]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/m68k/m68k.c
rtl.h (always_void_p): New function.
[thirdparty/gcc.git] / gcc / config / m68k / m68k.c
1 /* Subroutines for insn-output.c for Motorola 68000 family.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "hash-set.h"
25 #include "machmode.h"
26 #include "vec.h"
27 #include "double-int.h"
28 #include "input.h"
29 #include "alias.h"
30 #include "symtab.h"
31 #include "wide-int.h"
32 #include "inchash.h"
33 #include "tree.h"
34 #include "fold-const.h"
35 #include "calls.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "function.h"
41 #include "regs.h"
42 #include "insn-config.h"
43 #include "conditions.h"
44 #include "output.h"
45 #include "insn-attr.h"
46 #include "recog.h"
47 #include "diagnostic-core.h"
48 #include "hashtab.h"
49 #include "flags.h"
50 #include "statistics.h"
51 #include "real.h"
52 #include "fixed-value.h"
53 #include "expmed.h"
54 #include "dojump.h"
55 #include "explow.h"
56 #include "emit-rtl.h"
57 #include "stmt.h"
58 #include "expr.h"
59 #include "reload.h"
60 #include "tm_p.h"
61 #include "target.h"
62 #include "target-def.h"
63 #include "debug.h"
64 #include "dominance.h"
65 #include "cfg.h"
66 #include "cfgrtl.h"
67 #include "cfganal.h"
68 #include "lcm.h"
69 #include "cfgbuild.h"
70 #include "cfgcleanup.h"
71 #include "predict.h"
72 #include "basic-block.h"
73 #include "df.h"
74 /* ??? Need to add a dependency between m68k.o and sched-int.h. */
75 #include "sched-int.h"
76 #include "insn-codes.h"
77 #include "ggc.h"
78 #include "opts.h"
79 #include "optabs.h"
80 #include "builtins.h"
81 #include "rtl-iter.h"
82
83 enum reg_class regno_reg_class[] =
84 {
85 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
86 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
87 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
88 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
89 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
90 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
91 ADDR_REGS
92 };
93
94
95 /* The minimum number of integer registers that we want to save with the
96 movem instruction. Using two movel instructions instead of a single
97 moveml is about 15% faster for the 68020 and 68030 at no expense in
98 code size. */
99 #define MIN_MOVEM_REGS 3
100
101 /* The minimum number of floating point registers that we want to save
102 with the fmovem instruction. */
103 #define MIN_FMOVEM_REGS 1
104
105 /* Structure describing stack frame layout. */
106 struct m68k_frame
107 {
108 /* Stack pointer to frame pointer offset. */
109 HOST_WIDE_INT offset;
110
111 /* Offset of FPU registers. */
112 HOST_WIDE_INT foffset;
113
114 /* Frame size in bytes (rounded up). */
115 HOST_WIDE_INT size;
116
117 /* Data and address register. */
118 int reg_no;
119 unsigned int reg_mask;
120
121 /* FPU registers. */
122 int fpu_no;
123 unsigned int fpu_mask;
124
125 /* Offsets relative to ARG_POINTER. */
126 HOST_WIDE_INT frame_pointer_offset;
127 HOST_WIDE_INT stack_pointer_offset;
128
129 /* Function which the above information refers to. */
130 int funcdef_no;
131 };
132
133 /* Current frame information calculated by m68k_compute_frame_layout(). */
134 static struct m68k_frame current_frame;
135
136 /* Structure describing an m68k address.
137
138 If CODE is UNKNOWN, the address is BASE + INDEX * SCALE + OFFSET,
139 with null fields evaluating to 0. Here:
140
141 - BASE satisfies m68k_legitimate_base_reg_p
142 - INDEX satisfies m68k_legitimate_index_reg_p
143 - OFFSET satisfies m68k_legitimate_constant_address_p
144
145 INDEX is either HImode or SImode. The other fields are SImode.
146
147 If CODE is PRE_DEC, the address is -(BASE). If CODE is POST_INC,
148 the address is (BASE)+. */
149 struct m68k_address {
150 enum rtx_code code;
151 rtx base;
152 rtx index;
153 rtx offset;
154 int scale;
155 };
156
157 static int m68k_sched_adjust_cost (rtx_insn *, rtx, rtx_insn *, int);
158 static int m68k_sched_issue_rate (void);
159 static int m68k_sched_variable_issue (FILE *, int, rtx_insn *, int);
160 static void m68k_sched_md_init_global (FILE *, int, int);
161 static void m68k_sched_md_finish_global (FILE *, int);
162 static void m68k_sched_md_init (FILE *, int, int);
163 static void m68k_sched_dfa_pre_advance_cycle (void);
164 static void m68k_sched_dfa_post_advance_cycle (void);
165 static int m68k_sched_first_cycle_multipass_dfa_lookahead (void);
166
167 static bool m68k_can_eliminate (const int, const int);
168 static void m68k_conditional_register_usage (void);
169 static bool m68k_legitimate_address_p (machine_mode, rtx, bool);
170 static void m68k_option_override (void);
171 static void m68k_override_options_after_change (void);
172 static rtx find_addr_reg (rtx);
173 static const char *singlemove_string (rtx *);
174 static void m68k_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
175 HOST_WIDE_INT, tree);
176 static rtx m68k_struct_value_rtx (tree, int);
177 static tree m68k_handle_fndecl_attribute (tree *node, tree name,
178 tree args, int flags,
179 bool *no_add_attrs);
180 static void m68k_compute_frame_layout (void);
181 static bool m68k_save_reg (unsigned int regno, bool interrupt_handler);
182 static bool m68k_ok_for_sibcall_p (tree, tree);
183 static bool m68k_tls_symbol_p (rtx);
184 static rtx m68k_legitimize_address (rtx, rtx, machine_mode);
185 static bool m68k_rtx_costs (rtx, int, int, int, int *, bool);
186 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
187 static bool m68k_return_in_memory (const_tree, const_tree);
188 #endif
189 static void m68k_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
190 static void m68k_trampoline_init (rtx, tree, rtx);
191 static int m68k_return_pops_args (tree, tree, int);
192 static rtx m68k_delegitimize_address (rtx);
193 static void m68k_function_arg_advance (cumulative_args_t, machine_mode,
194 const_tree, bool);
195 static rtx m68k_function_arg (cumulative_args_t, machine_mode,
196 const_tree, bool);
197 static bool m68k_cannot_force_const_mem (machine_mode mode, rtx x);
198 static bool m68k_output_addr_const_extra (FILE *, rtx);
199 static void m68k_init_sync_libfuncs (void) ATTRIBUTE_UNUSED;
200 \f
201 /* Initialize the GCC target structure. */
202
203 #if INT_OP_GROUP == INT_OP_DOT_WORD
204 #undef TARGET_ASM_ALIGNED_HI_OP
205 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
206 #endif
207
208 #if INT_OP_GROUP == INT_OP_NO_DOT
209 #undef TARGET_ASM_BYTE_OP
210 #define TARGET_ASM_BYTE_OP "\tbyte\t"
211 #undef TARGET_ASM_ALIGNED_HI_OP
212 #define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
213 #undef TARGET_ASM_ALIGNED_SI_OP
214 #define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
215 #endif
216
217 #if INT_OP_GROUP == INT_OP_DC
218 #undef TARGET_ASM_BYTE_OP
219 #define TARGET_ASM_BYTE_OP "\tdc.b\t"
220 #undef TARGET_ASM_ALIGNED_HI_OP
221 #define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
222 #undef TARGET_ASM_ALIGNED_SI_OP
223 #define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
224 #endif
225
226 #undef TARGET_ASM_UNALIGNED_HI_OP
227 #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
228 #undef TARGET_ASM_UNALIGNED_SI_OP
229 #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
230
231 #undef TARGET_ASM_OUTPUT_MI_THUNK
232 #define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
233 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
234 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
235
236 #undef TARGET_ASM_FILE_START_APP_OFF
237 #define TARGET_ASM_FILE_START_APP_OFF true
238
239 #undef TARGET_LEGITIMIZE_ADDRESS
240 #define TARGET_LEGITIMIZE_ADDRESS m68k_legitimize_address
241
242 #undef TARGET_SCHED_ADJUST_COST
243 #define TARGET_SCHED_ADJUST_COST m68k_sched_adjust_cost
244
245 #undef TARGET_SCHED_ISSUE_RATE
246 #define TARGET_SCHED_ISSUE_RATE m68k_sched_issue_rate
247
248 #undef TARGET_SCHED_VARIABLE_ISSUE
249 #define TARGET_SCHED_VARIABLE_ISSUE m68k_sched_variable_issue
250
251 #undef TARGET_SCHED_INIT_GLOBAL
252 #define TARGET_SCHED_INIT_GLOBAL m68k_sched_md_init_global
253
254 #undef TARGET_SCHED_FINISH_GLOBAL
255 #define TARGET_SCHED_FINISH_GLOBAL m68k_sched_md_finish_global
256
257 #undef TARGET_SCHED_INIT
258 #define TARGET_SCHED_INIT m68k_sched_md_init
259
260 #undef TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE
261 #define TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE m68k_sched_dfa_pre_advance_cycle
262
263 #undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
264 #define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE m68k_sched_dfa_post_advance_cycle
265
266 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
267 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
268 m68k_sched_first_cycle_multipass_dfa_lookahead
269
270 #undef TARGET_OPTION_OVERRIDE
271 #define TARGET_OPTION_OVERRIDE m68k_option_override
272
273 #undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
274 #define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE m68k_override_options_after_change
275
276 #undef TARGET_RTX_COSTS
277 #define TARGET_RTX_COSTS m68k_rtx_costs
278
279 #undef TARGET_ATTRIBUTE_TABLE
280 #define TARGET_ATTRIBUTE_TABLE m68k_attribute_table
281
282 #undef TARGET_PROMOTE_PROTOTYPES
283 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
284
285 #undef TARGET_STRUCT_VALUE_RTX
286 #define TARGET_STRUCT_VALUE_RTX m68k_struct_value_rtx
287
288 #undef TARGET_CANNOT_FORCE_CONST_MEM
289 #define TARGET_CANNOT_FORCE_CONST_MEM m68k_cannot_force_const_mem
290
291 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
292 #define TARGET_FUNCTION_OK_FOR_SIBCALL m68k_ok_for_sibcall_p
293
294 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
295 #undef TARGET_RETURN_IN_MEMORY
296 #define TARGET_RETURN_IN_MEMORY m68k_return_in_memory
297 #endif
298
299 #ifdef HAVE_AS_TLS
300 #undef TARGET_HAVE_TLS
301 #define TARGET_HAVE_TLS (true)
302
303 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
304 #define TARGET_ASM_OUTPUT_DWARF_DTPREL m68k_output_dwarf_dtprel
305 #endif
306
307 #undef TARGET_LEGITIMATE_ADDRESS_P
308 #define TARGET_LEGITIMATE_ADDRESS_P m68k_legitimate_address_p
309
310 #undef TARGET_CAN_ELIMINATE
311 #define TARGET_CAN_ELIMINATE m68k_can_eliminate
312
313 #undef TARGET_CONDITIONAL_REGISTER_USAGE
314 #define TARGET_CONDITIONAL_REGISTER_USAGE m68k_conditional_register_usage
315
316 #undef TARGET_TRAMPOLINE_INIT
317 #define TARGET_TRAMPOLINE_INIT m68k_trampoline_init
318
319 #undef TARGET_RETURN_POPS_ARGS
320 #define TARGET_RETURN_POPS_ARGS m68k_return_pops_args
321
322 #undef TARGET_DELEGITIMIZE_ADDRESS
323 #define TARGET_DELEGITIMIZE_ADDRESS m68k_delegitimize_address
324
325 #undef TARGET_FUNCTION_ARG
326 #define TARGET_FUNCTION_ARG m68k_function_arg
327
328 #undef TARGET_FUNCTION_ARG_ADVANCE
329 #define TARGET_FUNCTION_ARG_ADVANCE m68k_function_arg_advance
330
331 #undef TARGET_LEGITIMATE_CONSTANT_P
332 #define TARGET_LEGITIMATE_CONSTANT_P m68k_legitimate_constant_p
333
334 #undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
335 #define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA m68k_output_addr_const_extra
336
337 /* The value stored by TAS. */
338 #undef TARGET_ATOMIC_TEST_AND_SET_TRUEVAL
339 #define TARGET_ATOMIC_TEST_AND_SET_TRUEVAL 128
340
341 static const struct attribute_spec m68k_attribute_table[] =
342 {
343 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
344 affects_type_identity } */
345 { "interrupt", 0, 0, true, false, false, m68k_handle_fndecl_attribute,
346 false },
347 { "interrupt_handler", 0, 0, true, false, false,
348 m68k_handle_fndecl_attribute, false },
349 { "interrupt_thread", 0, 0, true, false, false,
350 m68k_handle_fndecl_attribute, false },
351 { NULL, 0, 0, false, false, false, NULL, false }
352 };
353
354 struct gcc_target targetm = TARGET_INITIALIZER;
355 \f
356 /* Base flags for 68k ISAs. */
357 #define FL_FOR_isa_00 FL_ISA_68000
358 #define FL_FOR_isa_10 (FL_FOR_isa_00 | FL_ISA_68010)
359 /* FL_68881 controls the default setting of -m68881. gcc has traditionally
360 generated 68881 code for 68020 and 68030 targets unless explicitly told
361 not to. */
362 #define FL_FOR_isa_20 (FL_FOR_isa_10 | FL_ISA_68020 \
363 | FL_BITFIELD | FL_68881 | FL_CAS)
364 #define FL_FOR_isa_40 (FL_FOR_isa_20 | FL_ISA_68040)
365 #define FL_FOR_isa_cpu32 (FL_FOR_isa_10 | FL_ISA_68020)
366
367 /* Base flags for ColdFire ISAs. */
368 #define FL_FOR_isa_a (FL_COLDFIRE | FL_ISA_A)
369 #define FL_FOR_isa_aplus (FL_FOR_isa_a | FL_ISA_APLUS | FL_CF_USP)
370 /* Note ISA_B doesn't necessarily include USP (user stack pointer) support. */
371 #define FL_FOR_isa_b (FL_FOR_isa_a | FL_ISA_B | FL_CF_HWDIV)
372 /* ISA_C is not upwardly compatible with ISA_B. */
373 #define FL_FOR_isa_c (FL_FOR_isa_a | FL_ISA_C | FL_CF_USP)
374
375 enum m68k_isa
376 {
377 /* Traditional 68000 instruction sets. */
378 isa_00,
379 isa_10,
380 isa_20,
381 isa_40,
382 isa_cpu32,
383 /* ColdFire instruction set variants. */
384 isa_a,
385 isa_aplus,
386 isa_b,
387 isa_c,
388 isa_max
389 };
390
391 /* Information about one of the -march, -mcpu or -mtune arguments. */
392 struct m68k_target_selection
393 {
394 /* The argument being described. */
395 const char *name;
396
397 /* For -mcpu, this is the device selected by the option.
398 For -mtune and -march, it is a representative device
399 for the microarchitecture or ISA respectively. */
400 enum target_device device;
401
402 /* The M68K_DEVICE fields associated with DEVICE. See the comment
403 in m68k-devices.def for details. FAMILY is only valid for -mcpu. */
404 const char *family;
405 enum uarch_type microarch;
406 enum m68k_isa isa;
407 unsigned long flags;
408 };
409
410 /* A list of all devices in m68k-devices.def. Used for -mcpu selection. */
411 static const struct m68k_target_selection all_devices[] =
412 {
413 #define M68K_DEVICE(NAME,ENUM_VALUE,FAMILY,MULTILIB,MICROARCH,ISA,FLAGS) \
414 { NAME, ENUM_VALUE, FAMILY, u##MICROARCH, ISA, FLAGS | FL_FOR_##ISA },
415 #include "m68k-devices.def"
416 #undef M68K_DEVICE
417 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
418 };
419
420 /* A list of all ISAs, mapping each one to a representative device.
421 Used for -march selection. */
422 static const struct m68k_target_selection all_isas[] =
423 {
424 #define M68K_ISA(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
425 { NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
426 #include "m68k-isas.def"
427 #undef M68K_ISA
428 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
429 };
430
431 /* A list of all microarchitectures, mapping each one to a representative
432 device. Used for -mtune selection. */
433 static const struct m68k_target_selection all_microarchs[] =
434 {
435 #define M68K_MICROARCH(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
436 { NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
437 #include "m68k-microarchs.def"
438 #undef M68K_MICROARCH
439 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
440 };
441 \f
442 /* The entries associated with the -mcpu, -march and -mtune settings,
443 or null for options that have not been used. */
444 const struct m68k_target_selection *m68k_cpu_entry;
445 const struct m68k_target_selection *m68k_arch_entry;
446 const struct m68k_target_selection *m68k_tune_entry;
447
448 /* Which CPU we are generating code for. */
449 enum target_device m68k_cpu;
450
451 /* Which microarchitecture to tune for. */
452 enum uarch_type m68k_tune;
453
454 /* Which FPU to use. */
455 enum fpu_type m68k_fpu;
456
457 /* The set of FL_* flags that apply to the target processor. */
458 unsigned int m68k_cpu_flags;
459
460 /* The set of FL_* flags that apply to the processor to be tuned for. */
461 unsigned int m68k_tune_flags;
462
463 /* Asm templates for calling or jumping to an arbitrary symbolic address,
464 or NULL if such calls or jumps are not supported. The address is held
465 in operand 0. */
466 const char *m68k_symbolic_call;
467 const char *m68k_symbolic_jump;
468
469 /* Enum variable that corresponds to m68k_symbolic_call values. */
470 enum M68K_SYMBOLIC_CALL m68k_symbolic_call_var;
471
472 \f
473 /* Implement TARGET_OPTION_OVERRIDE. */
474
475 static void
476 m68k_option_override (void)
477 {
478 const struct m68k_target_selection *entry;
479 unsigned long target_mask;
480
481 if (global_options_set.x_m68k_arch_option)
482 m68k_arch_entry = &all_isas[m68k_arch_option];
483
484 if (global_options_set.x_m68k_cpu_option)
485 m68k_cpu_entry = &all_devices[(int) m68k_cpu_option];
486
487 if (global_options_set.x_m68k_tune_option)
488 m68k_tune_entry = &all_microarchs[(int) m68k_tune_option];
489
490 /* User can choose:
491
492 -mcpu=
493 -march=
494 -mtune=
495
496 -march=ARCH should generate code that runs any processor
497 implementing architecture ARCH. -mcpu=CPU should override -march
498 and should generate code that runs on processor CPU, making free
499 use of any instructions that CPU understands. -mtune=UARCH applies
500 on top of -mcpu or -march and optimizes the code for UARCH. It does
501 not change the target architecture. */
502 if (m68k_cpu_entry)
503 {
504 /* Complain if the -march setting is for a different microarchitecture,
505 or includes flags that the -mcpu setting doesn't. */
506 if (m68k_arch_entry
507 && (m68k_arch_entry->microarch != m68k_cpu_entry->microarch
508 || (m68k_arch_entry->flags & ~m68k_cpu_entry->flags) != 0))
509 warning (0, "-mcpu=%s conflicts with -march=%s",
510 m68k_cpu_entry->name, m68k_arch_entry->name);
511
512 entry = m68k_cpu_entry;
513 }
514 else
515 entry = m68k_arch_entry;
516
517 if (!entry)
518 entry = all_devices + TARGET_CPU_DEFAULT;
519
520 m68k_cpu_flags = entry->flags;
521
522 /* Use the architecture setting to derive default values for
523 certain flags. */
524 target_mask = 0;
525
526 /* ColdFire is lenient about alignment. */
527 if (!TARGET_COLDFIRE)
528 target_mask |= MASK_STRICT_ALIGNMENT;
529
530 if ((m68k_cpu_flags & FL_BITFIELD) != 0)
531 target_mask |= MASK_BITFIELD;
532 if ((m68k_cpu_flags & FL_CF_HWDIV) != 0)
533 target_mask |= MASK_CF_HWDIV;
534 if ((m68k_cpu_flags & (FL_68881 | FL_CF_FPU)) != 0)
535 target_mask |= MASK_HARD_FLOAT;
536 target_flags |= target_mask & ~target_flags_explicit;
537
538 /* Set the directly-usable versions of the -mcpu and -mtune settings. */
539 m68k_cpu = entry->device;
540 if (m68k_tune_entry)
541 {
542 m68k_tune = m68k_tune_entry->microarch;
543 m68k_tune_flags = m68k_tune_entry->flags;
544 }
545 #ifdef M68K_DEFAULT_TUNE
546 else if (!m68k_cpu_entry && !m68k_arch_entry)
547 {
548 enum target_device dev;
549 dev = all_microarchs[M68K_DEFAULT_TUNE].device;
550 m68k_tune_flags = all_devices[dev].flags;
551 }
552 #endif
553 else
554 {
555 m68k_tune = entry->microarch;
556 m68k_tune_flags = entry->flags;
557 }
558
559 /* Set the type of FPU. */
560 m68k_fpu = (!TARGET_HARD_FLOAT ? FPUTYPE_NONE
561 : (m68k_cpu_flags & FL_COLDFIRE) != 0 ? FPUTYPE_COLDFIRE
562 : FPUTYPE_68881);
563
564 /* Sanity check to ensure that msep-data and mid-sahred-library are not
565 * both specified together. Doing so simply doesn't make sense.
566 */
567 if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
568 error ("cannot specify both -msep-data and -mid-shared-library");
569
570 /* If we're generating code for a separate A5 relative data segment,
571 * we've got to enable -fPIC as well. This might be relaxable to
572 * -fpic but it hasn't been tested properly.
573 */
574 if (TARGET_SEP_DATA || TARGET_ID_SHARED_LIBRARY)
575 flag_pic = 2;
576
577 /* -mpcrel -fPIC uses 32-bit pc-relative displacements. Raise an
578 error if the target does not support them. */
579 if (TARGET_PCREL && !TARGET_68020 && flag_pic == 2)
580 error ("-mpcrel -fPIC is not currently supported on selected cpu");
581
582 /* ??? A historic way of turning on pic, or is this intended to
583 be an embedded thing that doesn't have the same name binding
584 significance that it does on hosted ELF systems? */
585 if (TARGET_PCREL && flag_pic == 0)
586 flag_pic = 1;
587
588 if (!flag_pic)
589 {
590 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_JSR;
591
592 m68k_symbolic_jump = "jra %a0";
593 }
594 else if (TARGET_ID_SHARED_LIBRARY)
595 /* All addresses must be loaded from the GOT. */
596 ;
597 else if (TARGET_68020 || TARGET_ISAB || TARGET_ISAC)
598 {
599 if (TARGET_PCREL)
600 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_C;
601 else
602 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_P;
603
604 if (TARGET_ISAC)
605 /* No unconditional long branch */;
606 else if (TARGET_PCREL)
607 m68k_symbolic_jump = "bra%.l %c0";
608 else
609 m68k_symbolic_jump = "bra%.l %p0";
610 /* Turn off function cse if we are doing PIC. We always want
611 function call to be done as `bsr foo@PLTPC'. */
612 /* ??? It's traditional to do this for -mpcrel too, but it isn't
613 clear how intentional that is. */
614 flag_no_function_cse = 1;
615 }
616
617 switch (m68k_symbolic_call_var)
618 {
619 case M68K_SYMBOLIC_CALL_JSR:
620 m68k_symbolic_call = "jsr %a0";
621 break;
622
623 case M68K_SYMBOLIC_CALL_BSR_C:
624 m68k_symbolic_call = "bsr%.l %c0";
625 break;
626
627 case M68K_SYMBOLIC_CALL_BSR_P:
628 m68k_symbolic_call = "bsr%.l %p0";
629 break;
630
631 case M68K_SYMBOLIC_CALL_NONE:
632 gcc_assert (m68k_symbolic_call == NULL);
633 break;
634
635 default:
636 gcc_unreachable ();
637 }
638
639 #ifndef ASM_OUTPUT_ALIGN_WITH_NOP
640 if (align_labels > 2)
641 {
642 warning (0, "-falign-labels=%d is not supported", align_labels);
643 align_labels = 0;
644 }
645 if (align_loops > 2)
646 {
647 warning (0, "-falign-loops=%d is not supported", align_loops);
648 align_loops = 0;
649 }
650 #endif
651
652 if (stack_limit_rtx != NULL_RTX && !TARGET_68020)
653 {
654 warning (0, "-fstack-limit- options are not supported on this cpu");
655 stack_limit_rtx = NULL_RTX;
656 }
657
658 SUBTARGET_OVERRIDE_OPTIONS;
659
660 /* Setup scheduling options. */
661 if (TUNE_CFV1)
662 m68k_sched_cpu = CPU_CFV1;
663 else if (TUNE_CFV2)
664 m68k_sched_cpu = CPU_CFV2;
665 else if (TUNE_CFV3)
666 m68k_sched_cpu = CPU_CFV3;
667 else if (TUNE_CFV4)
668 m68k_sched_cpu = CPU_CFV4;
669 else
670 {
671 m68k_sched_cpu = CPU_UNKNOWN;
672 flag_schedule_insns = 0;
673 flag_schedule_insns_after_reload = 0;
674 flag_modulo_sched = 0;
675 flag_live_range_shrinkage = 0;
676 }
677
678 if (m68k_sched_cpu != CPU_UNKNOWN)
679 {
680 if ((m68k_cpu_flags & (FL_CF_EMAC | FL_CF_EMAC_B)) != 0)
681 m68k_sched_mac = MAC_CF_EMAC;
682 else if ((m68k_cpu_flags & FL_CF_MAC) != 0)
683 m68k_sched_mac = MAC_CF_MAC;
684 else
685 m68k_sched_mac = MAC_NO;
686 }
687 }
688
689 /* Implement TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE. */
690
691 static void
692 m68k_override_options_after_change (void)
693 {
694 if (m68k_sched_cpu == CPU_UNKNOWN)
695 {
696 flag_schedule_insns = 0;
697 flag_schedule_insns_after_reload = 0;
698 flag_modulo_sched = 0;
699 flag_live_range_shrinkage = 0;
700 }
701 }
702
703 /* Generate a macro of the form __mPREFIX_cpu_NAME, where PREFIX is the
704 given argument and NAME is the argument passed to -mcpu. Return NULL
705 if -mcpu was not passed. */
706
707 const char *
708 m68k_cpp_cpu_ident (const char *prefix)
709 {
710 if (!m68k_cpu_entry)
711 return NULL;
712 return concat ("__m", prefix, "_cpu_", m68k_cpu_entry->name, NULL);
713 }
714
715 /* Generate a macro of the form __mPREFIX_family_NAME, where PREFIX is the
716 given argument and NAME is the name of the representative device for
717 the -mcpu argument's family. Return NULL if -mcpu was not passed. */
718
719 const char *
720 m68k_cpp_cpu_family (const char *prefix)
721 {
722 if (!m68k_cpu_entry)
723 return NULL;
724 return concat ("__m", prefix, "_family_", m68k_cpu_entry->family, NULL);
725 }
726 \f
727 /* Return m68k_fk_interrupt_handler if FUNC has an "interrupt" or
728 "interrupt_handler" attribute and interrupt_thread if FUNC has an
729 "interrupt_thread" attribute. Otherwise, return
730 m68k_fk_normal_function. */
731
732 enum m68k_function_kind
733 m68k_get_function_kind (tree func)
734 {
735 tree a;
736
737 gcc_assert (TREE_CODE (func) == FUNCTION_DECL);
738
739 a = lookup_attribute ("interrupt", DECL_ATTRIBUTES (func));
740 if (a != NULL_TREE)
741 return m68k_fk_interrupt_handler;
742
743 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
744 if (a != NULL_TREE)
745 return m68k_fk_interrupt_handler;
746
747 a = lookup_attribute ("interrupt_thread", DECL_ATTRIBUTES (func));
748 if (a != NULL_TREE)
749 return m68k_fk_interrupt_thread;
750
751 return m68k_fk_normal_function;
752 }
753
754 /* Handle an attribute requiring a FUNCTION_DECL; arguments as in
755 struct attribute_spec.handler. */
756 static tree
757 m68k_handle_fndecl_attribute (tree *node, tree name,
758 tree args ATTRIBUTE_UNUSED,
759 int flags ATTRIBUTE_UNUSED,
760 bool *no_add_attrs)
761 {
762 if (TREE_CODE (*node) != FUNCTION_DECL)
763 {
764 warning (OPT_Wattributes, "%qE attribute only applies to functions",
765 name);
766 *no_add_attrs = true;
767 }
768
769 if (m68k_get_function_kind (*node) != m68k_fk_normal_function)
770 {
771 error ("multiple interrupt attributes not allowed");
772 *no_add_attrs = true;
773 }
774
775 if (!TARGET_FIDOA
776 && !strcmp (IDENTIFIER_POINTER (name), "interrupt_thread"))
777 {
778 error ("interrupt_thread is available only on fido");
779 *no_add_attrs = true;
780 }
781
782 return NULL_TREE;
783 }
784
785 static void
786 m68k_compute_frame_layout (void)
787 {
788 int regno, saved;
789 unsigned int mask;
790 enum m68k_function_kind func_kind =
791 m68k_get_function_kind (current_function_decl);
792 bool interrupt_handler = func_kind == m68k_fk_interrupt_handler;
793 bool interrupt_thread = func_kind == m68k_fk_interrupt_thread;
794
795 /* Only compute the frame once per function.
796 Don't cache information until reload has been completed. */
797 if (current_frame.funcdef_no == current_function_funcdef_no
798 && reload_completed)
799 return;
800
801 current_frame.size = (get_frame_size () + 3) & -4;
802
803 mask = saved = 0;
804
805 /* Interrupt thread does not need to save any register. */
806 if (!interrupt_thread)
807 for (regno = 0; regno < 16; regno++)
808 if (m68k_save_reg (regno, interrupt_handler))
809 {
810 mask |= 1 << (regno - D0_REG);
811 saved++;
812 }
813 current_frame.offset = saved * 4;
814 current_frame.reg_no = saved;
815 current_frame.reg_mask = mask;
816
817 current_frame.foffset = 0;
818 mask = saved = 0;
819 if (TARGET_HARD_FLOAT)
820 {
821 /* Interrupt thread does not need to save any register. */
822 if (!interrupt_thread)
823 for (regno = 16; regno < 24; regno++)
824 if (m68k_save_reg (regno, interrupt_handler))
825 {
826 mask |= 1 << (regno - FP0_REG);
827 saved++;
828 }
829 current_frame.foffset = saved * TARGET_FP_REG_SIZE;
830 current_frame.offset += current_frame.foffset;
831 }
832 current_frame.fpu_no = saved;
833 current_frame.fpu_mask = mask;
834
835 /* Remember what function this frame refers to. */
836 current_frame.funcdef_no = current_function_funcdef_no;
837 }
838
839 /* Worker function for TARGET_CAN_ELIMINATE. */
840
841 bool
842 m68k_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
843 {
844 return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
845 }
846
847 HOST_WIDE_INT
848 m68k_initial_elimination_offset (int from, int to)
849 {
850 int argptr_offset;
851 /* The arg pointer points 8 bytes before the start of the arguments,
852 as defined by FIRST_PARM_OFFSET. This makes it coincident with the
853 frame pointer in most frames. */
854 argptr_offset = frame_pointer_needed ? 0 : UNITS_PER_WORD;
855 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
856 return argptr_offset;
857
858 m68k_compute_frame_layout ();
859
860 gcc_assert (to == STACK_POINTER_REGNUM);
861 switch (from)
862 {
863 case ARG_POINTER_REGNUM:
864 return current_frame.offset + current_frame.size - argptr_offset;
865 case FRAME_POINTER_REGNUM:
866 return current_frame.offset + current_frame.size;
867 default:
868 gcc_unreachable ();
869 }
870 }
871
872 /* Refer to the array `regs_ever_live' to determine which registers
873 to save; `regs_ever_live[I]' is nonzero if register number I
874 is ever used in the function. This function is responsible for
875 knowing which registers should not be saved even if used.
876 Return true if we need to save REGNO. */
877
878 static bool
879 m68k_save_reg (unsigned int regno, bool interrupt_handler)
880 {
881 if (flag_pic && regno == PIC_REG)
882 {
883 if (crtl->saves_all_registers)
884 return true;
885 if (crtl->uses_pic_offset_table)
886 return true;
887 /* Reload may introduce constant pool references into a function
888 that thitherto didn't need a PIC register. Note that the test
889 above will not catch that case because we will only set
890 crtl->uses_pic_offset_table when emitting
891 the address reloads. */
892 if (crtl->uses_const_pool)
893 return true;
894 }
895
896 if (crtl->calls_eh_return)
897 {
898 unsigned int i;
899 for (i = 0; ; i++)
900 {
901 unsigned int test = EH_RETURN_DATA_REGNO (i);
902 if (test == INVALID_REGNUM)
903 break;
904 if (test == regno)
905 return true;
906 }
907 }
908
909 /* Fixed regs we never touch. */
910 if (fixed_regs[regno])
911 return false;
912
913 /* The frame pointer (if it is such) is handled specially. */
914 if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
915 return false;
916
917 /* Interrupt handlers must also save call_used_regs
918 if they are live or when calling nested functions. */
919 if (interrupt_handler)
920 {
921 if (df_regs_ever_live_p (regno))
922 return true;
923
924 if (!crtl->is_leaf && call_used_regs[regno])
925 return true;
926 }
927
928 /* Never need to save registers that aren't touched. */
929 if (!df_regs_ever_live_p (regno))
930 return false;
931
932 /* Otherwise save everything that isn't call-clobbered. */
933 return !call_used_regs[regno];
934 }
935
936 /* Emit RTL for a MOVEM or FMOVEM instruction. BASE + OFFSET represents
937 the lowest memory address. COUNT is the number of registers to be
938 moved, with register REGNO + I being moved if bit I of MASK is set.
939 STORE_P specifies the direction of the move and ADJUST_STACK_P says
940 whether or not this is pre-decrement (if STORE_P) or post-increment
941 (if !STORE_P) operation. */
942
943 static rtx_insn *
944 m68k_emit_movem (rtx base, HOST_WIDE_INT offset,
945 unsigned int count, unsigned int regno,
946 unsigned int mask, bool store_p, bool adjust_stack_p)
947 {
948 int i;
949 rtx body, addr, src, operands[2];
950 machine_mode mode;
951
952 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (adjust_stack_p + count));
953 mode = reg_raw_mode[regno];
954 i = 0;
955
956 if (adjust_stack_p)
957 {
958 src = plus_constant (Pmode, base,
959 (count
960 * GET_MODE_SIZE (mode)
961 * (HOST_WIDE_INT) (store_p ? -1 : 1)));
962 XVECEXP (body, 0, i++) = gen_rtx_SET (base, src);
963 }
964
965 for (; mask != 0; mask >>= 1, regno++)
966 if (mask & 1)
967 {
968 addr = plus_constant (Pmode, base, offset);
969 operands[!store_p] = gen_frame_mem (mode, addr);
970 operands[store_p] = gen_rtx_REG (mode, regno);
971 XVECEXP (body, 0, i++)
972 = gen_rtx_SET (operands[0], operands[1]);
973 offset += GET_MODE_SIZE (mode);
974 }
975 gcc_assert (i == XVECLEN (body, 0));
976
977 return emit_insn (body);
978 }
979
980 /* Make INSN a frame-related instruction. */
981
982 static void
983 m68k_set_frame_related (rtx_insn *insn)
984 {
985 rtx body;
986 int i;
987
988 RTX_FRAME_RELATED_P (insn) = 1;
989 body = PATTERN (insn);
990 if (GET_CODE (body) == PARALLEL)
991 for (i = 0; i < XVECLEN (body, 0); i++)
992 RTX_FRAME_RELATED_P (XVECEXP (body, 0, i)) = 1;
993 }
994
995 /* Emit RTL for the "prologue" define_expand. */
996
997 void
998 m68k_expand_prologue (void)
999 {
1000 HOST_WIDE_INT fsize_with_regs;
1001 rtx limit, src, dest;
1002
1003 m68k_compute_frame_layout ();
1004
1005 if (flag_stack_usage_info)
1006 current_function_static_stack_size
1007 = current_frame.size + current_frame.offset;
1008
1009 /* If the stack limit is a symbol, we can check it here,
1010 before actually allocating the space. */
1011 if (crtl->limit_stack
1012 && GET_CODE (stack_limit_rtx) == SYMBOL_REF)
1013 {
1014 limit = plus_constant (Pmode, stack_limit_rtx, current_frame.size + 4);
1015 if (!m68k_legitimate_constant_p (Pmode, limit))
1016 {
1017 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), limit);
1018 limit = gen_rtx_REG (Pmode, D0_REG);
1019 }
1020 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode,
1021 stack_pointer_rtx, limit),
1022 stack_pointer_rtx, limit,
1023 const1_rtx));
1024 }
1025
1026 fsize_with_regs = current_frame.size;
1027 if (TARGET_COLDFIRE)
1028 {
1029 /* ColdFire's move multiple instructions do not allow pre-decrement
1030 addressing. Add the size of movem saves to the initial stack
1031 allocation instead. */
1032 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1033 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1034 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1035 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1036 }
1037
1038 if (frame_pointer_needed)
1039 {
1040 if (fsize_with_regs == 0 && TUNE_68040)
1041 {
1042 /* On the 68040, two separate moves are faster than link.w 0. */
1043 dest = gen_frame_mem (Pmode,
1044 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1045 m68k_set_frame_related (emit_move_insn (dest, frame_pointer_rtx));
1046 m68k_set_frame_related (emit_move_insn (frame_pointer_rtx,
1047 stack_pointer_rtx));
1048 }
1049 else if (fsize_with_regs < 0x8000 || TARGET_68020)
1050 m68k_set_frame_related
1051 (emit_insn (gen_link (frame_pointer_rtx,
1052 GEN_INT (-4 - fsize_with_regs))));
1053 else
1054 {
1055 m68k_set_frame_related
1056 (emit_insn (gen_link (frame_pointer_rtx, GEN_INT (-4))));
1057 m68k_set_frame_related
1058 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1059 stack_pointer_rtx,
1060 GEN_INT (-fsize_with_regs))));
1061 }
1062
1063 /* If the frame pointer is needed, emit a special barrier that
1064 will prevent the scheduler from moving stores to the frame
1065 before the stack adjustment. */
1066 emit_insn (gen_stack_tie (stack_pointer_rtx, frame_pointer_rtx));
1067 }
1068 else if (fsize_with_regs != 0)
1069 m68k_set_frame_related
1070 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1071 stack_pointer_rtx,
1072 GEN_INT (-fsize_with_regs))));
1073
1074 if (current_frame.fpu_mask)
1075 {
1076 gcc_assert (current_frame.fpu_no >= MIN_FMOVEM_REGS);
1077 if (TARGET_68881)
1078 m68k_set_frame_related
1079 (m68k_emit_movem (stack_pointer_rtx,
1080 current_frame.fpu_no * -GET_MODE_SIZE (XFmode),
1081 current_frame.fpu_no, FP0_REG,
1082 current_frame.fpu_mask, true, true));
1083 else
1084 {
1085 int offset;
1086
1087 /* If we're using moveml to save the integer registers,
1088 the stack pointer will point to the bottom of the moveml
1089 save area. Find the stack offset of the first FP register. */
1090 if (current_frame.reg_no < MIN_MOVEM_REGS)
1091 offset = 0;
1092 else
1093 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1094 m68k_set_frame_related
1095 (m68k_emit_movem (stack_pointer_rtx, offset,
1096 current_frame.fpu_no, FP0_REG,
1097 current_frame.fpu_mask, true, false));
1098 }
1099 }
1100
1101 /* If the stack limit is not a symbol, check it here.
1102 This has the disadvantage that it may be too late... */
1103 if (crtl->limit_stack)
1104 {
1105 if (REG_P (stack_limit_rtx))
1106 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode, stack_pointer_rtx,
1107 stack_limit_rtx),
1108 stack_pointer_rtx, stack_limit_rtx,
1109 const1_rtx));
1110
1111 else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
1112 warning (0, "stack limit expression is not supported");
1113 }
1114
1115 if (current_frame.reg_no < MIN_MOVEM_REGS)
1116 {
1117 /* Store each register separately in the same order moveml does. */
1118 int i;
1119
1120 for (i = 16; i-- > 0; )
1121 if (current_frame.reg_mask & (1 << i))
1122 {
1123 src = gen_rtx_REG (SImode, D0_REG + i);
1124 dest = gen_frame_mem (SImode,
1125 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1126 m68k_set_frame_related (emit_insn (gen_movsi (dest, src)));
1127 }
1128 }
1129 else
1130 {
1131 if (TARGET_COLDFIRE)
1132 /* The required register save space has already been allocated.
1133 The first register should be stored at (%sp). */
1134 m68k_set_frame_related
1135 (m68k_emit_movem (stack_pointer_rtx, 0,
1136 current_frame.reg_no, D0_REG,
1137 current_frame.reg_mask, true, false));
1138 else
1139 m68k_set_frame_related
1140 (m68k_emit_movem (stack_pointer_rtx,
1141 current_frame.reg_no * -GET_MODE_SIZE (SImode),
1142 current_frame.reg_no, D0_REG,
1143 current_frame.reg_mask, true, true));
1144 }
1145
1146 if (!TARGET_SEP_DATA
1147 && crtl->uses_pic_offset_table)
1148 emit_insn (gen_load_got (pic_offset_table_rtx));
1149 }
1150 \f
1151 /* Return true if a simple (return) instruction is sufficient for this
1152 instruction (i.e. if no epilogue is needed). */
1153
1154 bool
1155 m68k_use_return_insn (void)
1156 {
1157 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
1158 return false;
1159
1160 m68k_compute_frame_layout ();
1161 return current_frame.offset == 0;
1162 }
1163
1164 /* Emit RTL for the "epilogue" or "sibcall_epilogue" define_expand;
1165 SIBCALL_P says which.
1166
1167 The function epilogue should not depend on the current stack pointer!
1168 It should use the frame pointer only, if there is a frame pointer.
1169 This is mandatory because of alloca; we also take advantage of it to
1170 omit stack adjustments before returning. */
1171
1172 void
1173 m68k_expand_epilogue (bool sibcall_p)
1174 {
1175 HOST_WIDE_INT fsize, fsize_with_regs;
1176 bool big, restore_from_sp;
1177
1178 m68k_compute_frame_layout ();
1179
1180 fsize = current_frame.size;
1181 big = false;
1182 restore_from_sp = false;
1183
1184 /* FIXME : crtl->is_leaf below is too strong.
1185 What we really need to know there is if there could be pending
1186 stack adjustment needed at that point. */
1187 restore_from_sp = (!frame_pointer_needed
1188 || (!cfun->calls_alloca && crtl->is_leaf));
1189
1190 /* fsize_with_regs is the size we need to adjust the sp when
1191 popping the frame. */
1192 fsize_with_regs = fsize;
1193 if (TARGET_COLDFIRE && restore_from_sp)
1194 {
1195 /* ColdFire's move multiple instructions do not allow post-increment
1196 addressing. Add the size of movem loads to the final deallocation
1197 instead. */
1198 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1199 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1200 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1201 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1202 }
1203
1204 if (current_frame.offset + fsize >= 0x8000
1205 && !restore_from_sp
1206 && (current_frame.reg_mask || current_frame.fpu_mask))
1207 {
1208 if (TARGET_COLDFIRE
1209 && (current_frame.reg_no >= MIN_MOVEM_REGS
1210 || current_frame.fpu_no >= MIN_FMOVEM_REGS))
1211 {
1212 /* ColdFire's move multiple instructions do not support the
1213 (d8,Ax,Xi) addressing mode, so we're as well using a normal
1214 stack-based restore. */
1215 emit_move_insn (gen_rtx_REG (Pmode, A1_REG),
1216 GEN_INT (-(current_frame.offset + fsize)));
1217 emit_insn (gen_addsi3 (stack_pointer_rtx,
1218 gen_rtx_REG (Pmode, A1_REG),
1219 frame_pointer_rtx));
1220 restore_from_sp = true;
1221 }
1222 else
1223 {
1224 emit_move_insn (gen_rtx_REG (Pmode, A1_REG), GEN_INT (-fsize));
1225 fsize = 0;
1226 big = true;
1227 }
1228 }
1229
1230 if (current_frame.reg_no < MIN_MOVEM_REGS)
1231 {
1232 /* Restore each register separately in the same order moveml does. */
1233 int i;
1234 HOST_WIDE_INT offset;
1235
1236 offset = current_frame.offset + fsize;
1237 for (i = 0; i < 16; i++)
1238 if (current_frame.reg_mask & (1 << i))
1239 {
1240 rtx addr;
1241
1242 if (big)
1243 {
1244 /* Generate the address -OFFSET(%fp,%a1.l). */
1245 addr = gen_rtx_REG (Pmode, A1_REG);
1246 addr = gen_rtx_PLUS (Pmode, addr, frame_pointer_rtx);
1247 addr = plus_constant (Pmode, addr, -offset);
1248 }
1249 else if (restore_from_sp)
1250 addr = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
1251 else
1252 addr = plus_constant (Pmode, frame_pointer_rtx, -offset);
1253 emit_move_insn (gen_rtx_REG (SImode, D0_REG + i),
1254 gen_frame_mem (SImode, addr));
1255 offset -= GET_MODE_SIZE (SImode);
1256 }
1257 }
1258 else if (current_frame.reg_mask)
1259 {
1260 if (big)
1261 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1262 gen_rtx_REG (Pmode, A1_REG),
1263 frame_pointer_rtx),
1264 -(current_frame.offset + fsize),
1265 current_frame.reg_no, D0_REG,
1266 current_frame.reg_mask, false, false);
1267 else if (restore_from_sp)
1268 m68k_emit_movem (stack_pointer_rtx, 0,
1269 current_frame.reg_no, D0_REG,
1270 current_frame.reg_mask, false,
1271 !TARGET_COLDFIRE);
1272 else
1273 m68k_emit_movem (frame_pointer_rtx,
1274 -(current_frame.offset + fsize),
1275 current_frame.reg_no, D0_REG,
1276 current_frame.reg_mask, false, false);
1277 }
1278
1279 if (current_frame.fpu_no > 0)
1280 {
1281 if (big)
1282 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1283 gen_rtx_REG (Pmode, A1_REG),
1284 frame_pointer_rtx),
1285 -(current_frame.foffset + fsize),
1286 current_frame.fpu_no, FP0_REG,
1287 current_frame.fpu_mask, false, false);
1288 else if (restore_from_sp)
1289 {
1290 if (TARGET_COLDFIRE)
1291 {
1292 int offset;
1293
1294 /* If we used moveml to restore the integer registers, the
1295 stack pointer will still point to the bottom of the moveml
1296 save area. Find the stack offset of the first FP
1297 register. */
1298 if (current_frame.reg_no < MIN_MOVEM_REGS)
1299 offset = 0;
1300 else
1301 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1302 m68k_emit_movem (stack_pointer_rtx, offset,
1303 current_frame.fpu_no, FP0_REG,
1304 current_frame.fpu_mask, false, false);
1305 }
1306 else
1307 m68k_emit_movem (stack_pointer_rtx, 0,
1308 current_frame.fpu_no, FP0_REG,
1309 current_frame.fpu_mask, false, true);
1310 }
1311 else
1312 m68k_emit_movem (frame_pointer_rtx,
1313 -(current_frame.foffset + fsize),
1314 current_frame.fpu_no, FP0_REG,
1315 current_frame.fpu_mask, false, false);
1316 }
1317
1318 if (frame_pointer_needed)
1319 emit_insn (gen_unlink (frame_pointer_rtx));
1320 else if (fsize_with_regs)
1321 emit_insn (gen_addsi3 (stack_pointer_rtx,
1322 stack_pointer_rtx,
1323 GEN_INT (fsize_with_regs)));
1324
1325 if (crtl->calls_eh_return)
1326 emit_insn (gen_addsi3 (stack_pointer_rtx,
1327 stack_pointer_rtx,
1328 EH_RETURN_STACKADJ_RTX));
1329
1330 if (!sibcall_p)
1331 emit_jump_insn (ret_rtx);
1332 }
1333 \f
1334 /* Return true if X is a valid comparison operator for the dbcc
1335 instruction.
1336
1337 Note it rejects floating point comparison operators.
1338 (In the future we could use Fdbcc).
1339
1340 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
1341
1342 int
1343 valid_dbcc_comparison_p_2 (rtx x, machine_mode mode ATTRIBUTE_UNUSED)
1344 {
1345 switch (GET_CODE (x))
1346 {
1347 case EQ: case NE: case GTU: case LTU:
1348 case GEU: case LEU:
1349 return 1;
1350
1351 /* Reject some when CC_NO_OVERFLOW is set. This may be over
1352 conservative */
1353 case GT: case LT: case GE: case LE:
1354 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
1355 default:
1356 return 0;
1357 }
1358 }
1359
1360 /* Return nonzero if flags are currently in the 68881 flag register. */
1361 int
1362 flags_in_68881 (void)
1363 {
1364 /* We could add support for these in the future */
1365 return cc_status.flags & CC_IN_68881;
1366 }
1367
1368 /* Return true if PARALLEL contains register REGNO. */
1369 static bool
1370 m68k_reg_present_p (const_rtx parallel, unsigned int regno)
1371 {
1372 int i;
1373
1374 if (REG_P (parallel) && REGNO (parallel) == regno)
1375 return true;
1376
1377 if (GET_CODE (parallel) != PARALLEL)
1378 return false;
1379
1380 for (i = 0; i < XVECLEN (parallel, 0); ++i)
1381 {
1382 const_rtx x;
1383
1384 x = XEXP (XVECEXP (parallel, 0, i), 0);
1385 if (REG_P (x) && REGNO (x) == regno)
1386 return true;
1387 }
1388
1389 return false;
1390 }
1391
1392 /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL_P. */
1393
1394 static bool
1395 m68k_ok_for_sibcall_p (tree decl, tree exp)
1396 {
1397 enum m68k_function_kind kind;
1398
1399 /* We cannot use sibcalls for nested functions because we use the
1400 static chain register for indirect calls. */
1401 if (CALL_EXPR_STATIC_CHAIN (exp))
1402 return false;
1403
1404 if (!VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl))))
1405 {
1406 /* Check that the return value locations are the same. For
1407 example that we aren't returning a value from the sibling in
1408 a D0 register but then need to transfer it to a A0 register. */
1409 rtx cfun_value;
1410 rtx call_value;
1411
1412 cfun_value = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (cfun->decl)),
1413 cfun->decl);
1414 call_value = FUNCTION_VALUE (TREE_TYPE (exp), decl);
1415
1416 /* Check that the values are equal or that the result the callee
1417 function returns is superset of what the current function returns. */
1418 if (!(rtx_equal_p (cfun_value, call_value)
1419 || (REG_P (cfun_value)
1420 && m68k_reg_present_p (call_value, REGNO (cfun_value)))))
1421 return false;
1422 }
1423
1424 kind = m68k_get_function_kind (current_function_decl);
1425 if (kind == m68k_fk_normal_function)
1426 /* We can always sibcall from a normal function, because it's
1427 undefined if it is calling an interrupt function. */
1428 return true;
1429
1430 /* Otherwise we can only sibcall if the function kind is known to be
1431 the same. */
1432 if (decl && m68k_get_function_kind (decl) == kind)
1433 return true;
1434
1435 return false;
1436 }
1437
1438 /* On the m68k all args are always pushed. */
1439
1440 static rtx
1441 m68k_function_arg (cumulative_args_t cum ATTRIBUTE_UNUSED,
1442 machine_mode mode ATTRIBUTE_UNUSED,
1443 const_tree type ATTRIBUTE_UNUSED,
1444 bool named ATTRIBUTE_UNUSED)
1445 {
1446 return NULL_RTX;
1447 }
1448
1449 static void
1450 m68k_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
1451 const_tree type, bool named ATTRIBUTE_UNUSED)
1452 {
1453 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1454
1455 *cum += (mode != BLKmode
1456 ? (GET_MODE_SIZE (mode) + 3) & ~3
1457 : (int_size_in_bytes (type) + 3) & ~3);
1458 }
1459
1460 /* Convert X to a legitimate function call memory reference and return the
1461 result. */
1462
1463 rtx
1464 m68k_legitimize_call_address (rtx x)
1465 {
1466 gcc_assert (MEM_P (x));
1467 if (call_operand (XEXP (x, 0), VOIDmode))
1468 return x;
1469 return replace_equiv_address (x, force_reg (Pmode, XEXP (x, 0)));
1470 }
1471
1472 /* Likewise for sibling calls. */
1473
1474 rtx
1475 m68k_legitimize_sibcall_address (rtx x)
1476 {
1477 gcc_assert (MEM_P (x));
1478 if (sibcall_operand (XEXP (x, 0), VOIDmode))
1479 return x;
1480
1481 emit_move_insn (gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM), XEXP (x, 0));
1482 return replace_equiv_address (x, gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM));
1483 }
1484
1485 /* Convert X to a legitimate address and return it if successful. Otherwise
1486 return X.
1487
1488 For the 68000, we handle X+REG by loading X into a register R and
1489 using R+REG. R will go in an address reg and indexing will be used.
1490 However, if REG is a broken-out memory address or multiplication,
1491 nothing needs to be done because REG can certainly go in an address reg. */
1492
1493 static rtx
1494 m68k_legitimize_address (rtx x, rtx oldx, machine_mode mode)
1495 {
1496 if (m68k_tls_symbol_p (x))
1497 return m68k_legitimize_tls_address (x);
1498
1499 if (GET_CODE (x) == PLUS)
1500 {
1501 int ch = (x) != (oldx);
1502 int copied = 0;
1503
1504 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1505
1506 if (GET_CODE (XEXP (x, 0)) == MULT)
1507 {
1508 COPY_ONCE (x);
1509 XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
1510 }
1511 if (GET_CODE (XEXP (x, 1)) == MULT)
1512 {
1513 COPY_ONCE (x);
1514 XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
1515 }
1516 if (ch)
1517 {
1518 if (GET_CODE (XEXP (x, 1)) == REG
1519 && GET_CODE (XEXP (x, 0)) == REG)
1520 {
1521 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
1522 {
1523 COPY_ONCE (x);
1524 x = force_operand (x, 0);
1525 }
1526 return x;
1527 }
1528 if (memory_address_p (mode, x))
1529 return x;
1530 }
1531 if (GET_CODE (XEXP (x, 0)) == REG
1532 || (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
1533 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
1534 && GET_MODE (XEXP (XEXP (x, 0), 0)) == HImode))
1535 {
1536 rtx temp = gen_reg_rtx (Pmode);
1537 rtx val = force_operand (XEXP (x, 1), 0);
1538 emit_move_insn (temp, val);
1539 COPY_ONCE (x);
1540 XEXP (x, 1) = temp;
1541 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1542 && GET_CODE (XEXP (x, 0)) == REG)
1543 x = force_operand (x, 0);
1544 }
1545 else if (GET_CODE (XEXP (x, 1)) == REG
1546 || (GET_CODE (XEXP (x, 1)) == SIGN_EXTEND
1547 && GET_CODE (XEXP (XEXP (x, 1), 0)) == REG
1548 && GET_MODE (XEXP (XEXP (x, 1), 0)) == HImode))
1549 {
1550 rtx temp = gen_reg_rtx (Pmode);
1551 rtx val = force_operand (XEXP (x, 0), 0);
1552 emit_move_insn (temp, val);
1553 COPY_ONCE (x);
1554 XEXP (x, 0) = temp;
1555 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1556 && GET_CODE (XEXP (x, 1)) == REG)
1557 x = force_operand (x, 0);
1558 }
1559 }
1560
1561 return x;
1562 }
1563
1564
1565 /* Output a dbCC; jCC sequence. Note we do not handle the
1566 floating point version of this sequence (Fdbcc). We also
1567 do not handle alternative conditions when CC_NO_OVERFLOW is
1568 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
1569 kick those out before we get here. */
1570
1571 void
1572 output_dbcc_and_branch (rtx *operands)
1573 {
1574 switch (GET_CODE (operands[3]))
1575 {
1576 case EQ:
1577 output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
1578 break;
1579
1580 case NE:
1581 output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
1582 break;
1583
1584 case GT:
1585 output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
1586 break;
1587
1588 case GTU:
1589 output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
1590 break;
1591
1592 case LT:
1593 output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
1594 break;
1595
1596 case LTU:
1597 output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
1598 break;
1599
1600 case GE:
1601 output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
1602 break;
1603
1604 case GEU:
1605 output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
1606 break;
1607
1608 case LE:
1609 output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
1610 break;
1611
1612 case LEU:
1613 output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
1614 break;
1615
1616 default:
1617 gcc_unreachable ();
1618 }
1619
1620 /* If the decrement is to be done in SImode, then we have
1621 to compensate for the fact that dbcc decrements in HImode. */
1622 switch (GET_MODE (operands[0]))
1623 {
1624 case SImode:
1625 output_asm_insn ("clr%.w %0\n\tsubq%.l #1,%0\n\tjpl %l1", operands);
1626 break;
1627
1628 case HImode:
1629 break;
1630
1631 default:
1632 gcc_unreachable ();
1633 }
1634 }
1635
1636 const char *
1637 output_scc_di (rtx op, rtx operand1, rtx operand2, rtx dest)
1638 {
1639 rtx loperands[7];
1640 enum rtx_code op_code = GET_CODE (op);
1641
1642 /* This does not produce a useful cc. */
1643 CC_STATUS_INIT;
1644
1645 /* The m68k cmp.l instruction requires operand1 to be a reg as used
1646 below. Swap the operands and change the op if these requirements
1647 are not fulfilled. */
1648 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
1649 {
1650 rtx tmp = operand1;
1651
1652 operand1 = operand2;
1653 operand2 = tmp;
1654 op_code = swap_condition (op_code);
1655 }
1656 loperands[0] = operand1;
1657 if (GET_CODE (operand1) == REG)
1658 loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
1659 else
1660 loperands[1] = adjust_address (operand1, SImode, 4);
1661 if (operand2 != const0_rtx)
1662 {
1663 loperands[2] = operand2;
1664 if (GET_CODE (operand2) == REG)
1665 loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
1666 else
1667 loperands[3] = adjust_address (operand2, SImode, 4);
1668 }
1669 loperands[4] = gen_label_rtx ();
1670 if (operand2 != const0_rtx)
1671 output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
1672 else
1673 {
1674 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[0]))
1675 output_asm_insn ("tst%.l %0", loperands);
1676 else
1677 output_asm_insn ("cmp%.w #0,%0", loperands);
1678
1679 output_asm_insn ("jne %l4", loperands);
1680
1681 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[1]))
1682 output_asm_insn ("tst%.l %1", loperands);
1683 else
1684 output_asm_insn ("cmp%.w #0,%1", loperands);
1685 }
1686
1687 loperands[5] = dest;
1688
1689 switch (op_code)
1690 {
1691 case EQ:
1692 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1693 CODE_LABEL_NUMBER (loperands[4]));
1694 output_asm_insn ("seq %5", loperands);
1695 break;
1696
1697 case NE:
1698 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1699 CODE_LABEL_NUMBER (loperands[4]));
1700 output_asm_insn ("sne %5", loperands);
1701 break;
1702
1703 case GT:
1704 loperands[6] = gen_label_rtx ();
1705 output_asm_insn ("shi %5\n\tjra %l6", loperands);
1706 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1707 CODE_LABEL_NUMBER (loperands[4]));
1708 output_asm_insn ("sgt %5", loperands);
1709 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1710 CODE_LABEL_NUMBER (loperands[6]));
1711 break;
1712
1713 case GTU:
1714 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1715 CODE_LABEL_NUMBER (loperands[4]));
1716 output_asm_insn ("shi %5", loperands);
1717 break;
1718
1719 case LT:
1720 loperands[6] = gen_label_rtx ();
1721 output_asm_insn ("scs %5\n\tjra %l6", loperands);
1722 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1723 CODE_LABEL_NUMBER (loperands[4]));
1724 output_asm_insn ("slt %5", loperands);
1725 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1726 CODE_LABEL_NUMBER (loperands[6]));
1727 break;
1728
1729 case LTU:
1730 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1731 CODE_LABEL_NUMBER (loperands[4]));
1732 output_asm_insn ("scs %5", loperands);
1733 break;
1734
1735 case GE:
1736 loperands[6] = gen_label_rtx ();
1737 output_asm_insn ("scc %5\n\tjra %l6", loperands);
1738 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1739 CODE_LABEL_NUMBER (loperands[4]));
1740 output_asm_insn ("sge %5", loperands);
1741 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1742 CODE_LABEL_NUMBER (loperands[6]));
1743 break;
1744
1745 case GEU:
1746 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1747 CODE_LABEL_NUMBER (loperands[4]));
1748 output_asm_insn ("scc %5", loperands);
1749 break;
1750
1751 case LE:
1752 loperands[6] = gen_label_rtx ();
1753 output_asm_insn ("sls %5\n\tjra %l6", loperands);
1754 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1755 CODE_LABEL_NUMBER (loperands[4]));
1756 output_asm_insn ("sle %5", loperands);
1757 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1758 CODE_LABEL_NUMBER (loperands[6]));
1759 break;
1760
1761 case LEU:
1762 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1763 CODE_LABEL_NUMBER (loperands[4]));
1764 output_asm_insn ("sls %5", loperands);
1765 break;
1766
1767 default:
1768 gcc_unreachable ();
1769 }
1770 return "";
1771 }
1772
1773 const char *
1774 output_btst (rtx *operands, rtx countop, rtx dataop, rtx_insn *insn, int signpos)
1775 {
1776 operands[0] = countop;
1777 operands[1] = dataop;
1778
1779 if (GET_CODE (countop) == CONST_INT)
1780 {
1781 register int count = INTVAL (countop);
1782 /* If COUNT is bigger than size of storage unit in use,
1783 advance to the containing unit of same size. */
1784 if (count > signpos)
1785 {
1786 int offset = (count & ~signpos) / 8;
1787 count = count & signpos;
1788 operands[1] = dataop = adjust_address (dataop, QImode, offset);
1789 }
1790 if (count == signpos)
1791 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1792 else
1793 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1794
1795 /* These three statements used to use next_insns_test_no...
1796 but it appears that this should do the same job. */
1797 if (count == 31
1798 && next_insn_tests_no_inequality (insn))
1799 return "tst%.l %1";
1800 if (count == 15
1801 && next_insn_tests_no_inequality (insn))
1802 return "tst%.w %1";
1803 if (count == 7
1804 && next_insn_tests_no_inequality (insn))
1805 return "tst%.b %1";
1806 /* Try to use `movew to ccr' followed by the appropriate branch insn.
1807 On some m68k variants unfortunately that's slower than btst.
1808 On 68000 and higher, that should also work for all HImode operands. */
1809 if (TUNE_CPU32 || TARGET_COLDFIRE || optimize_size)
1810 {
1811 if (count == 3 && DATA_REG_P (operands[1])
1812 && next_insn_tests_no_inequality (insn))
1813 {
1814 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N | CC_NO_OVERFLOW;
1815 return "move%.w %1,%%ccr";
1816 }
1817 if (count == 2 && DATA_REG_P (operands[1])
1818 && next_insn_tests_no_inequality (insn))
1819 {
1820 cc_status.flags = CC_NOT_NEGATIVE | CC_INVERTED | CC_NO_OVERFLOW;
1821 return "move%.w %1,%%ccr";
1822 }
1823 /* count == 1 followed by bvc/bvs and
1824 count == 0 followed by bcc/bcs are also possible, but need
1825 m68k-specific CC_Z_IN_NOT_V and CC_Z_IN_NOT_C flags. */
1826 }
1827
1828 cc_status.flags = CC_NOT_NEGATIVE;
1829 }
1830 return "btst %0,%1";
1831 }
1832 \f
1833 /* Return true if X is a legitimate base register. STRICT_P says
1834 whether we need strict checking. */
1835
1836 bool
1837 m68k_legitimate_base_reg_p (rtx x, bool strict_p)
1838 {
1839 /* Allow SUBREG everywhere we allow REG. This results in better code. */
1840 if (!strict_p && GET_CODE (x) == SUBREG)
1841 x = SUBREG_REG (x);
1842
1843 return (REG_P (x)
1844 && (strict_p
1845 ? REGNO_OK_FOR_BASE_P (REGNO (x))
1846 : REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (x))));
1847 }
1848
1849 /* Return true if X is a legitimate index register. STRICT_P says
1850 whether we need strict checking. */
1851
1852 bool
1853 m68k_legitimate_index_reg_p (rtx x, bool strict_p)
1854 {
1855 if (!strict_p && GET_CODE (x) == SUBREG)
1856 x = SUBREG_REG (x);
1857
1858 return (REG_P (x)
1859 && (strict_p
1860 ? REGNO_OK_FOR_INDEX_P (REGNO (x))
1861 : REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (x))));
1862 }
1863
1864 /* Return true if X is a legitimate index expression for a (d8,An,Xn) or
1865 (bd,An,Xn) addressing mode. Fill in the INDEX and SCALE fields of
1866 ADDRESS if so. STRICT_P says whether we need strict checking. */
1867
1868 static bool
1869 m68k_decompose_index (rtx x, bool strict_p, struct m68k_address *address)
1870 {
1871 int scale;
1872
1873 /* Check for a scale factor. */
1874 scale = 1;
1875 if ((TARGET_68020 || TARGET_COLDFIRE)
1876 && GET_CODE (x) == MULT
1877 && GET_CODE (XEXP (x, 1)) == CONST_INT
1878 && (INTVAL (XEXP (x, 1)) == 2
1879 || INTVAL (XEXP (x, 1)) == 4
1880 || (INTVAL (XEXP (x, 1)) == 8
1881 && (TARGET_COLDFIRE_FPU || !TARGET_COLDFIRE))))
1882 {
1883 scale = INTVAL (XEXP (x, 1));
1884 x = XEXP (x, 0);
1885 }
1886
1887 /* Check for a word extension. */
1888 if (!TARGET_COLDFIRE
1889 && GET_CODE (x) == SIGN_EXTEND
1890 && GET_MODE (XEXP (x, 0)) == HImode)
1891 x = XEXP (x, 0);
1892
1893 if (m68k_legitimate_index_reg_p (x, strict_p))
1894 {
1895 address->scale = scale;
1896 address->index = x;
1897 return true;
1898 }
1899
1900 return false;
1901 }
1902
1903 /* Return true if X is an illegitimate symbolic constant. */
1904
1905 bool
1906 m68k_illegitimate_symbolic_constant_p (rtx x)
1907 {
1908 rtx base, offset;
1909
1910 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
1911 {
1912 split_const (x, &base, &offset);
1913 if (GET_CODE (base) == SYMBOL_REF
1914 && !offset_within_block_p (base, INTVAL (offset)))
1915 return true;
1916 }
1917 return m68k_tls_reference_p (x, false);
1918 }
1919
1920 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
1921
1922 static bool
1923 m68k_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
1924 {
1925 return m68k_illegitimate_symbolic_constant_p (x);
1926 }
1927
1928 /* Return true if X is a legitimate constant address that can reach
1929 bytes in the range [X, X + REACH). STRICT_P says whether we need
1930 strict checking. */
1931
1932 static bool
1933 m68k_legitimate_constant_address_p (rtx x, unsigned int reach, bool strict_p)
1934 {
1935 rtx base, offset;
1936
1937 if (!CONSTANT_ADDRESS_P (x))
1938 return false;
1939
1940 if (flag_pic
1941 && !(strict_p && TARGET_PCREL)
1942 && symbolic_operand (x, VOIDmode))
1943 return false;
1944
1945 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P && reach > 1)
1946 {
1947 split_const (x, &base, &offset);
1948 if (GET_CODE (base) == SYMBOL_REF
1949 && !offset_within_block_p (base, INTVAL (offset) + reach - 1))
1950 return false;
1951 }
1952
1953 return !m68k_tls_reference_p (x, false);
1954 }
1955
1956 /* Return true if X is a LABEL_REF for a jump table. Assume that unplaced
1957 labels will become jump tables. */
1958
1959 static bool
1960 m68k_jump_table_ref_p (rtx x)
1961 {
1962 if (GET_CODE (x) != LABEL_REF)
1963 return false;
1964
1965 rtx_insn *insn = as_a <rtx_insn *> (XEXP (x, 0));
1966 if (!NEXT_INSN (insn) && !PREV_INSN (insn))
1967 return true;
1968
1969 insn = next_nonnote_insn (insn);
1970 return insn && JUMP_TABLE_DATA_P (insn);
1971 }
1972
1973 /* Return true if X is a legitimate address for values of mode MODE.
1974 STRICT_P says whether strict checking is needed. If the address
1975 is valid, describe its components in *ADDRESS. */
1976
1977 static bool
1978 m68k_decompose_address (machine_mode mode, rtx x,
1979 bool strict_p, struct m68k_address *address)
1980 {
1981 unsigned int reach;
1982
1983 memset (address, 0, sizeof (*address));
1984
1985 if (mode == BLKmode)
1986 reach = 1;
1987 else
1988 reach = GET_MODE_SIZE (mode);
1989
1990 /* Check for (An) (mode 2). */
1991 if (m68k_legitimate_base_reg_p (x, strict_p))
1992 {
1993 address->base = x;
1994 return true;
1995 }
1996
1997 /* Check for -(An) and (An)+ (modes 3 and 4). */
1998 if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
1999 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
2000 {
2001 address->code = GET_CODE (x);
2002 address->base = XEXP (x, 0);
2003 return true;
2004 }
2005
2006 /* Check for (d16,An) (mode 5). */
2007 if (GET_CODE (x) == PLUS
2008 && GET_CODE (XEXP (x, 1)) == CONST_INT
2009 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x8000, 0x8000 - reach)
2010 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
2011 {
2012 address->base = XEXP (x, 0);
2013 address->offset = XEXP (x, 1);
2014 return true;
2015 }
2016
2017 /* Check for GOT loads. These are (bd,An,Xn) addresses if
2018 TARGET_68020 && flag_pic == 2, otherwise they are (d16,An)
2019 addresses. */
2020 if (GET_CODE (x) == PLUS
2021 && XEXP (x, 0) == pic_offset_table_rtx)
2022 {
2023 /* As we are processing a PLUS, do not unwrap RELOC32 symbols --
2024 they are invalid in this context. */
2025 if (m68k_unwrap_symbol (XEXP (x, 1), false) != XEXP (x, 1))
2026 {
2027 address->base = XEXP (x, 0);
2028 address->offset = XEXP (x, 1);
2029 return true;
2030 }
2031 }
2032
2033 /* The ColdFire FPU only accepts addressing modes 2-5. */
2034 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
2035 return false;
2036
2037 /* Check for (xxx).w and (xxx).l. Also, in the TARGET_PCREL case,
2038 check for (d16,PC) or (bd,PC,Xn) with a suppressed index register.
2039 All these modes are variations of mode 7. */
2040 if (m68k_legitimate_constant_address_p (x, reach, strict_p))
2041 {
2042 address->offset = x;
2043 return true;
2044 }
2045
2046 /* Check for (d8,PC,Xn), a mode 7 form. This case is needed for
2047 tablejumps.
2048
2049 ??? do_tablejump creates these addresses before placing the target
2050 label, so we have to assume that unplaced labels are jump table
2051 references. It seems unlikely that we would ever generate indexed
2052 accesses to unplaced labels in other cases. */
2053 if (GET_CODE (x) == PLUS
2054 && m68k_jump_table_ref_p (XEXP (x, 1))
2055 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2056 {
2057 address->offset = XEXP (x, 1);
2058 return true;
2059 }
2060
2061 /* Everything hereafter deals with (d8,An,Xn.SIZE*SCALE) or
2062 (bd,An,Xn.SIZE*SCALE) addresses. */
2063
2064 if (TARGET_68020)
2065 {
2066 /* Check for a nonzero base displacement. */
2067 if (GET_CODE (x) == PLUS
2068 && m68k_legitimate_constant_address_p (XEXP (x, 1), reach, strict_p))
2069 {
2070 address->offset = XEXP (x, 1);
2071 x = XEXP (x, 0);
2072 }
2073
2074 /* Check for a suppressed index register. */
2075 if (m68k_legitimate_base_reg_p (x, strict_p))
2076 {
2077 address->base = x;
2078 return true;
2079 }
2080
2081 /* Check for a suppressed base register. Do not allow this case
2082 for non-symbolic offsets as it effectively gives gcc freedom
2083 to treat data registers as base registers, which can generate
2084 worse code. */
2085 if (address->offset
2086 && symbolic_operand (address->offset, VOIDmode)
2087 && m68k_decompose_index (x, strict_p, address))
2088 return true;
2089 }
2090 else
2091 {
2092 /* Check for a nonzero base displacement. */
2093 if (GET_CODE (x) == PLUS
2094 && GET_CODE (XEXP (x, 1)) == CONST_INT
2095 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x80, 0x80 - reach))
2096 {
2097 address->offset = XEXP (x, 1);
2098 x = XEXP (x, 0);
2099 }
2100 }
2101
2102 /* We now expect the sum of a base and an index. */
2103 if (GET_CODE (x) == PLUS)
2104 {
2105 if (m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p)
2106 && m68k_decompose_index (XEXP (x, 1), strict_p, address))
2107 {
2108 address->base = XEXP (x, 0);
2109 return true;
2110 }
2111
2112 if (m68k_legitimate_base_reg_p (XEXP (x, 1), strict_p)
2113 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2114 {
2115 address->base = XEXP (x, 1);
2116 return true;
2117 }
2118 }
2119 return false;
2120 }
2121
2122 /* Return true if X is a legitimate address for values of mode MODE.
2123 STRICT_P says whether strict checking is needed. */
2124
2125 bool
2126 m68k_legitimate_address_p (machine_mode mode, rtx x, bool strict_p)
2127 {
2128 struct m68k_address address;
2129
2130 return m68k_decompose_address (mode, x, strict_p, &address);
2131 }
2132
2133 /* Return true if X is a memory, describing its address in ADDRESS if so.
2134 Apply strict checking if called during or after reload. */
2135
2136 static bool
2137 m68k_legitimate_mem_p (rtx x, struct m68k_address *address)
2138 {
2139 return (MEM_P (x)
2140 && m68k_decompose_address (GET_MODE (x), XEXP (x, 0),
2141 reload_in_progress || reload_completed,
2142 address));
2143 }
2144
2145 /* Implement TARGET_LEGITIMATE_CONSTANT_P. */
2146
2147 bool
2148 m68k_legitimate_constant_p (machine_mode mode, rtx x)
2149 {
2150 return mode != XFmode && !m68k_illegitimate_symbolic_constant_p (x);
2151 }
2152
2153 /* Return true if X matches the 'Q' constraint. It must be a memory
2154 with a base address and no constant offset or index. */
2155
2156 bool
2157 m68k_matches_q_p (rtx x)
2158 {
2159 struct m68k_address address;
2160
2161 return (m68k_legitimate_mem_p (x, &address)
2162 && address.code == UNKNOWN
2163 && address.base
2164 && !address.offset
2165 && !address.index);
2166 }
2167
2168 /* Return true if X matches the 'U' constraint. It must be a base address
2169 with a constant offset and no index. */
2170
2171 bool
2172 m68k_matches_u_p (rtx x)
2173 {
2174 struct m68k_address address;
2175
2176 return (m68k_legitimate_mem_p (x, &address)
2177 && address.code == UNKNOWN
2178 && address.base
2179 && address.offset
2180 && !address.index);
2181 }
2182
2183 /* Return GOT pointer. */
2184
2185 static rtx
2186 m68k_get_gp (void)
2187 {
2188 if (pic_offset_table_rtx == NULL_RTX)
2189 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_REG);
2190
2191 crtl->uses_pic_offset_table = 1;
2192
2193 return pic_offset_table_rtx;
2194 }
2195
2196 /* M68K relocations, used to distinguish GOT and TLS relocations in UNSPEC
2197 wrappers. */
2198 enum m68k_reloc { RELOC_GOT, RELOC_TLSGD, RELOC_TLSLDM, RELOC_TLSLDO,
2199 RELOC_TLSIE, RELOC_TLSLE };
2200
2201 #define TLS_RELOC_P(RELOC) ((RELOC) != RELOC_GOT)
2202
2203 /* Wrap symbol X into unspec representing relocation RELOC.
2204 BASE_REG - register that should be added to the result.
2205 TEMP_REG - if non-null, temporary register. */
2206
2207 static rtx
2208 m68k_wrap_symbol (rtx x, enum m68k_reloc reloc, rtx base_reg, rtx temp_reg)
2209 {
2210 bool use_x_p;
2211
2212 use_x_p = (base_reg == pic_offset_table_rtx) ? TARGET_XGOT : TARGET_XTLS;
2213
2214 if (TARGET_COLDFIRE && use_x_p)
2215 /* When compiling with -mx{got, tls} switch the code will look like this:
2216
2217 move.l <X>@<RELOC>,<TEMP_REG>
2218 add.l <BASE_REG>,<TEMP_REG> */
2219 {
2220 /* Wrap X in UNSPEC_??? to tip m68k_output_addr_const_extra
2221 to put @RELOC after reference. */
2222 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2223 UNSPEC_RELOC32);
2224 x = gen_rtx_CONST (Pmode, x);
2225
2226 if (temp_reg == NULL)
2227 {
2228 gcc_assert (can_create_pseudo_p ());
2229 temp_reg = gen_reg_rtx (Pmode);
2230 }
2231
2232 emit_move_insn (temp_reg, x);
2233 emit_insn (gen_addsi3 (temp_reg, temp_reg, base_reg));
2234 x = temp_reg;
2235 }
2236 else
2237 {
2238 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2239 UNSPEC_RELOC16);
2240 x = gen_rtx_CONST (Pmode, x);
2241
2242 x = gen_rtx_PLUS (Pmode, base_reg, x);
2243 }
2244
2245 return x;
2246 }
2247
2248 /* Helper for m68k_unwrap_symbol.
2249 Also, if unwrapping was successful (that is if (ORIG != <return value>)),
2250 sets *RELOC_PTR to relocation type for the symbol. */
2251
2252 static rtx
2253 m68k_unwrap_symbol_1 (rtx orig, bool unwrap_reloc32_p,
2254 enum m68k_reloc *reloc_ptr)
2255 {
2256 if (GET_CODE (orig) == CONST)
2257 {
2258 rtx x;
2259 enum m68k_reloc dummy;
2260
2261 x = XEXP (orig, 0);
2262
2263 if (reloc_ptr == NULL)
2264 reloc_ptr = &dummy;
2265
2266 /* Handle an addend. */
2267 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2268 && CONST_INT_P (XEXP (x, 1)))
2269 x = XEXP (x, 0);
2270
2271 if (GET_CODE (x) == UNSPEC)
2272 {
2273 switch (XINT (x, 1))
2274 {
2275 case UNSPEC_RELOC16:
2276 orig = XVECEXP (x, 0, 0);
2277 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2278 break;
2279
2280 case UNSPEC_RELOC32:
2281 if (unwrap_reloc32_p)
2282 {
2283 orig = XVECEXP (x, 0, 0);
2284 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2285 }
2286 break;
2287
2288 default:
2289 break;
2290 }
2291 }
2292 }
2293
2294 return orig;
2295 }
2296
2297 /* Unwrap symbol from UNSPEC_RELOC16 and, if unwrap_reloc32_p,
2298 UNSPEC_RELOC32 wrappers. */
2299
2300 rtx
2301 m68k_unwrap_symbol (rtx orig, bool unwrap_reloc32_p)
2302 {
2303 return m68k_unwrap_symbol_1 (orig, unwrap_reloc32_p, NULL);
2304 }
2305
2306 /* Prescan insn before outputing assembler for it. */
2307
2308 void
2309 m68k_final_prescan_insn (rtx_insn *insn ATTRIBUTE_UNUSED,
2310 rtx *operands, int n_operands)
2311 {
2312 int i;
2313
2314 /* Combine and, possibly, other optimizations may do good job
2315 converting
2316 (const (unspec [(symbol)]))
2317 into
2318 (const (plus (unspec [(symbol)])
2319 (const_int N))).
2320 The problem with this is emitting @TLS or @GOT decorations.
2321 The decoration is emitted when processing (unspec), so the
2322 result would be "#symbol@TLSLE+N" instead of "#symbol+N@TLSLE".
2323
2324 It seems that the easiest solution to this is to convert such
2325 operands to
2326 (const (unspec [(plus (symbol)
2327 (const_int N))])).
2328 Note, that the top level of operand remains intact, so we don't have
2329 to patch up anything outside of the operand. */
2330
2331 subrtx_var_iterator::array_type array;
2332 for (i = 0; i < n_operands; ++i)
2333 {
2334 rtx op;
2335
2336 op = operands[i];
2337
2338 FOR_EACH_SUBRTX_VAR (iter, array, op, ALL)
2339 {
2340 rtx x = *iter;
2341 if (m68k_unwrap_symbol (x, true) != x)
2342 {
2343 rtx plus;
2344
2345 gcc_assert (GET_CODE (x) == CONST);
2346 plus = XEXP (x, 0);
2347
2348 if (GET_CODE (plus) == PLUS || GET_CODE (plus) == MINUS)
2349 {
2350 rtx unspec;
2351 rtx addend;
2352
2353 unspec = XEXP (plus, 0);
2354 gcc_assert (GET_CODE (unspec) == UNSPEC);
2355 addend = XEXP (plus, 1);
2356 gcc_assert (CONST_INT_P (addend));
2357
2358 /* We now have all the pieces, rearrange them. */
2359
2360 /* Move symbol to plus. */
2361 XEXP (plus, 0) = XVECEXP (unspec, 0, 0);
2362
2363 /* Move plus inside unspec. */
2364 XVECEXP (unspec, 0, 0) = plus;
2365
2366 /* Move unspec to top level of const. */
2367 XEXP (x, 0) = unspec;
2368 }
2369 iter.skip_subrtxes ();
2370 }
2371 }
2372 }
2373 }
2374
2375 /* Move X to a register and add REG_EQUAL note pointing to ORIG.
2376 If REG is non-null, use it; generate new pseudo otherwise. */
2377
2378 static rtx
2379 m68k_move_to_reg (rtx x, rtx orig, rtx reg)
2380 {
2381 rtx_insn *insn;
2382
2383 if (reg == NULL_RTX)
2384 {
2385 gcc_assert (can_create_pseudo_p ());
2386 reg = gen_reg_rtx (Pmode);
2387 }
2388
2389 insn = emit_move_insn (reg, x);
2390 /* Put a REG_EQUAL note on this insn, so that it can be optimized
2391 by loop. */
2392 set_unique_reg_note (insn, REG_EQUAL, orig);
2393
2394 return reg;
2395 }
2396
2397 /* Does the same as m68k_wrap_symbol, but returns a memory reference to
2398 GOT slot. */
2399
2400 static rtx
2401 m68k_wrap_symbol_into_got_ref (rtx x, enum m68k_reloc reloc, rtx temp_reg)
2402 {
2403 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), temp_reg);
2404
2405 x = gen_rtx_MEM (Pmode, x);
2406 MEM_READONLY_P (x) = 1;
2407
2408 return x;
2409 }
2410
2411 /* Legitimize PIC addresses. If the address is already
2412 position-independent, we return ORIG. Newly generated
2413 position-independent addresses go to REG. If we need more
2414 than one register, we lose.
2415
2416 An address is legitimized by making an indirect reference
2417 through the Global Offset Table with the name of the symbol
2418 used as an offset.
2419
2420 The assembler and linker are responsible for placing the
2421 address of the symbol in the GOT. The function prologue
2422 is responsible for initializing a5 to the starting address
2423 of the GOT.
2424
2425 The assembler is also responsible for translating a symbol name
2426 into a constant displacement from the start of the GOT.
2427
2428 A quick example may make things a little clearer:
2429
2430 When not generating PIC code to store the value 12345 into _foo
2431 we would generate the following code:
2432
2433 movel #12345, _foo
2434
2435 When generating PIC two transformations are made. First, the compiler
2436 loads the address of foo into a register. So the first transformation makes:
2437
2438 lea _foo, a0
2439 movel #12345, a0@
2440
2441 The code in movsi will intercept the lea instruction and call this
2442 routine which will transform the instructions into:
2443
2444 movel a5@(_foo:w), a0
2445 movel #12345, a0@
2446
2447
2448 That (in a nutshell) is how *all* symbol and label references are
2449 handled. */
2450
2451 rtx
2452 legitimize_pic_address (rtx orig, machine_mode mode ATTRIBUTE_UNUSED,
2453 rtx reg)
2454 {
2455 rtx pic_ref = orig;
2456
2457 /* First handle a simple SYMBOL_REF or LABEL_REF */
2458 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
2459 {
2460 gcc_assert (reg);
2461
2462 pic_ref = m68k_wrap_symbol_into_got_ref (orig, RELOC_GOT, reg);
2463 pic_ref = m68k_move_to_reg (pic_ref, orig, reg);
2464 }
2465 else if (GET_CODE (orig) == CONST)
2466 {
2467 rtx base;
2468
2469 /* Make sure this has not already been legitimized. */
2470 if (m68k_unwrap_symbol (orig, true) != orig)
2471 return orig;
2472
2473 gcc_assert (reg);
2474
2475 /* legitimize both operands of the PLUS */
2476 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
2477
2478 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
2479 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
2480 base == reg ? 0 : reg);
2481
2482 if (GET_CODE (orig) == CONST_INT)
2483 pic_ref = plus_constant (Pmode, base, INTVAL (orig));
2484 else
2485 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
2486 }
2487
2488 return pic_ref;
2489 }
2490
2491 /* The __tls_get_addr symbol. */
2492 static GTY(()) rtx m68k_tls_get_addr;
2493
2494 /* Return SYMBOL_REF for __tls_get_addr. */
2495
2496 static rtx
2497 m68k_get_tls_get_addr (void)
2498 {
2499 if (m68k_tls_get_addr == NULL_RTX)
2500 m68k_tls_get_addr = init_one_libfunc ("__tls_get_addr");
2501
2502 return m68k_tls_get_addr;
2503 }
2504
2505 /* Return libcall result in A0 instead of usual D0. */
2506 static bool m68k_libcall_value_in_a0_p = false;
2507
2508 /* Emit instruction sequence that calls __tls_get_addr. X is
2509 the TLS symbol we are referencing and RELOC is the symbol type to use
2510 (either TLSGD or TLSLDM). EQV is the REG_EQUAL note for the sequence
2511 emitted. A pseudo register with result of __tls_get_addr call is
2512 returned. */
2513
2514 static rtx
2515 m68k_call_tls_get_addr (rtx x, rtx eqv, enum m68k_reloc reloc)
2516 {
2517 rtx a0;
2518 rtx_insn *insns;
2519 rtx dest;
2520
2521 /* Emit the call sequence. */
2522 start_sequence ();
2523
2524 /* FIXME: Unfortunately, emit_library_call_value does not
2525 consider (plus (%a5) (const (unspec))) to be a good enough
2526 operand for push, so it forces it into a register. The bad
2527 thing about this is that combiner, due to copy propagation and other
2528 optimizations, sometimes can not later fix this. As a consequence,
2529 additional register may be allocated resulting in a spill.
2530 For reference, see args processing loops in
2531 calls.c:emit_library_call_value_1.
2532 For testcase, see gcc.target/m68k/tls-{gd, ld}.c */
2533 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), NULL_RTX);
2534
2535 /* __tls_get_addr() is not a libcall, but emitting a libcall_value
2536 is the simpliest way of generating a call. The difference between
2537 __tls_get_addr() and libcall is that the result is returned in D0
2538 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2539 which temporarily switches returning the result to A0. */
2540
2541 m68k_libcall_value_in_a0_p = true;
2542 a0 = emit_library_call_value (m68k_get_tls_get_addr (), NULL_RTX, LCT_PURE,
2543 Pmode, 1, x, Pmode);
2544 m68k_libcall_value_in_a0_p = false;
2545
2546 insns = get_insns ();
2547 end_sequence ();
2548
2549 gcc_assert (can_create_pseudo_p ());
2550 dest = gen_reg_rtx (Pmode);
2551 emit_libcall_block (insns, dest, a0, eqv);
2552
2553 return dest;
2554 }
2555
2556 /* The __tls_get_addr symbol. */
2557 static GTY(()) rtx m68k_read_tp;
2558
2559 /* Return SYMBOL_REF for __m68k_read_tp. */
2560
2561 static rtx
2562 m68k_get_m68k_read_tp (void)
2563 {
2564 if (m68k_read_tp == NULL_RTX)
2565 m68k_read_tp = init_one_libfunc ("__m68k_read_tp");
2566
2567 return m68k_read_tp;
2568 }
2569
2570 /* Emit instruction sequence that calls __m68k_read_tp.
2571 A pseudo register with result of __m68k_read_tp call is returned. */
2572
2573 static rtx
2574 m68k_call_m68k_read_tp (void)
2575 {
2576 rtx a0;
2577 rtx eqv;
2578 rtx_insn *insns;
2579 rtx dest;
2580
2581 start_sequence ();
2582
2583 /* __m68k_read_tp() is not a libcall, but emitting a libcall_value
2584 is the simpliest way of generating a call. The difference between
2585 __m68k_read_tp() and libcall is that the result is returned in D0
2586 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2587 which temporarily switches returning the result to A0. */
2588
2589 /* Emit the call sequence. */
2590 m68k_libcall_value_in_a0_p = true;
2591 a0 = emit_library_call_value (m68k_get_m68k_read_tp (), NULL_RTX, LCT_PURE,
2592 Pmode, 0);
2593 m68k_libcall_value_in_a0_p = false;
2594 insns = get_insns ();
2595 end_sequence ();
2596
2597 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2598 share the m68k_read_tp result with other IE/LE model accesses. */
2599 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const1_rtx), UNSPEC_RELOC32);
2600
2601 gcc_assert (can_create_pseudo_p ());
2602 dest = gen_reg_rtx (Pmode);
2603 emit_libcall_block (insns, dest, a0, eqv);
2604
2605 return dest;
2606 }
2607
2608 /* Return a legitimized address for accessing TLS SYMBOL_REF X.
2609 For explanations on instructions sequences see TLS/NPTL ABI for m68k and
2610 ColdFire. */
2611
2612 rtx
2613 m68k_legitimize_tls_address (rtx orig)
2614 {
2615 switch (SYMBOL_REF_TLS_MODEL (orig))
2616 {
2617 case TLS_MODEL_GLOBAL_DYNAMIC:
2618 orig = m68k_call_tls_get_addr (orig, orig, RELOC_TLSGD);
2619 break;
2620
2621 case TLS_MODEL_LOCAL_DYNAMIC:
2622 {
2623 rtx eqv;
2624 rtx a0;
2625 rtx x;
2626
2627 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2628 share the LDM result with other LD model accesses. */
2629 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
2630 UNSPEC_RELOC32);
2631
2632 a0 = m68k_call_tls_get_addr (orig, eqv, RELOC_TLSLDM);
2633
2634 x = m68k_wrap_symbol (orig, RELOC_TLSLDO, a0, NULL_RTX);
2635
2636 if (can_create_pseudo_p ())
2637 x = m68k_move_to_reg (x, orig, NULL_RTX);
2638
2639 orig = x;
2640 break;
2641 }
2642
2643 case TLS_MODEL_INITIAL_EXEC:
2644 {
2645 rtx a0;
2646 rtx x;
2647
2648 a0 = m68k_call_m68k_read_tp ();
2649
2650 x = m68k_wrap_symbol_into_got_ref (orig, RELOC_TLSIE, NULL_RTX);
2651 x = gen_rtx_PLUS (Pmode, x, a0);
2652
2653 if (can_create_pseudo_p ())
2654 x = m68k_move_to_reg (x, orig, NULL_RTX);
2655
2656 orig = x;
2657 break;
2658 }
2659
2660 case TLS_MODEL_LOCAL_EXEC:
2661 {
2662 rtx a0;
2663 rtx x;
2664
2665 a0 = m68k_call_m68k_read_tp ();
2666
2667 x = m68k_wrap_symbol (orig, RELOC_TLSLE, a0, NULL_RTX);
2668
2669 if (can_create_pseudo_p ())
2670 x = m68k_move_to_reg (x, orig, NULL_RTX);
2671
2672 orig = x;
2673 break;
2674 }
2675
2676 default:
2677 gcc_unreachable ();
2678 }
2679
2680 return orig;
2681 }
2682
2683 /* Return true if X is a TLS symbol. */
2684
2685 static bool
2686 m68k_tls_symbol_p (rtx x)
2687 {
2688 if (!TARGET_HAVE_TLS)
2689 return false;
2690
2691 if (GET_CODE (x) != SYMBOL_REF)
2692 return false;
2693
2694 return SYMBOL_REF_TLS_MODEL (x) != 0;
2695 }
2696
2697 /* If !LEGITIMATE_P, return true if X is a TLS symbol reference,
2698 though illegitimate one.
2699 If LEGITIMATE_P, return true if X is a legitimate TLS symbol reference. */
2700
2701 bool
2702 m68k_tls_reference_p (rtx x, bool legitimate_p)
2703 {
2704 if (!TARGET_HAVE_TLS)
2705 return false;
2706
2707 if (!legitimate_p)
2708 {
2709 subrtx_var_iterator::array_type array;
2710 FOR_EACH_SUBRTX_VAR (iter, array, x, ALL)
2711 {
2712 rtx x = *iter;
2713
2714 /* Note: this is not the same as m68k_tls_symbol_p. */
2715 if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0)
2716 return true;
2717
2718 /* Don't recurse into legitimate TLS references. */
2719 if (m68k_tls_reference_p (x, true))
2720 iter.skip_subrtxes ();
2721 }
2722 return false;
2723 }
2724 else
2725 {
2726 enum m68k_reloc reloc = RELOC_GOT;
2727
2728 return (m68k_unwrap_symbol_1 (x, true, &reloc) != x
2729 && TLS_RELOC_P (reloc));
2730 }
2731 }
2732
2733 \f
2734
2735 #define USE_MOVQ(i) ((unsigned) ((i) + 128) <= 255)
2736
2737 /* Return the type of move that should be used for integer I. */
2738
2739 M68K_CONST_METHOD
2740 m68k_const_method (HOST_WIDE_INT i)
2741 {
2742 unsigned u;
2743
2744 if (USE_MOVQ (i))
2745 return MOVQ;
2746
2747 /* The ColdFire doesn't have byte or word operations. */
2748 /* FIXME: This may not be useful for the m68060 either. */
2749 if (!TARGET_COLDFIRE)
2750 {
2751 /* if -256 < N < 256 but N is not in range for a moveq
2752 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
2753 if (USE_MOVQ (i ^ 0xff))
2754 return NOTB;
2755 /* Likewise, try with not.w */
2756 if (USE_MOVQ (i ^ 0xffff))
2757 return NOTW;
2758 /* This is the only value where neg.w is useful */
2759 if (i == -65408)
2760 return NEGW;
2761 }
2762
2763 /* Try also with swap. */
2764 u = i;
2765 if (USE_MOVQ ((u >> 16) | (u << 16)))
2766 return SWAP;
2767
2768 if (TARGET_ISAB)
2769 {
2770 /* Try using MVZ/MVS with an immediate value to load constants. */
2771 if (i >= 0 && i <= 65535)
2772 return MVZ;
2773 if (i >= -32768 && i <= 32767)
2774 return MVS;
2775 }
2776
2777 /* Otherwise, use move.l */
2778 return MOVL;
2779 }
2780
2781 /* Return the cost of moving constant I into a data register. */
2782
2783 static int
2784 const_int_cost (HOST_WIDE_INT i)
2785 {
2786 switch (m68k_const_method (i))
2787 {
2788 case MOVQ:
2789 /* Constants between -128 and 127 are cheap due to moveq. */
2790 return 0;
2791 case MVZ:
2792 case MVS:
2793 case NOTB:
2794 case NOTW:
2795 case NEGW:
2796 case SWAP:
2797 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap. */
2798 return 1;
2799 case MOVL:
2800 return 2;
2801 default:
2802 gcc_unreachable ();
2803 }
2804 }
2805
2806 static bool
2807 m68k_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
2808 int *total, bool speed ATTRIBUTE_UNUSED)
2809 {
2810 switch (code)
2811 {
2812 case CONST_INT:
2813 /* Constant zero is super cheap due to clr instruction. */
2814 if (x == const0_rtx)
2815 *total = 0;
2816 else
2817 *total = const_int_cost (INTVAL (x));
2818 return true;
2819
2820 case CONST:
2821 case LABEL_REF:
2822 case SYMBOL_REF:
2823 *total = 3;
2824 return true;
2825
2826 case CONST_DOUBLE:
2827 /* Make 0.0 cheaper than other floating constants to
2828 encourage creating tstsf and tstdf insns. */
2829 if (outer_code == COMPARE
2830 && (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
2831 *total = 4;
2832 else
2833 *total = 5;
2834 return true;
2835
2836 /* These are vaguely right for a 68020. */
2837 /* The costs for long multiply have been adjusted to work properly
2838 in synth_mult on the 68020, relative to an average of the time
2839 for add and the time for shift, taking away a little more because
2840 sometimes move insns are needed. */
2841 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS
2842 terms. */
2843 #define MULL_COST \
2844 (TUNE_68060 ? 2 \
2845 : TUNE_68040 ? 5 \
2846 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2847 : (TUNE_CFV2 && TUNE_MAC) ? 4 \
2848 : TUNE_CFV2 ? 8 \
2849 : TARGET_COLDFIRE ? 3 : 13)
2850
2851 #define MULW_COST \
2852 (TUNE_68060 ? 2 \
2853 : TUNE_68040 ? 3 \
2854 : TUNE_68000_10 ? 5 \
2855 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2856 : (TUNE_CFV2 && TUNE_MAC) ? 2 \
2857 : TUNE_CFV2 ? 8 \
2858 : TARGET_COLDFIRE ? 2 : 8)
2859
2860 #define DIVW_COST \
2861 (TARGET_CF_HWDIV ? 11 \
2862 : TUNE_68000_10 || TARGET_COLDFIRE ? 12 : 27)
2863
2864 case PLUS:
2865 /* An lea costs about three times as much as a simple add. */
2866 if (GET_MODE (x) == SImode
2867 && GET_CODE (XEXP (x, 1)) == REG
2868 && GET_CODE (XEXP (x, 0)) == MULT
2869 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
2870 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2871 && (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
2872 || INTVAL (XEXP (XEXP (x, 0), 1)) == 4
2873 || INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
2874 {
2875 /* lea an@(dx:l:i),am */
2876 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 2 : 3);
2877 return true;
2878 }
2879 return false;
2880
2881 case ASHIFT:
2882 case ASHIFTRT:
2883 case LSHIFTRT:
2884 if (TUNE_68060)
2885 {
2886 *total = COSTS_N_INSNS(1);
2887 return true;
2888 }
2889 if (TUNE_68000_10)
2890 {
2891 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
2892 {
2893 if (INTVAL (XEXP (x, 1)) < 16)
2894 *total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
2895 else
2896 /* We're using clrw + swap for these cases. */
2897 *total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
2898 }
2899 else
2900 *total = COSTS_N_INSNS (10); /* Worst case. */
2901 return true;
2902 }
2903 /* A shift by a big integer takes an extra instruction. */
2904 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2905 && (INTVAL (XEXP (x, 1)) == 16))
2906 {
2907 *total = COSTS_N_INSNS (2); /* clrw;swap */
2908 return true;
2909 }
2910 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2911 && !(INTVAL (XEXP (x, 1)) > 0
2912 && INTVAL (XEXP (x, 1)) <= 8))
2913 {
2914 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 1 : 3); /* lsr #i,dn */
2915 return true;
2916 }
2917 return false;
2918
2919 case MULT:
2920 if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
2921 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
2922 && GET_MODE (x) == SImode)
2923 *total = COSTS_N_INSNS (MULW_COST);
2924 else if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
2925 *total = COSTS_N_INSNS (MULW_COST);
2926 else
2927 *total = COSTS_N_INSNS (MULL_COST);
2928 return true;
2929
2930 case DIV:
2931 case UDIV:
2932 case MOD:
2933 case UMOD:
2934 if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
2935 *total = COSTS_N_INSNS (DIVW_COST); /* div.w */
2936 else if (TARGET_CF_HWDIV)
2937 *total = COSTS_N_INSNS (18);
2938 else
2939 *total = COSTS_N_INSNS (43); /* div.l */
2940 return true;
2941
2942 case ZERO_EXTRACT:
2943 if (outer_code == COMPARE)
2944 *total = 0;
2945 return false;
2946
2947 default:
2948 return false;
2949 }
2950 }
2951
2952 /* Return an instruction to move CONST_INT OPERANDS[1] into data register
2953 OPERANDS[0]. */
2954
2955 static const char *
2956 output_move_const_into_data_reg (rtx *operands)
2957 {
2958 HOST_WIDE_INT i;
2959
2960 i = INTVAL (operands[1]);
2961 switch (m68k_const_method (i))
2962 {
2963 case MVZ:
2964 return "mvzw %1,%0";
2965 case MVS:
2966 return "mvsw %1,%0";
2967 case MOVQ:
2968 return "moveq %1,%0";
2969 case NOTB:
2970 CC_STATUS_INIT;
2971 operands[1] = GEN_INT (i ^ 0xff);
2972 return "moveq %1,%0\n\tnot%.b %0";
2973 case NOTW:
2974 CC_STATUS_INIT;
2975 operands[1] = GEN_INT (i ^ 0xffff);
2976 return "moveq %1,%0\n\tnot%.w %0";
2977 case NEGW:
2978 CC_STATUS_INIT;
2979 return "moveq #-128,%0\n\tneg%.w %0";
2980 case SWAP:
2981 {
2982 unsigned u = i;
2983
2984 operands[1] = GEN_INT ((u << 16) | (u >> 16));
2985 return "moveq %1,%0\n\tswap %0";
2986 }
2987 case MOVL:
2988 return "move%.l %1,%0";
2989 default:
2990 gcc_unreachable ();
2991 }
2992 }
2993
2994 /* Return true if I can be handled by ISA B's mov3q instruction. */
2995
2996 bool
2997 valid_mov3q_const (HOST_WIDE_INT i)
2998 {
2999 return TARGET_ISAB && (i == -1 || IN_RANGE (i, 1, 7));
3000 }
3001
3002 /* Return an instruction to move CONST_INT OPERANDS[1] into OPERANDS[0].
3003 I is the value of OPERANDS[1]. */
3004
3005 static const char *
3006 output_move_simode_const (rtx *operands)
3007 {
3008 rtx dest;
3009 HOST_WIDE_INT src;
3010
3011 dest = operands[0];
3012 src = INTVAL (operands[1]);
3013 if (src == 0
3014 && (DATA_REG_P (dest) || MEM_P (dest))
3015 /* clr insns on 68000 read before writing. */
3016 && ((TARGET_68010 || TARGET_COLDFIRE)
3017 || !(MEM_P (dest) && MEM_VOLATILE_P (dest))))
3018 return "clr%.l %0";
3019 else if (GET_MODE (dest) == SImode && valid_mov3q_const (src))
3020 return "mov3q%.l %1,%0";
3021 else if (src == 0 && ADDRESS_REG_P (dest))
3022 return "sub%.l %0,%0";
3023 else if (DATA_REG_P (dest))
3024 return output_move_const_into_data_reg (operands);
3025 else if (ADDRESS_REG_P (dest) && IN_RANGE (src, -0x8000, 0x7fff))
3026 {
3027 if (valid_mov3q_const (src))
3028 return "mov3q%.l %1,%0";
3029 return "move%.w %1,%0";
3030 }
3031 else if (MEM_P (dest)
3032 && GET_CODE (XEXP (dest, 0)) == PRE_DEC
3033 && REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
3034 && IN_RANGE (src, -0x8000, 0x7fff))
3035 {
3036 if (valid_mov3q_const (src))
3037 return "mov3q%.l %1,%-";
3038 return "pea %a1";
3039 }
3040 return "move%.l %1,%0";
3041 }
3042
3043 const char *
3044 output_move_simode (rtx *operands)
3045 {
3046 if (GET_CODE (operands[1]) == CONST_INT)
3047 return output_move_simode_const (operands);
3048 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3049 || GET_CODE (operands[1]) == CONST)
3050 && push_operand (operands[0], SImode))
3051 return "pea %a1";
3052 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3053 || GET_CODE (operands[1]) == CONST)
3054 && ADDRESS_REG_P (operands[0]))
3055 return "lea %a1,%0";
3056 return "move%.l %1,%0";
3057 }
3058
3059 const char *
3060 output_move_himode (rtx *operands)
3061 {
3062 if (GET_CODE (operands[1]) == CONST_INT)
3063 {
3064 if (operands[1] == const0_rtx
3065 && (DATA_REG_P (operands[0])
3066 || GET_CODE (operands[0]) == MEM)
3067 /* clr insns on 68000 read before writing. */
3068 && ((TARGET_68010 || TARGET_COLDFIRE)
3069 || !(GET_CODE (operands[0]) == MEM
3070 && MEM_VOLATILE_P (operands[0]))))
3071 return "clr%.w %0";
3072 else if (operands[1] == const0_rtx
3073 && ADDRESS_REG_P (operands[0]))
3074 return "sub%.l %0,%0";
3075 else if (DATA_REG_P (operands[0])
3076 && INTVAL (operands[1]) < 128
3077 && INTVAL (operands[1]) >= -128)
3078 return "moveq %1,%0";
3079 else if (INTVAL (operands[1]) < 0x8000
3080 && INTVAL (operands[1]) >= -0x8000)
3081 return "move%.w %1,%0";
3082 }
3083 else if (CONSTANT_P (operands[1]))
3084 return "move%.l %1,%0";
3085 return "move%.w %1,%0";
3086 }
3087
3088 const char *
3089 output_move_qimode (rtx *operands)
3090 {
3091 /* 68k family always modifies the stack pointer by at least 2, even for
3092 byte pushes. The 5200 (ColdFire) does not do this. */
3093
3094 /* This case is generated by pushqi1 pattern now. */
3095 gcc_assert (!(GET_CODE (operands[0]) == MEM
3096 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
3097 && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
3098 && ! ADDRESS_REG_P (operands[1])
3099 && ! TARGET_COLDFIRE));
3100
3101 /* clr and st insns on 68000 read before writing. */
3102 if (!ADDRESS_REG_P (operands[0])
3103 && ((TARGET_68010 || TARGET_COLDFIRE)
3104 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3105 {
3106 if (operands[1] == const0_rtx)
3107 return "clr%.b %0";
3108 if ((!TARGET_COLDFIRE || DATA_REG_P (operands[0]))
3109 && GET_CODE (operands[1]) == CONST_INT
3110 && (INTVAL (operands[1]) & 255) == 255)
3111 {
3112 CC_STATUS_INIT;
3113 return "st %0";
3114 }
3115 }
3116 if (GET_CODE (operands[1]) == CONST_INT
3117 && DATA_REG_P (operands[0])
3118 && INTVAL (operands[1]) < 128
3119 && INTVAL (operands[1]) >= -128)
3120 return "moveq %1,%0";
3121 if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
3122 return "sub%.l %0,%0";
3123 if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
3124 return "move%.l %1,%0";
3125 /* 68k family (including the 5200 ColdFire) does not support byte moves to
3126 from address registers. */
3127 if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
3128 return "move%.w %1,%0";
3129 return "move%.b %1,%0";
3130 }
3131
3132 const char *
3133 output_move_stricthi (rtx *operands)
3134 {
3135 if (operands[1] == const0_rtx
3136 /* clr insns on 68000 read before writing. */
3137 && ((TARGET_68010 || TARGET_COLDFIRE)
3138 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3139 return "clr%.w %0";
3140 return "move%.w %1,%0";
3141 }
3142
3143 const char *
3144 output_move_strictqi (rtx *operands)
3145 {
3146 if (operands[1] == const0_rtx
3147 /* clr insns on 68000 read before writing. */
3148 && ((TARGET_68010 || TARGET_COLDFIRE)
3149 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3150 return "clr%.b %0";
3151 return "move%.b %1,%0";
3152 }
3153
3154 /* Return the best assembler insn template
3155 for moving operands[1] into operands[0] as a fullword. */
3156
3157 static const char *
3158 singlemove_string (rtx *operands)
3159 {
3160 if (GET_CODE (operands[1]) == CONST_INT)
3161 return output_move_simode_const (operands);
3162 return "move%.l %1,%0";
3163 }
3164
3165
3166 /* Output assembler or rtl code to perform a doubleword move insn
3167 with operands OPERANDS.
3168 Pointers to 3 helper functions should be specified:
3169 HANDLE_REG_ADJUST to adjust a register by a small value,
3170 HANDLE_COMPADR to compute an address and
3171 HANDLE_MOVSI to move 4 bytes. */
3172
3173 static void
3174 handle_move_double (rtx operands[2],
3175 void (*handle_reg_adjust) (rtx, int),
3176 void (*handle_compadr) (rtx [2]),
3177 void (*handle_movsi) (rtx [2]))
3178 {
3179 enum
3180 {
3181 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
3182 } optype0, optype1;
3183 rtx latehalf[2];
3184 rtx middlehalf[2];
3185 rtx xops[2];
3186 rtx addreg0 = 0, addreg1 = 0;
3187 int dest_overlapped_low = 0;
3188 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
3189
3190 middlehalf[0] = 0;
3191 middlehalf[1] = 0;
3192
3193 /* First classify both operands. */
3194
3195 if (REG_P (operands[0]))
3196 optype0 = REGOP;
3197 else if (offsettable_memref_p (operands[0]))
3198 optype0 = OFFSOP;
3199 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
3200 optype0 = POPOP;
3201 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
3202 optype0 = PUSHOP;
3203 else if (GET_CODE (operands[0]) == MEM)
3204 optype0 = MEMOP;
3205 else
3206 optype0 = RNDOP;
3207
3208 if (REG_P (operands[1]))
3209 optype1 = REGOP;
3210 else if (CONSTANT_P (operands[1]))
3211 optype1 = CNSTOP;
3212 else if (offsettable_memref_p (operands[1]))
3213 optype1 = OFFSOP;
3214 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
3215 optype1 = POPOP;
3216 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
3217 optype1 = PUSHOP;
3218 else if (GET_CODE (operands[1]) == MEM)
3219 optype1 = MEMOP;
3220 else
3221 optype1 = RNDOP;
3222
3223 /* Check for the cases that the operand constraints are not supposed
3224 to allow to happen. Generating code for these cases is
3225 painful. */
3226 gcc_assert (optype0 != RNDOP && optype1 != RNDOP);
3227
3228 /* If one operand is decrementing and one is incrementing
3229 decrement the former register explicitly
3230 and change that operand into ordinary indexing. */
3231
3232 if (optype0 == PUSHOP && optype1 == POPOP)
3233 {
3234 operands[0] = XEXP (XEXP (operands[0], 0), 0);
3235
3236 handle_reg_adjust (operands[0], -size);
3237
3238 if (GET_MODE (operands[1]) == XFmode)
3239 operands[0] = gen_rtx_MEM (XFmode, operands[0]);
3240 else if (GET_MODE (operands[0]) == DFmode)
3241 operands[0] = gen_rtx_MEM (DFmode, operands[0]);
3242 else
3243 operands[0] = gen_rtx_MEM (DImode, operands[0]);
3244 optype0 = OFFSOP;
3245 }
3246 if (optype0 == POPOP && optype1 == PUSHOP)
3247 {
3248 operands[1] = XEXP (XEXP (operands[1], 0), 0);
3249
3250 handle_reg_adjust (operands[1], -size);
3251
3252 if (GET_MODE (operands[1]) == XFmode)
3253 operands[1] = gen_rtx_MEM (XFmode, operands[1]);
3254 else if (GET_MODE (operands[1]) == DFmode)
3255 operands[1] = gen_rtx_MEM (DFmode, operands[1]);
3256 else
3257 operands[1] = gen_rtx_MEM (DImode, operands[1]);
3258 optype1 = OFFSOP;
3259 }
3260
3261 /* If an operand is an unoffsettable memory ref, find a register
3262 we can increment temporarily to make it refer to the second word. */
3263
3264 if (optype0 == MEMOP)
3265 addreg0 = find_addr_reg (XEXP (operands[0], 0));
3266
3267 if (optype1 == MEMOP)
3268 addreg1 = find_addr_reg (XEXP (operands[1], 0));
3269
3270 /* Ok, we can do one word at a time.
3271 Normally we do the low-numbered word first,
3272 but if either operand is autodecrementing then we
3273 do the high-numbered word first.
3274
3275 In either case, set up in LATEHALF the operands to use
3276 for the high-numbered word and in some cases alter the
3277 operands in OPERANDS to be suitable for the low-numbered word. */
3278
3279 if (size == 12)
3280 {
3281 if (optype0 == REGOP)
3282 {
3283 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
3284 middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3285 }
3286 else if (optype0 == OFFSOP)
3287 {
3288 middlehalf[0] = adjust_address (operands[0], SImode, 4);
3289 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3290 }
3291 else
3292 {
3293 middlehalf[0] = adjust_address (operands[0], SImode, 0);
3294 latehalf[0] = adjust_address (operands[0], SImode, 0);
3295 }
3296
3297 if (optype1 == REGOP)
3298 {
3299 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
3300 middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3301 }
3302 else if (optype1 == OFFSOP)
3303 {
3304 middlehalf[1] = adjust_address (operands[1], SImode, 4);
3305 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3306 }
3307 else if (optype1 == CNSTOP)
3308 {
3309 if (GET_CODE (operands[1]) == CONST_DOUBLE)
3310 {
3311 REAL_VALUE_TYPE r;
3312 long l[3];
3313
3314 REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
3315 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
3316 operands[1] = GEN_INT (l[0]);
3317 middlehalf[1] = GEN_INT (l[1]);
3318 latehalf[1] = GEN_INT (l[2]);
3319 }
3320 else
3321 {
3322 /* No non-CONST_DOUBLE constant should ever appear
3323 here. */
3324 gcc_assert (!CONSTANT_P (operands[1]));
3325 }
3326 }
3327 else
3328 {
3329 middlehalf[1] = adjust_address (operands[1], SImode, 0);
3330 latehalf[1] = adjust_address (operands[1], SImode, 0);
3331 }
3332 }
3333 else
3334 /* size is not 12: */
3335 {
3336 if (optype0 == REGOP)
3337 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3338 else if (optype0 == OFFSOP)
3339 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3340 else
3341 latehalf[0] = adjust_address (operands[0], SImode, 0);
3342
3343 if (optype1 == REGOP)
3344 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3345 else if (optype1 == OFFSOP)
3346 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3347 else if (optype1 == CNSTOP)
3348 split_double (operands[1], &operands[1], &latehalf[1]);
3349 else
3350 latehalf[1] = adjust_address (operands[1], SImode, 0);
3351 }
3352
3353 /* If insn is effectively movd N(REG),-(REG) then we will do the high
3354 word first. We should use the adjusted operand 1 (which is N+4(REG))
3355 for the low word as well, to compensate for the first decrement of
3356 REG. */
3357 if (optype0 == PUSHOP
3358 && reg_overlap_mentioned_p (XEXP (XEXP (operands[0], 0), 0), operands[1]))
3359 operands[1] = middlehalf[1] = latehalf[1];
3360
3361 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
3362 if the upper part of reg N does not appear in the MEM, arrange to
3363 emit the move late-half first. Otherwise, compute the MEM address
3364 into the upper part of N and use that as a pointer to the memory
3365 operand. */
3366 if (optype0 == REGOP
3367 && (optype1 == OFFSOP || optype1 == MEMOP))
3368 {
3369 rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
3370
3371 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3372 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3373 {
3374 /* If both halves of dest are used in the src memory address,
3375 compute the address into latehalf of dest.
3376 Note that this can't happen if the dest is two data regs. */
3377 compadr:
3378 xops[0] = latehalf[0];
3379 xops[1] = XEXP (operands[1], 0);
3380
3381 handle_compadr (xops);
3382 if (GET_MODE (operands[1]) == XFmode)
3383 {
3384 operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
3385 middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
3386 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3387 }
3388 else
3389 {
3390 operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
3391 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3392 }
3393 }
3394 else if (size == 12
3395 && reg_overlap_mentioned_p (middlehalf[0],
3396 XEXP (operands[1], 0)))
3397 {
3398 /* Check for two regs used by both source and dest.
3399 Note that this can't happen if the dest is all data regs.
3400 It can happen if the dest is d6, d7, a0.
3401 But in that case, latehalf is an addr reg, so
3402 the code at compadr does ok. */
3403
3404 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3405 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3406 goto compadr;
3407
3408 /* JRV says this can't happen: */
3409 gcc_assert (!addreg0 && !addreg1);
3410
3411 /* Only the middle reg conflicts; simply put it last. */
3412 handle_movsi (operands);
3413 handle_movsi (latehalf);
3414 handle_movsi (middlehalf);
3415
3416 return;
3417 }
3418 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
3419 /* If the low half of dest is mentioned in the source memory
3420 address, the arrange to emit the move late half first. */
3421 dest_overlapped_low = 1;
3422 }
3423
3424 /* If one or both operands autodecrementing,
3425 do the two words, high-numbered first. */
3426
3427 /* Likewise, the first move would clobber the source of the second one,
3428 do them in the other order. This happens only for registers;
3429 such overlap can't happen in memory unless the user explicitly
3430 sets it up, and that is an undefined circumstance. */
3431
3432 if (optype0 == PUSHOP || optype1 == PUSHOP
3433 || (optype0 == REGOP && optype1 == REGOP
3434 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
3435 || REGNO (operands[0]) == REGNO (latehalf[1])))
3436 || dest_overlapped_low)
3437 {
3438 /* Make any unoffsettable addresses point at high-numbered word. */
3439 if (addreg0)
3440 handle_reg_adjust (addreg0, size - 4);
3441 if (addreg1)
3442 handle_reg_adjust (addreg1, size - 4);
3443
3444 /* Do that word. */
3445 handle_movsi (latehalf);
3446
3447 /* Undo the adds we just did. */
3448 if (addreg0)
3449 handle_reg_adjust (addreg0, -4);
3450 if (addreg1)
3451 handle_reg_adjust (addreg1, -4);
3452
3453 if (size == 12)
3454 {
3455 handle_movsi (middlehalf);
3456
3457 if (addreg0)
3458 handle_reg_adjust (addreg0, -4);
3459 if (addreg1)
3460 handle_reg_adjust (addreg1, -4);
3461 }
3462
3463 /* Do low-numbered word. */
3464
3465 handle_movsi (operands);
3466 return;
3467 }
3468
3469 /* Normal case: do the two words, low-numbered first. */
3470
3471 m68k_final_prescan_insn (NULL, operands, 2);
3472 handle_movsi (operands);
3473
3474 /* Do the middle one of the three words for long double */
3475 if (size == 12)
3476 {
3477 if (addreg0)
3478 handle_reg_adjust (addreg0, 4);
3479 if (addreg1)
3480 handle_reg_adjust (addreg1, 4);
3481
3482 m68k_final_prescan_insn (NULL, middlehalf, 2);
3483 handle_movsi (middlehalf);
3484 }
3485
3486 /* Make any unoffsettable addresses point at high-numbered word. */
3487 if (addreg0)
3488 handle_reg_adjust (addreg0, 4);
3489 if (addreg1)
3490 handle_reg_adjust (addreg1, 4);
3491
3492 /* Do that word. */
3493 m68k_final_prescan_insn (NULL, latehalf, 2);
3494 handle_movsi (latehalf);
3495
3496 /* Undo the adds we just did. */
3497 if (addreg0)
3498 handle_reg_adjust (addreg0, -(size - 4));
3499 if (addreg1)
3500 handle_reg_adjust (addreg1, -(size - 4));
3501
3502 return;
3503 }
3504
3505 /* Output assembler code to adjust REG by N. */
3506 static void
3507 output_reg_adjust (rtx reg, int n)
3508 {
3509 const char *s;
3510
3511 gcc_assert (GET_MODE (reg) == SImode
3512 && -12 <= n && n != 0 && n <= 12);
3513
3514 switch (n)
3515 {
3516 case 12:
3517 s = "add%.l #12,%0";
3518 break;
3519
3520 case 8:
3521 s = "addq%.l #8,%0";
3522 break;
3523
3524 case 4:
3525 s = "addq%.l #4,%0";
3526 break;
3527
3528 case -12:
3529 s = "sub%.l #12,%0";
3530 break;
3531
3532 case -8:
3533 s = "subq%.l #8,%0";
3534 break;
3535
3536 case -4:
3537 s = "subq%.l #4,%0";
3538 break;
3539
3540 default:
3541 gcc_unreachable ();
3542 s = NULL;
3543 }
3544
3545 output_asm_insn (s, &reg);
3546 }
3547
3548 /* Emit rtl code to adjust REG by N. */
3549 static void
3550 emit_reg_adjust (rtx reg1, int n)
3551 {
3552 rtx reg2;
3553
3554 gcc_assert (GET_MODE (reg1) == SImode
3555 && -12 <= n && n != 0 && n <= 12);
3556
3557 reg1 = copy_rtx (reg1);
3558 reg2 = copy_rtx (reg1);
3559
3560 if (n < 0)
3561 emit_insn (gen_subsi3 (reg1, reg2, GEN_INT (-n)));
3562 else if (n > 0)
3563 emit_insn (gen_addsi3 (reg1, reg2, GEN_INT (n)));
3564 else
3565 gcc_unreachable ();
3566 }
3567
3568 /* Output assembler to load address OPERANDS[0] to register OPERANDS[1]. */
3569 static void
3570 output_compadr (rtx operands[2])
3571 {
3572 output_asm_insn ("lea %a1,%0", operands);
3573 }
3574
3575 /* Output the best assembler insn for moving operands[1] into operands[0]
3576 as a fullword. */
3577 static void
3578 output_movsi (rtx operands[2])
3579 {
3580 output_asm_insn (singlemove_string (operands), operands);
3581 }
3582
3583 /* Copy OP and change its mode to MODE. */
3584 static rtx
3585 copy_operand (rtx op, machine_mode mode)
3586 {
3587 /* ??? This looks really ugly. There must be a better way
3588 to change a mode on the operand. */
3589 if (GET_MODE (op) != VOIDmode)
3590 {
3591 if (REG_P (op))
3592 op = gen_rtx_REG (mode, REGNO (op));
3593 else
3594 {
3595 op = copy_rtx (op);
3596 PUT_MODE (op, mode);
3597 }
3598 }
3599
3600 return op;
3601 }
3602
3603 /* Emit rtl code for moving operands[1] into operands[0] as a fullword. */
3604 static void
3605 emit_movsi (rtx operands[2])
3606 {
3607 operands[0] = copy_operand (operands[0], SImode);
3608 operands[1] = copy_operand (operands[1], SImode);
3609
3610 emit_insn (gen_movsi (operands[0], operands[1]));
3611 }
3612
3613 /* Output assembler code to perform a doubleword move insn
3614 with operands OPERANDS. */
3615 const char *
3616 output_move_double (rtx *operands)
3617 {
3618 handle_move_double (operands,
3619 output_reg_adjust, output_compadr, output_movsi);
3620
3621 return "";
3622 }
3623
3624 /* Output rtl code to perform a doubleword move insn
3625 with operands OPERANDS. */
3626 void
3627 m68k_emit_move_double (rtx operands[2])
3628 {
3629 handle_move_double (operands, emit_reg_adjust, emit_movsi, emit_movsi);
3630 }
3631
3632 /* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a
3633 new rtx with the correct mode. */
3634
3635 static rtx
3636 force_mode (machine_mode mode, rtx orig)
3637 {
3638 if (mode == GET_MODE (orig))
3639 return orig;
3640
3641 if (REGNO (orig) >= FIRST_PSEUDO_REGISTER)
3642 abort ();
3643
3644 return gen_rtx_REG (mode, REGNO (orig));
3645 }
3646
3647 static int
3648 fp_reg_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
3649 {
3650 return reg_renumber && FP_REG_P (op);
3651 }
3652
3653 /* Emit insns to move operands[1] into operands[0].
3654
3655 Return 1 if we have written out everything that needs to be done to
3656 do the move. Otherwise, return 0 and the caller will emit the move
3657 normally.
3658
3659 Note SCRATCH_REG may not be in the proper mode depending on how it
3660 will be used. This routine is responsible for creating a new copy
3661 of SCRATCH_REG in the proper mode. */
3662
3663 int
3664 emit_move_sequence (rtx *operands, machine_mode mode, rtx scratch_reg)
3665 {
3666 register rtx operand0 = operands[0];
3667 register rtx operand1 = operands[1];
3668 register rtx tem;
3669
3670 if (scratch_reg
3671 && reload_in_progress && GET_CODE (operand0) == REG
3672 && REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
3673 operand0 = reg_equiv_mem (REGNO (operand0));
3674 else if (scratch_reg
3675 && reload_in_progress && GET_CODE (operand0) == SUBREG
3676 && GET_CODE (SUBREG_REG (operand0)) == REG
3677 && REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
3678 {
3679 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3680 the code which tracks sets/uses for delete_output_reload. */
3681 rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
3682 reg_equiv_mem (REGNO (SUBREG_REG (operand0))),
3683 SUBREG_BYTE (operand0));
3684 operand0 = alter_subreg (&temp, true);
3685 }
3686
3687 if (scratch_reg
3688 && reload_in_progress && GET_CODE (operand1) == REG
3689 && REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
3690 operand1 = reg_equiv_mem (REGNO (operand1));
3691 else if (scratch_reg
3692 && reload_in_progress && GET_CODE (operand1) == SUBREG
3693 && GET_CODE (SUBREG_REG (operand1)) == REG
3694 && REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
3695 {
3696 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3697 the code which tracks sets/uses for delete_output_reload. */
3698 rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
3699 reg_equiv_mem (REGNO (SUBREG_REG (operand1))),
3700 SUBREG_BYTE (operand1));
3701 operand1 = alter_subreg (&temp, true);
3702 }
3703
3704 if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
3705 && ((tem = find_replacement (&XEXP (operand0, 0)))
3706 != XEXP (operand0, 0)))
3707 operand0 = gen_rtx_MEM (GET_MODE (operand0), tem);
3708 if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
3709 && ((tem = find_replacement (&XEXP (operand1, 0)))
3710 != XEXP (operand1, 0)))
3711 operand1 = gen_rtx_MEM (GET_MODE (operand1), tem);
3712
3713 /* Handle secondary reloads for loads/stores of FP registers where
3714 the address is symbolic by using the scratch register */
3715 if (fp_reg_operand (operand0, mode)
3716 && ((GET_CODE (operand1) == MEM
3717 && ! memory_address_p (DFmode, XEXP (operand1, 0)))
3718 || ((GET_CODE (operand1) == SUBREG
3719 && GET_CODE (XEXP (operand1, 0)) == MEM
3720 && !memory_address_p (DFmode, XEXP (XEXP (operand1, 0), 0)))))
3721 && scratch_reg)
3722 {
3723 if (GET_CODE (operand1) == SUBREG)
3724 operand1 = XEXP (operand1, 0);
3725
3726 /* SCRATCH_REG will hold an address. We want
3727 it in SImode regardless of what mode it was originally given
3728 to us. */
3729 scratch_reg = force_mode (SImode, scratch_reg);
3730
3731 /* D might not fit in 14 bits either; for such cases load D into
3732 scratch reg. */
3733 if (!memory_address_p (Pmode, XEXP (operand1, 0)))
3734 {
3735 emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
3736 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)),
3737 Pmode,
3738 XEXP (XEXP (operand1, 0), 0),
3739 scratch_reg));
3740 }
3741 else
3742 emit_move_insn (scratch_reg, XEXP (operand1, 0));
3743 emit_insn (gen_rtx_SET (operand0, gen_rtx_MEM (mode, scratch_reg)));
3744 return 1;
3745 }
3746 else if (fp_reg_operand (operand1, mode)
3747 && ((GET_CODE (operand0) == MEM
3748 && ! memory_address_p (DFmode, XEXP (operand0, 0)))
3749 || ((GET_CODE (operand0) == SUBREG)
3750 && GET_CODE (XEXP (operand0, 0)) == MEM
3751 && !memory_address_p (DFmode, XEXP (XEXP (operand0, 0), 0))))
3752 && scratch_reg)
3753 {
3754 if (GET_CODE (operand0) == SUBREG)
3755 operand0 = XEXP (operand0, 0);
3756
3757 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3758 it in SIMODE regardless of what mode it was originally given
3759 to us. */
3760 scratch_reg = force_mode (SImode, scratch_reg);
3761
3762 /* D might not fit in 14 bits either; for such cases load D into
3763 scratch reg. */
3764 if (!memory_address_p (Pmode, XEXP (operand0, 0)))
3765 {
3766 emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1));
3767 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0,
3768 0)),
3769 Pmode,
3770 XEXP (XEXP (operand0, 0),
3771 0),
3772 scratch_reg));
3773 }
3774 else
3775 emit_move_insn (scratch_reg, XEXP (operand0, 0));
3776 emit_insn (gen_rtx_SET (gen_rtx_MEM (mode, scratch_reg), operand1));
3777 return 1;
3778 }
3779 /* Handle secondary reloads for loads of FP registers from constant
3780 expressions by forcing the constant into memory.
3781
3782 use scratch_reg to hold the address of the memory location.
3783
3784 The proper fix is to change PREFERRED_RELOAD_CLASS to return
3785 NO_REGS when presented with a const_int and an register class
3786 containing only FP registers. Doing so unfortunately creates
3787 more problems than it solves. Fix this for 2.5. */
3788 else if (fp_reg_operand (operand0, mode)
3789 && CONSTANT_P (operand1)
3790 && scratch_reg)
3791 {
3792 rtx xoperands[2];
3793
3794 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3795 it in SIMODE regardless of what mode it was originally given
3796 to us. */
3797 scratch_reg = force_mode (SImode, scratch_reg);
3798
3799 /* Force the constant into memory and put the address of the
3800 memory location into scratch_reg. */
3801 xoperands[0] = scratch_reg;
3802 xoperands[1] = XEXP (force_const_mem (mode, operand1), 0);
3803 emit_insn (gen_rtx_SET (scratch_reg, xoperands[1]));
3804
3805 /* Now load the destination register. */
3806 emit_insn (gen_rtx_SET (operand0, gen_rtx_MEM (mode, scratch_reg)));
3807 return 1;
3808 }
3809
3810 /* Now have insn-emit do whatever it normally does. */
3811 return 0;
3812 }
3813
3814 /* Split one or more DImode RTL references into pairs of SImode
3815 references. The RTL can be REG, offsettable MEM, integer constant, or
3816 CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
3817 split and "num" is its length. lo_half and hi_half are output arrays
3818 that parallel "operands". */
3819
3820 void
3821 split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
3822 {
3823 while (num--)
3824 {
3825 rtx op = operands[num];
3826
3827 /* simplify_subreg refuses to split volatile memory addresses,
3828 but we still have to handle it. */
3829 if (GET_CODE (op) == MEM)
3830 {
3831 lo_half[num] = adjust_address (op, SImode, 4);
3832 hi_half[num] = adjust_address (op, SImode, 0);
3833 }
3834 else
3835 {
3836 lo_half[num] = simplify_gen_subreg (SImode, op,
3837 GET_MODE (op) == VOIDmode
3838 ? DImode : GET_MODE (op), 4);
3839 hi_half[num] = simplify_gen_subreg (SImode, op,
3840 GET_MODE (op) == VOIDmode
3841 ? DImode : GET_MODE (op), 0);
3842 }
3843 }
3844 }
3845
3846 /* Split X into a base and a constant offset, storing them in *BASE
3847 and *OFFSET respectively. */
3848
3849 static void
3850 m68k_split_offset (rtx x, rtx *base, HOST_WIDE_INT *offset)
3851 {
3852 *offset = 0;
3853 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
3854 {
3855 *offset += INTVAL (XEXP (x, 1));
3856 x = XEXP (x, 0);
3857 }
3858 *base = x;
3859 }
3860
3861 /* Return true if PATTERN is a PARALLEL suitable for a movem or fmovem
3862 instruction. STORE_P says whether the move is a load or store.
3863
3864 If the instruction uses post-increment or pre-decrement addressing,
3865 AUTOMOD_BASE is the base register and AUTOMOD_OFFSET is the total
3866 adjustment. This adjustment will be made by the first element of
3867 PARALLEL, with the loads or stores starting at element 1. If the
3868 instruction does not use post-increment or pre-decrement addressing,
3869 AUTOMOD_BASE is null, AUTOMOD_OFFSET is 0, and the loads or stores
3870 start at element 0. */
3871
3872 bool
3873 m68k_movem_pattern_p (rtx pattern, rtx automod_base,
3874 HOST_WIDE_INT automod_offset, bool store_p)
3875 {
3876 rtx base, mem_base, set, mem, reg, last_reg;
3877 HOST_WIDE_INT offset, mem_offset;
3878 int i, first, len;
3879 enum reg_class rclass;
3880
3881 len = XVECLEN (pattern, 0);
3882 first = (automod_base != NULL);
3883
3884 if (automod_base)
3885 {
3886 /* Stores must be pre-decrement and loads must be post-increment. */
3887 if (store_p != (automod_offset < 0))
3888 return false;
3889
3890 /* Work out the base and offset for lowest memory location. */
3891 base = automod_base;
3892 offset = (automod_offset < 0 ? automod_offset : 0);
3893 }
3894 else
3895 {
3896 /* Allow any valid base and offset in the first access. */
3897 base = NULL;
3898 offset = 0;
3899 }
3900
3901 last_reg = NULL;
3902 rclass = NO_REGS;
3903 for (i = first; i < len; i++)
3904 {
3905 /* We need a plain SET. */
3906 set = XVECEXP (pattern, 0, i);
3907 if (GET_CODE (set) != SET)
3908 return false;
3909
3910 /* Check that we have a memory location... */
3911 mem = XEXP (set, !store_p);
3912 if (!MEM_P (mem) || !memory_operand (mem, VOIDmode))
3913 return false;
3914
3915 /* ...with the right address. */
3916 if (base == NULL)
3917 {
3918 m68k_split_offset (XEXP (mem, 0), &base, &offset);
3919 /* The ColdFire instruction only allows (An) and (d16,An) modes.
3920 There are no mode restrictions for 680x0 besides the
3921 automodification rules enforced above. */
3922 if (TARGET_COLDFIRE
3923 && !m68k_legitimate_base_reg_p (base, reload_completed))
3924 return false;
3925 }
3926 else
3927 {
3928 m68k_split_offset (XEXP (mem, 0), &mem_base, &mem_offset);
3929 if (!rtx_equal_p (base, mem_base) || offset != mem_offset)
3930 return false;
3931 }
3932
3933 /* Check that we have a register of the required mode and class. */
3934 reg = XEXP (set, store_p);
3935 if (!REG_P (reg)
3936 || !HARD_REGISTER_P (reg)
3937 || GET_MODE (reg) != reg_raw_mode[REGNO (reg)])
3938 return false;
3939
3940 if (last_reg)
3941 {
3942 /* The register must belong to RCLASS and have a higher number
3943 than the register in the previous SET. */
3944 if (!TEST_HARD_REG_BIT (reg_class_contents[rclass], REGNO (reg))
3945 || REGNO (last_reg) >= REGNO (reg))
3946 return false;
3947 }
3948 else
3949 {
3950 /* Work out which register class we need. */
3951 if (INT_REGNO_P (REGNO (reg)))
3952 rclass = GENERAL_REGS;
3953 else if (FP_REGNO_P (REGNO (reg)))
3954 rclass = FP_REGS;
3955 else
3956 return false;
3957 }
3958
3959 last_reg = reg;
3960 offset += GET_MODE_SIZE (GET_MODE (reg));
3961 }
3962
3963 /* If we have an automodification, check whether the final offset is OK. */
3964 if (automod_base && offset != (automod_offset < 0 ? 0 : automod_offset))
3965 return false;
3966
3967 /* Reject unprofitable cases. */
3968 if (len < first + (rclass == FP_REGS ? MIN_FMOVEM_REGS : MIN_MOVEM_REGS))
3969 return false;
3970
3971 return true;
3972 }
3973
3974 /* Return the assembly code template for a movem or fmovem instruction
3975 whose pattern is given by PATTERN. Store the template's operands
3976 in OPERANDS.
3977
3978 If the instruction uses post-increment or pre-decrement addressing,
3979 AUTOMOD_OFFSET is the total adjustment, otherwise it is 0. STORE_P
3980 is true if this is a store instruction. */
3981
3982 const char *
3983 m68k_output_movem (rtx *operands, rtx pattern,
3984 HOST_WIDE_INT automod_offset, bool store_p)
3985 {
3986 unsigned int mask;
3987 int i, first;
3988
3989 gcc_assert (GET_CODE (pattern) == PARALLEL);
3990 mask = 0;
3991 first = (automod_offset != 0);
3992 for (i = first; i < XVECLEN (pattern, 0); i++)
3993 {
3994 /* When using movem with pre-decrement addressing, register X + D0_REG
3995 is controlled by bit 15 - X. For all other addressing modes,
3996 register X + D0_REG is controlled by bit X. Confusingly, the
3997 register mask for fmovem is in the opposite order to that for
3998 movem. */
3999 unsigned int regno;
4000
4001 gcc_assert (MEM_P (XEXP (XVECEXP (pattern, 0, i), !store_p)));
4002 gcc_assert (REG_P (XEXP (XVECEXP (pattern, 0, i), store_p)));
4003 regno = REGNO (XEXP (XVECEXP (pattern, 0, i), store_p));
4004 if (automod_offset < 0)
4005 {
4006 if (FP_REGNO_P (regno))
4007 mask |= 1 << (regno - FP0_REG);
4008 else
4009 mask |= 1 << (15 - (regno - D0_REG));
4010 }
4011 else
4012 {
4013 if (FP_REGNO_P (regno))
4014 mask |= 1 << (7 - (regno - FP0_REG));
4015 else
4016 mask |= 1 << (regno - D0_REG);
4017 }
4018 }
4019 CC_STATUS_INIT;
4020
4021 if (automod_offset == 0)
4022 operands[0] = XEXP (XEXP (XVECEXP (pattern, 0, first), !store_p), 0);
4023 else if (automod_offset < 0)
4024 operands[0] = gen_rtx_PRE_DEC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4025 else
4026 operands[0] = gen_rtx_POST_INC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4027 operands[1] = GEN_INT (mask);
4028 if (FP_REGNO_P (REGNO (XEXP (XVECEXP (pattern, 0, first), store_p))))
4029 {
4030 if (store_p)
4031 return "fmovem %1,%a0";
4032 else
4033 return "fmovem %a0,%1";
4034 }
4035 else
4036 {
4037 if (store_p)
4038 return "movem%.l %1,%a0";
4039 else
4040 return "movem%.l %a0,%1";
4041 }
4042 }
4043
4044 /* Return a REG that occurs in ADDR with coefficient 1.
4045 ADDR can be effectively incremented by incrementing REG. */
4046
4047 static rtx
4048 find_addr_reg (rtx addr)
4049 {
4050 while (GET_CODE (addr) == PLUS)
4051 {
4052 if (GET_CODE (XEXP (addr, 0)) == REG)
4053 addr = XEXP (addr, 0);
4054 else if (GET_CODE (XEXP (addr, 1)) == REG)
4055 addr = XEXP (addr, 1);
4056 else if (CONSTANT_P (XEXP (addr, 0)))
4057 addr = XEXP (addr, 1);
4058 else if (CONSTANT_P (XEXP (addr, 1)))
4059 addr = XEXP (addr, 0);
4060 else
4061 gcc_unreachable ();
4062 }
4063 gcc_assert (GET_CODE (addr) == REG);
4064 return addr;
4065 }
4066
4067 /* Output assembler code to perform a 32-bit 3-operand add. */
4068
4069 const char *
4070 output_addsi3 (rtx *operands)
4071 {
4072 if (! operands_match_p (operands[0], operands[1]))
4073 {
4074 if (!ADDRESS_REG_P (operands[1]))
4075 {
4076 rtx tmp = operands[1];
4077
4078 operands[1] = operands[2];
4079 operands[2] = tmp;
4080 }
4081
4082 /* These insns can result from reloads to access
4083 stack slots over 64k from the frame pointer. */
4084 if (GET_CODE (operands[2]) == CONST_INT
4085 && (INTVAL (operands[2]) < -32768 || INTVAL (operands[2]) > 32767))
4086 return "move%.l %2,%0\n\tadd%.l %1,%0";
4087 if (GET_CODE (operands[2]) == REG)
4088 return MOTOROLA ? "lea (%1,%2.l),%0" : "lea %1@(0,%2:l),%0";
4089 return MOTOROLA ? "lea (%c2,%1),%0" : "lea %1@(%c2),%0";
4090 }
4091 if (GET_CODE (operands[2]) == CONST_INT)
4092 {
4093 if (INTVAL (operands[2]) > 0
4094 && INTVAL (operands[2]) <= 8)
4095 return "addq%.l %2,%0";
4096 if (INTVAL (operands[2]) < 0
4097 && INTVAL (operands[2]) >= -8)
4098 {
4099 operands[2] = GEN_INT (- INTVAL (operands[2]));
4100 return "subq%.l %2,%0";
4101 }
4102 /* On the CPU32 it is faster to use two addql instructions to
4103 add a small integer (8 < N <= 16) to a register.
4104 Likewise for subql. */
4105 if (TUNE_CPU32 && REG_P (operands[0]))
4106 {
4107 if (INTVAL (operands[2]) > 8
4108 && INTVAL (operands[2]) <= 16)
4109 {
4110 operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
4111 return "addq%.l #8,%0\n\taddq%.l %2,%0";
4112 }
4113 if (INTVAL (operands[2]) < -8
4114 && INTVAL (operands[2]) >= -16)
4115 {
4116 operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
4117 return "subq%.l #8,%0\n\tsubq%.l %2,%0";
4118 }
4119 }
4120 if (ADDRESS_REG_P (operands[0])
4121 && INTVAL (operands[2]) >= -0x8000
4122 && INTVAL (operands[2]) < 0x8000)
4123 {
4124 if (TUNE_68040)
4125 return "add%.w %2,%0";
4126 else
4127 return MOTOROLA ? "lea (%c2,%0),%0" : "lea %0@(%c2),%0";
4128 }
4129 }
4130 return "add%.l %2,%0";
4131 }
4132 \f
4133 /* Store in cc_status the expressions that the condition codes will
4134 describe after execution of an instruction whose pattern is EXP.
4135 Do not alter them if the instruction would not alter the cc's. */
4136
4137 /* On the 68000, all the insns to store in an address register fail to
4138 set the cc's. However, in some cases these instructions can make it
4139 possibly invalid to use the saved cc's. In those cases we clear out
4140 some or all of the saved cc's so they won't be used. */
4141
4142 void
4143 notice_update_cc (rtx exp, rtx insn)
4144 {
4145 if (GET_CODE (exp) == SET)
4146 {
4147 if (GET_CODE (SET_SRC (exp)) == CALL)
4148 CC_STATUS_INIT;
4149 else if (ADDRESS_REG_P (SET_DEST (exp)))
4150 {
4151 if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
4152 cc_status.value1 = 0;
4153 if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
4154 cc_status.value2 = 0;
4155 }
4156 /* fmoves to memory or data registers do not set the condition
4157 codes. Normal moves _do_ set the condition codes, but not in
4158 a way that is appropriate for comparison with 0, because -0.0
4159 would be treated as a negative nonzero number. Note that it
4160 isn't appropriate to conditionalize this restriction on
4161 HONOR_SIGNED_ZEROS because that macro merely indicates whether
4162 we care about the difference between -0.0 and +0.0. */
4163 else if (!FP_REG_P (SET_DEST (exp))
4164 && SET_DEST (exp) != cc0_rtx
4165 && (FP_REG_P (SET_SRC (exp))
4166 || GET_CODE (SET_SRC (exp)) == FIX
4167 || FLOAT_MODE_P (GET_MODE (SET_DEST (exp)))))
4168 CC_STATUS_INIT;
4169 /* A pair of move insns doesn't produce a useful overall cc. */
4170 else if (!FP_REG_P (SET_DEST (exp))
4171 && !FP_REG_P (SET_SRC (exp))
4172 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
4173 && (GET_CODE (SET_SRC (exp)) == REG
4174 || GET_CODE (SET_SRC (exp)) == MEM
4175 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
4176 CC_STATUS_INIT;
4177 else if (SET_DEST (exp) != pc_rtx)
4178 {
4179 cc_status.flags = 0;
4180 cc_status.value1 = SET_DEST (exp);
4181 cc_status.value2 = SET_SRC (exp);
4182 }
4183 }
4184 else if (GET_CODE (exp) == PARALLEL
4185 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
4186 {
4187 rtx dest = SET_DEST (XVECEXP (exp, 0, 0));
4188 rtx src = SET_SRC (XVECEXP (exp, 0, 0));
4189
4190 if (ADDRESS_REG_P (dest))
4191 CC_STATUS_INIT;
4192 else if (dest != pc_rtx)
4193 {
4194 cc_status.flags = 0;
4195 cc_status.value1 = dest;
4196 cc_status.value2 = src;
4197 }
4198 }
4199 else
4200 CC_STATUS_INIT;
4201 if (cc_status.value2 != 0
4202 && ADDRESS_REG_P (cc_status.value2)
4203 && GET_MODE (cc_status.value2) == QImode)
4204 CC_STATUS_INIT;
4205 if (cc_status.value2 != 0)
4206 switch (GET_CODE (cc_status.value2))
4207 {
4208 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
4209 case ROTATE: case ROTATERT:
4210 /* These instructions always clear the overflow bit, and set
4211 the carry to the bit shifted out. */
4212 cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
4213 break;
4214
4215 case PLUS: case MINUS: case MULT:
4216 case DIV: case UDIV: case MOD: case UMOD: case NEG:
4217 if (GET_MODE (cc_status.value2) != VOIDmode)
4218 cc_status.flags |= CC_NO_OVERFLOW;
4219 break;
4220 case ZERO_EXTEND:
4221 /* (SET r1 (ZERO_EXTEND r2)) on this machine
4222 ends with a move insn moving r2 in r2's mode.
4223 Thus, the cc's are set for r2.
4224 This can set N bit spuriously. */
4225 cc_status.flags |= CC_NOT_NEGATIVE;
4226
4227 default:
4228 break;
4229 }
4230 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
4231 && cc_status.value2
4232 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
4233 cc_status.value2 = 0;
4234 /* Check for PRE_DEC in dest modifying a register used in src. */
4235 if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM
4236 && GET_CODE (XEXP (cc_status.value1, 0)) == PRE_DEC
4237 && cc_status.value2
4238 && reg_overlap_mentioned_p (XEXP (XEXP (cc_status.value1, 0), 0),
4239 cc_status.value2))
4240 cc_status.value2 = 0;
4241 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
4242 || (cc_status.value2 && FP_REG_P (cc_status.value2))))
4243 cc_status.flags = CC_IN_68881;
4244 if (cc_status.value2 && GET_CODE (cc_status.value2) == COMPARE
4245 && GET_MODE_CLASS (GET_MODE (XEXP (cc_status.value2, 0))) == MODE_FLOAT)
4246 {
4247 cc_status.flags = CC_IN_68881;
4248 if (!FP_REG_P (XEXP (cc_status.value2, 0))
4249 && FP_REG_P (XEXP (cc_status.value2, 1)))
4250 cc_status.flags |= CC_REVERSED;
4251 }
4252 }
4253 \f
4254 const char *
4255 output_move_const_double (rtx *operands)
4256 {
4257 int code = standard_68881_constant_p (operands[1]);
4258
4259 if (code != 0)
4260 {
4261 static char buf[40];
4262
4263 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4264 return buf;
4265 }
4266 return "fmove%.d %1,%0";
4267 }
4268
4269 const char *
4270 output_move_const_single (rtx *operands)
4271 {
4272 int code = standard_68881_constant_p (operands[1]);
4273
4274 if (code != 0)
4275 {
4276 static char buf[40];
4277
4278 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4279 return buf;
4280 }
4281 return "fmove%.s %f1,%0";
4282 }
4283
4284 /* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
4285 from the "fmovecr" instruction.
4286 The value, anded with 0xff, gives the code to use in fmovecr
4287 to get the desired constant. */
4288
4289 /* This code has been fixed for cross-compilation. */
4290
4291 static int inited_68881_table = 0;
4292
4293 static const char *const strings_68881[7] = {
4294 "0.0",
4295 "1.0",
4296 "10.0",
4297 "100.0",
4298 "10000.0",
4299 "1e8",
4300 "1e16"
4301 };
4302
4303 static const int codes_68881[7] = {
4304 0x0f,
4305 0x32,
4306 0x33,
4307 0x34,
4308 0x35,
4309 0x36,
4310 0x37
4311 };
4312
4313 REAL_VALUE_TYPE values_68881[7];
4314
4315 /* Set up values_68881 array by converting the decimal values
4316 strings_68881 to binary. */
4317
4318 void
4319 init_68881_table (void)
4320 {
4321 int i;
4322 REAL_VALUE_TYPE r;
4323 machine_mode mode;
4324
4325 mode = SFmode;
4326 for (i = 0; i < 7; i++)
4327 {
4328 if (i == 6)
4329 mode = DFmode;
4330 r = REAL_VALUE_ATOF (strings_68881[i], mode);
4331 values_68881[i] = r;
4332 }
4333 inited_68881_table = 1;
4334 }
4335
4336 int
4337 standard_68881_constant_p (rtx x)
4338 {
4339 REAL_VALUE_TYPE r;
4340 int i;
4341
4342 /* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
4343 used at all on those chips. */
4344 if (TUNE_68040_60)
4345 return 0;
4346
4347 if (! inited_68881_table)
4348 init_68881_table ();
4349
4350 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
4351
4352 /* Use REAL_VALUES_IDENTICAL instead of REAL_VALUES_EQUAL so that -0.0
4353 is rejected. */
4354 for (i = 0; i < 6; i++)
4355 {
4356 if (REAL_VALUES_IDENTICAL (r, values_68881[i]))
4357 return (codes_68881[i]);
4358 }
4359
4360 if (GET_MODE (x) == SFmode)
4361 return 0;
4362
4363 if (REAL_VALUES_EQUAL (r, values_68881[6]))
4364 return (codes_68881[6]);
4365
4366 /* larger powers of ten in the constants ram are not used
4367 because they are not equal to a `double' C constant. */
4368 return 0;
4369 }
4370
4371 /* If X is a floating-point constant, return the logarithm of X base 2,
4372 or 0 if X is not a power of 2. */
4373
4374 int
4375 floating_exact_log2 (rtx x)
4376 {
4377 REAL_VALUE_TYPE r, r1;
4378 int exp;
4379
4380 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
4381
4382 if (REAL_VALUES_LESS (r, dconst1))
4383 return 0;
4384
4385 exp = real_exponent (&r);
4386 real_2expN (&r1, exp, DFmode);
4387 if (REAL_VALUES_EQUAL (r1, r))
4388 return exp;
4389
4390 return 0;
4391 }
4392 \f
4393 /* A C compound statement to output to stdio stream STREAM the
4394 assembler syntax for an instruction operand X. X is an RTL
4395 expression.
4396
4397 CODE is a value that can be used to specify one of several ways
4398 of printing the operand. It is used when identical operands
4399 must be printed differently depending on the context. CODE
4400 comes from the `%' specification that was used to request
4401 printing of the operand. If the specification was just `%DIGIT'
4402 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4403 is the ASCII code for LTR.
4404
4405 If X is a register, this macro should print the register's name.
4406 The names can be found in an array `reg_names' whose type is
4407 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4408
4409 When the machine description has a specification `%PUNCT' (a `%'
4410 followed by a punctuation character), this macro is called with
4411 a null pointer for X and the punctuation character for CODE.
4412
4413 The m68k specific codes are:
4414
4415 '.' for dot needed in Motorola-style opcode names.
4416 '-' for an operand pushing on the stack:
4417 sp@-, -(sp) or -(%sp) depending on the style of syntax.
4418 '+' for an operand pushing on the stack:
4419 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
4420 '@' for a reference to the top word on the stack:
4421 sp@, (sp) or (%sp) depending on the style of syntax.
4422 '#' for an immediate operand prefix (# in MIT and Motorola syntax
4423 but & in SGS syntax).
4424 '!' for the cc register (used in an `and to cc' insn).
4425 '$' for the letter `s' in an op code, but only on the 68040.
4426 '&' for the letter `d' in an op code, but only on the 68040.
4427 '/' for register prefix needed by longlong.h.
4428 '?' for m68k_library_id_string
4429
4430 'b' for byte insn (no effect, on the Sun; this is for the ISI).
4431 'd' to force memory addressing to be absolute, not relative.
4432 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
4433 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
4434 or print pair of registers as rx:ry.
4435 'p' print an address with @PLTPC attached, but only if the operand
4436 is not locally-bound. */
4437
4438 void
4439 print_operand (FILE *file, rtx op, int letter)
4440 {
4441 if (letter == '.')
4442 {
4443 if (MOTOROLA)
4444 fprintf (file, ".");
4445 }
4446 else if (letter == '#')
4447 asm_fprintf (file, "%I");
4448 else if (letter == '-')
4449 asm_fprintf (file, MOTOROLA ? "-(%Rsp)" : "%Rsp@-");
4450 else if (letter == '+')
4451 asm_fprintf (file, MOTOROLA ? "(%Rsp)+" : "%Rsp@+");
4452 else if (letter == '@')
4453 asm_fprintf (file, MOTOROLA ? "(%Rsp)" : "%Rsp@");
4454 else if (letter == '!')
4455 asm_fprintf (file, "%Rfpcr");
4456 else if (letter == '$')
4457 {
4458 if (TARGET_68040)
4459 fprintf (file, "s");
4460 }
4461 else if (letter == '&')
4462 {
4463 if (TARGET_68040)
4464 fprintf (file, "d");
4465 }
4466 else if (letter == '/')
4467 asm_fprintf (file, "%R");
4468 else if (letter == '?')
4469 asm_fprintf (file, m68k_library_id_string);
4470 else if (letter == 'p')
4471 {
4472 output_addr_const (file, op);
4473 if (!(GET_CODE (op) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (op)))
4474 fprintf (file, "@PLTPC");
4475 }
4476 else if (GET_CODE (op) == REG)
4477 {
4478 if (letter == 'R')
4479 /* Print out the second register name of a register pair.
4480 I.e., R (6) => 7. */
4481 fputs (M68K_REGNAME(REGNO (op) + 1), file);
4482 else
4483 fputs (M68K_REGNAME(REGNO (op)), file);
4484 }
4485 else if (GET_CODE (op) == MEM)
4486 {
4487 output_address (XEXP (op, 0));
4488 if (letter == 'd' && ! TARGET_68020
4489 && CONSTANT_ADDRESS_P (XEXP (op, 0))
4490 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
4491 && INTVAL (XEXP (op, 0)) < 0x8000
4492 && INTVAL (XEXP (op, 0)) >= -0x8000))
4493 fprintf (file, MOTOROLA ? ".l" : ":l");
4494 }
4495 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
4496 {
4497 REAL_VALUE_TYPE r;
4498 long l;
4499 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
4500 REAL_VALUE_TO_TARGET_SINGLE (r, l);
4501 asm_fprintf (file, "%I0x%lx", l & 0xFFFFFFFF);
4502 }
4503 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
4504 {
4505 REAL_VALUE_TYPE r;
4506 long l[3];
4507 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
4508 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
4509 asm_fprintf (file, "%I0x%lx%08lx%08lx", l[0] & 0xFFFFFFFF,
4510 l[1] & 0xFFFFFFFF, l[2] & 0xFFFFFFFF);
4511 }
4512 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
4513 {
4514 REAL_VALUE_TYPE r;
4515 long l[2];
4516 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
4517 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
4518 asm_fprintf (file, "%I0x%lx%08lx", l[0] & 0xFFFFFFFF, l[1] & 0xFFFFFFFF);
4519 }
4520 else
4521 {
4522 /* Use `print_operand_address' instead of `output_addr_const'
4523 to ensure that we print relevant PIC stuff. */
4524 asm_fprintf (file, "%I");
4525 if (TARGET_PCREL
4526 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
4527 print_operand_address (file, op);
4528 else
4529 output_addr_const (file, op);
4530 }
4531 }
4532
4533 /* Return string for TLS relocation RELOC. */
4534
4535 static const char *
4536 m68k_get_reloc_decoration (enum m68k_reloc reloc)
4537 {
4538 /* To my knowledge, !MOTOROLA assemblers don't support TLS. */
4539 gcc_assert (MOTOROLA || reloc == RELOC_GOT);
4540
4541 switch (reloc)
4542 {
4543 case RELOC_GOT:
4544 if (MOTOROLA)
4545 {
4546 if (flag_pic == 1 && TARGET_68020)
4547 return "@GOT.w";
4548 else
4549 return "@GOT";
4550 }
4551 else
4552 {
4553 if (TARGET_68020)
4554 {
4555 switch (flag_pic)
4556 {
4557 case 1:
4558 return ":w";
4559 case 2:
4560 return ":l";
4561 default:
4562 return "";
4563 }
4564 }
4565 }
4566
4567 case RELOC_TLSGD:
4568 return "@TLSGD";
4569
4570 case RELOC_TLSLDM:
4571 return "@TLSLDM";
4572
4573 case RELOC_TLSLDO:
4574 return "@TLSLDO";
4575
4576 case RELOC_TLSIE:
4577 return "@TLSIE";
4578
4579 case RELOC_TLSLE:
4580 return "@TLSLE";
4581
4582 default:
4583 gcc_unreachable ();
4584 }
4585 }
4586
4587 /* m68k implementation of TARGET_OUTPUT_ADDR_CONST_EXTRA. */
4588
4589 static bool
4590 m68k_output_addr_const_extra (FILE *file, rtx x)
4591 {
4592 if (GET_CODE (x) == UNSPEC)
4593 {
4594 switch (XINT (x, 1))
4595 {
4596 case UNSPEC_RELOC16:
4597 case UNSPEC_RELOC32:
4598 output_addr_const (file, XVECEXP (x, 0, 0));
4599 fputs (m68k_get_reloc_decoration
4600 ((enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1))), file);
4601 return true;
4602
4603 default:
4604 break;
4605 }
4606 }
4607
4608 return false;
4609 }
4610
4611 /* M68K implementation of TARGET_ASM_OUTPUT_DWARF_DTPREL. */
4612
4613 static void
4614 m68k_output_dwarf_dtprel (FILE *file, int size, rtx x)
4615 {
4616 gcc_assert (size == 4);
4617 fputs ("\t.long\t", file);
4618 output_addr_const (file, x);
4619 fputs ("@TLSLDO+0x8000", file);
4620 }
4621
4622 /* In the name of slightly smaller debug output, and to cater to
4623 general assembler lossage, recognize various UNSPEC sequences
4624 and turn them back into a direct symbol reference. */
4625
4626 static rtx
4627 m68k_delegitimize_address (rtx orig_x)
4628 {
4629 rtx x;
4630 struct m68k_address addr;
4631 rtx unspec;
4632
4633 orig_x = delegitimize_mem_from_attrs (orig_x);
4634 x = orig_x;
4635 if (MEM_P (x))
4636 x = XEXP (x, 0);
4637
4638 if (GET_CODE (x) != PLUS || GET_MODE (x) != Pmode)
4639 return orig_x;
4640
4641 if (!m68k_decompose_address (GET_MODE (x), x, false, &addr)
4642 || addr.offset == NULL_RTX
4643 || GET_CODE (addr.offset) != CONST)
4644 return orig_x;
4645
4646 unspec = XEXP (addr.offset, 0);
4647 if (GET_CODE (unspec) == PLUS && CONST_INT_P (XEXP (unspec, 1)))
4648 unspec = XEXP (unspec, 0);
4649 if (GET_CODE (unspec) != UNSPEC
4650 || (XINT (unspec, 1) != UNSPEC_RELOC16
4651 && XINT (unspec, 1) != UNSPEC_RELOC32))
4652 return orig_x;
4653 x = XVECEXP (unspec, 0, 0);
4654 gcc_assert (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF);
4655 if (unspec != XEXP (addr.offset, 0))
4656 x = gen_rtx_PLUS (Pmode, x, XEXP (XEXP (addr.offset, 0), 1));
4657 if (addr.index)
4658 {
4659 rtx idx = addr.index;
4660 if (addr.scale != 1)
4661 idx = gen_rtx_MULT (Pmode, idx, GEN_INT (addr.scale));
4662 x = gen_rtx_PLUS (Pmode, idx, x);
4663 }
4664 if (addr.base)
4665 x = gen_rtx_PLUS (Pmode, addr.base, x);
4666 if (MEM_P (orig_x))
4667 x = replace_equiv_address_nv (orig_x, x);
4668 return x;
4669 }
4670
4671 \f
4672 /* A C compound statement to output to stdio stream STREAM the
4673 assembler syntax for an instruction operand that is a memory
4674 reference whose address is ADDR. ADDR is an RTL expression.
4675
4676 Note that this contains a kludge that knows that the only reason
4677 we have an address (plus (label_ref...) (reg...)) when not generating
4678 PIC code is in the insn before a tablejump, and we know that m68k.md
4679 generates a label LInnn: on such an insn.
4680
4681 It is possible for PIC to generate a (plus (label_ref...) (reg...))
4682 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
4683
4684 This routine is responsible for distinguishing between -fpic and -fPIC
4685 style relocations in an address. When generating -fpic code the
4686 offset is output in word mode (e.g. movel a5@(_foo:w), a0). When generating
4687 -fPIC code the offset is output in long mode (e.g. movel a5@(_foo:l), a0) */
4688
4689 void
4690 print_operand_address (FILE *file, rtx addr)
4691 {
4692 struct m68k_address address;
4693
4694 if (!m68k_decompose_address (QImode, addr, true, &address))
4695 gcc_unreachable ();
4696
4697 if (address.code == PRE_DEC)
4698 fprintf (file, MOTOROLA ? "-(%s)" : "%s@-",
4699 M68K_REGNAME (REGNO (address.base)));
4700 else if (address.code == POST_INC)
4701 fprintf (file, MOTOROLA ? "(%s)+" : "%s@+",
4702 M68K_REGNAME (REGNO (address.base)));
4703 else if (!address.base && !address.index)
4704 {
4705 /* A constant address. */
4706 gcc_assert (address.offset == addr);
4707 if (GET_CODE (addr) == CONST_INT)
4708 {
4709 /* (xxx).w or (xxx).l. */
4710 if (IN_RANGE (INTVAL (addr), -0x8000, 0x7fff))
4711 fprintf (file, MOTOROLA ? "%d.w" : "%d:w", (int) INTVAL (addr));
4712 else
4713 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
4714 }
4715 else if (TARGET_PCREL)
4716 {
4717 /* (d16,PC) or (bd,PC,Xn) (with suppressed index register). */
4718 fputc ('(', file);
4719 output_addr_const (file, addr);
4720 asm_fprintf (file, flag_pic == 1 ? ":w,%Rpc)" : ":l,%Rpc)");
4721 }
4722 else
4723 {
4724 /* (xxx).l. We need a special case for SYMBOL_REF if the symbol
4725 name ends in `.<letter>', as the last 2 characters can be
4726 mistaken as a size suffix. Put the name in parentheses. */
4727 if (GET_CODE (addr) == SYMBOL_REF
4728 && strlen (XSTR (addr, 0)) > 2
4729 && XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
4730 {
4731 putc ('(', file);
4732 output_addr_const (file, addr);
4733 putc (')', file);
4734 }
4735 else
4736 output_addr_const (file, addr);
4737 }
4738 }
4739 else
4740 {
4741 int labelno;
4742
4743 /* If ADDR is a (d8,pc,Xn) address, this is the number of the
4744 label being accessed, otherwise it is -1. */
4745 labelno = (address.offset
4746 && !address.base
4747 && GET_CODE (address.offset) == LABEL_REF
4748 ? CODE_LABEL_NUMBER (XEXP (address.offset, 0))
4749 : -1);
4750 if (MOTOROLA)
4751 {
4752 /* Print the "offset(base" component. */
4753 if (labelno >= 0)
4754 asm_fprintf (file, "%LL%d(%Rpc,", labelno);
4755 else
4756 {
4757 if (address.offset)
4758 output_addr_const (file, address.offset);
4759
4760 putc ('(', file);
4761 if (address.base)
4762 fputs (M68K_REGNAME (REGNO (address.base)), file);
4763 }
4764 /* Print the ",index" component, if any. */
4765 if (address.index)
4766 {
4767 if (address.base)
4768 putc (',', file);
4769 fprintf (file, "%s.%c",
4770 M68K_REGNAME (REGNO (address.index)),
4771 GET_MODE (address.index) == HImode ? 'w' : 'l');
4772 if (address.scale != 1)
4773 fprintf (file, "*%d", address.scale);
4774 }
4775 putc (')', file);
4776 }
4777 else /* !MOTOROLA */
4778 {
4779 if (!address.offset && !address.index)
4780 fprintf (file, "%s@", M68K_REGNAME (REGNO (address.base)));
4781 else
4782 {
4783 /* Print the "base@(offset" component. */
4784 if (labelno >= 0)
4785 asm_fprintf (file, "%Rpc@(%LL%d", labelno);
4786 else
4787 {
4788 if (address.base)
4789 fputs (M68K_REGNAME (REGNO (address.base)), file);
4790 fprintf (file, "@(");
4791 if (address.offset)
4792 output_addr_const (file, address.offset);
4793 }
4794 /* Print the ",index" component, if any. */
4795 if (address.index)
4796 {
4797 fprintf (file, ",%s:%c",
4798 M68K_REGNAME (REGNO (address.index)),
4799 GET_MODE (address.index) == HImode ? 'w' : 'l');
4800 if (address.scale != 1)
4801 fprintf (file, ":%d", address.scale);
4802 }
4803 putc (')', file);
4804 }
4805 }
4806 }
4807 }
4808 \f
4809 /* Check for cases where a clr insns can be omitted from code using
4810 strict_low_part sets. For example, the second clrl here is not needed:
4811 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
4812
4813 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
4814 insn we are checking for redundancy. TARGET is the register set by the
4815 clear insn. */
4816
4817 bool
4818 strict_low_part_peephole_ok (machine_mode mode, rtx_insn *first_insn,
4819 rtx target)
4820 {
4821 rtx_insn *p = first_insn;
4822
4823 while ((p = PREV_INSN (p)))
4824 {
4825 if (NOTE_INSN_BASIC_BLOCK_P (p))
4826 return false;
4827
4828 if (NOTE_P (p))
4829 continue;
4830
4831 /* If it isn't an insn, then give up. */
4832 if (!INSN_P (p))
4833 return false;
4834
4835 if (reg_set_p (target, p))
4836 {
4837 rtx set = single_set (p);
4838 rtx dest;
4839
4840 /* If it isn't an easy to recognize insn, then give up. */
4841 if (! set)
4842 return false;
4843
4844 dest = SET_DEST (set);
4845
4846 /* If this sets the entire target register to zero, then our
4847 first_insn is redundant. */
4848 if (rtx_equal_p (dest, target)
4849 && SET_SRC (set) == const0_rtx)
4850 return true;
4851 else if (GET_CODE (dest) == STRICT_LOW_PART
4852 && GET_CODE (XEXP (dest, 0)) == REG
4853 && REGNO (XEXP (dest, 0)) == REGNO (target)
4854 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
4855 <= GET_MODE_SIZE (mode)))
4856 /* This is a strict low part set which modifies less than
4857 we are using, so it is safe. */
4858 ;
4859 else
4860 return false;
4861 }
4862 }
4863
4864 return false;
4865 }
4866
4867 /* Operand predicates for implementing asymmetric pc-relative addressing
4868 on m68k. The m68k supports pc-relative addressing (mode 7, register 2)
4869 when used as a source operand, but not as a destination operand.
4870
4871 We model this by restricting the meaning of the basic predicates
4872 (general_operand, memory_operand, etc) to forbid the use of this
4873 addressing mode, and then define the following predicates that permit
4874 this addressing mode. These predicates can then be used for the
4875 source operands of the appropriate instructions.
4876
4877 n.b. While it is theoretically possible to change all machine patterns
4878 to use this addressing more where permitted by the architecture,
4879 it has only been implemented for "common" cases: SImode, HImode, and
4880 QImode operands, and only for the principle operations that would
4881 require this addressing mode: data movement and simple integer operations.
4882
4883 In parallel with these new predicates, two new constraint letters
4884 were defined: 'S' and 'T'. 'S' is the -mpcrel analog of 'm'.
4885 'T' replaces 's' in the non-pcrel case. It is a no-op in the pcrel case.
4886 In the pcrel case 's' is only valid in combination with 'a' registers.
4887 See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
4888 of how these constraints are used.
4889
4890 The use of these predicates is strictly optional, though patterns that
4891 don't will cause an extra reload register to be allocated where one
4892 was not necessary:
4893
4894 lea (abc:w,%pc),%a0 ; need to reload address
4895 moveq &1,%d1 ; since write to pc-relative space
4896 movel %d1,%a0@ ; is not allowed
4897 ...
4898 lea (abc:w,%pc),%a1 ; no need to reload address here
4899 movel %a1@,%d0 ; since "movel (abc:w,%pc),%d0" is ok
4900
4901 For more info, consult tiemann@cygnus.com.
4902
4903
4904 All of the ugliness with predicates and constraints is due to the
4905 simple fact that the m68k does not allow a pc-relative addressing
4906 mode as a destination. gcc does not distinguish between source and
4907 destination addresses. Hence, if we claim that pc-relative address
4908 modes are valid, e.g. TARGET_LEGITIMATE_ADDRESS_P accepts them, then we
4909 end up with invalid code. To get around this problem, we left
4910 pc-relative modes as invalid addresses, and then added special
4911 predicates and constraints to accept them.
4912
4913 A cleaner way to handle this is to modify gcc to distinguish
4914 between source and destination addresses. We can then say that
4915 pc-relative is a valid source address but not a valid destination
4916 address, and hopefully avoid a lot of the predicate and constraint
4917 hackery. Unfortunately, this would be a pretty big change. It would
4918 be a useful change for a number of ports, but there aren't any current
4919 plans to undertake this.
4920
4921 ***************************************************************************/
4922
4923
4924 const char *
4925 output_andsi3 (rtx *operands)
4926 {
4927 int logval;
4928 if (GET_CODE (operands[2]) == CONST_INT
4929 && (INTVAL (operands[2]) | 0xffff) == -1
4930 && (DATA_REG_P (operands[0])
4931 || offsettable_memref_p (operands[0]))
4932 && !TARGET_COLDFIRE)
4933 {
4934 if (GET_CODE (operands[0]) != REG)
4935 operands[0] = adjust_address (operands[0], HImode, 2);
4936 operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
4937 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4938 CC_STATUS_INIT;
4939 if (operands[2] == const0_rtx)
4940 return "clr%.w %0";
4941 return "and%.w %2,%0";
4942 }
4943 if (GET_CODE (operands[2]) == CONST_INT
4944 && (logval = exact_log2 (~ INTVAL (operands[2]) & 0xffffffff)) >= 0
4945 && (DATA_REG_P (operands[0])
4946 || offsettable_memref_p (operands[0])))
4947 {
4948 if (DATA_REG_P (operands[0]))
4949 operands[1] = GEN_INT (logval);
4950 else
4951 {
4952 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4953 operands[1] = GEN_INT (logval % 8);
4954 }
4955 /* This does not set condition codes in a standard way. */
4956 CC_STATUS_INIT;
4957 return "bclr %1,%0";
4958 }
4959 return "and%.l %2,%0";
4960 }
4961
4962 const char *
4963 output_iorsi3 (rtx *operands)
4964 {
4965 register int logval;
4966 if (GET_CODE (operands[2]) == CONST_INT
4967 && INTVAL (operands[2]) >> 16 == 0
4968 && (DATA_REG_P (operands[0])
4969 || offsettable_memref_p (operands[0]))
4970 && !TARGET_COLDFIRE)
4971 {
4972 if (GET_CODE (operands[0]) != REG)
4973 operands[0] = adjust_address (operands[0], HImode, 2);
4974 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4975 CC_STATUS_INIT;
4976 if (INTVAL (operands[2]) == 0xffff)
4977 return "mov%.w %2,%0";
4978 return "or%.w %2,%0";
4979 }
4980 if (GET_CODE (operands[2]) == CONST_INT
4981 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
4982 && (DATA_REG_P (operands[0])
4983 || offsettable_memref_p (operands[0])))
4984 {
4985 if (DATA_REG_P (operands[0]))
4986 operands[1] = GEN_INT (logval);
4987 else
4988 {
4989 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4990 operands[1] = GEN_INT (logval % 8);
4991 }
4992 CC_STATUS_INIT;
4993 return "bset %1,%0";
4994 }
4995 return "or%.l %2,%0";
4996 }
4997
4998 const char *
4999 output_xorsi3 (rtx *operands)
5000 {
5001 register int logval;
5002 if (GET_CODE (operands[2]) == CONST_INT
5003 && INTVAL (operands[2]) >> 16 == 0
5004 && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
5005 && !TARGET_COLDFIRE)
5006 {
5007 if (! DATA_REG_P (operands[0]))
5008 operands[0] = adjust_address (operands[0], HImode, 2);
5009 /* Do not delete a following tstl %0 insn; that would be incorrect. */
5010 CC_STATUS_INIT;
5011 if (INTVAL (operands[2]) == 0xffff)
5012 return "not%.w %0";
5013 return "eor%.w %2,%0";
5014 }
5015 if (GET_CODE (operands[2]) == CONST_INT
5016 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
5017 && (DATA_REG_P (operands[0])
5018 || offsettable_memref_p (operands[0])))
5019 {
5020 if (DATA_REG_P (operands[0]))
5021 operands[1] = GEN_INT (logval);
5022 else
5023 {
5024 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
5025 operands[1] = GEN_INT (logval % 8);
5026 }
5027 CC_STATUS_INIT;
5028 return "bchg %1,%0";
5029 }
5030 return "eor%.l %2,%0";
5031 }
5032
5033 /* Return the instruction that should be used for a call to address X,
5034 which is known to be in operand 0. */
5035
5036 const char *
5037 output_call (rtx x)
5038 {
5039 if (symbolic_operand (x, VOIDmode))
5040 return m68k_symbolic_call;
5041 else
5042 return "jsr %a0";
5043 }
5044
5045 /* Likewise sibling calls. */
5046
5047 const char *
5048 output_sibcall (rtx x)
5049 {
5050 if (symbolic_operand (x, VOIDmode))
5051 return m68k_symbolic_jump;
5052 else
5053 return "jmp %a0";
5054 }
5055
5056 static void
5057 m68k_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
5058 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
5059 tree function)
5060 {
5061 rtx this_slot, offset, addr, mem, tmp;
5062 rtx_insn *insn;
5063
5064 /* Avoid clobbering the struct value reg by using the
5065 static chain reg as a temporary. */
5066 tmp = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5067
5068 /* Pretend to be a post-reload pass while generating rtl. */
5069 reload_completed = 1;
5070
5071 /* The "this" pointer is stored at 4(%sp). */
5072 this_slot = gen_rtx_MEM (Pmode, plus_constant (Pmode,
5073 stack_pointer_rtx, 4));
5074
5075 /* Add DELTA to THIS. */
5076 if (delta != 0)
5077 {
5078 /* Make the offset a legitimate operand for memory addition. */
5079 offset = GEN_INT (delta);
5080 if ((delta < -8 || delta > 8)
5081 && (TARGET_COLDFIRE || USE_MOVQ (delta)))
5082 {
5083 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), offset);
5084 offset = gen_rtx_REG (Pmode, D0_REG);
5085 }
5086 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5087 copy_rtx (this_slot), offset));
5088 }
5089
5090 /* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
5091 if (vcall_offset != 0)
5092 {
5093 /* Set the static chain register to *THIS. */
5094 emit_move_insn (tmp, this_slot);
5095 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
5096
5097 /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
5098 addr = plus_constant (Pmode, tmp, vcall_offset);
5099 if (!m68k_legitimate_address_p (Pmode, addr, true))
5100 {
5101 emit_insn (gen_rtx_SET (tmp, addr));
5102 addr = tmp;
5103 }
5104
5105 /* Load the offset into %d0 and add it to THIS. */
5106 emit_move_insn (gen_rtx_REG (Pmode, D0_REG),
5107 gen_rtx_MEM (Pmode, addr));
5108 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5109 copy_rtx (this_slot),
5110 gen_rtx_REG (Pmode, D0_REG)));
5111 }
5112
5113 /* Jump to the target function. Use a sibcall if direct jumps are
5114 allowed, otherwise load the address into a register first. */
5115 mem = DECL_RTL (function);
5116 if (!sibcall_operand (XEXP (mem, 0), VOIDmode))
5117 {
5118 gcc_assert (flag_pic);
5119
5120 if (!TARGET_SEP_DATA)
5121 {
5122 /* Use the static chain register as a temporary (call-clobbered)
5123 GOT pointer for this function. We can use the static chain
5124 register because it isn't live on entry to the thunk. */
5125 SET_REGNO (pic_offset_table_rtx, STATIC_CHAIN_REGNUM);
5126 emit_insn (gen_load_got (pic_offset_table_rtx));
5127 }
5128 legitimize_pic_address (XEXP (mem, 0), Pmode, tmp);
5129 mem = replace_equiv_address (mem, tmp);
5130 }
5131 insn = emit_call_insn (gen_sibcall (mem, const0_rtx));
5132 SIBLING_CALL_P (insn) = 1;
5133
5134 /* Run just enough of rest_of_compilation. */
5135 insn = get_insns ();
5136 split_all_insns_noflow ();
5137 final_start_function (insn, file, 1);
5138 final (insn, file, 1);
5139 final_end_function ();
5140
5141 /* Clean up the vars set above. */
5142 reload_completed = 0;
5143
5144 /* Restore the original PIC register. */
5145 if (flag_pic)
5146 SET_REGNO (pic_offset_table_rtx, PIC_REG);
5147 }
5148
5149 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
5150
5151 static rtx
5152 m68k_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
5153 int incoming ATTRIBUTE_UNUSED)
5154 {
5155 return gen_rtx_REG (Pmode, M68K_STRUCT_VALUE_REGNUM);
5156 }
5157
5158 /* Return nonzero if register old_reg can be renamed to register new_reg. */
5159 int
5160 m68k_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
5161 unsigned int new_reg)
5162 {
5163
5164 /* Interrupt functions can only use registers that have already been
5165 saved by the prologue, even if they would normally be
5166 call-clobbered. */
5167
5168 if ((m68k_get_function_kind (current_function_decl)
5169 == m68k_fk_interrupt_handler)
5170 && !df_regs_ever_live_p (new_reg))
5171 return 0;
5172
5173 return 1;
5174 }
5175
5176 /* Value is true if hard register REGNO can hold a value of machine-mode
5177 MODE. On the 68000, we let the cpu registers can hold any mode, but
5178 restrict the 68881 registers to floating-point modes. */
5179
5180 bool
5181 m68k_regno_mode_ok (int regno, machine_mode mode)
5182 {
5183 if (DATA_REGNO_P (regno))
5184 {
5185 /* Data Registers, can hold aggregate if fits in. */
5186 if (regno + GET_MODE_SIZE (mode) / 4 <= 8)
5187 return true;
5188 }
5189 else if (ADDRESS_REGNO_P (regno))
5190 {
5191 if (regno + GET_MODE_SIZE (mode) / 4 <= 16)
5192 return true;
5193 }
5194 else if (FP_REGNO_P (regno))
5195 {
5196 /* FPU registers, hold float or complex float of long double or
5197 smaller. */
5198 if ((GET_MODE_CLASS (mode) == MODE_FLOAT
5199 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
5200 && GET_MODE_UNIT_SIZE (mode) <= TARGET_FP_REG_SIZE)
5201 return true;
5202 }
5203 return false;
5204 }
5205
5206 /* Implement SECONDARY_RELOAD_CLASS. */
5207
5208 enum reg_class
5209 m68k_secondary_reload_class (enum reg_class rclass,
5210 machine_mode mode, rtx x)
5211 {
5212 int regno;
5213
5214 regno = true_regnum (x);
5215
5216 /* If one operand of a movqi is an address register, the other
5217 operand must be a general register or constant. Other types
5218 of operand must be reloaded through a data register. */
5219 if (GET_MODE_SIZE (mode) == 1
5220 && reg_classes_intersect_p (rclass, ADDR_REGS)
5221 && !(INT_REGNO_P (regno) || CONSTANT_P (x)))
5222 return DATA_REGS;
5223
5224 /* PC-relative addresses must be loaded into an address register first. */
5225 if (TARGET_PCREL
5226 && !reg_class_subset_p (rclass, ADDR_REGS)
5227 && symbolic_operand (x, VOIDmode))
5228 return ADDR_REGS;
5229
5230 return NO_REGS;
5231 }
5232
5233 /* Implement PREFERRED_RELOAD_CLASS. */
5234
5235 enum reg_class
5236 m68k_preferred_reload_class (rtx x, enum reg_class rclass)
5237 {
5238 enum reg_class secondary_class;
5239
5240 /* If RCLASS might need a secondary reload, try restricting it to
5241 a class that doesn't. */
5242 secondary_class = m68k_secondary_reload_class (rclass, GET_MODE (x), x);
5243 if (secondary_class != NO_REGS
5244 && reg_class_subset_p (secondary_class, rclass))
5245 return secondary_class;
5246
5247 /* Prefer to use moveq for in-range constants. */
5248 if (GET_CODE (x) == CONST_INT
5249 && reg_class_subset_p (DATA_REGS, rclass)
5250 && IN_RANGE (INTVAL (x), -0x80, 0x7f))
5251 return DATA_REGS;
5252
5253 /* ??? Do we really need this now? */
5254 if (GET_CODE (x) == CONST_DOUBLE
5255 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
5256 {
5257 if (TARGET_HARD_FLOAT && reg_class_subset_p (FP_REGS, rclass))
5258 return FP_REGS;
5259
5260 return NO_REGS;
5261 }
5262
5263 return rclass;
5264 }
5265
5266 /* Return floating point values in a 68881 register. This makes 68881 code
5267 a little bit faster. It also makes -msoft-float code incompatible with
5268 hard-float code, so people have to be careful not to mix the two.
5269 For ColdFire it was decided the ABI incompatibility is undesirable.
5270 If there is need for a hard-float ABI it is probably worth doing it
5271 properly and also passing function arguments in FP registers. */
5272 rtx
5273 m68k_libcall_value (machine_mode mode)
5274 {
5275 switch (mode) {
5276 case SFmode:
5277 case DFmode:
5278 case XFmode:
5279 if (TARGET_68881)
5280 return gen_rtx_REG (mode, FP0_REG);
5281 break;
5282 default:
5283 break;
5284 }
5285
5286 return gen_rtx_REG (mode, m68k_libcall_value_in_a0_p ? A0_REG : D0_REG);
5287 }
5288
5289 /* Location in which function value is returned.
5290 NOTE: Due to differences in ABIs, don't call this function directly,
5291 use FUNCTION_VALUE instead. */
5292 rtx
5293 m68k_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
5294 {
5295 machine_mode mode;
5296
5297 mode = TYPE_MODE (valtype);
5298 switch (mode) {
5299 case SFmode:
5300 case DFmode:
5301 case XFmode:
5302 if (TARGET_68881)
5303 return gen_rtx_REG (mode, FP0_REG);
5304 break;
5305 default:
5306 break;
5307 }
5308
5309 /* If the function returns a pointer, push that into %a0. */
5310 if (func && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (func))))
5311 /* For compatibility with the large body of existing code which
5312 does not always properly declare external functions returning
5313 pointer types, the m68k/SVR4 convention is to copy the value
5314 returned for pointer functions from a0 to d0 in the function
5315 epilogue, so that callers that have neglected to properly
5316 declare the callee can still find the correct return value in
5317 d0. */
5318 return gen_rtx_PARALLEL
5319 (mode,
5320 gen_rtvec (2,
5321 gen_rtx_EXPR_LIST (VOIDmode,
5322 gen_rtx_REG (mode, A0_REG),
5323 const0_rtx),
5324 gen_rtx_EXPR_LIST (VOIDmode,
5325 gen_rtx_REG (mode, D0_REG),
5326 const0_rtx)));
5327 else if (POINTER_TYPE_P (valtype))
5328 return gen_rtx_REG (mode, A0_REG);
5329 else
5330 return gen_rtx_REG (mode, D0_REG);
5331 }
5332
5333 /* Worker function for TARGET_RETURN_IN_MEMORY. */
5334 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
5335 static bool
5336 m68k_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
5337 {
5338 machine_mode mode = TYPE_MODE (type);
5339
5340 if (mode == BLKmode)
5341 return true;
5342
5343 /* If TYPE's known alignment is less than the alignment of MODE that
5344 would contain the structure, then return in memory. We need to
5345 do so to maintain the compatibility between code compiled with
5346 -mstrict-align and that compiled with -mno-strict-align. */
5347 if (AGGREGATE_TYPE_P (type)
5348 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (mode))
5349 return true;
5350
5351 return false;
5352 }
5353 #endif
5354
5355 /* CPU to schedule the program for. */
5356 enum attr_cpu m68k_sched_cpu;
5357
5358 /* MAC to schedule the program for. */
5359 enum attr_mac m68k_sched_mac;
5360
5361 /* Operand type. */
5362 enum attr_op_type
5363 {
5364 /* No operand. */
5365 OP_TYPE_NONE,
5366
5367 /* Integer register. */
5368 OP_TYPE_RN,
5369
5370 /* FP register. */
5371 OP_TYPE_FPN,
5372
5373 /* Implicit mem reference (e.g. stack). */
5374 OP_TYPE_MEM1,
5375
5376 /* Memory without offset or indexing. EA modes 2, 3 and 4. */
5377 OP_TYPE_MEM234,
5378
5379 /* Memory with offset but without indexing. EA mode 5. */
5380 OP_TYPE_MEM5,
5381
5382 /* Memory with indexing. EA mode 6. */
5383 OP_TYPE_MEM6,
5384
5385 /* Memory referenced by absolute address. EA mode 7. */
5386 OP_TYPE_MEM7,
5387
5388 /* Immediate operand that doesn't require extension word. */
5389 OP_TYPE_IMM_Q,
5390
5391 /* Immediate 16 bit operand. */
5392 OP_TYPE_IMM_W,
5393
5394 /* Immediate 32 bit operand. */
5395 OP_TYPE_IMM_L
5396 };
5397
5398 /* Return type of memory ADDR_RTX refers to. */
5399 static enum attr_op_type
5400 sched_address_type (machine_mode mode, rtx addr_rtx)
5401 {
5402 struct m68k_address address;
5403
5404 if (symbolic_operand (addr_rtx, VOIDmode))
5405 return OP_TYPE_MEM7;
5406
5407 if (!m68k_decompose_address (mode, addr_rtx,
5408 reload_completed, &address))
5409 {
5410 gcc_assert (!reload_completed);
5411 /* Reload will likely fix the address to be in the register. */
5412 return OP_TYPE_MEM234;
5413 }
5414
5415 if (address.scale != 0)
5416 return OP_TYPE_MEM6;
5417
5418 if (address.base != NULL_RTX)
5419 {
5420 if (address.offset == NULL_RTX)
5421 return OP_TYPE_MEM234;
5422
5423 return OP_TYPE_MEM5;
5424 }
5425
5426 gcc_assert (address.offset != NULL_RTX);
5427
5428 return OP_TYPE_MEM7;
5429 }
5430
5431 /* Return X or Y (depending on OPX_P) operand of INSN. */
5432 static rtx
5433 sched_get_operand (rtx_insn *insn, bool opx_p)
5434 {
5435 int i;
5436
5437 if (recog_memoized (insn) < 0)
5438 gcc_unreachable ();
5439
5440 extract_constrain_insn_cached (insn);
5441
5442 if (opx_p)
5443 i = get_attr_opx (insn);
5444 else
5445 i = get_attr_opy (insn);
5446
5447 if (i >= recog_data.n_operands)
5448 return NULL;
5449
5450 return recog_data.operand[i];
5451 }
5452
5453 /* Return type of INSN's operand X (if OPX_P) or operand Y (if !OPX_P).
5454 If ADDRESS_P is true, return type of memory location operand refers to. */
5455 static enum attr_op_type
5456 sched_attr_op_type (rtx_insn *insn, bool opx_p, bool address_p)
5457 {
5458 rtx op;
5459
5460 op = sched_get_operand (insn, opx_p);
5461
5462 if (op == NULL)
5463 {
5464 gcc_assert (!reload_completed);
5465 return OP_TYPE_RN;
5466 }
5467
5468 if (address_p)
5469 return sched_address_type (QImode, op);
5470
5471 if (memory_operand (op, VOIDmode))
5472 return sched_address_type (GET_MODE (op), XEXP (op, 0));
5473
5474 if (register_operand (op, VOIDmode))
5475 {
5476 if ((!reload_completed && FLOAT_MODE_P (GET_MODE (op)))
5477 || (reload_completed && FP_REG_P (op)))
5478 return OP_TYPE_FPN;
5479
5480 return OP_TYPE_RN;
5481 }
5482
5483 if (GET_CODE (op) == CONST_INT)
5484 {
5485 int ival;
5486
5487 ival = INTVAL (op);
5488
5489 /* Check for quick constants. */
5490 switch (get_attr_type (insn))
5491 {
5492 case TYPE_ALUQ_L:
5493 if (IN_RANGE (ival, 1, 8) || IN_RANGE (ival, -8, -1))
5494 return OP_TYPE_IMM_Q;
5495
5496 gcc_assert (!reload_completed);
5497 break;
5498
5499 case TYPE_MOVEQ_L:
5500 if (USE_MOVQ (ival))
5501 return OP_TYPE_IMM_Q;
5502
5503 gcc_assert (!reload_completed);
5504 break;
5505
5506 case TYPE_MOV3Q_L:
5507 if (valid_mov3q_const (ival))
5508 return OP_TYPE_IMM_Q;
5509
5510 gcc_assert (!reload_completed);
5511 break;
5512
5513 default:
5514 break;
5515 }
5516
5517 if (IN_RANGE (ival, -0x8000, 0x7fff))
5518 return OP_TYPE_IMM_W;
5519
5520 return OP_TYPE_IMM_L;
5521 }
5522
5523 if (GET_CODE (op) == CONST_DOUBLE)
5524 {
5525 switch (GET_MODE (op))
5526 {
5527 case SFmode:
5528 return OP_TYPE_IMM_W;
5529
5530 case VOIDmode:
5531 case DFmode:
5532 return OP_TYPE_IMM_L;
5533
5534 default:
5535 gcc_unreachable ();
5536 }
5537 }
5538
5539 if (GET_CODE (op) == CONST
5540 || symbolic_operand (op, VOIDmode)
5541 || LABEL_P (op))
5542 {
5543 switch (GET_MODE (op))
5544 {
5545 case QImode:
5546 return OP_TYPE_IMM_Q;
5547
5548 case HImode:
5549 return OP_TYPE_IMM_W;
5550
5551 case SImode:
5552 return OP_TYPE_IMM_L;
5553
5554 default:
5555 if (symbolic_operand (m68k_unwrap_symbol (op, false), VOIDmode))
5556 /* Just a guess. */
5557 return OP_TYPE_IMM_W;
5558
5559 return OP_TYPE_IMM_L;
5560 }
5561 }
5562
5563 gcc_assert (!reload_completed);
5564
5565 if (FLOAT_MODE_P (GET_MODE (op)))
5566 return OP_TYPE_FPN;
5567
5568 return OP_TYPE_RN;
5569 }
5570
5571 /* Implement opx_type attribute.
5572 Return type of INSN's operand X.
5573 If ADDRESS_P is true, return type of memory location operand refers to. */
5574 enum attr_opx_type
5575 m68k_sched_attr_opx_type (rtx_insn *insn, int address_p)
5576 {
5577 switch (sched_attr_op_type (insn, true, address_p != 0))
5578 {
5579 case OP_TYPE_RN:
5580 return OPX_TYPE_RN;
5581
5582 case OP_TYPE_FPN:
5583 return OPX_TYPE_FPN;
5584
5585 case OP_TYPE_MEM1:
5586 return OPX_TYPE_MEM1;
5587
5588 case OP_TYPE_MEM234:
5589 return OPX_TYPE_MEM234;
5590
5591 case OP_TYPE_MEM5:
5592 return OPX_TYPE_MEM5;
5593
5594 case OP_TYPE_MEM6:
5595 return OPX_TYPE_MEM6;
5596
5597 case OP_TYPE_MEM7:
5598 return OPX_TYPE_MEM7;
5599
5600 case OP_TYPE_IMM_Q:
5601 return OPX_TYPE_IMM_Q;
5602
5603 case OP_TYPE_IMM_W:
5604 return OPX_TYPE_IMM_W;
5605
5606 case OP_TYPE_IMM_L:
5607 return OPX_TYPE_IMM_L;
5608
5609 default:
5610 gcc_unreachable ();
5611 }
5612 }
5613
5614 /* Implement opy_type attribute.
5615 Return type of INSN's operand Y.
5616 If ADDRESS_P is true, return type of memory location operand refers to. */
5617 enum attr_opy_type
5618 m68k_sched_attr_opy_type (rtx_insn *insn, int address_p)
5619 {
5620 switch (sched_attr_op_type (insn, false, address_p != 0))
5621 {
5622 case OP_TYPE_RN:
5623 return OPY_TYPE_RN;
5624
5625 case OP_TYPE_FPN:
5626 return OPY_TYPE_FPN;
5627
5628 case OP_TYPE_MEM1:
5629 return OPY_TYPE_MEM1;
5630
5631 case OP_TYPE_MEM234:
5632 return OPY_TYPE_MEM234;
5633
5634 case OP_TYPE_MEM5:
5635 return OPY_TYPE_MEM5;
5636
5637 case OP_TYPE_MEM6:
5638 return OPY_TYPE_MEM6;
5639
5640 case OP_TYPE_MEM7:
5641 return OPY_TYPE_MEM7;
5642
5643 case OP_TYPE_IMM_Q:
5644 return OPY_TYPE_IMM_Q;
5645
5646 case OP_TYPE_IMM_W:
5647 return OPY_TYPE_IMM_W;
5648
5649 case OP_TYPE_IMM_L:
5650 return OPY_TYPE_IMM_L;
5651
5652 default:
5653 gcc_unreachable ();
5654 }
5655 }
5656
5657 /* Return size of INSN as int. */
5658 static int
5659 sched_get_attr_size_int (rtx_insn *insn)
5660 {
5661 int size;
5662
5663 switch (get_attr_type (insn))
5664 {
5665 case TYPE_IGNORE:
5666 /* There should be no references to m68k_sched_attr_size for 'ignore'
5667 instructions. */
5668 gcc_unreachable ();
5669 return 0;
5670
5671 case TYPE_MUL_L:
5672 size = 2;
5673 break;
5674
5675 default:
5676 size = 1;
5677 break;
5678 }
5679
5680 switch (get_attr_opx_type (insn))
5681 {
5682 case OPX_TYPE_NONE:
5683 case OPX_TYPE_RN:
5684 case OPX_TYPE_FPN:
5685 case OPX_TYPE_MEM1:
5686 case OPX_TYPE_MEM234:
5687 case OPY_TYPE_IMM_Q:
5688 break;
5689
5690 case OPX_TYPE_MEM5:
5691 case OPX_TYPE_MEM6:
5692 /* Here we assume that most absolute references are short. */
5693 case OPX_TYPE_MEM7:
5694 case OPY_TYPE_IMM_W:
5695 ++size;
5696 break;
5697
5698 case OPY_TYPE_IMM_L:
5699 size += 2;
5700 break;
5701
5702 default:
5703 gcc_unreachable ();
5704 }
5705
5706 switch (get_attr_opy_type (insn))
5707 {
5708 case OPY_TYPE_NONE:
5709 case OPY_TYPE_RN:
5710 case OPY_TYPE_FPN:
5711 case OPY_TYPE_MEM1:
5712 case OPY_TYPE_MEM234:
5713 case OPY_TYPE_IMM_Q:
5714 break;
5715
5716 case OPY_TYPE_MEM5:
5717 case OPY_TYPE_MEM6:
5718 /* Here we assume that most absolute references are short. */
5719 case OPY_TYPE_MEM7:
5720 case OPY_TYPE_IMM_W:
5721 ++size;
5722 break;
5723
5724 case OPY_TYPE_IMM_L:
5725 size += 2;
5726 break;
5727
5728 default:
5729 gcc_unreachable ();
5730 }
5731
5732 if (size > 3)
5733 {
5734 gcc_assert (!reload_completed);
5735
5736 size = 3;
5737 }
5738
5739 return size;
5740 }
5741
5742 /* Return size of INSN as attribute enum value. */
5743 enum attr_size
5744 m68k_sched_attr_size (rtx_insn *insn)
5745 {
5746 switch (sched_get_attr_size_int (insn))
5747 {
5748 case 1:
5749 return SIZE_1;
5750
5751 case 2:
5752 return SIZE_2;
5753
5754 case 3:
5755 return SIZE_3;
5756
5757 default:
5758 gcc_unreachable ();
5759 }
5760 }
5761
5762 /* Return operand X or Y (depending on OPX_P) of INSN,
5763 if it is a MEM, or NULL overwise. */
5764 static enum attr_op_type
5765 sched_get_opxy_mem_type (rtx_insn *insn, bool opx_p)
5766 {
5767 if (opx_p)
5768 {
5769 switch (get_attr_opx_type (insn))
5770 {
5771 case OPX_TYPE_NONE:
5772 case OPX_TYPE_RN:
5773 case OPX_TYPE_FPN:
5774 case OPX_TYPE_IMM_Q:
5775 case OPX_TYPE_IMM_W:
5776 case OPX_TYPE_IMM_L:
5777 return OP_TYPE_RN;
5778
5779 case OPX_TYPE_MEM1:
5780 case OPX_TYPE_MEM234:
5781 case OPX_TYPE_MEM5:
5782 case OPX_TYPE_MEM7:
5783 return OP_TYPE_MEM1;
5784
5785 case OPX_TYPE_MEM6:
5786 return OP_TYPE_MEM6;
5787
5788 default:
5789 gcc_unreachable ();
5790 }
5791 }
5792 else
5793 {
5794 switch (get_attr_opy_type (insn))
5795 {
5796 case OPY_TYPE_NONE:
5797 case OPY_TYPE_RN:
5798 case OPY_TYPE_FPN:
5799 case OPY_TYPE_IMM_Q:
5800 case OPY_TYPE_IMM_W:
5801 case OPY_TYPE_IMM_L:
5802 return OP_TYPE_RN;
5803
5804 case OPY_TYPE_MEM1:
5805 case OPY_TYPE_MEM234:
5806 case OPY_TYPE_MEM5:
5807 case OPY_TYPE_MEM7:
5808 return OP_TYPE_MEM1;
5809
5810 case OPY_TYPE_MEM6:
5811 return OP_TYPE_MEM6;
5812
5813 default:
5814 gcc_unreachable ();
5815 }
5816 }
5817 }
5818
5819 /* Implement op_mem attribute. */
5820 enum attr_op_mem
5821 m68k_sched_attr_op_mem (rtx_insn *insn)
5822 {
5823 enum attr_op_type opx;
5824 enum attr_op_type opy;
5825
5826 opx = sched_get_opxy_mem_type (insn, true);
5827 opy = sched_get_opxy_mem_type (insn, false);
5828
5829 if (opy == OP_TYPE_RN && opx == OP_TYPE_RN)
5830 return OP_MEM_00;
5831
5832 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM1)
5833 {
5834 switch (get_attr_opx_access (insn))
5835 {
5836 case OPX_ACCESS_R:
5837 return OP_MEM_10;
5838
5839 case OPX_ACCESS_W:
5840 return OP_MEM_01;
5841
5842 case OPX_ACCESS_RW:
5843 return OP_MEM_11;
5844
5845 default:
5846 gcc_unreachable ();
5847 }
5848 }
5849
5850 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM6)
5851 {
5852 switch (get_attr_opx_access (insn))
5853 {
5854 case OPX_ACCESS_R:
5855 return OP_MEM_I0;
5856
5857 case OPX_ACCESS_W:
5858 return OP_MEM_0I;
5859
5860 case OPX_ACCESS_RW:
5861 return OP_MEM_I1;
5862
5863 default:
5864 gcc_unreachable ();
5865 }
5866 }
5867
5868 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_RN)
5869 return OP_MEM_10;
5870
5871 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM1)
5872 {
5873 switch (get_attr_opx_access (insn))
5874 {
5875 case OPX_ACCESS_W:
5876 return OP_MEM_11;
5877
5878 default:
5879 gcc_assert (!reload_completed);
5880 return OP_MEM_11;
5881 }
5882 }
5883
5884 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM6)
5885 {
5886 switch (get_attr_opx_access (insn))
5887 {
5888 case OPX_ACCESS_W:
5889 return OP_MEM_1I;
5890
5891 default:
5892 gcc_assert (!reload_completed);
5893 return OP_MEM_1I;
5894 }
5895 }
5896
5897 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_RN)
5898 return OP_MEM_I0;
5899
5900 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM1)
5901 {
5902 switch (get_attr_opx_access (insn))
5903 {
5904 case OPX_ACCESS_W:
5905 return OP_MEM_I1;
5906
5907 default:
5908 gcc_assert (!reload_completed);
5909 return OP_MEM_I1;
5910 }
5911 }
5912
5913 gcc_assert (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM6);
5914 gcc_assert (!reload_completed);
5915 return OP_MEM_I1;
5916 }
5917
5918 /* Data for ColdFire V4 index bypass.
5919 Producer modifies register that is used as index in consumer with
5920 specified scale. */
5921 static struct
5922 {
5923 /* Producer instruction. */
5924 rtx pro;
5925
5926 /* Consumer instruction. */
5927 rtx con;
5928
5929 /* Scale of indexed memory access within consumer.
5930 Or zero if bypass should not be effective at the moment. */
5931 int scale;
5932 } sched_cfv4_bypass_data;
5933
5934 /* An empty state that is used in m68k_sched_adjust_cost. */
5935 static state_t sched_adjust_cost_state;
5936
5937 /* Implement adjust_cost scheduler hook.
5938 Return adjusted COST of dependency LINK between DEF_INSN and INSN. */
5939 static int
5940 m68k_sched_adjust_cost (rtx_insn *insn, rtx link ATTRIBUTE_UNUSED,
5941 rtx_insn *def_insn, int cost)
5942 {
5943 int delay;
5944
5945 if (recog_memoized (def_insn) < 0
5946 || recog_memoized (insn) < 0)
5947 return cost;
5948
5949 if (sched_cfv4_bypass_data.scale == 1)
5950 /* Handle ColdFire V4 bypass for indexed address with 1x scale. */
5951 {
5952 /* haifa-sched.c: insn_cost () calls bypass_p () just before
5953 targetm.sched.adjust_cost (). Hence, we can be relatively sure
5954 that the data in sched_cfv4_bypass_data is up to date. */
5955 gcc_assert (sched_cfv4_bypass_data.pro == def_insn
5956 && sched_cfv4_bypass_data.con == insn);
5957
5958 if (cost < 3)
5959 cost = 3;
5960
5961 sched_cfv4_bypass_data.pro = NULL;
5962 sched_cfv4_bypass_data.con = NULL;
5963 sched_cfv4_bypass_data.scale = 0;
5964 }
5965 else
5966 gcc_assert (sched_cfv4_bypass_data.pro == NULL
5967 && sched_cfv4_bypass_data.con == NULL
5968 && sched_cfv4_bypass_data.scale == 0);
5969
5970 /* Don't try to issue INSN earlier than DFA permits.
5971 This is especially useful for instructions that write to memory,
5972 as their true dependence (default) latency is better to be set to 0
5973 to workaround alias analysis limitations.
5974 This is, in fact, a machine independent tweak, so, probably,
5975 it should be moved to haifa-sched.c: insn_cost (). */
5976 delay = min_insn_conflict_delay (sched_adjust_cost_state, def_insn, insn);
5977 if (delay > cost)
5978 cost = delay;
5979
5980 return cost;
5981 }
5982
5983 /* Return maximal number of insns that can be scheduled on a single cycle. */
5984 static int
5985 m68k_sched_issue_rate (void)
5986 {
5987 switch (m68k_sched_cpu)
5988 {
5989 case CPU_CFV1:
5990 case CPU_CFV2:
5991 case CPU_CFV3:
5992 return 1;
5993
5994 case CPU_CFV4:
5995 return 2;
5996
5997 default:
5998 gcc_unreachable ();
5999 return 0;
6000 }
6001 }
6002
6003 /* Maximal length of instruction for current CPU.
6004 E.g. it is 3 for any ColdFire core. */
6005 static int max_insn_size;
6006
6007 /* Data to model instruction buffer of CPU. */
6008 struct _sched_ib
6009 {
6010 /* True if instruction buffer model is modeled for current CPU. */
6011 bool enabled_p;
6012
6013 /* Size of the instruction buffer in words. */
6014 int size;
6015
6016 /* Number of filled words in the instruction buffer. */
6017 int filled;
6018
6019 /* Additional information about instruction buffer for CPUs that have
6020 a buffer of instruction records, rather then a plain buffer
6021 of instruction words. */
6022 struct _sched_ib_records
6023 {
6024 /* Size of buffer in records. */
6025 int n_insns;
6026
6027 /* Array to hold data on adjustements made to the size of the buffer. */
6028 int *adjust;
6029
6030 /* Index of the above array. */
6031 int adjust_index;
6032 } records;
6033
6034 /* An insn that reserves (marks empty) one word in the instruction buffer. */
6035 rtx insn;
6036 };
6037
6038 static struct _sched_ib sched_ib;
6039
6040 /* ID of memory unit. */
6041 static int sched_mem_unit_code;
6042
6043 /* Implementation of the targetm.sched.variable_issue () hook.
6044 It is called after INSN was issued. It returns the number of insns
6045 that can possibly get scheduled on the current cycle.
6046 It is used here to determine the effect of INSN on the instruction
6047 buffer. */
6048 static int
6049 m68k_sched_variable_issue (FILE *sched_dump ATTRIBUTE_UNUSED,
6050 int sched_verbose ATTRIBUTE_UNUSED,
6051 rtx_insn *insn, int can_issue_more)
6052 {
6053 int insn_size;
6054
6055 if (recog_memoized (insn) >= 0 && get_attr_type (insn) != TYPE_IGNORE)
6056 {
6057 switch (m68k_sched_cpu)
6058 {
6059 case CPU_CFV1:
6060 case CPU_CFV2:
6061 insn_size = sched_get_attr_size_int (insn);
6062 break;
6063
6064 case CPU_CFV3:
6065 insn_size = sched_get_attr_size_int (insn);
6066
6067 /* ColdFire V3 and V4 cores have instruction buffers that can
6068 accumulate up to 8 instructions regardless of instructions'
6069 sizes. So we should take care not to "prefetch" 24 one-word
6070 or 12 two-words instructions.
6071 To model this behavior we temporarily decrease size of the
6072 buffer by (max_insn_size - insn_size) for next 7 instructions. */
6073 {
6074 int adjust;
6075
6076 adjust = max_insn_size - insn_size;
6077 sched_ib.size -= adjust;
6078
6079 if (sched_ib.filled > sched_ib.size)
6080 sched_ib.filled = sched_ib.size;
6081
6082 sched_ib.records.adjust[sched_ib.records.adjust_index] = adjust;
6083 }
6084
6085 ++sched_ib.records.adjust_index;
6086 if (sched_ib.records.adjust_index == sched_ib.records.n_insns)
6087 sched_ib.records.adjust_index = 0;
6088
6089 /* Undo adjustement we did 7 instructions ago. */
6090 sched_ib.size
6091 += sched_ib.records.adjust[sched_ib.records.adjust_index];
6092
6093 break;
6094
6095 case CPU_CFV4:
6096 gcc_assert (!sched_ib.enabled_p);
6097 insn_size = 0;
6098 break;
6099
6100 default:
6101 gcc_unreachable ();
6102 }
6103
6104 if (insn_size > sched_ib.filled)
6105 /* Scheduling for register pressure does not always take DFA into
6106 account. Workaround instruction buffer not being filled enough. */
6107 {
6108 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
6109 insn_size = sched_ib.filled;
6110 }
6111
6112 --can_issue_more;
6113 }
6114 else if (GET_CODE (PATTERN (insn)) == ASM_INPUT
6115 || asm_noperands (PATTERN (insn)) >= 0)
6116 insn_size = sched_ib.filled;
6117 else
6118 insn_size = 0;
6119
6120 sched_ib.filled -= insn_size;
6121
6122 return can_issue_more;
6123 }
6124
6125 /* Return how many instructions should scheduler lookahead to choose the
6126 best one. */
6127 static int
6128 m68k_sched_first_cycle_multipass_dfa_lookahead (void)
6129 {
6130 return m68k_sched_issue_rate () - 1;
6131 }
6132
6133 /* Implementation of targetm.sched.init_global () hook.
6134 It is invoked once per scheduling pass and is used here
6135 to initialize scheduler constants. */
6136 static void
6137 m68k_sched_md_init_global (FILE *sched_dump ATTRIBUTE_UNUSED,
6138 int sched_verbose ATTRIBUTE_UNUSED,
6139 int n_insns ATTRIBUTE_UNUSED)
6140 {
6141 #ifdef ENABLE_CHECKING
6142 /* Check that all instructions have DFA reservations and
6143 that all instructions can be issued from a clean state. */
6144 {
6145 rtx_insn *insn;
6146 state_t state;
6147
6148 state = alloca (state_size ());
6149
6150 for (insn = get_insns (); insn != NULL; insn = NEXT_INSN (insn))
6151 {
6152 if (INSN_P (insn) && recog_memoized (insn) >= 0)
6153 {
6154 gcc_assert (insn_has_dfa_reservation_p (insn));
6155
6156 state_reset (state);
6157 if (state_transition (state, insn) >= 0)
6158 gcc_unreachable ();
6159 }
6160 }
6161 }
6162 #endif
6163
6164 /* Setup target cpu. */
6165
6166 /* ColdFire V4 has a set of features to keep its instruction buffer full
6167 (e.g., a separate memory bus for instructions) and, hence, we do not model
6168 buffer for this CPU. */
6169 sched_ib.enabled_p = (m68k_sched_cpu != CPU_CFV4);
6170
6171 switch (m68k_sched_cpu)
6172 {
6173 case CPU_CFV4:
6174 sched_ib.filled = 0;
6175
6176 /* FALLTHRU */
6177
6178 case CPU_CFV1:
6179 case CPU_CFV2:
6180 max_insn_size = 3;
6181 sched_ib.records.n_insns = 0;
6182 sched_ib.records.adjust = NULL;
6183 break;
6184
6185 case CPU_CFV3:
6186 max_insn_size = 3;
6187 sched_ib.records.n_insns = 8;
6188 sched_ib.records.adjust = XNEWVEC (int, sched_ib.records.n_insns);
6189 break;
6190
6191 default:
6192 gcc_unreachable ();
6193 }
6194
6195 sched_mem_unit_code = get_cpu_unit_code ("cf_mem1");
6196
6197 sched_adjust_cost_state = xmalloc (state_size ());
6198 state_reset (sched_adjust_cost_state);
6199
6200 start_sequence ();
6201 emit_insn (gen_ib ());
6202 sched_ib.insn = get_insns ();
6203 end_sequence ();
6204 }
6205
6206 /* Scheduling pass is now finished. Free/reset static variables. */
6207 static void
6208 m68k_sched_md_finish_global (FILE *dump ATTRIBUTE_UNUSED,
6209 int verbose ATTRIBUTE_UNUSED)
6210 {
6211 sched_ib.insn = NULL;
6212
6213 free (sched_adjust_cost_state);
6214 sched_adjust_cost_state = NULL;
6215
6216 sched_mem_unit_code = 0;
6217
6218 free (sched_ib.records.adjust);
6219 sched_ib.records.adjust = NULL;
6220 sched_ib.records.n_insns = 0;
6221 max_insn_size = 0;
6222 }
6223
6224 /* Implementation of targetm.sched.init () hook.
6225 It is invoked each time scheduler starts on the new block (basic block or
6226 extended basic block). */
6227 static void
6228 m68k_sched_md_init (FILE *sched_dump ATTRIBUTE_UNUSED,
6229 int sched_verbose ATTRIBUTE_UNUSED,
6230 int n_insns ATTRIBUTE_UNUSED)
6231 {
6232 switch (m68k_sched_cpu)
6233 {
6234 case CPU_CFV1:
6235 case CPU_CFV2:
6236 sched_ib.size = 6;
6237 break;
6238
6239 case CPU_CFV3:
6240 sched_ib.size = sched_ib.records.n_insns * max_insn_size;
6241
6242 memset (sched_ib.records.adjust, 0,
6243 sched_ib.records.n_insns * sizeof (*sched_ib.records.adjust));
6244 sched_ib.records.adjust_index = 0;
6245 break;
6246
6247 case CPU_CFV4:
6248 gcc_assert (!sched_ib.enabled_p);
6249 sched_ib.size = 0;
6250 break;
6251
6252 default:
6253 gcc_unreachable ();
6254 }
6255
6256 if (sched_ib.enabled_p)
6257 /* haifa-sched.c: schedule_block () calls advance_cycle () just before
6258 the first cycle. Workaround that. */
6259 sched_ib.filled = -2;
6260 }
6261
6262 /* Implementation of targetm.sched.dfa_pre_advance_cycle () hook.
6263 It is invoked just before current cycle finishes and is used here
6264 to track if instruction buffer got its two words this cycle. */
6265 static void
6266 m68k_sched_dfa_pre_advance_cycle (void)
6267 {
6268 if (!sched_ib.enabled_p)
6269 return;
6270
6271 if (!cpu_unit_reservation_p (curr_state, sched_mem_unit_code))
6272 {
6273 sched_ib.filled += 2;
6274
6275 if (sched_ib.filled > sched_ib.size)
6276 sched_ib.filled = sched_ib.size;
6277 }
6278 }
6279
6280 /* Implementation of targetm.sched.dfa_post_advance_cycle () hook.
6281 It is invoked just after new cycle begins and is used here
6282 to setup number of filled words in the instruction buffer so that
6283 instructions which won't have all their words prefetched would be
6284 stalled for a cycle. */
6285 static void
6286 m68k_sched_dfa_post_advance_cycle (void)
6287 {
6288 int i;
6289
6290 if (!sched_ib.enabled_p)
6291 return;
6292
6293 /* Setup number of prefetched instruction words in the instruction
6294 buffer. */
6295 i = max_insn_size - sched_ib.filled;
6296
6297 while (--i >= 0)
6298 {
6299 if (state_transition (curr_state, sched_ib.insn) >= 0)
6300 /* Pick up scheduler state. */
6301 ++sched_ib.filled;
6302 }
6303 }
6304
6305 /* Return X or Y (depending on OPX_P) operand of INSN,
6306 if it is an integer register, or NULL overwise. */
6307 static rtx
6308 sched_get_reg_operand (rtx_insn *insn, bool opx_p)
6309 {
6310 rtx op = NULL;
6311
6312 if (opx_p)
6313 {
6314 if (get_attr_opx_type (insn) == OPX_TYPE_RN)
6315 {
6316 op = sched_get_operand (insn, true);
6317 gcc_assert (op != NULL);
6318
6319 if (!reload_completed && !REG_P (op))
6320 return NULL;
6321 }
6322 }
6323 else
6324 {
6325 if (get_attr_opy_type (insn) == OPY_TYPE_RN)
6326 {
6327 op = sched_get_operand (insn, false);
6328 gcc_assert (op != NULL);
6329
6330 if (!reload_completed && !REG_P (op))
6331 return NULL;
6332 }
6333 }
6334
6335 return op;
6336 }
6337
6338 /* Return true, if X or Y (depending on OPX_P) operand of INSN
6339 is a MEM. */
6340 static bool
6341 sched_mem_operand_p (rtx_insn *insn, bool opx_p)
6342 {
6343 switch (sched_get_opxy_mem_type (insn, opx_p))
6344 {
6345 case OP_TYPE_MEM1:
6346 case OP_TYPE_MEM6:
6347 return true;
6348
6349 default:
6350 return false;
6351 }
6352 }
6353
6354 /* Return X or Y (depending on OPX_P) operand of INSN,
6355 if it is a MEM, or NULL overwise. */
6356 static rtx
6357 sched_get_mem_operand (rtx_insn *insn, bool must_read_p, bool must_write_p)
6358 {
6359 bool opx_p;
6360 bool opy_p;
6361
6362 opx_p = false;
6363 opy_p = false;
6364
6365 if (must_read_p)
6366 {
6367 opx_p = true;
6368 opy_p = true;
6369 }
6370
6371 if (must_write_p)
6372 {
6373 opx_p = true;
6374 opy_p = false;
6375 }
6376
6377 if (opy_p && sched_mem_operand_p (insn, false))
6378 return sched_get_operand (insn, false);
6379
6380 if (opx_p && sched_mem_operand_p (insn, true))
6381 return sched_get_operand (insn, true);
6382
6383 gcc_unreachable ();
6384 return NULL;
6385 }
6386
6387 /* Return non-zero if PRO modifies register used as part of
6388 address in CON. */
6389 int
6390 m68k_sched_address_bypass_p (rtx_insn *pro, rtx_insn *con)
6391 {
6392 rtx pro_x;
6393 rtx con_mem_read;
6394
6395 pro_x = sched_get_reg_operand (pro, true);
6396 if (pro_x == NULL)
6397 return 0;
6398
6399 con_mem_read = sched_get_mem_operand (con, true, false);
6400 gcc_assert (con_mem_read != NULL);
6401
6402 if (reg_mentioned_p (pro_x, con_mem_read))
6403 return 1;
6404
6405 return 0;
6406 }
6407
6408 /* Helper function for m68k_sched_indexed_address_bypass_p.
6409 if PRO modifies register used as index in CON,
6410 return scale of indexed memory access in CON. Return zero overwise. */
6411 static int
6412 sched_get_indexed_address_scale (rtx_insn *pro, rtx_insn *con)
6413 {
6414 rtx reg;
6415 rtx mem;
6416 struct m68k_address address;
6417
6418 reg = sched_get_reg_operand (pro, true);
6419 if (reg == NULL)
6420 return 0;
6421
6422 mem = sched_get_mem_operand (con, true, false);
6423 gcc_assert (mem != NULL && MEM_P (mem));
6424
6425 if (!m68k_decompose_address (GET_MODE (mem), XEXP (mem, 0), reload_completed,
6426 &address))
6427 gcc_unreachable ();
6428
6429 if (REGNO (reg) == REGNO (address.index))
6430 {
6431 gcc_assert (address.scale != 0);
6432 return address.scale;
6433 }
6434
6435 return 0;
6436 }
6437
6438 /* Return non-zero if PRO modifies register used
6439 as index with scale 2 or 4 in CON. */
6440 int
6441 m68k_sched_indexed_address_bypass_p (rtx_insn *pro, rtx_insn *con)
6442 {
6443 gcc_assert (sched_cfv4_bypass_data.pro == NULL
6444 && sched_cfv4_bypass_data.con == NULL
6445 && sched_cfv4_bypass_data.scale == 0);
6446
6447 switch (sched_get_indexed_address_scale (pro, con))
6448 {
6449 case 1:
6450 /* We can't have a variable latency bypass, so
6451 remember to adjust the insn cost in adjust_cost hook. */
6452 sched_cfv4_bypass_data.pro = pro;
6453 sched_cfv4_bypass_data.con = con;
6454 sched_cfv4_bypass_data.scale = 1;
6455 return 0;
6456
6457 case 2:
6458 case 4:
6459 return 1;
6460
6461 default:
6462 return 0;
6463 }
6464 }
6465
6466 /* We generate a two-instructions program at M_TRAMP :
6467 movea.l &CHAIN_VALUE,%a0
6468 jmp FNADDR
6469 where %a0 can be modified by changing STATIC_CHAIN_REGNUM. */
6470
6471 static void
6472 m68k_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
6473 {
6474 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
6475 rtx mem;
6476
6477 gcc_assert (ADDRESS_REGNO_P (STATIC_CHAIN_REGNUM));
6478
6479 mem = adjust_address (m_tramp, HImode, 0);
6480 emit_move_insn (mem, GEN_INT(0x207C + ((STATIC_CHAIN_REGNUM-8) << 9)));
6481 mem = adjust_address (m_tramp, SImode, 2);
6482 emit_move_insn (mem, chain_value);
6483
6484 mem = adjust_address (m_tramp, HImode, 6);
6485 emit_move_insn (mem, GEN_INT(0x4EF9));
6486 mem = adjust_address (m_tramp, SImode, 8);
6487 emit_move_insn (mem, fnaddr);
6488
6489 FINALIZE_TRAMPOLINE (XEXP (m_tramp, 0));
6490 }
6491
6492 /* On the 68000, the RTS insn cannot pop anything.
6493 On the 68010, the RTD insn may be used to pop them if the number
6494 of args is fixed, but if the number is variable then the caller
6495 must pop them all. RTD can't be used for library calls now
6496 because the library is compiled with the Unix compiler.
6497 Use of RTD is a selectable option, since it is incompatible with
6498 standard Unix calling sequences. If the option is not selected,
6499 the caller must always pop the args. */
6500
6501 static int
6502 m68k_return_pops_args (tree fundecl, tree funtype, int size)
6503 {
6504 return ((TARGET_RTD
6505 && (!fundecl
6506 || TREE_CODE (fundecl) != IDENTIFIER_NODE)
6507 && (!stdarg_p (funtype)))
6508 ? size : 0);
6509 }
6510
6511 /* Make sure everything's fine if we *don't* have a given processor.
6512 This assumes that putting a register in fixed_regs will keep the
6513 compiler's mitts completely off it. We don't bother to zero it out
6514 of register classes. */
6515
6516 static void
6517 m68k_conditional_register_usage (void)
6518 {
6519 int i;
6520 HARD_REG_SET x;
6521 if (!TARGET_HARD_FLOAT)
6522 {
6523 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]);
6524 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6525 if (TEST_HARD_REG_BIT (x, i))
6526 fixed_regs[i] = call_used_regs[i] = 1;
6527 }
6528 if (flag_pic)
6529 fixed_regs[PIC_REG] = call_used_regs[PIC_REG] = 1;
6530 }
6531
6532 static void
6533 m68k_init_sync_libfuncs (void)
6534 {
6535 init_sync_libfuncs (UNITS_PER_WORD);
6536 }
6537
6538 /* Implements EPILOGUE_USES. All registers are live on exit from an
6539 interrupt routine. */
6540 bool
6541 m68k_epilogue_uses (int regno ATTRIBUTE_UNUSED)
6542 {
6543 return (reload_completed
6544 && (m68k_get_function_kind (current_function_decl)
6545 == m68k_fk_interrupt_handler));
6546 }
6547
6548 #include "gt-m68k.h"