]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/arm/arm1026ejs.md
Update copyright years.
[thirdparty/gcc.git] / gcc / config / arm / arm1026ejs.md
1 ;; ARM 1026EJ-S Pipeline Description
2 ;; Copyright (C) 2003-2020 Free Software Foundation, Inc.
3 ;; Written by CodeSourcery, LLC.
4 ;;
5 ;; This file is part of GCC.
6 ;;
7 ;; GCC is free software; you can redistribute it and/or modify it
8 ;; under the terms of the GNU General Public License as published by
9 ;; the Free Software Foundation; either version 3, or (at your option)
10 ;; any later version.
11 ;;
12 ;; GCC is distributed in the hope that it will be useful, but
13 ;; WITHOUT ANY WARRANTY; without even the implied warranty of
14 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 ;; General Public License for more details.
16 ;;
17 ;; You should have received a copy of the GNU General Public License
18 ;; along with GCC; see the file COPYING3. If not see
19 ;; <http://www.gnu.org/licenses/>. */
20
21 ;; These descriptions are based on the information contained in the
22 ;; ARM1026EJ-S Technical Reference Manual, Copyright (c) 2003 ARM
23 ;; Limited.
24 ;;
25
26 ;; This automaton provides a pipeline description for the ARM
27 ;; 1026EJ-S core.
28 ;;
29 ;; The model given here assumes that the condition for all conditional
30 ;; instructions is "true", i.e., that all of the instructions are
31 ;; actually executed.
32
33 (define_automaton "arm1026ejs")
34
35 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
36 ;; Pipelines
37 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
38
39 ;; There are two pipelines:
40 ;;
41 ;; - An Arithmetic Logic Unit (ALU) pipeline.
42 ;;
43 ;; The ALU pipeline has fetch, issue, decode, execute, memory, and
44 ;; write stages. We only need to model the execute, memory and write
45 ;; stages.
46 ;;
47 ;; - A Load-Store Unit (LSU) pipeline.
48 ;;
49 ;; The LSU pipeline has decode, execute, memory, and write stages.
50 ;; We only model the execute, memory and write stages.
51
52 (define_cpu_unit "a_e,a_m,a_w" "arm1026ejs")
53 (define_cpu_unit "l_e,l_m,l_w" "arm1026ejs")
54
55 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
56 ;; ALU Instructions
57 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
58
59 ;; ALU instructions require three cycles to execute, and use the ALU
60 ;; pipeline in each of the three stages. The results are available
61 ;; after the execute stage has finished.
62 ;;
63 ;; If the destination register is the PC, the pipelines are stalled
64 ;; for several cycles. That case is not modeled here.
65
66 ;; ALU operations with no shifted operand
67 (define_insn_reservation "alu_op" 1
68 (and (eq_attr "tune" "arm1026ejs")
69 (eq_attr "type" "alu_imm,alus_imm,logic_imm,logics_imm,\
70 alu_sreg,alus_sreg,logic_reg,logics_reg,\
71 adc_imm,adcs_imm,adc_reg,adcs_reg,\
72 adr,bfm,rev,\
73 shift_imm,shift_reg,\
74 mov_imm,mov_reg,mvn_imm,mvn_reg,\
75 multiple"))
76 "a_e,a_m,a_w")
77
78 ;; ALU operations with a shift-by-constant operand
79 (define_insn_reservation "alu_shift_op" 1
80 (and (eq_attr "tune" "arm1026ejs")
81 (eq_attr "type" "alu_shift_imm,alus_shift_imm,\
82 logic_shift_imm,logics_shift_imm,\
83 extend,mov_shift,mvn_shift"))
84 "a_e,a_m,a_w")
85
86 ;; ALU operations with a shift-by-register operand
87 ;; These really stall in the decoder, in order to read
88 ;; the shift value in a second cycle. Pretend we take two cycles in
89 ;; the execute stage.
90 (define_insn_reservation "alu_shift_reg_op" 2
91 (and (eq_attr "tune" "arm1026ejs")
92 (eq_attr "type" "alu_shift_reg,alus_shift_reg,\
93 logic_shift_reg,logics_shift_reg,\
94 mov_shift_reg,mvn_shift_reg"))
95 "a_e*2,a_m,a_w")
96
97 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
98 ;; Multiplication Instructions
99 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
100
101 ;; Multiplication instructions loop in the execute stage until the
102 ;; instruction has been passed through the multiplier array enough
103 ;; times.
104
105 ;; The result of the "smul" and "smulw" instructions is not available
106 ;; until after the memory stage.
107 (define_insn_reservation "mult1" 2
108 (and (eq_attr "tune" "arm1026ejs")
109 (eq_attr "type" "smulxy,smulwy"))
110 "a_e,a_m,a_w")
111
112 ;; The "smlaxy" and "smlawx" instructions require two iterations through
113 ;; the execute stage; the result is available immediately following
114 ;; the execute stage.
115 (define_insn_reservation "mult2" 2
116 (and (eq_attr "tune" "arm1026ejs")
117 (eq_attr "type" "smlaxy,smlalxy,smlawx"))
118 "a_e*2,a_m,a_w")
119
120 ;; The "smlalxy", "mul", and "mla" instructions require two iterations
121 ;; through the execute stage; the result is not available until after
122 ;; the memory stage.
123 (define_insn_reservation "mult3" 3
124 (and (eq_attr "tune" "arm1026ejs")
125 (eq_attr "type" "smlalxy,mul,mla"))
126 "a_e*2,a_m,a_w")
127
128 ;; The "muls" and "mlas" instructions loop in the execute stage for
129 ;; four iterations in order to set the flags. The value result is
130 ;; available after three iterations.
131 (define_insn_reservation "mult4" 3
132 (and (eq_attr "tune" "arm1026ejs")
133 (eq_attr "type" "muls,mlas"))
134 "a_e*4,a_m,a_w")
135
136 ;; Long multiply instructions that produce two registers of
137 ;; output (such as umull) make their results available in two cycles;
138 ;; the least significant word is available before the most significant
139 ;; word. That fact is not modeled; instead, the instructions are
140 ;; described as if the entire result was available at the end of the
141 ;; cycle in which both words are available.
142
143 ;; The "umull", "umlal", "smull", and "smlal" instructions all take
144 ;; three iterations through the execute cycle, and make their results
145 ;; available after the memory cycle.
146 (define_insn_reservation "mult5" 4
147 (and (eq_attr "tune" "arm1026ejs")
148 (eq_attr "type" "umull,umlal,smull,smlal"))
149 "a_e*3,a_m,a_w")
150
151 ;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
152 ;; the execute stage for five iterations in order to set the flags.
153 ;; The value result is available after four iterations.
154 (define_insn_reservation "mult6" 4
155 (and (eq_attr "tune" "arm1026ejs")
156 (eq_attr "type" "umulls,umlals,smulls,smlals"))
157 "a_e*5,a_m,a_w")
158
159 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
160 ;; Load/Store Instructions
161 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
162
163 ;; The models for load/store instructions do not accurately describe
164 ;; the difference between operations with a base register writeback
165 ;; (such as "ldm!"). These models assume that all memory references
166 ;; hit in dcache.
167
168 ;; LSU instructions require six cycles to execute. They use the ALU
169 ;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
170 ;; three through six.
171 ;; Loads and stores which use a scaled register offset or scaled
172 ;; register pre-indexed addressing mode take three cycles EXCEPT for
173 ;; those that are base + offset with LSL of 0 or 2, or base - offset
174 ;; with LSL of zero. The remainder take 1 cycle to execute.
175 ;; For 4byte loads there is a bypass from the load stage
176
177 (define_insn_reservation "load1_op" 2
178 (and (eq_attr "tune" "arm1026ejs")
179 (eq_attr "type" "load_byte,load_4"))
180 "a_e+l_e,l_m,a_w+l_w")
181
182 (define_insn_reservation "store1_op" 0
183 (and (eq_attr "tune" "arm1026ejs")
184 (eq_attr "type" "store_4"))
185 "a_e+l_e,l_m,a_w+l_w")
186
187 ;; A load's result can be stored by an immediately following store
188 (define_bypass 1 "load1_op" "store1_op" "arm_no_early_store_addr_dep")
189
190 ;; On a LDM/STM operation, the LSU pipeline iterates until all of the
191 ;; registers have been processed.
192 ;;
193 ;; The time it takes to load the data depends on whether or not the
194 ;; base address is 64-bit aligned; if it is not, an additional cycle
195 ;; is required. This model assumes that the address is always 64-bit
196 ;; aligned. Because the processor can load two registers per cycle,
197 ;; that assumption means that we use the same instruction reservations
198 ;; for loading 2k and 2k - 1 registers.
199 ;;
200 ;; The ALU pipeline is stalled until the completion of the last memory
201 ;; stage in the LSU pipeline. That is modeled by keeping the ALU
202 ;; execute stage busy until that point.
203 ;;
204 ;; As with ALU operations, if one of the destination registers is the
205 ;; PC, there are additional stalls; that is not modeled.
206
207 (define_insn_reservation "load2_op" 2
208 (and (eq_attr "tune" "arm1026ejs")
209 (eq_attr "type" "load_8"))
210 "a_e+l_e,l_m,a_w+l_w")
211
212 (define_insn_reservation "store2_op" 0
213 (and (eq_attr "tune" "arm1026ejs")
214 (eq_attr "type" "store_8"))
215 "a_e+l_e,l_m,a_w+l_w")
216
217 (define_insn_reservation "load34_op" 3
218 (and (eq_attr "tune" "arm1026ejs")
219 (eq_attr "type" "load_12,load_16"))
220 "a_e+l_e,a_e+l_e+l_m,a_e+l_m,a_w+l_w")
221
222 (define_insn_reservation "store34_op" 0
223 (and (eq_attr "tune" "arm1026ejs")
224 (eq_attr "type" "store_12,store_16"))
225 "a_e+l_e,a_e+l_e+l_m,a_e+l_m,a_w+l_w")
226
227 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
228 ;; Branch and Call Instructions
229 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
230
231 ;; Branch instructions are difficult to model accurately. The ARM
232 ;; core can predict most branches. If the branch is predicted
233 ;; correctly, and predicted early enough, the branch can be completely
234 ;; eliminated from the instruction stream. Some branches can
235 ;; therefore appear to require zero cycles to execute. We assume that
236 ;; all branches are predicted correctly, and that the latency is
237 ;; therefore the minimum value.
238
239 (define_insn_reservation "branch_op" 0
240 (and (eq_attr "tune" "arm1026ejs")
241 (eq_attr "type" "branch"))
242 "nothing")
243
244 ;; The latency for a call is not predictable. Therefore, we use 32 as
245 ;; roughly equivalent to positive infinity.
246
247 (define_insn_reservation "call_op" 32
248 (and (eq_attr "tune" "arm1026ejs")
249 (eq_attr "type" "call"))
250 "nothing")