]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/alpha/alpha.h
Remove alpha-unicosmk code from the backend.
[thirdparty/gcc.git] / gcc / config / alpha / alpha.h
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2004, 2005, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* Target CPU builtins. */
24 #define TARGET_CPU_CPP_BUILTINS() \
25 do \
26 { \
27 builtin_define ("__alpha"); \
28 builtin_define ("__alpha__"); \
29 builtin_assert ("cpu=alpha"); \
30 builtin_assert ("machine=alpha"); \
31 if (TARGET_CIX) \
32 { \
33 builtin_define ("__alpha_cix__"); \
34 builtin_assert ("cpu=cix"); \
35 } \
36 if (TARGET_FIX) \
37 { \
38 builtin_define ("__alpha_fix__"); \
39 builtin_assert ("cpu=fix"); \
40 } \
41 if (TARGET_BWX) \
42 { \
43 builtin_define ("__alpha_bwx__"); \
44 builtin_assert ("cpu=bwx"); \
45 } \
46 if (TARGET_MAX) \
47 { \
48 builtin_define ("__alpha_max__"); \
49 builtin_assert ("cpu=max"); \
50 } \
51 if (alpha_cpu == PROCESSOR_EV6) \
52 { \
53 builtin_define ("__alpha_ev6__"); \
54 builtin_assert ("cpu=ev6"); \
55 } \
56 else if (alpha_cpu == PROCESSOR_EV5) \
57 { \
58 builtin_define ("__alpha_ev5__"); \
59 builtin_assert ("cpu=ev5"); \
60 } \
61 else /* Presumably ev4. */ \
62 { \
63 builtin_define ("__alpha_ev4__"); \
64 builtin_assert ("cpu=ev4"); \
65 } \
66 if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT) \
67 builtin_define ("_IEEE_FP"); \
68 if (TARGET_IEEE_WITH_INEXACT) \
69 builtin_define ("_IEEE_FP_INEXACT"); \
70 if (TARGET_LONG_DOUBLE_128) \
71 builtin_define ("__LONG_DOUBLE_128__"); \
72 \
73 /* Macros dependent on the C dialect. */ \
74 SUBTARGET_LANGUAGE_CPP_BUILTINS(); \
75 } while (0)
76
77 #ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
78 #define SUBTARGET_LANGUAGE_CPP_BUILTINS() \
79 do \
80 { \
81 if (preprocessing_asm_p ()) \
82 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
83 else if (c_dialect_cxx ()) \
84 { \
85 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
86 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
87 } \
88 else \
89 builtin_define_std ("LANGUAGE_C"); \
90 if (c_dialect_objc ()) \
91 { \
92 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
93 builtin_define ("__LANGUAGE_OBJECTIVE_C__"); \
94 } \
95 } \
96 while (0)
97 #endif
98
99 /* Print subsidiary information on the compiler version in use. */
100 #define TARGET_VERSION
101
102 /* Run-time compilation parameters selecting different hardware subsets. */
103
104 /* Which processor to schedule for. The cpu attribute defines a list that
105 mirrors this list, so changes to alpha.md must be made at the same time. */
106
107 enum processor_type
108 {
109 PROCESSOR_EV4, /* 2106[46]{a,} */
110 PROCESSOR_EV5, /* 21164{a,pc,} */
111 PROCESSOR_EV6, /* 21264 */
112 PROCESSOR_MAX
113 };
114
115 extern enum processor_type alpha_cpu;
116 extern enum processor_type alpha_tune;
117
118 enum alpha_trap_precision
119 {
120 ALPHA_TP_PROG, /* No precision (default). */
121 ALPHA_TP_FUNC, /* Trap contained within originating function. */
122 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
123 };
124
125 enum alpha_fp_rounding_mode
126 {
127 ALPHA_FPRM_NORM, /* Normal rounding mode. */
128 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
129 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
130 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
131 };
132
133 enum alpha_fp_trap_mode
134 {
135 ALPHA_FPTM_N, /* Normal trap mode. */
136 ALPHA_FPTM_U, /* Underflow traps enabled. */
137 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
138 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
139 };
140
141 extern enum alpha_trap_precision alpha_tp;
142 extern enum alpha_fp_rounding_mode alpha_fprm;
143 extern enum alpha_fp_trap_mode alpha_fptm;
144
145 /* Invert the easy way to make options work. */
146 #define TARGET_FP (!TARGET_SOFT_FP)
147
148 /* These are for target os support and cannot be changed at runtime. */
149 #define TARGET_ABI_WINDOWS_NT 0
150 #define TARGET_ABI_OPEN_VMS 0
151 #define TARGET_ABI_OSF (!TARGET_ABI_WINDOWS_NT && !TARGET_ABI_OPEN_VMS)
152
153 #ifndef TARGET_AS_CAN_SUBTRACT_LABELS
154 #define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
155 #endif
156 #ifndef TARGET_AS_SLASH_BEFORE_SUFFIX
157 #define TARGET_AS_SLASH_BEFORE_SUFFIX TARGET_GAS
158 #endif
159 #ifndef TARGET_CAN_FAULT_IN_PROLOGUE
160 #define TARGET_CAN_FAULT_IN_PROLOGUE 0
161 #endif
162 #ifndef TARGET_HAS_XFLOATING_LIBS
163 #define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
164 #endif
165 #ifndef TARGET_PROFILING_NEEDS_GP
166 #define TARGET_PROFILING_NEEDS_GP 0
167 #endif
168 #ifndef TARGET_LD_BUGGY_LDGP
169 #define TARGET_LD_BUGGY_LDGP 0
170 #endif
171 #ifndef TARGET_FIXUP_EV5_PREFETCH
172 #define TARGET_FIXUP_EV5_PREFETCH 0
173 #endif
174 #ifndef HAVE_AS_TLS
175 #define HAVE_AS_TLS 0
176 #endif
177
178 #define TARGET_DEFAULT MASK_FPREGS
179
180 #ifndef TARGET_CPU_DEFAULT
181 #define TARGET_CPU_DEFAULT 0
182 #endif
183
184 #ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
185 #ifdef HAVE_AS_EXPLICIT_RELOCS
186 #define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
187 #define TARGET_SUPPORT_ARCH 1
188 #else
189 #define TARGET_DEFAULT_EXPLICIT_RELOCS 0
190 #endif
191 #endif
192
193 #ifndef TARGET_SUPPORT_ARCH
194 #define TARGET_SUPPORT_ARCH 0
195 #endif
196
197 /* Support for a compile-time default CPU, et cetera. The rules are:
198 --with-cpu is ignored if -mcpu is specified.
199 --with-tune is ignored if -mtune is specified. */
200 #define OPTION_DEFAULT_SPECS \
201 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
202 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }
203
204 \f
205 /* target machine storage layout */
206
207 /* Define the size of `int'. The default is the same as the word size. */
208 #define INT_TYPE_SIZE 32
209
210 /* Define the size of `long long'. The default is the twice the word size. */
211 #define LONG_LONG_TYPE_SIZE 64
212
213 /* The two floating-point formats we support are S-floating, which is
214 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
215 and `long double' are T. */
216
217 #define FLOAT_TYPE_SIZE 32
218 #define DOUBLE_TYPE_SIZE 64
219 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
220
221 /* Define this to set long double type size to use in libgcc2.c, which can
222 not depend on target_flags. */
223 #ifdef __LONG_DOUBLE_128__
224 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
225 #else
226 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
227 #endif
228
229 /* Work around target_flags dependency in ada/targtyps.c. */
230 #define WIDEST_HARDWARE_FP_SIZE 64
231
232 #define WCHAR_TYPE "unsigned int"
233 #define WCHAR_TYPE_SIZE 32
234
235 /* Define this macro if it is advisable to hold scalars in registers
236 in a wider mode than that declared by the program. In such cases,
237 the value is constrained to be within the bounds of the declared
238 type, but kept valid in the wider mode. The signedness of the
239 extension may differ from that of the type.
240
241 For Alpha, we always store objects in a full register. 32-bit integers
242 are always sign-extended, but smaller objects retain their signedness.
243
244 Note that small vector types can get mapped onto integer modes at the
245 whim of not appearing in alpha-modes.def. We never promoted these
246 values before; don't do so now that we've trimmed the set of modes to
247 those actually implemented in the backend. */
248
249 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
250 if (GET_MODE_CLASS (MODE) == MODE_INT \
251 && (TYPE == NULL || TREE_CODE (TYPE) != VECTOR_TYPE) \
252 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
253 { \
254 if ((MODE) == SImode) \
255 (UNSIGNEDP) = 0; \
256 (MODE) = DImode; \
257 }
258
259 /* Define this if most significant bit is lowest numbered
260 in instructions that operate on numbered bit-fields.
261
262 There are no such instructions on the Alpha, but the documentation
263 is little endian. */
264 #define BITS_BIG_ENDIAN 0
265
266 /* Define this if most significant byte of a word is the lowest numbered.
267 This is false on the Alpha. */
268 #define BYTES_BIG_ENDIAN 0
269
270 /* Define this if most significant word of a multiword number is lowest
271 numbered.
272
273 For Alpha we can decide arbitrarily since there are no machine instructions
274 for them. Might as well be consistent with bytes. */
275 #define WORDS_BIG_ENDIAN 0
276
277 /* Width of a word, in units (bytes). */
278 #define UNITS_PER_WORD 8
279
280 /* Width in bits of a pointer.
281 See also the macro `Pmode' defined below. */
282 #define POINTER_SIZE 64
283
284 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
285 #define PARM_BOUNDARY 64
286
287 /* Boundary (in *bits*) on which stack pointer should be aligned. */
288 #define STACK_BOUNDARY 128
289
290 /* Allocation boundary (in *bits*) for the code of a function. */
291 #define FUNCTION_BOUNDARY 32
292
293 /* Alignment of field after `int : 0' in a structure. */
294 #define EMPTY_FIELD_BOUNDARY 64
295
296 /* Every structure's size must be a multiple of this. */
297 #define STRUCTURE_SIZE_BOUNDARY 8
298
299 /* A bit-field declared as `int' forces `int' alignment for the struct. */
300 #define PCC_BITFIELD_TYPE_MATTERS 1
301
302 /* No data type wants to be aligned rounder than this. */
303 #define BIGGEST_ALIGNMENT 128
304
305 /* For atomic access to objects, must have at least 32-bit alignment
306 unless the machine has byte operations. */
307 #define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
308
309 /* Align all constants and variables to at least a word boundary so
310 we can pick up pieces of them faster. */
311 /* ??? Only if block-move stuff knows about different source/destination
312 alignment. */
313 #if 0
314 #define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
315 #define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
316 #endif
317
318 /* Set this nonzero if move instructions will actually fail to work
319 when given unaligned data.
320
321 Since we get an error message when we do one, call them invalid. */
322
323 #define STRICT_ALIGNMENT 1
324
325 /* Set this nonzero if unaligned move instructions are extremely slow.
326
327 On the Alpha, they trap. */
328
329 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
330
331 /* Standard register usage. */
332
333 /* Number of actual hardware registers.
334 The hardware registers are assigned numbers for the compiler
335 from 0 to just below FIRST_PSEUDO_REGISTER.
336 All registers that the compiler knows about must be given numbers,
337 even those that are not normally considered general registers.
338
339 We define all 32 integer registers, even though $31 is always zero,
340 and all 32 floating-point registers, even though $f31 is also
341 always zero. We do not bother defining the FP status register and
342 there are no other registers.
343
344 Since $31 is always zero, we will use register number 31 as the
345 argument pointer. It will never appear in the generated code
346 because we will always be eliminating it in favor of the stack
347 pointer or hardware frame pointer.
348
349 Likewise, we use $f31 for the frame pointer, which will always
350 be eliminated in favor of the hardware frame pointer or the
351 stack pointer. */
352
353 #define FIRST_PSEUDO_REGISTER 64
354
355 /* 1 for registers that have pervasive standard uses
356 and are not available for the register allocator. */
357
358 #define FIXED_REGISTERS \
359 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
360 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
361 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
362 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
363
364 /* 1 for registers not available across function calls.
365 These must include the FIXED_REGISTERS and also any
366 registers that can be used without being saved.
367 The latter must include the registers where values are returned
368 and the register where structure-value addresses are passed.
369 Aside from that, you can include as many other registers as you like. */
370 #define CALL_USED_REGISTERS \
371 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
372 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
373 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
374 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
375
376 /* List the order in which to allocate registers. Each register must be
377 listed once, even those in FIXED_REGISTERS. */
378
379 #define REG_ALLOC_ORDER { \
380 1, 2, 3, 4, 5, 6, 7, 8, /* nonsaved integer registers */ \
381 22, 23, 24, 25, 28, /* likewise */ \
382 0, /* likewise, but return value */ \
383 21, 20, 19, 18, 17, 16, /* likewise, but input args */ \
384 27, /* likewise, but OSF procedure value */ \
385 \
386 42, 43, 44, 45, 46, 47, /* nonsaved floating-point registers */ \
387 54, 55, 56, 57, 58, 59, /* likewise */ \
388 60, 61, 62, /* likewise */ \
389 32, 33, /* likewise, but return values */ \
390 53, 52, 51, 50, 49, 48, /* likewise, but input args */ \
391 \
392 9, 10, 11, 12, 13, 14, /* saved integer registers */ \
393 26, /* return address */ \
394 15, /* hard frame pointer */ \
395 \
396 34, 35, 36, 37, 38, 39, /* saved floating-point registers */ \
397 40, 41, /* likewise */ \
398 \
399 29, 30, 31, 63 /* gp, sp, ap, sfp */ \
400 }
401
402 /* Return number of consecutive hard regs needed starting at reg REGNO
403 to hold something of mode MODE.
404 This is ordinarily the length in words of a value of mode MODE
405 but can be less for certain modes in special long registers. */
406
407 #define HARD_REGNO_NREGS(REGNO, MODE) \
408 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
409
410 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
411 On Alpha, the integer registers can hold any mode. The floating-point
412 registers can hold 64-bit integers as well, but not smaller values. */
413
414 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
415 (IN_RANGE ((REGNO), 32, 62) \
416 ? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode \
417 || (MODE) == SCmode || (MODE) == DCmode \
418 : 1)
419
420 /* A C expression that is nonzero if a value of mode
421 MODE1 is accessible in mode MODE2 without copying.
422
423 This asymmetric test is true when MODE1 could be put
424 in an FP register but MODE2 could not. */
425
426 #define MODES_TIEABLE_P(MODE1, MODE2) \
427 (HARD_REGNO_MODE_OK (32, (MODE1)) \
428 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
429 : 1)
430
431 /* Specify the registers used for certain standard purposes.
432 The values of these macros are register numbers. */
433
434 /* Alpha pc isn't overloaded on a register that the compiler knows about. */
435 /* #define PC_REGNUM */
436
437 /* Register to use for pushing function arguments. */
438 #define STACK_POINTER_REGNUM 30
439
440 /* Base register for access to local variables of the function. */
441 #define HARD_FRAME_POINTER_REGNUM 15
442
443 /* Base register for access to arguments of the function. */
444 #define ARG_POINTER_REGNUM 31
445
446 /* Base register for access to local variables of function. */
447 #define FRAME_POINTER_REGNUM 63
448
449 /* Register in which static-chain is passed to a function.
450
451 For the Alpha, this is based on an example; the calling sequence
452 doesn't seem to specify this. */
453 #define STATIC_CHAIN_REGNUM 1
454
455 /* The register number of the register used to address a table of
456 static data addresses in memory. */
457 #define PIC_OFFSET_TABLE_REGNUM 29
458
459 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
460 is clobbered by calls. */
461 /* ??? It is and it isn't. It's required to be valid for a given
462 function when the function returns. It isn't clobbered by
463 current_file functions. Moreover, we do not expose the ldgp
464 until after reload, so we're probably safe. */
465 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
466 \f
467 /* Define the classes of registers for register constraints in the
468 machine description. Also define ranges of constants.
469
470 One of the classes must always be named ALL_REGS and include all hard regs.
471 If there is more than one class, another class must be named NO_REGS
472 and contain no registers.
473
474 The name GENERAL_REGS must be the name of a class (or an alias for
475 another name such as ALL_REGS). This is the class of registers
476 that is allowed by "g" or "r" in a register constraint.
477 Also, registers outside this class are allocated only when
478 instructions express preferences for them.
479
480 The classes must be numbered in nondecreasing order; that is,
481 a larger-numbered class must never be contained completely
482 in a smaller-numbered class.
483
484 For any two classes, it is very desirable that there be another
485 class that represents their union. */
486
487 enum reg_class {
488 NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
489 GENERAL_REGS, FLOAT_REGS, ALL_REGS,
490 LIM_REG_CLASSES
491 };
492
493 #define N_REG_CLASSES (int) LIM_REG_CLASSES
494
495 /* Give names of register classes as strings for dump file. */
496
497 #define REG_CLASS_NAMES \
498 {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG", \
499 "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
500
501 /* Define which registers fit in which classes.
502 This is an initializer for a vector of HARD_REG_SET
503 of length N_REG_CLASSES. */
504
505 #define REG_CLASS_CONTENTS \
506 { {0x00000000, 0x00000000}, /* NO_REGS */ \
507 {0x00000001, 0x00000000}, /* R0_REG */ \
508 {0x01000000, 0x00000000}, /* R24_REG */ \
509 {0x02000000, 0x00000000}, /* R25_REG */ \
510 {0x08000000, 0x00000000}, /* R27_REG */ \
511 {0xffffffff, 0x80000000}, /* GENERAL_REGS */ \
512 {0x00000000, 0x7fffffff}, /* FLOAT_REGS */ \
513 {0xffffffff, 0xffffffff} }
514
515 /* The following macro defines cover classes for Integrated Register
516 Allocator. Cover classes is a set of non-intersected register
517 classes covering all hard registers used for register allocation
518 purpose. Any move between two registers of a cover class should be
519 cheaper than load or store of the registers. The macro value is
520 array of register classes with LIM_REG_CLASSES used as the end
521 marker. */
522
523 #define IRA_COVER_CLASSES \
524 { \
525 GENERAL_REGS, FLOAT_REGS, LIM_REG_CLASSES \
526 }
527
528 /* The same information, inverted:
529 Return the class number of the smallest class containing
530 reg number REGNO. This could be a conditional expression
531 or could index an array. */
532
533 #define REGNO_REG_CLASS(REGNO) \
534 ((REGNO) == 0 ? R0_REG \
535 : (REGNO) == 24 ? R24_REG \
536 : (REGNO) == 25 ? R25_REG \
537 : (REGNO) == 27 ? R27_REG \
538 : IN_RANGE ((REGNO), 32, 62) ? FLOAT_REGS \
539 : GENERAL_REGS)
540
541 /* The class value for index registers, and the one for base regs. */
542 #define INDEX_REG_CLASS NO_REGS
543 #define BASE_REG_CLASS GENERAL_REGS
544
545 /* Given an rtx X being reloaded into a reg required to be
546 in class CLASS, return the class of reg to actually use.
547 In general this is just CLASS; but on some machines
548 in some cases it is preferable to use a more restrictive class. */
549
550 #define PREFERRED_RELOAD_CLASS alpha_preferred_reload_class
551
552 /* If we are copying between general and FP registers, we need a memory
553 location unless the FIX extension is available. */
554
555 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
556 (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
557 || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
558
559 /* Specify the mode to be used for memory when a secondary memory
560 location is needed. If MODE is floating-point, use it. Otherwise,
561 widen to a word like the default. This is needed because we always
562 store integers in FP registers in quadword format. This whole
563 area is very tricky! */
564 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
565 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
566 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
567 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
568
569 /* Return the maximum number of consecutive registers
570 needed to represent mode MODE in a register of class CLASS. */
571
572 #define CLASS_MAX_NREGS(CLASS, MODE) \
573 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
574
575 /* Return the class of registers that cannot change mode from FROM to TO. */
576
577 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
578 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
579 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
580
581 /* Define the cost of moving between registers of various classes. Moving
582 between FLOAT_REGS and anything else except float regs is expensive.
583 In fact, we make it quite expensive because we really don't want to
584 do these moves unless it is clearly worth it. Optimizations may
585 reduce the impact of not being able to allocate a pseudo to a
586 hard register. */
587
588 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
589 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 \
590 : TARGET_FIX ? ((CLASS1) == FLOAT_REGS ? 6 : 8) \
591 : 4+2*alpha_memory_latency)
592
593 /* A C expressions returning the cost of moving data of MODE from a register to
594 or from memory.
595
596 On the Alpha, bump this up a bit. */
597
598 extern int alpha_memory_latency;
599 #define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
600
601 /* Provide the cost of a branch. Exact meaning under development. */
602 #define BRANCH_COST(speed_p, predictable_p) 5
603 \f
604 /* Stack layout; function entry, exit and calling. */
605
606 /* Define this if pushing a word on the stack
607 makes the stack pointer a smaller address. */
608 #define STACK_GROWS_DOWNWARD
609
610 /* Define this to nonzero if the nominal address of the stack frame
611 is at the high-address end of the local variables;
612 that is, each additional local variable allocated
613 goes at a more negative offset in the frame. */
614 /* #define FRAME_GROWS_DOWNWARD 0 */
615
616 /* Offset within stack frame to start allocating local variables at.
617 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
618 first local allocated. Otherwise, it is the offset to the BEGINNING
619 of the first local allocated. */
620
621 #define STARTING_FRAME_OFFSET 0
622
623 /* If we generate an insn to push BYTES bytes,
624 this says how many the stack pointer really advances by.
625 On Alpha, don't define this because there are no push insns. */
626 /* #define PUSH_ROUNDING(BYTES) */
627
628 /* Define this to be nonzero if stack checking is built into the ABI. */
629 #define STACK_CHECK_BUILTIN 1
630
631 /* Define this if the maximum size of all the outgoing args is to be
632 accumulated and pushed during the prologue. The amount can be
633 found in the variable crtl->outgoing_args_size. */
634 #define ACCUMULATE_OUTGOING_ARGS 1
635
636 /* Offset of first parameter from the argument pointer register value. */
637
638 #define FIRST_PARM_OFFSET(FNDECL) 0
639
640 /* Definitions for register eliminations.
641
642 We have two registers that can be eliminated on the Alpha. First, the
643 frame pointer register can often be eliminated in favor of the stack
644 pointer register. Secondly, the argument pointer register can always be
645 eliminated; it is replaced with either the stack or frame pointer. */
646
647 /* This is an array of structures. Each structure initializes one pair
648 of eliminable registers. The "from" register number is given first,
649 followed by "to". Eliminations of the same "from" register are listed
650 in order of preference. */
651
652 #define ELIMINABLE_REGS \
653 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
654 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
655 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
656 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
657
658 /* Round up to a multiple of 16 bytes. */
659 #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
660
661 /* Define the offset between two registers, one to be eliminated, and the other
662 its replacement, at the start of a routine. */
663 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
664 ((OFFSET) = alpha_initial_elimination_offset(FROM, TO))
665
666 /* Define this if stack space is still allocated for a parameter passed
667 in a register. */
668 /* #define REG_PARM_STACK_SPACE */
669
670 /* Define how to find the value returned by a function.
671 VALTYPE is the data type of the value (as a tree).
672 If the precise function being called is known, FUNC is its FUNCTION_DECL;
673 otherwise, FUNC is 0.
674
675 On Alpha the value is found in $0 for integer functions and
676 $f0 for floating-point functions. */
677
678 #define FUNCTION_VALUE(VALTYPE, FUNC) \
679 function_value (VALTYPE, FUNC, VOIDmode)
680
681 /* Define how to find the value returned by a library function
682 assuming the value has mode MODE. */
683
684 #define LIBCALL_VALUE(MODE) \
685 function_value (NULL, NULL, MODE)
686
687 /* 1 if N is a possible register number for a function value
688 as seen by the caller. */
689
690 #define FUNCTION_VALUE_REGNO_P(N) \
691 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
692
693 /* 1 if N is a possible register number for function argument passing.
694 On Alpha, these are $16-$21 and $f16-$f21. */
695
696 #define FUNCTION_ARG_REGNO_P(N) \
697 (IN_RANGE ((N), 16, 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
698 \f
699 /* Define a data type for recording info about an argument list
700 during the scan of that argument list. This data type should
701 hold all necessary information about the function itself
702 and about the args processed so far, enough to enable macros
703 such as FUNCTION_ARG to determine where the next arg should go.
704
705 On Alpha, this is a single integer, which is a number of words
706 of arguments scanned so far.
707 Thus 6 or more means all following args should go on the stack. */
708
709 #define CUMULATIVE_ARGS int
710
711 /* Initialize a variable CUM of type CUMULATIVE_ARGS
712 for a call to a function whose data type is FNTYPE.
713 For a library call, FNTYPE is 0. */
714
715 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
716 (CUM) = 0
717
718 /* Define intermediate macro to compute the size (in registers) of an argument
719 for the Alpha. */
720
721 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
722 ((MODE) == TFmode || (MODE) == TCmode ? 1 \
723 : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
724 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
725
726 /* Make (or fake) .linkage entry for function call.
727 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
728
729 /* This macro defines the start of an assembly comment. */
730
731 #define ASM_COMMENT_START " #"
732
733 /* This macro produces the initial definition of a function. */
734
735 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
736 alpha_start_function(FILE,NAME,DECL);
737
738 /* This macro closes up a function definition for the assembler. */
739
740 #define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
741 alpha_end_function(FILE,NAME,DECL)
742
743 /* Output any profiling code before the prologue. */
744
745 #define PROFILE_BEFORE_PROLOGUE 1
746
747 /* Never use profile counters. */
748
749 #define NO_PROFILE_COUNTERS 1
750
751 /* Output assembler code to FILE to increment profiler label # LABELNO
752 for profiling a function entry. Under OSF/1, profiling is enabled
753 by simply passing -pg to the assembler and linker. */
754
755 #define FUNCTION_PROFILER(FILE, LABELNO)
756
757 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
758 the stack pointer does not matter. The value is tested only in
759 functions that have frame pointers.
760 No definition is equivalent to always zero. */
761
762 #define EXIT_IGNORE_STACK 1
763
764 /* Define registers used by the epilogue and return instruction. */
765
766 #define EPILOGUE_USES(REGNO) ((REGNO) == 26)
767 \f
768 /* Length in units of the trampoline for entering a nested function. */
769
770 #define TRAMPOLINE_SIZE 32
771
772 /* The alignment of a trampoline, in bits. */
773
774 #define TRAMPOLINE_ALIGNMENT 64
775
776 /* A C expression whose value is RTL representing the value of the return
777 address for the frame COUNT steps up from the current frame.
778 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
779 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
780
781 #define RETURN_ADDR_RTX alpha_return_addr
782
783 /* Provide a definition of DWARF_FRAME_REGNUM here so that fallback unwinders
784 can use DWARF_ALT_FRAME_RETURN_COLUMN defined below. This is just the same
785 as the default definition in dwarf2out.c. */
786 #undef DWARF_FRAME_REGNUM
787 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
788
789 /* Before the prologue, RA lives in $26. */
790 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
791 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
792 #define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
793 #define DWARF_ZERO_REG 31
794
795 /* Describe how we implement __builtin_eh_return. */
796 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
797 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 28)
798 #define EH_RETURN_HANDLER_RTX \
799 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
800 crtl->outgoing_args_size))
801 \f
802 /* Addressing modes, and classification of registers for them. */
803
804 /* Macros to check register numbers against specific register classes. */
805
806 /* These assume that REGNO is a hard or pseudo reg number.
807 They give nonzero only if REGNO is a hard reg of the suitable class
808 or a pseudo reg currently allocated to a suitable hard reg.
809 Since they use reg_renumber, they are safe only once reg_renumber
810 has been allocated, which happens in local-alloc.c. */
811
812 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
813 #define REGNO_OK_FOR_BASE_P(REGNO) \
814 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
815 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
816 \f
817 /* Maximum number of registers that can appear in a valid memory address. */
818 #define MAX_REGS_PER_ADDRESS 1
819
820 /* Recognize any constant value that is a valid address. For the Alpha,
821 there are only constants none since we want to use LDA to load any
822 symbolic addresses into registers. */
823
824 #define CONSTANT_ADDRESS_P(X) \
825 (CONST_INT_P (X) \
826 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
827
828 /* Include all constant integers and constant doubles, but not
829 floating-point, except for floating-point zero. */
830
831 #define LEGITIMATE_CONSTANT_P alpha_legitimate_constant_p
832
833 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
834 and check its validity for a certain class.
835 We have two alternate definitions for each of them.
836 The usual definition accepts all pseudo regs; the other rejects
837 them unless they have been allocated suitable hard regs.
838 The symbol REG_OK_STRICT causes the latter definition to be used.
839
840 Most source files want to accept pseudo regs in the hope that
841 they will get allocated to the class that the insn wants them to be in.
842 Source files for reload pass need to be strict.
843 After reload, it makes no difference, since pseudo regs have
844 been eliminated by then. */
845
846 /* Nonzero if X is a hard reg that can be used as an index
847 or if it is a pseudo reg. */
848 #define REG_OK_FOR_INDEX_P(X) 0
849
850 /* Nonzero if X is a hard reg that can be used as a base reg
851 or if it is a pseudo reg. */
852 #define NONSTRICT_REG_OK_FOR_BASE_P(X) \
853 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
854
855 /* ??? Nonzero if X is the frame pointer, or some virtual register
856 that may eliminate to the frame pointer. These will be allowed to
857 have offsets greater than 32K. This is done because register
858 elimination offsets will change the hi/lo split, and if we split
859 before reload, we will require additional instructions. */
860 #define NONSTRICT_REG_OK_FP_BASE_P(X) \
861 (REGNO (X) == 31 || REGNO (X) == 63 \
862 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
863 && REGNO (X) < LAST_VIRTUAL_POINTER_REGISTER))
864
865 /* Nonzero if X is a hard reg that can be used as a base reg. */
866 #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
867
868 #ifdef REG_OK_STRICT
869 #define REG_OK_FOR_BASE_P(X) STRICT_REG_OK_FOR_BASE_P (X)
870 #else
871 #define REG_OK_FOR_BASE_P(X) NONSTRICT_REG_OK_FOR_BASE_P (X)
872 #endif
873 \f
874 /* Try a machine-dependent way of reloading an illegitimate address
875 operand. If we find one, push the reload and jump to WIN. This
876 macro is used in only one place: `find_reloads_address' in reload.c. */
877
878 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
879 do { \
880 rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
881 if (new_x) \
882 { \
883 X = new_x; \
884 goto WIN; \
885 } \
886 } while (0)
887
888 /* Go to LABEL if ADDR (a legitimate address expression)
889 has an effect that depends on the machine mode it is used for.
890 On the Alpha this is true only for the unaligned modes. We can
891 simplify this test since we know that the address must be valid. */
892
893 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
894 { if (GET_CODE (ADDR) == AND) goto LABEL; }
895 \f
896 /* Specify the machine mode that this machine uses
897 for the index in the tablejump instruction. */
898 #define CASE_VECTOR_MODE SImode
899
900 /* Define as C expression which evaluates to nonzero if the tablejump
901 instruction expects the table to contain offsets from the address of the
902 table.
903
904 Do not define this if the table should contain absolute addresses.
905 On the Alpha, the table is really GP-relative, not relative to the PC
906 of the table, but we pretend that it is PC-relative; this should be OK,
907 but we should try to find some better way sometime. */
908 #define CASE_VECTOR_PC_RELATIVE 1
909
910 /* Define this as 1 if `char' should by default be signed; else as 0. */
911 #define DEFAULT_SIGNED_CHAR 1
912
913 /* Max number of bytes we can move to or from memory
914 in one reasonably fast instruction. */
915
916 #define MOVE_MAX 8
917
918 /* If a memory-to-memory move would take MOVE_RATIO or more simple
919 move-instruction pairs, we will do a movmem or libcall instead.
920
921 Without byte/word accesses, we want no more than four instructions;
922 with, several single byte accesses are better. */
923
924 #define MOVE_RATIO(speed) (TARGET_BWX ? 7 : 2)
925
926 /* Largest number of bytes of an object that can be placed in a register.
927 On the Alpha we have plenty of registers, so use TImode. */
928 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
929
930 /* Nonzero if access to memory by bytes is no faster than for words.
931 Also nonzero if doing byte operations (specifically shifts) in registers
932 is undesirable.
933
934 On the Alpha, we want to not use the byte operation and instead use
935 masking operations to access fields; these will save instructions. */
936
937 #define SLOW_BYTE_ACCESS 1
938
939 /* Define if operations between registers always perform the operation
940 on the full register even if a narrower mode is specified. */
941 #define WORD_REGISTER_OPERATIONS
942
943 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
944 will either zero-extend or sign-extend. The value of this macro should
945 be the code that says which one of the two operations is implicitly
946 done, UNKNOWN if none. */
947 #define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
948
949 /* Define if loading short immediate values into registers sign extends. */
950 #define SHORT_IMMEDIATES_SIGN_EXTEND
951
952 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
953 is done just by pretending it is already truncated. */
954 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
955
956 /* The CIX ctlz and cttz instructions return 64 for zero. */
957 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
958 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
959
960 /* Define the value returned by a floating-point comparison instruction. */
961
962 #define FLOAT_STORE_FLAG_VALUE(MODE) \
963 REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
964
965 /* Canonicalize a comparison from one we don't have to one we do have. */
966
967 #define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
968 do { \
969 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
970 && (REG_P (OP1) || (OP1) == const0_rtx)) \
971 { \
972 rtx tem = (OP0); \
973 (OP0) = (OP1); \
974 (OP1) = tem; \
975 (CODE) = swap_condition (CODE); \
976 } \
977 if (((CODE) == LT || (CODE) == LTU) \
978 && CONST_INT_P (OP1) && INTVAL (OP1) == 256) \
979 { \
980 (CODE) = (CODE) == LT ? LE : LEU; \
981 (OP1) = GEN_INT (255); \
982 } \
983 } while (0)
984
985 /* Specify the machine mode that pointers have.
986 After generation of rtl, the compiler makes no further distinction
987 between pointers and any other objects of this machine mode. */
988 #define Pmode DImode
989
990 /* Mode of a function address in a call instruction (for indexing purposes). */
991
992 #define FUNCTION_MODE Pmode
993
994 /* Define this if addresses of constant functions
995 shouldn't be put through pseudo regs where they can be cse'd.
996 Desirable on machines where ordinary constants are expensive
997 but a CALL with constant address is cheap.
998
999 We define this on the Alpha so that gen_call and gen_call_value
1000 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1001 then copy it into a register, thus actually letting the address be
1002 cse'ed. */
1003
1004 #define NO_FUNCTION_CSE
1005
1006 /* Define this to be nonzero if shift instructions ignore all but the low-order
1007 few bits. */
1008 #define SHIFT_COUNT_TRUNCATED 1
1009 \f
1010 /* Control the assembler format that we output. */
1011
1012 /* Output to assembler file text saying following lines
1013 may contain character constants, extra white space, comments, etc. */
1014 #define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
1015
1016 /* Output to assembler file text saying following lines
1017 no longer contain unusual constructs. */
1018 #define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
1019
1020 #define TEXT_SECTION_ASM_OP "\t.text"
1021
1022 /* Output before read-only data. */
1023
1024 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
1025
1026 /* Output before writable data. */
1027
1028 #define DATA_SECTION_ASM_OP "\t.data"
1029
1030 /* How to refer to registers in assembler output.
1031 This sequence is indexed by compiler's hard-register-number (see above). */
1032
1033 #define REGISTER_NAMES \
1034 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1035 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1036 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
1037 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1038 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1039 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1040 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1041 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1042
1043 /* Strip name encoding when emitting labels. */
1044
1045 #define ASM_OUTPUT_LABELREF(STREAM, NAME) \
1046 do { \
1047 const char *name_ = NAME; \
1048 if (*name_ == '@' || *name_ == '%') \
1049 name_ += 2; \
1050 if (*name_ == '*') \
1051 name_++; \
1052 else \
1053 fputs (user_label_prefix, STREAM); \
1054 fputs (name_, STREAM); \
1055 } while (0)
1056
1057 /* Globalizing directive for a label. */
1058 #define GLOBAL_ASM_OP "\t.globl "
1059
1060 /* The prefix to add to user-visible assembler symbols. */
1061
1062 #define USER_LABEL_PREFIX ""
1063
1064 /* This is how to output a label for a jump table. Arguments are the same as
1065 for (*targetm.asm_out.internal_label), except the insn for the jump table is
1066 passed. */
1067
1068 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1069 { ASM_OUTPUT_ALIGN (FILE, 2); (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); }
1070
1071 /* This is how to store into the string LABEL
1072 the symbol_ref name of an internal numbered label where
1073 PREFIX is the class of label and NUM is the number within the class.
1074 This is suitable for output with `assemble_name'. */
1075
1076 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1077 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1078
1079 /* We use the default ASCII-output routine, except that we don't write more
1080 than 50 characters since the assembler doesn't support very long lines. */
1081
1082 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1083 do { \
1084 FILE *_hide_asm_out_file = (MYFILE); \
1085 const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
1086 int _hide_thissize = (MYLENGTH); \
1087 int _size_so_far = 0; \
1088 { \
1089 FILE *asm_out_file = _hide_asm_out_file; \
1090 const unsigned char *p = _hide_p; \
1091 int thissize = _hide_thissize; \
1092 int i; \
1093 fprintf (asm_out_file, "\t.ascii \""); \
1094 \
1095 for (i = 0; i < thissize; i++) \
1096 { \
1097 register int c = p[i]; \
1098 \
1099 if (_size_so_far ++ > 50 && i < thissize - 4) \
1100 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1101 \
1102 if (c == '\"' || c == '\\') \
1103 putc ('\\', asm_out_file); \
1104 if (c >= ' ' && c < 0177) \
1105 putc (c, asm_out_file); \
1106 else \
1107 { \
1108 fprintf (asm_out_file, "\\%o", c); \
1109 /* After an octal-escape, if a digit follows, \
1110 terminate one string constant and start another. \
1111 The VAX assembler fails to stop reading the escape \
1112 after three digits, so this is the only way we \
1113 can get it to parse the data properly. */ \
1114 if (i < thissize - 1 && ISDIGIT (p[i + 1])) \
1115 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1116 } \
1117 } \
1118 fprintf (asm_out_file, "\"\n"); \
1119 } \
1120 } \
1121 while (0)
1122
1123 /* This is how to output an element of a case-vector that is relative. */
1124
1125 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1126 fprintf (FILE, "\t.%s $L%d\n", TARGET_ABI_WINDOWS_NT ? "long" : "gprel32", \
1127 (VALUE))
1128
1129 /* This is how to output an assembler line
1130 that says to advance the location counter
1131 to a multiple of 2**LOG bytes. */
1132
1133 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1134 if ((LOG) != 0) \
1135 fprintf (FILE, "\t.align %d\n", LOG);
1136
1137 /* This is how to advance the location counter by SIZE bytes. */
1138
1139 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1140 fprintf (FILE, "\t.space "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1141
1142 /* This says how to output an assembler line
1143 to define a global common symbol. */
1144
1145 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1146 ( fputs ("\t.comm ", (FILE)), \
1147 assemble_name ((FILE), (NAME)), \
1148 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1149
1150 /* This says how to output an assembler line
1151 to define a local common symbol. */
1152
1153 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1154 ( fputs ("\t.lcomm ", (FILE)), \
1155 assemble_name ((FILE), (NAME)), \
1156 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1157 \f
1158
1159 /* Print operand X (an rtx) in assembler syntax to file FILE.
1160 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1161 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1162
1163 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1164
1165 /* Determine which codes are valid without a following integer. These must
1166 not be alphabetic.
1167
1168 ~ Generates the name of the current function.
1169
1170 / Generates the instruction suffix. The TRAP_SUFFIX and ROUND_SUFFIX
1171 attributes are examined to determine what is appropriate.
1172
1173 , Generates single precision suffix for floating point
1174 instructions (s for IEEE, f for VAX)
1175
1176 - Generates double precision suffix for floating point
1177 instructions (t for IEEE, g for VAX)
1178 */
1179
1180 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1181 ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
1182 || (CODE) == '#' || (CODE) == '*' || (CODE) == '&')
1183
1184 /* Print a memory address as an operand to reference that memory location. */
1185
1186 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1187 print_operand_address((FILE), (ADDR))
1188 \f
1189 /* Tell collect that the object format is ECOFF. */
1190 #define OBJECT_FORMAT_COFF
1191 #define EXTENDED_COFF
1192
1193 /* If we use NM, pass -g to it so it only lists globals. */
1194 #define NM_FLAGS "-pg"
1195
1196 /* Definitions for debugging. */
1197
1198 #define SDB_DEBUGGING_INFO 1 /* generate info for mips-tfile */
1199 #define DBX_DEBUGGING_INFO 1 /* generate embedded stabs */
1200 #define MIPS_DEBUGGING_INFO 1 /* MIPS specific debugging info */
1201
1202 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
1203 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
1204 #endif
1205
1206
1207 /* Correct the offset of automatic variables and arguments. Note that
1208 the Alpha debug format wants all automatic variables and arguments
1209 to be in terms of two different offsets from the virtual frame pointer,
1210 which is the stack pointer before any adjustment in the function.
1211 The offset for the argument pointer is fixed for the native compiler,
1212 it is either zero (for the no arguments case) or large enough to hold
1213 all argument registers.
1214 The offset for the auto pointer is the fourth argument to the .frame
1215 directive (local_offset).
1216 To stay compatible with the native tools we use the same offsets
1217 from the virtual frame pointer and adjust the debugger arg/auto offsets
1218 accordingly. These debugger offsets are set up in output_prolog. */
1219
1220 extern long alpha_arg_offset;
1221 extern long alpha_auto_offset;
1222 #define DEBUGGER_AUTO_OFFSET(X) \
1223 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1224 #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1225
1226 /* mips-tfile doesn't understand .stabd directives. */
1227 #define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
1228 dbxout_begin_stabn_sline (LINE); \
1229 dbxout_stab_value_internal_label ("LM", &COUNTER); \
1230 } while (0)
1231
1232 /* We want to use MIPS-style .loc directives for SDB line numbers. */
1233 extern int num_source_filenames;
1234 #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
1235 fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
1236
1237 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
1238 alpha_output_filename (STREAM, NAME)
1239
1240 /* mips-tfile.c limits us to strings of one page. We must underestimate this
1241 number, because the real length runs past this up to the next
1242 continuation point. This is really a dbxout.c bug. */
1243 #define DBX_CONTIN_LENGTH 3000
1244
1245 /* By default, turn on GDB extensions. */
1246 #define DEFAULT_GDB_EXTENSIONS 1
1247
1248 /* Stabs-in-ECOFF can't handle dbxout_function_end(). */
1249 #define NO_DBX_FUNCTION_END 1
1250
1251 /* If we are smuggling stabs through the ALPHA ECOFF object
1252 format, put a comment in front of the .stab<x> operation so
1253 that the ALPHA assembler does not choke. The mips-tfile program
1254 will correctly put the stab into the object file. */
1255
1256 #define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1257 #define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1258 #define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
1259
1260 /* Forward references to tags are allowed. */
1261 #define SDB_ALLOW_FORWARD_REFERENCES
1262
1263 /* Unknown tags are also allowed. */
1264 #define SDB_ALLOW_UNKNOWN_REFERENCES
1265
1266 #define PUT_SDB_DEF(a) \
1267 do { \
1268 fprintf (asm_out_file, "\t%s.def\t", \
1269 (TARGET_GAS) ? "" : "#"); \
1270 ASM_OUTPUT_LABELREF (asm_out_file, a); \
1271 fputc (';', asm_out_file); \
1272 } while (0)
1273
1274 #define PUT_SDB_PLAIN_DEF(a) \
1275 do { \
1276 fprintf (asm_out_file, "\t%s.def\t.%s;", \
1277 (TARGET_GAS) ? "" : "#", (a)); \
1278 } while (0)
1279
1280 #define PUT_SDB_TYPE(a) \
1281 do { \
1282 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
1283 } while (0)
1284
1285 /* For block start and end, we create labels, so that
1286 later we can figure out where the correct offset is.
1287 The normal .ent/.end serve well enough for functions,
1288 so those are just commented out. */
1289
1290 extern int sdb_label_count; /* block start/end next label # */
1291
1292 #define PUT_SDB_BLOCK_START(LINE) \
1293 do { \
1294 fprintf (asm_out_file, \
1295 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
1296 sdb_label_count, \
1297 (TARGET_GAS) ? "" : "#", \
1298 sdb_label_count, \
1299 (LINE)); \
1300 sdb_label_count++; \
1301 } while (0)
1302
1303 #define PUT_SDB_BLOCK_END(LINE) \
1304 do { \
1305 fprintf (asm_out_file, \
1306 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
1307 sdb_label_count, \
1308 (TARGET_GAS) ? "" : "#", \
1309 sdb_label_count, \
1310 (LINE)); \
1311 sdb_label_count++; \
1312 } while (0)
1313
1314 #define PUT_SDB_FUNCTION_START(LINE)
1315
1316 #define PUT_SDB_FUNCTION_END(LINE)
1317
1318 #define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
1319
1320 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
1321 mips-tdump.c to print them out.
1322
1323 These must match the corresponding definitions in gdb/mipsread.c.
1324 Unfortunately, gcc and gdb do not currently share any directories. */
1325
1326 #define CODE_MASK 0x8F300
1327 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
1328 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
1329 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
1330
1331 /* Override some mips-tfile definitions. */
1332
1333 #define SHASH_SIZE 511
1334 #define THASH_SIZE 55
1335
1336 /* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
1337
1338 #define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
1339
1340 /* The system headers under Alpha systems are generally C++-aware. */
1341 #define NO_IMPLICIT_EXTERN_C