]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/alpha/alpha.h
Remove alpha-winnt code from the backend.
[thirdparty/gcc.git] / gcc / config / alpha / alpha.h
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2004, 2005, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* Target CPU builtins. */
24 #define TARGET_CPU_CPP_BUILTINS() \
25 do \
26 { \
27 builtin_define ("__alpha"); \
28 builtin_define ("__alpha__"); \
29 builtin_assert ("cpu=alpha"); \
30 builtin_assert ("machine=alpha"); \
31 if (TARGET_CIX) \
32 { \
33 builtin_define ("__alpha_cix__"); \
34 builtin_assert ("cpu=cix"); \
35 } \
36 if (TARGET_FIX) \
37 { \
38 builtin_define ("__alpha_fix__"); \
39 builtin_assert ("cpu=fix"); \
40 } \
41 if (TARGET_BWX) \
42 { \
43 builtin_define ("__alpha_bwx__"); \
44 builtin_assert ("cpu=bwx"); \
45 } \
46 if (TARGET_MAX) \
47 { \
48 builtin_define ("__alpha_max__"); \
49 builtin_assert ("cpu=max"); \
50 } \
51 if (alpha_cpu == PROCESSOR_EV6) \
52 { \
53 builtin_define ("__alpha_ev6__"); \
54 builtin_assert ("cpu=ev6"); \
55 } \
56 else if (alpha_cpu == PROCESSOR_EV5) \
57 { \
58 builtin_define ("__alpha_ev5__"); \
59 builtin_assert ("cpu=ev5"); \
60 } \
61 else /* Presumably ev4. */ \
62 { \
63 builtin_define ("__alpha_ev4__"); \
64 builtin_assert ("cpu=ev4"); \
65 } \
66 if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT) \
67 builtin_define ("_IEEE_FP"); \
68 if (TARGET_IEEE_WITH_INEXACT) \
69 builtin_define ("_IEEE_FP_INEXACT"); \
70 if (TARGET_LONG_DOUBLE_128) \
71 builtin_define ("__LONG_DOUBLE_128__"); \
72 \
73 /* Macros dependent on the C dialect. */ \
74 SUBTARGET_LANGUAGE_CPP_BUILTINS(); \
75 } while (0)
76
77 #ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
78 #define SUBTARGET_LANGUAGE_CPP_BUILTINS() \
79 do \
80 { \
81 if (preprocessing_asm_p ()) \
82 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
83 else if (c_dialect_cxx ()) \
84 { \
85 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
86 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
87 } \
88 else \
89 builtin_define_std ("LANGUAGE_C"); \
90 if (c_dialect_objc ()) \
91 { \
92 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
93 builtin_define ("__LANGUAGE_OBJECTIVE_C__"); \
94 } \
95 } \
96 while (0)
97 #endif
98
99 /* Print subsidiary information on the compiler version in use. */
100 #define TARGET_VERSION
101
102 /* Run-time compilation parameters selecting different hardware subsets. */
103
104 /* Which processor to schedule for. The cpu attribute defines a list that
105 mirrors this list, so changes to alpha.md must be made at the same time. */
106
107 enum processor_type
108 {
109 PROCESSOR_EV4, /* 2106[46]{a,} */
110 PROCESSOR_EV5, /* 21164{a,pc,} */
111 PROCESSOR_EV6, /* 21264 */
112 PROCESSOR_MAX
113 };
114
115 extern enum processor_type alpha_cpu;
116 extern enum processor_type alpha_tune;
117
118 enum alpha_trap_precision
119 {
120 ALPHA_TP_PROG, /* No precision (default). */
121 ALPHA_TP_FUNC, /* Trap contained within originating function. */
122 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
123 };
124
125 enum alpha_fp_rounding_mode
126 {
127 ALPHA_FPRM_NORM, /* Normal rounding mode. */
128 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
129 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
130 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
131 };
132
133 enum alpha_fp_trap_mode
134 {
135 ALPHA_FPTM_N, /* Normal trap mode. */
136 ALPHA_FPTM_U, /* Underflow traps enabled. */
137 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
138 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
139 };
140
141 extern enum alpha_trap_precision alpha_tp;
142 extern enum alpha_fp_rounding_mode alpha_fprm;
143 extern enum alpha_fp_trap_mode alpha_fptm;
144
145 /* Invert the easy way to make options work. */
146 #define TARGET_FP (!TARGET_SOFT_FP)
147
148 /* These are for target os support and cannot be changed at runtime. */
149 #define TARGET_ABI_OPEN_VMS 0
150 #define TARGET_ABI_OSF (!TARGET_ABI_OPEN_VMS)
151
152 #ifndef TARGET_AS_CAN_SUBTRACT_LABELS
153 #define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
154 #endif
155 #ifndef TARGET_AS_SLASH_BEFORE_SUFFIX
156 #define TARGET_AS_SLASH_BEFORE_SUFFIX TARGET_GAS
157 #endif
158 #ifndef TARGET_CAN_FAULT_IN_PROLOGUE
159 #define TARGET_CAN_FAULT_IN_PROLOGUE 0
160 #endif
161 #ifndef TARGET_HAS_XFLOATING_LIBS
162 #define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
163 #endif
164 #ifndef TARGET_PROFILING_NEEDS_GP
165 #define TARGET_PROFILING_NEEDS_GP 0
166 #endif
167 #ifndef TARGET_LD_BUGGY_LDGP
168 #define TARGET_LD_BUGGY_LDGP 0
169 #endif
170 #ifndef TARGET_FIXUP_EV5_PREFETCH
171 #define TARGET_FIXUP_EV5_PREFETCH 0
172 #endif
173 #ifndef HAVE_AS_TLS
174 #define HAVE_AS_TLS 0
175 #endif
176
177 #define TARGET_DEFAULT MASK_FPREGS
178
179 #ifndef TARGET_CPU_DEFAULT
180 #define TARGET_CPU_DEFAULT 0
181 #endif
182
183 #ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
184 #ifdef HAVE_AS_EXPLICIT_RELOCS
185 #define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
186 #define TARGET_SUPPORT_ARCH 1
187 #else
188 #define TARGET_DEFAULT_EXPLICIT_RELOCS 0
189 #endif
190 #endif
191
192 #ifndef TARGET_SUPPORT_ARCH
193 #define TARGET_SUPPORT_ARCH 0
194 #endif
195
196 /* Support for a compile-time default CPU, et cetera. The rules are:
197 --with-cpu is ignored if -mcpu is specified.
198 --with-tune is ignored if -mtune is specified. */
199 #define OPTION_DEFAULT_SPECS \
200 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
201 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }
202
203 \f
204 /* target machine storage layout */
205
206 /* Define the size of `int'. The default is the same as the word size. */
207 #define INT_TYPE_SIZE 32
208
209 /* Define the size of `long long'. The default is the twice the word size. */
210 #define LONG_LONG_TYPE_SIZE 64
211
212 /* The two floating-point formats we support are S-floating, which is
213 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
214 and `long double' are T. */
215
216 #define FLOAT_TYPE_SIZE 32
217 #define DOUBLE_TYPE_SIZE 64
218 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
219
220 /* Define this to set long double type size to use in libgcc2.c, which can
221 not depend on target_flags. */
222 #ifdef __LONG_DOUBLE_128__
223 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
224 #else
225 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
226 #endif
227
228 /* Work around target_flags dependency in ada/targtyps.c. */
229 #define WIDEST_HARDWARE_FP_SIZE 64
230
231 #define WCHAR_TYPE "unsigned int"
232 #define WCHAR_TYPE_SIZE 32
233
234 /* Define this macro if it is advisable to hold scalars in registers
235 in a wider mode than that declared by the program. In such cases,
236 the value is constrained to be within the bounds of the declared
237 type, but kept valid in the wider mode. The signedness of the
238 extension may differ from that of the type.
239
240 For Alpha, we always store objects in a full register. 32-bit integers
241 are always sign-extended, but smaller objects retain their signedness.
242
243 Note that small vector types can get mapped onto integer modes at the
244 whim of not appearing in alpha-modes.def. We never promoted these
245 values before; don't do so now that we've trimmed the set of modes to
246 those actually implemented in the backend. */
247
248 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
249 if (GET_MODE_CLASS (MODE) == MODE_INT \
250 && (TYPE == NULL || TREE_CODE (TYPE) != VECTOR_TYPE) \
251 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
252 { \
253 if ((MODE) == SImode) \
254 (UNSIGNEDP) = 0; \
255 (MODE) = DImode; \
256 }
257
258 /* Define this if most significant bit is lowest numbered
259 in instructions that operate on numbered bit-fields.
260
261 There are no such instructions on the Alpha, but the documentation
262 is little endian. */
263 #define BITS_BIG_ENDIAN 0
264
265 /* Define this if most significant byte of a word is the lowest numbered.
266 This is false on the Alpha. */
267 #define BYTES_BIG_ENDIAN 0
268
269 /* Define this if most significant word of a multiword number is lowest
270 numbered.
271
272 For Alpha we can decide arbitrarily since there are no machine instructions
273 for them. Might as well be consistent with bytes. */
274 #define WORDS_BIG_ENDIAN 0
275
276 /* Width of a word, in units (bytes). */
277 #define UNITS_PER_WORD 8
278
279 /* Width in bits of a pointer.
280 See also the macro `Pmode' defined below. */
281 #define POINTER_SIZE 64
282
283 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
284 #define PARM_BOUNDARY 64
285
286 /* Boundary (in *bits*) on which stack pointer should be aligned. */
287 #define STACK_BOUNDARY 128
288
289 /* Allocation boundary (in *bits*) for the code of a function. */
290 #define FUNCTION_BOUNDARY 32
291
292 /* Alignment of field after `int : 0' in a structure. */
293 #define EMPTY_FIELD_BOUNDARY 64
294
295 /* Every structure's size must be a multiple of this. */
296 #define STRUCTURE_SIZE_BOUNDARY 8
297
298 /* A bit-field declared as `int' forces `int' alignment for the struct. */
299 #define PCC_BITFIELD_TYPE_MATTERS 1
300
301 /* No data type wants to be aligned rounder than this. */
302 #define BIGGEST_ALIGNMENT 128
303
304 /* For atomic access to objects, must have at least 32-bit alignment
305 unless the machine has byte operations. */
306 #define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
307
308 /* Align all constants and variables to at least a word boundary so
309 we can pick up pieces of them faster. */
310 /* ??? Only if block-move stuff knows about different source/destination
311 alignment. */
312 #if 0
313 #define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
314 #define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
315 #endif
316
317 /* Set this nonzero if move instructions will actually fail to work
318 when given unaligned data.
319
320 Since we get an error message when we do one, call them invalid. */
321
322 #define STRICT_ALIGNMENT 1
323
324 /* Set this nonzero if unaligned move instructions are extremely slow.
325
326 On the Alpha, they trap. */
327
328 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
329
330 /* Standard register usage. */
331
332 /* Number of actual hardware registers.
333 The hardware registers are assigned numbers for the compiler
334 from 0 to just below FIRST_PSEUDO_REGISTER.
335 All registers that the compiler knows about must be given numbers,
336 even those that are not normally considered general registers.
337
338 We define all 32 integer registers, even though $31 is always zero,
339 and all 32 floating-point registers, even though $f31 is also
340 always zero. We do not bother defining the FP status register and
341 there are no other registers.
342
343 Since $31 is always zero, we will use register number 31 as the
344 argument pointer. It will never appear in the generated code
345 because we will always be eliminating it in favor of the stack
346 pointer or hardware frame pointer.
347
348 Likewise, we use $f31 for the frame pointer, which will always
349 be eliminated in favor of the hardware frame pointer or the
350 stack pointer. */
351
352 #define FIRST_PSEUDO_REGISTER 64
353
354 /* 1 for registers that have pervasive standard uses
355 and are not available for the register allocator. */
356
357 #define FIXED_REGISTERS \
358 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
359 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
360 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
361 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
362
363 /* 1 for registers not available across function calls.
364 These must include the FIXED_REGISTERS and also any
365 registers that can be used without being saved.
366 The latter must include the registers where values are returned
367 and the register where structure-value addresses are passed.
368 Aside from that, you can include as many other registers as you like. */
369 #define CALL_USED_REGISTERS \
370 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
371 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
372 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
373 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
374
375 /* List the order in which to allocate registers. Each register must be
376 listed once, even those in FIXED_REGISTERS. */
377
378 #define REG_ALLOC_ORDER { \
379 1, 2, 3, 4, 5, 6, 7, 8, /* nonsaved integer registers */ \
380 22, 23, 24, 25, 28, /* likewise */ \
381 0, /* likewise, but return value */ \
382 21, 20, 19, 18, 17, 16, /* likewise, but input args */ \
383 27, /* likewise, but OSF procedure value */ \
384 \
385 42, 43, 44, 45, 46, 47, /* nonsaved floating-point registers */ \
386 54, 55, 56, 57, 58, 59, /* likewise */ \
387 60, 61, 62, /* likewise */ \
388 32, 33, /* likewise, but return values */ \
389 53, 52, 51, 50, 49, 48, /* likewise, but input args */ \
390 \
391 9, 10, 11, 12, 13, 14, /* saved integer registers */ \
392 26, /* return address */ \
393 15, /* hard frame pointer */ \
394 \
395 34, 35, 36, 37, 38, 39, /* saved floating-point registers */ \
396 40, 41, /* likewise */ \
397 \
398 29, 30, 31, 63 /* gp, sp, ap, sfp */ \
399 }
400
401 /* Return number of consecutive hard regs needed starting at reg REGNO
402 to hold something of mode MODE.
403 This is ordinarily the length in words of a value of mode MODE
404 but can be less for certain modes in special long registers. */
405
406 #define HARD_REGNO_NREGS(REGNO, MODE) \
407 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
408
409 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
410 On Alpha, the integer registers can hold any mode. The floating-point
411 registers can hold 64-bit integers as well, but not smaller values. */
412
413 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
414 (IN_RANGE ((REGNO), 32, 62) \
415 ? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode \
416 || (MODE) == SCmode || (MODE) == DCmode \
417 : 1)
418
419 /* A C expression that is nonzero if a value of mode
420 MODE1 is accessible in mode MODE2 without copying.
421
422 This asymmetric test is true when MODE1 could be put
423 in an FP register but MODE2 could not. */
424
425 #define MODES_TIEABLE_P(MODE1, MODE2) \
426 (HARD_REGNO_MODE_OK (32, (MODE1)) \
427 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
428 : 1)
429
430 /* Specify the registers used for certain standard purposes.
431 The values of these macros are register numbers. */
432
433 /* Alpha pc isn't overloaded on a register that the compiler knows about. */
434 /* #define PC_REGNUM */
435
436 /* Register to use for pushing function arguments. */
437 #define STACK_POINTER_REGNUM 30
438
439 /* Base register for access to local variables of the function. */
440 #define HARD_FRAME_POINTER_REGNUM 15
441
442 /* Base register for access to arguments of the function. */
443 #define ARG_POINTER_REGNUM 31
444
445 /* Base register for access to local variables of function. */
446 #define FRAME_POINTER_REGNUM 63
447
448 /* Register in which static-chain is passed to a function.
449
450 For the Alpha, this is based on an example; the calling sequence
451 doesn't seem to specify this. */
452 #define STATIC_CHAIN_REGNUM 1
453
454 /* The register number of the register used to address a table of
455 static data addresses in memory. */
456 #define PIC_OFFSET_TABLE_REGNUM 29
457
458 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
459 is clobbered by calls. */
460 /* ??? It is and it isn't. It's required to be valid for a given
461 function when the function returns. It isn't clobbered by
462 current_file functions. Moreover, we do not expose the ldgp
463 until after reload, so we're probably safe. */
464 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
465 \f
466 /* Define the classes of registers for register constraints in the
467 machine description. Also define ranges of constants.
468
469 One of the classes must always be named ALL_REGS and include all hard regs.
470 If there is more than one class, another class must be named NO_REGS
471 and contain no registers.
472
473 The name GENERAL_REGS must be the name of a class (or an alias for
474 another name such as ALL_REGS). This is the class of registers
475 that is allowed by "g" or "r" in a register constraint.
476 Also, registers outside this class are allocated only when
477 instructions express preferences for them.
478
479 The classes must be numbered in nondecreasing order; that is,
480 a larger-numbered class must never be contained completely
481 in a smaller-numbered class.
482
483 For any two classes, it is very desirable that there be another
484 class that represents their union. */
485
486 enum reg_class {
487 NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
488 GENERAL_REGS, FLOAT_REGS, ALL_REGS,
489 LIM_REG_CLASSES
490 };
491
492 #define N_REG_CLASSES (int) LIM_REG_CLASSES
493
494 /* Give names of register classes as strings for dump file. */
495
496 #define REG_CLASS_NAMES \
497 {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG", \
498 "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
499
500 /* Define which registers fit in which classes.
501 This is an initializer for a vector of HARD_REG_SET
502 of length N_REG_CLASSES. */
503
504 #define REG_CLASS_CONTENTS \
505 { {0x00000000, 0x00000000}, /* NO_REGS */ \
506 {0x00000001, 0x00000000}, /* R0_REG */ \
507 {0x01000000, 0x00000000}, /* R24_REG */ \
508 {0x02000000, 0x00000000}, /* R25_REG */ \
509 {0x08000000, 0x00000000}, /* R27_REG */ \
510 {0xffffffff, 0x80000000}, /* GENERAL_REGS */ \
511 {0x00000000, 0x7fffffff}, /* FLOAT_REGS */ \
512 {0xffffffff, 0xffffffff} }
513
514 /* The following macro defines cover classes for Integrated Register
515 Allocator. Cover classes is a set of non-intersected register
516 classes covering all hard registers used for register allocation
517 purpose. Any move between two registers of a cover class should be
518 cheaper than load or store of the registers. The macro value is
519 array of register classes with LIM_REG_CLASSES used as the end
520 marker. */
521
522 #define IRA_COVER_CLASSES \
523 { \
524 GENERAL_REGS, FLOAT_REGS, LIM_REG_CLASSES \
525 }
526
527 /* The same information, inverted:
528 Return the class number of the smallest class containing
529 reg number REGNO. This could be a conditional expression
530 or could index an array. */
531
532 #define REGNO_REG_CLASS(REGNO) \
533 ((REGNO) == 0 ? R0_REG \
534 : (REGNO) == 24 ? R24_REG \
535 : (REGNO) == 25 ? R25_REG \
536 : (REGNO) == 27 ? R27_REG \
537 : IN_RANGE ((REGNO), 32, 62) ? FLOAT_REGS \
538 : GENERAL_REGS)
539
540 /* The class value for index registers, and the one for base regs. */
541 #define INDEX_REG_CLASS NO_REGS
542 #define BASE_REG_CLASS GENERAL_REGS
543
544 /* Given an rtx X being reloaded into a reg required to be
545 in class CLASS, return the class of reg to actually use.
546 In general this is just CLASS; but on some machines
547 in some cases it is preferable to use a more restrictive class. */
548
549 #define PREFERRED_RELOAD_CLASS alpha_preferred_reload_class
550
551 /* If we are copying between general and FP registers, we need a memory
552 location unless the FIX extension is available. */
553
554 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
555 (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
556 || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
557
558 /* Specify the mode to be used for memory when a secondary memory
559 location is needed. If MODE is floating-point, use it. Otherwise,
560 widen to a word like the default. This is needed because we always
561 store integers in FP registers in quadword format. This whole
562 area is very tricky! */
563 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
564 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
565 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
566 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
567
568 /* Return the maximum number of consecutive registers
569 needed to represent mode MODE in a register of class CLASS. */
570
571 #define CLASS_MAX_NREGS(CLASS, MODE) \
572 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
573
574 /* Return the class of registers that cannot change mode from FROM to TO. */
575
576 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
577 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
578 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
579
580 /* Define the cost of moving between registers of various classes. Moving
581 between FLOAT_REGS and anything else except float regs is expensive.
582 In fact, we make it quite expensive because we really don't want to
583 do these moves unless it is clearly worth it. Optimizations may
584 reduce the impact of not being able to allocate a pseudo to a
585 hard register. */
586
587 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
588 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 \
589 : TARGET_FIX ? ((CLASS1) == FLOAT_REGS ? 6 : 8) \
590 : 4+2*alpha_memory_latency)
591
592 /* A C expressions returning the cost of moving data of MODE from a register to
593 or from memory.
594
595 On the Alpha, bump this up a bit. */
596
597 extern int alpha_memory_latency;
598 #define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
599
600 /* Provide the cost of a branch. Exact meaning under development. */
601 #define BRANCH_COST(speed_p, predictable_p) 5
602 \f
603 /* Stack layout; function entry, exit and calling. */
604
605 /* Define this if pushing a word on the stack
606 makes the stack pointer a smaller address. */
607 #define STACK_GROWS_DOWNWARD
608
609 /* Define this to nonzero if the nominal address of the stack frame
610 is at the high-address end of the local variables;
611 that is, each additional local variable allocated
612 goes at a more negative offset in the frame. */
613 /* #define FRAME_GROWS_DOWNWARD 0 */
614
615 /* Offset within stack frame to start allocating local variables at.
616 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
617 first local allocated. Otherwise, it is the offset to the BEGINNING
618 of the first local allocated. */
619
620 #define STARTING_FRAME_OFFSET 0
621
622 /* If we generate an insn to push BYTES bytes,
623 this says how many the stack pointer really advances by.
624 On Alpha, don't define this because there are no push insns. */
625 /* #define PUSH_ROUNDING(BYTES) */
626
627 /* Define this to be nonzero if stack checking is built into the ABI. */
628 #define STACK_CHECK_BUILTIN 1
629
630 /* Define this if the maximum size of all the outgoing args is to be
631 accumulated and pushed during the prologue. The amount can be
632 found in the variable crtl->outgoing_args_size. */
633 #define ACCUMULATE_OUTGOING_ARGS 1
634
635 /* Offset of first parameter from the argument pointer register value. */
636
637 #define FIRST_PARM_OFFSET(FNDECL) 0
638
639 /* Definitions for register eliminations.
640
641 We have two registers that can be eliminated on the Alpha. First, the
642 frame pointer register can often be eliminated in favor of the stack
643 pointer register. Secondly, the argument pointer register can always be
644 eliminated; it is replaced with either the stack or frame pointer. */
645
646 /* This is an array of structures. Each structure initializes one pair
647 of eliminable registers. The "from" register number is given first,
648 followed by "to". Eliminations of the same "from" register are listed
649 in order of preference. */
650
651 #define ELIMINABLE_REGS \
652 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
653 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
654 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
655 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
656
657 /* Round up to a multiple of 16 bytes. */
658 #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
659
660 /* Define the offset between two registers, one to be eliminated, and the other
661 its replacement, at the start of a routine. */
662 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
663 ((OFFSET) = alpha_initial_elimination_offset(FROM, TO))
664
665 /* Define this if stack space is still allocated for a parameter passed
666 in a register. */
667 /* #define REG_PARM_STACK_SPACE */
668
669 /* Define how to find the value returned by a function.
670 VALTYPE is the data type of the value (as a tree).
671 If the precise function being called is known, FUNC is its FUNCTION_DECL;
672 otherwise, FUNC is 0.
673
674 On Alpha the value is found in $0 for integer functions and
675 $f0 for floating-point functions. */
676
677 #define FUNCTION_VALUE(VALTYPE, FUNC) \
678 function_value (VALTYPE, FUNC, VOIDmode)
679
680 /* Define how to find the value returned by a library function
681 assuming the value has mode MODE. */
682
683 #define LIBCALL_VALUE(MODE) \
684 function_value (NULL, NULL, MODE)
685
686 /* 1 if N is a possible register number for a function value
687 as seen by the caller. */
688
689 #define FUNCTION_VALUE_REGNO_P(N) \
690 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
691
692 /* 1 if N is a possible register number for function argument passing.
693 On Alpha, these are $16-$21 and $f16-$f21. */
694
695 #define FUNCTION_ARG_REGNO_P(N) \
696 (IN_RANGE ((N), 16, 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
697 \f
698 /* Define a data type for recording info about an argument list
699 during the scan of that argument list. This data type should
700 hold all necessary information about the function itself
701 and about the args processed so far, enough to enable macros
702 such as FUNCTION_ARG to determine where the next arg should go.
703
704 On Alpha, this is a single integer, which is a number of words
705 of arguments scanned so far.
706 Thus 6 or more means all following args should go on the stack. */
707
708 #define CUMULATIVE_ARGS int
709
710 /* Initialize a variable CUM of type CUMULATIVE_ARGS
711 for a call to a function whose data type is FNTYPE.
712 For a library call, FNTYPE is 0. */
713
714 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
715 (CUM) = 0
716
717 /* Define intermediate macro to compute the size (in registers) of an argument
718 for the Alpha. */
719
720 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
721 ((MODE) == TFmode || (MODE) == TCmode ? 1 \
722 : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
723 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
724
725 /* Make (or fake) .linkage entry for function call.
726 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
727
728 /* This macro defines the start of an assembly comment. */
729
730 #define ASM_COMMENT_START " #"
731
732 /* This macro produces the initial definition of a function. */
733
734 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
735 alpha_start_function(FILE,NAME,DECL);
736
737 /* This macro closes up a function definition for the assembler. */
738
739 #define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
740 alpha_end_function(FILE,NAME,DECL)
741
742 /* Output any profiling code before the prologue. */
743
744 #define PROFILE_BEFORE_PROLOGUE 1
745
746 /* Never use profile counters. */
747
748 #define NO_PROFILE_COUNTERS 1
749
750 /* Output assembler code to FILE to increment profiler label # LABELNO
751 for profiling a function entry. Under OSF/1, profiling is enabled
752 by simply passing -pg to the assembler and linker. */
753
754 #define FUNCTION_PROFILER(FILE, LABELNO)
755
756 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
757 the stack pointer does not matter. The value is tested only in
758 functions that have frame pointers.
759 No definition is equivalent to always zero. */
760
761 #define EXIT_IGNORE_STACK 1
762
763 /* Define registers used by the epilogue and return instruction. */
764
765 #define EPILOGUE_USES(REGNO) ((REGNO) == 26)
766 \f
767 /* Length in units of the trampoline for entering a nested function. */
768
769 #define TRAMPOLINE_SIZE 32
770
771 /* The alignment of a trampoline, in bits. */
772
773 #define TRAMPOLINE_ALIGNMENT 64
774
775 /* A C expression whose value is RTL representing the value of the return
776 address for the frame COUNT steps up from the current frame.
777 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
778 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
779
780 #define RETURN_ADDR_RTX alpha_return_addr
781
782 /* Provide a definition of DWARF_FRAME_REGNUM here so that fallback unwinders
783 can use DWARF_ALT_FRAME_RETURN_COLUMN defined below. This is just the same
784 as the default definition in dwarf2out.c. */
785 #undef DWARF_FRAME_REGNUM
786 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
787
788 /* Before the prologue, RA lives in $26. */
789 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
790 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
791 #define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
792 #define DWARF_ZERO_REG 31
793
794 /* Describe how we implement __builtin_eh_return. */
795 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
796 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 28)
797 #define EH_RETURN_HANDLER_RTX \
798 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
799 crtl->outgoing_args_size))
800 \f
801 /* Addressing modes, and classification of registers for them. */
802
803 /* Macros to check register numbers against specific register classes. */
804
805 /* These assume that REGNO is a hard or pseudo reg number.
806 They give nonzero only if REGNO is a hard reg of the suitable class
807 or a pseudo reg currently allocated to a suitable hard reg.
808 Since they use reg_renumber, they are safe only once reg_renumber
809 has been allocated, which happens in local-alloc.c. */
810
811 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
812 #define REGNO_OK_FOR_BASE_P(REGNO) \
813 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
814 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
815 \f
816 /* Maximum number of registers that can appear in a valid memory address. */
817 #define MAX_REGS_PER_ADDRESS 1
818
819 /* Recognize any constant value that is a valid address. For the Alpha,
820 there are only constants none since we want to use LDA to load any
821 symbolic addresses into registers. */
822
823 #define CONSTANT_ADDRESS_P(X) \
824 (CONST_INT_P (X) \
825 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
826
827 /* Include all constant integers and constant doubles, but not
828 floating-point, except for floating-point zero. */
829
830 #define LEGITIMATE_CONSTANT_P alpha_legitimate_constant_p
831
832 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
833 and check its validity for a certain class.
834 We have two alternate definitions for each of them.
835 The usual definition accepts all pseudo regs; the other rejects
836 them unless they have been allocated suitable hard regs.
837 The symbol REG_OK_STRICT causes the latter definition to be used.
838
839 Most source files want to accept pseudo regs in the hope that
840 they will get allocated to the class that the insn wants them to be in.
841 Source files for reload pass need to be strict.
842 After reload, it makes no difference, since pseudo regs have
843 been eliminated by then. */
844
845 /* Nonzero if X is a hard reg that can be used as an index
846 or if it is a pseudo reg. */
847 #define REG_OK_FOR_INDEX_P(X) 0
848
849 /* Nonzero if X is a hard reg that can be used as a base reg
850 or if it is a pseudo reg. */
851 #define NONSTRICT_REG_OK_FOR_BASE_P(X) \
852 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
853
854 /* ??? Nonzero if X is the frame pointer, or some virtual register
855 that may eliminate to the frame pointer. These will be allowed to
856 have offsets greater than 32K. This is done because register
857 elimination offsets will change the hi/lo split, and if we split
858 before reload, we will require additional instructions. */
859 #define NONSTRICT_REG_OK_FP_BASE_P(X) \
860 (REGNO (X) == 31 || REGNO (X) == 63 \
861 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
862 && REGNO (X) < LAST_VIRTUAL_POINTER_REGISTER))
863
864 /* Nonzero if X is a hard reg that can be used as a base reg. */
865 #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
866
867 #ifdef REG_OK_STRICT
868 #define REG_OK_FOR_BASE_P(X) STRICT_REG_OK_FOR_BASE_P (X)
869 #else
870 #define REG_OK_FOR_BASE_P(X) NONSTRICT_REG_OK_FOR_BASE_P (X)
871 #endif
872 \f
873 /* Try a machine-dependent way of reloading an illegitimate address
874 operand. If we find one, push the reload and jump to WIN. This
875 macro is used in only one place: `find_reloads_address' in reload.c. */
876
877 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
878 do { \
879 rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
880 if (new_x) \
881 { \
882 X = new_x; \
883 goto WIN; \
884 } \
885 } while (0)
886
887 /* Go to LABEL if ADDR (a legitimate address expression)
888 has an effect that depends on the machine mode it is used for.
889 On the Alpha this is true only for the unaligned modes. We can
890 simplify this test since we know that the address must be valid. */
891
892 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
893 { if (GET_CODE (ADDR) == AND) goto LABEL; }
894 \f
895 /* Specify the machine mode that this machine uses
896 for the index in the tablejump instruction. */
897 #define CASE_VECTOR_MODE SImode
898
899 /* Define as C expression which evaluates to nonzero if the tablejump
900 instruction expects the table to contain offsets from the address of the
901 table.
902
903 Do not define this if the table should contain absolute addresses.
904 On the Alpha, the table is really GP-relative, not relative to the PC
905 of the table, but we pretend that it is PC-relative; this should be OK,
906 but we should try to find some better way sometime. */
907 #define CASE_VECTOR_PC_RELATIVE 1
908
909 /* Define this as 1 if `char' should by default be signed; else as 0. */
910 #define DEFAULT_SIGNED_CHAR 1
911
912 /* Max number of bytes we can move to or from memory
913 in one reasonably fast instruction. */
914
915 #define MOVE_MAX 8
916
917 /* If a memory-to-memory move would take MOVE_RATIO or more simple
918 move-instruction pairs, we will do a movmem or libcall instead.
919
920 Without byte/word accesses, we want no more than four instructions;
921 with, several single byte accesses are better. */
922
923 #define MOVE_RATIO(speed) (TARGET_BWX ? 7 : 2)
924
925 /* Largest number of bytes of an object that can be placed in a register.
926 On the Alpha we have plenty of registers, so use TImode. */
927 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
928
929 /* Nonzero if access to memory by bytes is no faster than for words.
930 Also nonzero if doing byte operations (specifically shifts) in registers
931 is undesirable.
932
933 On the Alpha, we want to not use the byte operation and instead use
934 masking operations to access fields; these will save instructions. */
935
936 #define SLOW_BYTE_ACCESS 1
937
938 /* Define if operations between registers always perform the operation
939 on the full register even if a narrower mode is specified. */
940 #define WORD_REGISTER_OPERATIONS
941
942 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
943 will either zero-extend or sign-extend. The value of this macro should
944 be the code that says which one of the two operations is implicitly
945 done, UNKNOWN if none. */
946 #define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
947
948 /* Define if loading short immediate values into registers sign extends. */
949 #define SHORT_IMMEDIATES_SIGN_EXTEND
950
951 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
952 is done just by pretending it is already truncated. */
953 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
954
955 /* The CIX ctlz and cttz instructions return 64 for zero. */
956 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
957 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
958
959 /* Define the value returned by a floating-point comparison instruction. */
960
961 #define FLOAT_STORE_FLAG_VALUE(MODE) \
962 REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
963
964 /* Canonicalize a comparison from one we don't have to one we do have. */
965
966 #define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
967 do { \
968 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
969 && (REG_P (OP1) || (OP1) == const0_rtx)) \
970 { \
971 rtx tem = (OP0); \
972 (OP0) = (OP1); \
973 (OP1) = tem; \
974 (CODE) = swap_condition (CODE); \
975 } \
976 if (((CODE) == LT || (CODE) == LTU) \
977 && CONST_INT_P (OP1) && INTVAL (OP1) == 256) \
978 { \
979 (CODE) = (CODE) == LT ? LE : LEU; \
980 (OP1) = GEN_INT (255); \
981 } \
982 } while (0)
983
984 /* Specify the machine mode that pointers have.
985 After generation of rtl, the compiler makes no further distinction
986 between pointers and any other objects of this machine mode. */
987 #define Pmode DImode
988
989 /* Mode of a function address in a call instruction (for indexing purposes). */
990
991 #define FUNCTION_MODE Pmode
992
993 /* Define this if addresses of constant functions
994 shouldn't be put through pseudo regs where they can be cse'd.
995 Desirable on machines where ordinary constants are expensive
996 but a CALL with constant address is cheap.
997
998 We define this on the Alpha so that gen_call and gen_call_value
999 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1000 then copy it into a register, thus actually letting the address be
1001 cse'ed. */
1002
1003 #define NO_FUNCTION_CSE
1004
1005 /* Define this to be nonzero if shift instructions ignore all but the low-order
1006 few bits. */
1007 #define SHIFT_COUNT_TRUNCATED 1
1008 \f
1009 /* Control the assembler format that we output. */
1010
1011 /* Output to assembler file text saying following lines
1012 may contain character constants, extra white space, comments, etc. */
1013 #define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
1014
1015 /* Output to assembler file text saying following lines
1016 no longer contain unusual constructs. */
1017 #define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
1018
1019 #define TEXT_SECTION_ASM_OP "\t.text"
1020
1021 /* Output before read-only data. */
1022
1023 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata"
1024
1025 /* Output before writable data. */
1026
1027 #define DATA_SECTION_ASM_OP "\t.data"
1028
1029 /* How to refer to registers in assembler output.
1030 This sequence is indexed by compiler's hard-register-number (see above). */
1031
1032 #define REGISTER_NAMES \
1033 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1034 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1035 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
1036 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1037 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1038 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1039 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1040 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1041
1042 /* Strip name encoding when emitting labels. */
1043
1044 #define ASM_OUTPUT_LABELREF(STREAM, NAME) \
1045 do { \
1046 const char *name_ = NAME; \
1047 if (*name_ == '@' || *name_ == '%') \
1048 name_ += 2; \
1049 if (*name_ == '*') \
1050 name_++; \
1051 else \
1052 fputs (user_label_prefix, STREAM); \
1053 fputs (name_, STREAM); \
1054 } while (0)
1055
1056 /* Globalizing directive for a label. */
1057 #define GLOBAL_ASM_OP "\t.globl "
1058
1059 /* The prefix to add to user-visible assembler symbols. */
1060
1061 #define USER_LABEL_PREFIX ""
1062
1063 /* This is how to output a label for a jump table. Arguments are the same as
1064 for (*targetm.asm_out.internal_label), except the insn for the jump table is
1065 passed. */
1066
1067 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1068 { ASM_OUTPUT_ALIGN (FILE, 2); (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); }
1069
1070 /* This is how to store into the string LABEL
1071 the symbol_ref name of an internal numbered label where
1072 PREFIX is the class of label and NUM is the number within the class.
1073 This is suitable for output with `assemble_name'. */
1074
1075 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1076 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1077
1078 /* We use the default ASCII-output routine, except that we don't write more
1079 than 50 characters since the assembler doesn't support very long lines. */
1080
1081 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1082 do { \
1083 FILE *_hide_asm_out_file = (MYFILE); \
1084 const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
1085 int _hide_thissize = (MYLENGTH); \
1086 int _size_so_far = 0; \
1087 { \
1088 FILE *asm_out_file = _hide_asm_out_file; \
1089 const unsigned char *p = _hide_p; \
1090 int thissize = _hide_thissize; \
1091 int i; \
1092 fprintf (asm_out_file, "\t.ascii \""); \
1093 \
1094 for (i = 0; i < thissize; i++) \
1095 { \
1096 register int c = p[i]; \
1097 \
1098 if (_size_so_far ++ > 50 && i < thissize - 4) \
1099 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1100 \
1101 if (c == '\"' || c == '\\') \
1102 putc ('\\', asm_out_file); \
1103 if (c >= ' ' && c < 0177) \
1104 putc (c, asm_out_file); \
1105 else \
1106 { \
1107 fprintf (asm_out_file, "\\%o", c); \
1108 /* After an octal-escape, if a digit follows, \
1109 terminate one string constant and start another. \
1110 The VAX assembler fails to stop reading the escape \
1111 after three digits, so this is the only way we \
1112 can get it to parse the data properly. */ \
1113 if (i < thissize - 1 && ISDIGIT (p[i + 1])) \
1114 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
1115 } \
1116 } \
1117 fprintf (asm_out_file, "\"\n"); \
1118 } \
1119 } \
1120 while (0)
1121
1122 /* This is how to output an element of a case-vector that is relative. */
1123
1124 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1125 fprintf (FILE, "\t.gprel32 $L%d\n", (VALUE))
1126
1127 /* This is how to output an assembler line
1128 that says to advance the location counter
1129 to a multiple of 2**LOG bytes. */
1130
1131 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1132 if ((LOG) != 0) \
1133 fprintf (FILE, "\t.align %d\n", LOG);
1134
1135 /* This is how to advance the location counter by SIZE bytes. */
1136
1137 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1138 fprintf (FILE, "\t.space "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1139
1140 /* This says how to output an assembler line
1141 to define a global common symbol. */
1142
1143 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1144 ( fputs ("\t.comm ", (FILE)), \
1145 assemble_name ((FILE), (NAME)), \
1146 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1147
1148 /* This says how to output an assembler line
1149 to define a local common symbol. */
1150
1151 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1152 ( fputs ("\t.lcomm ", (FILE)), \
1153 assemble_name ((FILE), (NAME)), \
1154 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE)))
1155 \f
1156
1157 /* Print operand X (an rtx) in assembler syntax to file FILE.
1158 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1159 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1160
1161 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1162
1163 /* Determine which codes are valid without a following integer. These must
1164 not be alphabetic.
1165
1166 ~ Generates the name of the current function.
1167
1168 / Generates the instruction suffix. The TRAP_SUFFIX and ROUND_SUFFIX
1169 attributes are examined to determine what is appropriate.
1170
1171 , Generates single precision suffix for floating point
1172 instructions (s for IEEE, f for VAX)
1173
1174 - Generates double precision suffix for floating point
1175 instructions (t for IEEE, g for VAX)
1176 */
1177
1178 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1179 ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
1180 || (CODE) == '#' || (CODE) == '*' || (CODE) == '&')
1181
1182 /* Print a memory address as an operand to reference that memory location. */
1183
1184 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1185 print_operand_address((FILE), (ADDR))
1186 \f
1187 /* Tell collect that the object format is ECOFF. */
1188 #define OBJECT_FORMAT_COFF
1189 #define EXTENDED_COFF
1190
1191 /* If we use NM, pass -g to it so it only lists globals. */
1192 #define NM_FLAGS "-pg"
1193
1194 /* Definitions for debugging. */
1195
1196 #define SDB_DEBUGGING_INFO 1 /* generate info for mips-tfile */
1197 #define DBX_DEBUGGING_INFO 1 /* generate embedded stabs */
1198 #define MIPS_DEBUGGING_INFO 1 /* MIPS specific debugging info */
1199
1200 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
1201 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
1202 #endif
1203
1204
1205 /* Correct the offset of automatic variables and arguments. Note that
1206 the Alpha debug format wants all automatic variables and arguments
1207 to be in terms of two different offsets from the virtual frame pointer,
1208 which is the stack pointer before any adjustment in the function.
1209 The offset for the argument pointer is fixed for the native compiler,
1210 it is either zero (for the no arguments case) or large enough to hold
1211 all argument registers.
1212 The offset for the auto pointer is the fourth argument to the .frame
1213 directive (local_offset).
1214 To stay compatible with the native tools we use the same offsets
1215 from the virtual frame pointer and adjust the debugger arg/auto offsets
1216 accordingly. These debugger offsets are set up in output_prolog. */
1217
1218 extern long alpha_arg_offset;
1219 extern long alpha_auto_offset;
1220 #define DEBUGGER_AUTO_OFFSET(X) \
1221 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1222 #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1223
1224 /* mips-tfile doesn't understand .stabd directives. */
1225 #define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
1226 dbxout_begin_stabn_sline (LINE); \
1227 dbxout_stab_value_internal_label ("LM", &COUNTER); \
1228 } while (0)
1229
1230 /* We want to use MIPS-style .loc directives for SDB line numbers. */
1231 extern int num_source_filenames;
1232 #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
1233 fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
1234
1235 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
1236 alpha_output_filename (STREAM, NAME)
1237
1238 /* mips-tfile.c limits us to strings of one page. We must underestimate this
1239 number, because the real length runs past this up to the next
1240 continuation point. This is really a dbxout.c bug. */
1241 #define DBX_CONTIN_LENGTH 3000
1242
1243 /* By default, turn on GDB extensions. */
1244 #define DEFAULT_GDB_EXTENSIONS 1
1245
1246 /* Stabs-in-ECOFF can't handle dbxout_function_end(). */
1247 #define NO_DBX_FUNCTION_END 1
1248
1249 /* If we are smuggling stabs through the ALPHA ECOFF object
1250 format, put a comment in front of the .stab<x> operation so
1251 that the ALPHA assembler does not choke. The mips-tfile program
1252 will correctly put the stab into the object file. */
1253
1254 #define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1255 #define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1256 #define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
1257
1258 /* Forward references to tags are allowed. */
1259 #define SDB_ALLOW_FORWARD_REFERENCES
1260
1261 /* Unknown tags are also allowed. */
1262 #define SDB_ALLOW_UNKNOWN_REFERENCES
1263
1264 #define PUT_SDB_DEF(a) \
1265 do { \
1266 fprintf (asm_out_file, "\t%s.def\t", \
1267 (TARGET_GAS) ? "" : "#"); \
1268 ASM_OUTPUT_LABELREF (asm_out_file, a); \
1269 fputc (';', asm_out_file); \
1270 } while (0)
1271
1272 #define PUT_SDB_PLAIN_DEF(a) \
1273 do { \
1274 fprintf (asm_out_file, "\t%s.def\t.%s;", \
1275 (TARGET_GAS) ? "" : "#", (a)); \
1276 } while (0)
1277
1278 #define PUT_SDB_TYPE(a) \
1279 do { \
1280 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
1281 } while (0)
1282
1283 /* For block start and end, we create labels, so that
1284 later we can figure out where the correct offset is.
1285 The normal .ent/.end serve well enough for functions,
1286 so those are just commented out. */
1287
1288 extern int sdb_label_count; /* block start/end next label # */
1289
1290 #define PUT_SDB_BLOCK_START(LINE) \
1291 do { \
1292 fprintf (asm_out_file, \
1293 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
1294 sdb_label_count, \
1295 (TARGET_GAS) ? "" : "#", \
1296 sdb_label_count, \
1297 (LINE)); \
1298 sdb_label_count++; \
1299 } while (0)
1300
1301 #define PUT_SDB_BLOCK_END(LINE) \
1302 do { \
1303 fprintf (asm_out_file, \
1304 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
1305 sdb_label_count, \
1306 (TARGET_GAS) ? "" : "#", \
1307 sdb_label_count, \
1308 (LINE)); \
1309 sdb_label_count++; \
1310 } while (0)
1311
1312 #define PUT_SDB_FUNCTION_START(LINE)
1313
1314 #define PUT_SDB_FUNCTION_END(LINE)
1315
1316 #define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
1317
1318 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
1319 mips-tdump.c to print them out.
1320
1321 These must match the corresponding definitions in gdb/mipsread.c.
1322 Unfortunately, gcc and gdb do not currently share any directories. */
1323
1324 #define CODE_MASK 0x8F300
1325 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
1326 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
1327 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
1328
1329 /* Override some mips-tfile definitions. */
1330
1331 #define SHASH_SIZE 511
1332 #define THASH_SIZE 55
1333
1334 /* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
1335
1336 #define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
1337
1338 /* The system headers under Alpha systems are generally C++-aware. */
1339 #define NO_IMPLICIT_EXTERN_C