]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/m68k/m68k.c
tm.texi.in (TARGET_RTX_COSTS): Add an opno paramter.
[thirdparty/gcc.git] / gcc / config / m68k / m68k.c
1 /* Subroutines for insn-output.c for Motorola 68000 family.
2 Copyright (C) 1987, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "function.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "conditions.h"
33 #include "output.h"
34 #include "insn-attr.h"
35 #include "recog.h"
36 #include "diagnostic-core.h"
37 #include "expr.h"
38 #include "reload.h"
39 #include "tm_p.h"
40 #include "target.h"
41 #include "target-def.h"
42 #include "debug.h"
43 #include "flags.h"
44 #include "df.h"
45 /* ??? Need to add a dependency between m68k.o and sched-int.h. */
46 #include "sched-int.h"
47 #include "insn-codes.h"
48 #include "ggc.h"
49 #include "opts.h"
50
51 enum reg_class regno_reg_class[] =
52 {
53 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
54 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
55 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
56 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
57 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
58 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
59 ADDR_REGS
60 };
61
62
63 /* The minimum number of integer registers that we want to save with the
64 movem instruction. Using two movel instructions instead of a single
65 moveml is about 15% faster for the 68020 and 68030 at no expense in
66 code size. */
67 #define MIN_MOVEM_REGS 3
68
69 /* The minimum number of floating point registers that we want to save
70 with the fmovem instruction. */
71 #define MIN_FMOVEM_REGS 1
72
73 /* Structure describing stack frame layout. */
74 struct m68k_frame
75 {
76 /* Stack pointer to frame pointer offset. */
77 HOST_WIDE_INT offset;
78
79 /* Offset of FPU registers. */
80 HOST_WIDE_INT foffset;
81
82 /* Frame size in bytes (rounded up). */
83 HOST_WIDE_INT size;
84
85 /* Data and address register. */
86 int reg_no;
87 unsigned int reg_mask;
88
89 /* FPU registers. */
90 int fpu_no;
91 unsigned int fpu_mask;
92
93 /* Offsets relative to ARG_POINTER. */
94 HOST_WIDE_INT frame_pointer_offset;
95 HOST_WIDE_INT stack_pointer_offset;
96
97 /* Function which the above information refers to. */
98 int funcdef_no;
99 };
100
101 /* Current frame information calculated by m68k_compute_frame_layout(). */
102 static struct m68k_frame current_frame;
103
104 /* Structure describing an m68k address.
105
106 If CODE is UNKNOWN, the address is BASE + INDEX * SCALE + OFFSET,
107 with null fields evaluating to 0. Here:
108
109 - BASE satisfies m68k_legitimate_base_reg_p
110 - INDEX satisfies m68k_legitimate_index_reg_p
111 - OFFSET satisfies m68k_legitimate_constant_address_p
112
113 INDEX is either HImode or SImode. The other fields are SImode.
114
115 If CODE is PRE_DEC, the address is -(BASE). If CODE is POST_INC,
116 the address is (BASE)+. */
117 struct m68k_address {
118 enum rtx_code code;
119 rtx base;
120 rtx index;
121 rtx offset;
122 int scale;
123 };
124
125 static int m68k_sched_adjust_cost (rtx, rtx, rtx, int);
126 static int m68k_sched_issue_rate (void);
127 static int m68k_sched_variable_issue (FILE *, int, rtx, int);
128 static void m68k_sched_md_init_global (FILE *, int, int);
129 static void m68k_sched_md_finish_global (FILE *, int);
130 static void m68k_sched_md_init (FILE *, int, int);
131 static void m68k_sched_dfa_pre_advance_cycle (void);
132 static void m68k_sched_dfa_post_advance_cycle (void);
133 static int m68k_sched_first_cycle_multipass_dfa_lookahead (void);
134
135 static bool m68k_can_eliminate (const int, const int);
136 static void m68k_conditional_register_usage (void);
137 static bool m68k_legitimate_address_p (enum machine_mode, rtx, bool);
138 static void m68k_option_override (void);
139 static void m68k_override_options_after_change (void);
140 static rtx find_addr_reg (rtx);
141 static const char *singlemove_string (rtx *);
142 static void m68k_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
143 HOST_WIDE_INT, tree);
144 static rtx m68k_struct_value_rtx (tree, int);
145 static tree m68k_handle_fndecl_attribute (tree *node, tree name,
146 tree args, int flags,
147 bool *no_add_attrs);
148 static void m68k_compute_frame_layout (void);
149 static bool m68k_save_reg (unsigned int regno, bool interrupt_handler);
150 static bool m68k_ok_for_sibcall_p (tree, tree);
151 static bool m68k_tls_symbol_p (rtx);
152 static rtx m68k_legitimize_address (rtx, rtx, enum machine_mode);
153 static bool m68k_rtx_costs (rtx, int, int, int, int *, bool);
154 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
155 static bool m68k_return_in_memory (const_tree, const_tree);
156 #endif
157 static void m68k_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
158 static void m68k_trampoline_init (rtx, tree, rtx);
159 static int m68k_return_pops_args (tree, tree, int);
160 static rtx m68k_delegitimize_address (rtx);
161 static void m68k_function_arg_advance (cumulative_args_t, enum machine_mode,
162 const_tree, bool);
163 static rtx m68k_function_arg (cumulative_args_t, enum machine_mode,
164 const_tree, bool);
165 static bool m68k_cannot_force_const_mem (enum machine_mode mode, rtx x);
166 \f
167 /* Initialize the GCC target structure. */
168
169 #if INT_OP_GROUP == INT_OP_DOT_WORD
170 #undef TARGET_ASM_ALIGNED_HI_OP
171 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
172 #endif
173
174 #if INT_OP_GROUP == INT_OP_NO_DOT
175 #undef TARGET_ASM_BYTE_OP
176 #define TARGET_ASM_BYTE_OP "\tbyte\t"
177 #undef TARGET_ASM_ALIGNED_HI_OP
178 #define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
179 #undef TARGET_ASM_ALIGNED_SI_OP
180 #define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
181 #endif
182
183 #if INT_OP_GROUP == INT_OP_DC
184 #undef TARGET_ASM_BYTE_OP
185 #define TARGET_ASM_BYTE_OP "\tdc.b\t"
186 #undef TARGET_ASM_ALIGNED_HI_OP
187 #define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
188 #undef TARGET_ASM_ALIGNED_SI_OP
189 #define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
190 #endif
191
192 #undef TARGET_ASM_UNALIGNED_HI_OP
193 #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
194 #undef TARGET_ASM_UNALIGNED_SI_OP
195 #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
196
197 #undef TARGET_ASM_OUTPUT_MI_THUNK
198 #define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
199 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
200 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
201
202 #undef TARGET_ASM_FILE_START_APP_OFF
203 #define TARGET_ASM_FILE_START_APP_OFF true
204
205 #undef TARGET_LEGITIMIZE_ADDRESS
206 #define TARGET_LEGITIMIZE_ADDRESS m68k_legitimize_address
207
208 #undef TARGET_SCHED_ADJUST_COST
209 #define TARGET_SCHED_ADJUST_COST m68k_sched_adjust_cost
210
211 #undef TARGET_SCHED_ISSUE_RATE
212 #define TARGET_SCHED_ISSUE_RATE m68k_sched_issue_rate
213
214 #undef TARGET_SCHED_VARIABLE_ISSUE
215 #define TARGET_SCHED_VARIABLE_ISSUE m68k_sched_variable_issue
216
217 #undef TARGET_SCHED_INIT_GLOBAL
218 #define TARGET_SCHED_INIT_GLOBAL m68k_sched_md_init_global
219
220 #undef TARGET_SCHED_FINISH_GLOBAL
221 #define TARGET_SCHED_FINISH_GLOBAL m68k_sched_md_finish_global
222
223 #undef TARGET_SCHED_INIT
224 #define TARGET_SCHED_INIT m68k_sched_md_init
225
226 #undef TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE
227 #define TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE m68k_sched_dfa_pre_advance_cycle
228
229 #undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
230 #define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE m68k_sched_dfa_post_advance_cycle
231
232 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
233 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
234 m68k_sched_first_cycle_multipass_dfa_lookahead
235
236 #undef TARGET_OPTION_OVERRIDE
237 #define TARGET_OPTION_OVERRIDE m68k_option_override
238
239 #undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
240 #define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE m68k_override_options_after_change
241
242 #undef TARGET_RTX_COSTS
243 #define TARGET_RTX_COSTS m68k_rtx_costs
244
245 #undef TARGET_ATTRIBUTE_TABLE
246 #define TARGET_ATTRIBUTE_TABLE m68k_attribute_table
247
248 #undef TARGET_PROMOTE_PROTOTYPES
249 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
250
251 #undef TARGET_STRUCT_VALUE_RTX
252 #define TARGET_STRUCT_VALUE_RTX m68k_struct_value_rtx
253
254 #undef TARGET_CANNOT_FORCE_CONST_MEM
255 #define TARGET_CANNOT_FORCE_CONST_MEM m68k_cannot_force_const_mem
256
257 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
258 #define TARGET_FUNCTION_OK_FOR_SIBCALL m68k_ok_for_sibcall_p
259
260 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
261 #undef TARGET_RETURN_IN_MEMORY
262 #define TARGET_RETURN_IN_MEMORY m68k_return_in_memory
263 #endif
264
265 #ifdef HAVE_AS_TLS
266 #undef TARGET_HAVE_TLS
267 #define TARGET_HAVE_TLS (true)
268
269 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
270 #define TARGET_ASM_OUTPUT_DWARF_DTPREL m68k_output_dwarf_dtprel
271 #endif
272
273 #undef TARGET_LEGITIMATE_ADDRESS_P
274 #define TARGET_LEGITIMATE_ADDRESS_P m68k_legitimate_address_p
275
276 #undef TARGET_CAN_ELIMINATE
277 #define TARGET_CAN_ELIMINATE m68k_can_eliminate
278
279 #undef TARGET_CONDITIONAL_REGISTER_USAGE
280 #define TARGET_CONDITIONAL_REGISTER_USAGE m68k_conditional_register_usage
281
282 #undef TARGET_TRAMPOLINE_INIT
283 #define TARGET_TRAMPOLINE_INIT m68k_trampoline_init
284
285 #undef TARGET_RETURN_POPS_ARGS
286 #define TARGET_RETURN_POPS_ARGS m68k_return_pops_args
287
288 #undef TARGET_DELEGITIMIZE_ADDRESS
289 #define TARGET_DELEGITIMIZE_ADDRESS m68k_delegitimize_address
290
291 #undef TARGET_FUNCTION_ARG
292 #define TARGET_FUNCTION_ARG m68k_function_arg
293
294 #undef TARGET_FUNCTION_ARG_ADVANCE
295 #define TARGET_FUNCTION_ARG_ADVANCE m68k_function_arg_advance
296
297 #undef TARGET_LEGITIMATE_CONSTANT_P
298 #define TARGET_LEGITIMATE_CONSTANT_P m68k_legitimate_constant_p
299
300 static const struct attribute_spec m68k_attribute_table[] =
301 {
302 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
303 affects_type_identity } */
304 { "interrupt", 0, 0, true, false, false, m68k_handle_fndecl_attribute,
305 false },
306 { "interrupt_handler", 0, 0, true, false, false,
307 m68k_handle_fndecl_attribute, false },
308 { "interrupt_thread", 0, 0, true, false, false,
309 m68k_handle_fndecl_attribute, false },
310 { NULL, 0, 0, false, false, false, NULL, false }
311 };
312
313 struct gcc_target targetm = TARGET_INITIALIZER;
314 \f
315 /* Base flags for 68k ISAs. */
316 #define FL_FOR_isa_00 FL_ISA_68000
317 #define FL_FOR_isa_10 (FL_FOR_isa_00 | FL_ISA_68010)
318 /* FL_68881 controls the default setting of -m68881. gcc has traditionally
319 generated 68881 code for 68020 and 68030 targets unless explicitly told
320 not to. */
321 #define FL_FOR_isa_20 (FL_FOR_isa_10 | FL_ISA_68020 \
322 | FL_BITFIELD | FL_68881)
323 #define FL_FOR_isa_40 (FL_FOR_isa_20 | FL_ISA_68040)
324 #define FL_FOR_isa_cpu32 (FL_FOR_isa_10 | FL_ISA_68020)
325
326 /* Base flags for ColdFire ISAs. */
327 #define FL_FOR_isa_a (FL_COLDFIRE | FL_ISA_A)
328 #define FL_FOR_isa_aplus (FL_FOR_isa_a | FL_ISA_APLUS | FL_CF_USP)
329 /* Note ISA_B doesn't necessarily include USP (user stack pointer) support. */
330 #define FL_FOR_isa_b (FL_FOR_isa_a | FL_ISA_B | FL_CF_HWDIV)
331 /* ISA_C is not upwardly compatible with ISA_B. */
332 #define FL_FOR_isa_c (FL_FOR_isa_a | FL_ISA_C | FL_CF_USP)
333
334 enum m68k_isa
335 {
336 /* Traditional 68000 instruction sets. */
337 isa_00,
338 isa_10,
339 isa_20,
340 isa_40,
341 isa_cpu32,
342 /* ColdFire instruction set variants. */
343 isa_a,
344 isa_aplus,
345 isa_b,
346 isa_c,
347 isa_max
348 };
349
350 /* Information about one of the -march, -mcpu or -mtune arguments. */
351 struct m68k_target_selection
352 {
353 /* The argument being described. */
354 const char *name;
355
356 /* For -mcpu, this is the device selected by the option.
357 For -mtune and -march, it is a representative device
358 for the microarchitecture or ISA respectively. */
359 enum target_device device;
360
361 /* The M68K_DEVICE fields associated with DEVICE. See the comment
362 in m68k-devices.def for details. FAMILY is only valid for -mcpu. */
363 const char *family;
364 enum uarch_type microarch;
365 enum m68k_isa isa;
366 unsigned long flags;
367 };
368
369 /* A list of all devices in m68k-devices.def. Used for -mcpu selection. */
370 static const struct m68k_target_selection all_devices[] =
371 {
372 #define M68K_DEVICE(NAME,ENUM_VALUE,FAMILY,MULTILIB,MICROARCH,ISA,FLAGS) \
373 { NAME, ENUM_VALUE, FAMILY, u##MICROARCH, ISA, FLAGS | FL_FOR_##ISA },
374 #include "m68k-devices.def"
375 #undef M68K_DEVICE
376 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
377 };
378
379 /* A list of all ISAs, mapping each one to a representative device.
380 Used for -march selection. */
381 static const struct m68k_target_selection all_isas[] =
382 {
383 #define M68K_ISA(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
384 { NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
385 #include "m68k-isas.def"
386 #undef M68K_ISA
387 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
388 };
389
390 /* A list of all microarchitectures, mapping each one to a representative
391 device. Used for -mtune selection. */
392 static const struct m68k_target_selection all_microarchs[] =
393 {
394 #define M68K_MICROARCH(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
395 { NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
396 #include "m68k-microarchs.def"
397 #undef M68K_MICROARCH
398 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
399 };
400 \f
401 /* The entries associated with the -mcpu, -march and -mtune settings,
402 or null for options that have not been used. */
403 const struct m68k_target_selection *m68k_cpu_entry;
404 const struct m68k_target_selection *m68k_arch_entry;
405 const struct m68k_target_selection *m68k_tune_entry;
406
407 /* Which CPU we are generating code for. */
408 enum target_device m68k_cpu;
409
410 /* Which microarchitecture to tune for. */
411 enum uarch_type m68k_tune;
412
413 /* Which FPU to use. */
414 enum fpu_type m68k_fpu;
415
416 /* The set of FL_* flags that apply to the target processor. */
417 unsigned int m68k_cpu_flags;
418
419 /* The set of FL_* flags that apply to the processor to be tuned for. */
420 unsigned int m68k_tune_flags;
421
422 /* Asm templates for calling or jumping to an arbitrary symbolic address,
423 or NULL if such calls or jumps are not supported. The address is held
424 in operand 0. */
425 const char *m68k_symbolic_call;
426 const char *m68k_symbolic_jump;
427
428 /* Enum variable that corresponds to m68k_symbolic_call values. */
429 enum M68K_SYMBOLIC_CALL m68k_symbolic_call_var;
430
431 \f
432 /* Implement TARGET_OPTION_OVERRIDE. */
433
434 static void
435 m68k_option_override (void)
436 {
437 const struct m68k_target_selection *entry;
438 unsigned long target_mask;
439
440 if (global_options_set.x_m68k_arch_option)
441 m68k_arch_entry = &all_isas[m68k_arch_option];
442
443 if (global_options_set.x_m68k_cpu_option)
444 m68k_cpu_entry = &all_devices[(int) m68k_cpu_option];
445
446 if (global_options_set.x_m68k_tune_option)
447 m68k_tune_entry = &all_microarchs[(int) m68k_tune_option];
448
449 /* User can choose:
450
451 -mcpu=
452 -march=
453 -mtune=
454
455 -march=ARCH should generate code that runs any processor
456 implementing architecture ARCH. -mcpu=CPU should override -march
457 and should generate code that runs on processor CPU, making free
458 use of any instructions that CPU understands. -mtune=UARCH applies
459 on top of -mcpu or -march and optimizes the code for UARCH. It does
460 not change the target architecture. */
461 if (m68k_cpu_entry)
462 {
463 /* Complain if the -march setting is for a different microarchitecture,
464 or includes flags that the -mcpu setting doesn't. */
465 if (m68k_arch_entry
466 && (m68k_arch_entry->microarch != m68k_cpu_entry->microarch
467 || (m68k_arch_entry->flags & ~m68k_cpu_entry->flags) != 0))
468 warning (0, "-mcpu=%s conflicts with -march=%s",
469 m68k_cpu_entry->name, m68k_arch_entry->name);
470
471 entry = m68k_cpu_entry;
472 }
473 else
474 entry = m68k_arch_entry;
475
476 if (!entry)
477 entry = all_devices + TARGET_CPU_DEFAULT;
478
479 m68k_cpu_flags = entry->flags;
480
481 /* Use the architecture setting to derive default values for
482 certain flags. */
483 target_mask = 0;
484
485 /* ColdFire is lenient about alignment. */
486 if (!TARGET_COLDFIRE)
487 target_mask |= MASK_STRICT_ALIGNMENT;
488
489 if ((m68k_cpu_flags & FL_BITFIELD) != 0)
490 target_mask |= MASK_BITFIELD;
491 if ((m68k_cpu_flags & FL_CF_HWDIV) != 0)
492 target_mask |= MASK_CF_HWDIV;
493 if ((m68k_cpu_flags & (FL_68881 | FL_CF_FPU)) != 0)
494 target_mask |= MASK_HARD_FLOAT;
495 target_flags |= target_mask & ~target_flags_explicit;
496
497 /* Set the directly-usable versions of the -mcpu and -mtune settings. */
498 m68k_cpu = entry->device;
499 if (m68k_tune_entry)
500 {
501 m68k_tune = m68k_tune_entry->microarch;
502 m68k_tune_flags = m68k_tune_entry->flags;
503 }
504 #ifdef M68K_DEFAULT_TUNE
505 else if (!m68k_cpu_entry && !m68k_arch_entry)
506 {
507 enum target_device dev;
508 dev = all_microarchs[M68K_DEFAULT_TUNE].device;
509 m68k_tune_flags = all_devices[dev]->flags;
510 }
511 #endif
512 else
513 {
514 m68k_tune = entry->microarch;
515 m68k_tune_flags = entry->flags;
516 }
517
518 /* Set the type of FPU. */
519 m68k_fpu = (!TARGET_HARD_FLOAT ? FPUTYPE_NONE
520 : (m68k_cpu_flags & FL_COLDFIRE) != 0 ? FPUTYPE_COLDFIRE
521 : FPUTYPE_68881);
522
523 /* Sanity check to ensure that msep-data and mid-sahred-library are not
524 * both specified together. Doing so simply doesn't make sense.
525 */
526 if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
527 error ("cannot specify both -msep-data and -mid-shared-library");
528
529 /* If we're generating code for a separate A5 relative data segment,
530 * we've got to enable -fPIC as well. This might be relaxable to
531 * -fpic but it hasn't been tested properly.
532 */
533 if (TARGET_SEP_DATA || TARGET_ID_SHARED_LIBRARY)
534 flag_pic = 2;
535
536 /* -mpcrel -fPIC uses 32-bit pc-relative displacements. Raise an
537 error if the target does not support them. */
538 if (TARGET_PCREL && !TARGET_68020 && flag_pic == 2)
539 error ("-mpcrel -fPIC is not currently supported on selected cpu");
540
541 /* ??? A historic way of turning on pic, or is this intended to
542 be an embedded thing that doesn't have the same name binding
543 significance that it does on hosted ELF systems? */
544 if (TARGET_PCREL && flag_pic == 0)
545 flag_pic = 1;
546
547 if (!flag_pic)
548 {
549 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_JSR;
550
551 m68k_symbolic_jump = "jra %a0";
552 }
553 else if (TARGET_ID_SHARED_LIBRARY)
554 /* All addresses must be loaded from the GOT. */
555 ;
556 else if (TARGET_68020 || TARGET_ISAB || TARGET_ISAC)
557 {
558 if (TARGET_PCREL)
559 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_C;
560 else
561 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_P;
562
563 if (TARGET_ISAC)
564 /* No unconditional long branch */;
565 else if (TARGET_PCREL)
566 m68k_symbolic_jump = "bra%.l %c0";
567 else
568 m68k_symbolic_jump = "bra%.l %p0";
569 /* Turn off function cse if we are doing PIC. We always want
570 function call to be done as `bsr foo@PLTPC'. */
571 /* ??? It's traditional to do this for -mpcrel too, but it isn't
572 clear how intentional that is. */
573 flag_no_function_cse = 1;
574 }
575
576 switch (m68k_symbolic_call_var)
577 {
578 case M68K_SYMBOLIC_CALL_JSR:
579 m68k_symbolic_call = "jsr %a0";
580 break;
581
582 case M68K_SYMBOLIC_CALL_BSR_C:
583 m68k_symbolic_call = "bsr%.l %c0";
584 break;
585
586 case M68K_SYMBOLIC_CALL_BSR_P:
587 m68k_symbolic_call = "bsr%.l %p0";
588 break;
589
590 case M68K_SYMBOLIC_CALL_NONE:
591 gcc_assert (m68k_symbolic_call == NULL);
592 break;
593
594 default:
595 gcc_unreachable ();
596 }
597
598 #ifndef ASM_OUTPUT_ALIGN_WITH_NOP
599 if (align_labels > 2)
600 {
601 warning (0, "-falign-labels=%d is not supported", align_labels);
602 align_labels = 0;
603 }
604 if (align_loops > 2)
605 {
606 warning (0, "-falign-loops=%d is not supported", align_loops);
607 align_loops = 0;
608 }
609 #endif
610
611 SUBTARGET_OVERRIDE_OPTIONS;
612
613 /* Setup scheduling options. */
614 if (TUNE_CFV1)
615 m68k_sched_cpu = CPU_CFV1;
616 else if (TUNE_CFV2)
617 m68k_sched_cpu = CPU_CFV2;
618 else if (TUNE_CFV3)
619 m68k_sched_cpu = CPU_CFV3;
620 else if (TUNE_CFV4)
621 m68k_sched_cpu = CPU_CFV4;
622 else
623 {
624 m68k_sched_cpu = CPU_UNKNOWN;
625 flag_schedule_insns = 0;
626 flag_schedule_insns_after_reload = 0;
627 flag_modulo_sched = 0;
628 }
629
630 if (m68k_sched_cpu != CPU_UNKNOWN)
631 {
632 if ((m68k_cpu_flags & (FL_CF_EMAC | FL_CF_EMAC_B)) != 0)
633 m68k_sched_mac = MAC_CF_EMAC;
634 else if ((m68k_cpu_flags & FL_CF_MAC) != 0)
635 m68k_sched_mac = MAC_CF_MAC;
636 else
637 m68k_sched_mac = MAC_NO;
638 }
639 }
640
641 /* Implement TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE. */
642
643 static void
644 m68k_override_options_after_change (void)
645 {
646 if (m68k_sched_cpu == CPU_UNKNOWN)
647 {
648 flag_schedule_insns = 0;
649 flag_schedule_insns_after_reload = 0;
650 flag_modulo_sched = 0;
651 }
652 }
653
654 /* Generate a macro of the form __mPREFIX_cpu_NAME, where PREFIX is the
655 given argument and NAME is the argument passed to -mcpu. Return NULL
656 if -mcpu was not passed. */
657
658 const char *
659 m68k_cpp_cpu_ident (const char *prefix)
660 {
661 if (!m68k_cpu_entry)
662 return NULL;
663 return concat ("__m", prefix, "_cpu_", m68k_cpu_entry->name, NULL);
664 }
665
666 /* Generate a macro of the form __mPREFIX_family_NAME, where PREFIX is the
667 given argument and NAME is the name of the representative device for
668 the -mcpu argument's family. Return NULL if -mcpu was not passed. */
669
670 const char *
671 m68k_cpp_cpu_family (const char *prefix)
672 {
673 if (!m68k_cpu_entry)
674 return NULL;
675 return concat ("__m", prefix, "_family_", m68k_cpu_entry->family, NULL);
676 }
677 \f
678 /* Return m68k_fk_interrupt_handler if FUNC has an "interrupt" or
679 "interrupt_handler" attribute and interrupt_thread if FUNC has an
680 "interrupt_thread" attribute. Otherwise, return
681 m68k_fk_normal_function. */
682
683 enum m68k_function_kind
684 m68k_get_function_kind (tree func)
685 {
686 tree a;
687
688 gcc_assert (TREE_CODE (func) == FUNCTION_DECL);
689
690 a = lookup_attribute ("interrupt", DECL_ATTRIBUTES (func));
691 if (a != NULL_TREE)
692 return m68k_fk_interrupt_handler;
693
694 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
695 if (a != NULL_TREE)
696 return m68k_fk_interrupt_handler;
697
698 a = lookup_attribute ("interrupt_thread", DECL_ATTRIBUTES (func));
699 if (a != NULL_TREE)
700 return m68k_fk_interrupt_thread;
701
702 return m68k_fk_normal_function;
703 }
704
705 /* Handle an attribute requiring a FUNCTION_DECL; arguments as in
706 struct attribute_spec.handler. */
707 static tree
708 m68k_handle_fndecl_attribute (tree *node, tree name,
709 tree args ATTRIBUTE_UNUSED,
710 int flags ATTRIBUTE_UNUSED,
711 bool *no_add_attrs)
712 {
713 if (TREE_CODE (*node) != FUNCTION_DECL)
714 {
715 warning (OPT_Wattributes, "%qE attribute only applies to functions",
716 name);
717 *no_add_attrs = true;
718 }
719
720 if (m68k_get_function_kind (*node) != m68k_fk_normal_function)
721 {
722 error ("multiple interrupt attributes not allowed");
723 *no_add_attrs = true;
724 }
725
726 if (!TARGET_FIDOA
727 && !strcmp (IDENTIFIER_POINTER (name), "interrupt_thread"))
728 {
729 error ("interrupt_thread is available only on fido");
730 *no_add_attrs = true;
731 }
732
733 return NULL_TREE;
734 }
735
736 static void
737 m68k_compute_frame_layout (void)
738 {
739 int regno, saved;
740 unsigned int mask;
741 enum m68k_function_kind func_kind =
742 m68k_get_function_kind (current_function_decl);
743 bool interrupt_handler = func_kind == m68k_fk_interrupt_handler;
744 bool interrupt_thread = func_kind == m68k_fk_interrupt_thread;
745
746 /* Only compute the frame once per function.
747 Don't cache information until reload has been completed. */
748 if (current_frame.funcdef_no == current_function_funcdef_no
749 && reload_completed)
750 return;
751
752 current_frame.size = (get_frame_size () + 3) & -4;
753
754 mask = saved = 0;
755
756 /* Interrupt thread does not need to save any register. */
757 if (!interrupt_thread)
758 for (regno = 0; regno < 16; regno++)
759 if (m68k_save_reg (regno, interrupt_handler))
760 {
761 mask |= 1 << (regno - D0_REG);
762 saved++;
763 }
764 current_frame.offset = saved * 4;
765 current_frame.reg_no = saved;
766 current_frame.reg_mask = mask;
767
768 current_frame.foffset = 0;
769 mask = saved = 0;
770 if (TARGET_HARD_FLOAT)
771 {
772 /* Interrupt thread does not need to save any register. */
773 if (!interrupt_thread)
774 for (regno = 16; regno < 24; regno++)
775 if (m68k_save_reg (regno, interrupt_handler))
776 {
777 mask |= 1 << (regno - FP0_REG);
778 saved++;
779 }
780 current_frame.foffset = saved * TARGET_FP_REG_SIZE;
781 current_frame.offset += current_frame.foffset;
782 }
783 current_frame.fpu_no = saved;
784 current_frame.fpu_mask = mask;
785
786 /* Remember what function this frame refers to. */
787 current_frame.funcdef_no = current_function_funcdef_no;
788 }
789
790 /* Worker function for TARGET_CAN_ELIMINATE. */
791
792 bool
793 m68k_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
794 {
795 return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
796 }
797
798 HOST_WIDE_INT
799 m68k_initial_elimination_offset (int from, int to)
800 {
801 int argptr_offset;
802 /* The arg pointer points 8 bytes before the start of the arguments,
803 as defined by FIRST_PARM_OFFSET. This makes it coincident with the
804 frame pointer in most frames. */
805 argptr_offset = frame_pointer_needed ? 0 : UNITS_PER_WORD;
806 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
807 return argptr_offset;
808
809 m68k_compute_frame_layout ();
810
811 gcc_assert (to == STACK_POINTER_REGNUM);
812 switch (from)
813 {
814 case ARG_POINTER_REGNUM:
815 return current_frame.offset + current_frame.size - argptr_offset;
816 case FRAME_POINTER_REGNUM:
817 return current_frame.offset + current_frame.size;
818 default:
819 gcc_unreachable ();
820 }
821 }
822
823 /* Refer to the array `regs_ever_live' to determine which registers
824 to save; `regs_ever_live[I]' is nonzero if register number I
825 is ever used in the function. This function is responsible for
826 knowing which registers should not be saved even if used.
827 Return true if we need to save REGNO. */
828
829 static bool
830 m68k_save_reg (unsigned int regno, bool interrupt_handler)
831 {
832 if (flag_pic && regno == PIC_REG)
833 {
834 if (crtl->saves_all_registers)
835 return true;
836 if (crtl->uses_pic_offset_table)
837 return true;
838 /* Reload may introduce constant pool references into a function
839 that thitherto didn't need a PIC register. Note that the test
840 above will not catch that case because we will only set
841 crtl->uses_pic_offset_table when emitting
842 the address reloads. */
843 if (crtl->uses_const_pool)
844 return true;
845 }
846
847 if (crtl->calls_eh_return)
848 {
849 unsigned int i;
850 for (i = 0; ; i++)
851 {
852 unsigned int test = EH_RETURN_DATA_REGNO (i);
853 if (test == INVALID_REGNUM)
854 break;
855 if (test == regno)
856 return true;
857 }
858 }
859
860 /* Fixed regs we never touch. */
861 if (fixed_regs[regno])
862 return false;
863
864 /* The frame pointer (if it is such) is handled specially. */
865 if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
866 return false;
867
868 /* Interrupt handlers must also save call_used_regs
869 if they are live or when calling nested functions. */
870 if (interrupt_handler)
871 {
872 if (df_regs_ever_live_p (regno))
873 return true;
874
875 if (!current_function_is_leaf && call_used_regs[regno])
876 return true;
877 }
878
879 /* Never need to save registers that aren't touched. */
880 if (!df_regs_ever_live_p (regno))
881 return false;
882
883 /* Otherwise save everything that isn't call-clobbered. */
884 return !call_used_regs[regno];
885 }
886
887 /* Emit RTL for a MOVEM or FMOVEM instruction. BASE + OFFSET represents
888 the lowest memory address. COUNT is the number of registers to be
889 moved, with register REGNO + I being moved if bit I of MASK is set.
890 STORE_P specifies the direction of the move and ADJUST_STACK_P says
891 whether or not this is pre-decrement (if STORE_P) or post-increment
892 (if !STORE_P) operation. */
893
894 static rtx
895 m68k_emit_movem (rtx base, HOST_WIDE_INT offset,
896 unsigned int count, unsigned int regno,
897 unsigned int mask, bool store_p, bool adjust_stack_p)
898 {
899 int i;
900 rtx body, addr, src, operands[2];
901 enum machine_mode mode;
902
903 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (adjust_stack_p + count));
904 mode = reg_raw_mode[regno];
905 i = 0;
906
907 if (adjust_stack_p)
908 {
909 src = plus_constant (base, (count
910 * GET_MODE_SIZE (mode)
911 * (HOST_WIDE_INT) (store_p ? -1 : 1)));
912 XVECEXP (body, 0, i++) = gen_rtx_SET (VOIDmode, base, src);
913 }
914
915 for (; mask != 0; mask >>= 1, regno++)
916 if (mask & 1)
917 {
918 addr = plus_constant (base, offset);
919 operands[!store_p] = gen_frame_mem (mode, addr);
920 operands[store_p] = gen_rtx_REG (mode, regno);
921 XVECEXP (body, 0, i++)
922 = gen_rtx_SET (VOIDmode, operands[0], operands[1]);
923 offset += GET_MODE_SIZE (mode);
924 }
925 gcc_assert (i == XVECLEN (body, 0));
926
927 return emit_insn (body);
928 }
929
930 /* Make INSN a frame-related instruction. */
931
932 static void
933 m68k_set_frame_related (rtx insn)
934 {
935 rtx body;
936 int i;
937
938 RTX_FRAME_RELATED_P (insn) = 1;
939 body = PATTERN (insn);
940 if (GET_CODE (body) == PARALLEL)
941 for (i = 0; i < XVECLEN (body, 0); i++)
942 RTX_FRAME_RELATED_P (XVECEXP (body, 0, i)) = 1;
943 }
944
945 /* Emit RTL for the "prologue" define_expand. */
946
947 void
948 m68k_expand_prologue (void)
949 {
950 HOST_WIDE_INT fsize_with_regs;
951 rtx limit, src, dest;
952
953 m68k_compute_frame_layout ();
954
955 if (flag_stack_usage_info)
956 current_function_static_stack_size
957 = current_frame.size + current_frame.offset;
958
959 /* If the stack limit is a symbol, we can check it here,
960 before actually allocating the space. */
961 if (crtl->limit_stack
962 && GET_CODE (stack_limit_rtx) == SYMBOL_REF)
963 {
964 limit = plus_constant (stack_limit_rtx, current_frame.size + 4);
965 if (!m68k_legitimate_constant_p (Pmode, limit))
966 {
967 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), limit);
968 limit = gen_rtx_REG (Pmode, D0_REG);
969 }
970 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode,
971 stack_pointer_rtx, limit),
972 stack_pointer_rtx, limit,
973 const1_rtx));
974 }
975
976 fsize_with_regs = current_frame.size;
977 if (TARGET_COLDFIRE)
978 {
979 /* ColdFire's move multiple instructions do not allow pre-decrement
980 addressing. Add the size of movem saves to the initial stack
981 allocation instead. */
982 if (current_frame.reg_no >= MIN_MOVEM_REGS)
983 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
984 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
985 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
986 }
987
988 if (frame_pointer_needed)
989 {
990 if (fsize_with_regs == 0 && TUNE_68040)
991 {
992 /* On the 68040, two separate moves are faster than link.w 0. */
993 dest = gen_frame_mem (Pmode,
994 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
995 m68k_set_frame_related (emit_move_insn (dest, frame_pointer_rtx));
996 m68k_set_frame_related (emit_move_insn (frame_pointer_rtx,
997 stack_pointer_rtx));
998 }
999 else if (fsize_with_regs < 0x8000 || TARGET_68020)
1000 m68k_set_frame_related
1001 (emit_insn (gen_link (frame_pointer_rtx,
1002 GEN_INT (-4 - fsize_with_regs))));
1003 else
1004 {
1005 m68k_set_frame_related
1006 (emit_insn (gen_link (frame_pointer_rtx, GEN_INT (-4))));
1007 m68k_set_frame_related
1008 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1009 stack_pointer_rtx,
1010 GEN_INT (-fsize_with_regs))));
1011 }
1012
1013 /* If the frame pointer is needed, emit a special barrier that
1014 will prevent the scheduler from moving stores to the frame
1015 before the stack adjustment. */
1016 emit_insn (gen_stack_tie (stack_pointer_rtx, frame_pointer_rtx));
1017 }
1018 else if (fsize_with_regs != 0)
1019 m68k_set_frame_related
1020 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1021 stack_pointer_rtx,
1022 GEN_INT (-fsize_with_regs))));
1023
1024 if (current_frame.fpu_mask)
1025 {
1026 gcc_assert (current_frame.fpu_no >= MIN_FMOVEM_REGS);
1027 if (TARGET_68881)
1028 m68k_set_frame_related
1029 (m68k_emit_movem (stack_pointer_rtx,
1030 current_frame.fpu_no * -GET_MODE_SIZE (XFmode),
1031 current_frame.fpu_no, FP0_REG,
1032 current_frame.fpu_mask, true, true));
1033 else
1034 {
1035 int offset;
1036
1037 /* If we're using moveml to save the integer registers,
1038 the stack pointer will point to the bottom of the moveml
1039 save area. Find the stack offset of the first FP register. */
1040 if (current_frame.reg_no < MIN_MOVEM_REGS)
1041 offset = 0;
1042 else
1043 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1044 m68k_set_frame_related
1045 (m68k_emit_movem (stack_pointer_rtx, offset,
1046 current_frame.fpu_no, FP0_REG,
1047 current_frame.fpu_mask, true, false));
1048 }
1049 }
1050
1051 /* If the stack limit is not a symbol, check it here.
1052 This has the disadvantage that it may be too late... */
1053 if (crtl->limit_stack)
1054 {
1055 if (REG_P (stack_limit_rtx))
1056 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode, stack_pointer_rtx,
1057 stack_limit_rtx),
1058 stack_pointer_rtx, stack_limit_rtx,
1059 const1_rtx));
1060
1061 else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
1062 warning (0, "stack limit expression is not supported");
1063 }
1064
1065 if (current_frame.reg_no < MIN_MOVEM_REGS)
1066 {
1067 /* Store each register separately in the same order moveml does. */
1068 int i;
1069
1070 for (i = 16; i-- > 0; )
1071 if (current_frame.reg_mask & (1 << i))
1072 {
1073 src = gen_rtx_REG (SImode, D0_REG + i);
1074 dest = gen_frame_mem (SImode,
1075 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1076 m68k_set_frame_related (emit_insn (gen_movsi (dest, src)));
1077 }
1078 }
1079 else
1080 {
1081 if (TARGET_COLDFIRE)
1082 /* The required register save space has already been allocated.
1083 The first register should be stored at (%sp). */
1084 m68k_set_frame_related
1085 (m68k_emit_movem (stack_pointer_rtx, 0,
1086 current_frame.reg_no, D0_REG,
1087 current_frame.reg_mask, true, false));
1088 else
1089 m68k_set_frame_related
1090 (m68k_emit_movem (stack_pointer_rtx,
1091 current_frame.reg_no * -GET_MODE_SIZE (SImode),
1092 current_frame.reg_no, D0_REG,
1093 current_frame.reg_mask, true, true));
1094 }
1095
1096 if (!TARGET_SEP_DATA
1097 && crtl->uses_pic_offset_table)
1098 emit_insn (gen_load_got (pic_offset_table_rtx));
1099 }
1100 \f
1101 /* Return true if a simple (return) instruction is sufficient for this
1102 instruction (i.e. if no epilogue is needed). */
1103
1104 bool
1105 m68k_use_return_insn (void)
1106 {
1107 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
1108 return false;
1109
1110 m68k_compute_frame_layout ();
1111 return current_frame.offset == 0;
1112 }
1113
1114 /* Emit RTL for the "epilogue" or "sibcall_epilogue" define_expand;
1115 SIBCALL_P says which.
1116
1117 The function epilogue should not depend on the current stack pointer!
1118 It should use the frame pointer only, if there is a frame pointer.
1119 This is mandatory because of alloca; we also take advantage of it to
1120 omit stack adjustments before returning. */
1121
1122 void
1123 m68k_expand_epilogue (bool sibcall_p)
1124 {
1125 HOST_WIDE_INT fsize, fsize_with_regs;
1126 bool big, restore_from_sp;
1127
1128 m68k_compute_frame_layout ();
1129
1130 fsize = current_frame.size;
1131 big = false;
1132 restore_from_sp = false;
1133
1134 /* FIXME : current_function_is_leaf below is too strong.
1135 What we really need to know there is if there could be pending
1136 stack adjustment needed at that point. */
1137 restore_from_sp = (!frame_pointer_needed
1138 || (!cfun->calls_alloca
1139 && current_function_is_leaf));
1140
1141 /* fsize_with_regs is the size we need to adjust the sp when
1142 popping the frame. */
1143 fsize_with_regs = fsize;
1144 if (TARGET_COLDFIRE && restore_from_sp)
1145 {
1146 /* ColdFire's move multiple instructions do not allow post-increment
1147 addressing. Add the size of movem loads to the final deallocation
1148 instead. */
1149 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1150 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1151 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1152 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1153 }
1154
1155 if (current_frame.offset + fsize >= 0x8000
1156 && !restore_from_sp
1157 && (current_frame.reg_mask || current_frame.fpu_mask))
1158 {
1159 if (TARGET_COLDFIRE
1160 && (current_frame.reg_no >= MIN_MOVEM_REGS
1161 || current_frame.fpu_no >= MIN_FMOVEM_REGS))
1162 {
1163 /* ColdFire's move multiple instructions do not support the
1164 (d8,Ax,Xi) addressing mode, so we're as well using a normal
1165 stack-based restore. */
1166 emit_move_insn (gen_rtx_REG (Pmode, A1_REG),
1167 GEN_INT (-(current_frame.offset + fsize)));
1168 emit_insn (gen_addsi3 (stack_pointer_rtx,
1169 gen_rtx_REG (Pmode, A1_REG),
1170 frame_pointer_rtx));
1171 restore_from_sp = true;
1172 }
1173 else
1174 {
1175 emit_move_insn (gen_rtx_REG (Pmode, A1_REG), GEN_INT (-fsize));
1176 fsize = 0;
1177 big = true;
1178 }
1179 }
1180
1181 if (current_frame.reg_no < MIN_MOVEM_REGS)
1182 {
1183 /* Restore each register separately in the same order moveml does. */
1184 int i;
1185 HOST_WIDE_INT offset;
1186
1187 offset = current_frame.offset + fsize;
1188 for (i = 0; i < 16; i++)
1189 if (current_frame.reg_mask & (1 << i))
1190 {
1191 rtx addr;
1192
1193 if (big)
1194 {
1195 /* Generate the address -OFFSET(%fp,%a1.l). */
1196 addr = gen_rtx_REG (Pmode, A1_REG);
1197 addr = gen_rtx_PLUS (Pmode, addr, frame_pointer_rtx);
1198 addr = plus_constant (addr, -offset);
1199 }
1200 else if (restore_from_sp)
1201 addr = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
1202 else
1203 addr = plus_constant (frame_pointer_rtx, -offset);
1204 emit_move_insn (gen_rtx_REG (SImode, D0_REG + i),
1205 gen_frame_mem (SImode, addr));
1206 offset -= GET_MODE_SIZE (SImode);
1207 }
1208 }
1209 else if (current_frame.reg_mask)
1210 {
1211 if (big)
1212 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1213 gen_rtx_REG (Pmode, A1_REG),
1214 frame_pointer_rtx),
1215 -(current_frame.offset + fsize),
1216 current_frame.reg_no, D0_REG,
1217 current_frame.reg_mask, false, false);
1218 else if (restore_from_sp)
1219 m68k_emit_movem (stack_pointer_rtx, 0,
1220 current_frame.reg_no, D0_REG,
1221 current_frame.reg_mask, false,
1222 !TARGET_COLDFIRE);
1223 else
1224 m68k_emit_movem (frame_pointer_rtx,
1225 -(current_frame.offset + fsize),
1226 current_frame.reg_no, D0_REG,
1227 current_frame.reg_mask, false, false);
1228 }
1229
1230 if (current_frame.fpu_no > 0)
1231 {
1232 if (big)
1233 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1234 gen_rtx_REG (Pmode, A1_REG),
1235 frame_pointer_rtx),
1236 -(current_frame.foffset + fsize),
1237 current_frame.fpu_no, FP0_REG,
1238 current_frame.fpu_mask, false, false);
1239 else if (restore_from_sp)
1240 {
1241 if (TARGET_COLDFIRE)
1242 {
1243 int offset;
1244
1245 /* If we used moveml to restore the integer registers, the
1246 stack pointer will still point to the bottom of the moveml
1247 save area. Find the stack offset of the first FP
1248 register. */
1249 if (current_frame.reg_no < MIN_MOVEM_REGS)
1250 offset = 0;
1251 else
1252 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1253 m68k_emit_movem (stack_pointer_rtx, offset,
1254 current_frame.fpu_no, FP0_REG,
1255 current_frame.fpu_mask, false, false);
1256 }
1257 else
1258 m68k_emit_movem (stack_pointer_rtx, 0,
1259 current_frame.fpu_no, FP0_REG,
1260 current_frame.fpu_mask, false, true);
1261 }
1262 else
1263 m68k_emit_movem (frame_pointer_rtx,
1264 -(current_frame.foffset + fsize),
1265 current_frame.fpu_no, FP0_REG,
1266 current_frame.fpu_mask, false, false);
1267 }
1268
1269 if (frame_pointer_needed)
1270 emit_insn (gen_unlink (frame_pointer_rtx));
1271 else if (fsize_with_regs)
1272 emit_insn (gen_addsi3 (stack_pointer_rtx,
1273 stack_pointer_rtx,
1274 GEN_INT (fsize_with_regs)));
1275
1276 if (crtl->calls_eh_return)
1277 emit_insn (gen_addsi3 (stack_pointer_rtx,
1278 stack_pointer_rtx,
1279 EH_RETURN_STACKADJ_RTX));
1280
1281 if (!sibcall_p)
1282 emit_jump_insn (ret_rtx);
1283 }
1284 \f
1285 /* Return true if X is a valid comparison operator for the dbcc
1286 instruction.
1287
1288 Note it rejects floating point comparison operators.
1289 (In the future we could use Fdbcc).
1290
1291 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
1292
1293 int
1294 valid_dbcc_comparison_p_2 (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
1295 {
1296 switch (GET_CODE (x))
1297 {
1298 case EQ: case NE: case GTU: case LTU:
1299 case GEU: case LEU:
1300 return 1;
1301
1302 /* Reject some when CC_NO_OVERFLOW is set. This may be over
1303 conservative */
1304 case GT: case LT: case GE: case LE:
1305 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
1306 default:
1307 return 0;
1308 }
1309 }
1310
1311 /* Return nonzero if flags are currently in the 68881 flag register. */
1312 int
1313 flags_in_68881 (void)
1314 {
1315 /* We could add support for these in the future */
1316 return cc_status.flags & CC_IN_68881;
1317 }
1318
1319 /* Return true if PARALLEL contains register REGNO. */
1320 static bool
1321 m68k_reg_present_p (const_rtx parallel, unsigned int regno)
1322 {
1323 int i;
1324
1325 if (REG_P (parallel) && REGNO (parallel) == regno)
1326 return true;
1327
1328 if (GET_CODE (parallel) != PARALLEL)
1329 return false;
1330
1331 for (i = 0; i < XVECLEN (parallel, 0); ++i)
1332 {
1333 const_rtx x;
1334
1335 x = XEXP (XVECEXP (parallel, 0, i), 0);
1336 if (REG_P (x) && REGNO (x) == regno)
1337 return true;
1338 }
1339
1340 return false;
1341 }
1342
1343 /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL_P. */
1344
1345 static bool
1346 m68k_ok_for_sibcall_p (tree decl, tree exp)
1347 {
1348 enum m68k_function_kind kind;
1349
1350 /* We cannot use sibcalls for nested functions because we use the
1351 static chain register for indirect calls. */
1352 if (CALL_EXPR_STATIC_CHAIN (exp))
1353 return false;
1354
1355 if (!VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl))))
1356 {
1357 /* Check that the return value locations are the same. For
1358 example that we aren't returning a value from the sibling in
1359 a D0 register but then need to transfer it to a A0 register. */
1360 rtx cfun_value;
1361 rtx call_value;
1362
1363 cfun_value = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (cfun->decl)),
1364 cfun->decl);
1365 call_value = FUNCTION_VALUE (TREE_TYPE (exp), decl);
1366
1367 /* Check that the values are equal or that the result the callee
1368 function returns is superset of what the current function returns. */
1369 if (!(rtx_equal_p (cfun_value, call_value)
1370 || (REG_P (cfun_value)
1371 && m68k_reg_present_p (call_value, REGNO (cfun_value)))))
1372 return false;
1373 }
1374
1375 kind = m68k_get_function_kind (current_function_decl);
1376 if (kind == m68k_fk_normal_function)
1377 /* We can always sibcall from a normal function, because it's
1378 undefined if it is calling an interrupt function. */
1379 return true;
1380
1381 /* Otherwise we can only sibcall if the function kind is known to be
1382 the same. */
1383 if (decl && m68k_get_function_kind (decl) == kind)
1384 return true;
1385
1386 return false;
1387 }
1388
1389 /* On the m68k all args are always pushed. */
1390
1391 static rtx
1392 m68k_function_arg (cumulative_args_t cum ATTRIBUTE_UNUSED,
1393 enum machine_mode mode ATTRIBUTE_UNUSED,
1394 const_tree type ATTRIBUTE_UNUSED,
1395 bool named ATTRIBUTE_UNUSED)
1396 {
1397 return NULL_RTX;
1398 }
1399
1400 static void
1401 m68k_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
1402 const_tree type, bool named ATTRIBUTE_UNUSED)
1403 {
1404 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1405
1406 *cum += (mode != BLKmode
1407 ? (GET_MODE_SIZE (mode) + 3) & ~3
1408 : (int_size_in_bytes (type) + 3) & ~3);
1409 }
1410
1411 /* Convert X to a legitimate function call memory reference and return the
1412 result. */
1413
1414 rtx
1415 m68k_legitimize_call_address (rtx x)
1416 {
1417 gcc_assert (MEM_P (x));
1418 if (call_operand (XEXP (x, 0), VOIDmode))
1419 return x;
1420 return replace_equiv_address (x, force_reg (Pmode, XEXP (x, 0)));
1421 }
1422
1423 /* Likewise for sibling calls. */
1424
1425 rtx
1426 m68k_legitimize_sibcall_address (rtx x)
1427 {
1428 gcc_assert (MEM_P (x));
1429 if (sibcall_operand (XEXP (x, 0), VOIDmode))
1430 return x;
1431
1432 emit_move_insn (gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM), XEXP (x, 0));
1433 return replace_equiv_address (x, gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM));
1434 }
1435
1436 /* Convert X to a legitimate address and return it if successful. Otherwise
1437 return X.
1438
1439 For the 68000, we handle X+REG by loading X into a register R and
1440 using R+REG. R will go in an address reg and indexing will be used.
1441 However, if REG is a broken-out memory address or multiplication,
1442 nothing needs to be done because REG can certainly go in an address reg. */
1443
1444 static rtx
1445 m68k_legitimize_address (rtx x, rtx oldx, enum machine_mode mode)
1446 {
1447 if (m68k_tls_symbol_p (x))
1448 return m68k_legitimize_tls_address (x);
1449
1450 if (GET_CODE (x) == PLUS)
1451 {
1452 int ch = (x) != (oldx);
1453 int copied = 0;
1454
1455 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1456
1457 if (GET_CODE (XEXP (x, 0)) == MULT)
1458 {
1459 COPY_ONCE (x);
1460 XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
1461 }
1462 if (GET_CODE (XEXP (x, 1)) == MULT)
1463 {
1464 COPY_ONCE (x);
1465 XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
1466 }
1467 if (ch)
1468 {
1469 if (GET_CODE (XEXP (x, 1)) == REG
1470 && GET_CODE (XEXP (x, 0)) == REG)
1471 {
1472 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
1473 {
1474 COPY_ONCE (x);
1475 x = force_operand (x, 0);
1476 }
1477 return x;
1478 }
1479 if (memory_address_p (mode, x))
1480 return x;
1481 }
1482 if (GET_CODE (XEXP (x, 0)) == REG
1483 || (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
1484 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
1485 && GET_MODE (XEXP (XEXP (x, 0), 0)) == HImode))
1486 {
1487 rtx temp = gen_reg_rtx (Pmode);
1488 rtx val = force_operand (XEXP (x, 1), 0);
1489 emit_move_insn (temp, val);
1490 COPY_ONCE (x);
1491 XEXP (x, 1) = temp;
1492 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1493 && GET_CODE (XEXP (x, 0)) == REG)
1494 x = force_operand (x, 0);
1495 }
1496 else if (GET_CODE (XEXP (x, 1)) == REG
1497 || (GET_CODE (XEXP (x, 1)) == SIGN_EXTEND
1498 && GET_CODE (XEXP (XEXP (x, 1), 0)) == REG
1499 && GET_MODE (XEXP (XEXP (x, 1), 0)) == HImode))
1500 {
1501 rtx temp = gen_reg_rtx (Pmode);
1502 rtx val = force_operand (XEXP (x, 0), 0);
1503 emit_move_insn (temp, val);
1504 COPY_ONCE (x);
1505 XEXP (x, 0) = temp;
1506 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1507 && GET_CODE (XEXP (x, 1)) == REG)
1508 x = force_operand (x, 0);
1509 }
1510 }
1511
1512 return x;
1513 }
1514
1515
1516 /* Output a dbCC; jCC sequence. Note we do not handle the
1517 floating point version of this sequence (Fdbcc). We also
1518 do not handle alternative conditions when CC_NO_OVERFLOW is
1519 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
1520 kick those out before we get here. */
1521
1522 void
1523 output_dbcc_and_branch (rtx *operands)
1524 {
1525 switch (GET_CODE (operands[3]))
1526 {
1527 case EQ:
1528 output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
1529 break;
1530
1531 case NE:
1532 output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
1533 break;
1534
1535 case GT:
1536 output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
1537 break;
1538
1539 case GTU:
1540 output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
1541 break;
1542
1543 case LT:
1544 output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
1545 break;
1546
1547 case LTU:
1548 output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
1549 break;
1550
1551 case GE:
1552 output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
1553 break;
1554
1555 case GEU:
1556 output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
1557 break;
1558
1559 case LE:
1560 output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
1561 break;
1562
1563 case LEU:
1564 output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
1565 break;
1566
1567 default:
1568 gcc_unreachable ();
1569 }
1570
1571 /* If the decrement is to be done in SImode, then we have
1572 to compensate for the fact that dbcc decrements in HImode. */
1573 switch (GET_MODE (operands[0]))
1574 {
1575 case SImode:
1576 output_asm_insn ("clr%.w %0\n\tsubq%.l #1,%0\n\tjpl %l1", operands);
1577 break;
1578
1579 case HImode:
1580 break;
1581
1582 default:
1583 gcc_unreachable ();
1584 }
1585 }
1586
1587 const char *
1588 output_scc_di (rtx op, rtx operand1, rtx operand2, rtx dest)
1589 {
1590 rtx loperands[7];
1591 enum rtx_code op_code = GET_CODE (op);
1592
1593 /* This does not produce a useful cc. */
1594 CC_STATUS_INIT;
1595
1596 /* The m68k cmp.l instruction requires operand1 to be a reg as used
1597 below. Swap the operands and change the op if these requirements
1598 are not fulfilled. */
1599 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
1600 {
1601 rtx tmp = operand1;
1602
1603 operand1 = operand2;
1604 operand2 = tmp;
1605 op_code = swap_condition (op_code);
1606 }
1607 loperands[0] = operand1;
1608 if (GET_CODE (operand1) == REG)
1609 loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
1610 else
1611 loperands[1] = adjust_address (operand1, SImode, 4);
1612 if (operand2 != const0_rtx)
1613 {
1614 loperands[2] = operand2;
1615 if (GET_CODE (operand2) == REG)
1616 loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
1617 else
1618 loperands[3] = adjust_address (operand2, SImode, 4);
1619 }
1620 loperands[4] = gen_label_rtx ();
1621 if (operand2 != const0_rtx)
1622 output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
1623 else
1624 {
1625 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[0]))
1626 output_asm_insn ("tst%.l %0", loperands);
1627 else
1628 output_asm_insn ("cmp%.w #0,%0", loperands);
1629
1630 output_asm_insn ("jne %l4", loperands);
1631
1632 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[1]))
1633 output_asm_insn ("tst%.l %1", loperands);
1634 else
1635 output_asm_insn ("cmp%.w #0,%1", loperands);
1636 }
1637
1638 loperands[5] = dest;
1639
1640 switch (op_code)
1641 {
1642 case EQ:
1643 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1644 CODE_LABEL_NUMBER (loperands[4]));
1645 output_asm_insn ("seq %5", loperands);
1646 break;
1647
1648 case NE:
1649 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1650 CODE_LABEL_NUMBER (loperands[4]));
1651 output_asm_insn ("sne %5", loperands);
1652 break;
1653
1654 case GT:
1655 loperands[6] = gen_label_rtx ();
1656 output_asm_insn ("shi %5\n\tjra %l6", loperands);
1657 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1658 CODE_LABEL_NUMBER (loperands[4]));
1659 output_asm_insn ("sgt %5", loperands);
1660 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1661 CODE_LABEL_NUMBER (loperands[6]));
1662 break;
1663
1664 case GTU:
1665 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1666 CODE_LABEL_NUMBER (loperands[4]));
1667 output_asm_insn ("shi %5", loperands);
1668 break;
1669
1670 case LT:
1671 loperands[6] = gen_label_rtx ();
1672 output_asm_insn ("scs %5\n\tjra %l6", loperands);
1673 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1674 CODE_LABEL_NUMBER (loperands[4]));
1675 output_asm_insn ("slt %5", loperands);
1676 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1677 CODE_LABEL_NUMBER (loperands[6]));
1678 break;
1679
1680 case LTU:
1681 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1682 CODE_LABEL_NUMBER (loperands[4]));
1683 output_asm_insn ("scs %5", loperands);
1684 break;
1685
1686 case GE:
1687 loperands[6] = gen_label_rtx ();
1688 output_asm_insn ("scc %5\n\tjra %l6", loperands);
1689 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1690 CODE_LABEL_NUMBER (loperands[4]));
1691 output_asm_insn ("sge %5", loperands);
1692 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1693 CODE_LABEL_NUMBER (loperands[6]));
1694 break;
1695
1696 case GEU:
1697 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1698 CODE_LABEL_NUMBER (loperands[4]));
1699 output_asm_insn ("scc %5", loperands);
1700 break;
1701
1702 case LE:
1703 loperands[6] = gen_label_rtx ();
1704 output_asm_insn ("sls %5\n\tjra %l6", loperands);
1705 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1706 CODE_LABEL_NUMBER (loperands[4]));
1707 output_asm_insn ("sle %5", loperands);
1708 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1709 CODE_LABEL_NUMBER (loperands[6]));
1710 break;
1711
1712 case LEU:
1713 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1714 CODE_LABEL_NUMBER (loperands[4]));
1715 output_asm_insn ("sls %5", loperands);
1716 break;
1717
1718 default:
1719 gcc_unreachable ();
1720 }
1721 return "";
1722 }
1723
1724 const char *
1725 output_btst (rtx *operands, rtx countop, rtx dataop, rtx insn, int signpos)
1726 {
1727 operands[0] = countop;
1728 operands[1] = dataop;
1729
1730 if (GET_CODE (countop) == CONST_INT)
1731 {
1732 register int count = INTVAL (countop);
1733 /* If COUNT is bigger than size of storage unit in use,
1734 advance to the containing unit of same size. */
1735 if (count > signpos)
1736 {
1737 int offset = (count & ~signpos) / 8;
1738 count = count & signpos;
1739 operands[1] = dataop = adjust_address (dataop, QImode, offset);
1740 }
1741 if (count == signpos)
1742 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1743 else
1744 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1745
1746 /* These three statements used to use next_insns_test_no...
1747 but it appears that this should do the same job. */
1748 if (count == 31
1749 && next_insn_tests_no_inequality (insn))
1750 return "tst%.l %1";
1751 if (count == 15
1752 && next_insn_tests_no_inequality (insn))
1753 return "tst%.w %1";
1754 if (count == 7
1755 && next_insn_tests_no_inequality (insn))
1756 return "tst%.b %1";
1757 /* Try to use `movew to ccr' followed by the appropriate branch insn.
1758 On some m68k variants unfortunately that's slower than btst.
1759 On 68000 and higher, that should also work for all HImode operands. */
1760 if (TUNE_CPU32 || TARGET_COLDFIRE || optimize_size)
1761 {
1762 if (count == 3 && DATA_REG_P (operands[1])
1763 && next_insn_tests_no_inequality (insn))
1764 {
1765 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N | CC_NO_OVERFLOW;
1766 return "move%.w %1,%%ccr";
1767 }
1768 if (count == 2 && DATA_REG_P (operands[1])
1769 && next_insn_tests_no_inequality (insn))
1770 {
1771 cc_status.flags = CC_NOT_NEGATIVE | CC_INVERTED | CC_NO_OVERFLOW;
1772 return "move%.w %1,%%ccr";
1773 }
1774 /* count == 1 followed by bvc/bvs and
1775 count == 0 followed by bcc/bcs are also possible, but need
1776 m68k-specific CC_Z_IN_NOT_V and CC_Z_IN_NOT_C flags. */
1777 }
1778
1779 cc_status.flags = CC_NOT_NEGATIVE;
1780 }
1781 return "btst %0,%1";
1782 }
1783 \f
1784 /* Return true if X is a legitimate base register. STRICT_P says
1785 whether we need strict checking. */
1786
1787 bool
1788 m68k_legitimate_base_reg_p (rtx x, bool strict_p)
1789 {
1790 /* Allow SUBREG everywhere we allow REG. This results in better code. */
1791 if (!strict_p && GET_CODE (x) == SUBREG)
1792 x = SUBREG_REG (x);
1793
1794 return (REG_P (x)
1795 && (strict_p
1796 ? REGNO_OK_FOR_BASE_P (REGNO (x))
1797 : REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (x))));
1798 }
1799
1800 /* Return true if X is a legitimate index register. STRICT_P says
1801 whether we need strict checking. */
1802
1803 bool
1804 m68k_legitimate_index_reg_p (rtx x, bool strict_p)
1805 {
1806 if (!strict_p && GET_CODE (x) == SUBREG)
1807 x = SUBREG_REG (x);
1808
1809 return (REG_P (x)
1810 && (strict_p
1811 ? REGNO_OK_FOR_INDEX_P (REGNO (x))
1812 : REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (x))));
1813 }
1814
1815 /* Return true if X is a legitimate index expression for a (d8,An,Xn) or
1816 (bd,An,Xn) addressing mode. Fill in the INDEX and SCALE fields of
1817 ADDRESS if so. STRICT_P says whether we need strict checking. */
1818
1819 static bool
1820 m68k_decompose_index (rtx x, bool strict_p, struct m68k_address *address)
1821 {
1822 int scale;
1823
1824 /* Check for a scale factor. */
1825 scale = 1;
1826 if ((TARGET_68020 || TARGET_COLDFIRE)
1827 && GET_CODE (x) == MULT
1828 && GET_CODE (XEXP (x, 1)) == CONST_INT
1829 && (INTVAL (XEXP (x, 1)) == 2
1830 || INTVAL (XEXP (x, 1)) == 4
1831 || (INTVAL (XEXP (x, 1)) == 8
1832 && (TARGET_COLDFIRE_FPU || !TARGET_COLDFIRE))))
1833 {
1834 scale = INTVAL (XEXP (x, 1));
1835 x = XEXP (x, 0);
1836 }
1837
1838 /* Check for a word extension. */
1839 if (!TARGET_COLDFIRE
1840 && GET_CODE (x) == SIGN_EXTEND
1841 && GET_MODE (XEXP (x, 0)) == HImode)
1842 x = XEXP (x, 0);
1843
1844 if (m68k_legitimate_index_reg_p (x, strict_p))
1845 {
1846 address->scale = scale;
1847 address->index = x;
1848 return true;
1849 }
1850
1851 return false;
1852 }
1853
1854 /* Return true if X is an illegitimate symbolic constant. */
1855
1856 bool
1857 m68k_illegitimate_symbolic_constant_p (rtx x)
1858 {
1859 rtx base, offset;
1860
1861 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
1862 {
1863 split_const (x, &base, &offset);
1864 if (GET_CODE (base) == SYMBOL_REF
1865 && !offset_within_block_p (base, INTVAL (offset)))
1866 return true;
1867 }
1868 return m68k_tls_reference_p (x, false);
1869 }
1870
1871 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
1872
1873 static bool
1874 m68k_cannot_force_const_mem (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
1875 {
1876 return m68k_illegitimate_symbolic_constant_p (x);
1877 }
1878
1879 /* Return true if X is a legitimate constant address that can reach
1880 bytes in the range [X, X + REACH). STRICT_P says whether we need
1881 strict checking. */
1882
1883 static bool
1884 m68k_legitimate_constant_address_p (rtx x, unsigned int reach, bool strict_p)
1885 {
1886 rtx base, offset;
1887
1888 if (!CONSTANT_ADDRESS_P (x))
1889 return false;
1890
1891 if (flag_pic
1892 && !(strict_p && TARGET_PCREL)
1893 && symbolic_operand (x, VOIDmode))
1894 return false;
1895
1896 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P && reach > 1)
1897 {
1898 split_const (x, &base, &offset);
1899 if (GET_CODE (base) == SYMBOL_REF
1900 && !offset_within_block_p (base, INTVAL (offset) + reach - 1))
1901 return false;
1902 }
1903
1904 return !m68k_tls_reference_p (x, false);
1905 }
1906
1907 /* Return true if X is a LABEL_REF for a jump table. Assume that unplaced
1908 labels will become jump tables. */
1909
1910 static bool
1911 m68k_jump_table_ref_p (rtx x)
1912 {
1913 if (GET_CODE (x) != LABEL_REF)
1914 return false;
1915
1916 x = XEXP (x, 0);
1917 if (!NEXT_INSN (x) && !PREV_INSN (x))
1918 return true;
1919
1920 x = next_nonnote_insn (x);
1921 return x && JUMP_TABLE_DATA_P (x);
1922 }
1923
1924 /* Return true if X is a legitimate address for values of mode MODE.
1925 STRICT_P says whether strict checking is needed. If the address
1926 is valid, describe its components in *ADDRESS. */
1927
1928 static bool
1929 m68k_decompose_address (enum machine_mode mode, rtx x,
1930 bool strict_p, struct m68k_address *address)
1931 {
1932 unsigned int reach;
1933
1934 memset (address, 0, sizeof (*address));
1935
1936 if (mode == BLKmode)
1937 reach = 1;
1938 else
1939 reach = GET_MODE_SIZE (mode);
1940
1941 /* Check for (An) (mode 2). */
1942 if (m68k_legitimate_base_reg_p (x, strict_p))
1943 {
1944 address->base = x;
1945 return true;
1946 }
1947
1948 /* Check for -(An) and (An)+ (modes 3 and 4). */
1949 if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
1950 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
1951 {
1952 address->code = GET_CODE (x);
1953 address->base = XEXP (x, 0);
1954 return true;
1955 }
1956
1957 /* Check for (d16,An) (mode 5). */
1958 if (GET_CODE (x) == PLUS
1959 && GET_CODE (XEXP (x, 1)) == CONST_INT
1960 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x8000, 0x8000 - reach)
1961 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
1962 {
1963 address->base = XEXP (x, 0);
1964 address->offset = XEXP (x, 1);
1965 return true;
1966 }
1967
1968 /* Check for GOT loads. These are (bd,An,Xn) addresses if
1969 TARGET_68020 && flag_pic == 2, otherwise they are (d16,An)
1970 addresses. */
1971 if (GET_CODE (x) == PLUS
1972 && XEXP (x, 0) == pic_offset_table_rtx)
1973 {
1974 /* As we are processing a PLUS, do not unwrap RELOC32 symbols --
1975 they are invalid in this context. */
1976 if (m68k_unwrap_symbol (XEXP (x, 1), false) != XEXP (x, 1))
1977 {
1978 address->base = XEXP (x, 0);
1979 address->offset = XEXP (x, 1);
1980 return true;
1981 }
1982 }
1983
1984 /* The ColdFire FPU only accepts addressing modes 2-5. */
1985 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
1986 return false;
1987
1988 /* Check for (xxx).w and (xxx).l. Also, in the TARGET_PCREL case,
1989 check for (d16,PC) or (bd,PC,Xn) with a suppressed index register.
1990 All these modes are variations of mode 7. */
1991 if (m68k_legitimate_constant_address_p (x, reach, strict_p))
1992 {
1993 address->offset = x;
1994 return true;
1995 }
1996
1997 /* Check for (d8,PC,Xn), a mode 7 form. This case is needed for
1998 tablejumps.
1999
2000 ??? do_tablejump creates these addresses before placing the target
2001 label, so we have to assume that unplaced labels are jump table
2002 references. It seems unlikely that we would ever generate indexed
2003 accesses to unplaced labels in other cases. */
2004 if (GET_CODE (x) == PLUS
2005 && m68k_jump_table_ref_p (XEXP (x, 1))
2006 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2007 {
2008 address->offset = XEXP (x, 1);
2009 return true;
2010 }
2011
2012 /* Everything hereafter deals with (d8,An,Xn.SIZE*SCALE) or
2013 (bd,An,Xn.SIZE*SCALE) addresses. */
2014
2015 if (TARGET_68020)
2016 {
2017 /* Check for a nonzero base displacement. */
2018 if (GET_CODE (x) == PLUS
2019 && m68k_legitimate_constant_address_p (XEXP (x, 1), reach, strict_p))
2020 {
2021 address->offset = XEXP (x, 1);
2022 x = XEXP (x, 0);
2023 }
2024
2025 /* Check for a suppressed index register. */
2026 if (m68k_legitimate_base_reg_p (x, strict_p))
2027 {
2028 address->base = x;
2029 return true;
2030 }
2031
2032 /* Check for a suppressed base register. Do not allow this case
2033 for non-symbolic offsets as it effectively gives gcc freedom
2034 to treat data registers as base registers, which can generate
2035 worse code. */
2036 if (address->offset
2037 && symbolic_operand (address->offset, VOIDmode)
2038 && m68k_decompose_index (x, strict_p, address))
2039 return true;
2040 }
2041 else
2042 {
2043 /* Check for a nonzero base displacement. */
2044 if (GET_CODE (x) == PLUS
2045 && GET_CODE (XEXP (x, 1)) == CONST_INT
2046 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x80, 0x80 - reach))
2047 {
2048 address->offset = XEXP (x, 1);
2049 x = XEXP (x, 0);
2050 }
2051 }
2052
2053 /* We now expect the sum of a base and an index. */
2054 if (GET_CODE (x) == PLUS)
2055 {
2056 if (m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p)
2057 && m68k_decompose_index (XEXP (x, 1), strict_p, address))
2058 {
2059 address->base = XEXP (x, 0);
2060 return true;
2061 }
2062
2063 if (m68k_legitimate_base_reg_p (XEXP (x, 1), strict_p)
2064 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2065 {
2066 address->base = XEXP (x, 1);
2067 return true;
2068 }
2069 }
2070 return false;
2071 }
2072
2073 /* Return true if X is a legitimate address for values of mode MODE.
2074 STRICT_P says whether strict checking is needed. */
2075
2076 bool
2077 m68k_legitimate_address_p (enum machine_mode mode, rtx x, bool strict_p)
2078 {
2079 struct m68k_address address;
2080
2081 return m68k_decompose_address (mode, x, strict_p, &address);
2082 }
2083
2084 /* Return true if X is a memory, describing its address in ADDRESS if so.
2085 Apply strict checking if called during or after reload. */
2086
2087 static bool
2088 m68k_legitimate_mem_p (rtx x, struct m68k_address *address)
2089 {
2090 return (MEM_P (x)
2091 && m68k_decompose_address (GET_MODE (x), XEXP (x, 0),
2092 reload_in_progress || reload_completed,
2093 address));
2094 }
2095
2096 /* Implement TARGET_LEGITIMATE_CONSTANT_P. */
2097
2098 bool
2099 m68k_legitimate_constant_p (enum machine_mode mode, rtx x)
2100 {
2101 return mode != XFmode && !m68k_illegitimate_symbolic_constant_p (x);
2102 }
2103
2104 /* Return true if X matches the 'Q' constraint. It must be a memory
2105 with a base address and no constant offset or index. */
2106
2107 bool
2108 m68k_matches_q_p (rtx x)
2109 {
2110 struct m68k_address address;
2111
2112 return (m68k_legitimate_mem_p (x, &address)
2113 && address.code == UNKNOWN
2114 && address.base
2115 && !address.offset
2116 && !address.index);
2117 }
2118
2119 /* Return true if X matches the 'U' constraint. It must be a base address
2120 with a constant offset and no index. */
2121
2122 bool
2123 m68k_matches_u_p (rtx x)
2124 {
2125 struct m68k_address address;
2126
2127 return (m68k_legitimate_mem_p (x, &address)
2128 && address.code == UNKNOWN
2129 && address.base
2130 && address.offset
2131 && !address.index);
2132 }
2133
2134 /* Return GOT pointer. */
2135
2136 static rtx
2137 m68k_get_gp (void)
2138 {
2139 if (pic_offset_table_rtx == NULL_RTX)
2140 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_REG);
2141
2142 crtl->uses_pic_offset_table = 1;
2143
2144 return pic_offset_table_rtx;
2145 }
2146
2147 /* M68K relocations, used to distinguish GOT and TLS relocations in UNSPEC
2148 wrappers. */
2149 enum m68k_reloc { RELOC_GOT, RELOC_TLSGD, RELOC_TLSLDM, RELOC_TLSLDO,
2150 RELOC_TLSIE, RELOC_TLSLE };
2151
2152 #define TLS_RELOC_P(RELOC) ((RELOC) != RELOC_GOT)
2153
2154 /* Wrap symbol X into unspec representing relocation RELOC.
2155 BASE_REG - register that should be added to the result.
2156 TEMP_REG - if non-null, temporary register. */
2157
2158 static rtx
2159 m68k_wrap_symbol (rtx x, enum m68k_reloc reloc, rtx base_reg, rtx temp_reg)
2160 {
2161 bool use_x_p;
2162
2163 use_x_p = (base_reg == pic_offset_table_rtx) ? TARGET_XGOT : TARGET_XTLS;
2164
2165 if (TARGET_COLDFIRE && use_x_p)
2166 /* When compiling with -mx{got, tls} switch the code will look like this:
2167
2168 move.l <X>@<RELOC>,<TEMP_REG>
2169 add.l <BASE_REG>,<TEMP_REG> */
2170 {
2171 /* Wrap X in UNSPEC_??? to tip m68k_output_addr_const_extra
2172 to put @RELOC after reference. */
2173 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2174 UNSPEC_RELOC32);
2175 x = gen_rtx_CONST (Pmode, x);
2176
2177 if (temp_reg == NULL)
2178 {
2179 gcc_assert (can_create_pseudo_p ());
2180 temp_reg = gen_reg_rtx (Pmode);
2181 }
2182
2183 emit_move_insn (temp_reg, x);
2184 emit_insn (gen_addsi3 (temp_reg, temp_reg, base_reg));
2185 x = temp_reg;
2186 }
2187 else
2188 {
2189 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2190 UNSPEC_RELOC16);
2191 x = gen_rtx_CONST (Pmode, x);
2192
2193 x = gen_rtx_PLUS (Pmode, base_reg, x);
2194 }
2195
2196 return x;
2197 }
2198
2199 /* Helper for m68k_unwrap_symbol.
2200 Also, if unwrapping was successful (that is if (ORIG != <return value>)),
2201 sets *RELOC_PTR to relocation type for the symbol. */
2202
2203 static rtx
2204 m68k_unwrap_symbol_1 (rtx orig, bool unwrap_reloc32_p,
2205 enum m68k_reloc *reloc_ptr)
2206 {
2207 if (GET_CODE (orig) == CONST)
2208 {
2209 rtx x;
2210 enum m68k_reloc dummy;
2211
2212 x = XEXP (orig, 0);
2213
2214 if (reloc_ptr == NULL)
2215 reloc_ptr = &dummy;
2216
2217 /* Handle an addend. */
2218 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2219 && CONST_INT_P (XEXP (x, 1)))
2220 x = XEXP (x, 0);
2221
2222 if (GET_CODE (x) == UNSPEC)
2223 {
2224 switch (XINT (x, 1))
2225 {
2226 case UNSPEC_RELOC16:
2227 orig = XVECEXP (x, 0, 0);
2228 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2229 break;
2230
2231 case UNSPEC_RELOC32:
2232 if (unwrap_reloc32_p)
2233 {
2234 orig = XVECEXP (x, 0, 0);
2235 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2236 }
2237 break;
2238
2239 default:
2240 break;
2241 }
2242 }
2243 }
2244
2245 return orig;
2246 }
2247
2248 /* Unwrap symbol from UNSPEC_RELOC16 and, if unwrap_reloc32_p,
2249 UNSPEC_RELOC32 wrappers. */
2250
2251 rtx
2252 m68k_unwrap_symbol (rtx orig, bool unwrap_reloc32_p)
2253 {
2254 return m68k_unwrap_symbol_1 (orig, unwrap_reloc32_p, NULL);
2255 }
2256
2257 /* Helper for m68k_final_prescan_insn. */
2258
2259 static int
2260 m68k_final_prescan_insn_1 (rtx *x_ptr, void *data ATTRIBUTE_UNUSED)
2261 {
2262 rtx x = *x_ptr;
2263
2264 if (m68k_unwrap_symbol (x, true) != x)
2265 /* For rationale of the below, see comment in m68k_final_prescan_insn. */
2266 {
2267 rtx plus;
2268
2269 gcc_assert (GET_CODE (x) == CONST);
2270 plus = XEXP (x, 0);
2271
2272 if (GET_CODE (plus) == PLUS || GET_CODE (plus) == MINUS)
2273 {
2274 rtx unspec;
2275 rtx addend;
2276
2277 unspec = XEXP (plus, 0);
2278 gcc_assert (GET_CODE (unspec) == UNSPEC);
2279 addend = XEXP (plus, 1);
2280 gcc_assert (CONST_INT_P (addend));
2281
2282 /* We now have all the pieces, rearrange them. */
2283
2284 /* Move symbol to plus. */
2285 XEXP (plus, 0) = XVECEXP (unspec, 0, 0);
2286
2287 /* Move plus inside unspec. */
2288 XVECEXP (unspec, 0, 0) = plus;
2289
2290 /* Move unspec to top level of const. */
2291 XEXP (x, 0) = unspec;
2292 }
2293
2294 return -1;
2295 }
2296
2297 return 0;
2298 }
2299
2300 /* Prescan insn before outputing assembler for it. */
2301
2302 void
2303 m68k_final_prescan_insn (rtx insn ATTRIBUTE_UNUSED,
2304 rtx *operands, int n_operands)
2305 {
2306 int i;
2307
2308 /* Combine and, possibly, other optimizations may do good job
2309 converting
2310 (const (unspec [(symbol)]))
2311 into
2312 (const (plus (unspec [(symbol)])
2313 (const_int N))).
2314 The problem with this is emitting @TLS or @GOT decorations.
2315 The decoration is emitted when processing (unspec), so the
2316 result would be "#symbol@TLSLE+N" instead of "#symbol+N@TLSLE".
2317
2318 It seems that the easiest solution to this is to convert such
2319 operands to
2320 (const (unspec [(plus (symbol)
2321 (const_int N))])).
2322 Note, that the top level of operand remains intact, so we don't have
2323 to patch up anything outside of the operand. */
2324
2325 for (i = 0; i < n_operands; ++i)
2326 {
2327 rtx op;
2328
2329 op = operands[i];
2330
2331 for_each_rtx (&op, m68k_final_prescan_insn_1, NULL);
2332 }
2333 }
2334
2335 /* Move X to a register and add REG_EQUAL note pointing to ORIG.
2336 If REG is non-null, use it; generate new pseudo otherwise. */
2337
2338 static rtx
2339 m68k_move_to_reg (rtx x, rtx orig, rtx reg)
2340 {
2341 rtx insn;
2342
2343 if (reg == NULL_RTX)
2344 {
2345 gcc_assert (can_create_pseudo_p ());
2346 reg = gen_reg_rtx (Pmode);
2347 }
2348
2349 insn = emit_move_insn (reg, x);
2350 /* Put a REG_EQUAL note on this insn, so that it can be optimized
2351 by loop. */
2352 set_unique_reg_note (insn, REG_EQUAL, orig);
2353
2354 return reg;
2355 }
2356
2357 /* Does the same as m68k_wrap_symbol, but returns a memory reference to
2358 GOT slot. */
2359
2360 static rtx
2361 m68k_wrap_symbol_into_got_ref (rtx x, enum m68k_reloc reloc, rtx temp_reg)
2362 {
2363 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), temp_reg);
2364
2365 x = gen_rtx_MEM (Pmode, x);
2366 MEM_READONLY_P (x) = 1;
2367
2368 return x;
2369 }
2370
2371 /* Legitimize PIC addresses. If the address is already
2372 position-independent, we return ORIG. Newly generated
2373 position-independent addresses go to REG. If we need more
2374 than one register, we lose.
2375
2376 An address is legitimized by making an indirect reference
2377 through the Global Offset Table with the name of the symbol
2378 used as an offset.
2379
2380 The assembler and linker are responsible for placing the
2381 address of the symbol in the GOT. The function prologue
2382 is responsible for initializing a5 to the starting address
2383 of the GOT.
2384
2385 The assembler is also responsible for translating a symbol name
2386 into a constant displacement from the start of the GOT.
2387
2388 A quick example may make things a little clearer:
2389
2390 When not generating PIC code to store the value 12345 into _foo
2391 we would generate the following code:
2392
2393 movel #12345, _foo
2394
2395 When generating PIC two transformations are made. First, the compiler
2396 loads the address of foo into a register. So the first transformation makes:
2397
2398 lea _foo, a0
2399 movel #12345, a0@
2400
2401 The code in movsi will intercept the lea instruction and call this
2402 routine which will transform the instructions into:
2403
2404 movel a5@(_foo:w), a0
2405 movel #12345, a0@
2406
2407
2408 That (in a nutshell) is how *all* symbol and label references are
2409 handled. */
2410
2411 rtx
2412 legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED,
2413 rtx reg)
2414 {
2415 rtx pic_ref = orig;
2416
2417 /* First handle a simple SYMBOL_REF or LABEL_REF */
2418 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
2419 {
2420 gcc_assert (reg);
2421
2422 pic_ref = m68k_wrap_symbol_into_got_ref (orig, RELOC_GOT, reg);
2423 pic_ref = m68k_move_to_reg (pic_ref, orig, reg);
2424 }
2425 else if (GET_CODE (orig) == CONST)
2426 {
2427 rtx base;
2428
2429 /* Make sure this has not already been legitimized. */
2430 if (m68k_unwrap_symbol (orig, true) != orig)
2431 return orig;
2432
2433 gcc_assert (reg);
2434
2435 /* legitimize both operands of the PLUS */
2436 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
2437
2438 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
2439 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
2440 base == reg ? 0 : reg);
2441
2442 if (GET_CODE (orig) == CONST_INT)
2443 pic_ref = plus_constant (base, INTVAL (orig));
2444 else
2445 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
2446 }
2447
2448 return pic_ref;
2449 }
2450
2451 /* The __tls_get_addr symbol. */
2452 static GTY(()) rtx m68k_tls_get_addr;
2453
2454 /* Return SYMBOL_REF for __tls_get_addr. */
2455
2456 static rtx
2457 m68k_get_tls_get_addr (void)
2458 {
2459 if (m68k_tls_get_addr == NULL_RTX)
2460 m68k_tls_get_addr = init_one_libfunc ("__tls_get_addr");
2461
2462 return m68k_tls_get_addr;
2463 }
2464
2465 /* Return libcall result in A0 instead of usual D0. */
2466 static bool m68k_libcall_value_in_a0_p = false;
2467
2468 /* Emit instruction sequence that calls __tls_get_addr. X is
2469 the TLS symbol we are referencing and RELOC is the symbol type to use
2470 (either TLSGD or TLSLDM). EQV is the REG_EQUAL note for the sequence
2471 emitted. A pseudo register with result of __tls_get_addr call is
2472 returned. */
2473
2474 static rtx
2475 m68k_call_tls_get_addr (rtx x, rtx eqv, enum m68k_reloc reloc)
2476 {
2477 rtx a0;
2478 rtx insns;
2479 rtx dest;
2480
2481 /* Emit the call sequence. */
2482 start_sequence ();
2483
2484 /* FIXME: Unfortunately, emit_library_call_value does not
2485 consider (plus (%a5) (const (unspec))) to be a good enough
2486 operand for push, so it forces it into a register. The bad
2487 thing about this is that combiner, due to copy propagation and other
2488 optimizations, sometimes can not later fix this. As a consequence,
2489 additional register may be allocated resulting in a spill.
2490 For reference, see args processing loops in
2491 calls.c:emit_library_call_value_1.
2492 For testcase, see gcc.target/m68k/tls-{gd, ld}.c */
2493 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), NULL_RTX);
2494
2495 /* __tls_get_addr() is not a libcall, but emitting a libcall_value
2496 is the simpliest way of generating a call. The difference between
2497 __tls_get_addr() and libcall is that the result is returned in D0
2498 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2499 which temporarily switches returning the result to A0. */
2500
2501 m68k_libcall_value_in_a0_p = true;
2502 a0 = emit_library_call_value (m68k_get_tls_get_addr (), NULL_RTX, LCT_PURE,
2503 Pmode, 1, x, Pmode);
2504 m68k_libcall_value_in_a0_p = false;
2505
2506 insns = get_insns ();
2507 end_sequence ();
2508
2509 gcc_assert (can_create_pseudo_p ());
2510 dest = gen_reg_rtx (Pmode);
2511 emit_libcall_block (insns, dest, a0, eqv);
2512
2513 return dest;
2514 }
2515
2516 /* The __tls_get_addr symbol. */
2517 static GTY(()) rtx m68k_read_tp;
2518
2519 /* Return SYMBOL_REF for __m68k_read_tp. */
2520
2521 static rtx
2522 m68k_get_m68k_read_tp (void)
2523 {
2524 if (m68k_read_tp == NULL_RTX)
2525 m68k_read_tp = init_one_libfunc ("__m68k_read_tp");
2526
2527 return m68k_read_tp;
2528 }
2529
2530 /* Emit instruction sequence that calls __m68k_read_tp.
2531 A pseudo register with result of __m68k_read_tp call is returned. */
2532
2533 static rtx
2534 m68k_call_m68k_read_tp (void)
2535 {
2536 rtx a0;
2537 rtx eqv;
2538 rtx insns;
2539 rtx dest;
2540
2541 start_sequence ();
2542
2543 /* __m68k_read_tp() is not a libcall, but emitting a libcall_value
2544 is the simpliest way of generating a call. The difference between
2545 __m68k_read_tp() and libcall is that the result is returned in D0
2546 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2547 which temporarily switches returning the result to A0. */
2548
2549 /* Emit the call sequence. */
2550 m68k_libcall_value_in_a0_p = true;
2551 a0 = emit_library_call_value (m68k_get_m68k_read_tp (), NULL_RTX, LCT_PURE,
2552 Pmode, 0);
2553 m68k_libcall_value_in_a0_p = false;
2554 insns = get_insns ();
2555 end_sequence ();
2556
2557 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2558 share the m68k_read_tp result with other IE/LE model accesses. */
2559 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const1_rtx), UNSPEC_RELOC32);
2560
2561 gcc_assert (can_create_pseudo_p ());
2562 dest = gen_reg_rtx (Pmode);
2563 emit_libcall_block (insns, dest, a0, eqv);
2564
2565 return dest;
2566 }
2567
2568 /* Return a legitimized address for accessing TLS SYMBOL_REF X.
2569 For explanations on instructions sequences see TLS/NPTL ABI for m68k and
2570 ColdFire. */
2571
2572 rtx
2573 m68k_legitimize_tls_address (rtx orig)
2574 {
2575 switch (SYMBOL_REF_TLS_MODEL (orig))
2576 {
2577 case TLS_MODEL_GLOBAL_DYNAMIC:
2578 orig = m68k_call_tls_get_addr (orig, orig, RELOC_TLSGD);
2579 break;
2580
2581 case TLS_MODEL_LOCAL_DYNAMIC:
2582 {
2583 rtx eqv;
2584 rtx a0;
2585 rtx x;
2586
2587 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2588 share the LDM result with other LD model accesses. */
2589 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
2590 UNSPEC_RELOC32);
2591
2592 a0 = m68k_call_tls_get_addr (orig, eqv, RELOC_TLSLDM);
2593
2594 x = m68k_wrap_symbol (orig, RELOC_TLSLDO, a0, NULL_RTX);
2595
2596 if (can_create_pseudo_p ())
2597 x = m68k_move_to_reg (x, orig, NULL_RTX);
2598
2599 orig = x;
2600 break;
2601 }
2602
2603 case TLS_MODEL_INITIAL_EXEC:
2604 {
2605 rtx a0;
2606 rtx x;
2607
2608 a0 = m68k_call_m68k_read_tp ();
2609
2610 x = m68k_wrap_symbol_into_got_ref (orig, RELOC_TLSIE, NULL_RTX);
2611 x = gen_rtx_PLUS (Pmode, x, a0);
2612
2613 if (can_create_pseudo_p ())
2614 x = m68k_move_to_reg (x, orig, NULL_RTX);
2615
2616 orig = x;
2617 break;
2618 }
2619
2620 case TLS_MODEL_LOCAL_EXEC:
2621 {
2622 rtx a0;
2623 rtx x;
2624
2625 a0 = m68k_call_m68k_read_tp ();
2626
2627 x = m68k_wrap_symbol (orig, RELOC_TLSLE, a0, NULL_RTX);
2628
2629 if (can_create_pseudo_p ())
2630 x = m68k_move_to_reg (x, orig, NULL_RTX);
2631
2632 orig = x;
2633 break;
2634 }
2635
2636 default:
2637 gcc_unreachable ();
2638 }
2639
2640 return orig;
2641 }
2642
2643 /* Return true if X is a TLS symbol. */
2644
2645 static bool
2646 m68k_tls_symbol_p (rtx x)
2647 {
2648 if (!TARGET_HAVE_TLS)
2649 return false;
2650
2651 if (GET_CODE (x) != SYMBOL_REF)
2652 return false;
2653
2654 return SYMBOL_REF_TLS_MODEL (x) != 0;
2655 }
2656
2657 /* Helper for m68k_tls_referenced_p. */
2658
2659 static int
2660 m68k_tls_reference_p_1 (rtx *x_ptr, void *data ATTRIBUTE_UNUSED)
2661 {
2662 /* Note: this is not the same as m68k_tls_symbol_p. */
2663 if (GET_CODE (*x_ptr) == SYMBOL_REF)
2664 return SYMBOL_REF_TLS_MODEL (*x_ptr) != 0 ? 1 : 0;
2665
2666 /* Don't recurse into legitimate TLS references. */
2667 if (m68k_tls_reference_p (*x_ptr, true))
2668 return -1;
2669
2670 return 0;
2671 }
2672
2673 /* If !LEGITIMATE_P, return true if X is a TLS symbol reference,
2674 though illegitimate one.
2675 If LEGITIMATE_P, return true if X is a legitimate TLS symbol reference. */
2676
2677 bool
2678 m68k_tls_reference_p (rtx x, bool legitimate_p)
2679 {
2680 if (!TARGET_HAVE_TLS)
2681 return false;
2682
2683 if (!legitimate_p)
2684 return for_each_rtx (&x, m68k_tls_reference_p_1, NULL) == 1 ? true : false;
2685 else
2686 {
2687 enum m68k_reloc reloc = RELOC_GOT;
2688
2689 return (m68k_unwrap_symbol_1 (x, true, &reloc) != x
2690 && TLS_RELOC_P (reloc));
2691 }
2692 }
2693
2694 \f
2695
2696 #define USE_MOVQ(i) ((unsigned) ((i) + 128) <= 255)
2697
2698 /* Return the type of move that should be used for integer I. */
2699
2700 M68K_CONST_METHOD
2701 m68k_const_method (HOST_WIDE_INT i)
2702 {
2703 unsigned u;
2704
2705 if (USE_MOVQ (i))
2706 return MOVQ;
2707
2708 /* The ColdFire doesn't have byte or word operations. */
2709 /* FIXME: This may not be useful for the m68060 either. */
2710 if (!TARGET_COLDFIRE)
2711 {
2712 /* if -256 < N < 256 but N is not in range for a moveq
2713 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
2714 if (USE_MOVQ (i ^ 0xff))
2715 return NOTB;
2716 /* Likewise, try with not.w */
2717 if (USE_MOVQ (i ^ 0xffff))
2718 return NOTW;
2719 /* This is the only value where neg.w is useful */
2720 if (i == -65408)
2721 return NEGW;
2722 }
2723
2724 /* Try also with swap. */
2725 u = i;
2726 if (USE_MOVQ ((u >> 16) | (u << 16)))
2727 return SWAP;
2728
2729 if (TARGET_ISAB)
2730 {
2731 /* Try using MVZ/MVS with an immediate value to load constants. */
2732 if (i >= 0 && i <= 65535)
2733 return MVZ;
2734 if (i >= -32768 && i <= 32767)
2735 return MVS;
2736 }
2737
2738 /* Otherwise, use move.l */
2739 return MOVL;
2740 }
2741
2742 /* Return the cost of moving constant I into a data register. */
2743
2744 static int
2745 const_int_cost (HOST_WIDE_INT i)
2746 {
2747 switch (m68k_const_method (i))
2748 {
2749 case MOVQ:
2750 /* Constants between -128 and 127 are cheap due to moveq. */
2751 return 0;
2752 case MVZ:
2753 case MVS:
2754 case NOTB:
2755 case NOTW:
2756 case NEGW:
2757 case SWAP:
2758 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap. */
2759 return 1;
2760 case MOVL:
2761 return 2;
2762 default:
2763 gcc_unreachable ();
2764 }
2765 }
2766
2767 static bool
2768 m68k_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
2769 int *total, bool speed ATTRIBUTE_UNUSED)
2770 {
2771 switch (code)
2772 {
2773 case CONST_INT:
2774 /* Constant zero is super cheap due to clr instruction. */
2775 if (x == const0_rtx)
2776 *total = 0;
2777 else
2778 *total = const_int_cost (INTVAL (x));
2779 return true;
2780
2781 case CONST:
2782 case LABEL_REF:
2783 case SYMBOL_REF:
2784 *total = 3;
2785 return true;
2786
2787 case CONST_DOUBLE:
2788 /* Make 0.0 cheaper than other floating constants to
2789 encourage creating tstsf and tstdf insns. */
2790 if (outer_code == COMPARE
2791 && (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
2792 *total = 4;
2793 else
2794 *total = 5;
2795 return true;
2796
2797 /* These are vaguely right for a 68020. */
2798 /* The costs for long multiply have been adjusted to work properly
2799 in synth_mult on the 68020, relative to an average of the time
2800 for add and the time for shift, taking away a little more because
2801 sometimes move insns are needed. */
2802 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS
2803 terms. */
2804 #define MULL_COST \
2805 (TUNE_68060 ? 2 \
2806 : TUNE_68040 ? 5 \
2807 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2808 : (TUNE_CFV2 && TUNE_MAC) ? 4 \
2809 : TUNE_CFV2 ? 8 \
2810 : TARGET_COLDFIRE ? 3 : 13)
2811
2812 #define MULW_COST \
2813 (TUNE_68060 ? 2 \
2814 : TUNE_68040 ? 3 \
2815 : TUNE_68000_10 ? 5 \
2816 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2817 : (TUNE_CFV2 && TUNE_MAC) ? 2 \
2818 : TUNE_CFV2 ? 8 \
2819 : TARGET_COLDFIRE ? 2 : 8)
2820
2821 #define DIVW_COST \
2822 (TARGET_CF_HWDIV ? 11 \
2823 : TUNE_68000_10 || TARGET_COLDFIRE ? 12 : 27)
2824
2825 case PLUS:
2826 /* An lea costs about three times as much as a simple add. */
2827 if (GET_MODE (x) == SImode
2828 && GET_CODE (XEXP (x, 1)) == REG
2829 && GET_CODE (XEXP (x, 0)) == MULT
2830 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
2831 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2832 && (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
2833 || INTVAL (XEXP (XEXP (x, 0), 1)) == 4
2834 || INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
2835 {
2836 /* lea an@(dx:l:i),am */
2837 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 2 : 3);
2838 return true;
2839 }
2840 return false;
2841
2842 case ASHIFT:
2843 case ASHIFTRT:
2844 case LSHIFTRT:
2845 if (TUNE_68060)
2846 {
2847 *total = COSTS_N_INSNS(1);
2848 return true;
2849 }
2850 if (TUNE_68000_10)
2851 {
2852 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
2853 {
2854 if (INTVAL (XEXP (x, 1)) < 16)
2855 *total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
2856 else
2857 /* We're using clrw + swap for these cases. */
2858 *total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
2859 }
2860 else
2861 *total = COSTS_N_INSNS (10); /* Worst case. */
2862 return true;
2863 }
2864 /* A shift by a big integer takes an extra instruction. */
2865 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2866 && (INTVAL (XEXP (x, 1)) == 16))
2867 {
2868 *total = COSTS_N_INSNS (2); /* clrw;swap */
2869 return true;
2870 }
2871 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2872 && !(INTVAL (XEXP (x, 1)) > 0
2873 && INTVAL (XEXP (x, 1)) <= 8))
2874 {
2875 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 1 : 3); /* lsr #i,dn */
2876 return true;
2877 }
2878 return false;
2879
2880 case MULT:
2881 if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
2882 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
2883 && GET_MODE (x) == SImode)
2884 *total = COSTS_N_INSNS (MULW_COST);
2885 else if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
2886 *total = COSTS_N_INSNS (MULW_COST);
2887 else
2888 *total = COSTS_N_INSNS (MULL_COST);
2889 return true;
2890
2891 case DIV:
2892 case UDIV:
2893 case MOD:
2894 case UMOD:
2895 if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
2896 *total = COSTS_N_INSNS (DIVW_COST); /* div.w */
2897 else if (TARGET_CF_HWDIV)
2898 *total = COSTS_N_INSNS (18);
2899 else
2900 *total = COSTS_N_INSNS (43); /* div.l */
2901 return true;
2902
2903 case ZERO_EXTRACT:
2904 if (outer_code == COMPARE)
2905 *total = 0;
2906 return false;
2907
2908 default:
2909 return false;
2910 }
2911 }
2912
2913 /* Return an instruction to move CONST_INT OPERANDS[1] into data register
2914 OPERANDS[0]. */
2915
2916 static const char *
2917 output_move_const_into_data_reg (rtx *operands)
2918 {
2919 HOST_WIDE_INT i;
2920
2921 i = INTVAL (operands[1]);
2922 switch (m68k_const_method (i))
2923 {
2924 case MVZ:
2925 return "mvzw %1,%0";
2926 case MVS:
2927 return "mvsw %1,%0";
2928 case MOVQ:
2929 return "moveq %1,%0";
2930 case NOTB:
2931 CC_STATUS_INIT;
2932 operands[1] = GEN_INT (i ^ 0xff);
2933 return "moveq %1,%0\n\tnot%.b %0";
2934 case NOTW:
2935 CC_STATUS_INIT;
2936 operands[1] = GEN_INT (i ^ 0xffff);
2937 return "moveq %1,%0\n\tnot%.w %0";
2938 case NEGW:
2939 CC_STATUS_INIT;
2940 return "moveq #-128,%0\n\tneg%.w %0";
2941 case SWAP:
2942 {
2943 unsigned u = i;
2944
2945 operands[1] = GEN_INT ((u << 16) | (u >> 16));
2946 return "moveq %1,%0\n\tswap %0";
2947 }
2948 case MOVL:
2949 return "move%.l %1,%0";
2950 default:
2951 gcc_unreachable ();
2952 }
2953 }
2954
2955 /* Return true if I can be handled by ISA B's mov3q instruction. */
2956
2957 bool
2958 valid_mov3q_const (HOST_WIDE_INT i)
2959 {
2960 return TARGET_ISAB && (i == -1 || IN_RANGE (i, 1, 7));
2961 }
2962
2963 /* Return an instruction to move CONST_INT OPERANDS[1] into OPERANDS[0].
2964 I is the value of OPERANDS[1]. */
2965
2966 static const char *
2967 output_move_simode_const (rtx *operands)
2968 {
2969 rtx dest;
2970 HOST_WIDE_INT src;
2971
2972 dest = operands[0];
2973 src = INTVAL (operands[1]);
2974 if (src == 0
2975 && (DATA_REG_P (dest) || MEM_P (dest))
2976 /* clr insns on 68000 read before writing. */
2977 && ((TARGET_68010 || TARGET_COLDFIRE)
2978 || !(MEM_P (dest) && MEM_VOLATILE_P (dest))))
2979 return "clr%.l %0";
2980 else if (GET_MODE (dest) == SImode && valid_mov3q_const (src))
2981 return "mov3q%.l %1,%0";
2982 else if (src == 0 && ADDRESS_REG_P (dest))
2983 return "sub%.l %0,%0";
2984 else if (DATA_REG_P (dest))
2985 return output_move_const_into_data_reg (operands);
2986 else if (ADDRESS_REG_P (dest) && IN_RANGE (src, -0x8000, 0x7fff))
2987 {
2988 if (valid_mov3q_const (src))
2989 return "mov3q%.l %1,%0";
2990 return "move%.w %1,%0";
2991 }
2992 else if (MEM_P (dest)
2993 && GET_CODE (XEXP (dest, 0)) == PRE_DEC
2994 && REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
2995 && IN_RANGE (src, -0x8000, 0x7fff))
2996 {
2997 if (valid_mov3q_const (src))
2998 return "mov3q%.l %1,%-";
2999 return "pea %a1";
3000 }
3001 return "move%.l %1,%0";
3002 }
3003
3004 const char *
3005 output_move_simode (rtx *operands)
3006 {
3007 if (GET_CODE (operands[1]) == CONST_INT)
3008 return output_move_simode_const (operands);
3009 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3010 || GET_CODE (operands[1]) == CONST)
3011 && push_operand (operands[0], SImode))
3012 return "pea %a1";
3013 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3014 || GET_CODE (operands[1]) == CONST)
3015 && ADDRESS_REG_P (operands[0]))
3016 return "lea %a1,%0";
3017 return "move%.l %1,%0";
3018 }
3019
3020 const char *
3021 output_move_himode (rtx *operands)
3022 {
3023 if (GET_CODE (operands[1]) == CONST_INT)
3024 {
3025 if (operands[1] == const0_rtx
3026 && (DATA_REG_P (operands[0])
3027 || GET_CODE (operands[0]) == MEM)
3028 /* clr insns on 68000 read before writing. */
3029 && ((TARGET_68010 || TARGET_COLDFIRE)
3030 || !(GET_CODE (operands[0]) == MEM
3031 && MEM_VOLATILE_P (operands[0]))))
3032 return "clr%.w %0";
3033 else if (operands[1] == const0_rtx
3034 && ADDRESS_REG_P (operands[0]))
3035 return "sub%.l %0,%0";
3036 else if (DATA_REG_P (operands[0])
3037 && INTVAL (operands[1]) < 128
3038 && INTVAL (operands[1]) >= -128)
3039 return "moveq %1,%0";
3040 else if (INTVAL (operands[1]) < 0x8000
3041 && INTVAL (operands[1]) >= -0x8000)
3042 return "move%.w %1,%0";
3043 }
3044 else if (CONSTANT_P (operands[1]))
3045 return "move%.l %1,%0";
3046 return "move%.w %1,%0";
3047 }
3048
3049 const char *
3050 output_move_qimode (rtx *operands)
3051 {
3052 /* 68k family always modifies the stack pointer by at least 2, even for
3053 byte pushes. The 5200 (ColdFire) does not do this. */
3054
3055 /* This case is generated by pushqi1 pattern now. */
3056 gcc_assert (!(GET_CODE (operands[0]) == MEM
3057 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
3058 && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
3059 && ! ADDRESS_REG_P (operands[1])
3060 && ! TARGET_COLDFIRE));
3061
3062 /* clr and st insns on 68000 read before writing. */
3063 if (!ADDRESS_REG_P (operands[0])
3064 && ((TARGET_68010 || TARGET_COLDFIRE)
3065 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3066 {
3067 if (operands[1] == const0_rtx)
3068 return "clr%.b %0";
3069 if ((!TARGET_COLDFIRE || DATA_REG_P (operands[0]))
3070 && GET_CODE (operands[1]) == CONST_INT
3071 && (INTVAL (operands[1]) & 255) == 255)
3072 {
3073 CC_STATUS_INIT;
3074 return "st %0";
3075 }
3076 }
3077 if (GET_CODE (operands[1]) == CONST_INT
3078 && DATA_REG_P (operands[0])
3079 && INTVAL (operands[1]) < 128
3080 && INTVAL (operands[1]) >= -128)
3081 return "moveq %1,%0";
3082 if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
3083 return "sub%.l %0,%0";
3084 if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
3085 return "move%.l %1,%0";
3086 /* 68k family (including the 5200 ColdFire) does not support byte moves to
3087 from address registers. */
3088 if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
3089 return "move%.w %1,%0";
3090 return "move%.b %1,%0";
3091 }
3092
3093 const char *
3094 output_move_stricthi (rtx *operands)
3095 {
3096 if (operands[1] == const0_rtx
3097 /* clr insns on 68000 read before writing. */
3098 && ((TARGET_68010 || TARGET_COLDFIRE)
3099 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3100 return "clr%.w %0";
3101 return "move%.w %1,%0";
3102 }
3103
3104 const char *
3105 output_move_strictqi (rtx *operands)
3106 {
3107 if (operands[1] == const0_rtx
3108 /* clr insns on 68000 read before writing. */
3109 && ((TARGET_68010 || TARGET_COLDFIRE)
3110 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3111 return "clr%.b %0";
3112 return "move%.b %1,%0";
3113 }
3114
3115 /* Return the best assembler insn template
3116 for moving operands[1] into operands[0] as a fullword. */
3117
3118 static const char *
3119 singlemove_string (rtx *operands)
3120 {
3121 if (GET_CODE (operands[1]) == CONST_INT)
3122 return output_move_simode_const (operands);
3123 return "move%.l %1,%0";
3124 }
3125
3126
3127 /* Output assembler or rtl code to perform a doubleword move insn
3128 with operands OPERANDS.
3129 Pointers to 3 helper functions should be specified:
3130 HANDLE_REG_ADJUST to adjust a register by a small value,
3131 HANDLE_COMPADR to compute an address and
3132 HANDLE_MOVSI to move 4 bytes. */
3133
3134 static void
3135 handle_move_double (rtx operands[2],
3136 void (*handle_reg_adjust) (rtx, int),
3137 void (*handle_compadr) (rtx [2]),
3138 void (*handle_movsi) (rtx [2]))
3139 {
3140 enum
3141 {
3142 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
3143 } optype0, optype1;
3144 rtx latehalf[2];
3145 rtx middlehalf[2];
3146 rtx xops[2];
3147 rtx addreg0 = 0, addreg1 = 0;
3148 int dest_overlapped_low = 0;
3149 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
3150
3151 middlehalf[0] = 0;
3152 middlehalf[1] = 0;
3153
3154 /* First classify both operands. */
3155
3156 if (REG_P (operands[0]))
3157 optype0 = REGOP;
3158 else if (offsettable_memref_p (operands[0]))
3159 optype0 = OFFSOP;
3160 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
3161 optype0 = POPOP;
3162 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
3163 optype0 = PUSHOP;
3164 else if (GET_CODE (operands[0]) == MEM)
3165 optype0 = MEMOP;
3166 else
3167 optype0 = RNDOP;
3168
3169 if (REG_P (operands[1]))
3170 optype1 = REGOP;
3171 else if (CONSTANT_P (operands[1]))
3172 optype1 = CNSTOP;
3173 else if (offsettable_memref_p (operands[1]))
3174 optype1 = OFFSOP;
3175 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
3176 optype1 = POPOP;
3177 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
3178 optype1 = PUSHOP;
3179 else if (GET_CODE (operands[1]) == MEM)
3180 optype1 = MEMOP;
3181 else
3182 optype1 = RNDOP;
3183
3184 /* Check for the cases that the operand constraints are not supposed
3185 to allow to happen. Generating code for these cases is
3186 painful. */
3187 gcc_assert (optype0 != RNDOP && optype1 != RNDOP);
3188
3189 /* If one operand is decrementing and one is incrementing
3190 decrement the former register explicitly
3191 and change that operand into ordinary indexing. */
3192
3193 if (optype0 == PUSHOP && optype1 == POPOP)
3194 {
3195 operands[0] = XEXP (XEXP (operands[0], 0), 0);
3196
3197 handle_reg_adjust (operands[0], -size);
3198
3199 if (GET_MODE (operands[1]) == XFmode)
3200 operands[0] = gen_rtx_MEM (XFmode, operands[0]);
3201 else if (GET_MODE (operands[0]) == DFmode)
3202 operands[0] = gen_rtx_MEM (DFmode, operands[0]);
3203 else
3204 operands[0] = gen_rtx_MEM (DImode, operands[0]);
3205 optype0 = OFFSOP;
3206 }
3207 if (optype0 == POPOP && optype1 == PUSHOP)
3208 {
3209 operands[1] = XEXP (XEXP (operands[1], 0), 0);
3210
3211 handle_reg_adjust (operands[1], -size);
3212
3213 if (GET_MODE (operands[1]) == XFmode)
3214 operands[1] = gen_rtx_MEM (XFmode, operands[1]);
3215 else if (GET_MODE (operands[1]) == DFmode)
3216 operands[1] = gen_rtx_MEM (DFmode, operands[1]);
3217 else
3218 operands[1] = gen_rtx_MEM (DImode, operands[1]);
3219 optype1 = OFFSOP;
3220 }
3221
3222 /* If an operand is an unoffsettable memory ref, find a register
3223 we can increment temporarily to make it refer to the second word. */
3224
3225 if (optype0 == MEMOP)
3226 addreg0 = find_addr_reg (XEXP (operands[0], 0));
3227
3228 if (optype1 == MEMOP)
3229 addreg1 = find_addr_reg (XEXP (operands[1], 0));
3230
3231 /* Ok, we can do one word at a time.
3232 Normally we do the low-numbered word first,
3233 but if either operand is autodecrementing then we
3234 do the high-numbered word first.
3235
3236 In either case, set up in LATEHALF the operands to use
3237 for the high-numbered word and in some cases alter the
3238 operands in OPERANDS to be suitable for the low-numbered word. */
3239
3240 if (size == 12)
3241 {
3242 if (optype0 == REGOP)
3243 {
3244 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
3245 middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3246 }
3247 else if (optype0 == OFFSOP)
3248 {
3249 middlehalf[0] = adjust_address (operands[0], SImode, 4);
3250 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3251 }
3252 else
3253 {
3254 middlehalf[0] = adjust_address (operands[0], SImode, 0);
3255 latehalf[0] = adjust_address (operands[0], SImode, 0);
3256 }
3257
3258 if (optype1 == REGOP)
3259 {
3260 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
3261 middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3262 }
3263 else if (optype1 == OFFSOP)
3264 {
3265 middlehalf[1] = adjust_address (operands[1], SImode, 4);
3266 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3267 }
3268 else if (optype1 == CNSTOP)
3269 {
3270 if (GET_CODE (operands[1]) == CONST_DOUBLE)
3271 {
3272 REAL_VALUE_TYPE r;
3273 long l[3];
3274
3275 REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
3276 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
3277 operands[1] = GEN_INT (l[0]);
3278 middlehalf[1] = GEN_INT (l[1]);
3279 latehalf[1] = GEN_INT (l[2]);
3280 }
3281 else
3282 {
3283 /* No non-CONST_DOUBLE constant should ever appear
3284 here. */
3285 gcc_assert (!CONSTANT_P (operands[1]));
3286 }
3287 }
3288 else
3289 {
3290 middlehalf[1] = adjust_address (operands[1], SImode, 0);
3291 latehalf[1] = adjust_address (operands[1], SImode, 0);
3292 }
3293 }
3294 else
3295 /* size is not 12: */
3296 {
3297 if (optype0 == REGOP)
3298 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3299 else if (optype0 == OFFSOP)
3300 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3301 else
3302 latehalf[0] = adjust_address (operands[0], SImode, 0);
3303
3304 if (optype1 == REGOP)
3305 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3306 else if (optype1 == OFFSOP)
3307 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3308 else if (optype1 == CNSTOP)
3309 split_double (operands[1], &operands[1], &latehalf[1]);
3310 else
3311 latehalf[1] = adjust_address (operands[1], SImode, 0);
3312 }
3313
3314 /* If insn is effectively movd N(sp),-(sp) then we will do the
3315 high word first. We should use the adjusted operand 1 (which is N+4(sp))
3316 for the low word as well, to compensate for the first decrement of sp. */
3317 if (optype0 == PUSHOP
3318 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
3319 && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
3320 operands[1] = middlehalf[1] = latehalf[1];
3321
3322 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
3323 if the upper part of reg N does not appear in the MEM, arrange to
3324 emit the move late-half first. Otherwise, compute the MEM address
3325 into the upper part of N and use that as a pointer to the memory
3326 operand. */
3327 if (optype0 == REGOP
3328 && (optype1 == OFFSOP || optype1 == MEMOP))
3329 {
3330 rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
3331
3332 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3333 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3334 {
3335 /* If both halves of dest are used in the src memory address,
3336 compute the address into latehalf of dest.
3337 Note that this can't happen if the dest is two data regs. */
3338 compadr:
3339 xops[0] = latehalf[0];
3340 xops[1] = XEXP (operands[1], 0);
3341
3342 handle_compadr (xops);
3343 if (GET_MODE (operands[1]) == XFmode)
3344 {
3345 operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
3346 middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
3347 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3348 }
3349 else
3350 {
3351 operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
3352 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3353 }
3354 }
3355 else if (size == 12
3356 && reg_overlap_mentioned_p (middlehalf[0],
3357 XEXP (operands[1], 0)))
3358 {
3359 /* Check for two regs used by both source and dest.
3360 Note that this can't happen if the dest is all data regs.
3361 It can happen if the dest is d6, d7, a0.
3362 But in that case, latehalf is an addr reg, so
3363 the code at compadr does ok. */
3364
3365 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3366 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3367 goto compadr;
3368
3369 /* JRV says this can't happen: */
3370 gcc_assert (!addreg0 && !addreg1);
3371
3372 /* Only the middle reg conflicts; simply put it last. */
3373 handle_movsi (operands);
3374 handle_movsi (latehalf);
3375 handle_movsi (middlehalf);
3376
3377 return;
3378 }
3379 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
3380 /* If the low half of dest is mentioned in the source memory
3381 address, the arrange to emit the move late half first. */
3382 dest_overlapped_low = 1;
3383 }
3384
3385 /* If one or both operands autodecrementing,
3386 do the two words, high-numbered first. */
3387
3388 /* Likewise, the first move would clobber the source of the second one,
3389 do them in the other order. This happens only for registers;
3390 such overlap can't happen in memory unless the user explicitly
3391 sets it up, and that is an undefined circumstance. */
3392
3393 if (optype0 == PUSHOP || optype1 == PUSHOP
3394 || (optype0 == REGOP && optype1 == REGOP
3395 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
3396 || REGNO (operands[0]) == REGNO (latehalf[1])))
3397 || dest_overlapped_low)
3398 {
3399 /* Make any unoffsettable addresses point at high-numbered word. */
3400 if (addreg0)
3401 handle_reg_adjust (addreg0, size - 4);
3402 if (addreg1)
3403 handle_reg_adjust (addreg1, size - 4);
3404
3405 /* Do that word. */
3406 handle_movsi (latehalf);
3407
3408 /* Undo the adds we just did. */
3409 if (addreg0)
3410 handle_reg_adjust (addreg0, -4);
3411 if (addreg1)
3412 handle_reg_adjust (addreg1, -4);
3413
3414 if (size == 12)
3415 {
3416 handle_movsi (middlehalf);
3417
3418 if (addreg0)
3419 handle_reg_adjust (addreg0, -4);
3420 if (addreg1)
3421 handle_reg_adjust (addreg1, -4);
3422 }
3423
3424 /* Do low-numbered word. */
3425
3426 handle_movsi (operands);
3427 return;
3428 }
3429
3430 /* Normal case: do the two words, low-numbered first. */
3431
3432 m68k_final_prescan_insn (NULL, operands, 2);
3433 handle_movsi (operands);
3434
3435 /* Do the middle one of the three words for long double */
3436 if (size == 12)
3437 {
3438 if (addreg0)
3439 handle_reg_adjust (addreg0, 4);
3440 if (addreg1)
3441 handle_reg_adjust (addreg1, 4);
3442
3443 m68k_final_prescan_insn (NULL, middlehalf, 2);
3444 handle_movsi (middlehalf);
3445 }
3446
3447 /* Make any unoffsettable addresses point at high-numbered word. */
3448 if (addreg0)
3449 handle_reg_adjust (addreg0, 4);
3450 if (addreg1)
3451 handle_reg_adjust (addreg1, 4);
3452
3453 /* Do that word. */
3454 m68k_final_prescan_insn (NULL, latehalf, 2);
3455 handle_movsi (latehalf);
3456
3457 /* Undo the adds we just did. */
3458 if (addreg0)
3459 handle_reg_adjust (addreg0, -(size - 4));
3460 if (addreg1)
3461 handle_reg_adjust (addreg1, -(size - 4));
3462
3463 return;
3464 }
3465
3466 /* Output assembler code to adjust REG by N. */
3467 static void
3468 output_reg_adjust (rtx reg, int n)
3469 {
3470 const char *s;
3471
3472 gcc_assert (GET_MODE (reg) == SImode
3473 && -12 <= n && n != 0 && n <= 12);
3474
3475 switch (n)
3476 {
3477 case 12:
3478 s = "add%.l #12,%0";
3479 break;
3480
3481 case 8:
3482 s = "addq%.l #8,%0";
3483 break;
3484
3485 case 4:
3486 s = "addq%.l #4,%0";
3487 break;
3488
3489 case -12:
3490 s = "sub%.l #12,%0";
3491 break;
3492
3493 case -8:
3494 s = "subq%.l #8,%0";
3495 break;
3496
3497 case -4:
3498 s = "subq%.l #4,%0";
3499 break;
3500
3501 default:
3502 gcc_unreachable ();
3503 s = NULL;
3504 }
3505
3506 output_asm_insn (s, &reg);
3507 }
3508
3509 /* Emit rtl code to adjust REG by N. */
3510 static void
3511 emit_reg_adjust (rtx reg1, int n)
3512 {
3513 rtx reg2;
3514
3515 gcc_assert (GET_MODE (reg1) == SImode
3516 && -12 <= n && n != 0 && n <= 12);
3517
3518 reg1 = copy_rtx (reg1);
3519 reg2 = copy_rtx (reg1);
3520
3521 if (n < 0)
3522 emit_insn (gen_subsi3 (reg1, reg2, GEN_INT (-n)));
3523 else if (n > 0)
3524 emit_insn (gen_addsi3 (reg1, reg2, GEN_INT (n)));
3525 else
3526 gcc_unreachable ();
3527 }
3528
3529 /* Output assembler to load address OPERANDS[0] to register OPERANDS[1]. */
3530 static void
3531 output_compadr (rtx operands[2])
3532 {
3533 output_asm_insn ("lea %a1,%0", operands);
3534 }
3535
3536 /* Output the best assembler insn for moving operands[1] into operands[0]
3537 as a fullword. */
3538 static void
3539 output_movsi (rtx operands[2])
3540 {
3541 output_asm_insn (singlemove_string (operands), operands);
3542 }
3543
3544 /* Copy OP and change its mode to MODE. */
3545 static rtx
3546 copy_operand (rtx op, enum machine_mode mode)
3547 {
3548 /* ??? This looks really ugly. There must be a better way
3549 to change a mode on the operand. */
3550 if (GET_MODE (op) != VOIDmode)
3551 {
3552 if (REG_P (op))
3553 op = gen_rtx_REG (mode, REGNO (op));
3554 else
3555 {
3556 op = copy_rtx (op);
3557 PUT_MODE (op, mode);
3558 }
3559 }
3560
3561 return op;
3562 }
3563
3564 /* Emit rtl code for moving operands[1] into operands[0] as a fullword. */
3565 static void
3566 emit_movsi (rtx operands[2])
3567 {
3568 operands[0] = copy_operand (operands[0], SImode);
3569 operands[1] = copy_operand (operands[1], SImode);
3570
3571 emit_insn (gen_movsi (operands[0], operands[1]));
3572 }
3573
3574 /* Output assembler code to perform a doubleword move insn
3575 with operands OPERANDS. */
3576 const char *
3577 output_move_double (rtx *operands)
3578 {
3579 handle_move_double (operands,
3580 output_reg_adjust, output_compadr, output_movsi);
3581
3582 return "";
3583 }
3584
3585 /* Output rtl code to perform a doubleword move insn
3586 with operands OPERANDS. */
3587 void
3588 m68k_emit_move_double (rtx operands[2])
3589 {
3590 handle_move_double (operands, emit_reg_adjust, emit_movsi, emit_movsi);
3591 }
3592
3593 /* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a
3594 new rtx with the correct mode. */
3595
3596 static rtx
3597 force_mode (enum machine_mode mode, rtx orig)
3598 {
3599 if (mode == GET_MODE (orig))
3600 return orig;
3601
3602 if (REGNO (orig) >= FIRST_PSEUDO_REGISTER)
3603 abort ();
3604
3605 return gen_rtx_REG (mode, REGNO (orig));
3606 }
3607
3608 static int
3609 fp_reg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3610 {
3611 return reg_renumber && FP_REG_P (op);
3612 }
3613
3614 /* Emit insns to move operands[1] into operands[0].
3615
3616 Return 1 if we have written out everything that needs to be done to
3617 do the move. Otherwise, return 0 and the caller will emit the move
3618 normally.
3619
3620 Note SCRATCH_REG may not be in the proper mode depending on how it
3621 will be used. This routine is responsible for creating a new copy
3622 of SCRATCH_REG in the proper mode. */
3623
3624 int
3625 emit_move_sequence (rtx *operands, enum machine_mode mode, rtx scratch_reg)
3626 {
3627 register rtx operand0 = operands[0];
3628 register rtx operand1 = operands[1];
3629 register rtx tem;
3630
3631 if (scratch_reg
3632 && reload_in_progress && GET_CODE (operand0) == REG
3633 && REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
3634 operand0 = reg_equiv_mem (REGNO (operand0));
3635 else if (scratch_reg
3636 && reload_in_progress && GET_CODE (operand0) == SUBREG
3637 && GET_CODE (SUBREG_REG (operand0)) == REG
3638 && REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
3639 {
3640 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3641 the code which tracks sets/uses for delete_output_reload. */
3642 rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
3643 reg_equiv_mem (REGNO (SUBREG_REG (operand0))),
3644 SUBREG_BYTE (operand0));
3645 operand0 = alter_subreg (&temp);
3646 }
3647
3648 if (scratch_reg
3649 && reload_in_progress && GET_CODE (operand1) == REG
3650 && REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
3651 operand1 = reg_equiv_mem (REGNO (operand1));
3652 else if (scratch_reg
3653 && reload_in_progress && GET_CODE (operand1) == SUBREG
3654 && GET_CODE (SUBREG_REG (operand1)) == REG
3655 && REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
3656 {
3657 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3658 the code which tracks sets/uses for delete_output_reload. */
3659 rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
3660 reg_equiv_mem (REGNO (SUBREG_REG (operand1))),
3661 SUBREG_BYTE (operand1));
3662 operand1 = alter_subreg (&temp);
3663 }
3664
3665 if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
3666 && ((tem = find_replacement (&XEXP (operand0, 0)))
3667 != XEXP (operand0, 0)))
3668 operand0 = gen_rtx_MEM (GET_MODE (operand0), tem);
3669 if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
3670 && ((tem = find_replacement (&XEXP (operand1, 0)))
3671 != XEXP (operand1, 0)))
3672 operand1 = gen_rtx_MEM (GET_MODE (operand1), tem);
3673
3674 /* Handle secondary reloads for loads/stores of FP registers where
3675 the address is symbolic by using the scratch register */
3676 if (fp_reg_operand (operand0, mode)
3677 && ((GET_CODE (operand1) == MEM
3678 && ! memory_address_p (DFmode, XEXP (operand1, 0)))
3679 || ((GET_CODE (operand1) == SUBREG
3680 && GET_CODE (XEXP (operand1, 0)) == MEM
3681 && !memory_address_p (DFmode, XEXP (XEXP (operand1, 0), 0)))))
3682 && scratch_reg)
3683 {
3684 if (GET_CODE (operand1) == SUBREG)
3685 operand1 = XEXP (operand1, 0);
3686
3687 /* SCRATCH_REG will hold an address. We want
3688 it in SImode regardless of what mode it was originally given
3689 to us. */
3690 scratch_reg = force_mode (SImode, scratch_reg);
3691
3692 /* D might not fit in 14 bits either; for such cases load D into
3693 scratch reg. */
3694 if (!memory_address_p (Pmode, XEXP (operand1, 0)))
3695 {
3696 emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
3697 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)),
3698 Pmode,
3699 XEXP (XEXP (operand1, 0), 0),
3700 scratch_reg));
3701 }
3702 else
3703 emit_move_insn (scratch_reg, XEXP (operand1, 0));
3704 emit_insn (gen_rtx_SET (VOIDmode, operand0,
3705 gen_rtx_MEM (mode, scratch_reg)));
3706 return 1;
3707 }
3708 else if (fp_reg_operand (operand1, mode)
3709 && ((GET_CODE (operand0) == MEM
3710 && ! memory_address_p (DFmode, XEXP (operand0, 0)))
3711 || ((GET_CODE (operand0) == SUBREG)
3712 && GET_CODE (XEXP (operand0, 0)) == MEM
3713 && !memory_address_p (DFmode, XEXP (XEXP (operand0, 0), 0))))
3714 && scratch_reg)
3715 {
3716 if (GET_CODE (operand0) == SUBREG)
3717 operand0 = XEXP (operand0, 0);
3718
3719 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3720 it in SIMODE regardless of what mode it was originally given
3721 to us. */
3722 scratch_reg = force_mode (SImode, scratch_reg);
3723
3724 /* D might not fit in 14 bits either; for such cases load D into
3725 scratch reg. */
3726 if (!memory_address_p (Pmode, XEXP (operand0, 0)))
3727 {
3728 emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1));
3729 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0,
3730 0)),
3731 Pmode,
3732 XEXP (XEXP (operand0, 0),
3733 0),
3734 scratch_reg));
3735 }
3736 else
3737 emit_move_insn (scratch_reg, XEXP (operand0, 0));
3738 emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_MEM (mode, scratch_reg),
3739 operand1));
3740 return 1;
3741 }
3742 /* Handle secondary reloads for loads of FP registers from constant
3743 expressions by forcing the constant into memory.
3744
3745 use scratch_reg to hold the address of the memory location.
3746
3747 The proper fix is to change PREFERRED_RELOAD_CLASS to return
3748 NO_REGS when presented with a const_int and an register class
3749 containing only FP registers. Doing so unfortunately creates
3750 more problems than it solves. Fix this for 2.5. */
3751 else if (fp_reg_operand (operand0, mode)
3752 && CONSTANT_P (operand1)
3753 && scratch_reg)
3754 {
3755 rtx xoperands[2];
3756
3757 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3758 it in SIMODE regardless of what mode it was originally given
3759 to us. */
3760 scratch_reg = force_mode (SImode, scratch_reg);
3761
3762 /* Force the constant into memory and put the address of the
3763 memory location into scratch_reg. */
3764 xoperands[0] = scratch_reg;
3765 xoperands[1] = XEXP (force_const_mem (mode, operand1), 0);
3766 emit_insn (gen_rtx_SET (mode, scratch_reg, xoperands[1]));
3767
3768 /* Now load the destination register. */
3769 emit_insn (gen_rtx_SET (mode, operand0,
3770 gen_rtx_MEM (mode, scratch_reg)));
3771 return 1;
3772 }
3773
3774 /* Now have insn-emit do whatever it normally does. */
3775 return 0;
3776 }
3777
3778 /* Split one or more DImode RTL references into pairs of SImode
3779 references. The RTL can be REG, offsettable MEM, integer constant, or
3780 CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
3781 split and "num" is its length. lo_half and hi_half are output arrays
3782 that parallel "operands". */
3783
3784 void
3785 split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
3786 {
3787 while (num--)
3788 {
3789 rtx op = operands[num];
3790
3791 /* simplify_subreg refuses to split volatile memory addresses,
3792 but we still have to handle it. */
3793 if (GET_CODE (op) == MEM)
3794 {
3795 lo_half[num] = adjust_address (op, SImode, 4);
3796 hi_half[num] = adjust_address (op, SImode, 0);
3797 }
3798 else
3799 {
3800 lo_half[num] = simplify_gen_subreg (SImode, op,
3801 GET_MODE (op) == VOIDmode
3802 ? DImode : GET_MODE (op), 4);
3803 hi_half[num] = simplify_gen_subreg (SImode, op,
3804 GET_MODE (op) == VOIDmode
3805 ? DImode : GET_MODE (op), 0);
3806 }
3807 }
3808 }
3809
3810 /* Split X into a base and a constant offset, storing them in *BASE
3811 and *OFFSET respectively. */
3812
3813 static void
3814 m68k_split_offset (rtx x, rtx *base, HOST_WIDE_INT *offset)
3815 {
3816 *offset = 0;
3817 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
3818 {
3819 *offset += INTVAL (XEXP (x, 1));
3820 x = XEXP (x, 0);
3821 }
3822 *base = x;
3823 }
3824
3825 /* Return true if PATTERN is a PARALLEL suitable for a movem or fmovem
3826 instruction. STORE_P says whether the move is a load or store.
3827
3828 If the instruction uses post-increment or pre-decrement addressing,
3829 AUTOMOD_BASE is the base register and AUTOMOD_OFFSET is the total
3830 adjustment. This adjustment will be made by the first element of
3831 PARALLEL, with the loads or stores starting at element 1. If the
3832 instruction does not use post-increment or pre-decrement addressing,
3833 AUTOMOD_BASE is null, AUTOMOD_OFFSET is 0, and the loads or stores
3834 start at element 0. */
3835
3836 bool
3837 m68k_movem_pattern_p (rtx pattern, rtx automod_base,
3838 HOST_WIDE_INT automod_offset, bool store_p)
3839 {
3840 rtx base, mem_base, set, mem, reg, last_reg;
3841 HOST_WIDE_INT offset, mem_offset;
3842 int i, first, len;
3843 enum reg_class rclass;
3844
3845 len = XVECLEN (pattern, 0);
3846 first = (automod_base != NULL);
3847
3848 if (automod_base)
3849 {
3850 /* Stores must be pre-decrement and loads must be post-increment. */
3851 if (store_p != (automod_offset < 0))
3852 return false;
3853
3854 /* Work out the base and offset for lowest memory location. */
3855 base = automod_base;
3856 offset = (automod_offset < 0 ? automod_offset : 0);
3857 }
3858 else
3859 {
3860 /* Allow any valid base and offset in the first access. */
3861 base = NULL;
3862 offset = 0;
3863 }
3864
3865 last_reg = NULL;
3866 rclass = NO_REGS;
3867 for (i = first; i < len; i++)
3868 {
3869 /* We need a plain SET. */
3870 set = XVECEXP (pattern, 0, i);
3871 if (GET_CODE (set) != SET)
3872 return false;
3873
3874 /* Check that we have a memory location... */
3875 mem = XEXP (set, !store_p);
3876 if (!MEM_P (mem) || !memory_operand (mem, VOIDmode))
3877 return false;
3878
3879 /* ...with the right address. */
3880 if (base == NULL)
3881 {
3882 m68k_split_offset (XEXP (mem, 0), &base, &offset);
3883 /* The ColdFire instruction only allows (An) and (d16,An) modes.
3884 There are no mode restrictions for 680x0 besides the
3885 automodification rules enforced above. */
3886 if (TARGET_COLDFIRE
3887 && !m68k_legitimate_base_reg_p (base, reload_completed))
3888 return false;
3889 }
3890 else
3891 {
3892 m68k_split_offset (XEXP (mem, 0), &mem_base, &mem_offset);
3893 if (!rtx_equal_p (base, mem_base) || offset != mem_offset)
3894 return false;
3895 }
3896
3897 /* Check that we have a register of the required mode and class. */
3898 reg = XEXP (set, store_p);
3899 if (!REG_P (reg)
3900 || !HARD_REGISTER_P (reg)
3901 || GET_MODE (reg) != reg_raw_mode[REGNO (reg)])
3902 return false;
3903
3904 if (last_reg)
3905 {
3906 /* The register must belong to RCLASS and have a higher number
3907 than the register in the previous SET. */
3908 if (!TEST_HARD_REG_BIT (reg_class_contents[rclass], REGNO (reg))
3909 || REGNO (last_reg) >= REGNO (reg))
3910 return false;
3911 }
3912 else
3913 {
3914 /* Work out which register class we need. */
3915 if (INT_REGNO_P (REGNO (reg)))
3916 rclass = GENERAL_REGS;
3917 else if (FP_REGNO_P (REGNO (reg)))
3918 rclass = FP_REGS;
3919 else
3920 return false;
3921 }
3922
3923 last_reg = reg;
3924 offset += GET_MODE_SIZE (GET_MODE (reg));
3925 }
3926
3927 /* If we have an automodification, check whether the final offset is OK. */
3928 if (automod_base && offset != (automod_offset < 0 ? 0 : automod_offset))
3929 return false;
3930
3931 /* Reject unprofitable cases. */
3932 if (len < first + (rclass == FP_REGS ? MIN_FMOVEM_REGS : MIN_MOVEM_REGS))
3933 return false;
3934
3935 return true;
3936 }
3937
3938 /* Return the assembly code template for a movem or fmovem instruction
3939 whose pattern is given by PATTERN. Store the template's operands
3940 in OPERANDS.
3941
3942 If the instruction uses post-increment or pre-decrement addressing,
3943 AUTOMOD_OFFSET is the total adjustment, otherwise it is 0. STORE_P
3944 is true if this is a store instruction. */
3945
3946 const char *
3947 m68k_output_movem (rtx *operands, rtx pattern,
3948 HOST_WIDE_INT automod_offset, bool store_p)
3949 {
3950 unsigned int mask;
3951 int i, first;
3952
3953 gcc_assert (GET_CODE (pattern) == PARALLEL);
3954 mask = 0;
3955 first = (automod_offset != 0);
3956 for (i = first; i < XVECLEN (pattern, 0); i++)
3957 {
3958 /* When using movem with pre-decrement addressing, register X + D0_REG
3959 is controlled by bit 15 - X. For all other addressing modes,
3960 register X + D0_REG is controlled by bit X. Confusingly, the
3961 register mask for fmovem is in the opposite order to that for
3962 movem. */
3963 unsigned int regno;
3964
3965 gcc_assert (MEM_P (XEXP (XVECEXP (pattern, 0, i), !store_p)));
3966 gcc_assert (REG_P (XEXP (XVECEXP (pattern, 0, i), store_p)));
3967 regno = REGNO (XEXP (XVECEXP (pattern, 0, i), store_p));
3968 if (automod_offset < 0)
3969 {
3970 if (FP_REGNO_P (regno))
3971 mask |= 1 << (regno - FP0_REG);
3972 else
3973 mask |= 1 << (15 - (regno - D0_REG));
3974 }
3975 else
3976 {
3977 if (FP_REGNO_P (regno))
3978 mask |= 1 << (7 - (regno - FP0_REG));
3979 else
3980 mask |= 1 << (regno - D0_REG);
3981 }
3982 }
3983 CC_STATUS_INIT;
3984
3985 if (automod_offset == 0)
3986 operands[0] = XEXP (XEXP (XVECEXP (pattern, 0, first), !store_p), 0);
3987 else if (automod_offset < 0)
3988 operands[0] = gen_rtx_PRE_DEC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
3989 else
3990 operands[0] = gen_rtx_POST_INC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
3991 operands[1] = GEN_INT (mask);
3992 if (FP_REGNO_P (REGNO (XEXP (XVECEXP (pattern, 0, first), store_p))))
3993 {
3994 if (store_p)
3995 return "fmovem %1,%a0";
3996 else
3997 return "fmovem %a0,%1";
3998 }
3999 else
4000 {
4001 if (store_p)
4002 return "movem%.l %1,%a0";
4003 else
4004 return "movem%.l %a0,%1";
4005 }
4006 }
4007
4008 /* Return a REG that occurs in ADDR with coefficient 1.
4009 ADDR can be effectively incremented by incrementing REG. */
4010
4011 static rtx
4012 find_addr_reg (rtx addr)
4013 {
4014 while (GET_CODE (addr) == PLUS)
4015 {
4016 if (GET_CODE (XEXP (addr, 0)) == REG)
4017 addr = XEXP (addr, 0);
4018 else if (GET_CODE (XEXP (addr, 1)) == REG)
4019 addr = XEXP (addr, 1);
4020 else if (CONSTANT_P (XEXP (addr, 0)))
4021 addr = XEXP (addr, 1);
4022 else if (CONSTANT_P (XEXP (addr, 1)))
4023 addr = XEXP (addr, 0);
4024 else
4025 gcc_unreachable ();
4026 }
4027 gcc_assert (GET_CODE (addr) == REG);
4028 return addr;
4029 }
4030
4031 /* Output assembler code to perform a 32-bit 3-operand add. */
4032
4033 const char *
4034 output_addsi3 (rtx *operands)
4035 {
4036 if (! operands_match_p (operands[0], operands[1]))
4037 {
4038 if (!ADDRESS_REG_P (operands[1]))
4039 {
4040 rtx tmp = operands[1];
4041
4042 operands[1] = operands[2];
4043 operands[2] = tmp;
4044 }
4045
4046 /* These insns can result from reloads to access
4047 stack slots over 64k from the frame pointer. */
4048 if (GET_CODE (operands[2]) == CONST_INT
4049 && (INTVAL (operands[2]) < -32768 || INTVAL (operands[2]) > 32767))
4050 return "move%.l %2,%0\n\tadd%.l %1,%0";
4051 if (GET_CODE (operands[2]) == REG)
4052 return MOTOROLA ? "lea (%1,%2.l),%0" : "lea %1@(0,%2:l),%0";
4053 return MOTOROLA ? "lea (%c2,%1),%0" : "lea %1@(%c2),%0";
4054 }
4055 if (GET_CODE (operands[2]) == CONST_INT)
4056 {
4057 if (INTVAL (operands[2]) > 0
4058 && INTVAL (operands[2]) <= 8)
4059 return "addq%.l %2,%0";
4060 if (INTVAL (operands[2]) < 0
4061 && INTVAL (operands[2]) >= -8)
4062 {
4063 operands[2] = GEN_INT (- INTVAL (operands[2]));
4064 return "subq%.l %2,%0";
4065 }
4066 /* On the CPU32 it is faster to use two addql instructions to
4067 add a small integer (8 < N <= 16) to a register.
4068 Likewise for subql. */
4069 if (TUNE_CPU32 && REG_P (operands[0]))
4070 {
4071 if (INTVAL (operands[2]) > 8
4072 && INTVAL (operands[2]) <= 16)
4073 {
4074 operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
4075 return "addq%.l #8,%0\n\taddq%.l %2,%0";
4076 }
4077 if (INTVAL (operands[2]) < -8
4078 && INTVAL (operands[2]) >= -16)
4079 {
4080 operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
4081 return "subq%.l #8,%0\n\tsubq%.l %2,%0";
4082 }
4083 }
4084 if (ADDRESS_REG_P (operands[0])
4085 && INTVAL (operands[2]) >= -0x8000
4086 && INTVAL (operands[2]) < 0x8000)
4087 {
4088 if (TUNE_68040)
4089 return "add%.w %2,%0";
4090 else
4091 return MOTOROLA ? "lea (%c2,%0),%0" : "lea %0@(%c2),%0";
4092 }
4093 }
4094 return "add%.l %2,%0";
4095 }
4096 \f
4097 /* Store in cc_status the expressions that the condition codes will
4098 describe after execution of an instruction whose pattern is EXP.
4099 Do not alter them if the instruction would not alter the cc's. */
4100
4101 /* On the 68000, all the insns to store in an address register fail to
4102 set the cc's. However, in some cases these instructions can make it
4103 possibly invalid to use the saved cc's. In those cases we clear out
4104 some or all of the saved cc's so they won't be used. */
4105
4106 void
4107 notice_update_cc (rtx exp, rtx insn)
4108 {
4109 if (GET_CODE (exp) == SET)
4110 {
4111 if (GET_CODE (SET_SRC (exp)) == CALL)
4112 CC_STATUS_INIT;
4113 else if (ADDRESS_REG_P (SET_DEST (exp)))
4114 {
4115 if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
4116 cc_status.value1 = 0;
4117 if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
4118 cc_status.value2 = 0;
4119 }
4120 /* fmoves to memory or data registers do not set the condition
4121 codes. Normal moves _do_ set the condition codes, but not in
4122 a way that is appropriate for comparison with 0, because -0.0
4123 would be treated as a negative nonzero number. Note that it
4124 isn't appropriate to conditionalize this restriction on
4125 HONOR_SIGNED_ZEROS because that macro merely indicates whether
4126 we care about the difference between -0.0 and +0.0. */
4127 else if (!FP_REG_P (SET_DEST (exp))
4128 && SET_DEST (exp) != cc0_rtx
4129 && (FP_REG_P (SET_SRC (exp))
4130 || GET_CODE (SET_SRC (exp)) == FIX
4131 || FLOAT_MODE_P (GET_MODE (SET_DEST (exp)))))
4132 CC_STATUS_INIT;
4133 /* A pair of move insns doesn't produce a useful overall cc. */
4134 else if (!FP_REG_P (SET_DEST (exp))
4135 && !FP_REG_P (SET_SRC (exp))
4136 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
4137 && (GET_CODE (SET_SRC (exp)) == REG
4138 || GET_CODE (SET_SRC (exp)) == MEM
4139 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
4140 CC_STATUS_INIT;
4141 else if (SET_DEST (exp) != pc_rtx)
4142 {
4143 cc_status.flags = 0;
4144 cc_status.value1 = SET_DEST (exp);
4145 cc_status.value2 = SET_SRC (exp);
4146 }
4147 }
4148 else if (GET_CODE (exp) == PARALLEL
4149 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
4150 {
4151 rtx dest = SET_DEST (XVECEXP (exp, 0, 0));
4152 rtx src = SET_SRC (XVECEXP (exp, 0, 0));
4153
4154 if (ADDRESS_REG_P (dest))
4155 CC_STATUS_INIT;
4156 else if (dest != pc_rtx)
4157 {
4158 cc_status.flags = 0;
4159 cc_status.value1 = dest;
4160 cc_status.value2 = src;
4161 }
4162 }
4163 else
4164 CC_STATUS_INIT;
4165 if (cc_status.value2 != 0
4166 && ADDRESS_REG_P (cc_status.value2)
4167 && GET_MODE (cc_status.value2) == QImode)
4168 CC_STATUS_INIT;
4169 if (cc_status.value2 != 0)
4170 switch (GET_CODE (cc_status.value2))
4171 {
4172 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
4173 case ROTATE: case ROTATERT:
4174 /* These instructions always clear the overflow bit, and set
4175 the carry to the bit shifted out. */
4176 cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
4177 break;
4178
4179 case PLUS: case MINUS: case MULT:
4180 case DIV: case UDIV: case MOD: case UMOD: case NEG:
4181 if (GET_MODE (cc_status.value2) != VOIDmode)
4182 cc_status.flags |= CC_NO_OVERFLOW;
4183 break;
4184 case ZERO_EXTEND:
4185 /* (SET r1 (ZERO_EXTEND r2)) on this machine
4186 ends with a move insn moving r2 in r2's mode.
4187 Thus, the cc's are set for r2.
4188 This can set N bit spuriously. */
4189 cc_status.flags |= CC_NOT_NEGATIVE;
4190
4191 default:
4192 break;
4193 }
4194 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
4195 && cc_status.value2
4196 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
4197 cc_status.value2 = 0;
4198 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
4199 || (cc_status.value2 && FP_REG_P (cc_status.value2))))
4200 cc_status.flags = CC_IN_68881;
4201 if (cc_status.value2 && GET_CODE (cc_status.value2) == COMPARE
4202 && GET_MODE_CLASS (GET_MODE (XEXP (cc_status.value2, 0))) == MODE_FLOAT)
4203 {
4204 cc_status.flags = CC_IN_68881;
4205 if (!FP_REG_P (XEXP (cc_status.value2, 0)))
4206 cc_status.flags |= CC_REVERSED;
4207 }
4208 }
4209 \f
4210 const char *
4211 output_move_const_double (rtx *operands)
4212 {
4213 int code = standard_68881_constant_p (operands[1]);
4214
4215 if (code != 0)
4216 {
4217 static char buf[40];
4218
4219 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4220 return buf;
4221 }
4222 return "fmove%.d %1,%0";
4223 }
4224
4225 const char *
4226 output_move_const_single (rtx *operands)
4227 {
4228 int code = standard_68881_constant_p (operands[1]);
4229
4230 if (code != 0)
4231 {
4232 static char buf[40];
4233
4234 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4235 return buf;
4236 }
4237 return "fmove%.s %f1,%0";
4238 }
4239
4240 /* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
4241 from the "fmovecr" instruction.
4242 The value, anded with 0xff, gives the code to use in fmovecr
4243 to get the desired constant. */
4244
4245 /* This code has been fixed for cross-compilation. */
4246
4247 static int inited_68881_table = 0;
4248
4249 static const char *const strings_68881[7] = {
4250 "0.0",
4251 "1.0",
4252 "10.0",
4253 "100.0",
4254 "10000.0",
4255 "1e8",
4256 "1e16"
4257 };
4258
4259 static const int codes_68881[7] = {
4260 0x0f,
4261 0x32,
4262 0x33,
4263 0x34,
4264 0x35,
4265 0x36,
4266 0x37
4267 };
4268
4269 REAL_VALUE_TYPE values_68881[7];
4270
4271 /* Set up values_68881 array by converting the decimal values
4272 strings_68881 to binary. */
4273
4274 void
4275 init_68881_table (void)
4276 {
4277 int i;
4278 REAL_VALUE_TYPE r;
4279 enum machine_mode mode;
4280
4281 mode = SFmode;
4282 for (i = 0; i < 7; i++)
4283 {
4284 if (i == 6)
4285 mode = DFmode;
4286 r = REAL_VALUE_ATOF (strings_68881[i], mode);
4287 values_68881[i] = r;
4288 }
4289 inited_68881_table = 1;
4290 }
4291
4292 int
4293 standard_68881_constant_p (rtx x)
4294 {
4295 REAL_VALUE_TYPE r;
4296 int i;
4297
4298 /* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
4299 used at all on those chips. */
4300 if (TUNE_68040_60)
4301 return 0;
4302
4303 if (! inited_68881_table)
4304 init_68881_table ();
4305
4306 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
4307
4308 /* Use REAL_VALUES_IDENTICAL instead of REAL_VALUES_EQUAL so that -0.0
4309 is rejected. */
4310 for (i = 0; i < 6; i++)
4311 {
4312 if (REAL_VALUES_IDENTICAL (r, values_68881[i]))
4313 return (codes_68881[i]);
4314 }
4315
4316 if (GET_MODE (x) == SFmode)
4317 return 0;
4318
4319 if (REAL_VALUES_EQUAL (r, values_68881[6]))
4320 return (codes_68881[6]);
4321
4322 /* larger powers of ten in the constants ram are not used
4323 because they are not equal to a `double' C constant. */
4324 return 0;
4325 }
4326
4327 /* If X is a floating-point constant, return the logarithm of X base 2,
4328 or 0 if X is not a power of 2. */
4329
4330 int
4331 floating_exact_log2 (rtx x)
4332 {
4333 REAL_VALUE_TYPE r, r1;
4334 int exp;
4335
4336 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
4337
4338 if (REAL_VALUES_LESS (r, dconst1))
4339 return 0;
4340
4341 exp = real_exponent (&r);
4342 real_2expN (&r1, exp, DFmode);
4343 if (REAL_VALUES_EQUAL (r1, r))
4344 return exp;
4345
4346 return 0;
4347 }
4348 \f
4349 /* A C compound statement to output to stdio stream STREAM the
4350 assembler syntax for an instruction operand X. X is an RTL
4351 expression.
4352
4353 CODE is a value that can be used to specify one of several ways
4354 of printing the operand. It is used when identical operands
4355 must be printed differently depending on the context. CODE
4356 comes from the `%' specification that was used to request
4357 printing of the operand. If the specification was just `%DIGIT'
4358 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4359 is the ASCII code for LTR.
4360
4361 If X is a register, this macro should print the register's name.
4362 The names can be found in an array `reg_names' whose type is
4363 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4364
4365 When the machine description has a specification `%PUNCT' (a `%'
4366 followed by a punctuation character), this macro is called with
4367 a null pointer for X and the punctuation character for CODE.
4368
4369 The m68k specific codes are:
4370
4371 '.' for dot needed in Motorola-style opcode names.
4372 '-' for an operand pushing on the stack:
4373 sp@-, -(sp) or -(%sp) depending on the style of syntax.
4374 '+' for an operand pushing on the stack:
4375 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
4376 '@' for a reference to the top word on the stack:
4377 sp@, (sp) or (%sp) depending on the style of syntax.
4378 '#' for an immediate operand prefix (# in MIT and Motorola syntax
4379 but & in SGS syntax).
4380 '!' for the cc register (used in an `and to cc' insn).
4381 '$' for the letter `s' in an op code, but only on the 68040.
4382 '&' for the letter `d' in an op code, but only on the 68040.
4383 '/' for register prefix needed by longlong.h.
4384 '?' for m68k_library_id_string
4385
4386 'b' for byte insn (no effect, on the Sun; this is for the ISI).
4387 'd' to force memory addressing to be absolute, not relative.
4388 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
4389 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
4390 or print pair of registers as rx:ry.
4391 'p' print an address with @PLTPC attached, but only if the operand
4392 is not locally-bound. */
4393
4394 void
4395 print_operand (FILE *file, rtx op, int letter)
4396 {
4397 if (letter == '.')
4398 {
4399 if (MOTOROLA)
4400 fprintf (file, ".");
4401 }
4402 else if (letter == '#')
4403 asm_fprintf (file, "%I");
4404 else if (letter == '-')
4405 asm_fprintf (file, MOTOROLA ? "-(%Rsp)" : "%Rsp@-");
4406 else if (letter == '+')
4407 asm_fprintf (file, MOTOROLA ? "(%Rsp)+" : "%Rsp@+");
4408 else if (letter == '@')
4409 asm_fprintf (file, MOTOROLA ? "(%Rsp)" : "%Rsp@");
4410 else if (letter == '!')
4411 asm_fprintf (file, "%Rfpcr");
4412 else if (letter == '$')
4413 {
4414 if (TARGET_68040)
4415 fprintf (file, "s");
4416 }
4417 else if (letter == '&')
4418 {
4419 if (TARGET_68040)
4420 fprintf (file, "d");
4421 }
4422 else if (letter == '/')
4423 asm_fprintf (file, "%R");
4424 else if (letter == '?')
4425 asm_fprintf (file, m68k_library_id_string);
4426 else if (letter == 'p')
4427 {
4428 output_addr_const (file, op);
4429 if (!(GET_CODE (op) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (op)))
4430 fprintf (file, "@PLTPC");
4431 }
4432 else if (GET_CODE (op) == REG)
4433 {
4434 if (letter == 'R')
4435 /* Print out the second register name of a register pair.
4436 I.e., R (6) => 7. */
4437 fputs (M68K_REGNAME(REGNO (op) + 1), file);
4438 else
4439 fputs (M68K_REGNAME(REGNO (op)), file);
4440 }
4441 else if (GET_CODE (op) == MEM)
4442 {
4443 output_address (XEXP (op, 0));
4444 if (letter == 'd' && ! TARGET_68020
4445 && CONSTANT_ADDRESS_P (XEXP (op, 0))
4446 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
4447 && INTVAL (XEXP (op, 0)) < 0x8000
4448 && INTVAL (XEXP (op, 0)) >= -0x8000))
4449 fprintf (file, MOTOROLA ? ".l" : ":l");
4450 }
4451 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
4452 {
4453 REAL_VALUE_TYPE r;
4454 long l;
4455 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
4456 REAL_VALUE_TO_TARGET_SINGLE (r, l);
4457 asm_fprintf (file, "%I0x%lx", l & 0xFFFFFFFF);
4458 }
4459 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
4460 {
4461 REAL_VALUE_TYPE r;
4462 long l[3];
4463 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
4464 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
4465 asm_fprintf (file, "%I0x%lx%08lx%08lx", l[0] & 0xFFFFFFFF,
4466 l[1] & 0xFFFFFFFF, l[2] & 0xFFFFFFFF);
4467 }
4468 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
4469 {
4470 REAL_VALUE_TYPE r;
4471 long l[2];
4472 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
4473 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
4474 asm_fprintf (file, "%I0x%lx%08lx", l[0] & 0xFFFFFFFF, l[1] & 0xFFFFFFFF);
4475 }
4476 else
4477 {
4478 /* Use `print_operand_address' instead of `output_addr_const'
4479 to ensure that we print relevant PIC stuff. */
4480 asm_fprintf (file, "%I");
4481 if (TARGET_PCREL
4482 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
4483 print_operand_address (file, op);
4484 else
4485 output_addr_const (file, op);
4486 }
4487 }
4488
4489 /* Return string for TLS relocation RELOC. */
4490
4491 static const char *
4492 m68k_get_reloc_decoration (enum m68k_reloc reloc)
4493 {
4494 /* To my knowledge, !MOTOROLA assemblers don't support TLS. */
4495 gcc_assert (MOTOROLA || reloc == RELOC_GOT);
4496
4497 switch (reloc)
4498 {
4499 case RELOC_GOT:
4500 if (MOTOROLA)
4501 {
4502 if (flag_pic == 1 && TARGET_68020)
4503 return "@GOT.w";
4504 else
4505 return "@GOT";
4506 }
4507 else
4508 {
4509 if (TARGET_68020)
4510 {
4511 switch (flag_pic)
4512 {
4513 case 1:
4514 return ":w";
4515 case 2:
4516 return ":l";
4517 default:
4518 return "";
4519 }
4520 }
4521 }
4522
4523 case RELOC_TLSGD:
4524 return "@TLSGD";
4525
4526 case RELOC_TLSLDM:
4527 return "@TLSLDM";
4528
4529 case RELOC_TLSLDO:
4530 return "@TLSLDO";
4531
4532 case RELOC_TLSIE:
4533 return "@TLSIE";
4534
4535 case RELOC_TLSLE:
4536 return "@TLSLE";
4537
4538 default:
4539 gcc_unreachable ();
4540 }
4541 }
4542
4543 /* m68k implementation of OUTPUT_ADDR_CONST_EXTRA. */
4544
4545 bool
4546 m68k_output_addr_const_extra (FILE *file, rtx x)
4547 {
4548 if (GET_CODE (x) == UNSPEC)
4549 {
4550 switch (XINT (x, 1))
4551 {
4552 case UNSPEC_RELOC16:
4553 case UNSPEC_RELOC32:
4554 output_addr_const (file, XVECEXP (x, 0, 0));
4555 fputs (m68k_get_reloc_decoration
4556 ((enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1))), file);
4557 return true;
4558
4559 default:
4560 break;
4561 }
4562 }
4563
4564 return false;
4565 }
4566
4567 /* M68K implementation of TARGET_ASM_OUTPUT_DWARF_DTPREL. */
4568
4569 static void
4570 m68k_output_dwarf_dtprel (FILE *file, int size, rtx x)
4571 {
4572 gcc_assert (size == 4);
4573 fputs ("\t.long\t", file);
4574 output_addr_const (file, x);
4575 fputs ("@TLSLDO+0x8000", file);
4576 }
4577
4578 /* In the name of slightly smaller debug output, and to cater to
4579 general assembler lossage, recognize various UNSPEC sequences
4580 and turn them back into a direct symbol reference. */
4581
4582 static rtx
4583 m68k_delegitimize_address (rtx orig_x)
4584 {
4585 rtx x;
4586 struct m68k_address addr;
4587 rtx unspec;
4588
4589 orig_x = delegitimize_mem_from_attrs (orig_x);
4590 x = orig_x;
4591 if (MEM_P (x))
4592 x = XEXP (x, 0);
4593
4594 if (GET_CODE (x) != PLUS || GET_MODE (x) != Pmode)
4595 return orig_x;
4596
4597 if (!m68k_decompose_address (GET_MODE (x), x, false, &addr)
4598 || addr.offset == NULL_RTX
4599 || GET_CODE (addr.offset) != CONST)
4600 return orig_x;
4601
4602 unspec = XEXP (addr.offset, 0);
4603 if (GET_CODE (unspec) == PLUS && CONST_INT_P (XEXP (unspec, 1)))
4604 unspec = XEXP (unspec, 0);
4605 if (GET_CODE (unspec) != UNSPEC
4606 || (XINT (unspec, 1) != UNSPEC_RELOC16
4607 && XINT (unspec, 1) != UNSPEC_RELOC32))
4608 return orig_x;
4609 x = XVECEXP (unspec, 0, 0);
4610 gcc_assert (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF);
4611 if (unspec != XEXP (addr.offset, 0))
4612 x = gen_rtx_PLUS (Pmode, x, XEXP (XEXP (addr.offset, 0), 1));
4613 if (addr.index)
4614 {
4615 rtx idx = addr.index;
4616 if (addr.scale != 1)
4617 idx = gen_rtx_MULT (Pmode, idx, GEN_INT (addr.scale));
4618 x = gen_rtx_PLUS (Pmode, idx, x);
4619 }
4620 if (addr.base)
4621 x = gen_rtx_PLUS (Pmode, addr.base, x);
4622 if (MEM_P (orig_x))
4623 x = replace_equiv_address_nv (orig_x, x);
4624 return x;
4625 }
4626
4627 \f
4628 /* A C compound statement to output to stdio stream STREAM the
4629 assembler syntax for an instruction operand that is a memory
4630 reference whose address is ADDR. ADDR is an RTL expression.
4631
4632 Note that this contains a kludge that knows that the only reason
4633 we have an address (plus (label_ref...) (reg...)) when not generating
4634 PIC code is in the insn before a tablejump, and we know that m68k.md
4635 generates a label LInnn: on such an insn.
4636
4637 It is possible for PIC to generate a (plus (label_ref...) (reg...))
4638 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
4639
4640 This routine is responsible for distinguishing between -fpic and -fPIC
4641 style relocations in an address. When generating -fpic code the
4642 offset is output in word mode (e.g. movel a5@(_foo:w), a0). When generating
4643 -fPIC code the offset is output in long mode (e.g. movel a5@(_foo:l), a0) */
4644
4645 void
4646 print_operand_address (FILE *file, rtx addr)
4647 {
4648 struct m68k_address address;
4649
4650 if (!m68k_decompose_address (QImode, addr, true, &address))
4651 gcc_unreachable ();
4652
4653 if (address.code == PRE_DEC)
4654 fprintf (file, MOTOROLA ? "-(%s)" : "%s@-",
4655 M68K_REGNAME (REGNO (address.base)));
4656 else if (address.code == POST_INC)
4657 fprintf (file, MOTOROLA ? "(%s)+" : "%s@+",
4658 M68K_REGNAME (REGNO (address.base)));
4659 else if (!address.base && !address.index)
4660 {
4661 /* A constant address. */
4662 gcc_assert (address.offset == addr);
4663 if (GET_CODE (addr) == CONST_INT)
4664 {
4665 /* (xxx).w or (xxx).l. */
4666 if (IN_RANGE (INTVAL (addr), -0x8000, 0x7fff))
4667 fprintf (file, MOTOROLA ? "%d.w" : "%d:w", (int) INTVAL (addr));
4668 else
4669 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
4670 }
4671 else if (TARGET_PCREL)
4672 {
4673 /* (d16,PC) or (bd,PC,Xn) (with suppressed index register). */
4674 fputc ('(', file);
4675 output_addr_const (file, addr);
4676 asm_fprintf (file, flag_pic == 1 ? ":w,%Rpc)" : ":l,%Rpc)");
4677 }
4678 else
4679 {
4680 /* (xxx).l. We need a special case for SYMBOL_REF if the symbol
4681 name ends in `.<letter>', as the last 2 characters can be
4682 mistaken as a size suffix. Put the name in parentheses. */
4683 if (GET_CODE (addr) == SYMBOL_REF
4684 && strlen (XSTR (addr, 0)) > 2
4685 && XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
4686 {
4687 putc ('(', file);
4688 output_addr_const (file, addr);
4689 putc (')', file);
4690 }
4691 else
4692 output_addr_const (file, addr);
4693 }
4694 }
4695 else
4696 {
4697 int labelno;
4698
4699 /* If ADDR is a (d8,pc,Xn) address, this is the number of the
4700 label being accessed, otherwise it is -1. */
4701 labelno = (address.offset
4702 && !address.base
4703 && GET_CODE (address.offset) == LABEL_REF
4704 ? CODE_LABEL_NUMBER (XEXP (address.offset, 0))
4705 : -1);
4706 if (MOTOROLA)
4707 {
4708 /* Print the "offset(base" component. */
4709 if (labelno >= 0)
4710 asm_fprintf (file, "%LL%d(%Rpc,", labelno);
4711 else
4712 {
4713 if (address.offset)
4714 output_addr_const (file, address.offset);
4715
4716 putc ('(', file);
4717 if (address.base)
4718 fputs (M68K_REGNAME (REGNO (address.base)), file);
4719 }
4720 /* Print the ",index" component, if any. */
4721 if (address.index)
4722 {
4723 if (address.base)
4724 putc (',', file);
4725 fprintf (file, "%s.%c",
4726 M68K_REGNAME (REGNO (address.index)),
4727 GET_MODE (address.index) == HImode ? 'w' : 'l');
4728 if (address.scale != 1)
4729 fprintf (file, "*%d", address.scale);
4730 }
4731 putc (')', file);
4732 }
4733 else /* !MOTOROLA */
4734 {
4735 if (!address.offset && !address.index)
4736 fprintf (file, "%s@", M68K_REGNAME (REGNO (address.base)));
4737 else
4738 {
4739 /* Print the "base@(offset" component. */
4740 if (labelno >= 0)
4741 asm_fprintf (file, "%Rpc@(%LL%d", labelno);
4742 else
4743 {
4744 if (address.base)
4745 fputs (M68K_REGNAME (REGNO (address.base)), file);
4746 fprintf (file, "@(");
4747 if (address.offset)
4748 output_addr_const (file, address.offset);
4749 }
4750 /* Print the ",index" component, if any. */
4751 if (address.index)
4752 {
4753 fprintf (file, ",%s:%c",
4754 M68K_REGNAME (REGNO (address.index)),
4755 GET_MODE (address.index) == HImode ? 'w' : 'l');
4756 if (address.scale != 1)
4757 fprintf (file, ":%d", address.scale);
4758 }
4759 putc (')', file);
4760 }
4761 }
4762 }
4763 }
4764 \f
4765 /* Check for cases where a clr insns can be omitted from code using
4766 strict_low_part sets. For example, the second clrl here is not needed:
4767 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
4768
4769 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
4770 insn we are checking for redundancy. TARGET is the register set by the
4771 clear insn. */
4772
4773 bool
4774 strict_low_part_peephole_ok (enum machine_mode mode, rtx first_insn,
4775 rtx target)
4776 {
4777 rtx p = first_insn;
4778
4779 while ((p = PREV_INSN (p)))
4780 {
4781 if (NOTE_INSN_BASIC_BLOCK_P (p))
4782 return false;
4783
4784 if (NOTE_P (p))
4785 continue;
4786
4787 /* If it isn't an insn, then give up. */
4788 if (!INSN_P (p))
4789 return false;
4790
4791 if (reg_set_p (target, p))
4792 {
4793 rtx set = single_set (p);
4794 rtx dest;
4795
4796 /* If it isn't an easy to recognize insn, then give up. */
4797 if (! set)
4798 return false;
4799
4800 dest = SET_DEST (set);
4801
4802 /* If this sets the entire target register to zero, then our
4803 first_insn is redundant. */
4804 if (rtx_equal_p (dest, target)
4805 && SET_SRC (set) == const0_rtx)
4806 return true;
4807 else if (GET_CODE (dest) == STRICT_LOW_PART
4808 && GET_CODE (XEXP (dest, 0)) == REG
4809 && REGNO (XEXP (dest, 0)) == REGNO (target)
4810 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
4811 <= GET_MODE_SIZE (mode)))
4812 /* This is a strict low part set which modifies less than
4813 we are using, so it is safe. */
4814 ;
4815 else
4816 return false;
4817 }
4818 }
4819
4820 return false;
4821 }
4822
4823 /* Operand predicates for implementing asymmetric pc-relative addressing
4824 on m68k. The m68k supports pc-relative addressing (mode 7, register 2)
4825 when used as a source operand, but not as a destination operand.
4826
4827 We model this by restricting the meaning of the basic predicates
4828 (general_operand, memory_operand, etc) to forbid the use of this
4829 addressing mode, and then define the following predicates that permit
4830 this addressing mode. These predicates can then be used for the
4831 source operands of the appropriate instructions.
4832
4833 n.b. While it is theoretically possible to change all machine patterns
4834 to use this addressing more where permitted by the architecture,
4835 it has only been implemented for "common" cases: SImode, HImode, and
4836 QImode operands, and only for the principle operations that would
4837 require this addressing mode: data movement and simple integer operations.
4838
4839 In parallel with these new predicates, two new constraint letters
4840 were defined: 'S' and 'T'. 'S' is the -mpcrel analog of 'm'.
4841 'T' replaces 's' in the non-pcrel case. It is a no-op in the pcrel case.
4842 In the pcrel case 's' is only valid in combination with 'a' registers.
4843 See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
4844 of how these constraints are used.
4845
4846 The use of these predicates is strictly optional, though patterns that
4847 don't will cause an extra reload register to be allocated where one
4848 was not necessary:
4849
4850 lea (abc:w,%pc),%a0 ; need to reload address
4851 moveq &1,%d1 ; since write to pc-relative space
4852 movel %d1,%a0@ ; is not allowed
4853 ...
4854 lea (abc:w,%pc),%a1 ; no need to reload address here
4855 movel %a1@,%d0 ; since "movel (abc:w,%pc),%d0" is ok
4856
4857 For more info, consult tiemann@cygnus.com.
4858
4859
4860 All of the ugliness with predicates and constraints is due to the
4861 simple fact that the m68k does not allow a pc-relative addressing
4862 mode as a destination. gcc does not distinguish between source and
4863 destination addresses. Hence, if we claim that pc-relative address
4864 modes are valid, e.g. TARGET_LEGITIMATE_ADDRESS_P accepts them, then we
4865 end up with invalid code. To get around this problem, we left
4866 pc-relative modes as invalid addresses, and then added special
4867 predicates and constraints to accept them.
4868
4869 A cleaner way to handle this is to modify gcc to distinguish
4870 between source and destination addresses. We can then say that
4871 pc-relative is a valid source address but not a valid destination
4872 address, and hopefully avoid a lot of the predicate and constraint
4873 hackery. Unfortunately, this would be a pretty big change. It would
4874 be a useful change for a number of ports, but there aren't any current
4875 plans to undertake this.
4876
4877 ***************************************************************************/
4878
4879
4880 const char *
4881 output_andsi3 (rtx *operands)
4882 {
4883 int logval;
4884 if (GET_CODE (operands[2]) == CONST_INT
4885 && (INTVAL (operands[2]) | 0xffff) == -1
4886 && (DATA_REG_P (operands[0])
4887 || offsettable_memref_p (operands[0]))
4888 && !TARGET_COLDFIRE)
4889 {
4890 if (GET_CODE (operands[0]) != REG)
4891 operands[0] = adjust_address (operands[0], HImode, 2);
4892 operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
4893 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4894 CC_STATUS_INIT;
4895 if (operands[2] == const0_rtx)
4896 return "clr%.w %0";
4897 return "and%.w %2,%0";
4898 }
4899 if (GET_CODE (operands[2]) == CONST_INT
4900 && (logval = exact_log2 (~ INTVAL (operands[2]) & 0xffffffff)) >= 0
4901 && (DATA_REG_P (operands[0])
4902 || offsettable_memref_p (operands[0])))
4903 {
4904 if (DATA_REG_P (operands[0]))
4905 operands[1] = GEN_INT (logval);
4906 else
4907 {
4908 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4909 operands[1] = GEN_INT (logval % 8);
4910 }
4911 /* This does not set condition codes in a standard way. */
4912 CC_STATUS_INIT;
4913 return "bclr %1,%0";
4914 }
4915 return "and%.l %2,%0";
4916 }
4917
4918 const char *
4919 output_iorsi3 (rtx *operands)
4920 {
4921 register int logval;
4922 if (GET_CODE (operands[2]) == CONST_INT
4923 && INTVAL (operands[2]) >> 16 == 0
4924 && (DATA_REG_P (operands[0])
4925 || offsettable_memref_p (operands[0]))
4926 && !TARGET_COLDFIRE)
4927 {
4928 if (GET_CODE (operands[0]) != REG)
4929 operands[0] = adjust_address (operands[0], HImode, 2);
4930 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4931 CC_STATUS_INIT;
4932 if (INTVAL (operands[2]) == 0xffff)
4933 return "mov%.w %2,%0";
4934 return "or%.w %2,%0";
4935 }
4936 if (GET_CODE (operands[2]) == CONST_INT
4937 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
4938 && (DATA_REG_P (operands[0])
4939 || offsettable_memref_p (operands[0])))
4940 {
4941 if (DATA_REG_P (operands[0]))
4942 operands[1] = GEN_INT (logval);
4943 else
4944 {
4945 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4946 operands[1] = GEN_INT (logval % 8);
4947 }
4948 CC_STATUS_INIT;
4949 return "bset %1,%0";
4950 }
4951 return "or%.l %2,%0";
4952 }
4953
4954 const char *
4955 output_xorsi3 (rtx *operands)
4956 {
4957 register int logval;
4958 if (GET_CODE (operands[2]) == CONST_INT
4959 && INTVAL (operands[2]) >> 16 == 0
4960 && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
4961 && !TARGET_COLDFIRE)
4962 {
4963 if (! DATA_REG_P (operands[0]))
4964 operands[0] = adjust_address (operands[0], HImode, 2);
4965 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4966 CC_STATUS_INIT;
4967 if (INTVAL (operands[2]) == 0xffff)
4968 return "not%.w %0";
4969 return "eor%.w %2,%0";
4970 }
4971 if (GET_CODE (operands[2]) == CONST_INT
4972 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
4973 && (DATA_REG_P (operands[0])
4974 || offsettable_memref_p (operands[0])))
4975 {
4976 if (DATA_REG_P (operands[0]))
4977 operands[1] = GEN_INT (logval);
4978 else
4979 {
4980 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4981 operands[1] = GEN_INT (logval % 8);
4982 }
4983 CC_STATUS_INIT;
4984 return "bchg %1,%0";
4985 }
4986 return "eor%.l %2,%0";
4987 }
4988
4989 /* Return the instruction that should be used for a call to address X,
4990 which is known to be in operand 0. */
4991
4992 const char *
4993 output_call (rtx x)
4994 {
4995 if (symbolic_operand (x, VOIDmode))
4996 return m68k_symbolic_call;
4997 else
4998 return "jsr %a0";
4999 }
5000
5001 /* Likewise sibling calls. */
5002
5003 const char *
5004 output_sibcall (rtx x)
5005 {
5006 if (symbolic_operand (x, VOIDmode))
5007 return m68k_symbolic_jump;
5008 else
5009 return "jmp %a0";
5010 }
5011
5012 static void
5013 m68k_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
5014 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
5015 tree function)
5016 {
5017 rtx this_slot, offset, addr, mem, insn, tmp;
5018
5019 /* Avoid clobbering the struct value reg by using the
5020 static chain reg as a temporary. */
5021 tmp = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5022
5023 /* Pretend to be a post-reload pass while generating rtl. */
5024 reload_completed = 1;
5025
5026 /* The "this" pointer is stored at 4(%sp). */
5027 this_slot = gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, 4));
5028
5029 /* Add DELTA to THIS. */
5030 if (delta != 0)
5031 {
5032 /* Make the offset a legitimate operand for memory addition. */
5033 offset = GEN_INT (delta);
5034 if ((delta < -8 || delta > 8)
5035 && (TARGET_COLDFIRE || USE_MOVQ (delta)))
5036 {
5037 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), offset);
5038 offset = gen_rtx_REG (Pmode, D0_REG);
5039 }
5040 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5041 copy_rtx (this_slot), offset));
5042 }
5043
5044 /* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
5045 if (vcall_offset != 0)
5046 {
5047 /* Set the static chain register to *THIS. */
5048 emit_move_insn (tmp, this_slot);
5049 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
5050
5051 /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
5052 addr = plus_constant (tmp, vcall_offset);
5053 if (!m68k_legitimate_address_p (Pmode, addr, true))
5054 {
5055 emit_insn (gen_rtx_SET (VOIDmode, tmp, addr));
5056 addr = tmp;
5057 }
5058
5059 /* Load the offset into %d0 and add it to THIS. */
5060 emit_move_insn (gen_rtx_REG (Pmode, D0_REG),
5061 gen_rtx_MEM (Pmode, addr));
5062 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5063 copy_rtx (this_slot),
5064 gen_rtx_REG (Pmode, D0_REG)));
5065 }
5066
5067 /* Jump to the target function. Use a sibcall if direct jumps are
5068 allowed, otherwise load the address into a register first. */
5069 mem = DECL_RTL (function);
5070 if (!sibcall_operand (XEXP (mem, 0), VOIDmode))
5071 {
5072 gcc_assert (flag_pic);
5073
5074 if (!TARGET_SEP_DATA)
5075 {
5076 /* Use the static chain register as a temporary (call-clobbered)
5077 GOT pointer for this function. We can use the static chain
5078 register because it isn't live on entry to the thunk. */
5079 SET_REGNO (pic_offset_table_rtx, STATIC_CHAIN_REGNUM);
5080 emit_insn (gen_load_got (pic_offset_table_rtx));
5081 }
5082 legitimize_pic_address (XEXP (mem, 0), Pmode, tmp);
5083 mem = replace_equiv_address (mem, tmp);
5084 }
5085 insn = emit_call_insn (gen_sibcall (mem, const0_rtx));
5086 SIBLING_CALL_P (insn) = 1;
5087
5088 /* Run just enough of rest_of_compilation. */
5089 insn = get_insns ();
5090 split_all_insns_noflow ();
5091 final_start_function (insn, file, 1);
5092 final (insn, file, 1);
5093 final_end_function ();
5094
5095 /* Clean up the vars set above. */
5096 reload_completed = 0;
5097
5098 /* Restore the original PIC register. */
5099 if (flag_pic)
5100 SET_REGNO (pic_offset_table_rtx, PIC_REG);
5101 }
5102
5103 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
5104
5105 static rtx
5106 m68k_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
5107 int incoming ATTRIBUTE_UNUSED)
5108 {
5109 return gen_rtx_REG (Pmode, M68K_STRUCT_VALUE_REGNUM);
5110 }
5111
5112 /* Return nonzero if register old_reg can be renamed to register new_reg. */
5113 int
5114 m68k_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
5115 unsigned int new_reg)
5116 {
5117
5118 /* Interrupt functions can only use registers that have already been
5119 saved by the prologue, even if they would normally be
5120 call-clobbered. */
5121
5122 if ((m68k_get_function_kind (current_function_decl)
5123 == m68k_fk_interrupt_handler)
5124 && !df_regs_ever_live_p (new_reg))
5125 return 0;
5126
5127 return 1;
5128 }
5129
5130 /* Value is true if hard register REGNO can hold a value of machine-mode
5131 MODE. On the 68000, we let the cpu registers can hold any mode, but
5132 restrict the 68881 registers to floating-point modes. */
5133
5134 bool
5135 m68k_regno_mode_ok (int regno, enum machine_mode mode)
5136 {
5137 if (DATA_REGNO_P (regno))
5138 {
5139 /* Data Registers, can hold aggregate if fits in. */
5140 if (regno + GET_MODE_SIZE (mode) / 4 <= 8)
5141 return true;
5142 }
5143 else if (ADDRESS_REGNO_P (regno))
5144 {
5145 if (regno + GET_MODE_SIZE (mode) / 4 <= 16)
5146 return true;
5147 }
5148 else if (FP_REGNO_P (regno))
5149 {
5150 /* FPU registers, hold float or complex float of long double or
5151 smaller. */
5152 if ((GET_MODE_CLASS (mode) == MODE_FLOAT
5153 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
5154 && GET_MODE_UNIT_SIZE (mode) <= TARGET_FP_REG_SIZE)
5155 return true;
5156 }
5157 return false;
5158 }
5159
5160 /* Implement SECONDARY_RELOAD_CLASS. */
5161
5162 enum reg_class
5163 m68k_secondary_reload_class (enum reg_class rclass,
5164 enum machine_mode mode, rtx x)
5165 {
5166 int regno;
5167
5168 regno = true_regnum (x);
5169
5170 /* If one operand of a movqi is an address register, the other
5171 operand must be a general register or constant. Other types
5172 of operand must be reloaded through a data register. */
5173 if (GET_MODE_SIZE (mode) == 1
5174 && reg_classes_intersect_p (rclass, ADDR_REGS)
5175 && !(INT_REGNO_P (regno) || CONSTANT_P (x)))
5176 return DATA_REGS;
5177
5178 /* PC-relative addresses must be loaded into an address register first. */
5179 if (TARGET_PCREL
5180 && !reg_class_subset_p (rclass, ADDR_REGS)
5181 && symbolic_operand (x, VOIDmode))
5182 return ADDR_REGS;
5183
5184 return NO_REGS;
5185 }
5186
5187 /* Implement PREFERRED_RELOAD_CLASS. */
5188
5189 enum reg_class
5190 m68k_preferred_reload_class (rtx x, enum reg_class rclass)
5191 {
5192 enum reg_class secondary_class;
5193
5194 /* If RCLASS might need a secondary reload, try restricting it to
5195 a class that doesn't. */
5196 secondary_class = m68k_secondary_reload_class (rclass, GET_MODE (x), x);
5197 if (secondary_class != NO_REGS
5198 && reg_class_subset_p (secondary_class, rclass))
5199 return secondary_class;
5200
5201 /* Prefer to use moveq for in-range constants. */
5202 if (GET_CODE (x) == CONST_INT
5203 && reg_class_subset_p (DATA_REGS, rclass)
5204 && IN_RANGE (INTVAL (x), -0x80, 0x7f))
5205 return DATA_REGS;
5206
5207 /* ??? Do we really need this now? */
5208 if (GET_CODE (x) == CONST_DOUBLE
5209 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
5210 {
5211 if (TARGET_HARD_FLOAT && reg_class_subset_p (FP_REGS, rclass))
5212 return FP_REGS;
5213
5214 return NO_REGS;
5215 }
5216
5217 return rclass;
5218 }
5219
5220 /* Return floating point values in a 68881 register. This makes 68881 code
5221 a little bit faster. It also makes -msoft-float code incompatible with
5222 hard-float code, so people have to be careful not to mix the two.
5223 For ColdFire it was decided the ABI incompatibility is undesirable.
5224 If there is need for a hard-float ABI it is probably worth doing it
5225 properly and also passing function arguments in FP registers. */
5226 rtx
5227 m68k_libcall_value (enum machine_mode mode)
5228 {
5229 switch (mode) {
5230 case SFmode:
5231 case DFmode:
5232 case XFmode:
5233 if (TARGET_68881)
5234 return gen_rtx_REG (mode, FP0_REG);
5235 break;
5236 default:
5237 break;
5238 }
5239
5240 return gen_rtx_REG (mode, m68k_libcall_value_in_a0_p ? A0_REG : D0_REG);
5241 }
5242
5243 /* Location in which function value is returned.
5244 NOTE: Due to differences in ABIs, don't call this function directly,
5245 use FUNCTION_VALUE instead. */
5246 rtx
5247 m68k_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
5248 {
5249 enum machine_mode mode;
5250
5251 mode = TYPE_MODE (valtype);
5252 switch (mode) {
5253 case SFmode:
5254 case DFmode:
5255 case XFmode:
5256 if (TARGET_68881)
5257 return gen_rtx_REG (mode, FP0_REG);
5258 break;
5259 default:
5260 break;
5261 }
5262
5263 /* If the function returns a pointer, push that into %a0. */
5264 if (func && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (func))))
5265 /* For compatibility with the large body of existing code which
5266 does not always properly declare external functions returning
5267 pointer types, the m68k/SVR4 convention is to copy the value
5268 returned for pointer functions from a0 to d0 in the function
5269 epilogue, so that callers that have neglected to properly
5270 declare the callee can still find the correct return value in
5271 d0. */
5272 return gen_rtx_PARALLEL
5273 (mode,
5274 gen_rtvec (2,
5275 gen_rtx_EXPR_LIST (VOIDmode,
5276 gen_rtx_REG (mode, A0_REG),
5277 const0_rtx),
5278 gen_rtx_EXPR_LIST (VOIDmode,
5279 gen_rtx_REG (mode, D0_REG),
5280 const0_rtx)));
5281 else if (POINTER_TYPE_P (valtype))
5282 return gen_rtx_REG (mode, A0_REG);
5283 else
5284 return gen_rtx_REG (mode, D0_REG);
5285 }
5286
5287 /* Worker function for TARGET_RETURN_IN_MEMORY. */
5288 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
5289 static bool
5290 m68k_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
5291 {
5292 enum machine_mode mode = TYPE_MODE (type);
5293
5294 if (mode == BLKmode)
5295 return true;
5296
5297 /* If TYPE's known alignment is less than the alignment of MODE that
5298 would contain the structure, then return in memory. We need to
5299 do so to maintain the compatibility between code compiled with
5300 -mstrict-align and that compiled with -mno-strict-align. */
5301 if (AGGREGATE_TYPE_P (type)
5302 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (mode))
5303 return true;
5304
5305 return false;
5306 }
5307 #endif
5308
5309 /* CPU to schedule the program for. */
5310 enum attr_cpu m68k_sched_cpu;
5311
5312 /* MAC to schedule the program for. */
5313 enum attr_mac m68k_sched_mac;
5314
5315 /* Operand type. */
5316 enum attr_op_type
5317 {
5318 /* No operand. */
5319 OP_TYPE_NONE,
5320
5321 /* Integer register. */
5322 OP_TYPE_RN,
5323
5324 /* FP register. */
5325 OP_TYPE_FPN,
5326
5327 /* Implicit mem reference (e.g. stack). */
5328 OP_TYPE_MEM1,
5329
5330 /* Memory without offset or indexing. EA modes 2, 3 and 4. */
5331 OP_TYPE_MEM234,
5332
5333 /* Memory with offset but without indexing. EA mode 5. */
5334 OP_TYPE_MEM5,
5335
5336 /* Memory with indexing. EA mode 6. */
5337 OP_TYPE_MEM6,
5338
5339 /* Memory referenced by absolute address. EA mode 7. */
5340 OP_TYPE_MEM7,
5341
5342 /* Immediate operand that doesn't require extension word. */
5343 OP_TYPE_IMM_Q,
5344
5345 /* Immediate 16 bit operand. */
5346 OP_TYPE_IMM_W,
5347
5348 /* Immediate 32 bit operand. */
5349 OP_TYPE_IMM_L
5350 };
5351
5352 /* Return type of memory ADDR_RTX refers to. */
5353 static enum attr_op_type
5354 sched_address_type (enum machine_mode mode, rtx addr_rtx)
5355 {
5356 struct m68k_address address;
5357
5358 if (symbolic_operand (addr_rtx, VOIDmode))
5359 return OP_TYPE_MEM7;
5360
5361 if (!m68k_decompose_address (mode, addr_rtx,
5362 reload_completed, &address))
5363 {
5364 gcc_assert (!reload_completed);
5365 /* Reload will likely fix the address to be in the register. */
5366 return OP_TYPE_MEM234;
5367 }
5368
5369 if (address.scale != 0)
5370 return OP_TYPE_MEM6;
5371
5372 if (address.base != NULL_RTX)
5373 {
5374 if (address.offset == NULL_RTX)
5375 return OP_TYPE_MEM234;
5376
5377 return OP_TYPE_MEM5;
5378 }
5379
5380 gcc_assert (address.offset != NULL_RTX);
5381
5382 return OP_TYPE_MEM7;
5383 }
5384
5385 /* Return X or Y (depending on OPX_P) operand of INSN. */
5386 static rtx
5387 sched_get_operand (rtx insn, bool opx_p)
5388 {
5389 int i;
5390
5391 if (recog_memoized (insn) < 0)
5392 gcc_unreachable ();
5393
5394 extract_constrain_insn_cached (insn);
5395
5396 if (opx_p)
5397 i = get_attr_opx (insn);
5398 else
5399 i = get_attr_opy (insn);
5400
5401 if (i >= recog_data.n_operands)
5402 return NULL;
5403
5404 return recog_data.operand[i];
5405 }
5406
5407 /* Return type of INSN's operand X (if OPX_P) or operand Y (if !OPX_P).
5408 If ADDRESS_P is true, return type of memory location operand refers to. */
5409 static enum attr_op_type
5410 sched_attr_op_type (rtx insn, bool opx_p, bool address_p)
5411 {
5412 rtx op;
5413
5414 op = sched_get_operand (insn, opx_p);
5415
5416 if (op == NULL)
5417 {
5418 gcc_assert (!reload_completed);
5419 return OP_TYPE_RN;
5420 }
5421
5422 if (address_p)
5423 return sched_address_type (QImode, op);
5424
5425 if (memory_operand (op, VOIDmode))
5426 return sched_address_type (GET_MODE (op), XEXP (op, 0));
5427
5428 if (register_operand (op, VOIDmode))
5429 {
5430 if ((!reload_completed && FLOAT_MODE_P (GET_MODE (op)))
5431 || (reload_completed && FP_REG_P (op)))
5432 return OP_TYPE_FPN;
5433
5434 return OP_TYPE_RN;
5435 }
5436
5437 if (GET_CODE (op) == CONST_INT)
5438 {
5439 int ival;
5440
5441 ival = INTVAL (op);
5442
5443 /* Check for quick constants. */
5444 switch (get_attr_type (insn))
5445 {
5446 case TYPE_ALUQ_L:
5447 if (IN_RANGE (ival, 1, 8) || IN_RANGE (ival, -8, -1))
5448 return OP_TYPE_IMM_Q;
5449
5450 gcc_assert (!reload_completed);
5451 break;
5452
5453 case TYPE_MOVEQ_L:
5454 if (USE_MOVQ (ival))
5455 return OP_TYPE_IMM_Q;
5456
5457 gcc_assert (!reload_completed);
5458 break;
5459
5460 case TYPE_MOV3Q_L:
5461 if (valid_mov3q_const (ival))
5462 return OP_TYPE_IMM_Q;
5463
5464 gcc_assert (!reload_completed);
5465 break;
5466
5467 default:
5468 break;
5469 }
5470
5471 if (IN_RANGE (ival, -0x8000, 0x7fff))
5472 return OP_TYPE_IMM_W;
5473
5474 return OP_TYPE_IMM_L;
5475 }
5476
5477 if (GET_CODE (op) == CONST_DOUBLE)
5478 {
5479 switch (GET_MODE (op))
5480 {
5481 case SFmode:
5482 return OP_TYPE_IMM_W;
5483
5484 case VOIDmode:
5485 case DFmode:
5486 return OP_TYPE_IMM_L;
5487
5488 default:
5489 gcc_unreachable ();
5490 }
5491 }
5492
5493 if (GET_CODE (op) == CONST
5494 || symbolic_operand (op, VOIDmode)
5495 || LABEL_P (op))
5496 {
5497 switch (GET_MODE (op))
5498 {
5499 case QImode:
5500 return OP_TYPE_IMM_Q;
5501
5502 case HImode:
5503 return OP_TYPE_IMM_W;
5504
5505 case SImode:
5506 return OP_TYPE_IMM_L;
5507
5508 default:
5509 if (symbolic_operand (m68k_unwrap_symbol (op, false), VOIDmode))
5510 /* Just a guess. */
5511 return OP_TYPE_IMM_W;
5512
5513 return OP_TYPE_IMM_L;
5514 }
5515 }
5516
5517 gcc_assert (!reload_completed);
5518
5519 if (FLOAT_MODE_P (GET_MODE (op)))
5520 return OP_TYPE_FPN;
5521
5522 return OP_TYPE_RN;
5523 }
5524
5525 /* Implement opx_type attribute.
5526 Return type of INSN's operand X.
5527 If ADDRESS_P is true, return type of memory location operand refers to. */
5528 enum attr_opx_type
5529 m68k_sched_attr_opx_type (rtx insn, int address_p)
5530 {
5531 switch (sched_attr_op_type (insn, true, address_p != 0))
5532 {
5533 case OP_TYPE_RN:
5534 return OPX_TYPE_RN;
5535
5536 case OP_TYPE_FPN:
5537 return OPX_TYPE_FPN;
5538
5539 case OP_TYPE_MEM1:
5540 return OPX_TYPE_MEM1;
5541
5542 case OP_TYPE_MEM234:
5543 return OPX_TYPE_MEM234;
5544
5545 case OP_TYPE_MEM5:
5546 return OPX_TYPE_MEM5;
5547
5548 case OP_TYPE_MEM6:
5549 return OPX_TYPE_MEM6;
5550
5551 case OP_TYPE_MEM7:
5552 return OPX_TYPE_MEM7;
5553
5554 case OP_TYPE_IMM_Q:
5555 return OPX_TYPE_IMM_Q;
5556
5557 case OP_TYPE_IMM_W:
5558 return OPX_TYPE_IMM_W;
5559
5560 case OP_TYPE_IMM_L:
5561 return OPX_TYPE_IMM_L;
5562
5563 default:
5564 gcc_unreachable ();
5565 }
5566 }
5567
5568 /* Implement opy_type attribute.
5569 Return type of INSN's operand Y.
5570 If ADDRESS_P is true, return type of memory location operand refers to. */
5571 enum attr_opy_type
5572 m68k_sched_attr_opy_type (rtx insn, int address_p)
5573 {
5574 switch (sched_attr_op_type (insn, false, address_p != 0))
5575 {
5576 case OP_TYPE_RN:
5577 return OPY_TYPE_RN;
5578
5579 case OP_TYPE_FPN:
5580 return OPY_TYPE_FPN;
5581
5582 case OP_TYPE_MEM1:
5583 return OPY_TYPE_MEM1;
5584
5585 case OP_TYPE_MEM234:
5586 return OPY_TYPE_MEM234;
5587
5588 case OP_TYPE_MEM5:
5589 return OPY_TYPE_MEM5;
5590
5591 case OP_TYPE_MEM6:
5592 return OPY_TYPE_MEM6;
5593
5594 case OP_TYPE_MEM7:
5595 return OPY_TYPE_MEM7;
5596
5597 case OP_TYPE_IMM_Q:
5598 return OPY_TYPE_IMM_Q;
5599
5600 case OP_TYPE_IMM_W:
5601 return OPY_TYPE_IMM_W;
5602
5603 case OP_TYPE_IMM_L:
5604 return OPY_TYPE_IMM_L;
5605
5606 default:
5607 gcc_unreachable ();
5608 }
5609 }
5610
5611 /* Return size of INSN as int. */
5612 static int
5613 sched_get_attr_size_int (rtx insn)
5614 {
5615 int size;
5616
5617 switch (get_attr_type (insn))
5618 {
5619 case TYPE_IGNORE:
5620 /* There should be no references to m68k_sched_attr_size for 'ignore'
5621 instructions. */
5622 gcc_unreachable ();
5623 return 0;
5624
5625 case TYPE_MUL_L:
5626 size = 2;
5627 break;
5628
5629 default:
5630 size = 1;
5631 break;
5632 }
5633
5634 switch (get_attr_opx_type (insn))
5635 {
5636 case OPX_TYPE_NONE:
5637 case OPX_TYPE_RN:
5638 case OPX_TYPE_FPN:
5639 case OPX_TYPE_MEM1:
5640 case OPX_TYPE_MEM234:
5641 case OPY_TYPE_IMM_Q:
5642 break;
5643
5644 case OPX_TYPE_MEM5:
5645 case OPX_TYPE_MEM6:
5646 /* Here we assume that most absolute references are short. */
5647 case OPX_TYPE_MEM7:
5648 case OPY_TYPE_IMM_W:
5649 ++size;
5650 break;
5651
5652 case OPY_TYPE_IMM_L:
5653 size += 2;
5654 break;
5655
5656 default:
5657 gcc_unreachable ();
5658 }
5659
5660 switch (get_attr_opy_type (insn))
5661 {
5662 case OPY_TYPE_NONE:
5663 case OPY_TYPE_RN:
5664 case OPY_TYPE_FPN:
5665 case OPY_TYPE_MEM1:
5666 case OPY_TYPE_MEM234:
5667 case OPY_TYPE_IMM_Q:
5668 break;
5669
5670 case OPY_TYPE_MEM5:
5671 case OPY_TYPE_MEM6:
5672 /* Here we assume that most absolute references are short. */
5673 case OPY_TYPE_MEM7:
5674 case OPY_TYPE_IMM_W:
5675 ++size;
5676 break;
5677
5678 case OPY_TYPE_IMM_L:
5679 size += 2;
5680 break;
5681
5682 default:
5683 gcc_unreachable ();
5684 }
5685
5686 if (size > 3)
5687 {
5688 gcc_assert (!reload_completed);
5689
5690 size = 3;
5691 }
5692
5693 return size;
5694 }
5695
5696 /* Return size of INSN as attribute enum value. */
5697 enum attr_size
5698 m68k_sched_attr_size (rtx insn)
5699 {
5700 switch (sched_get_attr_size_int (insn))
5701 {
5702 case 1:
5703 return SIZE_1;
5704
5705 case 2:
5706 return SIZE_2;
5707
5708 case 3:
5709 return SIZE_3;
5710
5711 default:
5712 gcc_unreachable ();
5713 }
5714 }
5715
5716 /* Return operand X or Y (depending on OPX_P) of INSN,
5717 if it is a MEM, or NULL overwise. */
5718 static enum attr_op_type
5719 sched_get_opxy_mem_type (rtx insn, bool opx_p)
5720 {
5721 if (opx_p)
5722 {
5723 switch (get_attr_opx_type (insn))
5724 {
5725 case OPX_TYPE_NONE:
5726 case OPX_TYPE_RN:
5727 case OPX_TYPE_FPN:
5728 case OPX_TYPE_IMM_Q:
5729 case OPX_TYPE_IMM_W:
5730 case OPX_TYPE_IMM_L:
5731 return OP_TYPE_RN;
5732
5733 case OPX_TYPE_MEM1:
5734 case OPX_TYPE_MEM234:
5735 case OPX_TYPE_MEM5:
5736 case OPX_TYPE_MEM7:
5737 return OP_TYPE_MEM1;
5738
5739 case OPX_TYPE_MEM6:
5740 return OP_TYPE_MEM6;
5741
5742 default:
5743 gcc_unreachable ();
5744 }
5745 }
5746 else
5747 {
5748 switch (get_attr_opy_type (insn))
5749 {
5750 case OPY_TYPE_NONE:
5751 case OPY_TYPE_RN:
5752 case OPY_TYPE_FPN:
5753 case OPY_TYPE_IMM_Q:
5754 case OPY_TYPE_IMM_W:
5755 case OPY_TYPE_IMM_L:
5756 return OP_TYPE_RN;
5757
5758 case OPY_TYPE_MEM1:
5759 case OPY_TYPE_MEM234:
5760 case OPY_TYPE_MEM5:
5761 case OPY_TYPE_MEM7:
5762 return OP_TYPE_MEM1;
5763
5764 case OPY_TYPE_MEM6:
5765 return OP_TYPE_MEM6;
5766
5767 default:
5768 gcc_unreachable ();
5769 }
5770 }
5771 }
5772
5773 /* Implement op_mem attribute. */
5774 enum attr_op_mem
5775 m68k_sched_attr_op_mem (rtx insn)
5776 {
5777 enum attr_op_type opx;
5778 enum attr_op_type opy;
5779
5780 opx = sched_get_opxy_mem_type (insn, true);
5781 opy = sched_get_opxy_mem_type (insn, false);
5782
5783 if (opy == OP_TYPE_RN && opx == OP_TYPE_RN)
5784 return OP_MEM_00;
5785
5786 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM1)
5787 {
5788 switch (get_attr_opx_access (insn))
5789 {
5790 case OPX_ACCESS_R:
5791 return OP_MEM_10;
5792
5793 case OPX_ACCESS_W:
5794 return OP_MEM_01;
5795
5796 case OPX_ACCESS_RW:
5797 return OP_MEM_11;
5798
5799 default:
5800 gcc_unreachable ();
5801 }
5802 }
5803
5804 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM6)
5805 {
5806 switch (get_attr_opx_access (insn))
5807 {
5808 case OPX_ACCESS_R:
5809 return OP_MEM_I0;
5810
5811 case OPX_ACCESS_W:
5812 return OP_MEM_0I;
5813
5814 case OPX_ACCESS_RW:
5815 return OP_MEM_I1;
5816
5817 default:
5818 gcc_unreachable ();
5819 }
5820 }
5821
5822 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_RN)
5823 return OP_MEM_10;
5824
5825 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM1)
5826 {
5827 switch (get_attr_opx_access (insn))
5828 {
5829 case OPX_ACCESS_W:
5830 return OP_MEM_11;
5831
5832 default:
5833 gcc_assert (!reload_completed);
5834 return OP_MEM_11;
5835 }
5836 }
5837
5838 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM6)
5839 {
5840 switch (get_attr_opx_access (insn))
5841 {
5842 case OPX_ACCESS_W:
5843 return OP_MEM_1I;
5844
5845 default:
5846 gcc_assert (!reload_completed);
5847 return OP_MEM_1I;
5848 }
5849 }
5850
5851 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_RN)
5852 return OP_MEM_I0;
5853
5854 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM1)
5855 {
5856 switch (get_attr_opx_access (insn))
5857 {
5858 case OPX_ACCESS_W:
5859 return OP_MEM_I1;
5860
5861 default:
5862 gcc_assert (!reload_completed);
5863 return OP_MEM_I1;
5864 }
5865 }
5866
5867 gcc_assert (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM6);
5868 gcc_assert (!reload_completed);
5869 return OP_MEM_I1;
5870 }
5871
5872 /* Jump instructions types. Indexed by INSN_UID.
5873 The same rtl insn can be expanded into different asm instructions
5874 depending on the cc0_status. To properly determine type of jump
5875 instructions we scan instruction stream and map jumps types to this
5876 array. */
5877 static enum attr_type *sched_branch_type;
5878
5879 /* Return the type of the jump insn. */
5880 enum attr_type
5881 m68k_sched_branch_type (rtx insn)
5882 {
5883 enum attr_type type;
5884
5885 type = sched_branch_type[INSN_UID (insn)];
5886
5887 gcc_assert (type != 0);
5888
5889 return type;
5890 }
5891
5892 /* Data for ColdFire V4 index bypass.
5893 Producer modifies register that is used as index in consumer with
5894 specified scale. */
5895 static struct
5896 {
5897 /* Producer instruction. */
5898 rtx pro;
5899
5900 /* Consumer instruction. */
5901 rtx con;
5902
5903 /* Scale of indexed memory access within consumer.
5904 Or zero if bypass should not be effective at the moment. */
5905 int scale;
5906 } sched_cfv4_bypass_data;
5907
5908 /* An empty state that is used in m68k_sched_adjust_cost. */
5909 static state_t sched_adjust_cost_state;
5910
5911 /* Implement adjust_cost scheduler hook.
5912 Return adjusted COST of dependency LINK between DEF_INSN and INSN. */
5913 static int
5914 m68k_sched_adjust_cost (rtx insn, rtx link ATTRIBUTE_UNUSED, rtx def_insn,
5915 int cost)
5916 {
5917 int delay;
5918
5919 if (recog_memoized (def_insn) < 0
5920 || recog_memoized (insn) < 0)
5921 return cost;
5922
5923 if (sched_cfv4_bypass_data.scale == 1)
5924 /* Handle ColdFire V4 bypass for indexed address with 1x scale. */
5925 {
5926 /* haifa-sched.c: insn_cost () calls bypass_p () just before
5927 targetm.sched.adjust_cost (). Hence, we can be relatively sure
5928 that the data in sched_cfv4_bypass_data is up to date. */
5929 gcc_assert (sched_cfv4_bypass_data.pro == def_insn
5930 && sched_cfv4_bypass_data.con == insn);
5931
5932 if (cost < 3)
5933 cost = 3;
5934
5935 sched_cfv4_bypass_data.pro = NULL;
5936 sched_cfv4_bypass_data.con = NULL;
5937 sched_cfv4_bypass_data.scale = 0;
5938 }
5939 else
5940 gcc_assert (sched_cfv4_bypass_data.pro == NULL
5941 && sched_cfv4_bypass_data.con == NULL
5942 && sched_cfv4_bypass_data.scale == 0);
5943
5944 /* Don't try to issue INSN earlier than DFA permits.
5945 This is especially useful for instructions that write to memory,
5946 as their true dependence (default) latency is better to be set to 0
5947 to workaround alias analysis limitations.
5948 This is, in fact, a machine independent tweak, so, probably,
5949 it should be moved to haifa-sched.c: insn_cost (). */
5950 delay = min_insn_conflict_delay (sched_adjust_cost_state, def_insn, insn);
5951 if (delay > cost)
5952 cost = delay;
5953
5954 return cost;
5955 }
5956
5957 /* Return maximal number of insns that can be scheduled on a single cycle. */
5958 static int
5959 m68k_sched_issue_rate (void)
5960 {
5961 switch (m68k_sched_cpu)
5962 {
5963 case CPU_CFV1:
5964 case CPU_CFV2:
5965 case CPU_CFV3:
5966 return 1;
5967
5968 case CPU_CFV4:
5969 return 2;
5970
5971 default:
5972 gcc_unreachable ();
5973 return 0;
5974 }
5975 }
5976
5977 /* Maximal length of instruction for current CPU.
5978 E.g. it is 3 for any ColdFire core. */
5979 static int max_insn_size;
5980
5981 /* Data to model instruction buffer of CPU. */
5982 struct _sched_ib
5983 {
5984 /* True if instruction buffer model is modeled for current CPU. */
5985 bool enabled_p;
5986
5987 /* Size of the instruction buffer in words. */
5988 int size;
5989
5990 /* Number of filled words in the instruction buffer. */
5991 int filled;
5992
5993 /* Additional information about instruction buffer for CPUs that have
5994 a buffer of instruction records, rather then a plain buffer
5995 of instruction words. */
5996 struct _sched_ib_records
5997 {
5998 /* Size of buffer in records. */
5999 int n_insns;
6000
6001 /* Array to hold data on adjustements made to the size of the buffer. */
6002 int *adjust;
6003
6004 /* Index of the above array. */
6005 int adjust_index;
6006 } records;
6007
6008 /* An insn that reserves (marks empty) one word in the instruction buffer. */
6009 rtx insn;
6010 };
6011
6012 static struct _sched_ib sched_ib;
6013
6014 /* ID of memory unit. */
6015 static int sched_mem_unit_code;
6016
6017 /* Implementation of the targetm.sched.variable_issue () hook.
6018 It is called after INSN was issued. It returns the number of insns
6019 that can possibly get scheduled on the current cycle.
6020 It is used here to determine the effect of INSN on the instruction
6021 buffer. */
6022 static int
6023 m68k_sched_variable_issue (FILE *sched_dump ATTRIBUTE_UNUSED,
6024 int sched_verbose ATTRIBUTE_UNUSED,
6025 rtx insn, int can_issue_more)
6026 {
6027 int insn_size;
6028
6029 if (recog_memoized (insn) >= 0 && get_attr_type (insn) != TYPE_IGNORE)
6030 {
6031 switch (m68k_sched_cpu)
6032 {
6033 case CPU_CFV1:
6034 case CPU_CFV2:
6035 insn_size = sched_get_attr_size_int (insn);
6036 break;
6037
6038 case CPU_CFV3:
6039 insn_size = sched_get_attr_size_int (insn);
6040
6041 /* ColdFire V3 and V4 cores have instruction buffers that can
6042 accumulate up to 8 instructions regardless of instructions'
6043 sizes. So we should take care not to "prefetch" 24 one-word
6044 or 12 two-words instructions.
6045 To model this behavior we temporarily decrease size of the
6046 buffer by (max_insn_size - insn_size) for next 7 instructions. */
6047 {
6048 int adjust;
6049
6050 adjust = max_insn_size - insn_size;
6051 sched_ib.size -= adjust;
6052
6053 if (sched_ib.filled > sched_ib.size)
6054 sched_ib.filled = sched_ib.size;
6055
6056 sched_ib.records.adjust[sched_ib.records.adjust_index] = adjust;
6057 }
6058
6059 ++sched_ib.records.adjust_index;
6060 if (sched_ib.records.adjust_index == sched_ib.records.n_insns)
6061 sched_ib.records.adjust_index = 0;
6062
6063 /* Undo adjustement we did 7 instructions ago. */
6064 sched_ib.size
6065 += sched_ib.records.adjust[sched_ib.records.adjust_index];
6066
6067 break;
6068
6069 case CPU_CFV4:
6070 gcc_assert (!sched_ib.enabled_p);
6071 insn_size = 0;
6072 break;
6073
6074 default:
6075 gcc_unreachable ();
6076 }
6077
6078 if (insn_size > sched_ib.filled)
6079 /* Scheduling for register pressure does not always take DFA into
6080 account. Workaround instruction buffer not being filled enough. */
6081 {
6082 gcc_assert (sched_pressure_p);
6083 insn_size = sched_ib.filled;
6084 }
6085
6086 --can_issue_more;
6087 }
6088 else if (GET_CODE (PATTERN (insn)) == ASM_INPUT
6089 || asm_noperands (PATTERN (insn)) >= 0)
6090 insn_size = sched_ib.filled;
6091 else
6092 insn_size = 0;
6093
6094 sched_ib.filled -= insn_size;
6095
6096 return can_issue_more;
6097 }
6098
6099 /* Return how many instructions should scheduler lookahead to choose the
6100 best one. */
6101 static int
6102 m68k_sched_first_cycle_multipass_dfa_lookahead (void)
6103 {
6104 return m68k_sched_issue_rate () - 1;
6105 }
6106
6107 /* Implementation of targetm.sched.init_global () hook.
6108 It is invoked once per scheduling pass and is used here
6109 to initialize scheduler constants. */
6110 static void
6111 m68k_sched_md_init_global (FILE *sched_dump ATTRIBUTE_UNUSED,
6112 int sched_verbose ATTRIBUTE_UNUSED,
6113 int n_insns ATTRIBUTE_UNUSED)
6114 {
6115 /* Init branch types. */
6116 {
6117 rtx insn;
6118
6119 sched_branch_type = XCNEWVEC (enum attr_type, get_max_uid () + 1);
6120
6121 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
6122 {
6123 if (JUMP_P (insn))
6124 /* !!! FIXME: Implement real scan here. */
6125 sched_branch_type[INSN_UID (insn)] = TYPE_BCC;
6126 }
6127 }
6128
6129 #ifdef ENABLE_CHECKING
6130 /* Check that all instructions have DFA reservations and
6131 that all instructions can be issued from a clean state. */
6132 {
6133 rtx insn;
6134 state_t state;
6135
6136 state = alloca (state_size ());
6137
6138 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
6139 {
6140 if (INSN_P (insn) && recog_memoized (insn) >= 0)
6141 {
6142 gcc_assert (insn_has_dfa_reservation_p (insn));
6143
6144 state_reset (state);
6145 if (state_transition (state, insn) >= 0)
6146 gcc_unreachable ();
6147 }
6148 }
6149 }
6150 #endif
6151
6152 /* Setup target cpu. */
6153
6154 /* ColdFire V4 has a set of features to keep its instruction buffer full
6155 (e.g., a separate memory bus for instructions) and, hence, we do not model
6156 buffer for this CPU. */
6157 sched_ib.enabled_p = (m68k_sched_cpu != CPU_CFV4);
6158
6159 switch (m68k_sched_cpu)
6160 {
6161 case CPU_CFV4:
6162 sched_ib.filled = 0;
6163
6164 /* FALLTHRU */
6165
6166 case CPU_CFV1:
6167 case CPU_CFV2:
6168 max_insn_size = 3;
6169 sched_ib.records.n_insns = 0;
6170 sched_ib.records.adjust = NULL;
6171 break;
6172
6173 case CPU_CFV3:
6174 max_insn_size = 3;
6175 sched_ib.records.n_insns = 8;
6176 sched_ib.records.adjust = XNEWVEC (int, sched_ib.records.n_insns);
6177 break;
6178
6179 default:
6180 gcc_unreachable ();
6181 }
6182
6183 sched_mem_unit_code = get_cpu_unit_code ("cf_mem1");
6184
6185 sched_adjust_cost_state = xmalloc (state_size ());
6186 state_reset (sched_adjust_cost_state);
6187
6188 start_sequence ();
6189 emit_insn (gen_ib ());
6190 sched_ib.insn = get_insns ();
6191 end_sequence ();
6192 }
6193
6194 /* Scheduling pass is now finished. Free/reset static variables. */
6195 static void
6196 m68k_sched_md_finish_global (FILE *dump ATTRIBUTE_UNUSED,
6197 int verbose ATTRIBUTE_UNUSED)
6198 {
6199 sched_ib.insn = NULL;
6200
6201 free (sched_adjust_cost_state);
6202 sched_adjust_cost_state = NULL;
6203
6204 sched_mem_unit_code = 0;
6205
6206 free (sched_ib.records.adjust);
6207 sched_ib.records.adjust = NULL;
6208 sched_ib.records.n_insns = 0;
6209 max_insn_size = 0;
6210
6211 free (sched_branch_type);
6212 sched_branch_type = NULL;
6213 }
6214
6215 /* Implementation of targetm.sched.init () hook.
6216 It is invoked each time scheduler starts on the new block (basic block or
6217 extended basic block). */
6218 static void
6219 m68k_sched_md_init (FILE *sched_dump ATTRIBUTE_UNUSED,
6220 int sched_verbose ATTRIBUTE_UNUSED,
6221 int n_insns ATTRIBUTE_UNUSED)
6222 {
6223 switch (m68k_sched_cpu)
6224 {
6225 case CPU_CFV1:
6226 case CPU_CFV2:
6227 sched_ib.size = 6;
6228 break;
6229
6230 case CPU_CFV3:
6231 sched_ib.size = sched_ib.records.n_insns * max_insn_size;
6232
6233 memset (sched_ib.records.adjust, 0,
6234 sched_ib.records.n_insns * sizeof (*sched_ib.records.adjust));
6235 sched_ib.records.adjust_index = 0;
6236 break;
6237
6238 case CPU_CFV4:
6239 gcc_assert (!sched_ib.enabled_p);
6240 sched_ib.size = 0;
6241 break;
6242
6243 default:
6244 gcc_unreachable ();
6245 }
6246
6247 if (sched_ib.enabled_p)
6248 /* haifa-sched.c: schedule_block () calls advance_cycle () just before
6249 the first cycle. Workaround that. */
6250 sched_ib.filled = -2;
6251 }
6252
6253 /* Implementation of targetm.sched.dfa_pre_advance_cycle () hook.
6254 It is invoked just before current cycle finishes and is used here
6255 to track if instruction buffer got its two words this cycle. */
6256 static void
6257 m68k_sched_dfa_pre_advance_cycle (void)
6258 {
6259 if (!sched_ib.enabled_p)
6260 return;
6261
6262 if (!cpu_unit_reservation_p (curr_state, sched_mem_unit_code))
6263 {
6264 sched_ib.filled += 2;
6265
6266 if (sched_ib.filled > sched_ib.size)
6267 sched_ib.filled = sched_ib.size;
6268 }
6269 }
6270
6271 /* Implementation of targetm.sched.dfa_post_advance_cycle () hook.
6272 It is invoked just after new cycle begins and is used here
6273 to setup number of filled words in the instruction buffer so that
6274 instructions which won't have all their words prefetched would be
6275 stalled for a cycle. */
6276 static void
6277 m68k_sched_dfa_post_advance_cycle (void)
6278 {
6279 int i;
6280
6281 if (!sched_ib.enabled_p)
6282 return;
6283
6284 /* Setup number of prefetched instruction words in the instruction
6285 buffer. */
6286 i = max_insn_size - sched_ib.filled;
6287
6288 while (--i >= 0)
6289 {
6290 if (state_transition (curr_state, sched_ib.insn) >= 0)
6291 gcc_unreachable ();
6292 }
6293 }
6294
6295 /* Return X or Y (depending on OPX_P) operand of INSN,
6296 if it is an integer register, or NULL overwise. */
6297 static rtx
6298 sched_get_reg_operand (rtx insn, bool opx_p)
6299 {
6300 rtx op = NULL;
6301
6302 if (opx_p)
6303 {
6304 if (get_attr_opx_type (insn) == OPX_TYPE_RN)
6305 {
6306 op = sched_get_operand (insn, true);
6307 gcc_assert (op != NULL);
6308
6309 if (!reload_completed && !REG_P (op))
6310 return NULL;
6311 }
6312 }
6313 else
6314 {
6315 if (get_attr_opy_type (insn) == OPY_TYPE_RN)
6316 {
6317 op = sched_get_operand (insn, false);
6318 gcc_assert (op != NULL);
6319
6320 if (!reload_completed && !REG_P (op))
6321 return NULL;
6322 }
6323 }
6324
6325 return op;
6326 }
6327
6328 /* Return true, if X or Y (depending on OPX_P) operand of INSN
6329 is a MEM. */
6330 static bool
6331 sched_mem_operand_p (rtx insn, bool opx_p)
6332 {
6333 switch (sched_get_opxy_mem_type (insn, opx_p))
6334 {
6335 case OP_TYPE_MEM1:
6336 case OP_TYPE_MEM6:
6337 return true;
6338
6339 default:
6340 return false;
6341 }
6342 }
6343
6344 /* Return X or Y (depending on OPX_P) operand of INSN,
6345 if it is a MEM, or NULL overwise. */
6346 static rtx
6347 sched_get_mem_operand (rtx insn, bool must_read_p, bool must_write_p)
6348 {
6349 bool opx_p;
6350 bool opy_p;
6351
6352 opx_p = false;
6353 opy_p = false;
6354
6355 if (must_read_p)
6356 {
6357 opx_p = true;
6358 opy_p = true;
6359 }
6360
6361 if (must_write_p)
6362 {
6363 opx_p = true;
6364 opy_p = false;
6365 }
6366
6367 if (opy_p && sched_mem_operand_p (insn, false))
6368 return sched_get_operand (insn, false);
6369
6370 if (opx_p && sched_mem_operand_p (insn, true))
6371 return sched_get_operand (insn, true);
6372
6373 gcc_unreachable ();
6374 return NULL;
6375 }
6376
6377 /* Return non-zero if PRO modifies register used as part of
6378 address in CON. */
6379 int
6380 m68k_sched_address_bypass_p (rtx pro, rtx con)
6381 {
6382 rtx pro_x;
6383 rtx con_mem_read;
6384
6385 pro_x = sched_get_reg_operand (pro, true);
6386 if (pro_x == NULL)
6387 return 0;
6388
6389 con_mem_read = sched_get_mem_operand (con, true, false);
6390 gcc_assert (con_mem_read != NULL);
6391
6392 if (reg_mentioned_p (pro_x, con_mem_read))
6393 return 1;
6394
6395 return 0;
6396 }
6397
6398 /* Helper function for m68k_sched_indexed_address_bypass_p.
6399 if PRO modifies register used as index in CON,
6400 return scale of indexed memory access in CON. Return zero overwise. */
6401 static int
6402 sched_get_indexed_address_scale (rtx pro, rtx con)
6403 {
6404 rtx reg;
6405 rtx mem;
6406 struct m68k_address address;
6407
6408 reg = sched_get_reg_operand (pro, true);
6409 if (reg == NULL)
6410 return 0;
6411
6412 mem = sched_get_mem_operand (con, true, false);
6413 gcc_assert (mem != NULL && MEM_P (mem));
6414
6415 if (!m68k_decompose_address (GET_MODE (mem), XEXP (mem, 0), reload_completed,
6416 &address))
6417 gcc_unreachable ();
6418
6419 if (REGNO (reg) == REGNO (address.index))
6420 {
6421 gcc_assert (address.scale != 0);
6422 return address.scale;
6423 }
6424
6425 return 0;
6426 }
6427
6428 /* Return non-zero if PRO modifies register used
6429 as index with scale 2 or 4 in CON. */
6430 int
6431 m68k_sched_indexed_address_bypass_p (rtx pro, rtx con)
6432 {
6433 gcc_assert (sched_cfv4_bypass_data.pro == NULL
6434 && sched_cfv4_bypass_data.con == NULL
6435 && sched_cfv4_bypass_data.scale == 0);
6436
6437 switch (sched_get_indexed_address_scale (pro, con))
6438 {
6439 case 1:
6440 /* We can't have a variable latency bypass, so
6441 remember to adjust the insn cost in adjust_cost hook. */
6442 sched_cfv4_bypass_data.pro = pro;
6443 sched_cfv4_bypass_data.con = con;
6444 sched_cfv4_bypass_data.scale = 1;
6445 return 0;
6446
6447 case 2:
6448 case 4:
6449 return 1;
6450
6451 default:
6452 return 0;
6453 }
6454 }
6455
6456 /* We generate a two-instructions program at M_TRAMP :
6457 movea.l &CHAIN_VALUE,%a0
6458 jmp FNADDR
6459 where %a0 can be modified by changing STATIC_CHAIN_REGNUM. */
6460
6461 static void
6462 m68k_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
6463 {
6464 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
6465 rtx mem;
6466
6467 gcc_assert (ADDRESS_REGNO_P (STATIC_CHAIN_REGNUM));
6468
6469 mem = adjust_address (m_tramp, HImode, 0);
6470 emit_move_insn (mem, GEN_INT(0x207C + ((STATIC_CHAIN_REGNUM-8) << 9)));
6471 mem = adjust_address (m_tramp, SImode, 2);
6472 emit_move_insn (mem, chain_value);
6473
6474 mem = adjust_address (m_tramp, HImode, 6);
6475 emit_move_insn (mem, GEN_INT(0x4EF9));
6476 mem = adjust_address (m_tramp, SImode, 8);
6477 emit_move_insn (mem, fnaddr);
6478
6479 FINALIZE_TRAMPOLINE (XEXP (m_tramp, 0));
6480 }
6481
6482 /* On the 68000, the RTS insn cannot pop anything.
6483 On the 68010, the RTD insn may be used to pop them if the number
6484 of args is fixed, but if the number is variable then the caller
6485 must pop them all. RTD can't be used for library calls now
6486 because the library is compiled with the Unix compiler.
6487 Use of RTD is a selectable option, since it is incompatible with
6488 standard Unix calling sequences. If the option is not selected,
6489 the caller must always pop the args. */
6490
6491 static int
6492 m68k_return_pops_args (tree fundecl, tree funtype, int size)
6493 {
6494 return ((TARGET_RTD
6495 && (!fundecl
6496 || TREE_CODE (fundecl) != IDENTIFIER_NODE)
6497 && (!stdarg_p (funtype)))
6498 ? size : 0);
6499 }
6500
6501 /* Make sure everything's fine if we *don't* have a given processor.
6502 This assumes that putting a register in fixed_regs will keep the
6503 compiler's mitts completely off it. We don't bother to zero it out
6504 of register classes. */
6505
6506 static void
6507 m68k_conditional_register_usage (void)
6508 {
6509 int i;
6510 HARD_REG_SET x;
6511 if (!TARGET_HARD_FLOAT)
6512 {
6513 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]);
6514 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6515 if (TEST_HARD_REG_BIT (x, i))
6516 fixed_regs[i] = call_used_regs[i] = 1;
6517 }
6518 if (flag_pic)
6519 fixed_regs[PIC_REG] = call_used_regs[PIC_REG] = 1;
6520 }
6521
6522 #include "gt-m68k.h"