]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/fr30/fr30.md
Update copyright years.
[thirdparty/gcc.git] / gcc / config / fr30 / fr30.md
1 ;; FR30 machine description.
2 ;; Copyright (C) 1998-2020 Free Software Foundation, Inc.
3 ;; Contributed by Cygnus Solutions.
4
5 ;; This file is part of GCC.
6
7 ;; GCC is free software; you can redistribute it and/or modify
8 ;; it under the terms of the GNU General Public License as published by
9 ;; the Free Software Foundation; either version 3, or (at your option)
10 ;; any later version.
11
12 ;; GCC is distributed in the hope that it will be useful,
13 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
14 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 ;; GNU General Public License for more details.
16
17 ;; You should have received a copy of the GNU General Public License
18 ;; along with GCC; see the file COPYING3. If not see
19 ;; <http://www.gnu.org/licenses/>.
20
21 ;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
22
23 ;;{{{ Attributes
24
25 (define_attr "length" "" (const_int 2))
26
27 ;; Used to distinguish between small memory model targets and big mode targets.
28
29 (define_attr "size" "small,big"
30 (const (if_then_else (symbol_ref "TARGET_SMALL_MODEL")
31 (const_string "small")
32 (const_string "big"))))
33
34
35 ;; Define an attribute to be used by the delay slot code.
36 ;; An instruction by default is considered to be 'delayable'
37 ;; that is, it can be placed into a delay slot, but it is not
38 ;; itself a delayed branch type instruction. An instruction
39 ;; whose type is 'delayed' is one which has a delay slot, and
40 ;; an instruction whose delay_type is 'other' is one which does
41 ;; not have a delay slot, nor can it be placed into a delay slot.
42
43 (define_attr "delay_type" "delayable,delayed,other" (const_string "delayable"))
44
45 ;;}}} \f
46 ;;{{{ Delay Slot Specifications
47
48 (define_delay (eq_attr "delay_type" "delayed")
49 [(and (eq_attr "delay_type" "delayable")
50 (eq_attr "length" "2"))
51 (nil)
52 (nil)]
53 )
54
55 (include "predicates.md")
56 (include "constraints.md")
57
58 ;;}}}
59 ;;{{{ Moves
60
61 ;;{{{ Comment
62
63 ;; Wrap moves in define_expand to prevent memory->memory moves from being
64 ;; generated at the RTL level, which generates better code for most machines
65 ;; which can't do mem->mem moves.
66
67 ;; If operand 0 is a `subreg' with mode M of a register whose own mode is wider
68 ;; than M, the effect of this instruction is to store the specified value in
69 ;; the part of the register that corresponds to mode M. The effect on the rest
70 ;; of the register is undefined.
71
72 ;; This class of patterns is special in several ways. First of all, each of
73 ;; these names *must* be defined, because there is no other way to copy a datum
74 ;; from one place to another.
75
76 ;; Second, these patterns are not used solely in the RTL generation pass. Even
77 ;; the reload pass can generate move insns to copy values from stack slots into
78 ;; temporary registers. When it does so, one of the operands is a hard
79 ;; register and the other is an operand that can need to be reloaded into a
80 ;; register.
81
82 ;; Therefore, when given such a pair of operands, the pattern must
83 ;; generate RTL which needs no reloading and needs no temporary
84 ;; registers--no registers other than the operands. For example, if
85 ;; you support the pattern with a `define_expand', then in such a
86 ;; case the `define_expand' mustn't call `force_reg' or any other such
87 ;; function which might generate new pseudo registers.
88
89 ;; This requirement exists even for subword modes on a RISC machine
90 ;; where fetching those modes from memory normally requires several
91 ;; insns and some temporary registers. Look in `spur.md' to see how
92 ;; the requirement can be satisfied.
93
94 ;; During reload a memory reference with an invalid address may be passed as an
95 ;; operand. Such an address will be replaced with a valid address later in the
96 ;; reload pass. In this case, nothing may be done with the address except to
97 ;; use it as it stands. If it is copied, it will not be replaced with a valid
98 ;; address. No attempt should be made to make such an address into a valid
99 ;; address and no routine (such as `change_address') that will do so may be
100 ;; called. Note that `general_operand' will fail when applied to such an
101 ;; address.
102 ;;
103 ;; The global variable `reload_in_progress' (which must be explicitly declared
104 ;; if required) can be used to determine whether such special handling is
105 ;; required.
106 ;;
107 ;; The variety of operands that have reloads depends on the rest of
108 ;; the machine description, but typically on a RISC machine these can
109 ;; only be pseudo registers that did not get hard registers, while on
110 ;; other machines explicit memory references will get optional
111 ;; reloads.
112 ;;
113 ;; If a scratch register is required to move an object to or from memory, it
114 ;; can be allocated using `gen_reg_rtx' prior to reload. But this is
115 ;; impossible during and after reload. If there are cases needing scratch
116 ;; registers after reload, you must define `SECONDARY_INPUT_RELOAD_CLASS' and
117 ;; perhaps also `SECONDARY_OUTPUT_RELOAD_CLASS' to detect them, and provide
118 ;; patterns `reload_inM' or `reload_outM' to handle them.
119
120 ;; The constraints on a `moveM' must permit moving any hard register to any
121 ;; other hard register provided that `TARGET_HARD_REGNO_MODE_OK' permits mode
122 ;; M in both registers and `REGISTER_MOVE_COST' applied to their classes
123 ;; returns a value of 2.
124
125 ;; It is obligatory to support floating point `moveM' instructions
126 ;; into and out of any registers that can hold fixed point values,
127 ;; because unions and structures (which have modes `SImode' or
128 ;; `DImode') can be in those registers and they may have floating
129 ;; point members.
130
131 ;; There may also be a need to support fixed point `moveM' instructions
132 ;; in and out of floating point registers. Unfortunately, I have
133 ;; forgotten why this was so, and I don't know whether it is still true.
134 ;; If `TARGET_HARD_REGNO_MODE_OK' rejects fixed point values in floating
135 ;; point registers, then the constraints of the fixed point `moveM'
136 ;; instructions must be designed to avoid ever trying to reload into a
137 ;; floating point register.
138
139 ;;}}}
140 ;;{{{ Push and Pop
141
142 ;; Push a register onto the stack
143 (define_insn "movsi_push"
144 [(set (mem:SI (pre_dec:SI (reg:SI 15)))
145 (match_operand:SI 0 "register_operand" "a"))]
146 ""
147 "st %0, @-r15"
148 )
149
150 ;; Pop a register off the stack
151 (define_insn "movsi_pop"
152 [(set (match_operand:SI 0 "register_operand" "=a")
153 (mem:SI (post_inc:SI (reg:SI 15))))]
154 ""
155 "ld @r15+, %0"
156 )
157
158 ;;}}}
159 ;;{{{ 1 Byte Moves
160
161 (define_expand "movqi"
162 [(set (match_operand:QI 0 "general_operand" "")
163 (match_operand:QI 1 "general_operand" ""))]
164 ""
165 "
166 {
167 if (!reload_in_progress
168 && !reload_completed
169 && GET_CODE (operands[0]) == MEM
170 && (GET_CODE (operands[1]) == MEM
171 || immediate_operand (operands[1], QImode)))
172 operands[1] = copy_to_mode_reg (QImode, operands[1]);
173 }")
174
175 (define_insn "movqi_unsigned_register_load"
176 [(set (match_operand:SI 0 "register_operand" "=r")
177 (zero_extend:SI (match_operand:QI 1 "memory_operand" "m")))]
178 ""
179 "ldub %1, %0"
180 )
181
182 (define_expand "movqi_signed_register_load"
183 [(set (match_operand:SI 0 "register_operand" "")
184 (sign_extend:SI (match_operand:QI 1 "memory_operand" "")))]
185 ""
186 "
187 emit_insn (gen_movqi_unsigned_register_load (operands[0], operands[1]));
188 emit_insn (gen_extendqisi2 (operands[0], operands[0]));
189 DONE;
190 "
191 )
192
193 (define_insn "*movqi_internal"
194 [(set (match_operand:QI 0 "nonimmediate_operand" "=r,red,m,r")
195 (match_operand:QI 1 "general_operand" "i,red,r,rm"))]
196 ""
197 "@
198 ldi:8\\t#%A1, %0
199 mov \\t%1, %0
200 stb \\t%1, %0
201 ldub \\t%1, %0"
202 )
203
204 ;;}}}
205 ;;{{{ 2 Byte Moves
206
207 (define_expand "movhi"
208 [(set (match_operand:HI 0 "general_operand" "")
209 (match_operand:HI 1 "general_operand" ""))]
210 ""
211 "
212 {
213 if (!reload_in_progress
214 && !reload_completed
215 && GET_CODE (operands[0]) == MEM
216 && (GET_CODE (operands[1]) == MEM
217 || immediate_operand (operands[1], HImode)))
218 operands[1] = copy_to_mode_reg (HImode, operands[1]);
219 }")
220
221 (define_insn "movhi_unsigned_register_load"
222 [(set (match_operand:SI 0 "register_operand" "=r")
223 (zero_extend:SI (match_operand:HI 1 "memory_operand" "m")))]
224 ""
225 "lduh %1, %0"
226 )
227
228 (define_expand "movhi_signed_register_load"
229 [(set (match_operand:SI 0 "register_operand" "")
230 (sign_extend:SI (match_operand:HI 1 "memory_operand" "")))]
231 ""
232 "
233 emit_insn (gen_movhi_unsigned_register_load (operands[0], operands[1]));
234 emit_insn (gen_extendhisi2 (operands[0], operands[0]));
235 DONE;
236 "
237 )
238
239 (define_insn "*movhi_internal"
240 [(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,r,red,m,r")
241 (match_operand:HI 1 "general_operand" "L,M,n,red,r,rm"))]
242 ""
243 "@
244 ldi:8 \\t#%1, %0
245 ldi:20\\t#%1, %0
246 ldi:32\\t#%1, %0
247 mov \\t%1, %0
248 sth \\t%1, %0
249 lduh \\t%1, %0"
250 [(set_attr "length" "*,4,6,*,*,*")]
251 )
252
253 ;;}}}
254 ;;{{{ 4 Byte Moves
255
256 ;; If the destination is a MEM and the source is a
257 ;; MEM or an CONST_INT move the source into a register.
258 (define_expand "movsi"
259 [(set (match_operand:SI 0 "nonimmediate_operand" "")
260 (match_operand:SI 1 "general_operand" ""))]
261 ""
262 "{
263 if (!reload_in_progress
264 && !reload_completed
265 && GET_CODE(operands[0]) == MEM
266 && (GET_CODE (operands[1]) == MEM
267 || immediate_operand (operands[1], SImode)))
268 operands[1] = copy_to_mode_reg (SImode, operands[1]);
269 }"
270 )
271
272 ;; We can do some clever tricks when loading certain immediate
273 ;; values. We implement these tricks as define_splits, rather
274 ;; than putting the code into the define_expand "movsi" above,
275 ;; because if we put them there, they will be evaluated at RTL
276 ;; generation time and then the combiner pass will come along
277 ;; and replace the multiple insns that have been generated with
278 ;; the original, slower, load insns. (The combiner pass only
279 ;; cares about reducing the number of instructions, it does not
280 ;; care about instruction lengths or speeds). Splits are
281 ;; evaluated after the combine pass and before the scheduling
282 ;; passes, so that they are the perfect place to put this
283 ;; intelligence.
284 ;;
285 ;; XXX we probably ought to implement these for QI and HI mode
286 ;; loads as well.
287
288 ;; If we are loading a small negative constant we can save space
289 ;; and time by loading the positive value and then sign extending it.
290 (define_split
291 [(set (match_operand:SI 0 "register_operand" "")
292 (match_operand:SI 1 "const_int_operand" ""))]
293 "INTVAL (operands[1]) <= -1 && INTVAL (operands[1]) >= -128
294 && (GET_CODE (operands[0]) != SUBREG
295 || SCALAR_INT_MODE_P (GET_MODE (XEXP (operands[0], 0))))"
296 [(set (match_dup 0) (match_dup 1))
297 (set (match_dup 0) (sign_extend:SI (match_dup 2)))]
298 "{
299 operands[1] = GEN_INT (INTVAL (operands[1]) & 0xff);
300 operands[2] = gen_lowpart (QImode, operands[0]);
301 }"
302 )
303
304 ;; If we are loading a large negative constant, one which does
305 ;; not have any of its bottom 24 bit set, then we can save time
306 ;; and space by loading the byte value and shifting it into place.
307 (define_split
308 [(set (match_operand:SI 0 "register_operand" "")
309 (match_operand:SI 1 "const_int_operand" ""))]
310 "(INTVAL (operands[1]) < 0) && ((INTVAL (operands[1]) & 0x00ffffff) == 0)"
311 [(set (match_dup 0) (match_dup 2))
312 (parallel [(set (match_dup 0) (ashift:SI (match_dup 0) (const_int 24)))
313 (clobber (reg:CC 16))])]
314 "{
315 HOST_WIDE_INT val = INTVAL (operands[1]);
316 operands[2] = GEN_INT (val >> 24);
317 }"
318 )
319
320 ;; If we are loading a large positive constant, one which has bits
321 ;; in the top byte set, but whose set bits all lie within an 8 bit
322 ;; range, then we can save time and space by loading the byte value
323 ;; and shifting it into place.
324 (define_split
325 [(set (match_operand:SI 0 "register_operand" "")
326 (match_operand:SI 1 "const_int_operand" ""))]
327 "(INTVAL (operands[1]) > 0x00ffffff)
328 && ((INTVAL (operands[1]) >> exact_log2 (INTVAL (operands[1]) & (- INTVAL (operands[1])))) < 0x100)"
329 [(set (match_dup 0) (match_dup 2))
330 (parallel [(set (match_dup 0) (ashift:SI (match_dup 0) (match_dup 3)))
331 (clobber (reg:CC 16))])]
332 "{
333 HOST_WIDE_INT val = INTVAL (operands[1]);
334 int shift = exact_log2 (val & ( - val));
335 operands[2] = GEN_INT (val >> shift);
336 operands[3] = GEN_INT (shift);
337 }"
338 )
339
340 ;; When TARGET_SMALL_MODEL is defined we assume that all symbolic
341 ;; values are addresses which will fit in 20 bits.
342
343 (define_insn "movsi_internal"
344 [(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,r,r,red,V,r,m")
345 (match_operand:SI 1 "general_operand" "L,M,n,i,rde,r,rm,r"))]
346 ""
347 "*
348 {
349 switch (which_alternative)
350 {
351 case 0: return \"ldi:8 \\t#%1, %0\";
352 case 1: return \"ldi:20\\t#%1, %0\";
353 case 2: return \"ldi:32\\t#%1, %0\";
354 case 3: if (TARGET_SMALL_MODEL)
355 return \"ldi:20\\t%1, %0\";
356 else
357 return \"ldi:32\\t%1, %0\";
358 case 4: return \"mov \\t%1, %0\";
359 case 5: return \"st \\t%1, %0\";
360 case 6: return \"ld \\t%1, %0\";
361 case 7: return \"st \\t%1, %0\";
362 default: gcc_unreachable ();
363 }
364 }"
365 [(set (attr "length") (cond [(eq_attr "alternative" "1") (const_int 4)
366 (eq_attr "alternative" "2") (const_int 6)
367 (eq_attr "alternative" "3")
368 (if_then_else (eq_attr "size" "small")
369 (const_int 4)
370 (const_int 6))]
371 (const_int 2)))]
372 )
373
374 ;;}}}
375 ;;{{{ 8 Byte Moves
376
377 ;; Note - the FR30 does not have an 8 byte load/store instruction
378 ;; but we have to support this pattern because some other patterns
379 ;; (e.g. muldisi2) can produce a DImode result.
380 ;; (This code is stolen from the M32R port.)
381
382 (define_expand "movdi"
383 [(set (match_operand:DI 0 "nonimmediate_operand" "")
384 (match_operand:DI 1 "general_operand" ""))]
385 ""
386 "
387 /* Everything except mem = const or mem = mem can be done easily. */
388
389 if (GET_CODE (operands[0]) == MEM)
390 operands[1] = force_reg (DImode, operands[1]);
391 "
392 )
393
394 ;; We use an insn and a split so that we can generate
395 ;; RTL rather than text from fr30_move_double().
396
397 (define_insn "*movdi_insn"
398 [(set (match_operand:DI 0 "nonimmediate_di_operand" "=r,r,m,r")
399 (match_operand:DI 1 "di_operand" "r,m,r,nF"))]
400 "register_operand (operands[0], DImode) || register_operand (operands[1], DImode)"
401 "#"
402 [(set_attr "length" "4,8,12,12")]
403 )
404
405 (define_split
406 [(set (match_operand:DI 0 "nonimmediate_di_operand" "")
407 (match_operand:DI 1 "di_operand" ""))]
408 "reload_completed"
409 [(match_dup 2)]
410 "operands[2] = fr30_move_double (operands);"
411 )
412
413 ;;}}}
414 ;;{{{ Load & Store Multiple Registers
415
416 ;; The load multiple and store multiple patterns are implemented
417 ;; as peepholes because the only time they are expected to occur
418 ;; is during function prologues and epilogues.
419
420 (define_peephole
421 [(set (mem:SI (pre_dec:SI (reg:SI 15)))
422 (match_operand:SI 0 "high_register_operand" "h"))
423 (set (mem:SI (pre_dec:SI (reg:SI 15)))
424 (match_operand:SI 1 "high_register_operand" "h"))
425 (set (mem:SI (pre_dec:SI (reg:SI 15)))
426 (match_operand:SI 2 "high_register_operand" "h"))
427 (set (mem:SI (pre_dec:SI (reg:SI 15)))
428 (match_operand:SI 3 "high_register_operand" "h"))]
429 "fr30_check_multiple_regs (operands, 4, 1)"
430 "stm1 (%0, %1, %2, %3)"
431 [(set_attr "delay_type" "other")]
432 )
433
434 (define_peephole
435 [(set (mem:SI (pre_dec:SI (reg:SI 15)))
436 (match_operand:SI 0 "high_register_operand" "h"))
437 (set (mem:SI (pre_dec:SI (reg:SI 15)))
438 (match_operand:SI 1 "high_register_operand" "h"))
439 (set (mem:SI (pre_dec:SI (reg:SI 15)))
440 (match_operand:SI 2 "high_register_operand" "h"))]
441 "fr30_check_multiple_regs (operands, 3, 1)"
442 "stm1 (%0, %1, %2)"
443 [(set_attr "delay_type" "other")]
444 )
445
446 (define_peephole
447 [(set (mem:SI (pre_dec:SI (reg:SI 15)))
448 (match_operand:SI 0 "high_register_operand" "h"))
449 (set (mem:SI (pre_dec:SI (reg:SI 15)))
450 (match_operand:SI 1 "high_register_operand" "h"))]
451 "fr30_check_multiple_regs (operands, 2, 1)"
452 "stm1 (%0, %1)"
453 [(set_attr "delay_type" "other")]
454 )
455
456 (define_peephole
457 [(set (match_operand:SI 0 "high_register_operand" "h")
458 (mem:SI (post_inc:SI (reg:SI 15))))
459 (set (match_operand:SI 1 "high_register_operand" "h")
460 (mem:SI (post_inc:SI (reg:SI 15))))
461 (set (match_operand:SI 2 "high_register_operand" "h")
462 (mem:SI (post_inc:SI (reg:SI 15))))
463 (set (match_operand:SI 3 "high_register_operand" "h")
464 (mem:SI (post_inc:SI (reg:SI 15))))]
465 "fr30_check_multiple_regs (operands, 4, 0)"
466 "ldm1 (%0, %1, %2, %3)"
467 [(set_attr "delay_type" "other")]
468 )
469
470 (define_peephole
471 [(set (match_operand:SI 0 "high_register_operand" "h")
472 (mem:SI (post_inc:SI (reg:SI 15))))
473 (set (match_operand:SI 1 "high_register_operand" "h")
474 (mem:SI (post_inc:SI (reg:SI 15))))
475 (set (match_operand:SI 2 "high_register_operand" "h")
476 (mem:SI (post_inc:SI (reg:SI 15))))]
477 "fr30_check_multiple_regs (operands, 3, 0)"
478 "ldm1 (%0, %1, %2)"
479 [(set_attr "delay_type" "other")]
480 )
481
482 (define_peephole
483 [(set (match_operand:SI 0 "high_register_operand" "h")
484 (mem:SI (post_inc:SI (reg:SI 15))))
485 (set (match_operand:SI 1 "high_register_operand" "h")
486 (mem:SI (post_inc:SI (reg:SI 15))))]
487 "fr30_check_multiple_regs (operands, 2, 0)"
488 "ldm1 (%0, %1)"
489 [(set_attr "delay_type" "other")]
490 )
491
492 (define_peephole
493 [(set (mem:SI (pre_dec:SI (reg:SI 15)))
494 (match_operand:SI 0 "low_register_operand" "l"))
495 (set (mem:SI (pre_dec:SI (reg:SI 15)))
496 (match_operand:SI 1 "low_register_operand" "l"))
497 (set (mem:SI (pre_dec:SI (reg:SI 15)))
498 (match_operand:SI 2 "low_register_operand" "l"))
499 (set (mem:SI (pre_dec:SI (reg:SI 15)))
500 (match_operand:SI 3 "low_register_operand" "l"))]
501 "fr30_check_multiple_regs (operands, 4, 1)"
502 "stm0 (%0, %1, %2, %3)"
503 [(set_attr "delay_type" "other")]
504 )
505
506 (define_peephole
507 [(set (mem:SI (pre_dec:SI (reg:SI 15)))
508 (match_operand:SI 0 "low_register_operand" "l"))
509 (set (mem:SI (pre_dec:SI (reg:SI 15)))
510 (match_operand:SI 1 "low_register_operand" "l"))
511 (set (mem:SI (pre_dec:SI (reg:SI 15)))
512 (match_operand:SI 2 "low_register_operand" "l"))]
513 "fr30_check_multiple_regs (operands, 3, 1)"
514 "stm0 (%0, %1, %2)"
515 [(set_attr "delay_type" "other")]
516 )
517
518 (define_peephole
519 [(set (mem:SI (pre_dec:SI (reg:SI 15)))
520 (match_operand:SI 0 "low_register_operand" "l"))
521 (set (mem:SI (pre_dec:SI (reg:SI 15)))
522 (match_operand:SI 1 "low_register_operand" "l"))]
523 "fr30_check_multiple_regs (operands, 2, 1)"
524 "stm0 (%0, %1)"
525 [(set_attr "delay_type" "other")]
526 )
527
528 ;;}}}
529 ;;{{{ Floating Point Moves
530
531 ;; Note - Patterns for SF mode moves are compulsory, but
532 ;; patterns for DF are optional, as GCC can synthesize them.
533
534 (define_expand "movsf"
535 [(set (match_operand:SF 0 "general_operand" "")
536 (match_operand:SF 1 "general_operand" ""))]
537 ""
538 "{
539 if (!reload_in_progress && !reload_completed
540 && memory_operand (operands[0], SFmode)
541 && memory_operand (operands[1], SFmode))
542 operands[1] = copy_to_mode_reg (SFmode, operands[1]);
543 }"
544 )
545
546 (define_insn "*movsf_internal"
547 [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,red,m,r")
548 (match_operand:SF 1 "general_operand" "Fn,i,rde,r,rm"))]
549 ""
550 "*
551 {
552 switch (which_alternative)
553 {
554 case 0: return \"ldi:32\\t%1, %0\";
555 case 1: if (TARGET_SMALL_MODEL)
556 return \"ldi:20\\t%1, %0\";
557 else
558 return \"ldi:32\\t%1, %0\";
559 case 2: return \"mov \\t%1, %0\";
560 case 3: return \"st \\t%1, %0\";
561 case 4: return \"ld \\t%1, %0\";
562 default: gcc_unreachable ();
563 }
564 }"
565 [(set (attr "length") (cond [(eq_attr "alternative" "0") (const_int 6)
566 (eq_attr "alternative" "1")
567 (if_then_else (eq_attr "size" "small")
568 (const_int 4)
569 (const_int 6))]
570 (const_int 2)))]
571 )
572
573 (define_insn "*movsf_constant_store"
574 [(set (match_operand:SF 0 "memory_operand" "=m")
575 (match_operand:SF 1 "immediate_operand" "F"))]
576 ""
577 "*
578 {
579 const char * ldi_instr;
580 const char * tmp_reg;
581 static char buffer[100];
582
583 ldi_instr = fr30_const_double_is_zero (operands[1]) ? \"ldi:8\" : \"ldi:32\";
584
585 tmp_reg = reg_names [COMPILER_SCRATCH_REGISTER];
586
587 sprintf (buffer, \"%s\\t#%%1, %s\\t;\\n\\tst\\t%s, %%0\\t; Created by movsf_constant_store\",
588 ldi_instr, tmp_reg, tmp_reg);
589
590 return buffer;
591 }"
592 [(set_attr "length" "8")]
593 )
594
595 ;;}}}
596
597 ;;}}} \f
598 ;;{{{ Conversions
599
600 ;; Signed conversions from a smaller integer to a larger integer
601
602 (define_insn "extendqisi2"
603 [(set (match_operand:SI 0 "register_operand" "=r")
604 (sign_extend:SI (match_operand:QI 1 "register_operand" "0")))]
605 ""
606 "extsb %0"
607 )
608
609 (define_insn "extendhisi2"
610 [(set (match_operand:SI 0 "register_operand" "=r")
611 (sign_extend:SI (match_operand:HI 1 "register_operand" "0")))]
612 ""
613 "extsh %0"
614 )
615
616 ;; Unsigned conversions from a smaller integer to a larger integer
617
618 (define_insn "zero_extendqisi2"
619 [(set (match_operand:SI 0 "register_operand" "=r")
620 (zero_extend:SI (match_operand:QI 1 "register_operand" "0")))]
621 ""
622 "extub %0"
623 )
624
625 (define_insn "zero_extendhisi2"
626 [(set (match_operand:SI 0 "register_operand" "=r")
627 (zero_extend:SI (match_operand:HI 1 "register_operand" "0")))]
628 ""
629 "extuh %0"
630 )
631
632 ;;}}} \f
633 ;;{{{ Arithmetic
634
635 ;;{{{ Addition
636
637 ;; This is a special pattern just for adjusting the stack size.
638 (define_insn "add_to_stack"
639 [(set (reg:SI 15)
640 (plus:SI (reg:SI 15)
641 (match_operand:SI 0 "stack_add_operand" "i")))]
642 ""
643 "addsp %0"
644 )
645
646 ;; We need some trickery to be able to handle the addition of
647 ;; large (i.e. outside +/- 16) constants. We need to be able to
648 ;; handle this because reload assumes that it can generate add
649 ;; instructions with arbitrary sized constants.
650 (define_expand "addsi3"
651 [(set (match_operand:SI 0 "register_operand" "")
652 (plus:SI (match_operand:SI 1 "register_operand" "")
653 (match_operand:SI 2 "nonmemory_operand" "")))]
654 ""
655 "{
656 if ( GET_CODE (operands[2]) == REG
657 || GET_CODE (operands[2]) == SUBREG)
658 emit_insn (gen_addsi_regs (operands[0], operands[1], operands[2]));
659 else if (GET_CODE (operands[2]) != CONST_INT)
660 emit_insn (gen_addsi_big_int (operands[0], operands[1], operands[2]));
661 else if (INTVAL (operands[2]) >= -16
662 && INTVAL (operands[2]) <= 15
663 && (!REG_P (operands[1])
664 || !REGNO_PTR_FRAME_P (REGNO (operands[1]))
665 || REGNO (operands[1]) == STACK_POINTER_REGNUM))
666 emit_insn (gen_addsi_small_int (operands[0], operands[1], operands[2]));
667 else
668 emit_insn (gen_addsi_big_int (operands[0], operands[1], operands[2]));
669 DONE;
670 }"
671 )
672
673 (define_insn "addsi_regs"
674 [(set (match_operand:SI 0 "register_operand" "=r")
675 (plus:SI (match_operand:SI 1 "register_operand" "%0")
676 (match_operand:SI 2 "register_operand" "r")))]
677 ""
678 "addn %2, %0"
679 )
680
681 ;; Do not allow an eliminable register in the source register. It
682 ;; might be eliminated in favor of the stack pointer, probably
683 ;; increasing the offset, and so rendering the instruction illegal.
684 (define_insn "addsi_small_int"
685 [(set (match_operand:SI 0 "register_operand" "=r,r")
686 (plus:SI (match_operand:SI 1 "register_operand" "0,0")
687 (match_operand:SI 2 "add_immediate_operand" "I,J")))]
688 "!REG_P (operands[1])
689 || !REGNO_PTR_FRAME_P (REGNO (operands[1]))
690 || REGNO (operands[1]) == STACK_POINTER_REGNUM"
691 "@
692 addn %2, %0
693 addn2 %2, %0"
694 )
695
696 (define_expand "addsi_big_int"
697 [(set (match_operand:SI 0 "register_operand" "")
698 (plus:SI (match_operand:SI 1 "register_operand" "")
699 (match_operand:SI 2 "immediate_operand" "")))]
700 ""
701 "{
702 /* Cope with the possibility that ops 0 and 1 are the same register. */
703 if (rtx_equal_p (operands[0], operands[1]))
704 {
705 if (reload_in_progress || reload_completed)
706 {
707 rtx reg = gen_rtx_REG (SImode, 0/*COMPILER_SCRATCH_REGISTER*/);
708
709 emit_insn (gen_movsi (reg, operands[2]));
710 emit_insn (gen_addsi_regs (operands[0], operands[0], reg));
711 }
712 else
713 {
714 operands[2] = force_reg (SImode, operands[2]);
715 emit_insn (gen_addsi_regs (operands[0], operands[0], operands[2]));
716 }
717 }
718 else
719 {
720 emit_insn (gen_movsi (operands[0], operands[2]));
721 emit_insn (gen_addsi_regs (operands[0], operands[0], operands[1]));
722 }
723 DONE;
724 }"
725 )
726
727 (define_insn "*addsi_for_reload"
728 [(set (match_operand:SI 0 "register_operand" "=&r,r,r")
729 (plus:SI (match_operand:SI 1 "register_operand" "r,r,r")
730 (match_operand:SI 2 "immediate_operand" "L,M,n")))]
731 "reload_in_progress || reload_completed"
732 "@
733 ldi:8\\t#%2, %0 \\n\\taddn\\t%1, %0
734 ldi:20\\t#%2, %0 \\n\\taddn\\t%1, %0
735 ldi:32\\t#%2, %0 \\n\\taddn\\t%1, %0"
736 [(set_attr "length" "4,6,8")]
737 )
738
739 ;;}}}
740 ;;{{{ Subtraction
741
742 (define_insn "subsi3"
743 [(set (match_operand:SI 0 "register_operand" "=r")
744 (minus:SI (match_operand:SI 1 "register_operand" "0")
745 (match_operand:SI 2 "register_operand" "r")))]
746 ""
747 "subn %2, %0"
748 )
749
750 ;;}}}
751 ;;{{{ Multiplication
752
753 ;; Signed multiplication producing 64-bit results from 32-bit inputs
754 (define_insn "mulsidi3"
755 [(set (match_operand:DI 0 "register_operand" "=r")
756 (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "%r"))
757 (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))
758 (clobber (reg:CC 16))]
759 ""
760 "mul %2, %1\\n\\tmov\\tmdh, %0\\n\\tmov\\tmdl, %p0"
761 [(set_attr "length" "6")]
762 )
763
764 ;; Unsigned multiplication producing 64-bit results from 32-bit inputs
765 (define_insn "umulsidi3"
766 [(set (match_operand:DI 0 "register_operand" "=r")
767 (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "%r"))
768 (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))
769 (clobber (reg:CC 16))]
770 ""
771 "mulu %2, %1\\n\\tmov\\tmdh, %0\\n\\tmov\\tmdl, %p0"
772 [(set_attr "length" "6")]
773 )
774
775 ;; Signed multiplication producing 32-bit result from 16-bit inputs
776 (define_insn "mulhisi3"
777 [(set (match_operand:SI 0 "register_operand" "=r")
778 (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r"))
779 (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))
780 (clobber (reg:CC 16))]
781 ""
782 "mulh %2, %1\\n\\tmov\\tmdl, %0"
783 [(set_attr "length" "4")]
784 )
785
786 ;; Unsigned multiplication producing 32-bit result from 16-bit inputs
787 (define_insn "umulhisi3"
788 [(set (match_operand:SI 0 "register_operand" "=r")
789 (mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "%r"))
790 (zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))
791 (clobber (reg:CC 16))]
792 ""
793 "muluh %2, %1\\n\\tmov\\tmdl, %0"
794 [(set_attr "length" "4")]
795 )
796
797 ;; Signed multiplication producing 32-bit result from 32-bit inputs
798 (define_insn "mulsi3"
799 [(set (match_operand:SI 0 "register_operand" "=r")
800 (mult:SI (match_operand:SI 1 "register_operand" "%r")
801 (match_operand:SI 2 "register_operand" "r")))
802 (clobber (reg:CC 16))]
803 ""
804 "mul %2, %1\\n\\tmov\\tmdl, %0"
805 [(set_attr "length" "4")]
806 )
807
808 ;;}}}
809 ;;}}} \f
810 ;;{{{ Shifts
811
812 ;; Arithmetic Shift Left
813 (define_insn "ashlsi3"
814 [(set (match_operand:SI 0 "register_operand" "=r,r,r")
815 (ashift:SI (match_operand:SI 1 "register_operand" "0,0,0")
816 (match_operand:SI 2 "nonmemory_operand" "r,I,K")))
817 (clobber (reg:CC 16))]
818 ""
819 "@
820 lsl %2, %0
821 lsl %2, %0
822 lsl2 %x2, %0"
823 )
824
825 ;; Arithmetic Shift Right
826 (define_insn "ashrsi3"
827 [(set (match_operand:SI 0 "register_operand" "=r,r,r")
828 (ashiftrt:SI (match_operand:SI 1 "register_operand" "0,0,0")
829 (match_operand:SI 2 "nonmemory_operand" "r,I,K")))
830 (clobber (reg:CC 16))]
831 ""
832 "@
833 asr %2, %0
834 asr %2, %0
835 asr2 %x2, %0"
836 )
837
838 ;; Logical Shift Right
839 (define_insn "lshrsi3"
840 [(set (match_operand:SI 0 "register_operand" "=r,r,r")
841 (lshiftrt:SI (match_operand:SI 1 "register_operand" "0,0,0")
842 (match_operand:SI 2 "nonmemory_operand" "r,I,K")))
843 (clobber (reg:CC 16))]
844 ""
845 "@
846 lsr %2, %0
847 lsr %2, %0
848 lsr2 %x2, %0"
849 )
850
851 ;;}}} \f
852 ;;{{{ Logical Operations
853
854 ;; Logical AND, 32-bit integers
855 (define_insn "andsi3"
856 [(set (match_operand:SI 0 "register_operand" "=r")
857 (and:SI (match_operand:SI 1 "register_operand" "%r")
858 (match_operand:SI 2 "register_operand" "0")))
859 (clobber (reg:CC 16))]
860 ""
861 "and %1, %0"
862 )
863
864 ;; Inclusive OR, 32-bit integers
865 (define_insn "iorsi3"
866 [(set (match_operand:SI 0 "register_operand" "=r")
867 (ior:SI (match_operand:SI 1 "register_operand" "%r")
868 (match_operand:SI 2 "register_operand" "0")))
869 (clobber (reg:CC 16))]
870 ""
871 "or %1, %0"
872 )
873
874 ;; Exclusive OR, 32-bit integers
875 (define_insn "xorsi3"
876 [(set (match_operand:SI 0 "register_operand" "=r")
877 (xor:SI (match_operand:SI 1 "register_operand" "%r")
878 (match_operand:SI 2 "register_operand" "0")))
879 (clobber (reg:CC 16))]
880 ""
881 "eor %1, %0"
882 )
883
884 ;; One's complement, 32-bit integers
885 (define_expand "one_cmplsi2"
886 [(set (match_operand:SI 0 "register_operand" "")
887 (not:SI (match_operand:SI 1 "register_operand" "")))]
888 ""
889 "{
890 if (rtx_equal_p (operands[0], operands[1]))
891 {
892 if (reload_in_progress || reload_completed)
893 {
894 rtx reg = gen_rtx_REG (SImode, 0/*COMPILER_SCRATCH_REGISTER*/);
895
896 emit_insn (gen_movsi (reg, constm1_rtx));
897 emit_insn (gen_xorsi3 (operands[0], operands[0], reg));
898 }
899 else
900 {
901 rtx reg = gen_reg_rtx (SImode);
902
903 emit_insn (gen_movsi (reg, constm1_rtx));
904 emit_insn (gen_xorsi3 (operands[0], operands[0], reg));
905 }
906 }
907 else
908 {
909 emit_insn (gen_movsi_internal (operands[0], constm1_rtx));
910 emit_insn (gen_xorsi3 (operands[0], operands[1], operands[0]));
911 }
912 DONE;
913 }"
914 )
915
916 ;;}}} \f
917 ;;{{{ Comparisons
918
919 ;; The actual comparisons, generated by the cbranch and/or cstore expanders
920
921 (define_insn "*cmpsi_internal"
922 [(set (reg:CC 16)
923 (compare:CC (match_operand:SI 0 "register_operand" "r,r,r")
924 (match_operand:SI 1 "nonmemory_operand" "r,I,J")))]
925 ""
926 "@
927 cmp %1, %0
928 cmp %1, %0
929 cmp2 %1, %0"
930 )
931
932 ;;}}} \f
933 ;;{{{ Branches
934
935 ;; Define_expands called by the machine independent part of the compiler
936 ;; to allocate a new comparison register
937
938 (define_expand "cbranchsi4"
939 [(set (reg:CC 16)
940 (compare:CC (match_operand:SI 1 "register_operand" "")
941 (match_operand:SI 2 "nonmemory_operand" "")))
942 (set (pc)
943 (if_then_else (match_operator 0 "ordered_comparison_operator"
944 [(reg:CC 16) (const_int 0)])
945 (label_ref (match_operand 3 "" ""))
946 (pc)))]
947 ""
948 ""
949 )
950
951
952 ;; Actual branches. We must allow for the (label_ref) and the (pc) to be
953 ;; swapped. If they are swapped, it reverses the sense of the branch.
954
955 ;; This pattern matches the (branch-if-true) branches generated above.
956 ;; It generates two different instruction sequences depending upon how
957 ;; far away the destination is.
958
959 ;; The calculation for the instruction length is derived as follows:
960 ;; The branch instruction has a 9-bit signed displacement so we have
961 ;; this inequality for the displacement:
962 ;;
963 ;; -256 <= pc < 256
964 ;; or
965 ;; -256 + 256 <= pc + 256 < 256 + 256
966 ;; i.e.
967 ;; 0 <= pc + 256 < 512
968 ;;
969 ;; if we consider the displacement as an unsigned value, then negative
970 ;; displacements become very large positive displacements, and the
971 ;; inequality becomes:
972 ;;
973 ;; pc + 256 < 512
974 ;;
975 ;; In order to allow for the fact that the real branch instruction works
976 ;; from pc + 2, we increase the offset to 258.
977 ;;
978 ;; Note - we do not have to worry about whether the branch is delayed or
979 ;; not, as branch shortening happens after delay slot reorganization.
980
981 (define_insn "*branch_true"
982 [(set (pc)
983 (if_then_else (match_operator 0 "comparison_operator"
984 [(reg:CC 16)
985 (const_int 0)])
986 (label_ref (match_operand 1 "" ""))
987 (pc)))]
988 ""
989 "*
990 {
991 if (get_attr_length (insn) == 2)
992 return \"b%b0%#\\t%l1\";
993 else
994 {
995 static char buffer [100];
996 const char * tmp_reg;
997 const char * ldi_insn;
998
999 tmp_reg = reg_names [COMPILER_SCRATCH_REGISTER];
1000
1001 ldi_insn = TARGET_SMALL_MODEL ? \"ldi:20\" : \"ldi:32\";
1002
1003 /* The code produced here is, for say the EQ case:
1004
1005 Bne 1f
1006 LDI <label>, r0
1007 JMP r0
1008 1: */
1009
1010 sprintf (buffer,
1011 \"b%%B0\\t1f\\t;\\n\\t%s\\t%%l1, %s\\t;\\n\\tjmp%%#\\t@%s\\t;\\n1:\",
1012 ldi_insn, tmp_reg, tmp_reg);
1013
1014 return buffer;
1015 }
1016 }"
1017 [(set (attr "length") (if_then_else
1018 (ltu
1019 (plus
1020 (minus
1021 (match_dup 1)
1022 (pc))
1023 (const_int 254))
1024 (const_int 506))
1025 (const_int 2)
1026 (if_then_else (eq_attr "size" "small")
1027 (const_int 8)
1028 (const_int 10))))
1029 (set_attr "delay_type" "delayed")]
1030 )
1031
1032
1033 ;; This pattern is a duplicate of the previous one, except that the
1034 ;; branch occurs if the test is false, so the %B operator is used.
1035 (define_insn "*branch_false"
1036 [(set (pc)
1037 (if_then_else (match_operator 0 "comparison_operator"
1038 [(reg:CC 16)
1039 (const_int 0)])
1040 (pc)
1041 (label_ref (match_operand 1 "" ""))))]
1042 ""
1043 "*
1044 {
1045 if (get_attr_length (insn) == 2)
1046 return \"b%B0%#\\t%l1 \";
1047 else
1048 {
1049 static char buffer [100];
1050 const char * tmp_reg;
1051 const char * ldi_insn;
1052
1053 tmp_reg = reg_names [COMPILER_SCRATCH_REGISTER];
1054
1055 ldi_insn = TARGET_SMALL_MODEL ? \"ldi:20\" : \"ldi:32\";
1056
1057 sprintf (buffer,
1058 \"b%%b0\\t1f\\t;\\n\\t%s\\t%%l1, %s\\t;\\n\\tjmp%%#\\t@%s\\t;\\n1:\",
1059 ldi_insn, tmp_reg, tmp_reg);
1060
1061 return buffer;
1062 }
1063 }"
1064 [(set (attr "length") (if_then_else (ltu (plus (minus (match_dup 1) (pc))
1065 (const_int 254))
1066 (const_int 506))
1067 (const_int 2)
1068 (if_then_else (eq_attr "size" "small")
1069 (const_int 8)
1070 (const_int 10))))
1071 (set_attr "delay_type" "delayed")]
1072 )
1073
1074 ;;}}} \f
1075 ;;{{{ Calls & Jumps
1076
1077 ;; Subroutine call instruction returning no value. Operand 0 is the function
1078 ;; to call; operand 1 is the number of bytes of arguments pushed (in mode
1079 ;; `SImode', except it is normally a `const_int'); operand 2 is the number of
1080 ;; registers used as operands.
1081
1082 (define_insn "call"
1083 [(call (match_operand 0 "call_operand" "Qm")
1084 (match_operand 1 "" "g"))
1085 (clobber (reg:SI 17))]
1086 ""
1087 "call%#\\t%0"
1088 [(set_attr "delay_type" "delayed")]
1089 )
1090
1091 ;; Subroutine call instruction returning a value. Operand 0 is the hard
1092 ;; register in which the value is returned. There are three more operands, the
1093 ;; same as the three operands of the `call' instruction (but with numbers
1094 ;; increased by one).
1095
1096 ;; Subroutines that return `BLKmode' objects use the `call' insn.
1097
1098 (define_insn "call_value"
1099 [(set (match_operand 0 "register_operand" "=r")
1100 (call (match_operand 1 "call_operand" "Qm")
1101 (match_operand 2 "" "g")))
1102 (clobber (reg:SI 17))]
1103 ""
1104 "call%#\\t%1"
1105 [(set_attr "delay_type" "delayed")]
1106 )
1107
1108 ;; Normal unconditional jump.
1109 ;; For a description of the computation of the length
1110 ;; attribute see the branch patterns above.
1111 ;;
1112 ;; Although this instruction really clobbers r0, flow
1113 ;; relies on jump being simplejump_p in several places
1114 ;; and as r0 is fixed, this doesn't change anything
1115 (define_insn "jump"
1116 [(set (pc) (label_ref (match_operand 0 "" "")))]
1117 ""
1118 "*
1119 {
1120 if (get_attr_length (insn) == 2)
1121 return \"bra%#\\t%0\";
1122 else
1123 {
1124 static char buffer [100];
1125 const char * tmp_reg;
1126 const char * ldi_insn;
1127
1128 tmp_reg = reg_names [COMPILER_SCRATCH_REGISTER];
1129
1130 ldi_insn = TARGET_SMALL_MODEL ? \"ldi:20\" : \"ldi:32\";
1131
1132 sprintf (buffer, \"%s\\t%%0, %s\\t;\\n\\tjmp%%#\\t@%s\\t;\",
1133 ldi_insn, tmp_reg, tmp_reg);
1134
1135 return buffer;
1136 }
1137 }"
1138 [(set (attr "length") (if_then_else (ltu (plus (minus (match_dup 0) (pc))
1139 (const_int 254))
1140 (const_int 506))
1141 (const_int 2)
1142 (if_then_else (eq_attr "size" "small")
1143 (const_int 6)
1144 (const_int 8))))
1145 (set_attr "delay_type" "delayed")]
1146 )
1147
1148 ;; Indirect jump through a register
1149 (define_insn "indirect_jump"
1150 [(set (pc) (match_operand 0 "pmode_register_operand" "r"))]
1151 ""
1152 "jmp%#\\t@%0"
1153 [(set_attr "delay_type" "delayed")]
1154 )
1155
1156 (define_insn "tablejump"
1157 [(set (pc) (match_operand:SI 0 "register_operand" "r"))
1158 (use (label_ref (match_operand 1 "" "")))]
1159 ""
1160 "jmp%#\\t@%0"
1161 [(set_attr "delay_type" "delayed")]
1162 )
1163
1164 ;;}}} \f
1165 ;;{{{ Function Prologues and Epilogues
1166
1167 ;; Called after register allocation to add any instructions needed for the
1168 ;; prologue. Using a prologue insn is favored compared to putting all of the
1169 ;; instructions in output_function_prologue(), since it allows the scheduler
1170 ;; to intermix instructions with the saves of the caller saved registers. In
1171 ;; some cases, it might be necessary to emit a barrier instruction as the last
1172 ;; insn to prevent such scheduling.
1173 (define_expand "prologue"
1174 [(clobber (const_int 0))]
1175 ""
1176 "{
1177 fr30_expand_prologue ();
1178 DONE;
1179 }"
1180 )
1181
1182 ;; Called after register allocation to add any instructions needed for the
1183 ;; epilogue. Using an epilogue insn is favored compared to putting all of the
1184 ;; instructions in output_function_epilogue(), since it allows the scheduler
1185 ;; to intermix instructions with the restores of the caller saved registers.
1186 ;; In some cases, it might be necessary to emit a barrier instruction as the
1187 ;; first insn to prevent such scheduling.
1188 (define_expand "epilogue"
1189 [(return)]
1190 ""
1191 "{
1192 fr30_expand_epilogue ();
1193 DONE;
1194 }"
1195 )
1196
1197 (define_insn "return_from_func"
1198 [(return)
1199 (use (reg:SI 17))]
1200 "reload_completed"
1201 "ret%#"
1202 [(set_attr "delay_type" "delayed")]
1203 )
1204
1205 (define_insn "leave_func"
1206 [(set (reg:SI 15) (plus:SI (reg:SI 14) (const_int 4)))
1207 (set (reg:SI 14) (mem:SI (minus:SI (reg:SI 15) (const_int 4))))]
1208 "reload_completed"
1209 "leave"
1210 )
1211
1212 (define_expand "enter_func"
1213 [(parallel
1214 [(set (mem:SI (minus:SI (match_dup 1)
1215 (const_int 4)))
1216 (match_dup 2))
1217 (set (match_dup 2)
1218 (minus:SI (match_dup 1)
1219 (const_int 4)))
1220 (set (match_dup 1)
1221 (minus:SI (match_dup 1)
1222 (match_operand:SI 0 "immediate_operand")))]
1223 )]
1224 ""
1225 {
1226 operands[1] = stack_pointer_rtx;
1227 operands[2] = hard_frame_pointer_rtx;
1228 })
1229
1230 (define_insn "*enter_func"
1231 [(set (mem:SI (minus:SI (reg:SI 15)
1232 (const_int 4)))
1233 (reg:SI 14))
1234 (set (reg:SI 14)
1235 (minus:SI (reg:SI 15)
1236 (const_int 4)))
1237 (set (reg:SI 15)
1238 (minus:SI (reg:SI 15)
1239 (match_operand 0 "immediate_operand" "i")))]
1240 "reload_completed"
1241 "enter #%0"
1242 [(set_attr "delay_type" "other")]
1243 )
1244
1245 ;;}}} \f
1246 ;;{{{ Miscellaneous
1247
1248 ;; No operation, needed in case the user uses -g but not -O.
1249 (define_insn "nop"
1250 [(const_int 0)]
1251 ""
1252 "nop"
1253 )
1254
1255 ;; Pseudo instruction that prevents the scheduler from moving code above this
1256 ;; point.
1257 (define_insn "blockage"
1258 [(unspec_volatile [(const_int 0)] 0)]
1259 ""
1260 ""
1261 [(set_attr "length" "0")]
1262 )
1263 ;;}}} \f
1264
1265 ;; Local Variables:
1266 ;; mode: md
1267 ;; folded-file: t
1268 ;; End: