]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/iq2000/iq2000.cc
Update copyright years.
[thirdparty/gcc.git] / gcc / config / iq2000 / iq2000.cc
1 /* Subroutines used for code generation on Vitesse IQ2000 processors
2 Copyright (C) 2003-2024 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #define IN_TARGET_CODE 1
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "stringpool.h"
30 #include "attribs.h"
31 #include "df.h"
32 #include "memmodel.h"
33 #include "tm_p.h"
34 #include "optabs.h"
35 #include "regs.h"
36 #include "emit-rtl.h"
37 #include "recog.h"
38 #include "diagnostic-core.h"
39 #include "stor-layout.h"
40 #include "calls.h"
41 #include "varasm.h"
42 #include "output.h"
43 #include "insn-attr.h"
44 #include "explow.h"
45 #include "expr.h"
46 #include "langhooks.h"
47 #include "builtins.h"
48
49 /* This file should be included last. */
50 #include "target-def.h"
51
52 /* Enumeration for all of the relational tests, so that we can build
53 arrays indexed by the test type, and not worry about the order
54 of EQ, NE, etc. */
55
56 enum internal_test
57 {
58 ITEST_EQ,
59 ITEST_NE,
60 ITEST_GT,
61 ITEST_GE,
62 ITEST_LT,
63 ITEST_LE,
64 ITEST_GTU,
65 ITEST_GEU,
66 ITEST_LTU,
67 ITEST_LEU,
68 ITEST_MAX
69 };
70
71 struct constant;
72
73 \f
74 /* Structure to be filled in by compute_frame_size with register
75 save masks, and offsets for the current function. */
76
77 struct iq2000_frame_info
78 {
79 long total_size; /* # bytes that the entire frame takes up. */
80 long var_size; /* # bytes that variables take up. */
81 long args_size; /* # bytes that outgoing arguments take up. */
82 long extra_size; /* # bytes of extra gunk. */
83 int gp_reg_size; /* # bytes needed to store gp regs. */
84 int fp_reg_size; /* # bytes needed to store fp regs. */
85 long mask; /* Mask of saved gp registers. */
86 long gp_save_offset; /* Offset from vfp to store gp registers. */
87 long fp_save_offset; /* Offset from vfp to store fp registers. */
88 long gp_sp_offset; /* Offset from new sp to store gp registers. */
89 long fp_sp_offset; /* Offset from new sp to store fp registers. */
90 int initialized; /* != 0 if frame size already calculated. */
91 int num_gp; /* Number of gp registers saved. */
92 } iq2000_frame_info;
93
94 struct GTY(()) machine_function
95 {
96 /* Current frame information, calculated by compute_frame_size. */
97 long total_size; /* # bytes that the entire frame takes up. */
98 long var_size; /* # bytes that variables take up. */
99 long args_size; /* # bytes that outgoing arguments take up. */
100 long extra_size; /* # bytes of extra gunk. */
101 int gp_reg_size; /* # bytes needed to store gp regs. */
102 int fp_reg_size; /* # bytes needed to store fp regs. */
103 long mask; /* Mask of saved gp registers. */
104 long gp_save_offset; /* Offset from vfp to store gp registers. */
105 long fp_save_offset; /* Offset from vfp to store fp registers. */
106 long gp_sp_offset; /* Offset from new sp to store gp registers. */
107 long fp_sp_offset; /* Offset from new sp to store fp registers. */
108 int initialized; /* != 0 if frame size already calculated. */
109 int num_gp; /* Number of gp registers saved. */
110 };
111
112 /* Global variables for machine-dependent things. */
113
114 /* List of all IQ2000 punctuation characters used by iq2000_print_operand. */
115 static char iq2000_print_operand_punct[256];
116
117 /* Which instruction set architecture to use. */
118 int iq2000_isa;
119
120 /* Local variables. */
121
122 /* The next branch instruction is a branch likely, not branch normal. */
123 static int iq2000_branch_likely;
124
125 /* Count of delay slots and how many are filled. */
126 static int dslots_load_total;
127 static int dslots_load_filled;
128 static int dslots_jump_total;
129
130 /* # of nops needed by previous insn. */
131 static int dslots_number_nops;
132
133 /* Number of 1/2/3 word references to data items (i.e., not jal's). */
134 static int num_refs[3];
135
136 /* Registers to check for load delay. */
137 static rtx iq2000_load_reg;
138 static rtx iq2000_load_reg2;
139 static rtx iq2000_load_reg3;
140 static rtx iq2000_load_reg4;
141
142 /* Mode used for saving/restoring general purpose registers. */
143 static machine_mode gpr_mode;
144
145 \f
146 /* Initialize the GCC target structure. */
147 static struct machine_function* iq2000_init_machine_status (void);
148 static void iq2000_option_override (void);
149 static section *iq2000_select_rtx_section (machine_mode, rtx,
150 unsigned HOST_WIDE_INT);
151 static void iq2000_init_builtins (void);
152 static rtx iq2000_expand_builtin (tree, rtx, rtx, machine_mode, int);
153 static bool iq2000_return_in_memory (const_tree, const_tree);
154 static void iq2000_setup_incoming_varargs (cumulative_args_t,
155 const function_arg_info &,
156 int *, int);
157 static bool iq2000_rtx_costs (rtx, machine_mode, int, int, int *, bool);
158 static int iq2000_address_cost (rtx, machine_mode, addr_space_t,
159 bool);
160 static rtx iq2000_legitimize_address (rtx, rtx, machine_mode);
161 static bool iq2000_pass_by_reference (cumulative_args_t,
162 const function_arg_info &);
163 static int iq2000_arg_partial_bytes (cumulative_args_t,
164 const function_arg_info &arg);
165 static rtx iq2000_function_arg (cumulative_args_t,
166 const function_arg_info &);
167 static void iq2000_function_arg_advance (cumulative_args_t,
168 const function_arg_info &);
169 static pad_direction iq2000_function_arg_padding (machine_mode, const_tree);
170 static unsigned int iq2000_function_arg_boundary (machine_mode,
171 const_tree);
172 static void iq2000_va_start (tree, rtx);
173 static bool iq2000_legitimate_address_p (machine_mode, rtx, bool,
174 code_helper = ERROR_MARK);
175 static bool iq2000_can_eliminate (const int, const int);
176 static void iq2000_asm_trampoline_template (FILE *);
177 static void iq2000_trampoline_init (rtx, tree, rtx);
178 static rtx iq2000_function_value (const_tree, const_tree, bool);
179 static rtx iq2000_libcall_value (machine_mode, const_rtx);
180 static void iq2000_print_operand (FILE *, rtx, int);
181 static void iq2000_print_operand_address (FILE *, machine_mode, rtx);
182 static bool iq2000_print_operand_punct_valid_p (unsigned char code);
183 static bool iq2000_hard_regno_mode_ok (unsigned int, machine_mode);
184 static bool iq2000_modes_tieable_p (machine_mode, machine_mode);
185 static HOST_WIDE_INT iq2000_constant_alignment (const_tree, HOST_WIDE_INT);
186 static HOST_WIDE_INT iq2000_starting_frame_offset (void);
187
188 #undef TARGET_INIT_BUILTINS
189 #define TARGET_INIT_BUILTINS iq2000_init_builtins
190 #undef TARGET_EXPAND_BUILTIN
191 #define TARGET_EXPAND_BUILTIN iq2000_expand_builtin
192 #undef TARGET_ASM_SELECT_RTX_SECTION
193 #define TARGET_ASM_SELECT_RTX_SECTION iq2000_select_rtx_section
194 #undef TARGET_OPTION_OVERRIDE
195 #define TARGET_OPTION_OVERRIDE iq2000_option_override
196 #undef TARGET_RTX_COSTS
197 #define TARGET_RTX_COSTS iq2000_rtx_costs
198 #undef TARGET_ADDRESS_COST
199 #define TARGET_ADDRESS_COST iq2000_address_cost
200
201 #undef TARGET_LEGITIMIZE_ADDRESS
202 #define TARGET_LEGITIMIZE_ADDRESS iq2000_legitimize_address
203
204 #undef TARGET_PRINT_OPERAND
205 #define TARGET_PRINT_OPERAND iq2000_print_operand
206 #undef TARGET_PRINT_OPERAND_ADDRESS
207 #define TARGET_PRINT_OPERAND_ADDRESS iq2000_print_operand_address
208 #undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
209 #define TARGET_PRINT_OPERAND_PUNCT_VALID_P iq2000_print_operand_punct_valid_p
210
211 #undef TARGET_PROMOTE_FUNCTION_MODE
212 #define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
213 #undef TARGET_PROMOTE_PROTOTYPES
214 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
215
216 #undef TARGET_FUNCTION_VALUE
217 #define TARGET_FUNCTION_VALUE iq2000_function_value
218 #undef TARGET_LIBCALL_VALUE
219 #define TARGET_LIBCALL_VALUE iq2000_libcall_value
220 #undef TARGET_RETURN_IN_MEMORY
221 #define TARGET_RETURN_IN_MEMORY iq2000_return_in_memory
222 #undef TARGET_PASS_BY_REFERENCE
223 #define TARGET_PASS_BY_REFERENCE iq2000_pass_by_reference
224 #undef TARGET_CALLEE_COPIES
225 #define TARGET_CALLEE_COPIES hook_callee_copies_named
226 #undef TARGET_ARG_PARTIAL_BYTES
227 #define TARGET_ARG_PARTIAL_BYTES iq2000_arg_partial_bytes
228 #undef TARGET_FUNCTION_ARG
229 #define TARGET_FUNCTION_ARG iq2000_function_arg
230 #undef TARGET_FUNCTION_ARG_ADVANCE
231 #define TARGET_FUNCTION_ARG_ADVANCE iq2000_function_arg_advance
232 #undef TARGET_FUNCTION_ARG_PADDING
233 #define TARGET_FUNCTION_ARG_PADDING iq2000_function_arg_padding
234 #undef TARGET_FUNCTION_ARG_BOUNDARY
235 #define TARGET_FUNCTION_ARG_BOUNDARY iq2000_function_arg_boundary
236
237 #undef TARGET_SETUP_INCOMING_VARARGS
238 #define TARGET_SETUP_INCOMING_VARARGS iq2000_setup_incoming_varargs
239 #undef TARGET_STRICT_ARGUMENT_NAMING
240 #define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
241
242 #undef TARGET_EXPAND_BUILTIN_VA_START
243 #define TARGET_EXPAND_BUILTIN_VA_START iq2000_va_start
244
245 #undef TARGET_LEGITIMATE_ADDRESS_P
246 #define TARGET_LEGITIMATE_ADDRESS_P iq2000_legitimate_address_p
247
248 #undef TARGET_CAN_ELIMINATE
249 #define TARGET_CAN_ELIMINATE iq2000_can_eliminate
250
251 #undef TARGET_ASM_TRAMPOLINE_TEMPLATE
252 #define TARGET_ASM_TRAMPOLINE_TEMPLATE iq2000_asm_trampoline_template
253 #undef TARGET_TRAMPOLINE_INIT
254 #define TARGET_TRAMPOLINE_INIT iq2000_trampoline_init
255
256 #undef TARGET_HARD_REGNO_MODE_OK
257 #define TARGET_HARD_REGNO_MODE_OK iq2000_hard_regno_mode_ok
258 #undef TARGET_MODES_TIEABLE_P
259 #define TARGET_MODES_TIEABLE_P iq2000_modes_tieable_p
260
261 #undef TARGET_CONSTANT_ALIGNMENT
262 #define TARGET_CONSTANT_ALIGNMENT iq2000_constant_alignment
263
264 #undef TARGET_STARTING_FRAME_OFFSET
265 #define TARGET_STARTING_FRAME_OFFSET iq2000_starting_frame_offset
266
267 #undef TARGET_HAVE_SPECULATION_SAFE_VALUE
268 #define TARGET_HAVE_SPECULATION_SAFE_VALUE speculation_safe_value_not_needed
269
270 struct gcc_target targetm = TARGET_INITIALIZER;
271 \f
272 /* Return nonzero if we split the address into high and low parts. */
273
274 int
275 iq2000_check_split (rtx address, machine_mode mode)
276 {
277 /* This is the same check used in simple_memory_operand.
278 We use it here because LO_SUM is not offsettable. */
279 if (GET_MODE_SIZE (mode) > (unsigned) UNITS_PER_WORD)
280 return 0;
281
282 if ((GET_CODE (address) == SYMBOL_REF)
283 || (GET_CODE (address) == CONST
284 && GET_CODE (XEXP (XEXP (address, 0), 0)) == SYMBOL_REF)
285 || GET_CODE (address) == LABEL_REF)
286 return 1;
287
288 return 0;
289 }
290
291 /* Return nonzero if REG is valid for MODE. */
292
293 int
294 iq2000_reg_mode_ok_for_base_p (rtx reg,
295 machine_mode mode ATTRIBUTE_UNUSED,
296 int strict)
297 {
298 return (strict
299 ? REGNO_MODE_OK_FOR_BASE_P (REGNO (reg), mode)
300 : GP_REG_OR_PSEUDO_NONSTRICT_P (REGNO (reg), mode));
301 }
302
303 /* Return a nonzero value if XINSN is a legitimate address for a
304 memory operand of the indicated MODE. STRICT is nonzero if this
305 function is called during reload. */
306
307 bool
308 iq2000_legitimate_address_p (machine_mode mode, rtx xinsn, bool strict,
309 code_helper)
310 {
311 if (TARGET_DEBUG_A_MODE)
312 {
313 GO_PRINTF2 ("\n========== legitimate_address_p, %sstrict\n",
314 strict ? "" : "not ");
315 GO_DEBUG_RTX (xinsn);
316 }
317
318 /* Check for constant before stripping off SUBREG, so that we don't
319 accept (subreg (const_int)) which will fail to reload. */
320 if (CONSTANT_ADDRESS_P (xinsn)
321 && ! (iq2000_check_split (xinsn, mode))
322 && ! (GET_CODE (xinsn) == CONST_INT && ! SMALL_INT (xinsn)))
323 return 1;
324
325 while (GET_CODE (xinsn) == SUBREG)
326 xinsn = SUBREG_REG (xinsn);
327
328 if (GET_CODE (xinsn) == REG
329 && iq2000_reg_mode_ok_for_base_p (xinsn, mode, strict))
330 return 1;
331
332 if (GET_CODE (xinsn) == LO_SUM)
333 {
334 rtx xlow0 = XEXP (xinsn, 0);
335 rtx xlow1 = XEXP (xinsn, 1);
336
337 while (GET_CODE (xlow0) == SUBREG)
338 xlow0 = SUBREG_REG (xlow0);
339 if (GET_CODE (xlow0) == REG
340 && iq2000_reg_mode_ok_for_base_p (xlow0, mode, strict)
341 && iq2000_check_split (xlow1, mode))
342 return 1;
343 }
344
345 if (GET_CODE (xinsn) == PLUS)
346 {
347 rtx xplus0 = XEXP (xinsn, 0);
348 rtx xplus1 = XEXP (xinsn, 1);
349 enum rtx_code code0;
350 enum rtx_code code1;
351
352 while (GET_CODE (xplus0) == SUBREG)
353 xplus0 = SUBREG_REG (xplus0);
354 code0 = GET_CODE (xplus0);
355
356 while (GET_CODE (xplus1) == SUBREG)
357 xplus1 = SUBREG_REG (xplus1);
358 code1 = GET_CODE (xplus1);
359
360 if (code0 == REG
361 && iq2000_reg_mode_ok_for_base_p (xplus0, mode, strict))
362 {
363 if (code1 == CONST_INT && SMALL_INT (xplus1)
364 && SMALL_INT_UNSIGNED (xplus1) /* No negative offsets */)
365 return 1;
366 }
367 }
368
369 if (TARGET_DEBUG_A_MODE)
370 GO_PRINTF ("Not a machine_mode mode, legitimate address\n");
371
372 /* The address was not legitimate. */
373 return 0;
374 }
375 \f
376 /* Returns an operand string for the given instruction's delay slot,
377 after updating filled delay slot statistics.
378
379 We assume that operands[0] is the target register that is set.
380
381 In order to check the next insn, most of this functionality is moved
382 to FINAL_PRESCAN_INSN, and we just set the global variables that
383 it needs. */
384
385 const char *
386 iq2000_fill_delay_slot (const char *ret, enum delay_type type, rtx operands[],
387 rtx_insn *cur_insn)
388 {
389 rtx set_reg;
390 machine_mode mode;
391 rtx_insn *next_insn = cur_insn ? NEXT_INSN (cur_insn) : NULL;
392 int num_nops;
393
394 if (type == DELAY_LOAD || type == DELAY_FCMP)
395 num_nops = 1;
396
397 else
398 num_nops = 0;
399
400 /* Make sure that we don't put nop's after labels. */
401 next_insn = NEXT_INSN (cur_insn);
402 while (next_insn != 0
403 && (NOTE_P (next_insn) || LABEL_P (next_insn)))
404 next_insn = NEXT_INSN (next_insn);
405
406 dslots_load_total += num_nops;
407 if (TARGET_DEBUG_C_MODE
408 || type == DELAY_NONE
409 || operands == 0
410 || cur_insn == 0
411 || next_insn == 0
412 || LABEL_P (next_insn)
413 || (set_reg = operands[0]) == 0)
414 {
415 dslots_number_nops = 0;
416 iq2000_load_reg = 0;
417 iq2000_load_reg2 = 0;
418 iq2000_load_reg3 = 0;
419 iq2000_load_reg4 = 0;
420
421 return ret;
422 }
423
424 set_reg = operands[0];
425 if (set_reg == 0)
426 return ret;
427
428 while (GET_CODE (set_reg) == SUBREG)
429 set_reg = SUBREG_REG (set_reg);
430
431 mode = GET_MODE (set_reg);
432 dslots_number_nops = num_nops;
433 iq2000_load_reg = set_reg;
434 if (GET_MODE_SIZE (mode)
435 > (unsigned) (UNITS_PER_WORD))
436 iq2000_load_reg2 = gen_rtx_REG (SImode, REGNO (set_reg) + 1);
437 else
438 iq2000_load_reg2 = 0;
439
440 return ret;
441 }
442 \f
443 /* Determine whether a memory reference takes one (based off of the GP
444 pointer), two (normal), or three (label + reg) instructions, and bump the
445 appropriate counter for -mstats. */
446
447 static void
448 iq2000_count_memory_refs (rtx op, int num)
449 {
450 int additional = 0;
451 int n_words = 0;
452 rtx addr, plus0, plus1;
453 enum rtx_code code0, code1;
454 int looping;
455
456 if (TARGET_DEBUG_B_MODE)
457 {
458 fprintf (stderr, "\n========== iq2000_count_memory_refs:\n");
459 debug_rtx (op);
460 }
461
462 /* Skip MEM if passed, otherwise handle movsi of address. */
463 addr = (GET_CODE (op) != MEM) ? op : XEXP (op, 0);
464
465 /* Loop, going through the address RTL. */
466 do
467 {
468 looping = FALSE;
469 switch (GET_CODE (addr))
470 {
471 case REG:
472 case CONST_INT:
473 case LO_SUM:
474 break;
475
476 case PLUS:
477 plus0 = XEXP (addr, 0);
478 plus1 = XEXP (addr, 1);
479 code0 = GET_CODE (plus0);
480 code1 = GET_CODE (plus1);
481
482 if (code0 == REG)
483 {
484 additional++;
485 addr = plus1;
486 looping = 1;
487 continue;
488 }
489
490 if (code0 == CONST_INT)
491 {
492 addr = plus1;
493 looping = 1;
494 continue;
495 }
496
497 if (code1 == REG)
498 {
499 additional++;
500 addr = plus0;
501 looping = 1;
502 continue;
503 }
504
505 if (code1 == CONST_INT)
506 {
507 addr = plus0;
508 looping = 1;
509 continue;
510 }
511
512 if (code0 == SYMBOL_REF || code0 == LABEL_REF || code0 == CONST)
513 {
514 addr = plus0;
515 looping = 1;
516 continue;
517 }
518
519 if (code1 == SYMBOL_REF || code1 == LABEL_REF || code1 == CONST)
520 {
521 addr = plus1;
522 looping = 1;
523 continue;
524 }
525
526 break;
527
528 case LABEL_REF:
529 n_words = 2; /* Always 2 words. */
530 break;
531
532 case CONST:
533 addr = XEXP (addr, 0);
534 looping = 1;
535 continue;
536
537 case SYMBOL_REF:
538 n_words = SYMBOL_REF_FLAG (addr) ? 1 : 2;
539 break;
540
541 default:
542 break;
543 }
544 }
545 while (looping);
546
547 if (n_words == 0)
548 return;
549
550 n_words += additional;
551 if (n_words > 3)
552 n_words = 3;
553
554 num_refs[n_words-1] += num;
555 }
556 \f
557 /* Abort after printing out a specific insn. */
558
559 static void
560 abort_with_insn (rtx insn, const char * reason)
561 {
562 error (reason);
563 debug_rtx (insn);
564 fancy_abort (__FILE__, __LINE__, __FUNCTION__);
565 }
566 \f
567 /* Return the appropriate instructions to move one operand to another. */
568
569 const char *
570 iq2000_move_1word (rtx operands[], rtx_insn *insn, int unsignedp)
571 {
572 const char *ret = 0;
573 rtx op0 = operands[0];
574 rtx op1 = operands[1];
575 enum rtx_code code0 = GET_CODE (op0);
576 enum rtx_code code1 = GET_CODE (op1);
577 machine_mode mode = GET_MODE (op0);
578 int subreg_offset0 = 0;
579 int subreg_offset1 = 0;
580 enum delay_type delay = DELAY_NONE;
581
582 while (code0 == SUBREG)
583 {
584 subreg_offset0 += subreg_regno_offset (REGNO (SUBREG_REG (op0)),
585 GET_MODE (SUBREG_REG (op0)),
586 SUBREG_BYTE (op0),
587 GET_MODE (op0));
588 op0 = SUBREG_REG (op0);
589 code0 = GET_CODE (op0);
590 }
591
592 while (code1 == SUBREG)
593 {
594 subreg_offset1 += subreg_regno_offset (REGNO (SUBREG_REG (op1)),
595 GET_MODE (SUBREG_REG (op1)),
596 SUBREG_BYTE (op1),
597 GET_MODE (op1));
598 op1 = SUBREG_REG (op1);
599 code1 = GET_CODE (op1);
600 }
601
602 /* For our purposes, a condition code mode is the same as SImode. */
603 if (mode == CCmode)
604 mode = SImode;
605
606 if (code0 == REG)
607 {
608 int regno0 = REGNO (op0) + subreg_offset0;
609
610 if (code1 == REG)
611 {
612 int regno1 = REGNO (op1) + subreg_offset1;
613
614 /* Do not do anything for assigning a register to itself */
615 if (regno0 == regno1)
616 ret = "";
617
618 else if (GP_REG_P (regno0))
619 {
620 if (GP_REG_P (regno1))
621 ret = "or\t%0,%%0,%1";
622 }
623
624 }
625
626 else if (code1 == MEM)
627 {
628 delay = DELAY_LOAD;
629
630 if (TARGET_STATS)
631 iq2000_count_memory_refs (op1, 1);
632
633 if (GP_REG_P (regno0))
634 {
635 /* For loads, use the mode of the memory item, instead of the
636 target, so zero/sign extend can use this code as well. */
637 switch (GET_MODE (op1))
638 {
639 default:
640 break;
641 case E_SFmode:
642 ret = "lw\t%0,%1";
643 break;
644 case E_SImode:
645 case E_CCmode:
646 ret = "lw\t%0,%1";
647 break;
648 case E_HImode:
649 ret = (unsignedp) ? "lhu\t%0,%1" : "lh\t%0,%1";
650 break;
651 case E_QImode:
652 ret = (unsignedp) ? "lbu\t%0,%1" : "lb\t%0,%1";
653 break;
654 }
655 }
656 }
657
658 else if (code1 == CONST_INT
659 || (code1 == CONST_DOUBLE
660 && GET_MODE (op1) == VOIDmode))
661 {
662 if (code1 == CONST_DOUBLE)
663 {
664 /* This can happen when storing constants into long long
665 bitfields. Just store the least significant word of
666 the value. */
667 operands[1] = op1 = GEN_INT (CONST_DOUBLE_LOW (op1));
668 }
669
670 if (INTVAL (op1) == 0)
671 {
672 if (GP_REG_P (regno0))
673 ret = "or\t%0,%%0,%z1";
674 }
675 else if (GP_REG_P (regno0))
676 {
677 if (SMALL_INT_UNSIGNED (op1))
678 ret = "ori\t%0,%%0,%x1\t\t\t# %1";
679 else if (SMALL_INT (op1))
680 ret = "addiu\t%0,%%0,%1\t\t\t# %1";
681 else
682 ret = "lui\t%0,%X1\t\t\t# %1\n\tori\t%0,%0,%x1";
683 }
684 }
685
686 else if (code1 == CONST_DOUBLE && mode == SFmode)
687 {
688 if (op1 == CONST0_RTX (SFmode))
689 {
690 if (GP_REG_P (regno0))
691 ret = "or\t%0,%%0,%.";
692 }
693
694 else
695 {
696 delay = DELAY_LOAD;
697 ret = "li.s\t%0,%1";
698 }
699 }
700
701 else if (code1 == LABEL_REF)
702 {
703 if (TARGET_STATS)
704 iq2000_count_memory_refs (op1, 1);
705
706 ret = "la\t%0,%a1";
707 }
708
709 else if (code1 == SYMBOL_REF || code1 == CONST)
710 {
711 if (TARGET_STATS)
712 iq2000_count_memory_refs (op1, 1);
713
714 ret = "la\t%0,%a1";
715 }
716
717 else if (code1 == PLUS)
718 {
719 rtx add_op0 = XEXP (op1, 0);
720 rtx add_op1 = XEXP (op1, 1);
721
722 if (GET_CODE (XEXP (op1, 1)) == REG
723 && GET_CODE (XEXP (op1, 0)) == CONST_INT)
724 add_op0 = XEXP (op1, 1), add_op1 = XEXP (op1, 0);
725
726 operands[2] = add_op0;
727 operands[3] = add_op1;
728 ret = "add%:\t%0,%2,%3";
729 }
730
731 else if (code1 == HIGH)
732 {
733 operands[1] = XEXP (op1, 0);
734 ret = "lui\t%0,%%hi(%1)";
735 }
736 }
737
738 else if (code0 == MEM)
739 {
740 if (TARGET_STATS)
741 iq2000_count_memory_refs (op0, 1);
742
743 if (code1 == REG)
744 {
745 int regno1 = REGNO (op1) + subreg_offset1;
746
747 if (GP_REG_P (regno1))
748 {
749 switch (mode)
750 {
751 case E_SFmode: ret = "sw\t%1,%0"; break;
752 case E_SImode: ret = "sw\t%1,%0"; break;
753 case E_HImode: ret = "sh\t%1,%0"; break;
754 case E_QImode: ret = "sb\t%1,%0"; break;
755 default: break;
756 }
757 }
758 }
759
760 else if (code1 == CONST_INT && INTVAL (op1) == 0)
761 {
762 switch (mode)
763 {
764 case E_SFmode: ret = "sw\t%z1,%0"; break;
765 case E_SImode: ret = "sw\t%z1,%0"; break;
766 case E_HImode: ret = "sh\t%z1,%0"; break;
767 case E_QImode: ret = "sb\t%z1,%0"; break;
768 default: break;
769 }
770 }
771
772 else if (code1 == CONST_DOUBLE && op1 == CONST0_RTX (mode))
773 {
774 switch (mode)
775 {
776 case E_SFmode: ret = "sw\t%.,%0"; break;
777 case E_SImode: ret = "sw\t%.,%0"; break;
778 case E_HImode: ret = "sh\t%.,%0"; break;
779 case E_QImode: ret = "sb\t%.,%0"; break;
780 default: break;
781 }
782 }
783 }
784
785 if (ret == 0)
786 {
787 abort_with_insn (insn, "Bad move");
788 return 0;
789 }
790
791 if (delay != DELAY_NONE)
792 return iq2000_fill_delay_slot (ret, delay, operands, insn);
793
794 return ret;
795 }
796 \f
797 /* Provide the costs of an addressing mode that contains ADDR. */
798
799 static int
800 iq2000_address_cost (rtx addr, machine_mode mode, addr_space_t as,
801 bool speed)
802 {
803 switch (GET_CODE (addr))
804 {
805 case LO_SUM:
806 return 1;
807
808 case LABEL_REF:
809 return 2;
810
811 case CONST:
812 {
813 rtx offset = const0_rtx;
814
815 addr = eliminate_constant_term (XEXP (addr, 0), & offset);
816 if (GET_CODE (addr) == LABEL_REF)
817 return 2;
818
819 if (GET_CODE (addr) != SYMBOL_REF)
820 return 4;
821
822 if (! SMALL_INT (offset))
823 return 2;
824 }
825
826 /* Fall through. */
827
828 case SYMBOL_REF:
829 return SYMBOL_REF_FLAG (addr) ? 1 : 2;
830
831 case PLUS:
832 {
833 rtx plus0 = XEXP (addr, 0);
834 rtx plus1 = XEXP (addr, 1);
835
836 if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG)
837 plus0 = XEXP (addr, 1), plus1 = XEXP (addr, 0);
838
839 if (GET_CODE (plus0) != REG)
840 break;
841
842 switch (GET_CODE (plus1))
843 {
844 case CONST_INT:
845 return SMALL_INT (plus1) ? 1 : 2;
846
847 case CONST:
848 case SYMBOL_REF:
849 case LABEL_REF:
850 case HIGH:
851 case LO_SUM:
852 return iq2000_address_cost (plus1, mode, as, speed) + 1;
853
854 default:
855 break;
856 }
857 }
858
859 default:
860 break;
861 }
862
863 return 4;
864 }
865 \f
866 /* Make normal rtx_code into something we can index from an array. */
867
868 static enum internal_test
869 map_test_to_internal_test (enum rtx_code test_code)
870 {
871 enum internal_test test = ITEST_MAX;
872
873 switch (test_code)
874 {
875 case EQ: test = ITEST_EQ; break;
876 case NE: test = ITEST_NE; break;
877 case GT: test = ITEST_GT; break;
878 case GE: test = ITEST_GE; break;
879 case LT: test = ITEST_LT; break;
880 case LE: test = ITEST_LE; break;
881 case GTU: test = ITEST_GTU; break;
882 case GEU: test = ITEST_GEU; break;
883 case LTU: test = ITEST_LTU; break;
884 case LEU: test = ITEST_LEU; break;
885 default: break;
886 }
887
888 return test;
889 }
890 \f
891 /* Generate the code to do a TEST_CODE comparison on two integer values CMP0
892 and CMP1. P_INVERT is NULL or ptr if branch needs to reverse its test.
893 The return value RESULT is:
894 (reg:SI xx) The pseudo register the comparison is in
895 0 No register, generate a simple branch. */
896
897 rtx
898 gen_int_relational (enum rtx_code test_code, rtx result, rtx cmp0, rtx cmp1,
899 int *p_invert)
900 {
901 struct cmp_info
902 {
903 enum rtx_code test_code; /* Code to use in instruction (LT vs. LTU). */
904 int const_low; /* Low bound of constant we can accept. */
905 int const_high; /* High bound of constant we can accept. */
906 int const_add; /* Constant to add (convert LE -> LT). */
907 int reverse_regs; /* Reverse registers in test. */
908 int invert_const; /* != 0 if invert value if cmp1 is constant. */
909 int invert_reg; /* != 0 if invert value if cmp1 is register. */
910 int unsignedp; /* != 0 for unsigned comparisons. */
911 };
912
913 static struct cmp_info info[ (int)ITEST_MAX ] =
914 {
915 { XOR, 0, 65535, 0, 0, 0, 0, 0 }, /* EQ */
916 { XOR, 0, 65535, 0, 0, 1, 1, 0 }, /* NE */
917 { LT, -32769, 32766, 1, 1, 1, 0, 0 }, /* GT */
918 { LT, -32768, 32767, 0, 0, 1, 1, 0 }, /* GE */
919 { LT, -32768, 32767, 0, 0, 0, 0, 0 }, /* LT */
920 { LT, -32769, 32766, 1, 1, 0, 1, 0 }, /* LE */
921 { LTU, -32769, 32766, 1, 1, 1, 0, 1 }, /* GTU */
922 { LTU, -32768, 32767, 0, 0, 1, 1, 1 }, /* GEU */
923 { LTU, -32768, 32767, 0, 0, 0, 0, 1 }, /* LTU */
924 { LTU, -32769, 32766, 1, 1, 0, 1, 1 }, /* LEU */
925 };
926
927 enum internal_test test;
928 machine_mode mode;
929 struct cmp_info *p_info;
930 int branch_p;
931 int eqne_p;
932 int invert;
933 rtx reg;
934 rtx reg2;
935
936 test = map_test_to_internal_test (test_code);
937 gcc_assert (test != ITEST_MAX);
938
939 p_info = &info[(int) test];
940 eqne_p = (p_info->test_code == XOR);
941
942 mode = GET_MODE (cmp0);
943 if (mode == VOIDmode)
944 mode = GET_MODE (cmp1);
945
946 /* Eliminate simple branches. */
947 branch_p = (result == 0);
948 if (branch_p)
949 {
950 if (GET_CODE (cmp0) == REG || GET_CODE (cmp0) == SUBREG)
951 {
952 /* Comparisons against zero are simple branches. */
953 if (GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) == 0)
954 return 0;
955
956 /* Test for beq/bne. */
957 if (eqne_p)
958 return 0;
959 }
960
961 /* Allocate a pseudo to calculate the value in. */
962 result = gen_reg_rtx (mode);
963 }
964
965 /* Make sure we can handle any constants given to us. */
966 if (GET_CODE (cmp0) == CONST_INT)
967 cmp0 = force_reg (mode, cmp0);
968
969 if (GET_CODE (cmp1) == CONST_INT)
970 {
971 HOST_WIDE_INT value = INTVAL (cmp1);
972
973 if (value < p_info->const_low
974 || value > p_info->const_high)
975 cmp1 = force_reg (mode, cmp1);
976 }
977
978 /* See if we need to invert the result. */
979 invert = (GET_CODE (cmp1) == CONST_INT
980 ? p_info->invert_const : p_info->invert_reg);
981
982 if (p_invert != (int *)0)
983 {
984 *p_invert = invert;
985 invert = 0;
986 }
987
988 /* Comparison to constants, may involve adding 1 to change a LT into LE.
989 Comparison between two registers, may involve switching operands. */
990 if (GET_CODE (cmp1) == CONST_INT)
991 {
992 if (p_info->const_add != 0)
993 {
994 HOST_WIDE_INT new_const = INTVAL (cmp1) + p_info->const_add;
995
996 /* If modification of cmp1 caused overflow,
997 we would get the wrong answer if we follow the usual path;
998 thus, x > 0xffffffffU would turn into x > 0U. */
999 if ((p_info->unsignedp
1000 ? (unsigned HOST_WIDE_INT) new_const >
1001 (unsigned HOST_WIDE_INT) INTVAL (cmp1)
1002 : new_const > INTVAL (cmp1))
1003 != (p_info->const_add > 0))
1004 {
1005 /* This test is always true, but if INVERT is true then
1006 the result of the test needs to be inverted so 0 should
1007 be returned instead. */
1008 emit_move_insn (result, invert ? const0_rtx : const_true_rtx);
1009 return result;
1010 }
1011 else
1012 cmp1 = GEN_INT (new_const);
1013 }
1014 }
1015
1016 else if (p_info->reverse_regs)
1017 {
1018 rtx temp = cmp0;
1019 cmp0 = cmp1;
1020 cmp1 = temp;
1021 }
1022
1023 if (test == ITEST_NE && GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) == 0)
1024 reg = cmp0;
1025 else
1026 {
1027 reg = (invert || eqne_p) ? gen_reg_rtx (mode) : result;
1028 convert_move (reg, gen_rtx_fmt_ee (p_info->test_code, mode, cmp0, cmp1), 0);
1029 }
1030
1031 if (test == ITEST_NE)
1032 {
1033 convert_move (result, gen_rtx_GTU (mode, reg, const0_rtx), 0);
1034 if (p_invert != NULL)
1035 *p_invert = 0;
1036 invert = 0;
1037 }
1038
1039 else if (test == ITEST_EQ)
1040 {
1041 reg2 = invert ? gen_reg_rtx (mode) : result;
1042 convert_move (reg2, gen_rtx_LTU (mode, reg, const1_rtx), 0);
1043 reg = reg2;
1044 }
1045
1046 if (invert)
1047 {
1048 rtx one;
1049
1050 one = const1_rtx;
1051 convert_move (result, gen_rtx_XOR (mode, reg, one), 0);
1052 }
1053
1054 return result;
1055 }
1056 \f
1057 /* Emit the common code for doing conditional branches.
1058 operand[0] is the label to jump to.
1059 The comparison operands are saved away by cmp{si,di,sf,df}. */
1060
1061 void
1062 gen_conditional_branch (rtx operands[], machine_mode mode)
1063 {
1064 enum rtx_code test_code = GET_CODE (operands[0]);
1065 rtx cmp0 = operands[1];
1066 rtx cmp1 = operands[2];
1067 rtx reg;
1068 int invert;
1069 rtx label1, label2;
1070
1071 invert = 0;
1072 reg = gen_int_relational (test_code, NULL_RTX, cmp0, cmp1, &invert);
1073
1074 if (reg)
1075 {
1076 cmp0 = reg;
1077 cmp1 = const0_rtx;
1078 test_code = NE;
1079 }
1080 else if (GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) != 0)
1081 /* We don't want to build a comparison against a nonzero
1082 constant. */
1083 cmp1 = force_reg (mode, cmp1);
1084
1085 /* Generate the branch. */
1086 label1 = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
1087 label2 = pc_rtx;
1088
1089 if (invert)
1090 {
1091 label2 = label1;
1092 label1 = pc_rtx;
1093 }
1094
1095 emit_jump_insn (gen_rtx_SET (pc_rtx,
1096 gen_rtx_IF_THEN_ELSE (VOIDmode,
1097 gen_rtx_fmt_ee (test_code,
1098 VOIDmode,
1099 cmp0, cmp1),
1100 label1, label2)));
1101 }
1102 \f
1103 /* Initialize CUM for a function FNTYPE. */
1104
1105 void
1106 init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype,
1107 rtx libname ATTRIBUTE_UNUSED)
1108 {
1109 static CUMULATIVE_ARGS zero_cum;
1110 tree param;
1111 tree next_param;
1112
1113 if (TARGET_DEBUG_D_MODE)
1114 {
1115 fprintf (stderr,
1116 "\ninit_cumulative_args, fntype = 0x%.8lx", (long) fntype);
1117
1118 if (!fntype)
1119 fputc ('\n', stderr);
1120
1121 else
1122 {
1123 tree ret_type = TREE_TYPE (fntype);
1124
1125 fprintf (stderr, ", fntype code = %s, ret code = %s\n",
1126 get_tree_code_name (TREE_CODE (fntype)),
1127 get_tree_code_name (TREE_CODE (ret_type)));
1128 }
1129 }
1130
1131 *cum = zero_cum;
1132
1133 /* Determine if this function has variable arguments. This is
1134 indicated by the last argument being 'void_type_mode' if there
1135 are no variable arguments. The standard IQ2000 calling sequence
1136 passes all arguments in the general purpose registers in this case. */
1137
1138 for (param = fntype ? TYPE_ARG_TYPES (fntype) : 0;
1139 param != 0; param = next_param)
1140 {
1141 next_param = TREE_CHAIN (param);
1142 if (next_param == 0 && TREE_VALUE (param) != void_type_node)
1143 cum->gp_reg_found = 1;
1144 }
1145 }
1146
1147 /* Implement TARGET_FUNCTION_ARG_ADVANCE. */
1148
1149 static void
1150 iq2000_function_arg_advance (cumulative_args_t cum_v,
1151 const function_arg_info &arg)
1152 {
1153 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1154
1155 if (TARGET_DEBUG_D_MODE)
1156 {
1157 fprintf (stderr,
1158 "function_adv({gp reg found = %d, arg # = %2d, words = %2d}, %4s, ",
1159 cum->gp_reg_found, cum->arg_number, cum->arg_words,
1160 GET_MODE_NAME (arg.mode));
1161 fprintf (stderr, "%p", (const void *) arg.type);
1162 fprintf (stderr, ", %d )\n\n", arg.named);
1163 }
1164
1165 cum->arg_number++;
1166 switch (arg.mode)
1167 {
1168 case E_VOIDmode:
1169 break;
1170
1171 default:
1172 gcc_assert (GET_MODE_CLASS (arg.mode) == MODE_COMPLEX_INT
1173 || GET_MODE_CLASS (arg.mode) == MODE_COMPLEX_FLOAT);
1174
1175 cum->gp_reg_found = 1;
1176 cum->arg_words += ((GET_MODE_SIZE (arg.mode) + UNITS_PER_WORD - 1)
1177 / UNITS_PER_WORD);
1178 break;
1179
1180 case E_BLKmode:
1181 cum->gp_reg_found = 1;
1182 cum->arg_words += ((int_size_in_bytes (arg.type) + UNITS_PER_WORD - 1)
1183 / UNITS_PER_WORD);
1184 break;
1185
1186 case E_SFmode:
1187 cum->arg_words ++;
1188 if (! cum->gp_reg_found && cum->arg_number <= 2)
1189 cum->fp_code += 1 << ((cum->arg_number - 1) * 2);
1190 break;
1191
1192 case E_DFmode:
1193 cum->arg_words += 2;
1194 if (! cum->gp_reg_found && cum->arg_number <= 2)
1195 cum->fp_code += 2 << ((cum->arg_number - 1) * 2);
1196 break;
1197
1198 case E_DImode:
1199 cum->gp_reg_found = 1;
1200 cum->arg_words += 2;
1201 break;
1202
1203 case E_TImode:
1204 cum->gp_reg_found = 1;
1205 cum->arg_words += 4;
1206 break;
1207
1208 case E_QImode:
1209 case E_HImode:
1210 case E_SImode:
1211 cum->gp_reg_found = 1;
1212 cum->arg_words ++;
1213 break;
1214 }
1215 }
1216
1217 /* Return an RTL expression containing the register for argument ARG in CUM,
1218 or 0 if the argument is to be passed on the stack. */
1219
1220 static rtx
1221 iq2000_function_arg (cumulative_args_t cum_v, const function_arg_info &arg)
1222 {
1223 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1224 tree type = arg.type;
1225 machine_mode mode = arg.mode;
1226 rtx ret;
1227 int regbase = -1;
1228 int bias = 0;
1229 unsigned int *arg_words = &cum->arg_words;
1230 int struct_p = (type != 0
1231 && RECORD_OR_UNION_TYPE_P (type));
1232
1233 if (TARGET_DEBUG_D_MODE)
1234 {
1235 fprintf (stderr,
1236 "function_arg( {gp reg found = %d, arg # = %2d, words = %2d}, %4s, ",
1237 cum->gp_reg_found, cum->arg_number, cum->arg_words,
1238 GET_MODE_NAME (mode));
1239 fprintf (stderr, "%p", (const void *) type);
1240 fprintf (stderr, ", %d ) = ", arg.named);
1241 }
1242
1243
1244 cum->last_arg_fp = 0;
1245 switch (mode)
1246 {
1247 case E_SFmode:
1248 regbase = GP_ARG_FIRST;
1249 break;
1250
1251 case E_DFmode:
1252 cum->arg_words += cum->arg_words & 1;
1253
1254 regbase = GP_ARG_FIRST;
1255 break;
1256
1257 default:
1258 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT
1259 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
1260
1261 /* FALLTHRU */
1262 case E_BLKmode:
1263 if (type != NULL_TREE && TYPE_ALIGN (type) > (unsigned) BITS_PER_WORD)
1264 cum->arg_words += (cum->arg_words & 1);
1265 regbase = GP_ARG_FIRST;
1266 break;
1267
1268 case E_VOIDmode:
1269 case E_QImode:
1270 case E_HImode:
1271 case E_SImode:
1272 regbase = GP_ARG_FIRST;
1273 break;
1274
1275 case E_DImode:
1276 cum->arg_words += (cum->arg_words & 1);
1277 regbase = GP_ARG_FIRST;
1278 break;
1279
1280 case E_TImode:
1281 cum->arg_words += (cum->arg_words & 3);
1282 regbase = GP_ARG_FIRST;
1283 break;
1284 }
1285
1286 if (*arg_words >= (unsigned) MAX_ARGS_IN_REGISTERS)
1287 {
1288 if (TARGET_DEBUG_D_MODE)
1289 fprintf (stderr, "<stack>%s\n", struct_p ? ", [struct]" : "");
1290
1291 ret = 0;
1292 }
1293 else
1294 {
1295 gcc_assert (regbase != -1);
1296
1297 if (! type || TREE_CODE (type) != RECORD_TYPE
1298 || ! arg.named || ! TYPE_SIZE_UNIT (type)
1299 || ! tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
1300 ret = gen_rtx_REG (mode, regbase + *arg_words + bias);
1301 else
1302 {
1303 tree field;
1304
1305 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1306 if (TREE_CODE (field) == FIELD_DECL
1307 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (field))
1308 && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD
1309 && tree_fits_shwi_p (bit_position (field))
1310 && int_bit_position (field) % BITS_PER_WORD == 0)
1311 break;
1312
1313 /* If the whole struct fits a DFmode register,
1314 we don't need the PARALLEL. */
1315 if (! field || mode == DFmode)
1316 ret = gen_rtx_REG (mode, regbase + *arg_words + bias);
1317 else
1318 {
1319 unsigned int chunks;
1320 HOST_WIDE_INT bitpos;
1321 unsigned int regno;
1322 unsigned int i;
1323
1324 /* ??? If this is a packed structure, then the last hunk won't
1325 be 64 bits. */
1326 chunks
1327 = tree_to_uhwi (TYPE_SIZE_UNIT (type)) / UNITS_PER_WORD;
1328 if (chunks + *arg_words + bias > (unsigned) MAX_ARGS_IN_REGISTERS)
1329 chunks = MAX_ARGS_IN_REGISTERS - *arg_words - bias;
1330
1331 /* Assign_parms checks the mode of ENTRY_PARM, so we must
1332 use the actual mode here. */
1333 ret = gen_rtx_PARALLEL (mode, rtvec_alloc (chunks));
1334
1335 bitpos = 0;
1336 regno = regbase + *arg_words + bias;
1337 field = TYPE_FIELDS (type);
1338 for (i = 0; i < chunks; i++)
1339 {
1340 rtx reg;
1341
1342 for (; field; field = DECL_CHAIN (field))
1343 if (TREE_CODE (field) == FIELD_DECL
1344 && int_bit_position (field) >= bitpos)
1345 break;
1346
1347 if (field
1348 && int_bit_position (field) == bitpos
1349 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (field))
1350 && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD)
1351 reg = gen_rtx_REG (DFmode, regno++);
1352 else
1353 reg = gen_rtx_REG (word_mode, regno);
1354
1355 XVECEXP (ret, 0, i)
1356 = gen_rtx_EXPR_LIST (VOIDmode, reg,
1357 GEN_INT (bitpos / BITS_PER_UNIT));
1358
1359 bitpos += 64;
1360 regno++;
1361 }
1362 }
1363 }
1364
1365 if (TARGET_DEBUG_D_MODE)
1366 fprintf (stderr, "%s%s\n", reg_names[regbase + *arg_words + bias],
1367 struct_p ? ", [struct]" : "");
1368 }
1369
1370 /* We will be called with an end marker after the last argument
1371 has been seen. Whatever we return will be passed to the call
1372 insn. If we need any shifts for small structures, return them in
1373 a PARALLEL. */
1374 if (arg.end_marker_p ())
1375 {
1376 if (cum->num_adjusts > 0)
1377 ret = gen_rtx_PARALLEL ((machine_mode) cum->fp_code,
1378 gen_rtvec_v (cum->num_adjusts, cum->adjust));
1379 }
1380
1381 return ret;
1382 }
1383
1384 /* Implement TARGET_FUNCTION_ARG_PADDING. */
1385
1386 static pad_direction
1387 iq2000_function_arg_padding (machine_mode mode, const_tree type)
1388 {
1389 return (! BYTES_BIG_ENDIAN
1390 ? PAD_UPWARD
1391 : ((mode == BLKmode
1392 ? (type
1393 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
1394 && int_size_in_bytes (type) < (PARM_BOUNDARY / BITS_PER_UNIT))
1395 : (GET_MODE_BITSIZE (mode) < PARM_BOUNDARY
1396 && GET_MODE_CLASS (mode) == MODE_INT))
1397 ? PAD_DOWNWARD : PAD_UPWARD));
1398 }
1399
1400 static unsigned int
1401 iq2000_function_arg_boundary (machine_mode mode, const_tree type)
1402 {
1403 return (type != NULL_TREE
1404 ? (TYPE_ALIGN (type) <= PARM_BOUNDARY
1405 ? PARM_BOUNDARY
1406 : TYPE_ALIGN (type))
1407 : (GET_MODE_ALIGNMENT (mode) <= PARM_BOUNDARY
1408 ? PARM_BOUNDARY
1409 : GET_MODE_ALIGNMENT (mode)));
1410 }
1411
1412 static int
1413 iq2000_arg_partial_bytes (cumulative_args_t cum_v,
1414 const function_arg_info &arg)
1415 {
1416 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1417
1418 if (arg.mode == DImode && cum->arg_words == MAX_ARGS_IN_REGISTERS - 1)
1419 {
1420 if (TARGET_DEBUG_D_MODE)
1421 fprintf (stderr, "iq2000_arg_partial_bytes=%d\n", UNITS_PER_WORD);
1422 return UNITS_PER_WORD;
1423 }
1424
1425 return 0;
1426 }
1427 \f
1428 /* Implement va_start. */
1429
1430 static void
1431 iq2000_va_start (tree valist, rtx nextarg)
1432 {
1433 int int_arg_words;
1434 /* Find out how many non-float named formals. */
1435 int gpr_save_area_size;
1436 /* Note UNITS_PER_WORD is 4 bytes. */
1437 int_arg_words = crtl->args.info.arg_words;
1438
1439 if (int_arg_words < 8 )
1440 /* Adjust for the prologue's economy measure. */
1441 gpr_save_area_size = (8 - int_arg_words) * UNITS_PER_WORD;
1442 else
1443 gpr_save_area_size = 0;
1444
1445 /* Everything is in the GPR save area, or in the overflow
1446 area which is contiguous with it. */
1447 nextarg = plus_constant (Pmode, nextarg, - gpr_save_area_size);
1448 std_expand_builtin_va_start (valist, nextarg);
1449 }
1450 \f
1451 /* Allocate a chunk of memory for per-function machine-dependent data. */
1452
1453 static struct machine_function *
1454 iq2000_init_machine_status (void)
1455 {
1456 return ggc_cleared_alloc<machine_function> ();
1457 }
1458
1459 /* Detect any conflicts in the switches. */
1460
1461 static void
1462 iq2000_option_override (void)
1463 {
1464 target_flags &= ~MASK_GPOPT;
1465
1466 iq2000_isa = IQ2000_ISA_DEFAULT;
1467
1468 /* Identify the processor type. */
1469
1470 iq2000_print_operand_punct['?'] = 1;
1471 iq2000_print_operand_punct['#'] = 1;
1472 iq2000_print_operand_punct['&'] = 1;
1473 iq2000_print_operand_punct['!'] = 1;
1474 iq2000_print_operand_punct['*'] = 1;
1475 iq2000_print_operand_punct['@'] = 1;
1476 iq2000_print_operand_punct['.'] = 1;
1477 iq2000_print_operand_punct['('] = 1;
1478 iq2000_print_operand_punct[')'] = 1;
1479 iq2000_print_operand_punct['['] = 1;
1480 iq2000_print_operand_punct[']'] = 1;
1481 iq2000_print_operand_punct['<'] = 1;
1482 iq2000_print_operand_punct['>'] = 1;
1483 iq2000_print_operand_punct['{'] = 1;
1484 iq2000_print_operand_punct['}'] = 1;
1485 iq2000_print_operand_punct['^'] = 1;
1486 iq2000_print_operand_punct['$'] = 1;
1487 iq2000_print_operand_punct['+'] = 1;
1488 iq2000_print_operand_punct['~'] = 1;
1489
1490 /* Save GPR registers in word_mode sized hunks. word_mode hasn't been
1491 initialized yet, so we can't use that here. */
1492 gpr_mode = SImode;
1493
1494 /* Function to allocate machine-dependent function status. */
1495 init_machine_status = iq2000_init_machine_status;
1496 }
1497 \f
1498 /* The arg pointer (which is eliminated) points to the virtual frame pointer,
1499 while the frame pointer (which may be eliminated) points to the stack
1500 pointer after the initial adjustments. */
1501
1502 HOST_WIDE_INT
1503 iq2000_debugger_offset (rtx addr, HOST_WIDE_INT offset)
1504 {
1505 rtx offset2 = const0_rtx;
1506 rtx reg = eliminate_constant_term (addr, & offset2);
1507
1508 if (offset == 0)
1509 offset = INTVAL (offset2);
1510
1511 if (reg == stack_pointer_rtx || reg == frame_pointer_rtx
1512 || reg == hard_frame_pointer_rtx)
1513 {
1514 HOST_WIDE_INT frame_size = (!cfun->machine->initialized)
1515 ? compute_frame_size (get_frame_size ())
1516 : cfun->machine->total_size;
1517
1518 offset = offset - frame_size;
1519 }
1520
1521 return offset;
1522 }
1523 \f
1524 /* If defined, a C statement to be executed just prior to the output of
1525 assembler code for INSN, to modify the extracted operands so they will be
1526 output differently.
1527
1528 Here the argument OPVEC is the vector containing the operands extracted
1529 from INSN, and NOPERANDS is the number of elements of the vector which
1530 contain meaningful data for this insn. The contents of this vector are
1531 what will be used to convert the insn template into assembler code, so you
1532 can change the assembler output by changing the contents of the vector.
1533
1534 We use it to check if the current insn needs a nop in front of it because
1535 of load delays, and also to update the delay slot statistics. */
1536
1537 void
1538 final_prescan_insn (rtx_insn *insn, rtx opvec[] ATTRIBUTE_UNUSED,
1539 int noperands ATTRIBUTE_UNUSED)
1540 {
1541 if (dslots_number_nops > 0)
1542 {
1543 rtx pattern = PATTERN (insn);
1544 int length = get_attr_length (insn);
1545
1546 /* Do we need to emit a NOP? */
1547 if (length == 0
1548 || (iq2000_load_reg != 0 && reg_mentioned_p (iq2000_load_reg, pattern))
1549 || (iq2000_load_reg2 != 0 && reg_mentioned_p (iq2000_load_reg2, pattern))
1550 || (iq2000_load_reg3 != 0 && reg_mentioned_p (iq2000_load_reg3, pattern))
1551 || (iq2000_load_reg4 != 0
1552 && reg_mentioned_p (iq2000_load_reg4, pattern)))
1553 fputs ("\tnop\n", asm_out_file);
1554
1555 else
1556 dslots_load_filled ++;
1557
1558 while (--dslots_number_nops > 0)
1559 fputs ("\tnop\n", asm_out_file);
1560
1561 iq2000_load_reg = 0;
1562 iq2000_load_reg2 = 0;
1563 iq2000_load_reg3 = 0;
1564 iq2000_load_reg4 = 0;
1565 }
1566
1567 if ( (JUMP_P (insn)
1568 || CALL_P (insn)
1569 || (GET_CODE (PATTERN (insn)) == RETURN))
1570 && NEXT_INSN (PREV_INSN (insn)) == insn)
1571 {
1572 rtx_insn *nop_insn = emit_insn_after (gen_nop (), insn);
1573 INSN_ADDRESSES_NEW (nop_insn, -1);
1574 }
1575
1576 if (TARGET_STATS
1577 && (JUMP_P (insn) || CALL_P (insn)))
1578 dslots_jump_total ++;
1579 }
1580 \f
1581 /* Return the bytes needed to compute the frame pointer from the current
1582 stack pointer where SIZE is the # of var. bytes allocated.
1583
1584 IQ2000 stack frames look like:
1585
1586 Before call After call
1587 +-----------------------+ +-----------------------+
1588 high | | | |
1589 mem. | | | |
1590 | caller's temps. | | caller's temps. |
1591 | | | |
1592 +-----------------------+ +-----------------------+
1593 | | | |
1594 | arguments on stack. | | arguments on stack. |
1595 | | | |
1596 +-----------------------+ +-----------------------+
1597 | 4 words to save | | 4 words to save |
1598 | arguments passed | | arguments passed |
1599 | in registers, even | | in registers, even |
1600 SP->| if not passed. | VFP->| if not passed. |
1601 +-----------------------+ +-----------------------+
1602 | |
1603 | fp register save |
1604 | |
1605 +-----------------------+
1606 | |
1607 | gp register save |
1608 | |
1609 +-----------------------+
1610 | |
1611 | local variables |
1612 | |
1613 +-----------------------+
1614 | |
1615 | alloca allocations |
1616 | |
1617 +-----------------------+
1618 | |
1619 | GP save for V.4 abi |
1620 | |
1621 +-----------------------+
1622 | |
1623 | arguments on stack |
1624 | |
1625 +-----------------------+
1626 | 4 words to save |
1627 | arguments passed |
1628 | in registers, even |
1629 low SP->| if not passed. |
1630 memory +-----------------------+ */
1631
1632 HOST_WIDE_INT
1633 compute_frame_size (HOST_WIDE_INT size)
1634 {
1635 int regno;
1636 HOST_WIDE_INT total_size; /* # bytes that the entire frame takes up. */
1637 HOST_WIDE_INT var_size; /* # bytes that variables take up. */
1638 HOST_WIDE_INT args_size; /* # bytes that outgoing arguments take up. */
1639 HOST_WIDE_INT extra_size; /* # extra bytes. */
1640 HOST_WIDE_INT gp_reg_rounded; /* # bytes needed to store gp after rounding. */
1641 HOST_WIDE_INT gp_reg_size; /* # bytes needed to store gp regs. */
1642 HOST_WIDE_INT fp_reg_size; /* # bytes needed to store fp regs. */
1643 long mask; /* mask of saved gp registers. */
1644
1645 gp_reg_size = 0;
1646 fp_reg_size = 0;
1647 mask = 0;
1648 extra_size = IQ2000_STACK_ALIGN ((0));
1649 var_size = IQ2000_STACK_ALIGN (size);
1650 args_size = IQ2000_STACK_ALIGN (crtl->outgoing_args_size);
1651
1652 /* If a function dynamically allocates the stack and
1653 has 0 for STACK_DYNAMIC_OFFSET then allocate some stack space. */
1654 if (args_size == 0 && cfun->calls_alloca)
1655 args_size = 4 * UNITS_PER_WORD;
1656
1657 total_size = var_size + args_size + extra_size;
1658
1659 /* Calculate space needed for gp registers. */
1660 for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
1661 {
1662 if (MUST_SAVE_REGISTER (regno))
1663 {
1664 gp_reg_size += GET_MODE_SIZE (gpr_mode);
1665 mask |= 1L << (regno - GP_REG_FIRST);
1666 }
1667 }
1668
1669 /* We need to restore these for the handler. */
1670 if (crtl->calls_eh_return)
1671 {
1672 unsigned int i;
1673
1674 for (i = 0; ; ++i)
1675 {
1676 regno = EH_RETURN_DATA_REGNO (i);
1677 if (regno == (int) INVALID_REGNUM)
1678 break;
1679 gp_reg_size += GET_MODE_SIZE (gpr_mode);
1680 mask |= 1L << (regno - GP_REG_FIRST);
1681 }
1682 }
1683
1684 gp_reg_rounded = IQ2000_STACK_ALIGN (gp_reg_size);
1685 total_size += gp_reg_rounded + IQ2000_STACK_ALIGN (fp_reg_size);
1686
1687 /* The gp reg is caller saved, so there is no need for leaf routines
1688 (total_size == extra_size) to save the gp reg. */
1689 if (total_size == extra_size
1690 && ! profile_flag)
1691 total_size = extra_size = 0;
1692
1693 total_size += IQ2000_STACK_ALIGN (crtl->args.pretend_args_size);
1694
1695 /* Save other computed information. */
1696 cfun->machine->total_size = total_size;
1697 cfun->machine->var_size = var_size;
1698 cfun->machine->args_size = args_size;
1699 cfun->machine->extra_size = extra_size;
1700 cfun->machine->gp_reg_size = gp_reg_size;
1701 cfun->machine->fp_reg_size = fp_reg_size;
1702 cfun->machine->mask = mask;
1703 cfun->machine->initialized = reload_completed;
1704 cfun->machine->num_gp = gp_reg_size / UNITS_PER_WORD;
1705
1706 if (mask)
1707 {
1708 unsigned long offset;
1709
1710 offset = (args_size + extra_size + var_size
1711 + gp_reg_size - GET_MODE_SIZE (gpr_mode));
1712
1713 cfun->machine->gp_sp_offset = offset;
1714 cfun->machine->gp_save_offset = offset - total_size;
1715 }
1716 else
1717 {
1718 cfun->machine->gp_sp_offset = 0;
1719 cfun->machine->gp_save_offset = 0;
1720 }
1721
1722 cfun->machine->fp_sp_offset = 0;
1723 cfun->machine->fp_save_offset = 0;
1724
1725 /* Ok, we're done. */
1726 return total_size;
1727 }
1728 \f
1729
1730 /* We can always eliminate to the frame pointer. We can eliminate to the
1731 stack pointer unless a frame pointer is needed. */
1732
1733 bool
1734 iq2000_can_eliminate (const int from, const int to)
1735 {
1736 return (from == RETURN_ADDRESS_POINTER_REGNUM
1737 && (! leaf_function_p ()
1738 || (to == GP_REG_FIRST + 31 && leaf_function_p ())))
1739 || (from != RETURN_ADDRESS_POINTER_REGNUM
1740 && (to == HARD_FRAME_POINTER_REGNUM
1741 || (to == STACK_POINTER_REGNUM
1742 && ! frame_pointer_needed)));
1743 }
1744
1745 /* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame
1746 pointer, argument pointer, or return address pointer. TO is either
1747 the stack pointer or hard frame pointer. */
1748
1749 int
1750 iq2000_initial_elimination_offset (int from, int to ATTRIBUTE_UNUSED)
1751 {
1752 int offset;
1753
1754 compute_frame_size (get_frame_size ());
1755 if ((from) == FRAME_POINTER_REGNUM)
1756 (offset) = 0;
1757 else if ((from) == ARG_POINTER_REGNUM)
1758 (offset) = (cfun->machine->total_size);
1759 else if ((from) == RETURN_ADDRESS_POINTER_REGNUM)
1760 {
1761 if (leaf_function_p ())
1762 (offset) = 0;
1763 else (offset) = cfun->machine->gp_sp_offset
1764 + ((UNITS_PER_WORD - (POINTER_SIZE / BITS_PER_UNIT))
1765 * (BYTES_BIG_ENDIAN != 0));
1766 }
1767 else
1768 gcc_unreachable ();
1769
1770 return offset;
1771 }
1772 \f
1773 /* Common code to emit the insns (or to write the instructions to a file)
1774 to save/restore registers.
1775 Other parts of the code assume that IQ2000_TEMP1_REGNUM (aka large_reg)
1776 is not modified within save_restore_insns. */
1777
1778 #define BITSET_P(VALUE,BIT) (((VALUE) & (1L << (BIT))) != 0)
1779
1780 /* Emit instructions to load the value (SP + OFFSET) into IQ2000_TEMP2_REGNUM
1781 and return an rtl expression for the register. Write the assembly
1782 instructions directly to FILE if it is not null, otherwise emit them as
1783 rtl.
1784
1785 This function is a subroutine of save_restore_insns. It is used when
1786 OFFSET is too large to add in a single instruction. */
1787
1788 static rtx
1789 iq2000_add_large_offset_to_sp (HOST_WIDE_INT offset)
1790 {
1791 rtx reg = gen_rtx_REG (Pmode, IQ2000_TEMP2_REGNUM);
1792 rtx offset_rtx = GEN_INT (offset);
1793
1794 emit_move_insn (reg, offset_rtx);
1795 emit_insn (gen_addsi3 (reg, reg, stack_pointer_rtx));
1796 return reg;
1797 }
1798
1799 /* Make INSN frame related and note that it performs the frame-related
1800 operation DWARF_PATTERN. */
1801
1802 static void
1803 iq2000_annotate_frame_insn (rtx_insn *insn, rtx dwarf_pattern)
1804 {
1805 RTX_FRAME_RELATED_P (insn) = 1;
1806 REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
1807 dwarf_pattern,
1808 REG_NOTES (insn));
1809 }
1810
1811 /* Emit a move instruction that stores REG in MEM. Make the instruction
1812 frame related and note that it stores REG at (SP + OFFSET). */
1813
1814 static void
1815 iq2000_emit_frame_related_store (rtx mem, rtx reg, HOST_WIDE_INT offset)
1816 {
1817 rtx dwarf_address = plus_constant (Pmode, stack_pointer_rtx, offset);
1818 rtx dwarf_mem = gen_rtx_MEM (GET_MODE (reg), dwarf_address);
1819
1820 iq2000_annotate_frame_insn (emit_move_insn (mem, reg),
1821 gen_rtx_SET (dwarf_mem, reg));
1822 }
1823
1824 /* Emit instructions to save/restore registers, as determined by STORE_P. */
1825
1826 static void
1827 save_restore_insns (int store_p)
1828 {
1829 long mask = cfun->machine->mask;
1830 int regno;
1831 rtx base_reg_rtx;
1832 HOST_WIDE_INT base_offset;
1833 HOST_WIDE_INT gp_offset;
1834 HOST_WIDE_INT end_offset;
1835
1836 gcc_assert (!frame_pointer_needed
1837 || BITSET_P (mask, HARD_FRAME_POINTER_REGNUM - GP_REG_FIRST));
1838
1839 if (mask == 0)
1840 {
1841 base_reg_rtx = 0, base_offset = 0;
1842 return;
1843 }
1844
1845 /* Save registers starting from high to low. The debuggers prefer at least
1846 the return register be stored at func+4, and also it allows us not to
1847 need a nop in the epilog if at least one register is reloaded in
1848 addition to return address. */
1849
1850 /* Save GP registers if needed. */
1851 /* Pick which pointer to use as a base register. For small frames, just
1852 use the stack pointer. Otherwise, use a temporary register. Save 2
1853 cycles if the save area is near the end of a large frame, by reusing
1854 the constant created in the prologue/epilogue to adjust the stack
1855 frame. */
1856
1857 gp_offset = cfun->machine->gp_sp_offset;
1858 end_offset
1859 = gp_offset - (cfun->machine->gp_reg_size
1860 - GET_MODE_SIZE (gpr_mode));
1861
1862 if (gp_offset < 0 || end_offset < 0)
1863 internal_error
1864 ("%<gp_offset%> (%ld) or %<end_offset%> (%ld) is less than zero",
1865 (long) gp_offset, (long) end_offset);
1866
1867 else if (gp_offset < 32768)
1868 base_reg_rtx = stack_pointer_rtx, base_offset = 0;
1869 else
1870 {
1871 int regno;
1872 int reg_save_count = 0;
1873
1874 for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
1875 if (BITSET_P (mask, regno - GP_REG_FIRST)) reg_save_count += 1;
1876 base_offset = gp_offset - ((reg_save_count - 1) * 4);
1877 base_reg_rtx = iq2000_add_large_offset_to_sp (base_offset);
1878 }
1879
1880 for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
1881 {
1882 if (BITSET_P (mask, regno - GP_REG_FIRST))
1883 {
1884 rtx reg_rtx;
1885 rtx mem_rtx
1886 = gen_rtx_MEM (gpr_mode,
1887 gen_rtx_PLUS (Pmode, base_reg_rtx,
1888 GEN_INT (gp_offset - base_offset)));
1889
1890 reg_rtx = gen_rtx_REG (gpr_mode, regno);
1891
1892 if (store_p)
1893 iq2000_emit_frame_related_store (mem_rtx, reg_rtx, gp_offset);
1894 else
1895 {
1896 emit_move_insn (reg_rtx, mem_rtx);
1897 }
1898 gp_offset -= GET_MODE_SIZE (gpr_mode);
1899 }
1900 }
1901 }
1902 \f
1903 /* Expand the prologue into a bunch of separate insns. */
1904
1905 void
1906 iq2000_expand_prologue (void)
1907 {
1908 int regno;
1909 HOST_WIDE_INT tsize;
1910 int last_arg_is_vararg_marker = 0;
1911 tree fndecl = current_function_decl;
1912 tree fntype = TREE_TYPE (fndecl);
1913 tree fnargs = DECL_ARGUMENTS (fndecl);
1914 rtx next_arg_reg;
1915 int i;
1916 tree next_arg;
1917 tree cur_arg;
1918 CUMULATIVE_ARGS args_so_far_v;
1919 cumulative_args_t args_so_far;
1920 int store_args_on_stack = (iq2000_can_use_return_insn ());
1921
1922 /* If struct value address is treated as the first argument. */
1923 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
1924 && !cfun->returns_pcc_struct
1925 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
1926 {
1927 tree type = build_pointer_type (fntype);
1928 tree function_result_decl = build_decl (BUILTINS_LOCATION,
1929 PARM_DECL, NULL_TREE, type);
1930
1931 DECL_ARG_TYPE (function_result_decl) = type;
1932 DECL_CHAIN (function_result_decl) = fnargs;
1933 fnargs = function_result_decl;
1934 }
1935
1936 /* For arguments passed in registers, find the register number
1937 of the first argument in the variable part of the argument list,
1938 otherwise GP_ARG_LAST+1. Note also if the last argument is
1939 the varargs special argument, and treat it as part of the
1940 variable arguments.
1941
1942 This is only needed if store_args_on_stack is true. */
1943 INIT_CUMULATIVE_ARGS (args_so_far_v, fntype, NULL_RTX, 0, 0);
1944 args_so_far = pack_cumulative_args (&args_so_far_v);
1945 regno = GP_ARG_FIRST;
1946
1947 for (cur_arg = fnargs; cur_arg != 0; cur_arg = next_arg)
1948 {
1949 tree passed_type = DECL_ARG_TYPE (cur_arg);
1950 machine_mode passed_mode = TYPE_MODE (passed_type);
1951 rtx entry_parm;
1952
1953 if (TREE_ADDRESSABLE (passed_type))
1954 {
1955 passed_type = build_pointer_type (passed_type);
1956 passed_mode = Pmode;
1957 }
1958
1959 function_arg_info arg (passed_type, passed_mode, /*named=*/true);
1960 entry_parm = iq2000_function_arg (args_so_far, arg);
1961
1962 iq2000_function_arg_advance (args_so_far, arg);
1963 next_arg = DECL_CHAIN (cur_arg);
1964
1965 if (entry_parm && store_args_on_stack)
1966 {
1967 if (next_arg == 0
1968 && DECL_NAME (cur_arg)
1969 && (strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)),
1970 "__builtin_va_alist") == 0
1971 || strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)),
1972 "va_alist") == 0))
1973 {
1974 last_arg_is_vararg_marker = 1;
1975 break;
1976 }
1977 else
1978 {
1979 int words;
1980
1981 gcc_assert (GET_CODE (entry_parm) == REG);
1982
1983 /* Passed in a register, so will get homed automatically. */
1984 if (GET_MODE (entry_parm) == BLKmode)
1985 words = (int_size_in_bytes (passed_type) + 3) / 4;
1986 else
1987 words = (GET_MODE_SIZE (GET_MODE (entry_parm)) + 3) / 4;
1988
1989 regno = REGNO (entry_parm) + words - 1;
1990 }
1991 }
1992 else
1993 {
1994 regno = GP_ARG_LAST+1;
1995 break;
1996 }
1997 }
1998
1999 /* In order to pass small structures by value in registers we need to
2000 shift the value into the high part of the register.
2001 iq2000_unction_arg has encoded a PARALLEL rtx, holding a vector of
2002 adjustments to be made as the next_arg_reg variable, so we split up
2003 the insns, and emit them separately. */
2004 next_arg_reg = iq2000_function_arg (args_so_far,
2005 function_arg_info::end_marker ());
2006 if (next_arg_reg != 0 && GET_CODE (next_arg_reg) == PARALLEL)
2007 {
2008 rtvec adjust = XVEC (next_arg_reg, 0);
2009 int num = GET_NUM_ELEM (adjust);
2010
2011 for (i = 0; i < num; i++)
2012 {
2013 rtx pattern;
2014
2015 pattern = RTVEC_ELT (adjust, i);
2016 if (GET_CODE (pattern) != SET
2017 || GET_CODE (SET_SRC (pattern)) != ASHIFT)
2018 abort_with_insn (pattern, "Insn is not a shift");
2019 PUT_CODE (SET_SRC (pattern), ASHIFTRT);
2020
2021 emit_insn (pattern);
2022 }
2023 }
2024
2025 tsize = compute_frame_size (get_frame_size ());
2026
2027 /* If this function is a varargs function, store any registers that
2028 would normally hold arguments ($4 - $7) on the stack. */
2029 if (store_args_on_stack
2030 && (stdarg_p (fntype)
2031 || last_arg_is_vararg_marker))
2032 {
2033 int offset = (regno - GP_ARG_FIRST) * UNITS_PER_WORD;
2034 rtx ptr = stack_pointer_rtx;
2035
2036 for (; regno <= GP_ARG_LAST; regno++)
2037 {
2038 if (offset != 0)
2039 ptr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
2040 emit_move_insn (gen_rtx_MEM (gpr_mode, ptr),
2041 gen_rtx_REG (gpr_mode, regno));
2042
2043 offset += GET_MODE_SIZE (gpr_mode);
2044 }
2045 }
2046
2047 if (tsize > 0)
2048 {
2049 rtx tsize_rtx = GEN_INT (tsize);
2050 rtx adjustment_rtx, dwarf_pattern;
2051 rtx_insn *insn;
2052
2053 if (tsize > 32767)
2054 {
2055 adjustment_rtx = gen_rtx_REG (Pmode, IQ2000_TEMP1_REGNUM);
2056 emit_move_insn (adjustment_rtx, tsize_rtx);
2057 }
2058 else
2059 adjustment_rtx = tsize_rtx;
2060
2061 insn = emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx,
2062 adjustment_rtx));
2063
2064 dwarf_pattern = gen_rtx_SET (stack_pointer_rtx,
2065 plus_constant (Pmode, stack_pointer_rtx,
2066 -tsize));
2067
2068 iq2000_annotate_frame_insn (insn, dwarf_pattern);
2069
2070 save_restore_insns (1);
2071
2072 if (frame_pointer_needed)
2073 {
2074 rtx_insn *insn = 0;
2075
2076 insn = emit_insn (gen_movsi (hard_frame_pointer_rtx,
2077 stack_pointer_rtx));
2078
2079 if (insn)
2080 RTX_FRAME_RELATED_P (insn) = 1;
2081 }
2082 }
2083
2084 if (flag_stack_usage_info)
2085 current_function_static_stack_size = cfun->machine->total_size;
2086
2087 emit_insn (gen_blockage ());
2088 }
2089 \f
2090 /* Expand the epilogue into a bunch of separate insns. */
2091
2092 void
2093 iq2000_expand_epilogue (void)
2094 {
2095 HOST_WIDE_INT tsize = cfun->machine->total_size;
2096 rtx tsize_rtx = GEN_INT (tsize);
2097 rtx tmp_rtx = (rtx)0;
2098
2099 if (iq2000_can_use_return_insn ())
2100 {
2101 emit_jump_insn (gen_return ());
2102 return;
2103 }
2104
2105 if (tsize > 32767)
2106 {
2107 tmp_rtx = gen_rtx_REG (Pmode, IQ2000_TEMP1_REGNUM);
2108 emit_move_insn (tmp_rtx, tsize_rtx);
2109 tsize_rtx = tmp_rtx;
2110 }
2111
2112 if (tsize > 0)
2113 {
2114 if (frame_pointer_needed)
2115 {
2116 emit_insn (gen_blockage ());
2117
2118 emit_insn (gen_movsi (stack_pointer_rtx, hard_frame_pointer_rtx));
2119 }
2120
2121 save_restore_insns (0);
2122
2123 if (crtl->calls_eh_return)
2124 {
2125 rtx eh_ofs = EH_RETURN_STACKADJ_RTX;
2126 emit_insn (gen_addsi3 (eh_ofs, eh_ofs, tsize_rtx));
2127 tsize_rtx = eh_ofs;
2128 }
2129
2130 emit_insn (gen_blockage ());
2131
2132 if (tsize != 0 || crtl->calls_eh_return)
2133 {
2134 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
2135 tsize_rtx));
2136 }
2137 }
2138
2139 if (crtl->calls_eh_return)
2140 {
2141 /* Perform the additional bump for __throw. */
2142 emit_move_insn (gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
2143 stack_pointer_rtx);
2144 emit_use (gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM));
2145 emit_jump_insn (gen_eh_return_internal ());
2146 }
2147 else
2148 emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode,
2149 GP_REG_FIRST + 31)));
2150 }
2151
2152 void
2153 iq2000_expand_eh_return (rtx address)
2154 {
2155 HOST_WIDE_INT gp_offset = cfun->machine->gp_sp_offset;
2156 rtx scratch;
2157
2158 scratch = plus_constant (Pmode, stack_pointer_rtx, gp_offset);
2159 emit_move_insn (gen_rtx_MEM (GET_MODE (address), scratch), address);
2160 }
2161 \f
2162 /* Return nonzero if this function is known to have a null epilogue.
2163 This allows the optimizer to omit jumps to jumps if no stack
2164 was created. */
2165
2166 int
2167 iq2000_can_use_return_insn (void)
2168 {
2169 if (! reload_completed)
2170 return 0;
2171
2172 if (df_regs_ever_live_p (31) || profile_flag)
2173 return 0;
2174
2175 if (cfun->machine->initialized)
2176 return cfun->machine->total_size == 0;
2177
2178 return compute_frame_size (get_frame_size ()) == 0;
2179 }
2180 \f
2181 /* Choose the section to use for the constant rtx expression X that has
2182 mode MODE. */
2183
2184 static section *
2185 iq2000_select_rtx_section (machine_mode mode, rtx x ATTRIBUTE_UNUSED,
2186 unsigned HOST_WIDE_INT align)
2187 {
2188 /* For embedded applications, always put constants in read-only data,
2189 in order to reduce RAM usage. */
2190 return mergeable_constant_section (mode, align, 0);
2191 }
2192
2193 /* Return register to use for a function return value with VALTYPE for function
2194 FUNC. */
2195
2196 static rtx
2197 iq2000_function_value (const_tree valtype,
2198 const_tree fn_decl_or_type,
2199 bool outgoing ATTRIBUTE_UNUSED)
2200 {
2201 int reg = GP_RETURN;
2202 machine_mode mode = TYPE_MODE (valtype);
2203 int unsignedp = TYPE_UNSIGNED (valtype);
2204 const_tree func = fn_decl_or_type;
2205
2206 if (fn_decl_or_type
2207 && !DECL_P (fn_decl_or_type))
2208 fn_decl_or_type = NULL;
2209
2210 /* Since we promote return types, we must promote the mode here too. */
2211 mode = promote_function_mode (valtype, mode, &unsignedp, func, 1);
2212
2213 return gen_rtx_REG (mode, reg);
2214 }
2215
2216 /* Worker function for TARGET_LIBCALL_VALUE. */
2217
2218 static rtx
2219 iq2000_libcall_value (machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
2220 {
2221 return gen_rtx_REG (((GET_MODE_CLASS (mode) != MODE_INT
2222 || GET_MODE_SIZE (mode) >= 4)
2223 ? mode : SImode),
2224 GP_RETURN);
2225 }
2226
2227 /* Worker function for FUNCTION_VALUE_REGNO_P.
2228
2229 On the IQ2000, R2 and R3 are the only register thus used. */
2230
2231 bool
2232 iq2000_function_value_regno_p (const unsigned int regno)
2233 {
2234 return (regno == GP_RETURN);
2235 }
2236
2237 \f
2238 /* Return true when an argument must be passed by reference. */
2239
2240 static bool
2241 iq2000_pass_by_reference (cumulative_args_t cum_v,
2242 const function_arg_info &arg)
2243 {
2244 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
2245 int size;
2246
2247 /* We must pass by reference if we would be both passing in registers
2248 and the stack. This is because any subsequent partial arg would be
2249 handled incorrectly in this case. */
2250 if (cum && targetm.calls.must_pass_in_stack (arg))
2251 {
2252 /* Don't pass the actual CUM to FUNCTION_ARG, because we would
2253 get double copies of any offsets generated for small structs
2254 passed in registers. */
2255 CUMULATIVE_ARGS temp;
2256
2257 temp = *cum;
2258 if (iq2000_function_arg (pack_cumulative_args (&temp), arg) != 0)
2259 return 1;
2260 }
2261
2262 if (arg.type == NULL_TREE || arg.mode == DImode || arg.mode == DFmode)
2263 return 0;
2264
2265 size = int_size_in_bytes (arg.type);
2266 return size == -1 || size > UNITS_PER_WORD;
2267 }
2268
2269 /* Return the length of INSN. LENGTH is the initial length computed by
2270 attributes in the machine-description file. */
2271
2272 int
2273 iq2000_adjust_insn_length (rtx_insn *insn, int length)
2274 {
2275 /* A unconditional jump has an unfilled delay slot if it is not part
2276 of a sequence. A conditional jump normally has a delay slot. */
2277 if (simplejump_p (insn)
2278 || ( (JUMP_P (insn)
2279 || CALL_P (insn))))
2280 length += 4;
2281
2282 return length;
2283 }
2284
2285 /* Output assembly instructions to perform a conditional branch.
2286
2287 INSN is the branch instruction. OPERANDS[0] is the condition.
2288 OPERANDS[1] is the target of the branch. OPERANDS[2] is the target
2289 of the first operand to the condition. If TWO_OPERANDS_P is
2290 nonzero the comparison takes two operands; OPERANDS[3] will be the
2291 second operand.
2292
2293 If INVERTED_P is nonzero we are to branch if the condition does
2294 not hold. If FLOAT_P is nonzero this is a floating-point comparison.
2295
2296 LENGTH is the length (in bytes) of the sequence we are to generate.
2297 That tells us whether to generate a simple conditional branch, or a
2298 reversed conditional branch around a `jr' instruction. */
2299
2300 char *
2301 iq2000_output_conditional_branch (rtx_insn *insn, rtx * operands,
2302 int two_operands_p, int float_p,
2303 int inverted_p, int length)
2304 {
2305 static char buffer[200];
2306 /* The kind of comparison we are doing. */
2307 enum rtx_code code = GET_CODE (operands[0]);
2308 /* Nonzero if the opcode for the comparison needs a `z' indicating
2309 that it is a comparison against zero. */
2310 int need_z_p;
2311 /* A string to use in the assembly output to represent the first
2312 operand. */
2313 const char *op1 = "%z2";
2314 /* A string to use in the assembly output to represent the second
2315 operand. Use the hard-wired zero register if there's no second
2316 operand. */
2317 const char *op2 = (two_operands_p ? ",%z3" : ",%.");
2318 /* The operand-printing string for the comparison. */
2319 const char *comp = (float_p ? "%F0" : "%C0");
2320 /* The operand-printing string for the inverted comparison. */
2321 const char *inverted_comp = (float_p ? "%W0" : "%N0");
2322
2323 /* Likely variants of each branch instruction annul the instruction
2324 in the delay slot if the branch is not taken. */
2325 iq2000_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn));
2326
2327 if (!two_operands_p)
2328 {
2329 /* To compute whether than A > B, for example, we normally
2330 subtract B from A and then look at the sign bit. But, if we
2331 are doing an unsigned comparison, and B is zero, we don't
2332 have to do the subtraction. Instead, we can just check to
2333 see if A is nonzero. Thus, we change the CODE here to
2334 reflect the simpler comparison operation. */
2335 switch (code)
2336 {
2337 case GTU:
2338 code = NE;
2339 break;
2340
2341 case LEU:
2342 code = EQ;
2343 break;
2344
2345 case GEU:
2346 /* A condition which will always be true. */
2347 code = EQ;
2348 op1 = "%.";
2349 break;
2350
2351 case LTU:
2352 /* A condition which will always be false. */
2353 code = NE;
2354 op1 = "%.";
2355 break;
2356
2357 default:
2358 /* Not a special case. */
2359 break;
2360 }
2361 }
2362
2363 /* Relative comparisons are always done against zero. But
2364 equality comparisons are done between two operands, and therefore
2365 do not require a `z' in the assembly language output. */
2366 need_z_p = (!float_p && code != EQ && code != NE);
2367 /* For comparisons against zero, the zero is not provided
2368 explicitly. */
2369 if (need_z_p)
2370 op2 = "";
2371
2372 /* Begin by terminating the buffer. That way we can always use
2373 strcat to add to it. */
2374 buffer[0] = '\0';
2375
2376 switch (length)
2377 {
2378 case 4:
2379 case 8:
2380 /* Just a simple conditional branch. */
2381 if (float_p)
2382 sprintf (buffer, "b%s%%?\t%%Z2%%1",
2383 inverted_p ? inverted_comp : comp);
2384 else
2385 sprintf (buffer, "b%s%s%%?\t%s%s,%%1",
2386 inverted_p ? inverted_comp : comp,
2387 need_z_p ? "z" : "",
2388 op1,
2389 op2);
2390 return buffer;
2391
2392 case 12:
2393 case 16:
2394 {
2395 /* Generate a reversed conditional branch around ` j'
2396 instruction:
2397
2398 .set noreorder
2399 .set nomacro
2400 bc l
2401 nop
2402 j target
2403 .set macro
2404 .set reorder
2405 l:
2406
2407 Because we have to jump four bytes *past* the following
2408 instruction if this branch was annulled, we can't just use
2409 a label, as in the picture above; there's no way to put the
2410 label after the next instruction, as the assembler does not
2411 accept `.L+4' as the target of a branch. (We can't just
2412 wait until the next instruction is output; it might be a
2413 macro and take up more than four bytes. Once again, we see
2414 why we want to eliminate macros.)
2415
2416 If the branch is annulled, we jump four more bytes that we
2417 would otherwise; that way we skip the annulled instruction
2418 in the delay slot. */
2419
2420 const char *target
2421 = ((iq2000_branch_likely || length == 16) ? ".+16" : ".+12");
2422 char *c;
2423
2424 c = strchr (buffer, '\0');
2425 /* Generate the reversed comparison. This takes four
2426 bytes. */
2427 if (float_p)
2428 sprintf (c, "b%s\t%%Z2%s",
2429 inverted_p ? comp : inverted_comp,
2430 target);
2431 else
2432 sprintf (c, "b%s%s\t%s%s,%s",
2433 inverted_p ? comp : inverted_comp,
2434 need_z_p ? "z" : "",
2435 op1,
2436 op2,
2437 target);
2438 strcat (c, "\n\tnop\n\tj\t%1");
2439 if (length == 16)
2440 /* The delay slot was unfilled. Since we're inside
2441 .noreorder, the assembler will not fill in the NOP for
2442 us, so we must do it ourselves. */
2443 strcat (buffer, "\n\tnop");
2444 return buffer;
2445 }
2446
2447 default:
2448 gcc_unreachable ();
2449 }
2450
2451 /* NOTREACHED */
2452 return 0;
2453 }
2454
2455 #define def_builtin(NAME, TYPE, CODE) \
2456 add_builtin_function ((NAME), (TYPE), (CODE), BUILT_IN_MD, \
2457 NULL, NULL_TREE)
2458
2459 static void
2460 iq2000_init_builtins (void)
2461 {
2462 tree void_ftype, void_ftype_int, void_ftype_int_int;
2463 tree void_ftype_int_int_int;
2464 tree int_ftype_int, int_ftype_int_int, int_ftype_int_int_int;
2465 tree int_ftype_int_int_int_int;
2466
2467 /* func () */
2468 void_ftype
2469 = build_function_type_list (void_type_node, NULL_TREE);
2470
2471 /* func (int) */
2472 void_ftype_int
2473 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2474
2475 /* void func (int, int) */
2476 void_ftype_int_int
2477 = build_function_type_list (void_type_node,
2478 integer_type_node,
2479 integer_type_node,
2480 NULL_TREE);
2481
2482 /* int func (int) */
2483 int_ftype_int
2484 = build_function_type_list (integer_type_node,
2485 integer_type_node, NULL_TREE);
2486
2487 /* int func (int, int) */
2488 int_ftype_int_int
2489 = build_function_type_list (integer_type_node,
2490 integer_type_node,
2491 integer_type_node,
2492 NULL_TREE);
2493
2494 /* void func (int, int, int) */
2495 void_ftype_int_int_int
2496 = build_function_type_list (void_type_node,
2497 integer_type_node,
2498 integer_type_node,
2499 integer_type_node,
2500 NULL_TREE);
2501
2502 /* int func (int, int, int) */
2503 int_ftype_int_int_int
2504 = build_function_type_list (integer_type_node,
2505 integer_type_node,
2506 integer_type_node,
2507 integer_type_node,
2508 NULL_TREE);
2509
2510 /* int func (int, int, int, int) */
2511 int_ftype_int_int_int_int
2512 = build_function_type_list (integer_type_node,
2513 integer_type_node,
2514 integer_type_node,
2515 integer_type_node,
2516 integer_type_node,
2517 NULL_TREE);
2518
2519 def_builtin ("__builtin_ado16", int_ftype_int_int, IQ2000_BUILTIN_ADO16);
2520 def_builtin ("__builtin_ram", int_ftype_int_int_int_int, IQ2000_BUILTIN_RAM);
2521 def_builtin ("__builtin_chkhdr", void_ftype_int_int, IQ2000_BUILTIN_CHKHDR);
2522 def_builtin ("__builtin_pkrl", void_ftype_int_int, IQ2000_BUILTIN_PKRL);
2523 def_builtin ("__builtin_cfc0", int_ftype_int, IQ2000_BUILTIN_CFC0);
2524 def_builtin ("__builtin_cfc1", int_ftype_int, IQ2000_BUILTIN_CFC1);
2525 def_builtin ("__builtin_cfc2", int_ftype_int, IQ2000_BUILTIN_CFC2);
2526 def_builtin ("__builtin_cfc3", int_ftype_int, IQ2000_BUILTIN_CFC3);
2527 def_builtin ("__builtin_ctc0", void_ftype_int_int, IQ2000_BUILTIN_CTC0);
2528 def_builtin ("__builtin_ctc1", void_ftype_int_int, IQ2000_BUILTIN_CTC1);
2529 def_builtin ("__builtin_ctc2", void_ftype_int_int, IQ2000_BUILTIN_CTC2);
2530 def_builtin ("__builtin_ctc3", void_ftype_int_int, IQ2000_BUILTIN_CTC3);
2531 def_builtin ("__builtin_mfc0", int_ftype_int, IQ2000_BUILTIN_MFC0);
2532 def_builtin ("__builtin_mfc1", int_ftype_int, IQ2000_BUILTIN_MFC1);
2533 def_builtin ("__builtin_mfc2", int_ftype_int, IQ2000_BUILTIN_MFC2);
2534 def_builtin ("__builtin_mfc3", int_ftype_int, IQ2000_BUILTIN_MFC3);
2535 def_builtin ("__builtin_mtc0", void_ftype_int_int, IQ2000_BUILTIN_MTC0);
2536 def_builtin ("__builtin_mtc1", void_ftype_int_int, IQ2000_BUILTIN_MTC1);
2537 def_builtin ("__builtin_mtc2", void_ftype_int_int, IQ2000_BUILTIN_MTC2);
2538 def_builtin ("__builtin_mtc3", void_ftype_int_int, IQ2000_BUILTIN_MTC3);
2539 def_builtin ("__builtin_lur", void_ftype_int_int, IQ2000_BUILTIN_LUR);
2540 def_builtin ("__builtin_rb", void_ftype_int_int, IQ2000_BUILTIN_RB);
2541 def_builtin ("__builtin_rx", void_ftype_int_int, IQ2000_BUILTIN_RX);
2542 def_builtin ("__builtin_srrd", void_ftype_int, IQ2000_BUILTIN_SRRD);
2543 def_builtin ("__builtin_srwr", void_ftype_int_int, IQ2000_BUILTIN_SRWR);
2544 def_builtin ("__builtin_wb", void_ftype_int_int, IQ2000_BUILTIN_WB);
2545 def_builtin ("__builtin_wx", void_ftype_int_int, IQ2000_BUILTIN_WX);
2546 def_builtin ("__builtin_luc32l", void_ftype_int_int, IQ2000_BUILTIN_LUC32L);
2547 def_builtin ("__builtin_luc64", void_ftype_int_int, IQ2000_BUILTIN_LUC64);
2548 def_builtin ("__builtin_luc64l", void_ftype_int_int, IQ2000_BUILTIN_LUC64L);
2549 def_builtin ("__builtin_luk", void_ftype_int_int, IQ2000_BUILTIN_LUK);
2550 def_builtin ("__builtin_lulck", void_ftype_int, IQ2000_BUILTIN_LULCK);
2551 def_builtin ("__builtin_lum32", void_ftype_int_int, IQ2000_BUILTIN_LUM32);
2552 def_builtin ("__builtin_lum32l", void_ftype_int_int, IQ2000_BUILTIN_LUM32L);
2553 def_builtin ("__builtin_lum64", void_ftype_int_int, IQ2000_BUILTIN_LUM64);
2554 def_builtin ("__builtin_lum64l", void_ftype_int_int, IQ2000_BUILTIN_LUM64L);
2555 def_builtin ("__builtin_lurl", void_ftype_int_int, IQ2000_BUILTIN_LURL);
2556 def_builtin ("__builtin_mrgb", int_ftype_int_int_int, IQ2000_BUILTIN_MRGB);
2557 def_builtin ("__builtin_srrdl", void_ftype_int, IQ2000_BUILTIN_SRRDL);
2558 def_builtin ("__builtin_srulck", void_ftype_int, IQ2000_BUILTIN_SRULCK);
2559 def_builtin ("__builtin_srwru", void_ftype_int_int, IQ2000_BUILTIN_SRWRU);
2560 def_builtin ("__builtin_trapqfl", void_ftype, IQ2000_BUILTIN_TRAPQFL);
2561 def_builtin ("__builtin_trapqne", void_ftype, IQ2000_BUILTIN_TRAPQNE);
2562 def_builtin ("__builtin_traprel", void_ftype_int, IQ2000_BUILTIN_TRAPREL);
2563 def_builtin ("__builtin_wbu", void_ftype_int_int_int, IQ2000_BUILTIN_WBU);
2564 def_builtin ("__builtin_syscall", void_ftype, IQ2000_BUILTIN_SYSCALL);
2565 }
2566
2567 /* Builtin for ICODE having ARGCOUNT args in EXP where each arg
2568 has an rtx CODE. */
2569
2570 static rtx
2571 expand_one_builtin (enum insn_code icode, rtx target, tree exp,
2572 enum rtx_code *code, int argcount)
2573 {
2574 rtx pat;
2575 tree arg [5];
2576 rtx op [5];
2577 machine_mode mode [5];
2578 int i;
2579
2580 mode[0] = insn_data[icode].operand[0].mode;
2581 for (i = 0; i < argcount; i++)
2582 {
2583 arg[i] = CALL_EXPR_ARG (exp, i);
2584 op[i] = expand_normal (arg[i]);
2585 mode[i] = insn_data[icode].operand[i].mode;
2586 if (code[i] == CONST_INT && GET_CODE (op[i]) != CONST_INT)
2587 error ("argument %qd is not a constant", i + 1);
2588 if (code[i] == REG
2589 && ! (*insn_data[icode].operand[i].predicate) (op[i], mode[i]))
2590 op[i] = copy_to_mode_reg (mode[i], op[i]);
2591 }
2592
2593 if (insn_data[icode].operand[0].constraint[0] == '=')
2594 {
2595 if (target == 0
2596 || GET_MODE (target) != mode[0]
2597 || ! (*insn_data[icode].operand[0].predicate) (target, mode[0]))
2598 target = gen_reg_rtx (mode[0]);
2599 }
2600 else
2601 target = 0;
2602
2603 switch (argcount)
2604 {
2605 case 0:
2606 pat = GEN_FCN (icode) (target);
2607 break;
2608 case 1:
2609 if (target)
2610 pat = GEN_FCN (icode) (target, op[0]);
2611 else
2612 pat = GEN_FCN (icode) (op[0]);
2613 break;
2614 case 2:
2615 if (target)
2616 pat = GEN_FCN (icode) (target, op[0], op[1]);
2617 else
2618 pat = GEN_FCN (icode) (op[0], op[1]);
2619 break;
2620 case 3:
2621 if (target)
2622 pat = GEN_FCN (icode) (target, op[0], op[1], op[2]);
2623 else
2624 pat = GEN_FCN (icode) (op[0], op[1], op[2]);
2625 break;
2626 case 4:
2627 if (target)
2628 pat = GEN_FCN (icode) (target, op[0], op[1], op[2], op[3]);
2629 else
2630 pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3]);
2631 break;
2632 default:
2633 gcc_unreachable ();
2634 }
2635
2636 if (! pat)
2637 return 0;
2638 emit_insn (pat);
2639 return target;
2640 }
2641
2642 /* Expand an expression EXP that calls a built-in function,
2643 with result going to TARGET if that's convenient
2644 (and in mode MODE if that's convenient).
2645 SUBTARGET may be used as the target for computing one of EXP's operands.
2646 IGNORE is nonzero if the value is to be ignored. */
2647
2648 static rtx
2649 iq2000_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
2650 machine_mode mode ATTRIBUTE_UNUSED,
2651 int ignore ATTRIBUTE_UNUSED)
2652 {
2653 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
2654 int fcode = DECL_MD_FUNCTION_CODE (fndecl);
2655 enum rtx_code code [5];
2656
2657 code[0] = REG;
2658 code[1] = REG;
2659 code[2] = REG;
2660 code[3] = REG;
2661 code[4] = REG;
2662 switch (fcode)
2663 {
2664 default:
2665 break;
2666
2667 case IQ2000_BUILTIN_ADO16:
2668 return expand_one_builtin (CODE_FOR_ado16, target, exp, code, 2);
2669
2670 case IQ2000_BUILTIN_RAM:
2671 code[1] = CONST_INT;
2672 code[2] = CONST_INT;
2673 code[3] = CONST_INT;
2674 return expand_one_builtin (CODE_FOR_ram, target, exp, code, 4);
2675
2676 case IQ2000_BUILTIN_CHKHDR:
2677 return expand_one_builtin (CODE_FOR_chkhdr, target, exp, code, 2);
2678
2679 case IQ2000_BUILTIN_PKRL:
2680 return expand_one_builtin (CODE_FOR_pkrl, target, exp, code, 2);
2681
2682 case IQ2000_BUILTIN_CFC0:
2683 code[0] = CONST_INT;
2684 return expand_one_builtin (CODE_FOR_cfc0, target, exp, code, 1);
2685
2686 case IQ2000_BUILTIN_CFC1:
2687 code[0] = CONST_INT;
2688 return expand_one_builtin (CODE_FOR_cfc1, target, exp, code, 1);
2689
2690 case IQ2000_BUILTIN_CFC2:
2691 code[0] = CONST_INT;
2692 return expand_one_builtin (CODE_FOR_cfc2, target, exp, code, 1);
2693
2694 case IQ2000_BUILTIN_CFC3:
2695 code[0] = CONST_INT;
2696 return expand_one_builtin (CODE_FOR_cfc3, target, exp, code, 1);
2697
2698 case IQ2000_BUILTIN_CTC0:
2699 code[1] = CONST_INT;
2700 return expand_one_builtin (CODE_FOR_ctc0, target, exp, code, 2);
2701
2702 case IQ2000_BUILTIN_CTC1:
2703 code[1] = CONST_INT;
2704 return expand_one_builtin (CODE_FOR_ctc1, target, exp, code, 2);
2705
2706 case IQ2000_BUILTIN_CTC2:
2707 code[1] = CONST_INT;
2708 return expand_one_builtin (CODE_FOR_ctc2, target, exp, code, 2);
2709
2710 case IQ2000_BUILTIN_CTC3:
2711 code[1] = CONST_INT;
2712 return expand_one_builtin (CODE_FOR_ctc3, target, exp, code, 2);
2713
2714 case IQ2000_BUILTIN_MFC0:
2715 code[0] = CONST_INT;
2716 return expand_one_builtin (CODE_FOR_mfc0, target, exp, code, 1);
2717
2718 case IQ2000_BUILTIN_MFC1:
2719 code[0] = CONST_INT;
2720 return expand_one_builtin (CODE_FOR_mfc1, target, exp, code, 1);
2721
2722 case IQ2000_BUILTIN_MFC2:
2723 code[0] = CONST_INT;
2724 return expand_one_builtin (CODE_FOR_mfc2, target, exp, code, 1);
2725
2726 case IQ2000_BUILTIN_MFC3:
2727 code[0] = CONST_INT;
2728 return expand_one_builtin (CODE_FOR_mfc3, target, exp, code, 1);
2729
2730 case IQ2000_BUILTIN_MTC0:
2731 code[1] = CONST_INT;
2732 return expand_one_builtin (CODE_FOR_mtc0, target, exp, code, 2);
2733
2734 case IQ2000_BUILTIN_MTC1:
2735 code[1] = CONST_INT;
2736 return expand_one_builtin (CODE_FOR_mtc1, target, exp, code, 2);
2737
2738 case IQ2000_BUILTIN_MTC2:
2739 code[1] = CONST_INT;
2740 return expand_one_builtin (CODE_FOR_mtc2, target, exp, code, 2);
2741
2742 case IQ2000_BUILTIN_MTC3:
2743 code[1] = CONST_INT;
2744 return expand_one_builtin (CODE_FOR_mtc3, target, exp, code, 2);
2745
2746 case IQ2000_BUILTIN_LUR:
2747 return expand_one_builtin (CODE_FOR_lur, target, exp, code, 2);
2748
2749 case IQ2000_BUILTIN_RB:
2750 return expand_one_builtin (CODE_FOR_rb, target, exp, code, 2);
2751
2752 case IQ2000_BUILTIN_RX:
2753 return expand_one_builtin (CODE_FOR_rx, target, exp, code, 2);
2754
2755 case IQ2000_BUILTIN_SRRD:
2756 return expand_one_builtin (CODE_FOR_srrd, target, exp, code, 1);
2757
2758 case IQ2000_BUILTIN_SRWR:
2759 return expand_one_builtin (CODE_FOR_srwr, target, exp, code, 2);
2760
2761 case IQ2000_BUILTIN_WB:
2762 return expand_one_builtin (CODE_FOR_wb, target, exp, code, 2);
2763
2764 case IQ2000_BUILTIN_WX:
2765 return expand_one_builtin (CODE_FOR_wx, target, exp, code, 2);
2766
2767 case IQ2000_BUILTIN_LUC32L:
2768 return expand_one_builtin (CODE_FOR_luc32l, target, exp, code, 2);
2769
2770 case IQ2000_BUILTIN_LUC64:
2771 return expand_one_builtin (CODE_FOR_luc64, target, exp, code, 2);
2772
2773 case IQ2000_BUILTIN_LUC64L:
2774 return expand_one_builtin (CODE_FOR_luc64l, target, exp, code, 2);
2775
2776 case IQ2000_BUILTIN_LUK:
2777 return expand_one_builtin (CODE_FOR_luk, target, exp, code, 2);
2778
2779 case IQ2000_BUILTIN_LULCK:
2780 return expand_one_builtin (CODE_FOR_lulck, target, exp, code, 1);
2781
2782 case IQ2000_BUILTIN_LUM32:
2783 return expand_one_builtin (CODE_FOR_lum32, target, exp, code, 2);
2784
2785 case IQ2000_BUILTIN_LUM32L:
2786 return expand_one_builtin (CODE_FOR_lum32l, target, exp, code, 2);
2787
2788 case IQ2000_BUILTIN_LUM64:
2789 return expand_one_builtin (CODE_FOR_lum64, target, exp, code, 2);
2790
2791 case IQ2000_BUILTIN_LUM64L:
2792 return expand_one_builtin (CODE_FOR_lum64l, target, exp, code, 2);
2793
2794 case IQ2000_BUILTIN_LURL:
2795 return expand_one_builtin (CODE_FOR_lurl, target, exp, code, 2);
2796
2797 case IQ2000_BUILTIN_MRGB:
2798 code[2] = CONST_INT;
2799 return expand_one_builtin (CODE_FOR_mrgb, target, exp, code, 3);
2800
2801 case IQ2000_BUILTIN_SRRDL:
2802 return expand_one_builtin (CODE_FOR_srrdl, target, exp, code, 1);
2803
2804 case IQ2000_BUILTIN_SRULCK:
2805 return expand_one_builtin (CODE_FOR_srulck, target, exp, code, 1);
2806
2807 case IQ2000_BUILTIN_SRWRU:
2808 return expand_one_builtin (CODE_FOR_srwru, target, exp, code, 2);
2809
2810 case IQ2000_BUILTIN_TRAPQFL:
2811 return expand_one_builtin (CODE_FOR_trapqfl, target, exp, code, 0);
2812
2813 case IQ2000_BUILTIN_TRAPQNE:
2814 return expand_one_builtin (CODE_FOR_trapqne, target, exp, code, 0);
2815
2816 case IQ2000_BUILTIN_TRAPREL:
2817 return expand_one_builtin (CODE_FOR_traprel, target, exp, code, 1);
2818
2819 case IQ2000_BUILTIN_WBU:
2820 return expand_one_builtin (CODE_FOR_wbu, target, exp, code, 3);
2821
2822 case IQ2000_BUILTIN_SYSCALL:
2823 return expand_one_builtin (CODE_FOR_syscall, target, exp, code, 0);
2824 }
2825
2826 return NULL_RTX;
2827 }
2828 \f
2829 /* Worker function for TARGET_RETURN_IN_MEMORY. */
2830
2831 static bool
2832 iq2000_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
2833 {
2834 return ((int_size_in_bytes (type) > (2 * UNITS_PER_WORD))
2835 || (int_size_in_bytes (type) == -1));
2836 }
2837
2838 /* Worker function for TARGET_SETUP_INCOMING_VARARGS. */
2839
2840 static void
2841 iq2000_setup_incoming_varargs (cumulative_args_t cum_v,
2842 const function_arg_info &,
2843 int *pretend_size, int no_rtl)
2844 {
2845 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
2846 unsigned int iq2000_off = ! cum->last_arg_fp;
2847 unsigned int iq2000_fp_off = cum->last_arg_fp;
2848
2849 if ((cum->arg_words < MAX_ARGS_IN_REGISTERS - iq2000_off))
2850 {
2851 int iq2000_save_gp_regs
2852 = MAX_ARGS_IN_REGISTERS - cum->arg_words - iq2000_off;
2853 int iq2000_save_fp_regs
2854 = (MAX_ARGS_IN_REGISTERS - cum->fp_arg_words - iq2000_fp_off);
2855
2856 if (iq2000_save_gp_regs < 0)
2857 iq2000_save_gp_regs = 0;
2858 if (iq2000_save_fp_regs < 0)
2859 iq2000_save_fp_regs = 0;
2860
2861 *pretend_size = ((iq2000_save_gp_regs * UNITS_PER_WORD)
2862 + (iq2000_save_fp_regs * UNITS_PER_FPREG));
2863
2864 if (! (no_rtl))
2865 {
2866 if (cum->arg_words < MAX_ARGS_IN_REGISTERS - iq2000_off)
2867 {
2868 rtx ptr, mem;
2869 ptr = plus_constant (Pmode, virtual_incoming_args_rtx,
2870 - (iq2000_save_gp_regs
2871 * UNITS_PER_WORD));
2872 mem = gen_rtx_MEM (BLKmode, ptr);
2873 move_block_from_reg
2874 (cum->arg_words + GP_ARG_FIRST + iq2000_off,
2875 mem,
2876 iq2000_save_gp_regs);
2877 }
2878 }
2879 }
2880 }
2881 \f
2882 /* A C compound statement to output to stdio stream STREAM the
2883 assembler syntax for an instruction operand that is a memory
2884 reference whose address is ADDR. ADDR is an RTL expression. */
2885
2886 static void
2887 iq2000_print_operand_address (FILE * file, machine_mode mode, rtx addr)
2888 {
2889 if (!addr)
2890 error ("%<PRINT_OPERAND_ADDRESS%>, null pointer");
2891
2892 else
2893 switch (GET_CODE (addr))
2894 {
2895 case REG:
2896 if (REGNO (addr) == ARG_POINTER_REGNUM)
2897 abort_with_insn (addr, "Arg pointer not eliminated.");
2898
2899 fprintf (file, "0(%s)", reg_names [REGNO (addr)]);
2900 break;
2901
2902 case LO_SUM:
2903 {
2904 rtx arg0 = XEXP (addr, 0);
2905 rtx arg1 = XEXP (addr, 1);
2906
2907 if (GET_CODE (arg0) != REG)
2908 abort_with_insn (addr,
2909 "PRINT_OPERAND_ADDRESS, LO_SUM with #1 not REG.");
2910
2911 fprintf (file, "%%lo(");
2912 iq2000_print_operand_address (file, mode, arg1);
2913 fprintf (file, ")(%s)", reg_names [REGNO (arg0)]);
2914 }
2915 break;
2916
2917 case PLUS:
2918 {
2919 rtx reg = 0;
2920 rtx offset = 0;
2921 rtx arg0 = XEXP (addr, 0);
2922 rtx arg1 = XEXP (addr, 1);
2923
2924 if (GET_CODE (arg0) == REG)
2925 {
2926 reg = arg0;
2927 offset = arg1;
2928 if (GET_CODE (offset) == REG)
2929 abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, 2 regs");
2930 }
2931
2932 else if (GET_CODE (arg1) == REG)
2933 reg = arg1, offset = arg0;
2934 else if (CONSTANT_P (arg0) && CONSTANT_P (arg1))
2935 {
2936 output_addr_const (file, addr);
2937 break;
2938 }
2939 else
2940 abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, no regs");
2941
2942 if (! CONSTANT_P (offset))
2943 abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, invalid insn #2");
2944
2945 if (REGNO (reg) == ARG_POINTER_REGNUM)
2946 abort_with_insn (addr, "Arg pointer not eliminated.");
2947
2948 output_addr_const (file, offset);
2949 fprintf (file, "(%s)", reg_names [REGNO (reg)]);
2950 }
2951 break;
2952
2953 case LABEL_REF:
2954 case SYMBOL_REF:
2955 case CONST_INT:
2956 case CONST:
2957 output_addr_const (file, addr);
2958 if (GET_CODE (addr) == CONST_INT)
2959 fprintf (file, "(%s)", reg_names [0]);
2960 break;
2961
2962 default:
2963 abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, invalid insn #1");
2964 break;
2965 }
2966 }
2967 \f
2968 /* A C compound statement to output to stdio stream FILE the
2969 assembler syntax for an instruction operand OP.
2970
2971 LETTER is a value that can be used to specify one of several ways
2972 of printing the operand. It is used when identical operands
2973 must be printed differently depending on the context. LETTER
2974 comes from the `%' specification that was used to request
2975 printing of the operand. If the specification was just `%DIGIT'
2976 then LETTER is 0; if the specification was `%LTR DIGIT' then LETTER
2977 is the ASCII code for LTR.
2978
2979 If OP is a register, this macro should print the register's name.
2980 The names can be found in an array `reg_names' whose type is
2981 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
2982
2983 When the machine description has a specification `%PUNCT' (a `%'
2984 followed by a punctuation character), this macro is called with
2985 a null pointer for X and the punctuation character for LETTER.
2986
2987 The IQ2000 specific codes are:
2988
2989 'X' X is CONST_INT, prints upper 16 bits in hexadecimal format = "0x%04x",
2990 'x' X is CONST_INT, prints lower 16 bits in hexadecimal format = "0x%04x",
2991 'd' output integer constant in decimal,
2992 'z' if the operand is 0, use $0 instead of normal operand.
2993 'D' print second part of double-word register or memory operand.
2994 'L' print low-order register of double-word register operand.
2995 'M' print high-order register of double-word register operand.
2996 'C' print part of opcode for a branch condition.
2997 'F' print part of opcode for a floating-point branch condition.
2998 'N' print part of opcode for a branch condition, inverted.
2999 'W' print part of opcode for a floating-point branch condition, inverted.
3000 'A' Print part of opcode for a bit test condition.
3001 'P' Print label for a bit test.
3002 'p' Print log for a bit test.
3003 'B' print 'z' for EQ, 'n' for NE
3004 'b' print 'n' for EQ, 'z' for NE
3005 'T' print 'f' for EQ, 't' for NE
3006 't' print 't' for EQ, 'f' for NE
3007 'Z' print register and a comma, but print nothing for $fcc0
3008 '?' Print 'l' if we are to use a branch likely instead of normal branch.
3009 '@' Print the name of the assembler temporary register (at or $1).
3010 '.' Print the name of the register with a hard-wired zero (zero or $0).
3011 '$' Print the name of the stack pointer register (sp or $29).
3012 '+' Print the name of the gp register (gp or $28). */
3013
3014 static void
3015 iq2000_print_operand (FILE *file, rtx op, int letter)
3016 {
3017 enum rtx_code code;
3018
3019 if (iq2000_print_operand_punct_valid_p (letter))
3020 {
3021 switch (letter)
3022 {
3023 case '?':
3024 if (iq2000_branch_likely)
3025 putc ('l', file);
3026 break;
3027
3028 case '@':
3029 fputs (reg_names [GP_REG_FIRST + 1], file);
3030 break;
3031
3032 case '.':
3033 fputs (reg_names [GP_REG_FIRST + 0], file);
3034 break;
3035
3036 case '$':
3037 fputs (reg_names[STACK_POINTER_REGNUM], file);
3038 break;
3039
3040 case '+':
3041 fputs (reg_names[GP_REG_FIRST + 28], file);
3042 break;
3043
3044 default:
3045 error ("%<PRINT_OPERAND%>: Unknown punctuation %<%c%>", letter);
3046 break;
3047 }
3048
3049 return;
3050 }
3051
3052 if (! op)
3053 {
3054 error ("%<PRINT_OPERAND%> null pointer");
3055 return;
3056 }
3057
3058 code = GET_CODE (op);
3059
3060 if (code == SIGN_EXTEND)
3061 op = XEXP (op, 0), code = GET_CODE (op);
3062
3063 if (letter == 'C')
3064 switch (code)
3065 {
3066 case EQ: fputs ("eq", file); break;
3067 case NE: fputs ("ne", file); break;
3068 case GT: fputs ("gt", file); break;
3069 case GE: fputs ("ge", file); break;
3070 case LT: fputs ("lt", file); break;
3071 case LE: fputs ("le", file); break;
3072 case GTU: fputs ("ne", file); break;
3073 case GEU: fputs ("geu", file); break;
3074 case LTU: fputs ("ltu", file); break;
3075 case LEU: fputs ("eq", file); break;
3076 default:
3077 abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%C");
3078 }
3079
3080 else if (letter == 'N')
3081 switch (code)
3082 {
3083 case EQ: fputs ("ne", file); break;
3084 case NE: fputs ("eq", file); break;
3085 case GT: fputs ("le", file); break;
3086 case GE: fputs ("lt", file); break;
3087 case LT: fputs ("ge", file); break;
3088 case LE: fputs ("gt", file); break;
3089 case GTU: fputs ("leu", file); break;
3090 case GEU: fputs ("ltu", file); break;
3091 case LTU: fputs ("geu", file); break;
3092 case LEU: fputs ("gtu", file); break;
3093 default:
3094 abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%N");
3095 }
3096
3097 else if (letter == 'F')
3098 switch (code)
3099 {
3100 case EQ: fputs ("c1f", file); break;
3101 case NE: fputs ("c1t", file); break;
3102 default:
3103 abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%F");
3104 }
3105
3106 else if (letter == 'W')
3107 switch (code)
3108 {
3109 case EQ: fputs ("c1t", file); break;
3110 case NE: fputs ("c1f", file); break;
3111 default:
3112 abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%W");
3113 }
3114
3115 else if (letter == 'A')
3116 fputs (code == LABEL_REF ? "i" : "in", file);
3117
3118 else if (letter == 'P')
3119 {
3120 if (code == LABEL_REF)
3121 output_addr_const (file, op);
3122 else if (code != PC)
3123 output_operand_lossage ("invalid %%P operand");
3124 }
3125
3126 else if (letter == 'p')
3127 {
3128 int value;
3129 if (code != CONST_INT
3130 || (value = exact_log2 (INTVAL (op))) < 0)
3131 output_operand_lossage ("invalid %%p value");
3132 else
3133 fprintf (file, "%d", value);
3134 }
3135
3136 else if (letter == 'Z')
3137 {
3138 gcc_unreachable ();
3139 }
3140
3141 else if (code == REG || code == SUBREG)
3142 {
3143 int regnum;
3144
3145 if (code == REG)
3146 regnum = REGNO (op);
3147 else
3148 regnum = true_regnum (op);
3149
3150 if ((letter == 'M' && ! WORDS_BIG_ENDIAN)
3151 || (letter == 'L' && WORDS_BIG_ENDIAN)
3152 || letter == 'D')
3153 regnum++;
3154
3155 fprintf (file, "%s", reg_names[regnum]);
3156 }
3157
3158 else if (code == MEM)
3159 {
3160 machine_mode mode = GET_MODE (op);
3161
3162 if (letter == 'D')
3163 output_address (mode, plus_constant (Pmode, XEXP (op, 0), 4));
3164 else
3165 output_address (mode, XEXP (op, 0));
3166 }
3167
3168 else if (code == CONST_DOUBLE
3169 && GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT)
3170 {
3171 char s[60];
3172
3173 real_to_decimal (s, CONST_DOUBLE_REAL_VALUE (op), sizeof (s), 0, 1);
3174 fputs (s, file);
3175 }
3176
3177 else if (letter == 'x' && GET_CODE (op) == CONST_INT)
3178 fprintf (file, HOST_WIDE_INT_PRINT_HEX, 0xffff & INTVAL(op));
3179
3180 else if (letter == 'X' && GET_CODE(op) == CONST_INT)
3181 fprintf (file, HOST_WIDE_INT_PRINT_HEX, 0xffff & (INTVAL (op) >> 16));
3182
3183 else if (letter == 'd' && GET_CODE(op) == CONST_INT)
3184 fprintf (file, HOST_WIDE_INT_PRINT_DEC, (INTVAL(op)));
3185
3186 else if (letter == 'z' && GET_CODE (op) == CONST_INT && INTVAL (op) == 0)
3187 fputs (reg_names[GP_REG_FIRST], file);
3188
3189 else if (letter == 'd' || letter == 'x' || letter == 'X')
3190 output_operand_lossage ("invalid use of %%d, %%x, or %%X");
3191
3192 else if (letter == 'B')
3193 fputs (code == EQ ? "z" : "n", file);
3194 else if (letter == 'b')
3195 fputs (code == EQ ? "n" : "z", file);
3196 else if (letter == 'T')
3197 fputs (code == EQ ? "f" : "t", file);
3198 else if (letter == 't')
3199 fputs (code == EQ ? "t" : "f", file);
3200
3201 else if (code == CONST && GET_CODE (XEXP (op, 0)) == REG)
3202 {
3203 iq2000_print_operand (file, XEXP (op, 0), letter);
3204 }
3205
3206 else
3207 output_addr_const (file, op);
3208 }
3209
3210 static bool
3211 iq2000_print_operand_punct_valid_p (unsigned char code)
3212 {
3213 return iq2000_print_operand_punct[code];
3214 }
3215
3216 /* For the IQ2000, transform:
3217
3218 memory(X + <large int>)
3219 into:
3220 Y = <large int> & ~0x7fff;
3221 Z = X + Y
3222 memory (Z + (<large int> & 0x7fff));
3223 */
3224
3225 rtx
3226 iq2000_legitimize_address (rtx xinsn, rtx old_x ATTRIBUTE_UNUSED,
3227 machine_mode mode)
3228 {
3229 if (TARGET_DEBUG_B_MODE)
3230 {
3231 GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n");
3232 GO_DEBUG_RTX (xinsn);
3233 }
3234
3235 if (iq2000_check_split (xinsn, mode))
3236 {
3237 return gen_rtx_LO_SUM (Pmode,
3238 copy_to_mode_reg (Pmode,
3239 gen_rtx_HIGH (Pmode, xinsn)),
3240 xinsn);
3241 }
3242
3243 if (GET_CODE (xinsn) == PLUS)
3244 {
3245 rtx xplus0 = XEXP (xinsn, 0);
3246 rtx xplus1 = XEXP (xinsn, 1);
3247 enum rtx_code code0 = GET_CODE (xplus0);
3248 enum rtx_code code1 = GET_CODE (xplus1);
3249
3250 if (code0 != REG && code1 == REG)
3251 {
3252 xplus0 = XEXP (xinsn, 1);
3253 xplus1 = XEXP (xinsn, 0);
3254 code0 = GET_CODE (xplus0);
3255 code1 = GET_CODE (xplus1);
3256 }
3257
3258 if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, mode)
3259 && code1 == CONST_INT && !SMALL_INT (xplus1))
3260 {
3261 rtx int_reg = gen_reg_rtx (Pmode);
3262 rtx ptr_reg = gen_reg_rtx (Pmode);
3263
3264 emit_move_insn (int_reg,
3265 GEN_INT (INTVAL (xplus1) & ~ 0x7fff));
3266
3267 emit_insn (gen_rtx_SET (ptr_reg,
3268 gen_rtx_PLUS (Pmode, xplus0, int_reg)));
3269
3270 return plus_constant (Pmode, ptr_reg, INTVAL (xplus1) & 0x7fff);
3271 }
3272 }
3273
3274 if (TARGET_DEBUG_B_MODE)
3275 GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n");
3276
3277 return xinsn;
3278 }
3279
3280
3281 static bool
3282 iq2000_rtx_costs (rtx x, machine_mode mode, int outer_code ATTRIBUTE_UNUSED,
3283 int opno ATTRIBUTE_UNUSED, int * total,
3284 bool speed ATTRIBUTE_UNUSED)
3285 {
3286 int code = GET_CODE (x);
3287
3288 switch (code)
3289 {
3290 case MEM:
3291 {
3292 int num_words = (GET_MODE_SIZE (mode) > UNITS_PER_WORD) ? 2 : 1;
3293
3294 if (simple_memory_operand (x, mode))
3295 return COSTS_N_INSNS (num_words) != 0;
3296
3297 * total = COSTS_N_INSNS (2 * num_words);
3298 break;
3299 }
3300
3301 case FFS:
3302 * total = COSTS_N_INSNS (6);
3303 break;
3304
3305 case AND:
3306 case IOR:
3307 case XOR:
3308 case NOT:
3309 * total = COSTS_N_INSNS (mode == DImode ? 2 : 1);
3310 break;
3311
3312 case ASHIFT:
3313 case ASHIFTRT:
3314 case LSHIFTRT:
3315 if (mode == DImode)
3316 * total = COSTS_N_INSNS ((GET_CODE (XEXP (x, 1)) == CONST_INT) ? 4 : 12);
3317 else
3318 * total = COSTS_N_INSNS (1);
3319 break;
3320
3321 case ABS:
3322 if (mode == SFmode || mode == DFmode)
3323 * total = COSTS_N_INSNS (1);
3324 else
3325 * total = COSTS_N_INSNS (4);
3326 break;
3327
3328 case PLUS:
3329 case MINUS:
3330 if (mode == SFmode || mode == DFmode)
3331 * total = COSTS_N_INSNS (6);
3332 else if (mode == DImode)
3333 * total = COSTS_N_INSNS (4);
3334 else
3335 * total = COSTS_N_INSNS (1);
3336 break;
3337
3338 case NEG:
3339 * total = (mode == DImode) ? 4 : 1;
3340 break;
3341
3342 case MULT:
3343 if (mode == SFmode)
3344 * total = COSTS_N_INSNS (7);
3345 else if (mode == DFmode)
3346 * total = COSTS_N_INSNS (8);
3347 else
3348 * total = COSTS_N_INSNS (10);
3349 break;
3350
3351 case DIV:
3352 case MOD:
3353 if (mode == SFmode)
3354 * total = COSTS_N_INSNS (23);
3355 else if (mode == DFmode)
3356 * total = COSTS_N_INSNS (36);
3357 else
3358 * total = COSTS_N_INSNS (69);
3359 break;
3360
3361 case UDIV:
3362 case UMOD:
3363 * total = COSTS_N_INSNS (69);
3364 break;
3365
3366 case SIGN_EXTEND:
3367 * total = COSTS_N_INSNS (2);
3368 break;
3369
3370 case ZERO_EXTEND:
3371 * total = COSTS_N_INSNS (1);
3372 break;
3373
3374 case CONST_INT:
3375 * total = 0;
3376 break;
3377
3378 case LABEL_REF:
3379 * total = COSTS_N_INSNS (2);
3380 break;
3381
3382 case CONST:
3383 {
3384 rtx offset = const0_rtx;
3385 rtx symref = eliminate_constant_term (XEXP (x, 0), & offset);
3386
3387 if (GET_CODE (symref) == LABEL_REF)
3388 * total = COSTS_N_INSNS (2);
3389 else if (GET_CODE (symref) != SYMBOL_REF)
3390 * total = COSTS_N_INSNS (4);
3391 /* Let's be paranoid.... */
3392 else if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767)
3393 * total = COSTS_N_INSNS (2);
3394 else
3395 * total = COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2);
3396 break;
3397 }
3398
3399 case SYMBOL_REF:
3400 * total = COSTS_N_INSNS (SYMBOL_REF_FLAG (x) ? 1 : 2);
3401 break;
3402
3403 case CONST_DOUBLE:
3404 {
3405 rtx high, low;
3406
3407 split_double (x, & high, & low);
3408
3409 * total = COSTS_N_INSNS ( (high == CONST0_RTX (GET_MODE (high))
3410 || low == CONST0_RTX (GET_MODE (low)))
3411 ? 2 : 4);
3412 break;
3413 }
3414
3415 default:
3416 return false;
3417 }
3418 return true;
3419 }
3420
3421 /* Worker for TARGET_ASM_TRAMPOLINE_TEMPLATE. */
3422
3423 static void
3424 iq2000_asm_trampoline_template (FILE *f)
3425 {
3426 fprintf (f, "\t.word\t0x03e00821\t\t# move $1,$31\n");
3427 fprintf (f, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n");
3428 fprintf (f, "\t.word\t0x00000000\t\t# nop\n");
3429 if (Pmode == DImode)
3430 {
3431 fprintf (f, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n");
3432 fprintf (f, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n");
3433 }
3434 else
3435 {
3436 fprintf (f, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n");
3437 fprintf (f, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n");
3438 }
3439 fprintf (f, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n");
3440 fprintf (f, "\t.word\t0x00600008\t\t# jr $3\n");
3441 fprintf (f, "\t.word\t0x0020f821\t\t# move $31,$1\n");
3442 fprintf (f, "\t.word\t0x00000000\t\t# <function address>\n");
3443 fprintf (f, "\t.word\t0x00000000\t\t# <static chain value>\n");
3444 }
3445
3446 /* Worker for TARGET_TRAMPOLINE_INIT. */
3447
3448 static void
3449 iq2000_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
3450 {
3451 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
3452 rtx mem;
3453
3454 emit_block_move (m_tramp, assemble_trampoline_template (),
3455 GEN_INT (TRAMPOLINE_CODE_SIZE), BLOCK_OP_NORMAL);
3456
3457 mem = adjust_address (m_tramp, Pmode, TRAMPOLINE_CODE_SIZE);
3458 emit_move_insn (mem, fnaddr);
3459 mem = adjust_address (m_tramp, Pmode,
3460 TRAMPOLINE_CODE_SIZE + GET_MODE_SIZE (Pmode));
3461 emit_move_insn (mem, chain_value);
3462 }
3463
3464 /* Implement TARGET_HARD_REGNO_MODE_OK. */
3465
3466 static bool
3467 iq2000_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
3468 {
3469 return (REGNO_REG_CLASS (regno) == GR_REGS
3470 ? (regno & 1) == 0 || GET_MODE_SIZE (mode) <= 4
3471 : (regno & 1) == 0 || GET_MODE_SIZE (mode) == 4);
3472 }
3473
3474 /* Implement TARGET_MODES_TIEABLE_P. */
3475
3476 static bool
3477 iq2000_modes_tieable_p (machine_mode mode1, machine_mode mode2)
3478 {
3479 return ((GET_MODE_CLASS (mode1) == MODE_FLOAT
3480 || GET_MODE_CLASS (mode1) == MODE_COMPLEX_FLOAT)
3481 == (GET_MODE_CLASS (mode2) == MODE_FLOAT
3482 || GET_MODE_CLASS (mode2) == MODE_COMPLEX_FLOAT));
3483 }
3484
3485 /* Implement TARGET_CONSTANT_ALIGNMENT. */
3486
3487 static HOST_WIDE_INT
3488 iq2000_constant_alignment (const_tree exp, HOST_WIDE_INT align)
3489 {
3490 if (TREE_CODE (exp) == STRING_CST || TREE_CODE (exp) == CONSTRUCTOR)
3491 return MAX (align, BITS_PER_WORD);
3492 return align;
3493 }
3494
3495 /* Implement TARGET_STARTING_FRAME_OFFSET. */
3496
3497 static HOST_WIDE_INT
3498 iq2000_starting_frame_offset (void)
3499 {
3500 return crtl->outgoing_args_size;
3501 }
3502
3503 #include "gt-iq2000.h"