]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/m68k/m68k.c
Use function_arg_info for TARGET_FUNCTION_ARG_ADVANCE
[thirdparty/gcc.git] / gcc / config / m68k / m68k.c
1 /* Subroutines for insn-output.c for Motorola 68000 family.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #define IN_TARGET_CODE 1
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "cfghooks.h"
27 #include "tree.h"
28 #include "stringpool.h"
29 #include "attribs.h"
30 #include "rtl.h"
31 #include "df.h"
32 #include "alias.h"
33 #include "fold-const.h"
34 #include "calls.h"
35 #include "stor-layout.h"
36 #include "varasm.h"
37 #include "regs.h"
38 #include "insn-config.h"
39 #include "conditions.h"
40 #include "output.h"
41 #include "insn-attr.h"
42 #include "recog.h"
43 #include "diagnostic-core.h"
44 #include "flags.h"
45 #include "expmed.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "memmodel.h"
49 #include "emit-rtl.h"
50 #include "stmt.h"
51 #include "expr.h"
52 #include "reload.h"
53 #include "tm_p.h"
54 #include "target.h"
55 #include "debug.h"
56 #include "cfgrtl.h"
57 #include "cfganal.h"
58 #include "lcm.h"
59 #include "cfgbuild.h"
60 #include "cfgcleanup.h"
61 /* ??? Need to add a dependency between m68k.o and sched-int.h. */
62 #include "sched-int.h"
63 #include "insn-codes.h"
64 #include "opts.h"
65 #include "optabs.h"
66 #include "builtins.h"
67 #include "rtl-iter.h"
68 #include "toplev.h"
69
70 /* This file should be included last. */
71 #include "target-def.h"
72
73 enum reg_class regno_reg_class[] =
74 {
75 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
76 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
77 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
78 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
79 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
80 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
81 ADDR_REGS
82 };
83
84
85 /* The minimum number of integer registers that we want to save with the
86 movem instruction. Using two movel instructions instead of a single
87 moveml is about 15% faster for the 68020 and 68030 at no expense in
88 code size. */
89 #define MIN_MOVEM_REGS 3
90
91 /* The minimum number of floating point registers that we want to save
92 with the fmovem instruction. */
93 #define MIN_FMOVEM_REGS 1
94
95 /* Structure describing stack frame layout. */
96 struct m68k_frame
97 {
98 /* Stack pointer to frame pointer offset. */
99 HOST_WIDE_INT offset;
100
101 /* Offset of FPU registers. */
102 HOST_WIDE_INT foffset;
103
104 /* Frame size in bytes (rounded up). */
105 HOST_WIDE_INT size;
106
107 /* Data and address register. */
108 int reg_no;
109 unsigned int reg_mask;
110
111 /* FPU registers. */
112 int fpu_no;
113 unsigned int fpu_mask;
114
115 /* Offsets relative to ARG_POINTER. */
116 HOST_WIDE_INT frame_pointer_offset;
117 HOST_WIDE_INT stack_pointer_offset;
118
119 /* Function which the above information refers to. */
120 int funcdef_no;
121 };
122
123 /* Current frame information calculated by m68k_compute_frame_layout(). */
124 static struct m68k_frame current_frame;
125
126 /* Structure describing an m68k address.
127
128 If CODE is UNKNOWN, the address is BASE + INDEX * SCALE + OFFSET,
129 with null fields evaluating to 0. Here:
130
131 - BASE satisfies m68k_legitimate_base_reg_p
132 - INDEX satisfies m68k_legitimate_index_reg_p
133 - OFFSET satisfies m68k_legitimate_constant_address_p
134
135 INDEX is either HImode or SImode. The other fields are SImode.
136
137 If CODE is PRE_DEC, the address is -(BASE). If CODE is POST_INC,
138 the address is (BASE)+. */
139 struct m68k_address {
140 enum rtx_code code;
141 rtx base;
142 rtx index;
143 rtx offset;
144 int scale;
145 };
146
147 static int m68k_sched_adjust_cost (rtx_insn *, int, rtx_insn *, int,
148 unsigned int);
149 static int m68k_sched_issue_rate (void);
150 static int m68k_sched_variable_issue (FILE *, int, rtx_insn *, int);
151 static void m68k_sched_md_init_global (FILE *, int, int);
152 static void m68k_sched_md_finish_global (FILE *, int);
153 static void m68k_sched_md_init (FILE *, int, int);
154 static void m68k_sched_dfa_pre_advance_cycle (void);
155 static void m68k_sched_dfa_post_advance_cycle (void);
156 static int m68k_sched_first_cycle_multipass_dfa_lookahead (void);
157
158 static bool m68k_can_eliminate (const int, const int);
159 static void m68k_conditional_register_usage (void);
160 static bool m68k_legitimate_address_p (machine_mode, rtx, bool);
161 static void m68k_option_override (void);
162 static void m68k_override_options_after_change (void);
163 static rtx find_addr_reg (rtx);
164 static const char *singlemove_string (rtx *);
165 static void m68k_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
166 HOST_WIDE_INT, tree);
167 static rtx m68k_struct_value_rtx (tree, int);
168 static tree m68k_handle_fndecl_attribute (tree *node, tree name,
169 tree args, int flags,
170 bool *no_add_attrs);
171 static void m68k_compute_frame_layout (void);
172 static bool m68k_save_reg (unsigned int regno, bool interrupt_handler);
173 static bool m68k_ok_for_sibcall_p (tree, tree);
174 static bool m68k_tls_symbol_p (rtx);
175 static rtx m68k_legitimize_address (rtx, rtx, machine_mode);
176 static bool m68k_rtx_costs (rtx, machine_mode, int, int, int *, bool);
177 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
178 static bool m68k_return_in_memory (const_tree, const_tree);
179 #endif
180 static void m68k_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
181 static void m68k_trampoline_init (rtx, tree, rtx);
182 static poly_int64 m68k_return_pops_args (tree, tree, poly_int64);
183 static rtx m68k_delegitimize_address (rtx);
184 static void m68k_function_arg_advance (cumulative_args_t,
185 const function_arg_info &);
186 static rtx m68k_function_arg (cumulative_args_t, const function_arg_info &);
187 static bool m68k_cannot_force_const_mem (machine_mode mode, rtx x);
188 static bool m68k_output_addr_const_extra (FILE *, rtx);
189 static void m68k_init_sync_libfuncs (void) ATTRIBUTE_UNUSED;
190 static enum flt_eval_method
191 m68k_excess_precision (enum excess_precision_type);
192 static unsigned int m68k_hard_regno_nregs (unsigned int, machine_mode);
193 static bool m68k_hard_regno_mode_ok (unsigned int, machine_mode);
194 static bool m68k_modes_tieable_p (machine_mode, machine_mode);
195 static machine_mode m68k_promote_function_mode (const_tree, machine_mode,
196 int *, const_tree, int);
197 \f
198 /* Initialize the GCC target structure. */
199
200 #if INT_OP_GROUP == INT_OP_DOT_WORD
201 #undef TARGET_ASM_ALIGNED_HI_OP
202 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
203 #endif
204
205 #if INT_OP_GROUP == INT_OP_NO_DOT
206 #undef TARGET_ASM_BYTE_OP
207 #define TARGET_ASM_BYTE_OP "\tbyte\t"
208 #undef TARGET_ASM_ALIGNED_HI_OP
209 #define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
210 #undef TARGET_ASM_ALIGNED_SI_OP
211 #define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
212 #endif
213
214 #if INT_OP_GROUP == INT_OP_DC
215 #undef TARGET_ASM_BYTE_OP
216 #define TARGET_ASM_BYTE_OP "\tdc.b\t"
217 #undef TARGET_ASM_ALIGNED_HI_OP
218 #define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
219 #undef TARGET_ASM_ALIGNED_SI_OP
220 #define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
221 #endif
222
223 #undef TARGET_ASM_UNALIGNED_HI_OP
224 #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
225 #undef TARGET_ASM_UNALIGNED_SI_OP
226 #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
227
228 #undef TARGET_ASM_OUTPUT_MI_THUNK
229 #define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
230 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
231 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
232
233 #undef TARGET_ASM_FILE_START_APP_OFF
234 #define TARGET_ASM_FILE_START_APP_OFF true
235
236 #undef TARGET_LEGITIMIZE_ADDRESS
237 #define TARGET_LEGITIMIZE_ADDRESS m68k_legitimize_address
238
239 #undef TARGET_SCHED_ADJUST_COST
240 #define TARGET_SCHED_ADJUST_COST m68k_sched_adjust_cost
241
242 #undef TARGET_SCHED_ISSUE_RATE
243 #define TARGET_SCHED_ISSUE_RATE m68k_sched_issue_rate
244
245 #undef TARGET_SCHED_VARIABLE_ISSUE
246 #define TARGET_SCHED_VARIABLE_ISSUE m68k_sched_variable_issue
247
248 #undef TARGET_SCHED_INIT_GLOBAL
249 #define TARGET_SCHED_INIT_GLOBAL m68k_sched_md_init_global
250
251 #undef TARGET_SCHED_FINISH_GLOBAL
252 #define TARGET_SCHED_FINISH_GLOBAL m68k_sched_md_finish_global
253
254 #undef TARGET_SCHED_INIT
255 #define TARGET_SCHED_INIT m68k_sched_md_init
256
257 #undef TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE
258 #define TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE m68k_sched_dfa_pre_advance_cycle
259
260 #undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
261 #define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE m68k_sched_dfa_post_advance_cycle
262
263 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
264 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
265 m68k_sched_first_cycle_multipass_dfa_lookahead
266
267 #undef TARGET_OPTION_OVERRIDE
268 #define TARGET_OPTION_OVERRIDE m68k_option_override
269
270 #undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
271 #define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE m68k_override_options_after_change
272
273 #undef TARGET_RTX_COSTS
274 #define TARGET_RTX_COSTS m68k_rtx_costs
275
276 #undef TARGET_ATTRIBUTE_TABLE
277 #define TARGET_ATTRIBUTE_TABLE m68k_attribute_table
278
279 #undef TARGET_PROMOTE_PROTOTYPES
280 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
281
282 #undef TARGET_STRUCT_VALUE_RTX
283 #define TARGET_STRUCT_VALUE_RTX m68k_struct_value_rtx
284
285 #undef TARGET_CANNOT_FORCE_CONST_MEM
286 #define TARGET_CANNOT_FORCE_CONST_MEM m68k_cannot_force_const_mem
287
288 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
289 #define TARGET_FUNCTION_OK_FOR_SIBCALL m68k_ok_for_sibcall_p
290
291 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
292 #undef TARGET_RETURN_IN_MEMORY
293 #define TARGET_RETURN_IN_MEMORY m68k_return_in_memory
294 #endif
295
296 #ifdef HAVE_AS_TLS
297 #undef TARGET_HAVE_TLS
298 #define TARGET_HAVE_TLS (true)
299
300 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
301 #define TARGET_ASM_OUTPUT_DWARF_DTPREL m68k_output_dwarf_dtprel
302 #endif
303
304 #undef TARGET_LRA_P
305 #define TARGET_LRA_P hook_bool_void_false
306
307 #undef TARGET_LEGITIMATE_ADDRESS_P
308 #define TARGET_LEGITIMATE_ADDRESS_P m68k_legitimate_address_p
309
310 #undef TARGET_CAN_ELIMINATE
311 #define TARGET_CAN_ELIMINATE m68k_can_eliminate
312
313 #undef TARGET_CONDITIONAL_REGISTER_USAGE
314 #define TARGET_CONDITIONAL_REGISTER_USAGE m68k_conditional_register_usage
315
316 #undef TARGET_TRAMPOLINE_INIT
317 #define TARGET_TRAMPOLINE_INIT m68k_trampoline_init
318
319 #undef TARGET_RETURN_POPS_ARGS
320 #define TARGET_RETURN_POPS_ARGS m68k_return_pops_args
321
322 #undef TARGET_DELEGITIMIZE_ADDRESS
323 #define TARGET_DELEGITIMIZE_ADDRESS m68k_delegitimize_address
324
325 #undef TARGET_FUNCTION_ARG
326 #define TARGET_FUNCTION_ARG m68k_function_arg
327
328 #undef TARGET_FUNCTION_ARG_ADVANCE
329 #define TARGET_FUNCTION_ARG_ADVANCE m68k_function_arg_advance
330
331 #undef TARGET_LEGITIMATE_CONSTANT_P
332 #define TARGET_LEGITIMATE_CONSTANT_P m68k_legitimate_constant_p
333
334 #undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
335 #define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA m68k_output_addr_const_extra
336
337 #undef TARGET_C_EXCESS_PRECISION
338 #define TARGET_C_EXCESS_PRECISION m68k_excess_precision
339
340 /* The value stored by TAS. */
341 #undef TARGET_ATOMIC_TEST_AND_SET_TRUEVAL
342 #define TARGET_ATOMIC_TEST_AND_SET_TRUEVAL 128
343
344 #undef TARGET_HARD_REGNO_NREGS
345 #define TARGET_HARD_REGNO_NREGS m68k_hard_regno_nregs
346 #undef TARGET_HARD_REGNO_MODE_OK
347 #define TARGET_HARD_REGNO_MODE_OK m68k_hard_regno_mode_ok
348
349 #undef TARGET_MODES_TIEABLE_P
350 #define TARGET_MODES_TIEABLE_P m68k_modes_tieable_p
351
352 #undef TARGET_PROMOTE_FUNCTION_MODE
353 #define TARGET_PROMOTE_FUNCTION_MODE m68k_promote_function_mode
354
355 #undef TARGET_HAVE_SPECULATION_SAFE_VALUE
356 #define TARGET_HAVE_SPECULATION_SAFE_VALUE speculation_safe_value_not_needed
357
358 static const struct attribute_spec m68k_attribute_table[] =
359 {
360 /* { name, min_len, max_len, decl_req, type_req, fn_type_req,
361 affects_type_identity, handler, exclude } */
362 { "interrupt", 0, 0, true, false, false, false,
363 m68k_handle_fndecl_attribute, NULL },
364 { "interrupt_handler", 0, 0, true, false, false, false,
365 m68k_handle_fndecl_attribute, NULL },
366 { "interrupt_thread", 0, 0, true, false, false, false,
367 m68k_handle_fndecl_attribute, NULL },
368 { NULL, 0, 0, false, false, false, false, NULL, NULL }
369 };
370
371 struct gcc_target targetm = TARGET_INITIALIZER;
372 \f
373 /* Base flags for 68k ISAs. */
374 #define FL_FOR_isa_00 FL_ISA_68000
375 #define FL_FOR_isa_10 (FL_FOR_isa_00 | FL_ISA_68010)
376 /* FL_68881 controls the default setting of -m68881. gcc has traditionally
377 generated 68881 code for 68020 and 68030 targets unless explicitly told
378 not to. */
379 #define FL_FOR_isa_20 (FL_FOR_isa_10 | FL_ISA_68020 \
380 | FL_BITFIELD | FL_68881 | FL_CAS)
381 #define FL_FOR_isa_40 (FL_FOR_isa_20 | FL_ISA_68040)
382 #define FL_FOR_isa_cpu32 (FL_FOR_isa_10 | FL_ISA_68020)
383
384 /* Base flags for ColdFire ISAs. */
385 #define FL_FOR_isa_a (FL_COLDFIRE | FL_ISA_A)
386 #define FL_FOR_isa_aplus (FL_FOR_isa_a | FL_ISA_APLUS | FL_CF_USP)
387 /* Note ISA_B doesn't necessarily include USP (user stack pointer) support. */
388 #define FL_FOR_isa_b (FL_FOR_isa_a | FL_ISA_B | FL_CF_HWDIV)
389 /* ISA_C is not upwardly compatible with ISA_B. */
390 #define FL_FOR_isa_c (FL_FOR_isa_a | FL_ISA_C | FL_CF_USP)
391
392 enum m68k_isa
393 {
394 /* Traditional 68000 instruction sets. */
395 isa_00,
396 isa_10,
397 isa_20,
398 isa_40,
399 isa_cpu32,
400 /* ColdFire instruction set variants. */
401 isa_a,
402 isa_aplus,
403 isa_b,
404 isa_c,
405 isa_max
406 };
407
408 /* Information about one of the -march, -mcpu or -mtune arguments. */
409 struct m68k_target_selection
410 {
411 /* The argument being described. */
412 const char *name;
413
414 /* For -mcpu, this is the device selected by the option.
415 For -mtune and -march, it is a representative device
416 for the microarchitecture or ISA respectively. */
417 enum target_device device;
418
419 /* The M68K_DEVICE fields associated with DEVICE. See the comment
420 in m68k-devices.def for details. FAMILY is only valid for -mcpu. */
421 const char *family;
422 enum uarch_type microarch;
423 enum m68k_isa isa;
424 unsigned long flags;
425 };
426
427 /* A list of all devices in m68k-devices.def. Used for -mcpu selection. */
428 static const struct m68k_target_selection all_devices[] =
429 {
430 #define M68K_DEVICE(NAME,ENUM_VALUE,FAMILY,MULTILIB,MICROARCH,ISA,FLAGS) \
431 { NAME, ENUM_VALUE, FAMILY, u##MICROARCH, ISA, FLAGS | FL_FOR_##ISA },
432 #include "m68k-devices.def"
433 #undef M68K_DEVICE
434 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
435 };
436
437 /* A list of all ISAs, mapping each one to a representative device.
438 Used for -march selection. */
439 static const struct m68k_target_selection all_isas[] =
440 {
441 #define M68K_ISA(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
442 { NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
443 #include "m68k-isas.def"
444 #undef M68K_ISA
445 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
446 };
447
448 /* A list of all microarchitectures, mapping each one to a representative
449 device. Used for -mtune selection. */
450 static const struct m68k_target_selection all_microarchs[] =
451 {
452 #define M68K_MICROARCH(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
453 { NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
454 #include "m68k-microarchs.def"
455 #undef M68K_MICROARCH
456 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
457 };
458 \f
459 /* The entries associated with the -mcpu, -march and -mtune settings,
460 or null for options that have not been used. */
461 const struct m68k_target_selection *m68k_cpu_entry;
462 const struct m68k_target_selection *m68k_arch_entry;
463 const struct m68k_target_selection *m68k_tune_entry;
464
465 /* Which CPU we are generating code for. */
466 enum target_device m68k_cpu;
467
468 /* Which microarchitecture to tune for. */
469 enum uarch_type m68k_tune;
470
471 /* Which FPU to use. */
472 enum fpu_type m68k_fpu;
473
474 /* The set of FL_* flags that apply to the target processor. */
475 unsigned int m68k_cpu_flags;
476
477 /* The set of FL_* flags that apply to the processor to be tuned for. */
478 unsigned int m68k_tune_flags;
479
480 /* Asm templates for calling or jumping to an arbitrary symbolic address,
481 or NULL if such calls or jumps are not supported. The address is held
482 in operand 0. */
483 const char *m68k_symbolic_call;
484 const char *m68k_symbolic_jump;
485
486 /* Enum variable that corresponds to m68k_symbolic_call values. */
487 enum M68K_SYMBOLIC_CALL m68k_symbolic_call_var;
488
489 \f
490 /* Implement TARGET_OPTION_OVERRIDE. */
491
492 static void
493 m68k_option_override (void)
494 {
495 const struct m68k_target_selection *entry;
496 unsigned long target_mask;
497
498 if (global_options_set.x_m68k_arch_option)
499 m68k_arch_entry = &all_isas[m68k_arch_option];
500
501 if (global_options_set.x_m68k_cpu_option)
502 m68k_cpu_entry = &all_devices[(int) m68k_cpu_option];
503
504 if (global_options_set.x_m68k_tune_option)
505 m68k_tune_entry = &all_microarchs[(int) m68k_tune_option];
506
507 /* User can choose:
508
509 -mcpu=
510 -march=
511 -mtune=
512
513 -march=ARCH should generate code that runs any processor
514 implementing architecture ARCH. -mcpu=CPU should override -march
515 and should generate code that runs on processor CPU, making free
516 use of any instructions that CPU understands. -mtune=UARCH applies
517 on top of -mcpu or -march and optimizes the code for UARCH. It does
518 not change the target architecture. */
519 if (m68k_cpu_entry)
520 {
521 /* Complain if the -march setting is for a different microarchitecture,
522 or includes flags that the -mcpu setting doesn't. */
523 if (m68k_arch_entry
524 && (m68k_arch_entry->microarch != m68k_cpu_entry->microarch
525 || (m68k_arch_entry->flags & ~m68k_cpu_entry->flags) != 0))
526 warning (0, "%<-mcpu=%s%> conflicts with %<-march=%s%>",
527 m68k_cpu_entry->name, m68k_arch_entry->name);
528
529 entry = m68k_cpu_entry;
530 }
531 else
532 entry = m68k_arch_entry;
533
534 if (!entry)
535 entry = all_devices + TARGET_CPU_DEFAULT;
536
537 m68k_cpu_flags = entry->flags;
538
539 /* Use the architecture setting to derive default values for
540 certain flags. */
541 target_mask = 0;
542
543 /* ColdFire is lenient about alignment. */
544 if (!TARGET_COLDFIRE)
545 target_mask |= MASK_STRICT_ALIGNMENT;
546
547 if ((m68k_cpu_flags & FL_BITFIELD) != 0)
548 target_mask |= MASK_BITFIELD;
549 if ((m68k_cpu_flags & FL_CF_HWDIV) != 0)
550 target_mask |= MASK_CF_HWDIV;
551 if ((m68k_cpu_flags & (FL_68881 | FL_CF_FPU)) != 0)
552 target_mask |= MASK_HARD_FLOAT;
553 target_flags |= target_mask & ~target_flags_explicit;
554
555 /* Set the directly-usable versions of the -mcpu and -mtune settings. */
556 m68k_cpu = entry->device;
557 if (m68k_tune_entry)
558 {
559 m68k_tune = m68k_tune_entry->microarch;
560 m68k_tune_flags = m68k_tune_entry->flags;
561 }
562 #ifdef M68K_DEFAULT_TUNE
563 else if (!m68k_cpu_entry && !m68k_arch_entry)
564 {
565 enum target_device dev;
566 dev = all_microarchs[M68K_DEFAULT_TUNE].device;
567 m68k_tune_flags = all_devices[dev].flags;
568 }
569 #endif
570 else
571 {
572 m68k_tune = entry->microarch;
573 m68k_tune_flags = entry->flags;
574 }
575
576 /* Set the type of FPU. */
577 m68k_fpu = (!TARGET_HARD_FLOAT ? FPUTYPE_NONE
578 : (m68k_cpu_flags & FL_COLDFIRE) != 0 ? FPUTYPE_COLDFIRE
579 : FPUTYPE_68881);
580
581 /* Sanity check to ensure that msep-data and mid-sahred-library are not
582 * both specified together. Doing so simply doesn't make sense.
583 */
584 if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
585 error ("cannot specify both %<-msep-data%> and %<-mid-shared-library%>");
586
587 /* If we're generating code for a separate A5 relative data segment,
588 * we've got to enable -fPIC as well. This might be relaxable to
589 * -fpic but it hasn't been tested properly.
590 */
591 if (TARGET_SEP_DATA || TARGET_ID_SHARED_LIBRARY)
592 flag_pic = 2;
593
594 /* -mpcrel -fPIC uses 32-bit pc-relative displacements. Raise an
595 error if the target does not support them. */
596 if (TARGET_PCREL && !TARGET_68020 && flag_pic == 2)
597 error ("%<-mpcrel%> %<-fPIC%> is not currently supported on selected cpu");
598
599 /* ??? A historic way of turning on pic, or is this intended to
600 be an embedded thing that doesn't have the same name binding
601 significance that it does on hosted ELF systems? */
602 if (TARGET_PCREL && flag_pic == 0)
603 flag_pic = 1;
604
605 if (!flag_pic)
606 {
607 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_JSR;
608
609 m68k_symbolic_jump = "jra %a0";
610 }
611 else if (TARGET_ID_SHARED_LIBRARY)
612 /* All addresses must be loaded from the GOT. */
613 ;
614 else if (TARGET_68020 || TARGET_ISAB || TARGET_ISAC)
615 {
616 if (TARGET_PCREL)
617 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_C;
618 else
619 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_P;
620
621 if (TARGET_ISAC)
622 /* No unconditional long branch */;
623 else if (TARGET_PCREL)
624 m68k_symbolic_jump = "bra%.l %c0";
625 else
626 m68k_symbolic_jump = "bra%.l %p0";
627 /* Turn off function cse if we are doing PIC. We always want
628 function call to be done as `bsr foo@PLTPC'. */
629 /* ??? It's traditional to do this for -mpcrel too, but it isn't
630 clear how intentional that is. */
631 flag_no_function_cse = 1;
632 }
633
634 switch (m68k_symbolic_call_var)
635 {
636 case M68K_SYMBOLIC_CALL_JSR:
637 m68k_symbolic_call = "jsr %a0";
638 break;
639
640 case M68K_SYMBOLIC_CALL_BSR_C:
641 m68k_symbolic_call = "bsr%.l %c0";
642 break;
643
644 case M68K_SYMBOLIC_CALL_BSR_P:
645 m68k_symbolic_call = "bsr%.l %p0";
646 break;
647
648 case M68K_SYMBOLIC_CALL_NONE:
649 gcc_assert (m68k_symbolic_call == NULL);
650 break;
651
652 default:
653 gcc_unreachable ();
654 }
655
656 #ifndef ASM_OUTPUT_ALIGN_WITH_NOP
657 parse_alignment_opts ();
658 int label_alignment = align_labels.levels[0].get_value ();
659 if (label_alignment > 2)
660 {
661 warning (0, "%<-falign-labels=%d%> is not supported", label_alignment);
662 str_align_labels = "1";
663 }
664
665 int loop_alignment = align_loops.levels[0].get_value ();
666 if (loop_alignment > 2)
667 {
668 warning (0, "%<-falign-loops=%d%> is not supported", loop_alignment);
669 str_align_loops = "1";
670 }
671 #endif
672
673 if ((opt_fstack_limit_symbol_arg != NULL || opt_fstack_limit_register_no >= 0)
674 && !TARGET_68020)
675 {
676 warning (0, "%<-fstack-limit-%> options are not supported on this cpu");
677 opt_fstack_limit_symbol_arg = NULL;
678 opt_fstack_limit_register_no = -1;
679 }
680
681 SUBTARGET_OVERRIDE_OPTIONS;
682
683 /* Setup scheduling options. */
684 if (TUNE_CFV1)
685 m68k_sched_cpu = CPU_CFV1;
686 else if (TUNE_CFV2)
687 m68k_sched_cpu = CPU_CFV2;
688 else if (TUNE_CFV3)
689 m68k_sched_cpu = CPU_CFV3;
690 else if (TUNE_CFV4)
691 m68k_sched_cpu = CPU_CFV4;
692 else
693 {
694 m68k_sched_cpu = CPU_UNKNOWN;
695 flag_schedule_insns = 0;
696 flag_schedule_insns_after_reload = 0;
697 flag_modulo_sched = 0;
698 flag_live_range_shrinkage = 0;
699 }
700
701 if (m68k_sched_cpu != CPU_UNKNOWN)
702 {
703 if ((m68k_cpu_flags & (FL_CF_EMAC | FL_CF_EMAC_B)) != 0)
704 m68k_sched_mac = MAC_CF_EMAC;
705 else if ((m68k_cpu_flags & FL_CF_MAC) != 0)
706 m68k_sched_mac = MAC_CF_MAC;
707 else
708 m68k_sched_mac = MAC_NO;
709 }
710 }
711
712 /* Implement TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE. */
713
714 static void
715 m68k_override_options_after_change (void)
716 {
717 if (m68k_sched_cpu == CPU_UNKNOWN)
718 {
719 flag_schedule_insns = 0;
720 flag_schedule_insns_after_reload = 0;
721 flag_modulo_sched = 0;
722 flag_live_range_shrinkage = 0;
723 }
724 }
725
726 /* Generate a macro of the form __mPREFIX_cpu_NAME, where PREFIX is the
727 given argument and NAME is the argument passed to -mcpu. Return NULL
728 if -mcpu was not passed. */
729
730 const char *
731 m68k_cpp_cpu_ident (const char *prefix)
732 {
733 if (!m68k_cpu_entry)
734 return NULL;
735 return concat ("__m", prefix, "_cpu_", m68k_cpu_entry->name, NULL);
736 }
737
738 /* Generate a macro of the form __mPREFIX_family_NAME, where PREFIX is the
739 given argument and NAME is the name of the representative device for
740 the -mcpu argument's family. Return NULL if -mcpu was not passed. */
741
742 const char *
743 m68k_cpp_cpu_family (const char *prefix)
744 {
745 if (!m68k_cpu_entry)
746 return NULL;
747 return concat ("__m", prefix, "_family_", m68k_cpu_entry->family, NULL);
748 }
749 \f
750 /* Return m68k_fk_interrupt_handler if FUNC has an "interrupt" or
751 "interrupt_handler" attribute and interrupt_thread if FUNC has an
752 "interrupt_thread" attribute. Otherwise, return
753 m68k_fk_normal_function. */
754
755 enum m68k_function_kind
756 m68k_get_function_kind (tree func)
757 {
758 tree a;
759
760 gcc_assert (TREE_CODE (func) == FUNCTION_DECL);
761
762 a = lookup_attribute ("interrupt", DECL_ATTRIBUTES (func));
763 if (a != NULL_TREE)
764 return m68k_fk_interrupt_handler;
765
766 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
767 if (a != NULL_TREE)
768 return m68k_fk_interrupt_handler;
769
770 a = lookup_attribute ("interrupt_thread", DECL_ATTRIBUTES (func));
771 if (a != NULL_TREE)
772 return m68k_fk_interrupt_thread;
773
774 return m68k_fk_normal_function;
775 }
776
777 /* Handle an attribute requiring a FUNCTION_DECL; arguments as in
778 struct attribute_spec.handler. */
779 static tree
780 m68k_handle_fndecl_attribute (tree *node, tree name,
781 tree args ATTRIBUTE_UNUSED,
782 int flags ATTRIBUTE_UNUSED,
783 bool *no_add_attrs)
784 {
785 if (TREE_CODE (*node) != FUNCTION_DECL)
786 {
787 warning (OPT_Wattributes, "%qE attribute only applies to functions",
788 name);
789 *no_add_attrs = true;
790 }
791
792 if (m68k_get_function_kind (*node) != m68k_fk_normal_function)
793 {
794 error ("multiple interrupt attributes not allowed");
795 *no_add_attrs = true;
796 }
797
798 if (!TARGET_FIDOA
799 && !strcmp (IDENTIFIER_POINTER (name), "interrupt_thread"))
800 {
801 error ("interrupt_thread is available only on fido");
802 *no_add_attrs = true;
803 }
804
805 return NULL_TREE;
806 }
807
808 static void
809 m68k_compute_frame_layout (void)
810 {
811 int regno, saved;
812 unsigned int mask;
813 enum m68k_function_kind func_kind =
814 m68k_get_function_kind (current_function_decl);
815 bool interrupt_handler = func_kind == m68k_fk_interrupt_handler;
816 bool interrupt_thread = func_kind == m68k_fk_interrupt_thread;
817
818 /* Only compute the frame once per function.
819 Don't cache information until reload has been completed. */
820 if (current_frame.funcdef_no == current_function_funcdef_no
821 && reload_completed)
822 return;
823
824 current_frame.size = (get_frame_size () + 3) & -4;
825
826 mask = saved = 0;
827
828 /* Interrupt thread does not need to save any register. */
829 if (!interrupt_thread)
830 for (regno = 0; regno < 16; regno++)
831 if (m68k_save_reg (regno, interrupt_handler))
832 {
833 mask |= 1 << (regno - D0_REG);
834 saved++;
835 }
836 current_frame.offset = saved * 4;
837 current_frame.reg_no = saved;
838 current_frame.reg_mask = mask;
839
840 current_frame.foffset = 0;
841 mask = saved = 0;
842 if (TARGET_HARD_FLOAT)
843 {
844 /* Interrupt thread does not need to save any register. */
845 if (!interrupt_thread)
846 for (regno = 16; regno < 24; regno++)
847 if (m68k_save_reg (regno, interrupt_handler))
848 {
849 mask |= 1 << (regno - FP0_REG);
850 saved++;
851 }
852 current_frame.foffset = saved * TARGET_FP_REG_SIZE;
853 current_frame.offset += current_frame.foffset;
854 }
855 current_frame.fpu_no = saved;
856 current_frame.fpu_mask = mask;
857
858 /* Remember what function this frame refers to. */
859 current_frame.funcdef_no = current_function_funcdef_no;
860 }
861
862 /* Worker function for TARGET_CAN_ELIMINATE. */
863
864 bool
865 m68k_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
866 {
867 return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
868 }
869
870 HOST_WIDE_INT
871 m68k_initial_elimination_offset (int from, int to)
872 {
873 int argptr_offset;
874 /* The arg pointer points 8 bytes before the start of the arguments,
875 as defined by FIRST_PARM_OFFSET. This makes it coincident with the
876 frame pointer in most frames. */
877 argptr_offset = frame_pointer_needed ? 0 : UNITS_PER_WORD;
878 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
879 return argptr_offset;
880
881 m68k_compute_frame_layout ();
882
883 gcc_assert (to == STACK_POINTER_REGNUM);
884 switch (from)
885 {
886 case ARG_POINTER_REGNUM:
887 return current_frame.offset + current_frame.size - argptr_offset;
888 case FRAME_POINTER_REGNUM:
889 return current_frame.offset + current_frame.size;
890 default:
891 gcc_unreachable ();
892 }
893 }
894
895 /* Refer to the array `regs_ever_live' to determine which registers
896 to save; `regs_ever_live[I]' is nonzero if register number I
897 is ever used in the function. This function is responsible for
898 knowing which registers should not be saved even if used.
899 Return true if we need to save REGNO. */
900
901 static bool
902 m68k_save_reg (unsigned int regno, bool interrupt_handler)
903 {
904 if (flag_pic && regno == PIC_REG)
905 {
906 if (crtl->saves_all_registers)
907 return true;
908 if (crtl->uses_pic_offset_table)
909 return true;
910 /* Reload may introduce constant pool references into a function
911 that thitherto didn't need a PIC register. Note that the test
912 above will not catch that case because we will only set
913 crtl->uses_pic_offset_table when emitting
914 the address reloads. */
915 if (crtl->uses_const_pool)
916 return true;
917 }
918
919 if (crtl->calls_eh_return)
920 {
921 unsigned int i;
922 for (i = 0; ; i++)
923 {
924 unsigned int test = EH_RETURN_DATA_REGNO (i);
925 if (test == INVALID_REGNUM)
926 break;
927 if (test == regno)
928 return true;
929 }
930 }
931
932 /* Fixed regs we never touch. */
933 if (fixed_regs[regno])
934 return false;
935
936 /* The frame pointer (if it is such) is handled specially. */
937 if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
938 return false;
939
940 /* Interrupt handlers must also save call_used_regs
941 if they are live or when calling nested functions. */
942 if (interrupt_handler)
943 {
944 if (df_regs_ever_live_p (regno))
945 return true;
946
947 if (!crtl->is_leaf && call_used_regs[regno])
948 return true;
949 }
950
951 /* Never need to save registers that aren't touched. */
952 if (!df_regs_ever_live_p (regno))
953 return false;
954
955 /* Otherwise save everything that isn't call-clobbered. */
956 return !call_used_regs[regno];
957 }
958
959 /* Emit RTL for a MOVEM or FMOVEM instruction. BASE + OFFSET represents
960 the lowest memory address. COUNT is the number of registers to be
961 moved, with register REGNO + I being moved if bit I of MASK is set.
962 STORE_P specifies the direction of the move and ADJUST_STACK_P says
963 whether or not this is pre-decrement (if STORE_P) or post-increment
964 (if !STORE_P) operation. */
965
966 static rtx_insn *
967 m68k_emit_movem (rtx base, HOST_WIDE_INT offset,
968 unsigned int count, unsigned int regno,
969 unsigned int mask, bool store_p, bool adjust_stack_p)
970 {
971 int i;
972 rtx body, addr, src, operands[2];
973 machine_mode mode;
974
975 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (adjust_stack_p + count));
976 mode = reg_raw_mode[regno];
977 i = 0;
978
979 if (adjust_stack_p)
980 {
981 src = plus_constant (Pmode, base,
982 (count
983 * GET_MODE_SIZE (mode)
984 * (HOST_WIDE_INT) (store_p ? -1 : 1)));
985 XVECEXP (body, 0, i++) = gen_rtx_SET (base, src);
986 }
987
988 for (; mask != 0; mask >>= 1, regno++)
989 if (mask & 1)
990 {
991 addr = plus_constant (Pmode, base, offset);
992 operands[!store_p] = gen_frame_mem (mode, addr);
993 operands[store_p] = gen_rtx_REG (mode, regno);
994 XVECEXP (body, 0, i++)
995 = gen_rtx_SET (operands[0], operands[1]);
996 offset += GET_MODE_SIZE (mode);
997 }
998 gcc_assert (i == XVECLEN (body, 0));
999
1000 return emit_insn (body);
1001 }
1002
1003 /* Make INSN a frame-related instruction. */
1004
1005 static void
1006 m68k_set_frame_related (rtx_insn *insn)
1007 {
1008 rtx body;
1009 int i;
1010
1011 RTX_FRAME_RELATED_P (insn) = 1;
1012 body = PATTERN (insn);
1013 if (GET_CODE (body) == PARALLEL)
1014 for (i = 0; i < XVECLEN (body, 0); i++)
1015 RTX_FRAME_RELATED_P (XVECEXP (body, 0, i)) = 1;
1016 }
1017
1018 /* Emit RTL for the "prologue" define_expand. */
1019
1020 void
1021 m68k_expand_prologue (void)
1022 {
1023 HOST_WIDE_INT fsize_with_regs;
1024 rtx limit, src, dest;
1025
1026 m68k_compute_frame_layout ();
1027
1028 if (flag_stack_usage_info)
1029 current_function_static_stack_size
1030 = current_frame.size + current_frame.offset;
1031
1032 /* If the stack limit is a symbol, we can check it here,
1033 before actually allocating the space. */
1034 if (crtl->limit_stack
1035 && GET_CODE (stack_limit_rtx) == SYMBOL_REF)
1036 {
1037 limit = plus_constant (Pmode, stack_limit_rtx, current_frame.size + 4);
1038 if (!m68k_legitimate_constant_p (Pmode, limit))
1039 {
1040 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), limit);
1041 limit = gen_rtx_REG (Pmode, D0_REG);
1042 }
1043 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode,
1044 stack_pointer_rtx, limit),
1045 stack_pointer_rtx, limit,
1046 const1_rtx));
1047 }
1048
1049 fsize_with_regs = current_frame.size;
1050 if (TARGET_COLDFIRE)
1051 {
1052 /* ColdFire's move multiple instructions do not allow pre-decrement
1053 addressing. Add the size of movem saves to the initial stack
1054 allocation instead. */
1055 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1056 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1057 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1058 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1059 }
1060
1061 if (frame_pointer_needed)
1062 {
1063 if (fsize_with_regs == 0 && TUNE_68040)
1064 {
1065 /* On the 68040, two separate moves are faster than link.w 0. */
1066 dest = gen_frame_mem (Pmode,
1067 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1068 m68k_set_frame_related (emit_move_insn (dest, frame_pointer_rtx));
1069 m68k_set_frame_related (emit_move_insn (frame_pointer_rtx,
1070 stack_pointer_rtx));
1071 }
1072 else if (fsize_with_regs < 0x8000 || TARGET_68020)
1073 m68k_set_frame_related
1074 (emit_insn (gen_link (frame_pointer_rtx,
1075 GEN_INT (-4 - fsize_with_regs))));
1076 else
1077 {
1078 m68k_set_frame_related
1079 (emit_insn (gen_link (frame_pointer_rtx, GEN_INT (-4))));
1080 m68k_set_frame_related
1081 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1082 stack_pointer_rtx,
1083 GEN_INT (-fsize_with_regs))));
1084 }
1085
1086 /* If the frame pointer is needed, emit a special barrier that
1087 will prevent the scheduler from moving stores to the frame
1088 before the stack adjustment. */
1089 emit_insn (gen_stack_tie (stack_pointer_rtx, frame_pointer_rtx));
1090 }
1091 else if (fsize_with_regs != 0)
1092 m68k_set_frame_related
1093 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1094 stack_pointer_rtx,
1095 GEN_INT (-fsize_with_regs))));
1096
1097 if (current_frame.fpu_mask)
1098 {
1099 gcc_assert (current_frame.fpu_no >= MIN_FMOVEM_REGS);
1100 if (TARGET_68881)
1101 m68k_set_frame_related
1102 (m68k_emit_movem (stack_pointer_rtx,
1103 current_frame.fpu_no * -GET_MODE_SIZE (XFmode),
1104 current_frame.fpu_no, FP0_REG,
1105 current_frame.fpu_mask, true, true));
1106 else
1107 {
1108 int offset;
1109
1110 /* If we're using moveml to save the integer registers,
1111 the stack pointer will point to the bottom of the moveml
1112 save area. Find the stack offset of the first FP register. */
1113 if (current_frame.reg_no < MIN_MOVEM_REGS)
1114 offset = 0;
1115 else
1116 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1117 m68k_set_frame_related
1118 (m68k_emit_movem (stack_pointer_rtx, offset,
1119 current_frame.fpu_no, FP0_REG,
1120 current_frame.fpu_mask, true, false));
1121 }
1122 }
1123
1124 /* If the stack limit is not a symbol, check it here.
1125 This has the disadvantage that it may be too late... */
1126 if (crtl->limit_stack)
1127 {
1128 if (REG_P (stack_limit_rtx))
1129 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode, stack_pointer_rtx,
1130 stack_limit_rtx),
1131 stack_pointer_rtx, stack_limit_rtx,
1132 const1_rtx));
1133
1134 else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
1135 warning (0, "stack limit expression is not supported");
1136 }
1137
1138 if (current_frame.reg_no < MIN_MOVEM_REGS)
1139 {
1140 /* Store each register separately in the same order moveml does. */
1141 int i;
1142
1143 for (i = 16; i-- > 0; )
1144 if (current_frame.reg_mask & (1 << i))
1145 {
1146 src = gen_rtx_REG (SImode, D0_REG + i);
1147 dest = gen_frame_mem (SImode,
1148 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1149 m68k_set_frame_related (emit_insn (gen_movsi (dest, src)));
1150 }
1151 }
1152 else
1153 {
1154 if (TARGET_COLDFIRE)
1155 /* The required register save space has already been allocated.
1156 The first register should be stored at (%sp). */
1157 m68k_set_frame_related
1158 (m68k_emit_movem (stack_pointer_rtx, 0,
1159 current_frame.reg_no, D0_REG,
1160 current_frame.reg_mask, true, false));
1161 else
1162 m68k_set_frame_related
1163 (m68k_emit_movem (stack_pointer_rtx,
1164 current_frame.reg_no * -GET_MODE_SIZE (SImode),
1165 current_frame.reg_no, D0_REG,
1166 current_frame.reg_mask, true, true));
1167 }
1168
1169 if (!TARGET_SEP_DATA
1170 && crtl->uses_pic_offset_table)
1171 emit_insn (gen_load_got (pic_offset_table_rtx));
1172 }
1173 \f
1174 /* Return true if a simple (return) instruction is sufficient for this
1175 instruction (i.e. if no epilogue is needed). */
1176
1177 bool
1178 m68k_use_return_insn (void)
1179 {
1180 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
1181 return false;
1182
1183 m68k_compute_frame_layout ();
1184 return current_frame.offset == 0;
1185 }
1186
1187 /* Emit RTL for the "epilogue" or "sibcall_epilogue" define_expand;
1188 SIBCALL_P says which.
1189
1190 The function epilogue should not depend on the current stack pointer!
1191 It should use the frame pointer only, if there is a frame pointer.
1192 This is mandatory because of alloca; we also take advantage of it to
1193 omit stack adjustments before returning. */
1194
1195 void
1196 m68k_expand_epilogue (bool sibcall_p)
1197 {
1198 HOST_WIDE_INT fsize, fsize_with_regs;
1199 bool big, restore_from_sp;
1200
1201 m68k_compute_frame_layout ();
1202
1203 fsize = current_frame.size;
1204 big = false;
1205 restore_from_sp = false;
1206
1207 /* FIXME : crtl->is_leaf below is too strong.
1208 What we really need to know there is if there could be pending
1209 stack adjustment needed at that point. */
1210 restore_from_sp = (!frame_pointer_needed
1211 || (!cfun->calls_alloca && crtl->is_leaf));
1212
1213 /* fsize_with_regs is the size we need to adjust the sp when
1214 popping the frame. */
1215 fsize_with_regs = fsize;
1216 if (TARGET_COLDFIRE && restore_from_sp)
1217 {
1218 /* ColdFire's move multiple instructions do not allow post-increment
1219 addressing. Add the size of movem loads to the final deallocation
1220 instead. */
1221 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1222 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1223 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1224 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1225 }
1226
1227 if (current_frame.offset + fsize >= 0x8000
1228 && !restore_from_sp
1229 && (current_frame.reg_mask || current_frame.fpu_mask))
1230 {
1231 if (TARGET_COLDFIRE
1232 && (current_frame.reg_no >= MIN_MOVEM_REGS
1233 || current_frame.fpu_no >= MIN_FMOVEM_REGS))
1234 {
1235 /* ColdFire's move multiple instructions do not support the
1236 (d8,Ax,Xi) addressing mode, so we're as well using a normal
1237 stack-based restore. */
1238 emit_move_insn (gen_rtx_REG (Pmode, A1_REG),
1239 GEN_INT (-(current_frame.offset + fsize)));
1240 emit_insn (gen_blockage ());
1241 emit_insn (gen_addsi3 (stack_pointer_rtx,
1242 gen_rtx_REG (Pmode, A1_REG),
1243 frame_pointer_rtx));
1244 restore_from_sp = true;
1245 }
1246 else
1247 {
1248 emit_move_insn (gen_rtx_REG (Pmode, A1_REG), GEN_INT (-fsize));
1249 fsize = 0;
1250 big = true;
1251 }
1252 }
1253
1254 if (current_frame.reg_no < MIN_MOVEM_REGS)
1255 {
1256 /* Restore each register separately in the same order moveml does. */
1257 int i;
1258 HOST_WIDE_INT offset;
1259
1260 offset = current_frame.offset + fsize;
1261 for (i = 0; i < 16; i++)
1262 if (current_frame.reg_mask & (1 << i))
1263 {
1264 rtx addr;
1265
1266 if (big)
1267 {
1268 /* Generate the address -OFFSET(%fp,%a1.l). */
1269 addr = gen_rtx_REG (Pmode, A1_REG);
1270 addr = gen_rtx_PLUS (Pmode, addr, frame_pointer_rtx);
1271 addr = plus_constant (Pmode, addr, -offset);
1272 }
1273 else if (restore_from_sp)
1274 addr = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
1275 else
1276 addr = plus_constant (Pmode, frame_pointer_rtx, -offset);
1277 emit_move_insn (gen_rtx_REG (SImode, D0_REG + i),
1278 gen_frame_mem (SImode, addr));
1279 offset -= GET_MODE_SIZE (SImode);
1280 }
1281 }
1282 else if (current_frame.reg_mask)
1283 {
1284 if (big)
1285 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1286 gen_rtx_REG (Pmode, A1_REG),
1287 frame_pointer_rtx),
1288 -(current_frame.offset + fsize),
1289 current_frame.reg_no, D0_REG,
1290 current_frame.reg_mask, false, false);
1291 else if (restore_from_sp)
1292 m68k_emit_movem (stack_pointer_rtx, 0,
1293 current_frame.reg_no, D0_REG,
1294 current_frame.reg_mask, false,
1295 !TARGET_COLDFIRE);
1296 else
1297 m68k_emit_movem (frame_pointer_rtx,
1298 -(current_frame.offset + fsize),
1299 current_frame.reg_no, D0_REG,
1300 current_frame.reg_mask, false, false);
1301 }
1302
1303 if (current_frame.fpu_no > 0)
1304 {
1305 if (big)
1306 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1307 gen_rtx_REG (Pmode, A1_REG),
1308 frame_pointer_rtx),
1309 -(current_frame.foffset + fsize),
1310 current_frame.fpu_no, FP0_REG,
1311 current_frame.fpu_mask, false, false);
1312 else if (restore_from_sp)
1313 {
1314 if (TARGET_COLDFIRE)
1315 {
1316 int offset;
1317
1318 /* If we used moveml to restore the integer registers, the
1319 stack pointer will still point to the bottom of the moveml
1320 save area. Find the stack offset of the first FP
1321 register. */
1322 if (current_frame.reg_no < MIN_MOVEM_REGS)
1323 offset = 0;
1324 else
1325 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1326 m68k_emit_movem (stack_pointer_rtx, offset,
1327 current_frame.fpu_no, FP0_REG,
1328 current_frame.fpu_mask, false, false);
1329 }
1330 else
1331 m68k_emit_movem (stack_pointer_rtx, 0,
1332 current_frame.fpu_no, FP0_REG,
1333 current_frame.fpu_mask, false, true);
1334 }
1335 else
1336 m68k_emit_movem (frame_pointer_rtx,
1337 -(current_frame.foffset + fsize),
1338 current_frame.fpu_no, FP0_REG,
1339 current_frame.fpu_mask, false, false);
1340 }
1341
1342 emit_insn (gen_blockage ());
1343 if (frame_pointer_needed)
1344 emit_insn (gen_unlink (frame_pointer_rtx));
1345 else if (fsize_with_regs)
1346 emit_insn (gen_addsi3 (stack_pointer_rtx,
1347 stack_pointer_rtx,
1348 GEN_INT (fsize_with_regs)));
1349
1350 if (crtl->calls_eh_return)
1351 emit_insn (gen_addsi3 (stack_pointer_rtx,
1352 stack_pointer_rtx,
1353 EH_RETURN_STACKADJ_RTX));
1354
1355 if (!sibcall_p)
1356 emit_jump_insn (ret_rtx);
1357 }
1358 \f
1359 /* Return true if X is a valid comparison operator for the dbcc
1360 instruction.
1361
1362 Note it rejects floating point comparison operators.
1363 (In the future we could use Fdbcc).
1364
1365 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
1366
1367 int
1368 valid_dbcc_comparison_p_2 (rtx x, machine_mode mode ATTRIBUTE_UNUSED)
1369 {
1370 switch (GET_CODE (x))
1371 {
1372 case EQ: case NE: case GTU: case LTU:
1373 case GEU: case LEU:
1374 return 1;
1375
1376 /* Reject some when CC_NO_OVERFLOW is set. This may be over
1377 conservative */
1378 case GT: case LT: case GE: case LE:
1379 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
1380 default:
1381 return 0;
1382 }
1383 }
1384
1385 /* Return nonzero if flags are currently in the 68881 flag register. */
1386 int
1387 flags_in_68881 (void)
1388 {
1389 /* We could add support for these in the future */
1390 return cc_status.flags & CC_IN_68881;
1391 }
1392
1393 /* Return true if PARALLEL contains register REGNO. */
1394 static bool
1395 m68k_reg_present_p (const_rtx parallel, unsigned int regno)
1396 {
1397 int i;
1398
1399 if (REG_P (parallel) && REGNO (parallel) == regno)
1400 return true;
1401
1402 if (GET_CODE (parallel) != PARALLEL)
1403 return false;
1404
1405 for (i = 0; i < XVECLEN (parallel, 0); ++i)
1406 {
1407 const_rtx x;
1408
1409 x = XEXP (XVECEXP (parallel, 0, i), 0);
1410 if (REG_P (x) && REGNO (x) == regno)
1411 return true;
1412 }
1413
1414 return false;
1415 }
1416
1417 /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL_P. */
1418
1419 static bool
1420 m68k_ok_for_sibcall_p (tree decl, tree exp)
1421 {
1422 enum m68k_function_kind kind;
1423
1424 /* We cannot use sibcalls for nested functions because we use the
1425 static chain register for indirect calls. */
1426 if (CALL_EXPR_STATIC_CHAIN (exp))
1427 return false;
1428
1429 if (!VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl))))
1430 {
1431 /* Check that the return value locations are the same. For
1432 example that we aren't returning a value from the sibling in
1433 a D0 register but then need to transfer it to a A0 register. */
1434 rtx cfun_value;
1435 rtx call_value;
1436
1437 cfun_value = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (cfun->decl)),
1438 cfun->decl);
1439 call_value = FUNCTION_VALUE (TREE_TYPE (exp), decl);
1440
1441 /* Check that the values are equal or that the result the callee
1442 function returns is superset of what the current function returns. */
1443 if (!(rtx_equal_p (cfun_value, call_value)
1444 || (REG_P (cfun_value)
1445 && m68k_reg_present_p (call_value, REGNO (cfun_value)))))
1446 return false;
1447 }
1448
1449 kind = m68k_get_function_kind (current_function_decl);
1450 if (kind == m68k_fk_normal_function)
1451 /* We can always sibcall from a normal function, because it's
1452 undefined if it is calling an interrupt function. */
1453 return true;
1454
1455 /* Otherwise we can only sibcall if the function kind is known to be
1456 the same. */
1457 if (decl && m68k_get_function_kind (decl) == kind)
1458 return true;
1459
1460 return false;
1461 }
1462
1463 /* On the m68k all args are always pushed. */
1464
1465 static rtx
1466 m68k_function_arg (cumulative_args_t, const function_arg_info &)
1467 {
1468 return NULL_RTX;
1469 }
1470
1471 static void
1472 m68k_function_arg_advance (cumulative_args_t cum_v,
1473 const function_arg_info &arg)
1474 {
1475 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1476
1477 *cum += (arg.promoted_size_in_bytes () + 3) & ~3;
1478 }
1479
1480 /* Convert X to a legitimate function call memory reference and return the
1481 result. */
1482
1483 rtx
1484 m68k_legitimize_call_address (rtx x)
1485 {
1486 gcc_assert (MEM_P (x));
1487 if (call_operand (XEXP (x, 0), VOIDmode))
1488 return x;
1489 return replace_equiv_address (x, force_reg (Pmode, XEXP (x, 0)));
1490 }
1491
1492 /* Likewise for sibling calls. */
1493
1494 rtx
1495 m68k_legitimize_sibcall_address (rtx x)
1496 {
1497 gcc_assert (MEM_P (x));
1498 if (sibcall_operand (XEXP (x, 0), VOIDmode))
1499 return x;
1500
1501 emit_move_insn (gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM), XEXP (x, 0));
1502 return replace_equiv_address (x, gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM));
1503 }
1504
1505 /* Convert X to a legitimate address and return it if successful. Otherwise
1506 return X.
1507
1508 For the 68000, we handle X+REG by loading X into a register R and
1509 using R+REG. R will go in an address reg and indexing will be used.
1510 However, if REG is a broken-out memory address or multiplication,
1511 nothing needs to be done because REG can certainly go in an address reg. */
1512
1513 static rtx
1514 m68k_legitimize_address (rtx x, rtx oldx, machine_mode mode)
1515 {
1516 if (m68k_tls_symbol_p (x))
1517 return m68k_legitimize_tls_address (x);
1518
1519 if (GET_CODE (x) == PLUS)
1520 {
1521 int ch = (x) != (oldx);
1522 int copied = 0;
1523
1524 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1525
1526 if (GET_CODE (XEXP (x, 0)) == MULT)
1527 {
1528 COPY_ONCE (x);
1529 XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
1530 }
1531 if (GET_CODE (XEXP (x, 1)) == MULT)
1532 {
1533 COPY_ONCE (x);
1534 XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
1535 }
1536 if (ch)
1537 {
1538 if (GET_CODE (XEXP (x, 1)) == REG
1539 && GET_CODE (XEXP (x, 0)) == REG)
1540 {
1541 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
1542 {
1543 COPY_ONCE (x);
1544 x = force_operand (x, 0);
1545 }
1546 return x;
1547 }
1548 if (memory_address_p (mode, x))
1549 return x;
1550 }
1551 if (GET_CODE (XEXP (x, 0)) == REG
1552 || (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
1553 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
1554 && GET_MODE (XEXP (XEXP (x, 0), 0)) == HImode))
1555 {
1556 rtx temp = gen_reg_rtx (Pmode);
1557 rtx val = force_operand (XEXP (x, 1), 0);
1558 emit_move_insn (temp, val);
1559 COPY_ONCE (x);
1560 XEXP (x, 1) = temp;
1561 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1562 && GET_CODE (XEXP (x, 0)) == REG)
1563 x = force_operand (x, 0);
1564 }
1565 else if (GET_CODE (XEXP (x, 1)) == REG
1566 || (GET_CODE (XEXP (x, 1)) == SIGN_EXTEND
1567 && GET_CODE (XEXP (XEXP (x, 1), 0)) == REG
1568 && GET_MODE (XEXP (XEXP (x, 1), 0)) == HImode))
1569 {
1570 rtx temp = gen_reg_rtx (Pmode);
1571 rtx val = force_operand (XEXP (x, 0), 0);
1572 emit_move_insn (temp, val);
1573 COPY_ONCE (x);
1574 XEXP (x, 0) = temp;
1575 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1576 && GET_CODE (XEXP (x, 1)) == REG)
1577 x = force_operand (x, 0);
1578 }
1579 }
1580
1581 return x;
1582 }
1583
1584
1585 /* Output a dbCC; jCC sequence. Note we do not handle the
1586 floating point version of this sequence (Fdbcc). We also
1587 do not handle alternative conditions when CC_NO_OVERFLOW is
1588 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
1589 kick those out before we get here. */
1590
1591 void
1592 output_dbcc_and_branch (rtx *operands)
1593 {
1594 switch (GET_CODE (operands[3]))
1595 {
1596 case EQ:
1597 output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
1598 break;
1599
1600 case NE:
1601 output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
1602 break;
1603
1604 case GT:
1605 output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
1606 break;
1607
1608 case GTU:
1609 output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
1610 break;
1611
1612 case LT:
1613 output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
1614 break;
1615
1616 case LTU:
1617 output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
1618 break;
1619
1620 case GE:
1621 output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
1622 break;
1623
1624 case GEU:
1625 output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
1626 break;
1627
1628 case LE:
1629 output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
1630 break;
1631
1632 case LEU:
1633 output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
1634 break;
1635
1636 default:
1637 gcc_unreachable ();
1638 }
1639
1640 /* If the decrement is to be done in SImode, then we have
1641 to compensate for the fact that dbcc decrements in HImode. */
1642 switch (GET_MODE (operands[0]))
1643 {
1644 case E_SImode:
1645 output_asm_insn ("clr%.w %0\n\tsubq%.l #1,%0\n\tjpl %l1", operands);
1646 break;
1647
1648 case E_HImode:
1649 break;
1650
1651 default:
1652 gcc_unreachable ();
1653 }
1654 }
1655
1656 const char *
1657 output_scc_di (rtx op, rtx operand1, rtx operand2, rtx dest)
1658 {
1659 rtx loperands[7];
1660 enum rtx_code op_code = GET_CODE (op);
1661
1662 /* This does not produce a useful cc. */
1663 CC_STATUS_INIT;
1664
1665 /* The m68k cmp.l instruction requires operand1 to be a reg as used
1666 below. Swap the operands and change the op if these requirements
1667 are not fulfilled. */
1668 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
1669 {
1670 rtx tmp = operand1;
1671
1672 operand1 = operand2;
1673 operand2 = tmp;
1674 op_code = swap_condition (op_code);
1675 }
1676 loperands[0] = operand1;
1677 if (GET_CODE (operand1) == REG)
1678 loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
1679 else
1680 loperands[1] = adjust_address (operand1, SImode, 4);
1681 if (operand2 != const0_rtx)
1682 {
1683 loperands[2] = operand2;
1684 if (GET_CODE (operand2) == REG)
1685 loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
1686 else
1687 loperands[3] = adjust_address (operand2, SImode, 4);
1688 }
1689 loperands[4] = gen_label_rtx ();
1690 if (operand2 != const0_rtx)
1691 output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
1692 else
1693 {
1694 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[0]))
1695 output_asm_insn ("tst%.l %0", loperands);
1696 else
1697 output_asm_insn ("cmp%.w #0,%0", loperands);
1698
1699 output_asm_insn ("jne %l4", loperands);
1700
1701 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[1]))
1702 output_asm_insn ("tst%.l %1", loperands);
1703 else
1704 output_asm_insn ("cmp%.w #0,%1", loperands);
1705 }
1706
1707 loperands[5] = dest;
1708
1709 switch (op_code)
1710 {
1711 case EQ:
1712 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1713 CODE_LABEL_NUMBER (loperands[4]));
1714 output_asm_insn ("seq %5", loperands);
1715 break;
1716
1717 case NE:
1718 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1719 CODE_LABEL_NUMBER (loperands[4]));
1720 output_asm_insn ("sne %5", loperands);
1721 break;
1722
1723 case GT:
1724 loperands[6] = gen_label_rtx ();
1725 output_asm_insn ("shi %5\n\tjra %l6", loperands);
1726 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1727 CODE_LABEL_NUMBER (loperands[4]));
1728 output_asm_insn ("sgt %5", loperands);
1729 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1730 CODE_LABEL_NUMBER (loperands[6]));
1731 break;
1732
1733 case GTU:
1734 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1735 CODE_LABEL_NUMBER (loperands[4]));
1736 output_asm_insn ("shi %5", loperands);
1737 break;
1738
1739 case LT:
1740 loperands[6] = gen_label_rtx ();
1741 output_asm_insn ("scs %5\n\tjra %l6", loperands);
1742 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1743 CODE_LABEL_NUMBER (loperands[4]));
1744 output_asm_insn ("slt %5", loperands);
1745 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1746 CODE_LABEL_NUMBER (loperands[6]));
1747 break;
1748
1749 case LTU:
1750 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1751 CODE_LABEL_NUMBER (loperands[4]));
1752 output_asm_insn ("scs %5", loperands);
1753 break;
1754
1755 case GE:
1756 loperands[6] = gen_label_rtx ();
1757 output_asm_insn ("scc %5\n\tjra %l6", loperands);
1758 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1759 CODE_LABEL_NUMBER (loperands[4]));
1760 output_asm_insn ("sge %5", loperands);
1761 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1762 CODE_LABEL_NUMBER (loperands[6]));
1763 break;
1764
1765 case GEU:
1766 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1767 CODE_LABEL_NUMBER (loperands[4]));
1768 output_asm_insn ("scc %5", loperands);
1769 break;
1770
1771 case LE:
1772 loperands[6] = gen_label_rtx ();
1773 output_asm_insn ("sls %5\n\tjra %l6", loperands);
1774 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1775 CODE_LABEL_NUMBER (loperands[4]));
1776 output_asm_insn ("sle %5", loperands);
1777 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1778 CODE_LABEL_NUMBER (loperands[6]));
1779 break;
1780
1781 case LEU:
1782 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1783 CODE_LABEL_NUMBER (loperands[4]));
1784 output_asm_insn ("sls %5", loperands);
1785 break;
1786
1787 default:
1788 gcc_unreachable ();
1789 }
1790 return "";
1791 }
1792
1793 const char *
1794 output_btst (rtx *operands, rtx countop, rtx dataop, rtx_insn *insn, int signpos)
1795 {
1796 operands[0] = countop;
1797 operands[1] = dataop;
1798
1799 if (GET_CODE (countop) == CONST_INT)
1800 {
1801 register int count = INTVAL (countop);
1802 /* If COUNT is bigger than size of storage unit in use,
1803 advance to the containing unit of same size. */
1804 if (count > signpos)
1805 {
1806 int offset = (count & ~signpos) / 8;
1807 count = count & signpos;
1808 operands[1] = dataop = adjust_address (dataop, QImode, offset);
1809 }
1810 if (count == signpos)
1811 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1812 else
1813 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1814
1815 /* These three statements used to use next_insns_test_no...
1816 but it appears that this should do the same job. */
1817 if (count == 31
1818 && next_insn_tests_no_inequality (insn))
1819 return "tst%.l %1";
1820 if (count == 15
1821 && next_insn_tests_no_inequality (insn))
1822 return "tst%.w %1";
1823 if (count == 7
1824 && next_insn_tests_no_inequality (insn))
1825 return "tst%.b %1";
1826 /* Try to use `movew to ccr' followed by the appropriate branch insn.
1827 On some m68k variants unfortunately that's slower than btst.
1828 On 68000 and higher, that should also work for all HImode operands. */
1829 if (TUNE_CPU32 || TARGET_COLDFIRE || optimize_size)
1830 {
1831 if (count == 3 && DATA_REG_P (operands[1])
1832 && next_insn_tests_no_inequality (insn))
1833 {
1834 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N | CC_NO_OVERFLOW;
1835 return "move%.w %1,%%ccr";
1836 }
1837 if (count == 2 && DATA_REG_P (operands[1])
1838 && next_insn_tests_no_inequality (insn))
1839 {
1840 cc_status.flags = CC_NOT_NEGATIVE | CC_INVERTED | CC_NO_OVERFLOW;
1841 return "move%.w %1,%%ccr";
1842 }
1843 /* count == 1 followed by bvc/bvs and
1844 count == 0 followed by bcc/bcs are also possible, but need
1845 m68k-specific CC_Z_IN_NOT_V and CC_Z_IN_NOT_C flags. */
1846 }
1847
1848 cc_status.flags = CC_NOT_NEGATIVE;
1849 }
1850 return "btst %0,%1";
1851 }
1852 \f
1853 /* Return true if X is a legitimate base register. STRICT_P says
1854 whether we need strict checking. */
1855
1856 bool
1857 m68k_legitimate_base_reg_p (rtx x, bool strict_p)
1858 {
1859 /* Allow SUBREG everywhere we allow REG. This results in better code. */
1860 if (!strict_p && GET_CODE (x) == SUBREG)
1861 x = SUBREG_REG (x);
1862
1863 return (REG_P (x)
1864 && (strict_p
1865 ? REGNO_OK_FOR_BASE_P (REGNO (x))
1866 : REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (x))));
1867 }
1868
1869 /* Return true if X is a legitimate index register. STRICT_P says
1870 whether we need strict checking. */
1871
1872 bool
1873 m68k_legitimate_index_reg_p (rtx x, bool strict_p)
1874 {
1875 if (!strict_p && GET_CODE (x) == SUBREG)
1876 x = SUBREG_REG (x);
1877
1878 return (REG_P (x)
1879 && (strict_p
1880 ? REGNO_OK_FOR_INDEX_P (REGNO (x))
1881 : REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (x))));
1882 }
1883
1884 /* Return true if X is a legitimate index expression for a (d8,An,Xn) or
1885 (bd,An,Xn) addressing mode. Fill in the INDEX and SCALE fields of
1886 ADDRESS if so. STRICT_P says whether we need strict checking. */
1887
1888 static bool
1889 m68k_decompose_index (rtx x, bool strict_p, struct m68k_address *address)
1890 {
1891 int scale;
1892
1893 /* Check for a scale factor. */
1894 scale = 1;
1895 if ((TARGET_68020 || TARGET_COLDFIRE)
1896 && GET_CODE (x) == MULT
1897 && GET_CODE (XEXP (x, 1)) == CONST_INT
1898 && (INTVAL (XEXP (x, 1)) == 2
1899 || INTVAL (XEXP (x, 1)) == 4
1900 || (INTVAL (XEXP (x, 1)) == 8
1901 && (TARGET_COLDFIRE_FPU || !TARGET_COLDFIRE))))
1902 {
1903 scale = INTVAL (XEXP (x, 1));
1904 x = XEXP (x, 0);
1905 }
1906
1907 /* Check for a word extension. */
1908 if (!TARGET_COLDFIRE
1909 && GET_CODE (x) == SIGN_EXTEND
1910 && GET_MODE (XEXP (x, 0)) == HImode)
1911 x = XEXP (x, 0);
1912
1913 if (m68k_legitimate_index_reg_p (x, strict_p))
1914 {
1915 address->scale = scale;
1916 address->index = x;
1917 return true;
1918 }
1919
1920 return false;
1921 }
1922
1923 /* Return true if X is an illegitimate symbolic constant. */
1924
1925 bool
1926 m68k_illegitimate_symbolic_constant_p (rtx x)
1927 {
1928 rtx base, offset;
1929
1930 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
1931 {
1932 split_const (x, &base, &offset);
1933 if (GET_CODE (base) == SYMBOL_REF
1934 && !offset_within_block_p (base, INTVAL (offset)))
1935 return true;
1936 }
1937 return m68k_tls_reference_p (x, false);
1938 }
1939
1940 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
1941
1942 static bool
1943 m68k_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
1944 {
1945 return m68k_illegitimate_symbolic_constant_p (x);
1946 }
1947
1948 /* Return true if X is a legitimate constant address that can reach
1949 bytes in the range [X, X + REACH). STRICT_P says whether we need
1950 strict checking. */
1951
1952 static bool
1953 m68k_legitimate_constant_address_p (rtx x, unsigned int reach, bool strict_p)
1954 {
1955 rtx base, offset;
1956
1957 if (!CONSTANT_ADDRESS_P (x))
1958 return false;
1959
1960 if (flag_pic
1961 && !(strict_p && TARGET_PCREL)
1962 && symbolic_operand (x, VOIDmode))
1963 return false;
1964
1965 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P && reach > 1)
1966 {
1967 split_const (x, &base, &offset);
1968 if (GET_CODE (base) == SYMBOL_REF
1969 && !offset_within_block_p (base, INTVAL (offset) + reach - 1))
1970 return false;
1971 }
1972
1973 return !m68k_tls_reference_p (x, false);
1974 }
1975
1976 /* Return true if X is a LABEL_REF for a jump table. Assume that unplaced
1977 labels will become jump tables. */
1978
1979 static bool
1980 m68k_jump_table_ref_p (rtx x)
1981 {
1982 if (GET_CODE (x) != LABEL_REF)
1983 return false;
1984
1985 rtx_insn *insn = as_a <rtx_insn *> (XEXP (x, 0));
1986 if (!NEXT_INSN (insn) && !PREV_INSN (insn))
1987 return true;
1988
1989 insn = next_nonnote_insn (insn);
1990 return insn && JUMP_TABLE_DATA_P (insn);
1991 }
1992
1993 /* Return true if X is a legitimate address for values of mode MODE.
1994 STRICT_P says whether strict checking is needed. If the address
1995 is valid, describe its components in *ADDRESS. */
1996
1997 static bool
1998 m68k_decompose_address (machine_mode mode, rtx x,
1999 bool strict_p, struct m68k_address *address)
2000 {
2001 unsigned int reach;
2002
2003 memset (address, 0, sizeof (*address));
2004
2005 if (mode == BLKmode)
2006 reach = 1;
2007 else
2008 reach = GET_MODE_SIZE (mode);
2009
2010 /* Check for (An) (mode 2). */
2011 if (m68k_legitimate_base_reg_p (x, strict_p))
2012 {
2013 address->base = x;
2014 return true;
2015 }
2016
2017 /* Check for -(An) and (An)+ (modes 3 and 4). */
2018 if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
2019 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
2020 {
2021 address->code = GET_CODE (x);
2022 address->base = XEXP (x, 0);
2023 return true;
2024 }
2025
2026 /* Check for (d16,An) (mode 5). */
2027 if (GET_CODE (x) == PLUS
2028 && GET_CODE (XEXP (x, 1)) == CONST_INT
2029 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x8000, 0x8000 - reach)
2030 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
2031 {
2032 address->base = XEXP (x, 0);
2033 address->offset = XEXP (x, 1);
2034 return true;
2035 }
2036
2037 /* Check for GOT loads. These are (bd,An,Xn) addresses if
2038 TARGET_68020 && flag_pic == 2, otherwise they are (d16,An)
2039 addresses. */
2040 if (GET_CODE (x) == PLUS
2041 && XEXP (x, 0) == pic_offset_table_rtx)
2042 {
2043 /* As we are processing a PLUS, do not unwrap RELOC32 symbols --
2044 they are invalid in this context. */
2045 if (m68k_unwrap_symbol (XEXP (x, 1), false) != XEXP (x, 1))
2046 {
2047 address->base = XEXP (x, 0);
2048 address->offset = XEXP (x, 1);
2049 return true;
2050 }
2051 }
2052
2053 /* The ColdFire FPU only accepts addressing modes 2-5. */
2054 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
2055 return false;
2056
2057 /* Check for (xxx).w and (xxx).l. Also, in the TARGET_PCREL case,
2058 check for (d16,PC) or (bd,PC,Xn) with a suppressed index register.
2059 All these modes are variations of mode 7. */
2060 if (m68k_legitimate_constant_address_p (x, reach, strict_p))
2061 {
2062 address->offset = x;
2063 return true;
2064 }
2065
2066 /* Check for (d8,PC,Xn), a mode 7 form. This case is needed for
2067 tablejumps.
2068
2069 ??? do_tablejump creates these addresses before placing the target
2070 label, so we have to assume that unplaced labels are jump table
2071 references. It seems unlikely that we would ever generate indexed
2072 accesses to unplaced labels in other cases. */
2073 if (GET_CODE (x) == PLUS
2074 && m68k_jump_table_ref_p (XEXP (x, 1))
2075 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2076 {
2077 address->offset = XEXP (x, 1);
2078 return true;
2079 }
2080
2081 /* Everything hereafter deals with (d8,An,Xn.SIZE*SCALE) or
2082 (bd,An,Xn.SIZE*SCALE) addresses. */
2083
2084 if (TARGET_68020)
2085 {
2086 /* Check for a nonzero base displacement. */
2087 if (GET_CODE (x) == PLUS
2088 && m68k_legitimate_constant_address_p (XEXP (x, 1), reach, strict_p))
2089 {
2090 address->offset = XEXP (x, 1);
2091 x = XEXP (x, 0);
2092 }
2093
2094 /* Check for a suppressed index register. */
2095 if (m68k_legitimate_base_reg_p (x, strict_p))
2096 {
2097 address->base = x;
2098 return true;
2099 }
2100
2101 /* Check for a suppressed base register. Do not allow this case
2102 for non-symbolic offsets as it effectively gives gcc freedom
2103 to treat data registers as base registers, which can generate
2104 worse code. */
2105 if (address->offset
2106 && symbolic_operand (address->offset, VOIDmode)
2107 && m68k_decompose_index (x, strict_p, address))
2108 return true;
2109 }
2110 else
2111 {
2112 /* Check for a nonzero base displacement. */
2113 if (GET_CODE (x) == PLUS
2114 && GET_CODE (XEXP (x, 1)) == CONST_INT
2115 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x80, 0x80 - reach))
2116 {
2117 address->offset = XEXP (x, 1);
2118 x = XEXP (x, 0);
2119 }
2120 }
2121
2122 /* We now expect the sum of a base and an index. */
2123 if (GET_CODE (x) == PLUS)
2124 {
2125 if (m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p)
2126 && m68k_decompose_index (XEXP (x, 1), strict_p, address))
2127 {
2128 address->base = XEXP (x, 0);
2129 return true;
2130 }
2131
2132 if (m68k_legitimate_base_reg_p (XEXP (x, 1), strict_p)
2133 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2134 {
2135 address->base = XEXP (x, 1);
2136 return true;
2137 }
2138 }
2139 return false;
2140 }
2141
2142 /* Return true if X is a legitimate address for values of mode MODE.
2143 STRICT_P says whether strict checking is needed. */
2144
2145 bool
2146 m68k_legitimate_address_p (machine_mode mode, rtx x, bool strict_p)
2147 {
2148 struct m68k_address address;
2149
2150 return m68k_decompose_address (mode, x, strict_p, &address);
2151 }
2152
2153 /* Return true if X is a memory, describing its address in ADDRESS if so.
2154 Apply strict checking if called during or after reload. */
2155
2156 static bool
2157 m68k_legitimate_mem_p (rtx x, struct m68k_address *address)
2158 {
2159 return (MEM_P (x)
2160 && m68k_decompose_address (GET_MODE (x), XEXP (x, 0),
2161 reload_in_progress || reload_completed,
2162 address));
2163 }
2164
2165 /* Implement TARGET_LEGITIMATE_CONSTANT_P. */
2166
2167 bool
2168 m68k_legitimate_constant_p (machine_mode mode, rtx x)
2169 {
2170 return mode != XFmode && !m68k_illegitimate_symbolic_constant_p (x);
2171 }
2172
2173 /* Return true if X matches the 'Q' constraint. It must be a memory
2174 with a base address and no constant offset or index. */
2175
2176 bool
2177 m68k_matches_q_p (rtx x)
2178 {
2179 struct m68k_address address;
2180
2181 return (m68k_legitimate_mem_p (x, &address)
2182 && address.code == UNKNOWN
2183 && address.base
2184 && !address.offset
2185 && !address.index);
2186 }
2187
2188 /* Return true if X matches the 'U' constraint. It must be a base address
2189 with a constant offset and no index. */
2190
2191 bool
2192 m68k_matches_u_p (rtx x)
2193 {
2194 struct m68k_address address;
2195
2196 return (m68k_legitimate_mem_p (x, &address)
2197 && address.code == UNKNOWN
2198 && address.base
2199 && address.offset
2200 && !address.index);
2201 }
2202
2203 /* Return GOT pointer. */
2204
2205 static rtx
2206 m68k_get_gp (void)
2207 {
2208 if (pic_offset_table_rtx == NULL_RTX)
2209 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_REG);
2210
2211 crtl->uses_pic_offset_table = 1;
2212
2213 return pic_offset_table_rtx;
2214 }
2215
2216 /* M68K relocations, used to distinguish GOT and TLS relocations in UNSPEC
2217 wrappers. */
2218 enum m68k_reloc { RELOC_GOT, RELOC_TLSGD, RELOC_TLSLDM, RELOC_TLSLDO,
2219 RELOC_TLSIE, RELOC_TLSLE };
2220
2221 #define TLS_RELOC_P(RELOC) ((RELOC) != RELOC_GOT)
2222
2223 /* Wrap symbol X into unspec representing relocation RELOC.
2224 BASE_REG - register that should be added to the result.
2225 TEMP_REG - if non-null, temporary register. */
2226
2227 static rtx
2228 m68k_wrap_symbol (rtx x, enum m68k_reloc reloc, rtx base_reg, rtx temp_reg)
2229 {
2230 bool use_x_p;
2231
2232 use_x_p = (base_reg == pic_offset_table_rtx) ? TARGET_XGOT : TARGET_XTLS;
2233
2234 if (TARGET_COLDFIRE && use_x_p)
2235 /* When compiling with -mx{got, tls} switch the code will look like this:
2236
2237 move.l <X>@<RELOC>,<TEMP_REG>
2238 add.l <BASE_REG>,<TEMP_REG> */
2239 {
2240 /* Wrap X in UNSPEC_??? to tip m68k_output_addr_const_extra
2241 to put @RELOC after reference. */
2242 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2243 UNSPEC_RELOC32);
2244 x = gen_rtx_CONST (Pmode, x);
2245
2246 if (temp_reg == NULL)
2247 {
2248 gcc_assert (can_create_pseudo_p ());
2249 temp_reg = gen_reg_rtx (Pmode);
2250 }
2251
2252 emit_move_insn (temp_reg, x);
2253 emit_insn (gen_addsi3 (temp_reg, temp_reg, base_reg));
2254 x = temp_reg;
2255 }
2256 else
2257 {
2258 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2259 UNSPEC_RELOC16);
2260 x = gen_rtx_CONST (Pmode, x);
2261
2262 x = gen_rtx_PLUS (Pmode, base_reg, x);
2263 }
2264
2265 return x;
2266 }
2267
2268 /* Helper for m68k_unwrap_symbol.
2269 Also, if unwrapping was successful (that is if (ORIG != <return value>)),
2270 sets *RELOC_PTR to relocation type for the symbol. */
2271
2272 static rtx
2273 m68k_unwrap_symbol_1 (rtx orig, bool unwrap_reloc32_p,
2274 enum m68k_reloc *reloc_ptr)
2275 {
2276 if (GET_CODE (orig) == CONST)
2277 {
2278 rtx x;
2279 enum m68k_reloc dummy;
2280
2281 x = XEXP (orig, 0);
2282
2283 if (reloc_ptr == NULL)
2284 reloc_ptr = &dummy;
2285
2286 /* Handle an addend. */
2287 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2288 && CONST_INT_P (XEXP (x, 1)))
2289 x = XEXP (x, 0);
2290
2291 if (GET_CODE (x) == UNSPEC)
2292 {
2293 switch (XINT (x, 1))
2294 {
2295 case UNSPEC_RELOC16:
2296 orig = XVECEXP (x, 0, 0);
2297 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2298 break;
2299
2300 case UNSPEC_RELOC32:
2301 if (unwrap_reloc32_p)
2302 {
2303 orig = XVECEXP (x, 0, 0);
2304 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2305 }
2306 break;
2307
2308 default:
2309 break;
2310 }
2311 }
2312 }
2313
2314 return orig;
2315 }
2316
2317 /* Unwrap symbol from UNSPEC_RELOC16 and, if unwrap_reloc32_p,
2318 UNSPEC_RELOC32 wrappers. */
2319
2320 rtx
2321 m68k_unwrap_symbol (rtx orig, bool unwrap_reloc32_p)
2322 {
2323 return m68k_unwrap_symbol_1 (orig, unwrap_reloc32_p, NULL);
2324 }
2325
2326 /* Adjust decorated address operand before outputing assembler for it. */
2327
2328 static void
2329 m68k_adjust_decorated_operand (rtx op)
2330 {
2331 /* Combine and, possibly, other optimizations may do good job
2332 converting
2333 (const (unspec [(symbol)]))
2334 into
2335 (const (plus (unspec [(symbol)])
2336 (const_int N))).
2337 The problem with this is emitting @TLS or @GOT decorations.
2338 The decoration is emitted when processing (unspec), so the
2339 result would be "#symbol@TLSLE+N" instead of "#symbol+N@TLSLE".
2340
2341 It seems that the easiest solution to this is to convert such
2342 operands to
2343 (const (unspec [(plus (symbol)
2344 (const_int N))])).
2345 Note, that the top level of operand remains intact, so we don't have
2346 to patch up anything outside of the operand. */
2347
2348 subrtx_var_iterator::array_type array;
2349 FOR_EACH_SUBRTX_VAR (iter, array, op, ALL)
2350 {
2351 rtx x = *iter;
2352 if (m68k_unwrap_symbol (x, true) != x)
2353 {
2354 rtx plus;
2355
2356 gcc_assert (GET_CODE (x) == CONST);
2357 plus = XEXP (x, 0);
2358
2359 if (GET_CODE (plus) == PLUS || GET_CODE (plus) == MINUS)
2360 {
2361 rtx unspec;
2362 rtx addend;
2363
2364 unspec = XEXP (plus, 0);
2365 gcc_assert (GET_CODE (unspec) == UNSPEC);
2366 addend = XEXP (plus, 1);
2367 gcc_assert (CONST_INT_P (addend));
2368
2369 /* We now have all the pieces, rearrange them. */
2370
2371 /* Move symbol to plus. */
2372 XEXP (plus, 0) = XVECEXP (unspec, 0, 0);
2373
2374 /* Move plus inside unspec. */
2375 XVECEXP (unspec, 0, 0) = plus;
2376
2377 /* Move unspec to top level of const. */
2378 XEXP (x, 0) = unspec;
2379 }
2380 iter.skip_subrtxes ();
2381 }
2382 }
2383 }
2384
2385 /* Move X to a register and add REG_EQUAL note pointing to ORIG.
2386 If REG is non-null, use it; generate new pseudo otherwise. */
2387
2388 static rtx
2389 m68k_move_to_reg (rtx x, rtx orig, rtx reg)
2390 {
2391 rtx_insn *insn;
2392
2393 if (reg == NULL_RTX)
2394 {
2395 gcc_assert (can_create_pseudo_p ());
2396 reg = gen_reg_rtx (Pmode);
2397 }
2398
2399 insn = emit_move_insn (reg, x);
2400 /* Put a REG_EQUAL note on this insn, so that it can be optimized
2401 by loop. */
2402 set_unique_reg_note (insn, REG_EQUAL, orig);
2403
2404 return reg;
2405 }
2406
2407 /* Does the same as m68k_wrap_symbol, but returns a memory reference to
2408 GOT slot. */
2409
2410 static rtx
2411 m68k_wrap_symbol_into_got_ref (rtx x, enum m68k_reloc reloc, rtx temp_reg)
2412 {
2413 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), temp_reg);
2414
2415 x = gen_rtx_MEM (Pmode, x);
2416 MEM_READONLY_P (x) = 1;
2417
2418 return x;
2419 }
2420
2421 /* Legitimize PIC addresses. If the address is already
2422 position-independent, we return ORIG. Newly generated
2423 position-independent addresses go to REG. If we need more
2424 than one register, we lose.
2425
2426 An address is legitimized by making an indirect reference
2427 through the Global Offset Table with the name of the symbol
2428 used as an offset.
2429
2430 The assembler and linker are responsible for placing the
2431 address of the symbol in the GOT. The function prologue
2432 is responsible for initializing a5 to the starting address
2433 of the GOT.
2434
2435 The assembler is also responsible for translating a symbol name
2436 into a constant displacement from the start of the GOT.
2437
2438 A quick example may make things a little clearer:
2439
2440 When not generating PIC code to store the value 12345 into _foo
2441 we would generate the following code:
2442
2443 movel #12345, _foo
2444
2445 When generating PIC two transformations are made. First, the compiler
2446 loads the address of foo into a register. So the first transformation makes:
2447
2448 lea _foo, a0
2449 movel #12345, a0@
2450
2451 The code in movsi will intercept the lea instruction and call this
2452 routine which will transform the instructions into:
2453
2454 movel a5@(_foo:w), a0
2455 movel #12345, a0@
2456
2457
2458 That (in a nutshell) is how *all* symbol and label references are
2459 handled. */
2460
2461 rtx
2462 legitimize_pic_address (rtx orig, machine_mode mode ATTRIBUTE_UNUSED,
2463 rtx reg)
2464 {
2465 rtx pic_ref = orig;
2466
2467 /* First handle a simple SYMBOL_REF or LABEL_REF */
2468 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
2469 {
2470 gcc_assert (reg);
2471
2472 pic_ref = m68k_wrap_symbol_into_got_ref (orig, RELOC_GOT, reg);
2473 pic_ref = m68k_move_to_reg (pic_ref, orig, reg);
2474 }
2475 else if (GET_CODE (orig) == CONST)
2476 {
2477 rtx base;
2478
2479 /* Make sure this has not already been legitimized. */
2480 if (m68k_unwrap_symbol (orig, true) != orig)
2481 return orig;
2482
2483 gcc_assert (reg);
2484
2485 /* legitimize both operands of the PLUS */
2486 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
2487
2488 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
2489 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
2490 base == reg ? 0 : reg);
2491
2492 if (GET_CODE (orig) == CONST_INT)
2493 pic_ref = plus_constant (Pmode, base, INTVAL (orig));
2494 else
2495 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
2496 }
2497
2498 return pic_ref;
2499 }
2500
2501 /* The __tls_get_addr symbol. */
2502 static GTY(()) rtx m68k_tls_get_addr;
2503
2504 /* Return SYMBOL_REF for __tls_get_addr. */
2505
2506 static rtx
2507 m68k_get_tls_get_addr (void)
2508 {
2509 if (m68k_tls_get_addr == NULL_RTX)
2510 m68k_tls_get_addr = init_one_libfunc ("__tls_get_addr");
2511
2512 return m68k_tls_get_addr;
2513 }
2514
2515 /* Return libcall result in A0 instead of usual D0. */
2516 static bool m68k_libcall_value_in_a0_p = false;
2517
2518 /* Emit instruction sequence that calls __tls_get_addr. X is
2519 the TLS symbol we are referencing and RELOC is the symbol type to use
2520 (either TLSGD or TLSLDM). EQV is the REG_EQUAL note for the sequence
2521 emitted. A pseudo register with result of __tls_get_addr call is
2522 returned. */
2523
2524 static rtx
2525 m68k_call_tls_get_addr (rtx x, rtx eqv, enum m68k_reloc reloc)
2526 {
2527 rtx a0;
2528 rtx_insn *insns;
2529 rtx dest;
2530
2531 /* Emit the call sequence. */
2532 start_sequence ();
2533
2534 /* FIXME: Unfortunately, emit_library_call_value does not
2535 consider (plus (%a5) (const (unspec))) to be a good enough
2536 operand for push, so it forces it into a register. The bad
2537 thing about this is that combiner, due to copy propagation and other
2538 optimizations, sometimes cannot later fix this. As a consequence,
2539 additional register may be allocated resulting in a spill.
2540 For reference, see args processing loops in
2541 calls.c:emit_library_call_value_1.
2542 For testcase, see gcc.target/m68k/tls-{gd, ld}.c */
2543 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), NULL_RTX);
2544
2545 /* __tls_get_addr() is not a libcall, but emitting a libcall_value
2546 is the simpliest way of generating a call. The difference between
2547 __tls_get_addr() and libcall is that the result is returned in D0
2548 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2549 which temporarily switches returning the result to A0. */
2550
2551 m68k_libcall_value_in_a0_p = true;
2552 a0 = emit_library_call_value (m68k_get_tls_get_addr (), NULL_RTX, LCT_PURE,
2553 Pmode, x, Pmode);
2554 m68k_libcall_value_in_a0_p = false;
2555
2556 insns = get_insns ();
2557 end_sequence ();
2558
2559 gcc_assert (can_create_pseudo_p ());
2560 dest = gen_reg_rtx (Pmode);
2561 emit_libcall_block (insns, dest, a0, eqv);
2562
2563 return dest;
2564 }
2565
2566 /* The __tls_get_addr symbol. */
2567 static GTY(()) rtx m68k_read_tp;
2568
2569 /* Return SYMBOL_REF for __m68k_read_tp. */
2570
2571 static rtx
2572 m68k_get_m68k_read_tp (void)
2573 {
2574 if (m68k_read_tp == NULL_RTX)
2575 m68k_read_tp = init_one_libfunc ("__m68k_read_tp");
2576
2577 return m68k_read_tp;
2578 }
2579
2580 /* Emit instruction sequence that calls __m68k_read_tp.
2581 A pseudo register with result of __m68k_read_tp call is returned. */
2582
2583 static rtx
2584 m68k_call_m68k_read_tp (void)
2585 {
2586 rtx a0;
2587 rtx eqv;
2588 rtx_insn *insns;
2589 rtx dest;
2590
2591 start_sequence ();
2592
2593 /* __m68k_read_tp() is not a libcall, but emitting a libcall_value
2594 is the simpliest way of generating a call. The difference between
2595 __m68k_read_tp() and libcall is that the result is returned in D0
2596 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2597 which temporarily switches returning the result to A0. */
2598
2599 /* Emit the call sequence. */
2600 m68k_libcall_value_in_a0_p = true;
2601 a0 = emit_library_call_value (m68k_get_m68k_read_tp (), NULL_RTX, LCT_PURE,
2602 Pmode);
2603 m68k_libcall_value_in_a0_p = false;
2604 insns = get_insns ();
2605 end_sequence ();
2606
2607 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2608 share the m68k_read_tp result with other IE/LE model accesses. */
2609 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const1_rtx), UNSPEC_RELOC32);
2610
2611 gcc_assert (can_create_pseudo_p ());
2612 dest = gen_reg_rtx (Pmode);
2613 emit_libcall_block (insns, dest, a0, eqv);
2614
2615 return dest;
2616 }
2617
2618 /* Return a legitimized address for accessing TLS SYMBOL_REF X.
2619 For explanations on instructions sequences see TLS/NPTL ABI for m68k and
2620 ColdFire. */
2621
2622 rtx
2623 m68k_legitimize_tls_address (rtx orig)
2624 {
2625 switch (SYMBOL_REF_TLS_MODEL (orig))
2626 {
2627 case TLS_MODEL_GLOBAL_DYNAMIC:
2628 orig = m68k_call_tls_get_addr (orig, orig, RELOC_TLSGD);
2629 break;
2630
2631 case TLS_MODEL_LOCAL_DYNAMIC:
2632 {
2633 rtx eqv;
2634 rtx a0;
2635 rtx x;
2636
2637 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2638 share the LDM result with other LD model accesses. */
2639 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
2640 UNSPEC_RELOC32);
2641
2642 a0 = m68k_call_tls_get_addr (orig, eqv, RELOC_TLSLDM);
2643
2644 x = m68k_wrap_symbol (orig, RELOC_TLSLDO, a0, NULL_RTX);
2645
2646 if (can_create_pseudo_p ())
2647 x = m68k_move_to_reg (x, orig, NULL_RTX);
2648
2649 orig = x;
2650 break;
2651 }
2652
2653 case TLS_MODEL_INITIAL_EXEC:
2654 {
2655 rtx a0;
2656 rtx x;
2657
2658 a0 = m68k_call_m68k_read_tp ();
2659
2660 x = m68k_wrap_symbol_into_got_ref (orig, RELOC_TLSIE, NULL_RTX);
2661 x = gen_rtx_PLUS (Pmode, x, a0);
2662
2663 if (can_create_pseudo_p ())
2664 x = m68k_move_to_reg (x, orig, NULL_RTX);
2665
2666 orig = x;
2667 break;
2668 }
2669
2670 case TLS_MODEL_LOCAL_EXEC:
2671 {
2672 rtx a0;
2673 rtx x;
2674
2675 a0 = m68k_call_m68k_read_tp ();
2676
2677 x = m68k_wrap_symbol (orig, RELOC_TLSLE, a0, NULL_RTX);
2678
2679 if (can_create_pseudo_p ())
2680 x = m68k_move_to_reg (x, orig, NULL_RTX);
2681
2682 orig = x;
2683 break;
2684 }
2685
2686 default:
2687 gcc_unreachable ();
2688 }
2689
2690 return orig;
2691 }
2692
2693 /* Return true if X is a TLS symbol. */
2694
2695 static bool
2696 m68k_tls_symbol_p (rtx x)
2697 {
2698 if (!TARGET_HAVE_TLS)
2699 return false;
2700
2701 if (GET_CODE (x) != SYMBOL_REF)
2702 return false;
2703
2704 return SYMBOL_REF_TLS_MODEL (x) != 0;
2705 }
2706
2707 /* If !LEGITIMATE_P, return true if X is a TLS symbol reference,
2708 though illegitimate one.
2709 If LEGITIMATE_P, return true if X is a legitimate TLS symbol reference. */
2710
2711 bool
2712 m68k_tls_reference_p (rtx x, bool legitimate_p)
2713 {
2714 if (!TARGET_HAVE_TLS)
2715 return false;
2716
2717 if (!legitimate_p)
2718 {
2719 subrtx_var_iterator::array_type array;
2720 FOR_EACH_SUBRTX_VAR (iter, array, x, ALL)
2721 {
2722 rtx x = *iter;
2723
2724 /* Note: this is not the same as m68k_tls_symbol_p. */
2725 if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0)
2726 return true;
2727
2728 /* Don't recurse into legitimate TLS references. */
2729 if (m68k_tls_reference_p (x, true))
2730 iter.skip_subrtxes ();
2731 }
2732 return false;
2733 }
2734 else
2735 {
2736 enum m68k_reloc reloc = RELOC_GOT;
2737
2738 return (m68k_unwrap_symbol_1 (x, true, &reloc) != x
2739 && TLS_RELOC_P (reloc));
2740 }
2741 }
2742
2743 \f
2744
2745 #define USE_MOVQ(i) ((unsigned) ((i) + 128) <= 255)
2746
2747 /* Return the type of move that should be used for integer I. */
2748
2749 M68K_CONST_METHOD
2750 m68k_const_method (HOST_WIDE_INT i)
2751 {
2752 unsigned u;
2753
2754 if (USE_MOVQ (i))
2755 return MOVQ;
2756
2757 /* The ColdFire doesn't have byte or word operations. */
2758 /* FIXME: This may not be useful for the m68060 either. */
2759 if (!TARGET_COLDFIRE)
2760 {
2761 /* if -256 < N < 256 but N is not in range for a moveq
2762 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
2763 if (USE_MOVQ (i ^ 0xff))
2764 return NOTB;
2765 /* Likewise, try with not.w */
2766 if (USE_MOVQ (i ^ 0xffff))
2767 return NOTW;
2768 /* This is the only value where neg.w is useful */
2769 if (i == -65408)
2770 return NEGW;
2771 }
2772
2773 /* Try also with swap. */
2774 u = i;
2775 if (USE_MOVQ ((u >> 16) | (u << 16)))
2776 return SWAP;
2777
2778 if (TARGET_ISAB)
2779 {
2780 /* Try using MVZ/MVS with an immediate value to load constants. */
2781 if (i >= 0 && i <= 65535)
2782 return MVZ;
2783 if (i >= -32768 && i <= 32767)
2784 return MVS;
2785 }
2786
2787 /* Otherwise, use move.l */
2788 return MOVL;
2789 }
2790
2791 /* Return the cost of moving constant I into a data register. */
2792
2793 static int
2794 const_int_cost (HOST_WIDE_INT i)
2795 {
2796 switch (m68k_const_method (i))
2797 {
2798 case MOVQ:
2799 /* Constants between -128 and 127 are cheap due to moveq. */
2800 return 0;
2801 case MVZ:
2802 case MVS:
2803 case NOTB:
2804 case NOTW:
2805 case NEGW:
2806 case SWAP:
2807 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap. */
2808 return 1;
2809 case MOVL:
2810 return 2;
2811 default:
2812 gcc_unreachable ();
2813 }
2814 }
2815
2816 static bool
2817 m68k_rtx_costs (rtx x, machine_mode mode, int outer_code,
2818 int opno ATTRIBUTE_UNUSED,
2819 int *total, bool speed ATTRIBUTE_UNUSED)
2820 {
2821 int code = GET_CODE (x);
2822
2823 switch (code)
2824 {
2825 case CONST_INT:
2826 /* Constant zero is super cheap due to clr instruction. */
2827 if (x == const0_rtx)
2828 *total = 0;
2829 else
2830 *total = const_int_cost (INTVAL (x));
2831 return true;
2832
2833 case CONST:
2834 case LABEL_REF:
2835 case SYMBOL_REF:
2836 *total = 3;
2837 return true;
2838
2839 case CONST_DOUBLE:
2840 /* Make 0.0 cheaper than other floating constants to
2841 encourage creating tstsf and tstdf insns. */
2842 if (outer_code == COMPARE
2843 && (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
2844 *total = 4;
2845 else
2846 *total = 5;
2847 return true;
2848
2849 /* These are vaguely right for a 68020. */
2850 /* The costs for long multiply have been adjusted to work properly
2851 in synth_mult on the 68020, relative to an average of the time
2852 for add and the time for shift, taking away a little more because
2853 sometimes move insns are needed. */
2854 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS
2855 terms. */
2856 #define MULL_COST \
2857 (TUNE_68060 ? 2 \
2858 : TUNE_68040 ? 5 \
2859 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2860 : (TUNE_CFV2 && TUNE_MAC) ? 4 \
2861 : TUNE_CFV2 ? 8 \
2862 : TARGET_COLDFIRE ? 3 : 13)
2863
2864 #define MULW_COST \
2865 (TUNE_68060 ? 2 \
2866 : TUNE_68040 ? 3 \
2867 : TUNE_68000_10 ? 5 \
2868 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2869 : (TUNE_CFV2 && TUNE_MAC) ? 2 \
2870 : TUNE_CFV2 ? 8 \
2871 : TARGET_COLDFIRE ? 2 : 8)
2872
2873 #define DIVW_COST \
2874 (TARGET_CF_HWDIV ? 11 \
2875 : TUNE_68000_10 || TARGET_COLDFIRE ? 12 : 27)
2876
2877 case PLUS:
2878 /* An lea costs about three times as much as a simple add. */
2879 if (mode == SImode
2880 && GET_CODE (XEXP (x, 1)) == REG
2881 && GET_CODE (XEXP (x, 0)) == MULT
2882 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
2883 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2884 && (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
2885 || INTVAL (XEXP (XEXP (x, 0), 1)) == 4
2886 || INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
2887 {
2888 /* lea an@(dx:l:i),am */
2889 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 2 : 3);
2890 return true;
2891 }
2892 return false;
2893
2894 case ASHIFT:
2895 case ASHIFTRT:
2896 case LSHIFTRT:
2897 if (TUNE_68060)
2898 {
2899 *total = COSTS_N_INSNS(1);
2900 return true;
2901 }
2902 if (TUNE_68000_10)
2903 {
2904 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
2905 {
2906 if (INTVAL (XEXP (x, 1)) < 16)
2907 *total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
2908 else
2909 /* We're using clrw + swap for these cases. */
2910 *total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
2911 }
2912 else
2913 *total = COSTS_N_INSNS (10); /* Worst case. */
2914 return true;
2915 }
2916 /* A shift by a big integer takes an extra instruction. */
2917 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2918 && (INTVAL (XEXP (x, 1)) == 16))
2919 {
2920 *total = COSTS_N_INSNS (2); /* clrw;swap */
2921 return true;
2922 }
2923 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2924 && !(INTVAL (XEXP (x, 1)) > 0
2925 && INTVAL (XEXP (x, 1)) <= 8))
2926 {
2927 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 1 : 3); /* lsr #i,dn */
2928 return true;
2929 }
2930 return false;
2931
2932 case MULT:
2933 if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
2934 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
2935 && mode == SImode)
2936 *total = COSTS_N_INSNS (MULW_COST);
2937 else if (mode == QImode || mode == HImode)
2938 *total = COSTS_N_INSNS (MULW_COST);
2939 else
2940 *total = COSTS_N_INSNS (MULL_COST);
2941 return true;
2942
2943 case DIV:
2944 case UDIV:
2945 case MOD:
2946 case UMOD:
2947 if (mode == QImode || mode == HImode)
2948 *total = COSTS_N_INSNS (DIVW_COST); /* div.w */
2949 else if (TARGET_CF_HWDIV)
2950 *total = COSTS_N_INSNS (18);
2951 else
2952 *total = COSTS_N_INSNS (43); /* div.l */
2953 return true;
2954
2955 case ZERO_EXTRACT:
2956 if (outer_code == COMPARE)
2957 *total = 0;
2958 return false;
2959
2960 default:
2961 return false;
2962 }
2963 }
2964
2965 /* Return an instruction to move CONST_INT OPERANDS[1] into data register
2966 OPERANDS[0]. */
2967
2968 static const char *
2969 output_move_const_into_data_reg (rtx *operands)
2970 {
2971 HOST_WIDE_INT i;
2972
2973 i = INTVAL (operands[1]);
2974 switch (m68k_const_method (i))
2975 {
2976 case MVZ:
2977 return "mvzw %1,%0";
2978 case MVS:
2979 return "mvsw %1,%0";
2980 case MOVQ:
2981 return "moveq %1,%0";
2982 case NOTB:
2983 CC_STATUS_INIT;
2984 operands[1] = GEN_INT (i ^ 0xff);
2985 return "moveq %1,%0\n\tnot%.b %0";
2986 case NOTW:
2987 CC_STATUS_INIT;
2988 operands[1] = GEN_INT (i ^ 0xffff);
2989 return "moveq %1,%0\n\tnot%.w %0";
2990 case NEGW:
2991 CC_STATUS_INIT;
2992 return "moveq #-128,%0\n\tneg%.w %0";
2993 case SWAP:
2994 {
2995 unsigned u = i;
2996
2997 operands[1] = GEN_INT ((u << 16) | (u >> 16));
2998 return "moveq %1,%0\n\tswap %0";
2999 }
3000 case MOVL:
3001 return "move%.l %1,%0";
3002 default:
3003 gcc_unreachable ();
3004 }
3005 }
3006
3007 /* Return true if I can be handled by ISA B's mov3q instruction. */
3008
3009 bool
3010 valid_mov3q_const (HOST_WIDE_INT i)
3011 {
3012 return TARGET_ISAB && (i == -1 || IN_RANGE (i, 1, 7));
3013 }
3014
3015 /* Return an instruction to move CONST_INT OPERANDS[1] into OPERANDS[0].
3016 I is the value of OPERANDS[1]. */
3017
3018 static const char *
3019 output_move_simode_const (rtx *operands)
3020 {
3021 rtx dest;
3022 HOST_WIDE_INT src;
3023
3024 dest = operands[0];
3025 src = INTVAL (operands[1]);
3026 if (src == 0
3027 && (DATA_REG_P (dest) || MEM_P (dest))
3028 /* clr insns on 68000 read before writing. */
3029 && ((TARGET_68010 || TARGET_COLDFIRE)
3030 || !(MEM_P (dest) && MEM_VOLATILE_P (dest))))
3031 return "clr%.l %0";
3032 else if (GET_MODE (dest) == SImode && valid_mov3q_const (src))
3033 return "mov3q%.l %1,%0";
3034 else if (src == 0 && ADDRESS_REG_P (dest))
3035 return "sub%.l %0,%0";
3036 else if (DATA_REG_P (dest))
3037 return output_move_const_into_data_reg (operands);
3038 else if (ADDRESS_REG_P (dest) && IN_RANGE (src, -0x8000, 0x7fff))
3039 {
3040 if (valid_mov3q_const (src))
3041 return "mov3q%.l %1,%0";
3042 return "move%.w %1,%0";
3043 }
3044 else if (MEM_P (dest)
3045 && GET_CODE (XEXP (dest, 0)) == PRE_DEC
3046 && REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
3047 && IN_RANGE (src, -0x8000, 0x7fff))
3048 {
3049 if (valid_mov3q_const (src))
3050 return "mov3q%.l %1,%-";
3051 return "pea %a1";
3052 }
3053 return "move%.l %1,%0";
3054 }
3055
3056 const char *
3057 output_move_simode (rtx *operands)
3058 {
3059 if (GET_CODE (operands[1]) == CONST_INT)
3060 return output_move_simode_const (operands);
3061 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3062 || GET_CODE (operands[1]) == CONST)
3063 && push_operand (operands[0], SImode))
3064 return "pea %a1";
3065 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3066 || GET_CODE (operands[1]) == CONST)
3067 && ADDRESS_REG_P (operands[0]))
3068 return "lea %a1,%0";
3069 return "move%.l %1,%0";
3070 }
3071
3072 const char *
3073 output_move_himode (rtx *operands)
3074 {
3075 if (GET_CODE (operands[1]) == CONST_INT)
3076 {
3077 if (operands[1] == const0_rtx
3078 && (DATA_REG_P (operands[0])
3079 || GET_CODE (operands[0]) == MEM)
3080 /* clr insns on 68000 read before writing. */
3081 && ((TARGET_68010 || TARGET_COLDFIRE)
3082 || !(GET_CODE (operands[0]) == MEM
3083 && MEM_VOLATILE_P (operands[0]))))
3084 return "clr%.w %0";
3085 else if (operands[1] == const0_rtx
3086 && ADDRESS_REG_P (operands[0]))
3087 return "sub%.l %0,%0";
3088 else if (DATA_REG_P (operands[0])
3089 && INTVAL (operands[1]) < 128
3090 && INTVAL (operands[1]) >= -128)
3091 return "moveq %1,%0";
3092 else if (INTVAL (operands[1]) < 0x8000
3093 && INTVAL (operands[1]) >= -0x8000)
3094 return "move%.w %1,%0";
3095 }
3096 else if (CONSTANT_P (operands[1]))
3097 return "move%.l %1,%0";
3098 return "move%.w %1,%0";
3099 }
3100
3101 const char *
3102 output_move_qimode (rtx *operands)
3103 {
3104 /* 68k family always modifies the stack pointer by at least 2, even for
3105 byte pushes. The 5200 (ColdFire) does not do this. */
3106
3107 /* This case is generated by pushqi1 pattern now. */
3108 gcc_assert (!(GET_CODE (operands[0]) == MEM
3109 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
3110 && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
3111 && ! ADDRESS_REG_P (operands[1])
3112 && ! TARGET_COLDFIRE));
3113
3114 /* clr and st insns on 68000 read before writing. */
3115 if (!ADDRESS_REG_P (operands[0])
3116 && ((TARGET_68010 || TARGET_COLDFIRE)
3117 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3118 {
3119 if (operands[1] == const0_rtx)
3120 return "clr%.b %0";
3121 if ((!TARGET_COLDFIRE || DATA_REG_P (operands[0]))
3122 && GET_CODE (operands[1]) == CONST_INT
3123 && (INTVAL (operands[1]) & 255) == 255)
3124 {
3125 CC_STATUS_INIT;
3126 return "st %0";
3127 }
3128 }
3129 if (GET_CODE (operands[1]) == CONST_INT
3130 && DATA_REG_P (operands[0])
3131 && INTVAL (operands[1]) < 128
3132 && INTVAL (operands[1]) >= -128)
3133 return "moveq %1,%0";
3134 if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
3135 return "sub%.l %0,%0";
3136 if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
3137 return "move%.l %1,%0";
3138 /* 68k family (including the 5200 ColdFire) does not support byte moves to
3139 from address registers. */
3140 if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
3141 return "move%.w %1,%0";
3142 return "move%.b %1,%0";
3143 }
3144
3145 const char *
3146 output_move_stricthi (rtx *operands)
3147 {
3148 if (operands[1] == const0_rtx
3149 /* clr insns on 68000 read before writing. */
3150 && ((TARGET_68010 || TARGET_COLDFIRE)
3151 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3152 return "clr%.w %0";
3153 return "move%.w %1,%0";
3154 }
3155
3156 const char *
3157 output_move_strictqi (rtx *operands)
3158 {
3159 if (operands[1] == const0_rtx
3160 /* clr insns on 68000 read before writing. */
3161 && ((TARGET_68010 || TARGET_COLDFIRE)
3162 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3163 return "clr%.b %0";
3164 return "move%.b %1,%0";
3165 }
3166
3167 /* Return the best assembler insn template
3168 for moving operands[1] into operands[0] as a fullword. */
3169
3170 static const char *
3171 singlemove_string (rtx *operands)
3172 {
3173 if (GET_CODE (operands[1]) == CONST_INT)
3174 return output_move_simode_const (operands);
3175 return "move%.l %1,%0";
3176 }
3177
3178
3179 /* Output assembler or rtl code to perform a doubleword move insn
3180 with operands OPERANDS.
3181 Pointers to 3 helper functions should be specified:
3182 HANDLE_REG_ADJUST to adjust a register by a small value,
3183 HANDLE_COMPADR to compute an address and
3184 HANDLE_MOVSI to move 4 bytes. */
3185
3186 static void
3187 handle_move_double (rtx operands[2],
3188 void (*handle_reg_adjust) (rtx, int),
3189 void (*handle_compadr) (rtx [2]),
3190 void (*handle_movsi) (rtx [2]))
3191 {
3192 enum
3193 {
3194 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
3195 } optype0, optype1;
3196 rtx latehalf[2];
3197 rtx middlehalf[2];
3198 rtx xops[2];
3199 rtx addreg0 = 0, addreg1 = 0;
3200 int dest_overlapped_low = 0;
3201 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
3202
3203 middlehalf[0] = 0;
3204 middlehalf[1] = 0;
3205
3206 /* First classify both operands. */
3207
3208 if (REG_P (operands[0]))
3209 optype0 = REGOP;
3210 else if (offsettable_memref_p (operands[0]))
3211 optype0 = OFFSOP;
3212 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
3213 optype0 = POPOP;
3214 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
3215 optype0 = PUSHOP;
3216 else if (GET_CODE (operands[0]) == MEM)
3217 optype0 = MEMOP;
3218 else
3219 optype0 = RNDOP;
3220
3221 if (REG_P (operands[1]))
3222 optype1 = REGOP;
3223 else if (CONSTANT_P (operands[1]))
3224 optype1 = CNSTOP;
3225 else if (offsettable_memref_p (operands[1]))
3226 optype1 = OFFSOP;
3227 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
3228 optype1 = POPOP;
3229 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
3230 optype1 = PUSHOP;
3231 else if (GET_CODE (operands[1]) == MEM)
3232 optype1 = MEMOP;
3233 else
3234 optype1 = RNDOP;
3235
3236 /* Check for the cases that the operand constraints are not supposed
3237 to allow to happen. Generating code for these cases is
3238 painful. */
3239 gcc_assert (optype0 != RNDOP && optype1 != RNDOP);
3240
3241 /* If one operand is decrementing and one is incrementing
3242 decrement the former register explicitly
3243 and change that operand into ordinary indexing. */
3244
3245 if (optype0 == PUSHOP && optype1 == POPOP)
3246 {
3247 operands[0] = XEXP (XEXP (operands[0], 0), 0);
3248
3249 handle_reg_adjust (operands[0], -size);
3250
3251 if (GET_MODE (operands[1]) == XFmode)
3252 operands[0] = gen_rtx_MEM (XFmode, operands[0]);
3253 else if (GET_MODE (operands[0]) == DFmode)
3254 operands[0] = gen_rtx_MEM (DFmode, operands[0]);
3255 else
3256 operands[0] = gen_rtx_MEM (DImode, operands[0]);
3257 optype0 = OFFSOP;
3258 }
3259 if (optype0 == POPOP && optype1 == PUSHOP)
3260 {
3261 operands[1] = XEXP (XEXP (operands[1], 0), 0);
3262
3263 handle_reg_adjust (operands[1], -size);
3264
3265 if (GET_MODE (operands[1]) == XFmode)
3266 operands[1] = gen_rtx_MEM (XFmode, operands[1]);
3267 else if (GET_MODE (operands[1]) == DFmode)
3268 operands[1] = gen_rtx_MEM (DFmode, operands[1]);
3269 else
3270 operands[1] = gen_rtx_MEM (DImode, operands[1]);
3271 optype1 = OFFSOP;
3272 }
3273
3274 /* If an operand is an unoffsettable memory ref, find a register
3275 we can increment temporarily to make it refer to the second word. */
3276
3277 if (optype0 == MEMOP)
3278 addreg0 = find_addr_reg (XEXP (operands[0], 0));
3279
3280 if (optype1 == MEMOP)
3281 addreg1 = find_addr_reg (XEXP (operands[1], 0));
3282
3283 /* Ok, we can do one word at a time.
3284 Normally we do the low-numbered word first,
3285 but if either operand is autodecrementing then we
3286 do the high-numbered word first.
3287
3288 In either case, set up in LATEHALF the operands to use
3289 for the high-numbered word and in some cases alter the
3290 operands in OPERANDS to be suitable for the low-numbered word. */
3291
3292 if (size == 12)
3293 {
3294 if (optype0 == REGOP)
3295 {
3296 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
3297 middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3298 }
3299 else if (optype0 == OFFSOP)
3300 {
3301 middlehalf[0] = adjust_address (operands[0], SImode, 4);
3302 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3303 }
3304 else
3305 {
3306 middlehalf[0] = adjust_address (operands[0], SImode, 0);
3307 latehalf[0] = adjust_address (operands[0], SImode, 0);
3308 }
3309
3310 if (optype1 == REGOP)
3311 {
3312 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
3313 middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3314 }
3315 else if (optype1 == OFFSOP)
3316 {
3317 middlehalf[1] = adjust_address (operands[1], SImode, 4);
3318 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3319 }
3320 else if (optype1 == CNSTOP)
3321 {
3322 if (GET_CODE (operands[1]) == CONST_DOUBLE)
3323 {
3324 long l[3];
3325
3326 REAL_VALUE_TO_TARGET_LONG_DOUBLE
3327 (*CONST_DOUBLE_REAL_VALUE (operands[1]), l);
3328 operands[1] = GEN_INT (l[0]);
3329 middlehalf[1] = GEN_INT (l[1]);
3330 latehalf[1] = GEN_INT (l[2]);
3331 }
3332 else
3333 {
3334 /* No non-CONST_DOUBLE constant should ever appear
3335 here. */
3336 gcc_assert (!CONSTANT_P (operands[1]));
3337 }
3338 }
3339 else
3340 {
3341 middlehalf[1] = adjust_address (operands[1], SImode, 0);
3342 latehalf[1] = adjust_address (operands[1], SImode, 0);
3343 }
3344 }
3345 else
3346 /* size is not 12: */
3347 {
3348 if (optype0 == REGOP)
3349 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3350 else if (optype0 == OFFSOP)
3351 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3352 else
3353 latehalf[0] = adjust_address (operands[0], SImode, 0);
3354
3355 if (optype1 == REGOP)
3356 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3357 else if (optype1 == OFFSOP)
3358 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3359 else if (optype1 == CNSTOP)
3360 split_double (operands[1], &operands[1], &latehalf[1]);
3361 else
3362 latehalf[1] = adjust_address (operands[1], SImode, 0);
3363 }
3364
3365 /* If insn is effectively movd N(REG),-(REG) then we will do the high
3366 word first. We should use the adjusted operand 1 (which is N+4(REG))
3367 for the low word as well, to compensate for the first decrement of
3368 REG. */
3369 if (optype0 == PUSHOP
3370 && reg_overlap_mentioned_p (XEXP (XEXP (operands[0], 0), 0), operands[1]))
3371 operands[1] = middlehalf[1] = latehalf[1];
3372
3373 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
3374 if the upper part of reg N does not appear in the MEM, arrange to
3375 emit the move late-half first. Otherwise, compute the MEM address
3376 into the upper part of N and use that as a pointer to the memory
3377 operand. */
3378 if (optype0 == REGOP
3379 && (optype1 == OFFSOP || optype1 == MEMOP))
3380 {
3381 rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
3382
3383 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3384 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3385 {
3386 /* If both halves of dest are used in the src memory address,
3387 compute the address into latehalf of dest.
3388 Note that this can't happen if the dest is two data regs. */
3389 compadr:
3390 xops[0] = latehalf[0];
3391 xops[1] = XEXP (operands[1], 0);
3392
3393 handle_compadr (xops);
3394 if (GET_MODE (operands[1]) == XFmode)
3395 {
3396 operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
3397 middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
3398 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3399 }
3400 else
3401 {
3402 operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
3403 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3404 }
3405 }
3406 else if (size == 12
3407 && reg_overlap_mentioned_p (middlehalf[0],
3408 XEXP (operands[1], 0)))
3409 {
3410 /* Check for two regs used by both source and dest.
3411 Note that this can't happen if the dest is all data regs.
3412 It can happen if the dest is d6, d7, a0.
3413 But in that case, latehalf is an addr reg, so
3414 the code at compadr does ok. */
3415
3416 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3417 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3418 goto compadr;
3419
3420 /* JRV says this can't happen: */
3421 gcc_assert (!addreg0 && !addreg1);
3422
3423 /* Only the middle reg conflicts; simply put it last. */
3424 handle_movsi (operands);
3425 handle_movsi (latehalf);
3426 handle_movsi (middlehalf);
3427
3428 return;
3429 }
3430 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
3431 /* If the low half of dest is mentioned in the source memory
3432 address, the arrange to emit the move late half first. */
3433 dest_overlapped_low = 1;
3434 }
3435
3436 /* If one or both operands autodecrementing,
3437 do the two words, high-numbered first. */
3438
3439 /* Likewise, the first move would clobber the source of the second one,
3440 do them in the other order. This happens only for registers;
3441 such overlap can't happen in memory unless the user explicitly
3442 sets it up, and that is an undefined circumstance. */
3443
3444 if (optype0 == PUSHOP || optype1 == PUSHOP
3445 || (optype0 == REGOP && optype1 == REGOP
3446 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
3447 || REGNO (operands[0]) == REGNO (latehalf[1])))
3448 || dest_overlapped_low)
3449 {
3450 /* Make any unoffsettable addresses point at high-numbered word. */
3451 if (addreg0)
3452 handle_reg_adjust (addreg0, size - 4);
3453 if (addreg1)
3454 handle_reg_adjust (addreg1, size - 4);
3455
3456 /* Do that word. */
3457 handle_movsi (latehalf);
3458
3459 /* Undo the adds we just did. */
3460 if (addreg0)
3461 handle_reg_adjust (addreg0, -4);
3462 if (addreg1)
3463 handle_reg_adjust (addreg1, -4);
3464
3465 if (size == 12)
3466 {
3467 handle_movsi (middlehalf);
3468
3469 if (addreg0)
3470 handle_reg_adjust (addreg0, -4);
3471 if (addreg1)
3472 handle_reg_adjust (addreg1, -4);
3473 }
3474
3475 /* Do low-numbered word. */
3476
3477 handle_movsi (operands);
3478 return;
3479 }
3480
3481 /* Normal case: do the two words, low-numbered first. */
3482
3483 handle_movsi (operands);
3484
3485 /* Do the middle one of the three words for long double */
3486 if (size == 12)
3487 {
3488 if (addreg0)
3489 handle_reg_adjust (addreg0, 4);
3490 if (addreg1)
3491 handle_reg_adjust (addreg1, 4);
3492
3493 handle_movsi (middlehalf);
3494 }
3495
3496 /* Make any unoffsettable addresses point at high-numbered word. */
3497 if (addreg0)
3498 handle_reg_adjust (addreg0, 4);
3499 if (addreg1)
3500 handle_reg_adjust (addreg1, 4);
3501
3502 /* Do that word. */
3503 handle_movsi (latehalf);
3504
3505 /* Undo the adds we just did. */
3506 if (addreg0)
3507 handle_reg_adjust (addreg0, -(size - 4));
3508 if (addreg1)
3509 handle_reg_adjust (addreg1, -(size - 4));
3510
3511 return;
3512 }
3513
3514 /* Output assembler code to adjust REG by N. */
3515 static void
3516 output_reg_adjust (rtx reg, int n)
3517 {
3518 const char *s;
3519
3520 gcc_assert (GET_MODE (reg) == SImode && n >= -12 && n != 0 && n <= 12);
3521
3522 switch (n)
3523 {
3524 case 12:
3525 s = "add%.l #12,%0";
3526 break;
3527
3528 case 8:
3529 s = "addq%.l #8,%0";
3530 break;
3531
3532 case 4:
3533 s = "addq%.l #4,%0";
3534 break;
3535
3536 case -12:
3537 s = "sub%.l #12,%0";
3538 break;
3539
3540 case -8:
3541 s = "subq%.l #8,%0";
3542 break;
3543
3544 case -4:
3545 s = "subq%.l #4,%0";
3546 break;
3547
3548 default:
3549 gcc_unreachable ();
3550 s = NULL;
3551 }
3552
3553 output_asm_insn (s, &reg);
3554 }
3555
3556 /* Emit rtl code to adjust REG by N. */
3557 static void
3558 emit_reg_adjust (rtx reg1, int n)
3559 {
3560 rtx reg2;
3561
3562 gcc_assert (GET_MODE (reg1) == SImode && n >= -12 && n != 0 && n <= 12);
3563
3564 reg1 = copy_rtx (reg1);
3565 reg2 = copy_rtx (reg1);
3566
3567 if (n < 0)
3568 emit_insn (gen_subsi3 (reg1, reg2, GEN_INT (-n)));
3569 else if (n > 0)
3570 emit_insn (gen_addsi3 (reg1, reg2, GEN_INT (n)));
3571 else
3572 gcc_unreachable ();
3573 }
3574
3575 /* Output assembler to load address OPERANDS[0] to register OPERANDS[1]. */
3576 static void
3577 output_compadr (rtx operands[2])
3578 {
3579 output_asm_insn ("lea %a1,%0", operands);
3580 }
3581
3582 /* Output the best assembler insn for moving operands[1] into operands[0]
3583 as a fullword. */
3584 static void
3585 output_movsi (rtx operands[2])
3586 {
3587 output_asm_insn (singlemove_string (operands), operands);
3588 }
3589
3590 /* Copy OP and change its mode to MODE. */
3591 static rtx
3592 copy_operand (rtx op, machine_mode mode)
3593 {
3594 /* ??? This looks really ugly. There must be a better way
3595 to change a mode on the operand. */
3596 if (GET_MODE (op) != VOIDmode)
3597 {
3598 if (REG_P (op))
3599 op = gen_rtx_REG (mode, REGNO (op));
3600 else
3601 {
3602 op = copy_rtx (op);
3603 PUT_MODE (op, mode);
3604 }
3605 }
3606
3607 return op;
3608 }
3609
3610 /* Emit rtl code for moving operands[1] into operands[0] as a fullword. */
3611 static void
3612 emit_movsi (rtx operands[2])
3613 {
3614 operands[0] = copy_operand (operands[0], SImode);
3615 operands[1] = copy_operand (operands[1], SImode);
3616
3617 emit_insn (gen_movsi (operands[0], operands[1]));
3618 }
3619
3620 /* Output assembler code to perform a doubleword move insn
3621 with operands OPERANDS. */
3622 const char *
3623 output_move_double (rtx *operands)
3624 {
3625 handle_move_double (operands,
3626 output_reg_adjust, output_compadr, output_movsi);
3627
3628 return "";
3629 }
3630
3631 /* Output rtl code to perform a doubleword move insn
3632 with operands OPERANDS. */
3633 void
3634 m68k_emit_move_double (rtx operands[2])
3635 {
3636 handle_move_double (operands, emit_reg_adjust, emit_movsi, emit_movsi);
3637 }
3638
3639 /* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a
3640 new rtx with the correct mode. */
3641
3642 static rtx
3643 force_mode (machine_mode mode, rtx orig)
3644 {
3645 if (mode == GET_MODE (orig))
3646 return orig;
3647
3648 if (REGNO (orig) >= FIRST_PSEUDO_REGISTER)
3649 abort ();
3650
3651 return gen_rtx_REG (mode, REGNO (orig));
3652 }
3653
3654 static int
3655 fp_reg_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
3656 {
3657 return reg_renumber && FP_REG_P (op);
3658 }
3659
3660 /* Emit insns to move operands[1] into operands[0].
3661
3662 Return 1 if we have written out everything that needs to be done to
3663 do the move. Otherwise, return 0 and the caller will emit the move
3664 normally.
3665
3666 Note SCRATCH_REG may not be in the proper mode depending on how it
3667 will be used. This routine is responsible for creating a new copy
3668 of SCRATCH_REG in the proper mode. */
3669
3670 int
3671 emit_move_sequence (rtx *operands, machine_mode mode, rtx scratch_reg)
3672 {
3673 register rtx operand0 = operands[0];
3674 register rtx operand1 = operands[1];
3675 register rtx tem;
3676
3677 if (scratch_reg
3678 && reload_in_progress && GET_CODE (operand0) == REG
3679 && REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
3680 operand0 = reg_equiv_mem (REGNO (operand0));
3681 else if (scratch_reg
3682 && reload_in_progress && GET_CODE (operand0) == SUBREG
3683 && GET_CODE (SUBREG_REG (operand0)) == REG
3684 && REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
3685 {
3686 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3687 the code which tracks sets/uses for delete_output_reload. */
3688 rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
3689 reg_equiv_mem (REGNO (SUBREG_REG (operand0))),
3690 SUBREG_BYTE (operand0));
3691 operand0 = alter_subreg (&temp, true);
3692 }
3693
3694 if (scratch_reg
3695 && reload_in_progress && GET_CODE (operand1) == REG
3696 && REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
3697 operand1 = reg_equiv_mem (REGNO (operand1));
3698 else if (scratch_reg
3699 && reload_in_progress && GET_CODE (operand1) == SUBREG
3700 && GET_CODE (SUBREG_REG (operand1)) == REG
3701 && REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
3702 {
3703 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3704 the code which tracks sets/uses for delete_output_reload. */
3705 rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
3706 reg_equiv_mem (REGNO (SUBREG_REG (operand1))),
3707 SUBREG_BYTE (operand1));
3708 operand1 = alter_subreg (&temp, true);
3709 }
3710
3711 if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
3712 && ((tem = find_replacement (&XEXP (operand0, 0)))
3713 != XEXP (operand0, 0)))
3714 operand0 = gen_rtx_MEM (GET_MODE (operand0), tem);
3715 if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
3716 && ((tem = find_replacement (&XEXP (operand1, 0)))
3717 != XEXP (operand1, 0)))
3718 operand1 = gen_rtx_MEM (GET_MODE (operand1), tem);
3719
3720 /* Handle secondary reloads for loads/stores of FP registers where
3721 the address is symbolic by using the scratch register */
3722 if (fp_reg_operand (operand0, mode)
3723 && ((GET_CODE (operand1) == MEM
3724 && ! memory_address_p (DFmode, XEXP (operand1, 0)))
3725 || ((GET_CODE (operand1) == SUBREG
3726 && GET_CODE (XEXP (operand1, 0)) == MEM
3727 && !memory_address_p (DFmode, XEXP (XEXP (operand1, 0), 0)))))
3728 && scratch_reg)
3729 {
3730 if (GET_CODE (operand1) == SUBREG)
3731 operand1 = XEXP (operand1, 0);
3732
3733 /* SCRATCH_REG will hold an address. We want
3734 it in SImode regardless of what mode it was originally given
3735 to us. */
3736 scratch_reg = force_mode (SImode, scratch_reg);
3737
3738 /* D might not fit in 14 bits either; for such cases load D into
3739 scratch reg. */
3740 if (!memory_address_p (Pmode, XEXP (operand1, 0)))
3741 {
3742 emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
3743 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)),
3744 Pmode,
3745 XEXP (XEXP (operand1, 0), 0),
3746 scratch_reg));
3747 }
3748 else
3749 emit_move_insn (scratch_reg, XEXP (operand1, 0));
3750 emit_insn (gen_rtx_SET (operand0, gen_rtx_MEM (mode, scratch_reg)));
3751 return 1;
3752 }
3753 else if (fp_reg_operand (operand1, mode)
3754 && ((GET_CODE (operand0) == MEM
3755 && ! memory_address_p (DFmode, XEXP (operand0, 0)))
3756 || ((GET_CODE (operand0) == SUBREG)
3757 && GET_CODE (XEXP (operand0, 0)) == MEM
3758 && !memory_address_p (DFmode, XEXP (XEXP (operand0, 0), 0))))
3759 && scratch_reg)
3760 {
3761 if (GET_CODE (operand0) == SUBREG)
3762 operand0 = XEXP (operand0, 0);
3763
3764 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3765 it in SIMODE regardless of what mode it was originally given
3766 to us. */
3767 scratch_reg = force_mode (SImode, scratch_reg);
3768
3769 /* D might not fit in 14 bits either; for such cases load D into
3770 scratch reg. */
3771 if (!memory_address_p (Pmode, XEXP (operand0, 0)))
3772 {
3773 emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1));
3774 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0,
3775 0)),
3776 Pmode,
3777 XEXP (XEXP (operand0, 0),
3778 0),
3779 scratch_reg));
3780 }
3781 else
3782 emit_move_insn (scratch_reg, XEXP (operand0, 0));
3783 emit_insn (gen_rtx_SET (gen_rtx_MEM (mode, scratch_reg), operand1));
3784 return 1;
3785 }
3786 /* Handle secondary reloads for loads of FP registers from constant
3787 expressions by forcing the constant into memory.
3788
3789 use scratch_reg to hold the address of the memory location.
3790
3791 The proper fix is to change PREFERRED_RELOAD_CLASS to return
3792 NO_REGS when presented with a const_int and an register class
3793 containing only FP registers. Doing so unfortunately creates
3794 more problems than it solves. Fix this for 2.5. */
3795 else if (fp_reg_operand (operand0, mode)
3796 && CONSTANT_P (operand1)
3797 && scratch_reg)
3798 {
3799 rtx xoperands[2];
3800
3801 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3802 it in SIMODE regardless of what mode it was originally given
3803 to us. */
3804 scratch_reg = force_mode (SImode, scratch_reg);
3805
3806 /* Force the constant into memory and put the address of the
3807 memory location into scratch_reg. */
3808 xoperands[0] = scratch_reg;
3809 xoperands[1] = XEXP (force_const_mem (mode, operand1), 0);
3810 emit_insn (gen_rtx_SET (scratch_reg, xoperands[1]));
3811
3812 /* Now load the destination register. */
3813 emit_insn (gen_rtx_SET (operand0, gen_rtx_MEM (mode, scratch_reg)));
3814 return 1;
3815 }
3816
3817 /* Now have insn-emit do whatever it normally does. */
3818 return 0;
3819 }
3820
3821 /* Split one or more DImode RTL references into pairs of SImode
3822 references. The RTL can be REG, offsettable MEM, integer constant, or
3823 CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
3824 split and "num" is its length. lo_half and hi_half are output arrays
3825 that parallel "operands". */
3826
3827 void
3828 split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
3829 {
3830 while (num--)
3831 {
3832 rtx op = operands[num];
3833
3834 /* simplify_subreg refuses to split volatile memory addresses,
3835 but we still have to handle it. */
3836 if (GET_CODE (op) == MEM)
3837 {
3838 lo_half[num] = adjust_address (op, SImode, 4);
3839 hi_half[num] = adjust_address (op, SImode, 0);
3840 }
3841 else
3842 {
3843 lo_half[num] = simplify_gen_subreg (SImode, op,
3844 GET_MODE (op) == VOIDmode
3845 ? DImode : GET_MODE (op), 4);
3846 hi_half[num] = simplify_gen_subreg (SImode, op,
3847 GET_MODE (op) == VOIDmode
3848 ? DImode : GET_MODE (op), 0);
3849 }
3850 }
3851 }
3852
3853 /* Split X into a base and a constant offset, storing them in *BASE
3854 and *OFFSET respectively. */
3855
3856 static void
3857 m68k_split_offset (rtx x, rtx *base, HOST_WIDE_INT *offset)
3858 {
3859 *offset = 0;
3860 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
3861 {
3862 *offset += INTVAL (XEXP (x, 1));
3863 x = XEXP (x, 0);
3864 }
3865 *base = x;
3866 }
3867
3868 /* Return true if PATTERN is a PARALLEL suitable for a movem or fmovem
3869 instruction. STORE_P says whether the move is a load or store.
3870
3871 If the instruction uses post-increment or pre-decrement addressing,
3872 AUTOMOD_BASE is the base register and AUTOMOD_OFFSET is the total
3873 adjustment. This adjustment will be made by the first element of
3874 PARALLEL, with the loads or stores starting at element 1. If the
3875 instruction does not use post-increment or pre-decrement addressing,
3876 AUTOMOD_BASE is null, AUTOMOD_OFFSET is 0, and the loads or stores
3877 start at element 0. */
3878
3879 bool
3880 m68k_movem_pattern_p (rtx pattern, rtx automod_base,
3881 HOST_WIDE_INT automod_offset, bool store_p)
3882 {
3883 rtx base, mem_base, set, mem, reg, last_reg;
3884 HOST_WIDE_INT offset, mem_offset;
3885 int i, first, len;
3886 enum reg_class rclass;
3887
3888 len = XVECLEN (pattern, 0);
3889 first = (automod_base != NULL);
3890
3891 if (automod_base)
3892 {
3893 /* Stores must be pre-decrement and loads must be post-increment. */
3894 if (store_p != (automod_offset < 0))
3895 return false;
3896
3897 /* Work out the base and offset for lowest memory location. */
3898 base = automod_base;
3899 offset = (automod_offset < 0 ? automod_offset : 0);
3900 }
3901 else
3902 {
3903 /* Allow any valid base and offset in the first access. */
3904 base = NULL;
3905 offset = 0;
3906 }
3907
3908 last_reg = NULL;
3909 rclass = NO_REGS;
3910 for (i = first; i < len; i++)
3911 {
3912 /* We need a plain SET. */
3913 set = XVECEXP (pattern, 0, i);
3914 if (GET_CODE (set) != SET)
3915 return false;
3916
3917 /* Check that we have a memory location... */
3918 mem = XEXP (set, !store_p);
3919 if (!MEM_P (mem) || !memory_operand (mem, VOIDmode))
3920 return false;
3921
3922 /* ...with the right address. */
3923 if (base == NULL)
3924 {
3925 m68k_split_offset (XEXP (mem, 0), &base, &offset);
3926 /* The ColdFire instruction only allows (An) and (d16,An) modes.
3927 There are no mode restrictions for 680x0 besides the
3928 automodification rules enforced above. */
3929 if (TARGET_COLDFIRE
3930 && !m68k_legitimate_base_reg_p (base, reload_completed))
3931 return false;
3932 }
3933 else
3934 {
3935 m68k_split_offset (XEXP (mem, 0), &mem_base, &mem_offset);
3936 if (!rtx_equal_p (base, mem_base) || offset != mem_offset)
3937 return false;
3938 }
3939
3940 /* Check that we have a register of the required mode and class. */
3941 reg = XEXP (set, store_p);
3942 if (!REG_P (reg)
3943 || !HARD_REGISTER_P (reg)
3944 || GET_MODE (reg) != reg_raw_mode[REGNO (reg)])
3945 return false;
3946
3947 if (last_reg)
3948 {
3949 /* The register must belong to RCLASS and have a higher number
3950 than the register in the previous SET. */
3951 if (!TEST_HARD_REG_BIT (reg_class_contents[rclass], REGNO (reg))
3952 || REGNO (last_reg) >= REGNO (reg))
3953 return false;
3954 }
3955 else
3956 {
3957 /* Work out which register class we need. */
3958 if (INT_REGNO_P (REGNO (reg)))
3959 rclass = GENERAL_REGS;
3960 else if (FP_REGNO_P (REGNO (reg)))
3961 rclass = FP_REGS;
3962 else
3963 return false;
3964 }
3965
3966 last_reg = reg;
3967 offset += GET_MODE_SIZE (GET_MODE (reg));
3968 }
3969
3970 /* If we have an automodification, check whether the final offset is OK. */
3971 if (automod_base && offset != (automod_offset < 0 ? 0 : automod_offset))
3972 return false;
3973
3974 /* Reject unprofitable cases. */
3975 if (len < first + (rclass == FP_REGS ? MIN_FMOVEM_REGS : MIN_MOVEM_REGS))
3976 return false;
3977
3978 return true;
3979 }
3980
3981 /* Return the assembly code template for a movem or fmovem instruction
3982 whose pattern is given by PATTERN. Store the template's operands
3983 in OPERANDS.
3984
3985 If the instruction uses post-increment or pre-decrement addressing,
3986 AUTOMOD_OFFSET is the total adjustment, otherwise it is 0. STORE_P
3987 is true if this is a store instruction. */
3988
3989 const char *
3990 m68k_output_movem (rtx *operands, rtx pattern,
3991 HOST_WIDE_INT automod_offset, bool store_p)
3992 {
3993 unsigned int mask;
3994 int i, first;
3995
3996 gcc_assert (GET_CODE (pattern) == PARALLEL);
3997 mask = 0;
3998 first = (automod_offset != 0);
3999 for (i = first; i < XVECLEN (pattern, 0); i++)
4000 {
4001 /* When using movem with pre-decrement addressing, register X + D0_REG
4002 is controlled by bit 15 - X. For all other addressing modes,
4003 register X + D0_REG is controlled by bit X. Confusingly, the
4004 register mask for fmovem is in the opposite order to that for
4005 movem. */
4006 unsigned int regno;
4007
4008 gcc_assert (MEM_P (XEXP (XVECEXP (pattern, 0, i), !store_p)));
4009 gcc_assert (REG_P (XEXP (XVECEXP (pattern, 0, i), store_p)));
4010 regno = REGNO (XEXP (XVECEXP (pattern, 0, i), store_p));
4011 if (automod_offset < 0)
4012 {
4013 if (FP_REGNO_P (regno))
4014 mask |= 1 << (regno - FP0_REG);
4015 else
4016 mask |= 1 << (15 - (regno - D0_REG));
4017 }
4018 else
4019 {
4020 if (FP_REGNO_P (regno))
4021 mask |= 1 << (7 - (regno - FP0_REG));
4022 else
4023 mask |= 1 << (regno - D0_REG);
4024 }
4025 }
4026 CC_STATUS_INIT;
4027
4028 if (automod_offset == 0)
4029 operands[0] = XEXP (XEXP (XVECEXP (pattern, 0, first), !store_p), 0);
4030 else if (automod_offset < 0)
4031 operands[0] = gen_rtx_PRE_DEC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4032 else
4033 operands[0] = gen_rtx_POST_INC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4034 operands[1] = GEN_INT (mask);
4035 if (FP_REGNO_P (REGNO (XEXP (XVECEXP (pattern, 0, first), store_p))))
4036 {
4037 if (store_p)
4038 return "fmovem %1,%a0";
4039 else
4040 return "fmovem %a0,%1";
4041 }
4042 else
4043 {
4044 if (store_p)
4045 return "movem%.l %1,%a0";
4046 else
4047 return "movem%.l %a0,%1";
4048 }
4049 }
4050
4051 /* Return a REG that occurs in ADDR with coefficient 1.
4052 ADDR can be effectively incremented by incrementing REG. */
4053
4054 static rtx
4055 find_addr_reg (rtx addr)
4056 {
4057 while (GET_CODE (addr) == PLUS)
4058 {
4059 if (GET_CODE (XEXP (addr, 0)) == REG)
4060 addr = XEXP (addr, 0);
4061 else if (GET_CODE (XEXP (addr, 1)) == REG)
4062 addr = XEXP (addr, 1);
4063 else if (CONSTANT_P (XEXP (addr, 0)))
4064 addr = XEXP (addr, 1);
4065 else if (CONSTANT_P (XEXP (addr, 1)))
4066 addr = XEXP (addr, 0);
4067 else
4068 gcc_unreachable ();
4069 }
4070 gcc_assert (GET_CODE (addr) == REG);
4071 return addr;
4072 }
4073
4074 /* Output assembler code to perform a 32-bit 3-operand add. */
4075
4076 const char *
4077 output_addsi3 (rtx *operands)
4078 {
4079 if (! operands_match_p (operands[0], operands[1]))
4080 {
4081 if (!ADDRESS_REG_P (operands[1]))
4082 {
4083 rtx tmp = operands[1];
4084
4085 operands[1] = operands[2];
4086 operands[2] = tmp;
4087 }
4088
4089 /* These insns can result from reloads to access
4090 stack slots over 64k from the frame pointer. */
4091 if (GET_CODE (operands[2]) == CONST_INT
4092 && (INTVAL (operands[2]) < -32768 || INTVAL (operands[2]) > 32767))
4093 return "move%.l %2,%0\n\tadd%.l %1,%0";
4094 if (GET_CODE (operands[2]) == REG)
4095 return MOTOROLA ? "lea (%1,%2.l),%0" : "lea %1@(0,%2:l),%0";
4096 return MOTOROLA ? "lea (%c2,%1),%0" : "lea %1@(%c2),%0";
4097 }
4098 if (GET_CODE (operands[2]) == CONST_INT)
4099 {
4100 if (INTVAL (operands[2]) > 0
4101 && INTVAL (operands[2]) <= 8)
4102 return "addq%.l %2,%0";
4103 if (INTVAL (operands[2]) < 0
4104 && INTVAL (operands[2]) >= -8)
4105 {
4106 operands[2] = GEN_INT (- INTVAL (operands[2]));
4107 return "subq%.l %2,%0";
4108 }
4109 /* On the CPU32 it is faster to use two addql instructions to
4110 add a small integer (8 < N <= 16) to a register.
4111 Likewise for subql. */
4112 if (TUNE_CPU32 && REG_P (operands[0]))
4113 {
4114 if (INTVAL (operands[2]) > 8
4115 && INTVAL (operands[2]) <= 16)
4116 {
4117 operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
4118 return "addq%.l #8,%0\n\taddq%.l %2,%0";
4119 }
4120 if (INTVAL (operands[2]) < -8
4121 && INTVAL (operands[2]) >= -16)
4122 {
4123 operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
4124 return "subq%.l #8,%0\n\tsubq%.l %2,%0";
4125 }
4126 }
4127 if (ADDRESS_REG_P (operands[0])
4128 && INTVAL (operands[2]) >= -0x8000
4129 && INTVAL (operands[2]) < 0x8000)
4130 {
4131 if (TUNE_68040)
4132 return "add%.w %2,%0";
4133 else
4134 return MOTOROLA ? "lea (%c2,%0),%0" : "lea %0@(%c2),%0";
4135 }
4136 }
4137 return "add%.l %2,%0";
4138 }
4139 \f
4140 /* Store in cc_status the expressions that the condition codes will
4141 describe after execution of an instruction whose pattern is EXP.
4142 Do not alter them if the instruction would not alter the cc's. */
4143
4144 /* On the 68000, all the insns to store in an address register fail to
4145 set the cc's. However, in some cases these instructions can make it
4146 possibly invalid to use the saved cc's. In those cases we clear out
4147 some or all of the saved cc's so they won't be used. */
4148
4149 void
4150 notice_update_cc (rtx exp, rtx insn)
4151 {
4152 if (GET_CODE (exp) == SET)
4153 {
4154 if (GET_CODE (SET_SRC (exp)) == CALL)
4155 CC_STATUS_INIT;
4156 else if (ADDRESS_REG_P (SET_DEST (exp)))
4157 {
4158 if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
4159 cc_status.value1 = 0;
4160 if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
4161 cc_status.value2 = 0;
4162 }
4163 /* fmoves to memory or data registers do not set the condition
4164 codes. Normal moves _do_ set the condition codes, but not in
4165 a way that is appropriate for comparison with 0, because -0.0
4166 would be treated as a negative nonzero number. Note that it
4167 isn't appropriate to conditionalize this restriction on
4168 HONOR_SIGNED_ZEROS because that macro merely indicates whether
4169 we care about the difference between -0.0 and +0.0. */
4170 else if (!FP_REG_P (SET_DEST (exp))
4171 && SET_DEST (exp) != cc0_rtx
4172 && (FP_REG_P (SET_SRC (exp))
4173 || GET_CODE (SET_SRC (exp)) == FIX
4174 || FLOAT_MODE_P (GET_MODE (SET_DEST (exp)))))
4175 CC_STATUS_INIT;
4176 /* A pair of move insns doesn't produce a useful overall cc. */
4177 else if (!FP_REG_P (SET_DEST (exp))
4178 && !FP_REG_P (SET_SRC (exp))
4179 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
4180 && (GET_CODE (SET_SRC (exp)) == REG
4181 || GET_CODE (SET_SRC (exp)) == MEM
4182 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
4183 CC_STATUS_INIT;
4184 else if (SET_DEST (exp) != pc_rtx)
4185 {
4186 cc_status.flags = 0;
4187 cc_status.value1 = SET_DEST (exp);
4188 cc_status.value2 = SET_SRC (exp);
4189 }
4190 }
4191 else if (GET_CODE (exp) == PARALLEL
4192 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
4193 {
4194 rtx dest = SET_DEST (XVECEXP (exp, 0, 0));
4195 rtx src = SET_SRC (XVECEXP (exp, 0, 0));
4196
4197 if (ADDRESS_REG_P (dest))
4198 CC_STATUS_INIT;
4199 else if (dest != pc_rtx)
4200 {
4201 cc_status.flags = 0;
4202 cc_status.value1 = dest;
4203 cc_status.value2 = src;
4204 }
4205 }
4206 else
4207 CC_STATUS_INIT;
4208 if (cc_status.value2 != 0
4209 && ADDRESS_REG_P (cc_status.value2)
4210 && GET_MODE (cc_status.value2) == QImode)
4211 CC_STATUS_INIT;
4212 if (cc_status.value2 != 0)
4213 switch (GET_CODE (cc_status.value2))
4214 {
4215 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
4216 case ROTATE: case ROTATERT:
4217 /* These instructions always clear the overflow bit, and set
4218 the carry to the bit shifted out. */
4219 cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
4220 break;
4221
4222 case PLUS: case MINUS: case MULT:
4223 case DIV: case UDIV: case MOD: case UMOD: case NEG:
4224 if (GET_MODE (cc_status.value2) != VOIDmode)
4225 cc_status.flags |= CC_NO_OVERFLOW;
4226 break;
4227 case ZERO_EXTEND:
4228 /* (SET r1 (ZERO_EXTEND r2)) on this machine
4229 ends with a move insn moving r2 in r2's mode.
4230 Thus, the cc's are set for r2.
4231 This can set N bit spuriously. */
4232 cc_status.flags |= CC_NOT_NEGATIVE;
4233
4234 default:
4235 break;
4236 }
4237 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
4238 && cc_status.value2
4239 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
4240 cc_status.value2 = 0;
4241 /* Check for PRE_DEC in dest modifying a register used in src. */
4242 if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM
4243 && GET_CODE (XEXP (cc_status.value1, 0)) == PRE_DEC
4244 && cc_status.value2
4245 && reg_overlap_mentioned_p (XEXP (XEXP (cc_status.value1, 0), 0),
4246 cc_status.value2))
4247 cc_status.value2 = 0;
4248 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
4249 || (cc_status.value2 && FP_REG_P (cc_status.value2))))
4250 cc_status.flags = CC_IN_68881;
4251 if (cc_status.value2 && GET_CODE (cc_status.value2) == COMPARE
4252 && GET_MODE_CLASS (GET_MODE (XEXP (cc_status.value2, 0))) == MODE_FLOAT)
4253 {
4254 cc_status.flags = CC_IN_68881;
4255 if (!FP_REG_P (XEXP (cc_status.value2, 0))
4256 && FP_REG_P (XEXP (cc_status.value2, 1)))
4257 cc_status.flags |= CC_REVERSED;
4258 }
4259 }
4260 \f
4261 const char *
4262 output_move_const_double (rtx *operands)
4263 {
4264 int code = standard_68881_constant_p (operands[1]);
4265
4266 if (code != 0)
4267 {
4268 static char buf[40];
4269
4270 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4271 return buf;
4272 }
4273 return "fmove%.d %1,%0";
4274 }
4275
4276 const char *
4277 output_move_const_single (rtx *operands)
4278 {
4279 int code = standard_68881_constant_p (operands[1]);
4280
4281 if (code != 0)
4282 {
4283 static char buf[40];
4284
4285 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4286 return buf;
4287 }
4288 return "fmove%.s %f1,%0";
4289 }
4290
4291 /* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
4292 from the "fmovecr" instruction.
4293 The value, anded with 0xff, gives the code to use in fmovecr
4294 to get the desired constant. */
4295
4296 /* This code has been fixed for cross-compilation. */
4297
4298 static int inited_68881_table = 0;
4299
4300 static const char *const strings_68881[7] = {
4301 "0.0",
4302 "1.0",
4303 "10.0",
4304 "100.0",
4305 "10000.0",
4306 "1e8",
4307 "1e16"
4308 };
4309
4310 static const int codes_68881[7] = {
4311 0x0f,
4312 0x32,
4313 0x33,
4314 0x34,
4315 0x35,
4316 0x36,
4317 0x37
4318 };
4319
4320 REAL_VALUE_TYPE values_68881[7];
4321
4322 /* Set up values_68881 array by converting the decimal values
4323 strings_68881 to binary. */
4324
4325 void
4326 init_68881_table (void)
4327 {
4328 int i;
4329 REAL_VALUE_TYPE r;
4330 machine_mode mode;
4331
4332 mode = SFmode;
4333 for (i = 0; i < 7; i++)
4334 {
4335 if (i == 6)
4336 mode = DFmode;
4337 r = REAL_VALUE_ATOF (strings_68881[i], mode);
4338 values_68881[i] = r;
4339 }
4340 inited_68881_table = 1;
4341 }
4342
4343 int
4344 standard_68881_constant_p (rtx x)
4345 {
4346 const REAL_VALUE_TYPE *r;
4347 int i;
4348
4349 /* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
4350 used at all on those chips. */
4351 if (TUNE_68040_60)
4352 return 0;
4353
4354 if (! inited_68881_table)
4355 init_68881_table ();
4356
4357 r = CONST_DOUBLE_REAL_VALUE (x);
4358
4359 /* Use real_identical instead of real_equal so that -0.0 is rejected. */
4360 for (i = 0; i < 6; i++)
4361 {
4362 if (real_identical (r, &values_68881[i]))
4363 return (codes_68881[i]);
4364 }
4365
4366 if (GET_MODE (x) == SFmode)
4367 return 0;
4368
4369 if (real_equal (r, &values_68881[6]))
4370 return (codes_68881[6]);
4371
4372 /* larger powers of ten in the constants ram are not used
4373 because they are not equal to a `double' C constant. */
4374 return 0;
4375 }
4376
4377 /* If X is a floating-point constant, return the logarithm of X base 2,
4378 or 0 if X is not a power of 2. */
4379
4380 int
4381 floating_exact_log2 (rtx x)
4382 {
4383 const REAL_VALUE_TYPE *r;
4384 REAL_VALUE_TYPE r1;
4385 int exp;
4386
4387 r = CONST_DOUBLE_REAL_VALUE (x);
4388
4389 if (real_less (r, &dconst1))
4390 return 0;
4391
4392 exp = real_exponent (r);
4393 real_2expN (&r1, exp, DFmode);
4394 if (real_equal (&r1, r))
4395 return exp;
4396
4397 return 0;
4398 }
4399 \f
4400 /* A C compound statement to output to stdio stream STREAM the
4401 assembler syntax for an instruction operand X. X is an RTL
4402 expression.
4403
4404 CODE is a value that can be used to specify one of several ways
4405 of printing the operand. It is used when identical operands
4406 must be printed differently depending on the context. CODE
4407 comes from the `%' specification that was used to request
4408 printing of the operand. If the specification was just `%DIGIT'
4409 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4410 is the ASCII code for LTR.
4411
4412 If X is a register, this macro should print the register's name.
4413 The names can be found in an array `reg_names' whose type is
4414 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4415
4416 When the machine description has a specification `%PUNCT' (a `%'
4417 followed by a punctuation character), this macro is called with
4418 a null pointer for X and the punctuation character for CODE.
4419
4420 The m68k specific codes are:
4421
4422 '.' for dot needed in Motorola-style opcode names.
4423 '-' for an operand pushing on the stack:
4424 sp@-, -(sp) or -(%sp) depending on the style of syntax.
4425 '+' for an operand pushing on the stack:
4426 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
4427 '@' for a reference to the top word on the stack:
4428 sp@, (sp) or (%sp) depending on the style of syntax.
4429 '#' for an immediate operand prefix (# in MIT and Motorola syntax
4430 but & in SGS syntax).
4431 '!' for the cc register (used in an `and to cc' insn).
4432 '$' for the letter `s' in an op code, but only on the 68040.
4433 '&' for the letter `d' in an op code, but only on the 68040.
4434 '/' for register prefix needed by longlong.h.
4435 '?' for m68k_library_id_string
4436
4437 'b' for byte insn (no effect, on the Sun; this is for the ISI).
4438 'd' to force memory addressing to be absolute, not relative.
4439 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
4440 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
4441 or print pair of registers as rx:ry.
4442 'p' print an address with @PLTPC attached, but only if the operand
4443 is not locally-bound. */
4444
4445 void
4446 print_operand (FILE *file, rtx op, int letter)
4447 {
4448 if (op != NULL_RTX)
4449 m68k_adjust_decorated_operand (op);
4450
4451 if (letter == '.')
4452 {
4453 if (MOTOROLA)
4454 fprintf (file, ".");
4455 }
4456 else if (letter == '#')
4457 asm_fprintf (file, "%I");
4458 else if (letter == '-')
4459 asm_fprintf (file, MOTOROLA ? "-(%Rsp)" : "%Rsp@-");
4460 else if (letter == '+')
4461 asm_fprintf (file, MOTOROLA ? "(%Rsp)+" : "%Rsp@+");
4462 else if (letter == '@')
4463 asm_fprintf (file, MOTOROLA ? "(%Rsp)" : "%Rsp@");
4464 else if (letter == '!')
4465 asm_fprintf (file, "%Rfpcr");
4466 else if (letter == '$')
4467 {
4468 if (TARGET_68040)
4469 fprintf (file, "s");
4470 }
4471 else if (letter == '&')
4472 {
4473 if (TARGET_68040)
4474 fprintf (file, "d");
4475 }
4476 else if (letter == '/')
4477 asm_fprintf (file, "%R");
4478 else if (letter == '?')
4479 asm_fprintf (file, m68k_library_id_string);
4480 else if (letter == 'p')
4481 {
4482 output_addr_const (file, op);
4483 if (!(GET_CODE (op) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (op)))
4484 fprintf (file, "@PLTPC");
4485 }
4486 else if (GET_CODE (op) == REG)
4487 {
4488 if (letter == 'R')
4489 /* Print out the second register name of a register pair.
4490 I.e., R (6) => 7. */
4491 fputs (M68K_REGNAME(REGNO (op) + 1), file);
4492 else
4493 fputs (M68K_REGNAME(REGNO (op)), file);
4494 }
4495 else if (GET_CODE (op) == MEM)
4496 {
4497 output_address (GET_MODE (op), XEXP (op, 0));
4498 if (letter == 'd' && ! TARGET_68020
4499 && CONSTANT_ADDRESS_P (XEXP (op, 0))
4500 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
4501 && INTVAL (XEXP (op, 0)) < 0x8000
4502 && INTVAL (XEXP (op, 0)) >= -0x8000))
4503 fprintf (file, MOTOROLA ? ".l" : ":l");
4504 }
4505 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
4506 {
4507 long l;
4508 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), l);
4509 asm_fprintf (file, "%I0x%lx", l & 0xFFFFFFFF);
4510 }
4511 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
4512 {
4513 long l[3];
4514 REAL_VALUE_TO_TARGET_LONG_DOUBLE (*CONST_DOUBLE_REAL_VALUE (op), l);
4515 asm_fprintf (file, "%I0x%lx%08lx%08lx", l[0] & 0xFFFFFFFF,
4516 l[1] & 0xFFFFFFFF, l[2] & 0xFFFFFFFF);
4517 }
4518 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
4519 {
4520 long l[2];
4521 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (op), l);
4522 asm_fprintf (file, "%I0x%lx%08lx", l[0] & 0xFFFFFFFF, l[1] & 0xFFFFFFFF);
4523 }
4524 else
4525 {
4526 /* Use `print_operand_address' instead of `output_addr_const'
4527 to ensure that we print relevant PIC stuff. */
4528 asm_fprintf (file, "%I");
4529 if (TARGET_PCREL
4530 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
4531 print_operand_address (file, op);
4532 else
4533 output_addr_const (file, op);
4534 }
4535 }
4536
4537 /* Return string for TLS relocation RELOC. */
4538
4539 static const char *
4540 m68k_get_reloc_decoration (enum m68k_reloc reloc)
4541 {
4542 /* To my knowledge, !MOTOROLA assemblers don't support TLS. */
4543 gcc_assert (MOTOROLA || reloc == RELOC_GOT);
4544
4545 switch (reloc)
4546 {
4547 case RELOC_GOT:
4548 if (MOTOROLA)
4549 {
4550 if (flag_pic == 1 && TARGET_68020)
4551 return "@GOT.w";
4552 else
4553 return "@GOT";
4554 }
4555 else
4556 {
4557 if (TARGET_68020)
4558 {
4559 switch (flag_pic)
4560 {
4561 case 1:
4562 return ":w";
4563 case 2:
4564 return ":l";
4565 default:
4566 return "";
4567 }
4568 }
4569 }
4570 gcc_unreachable ();
4571
4572 case RELOC_TLSGD:
4573 return "@TLSGD";
4574
4575 case RELOC_TLSLDM:
4576 return "@TLSLDM";
4577
4578 case RELOC_TLSLDO:
4579 return "@TLSLDO";
4580
4581 case RELOC_TLSIE:
4582 return "@TLSIE";
4583
4584 case RELOC_TLSLE:
4585 return "@TLSLE";
4586
4587 default:
4588 gcc_unreachable ();
4589 }
4590 }
4591
4592 /* m68k implementation of TARGET_OUTPUT_ADDR_CONST_EXTRA. */
4593
4594 static bool
4595 m68k_output_addr_const_extra (FILE *file, rtx x)
4596 {
4597 if (GET_CODE (x) == UNSPEC)
4598 {
4599 switch (XINT (x, 1))
4600 {
4601 case UNSPEC_RELOC16:
4602 case UNSPEC_RELOC32:
4603 output_addr_const (file, XVECEXP (x, 0, 0));
4604 fputs (m68k_get_reloc_decoration
4605 ((enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1))), file);
4606 return true;
4607
4608 default:
4609 break;
4610 }
4611 }
4612
4613 return false;
4614 }
4615
4616 /* M68K implementation of TARGET_ASM_OUTPUT_DWARF_DTPREL. */
4617
4618 static void
4619 m68k_output_dwarf_dtprel (FILE *file, int size, rtx x)
4620 {
4621 gcc_assert (size == 4);
4622 fputs ("\t.long\t", file);
4623 output_addr_const (file, x);
4624 fputs ("@TLSLDO+0x8000", file);
4625 }
4626
4627 /* In the name of slightly smaller debug output, and to cater to
4628 general assembler lossage, recognize various UNSPEC sequences
4629 and turn them back into a direct symbol reference. */
4630
4631 static rtx
4632 m68k_delegitimize_address (rtx orig_x)
4633 {
4634 rtx x;
4635 struct m68k_address addr;
4636 rtx unspec;
4637
4638 orig_x = delegitimize_mem_from_attrs (orig_x);
4639 x = orig_x;
4640 if (MEM_P (x))
4641 x = XEXP (x, 0);
4642
4643 if (GET_CODE (x) != PLUS || GET_MODE (x) != Pmode)
4644 return orig_x;
4645
4646 if (!m68k_decompose_address (GET_MODE (x), x, false, &addr)
4647 || addr.offset == NULL_RTX
4648 || GET_CODE (addr.offset) != CONST)
4649 return orig_x;
4650
4651 unspec = XEXP (addr.offset, 0);
4652 if (GET_CODE (unspec) == PLUS && CONST_INT_P (XEXP (unspec, 1)))
4653 unspec = XEXP (unspec, 0);
4654 if (GET_CODE (unspec) != UNSPEC
4655 || (XINT (unspec, 1) != UNSPEC_RELOC16
4656 && XINT (unspec, 1) != UNSPEC_RELOC32))
4657 return orig_x;
4658 x = XVECEXP (unspec, 0, 0);
4659 gcc_assert (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF);
4660 if (unspec != XEXP (addr.offset, 0))
4661 x = gen_rtx_PLUS (Pmode, x, XEXP (XEXP (addr.offset, 0), 1));
4662 if (addr.index)
4663 {
4664 rtx idx = addr.index;
4665 if (addr.scale != 1)
4666 idx = gen_rtx_MULT (Pmode, idx, GEN_INT (addr.scale));
4667 x = gen_rtx_PLUS (Pmode, idx, x);
4668 }
4669 if (addr.base)
4670 x = gen_rtx_PLUS (Pmode, addr.base, x);
4671 if (MEM_P (orig_x))
4672 x = replace_equiv_address_nv (orig_x, x);
4673 return x;
4674 }
4675
4676 \f
4677 /* A C compound statement to output to stdio stream STREAM the
4678 assembler syntax for an instruction operand that is a memory
4679 reference whose address is ADDR. ADDR is an RTL expression.
4680
4681 Note that this contains a kludge that knows that the only reason
4682 we have an address (plus (label_ref...) (reg...)) when not generating
4683 PIC code is in the insn before a tablejump, and we know that m68k.md
4684 generates a label LInnn: on such an insn.
4685
4686 It is possible for PIC to generate a (plus (label_ref...) (reg...))
4687 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
4688
4689 This routine is responsible for distinguishing between -fpic and -fPIC
4690 style relocations in an address. When generating -fpic code the
4691 offset is output in word mode (e.g. movel a5@(_foo:w), a0). When generating
4692 -fPIC code the offset is output in long mode (e.g. movel a5@(_foo:l), a0) */
4693
4694 void
4695 print_operand_address (FILE *file, rtx addr)
4696 {
4697 struct m68k_address address;
4698
4699 m68k_adjust_decorated_operand (addr);
4700
4701 if (!m68k_decompose_address (QImode, addr, true, &address))
4702 gcc_unreachable ();
4703
4704 if (address.code == PRE_DEC)
4705 fprintf (file, MOTOROLA ? "-(%s)" : "%s@-",
4706 M68K_REGNAME (REGNO (address.base)));
4707 else if (address.code == POST_INC)
4708 fprintf (file, MOTOROLA ? "(%s)+" : "%s@+",
4709 M68K_REGNAME (REGNO (address.base)));
4710 else if (!address.base && !address.index)
4711 {
4712 /* A constant address. */
4713 gcc_assert (address.offset == addr);
4714 if (GET_CODE (addr) == CONST_INT)
4715 {
4716 /* (xxx).w or (xxx).l. */
4717 if (IN_RANGE (INTVAL (addr), -0x8000, 0x7fff))
4718 fprintf (file, MOTOROLA ? "%d.w" : "%d:w", (int) INTVAL (addr));
4719 else
4720 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
4721 }
4722 else if (TARGET_PCREL)
4723 {
4724 /* (d16,PC) or (bd,PC,Xn) (with suppressed index register). */
4725 fputc ('(', file);
4726 output_addr_const (file, addr);
4727 asm_fprintf (file, flag_pic == 1 ? ":w,%Rpc)" : ":l,%Rpc)");
4728 }
4729 else
4730 {
4731 /* (xxx).l. We need a special case for SYMBOL_REF if the symbol
4732 name ends in `.<letter>', as the last 2 characters can be
4733 mistaken as a size suffix. Put the name in parentheses. */
4734 if (GET_CODE (addr) == SYMBOL_REF
4735 && strlen (XSTR (addr, 0)) > 2
4736 && XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
4737 {
4738 putc ('(', file);
4739 output_addr_const (file, addr);
4740 putc (')', file);
4741 }
4742 else
4743 output_addr_const (file, addr);
4744 }
4745 }
4746 else
4747 {
4748 int labelno;
4749
4750 /* If ADDR is a (d8,pc,Xn) address, this is the number of the
4751 label being accessed, otherwise it is -1. */
4752 labelno = (address.offset
4753 && !address.base
4754 && GET_CODE (address.offset) == LABEL_REF
4755 ? CODE_LABEL_NUMBER (XEXP (address.offset, 0))
4756 : -1);
4757 if (MOTOROLA)
4758 {
4759 /* Print the "offset(base" component. */
4760 if (labelno >= 0)
4761 asm_fprintf (file, "%LL%d(%Rpc,", labelno);
4762 else
4763 {
4764 if (address.offset)
4765 output_addr_const (file, address.offset);
4766
4767 putc ('(', file);
4768 if (address.base)
4769 fputs (M68K_REGNAME (REGNO (address.base)), file);
4770 }
4771 /* Print the ",index" component, if any. */
4772 if (address.index)
4773 {
4774 if (address.base)
4775 putc (',', file);
4776 fprintf (file, "%s.%c",
4777 M68K_REGNAME (REGNO (address.index)),
4778 GET_MODE (address.index) == HImode ? 'w' : 'l');
4779 if (address.scale != 1)
4780 fprintf (file, "*%d", address.scale);
4781 }
4782 putc (')', file);
4783 }
4784 else /* !MOTOROLA */
4785 {
4786 if (!address.offset && !address.index)
4787 fprintf (file, "%s@", M68K_REGNAME (REGNO (address.base)));
4788 else
4789 {
4790 /* Print the "base@(offset" component. */
4791 if (labelno >= 0)
4792 asm_fprintf (file, "%Rpc@(%LL%d", labelno);
4793 else
4794 {
4795 if (address.base)
4796 fputs (M68K_REGNAME (REGNO (address.base)), file);
4797 fprintf (file, "@(");
4798 if (address.offset)
4799 output_addr_const (file, address.offset);
4800 }
4801 /* Print the ",index" component, if any. */
4802 if (address.index)
4803 {
4804 fprintf (file, ",%s:%c",
4805 M68K_REGNAME (REGNO (address.index)),
4806 GET_MODE (address.index) == HImode ? 'w' : 'l');
4807 if (address.scale != 1)
4808 fprintf (file, ":%d", address.scale);
4809 }
4810 putc (')', file);
4811 }
4812 }
4813 }
4814 }
4815 \f
4816 /* Check for cases where a clr insns can be omitted from code using
4817 strict_low_part sets. For example, the second clrl here is not needed:
4818 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
4819
4820 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
4821 insn we are checking for redundancy. TARGET is the register set by the
4822 clear insn. */
4823
4824 bool
4825 strict_low_part_peephole_ok (machine_mode mode, rtx_insn *first_insn,
4826 rtx target)
4827 {
4828 rtx_insn *p = first_insn;
4829
4830 while ((p = PREV_INSN (p)))
4831 {
4832 if (NOTE_INSN_BASIC_BLOCK_P (p))
4833 return false;
4834
4835 if (NOTE_P (p))
4836 continue;
4837
4838 /* If it isn't an insn, then give up. */
4839 if (!INSN_P (p))
4840 return false;
4841
4842 if (reg_set_p (target, p))
4843 {
4844 rtx set = single_set (p);
4845 rtx dest;
4846
4847 /* If it isn't an easy to recognize insn, then give up. */
4848 if (! set)
4849 return false;
4850
4851 dest = SET_DEST (set);
4852
4853 /* If this sets the entire target register to zero, then our
4854 first_insn is redundant. */
4855 if (rtx_equal_p (dest, target)
4856 && SET_SRC (set) == const0_rtx)
4857 return true;
4858 else if (GET_CODE (dest) == STRICT_LOW_PART
4859 && GET_CODE (XEXP (dest, 0)) == REG
4860 && REGNO (XEXP (dest, 0)) == REGNO (target)
4861 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
4862 <= GET_MODE_SIZE (mode)))
4863 /* This is a strict low part set which modifies less than
4864 we are using, so it is safe. */
4865 ;
4866 else
4867 return false;
4868 }
4869 }
4870
4871 return false;
4872 }
4873
4874 /* Operand predicates for implementing asymmetric pc-relative addressing
4875 on m68k. The m68k supports pc-relative addressing (mode 7, register 2)
4876 when used as a source operand, but not as a destination operand.
4877
4878 We model this by restricting the meaning of the basic predicates
4879 (general_operand, memory_operand, etc) to forbid the use of this
4880 addressing mode, and then define the following predicates that permit
4881 this addressing mode. These predicates can then be used for the
4882 source operands of the appropriate instructions.
4883
4884 n.b. While it is theoretically possible to change all machine patterns
4885 to use this addressing more where permitted by the architecture,
4886 it has only been implemented for "common" cases: SImode, HImode, and
4887 QImode operands, and only for the principle operations that would
4888 require this addressing mode: data movement and simple integer operations.
4889
4890 In parallel with these new predicates, two new constraint letters
4891 were defined: 'S' and 'T'. 'S' is the -mpcrel analog of 'm'.
4892 'T' replaces 's' in the non-pcrel case. It is a no-op in the pcrel case.
4893 In the pcrel case 's' is only valid in combination with 'a' registers.
4894 See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
4895 of how these constraints are used.
4896
4897 The use of these predicates is strictly optional, though patterns that
4898 don't will cause an extra reload register to be allocated where one
4899 was not necessary:
4900
4901 lea (abc:w,%pc),%a0 ; need to reload address
4902 moveq &1,%d1 ; since write to pc-relative space
4903 movel %d1,%a0@ ; is not allowed
4904 ...
4905 lea (abc:w,%pc),%a1 ; no need to reload address here
4906 movel %a1@,%d0 ; since "movel (abc:w,%pc),%d0" is ok
4907
4908 For more info, consult tiemann@cygnus.com.
4909
4910
4911 All of the ugliness with predicates and constraints is due to the
4912 simple fact that the m68k does not allow a pc-relative addressing
4913 mode as a destination. gcc does not distinguish between source and
4914 destination addresses. Hence, if we claim that pc-relative address
4915 modes are valid, e.g. TARGET_LEGITIMATE_ADDRESS_P accepts them, then we
4916 end up with invalid code. To get around this problem, we left
4917 pc-relative modes as invalid addresses, and then added special
4918 predicates and constraints to accept them.
4919
4920 A cleaner way to handle this is to modify gcc to distinguish
4921 between source and destination addresses. We can then say that
4922 pc-relative is a valid source address but not a valid destination
4923 address, and hopefully avoid a lot of the predicate and constraint
4924 hackery. Unfortunately, this would be a pretty big change. It would
4925 be a useful change for a number of ports, but there aren't any current
4926 plans to undertake this.
4927
4928 ***************************************************************************/
4929
4930
4931 const char *
4932 output_andsi3 (rtx *operands)
4933 {
4934 int logval;
4935 if (GET_CODE (operands[2]) == CONST_INT
4936 && (INTVAL (operands[2]) | 0xffff) == -1
4937 && (DATA_REG_P (operands[0])
4938 || offsettable_memref_p (operands[0]))
4939 && !TARGET_COLDFIRE)
4940 {
4941 if (GET_CODE (operands[0]) != REG)
4942 operands[0] = adjust_address (operands[0], HImode, 2);
4943 operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
4944 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4945 CC_STATUS_INIT;
4946 if (operands[2] == const0_rtx)
4947 return "clr%.w %0";
4948 return "and%.w %2,%0";
4949 }
4950 if (GET_CODE (operands[2]) == CONST_INT
4951 && (logval = exact_log2 (~ INTVAL (operands[2]) & 0xffffffff)) >= 0
4952 && (DATA_REG_P (operands[0])
4953 || offsettable_memref_p (operands[0])))
4954 {
4955 if (DATA_REG_P (operands[0]))
4956 operands[1] = GEN_INT (logval);
4957 else
4958 {
4959 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4960 operands[1] = GEN_INT (logval % 8);
4961 }
4962 /* This does not set condition codes in a standard way. */
4963 CC_STATUS_INIT;
4964 return "bclr %1,%0";
4965 }
4966 return "and%.l %2,%0";
4967 }
4968
4969 const char *
4970 output_iorsi3 (rtx *operands)
4971 {
4972 register int logval;
4973 if (GET_CODE (operands[2]) == CONST_INT
4974 && INTVAL (operands[2]) >> 16 == 0
4975 && (DATA_REG_P (operands[0])
4976 || offsettable_memref_p (operands[0]))
4977 && !TARGET_COLDFIRE)
4978 {
4979 if (GET_CODE (operands[0]) != REG)
4980 operands[0] = adjust_address (operands[0], HImode, 2);
4981 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4982 CC_STATUS_INIT;
4983 if (INTVAL (operands[2]) == 0xffff)
4984 return "mov%.w %2,%0";
4985 return "or%.w %2,%0";
4986 }
4987 if (GET_CODE (operands[2]) == CONST_INT
4988 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
4989 && (DATA_REG_P (operands[0])
4990 || offsettable_memref_p (operands[0])))
4991 {
4992 if (DATA_REG_P (operands[0]))
4993 operands[1] = GEN_INT (logval);
4994 else
4995 {
4996 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4997 operands[1] = GEN_INT (logval % 8);
4998 }
4999 CC_STATUS_INIT;
5000 return "bset %1,%0";
5001 }
5002 return "or%.l %2,%0";
5003 }
5004
5005 const char *
5006 output_xorsi3 (rtx *operands)
5007 {
5008 register int logval;
5009 if (GET_CODE (operands[2]) == CONST_INT
5010 && INTVAL (operands[2]) >> 16 == 0
5011 && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
5012 && !TARGET_COLDFIRE)
5013 {
5014 if (! DATA_REG_P (operands[0]))
5015 operands[0] = adjust_address (operands[0], HImode, 2);
5016 /* Do not delete a following tstl %0 insn; that would be incorrect. */
5017 CC_STATUS_INIT;
5018 if (INTVAL (operands[2]) == 0xffff)
5019 return "not%.w %0";
5020 return "eor%.w %2,%0";
5021 }
5022 if (GET_CODE (operands[2]) == CONST_INT
5023 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
5024 && (DATA_REG_P (operands[0])
5025 || offsettable_memref_p (operands[0])))
5026 {
5027 if (DATA_REG_P (operands[0]))
5028 operands[1] = GEN_INT (logval);
5029 else
5030 {
5031 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
5032 operands[1] = GEN_INT (logval % 8);
5033 }
5034 CC_STATUS_INIT;
5035 return "bchg %1,%0";
5036 }
5037 return "eor%.l %2,%0";
5038 }
5039
5040 /* Return the instruction that should be used for a call to address X,
5041 which is known to be in operand 0. */
5042
5043 const char *
5044 output_call (rtx x)
5045 {
5046 if (symbolic_operand (x, VOIDmode))
5047 return m68k_symbolic_call;
5048 else
5049 return "jsr %a0";
5050 }
5051
5052 /* Likewise sibling calls. */
5053
5054 const char *
5055 output_sibcall (rtx x)
5056 {
5057 if (symbolic_operand (x, VOIDmode))
5058 return m68k_symbolic_jump;
5059 else
5060 return "jmp %a0";
5061 }
5062
5063 static void
5064 m68k_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
5065 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
5066 tree function)
5067 {
5068 const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk));
5069 rtx this_slot, offset, addr, mem, tmp;
5070 rtx_insn *insn;
5071
5072 /* Avoid clobbering the struct value reg by using the
5073 static chain reg as a temporary. */
5074 tmp = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5075
5076 /* Pretend to be a post-reload pass while generating rtl. */
5077 reload_completed = 1;
5078
5079 /* The "this" pointer is stored at 4(%sp). */
5080 this_slot = gen_rtx_MEM (Pmode, plus_constant (Pmode,
5081 stack_pointer_rtx, 4));
5082
5083 /* Add DELTA to THIS. */
5084 if (delta != 0)
5085 {
5086 /* Make the offset a legitimate operand for memory addition. */
5087 offset = GEN_INT (delta);
5088 if ((delta < -8 || delta > 8)
5089 && (TARGET_COLDFIRE || USE_MOVQ (delta)))
5090 {
5091 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), offset);
5092 offset = gen_rtx_REG (Pmode, D0_REG);
5093 }
5094 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5095 copy_rtx (this_slot), offset));
5096 }
5097
5098 /* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
5099 if (vcall_offset != 0)
5100 {
5101 /* Set the static chain register to *THIS. */
5102 emit_move_insn (tmp, this_slot);
5103 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
5104
5105 /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
5106 addr = plus_constant (Pmode, tmp, vcall_offset);
5107 if (!m68k_legitimate_address_p (Pmode, addr, true))
5108 {
5109 emit_insn (gen_rtx_SET (tmp, addr));
5110 addr = tmp;
5111 }
5112
5113 /* Load the offset into %d0 and add it to THIS. */
5114 emit_move_insn (gen_rtx_REG (Pmode, D0_REG),
5115 gen_rtx_MEM (Pmode, addr));
5116 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5117 copy_rtx (this_slot),
5118 gen_rtx_REG (Pmode, D0_REG)));
5119 }
5120
5121 /* Jump to the target function. Use a sibcall if direct jumps are
5122 allowed, otherwise load the address into a register first. */
5123 mem = DECL_RTL (function);
5124 if (!sibcall_operand (XEXP (mem, 0), VOIDmode))
5125 {
5126 gcc_assert (flag_pic);
5127
5128 if (!TARGET_SEP_DATA)
5129 {
5130 /* Use the static chain register as a temporary (call-clobbered)
5131 GOT pointer for this function. We can use the static chain
5132 register because it isn't live on entry to the thunk. */
5133 SET_REGNO (pic_offset_table_rtx, STATIC_CHAIN_REGNUM);
5134 emit_insn (gen_load_got (pic_offset_table_rtx));
5135 }
5136 legitimize_pic_address (XEXP (mem, 0), Pmode, tmp);
5137 mem = replace_equiv_address (mem, tmp);
5138 }
5139 insn = emit_call_insn (gen_sibcall (mem, const0_rtx));
5140 SIBLING_CALL_P (insn) = 1;
5141
5142 /* Run just enough of rest_of_compilation. */
5143 insn = get_insns ();
5144 split_all_insns_noflow ();
5145 assemble_start_function (thunk, fnname);
5146 final_start_function (insn, file, 1);
5147 final (insn, file, 1);
5148 final_end_function ();
5149 assemble_end_function (thunk, fnname);
5150
5151 /* Clean up the vars set above. */
5152 reload_completed = 0;
5153
5154 /* Restore the original PIC register. */
5155 if (flag_pic)
5156 SET_REGNO (pic_offset_table_rtx, PIC_REG);
5157 }
5158
5159 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
5160
5161 static rtx
5162 m68k_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
5163 int incoming ATTRIBUTE_UNUSED)
5164 {
5165 return gen_rtx_REG (Pmode, M68K_STRUCT_VALUE_REGNUM);
5166 }
5167
5168 /* Return nonzero if register old_reg can be renamed to register new_reg. */
5169 int
5170 m68k_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
5171 unsigned int new_reg)
5172 {
5173
5174 /* Interrupt functions can only use registers that have already been
5175 saved by the prologue, even if they would normally be
5176 call-clobbered. */
5177
5178 if ((m68k_get_function_kind (current_function_decl)
5179 == m68k_fk_interrupt_handler)
5180 && !df_regs_ever_live_p (new_reg))
5181 return 0;
5182
5183 return 1;
5184 }
5185
5186 /* Implement TARGET_HARD_REGNO_NREGS.
5187
5188 On the m68k, ordinary registers hold 32 bits worth;
5189 for the 68881 registers, a single register is always enough for
5190 anything that can be stored in them at all. */
5191
5192 static unsigned int
5193 m68k_hard_regno_nregs (unsigned int regno, machine_mode mode)
5194 {
5195 if (regno >= 16)
5196 return GET_MODE_NUNITS (mode);
5197 return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD);
5198 }
5199
5200 /* Implement TARGET_HARD_REGNO_MODE_OK. On the 68000, we let the cpu
5201 registers can hold any mode, but restrict the 68881 registers to
5202 floating-point modes. */
5203
5204 static bool
5205 m68k_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
5206 {
5207 if (DATA_REGNO_P (regno))
5208 {
5209 /* Data Registers, can hold aggregate if fits in. */
5210 if (regno + GET_MODE_SIZE (mode) / 4 <= 8)
5211 return true;
5212 }
5213 else if (ADDRESS_REGNO_P (regno))
5214 {
5215 if (regno + GET_MODE_SIZE (mode) / 4 <= 16)
5216 return true;
5217 }
5218 else if (FP_REGNO_P (regno))
5219 {
5220 /* FPU registers, hold float or complex float of long double or
5221 smaller. */
5222 if ((GET_MODE_CLASS (mode) == MODE_FLOAT
5223 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
5224 && GET_MODE_UNIT_SIZE (mode) <= TARGET_FP_REG_SIZE)
5225 return true;
5226 }
5227 return false;
5228 }
5229
5230 /* Implement TARGET_MODES_TIEABLE_P. */
5231
5232 static bool
5233 m68k_modes_tieable_p (machine_mode mode1, machine_mode mode2)
5234 {
5235 return (!TARGET_HARD_FLOAT
5236 || ((GET_MODE_CLASS (mode1) == MODE_FLOAT
5237 || GET_MODE_CLASS (mode1) == MODE_COMPLEX_FLOAT)
5238 == (GET_MODE_CLASS (mode2) == MODE_FLOAT
5239 || GET_MODE_CLASS (mode2) == MODE_COMPLEX_FLOAT)));
5240 }
5241
5242 /* Implement SECONDARY_RELOAD_CLASS. */
5243
5244 enum reg_class
5245 m68k_secondary_reload_class (enum reg_class rclass,
5246 machine_mode mode, rtx x)
5247 {
5248 int regno;
5249
5250 regno = true_regnum (x);
5251
5252 /* If one operand of a movqi is an address register, the other
5253 operand must be a general register or constant. Other types
5254 of operand must be reloaded through a data register. */
5255 if (GET_MODE_SIZE (mode) == 1
5256 && reg_classes_intersect_p (rclass, ADDR_REGS)
5257 && !(INT_REGNO_P (regno) || CONSTANT_P (x)))
5258 return DATA_REGS;
5259
5260 /* PC-relative addresses must be loaded into an address register first. */
5261 if (TARGET_PCREL
5262 && !reg_class_subset_p (rclass, ADDR_REGS)
5263 && symbolic_operand (x, VOIDmode))
5264 return ADDR_REGS;
5265
5266 return NO_REGS;
5267 }
5268
5269 /* Implement PREFERRED_RELOAD_CLASS. */
5270
5271 enum reg_class
5272 m68k_preferred_reload_class (rtx x, enum reg_class rclass)
5273 {
5274 enum reg_class secondary_class;
5275
5276 /* If RCLASS might need a secondary reload, try restricting it to
5277 a class that doesn't. */
5278 secondary_class = m68k_secondary_reload_class (rclass, GET_MODE (x), x);
5279 if (secondary_class != NO_REGS
5280 && reg_class_subset_p (secondary_class, rclass))
5281 return secondary_class;
5282
5283 /* Prefer to use moveq for in-range constants. */
5284 if (GET_CODE (x) == CONST_INT
5285 && reg_class_subset_p (DATA_REGS, rclass)
5286 && IN_RANGE (INTVAL (x), -0x80, 0x7f))
5287 return DATA_REGS;
5288
5289 /* ??? Do we really need this now? */
5290 if (GET_CODE (x) == CONST_DOUBLE
5291 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
5292 {
5293 if (TARGET_HARD_FLOAT && reg_class_subset_p (FP_REGS, rclass))
5294 return FP_REGS;
5295
5296 return NO_REGS;
5297 }
5298
5299 return rclass;
5300 }
5301
5302 /* Return floating point values in a 68881 register. This makes 68881 code
5303 a little bit faster. It also makes -msoft-float code incompatible with
5304 hard-float code, so people have to be careful not to mix the two.
5305 For ColdFire it was decided the ABI incompatibility is undesirable.
5306 If there is need for a hard-float ABI it is probably worth doing it
5307 properly and also passing function arguments in FP registers. */
5308 rtx
5309 m68k_libcall_value (machine_mode mode)
5310 {
5311 switch (mode) {
5312 case E_SFmode:
5313 case E_DFmode:
5314 case E_XFmode:
5315 if (TARGET_68881)
5316 return gen_rtx_REG (mode, FP0_REG);
5317 break;
5318 default:
5319 break;
5320 }
5321
5322 return gen_rtx_REG (mode, m68k_libcall_value_in_a0_p ? A0_REG : D0_REG);
5323 }
5324
5325 /* Location in which function value is returned.
5326 NOTE: Due to differences in ABIs, don't call this function directly,
5327 use FUNCTION_VALUE instead. */
5328 rtx
5329 m68k_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
5330 {
5331 machine_mode mode;
5332
5333 mode = TYPE_MODE (valtype);
5334 switch (mode) {
5335 case E_SFmode:
5336 case E_DFmode:
5337 case E_XFmode:
5338 if (TARGET_68881)
5339 return gen_rtx_REG (mode, FP0_REG);
5340 break;
5341 default:
5342 break;
5343 }
5344
5345 /* If the function returns a pointer, push that into %a0. */
5346 if (func && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (func))))
5347 /* For compatibility with the large body of existing code which
5348 does not always properly declare external functions returning
5349 pointer types, the m68k/SVR4 convention is to copy the value
5350 returned for pointer functions from a0 to d0 in the function
5351 epilogue, so that callers that have neglected to properly
5352 declare the callee can still find the correct return value in
5353 d0. */
5354 return gen_rtx_PARALLEL
5355 (mode,
5356 gen_rtvec (2,
5357 gen_rtx_EXPR_LIST (VOIDmode,
5358 gen_rtx_REG (mode, A0_REG),
5359 const0_rtx),
5360 gen_rtx_EXPR_LIST (VOIDmode,
5361 gen_rtx_REG (mode, D0_REG),
5362 const0_rtx)));
5363 else if (POINTER_TYPE_P (valtype))
5364 return gen_rtx_REG (mode, A0_REG);
5365 else
5366 return gen_rtx_REG (mode, D0_REG);
5367 }
5368
5369 /* Worker function for TARGET_RETURN_IN_MEMORY. */
5370 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
5371 static bool
5372 m68k_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
5373 {
5374 machine_mode mode = TYPE_MODE (type);
5375
5376 if (mode == BLKmode)
5377 return true;
5378
5379 /* If TYPE's known alignment is less than the alignment of MODE that
5380 would contain the structure, then return in memory. We need to
5381 do so to maintain the compatibility between code compiled with
5382 -mstrict-align and that compiled with -mno-strict-align. */
5383 if (AGGREGATE_TYPE_P (type)
5384 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (mode))
5385 return true;
5386
5387 return false;
5388 }
5389 #endif
5390
5391 /* CPU to schedule the program for. */
5392 enum attr_cpu m68k_sched_cpu;
5393
5394 /* MAC to schedule the program for. */
5395 enum attr_mac m68k_sched_mac;
5396
5397 /* Operand type. */
5398 enum attr_op_type
5399 {
5400 /* No operand. */
5401 OP_TYPE_NONE,
5402
5403 /* Integer register. */
5404 OP_TYPE_RN,
5405
5406 /* FP register. */
5407 OP_TYPE_FPN,
5408
5409 /* Implicit mem reference (e.g. stack). */
5410 OP_TYPE_MEM1,
5411
5412 /* Memory without offset or indexing. EA modes 2, 3 and 4. */
5413 OP_TYPE_MEM234,
5414
5415 /* Memory with offset but without indexing. EA mode 5. */
5416 OP_TYPE_MEM5,
5417
5418 /* Memory with indexing. EA mode 6. */
5419 OP_TYPE_MEM6,
5420
5421 /* Memory referenced by absolute address. EA mode 7. */
5422 OP_TYPE_MEM7,
5423
5424 /* Immediate operand that doesn't require extension word. */
5425 OP_TYPE_IMM_Q,
5426
5427 /* Immediate 16 bit operand. */
5428 OP_TYPE_IMM_W,
5429
5430 /* Immediate 32 bit operand. */
5431 OP_TYPE_IMM_L
5432 };
5433
5434 /* Return type of memory ADDR_RTX refers to. */
5435 static enum attr_op_type
5436 sched_address_type (machine_mode mode, rtx addr_rtx)
5437 {
5438 struct m68k_address address;
5439
5440 if (symbolic_operand (addr_rtx, VOIDmode))
5441 return OP_TYPE_MEM7;
5442
5443 if (!m68k_decompose_address (mode, addr_rtx,
5444 reload_completed, &address))
5445 {
5446 gcc_assert (!reload_completed);
5447 /* Reload will likely fix the address to be in the register. */
5448 return OP_TYPE_MEM234;
5449 }
5450
5451 if (address.scale != 0)
5452 return OP_TYPE_MEM6;
5453
5454 if (address.base != NULL_RTX)
5455 {
5456 if (address.offset == NULL_RTX)
5457 return OP_TYPE_MEM234;
5458
5459 return OP_TYPE_MEM5;
5460 }
5461
5462 gcc_assert (address.offset != NULL_RTX);
5463
5464 return OP_TYPE_MEM7;
5465 }
5466
5467 /* Return X or Y (depending on OPX_P) operand of INSN. */
5468 static rtx
5469 sched_get_operand (rtx_insn *insn, bool opx_p)
5470 {
5471 int i;
5472
5473 if (recog_memoized (insn) < 0)
5474 gcc_unreachable ();
5475
5476 extract_constrain_insn_cached (insn);
5477
5478 if (opx_p)
5479 i = get_attr_opx (insn);
5480 else
5481 i = get_attr_opy (insn);
5482
5483 if (i >= recog_data.n_operands)
5484 return NULL;
5485
5486 return recog_data.operand[i];
5487 }
5488
5489 /* Return type of INSN's operand X (if OPX_P) or operand Y (if !OPX_P).
5490 If ADDRESS_P is true, return type of memory location operand refers to. */
5491 static enum attr_op_type
5492 sched_attr_op_type (rtx_insn *insn, bool opx_p, bool address_p)
5493 {
5494 rtx op;
5495
5496 op = sched_get_operand (insn, opx_p);
5497
5498 if (op == NULL)
5499 {
5500 gcc_assert (!reload_completed);
5501 return OP_TYPE_RN;
5502 }
5503
5504 if (address_p)
5505 return sched_address_type (QImode, op);
5506
5507 if (memory_operand (op, VOIDmode))
5508 return sched_address_type (GET_MODE (op), XEXP (op, 0));
5509
5510 if (register_operand (op, VOIDmode))
5511 {
5512 if ((!reload_completed && FLOAT_MODE_P (GET_MODE (op)))
5513 || (reload_completed && FP_REG_P (op)))
5514 return OP_TYPE_FPN;
5515
5516 return OP_TYPE_RN;
5517 }
5518
5519 if (GET_CODE (op) == CONST_INT)
5520 {
5521 int ival;
5522
5523 ival = INTVAL (op);
5524
5525 /* Check for quick constants. */
5526 switch (get_attr_type (insn))
5527 {
5528 case TYPE_ALUQ_L:
5529 if (IN_RANGE (ival, 1, 8) || IN_RANGE (ival, -8, -1))
5530 return OP_TYPE_IMM_Q;
5531
5532 gcc_assert (!reload_completed);
5533 break;
5534
5535 case TYPE_MOVEQ_L:
5536 if (USE_MOVQ (ival))
5537 return OP_TYPE_IMM_Q;
5538
5539 gcc_assert (!reload_completed);
5540 break;
5541
5542 case TYPE_MOV3Q_L:
5543 if (valid_mov3q_const (ival))
5544 return OP_TYPE_IMM_Q;
5545
5546 gcc_assert (!reload_completed);
5547 break;
5548
5549 default:
5550 break;
5551 }
5552
5553 if (IN_RANGE (ival, -0x8000, 0x7fff))
5554 return OP_TYPE_IMM_W;
5555
5556 return OP_TYPE_IMM_L;
5557 }
5558
5559 if (GET_CODE (op) == CONST_DOUBLE)
5560 {
5561 switch (GET_MODE (op))
5562 {
5563 case E_SFmode:
5564 return OP_TYPE_IMM_W;
5565
5566 case E_VOIDmode:
5567 case E_DFmode:
5568 return OP_TYPE_IMM_L;
5569
5570 default:
5571 gcc_unreachable ();
5572 }
5573 }
5574
5575 if (GET_CODE (op) == CONST
5576 || symbolic_operand (op, VOIDmode)
5577 || LABEL_P (op))
5578 {
5579 switch (GET_MODE (op))
5580 {
5581 case E_QImode:
5582 return OP_TYPE_IMM_Q;
5583
5584 case E_HImode:
5585 return OP_TYPE_IMM_W;
5586
5587 case E_SImode:
5588 return OP_TYPE_IMM_L;
5589
5590 default:
5591 if (symbolic_operand (m68k_unwrap_symbol (op, false), VOIDmode))
5592 /* Just a guess. */
5593 return OP_TYPE_IMM_W;
5594
5595 return OP_TYPE_IMM_L;
5596 }
5597 }
5598
5599 gcc_assert (!reload_completed);
5600
5601 if (FLOAT_MODE_P (GET_MODE (op)))
5602 return OP_TYPE_FPN;
5603
5604 return OP_TYPE_RN;
5605 }
5606
5607 /* Implement opx_type attribute.
5608 Return type of INSN's operand X.
5609 If ADDRESS_P is true, return type of memory location operand refers to. */
5610 enum attr_opx_type
5611 m68k_sched_attr_opx_type (rtx_insn *insn, int address_p)
5612 {
5613 switch (sched_attr_op_type (insn, true, address_p != 0))
5614 {
5615 case OP_TYPE_RN:
5616 return OPX_TYPE_RN;
5617
5618 case OP_TYPE_FPN:
5619 return OPX_TYPE_FPN;
5620
5621 case OP_TYPE_MEM1:
5622 return OPX_TYPE_MEM1;
5623
5624 case OP_TYPE_MEM234:
5625 return OPX_TYPE_MEM234;
5626
5627 case OP_TYPE_MEM5:
5628 return OPX_TYPE_MEM5;
5629
5630 case OP_TYPE_MEM6:
5631 return OPX_TYPE_MEM6;
5632
5633 case OP_TYPE_MEM7:
5634 return OPX_TYPE_MEM7;
5635
5636 case OP_TYPE_IMM_Q:
5637 return OPX_TYPE_IMM_Q;
5638
5639 case OP_TYPE_IMM_W:
5640 return OPX_TYPE_IMM_W;
5641
5642 case OP_TYPE_IMM_L:
5643 return OPX_TYPE_IMM_L;
5644
5645 default:
5646 gcc_unreachable ();
5647 }
5648 }
5649
5650 /* Implement opy_type attribute.
5651 Return type of INSN's operand Y.
5652 If ADDRESS_P is true, return type of memory location operand refers to. */
5653 enum attr_opy_type
5654 m68k_sched_attr_opy_type (rtx_insn *insn, int address_p)
5655 {
5656 switch (sched_attr_op_type (insn, false, address_p != 0))
5657 {
5658 case OP_TYPE_RN:
5659 return OPY_TYPE_RN;
5660
5661 case OP_TYPE_FPN:
5662 return OPY_TYPE_FPN;
5663
5664 case OP_TYPE_MEM1:
5665 return OPY_TYPE_MEM1;
5666
5667 case OP_TYPE_MEM234:
5668 return OPY_TYPE_MEM234;
5669
5670 case OP_TYPE_MEM5:
5671 return OPY_TYPE_MEM5;
5672
5673 case OP_TYPE_MEM6:
5674 return OPY_TYPE_MEM6;
5675
5676 case OP_TYPE_MEM7:
5677 return OPY_TYPE_MEM7;
5678
5679 case OP_TYPE_IMM_Q:
5680 return OPY_TYPE_IMM_Q;
5681
5682 case OP_TYPE_IMM_W:
5683 return OPY_TYPE_IMM_W;
5684
5685 case OP_TYPE_IMM_L:
5686 return OPY_TYPE_IMM_L;
5687
5688 default:
5689 gcc_unreachable ();
5690 }
5691 }
5692
5693 /* Return size of INSN as int. */
5694 static int
5695 sched_get_attr_size_int (rtx_insn *insn)
5696 {
5697 int size;
5698
5699 switch (get_attr_type (insn))
5700 {
5701 case TYPE_IGNORE:
5702 /* There should be no references to m68k_sched_attr_size for 'ignore'
5703 instructions. */
5704 gcc_unreachable ();
5705 return 0;
5706
5707 case TYPE_MUL_L:
5708 size = 2;
5709 break;
5710
5711 default:
5712 size = 1;
5713 break;
5714 }
5715
5716 switch (get_attr_opx_type (insn))
5717 {
5718 case OPX_TYPE_NONE:
5719 case OPX_TYPE_RN:
5720 case OPX_TYPE_FPN:
5721 case OPX_TYPE_MEM1:
5722 case OPX_TYPE_MEM234:
5723 case OPY_TYPE_IMM_Q:
5724 break;
5725
5726 case OPX_TYPE_MEM5:
5727 case OPX_TYPE_MEM6:
5728 /* Here we assume that most absolute references are short. */
5729 case OPX_TYPE_MEM7:
5730 case OPY_TYPE_IMM_W:
5731 ++size;
5732 break;
5733
5734 case OPY_TYPE_IMM_L:
5735 size += 2;
5736 break;
5737
5738 default:
5739 gcc_unreachable ();
5740 }
5741
5742 switch (get_attr_opy_type (insn))
5743 {
5744 case OPY_TYPE_NONE:
5745 case OPY_TYPE_RN:
5746 case OPY_TYPE_FPN:
5747 case OPY_TYPE_MEM1:
5748 case OPY_TYPE_MEM234:
5749 case OPY_TYPE_IMM_Q:
5750 break;
5751
5752 case OPY_TYPE_MEM5:
5753 case OPY_TYPE_MEM6:
5754 /* Here we assume that most absolute references are short. */
5755 case OPY_TYPE_MEM7:
5756 case OPY_TYPE_IMM_W:
5757 ++size;
5758 break;
5759
5760 case OPY_TYPE_IMM_L:
5761 size += 2;
5762 break;
5763
5764 default:
5765 gcc_unreachable ();
5766 }
5767
5768 if (size > 3)
5769 {
5770 gcc_assert (!reload_completed);
5771
5772 size = 3;
5773 }
5774
5775 return size;
5776 }
5777
5778 /* Return size of INSN as attribute enum value. */
5779 enum attr_size
5780 m68k_sched_attr_size (rtx_insn *insn)
5781 {
5782 switch (sched_get_attr_size_int (insn))
5783 {
5784 case 1:
5785 return SIZE_1;
5786
5787 case 2:
5788 return SIZE_2;
5789
5790 case 3:
5791 return SIZE_3;
5792
5793 default:
5794 gcc_unreachable ();
5795 }
5796 }
5797
5798 /* Return operand X or Y (depending on OPX_P) of INSN,
5799 if it is a MEM, or NULL overwise. */
5800 static enum attr_op_type
5801 sched_get_opxy_mem_type (rtx_insn *insn, bool opx_p)
5802 {
5803 if (opx_p)
5804 {
5805 switch (get_attr_opx_type (insn))
5806 {
5807 case OPX_TYPE_NONE:
5808 case OPX_TYPE_RN:
5809 case OPX_TYPE_FPN:
5810 case OPX_TYPE_IMM_Q:
5811 case OPX_TYPE_IMM_W:
5812 case OPX_TYPE_IMM_L:
5813 return OP_TYPE_RN;
5814
5815 case OPX_TYPE_MEM1:
5816 case OPX_TYPE_MEM234:
5817 case OPX_TYPE_MEM5:
5818 case OPX_TYPE_MEM7:
5819 return OP_TYPE_MEM1;
5820
5821 case OPX_TYPE_MEM6:
5822 return OP_TYPE_MEM6;
5823
5824 default:
5825 gcc_unreachable ();
5826 }
5827 }
5828 else
5829 {
5830 switch (get_attr_opy_type (insn))
5831 {
5832 case OPY_TYPE_NONE:
5833 case OPY_TYPE_RN:
5834 case OPY_TYPE_FPN:
5835 case OPY_TYPE_IMM_Q:
5836 case OPY_TYPE_IMM_W:
5837 case OPY_TYPE_IMM_L:
5838 return OP_TYPE_RN;
5839
5840 case OPY_TYPE_MEM1:
5841 case OPY_TYPE_MEM234:
5842 case OPY_TYPE_MEM5:
5843 case OPY_TYPE_MEM7:
5844 return OP_TYPE_MEM1;
5845
5846 case OPY_TYPE_MEM6:
5847 return OP_TYPE_MEM6;
5848
5849 default:
5850 gcc_unreachable ();
5851 }
5852 }
5853 }
5854
5855 /* Implement op_mem attribute. */
5856 enum attr_op_mem
5857 m68k_sched_attr_op_mem (rtx_insn *insn)
5858 {
5859 enum attr_op_type opx;
5860 enum attr_op_type opy;
5861
5862 opx = sched_get_opxy_mem_type (insn, true);
5863 opy = sched_get_opxy_mem_type (insn, false);
5864
5865 if (opy == OP_TYPE_RN && opx == OP_TYPE_RN)
5866 return OP_MEM_00;
5867
5868 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM1)
5869 {
5870 switch (get_attr_opx_access (insn))
5871 {
5872 case OPX_ACCESS_R:
5873 return OP_MEM_10;
5874
5875 case OPX_ACCESS_W:
5876 return OP_MEM_01;
5877
5878 case OPX_ACCESS_RW:
5879 return OP_MEM_11;
5880
5881 default:
5882 gcc_unreachable ();
5883 }
5884 }
5885
5886 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM6)
5887 {
5888 switch (get_attr_opx_access (insn))
5889 {
5890 case OPX_ACCESS_R:
5891 return OP_MEM_I0;
5892
5893 case OPX_ACCESS_W:
5894 return OP_MEM_0I;
5895
5896 case OPX_ACCESS_RW:
5897 return OP_MEM_I1;
5898
5899 default:
5900 gcc_unreachable ();
5901 }
5902 }
5903
5904 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_RN)
5905 return OP_MEM_10;
5906
5907 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM1)
5908 {
5909 switch (get_attr_opx_access (insn))
5910 {
5911 case OPX_ACCESS_W:
5912 return OP_MEM_11;
5913
5914 default:
5915 gcc_assert (!reload_completed);
5916 return OP_MEM_11;
5917 }
5918 }
5919
5920 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM6)
5921 {
5922 switch (get_attr_opx_access (insn))
5923 {
5924 case OPX_ACCESS_W:
5925 return OP_MEM_1I;
5926
5927 default:
5928 gcc_assert (!reload_completed);
5929 return OP_MEM_1I;
5930 }
5931 }
5932
5933 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_RN)
5934 return OP_MEM_I0;
5935
5936 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM1)
5937 {
5938 switch (get_attr_opx_access (insn))
5939 {
5940 case OPX_ACCESS_W:
5941 return OP_MEM_I1;
5942
5943 default:
5944 gcc_assert (!reload_completed);
5945 return OP_MEM_I1;
5946 }
5947 }
5948
5949 gcc_assert (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM6);
5950 gcc_assert (!reload_completed);
5951 return OP_MEM_I1;
5952 }
5953
5954 /* Data for ColdFire V4 index bypass.
5955 Producer modifies register that is used as index in consumer with
5956 specified scale. */
5957 static struct
5958 {
5959 /* Producer instruction. */
5960 rtx pro;
5961
5962 /* Consumer instruction. */
5963 rtx con;
5964
5965 /* Scale of indexed memory access within consumer.
5966 Or zero if bypass should not be effective at the moment. */
5967 int scale;
5968 } sched_cfv4_bypass_data;
5969
5970 /* An empty state that is used in m68k_sched_adjust_cost. */
5971 static state_t sched_adjust_cost_state;
5972
5973 /* Implement adjust_cost scheduler hook.
5974 Return adjusted COST of dependency LINK between DEF_INSN and INSN. */
5975 static int
5976 m68k_sched_adjust_cost (rtx_insn *insn, int, rtx_insn *def_insn, int cost,
5977 unsigned int)
5978 {
5979 int delay;
5980
5981 if (recog_memoized (def_insn) < 0
5982 || recog_memoized (insn) < 0)
5983 return cost;
5984
5985 if (sched_cfv4_bypass_data.scale == 1)
5986 /* Handle ColdFire V4 bypass for indexed address with 1x scale. */
5987 {
5988 /* haifa-sched.c: insn_cost () calls bypass_p () just before
5989 targetm.sched.adjust_cost (). Hence, we can be relatively sure
5990 that the data in sched_cfv4_bypass_data is up to date. */
5991 gcc_assert (sched_cfv4_bypass_data.pro == def_insn
5992 && sched_cfv4_bypass_data.con == insn);
5993
5994 if (cost < 3)
5995 cost = 3;
5996
5997 sched_cfv4_bypass_data.pro = NULL;
5998 sched_cfv4_bypass_data.con = NULL;
5999 sched_cfv4_bypass_data.scale = 0;
6000 }
6001 else
6002 gcc_assert (sched_cfv4_bypass_data.pro == NULL
6003 && sched_cfv4_bypass_data.con == NULL
6004 && sched_cfv4_bypass_data.scale == 0);
6005
6006 /* Don't try to issue INSN earlier than DFA permits.
6007 This is especially useful for instructions that write to memory,
6008 as their true dependence (default) latency is better to be set to 0
6009 to workaround alias analysis limitations.
6010 This is, in fact, a machine independent tweak, so, probably,
6011 it should be moved to haifa-sched.c: insn_cost (). */
6012 delay = min_insn_conflict_delay (sched_adjust_cost_state, def_insn, insn);
6013 if (delay > cost)
6014 cost = delay;
6015
6016 return cost;
6017 }
6018
6019 /* Return maximal number of insns that can be scheduled on a single cycle. */
6020 static int
6021 m68k_sched_issue_rate (void)
6022 {
6023 switch (m68k_sched_cpu)
6024 {
6025 case CPU_CFV1:
6026 case CPU_CFV2:
6027 case CPU_CFV3:
6028 return 1;
6029
6030 case CPU_CFV4:
6031 return 2;
6032
6033 default:
6034 gcc_unreachable ();
6035 return 0;
6036 }
6037 }
6038
6039 /* Maximal length of instruction for current CPU.
6040 E.g. it is 3 for any ColdFire core. */
6041 static int max_insn_size;
6042
6043 /* Data to model instruction buffer of CPU. */
6044 struct _sched_ib
6045 {
6046 /* True if instruction buffer model is modeled for current CPU. */
6047 bool enabled_p;
6048
6049 /* Size of the instruction buffer in words. */
6050 int size;
6051
6052 /* Number of filled words in the instruction buffer. */
6053 int filled;
6054
6055 /* Additional information about instruction buffer for CPUs that have
6056 a buffer of instruction records, rather then a plain buffer
6057 of instruction words. */
6058 struct _sched_ib_records
6059 {
6060 /* Size of buffer in records. */
6061 int n_insns;
6062
6063 /* Array to hold data on adjustments made to the size of the buffer. */
6064 int *adjust;
6065
6066 /* Index of the above array. */
6067 int adjust_index;
6068 } records;
6069
6070 /* An insn that reserves (marks empty) one word in the instruction buffer. */
6071 rtx insn;
6072 };
6073
6074 static struct _sched_ib sched_ib;
6075
6076 /* ID of memory unit. */
6077 static int sched_mem_unit_code;
6078
6079 /* Implementation of the targetm.sched.variable_issue () hook.
6080 It is called after INSN was issued. It returns the number of insns
6081 that can possibly get scheduled on the current cycle.
6082 It is used here to determine the effect of INSN on the instruction
6083 buffer. */
6084 static int
6085 m68k_sched_variable_issue (FILE *sched_dump ATTRIBUTE_UNUSED,
6086 int sched_verbose ATTRIBUTE_UNUSED,
6087 rtx_insn *insn, int can_issue_more)
6088 {
6089 int insn_size;
6090
6091 if (recog_memoized (insn) >= 0 && get_attr_type (insn) != TYPE_IGNORE)
6092 {
6093 switch (m68k_sched_cpu)
6094 {
6095 case CPU_CFV1:
6096 case CPU_CFV2:
6097 insn_size = sched_get_attr_size_int (insn);
6098 break;
6099
6100 case CPU_CFV3:
6101 insn_size = sched_get_attr_size_int (insn);
6102
6103 /* ColdFire V3 and V4 cores have instruction buffers that can
6104 accumulate up to 8 instructions regardless of instructions'
6105 sizes. So we should take care not to "prefetch" 24 one-word
6106 or 12 two-words instructions.
6107 To model this behavior we temporarily decrease size of the
6108 buffer by (max_insn_size - insn_size) for next 7 instructions. */
6109 {
6110 int adjust;
6111
6112 adjust = max_insn_size - insn_size;
6113 sched_ib.size -= adjust;
6114
6115 if (sched_ib.filled > sched_ib.size)
6116 sched_ib.filled = sched_ib.size;
6117
6118 sched_ib.records.adjust[sched_ib.records.adjust_index] = adjust;
6119 }
6120
6121 ++sched_ib.records.adjust_index;
6122 if (sched_ib.records.adjust_index == sched_ib.records.n_insns)
6123 sched_ib.records.adjust_index = 0;
6124
6125 /* Undo adjustment we did 7 instructions ago. */
6126 sched_ib.size
6127 += sched_ib.records.adjust[sched_ib.records.adjust_index];
6128
6129 break;
6130
6131 case CPU_CFV4:
6132 gcc_assert (!sched_ib.enabled_p);
6133 insn_size = 0;
6134 break;
6135
6136 default:
6137 gcc_unreachable ();
6138 }
6139
6140 if (insn_size > sched_ib.filled)
6141 /* Scheduling for register pressure does not always take DFA into
6142 account. Workaround instruction buffer not being filled enough. */
6143 {
6144 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
6145 insn_size = sched_ib.filled;
6146 }
6147
6148 --can_issue_more;
6149 }
6150 else if (GET_CODE (PATTERN (insn)) == ASM_INPUT
6151 || asm_noperands (PATTERN (insn)) >= 0)
6152 insn_size = sched_ib.filled;
6153 else
6154 insn_size = 0;
6155
6156 sched_ib.filled -= insn_size;
6157
6158 return can_issue_more;
6159 }
6160
6161 /* Return how many instructions should scheduler lookahead to choose the
6162 best one. */
6163 static int
6164 m68k_sched_first_cycle_multipass_dfa_lookahead (void)
6165 {
6166 return m68k_sched_issue_rate () - 1;
6167 }
6168
6169 /* Implementation of targetm.sched.init_global () hook.
6170 It is invoked once per scheduling pass and is used here
6171 to initialize scheduler constants. */
6172 static void
6173 m68k_sched_md_init_global (FILE *sched_dump ATTRIBUTE_UNUSED,
6174 int sched_verbose ATTRIBUTE_UNUSED,
6175 int n_insns ATTRIBUTE_UNUSED)
6176 {
6177 /* Check that all instructions have DFA reservations and
6178 that all instructions can be issued from a clean state. */
6179 if (flag_checking)
6180 {
6181 rtx_insn *insn;
6182 state_t state;
6183
6184 state = alloca (state_size ());
6185
6186 for (insn = get_insns (); insn != NULL; insn = NEXT_INSN (insn))
6187 {
6188 if (INSN_P (insn) && recog_memoized (insn) >= 0)
6189 {
6190 gcc_assert (insn_has_dfa_reservation_p (insn));
6191
6192 state_reset (state);
6193 if (state_transition (state, insn) >= 0)
6194 gcc_unreachable ();
6195 }
6196 }
6197 }
6198
6199 /* Setup target cpu. */
6200
6201 /* ColdFire V4 has a set of features to keep its instruction buffer full
6202 (e.g., a separate memory bus for instructions) and, hence, we do not model
6203 buffer for this CPU. */
6204 sched_ib.enabled_p = (m68k_sched_cpu != CPU_CFV4);
6205
6206 switch (m68k_sched_cpu)
6207 {
6208 case CPU_CFV4:
6209 sched_ib.filled = 0;
6210
6211 /* FALLTHRU */
6212
6213 case CPU_CFV1:
6214 case CPU_CFV2:
6215 max_insn_size = 3;
6216 sched_ib.records.n_insns = 0;
6217 sched_ib.records.adjust = NULL;
6218 break;
6219
6220 case CPU_CFV3:
6221 max_insn_size = 3;
6222 sched_ib.records.n_insns = 8;
6223 sched_ib.records.adjust = XNEWVEC (int, sched_ib.records.n_insns);
6224 break;
6225
6226 default:
6227 gcc_unreachable ();
6228 }
6229
6230 sched_mem_unit_code = get_cpu_unit_code ("cf_mem1");
6231
6232 sched_adjust_cost_state = xmalloc (state_size ());
6233 state_reset (sched_adjust_cost_state);
6234
6235 start_sequence ();
6236 emit_insn (gen_ib ());
6237 sched_ib.insn = get_insns ();
6238 end_sequence ();
6239 }
6240
6241 /* Scheduling pass is now finished. Free/reset static variables. */
6242 static void
6243 m68k_sched_md_finish_global (FILE *dump ATTRIBUTE_UNUSED,
6244 int verbose ATTRIBUTE_UNUSED)
6245 {
6246 sched_ib.insn = NULL;
6247
6248 free (sched_adjust_cost_state);
6249 sched_adjust_cost_state = NULL;
6250
6251 sched_mem_unit_code = 0;
6252
6253 free (sched_ib.records.adjust);
6254 sched_ib.records.adjust = NULL;
6255 sched_ib.records.n_insns = 0;
6256 max_insn_size = 0;
6257 }
6258
6259 /* Implementation of targetm.sched.init () hook.
6260 It is invoked each time scheduler starts on the new block (basic block or
6261 extended basic block). */
6262 static void
6263 m68k_sched_md_init (FILE *sched_dump ATTRIBUTE_UNUSED,
6264 int sched_verbose ATTRIBUTE_UNUSED,
6265 int n_insns ATTRIBUTE_UNUSED)
6266 {
6267 switch (m68k_sched_cpu)
6268 {
6269 case CPU_CFV1:
6270 case CPU_CFV2:
6271 sched_ib.size = 6;
6272 break;
6273
6274 case CPU_CFV3:
6275 sched_ib.size = sched_ib.records.n_insns * max_insn_size;
6276
6277 memset (sched_ib.records.adjust, 0,
6278 sched_ib.records.n_insns * sizeof (*sched_ib.records.adjust));
6279 sched_ib.records.adjust_index = 0;
6280 break;
6281
6282 case CPU_CFV4:
6283 gcc_assert (!sched_ib.enabled_p);
6284 sched_ib.size = 0;
6285 break;
6286
6287 default:
6288 gcc_unreachable ();
6289 }
6290
6291 if (sched_ib.enabled_p)
6292 /* haifa-sched.c: schedule_block () calls advance_cycle () just before
6293 the first cycle. Workaround that. */
6294 sched_ib.filled = -2;
6295 }
6296
6297 /* Implementation of targetm.sched.dfa_pre_advance_cycle () hook.
6298 It is invoked just before current cycle finishes and is used here
6299 to track if instruction buffer got its two words this cycle. */
6300 static void
6301 m68k_sched_dfa_pre_advance_cycle (void)
6302 {
6303 if (!sched_ib.enabled_p)
6304 return;
6305
6306 if (!cpu_unit_reservation_p (curr_state, sched_mem_unit_code))
6307 {
6308 sched_ib.filled += 2;
6309
6310 if (sched_ib.filled > sched_ib.size)
6311 sched_ib.filled = sched_ib.size;
6312 }
6313 }
6314
6315 /* Implementation of targetm.sched.dfa_post_advance_cycle () hook.
6316 It is invoked just after new cycle begins and is used here
6317 to setup number of filled words in the instruction buffer so that
6318 instructions which won't have all their words prefetched would be
6319 stalled for a cycle. */
6320 static void
6321 m68k_sched_dfa_post_advance_cycle (void)
6322 {
6323 int i;
6324
6325 if (!sched_ib.enabled_p)
6326 return;
6327
6328 /* Setup number of prefetched instruction words in the instruction
6329 buffer. */
6330 i = max_insn_size - sched_ib.filled;
6331
6332 while (--i >= 0)
6333 {
6334 if (state_transition (curr_state, sched_ib.insn) >= 0)
6335 /* Pick up scheduler state. */
6336 ++sched_ib.filled;
6337 }
6338 }
6339
6340 /* Return X or Y (depending on OPX_P) operand of INSN,
6341 if it is an integer register, or NULL overwise. */
6342 static rtx
6343 sched_get_reg_operand (rtx_insn *insn, bool opx_p)
6344 {
6345 rtx op = NULL;
6346
6347 if (opx_p)
6348 {
6349 if (get_attr_opx_type (insn) == OPX_TYPE_RN)
6350 {
6351 op = sched_get_operand (insn, true);
6352 gcc_assert (op != NULL);
6353
6354 if (!reload_completed && !REG_P (op))
6355 return NULL;
6356 }
6357 }
6358 else
6359 {
6360 if (get_attr_opy_type (insn) == OPY_TYPE_RN)
6361 {
6362 op = sched_get_operand (insn, false);
6363 gcc_assert (op != NULL);
6364
6365 if (!reload_completed && !REG_P (op))
6366 return NULL;
6367 }
6368 }
6369
6370 return op;
6371 }
6372
6373 /* Return true, if X or Y (depending on OPX_P) operand of INSN
6374 is a MEM. */
6375 static bool
6376 sched_mem_operand_p (rtx_insn *insn, bool opx_p)
6377 {
6378 switch (sched_get_opxy_mem_type (insn, opx_p))
6379 {
6380 case OP_TYPE_MEM1:
6381 case OP_TYPE_MEM6:
6382 return true;
6383
6384 default:
6385 return false;
6386 }
6387 }
6388
6389 /* Return X or Y (depending on OPX_P) operand of INSN,
6390 if it is a MEM, or NULL overwise. */
6391 static rtx
6392 sched_get_mem_operand (rtx_insn *insn, bool must_read_p, bool must_write_p)
6393 {
6394 bool opx_p;
6395 bool opy_p;
6396
6397 opx_p = false;
6398 opy_p = false;
6399
6400 if (must_read_p)
6401 {
6402 opx_p = true;
6403 opy_p = true;
6404 }
6405
6406 if (must_write_p)
6407 {
6408 opx_p = true;
6409 opy_p = false;
6410 }
6411
6412 if (opy_p && sched_mem_operand_p (insn, false))
6413 return sched_get_operand (insn, false);
6414
6415 if (opx_p && sched_mem_operand_p (insn, true))
6416 return sched_get_operand (insn, true);
6417
6418 gcc_unreachable ();
6419 return NULL;
6420 }
6421
6422 /* Return non-zero if PRO modifies register used as part of
6423 address in CON. */
6424 int
6425 m68k_sched_address_bypass_p (rtx_insn *pro, rtx_insn *con)
6426 {
6427 rtx pro_x;
6428 rtx con_mem_read;
6429
6430 pro_x = sched_get_reg_operand (pro, true);
6431 if (pro_x == NULL)
6432 return 0;
6433
6434 con_mem_read = sched_get_mem_operand (con, true, false);
6435 gcc_assert (con_mem_read != NULL);
6436
6437 if (reg_mentioned_p (pro_x, con_mem_read))
6438 return 1;
6439
6440 return 0;
6441 }
6442
6443 /* Helper function for m68k_sched_indexed_address_bypass_p.
6444 if PRO modifies register used as index in CON,
6445 return scale of indexed memory access in CON. Return zero overwise. */
6446 static int
6447 sched_get_indexed_address_scale (rtx_insn *pro, rtx_insn *con)
6448 {
6449 rtx reg;
6450 rtx mem;
6451 struct m68k_address address;
6452
6453 reg = sched_get_reg_operand (pro, true);
6454 if (reg == NULL)
6455 return 0;
6456
6457 mem = sched_get_mem_operand (con, true, false);
6458 gcc_assert (mem != NULL && MEM_P (mem));
6459
6460 if (!m68k_decompose_address (GET_MODE (mem), XEXP (mem, 0), reload_completed,
6461 &address))
6462 gcc_unreachable ();
6463
6464 if (REGNO (reg) == REGNO (address.index))
6465 {
6466 gcc_assert (address.scale != 0);
6467 return address.scale;
6468 }
6469
6470 return 0;
6471 }
6472
6473 /* Return non-zero if PRO modifies register used
6474 as index with scale 2 or 4 in CON. */
6475 int
6476 m68k_sched_indexed_address_bypass_p (rtx_insn *pro, rtx_insn *con)
6477 {
6478 gcc_assert (sched_cfv4_bypass_data.pro == NULL
6479 && sched_cfv4_bypass_data.con == NULL
6480 && sched_cfv4_bypass_data.scale == 0);
6481
6482 switch (sched_get_indexed_address_scale (pro, con))
6483 {
6484 case 1:
6485 /* We can't have a variable latency bypass, so
6486 remember to adjust the insn cost in adjust_cost hook. */
6487 sched_cfv4_bypass_data.pro = pro;
6488 sched_cfv4_bypass_data.con = con;
6489 sched_cfv4_bypass_data.scale = 1;
6490 return 0;
6491
6492 case 2:
6493 case 4:
6494 return 1;
6495
6496 default:
6497 return 0;
6498 }
6499 }
6500
6501 /* We generate a two-instructions program at M_TRAMP :
6502 movea.l &CHAIN_VALUE,%a0
6503 jmp FNADDR
6504 where %a0 can be modified by changing STATIC_CHAIN_REGNUM. */
6505
6506 static void
6507 m68k_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
6508 {
6509 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
6510 rtx mem;
6511
6512 gcc_assert (ADDRESS_REGNO_P (STATIC_CHAIN_REGNUM));
6513
6514 mem = adjust_address (m_tramp, HImode, 0);
6515 emit_move_insn (mem, GEN_INT(0x207C + ((STATIC_CHAIN_REGNUM-8) << 9)));
6516 mem = adjust_address (m_tramp, SImode, 2);
6517 emit_move_insn (mem, chain_value);
6518
6519 mem = adjust_address (m_tramp, HImode, 6);
6520 emit_move_insn (mem, GEN_INT(0x4EF9));
6521 mem = adjust_address (m_tramp, SImode, 8);
6522 emit_move_insn (mem, fnaddr);
6523
6524 FINALIZE_TRAMPOLINE (XEXP (m_tramp, 0));
6525 }
6526
6527 /* On the 68000, the RTS insn cannot pop anything.
6528 On the 68010, the RTD insn may be used to pop them if the number
6529 of args is fixed, but if the number is variable then the caller
6530 must pop them all. RTD can't be used for library calls now
6531 because the library is compiled with the Unix compiler.
6532 Use of RTD is a selectable option, since it is incompatible with
6533 standard Unix calling sequences. If the option is not selected,
6534 the caller must always pop the args. */
6535
6536 static poly_int64
6537 m68k_return_pops_args (tree fundecl, tree funtype, poly_int64 size)
6538 {
6539 return ((TARGET_RTD
6540 && (!fundecl
6541 || TREE_CODE (fundecl) != IDENTIFIER_NODE)
6542 && (!stdarg_p (funtype)))
6543 ? (HOST_WIDE_INT) size : 0);
6544 }
6545
6546 /* Make sure everything's fine if we *don't* have a given processor.
6547 This assumes that putting a register in fixed_regs will keep the
6548 compiler's mitts completely off it. We don't bother to zero it out
6549 of register classes. */
6550
6551 static void
6552 m68k_conditional_register_usage (void)
6553 {
6554 int i;
6555 HARD_REG_SET x;
6556 if (!TARGET_HARD_FLOAT)
6557 {
6558 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]);
6559 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6560 if (TEST_HARD_REG_BIT (x, i))
6561 fixed_regs[i] = call_used_regs[i] = 1;
6562 }
6563 if (flag_pic)
6564 fixed_regs[PIC_REG] = call_used_regs[PIC_REG] = 1;
6565 }
6566
6567 static void
6568 m68k_init_sync_libfuncs (void)
6569 {
6570 init_sync_libfuncs (UNITS_PER_WORD);
6571 }
6572
6573 /* Implements EPILOGUE_USES. All registers are live on exit from an
6574 interrupt routine. */
6575 bool
6576 m68k_epilogue_uses (int regno ATTRIBUTE_UNUSED)
6577 {
6578 return (reload_completed
6579 && (m68k_get_function_kind (current_function_decl)
6580 == m68k_fk_interrupt_handler));
6581 }
6582
6583
6584 /* Implement TARGET_C_EXCESS_PRECISION.
6585
6586 Set the value of FLT_EVAL_METHOD in float.h. When using 68040 fp
6587 instructions, we get proper intermediate rounding, otherwise we
6588 get extended precision results. */
6589
6590 static enum flt_eval_method
6591 m68k_excess_precision (enum excess_precision_type type)
6592 {
6593 switch (type)
6594 {
6595 case EXCESS_PRECISION_TYPE_FAST:
6596 /* The fastest type to promote to will always be the native type,
6597 whether that occurs with implicit excess precision or
6598 otherwise. */
6599 return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT;
6600 case EXCESS_PRECISION_TYPE_STANDARD:
6601 case EXCESS_PRECISION_TYPE_IMPLICIT:
6602 /* Otherwise, the excess precision we want when we are
6603 in a standards compliant mode, and the implicit precision we
6604 provide can be identical. */
6605 if (TARGET_68040 || ! TARGET_68881)
6606 return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT;
6607
6608 return FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE;
6609 default:
6610 gcc_unreachable ();
6611 }
6612 return FLT_EVAL_METHOD_UNPREDICTABLE;
6613 }
6614
6615 /* Implement PUSH_ROUNDING. On the 680x0, sp@- in a byte insn really pushes
6616 a word. On the ColdFire, sp@- in a byte insn pushes just a byte. */
6617
6618 poly_int64
6619 m68k_push_rounding (poly_int64 bytes)
6620 {
6621 if (TARGET_COLDFIRE)
6622 return bytes;
6623 return (bytes + 1) & ~1;
6624 }
6625
6626 /* Implement TARGET_PROMOTE_FUNCTION_MODE. */
6627
6628 static machine_mode
6629 m68k_promote_function_mode (const_tree type, machine_mode mode,
6630 int *punsignedp ATTRIBUTE_UNUSED,
6631 const_tree fntype ATTRIBUTE_UNUSED,
6632 int for_return)
6633 {
6634 /* Promote libcall arguments narrower than int to match the normal C
6635 ABI (for which promotions are handled via
6636 TARGET_PROMOTE_PROTOTYPES). */
6637 if (type == NULL_TREE && !for_return && (mode == QImode || mode == HImode))
6638 return SImode;
6639 return mode;
6640 }
6641
6642 #include "gt-m68k.h"