]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/alpha/alpha.h
tm.texi.in (TARGET_CLASS_LIKELY_SPILLED_P): Update documentation.
[thirdparty/gcc.git] / gcc / config / alpha / alpha.h
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2004, 2005, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* Target CPU builtins. */
24 #define TARGET_CPU_CPP_BUILTINS() \
25 do \
26 { \
27 builtin_define ("__alpha"); \
28 builtin_define ("__alpha__"); \
29 builtin_assert ("cpu=alpha"); \
30 builtin_assert ("machine=alpha"); \
31 if (TARGET_CIX) \
32 { \
33 builtin_define ("__alpha_cix__"); \
34 builtin_assert ("cpu=cix"); \
35 } \
36 if (TARGET_FIX) \
37 { \
38 builtin_define ("__alpha_fix__"); \
39 builtin_assert ("cpu=fix"); \
40 } \
41 if (TARGET_BWX) \
42 { \
43 builtin_define ("__alpha_bwx__"); \
44 builtin_assert ("cpu=bwx"); \
45 } \
46 if (TARGET_MAX) \
47 { \
48 builtin_define ("__alpha_max__"); \
49 builtin_assert ("cpu=max"); \
50 } \
51 if (alpha_cpu == PROCESSOR_EV6) \
52 { \
53 builtin_define ("__alpha_ev6__"); \
54 builtin_assert ("cpu=ev6"); \
55 } \
56 else if (alpha_cpu == PROCESSOR_EV5) \
57 { \
58 builtin_define ("__alpha_ev5__"); \
59 builtin_assert ("cpu=ev5"); \
60 } \
61 else /* Presumably ev4. */ \
62 { \
63 builtin_define ("__alpha_ev4__"); \
64 builtin_assert ("cpu=ev4"); \
65 } \
66 if (TARGET_IEEE || TARGET_IEEE_WITH_INEXACT) \
67 builtin_define ("_IEEE_FP"); \
68 if (TARGET_IEEE_WITH_INEXACT) \
69 builtin_define ("_IEEE_FP_INEXACT"); \
70 if (TARGET_LONG_DOUBLE_128) \
71 builtin_define ("__LONG_DOUBLE_128__"); \
72 \
73 /* Macros dependent on the C dialect. */ \
74 SUBTARGET_LANGUAGE_CPP_BUILTINS(); \
75 } while (0)
76
77 #ifndef SUBTARGET_LANGUAGE_CPP_BUILTINS
78 #define SUBTARGET_LANGUAGE_CPP_BUILTINS() \
79 do \
80 { \
81 if (preprocessing_asm_p ()) \
82 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
83 else if (c_dialect_cxx ()) \
84 { \
85 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
86 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
87 } \
88 else \
89 builtin_define_std ("LANGUAGE_C"); \
90 if (c_dialect_objc ()) \
91 { \
92 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
93 builtin_define ("__LANGUAGE_OBJECTIVE_C__"); \
94 } \
95 } \
96 while (0)
97 #endif
98
99 /* Run-time compilation parameters selecting different hardware subsets. */
100
101 /* Which processor to schedule for. The cpu attribute defines a list that
102 mirrors this list, so changes to alpha.md must be made at the same time. */
103
104 enum processor_type
105 {
106 PROCESSOR_EV4, /* 2106[46]{a,} */
107 PROCESSOR_EV5, /* 21164{a,pc,} */
108 PROCESSOR_EV6, /* 21264 */
109 PROCESSOR_MAX
110 };
111
112 extern enum processor_type alpha_cpu;
113 extern enum processor_type alpha_tune;
114
115 enum alpha_trap_precision
116 {
117 ALPHA_TP_PROG, /* No precision (default). */
118 ALPHA_TP_FUNC, /* Trap contained within originating function. */
119 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
120 };
121
122 enum alpha_fp_rounding_mode
123 {
124 ALPHA_FPRM_NORM, /* Normal rounding mode. */
125 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
126 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
127 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
128 };
129
130 enum alpha_fp_trap_mode
131 {
132 ALPHA_FPTM_N, /* Normal trap mode. */
133 ALPHA_FPTM_U, /* Underflow traps enabled. */
134 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
135 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
136 };
137
138 extern enum alpha_trap_precision alpha_tp;
139 extern enum alpha_fp_rounding_mode alpha_fprm;
140 extern enum alpha_fp_trap_mode alpha_fptm;
141
142 /* Invert the easy way to make options work. */
143 #define TARGET_FP (!TARGET_SOFT_FP)
144
145 /* These are for target os support and cannot be changed at runtime. */
146 #define TARGET_ABI_OPEN_VMS 0
147 #define TARGET_ABI_OSF (!TARGET_ABI_OPEN_VMS)
148
149 #ifndef TARGET_CAN_FAULT_IN_PROLOGUE
150 #define TARGET_CAN_FAULT_IN_PROLOGUE 0
151 #endif
152 #ifndef TARGET_HAS_XFLOATING_LIBS
153 #define TARGET_HAS_XFLOATING_LIBS TARGET_LONG_DOUBLE_128
154 #endif
155 #ifndef TARGET_PROFILING_NEEDS_GP
156 #define TARGET_PROFILING_NEEDS_GP 0
157 #endif
158 #ifndef TARGET_FIXUP_EV5_PREFETCH
159 #define TARGET_FIXUP_EV5_PREFETCH 0
160 #endif
161 #ifndef HAVE_AS_TLS
162 #define HAVE_AS_TLS 0
163 #endif
164
165 #define TARGET_DEFAULT MASK_FPREGS
166
167 #ifndef TARGET_CPU_DEFAULT
168 #define TARGET_CPU_DEFAULT 0
169 #endif
170
171 #ifndef TARGET_DEFAULT_EXPLICIT_RELOCS
172 #ifdef HAVE_AS_EXPLICIT_RELOCS
173 #define TARGET_DEFAULT_EXPLICIT_RELOCS MASK_EXPLICIT_RELOCS
174 #define TARGET_SUPPORT_ARCH 1
175 #else
176 #define TARGET_DEFAULT_EXPLICIT_RELOCS 0
177 #endif
178 #endif
179
180 #ifndef TARGET_SUPPORT_ARCH
181 #define TARGET_SUPPORT_ARCH 0
182 #endif
183
184 /* Support for a compile-time default CPU, et cetera. The rules are:
185 --with-cpu is ignored if -mcpu is specified.
186 --with-tune is ignored if -mtune is specified. */
187 #define OPTION_DEFAULT_SPECS \
188 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
189 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }
190
191 \f
192 /* target machine storage layout */
193
194 /* Define the size of `int'. The default is the same as the word size. */
195 #define INT_TYPE_SIZE 32
196
197 /* Define the size of `long long'. The default is the twice the word size. */
198 #define LONG_LONG_TYPE_SIZE 64
199
200 /* The two floating-point formats we support are S-floating, which is
201 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
202 and `long double' are T. */
203
204 #define FLOAT_TYPE_SIZE 32
205 #define DOUBLE_TYPE_SIZE 64
206 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
207
208 /* Define this to set long double type size to use in libgcc2.c, which can
209 not depend on target_flags. */
210 #ifdef __LONG_DOUBLE_128__
211 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
212 #else
213 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
214 #endif
215
216 /* Work around target_flags dependency in ada/targtyps.c. */
217 #define WIDEST_HARDWARE_FP_SIZE 64
218
219 #define WCHAR_TYPE "unsigned int"
220 #define WCHAR_TYPE_SIZE 32
221
222 /* Define this macro if it is advisable to hold scalars in registers
223 in a wider mode than that declared by the program. In such cases,
224 the value is constrained to be within the bounds of the declared
225 type, but kept valid in the wider mode. The signedness of the
226 extension may differ from that of the type.
227
228 For Alpha, we always store objects in a full register. 32-bit integers
229 are always sign-extended, but smaller objects retain their signedness.
230
231 Note that small vector types can get mapped onto integer modes at the
232 whim of not appearing in alpha-modes.def. We never promoted these
233 values before; don't do so now that we've trimmed the set of modes to
234 those actually implemented in the backend. */
235
236 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
237 if (GET_MODE_CLASS (MODE) == MODE_INT \
238 && (TYPE == NULL || TREE_CODE (TYPE) != VECTOR_TYPE) \
239 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
240 { \
241 if ((MODE) == SImode) \
242 (UNSIGNEDP) = 0; \
243 (MODE) = DImode; \
244 }
245
246 /* Define this if most significant bit is lowest numbered
247 in instructions that operate on numbered bit-fields.
248
249 There are no such instructions on the Alpha, but the documentation
250 is little endian. */
251 #define BITS_BIG_ENDIAN 0
252
253 /* Define this if most significant byte of a word is the lowest numbered.
254 This is false on the Alpha. */
255 #define BYTES_BIG_ENDIAN 0
256
257 /* Define this if most significant word of a multiword number is lowest
258 numbered.
259
260 For Alpha we can decide arbitrarily since there are no machine instructions
261 for them. Might as well be consistent with bytes. */
262 #define WORDS_BIG_ENDIAN 0
263
264 /* Width of a word, in units (bytes). */
265 #define UNITS_PER_WORD 8
266
267 /* Width in bits of a pointer.
268 See also the macro `Pmode' defined below. */
269 #define POINTER_SIZE 64
270
271 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
272 #define PARM_BOUNDARY 64
273
274 /* Boundary (in *bits*) on which stack pointer should be aligned. */
275 #define STACK_BOUNDARY 128
276
277 /* Allocation boundary (in *bits*) for the code of a function. */
278 #define FUNCTION_BOUNDARY 32
279
280 /* Alignment of field after `int : 0' in a structure. */
281 #define EMPTY_FIELD_BOUNDARY 64
282
283 /* Every structure's size must be a multiple of this. */
284 #define STRUCTURE_SIZE_BOUNDARY 8
285
286 /* A bit-field declared as `int' forces `int' alignment for the struct. */
287 #undef PCC_BITFILED_TYPE_MATTERS
288 #define PCC_BITFIELD_TYPE_MATTERS 1
289
290 /* No data type wants to be aligned rounder than this. */
291 #define BIGGEST_ALIGNMENT 128
292
293 /* For atomic access to objects, must have at least 32-bit alignment
294 unless the machine has byte operations. */
295 #define MINIMUM_ATOMIC_ALIGNMENT ((unsigned int) (TARGET_BWX ? 8 : 32))
296
297 /* Align all constants and variables to at least a word boundary so
298 we can pick up pieces of them faster. */
299 /* ??? Only if block-move stuff knows about different source/destination
300 alignment. */
301 #if 0
302 #define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
303 #define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
304 #endif
305
306 /* Set this nonzero if move instructions will actually fail to work
307 when given unaligned data.
308
309 Since we get an error message when we do one, call them invalid. */
310
311 #define STRICT_ALIGNMENT 1
312
313 /* Set this nonzero if unaligned move instructions are extremely slow.
314
315 On the Alpha, they trap. */
316
317 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
318
319 /* Standard register usage. */
320
321 /* Number of actual hardware registers.
322 The hardware registers are assigned numbers for the compiler
323 from 0 to just below FIRST_PSEUDO_REGISTER.
324 All registers that the compiler knows about must be given numbers,
325 even those that are not normally considered general registers.
326
327 We define all 32 integer registers, even though $31 is always zero,
328 and all 32 floating-point registers, even though $f31 is also
329 always zero. We do not bother defining the FP status register and
330 there are no other registers.
331
332 Since $31 is always zero, we will use register number 31 as the
333 argument pointer. It will never appear in the generated code
334 because we will always be eliminating it in favor of the stack
335 pointer or hardware frame pointer.
336
337 Likewise, we use $f31 for the frame pointer, which will always
338 be eliminated in favor of the hardware frame pointer or the
339 stack pointer. */
340
341 #define FIRST_PSEUDO_REGISTER 64
342
343 /* 1 for registers that have pervasive standard uses
344 and are not available for the register allocator. */
345
346 #define FIXED_REGISTERS \
347 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
348 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
349 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
350 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
351
352 /* 1 for registers not available across function calls.
353 These must include the FIXED_REGISTERS and also any
354 registers that can be used without being saved.
355 The latter must include the registers where values are returned
356 and the register where structure-value addresses are passed.
357 Aside from that, you can include as many other registers as you like. */
358 #define CALL_USED_REGISTERS \
359 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
360 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
361 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
362 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
363
364 /* List the order in which to allocate registers. Each register must be
365 listed once, even those in FIXED_REGISTERS. */
366
367 #define REG_ALLOC_ORDER { \
368 1, 2, 3, 4, 5, 6, 7, 8, /* nonsaved integer registers */ \
369 22, 23, 24, 25, 28, /* likewise */ \
370 0, /* likewise, but return value */ \
371 21, 20, 19, 18, 17, 16, /* likewise, but input args */ \
372 27, /* likewise, but OSF procedure value */ \
373 \
374 42, 43, 44, 45, 46, 47, /* nonsaved floating-point registers */ \
375 54, 55, 56, 57, 58, 59, /* likewise */ \
376 60, 61, 62, /* likewise */ \
377 32, 33, /* likewise, but return values */ \
378 53, 52, 51, 50, 49, 48, /* likewise, but input args */ \
379 \
380 9, 10, 11, 12, 13, 14, /* saved integer registers */ \
381 26, /* return address */ \
382 15, /* hard frame pointer */ \
383 \
384 34, 35, 36, 37, 38, 39, /* saved floating-point registers */ \
385 40, 41, /* likewise */ \
386 \
387 29, 30, 31, 63 /* gp, sp, ap, sfp */ \
388 }
389
390 /* Return number of consecutive hard regs needed starting at reg REGNO
391 to hold something of mode MODE.
392 This is ordinarily the length in words of a value of mode MODE
393 but can be less for certain modes in special long registers. */
394
395 #define HARD_REGNO_NREGS(REGNO, MODE) \
396 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
397
398 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
399 On Alpha, the integer registers can hold any mode. The floating-point
400 registers can hold 64-bit integers as well, but not smaller values. */
401
402 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
403 (IN_RANGE ((REGNO), 32, 62) \
404 ? (MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode \
405 || (MODE) == SCmode || (MODE) == DCmode \
406 : 1)
407
408 /* A C expression that is nonzero if a value of mode
409 MODE1 is accessible in mode MODE2 without copying.
410
411 This asymmetric test is true when MODE1 could be put
412 in an FP register but MODE2 could not. */
413
414 #define MODES_TIEABLE_P(MODE1, MODE2) \
415 (HARD_REGNO_MODE_OK (32, (MODE1)) \
416 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
417 : 1)
418
419 /* Specify the registers used for certain standard purposes.
420 The values of these macros are register numbers. */
421
422 /* Alpha pc isn't overloaded on a register that the compiler knows about. */
423 /* #define PC_REGNUM */
424
425 /* Register to use for pushing function arguments. */
426 #define STACK_POINTER_REGNUM 30
427
428 /* Base register for access to local variables of the function. */
429 #define HARD_FRAME_POINTER_REGNUM 15
430
431 /* Base register for access to arguments of the function. */
432 #define ARG_POINTER_REGNUM 31
433
434 /* Base register for access to local variables of function. */
435 #define FRAME_POINTER_REGNUM 63
436
437 /* Register in which static-chain is passed to a function.
438
439 For the Alpha, this is based on an example; the calling sequence
440 doesn't seem to specify this. */
441 #define STATIC_CHAIN_REGNUM 1
442
443 /* The register number of the register used to address a table of
444 static data addresses in memory. */
445 #define PIC_OFFSET_TABLE_REGNUM 29
446
447 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM'
448 is clobbered by calls. */
449 /* ??? It is and it isn't. It's required to be valid for a given
450 function when the function returns. It isn't clobbered by
451 current_file functions. Moreover, we do not expose the ldgp
452 until after reload, so we're probably safe. */
453 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
454 \f
455 /* Define the classes of registers for register constraints in the
456 machine description. Also define ranges of constants.
457
458 One of the classes must always be named ALL_REGS and include all hard regs.
459 If there is more than one class, another class must be named NO_REGS
460 and contain no registers.
461
462 The name GENERAL_REGS must be the name of a class (or an alias for
463 another name such as ALL_REGS). This is the class of registers
464 that is allowed by "g" or "r" in a register constraint.
465 Also, registers outside this class are allocated only when
466 instructions express preferences for them.
467
468 The classes must be numbered in nondecreasing order; that is,
469 a larger-numbered class must never be contained completely
470 in a smaller-numbered class.
471
472 For any two classes, it is very desirable that there be another
473 class that represents their union. */
474
475 enum reg_class {
476 NO_REGS, R0_REG, R24_REG, R25_REG, R27_REG,
477 GENERAL_REGS, FLOAT_REGS, ALL_REGS,
478 LIM_REG_CLASSES
479 };
480
481 #define N_REG_CLASSES (int) LIM_REG_CLASSES
482
483 /* Give names of register classes as strings for dump file. */
484
485 #define REG_CLASS_NAMES \
486 {"NO_REGS", "R0_REG", "R24_REG", "R25_REG", "R27_REG", \
487 "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
488
489 /* Define which registers fit in which classes.
490 This is an initializer for a vector of HARD_REG_SET
491 of length N_REG_CLASSES. */
492
493 #define REG_CLASS_CONTENTS \
494 { {0x00000000, 0x00000000}, /* NO_REGS */ \
495 {0x00000001, 0x00000000}, /* R0_REG */ \
496 {0x01000000, 0x00000000}, /* R24_REG */ \
497 {0x02000000, 0x00000000}, /* R25_REG */ \
498 {0x08000000, 0x00000000}, /* R27_REG */ \
499 {0xffffffff, 0x80000000}, /* GENERAL_REGS */ \
500 {0x00000000, 0x7fffffff}, /* FLOAT_REGS */ \
501 {0xffffffff, 0xffffffff} }
502
503 /* The same information, inverted:
504 Return the class number of the smallest class containing
505 reg number REGNO. This could be a conditional expression
506 or could index an array. */
507
508 #define REGNO_REG_CLASS(REGNO) \
509 ((REGNO) == 0 ? R0_REG \
510 : (REGNO) == 24 ? R24_REG \
511 : (REGNO) == 25 ? R25_REG \
512 : (REGNO) == 27 ? R27_REG \
513 : IN_RANGE ((REGNO), 32, 62) ? FLOAT_REGS \
514 : GENERAL_REGS)
515
516 /* The class value for index registers, and the one for base regs. */
517 #define INDEX_REG_CLASS NO_REGS
518 #define BASE_REG_CLASS GENERAL_REGS
519
520 /* Given an rtx X being reloaded into a reg required to be
521 in class CLASS, return the class of reg to actually use.
522 In general this is just CLASS; but on some machines
523 in some cases it is preferable to use a more restrictive class. */
524
525 #define PREFERRED_RELOAD_CLASS alpha_preferred_reload_class
526
527 /* If we are copying between general and FP registers, we need a memory
528 location unless the FIX extension is available. */
529
530 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
531 (! TARGET_FIX && (((CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS) \
532 || ((CLASS2) == FLOAT_REGS && (CLASS1) != FLOAT_REGS)))
533
534 /* Specify the mode to be used for memory when a secondary memory
535 location is needed. If MODE is floating-point, use it. Otherwise,
536 widen to a word like the default. This is needed because we always
537 store integers in FP registers in quadword format. This whole
538 area is very tricky! */
539 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
540 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
541 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
542 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
543
544 /* Return the class of registers that cannot change mode from FROM to TO. */
545
546 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
547 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
548 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) : 0)
549
550 /* Define the cost of moving between registers of various classes. Moving
551 between FLOAT_REGS and anything else except float regs is expensive.
552 In fact, we make it quite expensive because we really don't want to
553 do these moves unless it is clearly worth it. Optimizations may
554 reduce the impact of not being able to allocate a pseudo to a
555 hard register. */
556
557 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
558 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 \
559 : TARGET_FIX ? ((CLASS1) == FLOAT_REGS ? 6 : 8) \
560 : 4+2*alpha_memory_latency)
561
562 /* A C expressions returning the cost of moving data of MODE from a register to
563 or from memory.
564
565 On the Alpha, bump this up a bit. */
566
567 extern int alpha_memory_latency;
568 #define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
569
570 /* Provide the cost of a branch. Exact meaning under development. */
571 #define BRANCH_COST(speed_p, predictable_p) 5
572 \f
573 /* Stack layout; function entry, exit and calling. */
574
575 /* Define this if pushing a word on the stack
576 makes the stack pointer a smaller address. */
577 #define STACK_GROWS_DOWNWARD
578
579 /* Define this to nonzero if the nominal address of the stack frame
580 is at the high-address end of the local variables;
581 that is, each additional local variable allocated
582 goes at a more negative offset in the frame. */
583 /* #define FRAME_GROWS_DOWNWARD 0 */
584
585 /* Offset within stack frame to start allocating local variables at.
586 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
587 first local allocated. Otherwise, it is the offset to the BEGINNING
588 of the first local allocated. */
589
590 #define STARTING_FRAME_OFFSET 0
591
592 /* If we generate an insn to push BYTES bytes,
593 this says how many the stack pointer really advances by.
594 On Alpha, don't define this because there are no push insns. */
595 /* #define PUSH_ROUNDING(BYTES) */
596
597 /* Define this to be nonzero if stack checking is built into the ABI. */
598 #define STACK_CHECK_BUILTIN 1
599
600 /* Define this if the maximum size of all the outgoing args is to be
601 accumulated and pushed during the prologue. The amount can be
602 found in the variable crtl->outgoing_args_size. */
603 #define ACCUMULATE_OUTGOING_ARGS 1
604
605 /* Offset of first parameter from the argument pointer register value. */
606
607 #define FIRST_PARM_OFFSET(FNDECL) 0
608
609 /* Definitions for register eliminations.
610
611 We have two registers that can be eliminated on the Alpha. First, the
612 frame pointer register can often be eliminated in favor of the stack
613 pointer register. Secondly, the argument pointer register can always be
614 eliminated; it is replaced with either the stack or frame pointer. */
615
616 /* This is an array of structures. Each structure initializes one pair
617 of eliminable registers. The "from" register number is given first,
618 followed by "to". Eliminations of the same "from" register are listed
619 in order of preference. */
620
621 #define ELIMINABLE_REGS \
622 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
623 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
624 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
625 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
626
627 /* Round up to a multiple of 16 bytes. */
628 #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
629
630 /* Define the offset between two registers, one to be eliminated, and the other
631 its replacement, at the start of a routine. */
632 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
633 ((OFFSET) = alpha_initial_elimination_offset(FROM, TO))
634
635 /* Define this if stack space is still allocated for a parameter passed
636 in a register. */
637 /* #define REG_PARM_STACK_SPACE */
638
639 /* Define how to find the value returned by a function.
640 VALTYPE is the data type of the value (as a tree).
641 If the precise function being called is known, FUNC is its FUNCTION_DECL;
642 otherwise, FUNC is 0.
643
644 On Alpha the value is found in $0 for integer functions and
645 $f0 for floating-point functions. */
646
647 #define FUNCTION_VALUE(VALTYPE, FUNC) \
648 function_value (VALTYPE, FUNC, VOIDmode)
649
650 /* Define how to find the value returned by a library function
651 assuming the value has mode MODE. */
652
653 #define LIBCALL_VALUE(MODE) \
654 function_value (NULL, NULL, MODE)
655
656 /* 1 if N is a possible register number for a function value
657 as seen by the caller. */
658
659 #define FUNCTION_VALUE_REGNO_P(N) \
660 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
661
662 /* 1 if N is a possible register number for function argument passing.
663 On Alpha, these are $16-$21 and $f16-$f21. */
664
665 #define FUNCTION_ARG_REGNO_P(N) \
666 (IN_RANGE ((N), 16, 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
667 \f
668 /* Define a data type for recording info about an argument list
669 during the scan of that argument list. This data type should
670 hold all necessary information about the function itself
671 and about the args processed so far, enough to enable macros
672 such as FUNCTION_ARG to determine where the next arg should go.
673
674 On Alpha, this is a single integer, which is a number of words
675 of arguments scanned so far.
676 Thus 6 or more means all following args should go on the stack. */
677
678 #define CUMULATIVE_ARGS int
679
680 /* Initialize a variable CUM of type CUMULATIVE_ARGS
681 for a call to a function whose data type is FNTYPE.
682 For a library call, FNTYPE is 0. */
683
684 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
685 (CUM) = 0
686
687 /* Define intermediate macro to compute the size (in registers) of an argument
688 for the Alpha. */
689
690 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
691 ((MODE) == TFmode || (MODE) == TCmode ? 1 \
692 : (((MODE) == BLKmode ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
693 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
694
695 /* Make (or fake) .linkage entry for function call.
696 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
697
698 /* This macro defines the start of an assembly comment. */
699
700 #define ASM_COMMENT_START " #"
701
702 /* This macro produces the initial definition of a function. */
703
704 #undef ASM_DECLARE_FUNCTION_NAME
705 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
706 alpha_start_function(FILE,NAME,DECL);
707
708 /* This macro closes up a function definition for the assembler. */
709
710 #undef ASM_DECLARE_FUNCTION_SIZE
711 #define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
712 alpha_end_function(FILE,NAME,DECL)
713
714 /* Output any profiling code before the prologue. */
715
716 #define PROFILE_BEFORE_PROLOGUE 1
717
718 /* Never use profile counters. */
719
720 #define NO_PROFILE_COUNTERS 1
721
722 /* Output assembler code to FILE to increment profiler label # LABELNO
723 for profiling a function entry. Under OSF/1, profiling is enabled
724 by simply passing -pg to the assembler and linker. */
725
726 #define FUNCTION_PROFILER(FILE, LABELNO)
727
728 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
729 the stack pointer does not matter. The value is tested only in
730 functions that have frame pointers.
731 No definition is equivalent to always zero. */
732
733 #define EXIT_IGNORE_STACK 1
734
735 /* Define registers used by the epilogue and return instruction. */
736
737 #define EPILOGUE_USES(REGNO) ((REGNO) == 26)
738 \f
739 /* Length in units of the trampoline for entering a nested function. */
740
741 #define TRAMPOLINE_SIZE 32
742
743 /* The alignment of a trampoline, in bits. */
744
745 #define TRAMPOLINE_ALIGNMENT 64
746
747 /* A C expression whose value is RTL representing the value of the return
748 address for the frame COUNT steps up from the current frame.
749 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
750 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
751
752 #define RETURN_ADDR_RTX alpha_return_addr
753
754 /* Provide a definition of DWARF_FRAME_REGNUM here so that fallback unwinders
755 can use DWARF_ALT_FRAME_RETURN_COLUMN defined below. This is just the same
756 as the default definition in dwarf2out.c. */
757 #undef DWARF_FRAME_REGNUM
758 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
759
760 /* Before the prologue, RA lives in $26. */
761 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
762 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (26)
763 #define DWARF_ALT_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (64)
764 #define DWARF_ZERO_REG 31
765
766 /* Describe how we implement __builtin_eh_return. */
767 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 16 : INVALID_REGNUM)
768 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 28)
769 #define EH_RETURN_HANDLER_RTX \
770 gen_rtx_MEM (Pmode, plus_constant (Pmode, stack_pointer_rtx, \
771 crtl->outgoing_args_size))
772 \f
773 /* Addressing modes, and classification of registers for them. */
774
775 /* Macros to check register numbers against specific register classes. */
776
777 /* These assume that REGNO is a hard or pseudo reg number.
778 They give nonzero only if REGNO is a hard reg of the suitable class
779 or a pseudo reg currently allocated to a suitable hard reg.
780 Since they use reg_renumber, they are safe only once reg_renumber
781 has been allocated, which happens in reginfo.c during register
782 allocation. */
783
784 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
785 #define REGNO_OK_FOR_BASE_P(REGNO) \
786 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
787 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
788 \f
789 /* Maximum number of registers that can appear in a valid memory address. */
790 #define MAX_REGS_PER_ADDRESS 1
791
792 /* Recognize any constant value that is a valid address. For the Alpha,
793 there are only constants none since we want to use LDA to load any
794 symbolic addresses into registers. */
795
796 #define CONSTANT_ADDRESS_P(X) \
797 (CONST_INT_P (X) \
798 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
799
800 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
801 and check its validity for a certain class.
802 We have two alternate definitions for each of them.
803 The usual definition accepts all pseudo regs; the other rejects
804 them unless they have been allocated suitable hard regs.
805 The symbol REG_OK_STRICT causes the latter definition to be used.
806
807 Most source files want to accept pseudo regs in the hope that
808 they will get allocated to the class that the insn wants them to be in.
809 Source files for reload pass need to be strict.
810 After reload, it makes no difference, since pseudo regs have
811 been eliminated by then. */
812
813 /* Nonzero if X is a hard reg that can be used as an index
814 or if it is a pseudo reg. */
815 #define REG_OK_FOR_INDEX_P(X) 0
816
817 /* Nonzero if X is a hard reg that can be used as a base reg
818 or if it is a pseudo reg. */
819 #define NONSTRICT_REG_OK_FOR_BASE_P(X) \
820 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
821
822 /* ??? Nonzero if X is the frame pointer, or some virtual register
823 that may eliminate to the frame pointer. These will be allowed to
824 have offsets greater than 32K. This is done because register
825 elimination offsets will change the hi/lo split, and if we split
826 before reload, we will require additional instructions. */
827 #define NONSTRICT_REG_OK_FP_BASE_P(X) \
828 (REGNO (X) == 31 || REGNO (X) == 63 \
829 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
830 && REGNO (X) < LAST_VIRTUAL_POINTER_REGISTER))
831
832 /* Nonzero if X is a hard reg that can be used as a base reg. */
833 #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
834
835 #ifdef REG_OK_STRICT
836 #define REG_OK_FOR_BASE_P(X) STRICT_REG_OK_FOR_BASE_P (X)
837 #else
838 #define REG_OK_FOR_BASE_P(X) NONSTRICT_REG_OK_FOR_BASE_P (X)
839 #endif
840 \f
841 /* Try a machine-dependent way of reloading an illegitimate address
842 operand. If we find one, push the reload and jump to WIN. This
843 macro is used in only one place: `find_reloads_address' in reload.c. */
844
845 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
846 do { \
847 rtx new_x = alpha_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
848 if (new_x) \
849 { \
850 X = new_x; \
851 goto WIN; \
852 } \
853 } while (0)
854
855 \f
856 /* Specify the machine mode that this machine uses
857 for the index in the tablejump instruction. */
858 #define CASE_VECTOR_MODE SImode
859
860 /* Define as C expression which evaluates to nonzero if the tablejump
861 instruction expects the table to contain offsets from the address of the
862 table.
863
864 Do not define this if the table should contain absolute addresses.
865 On the Alpha, the table is really GP-relative, not relative to the PC
866 of the table, but we pretend that it is PC-relative; this should be OK,
867 but we should try to find some better way sometime. */
868 #define CASE_VECTOR_PC_RELATIVE 1
869
870 /* Define this as 1 if `char' should by default be signed; else as 0. */
871 #define DEFAULT_SIGNED_CHAR 1
872
873 /* Max number of bytes we can move to or from memory
874 in one reasonably fast instruction. */
875
876 #define MOVE_MAX 8
877
878 /* If a memory-to-memory move would take MOVE_RATIO or more simple
879 move-instruction pairs, we will do a movmem or libcall instead.
880
881 Without byte/word accesses, we want no more than four instructions;
882 with, several single byte accesses are better. */
883
884 #define MOVE_RATIO(speed) (TARGET_BWX ? 7 : 2)
885
886 /* Largest number of bytes of an object that can be placed in a register.
887 On the Alpha we have plenty of registers, so use TImode. */
888 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
889
890 /* Nonzero if access to memory by bytes is no faster than for words.
891 Also nonzero if doing byte operations (specifically shifts) in registers
892 is undesirable.
893
894 On the Alpha, we want to not use the byte operation and instead use
895 masking operations to access fields; these will save instructions. */
896
897 #define SLOW_BYTE_ACCESS 1
898
899 /* Define if operations between registers always perform the operation
900 on the full register even if a narrower mode is specified. */
901 #define WORD_REGISTER_OPERATIONS
902
903 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
904 will either zero-extend or sign-extend. The value of this macro should
905 be the code that says which one of the two operations is implicitly
906 done, UNKNOWN if none. */
907 #define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
908
909 /* Define if loading short immediate values into registers sign extends. */
910 #define SHORT_IMMEDIATES_SIGN_EXTEND
911
912 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
913 is done just by pretending it is already truncated. */
914 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
915
916 /* The CIX ctlz and cttz instructions return 64 for zero. */
917 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
918 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, TARGET_CIX)
919
920 /* Define the value returned by a floating-point comparison instruction. */
921
922 #define FLOAT_STORE_FLAG_VALUE(MODE) \
923 REAL_VALUE_ATOF ((TARGET_FLOAT_VAX ? "0.5" : "2.0"), (MODE))
924
925 /* Canonicalize a comparison from one we don't have to one we do have. */
926
927 #define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
928 do { \
929 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
930 && (REG_P (OP1) || (OP1) == const0_rtx)) \
931 { \
932 rtx tem = (OP0); \
933 (OP0) = (OP1); \
934 (OP1) = tem; \
935 (CODE) = swap_condition (CODE); \
936 } \
937 if (((CODE) == LT || (CODE) == LTU) \
938 && CONST_INT_P (OP1) && INTVAL (OP1) == 256) \
939 { \
940 (CODE) = (CODE) == LT ? LE : LEU; \
941 (OP1) = GEN_INT (255); \
942 } \
943 } while (0)
944
945 /* Specify the machine mode that pointers have.
946 After generation of rtl, the compiler makes no further distinction
947 between pointers and any other objects of this machine mode. */
948 #define Pmode DImode
949
950 /* Mode of a function address in a call instruction (for indexing purposes). */
951
952 #define FUNCTION_MODE Pmode
953
954 /* Define this if addresses of constant functions
955 shouldn't be put through pseudo regs where they can be cse'd.
956 Desirable on machines where ordinary constants are expensive
957 but a CALL with constant address is cheap.
958
959 We define this on the Alpha so that gen_call and gen_call_value
960 get to see the SYMBOL_REF (for the hint field of the jsr). It will
961 then copy it into a register, thus actually letting the address be
962 cse'ed. */
963
964 #define NO_FUNCTION_CSE
965
966 /* Define this to be nonzero if shift instructions ignore all but the low-order
967 few bits. */
968 #define SHIFT_COUNT_TRUNCATED 1
969 \f
970 /* Control the assembler format that we output. */
971
972 /* Output to assembler file text saying following lines
973 may contain character constants, extra white space, comments, etc. */
974 #define ASM_APP_ON (TARGET_EXPLICIT_RELOCS ? "\t.set\tmacro\n" : "")
975
976 /* Output to assembler file text saying following lines
977 no longer contain unusual constructs. */
978 #define ASM_APP_OFF (TARGET_EXPLICIT_RELOCS ? "\t.set\tnomacro\n" : "")
979
980 #define TEXT_SECTION_ASM_OP "\t.text"
981
982 /* Output before writable data. */
983
984 #define DATA_SECTION_ASM_OP "\t.data"
985
986 /* How to refer to registers in assembler output.
987 This sequence is indexed by compiler's hard-register-number (see above). */
988
989 #define REGISTER_NAMES \
990 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
991 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
992 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
993 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
994 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
995 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
996 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
997 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
998
999 /* Strip name encoding when emitting labels. */
1000
1001 #define ASM_OUTPUT_LABELREF(STREAM, NAME) \
1002 do { \
1003 const char *name_ = NAME; \
1004 if (*name_ == '@' || *name_ == '%') \
1005 name_ += 2; \
1006 if (*name_ == '*') \
1007 name_++; \
1008 else \
1009 fputs (user_label_prefix, STREAM); \
1010 fputs (name_, STREAM); \
1011 } while (0)
1012
1013 /* Globalizing directive for a label. */
1014 #define GLOBAL_ASM_OP "\t.globl "
1015
1016 /* Use dollar signs rather than periods in special g++ assembler names. */
1017
1018 #undef NO_DOLLAR_IN_LABEL
1019
1020 /* This is how to store into the string LABEL
1021 the symbol_ref name of an internal numbered label where
1022 PREFIX is the class of label and NUM is the number within the class.
1023 This is suitable for output with `assemble_name'. */
1024
1025 #undef ASM_GENERATE_INTERNAL_LABEL
1026 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1027 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
1028
1029 /* This is how to output an element of a case-vector that is relative. */
1030
1031 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1032 fprintf (FILE, "\t.gprel32 $L%d\n", (VALUE))
1033 \f
1034
1035 /* Print operand X (an rtx) in assembler syntax to file FILE.
1036 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1037 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1038
1039 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1040
1041 /* Determine which codes are valid without a following integer. These must
1042 not be alphabetic.
1043
1044 ~ Generates the name of the current function.
1045
1046 / Generates the instruction suffix. The TRAP_SUFFIX and ROUND_SUFFIX
1047 attributes are examined to determine what is appropriate.
1048
1049 , Generates single precision suffix for floating point
1050 instructions (s for IEEE, f for VAX)
1051
1052 - Generates double precision suffix for floating point
1053 instructions (t for IEEE, g for VAX)
1054 */
1055
1056 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1057 ((CODE) == '/' || (CODE) == ',' || (CODE) == '-' || (CODE) == '~' \
1058 || (CODE) == '#' || (CODE) == '*' || (CODE) == '&')
1059
1060 /* Print a memory address as an operand to reference that memory location. */
1061
1062 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1063 print_operand_address((FILE), (ADDR))
1064 \f
1065 /* If we use NM, pass -g to it so it only lists globals. */
1066 #define NM_FLAGS "-pg"
1067
1068 /* Definitions for debugging. */
1069
1070 /* Correct the offset of automatic variables and arguments. Note that
1071 the Alpha debug format wants all automatic variables and arguments
1072 to be in terms of two different offsets from the virtual frame pointer,
1073 which is the stack pointer before any adjustment in the function.
1074 The offset for the argument pointer is fixed for the native compiler,
1075 it is either zero (for the no arguments case) or large enough to hold
1076 all argument registers.
1077 The offset for the auto pointer is the fourth argument to the .frame
1078 directive (local_offset).
1079 To stay compatible with the native tools we use the same offsets
1080 from the virtual frame pointer and adjust the debugger arg/auto offsets
1081 accordingly. These debugger offsets are set up in output_prolog. */
1082
1083 extern long alpha_arg_offset;
1084 extern long alpha_auto_offset;
1085 #define DEBUGGER_AUTO_OFFSET(X) \
1086 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
1087 #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
1088
1089 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
1090 alpha_output_filename (STREAM, NAME)
1091
1092 /* By default, turn on GDB extensions. */
1093 #define DEFAULT_GDB_EXTENSIONS 1
1094
1095 /* The system headers under Alpha systems are generally C++-aware. */
1096 #define NO_IMPLICIT_EXTERN_C