]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/frv/frv.h
Update copyright years.
[thirdparty/gcc.git] / gcc / config / frv / frv.h
1 /* Target macros for the FRV port of GCC.
2 Copyright (C) 1999-2024 Free Software Foundation, Inc.
3 Contributed by Red Hat Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef __FRV_H__
22 #define __FRV_H__
23
24 /* Frv general purpose macros. */
25 /* Align an address. */
26 #define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
27 \f
28 /* Driver configuration. */
29
30 /* -fpic and -fPIC used to imply the -mlibrary-pic multilib, but with
31 FDPIC which multilib to use depends on whether FDPIC is in use or
32 not. The trick we use is to introduce -multilib-library-pic as a
33 pseudo-flag that selects the library-pic multilib, and map fpic
34 and fPIC to it only if fdpic is not selected. Also, if fdpic is
35 selected and no PIC/PIE options are present, we imply -fPIE.
36 Otherwise, if -fpic or -fPIC are enabled and we're optimizing for
37 speed, or if we have -On with n>=3, enable inlining of PLTs. As
38 for -mgprel-ro, we want to enable it by default, but not for -fpic or
39 -fpie. */
40
41 #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS \
42 "%{mno-pack:\
43 %{!mhard-float:-msoft-float}\
44 %{!mmedia:-mno-media}}\
45 %{!mfdpic:%{" FPIC_SPEC ": -multilib-library-pic}}\
46 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
47 %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fPIE}}}}}}}} \
48 %{!mno-inline-plt:%{O*:%{!O0:%{!Os:%{" FPIC_SPEC ":-minline-plt} \
49 %{" NO_FPIC_SPEC ":%{!O:%{!O1:%{!O2:-minline-plt}}}}}}}} \
50 %{!mno-gprel-ro:%{" NO_FPIE1_AND_FPIC1_SPEC ":-mgprel-ro}}} \
51 "
52 #ifndef SUBTARGET_DRIVER_SELF_SPECS
53 # define SUBTARGET_DRIVER_SELF_SPECS
54 #endif
55
56 #undef ASM_SPEC
57 #define ASM_SPEC "\
58 %{G*} \
59 %{mtomcat-stats} \
60 %{!mno-eflags: \
61 %{mcpu=*} \
62 %{mgpr-*} %{mfpr-*} \
63 %{msoft-float} %{mhard-float} \
64 %{mdword} %{mno-dword} \
65 %{mdouble} %{mno-double} \
66 %{mmedia} %{mno-media} \
67 %{mmuladd} %{mno-muladd} \
68 %{mpack} %{mno-pack} \
69 %{mno-fdpic:-mnopic} %{mfdpic} \
70 %{" FPIE1_OR_FPIC1_SPEC ":-mpic} %{" FPIE2_OR_FPIC2_SPEC ":-mPIC} %{mlibrary-pic}}"
71
72 #undef STARTFILE_SPEC
73 #define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
74
75 #undef ENDFILE_SPEC
76 #define ENDFILE_SPEC "frvend%O%s"
77
78
79 #define MASK_DEFAULT_FRV \
80 (MASK_MEDIA \
81 | MASK_DOUBLE \
82 | MASK_MULADD \
83 | MASK_DWORD \
84 | MASK_PACK)
85
86 #define MASK_DEFAULT_FR500 \
87 (MASK_MEDIA | MASK_DWORD | MASK_PACK)
88
89 #define MASK_DEFAULT_FR550 \
90 (MASK_MEDIA | MASK_DWORD | MASK_PACK)
91
92 #define MASK_DEFAULT_FR450 \
93 (MASK_GPR_32 \
94 | MASK_FPR_32 \
95 | MASK_MEDIA \
96 | MASK_SOFT_FLOAT \
97 | MASK_DWORD \
98 | MASK_PACK)
99
100 #define MASK_DEFAULT_FR400 \
101 (MASK_GPR_32 \
102 | MASK_FPR_32 \
103 | MASK_MEDIA \
104 | MASK_ACC_4 \
105 | MASK_SOFT_FLOAT \
106 | MASK_DWORD \
107 | MASK_PACK)
108
109 #define MASK_DEFAULT_SIMPLE \
110 (MASK_GPR_32 | MASK_SOFT_FLOAT)
111
112 /* A C string constant that tells the GCC driver program options to pass to
113 `cc1'. It can also specify how to translate options you give to GCC into
114 options for GCC to pass to the `cc1'.
115
116 Do not define this macro if it does not need to do anything. */
117 /* For ABI compliance, we need to put bss data into the normal data section. */
118 #define CC1_SPEC "%{G*}"
119
120 #undef LINK_SPEC
121 #define LINK_SPEC "\
122 %{h*} %{v:-V} \
123 %{mfdpic:-melf32frvfd -z text} \
124 %{static:-dn -Bstatic} \
125 %{shared:-Bdynamic} \
126 %{symbolic:-Bsymbolic} \
127 %{G*}"
128
129 #undef LIB_SPEC
130 #define LIB_SPEC "--start-group -lc -lsim --end-group"
131
132 #ifndef CPU_TYPE
133 #define CPU_TYPE FRV_CPU_FR500
134 #endif
135
136 /* Run-time target specifications */
137
138 #define TARGET_CPU_CPP_BUILTINS() \
139 do \
140 { \
141 int issue_rate; \
142 \
143 builtin_define ("__frv__"); \
144 builtin_assert ("machine=frv"); \
145 \
146 issue_rate = frv_issue_rate (); \
147 if (issue_rate > 1) \
148 builtin_define_with_int_value ("__FRV_VLIW__", issue_rate); \
149 builtin_define_with_int_value ("__FRV_GPR__", NUM_GPRS); \
150 builtin_define_with_int_value ("__FRV_FPR__", NUM_FPRS); \
151 builtin_define_with_int_value ("__FRV_ACC__", NUM_ACCS); \
152 \
153 switch (frv_cpu_type) \
154 { \
155 case FRV_CPU_GENERIC: \
156 builtin_define ("__CPU_GENERIC__"); \
157 break; \
158 case FRV_CPU_FR550: \
159 builtin_define ("__CPU_FR550__"); \
160 break; \
161 case FRV_CPU_FR500: \
162 case FRV_CPU_TOMCAT: \
163 builtin_define ("__CPU_FR500__"); \
164 break; \
165 case FRV_CPU_FR450: \
166 builtin_define ("__CPU_FR450__"); \
167 break; \
168 case FRV_CPU_FR405: \
169 builtin_define ("__CPU_FR405__"); \
170 break; \
171 case FRV_CPU_FR400: \
172 builtin_define ("__CPU_FR400__"); \
173 break; \
174 case FRV_CPU_FR300: \
175 case FRV_CPU_SIMPLE: \
176 builtin_define ("__CPU_FR300__"); \
177 break; \
178 } \
179 \
180 if (TARGET_HARD_FLOAT) \
181 builtin_define ("__FRV_HARD_FLOAT__"); \
182 if (TARGET_DWORD) \
183 builtin_define ("__FRV_DWORD__"); \
184 if (TARGET_FDPIC) \
185 builtin_define ("__FRV_FDPIC__"); \
186 if (flag_leading_underscore > 0) \
187 builtin_define ("__FRV_UNDERSCORE__"); \
188 } \
189 while (0)
190
191 \f
192 #define TARGET_HAS_FPRS (TARGET_HARD_FLOAT || TARGET_MEDIA)
193
194 #define NUM_GPRS (TARGET_GPR_32? 32 : 64)
195 #define NUM_FPRS (!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
196 #define NUM_ACCS (!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
197
198 /* X is a valid accumulator number if (X & ACC_MASK) == X. */
199 #define ACC_MASK \
200 (!TARGET_MEDIA ? 0 \
201 : TARGET_ACC_4 ? 3 \
202 : frv_cpu_type == FRV_CPU_FR450 ? 11 \
203 : 7)
204
205 /* Macros to identify the blend of media instructions available. Revision 1
206 is the one found on the FR500. Revision 2 includes the changes made for
207 the FR400.
208
209 Treat the generic processor as a revision 1 machine for now, for
210 compatibility with earlier releases. */
211
212 #define TARGET_MEDIA_REV1 \
213 (TARGET_MEDIA \
214 && (frv_cpu_type == FRV_CPU_GENERIC \
215 || frv_cpu_type == FRV_CPU_FR500))
216
217 #define TARGET_MEDIA_REV2 \
218 (TARGET_MEDIA \
219 && (frv_cpu_type == FRV_CPU_FR400 \
220 || frv_cpu_type == FRV_CPU_FR405 \
221 || frv_cpu_type == FRV_CPU_FR450 \
222 || frv_cpu_type == FRV_CPU_FR550))
223
224 #define TARGET_MEDIA_FR450 \
225 (frv_cpu_type == FRV_CPU_FR450)
226
227 #define TARGET_FR500_FR550_BUILTINS \
228 (frv_cpu_type == FRV_CPU_FR500 \
229 || frv_cpu_type == FRV_CPU_FR550)
230
231 #define TARGET_FR405_BUILTINS \
232 (frv_cpu_type == FRV_CPU_FR405 \
233 || frv_cpu_type == FRV_CPU_FR450)
234
235 #ifndef HAVE_AS_TLS
236 #define HAVE_AS_TLS 0
237 #endif
238
239 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_ALIGN_LABELS ? 3 : 0)
240 \f
241 /* Small Data Area Support. */
242 /* Maximum size of variables that go in .sdata/.sbss.
243 The -msdata=foo switch also controls how small variables are handled. */
244 #ifndef SDATA_DEFAULT_SIZE
245 #define SDATA_DEFAULT_SIZE 8
246 #endif
247
248
249 /* Storage Layout */
250
251 /* Define this macro to have the value 1 if the most significant bit in a byte
252 has the lowest number; otherwise define it to have the value zero. This
253 means that bit-field instructions count from the most significant bit. If
254 the machine has no bit-field instructions, then this must still be defined,
255 but it doesn't matter which value it is defined to. This macro need not be
256 a constant.
257
258 This macro does not affect the way structure fields are packed into bytes or
259 words; that is controlled by `BYTES_BIG_ENDIAN'. */
260 #define BITS_BIG_ENDIAN 1
261
262 /* Define this macro to have the value 1 if the most significant byte in a word
263 has the lowest number. This macro need not be a constant. */
264 #define BYTES_BIG_ENDIAN 1
265
266 /* Define this macro to have the value 1 if, in a multiword object, the most
267 significant word has the lowest number. This applies to both memory
268 locations and registers; GCC fundamentally assumes that the order of
269 words in memory is the same as the order in registers. This macro need not
270 be a constant. */
271 #define WORDS_BIG_ENDIAN 1
272
273 /* Number of storage units in a word; normally 4. */
274 #define UNITS_PER_WORD 4
275
276 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
277 which has the specified mode and signedness is to be stored in a register.
278 This macro is only called when TYPE is a scalar type.
279
280 On most RISC machines, which only have operations that operate on a full
281 register, define this macro to set M to `word_mode' if M is an integer mode
282 narrower than `BITS_PER_WORD'. In most cases, only integer modes should be
283 widened because wider-precision floating-point operations are usually more
284 expensive than their narrower counterparts.
285
286 For most machines, the macro definition does not change UNSIGNEDP. However,
287 some machines, have instructions that preferentially handle either signed or
288 unsigned quantities of certain modes. For example, on the DEC Alpha, 32-bit
289 loads from memory and 32-bit add instructions sign-extend the result to 64
290 bits. On such machines, set UNSIGNEDP according to which kind of extension
291 is more efficient.
292
293 Do not define this macro if it would never modify MODE. */
294 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
295 do \
296 { \
297 if (GET_MODE_CLASS (MODE) == MODE_INT \
298 && GET_MODE_SIZE (MODE) < 4) \
299 (MODE) = SImode; \
300 } \
301 while (0)
302
303 /* Normal alignment required for function parameters on the stack, in bits.
304 All stack parameters receive at least this much alignment regardless of data
305 type. On most machines, this is the same as the size of an integer. */
306 #define PARM_BOUNDARY 32
307
308 /* Define this macro if you wish to preserve a certain alignment for the stack
309 pointer. The definition is a C expression for the desired alignment
310 (measured in bits).
311
312 If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
313 specified boundary. If `PUSH_ROUNDING' is defined and specifies a less
314 strict alignment than `STACK_BOUNDARY', the stack may be momentarily
315 unaligned while pushing arguments. */
316 #define STACK_BOUNDARY 64
317
318 /* Alignment required for a function entry point, in bits. */
319 #define FUNCTION_BOUNDARY 128
320
321 /* Biggest alignment that any data type can require on this machine,
322 in bits. */
323 #define BIGGEST_ALIGNMENT 64
324
325 /* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
326 some reason. */
327 #ifdef IN_TARGET_LIBS
328 #define BIGGEST_FIELD_ALIGNMENT 64
329 #else
330 /* An expression for the alignment of a structure field FIELD if the
331 alignment computed in the usual way is COMPUTED. GCC uses this
332 value instead of the value in `BIGGEST_ALIGNMENT' or
333 `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */
334 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
335 frv_adjust_field_align (FIELD, COMPUTED)
336 #endif
337
338 /* If defined, a C expression to compute the alignment for a static variable.
339 TYPE is the data type, and ALIGN is the alignment that the object
340 would ordinarily have. The value of this macro is used instead of that
341 alignment to align the object.
342
343 If this macro is not defined, then ALIGN is used.
344
345 One use of this macro is to increase alignment of medium-size data to make
346 it all fit in fewer cache lines. Another is to cause character arrays to be
347 word-aligned so that `strcpy' calls that copy constants to character arrays
348 can be done inline. */
349 #define DATA_ALIGNMENT(TYPE, ALIGN) \
350 (TREE_CODE (TYPE) == ARRAY_TYPE \
351 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
352 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
353
354 /* Define this macro to be the value 1 if instructions will fail to work if
355 given data not on the nominal alignment. If instructions will merely go
356 slower in that case, define this macro as 0. */
357 #define STRICT_ALIGNMENT 1
358
359 #define PCC_BITFIELD_TYPE_MATTERS 1
360
361 \f
362 /* Layout of Source Language Data Types. */
363
364 #define CHAR_TYPE_SIZE 8
365 #define SHORT_TYPE_SIZE 16
366 #define INT_TYPE_SIZE 32
367 #define LONG_TYPE_SIZE 32
368 #define LONG_LONG_TYPE_SIZE 64
369 #define FLOAT_TYPE_SIZE 32
370 #define DOUBLE_TYPE_SIZE 64
371 #define LONG_DOUBLE_TYPE_SIZE 64
372
373 /* An expression whose value is 1 or 0, according to whether the type `char'
374 should be signed or unsigned by default. The user can always override this
375 default with the options `-fsigned-char' and `-funsigned-char'. */
376 #define DEFAULT_SIGNED_CHAR 1
377
378 #undef SIZE_TYPE
379 #define SIZE_TYPE "unsigned int"
380
381 #undef PTRDIFF_TYPE
382 #define PTRDIFF_TYPE "int"
383
384 #undef WCHAR_TYPE
385 #define WCHAR_TYPE "long int"
386
387 #undef WCHAR_TYPE_SIZE
388 #define WCHAR_TYPE_SIZE BITS_PER_WORD
389
390 \f
391 /* General purpose registers. */
392 #define GPR_FIRST 0 /* First gpr */
393 #define GPR_LAST (GPR_FIRST + 63) /* Last gpr */
394 #define GPR_R0 GPR_FIRST /* R0, constant 0 */
395 #define GPR_FP (GPR_FIRST + 2) /* Frame pointer */
396 #define GPR_SP (GPR_FIRST + 1) /* Stack pointer */
397 /* small data register */
398 #define SDA_BASE_REG ((unsigned)(TARGET_FDPIC ? -1 : flag_pic ? PIC_REGNO : (GPR_FIRST + 16)))
399 #define PIC_REGNO (GPR_FIRST + (TARGET_FDPIC?15:17)) /* PIC register. */
400 #define FDPIC_FPTR_REGNO (GPR_FIRST + 14) /* uClinux PIC function pointer register. */
401 #define FDPIC_REGNO (GPR_FIRST + 15) /* uClinux PIC register. */
402
403 #define HARD_REGNO_RENAME_OK(from,to) (TARGET_FDPIC ? ((to) != FDPIC_REG) : 1)
404
405 #define OUR_FDPIC_REG get_hard_reg_initial_val (SImode, FDPIC_REGNO)
406
407 #define FPR_FIRST 64 /* First FP reg */
408 #define FPR_LAST 127 /* Last FP reg */
409
410 #define GPR_TEMP_NUM frv_condexec_temps /* # gprs to reserve for temps */
411
412 /* We reserve the last CR and CCR in each category to be used as a reload
413 register to reload the CR/CCR registers. This is a kludge. */
414 #define CC_FIRST 128 /* First ICC/FCC reg */
415 #define CC_LAST 135 /* Last ICC/FCC reg */
416 #define ICC_FIRST (CC_FIRST + 4) /* First ICC reg */
417 #define ICC_LAST (CC_FIRST + 7) /* Last ICC reg */
418 #define ICC_TEMP (CC_FIRST + 7) /* Temporary ICC reg */
419 #define FCC_FIRST (CC_FIRST) /* First FCC reg */
420 #define FCC_LAST (CC_FIRST + 3) /* Last FCC reg */
421
422 /* Amount to shift a value to locate a ICC or FCC register in the CCR
423 register and shift it to the bottom 4 bits. */
424 #define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
425
426 /* Mask to isolate a single ICC/FCC value. */
427 #define CC_MASK 0xf
428
429 /* Masks to isolate the various bits in an ICC field. */
430 #define ICC_MASK_N 0x8 /* negative */
431 #define ICC_MASK_Z 0x4 /* zero */
432 #define ICC_MASK_V 0x2 /* overflow */
433 #define ICC_MASK_C 0x1 /* carry */
434
435 /* Mask to isolate the N/Z flags in an ICC. */
436 #define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
437
438 /* Mask to isolate the Z/C flags in an ICC. */
439 #define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
440
441 /* Masks to isolate the various bits in a FCC field. */
442 #define FCC_MASK_E 0x8 /* equal */
443 #define FCC_MASK_L 0x4 /* less than */
444 #define FCC_MASK_G 0x2 /* greater than */
445 #define FCC_MASK_U 0x1 /* unordered */
446
447 /* For CCR registers, the machine wants CR4..CR7 to be used for integer
448 code and CR0..CR3 to be used for floating point. */
449 #define CR_FIRST 136 /* First CCR */
450 #define CR_LAST 143 /* Last CCR */
451 #define CR_NUM (CR_LAST-CR_FIRST+1) /* # of CCRs (8) */
452 #define ICR_FIRST (CR_FIRST + 4) /* First integer CCR */
453 #define ICR_LAST (CR_FIRST + 7) /* Last integer CCR */
454 #define ICR_TEMP ICR_LAST /* Temp integer CCR */
455 #define FCR_FIRST (CR_FIRST + 0) /* First float CCR */
456 #define FCR_LAST (CR_FIRST + 3) /* Last float CCR */
457
458 /* Amount to shift a value to locate a CR register in the CCCR special purpose
459 register and shift it to the bottom 2 bits. */
460 #define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
461
462 /* Mask to isolate a single CR value. */
463 #define CR_MASK 0x3
464
465 #define ACC_FIRST 144 /* First acc register */
466 #define ACC_LAST 155 /* Last acc register */
467
468 #define ACCG_FIRST 156 /* First accg register */
469 #define ACCG_LAST 167 /* Last accg register */
470
471 #define AP_FIRST 168 /* fake argument pointer */
472
473 #define SPR_FIRST 169
474 #define SPR_LAST 172
475 #define LR_REGNO (SPR_FIRST)
476 #define LCR_REGNO (SPR_FIRST + 1)
477 #define IACC_FIRST (SPR_FIRST + 2)
478 #define IACC_LAST (SPR_FIRST + 3)
479
480 #define GPR_P(R) IN_RANGE (R, GPR_FIRST, GPR_LAST)
481 #define GPR_OR_AP_P(R) (GPR_P (R) || (R) == ARG_POINTER_REGNUM)
482 #define FPR_P(R) IN_RANGE (R, FPR_FIRST, FPR_LAST)
483 #define CC_P(R) IN_RANGE (R, CC_FIRST, CC_LAST)
484 #define ICC_P(R) IN_RANGE (R, ICC_FIRST, ICC_LAST)
485 #define FCC_P(R) IN_RANGE (R, FCC_FIRST, FCC_LAST)
486 #define CR_P(R) IN_RANGE (R, CR_FIRST, CR_LAST)
487 #define ICR_P(R) IN_RANGE (R, ICR_FIRST, ICR_LAST)
488 #define FCR_P(R) IN_RANGE (R, FCR_FIRST, FCR_LAST)
489 #define ACC_P(R) IN_RANGE (R, ACC_FIRST, ACC_LAST)
490 #define ACCG_P(R) IN_RANGE (R, ACCG_FIRST, ACCG_LAST)
491 #define SPR_P(R) IN_RANGE (R, SPR_FIRST, SPR_LAST)
492
493 #define GPR_OR_PSEUDO_P(R) (GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
494 #define FPR_OR_PSEUDO_P(R) (FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
495 #define GPR_AP_OR_PSEUDO_P(R) (GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
496 #define CC_OR_PSEUDO_P(R) (CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
497 #define ICC_OR_PSEUDO_P(R) (ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
498 #define FCC_OR_PSEUDO_P(R) (FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
499 #define CR_OR_PSEUDO_P(R) (CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
500 #define ICR_OR_PSEUDO_P(R) (ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
501 #define FCR_OR_PSEUDO_P(R) (FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
502 #define ACC_OR_PSEUDO_P(R) (ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
503 #define ACCG_OR_PSEUDO_P(R) (ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
504
505 #define MAX_STACK_IMMEDIATE_OFFSET 2047
506
507 \f
508 /* Register Basics. */
509
510 /* Number of hardware registers known to the compiler. They receive numbers 0
511 through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
512 really is assigned the number `FIRST_PSEUDO_REGISTER'. */
513 #define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
514
515 /* The first/last register that can contain the arguments to a function. */
516 #define FIRST_ARG_REGNUM (GPR_FIRST + 8)
517 #define LAST_ARG_REGNUM (FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
518
519 /* Registers used by the exception handling functions. These should be
520 registers that are not otherwise used by the calling sequence. */
521 #define FIRST_EH_REGNUM 14
522 #define LAST_EH_REGNUM 15
523
524 /* Scratch registers used in the prologue, epilogue and thunks.
525 OFFSET_REGNO is for loading constant addends that are too big for a
526 single instruction. TEMP_REGNO is used for transferring SPRs to and from
527 the stack, and various other activities. */
528 #define OFFSET_REGNO 4
529 #define TEMP_REGNO 5
530
531 /* Registers used in the prologue. OLD_SP_REGNO is the old stack pointer,
532 which is sometimes used to set up the frame pointer. */
533 #define OLD_SP_REGNO 6
534
535 /* Registers used in the epilogue. STACKADJ_REGNO stores the exception
536 handler's stack adjustment. */
537 #define STACKADJ_REGNO 6
538
539 /* Registers used in thunks. JMP_REGNO is used for loading the target
540 address. */
541 #define JUMP_REGNO 6
542
543 #define EH_RETURN_DATA_REGNO(N) ((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
544 (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
545 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, STACKADJ_REGNO)
546 #define EH_RETURN_HANDLER_RTX RETURN_ADDR_RTX (0, frame_pointer_rtx)
547
548 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNO)
549
550 /* An initializer that says which registers are used for fixed purposes all
551 throughout the compiled code and are therefore not available for general
552 allocation. These would include the stack pointer, the frame pointer
553 (except on machines where that can be used as a general register when no
554 frame pointer is needed), the program counter on machines where that is
555 considered one of the addressable registers, and any other numbered register
556 with a standard use.
557
558 This information is expressed as a sequence of numbers, separated by commas
559 and surrounded by braces. The Nth number is 1 if register N is fixed, 0
560 otherwise.
561
562 The table initialized from this macro, and the table initialized by the
563 following one, may be overridden at run time either automatically, by the
564 actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
565 command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. */
566
567 /* gr0 -- Hard Zero
568 gr1 -- Stack Pointer
569 gr2 -- Frame Pointer
570 gr3 -- Hidden Parameter
571 gr16 -- Small Data reserved
572 gr17 -- Pic reserved
573 gr28 -- OS reserved
574 gr29 -- OS reserved
575 gr30 -- OS reserved
576 gr31 -- OS reserved
577 cr3 -- reserved to reload FCC registers.
578 cr7 -- reserved to reload ICC registers. */
579 #define FIXED_REGISTERS \
580 { /* Integer Registers */ \
581 1, 1, 1, 1, 0, 0, 0, 0, /* 000-007, gr0 - gr7 */ \
582 0, 0, 0, 0, 0, 0, 0, 0, /* 008-015, gr8 - gr15 */ \
583 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
584 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
585 0, 0, 0, 0, 0, 0, 0, 0, /* 032-039, gr32 - gr39 */ \
586 0, 0, 0, 0, 0, 0, 0, 0, /* 040-040, gr48 - gr47 */ \
587 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
588 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
589 /* Float Registers */ \
590 0, 0, 0, 0, 0, 0, 0, 0, /* 064-071, fr0 - fr7 */ \
591 0, 0, 0, 0, 0, 0, 0, 0, /* 072-079, fr8 - fr15 */ \
592 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
593 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
594 0, 0, 0, 0, 0, 0, 0, 0, /* 096-103, fr32 - fr39 */ \
595 0, 0, 0, 0, 0, 0, 0, 0, /* 104-111, fr48 - fr47 */ \
596 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
597 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
598 /* Condition Code Registers */ \
599 0, 0, 0, 0, /* 128-131, fcc0 - fcc3 */ \
600 0, 0, 0, 1, /* 132-135, icc0 - icc3 */ \
601 /* Conditional execution Registers (CCR) */ \
602 0, 0, 0, 0, 0, 0, 0, 1, /* 136-143, cr0 - cr7 */ \
603 /* Accumulators */ \
604 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
605 1, 1, 1, 1, /* 152-155, acc8 - acc11 */ \
606 1, 1, 1, 1, 1, 1, 1, 1, /* 156-163, accg0 - accg7 */ \
607 1, 1, 1, 1, /* 164-167, accg8 - accg11 */ \
608 /* Other registers */ \
609 1, /* 168, AP - fake arg ptr */ \
610 1, /* 169, LR - Link register*/ \
611 0, /* 170, LCR - Loop count reg*/ \
612 1, 1 /* 171-172, iacc0 */ \
613 }
614
615 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
616 general) by function calls as well as for fixed registers. This macro
617 therefore identifies the registers that are not available for general
618 allocation of values that must live across function calls.
619
620 If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
621 saves it on function entry and restores it on function exit, if the register
622 is used within the function. */
623 #define CALL_USED_REGISTERS \
624 { /* Integer Registers */ \
625 1, 1, 1, 1, 1, 1, 1, 1, /* 000-007, gr0 - gr7 */ \
626 1, 1, 1, 1, 1, 1, 1, 1, /* 008-015, gr8 - gr15 */ \
627 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
628 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
629 1, 1, 1, 1, 1, 1, 1, 1, /* 032-039, gr32 - gr39 */ \
630 1, 1, 1, 1, 1, 1, 1, 1, /* 040-040, gr48 - gr47 */ \
631 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
632 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
633 /* Float Registers */ \
634 1, 1, 1, 1, 1, 1, 1, 1, /* 064-071, fr0 - fr7 */ \
635 1, 1, 1, 1, 1, 1, 1, 1, /* 072-079, fr8 - fr15 */ \
636 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
637 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
638 1, 1, 1, 1, 1, 1, 1, 1, /* 096-103, fr32 - fr39 */ \
639 1, 1, 1, 1, 1, 1, 1, 1, /* 104-111, fr48 - fr47 */ \
640 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
641 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
642 /* Condition Code Registers */ \
643 1, 1, 1, 1, /* 128-131, fcc0 - fcc3 */ \
644 1, 1, 1, 1, /* 132-135, icc0 - icc3 */ \
645 /* Conditional execution Registers (CCR) */ \
646 1, 1, 1, 1, 1, 1, 1, 1, /* 136-143, cr0 - cr7 */ \
647 /* Accumulators */ \
648 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
649 1, 1, 1, 1, /* 152-155, acc8 - acc11 */ \
650 1, 1, 1, 1, 1, 1, 1, 1, /* 156-163, accg0 - accg7 */ \
651 1, 1, 1, 1, /* 164-167, accg8 - accg11 */ \
652 /* Other registers */ \
653 1, /* 168, AP - fake arg ptr */ \
654 1, /* 169, LR - Link register*/ \
655 1, /* 170, LCR - Loop count reg */ \
656 1, 1 /* 171-172, iacc0 */ \
657 }
658
659 \f
660 /* Order of allocation of registers. */
661
662 /* If defined, an initializer for a vector of integers, containing the numbers
663 of hard registers in the order in which GCC should prefer to use them
664 (from most preferred to least).
665
666 If this macro is not defined, registers are used lowest numbered first (all
667 else being equal).
668
669 One use of this macro is on machines where the highest numbered registers
670 must always be saved and the save-multiple-registers instruction supports
671 only sequences of consecutive registers. On such machines, define
672 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
673 allocatable register first. */
674
675 /* On the FRV, allocate GR16 and GR17 after other saved registers so that we
676 have a better chance of allocating 2 registers at a time and can use the
677 double word load/store instructions in the prologue. */
678 #define REG_ALLOC_ORDER \
679 { \
680 /* volatile registers */ \
681 GPR_FIRST + 4, GPR_FIRST + 5, GPR_FIRST + 6, GPR_FIRST + 7, \
682 GPR_FIRST + 8, GPR_FIRST + 9, GPR_FIRST + 10, GPR_FIRST + 11, \
683 GPR_FIRST + 12, GPR_FIRST + 13, GPR_FIRST + 14, GPR_FIRST + 15, \
684 GPR_FIRST + 32, GPR_FIRST + 33, GPR_FIRST + 34, GPR_FIRST + 35, \
685 GPR_FIRST + 36, GPR_FIRST + 37, GPR_FIRST + 38, GPR_FIRST + 39, \
686 GPR_FIRST + 40, GPR_FIRST + 41, GPR_FIRST + 42, GPR_FIRST + 43, \
687 GPR_FIRST + 44, GPR_FIRST + 45, GPR_FIRST + 46, GPR_FIRST + 47, \
688 \
689 FPR_FIRST + 0, FPR_FIRST + 1, FPR_FIRST + 2, FPR_FIRST + 3, \
690 FPR_FIRST + 4, FPR_FIRST + 5, FPR_FIRST + 6, FPR_FIRST + 7, \
691 FPR_FIRST + 8, FPR_FIRST + 9, FPR_FIRST + 10, FPR_FIRST + 11, \
692 FPR_FIRST + 12, FPR_FIRST + 13, FPR_FIRST + 14, FPR_FIRST + 15, \
693 FPR_FIRST + 32, FPR_FIRST + 33, FPR_FIRST + 34, FPR_FIRST + 35, \
694 FPR_FIRST + 36, FPR_FIRST + 37, FPR_FIRST + 38, FPR_FIRST + 39, \
695 FPR_FIRST + 40, FPR_FIRST + 41, FPR_FIRST + 42, FPR_FIRST + 43, \
696 FPR_FIRST + 44, FPR_FIRST + 45, FPR_FIRST + 46, FPR_FIRST + 47, \
697 \
698 ICC_FIRST + 0, ICC_FIRST + 1, ICC_FIRST + 2, ICC_FIRST + 3, \
699 FCC_FIRST + 0, FCC_FIRST + 1, FCC_FIRST + 2, FCC_FIRST + 3, \
700 CR_FIRST + 0, CR_FIRST + 1, CR_FIRST + 2, CR_FIRST + 3, \
701 CR_FIRST + 4, CR_FIRST + 5, CR_FIRST + 6, CR_FIRST + 7, \
702 \
703 /* saved registers */ \
704 GPR_FIRST + 18, GPR_FIRST + 19, \
705 GPR_FIRST + 20, GPR_FIRST + 21, GPR_FIRST + 22, GPR_FIRST + 23, \
706 GPR_FIRST + 24, GPR_FIRST + 25, GPR_FIRST + 26, GPR_FIRST + 27, \
707 GPR_FIRST + 48, GPR_FIRST + 49, GPR_FIRST + 50, GPR_FIRST + 51, \
708 GPR_FIRST + 52, GPR_FIRST + 53, GPR_FIRST + 54, GPR_FIRST + 55, \
709 GPR_FIRST + 56, GPR_FIRST + 57, GPR_FIRST + 58, GPR_FIRST + 59, \
710 GPR_FIRST + 60, GPR_FIRST + 61, GPR_FIRST + 62, GPR_FIRST + 63, \
711 GPR_FIRST + 16, GPR_FIRST + 17, \
712 \
713 FPR_FIRST + 16, FPR_FIRST + 17, FPR_FIRST + 18, FPR_FIRST + 19, \
714 FPR_FIRST + 20, FPR_FIRST + 21, FPR_FIRST + 22, FPR_FIRST + 23, \
715 FPR_FIRST + 24, FPR_FIRST + 25, FPR_FIRST + 26, FPR_FIRST + 27, \
716 FPR_FIRST + 28, FPR_FIRST + 29, FPR_FIRST + 30, FPR_FIRST + 31, \
717 FPR_FIRST + 48, FPR_FIRST + 49, FPR_FIRST + 50, FPR_FIRST + 51, \
718 FPR_FIRST + 52, FPR_FIRST + 53, FPR_FIRST + 54, FPR_FIRST + 55, \
719 FPR_FIRST + 56, FPR_FIRST + 57, FPR_FIRST + 58, FPR_FIRST + 59, \
720 FPR_FIRST + 60, FPR_FIRST + 61, FPR_FIRST + 62, FPR_FIRST + 63, \
721 \
722 /* special or fixed registers */ \
723 GPR_FIRST + 0, GPR_FIRST + 1, GPR_FIRST + 2, GPR_FIRST + 3, \
724 GPR_FIRST + 28, GPR_FIRST + 29, GPR_FIRST + 30, GPR_FIRST + 31, \
725 ACC_FIRST + 0, ACC_FIRST + 1, ACC_FIRST + 2, ACC_FIRST + 3, \
726 ACC_FIRST + 4, ACC_FIRST + 5, ACC_FIRST + 6, ACC_FIRST + 7, \
727 ACC_FIRST + 8, ACC_FIRST + 9, ACC_FIRST + 10, ACC_FIRST + 11, \
728 ACCG_FIRST + 0, ACCG_FIRST + 1, ACCG_FIRST + 2, ACCG_FIRST + 3, \
729 ACCG_FIRST + 4, ACCG_FIRST + 5, ACCG_FIRST + 6, ACCG_FIRST + 7, \
730 ACCG_FIRST + 8, ACCG_FIRST + 9, ACCG_FIRST + 10, ACCG_FIRST + 11, \
731 AP_FIRST, LR_REGNO, LCR_REGNO, \
732 IACC_FIRST + 0, IACC_FIRST + 1 \
733 }
734
735 \f
736 /* Define this macro if the compiler should avoid copies to/from CCmode
737 registers. You should only define this macro if support fo copying to/from
738 CCmode is incomplete. */
739 #define AVOID_CCMODE_COPIES
740
741 \f
742 /* Register Classes. */
743
744 /* An enumeral type that must be defined with all the register class names as
745 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
746 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
747 which is not a register class but rather tells how many classes there are.
748
749 Each register class has a number, which is the value of casting the class
750 name to type `int'. The number serves as an index in many of the tables
751 described below. */
752 enum reg_class
753 {
754 NO_REGS,
755 ICC_REGS,
756 FCC_REGS,
757 CC_REGS,
758 ICR_REGS,
759 FCR_REGS,
760 CR_REGS,
761 LCR_REG,
762 LR_REG,
763 GR8_REGS,
764 GR9_REGS,
765 GR89_REGS,
766 FDPIC_REGS,
767 FDPIC_FPTR_REGS,
768 FDPIC_CALL_REGS,
769 SPR_REGS,
770 QUAD_ACC_REGS,
771 ACCG_REGS,
772 QUAD_FPR_REGS,
773 QUAD_REGS,
774 GPR_REGS,
775 ALL_REGS,
776 LIM_REG_CLASSES
777 };
778
779 #define GENERAL_REGS GPR_REGS
780
781 /* The number of distinct register classes, defined as follows:
782
783 #define N_REG_CLASSES (int) LIM_REG_CLASSES */
784 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
785
786 /* An initializer containing the names of the register classes as C string
787 constants. These names are used in writing some of the debugging dumps. */
788 #define REG_CLASS_NAMES { \
789 "NO_REGS", \
790 "ICC_REGS", \
791 "FCC_REGS", \
792 "CC_REGS", \
793 "ICR_REGS", \
794 "FCR_REGS", \
795 "CR_REGS", \
796 "LCR_REG", \
797 "LR_REG", \
798 "GR8_REGS", \
799 "GR9_REGS", \
800 "GR89_REGS", \
801 "FDPIC_REGS", \
802 "FDPIC_FPTR_REGS", \
803 "FDPIC_CALL_REGS", \
804 "SPR_REGS", \
805 "QUAD_ACC_REGS", \
806 "ACCG_REGS", \
807 "QUAD_FPR_REGS", \
808 "QUAD_REGS", \
809 "GPR_REGS", \
810 "ALL_REGS" \
811 }
812
813 /* An initializer containing the contents of the register classes, as integers
814 which are bit masks. The Nth integer specifies the contents of class N.
815 The way the integer MASK is interpreted is that register R is in the class
816 if `MASK & (1 << R)' is 1.
817
818 When the machine has more than 32 registers, an integer does not suffice.
819 Then the integers are replaced by sub-initializers, braced groupings
820 containing several integers. Each sub-initializer must be suitable as an
821 initializer for the type `HARD_REG_SET' which is defined in
822 `hard-reg-set.h'. */
823 #define REG_CLASS_CONTENTS \
824 { /* gr0-gr31 gr32-gr63 fr0-fr31 fr32-fr-63 cc/ccr/acc ap/spr */ \
825 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS */\
826 { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
827 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
828 { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS */\
829 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
830 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
831 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS */\
832 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x400}, /* LCR_REGS */\
833 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x200}, /* LR_REGS */\
834 { 0x00000100,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR8_REGS */\
835 { 0x00000200,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR9_REGS */\
836 { 0x00000300,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR89_REGS */\
837 { 0x00008000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_REGS */\
838 { 0x00004000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_FPTR_REGS */\
839 { 0x0000c000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_CALL_REGS */\
840 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x1e00}, /* SPR_REGS */\
841 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* QUAD_ACC */\
842 { 0x00000000,0x00000000,0x00000000,0x00000000,0xf0000000,0xff}, /* ACCG_REGS*/\
843 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
844 { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
845 { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x100}, /* GPR_REGS */\
846 { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x1fff}, /* ALL_REGS */\
847 }
848
849 #define EVEN_ACC_REGS QUAD_ACC_REGS
850 #define ACC_REGS QUAD_ACC_REGS
851 #define FEVEN_REGS QUAD_FPR_REGS
852 #define FPR_REGS QUAD_FPR_REGS
853 #define EVEN_REGS QUAD_REGS
854
855 /* A C expression whose value is a register class containing hard register
856 REGNO. In general there is more than one such class; choose a class which
857 is "minimal", meaning that no smaller class also contains the register. */
858
859 extern enum reg_class regno_reg_class[];
860 #define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
861
862 /* A macro whose definition is the name of the class to which a valid base
863 register must belong. A base register is one used in an address which is
864 the register value plus a displacement. */
865 #define BASE_REG_CLASS GPR_REGS
866
867 /* A macro whose definition is the name of the class to which a valid index
868 register must belong. An index register is one used in an address where its
869 value is either multiplied by a scale factor or added to another register
870 (as well as added to a displacement). */
871 #define INDEX_REG_CLASS GPR_REGS
872
873 /* A C expression which is nonzero if register number NUM is suitable for use
874 as a base register in operand addresses. It may be either a suitable hard
875 register or a pseudo register that has been allocated such a hard register. */
876 #define REGNO_OK_FOR_BASE_P(NUM) \
877 ((NUM) < FIRST_PSEUDO_REGISTER \
878 ? GPR_P (NUM) \
879 : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
880
881 /* A C expression which is nonzero if register number NUM is suitable for use
882 as an index register in operand addresses. It may be either a suitable hard
883 register or a pseudo register that has been allocated such a hard register.
884
885 The difference between an index register and a base register is that the
886 index register may be scaled. If an address involves the sum of two
887 registers, neither one of them scaled, then either one may be labeled the
888 "base" and the other the "index"; but whichever labeling is used must fit
889 the machine's constraints of which registers may serve in each capacity.
890 The compiler will try both labelings, looking for one that is valid, and
891 will reload one or both registers only if neither labeling works. */
892 #define REGNO_OK_FOR_INDEX_P(NUM) \
893 ((NUM) < FIRST_PSEUDO_REGISTER \
894 ? GPR_P (NUM) \
895 : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
896
897 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
898 frv_secondary_reload_class (CLASS, MODE, X)
899
900 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
901 frv_secondary_reload_class (CLASS, MODE, X)
902
903 #define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
904
905 #define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
906
907 \f
908 /* Basic Stack Layout. */
909
910 /* Structure to describe information about a saved range of registers */
911
912 typedef struct frv_stack_regs {
913 const char * name; /* name of the register ranges */
914 int first; /* first register in the range */
915 int last; /* last register in the range */
916 int size_1word; /* # of bytes to be stored via 1 word stores */
917 int size_2words; /* # of bytes to be stored via 2 word stores */
918 unsigned char field_p; /* true if the registers are a single SPR */
919 unsigned char dword_p; /* true if we can do dword stores */
920 unsigned char special_p; /* true if the regs have a fixed save loc. */
921 } frv_stack_regs_t;
922
923 /* Register ranges to look into saving. */
924 #define STACK_REGS_GPR 0 /* Gprs (normally gr16..gr31, gr48..gr63) */
925 #define STACK_REGS_FPR 1 /* Fprs (normally fr16..fr31, fr48..fr63) */
926 #define STACK_REGS_LR 2 /* LR register */
927 #define STACK_REGS_CC 3 /* CCrs (normally not saved) */
928 #define STACK_REGS_LCR 5 /* lcr register */
929 #define STACK_REGS_STDARG 6 /* stdarg registers */
930 #define STACK_REGS_STRUCT 7 /* structure return (gr3) */
931 #define STACK_REGS_FP 8 /* FP register */
932 #define STACK_REGS_MAX 9 /* # of register ranges */
933
934 /* Values for save_p field. */
935 #define REG_SAVE_NO_SAVE 0 /* register not saved */
936 #define REG_SAVE_1WORD 1 /* save the register */
937 #define REG_SAVE_2WORDS 2 /* save register and register+1 */
938
939 /* Structure used to define the frv stack. */
940
941 typedef struct frv_stack {
942 int total_size; /* total bytes allocated for stack */
943 int vars_size; /* variable save area size */
944 int parameter_size; /* outgoing parameter size */
945 int stdarg_size; /* size of regs needed to be saved for stdarg */
946 int regs_size; /* size of the saved registers */
947 int regs_size_1word; /* # of bytes to be stored via 1 word stores */
948 int regs_size_2words; /* # of bytes to be stored via 2 word stores */
949 int header_size; /* size of the old FP, struct ret., LR save */
950 int pretend_size; /* size of pretend args */
951 int vars_offset; /* offset to save local variables from new SP*/
952 int regs_offset; /* offset to save registers from new SP */
953 /* register range information */
954 frv_stack_regs_t regs[STACK_REGS_MAX];
955 /* offset to store each register */
956 int reg_offset[FIRST_PSEUDO_REGISTER];
957 /* whether to save register (& reg+1) */
958 unsigned char save_p[FIRST_PSEUDO_REGISTER];
959 } frv_stack_t;
960
961 /* Define this macro if pushing a word onto the stack moves the stack pointer
962 to a smaller address. */
963 #define STACK_GROWS_DOWNWARD 1
964
965 /* Define this macro to nonzero if the addresses of local variable slots
966 are at negative offsets from the frame pointer. */
967 #define FRAME_GROWS_DOWNWARD 1
968
969 /* Offset from the stack pointer register to the first location at which
970 outgoing arguments are placed. If not specified, the default value of zero
971 is used. This is the proper value for most machines.
972
973 If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
974 location at which outgoing arguments are placed. */
975 #define STACK_POINTER_OFFSET 0
976
977 /* Offset from the argument pointer register to the first argument's address.
978 On some machines it may depend on the data type of the function.
979
980 If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
981 argument's address. */
982 #define FIRST_PARM_OFFSET(FUNDECL) 0
983
984 /* A C expression whose value is RTL representing the address in a stack frame
985 where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
986 an RTL expression for the address of the stack frame itself.
987
988 If you don't define this macro, the default is to return the value of
989 FRAMEADDR--that is, the stack frame address is also the address of the stack
990 word that points to the previous frame. */
991 #define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
992
993 /* A C expression whose value is RTL representing the value of the return
994 address for the frame COUNT steps up from the current frame, after the
995 prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
996 pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
997 defined.
998
999 The value of the expression must always be the correct address when COUNT is
1000 zero, but may be `NULL_RTX' if there is not way to determine the return
1001 address of other frames. */
1002 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
1003
1004 #define RETURN_POINTER_REGNUM LR_REGNO
1005
1006 /* A C expression whose value is RTL representing the location of the incoming
1007 return address at the beginning of any function, before the prologue. This
1008 RTL is either a `REG', indicating that the return value is saved in `REG',
1009 or a `MEM' representing a location in the stack.
1010
1011 You only need to define this macro if you want to support call frame
1012 debugging information like that provided by DWARF 2. */
1013 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
1014
1015 \f
1016 /* Register That Address the Stack Frame. */
1017
1018 /* The register number of the stack pointer register, which must also be a
1019 fixed register according to `FIXED_REGISTERS'. On most machines, the
1020 hardware determines which register this is. */
1021 #define STACK_POINTER_REGNUM (GPR_FIRST + 1)
1022
1023 /* The register number of the frame pointer register, which is used to access
1024 automatic variables in the stack frame. On some machines, the hardware
1025 determines which register this is. On other machines, you can choose any
1026 register you wish for this purpose. */
1027 #define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
1028
1029 /* The register number of the arg pointer register, which is used to access the
1030 function's argument list. On some machines, this is the same as the frame
1031 pointer register. On some machines, the hardware determines which register
1032 this is. On other machines, you can choose any register you wish for this
1033 purpose. If this is not the same register as the frame pointer register,
1034 then you must mark it as a fixed register according to `FIXED_REGISTERS', or
1035 arrange to be able to eliminate it. */
1036
1037 /* On frv this is a fake register that is eliminated in
1038 terms of either the frame pointer or stack pointer. */
1039 #define ARG_POINTER_REGNUM AP_FIRST
1040
1041 /* Register numbers used for passing a function's static chain pointer. If
1042 register windows are used, the register number as seen by the called
1043 function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
1044 seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers
1045 are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
1046
1047 The static chain register need not be a fixed register.
1048
1049 If the static chain is passed in memory, these macros should not be defined;
1050 instead, the next two macros should be defined. */
1051 #define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
1052 #define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
1053
1054 \f
1055 /* Eliminating the Frame Pointer and the Arg Pointer. */
1056
1057 /* If defined, this macro specifies a table of register pairs used to eliminate
1058 unneeded registers that point into the stack frame. If it is not defined,
1059 the only elimination attempted by the compiler is to replace references to
1060 the frame pointer with references to the stack pointer.
1061
1062 The definition of this macro is a list of structure initializations, each of
1063 which specifies an original and replacement register.
1064
1065 On some machines, the position of the argument pointer is not known until
1066 the compilation is completed. In such a case, a separate hard register must
1067 be used for the argument pointer. This register can be eliminated by
1068 replacing it with either the frame pointer or the argument pointer,
1069 depending on whether or not the frame pointer has been eliminated.
1070
1071 In this case, you might specify:
1072 #define ELIMINABLE_REGS \
1073 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1074 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1075 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1076
1077 Note that the elimination of the argument pointer with the stack pointer is
1078 specified first since that is the preferred elimination. */
1079
1080 #define ELIMINABLE_REGS \
1081 { \
1082 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1083 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1084 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
1085 }
1086
1087 /* This macro returns the initial difference between the specified pair
1088 of registers. */
1089
1090 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1091 (OFFSET) = frv_initial_elimination_offset (FROM, TO)
1092
1093 \f
1094 /* Passing Function Arguments on the Stack. */
1095
1096 /* If defined, the maximum amount of space required for outgoing arguments will
1097 be computed and placed into the variable
1098 `crtl->outgoing_args_size'. No space will be pushed onto the
1099 stack for each call; instead, the function prologue should increase the
1100 stack frame size by this amount.
1101
1102 Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
1103 proper. */
1104 #define ACCUMULATE_OUTGOING_ARGS 1
1105
1106 \f
1107 /* The number of register assigned to holding function arguments. */
1108
1109 #define FRV_NUM_ARG_REGS 6
1110
1111 /* A C type for declaring a variable that is used as the first argument of
1112 `FUNCTION_ARG' and other related values. For some target machines, the type
1113 `int' suffices and can hold the number of bytes of argument so far.
1114
1115 There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
1116 that have been passed on the stack. The compiler has other variables to
1117 keep track of that. For target machines on which all arguments are passed
1118 on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
1119 however, the data structure must exist and should not be empty, so use
1120 `int'. */
1121 #define CUMULATIVE_ARGS int
1122
1123 /* A C statement (sans semicolon) for initializing the variable CUM for the
1124 state at the beginning of the argument list. The variable has type
1125 `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
1126 of the function which will receive the args, or 0 if the args are to a
1127 compiler support library function. The value of INDIRECT is nonzero when
1128 processing an indirect call, for example a call through a function pointer.
1129 The value of INDIRECT is zero for a call to an explicitly named function, a
1130 library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
1131 arguments for the function being compiled.
1132
1133 When processing a call to a compiler support library function, LIBNAME
1134 identifies which one. It is a `symbol_ref' rtx which contains the name of
1135 the function, as a string. LIBNAME is 0 when an ordinary C function call is
1136 being processed. Thus, each time this macro is called, either LIBNAME or
1137 FNTYPE is nonzero, but never both of them at once. */
1138
1139 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1140 frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FNDECL, FALSE)
1141
1142 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1143 arguments for the function being compiled. If this macro is undefined,
1144 `INIT_CUMULATIVE_ARGS' is used instead.
1145
1146 The value passed for LIBNAME is always 0, since library routines with
1147 special calling conventions are never compiled with GCC. The argument
1148 LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'. */
1149
1150 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1151 frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, NULL, TRUE)
1152
1153 /* A C expression that is nonzero if REGNO is the number of a hard register in
1154 which function arguments are sometimes passed. This does *not* include
1155 implicit arguments such as the static chain and the structure-value address.
1156 On many machines, no registers can be used for this purpose since all
1157 function arguments are pushed on the stack. */
1158 #define FUNCTION_ARG_REGNO_P(REGNO) \
1159 ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
1160
1161 \f
1162 /* How Scalar Function Values are Returned. */
1163
1164 /* The number of the hard register that is used to return a scalar value from a
1165 function call. */
1166 #define RETURN_VALUE_REGNUM (GPR_FIRST + 8)
1167
1168 #define FUNCTION_VALUE_REGNO_P(REGNO) frv_function_value_regno_p (REGNO)
1169
1170 \f
1171 /* How Large Values are Returned. */
1172
1173 /* The number of the register that is used to pass the structure
1174 value address. */
1175 #define FRV_STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
1176
1177 \f
1178 /* Function Entry and Exit. */
1179
1180 /* Define this macro as a C expression that is nonzero if the return
1181 instruction or the function epilogue ignores the value of the stack pointer;
1182 in other words, if it is safe to delete an instruction to adjust the stack
1183 pointer before a return from the function.
1184
1185 Note that this macro's value is relevant only for functions for which frame
1186 pointers are maintained. It is never safe to delete a final stack
1187 adjustment in a function that has no frame pointer, and the compiler knows
1188 this regardless of `EXIT_IGNORE_STACK'. */
1189 #define EXIT_IGNORE_STACK 1
1190 \f
1191 /* Generating Code for Profiling. */
1192
1193 /* A C statement or compound statement to output to FILE some assembler code to
1194 call the profiling subroutine `mcount'. Before calling, the assembler code
1195 must load the address of a counter variable into a register where `mcount'
1196 expects to find the address. The name of this variable is `LP' followed by
1197 the number LABELNO, so you would generate the name using `LP%d' in a
1198 `fprintf'.
1199
1200 The details of how the address should be passed to `mcount' are determined
1201 by your operating system environment, not by GCC. To figure them out,
1202 compile a small program for profiling using the system's installed C
1203 compiler and look at the assembler code that results.
1204
1205 This declaration must be present, but it can be an abort if profiling is
1206 not implemented. */
1207
1208 #define FUNCTION_PROFILER(FILE, LABELNO)
1209
1210 /* Trampolines for Nested Functions. */
1211
1212 /* A C expression for the size in bytes of the trampoline, as an integer. */
1213 #define TRAMPOLINE_SIZE frv_trampoline_size ()
1214
1215 /* Alignment required for trampolines, in bits.
1216
1217 If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
1218 aligning trampolines. */
1219 #define TRAMPOLINE_ALIGNMENT (TARGET_FDPIC ? 64 : 32)
1220
1221 /* Define this macro if trampolines need a special subroutine to do their work.
1222 The macro should expand to a series of `asm' statements which will be
1223 compiled with GCC. They go in a library function named
1224 `__transfer_from_trampoline'.
1225
1226 If you need to avoid executing the ordinary prologue code of a compiled C
1227 function when you jump to the subroutine, you can do so by placing a special
1228 label of your own in the assembler code. Use one `asm' statement to
1229 generate an assembler label, and another to make the label global. Then
1230 trampolines can use that label to jump directly to your special assembler
1231 code. */
1232
1233 #ifdef __FRV_UNDERSCORE__
1234 #define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
1235 #else
1236 #define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
1237 #endif
1238
1239 #define Twrite _write
1240
1241 #if ! __FRV_FDPIC__
1242 #define TRANSFER_FROM_TRAMPOLINE \
1243 extern int Twrite (int, const void *, unsigned); \
1244 extern void exit (int); \
1245 \
1246 void \
1247 __trampoline_setup (short * addr, int size, int fnaddr, int sc) \
1248 { \
1249 extern short __trampoline_template[]; \
1250 short * to = addr; \
1251 short * from = &__trampoline_template[0]; \
1252 int i; \
1253 \
1254 if (size < 20) \
1255 { \
1256 Twrite (2, "__trampoline_setup bad size\n", \
1257 sizeof ("__trampoline_setup bad size\n") - 1); \
1258 exit (-1); \
1259 } \
1260 \
1261 to[0] = from[0]; \
1262 to[1] = (short)(fnaddr); \
1263 to[2] = from[2]; \
1264 to[3] = (short)(sc); \
1265 to[4] = from[4]; \
1266 to[5] = (short)(fnaddr >> 16); \
1267 to[6] = from[6]; \
1268 to[7] = (short)(sc >> 16); \
1269 to[8] = from[8]; \
1270 to[9] = from[9]; \
1271 \
1272 for (i = 0; i < 20; i++) \
1273 __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1274 } \
1275 \
1276 __asm__("\n" \
1277 "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
1278 "\t.text\n" \
1279 TRAMPOLINE_TEMPLATE_NAME ":\n" \
1280 "\tsetlos #0, gr6\n" /* jump register */ \
1281 "\tsetlos #0, gr7\n" /* static chain */ \
1282 "\tsethi #0, gr6\n" \
1283 "\tsethi #0, gr7\n" \
1284 "\tjmpl @(gr0,gr6)\n");
1285 #else
1286 #define TRANSFER_FROM_TRAMPOLINE \
1287 extern int Twrite (int, const void *, unsigned); \
1288 extern void exit (int); \
1289 \
1290 void \
1291 __trampoline_setup (addr, size, fnaddr, sc) \
1292 short * addr; \
1293 int size; \
1294 int fnaddr; \
1295 int sc; \
1296 { \
1297 extern short __trampoline_template[]; \
1298 short * from = &__trampoline_template[0]; \
1299 int i; \
1300 short **desc = (short **)addr; \
1301 short * to = addr + 4; \
1302 \
1303 if (size != 32) \
1304 { \
1305 Twrite (2, "__trampoline_setup bad size\n", \
1306 sizeof ("__trampoline_setup bad size\n") - 1); \
1307 exit (-1); \
1308 } \
1309 \
1310 /* Create a function descriptor with the address of the code below \
1311 and NULL as the FDPIC value. We don't need the real GOT value \
1312 here, since we don't use it, so we use NULL, that is just as \
1313 good. */ \
1314 desc[0] = to; \
1315 desc[1] = NULL; \
1316 size -= 8; \
1317 \
1318 to[0] = from[0]; \
1319 to[1] = (short)(fnaddr); \
1320 to[2] = from[2]; \
1321 to[3] = (short)(sc); \
1322 to[4] = from[4]; \
1323 to[5] = (short)(fnaddr >> 16); \
1324 to[6] = from[6]; \
1325 to[7] = (short)(sc >> 16); \
1326 to[8] = from[8]; \
1327 to[9] = from[9]; \
1328 to[10] = from[10]; \
1329 to[11] = from[11]; \
1330 \
1331 for (i = 0; i < size; i++) \
1332 __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1333 } \
1334 \
1335 __asm__("\n" \
1336 "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
1337 "\t.text\n" \
1338 TRAMPOLINE_TEMPLATE_NAME ":\n" \
1339 "\tsetlos #0, gr6\n" /* Jump register. */ \
1340 "\tsetlos #0, gr7\n" /* Static chain. */ \
1341 "\tsethi #0, gr6\n" \
1342 "\tsethi #0, gr7\n" \
1343 "\tldd @(gr6,gr0),gr14\n" \
1344 "\tjmpl @(gr14,gr0)\n" \
1345 );
1346 #endif
1347
1348 \f
1349 /* Addressing Modes. */
1350
1351 /* A number, the maximum number of registers that can appear in a valid memory
1352 address. Note that it is up to you to specify a value equal to the maximum
1353 number that `TARGET_LEGITIMATE_ADDRESS_P' would ever accept. */
1354 #define MAX_REGS_PER_ADDRESS 2
1355
1356 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1357 use as a base register. For hard registers, it should always accept those
1358 which the hardware permits and reject the others. Whether the macro accepts
1359 or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
1360 described above. This usually requires two variant definitions, of which
1361 `REG_OK_STRICT' controls the one actually used. */
1362 #ifdef REG_OK_STRICT
1363 #define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
1364 #else
1365 #define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
1366 #endif
1367
1368 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1369 use as an index register.
1370
1371 The difference between an index register and a base register is that the
1372 index register may be scaled. If an address involves the sum of two
1373 registers, neither one of them scaled, then either one may be labeled the
1374 "base" and the other the "index"; but whichever labeling is used must fit
1375 the machine's constraints of which registers may serve in each capacity.
1376 The compiler will try both labelings, looking for one that is valid, and
1377 will reload one or both registers only if neither labeling works. */
1378 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1379
1380 #define FIND_BASE_TERM frv_find_base_term
1381
1382 /* The load-and-update commands allow pre-modification in addresses.
1383 The index has to be in a register. */
1384 #define HAVE_PRE_MODIFY_REG 1
1385
1386 \f
1387 /* We define extra CC modes in frv-modes.def so we need a selector. */
1388
1389 #define SELECT_CC_MODE frv_select_cc_mode
1390
1391 /* A C expression whose value is one if it is always safe to reverse a
1392 comparison whose mode is MODE. If `SELECT_CC_MODE' can ever return MODE for
1393 a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
1394 must be zero.
1395
1396 You need not define this macro if it would always returns zero or if the
1397 floating-point format is anything other than `IEEE_FLOAT_FORMAT'. For
1398 example, here is the definition used on the SPARC, where floating-point
1399 inequality comparisons are always given `CCFPEmode':
1400
1401 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode) */
1402
1403 /* On frv, don't consider floating point comparisons to be reversible. In
1404 theory, fp equality comparisons can be reversible. */
1405 #define REVERSIBLE_CC_MODE(MODE) \
1406 ((MODE) == CCmode || (MODE) == CC_UNSmode || (MODE) == CC_NZmode)
1407
1408 \f
1409 /* Describing Relative Costs of Operations. */
1410
1411 /* A C expression for the cost of a branch instruction. A value of 1 is the
1412 default; other values are interpreted relative to that. */
1413 #define BRANCH_COST(speed_p, predictable_p) frv_branch_cost_int
1414
1415 /* Define this macro as a C expression which is nonzero if accessing less than
1416 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1417 word of memory, i.e., if such access require more than one instruction or if
1418 there is no difference in cost between byte and (aligned) word loads.
1419
1420 When this macro is not defined, the compiler will access a field by finding
1421 the smallest containing object; when it is defined, a fullword load will be
1422 used if alignment permits. Unless bytes accesses are faster than word
1423 accesses, using word accesses is preferable since it may eliminate
1424 subsequent memory access if subsequent accesses occur to other fields in the
1425 same word of the structure, but to different bytes. */
1426 #define SLOW_BYTE_ACCESS 1
1427
1428 /* Define this macro if it is as good or better to call a constant function
1429 address than to call an address kept in a register. */
1430 #define NO_FUNCTION_CSE 1
1431
1432 \f
1433 /* Dividing the output into sections. */
1434
1435 /* A C expression whose value is a string containing the assembler operation
1436 that should precede instructions and read-only data. Normally `".text"' is
1437 right. */
1438 #define TEXT_SECTION_ASM_OP "\t.text"
1439
1440 /* A C expression whose value is a string containing the assembler operation to
1441 identify the following data as writable initialized data. Normally
1442 `".data"' is right. */
1443 #define DATA_SECTION_ASM_OP "\t.data"
1444
1445 #define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
1446
1447 /* Short Data Support */
1448 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
1449
1450 #undef INIT_SECTION_ASM_OP
1451 #undef FINI_SECTION_ASM_OP
1452 #define INIT_SECTION_ASM_OP "\t.section .init,\"ax\""
1453 #define FINI_SECTION_ASM_OP "\t.section .fini,\"ax\""
1454
1455 #undef CTORS_SECTION_ASM_OP
1456 #undef DTORS_SECTION_ASM_OP
1457 #define CTORS_SECTION_ASM_OP "\t.section\t.ctors,\"a\""
1458 #define DTORS_SECTION_ASM_OP "\t.section\t.dtors,\"a\""
1459
1460 /* A C expression whose value is a string containing the assembler operation to
1461 switch to the fixup section that records all initialized pointers in a -fpic
1462 program so they can be changed program startup time if the program is loaded
1463 at a different address than linked for. */
1464 #define FIXUP_SECTION_ASM_OP "\t.section .rofixup,\"a\""
1465 \f
1466 /* Position Independent Code. */
1467
1468 /* A C expression that is nonzero if X is a legitimate immediate operand on the
1469 target machine when generating position independent code. You can assume
1470 that X satisfies `CONSTANT_P', so you need not check this. You can also
1471 assume FLAG_PIC is true, so you need not check it either. You need not
1472 define this macro if all constants (including `SYMBOL_REF') can be immediate
1473 operands when generating position independent code. */
1474 #define LEGITIMATE_PIC_OPERAND_P(X) \
1475 ( GET_CODE (X) == CONST_INT \
1476 || GET_CODE (X) == CONST_DOUBLE \
1477 || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT) \
1478 || got12_operand (X, VOIDmode)) \
1479
1480 \f
1481 /* The Overall Framework of an Assembler File. */
1482
1483 /* A C string constant describing how to begin a comment in the target
1484 assembler language. The compiler assumes that the comment will end at the
1485 end of the line. */
1486 #define ASM_COMMENT_START ";"
1487
1488 /* A C string constant for text to be output before each `asm' statement or
1489 group of consecutive ones. Normally this is `"#APP"', which is a comment
1490 that has no effect on most assemblers but tells the GNU assembler that it
1491 must check the lines that follow for all valid assembler constructs. */
1492 #define ASM_APP_ON "#APP\n"
1493
1494 /* A C string constant for text to be output after each `asm' statement or
1495 group of consecutive ones. Normally this is `"#NO_APP"', which tells the
1496 GNU assembler to resume making the time-saving assumptions that are valid
1497 for ordinary compiler output. */
1498 #define ASM_APP_OFF "#NO_APP\n"
1499
1500 \f
1501 /* Output of Data. */
1502
1503 /* This is how to output a label to dwarf/dwarf2. */
1504 #define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL) \
1505 do { \
1506 fprintf (STREAM, "\t.picptr\t"); \
1507 assemble_name (STREAM, LABEL); \
1508 } while (0)
1509
1510 /* Whether to emit the gas specific dwarf2 line number support. */
1511 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
1512 \f
1513 /* Output of Uninitialized Variables. */
1514
1515 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1516 assembler definition of a local-common-label named NAME whose size is SIZE
1517 bytes. The variable ROUNDED is the size rounded up to whatever alignment
1518 the caller wants.
1519
1520 Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
1521 before and after that, output the additional assembler syntax for defining
1522 the name, and a newline.
1523
1524 This macro controls how the assembler definitions of uninitialized static
1525 variables are output. */
1526 #undef ASM_OUTPUT_LOCAL
1527
1528 #undef ASM_OUTPUT_ALIGNED_LOCAL
1529
1530 /* This is for final.cc, because it is used by ASM_DECLARE_OBJECT_NAME. */
1531 extern int size_directive_output;
1532
1533 /* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
1534 parameter - the DECL of variable to be output, if there is one.
1535 This macro can be called with DECL == NULL_TREE. If you define
1536 this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
1537 `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
1538 handling the destination of the variable. */
1539 #undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
1540 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN) \
1541 do { \
1542 if ((SIZE) > 0 && (SIZE) <= (unsigned HOST_WIDE_INT) g_switch_value) \
1543 switch_to_section (get_named_section (NULL, ".sbss", 0)); \
1544 else \
1545 switch_to_section (bss_section); \
1546 ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT)); \
1547 ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL); \
1548 ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1); \
1549 } while (0)
1550
1551 \f
1552 /* Output and Generation of Labels. */
1553
1554 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1555 assembler definition of a label named NAME. Use the expression
1556 `assemble_name (STREAM, NAME)' to output the name itself; before and after
1557 that, output the additional assembler syntax for defining the name, and a
1558 newline. */
1559 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
1560 do { \
1561 assemble_name (STREAM, NAME); \
1562 fputs (":\n", STREAM); \
1563 } while (0)
1564
1565 /* Globalizing directive for a label. */
1566 #define GLOBAL_ASM_OP "\t.globl "
1567
1568 #undef ASM_GENERATE_INTERNAL_LABEL
1569 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1570 do { \
1571 sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM); \
1572 } while (0)
1573
1574 \f
1575 /* Macros Controlling Initialization Routines. */
1576
1577 #undef INIT_SECTION_ASM_OP
1578
1579 /* If defined, `main' will call `__main' despite the presence of
1580 `INIT_SECTION_ASM_OP'. This macro should be defined for systems where the
1581 init section is not actually run automatically, but is still useful for
1582 collecting the lists of constructors and destructors. */
1583 #define INVOKE__main
1584 \f
1585 /* Output of Assembler Instructions. */
1586
1587 /* A C initializer containing the assembler's names for the machine registers,
1588 each one as a C string constant. This is what translates register numbers
1589 in the compiler into assembler language. */
1590 #define REGISTER_NAMES \
1591 { \
1592 "gr0", "sp", "fp", "gr3", "gr4", "gr5", "gr6", "gr7", \
1593 "gr8", "gr9", "gr10", "gr11", "gr12", "gr13", "gr14", "gr15", \
1594 "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23", \
1595 "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31", \
1596 "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39", \
1597 "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47", \
1598 "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55", \
1599 "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63", \
1600 \
1601 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
1602 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
1603 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
1604 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
1605 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
1606 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
1607 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
1608 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
1609 \
1610 "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3", \
1611 "cc0", "cc1", "cc2", "cc3", "cc4", "cc5", "cc6", "cc7", \
1612 "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7", \
1613 "acc8", "acc9", "acc10", "acc11", \
1614 "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7", \
1615 "accg8", "accg9", "accg10", "accg11", \
1616 "ap", "lr", "lcr", "iacc0h", "iacc0l" \
1617 }
1618
1619 /* Define this macro if you are using an unusual assembler that
1620 requires different names for the machine instructions.
1621
1622 The definition is a C statement or statements which output an
1623 assembler instruction opcode to the stdio stream STREAM. The
1624 macro-operand PTR is a variable of type `char *' which points to
1625 the opcode name in its "internal" form--the form that is written
1626 in the machine description. The definition should output the
1627 opcode name to STREAM, performing any translation you desire, and
1628 increment the variable PTR to point at the end of the opcode so
1629 that it will not be output twice.
1630
1631 In fact, your macro definition may process less than the entire
1632 opcode name, or more than the opcode name; but if you want to
1633 process text that includes `%'-sequences to substitute operands,
1634 you must take care of the substitution yourself. Just be sure to
1635 increment PTR over whatever text should not be output normally.
1636
1637 If you need to look at the operand values, they can be found as the
1638 elements of `recog_operand'.
1639
1640 If the macro definition does nothing, the instruction is output in
1641 the usual way. */
1642
1643 #define ASM_OUTPUT_OPCODE(STREAM, PTR)\
1644 (PTR) = frv_asm_output_opcode (STREAM, PTR)
1645
1646 /* If defined, a C statement to be executed just prior to the output
1647 of assembler code for INSN, to modify the extracted operands so
1648 they will be output differently.
1649
1650 Here the argument OPVEC is the vector containing the operands
1651 extracted from INSN, and NOPERANDS is the number of elements of
1652 the vector which contain meaningful data for this insn. The
1653 contents of this vector are what will be used to convert the insn
1654 template into assembler code, so you can change the assembler
1655 output by changing the contents of the vector.
1656
1657 This macro is useful when various assembler syntaxes share a single
1658 file of instruction patterns; by defining this macro differently,
1659 you can cause a large class of instructions to be output
1660 differently (such as with rearranged operands). Naturally,
1661 variations in assembler syntax affecting individual insn patterns
1662 ought to be handled by writing conditional output routines in
1663 those patterns.
1664
1665 If this macro is not defined, it is equivalent to a null statement. */
1666
1667 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
1668 frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
1669
1670 #undef USER_LABEL_PREFIX
1671 #define USER_LABEL_PREFIX ""
1672 #define REGISTER_PREFIX ""
1673 #define LOCAL_LABEL_PREFIX "."
1674 #define IMMEDIATE_PREFIX "#"
1675
1676 \f
1677 /* Output of dispatch tables. */
1678
1679 /* This macro should be provided on machines where the addresses in a dispatch
1680 table are relative to the table's own address.
1681
1682 The definition should be a C statement to output to the stdio stream STREAM
1683 an assembler pseudo-instruction to generate a difference between two labels.
1684 VALUE and REL are the numbers of two internal labels. The definitions of
1685 these labels are output using `(*targetm.asm_out.internal_label)', and they must be
1686 printed in the same way here. For example,
1687
1688 fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */
1689 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1690 fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
1691
1692 /* This macro should be provided on machines where the addresses in a dispatch
1693 table are absolute.
1694
1695 The definition should be a C statement to output to the stdio stream STREAM
1696 an assembler pseudo-instruction to generate a reference to a label. VALUE
1697 is the number of an internal label whose definition is output using
1698 `(*targetm.asm_out.internal_label)'. For example,
1699
1700 fprintf (STREAM, "\t.word L%d\n", VALUE) */
1701 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
1702 fprintf (STREAM, "\t.word .L%d\n", VALUE)
1703
1704 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
1705 \f
1706 /* Assembler Commands for Exception Regions. */
1707
1708 /* Define this macro to 0 if your target supports DWARF 2 frame unwind
1709 information, but it does not yet work with exception handling. Otherwise,
1710 if your target supports this information (if it defines
1711 `INCOMING_RETURN_ADDR_RTX' and `OBJECT_FORMAT_ELF'), GCC will provide
1712 a default definition of 1.
1713
1714 If this macro is defined to 1, the DWARF 2 unwinder will be the default
1715 exception handling mechanism; otherwise, setjmp/longjmp will be used by
1716 default.
1717
1718 If this macro is defined to anything, the DWARF 2 unwinder will be used
1719 instead of inline unwinders and __unwind_function in the non-setjmp case. */
1720 #define DWARF2_UNWIND_INFO 1
1721
1722 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
1723 \f
1724 /* Assembler Commands for Alignment. */
1725
1726 #undef ASM_OUTPUT_SKIP
1727 #define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
1728 fprintf (STREAM, "\t.zero\t%u\n", (int)(NBYTES))
1729
1730 /* A C statement to output to the stdio stream STREAM an assembler command to
1731 advance the location counter to a multiple of 2 to the POWER bytes. POWER
1732 will be a C expression of type `int'. */
1733 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1734 fprintf ((STREAM), "\t.p2align %d\n", (POWER))
1735
1736 /* Inside the text section, align with unpacked nops rather than zeros. */
1737 #define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
1738 fprintf ((STREAM), "\t.p2alignl %d,0x80880000\n", (POWER))
1739 \f
1740 /* Macros Affecting all Debug Formats. */
1741
1742 /* A C expression that returns the debugger register number for the compiler
1743 register number REGNO. In simple cases, the value of this expression may be
1744 REGNO itself. But sometimes there are some registers that the compiler
1745 knows about and debugger does not, or vice versa. In such cases, some register
1746 may need to have one number in the compiler and another for debugger.
1747
1748 If two registers have consecutive numbers inside GCC, and they can be
1749 used as a pair to hold a multiword value, then they *must* have consecutive
1750 numbers after renumbering with `DEBUGGER_REGNO'. Otherwise, debuggers
1751 will be unable to access such a pair, because they expect register pairs to
1752 be consecutive in their own numbering scheme.
1753
1754 If you find yourself defining `DEBUGGER_REGNO' in way that does not
1755 preserve register pairs, then what you must do instead is redefine the
1756 actual register numbering scheme.
1757
1758 This declaration is required. */
1759 #define DEBUGGER_REGNO(REGNO) (REGNO)
1760
1761 #undef PREFERRED_DEBUGGING_TYPE
1762 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1763 \f
1764 /* Miscellaneous Parameters. */
1765
1766 /* An alias for a machine mode name. This is the machine mode that elements of
1767 a jump-table should have. */
1768 #define CASE_VECTOR_MODE SImode
1769
1770 /* Define this macro if operations between registers with integral mode smaller
1771 than a word are always performed on the entire register. Most RISC machines
1772 have this property and most CISC machines do not. */
1773 #define WORD_REGISTER_OPERATIONS 1
1774
1775 /* Define this macro to be a C expression indicating when insns that read
1776 memory in MODE, an integral mode narrower than a word, set the bits outside
1777 of MODE to be either the sign-extension or the zero-extension of the data
1778 read. Return `SIGN_EXTEND' for values of MODE for which the insn
1779 sign-extends, `ZERO_EXTEND' for which it zero-extends, and `UNKNOWN' for other
1780 modes.
1781
1782 This macro is not called with MODE non-integral or with a width greater than
1783 or equal to `BITS_PER_WORD', so you may return any value in this case. Do
1784 not define this macro if it would always return `UNKNOWN'. On machines where
1785 this macro is defined, you will normally define it as the constant
1786 `SIGN_EXTEND' or `ZERO_EXTEND'. */
1787 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1788
1789 /* Define if loading short immediate values into registers sign extends. */
1790 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1791
1792 /* The maximum number of bytes that a single instruction can move quickly from
1793 memory to memory. */
1794 #define MOVE_MAX 8
1795
1796 /* An alias for the machine mode for pointers. On most machines, define this
1797 to be the integer mode corresponding to the width of a hardware pointer;
1798 `SImode' on 32-bit machine or `DImode' on 64-bit machines. On some machines
1799 you must define this to be one of the partial integer modes, such as
1800 `PSImode'.
1801
1802 The width of `Pmode' must be at least as large as the value of
1803 `POINTER_SIZE'. If it is not equal, you must define the macro
1804 `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'. */
1805 #define Pmode SImode
1806
1807 /* An alias for the machine mode used for memory references to functions being
1808 called, in `call' RTL expressions. On most machines this should be
1809 `QImode'. */
1810 #define FUNCTION_MODE QImode
1811
1812 /* A C expression for the maximum number of instructions to execute via
1813 conditional execution instructions instead of a branch. A value of
1814 BRANCH_COST+1 is the default if the machine does not use
1815 cc0, and 1 if it does use cc0. */
1816 #define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
1817
1818 /* A C expression to modify the code described by the conditional if
1819 information CE_INFO, possibly updating the tests in TRUE_EXPR, and
1820 FALSE_EXPR for converting if-then and if-then-else code to conditional
1821 instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
1822 tests cannot be converted. */
1823 #define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR) \
1824 frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
1825
1826 /* A C expression to modify the code described by the conditional if
1827 information CE_INFO, for the basic block BB, possibly updating the tests in
1828 TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
1829 if-then-else code to conditional instructions. OLD_TRUE and OLD_FALSE are
1830 the previous tests. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
1831 the tests cannot be converted. */
1832 #define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
1833 frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
1834
1835 /* A C expression to modify the code described by the conditional if
1836 information CE_INFO with the new PATTERN in INSN. If PATTERN is a null
1837 pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
1838 insn cannot be converted to be executed conditionally. */
1839 #define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
1840 (PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
1841
1842 /* A C expression to perform any final machine dependent modifications in
1843 converting code to conditional execution in the code described by the
1844 conditional if information CE_INFO. */
1845 #define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
1846
1847 /* A C expression to cancel any machine dependent modifications in converting
1848 code to conditional execution in the code described by the conditional if
1849 information CE_INFO. */
1850 #define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
1851
1852 /* Initialize the machine-specific static data for if-conversion. */
1853 #define IFCVT_MACHDEP_INIT(CE_INFO) frv_ifcvt_machdep_init (CE_INFO)
1854
1855 /* The definition of the following macro results in that the 2nd jump
1856 optimization (after the 2nd insn scheduling) is minimal. It is
1857 necessary to define when start cycle marks of insns (TImode is used
1858 for this) is used for VLIW insn packing. Some jump optimizations
1859 make such marks invalid. These marks are corrected for some
1860 (minimal) optimizations. ??? Probably the macro is temporary.
1861 Final solution could making the 2nd jump optimizations before the
1862 2nd instruction scheduling or corrections of the marks for all jump
1863 optimizations. Although some jump optimizations are actually
1864 deoptimizations for VLIW (super-scalar) processors. */
1865
1866 #define MINIMAL_SECOND_JUMP_OPTIMIZATION
1867
1868
1869 /* If the following macro is defined and nonzero and deterministic
1870 finite state automata are used for pipeline hazard recognition, we
1871 will try to exchange insns in queue ready to improve the schedule.
1872 The more macro value, the more tries will be made. */
1873 #define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
1874
1875 /* The following macro is used only when value of
1876 FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero. The more macro value,
1877 the more tries will be made to choose better schedule. If the
1878 macro value is zero or negative there will be no multi-pass
1879 scheduling. */
1880 #define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
1881
1882 enum frv_builtins
1883 {
1884 FRV_BUILTIN_MAND,
1885 FRV_BUILTIN_MOR,
1886 FRV_BUILTIN_MXOR,
1887 FRV_BUILTIN_MNOT,
1888 FRV_BUILTIN_MAVEH,
1889 FRV_BUILTIN_MSATHS,
1890 FRV_BUILTIN_MSATHU,
1891 FRV_BUILTIN_MADDHSS,
1892 FRV_BUILTIN_MADDHUS,
1893 FRV_BUILTIN_MSUBHSS,
1894 FRV_BUILTIN_MSUBHUS,
1895 FRV_BUILTIN_MPACKH,
1896 FRV_BUILTIN_MQADDHSS,
1897 FRV_BUILTIN_MQADDHUS,
1898 FRV_BUILTIN_MQSUBHSS,
1899 FRV_BUILTIN_MQSUBHUS,
1900 FRV_BUILTIN_MUNPACKH,
1901 FRV_BUILTIN_MDPACKH,
1902 FRV_BUILTIN_MBTOH,
1903 FRV_BUILTIN_MHTOB,
1904 FRV_BUILTIN_MCOP1,
1905 FRV_BUILTIN_MCOP2,
1906 FRV_BUILTIN_MROTLI,
1907 FRV_BUILTIN_MROTRI,
1908 FRV_BUILTIN_MWCUT,
1909 FRV_BUILTIN_MSLLHI,
1910 FRV_BUILTIN_MSRLHI,
1911 FRV_BUILTIN_MSRAHI,
1912 FRV_BUILTIN_MEXPDHW,
1913 FRV_BUILTIN_MEXPDHD,
1914 FRV_BUILTIN_MMULHS,
1915 FRV_BUILTIN_MMULHU,
1916 FRV_BUILTIN_MMULXHS,
1917 FRV_BUILTIN_MMULXHU,
1918 FRV_BUILTIN_MMACHS,
1919 FRV_BUILTIN_MMACHU,
1920 FRV_BUILTIN_MMRDHS,
1921 FRV_BUILTIN_MMRDHU,
1922 FRV_BUILTIN_MQMULHS,
1923 FRV_BUILTIN_MQMULHU,
1924 FRV_BUILTIN_MQMULXHU,
1925 FRV_BUILTIN_MQMULXHS,
1926 FRV_BUILTIN_MQMACHS,
1927 FRV_BUILTIN_MQMACHU,
1928 FRV_BUILTIN_MCPXRS,
1929 FRV_BUILTIN_MCPXRU,
1930 FRV_BUILTIN_MCPXIS,
1931 FRV_BUILTIN_MCPXIU,
1932 FRV_BUILTIN_MQCPXRS,
1933 FRV_BUILTIN_MQCPXRU,
1934 FRV_BUILTIN_MQCPXIS,
1935 FRV_BUILTIN_MQCPXIU,
1936 FRV_BUILTIN_MCUT,
1937 FRV_BUILTIN_MCUTSS,
1938 FRV_BUILTIN_MWTACC,
1939 FRV_BUILTIN_MWTACCG,
1940 FRV_BUILTIN_MRDACC,
1941 FRV_BUILTIN_MRDACCG,
1942 FRV_BUILTIN_MTRAP,
1943 FRV_BUILTIN_MCLRACC,
1944 FRV_BUILTIN_MCLRACCA,
1945 FRV_BUILTIN_MDUNPACKH,
1946 FRV_BUILTIN_MBTOHE,
1947 FRV_BUILTIN_MQXMACHS,
1948 FRV_BUILTIN_MQXMACXHS,
1949 FRV_BUILTIN_MQMACXHS,
1950 FRV_BUILTIN_MADDACCS,
1951 FRV_BUILTIN_MSUBACCS,
1952 FRV_BUILTIN_MASACCS,
1953 FRV_BUILTIN_MDADDACCS,
1954 FRV_BUILTIN_MDSUBACCS,
1955 FRV_BUILTIN_MDASACCS,
1956 FRV_BUILTIN_MABSHS,
1957 FRV_BUILTIN_MDROTLI,
1958 FRV_BUILTIN_MCPLHI,
1959 FRV_BUILTIN_MCPLI,
1960 FRV_BUILTIN_MDCUTSSI,
1961 FRV_BUILTIN_MQSATHS,
1962 FRV_BUILTIN_MQLCLRHS,
1963 FRV_BUILTIN_MQLMTHS,
1964 FRV_BUILTIN_MQSLLHI,
1965 FRV_BUILTIN_MQSRAHI,
1966 FRV_BUILTIN_MHSETLOS,
1967 FRV_BUILTIN_MHSETLOH,
1968 FRV_BUILTIN_MHSETHIS,
1969 FRV_BUILTIN_MHSETHIH,
1970 FRV_BUILTIN_MHDSETS,
1971 FRV_BUILTIN_MHDSETH,
1972 FRV_BUILTIN_SMUL,
1973 FRV_BUILTIN_UMUL,
1974 FRV_BUILTIN_PREFETCH0,
1975 FRV_BUILTIN_PREFETCH,
1976 FRV_BUILTIN_SMASS,
1977 FRV_BUILTIN_SMSSS,
1978 FRV_BUILTIN_SMU,
1979 FRV_BUILTIN_SCUTSS,
1980 FRV_BUILTIN_ADDSS,
1981 FRV_BUILTIN_SUBSS,
1982 FRV_BUILTIN_SLASS,
1983 FRV_BUILTIN_IACCreadll,
1984 FRV_BUILTIN_IACCreadl,
1985 FRV_BUILTIN_IACCsetll,
1986 FRV_BUILTIN_IACCsetl,
1987 FRV_BUILTIN_SCAN,
1988 FRV_BUILTIN_READ8,
1989 FRV_BUILTIN_READ16,
1990 FRV_BUILTIN_READ32,
1991 FRV_BUILTIN_READ64,
1992 FRV_BUILTIN_WRITE8,
1993 FRV_BUILTIN_WRITE16,
1994 FRV_BUILTIN_WRITE32,
1995 FRV_BUILTIN_WRITE64
1996 };
1997 #define FRV_BUILTIN_FIRST_NONMEDIA FRV_BUILTIN_SMUL
1998
1999 /* Enable prototypes on the call rtl functions. */
2000 #define MD_CALL_PROTOTYPES 1
2001
2002 #define CPU_UNITS_QUERY 1
2003
2004 #endif /* __FRV_H__ */