1405 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1406 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1407
1408 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1409
1410 /* Determine which codes are valid without a following integer. These must
1411 not be alphabetic.
1412
1413 ~ Generates the name of the current function.
1414
1415 / Generates the instruction suffix. The TRAP_SUFFIX and ROUND_SUFFIX
1416 attributes are examined to determine what is appropriate.
1417
1418 , Generates single precision suffix for floating point
1419 instructions (s for IEEE, f for VAX)
1420
1421 - Generates double precision suffix for floating point
1422 instructions (t for IEEE, g for VAX)
1423
1424 + Generates a nop instruction after a noreturn call at the very end
1425 of the function
1426 */
1427
1428 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1429 ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
1430 || (CODE) == '#' || (CODE) == '*' || (CODE) == '&' || (CODE) == '+')
1431
1432 /* Print a memory address as an operand to reference that memory location. */
1433
1434 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1435 print_operand_address((FILE), (ADDR))
1436 \f
1437 /* Implement `va_start' for varargs and stdarg. */
1438 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1439 alpha_va_start (valist, nextarg)
1440 \f
1441 /* Tell collect that the object format is ECOFF. */
1442 #define OBJECT_FORMAT_COFF
1443 #define EXTENDED_COFF
1444
1445 /* If we use NM, pass -g to it so it only lists globals. */
1446 #define NM_FLAGS "-pg"
1447
1448 /* Definitions for debugging. */
1449
1450 #define SDB_DEBUGGING_INFO 1 /* generate info for mips-tfile */
1451 #define DBX_DEBUGGING_INFO 1 /* generate embedded stabs */
1452 #define MIPS_DEBUGGING_INFO 1 /* MIPS specific debugging info */
1453
1454 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
1455 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
1456 #endif
1457
1458
1459 /* Correct the offset of automatic variables and arguments. Note that
1460 the Alpha debug format wants all automatic variables and arguments
1461 to be in terms of two different offsets from the virtual frame pointer,
1462 which is the stack pointer before any adjustment in the function.
1463 The offset for the argument pointer is fixed for the native compiler,
1464 it is either zero (for the no arguments case) or large enough to hold
1465 all argument registers.
1466 The offset for the auto pointer is the fourth argument to the .frame
1467 directive (local_offset).
1468 To stay compatible with the native tools we use the same offsets
1469 from the virtual frame pointer and adjust the debugger arg/auto offsets
1470 accordingly. These debugger offsets are set up in output_prolog. */
1471
1472 extern long alpha_arg_offset;
1473 extern long alpha_auto_offset;
1474 #define DEBUGGER_AUTO_OFFSET(X) \
1475 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1476 #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1477
1478 /* mips-tfile doesn't understand .stabd directives. */
1479 #define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
1480 dbxout_begin_stabn_sline (LINE); \
1481 dbxout_stab_value_internal_label ("LM", &COUNTER); \
1482 } while (0)
1483
1484 /* We want to use MIPS-style .loc directives for SDB line numbers. */
1485 extern int num_source_filenames;
1486 #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
1487 fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
1488
1489 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
1490 alpha_output_filename (STREAM, NAME)
1491
1492 /* mips-tfile.c limits us to strings of one page. We must underestimate this
1493 number, because the real length runs past this up to the next
1494 continuation point. This is really a dbxout.c bug. */
1495 #define DBX_CONTIN_LENGTH 3000
1496
1497 /* By default, turn on GDB extensions. */
1498 #define DEFAULT_GDB_EXTENSIONS 1
1499
1500 /* Stabs-in-ECOFF can't handle dbxout_function_end(). */
1501 #define NO_DBX_FUNCTION_END 1
1502
1503 /* If we are smuggling stabs through the ALPHA ECOFF object
1504 format, put a comment in front of the .stab<x> operation so
1505 that the ALPHA assembler does not choke. The mips-tfile program
1506 will correctly put the stab into the object file. */
1507
1508 #define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1509 #define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1510 #define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
1511
1512 /* Forward references to tags are allowed. */
1513 #define SDB_ALLOW_FORWARD_REFERENCES
1514
1515 /* Unknown tags are also allowed. */
1516 #define SDB_ALLOW_UNKNOWN_REFERENCES
1517
1518 #define PUT_SDB_DEF(a) \
1519 do { \
1520 fprintf (asm_out_file, "\t%s.def\t", \
1521 (TARGET_GAS) ? "" : "#"); \
1522 ASM_OUTPUT_LABELREF (asm_out_file, a); \
1523 fputc (';', asm_out_file); \
1524 } while (0)
1525
1526 #define PUT_SDB_PLAIN_DEF(a) \
1527 do { \
1528 fprintf (asm_out_file, "\t%s.def\t.%s;", \
1529 (TARGET_GAS) ? "" : "#", (a)); \
1530 } while (0)
1531
1532 #define PUT_SDB_TYPE(a) \
1533 do { \
1534 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
1535 } while (0)
1536
1537 /* For block start and end, we create labels, so that
1538 later we can figure out where the correct offset is.
1539 The normal .ent/.end serve well enough for functions,
1540 so those are just commented out. */
1541
1542 extern int sdb_label_count; /* block start/end next label # */
1543
1544 #define PUT_SDB_BLOCK_START(LINE) \
1545 do { \
1546 fprintf (asm_out_file, \
1547 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
1548 sdb_label_count, \
1549 (TARGET_GAS) ? "" : "#", \
1550 sdb_label_count, \
1551 (LINE)); \
1552 sdb_label_count++; \
1553 } while (0)
1554
1555 #define PUT_SDB_BLOCK_END(LINE) \
1556 do { \
1557 fprintf (asm_out_file, \
1558 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
1559 sdb_label_count, \
1560 (TARGET_GAS) ? "" : "#", \
1561 sdb_label_count, \
1562 (LINE)); \
1563 sdb_label_count++; \
1564 } while (0)
1565
1566 #define PUT_SDB_FUNCTION_START(LINE)
1567
1568 #define PUT_SDB_FUNCTION_END(LINE)
1569
1570 #define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
1571
1572 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
1573 mips-tdump.c to print them out.
1574
1575 These must match the corresponding definitions in gdb/mipsread.c.
1576 Unfortunately, gcc and gdb do not currently share any directories. */
1577
1578 #define CODE_MASK 0x8F300
1579 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
1580 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
1581 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
1582
1583 /* Override some mips-tfile definitions. */
1584
1585 #define SHASH_SIZE 511
1586 #define THASH_SIZE 55
1587
1588 /* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
1589
1590 #define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
1591
1592 /* The system headers under Alpha systems are generally C++-aware. */
1593 #define NO_IMPLICIT_EXTERN_C