]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/m68k/m68k.c
Put a TARGET_LRA_P into every target
[thirdparty/gcc.git] / gcc / config / m68k / m68k.c
1 /* Subroutines for insn-output.c for Motorola 68000 family.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
28 #include "alias.h"
29 #include "fold-const.h"
30 #include "calls.h"
31 #include "stor-layout.h"
32 #include "varasm.h"
33 #include "regs.h"
34 #include "insn-config.h"
35 #include "conditions.h"
36 #include "output.h"
37 #include "insn-attr.h"
38 #include "recog.h"
39 #include "diagnostic-core.h"
40 #include "flags.h"
41 #include "expmed.h"
42 #include "dojump.h"
43 #include "explow.h"
44 #include "emit-rtl.h"
45 #include "stmt.h"
46 #include "expr.h"
47 #include "reload.h"
48 #include "tm_p.h"
49 #include "target.h"
50 #include "debug.h"
51 #include "cfgrtl.h"
52 #include "cfganal.h"
53 #include "lcm.h"
54 #include "cfgbuild.h"
55 #include "cfgcleanup.h"
56 /* ??? Need to add a dependency between m68k.o and sched-int.h. */
57 #include "sched-int.h"
58 #include "insn-codes.h"
59 #include "opts.h"
60 #include "optabs.h"
61 #include "builtins.h"
62 #include "rtl-iter.h"
63
64 /* This file should be included last. */
65 #include "target-def.h"
66
67 enum reg_class regno_reg_class[] =
68 {
69 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
70 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
71 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
72 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
73 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
74 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
75 ADDR_REGS
76 };
77
78
79 /* The minimum number of integer registers that we want to save with the
80 movem instruction. Using two movel instructions instead of a single
81 moveml is about 15% faster for the 68020 and 68030 at no expense in
82 code size. */
83 #define MIN_MOVEM_REGS 3
84
85 /* The minimum number of floating point registers that we want to save
86 with the fmovem instruction. */
87 #define MIN_FMOVEM_REGS 1
88
89 /* Structure describing stack frame layout. */
90 struct m68k_frame
91 {
92 /* Stack pointer to frame pointer offset. */
93 HOST_WIDE_INT offset;
94
95 /* Offset of FPU registers. */
96 HOST_WIDE_INT foffset;
97
98 /* Frame size in bytes (rounded up). */
99 HOST_WIDE_INT size;
100
101 /* Data and address register. */
102 int reg_no;
103 unsigned int reg_mask;
104
105 /* FPU registers. */
106 int fpu_no;
107 unsigned int fpu_mask;
108
109 /* Offsets relative to ARG_POINTER. */
110 HOST_WIDE_INT frame_pointer_offset;
111 HOST_WIDE_INT stack_pointer_offset;
112
113 /* Function which the above information refers to. */
114 int funcdef_no;
115 };
116
117 /* Current frame information calculated by m68k_compute_frame_layout(). */
118 static struct m68k_frame current_frame;
119
120 /* Structure describing an m68k address.
121
122 If CODE is UNKNOWN, the address is BASE + INDEX * SCALE + OFFSET,
123 with null fields evaluating to 0. Here:
124
125 - BASE satisfies m68k_legitimate_base_reg_p
126 - INDEX satisfies m68k_legitimate_index_reg_p
127 - OFFSET satisfies m68k_legitimate_constant_address_p
128
129 INDEX is either HImode or SImode. The other fields are SImode.
130
131 If CODE is PRE_DEC, the address is -(BASE). If CODE is POST_INC,
132 the address is (BASE)+. */
133 struct m68k_address {
134 enum rtx_code code;
135 rtx base;
136 rtx index;
137 rtx offset;
138 int scale;
139 };
140
141 static int m68k_sched_adjust_cost (rtx_insn *, int, rtx_insn *, int,
142 unsigned int);
143 static int m68k_sched_issue_rate (void);
144 static int m68k_sched_variable_issue (FILE *, int, rtx_insn *, int);
145 static void m68k_sched_md_init_global (FILE *, int, int);
146 static void m68k_sched_md_finish_global (FILE *, int);
147 static void m68k_sched_md_init (FILE *, int, int);
148 static void m68k_sched_dfa_pre_advance_cycle (void);
149 static void m68k_sched_dfa_post_advance_cycle (void);
150 static int m68k_sched_first_cycle_multipass_dfa_lookahead (void);
151
152 static bool m68k_can_eliminate (const int, const int);
153 static void m68k_conditional_register_usage (void);
154 static bool m68k_legitimate_address_p (machine_mode, rtx, bool);
155 static void m68k_option_override (void);
156 static void m68k_override_options_after_change (void);
157 static rtx find_addr_reg (rtx);
158 static const char *singlemove_string (rtx *);
159 static void m68k_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
160 HOST_WIDE_INT, tree);
161 static rtx m68k_struct_value_rtx (tree, int);
162 static tree m68k_handle_fndecl_attribute (tree *node, tree name,
163 tree args, int flags,
164 bool *no_add_attrs);
165 static void m68k_compute_frame_layout (void);
166 static bool m68k_save_reg (unsigned int regno, bool interrupt_handler);
167 static bool m68k_ok_for_sibcall_p (tree, tree);
168 static bool m68k_tls_symbol_p (rtx);
169 static rtx m68k_legitimize_address (rtx, rtx, machine_mode);
170 static bool m68k_rtx_costs (rtx, machine_mode, int, int, int *, bool);
171 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
172 static bool m68k_return_in_memory (const_tree, const_tree);
173 #endif
174 static void m68k_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
175 static void m68k_trampoline_init (rtx, tree, rtx);
176 static int m68k_return_pops_args (tree, tree, int);
177 static rtx m68k_delegitimize_address (rtx);
178 static void m68k_function_arg_advance (cumulative_args_t, machine_mode,
179 const_tree, bool);
180 static rtx m68k_function_arg (cumulative_args_t, machine_mode,
181 const_tree, bool);
182 static bool m68k_cannot_force_const_mem (machine_mode mode, rtx x);
183 static bool m68k_output_addr_const_extra (FILE *, rtx);
184 static void m68k_init_sync_libfuncs (void) ATTRIBUTE_UNUSED;
185 \f
186 /* Initialize the GCC target structure. */
187
188 #if INT_OP_GROUP == INT_OP_DOT_WORD
189 #undef TARGET_ASM_ALIGNED_HI_OP
190 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
191 #endif
192
193 #if INT_OP_GROUP == INT_OP_NO_DOT
194 #undef TARGET_ASM_BYTE_OP
195 #define TARGET_ASM_BYTE_OP "\tbyte\t"
196 #undef TARGET_ASM_ALIGNED_HI_OP
197 #define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
198 #undef TARGET_ASM_ALIGNED_SI_OP
199 #define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
200 #endif
201
202 #if INT_OP_GROUP == INT_OP_DC
203 #undef TARGET_ASM_BYTE_OP
204 #define TARGET_ASM_BYTE_OP "\tdc.b\t"
205 #undef TARGET_ASM_ALIGNED_HI_OP
206 #define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
207 #undef TARGET_ASM_ALIGNED_SI_OP
208 #define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
209 #endif
210
211 #undef TARGET_ASM_UNALIGNED_HI_OP
212 #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
213 #undef TARGET_ASM_UNALIGNED_SI_OP
214 #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
215
216 #undef TARGET_ASM_OUTPUT_MI_THUNK
217 #define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
218 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
219 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
220
221 #undef TARGET_ASM_FILE_START_APP_OFF
222 #define TARGET_ASM_FILE_START_APP_OFF true
223
224 #undef TARGET_LEGITIMIZE_ADDRESS
225 #define TARGET_LEGITIMIZE_ADDRESS m68k_legitimize_address
226
227 #undef TARGET_SCHED_ADJUST_COST
228 #define TARGET_SCHED_ADJUST_COST m68k_sched_adjust_cost
229
230 #undef TARGET_SCHED_ISSUE_RATE
231 #define TARGET_SCHED_ISSUE_RATE m68k_sched_issue_rate
232
233 #undef TARGET_SCHED_VARIABLE_ISSUE
234 #define TARGET_SCHED_VARIABLE_ISSUE m68k_sched_variable_issue
235
236 #undef TARGET_SCHED_INIT_GLOBAL
237 #define TARGET_SCHED_INIT_GLOBAL m68k_sched_md_init_global
238
239 #undef TARGET_SCHED_FINISH_GLOBAL
240 #define TARGET_SCHED_FINISH_GLOBAL m68k_sched_md_finish_global
241
242 #undef TARGET_SCHED_INIT
243 #define TARGET_SCHED_INIT m68k_sched_md_init
244
245 #undef TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE
246 #define TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE m68k_sched_dfa_pre_advance_cycle
247
248 #undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
249 #define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE m68k_sched_dfa_post_advance_cycle
250
251 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
252 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
253 m68k_sched_first_cycle_multipass_dfa_lookahead
254
255 #undef TARGET_OPTION_OVERRIDE
256 #define TARGET_OPTION_OVERRIDE m68k_option_override
257
258 #undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
259 #define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE m68k_override_options_after_change
260
261 #undef TARGET_RTX_COSTS
262 #define TARGET_RTX_COSTS m68k_rtx_costs
263
264 #undef TARGET_ATTRIBUTE_TABLE
265 #define TARGET_ATTRIBUTE_TABLE m68k_attribute_table
266
267 #undef TARGET_PROMOTE_PROTOTYPES
268 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
269
270 #undef TARGET_STRUCT_VALUE_RTX
271 #define TARGET_STRUCT_VALUE_RTX m68k_struct_value_rtx
272
273 #undef TARGET_CANNOT_FORCE_CONST_MEM
274 #define TARGET_CANNOT_FORCE_CONST_MEM m68k_cannot_force_const_mem
275
276 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
277 #define TARGET_FUNCTION_OK_FOR_SIBCALL m68k_ok_for_sibcall_p
278
279 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
280 #undef TARGET_RETURN_IN_MEMORY
281 #define TARGET_RETURN_IN_MEMORY m68k_return_in_memory
282 #endif
283
284 #ifdef HAVE_AS_TLS
285 #undef TARGET_HAVE_TLS
286 #define TARGET_HAVE_TLS (true)
287
288 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
289 #define TARGET_ASM_OUTPUT_DWARF_DTPREL m68k_output_dwarf_dtprel
290 #endif
291
292 #undef TARGET_LRA_P
293 #define TARGET_LRA_P hook_bool_void_false
294
295 #undef TARGET_LEGITIMATE_ADDRESS_P
296 #define TARGET_LEGITIMATE_ADDRESS_P m68k_legitimate_address_p
297
298 #undef TARGET_CAN_ELIMINATE
299 #define TARGET_CAN_ELIMINATE m68k_can_eliminate
300
301 #undef TARGET_CONDITIONAL_REGISTER_USAGE
302 #define TARGET_CONDITIONAL_REGISTER_USAGE m68k_conditional_register_usage
303
304 #undef TARGET_TRAMPOLINE_INIT
305 #define TARGET_TRAMPOLINE_INIT m68k_trampoline_init
306
307 #undef TARGET_RETURN_POPS_ARGS
308 #define TARGET_RETURN_POPS_ARGS m68k_return_pops_args
309
310 #undef TARGET_DELEGITIMIZE_ADDRESS
311 #define TARGET_DELEGITIMIZE_ADDRESS m68k_delegitimize_address
312
313 #undef TARGET_FUNCTION_ARG
314 #define TARGET_FUNCTION_ARG m68k_function_arg
315
316 #undef TARGET_FUNCTION_ARG_ADVANCE
317 #define TARGET_FUNCTION_ARG_ADVANCE m68k_function_arg_advance
318
319 #undef TARGET_LEGITIMATE_CONSTANT_P
320 #define TARGET_LEGITIMATE_CONSTANT_P m68k_legitimate_constant_p
321
322 #undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
323 #define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA m68k_output_addr_const_extra
324
325 /* The value stored by TAS. */
326 #undef TARGET_ATOMIC_TEST_AND_SET_TRUEVAL
327 #define TARGET_ATOMIC_TEST_AND_SET_TRUEVAL 128
328
329 static const struct attribute_spec m68k_attribute_table[] =
330 {
331 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
332 affects_type_identity } */
333 { "interrupt", 0, 0, true, false, false, m68k_handle_fndecl_attribute,
334 false },
335 { "interrupt_handler", 0, 0, true, false, false,
336 m68k_handle_fndecl_attribute, false },
337 { "interrupt_thread", 0, 0, true, false, false,
338 m68k_handle_fndecl_attribute, false },
339 { NULL, 0, 0, false, false, false, NULL, false }
340 };
341
342 struct gcc_target targetm = TARGET_INITIALIZER;
343 \f
344 /* Base flags for 68k ISAs. */
345 #define FL_FOR_isa_00 FL_ISA_68000
346 #define FL_FOR_isa_10 (FL_FOR_isa_00 | FL_ISA_68010)
347 /* FL_68881 controls the default setting of -m68881. gcc has traditionally
348 generated 68881 code for 68020 and 68030 targets unless explicitly told
349 not to. */
350 #define FL_FOR_isa_20 (FL_FOR_isa_10 | FL_ISA_68020 \
351 | FL_BITFIELD | FL_68881 | FL_CAS)
352 #define FL_FOR_isa_40 (FL_FOR_isa_20 | FL_ISA_68040)
353 #define FL_FOR_isa_cpu32 (FL_FOR_isa_10 | FL_ISA_68020)
354
355 /* Base flags for ColdFire ISAs. */
356 #define FL_FOR_isa_a (FL_COLDFIRE | FL_ISA_A)
357 #define FL_FOR_isa_aplus (FL_FOR_isa_a | FL_ISA_APLUS | FL_CF_USP)
358 /* Note ISA_B doesn't necessarily include USP (user stack pointer) support. */
359 #define FL_FOR_isa_b (FL_FOR_isa_a | FL_ISA_B | FL_CF_HWDIV)
360 /* ISA_C is not upwardly compatible with ISA_B. */
361 #define FL_FOR_isa_c (FL_FOR_isa_a | FL_ISA_C | FL_CF_USP)
362
363 enum m68k_isa
364 {
365 /* Traditional 68000 instruction sets. */
366 isa_00,
367 isa_10,
368 isa_20,
369 isa_40,
370 isa_cpu32,
371 /* ColdFire instruction set variants. */
372 isa_a,
373 isa_aplus,
374 isa_b,
375 isa_c,
376 isa_max
377 };
378
379 /* Information about one of the -march, -mcpu or -mtune arguments. */
380 struct m68k_target_selection
381 {
382 /* The argument being described. */
383 const char *name;
384
385 /* For -mcpu, this is the device selected by the option.
386 For -mtune and -march, it is a representative device
387 for the microarchitecture or ISA respectively. */
388 enum target_device device;
389
390 /* The M68K_DEVICE fields associated with DEVICE. See the comment
391 in m68k-devices.def for details. FAMILY is only valid for -mcpu. */
392 const char *family;
393 enum uarch_type microarch;
394 enum m68k_isa isa;
395 unsigned long flags;
396 };
397
398 /* A list of all devices in m68k-devices.def. Used for -mcpu selection. */
399 static const struct m68k_target_selection all_devices[] =
400 {
401 #define M68K_DEVICE(NAME,ENUM_VALUE,FAMILY,MULTILIB,MICROARCH,ISA,FLAGS) \
402 { NAME, ENUM_VALUE, FAMILY, u##MICROARCH, ISA, FLAGS | FL_FOR_##ISA },
403 #include "m68k-devices.def"
404 #undef M68K_DEVICE
405 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
406 };
407
408 /* A list of all ISAs, mapping each one to a representative device.
409 Used for -march selection. */
410 static const struct m68k_target_selection all_isas[] =
411 {
412 #define M68K_ISA(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
413 { NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
414 #include "m68k-isas.def"
415 #undef M68K_ISA
416 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
417 };
418
419 /* A list of all microarchitectures, mapping each one to a representative
420 device. Used for -mtune selection. */
421 static const struct m68k_target_selection all_microarchs[] =
422 {
423 #define M68K_MICROARCH(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
424 { NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
425 #include "m68k-microarchs.def"
426 #undef M68K_MICROARCH
427 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
428 };
429 \f
430 /* The entries associated with the -mcpu, -march and -mtune settings,
431 or null for options that have not been used. */
432 const struct m68k_target_selection *m68k_cpu_entry;
433 const struct m68k_target_selection *m68k_arch_entry;
434 const struct m68k_target_selection *m68k_tune_entry;
435
436 /* Which CPU we are generating code for. */
437 enum target_device m68k_cpu;
438
439 /* Which microarchitecture to tune for. */
440 enum uarch_type m68k_tune;
441
442 /* Which FPU to use. */
443 enum fpu_type m68k_fpu;
444
445 /* The set of FL_* flags that apply to the target processor. */
446 unsigned int m68k_cpu_flags;
447
448 /* The set of FL_* flags that apply to the processor to be tuned for. */
449 unsigned int m68k_tune_flags;
450
451 /* Asm templates for calling or jumping to an arbitrary symbolic address,
452 or NULL if such calls or jumps are not supported. The address is held
453 in operand 0. */
454 const char *m68k_symbolic_call;
455 const char *m68k_symbolic_jump;
456
457 /* Enum variable that corresponds to m68k_symbolic_call values. */
458 enum M68K_SYMBOLIC_CALL m68k_symbolic_call_var;
459
460 \f
461 /* Implement TARGET_OPTION_OVERRIDE. */
462
463 static void
464 m68k_option_override (void)
465 {
466 const struct m68k_target_selection *entry;
467 unsigned long target_mask;
468
469 if (global_options_set.x_m68k_arch_option)
470 m68k_arch_entry = &all_isas[m68k_arch_option];
471
472 if (global_options_set.x_m68k_cpu_option)
473 m68k_cpu_entry = &all_devices[(int) m68k_cpu_option];
474
475 if (global_options_set.x_m68k_tune_option)
476 m68k_tune_entry = &all_microarchs[(int) m68k_tune_option];
477
478 /* User can choose:
479
480 -mcpu=
481 -march=
482 -mtune=
483
484 -march=ARCH should generate code that runs any processor
485 implementing architecture ARCH. -mcpu=CPU should override -march
486 and should generate code that runs on processor CPU, making free
487 use of any instructions that CPU understands. -mtune=UARCH applies
488 on top of -mcpu or -march and optimizes the code for UARCH. It does
489 not change the target architecture. */
490 if (m68k_cpu_entry)
491 {
492 /* Complain if the -march setting is for a different microarchitecture,
493 or includes flags that the -mcpu setting doesn't. */
494 if (m68k_arch_entry
495 && (m68k_arch_entry->microarch != m68k_cpu_entry->microarch
496 || (m68k_arch_entry->flags & ~m68k_cpu_entry->flags) != 0))
497 warning (0, "-mcpu=%s conflicts with -march=%s",
498 m68k_cpu_entry->name, m68k_arch_entry->name);
499
500 entry = m68k_cpu_entry;
501 }
502 else
503 entry = m68k_arch_entry;
504
505 if (!entry)
506 entry = all_devices + TARGET_CPU_DEFAULT;
507
508 m68k_cpu_flags = entry->flags;
509
510 /* Use the architecture setting to derive default values for
511 certain flags. */
512 target_mask = 0;
513
514 /* ColdFire is lenient about alignment. */
515 if (!TARGET_COLDFIRE)
516 target_mask |= MASK_STRICT_ALIGNMENT;
517
518 if ((m68k_cpu_flags & FL_BITFIELD) != 0)
519 target_mask |= MASK_BITFIELD;
520 if ((m68k_cpu_flags & FL_CF_HWDIV) != 0)
521 target_mask |= MASK_CF_HWDIV;
522 if ((m68k_cpu_flags & (FL_68881 | FL_CF_FPU)) != 0)
523 target_mask |= MASK_HARD_FLOAT;
524 target_flags |= target_mask & ~target_flags_explicit;
525
526 /* Set the directly-usable versions of the -mcpu and -mtune settings. */
527 m68k_cpu = entry->device;
528 if (m68k_tune_entry)
529 {
530 m68k_tune = m68k_tune_entry->microarch;
531 m68k_tune_flags = m68k_tune_entry->flags;
532 }
533 #ifdef M68K_DEFAULT_TUNE
534 else if (!m68k_cpu_entry && !m68k_arch_entry)
535 {
536 enum target_device dev;
537 dev = all_microarchs[M68K_DEFAULT_TUNE].device;
538 m68k_tune_flags = all_devices[dev].flags;
539 }
540 #endif
541 else
542 {
543 m68k_tune = entry->microarch;
544 m68k_tune_flags = entry->flags;
545 }
546
547 /* Set the type of FPU. */
548 m68k_fpu = (!TARGET_HARD_FLOAT ? FPUTYPE_NONE
549 : (m68k_cpu_flags & FL_COLDFIRE) != 0 ? FPUTYPE_COLDFIRE
550 : FPUTYPE_68881);
551
552 /* Sanity check to ensure that msep-data and mid-sahred-library are not
553 * both specified together. Doing so simply doesn't make sense.
554 */
555 if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
556 error ("cannot specify both -msep-data and -mid-shared-library");
557
558 /* If we're generating code for a separate A5 relative data segment,
559 * we've got to enable -fPIC as well. This might be relaxable to
560 * -fpic but it hasn't been tested properly.
561 */
562 if (TARGET_SEP_DATA || TARGET_ID_SHARED_LIBRARY)
563 flag_pic = 2;
564
565 /* -mpcrel -fPIC uses 32-bit pc-relative displacements. Raise an
566 error if the target does not support them. */
567 if (TARGET_PCREL && !TARGET_68020 && flag_pic == 2)
568 error ("-mpcrel -fPIC is not currently supported on selected cpu");
569
570 /* ??? A historic way of turning on pic, or is this intended to
571 be an embedded thing that doesn't have the same name binding
572 significance that it does on hosted ELF systems? */
573 if (TARGET_PCREL && flag_pic == 0)
574 flag_pic = 1;
575
576 if (!flag_pic)
577 {
578 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_JSR;
579
580 m68k_symbolic_jump = "jra %a0";
581 }
582 else if (TARGET_ID_SHARED_LIBRARY)
583 /* All addresses must be loaded from the GOT. */
584 ;
585 else if (TARGET_68020 || TARGET_ISAB || TARGET_ISAC)
586 {
587 if (TARGET_PCREL)
588 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_C;
589 else
590 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_P;
591
592 if (TARGET_ISAC)
593 /* No unconditional long branch */;
594 else if (TARGET_PCREL)
595 m68k_symbolic_jump = "bra%.l %c0";
596 else
597 m68k_symbolic_jump = "bra%.l %p0";
598 /* Turn off function cse if we are doing PIC. We always want
599 function call to be done as `bsr foo@PLTPC'. */
600 /* ??? It's traditional to do this for -mpcrel too, but it isn't
601 clear how intentional that is. */
602 flag_no_function_cse = 1;
603 }
604
605 switch (m68k_symbolic_call_var)
606 {
607 case M68K_SYMBOLIC_CALL_JSR:
608 m68k_symbolic_call = "jsr %a0";
609 break;
610
611 case M68K_SYMBOLIC_CALL_BSR_C:
612 m68k_symbolic_call = "bsr%.l %c0";
613 break;
614
615 case M68K_SYMBOLIC_CALL_BSR_P:
616 m68k_symbolic_call = "bsr%.l %p0";
617 break;
618
619 case M68K_SYMBOLIC_CALL_NONE:
620 gcc_assert (m68k_symbolic_call == NULL);
621 break;
622
623 default:
624 gcc_unreachable ();
625 }
626
627 #ifndef ASM_OUTPUT_ALIGN_WITH_NOP
628 if (align_labels > 2)
629 {
630 warning (0, "-falign-labels=%d is not supported", align_labels);
631 align_labels = 0;
632 }
633 if (align_loops > 2)
634 {
635 warning (0, "-falign-loops=%d is not supported", align_loops);
636 align_loops = 0;
637 }
638 #endif
639
640 if (stack_limit_rtx != NULL_RTX && !TARGET_68020)
641 {
642 warning (0, "-fstack-limit- options are not supported on this cpu");
643 stack_limit_rtx = NULL_RTX;
644 }
645
646 SUBTARGET_OVERRIDE_OPTIONS;
647
648 /* Setup scheduling options. */
649 if (TUNE_CFV1)
650 m68k_sched_cpu = CPU_CFV1;
651 else if (TUNE_CFV2)
652 m68k_sched_cpu = CPU_CFV2;
653 else if (TUNE_CFV3)
654 m68k_sched_cpu = CPU_CFV3;
655 else if (TUNE_CFV4)
656 m68k_sched_cpu = CPU_CFV4;
657 else
658 {
659 m68k_sched_cpu = CPU_UNKNOWN;
660 flag_schedule_insns = 0;
661 flag_schedule_insns_after_reload = 0;
662 flag_modulo_sched = 0;
663 flag_live_range_shrinkage = 0;
664 }
665
666 if (m68k_sched_cpu != CPU_UNKNOWN)
667 {
668 if ((m68k_cpu_flags & (FL_CF_EMAC | FL_CF_EMAC_B)) != 0)
669 m68k_sched_mac = MAC_CF_EMAC;
670 else if ((m68k_cpu_flags & FL_CF_MAC) != 0)
671 m68k_sched_mac = MAC_CF_MAC;
672 else
673 m68k_sched_mac = MAC_NO;
674 }
675 }
676
677 /* Implement TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE. */
678
679 static void
680 m68k_override_options_after_change (void)
681 {
682 if (m68k_sched_cpu == CPU_UNKNOWN)
683 {
684 flag_schedule_insns = 0;
685 flag_schedule_insns_after_reload = 0;
686 flag_modulo_sched = 0;
687 flag_live_range_shrinkage = 0;
688 }
689 }
690
691 /* Generate a macro of the form __mPREFIX_cpu_NAME, where PREFIX is the
692 given argument and NAME is the argument passed to -mcpu. Return NULL
693 if -mcpu was not passed. */
694
695 const char *
696 m68k_cpp_cpu_ident (const char *prefix)
697 {
698 if (!m68k_cpu_entry)
699 return NULL;
700 return concat ("__m", prefix, "_cpu_", m68k_cpu_entry->name, NULL);
701 }
702
703 /* Generate a macro of the form __mPREFIX_family_NAME, where PREFIX is the
704 given argument and NAME is the name of the representative device for
705 the -mcpu argument's family. Return NULL if -mcpu was not passed. */
706
707 const char *
708 m68k_cpp_cpu_family (const char *prefix)
709 {
710 if (!m68k_cpu_entry)
711 return NULL;
712 return concat ("__m", prefix, "_family_", m68k_cpu_entry->family, NULL);
713 }
714 \f
715 /* Return m68k_fk_interrupt_handler if FUNC has an "interrupt" or
716 "interrupt_handler" attribute and interrupt_thread if FUNC has an
717 "interrupt_thread" attribute. Otherwise, return
718 m68k_fk_normal_function. */
719
720 enum m68k_function_kind
721 m68k_get_function_kind (tree func)
722 {
723 tree a;
724
725 gcc_assert (TREE_CODE (func) == FUNCTION_DECL);
726
727 a = lookup_attribute ("interrupt", DECL_ATTRIBUTES (func));
728 if (a != NULL_TREE)
729 return m68k_fk_interrupt_handler;
730
731 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
732 if (a != NULL_TREE)
733 return m68k_fk_interrupt_handler;
734
735 a = lookup_attribute ("interrupt_thread", DECL_ATTRIBUTES (func));
736 if (a != NULL_TREE)
737 return m68k_fk_interrupt_thread;
738
739 return m68k_fk_normal_function;
740 }
741
742 /* Handle an attribute requiring a FUNCTION_DECL; arguments as in
743 struct attribute_spec.handler. */
744 static tree
745 m68k_handle_fndecl_attribute (tree *node, tree name,
746 tree args ATTRIBUTE_UNUSED,
747 int flags ATTRIBUTE_UNUSED,
748 bool *no_add_attrs)
749 {
750 if (TREE_CODE (*node) != FUNCTION_DECL)
751 {
752 warning (OPT_Wattributes, "%qE attribute only applies to functions",
753 name);
754 *no_add_attrs = true;
755 }
756
757 if (m68k_get_function_kind (*node) != m68k_fk_normal_function)
758 {
759 error ("multiple interrupt attributes not allowed");
760 *no_add_attrs = true;
761 }
762
763 if (!TARGET_FIDOA
764 && !strcmp (IDENTIFIER_POINTER (name), "interrupt_thread"))
765 {
766 error ("interrupt_thread is available only on fido");
767 *no_add_attrs = true;
768 }
769
770 return NULL_TREE;
771 }
772
773 static void
774 m68k_compute_frame_layout (void)
775 {
776 int regno, saved;
777 unsigned int mask;
778 enum m68k_function_kind func_kind =
779 m68k_get_function_kind (current_function_decl);
780 bool interrupt_handler = func_kind == m68k_fk_interrupt_handler;
781 bool interrupt_thread = func_kind == m68k_fk_interrupt_thread;
782
783 /* Only compute the frame once per function.
784 Don't cache information until reload has been completed. */
785 if (current_frame.funcdef_no == current_function_funcdef_no
786 && reload_completed)
787 return;
788
789 current_frame.size = (get_frame_size () + 3) & -4;
790
791 mask = saved = 0;
792
793 /* Interrupt thread does not need to save any register. */
794 if (!interrupt_thread)
795 for (regno = 0; regno < 16; regno++)
796 if (m68k_save_reg (regno, interrupt_handler))
797 {
798 mask |= 1 << (regno - D0_REG);
799 saved++;
800 }
801 current_frame.offset = saved * 4;
802 current_frame.reg_no = saved;
803 current_frame.reg_mask = mask;
804
805 current_frame.foffset = 0;
806 mask = saved = 0;
807 if (TARGET_HARD_FLOAT)
808 {
809 /* Interrupt thread does not need to save any register. */
810 if (!interrupt_thread)
811 for (regno = 16; regno < 24; regno++)
812 if (m68k_save_reg (regno, interrupt_handler))
813 {
814 mask |= 1 << (regno - FP0_REG);
815 saved++;
816 }
817 current_frame.foffset = saved * TARGET_FP_REG_SIZE;
818 current_frame.offset += current_frame.foffset;
819 }
820 current_frame.fpu_no = saved;
821 current_frame.fpu_mask = mask;
822
823 /* Remember what function this frame refers to. */
824 current_frame.funcdef_no = current_function_funcdef_no;
825 }
826
827 /* Worker function for TARGET_CAN_ELIMINATE. */
828
829 bool
830 m68k_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
831 {
832 return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
833 }
834
835 HOST_WIDE_INT
836 m68k_initial_elimination_offset (int from, int to)
837 {
838 int argptr_offset;
839 /* The arg pointer points 8 bytes before the start of the arguments,
840 as defined by FIRST_PARM_OFFSET. This makes it coincident with the
841 frame pointer in most frames. */
842 argptr_offset = frame_pointer_needed ? 0 : UNITS_PER_WORD;
843 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
844 return argptr_offset;
845
846 m68k_compute_frame_layout ();
847
848 gcc_assert (to == STACK_POINTER_REGNUM);
849 switch (from)
850 {
851 case ARG_POINTER_REGNUM:
852 return current_frame.offset + current_frame.size - argptr_offset;
853 case FRAME_POINTER_REGNUM:
854 return current_frame.offset + current_frame.size;
855 default:
856 gcc_unreachable ();
857 }
858 }
859
860 /* Refer to the array `regs_ever_live' to determine which registers
861 to save; `regs_ever_live[I]' is nonzero if register number I
862 is ever used in the function. This function is responsible for
863 knowing which registers should not be saved even if used.
864 Return true if we need to save REGNO. */
865
866 static bool
867 m68k_save_reg (unsigned int regno, bool interrupt_handler)
868 {
869 if (flag_pic && regno == PIC_REG)
870 {
871 if (crtl->saves_all_registers)
872 return true;
873 if (crtl->uses_pic_offset_table)
874 return true;
875 /* Reload may introduce constant pool references into a function
876 that thitherto didn't need a PIC register. Note that the test
877 above will not catch that case because we will only set
878 crtl->uses_pic_offset_table when emitting
879 the address reloads. */
880 if (crtl->uses_const_pool)
881 return true;
882 }
883
884 if (crtl->calls_eh_return)
885 {
886 unsigned int i;
887 for (i = 0; ; i++)
888 {
889 unsigned int test = EH_RETURN_DATA_REGNO (i);
890 if (test == INVALID_REGNUM)
891 break;
892 if (test == regno)
893 return true;
894 }
895 }
896
897 /* Fixed regs we never touch. */
898 if (fixed_regs[regno])
899 return false;
900
901 /* The frame pointer (if it is such) is handled specially. */
902 if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
903 return false;
904
905 /* Interrupt handlers must also save call_used_regs
906 if they are live or when calling nested functions. */
907 if (interrupt_handler)
908 {
909 if (df_regs_ever_live_p (regno))
910 return true;
911
912 if (!crtl->is_leaf && call_used_regs[regno])
913 return true;
914 }
915
916 /* Never need to save registers that aren't touched. */
917 if (!df_regs_ever_live_p (regno))
918 return false;
919
920 /* Otherwise save everything that isn't call-clobbered. */
921 return !call_used_regs[regno];
922 }
923
924 /* Emit RTL for a MOVEM or FMOVEM instruction. BASE + OFFSET represents
925 the lowest memory address. COUNT is the number of registers to be
926 moved, with register REGNO + I being moved if bit I of MASK is set.
927 STORE_P specifies the direction of the move and ADJUST_STACK_P says
928 whether or not this is pre-decrement (if STORE_P) or post-increment
929 (if !STORE_P) operation. */
930
931 static rtx_insn *
932 m68k_emit_movem (rtx base, HOST_WIDE_INT offset,
933 unsigned int count, unsigned int regno,
934 unsigned int mask, bool store_p, bool adjust_stack_p)
935 {
936 int i;
937 rtx body, addr, src, operands[2];
938 machine_mode mode;
939
940 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (adjust_stack_p + count));
941 mode = reg_raw_mode[regno];
942 i = 0;
943
944 if (adjust_stack_p)
945 {
946 src = plus_constant (Pmode, base,
947 (count
948 * GET_MODE_SIZE (mode)
949 * (HOST_WIDE_INT) (store_p ? -1 : 1)));
950 XVECEXP (body, 0, i++) = gen_rtx_SET (base, src);
951 }
952
953 for (; mask != 0; mask >>= 1, regno++)
954 if (mask & 1)
955 {
956 addr = plus_constant (Pmode, base, offset);
957 operands[!store_p] = gen_frame_mem (mode, addr);
958 operands[store_p] = gen_rtx_REG (mode, regno);
959 XVECEXP (body, 0, i++)
960 = gen_rtx_SET (operands[0], operands[1]);
961 offset += GET_MODE_SIZE (mode);
962 }
963 gcc_assert (i == XVECLEN (body, 0));
964
965 return emit_insn (body);
966 }
967
968 /* Make INSN a frame-related instruction. */
969
970 static void
971 m68k_set_frame_related (rtx_insn *insn)
972 {
973 rtx body;
974 int i;
975
976 RTX_FRAME_RELATED_P (insn) = 1;
977 body = PATTERN (insn);
978 if (GET_CODE (body) == PARALLEL)
979 for (i = 0; i < XVECLEN (body, 0); i++)
980 RTX_FRAME_RELATED_P (XVECEXP (body, 0, i)) = 1;
981 }
982
983 /* Emit RTL for the "prologue" define_expand. */
984
985 void
986 m68k_expand_prologue (void)
987 {
988 HOST_WIDE_INT fsize_with_regs;
989 rtx limit, src, dest;
990
991 m68k_compute_frame_layout ();
992
993 if (flag_stack_usage_info)
994 current_function_static_stack_size
995 = current_frame.size + current_frame.offset;
996
997 /* If the stack limit is a symbol, we can check it here,
998 before actually allocating the space. */
999 if (crtl->limit_stack
1000 && GET_CODE (stack_limit_rtx) == SYMBOL_REF)
1001 {
1002 limit = plus_constant (Pmode, stack_limit_rtx, current_frame.size + 4);
1003 if (!m68k_legitimate_constant_p (Pmode, limit))
1004 {
1005 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), limit);
1006 limit = gen_rtx_REG (Pmode, D0_REG);
1007 }
1008 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode,
1009 stack_pointer_rtx, limit),
1010 stack_pointer_rtx, limit,
1011 const1_rtx));
1012 }
1013
1014 fsize_with_regs = current_frame.size;
1015 if (TARGET_COLDFIRE)
1016 {
1017 /* ColdFire's move multiple instructions do not allow pre-decrement
1018 addressing. Add the size of movem saves to the initial stack
1019 allocation instead. */
1020 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1021 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1022 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1023 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1024 }
1025
1026 if (frame_pointer_needed)
1027 {
1028 if (fsize_with_regs == 0 && TUNE_68040)
1029 {
1030 /* On the 68040, two separate moves are faster than link.w 0. */
1031 dest = gen_frame_mem (Pmode,
1032 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1033 m68k_set_frame_related (emit_move_insn (dest, frame_pointer_rtx));
1034 m68k_set_frame_related (emit_move_insn (frame_pointer_rtx,
1035 stack_pointer_rtx));
1036 }
1037 else if (fsize_with_regs < 0x8000 || TARGET_68020)
1038 m68k_set_frame_related
1039 (emit_insn (gen_link (frame_pointer_rtx,
1040 GEN_INT (-4 - fsize_with_regs))));
1041 else
1042 {
1043 m68k_set_frame_related
1044 (emit_insn (gen_link (frame_pointer_rtx, GEN_INT (-4))));
1045 m68k_set_frame_related
1046 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1047 stack_pointer_rtx,
1048 GEN_INT (-fsize_with_regs))));
1049 }
1050
1051 /* If the frame pointer is needed, emit a special barrier that
1052 will prevent the scheduler from moving stores to the frame
1053 before the stack adjustment. */
1054 emit_insn (gen_stack_tie (stack_pointer_rtx, frame_pointer_rtx));
1055 }
1056 else if (fsize_with_regs != 0)
1057 m68k_set_frame_related
1058 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1059 stack_pointer_rtx,
1060 GEN_INT (-fsize_with_regs))));
1061
1062 if (current_frame.fpu_mask)
1063 {
1064 gcc_assert (current_frame.fpu_no >= MIN_FMOVEM_REGS);
1065 if (TARGET_68881)
1066 m68k_set_frame_related
1067 (m68k_emit_movem (stack_pointer_rtx,
1068 current_frame.fpu_no * -GET_MODE_SIZE (XFmode),
1069 current_frame.fpu_no, FP0_REG,
1070 current_frame.fpu_mask, true, true));
1071 else
1072 {
1073 int offset;
1074
1075 /* If we're using moveml to save the integer registers,
1076 the stack pointer will point to the bottom of the moveml
1077 save area. Find the stack offset of the first FP register. */
1078 if (current_frame.reg_no < MIN_MOVEM_REGS)
1079 offset = 0;
1080 else
1081 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1082 m68k_set_frame_related
1083 (m68k_emit_movem (stack_pointer_rtx, offset,
1084 current_frame.fpu_no, FP0_REG,
1085 current_frame.fpu_mask, true, false));
1086 }
1087 }
1088
1089 /* If the stack limit is not a symbol, check it here.
1090 This has the disadvantage that it may be too late... */
1091 if (crtl->limit_stack)
1092 {
1093 if (REG_P (stack_limit_rtx))
1094 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode, stack_pointer_rtx,
1095 stack_limit_rtx),
1096 stack_pointer_rtx, stack_limit_rtx,
1097 const1_rtx));
1098
1099 else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
1100 warning (0, "stack limit expression is not supported");
1101 }
1102
1103 if (current_frame.reg_no < MIN_MOVEM_REGS)
1104 {
1105 /* Store each register separately in the same order moveml does. */
1106 int i;
1107
1108 for (i = 16; i-- > 0; )
1109 if (current_frame.reg_mask & (1 << i))
1110 {
1111 src = gen_rtx_REG (SImode, D0_REG + i);
1112 dest = gen_frame_mem (SImode,
1113 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1114 m68k_set_frame_related (emit_insn (gen_movsi (dest, src)));
1115 }
1116 }
1117 else
1118 {
1119 if (TARGET_COLDFIRE)
1120 /* The required register save space has already been allocated.
1121 The first register should be stored at (%sp). */
1122 m68k_set_frame_related
1123 (m68k_emit_movem (stack_pointer_rtx, 0,
1124 current_frame.reg_no, D0_REG,
1125 current_frame.reg_mask, true, false));
1126 else
1127 m68k_set_frame_related
1128 (m68k_emit_movem (stack_pointer_rtx,
1129 current_frame.reg_no * -GET_MODE_SIZE (SImode),
1130 current_frame.reg_no, D0_REG,
1131 current_frame.reg_mask, true, true));
1132 }
1133
1134 if (!TARGET_SEP_DATA
1135 && crtl->uses_pic_offset_table)
1136 emit_insn (gen_load_got (pic_offset_table_rtx));
1137 }
1138 \f
1139 /* Return true if a simple (return) instruction is sufficient for this
1140 instruction (i.e. if no epilogue is needed). */
1141
1142 bool
1143 m68k_use_return_insn (void)
1144 {
1145 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
1146 return false;
1147
1148 m68k_compute_frame_layout ();
1149 return current_frame.offset == 0;
1150 }
1151
1152 /* Emit RTL for the "epilogue" or "sibcall_epilogue" define_expand;
1153 SIBCALL_P says which.
1154
1155 The function epilogue should not depend on the current stack pointer!
1156 It should use the frame pointer only, if there is a frame pointer.
1157 This is mandatory because of alloca; we also take advantage of it to
1158 omit stack adjustments before returning. */
1159
1160 void
1161 m68k_expand_epilogue (bool sibcall_p)
1162 {
1163 HOST_WIDE_INT fsize, fsize_with_regs;
1164 bool big, restore_from_sp;
1165
1166 m68k_compute_frame_layout ();
1167
1168 fsize = current_frame.size;
1169 big = false;
1170 restore_from_sp = false;
1171
1172 /* FIXME : crtl->is_leaf below is too strong.
1173 What we really need to know there is if there could be pending
1174 stack adjustment needed at that point. */
1175 restore_from_sp = (!frame_pointer_needed
1176 || (!cfun->calls_alloca && crtl->is_leaf));
1177
1178 /* fsize_with_regs is the size we need to adjust the sp when
1179 popping the frame. */
1180 fsize_with_regs = fsize;
1181 if (TARGET_COLDFIRE && restore_from_sp)
1182 {
1183 /* ColdFire's move multiple instructions do not allow post-increment
1184 addressing. Add the size of movem loads to the final deallocation
1185 instead. */
1186 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1187 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1188 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1189 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1190 }
1191
1192 if (current_frame.offset + fsize >= 0x8000
1193 && !restore_from_sp
1194 && (current_frame.reg_mask || current_frame.fpu_mask))
1195 {
1196 if (TARGET_COLDFIRE
1197 && (current_frame.reg_no >= MIN_MOVEM_REGS
1198 || current_frame.fpu_no >= MIN_FMOVEM_REGS))
1199 {
1200 /* ColdFire's move multiple instructions do not support the
1201 (d8,Ax,Xi) addressing mode, so we're as well using a normal
1202 stack-based restore. */
1203 emit_move_insn (gen_rtx_REG (Pmode, A1_REG),
1204 GEN_INT (-(current_frame.offset + fsize)));
1205 emit_insn (gen_addsi3 (stack_pointer_rtx,
1206 gen_rtx_REG (Pmode, A1_REG),
1207 frame_pointer_rtx));
1208 restore_from_sp = true;
1209 }
1210 else
1211 {
1212 emit_move_insn (gen_rtx_REG (Pmode, A1_REG), GEN_INT (-fsize));
1213 fsize = 0;
1214 big = true;
1215 }
1216 }
1217
1218 if (current_frame.reg_no < MIN_MOVEM_REGS)
1219 {
1220 /* Restore each register separately in the same order moveml does. */
1221 int i;
1222 HOST_WIDE_INT offset;
1223
1224 offset = current_frame.offset + fsize;
1225 for (i = 0; i < 16; i++)
1226 if (current_frame.reg_mask & (1 << i))
1227 {
1228 rtx addr;
1229
1230 if (big)
1231 {
1232 /* Generate the address -OFFSET(%fp,%a1.l). */
1233 addr = gen_rtx_REG (Pmode, A1_REG);
1234 addr = gen_rtx_PLUS (Pmode, addr, frame_pointer_rtx);
1235 addr = plus_constant (Pmode, addr, -offset);
1236 }
1237 else if (restore_from_sp)
1238 addr = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
1239 else
1240 addr = plus_constant (Pmode, frame_pointer_rtx, -offset);
1241 emit_move_insn (gen_rtx_REG (SImode, D0_REG + i),
1242 gen_frame_mem (SImode, addr));
1243 offset -= GET_MODE_SIZE (SImode);
1244 }
1245 }
1246 else if (current_frame.reg_mask)
1247 {
1248 if (big)
1249 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1250 gen_rtx_REG (Pmode, A1_REG),
1251 frame_pointer_rtx),
1252 -(current_frame.offset + fsize),
1253 current_frame.reg_no, D0_REG,
1254 current_frame.reg_mask, false, false);
1255 else if (restore_from_sp)
1256 m68k_emit_movem (stack_pointer_rtx, 0,
1257 current_frame.reg_no, D0_REG,
1258 current_frame.reg_mask, false,
1259 !TARGET_COLDFIRE);
1260 else
1261 m68k_emit_movem (frame_pointer_rtx,
1262 -(current_frame.offset + fsize),
1263 current_frame.reg_no, D0_REG,
1264 current_frame.reg_mask, false, false);
1265 }
1266
1267 if (current_frame.fpu_no > 0)
1268 {
1269 if (big)
1270 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1271 gen_rtx_REG (Pmode, A1_REG),
1272 frame_pointer_rtx),
1273 -(current_frame.foffset + fsize),
1274 current_frame.fpu_no, FP0_REG,
1275 current_frame.fpu_mask, false, false);
1276 else if (restore_from_sp)
1277 {
1278 if (TARGET_COLDFIRE)
1279 {
1280 int offset;
1281
1282 /* If we used moveml to restore the integer registers, the
1283 stack pointer will still point to the bottom of the moveml
1284 save area. Find the stack offset of the first FP
1285 register. */
1286 if (current_frame.reg_no < MIN_MOVEM_REGS)
1287 offset = 0;
1288 else
1289 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1290 m68k_emit_movem (stack_pointer_rtx, offset,
1291 current_frame.fpu_no, FP0_REG,
1292 current_frame.fpu_mask, false, false);
1293 }
1294 else
1295 m68k_emit_movem (stack_pointer_rtx, 0,
1296 current_frame.fpu_no, FP0_REG,
1297 current_frame.fpu_mask, false, true);
1298 }
1299 else
1300 m68k_emit_movem (frame_pointer_rtx,
1301 -(current_frame.foffset + fsize),
1302 current_frame.fpu_no, FP0_REG,
1303 current_frame.fpu_mask, false, false);
1304 }
1305
1306 if (frame_pointer_needed)
1307 emit_insn (gen_unlink (frame_pointer_rtx));
1308 else if (fsize_with_regs)
1309 emit_insn (gen_addsi3 (stack_pointer_rtx,
1310 stack_pointer_rtx,
1311 GEN_INT (fsize_with_regs)));
1312
1313 if (crtl->calls_eh_return)
1314 emit_insn (gen_addsi3 (stack_pointer_rtx,
1315 stack_pointer_rtx,
1316 EH_RETURN_STACKADJ_RTX));
1317
1318 if (!sibcall_p)
1319 emit_jump_insn (ret_rtx);
1320 }
1321 \f
1322 /* Return true if X is a valid comparison operator for the dbcc
1323 instruction.
1324
1325 Note it rejects floating point comparison operators.
1326 (In the future we could use Fdbcc).
1327
1328 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
1329
1330 int
1331 valid_dbcc_comparison_p_2 (rtx x, machine_mode mode ATTRIBUTE_UNUSED)
1332 {
1333 switch (GET_CODE (x))
1334 {
1335 case EQ: case NE: case GTU: case LTU:
1336 case GEU: case LEU:
1337 return 1;
1338
1339 /* Reject some when CC_NO_OVERFLOW is set. This may be over
1340 conservative */
1341 case GT: case LT: case GE: case LE:
1342 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
1343 default:
1344 return 0;
1345 }
1346 }
1347
1348 /* Return nonzero if flags are currently in the 68881 flag register. */
1349 int
1350 flags_in_68881 (void)
1351 {
1352 /* We could add support for these in the future */
1353 return cc_status.flags & CC_IN_68881;
1354 }
1355
1356 /* Return true if PARALLEL contains register REGNO. */
1357 static bool
1358 m68k_reg_present_p (const_rtx parallel, unsigned int regno)
1359 {
1360 int i;
1361
1362 if (REG_P (parallel) && REGNO (parallel) == regno)
1363 return true;
1364
1365 if (GET_CODE (parallel) != PARALLEL)
1366 return false;
1367
1368 for (i = 0; i < XVECLEN (parallel, 0); ++i)
1369 {
1370 const_rtx x;
1371
1372 x = XEXP (XVECEXP (parallel, 0, i), 0);
1373 if (REG_P (x) && REGNO (x) == regno)
1374 return true;
1375 }
1376
1377 return false;
1378 }
1379
1380 /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL_P. */
1381
1382 static bool
1383 m68k_ok_for_sibcall_p (tree decl, tree exp)
1384 {
1385 enum m68k_function_kind kind;
1386
1387 /* We cannot use sibcalls for nested functions because we use the
1388 static chain register for indirect calls. */
1389 if (CALL_EXPR_STATIC_CHAIN (exp))
1390 return false;
1391
1392 if (!VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl))))
1393 {
1394 /* Check that the return value locations are the same. For
1395 example that we aren't returning a value from the sibling in
1396 a D0 register but then need to transfer it to a A0 register. */
1397 rtx cfun_value;
1398 rtx call_value;
1399
1400 cfun_value = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (cfun->decl)),
1401 cfun->decl);
1402 call_value = FUNCTION_VALUE (TREE_TYPE (exp), decl);
1403
1404 /* Check that the values are equal or that the result the callee
1405 function returns is superset of what the current function returns. */
1406 if (!(rtx_equal_p (cfun_value, call_value)
1407 || (REG_P (cfun_value)
1408 && m68k_reg_present_p (call_value, REGNO (cfun_value)))))
1409 return false;
1410 }
1411
1412 kind = m68k_get_function_kind (current_function_decl);
1413 if (kind == m68k_fk_normal_function)
1414 /* We can always sibcall from a normal function, because it's
1415 undefined if it is calling an interrupt function. */
1416 return true;
1417
1418 /* Otherwise we can only sibcall if the function kind is known to be
1419 the same. */
1420 if (decl && m68k_get_function_kind (decl) == kind)
1421 return true;
1422
1423 return false;
1424 }
1425
1426 /* On the m68k all args are always pushed. */
1427
1428 static rtx
1429 m68k_function_arg (cumulative_args_t cum ATTRIBUTE_UNUSED,
1430 machine_mode mode ATTRIBUTE_UNUSED,
1431 const_tree type ATTRIBUTE_UNUSED,
1432 bool named ATTRIBUTE_UNUSED)
1433 {
1434 return NULL_RTX;
1435 }
1436
1437 static void
1438 m68k_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
1439 const_tree type, bool named ATTRIBUTE_UNUSED)
1440 {
1441 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1442
1443 *cum += (mode != BLKmode
1444 ? (GET_MODE_SIZE (mode) + 3) & ~3
1445 : (int_size_in_bytes (type) + 3) & ~3);
1446 }
1447
1448 /* Convert X to a legitimate function call memory reference and return the
1449 result. */
1450
1451 rtx
1452 m68k_legitimize_call_address (rtx x)
1453 {
1454 gcc_assert (MEM_P (x));
1455 if (call_operand (XEXP (x, 0), VOIDmode))
1456 return x;
1457 return replace_equiv_address (x, force_reg (Pmode, XEXP (x, 0)));
1458 }
1459
1460 /* Likewise for sibling calls. */
1461
1462 rtx
1463 m68k_legitimize_sibcall_address (rtx x)
1464 {
1465 gcc_assert (MEM_P (x));
1466 if (sibcall_operand (XEXP (x, 0), VOIDmode))
1467 return x;
1468
1469 emit_move_insn (gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM), XEXP (x, 0));
1470 return replace_equiv_address (x, gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM));
1471 }
1472
1473 /* Convert X to a legitimate address and return it if successful. Otherwise
1474 return X.
1475
1476 For the 68000, we handle X+REG by loading X into a register R and
1477 using R+REG. R will go in an address reg and indexing will be used.
1478 However, if REG is a broken-out memory address or multiplication,
1479 nothing needs to be done because REG can certainly go in an address reg. */
1480
1481 static rtx
1482 m68k_legitimize_address (rtx x, rtx oldx, machine_mode mode)
1483 {
1484 if (m68k_tls_symbol_p (x))
1485 return m68k_legitimize_tls_address (x);
1486
1487 if (GET_CODE (x) == PLUS)
1488 {
1489 int ch = (x) != (oldx);
1490 int copied = 0;
1491
1492 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1493
1494 if (GET_CODE (XEXP (x, 0)) == MULT)
1495 {
1496 COPY_ONCE (x);
1497 XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
1498 }
1499 if (GET_CODE (XEXP (x, 1)) == MULT)
1500 {
1501 COPY_ONCE (x);
1502 XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
1503 }
1504 if (ch)
1505 {
1506 if (GET_CODE (XEXP (x, 1)) == REG
1507 && GET_CODE (XEXP (x, 0)) == REG)
1508 {
1509 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
1510 {
1511 COPY_ONCE (x);
1512 x = force_operand (x, 0);
1513 }
1514 return x;
1515 }
1516 if (memory_address_p (mode, x))
1517 return x;
1518 }
1519 if (GET_CODE (XEXP (x, 0)) == REG
1520 || (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
1521 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
1522 && GET_MODE (XEXP (XEXP (x, 0), 0)) == HImode))
1523 {
1524 rtx temp = gen_reg_rtx (Pmode);
1525 rtx val = force_operand (XEXP (x, 1), 0);
1526 emit_move_insn (temp, val);
1527 COPY_ONCE (x);
1528 XEXP (x, 1) = temp;
1529 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1530 && GET_CODE (XEXP (x, 0)) == REG)
1531 x = force_operand (x, 0);
1532 }
1533 else if (GET_CODE (XEXP (x, 1)) == REG
1534 || (GET_CODE (XEXP (x, 1)) == SIGN_EXTEND
1535 && GET_CODE (XEXP (XEXP (x, 1), 0)) == REG
1536 && GET_MODE (XEXP (XEXP (x, 1), 0)) == HImode))
1537 {
1538 rtx temp = gen_reg_rtx (Pmode);
1539 rtx val = force_operand (XEXP (x, 0), 0);
1540 emit_move_insn (temp, val);
1541 COPY_ONCE (x);
1542 XEXP (x, 0) = temp;
1543 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1544 && GET_CODE (XEXP (x, 1)) == REG)
1545 x = force_operand (x, 0);
1546 }
1547 }
1548
1549 return x;
1550 }
1551
1552
1553 /* Output a dbCC; jCC sequence. Note we do not handle the
1554 floating point version of this sequence (Fdbcc). We also
1555 do not handle alternative conditions when CC_NO_OVERFLOW is
1556 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
1557 kick those out before we get here. */
1558
1559 void
1560 output_dbcc_and_branch (rtx *operands)
1561 {
1562 switch (GET_CODE (operands[3]))
1563 {
1564 case EQ:
1565 output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
1566 break;
1567
1568 case NE:
1569 output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
1570 break;
1571
1572 case GT:
1573 output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
1574 break;
1575
1576 case GTU:
1577 output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
1578 break;
1579
1580 case LT:
1581 output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
1582 break;
1583
1584 case LTU:
1585 output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
1586 break;
1587
1588 case GE:
1589 output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
1590 break;
1591
1592 case GEU:
1593 output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
1594 break;
1595
1596 case LE:
1597 output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
1598 break;
1599
1600 case LEU:
1601 output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
1602 break;
1603
1604 default:
1605 gcc_unreachable ();
1606 }
1607
1608 /* If the decrement is to be done in SImode, then we have
1609 to compensate for the fact that dbcc decrements in HImode. */
1610 switch (GET_MODE (operands[0]))
1611 {
1612 case SImode:
1613 output_asm_insn ("clr%.w %0\n\tsubq%.l #1,%0\n\tjpl %l1", operands);
1614 break;
1615
1616 case HImode:
1617 break;
1618
1619 default:
1620 gcc_unreachable ();
1621 }
1622 }
1623
1624 const char *
1625 output_scc_di (rtx op, rtx operand1, rtx operand2, rtx dest)
1626 {
1627 rtx loperands[7];
1628 enum rtx_code op_code = GET_CODE (op);
1629
1630 /* This does not produce a useful cc. */
1631 CC_STATUS_INIT;
1632
1633 /* The m68k cmp.l instruction requires operand1 to be a reg as used
1634 below. Swap the operands and change the op if these requirements
1635 are not fulfilled. */
1636 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
1637 {
1638 rtx tmp = operand1;
1639
1640 operand1 = operand2;
1641 operand2 = tmp;
1642 op_code = swap_condition (op_code);
1643 }
1644 loperands[0] = operand1;
1645 if (GET_CODE (operand1) == REG)
1646 loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
1647 else
1648 loperands[1] = adjust_address (operand1, SImode, 4);
1649 if (operand2 != const0_rtx)
1650 {
1651 loperands[2] = operand2;
1652 if (GET_CODE (operand2) == REG)
1653 loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
1654 else
1655 loperands[3] = adjust_address (operand2, SImode, 4);
1656 }
1657 loperands[4] = gen_label_rtx ();
1658 if (operand2 != const0_rtx)
1659 output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
1660 else
1661 {
1662 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[0]))
1663 output_asm_insn ("tst%.l %0", loperands);
1664 else
1665 output_asm_insn ("cmp%.w #0,%0", loperands);
1666
1667 output_asm_insn ("jne %l4", loperands);
1668
1669 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[1]))
1670 output_asm_insn ("tst%.l %1", loperands);
1671 else
1672 output_asm_insn ("cmp%.w #0,%1", loperands);
1673 }
1674
1675 loperands[5] = dest;
1676
1677 switch (op_code)
1678 {
1679 case EQ:
1680 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1681 CODE_LABEL_NUMBER (loperands[4]));
1682 output_asm_insn ("seq %5", loperands);
1683 break;
1684
1685 case NE:
1686 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1687 CODE_LABEL_NUMBER (loperands[4]));
1688 output_asm_insn ("sne %5", loperands);
1689 break;
1690
1691 case GT:
1692 loperands[6] = gen_label_rtx ();
1693 output_asm_insn ("shi %5\n\tjra %l6", loperands);
1694 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1695 CODE_LABEL_NUMBER (loperands[4]));
1696 output_asm_insn ("sgt %5", loperands);
1697 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1698 CODE_LABEL_NUMBER (loperands[6]));
1699 break;
1700
1701 case GTU:
1702 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1703 CODE_LABEL_NUMBER (loperands[4]));
1704 output_asm_insn ("shi %5", loperands);
1705 break;
1706
1707 case LT:
1708 loperands[6] = gen_label_rtx ();
1709 output_asm_insn ("scs %5\n\tjra %l6", loperands);
1710 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1711 CODE_LABEL_NUMBER (loperands[4]));
1712 output_asm_insn ("slt %5", loperands);
1713 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1714 CODE_LABEL_NUMBER (loperands[6]));
1715 break;
1716
1717 case LTU:
1718 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1719 CODE_LABEL_NUMBER (loperands[4]));
1720 output_asm_insn ("scs %5", loperands);
1721 break;
1722
1723 case GE:
1724 loperands[6] = gen_label_rtx ();
1725 output_asm_insn ("scc %5\n\tjra %l6", loperands);
1726 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1727 CODE_LABEL_NUMBER (loperands[4]));
1728 output_asm_insn ("sge %5", loperands);
1729 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1730 CODE_LABEL_NUMBER (loperands[6]));
1731 break;
1732
1733 case GEU:
1734 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1735 CODE_LABEL_NUMBER (loperands[4]));
1736 output_asm_insn ("scc %5", loperands);
1737 break;
1738
1739 case LE:
1740 loperands[6] = gen_label_rtx ();
1741 output_asm_insn ("sls %5\n\tjra %l6", loperands);
1742 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1743 CODE_LABEL_NUMBER (loperands[4]));
1744 output_asm_insn ("sle %5", loperands);
1745 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1746 CODE_LABEL_NUMBER (loperands[6]));
1747 break;
1748
1749 case LEU:
1750 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1751 CODE_LABEL_NUMBER (loperands[4]));
1752 output_asm_insn ("sls %5", loperands);
1753 break;
1754
1755 default:
1756 gcc_unreachable ();
1757 }
1758 return "";
1759 }
1760
1761 const char *
1762 output_btst (rtx *operands, rtx countop, rtx dataop, rtx_insn *insn, int signpos)
1763 {
1764 operands[0] = countop;
1765 operands[1] = dataop;
1766
1767 if (GET_CODE (countop) == CONST_INT)
1768 {
1769 register int count = INTVAL (countop);
1770 /* If COUNT is bigger than size of storage unit in use,
1771 advance to the containing unit of same size. */
1772 if (count > signpos)
1773 {
1774 int offset = (count & ~signpos) / 8;
1775 count = count & signpos;
1776 operands[1] = dataop = adjust_address (dataop, QImode, offset);
1777 }
1778 if (count == signpos)
1779 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1780 else
1781 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1782
1783 /* These three statements used to use next_insns_test_no...
1784 but it appears that this should do the same job. */
1785 if (count == 31
1786 && next_insn_tests_no_inequality (insn))
1787 return "tst%.l %1";
1788 if (count == 15
1789 && next_insn_tests_no_inequality (insn))
1790 return "tst%.w %1";
1791 if (count == 7
1792 && next_insn_tests_no_inequality (insn))
1793 return "tst%.b %1";
1794 /* Try to use `movew to ccr' followed by the appropriate branch insn.
1795 On some m68k variants unfortunately that's slower than btst.
1796 On 68000 and higher, that should also work for all HImode operands. */
1797 if (TUNE_CPU32 || TARGET_COLDFIRE || optimize_size)
1798 {
1799 if (count == 3 && DATA_REG_P (operands[1])
1800 && next_insn_tests_no_inequality (insn))
1801 {
1802 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N | CC_NO_OVERFLOW;
1803 return "move%.w %1,%%ccr";
1804 }
1805 if (count == 2 && DATA_REG_P (operands[1])
1806 && next_insn_tests_no_inequality (insn))
1807 {
1808 cc_status.flags = CC_NOT_NEGATIVE | CC_INVERTED | CC_NO_OVERFLOW;
1809 return "move%.w %1,%%ccr";
1810 }
1811 /* count == 1 followed by bvc/bvs and
1812 count == 0 followed by bcc/bcs are also possible, but need
1813 m68k-specific CC_Z_IN_NOT_V and CC_Z_IN_NOT_C flags. */
1814 }
1815
1816 cc_status.flags = CC_NOT_NEGATIVE;
1817 }
1818 return "btst %0,%1";
1819 }
1820 \f
1821 /* Return true if X is a legitimate base register. STRICT_P says
1822 whether we need strict checking. */
1823
1824 bool
1825 m68k_legitimate_base_reg_p (rtx x, bool strict_p)
1826 {
1827 /* Allow SUBREG everywhere we allow REG. This results in better code. */
1828 if (!strict_p && GET_CODE (x) == SUBREG)
1829 x = SUBREG_REG (x);
1830
1831 return (REG_P (x)
1832 && (strict_p
1833 ? REGNO_OK_FOR_BASE_P (REGNO (x))
1834 : REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (x))));
1835 }
1836
1837 /* Return true if X is a legitimate index register. STRICT_P says
1838 whether we need strict checking. */
1839
1840 bool
1841 m68k_legitimate_index_reg_p (rtx x, bool strict_p)
1842 {
1843 if (!strict_p && GET_CODE (x) == SUBREG)
1844 x = SUBREG_REG (x);
1845
1846 return (REG_P (x)
1847 && (strict_p
1848 ? REGNO_OK_FOR_INDEX_P (REGNO (x))
1849 : REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (x))));
1850 }
1851
1852 /* Return true if X is a legitimate index expression for a (d8,An,Xn) or
1853 (bd,An,Xn) addressing mode. Fill in the INDEX and SCALE fields of
1854 ADDRESS if so. STRICT_P says whether we need strict checking. */
1855
1856 static bool
1857 m68k_decompose_index (rtx x, bool strict_p, struct m68k_address *address)
1858 {
1859 int scale;
1860
1861 /* Check for a scale factor. */
1862 scale = 1;
1863 if ((TARGET_68020 || TARGET_COLDFIRE)
1864 && GET_CODE (x) == MULT
1865 && GET_CODE (XEXP (x, 1)) == CONST_INT
1866 && (INTVAL (XEXP (x, 1)) == 2
1867 || INTVAL (XEXP (x, 1)) == 4
1868 || (INTVAL (XEXP (x, 1)) == 8
1869 && (TARGET_COLDFIRE_FPU || !TARGET_COLDFIRE))))
1870 {
1871 scale = INTVAL (XEXP (x, 1));
1872 x = XEXP (x, 0);
1873 }
1874
1875 /* Check for a word extension. */
1876 if (!TARGET_COLDFIRE
1877 && GET_CODE (x) == SIGN_EXTEND
1878 && GET_MODE (XEXP (x, 0)) == HImode)
1879 x = XEXP (x, 0);
1880
1881 if (m68k_legitimate_index_reg_p (x, strict_p))
1882 {
1883 address->scale = scale;
1884 address->index = x;
1885 return true;
1886 }
1887
1888 return false;
1889 }
1890
1891 /* Return true if X is an illegitimate symbolic constant. */
1892
1893 bool
1894 m68k_illegitimate_symbolic_constant_p (rtx x)
1895 {
1896 rtx base, offset;
1897
1898 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
1899 {
1900 split_const (x, &base, &offset);
1901 if (GET_CODE (base) == SYMBOL_REF
1902 && !offset_within_block_p (base, INTVAL (offset)))
1903 return true;
1904 }
1905 return m68k_tls_reference_p (x, false);
1906 }
1907
1908 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
1909
1910 static bool
1911 m68k_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
1912 {
1913 return m68k_illegitimate_symbolic_constant_p (x);
1914 }
1915
1916 /* Return true if X is a legitimate constant address that can reach
1917 bytes in the range [X, X + REACH). STRICT_P says whether we need
1918 strict checking. */
1919
1920 static bool
1921 m68k_legitimate_constant_address_p (rtx x, unsigned int reach, bool strict_p)
1922 {
1923 rtx base, offset;
1924
1925 if (!CONSTANT_ADDRESS_P (x))
1926 return false;
1927
1928 if (flag_pic
1929 && !(strict_p && TARGET_PCREL)
1930 && symbolic_operand (x, VOIDmode))
1931 return false;
1932
1933 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P && reach > 1)
1934 {
1935 split_const (x, &base, &offset);
1936 if (GET_CODE (base) == SYMBOL_REF
1937 && !offset_within_block_p (base, INTVAL (offset) + reach - 1))
1938 return false;
1939 }
1940
1941 return !m68k_tls_reference_p (x, false);
1942 }
1943
1944 /* Return true if X is a LABEL_REF for a jump table. Assume that unplaced
1945 labels will become jump tables. */
1946
1947 static bool
1948 m68k_jump_table_ref_p (rtx x)
1949 {
1950 if (GET_CODE (x) != LABEL_REF)
1951 return false;
1952
1953 rtx_insn *insn = as_a <rtx_insn *> (XEXP (x, 0));
1954 if (!NEXT_INSN (insn) && !PREV_INSN (insn))
1955 return true;
1956
1957 insn = next_nonnote_insn (insn);
1958 return insn && JUMP_TABLE_DATA_P (insn);
1959 }
1960
1961 /* Return true if X is a legitimate address for values of mode MODE.
1962 STRICT_P says whether strict checking is needed. If the address
1963 is valid, describe its components in *ADDRESS. */
1964
1965 static bool
1966 m68k_decompose_address (machine_mode mode, rtx x,
1967 bool strict_p, struct m68k_address *address)
1968 {
1969 unsigned int reach;
1970
1971 memset (address, 0, sizeof (*address));
1972
1973 if (mode == BLKmode)
1974 reach = 1;
1975 else
1976 reach = GET_MODE_SIZE (mode);
1977
1978 /* Check for (An) (mode 2). */
1979 if (m68k_legitimate_base_reg_p (x, strict_p))
1980 {
1981 address->base = x;
1982 return true;
1983 }
1984
1985 /* Check for -(An) and (An)+ (modes 3 and 4). */
1986 if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
1987 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
1988 {
1989 address->code = GET_CODE (x);
1990 address->base = XEXP (x, 0);
1991 return true;
1992 }
1993
1994 /* Check for (d16,An) (mode 5). */
1995 if (GET_CODE (x) == PLUS
1996 && GET_CODE (XEXP (x, 1)) == CONST_INT
1997 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x8000, 0x8000 - reach)
1998 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
1999 {
2000 address->base = XEXP (x, 0);
2001 address->offset = XEXP (x, 1);
2002 return true;
2003 }
2004
2005 /* Check for GOT loads. These are (bd,An,Xn) addresses if
2006 TARGET_68020 && flag_pic == 2, otherwise they are (d16,An)
2007 addresses. */
2008 if (GET_CODE (x) == PLUS
2009 && XEXP (x, 0) == pic_offset_table_rtx)
2010 {
2011 /* As we are processing a PLUS, do not unwrap RELOC32 symbols --
2012 they are invalid in this context. */
2013 if (m68k_unwrap_symbol (XEXP (x, 1), false) != XEXP (x, 1))
2014 {
2015 address->base = XEXP (x, 0);
2016 address->offset = XEXP (x, 1);
2017 return true;
2018 }
2019 }
2020
2021 /* The ColdFire FPU only accepts addressing modes 2-5. */
2022 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
2023 return false;
2024
2025 /* Check for (xxx).w and (xxx).l. Also, in the TARGET_PCREL case,
2026 check for (d16,PC) or (bd,PC,Xn) with a suppressed index register.
2027 All these modes are variations of mode 7. */
2028 if (m68k_legitimate_constant_address_p (x, reach, strict_p))
2029 {
2030 address->offset = x;
2031 return true;
2032 }
2033
2034 /* Check for (d8,PC,Xn), a mode 7 form. This case is needed for
2035 tablejumps.
2036
2037 ??? do_tablejump creates these addresses before placing the target
2038 label, so we have to assume that unplaced labels are jump table
2039 references. It seems unlikely that we would ever generate indexed
2040 accesses to unplaced labels in other cases. */
2041 if (GET_CODE (x) == PLUS
2042 && m68k_jump_table_ref_p (XEXP (x, 1))
2043 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2044 {
2045 address->offset = XEXP (x, 1);
2046 return true;
2047 }
2048
2049 /* Everything hereafter deals with (d8,An,Xn.SIZE*SCALE) or
2050 (bd,An,Xn.SIZE*SCALE) addresses. */
2051
2052 if (TARGET_68020)
2053 {
2054 /* Check for a nonzero base displacement. */
2055 if (GET_CODE (x) == PLUS
2056 && m68k_legitimate_constant_address_p (XEXP (x, 1), reach, strict_p))
2057 {
2058 address->offset = XEXP (x, 1);
2059 x = XEXP (x, 0);
2060 }
2061
2062 /* Check for a suppressed index register. */
2063 if (m68k_legitimate_base_reg_p (x, strict_p))
2064 {
2065 address->base = x;
2066 return true;
2067 }
2068
2069 /* Check for a suppressed base register. Do not allow this case
2070 for non-symbolic offsets as it effectively gives gcc freedom
2071 to treat data registers as base registers, which can generate
2072 worse code. */
2073 if (address->offset
2074 && symbolic_operand (address->offset, VOIDmode)
2075 && m68k_decompose_index (x, strict_p, address))
2076 return true;
2077 }
2078 else
2079 {
2080 /* Check for a nonzero base displacement. */
2081 if (GET_CODE (x) == PLUS
2082 && GET_CODE (XEXP (x, 1)) == CONST_INT
2083 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x80, 0x80 - reach))
2084 {
2085 address->offset = XEXP (x, 1);
2086 x = XEXP (x, 0);
2087 }
2088 }
2089
2090 /* We now expect the sum of a base and an index. */
2091 if (GET_CODE (x) == PLUS)
2092 {
2093 if (m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p)
2094 && m68k_decompose_index (XEXP (x, 1), strict_p, address))
2095 {
2096 address->base = XEXP (x, 0);
2097 return true;
2098 }
2099
2100 if (m68k_legitimate_base_reg_p (XEXP (x, 1), strict_p)
2101 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2102 {
2103 address->base = XEXP (x, 1);
2104 return true;
2105 }
2106 }
2107 return false;
2108 }
2109
2110 /* Return true if X is a legitimate address for values of mode MODE.
2111 STRICT_P says whether strict checking is needed. */
2112
2113 bool
2114 m68k_legitimate_address_p (machine_mode mode, rtx x, bool strict_p)
2115 {
2116 struct m68k_address address;
2117
2118 return m68k_decompose_address (mode, x, strict_p, &address);
2119 }
2120
2121 /* Return true if X is a memory, describing its address in ADDRESS if so.
2122 Apply strict checking if called during or after reload. */
2123
2124 static bool
2125 m68k_legitimate_mem_p (rtx x, struct m68k_address *address)
2126 {
2127 return (MEM_P (x)
2128 && m68k_decompose_address (GET_MODE (x), XEXP (x, 0),
2129 reload_in_progress || reload_completed,
2130 address));
2131 }
2132
2133 /* Implement TARGET_LEGITIMATE_CONSTANT_P. */
2134
2135 bool
2136 m68k_legitimate_constant_p (machine_mode mode, rtx x)
2137 {
2138 return mode != XFmode && !m68k_illegitimate_symbolic_constant_p (x);
2139 }
2140
2141 /* Return true if X matches the 'Q' constraint. It must be a memory
2142 with a base address and no constant offset or index. */
2143
2144 bool
2145 m68k_matches_q_p (rtx x)
2146 {
2147 struct m68k_address address;
2148
2149 return (m68k_legitimate_mem_p (x, &address)
2150 && address.code == UNKNOWN
2151 && address.base
2152 && !address.offset
2153 && !address.index);
2154 }
2155
2156 /* Return true if X matches the 'U' constraint. It must be a base address
2157 with a constant offset and no index. */
2158
2159 bool
2160 m68k_matches_u_p (rtx x)
2161 {
2162 struct m68k_address address;
2163
2164 return (m68k_legitimate_mem_p (x, &address)
2165 && address.code == UNKNOWN
2166 && address.base
2167 && address.offset
2168 && !address.index);
2169 }
2170
2171 /* Return GOT pointer. */
2172
2173 static rtx
2174 m68k_get_gp (void)
2175 {
2176 if (pic_offset_table_rtx == NULL_RTX)
2177 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_REG);
2178
2179 crtl->uses_pic_offset_table = 1;
2180
2181 return pic_offset_table_rtx;
2182 }
2183
2184 /* M68K relocations, used to distinguish GOT and TLS relocations in UNSPEC
2185 wrappers. */
2186 enum m68k_reloc { RELOC_GOT, RELOC_TLSGD, RELOC_TLSLDM, RELOC_TLSLDO,
2187 RELOC_TLSIE, RELOC_TLSLE };
2188
2189 #define TLS_RELOC_P(RELOC) ((RELOC) != RELOC_GOT)
2190
2191 /* Wrap symbol X into unspec representing relocation RELOC.
2192 BASE_REG - register that should be added to the result.
2193 TEMP_REG - if non-null, temporary register. */
2194
2195 static rtx
2196 m68k_wrap_symbol (rtx x, enum m68k_reloc reloc, rtx base_reg, rtx temp_reg)
2197 {
2198 bool use_x_p;
2199
2200 use_x_p = (base_reg == pic_offset_table_rtx) ? TARGET_XGOT : TARGET_XTLS;
2201
2202 if (TARGET_COLDFIRE && use_x_p)
2203 /* When compiling with -mx{got, tls} switch the code will look like this:
2204
2205 move.l <X>@<RELOC>,<TEMP_REG>
2206 add.l <BASE_REG>,<TEMP_REG> */
2207 {
2208 /* Wrap X in UNSPEC_??? to tip m68k_output_addr_const_extra
2209 to put @RELOC after reference. */
2210 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2211 UNSPEC_RELOC32);
2212 x = gen_rtx_CONST (Pmode, x);
2213
2214 if (temp_reg == NULL)
2215 {
2216 gcc_assert (can_create_pseudo_p ());
2217 temp_reg = gen_reg_rtx (Pmode);
2218 }
2219
2220 emit_move_insn (temp_reg, x);
2221 emit_insn (gen_addsi3 (temp_reg, temp_reg, base_reg));
2222 x = temp_reg;
2223 }
2224 else
2225 {
2226 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2227 UNSPEC_RELOC16);
2228 x = gen_rtx_CONST (Pmode, x);
2229
2230 x = gen_rtx_PLUS (Pmode, base_reg, x);
2231 }
2232
2233 return x;
2234 }
2235
2236 /* Helper for m68k_unwrap_symbol.
2237 Also, if unwrapping was successful (that is if (ORIG != <return value>)),
2238 sets *RELOC_PTR to relocation type for the symbol. */
2239
2240 static rtx
2241 m68k_unwrap_symbol_1 (rtx orig, bool unwrap_reloc32_p,
2242 enum m68k_reloc *reloc_ptr)
2243 {
2244 if (GET_CODE (orig) == CONST)
2245 {
2246 rtx x;
2247 enum m68k_reloc dummy;
2248
2249 x = XEXP (orig, 0);
2250
2251 if (reloc_ptr == NULL)
2252 reloc_ptr = &dummy;
2253
2254 /* Handle an addend. */
2255 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2256 && CONST_INT_P (XEXP (x, 1)))
2257 x = XEXP (x, 0);
2258
2259 if (GET_CODE (x) == UNSPEC)
2260 {
2261 switch (XINT (x, 1))
2262 {
2263 case UNSPEC_RELOC16:
2264 orig = XVECEXP (x, 0, 0);
2265 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2266 break;
2267
2268 case UNSPEC_RELOC32:
2269 if (unwrap_reloc32_p)
2270 {
2271 orig = XVECEXP (x, 0, 0);
2272 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2273 }
2274 break;
2275
2276 default:
2277 break;
2278 }
2279 }
2280 }
2281
2282 return orig;
2283 }
2284
2285 /* Unwrap symbol from UNSPEC_RELOC16 and, if unwrap_reloc32_p,
2286 UNSPEC_RELOC32 wrappers. */
2287
2288 rtx
2289 m68k_unwrap_symbol (rtx orig, bool unwrap_reloc32_p)
2290 {
2291 return m68k_unwrap_symbol_1 (orig, unwrap_reloc32_p, NULL);
2292 }
2293
2294 /* Prescan insn before outputing assembler for it. */
2295
2296 void
2297 m68k_final_prescan_insn (rtx_insn *insn ATTRIBUTE_UNUSED,
2298 rtx *operands, int n_operands)
2299 {
2300 int i;
2301
2302 /* Combine and, possibly, other optimizations may do good job
2303 converting
2304 (const (unspec [(symbol)]))
2305 into
2306 (const (plus (unspec [(symbol)])
2307 (const_int N))).
2308 The problem with this is emitting @TLS or @GOT decorations.
2309 The decoration is emitted when processing (unspec), so the
2310 result would be "#symbol@TLSLE+N" instead of "#symbol+N@TLSLE".
2311
2312 It seems that the easiest solution to this is to convert such
2313 operands to
2314 (const (unspec [(plus (symbol)
2315 (const_int N))])).
2316 Note, that the top level of operand remains intact, so we don't have
2317 to patch up anything outside of the operand. */
2318
2319 subrtx_var_iterator::array_type array;
2320 for (i = 0; i < n_operands; ++i)
2321 {
2322 rtx op;
2323
2324 op = operands[i];
2325
2326 FOR_EACH_SUBRTX_VAR (iter, array, op, ALL)
2327 {
2328 rtx x = *iter;
2329 if (m68k_unwrap_symbol (x, true) != x)
2330 {
2331 rtx plus;
2332
2333 gcc_assert (GET_CODE (x) == CONST);
2334 plus = XEXP (x, 0);
2335
2336 if (GET_CODE (plus) == PLUS || GET_CODE (plus) == MINUS)
2337 {
2338 rtx unspec;
2339 rtx addend;
2340
2341 unspec = XEXP (plus, 0);
2342 gcc_assert (GET_CODE (unspec) == UNSPEC);
2343 addend = XEXP (plus, 1);
2344 gcc_assert (CONST_INT_P (addend));
2345
2346 /* We now have all the pieces, rearrange them. */
2347
2348 /* Move symbol to plus. */
2349 XEXP (plus, 0) = XVECEXP (unspec, 0, 0);
2350
2351 /* Move plus inside unspec. */
2352 XVECEXP (unspec, 0, 0) = plus;
2353
2354 /* Move unspec to top level of const. */
2355 XEXP (x, 0) = unspec;
2356 }
2357 iter.skip_subrtxes ();
2358 }
2359 }
2360 }
2361 }
2362
2363 /* Move X to a register and add REG_EQUAL note pointing to ORIG.
2364 If REG is non-null, use it; generate new pseudo otherwise. */
2365
2366 static rtx
2367 m68k_move_to_reg (rtx x, rtx orig, rtx reg)
2368 {
2369 rtx_insn *insn;
2370
2371 if (reg == NULL_RTX)
2372 {
2373 gcc_assert (can_create_pseudo_p ());
2374 reg = gen_reg_rtx (Pmode);
2375 }
2376
2377 insn = emit_move_insn (reg, x);
2378 /* Put a REG_EQUAL note on this insn, so that it can be optimized
2379 by loop. */
2380 set_unique_reg_note (insn, REG_EQUAL, orig);
2381
2382 return reg;
2383 }
2384
2385 /* Does the same as m68k_wrap_symbol, but returns a memory reference to
2386 GOT slot. */
2387
2388 static rtx
2389 m68k_wrap_symbol_into_got_ref (rtx x, enum m68k_reloc reloc, rtx temp_reg)
2390 {
2391 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), temp_reg);
2392
2393 x = gen_rtx_MEM (Pmode, x);
2394 MEM_READONLY_P (x) = 1;
2395
2396 return x;
2397 }
2398
2399 /* Legitimize PIC addresses. If the address is already
2400 position-independent, we return ORIG. Newly generated
2401 position-independent addresses go to REG. If we need more
2402 than one register, we lose.
2403
2404 An address is legitimized by making an indirect reference
2405 through the Global Offset Table with the name of the symbol
2406 used as an offset.
2407
2408 The assembler and linker are responsible for placing the
2409 address of the symbol in the GOT. The function prologue
2410 is responsible for initializing a5 to the starting address
2411 of the GOT.
2412
2413 The assembler is also responsible for translating a symbol name
2414 into a constant displacement from the start of the GOT.
2415
2416 A quick example may make things a little clearer:
2417
2418 When not generating PIC code to store the value 12345 into _foo
2419 we would generate the following code:
2420
2421 movel #12345, _foo
2422
2423 When generating PIC two transformations are made. First, the compiler
2424 loads the address of foo into a register. So the first transformation makes:
2425
2426 lea _foo, a0
2427 movel #12345, a0@
2428
2429 The code in movsi will intercept the lea instruction and call this
2430 routine which will transform the instructions into:
2431
2432 movel a5@(_foo:w), a0
2433 movel #12345, a0@
2434
2435
2436 That (in a nutshell) is how *all* symbol and label references are
2437 handled. */
2438
2439 rtx
2440 legitimize_pic_address (rtx orig, machine_mode mode ATTRIBUTE_UNUSED,
2441 rtx reg)
2442 {
2443 rtx pic_ref = orig;
2444
2445 /* First handle a simple SYMBOL_REF or LABEL_REF */
2446 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
2447 {
2448 gcc_assert (reg);
2449
2450 pic_ref = m68k_wrap_symbol_into_got_ref (orig, RELOC_GOT, reg);
2451 pic_ref = m68k_move_to_reg (pic_ref, orig, reg);
2452 }
2453 else if (GET_CODE (orig) == CONST)
2454 {
2455 rtx base;
2456
2457 /* Make sure this has not already been legitimized. */
2458 if (m68k_unwrap_symbol (orig, true) != orig)
2459 return orig;
2460
2461 gcc_assert (reg);
2462
2463 /* legitimize both operands of the PLUS */
2464 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
2465
2466 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
2467 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
2468 base == reg ? 0 : reg);
2469
2470 if (GET_CODE (orig) == CONST_INT)
2471 pic_ref = plus_constant (Pmode, base, INTVAL (orig));
2472 else
2473 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
2474 }
2475
2476 return pic_ref;
2477 }
2478
2479 /* The __tls_get_addr symbol. */
2480 static GTY(()) rtx m68k_tls_get_addr;
2481
2482 /* Return SYMBOL_REF for __tls_get_addr. */
2483
2484 static rtx
2485 m68k_get_tls_get_addr (void)
2486 {
2487 if (m68k_tls_get_addr == NULL_RTX)
2488 m68k_tls_get_addr = init_one_libfunc ("__tls_get_addr");
2489
2490 return m68k_tls_get_addr;
2491 }
2492
2493 /* Return libcall result in A0 instead of usual D0. */
2494 static bool m68k_libcall_value_in_a0_p = false;
2495
2496 /* Emit instruction sequence that calls __tls_get_addr. X is
2497 the TLS symbol we are referencing and RELOC is the symbol type to use
2498 (either TLSGD or TLSLDM). EQV is the REG_EQUAL note for the sequence
2499 emitted. A pseudo register with result of __tls_get_addr call is
2500 returned. */
2501
2502 static rtx
2503 m68k_call_tls_get_addr (rtx x, rtx eqv, enum m68k_reloc reloc)
2504 {
2505 rtx a0;
2506 rtx_insn *insns;
2507 rtx dest;
2508
2509 /* Emit the call sequence. */
2510 start_sequence ();
2511
2512 /* FIXME: Unfortunately, emit_library_call_value does not
2513 consider (plus (%a5) (const (unspec))) to be a good enough
2514 operand for push, so it forces it into a register. The bad
2515 thing about this is that combiner, due to copy propagation and other
2516 optimizations, sometimes can not later fix this. As a consequence,
2517 additional register may be allocated resulting in a spill.
2518 For reference, see args processing loops in
2519 calls.c:emit_library_call_value_1.
2520 For testcase, see gcc.target/m68k/tls-{gd, ld}.c */
2521 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), NULL_RTX);
2522
2523 /* __tls_get_addr() is not a libcall, but emitting a libcall_value
2524 is the simpliest way of generating a call. The difference between
2525 __tls_get_addr() and libcall is that the result is returned in D0
2526 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2527 which temporarily switches returning the result to A0. */
2528
2529 m68k_libcall_value_in_a0_p = true;
2530 a0 = emit_library_call_value (m68k_get_tls_get_addr (), NULL_RTX, LCT_PURE,
2531 Pmode, 1, x, Pmode);
2532 m68k_libcall_value_in_a0_p = false;
2533
2534 insns = get_insns ();
2535 end_sequence ();
2536
2537 gcc_assert (can_create_pseudo_p ());
2538 dest = gen_reg_rtx (Pmode);
2539 emit_libcall_block (insns, dest, a0, eqv);
2540
2541 return dest;
2542 }
2543
2544 /* The __tls_get_addr symbol. */
2545 static GTY(()) rtx m68k_read_tp;
2546
2547 /* Return SYMBOL_REF for __m68k_read_tp. */
2548
2549 static rtx
2550 m68k_get_m68k_read_tp (void)
2551 {
2552 if (m68k_read_tp == NULL_RTX)
2553 m68k_read_tp = init_one_libfunc ("__m68k_read_tp");
2554
2555 return m68k_read_tp;
2556 }
2557
2558 /* Emit instruction sequence that calls __m68k_read_tp.
2559 A pseudo register with result of __m68k_read_tp call is returned. */
2560
2561 static rtx
2562 m68k_call_m68k_read_tp (void)
2563 {
2564 rtx a0;
2565 rtx eqv;
2566 rtx_insn *insns;
2567 rtx dest;
2568
2569 start_sequence ();
2570
2571 /* __m68k_read_tp() is not a libcall, but emitting a libcall_value
2572 is the simpliest way of generating a call. The difference between
2573 __m68k_read_tp() and libcall is that the result is returned in D0
2574 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2575 which temporarily switches returning the result to A0. */
2576
2577 /* Emit the call sequence. */
2578 m68k_libcall_value_in_a0_p = true;
2579 a0 = emit_library_call_value (m68k_get_m68k_read_tp (), NULL_RTX, LCT_PURE,
2580 Pmode, 0);
2581 m68k_libcall_value_in_a0_p = false;
2582 insns = get_insns ();
2583 end_sequence ();
2584
2585 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2586 share the m68k_read_tp result with other IE/LE model accesses. */
2587 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const1_rtx), UNSPEC_RELOC32);
2588
2589 gcc_assert (can_create_pseudo_p ());
2590 dest = gen_reg_rtx (Pmode);
2591 emit_libcall_block (insns, dest, a0, eqv);
2592
2593 return dest;
2594 }
2595
2596 /* Return a legitimized address for accessing TLS SYMBOL_REF X.
2597 For explanations on instructions sequences see TLS/NPTL ABI for m68k and
2598 ColdFire. */
2599
2600 rtx
2601 m68k_legitimize_tls_address (rtx orig)
2602 {
2603 switch (SYMBOL_REF_TLS_MODEL (orig))
2604 {
2605 case TLS_MODEL_GLOBAL_DYNAMIC:
2606 orig = m68k_call_tls_get_addr (orig, orig, RELOC_TLSGD);
2607 break;
2608
2609 case TLS_MODEL_LOCAL_DYNAMIC:
2610 {
2611 rtx eqv;
2612 rtx a0;
2613 rtx x;
2614
2615 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2616 share the LDM result with other LD model accesses. */
2617 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
2618 UNSPEC_RELOC32);
2619
2620 a0 = m68k_call_tls_get_addr (orig, eqv, RELOC_TLSLDM);
2621
2622 x = m68k_wrap_symbol (orig, RELOC_TLSLDO, a0, NULL_RTX);
2623
2624 if (can_create_pseudo_p ())
2625 x = m68k_move_to_reg (x, orig, NULL_RTX);
2626
2627 orig = x;
2628 break;
2629 }
2630
2631 case TLS_MODEL_INITIAL_EXEC:
2632 {
2633 rtx a0;
2634 rtx x;
2635
2636 a0 = m68k_call_m68k_read_tp ();
2637
2638 x = m68k_wrap_symbol_into_got_ref (orig, RELOC_TLSIE, NULL_RTX);
2639 x = gen_rtx_PLUS (Pmode, x, a0);
2640
2641 if (can_create_pseudo_p ())
2642 x = m68k_move_to_reg (x, orig, NULL_RTX);
2643
2644 orig = x;
2645 break;
2646 }
2647
2648 case TLS_MODEL_LOCAL_EXEC:
2649 {
2650 rtx a0;
2651 rtx x;
2652
2653 a0 = m68k_call_m68k_read_tp ();
2654
2655 x = m68k_wrap_symbol (orig, RELOC_TLSLE, a0, NULL_RTX);
2656
2657 if (can_create_pseudo_p ())
2658 x = m68k_move_to_reg (x, orig, NULL_RTX);
2659
2660 orig = x;
2661 break;
2662 }
2663
2664 default:
2665 gcc_unreachable ();
2666 }
2667
2668 return orig;
2669 }
2670
2671 /* Return true if X is a TLS symbol. */
2672
2673 static bool
2674 m68k_tls_symbol_p (rtx x)
2675 {
2676 if (!TARGET_HAVE_TLS)
2677 return false;
2678
2679 if (GET_CODE (x) != SYMBOL_REF)
2680 return false;
2681
2682 return SYMBOL_REF_TLS_MODEL (x) != 0;
2683 }
2684
2685 /* If !LEGITIMATE_P, return true if X is a TLS symbol reference,
2686 though illegitimate one.
2687 If LEGITIMATE_P, return true if X is a legitimate TLS symbol reference. */
2688
2689 bool
2690 m68k_tls_reference_p (rtx x, bool legitimate_p)
2691 {
2692 if (!TARGET_HAVE_TLS)
2693 return false;
2694
2695 if (!legitimate_p)
2696 {
2697 subrtx_var_iterator::array_type array;
2698 FOR_EACH_SUBRTX_VAR (iter, array, x, ALL)
2699 {
2700 rtx x = *iter;
2701
2702 /* Note: this is not the same as m68k_tls_symbol_p. */
2703 if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0)
2704 return true;
2705
2706 /* Don't recurse into legitimate TLS references. */
2707 if (m68k_tls_reference_p (x, true))
2708 iter.skip_subrtxes ();
2709 }
2710 return false;
2711 }
2712 else
2713 {
2714 enum m68k_reloc reloc = RELOC_GOT;
2715
2716 return (m68k_unwrap_symbol_1 (x, true, &reloc) != x
2717 && TLS_RELOC_P (reloc));
2718 }
2719 }
2720
2721 \f
2722
2723 #define USE_MOVQ(i) ((unsigned) ((i) + 128) <= 255)
2724
2725 /* Return the type of move that should be used for integer I. */
2726
2727 M68K_CONST_METHOD
2728 m68k_const_method (HOST_WIDE_INT i)
2729 {
2730 unsigned u;
2731
2732 if (USE_MOVQ (i))
2733 return MOVQ;
2734
2735 /* The ColdFire doesn't have byte or word operations. */
2736 /* FIXME: This may not be useful for the m68060 either. */
2737 if (!TARGET_COLDFIRE)
2738 {
2739 /* if -256 < N < 256 but N is not in range for a moveq
2740 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
2741 if (USE_MOVQ (i ^ 0xff))
2742 return NOTB;
2743 /* Likewise, try with not.w */
2744 if (USE_MOVQ (i ^ 0xffff))
2745 return NOTW;
2746 /* This is the only value where neg.w is useful */
2747 if (i == -65408)
2748 return NEGW;
2749 }
2750
2751 /* Try also with swap. */
2752 u = i;
2753 if (USE_MOVQ ((u >> 16) | (u << 16)))
2754 return SWAP;
2755
2756 if (TARGET_ISAB)
2757 {
2758 /* Try using MVZ/MVS with an immediate value to load constants. */
2759 if (i >= 0 && i <= 65535)
2760 return MVZ;
2761 if (i >= -32768 && i <= 32767)
2762 return MVS;
2763 }
2764
2765 /* Otherwise, use move.l */
2766 return MOVL;
2767 }
2768
2769 /* Return the cost of moving constant I into a data register. */
2770
2771 static int
2772 const_int_cost (HOST_WIDE_INT i)
2773 {
2774 switch (m68k_const_method (i))
2775 {
2776 case MOVQ:
2777 /* Constants between -128 and 127 are cheap due to moveq. */
2778 return 0;
2779 case MVZ:
2780 case MVS:
2781 case NOTB:
2782 case NOTW:
2783 case NEGW:
2784 case SWAP:
2785 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap. */
2786 return 1;
2787 case MOVL:
2788 return 2;
2789 default:
2790 gcc_unreachable ();
2791 }
2792 }
2793
2794 static bool
2795 m68k_rtx_costs (rtx x, machine_mode mode, int outer_code,
2796 int opno ATTRIBUTE_UNUSED,
2797 int *total, bool speed ATTRIBUTE_UNUSED)
2798 {
2799 int code = GET_CODE (x);
2800
2801 switch (code)
2802 {
2803 case CONST_INT:
2804 /* Constant zero is super cheap due to clr instruction. */
2805 if (x == const0_rtx)
2806 *total = 0;
2807 else
2808 *total = const_int_cost (INTVAL (x));
2809 return true;
2810
2811 case CONST:
2812 case LABEL_REF:
2813 case SYMBOL_REF:
2814 *total = 3;
2815 return true;
2816
2817 case CONST_DOUBLE:
2818 /* Make 0.0 cheaper than other floating constants to
2819 encourage creating tstsf and tstdf insns. */
2820 if (outer_code == COMPARE
2821 && (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
2822 *total = 4;
2823 else
2824 *total = 5;
2825 return true;
2826
2827 /* These are vaguely right for a 68020. */
2828 /* The costs for long multiply have been adjusted to work properly
2829 in synth_mult on the 68020, relative to an average of the time
2830 for add and the time for shift, taking away a little more because
2831 sometimes move insns are needed. */
2832 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS
2833 terms. */
2834 #define MULL_COST \
2835 (TUNE_68060 ? 2 \
2836 : TUNE_68040 ? 5 \
2837 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2838 : (TUNE_CFV2 && TUNE_MAC) ? 4 \
2839 : TUNE_CFV2 ? 8 \
2840 : TARGET_COLDFIRE ? 3 : 13)
2841
2842 #define MULW_COST \
2843 (TUNE_68060 ? 2 \
2844 : TUNE_68040 ? 3 \
2845 : TUNE_68000_10 ? 5 \
2846 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2847 : (TUNE_CFV2 && TUNE_MAC) ? 2 \
2848 : TUNE_CFV2 ? 8 \
2849 : TARGET_COLDFIRE ? 2 : 8)
2850
2851 #define DIVW_COST \
2852 (TARGET_CF_HWDIV ? 11 \
2853 : TUNE_68000_10 || TARGET_COLDFIRE ? 12 : 27)
2854
2855 case PLUS:
2856 /* An lea costs about three times as much as a simple add. */
2857 if (mode == SImode
2858 && GET_CODE (XEXP (x, 1)) == REG
2859 && GET_CODE (XEXP (x, 0)) == MULT
2860 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
2861 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2862 && (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
2863 || INTVAL (XEXP (XEXP (x, 0), 1)) == 4
2864 || INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
2865 {
2866 /* lea an@(dx:l:i),am */
2867 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 2 : 3);
2868 return true;
2869 }
2870 return false;
2871
2872 case ASHIFT:
2873 case ASHIFTRT:
2874 case LSHIFTRT:
2875 if (TUNE_68060)
2876 {
2877 *total = COSTS_N_INSNS(1);
2878 return true;
2879 }
2880 if (TUNE_68000_10)
2881 {
2882 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
2883 {
2884 if (INTVAL (XEXP (x, 1)) < 16)
2885 *total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
2886 else
2887 /* We're using clrw + swap for these cases. */
2888 *total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
2889 }
2890 else
2891 *total = COSTS_N_INSNS (10); /* Worst case. */
2892 return true;
2893 }
2894 /* A shift by a big integer takes an extra instruction. */
2895 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2896 && (INTVAL (XEXP (x, 1)) == 16))
2897 {
2898 *total = COSTS_N_INSNS (2); /* clrw;swap */
2899 return true;
2900 }
2901 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2902 && !(INTVAL (XEXP (x, 1)) > 0
2903 && INTVAL (XEXP (x, 1)) <= 8))
2904 {
2905 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 1 : 3); /* lsr #i,dn */
2906 return true;
2907 }
2908 return false;
2909
2910 case MULT:
2911 if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
2912 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
2913 && mode == SImode)
2914 *total = COSTS_N_INSNS (MULW_COST);
2915 else if (mode == QImode || mode == HImode)
2916 *total = COSTS_N_INSNS (MULW_COST);
2917 else
2918 *total = COSTS_N_INSNS (MULL_COST);
2919 return true;
2920
2921 case DIV:
2922 case UDIV:
2923 case MOD:
2924 case UMOD:
2925 if (mode == QImode || mode == HImode)
2926 *total = COSTS_N_INSNS (DIVW_COST); /* div.w */
2927 else if (TARGET_CF_HWDIV)
2928 *total = COSTS_N_INSNS (18);
2929 else
2930 *total = COSTS_N_INSNS (43); /* div.l */
2931 return true;
2932
2933 case ZERO_EXTRACT:
2934 if (outer_code == COMPARE)
2935 *total = 0;
2936 return false;
2937
2938 default:
2939 return false;
2940 }
2941 }
2942
2943 /* Return an instruction to move CONST_INT OPERANDS[1] into data register
2944 OPERANDS[0]. */
2945
2946 static const char *
2947 output_move_const_into_data_reg (rtx *operands)
2948 {
2949 HOST_WIDE_INT i;
2950
2951 i = INTVAL (operands[1]);
2952 switch (m68k_const_method (i))
2953 {
2954 case MVZ:
2955 return "mvzw %1,%0";
2956 case MVS:
2957 return "mvsw %1,%0";
2958 case MOVQ:
2959 return "moveq %1,%0";
2960 case NOTB:
2961 CC_STATUS_INIT;
2962 operands[1] = GEN_INT (i ^ 0xff);
2963 return "moveq %1,%0\n\tnot%.b %0";
2964 case NOTW:
2965 CC_STATUS_INIT;
2966 operands[1] = GEN_INT (i ^ 0xffff);
2967 return "moveq %1,%0\n\tnot%.w %0";
2968 case NEGW:
2969 CC_STATUS_INIT;
2970 return "moveq #-128,%0\n\tneg%.w %0";
2971 case SWAP:
2972 {
2973 unsigned u = i;
2974
2975 operands[1] = GEN_INT ((u << 16) | (u >> 16));
2976 return "moveq %1,%0\n\tswap %0";
2977 }
2978 case MOVL:
2979 return "move%.l %1,%0";
2980 default:
2981 gcc_unreachable ();
2982 }
2983 }
2984
2985 /* Return true if I can be handled by ISA B's mov3q instruction. */
2986
2987 bool
2988 valid_mov3q_const (HOST_WIDE_INT i)
2989 {
2990 return TARGET_ISAB && (i == -1 || IN_RANGE (i, 1, 7));
2991 }
2992
2993 /* Return an instruction to move CONST_INT OPERANDS[1] into OPERANDS[0].
2994 I is the value of OPERANDS[1]. */
2995
2996 static const char *
2997 output_move_simode_const (rtx *operands)
2998 {
2999 rtx dest;
3000 HOST_WIDE_INT src;
3001
3002 dest = operands[0];
3003 src = INTVAL (operands[1]);
3004 if (src == 0
3005 && (DATA_REG_P (dest) || MEM_P (dest))
3006 /* clr insns on 68000 read before writing. */
3007 && ((TARGET_68010 || TARGET_COLDFIRE)
3008 || !(MEM_P (dest) && MEM_VOLATILE_P (dest))))
3009 return "clr%.l %0";
3010 else if (GET_MODE (dest) == SImode && valid_mov3q_const (src))
3011 return "mov3q%.l %1,%0";
3012 else if (src == 0 && ADDRESS_REG_P (dest))
3013 return "sub%.l %0,%0";
3014 else if (DATA_REG_P (dest))
3015 return output_move_const_into_data_reg (operands);
3016 else if (ADDRESS_REG_P (dest) && IN_RANGE (src, -0x8000, 0x7fff))
3017 {
3018 if (valid_mov3q_const (src))
3019 return "mov3q%.l %1,%0";
3020 return "move%.w %1,%0";
3021 }
3022 else if (MEM_P (dest)
3023 && GET_CODE (XEXP (dest, 0)) == PRE_DEC
3024 && REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
3025 && IN_RANGE (src, -0x8000, 0x7fff))
3026 {
3027 if (valid_mov3q_const (src))
3028 return "mov3q%.l %1,%-";
3029 return "pea %a1";
3030 }
3031 return "move%.l %1,%0";
3032 }
3033
3034 const char *
3035 output_move_simode (rtx *operands)
3036 {
3037 if (GET_CODE (operands[1]) == CONST_INT)
3038 return output_move_simode_const (operands);
3039 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3040 || GET_CODE (operands[1]) == CONST)
3041 && push_operand (operands[0], SImode))
3042 return "pea %a1";
3043 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3044 || GET_CODE (operands[1]) == CONST)
3045 && ADDRESS_REG_P (operands[0]))
3046 return "lea %a1,%0";
3047 return "move%.l %1,%0";
3048 }
3049
3050 const char *
3051 output_move_himode (rtx *operands)
3052 {
3053 if (GET_CODE (operands[1]) == CONST_INT)
3054 {
3055 if (operands[1] == const0_rtx
3056 && (DATA_REG_P (operands[0])
3057 || GET_CODE (operands[0]) == MEM)
3058 /* clr insns on 68000 read before writing. */
3059 && ((TARGET_68010 || TARGET_COLDFIRE)
3060 || !(GET_CODE (operands[0]) == MEM
3061 && MEM_VOLATILE_P (operands[0]))))
3062 return "clr%.w %0";
3063 else if (operands[1] == const0_rtx
3064 && ADDRESS_REG_P (operands[0]))
3065 return "sub%.l %0,%0";
3066 else if (DATA_REG_P (operands[0])
3067 && INTVAL (operands[1]) < 128
3068 && INTVAL (operands[1]) >= -128)
3069 return "moveq %1,%0";
3070 else if (INTVAL (operands[1]) < 0x8000
3071 && INTVAL (operands[1]) >= -0x8000)
3072 return "move%.w %1,%0";
3073 }
3074 else if (CONSTANT_P (operands[1]))
3075 return "move%.l %1,%0";
3076 return "move%.w %1,%0";
3077 }
3078
3079 const char *
3080 output_move_qimode (rtx *operands)
3081 {
3082 /* 68k family always modifies the stack pointer by at least 2, even for
3083 byte pushes. The 5200 (ColdFire) does not do this. */
3084
3085 /* This case is generated by pushqi1 pattern now. */
3086 gcc_assert (!(GET_CODE (operands[0]) == MEM
3087 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
3088 && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
3089 && ! ADDRESS_REG_P (operands[1])
3090 && ! TARGET_COLDFIRE));
3091
3092 /* clr and st insns on 68000 read before writing. */
3093 if (!ADDRESS_REG_P (operands[0])
3094 && ((TARGET_68010 || TARGET_COLDFIRE)
3095 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3096 {
3097 if (operands[1] == const0_rtx)
3098 return "clr%.b %0";
3099 if ((!TARGET_COLDFIRE || DATA_REG_P (operands[0]))
3100 && GET_CODE (operands[1]) == CONST_INT
3101 && (INTVAL (operands[1]) & 255) == 255)
3102 {
3103 CC_STATUS_INIT;
3104 return "st %0";
3105 }
3106 }
3107 if (GET_CODE (operands[1]) == CONST_INT
3108 && DATA_REG_P (operands[0])
3109 && INTVAL (operands[1]) < 128
3110 && INTVAL (operands[1]) >= -128)
3111 return "moveq %1,%0";
3112 if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
3113 return "sub%.l %0,%0";
3114 if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
3115 return "move%.l %1,%0";
3116 /* 68k family (including the 5200 ColdFire) does not support byte moves to
3117 from address registers. */
3118 if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
3119 return "move%.w %1,%0";
3120 return "move%.b %1,%0";
3121 }
3122
3123 const char *
3124 output_move_stricthi (rtx *operands)
3125 {
3126 if (operands[1] == const0_rtx
3127 /* clr insns on 68000 read before writing. */
3128 && ((TARGET_68010 || TARGET_COLDFIRE)
3129 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3130 return "clr%.w %0";
3131 return "move%.w %1,%0";
3132 }
3133
3134 const char *
3135 output_move_strictqi (rtx *operands)
3136 {
3137 if (operands[1] == const0_rtx
3138 /* clr insns on 68000 read before writing. */
3139 && ((TARGET_68010 || TARGET_COLDFIRE)
3140 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3141 return "clr%.b %0";
3142 return "move%.b %1,%0";
3143 }
3144
3145 /* Return the best assembler insn template
3146 for moving operands[1] into operands[0] as a fullword. */
3147
3148 static const char *
3149 singlemove_string (rtx *operands)
3150 {
3151 if (GET_CODE (operands[1]) == CONST_INT)
3152 return output_move_simode_const (operands);
3153 return "move%.l %1,%0";
3154 }
3155
3156
3157 /* Output assembler or rtl code to perform a doubleword move insn
3158 with operands OPERANDS.
3159 Pointers to 3 helper functions should be specified:
3160 HANDLE_REG_ADJUST to adjust a register by a small value,
3161 HANDLE_COMPADR to compute an address and
3162 HANDLE_MOVSI to move 4 bytes. */
3163
3164 static void
3165 handle_move_double (rtx operands[2],
3166 void (*handle_reg_adjust) (rtx, int),
3167 void (*handle_compadr) (rtx [2]),
3168 void (*handle_movsi) (rtx [2]))
3169 {
3170 enum
3171 {
3172 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
3173 } optype0, optype1;
3174 rtx latehalf[2];
3175 rtx middlehalf[2];
3176 rtx xops[2];
3177 rtx addreg0 = 0, addreg1 = 0;
3178 int dest_overlapped_low = 0;
3179 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
3180
3181 middlehalf[0] = 0;
3182 middlehalf[1] = 0;
3183
3184 /* First classify both operands. */
3185
3186 if (REG_P (operands[0]))
3187 optype0 = REGOP;
3188 else if (offsettable_memref_p (operands[0]))
3189 optype0 = OFFSOP;
3190 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
3191 optype0 = POPOP;
3192 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
3193 optype0 = PUSHOP;
3194 else if (GET_CODE (operands[0]) == MEM)
3195 optype0 = MEMOP;
3196 else
3197 optype0 = RNDOP;
3198
3199 if (REG_P (operands[1]))
3200 optype1 = REGOP;
3201 else if (CONSTANT_P (operands[1]))
3202 optype1 = CNSTOP;
3203 else if (offsettable_memref_p (operands[1]))
3204 optype1 = OFFSOP;
3205 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
3206 optype1 = POPOP;
3207 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
3208 optype1 = PUSHOP;
3209 else if (GET_CODE (operands[1]) == MEM)
3210 optype1 = MEMOP;
3211 else
3212 optype1 = RNDOP;
3213
3214 /* Check for the cases that the operand constraints are not supposed
3215 to allow to happen. Generating code for these cases is
3216 painful. */
3217 gcc_assert (optype0 != RNDOP && optype1 != RNDOP);
3218
3219 /* If one operand is decrementing and one is incrementing
3220 decrement the former register explicitly
3221 and change that operand into ordinary indexing. */
3222
3223 if (optype0 == PUSHOP && optype1 == POPOP)
3224 {
3225 operands[0] = XEXP (XEXP (operands[0], 0), 0);
3226
3227 handle_reg_adjust (operands[0], -size);
3228
3229 if (GET_MODE (operands[1]) == XFmode)
3230 operands[0] = gen_rtx_MEM (XFmode, operands[0]);
3231 else if (GET_MODE (operands[0]) == DFmode)
3232 operands[0] = gen_rtx_MEM (DFmode, operands[0]);
3233 else
3234 operands[0] = gen_rtx_MEM (DImode, operands[0]);
3235 optype0 = OFFSOP;
3236 }
3237 if (optype0 == POPOP && optype1 == PUSHOP)
3238 {
3239 operands[1] = XEXP (XEXP (operands[1], 0), 0);
3240
3241 handle_reg_adjust (operands[1], -size);
3242
3243 if (GET_MODE (operands[1]) == XFmode)
3244 operands[1] = gen_rtx_MEM (XFmode, operands[1]);
3245 else if (GET_MODE (operands[1]) == DFmode)
3246 operands[1] = gen_rtx_MEM (DFmode, operands[1]);
3247 else
3248 operands[1] = gen_rtx_MEM (DImode, operands[1]);
3249 optype1 = OFFSOP;
3250 }
3251
3252 /* If an operand is an unoffsettable memory ref, find a register
3253 we can increment temporarily to make it refer to the second word. */
3254
3255 if (optype0 == MEMOP)
3256 addreg0 = find_addr_reg (XEXP (operands[0], 0));
3257
3258 if (optype1 == MEMOP)
3259 addreg1 = find_addr_reg (XEXP (operands[1], 0));
3260
3261 /* Ok, we can do one word at a time.
3262 Normally we do the low-numbered word first,
3263 but if either operand is autodecrementing then we
3264 do the high-numbered word first.
3265
3266 In either case, set up in LATEHALF the operands to use
3267 for the high-numbered word and in some cases alter the
3268 operands in OPERANDS to be suitable for the low-numbered word. */
3269
3270 if (size == 12)
3271 {
3272 if (optype0 == REGOP)
3273 {
3274 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
3275 middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3276 }
3277 else if (optype0 == OFFSOP)
3278 {
3279 middlehalf[0] = adjust_address (operands[0], SImode, 4);
3280 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3281 }
3282 else
3283 {
3284 middlehalf[0] = adjust_address (operands[0], SImode, 0);
3285 latehalf[0] = adjust_address (operands[0], SImode, 0);
3286 }
3287
3288 if (optype1 == REGOP)
3289 {
3290 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
3291 middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3292 }
3293 else if (optype1 == OFFSOP)
3294 {
3295 middlehalf[1] = adjust_address (operands[1], SImode, 4);
3296 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3297 }
3298 else if (optype1 == CNSTOP)
3299 {
3300 if (GET_CODE (operands[1]) == CONST_DOUBLE)
3301 {
3302 long l[3];
3303
3304 REAL_VALUE_TO_TARGET_LONG_DOUBLE
3305 (*CONST_DOUBLE_REAL_VALUE (operands[1]), l);
3306 operands[1] = GEN_INT (l[0]);
3307 middlehalf[1] = GEN_INT (l[1]);
3308 latehalf[1] = GEN_INT (l[2]);
3309 }
3310 else
3311 {
3312 /* No non-CONST_DOUBLE constant should ever appear
3313 here. */
3314 gcc_assert (!CONSTANT_P (operands[1]));
3315 }
3316 }
3317 else
3318 {
3319 middlehalf[1] = adjust_address (operands[1], SImode, 0);
3320 latehalf[1] = adjust_address (operands[1], SImode, 0);
3321 }
3322 }
3323 else
3324 /* size is not 12: */
3325 {
3326 if (optype0 == REGOP)
3327 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3328 else if (optype0 == OFFSOP)
3329 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3330 else
3331 latehalf[0] = adjust_address (operands[0], SImode, 0);
3332
3333 if (optype1 == REGOP)
3334 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3335 else if (optype1 == OFFSOP)
3336 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3337 else if (optype1 == CNSTOP)
3338 split_double (operands[1], &operands[1], &latehalf[1]);
3339 else
3340 latehalf[1] = adjust_address (operands[1], SImode, 0);
3341 }
3342
3343 /* If insn is effectively movd N(REG),-(REG) then we will do the high
3344 word first. We should use the adjusted operand 1 (which is N+4(REG))
3345 for the low word as well, to compensate for the first decrement of
3346 REG. */
3347 if (optype0 == PUSHOP
3348 && reg_overlap_mentioned_p (XEXP (XEXP (operands[0], 0), 0), operands[1]))
3349 operands[1] = middlehalf[1] = latehalf[1];
3350
3351 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
3352 if the upper part of reg N does not appear in the MEM, arrange to
3353 emit the move late-half first. Otherwise, compute the MEM address
3354 into the upper part of N and use that as a pointer to the memory
3355 operand. */
3356 if (optype0 == REGOP
3357 && (optype1 == OFFSOP || optype1 == MEMOP))
3358 {
3359 rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
3360
3361 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3362 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3363 {
3364 /* If both halves of dest are used in the src memory address,
3365 compute the address into latehalf of dest.
3366 Note that this can't happen if the dest is two data regs. */
3367 compadr:
3368 xops[0] = latehalf[0];
3369 xops[1] = XEXP (operands[1], 0);
3370
3371 handle_compadr (xops);
3372 if (GET_MODE (operands[1]) == XFmode)
3373 {
3374 operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
3375 middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
3376 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3377 }
3378 else
3379 {
3380 operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
3381 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3382 }
3383 }
3384 else if (size == 12
3385 && reg_overlap_mentioned_p (middlehalf[0],
3386 XEXP (operands[1], 0)))
3387 {
3388 /* Check for two regs used by both source and dest.
3389 Note that this can't happen if the dest is all data regs.
3390 It can happen if the dest is d6, d7, a0.
3391 But in that case, latehalf is an addr reg, so
3392 the code at compadr does ok. */
3393
3394 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3395 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3396 goto compadr;
3397
3398 /* JRV says this can't happen: */
3399 gcc_assert (!addreg0 && !addreg1);
3400
3401 /* Only the middle reg conflicts; simply put it last. */
3402 handle_movsi (operands);
3403 handle_movsi (latehalf);
3404 handle_movsi (middlehalf);
3405
3406 return;
3407 }
3408 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
3409 /* If the low half of dest is mentioned in the source memory
3410 address, the arrange to emit the move late half first. */
3411 dest_overlapped_low = 1;
3412 }
3413
3414 /* If one or both operands autodecrementing,
3415 do the two words, high-numbered first. */
3416
3417 /* Likewise, the first move would clobber the source of the second one,
3418 do them in the other order. This happens only for registers;
3419 such overlap can't happen in memory unless the user explicitly
3420 sets it up, and that is an undefined circumstance. */
3421
3422 if (optype0 == PUSHOP || optype1 == PUSHOP
3423 || (optype0 == REGOP && optype1 == REGOP
3424 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
3425 || REGNO (operands[0]) == REGNO (latehalf[1])))
3426 || dest_overlapped_low)
3427 {
3428 /* Make any unoffsettable addresses point at high-numbered word. */
3429 if (addreg0)
3430 handle_reg_adjust (addreg0, size - 4);
3431 if (addreg1)
3432 handle_reg_adjust (addreg1, size - 4);
3433
3434 /* Do that word. */
3435 handle_movsi (latehalf);
3436
3437 /* Undo the adds we just did. */
3438 if (addreg0)
3439 handle_reg_adjust (addreg0, -4);
3440 if (addreg1)
3441 handle_reg_adjust (addreg1, -4);
3442
3443 if (size == 12)
3444 {
3445 handle_movsi (middlehalf);
3446
3447 if (addreg0)
3448 handle_reg_adjust (addreg0, -4);
3449 if (addreg1)
3450 handle_reg_adjust (addreg1, -4);
3451 }
3452
3453 /* Do low-numbered word. */
3454
3455 handle_movsi (operands);
3456 return;
3457 }
3458
3459 /* Normal case: do the two words, low-numbered first. */
3460
3461 m68k_final_prescan_insn (NULL, operands, 2);
3462 handle_movsi (operands);
3463
3464 /* Do the middle one of the three words for long double */
3465 if (size == 12)
3466 {
3467 if (addreg0)
3468 handle_reg_adjust (addreg0, 4);
3469 if (addreg1)
3470 handle_reg_adjust (addreg1, 4);
3471
3472 m68k_final_prescan_insn (NULL, middlehalf, 2);
3473 handle_movsi (middlehalf);
3474 }
3475
3476 /* Make any unoffsettable addresses point at high-numbered word. */
3477 if (addreg0)
3478 handle_reg_adjust (addreg0, 4);
3479 if (addreg1)
3480 handle_reg_adjust (addreg1, 4);
3481
3482 /* Do that word. */
3483 m68k_final_prescan_insn (NULL, latehalf, 2);
3484 handle_movsi (latehalf);
3485
3486 /* Undo the adds we just did. */
3487 if (addreg0)
3488 handle_reg_adjust (addreg0, -(size - 4));
3489 if (addreg1)
3490 handle_reg_adjust (addreg1, -(size - 4));
3491
3492 return;
3493 }
3494
3495 /* Output assembler code to adjust REG by N. */
3496 static void
3497 output_reg_adjust (rtx reg, int n)
3498 {
3499 const char *s;
3500
3501 gcc_assert (GET_MODE (reg) == SImode
3502 && -12 <= n && n != 0 && n <= 12);
3503
3504 switch (n)
3505 {
3506 case 12:
3507 s = "add%.l #12,%0";
3508 break;
3509
3510 case 8:
3511 s = "addq%.l #8,%0";
3512 break;
3513
3514 case 4:
3515 s = "addq%.l #4,%0";
3516 break;
3517
3518 case -12:
3519 s = "sub%.l #12,%0";
3520 break;
3521
3522 case -8:
3523 s = "subq%.l #8,%0";
3524 break;
3525
3526 case -4:
3527 s = "subq%.l #4,%0";
3528 break;
3529
3530 default:
3531 gcc_unreachable ();
3532 s = NULL;
3533 }
3534
3535 output_asm_insn (s, &reg);
3536 }
3537
3538 /* Emit rtl code to adjust REG by N. */
3539 static void
3540 emit_reg_adjust (rtx reg1, int n)
3541 {
3542 rtx reg2;
3543
3544 gcc_assert (GET_MODE (reg1) == SImode
3545 && -12 <= n && n != 0 && n <= 12);
3546
3547 reg1 = copy_rtx (reg1);
3548 reg2 = copy_rtx (reg1);
3549
3550 if (n < 0)
3551 emit_insn (gen_subsi3 (reg1, reg2, GEN_INT (-n)));
3552 else if (n > 0)
3553 emit_insn (gen_addsi3 (reg1, reg2, GEN_INT (n)));
3554 else
3555 gcc_unreachable ();
3556 }
3557
3558 /* Output assembler to load address OPERANDS[0] to register OPERANDS[1]. */
3559 static void
3560 output_compadr (rtx operands[2])
3561 {
3562 output_asm_insn ("lea %a1,%0", operands);
3563 }
3564
3565 /* Output the best assembler insn for moving operands[1] into operands[0]
3566 as a fullword. */
3567 static void
3568 output_movsi (rtx operands[2])
3569 {
3570 output_asm_insn (singlemove_string (operands), operands);
3571 }
3572
3573 /* Copy OP and change its mode to MODE. */
3574 static rtx
3575 copy_operand (rtx op, machine_mode mode)
3576 {
3577 /* ??? This looks really ugly. There must be a better way
3578 to change a mode on the operand. */
3579 if (GET_MODE (op) != VOIDmode)
3580 {
3581 if (REG_P (op))
3582 op = gen_rtx_REG (mode, REGNO (op));
3583 else
3584 {
3585 op = copy_rtx (op);
3586 PUT_MODE (op, mode);
3587 }
3588 }
3589
3590 return op;
3591 }
3592
3593 /* Emit rtl code for moving operands[1] into operands[0] as a fullword. */
3594 static void
3595 emit_movsi (rtx operands[2])
3596 {
3597 operands[0] = copy_operand (operands[0], SImode);
3598 operands[1] = copy_operand (operands[1], SImode);
3599
3600 emit_insn (gen_movsi (operands[0], operands[1]));
3601 }
3602
3603 /* Output assembler code to perform a doubleword move insn
3604 with operands OPERANDS. */
3605 const char *
3606 output_move_double (rtx *operands)
3607 {
3608 handle_move_double (operands,
3609 output_reg_adjust, output_compadr, output_movsi);
3610
3611 return "";
3612 }
3613
3614 /* Output rtl code to perform a doubleword move insn
3615 with operands OPERANDS. */
3616 void
3617 m68k_emit_move_double (rtx operands[2])
3618 {
3619 handle_move_double (operands, emit_reg_adjust, emit_movsi, emit_movsi);
3620 }
3621
3622 /* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a
3623 new rtx with the correct mode. */
3624
3625 static rtx
3626 force_mode (machine_mode mode, rtx orig)
3627 {
3628 if (mode == GET_MODE (orig))
3629 return orig;
3630
3631 if (REGNO (orig) >= FIRST_PSEUDO_REGISTER)
3632 abort ();
3633
3634 return gen_rtx_REG (mode, REGNO (orig));
3635 }
3636
3637 static int
3638 fp_reg_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
3639 {
3640 return reg_renumber && FP_REG_P (op);
3641 }
3642
3643 /* Emit insns to move operands[1] into operands[0].
3644
3645 Return 1 if we have written out everything that needs to be done to
3646 do the move. Otherwise, return 0 and the caller will emit the move
3647 normally.
3648
3649 Note SCRATCH_REG may not be in the proper mode depending on how it
3650 will be used. This routine is responsible for creating a new copy
3651 of SCRATCH_REG in the proper mode. */
3652
3653 int
3654 emit_move_sequence (rtx *operands, machine_mode mode, rtx scratch_reg)
3655 {
3656 register rtx operand0 = operands[0];
3657 register rtx operand1 = operands[1];
3658 register rtx tem;
3659
3660 if (scratch_reg
3661 && reload_in_progress && GET_CODE (operand0) == REG
3662 && REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
3663 operand0 = reg_equiv_mem (REGNO (operand0));
3664 else if (scratch_reg
3665 && reload_in_progress && GET_CODE (operand0) == SUBREG
3666 && GET_CODE (SUBREG_REG (operand0)) == REG
3667 && REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
3668 {
3669 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3670 the code which tracks sets/uses for delete_output_reload. */
3671 rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
3672 reg_equiv_mem (REGNO (SUBREG_REG (operand0))),
3673 SUBREG_BYTE (operand0));
3674 operand0 = alter_subreg (&temp, true);
3675 }
3676
3677 if (scratch_reg
3678 && reload_in_progress && GET_CODE (operand1) == REG
3679 && REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
3680 operand1 = reg_equiv_mem (REGNO (operand1));
3681 else if (scratch_reg
3682 && reload_in_progress && GET_CODE (operand1) == SUBREG
3683 && GET_CODE (SUBREG_REG (operand1)) == REG
3684 && REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
3685 {
3686 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3687 the code which tracks sets/uses for delete_output_reload. */
3688 rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
3689 reg_equiv_mem (REGNO (SUBREG_REG (operand1))),
3690 SUBREG_BYTE (operand1));
3691 operand1 = alter_subreg (&temp, true);
3692 }
3693
3694 if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
3695 && ((tem = find_replacement (&XEXP (operand0, 0)))
3696 != XEXP (operand0, 0)))
3697 operand0 = gen_rtx_MEM (GET_MODE (operand0), tem);
3698 if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
3699 && ((tem = find_replacement (&XEXP (operand1, 0)))
3700 != XEXP (operand1, 0)))
3701 operand1 = gen_rtx_MEM (GET_MODE (operand1), tem);
3702
3703 /* Handle secondary reloads for loads/stores of FP registers where
3704 the address is symbolic by using the scratch register */
3705 if (fp_reg_operand (operand0, mode)
3706 && ((GET_CODE (operand1) == MEM
3707 && ! memory_address_p (DFmode, XEXP (operand1, 0)))
3708 || ((GET_CODE (operand1) == SUBREG
3709 && GET_CODE (XEXP (operand1, 0)) == MEM
3710 && !memory_address_p (DFmode, XEXP (XEXP (operand1, 0), 0)))))
3711 && scratch_reg)
3712 {
3713 if (GET_CODE (operand1) == SUBREG)
3714 operand1 = XEXP (operand1, 0);
3715
3716 /* SCRATCH_REG will hold an address. We want
3717 it in SImode regardless of what mode it was originally given
3718 to us. */
3719 scratch_reg = force_mode (SImode, scratch_reg);
3720
3721 /* D might not fit in 14 bits either; for such cases load D into
3722 scratch reg. */
3723 if (!memory_address_p (Pmode, XEXP (operand1, 0)))
3724 {
3725 emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
3726 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)),
3727 Pmode,
3728 XEXP (XEXP (operand1, 0), 0),
3729 scratch_reg));
3730 }
3731 else
3732 emit_move_insn (scratch_reg, XEXP (operand1, 0));
3733 emit_insn (gen_rtx_SET (operand0, gen_rtx_MEM (mode, scratch_reg)));
3734 return 1;
3735 }
3736 else if (fp_reg_operand (operand1, mode)
3737 && ((GET_CODE (operand0) == MEM
3738 && ! memory_address_p (DFmode, XEXP (operand0, 0)))
3739 || ((GET_CODE (operand0) == SUBREG)
3740 && GET_CODE (XEXP (operand0, 0)) == MEM
3741 && !memory_address_p (DFmode, XEXP (XEXP (operand0, 0), 0))))
3742 && scratch_reg)
3743 {
3744 if (GET_CODE (operand0) == SUBREG)
3745 operand0 = XEXP (operand0, 0);
3746
3747 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3748 it in SIMODE regardless of what mode it was originally given
3749 to us. */
3750 scratch_reg = force_mode (SImode, scratch_reg);
3751
3752 /* D might not fit in 14 bits either; for such cases load D into
3753 scratch reg. */
3754 if (!memory_address_p (Pmode, XEXP (operand0, 0)))
3755 {
3756 emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1));
3757 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0,
3758 0)),
3759 Pmode,
3760 XEXP (XEXP (operand0, 0),
3761 0),
3762 scratch_reg));
3763 }
3764 else
3765 emit_move_insn (scratch_reg, XEXP (operand0, 0));
3766 emit_insn (gen_rtx_SET (gen_rtx_MEM (mode, scratch_reg), operand1));
3767 return 1;
3768 }
3769 /* Handle secondary reloads for loads of FP registers from constant
3770 expressions by forcing the constant into memory.
3771
3772 use scratch_reg to hold the address of the memory location.
3773
3774 The proper fix is to change PREFERRED_RELOAD_CLASS to return
3775 NO_REGS when presented with a const_int and an register class
3776 containing only FP registers. Doing so unfortunately creates
3777 more problems than it solves. Fix this for 2.5. */
3778 else if (fp_reg_operand (operand0, mode)
3779 && CONSTANT_P (operand1)
3780 && scratch_reg)
3781 {
3782 rtx xoperands[2];
3783
3784 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3785 it in SIMODE regardless of what mode it was originally given
3786 to us. */
3787 scratch_reg = force_mode (SImode, scratch_reg);
3788
3789 /* Force the constant into memory and put the address of the
3790 memory location into scratch_reg. */
3791 xoperands[0] = scratch_reg;
3792 xoperands[1] = XEXP (force_const_mem (mode, operand1), 0);
3793 emit_insn (gen_rtx_SET (scratch_reg, xoperands[1]));
3794
3795 /* Now load the destination register. */
3796 emit_insn (gen_rtx_SET (operand0, gen_rtx_MEM (mode, scratch_reg)));
3797 return 1;
3798 }
3799
3800 /* Now have insn-emit do whatever it normally does. */
3801 return 0;
3802 }
3803
3804 /* Split one or more DImode RTL references into pairs of SImode
3805 references. The RTL can be REG, offsettable MEM, integer constant, or
3806 CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
3807 split and "num" is its length. lo_half and hi_half are output arrays
3808 that parallel "operands". */
3809
3810 void
3811 split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
3812 {
3813 while (num--)
3814 {
3815 rtx op = operands[num];
3816
3817 /* simplify_subreg refuses to split volatile memory addresses,
3818 but we still have to handle it. */
3819 if (GET_CODE (op) == MEM)
3820 {
3821 lo_half[num] = adjust_address (op, SImode, 4);
3822 hi_half[num] = adjust_address (op, SImode, 0);
3823 }
3824 else
3825 {
3826 lo_half[num] = simplify_gen_subreg (SImode, op,
3827 GET_MODE (op) == VOIDmode
3828 ? DImode : GET_MODE (op), 4);
3829 hi_half[num] = simplify_gen_subreg (SImode, op,
3830 GET_MODE (op) == VOIDmode
3831 ? DImode : GET_MODE (op), 0);
3832 }
3833 }
3834 }
3835
3836 /* Split X into a base and a constant offset, storing them in *BASE
3837 and *OFFSET respectively. */
3838
3839 static void
3840 m68k_split_offset (rtx x, rtx *base, HOST_WIDE_INT *offset)
3841 {
3842 *offset = 0;
3843 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
3844 {
3845 *offset += INTVAL (XEXP (x, 1));
3846 x = XEXP (x, 0);
3847 }
3848 *base = x;
3849 }
3850
3851 /* Return true if PATTERN is a PARALLEL suitable for a movem or fmovem
3852 instruction. STORE_P says whether the move is a load or store.
3853
3854 If the instruction uses post-increment or pre-decrement addressing,
3855 AUTOMOD_BASE is the base register and AUTOMOD_OFFSET is the total
3856 adjustment. This adjustment will be made by the first element of
3857 PARALLEL, with the loads or stores starting at element 1. If the
3858 instruction does not use post-increment or pre-decrement addressing,
3859 AUTOMOD_BASE is null, AUTOMOD_OFFSET is 0, and the loads or stores
3860 start at element 0. */
3861
3862 bool
3863 m68k_movem_pattern_p (rtx pattern, rtx automod_base,
3864 HOST_WIDE_INT automod_offset, bool store_p)
3865 {
3866 rtx base, mem_base, set, mem, reg, last_reg;
3867 HOST_WIDE_INT offset, mem_offset;
3868 int i, first, len;
3869 enum reg_class rclass;
3870
3871 len = XVECLEN (pattern, 0);
3872 first = (automod_base != NULL);
3873
3874 if (automod_base)
3875 {
3876 /* Stores must be pre-decrement and loads must be post-increment. */
3877 if (store_p != (automod_offset < 0))
3878 return false;
3879
3880 /* Work out the base and offset for lowest memory location. */
3881 base = automod_base;
3882 offset = (automod_offset < 0 ? automod_offset : 0);
3883 }
3884 else
3885 {
3886 /* Allow any valid base and offset in the first access. */
3887 base = NULL;
3888 offset = 0;
3889 }
3890
3891 last_reg = NULL;
3892 rclass = NO_REGS;
3893 for (i = first; i < len; i++)
3894 {
3895 /* We need a plain SET. */
3896 set = XVECEXP (pattern, 0, i);
3897 if (GET_CODE (set) != SET)
3898 return false;
3899
3900 /* Check that we have a memory location... */
3901 mem = XEXP (set, !store_p);
3902 if (!MEM_P (mem) || !memory_operand (mem, VOIDmode))
3903 return false;
3904
3905 /* ...with the right address. */
3906 if (base == NULL)
3907 {
3908 m68k_split_offset (XEXP (mem, 0), &base, &offset);
3909 /* The ColdFire instruction only allows (An) and (d16,An) modes.
3910 There are no mode restrictions for 680x0 besides the
3911 automodification rules enforced above. */
3912 if (TARGET_COLDFIRE
3913 && !m68k_legitimate_base_reg_p (base, reload_completed))
3914 return false;
3915 }
3916 else
3917 {
3918 m68k_split_offset (XEXP (mem, 0), &mem_base, &mem_offset);
3919 if (!rtx_equal_p (base, mem_base) || offset != mem_offset)
3920 return false;
3921 }
3922
3923 /* Check that we have a register of the required mode and class. */
3924 reg = XEXP (set, store_p);
3925 if (!REG_P (reg)
3926 || !HARD_REGISTER_P (reg)
3927 || GET_MODE (reg) != reg_raw_mode[REGNO (reg)])
3928 return false;
3929
3930 if (last_reg)
3931 {
3932 /* The register must belong to RCLASS and have a higher number
3933 than the register in the previous SET. */
3934 if (!TEST_HARD_REG_BIT (reg_class_contents[rclass], REGNO (reg))
3935 || REGNO (last_reg) >= REGNO (reg))
3936 return false;
3937 }
3938 else
3939 {
3940 /* Work out which register class we need. */
3941 if (INT_REGNO_P (REGNO (reg)))
3942 rclass = GENERAL_REGS;
3943 else if (FP_REGNO_P (REGNO (reg)))
3944 rclass = FP_REGS;
3945 else
3946 return false;
3947 }
3948
3949 last_reg = reg;
3950 offset += GET_MODE_SIZE (GET_MODE (reg));
3951 }
3952
3953 /* If we have an automodification, check whether the final offset is OK. */
3954 if (automod_base && offset != (automod_offset < 0 ? 0 : automod_offset))
3955 return false;
3956
3957 /* Reject unprofitable cases. */
3958 if (len < first + (rclass == FP_REGS ? MIN_FMOVEM_REGS : MIN_MOVEM_REGS))
3959 return false;
3960
3961 return true;
3962 }
3963
3964 /* Return the assembly code template for a movem or fmovem instruction
3965 whose pattern is given by PATTERN. Store the template's operands
3966 in OPERANDS.
3967
3968 If the instruction uses post-increment or pre-decrement addressing,
3969 AUTOMOD_OFFSET is the total adjustment, otherwise it is 0. STORE_P
3970 is true if this is a store instruction. */
3971
3972 const char *
3973 m68k_output_movem (rtx *operands, rtx pattern,
3974 HOST_WIDE_INT automod_offset, bool store_p)
3975 {
3976 unsigned int mask;
3977 int i, first;
3978
3979 gcc_assert (GET_CODE (pattern) == PARALLEL);
3980 mask = 0;
3981 first = (automod_offset != 0);
3982 for (i = first; i < XVECLEN (pattern, 0); i++)
3983 {
3984 /* When using movem with pre-decrement addressing, register X + D0_REG
3985 is controlled by bit 15 - X. For all other addressing modes,
3986 register X + D0_REG is controlled by bit X. Confusingly, the
3987 register mask for fmovem is in the opposite order to that for
3988 movem. */
3989 unsigned int regno;
3990
3991 gcc_assert (MEM_P (XEXP (XVECEXP (pattern, 0, i), !store_p)));
3992 gcc_assert (REG_P (XEXP (XVECEXP (pattern, 0, i), store_p)));
3993 regno = REGNO (XEXP (XVECEXP (pattern, 0, i), store_p));
3994 if (automod_offset < 0)
3995 {
3996 if (FP_REGNO_P (regno))
3997 mask |= 1 << (regno - FP0_REG);
3998 else
3999 mask |= 1 << (15 - (regno - D0_REG));
4000 }
4001 else
4002 {
4003 if (FP_REGNO_P (regno))
4004 mask |= 1 << (7 - (regno - FP0_REG));
4005 else
4006 mask |= 1 << (regno - D0_REG);
4007 }
4008 }
4009 CC_STATUS_INIT;
4010
4011 if (automod_offset == 0)
4012 operands[0] = XEXP (XEXP (XVECEXP (pattern, 0, first), !store_p), 0);
4013 else if (automod_offset < 0)
4014 operands[0] = gen_rtx_PRE_DEC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4015 else
4016 operands[0] = gen_rtx_POST_INC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4017 operands[1] = GEN_INT (mask);
4018 if (FP_REGNO_P (REGNO (XEXP (XVECEXP (pattern, 0, first), store_p))))
4019 {
4020 if (store_p)
4021 return "fmovem %1,%a0";
4022 else
4023 return "fmovem %a0,%1";
4024 }
4025 else
4026 {
4027 if (store_p)
4028 return "movem%.l %1,%a0";
4029 else
4030 return "movem%.l %a0,%1";
4031 }
4032 }
4033
4034 /* Return a REG that occurs in ADDR with coefficient 1.
4035 ADDR can be effectively incremented by incrementing REG. */
4036
4037 static rtx
4038 find_addr_reg (rtx addr)
4039 {
4040 while (GET_CODE (addr) == PLUS)
4041 {
4042 if (GET_CODE (XEXP (addr, 0)) == REG)
4043 addr = XEXP (addr, 0);
4044 else if (GET_CODE (XEXP (addr, 1)) == REG)
4045 addr = XEXP (addr, 1);
4046 else if (CONSTANT_P (XEXP (addr, 0)))
4047 addr = XEXP (addr, 1);
4048 else if (CONSTANT_P (XEXP (addr, 1)))
4049 addr = XEXP (addr, 0);
4050 else
4051 gcc_unreachable ();
4052 }
4053 gcc_assert (GET_CODE (addr) == REG);
4054 return addr;
4055 }
4056
4057 /* Output assembler code to perform a 32-bit 3-operand add. */
4058
4059 const char *
4060 output_addsi3 (rtx *operands)
4061 {
4062 if (! operands_match_p (operands[0], operands[1]))
4063 {
4064 if (!ADDRESS_REG_P (operands[1]))
4065 {
4066 rtx tmp = operands[1];
4067
4068 operands[1] = operands[2];
4069 operands[2] = tmp;
4070 }
4071
4072 /* These insns can result from reloads to access
4073 stack slots over 64k from the frame pointer. */
4074 if (GET_CODE (operands[2]) == CONST_INT
4075 && (INTVAL (operands[2]) < -32768 || INTVAL (operands[2]) > 32767))
4076 return "move%.l %2,%0\n\tadd%.l %1,%0";
4077 if (GET_CODE (operands[2]) == REG)
4078 return MOTOROLA ? "lea (%1,%2.l),%0" : "lea %1@(0,%2:l),%0";
4079 return MOTOROLA ? "lea (%c2,%1),%0" : "lea %1@(%c2),%0";
4080 }
4081 if (GET_CODE (operands[2]) == CONST_INT)
4082 {
4083 if (INTVAL (operands[2]) > 0
4084 && INTVAL (operands[2]) <= 8)
4085 return "addq%.l %2,%0";
4086 if (INTVAL (operands[2]) < 0
4087 && INTVAL (operands[2]) >= -8)
4088 {
4089 operands[2] = GEN_INT (- INTVAL (operands[2]));
4090 return "subq%.l %2,%0";
4091 }
4092 /* On the CPU32 it is faster to use two addql instructions to
4093 add a small integer (8 < N <= 16) to a register.
4094 Likewise for subql. */
4095 if (TUNE_CPU32 && REG_P (operands[0]))
4096 {
4097 if (INTVAL (operands[2]) > 8
4098 && INTVAL (operands[2]) <= 16)
4099 {
4100 operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
4101 return "addq%.l #8,%0\n\taddq%.l %2,%0";
4102 }
4103 if (INTVAL (operands[2]) < -8
4104 && INTVAL (operands[2]) >= -16)
4105 {
4106 operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
4107 return "subq%.l #8,%0\n\tsubq%.l %2,%0";
4108 }
4109 }
4110 if (ADDRESS_REG_P (operands[0])
4111 && INTVAL (operands[2]) >= -0x8000
4112 && INTVAL (operands[2]) < 0x8000)
4113 {
4114 if (TUNE_68040)
4115 return "add%.w %2,%0";
4116 else
4117 return MOTOROLA ? "lea (%c2,%0),%0" : "lea %0@(%c2),%0";
4118 }
4119 }
4120 return "add%.l %2,%0";
4121 }
4122 \f
4123 /* Store in cc_status the expressions that the condition codes will
4124 describe after execution of an instruction whose pattern is EXP.
4125 Do not alter them if the instruction would not alter the cc's. */
4126
4127 /* On the 68000, all the insns to store in an address register fail to
4128 set the cc's. However, in some cases these instructions can make it
4129 possibly invalid to use the saved cc's. In those cases we clear out
4130 some or all of the saved cc's so they won't be used. */
4131
4132 void
4133 notice_update_cc (rtx exp, rtx insn)
4134 {
4135 if (GET_CODE (exp) == SET)
4136 {
4137 if (GET_CODE (SET_SRC (exp)) == CALL)
4138 CC_STATUS_INIT;
4139 else if (ADDRESS_REG_P (SET_DEST (exp)))
4140 {
4141 if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
4142 cc_status.value1 = 0;
4143 if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
4144 cc_status.value2 = 0;
4145 }
4146 /* fmoves to memory or data registers do not set the condition
4147 codes. Normal moves _do_ set the condition codes, but not in
4148 a way that is appropriate for comparison with 0, because -0.0
4149 would be treated as a negative nonzero number. Note that it
4150 isn't appropriate to conditionalize this restriction on
4151 HONOR_SIGNED_ZEROS because that macro merely indicates whether
4152 we care about the difference between -0.0 and +0.0. */
4153 else if (!FP_REG_P (SET_DEST (exp))
4154 && SET_DEST (exp) != cc0_rtx
4155 && (FP_REG_P (SET_SRC (exp))
4156 || GET_CODE (SET_SRC (exp)) == FIX
4157 || FLOAT_MODE_P (GET_MODE (SET_DEST (exp)))))
4158 CC_STATUS_INIT;
4159 /* A pair of move insns doesn't produce a useful overall cc. */
4160 else if (!FP_REG_P (SET_DEST (exp))
4161 && !FP_REG_P (SET_SRC (exp))
4162 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
4163 && (GET_CODE (SET_SRC (exp)) == REG
4164 || GET_CODE (SET_SRC (exp)) == MEM
4165 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
4166 CC_STATUS_INIT;
4167 else if (SET_DEST (exp) != pc_rtx)
4168 {
4169 cc_status.flags = 0;
4170 cc_status.value1 = SET_DEST (exp);
4171 cc_status.value2 = SET_SRC (exp);
4172 }
4173 }
4174 else if (GET_CODE (exp) == PARALLEL
4175 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
4176 {
4177 rtx dest = SET_DEST (XVECEXP (exp, 0, 0));
4178 rtx src = SET_SRC (XVECEXP (exp, 0, 0));
4179
4180 if (ADDRESS_REG_P (dest))
4181 CC_STATUS_INIT;
4182 else if (dest != pc_rtx)
4183 {
4184 cc_status.flags = 0;
4185 cc_status.value1 = dest;
4186 cc_status.value2 = src;
4187 }
4188 }
4189 else
4190 CC_STATUS_INIT;
4191 if (cc_status.value2 != 0
4192 && ADDRESS_REG_P (cc_status.value2)
4193 && GET_MODE (cc_status.value2) == QImode)
4194 CC_STATUS_INIT;
4195 if (cc_status.value2 != 0)
4196 switch (GET_CODE (cc_status.value2))
4197 {
4198 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
4199 case ROTATE: case ROTATERT:
4200 /* These instructions always clear the overflow bit, and set
4201 the carry to the bit shifted out. */
4202 cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
4203 break;
4204
4205 case PLUS: case MINUS: case MULT:
4206 case DIV: case UDIV: case MOD: case UMOD: case NEG:
4207 if (GET_MODE (cc_status.value2) != VOIDmode)
4208 cc_status.flags |= CC_NO_OVERFLOW;
4209 break;
4210 case ZERO_EXTEND:
4211 /* (SET r1 (ZERO_EXTEND r2)) on this machine
4212 ends with a move insn moving r2 in r2's mode.
4213 Thus, the cc's are set for r2.
4214 This can set N bit spuriously. */
4215 cc_status.flags |= CC_NOT_NEGATIVE;
4216
4217 default:
4218 break;
4219 }
4220 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
4221 && cc_status.value2
4222 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
4223 cc_status.value2 = 0;
4224 /* Check for PRE_DEC in dest modifying a register used in src. */
4225 if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM
4226 && GET_CODE (XEXP (cc_status.value1, 0)) == PRE_DEC
4227 && cc_status.value2
4228 && reg_overlap_mentioned_p (XEXP (XEXP (cc_status.value1, 0), 0),
4229 cc_status.value2))
4230 cc_status.value2 = 0;
4231 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
4232 || (cc_status.value2 && FP_REG_P (cc_status.value2))))
4233 cc_status.flags = CC_IN_68881;
4234 if (cc_status.value2 && GET_CODE (cc_status.value2) == COMPARE
4235 && GET_MODE_CLASS (GET_MODE (XEXP (cc_status.value2, 0))) == MODE_FLOAT)
4236 {
4237 cc_status.flags = CC_IN_68881;
4238 if (!FP_REG_P (XEXP (cc_status.value2, 0))
4239 && FP_REG_P (XEXP (cc_status.value2, 1)))
4240 cc_status.flags |= CC_REVERSED;
4241 }
4242 }
4243 \f
4244 const char *
4245 output_move_const_double (rtx *operands)
4246 {
4247 int code = standard_68881_constant_p (operands[1]);
4248
4249 if (code != 0)
4250 {
4251 static char buf[40];
4252
4253 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4254 return buf;
4255 }
4256 return "fmove%.d %1,%0";
4257 }
4258
4259 const char *
4260 output_move_const_single (rtx *operands)
4261 {
4262 int code = standard_68881_constant_p (operands[1]);
4263
4264 if (code != 0)
4265 {
4266 static char buf[40];
4267
4268 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4269 return buf;
4270 }
4271 return "fmove%.s %f1,%0";
4272 }
4273
4274 /* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
4275 from the "fmovecr" instruction.
4276 The value, anded with 0xff, gives the code to use in fmovecr
4277 to get the desired constant. */
4278
4279 /* This code has been fixed for cross-compilation. */
4280
4281 static int inited_68881_table = 0;
4282
4283 static const char *const strings_68881[7] = {
4284 "0.0",
4285 "1.0",
4286 "10.0",
4287 "100.0",
4288 "10000.0",
4289 "1e8",
4290 "1e16"
4291 };
4292
4293 static const int codes_68881[7] = {
4294 0x0f,
4295 0x32,
4296 0x33,
4297 0x34,
4298 0x35,
4299 0x36,
4300 0x37
4301 };
4302
4303 REAL_VALUE_TYPE values_68881[7];
4304
4305 /* Set up values_68881 array by converting the decimal values
4306 strings_68881 to binary. */
4307
4308 void
4309 init_68881_table (void)
4310 {
4311 int i;
4312 REAL_VALUE_TYPE r;
4313 machine_mode mode;
4314
4315 mode = SFmode;
4316 for (i = 0; i < 7; i++)
4317 {
4318 if (i == 6)
4319 mode = DFmode;
4320 r = REAL_VALUE_ATOF (strings_68881[i], mode);
4321 values_68881[i] = r;
4322 }
4323 inited_68881_table = 1;
4324 }
4325
4326 int
4327 standard_68881_constant_p (rtx x)
4328 {
4329 const REAL_VALUE_TYPE *r;
4330 int i;
4331
4332 /* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
4333 used at all on those chips. */
4334 if (TUNE_68040_60)
4335 return 0;
4336
4337 if (! inited_68881_table)
4338 init_68881_table ();
4339
4340 r = CONST_DOUBLE_REAL_VALUE (x);
4341
4342 /* Use real_identical instead of real_equal so that -0.0 is rejected. */
4343 for (i = 0; i < 6; i++)
4344 {
4345 if (real_identical (r, &values_68881[i]))
4346 return (codes_68881[i]);
4347 }
4348
4349 if (GET_MODE (x) == SFmode)
4350 return 0;
4351
4352 if (real_equal (r, &values_68881[6]))
4353 return (codes_68881[6]);
4354
4355 /* larger powers of ten in the constants ram are not used
4356 because they are not equal to a `double' C constant. */
4357 return 0;
4358 }
4359
4360 /* If X is a floating-point constant, return the logarithm of X base 2,
4361 or 0 if X is not a power of 2. */
4362
4363 int
4364 floating_exact_log2 (rtx x)
4365 {
4366 const REAL_VALUE_TYPE *r;
4367 REAL_VALUE_TYPE r1;
4368 int exp;
4369
4370 r = CONST_DOUBLE_REAL_VALUE (x);
4371
4372 if (real_less (r, &dconst1))
4373 return 0;
4374
4375 exp = real_exponent (r);
4376 real_2expN (&r1, exp, DFmode);
4377 if (real_equal (&r1, r))
4378 return exp;
4379
4380 return 0;
4381 }
4382 \f
4383 /* A C compound statement to output to stdio stream STREAM the
4384 assembler syntax for an instruction operand X. X is an RTL
4385 expression.
4386
4387 CODE is a value that can be used to specify one of several ways
4388 of printing the operand. It is used when identical operands
4389 must be printed differently depending on the context. CODE
4390 comes from the `%' specification that was used to request
4391 printing of the operand. If the specification was just `%DIGIT'
4392 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4393 is the ASCII code for LTR.
4394
4395 If X is a register, this macro should print the register's name.
4396 The names can be found in an array `reg_names' whose type is
4397 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4398
4399 When the machine description has a specification `%PUNCT' (a `%'
4400 followed by a punctuation character), this macro is called with
4401 a null pointer for X and the punctuation character for CODE.
4402
4403 The m68k specific codes are:
4404
4405 '.' for dot needed in Motorola-style opcode names.
4406 '-' for an operand pushing on the stack:
4407 sp@-, -(sp) or -(%sp) depending on the style of syntax.
4408 '+' for an operand pushing on the stack:
4409 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
4410 '@' for a reference to the top word on the stack:
4411 sp@, (sp) or (%sp) depending on the style of syntax.
4412 '#' for an immediate operand prefix (# in MIT and Motorola syntax
4413 but & in SGS syntax).
4414 '!' for the cc register (used in an `and to cc' insn).
4415 '$' for the letter `s' in an op code, but only on the 68040.
4416 '&' for the letter `d' in an op code, but only on the 68040.
4417 '/' for register prefix needed by longlong.h.
4418 '?' for m68k_library_id_string
4419
4420 'b' for byte insn (no effect, on the Sun; this is for the ISI).
4421 'd' to force memory addressing to be absolute, not relative.
4422 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
4423 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
4424 or print pair of registers as rx:ry.
4425 'p' print an address with @PLTPC attached, but only if the operand
4426 is not locally-bound. */
4427
4428 void
4429 print_operand (FILE *file, rtx op, int letter)
4430 {
4431 if (letter == '.')
4432 {
4433 if (MOTOROLA)
4434 fprintf (file, ".");
4435 }
4436 else if (letter == '#')
4437 asm_fprintf (file, "%I");
4438 else if (letter == '-')
4439 asm_fprintf (file, MOTOROLA ? "-(%Rsp)" : "%Rsp@-");
4440 else if (letter == '+')
4441 asm_fprintf (file, MOTOROLA ? "(%Rsp)+" : "%Rsp@+");
4442 else if (letter == '@')
4443 asm_fprintf (file, MOTOROLA ? "(%Rsp)" : "%Rsp@");
4444 else if (letter == '!')
4445 asm_fprintf (file, "%Rfpcr");
4446 else if (letter == '$')
4447 {
4448 if (TARGET_68040)
4449 fprintf (file, "s");
4450 }
4451 else if (letter == '&')
4452 {
4453 if (TARGET_68040)
4454 fprintf (file, "d");
4455 }
4456 else if (letter == '/')
4457 asm_fprintf (file, "%R");
4458 else if (letter == '?')
4459 asm_fprintf (file, m68k_library_id_string);
4460 else if (letter == 'p')
4461 {
4462 output_addr_const (file, op);
4463 if (!(GET_CODE (op) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (op)))
4464 fprintf (file, "@PLTPC");
4465 }
4466 else if (GET_CODE (op) == REG)
4467 {
4468 if (letter == 'R')
4469 /* Print out the second register name of a register pair.
4470 I.e., R (6) => 7. */
4471 fputs (M68K_REGNAME(REGNO (op) + 1), file);
4472 else
4473 fputs (M68K_REGNAME(REGNO (op)), file);
4474 }
4475 else if (GET_CODE (op) == MEM)
4476 {
4477 output_address (GET_MODE (op), XEXP (op, 0));
4478 if (letter == 'd' && ! TARGET_68020
4479 && CONSTANT_ADDRESS_P (XEXP (op, 0))
4480 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
4481 && INTVAL (XEXP (op, 0)) < 0x8000
4482 && INTVAL (XEXP (op, 0)) >= -0x8000))
4483 fprintf (file, MOTOROLA ? ".l" : ":l");
4484 }
4485 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
4486 {
4487 long l;
4488 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), l);
4489 asm_fprintf (file, "%I0x%lx", l & 0xFFFFFFFF);
4490 }
4491 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
4492 {
4493 long l[3];
4494 REAL_VALUE_TO_TARGET_LONG_DOUBLE (*CONST_DOUBLE_REAL_VALUE (op), l);
4495 asm_fprintf (file, "%I0x%lx%08lx%08lx", l[0] & 0xFFFFFFFF,
4496 l[1] & 0xFFFFFFFF, l[2] & 0xFFFFFFFF);
4497 }
4498 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
4499 {
4500 long l[2];
4501 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (op), l);
4502 asm_fprintf (file, "%I0x%lx%08lx", l[0] & 0xFFFFFFFF, l[1] & 0xFFFFFFFF);
4503 }
4504 else
4505 {
4506 /* Use `print_operand_address' instead of `output_addr_const'
4507 to ensure that we print relevant PIC stuff. */
4508 asm_fprintf (file, "%I");
4509 if (TARGET_PCREL
4510 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
4511 print_operand_address (file, op);
4512 else
4513 output_addr_const (file, op);
4514 }
4515 }
4516
4517 /* Return string for TLS relocation RELOC. */
4518
4519 static const char *
4520 m68k_get_reloc_decoration (enum m68k_reloc reloc)
4521 {
4522 /* To my knowledge, !MOTOROLA assemblers don't support TLS. */
4523 gcc_assert (MOTOROLA || reloc == RELOC_GOT);
4524
4525 switch (reloc)
4526 {
4527 case RELOC_GOT:
4528 if (MOTOROLA)
4529 {
4530 if (flag_pic == 1 && TARGET_68020)
4531 return "@GOT.w";
4532 else
4533 return "@GOT";
4534 }
4535 else
4536 {
4537 if (TARGET_68020)
4538 {
4539 switch (flag_pic)
4540 {
4541 case 1:
4542 return ":w";
4543 case 2:
4544 return ":l";
4545 default:
4546 return "";
4547 }
4548 }
4549 }
4550
4551 case RELOC_TLSGD:
4552 return "@TLSGD";
4553
4554 case RELOC_TLSLDM:
4555 return "@TLSLDM";
4556
4557 case RELOC_TLSLDO:
4558 return "@TLSLDO";
4559
4560 case RELOC_TLSIE:
4561 return "@TLSIE";
4562
4563 case RELOC_TLSLE:
4564 return "@TLSLE";
4565
4566 default:
4567 gcc_unreachable ();
4568 }
4569 }
4570
4571 /* m68k implementation of TARGET_OUTPUT_ADDR_CONST_EXTRA. */
4572
4573 static bool
4574 m68k_output_addr_const_extra (FILE *file, rtx x)
4575 {
4576 if (GET_CODE (x) == UNSPEC)
4577 {
4578 switch (XINT (x, 1))
4579 {
4580 case UNSPEC_RELOC16:
4581 case UNSPEC_RELOC32:
4582 output_addr_const (file, XVECEXP (x, 0, 0));
4583 fputs (m68k_get_reloc_decoration
4584 ((enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1))), file);
4585 return true;
4586
4587 default:
4588 break;
4589 }
4590 }
4591
4592 return false;
4593 }
4594
4595 /* M68K implementation of TARGET_ASM_OUTPUT_DWARF_DTPREL. */
4596
4597 static void
4598 m68k_output_dwarf_dtprel (FILE *file, int size, rtx x)
4599 {
4600 gcc_assert (size == 4);
4601 fputs ("\t.long\t", file);
4602 output_addr_const (file, x);
4603 fputs ("@TLSLDO+0x8000", file);
4604 }
4605
4606 /* In the name of slightly smaller debug output, and to cater to
4607 general assembler lossage, recognize various UNSPEC sequences
4608 and turn them back into a direct symbol reference. */
4609
4610 static rtx
4611 m68k_delegitimize_address (rtx orig_x)
4612 {
4613 rtx x;
4614 struct m68k_address addr;
4615 rtx unspec;
4616
4617 orig_x = delegitimize_mem_from_attrs (orig_x);
4618 x = orig_x;
4619 if (MEM_P (x))
4620 x = XEXP (x, 0);
4621
4622 if (GET_CODE (x) != PLUS || GET_MODE (x) != Pmode)
4623 return orig_x;
4624
4625 if (!m68k_decompose_address (GET_MODE (x), x, false, &addr)
4626 || addr.offset == NULL_RTX
4627 || GET_CODE (addr.offset) != CONST)
4628 return orig_x;
4629
4630 unspec = XEXP (addr.offset, 0);
4631 if (GET_CODE (unspec) == PLUS && CONST_INT_P (XEXP (unspec, 1)))
4632 unspec = XEXP (unspec, 0);
4633 if (GET_CODE (unspec) != UNSPEC
4634 || (XINT (unspec, 1) != UNSPEC_RELOC16
4635 && XINT (unspec, 1) != UNSPEC_RELOC32))
4636 return orig_x;
4637 x = XVECEXP (unspec, 0, 0);
4638 gcc_assert (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF);
4639 if (unspec != XEXP (addr.offset, 0))
4640 x = gen_rtx_PLUS (Pmode, x, XEXP (XEXP (addr.offset, 0), 1));
4641 if (addr.index)
4642 {
4643 rtx idx = addr.index;
4644 if (addr.scale != 1)
4645 idx = gen_rtx_MULT (Pmode, idx, GEN_INT (addr.scale));
4646 x = gen_rtx_PLUS (Pmode, idx, x);
4647 }
4648 if (addr.base)
4649 x = gen_rtx_PLUS (Pmode, addr.base, x);
4650 if (MEM_P (orig_x))
4651 x = replace_equiv_address_nv (orig_x, x);
4652 return x;
4653 }
4654
4655 \f
4656 /* A C compound statement to output to stdio stream STREAM the
4657 assembler syntax for an instruction operand that is a memory
4658 reference whose address is ADDR. ADDR is an RTL expression.
4659
4660 Note that this contains a kludge that knows that the only reason
4661 we have an address (plus (label_ref...) (reg...)) when not generating
4662 PIC code is in the insn before a tablejump, and we know that m68k.md
4663 generates a label LInnn: on such an insn.
4664
4665 It is possible for PIC to generate a (plus (label_ref...) (reg...))
4666 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
4667
4668 This routine is responsible for distinguishing between -fpic and -fPIC
4669 style relocations in an address. When generating -fpic code the
4670 offset is output in word mode (e.g. movel a5@(_foo:w), a0). When generating
4671 -fPIC code the offset is output in long mode (e.g. movel a5@(_foo:l), a0) */
4672
4673 void
4674 print_operand_address (FILE *file, rtx addr)
4675 {
4676 struct m68k_address address;
4677
4678 if (!m68k_decompose_address (QImode, addr, true, &address))
4679 gcc_unreachable ();
4680
4681 if (address.code == PRE_DEC)
4682 fprintf (file, MOTOROLA ? "-(%s)" : "%s@-",
4683 M68K_REGNAME (REGNO (address.base)));
4684 else if (address.code == POST_INC)
4685 fprintf (file, MOTOROLA ? "(%s)+" : "%s@+",
4686 M68K_REGNAME (REGNO (address.base)));
4687 else if (!address.base && !address.index)
4688 {
4689 /* A constant address. */
4690 gcc_assert (address.offset == addr);
4691 if (GET_CODE (addr) == CONST_INT)
4692 {
4693 /* (xxx).w or (xxx).l. */
4694 if (IN_RANGE (INTVAL (addr), -0x8000, 0x7fff))
4695 fprintf (file, MOTOROLA ? "%d.w" : "%d:w", (int) INTVAL (addr));
4696 else
4697 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
4698 }
4699 else if (TARGET_PCREL)
4700 {
4701 /* (d16,PC) or (bd,PC,Xn) (with suppressed index register). */
4702 fputc ('(', file);
4703 output_addr_const (file, addr);
4704 asm_fprintf (file, flag_pic == 1 ? ":w,%Rpc)" : ":l,%Rpc)");
4705 }
4706 else
4707 {
4708 /* (xxx).l. We need a special case for SYMBOL_REF if the symbol
4709 name ends in `.<letter>', as the last 2 characters can be
4710 mistaken as a size suffix. Put the name in parentheses. */
4711 if (GET_CODE (addr) == SYMBOL_REF
4712 && strlen (XSTR (addr, 0)) > 2
4713 && XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
4714 {
4715 putc ('(', file);
4716 output_addr_const (file, addr);
4717 putc (')', file);
4718 }
4719 else
4720 output_addr_const (file, addr);
4721 }
4722 }
4723 else
4724 {
4725 int labelno;
4726
4727 /* If ADDR is a (d8,pc,Xn) address, this is the number of the
4728 label being accessed, otherwise it is -1. */
4729 labelno = (address.offset
4730 && !address.base
4731 && GET_CODE (address.offset) == LABEL_REF
4732 ? CODE_LABEL_NUMBER (XEXP (address.offset, 0))
4733 : -1);
4734 if (MOTOROLA)
4735 {
4736 /* Print the "offset(base" component. */
4737 if (labelno >= 0)
4738 asm_fprintf (file, "%LL%d(%Rpc,", labelno);
4739 else
4740 {
4741 if (address.offset)
4742 output_addr_const (file, address.offset);
4743
4744 putc ('(', file);
4745 if (address.base)
4746 fputs (M68K_REGNAME (REGNO (address.base)), file);
4747 }
4748 /* Print the ",index" component, if any. */
4749 if (address.index)
4750 {
4751 if (address.base)
4752 putc (',', file);
4753 fprintf (file, "%s.%c",
4754 M68K_REGNAME (REGNO (address.index)),
4755 GET_MODE (address.index) == HImode ? 'w' : 'l');
4756 if (address.scale != 1)
4757 fprintf (file, "*%d", address.scale);
4758 }
4759 putc (')', file);
4760 }
4761 else /* !MOTOROLA */
4762 {
4763 if (!address.offset && !address.index)
4764 fprintf (file, "%s@", M68K_REGNAME (REGNO (address.base)));
4765 else
4766 {
4767 /* Print the "base@(offset" component. */
4768 if (labelno >= 0)
4769 asm_fprintf (file, "%Rpc@(%LL%d", labelno);
4770 else
4771 {
4772 if (address.base)
4773 fputs (M68K_REGNAME (REGNO (address.base)), file);
4774 fprintf (file, "@(");
4775 if (address.offset)
4776 output_addr_const (file, address.offset);
4777 }
4778 /* Print the ",index" component, if any. */
4779 if (address.index)
4780 {
4781 fprintf (file, ",%s:%c",
4782 M68K_REGNAME (REGNO (address.index)),
4783 GET_MODE (address.index) == HImode ? 'w' : 'l');
4784 if (address.scale != 1)
4785 fprintf (file, ":%d", address.scale);
4786 }
4787 putc (')', file);
4788 }
4789 }
4790 }
4791 }
4792 \f
4793 /* Check for cases where a clr insns can be omitted from code using
4794 strict_low_part sets. For example, the second clrl here is not needed:
4795 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
4796
4797 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
4798 insn we are checking for redundancy. TARGET is the register set by the
4799 clear insn. */
4800
4801 bool
4802 strict_low_part_peephole_ok (machine_mode mode, rtx_insn *first_insn,
4803 rtx target)
4804 {
4805 rtx_insn *p = first_insn;
4806
4807 while ((p = PREV_INSN (p)))
4808 {
4809 if (NOTE_INSN_BASIC_BLOCK_P (p))
4810 return false;
4811
4812 if (NOTE_P (p))
4813 continue;
4814
4815 /* If it isn't an insn, then give up. */
4816 if (!INSN_P (p))
4817 return false;
4818
4819 if (reg_set_p (target, p))
4820 {
4821 rtx set = single_set (p);
4822 rtx dest;
4823
4824 /* If it isn't an easy to recognize insn, then give up. */
4825 if (! set)
4826 return false;
4827
4828 dest = SET_DEST (set);
4829
4830 /* If this sets the entire target register to zero, then our
4831 first_insn is redundant. */
4832 if (rtx_equal_p (dest, target)
4833 && SET_SRC (set) == const0_rtx)
4834 return true;
4835 else if (GET_CODE (dest) == STRICT_LOW_PART
4836 && GET_CODE (XEXP (dest, 0)) == REG
4837 && REGNO (XEXP (dest, 0)) == REGNO (target)
4838 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
4839 <= GET_MODE_SIZE (mode)))
4840 /* This is a strict low part set which modifies less than
4841 we are using, so it is safe. */
4842 ;
4843 else
4844 return false;
4845 }
4846 }
4847
4848 return false;
4849 }
4850
4851 /* Operand predicates for implementing asymmetric pc-relative addressing
4852 on m68k. The m68k supports pc-relative addressing (mode 7, register 2)
4853 when used as a source operand, but not as a destination operand.
4854
4855 We model this by restricting the meaning of the basic predicates
4856 (general_operand, memory_operand, etc) to forbid the use of this
4857 addressing mode, and then define the following predicates that permit
4858 this addressing mode. These predicates can then be used for the
4859 source operands of the appropriate instructions.
4860
4861 n.b. While it is theoretically possible to change all machine patterns
4862 to use this addressing more where permitted by the architecture,
4863 it has only been implemented for "common" cases: SImode, HImode, and
4864 QImode operands, and only for the principle operations that would
4865 require this addressing mode: data movement and simple integer operations.
4866
4867 In parallel with these new predicates, two new constraint letters
4868 were defined: 'S' and 'T'. 'S' is the -mpcrel analog of 'm'.
4869 'T' replaces 's' in the non-pcrel case. It is a no-op in the pcrel case.
4870 In the pcrel case 's' is only valid in combination with 'a' registers.
4871 See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
4872 of how these constraints are used.
4873
4874 The use of these predicates is strictly optional, though patterns that
4875 don't will cause an extra reload register to be allocated where one
4876 was not necessary:
4877
4878 lea (abc:w,%pc),%a0 ; need to reload address
4879 moveq &1,%d1 ; since write to pc-relative space
4880 movel %d1,%a0@ ; is not allowed
4881 ...
4882 lea (abc:w,%pc),%a1 ; no need to reload address here
4883 movel %a1@,%d0 ; since "movel (abc:w,%pc),%d0" is ok
4884
4885 For more info, consult tiemann@cygnus.com.
4886
4887
4888 All of the ugliness with predicates and constraints is due to the
4889 simple fact that the m68k does not allow a pc-relative addressing
4890 mode as a destination. gcc does not distinguish between source and
4891 destination addresses. Hence, if we claim that pc-relative address
4892 modes are valid, e.g. TARGET_LEGITIMATE_ADDRESS_P accepts them, then we
4893 end up with invalid code. To get around this problem, we left
4894 pc-relative modes as invalid addresses, and then added special
4895 predicates and constraints to accept them.
4896
4897 A cleaner way to handle this is to modify gcc to distinguish
4898 between source and destination addresses. We can then say that
4899 pc-relative is a valid source address but not a valid destination
4900 address, and hopefully avoid a lot of the predicate and constraint
4901 hackery. Unfortunately, this would be a pretty big change. It would
4902 be a useful change for a number of ports, but there aren't any current
4903 plans to undertake this.
4904
4905 ***************************************************************************/
4906
4907
4908 const char *
4909 output_andsi3 (rtx *operands)
4910 {
4911 int logval;
4912 if (GET_CODE (operands[2]) == CONST_INT
4913 && (INTVAL (operands[2]) | 0xffff) == -1
4914 && (DATA_REG_P (operands[0])
4915 || offsettable_memref_p (operands[0]))
4916 && !TARGET_COLDFIRE)
4917 {
4918 if (GET_CODE (operands[0]) != REG)
4919 operands[0] = adjust_address (operands[0], HImode, 2);
4920 operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
4921 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4922 CC_STATUS_INIT;
4923 if (operands[2] == const0_rtx)
4924 return "clr%.w %0";
4925 return "and%.w %2,%0";
4926 }
4927 if (GET_CODE (operands[2]) == CONST_INT
4928 && (logval = exact_log2 (~ INTVAL (operands[2]) & 0xffffffff)) >= 0
4929 && (DATA_REG_P (operands[0])
4930 || offsettable_memref_p (operands[0])))
4931 {
4932 if (DATA_REG_P (operands[0]))
4933 operands[1] = GEN_INT (logval);
4934 else
4935 {
4936 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4937 operands[1] = GEN_INT (logval % 8);
4938 }
4939 /* This does not set condition codes in a standard way. */
4940 CC_STATUS_INIT;
4941 return "bclr %1,%0";
4942 }
4943 return "and%.l %2,%0";
4944 }
4945
4946 const char *
4947 output_iorsi3 (rtx *operands)
4948 {
4949 register int logval;
4950 if (GET_CODE (operands[2]) == CONST_INT
4951 && INTVAL (operands[2]) >> 16 == 0
4952 && (DATA_REG_P (operands[0])
4953 || offsettable_memref_p (operands[0]))
4954 && !TARGET_COLDFIRE)
4955 {
4956 if (GET_CODE (operands[0]) != REG)
4957 operands[0] = adjust_address (operands[0], HImode, 2);
4958 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4959 CC_STATUS_INIT;
4960 if (INTVAL (operands[2]) == 0xffff)
4961 return "mov%.w %2,%0";
4962 return "or%.w %2,%0";
4963 }
4964 if (GET_CODE (operands[2]) == CONST_INT
4965 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
4966 && (DATA_REG_P (operands[0])
4967 || offsettable_memref_p (operands[0])))
4968 {
4969 if (DATA_REG_P (operands[0]))
4970 operands[1] = GEN_INT (logval);
4971 else
4972 {
4973 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4974 operands[1] = GEN_INT (logval % 8);
4975 }
4976 CC_STATUS_INIT;
4977 return "bset %1,%0";
4978 }
4979 return "or%.l %2,%0";
4980 }
4981
4982 const char *
4983 output_xorsi3 (rtx *operands)
4984 {
4985 register int logval;
4986 if (GET_CODE (operands[2]) == CONST_INT
4987 && INTVAL (operands[2]) >> 16 == 0
4988 && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
4989 && !TARGET_COLDFIRE)
4990 {
4991 if (! DATA_REG_P (operands[0]))
4992 operands[0] = adjust_address (operands[0], HImode, 2);
4993 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4994 CC_STATUS_INIT;
4995 if (INTVAL (operands[2]) == 0xffff)
4996 return "not%.w %0";
4997 return "eor%.w %2,%0";
4998 }
4999 if (GET_CODE (operands[2]) == CONST_INT
5000 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
5001 && (DATA_REG_P (operands[0])
5002 || offsettable_memref_p (operands[0])))
5003 {
5004 if (DATA_REG_P (operands[0]))
5005 operands[1] = GEN_INT (logval);
5006 else
5007 {
5008 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
5009 operands[1] = GEN_INT (logval % 8);
5010 }
5011 CC_STATUS_INIT;
5012 return "bchg %1,%0";
5013 }
5014 return "eor%.l %2,%0";
5015 }
5016
5017 /* Return the instruction that should be used for a call to address X,
5018 which is known to be in operand 0. */
5019
5020 const char *
5021 output_call (rtx x)
5022 {
5023 if (symbolic_operand (x, VOIDmode))
5024 return m68k_symbolic_call;
5025 else
5026 return "jsr %a0";
5027 }
5028
5029 /* Likewise sibling calls. */
5030
5031 const char *
5032 output_sibcall (rtx x)
5033 {
5034 if (symbolic_operand (x, VOIDmode))
5035 return m68k_symbolic_jump;
5036 else
5037 return "jmp %a0";
5038 }
5039
5040 static void
5041 m68k_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
5042 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
5043 tree function)
5044 {
5045 rtx this_slot, offset, addr, mem, tmp;
5046 rtx_insn *insn;
5047
5048 /* Avoid clobbering the struct value reg by using the
5049 static chain reg as a temporary. */
5050 tmp = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5051
5052 /* Pretend to be a post-reload pass while generating rtl. */
5053 reload_completed = 1;
5054
5055 /* The "this" pointer is stored at 4(%sp). */
5056 this_slot = gen_rtx_MEM (Pmode, plus_constant (Pmode,
5057 stack_pointer_rtx, 4));
5058
5059 /* Add DELTA to THIS. */
5060 if (delta != 0)
5061 {
5062 /* Make the offset a legitimate operand for memory addition. */
5063 offset = GEN_INT (delta);
5064 if ((delta < -8 || delta > 8)
5065 && (TARGET_COLDFIRE || USE_MOVQ (delta)))
5066 {
5067 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), offset);
5068 offset = gen_rtx_REG (Pmode, D0_REG);
5069 }
5070 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5071 copy_rtx (this_slot), offset));
5072 }
5073
5074 /* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
5075 if (vcall_offset != 0)
5076 {
5077 /* Set the static chain register to *THIS. */
5078 emit_move_insn (tmp, this_slot);
5079 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
5080
5081 /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
5082 addr = plus_constant (Pmode, tmp, vcall_offset);
5083 if (!m68k_legitimate_address_p (Pmode, addr, true))
5084 {
5085 emit_insn (gen_rtx_SET (tmp, addr));
5086 addr = tmp;
5087 }
5088
5089 /* Load the offset into %d0 and add it to THIS. */
5090 emit_move_insn (gen_rtx_REG (Pmode, D0_REG),
5091 gen_rtx_MEM (Pmode, addr));
5092 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5093 copy_rtx (this_slot),
5094 gen_rtx_REG (Pmode, D0_REG)));
5095 }
5096
5097 /* Jump to the target function. Use a sibcall if direct jumps are
5098 allowed, otherwise load the address into a register first. */
5099 mem = DECL_RTL (function);
5100 if (!sibcall_operand (XEXP (mem, 0), VOIDmode))
5101 {
5102 gcc_assert (flag_pic);
5103
5104 if (!TARGET_SEP_DATA)
5105 {
5106 /* Use the static chain register as a temporary (call-clobbered)
5107 GOT pointer for this function. We can use the static chain
5108 register because it isn't live on entry to the thunk. */
5109 SET_REGNO (pic_offset_table_rtx, STATIC_CHAIN_REGNUM);
5110 emit_insn (gen_load_got (pic_offset_table_rtx));
5111 }
5112 legitimize_pic_address (XEXP (mem, 0), Pmode, tmp);
5113 mem = replace_equiv_address (mem, tmp);
5114 }
5115 insn = emit_call_insn (gen_sibcall (mem, const0_rtx));
5116 SIBLING_CALL_P (insn) = 1;
5117
5118 /* Run just enough of rest_of_compilation. */
5119 insn = get_insns ();
5120 split_all_insns_noflow ();
5121 final_start_function (insn, file, 1);
5122 final (insn, file, 1);
5123 final_end_function ();
5124
5125 /* Clean up the vars set above. */
5126 reload_completed = 0;
5127
5128 /* Restore the original PIC register. */
5129 if (flag_pic)
5130 SET_REGNO (pic_offset_table_rtx, PIC_REG);
5131 }
5132
5133 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
5134
5135 static rtx
5136 m68k_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
5137 int incoming ATTRIBUTE_UNUSED)
5138 {
5139 return gen_rtx_REG (Pmode, M68K_STRUCT_VALUE_REGNUM);
5140 }
5141
5142 /* Return nonzero if register old_reg can be renamed to register new_reg. */
5143 int
5144 m68k_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
5145 unsigned int new_reg)
5146 {
5147
5148 /* Interrupt functions can only use registers that have already been
5149 saved by the prologue, even if they would normally be
5150 call-clobbered. */
5151
5152 if ((m68k_get_function_kind (current_function_decl)
5153 == m68k_fk_interrupt_handler)
5154 && !df_regs_ever_live_p (new_reg))
5155 return 0;
5156
5157 return 1;
5158 }
5159
5160 /* Value is true if hard register REGNO can hold a value of machine-mode
5161 MODE. On the 68000, we let the cpu registers can hold any mode, but
5162 restrict the 68881 registers to floating-point modes. */
5163
5164 bool
5165 m68k_regno_mode_ok (int regno, machine_mode mode)
5166 {
5167 if (DATA_REGNO_P (regno))
5168 {
5169 /* Data Registers, can hold aggregate if fits in. */
5170 if (regno + GET_MODE_SIZE (mode) / 4 <= 8)
5171 return true;
5172 }
5173 else if (ADDRESS_REGNO_P (regno))
5174 {
5175 if (regno + GET_MODE_SIZE (mode) / 4 <= 16)
5176 return true;
5177 }
5178 else if (FP_REGNO_P (regno))
5179 {
5180 /* FPU registers, hold float or complex float of long double or
5181 smaller. */
5182 if ((GET_MODE_CLASS (mode) == MODE_FLOAT
5183 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
5184 && GET_MODE_UNIT_SIZE (mode) <= TARGET_FP_REG_SIZE)
5185 return true;
5186 }
5187 return false;
5188 }
5189
5190 /* Implement SECONDARY_RELOAD_CLASS. */
5191
5192 enum reg_class
5193 m68k_secondary_reload_class (enum reg_class rclass,
5194 machine_mode mode, rtx x)
5195 {
5196 int regno;
5197
5198 regno = true_regnum (x);
5199
5200 /* If one operand of a movqi is an address register, the other
5201 operand must be a general register or constant. Other types
5202 of operand must be reloaded through a data register. */
5203 if (GET_MODE_SIZE (mode) == 1
5204 && reg_classes_intersect_p (rclass, ADDR_REGS)
5205 && !(INT_REGNO_P (regno) || CONSTANT_P (x)))
5206 return DATA_REGS;
5207
5208 /* PC-relative addresses must be loaded into an address register first. */
5209 if (TARGET_PCREL
5210 && !reg_class_subset_p (rclass, ADDR_REGS)
5211 && symbolic_operand (x, VOIDmode))
5212 return ADDR_REGS;
5213
5214 return NO_REGS;
5215 }
5216
5217 /* Implement PREFERRED_RELOAD_CLASS. */
5218
5219 enum reg_class
5220 m68k_preferred_reload_class (rtx x, enum reg_class rclass)
5221 {
5222 enum reg_class secondary_class;
5223
5224 /* If RCLASS might need a secondary reload, try restricting it to
5225 a class that doesn't. */
5226 secondary_class = m68k_secondary_reload_class (rclass, GET_MODE (x), x);
5227 if (secondary_class != NO_REGS
5228 && reg_class_subset_p (secondary_class, rclass))
5229 return secondary_class;
5230
5231 /* Prefer to use moveq for in-range constants. */
5232 if (GET_CODE (x) == CONST_INT
5233 && reg_class_subset_p (DATA_REGS, rclass)
5234 && IN_RANGE (INTVAL (x), -0x80, 0x7f))
5235 return DATA_REGS;
5236
5237 /* ??? Do we really need this now? */
5238 if (GET_CODE (x) == CONST_DOUBLE
5239 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
5240 {
5241 if (TARGET_HARD_FLOAT && reg_class_subset_p (FP_REGS, rclass))
5242 return FP_REGS;
5243
5244 return NO_REGS;
5245 }
5246
5247 return rclass;
5248 }
5249
5250 /* Return floating point values in a 68881 register. This makes 68881 code
5251 a little bit faster. It also makes -msoft-float code incompatible with
5252 hard-float code, so people have to be careful not to mix the two.
5253 For ColdFire it was decided the ABI incompatibility is undesirable.
5254 If there is need for a hard-float ABI it is probably worth doing it
5255 properly and also passing function arguments in FP registers. */
5256 rtx
5257 m68k_libcall_value (machine_mode mode)
5258 {
5259 switch (mode) {
5260 case SFmode:
5261 case DFmode:
5262 case XFmode:
5263 if (TARGET_68881)
5264 return gen_rtx_REG (mode, FP0_REG);
5265 break;
5266 default:
5267 break;
5268 }
5269
5270 return gen_rtx_REG (mode, m68k_libcall_value_in_a0_p ? A0_REG : D0_REG);
5271 }
5272
5273 /* Location in which function value is returned.
5274 NOTE: Due to differences in ABIs, don't call this function directly,
5275 use FUNCTION_VALUE instead. */
5276 rtx
5277 m68k_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
5278 {
5279 machine_mode mode;
5280
5281 mode = TYPE_MODE (valtype);
5282 switch (mode) {
5283 case SFmode:
5284 case DFmode:
5285 case XFmode:
5286 if (TARGET_68881)
5287 return gen_rtx_REG (mode, FP0_REG);
5288 break;
5289 default:
5290 break;
5291 }
5292
5293 /* If the function returns a pointer, push that into %a0. */
5294 if (func && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (func))))
5295 /* For compatibility with the large body of existing code which
5296 does not always properly declare external functions returning
5297 pointer types, the m68k/SVR4 convention is to copy the value
5298 returned for pointer functions from a0 to d0 in the function
5299 epilogue, so that callers that have neglected to properly
5300 declare the callee can still find the correct return value in
5301 d0. */
5302 return gen_rtx_PARALLEL
5303 (mode,
5304 gen_rtvec (2,
5305 gen_rtx_EXPR_LIST (VOIDmode,
5306 gen_rtx_REG (mode, A0_REG),
5307 const0_rtx),
5308 gen_rtx_EXPR_LIST (VOIDmode,
5309 gen_rtx_REG (mode, D0_REG),
5310 const0_rtx)));
5311 else if (POINTER_TYPE_P (valtype))
5312 return gen_rtx_REG (mode, A0_REG);
5313 else
5314 return gen_rtx_REG (mode, D0_REG);
5315 }
5316
5317 /* Worker function for TARGET_RETURN_IN_MEMORY. */
5318 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
5319 static bool
5320 m68k_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
5321 {
5322 machine_mode mode = TYPE_MODE (type);
5323
5324 if (mode == BLKmode)
5325 return true;
5326
5327 /* If TYPE's known alignment is less than the alignment of MODE that
5328 would contain the structure, then return in memory. We need to
5329 do so to maintain the compatibility between code compiled with
5330 -mstrict-align and that compiled with -mno-strict-align. */
5331 if (AGGREGATE_TYPE_P (type)
5332 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (mode))
5333 return true;
5334
5335 return false;
5336 }
5337 #endif
5338
5339 /* CPU to schedule the program for. */
5340 enum attr_cpu m68k_sched_cpu;
5341
5342 /* MAC to schedule the program for. */
5343 enum attr_mac m68k_sched_mac;
5344
5345 /* Operand type. */
5346 enum attr_op_type
5347 {
5348 /* No operand. */
5349 OP_TYPE_NONE,
5350
5351 /* Integer register. */
5352 OP_TYPE_RN,
5353
5354 /* FP register. */
5355 OP_TYPE_FPN,
5356
5357 /* Implicit mem reference (e.g. stack). */
5358 OP_TYPE_MEM1,
5359
5360 /* Memory without offset or indexing. EA modes 2, 3 and 4. */
5361 OP_TYPE_MEM234,
5362
5363 /* Memory with offset but without indexing. EA mode 5. */
5364 OP_TYPE_MEM5,
5365
5366 /* Memory with indexing. EA mode 6. */
5367 OP_TYPE_MEM6,
5368
5369 /* Memory referenced by absolute address. EA mode 7. */
5370 OP_TYPE_MEM7,
5371
5372 /* Immediate operand that doesn't require extension word. */
5373 OP_TYPE_IMM_Q,
5374
5375 /* Immediate 16 bit operand. */
5376 OP_TYPE_IMM_W,
5377
5378 /* Immediate 32 bit operand. */
5379 OP_TYPE_IMM_L
5380 };
5381
5382 /* Return type of memory ADDR_RTX refers to. */
5383 static enum attr_op_type
5384 sched_address_type (machine_mode mode, rtx addr_rtx)
5385 {
5386 struct m68k_address address;
5387
5388 if (symbolic_operand (addr_rtx, VOIDmode))
5389 return OP_TYPE_MEM7;
5390
5391 if (!m68k_decompose_address (mode, addr_rtx,
5392 reload_completed, &address))
5393 {
5394 gcc_assert (!reload_completed);
5395 /* Reload will likely fix the address to be in the register. */
5396 return OP_TYPE_MEM234;
5397 }
5398
5399 if (address.scale != 0)
5400 return OP_TYPE_MEM6;
5401
5402 if (address.base != NULL_RTX)
5403 {
5404 if (address.offset == NULL_RTX)
5405 return OP_TYPE_MEM234;
5406
5407 return OP_TYPE_MEM5;
5408 }
5409
5410 gcc_assert (address.offset != NULL_RTX);
5411
5412 return OP_TYPE_MEM7;
5413 }
5414
5415 /* Return X or Y (depending on OPX_P) operand of INSN. */
5416 static rtx
5417 sched_get_operand (rtx_insn *insn, bool opx_p)
5418 {
5419 int i;
5420
5421 if (recog_memoized (insn) < 0)
5422 gcc_unreachable ();
5423
5424 extract_constrain_insn_cached (insn);
5425
5426 if (opx_p)
5427 i = get_attr_opx (insn);
5428 else
5429 i = get_attr_opy (insn);
5430
5431 if (i >= recog_data.n_operands)
5432 return NULL;
5433
5434 return recog_data.operand[i];
5435 }
5436
5437 /* Return type of INSN's operand X (if OPX_P) or operand Y (if !OPX_P).
5438 If ADDRESS_P is true, return type of memory location operand refers to. */
5439 static enum attr_op_type
5440 sched_attr_op_type (rtx_insn *insn, bool opx_p, bool address_p)
5441 {
5442 rtx op;
5443
5444 op = sched_get_operand (insn, opx_p);
5445
5446 if (op == NULL)
5447 {
5448 gcc_assert (!reload_completed);
5449 return OP_TYPE_RN;
5450 }
5451
5452 if (address_p)
5453 return sched_address_type (QImode, op);
5454
5455 if (memory_operand (op, VOIDmode))
5456 return sched_address_type (GET_MODE (op), XEXP (op, 0));
5457
5458 if (register_operand (op, VOIDmode))
5459 {
5460 if ((!reload_completed && FLOAT_MODE_P (GET_MODE (op)))
5461 || (reload_completed && FP_REG_P (op)))
5462 return OP_TYPE_FPN;
5463
5464 return OP_TYPE_RN;
5465 }
5466
5467 if (GET_CODE (op) == CONST_INT)
5468 {
5469 int ival;
5470
5471 ival = INTVAL (op);
5472
5473 /* Check for quick constants. */
5474 switch (get_attr_type (insn))
5475 {
5476 case TYPE_ALUQ_L:
5477 if (IN_RANGE (ival, 1, 8) || IN_RANGE (ival, -8, -1))
5478 return OP_TYPE_IMM_Q;
5479
5480 gcc_assert (!reload_completed);
5481 break;
5482
5483 case TYPE_MOVEQ_L:
5484 if (USE_MOVQ (ival))
5485 return OP_TYPE_IMM_Q;
5486
5487 gcc_assert (!reload_completed);
5488 break;
5489
5490 case TYPE_MOV3Q_L:
5491 if (valid_mov3q_const (ival))
5492 return OP_TYPE_IMM_Q;
5493
5494 gcc_assert (!reload_completed);
5495 break;
5496
5497 default:
5498 break;
5499 }
5500
5501 if (IN_RANGE (ival, -0x8000, 0x7fff))
5502 return OP_TYPE_IMM_W;
5503
5504 return OP_TYPE_IMM_L;
5505 }
5506
5507 if (GET_CODE (op) == CONST_DOUBLE)
5508 {
5509 switch (GET_MODE (op))
5510 {
5511 case SFmode:
5512 return OP_TYPE_IMM_W;
5513
5514 case VOIDmode:
5515 case DFmode:
5516 return OP_TYPE_IMM_L;
5517
5518 default:
5519 gcc_unreachable ();
5520 }
5521 }
5522
5523 if (GET_CODE (op) == CONST
5524 || symbolic_operand (op, VOIDmode)
5525 || LABEL_P (op))
5526 {
5527 switch (GET_MODE (op))
5528 {
5529 case QImode:
5530 return OP_TYPE_IMM_Q;
5531
5532 case HImode:
5533 return OP_TYPE_IMM_W;
5534
5535 case SImode:
5536 return OP_TYPE_IMM_L;
5537
5538 default:
5539 if (symbolic_operand (m68k_unwrap_symbol (op, false), VOIDmode))
5540 /* Just a guess. */
5541 return OP_TYPE_IMM_W;
5542
5543 return OP_TYPE_IMM_L;
5544 }
5545 }
5546
5547 gcc_assert (!reload_completed);
5548
5549 if (FLOAT_MODE_P (GET_MODE (op)))
5550 return OP_TYPE_FPN;
5551
5552 return OP_TYPE_RN;
5553 }
5554
5555 /* Implement opx_type attribute.
5556 Return type of INSN's operand X.
5557 If ADDRESS_P is true, return type of memory location operand refers to. */
5558 enum attr_opx_type
5559 m68k_sched_attr_opx_type (rtx_insn *insn, int address_p)
5560 {
5561 switch (sched_attr_op_type (insn, true, address_p != 0))
5562 {
5563 case OP_TYPE_RN:
5564 return OPX_TYPE_RN;
5565
5566 case OP_TYPE_FPN:
5567 return OPX_TYPE_FPN;
5568
5569 case OP_TYPE_MEM1:
5570 return OPX_TYPE_MEM1;
5571
5572 case OP_TYPE_MEM234:
5573 return OPX_TYPE_MEM234;
5574
5575 case OP_TYPE_MEM5:
5576 return OPX_TYPE_MEM5;
5577
5578 case OP_TYPE_MEM6:
5579 return OPX_TYPE_MEM6;
5580
5581 case OP_TYPE_MEM7:
5582 return OPX_TYPE_MEM7;
5583
5584 case OP_TYPE_IMM_Q:
5585 return OPX_TYPE_IMM_Q;
5586
5587 case OP_TYPE_IMM_W:
5588 return OPX_TYPE_IMM_W;
5589
5590 case OP_TYPE_IMM_L:
5591 return OPX_TYPE_IMM_L;
5592
5593 default:
5594 gcc_unreachable ();
5595 }
5596 }
5597
5598 /* Implement opy_type attribute.
5599 Return type of INSN's operand Y.
5600 If ADDRESS_P is true, return type of memory location operand refers to. */
5601 enum attr_opy_type
5602 m68k_sched_attr_opy_type (rtx_insn *insn, int address_p)
5603 {
5604 switch (sched_attr_op_type (insn, false, address_p != 0))
5605 {
5606 case OP_TYPE_RN:
5607 return OPY_TYPE_RN;
5608
5609 case OP_TYPE_FPN:
5610 return OPY_TYPE_FPN;
5611
5612 case OP_TYPE_MEM1:
5613 return OPY_TYPE_MEM1;
5614
5615 case OP_TYPE_MEM234:
5616 return OPY_TYPE_MEM234;
5617
5618 case OP_TYPE_MEM5:
5619 return OPY_TYPE_MEM5;
5620
5621 case OP_TYPE_MEM6:
5622 return OPY_TYPE_MEM6;
5623
5624 case OP_TYPE_MEM7:
5625 return OPY_TYPE_MEM7;
5626
5627 case OP_TYPE_IMM_Q:
5628 return OPY_TYPE_IMM_Q;
5629
5630 case OP_TYPE_IMM_W:
5631 return OPY_TYPE_IMM_W;
5632
5633 case OP_TYPE_IMM_L:
5634 return OPY_TYPE_IMM_L;
5635
5636 default:
5637 gcc_unreachable ();
5638 }
5639 }
5640
5641 /* Return size of INSN as int. */
5642 static int
5643 sched_get_attr_size_int (rtx_insn *insn)
5644 {
5645 int size;
5646
5647 switch (get_attr_type (insn))
5648 {
5649 case TYPE_IGNORE:
5650 /* There should be no references to m68k_sched_attr_size for 'ignore'
5651 instructions. */
5652 gcc_unreachable ();
5653 return 0;
5654
5655 case TYPE_MUL_L:
5656 size = 2;
5657 break;
5658
5659 default:
5660 size = 1;
5661 break;
5662 }
5663
5664 switch (get_attr_opx_type (insn))
5665 {
5666 case OPX_TYPE_NONE:
5667 case OPX_TYPE_RN:
5668 case OPX_TYPE_FPN:
5669 case OPX_TYPE_MEM1:
5670 case OPX_TYPE_MEM234:
5671 case OPY_TYPE_IMM_Q:
5672 break;
5673
5674 case OPX_TYPE_MEM5:
5675 case OPX_TYPE_MEM6:
5676 /* Here we assume that most absolute references are short. */
5677 case OPX_TYPE_MEM7:
5678 case OPY_TYPE_IMM_W:
5679 ++size;
5680 break;
5681
5682 case OPY_TYPE_IMM_L:
5683 size += 2;
5684 break;
5685
5686 default:
5687 gcc_unreachable ();
5688 }
5689
5690 switch (get_attr_opy_type (insn))
5691 {
5692 case OPY_TYPE_NONE:
5693 case OPY_TYPE_RN:
5694 case OPY_TYPE_FPN:
5695 case OPY_TYPE_MEM1:
5696 case OPY_TYPE_MEM234:
5697 case OPY_TYPE_IMM_Q:
5698 break;
5699
5700 case OPY_TYPE_MEM5:
5701 case OPY_TYPE_MEM6:
5702 /* Here we assume that most absolute references are short. */
5703 case OPY_TYPE_MEM7:
5704 case OPY_TYPE_IMM_W:
5705 ++size;
5706 break;
5707
5708 case OPY_TYPE_IMM_L:
5709 size += 2;
5710 break;
5711
5712 default:
5713 gcc_unreachable ();
5714 }
5715
5716 if (size > 3)
5717 {
5718 gcc_assert (!reload_completed);
5719
5720 size = 3;
5721 }
5722
5723 return size;
5724 }
5725
5726 /* Return size of INSN as attribute enum value. */
5727 enum attr_size
5728 m68k_sched_attr_size (rtx_insn *insn)
5729 {
5730 switch (sched_get_attr_size_int (insn))
5731 {
5732 case 1:
5733 return SIZE_1;
5734
5735 case 2:
5736 return SIZE_2;
5737
5738 case 3:
5739 return SIZE_3;
5740
5741 default:
5742 gcc_unreachable ();
5743 }
5744 }
5745
5746 /* Return operand X or Y (depending on OPX_P) of INSN,
5747 if it is a MEM, or NULL overwise. */
5748 static enum attr_op_type
5749 sched_get_opxy_mem_type (rtx_insn *insn, bool opx_p)
5750 {
5751 if (opx_p)
5752 {
5753 switch (get_attr_opx_type (insn))
5754 {
5755 case OPX_TYPE_NONE:
5756 case OPX_TYPE_RN:
5757 case OPX_TYPE_FPN:
5758 case OPX_TYPE_IMM_Q:
5759 case OPX_TYPE_IMM_W:
5760 case OPX_TYPE_IMM_L:
5761 return OP_TYPE_RN;
5762
5763 case OPX_TYPE_MEM1:
5764 case OPX_TYPE_MEM234:
5765 case OPX_TYPE_MEM5:
5766 case OPX_TYPE_MEM7:
5767 return OP_TYPE_MEM1;
5768
5769 case OPX_TYPE_MEM6:
5770 return OP_TYPE_MEM6;
5771
5772 default:
5773 gcc_unreachable ();
5774 }
5775 }
5776 else
5777 {
5778 switch (get_attr_opy_type (insn))
5779 {
5780 case OPY_TYPE_NONE:
5781 case OPY_TYPE_RN:
5782 case OPY_TYPE_FPN:
5783 case OPY_TYPE_IMM_Q:
5784 case OPY_TYPE_IMM_W:
5785 case OPY_TYPE_IMM_L:
5786 return OP_TYPE_RN;
5787
5788 case OPY_TYPE_MEM1:
5789 case OPY_TYPE_MEM234:
5790 case OPY_TYPE_MEM5:
5791 case OPY_TYPE_MEM7:
5792 return OP_TYPE_MEM1;
5793
5794 case OPY_TYPE_MEM6:
5795 return OP_TYPE_MEM6;
5796
5797 default:
5798 gcc_unreachable ();
5799 }
5800 }
5801 }
5802
5803 /* Implement op_mem attribute. */
5804 enum attr_op_mem
5805 m68k_sched_attr_op_mem (rtx_insn *insn)
5806 {
5807 enum attr_op_type opx;
5808 enum attr_op_type opy;
5809
5810 opx = sched_get_opxy_mem_type (insn, true);
5811 opy = sched_get_opxy_mem_type (insn, false);
5812
5813 if (opy == OP_TYPE_RN && opx == OP_TYPE_RN)
5814 return OP_MEM_00;
5815
5816 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM1)
5817 {
5818 switch (get_attr_opx_access (insn))
5819 {
5820 case OPX_ACCESS_R:
5821 return OP_MEM_10;
5822
5823 case OPX_ACCESS_W:
5824 return OP_MEM_01;
5825
5826 case OPX_ACCESS_RW:
5827 return OP_MEM_11;
5828
5829 default:
5830 gcc_unreachable ();
5831 }
5832 }
5833
5834 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM6)
5835 {
5836 switch (get_attr_opx_access (insn))
5837 {
5838 case OPX_ACCESS_R:
5839 return OP_MEM_I0;
5840
5841 case OPX_ACCESS_W:
5842 return OP_MEM_0I;
5843
5844 case OPX_ACCESS_RW:
5845 return OP_MEM_I1;
5846
5847 default:
5848 gcc_unreachable ();
5849 }
5850 }
5851
5852 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_RN)
5853 return OP_MEM_10;
5854
5855 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM1)
5856 {
5857 switch (get_attr_opx_access (insn))
5858 {
5859 case OPX_ACCESS_W:
5860 return OP_MEM_11;
5861
5862 default:
5863 gcc_assert (!reload_completed);
5864 return OP_MEM_11;
5865 }
5866 }
5867
5868 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM6)
5869 {
5870 switch (get_attr_opx_access (insn))
5871 {
5872 case OPX_ACCESS_W:
5873 return OP_MEM_1I;
5874
5875 default:
5876 gcc_assert (!reload_completed);
5877 return OP_MEM_1I;
5878 }
5879 }
5880
5881 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_RN)
5882 return OP_MEM_I0;
5883
5884 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM1)
5885 {
5886 switch (get_attr_opx_access (insn))
5887 {
5888 case OPX_ACCESS_W:
5889 return OP_MEM_I1;
5890
5891 default:
5892 gcc_assert (!reload_completed);
5893 return OP_MEM_I1;
5894 }
5895 }
5896
5897 gcc_assert (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM6);
5898 gcc_assert (!reload_completed);
5899 return OP_MEM_I1;
5900 }
5901
5902 /* Data for ColdFire V4 index bypass.
5903 Producer modifies register that is used as index in consumer with
5904 specified scale. */
5905 static struct
5906 {
5907 /* Producer instruction. */
5908 rtx pro;
5909
5910 /* Consumer instruction. */
5911 rtx con;
5912
5913 /* Scale of indexed memory access within consumer.
5914 Or zero if bypass should not be effective at the moment. */
5915 int scale;
5916 } sched_cfv4_bypass_data;
5917
5918 /* An empty state that is used in m68k_sched_adjust_cost. */
5919 static state_t sched_adjust_cost_state;
5920
5921 /* Implement adjust_cost scheduler hook.
5922 Return adjusted COST of dependency LINK between DEF_INSN and INSN. */
5923 static int
5924 m68k_sched_adjust_cost (rtx_insn *insn, int, rtx_insn *def_insn, int cost,
5925 unsigned int)
5926 {
5927 int delay;
5928
5929 if (recog_memoized (def_insn) < 0
5930 || recog_memoized (insn) < 0)
5931 return cost;
5932
5933 if (sched_cfv4_bypass_data.scale == 1)
5934 /* Handle ColdFire V4 bypass for indexed address with 1x scale. */
5935 {
5936 /* haifa-sched.c: insn_cost () calls bypass_p () just before
5937 targetm.sched.adjust_cost (). Hence, we can be relatively sure
5938 that the data in sched_cfv4_bypass_data is up to date. */
5939 gcc_assert (sched_cfv4_bypass_data.pro == def_insn
5940 && sched_cfv4_bypass_data.con == insn);
5941
5942 if (cost < 3)
5943 cost = 3;
5944
5945 sched_cfv4_bypass_data.pro = NULL;
5946 sched_cfv4_bypass_data.con = NULL;
5947 sched_cfv4_bypass_data.scale = 0;
5948 }
5949 else
5950 gcc_assert (sched_cfv4_bypass_data.pro == NULL
5951 && sched_cfv4_bypass_data.con == NULL
5952 && sched_cfv4_bypass_data.scale == 0);
5953
5954 /* Don't try to issue INSN earlier than DFA permits.
5955 This is especially useful for instructions that write to memory,
5956 as their true dependence (default) latency is better to be set to 0
5957 to workaround alias analysis limitations.
5958 This is, in fact, a machine independent tweak, so, probably,
5959 it should be moved to haifa-sched.c: insn_cost (). */
5960 delay = min_insn_conflict_delay (sched_adjust_cost_state, def_insn, insn);
5961 if (delay > cost)
5962 cost = delay;
5963
5964 return cost;
5965 }
5966
5967 /* Return maximal number of insns that can be scheduled on a single cycle. */
5968 static int
5969 m68k_sched_issue_rate (void)
5970 {
5971 switch (m68k_sched_cpu)
5972 {
5973 case CPU_CFV1:
5974 case CPU_CFV2:
5975 case CPU_CFV3:
5976 return 1;
5977
5978 case CPU_CFV4:
5979 return 2;
5980
5981 default:
5982 gcc_unreachable ();
5983 return 0;
5984 }
5985 }
5986
5987 /* Maximal length of instruction for current CPU.
5988 E.g. it is 3 for any ColdFire core. */
5989 static int max_insn_size;
5990
5991 /* Data to model instruction buffer of CPU. */
5992 struct _sched_ib
5993 {
5994 /* True if instruction buffer model is modeled for current CPU. */
5995 bool enabled_p;
5996
5997 /* Size of the instruction buffer in words. */
5998 int size;
5999
6000 /* Number of filled words in the instruction buffer. */
6001 int filled;
6002
6003 /* Additional information about instruction buffer for CPUs that have
6004 a buffer of instruction records, rather then a plain buffer
6005 of instruction words. */
6006 struct _sched_ib_records
6007 {
6008 /* Size of buffer in records. */
6009 int n_insns;
6010
6011 /* Array to hold data on adjustements made to the size of the buffer. */
6012 int *adjust;
6013
6014 /* Index of the above array. */
6015 int adjust_index;
6016 } records;
6017
6018 /* An insn that reserves (marks empty) one word in the instruction buffer. */
6019 rtx insn;
6020 };
6021
6022 static struct _sched_ib sched_ib;
6023
6024 /* ID of memory unit. */
6025 static int sched_mem_unit_code;
6026
6027 /* Implementation of the targetm.sched.variable_issue () hook.
6028 It is called after INSN was issued. It returns the number of insns
6029 that can possibly get scheduled on the current cycle.
6030 It is used here to determine the effect of INSN on the instruction
6031 buffer. */
6032 static int
6033 m68k_sched_variable_issue (FILE *sched_dump ATTRIBUTE_UNUSED,
6034 int sched_verbose ATTRIBUTE_UNUSED,
6035 rtx_insn *insn, int can_issue_more)
6036 {
6037 int insn_size;
6038
6039 if (recog_memoized (insn) >= 0 && get_attr_type (insn) != TYPE_IGNORE)
6040 {
6041 switch (m68k_sched_cpu)
6042 {
6043 case CPU_CFV1:
6044 case CPU_CFV2:
6045 insn_size = sched_get_attr_size_int (insn);
6046 break;
6047
6048 case CPU_CFV3:
6049 insn_size = sched_get_attr_size_int (insn);
6050
6051 /* ColdFire V3 and V4 cores have instruction buffers that can
6052 accumulate up to 8 instructions regardless of instructions'
6053 sizes. So we should take care not to "prefetch" 24 one-word
6054 or 12 two-words instructions.
6055 To model this behavior we temporarily decrease size of the
6056 buffer by (max_insn_size - insn_size) for next 7 instructions. */
6057 {
6058 int adjust;
6059
6060 adjust = max_insn_size - insn_size;
6061 sched_ib.size -= adjust;
6062
6063 if (sched_ib.filled > sched_ib.size)
6064 sched_ib.filled = sched_ib.size;
6065
6066 sched_ib.records.adjust[sched_ib.records.adjust_index] = adjust;
6067 }
6068
6069 ++sched_ib.records.adjust_index;
6070 if (sched_ib.records.adjust_index == sched_ib.records.n_insns)
6071 sched_ib.records.adjust_index = 0;
6072
6073 /* Undo adjustement we did 7 instructions ago. */
6074 sched_ib.size
6075 += sched_ib.records.adjust[sched_ib.records.adjust_index];
6076
6077 break;
6078
6079 case CPU_CFV4:
6080 gcc_assert (!sched_ib.enabled_p);
6081 insn_size = 0;
6082 break;
6083
6084 default:
6085 gcc_unreachable ();
6086 }
6087
6088 if (insn_size > sched_ib.filled)
6089 /* Scheduling for register pressure does not always take DFA into
6090 account. Workaround instruction buffer not being filled enough. */
6091 {
6092 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
6093 insn_size = sched_ib.filled;
6094 }
6095
6096 --can_issue_more;
6097 }
6098 else if (GET_CODE (PATTERN (insn)) == ASM_INPUT
6099 || asm_noperands (PATTERN (insn)) >= 0)
6100 insn_size = sched_ib.filled;
6101 else
6102 insn_size = 0;
6103
6104 sched_ib.filled -= insn_size;
6105
6106 return can_issue_more;
6107 }
6108
6109 /* Return how many instructions should scheduler lookahead to choose the
6110 best one. */
6111 static int
6112 m68k_sched_first_cycle_multipass_dfa_lookahead (void)
6113 {
6114 return m68k_sched_issue_rate () - 1;
6115 }
6116
6117 /* Implementation of targetm.sched.init_global () hook.
6118 It is invoked once per scheduling pass and is used here
6119 to initialize scheduler constants. */
6120 static void
6121 m68k_sched_md_init_global (FILE *sched_dump ATTRIBUTE_UNUSED,
6122 int sched_verbose ATTRIBUTE_UNUSED,
6123 int n_insns ATTRIBUTE_UNUSED)
6124 {
6125 /* Check that all instructions have DFA reservations and
6126 that all instructions can be issued from a clean state. */
6127 if (flag_checking)
6128 {
6129 rtx_insn *insn;
6130 state_t state;
6131
6132 state = alloca (state_size ());
6133
6134 for (insn = get_insns (); insn != NULL; insn = NEXT_INSN (insn))
6135 {
6136 if (INSN_P (insn) && recog_memoized (insn) >= 0)
6137 {
6138 gcc_assert (insn_has_dfa_reservation_p (insn));
6139
6140 state_reset (state);
6141 if (state_transition (state, insn) >= 0)
6142 gcc_unreachable ();
6143 }
6144 }
6145 }
6146
6147 /* Setup target cpu. */
6148
6149 /* ColdFire V4 has a set of features to keep its instruction buffer full
6150 (e.g., a separate memory bus for instructions) and, hence, we do not model
6151 buffer for this CPU. */
6152 sched_ib.enabled_p = (m68k_sched_cpu != CPU_CFV4);
6153
6154 switch (m68k_sched_cpu)
6155 {
6156 case CPU_CFV4:
6157 sched_ib.filled = 0;
6158
6159 /* FALLTHRU */
6160
6161 case CPU_CFV1:
6162 case CPU_CFV2:
6163 max_insn_size = 3;
6164 sched_ib.records.n_insns = 0;
6165 sched_ib.records.adjust = NULL;
6166 break;
6167
6168 case CPU_CFV3:
6169 max_insn_size = 3;
6170 sched_ib.records.n_insns = 8;
6171 sched_ib.records.adjust = XNEWVEC (int, sched_ib.records.n_insns);
6172 break;
6173
6174 default:
6175 gcc_unreachable ();
6176 }
6177
6178 sched_mem_unit_code = get_cpu_unit_code ("cf_mem1");
6179
6180 sched_adjust_cost_state = xmalloc (state_size ());
6181 state_reset (sched_adjust_cost_state);
6182
6183 start_sequence ();
6184 emit_insn (gen_ib ());
6185 sched_ib.insn = get_insns ();
6186 end_sequence ();
6187 }
6188
6189 /* Scheduling pass is now finished. Free/reset static variables. */
6190 static void
6191 m68k_sched_md_finish_global (FILE *dump ATTRIBUTE_UNUSED,
6192 int verbose ATTRIBUTE_UNUSED)
6193 {
6194 sched_ib.insn = NULL;
6195
6196 free (sched_adjust_cost_state);
6197 sched_adjust_cost_state = NULL;
6198
6199 sched_mem_unit_code = 0;
6200
6201 free (sched_ib.records.adjust);
6202 sched_ib.records.adjust = NULL;
6203 sched_ib.records.n_insns = 0;
6204 max_insn_size = 0;
6205 }
6206
6207 /* Implementation of targetm.sched.init () hook.
6208 It is invoked each time scheduler starts on the new block (basic block or
6209 extended basic block). */
6210 static void
6211 m68k_sched_md_init (FILE *sched_dump ATTRIBUTE_UNUSED,
6212 int sched_verbose ATTRIBUTE_UNUSED,
6213 int n_insns ATTRIBUTE_UNUSED)
6214 {
6215 switch (m68k_sched_cpu)
6216 {
6217 case CPU_CFV1:
6218 case CPU_CFV2:
6219 sched_ib.size = 6;
6220 break;
6221
6222 case CPU_CFV3:
6223 sched_ib.size = sched_ib.records.n_insns * max_insn_size;
6224
6225 memset (sched_ib.records.adjust, 0,
6226 sched_ib.records.n_insns * sizeof (*sched_ib.records.adjust));
6227 sched_ib.records.adjust_index = 0;
6228 break;
6229
6230 case CPU_CFV4:
6231 gcc_assert (!sched_ib.enabled_p);
6232 sched_ib.size = 0;
6233 break;
6234
6235 default:
6236 gcc_unreachable ();
6237 }
6238
6239 if (sched_ib.enabled_p)
6240 /* haifa-sched.c: schedule_block () calls advance_cycle () just before
6241 the first cycle. Workaround that. */
6242 sched_ib.filled = -2;
6243 }
6244
6245 /* Implementation of targetm.sched.dfa_pre_advance_cycle () hook.
6246 It is invoked just before current cycle finishes and is used here
6247 to track if instruction buffer got its two words this cycle. */
6248 static void
6249 m68k_sched_dfa_pre_advance_cycle (void)
6250 {
6251 if (!sched_ib.enabled_p)
6252 return;
6253
6254 if (!cpu_unit_reservation_p (curr_state, sched_mem_unit_code))
6255 {
6256 sched_ib.filled += 2;
6257
6258 if (sched_ib.filled > sched_ib.size)
6259 sched_ib.filled = sched_ib.size;
6260 }
6261 }
6262
6263 /* Implementation of targetm.sched.dfa_post_advance_cycle () hook.
6264 It is invoked just after new cycle begins and is used here
6265 to setup number of filled words in the instruction buffer so that
6266 instructions which won't have all their words prefetched would be
6267 stalled for a cycle. */
6268 static void
6269 m68k_sched_dfa_post_advance_cycle (void)
6270 {
6271 int i;
6272
6273 if (!sched_ib.enabled_p)
6274 return;
6275
6276 /* Setup number of prefetched instruction words in the instruction
6277 buffer. */
6278 i = max_insn_size - sched_ib.filled;
6279
6280 while (--i >= 0)
6281 {
6282 if (state_transition (curr_state, sched_ib.insn) >= 0)
6283 /* Pick up scheduler state. */
6284 ++sched_ib.filled;
6285 }
6286 }
6287
6288 /* Return X or Y (depending on OPX_P) operand of INSN,
6289 if it is an integer register, or NULL overwise. */
6290 static rtx
6291 sched_get_reg_operand (rtx_insn *insn, bool opx_p)
6292 {
6293 rtx op = NULL;
6294
6295 if (opx_p)
6296 {
6297 if (get_attr_opx_type (insn) == OPX_TYPE_RN)
6298 {
6299 op = sched_get_operand (insn, true);
6300 gcc_assert (op != NULL);
6301
6302 if (!reload_completed && !REG_P (op))
6303 return NULL;
6304 }
6305 }
6306 else
6307 {
6308 if (get_attr_opy_type (insn) == OPY_TYPE_RN)
6309 {
6310 op = sched_get_operand (insn, false);
6311 gcc_assert (op != NULL);
6312
6313 if (!reload_completed && !REG_P (op))
6314 return NULL;
6315 }
6316 }
6317
6318 return op;
6319 }
6320
6321 /* Return true, if X or Y (depending on OPX_P) operand of INSN
6322 is a MEM. */
6323 static bool
6324 sched_mem_operand_p (rtx_insn *insn, bool opx_p)
6325 {
6326 switch (sched_get_opxy_mem_type (insn, opx_p))
6327 {
6328 case OP_TYPE_MEM1:
6329 case OP_TYPE_MEM6:
6330 return true;
6331
6332 default:
6333 return false;
6334 }
6335 }
6336
6337 /* Return X or Y (depending on OPX_P) operand of INSN,
6338 if it is a MEM, or NULL overwise. */
6339 static rtx
6340 sched_get_mem_operand (rtx_insn *insn, bool must_read_p, bool must_write_p)
6341 {
6342 bool opx_p;
6343 bool opy_p;
6344
6345 opx_p = false;
6346 opy_p = false;
6347
6348 if (must_read_p)
6349 {
6350 opx_p = true;
6351 opy_p = true;
6352 }
6353
6354 if (must_write_p)
6355 {
6356 opx_p = true;
6357 opy_p = false;
6358 }
6359
6360 if (opy_p && sched_mem_operand_p (insn, false))
6361 return sched_get_operand (insn, false);
6362
6363 if (opx_p && sched_mem_operand_p (insn, true))
6364 return sched_get_operand (insn, true);
6365
6366 gcc_unreachable ();
6367 return NULL;
6368 }
6369
6370 /* Return non-zero if PRO modifies register used as part of
6371 address in CON. */
6372 int
6373 m68k_sched_address_bypass_p (rtx_insn *pro, rtx_insn *con)
6374 {
6375 rtx pro_x;
6376 rtx con_mem_read;
6377
6378 pro_x = sched_get_reg_operand (pro, true);
6379 if (pro_x == NULL)
6380 return 0;
6381
6382 con_mem_read = sched_get_mem_operand (con, true, false);
6383 gcc_assert (con_mem_read != NULL);
6384
6385 if (reg_mentioned_p (pro_x, con_mem_read))
6386 return 1;
6387
6388 return 0;
6389 }
6390
6391 /* Helper function for m68k_sched_indexed_address_bypass_p.
6392 if PRO modifies register used as index in CON,
6393 return scale of indexed memory access in CON. Return zero overwise. */
6394 static int
6395 sched_get_indexed_address_scale (rtx_insn *pro, rtx_insn *con)
6396 {
6397 rtx reg;
6398 rtx mem;
6399 struct m68k_address address;
6400
6401 reg = sched_get_reg_operand (pro, true);
6402 if (reg == NULL)
6403 return 0;
6404
6405 mem = sched_get_mem_operand (con, true, false);
6406 gcc_assert (mem != NULL && MEM_P (mem));
6407
6408 if (!m68k_decompose_address (GET_MODE (mem), XEXP (mem, 0), reload_completed,
6409 &address))
6410 gcc_unreachable ();
6411
6412 if (REGNO (reg) == REGNO (address.index))
6413 {
6414 gcc_assert (address.scale != 0);
6415 return address.scale;
6416 }
6417
6418 return 0;
6419 }
6420
6421 /* Return non-zero if PRO modifies register used
6422 as index with scale 2 or 4 in CON. */
6423 int
6424 m68k_sched_indexed_address_bypass_p (rtx_insn *pro, rtx_insn *con)
6425 {
6426 gcc_assert (sched_cfv4_bypass_data.pro == NULL
6427 && sched_cfv4_bypass_data.con == NULL
6428 && sched_cfv4_bypass_data.scale == 0);
6429
6430 switch (sched_get_indexed_address_scale (pro, con))
6431 {
6432 case 1:
6433 /* We can't have a variable latency bypass, so
6434 remember to adjust the insn cost in adjust_cost hook. */
6435 sched_cfv4_bypass_data.pro = pro;
6436 sched_cfv4_bypass_data.con = con;
6437 sched_cfv4_bypass_data.scale = 1;
6438 return 0;
6439
6440 case 2:
6441 case 4:
6442 return 1;
6443
6444 default:
6445 return 0;
6446 }
6447 }
6448
6449 /* We generate a two-instructions program at M_TRAMP :
6450 movea.l &CHAIN_VALUE,%a0
6451 jmp FNADDR
6452 where %a0 can be modified by changing STATIC_CHAIN_REGNUM. */
6453
6454 static void
6455 m68k_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
6456 {
6457 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
6458 rtx mem;
6459
6460 gcc_assert (ADDRESS_REGNO_P (STATIC_CHAIN_REGNUM));
6461
6462 mem = adjust_address (m_tramp, HImode, 0);
6463 emit_move_insn (mem, GEN_INT(0x207C + ((STATIC_CHAIN_REGNUM-8) << 9)));
6464 mem = adjust_address (m_tramp, SImode, 2);
6465 emit_move_insn (mem, chain_value);
6466
6467 mem = adjust_address (m_tramp, HImode, 6);
6468 emit_move_insn (mem, GEN_INT(0x4EF9));
6469 mem = adjust_address (m_tramp, SImode, 8);
6470 emit_move_insn (mem, fnaddr);
6471
6472 FINALIZE_TRAMPOLINE (XEXP (m_tramp, 0));
6473 }
6474
6475 /* On the 68000, the RTS insn cannot pop anything.
6476 On the 68010, the RTD insn may be used to pop them if the number
6477 of args is fixed, but if the number is variable then the caller
6478 must pop them all. RTD can't be used for library calls now
6479 because the library is compiled with the Unix compiler.
6480 Use of RTD is a selectable option, since it is incompatible with
6481 standard Unix calling sequences. If the option is not selected,
6482 the caller must always pop the args. */
6483
6484 static int
6485 m68k_return_pops_args (tree fundecl, tree funtype, int size)
6486 {
6487 return ((TARGET_RTD
6488 && (!fundecl
6489 || TREE_CODE (fundecl) != IDENTIFIER_NODE)
6490 && (!stdarg_p (funtype)))
6491 ? size : 0);
6492 }
6493
6494 /* Make sure everything's fine if we *don't* have a given processor.
6495 This assumes that putting a register in fixed_regs will keep the
6496 compiler's mitts completely off it. We don't bother to zero it out
6497 of register classes. */
6498
6499 static void
6500 m68k_conditional_register_usage (void)
6501 {
6502 int i;
6503 HARD_REG_SET x;
6504 if (!TARGET_HARD_FLOAT)
6505 {
6506 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]);
6507 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6508 if (TEST_HARD_REG_BIT (x, i))
6509 fixed_regs[i] = call_used_regs[i] = 1;
6510 }
6511 if (flag_pic)
6512 fixed_regs[PIC_REG] = call_used_regs[PIC_REG] = 1;
6513 }
6514
6515 static void
6516 m68k_init_sync_libfuncs (void)
6517 {
6518 init_sync_libfuncs (UNITS_PER_WORD);
6519 }
6520
6521 /* Implements EPILOGUE_USES. All registers are live on exit from an
6522 interrupt routine. */
6523 bool
6524 m68k_epilogue_uses (int regno ATTRIBUTE_UNUSED)
6525 {
6526 return (reload_completed
6527 && (m68k_get_function_kind (current_function_decl)
6528 == m68k_fk_interrupt_handler));
6529 }
6530
6531 #include "gt-m68k.h"