]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/m68k/m68k.c
Update copyright years.
[thirdparty/gcc.git] / gcc / config / m68k / m68k.c
1 /* Subroutines for insn-output.c for Motorola 68000 family.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #define IN_TARGET_CODE 1
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "cfghooks.h"
27 #include "tree.h"
28 #include "stringpool.h"
29 #include "attribs.h"
30 #include "rtl.h"
31 #include "df.h"
32 #include "alias.h"
33 #include "fold-const.h"
34 #include "calls.h"
35 #include "stor-layout.h"
36 #include "varasm.h"
37 #include "regs.h"
38 #include "insn-config.h"
39 #include "conditions.h"
40 #include "output.h"
41 #include "insn-attr.h"
42 #include "recog.h"
43 #include "diagnostic-core.h"
44 #include "flags.h"
45 #include "expmed.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "memmodel.h"
49 #include "emit-rtl.h"
50 #include "stmt.h"
51 #include "expr.h"
52 #include "reload.h"
53 #include "tm_p.h"
54 #include "target.h"
55 #include "debug.h"
56 #include "cfgrtl.h"
57 #include "cfganal.h"
58 #include "lcm.h"
59 #include "cfgbuild.h"
60 #include "cfgcleanup.h"
61 /* ??? Need to add a dependency between m68k.o and sched-int.h. */
62 #include "sched-int.h"
63 #include "insn-codes.h"
64 #include "opts.h"
65 #include "optabs.h"
66 #include "builtins.h"
67 #include "rtl-iter.h"
68
69 /* This file should be included last. */
70 #include "target-def.h"
71
72 enum reg_class regno_reg_class[] =
73 {
74 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
75 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
76 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
77 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
78 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
79 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
80 ADDR_REGS
81 };
82
83
84 /* The minimum number of integer registers that we want to save with the
85 movem instruction. Using two movel instructions instead of a single
86 moveml is about 15% faster for the 68020 and 68030 at no expense in
87 code size. */
88 #define MIN_MOVEM_REGS 3
89
90 /* The minimum number of floating point registers that we want to save
91 with the fmovem instruction. */
92 #define MIN_FMOVEM_REGS 1
93
94 /* Structure describing stack frame layout. */
95 struct m68k_frame
96 {
97 /* Stack pointer to frame pointer offset. */
98 HOST_WIDE_INT offset;
99
100 /* Offset of FPU registers. */
101 HOST_WIDE_INT foffset;
102
103 /* Frame size in bytes (rounded up). */
104 HOST_WIDE_INT size;
105
106 /* Data and address register. */
107 int reg_no;
108 unsigned int reg_mask;
109
110 /* FPU registers. */
111 int fpu_no;
112 unsigned int fpu_mask;
113
114 /* Offsets relative to ARG_POINTER. */
115 HOST_WIDE_INT frame_pointer_offset;
116 HOST_WIDE_INT stack_pointer_offset;
117
118 /* Function which the above information refers to. */
119 int funcdef_no;
120 };
121
122 /* Current frame information calculated by m68k_compute_frame_layout(). */
123 static struct m68k_frame current_frame;
124
125 /* Structure describing an m68k address.
126
127 If CODE is UNKNOWN, the address is BASE + INDEX * SCALE + OFFSET,
128 with null fields evaluating to 0. Here:
129
130 - BASE satisfies m68k_legitimate_base_reg_p
131 - INDEX satisfies m68k_legitimate_index_reg_p
132 - OFFSET satisfies m68k_legitimate_constant_address_p
133
134 INDEX is either HImode or SImode. The other fields are SImode.
135
136 If CODE is PRE_DEC, the address is -(BASE). If CODE is POST_INC,
137 the address is (BASE)+. */
138 struct m68k_address {
139 enum rtx_code code;
140 rtx base;
141 rtx index;
142 rtx offset;
143 int scale;
144 };
145
146 static int m68k_sched_adjust_cost (rtx_insn *, int, rtx_insn *, int,
147 unsigned int);
148 static int m68k_sched_issue_rate (void);
149 static int m68k_sched_variable_issue (FILE *, int, rtx_insn *, int);
150 static void m68k_sched_md_init_global (FILE *, int, int);
151 static void m68k_sched_md_finish_global (FILE *, int);
152 static void m68k_sched_md_init (FILE *, int, int);
153 static void m68k_sched_dfa_pre_advance_cycle (void);
154 static void m68k_sched_dfa_post_advance_cycle (void);
155 static int m68k_sched_first_cycle_multipass_dfa_lookahead (void);
156
157 static bool m68k_can_eliminate (const int, const int);
158 static void m68k_conditional_register_usage (void);
159 static bool m68k_legitimate_address_p (machine_mode, rtx, bool);
160 static void m68k_option_override (void);
161 static void m68k_override_options_after_change (void);
162 static rtx find_addr_reg (rtx);
163 static const char *singlemove_string (rtx *);
164 static void m68k_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
165 HOST_WIDE_INT, tree);
166 static rtx m68k_struct_value_rtx (tree, int);
167 static tree m68k_handle_fndecl_attribute (tree *node, tree name,
168 tree args, int flags,
169 bool *no_add_attrs);
170 static void m68k_compute_frame_layout (void);
171 static bool m68k_save_reg (unsigned int regno, bool interrupt_handler);
172 static bool m68k_ok_for_sibcall_p (tree, tree);
173 static bool m68k_tls_symbol_p (rtx);
174 static rtx m68k_legitimize_address (rtx, rtx, machine_mode);
175 static bool m68k_rtx_costs (rtx, machine_mode, int, int, int *, bool);
176 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
177 static bool m68k_return_in_memory (const_tree, const_tree);
178 #endif
179 static void m68k_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
180 static void m68k_trampoline_init (rtx, tree, rtx);
181 static poly_int64 m68k_return_pops_args (tree, tree, poly_int64);
182 static rtx m68k_delegitimize_address (rtx);
183 static void m68k_function_arg_advance (cumulative_args_t, machine_mode,
184 const_tree, bool);
185 static rtx m68k_function_arg (cumulative_args_t, machine_mode,
186 const_tree, bool);
187 static bool m68k_cannot_force_const_mem (machine_mode mode, rtx x);
188 static bool m68k_output_addr_const_extra (FILE *, rtx);
189 static void m68k_init_sync_libfuncs (void) ATTRIBUTE_UNUSED;
190 static enum flt_eval_method
191 m68k_excess_precision (enum excess_precision_type);
192 static unsigned int m68k_hard_regno_nregs (unsigned int, machine_mode);
193 static bool m68k_hard_regno_mode_ok (unsigned int, machine_mode);
194 static bool m68k_modes_tieable_p (machine_mode, machine_mode);
195 \f
196 /* Initialize the GCC target structure. */
197
198 #if INT_OP_GROUP == INT_OP_DOT_WORD
199 #undef TARGET_ASM_ALIGNED_HI_OP
200 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
201 #endif
202
203 #if INT_OP_GROUP == INT_OP_NO_DOT
204 #undef TARGET_ASM_BYTE_OP
205 #define TARGET_ASM_BYTE_OP "\tbyte\t"
206 #undef TARGET_ASM_ALIGNED_HI_OP
207 #define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
208 #undef TARGET_ASM_ALIGNED_SI_OP
209 #define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
210 #endif
211
212 #if INT_OP_GROUP == INT_OP_DC
213 #undef TARGET_ASM_BYTE_OP
214 #define TARGET_ASM_BYTE_OP "\tdc.b\t"
215 #undef TARGET_ASM_ALIGNED_HI_OP
216 #define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
217 #undef TARGET_ASM_ALIGNED_SI_OP
218 #define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
219 #endif
220
221 #undef TARGET_ASM_UNALIGNED_HI_OP
222 #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
223 #undef TARGET_ASM_UNALIGNED_SI_OP
224 #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
225
226 #undef TARGET_ASM_OUTPUT_MI_THUNK
227 #define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
228 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
229 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
230
231 #undef TARGET_ASM_FILE_START_APP_OFF
232 #define TARGET_ASM_FILE_START_APP_OFF true
233
234 #undef TARGET_LEGITIMIZE_ADDRESS
235 #define TARGET_LEGITIMIZE_ADDRESS m68k_legitimize_address
236
237 #undef TARGET_SCHED_ADJUST_COST
238 #define TARGET_SCHED_ADJUST_COST m68k_sched_adjust_cost
239
240 #undef TARGET_SCHED_ISSUE_RATE
241 #define TARGET_SCHED_ISSUE_RATE m68k_sched_issue_rate
242
243 #undef TARGET_SCHED_VARIABLE_ISSUE
244 #define TARGET_SCHED_VARIABLE_ISSUE m68k_sched_variable_issue
245
246 #undef TARGET_SCHED_INIT_GLOBAL
247 #define TARGET_SCHED_INIT_GLOBAL m68k_sched_md_init_global
248
249 #undef TARGET_SCHED_FINISH_GLOBAL
250 #define TARGET_SCHED_FINISH_GLOBAL m68k_sched_md_finish_global
251
252 #undef TARGET_SCHED_INIT
253 #define TARGET_SCHED_INIT m68k_sched_md_init
254
255 #undef TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE
256 #define TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE m68k_sched_dfa_pre_advance_cycle
257
258 #undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
259 #define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE m68k_sched_dfa_post_advance_cycle
260
261 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
262 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
263 m68k_sched_first_cycle_multipass_dfa_lookahead
264
265 #undef TARGET_OPTION_OVERRIDE
266 #define TARGET_OPTION_OVERRIDE m68k_option_override
267
268 #undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
269 #define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE m68k_override_options_after_change
270
271 #undef TARGET_RTX_COSTS
272 #define TARGET_RTX_COSTS m68k_rtx_costs
273
274 #undef TARGET_ATTRIBUTE_TABLE
275 #define TARGET_ATTRIBUTE_TABLE m68k_attribute_table
276
277 #undef TARGET_PROMOTE_PROTOTYPES
278 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
279
280 #undef TARGET_STRUCT_VALUE_RTX
281 #define TARGET_STRUCT_VALUE_RTX m68k_struct_value_rtx
282
283 #undef TARGET_CANNOT_FORCE_CONST_MEM
284 #define TARGET_CANNOT_FORCE_CONST_MEM m68k_cannot_force_const_mem
285
286 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
287 #define TARGET_FUNCTION_OK_FOR_SIBCALL m68k_ok_for_sibcall_p
288
289 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
290 #undef TARGET_RETURN_IN_MEMORY
291 #define TARGET_RETURN_IN_MEMORY m68k_return_in_memory
292 #endif
293
294 #ifdef HAVE_AS_TLS
295 #undef TARGET_HAVE_TLS
296 #define TARGET_HAVE_TLS (true)
297
298 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
299 #define TARGET_ASM_OUTPUT_DWARF_DTPREL m68k_output_dwarf_dtprel
300 #endif
301
302 #undef TARGET_LRA_P
303 #define TARGET_LRA_P hook_bool_void_false
304
305 #undef TARGET_LEGITIMATE_ADDRESS_P
306 #define TARGET_LEGITIMATE_ADDRESS_P m68k_legitimate_address_p
307
308 #undef TARGET_CAN_ELIMINATE
309 #define TARGET_CAN_ELIMINATE m68k_can_eliminate
310
311 #undef TARGET_CONDITIONAL_REGISTER_USAGE
312 #define TARGET_CONDITIONAL_REGISTER_USAGE m68k_conditional_register_usage
313
314 #undef TARGET_TRAMPOLINE_INIT
315 #define TARGET_TRAMPOLINE_INIT m68k_trampoline_init
316
317 #undef TARGET_RETURN_POPS_ARGS
318 #define TARGET_RETURN_POPS_ARGS m68k_return_pops_args
319
320 #undef TARGET_DELEGITIMIZE_ADDRESS
321 #define TARGET_DELEGITIMIZE_ADDRESS m68k_delegitimize_address
322
323 #undef TARGET_FUNCTION_ARG
324 #define TARGET_FUNCTION_ARG m68k_function_arg
325
326 #undef TARGET_FUNCTION_ARG_ADVANCE
327 #define TARGET_FUNCTION_ARG_ADVANCE m68k_function_arg_advance
328
329 #undef TARGET_LEGITIMATE_CONSTANT_P
330 #define TARGET_LEGITIMATE_CONSTANT_P m68k_legitimate_constant_p
331
332 #undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
333 #define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA m68k_output_addr_const_extra
334
335 #undef TARGET_C_EXCESS_PRECISION
336 #define TARGET_C_EXCESS_PRECISION m68k_excess_precision
337
338 /* The value stored by TAS. */
339 #undef TARGET_ATOMIC_TEST_AND_SET_TRUEVAL
340 #define TARGET_ATOMIC_TEST_AND_SET_TRUEVAL 128
341
342 #undef TARGET_HARD_REGNO_NREGS
343 #define TARGET_HARD_REGNO_NREGS m68k_hard_regno_nregs
344 #undef TARGET_HARD_REGNO_MODE_OK
345 #define TARGET_HARD_REGNO_MODE_OK m68k_hard_regno_mode_ok
346
347 #undef TARGET_MODES_TIEABLE_P
348 #define TARGET_MODES_TIEABLE_P m68k_modes_tieable_p
349
350 static const struct attribute_spec m68k_attribute_table[] =
351 {
352 /* { name, min_len, max_len, decl_req, type_req, fn_type_req,
353 affects_type_identity, handler, exclude } */
354 { "interrupt", 0, 0, true, false, false, false,
355 m68k_handle_fndecl_attribute, NULL },
356 { "interrupt_handler", 0, 0, true, false, false, false,
357 m68k_handle_fndecl_attribute, NULL },
358 { "interrupt_thread", 0, 0, true, false, false, false,
359 m68k_handle_fndecl_attribute, NULL },
360 { NULL, 0, 0, false, false, false, false, NULL, NULL }
361 };
362
363 struct gcc_target targetm = TARGET_INITIALIZER;
364 \f
365 /* Base flags for 68k ISAs. */
366 #define FL_FOR_isa_00 FL_ISA_68000
367 #define FL_FOR_isa_10 (FL_FOR_isa_00 | FL_ISA_68010)
368 /* FL_68881 controls the default setting of -m68881. gcc has traditionally
369 generated 68881 code for 68020 and 68030 targets unless explicitly told
370 not to. */
371 #define FL_FOR_isa_20 (FL_FOR_isa_10 | FL_ISA_68020 \
372 | FL_BITFIELD | FL_68881 | FL_CAS)
373 #define FL_FOR_isa_40 (FL_FOR_isa_20 | FL_ISA_68040)
374 #define FL_FOR_isa_cpu32 (FL_FOR_isa_10 | FL_ISA_68020)
375
376 /* Base flags for ColdFire ISAs. */
377 #define FL_FOR_isa_a (FL_COLDFIRE | FL_ISA_A)
378 #define FL_FOR_isa_aplus (FL_FOR_isa_a | FL_ISA_APLUS | FL_CF_USP)
379 /* Note ISA_B doesn't necessarily include USP (user stack pointer) support. */
380 #define FL_FOR_isa_b (FL_FOR_isa_a | FL_ISA_B | FL_CF_HWDIV)
381 /* ISA_C is not upwardly compatible with ISA_B. */
382 #define FL_FOR_isa_c (FL_FOR_isa_a | FL_ISA_C | FL_CF_USP)
383
384 enum m68k_isa
385 {
386 /* Traditional 68000 instruction sets. */
387 isa_00,
388 isa_10,
389 isa_20,
390 isa_40,
391 isa_cpu32,
392 /* ColdFire instruction set variants. */
393 isa_a,
394 isa_aplus,
395 isa_b,
396 isa_c,
397 isa_max
398 };
399
400 /* Information about one of the -march, -mcpu or -mtune arguments. */
401 struct m68k_target_selection
402 {
403 /* The argument being described. */
404 const char *name;
405
406 /* For -mcpu, this is the device selected by the option.
407 For -mtune and -march, it is a representative device
408 for the microarchitecture or ISA respectively. */
409 enum target_device device;
410
411 /* The M68K_DEVICE fields associated with DEVICE. See the comment
412 in m68k-devices.def for details. FAMILY is only valid for -mcpu. */
413 const char *family;
414 enum uarch_type microarch;
415 enum m68k_isa isa;
416 unsigned long flags;
417 };
418
419 /* A list of all devices in m68k-devices.def. Used for -mcpu selection. */
420 static const struct m68k_target_selection all_devices[] =
421 {
422 #define M68K_DEVICE(NAME,ENUM_VALUE,FAMILY,MULTILIB,MICROARCH,ISA,FLAGS) \
423 { NAME, ENUM_VALUE, FAMILY, u##MICROARCH, ISA, FLAGS | FL_FOR_##ISA },
424 #include "m68k-devices.def"
425 #undef M68K_DEVICE
426 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
427 };
428
429 /* A list of all ISAs, mapping each one to a representative device.
430 Used for -march selection. */
431 static const struct m68k_target_selection all_isas[] =
432 {
433 #define M68K_ISA(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
434 { NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
435 #include "m68k-isas.def"
436 #undef M68K_ISA
437 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
438 };
439
440 /* A list of all microarchitectures, mapping each one to a representative
441 device. Used for -mtune selection. */
442 static const struct m68k_target_selection all_microarchs[] =
443 {
444 #define M68K_MICROARCH(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
445 { NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
446 #include "m68k-microarchs.def"
447 #undef M68K_MICROARCH
448 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
449 };
450 \f
451 /* The entries associated with the -mcpu, -march and -mtune settings,
452 or null for options that have not been used. */
453 const struct m68k_target_selection *m68k_cpu_entry;
454 const struct m68k_target_selection *m68k_arch_entry;
455 const struct m68k_target_selection *m68k_tune_entry;
456
457 /* Which CPU we are generating code for. */
458 enum target_device m68k_cpu;
459
460 /* Which microarchitecture to tune for. */
461 enum uarch_type m68k_tune;
462
463 /* Which FPU to use. */
464 enum fpu_type m68k_fpu;
465
466 /* The set of FL_* flags that apply to the target processor. */
467 unsigned int m68k_cpu_flags;
468
469 /* The set of FL_* flags that apply to the processor to be tuned for. */
470 unsigned int m68k_tune_flags;
471
472 /* Asm templates for calling or jumping to an arbitrary symbolic address,
473 or NULL if such calls or jumps are not supported. The address is held
474 in operand 0. */
475 const char *m68k_symbolic_call;
476 const char *m68k_symbolic_jump;
477
478 /* Enum variable that corresponds to m68k_symbolic_call values. */
479 enum M68K_SYMBOLIC_CALL m68k_symbolic_call_var;
480
481 \f
482 /* Implement TARGET_OPTION_OVERRIDE. */
483
484 static void
485 m68k_option_override (void)
486 {
487 const struct m68k_target_selection *entry;
488 unsigned long target_mask;
489
490 if (global_options_set.x_m68k_arch_option)
491 m68k_arch_entry = &all_isas[m68k_arch_option];
492
493 if (global_options_set.x_m68k_cpu_option)
494 m68k_cpu_entry = &all_devices[(int) m68k_cpu_option];
495
496 if (global_options_set.x_m68k_tune_option)
497 m68k_tune_entry = &all_microarchs[(int) m68k_tune_option];
498
499 /* User can choose:
500
501 -mcpu=
502 -march=
503 -mtune=
504
505 -march=ARCH should generate code that runs any processor
506 implementing architecture ARCH. -mcpu=CPU should override -march
507 and should generate code that runs on processor CPU, making free
508 use of any instructions that CPU understands. -mtune=UARCH applies
509 on top of -mcpu or -march and optimizes the code for UARCH. It does
510 not change the target architecture. */
511 if (m68k_cpu_entry)
512 {
513 /* Complain if the -march setting is for a different microarchitecture,
514 or includes flags that the -mcpu setting doesn't. */
515 if (m68k_arch_entry
516 && (m68k_arch_entry->microarch != m68k_cpu_entry->microarch
517 || (m68k_arch_entry->flags & ~m68k_cpu_entry->flags) != 0))
518 warning (0, "-mcpu=%s conflicts with -march=%s",
519 m68k_cpu_entry->name, m68k_arch_entry->name);
520
521 entry = m68k_cpu_entry;
522 }
523 else
524 entry = m68k_arch_entry;
525
526 if (!entry)
527 entry = all_devices + TARGET_CPU_DEFAULT;
528
529 m68k_cpu_flags = entry->flags;
530
531 /* Use the architecture setting to derive default values for
532 certain flags. */
533 target_mask = 0;
534
535 /* ColdFire is lenient about alignment. */
536 if (!TARGET_COLDFIRE)
537 target_mask |= MASK_STRICT_ALIGNMENT;
538
539 if ((m68k_cpu_flags & FL_BITFIELD) != 0)
540 target_mask |= MASK_BITFIELD;
541 if ((m68k_cpu_flags & FL_CF_HWDIV) != 0)
542 target_mask |= MASK_CF_HWDIV;
543 if ((m68k_cpu_flags & (FL_68881 | FL_CF_FPU)) != 0)
544 target_mask |= MASK_HARD_FLOAT;
545 target_flags |= target_mask & ~target_flags_explicit;
546
547 /* Set the directly-usable versions of the -mcpu and -mtune settings. */
548 m68k_cpu = entry->device;
549 if (m68k_tune_entry)
550 {
551 m68k_tune = m68k_tune_entry->microarch;
552 m68k_tune_flags = m68k_tune_entry->flags;
553 }
554 #ifdef M68K_DEFAULT_TUNE
555 else if (!m68k_cpu_entry && !m68k_arch_entry)
556 {
557 enum target_device dev;
558 dev = all_microarchs[M68K_DEFAULT_TUNE].device;
559 m68k_tune_flags = all_devices[dev].flags;
560 }
561 #endif
562 else
563 {
564 m68k_tune = entry->microarch;
565 m68k_tune_flags = entry->flags;
566 }
567
568 /* Set the type of FPU. */
569 m68k_fpu = (!TARGET_HARD_FLOAT ? FPUTYPE_NONE
570 : (m68k_cpu_flags & FL_COLDFIRE) != 0 ? FPUTYPE_COLDFIRE
571 : FPUTYPE_68881);
572
573 /* Sanity check to ensure that msep-data and mid-sahred-library are not
574 * both specified together. Doing so simply doesn't make sense.
575 */
576 if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
577 error ("cannot specify both -msep-data and -mid-shared-library");
578
579 /* If we're generating code for a separate A5 relative data segment,
580 * we've got to enable -fPIC as well. This might be relaxable to
581 * -fpic but it hasn't been tested properly.
582 */
583 if (TARGET_SEP_DATA || TARGET_ID_SHARED_LIBRARY)
584 flag_pic = 2;
585
586 /* -mpcrel -fPIC uses 32-bit pc-relative displacements. Raise an
587 error if the target does not support them. */
588 if (TARGET_PCREL && !TARGET_68020 && flag_pic == 2)
589 error ("-mpcrel -fPIC is not currently supported on selected cpu");
590
591 /* ??? A historic way of turning on pic, or is this intended to
592 be an embedded thing that doesn't have the same name binding
593 significance that it does on hosted ELF systems? */
594 if (TARGET_PCREL && flag_pic == 0)
595 flag_pic = 1;
596
597 if (!flag_pic)
598 {
599 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_JSR;
600
601 m68k_symbolic_jump = "jra %a0";
602 }
603 else if (TARGET_ID_SHARED_LIBRARY)
604 /* All addresses must be loaded from the GOT. */
605 ;
606 else if (TARGET_68020 || TARGET_ISAB || TARGET_ISAC)
607 {
608 if (TARGET_PCREL)
609 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_C;
610 else
611 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_P;
612
613 if (TARGET_ISAC)
614 /* No unconditional long branch */;
615 else if (TARGET_PCREL)
616 m68k_symbolic_jump = "bra%.l %c0";
617 else
618 m68k_symbolic_jump = "bra%.l %p0";
619 /* Turn off function cse if we are doing PIC. We always want
620 function call to be done as `bsr foo@PLTPC'. */
621 /* ??? It's traditional to do this for -mpcrel too, but it isn't
622 clear how intentional that is. */
623 flag_no_function_cse = 1;
624 }
625
626 switch (m68k_symbolic_call_var)
627 {
628 case M68K_SYMBOLIC_CALL_JSR:
629 m68k_symbolic_call = "jsr %a0";
630 break;
631
632 case M68K_SYMBOLIC_CALL_BSR_C:
633 m68k_symbolic_call = "bsr%.l %c0";
634 break;
635
636 case M68K_SYMBOLIC_CALL_BSR_P:
637 m68k_symbolic_call = "bsr%.l %p0";
638 break;
639
640 case M68K_SYMBOLIC_CALL_NONE:
641 gcc_assert (m68k_symbolic_call == NULL);
642 break;
643
644 default:
645 gcc_unreachable ();
646 }
647
648 #ifndef ASM_OUTPUT_ALIGN_WITH_NOP
649 if (align_labels > 2)
650 {
651 warning (0, "-falign-labels=%d is not supported", align_labels);
652 align_labels = 0;
653 }
654 if (align_loops > 2)
655 {
656 warning (0, "-falign-loops=%d is not supported", align_loops);
657 align_loops = 0;
658 }
659 #endif
660
661 if ((opt_fstack_limit_symbol_arg != NULL || opt_fstack_limit_register_no >= 0)
662 && !TARGET_68020)
663 {
664 warning (0, "-fstack-limit- options are not supported on this cpu");
665 opt_fstack_limit_symbol_arg = NULL;
666 opt_fstack_limit_register_no = -1;
667 }
668
669 SUBTARGET_OVERRIDE_OPTIONS;
670
671 /* Setup scheduling options. */
672 if (TUNE_CFV1)
673 m68k_sched_cpu = CPU_CFV1;
674 else if (TUNE_CFV2)
675 m68k_sched_cpu = CPU_CFV2;
676 else if (TUNE_CFV3)
677 m68k_sched_cpu = CPU_CFV3;
678 else if (TUNE_CFV4)
679 m68k_sched_cpu = CPU_CFV4;
680 else
681 {
682 m68k_sched_cpu = CPU_UNKNOWN;
683 flag_schedule_insns = 0;
684 flag_schedule_insns_after_reload = 0;
685 flag_modulo_sched = 0;
686 flag_live_range_shrinkage = 0;
687 }
688
689 if (m68k_sched_cpu != CPU_UNKNOWN)
690 {
691 if ((m68k_cpu_flags & (FL_CF_EMAC | FL_CF_EMAC_B)) != 0)
692 m68k_sched_mac = MAC_CF_EMAC;
693 else if ((m68k_cpu_flags & FL_CF_MAC) != 0)
694 m68k_sched_mac = MAC_CF_MAC;
695 else
696 m68k_sched_mac = MAC_NO;
697 }
698 }
699
700 /* Implement TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE. */
701
702 static void
703 m68k_override_options_after_change (void)
704 {
705 if (m68k_sched_cpu == CPU_UNKNOWN)
706 {
707 flag_schedule_insns = 0;
708 flag_schedule_insns_after_reload = 0;
709 flag_modulo_sched = 0;
710 flag_live_range_shrinkage = 0;
711 }
712 }
713
714 /* Generate a macro of the form __mPREFIX_cpu_NAME, where PREFIX is the
715 given argument and NAME is the argument passed to -mcpu. Return NULL
716 if -mcpu was not passed. */
717
718 const char *
719 m68k_cpp_cpu_ident (const char *prefix)
720 {
721 if (!m68k_cpu_entry)
722 return NULL;
723 return concat ("__m", prefix, "_cpu_", m68k_cpu_entry->name, NULL);
724 }
725
726 /* Generate a macro of the form __mPREFIX_family_NAME, where PREFIX is the
727 given argument and NAME is the name of the representative device for
728 the -mcpu argument's family. Return NULL if -mcpu was not passed. */
729
730 const char *
731 m68k_cpp_cpu_family (const char *prefix)
732 {
733 if (!m68k_cpu_entry)
734 return NULL;
735 return concat ("__m", prefix, "_family_", m68k_cpu_entry->family, NULL);
736 }
737 \f
738 /* Return m68k_fk_interrupt_handler if FUNC has an "interrupt" or
739 "interrupt_handler" attribute and interrupt_thread if FUNC has an
740 "interrupt_thread" attribute. Otherwise, return
741 m68k_fk_normal_function. */
742
743 enum m68k_function_kind
744 m68k_get_function_kind (tree func)
745 {
746 tree a;
747
748 gcc_assert (TREE_CODE (func) == FUNCTION_DECL);
749
750 a = lookup_attribute ("interrupt", DECL_ATTRIBUTES (func));
751 if (a != NULL_TREE)
752 return m68k_fk_interrupt_handler;
753
754 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
755 if (a != NULL_TREE)
756 return m68k_fk_interrupt_handler;
757
758 a = lookup_attribute ("interrupt_thread", DECL_ATTRIBUTES (func));
759 if (a != NULL_TREE)
760 return m68k_fk_interrupt_thread;
761
762 return m68k_fk_normal_function;
763 }
764
765 /* Handle an attribute requiring a FUNCTION_DECL; arguments as in
766 struct attribute_spec.handler. */
767 static tree
768 m68k_handle_fndecl_attribute (tree *node, tree name,
769 tree args ATTRIBUTE_UNUSED,
770 int flags ATTRIBUTE_UNUSED,
771 bool *no_add_attrs)
772 {
773 if (TREE_CODE (*node) != FUNCTION_DECL)
774 {
775 warning (OPT_Wattributes, "%qE attribute only applies to functions",
776 name);
777 *no_add_attrs = true;
778 }
779
780 if (m68k_get_function_kind (*node) != m68k_fk_normal_function)
781 {
782 error ("multiple interrupt attributes not allowed");
783 *no_add_attrs = true;
784 }
785
786 if (!TARGET_FIDOA
787 && !strcmp (IDENTIFIER_POINTER (name), "interrupt_thread"))
788 {
789 error ("interrupt_thread is available only on fido");
790 *no_add_attrs = true;
791 }
792
793 return NULL_TREE;
794 }
795
796 static void
797 m68k_compute_frame_layout (void)
798 {
799 int regno, saved;
800 unsigned int mask;
801 enum m68k_function_kind func_kind =
802 m68k_get_function_kind (current_function_decl);
803 bool interrupt_handler = func_kind == m68k_fk_interrupt_handler;
804 bool interrupt_thread = func_kind == m68k_fk_interrupt_thread;
805
806 /* Only compute the frame once per function.
807 Don't cache information until reload has been completed. */
808 if (current_frame.funcdef_no == current_function_funcdef_no
809 && reload_completed)
810 return;
811
812 current_frame.size = (get_frame_size () + 3) & -4;
813
814 mask = saved = 0;
815
816 /* Interrupt thread does not need to save any register. */
817 if (!interrupt_thread)
818 for (regno = 0; regno < 16; regno++)
819 if (m68k_save_reg (regno, interrupt_handler))
820 {
821 mask |= 1 << (regno - D0_REG);
822 saved++;
823 }
824 current_frame.offset = saved * 4;
825 current_frame.reg_no = saved;
826 current_frame.reg_mask = mask;
827
828 current_frame.foffset = 0;
829 mask = saved = 0;
830 if (TARGET_HARD_FLOAT)
831 {
832 /* Interrupt thread does not need to save any register. */
833 if (!interrupt_thread)
834 for (regno = 16; regno < 24; regno++)
835 if (m68k_save_reg (regno, interrupt_handler))
836 {
837 mask |= 1 << (regno - FP0_REG);
838 saved++;
839 }
840 current_frame.foffset = saved * TARGET_FP_REG_SIZE;
841 current_frame.offset += current_frame.foffset;
842 }
843 current_frame.fpu_no = saved;
844 current_frame.fpu_mask = mask;
845
846 /* Remember what function this frame refers to. */
847 current_frame.funcdef_no = current_function_funcdef_no;
848 }
849
850 /* Worker function for TARGET_CAN_ELIMINATE. */
851
852 bool
853 m68k_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
854 {
855 return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
856 }
857
858 HOST_WIDE_INT
859 m68k_initial_elimination_offset (int from, int to)
860 {
861 int argptr_offset;
862 /* The arg pointer points 8 bytes before the start of the arguments,
863 as defined by FIRST_PARM_OFFSET. This makes it coincident with the
864 frame pointer in most frames. */
865 argptr_offset = frame_pointer_needed ? 0 : UNITS_PER_WORD;
866 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
867 return argptr_offset;
868
869 m68k_compute_frame_layout ();
870
871 gcc_assert (to == STACK_POINTER_REGNUM);
872 switch (from)
873 {
874 case ARG_POINTER_REGNUM:
875 return current_frame.offset + current_frame.size - argptr_offset;
876 case FRAME_POINTER_REGNUM:
877 return current_frame.offset + current_frame.size;
878 default:
879 gcc_unreachable ();
880 }
881 }
882
883 /* Refer to the array `regs_ever_live' to determine which registers
884 to save; `regs_ever_live[I]' is nonzero if register number I
885 is ever used in the function. This function is responsible for
886 knowing which registers should not be saved even if used.
887 Return true if we need to save REGNO. */
888
889 static bool
890 m68k_save_reg (unsigned int regno, bool interrupt_handler)
891 {
892 if (flag_pic && regno == PIC_REG)
893 {
894 if (crtl->saves_all_registers)
895 return true;
896 if (crtl->uses_pic_offset_table)
897 return true;
898 /* Reload may introduce constant pool references into a function
899 that thitherto didn't need a PIC register. Note that the test
900 above will not catch that case because we will only set
901 crtl->uses_pic_offset_table when emitting
902 the address reloads. */
903 if (crtl->uses_const_pool)
904 return true;
905 }
906
907 if (crtl->calls_eh_return)
908 {
909 unsigned int i;
910 for (i = 0; ; i++)
911 {
912 unsigned int test = EH_RETURN_DATA_REGNO (i);
913 if (test == INVALID_REGNUM)
914 break;
915 if (test == regno)
916 return true;
917 }
918 }
919
920 /* Fixed regs we never touch. */
921 if (fixed_regs[regno])
922 return false;
923
924 /* The frame pointer (if it is such) is handled specially. */
925 if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
926 return false;
927
928 /* Interrupt handlers must also save call_used_regs
929 if they are live or when calling nested functions. */
930 if (interrupt_handler)
931 {
932 if (df_regs_ever_live_p (regno))
933 return true;
934
935 if (!crtl->is_leaf && call_used_regs[regno])
936 return true;
937 }
938
939 /* Never need to save registers that aren't touched. */
940 if (!df_regs_ever_live_p (regno))
941 return false;
942
943 /* Otherwise save everything that isn't call-clobbered. */
944 return !call_used_regs[regno];
945 }
946
947 /* Emit RTL for a MOVEM or FMOVEM instruction. BASE + OFFSET represents
948 the lowest memory address. COUNT is the number of registers to be
949 moved, with register REGNO + I being moved if bit I of MASK is set.
950 STORE_P specifies the direction of the move and ADJUST_STACK_P says
951 whether or not this is pre-decrement (if STORE_P) or post-increment
952 (if !STORE_P) operation. */
953
954 static rtx_insn *
955 m68k_emit_movem (rtx base, HOST_WIDE_INT offset,
956 unsigned int count, unsigned int regno,
957 unsigned int mask, bool store_p, bool adjust_stack_p)
958 {
959 int i;
960 rtx body, addr, src, operands[2];
961 machine_mode mode;
962
963 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (adjust_stack_p + count));
964 mode = reg_raw_mode[regno];
965 i = 0;
966
967 if (adjust_stack_p)
968 {
969 src = plus_constant (Pmode, base,
970 (count
971 * GET_MODE_SIZE (mode)
972 * (HOST_WIDE_INT) (store_p ? -1 : 1)));
973 XVECEXP (body, 0, i++) = gen_rtx_SET (base, src);
974 }
975
976 for (; mask != 0; mask >>= 1, regno++)
977 if (mask & 1)
978 {
979 addr = plus_constant (Pmode, base, offset);
980 operands[!store_p] = gen_frame_mem (mode, addr);
981 operands[store_p] = gen_rtx_REG (mode, regno);
982 XVECEXP (body, 0, i++)
983 = gen_rtx_SET (operands[0], operands[1]);
984 offset += GET_MODE_SIZE (mode);
985 }
986 gcc_assert (i == XVECLEN (body, 0));
987
988 return emit_insn (body);
989 }
990
991 /* Make INSN a frame-related instruction. */
992
993 static void
994 m68k_set_frame_related (rtx_insn *insn)
995 {
996 rtx body;
997 int i;
998
999 RTX_FRAME_RELATED_P (insn) = 1;
1000 body = PATTERN (insn);
1001 if (GET_CODE (body) == PARALLEL)
1002 for (i = 0; i < XVECLEN (body, 0); i++)
1003 RTX_FRAME_RELATED_P (XVECEXP (body, 0, i)) = 1;
1004 }
1005
1006 /* Emit RTL for the "prologue" define_expand. */
1007
1008 void
1009 m68k_expand_prologue (void)
1010 {
1011 HOST_WIDE_INT fsize_with_regs;
1012 rtx limit, src, dest;
1013
1014 m68k_compute_frame_layout ();
1015
1016 if (flag_stack_usage_info)
1017 current_function_static_stack_size
1018 = current_frame.size + current_frame.offset;
1019
1020 /* If the stack limit is a symbol, we can check it here,
1021 before actually allocating the space. */
1022 if (crtl->limit_stack
1023 && GET_CODE (stack_limit_rtx) == SYMBOL_REF)
1024 {
1025 limit = plus_constant (Pmode, stack_limit_rtx, current_frame.size + 4);
1026 if (!m68k_legitimate_constant_p (Pmode, limit))
1027 {
1028 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), limit);
1029 limit = gen_rtx_REG (Pmode, D0_REG);
1030 }
1031 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode,
1032 stack_pointer_rtx, limit),
1033 stack_pointer_rtx, limit,
1034 const1_rtx));
1035 }
1036
1037 fsize_with_regs = current_frame.size;
1038 if (TARGET_COLDFIRE)
1039 {
1040 /* ColdFire's move multiple instructions do not allow pre-decrement
1041 addressing. Add the size of movem saves to the initial stack
1042 allocation instead. */
1043 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1044 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1045 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1046 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1047 }
1048
1049 if (frame_pointer_needed)
1050 {
1051 if (fsize_with_regs == 0 && TUNE_68040)
1052 {
1053 /* On the 68040, two separate moves are faster than link.w 0. */
1054 dest = gen_frame_mem (Pmode,
1055 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1056 m68k_set_frame_related (emit_move_insn (dest, frame_pointer_rtx));
1057 m68k_set_frame_related (emit_move_insn (frame_pointer_rtx,
1058 stack_pointer_rtx));
1059 }
1060 else if (fsize_with_regs < 0x8000 || TARGET_68020)
1061 m68k_set_frame_related
1062 (emit_insn (gen_link (frame_pointer_rtx,
1063 GEN_INT (-4 - fsize_with_regs))));
1064 else
1065 {
1066 m68k_set_frame_related
1067 (emit_insn (gen_link (frame_pointer_rtx, GEN_INT (-4))));
1068 m68k_set_frame_related
1069 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1070 stack_pointer_rtx,
1071 GEN_INT (-fsize_with_regs))));
1072 }
1073
1074 /* If the frame pointer is needed, emit a special barrier that
1075 will prevent the scheduler from moving stores to the frame
1076 before the stack adjustment. */
1077 emit_insn (gen_stack_tie (stack_pointer_rtx, frame_pointer_rtx));
1078 }
1079 else if (fsize_with_regs != 0)
1080 m68k_set_frame_related
1081 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1082 stack_pointer_rtx,
1083 GEN_INT (-fsize_with_regs))));
1084
1085 if (current_frame.fpu_mask)
1086 {
1087 gcc_assert (current_frame.fpu_no >= MIN_FMOVEM_REGS);
1088 if (TARGET_68881)
1089 m68k_set_frame_related
1090 (m68k_emit_movem (stack_pointer_rtx,
1091 current_frame.fpu_no * -GET_MODE_SIZE (XFmode),
1092 current_frame.fpu_no, FP0_REG,
1093 current_frame.fpu_mask, true, true));
1094 else
1095 {
1096 int offset;
1097
1098 /* If we're using moveml to save the integer registers,
1099 the stack pointer will point to the bottom of the moveml
1100 save area. Find the stack offset of the first FP register. */
1101 if (current_frame.reg_no < MIN_MOVEM_REGS)
1102 offset = 0;
1103 else
1104 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1105 m68k_set_frame_related
1106 (m68k_emit_movem (stack_pointer_rtx, offset,
1107 current_frame.fpu_no, FP0_REG,
1108 current_frame.fpu_mask, true, false));
1109 }
1110 }
1111
1112 /* If the stack limit is not a symbol, check it here.
1113 This has the disadvantage that it may be too late... */
1114 if (crtl->limit_stack)
1115 {
1116 if (REG_P (stack_limit_rtx))
1117 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode, stack_pointer_rtx,
1118 stack_limit_rtx),
1119 stack_pointer_rtx, stack_limit_rtx,
1120 const1_rtx));
1121
1122 else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
1123 warning (0, "stack limit expression is not supported");
1124 }
1125
1126 if (current_frame.reg_no < MIN_MOVEM_REGS)
1127 {
1128 /* Store each register separately in the same order moveml does. */
1129 int i;
1130
1131 for (i = 16; i-- > 0; )
1132 if (current_frame.reg_mask & (1 << i))
1133 {
1134 src = gen_rtx_REG (SImode, D0_REG + i);
1135 dest = gen_frame_mem (SImode,
1136 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1137 m68k_set_frame_related (emit_insn (gen_movsi (dest, src)));
1138 }
1139 }
1140 else
1141 {
1142 if (TARGET_COLDFIRE)
1143 /* The required register save space has already been allocated.
1144 The first register should be stored at (%sp). */
1145 m68k_set_frame_related
1146 (m68k_emit_movem (stack_pointer_rtx, 0,
1147 current_frame.reg_no, D0_REG,
1148 current_frame.reg_mask, true, false));
1149 else
1150 m68k_set_frame_related
1151 (m68k_emit_movem (stack_pointer_rtx,
1152 current_frame.reg_no * -GET_MODE_SIZE (SImode),
1153 current_frame.reg_no, D0_REG,
1154 current_frame.reg_mask, true, true));
1155 }
1156
1157 if (!TARGET_SEP_DATA
1158 && crtl->uses_pic_offset_table)
1159 emit_insn (gen_load_got (pic_offset_table_rtx));
1160 }
1161 \f
1162 /* Return true if a simple (return) instruction is sufficient for this
1163 instruction (i.e. if no epilogue is needed). */
1164
1165 bool
1166 m68k_use_return_insn (void)
1167 {
1168 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
1169 return false;
1170
1171 m68k_compute_frame_layout ();
1172 return current_frame.offset == 0;
1173 }
1174
1175 /* Emit RTL for the "epilogue" or "sibcall_epilogue" define_expand;
1176 SIBCALL_P says which.
1177
1178 The function epilogue should not depend on the current stack pointer!
1179 It should use the frame pointer only, if there is a frame pointer.
1180 This is mandatory because of alloca; we also take advantage of it to
1181 omit stack adjustments before returning. */
1182
1183 void
1184 m68k_expand_epilogue (bool sibcall_p)
1185 {
1186 HOST_WIDE_INT fsize, fsize_with_regs;
1187 bool big, restore_from_sp;
1188
1189 m68k_compute_frame_layout ();
1190
1191 fsize = current_frame.size;
1192 big = false;
1193 restore_from_sp = false;
1194
1195 /* FIXME : crtl->is_leaf below is too strong.
1196 What we really need to know there is if there could be pending
1197 stack adjustment needed at that point. */
1198 restore_from_sp = (!frame_pointer_needed
1199 || (!cfun->calls_alloca && crtl->is_leaf));
1200
1201 /* fsize_with_regs is the size we need to adjust the sp when
1202 popping the frame. */
1203 fsize_with_regs = fsize;
1204 if (TARGET_COLDFIRE && restore_from_sp)
1205 {
1206 /* ColdFire's move multiple instructions do not allow post-increment
1207 addressing. Add the size of movem loads to the final deallocation
1208 instead. */
1209 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1210 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1211 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1212 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1213 }
1214
1215 if (current_frame.offset + fsize >= 0x8000
1216 && !restore_from_sp
1217 && (current_frame.reg_mask || current_frame.fpu_mask))
1218 {
1219 if (TARGET_COLDFIRE
1220 && (current_frame.reg_no >= MIN_MOVEM_REGS
1221 || current_frame.fpu_no >= MIN_FMOVEM_REGS))
1222 {
1223 /* ColdFire's move multiple instructions do not support the
1224 (d8,Ax,Xi) addressing mode, so we're as well using a normal
1225 stack-based restore. */
1226 emit_move_insn (gen_rtx_REG (Pmode, A1_REG),
1227 GEN_INT (-(current_frame.offset + fsize)));
1228 emit_insn (gen_blockage ());
1229 emit_insn (gen_addsi3 (stack_pointer_rtx,
1230 gen_rtx_REG (Pmode, A1_REG),
1231 frame_pointer_rtx));
1232 restore_from_sp = true;
1233 }
1234 else
1235 {
1236 emit_move_insn (gen_rtx_REG (Pmode, A1_REG), GEN_INT (-fsize));
1237 fsize = 0;
1238 big = true;
1239 }
1240 }
1241
1242 if (current_frame.reg_no < MIN_MOVEM_REGS)
1243 {
1244 /* Restore each register separately in the same order moveml does. */
1245 int i;
1246 HOST_WIDE_INT offset;
1247
1248 offset = current_frame.offset + fsize;
1249 for (i = 0; i < 16; i++)
1250 if (current_frame.reg_mask & (1 << i))
1251 {
1252 rtx addr;
1253
1254 if (big)
1255 {
1256 /* Generate the address -OFFSET(%fp,%a1.l). */
1257 addr = gen_rtx_REG (Pmode, A1_REG);
1258 addr = gen_rtx_PLUS (Pmode, addr, frame_pointer_rtx);
1259 addr = plus_constant (Pmode, addr, -offset);
1260 }
1261 else if (restore_from_sp)
1262 addr = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
1263 else
1264 addr = plus_constant (Pmode, frame_pointer_rtx, -offset);
1265 emit_move_insn (gen_rtx_REG (SImode, D0_REG + i),
1266 gen_frame_mem (SImode, addr));
1267 offset -= GET_MODE_SIZE (SImode);
1268 }
1269 }
1270 else if (current_frame.reg_mask)
1271 {
1272 if (big)
1273 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1274 gen_rtx_REG (Pmode, A1_REG),
1275 frame_pointer_rtx),
1276 -(current_frame.offset + fsize),
1277 current_frame.reg_no, D0_REG,
1278 current_frame.reg_mask, false, false);
1279 else if (restore_from_sp)
1280 m68k_emit_movem (stack_pointer_rtx, 0,
1281 current_frame.reg_no, D0_REG,
1282 current_frame.reg_mask, false,
1283 !TARGET_COLDFIRE);
1284 else
1285 m68k_emit_movem (frame_pointer_rtx,
1286 -(current_frame.offset + fsize),
1287 current_frame.reg_no, D0_REG,
1288 current_frame.reg_mask, false, false);
1289 }
1290
1291 if (current_frame.fpu_no > 0)
1292 {
1293 if (big)
1294 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1295 gen_rtx_REG (Pmode, A1_REG),
1296 frame_pointer_rtx),
1297 -(current_frame.foffset + fsize),
1298 current_frame.fpu_no, FP0_REG,
1299 current_frame.fpu_mask, false, false);
1300 else if (restore_from_sp)
1301 {
1302 if (TARGET_COLDFIRE)
1303 {
1304 int offset;
1305
1306 /* If we used moveml to restore the integer registers, the
1307 stack pointer will still point to the bottom of the moveml
1308 save area. Find the stack offset of the first FP
1309 register. */
1310 if (current_frame.reg_no < MIN_MOVEM_REGS)
1311 offset = 0;
1312 else
1313 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1314 m68k_emit_movem (stack_pointer_rtx, offset,
1315 current_frame.fpu_no, FP0_REG,
1316 current_frame.fpu_mask, false, false);
1317 }
1318 else
1319 m68k_emit_movem (stack_pointer_rtx, 0,
1320 current_frame.fpu_no, FP0_REG,
1321 current_frame.fpu_mask, false, true);
1322 }
1323 else
1324 m68k_emit_movem (frame_pointer_rtx,
1325 -(current_frame.foffset + fsize),
1326 current_frame.fpu_no, FP0_REG,
1327 current_frame.fpu_mask, false, false);
1328 }
1329
1330 emit_insn (gen_blockage ());
1331 if (frame_pointer_needed)
1332 emit_insn (gen_unlink (frame_pointer_rtx));
1333 else if (fsize_with_regs)
1334 emit_insn (gen_addsi3 (stack_pointer_rtx,
1335 stack_pointer_rtx,
1336 GEN_INT (fsize_with_regs)));
1337
1338 if (crtl->calls_eh_return)
1339 emit_insn (gen_addsi3 (stack_pointer_rtx,
1340 stack_pointer_rtx,
1341 EH_RETURN_STACKADJ_RTX));
1342
1343 if (!sibcall_p)
1344 emit_jump_insn (ret_rtx);
1345 }
1346 \f
1347 /* Return true if X is a valid comparison operator for the dbcc
1348 instruction.
1349
1350 Note it rejects floating point comparison operators.
1351 (In the future we could use Fdbcc).
1352
1353 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
1354
1355 int
1356 valid_dbcc_comparison_p_2 (rtx x, machine_mode mode ATTRIBUTE_UNUSED)
1357 {
1358 switch (GET_CODE (x))
1359 {
1360 case EQ: case NE: case GTU: case LTU:
1361 case GEU: case LEU:
1362 return 1;
1363
1364 /* Reject some when CC_NO_OVERFLOW is set. This may be over
1365 conservative */
1366 case GT: case LT: case GE: case LE:
1367 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
1368 default:
1369 return 0;
1370 }
1371 }
1372
1373 /* Return nonzero if flags are currently in the 68881 flag register. */
1374 int
1375 flags_in_68881 (void)
1376 {
1377 /* We could add support for these in the future */
1378 return cc_status.flags & CC_IN_68881;
1379 }
1380
1381 /* Return true if PARALLEL contains register REGNO. */
1382 static bool
1383 m68k_reg_present_p (const_rtx parallel, unsigned int regno)
1384 {
1385 int i;
1386
1387 if (REG_P (parallel) && REGNO (parallel) == regno)
1388 return true;
1389
1390 if (GET_CODE (parallel) != PARALLEL)
1391 return false;
1392
1393 for (i = 0; i < XVECLEN (parallel, 0); ++i)
1394 {
1395 const_rtx x;
1396
1397 x = XEXP (XVECEXP (parallel, 0, i), 0);
1398 if (REG_P (x) && REGNO (x) == regno)
1399 return true;
1400 }
1401
1402 return false;
1403 }
1404
1405 /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL_P. */
1406
1407 static bool
1408 m68k_ok_for_sibcall_p (tree decl, tree exp)
1409 {
1410 enum m68k_function_kind kind;
1411
1412 /* We cannot use sibcalls for nested functions because we use the
1413 static chain register for indirect calls. */
1414 if (CALL_EXPR_STATIC_CHAIN (exp))
1415 return false;
1416
1417 if (!VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl))))
1418 {
1419 /* Check that the return value locations are the same. For
1420 example that we aren't returning a value from the sibling in
1421 a D0 register but then need to transfer it to a A0 register. */
1422 rtx cfun_value;
1423 rtx call_value;
1424
1425 cfun_value = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (cfun->decl)),
1426 cfun->decl);
1427 call_value = FUNCTION_VALUE (TREE_TYPE (exp), decl);
1428
1429 /* Check that the values are equal or that the result the callee
1430 function returns is superset of what the current function returns. */
1431 if (!(rtx_equal_p (cfun_value, call_value)
1432 || (REG_P (cfun_value)
1433 && m68k_reg_present_p (call_value, REGNO (cfun_value)))))
1434 return false;
1435 }
1436
1437 kind = m68k_get_function_kind (current_function_decl);
1438 if (kind == m68k_fk_normal_function)
1439 /* We can always sibcall from a normal function, because it's
1440 undefined if it is calling an interrupt function. */
1441 return true;
1442
1443 /* Otherwise we can only sibcall if the function kind is known to be
1444 the same. */
1445 if (decl && m68k_get_function_kind (decl) == kind)
1446 return true;
1447
1448 return false;
1449 }
1450
1451 /* On the m68k all args are always pushed. */
1452
1453 static rtx
1454 m68k_function_arg (cumulative_args_t cum ATTRIBUTE_UNUSED,
1455 machine_mode mode ATTRIBUTE_UNUSED,
1456 const_tree type ATTRIBUTE_UNUSED,
1457 bool named ATTRIBUTE_UNUSED)
1458 {
1459 return NULL_RTX;
1460 }
1461
1462 static void
1463 m68k_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
1464 const_tree type, bool named ATTRIBUTE_UNUSED)
1465 {
1466 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1467
1468 *cum += (mode != BLKmode
1469 ? (GET_MODE_SIZE (mode) + 3) & ~3
1470 : (int_size_in_bytes (type) + 3) & ~3);
1471 }
1472
1473 /* Convert X to a legitimate function call memory reference and return the
1474 result. */
1475
1476 rtx
1477 m68k_legitimize_call_address (rtx x)
1478 {
1479 gcc_assert (MEM_P (x));
1480 if (call_operand (XEXP (x, 0), VOIDmode))
1481 return x;
1482 return replace_equiv_address (x, force_reg (Pmode, XEXP (x, 0)));
1483 }
1484
1485 /* Likewise for sibling calls. */
1486
1487 rtx
1488 m68k_legitimize_sibcall_address (rtx x)
1489 {
1490 gcc_assert (MEM_P (x));
1491 if (sibcall_operand (XEXP (x, 0), VOIDmode))
1492 return x;
1493
1494 emit_move_insn (gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM), XEXP (x, 0));
1495 return replace_equiv_address (x, gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM));
1496 }
1497
1498 /* Convert X to a legitimate address and return it if successful. Otherwise
1499 return X.
1500
1501 For the 68000, we handle X+REG by loading X into a register R and
1502 using R+REG. R will go in an address reg and indexing will be used.
1503 However, if REG is a broken-out memory address or multiplication,
1504 nothing needs to be done because REG can certainly go in an address reg. */
1505
1506 static rtx
1507 m68k_legitimize_address (rtx x, rtx oldx, machine_mode mode)
1508 {
1509 if (m68k_tls_symbol_p (x))
1510 return m68k_legitimize_tls_address (x);
1511
1512 if (GET_CODE (x) == PLUS)
1513 {
1514 int ch = (x) != (oldx);
1515 int copied = 0;
1516
1517 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1518
1519 if (GET_CODE (XEXP (x, 0)) == MULT)
1520 {
1521 COPY_ONCE (x);
1522 XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
1523 }
1524 if (GET_CODE (XEXP (x, 1)) == MULT)
1525 {
1526 COPY_ONCE (x);
1527 XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
1528 }
1529 if (ch)
1530 {
1531 if (GET_CODE (XEXP (x, 1)) == REG
1532 && GET_CODE (XEXP (x, 0)) == REG)
1533 {
1534 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
1535 {
1536 COPY_ONCE (x);
1537 x = force_operand (x, 0);
1538 }
1539 return x;
1540 }
1541 if (memory_address_p (mode, x))
1542 return x;
1543 }
1544 if (GET_CODE (XEXP (x, 0)) == REG
1545 || (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
1546 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
1547 && GET_MODE (XEXP (XEXP (x, 0), 0)) == HImode))
1548 {
1549 rtx temp = gen_reg_rtx (Pmode);
1550 rtx val = force_operand (XEXP (x, 1), 0);
1551 emit_move_insn (temp, val);
1552 COPY_ONCE (x);
1553 XEXP (x, 1) = temp;
1554 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1555 && GET_CODE (XEXP (x, 0)) == REG)
1556 x = force_operand (x, 0);
1557 }
1558 else if (GET_CODE (XEXP (x, 1)) == REG
1559 || (GET_CODE (XEXP (x, 1)) == SIGN_EXTEND
1560 && GET_CODE (XEXP (XEXP (x, 1), 0)) == REG
1561 && GET_MODE (XEXP (XEXP (x, 1), 0)) == HImode))
1562 {
1563 rtx temp = gen_reg_rtx (Pmode);
1564 rtx val = force_operand (XEXP (x, 0), 0);
1565 emit_move_insn (temp, val);
1566 COPY_ONCE (x);
1567 XEXP (x, 0) = temp;
1568 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1569 && GET_CODE (XEXP (x, 1)) == REG)
1570 x = force_operand (x, 0);
1571 }
1572 }
1573
1574 return x;
1575 }
1576
1577
1578 /* Output a dbCC; jCC sequence. Note we do not handle the
1579 floating point version of this sequence (Fdbcc). We also
1580 do not handle alternative conditions when CC_NO_OVERFLOW is
1581 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
1582 kick those out before we get here. */
1583
1584 void
1585 output_dbcc_and_branch (rtx *operands)
1586 {
1587 switch (GET_CODE (operands[3]))
1588 {
1589 case EQ:
1590 output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
1591 break;
1592
1593 case NE:
1594 output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
1595 break;
1596
1597 case GT:
1598 output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
1599 break;
1600
1601 case GTU:
1602 output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
1603 break;
1604
1605 case LT:
1606 output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
1607 break;
1608
1609 case LTU:
1610 output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
1611 break;
1612
1613 case GE:
1614 output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
1615 break;
1616
1617 case GEU:
1618 output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
1619 break;
1620
1621 case LE:
1622 output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
1623 break;
1624
1625 case LEU:
1626 output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
1627 break;
1628
1629 default:
1630 gcc_unreachable ();
1631 }
1632
1633 /* If the decrement is to be done in SImode, then we have
1634 to compensate for the fact that dbcc decrements in HImode. */
1635 switch (GET_MODE (operands[0]))
1636 {
1637 case E_SImode:
1638 output_asm_insn ("clr%.w %0\n\tsubq%.l #1,%0\n\tjpl %l1", operands);
1639 break;
1640
1641 case E_HImode:
1642 break;
1643
1644 default:
1645 gcc_unreachable ();
1646 }
1647 }
1648
1649 const char *
1650 output_scc_di (rtx op, rtx operand1, rtx operand2, rtx dest)
1651 {
1652 rtx loperands[7];
1653 enum rtx_code op_code = GET_CODE (op);
1654
1655 /* This does not produce a useful cc. */
1656 CC_STATUS_INIT;
1657
1658 /* The m68k cmp.l instruction requires operand1 to be a reg as used
1659 below. Swap the operands and change the op if these requirements
1660 are not fulfilled. */
1661 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
1662 {
1663 rtx tmp = operand1;
1664
1665 operand1 = operand2;
1666 operand2 = tmp;
1667 op_code = swap_condition (op_code);
1668 }
1669 loperands[0] = operand1;
1670 if (GET_CODE (operand1) == REG)
1671 loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
1672 else
1673 loperands[1] = adjust_address (operand1, SImode, 4);
1674 if (operand2 != const0_rtx)
1675 {
1676 loperands[2] = operand2;
1677 if (GET_CODE (operand2) == REG)
1678 loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
1679 else
1680 loperands[3] = adjust_address (operand2, SImode, 4);
1681 }
1682 loperands[4] = gen_label_rtx ();
1683 if (operand2 != const0_rtx)
1684 output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
1685 else
1686 {
1687 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[0]))
1688 output_asm_insn ("tst%.l %0", loperands);
1689 else
1690 output_asm_insn ("cmp%.w #0,%0", loperands);
1691
1692 output_asm_insn ("jne %l4", loperands);
1693
1694 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[1]))
1695 output_asm_insn ("tst%.l %1", loperands);
1696 else
1697 output_asm_insn ("cmp%.w #0,%1", loperands);
1698 }
1699
1700 loperands[5] = dest;
1701
1702 switch (op_code)
1703 {
1704 case EQ:
1705 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1706 CODE_LABEL_NUMBER (loperands[4]));
1707 output_asm_insn ("seq %5", loperands);
1708 break;
1709
1710 case NE:
1711 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1712 CODE_LABEL_NUMBER (loperands[4]));
1713 output_asm_insn ("sne %5", loperands);
1714 break;
1715
1716 case GT:
1717 loperands[6] = gen_label_rtx ();
1718 output_asm_insn ("shi %5\n\tjra %l6", loperands);
1719 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1720 CODE_LABEL_NUMBER (loperands[4]));
1721 output_asm_insn ("sgt %5", loperands);
1722 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1723 CODE_LABEL_NUMBER (loperands[6]));
1724 break;
1725
1726 case GTU:
1727 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1728 CODE_LABEL_NUMBER (loperands[4]));
1729 output_asm_insn ("shi %5", loperands);
1730 break;
1731
1732 case LT:
1733 loperands[6] = gen_label_rtx ();
1734 output_asm_insn ("scs %5\n\tjra %l6", loperands);
1735 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1736 CODE_LABEL_NUMBER (loperands[4]));
1737 output_asm_insn ("slt %5", loperands);
1738 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1739 CODE_LABEL_NUMBER (loperands[6]));
1740 break;
1741
1742 case LTU:
1743 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1744 CODE_LABEL_NUMBER (loperands[4]));
1745 output_asm_insn ("scs %5", loperands);
1746 break;
1747
1748 case GE:
1749 loperands[6] = gen_label_rtx ();
1750 output_asm_insn ("scc %5\n\tjra %l6", loperands);
1751 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1752 CODE_LABEL_NUMBER (loperands[4]));
1753 output_asm_insn ("sge %5", loperands);
1754 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1755 CODE_LABEL_NUMBER (loperands[6]));
1756 break;
1757
1758 case GEU:
1759 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1760 CODE_LABEL_NUMBER (loperands[4]));
1761 output_asm_insn ("scc %5", loperands);
1762 break;
1763
1764 case LE:
1765 loperands[6] = gen_label_rtx ();
1766 output_asm_insn ("sls %5\n\tjra %l6", loperands);
1767 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1768 CODE_LABEL_NUMBER (loperands[4]));
1769 output_asm_insn ("sle %5", loperands);
1770 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1771 CODE_LABEL_NUMBER (loperands[6]));
1772 break;
1773
1774 case LEU:
1775 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1776 CODE_LABEL_NUMBER (loperands[4]));
1777 output_asm_insn ("sls %5", loperands);
1778 break;
1779
1780 default:
1781 gcc_unreachable ();
1782 }
1783 return "";
1784 }
1785
1786 const char *
1787 output_btst (rtx *operands, rtx countop, rtx dataop, rtx_insn *insn, int signpos)
1788 {
1789 operands[0] = countop;
1790 operands[1] = dataop;
1791
1792 if (GET_CODE (countop) == CONST_INT)
1793 {
1794 register int count = INTVAL (countop);
1795 /* If COUNT is bigger than size of storage unit in use,
1796 advance to the containing unit of same size. */
1797 if (count > signpos)
1798 {
1799 int offset = (count & ~signpos) / 8;
1800 count = count & signpos;
1801 operands[1] = dataop = adjust_address (dataop, QImode, offset);
1802 }
1803 if (count == signpos)
1804 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1805 else
1806 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1807
1808 /* These three statements used to use next_insns_test_no...
1809 but it appears that this should do the same job. */
1810 if (count == 31
1811 && next_insn_tests_no_inequality (insn))
1812 return "tst%.l %1";
1813 if (count == 15
1814 && next_insn_tests_no_inequality (insn))
1815 return "tst%.w %1";
1816 if (count == 7
1817 && next_insn_tests_no_inequality (insn))
1818 return "tst%.b %1";
1819 /* Try to use `movew to ccr' followed by the appropriate branch insn.
1820 On some m68k variants unfortunately that's slower than btst.
1821 On 68000 and higher, that should also work for all HImode operands. */
1822 if (TUNE_CPU32 || TARGET_COLDFIRE || optimize_size)
1823 {
1824 if (count == 3 && DATA_REG_P (operands[1])
1825 && next_insn_tests_no_inequality (insn))
1826 {
1827 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N | CC_NO_OVERFLOW;
1828 return "move%.w %1,%%ccr";
1829 }
1830 if (count == 2 && DATA_REG_P (operands[1])
1831 && next_insn_tests_no_inequality (insn))
1832 {
1833 cc_status.flags = CC_NOT_NEGATIVE | CC_INVERTED | CC_NO_OVERFLOW;
1834 return "move%.w %1,%%ccr";
1835 }
1836 /* count == 1 followed by bvc/bvs and
1837 count == 0 followed by bcc/bcs are also possible, but need
1838 m68k-specific CC_Z_IN_NOT_V and CC_Z_IN_NOT_C flags. */
1839 }
1840
1841 cc_status.flags = CC_NOT_NEGATIVE;
1842 }
1843 return "btst %0,%1";
1844 }
1845 \f
1846 /* Return true if X is a legitimate base register. STRICT_P says
1847 whether we need strict checking. */
1848
1849 bool
1850 m68k_legitimate_base_reg_p (rtx x, bool strict_p)
1851 {
1852 /* Allow SUBREG everywhere we allow REG. This results in better code. */
1853 if (!strict_p && GET_CODE (x) == SUBREG)
1854 x = SUBREG_REG (x);
1855
1856 return (REG_P (x)
1857 && (strict_p
1858 ? REGNO_OK_FOR_BASE_P (REGNO (x))
1859 : REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (x))));
1860 }
1861
1862 /* Return true if X is a legitimate index register. STRICT_P says
1863 whether we need strict checking. */
1864
1865 bool
1866 m68k_legitimate_index_reg_p (rtx x, bool strict_p)
1867 {
1868 if (!strict_p && GET_CODE (x) == SUBREG)
1869 x = SUBREG_REG (x);
1870
1871 return (REG_P (x)
1872 && (strict_p
1873 ? REGNO_OK_FOR_INDEX_P (REGNO (x))
1874 : REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (x))));
1875 }
1876
1877 /* Return true if X is a legitimate index expression for a (d8,An,Xn) or
1878 (bd,An,Xn) addressing mode. Fill in the INDEX and SCALE fields of
1879 ADDRESS if so. STRICT_P says whether we need strict checking. */
1880
1881 static bool
1882 m68k_decompose_index (rtx x, bool strict_p, struct m68k_address *address)
1883 {
1884 int scale;
1885
1886 /* Check for a scale factor. */
1887 scale = 1;
1888 if ((TARGET_68020 || TARGET_COLDFIRE)
1889 && GET_CODE (x) == MULT
1890 && GET_CODE (XEXP (x, 1)) == CONST_INT
1891 && (INTVAL (XEXP (x, 1)) == 2
1892 || INTVAL (XEXP (x, 1)) == 4
1893 || (INTVAL (XEXP (x, 1)) == 8
1894 && (TARGET_COLDFIRE_FPU || !TARGET_COLDFIRE))))
1895 {
1896 scale = INTVAL (XEXP (x, 1));
1897 x = XEXP (x, 0);
1898 }
1899
1900 /* Check for a word extension. */
1901 if (!TARGET_COLDFIRE
1902 && GET_CODE (x) == SIGN_EXTEND
1903 && GET_MODE (XEXP (x, 0)) == HImode)
1904 x = XEXP (x, 0);
1905
1906 if (m68k_legitimate_index_reg_p (x, strict_p))
1907 {
1908 address->scale = scale;
1909 address->index = x;
1910 return true;
1911 }
1912
1913 return false;
1914 }
1915
1916 /* Return true if X is an illegitimate symbolic constant. */
1917
1918 bool
1919 m68k_illegitimate_symbolic_constant_p (rtx x)
1920 {
1921 rtx base, offset;
1922
1923 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
1924 {
1925 split_const (x, &base, &offset);
1926 if (GET_CODE (base) == SYMBOL_REF
1927 && !offset_within_block_p (base, INTVAL (offset)))
1928 return true;
1929 }
1930 return m68k_tls_reference_p (x, false);
1931 }
1932
1933 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
1934
1935 static bool
1936 m68k_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
1937 {
1938 return m68k_illegitimate_symbolic_constant_p (x);
1939 }
1940
1941 /* Return true if X is a legitimate constant address that can reach
1942 bytes in the range [X, X + REACH). STRICT_P says whether we need
1943 strict checking. */
1944
1945 static bool
1946 m68k_legitimate_constant_address_p (rtx x, unsigned int reach, bool strict_p)
1947 {
1948 rtx base, offset;
1949
1950 if (!CONSTANT_ADDRESS_P (x))
1951 return false;
1952
1953 if (flag_pic
1954 && !(strict_p && TARGET_PCREL)
1955 && symbolic_operand (x, VOIDmode))
1956 return false;
1957
1958 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P && reach > 1)
1959 {
1960 split_const (x, &base, &offset);
1961 if (GET_CODE (base) == SYMBOL_REF
1962 && !offset_within_block_p (base, INTVAL (offset) + reach - 1))
1963 return false;
1964 }
1965
1966 return !m68k_tls_reference_p (x, false);
1967 }
1968
1969 /* Return true if X is a LABEL_REF for a jump table. Assume that unplaced
1970 labels will become jump tables. */
1971
1972 static bool
1973 m68k_jump_table_ref_p (rtx x)
1974 {
1975 if (GET_CODE (x) != LABEL_REF)
1976 return false;
1977
1978 rtx_insn *insn = as_a <rtx_insn *> (XEXP (x, 0));
1979 if (!NEXT_INSN (insn) && !PREV_INSN (insn))
1980 return true;
1981
1982 insn = next_nonnote_insn (insn);
1983 return insn && JUMP_TABLE_DATA_P (insn);
1984 }
1985
1986 /* Return true if X is a legitimate address for values of mode MODE.
1987 STRICT_P says whether strict checking is needed. If the address
1988 is valid, describe its components in *ADDRESS. */
1989
1990 static bool
1991 m68k_decompose_address (machine_mode mode, rtx x,
1992 bool strict_p, struct m68k_address *address)
1993 {
1994 unsigned int reach;
1995
1996 memset (address, 0, sizeof (*address));
1997
1998 if (mode == BLKmode)
1999 reach = 1;
2000 else
2001 reach = GET_MODE_SIZE (mode);
2002
2003 /* Check for (An) (mode 2). */
2004 if (m68k_legitimate_base_reg_p (x, strict_p))
2005 {
2006 address->base = x;
2007 return true;
2008 }
2009
2010 /* Check for -(An) and (An)+ (modes 3 and 4). */
2011 if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
2012 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
2013 {
2014 address->code = GET_CODE (x);
2015 address->base = XEXP (x, 0);
2016 return true;
2017 }
2018
2019 /* Check for (d16,An) (mode 5). */
2020 if (GET_CODE (x) == PLUS
2021 && GET_CODE (XEXP (x, 1)) == CONST_INT
2022 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x8000, 0x8000 - reach)
2023 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
2024 {
2025 address->base = XEXP (x, 0);
2026 address->offset = XEXP (x, 1);
2027 return true;
2028 }
2029
2030 /* Check for GOT loads. These are (bd,An,Xn) addresses if
2031 TARGET_68020 && flag_pic == 2, otherwise they are (d16,An)
2032 addresses. */
2033 if (GET_CODE (x) == PLUS
2034 && XEXP (x, 0) == pic_offset_table_rtx)
2035 {
2036 /* As we are processing a PLUS, do not unwrap RELOC32 symbols --
2037 they are invalid in this context. */
2038 if (m68k_unwrap_symbol (XEXP (x, 1), false) != XEXP (x, 1))
2039 {
2040 address->base = XEXP (x, 0);
2041 address->offset = XEXP (x, 1);
2042 return true;
2043 }
2044 }
2045
2046 /* The ColdFire FPU only accepts addressing modes 2-5. */
2047 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
2048 return false;
2049
2050 /* Check for (xxx).w and (xxx).l. Also, in the TARGET_PCREL case,
2051 check for (d16,PC) or (bd,PC,Xn) with a suppressed index register.
2052 All these modes are variations of mode 7. */
2053 if (m68k_legitimate_constant_address_p (x, reach, strict_p))
2054 {
2055 address->offset = x;
2056 return true;
2057 }
2058
2059 /* Check for (d8,PC,Xn), a mode 7 form. This case is needed for
2060 tablejumps.
2061
2062 ??? do_tablejump creates these addresses before placing the target
2063 label, so we have to assume that unplaced labels are jump table
2064 references. It seems unlikely that we would ever generate indexed
2065 accesses to unplaced labels in other cases. */
2066 if (GET_CODE (x) == PLUS
2067 && m68k_jump_table_ref_p (XEXP (x, 1))
2068 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2069 {
2070 address->offset = XEXP (x, 1);
2071 return true;
2072 }
2073
2074 /* Everything hereafter deals with (d8,An,Xn.SIZE*SCALE) or
2075 (bd,An,Xn.SIZE*SCALE) addresses. */
2076
2077 if (TARGET_68020)
2078 {
2079 /* Check for a nonzero base displacement. */
2080 if (GET_CODE (x) == PLUS
2081 && m68k_legitimate_constant_address_p (XEXP (x, 1), reach, strict_p))
2082 {
2083 address->offset = XEXP (x, 1);
2084 x = XEXP (x, 0);
2085 }
2086
2087 /* Check for a suppressed index register. */
2088 if (m68k_legitimate_base_reg_p (x, strict_p))
2089 {
2090 address->base = x;
2091 return true;
2092 }
2093
2094 /* Check for a suppressed base register. Do not allow this case
2095 for non-symbolic offsets as it effectively gives gcc freedom
2096 to treat data registers as base registers, which can generate
2097 worse code. */
2098 if (address->offset
2099 && symbolic_operand (address->offset, VOIDmode)
2100 && m68k_decompose_index (x, strict_p, address))
2101 return true;
2102 }
2103 else
2104 {
2105 /* Check for a nonzero base displacement. */
2106 if (GET_CODE (x) == PLUS
2107 && GET_CODE (XEXP (x, 1)) == CONST_INT
2108 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x80, 0x80 - reach))
2109 {
2110 address->offset = XEXP (x, 1);
2111 x = XEXP (x, 0);
2112 }
2113 }
2114
2115 /* We now expect the sum of a base and an index. */
2116 if (GET_CODE (x) == PLUS)
2117 {
2118 if (m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p)
2119 && m68k_decompose_index (XEXP (x, 1), strict_p, address))
2120 {
2121 address->base = XEXP (x, 0);
2122 return true;
2123 }
2124
2125 if (m68k_legitimate_base_reg_p (XEXP (x, 1), strict_p)
2126 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2127 {
2128 address->base = XEXP (x, 1);
2129 return true;
2130 }
2131 }
2132 return false;
2133 }
2134
2135 /* Return true if X is a legitimate address for values of mode MODE.
2136 STRICT_P says whether strict checking is needed. */
2137
2138 bool
2139 m68k_legitimate_address_p (machine_mode mode, rtx x, bool strict_p)
2140 {
2141 struct m68k_address address;
2142
2143 return m68k_decompose_address (mode, x, strict_p, &address);
2144 }
2145
2146 /* Return true if X is a memory, describing its address in ADDRESS if so.
2147 Apply strict checking if called during or after reload. */
2148
2149 static bool
2150 m68k_legitimate_mem_p (rtx x, struct m68k_address *address)
2151 {
2152 return (MEM_P (x)
2153 && m68k_decompose_address (GET_MODE (x), XEXP (x, 0),
2154 reload_in_progress || reload_completed,
2155 address));
2156 }
2157
2158 /* Implement TARGET_LEGITIMATE_CONSTANT_P. */
2159
2160 bool
2161 m68k_legitimate_constant_p (machine_mode mode, rtx x)
2162 {
2163 return mode != XFmode && !m68k_illegitimate_symbolic_constant_p (x);
2164 }
2165
2166 /* Return true if X matches the 'Q' constraint. It must be a memory
2167 with a base address and no constant offset or index. */
2168
2169 bool
2170 m68k_matches_q_p (rtx x)
2171 {
2172 struct m68k_address address;
2173
2174 return (m68k_legitimate_mem_p (x, &address)
2175 && address.code == UNKNOWN
2176 && address.base
2177 && !address.offset
2178 && !address.index);
2179 }
2180
2181 /* Return true if X matches the 'U' constraint. It must be a base address
2182 with a constant offset and no index. */
2183
2184 bool
2185 m68k_matches_u_p (rtx x)
2186 {
2187 struct m68k_address address;
2188
2189 return (m68k_legitimate_mem_p (x, &address)
2190 && address.code == UNKNOWN
2191 && address.base
2192 && address.offset
2193 && !address.index);
2194 }
2195
2196 /* Return GOT pointer. */
2197
2198 static rtx
2199 m68k_get_gp (void)
2200 {
2201 if (pic_offset_table_rtx == NULL_RTX)
2202 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_REG);
2203
2204 crtl->uses_pic_offset_table = 1;
2205
2206 return pic_offset_table_rtx;
2207 }
2208
2209 /* M68K relocations, used to distinguish GOT and TLS relocations in UNSPEC
2210 wrappers. */
2211 enum m68k_reloc { RELOC_GOT, RELOC_TLSGD, RELOC_TLSLDM, RELOC_TLSLDO,
2212 RELOC_TLSIE, RELOC_TLSLE };
2213
2214 #define TLS_RELOC_P(RELOC) ((RELOC) != RELOC_GOT)
2215
2216 /* Wrap symbol X into unspec representing relocation RELOC.
2217 BASE_REG - register that should be added to the result.
2218 TEMP_REG - if non-null, temporary register. */
2219
2220 static rtx
2221 m68k_wrap_symbol (rtx x, enum m68k_reloc reloc, rtx base_reg, rtx temp_reg)
2222 {
2223 bool use_x_p;
2224
2225 use_x_p = (base_reg == pic_offset_table_rtx) ? TARGET_XGOT : TARGET_XTLS;
2226
2227 if (TARGET_COLDFIRE && use_x_p)
2228 /* When compiling with -mx{got, tls} switch the code will look like this:
2229
2230 move.l <X>@<RELOC>,<TEMP_REG>
2231 add.l <BASE_REG>,<TEMP_REG> */
2232 {
2233 /* Wrap X in UNSPEC_??? to tip m68k_output_addr_const_extra
2234 to put @RELOC after reference. */
2235 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2236 UNSPEC_RELOC32);
2237 x = gen_rtx_CONST (Pmode, x);
2238
2239 if (temp_reg == NULL)
2240 {
2241 gcc_assert (can_create_pseudo_p ());
2242 temp_reg = gen_reg_rtx (Pmode);
2243 }
2244
2245 emit_move_insn (temp_reg, x);
2246 emit_insn (gen_addsi3 (temp_reg, temp_reg, base_reg));
2247 x = temp_reg;
2248 }
2249 else
2250 {
2251 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2252 UNSPEC_RELOC16);
2253 x = gen_rtx_CONST (Pmode, x);
2254
2255 x = gen_rtx_PLUS (Pmode, base_reg, x);
2256 }
2257
2258 return x;
2259 }
2260
2261 /* Helper for m68k_unwrap_symbol.
2262 Also, if unwrapping was successful (that is if (ORIG != <return value>)),
2263 sets *RELOC_PTR to relocation type for the symbol. */
2264
2265 static rtx
2266 m68k_unwrap_symbol_1 (rtx orig, bool unwrap_reloc32_p,
2267 enum m68k_reloc *reloc_ptr)
2268 {
2269 if (GET_CODE (orig) == CONST)
2270 {
2271 rtx x;
2272 enum m68k_reloc dummy;
2273
2274 x = XEXP (orig, 0);
2275
2276 if (reloc_ptr == NULL)
2277 reloc_ptr = &dummy;
2278
2279 /* Handle an addend. */
2280 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2281 && CONST_INT_P (XEXP (x, 1)))
2282 x = XEXP (x, 0);
2283
2284 if (GET_CODE (x) == UNSPEC)
2285 {
2286 switch (XINT (x, 1))
2287 {
2288 case UNSPEC_RELOC16:
2289 orig = XVECEXP (x, 0, 0);
2290 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2291 break;
2292
2293 case UNSPEC_RELOC32:
2294 if (unwrap_reloc32_p)
2295 {
2296 orig = XVECEXP (x, 0, 0);
2297 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2298 }
2299 break;
2300
2301 default:
2302 break;
2303 }
2304 }
2305 }
2306
2307 return orig;
2308 }
2309
2310 /* Unwrap symbol from UNSPEC_RELOC16 and, if unwrap_reloc32_p,
2311 UNSPEC_RELOC32 wrappers. */
2312
2313 rtx
2314 m68k_unwrap_symbol (rtx orig, bool unwrap_reloc32_p)
2315 {
2316 return m68k_unwrap_symbol_1 (orig, unwrap_reloc32_p, NULL);
2317 }
2318
2319 /* Prescan insn before outputing assembler for it. */
2320
2321 void
2322 m68k_final_prescan_insn (rtx_insn *insn ATTRIBUTE_UNUSED,
2323 rtx *operands, int n_operands)
2324 {
2325 int i;
2326
2327 /* Combine and, possibly, other optimizations may do good job
2328 converting
2329 (const (unspec [(symbol)]))
2330 into
2331 (const (plus (unspec [(symbol)])
2332 (const_int N))).
2333 The problem with this is emitting @TLS or @GOT decorations.
2334 The decoration is emitted when processing (unspec), so the
2335 result would be "#symbol@TLSLE+N" instead of "#symbol+N@TLSLE".
2336
2337 It seems that the easiest solution to this is to convert such
2338 operands to
2339 (const (unspec [(plus (symbol)
2340 (const_int N))])).
2341 Note, that the top level of operand remains intact, so we don't have
2342 to patch up anything outside of the operand. */
2343
2344 subrtx_var_iterator::array_type array;
2345 for (i = 0; i < n_operands; ++i)
2346 {
2347 rtx op;
2348
2349 op = operands[i];
2350
2351 FOR_EACH_SUBRTX_VAR (iter, array, op, ALL)
2352 {
2353 rtx x = *iter;
2354 if (m68k_unwrap_symbol (x, true) != x)
2355 {
2356 rtx plus;
2357
2358 gcc_assert (GET_CODE (x) == CONST);
2359 plus = XEXP (x, 0);
2360
2361 if (GET_CODE (plus) == PLUS || GET_CODE (plus) == MINUS)
2362 {
2363 rtx unspec;
2364 rtx addend;
2365
2366 unspec = XEXP (plus, 0);
2367 gcc_assert (GET_CODE (unspec) == UNSPEC);
2368 addend = XEXP (plus, 1);
2369 gcc_assert (CONST_INT_P (addend));
2370
2371 /* We now have all the pieces, rearrange them. */
2372
2373 /* Move symbol to plus. */
2374 XEXP (plus, 0) = XVECEXP (unspec, 0, 0);
2375
2376 /* Move plus inside unspec. */
2377 XVECEXP (unspec, 0, 0) = plus;
2378
2379 /* Move unspec to top level of const. */
2380 XEXP (x, 0) = unspec;
2381 }
2382 iter.skip_subrtxes ();
2383 }
2384 }
2385 }
2386 }
2387
2388 /* Move X to a register and add REG_EQUAL note pointing to ORIG.
2389 If REG is non-null, use it; generate new pseudo otherwise. */
2390
2391 static rtx
2392 m68k_move_to_reg (rtx x, rtx orig, rtx reg)
2393 {
2394 rtx_insn *insn;
2395
2396 if (reg == NULL_RTX)
2397 {
2398 gcc_assert (can_create_pseudo_p ());
2399 reg = gen_reg_rtx (Pmode);
2400 }
2401
2402 insn = emit_move_insn (reg, x);
2403 /* Put a REG_EQUAL note on this insn, so that it can be optimized
2404 by loop. */
2405 set_unique_reg_note (insn, REG_EQUAL, orig);
2406
2407 return reg;
2408 }
2409
2410 /* Does the same as m68k_wrap_symbol, but returns a memory reference to
2411 GOT slot. */
2412
2413 static rtx
2414 m68k_wrap_symbol_into_got_ref (rtx x, enum m68k_reloc reloc, rtx temp_reg)
2415 {
2416 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), temp_reg);
2417
2418 x = gen_rtx_MEM (Pmode, x);
2419 MEM_READONLY_P (x) = 1;
2420
2421 return x;
2422 }
2423
2424 /* Legitimize PIC addresses. If the address is already
2425 position-independent, we return ORIG. Newly generated
2426 position-independent addresses go to REG. If we need more
2427 than one register, we lose.
2428
2429 An address is legitimized by making an indirect reference
2430 through the Global Offset Table with the name of the symbol
2431 used as an offset.
2432
2433 The assembler and linker are responsible for placing the
2434 address of the symbol in the GOT. The function prologue
2435 is responsible for initializing a5 to the starting address
2436 of the GOT.
2437
2438 The assembler is also responsible for translating a symbol name
2439 into a constant displacement from the start of the GOT.
2440
2441 A quick example may make things a little clearer:
2442
2443 When not generating PIC code to store the value 12345 into _foo
2444 we would generate the following code:
2445
2446 movel #12345, _foo
2447
2448 When generating PIC two transformations are made. First, the compiler
2449 loads the address of foo into a register. So the first transformation makes:
2450
2451 lea _foo, a0
2452 movel #12345, a0@
2453
2454 The code in movsi will intercept the lea instruction and call this
2455 routine which will transform the instructions into:
2456
2457 movel a5@(_foo:w), a0
2458 movel #12345, a0@
2459
2460
2461 That (in a nutshell) is how *all* symbol and label references are
2462 handled. */
2463
2464 rtx
2465 legitimize_pic_address (rtx orig, machine_mode mode ATTRIBUTE_UNUSED,
2466 rtx reg)
2467 {
2468 rtx pic_ref = orig;
2469
2470 /* First handle a simple SYMBOL_REF or LABEL_REF */
2471 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
2472 {
2473 gcc_assert (reg);
2474
2475 pic_ref = m68k_wrap_symbol_into_got_ref (orig, RELOC_GOT, reg);
2476 pic_ref = m68k_move_to_reg (pic_ref, orig, reg);
2477 }
2478 else if (GET_CODE (orig) == CONST)
2479 {
2480 rtx base;
2481
2482 /* Make sure this has not already been legitimized. */
2483 if (m68k_unwrap_symbol (orig, true) != orig)
2484 return orig;
2485
2486 gcc_assert (reg);
2487
2488 /* legitimize both operands of the PLUS */
2489 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
2490
2491 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
2492 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
2493 base == reg ? 0 : reg);
2494
2495 if (GET_CODE (orig) == CONST_INT)
2496 pic_ref = plus_constant (Pmode, base, INTVAL (orig));
2497 else
2498 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
2499 }
2500
2501 return pic_ref;
2502 }
2503
2504 /* The __tls_get_addr symbol. */
2505 static GTY(()) rtx m68k_tls_get_addr;
2506
2507 /* Return SYMBOL_REF for __tls_get_addr. */
2508
2509 static rtx
2510 m68k_get_tls_get_addr (void)
2511 {
2512 if (m68k_tls_get_addr == NULL_RTX)
2513 m68k_tls_get_addr = init_one_libfunc ("__tls_get_addr");
2514
2515 return m68k_tls_get_addr;
2516 }
2517
2518 /* Return libcall result in A0 instead of usual D0. */
2519 static bool m68k_libcall_value_in_a0_p = false;
2520
2521 /* Emit instruction sequence that calls __tls_get_addr. X is
2522 the TLS symbol we are referencing and RELOC is the symbol type to use
2523 (either TLSGD or TLSLDM). EQV is the REG_EQUAL note for the sequence
2524 emitted. A pseudo register with result of __tls_get_addr call is
2525 returned. */
2526
2527 static rtx
2528 m68k_call_tls_get_addr (rtx x, rtx eqv, enum m68k_reloc reloc)
2529 {
2530 rtx a0;
2531 rtx_insn *insns;
2532 rtx dest;
2533
2534 /* Emit the call sequence. */
2535 start_sequence ();
2536
2537 /* FIXME: Unfortunately, emit_library_call_value does not
2538 consider (plus (%a5) (const (unspec))) to be a good enough
2539 operand for push, so it forces it into a register. The bad
2540 thing about this is that combiner, due to copy propagation and other
2541 optimizations, sometimes can not later fix this. As a consequence,
2542 additional register may be allocated resulting in a spill.
2543 For reference, see args processing loops in
2544 calls.c:emit_library_call_value_1.
2545 For testcase, see gcc.target/m68k/tls-{gd, ld}.c */
2546 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), NULL_RTX);
2547
2548 /* __tls_get_addr() is not a libcall, but emitting a libcall_value
2549 is the simpliest way of generating a call. The difference between
2550 __tls_get_addr() and libcall is that the result is returned in D0
2551 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2552 which temporarily switches returning the result to A0. */
2553
2554 m68k_libcall_value_in_a0_p = true;
2555 a0 = emit_library_call_value (m68k_get_tls_get_addr (), NULL_RTX, LCT_PURE,
2556 Pmode, x, Pmode);
2557 m68k_libcall_value_in_a0_p = false;
2558
2559 insns = get_insns ();
2560 end_sequence ();
2561
2562 gcc_assert (can_create_pseudo_p ());
2563 dest = gen_reg_rtx (Pmode);
2564 emit_libcall_block (insns, dest, a0, eqv);
2565
2566 return dest;
2567 }
2568
2569 /* The __tls_get_addr symbol. */
2570 static GTY(()) rtx m68k_read_tp;
2571
2572 /* Return SYMBOL_REF for __m68k_read_tp. */
2573
2574 static rtx
2575 m68k_get_m68k_read_tp (void)
2576 {
2577 if (m68k_read_tp == NULL_RTX)
2578 m68k_read_tp = init_one_libfunc ("__m68k_read_tp");
2579
2580 return m68k_read_tp;
2581 }
2582
2583 /* Emit instruction sequence that calls __m68k_read_tp.
2584 A pseudo register with result of __m68k_read_tp call is returned. */
2585
2586 static rtx
2587 m68k_call_m68k_read_tp (void)
2588 {
2589 rtx a0;
2590 rtx eqv;
2591 rtx_insn *insns;
2592 rtx dest;
2593
2594 start_sequence ();
2595
2596 /* __m68k_read_tp() is not a libcall, but emitting a libcall_value
2597 is the simpliest way of generating a call. The difference between
2598 __m68k_read_tp() and libcall is that the result is returned in D0
2599 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2600 which temporarily switches returning the result to A0. */
2601
2602 /* Emit the call sequence. */
2603 m68k_libcall_value_in_a0_p = true;
2604 a0 = emit_library_call_value (m68k_get_m68k_read_tp (), NULL_RTX, LCT_PURE,
2605 Pmode);
2606 m68k_libcall_value_in_a0_p = false;
2607 insns = get_insns ();
2608 end_sequence ();
2609
2610 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2611 share the m68k_read_tp result with other IE/LE model accesses. */
2612 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const1_rtx), UNSPEC_RELOC32);
2613
2614 gcc_assert (can_create_pseudo_p ());
2615 dest = gen_reg_rtx (Pmode);
2616 emit_libcall_block (insns, dest, a0, eqv);
2617
2618 return dest;
2619 }
2620
2621 /* Return a legitimized address for accessing TLS SYMBOL_REF X.
2622 For explanations on instructions sequences see TLS/NPTL ABI for m68k and
2623 ColdFire. */
2624
2625 rtx
2626 m68k_legitimize_tls_address (rtx orig)
2627 {
2628 switch (SYMBOL_REF_TLS_MODEL (orig))
2629 {
2630 case TLS_MODEL_GLOBAL_DYNAMIC:
2631 orig = m68k_call_tls_get_addr (orig, orig, RELOC_TLSGD);
2632 break;
2633
2634 case TLS_MODEL_LOCAL_DYNAMIC:
2635 {
2636 rtx eqv;
2637 rtx a0;
2638 rtx x;
2639
2640 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2641 share the LDM result with other LD model accesses. */
2642 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
2643 UNSPEC_RELOC32);
2644
2645 a0 = m68k_call_tls_get_addr (orig, eqv, RELOC_TLSLDM);
2646
2647 x = m68k_wrap_symbol (orig, RELOC_TLSLDO, a0, NULL_RTX);
2648
2649 if (can_create_pseudo_p ())
2650 x = m68k_move_to_reg (x, orig, NULL_RTX);
2651
2652 orig = x;
2653 break;
2654 }
2655
2656 case TLS_MODEL_INITIAL_EXEC:
2657 {
2658 rtx a0;
2659 rtx x;
2660
2661 a0 = m68k_call_m68k_read_tp ();
2662
2663 x = m68k_wrap_symbol_into_got_ref (orig, RELOC_TLSIE, NULL_RTX);
2664 x = gen_rtx_PLUS (Pmode, x, a0);
2665
2666 if (can_create_pseudo_p ())
2667 x = m68k_move_to_reg (x, orig, NULL_RTX);
2668
2669 orig = x;
2670 break;
2671 }
2672
2673 case TLS_MODEL_LOCAL_EXEC:
2674 {
2675 rtx a0;
2676 rtx x;
2677
2678 a0 = m68k_call_m68k_read_tp ();
2679
2680 x = m68k_wrap_symbol (orig, RELOC_TLSLE, a0, NULL_RTX);
2681
2682 if (can_create_pseudo_p ())
2683 x = m68k_move_to_reg (x, orig, NULL_RTX);
2684
2685 orig = x;
2686 break;
2687 }
2688
2689 default:
2690 gcc_unreachable ();
2691 }
2692
2693 return orig;
2694 }
2695
2696 /* Return true if X is a TLS symbol. */
2697
2698 static bool
2699 m68k_tls_symbol_p (rtx x)
2700 {
2701 if (!TARGET_HAVE_TLS)
2702 return false;
2703
2704 if (GET_CODE (x) != SYMBOL_REF)
2705 return false;
2706
2707 return SYMBOL_REF_TLS_MODEL (x) != 0;
2708 }
2709
2710 /* If !LEGITIMATE_P, return true if X is a TLS symbol reference,
2711 though illegitimate one.
2712 If LEGITIMATE_P, return true if X is a legitimate TLS symbol reference. */
2713
2714 bool
2715 m68k_tls_reference_p (rtx x, bool legitimate_p)
2716 {
2717 if (!TARGET_HAVE_TLS)
2718 return false;
2719
2720 if (!legitimate_p)
2721 {
2722 subrtx_var_iterator::array_type array;
2723 FOR_EACH_SUBRTX_VAR (iter, array, x, ALL)
2724 {
2725 rtx x = *iter;
2726
2727 /* Note: this is not the same as m68k_tls_symbol_p. */
2728 if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0)
2729 return true;
2730
2731 /* Don't recurse into legitimate TLS references. */
2732 if (m68k_tls_reference_p (x, true))
2733 iter.skip_subrtxes ();
2734 }
2735 return false;
2736 }
2737 else
2738 {
2739 enum m68k_reloc reloc = RELOC_GOT;
2740
2741 return (m68k_unwrap_symbol_1 (x, true, &reloc) != x
2742 && TLS_RELOC_P (reloc));
2743 }
2744 }
2745
2746 \f
2747
2748 #define USE_MOVQ(i) ((unsigned) ((i) + 128) <= 255)
2749
2750 /* Return the type of move that should be used for integer I. */
2751
2752 M68K_CONST_METHOD
2753 m68k_const_method (HOST_WIDE_INT i)
2754 {
2755 unsigned u;
2756
2757 if (USE_MOVQ (i))
2758 return MOVQ;
2759
2760 /* The ColdFire doesn't have byte or word operations. */
2761 /* FIXME: This may not be useful for the m68060 either. */
2762 if (!TARGET_COLDFIRE)
2763 {
2764 /* if -256 < N < 256 but N is not in range for a moveq
2765 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
2766 if (USE_MOVQ (i ^ 0xff))
2767 return NOTB;
2768 /* Likewise, try with not.w */
2769 if (USE_MOVQ (i ^ 0xffff))
2770 return NOTW;
2771 /* This is the only value where neg.w is useful */
2772 if (i == -65408)
2773 return NEGW;
2774 }
2775
2776 /* Try also with swap. */
2777 u = i;
2778 if (USE_MOVQ ((u >> 16) | (u << 16)))
2779 return SWAP;
2780
2781 if (TARGET_ISAB)
2782 {
2783 /* Try using MVZ/MVS with an immediate value to load constants. */
2784 if (i >= 0 && i <= 65535)
2785 return MVZ;
2786 if (i >= -32768 && i <= 32767)
2787 return MVS;
2788 }
2789
2790 /* Otherwise, use move.l */
2791 return MOVL;
2792 }
2793
2794 /* Return the cost of moving constant I into a data register. */
2795
2796 static int
2797 const_int_cost (HOST_WIDE_INT i)
2798 {
2799 switch (m68k_const_method (i))
2800 {
2801 case MOVQ:
2802 /* Constants between -128 and 127 are cheap due to moveq. */
2803 return 0;
2804 case MVZ:
2805 case MVS:
2806 case NOTB:
2807 case NOTW:
2808 case NEGW:
2809 case SWAP:
2810 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap. */
2811 return 1;
2812 case MOVL:
2813 return 2;
2814 default:
2815 gcc_unreachable ();
2816 }
2817 }
2818
2819 static bool
2820 m68k_rtx_costs (rtx x, machine_mode mode, int outer_code,
2821 int opno ATTRIBUTE_UNUSED,
2822 int *total, bool speed ATTRIBUTE_UNUSED)
2823 {
2824 int code = GET_CODE (x);
2825
2826 switch (code)
2827 {
2828 case CONST_INT:
2829 /* Constant zero is super cheap due to clr instruction. */
2830 if (x == const0_rtx)
2831 *total = 0;
2832 else
2833 *total = const_int_cost (INTVAL (x));
2834 return true;
2835
2836 case CONST:
2837 case LABEL_REF:
2838 case SYMBOL_REF:
2839 *total = 3;
2840 return true;
2841
2842 case CONST_DOUBLE:
2843 /* Make 0.0 cheaper than other floating constants to
2844 encourage creating tstsf and tstdf insns. */
2845 if (outer_code == COMPARE
2846 && (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
2847 *total = 4;
2848 else
2849 *total = 5;
2850 return true;
2851
2852 /* These are vaguely right for a 68020. */
2853 /* The costs for long multiply have been adjusted to work properly
2854 in synth_mult on the 68020, relative to an average of the time
2855 for add and the time for shift, taking away a little more because
2856 sometimes move insns are needed. */
2857 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS
2858 terms. */
2859 #define MULL_COST \
2860 (TUNE_68060 ? 2 \
2861 : TUNE_68040 ? 5 \
2862 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2863 : (TUNE_CFV2 && TUNE_MAC) ? 4 \
2864 : TUNE_CFV2 ? 8 \
2865 : TARGET_COLDFIRE ? 3 : 13)
2866
2867 #define MULW_COST \
2868 (TUNE_68060 ? 2 \
2869 : TUNE_68040 ? 3 \
2870 : TUNE_68000_10 ? 5 \
2871 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2872 : (TUNE_CFV2 && TUNE_MAC) ? 2 \
2873 : TUNE_CFV2 ? 8 \
2874 : TARGET_COLDFIRE ? 2 : 8)
2875
2876 #define DIVW_COST \
2877 (TARGET_CF_HWDIV ? 11 \
2878 : TUNE_68000_10 || TARGET_COLDFIRE ? 12 : 27)
2879
2880 case PLUS:
2881 /* An lea costs about three times as much as a simple add. */
2882 if (mode == SImode
2883 && GET_CODE (XEXP (x, 1)) == REG
2884 && GET_CODE (XEXP (x, 0)) == MULT
2885 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
2886 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2887 && (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
2888 || INTVAL (XEXP (XEXP (x, 0), 1)) == 4
2889 || INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
2890 {
2891 /* lea an@(dx:l:i),am */
2892 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 2 : 3);
2893 return true;
2894 }
2895 return false;
2896
2897 case ASHIFT:
2898 case ASHIFTRT:
2899 case LSHIFTRT:
2900 if (TUNE_68060)
2901 {
2902 *total = COSTS_N_INSNS(1);
2903 return true;
2904 }
2905 if (TUNE_68000_10)
2906 {
2907 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
2908 {
2909 if (INTVAL (XEXP (x, 1)) < 16)
2910 *total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
2911 else
2912 /* We're using clrw + swap for these cases. */
2913 *total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
2914 }
2915 else
2916 *total = COSTS_N_INSNS (10); /* Worst case. */
2917 return true;
2918 }
2919 /* A shift by a big integer takes an extra instruction. */
2920 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2921 && (INTVAL (XEXP (x, 1)) == 16))
2922 {
2923 *total = COSTS_N_INSNS (2); /* clrw;swap */
2924 return true;
2925 }
2926 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2927 && !(INTVAL (XEXP (x, 1)) > 0
2928 && INTVAL (XEXP (x, 1)) <= 8))
2929 {
2930 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 1 : 3); /* lsr #i,dn */
2931 return true;
2932 }
2933 return false;
2934
2935 case MULT:
2936 if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
2937 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
2938 && mode == SImode)
2939 *total = COSTS_N_INSNS (MULW_COST);
2940 else if (mode == QImode || mode == HImode)
2941 *total = COSTS_N_INSNS (MULW_COST);
2942 else
2943 *total = COSTS_N_INSNS (MULL_COST);
2944 return true;
2945
2946 case DIV:
2947 case UDIV:
2948 case MOD:
2949 case UMOD:
2950 if (mode == QImode || mode == HImode)
2951 *total = COSTS_N_INSNS (DIVW_COST); /* div.w */
2952 else if (TARGET_CF_HWDIV)
2953 *total = COSTS_N_INSNS (18);
2954 else
2955 *total = COSTS_N_INSNS (43); /* div.l */
2956 return true;
2957
2958 case ZERO_EXTRACT:
2959 if (outer_code == COMPARE)
2960 *total = 0;
2961 return false;
2962
2963 default:
2964 return false;
2965 }
2966 }
2967
2968 /* Return an instruction to move CONST_INT OPERANDS[1] into data register
2969 OPERANDS[0]. */
2970
2971 static const char *
2972 output_move_const_into_data_reg (rtx *operands)
2973 {
2974 HOST_WIDE_INT i;
2975
2976 i = INTVAL (operands[1]);
2977 switch (m68k_const_method (i))
2978 {
2979 case MVZ:
2980 return "mvzw %1,%0";
2981 case MVS:
2982 return "mvsw %1,%0";
2983 case MOVQ:
2984 return "moveq %1,%0";
2985 case NOTB:
2986 CC_STATUS_INIT;
2987 operands[1] = GEN_INT (i ^ 0xff);
2988 return "moveq %1,%0\n\tnot%.b %0";
2989 case NOTW:
2990 CC_STATUS_INIT;
2991 operands[1] = GEN_INT (i ^ 0xffff);
2992 return "moveq %1,%0\n\tnot%.w %0";
2993 case NEGW:
2994 CC_STATUS_INIT;
2995 return "moveq #-128,%0\n\tneg%.w %0";
2996 case SWAP:
2997 {
2998 unsigned u = i;
2999
3000 operands[1] = GEN_INT ((u << 16) | (u >> 16));
3001 return "moveq %1,%0\n\tswap %0";
3002 }
3003 case MOVL:
3004 return "move%.l %1,%0";
3005 default:
3006 gcc_unreachable ();
3007 }
3008 }
3009
3010 /* Return true if I can be handled by ISA B's mov3q instruction. */
3011
3012 bool
3013 valid_mov3q_const (HOST_WIDE_INT i)
3014 {
3015 return TARGET_ISAB && (i == -1 || IN_RANGE (i, 1, 7));
3016 }
3017
3018 /* Return an instruction to move CONST_INT OPERANDS[1] into OPERANDS[0].
3019 I is the value of OPERANDS[1]. */
3020
3021 static const char *
3022 output_move_simode_const (rtx *operands)
3023 {
3024 rtx dest;
3025 HOST_WIDE_INT src;
3026
3027 dest = operands[0];
3028 src = INTVAL (operands[1]);
3029 if (src == 0
3030 && (DATA_REG_P (dest) || MEM_P (dest))
3031 /* clr insns on 68000 read before writing. */
3032 && ((TARGET_68010 || TARGET_COLDFIRE)
3033 || !(MEM_P (dest) && MEM_VOLATILE_P (dest))))
3034 return "clr%.l %0";
3035 else if (GET_MODE (dest) == SImode && valid_mov3q_const (src))
3036 return "mov3q%.l %1,%0";
3037 else if (src == 0 && ADDRESS_REG_P (dest))
3038 return "sub%.l %0,%0";
3039 else if (DATA_REG_P (dest))
3040 return output_move_const_into_data_reg (operands);
3041 else if (ADDRESS_REG_P (dest) && IN_RANGE (src, -0x8000, 0x7fff))
3042 {
3043 if (valid_mov3q_const (src))
3044 return "mov3q%.l %1,%0";
3045 return "move%.w %1,%0";
3046 }
3047 else if (MEM_P (dest)
3048 && GET_CODE (XEXP (dest, 0)) == PRE_DEC
3049 && REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
3050 && IN_RANGE (src, -0x8000, 0x7fff))
3051 {
3052 if (valid_mov3q_const (src))
3053 return "mov3q%.l %1,%-";
3054 return "pea %a1";
3055 }
3056 return "move%.l %1,%0";
3057 }
3058
3059 const char *
3060 output_move_simode (rtx *operands)
3061 {
3062 if (GET_CODE (operands[1]) == CONST_INT)
3063 return output_move_simode_const (operands);
3064 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3065 || GET_CODE (operands[1]) == CONST)
3066 && push_operand (operands[0], SImode))
3067 return "pea %a1";
3068 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3069 || GET_CODE (operands[1]) == CONST)
3070 && ADDRESS_REG_P (operands[0]))
3071 return "lea %a1,%0";
3072 return "move%.l %1,%0";
3073 }
3074
3075 const char *
3076 output_move_himode (rtx *operands)
3077 {
3078 if (GET_CODE (operands[1]) == CONST_INT)
3079 {
3080 if (operands[1] == const0_rtx
3081 && (DATA_REG_P (operands[0])
3082 || GET_CODE (operands[0]) == MEM)
3083 /* clr insns on 68000 read before writing. */
3084 && ((TARGET_68010 || TARGET_COLDFIRE)
3085 || !(GET_CODE (operands[0]) == MEM
3086 && MEM_VOLATILE_P (operands[0]))))
3087 return "clr%.w %0";
3088 else if (operands[1] == const0_rtx
3089 && ADDRESS_REG_P (operands[0]))
3090 return "sub%.l %0,%0";
3091 else if (DATA_REG_P (operands[0])
3092 && INTVAL (operands[1]) < 128
3093 && INTVAL (operands[1]) >= -128)
3094 return "moveq %1,%0";
3095 else if (INTVAL (operands[1]) < 0x8000
3096 && INTVAL (operands[1]) >= -0x8000)
3097 return "move%.w %1,%0";
3098 }
3099 else if (CONSTANT_P (operands[1]))
3100 return "move%.l %1,%0";
3101 return "move%.w %1,%0";
3102 }
3103
3104 const char *
3105 output_move_qimode (rtx *operands)
3106 {
3107 /* 68k family always modifies the stack pointer by at least 2, even for
3108 byte pushes. The 5200 (ColdFire) does not do this. */
3109
3110 /* This case is generated by pushqi1 pattern now. */
3111 gcc_assert (!(GET_CODE (operands[0]) == MEM
3112 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
3113 && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
3114 && ! ADDRESS_REG_P (operands[1])
3115 && ! TARGET_COLDFIRE));
3116
3117 /* clr and st insns on 68000 read before writing. */
3118 if (!ADDRESS_REG_P (operands[0])
3119 && ((TARGET_68010 || TARGET_COLDFIRE)
3120 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3121 {
3122 if (operands[1] == const0_rtx)
3123 return "clr%.b %0";
3124 if ((!TARGET_COLDFIRE || DATA_REG_P (operands[0]))
3125 && GET_CODE (operands[1]) == CONST_INT
3126 && (INTVAL (operands[1]) & 255) == 255)
3127 {
3128 CC_STATUS_INIT;
3129 return "st %0";
3130 }
3131 }
3132 if (GET_CODE (operands[1]) == CONST_INT
3133 && DATA_REG_P (operands[0])
3134 && INTVAL (operands[1]) < 128
3135 && INTVAL (operands[1]) >= -128)
3136 return "moveq %1,%0";
3137 if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
3138 return "sub%.l %0,%0";
3139 if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
3140 return "move%.l %1,%0";
3141 /* 68k family (including the 5200 ColdFire) does not support byte moves to
3142 from address registers. */
3143 if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
3144 return "move%.w %1,%0";
3145 return "move%.b %1,%0";
3146 }
3147
3148 const char *
3149 output_move_stricthi (rtx *operands)
3150 {
3151 if (operands[1] == const0_rtx
3152 /* clr insns on 68000 read before writing. */
3153 && ((TARGET_68010 || TARGET_COLDFIRE)
3154 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3155 return "clr%.w %0";
3156 return "move%.w %1,%0";
3157 }
3158
3159 const char *
3160 output_move_strictqi (rtx *operands)
3161 {
3162 if (operands[1] == const0_rtx
3163 /* clr insns on 68000 read before writing. */
3164 && ((TARGET_68010 || TARGET_COLDFIRE)
3165 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3166 return "clr%.b %0";
3167 return "move%.b %1,%0";
3168 }
3169
3170 /* Return the best assembler insn template
3171 for moving operands[1] into operands[0] as a fullword. */
3172
3173 static const char *
3174 singlemove_string (rtx *operands)
3175 {
3176 if (GET_CODE (operands[1]) == CONST_INT)
3177 return output_move_simode_const (operands);
3178 return "move%.l %1,%0";
3179 }
3180
3181
3182 /* Output assembler or rtl code to perform a doubleword move insn
3183 with operands OPERANDS.
3184 Pointers to 3 helper functions should be specified:
3185 HANDLE_REG_ADJUST to adjust a register by a small value,
3186 HANDLE_COMPADR to compute an address and
3187 HANDLE_MOVSI to move 4 bytes. */
3188
3189 static void
3190 handle_move_double (rtx operands[2],
3191 void (*handle_reg_adjust) (rtx, int),
3192 void (*handle_compadr) (rtx [2]),
3193 void (*handle_movsi) (rtx [2]))
3194 {
3195 enum
3196 {
3197 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
3198 } optype0, optype1;
3199 rtx latehalf[2];
3200 rtx middlehalf[2];
3201 rtx xops[2];
3202 rtx addreg0 = 0, addreg1 = 0;
3203 int dest_overlapped_low = 0;
3204 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
3205
3206 middlehalf[0] = 0;
3207 middlehalf[1] = 0;
3208
3209 /* First classify both operands. */
3210
3211 if (REG_P (operands[0]))
3212 optype0 = REGOP;
3213 else if (offsettable_memref_p (operands[0]))
3214 optype0 = OFFSOP;
3215 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
3216 optype0 = POPOP;
3217 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
3218 optype0 = PUSHOP;
3219 else if (GET_CODE (operands[0]) == MEM)
3220 optype0 = MEMOP;
3221 else
3222 optype0 = RNDOP;
3223
3224 if (REG_P (operands[1]))
3225 optype1 = REGOP;
3226 else if (CONSTANT_P (operands[1]))
3227 optype1 = CNSTOP;
3228 else if (offsettable_memref_p (operands[1]))
3229 optype1 = OFFSOP;
3230 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
3231 optype1 = POPOP;
3232 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
3233 optype1 = PUSHOP;
3234 else if (GET_CODE (operands[1]) == MEM)
3235 optype1 = MEMOP;
3236 else
3237 optype1 = RNDOP;
3238
3239 /* Check for the cases that the operand constraints are not supposed
3240 to allow to happen. Generating code for these cases is
3241 painful. */
3242 gcc_assert (optype0 != RNDOP && optype1 != RNDOP);
3243
3244 /* If one operand is decrementing and one is incrementing
3245 decrement the former register explicitly
3246 and change that operand into ordinary indexing. */
3247
3248 if (optype0 == PUSHOP && optype1 == POPOP)
3249 {
3250 operands[0] = XEXP (XEXP (operands[0], 0), 0);
3251
3252 handle_reg_adjust (operands[0], -size);
3253
3254 if (GET_MODE (operands[1]) == XFmode)
3255 operands[0] = gen_rtx_MEM (XFmode, operands[0]);
3256 else if (GET_MODE (operands[0]) == DFmode)
3257 operands[0] = gen_rtx_MEM (DFmode, operands[0]);
3258 else
3259 operands[0] = gen_rtx_MEM (DImode, operands[0]);
3260 optype0 = OFFSOP;
3261 }
3262 if (optype0 == POPOP && optype1 == PUSHOP)
3263 {
3264 operands[1] = XEXP (XEXP (operands[1], 0), 0);
3265
3266 handle_reg_adjust (operands[1], -size);
3267
3268 if (GET_MODE (operands[1]) == XFmode)
3269 operands[1] = gen_rtx_MEM (XFmode, operands[1]);
3270 else if (GET_MODE (operands[1]) == DFmode)
3271 operands[1] = gen_rtx_MEM (DFmode, operands[1]);
3272 else
3273 operands[1] = gen_rtx_MEM (DImode, operands[1]);
3274 optype1 = OFFSOP;
3275 }
3276
3277 /* If an operand is an unoffsettable memory ref, find a register
3278 we can increment temporarily to make it refer to the second word. */
3279
3280 if (optype0 == MEMOP)
3281 addreg0 = find_addr_reg (XEXP (operands[0], 0));
3282
3283 if (optype1 == MEMOP)
3284 addreg1 = find_addr_reg (XEXP (operands[1], 0));
3285
3286 /* Ok, we can do one word at a time.
3287 Normally we do the low-numbered word first,
3288 but if either operand is autodecrementing then we
3289 do the high-numbered word first.
3290
3291 In either case, set up in LATEHALF the operands to use
3292 for the high-numbered word and in some cases alter the
3293 operands in OPERANDS to be suitable for the low-numbered word. */
3294
3295 if (size == 12)
3296 {
3297 if (optype0 == REGOP)
3298 {
3299 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
3300 middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3301 }
3302 else if (optype0 == OFFSOP)
3303 {
3304 middlehalf[0] = adjust_address (operands[0], SImode, 4);
3305 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3306 }
3307 else
3308 {
3309 middlehalf[0] = adjust_address (operands[0], SImode, 0);
3310 latehalf[0] = adjust_address (operands[0], SImode, 0);
3311 }
3312
3313 if (optype1 == REGOP)
3314 {
3315 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
3316 middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3317 }
3318 else if (optype1 == OFFSOP)
3319 {
3320 middlehalf[1] = adjust_address (operands[1], SImode, 4);
3321 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3322 }
3323 else if (optype1 == CNSTOP)
3324 {
3325 if (GET_CODE (operands[1]) == CONST_DOUBLE)
3326 {
3327 long l[3];
3328
3329 REAL_VALUE_TO_TARGET_LONG_DOUBLE
3330 (*CONST_DOUBLE_REAL_VALUE (operands[1]), l);
3331 operands[1] = GEN_INT (l[0]);
3332 middlehalf[1] = GEN_INT (l[1]);
3333 latehalf[1] = GEN_INT (l[2]);
3334 }
3335 else
3336 {
3337 /* No non-CONST_DOUBLE constant should ever appear
3338 here. */
3339 gcc_assert (!CONSTANT_P (operands[1]));
3340 }
3341 }
3342 else
3343 {
3344 middlehalf[1] = adjust_address (operands[1], SImode, 0);
3345 latehalf[1] = adjust_address (operands[1], SImode, 0);
3346 }
3347 }
3348 else
3349 /* size is not 12: */
3350 {
3351 if (optype0 == REGOP)
3352 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3353 else if (optype0 == OFFSOP)
3354 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3355 else
3356 latehalf[0] = adjust_address (operands[0], SImode, 0);
3357
3358 if (optype1 == REGOP)
3359 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3360 else if (optype1 == OFFSOP)
3361 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3362 else if (optype1 == CNSTOP)
3363 split_double (operands[1], &operands[1], &latehalf[1]);
3364 else
3365 latehalf[1] = adjust_address (operands[1], SImode, 0);
3366 }
3367
3368 /* If insn is effectively movd N(REG),-(REG) then we will do the high
3369 word first. We should use the adjusted operand 1 (which is N+4(REG))
3370 for the low word as well, to compensate for the first decrement of
3371 REG. */
3372 if (optype0 == PUSHOP
3373 && reg_overlap_mentioned_p (XEXP (XEXP (operands[0], 0), 0), operands[1]))
3374 operands[1] = middlehalf[1] = latehalf[1];
3375
3376 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
3377 if the upper part of reg N does not appear in the MEM, arrange to
3378 emit the move late-half first. Otherwise, compute the MEM address
3379 into the upper part of N and use that as a pointer to the memory
3380 operand. */
3381 if (optype0 == REGOP
3382 && (optype1 == OFFSOP || optype1 == MEMOP))
3383 {
3384 rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
3385
3386 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3387 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3388 {
3389 /* If both halves of dest are used in the src memory address,
3390 compute the address into latehalf of dest.
3391 Note that this can't happen if the dest is two data regs. */
3392 compadr:
3393 xops[0] = latehalf[0];
3394 xops[1] = XEXP (operands[1], 0);
3395
3396 handle_compadr (xops);
3397 if (GET_MODE (operands[1]) == XFmode)
3398 {
3399 operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
3400 middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
3401 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3402 }
3403 else
3404 {
3405 operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
3406 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3407 }
3408 }
3409 else if (size == 12
3410 && reg_overlap_mentioned_p (middlehalf[0],
3411 XEXP (operands[1], 0)))
3412 {
3413 /* Check for two regs used by both source and dest.
3414 Note that this can't happen if the dest is all data regs.
3415 It can happen if the dest is d6, d7, a0.
3416 But in that case, latehalf is an addr reg, so
3417 the code at compadr does ok. */
3418
3419 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3420 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3421 goto compadr;
3422
3423 /* JRV says this can't happen: */
3424 gcc_assert (!addreg0 && !addreg1);
3425
3426 /* Only the middle reg conflicts; simply put it last. */
3427 handle_movsi (operands);
3428 handle_movsi (latehalf);
3429 handle_movsi (middlehalf);
3430
3431 return;
3432 }
3433 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
3434 /* If the low half of dest is mentioned in the source memory
3435 address, the arrange to emit the move late half first. */
3436 dest_overlapped_low = 1;
3437 }
3438
3439 /* If one or both operands autodecrementing,
3440 do the two words, high-numbered first. */
3441
3442 /* Likewise, the first move would clobber the source of the second one,
3443 do them in the other order. This happens only for registers;
3444 such overlap can't happen in memory unless the user explicitly
3445 sets it up, and that is an undefined circumstance. */
3446
3447 if (optype0 == PUSHOP || optype1 == PUSHOP
3448 || (optype0 == REGOP && optype1 == REGOP
3449 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
3450 || REGNO (operands[0]) == REGNO (latehalf[1])))
3451 || dest_overlapped_low)
3452 {
3453 /* Make any unoffsettable addresses point at high-numbered word. */
3454 if (addreg0)
3455 handle_reg_adjust (addreg0, size - 4);
3456 if (addreg1)
3457 handle_reg_adjust (addreg1, size - 4);
3458
3459 /* Do that word. */
3460 handle_movsi (latehalf);
3461
3462 /* Undo the adds we just did. */
3463 if (addreg0)
3464 handle_reg_adjust (addreg0, -4);
3465 if (addreg1)
3466 handle_reg_adjust (addreg1, -4);
3467
3468 if (size == 12)
3469 {
3470 handle_movsi (middlehalf);
3471
3472 if (addreg0)
3473 handle_reg_adjust (addreg0, -4);
3474 if (addreg1)
3475 handle_reg_adjust (addreg1, -4);
3476 }
3477
3478 /* Do low-numbered word. */
3479
3480 handle_movsi (operands);
3481 return;
3482 }
3483
3484 /* Normal case: do the two words, low-numbered first. */
3485
3486 m68k_final_prescan_insn (NULL, operands, 2);
3487 handle_movsi (operands);
3488
3489 /* Do the middle one of the three words for long double */
3490 if (size == 12)
3491 {
3492 if (addreg0)
3493 handle_reg_adjust (addreg0, 4);
3494 if (addreg1)
3495 handle_reg_adjust (addreg1, 4);
3496
3497 m68k_final_prescan_insn (NULL, middlehalf, 2);
3498 handle_movsi (middlehalf);
3499 }
3500
3501 /* Make any unoffsettable addresses point at high-numbered word. */
3502 if (addreg0)
3503 handle_reg_adjust (addreg0, 4);
3504 if (addreg1)
3505 handle_reg_adjust (addreg1, 4);
3506
3507 /* Do that word. */
3508 m68k_final_prescan_insn (NULL, latehalf, 2);
3509 handle_movsi (latehalf);
3510
3511 /* Undo the adds we just did. */
3512 if (addreg0)
3513 handle_reg_adjust (addreg0, -(size - 4));
3514 if (addreg1)
3515 handle_reg_adjust (addreg1, -(size - 4));
3516
3517 return;
3518 }
3519
3520 /* Output assembler code to adjust REG by N. */
3521 static void
3522 output_reg_adjust (rtx reg, int n)
3523 {
3524 const char *s;
3525
3526 gcc_assert (GET_MODE (reg) == SImode && n >= -12 && n != 0 && n <= 12);
3527
3528 switch (n)
3529 {
3530 case 12:
3531 s = "add%.l #12,%0";
3532 break;
3533
3534 case 8:
3535 s = "addq%.l #8,%0";
3536 break;
3537
3538 case 4:
3539 s = "addq%.l #4,%0";
3540 break;
3541
3542 case -12:
3543 s = "sub%.l #12,%0";
3544 break;
3545
3546 case -8:
3547 s = "subq%.l #8,%0";
3548 break;
3549
3550 case -4:
3551 s = "subq%.l #4,%0";
3552 break;
3553
3554 default:
3555 gcc_unreachable ();
3556 s = NULL;
3557 }
3558
3559 output_asm_insn (s, &reg);
3560 }
3561
3562 /* Emit rtl code to adjust REG by N. */
3563 static void
3564 emit_reg_adjust (rtx reg1, int n)
3565 {
3566 rtx reg2;
3567
3568 gcc_assert (GET_MODE (reg1) == SImode && n >= -12 && n != 0 && n <= 12);
3569
3570 reg1 = copy_rtx (reg1);
3571 reg2 = copy_rtx (reg1);
3572
3573 if (n < 0)
3574 emit_insn (gen_subsi3 (reg1, reg2, GEN_INT (-n)));
3575 else if (n > 0)
3576 emit_insn (gen_addsi3 (reg1, reg2, GEN_INT (n)));
3577 else
3578 gcc_unreachable ();
3579 }
3580
3581 /* Output assembler to load address OPERANDS[0] to register OPERANDS[1]. */
3582 static void
3583 output_compadr (rtx operands[2])
3584 {
3585 output_asm_insn ("lea %a1,%0", operands);
3586 }
3587
3588 /* Output the best assembler insn for moving operands[1] into operands[0]
3589 as a fullword. */
3590 static void
3591 output_movsi (rtx operands[2])
3592 {
3593 output_asm_insn (singlemove_string (operands), operands);
3594 }
3595
3596 /* Copy OP and change its mode to MODE. */
3597 static rtx
3598 copy_operand (rtx op, machine_mode mode)
3599 {
3600 /* ??? This looks really ugly. There must be a better way
3601 to change a mode on the operand. */
3602 if (GET_MODE (op) != VOIDmode)
3603 {
3604 if (REG_P (op))
3605 op = gen_rtx_REG (mode, REGNO (op));
3606 else
3607 {
3608 op = copy_rtx (op);
3609 PUT_MODE (op, mode);
3610 }
3611 }
3612
3613 return op;
3614 }
3615
3616 /* Emit rtl code for moving operands[1] into operands[0] as a fullword. */
3617 static void
3618 emit_movsi (rtx operands[2])
3619 {
3620 operands[0] = copy_operand (operands[0], SImode);
3621 operands[1] = copy_operand (operands[1], SImode);
3622
3623 emit_insn (gen_movsi (operands[0], operands[1]));
3624 }
3625
3626 /* Output assembler code to perform a doubleword move insn
3627 with operands OPERANDS. */
3628 const char *
3629 output_move_double (rtx *operands)
3630 {
3631 handle_move_double (operands,
3632 output_reg_adjust, output_compadr, output_movsi);
3633
3634 return "";
3635 }
3636
3637 /* Output rtl code to perform a doubleword move insn
3638 with operands OPERANDS. */
3639 void
3640 m68k_emit_move_double (rtx operands[2])
3641 {
3642 handle_move_double (operands, emit_reg_adjust, emit_movsi, emit_movsi);
3643 }
3644
3645 /* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a
3646 new rtx with the correct mode. */
3647
3648 static rtx
3649 force_mode (machine_mode mode, rtx orig)
3650 {
3651 if (mode == GET_MODE (orig))
3652 return orig;
3653
3654 if (REGNO (orig) >= FIRST_PSEUDO_REGISTER)
3655 abort ();
3656
3657 return gen_rtx_REG (mode, REGNO (orig));
3658 }
3659
3660 static int
3661 fp_reg_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
3662 {
3663 return reg_renumber && FP_REG_P (op);
3664 }
3665
3666 /* Emit insns to move operands[1] into operands[0].
3667
3668 Return 1 if we have written out everything that needs to be done to
3669 do the move. Otherwise, return 0 and the caller will emit the move
3670 normally.
3671
3672 Note SCRATCH_REG may not be in the proper mode depending on how it
3673 will be used. This routine is responsible for creating a new copy
3674 of SCRATCH_REG in the proper mode. */
3675
3676 int
3677 emit_move_sequence (rtx *operands, machine_mode mode, rtx scratch_reg)
3678 {
3679 register rtx operand0 = operands[0];
3680 register rtx operand1 = operands[1];
3681 register rtx tem;
3682
3683 if (scratch_reg
3684 && reload_in_progress && GET_CODE (operand0) == REG
3685 && REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
3686 operand0 = reg_equiv_mem (REGNO (operand0));
3687 else if (scratch_reg
3688 && reload_in_progress && GET_CODE (operand0) == SUBREG
3689 && GET_CODE (SUBREG_REG (operand0)) == REG
3690 && REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
3691 {
3692 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3693 the code which tracks sets/uses for delete_output_reload. */
3694 rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
3695 reg_equiv_mem (REGNO (SUBREG_REG (operand0))),
3696 SUBREG_BYTE (operand0));
3697 operand0 = alter_subreg (&temp, true);
3698 }
3699
3700 if (scratch_reg
3701 && reload_in_progress && GET_CODE (operand1) == REG
3702 && REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
3703 operand1 = reg_equiv_mem (REGNO (operand1));
3704 else if (scratch_reg
3705 && reload_in_progress && GET_CODE (operand1) == SUBREG
3706 && GET_CODE (SUBREG_REG (operand1)) == REG
3707 && REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
3708 {
3709 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3710 the code which tracks sets/uses for delete_output_reload. */
3711 rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
3712 reg_equiv_mem (REGNO (SUBREG_REG (operand1))),
3713 SUBREG_BYTE (operand1));
3714 operand1 = alter_subreg (&temp, true);
3715 }
3716
3717 if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
3718 && ((tem = find_replacement (&XEXP (operand0, 0)))
3719 != XEXP (operand0, 0)))
3720 operand0 = gen_rtx_MEM (GET_MODE (operand0), tem);
3721 if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
3722 && ((tem = find_replacement (&XEXP (operand1, 0)))
3723 != XEXP (operand1, 0)))
3724 operand1 = gen_rtx_MEM (GET_MODE (operand1), tem);
3725
3726 /* Handle secondary reloads for loads/stores of FP registers where
3727 the address is symbolic by using the scratch register */
3728 if (fp_reg_operand (operand0, mode)
3729 && ((GET_CODE (operand1) == MEM
3730 && ! memory_address_p (DFmode, XEXP (operand1, 0)))
3731 || ((GET_CODE (operand1) == SUBREG
3732 && GET_CODE (XEXP (operand1, 0)) == MEM
3733 && !memory_address_p (DFmode, XEXP (XEXP (operand1, 0), 0)))))
3734 && scratch_reg)
3735 {
3736 if (GET_CODE (operand1) == SUBREG)
3737 operand1 = XEXP (operand1, 0);
3738
3739 /* SCRATCH_REG will hold an address. We want
3740 it in SImode regardless of what mode it was originally given
3741 to us. */
3742 scratch_reg = force_mode (SImode, scratch_reg);
3743
3744 /* D might not fit in 14 bits either; for such cases load D into
3745 scratch reg. */
3746 if (!memory_address_p (Pmode, XEXP (operand1, 0)))
3747 {
3748 emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
3749 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)),
3750 Pmode,
3751 XEXP (XEXP (operand1, 0), 0),
3752 scratch_reg));
3753 }
3754 else
3755 emit_move_insn (scratch_reg, XEXP (operand1, 0));
3756 emit_insn (gen_rtx_SET (operand0, gen_rtx_MEM (mode, scratch_reg)));
3757 return 1;
3758 }
3759 else if (fp_reg_operand (operand1, mode)
3760 && ((GET_CODE (operand0) == MEM
3761 && ! memory_address_p (DFmode, XEXP (operand0, 0)))
3762 || ((GET_CODE (operand0) == SUBREG)
3763 && GET_CODE (XEXP (operand0, 0)) == MEM
3764 && !memory_address_p (DFmode, XEXP (XEXP (operand0, 0), 0))))
3765 && scratch_reg)
3766 {
3767 if (GET_CODE (operand0) == SUBREG)
3768 operand0 = XEXP (operand0, 0);
3769
3770 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3771 it in SIMODE regardless of what mode it was originally given
3772 to us. */
3773 scratch_reg = force_mode (SImode, scratch_reg);
3774
3775 /* D might not fit in 14 bits either; for such cases load D into
3776 scratch reg. */
3777 if (!memory_address_p (Pmode, XEXP (operand0, 0)))
3778 {
3779 emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1));
3780 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0,
3781 0)),
3782 Pmode,
3783 XEXP (XEXP (operand0, 0),
3784 0),
3785 scratch_reg));
3786 }
3787 else
3788 emit_move_insn (scratch_reg, XEXP (operand0, 0));
3789 emit_insn (gen_rtx_SET (gen_rtx_MEM (mode, scratch_reg), operand1));
3790 return 1;
3791 }
3792 /* Handle secondary reloads for loads of FP registers from constant
3793 expressions by forcing the constant into memory.
3794
3795 use scratch_reg to hold the address of the memory location.
3796
3797 The proper fix is to change PREFERRED_RELOAD_CLASS to return
3798 NO_REGS when presented with a const_int and an register class
3799 containing only FP registers. Doing so unfortunately creates
3800 more problems than it solves. Fix this for 2.5. */
3801 else if (fp_reg_operand (operand0, mode)
3802 && CONSTANT_P (operand1)
3803 && scratch_reg)
3804 {
3805 rtx xoperands[2];
3806
3807 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3808 it in SIMODE regardless of what mode it was originally given
3809 to us. */
3810 scratch_reg = force_mode (SImode, scratch_reg);
3811
3812 /* Force the constant into memory and put the address of the
3813 memory location into scratch_reg. */
3814 xoperands[0] = scratch_reg;
3815 xoperands[1] = XEXP (force_const_mem (mode, operand1), 0);
3816 emit_insn (gen_rtx_SET (scratch_reg, xoperands[1]));
3817
3818 /* Now load the destination register. */
3819 emit_insn (gen_rtx_SET (operand0, gen_rtx_MEM (mode, scratch_reg)));
3820 return 1;
3821 }
3822
3823 /* Now have insn-emit do whatever it normally does. */
3824 return 0;
3825 }
3826
3827 /* Split one or more DImode RTL references into pairs of SImode
3828 references. The RTL can be REG, offsettable MEM, integer constant, or
3829 CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
3830 split and "num" is its length. lo_half and hi_half are output arrays
3831 that parallel "operands". */
3832
3833 void
3834 split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
3835 {
3836 while (num--)
3837 {
3838 rtx op = operands[num];
3839
3840 /* simplify_subreg refuses to split volatile memory addresses,
3841 but we still have to handle it. */
3842 if (GET_CODE (op) == MEM)
3843 {
3844 lo_half[num] = adjust_address (op, SImode, 4);
3845 hi_half[num] = adjust_address (op, SImode, 0);
3846 }
3847 else
3848 {
3849 lo_half[num] = simplify_gen_subreg (SImode, op,
3850 GET_MODE (op) == VOIDmode
3851 ? DImode : GET_MODE (op), 4);
3852 hi_half[num] = simplify_gen_subreg (SImode, op,
3853 GET_MODE (op) == VOIDmode
3854 ? DImode : GET_MODE (op), 0);
3855 }
3856 }
3857 }
3858
3859 /* Split X into a base and a constant offset, storing them in *BASE
3860 and *OFFSET respectively. */
3861
3862 static void
3863 m68k_split_offset (rtx x, rtx *base, HOST_WIDE_INT *offset)
3864 {
3865 *offset = 0;
3866 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
3867 {
3868 *offset += INTVAL (XEXP (x, 1));
3869 x = XEXP (x, 0);
3870 }
3871 *base = x;
3872 }
3873
3874 /* Return true if PATTERN is a PARALLEL suitable for a movem or fmovem
3875 instruction. STORE_P says whether the move is a load or store.
3876
3877 If the instruction uses post-increment or pre-decrement addressing,
3878 AUTOMOD_BASE is the base register and AUTOMOD_OFFSET is the total
3879 adjustment. This adjustment will be made by the first element of
3880 PARALLEL, with the loads or stores starting at element 1. If the
3881 instruction does not use post-increment or pre-decrement addressing,
3882 AUTOMOD_BASE is null, AUTOMOD_OFFSET is 0, and the loads or stores
3883 start at element 0. */
3884
3885 bool
3886 m68k_movem_pattern_p (rtx pattern, rtx automod_base,
3887 HOST_WIDE_INT automod_offset, bool store_p)
3888 {
3889 rtx base, mem_base, set, mem, reg, last_reg;
3890 HOST_WIDE_INT offset, mem_offset;
3891 int i, first, len;
3892 enum reg_class rclass;
3893
3894 len = XVECLEN (pattern, 0);
3895 first = (automod_base != NULL);
3896
3897 if (automod_base)
3898 {
3899 /* Stores must be pre-decrement and loads must be post-increment. */
3900 if (store_p != (automod_offset < 0))
3901 return false;
3902
3903 /* Work out the base and offset for lowest memory location. */
3904 base = automod_base;
3905 offset = (automod_offset < 0 ? automod_offset : 0);
3906 }
3907 else
3908 {
3909 /* Allow any valid base and offset in the first access. */
3910 base = NULL;
3911 offset = 0;
3912 }
3913
3914 last_reg = NULL;
3915 rclass = NO_REGS;
3916 for (i = first; i < len; i++)
3917 {
3918 /* We need a plain SET. */
3919 set = XVECEXP (pattern, 0, i);
3920 if (GET_CODE (set) != SET)
3921 return false;
3922
3923 /* Check that we have a memory location... */
3924 mem = XEXP (set, !store_p);
3925 if (!MEM_P (mem) || !memory_operand (mem, VOIDmode))
3926 return false;
3927
3928 /* ...with the right address. */
3929 if (base == NULL)
3930 {
3931 m68k_split_offset (XEXP (mem, 0), &base, &offset);
3932 /* The ColdFire instruction only allows (An) and (d16,An) modes.
3933 There are no mode restrictions for 680x0 besides the
3934 automodification rules enforced above. */
3935 if (TARGET_COLDFIRE
3936 && !m68k_legitimate_base_reg_p (base, reload_completed))
3937 return false;
3938 }
3939 else
3940 {
3941 m68k_split_offset (XEXP (mem, 0), &mem_base, &mem_offset);
3942 if (!rtx_equal_p (base, mem_base) || offset != mem_offset)
3943 return false;
3944 }
3945
3946 /* Check that we have a register of the required mode and class. */
3947 reg = XEXP (set, store_p);
3948 if (!REG_P (reg)
3949 || !HARD_REGISTER_P (reg)
3950 || GET_MODE (reg) != reg_raw_mode[REGNO (reg)])
3951 return false;
3952
3953 if (last_reg)
3954 {
3955 /* The register must belong to RCLASS and have a higher number
3956 than the register in the previous SET. */
3957 if (!TEST_HARD_REG_BIT (reg_class_contents[rclass], REGNO (reg))
3958 || REGNO (last_reg) >= REGNO (reg))
3959 return false;
3960 }
3961 else
3962 {
3963 /* Work out which register class we need. */
3964 if (INT_REGNO_P (REGNO (reg)))
3965 rclass = GENERAL_REGS;
3966 else if (FP_REGNO_P (REGNO (reg)))
3967 rclass = FP_REGS;
3968 else
3969 return false;
3970 }
3971
3972 last_reg = reg;
3973 offset += GET_MODE_SIZE (GET_MODE (reg));
3974 }
3975
3976 /* If we have an automodification, check whether the final offset is OK. */
3977 if (automod_base && offset != (automod_offset < 0 ? 0 : automod_offset))
3978 return false;
3979
3980 /* Reject unprofitable cases. */
3981 if (len < first + (rclass == FP_REGS ? MIN_FMOVEM_REGS : MIN_MOVEM_REGS))
3982 return false;
3983
3984 return true;
3985 }
3986
3987 /* Return the assembly code template for a movem or fmovem instruction
3988 whose pattern is given by PATTERN. Store the template's operands
3989 in OPERANDS.
3990
3991 If the instruction uses post-increment or pre-decrement addressing,
3992 AUTOMOD_OFFSET is the total adjustment, otherwise it is 0. STORE_P
3993 is true if this is a store instruction. */
3994
3995 const char *
3996 m68k_output_movem (rtx *operands, rtx pattern,
3997 HOST_WIDE_INT automod_offset, bool store_p)
3998 {
3999 unsigned int mask;
4000 int i, first;
4001
4002 gcc_assert (GET_CODE (pattern) == PARALLEL);
4003 mask = 0;
4004 first = (automod_offset != 0);
4005 for (i = first; i < XVECLEN (pattern, 0); i++)
4006 {
4007 /* When using movem with pre-decrement addressing, register X + D0_REG
4008 is controlled by bit 15 - X. For all other addressing modes,
4009 register X + D0_REG is controlled by bit X. Confusingly, the
4010 register mask for fmovem is in the opposite order to that for
4011 movem. */
4012 unsigned int regno;
4013
4014 gcc_assert (MEM_P (XEXP (XVECEXP (pattern, 0, i), !store_p)));
4015 gcc_assert (REG_P (XEXP (XVECEXP (pattern, 0, i), store_p)));
4016 regno = REGNO (XEXP (XVECEXP (pattern, 0, i), store_p));
4017 if (automod_offset < 0)
4018 {
4019 if (FP_REGNO_P (regno))
4020 mask |= 1 << (regno - FP0_REG);
4021 else
4022 mask |= 1 << (15 - (regno - D0_REG));
4023 }
4024 else
4025 {
4026 if (FP_REGNO_P (regno))
4027 mask |= 1 << (7 - (regno - FP0_REG));
4028 else
4029 mask |= 1 << (regno - D0_REG);
4030 }
4031 }
4032 CC_STATUS_INIT;
4033
4034 if (automod_offset == 0)
4035 operands[0] = XEXP (XEXP (XVECEXP (pattern, 0, first), !store_p), 0);
4036 else if (automod_offset < 0)
4037 operands[0] = gen_rtx_PRE_DEC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4038 else
4039 operands[0] = gen_rtx_POST_INC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4040 operands[1] = GEN_INT (mask);
4041 if (FP_REGNO_P (REGNO (XEXP (XVECEXP (pattern, 0, first), store_p))))
4042 {
4043 if (store_p)
4044 return "fmovem %1,%a0";
4045 else
4046 return "fmovem %a0,%1";
4047 }
4048 else
4049 {
4050 if (store_p)
4051 return "movem%.l %1,%a0";
4052 else
4053 return "movem%.l %a0,%1";
4054 }
4055 }
4056
4057 /* Return a REG that occurs in ADDR with coefficient 1.
4058 ADDR can be effectively incremented by incrementing REG. */
4059
4060 static rtx
4061 find_addr_reg (rtx addr)
4062 {
4063 while (GET_CODE (addr) == PLUS)
4064 {
4065 if (GET_CODE (XEXP (addr, 0)) == REG)
4066 addr = XEXP (addr, 0);
4067 else if (GET_CODE (XEXP (addr, 1)) == REG)
4068 addr = XEXP (addr, 1);
4069 else if (CONSTANT_P (XEXP (addr, 0)))
4070 addr = XEXP (addr, 1);
4071 else if (CONSTANT_P (XEXP (addr, 1)))
4072 addr = XEXP (addr, 0);
4073 else
4074 gcc_unreachable ();
4075 }
4076 gcc_assert (GET_CODE (addr) == REG);
4077 return addr;
4078 }
4079
4080 /* Output assembler code to perform a 32-bit 3-operand add. */
4081
4082 const char *
4083 output_addsi3 (rtx *operands)
4084 {
4085 if (! operands_match_p (operands[0], operands[1]))
4086 {
4087 if (!ADDRESS_REG_P (operands[1]))
4088 {
4089 rtx tmp = operands[1];
4090
4091 operands[1] = operands[2];
4092 operands[2] = tmp;
4093 }
4094
4095 /* These insns can result from reloads to access
4096 stack slots over 64k from the frame pointer. */
4097 if (GET_CODE (operands[2]) == CONST_INT
4098 && (INTVAL (operands[2]) < -32768 || INTVAL (operands[2]) > 32767))
4099 return "move%.l %2,%0\n\tadd%.l %1,%0";
4100 if (GET_CODE (operands[2]) == REG)
4101 return MOTOROLA ? "lea (%1,%2.l),%0" : "lea %1@(0,%2:l),%0";
4102 return MOTOROLA ? "lea (%c2,%1),%0" : "lea %1@(%c2),%0";
4103 }
4104 if (GET_CODE (operands[2]) == CONST_INT)
4105 {
4106 if (INTVAL (operands[2]) > 0
4107 && INTVAL (operands[2]) <= 8)
4108 return "addq%.l %2,%0";
4109 if (INTVAL (operands[2]) < 0
4110 && INTVAL (operands[2]) >= -8)
4111 {
4112 operands[2] = GEN_INT (- INTVAL (operands[2]));
4113 return "subq%.l %2,%0";
4114 }
4115 /* On the CPU32 it is faster to use two addql instructions to
4116 add a small integer (8 < N <= 16) to a register.
4117 Likewise for subql. */
4118 if (TUNE_CPU32 && REG_P (operands[0]))
4119 {
4120 if (INTVAL (operands[2]) > 8
4121 && INTVAL (operands[2]) <= 16)
4122 {
4123 operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
4124 return "addq%.l #8,%0\n\taddq%.l %2,%0";
4125 }
4126 if (INTVAL (operands[2]) < -8
4127 && INTVAL (operands[2]) >= -16)
4128 {
4129 operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
4130 return "subq%.l #8,%0\n\tsubq%.l %2,%0";
4131 }
4132 }
4133 if (ADDRESS_REG_P (operands[0])
4134 && INTVAL (operands[2]) >= -0x8000
4135 && INTVAL (operands[2]) < 0x8000)
4136 {
4137 if (TUNE_68040)
4138 return "add%.w %2,%0";
4139 else
4140 return MOTOROLA ? "lea (%c2,%0),%0" : "lea %0@(%c2),%0";
4141 }
4142 }
4143 return "add%.l %2,%0";
4144 }
4145 \f
4146 /* Store in cc_status the expressions that the condition codes will
4147 describe after execution of an instruction whose pattern is EXP.
4148 Do not alter them if the instruction would not alter the cc's. */
4149
4150 /* On the 68000, all the insns to store in an address register fail to
4151 set the cc's. However, in some cases these instructions can make it
4152 possibly invalid to use the saved cc's. In those cases we clear out
4153 some or all of the saved cc's so they won't be used. */
4154
4155 void
4156 notice_update_cc (rtx exp, rtx insn)
4157 {
4158 if (GET_CODE (exp) == SET)
4159 {
4160 if (GET_CODE (SET_SRC (exp)) == CALL)
4161 CC_STATUS_INIT;
4162 else if (ADDRESS_REG_P (SET_DEST (exp)))
4163 {
4164 if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
4165 cc_status.value1 = 0;
4166 if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
4167 cc_status.value2 = 0;
4168 }
4169 /* fmoves to memory or data registers do not set the condition
4170 codes. Normal moves _do_ set the condition codes, but not in
4171 a way that is appropriate for comparison with 0, because -0.0
4172 would be treated as a negative nonzero number. Note that it
4173 isn't appropriate to conditionalize this restriction on
4174 HONOR_SIGNED_ZEROS because that macro merely indicates whether
4175 we care about the difference between -0.0 and +0.0. */
4176 else if (!FP_REG_P (SET_DEST (exp))
4177 && SET_DEST (exp) != cc0_rtx
4178 && (FP_REG_P (SET_SRC (exp))
4179 || GET_CODE (SET_SRC (exp)) == FIX
4180 || FLOAT_MODE_P (GET_MODE (SET_DEST (exp)))))
4181 CC_STATUS_INIT;
4182 /* A pair of move insns doesn't produce a useful overall cc. */
4183 else if (!FP_REG_P (SET_DEST (exp))
4184 && !FP_REG_P (SET_SRC (exp))
4185 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
4186 && (GET_CODE (SET_SRC (exp)) == REG
4187 || GET_CODE (SET_SRC (exp)) == MEM
4188 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
4189 CC_STATUS_INIT;
4190 else if (SET_DEST (exp) != pc_rtx)
4191 {
4192 cc_status.flags = 0;
4193 cc_status.value1 = SET_DEST (exp);
4194 cc_status.value2 = SET_SRC (exp);
4195 }
4196 }
4197 else if (GET_CODE (exp) == PARALLEL
4198 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
4199 {
4200 rtx dest = SET_DEST (XVECEXP (exp, 0, 0));
4201 rtx src = SET_SRC (XVECEXP (exp, 0, 0));
4202
4203 if (ADDRESS_REG_P (dest))
4204 CC_STATUS_INIT;
4205 else if (dest != pc_rtx)
4206 {
4207 cc_status.flags = 0;
4208 cc_status.value1 = dest;
4209 cc_status.value2 = src;
4210 }
4211 }
4212 else
4213 CC_STATUS_INIT;
4214 if (cc_status.value2 != 0
4215 && ADDRESS_REG_P (cc_status.value2)
4216 && GET_MODE (cc_status.value2) == QImode)
4217 CC_STATUS_INIT;
4218 if (cc_status.value2 != 0)
4219 switch (GET_CODE (cc_status.value2))
4220 {
4221 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
4222 case ROTATE: case ROTATERT:
4223 /* These instructions always clear the overflow bit, and set
4224 the carry to the bit shifted out. */
4225 cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
4226 break;
4227
4228 case PLUS: case MINUS: case MULT:
4229 case DIV: case UDIV: case MOD: case UMOD: case NEG:
4230 if (GET_MODE (cc_status.value2) != VOIDmode)
4231 cc_status.flags |= CC_NO_OVERFLOW;
4232 break;
4233 case ZERO_EXTEND:
4234 /* (SET r1 (ZERO_EXTEND r2)) on this machine
4235 ends with a move insn moving r2 in r2's mode.
4236 Thus, the cc's are set for r2.
4237 This can set N bit spuriously. */
4238 cc_status.flags |= CC_NOT_NEGATIVE;
4239
4240 default:
4241 break;
4242 }
4243 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
4244 && cc_status.value2
4245 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
4246 cc_status.value2 = 0;
4247 /* Check for PRE_DEC in dest modifying a register used in src. */
4248 if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM
4249 && GET_CODE (XEXP (cc_status.value1, 0)) == PRE_DEC
4250 && cc_status.value2
4251 && reg_overlap_mentioned_p (XEXP (XEXP (cc_status.value1, 0), 0),
4252 cc_status.value2))
4253 cc_status.value2 = 0;
4254 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
4255 || (cc_status.value2 && FP_REG_P (cc_status.value2))))
4256 cc_status.flags = CC_IN_68881;
4257 if (cc_status.value2 && GET_CODE (cc_status.value2) == COMPARE
4258 && GET_MODE_CLASS (GET_MODE (XEXP (cc_status.value2, 0))) == MODE_FLOAT)
4259 {
4260 cc_status.flags = CC_IN_68881;
4261 if (!FP_REG_P (XEXP (cc_status.value2, 0))
4262 && FP_REG_P (XEXP (cc_status.value2, 1)))
4263 cc_status.flags |= CC_REVERSED;
4264 }
4265 }
4266 \f
4267 const char *
4268 output_move_const_double (rtx *operands)
4269 {
4270 int code = standard_68881_constant_p (operands[1]);
4271
4272 if (code != 0)
4273 {
4274 static char buf[40];
4275
4276 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4277 return buf;
4278 }
4279 return "fmove%.d %1,%0";
4280 }
4281
4282 const char *
4283 output_move_const_single (rtx *operands)
4284 {
4285 int code = standard_68881_constant_p (operands[1]);
4286
4287 if (code != 0)
4288 {
4289 static char buf[40];
4290
4291 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4292 return buf;
4293 }
4294 return "fmove%.s %f1,%0";
4295 }
4296
4297 /* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
4298 from the "fmovecr" instruction.
4299 The value, anded with 0xff, gives the code to use in fmovecr
4300 to get the desired constant. */
4301
4302 /* This code has been fixed for cross-compilation. */
4303
4304 static int inited_68881_table = 0;
4305
4306 static const char *const strings_68881[7] = {
4307 "0.0",
4308 "1.0",
4309 "10.0",
4310 "100.0",
4311 "10000.0",
4312 "1e8",
4313 "1e16"
4314 };
4315
4316 static const int codes_68881[7] = {
4317 0x0f,
4318 0x32,
4319 0x33,
4320 0x34,
4321 0x35,
4322 0x36,
4323 0x37
4324 };
4325
4326 REAL_VALUE_TYPE values_68881[7];
4327
4328 /* Set up values_68881 array by converting the decimal values
4329 strings_68881 to binary. */
4330
4331 void
4332 init_68881_table (void)
4333 {
4334 int i;
4335 REAL_VALUE_TYPE r;
4336 machine_mode mode;
4337
4338 mode = SFmode;
4339 for (i = 0; i < 7; i++)
4340 {
4341 if (i == 6)
4342 mode = DFmode;
4343 r = REAL_VALUE_ATOF (strings_68881[i], mode);
4344 values_68881[i] = r;
4345 }
4346 inited_68881_table = 1;
4347 }
4348
4349 int
4350 standard_68881_constant_p (rtx x)
4351 {
4352 const REAL_VALUE_TYPE *r;
4353 int i;
4354
4355 /* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
4356 used at all on those chips. */
4357 if (TUNE_68040_60)
4358 return 0;
4359
4360 if (! inited_68881_table)
4361 init_68881_table ();
4362
4363 r = CONST_DOUBLE_REAL_VALUE (x);
4364
4365 /* Use real_identical instead of real_equal so that -0.0 is rejected. */
4366 for (i = 0; i < 6; i++)
4367 {
4368 if (real_identical (r, &values_68881[i]))
4369 return (codes_68881[i]);
4370 }
4371
4372 if (GET_MODE (x) == SFmode)
4373 return 0;
4374
4375 if (real_equal (r, &values_68881[6]))
4376 return (codes_68881[6]);
4377
4378 /* larger powers of ten in the constants ram are not used
4379 because they are not equal to a `double' C constant. */
4380 return 0;
4381 }
4382
4383 /* If X is a floating-point constant, return the logarithm of X base 2,
4384 or 0 if X is not a power of 2. */
4385
4386 int
4387 floating_exact_log2 (rtx x)
4388 {
4389 const REAL_VALUE_TYPE *r;
4390 REAL_VALUE_TYPE r1;
4391 int exp;
4392
4393 r = CONST_DOUBLE_REAL_VALUE (x);
4394
4395 if (real_less (r, &dconst1))
4396 return 0;
4397
4398 exp = real_exponent (r);
4399 real_2expN (&r1, exp, DFmode);
4400 if (real_equal (&r1, r))
4401 return exp;
4402
4403 return 0;
4404 }
4405 \f
4406 /* A C compound statement to output to stdio stream STREAM the
4407 assembler syntax for an instruction operand X. X is an RTL
4408 expression.
4409
4410 CODE is a value that can be used to specify one of several ways
4411 of printing the operand. It is used when identical operands
4412 must be printed differently depending on the context. CODE
4413 comes from the `%' specification that was used to request
4414 printing of the operand. If the specification was just `%DIGIT'
4415 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4416 is the ASCII code for LTR.
4417
4418 If X is a register, this macro should print the register's name.
4419 The names can be found in an array `reg_names' whose type is
4420 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4421
4422 When the machine description has a specification `%PUNCT' (a `%'
4423 followed by a punctuation character), this macro is called with
4424 a null pointer for X and the punctuation character for CODE.
4425
4426 The m68k specific codes are:
4427
4428 '.' for dot needed in Motorola-style opcode names.
4429 '-' for an operand pushing on the stack:
4430 sp@-, -(sp) or -(%sp) depending on the style of syntax.
4431 '+' for an operand pushing on the stack:
4432 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
4433 '@' for a reference to the top word on the stack:
4434 sp@, (sp) or (%sp) depending on the style of syntax.
4435 '#' for an immediate operand prefix (# in MIT and Motorola syntax
4436 but & in SGS syntax).
4437 '!' for the cc register (used in an `and to cc' insn).
4438 '$' for the letter `s' in an op code, but only on the 68040.
4439 '&' for the letter `d' in an op code, but only on the 68040.
4440 '/' for register prefix needed by longlong.h.
4441 '?' for m68k_library_id_string
4442
4443 'b' for byte insn (no effect, on the Sun; this is for the ISI).
4444 'd' to force memory addressing to be absolute, not relative.
4445 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
4446 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
4447 or print pair of registers as rx:ry.
4448 'p' print an address with @PLTPC attached, but only if the operand
4449 is not locally-bound. */
4450
4451 void
4452 print_operand (FILE *file, rtx op, int letter)
4453 {
4454 if (letter == '.')
4455 {
4456 if (MOTOROLA)
4457 fprintf (file, ".");
4458 }
4459 else if (letter == '#')
4460 asm_fprintf (file, "%I");
4461 else if (letter == '-')
4462 asm_fprintf (file, MOTOROLA ? "-(%Rsp)" : "%Rsp@-");
4463 else if (letter == '+')
4464 asm_fprintf (file, MOTOROLA ? "(%Rsp)+" : "%Rsp@+");
4465 else if (letter == '@')
4466 asm_fprintf (file, MOTOROLA ? "(%Rsp)" : "%Rsp@");
4467 else if (letter == '!')
4468 asm_fprintf (file, "%Rfpcr");
4469 else if (letter == '$')
4470 {
4471 if (TARGET_68040)
4472 fprintf (file, "s");
4473 }
4474 else if (letter == '&')
4475 {
4476 if (TARGET_68040)
4477 fprintf (file, "d");
4478 }
4479 else if (letter == '/')
4480 asm_fprintf (file, "%R");
4481 else if (letter == '?')
4482 asm_fprintf (file, m68k_library_id_string);
4483 else if (letter == 'p')
4484 {
4485 output_addr_const (file, op);
4486 if (!(GET_CODE (op) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (op)))
4487 fprintf (file, "@PLTPC");
4488 }
4489 else if (GET_CODE (op) == REG)
4490 {
4491 if (letter == 'R')
4492 /* Print out the second register name of a register pair.
4493 I.e., R (6) => 7. */
4494 fputs (M68K_REGNAME(REGNO (op) + 1), file);
4495 else
4496 fputs (M68K_REGNAME(REGNO (op)), file);
4497 }
4498 else if (GET_CODE (op) == MEM)
4499 {
4500 output_address (GET_MODE (op), XEXP (op, 0));
4501 if (letter == 'd' && ! TARGET_68020
4502 && CONSTANT_ADDRESS_P (XEXP (op, 0))
4503 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
4504 && INTVAL (XEXP (op, 0)) < 0x8000
4505 && INTVAL (XEXP (op, 0)) >= -0x8000))
4506 fprintf (file, MOTOROLA ? ".l" : ":l");
4507 }
4508 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
4509 {
4510 long l;
4511 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), l);
4512 asm_fprintf (file, "%I0x%lx", l & 0xFFFFFFFF);
4513 }
4514 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
4515 {
4516 long l[3];
4517 REAL_VALUE_TO_TARGET_LONG_DOUBLE (*CONST_DOUBLE_REAL_VALUE (op), l);
4518 asm_fprintf (file, "%I0x%lx%08lx%08lx", l[0] & 0xFFFFFFFF,
4519 l[1] & 0xFFFFFFFF, l[2] & 0xFFFFFFFF);
4520 }
4521 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
4522 {
4523 long l[2];
4524 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (op), l);
4525 asm_fprintf (file, "%I0x%lx%08lx", l[0] & 0xFFFFFFFF, l[1] & 0xFFFFFFFF);
4526 }
4527 else
4528 {
4529 /* Use `print_operand_address' instead of `output_addr_const'
4530 to ensure that we print relevant PIC stuff. */
4531 asm_fprintf (file, "%I");
4532 if (TARGET_PCREL
4533 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
4534 print_operand_address (file, op);
4535 else
4536 output_addr_const (file, op);
4537 }
4538 }
4539
4540 /* Return string for TLS relocation RELOC. */
4541
4542 static const char *
4543 m68k_get_reloc_decoration (enum m68k_reloc reloc)
4544 {
4545 /* To my knowledge, !MOTOROLA assemblers don't support TLS. */
4546 gcc_assert (MOTOROLA || reloc == RELOC_GOT);
4547
4548 switch (reloc)
4549 {
4550 case RELOC_GOT:
4551 if (MOTOROLA)
4552 {
4553 if (flag_pic == 1 && TARGET_68020)
4554 return "@GOT.w";
4555 else
4556 return "@GOT";
4557 }
4558 else
4559 {
4560 if (TARGET_68020)
4561 {
4562 switch (flag_pic)
4563 {
4564 case 1:
4565 return ":w";
4566 case 2:
4567 return ":l";
4568 default:
4569 return "";
4570 }
4571 }
4572 }
4573 gcc_unreachable ();
4574
4575 case RELOC_TLSGD:
4576 return "@TLSGD";
4577
4578 case RELOC_TLSLDM:
4579 return "@TLSLDM";
4580
4581 case RELOC_TLSLDO:
4582 return "@TLSLDO";
4583
4584 case RELOC_TLSIE:
4585 return "@TLSIE";
4586
4587 case RELOC_TLSLE:
4588 return "@TLSLE";
4589
4590 default:
4591 gcc_unreachable ();
4592 }
4593 }
4594
4595 /* m68k implementation of TARGET_OUTPUT_ADDR_CONST_EXTRA. */
4596
4597 static bool
4598 m68k_output_addr_const_extra (FILE *file, rtx x)
4599 {
4600 if (GET_CODE (x) == UNSPEC)
4601 {
4602 switch (XINT (x, 1))
4603 {
4604 case UNSPEC_RELOC16:
4605 case UNSPEC_RELOC32:
4606 output_addr_const (file, XVECEXP (x, 0, 0));
4607 fputs (m68k_get_reloc_decoration
4608 ((enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1))), file);
4609 return true;
4610
4611 default:
4612 break;
4613 }
4614 }
4615
4616 return false;
4617 }
4618
4619 /* M68K implementation of TARGET_ASM_OUTPUT_DWARF_DTPREL. */
4620
4621 static void
4622 m68k_output_dwarf_dtprel (FILE *file, int size, rtx x)
4623 {
4624 gcc_assert (size == 4);
4625 fputs ("\t.long\t", file);
4626 output_addr_const (file, x);
4627 fputs ("@TLSLDO+0x8000", file);
4628 }
4629
4630 /* In the name of slightly smaller debug output, and to cater to
4631 general assembler lossage, recognize various UNSPEC sequences
4632 and turn them back into a direct symbol reference. */
4633
4634 static rtx
4635 m68k_delegitimize_address (rtx orig_x)
4636 {
4637 rtx x;
4638 struct m68k_address addr;
4639 rtx unspec;
4640
4641 orig_x = delegitimize_mem_from_attrs (orig_x);
4642 x = orig_x;
4643 if (MEM_P (x))
4644 x = XEXP (x, 0);
4645
4646 if (GET_CODE (x) != PLUS || GET_MODE (x) != Pmode)
4647 return orig_x;
4648
4649 if (!m68k_decompose_address (GET_MODE (x), x, false, &addr)
4650 || addr.offset == NULL_RTX
4651 || GET_CODE (addr.offset) != CONST)
4652 return orig_x;
4653
4654 unspec = XEXP (addr.offset, 0);
4655 if (GET_CODE (unspec) == PLUS && CONST_INT_P (XEXP (unspec, 1)))
4656 unspec = XEXP (unspec, 0);
4657 if (GET_CODE (unspec) != UNSPEC
4658 || (XINT (unspec, 1) != UNSPEC_RELOC16
4659 && XINT (unspec, 1) != UNSPEC_RELOC32))
4660 return orig_x;
4661 x = XVECEXP (unspec, 0, 0);
4662 gcc_assert (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF);
4663 if (unspec != XEXP (addr.offset, 0))
4664 x = gen_rtx_PLUS (Pmode, x, XEXP (XEXP (addr.offset, 0), 1));
4665 if (addr.index)
4666 {
4667 rtx idx = addr.index;
4668 if (addr.scale != 1)
4669 idx = gen_rtx_MULT (Pmode, idx, GEN_INT (addr.scale));
4670 x = gen_rtx_PLUS (Pmode, idx, x);
4671 }
4672 if (addr.base)
4673 x = gen_rtx_PLUS (Pmode, addr.base, x);
4674 if (MEM_P (orig_x))
4675 x = replace_equiv_address_nv (orig_x, x);
4676 return x;
4677 }
4678
4679 \f
4680 /* A C compound statement to output to stdio stream STREAM the
4681 assembler syntax for an instruction operand that is a memory
4682 reference whose address is ADDR. ADDR is an RTL expression.
4683
4684 Note that this contains a kludge that knows that the only reason
4685 we have an address (plus (label_ref...) (reg...)) when not generating
4686 PIC code is in the insn before a tablejump, and we know that m68k.md
4687 generates a label LInnn: on such an insn.
4688
4689 It is possible for PIC to generate a (plus (label_ref...) (reg...))
4690 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
4691
4692 This routine is responsible for distinguishing between -fpic and -fPIC
4693 style relocations in an address. When generating -fpic code the
4694 offset is output in word mode (e.g. movel a5@(_foo:w), a0). When generating
4695 -fPIC code the offset is output in long mode (e.g. movel a5@(_foo:l), a0) */
4696
4697 void
4698 print_operand_address (FILE *file, rtx addr)
4699 {
4700 struct m68k_address address;
4701
4702 if (!m68k_decompose_address (QImode, addr, true, &address))
4703 gcc_unreachable ();
4704
4705 if (address.code == PRE_DEC)
4706 fprintf (file, MOTOROLA ? "-(%s)" : "%s@-",
4707 M68K_REGNAME (REGNO (address.base)));
4708 else if (address.code == POST_INC)
4709 fprintf (file, MOTOROLA ? "(%s)+" : "%s@+",
4710 M68K_REGNAME (REGNO (address.base)));
4711 else if (!address.base && !address.index)
4712 {
4713 /* A constant address. */
4714 gcc_assert (address.offset == addr);
4715 if (GET_CODE (addr) == CONST_INT)
4716 {
4717 /* (xxx).w or (xxx).l. */
4718 if (IN_RANGE (INTVAL (addr), -0x8000, 0x7fff))
4719 fprintf (file, MOTOROLA ? "%d.w" : "%d:w", (int) INTVAL (addr));
4720 else
4721 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
4722 }
4723 else if (TARGET_PCREL)
4724 {
4725 /* (d16,PC) or (bd,PC,Xn) (with suppressed index register). */
4726 fputc ('(', file);
4727 output_addr_const (file, addr);
4728 asm_fprintf (file, flag_pic == 1 ? ":w,%Rpc)" : ":l,%Rpc)");
4729 }
4730 else
4731 {
4732 /* (xxx).l. We need a special case for SYMBOL_REF if the symbol
4733 name ends in `.<letter>', as the last 2 characters can be
4734 mistaken as a size suffix. Put the name in parentheses. */
4735 if (GET_CODE (addr) == SYMBOL_REF
4736 && strlen (XSTR (addr, 0)) > 2
4737 && XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
4738 {
4739 putc ('(', file);
4740 output_addr_const (file, addr);
4741 putc (')', file);
4742 }
4743 else
4744 output_addr_const (file, addr);
4745 }
4746 }
4747 else
4748 {
4749 int labelno;
4750
4751 /* If ADDR is a (d8,pc,Xn) address, this is the number of the
4752 label being accessed, otherwise it is -1. */
4753 labelno = (address.offset
4754 && !address.base
4755 && GET_CODE (address.offset) == LABEL_REF
4756 ? CODE_LABEL_NUMBER (XEXP (address.offset, 0))
4757 : -1);
4758 if (MOTOROLA)
4759 {
4760 /* Print the "offset(base" component. */
4761 if (labelno >= 0)
4762 asm_fprintf (file, "%LL%d(%Rpc,", labelno);
4763 else
4764 {
4765 if (address.offset)
4766 output_addr_const (file, address.offset);
4767
4768 putc ('(', file);
4769 if (address.base)
4770 fputs (M68K_REGNAME (REGNO (address.base)), file);
4771 }
4772 /* Print the ",index" component, if any. */
4773 if (address.index)
4774 {
4775 if (address.base)
4776 putc (',', file);
4777 fprintf (file, "%s.%c",
4778 M68K_REGNAME (REGNO (address.index)),
4779 GET_MODE (address.index) == HImode ? 'w' : 'l');
4780 if (address.scale != 1)
4781 fprintf (file, "*%d", address.scale);
4782 }
4783 putc (')', file);
4784 }
4785 else /* !MOTOROLA */
4786 {
4787 if (!address.offset && !address.index)
4788 fprintf (file, "%s@", M68K_REGNAME (REGNO (address.base)));
4789 else
4790 {
4791 /* Print the "base@(offset" component. */
4792 if (labelno >= 0)
4793 asm_fprintf (file, "%Rpc@(%LL%d", labelno);
4794 else
4795 {
4796 if (address.base)
4797 fputs (M68K_REGNAME (REGNO (address.base)), file);
4798 fprintf (file, "@(");
4799 if (address.offset)
4800 output_addr_const (file, address.offset);
4801 }
4802 /* Print the ",index" component, if any. */
4803 if (address.index)
4804 {
4805 fprintf (file, ",%s:%c",
4806 M68K_REGNAME (REGNO (address.index)),
4807 GET_MODE (address.index) == HImode ? 'w' : 'l');
4808 if (address.scale != 1)
4809 fprintf (file, ":%d", address.scale);
4810 }
4811 putc (')', file);
4812 }
4813 }
4814 }
4815 }
4816 \f
4817 /* Check for cases where a clr insns can be omitted from code using
4818 strict_low_part sets. For example, the second clrl here is not needed:
4819 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
4820
4821 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
4822 insn we are checking for redundancy. TARGET is the register set by the
4823 clear insn. */
4824
4825 bool
4826 strict_low_part_peephole_ok (machine_mode mode, rtx_insn *first_insn,
4827 rtx target)
4828 {
4829 rtx_insn *p = first_insn;
4830
4831 while ((p = PREV_INSN (p)))
4832 {
4833 if (NOTE_INSN_BASIC_BLOCK_P (p))
4834 return false;
4835
4836 if (NOTE_P (p))
4837 continue;
4838
4839 /* If it isn't an insn, then give up. */
4840 if (!INSN_P (p))
4841 return false;
4842
4843 if (reg_set_p (target, p))
4844 {
4845 rtx set = single_set (p);
4846 rtx dest;
4847
4848 /* If it isn't an easy to recognize insn, then give up. */
4849 if (! set)
4850 return false;
4851
4852 dest = SET_DEST (set);
4853
4854 /* If this sets the entire target register to zero, then our
4855 first_insn is redundant. */
4856 if (rtx_equal_p (dest, target)
4857 && SET_SRC (set) == const0_rtx)
4858 return true;
4859 else if (GET_CODE (dest) == STRICT_LOW_PART
4860 && GET_CODE (XEXP (dest, 0)) == REG
4861 && REGNO (XEXP (dest, 0)) == REGNO (target)
4862 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
4863 <= GET_MODE_SIZE (mode)))
4864 /* This is a strict low part set which modifies less than
4865 we are using, so it is safe. */
4866 ;
4867 else
4868 return false;
4869 }
4870 }
4871
4872 return false;
4873 }
4874
4875 /* Operand predicates for implementing asymmetric pc-relative addressing
4876 on m68k. The m68k supports pc-relative addressing (mode 7, register 2)
4877 when used as a source operand, but not as a destination operand.
4878
4879 We model this by restricting the meaning of the basic predicates
4880 (general_operand, memory_operand, etc) to forbid the use of this
4881 addressing mode, and then define the following predicates that permit
4882 this addressing mode. These predicates can then be used for the
4883 source operands of the appropriate instructions.
4884
4885 n.b. While it is theoretically possible to change all machine patterns
4886 to use this addressing more where permitted by the architecture,
4887 it has only been implemented for "common" cases: SImode, HImode, and
4888 QImode operands, and only for the principle operations that would
4889 require this addressing mode: data movement and simple integer operations.
4890
4891 In parallel with these new predicates, two new constraint letters
4892 were defined: 'S' and 'T'. 'S' is the -mpcrel analog of 'm'.
4893 'T' replaces 's' in the non-pcrel case. It is a no-op in the pcrel case.
4894 In the pcrel case 's' is only valid in combination with 'a' registers.
4895 See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
4896 of how these constraints are used.
4897
4898 The use of these predicates is strictly optional, though patterns that
4899 don't will cause an extra reload register to be allocated where one
4900 was not necessary:
4901
4902 lea (abc:w,%pc),%a0 ; need to reload address
4903 moveq &1,%d1 ; since write to pc-relative space
4904 movel %d1,%a0@ ; is not allowed
4905 ...
4906 lea (abc:w,%pc),%a1 ; no need to reload address here
4907 movel %a1@,%d0 ; since "movel (abc:w,%pc),%d0" is ok
4908
4909 For more info, consult tiemann@cygnus.com.
4910
4911
4912 All of the ugliness with predicates and constraints is due to the
4913 simple fact that the m68k does not allow a pc-relative addressing
4914 mode as a destination. gcc does not distinguish between source and
4915 destination addresses. Hence, if we claim that pc-relative address
4916 modes are valid, e.g. TARGET_LEGITIMATE_ADDRESS_P accepts them, then we
4917 end up with invalid code. To get around this problem, we left
4918 pc-relative modes as invalid addresses, and then added special
4919 predicates and constraints to accept them.
4920
4921 A cleaner way to handle this is to modify gcc to distinguish
4922 between source and destination addresses. We can then say that
4923 pc-relative is a valid source address but not a valid destination
4924 address, and hopefully avoid a lot of the predicate and constraint
4925 hackery. Unfortunately, this would be a pretty big change. It would
4926 be a useful change for a number of ports, but there aren't any current
4927 plans to undertake this.
4928
4929 ***************************************************************************/
4930
4931
4932 const char *
4933 output_andsi3 (rtx *operands)
4934 {
4935 int logval;
4936 if (GET_CODE (operands[2]) == CONST_INT
4937 && (INTVAL (operands[2]) | 0xffff) == -1
4938 && (DATA_REG_P (operands[0])
4939 || offsettable_memref_p (operands[0]))
4940 && !TARGET_COLDFIRE)
4941 {
4942 if (GET_CODE (operands[0]) != REG)
4943 operands[0] = adjust_address (operands[0], HImode, 2);
4944 operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
4945 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4946 CC_STATUS_INIT;
4947 if (operands[2] == const0_rtx)
4948 return "clr%.w %0";
4949 return "and%.w %2,%0";
4950 }
4951 if (GET_CODE (operands[2]) == CONST_INT
4952 && (logval = exact_log2 (~ INTVAL (operands[2]) & 0xffffffff)) >= 0
4953 && (DATA_REG_P (operands[0])
4954 || offsettable_memref_p (operands[0])))
4955 {
4956 if (DATA_REG_P (operands[0]))
4957 operands[1] = GEN_INT (logval);
4958 else
4959 {
4960 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4961 operands[1] = GEN_INT (logval % 8);
4962 }
4963 /* This does not set condition codes in a standard way. */
4964 CC_STATUS_INIT;
4965 return "bclr %1,%0";
4966 }
4967 return "and%.l %2,%0";
4968 }
4969
4970 const char *
4971 output_iorsi3 (rtx *operands)
4972 {
4973 register int logval;
4974 if (GET_CODE (operands[2]) == CONST_INT
4975 && INTVAL (operands[2]) >> 16 == 0
4976 && (DATA_REG_P (operands[0])
4977 || offsettable_memref_p (operands[0]))
4978 && !TARGET_COLDFIRE)
4979 {
4980 if (GET_CODE (operands[0]) != REG)
4981 operands[0] = adjust_address (operands[0], HImode, 2);
4982 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4983 CC_STATUS_INIT;
4984 if (INTVAL (operands[2]) == 0xffff)
4985 return "mov%.w %2,%0";
4986 return "or%.w %2,%0";
4987 }
4988 if (GET_CODE (operands[2]) == CONST_INT
4989 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
4990 && (DATA_REG_P (operands[0])
4991 || offsettable_memref_p (operands[0])))
4992 {
4993 if (DATA_REG_P (operands[0]))
4994 operands[1] = GEN_INT (logval);
4995 else
4996 {
4997 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4998 operands[1] = GEN_INT (logval % 8);
4999 }
5000 CC_STATUS_INIT;
5001 return "bset %1,%0";
5002 }
5003 return "or%.l %2,%0";
5004 }
5005
5006 const char *
5007 output_xorsi3 (rtx *operands)
5008 {
5009 register int logval;
5010 if (GET_CODE (operands[2]) == CONST_INT
5011 && INTVAL (operands[2]) >> 16 == 0
5012 && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
5013 && !TARGET_COLDFIRE)
5014 {
5015 if (! DATA_REG_P (operands[0]))
5016 operands[0] = adjust_address (operands[0], HImode, 2);
5017 /* Do not delete a following tstl %0 insn; that would be incorrect. */
5018 CC_STATUS_INIT;
5019 if (INTVAL (operands[2]) == 0xffff)
5020 return "not%.w %0";
5021 return "eor%.w %2,%0";
5022 }
5023 if (GET_CODE (operands[2]) == CONST_INT
5024 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
5025 && (DATA_REG_P (operands[0])
5026 || offsettable_memref_p (operands[0])))
5027 {
5028 if (DATA_REG_P (operands[0]))
5029 operands[1] = GEN_INT (logval);
5030 else
5031 {
5032 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
5033 operands[1] = GEN_INT (logval % 8);
5034 }
5035 CC_STATUS_INIT;
5036 return "bchg %1,%0";
5037 }
5038 return "eor%.l %2,%0";
5039 }
5040
5041 /* Return the instruction that should be used for a call to address X,
5042 which is known to be in operand 0. */
5043
5044 const char *
5045 output_call (rtx x)
5046 {
5047 if (symbolic_operand (x, VOIDmode))
5048 return m68k_symbolic_call;
5049 else
5050 return "jsr %a0";
5051 }
5052
5053 /* Likewise sibling calls. */
5054
5055 const char *
5056 output_sibcall (rtx x)
5057 {
5058 if (symbolic_operand (x, VOIDmode))
5059 return m68k_symbolic_jump;
5060 else
5061 return "jmp %a0";
5062 }
5063
5064 static void
5065 m68k_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
5066 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
5067 tree function)
5068 {
5069 rtx this_slot, offset, addr, mem, tmp;
5070 rtx_insn *insn;
5071
5072 /* Avoid clobbering the struct value reg by using the
5073 static chain reg as a temporary. */
5074 tmp = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5075
5076 /* Pretend to be a post-reload pass while generating rtl. */
5077 reload_completed = 1;
5078
5079 /* The "this" pointer is stored at 4(%sp). */
5080 this_slot = gen_rtx_MEM (Pmode, plus_constant (Pmode,
5081 stack_pointer_rtx, 4));
5082
5083 /* Add DELTA to THIS. */
5084 if (delta != 0)
5085 {
5086 /* Make the offset a legitimate operand for memory addition. */
5087 offset = GEN_INT (delta);
5088 if ((delta < -8 || delta > 8)
5089 && (TARGET_COLDFIRE || USE_MOVQ (delta)))
5090 {
5091 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), offset);
5092 offset = gen_rtx_REG (Pmode, D0_REG);
5093 }
5094 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5095 copy_rtx (this_slot), offset));
5096 }
5097
5098 /* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
5099 if (vcall_offset != 0)
5100 {
5101 /* Set the static chain register to *THIS. */
5102 emit_move_insn (tmp, this_slot);
5103 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
5104
5105 /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
5106 addr = plus_constant (Pmode, tmp, vcall_offset);
5107 if (!m68k_legitimate_address_p (Pmode, addr, true))
5108 {
5109 emit_insn (gen_rtx_SET (tmp, addr));
5110 addr = tmp;
5111 }
5112
5113 /* Load the offset into %d0 and add it to THIS. */
5114 emit_move_insn (gen_rtx_REG (Pmode, D0_REG),
5115 gen_rtx_MEM (Pmode, addr));
5116 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5117 copy_rtx (this_slot),
5118 gen_rtx_REG (Pmode, D0_REG)));
5119 }
5120
5121 /* Jump to the target function. Use a sibcall if direct jumps are
5122 allowed, otherwise load the address into a register first. */
5123 mem = DECL_RTL (function);
5124 if (!sibcall_operand (XEXP (mem, 0), VOIDmode))
5125 {
5126 gcc_assert (flag_pic);
5127
5128 if (!TARGET_SEP_DATA)
5129 {
5130 /* Use the static chain register as a temporary (call-clobbered)
5131 GOT pointer for this function. We can use the static chain
5132 register because it isn't live on entry to the thunk. */
5133 SET_REGNO (pic_offset_table_rtx, STATIC_CHAIN_REGNUM);
5134 emit_insn (gen_load_got (pic_offset_table_rtx));
5135 }
5136 legitimize_pic_address (XEXP (mem, 0), Pmode, tmp);
5137 mem = replace_equiv_address (mem, tmp);
5138 }
5139 insn = emit_call_insn (gen_sibcall (mem, const0_rtx));
5140 SIBLING_CALL_P (insn) = 1;
5141
5142 /* Run just enough of rest_of_compilation. */
5143 insn = get_insns ();
5144 split_all_insns_noflow ();
5145 final_start_function (insn, file, 1);
5146 final (insn, file, 1);
5147 final_end_function ();
5148
5149 /* Clean up the vars set above. */
5150 reload_completed = 0;
5151
5152 /* Restore the original PIC register. */
5153 if (flag_pic)
5154 SET_REGNO (pic_offset_table_rtx, PIC_REG);
5155 }
5156
5157 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
5158
5159 static rtx
5160 m68k_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
5161 int incoming ATTRIBUTE_UNUSED)
5162 {
5163 return gen_rtx_REG (Pmode, M68K_STRUCT_VALUE_REGNUM);
5164 }
5165
5166 /* Return nonzero if register old_reg can be renamed to register new_reg. */
5167 int
5168 m68k_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
5169 unsigned int new_reg)
5170 {
5171
5172 /* Interrupt functions can only use registers that have already been
5173 saved by the prologue, even if they would normally be
5174 call-clobbered. */
5175
5176 if ((m68k_get_function_kind (current_function_decl)
5177 == m68k_fk_interrupt_handler)
5178 && !df_regs_ever_live_p (new_reg))
5179 return 0;
5180
5181 return 1;
5182 }
5183
5184 /* Implement TARGET_HARD_REGNO_NREGS.
5185
5186 On the m68k, ordinary registers hold 32 bits worth;
5187 for the 68881 registers, a single register is always enough for
5188 anything that can be stored in them at all. */
5189
5190 static unsigned int
5191 m68k_hard_regno_nregs (unsigned int regno, machine_mode mode)
5192 {
5193 if (regno >= 16)
5194 return GET_MODE_NUNITS (mode);
5195 return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD);
5196 }
5197
5198 /* Implement TARGET_HARD_REGNO_MODE_OK. On the 68000, we let the cpu
5199 registers can hold any mode, but restrict the 68881 registers to
5200 floating-point modes. */
5201
5202 static bool
5203 m68k_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
5204 {
5205 if (DATA_REGNO_P (regno))
5206 {
5207 /* Data Registers, can hold aggregate if fits in. */
5208 if (regno + GET_MODE_SIZE (mode) / 4 <= 8)
5209 return true;
5210 }
5211 else if (ADDRESS_REGNO_P (regno))
5212 {
5213 if (regno + GET_MODE_SIZE (mode) / 4 <= 16)
5214 return true;
5215 }
5216 else if (FP_REGNO_P (regno))
5217 {
5218 /* FPU registers, hold float or complex float of long double or
5219 smaller. */
5220 if ((GET_MODE_CLASS (mode) == MODE_FLOAT
5221 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
5222 && GET_MODE_UNIT_SIZE (mode) <= TARGET_FP_REG_SIZE)
5223 return true;
5224 }
5225 return false;
5226 }
5227
5228 /* Implement TARGET_MODES_TIEABLE_P. */
5229
5230 static bool
5231 m68k_modes_tieable_p (machine_mode mode1, machine_mode mode2)
5232 {
5233 return (!TARGET_HARD_FLOAT
5234 || ((GET_MODE_CLASS (mode1) == MODE_FLOAT
5235 || GET_MODE_CLASS (mode1) == MODE_COMPLEX_FLOAT)
5236 == (GET_MODE_CLASS (mode2) == MODE_FLOAT
5237 || GET_MODE_CLASS (mode2) == MODE_COMPLEX_FLOAT)));
5238 }
5239
5240 /* Implement SECONDARY_RELOAD_CLASS. */
5241
5242 enum reg_class
5243 m68k_secondary_reload_class (enum reg_class rclass,
5244 machine_mode mode, rtx x)
5245 {
5246 int regno;
5247
5248 regno = true_regnum (x);
5249
5250 /* If one operand of a movqi is an address register, the other
5251 operand must be a general register or constant. Other types
5252 of operand must be reloaded through a data register. */
5253 if (GET_MODE_SIZE (mode) == 1
5254 && reg_classes_intersect_p (rclass, ADDR_REGS)
5255 && !(INT_REGNO_P (regno) || CONSTANT_P (x)))
5256 return DATA_REGS;
5257
5258 /* PC-relative addresses must be loaded into an address register first. */
5259 if (TARGET_PCREL
5260 && !reg_class_subset_p (rclass, ADDR_REGS)
5261 && symbolic_operand (x, VOIDmode))
5262 return ADDR_REGS;
5263
5264 return NO_REGS;
5265 }
5266
5267 /* Implement PREFERRED_RELOAD_CLASS. */
5268
5269 enum reg_class
5270 m68k_preferred_reload_class (rtx x, enum reg_class rclass)
5271 {
5272 enum reg_class secondary_class;
5273
5274 /* If RCLASS might need a secondary reload, try restricting it to
5275 a class that doesn't. */
5276 secondary_class = m68k_secondary_reload_class (rclass, GET_MODE (x), x);
5277 if (secondary_class != NO_REGS
5278 && reg_class_subset_p (secondary_class, rclass))
5279 return secondary_class;
5280
5281 /* Prefer to use moveq for in-range constants. */
5282 if (GET_CODE (x) == CONST_INT
5283 && reg_class_subset_p (DATA_REGS, rclass)
5284 && IN_RANGE (INTVAL (x), -0x80, 0x7f))
5285 return DATA_REGS;
5286
5287 /* ??? Do we really need this now? */
5288 if (GET_CODE (x) == CONST_DOUBLE
5289 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
5290 {
5291 if (TARGET_HARD_FLOAT && reg_class_subset_p (FP_REGS, rclass))
5292 return FP_REGS;
5293
5294 return NO_REGS;
5295 }
5296
5297 return rclass;
5298 }
5299
5300 /* Return floating point values in a 68881 register. This makes 68881 code
5301 a little bit faster. It also makes -msoft-float code incompatible with
5302 hard-float code, so people have to be careful not to mix the two.
5303 For ColdFire it was decided the ABI incompatibility is undesirable.
5304 If there is need for a hard-float ABI it is probably worth doing it
5305 properly and also passing function arguments in FP registers. */
5306 rtx
5307 m68k_libcall_value (machine_mode mode)
5308 {
5309 switch (mode) {
5310 case E_SFmode:
5311 case E_DFmode:
5312 case E_XFmode:
5313 if (TARGET_68881)
5314 return gen_rtx_REG (mode, FP0_REG);
5315 break;
5316 default:
5317 break;
5318 }
5319
5320 return gen_rtx_REG (mode, m68k_libcall_value_in_a0_p ? A0_REG : D0_REG);
5321 }
5322
5323 /* Location in which function value is returned.
5324 NOTE: Due to differences in ABIs, don't call this function directly,
5325 use FUNCTION_VALUE instead. */
5326 rtx
5327 m68k_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
5328 {
5329 machine_mode mode;
5330
5331 mode = TYPE_MODE (valtype);
5332 switch (mode) {
5333 case E_SFmode:
5334 case E_DFmode:
5335 case E_XFmode:
5336 if (TARGET_68881)
5337 return gen_rtx_REG (mode, FP0_REG);
5338 break;
5339 default:
5340 break;
5341 }
5342
5343 /* If the function returns a pointer, push that into %a0. */
5344 if (func && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (func))))
5345 /* For compatibility with the large body of existing code which
5346 does not always properly declare external functions returning
5347 pointer types, the m68k/SVR4 convention is to copy the value
5348 returned for pointer functions from a0 to d0 in the function
5349 epilogue, so that callers that have neglected to properly
5350 declare the callee can still find the correct return value in
5351 d0. */
5352 return gen_rtx_PARALLEL
5353 (mode,
5354 gen_rtvec (2,
5355 gen_rtx_EXPR_LIST (VOIDmode,
5356 gen_rtx_REG (mode, A0_REG),
5357 const0_rtx),
5358 gen_rtx_EXPR_LIST (VOIDmode,
5359 gen_rtx_REG (mode, D0_REG),
5360 const0_rtx)));
5361 else if (POINTER_TYPE_P (valtype))
5362 return gen_rtx_REG (mode, A0_REG);
5363 else
5364 return gen_rtx_REG (mode, D0_REG);
5365 }
5366
5367 /* Worker function for TARGET_RETURN_IN_MEMORY. */
5368 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
5369 static bool
5370 m68k_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
5371 {
5372 machine_mode mode = TYPE_MODE (type);
5373
5374 if (mode == BLKmode)
5375 return true;
5376
5377 /* If TYPE's known alignment is less than the alignment of MODE that
5378 would contain the structure, then return in memory. We need to
5379 do so to maintain the compatibility between code compiled with
5380 -mstrict-align and that compiled with -mno-strict-align. */
5381 if (AGGREGATE_TYPE_P (type)
5382 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (mode))
5383 return true;
5384
5385 return false;
5386 }
5387 #endif
5388
5389 /* CPU to schedule the program for. */
5390 enum attr_cpu m68k_sched_cpu;
5391
5392 /* MAC to schedule the program for. */
5393 enum attr_mac m68k_sched_mac;
5394
5395 /* Operand type. */
5396 enum attr_op_type
5397 {
5398 /* No operand. */
5399 OP_TYPE_NONE,
5400
5401 /* Integer register. */
5402 OP_TYPE_RN,
5403
5404 /* FP register. */
5405 OP_TYPE_FPN,
5406
5407 /* Implicit mem reference (e.g. stack). */
5408 OP_TYPE_MEM1,
5409
5410 /* Memory without offset or indexing. EA modes 2, 3 and 4. */
5411 OP_TYPE_MEM234,
5412
5413 /* Memory with offset but without indexing. EA mode 5. */
5414 OP_TYPE_MEM5,
5415
5416 /* Memory with indexing. EA mode 6. */
5417 OP_TYPE_MEM6,
5418
5419 /* Memory referenced by absolute address. EA mode 7. */
5420 OP_TYPE_MEM7,
5421
5422 /* Immediate operand that doesn't require extension word. */
5423 OP_TYPE_IMM_Q,
5424
5425 /* Immediate 16 bit operand. */
5426 OP_TYPE_IMM_W,
5427
5428 /* Immediate 32 bit operand. */
5429 OP_TYPE_IMM_L
5430 };
5431
5432 /* Return type of memory ADDR_RTX refers to. */
5433 static enum attr_op_type
5434 sched_address_type (machine_mode mode, rtx addr_rtx)
5435 {
5436 struct m68k_address address;
5437
5438 if (symbolic_operand (addr_rtx, VOIDmode))
5439 return OP_TYPE_MEM7;
5440
5441 if (!m68k_decompose_address (mode, addr_rtx,
5442 reload_completed, &address))
5443 {
5444 gcc_assert (!reload_completed);
5445 /* Reload will likely fix the address to be in the register. */
5446 return OP_TYPE_MEM234;
5447 }
5448
5449 if (address.scale != 0)
5450 return OP_TYPE_MEM6;
5451
5452 if (address.base != NULL_RTX)
5453 {
5454 if (address.offset == NULL_RTX)
5455 return OP_TYPE_MEM234;
5456
5457 return OP_TYPE_MEM5;
5458 }
5459
5460 gcc_assert (address.offset != NULL_RTX);
5461
5462 return OP_TYPE_MEM7;
5463 }
5464
5465 /* Return X or Y (depending on OPX_P) operand of INSN. */
5466 static rtx
5467 sched_get_operand (rtx_insn *insn, bool opx_p)
5468 {
5469 int i;
5470
5471 if (recog_memoized (insn) < 0)
5472 gcc_unreachable ();
5473
5474 extract_constrain_insn_cached (insn);
5475
5476 if (opx_p)
5477 i = get_attr_opx (insn);
5478 else
5479 i = get_attr_opy (insn);
5480
5481 if (i >= recog_data.n_operands)
5482 return NULL;
5483
5484 return recog_data.operand[i];
5485 }
5486
5487 /* Return type of INSN's operand X (if OPX_P) or operand Y (if !OPX_P).
5488 If ADDRESS_P is true, return type of memory location operand refers to. */
5489 static enum attr_op_type
5490 sched_attr_op_type (rtx_insn *insn, bool opx_p, bool address_p)
5491 {
5492 rtx op;
5493
5494 op = sched_get_operand (insn, opx_p);
5495
5496 if (op == NULL)
5497 {
5498 gcc_assert (!reload_completed);
5499 return OP_TYPE_RN;
5500 }
5501
5502 if (address_p)
5503 return sched_address_type (QImode, op);
5504
5505 if (memory_operand (op, VOIDmode))
5506 return sched_address_type (GET_MODE (op), XEXP (op, 0));
5507
5508 if (register_operand (op, VOIDmode))
5509 {
5510 if ((!reload_completed && FLOAT_MODE_P (GET_MODE (op)))
5511 || (reload_completed && FP_REG_P (op)))
5512 return OP_TYPE_FPN;
5513
5514 return OP_TYPE_RN;
5515 }
5516
5517 if (GET_CODE (op) == CONST_INT)
5518 {
5519 int ival;
5520
5521 ival = INTVAL (op);
5522
5523 /* Check for quick constants. */
5524 switch (get_attr_type (insn))
5525 {
5526 case TYPE_ALUQ_L:
5527 if (IN_RANGE (ival, 1, 8) || IN_RANGE (ival, -8, -1))
5528 return OP_TYPE_IMM_Q;
5529
5530 gcc_assert (!reload_completed);
5531 break;
5532
5533 case TYPE_MOVEQ_L:
5534 if (USE_MOVQ (ival))
5535 return OP_TYPE_IMM_Q;
5536
5537 gcc_assert (!reload_completed);
5538 break;
5539
5540 case TYPE_MOV3Q_L:
5541 if (valid_mov3q_const (ival))
5542 return OP_TYPE_IMM_Q;
5543
5544 gcc_assert (!reload_completed);
5545 break;
5546
5547 default:
5548 break;
5549 }
5550
5551 if (IN_RANGE (ival, -0x8000, 0x7fff))
5552 return OP_TYPE_IMM_W;
5553
5554 return OP_TYPE_IMM_L;
5555 }
5556
5557 if (GET_CODE (op) == CONST_DOUBLE)
5558 {
5559 switch (GET_MODE (op))
5560 {
5561 case E_SFmode:
5562 return OP_TYPE_IMM_W;
5563
5564 case E_VOIDmode:
5565 case E_DFmode:
5566 return OP_TYPE_IMM_L;
5567
5568 default:
5569 gcc_unreachable ();
5570 }
5571 }
5572
5573 if (GET_CODE (op) == CONST
5574 || symbolic_operand (op, VOIDmode)
5575 || LABEL_P (op))
5576 {
5577 switch (GET_MODE (op))
5578 {
5579 case E_QImode:
5580 return OP_TYPE_IMM_Q;
5581
5582 case E_HImode:
5583 return OP_TYPE_IMM_W;
5584
5585 case E_SImode:
5586 return OP_TYPE_IMM_L;
5587
5588 default:
5589 if (symbolic_operand (m68k_unwrap_symbol (op, false), VOIDmode))
5590 /* Just a guess. */
5591 return OP_TYPE_IMM_W;
5592
5593 return OP_TYPE_IMM_L;
5594 }
5595 }
5596
5597 gcc_assert (!reload_completed);
5598
5599 if (FLOAT_MODE_P (GET_MODE (op)))
5600 return OP_TYPE_FPN;
5601
5602 return OP_TYPE_RN;
5603 }
5604
5605 /* Implement opx_type attribute.
5606 Return type of INSN's operand X.
5607 If ADDRESS_P is true, return type of memory location operand refers to. */
5608 enum attr_opx_type
5609 m68k_sched_attr_opx_type (rtx_insn *insn, int address_p)
5610 {
5611 switch (sched_attr_op_type (insn, true, address_p != 0))
5612 {
5613 case OP_TYPE_RN:
5614 return OPX_TYPE_RN;
5615
5616 case OP_TYPE_FPN:
5617 return OPX_TYPE_FPN;
5618
5619 case OP_TYPE_MEM1:
5620 return OPX_TYPE_MEM1;
5621
5622 case OP_TYPE_MEM234:
5623 return OPX_TYPE_MEM234;
5624
5625 case OP_TYPE_MEM5:
5626 return OPX_TYPE_MEM5;
5627
5628 case OP_TYPE_MEM6:
5629 return OPX_TYPE_MEM6;
5630
5631 case OP_TYPE_MEM7:
5632 return OPX_TYPE_MEM7;
5633
5634 case OP_TYPE_IMM_Q:
5635 return OPX_TYPE_IMM_Q;
5636
5637 case OP_TYPE_IMM_W:
5638 return OPX_TYPE_IMM_W;
5639
5640 case OP_TYPE_IMM_L:
5641 return OPX_TYPE_IMM_L;
5642
5643 default:
5644 gcc_unreachable ();
5645 }
5646 }
5647
5648 /* Implement opy_type attribute.
5649 Return type of INSN's operand Y.
5650 If ADDRESS_P is true, return type of memory location operand refers to. */
5651 enum attr_opy_type
5652 m68k_sched_attr_opy_type (rtx_insn *insn, int address_p)
5653 {
5654 switch (sched_attr_op_type (insn, false, address_p != 0))
5655 {
5656 case OP_TYPE_RN:
5657 return OPY_TYPE_RN;
5658
5659 case OP_TYPE_FPN:
5660 return OPY_TYPE_FPN;
5661
5662 case OP_TYPE_MEM1:
5663 return OPY_TYPE_MEM1;
5664
5665 case OP_TYPE_MEM234:
5666 return OPY_TYPE_MEM234;
5667
5668 case OP_TYPE_MEM5:
5669 return OPY_TYPE_MEM5;
5670
5671 case OP_TYPE_MEM6:
5672 return OPY_TYPE_MEM6;
5673
5674 case OP_TYPE_MEM7:
5675 return OPY_TYPE_MEM7;
5676
5677 case OP_TYPE_IMM_Q:
5678 return OPY_TYPE_IMM_Q;
5679
5680 case OP_TYPE_IMM_W:
5681 return OPY_TYPE_IMM_W;
5682
5683 case OP_TYPE_IMM_L:
5684 return OPY_TYPE_IMM_L;
5685
5686 default:
5687 gcc_unreachable ();
5688 }
5689 }
5690
5691 /* Return size of INSN as int. */
5692 static int
5693 sched_get_attr_size_int (rtx_insn *insn)
5694 {
5695 int size;
5696
5697 switch (get_attr_type (insn))
5698 {
5699 case TYPE_IGNORE:
5700 /* There should be no references to m68k_sched_attr_size for 'ignore'
5701 instructions. */
5702 gcc_unreachable ();
5703 return 0;
5704
5705 case TYPE_MUL_L:
5706 size = 2;
5707 break;
5708
5709 default:
5710 size = 1;
5711 break;
5712 }
5713
5714 switch (get_attr_opx_type (insn))
5715 {
5716 case OPX_TYPE_NONE:
5717 case OPX_TYPE_RN:
5718 case OPX_TYPE_FPN:
5719 case OPX_TYPE_MEM1:
5720 case OPX_TYPE_MEM234:
5721 case OPY_TYPE_IMM_Q:
5722 break;
5723
5724 case OPX_TYPE_MEM5:
5725 case OPX_TYPE_MEM6:
5726 /* Here we assume that most absolute references are short. */
5727 case OPX_TYPE_MEM7:
5728 case OPY_TYPE_IMM_W:
5729 ++size;
5730 break;
5731
5732 case OPY_TYPE_IMM_L:
5733 size += 2;
5734 break;
5735
5736 default:
5737 gcc_unreachable ();
5738 }
5739
5740 switch (get_attr_opy_type (insn))
5741 {
5742 case OPY_TYPE_NONE:
5743 case OPY_TYPE_RN:
5744 case OPY_TYPE_FPN:
5745 case OPY_TYPE_MEM1:
5746 case OPY_TYPE_MEM234:
5747 case OPY_TYPE_IMM_Q:
5748 break;
5749
5750 case OPY_TYPE_MEM5:
5751 case OPY_TYPE_MEM6:
5752 /* Here we assume that most absolute references are short. */
5753 case OPY_TYPE_MEM7:
5754 case OPY_TYPE_IMM_W:
5755 ++size;
5756 break;
5757
5758 case OPY_TYPE_IMM_L:
5759 size += 2;
5760 break;
5761
5762 default:
5763 gcc_unreachable ();
5764 }
5765
5766 if (size > 3)
5767 {
5768 gcc_assert (!reload_completed);
5769
5770 size = 3;
5771 }
5772
5773 return size;
5774 }
5775
5776 /* Return size of INSN as attribute enum value. */
5777 enum attr_size
5778 m68k_sched_attr_size (rtx_insn *insn)
5779 {
5780 switch (sched_get_attr_size_int (insn))
5781 {
5782 case 1:
5783 return SIZE_1;
5784
5785 case 2:
5786 return SIZE_2;
5787
5788 case 3:
5789 return SIZE_3;
5790
5791 default:
5792 gcc_unreachable ();
5793 }
5794 }
5795
5796 /* Return operand X or Y (depending on OPX_P) of INSN,
5797 if it is a MEM, or NULL overwise. */
5798 static enum attr_op_type
5799 sched_get_opxy_mem_type (rtx_insn *insn, bool opx_p)
5800 {
5801 if (opx_p)
5802 {
5803 switch (get_attr_opx_type (insn))
5804 {
5805 case OPX_TYPE_NONE:
5806 case OPX_TYPE_RN:
5807 case OPX_TYPE_FPN:
5808 case OPX_TYPE_IMM_Q:
5809 case OPX_TYPE_IMM_W:
5810 case OPX_TYPE_IMM_L:
5811 return OP_TYPE_RN;
5812
5813 case OPX_TYPE_MEM1:
5814 case OPX_TYPE_MEM234:
5815 case OPX_TYPE_MEM5:
5816 case OPX_TYPE_MEM7:
5817 return OP_TYPE_MEM1;
5818
5819 case OPX_TYPE_MEM6:
5820 return OP_TYPE_MEM6;
5821
5822 default:
5823 gcc_unreachable ();
5824 }
5825 }
5826 else
5827 {
5828 switch (get_attr_opy_type (insn))
5829 {
5830 case OPY_TYPE_NONE:
5831 case OPY_TYPE_RN:
5832 case OPY_TYPE_FPN:
5833 case OPY_TYPE_IMM_Q:
5834 case OPY_TYPE_IMM_W:
5835 case OPY_TYPE_IMM_L:
5836 return OP_TYPE_RN;
5837
5838 case OPY_TYPE_MEM1:
5839 case OPY_TYPE_MEM234:
5840 case OPY_TYPE_MEM5:
5841 case OPY_TYPE_MEM7:
5842 return OP_TYPE_MEM1;
5843
5844 case OPY_TYPE_MEM6:
5845 return OP_TYPE_MEM6;
5846
5847 default:
5848 gcc_unreachable ();
5849 }
5850 }
5851 }
5852
5853 /* Implement op_mem attribute. */
5854 enum attr_op_mem
5855 m68k_sched_attr_op_mem (rtx_insn *insn)
5856 {
5857 enum attr_op_type opx;
5858 enum attr_op_type opy;
5859
5860 opx = sched_get_opxy_mem_type (insn, true);
5861 opy = sched_get_opxy_mem_type (insn, false);
5862
5863 if (opy == OP_TYPE_RN && opx == OP_TYPE_RN)
5864 return OP_MEM_00;
5865
5866 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM1)
5867 {
5868 switch (get_attr_opx_access (insn))
5869 {
5870 case OPX_ACCESS_R:
5871 return OP_MEM_10;
5872
5873 case OPX_ACCESS_W:
5874 return OP_MEM_01;
5875
5876 case OPX_ACCESS_RW:
5877 return OP_MEM_11;
5878
5879 default:
5880 gcc_unreachable ();
5881 }
5882 }
5883
5884 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM6)
5885 {
5886 switch (get_attr_opx_access (insn))
5887 {
5888 case OPX_ACCESS_R:
5889 return OP_MEM_I0;
5890
5891 case OPX_ACCESS_W:
5892 return OP_MEM_0I;
5893
5894 case OPX_ACCESS_RW:
5895 return OP_MEM_I1;
5896
5897 default:
5898 gcc_unreachable ();
5899 }
5900 }
5901
5902 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_RN)
5903 return OP_MEM_10;
5904
5905 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM1)
5906 {
5907 switch (get_attr_opx_access (insn))
5908 {
5909 case OPX_ACCESS_W:
5910 return OP_MEM_11;
5911
5912 default:
5913 gcc_assert (!reload_completed);
5914 return OP_MEM_11;
5915 }
5916 }
5917
5918 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM6)
5919 {
5920 switch (get_attr_opx_access (insn))
5921 {
5922 case OPX_ACCESS_W:
5923 return OP_MEM_1I;
5924
5925 default:
5926 gcc_assert (!reload_completed);
5927 return OP_MEM_1I;
5928 }
5929 }
5930
5931 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_RN)
5932 return OP_MEM_I0;
5933
5934 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM1)
5935 {
5936 switch (get_attr_opx_access (insn))
5937 {
5938 case OPX_ACCESS_W:
5939 return OP_MEM_I1;
5940
5941 default:
5942 gcc_assert (!reload_completed);
5943 return OP_MEM_I1;
5944 }
5945 }
5946
5947 gcc_assert (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM6);
5948 gcc_assert (!reload_completed);
5949 return OP_MEM_I1;
5950 }
5951
5952 /* Data for ColdFire V4 index bypass.
5953 Producer modifies register that is used as index in consumer with
5954 specified scale. */
5955 static struct
5956 {
5957 /* Producer instruction. */
5958 rtx pro;
5959
5960 /* Consumer instruction. */
5961 rtx con;
5962
5963 /* Scale of indexed memory access within consumer.
5964 Or zero if bypass should not be effective at the moment. */
5965 int scale;
5966 } sched_cfv4_bypass_data;
5967
5968 /* An empty state that is used in m68k_sched_adjust_cost. */
5969 static state_t sched_adjust_cost_state;
5970
5971 /* Implement adjust_cost scheduler hook.
5972 Return adjusted COST of dependency LINK between DEF_INSN and INSN. */
5973 static int
5974 m68k_sched_adjust_cost (rtx_insn *insn, int, rtx_insn *def_insn, int cost,
5975 unsigned int)
5976 {
5977 int delay;
5978
5979 if (recog_memoized (def_insn) < 0
5980 || recog_memoized (insn) < 0)
5981 return cost;
5982
5983 if (sched_cfv4_bypass_data.scale == 1)
5984 /* Handle ColdFire V4 bypass for indexed address with 1x scale. */
5985 {
5986 /* haifa-sched.c: insn_cost () calls bypass_p () just before
5987 targetm.sched.adjust_cost (). Hence, we can be relatively sure
5988 that the data in sched_cfv4_bypass_data is up to date. */
5989 gcc_assert (sched_cfv4_bypass_data.pro == def_insn
5990 && sched_cfv4_bypass_data.con == insn);
5991
5992 if (cost < 3)
5993 cost = 3;
5994
5995 sched_cfv4_bypass_data.pro = NULL;
5996 sched_cfv4_bypass_data.con = NULL;
5997 sched_cfv4_bypass_data.scale = 0;
5998 }
5999 else
6000 gcc_assert (sched_cfv4_bypass_data.pro == NULL
6001 && sched_cfv4_bypass_data.con == NULL
6002 && sched_cfv4_bypass_data.scale == 0);
6003
6004 /* Don't try to issue INSN earlier than DFA permits.
6005 This is especially useful for instructions that write to memory,
6006 as their true dependence (default) latency is better to be set to 0
6007 to workaround alias analysis limitations.
6008 This is, in fact, a machine independent tweak, so, probably,
6009 it should be moved to haifa-sched.c: insn_cost (). */
6010 delay = min_insn_conflict_delay (sched_adjust_cost_state, def_insn, insn);
6011 if (delay > cost)
6012 cost = delay;
6013
6014 return cost;
6015 }
6016
6017 /* Return maximal number of insns that can be scheduled on a single cycle. */
6018 static int
6019 m68k_sched_issue_rate (void)
6020 {
6021 switch (m68k_sched_cpu)
6022 {
6023 case CPU_CFV1:
6024 case CPU_CFV2:
6025 case CPU_CFV3:
6026 return 1;
6027
6028 case CPU_CFV4:
6029 return 2;
6030
6031 default:
6032 gcc_unreachable ();
6033 return 0;
6034 }
6035 }
6036
6037 /* Maximal length of instruction for current CPU.
6038 E.g. it is 3 for any ColdFire core. */
6039 static int max_insn_size;
6040
6041 /* Data to model instruction buffer of CPU. */
6042 struct _sched_ib
6043 {
6044 /* True if instruction buffer model is modeled for current CPU. */
6045 bool enabled_p;
6046
6047 /* Size of the instruction buffer in words. */
6048 int size;
6049
6050 /* Number of filled words in the instruction buffer. */
6051 int filled;
6052
6053 /* Additional information about instruction buffer for CPUs that have
6054 a buffer of instruction records, rather then a plain buffer
6055 of instruction words. */
6056 struct _sched_ib_records
6057 {
6058 /* Size of buffer in records. */
6059 int n_insns;
6060
6061 /* Array to hold data on adjustments made to the size of the buffer. */
6062 int *adjust;
6063
6064 /* Index of the above array. */
6065 int adjust_index;
6066 } records;
6067
6068 /* An insn that reserves (marks empty) one word in the instruction buffer. */
6069 rtx insn;
6070 };
6071
6072 static struct _sched_ib sched_ib;
6073
6074 /* ID of memory unit. */
6075 static int sched_mem_unit_code;
6076
6077 /* Implementation of the targetm.sched.variable_issue () hook.
6078 It is called after INSN was issued. It returns the number of insns
6079 that can possibly get scheduled on the current cycle.
6080 It is used here to determine the effect of INSN on the instruction
6081 buffer. */
6082 static int
6083 m68k_sched_variable_issue (FILE *sched_dump ATTRIBUTE_UNUSED,
6084 int sched_verbose ATTRIBUTE_UNUSED,
6085 rtx_insn *insn, int can_issue_more)
6086 {
6087 int insn_size;
6088
6089 if (recog_memoized (insn) >= 0 && get_attr_type (insn) != TYPE_IGNORE)
6090 {
6091 switch (m68k_sched_cpu)
6092 {
6093 case CPU_CFV1:
6094 case CPU_CFV2:
6095 insn_size = sched_get_attr_size_int (insn);
6096 break;
6097
6098 case CPU_CFV3:
6099 insn_size = sched_get_attr_size_int (insn);
6100
6101 /* ColdFire V3 and V4 cores have instruction buffers that can
6102 accumulate up to 8 instructions regardless of instructions'
6103 sizes. So we should take care not to "prefetch" 24 one-word
6104 or 12 two-words instructions.
6105 To model this behavior we temporarily decrease size of the
6106 buffer by (max_insn_size - insn_size) for next 7 instructions. */
6107 {
6108 int adjust;
6109
6110 adjust = max_insn_size - insn_size;
6111 sched_ib.size -= adjust;
6112
6113 if (sched_ib.filled > sched_ib.size)
6114 sched_ib.filled = sched_ib.size;
6115
6116 sched_ib.records.adjust[sched_ib.records.adjust_index] = adjust;
6117 }
6118
6119 ++sched_ib.records.adjust_index;
6120 if (sched_ib.records.adjust_index == sched_ib.records.n_insns)
6121 sched_ib.records.adjust_index = 0;
6122
6123 /* Undo adjustment we did 7 instructions ago. */
6124 sched_ib.size
6125 += sched_ib.records.adjust[sched_ib.records.adjust_index];
6126
6127 break;
6128
6129 case CPU_CFV4:
6130 gcc_assert (!sched_ib.enabled_p);
6131 insn_size = 0;
6132 break;
6133
6134 default:
6135 gcc_unreachable ();
6136 }
6137
6138 if (insn_size > sched_ib.filled)
6139 /* Scheduling for register pressure does not always take DFA into
6140 account. Workaround instruction buffer not being filled enough. */
6141 {
6142 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
6143 insn_size = sched_ib.filled;
6144 }
6145
6146 --can_issue_more;
6147 }
6148 else if (GET_CODE (PATTERN (insn)) == ASM_INPUT
6149 || asm_noperands (PATTERN (insn)) >= 0)
6150 insn_size = sched_ib.filled;
6151 else
6152 insn_size = 0;
6153
6154 sched_ib.filled -= insn_size;
6155
6156 return can_issue_more;
6157 }
6158
6159 /* Return how many instructions should scheduler lookahead to choose the
6160 best one. */
6161 static int
6162 m68k_sched_first_cycle_multipass_dfa_lookahead (void)
6163 {
6164 return m68k_sched_issue_rate () - 1;
6165 }
6166
6167 /* Implementation of targetm.sched.init_global () hook.
6168 It is invoked once per scheduling pass and is used here
6169 to initialize scheduler constants. */
6170 static void
6171 m68k_sched_md_init_global (FILE *sched_dump ATTRIBUTE_UNUSED,
6172 int sched_verbose ATTRIBUTE_UNUSED,
6173 int n_insns ATTRIBUTE_UNUSED)
6174 {
6175 /* Check that all instructions have DFA reservations and
6176 that all instructions can be issued from a clean state. */
6177 if (flag_checking)
6178 {
6179 rtx_insn *insn;
6180 state_t state;
6181
6182 state = alloca (state_size ());
6183
6184 for (insn = get_insns (); insn != NULL; insn = NEXT_INSN (insn))
6185 {
6186 if (INSN_P (insn) && recog_memoized (insn) >= 0)
6187 {
6188 gcc_assert (insn_has_dfa_reservation_p (insn));
6189
6190 state_reset (state);
6191 if (state_transition (state, insn) >= 0)
6192 gcc_unreachable ();
6193 }
6194 }
6195 }
6196
6197 /* Setup target cpu. */
6198
6199 /* ColdFire V4 has a set of features to keep its instruction buffer full
6200 (e.g., a separate memory bus for instructions) and, hence, we do not model
6201 buffer for this CPU. */
6202 sched_ib.enabled_p = (m68k_sched_cpu != CPU_CFV4);
6203
6204 switch (m68k_sched_cpu)
6205 {
6206 case CPU_CFV4:
6207 sched_ib.filled = 0;
6208
6209 /* FALLTHRU */
6210
6211 case CPU_CFV1:
6212 case CPU_CFV2:
6213 max_insn_size = 3;
6214 sched_ib.records.n_insns = 0;
6215 sched_ib.records.adjust = NULL;
6216 break;
6217
6218 case CPU_CFV3:
6219 max_insn_size = 3;
6220 sched_ib.records.n_insns = 8;
6221 sched_ib.records.adjust = XNEWVEC (int, sched_ib.records.n_insns);
6222 break;
6223
6224 default:
6225 gcc_unreachable ();
6226 }
6227
6228 sched_mem_unit_code = get_cpu_unit_code ("cf_mem1");
6229
6230 sched_adjust_cost_state = xmalloc (state_size ());
6231 state_reset (sched_adjust_cost_state);
6232
6233 start_sequence ();
6234 emit_insn (gen_ib ());
6235 sched_ib.insn = get_insns ();
6236 end_sequence ();
6237 }
6238
6239 /* Scheduling pass is now finished. Free/reset static variables. */
6240 static void
6241 m68k_sched_md_finish_global (FILE *dump ATTRIBUTE_UNUSED,
6242 int verbose ATTRIBUTE_UNUSED)
6243 {
6244 sched_ib.insn = NULL;
6245
6246 free (sched_adjust_cost_state);
6247 sched_adjust_cost_state = NULL;
6248
6249 sched_mem_unit_code = 0;
6250
6251 free (sched_ib.records.adjust);
6252 sched_ib.records.adjust = NULL;
6253 sched_ib.records.n_insns = 0;
6254 max_insn_size = 0;
6255 }
6256
6257 /* Implementation of targetm.sched.init () hook.
6258 It is invoked each time scheduler starts on the new block (basic block or
6259 extended basic block). */
6260 static void
6261 m68k_sched_md_init (FILE *sched_dump ATTRIBUTE_UNUSED,
6262 int sched_verbose ATTRIBUTE_UNUSED,
6263 int n_insns ATTRIBUTE_UNUSED)
6264 {
6265 switch (m68k_sched_cpu)
6266 {
6267 case CPU_CFV1:
6268 case CPU_CFV2:
6269 sched_ib.size = 6;
6270 break;
6271
6272 case CPU_CFV3:
6273 sched_ib.size = sched_ib.records.n_insns * max_insn_size;
6274
6275 memset (sched_ib.records.adjust, 0,
6276 sched_ib.records.n_insns * sizeof (*sched_ib.records.adjust));
6277 sched_ib.records.adjust_index = 0;
6278 break;
6279
6280 case CPU_CFV4:
6281 gcc_assert (!sched_ib.enabled_p);
6282 sched_ib.size = 0;
6283 break;
6284
6285 default:
6286 gcc_unreachable ();
6287 }
6288
6289 if (sched_ib.enabled_p)
6290 /* haifa-sched.c: schedule_block () calls advance_cycle () just before
6291 the first cycle. Workaround that. */
6292 sched_ib.filled = -2;
6293 }
6294
6295 /* Implementation of targetm.sched.dfa_pre_advance_cycle () hook.
6296 It is invoked just before current cycle finishes and is used here
6297 to track if instruction buffer got its two words this cycle. */
6298 static void
6299 m68k_sched_dfa_pre_advance_cycle (void)
6300 {
6301 if (!sched_ib.enabled_p)
6302 return;
6303
6304 if (!cpu_unit_reservation_p (curr_state, sched_mem_unit_code))
6305 {
6306 sched_ib.filled += 2;
6307
6308 if (sched_ib.filled > sched_ib.size)
6309 sched_ib.filled = sched_ib.size;
6310 }
6311 }
6312
6313 /* Implementation of targetm.sched.dfa_post_advance_cycle () hook.
6314 It is invoked just after new cycle begins and is used here
6315 to setup number of filled words in the instruction buffer so that
6316 instructions which won't have all their words prefetched would be
6317 stalled for a cycle. */
6318 static void
6319 m68k_sched_dfa_post_advance_cycle (void)
6320 {
6321 int i;
6322
6323 if (!sched_ib.enabled_p)
6324 return;
6325
6326 /* Setup number of prefetched instruction words in the instruction
6327 buffer. */
6328 i = max_insn_size - sched_ib.filled;
6329
6330 while (--i >= 0)
6331 {
6332 if (state_transition (curr_state, sched_ib.insn) >= 0)
6333 /* Pick up scheduler state. */
6334 ++sched_ib.filled;
6335 }
6336 }
6337
6338 /* Return X or Y (depending on OPX_P) operand of INSN,
6339 if it is an integer register, or NULL overwise. */
6340 static rtx
6341 sched_get_reg_operand (rtx_insn *insn, bool opx_p)
6342 {
6343 rtx op = NULL;
6344
6345 if (opx_p)
6346 {
6347 if (get_attr_opx_type (insn) == OPX_TYPE_RN)
6348 {
6349 op = sched_get_operand (insn, true);
6350 gcc_assert (op != NULL);
6351
6352 if (!reload_completed && !REG_P (op))
6353 return NULL;
6354 }
6355 }
6356 else
6357 {
6358 if (get_attr_opy_type (insn) == OPY_TYPE_RN)
6359 {
6360 op = sched_get_operand (insn, false);
6361 gcc_assert (op != NULL);
6362
6363 if (!reload_completed && !REG_P (op))
6364 return NULL;
6365 }
6366 }
6367
6368 return op;
6369 }
6370
6371 /* Return true, if X or Y (depending on OPX_P) operand of INSN
6372 is a MEM. */
6373 static bool
6374 sched_mem_operand_p (rtx_insn *insn, bool opx_p)
6375 {
6376 switch (sched_get_opxy_mem_type (insn, opx_p))
6377 {
6378 case OP_TYPE_MEM1:
6379 case OP_TYPE_MEM6:
6380 return true;
6381
6382 default:
6383 return false;
6384 }
6385 }
6386
6387 /* Return X or Y (depending on OPX_P) operand of INSN,
6388 if it is a MEM, or NULL overwise. */
6389 static rtx
6390 sched_get_mem_operand (rtx_insn *insn, bool must_read_p, bool must_write_p)
6391 {
6392 bool opx_p;
6393 bool opy_p;
6394
6395 opx_p = false;
6396 opy_p = false;
6397
6398 if (must_read_p)
6399 {
6400 opx_p = true;
6401 opy_p = true;
6402 }
6403
6404 if (must_write_p)
6405 {
6406 opx_p = true;
6407 opy_p = false;
6408 }
6409
6410 if (opy_p && sched_mem_operand_p (insn, false))
6411 return sched_get_operand (insn, false);
6412
6413 if (opx_p && sched_mem_operand_p (insn, true))
6414 return sched_get_operand (insn, true);
6415
6416 gcc_unreachable ();
6417 return NULL;
6418 }
6419
6420 /* Return non-zero if PRO modifies register used as part of
6421 address in CON. */
6422 int
6423 m68k_sched_address_bypass_p (rtx_insn *pro, rtx_insn *con)
6424 {
6425 rtx pro_x;
6426 rtx con_mem_read;
6427
6428 pro_x = sched_get_reg_operand (pro, true);
6429 if (pro_x == NULL)
6430 return 0;
6431
6432 con_mem_read = sched_get_mem_operand (con, true, false);
6433 gcc_assert (con_mem_read != NULL);
6434
6435 if (reg_mentioned_p (pro_x, con_mem_read))
6436 return 1;
6437
6438 return 0;
6439 }
6440
6441 /* Helper function for m68k_sched_indexed_address_bypass_p.
6442 if PRO modifies register used as index in CON,
6443 return scale of indexed memory access in CON. Return zero overwise. */
6444 static int
6445 sched_get_indexed_address_scale (rtx_insn *pro, rtx_insn *con)
6446 {
6447 rtx reg;
6448 rtx mem;
6449 struct m68k_address address;
6450
6451 reg = sched_get_reg_operand (pro, true);
6452 if (reg == NULL)
6453 return 0;
6454
6455 mem = sched_get_mem_operand (con, true, false);
6456 gcc_assert (mem != NULL && MEM_P (mem));
6457
6458 if (!m68k_decompose_address (GET_MODE (mem), XEXP (mem, 0), reload_completed,
6459 &address))
6460 gcc_unreachable ();
6461
6462 if (REGNO (reg) == REGNO (address.index))
6463 {
6464 gcc_assert (address.scale != 0);
6465 return address.scale;
6466 }
6467
6468 return 0;
6469 }
6470
6471 /* Return non-zero if PRO modifies register used
6472 as index with scale 2 or 4 in CON. */
6473 int
6474 m68k_sched_indexed_address_bypass_p (rtx_insn *pro, rtx_insn *con)
6475 {
6476 gcc_assert (sched_cfv4_bypass_data.pro == NULL
6477 && sched_cfv4_bypass_data.con == NULL
6478 && sched_cfv4_bypass_data.scale == 0);
6479
6480 switch (sched_get_indexed_address_scale (pro, con))
6481 {
6482 case 1:
6483 /* We can't have a variable latency bypass, so
6484 remember to adjust the insn cost in adjust_cost hook. */
6485 sched_cfv4_bypass_data.pro = pro;
6486 sched_cfv4_bypass_data.con = con;
6487 sched_cfv4_bypass_data.scale = 1;
6488 return 0;
6489
6490 case 2:
6491 case 4:
6492 return 1;
6493
6494 default:
6495 return 0;
6496 }
6497 }
6498
6499 /* We generate a two-instructions program at M_TRAMP :
6500 movea.l &CHAIN_VALUE,%a0
6501 jmp FNADDR
6502 where %a0 can be modified by changing STATIC_CHAIN_REGNUM. */
6503
6504 static void
6505 m68k_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
6506 {
6507 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
6508 rtx mem;
6509
6510 gcc_assert (ADDRESS_REGNO_P (STATIC_CHAIN_REGNUM));
6511
6512 mem = adjust_address (m_tramp, HImode, 0);
6513 emit_move_insn (mem, GEN_INT(0x207C + ((STATIC_CHAIN_REGNUM-8) << 9)));
6514 mem = adjust_address (m_tramp, SImode, 2);
6515 emit_move_insn (mem, chain_value);
6516
6517 mem = adjust_address (m_tramp, HImode, 6);
6518 emit_move_insn (mem, GEN_INT(0x4EF9));
6519 mem = adjust_address (m_tramp, SImode, 8);
6520 emit_move_insn (mem, fnaddr);
6521
6522 FINALIZE_TRAMPOLINE (XEXP (m_tramp, 0));
6523 }
6524
6525 /* On the 68000, the RTS insn cannot pop anything.
6526 On the 68010, the RTD insn may be used to pop them if the number
6527 of args is fixed, but if the number is variable then the caller
6528 must pop them all. RTD can't be used for library calls now
6529 because the library is compiled with the Unix compiler.
6530 Use of RTD is a selectable option, since it is incompatible with
6531 standard Unix calling sequences. If the option is not selected,
6532 the caller must always pop the args. */
6533
6534 static poly_int64
6535 m68k_return_pops_args (tree fundecl, tree funtype, poly_int64 size)
6536 {
6537 return ((TARGET_RTD
6538 && (!fundecl
6539 || TREE_CODE (fundecl) != IDENTIFIER_NODE)
6540 && (!stdarg_p (funtype)))
6541 ? (HOST_WIDE_INT) size : 0);
6542 }
6543
6544 /* Make sure everything's fine if we *don't* have a given processor.
6545 This assumes that putting a register in fixed_regs will keep the
6546 compiler's mitts completely off it. We don't bother to zero it out
6547 of register classes. */
6548
6549 static void
6550 m68k_conditional_register_usage (void)
6551 {
6552 int i;
6553 HARD_REG_SET x;
6554 if (!TARGET_HARD_FLOAT)
6555 {
6556 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]);
6557 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6558 if (TEST_HARD_REG_BIT (x, i))
6559 fixed_regs[i] = call_used_regs[i] = 1;
6560 }
6561 if (flag_pic)
6562 fixed_regs[PIC_REG] = call_used_regs[PIC_REG] = 1;
6563 }
6564
6565 static void
6566 m68k_init_sync_libfuncs (void)
6567 {
6568 init_sync_libfuncs (UNITS_PER_WORD);
6569 }
6570
6571 /* Implements EPILOGUE_USES. All registers are live on exit from an
6572 interrupt routine. */
6573 bool
6574 m68k_epilogue_uses (int regno ATTRIBUTE_UNUSED)
6575 {
6576 return (reload_completed
6577 && (m68k_get_function_kind (current_function_decl)
6578 == m68k_fk_interrupt_handler));
6579 }
6580
6581
6582 /* Implement TARGET_C_EXCESS_PRECISION.
6583
6584 Set the value of FLT_EVAL_METHOD in float.h. When using 68040 fp
6585 instructions, we get proper intermediate rounding, otherwise we
6586 get extended precision results. */
6587
6588 static enum flt_eval_method
6589 m68k_excess_precision (enum excess_precision_type type)
6590 {
6591 switch (type)
6592 {
6593 case EXCESS_PRECISION_TYPE_FAST:
6594 /* The fastest type to promote to will always be the native type,
6595 whether that occurs with implicit excess precision or
6596 otherwise. */
6597 return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT;
6598 case EXCESS_PRECISION_TYPE_STANDARD:
6599 case EXCESS_PRECISION_TYPE_IMPLICIT:
6600 /* Otherwise, the excess precision we want when we are
6601 in a standards compliant mode, and the implicit precision we
6602 provide can be identical. */
6603 if (TARGET_68040 || ! TARGET_68881)
6604 return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT;
6605
6606 return FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE;
6607 default:
6608 gcc_unreachable ();
6609 }
6610 return FLT_EVAL_METHOD_UNPREDICTABLE;
6611 }
6612
6613 /* Implement PUSH_ROUNDING. On the 680x0, sp@- in a byte insn really pushes
6614 a word. On the ColdFire, sp@- in a byte insn pushes just a byte. */
6615
6616 poly_int64
6617 m68k_push_rounding (poly_int64 bytes)
6618 {
6619 if (TARGET_COLDFIRE)
6620 return bytes;
6621 return (bytes + 1) & ~1;
6622 }
6623
6624 #include "gt-m68k.h"