]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/alpha/alpha.h
Remove LIBGCC2_LONG_DOUBLE_TYPE_SIZE target macro.
[thirdparty/gcc.git] / gcc / config / alpha / alpha.h
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Target CPU builtins. */
22 #define TARGET_CPU_CPP_BUILTINS() \
23 do \
24 { \
25 builtin_define ("__alpha"); \
26 builtin_define ("__alpha__"); \
27 builtin_assert ("cpu=alpha"); \
28 builtin_assert ("machine=alpha"); \
29 if (TARGET_CIX) \
30 { \
31 builtin_define ("__alpha_cix__"); \
32 builtin_assert ("cpu=cix"); \
33 } \
34 if (TARGET_FIX) \
35 { \
36 builtin_define ("__alpha_fix__"); \
37 builtin_assert ("cpu=fix"); \
38 } \
39 if (TARGET_BWX) \
40 { \
41 builtin_define ("__alpha_bwx__"); \
42 builtin_assert ("cpu=bwx"); \
43 } \
44 if (TARGET_MAX) \
45 { \
46 builtin_define ("__alpha_max__"); \
47 builtin_assert ("cpu=max"); \
48 } \
49 if (alpha_cpu == PROCESSOR_EV6) \
50 { \
51 builtin_define ("__alpha_ev6__"); \
52 builtin_assert ("cpu=ev6"); \
53 } \
54 else if (alpha_cpu == PROCESSOR_EV5) \
55 { \
56 builtin_define ("__alpha_ev5__"); \
57 builtin_assert ("cpu=ev5"); \
58 } \
59 else /* Presumably ev4. */ \
60 { \
61 builtin_define ("__alpha_ev4__"); \
62 builtin_assert ("cpu=ev4"); \
63 } \
64 if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT) \
65 builtin_define ("_IEEE_FP"); \
66 if (TARGET_IEEE_WITH_INEXACT) \
67 builtin_define ("_IEEE_FP_INEXACT"); \
68 if (TARGET_LONG_DOUBLE_128) \
69 builtin_define ("__LONG_DOUBLE_128__"); \
70 \
71 /* Macros dependent on the C dialect. */ \
72 SUBTARGET_LANGUAGE_CPP_BUILTINS(); \
73 } while (0)
74
75 #ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
76 #define SUBTARGET_LANGUAGE_CPP_BUILTINS() \
77 do \
78 { \
79 if (preprocessing_asm_p ()) \
80 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
81 else if (c_dialect_cxx ()) \
82 { \
83 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
84 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
85 } \
86 else \
87 builtin_define_std ("LANGUAGE_C"); \
88 if (c_dialect_objc ()) \
89 { \
90 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
91 builtin_define ("__LANGUAGE_OBJECTIVE_C__"); \
92 } \
93 } \
94 while (0)
95 #endif
96
97 /* Run-time compilation parameters selecting different hardware subsets. */
98
99 /* Which processor to schedule for. The cpu attribute defines a list that
100 mirrors this list, so changes to alpha.md must be made at the same time. */
101
102 enum processor_type
103 {
104 PROCESSOR_EV4, /* 2106[46]{a,} */
105 PROCESSOR_EV5, /* 21164{a,pc,} */
106 PROCESSOR_EV6, /* 21264 */
107 PROCESSOR_MAX
108 };
109
110 extern enum processor_type alpha_cpu;
111 extern enum processor_type alpha_tune;
112
113 enum alpha_trap_precision
114 {
115 ALPHA_TP_PROG, /* No precision (default). */
116 ALPHA_TP_FUNC, /* Trap contained within originating function. */
117 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
118 };
119
120 enum alpha_fp_rounding_mode
121 {
122 ALPHA_FPRM_NORM, /* Normal rounding mode. */
123 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
124 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
125 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
126 };
127
128 enum alpha_fp_trap_mode
129 {
130 ALPHA_FPTM_N, /* Normal trap mode. */
131 ALPHA_FPTM_U, /* Underflow traps enabled. */
132 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
133 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
134 };
135
136 extern enum alpha_trap_precision alpha_tp;
137 extern enum alpha_fp_rounding_mode alpha_fprm;
138 extern enum alpha_fp_trap_mode alpha_fptm;
139
140 /* Invert the easy way to make options work. */
141 #define TARGET_FP (!TARGET_SOFT_FP)
142
143 /* These are for target os support and cannot be changed at runtime. */
144 #define TARGET_ABI_OPEN_VMS 0
145 #define TARGET_ABI_OSF (!TARGET_ABI_OPEN_VMS)
146
147 #ifndef TARGET_CAN_FAULT_IN_PROLOGUE
148 #define TARGET_CAN_FAULT_IN_PROLOGUE 0
149 #endif
150 #ifndef TARGET_HAS_XFLOATING_LIBS
151 #define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
152 #endif
153 #ifndef TARGET_PROFILING_NEEDS_GP
154 #define TARGET_PROFILING_NEEDS_GP 0
155 #endif
156 #ifndef TARGET_FIXUP_EV5_PREFETCH
157 #define TARGET_FIXUP_EV5_PREFETCH 0
158 #endif
159 #ifndef HAVE_AS_TLS
160 #define HAVE_AS_TLS 0
161 #endif
162
163 #define TARGET_DEFAULT MASK_FPREGS
164
165 #ifndef TARGET_CPU_DEFAULT
166 #define TARGET_CPU_DEFAULT 0
167 #endif
168
169 #ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
170 #ifdef HAVE_AS_EXPLICIT_RELOCS
171 #define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
172 #define TARGET_SUPPORT_ARCH 1
173 #else
174 #define TARGET_DEFAULT_EXPLICIT_RELOCS 0
175 #endif
176 #endif
177
178 #ifndef TARGET_SUPPORT_ARCH
179 #define TARGET_SUPPORT_ARCH 0
180 #endif
181
182 /* Support for a compile-time default CPU, et cetera. The rules are:
183 --with-cpu is ignored if -mcpu is specified.
184 --with-tune is ignored if -mtune is specified. */
185 #define OPTION_DEFAULT_SPECS \
186 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
187 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }
188
189 \f
190 /* target machine storage layout */
191
192 /* Define the size of `int'. The default is the same as the word size. */
193 #define INT_TYPE_SIZE 32
194
195 /* Define the size of `long long'. The default is the twice the word size. */
196 #define LONG_LONG_TYPE_SIZE 64
197
198 /* The two floating-point formats we support are S-floating, which is
199 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
200 and `long double' are T. */
201
202 #define FLOAT_TYPE_SIZE 32
203 #define DOUBLE_TYPE_SIZE 64
204 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
205
206 /* Work around target_flags dependency in ada/targtyps.c. */
207 #define WIDEST_HARDWARE_FP_SIZE 64
208
209 #define WCHAR_TYPE "unsigned int"
210 #define WCHAR_TYPE_SIZE 32
211
212 /* Define this macro if it is advisable to hold scalars in registers
213 in a wider mode than that declared by the program. In such cases,
214 the value is constrained to be within the bounds of the declared
215 type, but kept valid in the wider mode. The signedness of the
216 extension may differ from that of the type.
217
218 For Alpha, we always store objects in a full register. 32-bit integers
219 are always sign-extended, but smaller objects retain their signedness.
220
221 Note that small vector types can get mapped onto integer modes at the
222 whim of not appearing in alpha-modes.def. We never promoted these
223 values before; don't do so now that we've trimmed the set of modes to
224 those actually implemented in the backend. */
225
226 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
227 if (GET_MODE_CLASS (MODE) == MODE_INT \
228 && (TYPE == NULL || TREE_CODE (TYPE) != VECTOR_TYPE) \
229 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
230 { \
231 if ((MODE) == SImode) \
232 (UNSIGNEDP) = 0; \
233 (MODE) = DImode; \
234 }
235
236 /* Define this if most significant bit is lowest numbered
237 in instructions that operate on numbered bit-fields.
238
239 There are no such instructions on the Alpha, but the documentation
240 is little endian. */
241 #define BITS_BIG_ENDIAN 0
242
243 /* Define this if most significant byte of a word is the lowest numbered.
244 This is false on the Alpha. */
245 #define BYTES_BIG_ENDIAN 0
246
247 /* Define this if most significant word of a multiword number is lowest
248 numbered.
249
250 For Alpha we can decide arbitrarily since there are no machine instructions
251 for them. Might as well be consistent with bytes. */
252 #define WORDS_BIG_ENDIAN 0
253
254 /* Width of a word, in units (bytes). */
255 #define UNITS_PER_WORD 8
256
257 /* Width in bits of a pointer.
258 See also the macro `Pmode' defined below. */
259 #define POINTER_SIZE 64
260
261 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
262 #define PARM_BOUNDARY 64
263
264 /* Boundary (in *bits*) on which stack pointer should be aligned. */
265 #define STACK_BOUNDARY 128
266
267 /* Allocation boundary (in *bits*) for the code of a function. */
268 #define FUNCTION_BOUNDARY 32
269
270 /* Alignment of field after `int : 0' in a structure. */
271 #define EMPTY_FIELD_BOUNDARY 64
272
273 /* Every structure's size must be a multiple of this. */
274 #define STRUCTURE_SIZE_BOUNDARY 8
275
276 /* A bit-field declared as `int' forces `int' alignment for the struct. */
277 #undef PCC_BITFILED_TYPE_MATTERS
278 #define PCC_BITFIELD_TYPE_MATTERS 1
279
280 /* No data type wants to be aligned rounder than this. */
281 #define BIGGEST_ALIGNMENT 128
282
283 /* For atomic access to objects, must have at least 32-bit alignment
284 unless the machine has byte operations. */
285 #define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
286
287 /* Align all constants and variables to at least a word boundary so
288 we can pick up pieces of them faster. */
289 /* ??? Only if block-move stuff knows about different source/destination
290 alignment. */
291 #if 0
292 #define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
293 #define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
294 #endif
295
296 /* Set this nonzero if move instructions will actually fail to work
297 when given unaligned data.
298
299 Since we get an error message when we do one, call them invalid. */
300
301 #define STRICT_ALIGNMENT 1
302
303 /* Set this nonzero if unaligned move instructions are extremely slow.
304
305 On the Alpha, they trap. */
306
307 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
308
309 /* Standard register usage. */
310
311 /* Number of actual hardware registers.
312 The hardware registers are assigned numbers for the compiler
313 from 0 to just below FIRST_PSEUDO_REGISTER.
314 All registers that the compiler knows about must be given numbers,
315 even those that are not normally considered general registers.
316
317 We define all 32 integer registers, even though $31 is always zero,
318 and all 32 floating-point registers, even though $f31 is also
319 always zero. We do not bother defining the FP status register and
320 there are no other registers.
321
322 Since $31 is always zero, we will use register number 31 as the
323 argument pointer. It will never appear in the generated code
324 because we will always be eliminating it in favor of the stack
325 pointer or hardware frame pointer.
326
327 Likewise, we use $f31 for the frame pointer, which will always
328 be eliminated in favor of the hardware frame pointer or the
329 stack pointer. */
330
331 #define FIRST_PSEUDO_REGISTER 64
332
333 /* 1 for registers that have pervasive standard uses
334 and are not available for the register allocator. */
335
336 #define FIXED_REGISTERS \
337 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
338 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
339 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
340 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
341
342 /* 1 for registers not available across function calls.
343 These must include the FIXED_REGISTERS and also any
344 registers that can be used without being saved.
345 The latter must include the registers where values are returned
346 and the register where structure-value addresses are passed.
347 Aside from that, you can include as many other registers as you like. */
348 #define CALL_USED_REGISTERS \
349 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
350 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
351 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
352 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
353
354 /* List the order in which to allocate registers. Each register must be
355 listed once, even those in FIXED_REGISTERS. */
356
357 #define REG_ALLOC_ORDER { \
358 1, 2, 3, 4, 5, 6, 7, 8, /* nonsaved integer registers */ \
359 22, 23, 24, 25, 28, /* likewise */ \
360 0, /* likewise, but return value */ \
361 21, 20, 19, 18, 17, 16, /* likewise, but input args */ \
362 27, /* likewise, but OSF procedure value */ \
363 \
364 42, 43, 44, 45, 46, 47, /* nonsaved floating-point registers */ \
365 54, 55, 56, 57, 58, 59, /* likewise */ \
366 60, 61, 62, /* likewise */ \
367 32, 33, /* likewise, but return values */ \
368 53, 52, 51, 50, 49, 48, /* likewise, but input args */ \
369 \
370 9, 10, 11, 12, 13, 14, /* saved integer registers */ \
371 26, /* return address */ \
372 15, /* hard frame pointer */ \
373 \
374 34, 35, 36, 37, 38, 39, /* saved floating-point registers */ \
375 40, 41, /* likewise */ \
376 \
377 29, 30, 31, 63 /* gp, sp, ap, sfp */ \
378 }
379
380 /* Return number of consecutive hard regs needed starting at reg REGNO
381 to hold something of mode MODE.
382 This is ordinarily the length in words of a value of mode MODE
383 but can be less for certain modes in special long registers. */
384
385 #define HARD_REGNO_NREGS(REGNO, MODE) \
386 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
387
388 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
389 On Alpha, the integer registers can hold any mode. The floating-point
390 registers can hold 64-bit integers as well, but not smaller values. */
391
392 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
393 (IN_RANGE ((REGNO), 32, 62) \
394 ? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode \
395 || (MODE) == SCmode || (MODE) == DCmode \
396 : 1)
397
398 /* A C expression that is nonzero if a value of mode
399 MODE1 is accessible in mode MODE2 without copying.
400
401 This asymmetric test is true when MODE1 could be put
402 in an FP register but MODE2 could not. */
403
404 #define MODES_TIEABLE_P(MODE1, MODE2) \
405 (HARD_REGNO_MODE_OK (32, (MODE1)) \
406 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
407 : 1)
408
409 /* Specify the registers used for certain standard purposes.
410 The values of these macros are register numbers. */
411
412 /* Alpha pc isn't overloaded on a register that the compiler knows about. */
413 /* #define PC_REGNUM */
414
415 /* Register to use for pushing function arguments. */
416 #define STACK_POINTER_REGNUM 30
417
418 /* Base register for access to local variables of the function. */
419 #define HARD_FRAME_POINTER_REGNUM 15
420
421 /* Base register for access to arguments of the function. */
422 #define ARG_POINTER_REGNUM 31
423
424 /* Base register for access to local variables of function. */
425 #define FRAME_POINTER_REGNUM 63
426
427 /* Register in which static-chain is passed to a function.
428
429 For the Alpha, this is based on an example; the calling sequence
430 doesn't seem to specify this. */
431 #define STATIC_CHAIN_REGNUM 1
432
433 /* The register number of the register used to address a table of
434 static data addresses in memory. */
435 #define PIC_OFFSET_TABLE_REGNUM 29
436
437 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
438 is clobbered by calls. */
439 /* ??? It is and it isn't. It's required to be valid for a given
440 function when the function returns. It isn't clobbered by
441 current_file functions. Moreover, we do not expose the ldgp
442 until after reload, so we're probably safe. */
443 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
444 \f
445 /* Define the classes of registers for register constraints in the
446 machine description. Also define ranges of constants.
447
448 One of the classes must always be named ALL_REGS and include all hard regs.
449 If there is more than one class, another class must be named NO_REGS
450 and contain no registers.
451
452 The name GENERAL_REGS must be the name of a class (or an alias for
453 another name such as ALL_REGS). This is the class of registers
454 that is allowed by "g" or "r" in a register constraint.
455 Also, registers outside this class are allocated only when
456 instructions express preferences for them.
457
458 The classes must be numbered in nondecreasing order; that is,
459 a larger-numbered class must never be contained completely
460 in a smaller-numbered class.
461
462 For any two classes, it is very desirable that there be another
463 class that represents their union. */
464
465 enum reg_class {
466 NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
467 GENERAL_REGS, FLOAT_REGS, ALL_REGS,
468 LIM_REG_CLASSES
469 };
470
471 #define N_REG_CLASSES (int) LIM_REG_CLASSES
472
473 /* Give names of register classes as strings for dump file. */
474
475 #define REG_CLASS_NAMES \
476 {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG", \
477 "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
478
479 /* Define which registers fit in which classes.
480 This is an initializer for a vector of HARD_REG_SET
481 of length N_REG_CLASSES. */
482
483 #define REG_CLASS_CONTENTS \
484 { {0x00000000, 0x00000000}, /* NO_REGS */ \
485 {0x00000001, 0x00000000}, /* R0_REG */ \
486 {0x01000000, 0x00000000}, /* R24_REG */ \
487 {0x02000000, 0x00000000}, /* R25_REG */ \
488 {0x08000000, 0x00000000}, /* R27_REG */ \
489 {0xffffffff, 0x80000000}, /* GENERAL_REGS */ \
490 {0x00000000, 0x7fffffff}, /* FLOAT_REGS */ \
491 {0xffffffff, 0xffffffff} }
492
493 /* The same information, inverted:
494 Return the class number of the smallest class containing
495 reg number REGNO. This could be a conditional expression
496 or could index an array. */
497
498 #define REGNO_REG_CLASS(REGNO) \
499 ((REGNO) == 0 ? R0_REG \
500 : (REGNO) == 24 ? R24_REG \
501 : (REGNO) == 25 ? R25_REG \
502 : (REGNO) == 27 ? R27_REG \
503 : IN_RANGE ((REGNO), 32, 62) ? FLOAT_REGS \
504 : GENERAL_REGS)
505
506 /* The class value for index registers, and the one for base regs. */
507 #define INDEX_REG_CLASS NO_REGS
508 #define BASE_REG_CLASS GENERAL_REGS
509
510 /* Given an rtx X being reloaded into a reg required to be
511 in class CLASS, return the class of reg to actually use.
512 In general this is just CLASS; but on some machines
513 in some cases it is preferable to use a more restrictive class. */
514
515 #define PREFERRED_RELOAD_CLASS alpha_preferred_reload_class
516
517 /* If we are copying between general and FP registers, we need a memory
518 location unless the FIX extension is available. */
519
520 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
521 (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
522 || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
523
524 /* Specify the mode to be used for memory when a secondary memory
525 location is needed. If MODE is floating-point, use it. Otherwise,
526 widen to a word like the default. This is needed because we always
527 store integers in FP registers in quadword format. This whole
528 area is very tricky! */
529 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
530 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
531 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
532 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
533
534 /* Return the class of registers that cannot change mode from FROM to TO. */
535
536 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
537 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
538 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
539
540 /* Define the cost of moving between registers of various classes. Moving
541 between FLOAT_REGS and anything else except float regs is expensive.
542 In fact, we make it quite expensive because we really don't want to
543 do these moves unless it is clearly worth it. Optimizations may
544 reduce the impact of not being able to allocate a pseudo to a
545 hard register. */
546
547 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
548 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 \
549 : TARGET_FIX ? ((CLASS1) == FLOAT_REGS ? 6 : 8) \
550 : 4+2*alpha_memory_latency)
551
552 /* A C expressions returning the cost of moving data of MODE from a register to
553 or from memory.
554
555 On the Alpha, bump this up a bit. */
556
557 extern int alpha_memory_latency;
558 #define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
559
560 /* Provide the cost of a branch. Exact meaning under development. */
561 #define BRANCH_COST(speed_p, predictable_p) 5
562 \f
563 /* Stack layout; function entry, exit and calling. */
564
565 /* Define this if pushing a word on the stack
566 makes the stack pointer a smaller address. */
567 #define STACK_GROWS_DOWNWARD
568
569 /* Define this to nonzero if the nominal address of the stack frame
570 is at the high-address end of the local variables;
571 that is, each additional local variable allocated
572 goes at a more negative offset in the frame. */
573 /* #define FRAME_GROWS_DOWNWARD 0 */
574
575 /* Offset within stack frame to start allocating local variables at.
576 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
577 first local allocated. Otherwise, it is the offset to the BEGINNING
578 of the first local allocated. */
579
580 #define STARTING_FRAME_OFFSET 0
581
582 /* If we generate an insn to push BYTES bytes,
583 this says how many the stack pointer really advances by.
584 On Alpha, don't define this because there are no push insns. */
585 /* #define PUSH_ROUNDING(BYTES) */
586
587 /* Define this to be nonzero if stack checking is built into the ABI. */
588 #define STACK_CHECK_BUILTIN 1
589
590 /* Define this if the maximum size of all the outgoing args is to be
591 accumulated and pushed during the prologue. The amount can be
592 found in the variable crtl->outgoing_args_size. */
593 #define ACCUMULATE_OUTGOING_ARGS 1
594
595 /* Offset of first parameter from the argument pointer register value. */
596
597 #define FIRST_PARM_OFFSET(FNDECL) 0
598
599 /* Definitions for register eliminations.
600
601 We have two registers that can be eliminated on the Alpha. First, the
602 frame pointer register can often be eliminated in favor of the stack
603 pointer register. Secondly, the argument pointer register can always be
604 eliminated; it is replaced with either the stack or frame pointer. */
605
606 /* This is an array of structures. Each structure initializes one pair
607 of eliminable registers. The "from" register number is given first,
608 followed by "to". Eliminations of the same "from" register are listed
609 in order of preference. */
610
611 #define ELIMINABLE_REGS \
612 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
613 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
614 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
615 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
616
617 /* Round up to a multiple of 16 bytes. */
618 #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
619
620 /* Define the offset between two registers, one to be eliminated, and the other
621 its replacement, at the start of a routine. */
622 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
623 ((OFFSET) = alpha_initial_elimination_offset(FROM, TO))
624
625 /* Define this if stack space is still allocated for a parameter passed
626 in a register. */
627 /* #define REG_PARM_STACK_SPACE */
628
629 /* Define how to find the value returned by a function.
630 VALTYPE is the data type of the value (as a tree).
631 If the precise function being called is known, FUNC is its FUNCTION_DECL;
632 otherwise, FUNC is 0.
633
634 On Alpha the value is found in $0 for integer functions and
635 $f0 for floating-point functions. */
636
637 #define FUNCTION_VALUE(VALTYPE, FUNC) \
638 function_value (VALTYPE, FUNC, VOIDmode)
639
640 /* Define how to find the value returned by a library function
641 assuming the value has mode MODE. */
642
643 #define LIBCALL_VALUE(MODE) \
644 function_value (NULL, NULL, MODE)
645
646 /* 1 if N is a possible register number for a function value
647 as seen by the caller. */
648
649 #define FUNCTION_VALUE_REGNO_P(N) \
650 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
651
652 /* 1 if N is a possible register number for function argument passing.
653 On Alpha, these are $16-$21 and $f16-$f21. */
654
655 #define FUNCTION_ARG_REGNO_P(N) \
656 (IN_RANGE ((N), 16, 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
657 \f
658 /* Define a data type for recording info about an argument list
659 during the scan of that argument list. This data type should
660 hold all necessary information about the function itself
661 and about the args processed so far, enough to enable macros
662 such as FUNCTION_ARG to determine where the next arg should go.
663
664 On Alpha, this is a single integer, which is a number of words
665 of arguments scanned so far.
666 Thus 6 or more means all following args should go on the stack. */
667
668 #define CUMULATIVE_ARGS int
669
670 /* Initialize a variable CUM of type CUMULATIVE_ARGS
671 for a call to a function whose data type is FNTYPE.
672 For a library call, FNTYPE is 0. */
673
674 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
675 (CUM) = 0
676
677 /* Define intermediate macro to compute the size (in registers) of an argument
678 for the Alpha. */
679
680 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
681 ((MODE) == TFmode || (MODE) == TCmode ? 1 \
682 : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
683 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
684
685 /* Make (or fake) .linkage entry for function call.
686 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
687
688 /* This macro defines the start of an assembly comment. */
689
690 #define ASM_COMMENT_START " #"
691
692 /* This macro produces the initial definition of a function. */
693
694 #undef ASM_DECLARE_FUNCTION_NAME
695 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
696 alpha_start_function(FILE,NAME,DECL);
697
698 /* This macro closes up a function definition for the assembler. */
699
700 #undef ASM_DECLARE_FUNCTION_SIZE
701 #define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
702 alpha_end_function(FILE,NAME,DECL)
703
704 /* Output any profiling code before the prologue. */
705
706 #define PROFILE_BEFORE_PROLOGUE 1
707
708 /* Never use profile counters. */
709
710 #define NO_PROFILE_COUNTERS 1
711
712 /* Output assembler code to FILE to increment profiler label # LABELNO
713 for profiling a function entry. Under OSF/1, profiling is enabled
714 by simply passing -pg to the assembler and linker. */
715
716 #define FUNCTION_PROFILER(FILE, LABELNO)
717
718 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
719 the stack pointer does not matter. The value is tested only in
720 functions that have frame pointers.
721 No definition is equivalent to always zero. */
722
723 #define EXIT_IGNORE_STACK 1
724
725 /* Define registers used by the epilogue and return instruction. */
726
727 #define EPILOGUE_USES(REGNO) ((REGNO) == 26)
728 \f
729 /* Length in units of the trampoline for entering a nested function. */
730
731 #define TRAMPOLINE_SIZE 32
732
733 /* The alignment of a trampoline, in bits. */
734
735 #define TRAMPOLINE_ALIGNMENT 64
736
737 /* A C expression whose value is RTL representing the value of the return
738 address for the frame COUNT steps up from the current frame.
739 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
740 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
741
742 #define RETURN_ADDR_RTX alpha_return_addr
743
744 /* Provide a definition of DWARF_FRAME_REGNUM here so that fallback unwinders
745 can use DWARF_ALT_FRAME_RETURN_COLUMN defined below. This is just the same
746 as the default definition in dwarf2out.c. */
747 #undef DWARF_FRAME_REGNUM
748 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
749
750 /* Before the prologue, RA lives in $26. */
751 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
752 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
753 #define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
754 #define DWARF_ZERO_REG 31
755
756 /* Describe how we implement __builtin_eh_return. */
757 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
758 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 28)
759 #define EH_RETURN_HANDLER_RTX \
760 gen_rtx_MEM (Pmode, plus_constant (Pmode, stack_pointer_rtx, \
761 crtl->outgoing_args_size))
762 \f
763 /* Addressing modes, and classification of registers for them. */
764
765 /* Macros to check register numbers against specific register classes. */
766
767 /* These assume that REGNO is a hard or pseudo reg number.
768 They give nonzero only if REGNO is a hard reg of the suitable class
769 or a pseudo reg currently allocated to a suitable hard reg.
770 Since they use reg_renumber, they are safe only once reg_renumber
771 has been allocated, which happens in reginfo.c during register
772 allocation. */
773
774 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
775 #define REGNO_OK_FOR_BASE_P(REGNO) \
776 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
777 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
778 \f
779 /* Maximum number of registers that can appear in a valid memory address. */
780 #define MAX_REGS_PER_ADDRESS 1
781
782 /* Recognize any constant value that is a valid address. For the Alpha,
783 there are only constants none since we want to use LDA to load any
784 symbolic addresses into registers. */
785
786 #define CONSTANT_ADDRESS_P(X) \
787 (CONST_INT_P (X) \
788 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
789
790 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
791 and check its validity for a certain class.
792 We have two alternate definitions for each of them.
793 The usual definition accepts all pseudo regs; the other rejects
794 them unless they have been allocated suitable hard regs.
795 The symbol REG_OK_STRICT causes the latter definition to be used.
796
797 Most source files want to accept pseudo regs in the hope that
798 they will get allocated to the class that the insn wants them to be in.
799 Source files for reload pass need to be strict.
800 After reload, it makes no difference, since pseudo regs have
801 been eliminated by then. */
802
803 /* Nonzero if X is a hard reg that can be used as an index
804 or if it is a pseudo reg. */
805 #define REG_OK_FOR_INDEX_P(X) 0
806
807 /* Nonzero if X is a hard reg that can be used as a base reg
808 or if it is a pseudo reg. */
809 #define NONSTRICT_REG_OK_FOR_BASE_P(X) \
810 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
811
812 /* ??? Nonzero if X is the frame pointer, or some virtual register
813 that may eliminate to the frame pointer. These will be allowed to
814 have offsets greater than 32K. This is done because register
815 elimination offsets will change the hi/lo split, and if we split
816 before reload, we will require additional instructions. */
817 #define NONSTRICT_REG_OK_FP_BASE_P(X) \
818 (REGNO (X) == 31 || REGNO (X) == 63 \
819 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
820 && REGNO (X) < LAST_VIRTUAL_POINTER_REGISTER))
821
822 /* Nonzero if X is a hard reg that can be used as a base reg. */
823 #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
824
825 #ifdef REG_OK_STRICT
826 #define REG_OK_FOR_BASE_P(X) STRICT_REG_OK_FOR_BASE_P (X)
827 #else
828 #define REG_OK_FOR_BASE_P(X) NONSTRICT_REG_OK_FOR_BASE_P (X)
829 #endif
830 \f
831 /* Try a machine-dependent way of reloading an illegitimate address
832 operand. If we find one, push the reload and jump to WIN. This
833 macro is used in only one place: `find_reloads_address' in reload.c. */
834
835 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
836 do { \
837 rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
838 if (new_x) \
839 { \
840 X = new_x; \
841 goto WIN; \
842 } \
843 } while (0)
844
845 \f
846 /* Specify the machine mode that this machine uses
847 for the index in the tablejump instruction. */
848 #define CASE_VECTOR_MODE SImode
849
850 /* Define as C expression which evaluates to nonzero if the tablejump
851 instruction expects the table to contain offsets from the address of the
852 table.
853
854 Do not define this if the table should contain absolute addresses.
855 On the Alpha, the table is really GP-relative, not relative to the PC
856 of the table, but we pretend that it is PC-relative; this should be OK,
857 but we should try to find some better way sometime. */
858 #define CASE_VECTOR_PC_RELATIVE 1
859
860 /* Define this as 1 if `char' should by default be signed; else as 0. */
861 #define DEFAULT_SIGNED_CHAR 1
862
863 /* Max number of bytes we can move to or from memory
864 in one reasonably fast instruction. */
865
866 #define MOVE_MAX 8
867
868 /* If a memory-to-memory move would take MOVE_RATIO or more simple
869 move-instruction pairs, we will do a movmem or libcall instead.
870
871 Without byte/word accesses, we want no more than four instructions;
872 with, several single byte accesses are better. */
873
874 #define MOVE_RATIO(speed) (TARGET_BWX ? 7 : 2)
875
876 /* Largest number of bytes of an object that can be placed in a register.
877 On the Alpha we have plenty of registers, so use TImode. */
878 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
879
880 /* Nonzero if access to memory by bytes is no faster than for words.
881 Also nonzero if doing byte operations (specifically shifts) in registers
882 is undesirable.
883
884 On the Alpha, we want to not use the byte operation and instead use
885 masking operations to access fields; these will save instructions. */
886
887 #define SLOW_BYTE_ACCESS 1
888
889 /* Define if operations between registers always perform the operation
890 on the full register even if a narrower mode is specified. */
891 #define WORD_REGISTER_OPERATIONS
892
893 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
894 will either zero-extend or sign-extend. The value of this macro should
895 be the code that says which one of the two operations is implicitly
896 done, UNKNOWN if none. */
897 #define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
898
899 /* Define if loading short immediate values into registers sign extends. */
900 #define SHORT_IMMEDIATES_SIGN_EXTEND
901
902 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
903 is done just by pretending it is already truncated. */
904 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
905
906 /* The CIX ctlz and cttz instructions return 64 for zero. */
907 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, \
908 TARGET_CIX ? 1 : 0)
909 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, \
910 TARGET_CIX ? 1 : 0)
911
912 /* Define the value returned by a floating-point comparison instruction. */
913
914 #define FLOAT_STORE_FLAG_VALUE(MODE) \
915 REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
916
917 /* Specify the machine mode that pointers have.
918 After generation of rtl, the compiler makes no further distinction
919 between pointers and any other objects of this machine mode. */
920 #define Pmode DImode
921
922 /* Mode of a function address in a call instruction (for indexing purposes). */
923
924 #define FUNCTION_MODE Pmode
925
926 /* Define this if addresses of constant functions
927 shouldn't be put through pseudo regs where they can be cse'd.
928 Desirable on machines where ordinary constants are expensive
929 but a CALL with constant address is cheap.
930
931 We define this on the Alpha so that gen_call and gen_call_value
932 get to see the SYMBOL_REF (for the hint field of the jsr). It will
933 then copy it into a register, thus actually letting the address be
934 cse'ed. */
935
936 #define NO_FUNCTION_CSE
937
938 /* Define this to be nonzero if shift instructions ignore all but the low-order
939 few bits. */
940 #define SHIFT_COUNT_TRUNCATED 1
941 \f
942 /* Control the assembler format that we output. */
943
944 /* Output to assembler file text saying following lines
945 may contain character constants, extra white space, comments, etc. */
946 #define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
947
948 /* Output to assembler file text saying following lines
949 no longer contain unusual constructs. */
950 #define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
951
952 #define TEXT_SECTION_ASM_OP "\t.text"
953
954 /* Output before writable data. */
955
956 #define DATA_SECTION_ASM_OP "\t.data"
957
958 /* How to refer to registers in assembler output.
959 This sequence is indexed by compiler's hard-register-number (see above). */
960
961 #define REGISTER_NAMES \
962 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
963 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
964 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
965 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
966 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
967 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
968 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
969 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
970
971 /* Strip name encoding when emitting labels. */
972
973 #define ASM_OUTPUT_LABELREF(STREAM, NAME) \
974 do { \
975 const char *name_ = NAME; \
976 if (*name_ == '@' || *name_ == '%') \
977 name_ += 2; \
978 if (*name_ == '*') \
979 name_++; \
980 else \
981 fputs (user_label_prefix, STREAM); \
982 fputs (name_, STREAM); \
983 } while (0)
984
985 /* Globalizing directive for a label. */
986 #define GLOBAL_ASM_OP "\t.globl "
987
988 /* Use dollar signs rather than periods in special g++ assembler names. */
989
990 #undef NO_DOLLAR_IN_LABEL
991
992 /* This is how to store into the string LABEL
993 the symbol_ref name of an internal numbered label where
994 PREFIX is the class of label and NUM is the number within the class.
995 This is suitable for output with `assemble_name'. */
996
997 #undef ASM_GENERATE_INTERNAL_LABEL
998 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
999 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1000
1001 /* This is how to output an element of a case-vector that is relative. */
1002
1003 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1004 fprintf (FILE, "\t.gprel32 $L%d\n", (VALUE))
1005 \f
1006
1007 /* Print operand X (an rtx) in assembler syntax to file FILE.
1008 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1009 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1010
1011 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1012
1013 /* Determine which codes are valid without a following integer. These must
1014 not be alphabetic.
1015
1016 ~ Generates the name of the current function.
1017
1018 / Generates the instruction suffix. The TRAP_SUFFIX and ROUND_SUFFIX
1019 attributes are examined to determine what is appropriate.
1020
1021 , Generates single precision suffix for floating point
1022 instructions (s for IEEE, f for VAX)
1023
1024 - Generates double precision suffix for floating point
1025 instructions (t for IEEE, g for VAX)
1026 */
1027
1028 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1029 ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
1030 || (CODE) == '#' || (CODE) == '*' || (CODE) == '&')
1031
1032 /* Print a memory address as an operand to reference that memory location. */
1033
1034 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1035 print_operand_address((FILE), (ADDR))
1036 \f
1037 /* If we use NM, pass -g to it so it only lists globals. */
1038 #define NM_FLAGS "-pg"
1039
1040 /* Definitions for debugging. */
1041
1042 /* Correct the offset of automatic variables and arguments. Note that
1043 the Alpha debug format wants all automatic variables and arguments
1044 to be in terms of two different offsets from the virtual frame pointer,
1045 which is the stack pointer before any adjustment in the function.
1046 The offset for the argument pointer is fixed for the native compiler,
1047 it is either zero (for the no arguments case) or large enough to hold
1048 all argument registers.
1049 The offset for the auto pointer is the fourth argument to the .frame
1050 directive (local_offset).
1051 To stay compatible with the native tools we use the same offsets
1052 from the virtual frame pointer and adjust the debugger arg/auto offsets
1053 accordingly. These debugger offsets are set up in output_prolog. */
1054
1055 extern long alpha_arg_offset;
1056 extern long alpha_auto_offset;
1057 #define DEBUGGER_AUTO_OFFSET(X) \
1058 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1059 #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1060
1061 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
1062 alpha_output_filename (STREAM, NAME)
1063
1064 /* By default, turn on GDB extensions. */
1065 #define DEFAULT_GDB_EXTENSIONS 1
1066
1067 /* The system headers under Alpha systems are generally C++-aware. */
1068 #define NO_IMPLICIT_EXTERN_C