]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/bfin/bfin.h
Update copyright years.
[thirdparty/gcc.git] / gcc / config / bfin / bfin.h
1 /* Definitions for the Blackfin port.
2 Copyright (C) 2005-2020 Free Software Foundation, Inc.
3 Contributed by Analog Devices.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef _BFIN_CONFIG
22 #define _BFIN_CONFIG
23
24 #ifndef BFIN_OPTS_H
25 #include "config/bfin/bfin-opts.h"
26 #endif
27
28 #define OBJECT_FORMAT_ELF
29
30 #define BRT 1
31 #define BRF 0
32
33 /* Predefinition in the preprocessor for this target machine */
34 #ifndef TARGET_CPU_CPP_BUILTINS
35 #define TARGET_CPU_CPP_BUILTINS() \
36 do \
37 { \
38 builtin_define_std ("bfin"); \
39 builtin_define_std ("BFIN"); \
40 builtin_define ("__ADSPBLACKFIN__"); \
41 builtin_define ("__ADSPLPBLACKFIN__"); \
42 \
43 switch (bfin_cpu_type) \
44 { \
45 case BFIN_CPU_UNKNOWN: \
46 break; \
47 case BFIN_CPU_BF512: \
48 builtin_define ("__ADSPBF512__"); \
49 builtin_define ("__ADSPBF51x__"); \
50 break; \
51 case BFIN_CPU_BF514: \
52 builtin_define ("__ADSPBF514__"); \
53 builtin_define ("__ADSPBF51x__"); \
54 break; \
55 case BFIN_CPU_BF516: \
56 builtin_define ("__ADSPBF516__"); \
57 builtin_define ("__ADSPBF51x__"); \
58 break; \
59 case BFIN_CPU_BF518: \
60 builtin_define ("__ADSPBF518__"); \
61 builtin_define ("__ADSPBF51x__"); \
62 break; \
63 case BFIN_CPU_BF522: \
64 builtin_define ("__ADSPBF522__"); \
65 builtin_define ("__ADSPBF52x__"); \
66 break; \
67 case BFIN_CPU_BF523: \
68 builtin_define ("__ADSPBF523__"); \
69 builtin_define ("__ADSPBF52x__"); \
70 break; \
71 case BFIN_CPU_BF524: \
72 builtin_define ("__ADSPBF524__"); \
73 builtin_define ("__ADSPBF52x__"); \
74 break; \
75 case BFIN_CPU_BF525: \
76 builtin_define ("__ADSPBF525__"); \
77 builtin_define ("__ADSPBF52x__"); \
78 break; \
79 case BFIN_CPU_BF526: \
80 builtin_define ("__ADSPBF526__"); \
81 builtin_define ("__ADSPBF52x__"); \
82 break; \
83 case BFIN_CPU_BF527: \
84 builtin_define ("__ADSPBF527__"); \
85 builtin_define ("__ADSPBF52x__"); \
86 break; \
87 case BFIN_CPU_BF531: \
88 builtin_define ("__ADSPBF531__"); \
89 break; \
90 case BFIN_CPU_BF532: \
91 builtin_define ("__ADSPBF532__"); \
92 break; \
93 case BFIN_CPU_BF533: \
94 builtin_define ("__ADSPBF533__"); \
95 break; \
96 case BFIN_CPU_BF534: \
97 builtin_define ("__ADSPBF534__"); \
98 break; \
99 case BFIN_CPU_BF536: \
100 builtin_define ("__ADSPBF536__"); \
101 break; \
102 case BFIN_CPU_BF537: \
103 builtin_define ("__ADSPBF537__"); \
104 break; \
105 case BFIN_CPU_BF538: \
106 builtin_define ("__ADSPBF538__"); \
107 break; \
108 case BFIN_CPU_BF539: \
109 builtin_define ("__ADSPBF539__"); \
110 break; \
111 case BFIN_CPU_BF542M: \
112 builtin_define ("__ADSPBF542M__"); \
113 /* FALLTHRU */ \
114 case BFIN_CPU_BF542: \
115 builtin_define ("__ADSPBF542__"); \
116 builtin_define ("__ADSPBF54x__"); \
117 break; \
118 case BFIN_CPU_BF544M: \
119 builtin_define ("__ADSPBF544M__"); \
120 /* FALLTHRU */ \
121 case BFIN_CPU_BF544: \
122 builtin_define ("__ADSPBF544__"); \
123 builtin_define ("__ADSPBF54x__"); \
124 break; \
125 case BFIN_CPU_BF547M: \
126 builtin_define ("__ADSPBF547M__"); \
127 /* FALLTHRU */ \
128 case BFIN_CPU_BF547: \
129 builtin_define ("__ADSPBF547__"); \
130 builtin_define ("__ADSPBF54x__"); \
131 break; \
132 case BFIN_CPU_BF548M: \
133 builtin_define ("__ADSPBF548M__"); \
134 /* FALLTHRU */ \
135 case BFIN_CPU_BF548: \
136 builtin_define ("__ADSPBF548__"); \
137 builtin_define ("__ADSPBF54x__"); \
138 break; \
139 case BFIN_CPU_BF549M: \
140 builtin_define ("__ADSPBF549M__"); \
141 /* FALLTHRU */ \
142 case BFIN_CPU_BF549: \
143 builtin_define ("__ADSPBF549__"); \
144 builtin_define ("__ADSPBF54x__"); \
145 break; \
146 case BFIN_CPU_BF561: \
147 builtin_define ("__ADSPBF561__"); \
148 break; \
149 case BFIN_CPU_BF592: \
150 builtin_define ("__ADSPBF592__"); \
151 builtin_define ("__ADSPBF59x__"); \
152 break; \
153 } \
154 \
155 if (bfin_si_revision != -1) \
156 { \
157 /* space of 0xnnnn and a NUL */ \
158 char *buf = XALLOCAVEC (char, 7); \
159 \
160 sprintf (buf, "0x%04x", bfin_si_revision); \
161 builtin_define_with_value ("__SILICON_REVISION__", buf, 0); \
162 } \
163 \
164 if (bfin_workarounds) \
165 builtin_define ("__WORKAROUNDS_ENABLED"); \
166 if (ENABLE_WA_SPECULATIVE_LOADS) \
167 builtin_define ("__WORKAROUND_SPECULATIVE_LOADS"); \
168 if (ENABLE_WA_SPECULATIVE_SYNCS) \
169 builtin_define ("__WORKAROUND_SPECULATIVE_SYNCS"); \
170 if (ENABLE_WA_INDIRECT_CALLS) \
171 builtin_define ("__WORKAROUND_INDIRECT_CALLS"); \
172 if (ENABLE_WA_RETS) \
173 builtin_define ("__WORKAROUND_RETS"); \
174 \
175 if (TARGET_FDPIC) \
176 { \
177 builtin_define ("__BFIN_FDPIC__"); \
178 builtin_define ("__FDPIC__"); \
179 } \
180 if (TARGET_ID_SHARED_LIBRARY \
181 && !TARGET_SEP_DATA) \
182 builtin_define ("__ID_SHARED_LIB__"); \
183 if (flag_no_builtin) \
184 builtin_define ("__NO_BUILTIN"); \
185 if (TARGET_MULTICORE) \
186 builtin_define ("__BFIN_MULTICORE"); \
187 if (TARGET_COREA) \
188 builtin_define ("__BFIN_COREA"); \
189 if (TARGET_COREB) \
190 builtin_define ("__BFIN_COREB"); \
191 if (TARGET_SDRAM) \
192 builtin_define ("__BFIN_SDRAM"); \
193 } \
194 while (0)
195 #endif
196
197 #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS "\
198 %{mleaf-id-shared-library:%{!mid-shared-library:-mid-shared-library}} \
199 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
200 %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fpie}}}}}}}}} \
201 "
202 #ifndef SUBTARGET_DRIVER_SELF_SPECS
203 # define SUBTARGET_DRIVER_SELF_SPECS
204 #endif
205
206 #define LINK_GCC_C_SEQUENCE_SPEC "\
207 %{mfast-fp:-lbffastfp} %G %{!nolibc:%L} %{mfast-fp:-lbffastfp} %G \
208 "
209
210 #undef ASM_SPEC
211 #define ASM_SPEC "\
212 %{mno-fdpic:-mnopic} %{mfdpic}"
213
214 #define LINK_SPEC "\
215 %{h*} %{v:-V} \
216 %{mfdpic:-melf32bfinfd -z text} \
217 %{static:-dn -Bstatic} \
218 %{shared:-G -Bdynamic} \
219 %{symbolic:-Bsymbolic} \
220 -init __init -fini __fini "
221
222 /* Generate DSP instructions, like DSP halfword loads */
223 #define TARGET_DSP (1)
224
225 #define TARGET_DEFAULT 0
226
227 /* Maximum number of library ids we permit */
228 #define MAX_LIBRARY_ID 255
229
230 extern const char *bfin_library_id_string;
231
232 #define FUNCTION_MODE SImode
233 #define Pmode SImode
234
235 /* store-condition-codes instructions store 0 for false
236 This is the value stored for true. */
237 #define STORE_FLAG_VALUE 1
238
239 /* Define this if pushing a word on the stack
240 makes the stack pointer a smaller address. */
241 #define STACK_GROWS_DOWNWARD 1
242
243 #define STACK_PUSH_CODE PRE_DEC
244
245 /* Define this to nonzero if the nominal address of the stack frame
246 is at the high-address end of the local variables;
247 that is, each additional local variable allocated
248 goes at a more negative offset in the frame. */
249 #define FRAME_GROWS_DOWNWARD 1
250
251 /* We define a dummy ARGP register; the parameters start at offset 0 from
252 it. */
253 #define FIRST_PARM_OFFSET(DECL) 0
254
255 /* Register to use for pushing function arguments. */
256 #define STACK_POINTER_REGNUM REG_P6
257
258 /* Base register for access to local variables of the function. */
259 #define FRAME_POINTER_REGNUM REG_P7
260
261 /* A dummy register that will be eliminated to either FP or SP. */
262 #define ARG_POINTER_REGNUM REG_ARGP
263
264 /* `PIC_OFFSET_TABLE_REGNUM'
265 The register number of the register used to address a table of
266 static data addresses in memory. In some cases this register is
267 defined by a processor's "application binary interface" (ABI).
268 When this macro is defined, RTL is generated for this register
269 once, as with the stack pointer and frame pointer registers. If
270 this macro is not defined, it is up to the machine-dependent files
271 to allocate such a register (if necessary). */
272 #define PIC_OFFSET_TABLE_REGNUM (REG_P5)
273
274 #define FDPIC_FPTR_REGNO REG_P1
275 #define FDPIC_REGNO REG_P3
276 #define OUR_FDPIC_REG get_hard_reg_initial_val (SImode, FDPIC_REGNO)
277
278 /* A static chain register for nested functions. We need to use a
279 call-clobbered register for this. */
280 #define STATIC_CHAIN_REGNUM REG_P2
281
282 /* Define this if functions should assume that stack space has been
283 allocated for arguments even when their values are passed in
284 registers.
285
286 The value of this macro is the size, in bytes, of the area reserved for
287 arguments passed in registers.
288
289 This space can either be allocated by the caller or be a part of the
290 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
291 says which. */
292 #define FIXED_STACK_AREA 12
293 #define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
294
295 /* Define this if the above stack space is to be considered part of the
296 * space allocated by the caller. */
297 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
298
299 /* Define this if the maximum size of all the outgoing args is to be
300 accumulated and pushed during the prologue. The amount can be
301 found in the variable crtl->outgoing_args_size. */
302 #define ACCUMULATE_OUTGOING_ARGS 1
303
304 /*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
305
306 /* If defined, a C expression to compute the alignment for a local
307 variable. TYPE is the data type, and ALIGN is the alignment that
308 the object would ordinarily have. The value of this macro is used
309 instead of that alignment to align the object.
310
311 If this macro is not defined, then ALIGN is used.
312
313 One use of this macro is to increase alignment of medium-size
314 data to make it all fit in fewer cache lines. */
315
316 #define LOCAL_ALIGNMENT(TYPE, ALIGN) bfin_local_alignment ((TYPE), (ALIGN))
317
318 #define TRAMPOLINE_SIZE (TARGET_FDPIC ? 30 : 18)
319 \f
320 /* Definitions for register eliminations.
321
322 This is an array of structures. Each structure initializes one pair
323 of eliminable registers. The "from" register number is given first,
324 followed by "to". Eliminations of the same "from" register are listed
325 in order of preference.
326
327 There are two registers that can always be eliminated on the i386.
328 The frame pointer and the arg pointer can be replaced by either the
329 hard frame pointer or to the stack pointer, depending upon the
330 circumstances. The hard frame pointer is not used before reload and
331 so it is not eligible for elimination. */
332
333 #define ELIMINABLE_REGS \
334 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
335 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
336 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
337
338 /* Define the offset between two registers, one to be eliminated, and the other
339 its replacement, at the start of a routine. */
340
341 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
342 ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
343 \f
344 /* This processor has
345 8 data register for doing arithmetic
346 8 pointer register for doing addressing, including
347 1 stack pointer P6
348 1 frame pointer P7
349 4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
350 1 condition code flag register CC
351 5 return address registers RETS/I/X/N/E
352 1 arithmetic status register (ASTAT). */
353
354 #define FIRST_PSEUDO_REGISTER 50
355
356 #define D_REGNO_P(X) ((X) <= REG_R7)
357 #define P_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_P7)
358 #define I_REGNO_P(X) ((X) >= REG_I0 && (X) <= REG_I3)
359 #define DP_REGNO_P(X) (D_REGNO_P (X) || P_REGNO_P (X))
360 #define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
361 #define DREG_P(X) (REG_P (X) && D_REGNO_P (REGNO (X)))
362 #define PREG_P(X) (REG_P (X) && P_REGNO_P (REGNO (X)))
363 #define IREG_P(X) (REG_P (X) && I_REGNO_P (REGNO (X)))
364 #define DPREG_P(X) (REG_P (X) && DP_REGNO_P (REGNO (X)))
365
366 #define REGISTER_NAMES { \
367 "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
368 "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
369 "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
370 "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
371 "A0", "A1", \
372 "CC", \
373 "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
374 "ARGP", \
375 "LT0", "LT1", "LC0", "LC1", "LB0", "LB1" \
376 }
377
378 #define SHORT_REGISTER_NAMES { \
379 "R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
380 "P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
381 "I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
382 "L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
383
384 #define HIGH_REGISTER_NAMES { \
385 "R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
386 "P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
387 "I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
388 "L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
389
390 #define DREGS_PAIR_NAMES { \
391 "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0, }
392
393 #define BYTE_REGISTER_NAMES { \
394 "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B", }
395
396
397 /* 1 for registers that have pervasive standard uses
398 and are not available for the register allocator. */
399
400 #define FIXED_REGISTERS \
401 /*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
402 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, \
403 /*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
404 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, \
405 /*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
406 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
407 /*lb0/1 */ \
408 1, 1 \
409 }
410
411 /* 1 for registers not available across function calls.
412 These must include the FIXED_REGISTERS and also any
413 registers that can be used without being saved.
414 The latter must include the registers where values are returned
415 and the register where structure-value addresses are passed.
416 Aside from that, you can include as many other registers as you like. */
417
418 #define CALL_USED_REGISTERS \
419 /*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
420 { 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, \
421 /*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
422 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
423 /*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
424 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
425 /*lb0/1 */ \
426 1, 1 \
427 }
428
429 /* Order in which to allocate registers. Each register must be
430 listed once, even those in FIXED_REGISTERS. List frame pointer
431 late and fixed registers last. Note that, in general, we prefer
432 registers listed in CALL_USED_REGISTERS, keeping the others
433 available for storage of persistent values. */
434
435 #define REG_ALLOC_ORDER \
436 { REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
437 REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
438 REG_A0, REG_A1, \
439 REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
440 REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
441 REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE, \
442 REG_ASTAT, REG_SEQSTAT, REG_USP, \
443 REG_CC, REG_ARGP, \
444 REG_LT0, REG_LT1, REG_LC0, REG_LC1, REG_LB0, REG_LB1 \
445 }
446
447 /* Define the classes of registers for register constraints in the
448 machine description. Also define ranges of constants.
449
450 One of the classes must always be named ALL_REGS and include all hard regs.
451 If there is more than one class, another class must be named NO_REGS
452 and contain no registers.
453
454 The name GENERAL_REGS must be the name of a class (or an alias for
455 another name such as ALL_REGS). This is the class of registers
456 that is allowed by "g" or "r" in a register constraint.
457 Also, registers outside this class are allocated only when
458 instructions express preferences for them.
459
460 The classes must be numbered in nondecreasing order; that is,
461 a larger-numbered class must never be contained completely
462 in a smaller-numbered class.
463
464 For any two classes, it is very desirable that there be another
465 class that represents their union. */
466
467
468 enum reg_class
469 {
470 NO_REGS,
471 IREGS,
472 BREGS,
473 LREGS,
474 MREGS,
475 CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form. See Automatic Circular Buffering. */
476 DAGREGS,
477 EVEN_AREGS,
478 ODD_AREGS,
479 AREGS,
480 CCREGS,
481 EVEN_DREGS,
482 ODD_DREGS,
483 D0REGS,
484 D1REGS,
485 D2REGS,
486 D3REGS,
487 D4REGS,
488 D5REGS,
489 D6REGS,
490 D7REGS,
491 DREGS,
492 P0REGS,
493 FDPIC_REGS,
494 FDPIC_FPTR_REGS,
495 PREGS_CLOBBERED,
496 PREGS,
497 IPREGS,
498 DPREGS,
499 MOST_REGS,
500 LT_REGS,
501 LC_REGS,
502 LB_REGS,
503 PROLOGUE_REGS,
504 NON_A_CC_REGS,
505 ALL_REGS, LIM_REG_CLASSES
506 };
507
508 #define N_REG_CLASSES ((int)LIM_REG_CLASSES)
509
510 #define GENERAL_REGS DPREGS
511
512 /* Give names of register classes as strings for dump file. */
513
514 #define REG_CLASS_NAMES \
515 { "NO_REGS", \
516 "IREGS", \
517 "BREGS", \
518 "LREGS", \
519 "MREGS", \
520 "CIRCREGS", \
521 "DAGREGS", \
522 "EVEN_AREGS", \
523 "ODD_AREGS", \
524 "AREGS", \
525 "CCREGS", \
526 "EVEN_DREGS", \
527 "ODD_DREGS", \
528 "D0REGS", \
529 "D1REGS", \
530 "D2REGS", \
531 "D3REGS", \
532 "D4REGS", \
533 "D5REGS", \
534 "D6REGS", \
535 "D7REGS", \
536 "DREGS", \
537 "P0REGS", \
538 "FDPIC_REGS", \
539 "FDPIC_FPTR_REGS", \
540 "PREGS_CLOBBERED", \
541 "PREGS", \
542 "IPREGS", \
543 "DPREGS", \
544 "MOST_REGS", \
545 "LT_REGS", \
546 "LC_REGS", \
547 "LB_REGS", \
548 "PROLOGUE_REGS", \
549 "NON_A_CC_REGS", \
550 "ALL_REGS" }
551
552 /* An initializer containing the contents of the register classes, as integers
553 which are bit masks. The Nth integer specifies the contents of class N.
554 The way the integer MASK is interpreted is that register R is in the class
555 if `MASK & (1 << R)' is 1.
556
557 When the machine has more than 32 registers, an integer does not suffice.
558 Then the integers are replaced by sub-initializers, braced groupings
559 containing several integers. Each sub-initializer must be suitable as an
560 initializer for the type `HARD_REG_SET' which is defined in
561 `hard-reg-set.h'. */
562
563 /* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS. We use
564 MOST_REGS as the union of DPREGS and DAGREGS. */
565
566 #define REG_CLASS_CONTENTS \
567 /* 31 - 0 63-32 */ \
568 { { 0x00000000, 0 }, /* NO_REGS */ \
569 { 0x000f0000, 0 }, /* IREGS */ \
570 { 0x00f00000, 0 }, /* BREGS */ \
571 { 0x0f000000, 0 }, /* LREGS */ \
572 { 0xf0000000, 0 }, /* MREGS */ \
573 { 0x0fff0000, 0 }, /* CIRCREGS */ \
574 { 0xffff0000, 0 }, /* DAGREGS */ \
575 { 0x00000000, 0x1 }, /* EVEN_AREGS */ \
576 { 0x00000000, 0x2 }, /* ODD_AREGS */ \
577 { 0x00000000, 0x3 }, /* AREGS */ \
578 { 0x00000000, 0x4 }, /* CCREGS */ \
579 { 0x00000055, 0 }, /* EVEN_DREGS */ \
580 { 0x000000aa, 0 }, /* ODD_DREGS */ \
581 { 0x00000001, 0 }, /* D0REGS */ \
582 { 0x00000002, 0 }, /* D1REGS */ \
583 { 0x00000004, 0 }, /* D2REGS */ \
584 { 0x00000008, 0 }, /* D3REGS */ \
585 { 0x00000010, 0 }, /* D4REGS */ \
586 { 0x00000020, 0 }, /* D5REGS */ \
587 { 0x00000040, 0 }, /* D6REGS */ \
588 { 0x00000080, 0 }, /* D7REGS */ \
589 { 0x000000ff, 0 }, /* DREGS */ \
590 { 0x00000100, 0x000 }, /* P0REGS */ \
591 { 0x00000800, 0x000 }, /* FDPIC_REGS */ \
592 { 0x00000200, 0x000 }, /* FDPIC_FPTR_REGS */ \
593 { 0x00004700, 0x800 }, /* PREGS_CLOBBERED */ \
594 { 0x0000ff00, 0x800 }, /* PREGS */ \
595 { 0x000fff00, 0x800 }, /* IPREGS */ \
596 { 0x0000ffff, 0x800 }, /* DPREGS */ \
597 { 0xffffffff, 0x800 }, /* MOST_REGS */\
598 { 0x00000000, 0x3000 }, /* LT_REGS */\
599 { 0x00000000, 0xc000 }, /* LC_REGS */\
600 { 0x00000000, 0x30000 }, /* LB_REGS */\
601 { 0x00000000, 0x3f7f8 }, /* PROLOGUE_REGS */\
602 { 0xffffffff, 0x3fff8 }, /* NON_A_CC_REGS */\
603 { 0xffffffff, 0x3ffff }} /* ALL_REGS */
604
605 #define IREG_POSSIBLE_P(OUTER) \
606 ((OUTER) == POST_INC || (OUTER) == PRE_INC \
607 || (OUTER) == POST_DEC || (OUTER) == PRE_DEC \
608 || (OUTER) == MEM || (OUTER) == ADDRESS)
609
610 #define MODE_CODE_BASE_REG_CLASS(MODE, AS, OUTER, INDEX) \
611 ((MODE) == HImode && IREG_POSSIBLE_P (OUTER) ? IPREGS : PREGS)
612
613 #define INDEX_REG_CLASS PREGS
614
615 #define REGNO_OK_FOR_BASE_STRICT_P(X, MODE, OUTER, INDEX) \
616 (P_REGNO_P (X) || (X) == REG_ARGP \
617 || (IREG_POSSIBLE_P (OUTER) && (MODE) == HImode \
618 && I_REGNO_P (X)))
619
620 #define REGNO_OK_FOR_BASE_NONSTRICT_P(X, MODE, OUTER, INDEX) \
621 ((X) >= FIRST_PSEUDO_REGISTER \
622 || REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX))
623
624 #ifdef REG_OK_STRICT
625 #define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, AS, OUTER, INDEX) \
626 REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX)
627 #else
628 #define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, AS, OUTER, INDEX) \
629 REGNO_OK_FOR_BASE_NONSTRICT_P (X, MODE, OUTER, INDEX)
630 #endif
631
632 #define REGNO_OK_FOR_INDEX_P(X) 0
633
634 /* The same information, inverted:
635 Return the class number of the smallest class containing
636 reg number REGNO. This could be a conditional expression
637 or could index an array. */
638
639 #define REGNO_REG_CLASS(REGNO) \
640 ((REGNO) == REG_R0 ? D0REGS \
641 : (REGNO) == REG_R1 ? D1REGS \
642 : (REGNO) == REG_R2 ? D2REGS \
643 : (REGNO) == REG_R3 ? D3REGS \
644 : (REGNO) == REG_R4 ? D4REGS \
645 : (REGNO) == REG_R5 ? D5REGS \
646 : (REGNO) == REG_R6 ? D6REGS \
647 : (REGNO) == REG_R7 ? D7REGS \
648 : (REGNO) == REG_P0 ? P0REGS \
649 : (REGNO) < REG_I0 ? PREGS \
650 : (REGNO) == REG_ARGP ? PREGS \
651 : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS \
652 : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS \
653 : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS \
654 : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS \
655 : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS \
656 : (REGNO) == REG_LT0 || (REGNO) == REG_LT1 ? LT_REGS \
657 : (REGNO) == REG_LC0 || (REGNO) == REG_LC1 ? LC_REGS \
658 : (REGNO) == REG_LB0 || (REGNO) == REG_LB1 ? LB_REGS \
659 : (REGNO) == REG_CC ? CCREGS \
660 : (REGNO) >= REG_RETS ? PROLOGUE_REGS \
661 : NO_REGS)
662
663 /* When this hook returns true for MODE, the compiler allows
664 registers explicitly used in the rtl to be used as spill registers
665 but prevents the compiler from extending the lifetime of these
666 registers. */
667 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
668
669 /* Return the maximum number of consecutive registers
670 needed to represent mode MODE in a register of class CLASS. */
671 #define CLASS_MAX_NREGS(CLASS, MODE) \
672 ((MODE) == V2PDImode && (CLASS) == AREGS ? 2 \
673 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
674
675 /* A C expression that is nonzero if hard register TO can be
676 considered for use as a rename register for FROM register */
677 #define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
678
679 /* `PREFERRED_RELOAD_CLASS (X, CLASS)'
680 A C expression that places additional restrictions on the register
681 class to use when it is necessary to copy value X into a register
682 in class CLASS. The value is a register class; perhaps CLASS, or
683 perhaps another, smaller class. */
684 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
685 (GET_CODE (X) == POST_INC \
686 || GET_CODE (X) == POST_DEC \
687 || GET_CODE (X) == PRE_DEC ? PREGS : (CLASS))
688
689 /* Function Calling Conventions. */
690
691 /* The type of the current function; normal functions are of type
692 SUBROUTINE. */
693 typedef enum {
694 SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
695 } e_funkind;
696 #define FUNCTION_RETURN_REGISTERS { REG_RETS, REG_RETI, REG_RETX, REG_RETN }
697
698 #define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
699
700 /* Flags for the call/call_value rtl operations set up by function_arg */
701 #define CALL_NORMAL 0x00000000 /* no special processing */
702 #define CALL_LONG 0x00000001 /* always call indirect */
703 #define CALL_SHORT 0x00000002 /* always call by symbol */
704
705 typedef struct {
706 int words; /* # words passed so far */
707 int nregs; /* # registers available for passing */
708 int *arg_regs; /* array of register -1 terminated */
709 int call_cookie; /* Do special things for this call */
710 } CUMULATIVE_ARGS;
711
712 #define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
713
714
715 /* Initialize a variable CUM of type CUMULATIVE_ARGS
716 for a call to a function whose data type is FNTYPE.
717 For a library call, FNTYPE is 0. */
718 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
719 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
720
721 /* Define how to find the value returned by a function.
722 VALTYPE is the data type of the value (as a tree).
723 If the precise function being called is known, FUNC is its FUNCTION_DECL;
724 otherwise, FUNC is 0.
725 */
726
727 #define VALUE_REGNO(MODE) (REG_R0)
728
729 #define FUNCTION_VALUE(VALTYPE, FUNC) \
730 gen_rtx_REG (TYPE_MODE (VALTYPE), \
731 VALUE_REGNO(TYPE_MODE(VALTYPE)))
732
733 /* Define how to find the value returned by a library function
734 assuming the value has mode MODE. */
735
736 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, VALUE_REGNO(MODE))
737
738 #define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
739
740 #define DEFAULT_PCC_STRUCT_RETURN 0
741
742 /* Before the prologue, the return address is in the RETS register. */
743 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
744
745 #define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
746
747 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
748
749 /* Call instructions don't modify the stack pointer on the Blackfin. */
750 #define INCOMING_FRAME_SP_OFFSET 0
751
752 /* Describe how we implement __builtin_eh_return. */
753 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
754 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, REG_P2)
755 #define EH_RETURN_HANDLER_RTX \
756 gen_frame_mem (Pmode, plus_constant (Pmode, frame_pointer_rtx, \
757 UNITS_PER_WORD))
758
759 /* Addressing Modes */
760
761 /* A number, the maximum number of registers that can appear in a
762 valid memory address. Note that it is up to you to specify a
763 value equal to the maximum number that `TARGET_LEGITIMATE_ADDRESS_P'
764 would ever accept. */
765 #define MAX_REGS_PER_ADDRESS 1
766
767 #define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
768 (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
769
770 #define HAVE_POST_INCREMENT 1
771 #define HAVE_POST_DECREMENT 1
772 #define HAVE_PRE_DECREMENT 1
773
774 /* `LEGITIMATE_PIC_OPERAND_P (X)'
775 A C expression that is nonzero if X is a legitimate immediate
776 operand on the target machine when generating position independent
777 code. You can assume that X satisfies `CONSTANT_P', so you need
778 not check this. You can also assume FLAG_PIC is true, so you need
779 not check it either. You need not define this macro if all
780 constants (including `SYMBOL_REF') can be immediate operands when
781 generating position independent code. */
782 #define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
783
784 #define SYMBOLIC_CONST(X) \
785 (GET_CODE (X) == SYMBOL_REF \
786 || GET_CODE (X) == LABEL_REF \
787 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
788
789 #define NOTICE_UPDATE_CC(EXPR, INSN) 0
790
791 /* Max number of bytes we can move from memory to memory
792 in one reasonably fast instruction. */
793 #define MOVE_MAX UNITS_PER_WORD
794
795 /* If a memory-to-memory move would take MOVE_RATIO or more simple
796 move-instruction pairs, we will do a cpymem or libcall instead. */
797
798 #define MOVE_RATIO(speed) 5
799
800 /* STORAGE LAYOUT: target machine storage layout
801 Define this macro as a C expression which is nonzero if accessing
802 less than a word of memory (i.e. a `char' or a `short') is no
803 faster than accessing a word of memory, i.e., if such access
804 require more than one instruction or if there is no difference in
805 cost between byte and (aligned) word loads.
806
807 When this macro is not defined, the compiler will access a field by
808 finding the smallest containing object; when it is defined, a
809 fullword load will be used if alignment permits. Unless bytes
810 accesses are faster than word accesses, using word accesses is
811 preferable since it may eliminate subsequent memory access if
812 subsequent accesses occur to other fields in the same word of the
813 structure, but to different bytes. */
814 #define SLOW_BYTE_ACCESS 0
815 #define SLOW_SHORT_ACCESS 0
816
817 /* Define this if most significant bit is lowest numbered
818 in instructions that operate on numbered bit-fields. */
819 #define BITS_BIG_ENDIAN 0
820
821 /* Define this if most significant byte of a word is the lowest numbered.
822 We can't access bytes but if we could we would in the Big Endian order. */
823 #define BYTES_BIG_ENDIAN 0
824
825 /* Define this if most significant word of a multiword number is numbered. */
826 #define WORDS_BIG_ENDIAN 0
827
828 /* Width in bits of a "word", which is the contents of a machine register.
829 Note that this is not necessarily the width of data type `int';
830 if using 16-bit ints on a 68000, this would still be 32.
831 But on a machine with 16-bit registers, this would be 16. */
832 #define BITS_PER_WORD 32
833
834 /* Width of a word, in units (bytes). */
835 #define UNITS_PER_WORD 4
836
837 /* Width in bits of a pointer.
838 See also the macro `Pmode1' defined below. */
839 #define POINTER_SIZE 32
840
841 /* Allocation boundary (in *bits*) for storing pointers in memory. */
842 #define POINTER_BOUNDARY 32
843
844 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
845 #define PARM_BOUNDARY 32
846
847 /* Boundary (in *bits*) on which stack pointer should be aligned. */
848 #define STACK_BOUNDARY 32
849
850 /* Allocation boundary (in *bits*) for the code of a function. */
851 #define FUNCTION_BOUNDARY 32
852
853 /* Alignment of field after `int : 0' in a structure. */
854 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
855
856 /* No data type wants to be aligned rounder than this. */
857 #define BIGGEST_ALIGNMENT 32
858
859 /* Define this if move instructions will actually fail to work
860 when given unaligned data. */
861 #define STRICT_ALIGNMENT 1
862
863 /* (shell-command "rm c-decl.o stor-layout.o")
864 * never define PCC_BITFIELD_TYPE_MATTERS
865 * really cause some alignment problem
866 */
867
868 #define UNITS_PER_FLOAT ((FLOAT_TYPE_SIZE + BITS_PER_UNIT - 1) / \
869 BITS_PER_UNIT)
870
871 #define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
872 BITS_PER_UNIT)
873
874
875 /* what is the 'type' of size_t */
876 #define SIZE_TYPE "long unsigned int"
877
878 /* Define this as 1 if `char' should by default be signed; else as 0. */
879 #define DEFAULT_SIGNED_CHAR 1
880 #define FLOAT_TYPE_SIZE BITS_PER_WORD
881 #define SHORT_TYPE_SIZE 16
882 #define CHAR_TYPE_SIZE 8
883 #define INT_TYPE_SIZE 32
884 #define LONG_TYPE_SIZE 32
885 #define LONG_LONG_TYPE_SIZE 64
886
887 /* Note: Fix this to depend on target switch. -- lev */
888
889 /* Note: Try to implement double and force long double. -- tonyko
890 * #define __DOUBLES_ARE_FLOATS__
891 * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
892 * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
893 * #define DOUBLES_ARE_FLOATS 1
894 */
895
896 #define DOUBLE_TYPE_SIZE 64
897 #define LONG_DOUBLE_TYPE_SIZE 64
898
899 /* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
900 A macro to update M and UNSIGNEDP when an object whose type is
901 TYPE and which has the specified mode and signedness is to be
902 stored in a register. This macro is only called when TYPE is a
903 scalar type.
904
905 On most RISC machines, which only have operations that operate on
906 a full register, define this macro to set M to `word_mode' if M is
907 an integer mode narrower than `BITS_PER_WORD'. In most cases,
908 only integer modes should be widened because wider-precision
909 floating-point operations are usually more expensive than their
910 narrower counterparts.
911
912 For most machines, the macro definition does not change UNSIGNEDP.
913 However, some machines, have instructions that preferentially
914 handle either signed or unsigned quantities of certain modes. For
915 example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
916 instructions sign-extend the result to 64 bits. On such machines,
917 set UNSIGNEDP according to which kind of extension is more
918 efficient.
919
920 Do not define this macro if it would never modify M.*/
921
922 #define BFIN_PROMOTE_MODE_P(MODE) \
923 (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT \
924 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
925
926 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
927 if (BFIN_PROMOTE_MODE_P(MODE)) \
928 { \
929 if (MODE == QImode) \
930 UNSIGNEDP = 1; \
931 else if (MODE == HImode) \
932 UNSIGNEDP = 0; \
933 (MODE) = SImode; \
934 }
935
936 /* Describing Relative Costs of Operations */
937
938 /* Do not put function addr into constant pool */
939 #define NO_FUNCTION_CSE 1
940
941 /* Specify the machine mode that this machine uses
942 for the index in the tablejump instruction. */
943 #define CASE_VECTOR_MODE SImode
944
945 #define JUMP_TABLES_IN_TEXT_SECTION flag_pic
946
947 /* Define if operations between registers always perform the operation
948 on the full register even if a narrower mode is specified.
949 #define WORD_REGISTER_OPERATIONS 1
950 */
951
952 /* Evaluates to true if A and B are mac flags that can be used
953 together in a single multiply insn. That is the case if they are
954 both the same flag not involving M, or if one is a combination of
955 the other with M. */
956 #define MACFLAGS_MATCH_P(A, B) \
957 ((A) == (B) \
958 || ((A) == MACFLAG_NONE && (B) == MACFLAG_M) \
959 || ((A) == MACFLAG_M && (B) == MACFLAG_NONE) \
960 || ((A) == MACFLAG_IS && (B) == MACFLAG_IS_M) \
961 || ((A) == MACFLAG_IS_M && (B) == MACFLAG_IS))
962
963 /* Switch into a generic section. */
964 #define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
965
966 #define PRINT_OPERAND(FILE, RTX, CODE) print_operand (FILE, RTX, CODE)
967 #define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
968
969 typedef enum sections {
970 CODE_DIR,
971 DATA_DIR,
972 LAST_SECT_NM
973 } SECT_ENUM_T;
974
975 typedef enum directives {
976 LONG_CONST_DIR,
977 SHORT_CONST_DIR,
978 BYTE_CONST_DIR,
979 SPACE_DIR,
980 INIT_DIR,
981 LAST_DIR_NM
982 } DIR_ENUM_T;
983
984 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) \
985 ((C) == ';' \
986 || ((C) == '|' && (STR)[1] == '|'))
987
988 #define TEXT_SECTION_ASM_OP ".text;"
989 #define DATA_SECTION_ASM_OP ".data;"
990
991 #define ASM_APP_ON ""
992 #define ASM_APP_OFF ""
993
994 #define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
995 do { fputs (".global ", FILE); \
996 assemble_name (FILE, NAME); \
997 fputc (';',FILE); \
998 fputc ('\n',FILE); \
999 } while (0)
1000
1001 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1002 do { \
1003 fputs (".type ", FILE); \
1004 assemble_name (FILE, NAME); \
1005 fputs (", STT_FUNC", FILE); \
1006 fputc (';',FILE); \
1007 fputc ('\n',FILE); \
1008 ASM_OUTPUT_LABEL(FILE, NAME); \
1009 } while (0)
1010
1011 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1012 do { assemble_name (FILE, NAME); \
1013 fputs (":\n",FILE); \
1014 } while (0)
1015
1016 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1017 do { fprintf (FILE, "_%s", NAME); \
1018 } while (0)
1019
1020 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1021 do { char __buf[256]; \
1022 fprintf (FILE, "\t.dd\t"); \
1023 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1024 assemble_name (FILE, __buf); \
1025 fputc (';', FILE); \
1026 fputc ('\n', FILE); \
1027 } while (0)
1028
1029 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1030 MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1031
1032 #define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1033 do { \
1034 char __buf[256]; \
1035 fprintf (FILE, "\t.dd\t"); \
1036 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1037 assemble_name (FILE, __buf); \
1038 fputs (" - ", FILE); \
1039 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL); \
1040 assemble_name (FILE, __buf); \
1041 fputc (';', FILE); \
1042 fputc ('\n', FILE); \
1043 } while (0)
1044
1045 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1046 do { \
1047 if ((LOG) != 0) \
1048 fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
1049 } while (0)
1050
1051 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1052 do { \
1053 asm_output_skip (FILE, SIZE); \
1054 } while (0)
1055
1056 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1057 do { \
1058 switch_to_section (data_section); \
1059 if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2); \
1060 ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE); \
1061 ASM_OUTPUT_LABEL (FILE, NAME); \
1062 fprintf (FILE, "%s %ld;\n", ASM_SPACE, \
1063 (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1); \
1064 } while (0)
1065
1066 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1067 do { \
1068 ASM_GLOBALIZE_LABEL1(FILE,NAME); \
1069 ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1070
1071 #define ASM_COMMENT_START "//"
1072
1073 #define PROFILE_BEFORE_PROLOGUE
1074 #define FUNCTION_PROFILER(FILE, LABELNO) \
1075 do { \
1076 fprintf (FILE, "\t[--SP] = RETS;\n"); \
1077 if (TARGET_LONG_CALLS) \
1078 { \
1079 fprintf (FILE, "\tP2.h = __mcount;\n"); \
1080 fprintf (FILE, "\tP2.l = __mcount;\n"); \
1081 fprintf (FILE, "\tCALL (P2);\n"); \
1082 } \
1083 else \
1084 fprintf (FILE, "\tCALL __mcount;\n"); \
1085 fprintf (FILE, "\tRETS = [SP++];\n"); \
1086 } while(0)
1087
1088 #undef NO_PROFILE_COUNTERS
1089 #define NO_PROFILE_COUNTERS 1
1090
1091 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "\t[--SP] = %s;\n", reg_names[REGNO])
1092 #define ASM_OUTPUT_REG_POP(FILE, REGNO) fprintf (FILE, "\t%s = [SP++];\n", reg_names[REGNO])
1093
1094 extern rtx bfin_cc_rtx, bfin_rets_rtx;
1095
1096 /* This works for GAS and some other assemblers. */
1097 #define SET_ASM_OP ".set "
1098
1099 /* DBX register number for a given compiler register number */
1100 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1101
1102 #define SIZE_ASM_OP "\t.size\t"
1103
1104 extern int splitting_for_sched, splitting_loops;
1105
1106 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) ((CHAR) == '!')
1107
1108 #ifndef TARGET_SUPPORTS_SYNC_CALLS
1109 #define TARGET_SUPPORTS_SYNC_CALLS 0
1110 #endif
1111
1112 struct bfin_cpu
1113 {
1114 const char *name;
1115 bfin_cpu_t type;
1116 int si_revision;
1117 unsigned int workarounds;
1118 };
1119
1120 extern const struct bfin_cpu bfin_cpus[];
1121
1122 #endif /* _BFIN_CONFIG */