]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/sh/sh.md
Update copyright years.
[thirdparty/gcc.git] / gcc / config / sh / sh.md
1 ;;- Machine description for Renesas / SuperH SH.
2 ;; Copyright (C) 1993-2019 Free Software Foundation, Inc.
3 ;; Contributed by Steve Chamberlain (sac@cygnus.com).
4 ;; Improved by Jim Wilson (wilson@cygnus.com).
5
6 ;; This file is part of GCC.
7
8 ;; GCC is free software; you can redistribute it and/or modify
9 ;; it under the terms of the GNU General Public License as published by
10 ;; the Free Software Foundation; either version 3, or (at your option)
11 ;; any later version.
12
13 ;; GCC is distributed in the hope that it will be useful,
14 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
15 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 ;; GNU General Public License for more details.
17
18 ;; You should have received a copy of the GNU General Public License
19 ;; along with GCC; see the file COPYING3. If not see
20 ;; <http://www.gnu.org/licenses/>.
21
22
23 ;; ??? Should prepend a * to all pattern names which are not used.
24 ;; This will make the compiler smaller, and rebuilds after changes faster.
25
26 ;; ??? Should be enhanced to include support for many more GNU superoptimizer
27 ;; sequences. Especially the sequences for arithmetic right shifts.
28
29 ;; ??? Should check all DImode patterns for consistency and usefulness.
30
31 ;; ??? The MAC.W and MAC.L instructions are not supported. There is no
32 ;; way to generate them.
33
34 ;; BSR is not generated by the compiler proper, but when relaxing, it
35 ;; generates .uses pseudo-ops that allow linker relaxation to create
36 ;; BSR. This is actually implemented in bfd/{coff,elf32}-sh.c
37
38 ;; Special constraints for SH machine description:
39 ;;
40 ;; t -- T
41 ;; x -- mac
42 ;; l -- pr
43 ;; z -- r0
44 ;;
45 ;; Special formats used for outputting SH instructions:
46 ;;
47 ;; %. -- print a .s if insn needs delay slot
48 ;; %@ -- print rte/rts if is/isn't an interrupt function
49 ;; %# -- output a nop if there is nothing to put in the delay slot
50 ;; %O -- print a constant without the #
51 ;; %R -- print the lsw reg of a double
52 ;; %S -- print the msw reg of a double
53 ;; %T -- print next word of a double REG or MEM
54 ;;
55 ;; Special predicates:
56 ;;
57 ;; arith_operand -- operand is valid source for arithmetic op
58 ;; arith_reg_operand -- operand is valid register for arithmetic op
59 ;; general_movdst_operand -- operand is valid move destination
60 ;; general_movsrc_operand -- operand is valid move source
61 ;; logical_operand -- operand is valid source for logical op
62
63 ;; -------------------------------------------------------------------------
64 ;; Constants
65 ;; -------------------------------------------------------------------------
66
67 (define_constants [
68 (AP_REG 145)
69 (PR_REG 146)
70 (T_REG 147)
71 (GBR_REG 144)
72 (MACH_REG 148)
73 (MACL_REG 149)
74 (FPUL_REG 150)
75 (RAP_REG 152)
76
77 (FPSCR_REG 151)
78
79 ;; Virtual FPSCR - bits that are used by FP ops.
80 (FPSCR_MODES_REG 154)
81
82 ;; Virtual FPSCR - bits that are updated by FP ops.
83 (FPSCR_STAT_REG 155)
84
85 (PIC_REG 12)
86 (FP_REG 14)
87 (SP_REG 15)
88
89 (R0_REG 0)
90 (R1_REG 1)
91 (R2_REG 2)
92 (R3_REG 3)
93 (R4_REG 4)
94 (R5_REG 5)
95 (R6_REG 6)
96 (R7_REG 7)
97 (R8_REG 8)
98 (R9_REG 9)
99 (R10_REG 10)
100 (R20_REG 20)
101 (R21_REG 21)
102 (R22_REG 22)
103 (R23_REG 23)
104
105 (DR0_REG 64)
106 (DR2_REG 66)
107 (DR4_REG 68)
108
109 (XD0_REG 136)
110
111 (FPSCR_PR 524288) ;; 1 << 19
112 (FPSCR_SZ 1048576) ;; 1 << 20
113 (FPSCR_FR 2097152) ;; 1 << 21
114 ])
115
116 (define_c_enum "unspec" [
117 ;; These are used with unspec.
118 UNSPEC_MOVA
119 UNSPEC_CASESI
120 UNSPEC_BBR
121 UNSPEC_SFUNC
122 UNSPEC_PIC
123 UNSPEC_GOT
124 UNSPEC_GOTOFF
125 UNSPEC_PLT
126 UNSPEC_CALLER
127 UNSPEC_GOTPLT
128 UNSPEC_PCREL
129 UNSPEC_ICACHE
130 UNSPEC_FCOSA
131 UNSPEC_FSRRA
132 UNSPEC_FSINA
133 UNSPEC_ALLOCO
134 UNSPEC_TLSGD
135 UNSPEC_TLSLDM
136 UNSPEC_TLSIE
137 UNSPEC_DTPOFF
138 UNSPEC_GOTTPOFF
139 UNSPEC_TPOFF
140 UNSPEC_RA
141 UNSPEC_THUNK
142 UNSPEC_CHKADD
143 UNSPEC_SP_SET
144 UNSPEC_SP_TEST
145 UNSPEC_MOVUA
146 ;; (unspec [TARGET ANCHOR] UNSPEC_SYMOFF) == TARGET - ANCHOR.
147 UNSPEC_SYMOFF
148 ;; (unspec [OFFSET ANCHOR] UNSPEC_PCREL_SYMOFF) == OFFSET - (ANCHOR - .).
149 UNSPEC_PCREL_SYMOFF
150 ;; For FDPIC
151 UNSPEC_GOTFUNCDESC
152 UNSPEC_GOTOFFFUNCDESC
153 ;; Misc builtins
154 UNSPEC_BUILTIN_STRLEN
155 ])
156
157 (define_c_enum "unspecv" [
158 ;; These are used with unspec_volatile.
159 UNSPECV_BLOCKAGE
160 UNSPECV_ALIGN
161 UNSPECV_CONST2
162 UNSPECV_CONST4
163 UNSPECV_CONST8
164 UNSPECV_WINDOW_END
165 UNSPECV_CONST_END
166 UNSPECV_EH_RETURN
167 UNSPECV_GBR
168 UNSPECV_SP_SWITCH_B
169 UNSPECV_SP_SWITCH_E
170
171 UNSPECV_FPSCR_MODES
172 UNSPECV_FPSCR_STAT
173 ])
174
175 ;; -------------------------------------------------------------------------
176 ;; Attributes
177 ;; -------------------------------------------------------------------------
178
179 ;; Target CPU.
180
181 (define_attr "cpu"
182 "sh1,sh2,sh2e,sh2a,sh3,sh3e,sh4,sh4a"
183 (const (symbol_ref "sh_cpu_attr")))
184
185 (define_attr "endian" "big,little"
186 (const (if_then_else (symbol_ref "TARGET_LITTLE_ENDIAN")
187 (const_string "little") (const_string "big"))))
188
189 ;; Indicate if the default fpu mode is single precision.
190 (define_attr "fpu_single" "yes,no"
191 (const (if_then_else (symbol_ref "TARGET_FPU_SINGLE")
192 (const_string "yes") (const_string "no"))))
193
194 (define_attr "fmovd" "yes,no"
195 (const (if_then_else (symbol_ref "TARGET_FMOVD")
196 (const_string "yes") (const_string "no"))))
197 ;; pipeline model
198 (define_attr "pipe_model" "sh1,sh4"
199 (const
200 (cond [(symbol_ref "TARGET_SUPERSCALAR") (const_string "sh4")]
201 (const_string "sh1"))))
202
203 ;; cbranch conditional branch instructions
204 ;; jump unconditional jumps
205 ;; arith ordinary arithmetic
206 ;; arith3 a compound insn that behaves similarly to a sequence of
207 ;; three insns of type arith
208 ;; arith3b like above, but might end with a redirected branch
209 ;; load from memory
210 ;; load_si Likewise, SImode variant for general register.
211 ;; fload Likewise, but load to fp register.
212 ;; store to memory
213 ;; fstore floating point register to memory
214 ;; move general purpose register to register
215 ;; movi8 8-bit immediate to general purpose register
216 ;; mt_group other sh4 mt instructions
217 ;; fmove register to register, floating point
218 ;; smpy word precision integer multiply
219 ;; dmpy longword or doublelongword precision integer multiply
220 ;; return rts
221 ;; pload load of pr reg, which can't be put into delay slot of rts
222 ;; prset copy register to pr reg, ditto
223 ;; pstore store of pr reg, which can't be put into delay slot of jsr
224 ;; prget copy pr to register, ditto
225 ;; pcload pc relative load of constant value
226 ;; pcfload Likewise, but load to fp register.
227 ;; pcload_si Likewise, SImode variant for general register.
228 ;; rte return from exception
229 ;; sfunc special function call with known used registers
230 ;; call function call
231 ;; fp floating point
232 ;; fpscr_toggle toggle a bit in the fpscr
233 ;; fdiv floating point divide (or square root)
234 ;; gp_fpul move from general purpose register to fpul
235 ;; fpul_gp move from fpul to general purpose register
236 ;; mac_gp move from mac[lh] to general purpose register
237 ;; gp_mac move from general purpose register to mac[lh]
238 ;; mac_mem move from mac[lh] to memory
239 ;; mem_mac move from memory to mac[lh]
240 ;; dfp_arith,dfp_mul, fp_cmp,dfp_cmp,dfp_conv
241 ;; ftrc_s fix_truncsfsi2_i4
242 ;; dfdiv double precision floating point divide (or square root)
243 ;; cwb ic_invalidate_line_i
244 ;; movua SH4a unaligned load
245 ;; fsrra square root reciprocal approximate
246 ;; fsca sine and cosine approximate
247 ;; tls_load load TLS related address
248 ;; nil no-op move, will be deleted.
249
250 (define_attr "type"
251 "mt_group,cbranch,jump,jump_ind,arith,arith3,arith3b,dyn_shift,load,load_si,
252 fload,store,fstore,move,movi8,fmove,smpy,dmpy,return,pload,prset,pstore,
253 prget,pcload,pcload_si,pcfload,rte,sfunc,call,fp,fpscr_toggle,fdiv,ftrc_s,
254 dfp_arith,dfp_mul,fp_cmp,dfp_cmp,dfp_conv,dfdiv,gp_fpul,fpul_gp,mac_gp,
255 gp_mac,mac_mem,mem_mac,mem_fpscr,gp_fpscr,cwb,movua,fsrra,fsca,tls_load,
256 nil,other"
257 (const_string "other"))
258
259 ;; We define a new attribute namely "insn_class".We use
260 ;; this for the DFA based pipeline description.
261 ;;
262 ;; mt_group SH4 "mt" group instructions.
263 ;;
264 ;; ex_group SH4 "ex" group instructions.
265 ;;
266 ;; ls_group SH4 "ls" group instructions.
267 ;;
268 (define_attr "insn_class"
269 "mt_group,ex_group,ls_group,br_group,fe_group,co_group,none"
270 (cond [(eq_attr "type" "move,mt_group") (const_string "mt_group")
271 (eq_attr "type" "movi8,arith,dyn_shift") (const_string "ex_group")
272 (eq_attr "type" "fmove,load,pcload,load_si,pcload_si,fload,pcfload,
273 store,fstore,gp_fpul,fpul_gp") (const_string "ls_group")
274 (eq_attr "type" "cbranch,jump") (const_string "br_group")
275 (eq_attr "type" "fp,fp_cmp,fdiv,ftrc_s,dfp_arith,dfp_mul,dfp_conv,dfdiv")
276 (const_string "fe_group")
277 (eq_attr "type" "jump_ind,smpy,dmpy,mac_gp,return,pload,prset,pstore,
278 prget,rte,sfunc,call,dfp_cmp,mem_fpscr,gp_fpscr,cwb,
279 gp_mac,mac_mem,mem_mac") (const_string "co_group")]
280 (const_string "none")))
281
282 ;; nil are zero instructions, and arith3 / arith3b are multiple instructions,
283 ;; so these do not belong in an insn group, although they are modeled
284 ;; with their own define_insn_reservations.
285
286 ;; Indicate what precision must be selected in fpscr for this insn, if any.
287 (define_attr "fp_mode" "single,double,none" (const_string "none"))
288
289 ;; Indicate if the fpu mode is set by this instruction
290 ;; "unknown" must have the value as "none" in fp_mode, and means
291 ;; that the instruction/abi has left the processor in an unknown
292 ;; state.
293 ;; "none" means that nothing has changed and no mode is set.
294 ;; This attribute is only used for the Renesas ABI.
295 (define_attr "fp_set" "single,double,unknown,none" (const_string "none"))
296
297 ; If a conditional branch destination is within -252..258 bytes away
298 ; from the instruction it can be 2 bytes long. Something in the
299 ; range -4090..4100 bytes can be 6 bytes long. All other conditional
300 ; branches are initially assumed to be 16 bytes long.
301 ; In machine_dependent_reorg, we split all branches that are longer than
302 ; 2 bytes.
303
304 ;; The maximum range used for SImode constant pool entries is 1018. A final
305 ;; instruction can add 8 bytes while only being 4 bytes in size, thus we
306 ;; can have a total of 1022 bytes in the pool. Add 4 bytes for a branch
307 ;; instruction around the pool table, 2 bytes of alignment before the table,
308 ;; and 30 bytes of alignment after the table. That gives a maximum total
309 ;; pool size of 1058 bytes.
310 ;; Worst case code/pool content size ratio is 1:2 (using asms).
311 ;; Thus, in the worst case, there is one instruction in front of a maximum
312 ;; sized pool, and then there are 1052 bytes of pool for every 508 bytes of
313 ;; code. For the last n bytes of code, there are 2n + 36 bytes of pool.
314 ;; If we have a forward branch, the initial table will be put after the
315 ;; unconditional branch.
316 ;;
317 ;; ??? We could do much better by keeping track of the actual pcloads within
318 ;; the branch range and in the pcload range in front of the branch range.
319
320 ;; ??? This looks ugly because genattrtab won't allow if_then_else or cond
321 ;; inside an le.
322 (define_attr "short_cbranch_p" "no,yes"
323 (cond [(match_test "mdep_reorg_phase <= SH_FIXUP_PCLOAD")
324 (const_string "no")
325 (leu (plus (minus (match_dup 0) (pc)) (const_int 252)) (const_int 506))
326 (const_string "yes")
327 (match_test "NEXT_INSN (PREV_INSN (insn)) != insn")
328 (const_string "no")
329 (leu (plus (minus (match_dup 0) (pc)) (const_int 252)) (const_int 508))
330 (const_string "yes")
331 ] (const_string "no")))
332
333 (define_attr "med_branch_p" "no,yes"
334 (cond [(leu (plus (minus (match_dup 0) (pc)) (const_int 990))
335 (const_int 1988))
336 (const_string "yes")
337 (match_test "mdep_reorg_phase <= SH_FIXUP_PCLOAD")
338 (const_string "no")
339 (leu (plus (minus (match_dup 0) (pc)) (const_int 4092))
340 (const_int 8186))
341 (const_string "yes")
342 ] (const_string "no")))
343
344 (define_attr "med_cbranch_p" "no,yes"
345 (cond [(leu (plus (minus (match_dup 0) (pc)) (const_int 988))
346 (const_int 1986))
347 (const_string "yes")
348 (match_test "mdep_reorg_phase <= SH_FIXUP_PCLOAD")
349 (const_string "no")
350 (leu (plus (minus (match_dup 0) (pc)) (const_int 4090))
351 (const_int 8184))
352 (const_string "yes")
353 ] (const_string "no")))
354
355 (define_attr "braf_branch_p" "no,yes"
356 (cond [(match_test "! TARGET_SH2")
357 (const_string "no")
358 (leu (plus (minus (match_dup 0) (pc)) (const_int 10330))
359 (const_int 20660))
360 (const_string "yes")
361 (match_test "mdep_reorg_phase <= SH_FIXUP_PCLOAD")
362 (const_string "no")
363 (leu (plus (minus (match_dup 0) (pc)) (const_int 32764))
364 (const_int 65530))
365 (const_string "yes")
366 ] (const_string "no")))
367
368 (define_attr "braf_cbranch_p" "no,yes"
369 (cond [(match_test "! TARGET_SH2")
370 (const_string "no")
371 (leu (plus (minus (match_dup 0) (pc)) (const_int 10328))
372 (const_int 20658))
373 (const_string "yes")
374 (match_test "mdep_reorg_phase <= SH_FIXUP_PCLOAD")
375 (const_string "no")
376 (leu (plus (minus (match_dup 0) (pc)) (const_int 32762))
377 (const_int 65528))
378 (const_string "yes")
379 ] (const_string "no")))
380
381 ;; An unconditional jump in the range -4092..4098 can be 2 bytes long.
382 ;; For wider ranges, we need a combination of a code and a data part.
383 ;; If we can get a scratch register for a long range jump, the code
384 ;; part can be 4 bytes long; otherwise, it must be 8 bytes long.
385 ;; If the jump is in the range -32764..32770, the data part can be 2 bytes
386 ;; long; otherwise, it must be 6 bytes long.
387
388 ;; All other instructions are two bytes long by default.
389
390 ;; ??? This should use something like *branch_p (minus (match_dup 0) (pc)),
391 ;; but getattrtab doesn't understand this.
392 (define_attr "length" ""
393 (cond [(eq_attr "type" "cbranch")
394 (cond [(eq_attr "short_cbranch_p" "yes")
395 (const_int 2)
396 (eq_attr "med_cbranch_p" "yes")
397 (const_int 6)
398 (eq_attr "braf_cbranch_p" "yes")
399 (const_int 12)
400 ;; ??? using pc is not computed transitively.
401 (ne (match_dup 0) (match_dup 0))
402 (const_int 14)
403 (match_test "flag_pic")
404 (const_int 24)
405 ] (const_int 16))
406 (eq_attr "type" "jump")
407 (cond [(eq_attr "med_branch_p" "yes")
408 (const_int 2)
409 (and (match_test "prev_nonnote_insn (insn)")
410 (and (eq (symbol_ref "GET_CODE (prev_nonnote_insn (insn))")
411 (symbol_ref "INSN"))
412 (eq (symbol_ref "INSN_CODE (prev_nonnote_insn (insn))")
413 (symbol_ref "code_for_indirect_jump_scratch"))))
414 (cond [(eq_attr "braf_branch_p" "yes")
415 (const_int 6)
416 (not (match_test "flag_pic"))
417 (const_int 10)
418 (match_test "TARGET_SH2")
419 (const_int 10)] (const_int 18))
420 (eq_attr "braf_branch_p" "yes")
421 (const_int 10)
422 ;; ??? using pc is not computed transitively.
423 (ne (match_dup 0) (match_dup 0))
424 (const_int 12)
425 (match_test "flag_pic")
426 (const_int 22)
427 ] (const_int 14))
428 ] (const_int 2)))
429
430 ;; DFA descriptions for the pipelines
431
432 (include "sh1.md")
433 (include "sh4.md")
434
435 (include "iterators.md")
436 (include "predicates.md")
437 (include "constraints.md")
438
439 ;; Definitions for filling delay slots
440
441 (define_attr "needs_delay_slot" "yes,no" (const_string "no"))
442
443 (define_attr "banked" "yes,no"
444 (cond [(match_test "sh_loads_bankedreg_p (insn)")
445 (const_string "yes")]
446 (const_string "no")))
447
448 ;; ??? This should be (nil) instead of (const_int 0)
449 (define_attr "hit_stack" "yes,no"
450 (cond [(not (match_test "find_regno_note (insn, REG_INC, SP_REG)"))
451 (const_string "no")]
452 (const_string "yes")))
453
454 (define_attr "interrupt_function" "no,yes"
455 (const (symbol_ref "current_function_interrupt")))
456
457 (define_attr "in_delay_slot" "yes,no"
458 (cond [(eq_attr "type" "cbranch") (const_string "no")
459 (eq_attr "type" "pcload,pcload_si") (const_string "no")
460 (eq_attr "type" "fpscr_toggle") (const_string "no")
461 (eq_attr "needs_delay_slot" "yes") (const_string "no")
462 (eq_attr "length" "2") (const_string "yes")
463 ] (const_string "no")))
464
465 (define_attr "cond_delay_slot" "yes,no"
466 (cond [(eq_attr "in_delay_slot" "yes") (const_string "yes")
467 ] (const_string "no")))
468
469 (define_attr "is_sfunc" ""
470 (if_then_else (eq_attr "type" "sfunc") (const_int 1) (const_int 0)))
471
472 ;; SH4 Double-precision computation with double-precision result -
473 ;; the two halves are ready at different times.
474 (define_attr "dfp_comp" "yes,no"
475 (cond [(eq_attr "type" "dfp_arith,dfp_mul,dfp_conv,dfdiv") (const_string "yes")]
476 (const_string "no")))
477
478 ;; Insns for which the latency of a preceding fp insn is decreased by one.
479 (define_attr "late_fp_use" "yes,no" (const_string "no"))
480 ;; And feeding insns for which this relevant.
481 (define_attr "any_fp_comp" "yes,no"
482 (cond [(eq_attr "type" "fp,fdiv,ftrc_s,dfp_arith,dfp_mul,dfp_conv,dfdiv")
483 (const_string "yes")]
484 (const_string "no")))
485
486 (define_attr "any_int_load" "yes,no"
487 (cond [(eq_attr "type" "load,load_si,pcload,pcload_si")
488 (const_string "yes")]
489 (const_string "no")))
490
491 (define_attr "highpart" "user, ignore, extend, depend, must_split"
492 (const_string "user"))
493
494 (define_delay
495 (eq_attr "needs_delay_slot" "yes")
496 [(eq_attr "in_delay_slot" "yes") (nil) (nil)])
497
498 ;; Since a normal return (rts) implicitly uses the PR register,
499 ;; we can't allow PR register loads in an rts delay slot.
500 ;; On the SH1* and SH2*, the rte instruction reads the return pc from the
501 ;; stack, and thus we can't put a pop instruction in its delay slot.
502 ;; On the SH3* and SH4*, the rte instruction does not use the stack, so a
503 ;; pop instruction can go in the delay slot, unless it references a banked
504 ;; register (the register bank is switched by rte).
505 (define_delay
506 (eq_attr "type" "return")
507 [(and (eq_attr "in_delay_slot" "yes")
508 (ior (and (eq_attr "interrupt_function" "no")
509 (eq_attr "type" "!pload,prset"))
510 (and (eq_attr "interrupt_function" "yes")
511 (ior (match_test "TARGET_SH3") (eq_attr "hit_stack" "no"))
512 (eq_attr "banked" "no"))))
513 (nil) (nil)])
514
515 ;; Since a call implicitly uses the PR register, we can't allow
516 ;; a PR register store in a jsr delay slot.
517
518 (define_delay
519 (ior (eq_attr "type" "call") (eq_attr "type" "sfunc"))
520 [(and (eq_attr "in_delay_slot" "yes")
521 (eq_attr "type" "!pstore,prget")) (nil) (nil)])
522
523 ;; Conditional branches with delay slots are available starting with SH2.
524 ;; If zero displacement conditional branches are fast, disable the delay
525 ;; slot if the branch jumps over only one 2-byte insn.
526 (define_delay
527 (and (eq_attr "type" "cbranch")
528 (match_test "TARGET_SH2")
529 (not (and (match_test "TARGET_ZDCBRANCH")
530 (match_test "sh_cbranch_distance (insn, 4) == 2"))))
531 [(eq_attr "cond_delay_slot" "yes") (nil) (nil)])
532 \f
533 ;; -------------------------------------------------------------------------
534 ;; SImode signed integer comparisons
535 ;; -------------------------------------------------------------------------
536
537 ;; Patterns to generate the tst instruction which are usually formed by
538 ;; the combine pass.
539 ;; The canonical form here being used is (eq (and (op) (op)) 0).
540 ;; For some bit patterns, such as contiguous bits, we also must accept
541 ;; zero_extract forms. Single bit tests are also handled via zero_extract
542 ;; patterns in the 'bit field extract patterns' section. All variants
543 ;; are eventually converted to the 'tstsi_t' insn.
544 ;; As long as pseudos can be created (before RA), 'tstsi_t' will also accept
545 ;; constants that won't fit into 8 bits. After having captured the constant
546 ;; we can decide better whether/how to load it into a register and do other
547 ;; post-combine optimizations such as bypassing sign/zero extensions.
548 (define_insn_and_split "tstsi_t"
549 [(set (reg:SI T_REG)
550 (eq:SI (and:SI (match_operand:SI 0 "arith_reg_operand" "%z,r")
551 (match_operand:SI 1 "arith_or_int_operand" "K08,?r"))
552 (const_int 0)))]
553 "TARGET_SH1
554 && (can_create_pseudo_p () || arith_reg_operand (operands[1], SImode)
555 || satisfies_constraint_K08 (operands[1]))"
556 "tst %1,%0"
557 "TARGET_SH1 && can_create_pseudo_p () && CONST_INT_P (operands[1])
558 && !sh_in_recog_treg_set_expr ()"
559 [(const_int 0)]
560 {
561 gcc_assert (CONST_INT_P (operands[1]));
562
563 HOST_WIDE_INT op1val = INTVAL (operands[1]);
564 rtx reg = operands[0];
565 if (SUBREG_P (reg))
566 reg = SUBREG_REG (reg);
567 gcc_assert (REG_P (reg));
568 bool op0_dead_after_this =
569 sh_reg_dead_or_unused_after_insn (curr_insn, REGNO (reg));
570
571 if (optimize)
572 {
573 if (dump_file)
574 fprintf (dump_file,
575 "tstsi_t: trying to optimize const_int 0x%08x\n",
576 (uint32_t)op1val);
577
578 /* See if we can convert a test with a reg and a constant into
579 something simpler, if the reg is known to be zero or sign
580 extended. */
581 sh_extending_set_of_reg eop0 = sh_find_extending_set_of_reg (operands[0],
582 curr_insn);
583 if (eop0.ext_code != UNKNOWN)
584 {
585 /* Adjust the constant, trying to eliminate bits that are not
586 contributing to the result. */
587 if (eop0.from_mode == QImode)
588 op1val = (op1val
589 | (eop0.ext_code == SIGN_EXTEND && (op1val & 0xFFFFFF80)
590 ? 0x80 : 0)) & 0xFF;
591 else if (eop0.from_mode == HImode)
592 op1val = (op1val
593 | (eop0.ext_code == SIGN_EXTEND && (op1val & 0xFFFF8000)
594 ? 0x8000 : 0)) & 0xFFFF;
595
596 if (dump_file)
597 fprintf (dump_file, "tstsi_t: using effective const_int: 0x%08x\n",
598 (uint32_t)op1val);
599
600 /* Try to bypass the sign/zero extension first if op0 dies after
601 this insn. */
602 if (op0_dead_after_this && eop0.can_use_as_unextended_reg ())
603 {
604 if (dump_file)
605 fprintf (dump_file, "tstsi_t: bypassing sign/zero extension\n");
606
607 operands[0] = eop0.use_as_unextended_reg (curr_insn);
608 }
609 else if ((eop0.from_mode == QImode && op1val == 0xFF)
610 || (eop0.from_mode == HImode && op1val == 0xFFFF))
611 {
612 if (dump_file)
613 fprintf (dump_file, "tstsi_t: converting to cmpeqsi_t\n");
614 emit_insn (gen_cmpeqsi_t (eop0.use_as_extended_reg (curr_insn),
615 const0_rtx));
616 DONE;
617 }
618 else if (eop0.ext_code == SIGN_EXTEND
619 && ((eop0.from_mode == QImode && op1val == 0x80)
620 || (eop0.from_mode == HImode && op1val == 0x8000)))
621 {
622 if (dump_file)
623 fprintf (dump_file, "tstsi_t: converting to cmpgesi_t\n");
624 emit_insn (gen_cmpgesi_t (eop0.use_as_extended_reg (curr_insn),
625 const0_rtx));
626 DONE;
627 }
628 else if (!CONST_OK_FOR_K08 (op1val))
629 {
630 if (dump_file)
631 fprintf (dump_file, "tstsi_t: converting const_int to signed "
632 "value\n");
633
634 /* If here we haven't done anything yet. Convert the constant
635 to a signed value to reduce the constant pool size. */
636 operands[0] = eop0.use_as_extended_reg (curr_insn);
637
638 if (eop0.from_mode == QImode)
639 op1val |= (op1val & 0x80) ? 0xFFFFFFFFFFFFFF00LL : 0;
640 else if (eop0.from_mode == HImode)
641 op1val |= (op1val & 0x8000) ? 0xFFFFFFFFFFFF0000LL : 0;
642 }
643 else
644 operands[0] = eop0.use_as_extended_reg (curr_insn);
645 }
646 }
647
648 if (dump_file)
649 fprintf (dump_file, "tstsi_t: using const_int 0x%08x\n",
650 (uint32_t)op1val);
651
652 /* Try to fit the constant into 8 bits by shuffling the value in the
653 register operand.
654 Doing that usually results in smaller code as the constants in the
655 pools are avoided (32 bit constant = load + constant = 6 bytes).
656 However, if the constant load (LS insn) can be hoisted insn dependencies
657 can be avoided and chances for parallel execution increase. The common
658 usage pattern is:
659 - load reg from mem
660 - test bits
661 - conditional branch
662
663 FIXME: For now we do that only when optimizing for size until there is
664 a better heuristic.
665
666 FIXME: If there are multiple tst insns in the block with the same
667 constant, avoid the #imm variant to avoid R0 loads. Use the 'tst Rn,Rm'
668 variant instead and load the constant into a reg. For that we'd need
669 to do some analysis. */
670
671 if (CONST_OK_FOR_K08 (op1val))
672 {
673 /* Do nothing. */
674 }
675 else if ((op1val & 0xFFFF) == 0
676 && CONST_OK_FOR_K08 (op1val >> 16) && optimize_size)
677 {
678 /* Use a swap.w insn to do a shift + reg copy (to R0) in one insn. */
679 op1val = op1val >> 16;
680 rtx r = gen_reg_rtx (SImode);
681 emit_insn (gen_rotlsi3_16 (r, operands[0]));
682 operands[0] = r;
683 }
684 else if ((op1val & 0xFF) == 0
685 && CONST_OK_FOR_K08 (op1val >> 8) && optimize_size)
686 {
687 /* Use a swap.b insn to do a shift + reg copy (to R0) in one insn. */
688 op1val = op1val >> 8;
689 rtx r = gen_reg_rtx (SImode);
690 emit_insn (gen_swapbsi2 (r, operands[0]));
691 operands[0] = r;
692 }
693 else if ((op1val & 3) == 0
694 && CONST_OK_FOR_K08 (op1val >> 2) && optimize_size)
695 {
696 op1val = op1val >> 2;
697 rtx r = gen_reg_rtx (SImode);
698 emit_insn (gen_lshrsi3_k (r, operands[0], GEN_INT (2)));
699 operands[0] = r;
700 }
701 else if ((op1val & 1) == 0
702 && CONST_OK_FOR_K08 (op1val >> 1) && optimize_size)
703 {
704 op1val = op1val >> 1;
705 rtx r = gen_reg_rtx (SImode);
706 emit_insn (gen_shlr (r, operands[0]));
707 operands[0] = r;
708 }
709
710 operands[1] = GEN_INT (op1val);
711
712 if (!satisfies_constraint_K08 (operands[1]))
713 operands[1] = force_reg (SImode, operands[1]);
714
715 emit_insn (gen_tstsi_t (operands[0], operands[1]));
716 DONE;
717 }
718 [(set_attr "type" "mt_group")])
719
720 ;; This pattern is used by combine when testing QI/HImode subregs with a
721 ;; negative constant. Ignore high bits by masking them out in the constant.
722 (define_insn_and_split "*tst<mode>_t"
723 [(set (reg:SI T_REG)
724 (eq:SI (subreg:SI
725 (and:QIHI (match_operand:QIHI 0 "arith_reg_operand")
726 (match_operand 1 "const_int_operand")) 0)
727 (const_int 0)))]
728 "TARGET_SH1 && can_create_pseudo_p ()"
729 "#"
730 "&& 1"
731 [(set (reg:SI T_REG)
732 (eq:SI (and:SI (match_dup 0) (match_dup 1)) (const_int 0)))]
733 {
734 operands[0] = simplify_gen_subreg (SImode, operands[0], <MODE>mode, 0);
735 operands[1] = GEN_INT (INTVAL (operands[1])
736 & (<MODE>mode == HImode ? 0xFFFF : 0xFF));
737 })
738
739 ;; This pattern might be risky because it also tests the upper bits and not
740 ;; only the subreg. We have to check whether the operands have been sign
741 ;; or zero extended. In the worst case, a zero extension has to be inserted
742 ;; to mask out the unwanted bits.
743 (define_insn_and_split "*tst<mode>_t_subregs"
744 [(set (reg:SI T_REG)
745 (eq:SI
746 (subreg:QIHI
747 (and:SI (match_operand:SI 0 "arith_reg_operand")
748 (match_operand:SI 1 "arith_reg_operand")) <lowpart_le>)
749 (const_int 0)))]
750 "TARGET_SH1 && TARGET_LITTLE_ENDIAN && can_create_pseudo_p ()"
751 "#"
752 "&& !sh_in_recog_treg_set_expr ()"
753 [(const_int 0)]
754 {
755 sh_split_tst_subregs (curr_insn, <MODE>mode, <lowpart_le>, operands);
756 DONE;
757 })
758
759 (define_insn_and_split "*tst<mode>_t_subregs"
760 [(set (reg:SI T_REG)
761 (eq:SI
762 (subreg:QIHI
763 (and:SI (match_operand:SI 0 "arith_reg_operand")
764 (match_operand:SI 1 "arith_reg_operand")) <lowpart_be>)
765 (const_int 0)))]
766 "TARGET_SH1 && TARGET_BIG_ENDIAN && can_create_pseudo_p ()"
767 "#"
768 "&& !sh_in_recog_treg_set_expr ()"
769 [(const_int 0)]
770 {
771 sh_split_tst_subregs (curr_insn, <MODE>mode, <lowpart_be>, operands);
772 DONE;
773 })
774
775 ;; Extract contiguous bits and compare them against zero.
776 ;; Notice that this will not be used for single bits. Special single bit
777 ;; extraction patterns are in the 'bit field extract patterns' section.
778 (define_insn_and_split "*tst<mode>_t_zero_extract"
779 [(set (reg:SI T_REG)
780 (eq:SI (zero_extract:SI (match_operand:QIHISI 0 "arith_reg_operand")
781 (match_operand 1 "const_int_operand")
782 (match_operand 2 "const_int_operand"))
783 (const_int 0)))]
784 "TARGET_SH1 && can_create_pseudo_p ()"
785 "#"
786 "&& 1"
787 [(set (reg:SI T_REG)
788 (eq:SI (and:SI (match_dup 0) (match_dup 1)) (const_int 0)))]
789 {
790 operands[1] = GEN_INT (ZERO_EXTRACT_ANDMASK (operands[1], operands[2]));
791 if (GET_MODE (operands[0]) != SImode)
792 operands[0] = simplify_gen_subreg (SImode, operands[0], <MODE>mode, 0);
793 })
794
795 ;; Convert '(reg << shift) & mask' into 'reg & (mask >> shift)'.
796 ;; The shifted-out bits in the mask will always be zero, since the
797 ;; shifted-in bits in the reg will also be always zero.
798 (define_insn_and_split "*tstsi_t_shift_mask"
799 [(set (reg:SI T_REG)
800 (eq:SI (and:SI (ashift:SI (match_operand:SI 0 "arith_reg_operand")
801 (match_operand 1 "const_int_operand"))
802 (match_operand 2 "const_int_operand"))
803 (const_int 0)))]
804 "TARGET_SH1 && can_create_pseudo_p ()"
805 "#"
806 "&& 1"
807 [(set (reg:SI T_REG)
808 (eq:SI (and:SI (match_dup 0) (match_dup 2)) (const_int 0)))]
809 {
810 operands[2] = GEN_INT (INTVAL (operands[2]) >> INTVAL (operands[1]));
811 })
812
813 (define_insn "cmpeqsi_t"
814 [(set (reg:SI T_REG)
815 (eq:SI (match_operand:SI 0 "arith_reg_operand" "r,z,r")
816 (match_operand:SI 1 "arith_operand" "N,rI08,r")))]
817 "TARGET_SH1"
818 "@
819 tst %0,%0
820 cmp/eq %1,%0
821 cmp/eq %1,%0"
822 [(set_attr "type" "mt_group")])
823
824 ;; Sometimes combine fails to form the (eq (and (op) (op)) 0) tst insn.
825 ;; Try to fix that in the split1 pass by looking for the previous set
826 ;; of the tested op. Also see if there is a preceeding sign/zero
827 ;; extension that can be avoided.
828 (define_split
829 [(set (reg:SI T_REG)
830 (eq:SI (match_operand:SI 0 "arith_reg_operand") (const_int 0)))]
831 "TARGET_SH1 && can_create_pseudo_p () && optimize
832 && !sh_in_recog_treg_set_expr ()"
833 [(set (reg:SI T_REG) (eq:SI (match_dup 0) (const_int 0)))]
834 {
835 if (dump_file)
836 fprintf (dump_file, "cmpeqsi_t: trying to optimize const_int 0\n");
837
838 /* If the tested reg is not dead after this insn, it's probably used by
839 something else after the comparison. It's probably better to leave
840 it as it is. */
841 rtx reg = operands[0];
842 if (SUBREG_P (reg))
843 reg = SUBREG_REG (reg);
844 gcc_assert (REG_P (reg));
845 if (find_regno_note (curr_insn, REG_DEAD, REGNO (reg)) != NULL_RTX)
846 FAIL;
847
848 /* FIXME: Maybe also search the predecessor basic blocks to catch
849 more cases. */
850 set_of_reg op = sh_find_set_of_reg (operands[0], curr_insn,
851 prev_nonnote_nondebug_insn_bb);
852
853 if (op.set_src != NULL && GET_CODE (op.set_src) == AND
854 && !sh_insn_operands_modified_between_p (op.insn, op.insn, curr_insn))
855 {
856 if (dump_file)
857 fprintf (dump_file, "cmpeqsi_t: found preceeding and in insn %d\n",
858 INSN_UID (op.insn));
859
860 if (!(arith_reg_operand (XEXP (op.set_src, 0), SImode)
861 && (arith_reg_operand (XEXP (op.set_src, 1), SImode)
862 || CONST_INT_P (XEXP (op.set_src, 1)))))
863 FAIL;
864
865 /* Assume that the operands of the andsi insn are compatible with the
866 operands of the tstsi_t insn, which is generally the case. */
867 if (dump_file)
868 fprintf (dump_file, "cmpeqsi_t: replacing with tstsi_t\n");
869 emit_insn (gen_tstsi_t (copy_rtx (XEXP (op.set_src, 0)),
870 copy_rtx (XEXP (op.set_src, 1))));
871 DONE;
872 }
873
874 /* Converting HImode into tests against 0xFFFF tends to increase the code
875 size, as it will create constant pool entries. Disable it for now. */
876 const bool enable_himode = false;
877
878 /* FIXME: try to keep the (eq (reg) (const_int 0)). Even if the zero
879 extended reg is used after this insn, if we know that _before_ the zero
880 extension the value was loaded via sign extending mem load, we can just
881 use the value of the mem load directly. */
882 sh_extending_set_of_reg eop = sh_find_extending_set_of_reg (operands[0],
883 curr_insn);
884
885 if (eop.ext_code != UNKNOWN
886 && (eop.from_mode == QImode || (eop.from_mode == HImode && enable_himode))
887 && eop.can_use_as_unextended_reg ()
888 && !reg_used_between_p (operands[0], eop.insn, curr_insn))
889 {
890 /* Bypass the sign/zero extension and test against the bit mask, but
891 only if it's the only use of the sign/zero extracted value.
892 Otherwise we'd be introducing new constants in the pool. */
893 if (dump_file)
894 fprintf (dump_file, "cmpeqsi_t: bypassing sign/zero extension in "
895 "insn %d and using tstsi_t\n", INSN_UID (op.insn));
896
897 emit_insn (gen_tstsi_t (
898 eop.use_as_unextended_reg (curr_insn),
899 GEN_INT (eop.from_mode == QImode ? 0xFF : 0xFFFF)));
900 DONE;
901 }
902
903 if (dump_file)
904 fprintf (dump_file, "cmpeqsi_t: nothing optimized\n");
905 FAIL;
906 })
907
908 (define_insn "cmpgtsi_t"
909 [(set (reg:SI T_REG)
910 (gt:SI (match_operand:SI 0 "arith_reg_operand" "r,r")
911 (match_operand:SI 1 "arith_reg_or_0_operand" "N,r")))]
912 "TARGET_SH1"
913 "@
914 cmp/pl %0
915 cmp/gt %1,%0"
916 [(set_attr "type" "mt_group")])
917
918 (define_insn "cmpgesi_t"
919 [(set (reg:SI T_REG)
920 (ge:SI (match_operand:SI 0 "arith_reg_operand" "r,r")
921 (match_operand:SI 1 "arith_reg_or_0_operand" "N,r")))]
922 "TARGET_SH1"
923 "@
924 cmp/pz %0
925 cmp/ge %1,%0"
926 [(set_attr "type" "mt_group")])
927
928 ;; Recombine a cmp/pz followed by a nott into a shll.
929 ;; On non-SH2A recombine a cmp/pz followed by a movrt into shll-movt.
930 ;; On SH2A cmp/pz-movrt is slightly better, as it does not mutate the input.
931 (define_split
932 [(set (reg:SI T_REG)
933 (ge:SI (match_operand:SI 0 "arith_reg_operand") (const_int 0)))]
934
935 "TARGET_SH1 && can_create_pseudo_p () && optimize
936 && !sh_in_recog_treg_set_expr ()"
937 [(const_int 0)]
938 {
939 if (dump_file)
940 fprintf (dump_file, "cmpgesi_t: trying to optimize for const_int 0\n");
941
942 rtx_insn* i = next_nonnote_nondebug_insn_bb (curr_insn);
943
944 if (dump_file)
945 {
946 fprintf (dump_file, "cmpgesi_t: following insn is \n");
947 print_rtl_single (dump_file, i);
948 fprintf (dump_file, "\n");
949 }
950
951 if (sh_is_nott_insn (i))
952 {
953 if (dump_file)
954 fprintf (dump_file,
955 "cmpgesi_t: replacing (cmp/pz, nott) with (shll)\n");
956 emit_insn (gen_shll (gen_reg_rtx (SImode), operands[0]));
957 set_insn_deleted (i);
958 DONE;
959 }
960
961 /* On non-SH2A negc is used as movrt replacement, which sets T = 1.
962 Thus we can remove it only if T is marked as dead afterwards. */
963 if (rtx dest_reg = !TARGET_SH2A
964 && sh_reg_dead_or_unused_after_insn (i, T_REG)
965 ? sh_movrt_set_dest (i) : NULL)
966 {
967 if (dump_file)
968 fprintf (dump_file,
969 "cmpgesi_t: replacing (cmp/pz, movrt) with (shll, movt)\n");
970 emit_insn (gen_shll (gen_reg_rtx (SImode), operands[0]));
971 add_reg_note (emit_insn (gen_movt (dest_reg, get_t_reg_rtx ())),
972 REG_DEAD, get_t_reg_rtx ());
973 set_insn_deleted (i);
974 DONE;
975 }
976
977 if (dump_file)
978 fprintf (dump_file, "cmpgesi_t: nothing optimized\n");
979
980 FAIL;
981 })
982
983 ;; FIXME: This is actually wrong. There is no way to literally move a
984 ;; general reg to t reg. Luckily, it seems that this pattern will be only
985 ;; used when the general reg is known be either '0' or '1' during combine.
986 ;; What we actually need is reg != 0 -> T, but we have only reg == 0 -> T.
987 ;; Due to interactions with other patterns, combine fails to pick the latter
988 ;; and invert the dependent logic.
989 (define_insn "*negtstsi"
990 [(set (reg:SI T_REG) (match_operand:SI 0 "arith_reg_operand" "r"))]
991 "TARGET_SH1 && !sh_in_recog_treg_set_expr ()"
992 "cmp/pl %0"
993 [(set_attr "type" "mt_group")])
994
995 ;; Some integer sign comparison patterns can be realized with the div0s insn.
996 ;; div0s Rm,Rn T = (Rm >> 31) ^ (Rn >> 31)
997 ;;
998 ;; The 'cmp_div0s' pattern is our canonical form, into which all the other
999 ;; variations are converted. The negative forms will split into a trailing
1000 ;; nott sequence, which will be eliminated either by the
1001 ;; 'any_treg_expr_to_reg' pattern, or by the 'sh_treg_combine' pass.
1002 (define_insn "cmp_div0s"
1003 [(set (reg:SI T_REG)
1004 (lshiftrt:SI (xor:SI (match_operand:SI 0 "arith_reg_operand" "%r")
1005 (match_operand:SI 1 "arith_reg_operand" "r"))
1006 (const_int 31)))]
1007 "TARGET_SH1"
1008 "div0s %0,%1"
1009 [(set_attr "type" "arith")])
1010
1011 (define_insn_and_split "*cmp_div0s_1"
1012 [(set (reg:SI T_REG)
1013 (xor:SI (ge:SI (match_operand:SI 0 "arith_reg_operand")
1014 (const_int 0))
1015 (ge:SI (match_operand:SI 1 "arith_reg_operand")
1016 (const_int 0))))]
1017 "TARGET_SH1 && can_create_pseudo_p ()"
1018 "#"
1019 "&& 1"
1020 [(set (reg:SI T_REG)
1021 (lshiftrt:SI (xor:SI (match_dup 0) (match_dup 1)) (const_int 31)))])
1022
1023 (define_insn_and_split "*cmp_div0s_2"
1024 [(set (reg:SI T_REG)
1025 (eq:SI (lshiftrt:SI (match_operand:SI 0 "arith_reg_operand")
1026 (const_int 31))
1027 (ge:SI (match_operand:SI 1 "arith_reg_operand")
1028 (const_int 0))))]
1029 "TARGET_SH1 && can_create_pseudo_p ()"
1030 "#"
1031 "&& 1"
1032 [(set (reg:SI T_REG)
1033 (lshiftrt:SI (xor:SI (match_dup 0) (match_dup 1)) (const_int 31)))])
1034
1035 (define_insn_and_split "*cmp_div0s_3"
1036 [(set (reg:SI T_REG)
1037 (eq:SI (ge:SI (match_operand:SI 0 "arith_reg_operand")
1038 (const_int 0))
1039 (ge:SI (match_operand:SI 1 "arith_reg_operand")
1040 (const_int 0))))]
1041 "TARGET_SH1 && can_create_pseudo_p ()"
1042 "#"
1043 "&& 1"
1044 [(set (reg:SI T_REG)
1045 (lshiftrt:SI (xor:SI (match_dup 0) (match_dup 1)) (const_int 31)))
1046 (set (reg:SI T_REG) (xor:SI (reg:SI T_REG) (const_int 1)))])
1047
1048 (define_insn_and_split "*cmp_div0s_4"
1049 [(set (reg:SI T_REG)
1050 (ge:SI (xor:SI (match_operand:SI 0 "arith_reg_operand")
1051 (match_operand:SI 1 "arith_reg_operand"))
1052 (const_int 0)))]
1053 "TARGET_SH1 && can_create_pseudo_p ()"
1054 "#"
1055 "&& 1"
1056 [(set (reg:SI T_REG)
1057 (lshiftrt:SI (xor:SI (match_dup 0) (match_dup 1)) (const_int 31)))
1058 (set (reg:SI T_REG) (xor:SI (reg:SI T_REG) (const_int 1)))])
1059
1060 (define_insn_and_split "*cmp_div0s_5"
1061 [(set (reg:SI T_REG)
1062 (xor:SI (lshiftrt:SI (match_operand:SI 0 "arith_reg_operand")
1063 (const_int 31))
1064 (ge:SI (match_operand:SI 1 "arith_reg_operand")
1065 (const_int 0))))]
1066 "TARGET_SH1 && can_create_pseudo_p ()"
1067 "#"
1068 "&& 1"
1069 [(set (reg:SI T_REG)
1070 (lshiftrt:SI (xor:SI (match_dup 0) (match_dup 1)) (const_int 31)))
1071 (set (reg:SI T_REG) (xor:SI (reg:SI T_REG) (const_int 1)))])
1072
1073 (define_insn_and_split "*cmp_div0s_6"
1074 [(set (reg:SI T_REG)
1075 (eq:SI (lshiftrt:SI (match_operand:SI 0 "arith_reg_operand")
1076 (const_int 31))
1077 (lshiftrt:SI (match_operand:SI 1 "arith_reg_operand")
1078 (const_int 31))))]
1079 "TARGET_SH1 && can_create_pseudo_p ()"
1080 "#"
1081 "&& 1"
1082 [(set (reg:SI T_REG)
1083 (lshiftrt:SI (xor:SI (match_dup 0) (match_dup 1)) (const_int 31)))
1084 (set (reg:SI T_REG) (xor:SI (reg:SI T_REG) (const_int 1)))])
1085
1086 ;; In some cases, it might be shorter to get a tested bit into bit 31 and
1087 ;; use div0s. Otherwise it's usually better to just leave the xor and tst
1088 ;; sequence. The only thing we can try to do here is avoiding the large
1089 ;; tst constant.
1090 (define_insn_and_split "*cmp_div0s_7"
1091 [(set (reg:SI T_REG)
1092 (zero_extract:SI (xor:SI (match_operand:SI 0 "arith_reg_operand")
1093 (match_operand:SI 1 "arith_reg_operand"))
1094 (const_int 1)
1095 (match_operand 2 "const_int_operand")))]
1096 "TARGET_SH1 && can_create_pseudo_p ()
1097 && (INTVAL (operands[2]) == 7 || INTVAL (operands[2]) == 15
1098 || INTVAL (operands[2]) == 23 || INTVAL (operands[2]) == 29
1099 || INTVAL (operands[2]) == 30 || INTVAL (operands[2]) == 31)"
1100 "#"
1101 "&& 1"
1102 [(const_int 0)]
1103 {
1104 const int bitpos = INTVAL (operands[2]);
1105
1106 rtx op0 = gen_reg_rtx (SImode);
1107 rtx op1 = gen_reg_rtx (SImode);
1108
1109 if (bitpos == 23 || bitpos == 30 || bitpos == 29)
1110 {
1111 emit_insn (gen_ashlsi3 (op0, operands[0], GEN_INT (31 - bitpos)));
1112 emit_insn (gen_ashlsi3 (op1, operands[1], GEN_INT (31 - bitpos)));
1113 }
1114 else if (bitpos == 15)
1115 {
1116 emit_insn (gen_extendhisi2 (op0, gen_lowpart (HImode, operands[0])));
1117 emit_insn (gen_extendhisi2 (op1, gen_lowpart (HImode, operands[1])));
1118 }
1119 else if (bitpos == 7)
1120 {
1121 emit_insn (gen_extendqisi2 (op0, gen_lowpart (QImode, operands[0])));
1122 emit_insn (gen_extendqisi2 (op1, gen_lowpart (QImode, operands[1])));
1123 }
1124 else if (bitpos == 31)
1125 {
1126 op0 = operands[0];
1127 op1 = operands[1];
1128 }
1129 else
1130 gcc_unreachable ();
1131
1132 emit_insn (gen_cmp_div0s (op0, op1));
1133 DONE;
1134 })
1135
1136 ;; For bits 0..7 using a xor and tst #imm,r0 sequence seems to be better.
1137 ;; Thus allow the following patterns only for higher bit positions where
1138 ;; we it's more likely to save the large tst constant.
1139 (define_insn_and_split "*cmp_div0s_8"
1140 [(set (reg:SI T_REG)
1141 (eq:SI (zero_extract:SI (match_operand:SI 0 "arith_reg_operand")
1142 (const_int 1)
1143 (match_operand 2 "const_int_operand"))
1144 (zero_extract:SI (match_operand:SI 1 "arith_reg_operand")
1145 (const_int 1)
1146 (match_dup 2))))]
1147 "TARGET_SH1 && can_create_pseudo_p ()
1148 && (INTVAL (operands[2]) == 15
1149 || INTVAL (operands[2]) == 23 || INTVAL (operands[2]) == 29
1150 || INTVAL (operands[2]) == 30 || INTVAL (operands[2]) == 31)"
1151 "#"
1152 "&& 1"
1153 [(set (reg:SI T_REG)
1154 (zero_extract:SI (xor:SI (match_dup 0) (match_dup 1))
1155 (const_int 1) (match_dup 2)))
1156 (set (reg:SI T_REG) (xor:SI (reg:SI T_REG) (const_int 1)))])
1157
1158 (define_insn_and_split "*cmp_div0s_9"
1159 [(set (reg:SI T_REG)
1160 (zero_extract:SI (xor:SI (xor:SI (match_operand:SI 0 "arith_reg_operand")
1161 (match_operand:SI 1 "arith_reg_operand"))
1162 (match_operand 2 "const_int_operand"))
1163 (const_int 1)
1164 (match_operand 3 "const_int_operand")))]
1165 "TARGET_SH1 && can_create_pseudo_p ()
1166 && (INTVAL (operands[2]) & 0xFFFFFFFF) == (1U << INTVAL (operands[3]))
1167 && (INTVAL (operands[3]) == 15
1168 || INTVAL (operands[3]) == 23 || INTVAL (operands[3]) == 29
1169 || INTVAL (operands[3]) == 30 || INTVAL (operands[3]) == 31)"
1170 "#"
1171 "&& 1"
1172 [(set (reg:SI T_REG)
1173 (zero_extract:SI (xor:SI (match_dup 0) (match_dup 1))
1174 (const_int 1) (match_dup 3)))
1175 (set (reg:SI T_REG) (xor:SI (reg:SI T_REG) (const_int 1)))])
1176
1177 ;; -------------------------------------------------------------------------
1178 ;; SImode compare and branch
1179 ;; -------------------------------------------------------------------------
1180
1181 (define_expand "cbranchsi4"
1182 [(set (pc)
1183 (if_then_else (match_operator 0 "comparison_operator"
1184 [(match_operand:SI 1 "arith_operand" "")
1185 (match_operand:SI 2 "arith_operand" "")])
1186 (label_ref (match_operand 3 "" ""))
1187 (pc)))
1188 (clobber (reg:SI T_REG))]
1189 "can_create_pseudo_p ()"
1190 {
1191 expand_cbranchsi4 (operands, LAST_AND_UNUSED_RTX_CODE);
1192 DONE;
1193 })
1194
1195 ;; Combine patterns to invert compare and branch operations for which we
1196 ;; don't have actual comparison insns. These patterns are used in cases
1197 ;; which appear after the initial cbranchsi expansion, which also does
1198 ;; some condition inversion.
1199 (define_split
1200 [(set (pc)
1201 (if_then_else (ne (match_operand:SI 0 "arith_reg_operand" "")
1202 (match_operand:SI 1 "arith_reg_or_0_operand" ""))
1203 (label_ref (match_operand 2))
1204 (pc)))
1205 (clobber (reg:SI T_REG))]
1206 "TARGET_SH1"
1207 [(set (reg:SI T_REG) (eq:SI (match_dup 0) (match_dup 1)))
1208 (set (pc) (if_then_else (eq (reg:SI T_REG) (const_int 0))
1209 (label_ref (match_dup 2))
1210 (pc)))])
1211
1212 ;; FIXME: These don't seem to have any effect on the generated cbranch code
1213 ;; anymore, but only on some register allocation choices.
1214 (define_split
1215 [(set (pc)
1216 (if_then_else (le (match_operand:SI 0 "arith_reg_operand" "")
1217 (match_operand:SI 1 "arith_reg_or_0_operand" ""))
1218 (label_ref (match_operand 2))
1219 (pc)))
1220 (clobber (reg:SI T_REG))]
1221 "TARGET_SH1"
1222 [(set (reg:SI T_REG) (gt:SI (match_dup 0) (match_dup 1)))
1223 (set (pc) (if_then_else (eq (reg:SI T_REG) (const_int 0))
1224 (label_ref (match_dup 2))
1225 (pc)))])
1226
1227 (define_split
1228 [(set (pc)
1229 (if_then_else (lt (match_operand:SI 0 "arith_reg_operand" "")
1230 (match_operand:SI 1 "arith_reg_or_0_operand" ""))
1231 (label_ref (match_operand 2))
1232 (pc)))
1233 (clobber (reg:SI T_REG))]
1234 "TARGET_SH1"
1235 [(set (reg:SI T_REG) (ge:SI (match_dup 0) (match_dup 1)))
1236 (set (pc) (if_then_else (eq (reg:SI T_REG) (const_int 0))
1237 (label_ref (match_dup 2))
1238 (pc)))])
1239
1240 (define_split
1241 [(set (pc)
1242 (if_then_else (leu (match_operand:SI 0 "arith_reg_operand" "")
1243 (match_operand:SI 1 "arith_reg_operand" ""))
1244 (label_ref (match_operand 2))
1245 (pc)))
1246 (clobber (reg:SI T_REG))]
1247 "TARGET_SH1"
1248 [(set (reg:SI T_REG) (gtu:SI (match_dup 0) (match_dup 1)))
1249 (set (pc) (if_then_else (eq (reg:SI T_REG) (const_int 0))
1250 (label_ref (match_dup 2))
1251 (pc)))])
1252
1253 (define_split
1254 [(set (pc)
1255 (if_then_else (ltu (match_operand:SI 0 "arith_reg_operand" "")
1256 (match_operand:SI 1 "arith_reg_operand" ""))
1257 (label_ref (match_operand 2))
1258 (pc)))
1259 (clobber (reg:SI T_REG))]
1260 "TARGET_SH1"
1261 [(set (reg:SI T_REG) (geu:SI (match_dup 0) (match_dup 1)))
1262 (set (pc) (if_then_else (eq (reg:SI T_REG) (const_int 0))
1263 (label_ref (match_dup 2))
1264 (pc)))])
1265
1266 ;; -------------------------------------------------------------------------
1267 ;; SImode unsigned integer comparisons
1268 ;; -------------------------------------------------------------------------
1269
1270 ;; Usually comparisons of 'unsigned int >= 0' are optimized away completely.
1271 ;; However, especially when optimizations are off (e.g. -O0) such comparisons
1272 ;; might remain and we have to handle them. If the '>= 0' case wasn't
1273 ;; handled here, something else would just load a '0' into the second operand
1274 ;; and do the comparison. We can do slightly better by just setting the
1275 ;; T bit to '1'.
1276 (define_insn_and_split "cmpgeusi_t"
1277 [(set (reg:SI T_REG)
1278 (geu:SI (match_operand:SI 0 "arith_reg_operand" "r")
1279 (match_operand:SI 1 "arith_reg_or_0_operand" "r")))]
1280 "TARGET_SH1"
1281 "cmp/hs %1,%0"
1282 "&& satisfies_constraint_Z (operands[1])"
1283 [(set (reg:SI T_REG) (const_int 1))]
1284 ""
1285 [(set_attr "type" "mt_group")])
1286
1287 (define_insn "cmpgtusi_t"
1288 [(set (reg:SI T_REG)
1289 (gtu:SI (match_operand:SI 0 "arith_reg_operand" "r")
1290 (match_operand:SI 1 "arith_reg_operand" "r")))]
1291 "TARGET_SH1"
1292 "cmp/hi %1,%0"
1293 [(set_attr "type" "mt_group")])
1294 \f
1295 ;; -------------------------------------------------------------------------
1296 ;; DImode compare and branch
1297 ;; -------------------------------------------------------------------------
1298
1299 ;; arith3 patterns don't work well with the sh4-300 branch prediction mechanism.
1300 ;; Therefore, we aim to have a set of three branches that go straight to the
1301 ;; destination, i.e. only one of them is taken at any one time.
1302 ;; This mechanism should also be slightly better for the sh4-200.
1303
1304 (define_expand "cbranchdi4"
1305 [(set (pc)
1306 (if_then_else (match_operator 0 "comparison_operator"
1307 [(match_operand:DI 1 "arith_operand")
1308 (match_operand:DI 2 "arith_operand")])
1309 (label_ref (match_operand 3))
1310 (pc)))
1311 (clobber (reg:SI T_REG))]
1312 "TARGET_SH2 && can_create_pseudo_p ()"
1313 {
1314 if (!expand_cbranchdi4 (operands, GET_CODE (operands[0])))
1315 FAIL;
1316 DONE;
1317 })
1318
1319 ;; -------------------------------------------------------------------------
1320 ;; DImode signed integer comparisons
1321 ;; -------------------------------------------------------------------------
1322
1323 (define_insn ""
1324 [(set (reg:SI T_REG)
1325 (eq:SI (and:DI (match_operand:DI 0 "arith_reg_operand" "r")
1326 (match_operand:DI 1 "arith_operand" "r"))
1327 (const_int 0)))]
1328 "TARGET_SH1"
1329 {
1330 return output_branchy_insn (EQ, "tst\t%S1,%S0;bf\t%l9;tst\t%R1,%R0",
1331 insn, operands);
1332 }
1333 [(set_attr "length" "6")
1334 (set_attr "type" "arith3b")])
1335
1336 (define_insn "cmpeqdi_t"
1337 [(set (reg:SI T_REG)
1338 (eq:SI (match_operand:DI 0 "arith_reg_operand" "r,r")
1339 (match_operand:DI 1 "arith_reg_or_0_operand" "N,r")))]
1340 "TARGET_SH1"
1341 {
1342 static const char* alt[] =
1343 {
1344 "tst %S0,%S0" "\n"
1345 " bf 0f" "\n"
1346 " tst %R0,%R0" "\n"
1347 "0:",
1348
1349 "cmp/eq %S1,%S0" "\n"
1350 " bf 0f" "\n"
1351 " cmp/eq %R1,%R0" "\n"
1352 "0:"
1353 };
1354 return alt[which_alternative];
1355 }
1356 [(set_attr "length" "6")
1357 (set_attr "type" "arith3b")])
1358
1359 (define_split
1360 [(set (reg:SI T_REG)
1361 (eq:SI (match_operand:DI 0 "arith_reg_operand" "")
1362 (match_operand:DI 1 "arith_reg_or_0_operand" "")))]
1363 ;; If we applied this split when not optimizing, it would only be
1364 ;; applied during the machine-dependent reorg, when no new basic blocks
1365 ;; may be created.
1366 "TARGET_SH1 && reload_completed && optimize"
1367 [(set (reg:SI T_REG) (eq:SI (match_dup 2) (match_dup 3)))
1368 (set (pc) (if_then_else (eq (reg:SI T_REG) (const_int 0))
1369 (label_ref (match_dup 6))
1370 (pc)))
1371 (set (reg:SI T_REG) (eq:SI (match_dup 4) (match_dup 5)))
1372 (match_dup 6)]
1373 {
1374 operands[2] = gen_highpart (SImode, operands[0]);
1375 operands[3] = operands[1] == const0_rtx
1376 ? const0_rtx
1377 : gen_highpart (SImode, operands[1]);
1378 operands[4] = gen_lowpart (SImode, operands[0]);
1379 operands[5] = gen_lowpart (SImode, operands[1]);
1380 operands[6] = gen_label_rtx ();
1381 })
1382
1383 (define_insn "cmpgtdi_t"
1384 [(set (reg:SI T_REG)
1385 (gt:SI (match_operand:DI 0 "arith_reg_operand" "r,r")
1386 (match_operand:DI 1 "arith_reg_or_0_operand" "r,N")))]
1387 "TARGET_SH2"
1388 {
1389 static const char* alt[] =
1390 {
1391 "cmp/eq %S1,%S0" "\n"
1392 " bf{.|/}s 0f" "\n"
1393 " cmp/gt %S1,%S0" "\n"
1394 " cmp/hi %R1,%R0" "\n"
1395 "0:",
1396
1397 "tst %S0,%S0" "\n"
1398 " bf{.|/}s 0f" "\n"
1399 " cmp/pl %S0" "\n"
1400 " cmp/hi %S0,%R0" "\n"
1401 "0:"
1402 };
1403 return alt[which_alternative];
1404 }
1405 [(set_attr "length" "8")
1406 (set_attr "type" "arith3")])
1407
1408 (define_insn "cmpgedi_t"
1409 [(set (reg:SI T_REG)
1410 (ge:SI (match_operand:DI 0 "arith_reg_operand" "r,r")
1411 (match_operand:DI 1 "arith_reg_or_0_operand" "r,N")))]
1412 "TARGET_SH2"
1413 {
1414 static const char* alt[] =
1415 {
1416 "cmp/eq %S1,%S0" "\n"
1417 " bf{.|/}s 0f" "\n"
1418 " cmp/ge %S1,%S0" "\n"
1419 " cmp/hs %R1,%R0" "\n"
1420 "0:",
1421
1422 "cmp/pz %S0"
1423 };
1424 return alt[which_alternative];
1425 }
1426 [(set_attr "length" "8,2")
1427 (set_attr "type" "arith3,mt_group")])
1428 \f
1429 ;; -------------------------------------------------------------------------
1430 ;; DImode unsigned integer comparisons
1431 ;; -------------------------------------------------------------------------
1432
1433 (define_insn "cmpgeudi_t"
1434 [(set (reg:SI T_REG)
1435 (geu:SI (match_operand:DI 0 "arith_reg_operand" "r")
1436 (match_operand:DI 1 "arith_reg_operand" "r")))]
1437 "TARGET_SH2"
1438 {
1439 return "cmp/eq %S1,%S0" "\n"
1440 " bf{.|/}s 0f" "\n"
1441 " cmp/hs %S1,%S0" "\n"
1442 " cmp/hs %R1,%R0" "\n"
1443 "0:";
1444 }
1445 [(set_attr "length" "8")
1446 (set_attr "type" "arith3")])
1447
1448 (define_insn "cmpgtudi_t"
1449 [(set (reg:SI T_REG)
1450 (gtu:SI (match_operand:DI 0 "arith_reg_operand" "r")
1451 (match_operand:DI 1 "arith_reg_operand" "r")))]
1452 "TARGET_SH2"
1453 {
1454 return "cmp/eq %S1,%S0" "\n"
1455 " bf{.|/}s 0f" "\n"
1456 " cmp/hi %S1,%S0" "\n"
1457 " cmp/hi %R1,%R0" "\n"
1458 "0:";
1459 }
1460 [(set_attr "length" "8")
1461 (set_attr "type" "arith3")])
1462
1463 ;; -------------------------------------------------------------------------
1464 ;; Conditional move instructions
1465 ;; -------------------------------------------------------------------------
1466
1467 (define_insn "*movsicc_t_false"
1468 [(set (match_operand:SI 0 "arith_reg_dest" "=r,r")
1469 (if_then_else (eq (reg:SI T_REG) (const_int 0))
1470 (match_operand:SI 1 "general_movsrc_operand" "r,I08")
1471 (match_operand:SI 2 "arith_reg_operand" "0,0")))]
1472 "TARGET_PRETEND_CMOVE
1473 && (arith_reg_operand (operands[1], SImode)
1474 || (immediate_operand (operands[1], SImode)
1475 && satisfies_constraint_I08 (operands[1])))"
1476 {
1477 return "bt 0f" "\n"
1478 " mov %1,%0" "\n"
1479 "0:";
1480 }
1481 [(set_attr "type" "mt_group,arith") ;; poor approximation
1482 (set_attr "length" "4")])
1483
1484 (define_insn "*movsicc_t_true"
1485 [(set (match_operand:SI 0 "arith_reg_dest" "=r,r")
1486 (if_then_else (ne (reg:SI T_REG) (const_int 0))
1487 (match_operand:SI 1 "general_movsrc_operand" "r,I08")
1488 (match_operand:SI 2 "arith_reg_operand" "0,0")))]
1489 "TARGET_PRETEND_CMOVE
1490 && (arith_reg_operand (operands[1], SImode)
1491 || (immediate_operand (operands[1], SImode)
1492 && satisfies_constraint_I08 (operands[1])))"
1493 {
1494 return "bf 0f" "\n"
1495 " mov %1,%0" "\n"
1496 "0:";
1497 }
1498 [(set_attr "type" "mt_group,arith") ;; poor approximation
1499 (set_attr "length" "4")])
1500
1501 (define_expand "movsicc"
1502 [(set (match_operand:SI 0 "arith_reg_dest" "")
1503 (if_then_else:SI (match_operand 1 "comparison_operator" "")
1504 (match_operand:SI 2 "arith_reg_or_0_operand" "")
1505 (match_operand:SI 3 "arith_reg_operand" "")))]
1506 "TARGET_PRETEND_CMOVE"
1507 {
1508 rtx_code code = GET_CODE (operands[1]);
1509 rtx_code new_code = code;
1510 rtx op0 = XEXP (operands[1], 0);
1511 rtx op1 = XEXP (operands[1], 1);
1512
1513 if (! currently_expanding_to_rtl)
1514 FAIL;
1515
1516 switch (code)
1517 {
1518 case LT: case LE: case LEU: case LTU:
1519 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_INT)
1520 break;
1521 /* FALLTHRU */
1522 case NE:
1523 new_code = reverse_condition (code);
1524 break;
1525 case EQ: case GT: case GE: case GEU: case GTU:
1526 break;
1527 default:
1528 FAIL;
1529 }
1530
1531 sh_emit_scc_to_t (new_code, op0, op1);
1532 operands[1] = gen_rtx_fmt_ee (new_code == code ? NE : EQ, VOIDmode,
1533 gen_rtx_REG (SImode, T_REG), const0_rtx);
1534 })
1535
1536 ;; -------------------------------------------------------------------------
1537 ;; Addition instructions
1538 ;; -------------------------------------------------------------------------
1539
1540 (define_insn_and_split "adddi3"
1541 [(set (match_operand:DI 0 "arith_reg_dest")
1542 (plus:DI (match_operand:DI 1 "arith_reg_operand")
1543 (match_operand:DI 2 "arith_reg_operand")))
1544 (clobber (reg:SI T_REG))]
1545 "TARGET_SH1"
1546 "#"
1547 "&& can_create_pseudo_p ()"
1548 [(const_int 0)]
1549 {
1550 emit_insn (gen_clrt ());
1551 emit_insn (gen_addc (gen_lowpart (SImode, operands[0]),
1552 gen_lowpart (SImode, operands[1]),
1553 gen_lowpart (SImode, operands[2])));
1554 emit_insn (gen_addc (gen_highpart (SImode, operands[0]),
1555 gen_highpart (SImode, operands[1]),
1556 gen_highpart (SImode, operands[2])));
1557 DONE;
1558 })
1559
1560 (define_insn "addc"
1561 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
1562 (plus:SI (plus:SI (match_operand:SI 1 "arith_reg_operand" "%0")
1563 (match_operand:SI 2 "arith_reg_operand" "r"))
1564 (reg:SI T_REG)))
1565 (set (reg:SI T_REG)
1566 (ltu:SI (plus:SI (match_dup 1) (match_dup 2)) (match_dup 1)))]
1567 "TARGET_SH1"
1568 "addc %2,%0"
1569 [(set_attr "type" "arith")])
1570
1571 ;; A simplified version of the addc insn, where the exact value of the
1572 ;; T bit doesn't matter. This is easier for combine to pick up.
1573 ;; We allow a reg or 0 for one of the operands in order to be able to
1574 ;; do 'reg + T' sequences.
1575 (define_insn_and_split "*addc"
1576 [(set (match_operand:SI 0 "arith_reg_dest")
1577 (plus:SI (plus:SI (match_operand:SI 1 "arith_reg_operand")
1578 (match_operand:SI 2 "arith_reg_or_0_operand"))
1579 (match_operand 3 "treg_set_expr")))
1580 (clobber (reg:SI T_REG))]
1581 "TARGET_SH1 && can_create_pseudo_p ()"
1582 "#"
1583 "&& 1"
1584 [(const_int 0)]
1585 {
1586 sh_treg_insns ti = sh_split_treg_set_expr (operands[3], curr_insn);
1587 if (ti.has_trailing_nott ())
1588 {
1589 if (operands[2] == const0_rtx)
1590 {
1591 /* op1 + 0 + (1 - T) = op1 + 1 - T = op1 - (-1) - T */
1592 remove_insn (ti.trailing_nott ());
1593 emit_insn (gen_subc (operands[0], operands[1],
1594 force_reg (SImode, GEN_INT (-1))));
1595 DONE;
1596 }
1597 else if (!TARGET_SH2A)
1598 {
1599 /* op1 + op2 + (1 - T) = op1 - (0 - op2 - 1) - T = op1 - ~op2 - T
1600 On SH2A keep the nott insn, because nott-addc sequence doesn't
1601 mutate the inputs. */
1602 remove_insn (ti.trailing_nott ());
1603 rtx tmp = gen_reg_rtx (SImode);
1604 emit_insn (gen_one_cmplsi2 (tmp, operands[2]));
1605 emit_insn (gen_subc (operands[0], operands[1], tmp));
1606 DONE;
1607 }
1608 }
1609
1610 emit_insn (gen_addc (operands[0], operands[1],
1611 force_reg (SImode, operands[2])));
1612 DONE;
1613 })
1614
1615 (define_insn_and_split "*addc"
1616 [(set (match_operand:SI 0 "arith_reg_dest")
1617 (plus:SI (plus:SI (match_operand 1 "treg_set_expr")
1618 (match_operand:SI 2 "arith_reg_operand"))
1619 (match_operand:SI 3 "arith_reg_operand")))
1620 (clobber (reg:SI T_REG))]
1621 "TARGET_SH1 && can_create_pseudo_p ()"
1622 "#"
1623 "&& 1"
1624 [(parallel [(set (match_dup 0) (plus:SI (plus:SI (match_dup 2) (match_dup 3))
1625 (match_dup 1)))
1626 (clobber (reg:SI T_REG))])])
1627
1628 (define_insn_and_split "*addc"
1629 [(set (match_operand:SI 0 "arith_reg_dest")
1630 (plus:SI (match_operand 1 "treg_set_expr")
1631 (plus:SI (match_operand:SI 2 "arith_reg_operand")
1632 (match_operand:SI 3 "arith_reg_operand"))))
1633 (clobber (reg:SI T_REG))]
1634 "TARGET_SH1 && can_create_pseudo_p ()"
1635 "#"
1636 "&& 1"
1637 [(parallel [(set (match_dup 0) (plus:SI (plus:SI (match_dup 2) (match_dup 3))
1638 (match_dup 1)))
1639 (clobber (reg:SI T_REG))])])
1640
1641 ;; Sometimes combine will try to do 'reg + (0-reg) + 1' if the *addc pattern
1642 ;; matched. Split this up into a simple sub add sequence, as this will save
1643 ;; us one sett insn.
1644 (define_insn_and_split "*minus_plus_one"
1645 [(set (match_operand:SI 0 "arith_reg_dest" "")
1646 (plus:SI (minus:SI (match_operand:SI 1 "arith_reg_operand" "")
1647 (match_operand:SI 2 "arith_reg_operand" ""))
1648 (const_int 1)))]
1649 "TARGET_SH1"
1650 "#"
1651 "&& 1"
1652 [(set (match_dup 0) (minus:SI (match_dup 1) (match_dup 2)))
1653 (set (match_dup 0) (plus:SI (match_dup 0) (const_int 1)))])
1654
1655
1656 ;; The tree optimiziers canonicalize
1657 ;; reg + (reg & 1)
1658 ;; into
1659 ;; (reg + 1) & -2
1660 ;;
1661 ;; On SH2A an add-bclr sequence will be used to handle this.
1662 ;; On non-SH2A re-emit the add-and sequence to improve register utilization.
1663 (define_insn_and_split "*round_int_even"
1664 [(set (match_operand:SI 0 "arith_reg_dest")
1665 (and:SI (plus:SI (match_operand:SI 1 "arith_reg_operand")
1666 (const_int 1))
1667 (const_int -2)))]
1668 "TARGET_SH1 && !TARGET_SH2A && can_create_pseudo_p ()
1669 && !reg_overlap_mentioned_p (operands[0], operands[1])"
1670 "#"
1671 "&& 1"
1672 [(set (match_dup 0) (const_int -2))
1673 (set (match_dup 2) (plus:SI (match_dup 1) (const_int 1)))
1674 (set (match_dup 0) (and:SI (match_dup 0) (match_dup 2)))]
1675 {
1676 operands[2] = gen_reg_rtx (SImode);
1677 })
1678
1679 ;; If the *round_int_even pattern is combined with another plus,
1680 ;; convert it into an addc pattern to emit an shlr-addc sequence.
1681 ;; This split is taken by combine on non-SH2A and SH2A.
1682 (define_split
1683 [(set (match_operand:SI 0 "arith_reg_dest")
1684 (plus:SI (and:SI (plus:SI (match_operand:SI 1 "arith_reg_operand")
1685 (const_int 1))
1686 (const_int -2))
1687 (match_operand:SI 2 "arith_reg_operand")))]
1688 "TARGET_SH1 && can_create_pseudo_p ()"
1689 [(parallel [(set (match_dup 0)
1690 (plus:SI (plus:SI (match_dup 1) (match_dup 2))
1691 (and:SI (match_dup 1) (const_int 1))))
1692 (clobber (reg:SI T_REG))])])
1693
1694 ;; Split 'reg + T' into 'reg + 0 + T' to utilize the addc insn.
1695 ;; If the 0 constant can be CSE-ed, this becomes a one instruction
1696 ;; operation, as opposed to sequences such as
1697 ;; movt r2
1698 ;; add r2,r3
1699 ;;
1700 ;; Even if the constant is not CSE-ed, a sequence such as
1701 ;; mov #0,r2
1702 ;; addc r2,r3
1703 ;; can be scheduled much better since the load of the constant can be
1704 ;; done earlier, before any comparison insns that store the result in
1705 ;; the T bit.
1706 ;; However, avoid things like 'reg + 1', which would expand into a
1707 ;; 3 insn sequence, instead of add #imm8.
1708 (define_insn_and_split "*addc_t_r"
1709 [(set (match_operand:SI 0 "arith_reg_dest")
1710 (plus:SI (match_operand 1 "treg_set_expr_not_const01")
1711 (match_operand:SI 2 "arith_reg_operand")))
1712 (clobber (reg:SI T_REG))]
1713 "TARGET_SH1 && can_create_pseudo_p ()"
1714 "#"
1715 "&& 1"
1716 [(parallel [(set (match_dup 0) (plus:SI (plus:SI (match_dup 2) (const_int 0))
1717 (match_dup 1)))
1718 (clobber (reg:SI T_REG))])])
1719
1720 (define_insn_and_split "*addc_r_t"
1721 [(set (match_operand:SI 0 "arith_reg_dest")
1722 (plus:SI (match_operand:SI 1 "arith_reg_operand")
1723 (match_operand 2 "treg_set_expr_not_const01")))
1724 (clobber (reg:SI T_REG))]
1725 "TARGET_SH1 && can_create_pseudo_p ()"
1726 "#"
1727 "&& 1"
1728 [(parallel [(set (match_dup 0) (plus:SI (plus:SI (match_dup 1) (const_int 0))
1729 (match_dup 2)))
1730 (clobber (reg:SI T_REG))])])
1731
1732 ;; Convert '2 * reg + T' into 'reg + reg + T'.
1733 (define_insn_and_split "*addc_2r_t"
1734 [(set (match_operand:SI 0 "arith_reg_dest")
1735 (plus:SI (match_operand 1 "treg_set_expr")
1736 (ashift:SI (match_operand:SI 2 "arith_reg_operand")
1737 (const_int 1))))
1738 (clobber (reg:SI T_REG))]
1739 "TARGET_SH1 && can_create_pseudo_p ()"
1740 "#"
1741 "&& 1"
1742 [(parallel [(set (match_dup 0) (plus:SI (plus:SI (match_dup 2) (match_dup 2))
1743 (match_dup 1)))
1744 (clobber (reg:SI T_REG))])])
1745
1746 (define_insn_and_split "*addc_2r_t"
1747 [(set (match_operand:SI 0 "arith_reg_dest")
1748 (plus:SI (ashift:SI (match_operand:SI 1 "arith_reg_operand")
1749 (const_int 1))
1750 (match_operand 2 "treg_set_expr")))
1751 (clobber (reg:SI T_REG))]
1752 "TARGET_SH1 && can_create_pseudo_p ()"
1753 "#"
1754 "&& 1"
1755 [(parallel [(set (match_dup 0) (plus:SI (plus:SI (match_dup 1) (match_dup 1))
1756 (match_dup 2)))
1757 (clobber (reg:SI T_REG))])])
1758
1759 ;; Convert '(op2 + T) - op3' into 'op2 + (-op3) + T'
1760 (define_insn_and_split "*addc_negreg_t"
1761 [(set (match_operand:SI 0 "arith_reg_dest")
1762 (minus:SI (plus:SI (match_operand 1 "treg_set_expr")
1763 (match_operand:SI 2 "arith_reg_operand"))
1764 (match_operand:SI 3 "arith_reg_operand")))
1765 (clobber (reg:SI T_REG))]
1766 "TARGET_SH1 && can_create_pseudo_p ()"
1767 "#"
1768 "&& 1"
1769 [(set (match_dup 4) (neg:SI (match_dup 3)))
1770 (parallel [(set (match_dup 0) (plus:SI (plus:SI (match_dup 2) (match_dup 4))
1771 (match_dup 1)))
1772 (clobber (reg:SI T_REG))])]
1773 {
1774 operands[4] = gen_reg_rtx (SImode);
1775 })
1776
1777 (define_expand "addsi3"
1778 [(set (match_operand:SI 0 "arith_reg_dest")
1779 (plus:SI (match_operand:SI 1 "arith_reg_operand")
1780 (match_operand:SI 2 "arith_or_int_operand")))]
1781 ""
1782 {
1783 if (!arith_operand (operands[2], SImode))
1784 {
1785 if (!sh_lra_p () || reg_overlap_mentioned_p (operands[0], operands[1]))
1786 {
1787 emit_insn (gen_addsi3_scr (operands[0], operands[1], operands[2]));
1788 DONE;
1789 }
1790 }
1791 })
1792
1793 ;; The *addsi3_compact is made an insn_and_split and accepts actually
1794 ;; impossible constraints to make LRA's register elimination work well on SH.
1795 ;; The problem is that LRA expects something like
1796 ;; (set rA (plus rB (const_int N)))
1797 ;; to work. We can do that, but we have to split out an additional reg-reg
1798 ;; copy or constant load before the actual add insn.
1799 ;; Use u constraint for that case to avoid the invalid value in the stack
1800 ;; pointer.
1801 ;; This also results in better code when LRA is not used. However, we have
1802 ;; to use different sets of patterns and the order of these patterns is
1803 ;; important.
1804 ;; In some cases the constant zero might end up in operands[2] of the
1805 ;; patterns. We have to accept that and convert it into a reg-reg move.
1806 (define_insn_and_split "*addsi3_compact_lra"
1807 [(set (match_operand:SI 0 "arith_reg_dest" "=r,&u")
1808 (plus:SI (match_operand:SI 1 "arith_reg_operand" "%0,r")
1809 (match_operand:SI 2 "arith_or_int_operand" "rI08,rn")))]
1810 "TARGET_SH1 && sh_lra_p ()
1811 && (! reg_overlap_mentioned_p (operands[0], operands[1])
1812 || arith_operand (operands[2], SImode))"
1813 "@
1814 add %2,%0
1815 #"
1816 "&& reload_completed
1817 && ! reg_overlap_mentioned_p (operands[0], operands[1])"
1818 [(set (match_dup 0) (match_dup 2))
1819 (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))]
1820 {
1821 /* Prefer 'mov r0,r1; add #imm8,r1' over 'mov #imm8,r1; add r0,r1' */
1822 if (satisfies_constraint_I08 (operands[2]))
1823 std::swap (operands[1], operands[2]);
1824 }
1825 [(set_attr "type" "arith")])
1826
1827 (define_insn_and_split "addsi3_scr"
1828 [(set (match_operand:SI 0 "arith_reg_dest" "=r,&u,&u")
1829 (plus:SI (match_operand:SI 1 "arith_reg_operand" "%0,r,r")
1830 (match_operand:SI 2 "arith_or_int_operand" "rI08,r,n")))
1831 (clobber (match_scratch:SI 3 "=X,X,&u"))]
1832 "TARGET_SH1"
1833 "@
1834 add %2,%0
1835 #
1836 #"
1837 "&& reload_completed"
1838 [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 2)))]
1839 {
1840 if (operands[2] == const0_rtx)
1841 {
1842 emit_move_insn (operands[0], operands[1]);
1843 DONE;
1844 }
1845
1846 if (CONST_INT_P (operands[2]) && !satisfies_constraint_I08 (operands[2]))
1847 {
1848 if (reg_overlap_mentioned_p (operands[0], operands[1]))
1849 {
1850 emit_move_insn (operands[3], operands[2]);
1851 emit_move_insn (operands[0], operands[1]);
1852 operands[2] = operands[3];
1853 }
1854 else
1855 {
1856 emit_move_insn (operands[0], operands[2]);
1857 operands[2] = operands[1];
1858 }
1859 }
1860 else if (!reg_overlap_mentioned_p (operands[0], operands[1]))
1861 {
1862 if (!reg_overlap_mentioned_p (operands[0], operands[2]))
1863 emit_move_insn (operands[0], operands[1]);
1864 else
1865 operands[2] = operands[1];
1866 }
1867 }
1868 [(set_attr "type" "arith")])
1869
1870 ;; Old reload might generate add insns directly (not through the expander) for
1871 ;; address register calculations when reloading, in which case it won't try
1872 ;; the addsi_scr pattern. Because reload will sometimes try to validate
1873 ;; the generated insns and their constraints, this pattern must be
1874 ;; recognizable during and after reload. However, when reload generates
1875 ;; address register calculations for the stack pointer, we don't allow this
1876 ;; pattern. This will make reload prefer using indexed @(reg + reg) address
1877 ;; modes when the displacement of a @(disp + reg) doesn't fit.
1878 (define_insn_and_split "*addsi3"
1879 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
1880 (plus:SI (match_operand:SI 1 "arith_reg_operand" "r")
1881 (match_operand:SI 2 "arith_or_int_operand" "rn")))]
1882 "TARGET_SH1 && !sh_lra_p ()
1883 && (reload_completed || reload_in_progress)
1884 && !reg_overlap_mentioned_p (operands[0], operands[1])
1885 && (!reload_in_progress
1886 || ((!REG_P (operands[1]) || REGNO (operands[1]) != SP_REG)
1887 && (!REG_P (operands[2]) || REGNO (operands[2]) != SP_REG)))"
1888 "#"
1889 "&& 1"
1890 [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 2)))]
1891 {
1892 if (operands[2] == const0_rtx)
1893 {
1894 emit_move_insn (operands[0], operands[1]);
1895 DONE;
1896 }
1897
1898 if (CONST_INT_P (operands[2]))
1899 {
1900 if (satisfies_constraint_I08 (operands[2]))
1901 emit_move_insn (operands[0], operands[1]);
1902 else
1903 {
1904 emit_move_insn (operands[0], operands[2]);
1905 operands[2] = operands[1];
1906 }
1907 }
1908 else if (!reg_overlap_mentioned_p (operands[0], operands[2]))
1909 emit_move_insn (operands[0], operands[1]);
1910 else
1911 operands[2] = operands[1];
1912 })
1913
1914 (define_insn_and_split "*addsi3"
1915 [(set (match_operand:SI 0 "arith_reg_dest" "=r,r")
1916 (plus:SI (match_operand:SI 1 "arith_reg_operand" "%0,r")
1917 (match_operand:SI 2 "arith_operand" "rI08,Z")))]
1918 "TARGET_SH1 && !sh_lra_p ()"
1919 "@
1920 add %2,%0
1921 #"
1922 "&& operands[2] == const0_rtx"
1923 [(set (match_dup 0) (match_dup 1))]
1924 {
1925 }
1926 [(set_attr "type" "arith")])
1927
1928 ;; -------------------------------------------------------------------------
1929 ;; Subtraction instructions
1930 ;; -------------------------------------------------------------------------
1931
1932 (define_insn_and_split "subdi3"
1933 [(set (match_operand:DI 0 "arith_reg_dest")
1934 (minus:DI (match_operand:DI 1 "arith_reg_operand")
1935 (match_operand:DI 2 "arith_reg_operand")))
1936 (clobber (reg:SI T_REG))]
1937 "TARGET_SH1"
1938 "#"
1939 "&& can_create_pseudo_p ()"
1940 [(const_int 0)]
1941 {
1942 emit_insn (gen_clrt ());
1943 emit_insn (gen_subc (gen_lowpart (SImode, operands[0]),
1944 gen_lowpart (SImode, operands[1]),
1945 gen_lowpart (SImode, operands[2])));
1946 emit_insn (gen_subc (gen_highpart (SImode, operands[0]),
1947 gen_highpart (SImode, operands[1]),
1948 gen_highpart (SImode, operands[2])));
1949 DONE;
1950 })
1951
1952 (define_insn "subc"
1953 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
1954 (minus:SI (minus:SI (match_operand:SI 1 "arith_reg_operand" "0")
1955 (match_operand:SI 2 "arith_reg_operand" "r"))
1956 (reg:SI T_REG)))
1957 (set (reg:SI T_REG)
1958 (gtu:SI (minus:SI (minus:SI (match_dup 1) (match_dup 2))
1959 (reg:SI T_REG))
1960 (match_dup 1)))]
1961 "TARGET_SH1"
1962 "subc %2,%0"
1963 [(set_attr "type" "arith")])
1964
1965 ;; A simplified version of the subc insn, where the exact value of the
1966 ;; T bit doesn't matter. This is easier for combine to pick up.
1967 ;; We allow a reg or 0 for one of the operands in order to be able to
1968 ;; do 'reg - T' sequences. Reload will load the constant 0 into the reg
1969 ;; as needed.
1970 (define_insn_and_split "*subc"
1971 [(set (match_operand:SI 0 "arith_reg_dest")
1972 (minus:SI (minus:SI (match_operand:SI 1 "arith_reg_operand")
1973 (match_operand:SI 2 "arith_reg_or_0_operand"))
1974 (match_operand 3 "treg_set_expr")))
1975 (clobber (reg:SI T_REG))]
1976 "TARGET_SH1 && can_create_pseudo_p ()"
1977 "#"
1978 "&& 1"
1979 [(const_int 0)]
1980 {
1981 sh_treg_insns ti = sh_split_treg_set_expr (operands[3], curr_insn);
1982 if (ti.has_trailing_nott ())
1983 {
1984 if (operands[2] == const0_rtx)
1985 {
1986 /* op1 - (1 - T) = op1 - 1 + T = op1 + (-1) + T */
1987 remove_insn (ti.trailing_nott ());
1988 emit_insn (gen_addc (operands[0], operands[1],
1989 force_reg (SImode, GEN_INT (-1))));
1990 DONE;
1991 }
1992 else if (!TARGET_SH2A)
1993 {
1994 /* op1 - op2 - (1 - T) = op1 + (0 - op2 - 1) + T = op1 + ~op2 + T
1995 On SH2A keep the nott insn, because nott-subc sequence doesn't
1996 mutate the inputs. */
1997 remove_insn (ti.trailing_nott ());
1998 rtx tmp = gen_reg_rtx (SImode);
1999 emit_insn (gen_one_cmplsi2 (tmp, operands[2]));
2000 emit_insn (gen_addc (operands[0], operands[1], tmp));
2001 DONE;
2002 }
2003 }
2004
2005 emit_insn (gen_subc (operands[0], operands[1],
2006 force_reg (SImode, operands[2])));
2007 DONE;
2008 })
2009
2010 ;; Convert reg - T - reg = reg - reg - T
2011 (define_insn_and_split "*subc"
2012 [(set (match_operand:SI 0 "arith_reg_dest")
2013 (minus:SI (minus:SI (match_operand:SI 1 "arith_reg_operand")
2014 (match_operand 2 "treg_set_expr"))
2015 (match_operand:SI 3 "arith_reg_operand")))
2016 (clobber (reg:SI T_REG))]
2017 "TARGET_SH1 && can_create_pseudo_p ()"
2018 "#"
2019 "&& 1"
2020 [(parallel [(set (match_dup 0)
2021 (minus:SI (minus:SI (match_dup 1) (match_dup 3))
2022 (match_dup 2)))
2023 (clobber (reg:SI T_REG))])])
2024
2025 ;; Split reg - reg - 1 into a sett subc sequence, as it can be scheduled
2026 ;; better, if the sett insn can be done early.
2027 ;; Notice that combine turns 'a - b - 1' into 'a + (~b)'.
2028 (define_insn_and_split "*subc"
2029 [(set (match_operand:SI 0 "arith_reg_dest" "")
2030 (plus:SI (not:SI (match_operand:SI 1 "arith_reg_operand" ""))
2031 (match_operand:SI 2 "arith_reg_operand" "")))
2032 (clobber (reg:SI T_REG))]
2033 "TARGET_SH1 && can_create_pseudo_p ()"
2034 "#"
2035 "&& 1"
2036 [(parallel [(set (match_dup 0)
2037 (minus:SI (minus:SI (match_dup 2) (match_dup 1))
2038 (const_int 1)))
2039 (clobber (reg:SI T_REG))])])
2040
2041 ;; Split 'reg - T' into 'reg - 0 - T' to utilize the subc insn.
2042 ;; If the 0 constant can be CSE-ed, this becomes a one instruction
2043 ;; operation, as opposed to sequences such as
2044 ;; movt r2
2045 ;; sub r2,r3
2046 ;;
2047 ;; Even if the constant is not CSE-ed, a sequence such as
2048 ;; mov #0,r2
2049 ;; subc r2,r3
2050 ;; can be scheduled much better since the load of the constant can be
2051 ;; done earlier, before any comparison insns that store the result in
2052 ;; the T bit.
2053 ;; However, avoid things like 'reg - 1', which would expand into a
2054 ;; 3 insn sequence, instead of add #imm8.
2055 (define_insn_and_split "*subc"
2056 [(set (match_operand:SI 0 "arith_reg_dest" "")
2057 (minus:SI (match_operand:SI 1 "arith_reg_operand" "")
2058 (match_operand 2 "treg_set_expr_not_const01")))
2059 (clobber (reg:SI T_REG))]
2060 "TARGET_SH1 && can_create_pseudo_p ()"
2061 "#"
2062 "&& 1"
2063 [(parallel [(set (match_dup 0)
2064 (minus:SI (minus:SI (match_dup 1) (const_int 0))
2065 (match_dup 2)))
2066 (clobber (reg:SI T_REG))])])
2067
2068 ;; Convert
2069 ;; (1 - T) - op2 = 1 - op2 - T
2070 (define_insn_and_split "*subc_negt_reg"
2071 [(set (match_operand:SI 0 "arith_reg_dest")
2072 (minus:SI (match_operand 1 "treg_set_expr_not_const01")
2073 (match_operand:SI 2 "arith_reg_operand")))
2074 (clobber (reg:SI T_REG))]
2075 "TARGET_SH1 && can_create_pseudo_p ()"
2076 "#"
2077 "&& 1"
2078 [(const_int 0)]
2079 {
2080 sh_treg_insns ti = sh_split_treg_set_expr (operands[1], curr_insn);
2081 if (ti.remove_trailing_nott ())
2082 {
2083 /* (1 - T) - op2 = 1 - op2 - T */
2084 emit_insn (gen_subc (operands[0],
2085 force_reg (SImode, GEN_INT (1)), operands[2]));
2086 }
2087 else
2088 {
2089 /* T - op2: use movt,sub sequence. */
2090 rtx tmp = gen_reg_rtx (SImode);
2091 emit_insn (gen_movt (tmp, get_t_reg_rtx ()));
2092 emit_insn (gen_subsi3 (operands[0], tmp, operands[2]));
2093 }
2094 DONE;
2095 })
2096
2097 ;; Convert
2098 ;; op1 - (1 - T) + op3 = op1 - 1 + T + op3
2099 ;; (op1 - T) + op3 = op1 - (-op3) - T
2100 (define_insn_and_split "*subc_negreg_t"
2101 [(set (match_operand:SI 0 "arith_reg_dest")
2102 (plus:SI (minus:SI (match_operand:SI 1 "arith_reg_operand")
2103 (match_operand 2 "treg_set_expr"))
2104 (match_operand:SI 3 "arith_reg_operand")))
2105 (clobber (reg:SI T_REG))]
2106 "TARGET_SH1 && can_create_pseudo_p ()"
2107 "#"
2108 "&& 1"
2109 [(const_int 0)]
2110 {
2111 sh_treg_insns ti = sh_split_treg_set_expr (operands[2], curr_insn);
2112 if (ti.remove_trailing_nott ())
2113 {
2114 /* op1 - (1 - T) + op3 = (op1 - 1) + op3 + T */
2115 rtx tmp = gen_reg_rtx (SImode);
2116 emit_insn (gen_addsi3 (tmp, operands[1], GEN_INT (-1)));
2117 emit_insn (gen_addc (operands[0], tmp, operands[3]));
2118 }
2119 else
2120 {
2121 /* (op1 - T) + op3' = 'op1 - (-op3) - T */
2122 rtx tmp = gen_reg_rtx (SImode);
2123 emit_insn (gen_negsi2 (tmp, operands[3]));
2124 emit_insn (gen_subc (operands[0], operands[1], tmp));
2125 }
2126 DONE;
2127 })
2128
2129 (define_insn "*subsi3_internal"
2130 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
2131 (minus:SI (match_operand:SI 1 "arith_reg_operand" "0")
2132 (match_operand:SI 2 "arith_reg_operand" "r")))]
2133 "TARGET_SH1"
2134 "sub %2,%0"
2135 [(set_attr "type" "arith")])
2136
2137 ;; Convert
2138 ;; constant - reg
2139 ;; to
2140 ;; neg reg
2141 ;; add reg, #const
2142 ;; since this will sometimes save one instruction.
2143 ;; Otherwise we might get a sequence like
2144 ;; mov #const, rY
2145 ;; sub rY, rX
2146 ;; mov rX, rY
2147 ;; if the source and dest regs are the same.
2148 (define_expand "subsi3"
2149 [(set (match_operand:SI 0 "arith_reg_operand" "")
2150 (minus:SI (match_operand:SI 1 "arith_operand" "")
2151 (match_operand:SI 2 "arith_reg_operand" "")))]
2152 ""
2153 {
2154 if (CONST_INT_P (operands[1]))
2155 {
2156 emit_insn (gen_negsi2 (operands[0], operands[2]));
2157 emit_insn (gen_addsi3 (operands[0], operands[0], operands[1]));
2158 DONE;
2159 }
2160 })
2161 \f
2162 ;; -------------------------------------------------------------------------
2163 ;; Division instructions
2164 ;; -------------------------------------------------------------------------
2165
2166 ;; We take advantage of the library routines which don't clobber as many
2167 ;; registers as a normal function call would.
2168
2169 ;; The INSN_REFERENCES_ARE_DELAYED in sh.h is problematic because it
2170 ;; also has an effect on the register that holds the address of the sfunc.
2171 ;; To make this work, we have an extra dummy insn that shows the use
2172 ;; of this register for reorg.
2173
2174 (define_insn "use_sfunc_addr"
2175 [(set (reg:SI PR_REG)
2176 (unspec:SI [(match_operand:SI 0 "register_operand" "r")] UNSPEC_SFUNC))]
2177 "TARGET_SH1 && check_use_sfunc_addr (insn, operands[0])"
2178 ""
2179 [(set_attr "length" "0")])
2180
2181 (define_insn "udivsi3_sh2a"
2182 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
2183 (udiv:SI (match_operand:SI 1 "arith_reg_operand" "0")
2184 (match_operand:SI 2 "arith_reg_operand" "z")))]
2185 "TARGET_SH2A"
2186 "divu %2,%1"
2187 [(set_attr "type" "arith")
2188 (set_attr "in_delay_slot" "no")])
2189
2190 ;; We must use a pseudo-reg forced to reg 0 in the SET_DEST rather than
2191 ;; hard register 0. If we used hard register 0, then the next instruction
2192 ;; would be a move from hard register 0 to a pseudo-reg. If the pseudo-reg
2193 ;; gets allocated to a stack slot that needs its address reloaded, then
2194 ;; there is nothing to prevent reload from using r0 to reload the address.
2195 ;; This reload would clobber the value in r0 we are trying to store.
2196 ;; If we let reload allocate r0, then this problem can never happen.
2197 (define_insn "udivsi3_i1"
2198 [(set (match_operand:SI 0 "register_operand" "=z,z")
2199 (udiv:SI (reg:SI R4_REG) (reg:SI R5_REG)))
2200 (clobber (reg:SI T_REG))
2201 (clobber (reg:SI PR_REG))
2202 (clobber (reg:SI R1_REG))
2203 (clobber (reg:SI R4_REG))
2204 (use (match_operand:SI 1 "arith_reg_operand" "r,r"))
2205 (use (match_operand 2 "" "Z,Ccl"))]
2206 "TARGET_SH1 && TARGET_DIVIDE_CALL_DIV1"
2207 "@
2208 jsr @%1%#
2209 bsrf %1\n%O2:%#"
2210 [(set_attr "type" "sfunc")
2211 (set_attr "needs_delay_slot" "yes")])
2212
2213 (define_insn "udivsi3_i4"
2214 [(set (match_operand:SI 0 "register_operand" "=y,y")
2215 (udiv:SI (reg:SI R4_REG) (reg:SI R5_REG)))
2216 (clobber (reg:SI T_REG))
2217 (clobber (reg:SI PR_REG))
2218 (clobber (reg:DF DR0_REG))
2219 (clobber (reg:DF DR2_REG))
2220 (clobber (reg:DF DR4_REG))
2221 (clobber (reg:SI R0_REG))
2222 (clobber (reg:SI R1_REG))
2223 (clobber (reg:SI R4_REG))
2224 (clobber (reg:SI R5_REG))
2225 (clobber (reg:SI FPSCR_STAT_REG))
2226 (use (match_operand:SI 1 "arith_reg_operand" "r,r"))
2227 (use (match_operand 2 "" "Z,Ccl"))
2228 (use (reg:SI FPSCR_MODES_REG))]
2229 "TARGET_FPU_DOUBLE && ! TARGET_FPU_SINGLE"
2230 "@
2231 jsr @%1%#
2232 bsrf %1\n%O2:%#"
2233 [(set_attr "type" "sfunc")
2234 (set_attr "fp_mode" "double")
2235 (set_attr "needs_delay_slot" "yes")])
2236
2237 (define_insn "udivsi3_i4_single"
2238 [(set (match_operand:SI 0 "register_operand" "=y,y")
2239 (udiv:SI (reg:SI R4_REG) (reg:SI R5_REG)))
2240 (clobber (reg:SI T_REG))
2241 (clobber (reg:SI PR_REG))
2242 (clobber (reg:DF DR0_REG))
2243 (clobber (reg:DF DR2_REG))
2244 (clobber (reg:DF DR4_REG))
2245 (clobber (reg:SI R0_REG))
2246 (clobber (reg:SI R1_REG))
2247 (clobber (reg:SI R4_REG))
2248 (clobber (reg:SI R5_REG))
2249 (use (match_operand:SI 1 "arith_reg_operand" "r,r"))
2250 (use (match_operand 2 "" "Z,Ccl"))]
2251 "TARGET_FPU_ANY && TARGET_FPU_SINGLE"
2252 "@
2253 jsr @%1%#
2254 bsrf %1\n%O2:%#"
2255 [(set_attr "type" "sfunc")
2256 (set_attr "needs_delay_slot" "yes")])
2257
2258 (define_insn "udivsi3_i4_int"
2259 [(set (match_operand:SI 0 "register_operand" "=z")
2260 (udiv:SI (reg:SI R4_REG) (reg:SI R5_REG)))
2261 (clobber (reg:SI T_REG))
2262 (clobber (reg:SI R1_REG))
2263 (clobber (reg:SI PR_REG))
2264 (clobber (reg:SI MACH_REG))
2265 (clobber (reg:SI MACL_REG))
2266 (use (match_operand:SI 1 "arith_reg_operand" "r"))]
2267 "TARGET_SH1"
2268 "jsr @%1%#"
2269 [(set_attr "type" "sfunc")
2270 (set_attr "needs_delay_slot" "yes")])
2271
2272
2273 (define_expand "udivsi3"
2274 [(set (match_operand:SI 0 "register_operand")
2275 (udiv:SI (match_operand:SI 1 "general_operand")
2276 (match_operand:SI 2 "general_operand")))]
2277 ""
2278 {
2279 rtx last;
2280 rtx func_ptr = gen_reg_rtx (Pmode);
2281
2282 /* Emit the move of the address to a pseudo outside of the libcall. */
2283 if (TARGET_DIVIDE_CALL_TABLE)
2284 {
2285 /* libgcc2:__udivmoddi4 is not supposed to use an actual division, since
2286 that causes problems when the divide code is supposed to come from a
2287 separate library. Division by zero is undefined, so dividing 1 can be
2288 implemented by comparing with the divisor. */
2289 if (operands[1] == const1_rtx && currently_expanding_to_rtl)
2290 {
2291 rtx test = gen_rtx_GEU (VOIDmode, operands[1], operands[2]);
2292 emit_insn (gen_cstoresi4 (operands[0], test,
2293 operands[1], operands[2]));
2294 DONE;
2295 }
2296 else if (operands[2] == const0_rtx)
2297 {
2298 emit_move_insn (operands[0], operands[2]);
2299 DONE;
2300 }
2301 function_symbol (func_ptr, "__udivsi3_i4i", SFUNC_GOT);
2302 last = gen_udivsi3_i4_int (operands[0], func_ptr);
2303 }
2304 else if (TARGET_DIVIDE_CALL_FP)
2305 {
2306 rtx lab = function_symbol (func_ptr, "__udivsi3_i4", SFUNC_STATIC).lab;
2307 if (TARGET_FPU_SINGLE)
2308 last = gen_udivsi3_i4_single (operands[0], func_ptr, lab);
2309 else
2310 last = gen_udivsi3_i4 (operands[0], func_ptr, lab);
2311 }
2312 else if (TARGET_SH2A)
2313 {
2314 operands[1] = force_reg (SImode, operands[1]);
2315 operands[2] = force_reg (SImode, operands[2]);
2316 emit_insn (gen_udivsi3_sh2a (operands[0], operands[1], operands[2]));
2317 DONE;
2318 }
2319 else
2320 {
2321 rtx lab = function_symbol (func_ptr, "__udivsi3", SFUNC_STATIC).lab;
2322 last = gen_udivsi3_i1 (operands[0], func_ptr, lab);
2323 }
2324 emit_move_insn (gen_rtx_REG (SImode, 4), operands[1]);
2325 emit_move_insn (gen_rtx_REG (SImode, 5), operands[2]);
2326 emit_insn (last);
2327 DONE;
2328 })
2329
2330 (define_insn "divsi3_sh2a"
2331 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
2332 (div:SI (match_operand:SI 1 "arith_reg_operand" "0")
2333 (match_operand:SI 2 "arith_reg_operand" "z")))]
2334 "TARGET_SH2A"
2335 "divs %2,%1"
2336 [(set_attr "type" "arith")
2337 (set_attr "in_delay_slot" "no")])
2338
2339 (define_insn "divsi3_i1"
2340 [(set (match_operand:SI 0 "register_operand" "=z")
2341 (div:SI (reg:SI R4_REG) (reg:SI R5_REG)))
2342 (clobber (reg:SI T_REG))
2343 (clobber (reg:SI PR_REG))
2344 (clobber (reg:SI R1_REG))
2345 (clobber (reg:SI R2_REG))
2346 (clobber (reg:SI R3_REG))
2347 (use (match_operand:SI 1 "arith_reg_operand" "r"))]
2348 "TARGET_SH1 && TARGET_DIVIDE_CALL_DIV1"
2349 "jsr @%1%#"
2350 [(set_attr "type" "sfunc")
2351 (set_attr "needs_delay_slot" "yes")])
2352
2353 (define_insn "divsi3_i4"
2354 [(set (match_operand:SI 0 "register_operand" "=y,y")
2355 (div:SI (reg:SI R4_REG) (reg:SI R5_REG)))
2356 (clobber (reg:SI PR_REG))
2357 (clobber (reg:DF DR0_REG))
2358 (clobber (reg:DF DR2_REG))
2359 (clobber (reg:SI FPSCR_STAT_REG))
2360 (use (match_operand:SI 1 "arith_reg_operand" "r,r"))
2361 (use (match_operand 2 "" "Z,Ccl"))
2362 (use (reg:SI FPSCR_MODES_REG))]
2363 "TARGET_FPU_DOUBLE && ! TARGET_FPU_SINGLE"
2364 "@
2365 jsr @%1%#
2366 bsrf %1\n%O2:%#"
2367 [(set_attr "type" "sfunc")
2368 (set_attr "fp_mode" "double")
2369 (set_attr "needs_delay_slot" "yes")])
2370
2371 (define_insn "divsi3_i4_single"
2372 [(set (match_operand:SI 0 "register_operand" "=y,y")
2373 (div:SI (reg:SI R4_REG) (reg:SI R5_REG)))
2374 (clobber (reg:SI PR_REG))
2375 (clobber (reg:DF DR0_REG))
2376 (clobber (reg:DF DR2_REG))
2377 (clobber (reg:SI R2_REG))
2378 (use (match_operand:SI 1 "arith_reg_operand" "r,r"))
2379 (use (match_operand 2 "" "Z,Ccl"))]
2380 "TARGET_FPU_ANY && TARGET_FPU_SINGLE"
2381 "@
2382 jsr @%1%#
2383 bsrf %1\n%O2:%#"
2384 [(set_attr "type" "sfunc")
2385 (set_attr "needs_delay_slot" "yes")])
2386
2387 (define_insn "divsi3_i4_int"
2388 [(set (match_operand:SI 0 "register_operand" "=z")
2389 (div:SI (reg:SI R4_REG) (reg:SI R5_REG)))
2390 (clobber (reg:SI T_REG))
2391 (clobber (reg:SI PR_REG))
2392 (clobber (reg:SI R1_REG))
2393 (clobber (reg:SI MACH_REG))
2394 (clobber (reg:SI MACL_REG))
2395 (use (match_operand:SI 1 "arith_reg_operand" "r"))]
2396 "TARGET_SH1"
2397 "jsr @%1%#"
2398 [(set_attr "type" "sfunc")
2399 (set_attr "needs_delay_slot" "yes")])
2400
2401 (define_expand "divsi3"
2402 [(set (match_operand:SI 0 "register_operand")
2403 (div:SI (match_operand:SI 1 "general_operand")
2404 (match_operand:SI 2 "general_operand")))]
2405 ""
2406 {
2407 rtx last;
2408 rtx func_ptr = gen_reg_rtx (Pmode);
2409
2410 /* Emit the move of the address to a pseudo outside of the libcall. */
2411 if (TARGET_DIVIDE_CALL_TABLE)
2412 {
2413 function_symbol (func_ptr, sh_divsi3_libfunc, SFUNC_GOT);
2414 last = gen_divsi3_i4_int (operands[0], func_ptr);
2415 }
2416 else if (TARGET_DIVIDE_CALL_FP)
2417 {
2418 rtx lab = function_symbol (func_ptr, sh_divsi3_libfunc,
2419 SFUNC_STATIC).lab;
2420 if (TARGET_FPU_SINGLE)
2421 last = gen_divsi3_i4_single (operands[0], func_ptr, lab);
2422 else
2423 last = gen_divsi3_i4 (operands[0], func_ptr, lab);
2424 }
2425 else if (TARGET_SH2A)
2426 {
2427 operands[1] = force_reg (SImode, operands[1]);
2428 operands[2] = force_reg (SImode, operands[2]);
2429 emit_insn (gen_divsi3_sh2a (operands[0], operands[1], operands[2]));
2430 DONE;
2431 }
2432 else
2433 {
2434 function_symbol (func_ptr, sh_divsi3_libfunc, SFUNC_GOT);
2435 last = gen_divsi3_i1 (operands[0], func_ptr);
2436 }
2437 emit_move_insn (gen_rtx_REG (SImode, 4), operands[1]);
2438 emit_move_insn (gen_rtx_REG (SImode, 5), operands[2]);
2439 emit_insn (last);
2440 DONE;
2441 })
2442
2443 \f
2444 ;; -------------------------------------------------------------------------
2445 ;; Multiplication instructions
2446 ;; -------------------------------------------------------------------------
2447
2448 (define_insn_and_split "mulhisi3"
2449 [(set (match_operand:SI 0 "arith_reg_dest")
2450 (mult:SI (sign_extend:SI (match_operand:HI 1 "arith_reg_operand"))
2451 (sign_extend:SI (match_operand:HI 2 "arith_reg_operand"))))
2452 (clobber (reg:SI MACL_REG))]
2453 "TARGET_SH1 && can_create_pseudo_p ()"
2454 "#"
2455 "&& 1"
2456 [(set (reg:SI MACL_REG) (mult:SI (sign_extend:SI (match_dup 1))
2457 (sign_extend:SI (match_dup 2))))
2458 (set (match_dup 0) (reg:SI MACL_REG))])
2459
2460 (define_insn_and_split "umulhisi3"
2461 [(set (match_operand:SI 0 "arith_reg_dest")
2462 (mult:SI (zero_extend:SI (match_operand:HI 1 "arith_reg_operand"))
2463 (zero_extend:SI (match_operand:HI 2 "arith_reg_operand"))))
2464 (clobber (reg:SI MACL_REG))]
2465 "TARGET_SH1 && can_create_pseudo_p ()"
2466 "#"
2467 "&& 1"
2468 [(set (reg:SI MACL_REG) (mult:SI (zero_extend:SI (match_dup 1))
2469 (zero_extend:SI (match_dup 2))))
2470 (set (match_dup 0) (reg:SI MACL_REG))])
2471
2472 (define_insn "umulhisi3_i"
2473 [(set (reg:SI MACL_REG)
2474 (mult:SI (zero_extend:SI
2475 (match_operand:HI 0 "arith_reg_operand" "r"))
2476 (zero_extend:SI
2477 (match_operand:HI 1 "arith_reg_operand" "r"))))]
2478 "TARGET_SH1"
2479 "mulu.w %1,%0"
2480 [(set_attr "type" "smpy")])
2481
2482 (define_insn "mulhisi3_i"
2483 [(set (reg:SI MACL_REG)
2484 (mult:SI (sign_extend:SI
2485 (match_operand:HI 0 "arith_reg_operand" "r"))
2486 (sign_extend:SI
2487 (match_operand:HI 1 "arith_reg_operand" "r"))))]
2488 "TARGET_SH1"
2489 "muls.w %1,%0"
2490 [(set_attr "type" "smpy")])
2491
2492
2493 ;; mulsi3 on the SH2 can be done in one instruction, on the SH1 we generate
2494 ;; a call to a routine which clobbers known registers.
2495 (define_insn "mulsi3_call"
2496 [(set (match_operand:SI 1 "register_operand" "=z")
2497 (mult:SI (reg:SI R4_REG) (reg:SI R5_REG)))
2498 (clobber (reg:SI MACL_REG))
2499 (clobber (reg:SI T_REG))
2500 (clobber (reg:SI PR_REG))
2501 (clobber (reg:SI R3_REG))
2502 (clobber (reg:SI R2_REG))
2503 (clobber (reg:SI R1_REG))
2504 (use (match_operand:SI 0 "arith_reg_operand" "r"))]
2505 "TARGET_SH1"
2506 "jsr @%0%#"
2507 [(set_attr "type" "sfunc")
2508 (set_attr "needs_delay_slot" "yes")])
2509
2510 (define_insn "mul_r"
2511 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
2512 (mult:SI (match_operand:SI 1 "arith_reg_operand" "0")
2513 (match_operand:SI 2 "arith_reg_operand" "z")))]
2514 "TARGET_SH2A"
2515 "mulr %2,%0"
2516 [(set_attr "type" "dmpy")])
2517
2518 (define_insn "mul_l"
2519 [(set (reg:SI MACL_REG)
2520 (mult:SI (match_operand:SI 0 "arith_reg_operand" "r")
2521 (match_operand:SI 1 "arith_reg_operand" "r")))]
2522 "TARGET_SH2"
2523 "mul.l %1,%0"
2524 [(set_attr "type" "dmpy")])
2525
2526 (define_insn_and_split "mulsi3_i"
2527 [(set (match_operand:SI 0 "arith_reg_dest")
2528 (mult:SI (match_operand:SI 1 "arith_reg_operand")
2529 (match_operand:SI 2 "arith_reg_operand")))
2530 (clobber (reg:SI MACL_REG))]
2531 "TARGET_SH2 && can_create_pseudo_p ()"
2532 "#"
2533 "&& 1"
2534 [(set (reg:SI MACL_REG) (mult:SI (match_dup 1) (match_dup 2)))
2535 (set (match_dup 0) (reg:SI MACL_REG))])
2536
2537 (define_expand "mulsi3"
2538 [(set (match_operand:SI 0 "arith_reg_dest")
2539 (mult:SI (match_operand:SI 1 "arith_reg_operand")
2540 (match_operand:SI 2 "arith_reg_operand")))]
2541 "TARGET_SH1"
2542 {
2543 if (!TARGET_SH2)
2544 {
2545 emit_move_insn (gen_rtx_REG (SImode, R4_REG), operands[1]);
2546 emit_move_insn (gen_rtx_REG (SImode, R5_REG), operands[2]);
2547
2548 rtx sym = function_symbol (NULL, "__mulsi3", SFUNC_STATIC).sym;
2549
2550 emit_insn (gen_mulsi3_call (force_reg (SImode, sym), operands[0]));
2551 }
2552 else
2553 {
2554 /* FIXME: For some reason, expanding the mul_l insn and the macl store
2555 insn early gives slightly better code. In particular it prevents
2556 the decrement-test loop type to be used in some cases which saves
2557 one multiplication in the loop setup code.
2558
2559 emit_insn (gen_mulsi3_i (operands[0], operands[1], operands[2]));
2560 */
2561
2562 emit_insn (gen_mul_l (operands[1], operands[2]));
2563 emit_move_insn (operands[0], gen_rtx_REG (SImode, MACL_REG));
2564 }
2565 DONE;
2566 })
2567
2568 (define_insn "mulsidi3_i"
2569 [(set (reg:SI MACH_REG)
2570 (truncate:SI
2571 (lshiftrt:DI
2572 (mult:DI
2573 (sign_extend:DI (match_operand:SI 0 "arith_reg_operand" "r"))
2574 (sign_extend:DI (match_operand:SI 1 "arith_reg_operand" "r")))
2575 (const_int 32))))
2576 (set (reg:SI MACL_REG)
2577 (mult:SI (match_dup 0)
2578 (match_dup 1)))]
2579 "TARGET_SH2"
2580 "dmuls.l %1,%0"
2581 [(set_attr "type" "dmpy")])
2582
2583 (define_expand "mulsidi3"
2584 [(set (match_operand:DI 0 "arith_reg_dest")
2585 (mult:DI (sign_extend:DI (match_operand:SI 1 "arith_reg_operand"))
2586 (sign_extend:DI (match_operand:SI 2 "arith_reg_operand"))))]
2587 "TARGET_SH2"
2588 {
2589 emit_insn (gen_mulsidi3_compact (operands[0], operands[1], operands[2]));
2590 DONE;
2591 })
2592
2593 (define_insn_and_split "mulsidi3_compact"
2594 [(set (match_operand:DI 0 "arith_reg_dest")
2595 (mult:DI (sign_extend:DI (match_operand:SI 1 "arith_reg_operand"))
2596 (sign_extend:DI (match_operand:SI 2 "arith_reg_operand"))))
2597 (clobber (reg:SI MACH_REG))
2598 (clobber (reg:SI MACL_REG))]
2599 "TARGET_SH2 && can_create_pseudo_p ()"
2600 "#"
2601 "&& 1"
2602 [(const_int 0)]
2603 {
2604 rtx low_dst = gen_lowpart (SImode, operands[0]);
2605 rtx high_dst = gen_highpart (SImode, operands[0]);
2606
2607 emit_insn (gen_mulsidi3_i (operands[1], operands[2]));
2608
2609 emit_move_insn (low_dst, gen_rtx_REG (SImode, MACL_REG));
2610 emit_move_insn (high_dst, gen_rtx_REG (SImode, MACH_REG));
2611 /* We need something to tag the possible REG_EQUAL notes on to. */
2612 emit_move_insn (operands[0], operands[0]);
2613 DONE;
2614 })
2615
2616 (define_insn "umulsidi3_i"
2617 [(set (reg:SI MACH_REG)
2618 (truncate:SI
2619 (lshiftrt:DI
2620 (mult:DI
2621 (zero_extend:DI (match_operand:SI 0 "arith_reg_operand" "r"))
2622 (zero_extend:DI (match_operand:SI 1 "arith_reg_operand" "r")))
2623 (const_int 32))))
2624 (set (reg:SI MACL_REG)
2625 (mult:SI (match_dup 0)
2626 (match_dup 1)))]
2627 "TARGET_SH2"
2628 "dmulu.l %1,%0"
2629 [(set_attr "type" "dmpy")])
2630
2631 (define_expand "umulsidi3"
2632 [(set (match_operand:DI 0 "arith_reg_dest")
2633 (mult:DI (zero_extend:DI (match_operand:SI 1 "arith_reg_operand"))
2634 (zero_extend:DI (match_operand:SI 2 "arith_reg_operand"))))]
2635 "TARGET_SH2"
2636 {
2637 emit_insn (gen_umulsidi3_compact (operands[0], operands[1], operands[2]));
2638 DONE;
2639 })
2640
2641 (define_insn_and_split "umulsidi3_compact"
2642 [(set (match_operand:DI 0 "arith_reg_dest")
2643 (mult:DI (zero_extend:DI (match_operand:SI 1 "arith_reg_operand"))
2644 (zero_extend:DI (match_operand:SI 2 "arith_reg_operand"))))
2645 (clobber (reg:SI MACH_REG))
2646 (clobber (reg:SI MACL_REG))]
2647 "TARGET_SH2 && can_create_pseudo_p ()"
2648 "#"
2649 "&& 1"
2650 [(const_int 0)]
2651 {
2652 rtx low_dst = gen_lowpart (SImode, operands[0]);
2653 rtx high_dst = gen_highpart (SImode, operands[0]);
2654
2655 emit_insn (gen_umulsidi3_i (operands[1], operands[2]));
2656
2657 emit_move_insn (low_dst, gen_rtx_REG (SImode, MACL_REG));
2658 emit_move_insn (high_dst, gen_rtx_REG (SImode, MACH_REG));
2659 /* We need something to tag the possible REG_EQUAL notes on to. */
2660 emit_move_insn (operands[0], operands[0]);
2661 DONE;
2662 })
2663
2664 (define_insn "smulsi3_highpart_i"
2665 [(set (reg:SI MACH_REG)
2666 (truncate:SI
2667 (lshiftrt:DI
2668 (mult:DI
2669 (sign_extend:DI (match_operand:SI 0 "arith_reg_operand" "r"))
2670 (sign_extend:DI (match_operand:SI 1 "arith_reg_operand" "r")))
2671 (const_int 32))))
2672 (clobber (reg:SI MACL_REG))]
2673 "TARGET_SH2"
2674 "dmuls.l %1,%0"
2675 [(set_attr "type" "dmpy")])
2676
2677 (define_insn_and_split "smulsi3_highpart"
2678 [(set (match_operand:SI 0 "arith_reg_dest")
2679 (truncate:SI
2680 (lshiftrt:DI
2681 (mult:DI
2682 (sign_extend:DI (match_operand:SI 1 "arith_reg_operand"))
2683 (sign_extend:DI (match_operand:SI 2 "arith_reg_operand")))
2684 (const_int 32))))
2685 (clobber (reg:SI MACL_REG))
2686 (clobber (reg:SI MACH_REG))]
2687 "TARGET_SH2 && can_create_pseudo_p ()"
2688 "#"
2689 "&& 1"
2690 [(const_int 0)]
2691 {
2692 emit_insn (gen_smulsi3_highpart_i (operands[1], operands[2]));
2693 emit_move_insn (operands[0], gen_rtx_REG (SImode, MACH_REG));
2694 })
2695
2696 (define_insn "umulsi3_highpart_i"
2697 [(set (reg:SI MACH_REG)
2698 (truncate:SI
2699 (lshiftrt:DI
2700 (mult:DI
2701 (zero_extend:DI (match_operand:SI 0 "arith_reg_operand" "r"))
2702 (zero_extend:DI (match_operand:SI 1 "arith_reg_operand" "r")))
2703 (const_int 32))))
2704 (clobber (reg:SI MACL_REG))]
2705 "TARGET_SH2"
2706 "dmulu.l %1,%0"
2707 [(set_attr "type" "dmpy")])
2708
2709 (define_insn_and_split "umulsi3_highpart"
2710 [(set (match_operand:SI 0 "arith_reg_dest")
2711 (truncate:SI
2712 (lshiftrt:DI
2713 (mult:DI
2714 (zero_extend:DI (match_operand:SI 1 "arith_reg_operand"))
2715 (zero_extend:DI (match_operand:SI 2 "arith_reg_operand")))
2716 (const_int 32))))
2717 (clobber (reg:SI MACL_REG))]
2718 "TARGET_SH2 && can_create_pseudo_p ()"
2719 "#"
2720 "&& 1"
2721 [(const_int 0)]
2722 {
2723 emit_insn (gen_umulsi3_highpart_i (operands[1], operands[2]));
2724 emit_move_insn (operands[0], gen_rtx_REG (SImode, MACH_REG));
2725 })
2726
2727 ;; -------------------------------------------------------------------------
2728 ;; Logical operations
2729 ;; -------------------------------------------------------------------------
2730
2731 (define_expand "andsi3"
2732 [(set (match_operand:SI 0 "arith_reg_dest")
2733 (and:SI (match_operand:SI 1 "arith_reg_operand")
2734 (match_operand:SI 2 "logical_and_operand")))]
2735 ""
2736 {
2737 /* If it is possible to turn the and insn into a zero extension
2738 already, redundant zero extensions will be folded, which results
2739 in better code.
2740 Ideally the splitter of *andsi_compact would be enough, if redundant
2741 zero extensions were detected after the combine pass, which does not
2742 happen at the moment. */
2743
2744 if (satisfies_constraint_Jmb (operands[2]))
2745 {
2746 emit_insn (gen_zero_extendqisi2 (operands[0],
2747 gen_lowpart (QImode, operands[1])));
2748 DONE;
2749 }
2750 else if (satisfies_constraint_Jmw (operands[2]))
2751 {
2752 emit_insn (gen_zero_extendhisi2 (operands[0],
2753 gen_lowpart (HImode, operands[1])));
2754 DONE;
2755 }
2756 })
2757
2758 (define_insn_and_split "*andsi_compact"
2759 [(set (match_operand:SI 0 "arith_reg_dest" "=r,r,z,r")
2760 (and:SI (match_operand:SI 1 "arith_reg_operand" "%r,r,0,0")
2761 (match_operand:SI 2 "logical_and_operand" "Jmb,Jmw,K08,r")))]
2762 "TARGET_SH1"
2763 "@
2764 extu.b %1,%0
2765 extu.w %1,%0
2766 and %2,%0
2767 and %2,%0"
2768 "&& 1"
2769 [(set (match_dup 0) (zero_extend:SI (match_dup 1)))]
2770 {
2771 if (satisfies_constraint_Jmb (operands[2]))
2772 operands[1] = gen_lowpart (QImode, operands[1]);
2773 else if (satisfies_constraint_Jmw (operands[2]))
2774 operands[1] = gen_lowpart (HImode, operands[1]);
2775 else
2776 FAIL;
2777 }
2778 [(set_attr "type" "arith")])
2779
2780 (define_insn "*andsi3_bclr"
2781 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
2782 (and:SI (match_operand:SI 1 "arith_reg_operand" "%0")
2783 (match_operand:SI 2 "const_int_operand" "Psz")))]
2784 "TARGET_SH2A && satisfies_constraint_Psz (operands[2])"
2785 "bclr %W2,%0"
2786 [(set_attr "type" "arith")])
2787
2788 (define_expand "iorsi3"
2789 [(set (match_operand:SI 0 "arith_reg_dest")
2790 (ior:SI (match_operand:SI 1 "arith_reg_operand")
2791 (match_operand:SI 2 "logical_operand")))])
2792
2793 (define_insn "*iorsi3_compact"
2794 [(set (match_operand:SI 0 "arith_reg_dest" "=r,z")
2795 (ior:SI (match_operand:SI 1 "arith_reg_operand" "%0,0")
2796 (match_operand:SI 2 "logical_operand" "r,K08")))]
2797 "TARGET_SH1
2798 && !(TARGET_SH2A && satisfies_constraint_Pso (operands[2]))"
2799 "or %2,%0"
2800 [(set_attr "type" "arith")])
2801
2802 (define_insn "*iorsi3_bset"
2803 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
2804 (ior:SI (match_operand:SI 1 "arith_reg_operand" "%0")
2805 (match_operand:SI 2 "const_int_operand" "Pso")))]
2806 "TARGET_SH2A && satisfies_constraint_Pso (operands[2])"
2807 "bset %V2,%0"
2808 [(set_attr "type" "arith")])
2809
2810 (define_insn "xorsi3"
2811 [(set (match_operand:SI 0 "arith_reg_dest" "=z,r")
2812 (xor:SI (match_operand:SI 1 "arith_reg_operand" "%0,0")
2813 (match_operand:SI 2 "logical_operand" "K08,r")))]
2814 "TARGET_SH1"
2815 "xor %2,%0"
2816 [(set_attr "type" "arith")])
2817
2818 ;; The *logical_op_t pattern helps combine eliminating sign/zero extensions
2819 ;; of results where one of the inputs is a T bit store. Notice that this
2820 ;; pattern must not match during reload. If reload picks this pattern it
2821 ;; will be impossible to split it afterwards.
2822 (define_insn_and_split "*logical_op_t"
2823 [(set (match_operand:SI 0 "arith_reg_dest")
2824 (match_operator:SI 3 "logical_operator"
2825 [(match_operand:SI 1 "arith_reg_operand")
2826 (match_operand:SI 2 "t_reg_operand")]))]
2827 "TARGET_SH1 && can_create_pseudo_p ()"
2828 "#"
2829 "&& 1"
2830 [(set (match_dup 4) (reg:SI T_REG))
2831 (set (match_dup 0) (match_dup 3))]
2832 {
2833 operands[4] = gen_reg_rtx (SImode);
2834 operands[3] = gen_rtx_fmt_ee (GET_CODE (operands[3]), SImode,
2835 operands[1], operands[4]);
2836 })
2837
2838 ;; -------------------------------------------------------------------------
2839 ;; Shifts and rotates
2840 ;; -------------------------------------------------------------------------
2841
2842 ;; Let combine see that we can get the MSB and LSB into the T bit
2843 ;; via shll and shlr. This allows it to plug it into insns that can have
2844 ;; the T bit as an input (e.g. addc).
2845 ;; On SH2A use bld #0,Rn instead of shlr to avoid mutating the input.
2846 (define_insn_and_split "*reg_lsb_t"
2847 [(set (reg:SI T_REG)
2848 (and:SI (match_operand:SI 0 "arith_reg_operand")
2849 (const_int 1)))]
2850 "TARGET_SH1 && can_create_pseudo_p ()"
2851 "#"
2852 "&& 1"
2853 [(const_int 0)]
2854 {
2855 emit_insn (TARGET_SH2A ? gen_bldsi_reg (operands[0], const0_rtx)
2856 : gen_shlr (gen_reg_rtx (SImode), operands[0]));
2857 })
2858
2859 (define_insn_and_split "*reg_msb_t"
2860 [(set (reg:SI T_REG)
2861 (lshiftrt:SI (match_operand:SI 0 "arith_reg_operand")
2862 (const_int 31)))]
2863 "TARGET_SH1 && can_create_pseudo_p ()"
2864 "#"
2865 "&& 1"
2866 [(const_int 0)]
2867 {
2868 emit_insn (gen_shll (gen_reg_rtx (SImode), operands[0]));
2869 })
2870
2871 (define_expand "rotrsi3"
2872 [(set (match_operand:SI 0 "arith_reg_dest")
2873 (rotatert:SI (match_operand:SI 1 "arith_reg_operand")
2874 (match_operand:SI 2 "const_int_operand")))]
2875 "TARGET_SH1"
2876 {
2877 HOST_WIDE_INT ival = INTVAL (operands[2]);
2878 if (ival == 1)
2879 {
2880 emit_insn (gen_rotrsi3_1 (operands[0], operands[1]));
2881 DONE;
2882 }
2883
2884 FAIL;
2885 })
2886
2887 (define_insn "rotrsi3_1"
2888 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
2889 (rotatert:SI (match_operand:SI 1 "arith_reg_operand" "0")
2890 (const_int 1)))
2891 (set (reg:SI T_REG)
2892 (and:SI (match_dup 1) (const_int 1)))]
2893 "TARGET_SH1"
2894 "rotr %0"
2895 [(set_attr "type" "arith")])
2896
2897 ;; A slimplified version of rotr for combine.
2898 (define_insn "*rotrsi3_1"
2899 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
2900 (rotatert:SI (match_operand:SI 1 "arith_reg_operand" "0")
2901 (const_int 1)))
2902 (clobber (reg:SI T_REG))]
2903 "TARGET_SH1"
2904 "rotr %0"
2905 [(set_attr "type" "arith")])
2906
2907 (define_insn "rotlsi3_1"
2908 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
2909 (rotate:SI (match_operand:SI 1 "arith_reg_operand" "0")
2910 (const_int 1)))
2911 (set (reg:SI T_REG)
2912 (lshiftrt:SI (match_dup 1) (const_int 31)))]
2913 "TARGET_SH1"
2914 "rotl %0"
2915 [(set_attr "type" "arith")])
2916
2917 ;; A simplified version of rotl for combine.
2918 (define_insn "*rotlsi3_1"
2919 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
2920 (rotate:SI (match_operand:SI 1 "arith_reg_operand" "0")
2921 (const_int 1)))
2922 (clobber (reg:SI T_REG))]
2923 "TARGET_SH1"
2924 "rotl %0"
2925 [(set_attr "type" "arith")])
2926
2927 (define_insn "rotlsi3_31"
2928 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
2929 (rotate:SI (match_operand:SI 1 "arith_reg_operand" "0")
2930 (const_int 31)))
2931 (clobber (reg:SI T_REG))]
2932 "TARGET_SH1"
2933 "rotr %0"
2934 [(set_attr "type" "arith")])
2935
2936 (define_insn "rotlsi3_16"
2937 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
2938 (rotate:SI (match_operand:SI 1 "arith_reg_operand" "r")
2939 (const_int 16)))]
2940 "TARGET_SH1"
2941 "swap.w %1,%0"
2942 [(set_attr "type" "arith")])
2943
2944 (define_expand "rotlsi3"
2945 [(set (match_operand:SI 0 "arith_reg_dest")
2946 (rotate:SI (match_operand:SI 1 "arith_reg_operand")
2947 (match_operand:SI 2 "const_int_operand")))]
2948 "TARGET_SH1"
2949 {
2950 static const char rot_tab[] = {
2951 000, 000, 000, 000, 000, 000, 010, 001,
2952 001, 001, 011, 013, 003, 003, 003, 003,
2953 003, 003, 003, 003, 003, 013, 012, 002,
2954 002, 002, 010, 000, 000, 000, 000, 000,
2955 };
2956
2957 int count = INTVAL (operands[2]);
2958 int choice = rot_tab[count];
2959 if (choice & 010 && SH_DYNAMIC_SHIFT_COST <= 1)
2960 FAIL;
2961 choice &= 7;
2962 switch (choice)
2963 {
2964 case 0:
2965 emit_move_insn (operands[0], operands[1]);
2966 count -= (count & 16) * 2;
2967 break;
2968 case 3:
2969 emit_insn (gen_rotlsi3_16 (operands[0], operands[1]));
2970 count -= 16;
2971 break;
2972 case 1:
2973 case 2:
2974 {
2975 rtx parts[2];
2976 parts[0] = gen_reg_rtx (SImode);
2977 parts[1] = gen_reg_rtx (SImode);
2978 emit_insn (gen_rotlsi3_16 (parts[2-choice], operands[1]));
2979 emit_move_insn (parts[choice-1], operands[1]);
2980 emit_insn (gen_ashlsi3 (parts[0], parts[0], GEN_INT (8)));
2981 emit_insn (gen_lshrsi3 (parts[1], parts[1], GEN_INT (8)));
2982 emit_insn (gen_iorsi3 (operands[0], parts[0], parts[1]));
2983 count = (count & ~16) - 8;
2984 }
2985 }
2986
2987 for (; count > 0; count--)
2988 emit_insn (gen_rotlsi3_1 (operands[0], operands[0]));
2989 for (; count < 0; count++)
2990 emit_insn (gen_rotlsi3_31 (operands[0], operands[0]));
2991
2992 DONE;
2993 })
2994
2995 (define_insn "rotlhi3_8"
2996 [(set (match_operand:HI 0 "arith_reg_dest" "=r")
2997 (rotate:HI (match_operand:HI 1 "arith_reg_operand" "r")
2998 (const_int 8)))]
2999 "TARGET_SH1"
3000 "swap.b %1,%0"
3001 [(set_attr "type" "arith")])
3002
3003 (define_expand "rotlhi3"
3004 [(set (match_operand:HI 0 "arith_reg_operand")
3005 (rotate:HI (match_operand:HI 1 "arith_reg_operand")
3006 (match_operand:HI 2 "const_int_operand")))]
3007 "TARGET_SH1"
3008 {
3009 if (INTVAL (operands[2]) != 8)
3010 FAIL;
3011 })
3012
3013 ;; The rotcr and rotcl insns are used primarily in DImode shifts by one.
3014 ;; They can also be used to implement things like
3015 ;; bool t = a == b;
3016 ;; int x0 = (y >> 1) | (t << 31); // rotcr
3017 ;; int x1 = (y << 1) | t; // rotcl
3018 (define_insn "rotcr"
3019 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
3020 (ior:SI (lshiftrt:SI (match_operand:SI 1 "arith_reg_operand" "0")
3021 (const_int 1))
3022 (ashift:SI (match_operand:SI 2 "t_reg_operand")
3023 (const_int 31))))
3024 (set (reg:SI T_REG)
3025 (and:SI (match_dup 1) (const_int 1)))]
3026 "TARGET_SH1"
3027 "rotcr %0"
3028 [(set_attr "type" "arith")])
3029
3030 (define_insn "rotcl"
3031 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
3032 (ior:SI (ashift:SI (match_operand:SI 1 "arith_reg_operand" "0")
3033 (const_int 1))
3034 (match_operand:SI 2 "t_reg_operand")))
3035 (set (reg:SI T_REG)
3036 (lshiftrt:SI (match_dup 1) (const_int 31)))]
3037 "TARGET_SH1"
3038 "rotcl %0"
3039 [(set_attr "type" "arith")])
3040
3041 ;; Simplified rotcr version for combine, which allows arbitrary shift
3042 ;; amounts for the reg. If the shift amount is '1' rotcr can be used
3043 ;; directly. Otherwise we have to insert a shift in between.
3044 (define_insn_and_split "*rotcr"
3045 [(set (match_operand:SI 0 "arith_reg_dest")
3046 (ior:SI (lshiftrt:SI (match_operand:SI 1 "arith_reg_or_0_operand")
3047 (match_operand:SI 2 "const_int_operand"))
3048 (ashift:SI (match_operand 3 "arith_reg_or_treg_set_expr")
3049 (const_int 31))))
3050 (clobber (reg:SI T_REG))]
3051 "TARGET_SH1 && can_create_pseudo_p ()"
3052 "#"
3053 "&& 1"
3054 [(const_int 0)]
3055 {
3056 rtx_insn *prev_set_t_insn = NULL;
3057
3058 if (!arith_reg_operand (operands[3], SImode))
3059 {
3060 sh_treg_insns ti = sh_split_treg_set_expr (operands[3], curr_insn);
3061 if (!ti.was_treg_operand ())
3062 prev_set_t_insn = ti.first_insn ();
3063
3064 operands[3] = get_t_reg_rtx ();
3065
3066 if (TARGET_SH2A && ti.has_trailing_nott () && operands[1] == const0_rtx)
3067 {
3068 /* Convert to a movrt, rotr sequence. */
3069 remove_insn (ti.trailing_nott ());
3070 rtx tmp = gen_reg_rtx (SImode);
3071 emit_insn (gen_movnegt (tmp, get_t_reg_rtx ()));
3072 emit_insn (gen_rotrsi3_1 (operands[0], tmp));
3073 DONE;
3074 }
3075 }
3076
3077 if (operands[1] == const0_rtx)
3078 {
3079 operands[1] = gen_reg_rtx (SImode);
3080 emit_insn (gen_movt (operands[1], get_t_reg_rtx ()));
3081 }
3082
3083 if (INTVAL (operands[2]) > 1)
3084 {
3085 const rtx shift_count = GEN_INT (INTVAL (operands[2]) - 1);
3086 rtx tmp_t_reg = NULL_RTX;
3087
3088 /* If we're going to emit a shift sequence that clobbers the T_REG,
3089 try to find the previous insn that sets the T_REG and emit the
3090 shift insn before that insn, to remove the T_REG dependency.
3091 If the insn that sets the T_REG cannot be found, store the T_REG
3092 in a temporary reg and restore it after the shift. */
3093 if (sh_lshrsi_clobbers_t_reg_p (shift_count)
3094 && ! sh_dynamicalize_shift_p (shift_count))
3095 {
3096 if (prev_set_t_insn == NULL)
3097 prev_set_t_insn = prev_nonnote_nondebug_insn_bb (curr_insn);
3098
3099 /* Skip the nott insn, which was probably inserted by the splitter
3100 of *rotcr_neg_t. Don't use one of the recog functions
3101 here during insn splitting, since that causes problems in later
3102 passes. */
3103 if (prev_set_t_insn != NULL_RTX)
3104 {
3105 rtx pat = PATTERN (prev_set_t_insn);
3106 if (GET_CODE (pat) == SET
3107 && t_reg_operand (XEXP (pat, 0), SImode)
3108 && negt_reg_operand (XEXP (pat, 1), SImode))
3109 prev_set_t_insn = prev_nonnote_nondebug_insn_bb
3110 (prev_set_t_insn);
3111 }
3112
3113 if (! (prev_set_t_insn != NULL_RTX
3114 && reg_set_p (get_t_reg_rtx (), prev_set_t_insn)
3115 && ! reg_referenced_p (get_t_reg_rtx (),
3116 PATTERN (prev_set_t_insn))))
3117 {
3118 prev_set_t_insn = NULL;
3119 tmp_t_reg = gen_reg_rtx (SImode);
3120 emit_insn (gen_move_insn (tmp_t_reg, get_t_reg_rtx ()));
3121 }
3122 }
3123
3124 rtx shift_result = gen_reg_rtx (SImode);
3125 rtx shift_insn = gen_lshrsi3 (shift_result, operands[1], shift_count);
3126 operands[1] = shift_result;
3127
3128 /* Emit the shift insn before the insn that sets T_REG, if possible. */
3129 if (prev_set_t_insn != NULL_RTX)
3130 emit_insn_before (shift_insn, prev_set_t_insn);
3131 else
3132 emit_insn (shift_insn);
3133
3134 /* Restore T_REG if it has been saved before. */
3135 if (tmp_t_reg != NULL_RTX)
3136 emit_insn (gen_cmpgtsi_t (tmp_t_reg, const0_rtx));
3137 }
3138
3139 /* For the rotcr insn to work, operands[3] must be in T_REG.
3140 If it is not we can get it there by shifting it right one bit.
3141 In this case T_REG is not an input for this insn, thus we don't have to
3142 pay attention as of where to insert the shlr insn. */
3143 if (! t_reg_operand (operands[3], SImode))
3144 {
3145 /* We don't care about the shifted result here, only the T_REG. */
3146 emit_insn (gen_shlr (gen_reg_rtx (SImode), operands[3]));
3147 operands[3] = get_t_reg_rtx ();
3148 }
3149
3150 emit_insn (gen_rotcr (operands[0], operands[1], operands[3]));
3151 DONE;
3152 })
3153
3154 ;; If combine tries the same as above but with swapped operands, split
3155 ;; it so that it will try the pattern above.
3156 (define_split
3157 [(set (match_operand:SI 0 "arith_reg_dest")
3158 (ior:SI (ashift:SI (match_operand 1 "arith_reg_or_treg_set_expr")
3159 (const_int 31))
3160 (lshiftrt:SI (match_operand:SI 2 "arith_reg_or_0_operand")
3161 (match_operand:SI 3 "const_int_operand"))))]
3162 "TARGET_SH1 && can_create_pseudo_p ()"
3163 [(parallel [(set (match_dup 0)
3164 (ior:SI (lshiftrt:SI (match_dup 2) (match_dup 3))
3165 (ashift:SI (match_dup 1) (const_int 31))))
3166 (clobber (reg:SI T_REG))])])
3167
3168 ;; Basically the same as the rotcr pattern above, but for rotcl.
3169 ;; FIXME: Fold copy pasted split code for rotcr and rotcl.
3170 (define_insn_and_split "*rotcl"
3171 [(set (match_operand:SI 0 "arith_reg_dest")
3172 (ior:SI (ashift:SI (match_operand:SI 1 "arith_reg_operand")
3173 (match_operand:SI 2 "const_int_operand"))
3174 (and:SI (match_operand:SI 3 "arith_reg_or_t_reg_operand")
3175 (const_int 1))))
3176 (clobber (reg:SI T_REG))]
3177 "TARGET_SH1"
3178 "#"
3179 "&& can_create_pseudo_p ()"
3180 [(const_int 0)]
3181 {
3182 gcc_assert (INTVAL (operands[2]) > 0);
3183
3184 if (INTVAL (operands[2]) > 1)
3185 {
3186 const rtx shift_count = GEN_INT (INTVAL (operands[2]) - 1);
3187 rtx_insn *prev_set_t_insn = NULL;
3188 rtx tmp_t_reg = NULL_RTX;
3189
3190 /* If we're going to emit a shift sequence that clobbers the T_REG,
3191 try to find the previous insn that sets the T_REG and emit the
3192 shift insn before that insn, to remove the T_REG dependency.
3193 If the insn that sets the T_REG cannot be found, store the T_REG
3194 in a temporary reg and restore it after the shift. */
3195 if (sh_ashlsi_clobbers_t_reg_p (shift_count)
3196 && ! sh_dynamicalize_shift_p (shift_count))
3197 {
3198 prev_set_t_insn = prev_nonnote_nondebug_insn_bb (curr_insn);
3199
3200 /* Skip the nott insn, which was probably inserted by the splitter
3201 of *rotcl_neg_t. Don't use one of the recog functions
3202 here during insn splitting, since that causes problems in later
3203 passes. */
3204 if (prev_set_t_insn != NULL_RTX)
3205 {
3206 rtx pat = PATTERN (prev_set_t_insn);
3207 if (GET_CODE (pat) == SET
3208 && t_reg_operand (XEXP (pat, 0), SImode)
3209 && negt_reg_operand (XEXP (pat, 1), SImode))
3210 prev_set_t_insn = prev_nonnote_nondebug_insn_bb
3211 (prev_set_t_insn);
3212 }
3213
3214 if (! (prev_set_t_insn != NULL_RTX
3215 && reg_set_p (get_t_reg_rtx (), prev_set_t_insn)
3216 && ! reg_referenced_p (get_t_reg_rtx (),
3217 PATTERN (prev_set_t_insn))))
3218 {
3219 prev_set_t_insn = NULL;
3220 tmp_t_reg = gen_reg_rtx (SImode);
3221 emit_insn (gen_move_insn (tmp_t_reg, get_t_reg_rtx ()));
3222 }
3223 }
3224
3225 rtx shift_result = gen_reg_rtx (SImode);
3226 rtx shift_insn = gen_ashlsi3 (shift_result, operands[1], shift_count);
3227 operands[1] = shift_result;
3228
3229 /* Emit the shift insn before the insn that sets T_REG, if possible. */
3230 if (prev_set_t_insn != NULL_RTX)
3231 emit_insn_before (shift_insn, prev_set_t_insn);
3232 else
3233 emit_insn (shift_insn);
3234
3235 /* Restore T_REG if it has been saved before. */
3236 if (tmp_t_reg != NULL_RTX)
3237 emit_insn (gen_cmpgtsi_t (tmp_t_reg, const0_rtx));
3238 }
3239
3240 /* For the rotcl insn to work, operands[3] must be in T_REG.
3241 If it is not we can get it there by shifting it right one bit.
3242 In this case T_REG is not an input for this insn, thus we don't have to
3243 pay attention as of where to insert the shlr insn. */
3244 if (! t_reg_operand (operands[3], SImode))
3245 {
3246 /* We don't care about the shifted result here, only the T_REG. */
3247 emit_insn (gen_shlr (gen_reg_rtx (SImode), operands[3]));
3248 operands[3] = get_t_reg_rtx ();
3249 }
3250
3251 emit_insn (gen_rotcl (operands[0], operands[1], operands[3]));
3252 DONE;
3253 })
3254
3255 ;; rotcl combine pattern variations
3256 (define_insn_and_split "*rotcl"
3257 [(set (match_operand:SI 0 "arith_reg_dest")
3258 (ior:SI (ashift:SI (match_operand:SI 1 "arith_reg_operand")
3259 (match_operand:SI 2 "const_int_operand"))
3260 (match_operand 3 "treg_set_expr")))
3261 (clobber (reg:SI T_REG))]
3262 "TARGET_SH1"
3263 "#"
3264 "&& can_create_pseudo_p ()"
3265 [(parallel [(set (match_dup 0)
3266 (ior:SI (ashift:SI (match_dup 1) (match_dup 2))
3267 (and:SI (match_dup 3) (const_int 1))))
3268 (clobber (reg:SI T_REG))])]
3269 {
3270 sh_split_treg_set_expr (operands[3], curr_insn);
3271 operands[3] = get_t_reg_rtx ();
3272 })
3273
3274 (define_insn_and_split "*rotcl"
3275 [(set (match_operand:SI 0 "arith_reg_dest")
3276 (ior:SI (and:SI (match_operand:SI 1 "arith_reg_or_t_reg_operand")
3277 (const_int 1))
3278 (ashift:SI (match_operand:SI 2 "arith_reg_operand")
3279 (match_operand:SI 3 "const_int_operand"))))
3280 (clobber (reg:SI T_REG))]
3281 "TARGET_SH1"
3282 "#"
3283 "&& can_create_pseudo_p ()"
3284 [(parallel [(set (match_dup 0)
3285 (ior:SI (ashift:SI (match_dup 2) (match_dup 3))
3286 (and:SI (match_dup 1) (const_int 1))))
3287 (clobber (reg:SI T_REG))])])
3288
3289 (define_insn_and_split "*rotcl"
3290 [(set (match_operand:SI 0 "arith_reg_dest")
3291 (ior:SI (ashift:SI (match_operand:SI 1 "arith_reg_operand")
3292 (match_operand:SI 2 "const_int_operand"))
3293 (lshiftrt:SI (match_operand:SI 3 "arith_reg_operand")
3294 (const_int 31))))
3295 (clobber (reg:SI T_REG))]
3296 "TARGET_SH1"
3297 "#"
3298 "&& can_create_pseudo_p ()"
3299 [(parallel [(set (match_dup 0)
3300 (ior:SI (ashift:SI (match_dup 1) (match_dup 2))
3301 (and:SI (reg:SI T_REG) (const_int 1))))
3302 (clobber (reg:SI T_REG))])]
3303 {
3304 /* We don't care about the result of the left shift, only the T_REG. */
3305 emit_insn (gen_shll (gen_reg_rtx (SImode), operands[3]));
3306 })
3307
3308 (define_insn_and_split "*rotcl"
3309 [(set (match_operand:SI 0 "arith_reg_dest")
3310 (ior:SI (lshiftrt:SI (match_operand:SI 3 "arith_reg_operand")
3311 (const_int 31))
3312 (ashift:SI (match_operand:SI 1 "arith_reg_operand")
3313 (match_operand:SI 2 "const_int_operand"))))
3314 (clobber (reg:SI T_REG))]
3315 "TARGET_SH1"
3316 "#"
3317 "&& can_create_pseudo_p ()"
3318 [(parallel [(set (match_dup 0)
3319 (ior:SI (ashift:SI (match_dup 1) (match_dup 2))
3320 (and:SI (reg:SI T_REG) (const_int 1))))
3321 (clobber (reg:SI T_REG))])]
3322 {
3323 /* We don't care about the result of the left shift, only the T_REG. */
3324 emit_insn (gen_shll (gen_reg_rtx (SImode), operands[3]));
3325 })
3326
3327 (define_insn_and_split "*rotcl"
3328 [(set (match_operand:SI 0 "arith_reg_dest")
3329 (ior:SI (ashift:SI (match_operand:SI 1 "arith_reg_operand")
3330 (match_operand 2 "const_int_operand"))
3331 (zero_extract:SI (match_operand:SI 3 "arith_reg_operand")
3332 (const_int 1)
3333 (match_operand 4 "const_int_operand"))))
3334 (clobber (reg:SI T_REG))]
3335 "TARGET_SH1"
3336 "#"
3337 "&& can_create_pseudo_p ()"
3338 [(parallel [(set (match_dup 0)
3339 (ior:SI (ashift:SI (match_dup 1) (match_dup 2))
3340 (and:SI (match_dup 5) (const_int 1))))
3341 (clobber (reg:SI T_REG))])]
3342 {
3343 if (TARGET_SH2A && satisfies_constraint_K03 (operands[4]))
3344 {
3345 /* On SH2A we can use the bld insn to zero extract a single bit
3346 into the T bit. */
3347 operands[5] = get_t_reg_rtx ();
3348 emit_insn (gen_bldsi_reg (operands[3], operands[4]));
3349 }
3350 else
3351 {
3352 /* If we can't use the bld insn we have to emit a tst + nott sequence
3353 to get the extracted bit into the T bit.
3354 This will probably be worse than pre-shifting the operand. */
3355 operands[5] = gen_reg_rtx (SImode);
3356 emit_insn (gen_lshrsi3 (operands[5], operands[3], operands[4]));
3357 }
3358 })
3359
3360 ;; rotcr combine bridge pattern which will make combine try out more
3361 ;; complex patterns.
3362 (define_insn_and_split "*rotcr"
3363 [(set (match_operand:SI 0 "arith_reg_dest")
3364 (ashift:SI (match_operand 1 "treg_set_expr") (const_int 31)))]
3365 "TARGET_SH1 && can_create_pseudo_p ()"
3366 "#"
3367 "&& 1"
3368 [(parallel [(set (match_dup 0)
3369 (ior:SI (lshiftrt:SI (const_int 0) (const_int 1))
3370 (ashift:SI (match_dup 1) (const_int 31))))
3371 (clobber (reg:SI T_REG))])])
3372
3373 (define_insn_and_split "*rotcr"
3374 [(set (match_operand:SI 0 "arith_reg_dest")
3375 (ior:SI (and:SI (match_operand:SI 1 "arith_reg_operand")
3376 (const_int -2147483648)) ;; 0xffffffff80000000
3377 (lshiftrt:SI (match_operand:SI 2 "arith_reg_operand")
3378 (const_int 1))))
3379 (clobber (reg:SI T_REG))]
3380 "TARGET_SH1"
3381 "#"
3382 "&& can_create_pseudo_p ()"
3383 [(const_int 0)]
3384 {
3385 rtx tmp = gen_reg_rtx (SImode);
3386 emit_insn (gen_shll (tmp, operands[1]));
3387 emit_insn (gen_rotcr (operands[0], operands[2], get_t_reg_rtx ()));
3388 DONE;
3389 })
3390
3391 (define_insn_and_split "*rotcr"
3392 [(set (match_operand:SI 0 "arith_reg_dest")
3393 (ior:SI (lshiftrt:SI (match_operand:SI 1 "arith_reg_operand")
3394 (const_int 1))
3395 (const_int -2147483648))) ;; 0xffffffff80000000
3396 (clobber (reg:SI T_REG))]
3397 "TARGET_SH1"
3398 "#"
3399 "&& can_create_pseudo_p ()"
3400 [(const_int 0)]
3401 {
3402 emit_insn (gen_sett ());
3403 emit_insn (gen_rotcr (operands[0], operands[1], get_t_reg_rtx ()));
3404 DONE;
3405 })
3406
3407 ;; rotcr combine patterns for rotating in the negated T_REG value.
3408 (define_insn_and_split "*rotcr_neg_t"
3409 [(set (match_operand:SI 0 "arith_reg_dest")
3410 (ior:SI (match_operand:SI 1 "negt_reg_shl31_operand")
3411 (lshiftrt:SI (match_operand:SI 2 "arith_reg_operand")
3412 (match_operand:SI 3 "const_int_operand"))))
3413 (clobber (reg:SI T_REG))]
3414 "TARGET_SH1"
3415 "#"
3416 "&& can_create_pseudo_p ()"
3417 [(parallel [(set (match_dup 0)
3418 (ior:SI (lshiftrt:SI (match_dup 2) (match_dup 3))
3419 (ashift:SI (reg:SI T_REG) (const_int 31))))
3420 (clobber (reg:SI T_REG))])]
3421 {
3422 emit_insn (gen_nott (get_t_reg_rtx ()));
3423 })
3424
3425 (define_insn_and_split "*rotcr_neg_t"
3426 [(set (match_operand:SI 0 "arith_reg_dest")
3427 (ior:SI (lshiftrt:SI (match_operand:SI 1 "arith_reg_operand")
3428 (match_operand:SI 2 "const_int_operand"))
3429 (match_operand:SI 3 "negt_reg_shl31_operand")))
3430 (clobber (reg:SI T_REG))]
3431 "TARGET_SH1"
3432 "#"
3433 "&& can_create_pseudo_p ()"
3434 [(parallel [(set (match_dup 0)
3435 (ior:SI (lshiftrt:SI (match_dup 1) (match_dup 2))
3436 (ashift:SI (reg:SI T_REG) (const_int 31))))
3437 (clobber (reg:SI T_REG))])]
3438 {
3439 emit_insn (gen_nott (get_t_reg_rtx ()));
3440 })
3441
3442 ;; rotcl combine patterns for rotating in the negated T_REG value.
3443 ;; For some strange reason these have to be specified as splits which combine
3444 ;; will pick up. If they are specified as insn_and_split like the
3445 ;; *rotcr_neg_t patterns above, combine would recognize them successfully
3446 ;; but not emit them on non-SH2A targets.
3447 (define_split
3448 [(set (match_operand:SI 0 "arith_reg_dest")
3449 (ior:SI (match_operand:SI 1 "negt_reg_operand")
3450 (ashift:SI (match_operand:SI 2 "arith_reg_operand")
3451 (match_operand:SI 3 "const_int_operand"))))]
3452 "TARGET_SH1"
3453 [(set (reg:SI T_REG) (xor:SI (reg:SI T_REG) (const_int 1)))
3454 (parallel [(set (match_dup 0)
3455 (ior:SI (ashift:SI (match_dup 2) (match_dup 3))
3456 (and:SI (reg:SI T_REG) (const_int 1))))
3457 (clobber (reg:SI T_REG))])])
3458
3459 (define_split
3460 [(set (match_operand:SI 0 "arith_reg_dest")
3461 (ior:SI (ashift:SI (match_operand:SI 2 "arith_reg_operand")
3462 (match_operand:SI 3 "const_int_operand"))
3463 (match_operand:SI 1 "negt_reg_operand")))]
3464 "TARGET_SH1"
3465 [(set (reg:SI T_REG) (xor:SI (reg:SI T_REG) (const_int 1)))
3466 (parallel [(set (match_dup 0)
3467 (ior:SI (ashift:SI (match_dup 2) (match_dup 3))
3468 (and:SI (reg:SI T_REG) (const_int 1))))
3469 (clobber (reg:SI T_REG))])])
3470
3471 ;; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3472 ;; SImode shift left
3473
3474 (define_expand "ashlsi3"
3475 [(set (match_operand:SI 0 "arith_reg_operand" "")
3476 (ashift:SI (match_operand:SI 1 "arith_reg_operand" "")
3477 (match_operand:SI 2 "shift_count_operand" "")))]
3478 ""
3479 {
3480 if (TARGET_DYNSHIFT
3481 && CONST_INT_P (operands[2]) && sh_dynamicalize_shift_p (operands[2]))
3482 {
3483 /* Don't force the constant into a reg yet. Some other optimizations
3484 might not see through the reg that holds the shift count. */
3485 }
3486
3487 /* If the ashlsi3_* insn is going to clobber the T_REG it must be
3488 expanded here. */
3489 if (CONST_INT_P (operands[2])
3490 && sh_ashlsi_clobbers_t_reg_p (operands[2])
3491 && ! sh_dynamicalize_shift_p (operands[2]))
3492 {
3493 emit_insn (gen_ashlsi3_n_clobbers_t (operands[0], operands[1],
3494 operands[2]));
3495 DONE;
3496 }
3497
3498 /* Expand a library call for the dynamic shift. */
3499 if (!CONST_INT_P (operands[2]) && !TARGET_DYNSHIFT)
3500 {
3501 emit_move_insn (gen_rtx_REG (SImode, R4_REG), operands[1]);
3502 rtx funcaddr = gen_reg_rtx (Pmode);
3503 rtx lab = function_symbol (funcaddr, "__ashlsi3_r0", SFUNC_STATIC).lab;
3504 emit_insn (gen_ashlsi3_d_call (operands[0], operands[2], funcaddr, lab));
3505
3506 DONE;
3507 }
3508 })
3509
3510 (define_insn "ashlsi3_k"
3511 [(set (match_operand:SI 0 "arith_reg_dest" "=r,r")
3512 (ashift:SI (match_operand:SI 1 "arith_reg_operand" "0,0")
3513 (match_operand:SI 2 "p27_shift_count_operand" "M,P27")))]
3514 "TARGET_SH1"
3515 "@
3516 add %0,%0
3517 shll%O2 %0"
3518 [(set_attr "type" "arith")])
3519
3520 (define_insn_and_split "ashlsi3_d"
3521 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
3522 (ashift:SI (match_operand:SI 1 "arith_reg_operand" "0")
3523 (match_operand:SI 2 "shift_count_operand" "r")))]
3524 "TARGET_DYNSHIFT"
3525 "shld %2,%0"
3526 "&& CONST_INT_P (operands[2]) && ! sh_dynamicalize_shift_p (operands[2])
3527 && ! sh_ashlsi_clobbers_t_reg_p (operands[2])"
3528 [(const_int 0)]
3529 {
3530 if (satisfies_constraint_P27 (operands[2]))
3531 {
3532 emit_insn (gen_ashlsi3_k (operands[0], operands[1], operands[2]));
3533 DONE;
3534 }
3535 else if (! satisfies_constraint_P27 (operands[2]))
3536 {
3537 /* This must happen before reload, otherwise the constant will be moved
3538 into a register due to the "r" constraint, after which this split
3539 cannot be done anymore.
3540 Unfortunately the move insn will not always be eliminated.
3541 Also, here we must not create a shift sequence that clobbers the
3542 T_REG. */
3543 emit_move_insn (operands[0], operands[1]);
3544 gen_shifty_op (ASHIFT, operands);
3545 DONE;
3546 }
3547
3548 FAIL;
3549 }
3550 [(set_attr "type" "dyn_shift")])
3551
3552 ;; If dynamic shifts are not available use a library function.
3553 ;; By specifying the pattern we reduce the number of call clobbered regs.
3554 ;; In order to make combine understand the truncation of the shift amount
3555 ;; operand we have to allow it to use pseudo regs for the shift operands.
3556 (define_insn "ashlsi3_d_call"
3557 [(set (match_operand:SI 0 "arith_reg_dest" "=z,z")
3558 (ashift:SI (reg:SI R4_REG)
3559 (and:SI (match_operand:SI 1 "arith_reg_operand" "z,z")
3560 (const_int 31))))
3561 (use (match_operand:SI 2 "arith_reg_operand" "r,r"))
3562 (use (match_operand 3 "" "Z,Ccl"))
3563 (clobber (reg:SI T_REG))
3564 (clobber (reg:SI PR_REG))]
3565 "TARGET_SH1 && !TARGET_DYNSHIFT"
3566 "@
3567 jsr @%2%#
3568 bsrf %2\n%O3:%#"
3569 [(set_attr "type" "sfunc")
3570 (set_attr "needs_delay_slot" "yes")])
3571
3572 (define_insn_and_split "ashlsi3_n"
3573 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
3574 (ashift:SI (match_operand:SI 1 "arith_reg_operand" "0")
3575 (match_operand:SI 2 "not_p27_shift_count_operand" "")))]
3576 "TARGET_SH1 && ! sh_ashlsi_clobbers_t_reg_p (operands[2])"
3577 "#"
3578 "&& (reload_completed
3579 || (sh_dynamicalize_shift_p (operands[2]) && can_create_pseudo_p ()))"
3580 [(const_int 0)]
3581 {
3582 if (sh_dynamicalize_shift_p (operands[2]) && can_create_pseudo_p ())
3583 {
3584 /* If this pattern was picked and dynamic shifts are supported, switch
3585 to dynamic shift pattern before reload. */
3586 operands[2] = force_reg (SImode, operands[2]);
3587 emit_insn (gen_ashlsi3_d (operands[0], operands[1], operands[2]));
3588 }
3589 else
3590 gen_shifty_op (ASHIFT, operands);
3591
3592 DONE;
3593 })
3594
3595 (define_insn_and_split "ashlsi3_n_clobbers_t"
3596 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
3597 (ashift:SI (match_operand:SI 1 "arith_reg_operand" "0")
3598 (match_operand:SI 2 "not_p27_shift_count_operand" "")))
3599 (clobber (reg:SI T_REG))]
3600 "TARGET_SH1 && sh_ashlsi_clobbers_t_reg_p (operands[2])"
3601 "#"
3602 "&& (reload_completed || INTVAL (operands[2]) == 31
3603 || (sh_dynamicalize_shift_p (operands[2]) && can_create_pseudo_p ()))"
3604 [(const_int 0)]
3605 {
3606 if (INTVAL (operands[2]) == 31)
3607 {
3608 /* If the shift amount is 31 we split into a different sequence before
3609 reload so that it gets a chance to allocate R0 for the sequence.
3610 If it fails to do so (due to pressure on R0), it will take one insn
3611 more for the and. */
3612 emit_insn (gen_andsi3 (operands[0], operands[1], const1_rtx));
3613 emit_insn (gen_rotlsi3_31 (operands[0], operands[0]));
3614 }
3615 else if (sh_dynamicalize_shift_p (operands[2]) && can_create_pseudo_p ())
3616 {
3617 /* If this pattern was picked and dynamic shifts are supported, switch
3618 to dynamic shift pattern before reload. */
3619 operands[2] = force_reg (SImode, operands[2]);
3620 emit_insn (gen_ashlsi3_d (operands[0], operands[1], operands[2]));
3621 }
3622 else
3623 gen_shifty_op (ASHIFT, operands);
3624
3625 DONE;
3626 })
3627
3628 (define_insn "shll"
3629 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
3630 (ashift:SI (match_operand:SI 1 "arith_reg_operand" "0") (const_int 1)))
3631 (set (reg:SI T_REG)
3632 (lt:SI (match_dup 1) (const_int 0)))]
3633 "TARGET_SH1"
3634 "shll %0"
3635 [(set_attr "type" "arith")])
3636
3637 (define_insn "*ashlsi_c_void"
3638 [(set (reg:SI T_REG)
3639 (lt:SI (match_operand:SI 0 "arith_reg_operand" "r") (const_int 0)))
3640 (clobber (match_scratch:SI 1 "=0"))]
3641 "TARGET_SH1 && cse_not_expected"
3642 "shll %0"
3643 [(set_attr "type" "arith")])
3644
3645 (define_peephole2
3646 [(set (match_operand:SI 0 "arith_reg_dest" "") (const_int 0))
3647 (set (reg:SI T_REG)
3648 (gt:SI (match_dup 0) (match_operand:SI 1 "arith_reg_operand" "")))]
3649 "TARGET_SH1
3650 && peep2_reg_dead_p (2, operands[0])
3651 && peep2_reg_dead_p (2, operands[1])"
3652 [(const_int 0)]
3653 {
3654 emit_insn (gen_shll (operands[1], operands[1]));
3655 DONE;
3656 })
3657
3658 ;; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3659 ;; HImode shift left
3660
3661 (define_expand "ashlhi3"
3662 [(parallel [(set (match_operand:HI 0 "arith_reg_operand" "")
3663 (ashift:HI (match_operand:HI 1 "arith_reg_operand" "")
3664 (match_operand:SI 2 "nonmemory_operand" "")))
3665 (clobber (reg:SI T_REG))])]
3666 "TARGET_SH1"
3667 {
3668 if (!CONST_INT_P (operands[2]))
3669 FAIL;
3670 /* It may be possible to call gen_ashlhi3 directly with more generic
3671 operands. Make sure operands[1] is a HImode register here. */
3672 if (!arith_reg_operand (operands[1], HImode))
3673 operands[1] = copy_to_mode_reg (HImode, operands[1]);
3674 })
3675
3676 (define_insn "ashlhi3_k"
3677 [(set (match_operand:HI 0 "arith_reg_dest" "=r,r")
3678 (ashift:HI (match_operand:HI 1 "arith_reg_operand" "0,0")
3679 (match_operand:HI 2 "const_int_operand" "M,P27")))]
3680 "TARGET_SH1 && satisfies_constraint_P27 (operands[2])"
3681 "@
3682 add %0,%0
3683 shll%O2 %0"
3684 [(set_attr "type" "arith")])
3685
3686 (define_insn_and_split "*ashlhi3_n"
3687 [(set (match_operand:HI 0 "arith_reg_dest" "=r")
3688 (ashift:HI (match_operand:HI 1 "arith_reg_operand" "0")
3689 (match_operand:HI 2 "const_int_operand" "n")))
3690 (clobber (reg:SI T_REG))]
3691 "TARGET_SH1"
3692 "#"
3693 "&& reload_completed"
3694 [(use (reg:SI R0_REG))]
3695 {
3696 gen_shifty_hi_op (ASHIFT, operands);
3697 DONE;
3698 })
3699
3700 ;; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3701 ;; DImode shift left
3702
3703 (define_expand "ashldi3"
3704 [(parallel [(set (match_operand:DI 0 "arith_reg_operand" "")
3705 (ashift:DI (match_operand:DI 1 "arith_reg_operand" "")
3706 (match_operand:DI 2 "immediate_operand" "")))
3707 (clobber (reg:SI T_REG))])]
3708 ""
3709 {
3710 if (CONST_INT_P (operands[2]) && INTVAL (operands[2]) == 1)
3711 {
3712 emit_insn (gen_ashldi3_k (operands[0], operands[1]));
3713 DONE;
3714 }
3715 else if (CONST_INT_P (operands[2]) && INTVAL (operands[2]) < 32)
3716 {
3717 emit_insn (gen_ashldi3_std (operands[0], operands[1], operands[2]));
3718 DONE;
3719 }
3720 else
3721 FAIL;
3722 })
3723
3724 ;; Expander for DImode shift left with SImode operations.
3725 (define_expand "ashldi3_std"
3726 [(set (match_operand:DI 0 "arith_reg_dest" "=r")
3727 (ashift:DI (match_operand:DI 1 "arith_reg_operand" "r")
3728 (match_operand:DI 2 "const_int_operand" "n")))]
3729 "TARGET_SH1 && INTVAL (operands[2]) < 32"
3730 {
3731 rtx low_src = gen_lowpart (SImode, operands[1]);
3732 rtx high_src = gen_highpart (SImode, operands[1]);
3733 rtx dst = gen_reg_rtx (DImode);
3734 rtx low_dst = gen_lowpart (SImode, dst);
3735 rtx high_dst = gen_highpart (SImode, dst);
3736 rtx tmp0 = gen_reg_rtx (SImode);
3737 rtx tmp1 = gen_reg_rtx (SImode);
3738
3739 emit_insn (gen_lshrsi3 (tmp0, low_src, GEN_INT (32 - INTVAL (operands[2]))));
3740 emit_insn (gen_ashlsi3 (low_dst, low_src, operands[2]));
3741 emit_insn (gen_ashlsi3 (tmp1, high_src, operands[2]));
3742 emit_insn (gen_iorsi3 (high_dst, tmp0, tmp1));
3743 emit_move_insn (operands[0], dst);
3744 DONE;
3745 })
3746
3747 (define_insn_and_split "ashldi3_k"
3748 [(set (match_operand:DI 0 "arith_reg_dest" "=r")
3749 (ashift:DI (match_operand:DI 1 "arith_reg_operand" "0")
3750 (const_int 1)))
3751 (clobber (reg:SI T_REG))]
3752 "TARGET_SH1"
3753 "#"
3754 "&& reload_completed"
3755 [(const_int 0)]
3756 {
3757 rtx high = gen_highpart (SImode, operands[0]);
3758 rtx low = gen_lowpart (SImode, operands[0]);
3759 emit_insn (gen_shll (low, low));
3760 emit_insn (gen_rotcl (high, high, get_t_reg_rtx ()));
3761 DONE;
3762 })
3763
3764 ;; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3765 ;; SImode arithmetic shift right
3766 ;;
3767 ;; We can't do HImode right shifts correctly unless we start out with an
3768 ;; explicit zero / sign extension; doing that would result in worse overall
3769 ;; code, so just let the machine independent code widen the mode.
3770 ;; That's why we don't have ashrhi3_k / lshrhi3_k / lshrhi3_m / lshrhi3 .
3771
3772 (define_expand "ashrsi3"
3773 [(parallel [(set (match_operand:SI 0 "arith_reg_dest" "")
3774 (ashiftrt:SI (match_operand:SI 1 "arith_reg_operand" "")
3775 (match_operand:SI 2 "nonmemory_operand" "")))
3776 (clobber (reg:SI T_REG))])]
3777 ""
3778 {
3779 if (expand_ashiftrt (operands))
3780 DONE;
3781 else
3782 FAIL;
3783 })
3784
3785 (define_insn "shar"
3786 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
3787 (ashiftrt:SI (match_operand:SI 1 "arith_reg_operand" "0")
3788 (const_int 1)))
3789 (set (reg:SI T_REG)
3790 (and:SI (match_dup 1) (const_int 1)))]
3791 "TARGET_SH1"
3792 "shar %0"
3793 [(set_attr "type" "arith")])
3794
3795 (define_insn "ashrsi3_k"
3796 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
3797 (ashiftrt:SI (match_operand:SI 1 "arith_reg_operand" "0")
3798 (match_operand:SI 2 "const_int_operand" "M")))
3799 (clobber (reg:SI T_REG))]
3800 "TARGET_SH1 && INTVAL (operands[2]) == 1"
3801 "shar %0"
3802 [(set_attr "type" "arith")])
3803
3804 (define_insn_and_split "ashrsi2_16"
3805 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
3806 (ashiftrt:SI (match_operand:SI 1 "arith_reg_operand" "r")
3807 (const_int 16)))]
3808 "TARGET_SH1"
3809 "#"
3810 "&& 1"
3811 [(set (match_dup 0) (rotate:SI (match_dup 1) (const_int 16)))
3812 (set (match_dup 0) (sign_extend:SI (match_dup 2)))]
3813 {
3814 operands[2] = gen_lowpart (HImode, operands[0]);
3815 })
3816
3817 (define_insn_and_split "ashrsi2_31"
3818 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
3819 (ashiftrt:SI (match_operand:SI 1 "arith_reg_operand" "0")
3820 (const_int 31)))
3821 (clobber (reg:SI T_REG))]
3822 "TARGET_SH1"
3823 "#"
3824 "&& 1"
3825 [(const_int 0)]
3826 {
3827 emit_insn (gen_shll (operands[0], operands[1]));
3828 emit_insn (gen_mov_neg_si_t (operands[0], get_t_reg_rtx ()));
3829 DONE;
3830 })
3831
3832 ;; If the shift amount is changed by combine it will try to plug the
3833 ;; use on the symbol of the library function and the PR clobber.
3834 (define_insn_and_split "*ashrsi2_31"
3835 [(set (match_operand:SI 0 "arith_reg_dest")
3836 (ashiftrt:SI (match_operand:SI 1 "arith_reg_operand")
3837 (const_int 31)))
3838 (clobber (reg:SI T_REG))
3839 (clobber (reg:SI PR_REG))
3840 (use (match_operand:SI 2 "symbol_ref_operand"))]
3841 "TARGET_SH1"
3842 "#"
3843 "&& 1"
3844 [(parallel [(set (match_dup 0) (ashiftrt:SI (match_dup 1) (const_int 31)))
3845 (clobber (reg:SI T_REG))])])
3846
3847 (define_insn "ashrsi3_d"
3848 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
3849 (ashiftrt:SI (match_operand:SI 1 "arith_reg_operand" "0")
3850 (neg:SI (match_operand:SI 2 "arith_reg_operand" "r"))))]
3851 "TARGET_DYNSHIFT"
3852 "shad %2,%0"
3853 [(set_attr "type" "dyn_shift")])
3854
3855 (define_insn "ashrsi3_n"
3856 [(set (reg:SI R4_REG)
3857 (ashiftrt:SI (reg:SI R4_REG)
3858 (match_operand:SI 0 "const_int_operand" "i,i")))
3859 (clobber (reg:SI T_REG))
3860 (clobber (reg:SI PR_REG))
3861 (use (match_operand:SI 1 "arith_reg_operand" "r,r"))
3862 (use (match_operand 2 "" "Z,Ccl"))]
3863 "TARGET_SH1"
3864 "@
3865 jsr @%1%#
3866 bsrf %1\n%O2:%#"
3867 [(set_attr "type" "sfunc")
3868 (set_attr "needs_delay_slot" "yes")])
3869
3870 ;; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3871 ;; DImode arithmetic shift right
3872
3873 (define_expand "ashrdi3"
3874 [(parallel [(set (match_operand:DI 0 "arith_reg_operand" "")
3875 (ashiftrt:DI (match_operand:DI 1 "arith_reg_operand" "")
3876 (match_operand:DI 2 "immediate_operand" "")))
3877 (clobber (reg:SI T_REG))])]
3878 ""
3879 {
3880 if (!CONST_INT_P (operands[2]) || INTVAL (operands[2]) != 1)
3881 FAIL;
3882 })
3883
3884 (define_insn_and_split "ashrdi3_k"
3885 [(set (match_operand:DI 0 "arith_reg_dest" "=r")
3886 (ashiftrt:DI (match_operand:DI 1 "arith_reg_operand" "0")
3887 (const_int 1)))
3888 (clobber (reg:SI T_REG))]
3889 "TARGET_SH1"
3890 "#"
3891 "&& reload_completed"
3892 [(const_int 0)]
3893 {
3894 rtx high = gen_highpart (SImode, operands[0]);
3895 rtx low = gen_lowpart (SImode, operands[0]);
3896 emit_insn (gen_shar (high, high));
3897 emit_insn (gen_rotcr (low, low, get_t_reg_rtx ()));
3898 DONE;
3899 })
3900
3901 ;; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3902 ;; SImode logical shift right
3903
3904 (define_expand "lshrsi3"
3905 [(set (match_operand:SI 0 "arith_reg_dest" "")
3906 (lshiftrt:SI (match_operand:SI 1 "arith_reg_operand" "")
3907 (match_operand:SI 2 "shift_count_operand" "")))]
3908 ""
3909 {
3910 /* If a dynamic shift is supposed to be used, expand the lshrsi3_d insn
3911 here, otherwise the pattern will never match due to the shift amount reg
3912 negation. */
3913 if (TARGET_DYNSHIFT
3914 && CONST_INT_P (operands[2]) && sh_dynamicalize_shift_p (operands[2]))
3915 {
3916 /* Don't force the constant into a reg yet. Some other optimizations
3917 might not see through the reg that holds the shift count. */
3918 if (sh_lshrsi_clobbers_t_reg_p (operands[2]))
3919 emit_insn (gen_lshrsi3_n_clobbers_t (operands[0], operands[1], operands[2]));
3920 else
3921 emit_insn (gen_lshrsi3_n (operands[0], operands[1], operands[2]));
3922 DONE;
3923 }
3924
3925 if (TARGET_DYNSHIFT && ! CONST_INT_P (operands[2]))
3926 {
3927 rtx neg_count = gen_reg_rtx (SImode);
3928 emit_insn (gen_negsi2 (neg_count, operands[2]));
3929 emit_insn (gen_lshrsi3_d (operands[0], operands[1], neg_count));
3930 DONE;
3931 }
3932
3933 /* If the lshrsi3_* insn is going to clobber the T_REG it must be
3934 expanded here. */
3935 if (CONST_INT_P (operands[2])
3936 && sh_lshrsi_clobbers_t_reg_p (operands[2])
3937 && ! sh_dynamicalize_shift_p (operands[2]))
3938 {
3939 emit_insn (gen_lshrsi3_n_clobbers_t (operands[0], operands[1],
3940 operands[2]));
3941 DONE;
3942 }
3943
3944 /* Expand a library call for the dynamic shift. */
3945 if (!CONST_INT_P (operands[2]) && !TARGET_DYNSHIFT)
3946 {
3947 emit_move_insn (gen_rtx_REG (SImode, R4_REG), operands[1]);
3948 rtx funcaddr = gen_reg_rtx (Pmode);
3949 rtx lab = function_symbol (funcaddr, "__lshrsi3_r0", SFUNC_STATIC).lab;
3950 emit_insn (gen_lshrsi3_d_call (operands[0], operands[2], funcaddr, lab));
3951 DONE;
3952 }
3953 })
3954
3955 (define_insn "lshrsi3_k"
3956 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
3957 (lshiftrt:SI (match_operand:SI 1 "arith_reg_operand" "0")
3958 (match_operand:SI 2 "p27_rshift_count_operand" "P27")))]
3959 "TARGET_SH1"
3960 "shlr%O2 %0"
3961 [(set_attr "type" "arith")])
3962
3963 (define_insn_and_split "lshrsi3_d"
3964 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
3965 (lshiftrt:SI (match_operand:SI 1 "arith_reg_operand" "0")
3966 (neg:SI (match_operand:SI 2 "shift_count_operand" "r"))))]
3967 "TARGET_DYNSHIFT"
3968 "shld %2,%0"
3969 "&& CONST_INT_P (operands[2]) && ! sh_dynamicalize_shift_p (operands[2])
3970 && ! sh_lshrsi_clobbers_t_reg_p (operands[2])"
3971 [(const_int 0)]
3972 {
3973 /* The shift count const_int is a negative value for all dynamic
3974 right shift insns. */
3975 operands[2] = GEN_INT (- INTVAL (operands[2]));
3976
3977 if (satisfies_constraint_P27 (operands[2]))
3978 {
3979 /* This will not be done for a shift amount of 1, because it would
3980 clobber the T_REG. */
3981 emit_insn (gen_lshrsi3_k (operands[0], operands[1], operands[2]));
3982 DONE;
3983 }
3984 else if (! satisfies_constraint_P27 (operands[2]))
3985 {
3986 /* This must happen before reload, otherwise the constant will be moved
3987 into a register due to the "r" constraint, after which this split
3988 cannot be done anymore.
3989 Unfortunately the move insn will not always be eliminated.
3990 Also, here we must not create a shift sequence that clobbers the
3991 T_REG. */
3992 emit_move_insn (operands[0], operands[1]);
3993 gen_shifty_op (LSHIFTRT, operands);
3994 DONE;
3995 }
3996
3997 FAIL;
3998 }
3999 [(set_attr "type" "dyn_shift")])
4000
4001 ;; If dynamic shifts are not available use a library function.
4002 ;; By specifying the pattern we reduce the number of call clobbered regs.
4003 ;; In order to make combine understand the truncation of the shift amount
4004 ;; operand we have to allow it to use pseudo regs for the shift operands.
4005 (define_insn "lshrsi3_d_call"
4006 [(set (match_operand:SI 0 "arith_reg_dest" "=z,z")
4007 (lshiftrt:SI (reg:SI R4_REG)
4008 (and:SI (match_operand:SI 1 "arith_reg_operand" "z,z")
4009 (const_int 31))))
4010 (use (match_operand:SI 2 "arith_reg_operand" "r,r"))
4011 (use (match_operand 3 "" "Z,Ccl"))
4012 (clobber (reg:SI T_REG))
4013 (clobber (reg:SI PR_REG))]
4014 "TARGET_SH1 && !TARGET_DYNSHIFT"
4015 "@
4016 jsr @%2%#
4017 bsrf %2\n%O3:%#"
4018 [(set_attr "type" "sfunc")
4019 (set_attr "needs_delay_slot" "yes")])
4020
4021 (define_insn_and_split "lshrsi3_n"
4022 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
4023 (lshiftrt:SI (match_operand:SI 1 "arith_reg_operand" "0")
4024 (match_operand:SI 2 "not_p27_rshift_count_operand")))]
4025 "TARGET_SH1 && ! sh_lshrsi_clobbers_t_reg_p (operands[2])"
4026 "#"
4027 "&& (reload_completed
4028 || (sh_dynamicalize_shift_p (operands[2]) && can_create_pseudo_p ()))"
4029 [(const_int 0)]
4030 {
4031 if (sh_dynamicalize_shift_p (operands[2]) && can_create_pseudo_p ())
4032 {
4033 /* If this pattern was picked and dynamic shifts are supported, switch
4034 to dynamic shift pattern before reload. */
4035 operands[2] = GEN_INT (- INTVAL (operands[2]));
4036 emit_insn (gen_lshrsi3_d (operands[0], operands[1], operands[2]));
4037 }
4038 else
4039 gen_shifty_op (LSHIFTRT, operands);
4040
4041 DONE;
4042 })
4043
4044 ;; The lshrsi3_n_clobbers_t pattern also works as a simplified version of
4045 ;; the shlr pattern.
4046 (define_insn_and_split "lshrsi3_n_clobbers_t"
4047 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
4048 (lshiftrt:SI (match_operand:SI 1 "arith_reg_operand" "0")
4049 (match_operand:SI 2 "not_p27_rshift_count_operand")))
4050 (clobber (reg:SI T_REG))]
4051 "TARGET_SH1 && sh_lshrsi_clobbers_t_reg_p (operands[2])"
4052 "#"
4053 "&& (reload_completed || INTVAL (operands[2]) == 31
4054 || (sh_dynamicalize_shift_p (operands[2]) && can_create_pseudo_p ()))"
4055 [(const_int 0)]
4056 {
4057 if (INTVAL (operands[2]) == 31)
4058 {
4059 emit_insn (gen_shll (operands[0], operands[1]));
4060 emit_insn (gen_movt (operands[0], get_t_reg_rtx ()));
4061 }
4062 else if (sh_dynamicalize_shift_p (operands[2]) && can_create_pseudo_p ())
4063 {
4064 /* If this pattern was picked and dynamic shifts are supported, switch
4065 to dynamic shift pattern before reload. */
4066 operands[2] = GEN_INT (- INTVAL (operands[2]));
4067 emit_insn (gen_lshrsi3_d (operands[0], operands[1], operands[2]));
4068 }
4069 else
4070 gen_shifty_op (LSHIFTRT, operands);
4071
4072 DONE;
4073 })
4074
4075 (define_insn "shlr"
4076 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
4077 (lshiftrt:SI (match_operand:SI 1 "arith_reg_operand" "0")
4078 (const_int 1)))
4079 (set (reg:SI T_REG)
4080 (and:SI (match_dup 1) (const_int 1)))]
4081 "TARGET_SH1"
4082 "shlr %0"
4083 [(set_attr "type" "arith")])
4084
4085 ;; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4086 ;; DImode logical shift right
4087
4088 (define_expand "lshrdi3"
4089 [(parallel [(set (match_operand:DI 0 "arith_reg_operand" "")
4090 (lshiftrt:DI (match_operand:DI 1 "arith_reg_operand" "")
4091 (match_operand:DI 2 "immediate_operand" "")))
4092 (clobber (reg:SI T_REG))])]
4093 ""
4094 {
4095 if (!CONST_INT_P (operands[2]) || INTVAL (operands[2]) != 1)
4096 FAIL;
4097 })
4098
4099 (define_insn_and_split "lshrdi3_k"
4100 [(set (match_operand:DI 0 "arith_reg_dest" "=r")
4101 (lshiftrt:DI (match_operand:DI 1 "arith_reg_operand" "0")
4102 (const_int 1)))
4103 (clobber (reg:SI T_REG))]
4104 "TARGET_SH1"
4105 "#"
4106 "&& reload_completed"
4107 [(const_int 0)]
4108 {
4109 rtx high = gen_highpart (SImode, operands[0]);
4110 rtx low = gen_lowpart (SImode, operands[0]);
4111 emit_insn (gen_shlr (high, high));
4112 emit_insn (gen_rotcr (low, low, get_t_reg_rtx ()));
4113 DONE;
4114 })
4115
4116 ;; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4117 ;; Combined left/right shifts
4118
4119 (define_split
4120 [(set (match_operand:SI 0 "register_operand" "")
4121 (and:SI (ashift:SI (match_operand:SI 1 "register_operand" "")
4122 (match_operand:SI 2 "const_int_operand" ""))
4123 (match_operand:SI 3 "const_int_operand" "")))]
4124 "TARGET_SH1 && reload_completed && (unsigned)INTVAL (operands[2]) < 32"
4125 [(use (reg:SI R0_REG))]
4126 {
4127 if (gen_shl_and (operands[0], operands[2], operands[3], operands[1]))
4128 FAIL;
4129 DONE;
4130 })
4131
4132 (define_split
4133 [(set (match_operand:SI 0 "register_operand" "")
4134 (and:SI (ashift:SI (match_operand:SI 1 "register_operand" "")
4135 (match_operand:SI 2 "const_int_operand" ""))
4136 (match_operand:SI 3 "const_int_operand" "")))
4137 (clobber (reg:SI T_REG))]
4138 "TARGET_SH1 && reload_completed && (unsigned)INTVAL (operands[2]) < 32"
4139 [(use (reg:SI R0_REG))]
4140 {
4141 if (gen_shl_and (operands[0], operands[2], operands[3], operands[1]))
4142 FAIL;
4143 DONE;
4144 })
4145
4146 (define_insn ""
4147 [(set (match_operand:SI 0 "register_operand" "=r")
4148 (and:SI (ashift:SI (match_operand:SI 1 "register_operand" "0")
4149 (match_operand:SI 2 "const_int_operand" "n"))
4150 (match_operand:SI 3 "const_int_operand" "n")))
4151 (clobber (reg:SI T_REG))]
4152 "TARGET_SH1 && shl_and_kind (operands[2], operands[3], 0) == 1"
4153 "#"
4154 [(set (attr "length")
4155 (cond [(eq (symbol_ref "shl_and_length (insn)") (const_int 2))
4156 (const_string "4")
4157 (eq (symbol_ref "shl_and_length (insn)") (const_int 3))
4158 (const_string "6")
4159 (eq (symbol_ref "shl_and_length (insn)") (const_int 4))
4160 (const_string "8")
4161 (eq (symbol_ref "shl_and_length (insn)") (const_int 5))
4162 (const_string "10")
4163 (eq (symbol_ref "shl_and_length (insn)") (const_int 6))
4164 (const_string "12")
4165 (eq (symbol_ref "shl_and_length (insn)") (const_int 7))
4166 (const_string "14")
4167 (eq (symbol_ref "shl_and_length (insn)") (const_int 8))
4168 (const_string "16")]
4169 (const_string "18")))
4170 (set_attr "type" "arith")])
4171
4172 (define_insn ""
4173 [(set (match_operand:SI 0 "register_operand" "=z")
4174 (and:SI (ashift:SI (match_operand:SI 1 "register_operand" "0")
4175 (match_operand:SI 2 "const_int_operand" "n"))
4176 (match_operand:SI 3 "const_int_operand" "n")))
4177 (clobber (reg:SI T_REG))]
4178 "TARGET_SH1 && shl_and_kind (operands[2], operands[3], 0) == 2"
4179 "#"
4180 [(set (attr "length")
4181 (cond [(eq (symbol_ref "shl_and_length (insn)") (const_int 2))
4182 (const_string "4")
4183 (eq (symbol_ref "shl_and_length (insn)") (const_int 3))
4184 (const_string "6")
4185 (eq (symbol_ref "shl_and_length (insn)") (const_int 4))
4186 (const_string "8")]
4187 (const_string "10")))
4188 (set_attr "type" "arith")])
4189
4190 ;; shift left / and combination with a scratch register: The combine pass
4191 ;; does not accept the individual instructions, even though they are
4192 ;; cheap. But it needs a precise description so that it is usable after
4193 ;; reload.
4194 (define_insn "and_shl_scratch"
4195 [(set (match_operand:SI 0 "register_operand" "=r,&r")
4196 (lshiftrt:SI
4197 (ashift:SI
4198 (and:SI
4199 (lshiftrt:SI (match_operand:SI 1 "register_operand" "r,0")
4200 (match_operand:SI 2 "const_int_operand" "N,n"))
4201 (match_operand:SI 3 "" "0,r"))
4202 (match_operand:SI 4 "const_int_operand" "n,n"))
4203 (match_operand:SI 5 "const_int_operand" "n,n")))
4204 (clobber (reg:SI T_REG))]
4205 "TARGET_SH1"
4206 "#"
4207 [(set (attr "length")
4208 (cond [(eq (symbol_ref "shl_and_scr_length (insn)") (const_int 2))
4209 (const_string "4")
4210 (eq (symbol_ref "shl_and_scr_length (insn)") (const_int 3))
4211 (const_string "6")
4212 (eq (symbol_ref "shl_and_scr_length (insn)") (const_int 4))
4213 (const_string "8")
4214 (eq (symbol_ref "shl_and_scr_length (insn)") (const_int 5))
4215 (const_string "10")]
4216 (const_string "12")))
4217 (set_attr "type" "arith")])
4218
4219 (define_split
4220 [(set (match_operand:SI 0 "register_operand" "")
4221 (lshiftrt:SI
4222 (ashift:SI
4223 (and:SI
4224 (lshiftrt:SI (match_operand:SI 1 "register_operand" "")
4225 (match_operand:SI 2 "const_int_operand" ""))
4226 (match_operand:SI 3 "register_operand" ""))
4227 (match_operand:SI 4 "const_int_operand" ""))
4228 (match_operand:SI 5 "const_int_operand" "")))
4229 (clobber (reg:SI T_REG))]
4230 "TARGET_SH1"
4231 [(use (reg:SI R0_REG))]
4232 {
4233 rtx and_source = operands[rtx_equal_p (operands[0], operands[1]) ? 3 : 1];
4234
4235 if (INTVAL (operands[2]))
4236 {
4237 gen_shifty_op (LSHIFTRT, operands);
4238 }
4239 emit_insn (gen_andsi3 (operands[0], operands[0], and_source));
4240 operands[2] = operands[4];
4241 gen_shifty_op (ASHIFT, operands);
4242 if (INTVAL (operands[5]))
4243 {
4244 operands[2] = operands[5];
4245 gen_shifty_op (LSHIFTRT, operands);
4246 }
4247 DONE;
4248 })
4249
4250 ;; signed left/right shift combination.
4251 (define_split
4252 [(set (match_operand:SI 0 "register_operand" "")
4253 (sign_extract:SI
4254 (ashift:SI (match_operand:SI 1 "register_operand" "")
4255 (match_operand:SI 2 "const_int_operand" ""))
4256 (match_operand:SI 3 "const_int_operand" "")
4257 (const_int 0)))
4258 (clobber (reg:SI T_REG))]
4259 "TARGET_SH1"
4260 [(use (reg:SI R0_REG))]
4261 {
4262 if (gen_shl_sext (operands[0], operands[2], operands[3], operands[1]))
4263 FAIL;
4264 DONE;
4265 })
4266
4267 (define_insn "shl_sext_ext"
4268 [(set (match_operand:SI 0 "register_operand" "=r")
4269 (sign_extract:SI
4270 (ashift:SI (match_operand:SI 1 "register_operand" "0")
4271 (match_operand:SI 2 "const_int_operand" "n"))
4272 (match_operand:SI 3 "const_int_operand" "n")
4273 (const_int 0)))
4274 (clobber (reg:SI T_REG))]
4275 "TARGET_SH1 && (unsigned)shl_sext_kind (operands[2], operands[3], 0) - 1 < 5"
4276 "#"
4277 [(set (attr "length")
4278 (cond [(match_test "shl_sext_length (insn)")
4279 (const_string "2")
4280 (eq (symbol_ref "shl_sext_length (insn)") (const_int 2))
4281 (const_string "4")
4282 (eq (symbol_ref "shl_sext_length (insn)") (const_int 3))
4283 (const_string "6")
4284 (eq (symbol_ref "shl_sext_length (insn)") (const_int 4))
4285 (const_string "8")
4286 (eq (symbol_ref "shl_sext_length (insn)") (const_int 5))
4287 (const_string "10")
4288 (eq (symbol_ref "shl_sext_length (insn)") (const_int 6))
4289 (const_string "12")
4290 (eq (symbol_ref "shl_sext_length (insn)") (const_int 7))
4291 (const_string "14")
4292 (eq (symbol_ref "shl_sext_length (insn)") (const_int 8))
4293 (const_string "16")]
4294 (const_string "18")))
4295 (set_attr "type" "arith")])
4296
4297 (define_insn "shl_sext_sub"
4298 [(set (match_operand:SI 0 "register_operand" "=z")
4299 (sign_extract:SI
4300 (ashift:SI (match_operand:SI 1 "register_operand" "0")
4301 (match_operand:SI 2 "const_int_operand" "n"))
4302 (match_operand:SI 3 "const_int_operand" "n")
4303 (const_int 0)))
4304 (clobber (reg:SI T_REG))]
4305 "TARGET_SH1 && (shl_sext_kind (operands[2], operands[3], 0) & ~1) == 6"
4306 "#"
4307 [(set (attr "length")
4308 (cond [(eq (symbol_ref "shl_sext_length (insn)") (const_int 3))
4309 (const_string "6")
4310 (eq (symbol_ref "shl_sext_length (insn)") (const_int 4))
4311 (const_string "8")
4312 (eq (symbol_ref "shl_sext_length (insn)") (const_int 5))
4313 (const_string "10")
4314 (eq (symbol_ref "shl_sext_length (insn)") (const_int 6))
4315 (const_string "12")]
4316 (const_string "14")))
4317 (set_attr "type" "arith")])
4318
4319 ;; The xtrct_left and xtrct_right patterns are used in expansions of DImode
4320 ;; shifts by 16, and allow the xtrct instruction to be generated from C
4321 ;; source.
4322 (define_insn "xtrct_left"
4323 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
4324 (ior:SI (ashift:SI (match_operand:SI 1 "arith_reg_operand" "r")
4325 (const_int 16))
4326 (lshiftrt:SI (match_operand:SI 2 "arith_reg_operand" "0")
4327 (const_int 16))))]
4328 "TARGET_SH1"
4329 "xtrct %1,%0"
4330 [(set_attr "type" "arith")])
4331
4332 (define_insn "xtrct_right"
4333 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
4334 (ior:SI (lshiftrt:SI (match_operand:SI 1 "arith_reg_operand" "0")
4335 (const_int 16))
4336 (ashift:SI (match_operand:SI 2 "arith_reg_operand" "r")
4337 (const_int 16))))]
4338 "TARGET_SH1"
4339 "xtrct %2,%0"
4340 [(set_attr "type" "arith")])
4341
4342 ;; -------------------------------------------------------------------------
4343 ;; Unary arithmetic
4344 ;; -------------------------------------------------------------------------
4345
4346 (define_insn "negc"
4347 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
4348 (neg:SI (plus:SI (reg:SI T_REG)
4349 (match_operand:SI 1 "arith_reg_operand" "r"))))
4350 (set (reg:SI T_REG)
4351 (ne:SI (ior:SI (reg:SI T_REG) (match_dup 1))
4352 (const_int 0)))]
4353 "TARGET_SH1"
4354 "negc %1,%0"
4355 [(set_attr "type" "arith")])
4356
4357 ;; A simplified version of the negc insn, where the exact value of the
4358 ;; T bit doesn't matter. This is easier for combine to pick up.
4359 ;; Notice that '0 - x - 1' is the same as '~x', thus we don't specify
4360 ;; extra patterns for this case.
4361 (define_insn_and_split "*negc"
4362 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
4363 (minus:SI (neg:SI (match_operand:SI 1 "arith_reg_operand" "r"))
4364 (match_operand 2 "treg_set_expr")))
4365 (clobber (reg:SI T_REG))]
4366 "TARGET_SH1 && can_create_pseudo_p ()"
4367 "#"
4368 "&& 1"
4369 [(const_int 0)]
4370 {
4371 sh_split_treg_set_expr (operands[2], curr_insn);
4372 emit_insn (gen_negc (operands[0], operands[1]));
4373 DONE;
4374 });
4375
4376 ;; Don't split into individual negc insns immediately so that neg:DI (abs:DI)
4377 ;; can be combined.
4378 (define_insn_and_split "negdi2"
4379 [(set (match_operand:DI 0 "arith_reg_dest")
4380 (neg:DI (match_operand:DI 1 "arith_reg_operand")))
4381 (clobber (reg:SI T_REG))]
4382 "TARGET_SH1"
4383 "#"
4384 "&& can_create_pseudo_p ()"
4385 [(const_int 0)]
4386 {
4387 emit_insn (gen_clrt ());
4388 emit_insn (gen_negc (gen_lowpart (SImode, operands[0]),
4389 gen_lowpart (SImode, operands[1])));
4390 emit_insn (gen_negc (gen_highpart (SImode, operands[0]),
4391 gen_highpart (SImode, operands[1])));
4392 DONE;
4393 })
4394
4395 (define_insn "negsi2"
4396 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
4397 (neg:SI (match_operand:SI 1 "arith_reg_operand" "r")))]
4398 "TARGET_SH1"
4399 "neg %1,%0"
4400 [(set_attr "type" "arith")])
4401
4402 (define_insn_and_split "one_cmplsi2"
4403 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
4404 (not:SI (match_operand:SI 1 "arith_reg_operand" "r")))]
4405 "TARGET_SH1"
4406 "not %1,%0"
4407 "&& can_create_pseudo_p ()"
4408 [(set (reg:SI T_REG) (ge:SI (match_dup 1) (const_int 0)))
4409 (set (match_dup 0) (reg:SI T_REG))]
4410 {
4411 /* PR 54685
4412 If the result of 'unsigned int <= 0x7FFFFFFF' ends up as the following
4413 sequence:
4414
4415 (set (reg0) (not:SI (reg0) (reg1)))
4416 (parallel [(set (reg2) (lshiftrt:SI (reg0) (const_int 31)))
4417 (clobber (reg:SI T_REG))])
4418
4419 ... match and combine the sequence manually in the split pass after the
4420 combine pass. Notice that combine does try the target pattern of this
4421 split, but if the pattern is added it interferes with other patterns, in
4422 particular with the div0s comparisons.
4423 This could also be done with a peephole but doing it here before register
4424 allocation can save one temporary.
4425 When we're here, the not:SI pattern obviously has been matched already
4426 and we only have to see whether the following insn is the left shift. */
4427
4428 rtx_insn *i = next_nonnote_nondebug_insn_bb (curr_insn);
4429 if (i == NULL_RTX || !NONJUMP_INSN_P (i))
4430 FAIL;
4431
4432 rtx p = PATTERN (i);
4433 if (GET_CODE (p) != PARALLEL || XVECLEN (p, 0) != 2)
4434 FAIL;
4435
4436 rtx p0 = XVECEXP (p, 0, 0);
4437 rtx p1 = XVECEXP (p, 0, 1);
4438
4439 if (/* (set (reg2) (lshiftrt:SI (reg0) (const_int 31))) */
4440 GET_CODE (p0) == SET
4441 && GET_CODE (XEXP (p0, 1)) == LSHIFTRT
4442 && REG_P (XEXP (XEXP (p0, 1), 0))
4443 && REGNO (XEXP (XEXP (p0, 1), 0)) == REGNO (operands[0])
4444 && CONST_INT_P (XEXP (XEXP (p0, 1), 1))
4445 && INTVAL (XEXP (XEXP (p0, 1), 1)) == 31
4446
4447 /* (clobber (reg:SI T_REG)) */
4448 && GET_CODE (p1) == CLOBBER && REG_P (XEXP (p1, 0))
4449 && REGNO (XEXP (p1, 0)) == T_REG)
4450 {
4451 operands[0] = XEXP (p0, 0);
4452 set_insn_deleted (i);
4453 }
4454 else
4455 FAIL;
4456 }
4457 [(set_attr "type" "arith")])
4458
4459 (define_insn_and_split "abs<mode>2"
4460 [(set (match_operand:SIDI 0 "arith_reg_dest")
4461 (abs:SIDI (match_operand:SIDI 1 "arith_reg_operand")))
4462 (clobber (reg:SI T_REG))]
4463 "TARGET_SH1"
4464 "#"
4465 "&& can_create_pseudo_p ()"
4466 [(const_int 0)]
4467 {
4468 if (<MODE>mode == SImode)
4469 emit_insn (gen_cmpgesi_t (operands[1], const0_rtx));
4470 else
4471 {
4472 rtx high_src = gen_highpart (SImode, operands[1]);
4473 emit_insn (gen_cmpgesi_t (high_src, const0_rtx));
4474 }
4475
4476 emit_insn (gen_neg<mode>_cond (operands[0], operands[1], operands[1],
4477 const1_rtx));
4478 DONE;
4479 })
4480
4481 (define_insn_and_split "*negabs<mode>2"
4482 [(set (match_operand:SIDI 0 "arith_reg_dest")
4483 (neg:SIDI (abs:SIDI (match_operand:SIDI 1 "arith_reg_operand"))))
4484 (clobber (reg:SI T_REG))]
4485 "TARGET_SH1"
4486 "#"
4487 "&& can_create_pseudo_p ()"
4488 [(const_int 0)]
4489 {
4490 if (<MODE>mode == SImode)
4491 emit_insn (gen_cmpgesi_t (operands[1], const0_rtx));
4492 else
4493 {
4494 rtx high_src = gen_highpart (SImode, operands[1]);
4495 emit_insn (gen_cmpgesi_t (high_src, const0_rtx));
4496 }
4497
4498 emit_insn (gen_neg<mode>_cond (operands[0], operands[1], operands[1],
4499 const0_rtx));
4500 DONE;
4501 })
4502
4503 ;; The SH4 202 can do zero-offset branches without pipeline stalls.
4504 ;; This can be used as some kind of conditional execution, which is useful
4505 ;; for abs.
4506 ;; Actually the instruction scheduling should decide whether to use a
4507 ;; zero-offset branch or not for any generic case involving a single
4508 ;; instruction on SH4 202.
4509 (define_insn_and_split "negsi_cond"
4510 [(set (match_operand:SI 0 "arith_reg_dest" "=r,r")
4511 (if_then_else
4512 (eq:SI (reg:SI T_REG) (match_operand:SI 3 "const_int_operand" "M,N"))
4513 (match_operand:SI 1 "arith_reg_operand" "0,0")
4514 (neg:SI (match_operand:SI 2 "arith_reg_operand" "r,r"))))]
4515 "TARGET_SH1 && TARGET_ZDCBRANCH"
4516 {
4517 static const char* alt[] =
4518 {
4519 "bt 0f" "\n"
4520 " neg %2,%0" "\n"
4521 "0:",
4522
4523 "bf 0f" "\n"
4524 " neg %2,%0" "\n"
4525 "0:"
4526 };
4527 return alt[which_alternative];
4528 }
4529 "TARGET_SH1 && ! TARGET_ZDCBRANCH"
4530 [(const_int 0)]
4531 {
4532 rtx_code_label *skip_neg_label = gen_label_rtx ();
4533
4534 emit_move_insn (operands[0], operands[1]);
4535
4536 emit_jump_insn (INTVAL (operands[3])
4537 ? gen_branch_true (skip_neg_label)
4538 : gen_branch_false (skip_neg_label));
4539
4540 emit_label_after (skip_neg_label,
4541 emit_insn (gen_negsi2 (operands[0], operands[1])));
4542 DONE;
4543 }
4544 [(set_attr "type" "arith") ;; poor approximation
4545 (set_attr "length" "4")])
4546
4547 (define_insn_and_split "negdi_cond"
4548 [(set (match_operand:DI 0 "arith_reg_dest")
4549 (if_then_else
4550 (eq:SI (reg:SI T_REG) (match_operand:SI 3 "const_int_operand"))
4551 (match_operand:DI 1 "arith_reg_operand")
4552 (neg:DI (match_operand:DI 2 "arith_reg_operand"))))
4553 (clobber (reg:SI T_REG))]
4554 "TARGET_SH1"
4555 "#"
4556 "&& can_create_pseudo_p ()"
4557 [(const_int 0)]
4558 {
4559 rtx_code_label *skip_neg_label = gen_label_rtx ();
4560
4561 emit_move_insn (operands[0], operands[1]);
4562
4563 emit_jump_insn (INTVAL (operands[3])
4564 ? gen_branch_true (skip_neg_label)
4565 : gen_branch_false (skip_neg_label));
4566
4567 if (!INTVAL (operands[3]))
4568 emit_insn (gen_clrt ());
4569
4570 emit_insn (gen_negc (gen_lowpart (SImode, operands[0]),
4571 gen_lowpart (SImode, operands[1])));
4572 emit_label_after (skip_neg_label,
4573 emit_insn (gen_negc (gen_highpart (SImode, operands[0]),
4574 gen_highpart (SImode, operands[1]))));
4575 DONE;
4576 })
4577
4578 (define_expand "bswapsi2"
4579 [(set (match_operand:SI 0 "arith_reg_dest" "")
4580 (bswap:SI (match_operand:SI 1 "arith_reg_operand" "")))]
4581 "TARGET_SH1"
4582 {
4583 if (! can_create_pseudo_p ())
4584 FAIL;
4585 else
4586 {
4587 rtx tmp0 = gen_reg_rtx (SImode);
4588 rtx tmp1 = gen_reg_rtx (SImode);
4589
4590 emit_insn (gen_swapbsi2 (tmp0, operands[1]));
4591 emit_insn (gen_rotlsi3_16 (tmp1, tmp0));
4592 emit_insn (gen_swapbsi2 (operands[0], tmp1));
4593 DONE;
4594 }
4595 })
4596
4597 (define_insn "swapbsi2"
4598 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
4599 (ior:SI (and:SI (match_operand:SI 1 "arith_reg_operand" "r")
4600 (const_int -65536)) ;; 0xFFFF0000
4601 (ior:SI (and:SI (ashift:SI (match_dup 1) (const_int 8))
4602 (const_int 65280))
4603 (and:SI (ashiftrt:SI (match_dup 1) (const_int 8))
4604 (const_int 255)))))]
4605 "TARGET_SH1"
4606 "swap.b %1,%0"
4607 [(set_attr "type" "arith")])
4608
4609 ;; The *swapbisi2_and_shl8 pattern helps the combine pass simplifying
4610 ;; partial byte swap expressions such as...
4611 ;; ((x & 0xFF) << 8) | ((x >> 8) & 0xFF).
4612 ;; ...which are currently not handled by the tree optimizers.
4613 ;; The combine pass will not initially try to combine the full expression,
4614 ;; but only some sub-expressions. In such a case the *swapbisi2_and_shl8
4615 ;; pattern acts as an intermediate pattern that will eventually lead combine
4616 ;; to the swapbsi2 pattern above.
4617 ;; As a side effect this also improves code that does (x & 0xFF) << 8
4618 ;; or (x << 8) & 0xFF00.
4619 (define_insn_and_split "*swapbisi2_and_shl8"
4620 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
4621 (ior:SI (and:SI (ashift:SI (match_operand:SI 1 "arith_reg_operand" "r")
4622 (const_int 8))
4623 (const_int 65280))
4624 (match_operand:SI 2 "arith_reg_operand" "r")))]
4625 "TARGET_SH1 && ! reload_in_progress && ! reload_completed"
4626 "#"
4627 "&& can_create_pseudo_p ()"
4628 [(const_int 0)]
4629 {
4630 rtx tmp0 = gen_reg_rtx (SImode);
4631 rtx tmp1 = gen_reg_rtx (SImode);
4632
4633 emit_insn (gen_zero_extendqisi2 (tmp0, gen_lowpart (QImode, operands[1])));
4634 emit_insn (gen_swapbsi2 (tmp1, tmp0));
4635 emit_insn (gen_iorsi3 (operands[0], tmp1, operands[2]));
4636 DONE;
4637 })
4638
4639 ;; The *swapbhisi2 pattern is, like the *swapbisi2_and_shl8 pattern, another
4640 ;; intermediate pattern that will help the combine pass arriving at swapbsi2.
4641 (define_insn_and_split "*swapbhisi2"
4642 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
4643 (ior:SI (and:SI (ashift:SI (match_operand:SI 1 "arith_reg_operand" "r")
4644 (const_int 8))
4645 (const_int 65280))
4646 (zero_extract:SI (match_dup 1) (const_int 8) (const_int 8))))]
4647 "TARGET_SH1 && ! reload_in_progress && ! reload_completed"
4648 "#"
4649 "&& can_create_pseudo_p ()"
4650 [(const_int 0)]
4651 {
4652 rtx tmp = gen_reg_rtx (SImode);
4653
4654 emit_insn (gen_zero_extendhisi2 (tmp, gen_lowpart (HImode, operands[1])));
4655 emit_insn (gen_swapbsi2 (operands[0], tmp));
4656 DONE;
4657 })
4658
4659 ;; In some cases the swapbsi2 pattern might leave a sequence such as...
4660 ;; swap.b r4,r4
4661 ;; mov r4,r0
4662 ;;
4663 ;; which can be simplified to...
4664 ;; swap.b r4,r0
4665 (define_peephole2
4666 [(set (match_operand:SI 0 "arith_reg_dest" "")
4667 (ior:SI (and:SI (match_operand:SI 1 "arith_reg_operand" "")
4668 (const_int -65536)) ;; 0xFFFF0000
4669 (ior:SI (and:SI (ashift:SI (match_dup 1) (const_int 8))
4670 (const_int 65280))
4671 (and:SI (ashiftrt:SI (match_dup 1) (const_int 8))
4672 (const_int 255)))))
4673 (set (match_operand:SI 2 "arith_reg_dest" "")
4674 (match_dup 0))]
4675 "TARGET_SH1 && peep2_reg_dead_p (2, operands[0])"
4676 [(set (match_dup 2)
4677 (ior:SI (and:SI (match_operand:SI 1 "arith_reg_operand" "")
4678 (const_int -65536)) ;; 0xFFFF0000
4679 (ior:SI (and:SI (ashift:SI (match_dup 1) (const_int 8))
4680 (const_int 65280))
4681 (and:SI (ashiftrt:SI (match_dup 1) (const_int 8))
4682 (const_int 255)))))])
4683 \f
4684 ;; -------------------------------------------------------------------------
4685 ;; Zero extension instructions
4686 ;; -------------------------------------------------------------------------
4687
4688 (define_expand "zero_extend<mode>si2"
4689 [(set (match_operand:SI 0 "arith_reg_dest")
4690 (zero_extend:SI (match_operand:QIHI 1 "arith_reg_operand")))])
4691
4692 (define_insn_and_split "*zero_extend<mode>si2_compact"
4693 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
4694 (zero_extend:SI (match_operand:QIHI 1 "arith_reg_operand" "r")))]
4695 "TARGET_SH1"
4696 "extu.<bw> %1,%0"
4697 "&& can_create_pseudo_p ()"
4698 [(set (match_dup 0) (match_dup 2))]
4699 {
4700 /* Sometimes combine fails to combine a T bit or negated T bit store to a
4701 reg with a following zero extension. In the split pass after combine,
4702 try to figure out how the extended reg was set. If it originated from
4703 the T bit we can replace the zero extension with a reg move, which will
4704 be eliminated. Notice that this also helps the *cbranch_t splitter when
4705 it tries to post-combine tests and conditional branches, as it does not
4706 check for zero extensions. */
4707 operands[2] = sh_try_omit_signzero_extend (operands[1], curr_insn);
4708 if (operands[2] == NULL_RTX)
4709 FAIL;
4710 }
4711 [(set_attr "type" "arith")])
4712
4713 (define_insn "zero_extendqihi2"
4714 [(set (match_operand:HI 0 "arith_reg_dest" "=r")
4715 (zero_extend:HI (match_operand:QI 1 "arith_reg_operand" "r")))]
4716 "TARGET_SH1"
4717 "extu.b %1,%0"
4718 [(set_attr "type" "arith")])
4719
4720 ;; SH2A supports two zero extending load instructions: movu.b and movu.w.
4721 ;; They could also be used for simple memory addresses like @Rn by setting
4722 ;; the displacement value to zero. However, doing so too early results in
4723 ;; missed opportunities for other optimizations such as post-inc or index
4724 ;; addressing loads.
4725 ;; We don't allow the zero extending loads to match during RTL expansion,
4726 ;; as this would pessimize other optimization opportunities such as bit
4727 ;; extractions of unsigned mems, where the zero extraction is irrelevant.
4728 ;; If the zero extracting mem loads are emitted early it will be more
4729 ;; difficult to change them back to sign extending loads (which are preferred).
4730 ;; The combine pass will also try to combine mem loads and zero extends,
4731 ;; which is prevented by 'sh_legitimate_combined_insn'.
4732 (define_insn "*zero_extend<mode>si2_disp_mem"
4733 [(set (match_operand:SI 0 "arith_reg_dest" "=r,r")
4734 (zero_extend:SI
4735 (match_operand:QIHI 1 "zero_extend_movu_operand" "Sdd,Sra")))]
4736 "TARGET_SH2A"
4737 "@
4738 movu.<bw> %1,%0
4739 movu.<bw> @(0,%t1),%0"
4740 [(set_attr "type" "load")
4741 (set_attr "length" "4")])
4742
4743 ;; Convert the zero extending loads in sequences such as:
4744 ;; movu.b @(1,r5),r0 movu.w @(2,r5),r0
4745 ;; mov.b r0,@(1,r4) mov.b r0,@(1,r4)
4746 ;;
4747 ;; back to sign extending loads like:
4748 ;; mov.b @(1,r5),r0 mov.w @(2,r5),r0
4749 ;; mov.b r0,@(1,r4) mov.b r0,@(1,r4)
4750 ;;
4751 ;; if the extension type is irrelevant. The sign extending mov.{b|w} insn
4752 ;; is only 2 bytes in size if the displacement is {K04|K05}.
4753 ;; If the displacement is greater it doesn't matter, so we convert anyways.
4754 (define_peephole2
4755 [(set (match_operand:SI 0 "arith_reg_dest" "")
4756 (zero_extend:SI (match_operand 1 "displacement_mem_operand" "")))
4757 (set (match_operand 2 "nonimmediate_operand" "")
4758 (match_operand 3 "arith_reg_operand" ""))]
4759 "TARGET_SH2A
4760 && REGNO (operands[0]) == REGNO (operands[3])
4761 && peep2_reg_dead_p (2, operands[0])
4762 && GET_MODE_SIZE (GET_MODE (operands[2]))
4763 <= GET_MODE_SIZE (GET_MODE (operands[1]))"
4764 [(set (match_dup 0) (sign_extend:SI (match_dup 1)))
4765 (set (match_dup 2) (match_dup 3))])
4766
4767 ;; Fold sequences such as
4768 ;; mov.b @r3,r7
4769 ;; extu.b r7,r7
4770 ;; into
4771 ;; movu.b @(0,r3),r7
4772 ;; This does not reduce the code size but the number of instructions is
4773 ;; halved, which results in faster code.
4774 (define_peephole2
4775 [(set (match_operand:SI 0 "arith_reg_dest" "")
4776 (sign_extend:SI (match_operand 1 "simple_mem_operand" "")))
4777 (set (match_operand:SI 2 "arith_reg_dest" "")
4778 (zero_extend:SI (match_operand 3 "arith_reg_operand" "")))]
4779 "TARGET_SH2A
4780 && GET_MODE (operands[1]) == GET_MODE (operands[3])
4781 && (GET_MODE (operands[1]) == QImode || GET_MODE (operands[1]) == HImode)
4782 && REGNO (operands[0]) == REGNO (operands[3])
4783 && (REGNO (operands[2]) == REGNO (operands[0])
4784 || peep2_reg_dead_p (2, operands[0]))"
4785 [(set (match_dup 2) (zero_extend:SI (match_dup 4)))]
4786 {
4787 operands[4]
4788 = replace_equiv_address (operands[1],
4789 gen_rtx_PLUS (SImode, XEXP (operands[1], 0),
4790 const0_rtx));
4791 })
4792
4793 ;; -------------------------------------------------------------------------
4794 ;; Sign extension instructions
4795 ;; -------------------------------------------------------------------------
4796
4797 ;; ??? This should be a define expand.
4798 ;; ??? Or perhaps it should be dropped?
4799
4800 ;; convert_move generates good code for SH[1-4].
4801
4802 (define_expand "extend<mode>si2"
4803 [(set (match_operand:SI 0 "arith_reg_dest")
4804 (sign_extend:SI (match_operand:QIHI 1 "general_extend_operand")))])
4805
4806 (define_insn_and_split "*extend<mode>si2_compact_reg"
4807 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
4808 (sign_extend:SI (match_operand:QIHI 1 "arith_reg_operand" "r")))]
4809 "TARGET_SH1"
4810 "exts.<bw> %1,%0"
4811 "&& can_create_pseudo_p ()"
4812 [(set (match_dup 0) (match_dup 2))]
4813 {
4814 /* Sometimes combine fails to combine a T bit or negated T bit store to a
4815 reg with a following sign extension. In the split pass after combine,
4816 try to figure the extended reg was set. If it originated from the T
4817 bit we can replace the sign extension with a reg move, which will be
4818 eliminated. */
4819 operands[2] = sh_try_omit_signzero_extend (operands[1], curr_insn);
4820 if (operands[2] == NULL_RTX)
4821 FAIL;
4822 }
4823 [(set_attr "type" "arith")])
4824
4825 ;; FIXME: Fold non-SH2A and SH2A alternatives with "enabled" attribute.
4826 ;; See movqi insns.
4827 (define_insn "*extend<mode>si2_compact_mem_disp"
4828 [(set (match_operand:SI 0 "arith_reg_dest" "=z,r")
4829 (sign_extend:SI
4830 (mem:QIHI
4831 (plus:SI
4832 (match_operand:SI 1 "arith_reg_operand" "%r,r")
4833 (match_operand:SI 2 "const_int_operand" "<disp04>,N")))))]
4834 "TARGET_SH1 && ! TARGET_SH2A
4835 && sh_legitimate_index_p (<MODE>mode, operands[2], false, true)"
4836 "@
4837 mov.<bw> @(%O2,%1),%0
4838 mov.<bw> @%1,%0"
4839 [(set_attr "type" "load")])
4840
4841 (define_insn "*extend<mode>si2_compact_mem_disp"
4842 [(set (match_operand:SI 0 "arith_reg_dest" "=z,r,r")
4843 (sign_extend:SI
4844 (mem:QIHI
4845 (plus:SI
4846 (match_operand:SI 1 "arith_reg_operand" "%r,r,r")
4847 (match_operand:SI 2 "const_int_operand" "<disp04>,N,<disp12>")))))]
4848 "TARGET_SH2A && sh_legitimate_index_p (<MODE>mode, operands[2], true, true)"
4849 "@
4850 mov.<bw> @(%O2,%1),%0
4851 mov.<bw> @%1,%0
4852 mov.<bw> @(%O2,%1),%0"
4853 [(set_attr "type" "load")
4854 (set_attr "length" "2,2,4")])
4855
4856 ;; The pre-dec and post-inc mems must be captured by the '<' and '>'
4857 ;; constraints, otherwise wrong code might get generated.
4858 (define_insn "*extend<mode>si2_predec"
4859 [(set (match_operand:SI 0 "arith_reg_dest" "=z")
4860 (sign_extend:SI (match_operand:QIHI 1 "pre_dec_mem" "<")))]
4861 "TARGET_SH2A"
4862 "mov.<bw> %1,%0"
4863 [(set_attr "type" "load")])
4864
4865 ;; The *_snd patterns will take care of other QImode/HImode addressing
4866 ;; modes than displacement addressing. They must be defined _after_ the
4867 ;; displacement addressing patterns. Otherwise the displacement addressing
4868 ;; patterns will not be picked.
4869 (define_insn "*extend<mode>si2_compact_snd"
4870 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
4871 (sign_extend:SI
4872 (match_operand:QIHI 1 "movsrc_no_disp_mem_operand" "Snd")))]
4873 "TARGET_SH1"
4874 "mov.<bw> %1,%0"
4875 [(set_attr "type" "load")])
4876
4877 (define_expand "extendqihi2"
4878 [(set (match_operand:HI 0 "arith_reg_dest")
4879 (sign_extend:HI (match_operand:QI 1 "arith_reg_operand")))]
4880 "TARGET_SH1")
4881
4882 (define_insn "*extendqihi2_compact_reg"
4883 [(set (match_operand:HI 0 "arith_reg_dest" "=r")
4884 (sign_extend:HI (match_operand:QI 1 "arith_reg_operand" "r")))]
4885 "TARGET_SH1"
4886 "exts.b %1,%0"
4887 [(set_attr "type" "arith")])
4888
4889 ;; -------------------------------------------------------------------------
4890 ;; Move instructions
4891 ;; -------------------------------------------------------------------------
4892
4893 (define_expand "push"
4894 [(set (mem:SI (pre_dec:SI (reg:SI SP_REG)))
4895 (match_operand:SI 0 "register_operand"))])
4896
4897 (define_expand "pop"
4898 [(set (match_operand:SI 0 "register_operand")
4899 (mem:SI (post_inc:SI (reg:SI SP_REG))))])
4900
4901 (define_expand "push_e"
4902 [(parallel [(set (mem:SF (pre_dec:SI (reg:SI SP_REG)))
4903 (match_operand:SF 0 "" ""))
4904 (use (reg:SI FPSCR_MODES_REG))
4905 (clobber (scratch:SI))])])
4906
4907 (define_insn "push_fpul"
4908 [(set (mem:SF (pre_dec:SI (reg:SI SP_REG))) (reg:SF FPUL_REG))]
4909 "TARGET_SH2E"
4910 "sts.l fpul,@-r15"
4911 [(set_attr "type" "fstore")
4912 (set_attr "late_fp_use" "yes")
4913 (set_attr "hit_stack" "yes")])
4914
4915 ;; DFmode pushes for sh4 require a lot of what is defined for movdf_i4,
4916 ;; so use that.
4917 (define_expand "push_4"
4918 [(parallel [(set (mem:DF (pre_dec:SI (reg:SI SP_REG)))
4919 (match_operand:DF 0 "" ""))
4920 (use (reg:SI FPSCR_MODES_REG))
4921 (clobber (scratch:SI))])])
4922
4923 (define_expand "pop_e"
4924 [(parallel [(set (match_operand:SF 0 "" "")
4925 (mem:SF (post_inc:SI (reg:SI SP_REG))))
4926 (use (reg:SI FPSCR_MODES_REG))
4927 (clobber (scratch:SI))])])
4928
4929 (define_insn "pop_fpul"
4930 [(set (reg:SF FPUL_REG) (mem:SF (post_inc:SI (reg:SI SP_REG))))]
4931 "TARGET_SH2E"
4932 "lds.l @r15+,fpul"
4933 [(set_attr "type" "load")
4934 (set_attr "hit_stack" "yes")])
4935
4936 (define_expand "pop_4"
4937 [(parallel [(set (match_operand:DF 0 "" "")
4938 (mem:DF (post_inc:SI (reg:SI SP_REG))))
4939 (use (reg:SI FPSCR_MODES_REG))
4940 (clobber (scratch:SI))])])
4941
4942 (define_expand "push_fpscr"
4943 [(const_int 0)]
4944 "TARGET_SH2E"
4945 {
4946 add_reg_note (
4947 emit_insn (
4948 gen_sts_fpscr (
4949 gen_frame_mem (SImode, gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx)))),
4950 REG_INC, stack_pointer_rtx);
4951 DONE;
4952 })
4953
4954 (define_expand "pop_fpscr"
4955 [(const_int 0)]
4956 "TARGET_SH2E"
4957 {
4958 add_reg_note (
4959 emit_insn (
4960 gen_lds_fpscr (
4961 gen_frame_mem (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx)))),
4962 REG_INC, stack_pointer_rtx);
4963 DONE;
4964 })
4965
4966 ;; The clrt and sett patterns can happen as the result of optimization and
4967 ;; insn expansion.
4968 ;; Comparisons might get simplified to a move of zero or 1 into the T reg.
4969 ;; In this case they might not disappear completely, because the T reg is
4970 ;; a fixed hard reg.
4971 ;; When DImode operations that use the T reg as carry/borrow are split into
4972 ;; individual SImode operations, the T reg is usually cleared before the
4973 ;; first SImode insn.
4974 (define_insn "clrt"
4975 [(set (reg:SI T_REG) (const_int 0))]
4976 "TARGET_SH1"
4977 "clrt"
4978 [(set_attr "type" "mt_group")])
4979
4980 (define_insn "sett"
4981 [(set (reg:SI T_REG) (const_int 1))]
4982 "TARGET_SH1"
4983 "sett"
4984 [(set_attr "type" "mt_group")])
4985
4986 ;; Use the combine pass to transform sequences such as
4987 ;; mov r5,r0
4988 ;; add #1,r0
4989 ;; shll2 r0
4990 ;; mov.l @(r0,r4),r0
4991 ;; into
4992 ;; shll2 r5
4993 ;; add r4,r5
4994 ;; mov.l @(4,r5),r0
4995 ;;
4996 ;; See also PR 39423.
4997 ;; Notice that these patterns have a T_REG clobber, because the shift
4998 ;; sequence that will be split out might clobber the T_REG. Ideally, the
4999 ;; clobber would be added conditionally, depending on the result of
5000 ;; sh_ashlsi_clobbers_t_reg_p. When splitting out the shifts we must go
5001 ;; through the ashlsi3 expander in order to get the right shift insn --
5002 ;; a T_REG clobbering or non-clobbering shift sequence or dynamic shift.
5003 ;; FIXME: Combine never tries this kind of patterns for DImode.
5004 (define_insn_and_split "*movsi_index_disp_load"
5005 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
5006 (match_operand:SI 1 "mem_index_disp_operand" "m"))
5007 (clobber (reg:SI T_REG))]
5008 "TARGET_SH1"
5009 "#"
5010 "&& can_create_pseudo_p ()"
5011 [(set (match_dup 6) (plus:SI (match_dup 5) (match_dup 3)))
5012 (set (match_dup 0) (match_dup 7))]
5013 {
5014 rtx mem = operands[1];
5015 rtx plus0_rtx = XEXP (mem, 0);
5016 rtx plus1_rtx = XEXP (plus0_rtx, 0);
5017 rtx mult_rtx = XEXP (plus1_rtx, 0);
5018
5019 operands[1] = XEXP (mult_rtx, 0);
5020 operands[2] = GEN_INT (exact_log2 (INTVAL (XEXP (mult_rtx, 1))));
5021 operands[3] = XEXP (plus1_rtx, 1);
5022 operands[4] = XEXP (plus0_rtx, 1);
5023 operands[5] = gen_reg_rtx (SImode);
5024 operands[6] = gen_reg_rtx (SImode);
5025 operands[7] =
5026 replace_equiv_address (mem,
5027 gen_rtx_PLUS (SImode, operands[6], operands[4]));
5028
5029 emit_insn (gen_ashlsi3 (operands[5], operands[1], operands[2]));
5030 })
5031
5032 (define_insn_and_split "*movhi_index_disp_load"
5033 [(set (match_operand:SI 0 "arith_reg_dest")
5034 (SZ_EXTEND:SI (match_operand:HI 1 "mem_index_disp_operand")))
5035 (clobber (reg:SI T_REG))]
5036 "TARGET_SH1"
5037 "#"
5038 "&& can_create_pseudo_p ()"
5039 [(const_int 0)]
5040 {
5041 rtx mem = operands[1];
5042 rtx plus0_rtx = XEXP (mem, 0);
5043 rtx plus1_rtx = XEXP (plus0_rtx, 0);
5044 rtx mult_rtx = XEXP (plus1_rtx, 0);
5045
5046 rtx op_1 = XEXP (mult_rtx, 0);
5047 rtx op_2 = GEN_INT (exact_log2 (INTVAL (XEXP (mult_rtx, 1))));
5048 rtx op_3 = XEXP (plus1_rtx, 1);
5049 rtx op_4 = XEXP (plus0_rtx, 1);
5050 rtx op_5 = gen_reg_rtx (SImode);
5051 rtx op_6 = gen_reg_rtx (SImode);
5052 rtx op_7 = replace_equiv_address (mem, gen_rtx_PLUS (SImode, op_6, op_4));
5053
5054 emit_insn (gen_ashlsi3 (op_5, op_1, op_2));
5055 emit_insn (gen_addsi3 (op_6, op_5, op_3));
5056
5057 if (<CODE> == SIGN_EXTEND)
5058 {
5059 emit_insn (gen_extendhisi2 (operands[0], op_7));
5060 DONE;
5061 }
5062 else if (<CODE> == ZERO_EXTEND)
5063 {
5064 /* On SH2A the movu.w insn can be used for zero extending loads. */
5065 if (TARGET_SH2A)
5066 emit_insn (gen_zero_extendhisi2 (operands[0], op_7));
5067 else
5068 {
5069 emit_insn (gen_extendhisi2 (operands[0], op_7));
5070 emit_insn (gen_zero_extendhisi2 (operands[0],
5071 gen_lowpart (HImode, operands[0])));
5072 }
5073 DONE;
5074 }
5075 else
5076 FAIL;
5077 })
5078
5079 (define_insn_and_split "*mov<mode>_index_disp_store"
5080 [(set (match_operand:HISI 0 "mem_index_disp_operand" "=m")
5081 (match_operand:HISI 1 "arith_reg_operand" "r"))
5082 (clobber (reg:SI T_REG))]
5083 "TARGET_SH1"
5084 "#"
5085 "&& can_create_pseudo_p ()"
5086 [(set (match_dup 6) (plus:SI (match_dup 5) (match_dup 3)))
5087 (set (match_dup 7) (match_dup 1))]
5088 {
5089 rtx mem = operands[0];
5090 rtx plus0_rtx = XEXP (mem, 0);
5091 rtx plus1_rtx = XEXP (plus0_rtx, 0);
5092 rtx mult_rtx = XEXP (plus1_rtx, 0);
5093
5094 operands[0] = XEXP (mult_rtx, 0);
5095 operands[2] = GEN_INT (exact_log2 (INTVAL (XEXP (mult_rtx, 1))));
5096 operands[3] = XEXP (plus1_rtx, 1);
5097 operands[4] = XEXP (plus0_rtx, 1);
5098 operands[5] = gen_reg_rtx (SImode);
5099 operands[6] = gen_reg_rtx (SImode);
5100 operands[7] =
5101 replace_equiv_address (mem,
5102 gen_rtx_PLUS (SImode, operands[6], operands[4]));
5103
5104 emit_insn (gen_ashlsi3 (operands[5], operands[0], operands[2]));
5105 })
5106
5107 ;; t/r must come after r/r, lest reload will try to reload stuff like
5108 ;; (set (subreg:SI (mem:QI (plus:SI (reg:SI SP_REG) (const_int 12)) 0) 0)
5109 ;; (made from (set (subreg:SI (reg:QI ###) 0) ) into T.
5110 ;; Notice that although this pattern allows movi20 and movi20s on non-SH2A,
5111 ;; those alternatives will not be taken, as they will be converted into
5112 ;; PC-relative loads.
5113 (define_insn "movsi_i"
5114 [(set (match_operand:SI 0 "general_movdst_operand"
5115 "=r,r, r, r, r, r,r,r,m,<,<,x,l,x,l,r")
5116 (match_operand:SI 1 "general_movsrc_operand"
5117 " Q,r,I08,I20,I28,mr,x,l,r,x,l,r,r,>,>,i"))]
5118 "TARGET_SH1 && !TARGET_FPU_ANY
5119 && (register_operand (operands[0], SImode)
5120 || register_operand (operands[1], SImode))"
5121 "@
5122 mov.l %1,%0
5123 mov %1,%0
5124 mov %1,%0
5125 movi20 %1,%0
5126 movi20s %1,%0
5127 mov.l %1,%0
5128 sts %1,%0
5129 sts %1,%0
5130 mov.l %1,%0
5131 sts.l %1,%0
5132 sts.l %1,%0
5133 lds %1,%0
5134 lds %1,%0
5135 lds.l %1,%0
5136 lds.l %1,%0
5137 fake %1,%0"
5138 [(set_attr "type" "pcload_si,move,movi8,move,move,load_si,mac_gp,prget,store,
5139 mac_mem,pstore,gp_mac,prset,mem_mac,pload,pcload_si")
5140 (set_attr_alternative "length"
5141 [(const_int 2)
5142 (const_int 2)
5143 (const_int 2)
5144 (const_int 4)
5145 (const_int 4)
5146 (if_then_else (match_operand 1 "long_displacement_mem_operand")
5147 (const_int 4) (const_int 2))
5148 (const_int 2)
5149 (const_int 2)
5150 (if_then_else (match_operand 0 "long_displacement_mem_operand")
5151 (const_int 4) (const_int 2))
5152 (const_int 2)
5153 (const_int 2)
5154 (const_int 2)
5155 (const_int 2)
5156 (const_int 2)
5157 (const_int 2)
5158 (const_int 2)])])
5159
5160 ;; t/r must come after r/r, lest reload will try to reload stuff like
5161 ;; (subreg:SI (reg:SF FR14_REG) 0) into T (compiling stdlib/strtod.c -m3e -O2)
5162 ;; ??? This allows moves from macl to fpul to be recognized, but these moves
5163 ;; will require a reload.
5164 ;; ??? We can't include f/f because we need the proper FPSCR setting when
5165 ;; TARGET_FMOVD is in effect, and mode switching is done before reload.
5166 ;; Notice that although this pattern allows movi20 and movi20s on non-SH2A,
5167 ;; those alternatives will not be taken, as they will be converted into
5168 ;; PC-relative loads.
5169 (define_insn "movsi_ie"
5170 [(set (match_operand:SI 0 "general_movdst_operand"
5171 "=r,r, r, r, r, r,r,r,mr,<,<,x,l,x,l,y,<,r,y,r,*f, y,*f,y")
5172 (match_operand:SI 1 "general_movsrc_operand"
5173 " Q,r,I08,I20,I28,mr,x,l, r,x,l,r,r,>,>,>,y,i,r,y, y,*f,*f,y"))]
5174 "TARGET_SH1 && TARGET_FPU_ANY
5175 && ((register_operand (operands[0], SImode)
5176 && !fpscr_operand (operands[0], SImode))
5177 || (register_operand (operands[1], SImode)
5178 && !fpscr_operand (operands[1], SImode)))"
5179 "@
5180 mov.l %1,%0
5181 mov %1,%0
5182 mov %1,%0
5183 movi20 %1,%0
5184 movi20s %1,%0
5185 mov.l %1,%0
5186 sts %1,%0
5187 sts %1,%0
5188 mov.l %1,%0
5189 sts.l %1,%0
5190 sts.l %1,%0
5191 lds %1,%0
5192 lds %1,%0
5193 lds.l %1,%0
5194 lds.l %1,%0
5195 lds.l %1,%0
5196 sts.l %1,%0
5197 fake %1,%0
5198 lds %1,%0
5199 sts %1,%0
5200 fsts fpul,%0
5201 flds %1,fpul
5202 fmov %1,%0
5203 ! move optimized away"
5204 [(set_attr "type" "pcload_si,move,movi8,move,move,load_si,mac_gp,prget,store,
5205 mac_mem,pstore,gp_mac,prset,mem_mac,pload,load,fstore,
5206 pcload_si,gp_fpul,fpul_gp,fmove,fmove,fmove,nil")
5207 (set_attr "late_fp_use" "*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,yes,*,*,yes,*,*,*,*")
5208 (set_attr_alternative "length"
5209 [(const_int 2)
5210 (const_int 2)
5211 (const_int 2)
5212 (const_int 4)
5213 (const_int 4)
5214 (if_then_else (match_operand 1 "long_displacement_mem_operand")
5215 (const_int 4) (const_int 2))
5216 (const_int 2)
5217 (const_int 2)
5218 (if_then_else (match_operand 0 "long_displacement_mem_operand")
5219 (const_int 4) (const_int 2))
5220 (const_int 2)
5221 (const_int 2)
5222 (const_int 2)
5223 (const_int 2)
5224 (const_int 2)
5225 (const_int 2)
5226 (const_int 2)
5227 (const_int 2)
5228 (const_int 2)
5229 (const_int 2)
5230 (const_int 2)
5231 (const_int 2)
5232 (const_int 2)
5233 (const_int 2)
5234 (const_int 0)])])
5235
5236 ;; Notice that although this pattern allows movi20 and movi20s on non-SH2A,
5237 ;; those alternatives will not be taken, as they will be converted into
5238 ;; PC-relative loads.
5239 (define_insn "movsi_i_lowpart"
5240 [(set (strict_low_part
5241 (match_operand:SI 0 "general_movdst_operand"
5242 "+r,r, r, r, r, r,r,r,m,r"))
5243 (match_operand:SI 1 "general_movsrc_operand"
5244 " Q,r,I08,I20,I28,mr,x,l,r,i"))]
5245 "TARGET_SH1
5246 && (register_operand (operands[0], SImode)
5247 || register_operand (operands[1], SImode))"
5248 "@
5249 mov.l %1,%0
5250 mov %1,%0
5251 mov %1,%0
5252 movi20 %1,%0
5253 movi20s %1,%0
5254 mov.l %1,%0
5255 sts %1,%0
5256 sts %1,%0
5257 mov.l %1,%0
5258 fake %1,%0"
5259 [(set_attr "type" "pcload,move,movi8,move,move,load,mac_gp,prget,store,
5260 pcload")
5261 (set_attr_alternative "length"
5262 [(const_int 2)
5263 (const_int 2)
5264 (const_int 2)
5265 (const_int 4)
5266 (const_int 4)
5267 (if_then_else (match_operand 1 "long_displacement_mem_operand")
5268 (const_int 4) (const_int 2))
5269 (const_int 2)
5270 (const_int 2)
5271 (if_then_else (match_operand 0 "long_displacement_mem_operand")
5272 (const_int 4) (const_int 2))
5273 (const_int 2)])])
5274
5275 (define_insn_and_split "load_ra"
5276 [(set (match_operand:SI 0 "general_movdst_operand" "")
5277 (unspec:SI [(match_operand:SI 1 "register_operand" "")] UNSPEC_RA))]
5278 "TARGET_SH1"
5279 "#"
5280 "&& ! currently_expanding_to_rtl"
5281 [(set (match_dup 0) (match_dup 1))])
5282
5283 (define_expand "movsi"
5284 [(set (match_operand:SI 0 "general_movdst_operand" "")
5285 (match_operand:SI 1 "general_movsrc_operand" ""))]
5286 ""
5287 {
5288 prepare_move_operands (operands, SImode);
5289 })
5290
5291 (define_expand "ic_invalidate_line"
5292 [(parallel [(unspec_volatile [(match_operand:SI 0 "register_operand")
5293 (match_dup 1)] UNSPEC_ICACHE)
5294 (clobber (scratch:SI))])]
5295 "TARGET_HARD_SH4"
5296 {
5297 emit_insn (gen_ic_invalidate_line_sh4a (operands[0]));
5298 DONE;
5299 })
5300
5301 ;; The address %0 is assumed to be 4-aligned at least. Thus, by ORing
5302 ;; 0xf0000008, we get the low-oder bits *1*00 (binary), which fits
5303 ;; the requirement *1*00 for associative address writes. The alignment of
5304 ;; %0 implies that its least significant bit is cleared,
5305 ;; thus we clear the V bit of a matching entry if there is one.
5306 (define_insn "ic_invalidate_line_i"
5307 [(unspec_volatile [(match_operand:SI 0 "register_operand" "r")
5308 (match_operand:SI 1 "register_operand" "r")]
5309 UNSPEC_ICACHE)
5310 (clobber (match_scratch:SI 2 "=&r"))]
5311 "TARGET_HARD_SH4"
5312 {
5313 return "ocbwb @%0" "\n"
5314 " extu.w %0,%2" "\n"
5315 " or %1,%2" "\n"
5316 " mov.l %0,@%2";
5317 }
5318 [(set_attr "length" "8")
5319 (set_attr "type" "cwb")])
5320
5321 (define_insn "ic_invalidate_line_sh4a"
5322 [(unspec_volatile [(match_operand:SI 0 "register_operand" "r")]
5323 UNSPEC_ICACHE)]
5324 "TARGET_SH4A || TARGET_SH4_300"
5325 {
5326 return "ocbwb @%0" "\n"
5327 " synco" "\n"
5328 " icbi @%0";
5329 }
5330 [(set_attr "length" "6")
5331 (set_attr "type" "cwb")])
5332
5333 (define_expand "mov<mode>"
5334 [(set (match_operand:QIHI 0 "general_movdst_operand")
5335 (match_operand:QIHI 1 "general_movsrc_operand"))]
5336 ""
5337 {
5338 if (can_create_pseudo_p () && CONST_INT_P (operands[1])
5339 && REG_P (operands[0]) && REGNO (operands[0]) != R0_REG)
5340 {
5341 rtx reg = gen_reg_rtx(SImode);
5342 emit_move_insn (reg, operands[1]);
5343 operands[1] = gen_lowpart (<MODE>mode, reg);
5344 }
5345
5346 prepare_move_operands (operands, <MODE>mode);
5347 })
5348
5349 ;; The pre-dec and post-inc mems must be captured by the '<' and '>'
5350 ;; constraints, otherwise wrong code might get generated.
5351 (define_insn "*mov<mode>_load_predec"
5352 [(set (match_operand:QIHISI 0 "arith_reg_dest" "=z")
5353 (match_operand:QIHISI 1 "pre_dec_mem" "<"))]
5354 "TARGET_SH2A"
5355 "mov.<bwl> %1,%0"
5356 [(set_attr "type" "load")])
5357
5358 (define_insn "*mov<mode>_store_postinc"
5359 [(set (match_operand:QIHISI 0 "post_inc_mem" "=>")
5360 (match_operand:QIHISI 1 "arith_reg_operand" "z"))]
5361 "TARGET_SH2A"
5362 "mov.<bwl> %1,%0"
5363 [(set_attr "type" "store")])
5364
5365 ;; Specifying the displacement addressing load / store patterns separately
5366 ;; before the generic movqi / movhi pattern allows controlling the order
5367 ;; in which load / store insns are selected in a more fine grained way.
5368 ;; FIXME: The non-SH2A and SH2A variants should be combined by adding
5369 ;; "enabled" attribute as it is done in other targets.
5370 (define_insn "*mov<mode>_store_mem_disp04"
5371 [(set (mem:QIHI
5372 (plus:SI (match_operand:SI 0 "arith_reg_operand" "%r,r")
5373 (match_operand:SI 1 "const_int_operand" "<disp04>,N")))
5374 (match_operand:QIHI 2 "arith_reg_operand" "z,r"))]
5375 "TARGET_SH1 && sh_legitimate_index_p (<MODE>mode, operands[1], false, true)"
5376 "@
5377 mov.<bw> %2,@(%O1,%0)
5378 mov.<bw> %2,@%0"
5379 [(set_attr "type" "store")])
5380
5381 (define_insn "*mov<mode>_store_mem_disp12"
5382 [(set (mem:QIHI
5383 (plus:SI (match_operand:SI 0 "arith_reg_operand" "%r")
5384 (match_operand:SI 1 "const_int_operand" "<disp12>")))
5385 (match_operand:QIHI 2 "arith_reg_operand" "r"))]
5386 "TARGET_SH2A && sh_legitimate_index_p (<MODE>mode, operands[1], true, true)"
5387 "mov.<bw> %2,@(%O1,%0)"
5388 [(set_attr "type" "store")
5389 (set_attr "length" "4")])
5390
5391 (define_insn "*mov<mode>_load_mem_disp04"
5392 [(set (match_operand:QIHI 0 "arith_reg_dest" "=z,r")
5393 (mem:QIHI
5394 (plus:SI (match_operand:SI 1 "arith_reg_operand" "%r,r")
5395 (match_operand:SI 2 "const_int_operand" "<disp04>,N"))))]
5396 "TARGET_SH1 && ! TARGET_SH2A
5397 && sh_legitimate_index_p (<MODE>mode, operands[2], false, true)"
5398 "@
5399 mov.<bw> @(%O2,%1),%0
5400 mov.<bw> @%1,%0"
5401 [(set_attr "type" "load")])
5402
5403 (define_insn "*mov<mode>_load_mem_disp12"
5404 [(set (match_operand:QIHI 0 "arith_reg_dest" "=z,r,r")
5405 (mem:QIHI
5406 (plus:SI
5407 (match_operand:SI 1 "arith_reg_operand" "%r,r,r")
5408 (match_operand:SI 2 "const_int_operand" "<disp04>,N,<disp12>"))))]
5409 "TARGET_SH2A && sh_legitimate_index_p (<MODE>mode, operands[2], true, true)"
5410 "@
5411 mov.<bw> @(%O2,%1),%0
5412 mov.<bw> @%1,%0
5413 mov.<bw> @(%O2,%1),%0"
5414 [(set_attr "type" "load")
5415 (set_attr "length" "2,2,4")])
5416
5417 ;; The order of the constraint alternatives is important here.
5418 ;; Q/r has to come first, otherwise PC relative loads might wrongly get
5419 ;; placed into delay slots. Since there is no QImode PC relative load, the
5420 ;; Q constraint and general_movsrc_operand will reject it for QImode.
5421 ;; The Sid/Ssd alternatives should come before Sdd in order to avoid
5422 ;; a preference of using r0 als the register operand for addressing modes
5423 ;; other than displacement addressing.
5424 ;; The Sdd alternatives allow only r0 as register operand, even though on
5425 ;; SH2A any register could be allowed by switching to a 32 bit insn.
5426 ;; Generally sticking to the r0 is preferrable, since it generates smaller
5427 ;; code. Obvious r0 reloads can then be eliminated with a peephole on SH2A.
5428 (define_insn "*mov<mode>"
5429 [(set (match_operand:QIHI 0 "general_movdst_operand"
5430 "=r,r,r,Sid,^zr,Ssd,r, Sdd,z, r,l")
5431 (match_operand:QIHI 1 "general_movsrc_operand"
5432 "Q,r,i,^zr,Sid,r, Ssd,z, Sdd,l,r"))]
5433 "TARGET_SH1
5434 && (arith_reg_operand (operands[0], <MODE>mode)
5435 || arith_reg_operand (operands[1], <MODE>mode))"
5436 "@
5437 mov.<bw> %1,%0
5438 mov %1,%0
5439 mov %1,%0
5440 mov.<bw> %1,%0
5441 mov.<bw> %1,%0
5442 mov.<bw> %1,%0
5443 mov.<bw> %1,%0
5444 mov.<bw> %1,%0
5445 mov.<bw> %1,%0
5446 sts %1,%0
5447 lds %1,%0"
5448 [(set_attr "type" "pcload,move,movi8,store,load,store,load,store,load,prget,prset")
5449 (set (attr "length")
5450 (cond [(match_operand 0 "long_displacement_mem_operand") (const_int 4)
5451 (match_operand 1 "long_displacement_mem_operand") (const_int 4)]
5452 (const_int 2)))])
5453
5454 ;; x/r can be created by inlining/cse, e.g. for execute/961213-1.c
5455 ;; compiled with -m2 -ml -O3 -funroll-loops
5456 (define_insn "*movdi_i"
5457 [(set (match_operand:DI 0 "general_movdst_operand" "=r,r,r,m, r,r,r,*!x")
5458 (match_operand:DI 1 "general_movsrc_operand" " Q,r,m,r,I08,i,x, r"))]
5459 "TARGET_SH1
5460 && (arith_reg_operand (operands[0], DImode)
5461 || arith_reg_operand (operands[1], DImode))"
5462 {
5463 return output_movedouble (insn, operands, DImode);
5464 }
5465 [(set_attr "type" "pcload,move,load,store,move,pcload,move,move")
5466 (set (attr "length")
5467 (cond [(match_operand 0 "long_displacement_mem_operand") (const_int 8)
5468 (match_operand 1 "long_displacement_mem_operand") (const_int 8)]
5469 (const_int 4)))])
5470
5471 ;; If the output is a register and the input is memory or a register, we have
5472 ;; to be careful and see which word needs to be loaded first.
5473 (define_split
5474 [(set (match_operand:DI 0 "general_movdst_operand" "")
5475 (match_operand:DI 1 "general_movsrc_operand" ""))]
5476 "TARGET_SH1 && reload_completed"
5477 [(set (match_dup 2) (match_dup 3))
5478 (set (match_dup 4) (match_dup 5))]
5479 {
5480 int regno;
5481
5482 if ((MEM_P (operands[0])
5483 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
5484 || (MEM_P (operands[1])
5485 && GET_CODE (XEXP (operands[1], 0)) == POST_INC))
5486 FAIL;
5487
5488 switch (GET_CODE (operands[0]))
5489 {
5490 case REG:
5491 regno = REGNO (operands[0]);
5492 break;
5493 case SUBREG:
5494 regno = subreg_regno (operands[0]);
5495 break;
5496 case MEM:
5497 regno = -1;
5498 break;
5499 default:
5500 gcc_unreachable ();
5501 }
5502
5503 if (regno == -1 || ! refers_to_regno_p (regno, operands[1]))
5504 {
5505 operands[2] = operand_subword (operands[0], 0, 0, DImode);
5506 operands[3] = operand_subword (operands[1], 0, 0, DImode);
5507 operands[4] = operand_subword (operands[0], 1, 0, DImode);
5508 operands[5] = operand_subword (operands[1], 1, 0, DImode);
5509 }
5510 else
5511 {
5512 operands[2] = operand_subword (operands[0], 1, 0, DImode);
5513 operands[3] = operand_subword (operands[1], 1, 0, DImode);
5514 operands[4] = operand_subword (operands[0], 0, 0, DImode);
5515 operands[5] = operand_subword (operands[1], 0, 0, DImode);
5516 }
5517
5518 if (operands[2] == 0 || operands[3] == 0
5519 || operands[4] == 0 || operands[5] == 0)
5520 FAIL;
5521 })
5522
5523 (define_expand "movdi"
5524 [(set (match_operand:DI 0 "general_movdst_operand" "")
5525 (match_operand:DI 1 "general_movsrc_operand" ""))]
5526 ""
5527 {
5528 prepare_move_operands (operands, DImode);
5529
5530 /* When the dest operand is (R0, R1) register pair, split it to
5531 two movsi of which dest is R1 and R0 so as to lower R0-register
5532 pressure on the first movsi. Apply only for simple source not
5533 to make complex rtl here. */
5534 if (REG_P (operands[0]) && REGNO (operands[0]) == R0_REG
5535 && REG_P (operands[1]) && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER)
5536 {
5537 emit_insn (gen_movsi (gen_rtx_REG (SImode, R1_REG),
5538 gen_rtx_SUBREG (SImode, operands[1], 4)));
5539 emit_insn (gen_movsi (gen_rtx_REG (SImode, R0_REG),
5540 gen_rtx_SUBREG (SImode, operands[1], 0)));
5541 DONE;
5542 }
5543 })
5544
5545 ;; FIXME: This should be a define_insn_and_split.
5546 (define_insn "movdf_k"
5547 [(set (match_operand:DF 0 "general_movdst_operand" "=r, r,r,m")
5548 (match_operand:DF 1 "general_movsrc_operand" " r,FQ,m,r"))]
5549 "TARGET_SH1
5550 && (!TARGET_FPU_DOUBLE || reload_completed
5551 /* ??? We provide some insn so that direct_{load,store}[DFmode] get set */
5552 || (REG_P (operands[0]) && REGNO (operands[0]) == 3)
5553 || (REG_P (operands[1]) && REGNO (operands[1]) == 3))
5554 && (arith_reg_operand (operands[0], DFmode)
5555 || arith_reg_operand (operands[1], DFmode))"
5556 {
5557 return output_movedouble (insn, operands, DFmode);
5558 }
5559 [(set_attr "type" "move,pcload,load,store")
5560 (set (attr "length")
5561 (cond [(match_operand 0 "long_displacement_mem_operand") (const_int 8)
5562 (match_operand 1 "long_displacement_mem_operand") (const_int 8)]
5563 (const_int 4)))])
5564
5565 ;; All alternatives of movdf_i4 are split for ! TARGET_FMOVD.
5566 ;; However, the d/F/c/z alternative cannot be split directly; it is converted
5567 ;; with special code in machine_dependent_reorg into a load of the R0_REG and
5568 ;; the d/m/c/X alternative, which is split later into single-precision
5569 ;; instructions. And when not optimizing, no splits are done before fixing
5570 ;; up pcloads, so we need usable length information for that.
5571 ;; A DF constant load results in the following worst-case 8 byte sequence:
5572 ;; mova ...,r0
5573 ;; fmov.s @r0+,..
5574 ;; fmov.s @r0,...
5575 ;; add #-4,r0
5576 (define_insn "movdf_i4"
5577 [(set (match_operand:DF 0 "general_movdst_operand"
5578 "=d,r, d,d,m, r,r,m,!??r,!???d")
5579 (match_operand:DF 1 "general_movsrc_operand"
5580 " d,r, F,m,d,FQ,m,r, d, r"))
5581 (use (reg:SI FPSCR_MODES_REG))
5582 (clobber (match_scratch:SI 2
5583 "=X,X,&z,X,X, X,X,X, X, X"))]
5584 "TARGET_FPU_DOUBLE
5585 && (arith_reg_operand (operands[0], DFmode)
5586 || arith_reg_operand (operands[1], DFmode))"
5587 {
5588 switch (which_alternative)
5589 {
5590 case 0:
5591 if (TARGET_FMOVD)
5592 return "fmov %1,%0";
5593 else if (REGNO (operands[0]) != REGNO (operands[1]) + 1)
5594 return "fmov %R1,%R0" "\n"
5595 " fmov %S1,%S0";
5596 else
5597 return "fmov %S1,%S0" "\n"
5598 " fmov %R1,%R0";
5599 case 3:
5600 case 4:
5601 return "fmov.d %1,%0";
5602 default:
5603 return "#";
5604 }
5605 }
5606 [(set_attr_alternative "length"
5607 [(if_then_else (eq_attr "fmovd" "yes") (const_int 2) (const_int 4))
5608 (const_int 4)
5609 (if_then_else (eq_attr "fmovd" "yes") (const_int 4) (const_int 8))
5610 (if_then_else (match_operand 1 "displacement_mem_operand")
5611 (if_then_else (eq_attr "fmovd" "yes")
5612 (const_int 4) (const_int 8))
5613 (if_then_else (eq_attr "fmovd" "yes")
5614 (const_int 2) (const_int 4)))
5615 (if_then_else (match_operand 0 "displacement_mem_operand")
5616 (if_then_else (eq_attr "fmovd" "yes")
5617 (const_int 4) (const_int 8))
5618 (if_then_else (eq_attr "fmovd" "yes")
5619 (const_int 2) (const_int 4)))
5620 (const_int 4)
5621 (if_then_else (match_operand 1 "long_displacement_mem_operand")
5622 (const_int 8) (const_int 4))
5623 (if_then_else (match_operand 0 "long_displacement_mem_operand")
5624 (const_int 8) (const_int 4))
5625 (const_int 8)
5626 (const_int 8)])
5627 (set_attr "type" "fmove,move,pcfload,fload,fstore,pcload,load,store,load,
5628 fload")
5629 (set_attr "late_fp_use" "*,*,*,*,yes,*,*,*,*,*")
5630 (set (attr "fp_mode") (if_then_else (eq_attr "fmovd" "yes")
5631 (const_string "double")
5632 (const_string "none")))])
5633
5634 ;; Moving DFmode between fp/general registers through memory
5635 ;; (the top of the stack) is faster than moving through fpul even for
5636 ;; little endian. Because the type of an instruction is important for its
5637 ;; scheduling, it is beneficial to split these operations, rather than
5638 ;; emitting them in one single chunk, even if this will expose a stack
5639 ;; use that will prevent scheduling of other stack accesses beyond this
5640 ;; instruction.
5641 (define_split
5642 [(set (match_operand:DF 0 "register_operand")
5643 (match_operand:DF 1 "register_operand"))
5644 (use (reg:SI FPSCR_MODES_REG))
5645 (clobber (match_scratch:SI 2))]
5646 "TARGET_FPU_DOUBLE && reload_completed
5647 && (true_regnum (operands[0]) < 16) != (true_regnum (operands[1]) < 16)"
5648 [(const_int 0)]
5649 {
5650 rtx insn, tos;
5651
5652 tos = gen_tmp_stack_mem (DFmode, gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
5653 insn = emit_insn (gen_movdf_i4 (tos, operands[1]));
5654 add_reg_note (insn, REG_INC, stack_pointer_rtx);
5655 tos = gen_tmp_stack_mem (DFmode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
5656 insn = emit_insn (gen_movdf_i4 (operands[0], tos));
5657 add_reg_note (insn, REG_INC, stack_pointer_rtx);
5658 DONE;
5659 })
5660
5661 ;; local-alloc sometimes allocates scratch registers even when not required,
5662 ;; so we must be prepared to handle these.
5663
5664 ;; Remove the use and clobber from a movdf_i4 so that we can use movdf_k.
5665 (define_split
5666 [(set (match_operand:DF 0 "general_movdst_operand" "")
5667 (match_operand:DF 1 "general_movsrc_operand" ""))
5668 (use (reg:SI FPSCR_MODES_REG))
5669 (clobber (match_scratch:SI 2))]
5670 "TARGET_FPU_DOUBLE
5671 && reload_completed
5672 && true_regnum (operands[0]) < 16
5673 && true_regnum (operands[1]) < 16"
5674 [(set (match_dup 0) (match_dup 1))]
5675 {
5676 /* If this was a reg <-> mem operation with base + index reg addressing,
5677 we have to handle this in a special way. */
5678 rtx mem = operands[0];
5679 int store_p = 1;
5680 if (! memory_operand (mem, DFmode))
5681 {
5682 mem = operands[1];
5683 store_p = 0;
5684 }
5685 if (GET_CODE (mem) == SUBREG && SUBREG_BYTE (mem) == 0)
5686 mem = SUBREG_REG (mem);
5687 if (MEM_P (mem))
5688 {
5689 rtx addr = XEXP (mem, 0);
5690 if (GET_CODE (addr) == PLUS
5691 && REG_P (XEXP (addr, 0))
5692 && REG_P (XEXP (addr, 1)))
5693 {
5694 int offset;
5695 rtx reg0 = gen_rtx_REG (Pmode, 0);
5696 rtx regop = operands[store_p], word0 ,word1;
5697
5698 if (GET_CODE (regop) == SUBREG)
5699 alter_subreg (&regop, true);
5700 if (REGNO (XEXP (addr, 0)) == REGNO (XEXP (addr, 1)))
5701 offset = 2;
5702 else
5703 offset = 4;
5704 mem = copy_rtx (mem);
5705 PUT_MODE (mem, SImode);
5706 word0 = gen_rtx_SUBREG (SImode, regop, 0);
5707 alter_subreg (&word0, true);
5708 word1 = gen_rtx_SUBREG (SImode, regop, 4);
5709 alter_subreg (&word1, true);
5710 if (store_p || ! refers_to_regno_p (REGNO (word0), addr))
5711 {
5712 emit_insn (store_p
5713 ? gen_movsi_ie (mem, word0)
5714 : gen_movsi_ie (word0, mem));
5715 emit_insn (gen_addsi3 (reg0, reg0, GEN_INT (offset)));
5716 mem = copy_rtx (mem);
5717 emit_insn (store_p
5718 ? gen_movsi_ie (mem, word1)
5719 : gen_movsi_ie (word1, mem));
5720 emit_insn (gen_addsi3 (reg0, reg0, GEN_INT (-offset)));
5721 }
5722 else
5723 {
5724 emit_insn (gen_addsi3 (reg0, reg0, GEN_INT (offset)));
5725 emit_insn (gen_movsi_ie (word1, mem));
5726 emit_insn (gen_addsi3 (reg0, reg0, GEN_INT (-offset)));
5727 mem = copy_rtx (mem);
5728 emit_insn (gen_movsi_ie (word0, mem));
5729 }
5730 DONE;
5731 }
5732 }
5733 })
5734
5735 ;; Split away the clobber of r0 after machine_dependent_reorg has fixed pcloads.
5736 (define_split
5737 [(set (match_operand:DF 0 "register_operand" "")
5738 (match_operand:DF 1 "memory_operand" ""))
5739 (use (reg:SI FPSCR_MODES_REG))
5740 (clobber (reg:SI R0_REG))]
5741 "TARGET_FPU_DOUBLE && reload_completed"
5742 [(parallel [(set (match_dup 0) (match_dup 1))
5743 (use (reg:SI FPSCR_MODES_REG))
5744 (clobber (scratch:SI))])]
5745 "")
5746
5747 (define_expand "reload_indf__frn"
5748 [(parallel [(set (match_operand:DF 0 "register_operand" "=a")
5749 (match_operand:DF 1 "immediate_operand" "FQ"))
5750 (use (reg:SI FPSCR_MODES_REG))
5751 (clobber (match_operand:SI 2 "register_operand" "=&z"))])]
5752 "TARGET_SH1"
5753 "")
5754
5755 (define_expand "reload_outdf__RnFRm"
5756 [(parallel [(set (match_operand:DF 0 "register_operand" "=r,f")
5757 (match_operand:DF 1 "register_operand" "af,r"))
5758 (clobber (match_operand:SI 2 "register_operand" "=&y,y"))])]
5759 "TARGET_SH1"
5760 "")
5761
5762 ;; Simplify no-op moves.
5763 (define_split
5764 [(set (match_operand:SF 0 "register_operand" "")
5765 (match_operand:SF 1 "register_operand" ""))
5766 (use (reg:SI FPSCR_MODES_REG))
5767 (clobber (match_scratch:SI 2))]
5768 "TARGET_SH2E && reload_completed
5769 && true_regnum (operands[0]) == true_regnum (operands[1])"
5770 [(set (match_dup 0) (match_dup 0))]
5771 "")
5772
5773 ;; fmovd substitute post-reload splits
5774 (define_split
5775 [(set (match_operand:DF 0 "register_operand" "")
5776 (match_operand:DF 1 "register_operand" ""))
5777 (use (reg:SI FPSCR_MODES_REG))
5778 (clobber (match_scratch:SI 2))]
5779 "TARGET_SH4 && ! TARGET_FMOVD && reload_completed
5780 && FP_OR_XD_REGISTER_P (true_regnum (operands[0]))
5781 && FP_OR_XD_REGISTER_P (true_regnum (operands[1]))"
5782 [(const_int 0)]
5783 {
5784 int dst = true_regnum (operands[0]), src = true_regnum (operands[1]);
5785 emit_insn (gen_movsf_ie (gen_rtx_REG (SFmode, dst),
5786 gen_rtx_REG (SFmode, src)));
5787 emit_insn (gen_movsf_ie (gen_rtx_REG (SFmode, dst + 1),
5788 gen_rtx_REG (SFmode, src + 1)));
5789 DONE;
5790 })
5791
5792 (define_split
5793 [(set (match_operand:DF 0 "register_operand" "")
5794 (mem:DF (match_operand:SI 1 "register_operand" "")))
5795 (use (reg:SI FPSCR_MODES_REG))
5796 (clobber (match_scratch:SI 2))]
5797 "TARGET_FPU_DOUBLE && ! TARGET_FMOVD && reload_completed
5798 && FP_OR_XD_REGISTER_P (true_regnum (operands[0]))
5799 && find_regno_note (insn, REG_DEAD, true_regnum (operands[1]))"
5800 [(const_int 0)]
5801 {
5802 int regno = true_regnum (operands[0]);
5803 rtx insn;
5804 rtx mem = SET_SRC (XVECEXP (PATTERN (curr_insn), 0, 0));
5805 rtx mem2
5806 = change_address (mem, SFmode, gen_rtx_POST_INC (Pmode, operands[1]));
5807 insn = emit_insn (gen_movsf_ie (gen_rtx_REG (SFmode,
5808 regno + SH_REG_MSW_OFFSET),
5809 mem2));
5810 add_reg_note (insn, REG_INC, operands[1]);
5811 insn = emit_insn (gen_movsf_ie (gen_rtx_REG (SFmode,
5812 regno + SH_REG_LSW_OFFSET),
5813 change_address (mem, SFmode, NULL_RTX)));
5814 DONE;
5815 })
5816
5817 (define_split
5818 [(set (match_operand:DF 0 "register_operand" "")
5819 (match_operand:DF 1 "memory_operand" ""))
5820 (use (reg:SI FPSCR_MODES_REG))
5821 (clobber (match_scratch:SI 2))]
5822 "TARGET_FPU_DOUBLE && ! TARGET_FMOVD && reload_completed
5823 && FP_OR_XD_REGISTER_P (true_regnum (operands[0]))"
5824 [(const_int 0)]
5825 {
5826 int regno = true_regnum (operands[0]);
5827 rtx addr, insn;
5828 rtx mem2 = change_address (operands[1], SFmode, NULL_RTX);
5829 rtx reg0 = gen_rtx_REG (SFmode, regno + SH_REG_MSW_OFFSET);
5830 rtx reg1 = gen_rtx_REG (SFmode, regno + SH_REG_LSW_OFFSET);
5831
5832 operands[1] = copy_rtx (mem2);
5833 addr = XEXP (mem2, 0);
5834
5835 switch (GET_CODE (addr))
5836 {
5837 case REG:
5838 /* This is complicated. If the register is an arithmetic register
5839 we can just fall through to the REG+DISP case below. Otherwise
5840 we have to use a combination of POST_INC and REG addressing... */
5841 if (! arith_reg_operand (operands[1], SFmode))
5842 {
5843 XEXP (mem2, 0) = addr = gen_rtx_POST_INC (SImode, addr);
5844 insn = emit_insn (gen_movsf_ie (reg0, mem2));
5845 add_reg_note (insn, REG_INC, XEXP (addr, 0));
5846
5847 emit_insn (gen_movsf_ie (reg1, operands[1]));
5848
5849 /* If we have modified the stack pointer, the value that we have
5850 read with post-increment might be modified by an interrupt,
5851 so write it back. */
5852 if (REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
5853 emit_insn (gen_push_e (reg0));
5854 else
5855 emit_insn (gen_addsi3 (XEXP (operands[1], 0), XEXP (operands[1], 0),
5856 GEN_INT (-4)));
5857 break;
5858 }
5859 /* Fall through. */
5860
5861 case PLUS:
5862 emit_insn (gen_movsf_ie (reg0, operands[1]));
5863 operands[1] = copy_rtx (operands[1]);
5864 XEXP (operands[1], 0) = plus_constant (Pmode, addr, 4);
5865 emit_insn (gen_movsf_ie (reg1, operands[1]));
5866 break;
5867
5868 case POST_INC:
5869 insn = emit_insn (gen_movsf_ie (reg0, operands[1]));
5870 add_reg_note (insn, REG_INC, XEXP (addr, 0));
5871
5872 insn = emit_insn (gen_movsf_ie (reg1, operands[1]));
5873 add_reg_note (insn, REG_INC, XEXP (addr, 0));
5874 break;
5875
5876 default:
5877 debug_rtx (addr);
5878 gcc_unreachable ();
5879 }
5880
5881 DONE;
5882 })
5883
5884 (define_split
5885 [(set (match_operand:DF 0 "memory_operand" "")
5886 (match_operand:DF 1 "register_operand" ""))
5887 (use (reg:SI FPSCR_MODES_REG))
5888 (clobber (match_scratch:SI 2))]
5889 "TARGET_FPU_DOUBLE && ! TARGET_FMOVD && reload_completed
5890 && FP_OR_XD_REGISTER_P (true_regnum (operands[1]))"
5891 [(const_int 0)]
5892 {
5893 int regno = true_regnum (operands[1]);
5894 rtx insn, addr;
5895 rtx reg0 = gen_rtx_REG (SFmode, regno + SH_REG_MSW_OFFSET);
5896 rtx reg1 = gen_rtx_REG (SFmode, regno + SH_REG_LSW_OFFSET);
5897
5898 operands[0] = copy_rtx (operands[0]);
5899 PUT_MODE (operands[0], SFmode);
5900 addr = XEXP (operands[0], 0);
5901
5902 switch (GET_CODE (addr))
5903 {
5904 case REG:
5905 /* This is complicated. If the register is an arithmetic register
5906 we can just fall through to the REG+DISP case below. Otherwise
5907 we have to use a combination of REG and PRE_DEC addressing... */
5908 if (! arith_reg_operand (operands[0], SFmode))
5909 {
5910 emit_insn (gen_addsi3 (addr, addr, GEN_INT (4)));
5911 emit_insn (gen_movsf_ie (operands[0], reg1));
5912
5913 operands[0] = copy_rtx (operands[0]);
5914 XEXP (operands[0], 0) = addr = gen_rtx_PRE_DEC (SImode, addr);
5915
5916 insn = emit_insn (gen_movsf_ie (operands[0], reg0));
5917 add_reg_note (insn, REG_INC, XEXP (addr, 0));
5918 break;
5919 }
5920 /* Fall through. */
5921
5922 case PLUS:
5923 /* Since REG+DISP addressing has already been decided upon by gcc
5924 we can rely upon it having chosen an arithmetic register as the
5925 register component of the address. Just emit the lower numbered
5926 register first, to the lower address, then the higher numbered
5927 register to the higher address. */
5928 emit_insn (gen_movsf_ie (operands[0], reg0));
5929
5930 operands[0] = copy_rtx (operands[0]);
5931 XEXP (operands[0], 0) = plus_constant (Pmode, addr, 4);
5932
5933 emit_insn (gen_movsf_ie (operands[0], reg1));
5934 break;
5935
5936 case PRE_DEC:
5937 /* This is easy. Output the word to go to the higher address
5938 first (ie the word in the higher numbered register) then the
5939 word to go to the lower address. */
5940
5941 insn = emit_insn (gen_movsf_ie (operands[0], reg1));
5942 add_reg_note (insn, REG_INC, XEXP (addr, 0));
5943
5944 insn = emit_insn (gen_movsf_ie (operands[0], reg0));
5945 add_reg_note (insn, REG_INC, XEXP (addr, 0));
5946 break;
5947
5948 default:
5949 /* FAIL; */
5950 debug_rtx (addr);
5951 gcc_unreachable ();
5952 }
5953
5954 DONE;
5955 })
5956
5957 ;; If the output is a register and the input is memory or a register, we have
5958 ;; to be careful and see which word needs to be loaded first.
5959 (define_split
5960 [(set (match_operand:DF 0 "general_movdst_operand" "")
5961 (match_operand:DF 1 "general_movsrc_operand" ""))]
5962 "TARGET_SH1 && reload_completed"
5963 [(set (match_dup 2) (match_dup 3))
5964 (set (match_dup 4) (match_dup 5))]
5965 {
5966 int regno;
5967
5968 if ((MEM_P (operands[0])
5969 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
5970 || (MEM_P (operands[1])
5971 && GET_CODE (XEXP (operands[1], 0)) == POST_INC))
5972 FAIL;
5973
5974 switch (GET_CODE (operands[0]))
5975 {
5976 case REG:
5977 regno = REGNO (operands[0]);
5978 break;
5979 case SUBREG:
5980 regno = subreg_regno (operands[0]);
5981 break;
5982 case MEM:
5983 regno = -1;
5984 break;
5985 default:
5986 gcc_unreachable ();
5987 }
5988
5989 if (regno == -1 || ! refers_to_regno_p (regno, operands[1]))
5990 {
5991 operands[2] = operand_subword (operands[0], 0, 0, DFmode);
5992 operands[3] = operand_subword (operands[1], 0, 0, DFmode);
5993 operands[4] = operand_subword (operands[0], 1, 0, DFmode);
5994 operands[5] = operand_subword (operands[1], 1, 0, DFmode);
5995 }
5996 else
5997 {
5998 operands[2] = operand_subword (operands[0], 1, 0, DFmode);
5999 operands[3] = operand_subword (operands[1], 1, 0, DFmode);
6000 operands[4] = operand_subword (operands[0], 0, 0, DFmode);
6001 operands[5] = operand_subword (operands[1], 0, 0, DFmode);
6002 }
6003
6004 if (operands[2] == 0 || operands[3] == 0
6005 || operands[4] == 0 || operands[5] == 0)
6006 FAIL;
6007 })
6008
6009 (define_expand "movdf"
6010 [(set (match_operand:DF 0 "general_movdst_operand" "")
6011 (match_operand:DF 1 "general_movsrc_operand" ""))]
6012 ""
6013 {
6014 prepare_move_operands (operands, DFmode);
6015 if (TARGET_FPU_DOUBLE)
6016 {
6017 emit_insn (gen_movdf_i4 (operands[0], operands[1]));
6018 DONE;
6019 }
6020 })
6021
6022 ;; FIXME Although the movsf_i pattern is not used when there's an FPU,
6023 ;; it somehow influences some RA choices also on FPU targets.
6024 ;; For non-FPU targets it's actually not needed.
6025 (define_insn "movsf_i"
6026 [(set (match_operand:SF 0 "general_movdst_operand" "=r,r, r, r,m,l,r")
6027 (match_operand:SF 1 "general_movsrc_operand" "r,G,FQ,mr,r,r,l"))]
6028 "TARGET_SH1
6029 && (! TARGET_SH2E
6030 /* ??? We provide some insn so that direct_{load,store}[SFmode] get set */
6031 || (REG_P (operands[0]) && REGNO (operands[0]) == 3)
6032 || (REG_P (operands[1]) && REGNO (operands[1]) == 3))
6033 && (arith_reg_operand (operands[0], SFmode)
6034 || arith_reg_operand (operands[1], SFmode))"
6035 "@
6036 mov %1,%0
6037 mov #0,%0
6038 mov.l %1,%0
6039 mov.l %1,%0
6040 mov.l %1,%0
6041 lds %1,%0
6042 sts %1,%0"
6043 [(set_attr "type" "move,move,pcload,load,store,move,move")
6044 (set_attr_alternative "length"
6045 [(const_int 2)
6046 (const_int 2)
6047 (if_then_else (match_operand 1 "long_displacement_mem_operand")
6048 (const_int 4) (const_int 2))
6049 (if_then_else (match_operand 1 "long_displacement_mem_operand")
6050 (const_int 4) (const_int 2))
6051 (if_then_else (match_operand 0 "long_displacement_mem_operand")
6052 (const_int 4) (const_int 2))
6053 (const_int 2)
6054 (const_int 2)])])
6055
6056 ;; We may not split the ry/yr/XX alternatives to movsi_ie, since
6057 ;; update_flow_info would not know where to put REG_EQUAL notes
6058 ;; when the destination changes mode.
6059 (define_insn "movsf_ie"
6060 [(set (match_operand:SF 0 "general_movdst_operand"
6061 "=f,r,f,f,fy, f,m, r, r,m,f,y,y,rf,r,y,<,y,y")
6062 (match_operand:SF 1 "general_movsrc_operand"
6063 " f,r,G,H,FQ,mf,f,FQ,mr,r,y,f,>,fr,y,r,y,>,y"))
6064 (use (reg:SI FPSCR_MODES_REG))
6065 (clobber (match_scratch:SI 2 "=X,X,X,X,&z, X,X, X, X,X,X,X,X, y,X,X,X,X,X"))]
6066 "TARGET_SH2E
6067 && (arith_reg_operand (operands[0], SFmode)
6068 || fpul_operand (operands[0], SFmode)
6069 || arith_reg_operand (operands[1], SFmode)
6070 || fpul_operand (operands[1], SFmode)
6071 || arith_reg_operand (operands[2], SImode))"
6072 "@
6073 fmov %1,%0
6074 mov %1,%0
6075 fldi0 %0
6076 fldi1 %0
6077 #
6078 fmov.s %1,%0
6079 fmov.s %1,%0
6080 mov.l %1,%0
6081 mov.l %1,%0
6082 mov.l %1,%0
6083 fsts fpul,%0
6084 flds %1,fpul
6085 lds.l %1,%0
6086 #
6087 sts %1,%0
6088 lds %1,%0
6089 sts.l %1,%0
6090 lds.l %1,%0
6091 ! move optimized away"
6092 [(set_attr "type" "fmove,move,fmove,fmove,pcfload,fload,fstore,pcload,load,
6093 store,fmove,fmove,load,*,fpul_gp,gp_fpul,fstore,load,nil")
6094 (set_attr "late_fp_use" "*,*,*,*,*,*,yes,*,*,*,*,*,*,*,yes,*,yes,*,*")
6095 (set_attr_alternative "length"
6096 [(const_int 2)
6097 (const_int 2)
6098 (const_int 2)
6099 (const_int 2)
6100 (const_int 4)
6101 (if_then_else (match_operand 1 "displacement_mem_operand")
6102 (const_int 4) (const_int 2))
6103 (if_then_else (match_operand 0 "displacement_mem_operand")
6104 (const_int 4) (const_int 2))
6105 (const_int 2)
6106 (if_then_else (match_operand 1 "long_displacement_mem_operand")
6107 (const_int 4) (const_int 2))
6108 (if_then_else (match_operand 0 "long_displacement_mem_operand")
6109 (const_int 4) (const_int 2))
6110 (const_int 2)
6111 (const_int 2)
6112 (const_int 2)
6113 (const_int 4)
6114 (const_int 2)
6115 (const_int 2)
6116 (const_int 2)
6117 (const_int 2)
6118 (const_int 0)])
6119 (set_attr_alternative "fp_mode"
6120 [(if_then_else (eq_attr "fmovd" "yes")
6121 (const_string "single") (const_string "none"))
6122 (const_string "none")
6123 (const_string "single")
6124 (const_string "single")
6125 (const_string "none")
6126 (if_then_else (eq_attr "fmovd" "yes")
6127 (const_string "single") (const_string "none"))
6128 (if_then_else (eq_attr "fmovd" "yes")
6129 (const_string "single") (const_string "none"))
6130 (const_string "none")
6131 (const_string "none")
6132 (const_string "none")
6133 (const_string "none")
6134 (const_string "none")
6135 (const_string "none")
6136 (const_string "none")
6137 (const_string "none")
6138 (const_string "none")
6139 (const_string "none")
6140 (const_string "none")
6141 (const_string "none")])])
6142
6143 (define_insn_and_split "movsf_ie_ra"
6144 [(set (match_operand:SF 0 "general_movdst_operand"
6145 "=f,r,f,f,fy,f,m, r,r,m,f,y,y,rf,r,y,<,y,y")
6146 (match_operand:SF 1 "general_movsrc_operand"
6147 " f,r,G,H,FQ,m,f,FQ,m,r,y,f,>,fr,y,r,y,>,y"))
6148 (use (reg:SI FPSCR_MODES_REG))
6149 (clobber (match_scratch:SF 2 "=r,r,X,X,&z,r,r, X,r,r,r,r,r, y,r,r,r,r,r"))
6150 (const_int 0)]
6151 "TARGET_SH2E
6152 && (arith_reg_operand (operands[0], SFmode)
6153 || fpul_operand (operands[0], SFmode)
6154 || arith_reg_operand (operands[1], SFmode)
6155 || fpul_operand (operands[1], SFmode))"
6156 "@
6157 fmov %1,%0
6158 mov %1,%0
6159 fldi0 %0
6160 fldi1 %0
6161 #
6162 fmov.s %1,%0
6163 fmov.s %1,%0
6164 mov.l %1,%0
6165 mov.l %1,%0
6166 mov.l %1,%0
6167 fsts fpul,%0
6168 flds %1,fpul
6169 lds.l %1,%0
6170 #
6171 sts %1,%0
6172 lds %1,%0
6173 sts.l %1,%0
6174 lds.l %1,%0
6175 ! move optimized away"
6176 "reload_completed
6177 && sh_movsf_ie_ra_split_p (operands[0], operands[1], operands[2])"
6178 [(const_int 0)]
6179 {
6180 if (! rtx_equal_p (operands[0], operands[1]))
6181 {
6182 emit_insn (gen_movsf_ie (operands[2], operands[1]));
6183 emit_insn (gen_movsf_ie (operands[0], operands[2]));
6184 }
6185 }
6186 [(set_attr "type" "fmove,move,fmove,fmove,pcfload,fload,fstore,pcload,load,
6187 store,fmove,fmove,load,*,fpul_gp,gp_fpul,fstore,load,nil")
6188 (set_attr "late_fp_use" "*,*,*,*,*,*,yes,*,*,*,*,*,*,*,yes,*,yes,*,*")
6189 (set_attr_alternative "length"
6190 [(const_int 2)
6191 (const_int 2)
6192 (const_int 2)
6193 (const_int 2)
6194 (const_int 4)
6195 (if_then_else (match_operand 1 "displacement_mem_operand")
6196 (const_int 4) (const_int 2))
6197 (if_then_else (match_operand 0 "displacement_mem_operand")
6198 (const_int 4) (const_int 2))
6199 (const_int 2)
6200 (if_then_else (match_operand 1 "long_displacement_mem_operand")
6201 (const_int 4) (const_int 2))
6202 (if_then_else (match_operand 0 "long_displacement_mem_operand")
6203 (const_int 4) (const_int 2))
6204 (const_int 2)
6205 (const_int 2)
6206 (const_int 2)
6207 (const_int 4)
6208 (const_int 2)
6209 (const_int 2)
6210 (const_int 2)
6211 (const_int 2)
6212 (const_int 0)])
6213 (set_attr_alternative "fp_mode"
6214 [(if_then_else (eq_attr "fmovd" "yes")
6215 (const_string "single") (const_string "none"))
6216 (const_string "none")
6217 (const_string "single")
6218 (const_string "single")
6219 (const_string "none")
6220 (if_then_else (eq_attr "fmovd" "yes")
6221 (const_string "single") (const_string "none"))
6222 (if_then_else (eq_attr "fmovd" "yes")
6223 (const_string "single") (const_string "none"))
6224 (const_string "none")
6225 (const_string "none")
6226 (const_string "none")
6227 (const_string "none")
6228 (const_string "none")
6229 (const_string "none")
6230 (const_string "none")
6231 (const_string "none")
6232 (const_string "none")
6233 (const_string "none")
6234 (const_string "none")
6235 (const_string "none")])])
6236
6237 (define_split
6238 [(set (match_operand:SF 0 "register_operand" "")
6239 (match_operand:SF 1 "register_operand" ""))
6240 (use (reg:SI FPSCR_MODES_REG))
6241 (clobber (reg:SI FPUL_REG))]
6242 "TARGET_SH1"
6243 [(parallel [(set (reg:SF FPUL_REG) (match_dup 1))
6244 (use (reg:SI FPSCR_MODES_REG))
6245 (clobber (scratch:SI))])
6246 (parallel [(set (match_dup 0) (reg:SF FPUL_REG))
6247 (use (reg:SI FPSCR_MODES_REG))
6248 (clobber (scratch:SI))])]
6249 "")
6250
6251 (define_expand "movsf"
6252 [(set (match_operand:SF 0 "general_movdst_operand" "")
6253 (match_operand:SF 1 "general_movsrc_operand" ""))]
6254 ""
6255 {
6256 prepare_move_operands (operands, SFmode);
6257 if (TARGET_SH2E)
6258 {
6259 if (lra_in_progress)
6260 {
6261 if (GET_CODE (operands[0]) == SCRATCH)
6262 DONE;
6263 emit_insn (gen_movsf_ie_ra (operands[0], operands[1]));
6264 DONE;
6265 }
6266
6267 emit_insn (gen_movsf_ie (operands[0], operands[1]));
6268 DONE;
6269 }
6270 })
6271
6272 (define_expand "reload_insf__frn"
6273 [(parallel [(set (match_operand:SF 0 "register_operand" "=a")
6274 (match_operand:SF 1 "immediate_operand" "FQ"))
6275 (use (reg:SI FPSCR_MODES_REG))
6276 (clobber (match_operand:SI 2 "register_operand" "=&z"))])]
6277 "TARGET_SH1"
6278 "")
6279
6280 (define_expand "reload_insi__i_fpul"
6281 [(parallel [(set (match_operand:SI 0 "fpul_operand" "=y")
6282 (match_operand:SI 1 "immediate_operand" "i"))
6283 (clobber (match_operand:SI 2 "register_operand" "=&z"))])]
6284 "TARGET_SH1"
6285 "")
6286
6287 (define_insn "*movsi_y"
6288 [(set (match_operand:SI 0 "register_operand" "=y,y")
6289 (match_operand:SI 1 "immediate_operand" "Qi,I08"))
6290 (clobber (match_scratch:SI 2 "=&z,r"))]
6291 "TARGET_SH2E
6292 && (reload_in_progress || reload_completed)"
6293 "#"
6294 [(set_attr "length" "4")
6295 (set_attr "type" "pcload,move")])
6296
6297 (define_split
6298 [(set (match_operand:SI 0 "register_operand" "")
6299 (match_operand:SI 1 "immediate_operand" ""))
6300 (clobber (match_operand:SI 2 "register_operand" ""))]
6301 "TARGET_SH1"
6302 [(set (match_dup 2) (match_dup 1))
6303 (set (match_dup 0) (match_dup 2))]
6304 "")
6305 \f
6306 ;; ------------------------------------------------------------------------
6307 ;; Define the real conditional branch instructions.
6308 ;; ------------------------------------------------------------------------
6309
6310 (define_expand "branch_true"
6311 [(set (pc) (if_then_else (ne (reg:SI T_REG) (const_int 0))
6312 (label_ref (match_operand 0))
6313 (pc)))]
6314 "TARGET_SH1")
6315
6316 (define_expand "branch_false"
6317 [(set (pc) (if_then_else (eq (reg:SI T_REG) (const_int 0))
6318 (label_ref (match_operand 0))
6319 (pc)))]
6320 "TARGET_SH1")
6321
6322 (define_insn_and_split "*cbranch_t"
6323 [(set (pc) (if_then_else (match_operand 1 "cbranch_treg_value")
6324 (label_ref (match_operand 0))
6325 (pc)))]
6326 "TARGET_SH1"
6327 {
6328 return output_branch (sh_eval_treg_value (operands[1]), insn, operands);
6329 }
6330 "&& 1"
6331 [(const_int 0)]
6332 {
6333 /* Try to canonicalize the branch condition if it is not one of:
6334 (ne (reg:SI T_REG) (const_int 0))
6335 (eq (reg:SI T_REG) (const_int 0))
6336
6337 Instead of splitting out a new insn, we modify the current insn's
6338 operands as needed. This preserves things such as REG_DEAD notes. */
6339
6340 if ((GET_CODE (operands[1]) == EQ || GET_CODE (operands[1]) == NE)
6341 && REG_P (XEXP (operands[1], 0)) && REGNO (XEXP (operands[1], 0)) == T_REG
6342 && XEXP (operands[1], 1) == const0_rtx)
6343 DONE;
6344
6345 int branch_cond = sh_eval_treg_value (operands[1]);
6346 rtx new_cond_rtx = NULL_RTX;
6347
6348 if (branch_cond == 0)
6349 new_cond_rtx = gen_rtx_EQ (VOIDmode, get_t_reg_rtx (), const0_rtx);
6350 else if (branch_cond == 1)
6351 new_cond_rtx = gen_rtx_NE (VOIDmode, get_t_reg_rtx (), const0_rtx);
6352
6353 if (new_cond_rtx != NULL_RTX)
6354 validate_change (curr_insn, &XEXP (XEXP (PATTERN (curr_insn), 1), 0),
6355 new_cond_rtx, false);
6356 DONE;
6357 }
6358 [(set_attr "type" "cbranch")])
6359
6360 ;; Patterns to prevent reorg from re-combining a condbranch with a branch
6361 ;; which destination is too far away.
6362 ;; The const_int_operand is distinct for each branch target; it avoids
6363 ;; unwanted matches with redundant_insn.
6364 (define_insn "block_branch_redirect"
6365 [(set (pc) (unspec [(match_operand 0 "const_int_operand" "")] UNSPEC_BBR))]
6366 "TARGET_SH1"
6367 ""
6368 [(set_attr "length" "0")])
6369
6370 ;; This one has the additional purpose to record a possible scratch register
6371 ;; for the following branch.
6372 ;; ??? Unfortunately, just setting the scratch register is not good enough,
6373 ;; because the insn then might be deemed dead and deleted. And we can't
6374 ;; make the use in the jump insn explicit because that would disable
6375 ;; delay slot scheduling from the target.
6376 (define_insn "indirect_jump_scratch"
6377 [(set (match_operand:SI 0 "register_operand" "=r")
6378 (unspec:SI [(match_operand 1 "const_int_operand" "")] UNSPEC_BBR))
6379 (set (pc) (unspec [(const_int 0)] UNSPEC_BBR))]
6380 "TARGET_SH1"
6381 ""
6382 [(set_attr "length" "0")])
6383
6384 ;; This one is used to preemt an insn from beyond the bra / braf / jmp
6385 ;; being pulled into the delay slot of a condbranch that has been made to
6386 ;; jump around the unconditional jump because it was out of range.
6387 (define_insn "stuff_delay_slot"
6388 [(set (pc)
6389 (unspec [(match_operand:SI 0 "const_int_operand" "") (pc)
6390 (match_operand:SI 1 "const_int_operand" "")] UNSPEC_BBR))]
6391 "TARGET_SH1"
6392 ""
6393 [(set_attr "length" "0")
6394 (set_attr "cond_delay_slot" "yes")])
6395 \f
6396 ;; Conditional branch insns
6397
6398 ; operand 0 is the loop count pseudo register
6399 ; operand 1 is the label to jump to at the top of the loop
6400 (define_expand "doloop_end"
6401 [(parallel [(set (pc)
6402 (if_then_else (ne:SI (match_operand:SI 0 "" "")
6403 (const_int 1))
6404 (label_ref (match_operand 1 "" ""))
6405 (pc)))
6406 (set (match_dup 0)
6407 (plus:SI (match_dup 0) (const_int -1)))
6408 (clobber (reg:SI T_REG))])]
6409 "TARGET_SH2"
6410 {
6411 if (GET_MODE (operands[0]) != SImode)
6412 FAIL;
6413 emit_jump_insn (gen_doloop_end_split (operands[0], operands[1], operands[0]));
6414 DONE;
6415 })
6416
6417 (define_insn_and_split "doloop_end_split"
6418 [(set (pc)
6419 (if_then_else (ne:SI (match_operand:SI 2 "arith_reg_dest" "0")
6420 (const_int 1))
6421 (label_ref (match_operand 1 "" ""))
6422 (pc)))
6423 (set (match_operand:SI 0 "arith_reg_dest" "=r")
6424 (plus:SI (match_dup 2) (const_int -1)))
6425 (clobber (reg:SI T_REG))]
6426 "TARGET_SH2"
6427 "#"
6428 ""
6429 [(parallel [(set (reg:SI T_REG)
6430 (eq:SI (match_dup 2) (const_int 1)))
6431 (set (match_dup 0) (plus:SI (match_dup 2) (const_int -1)))])
6432 (set (pc) (if_then_else (eq (reg:SI T_REG) (const_int 0))
6433 (label_ref (match_dup 1))
6434 (pc)))]
6435 ""
6436 [(set_attr "type" "cbranch")])
6437 \f
6438 ;; ------------------------------------------------------------------------
6439 ;; Jump and linkage insns
6440 ;; ------------------------------------------------------------------------
6441
6442 (define_insn "jump_compact"
6443 [(set (pc)
6444 (label_ref (match_operand 0 "" "")))]
6445 "TARGET_SH1 && !CROSSING_JUMP_P (insn)"
6446 {
6447 /* The length is 16 if the delay slot is unfilled. */
6448 if (get_attr_length(insn) > 4)
6449 return output_far_jump(insn, operands[0]);
6450 else
6451 return "bra %l0%#";
6452 }
6453 [(set_attr "type" "jump")
6454 (set_attr "needs_delay_slot" "yes")])
6455
6456 (define_insn "*jump_compact_crossing"
6457 [(set (pc)
6458 (label_ref (match_operand 0 "" "")))]
6459 "TARGET_SH1
6460 && flag_reorder_blocks_and_partition
6461 && CROSSING_JUMP_P (insn)"
6462 {
6463 /* The length is 16 if the delay slot is unfilled. */
6464 return output_far_jump(insn, operands[0]);
6465 }
6466 [(set_attr "type" "jump")
6467 (set_attr "length" "16")])
6468
6469 (define_expand "jump"
6470 [(set (pc)
6471 (label_ref (match_operand 0 "" "")))]
6472 ""
6473 {
6474 emit_jump_insn (gen_jump_compact (operands[0]));
6475 DONE;
6476 })
6477
6478 (define_insn "calli"
6479 [(call (mem:SI (match_operand:SI 0 "arith_reg_operand" "r"))
6480 (match_operand 1 "" ""))
6481 (use (reg:SI FPSCR_MODES_REG))
6482 (clobber (reg:SI PR_REG))]
6483 "TARGET_SH1 && !TARGET_FDPIC"
6484 {
6485 if (TARGET_SH2A && dbr_sequence_length () == 0)
6486 return "jsr/n @%0";
6487 else
6488 return "jsr @%0%#";
6489 }
6490 [(set_attr "type" "call")
6491 (set (attr "fp_mode")
6492 (if_then_else (eq_attr "fpu_single" "yes")
6493 (const_string "single") (const_string "double")))
6494 (set_attr "needs_delay_slot" "yes")
6495 (set_attr "fp_set" "unknown")])
6496
6497 (define_insn "calli_fdpic"
6498 [(call (mem:SI (match_operand:SI 0 "arith_reg_operand" "r"))
6499 (match_operand 1))
6500 (use (reg:SI FPSCR_MODES_REG))
6501 (use (reg:SI PIC_REG))
6502 (clobber (reg:SI PR_REG))]
6503 "TARGET_FDPIC"
6504 {
6505 if (TARGET_SH2A && dbr_sequence_length () == 0)
6506 return "jsr/n @%0";
6507 else
6508 return "jsr @%0%#";
6509 }
6510 [(set_attr "type" "call")
6511 (set (attr "fp_mode")
6512 (if_then_else (eq_attr "fpu_single" "yes")
6513 (const_string "single") (const_string "double")))
6514 (set_attr "needs_delay_slot" "yes")
6515 (set_attr "fp_set" "unknown")])
6516
6517 ;; This is TBR relative jump instruction for SH2A architecture.
6518 ;; Its use is enabled by assigning an attribute "function_vector"
6519 ;; and the vector number to a function during its declaration.
6520 (define_insn "calli_tbr_rel"
6521 [(call (mem (match_operand:SI 0 "symbol_ref_operand" ""))
6522 (match_operand 1 "" ""))
6523 (use (reg:SI FPSCR_MODES_REG))
6524 (use (match_scratch 2))
6525 (clobber (reg:SI PR_REG))]
6526 "TARGET_SH2A && sh2a_is_function_vector_call (operands[0])"
6527 {
6528 unsigned HOST_WIDE_INT vect_num;
6529 vect_num = sh2a_get_function_vector_number (operands[0]);
6530 operands[2] = GEN_INT (vect_num * 4);
6531
6532 return "jsr/n @@(%O2,tbr)";
6533 }
6534 [(set_attr "type" "call")
6535 (set (attr "fp_mode")
6536 (if_then_else (eq_attr "fpu_single" "yes")
6537 (const_string "single") (const_string "double")))
6538 (set_attr "needs_delay_slot" "no")
6539 (set_attr "fp_set" "unknown")])
6540
6541 ;; This is a pc-rel call, using bsrf, for use with PIC.
6542 (define_insn "calli_pcrel"
6543 [(call (mem:SI (match_operand:SI 0 "arith_reg_operand" "r"))
6544 (match_operand 1 "" ""))
6545 (use (reg:SI FPSCR_MODES_REG))
6546 (use (reg:SI PIC_REG))
6547 (use (match_operand 2 "" ""))
6548 (clobber (reg:SI PR_REG))]
6549 "TARGET_SH2"
6550 {
6551 return "bsrf %0" "\n"
6552 "%O2:%#";
6553 }
6554 [(set_attr "type" "call")
6555 (set (attr "fp_mode")
6556 (if_then_else (eq_attr "fpu_single" "yes")
6557 (const_string "single") (const_string "double")))
6558 (set_attr "needs_delay_slot" "yes")
6559 (set_attr "fp_set" "unknown")])
6560
6561 (define_insn_and_split "call_pcrel"
6562 [(call (mem:SI (match_operand:SI 0 "symbol_ref_operand" ""))
6563 (match_operand 1 "" ""))
6564 (use (reg:SI FPSCR_MODES_REG))
6565 (use (reg:SI PIC_REG))
6566 (clobber (reg:SI PR_REG))
6567 (clobber (match_scratch:SI 2 "=&r"))]
6568 "TARGET_SH2"
6569 "#"
6570 "reload_completed"
6571 [(const_int 0)]
6572 {
6573 rtx lab = PATTERN (gen_call_site ());
6574
6575 sh_expand_sym_label2reg (operands[2], operands[0], lab, false);
6576 emit_call_insn (gen_calli_pcrel (operands[2], operands[1], copy_rtx (lab)));
6577 DONE;
6578 }
6579 [(set_attr "type" "call")
6580 (set (attr "fp_mode")
6581 (if_then_else (eq_attr "fpu_single" "yes")
6582 (const_string "single") (const_string "double")))
6583 (set_attr "needs_delay_slot" "yes")
6584 (set_attr "fp_set" "unknown")])
6585
6586 (define_insn "call_valuei"
6587 [(set (match_operand 0 "" "=rf")
6588 (call (mem:SI (match_operand:SI 1 "arith_reg_operand" "r"))
6589 (match_operand 2 "" "")))
6590 (use (reg:SI FPSCR_MODES_REG))
6591 (clobber (reg:SI PR_REG))]
6592 "TARGET_SH1 && !TARGET_FDPIC"
6593 {
6594 if (TARGET_SH2A && dbr_sequence_length () == 0)
6595 return "jsr/n @%1";
6596 else
6597 return "jsr @%1%#";
6598 }
6599 [(set_attr "type" "call")
6600 (set (attr "fp_mode")
6601 (if_then_else (eq_attr "fpu_single" "yes")
6602 (const_string "single") (const_string "double")))
6603 (set_attr "needs_delay_slot" "yes")
6604 (set_attr "fp_set" "unknown")])
6605
6606 (define_insn "call_valuei_fdpic"
6607 [(set (match_operand 0 "" "=rf")
6608 (call (mem:SI (match_operand:SI 1 "arith_reg_operand" "r"))
6609 (match_operand 2)))
6610 (use (reg:SI FPSCR_REG))
6611 (use (reg:SI PIC_REG))
6612 (clobber (reg:SI PR_REG))]
6613 "TARGET_FDPIC"
6614 {
6615 if (TARGET_SH2A && dbr_sequence_length () == 0)
6616 return "jsr/n @%1";
6617 else
6618 return "jsr @%1%#";
6619 }
6620 [(set_attr "type" "call")
6621 (set (attr "fp_mode")
6622 (if_then_else (eq_attr "fpu_single" "yes")
6623 (const_string "single") (const_string "double")))
6624 (set_attr "needs_delay_slot" "yes")
6625 (set_attr "fp_set" "unknown")])
6626
6627 ;; This is TBR relative jump instruction for SH2A architecture.
6628 ;; Its use is enabled by assigning an attribute "function_vector"
6629 ;; and the vector number to a function during its declaration.
6630 (define_insn "call_valuei_tbr_rel"
6631 [(set (match_operand 0 "" "=rf")
6632 (call (mem:SI (match_operand:SI 1 "symbol_ref_operand" ""))
6633 (match_operand 2 "" "")))
6634 (use (reg:SI FPSCR_MODES_REG))
6635 (use (match_scratch 3))
6636 (clobber (reg:SI PR_REG))]
6637 "TARGET_SH2A && sh2a_is_function_vector_call (operands[1])"
6638 {
6639 unsigned HOST_WIDE_INT vect_num;
6640 vect_num = sh2a_get_function_vector_number (operands[1]);
6641 operands[3] = GEN_INT (vect_num * 4);
6642
6643 return "jsr/n @@(%O3,tbr)";
6644 }
6645 [(set_attr "type" "call")
6646 (set (attr "fp_mode")
6647 (if_then_else (eq_attr "fpu_single" "yes")
6648 (const_string "single") (const_string "double")))
6649 (set_attr "needs_delay_slot" "no")
6650 (set_attr "fp_set" "unknown")])
6651
6652 (define_insn "call_valuei_pcrel"
6653 [(set (match_operand 0 "" "=rf")
6654 (call (mem:SI (match_operand:SI 1 "arith_reg_operand" "r"))
6655 (match_operand 2 "" "")))
6656 (use (reg:SI FPSCR_MODES_REG))
6657 (use (reg:SI PIC_REG))
6658 (use (match_operand 3 "" ""))
6659 (clobber (reg:SI PR_REG))]
6660 "TARGET_SH2"
6661 {
6662 return "bsrf %1" "\n"
6663 "%O3:%#";
6664 }
6665 [(set_attr "type" "call")
6666 (set (attr "fp_mode")
6667 (if_then_else (eq_attr "fpu_single" "yes")
6668 (const_string "single") (const_string "double")))
6669 (set_attr "needs_delay_slot" "yes")
6670 (set_attr "fp_set" "unknown")])
6671
6672 (define_insn_and_split "call_value_pcrel"
6673 [(set (match_operand 0 "" "=rf")
6674 (call (mem:SI (match_operand:SI 1 "symbol_ref_operand" ""))
6675 (match_operand 2 "" "")))
6676 (use (reg:SI FPSCR_MODES_REG))
6677 (use (reg:SI PIC_REG))
6678 (clobber (reg:SI PR_REG))
6679 (clobber (match_scratch:SI 3 "=&r"))]
6680 "TARGET_SH2"
6681 "#"
6682 "reload_completed"
6683 [(const_int 0)]
6684 {
6685 rtx lab = PATTERN (gen_call_site ());
6686
6687 sh_expand_sym_label2reg (operands[3], operands[1], lab, false);
6688 emit_call_insn (gen_call_valuei_pcrel (operands[0], operands[3],
6689 operands[2], copy_rtx (lab)));
6690 DONE;
6691 }
6692 [(set_attr "type" "call")
6693 (set (attr "fp_mode")
6694 (if_then_else (eq_attr "fpu_single" "yes")
6695 (const_string "single") (const_string "double")))
6696 (set_attr "needs_delay_slot" "yes")
6697 (set_attr "fp_set" "unknown")])
6698
6699 (define_expand "call"
6700 [(parallel [(call (mem:SI (match_operand 0 "arith_reg_operand" ""))
6701 (match_operand 1 "" ""))
6702 (match_operand 2 "" "")
6703 (use (reg:SI FPSCR_MODES_REG))
6704 (clobber (reg:SI PR_REG))])]
6705 ""
6706 {
6707 if (TARGET_FDPIC)
6708 {
6709 rtx pic_reg = gen_rtx_REG (Pmode, PIC_REG);
6710 emit_move_insn (pic_reg, sh_get_fdpic_reg_initial_val ());
6711 }
6712
6713 if (!flag_pic && TARGET_SH2A
6714 && MEM_P (operands[0])
6715 && GET_CODE (XEXP (operands[0], 0)) == SYMBOL_REF)
6716 {
6717 if (sh2a_is_function_vector_call (XEXP (operands[0], 0)))
6718 {
6719 emit_call_insn (gen_calli_tbr_rel (XEXP (operands[0], 0),
6720 operands[1]));
6721 DONE;
6722 }
6723 }
6724 if (flag_pic && TARGET_SH2
6725 && MEM_P (operands[0])
6726 && GET_CODE (XEXP (operands[0], 0)) == SYMBOL_REF)
6727 {
6728 emit_call_insn (gen_call_pcrel (XEXP (operands[0], 0), operands[1]));
6729 DONE;
6730 }
6731 else
6732 {
6733 operands[0] = force_reg (SImode, XEXP (operands[0], 0));
6734 operands[1] = operands[2];
6735 }
6736
6737 if (TARGET_FDPIC)
6738 {
6739 operands[0] = sh_load_function_descriptor (operands[0]);
6740 emit_call_insn (gen_calli_fdpic (operands[0], operands[1]));
6741 }
6742 else
6743 emit_call_insn (gen_calli (operands[0], operands[1]));
6744 DONE;
6745 })
6746
6747 (define_expand "call_value"
6748 [(parallel [(set (match_operand 0 "arith_reg_operand" "")
6749 (call (mem:SI (match_operand 1 "arith_reg_operand" ""))
6750 (match_operand 2 "" "")))
6751 (match_operand 3 "" "")
6752 (use (reg:SI FPSCR_MODES_REG))
6753 (clobber (reg:SI PR_REG))])]
6754 ""
6755 {
6756 if (TARGET_FDPIC)
6757 {
6758 rtx pic_reg = gen_rtx_REG (Pmode, PIC_REG);
6759 emit_move_insn (pic_reg, sh_get_fdpic_reg_initial_val ());
6760 }
6761
6762 if (!flag_pic && TARGET_SH2A
6763 && MEM_P (operands[1])
6764 && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF)
6765 {
6766 if (sh2a_is_function_vector_call (XEXP (operands[1], 0)))
6767 {
6768 emit_call_insn (gen_call_valuei_tbr_rel (operands[0],
6769 XEXP (operands[1], 0), operands[2]));
6770 DONE;
6771 }
6772 }
6773 if (flag_pic && TARGET_SH2
6774 && MEM_P (operands[1])
6775 && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF)
6776 {
6777 emit_call_insn (gen_call_value_pcrel (operands[0], XEXP (operands[1], 0),
6778 operands[2]));
6779 DONE;
6780 }
6781 else
6782 operands[1] = force_reg (SImode, XEXP (operands[1], 0));
6783
6784 if (TARGET_FDPIC)
6785 {
6786 operands[1] = sh_load_function_descriptor (operands[1]);
6787 emit_call_insn (gen_call_valuei_fdpic (operands[0], operands[1],
6788 operands[2]));
6789 }
6790 else
6791 emit_call_insn (gen_call_valuei (operands[0], operands[1], operands[2]));
6792 DONE;
6793 })
6794
6795 (define_insn "sibcalli"
6796 [(call (mem:SI (match_operand:SI 0 "register_operand" "k"))
6797 (match_operand 1 "" ""))
6798 (use (reg:SI FPSCR_MODES_REG))
6799 (return)]
6800 "TARGET_SH1 && !TARGET_FDPIC"
6801 "jmp @%0%#"
6802 [(set_attr "needs_delay_slot" "yes")
6803 (set (attr "fp_mode")
6804 (if_then_else (eq_attr "fpu_single" "yes")
6805 (const_string "single") (const_string "double")))
6806 (set_attr "type" "jump_ind")])
6807
6808 (define_insn "sibcalli_fdpic"
6809 [(call (mem:SI (match_operand:SI 0 "register_operand" "k"))
6810 (match_operand 1))
6811 (use (reg:SI FPSCR_MODES_REG))
6812 (use (reg:SI PIC_REG))
6813 (return)]
6814 "TARGET_FDPIC"
6815 "jmp @%0%#"
6816 [(set_attr "needs_delay_slot" "yes")
6817 (set (attr "fp_mode")
6818 (if_then_else (eq_attr "fpu_single" "yes")
6819 (const_string "single") (const_string "double")))
6820 (set_attr "type" "jump_ind")])
6821
6822 (define_insn "sibcalli_pcrel"
6823 [(call (mem:SI (match_operand:SI 0 "arith_reg_operand" "k"))
6824 (match_operand 1 "" ""))
6825 (use (match_operand 2 "" ""))
6826 (use (reg:SI FPSCR_MODES_REG))
6827 (return)]
6828 "TARGET_SH2 && !TARGET_FDPIC"
6829 {
6830 return "braf %0" "\n"
6831 "%O2:%#";
6832 }
6833 [(set_attr "needs_delay_slot" "yes")
6834 (set (attr "fp_mode")
6835 (if_then_else (eq_attr "fpu_single" "yes")
6836 (const_string "single") (const_string "double")))
6837 (set_attr "type" "jump_ind")])
6838
6839 (define_insn "sibcalli_pcrel_fdpic"
6840 [(call (mem:SI (match_operand:SI 0 "arith_reg_operand" "k"))
6841 (match_operand 1))
6842 (use (match_operand 2))
6843 (use (reg:SI FPSCR_MODES_REG))
6844 (use (reg:SI PIC_REG))
6845 (return)]
6846 "TARGET_SH2 && TARGET_FDPIC"
6847 {
6848 return "braf %0" "\n"
6849 "%O2:%#";
6850 }
6851 [(set_attr "needs_delay_slot" "yes")
6852 (set (attr "fp_mode")
6853 (if_then_else (eq_attr "fpu_single" "yes")
6854 (const_string "single") (const_string "double")))
6855 (set_attr "type" "jump_ind")])
6856
6857 ;; This uses an unspec to describe that the symbol_ref is very close.
6858 (define_insn "sibcalli_thunk"
6859 [(call (mem:SI (unspec:SI [(match_operand:SI 0 "symbol_ref_operand" "")]
6860 UNSPEC_THUNK))
6861 (match_operand 1 "" ""))
6862 (use (reg:SI FPSCR_MODES_REG))
6863 (return)]
6864 "TARGET_SH1"
6865 "bra %O0"
6866 [(set_attr "needs_delay_slot" "yes")
6867 (set (attr "fp_mode")
6868 (if_then_else (eq_attr "fpu_single" "yes")
6869 (const_string "single") (const_string "double")))
6870 (set_attr "type" "jump")
6871 (set_attr "length" "2")])
6872
6873 (define_insn_and_split "sibcall_pcrel"
6874 [(call (mem:SI (match_operand:SI 0 "symbol_ref_operand" ""))
6875 (match_operand 1 "" ""))
6876 (use (reg:SI FPSCR_MODES_REG))
6877 (clobber (match_scratch:SI 2 "=&k"))
6878 (return)]
6879 "TARGET_SH2 && !TARGET_FDPIC"
6880 "#"
6881 "reload_completed"
6882 [(const_int 0)]
6883 {
6884 rtx lab = PATTERN (gen_call_site ());
6885 rtx call_insn;
6886
6887 sh_expand_sym_label2reg (operands[2], operands[0], lab, true);
6888 call_insn = emit_call_insn (gen_sibcalli_pcrel (operands[2], operands[1],
6889 copy_rtx (lab)));
6890 SIBLING_CALL_P (call_insn) = 1;
6891 DONE;
6892 }
6893 [(set_attr "needs_delay_slot" "yes")
6894 (set (attr "fp_mode")
6895 (if_then_else (eq_attr "fpu_single" "yes")
6896 (const_string "single") (const_string "double")))
6897 (set_attr "type" "jump_ind")])
6898
6899 (define_insn_and_split "sibcall_pcrel_fdpic"
6900 [(call (mem:SI (match_operand:SI 0 "symbol_ref_operand"))
6901 (match_operand 1))
6902 (use (reg:SI FPSCR_MODES_REG))
6903 (use (reg:SI PIC_REG))
6904 (clobber (match_scratch:SI 2 "=k"))
6905 (return)]
6906 "TARGET_SH2 && TARGET_FDPIC"
6907 "#"
6908 "&& reload_completed"
6909 [(const_int 0)]
6910 {
6911 rtx lab = PATTERN (gen_call_site ());
6912
6913 sh_expand_sym_label2reg (operands[2], operands[0], lab, true);
6914 rtx i = emit_call_insn (gen_sibcalli_pcrel_fdpic (operands[2], operands[1],
6915 copy_rtx (lab)));
6916 SIBLING_CALL_P (i) = 1;
6917 DONE;
6918 }
6919 [(set_attr "needs_delay_slot" "yes")
6920 (set (attr "fp_mode")
6921 (if_then_else (eq_attr "fpu_single" "yes")
6922 (const_string "single") (const_string "double")))
6923 (set_attr "type" "jump_ind")])
6924
6925 (define_expand "sibcall"
6926 [(parallel
6927 [(call (mem:SI (match_operand 0 "arith_reg_operand" ""))
6928 (match_operand 1 "" ""))
6929 (match_operand 2 "" "")
6930 (use (reg:SI FPSCR_MODES_REG))
6931 (return)])]
6932 ""
6933 {
6934 if (TARGET_FDPIC)
6935 {
6936 rtx pic_reg = gen_rtx_REG (Pmode, PIC_REG);
6937 emit_move_insn (pic_reg, sh_get_fdpic_reg_initial_val ());
6938 }
6939
6940 if (flag_pic && TARGET_SH2
6941 && MEM_P (operands[0])
6942 && GET_CODE (XEXP (operands[0], 0)) == SYMBOL_REF
6943 /* The PLT needs the PIC register, but the epilogue would have
6944 to restore it, so we can only use PC-relative PIC calls for
6945 static functions. */
6946 && SYMBOL_REF_LOCAL_P (XEXP (operands[0], 0)))
6947 {
6948 if (TARGET_FDPIC)
6949 emit_call_insn (gen_sibcall_pcrel_fdpic (XEXP (operands[0], 0),
6950 operands[1]));
6951 else
6952 emit_call_insn (gen_sibcall_pcrel (XEXP (operands[0], 0), operands[1]));
6953 DONE;
6954 }
6955 else
6956 operands[0] = force_reg (SImode, XEXP (operands[0], 0));
6957
6958 if (TARGET_FDPIC)
6959 {
6960 operands[0] = sh_load_function_descriptor (operands[0]);
6961 emit_call_insn (gen_sibcalli_fdpic (operands[0], operands[1]));
6962 }
6963 else
6964 emit_call_insn (gen_sibcalli (operands[0], operands[1]));
6965 DONE;
6966 })
6967
6968 (define_insn "sibcall_valuei"
6969 [(set (match_operand 0 "" "=rf")
6970 (call (mem:SI (match_operand:SI 1 "register_operand" "k"))
6971 (match_operand 2 "" "")))
6972 (use (reg:SI FPSCR_MODES_REG))
6973 (return)]
6974 "TARGET_SH1 && !TARGET_FDPIC"
6975 "jmp @%1%#"
6976 [(set_attr "needs_delay_slot" "yes")
6977 (set (attr "fp_mode")
6978 (if_then_else (eq_attr "fpu_single" "yes")
6979 (const_string "single") (const_string "double")))
6980 (set_attr "type" "jump_ind")])
6981
6982 (define_insn "sibcall_valuei_fdpic"
6983 [(set (match_operand 0 "" "=rf")
6984 (call (mem:SI (match_operand:SI 1 "register_operand" "k"))
6985 (match_operand 2)))
6986 (use (reg:SI FPSCR_MODES_REG))
6987 (use (reg:SI PIC_REG))
6988 (return)]
6989 "TARGET_FDPIC"
6990 "jmp @%1%#"
6991 [(set_attr "needs_delay_slot" "yes")
6992 (set (attr "fp_mode")
6993 (if_then_else (eq_attr "fpu_single" "yes")
6994 (const_string "single") (const_string "double")))
6995 (set_attr "type" "jump_ind")])
6996
6997 (define_insn "sibcall_valuei_pcrel"
6998 [(set (match_operand 0 "" "=rf")
6999 (call (mem:SI (match_operand:SI 1 "arith_reg_operand" "k"))
7000 (match_operand 2 "" "")))
7001 (use (match_operand 3 "" ""))
7002 (use (reg:SI FPSCR_MODES_REG))
7003 (return)]
7004 "TARGET_SH2 && !TARGET_FDPIC"
7005 {
7006 return "braf %1" "\n"
7007 "%O3:%#";
7008 }
7009 [(set_attr "needs_delay_slot" "yes")
7010 (set (attr "fp_mode")
7011 (if_then_else (eq_attr "fpu_single" "yes")
7012 (const_string "single") (const_string "double")))
7013 (set_attr "type" "jump_ind")])
7014
7015 (define_insn "sibcall_valuei_pcrel_fdpic"
7016 [(set (match_operand 0 "" "=rf")
7017 (call (mem:SI (match_operand:SI 1 "arith_reg_operand" "k"))
7018 (match_operand 2)))
7019 (use (match_operand 3))
7020 (use (reg:SI FPSCR_MODES_REG))
7021 (use (reg:SI PIC_REG))
7022 (return)]
7023 "TARGET_SH2 && TARGET_FDPIC"
7024 {
7025 return "braf %1" "\n"
7026 "%O3:%#";
7027 }
7028 [(set_attr "needs_delay_slot" "yes")
7029 (set (attr "fp_mode")
7030 (if_then_else (eq_attr "fpu_single" "yes")
7031 (const_string "single") (const_string "double")))
7032 (set_attr "type" "jump_ind")])
7033
7034 ;; sibcall_value_pcrel used to have a =&k clobber for the scratch register
7035 ;; that it needs for the branch address. This causes troubles when there
7036 ;; is a big overlap of argument and return value registers. Hence, use a
7037 ;; fixed call clobbered register for the address. See also PR 67260.
7038 (define_insn_and_split "sibcall_value_pcrel"
7039 [(set (match_operand 0 "" "=rf")
7040 (call (mem:SI (match_operand:SI 1 "symbol_ref_operand" ""))
7041 (match_operand 2 "" "")))
7042 (use (reg:SI FPSCR_MODES_REG))
7043 (clobber (reg:SI R1_REG))
7044 (return)]
7045 "TARGET_SH2 && !TARGET_FDPIC"
7046 "#"
7047 "reload_completed"
7048 [(const_int 0)]
7049 {
7050 rtx lab = PATTERN (gen_call_site ());
7051 rtx tmp = gen_rtx_REG (SImode, R1_REG);
7052
7053 sh_expand_sym_label2reg (tmp, operands[1], lab, true);
7054 rtx call_insn = emit_call_insn (gen_sibcall_valuei_pcrel (operands[0],
7055 tmp,
7056 operands[2],
7057 copy_rtx (lab)));
7058 SIBLING_CALL_P (call_insn) = 1;
7059 DONE;
7060 }
7061 [(set_attr "needs_delay_slot" "yes")
7062 (set (attr "fp_mode")
7063 (if_then_else (eq_attr "fpu_single" "yes")
7064 (const_string "single") (const_string "double")))
7065 (set_attr "type" "jump_ind")])
7066
7067 ;; Like for sibcall_value_pcrel, use a fixed call clobbered register for
7068 ;; the branch address.
7069 (define_insn_and_split "sibcall_value_pcrel_fdpic"
7070 [(set (match_operand 0 "" "=rf")
7071 (call (mem:SI (match_operand:SI 1 "symbol_ref_operand"))
7072 (match_operand 2)))
7073 (use (reg:SI FPSCR_MODES_REG))
7074 (use (reg:SI PIC_REG))
7075 (clobber (reg:SI R1_REG))
7076 (return)]
7077 "TARGET_SH2 && TARGET_FDPIC"
7078 "#"
7079 "&& reload_completed"
7080 [(const_int 0)]
7081 {
7082 rtx lab = PATTERN (gen_call_site ());
7083 rtx tmp = gen_rtx_REG (SImode, R1_REG);
7084
7085 sh_expand_sym_label2reg (tmp, operands[1], lab, true);
7086 rtx i = emit_call_insn (gen_sibcall_valuei_pcrel_fdpic (operands[0],
7087 tmp,
7088 operands[2],
7089 copy_rtx (lab)));
7090 SIBLING_CALL_P (i) = 1;
7091 DONE;
7092 }
7093 [(set_attr "needs_delay_slot" "yes")
7094 (set (attr "fp_mode")
7095 (if_then_else (eq_attr "fpu_single" "yes")
7096 (const_string "single") (const_string "double")))
7097 (set_attr "type" "jump_ind")])
7098
7099 (define_expand "sibcall_value"
7100 [(parallel
7101 [(set (match_operand 0 "arith_reg_operand" "")
7102 (call (mem:SI (match_operand 1 "arith_reg_operand" ""))
7103 (match_operand 2 "" "")))
7104 (match_operand 3 "" "")
7105 (use (reg:SI FPSCR_MODES_REG))
7106 (return)])]
7107 ""
7108 {
7109 if (TARGET_FDPIC)
7110 {
7111 rtx pic_reg = gen_rtx_REG (Pmode, PIC_REG);
7112 emit_move_insn (pic_reg, sh_get_fdpic_reg_initial_val ());
7113 }
7114
7115 if (flag_pic && TARGET_SH2
7116 && MEM_P (operands[1])
7117 && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF
7118 /* The PLT needs the PIC register, but the epilogue would have
7119 to restore it, so we can only use PC-relative PIC calls for
7120 static functions. */
7121 && SYMBOL_REF_LOCAL_P (XEXP (operands[1], 0)))
7122 {
7123 if (TARGET_FDPIC)
7124 emit_call_insn (gen_sibcall_value_pcrel_fdpic (operands[0],
7125 XEXP (operands[1], 0),
7126 operands[2]));
7127 else
7128 emit_call_insn (gen_sibcall_value_pcrel (operands[0],
7129 XEXP (operands[1], 0),
7130 operands[2]));
7131 DONE;
7132 }
7133 else
7134 operands[1] = force_reg (SImode, XEXP (operands[1], 0));
7135
7136 if (TARGET_FDPIC)
7137 {
7138 operands[1] = sh_load_function_descriptor (operands[1]);
7139 emit_call_insn (gen_sibcall_valuei_fdpic (operands[0], operands[1],
7140 operands[2]));
7141 }
7142 else
7143 emit_call_insn (gen_sibcall_valuei (operands[0], operands[1], operands[2]));
7144 DONE;
7145 })
7146
7147 (define_expand "sibcall_epilogue"
7148 [(return)]
7149 ""
7150 {
7151 sh_expand_epilogue (true);
7152 DONE;
7153 })
7154
7155 (define_insn "indirect_jump_compact"
7156 [(set (pc)
7157 (match_operand:SI 0 "arith_reg_operand" "r"))]
7158 "TARGET_SH1"
7159 "jmp @%0%#"
7160 [(set_attr "needs_delay_slot" "yes")
7161 (set_attr "type" "jump_ind")])
7162
7163 (define_expand "indirect_jump"
7164 [(set (pc)
7165 (match_operand 0 "register_operand" ""))]
7166 ""
7167 {
7168 if (GET_MODE (operands[0]) != Pmode)
7169 operands[0] = gen_rtx_SUBREG (Pmode, operands[0], 0);
7170 })
7171
7172 ;; The use of operand 1 / 2 helps us distinguish case table jumps
7173 ;; which can be present in structured code from indirect jumps which can not
7174 ;; be present in structured code. This allows -fprofile-arcs to work.
7175
7176 ;; For SH1 processors.
7177 (define_insn "casesi_jump_1"
7178 [(set (pc)
7179 (match_operand:SI 0 "register_operand" "r"))
7180 (use (label_ref (match_operand 1 "" "")))]
7181 "TARGET_SH1"
7182 "jmp @%0%#"
7183 [(set_attr "needs_delay_slot" "yes")
7184 (set_attr "type" "jump_ind")])
7185
7186 ;; For all later processors.
7187 (define_insn "casesi_jump_2"
7188 [(set (pc) (plus:SI (match_operand:SI 0 "register_operand" "r")
7189 (label_ref (match_operand 1 "" ""))))
7190 (use (label_ref (match_operand 2 "" "")))]
7191 "TARGET_SH2
7192 && (! INSN_UID (operands[1])
7193 || prev_real_insn (as_a<rtx_insn *> (operands[1])) == insn)"
7194 "braf %0%#"
7195 [(set_attr "needs_delay_slot" "yes")
7196 (set_attr "type" "jump_ind")])
7197
7198 ;; Call subroutine returning any type.
7199 ;; ??? This probably doesn't work.
7200 (define_expand "untyped_call"
7201 [(parallel [(call (match_operand 0 "" "")
7202 (const_int 0))
7203 (match_operand 1 "" "")
7204 (match_operand 2 "" "")])]
7205 "TARGET_SH2E || TARGET_SH2A"
7206 {
7207 /* RA does not know that the call sets the function value registers.
7208 We avoid problems by claiming that those registers are clobbered
7209 at this point. */
7210 for (int i = 0; i < XVECLEN (operands[2], 0); i++)
7211 emit_clobber (SET_SRC (XVECEXP (operands[2], 0, i)));
7212
7213 emit_call_insn (gen_call (operands[0], const0_rtx, const0_rtx));
7214
7215 for (int i = 0; i < XVECLEN (operands[2], 0); i++)
7216 {
7217 rtx set = XVECEXP (operands[2], 0, i);
7218 emit_move_insn (SET_DEST (set), SET_SRC (set));
7219 }
7220
7221 /* The optimizer does not know that the call sets the function value
7222 registers we stored in the result block. We avoid problems by
7223 claiming that all hard registers are used and clobbered at this
7224 point. */
7225 emit_insn (gen_blockage ());
7226
7227 DONE;
7228 })
7229 \f
7230 ;; ------------------------------------------------------------------------
7231 ;; Misc insns
7232 ;; ------------------------------------------------------------------------
7233
7234 (define_insn "dect"
7235 [(set (reg:SI T_REG)
7236 (eq:SI (match_operand:SI 1 "arith_reg_dest" "0") (const_int 1)))
7237 (set (match_operand:SI 0 "arith_reg_dest" "=r")
7238 (plus:SI (match_dup 1) (const_int -1)))]
7239 "TARGET_SH2"
7240 "dt %0"
7241 [(set_attr "type" "arith")])
7242
7243 (define_insn "nop"
7244 [(const_int 0)]
7245 ""
7246 "nop")
7247
7248 ;; Load address of a label. This is only generated by the casesi expand,
7249 ;; and by machine_dependent_reorg (fixing up fp moves).
7250 ;; This must use unspec, because this only works for labels that are
7251 ;; within range.
7252 (define_insn "mova"
7253 [(set (reg:SI R0_REG)
7254 (unspec:SI [(label_ref (match_operand 0 "" ""))] UNSPEC_MOVA))]
7255 "TARGET_SH1"
7256 "mova %O0,r0"
7257 [(set_attr "in_delay_slot" "no")
7258 (set_attr "type" "arith")])
7259
7260 ;; machine_dependent_reorg will make this a `mova'.
7261 (define_insn "mova_const"
7262 [(set (reg:SI R0_REG)
7263 (unspec:SI [(match_operand 0 "immediate_operand" "i")] UNSPEC_MOVA))]
7264 "TARGET_SH1"
7265 "#"
7266 [(set_attr "in_delay_slot" "no")
7267 (set_attr "type" "arith")])
7268
7269 ;; Loads of the GOTPC relocation values must not be optimized away
7270 ;; by e.g. any kind of CSE and must stay as they are. Although there
7271 ;; are other various ways to ensure this, we use an artificial counter
7272 ;; operand to generate unique symbols.
7273 (define_expand "GOTaddr2picreg"
7274 [(set (reg:SI R0_REG)
7275 (unspec:SI [(const:SI (unspec:SI [(match_dup 2)
7276 (match_operand:SI 0 "" "")]
7277 UNSPEC_PIC))] UNSPEC_MOVA))
7278 (set (match_dup 1)
7279 (const:SI (unspec:SI [(match_dup 2) (match_dup 0)] UNSPEC_PIC)))
7280 (set (match_dup 1) (plus:SI (match_dup 1) (reg:SI R0_REG)))]
7281 ""
7282 {
7283 if (TARGET_VXWORKS_RTP)
7284 {
7285 rtx gott_base = gen_rtx_SYMBOL_REF (Pmode, VXWORKS_GOTT_BASE);
7286 rtx gott_index = gen_rtx_SYMBOL_REF (Pmode, VXWORKS_GOTT_INDEX);
7287 emit_insn (gen_vxworks_picreg (gott_base, gott_index));
7288 DONE;
7289 }
7290
7291 if (TARGET_FDPIC)
7292 {
7293 rtx pic_reg = gen_rtx_REG (Pmode, PIC_REG);
7294 emit_move_insn (pic_reg, sh_get_fdpic_reg_initial_val ());
7295 DONE;
7296 }
7297
7298 operands[1] = gen_rtx_REG (Pmode, PIC_REG);
7299 operands[2] = gen_rtx_SYMBOL_REF (VOIDmode, GOT_SYMBOL_NAME);
7300 })
7301
7302 ;; A helper for GOTaddr2picreg to finish up the initialization of the
7303 ;; PIC register.
7304 (define_expand "vxworks_picreg"
7305 [(set (reg:SI PIC_REG)
7306 (const:SI (unspec:SI [(match_operand:SI 0 "" "")] UNSPEC_PIC)))
7307 (set (reg:SI R0_REG)
7308 (const:SI (unspec:SI [(match_operand:SI 1 "" "")] UNSPEC_PIC)))
7309 (set (reg:SI PIC_REG)
7310 (mem:SI (reg:SI PIC_REG)))
7311 (set (reg:SI PIC_REG)
7312 (mem:SI (plus:SI (reg:SI PIC_REG)
7313 (reg:SI R0_REG))))]
7314 "TARGET_VXWORKS_RTP")
7315
7316 (define_expand "builtin_setjmp_receiver"
7317 [(match_operand 0 "" "")]
7318 "flag_pic"
7319 {
7320 emit_insn (gen_GOTaddr2picreg (const0_rtx));
7321 DONE;
7322 })
7323
7324 (define_expand "call_site"
7325 [(unspec [(match_dup 0)] UNSPEC_CALLER)]
7326 "TARGET_SH1"
7327 {
7328 static HOST_WIDE_INT i = 0;
7329 operands[0] = GEN_INT (i);
7330 i++;
7331 })
7332
7333 ;; op0 = op1 + r12 but hide it before reload completed. See the comment
7334 ;; in symGOT_load expand.
7335 (define_insn_and_split "chk_guard_add"
7336 [(set (match_operand:SI 0 "register_operand" "=&r")
7337 (unspec:SI [(match_operand:SI 1 "register_operand" "r")
7338 (reg:SI PIC_REG)]
7339 UNSPEC_CHKADD))]
7340 "TARGET_SH1"
7341 "#"
7342 "TARGET_SH1 && reload_completed"
7343 [(set (match_dup 0) (reg:SI PIC_REG))
7344 (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))]
7345 ""
7346 [(set_attr "type" "arith")])
7347
7348 (define_expand "sym_label2reg"
7349 [(set (match_operand:SI 0 "" "")
7350 (const:SI (unspec:SI [(match_operand:SI 1 "" "")
7351 (const (plus:SI (match_operand:SI 2 "" "")
7352 (const_int 2)))]
7353 UNSPEC_SYMOFF)))]
7354 "TARGET_SH1" "")
7355
7356 (define_expand "symPCREL_label2reg"
7357 [(set (match_operand:SI 0 "" "")
7358 (const:SI
7359 (unspec:SI
7360 [(const:SI (unspec:SI [(match_operand:SI 1 "" "")] UNSPEC_PCREL))
7361 (const:SI (plus:SI (match_operand:SI 2 "" "")
7362 (const_int 2)))] UNSPEC_PCREL_SYMOFF)))]
7363 "TARGET_SH1"
7364 "")
7365
7366 (define_expand "symGOT_load"
7367 [(set (match_dup 2) (match_operand 1 "" ""))
7368 (set (match_dup 3) (plus (match_dup 2) (reg PIC_REG)))
7369 (set (match_operand 0 "" "") (mem (match_dup 3)))]
7370 ""
7371 {
7372 rtx mem;
7373 bool stack_chk_guard_p = false;
7374
7375 rtx picreg = TARGET_FDPIC ? sh_get_fdpic_reg_initial_val ()
7376 : gen_rtx_REG (Pmode, PIC_REG);
7377
7378 operands[2] = !can_create_pseudo_p () ? operands[0] : gen_reg_rtx (Pmode);
7379 operands[3] = !can_create_pseudo_p () ? operands[0] : gen_reg_rtx (Pmode);
7380
7381 if (!TARGET_FDPIC
7382 && flag_stack_protect
7383 && GET_CODE (operands[1]) == CONST
7384 && GET_CODE (XEXP (operands[1], 0)) == UNSPEC
7385 && GET_CODE (XVECEXP (XEXP (operands[1], 0), 0, 0)) == SYMBOL_REF
7386 && strcmp (XSTR (XVECEXP (XEXP (operands[1], 0), 0, 0), 0),
7387 "__stack_chk_guard") == 0)
7388 stack_chk_guard_p = true;
7389
7390 emit_move_insn (operands[2], operands[1]);
7391
7392 /* When stack protector inserts codes after the result is set to
7393 R0, @(rX, r12) will cause a spill failure for R0. Use a unspec
7394 insn to avoid combining (set A (plus rX r12)) and (set op0 (mem A))
7395 when rX is a GOT address for the guard symbol. Ugly but doesn't
7396 matter because this is a rare situation. */
7397 if (stack_chk_guard_p)
7398 emit_insn (gen_chk_guard_add (operands[3], operands[2]));
7399 else
7400 emit_move_insn (operands[3], gen_rtx_PLUS (Pmode, operands[2], picreg));
7401
7402 /* N.B. This is not constant for a GOTPLT relocation. */
7403 mem = gen_rtx_MEM (Pmode, operands[3]);
7404 MEM_NOTRAP_P (mem) = 1;
7405 /* ??? Should we have a special alias set for the GOT? */
7406 emit_move_insn (operands[0], mem);
7407
7408 DONE;
7409 })
7410
7411 (define_expand "sym2GOT"
7412 [(const (unspec [(match_operand 0 "" "")] UNSPEC_GOT))]
7413 ""
7414 "")
7415
7416 (define_expand "symGOT2reg"
7417 [(match_operand 0 "" "") (match_operand 1 "" "")]
7418 ""
7419 {
7420 rtx gotsym, insn;
7421
7422 gotsym = gen_sym2GOT (operands[1]);
7423 PUT_MODE (gotsym, Pmode);
7424 insn = emit_insn (gen_symGOT_load (operands[0], gotsym));
7425
7426 MEM_READONLY_P (SET_SRC (PATTERN (insn))) = 1;
7427
7428 DONE;
7429 })
7430
7431 (define_expand "sym2GOTFUNCDESC"
7432 [(const (unspec [(match_operand 0)] UNSPEC_GOTFUNCDESC))]
7433 "TARGET_FDPIC")
7434
7435 (define_expand "symGOTFUNCDESC2reg"
7436 [(match_operand 0) (match_operand 1)]
7437 "TARGET_FDPIC"
7438 {
7439 rtx gotsym = gen_sym2GOTFUNCDESC (operands[1]);
7440 PUT_MODE (gotsym, Pmode);
7441 rtx insn = emit_insn (gen_symGOT_load (operands[0], gotsym));
7442
7443 MEM_READONLY_P (SET_SRC (PATTERN (insn))) = 1;
7444
7445 DONE;
7446 })
7447
7448 (define_expand "symGOTPLT2reg"
7449 [(match_operand 0 "" "") (match_operand 1 "" "")]
7450 ""
7451 {
7452 rtx pltsym = gen_rtx_CONST (Pmode,
7453 gen_rtx_UNSPEC (Pmode,
7454 gen_rtvec (1, operands[1]),
7455 UNSPEC_GOTPLT));
7456 emit_insn (gen_symGOT_load (operands[0], pltsym));
7457 DONE;
7458 })
7459
7460 (define_expand "sym2GOTOFF"
7461 [(const (unspec [(match_operand 0 "" "")] UNSPEC_GOTOFF))]
7462 ""
7463 "")
7464
7465 (define_expand "symGOTOFF2reg"
7466 [(match_operand 0 "" "") (match_operand 1 "" "")]
7467 ""
7468 {
7469 rtx gotoffsym;
7470 rtx t = (!can_create_pseudo_p ()
7471 ? operands[0]
7472 : gen_reg_rtx (GET_MODE (operands[0])));
7473
7474 rtx picreg = TARGET_FDPIC ? sh_get_fdpic_reg_initial_val ()
7475 : gen_rtx_REG (Pmode, PIC_REG);
7476
7477 gotoffsym = gen_sym2GOTOFF (operands[1]);
7478 PUT_MODE (gotoffsym, Pmode);
7479 emit_move_insn (t, gotoffsym);
7480 rtx_insn *insn = emit_move_insn (operands[0], gen_rtx_PLUS (Pmode, t, picreg));
7481
7482 set_unique_reg_note (insn, REG_EQUAL, operands[1]);
7483
7484 DONE;
7485 })
7486
7487 (define_expand "sym2GOTOFFFUNCDESC"
7488 [(const (unspec [(match_operand 0)] UNSPEC_GOTOFFFUNCDESC))]
7489 "TARGET_FDPIC")
7490
7491 (define_expand "symGOTOFFFUNCDESC2reg"
7492 [(match_operand 0) (match_operand 1)]
7493 "TARGET_FDPIC"
7494 {
7495 rtx picreg = sh_get_fdpic_reg_initial_val ();
7496 rtx t = !can_create_pseudo_p ()
7497 ? operands[0]
7498 : gen_reg_rtx (GET_MODE (operands[0]));
7499
7500 rtx gotoffsym = gen_sym2GOTOFFFUNCDESC (operands[1]);
7501 PUT_MODE (gotoffsym, Pmode);
7502 emit_move_insn (t, gotoffsym);
7503 emit_move_insn (operands[0], gen_rtx_PLUS (Pmode, t, picreg));
7504 DONE;
7505 })
7506
7507 (define_expand "symPLT_label2reg"
7508 [(set (match_operand:SI 0 "" "")
7509 (const:SI
7510 (unspec:SI
7511 [(const:SI (unspec:SI [(match_operand:SI 1 "" "")] UNSPEC_PLT))
7512 (const:SI (plus:SI (match_operand:SI 2 "" "")
7513 (const_int 2)))] UNSPEC_PCREL_SYMOFF)))
7514 ;; Even though the PIC register is not really used by the call
7515 ;; sequence in which this is expanded, the PLT code assumes the PIC
7516 ;; register is set, so we must not skip its initialization. Since
7517 ;; we only use this expand as part of calling sequences, and never
7518 ;; to take the address of a function, this is the best point to
7519 ;; insert the (use). Using the PLT to take the address of a
7520 ;; function would be wrong, not only because the PLT entry could
7521 ;; then be called from a function that doesn't initialize the PIC
7522 ;; register to the proper GOT, but also because pointers to the
7523 ;; same function might not compare equal, should they be set by
7524 ;; different shared libraries.
7525 (use (reg:SI PIC_REG))]
7526 "TARGET_SH1"
7527 "")
7528
7529 (define_expand "sym2PIC"
7530 [(const (unspec [(match_operand:SI 0 "" "")] UNSPEC_PIC))]
7531 ""
7532 "")
7533
7534 ;; -------------------------------------------------------------------------
7535 ;; TLS code generation.
7536
7537 ;; FIXME: The multi-insn asm blocks should be converted to use
7538 ;; define_insn_and_split.
7539 ;; See the thread [PATCH/RFA] SH TLS support on gcc-patches
7540 ;; <http://gcc.gnu.org/ml/gcc-patches/2003-02/msg01898.html>
7541 ;; for details.
7542
7543 (define_insn "tls_global_dynamic"
7544 [(set (match_operand:SI 0 "register_operand" "=&z")
7545 (call:SI (mem:SI (unspec:SI [(match_operand:SI 1 "" "")]
7546 UNSPEC_TLSGD))
7547 (const_int 0)))
7548 (use (reg:SI FPSCR_MODES_REG))
7549 (use (reg:SI PIC_REG))
7550 (clobber (reg:SI PR_REG))
7551 (clobber (scratch:SI))]
7552 "TARGET_SH1"
7553 {
7554 return "mov.l 1f,r4" "\n"
7555 " mova 2f,r0" "\n"
7556 " mov.l 2f,r1" "\n"
7557 " add r0,r1" "\n"
7558 " jsr @r1" "\n"
7559 " add r12,r4" "\n"
7560 " bra 3f" "\n"
7561 " nop" "\n"
7562 " .align 2" "\n"
7563 "1: .long %a1@TLSGD" "\n"
7564 "2: .long __tls_get_addr@PLT" "\n"
7565 "3:";
7566 }
7567 [(set_attr "type" "tls_load")
7568 (set_attr "length" "26")])
7569
7570 (define_insn "tls_local_dynamic"
7571 [(set (match_operand:SI 0 "register_operand" "=&z")
7572 (call:SI (mem:SI (unspec:SI [(match_operand:SI 1 "" "")]
7573 UNSPEC_TLSLDM))
7574 (const_int 0)))
7575 (use (reg:SI FPSCR_MODES_REG))
7576 (use (reg:SI PIC_REG))
7577 (clobber (reg:SI PR_REG))
7578 (clobber (scratch:SI))]
7579 "TARGET_SH1"
7580 {
7581 return "mov.l 1f,r4" "\n"
7582 " mova 2f,r0" "\n"
7583 " mov.l 2f,r1" "\n"
7584 " add r0,r1" "\n"
7585 " jsr @r1" "\n"
7586 " add r12,r4" "\n"
7587 " bra 3f" "\n"
7588 " nop" "\n"
7589 " .align 2" "\n"
7590 "1: .long %a1@TLSLDM" "\n"
7591 "2: .long __tls_get_addr@PLT" "\n"
7592 "3:";
7593 }
7594 [(set_attr "type" "tls_load")
7595 (set_attr "length" "26")])
7596
7597 (define_expand "sym2DTPOFF"
7598 [(const (unspec [(match_operand 0 "" "")] UNSPEC_DTPOFF))]
7599 ""
7600 "")
7601
7602 (define_expand "symDTPOFF2reg"
7603 [(match_operand 0 "" "") (match_operand 1 "" "") (match_operand 2 "" "")]
7604 ""
7605 {
7606 rtx dtpoffsym;
7607 rtx t = (!can_create_pseudo_p ()
7608 ? operands[0]
7609 : gen_reg_rtx (GET_MODE (operands[0])));
7610
7611 dtpoffsym = gen_sym2DTPOFF (operands[1]);
7612 PUT_MODE (dtpoffsym, Pmode);
7613 emit_move_insn (t, dtpoffsym);
7614 emit_move_insn (operands[0], gen_rtx_PLUS (Pmode, t, operands[2]));
7615 DONE;
7616 })
7617
7618 (define_expand "sym2GOTTPOFF"
7619 [(const (unspec [(match_operand 0 "" "")] UNSPEC_GOTTPOFF))]
7620 ""
7621 "")
7622
7623 (define_insn "tls_initial_exec"
7624 [(set (match_operand:SI 0 "register_operand" "=&r")
7625 (unspec:SI [(match_operand:SI 1 "" "")]
7626 UNSPEC_TLSIE))
7627 (use (reg:SI GBR_REG))
7628 (use (reg:SI PIC_REG))
7629 (clobber (reg:SI R0_REG))]
7630 ""
7631 {
7632 return "mov.l 1f,r0" "\n"
7633 " stc gbr,%0" "\n"
7634 " mov.l @(r0,r12),r0" "\n"
7635 " bra 2f" "\n"
7636 " add r0,%0" "\n"
7637 " .align 2" "\n"
7638 "1: .long %a1" "\n"
7639 "2:";
7640 }
7641 [(set_attr "type" "tls_load")
7642 (set_attr "length" "16")])
7643
7644 (define_expand "sym2TPOFF"
7645 [(const (unspec [(match_operand 0 "" "")] UNSPEC_TPOFF))]
7646 ""
7647 "")
7648
7649 (define_expand "symTPOFF2reg"
7650 [(match_operand 0 "" "") (match_operand 1 "" "")]
7651 ""
7652 {
7653 rtx tpoffsym;
7654
7655 tpoffsym = gen_sym2TPOFF (operands[1]);
7656 PUT_MODE (tpoffsym, Pmode);
7657 emit_move_insn (operands[0], tpoffsym);
7658 DONE;
7659 })
7660
7661 ;;------------------------------------------------------------------------------
7662 ;; Thread pointer getter and setter.
7663 ;;
7664 ;; On SH the thread pointer is kept in the GBR.
7665 ;; These patterns are usually expanded from the respective built-in functions.
7666 (define_expand "get_thread_pointersi"
7667 [(set (match_operand:SI 0 "arith_reg_dest") (reg:SI GBR_REG))]
7668 "TARGET_SH1")
7669
7670 ;; The store_gbr insn can also be used on !TARGET_SH1 for doing TLS accesses.
7671 (define_insn "store_gbr"
7672 [(set (match_operand:SI 0 "arith_reg_dest" "=r") (reg:SI GBR_REG))]
7673 ""
7674 "stc gbr,%0"
7675 [(set_attr "type" "tls_load")])
7676
7677 (define_expand "set_thread_pointersi"
7678 [(set (reg:SI GBR_REG)
7679 (unspec_volatile:SI [(match_operand:SI 0 "arith_reg_operand")]
7680 UNSPECV_GBR))]
7681 "TARGET_SH1")
7682
7683 (define_insn "load_gbr"
7684 [(set (reg:SI GBR_REG)
7685 (unspec_volatile:SI [(match_operand:SI 0 "arith_reg_operand" "r")]
7686 UNSPECV_GBR))]
7687 "TARGET_SH1"
7688 "ldc %0,gbr"
7689 [(set_attr "type" "move")])
7690
7691 ;;------------------------------------------------------------------------------
7692 ;; Thread pointer relative memory loads and stores.
7693 ;;
7694 ;; On SH there are GBR displacement address modes which can be utilized to
7695 ;; access memory behind the thread pointer.
7696 ;; Since we do not allow using GBR for general purpose memory accesses, these
7697 ;; GBR addressing modes are formed by the combine pass.
7698 ;; This could be done with fewer patterns than below by using a mem predicate
7699 ;; for the GBR mem, but then reload would try to reload addresses with a
7700 ;; zero displacement for some strange reason.
7701
7702 (define_insn "*mov<mode>_gbr_load"
7703 [(set (match_operand:QIHISI 0 "arith_reg_dest" "=z")
7704 (mem:QIHISI (plus:SI (reg:SI GBR_REG)
7705 (match_operand:QIHISI 1 "gbr_displacement"))))]
7706 "TARGET_SH1"
7707 "mov.<bwl> @(%O1,gbr),%0"
7708 [(set_attr "type" "load")])
7709
7710 (define_insn "*mov<mode>_gbr_load"
7711 [(set (match_operand:QIHISI 0 "arith_reg_dest" "=z")
7712 (mem:QIHISI (reg:SI GBR_REG)))]
7713 "TARGET_SH1"
7714 "mov.<bwl> @(0,gbr),%0"
7715 [(set_attr "type" "load")])
7716
7717 (define_insn "*mov<mode>_gbr_load"
7718 [(set (match_operand:SI 0 "arith_reg_dest" "=z")
7719 (sign_extend:SI
7720 (mem:QIHI (plus:SI (reg:SI GBR_REG)
7721 (match_operand:QIHI 1 "gbr_displacement")))))]
7722 "TARGET_SH1"
7723 "mov.<bw> @(%O1,gbr),%0"
7724 [(set_attr "type" "load")])
7725
7726 (define_insn "*mov<mode>_gbr_load"
7727 [(set (match_operand:SI 0 "arith_reg_dest" "=z")
7728 (sign_extend:SI (mem:QIHI (reg:SI GBR_REG))))]
7729 "TARGET_SH1"
7730 "mov.<bw> @(0,gbr),%0"
7731 [(set_attr "type" "load")])
7732
7733 (define_insn "*mov<mode>_gbr_store"
7734 [(set (mem:QIHISI (plus:SI (reg:SI GBR_REG)
7735 (match_operand:QIHISI 0 "gbr_displacement")))
7736 (match_operand:QIHISI 1 "register_operand" "z"))]
7737 "TARGET_SH1"
7738 "mov.<bwl> %1,@(%O0,gbr)"
7739 [(set_attr "type" "store")])
7740
7741 (define_insn "*mov<mode>_gbr_store"
7742 [(set (mem:QIHISI (reg:SI GBR_REG))
7743 (match_operand:QIHISI 0 "register_operand" "z"))]
7744 "TARGET_SH1"
7745 "mov.<bwl> %0,@(0,gbr)"
7746 [(set_attr "type" "store")])
7747
7748 ;; DImode memory accesses have to be split in two SImode accesses.
7749 ;; Split them before reload, so that it gets a better chance to figure out
7750 ;; how to deal with the R0 restriction for the individual SImode accesses.
7751 ;; Do not match this insn during or after reload because it can't be split
7752 ;; afterwards.
7753 (define_insn_and_split "*movdi_gbr_load"
7754 [(set (match_operand:DI 0 "arith_reg_dest")
7755 (match_operand:DI 1 "gbr_address_mem"))]
7756 "TARGET_SH1 && can_create_pseudo_p ()"
7757 "#"
7758 "&& 1"
7759 [(set (match_dup 3) (match_dup 5))
7760 (set (match_dup 4) (match_dup 6))]
7761 {
7762 /* Swap low/high part load order on little endian, so that the result reg
7763 of the second load can be used better. */
7764 int off = TARGET_LITTLE_ENDIAN ? 1 : 0;
7765 operands[3 + off] = gen_lowpart (SImode, operands[0]);
7766 operands[5 + off] = gen_lowpart (SImode, operands[1]);
7767 operands[4 - off] = gen_highpart (SImode, operands[0]);
7768 operands[6 - off] = gen_highpart (SImode, operands[1]);
7769 })
7770
7771 (define_insn_and_split "*movdi_gbr_store"
7772 [(set (match_operand:DI 0 "gbr_address_mem")
7773 (match_operand:DI 1 "register_operand"))]
7774 "TARGET_SH1 && can_create_pseudo_p ()"
7775 "#"
7776 "&& 1"
7777 [(set (match_dup 3) (match_dup 5))
7778 (set (match_dup 4) (match_dup 6))]
7779 {
7780 /* Swap low/high part store order on big endian, so that stores of function
7781 call results can save a reg copy. */
7782 int off = TARGET_LITTLE_ENDIAN ? 0 : 1;
7783 operands[3 + off] = gen_lowpart (SImode, operands[0]);
7784 operands[5 + off] = gen_lowpart (SImode, operands[1]);
7785 operands[4 - off] = gen_highpart (SImode, operands[0]);
7786 operands[6 - off] = gen_highpart (SImode, operands[1]);
7787 })
7788
7789 ;; Sometimes memory accesses do not get combined with the store_gbr insn,
7790 ;; in particular when the displacements are in the range of the regular move
7791 ;; insns. Thus, in the first split pass after the combine pass we search
7792 ;; for missed opportunities and try to fix them up ourselves.
7793 ;; If an equivalent GBR address can be determined the load / store is split
7794 ;; into one of the GBR load / store patterns.
7795 ;; All of that must happen before reload (GBR address modes use R0 as the
7796 ;; other operand) and there's no point of doing it if the GBR is not
7797 ;; referenced in a function at all.
7798 (define_split
7799 [(set (match_operand:QIHISIDI 0 "register_operand")
7800 (match_operand:QIHISIDI 1 "memory_operand"))]
7801 "TARGET_SH1 && !reload_in_progress && !reload_completed
7802 && df_regs_ever_live_p (GBR_REG)"
7803 [(set (match_dup 0) (match_dup 1))]
7804 {
7805 rtx gbr_mem = sh_find_equiv_gbr_addr (curr_insn, operands[1]);
7806 if (gbr_mem != NULL_RTX)
7807 operands[1] = replace_equiv_address (operands[1], gbr_mem);
7808 else
7809 FAIL;
7810 })
7811
7812 (define_split
7813 [(set (match_operand:SI 0 "register_operand")
7814 (sign_extend:SI (match_operand:QIHI 1 "memory_operand")))]
7815 "TARGET_SH1 && !reload_in_progress && !reload_completed
7816 && df_regs_ever_live_p (GBR_REG)"
7817 [(set (match_dup 0) (sign_extend:SI (match_dup 1)))]
7818 {
7819 rtx gbr_mem = sh_find_equiv_gbr_addr (curr_insn, operands[1]);
7820 if (gbr_mem != NULL_RTX)
7821 operands[1] = replace_equiv_address (operands[1], gbr_mem);
7822 else
7823 FAIL;
7824 })
7825
7826 ;; On SH2A we've got movu.b and movu.w for doing zero-extending mem loads.
7827 ;; Split those so that a GBR load can be used.
7828 (define_split
7829 [(set (match_operand:SI 0 "register_operand")
7830 (zero_extend:SI (match_operand:QIHI 1 "memory_operand")))]
7831 "TARGET_SH2A && !reload_in_progress && !reload_completed
7832 && df_regs_ever_live_p (GBR_REG)"
7833 [(set (match_dup 2) (match_dup 1))
7834 (set (match_dup 0) (zero_extend:SI (match_dup 2)))]
7835 {
7836 rtx gbr_mem = sh_find_equiv_gbr_addr (curr_insn, operands[1]);
7837 if (gbr_mem != NULL_RTX)
7838 {
7839 operands[2] = gen_reg_rtx (GET_MODE (operands[1]));
7840 operands[1] = replace_equiv_address (operands[1], gbr_mem);
7841 }
7842 else
7843 FAIL;
7844 })
7845
7846 (define_split
7847 [(set (match_operand:QIHISIDI 0 "memory_operand")
7848 (match_operand:QIHISIDI 1 "register_operand"))]
7849 "TARGET_SH1 && !reload_in_progress && !reload_completed
7850 && df_regs_ever_live_p (GBR_REG)"
7851 [(set (match_dup 0) (match_dup 1))]
7852 {
7853 rtx gbr_mem = sh_find_equiv_gbr_addr (curr_insn, operands[0]);
7854 if (gbr_mem != NULL_RTX)
7855 operands[0] = replace_equiv_address (operands[0], gbr_mem);
7856 else
7857 FAIL;
7858 })
7859
7860 ;;------------------------------------------------------------------------------
7861 ;; case instruction for switch statements.
7862
7863 ;; operand 0 is index
7864 ;; operand 1 is the minimum bound
7865 ;; operand 2 is the maximum bound - minimum bound + 1
7866 ;; operand 3 is CODE_LABEL for the table;
7867 ;; operand 4 is the CODE_LABEL to go to if index out of range.
7868 (define_expand "casesi"
7869 [(match_operand:SI 0 "arith_reg_operand" "")
7870 (match_operand:SI 1 "arith_reg_operand" "")
7871 (match_operand:SI 2 "arith_reg_operand" "")
7872 (match_operand 3 "" "") (match_operand 4 "" "")]
7873 ""
7874 {
7875 rtx reg = gen_reg_rtx (SImode);
7876 rtx reg2 = gen_reg_rtx (SImode);
7877
7878 operands[1] = copy_to_mode_reg (SImode, operands[1]);
7879 operands[2] = copy_to_mode_reg (SImode, operands[2]);
7880 /* If optimizing, casesi_worker depends on the mode of the instruction
7881 before label it 'uses' - operands[3]. */
7882 emit_insn (gen_casesi_0 (operands[0], operands[1], operands[2], operands[4],
7883 reg));
7884 emit_insn (gen_casesi_worker_0 (reg2, reg, operands[3]));
7885 if (TARGET_SH2)
7886 emit_jump_insn (gen_casesi_jump_2 (reg2, gen_label_rtx (), operands[3]));
7887 else
7888 emit_jump_insn (gen_casesi_jump_1 (reg2, operands[3]));
7889 /* For SH2 and newer, the ADDR_DIFF_VEC is not actually relative to
7890 operands[3], but to lab. We will fix this up in
7891 machine_dependent_reorg. */
7892 emit_barrier ();
7893 DONE;
7894 })
7895
7896 (define_expand "casesi_0"
7897 [(set (match_operand:SI 4 "" "") (match_operand:SI 0 "arith_reg_operand" ""))
7898 (set (match_dup 4) (minus:SI (match_dup 4)
7899 (match_operand:SI 1 "arith_operand" "")))
7900 (set (reg:SI T_REG)
7901 (gtu:SI (match_dup 4)
7902 (match_operand:SI 2 "arith_reg_operand" "")))
7903 (set (pc)
7904 (if_then_else (ne (reg:SI T_REG)
7905 (const_int 0))
7906 (label_ref (match_operand 3 "" ""))
7907 (pc)))]
7908 "TARGET_SH1"
7909 "")
7910
7911 ;; ??? reload might clobber r0 if we use it explicitly in the RTL before
7912 ;; reload; using a R0_REGS pseudo reg is likely to give poor code.
7913 ;; So we keep the use of r0 hidden in a R0_REGS clobber until after reload.
7914 ;;
7915 ;; The use on the T_REG in the casesi_worker* patterns links the bounds
7916 ;; checking insns and the table memory access. See also PR 69713.
7917 (define_insn "casesi_worker_0"
7918 [(set (match_operand:SI 0 "register_operand" "=r,r")
7919 (unspec:SI [(match_operand:SI 1 "register_operand" "0,r")
7920 (label_ref (match_operand 2 "" ""))] UNSPEC_CASESI))
7921 (clobber (match_scratch:SI 3 "=X,1"))
7922 (clobber (match_scratch:SI 4 "=&z,z"))
7923 (use (reg:SI T_REG))]
7924 "TARGET_SH1"
7925 "#")
7926
7927 (define_split
7928 [(set (match_operand:SI 0 "register_operand" "")
7929 (unspec:SI [(match_operand:SI 1 "register_operand" "")
7930 (label_ref (match_operand 2 "" ""))] UNSPEC_CASESI))
7931 (clobber (match_scratch:SI 3 ""))
7932 (clobber (match_scratch:SI 4))
7933 (use (reg:SI T_REG))]
7934 "TARGET_SH1 && ! TARGET_SH2 && reload_completed"
7935 [(set (reg:SI R0_REG) (unspec:SI [(label_ref (match_dup 2))] UNSPEC_MOVA))
7936 (parallel [(set (match_dup 0)
7937 (unspec:SI [(reg:SI R0_REG) (match_dup 1)
7938 (label_ref (match_dup 2))] UNSPEC_CASESI))
7939 (clobber (match_dup 3))])
7940 (set (match_dup 0) (plus:SI (match_dup 0) (reg:SI R0_REG)))]
7941 {
7942 if (GET_CODE (operands[2]) == CODE_LABEL)
7943 LABEL_NUSES (operands[2])++;
7944 })
7945
7946 (define_split
7947 [(set (match_operand:SI 0 "register_operand" "")
7948 (unspec:SI [(match_operand:SI 1 "register_operand" "")
7949 (label_ref (match_operand 2 "" ""))] UNSPEC_CASESI))
7950 (clobber (match_scratch:SI 3 ""))
7951 (clobber (match_scratch:SI 4))
7952 (use (reg:SI T_REG))]
7953 "TARGET_SH2 && reload_completed"
7954 [(set (reg:SI R0_REG) (unspec:SI [(label_ref (match_dup 2))] UNSPEC_MOVA))
7955 (parallel [(set (match_dup 0)
7956 (unspec:SI [(reg:SI R0_REG) (match_dup 1)
7957 (label_ref (match_dup 2))] UNSPEC_CASESI))
7958 (clobber (match_dup 3))])]
7959 {
7960 if (GET_CODE (operands[2]) == CODE_LABEL)
7961 LABEL_NUSES (operands[2])++;
7962 })
7963
7964 ;; This may be replaced with casesi_worker_2 in sh_reorg for PIC.
7965 ;; The insn length is set to 8 for that case.
7966 (define_insn "casesi_worker_1"
7967 [(set (match_operand:SI 0 "register_operand" "=r,r")
7968 (unspec:SI [(reg:SI R0_REG)
7969 (match_operand:SI 1 "register_operand" "0,r")
7970 (label_ref (match_operand 2 "" ""))] UNSPEC_CASESI))
7971 (clobber (match_scratch:SI 3 "=X,1"))]
7972 "TARGET_SH1"
7973 {
7974 rtx diff_vec = PATTERN (NEXT_INSN (as_a <rtx_insn *> (operands[2])));
7975
7976 gcc_assert (GET_CODE (diff_vec) == ADDR_DIFF_VEC);
7977
7978 switch (GET_MODE (diff_vec))
7979 {
7980 case E_SImode:
7981 return "shll2 %1" "\n"
7982 " mov.l @(r0,%1),%0";
7983 case E_HImode:
7984 return "add %1,%1" "\n"
7985 " mov.w @(r0,%1),%0";
7986 case E_QImode:
7987 if (ADDR_DIFF_VEC_FLAGS (diff_vec).offset_unsigned)
7988 return "mov.b @(r0,%1),%0" "\n"
7989 " extu.b %0,%0";
7990 else
7991 return "mov.b @(r0,%1),%0";
7992
7993 default:
7994 gcc_unreachable ();
7995 }
7996 }
7997 [(set_attr_alternative "length"
7998 [(if_then_else (match_test "flag_pic") (const_int 8) (const_int 4))
7999 (if_then_else (match_test "flag_pic") (const_int 8) (const_int 4))])])
8000
8001 (define_insn "casesi_worker_2"
8002 [(set (match_operand:SI 0 "register_operand" "=r,r")
8003 (unspec:SI [(reg:SI R0_REG)
8004 (match_operand:SI 1 "register_operand" "0,r")
8005 (label_ref (match_operand 2 "" ""))
8006 (label_ref (match_operand 3 "" ""))] UNSPEC_CASESI))
8007 (clobber (match_operand:SI 4 "" "=X,1"))]
8008 "TARGET_SH2 && reload_completed && flag_pic"
8009 {
8010 rtx diff_vec = PATTERN (NEXT_INSN (as_a <rtx_insn *> (operands[2])));
8011 gcc_assert (GET_CODE (diff_vec) == ADDR_DIFF_VEC);
8012
8013 switch (GET_MODE (diff_vec))
8014 {
8015 case E_SImode:
8016 return "shll2 %1" "\n"
8017 " add r0,%1" "\n"
8018 " mova %O3,r0" "\n"
8019 " mov.l @(r0,%1),%0";
8020 case E_HImode:
8021 return "add %1,%1" "\n"
8022 " add r0,%1" "\n"
8023 " mova %O3,r0" "\n"
8024 " mov.w @(r0,%1),%0";
8025 case E_QImode:
8026 if (ADDR_DIFF_VEC_FLAGS (diff_vec).offset_unsigned)
8027 return "add r0,%1" "\n"
8028 " mova %O3,r0" "\n"
8029 " mov.b @(r0,%1),%0" "\n"
8030 " extu.b %0,%0";
8031 else
8032 return "add r0,%1" "\n"
8033 " mova %O3,r0" "\n"
8034 " mov.b @(r0,%1),%0";
8035 default:
8036 gcc_unreachable ();
8037 }
8038 }
8039 [(set_attr "length" "8")])
8040
8041 (define_expand "simple_return"
8042 [(simple_return)]
8043 "sh_can_use_simple_return_p ()")
8044
8045 (define_expand "return"
8046 [(return)]
8047 "reload_completed && epilogue_completed")
8048
8049 (define_insn "*<code>_i"
8050 [(any_return)]
8051 "TARGET_SH1
8052 && reload_completed
8053 && ! sh_cfun_trap_exit_p ()"
8054 {
8055 if (TARGET_SH2A && (dbr_sequence_length () == 0)
8056 && !current_function_interrupt)
8057 return "rts/n";
8058 else
8059 return "%@ %#";
8060 }
8061 [(set_attr "type" "return")
8062 (set_attr "needs_delay_slot" "yes")])
8063
8064 ;; trapa has no delay slot.
8065 (define_insn "*return_trapa"
8066 [(return)]
8067 "TARGET_SH1 && reload_completed"
8068 "%@"
8069 [(set_attr "type" "return")])
8070
8071 (define_expand "prologue"
8072 [(const_int 0)]
8073 ""
8074 {
8075 sh_expand_prologue ();
8076 DONE;
8077 })
8078
8079 (define_expand "epilogue"
8080 [(return)]
8081 ""
8082 {
8083 sh_expand_epilogue (false);
8084 })
8085
8086 (define_expand "eh_return"
8087 [(use (match_operand 0 "register_operand" ""))]
8088 ""
8089 {
8090 emit_insn (gen_eh_set_ra_si (operands[0]));
8091 DONE;
8092 })
8093
8094 ;; Clobber the return address on the stack. We can't expand this
8095 ;; until we know where it will be put in the stack frame.
8096
8097 (define_insn "eh_set_ra_si"
8098 [(unspec_volatile [(match_operand:SI 0 "register_operand" "r")]
8099 UNSPECV_EH_RETURN)
8100 (clobber (match_scratch:SI 1 "=&r"))]
8101 ""
8102 "#")
8103
8104 (define_split
8105 [(unspec_volatile [(match_operand 0 "register_operand" "")]
8106 UNSPECV_EH_RETURN)
8107 (clobber (match_scratch 1 ""))]
8108 "reload_completed"
8109 [(const_int 0)]
8110 {
8111 sh_set_return_address (operands[0], operands[1]);
8112 DONE;
8113 })
8114
8115 (define_insn "blockage"
8116 [(unspec_volatile [(const_int 0)] UNSPECV_BLOCKAGE)]
8117 ""
8118 ""
8119 [(set_attr "length" "0")])
8120 \f
8121 ;; Define movml instructions for SH2A target. Currently they are
8122 ;; used to push and pop all banked registers only.
8123
8124 (define_insn "movml_push_banked"
8125 [(set (match_operand:SI 0 "register_operand" "=r")
8126 (plus (match_dup 0) (const_int -32)))
8127 (set (mem:SI (plus:SI (match_dup 0) (const_int 28))) (reg:SI R7_REG))
8128 (set (mem:SI (plus:SI (match_dup 0) (const_int 24))) (reg:SI R6_REG))
8129 (set (mem:SI (plus:SI (match_dup 0) (const_int 20))) (reg:SI R5_REG))
8130 (set (mem:SI (plus:SI (match_dup 0) (const_int 16))) (reg:SI R4_REG))
8131 (set (mem:SI (plus:SI (match_dup 0) (const_int 12))) (reg:SI R3_REG))
8132 (set (mem:SI (plus:SI (match_dup 0) (const_int 8))) (reg:SI R2_REG))
8133 (set (mem:SI (plus:SI (match_dup 0) (const_int 4))) (reg:SI R1_REG))
8134 (set (mem:SI (plus:SI (match_dup 0) (const_int 0))) (reg:SI R0_REG))]
8135 "TARGET_SH2A && REGNO (operands[0]) == 15"
8136 "movml.l r7,@-r15"
8137 [(set_attr "in_delay_slot" "no")])
8138
8139 (define_insn "movml_pop_banked"
8140 [(set (match_operand:SI 0 "register_operand" "=r")
8141 (plus (match_dup 0) (const_int 32)))
8142 (set (reg:SI R0_REG) (mem:SI (plus:SI (match_dup 0) (const_int -32))))
8143 (set (reg:SI R1_REG) (mem:SI (plus:SI (match_dup 0) (const_int -28))))
8144 (set (reg:SI R2_REG) (mem:SI (plus:SI (match_dup 0) (const_int -24))))
8145 (set (reg:SI R3_REG) (mem:SI (plus:SI (match_dup 0) (const_int -20))))
8146 (set (reg:SI R4_REG) (mem:SI (plus:SI (match_dup 0) (const_int -16))))
8147 (set (reg:SI R5_REG) (mem:SI (plus:SI (match_dup 0) (const_int -12))))
8148 (set (reg:SI R6_REG) (mem:SI (plus:SI (match_dup 0) (const_int -8))))
8149 (set (reg:SI R7_REG) (mem:SI (plus:SI (match_dup 0) (const_int -4))))]
8150 "TARGET_SH2A && REGNO (operands[0]) == 15"
8151 "movml.l @r15+,r7"
8152 [(set_attr "in_delay_slot" "no")])
8153 \f
8154 ;; ------------------------------------------------------------------------
8155 ;; Scc instructions
8156 ;; ------------------------------------------------------------------------
8157
8158 (define_insn "movt"
8159 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
8160 (match_operand:SI 1 "t_reg_operand"))]
8161 "TARGET_SH1"
8162 "movt %0"
8163 [(set_attr "type" "arith")])
8164
8165 (define_insn "movrt"
8166 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
8167 (xor:SI (match_operand:SI 1 "t_reg_operand" "") (const_int 1)))]
8168 "TARGET_SH2A"
8169 "movrt %0"
8170 [(set_attr "type" "arith")])
8171
8172 (define_expand "cstoresi4"
8173 [(set (match_operand:SI 0 "register_operand")
8174 (match_operator:SI 1 "comparison_operator"
8175 [(match_operand:SI 2 "cmpsi_operand")
8176 (match_operand:SI 3 "arith_operand")]))]
8177 "TARGET_SH1"
8178 {
8179 if (sh_expand_t_scc (operands))
8180 DONE;
8181
8182 if (! currently_expanding_to_rtl)
8183 FAIL;
8184
8185 sh_emit_compare_and_set (operands, SImode);
8186 DONE;
8187 })
8188
8189 (define_expand "cstoredi4"
8190 [(set (match_operand:SI 0 "register_operand")
8191 (match_operator:SI 1 "comparison_operator"
8192 [(match_operand:DI 2 "arith_operand")
8193 (match_operand:DI 3 "arith_operand")]))]
8194 "TARGET_SH2"
8195 {
8196 if (sh_expand_t_scc (operands))
8197 DONE;
8198
8199 if (! currently_expanding_to_rtl)
8200 FAIL;
8201
8202 sh_emit_compare_and_set (operands, DImode);
8203 DONE;
8204 })
8205
8206 ;; Move the complement of the T reg to a reg.
8207 ;; On SH2A the movrt insn can be used.
8208 ;; On anything else than SH2A this has to be done with multiple instructions.
8209 ;; One obvious way would be:
8210 ;; cmp/eq ...
8211 ;; movt r0
8212 ;; xor #1,r0
8213 ;;
8214 ;; However, this puts pressure on r0 in most cases and thus the following is
8215 ;; more appealing:
8216 ;; cmp/eq ...
8217 ;; mov #-1,temp
8218 ;; negc temp,dest
8219 ;;
8220 ;; If the constant -1 can be CSE-ed or lifted out of a loop it effectively
8221 ;; becomes a one instruction operation. Moreover, care must be taken that
8222 ;; the insn can still be combined with inverted compare and branch code
8223 ;; around it. On the other hand, if a function returns the complement of
8224 ;; a previous comparison result in the T bit, the xor #1,r0 approach might
8225 ;; lead to better code.
8226 (define_expand "movnegt"
8227 [(set (match_operand:SI 0 "arith_reg_dest" "")
8228 (xor:SI (match_operand:SI 1 "t_reg_operand" "") (const_int 1)))]
8229 "TARGET_SH1"
8230 {
8231 if (TARGET_SH2A)
8232 emit_insn (gen_movrt (operands[0], operands[1]));
8233 else
8234 {
8235 rtx val = force_reg (SImode, gen_int_mode (-1, SImode));
8236 emit_insn (gen_movrt_negc (operands[0], operands[1], val));
8237 }
8238 DONE;
8239 })
8240
8241 (define_insn_and_split "movrt_negc"
8242 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
8243 (xor:SI (match_operand:SI 1 "t_reg_operand") (const_int 1)))
8244 (set (reg:SI T_REG) (const_int 1))
8245 (use (match_operand:SI 2 "arith_reg_operand" "r"))]
8246 "TARGET_SH1"
8247 "negc %2,%0"
8248 "&& !sh_in_recog_treg_set_expr ()"
8249 [(const_int 0)]
8250 {
8251 if (sh_split_movrt_negc_to_movt_xor (curr_insn, operands))
8252 DONE;
8253 else
8254 FAIL;
8255 }
8256 [(set_attr "type" "arith")])
8257
8258 ;; The -1 constant will not be CSE-ed for the *movrt_negc pattern, but the
8259 ;; pattern can be used by the combine pass. Using a scratch reg for the
8260 ;; -1 constant results in slightly better register allocations compared to
8261 ;; generating a pseudo reg before reload.
8262 (define_insn_and_split "*movrt_negc"
8263 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
8264 (xor:SI (match_operand:SI 1 "t_reg_operand") (const_int 1)))
8265 (clobber (match_scratch:SI 2 "=r"))
8266 (clobber (reg:SI T_REG))]
8267 "TARGET_SH1 && ! TARGET_SH2A"
8268 "#"
8269 "&& !sh_in_recog_treg_set_expr ()"
8270 [(const_int 0)]
8271 {
8272 if (sh_split_movrt_negc_to_movt_xor (curr_insn, operands))
8273 DONE;
8274 else if (reload_completed)
8275 {
8276 emit_move_insn (operands[2], gen_int_mode (-1, SImode));
8277 emit_insn (gen_movrt_negc (operands[0], operands[1], operands[2]));
8278 DONE;
8279 }
8280 else
8281 FAIL;
8282 })
8283
8284 ;; Store the negated T bit in a reg using r0 and xor. This one doesn't
8285 ;; clobber the T bit, which is useful when storing the T bit and the
8286 ;; negated T bit in parallel. On SH2A the movrt insn can be used for that.
8287 ;; Usually we don't want this insn to be matched, except for cases where the
8288 ;; T bit clobber is really not appreciated. Hence the extra use on T_REG.
8289 (define_insn_and_split "movrt_xor"
8290 [(set (match_operand:SI 0 "arith_reg_dest" "=z")
8291 (xor:SI (match_operand:SI 1 "t_reg_operand") (const_int 1)))
8292 (use (reg:SI T_REG))]
8293 "TARGET_SH1"
8294 "#"
8295 "&& reload_completed"
8296 [(set (match_dup 0) (reg:SI T_REG))
8297 (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))])
8298
8299 ;; 0x7fffffff + T
8300 ;; 0x7fffffff + (1-T) = 0 - 0x80000000 - T
8301 ;;
8302 ;; Notice that 0 - 0x80000000 = 0x80000000.
8303
8304 ;; Single bit tests are usually done with zero_extract. On non-SH2A this
8305 ;; will use a tst-negc sequence. On SH2A it will use a bld-addc sequence.
8306 ;; The zeroth bit requires a special pattern, otherwise we get a shlr-addc.
8307 ;; This is a special case of the generic treg_set_expr pattern and thus has
8308 ;; to come first or it will never match.
8309 (define_insn_and_split "*mov_t_msb_neg"
8310 [(set (match_operand:SI 0 "arith_reg_dest")
8311 (plus:SI (and:SI (match_operand:SI 1 "arith_reg_operand")
8312 (const_int 1))
8313 (const_int 2147483647)))
8314 (clobber (reg:SI T_REG))]
8315 "TARGET_SH1"
8316 "#"
8317 "&& can_create_pseudo_p ()"
8318 [(parallel [(set (match_dup 0)
8319 (plus:SI (zero_extract:SI (match_dup 1)
8320 (const_int 1) (const_int 0))
8321 (const_int 2147483647)))
8322 (clobber (reg:SI T_REG))])])
8323
8324 (define_insn_and_split "*mov_t_msb_neg"
8325 [(set (match_operand:SI 0 "arith_reg_dest")
8326 (plus:SI (match_operand 1 "treg_set_expr")
8327 (const_int 2147483647))) ;; 0x7fffffff
8328 (clobber (reg:SI T_REG))]
8329 "TARGET_SH1"
8330 "#"
8331 "&& can_create_pseudo_p ()"
8332 [(const_int 0)]
8333 {
8334 if (negt_reg_operand (operands[1], VOIDmode))
8335 {
8336 emit_insn (gen_negc (operands[0],
8337 force_reg (SImode, GEN_INT (-2147483648LL))));
8338 DONE;
8339 }
8340
8341 sh_treg_insns ti = sh_split_treg_set_expr (operands[1], curr_insn);
8342 if (ti.remove_trailing_nott ())
8343 emit_insn (gen_negc (operands[0],
8344 force_reg (SImode, GEN_INT (-2147483648LL))));
8345 else
8346 emit_insn (gen_addc (operands[0],
8347 force_reg (SImode, const0_rtx),
8348 force_reg (SImode, GEN_INT (2147483647))));
8349 DONE;
8350 })
8351
8352 (define_insn_and_split "*mov_t_msb_neg"
8353 [(set (match_operand:SI 0 "arith_reg_dest")
8354 (if_then_else:SI (match_operand 1 "treg_set_expr")
8355 (match_operand 2 "const_int_operand")
8356 (match_operand 3 "const_int_operand")))
8357 (clobber (reg:SI T_REG))]
8358 "TARGET_SH1 && can_create_pseudo_p ()
8359 && ((INTVAL (operands[2]) == -2147483648LL
8360 && INTVAL (operands[3]) == 2147483647LL)
8361 || (INTVAL (operands[2]) == 2147483647LL
8362 && INTVAL (operands[3]) == -2147483648LL))"
8363 "#"
8364 "&& 1"
8365 [(const_int 0)]
8366 {
8367 sh_treg_insns ti = sh_split_treg_set_expr (operands[1], curr_insn);
8368
8369 if (INTVAL (operands[2]) == -2147483648LL)
8370 {
8371 if (ti.remove_trailing_nott ())
8372 emit_insn (gen_negc (operands[0],
8373 force_reg (SImode, GEN_INT (-2147483648LL))));
8374 else
8375 emit_insn (gen_addc (operands[0],
8376 force_reg (SImode, const0_rtx),
8377 force_reg (SImode, operands[3])));
8378 DONE;
8379 }
8380 else if (INTVAL (operands[2]) == 2147483647LL)
8381 {
8382 if (ti.remove_trailing_nott ())
8383 emit_insn (gen_addc (operands[0],
8384 force_reg (SImode, const0_rtx),
8385 force_reg (SImode, GEN_INT (2147483647LL))));
8386 else
8387 emit_insn (gen_negc (operands[0],
8388 force_reg (SImode, GEN_INT (-2147483648LL))));
8389 DONE;
8390 }
8391 else
8392 gcc_unreachable ();
8393 })
8394
8395 ;; Store (negated) T bit as all zeros or ones in a reg.
8396 ;; subc Rn,Rn ! Rn = Rn - Rn - T; T = T
8397 ;; not Rn,Rn ! Rn = 0 - Rn
8398 (define_insn_and_split "mov_neg_si_t"
8399 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
8400 (neg:SI (match_operand 1 "treg_set_expr")))]
8401 "TARGET_SH1"
8402 {
8403 gcc_assert (t_reg_operand (operands[1], VOIDmode));
8404 return "subc %0,%0";
8405 }
8406 "&& can_create_pseudo_p () && !t_reg_operand (operands[1], VOIDmode)"
8407 [(const_int 0)]
8408 {
8409 sh_treg_insns ti = sh_split_treg_set_expr (operands[1], curr_insn);
8410 emit_insn (gen_mov_neg_si_t (operands[0], get_t_reg_rtx ()));
8411
8412 if (ti.remove_trailing_nott ())
8413 emit_insn (gen_one_cmplsi2 (operands[0], operands[0]));
8414
8415 DONE;
8416 }
8417 [(set_attr "type" "arith")])
8418
8419 ;; Invert the T bit.
8420 ;; On SH2A we can use the nott insn. On anything else this must be done with
8421 ;; multiple insns like:
8422 ;; movt Rn
8423 ;; tst Rn,Rn
8424 ;; This requires an additional pseudo. The SH specific sh_treg_combine RTL
8425 ;; pass will look for this insn. Disallow using it if pseudos can't be
8426 ;; created.
8427 ;; Don't split the nott inside the splitting of a treg_set_expr, or else
8428 ;; surrounding insns might not see and recombine it. Defer the splitting
8429 ;; of the nott until after the whole insn containing the treg_set_expr
8430 ;; has been split.
8431 (define_insn_and_split "nott"
8432 [(set (reg:SI T_REG)
8433 (xor:SI (match_operand:SI 0 "t_reg_operand") (const_int 1)))]
8434 "TARGET_SH2A || (TARGET_SH1 && can_create_pseudo_p ())"
8435 {
8436 gcc_assert (TARGET_SH2A);
8437 return "nott";
8438 }
8439 "!TARGET_SH2A && can_create_pseudo_p () && !sh_in_recog_treg_set_expr ()"
8440 [(set (match_dup 0) (reg:SI T_REG))
8441 (set (reg:SI T_REG) (eq:SI (match_dup 0) (const_int 0)))]
8442 {
8443 operands[0] = gen_reg_rtx (SImode);
8444 })
8445
8446 ;; Store T bit as MSB in a reg.
8447 ;; T = 0: 0x00000000 -> reg
8448 ;; T = 1: 0x80000000 -> reg
8449 (define_insn_and_split "*movt_msb"
8450 [(set (match_operand:SI 0 "arith_reg_dest")
8451 (mult:SI (match_operand:SI 1 "t_reg_operand")
8452 (const_int -2147483648))) ;; 0xffffffff80000000
8453 (clobber (reg:SI T_REG))]
8454 "TARGET_SH1"
8455 "#"
8456 "&& 1"
8457 [(set (match_dup 0) (ashift:SI (reg:SI T_REG) (const_int 31)))])
8458
8459 ;; Store inverted T bit as MSB in a reg.
8460 ;; T = 0: 0x80000000 -> reg
8461 ;; T = 1: 0x00000000 -> reg
8462 ;; On SH2A we can get away without clobbering the T_REG using the movrt insn.
8463 ;; On non SH2A we resort to the following sequence:
8464 ;; movt Rn
8465 ;; tst Rn,Rn
8466 ;; rotcr Rn
8467 ;; The T bit value will be modified during the sequence, but the rotcr insn
8468 ;; will restore its original value.
8469 (define_insn_and_split "*negt_msb"
8470 [(set (match_operand:SI 0 "arith_reg_dest")
8471 (match_operand:SI 1 "negt_reg_shl31_operand"))]
8472 "TARGET_SH1"
8473 "#"
8474 "&& can_create_pseudo_p ()"
8475 [(const_int 0)]
8476 {
8477 rtx tmp = gen_reg_rtx (SImode);
8478
8479 if (TARGET_SH2A)
8480 {
8481 emit_insn (gen_movrt (tmp, get_t_reg_rtx ()));
8482 emit_insn (gen_rotrsi3 (operands[0], tmp, const1_rtx));
8483 }
8484 else
8485 {
8486 emit_move_insn (tmp, get_t_reg_rtx ());
8487 emit_insn (gen_cmpeqsi_t (tmp, const0_rtx));
8488 emit_insn (gen_rotcr (operands[0], tmp, get_t_reg_rtx ()));
8489 }
8490 DONE;
8491 })
8492
8493 ;; The *cset_zero patterns convert optimizations such as
8494 ;; "if (test) x = 0;"
8495 ;; to
8496 ;; "x &= -(test == 0);"
8497 ;; back to conditional branch sequences if zero-displacement branches
8498 ;; are enabled.
8499 ;; FIXME: These patterns can be removed when conditional execution patterns
8500 ;; are implemented, since ifcvt will not perform these optimizations if
8501 ;; conditional execution is supported.
8502 (define_insn "*cset_zero"
8503 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
8504 (and:SI (plus:SI (match_operand:SI 1 "t_reg_operand")
8505 (const_int -1))
8506 (match_operand:SI 2 "arith_reg_operand" "0")))]
8507 "TARGET_SH1 && TARGET_ZDCBRANCH"
8508 {
8509 return "bf 0f" "\n"
8510 " mov #0,%0" "\n"
8511 "0:";
8512 }
8513 [(set_attr "type" "arith") ;; poor approximation
8514 (set_attr "length" "4")])
8515
8516 (define_insn "*cset_zero"
8517 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
8518 (if_then_else:SI (match_operand:SI 1 "cbranch_treg_value")
8519 (match_operand:SI 2 "arith_reg_operand" "0")
8520 (const_int 0)))]
8521 "TARGET_SH1 && TARGET_ZDCBRANCH"
8522 {
8523 int tval = sh_eval_treg_value (operands[1]);
8524 if (tval == true)
8525 return "bt 0f" "\n"
8526 " mov #0,%0" "\n"
8527 "0:";
8528 else if (tval == false)
8529 return "bf 0f" "\n"
8530 " mov #0,%0" "\n"
8531 "0:";
8532 else
8533 gcc_unreachable ();
8534 }
8535 [(set_attr "type" "arith") ;; poor approximation
8536 (set_attr "length" "4")])
8537
8538 (define_insn_and_split "*cset_zero"
8539 [(set (match_operand:SI 0 "arith_reg_dest")
8540 (if_then_else:SI (match_operand 1 "treg_set_expr_not_const01")
8541 (match_dup 0) (const_int 0)))
8542 (clobber (reg:SI T_REG))]
8543 "TARGET_SH1 && TARGET_ZDCBRANCH && can_create_pseudo_p ()"
8544 "#"
8545 "&& 1"
8546 [(set (match_dup 0)
8547 (if_then_else:SI (match_dup 1) (match_dup 0) (const_int 0)))]
8548 {
8549 sh_treg_insns ti = sh_split_treg_set_expr (operands[1], curr_insn);
8550 if (ti.remove_trailing_nott ())
8551 operands[1] = gen_rtx_EQ (SImode, get_t_reg_rtx (), const0_rtx);
8552 else
8553 operands[1] = gen_rtx_EQ (SImode, get_t_reg_rtx (), const1_rtx);
8554 })
8555
8556 (define_expand "cstoresf4"
8557 [(set (match_operand:SI 0 "register_operand")
8558 (match_operator:SI 1 "ordered_comparison_operator"
8559 [(match_operand:SF 2 "arith_operand")
8560 (match_operand:SF 3 "arith_operand")]))]
8561 "TARGET_SH2E"
8562 {
8563 if (! currently_expanding_to_rtl)
8564 FAIL;
8565
8566 sh_emit_compare_and_set (operands, SFmode);
8567 DONE;
8568 })
8569
8570 (define_expand "cstoredf4"
8571 [(set (match_operand:SI 0 "register_operand")
8572 (match_operator:SI 1 "ordered_comparison_operator"
8573 [(match_operand:DF 2 "arith_operand")
8574 (match_operand:DF 3 "arith_operand")]))]
8575 "TARGET_FPU_DOUBLE"
8576 {
8577 if (! currently_expanding_to_rtl)
8578 FAIL;
8579
8580 sh_emit_compare_and_set (operands, DFmode);
8581 DONE;
8582 })
8583
8584 ;; Sometimes the T bit result of insns is needed in normal registers.
8585 ;; Instead of open coding all the pattern variations, use the treg_set_expr
8586 ;; predicate to match any T bit output insn and split it out after.
8587 ;; This pattern should be below all other related patterns so that it is
8588 ;; considered as a last resort option during matching. This allows
8589 ;; overriding it with special case patterns.
8590 (define_insn_and_split "any_treg_expr_to_reg"
8591 [(set (match_operand:SI 0 "arith_reg_dest")
8592 (match_operand 1 "treg_set_expr"))
8593 (clobber (reg:SI T_REG))]
8594 "TARGET_SH1 && can_create_pseudo_p ()"
8595 "#"
8596 "&& !sh_in_recog_treg_set_expr ()"
8597 [(const_int 0)]
8598 {
8599 if (dump_file)
8600 fprintf (dump_file, "splitting any_treg_expr_to_reg\n");
8601
8602 if (t_reg_operand (operands[1], VOIDmode))
8603 {
8604 if (dump_file)
8605 fprintf (dump_file, "t_reg_operand: emitting movt\n");
8606 emit_insn (gen_movt (operands[0], get_t_reg_rtx ()));
8607 DONE;
8608 }
8609 if (negt_reg_operand (operands[1], VOIDmode))
8610 {
8611 if (dump_file)
8612 fprintf (dump_file, "negt_reg_operand: emitting movrt\n");
8613 emit_insn (gen_movnegt (operands[0], get_t_reg_rtx ()));
8614 DONE;
8615 }
8616
8617 /* If the split out insns ended with a nott, emit a movrt sequence,
8618 otherwise a normal movt. */
8619 sh_treg_insns ti = sh_split_treg_set_expr (operands[1], curr_insn);
8620 rtx_insn* i = NULL;
8621 if (ti.remove_trailing_nott ())
8622 {
8623 /* Emit this same insn_and_split again. However, the next time it
8624 is split, it will emit the actual negc/movrt insn. This gives
8625 other surrounding insns the chance to see the trailing movrt. */
8626 if (dump_file)
8627 fprintf (dump_file,
8628 "any_treg_expr_to_reg: replacing trailing nott with movrt\n");
8629 i = emit_insn (gen_any_treg_expr_to_reg (
8630 operands[0], gen_rtx_XOR (SImode, get_t_reg_rtx (),
8631 const1_rtx)));
8632 }
8633 else
8634 {
8635 i = emit_insn (gen_movt (operands[0], get_t_reg_rtx ()));
8636 if (dump_file)
8637 fprintf (dump_file, "any_treg_expr_to_reg: appending movt\n");
8638 }
8639
8640 add_reg_note (i, REG_UNUSED, get_t_reg_rtx ());
8641 DONE;
8642 })
8643
8644 ;; -------------------------------------------------------------------------
8645 ;; Instructions to cope with inline literal tables
8646 ;; -------------------------------------------------------------------------
8647
8648 ;; 2 byte integer in line
8649 (define_insn "consttable_2"
8650 [(unspec_volatile [(match_operand:SI 0 "general_operand" "=g")
8651 (match_operand 1 "" "")]
8652 UNSPECV_CONST2)]
8653 ""
8654 {
8655 if (operands[1] != const0_rtx)
8656 assemble_integer (operands[0], 2, BITS_PER_UNIT * 2, 1);
8657 return "";
8658 }
8659 [(set_attr "length" "2")
8660 (set_attr "in_delay_slot" "no")])
8661
8662 ;; 4 byte integer in line
8663 (define_insn "consttable_4"
8664 [(unspec_volatile [(match_operand:SI 0 "general_operand" "=g")
8665 (match_operand 1 "" "")]
8666 UNSPECV_CONST4)]
8667 ""
8668 {
8669 if (operands[1] != const0_rtx)
8670 {
8671 assemble_integer (operands[0], 4, BITS_PER_UNIT * 4, 1);
8672 mark_symbol_refs_as_used (operands[0]);
8673 }
8674 return "";
8675 }
8676 [(set_attr "length" "4")
8677 (set_attr "in_delay_slot" "no")])
8678
8679 ;; 8 byte integer in line
8680 (define_insn "consttable_8"
8681 [(unspec_volatile [(match_operand:SI 0 "general_operand" "=g")
8682 (match_operand 1 "" "")]
8683 UNSPECV_CONST8)]
8684 ""
8685 {
8686 if (operands[1] != const0_rtx)
8687 assemble_integer (operands[0], 8, BITS_PER_UNIT * 8, 1);
8688 return "";
8689 }
8690 [(set_attr "length" "8")
8691 (set_attr "in_delay_slot" "no")])
8692
8693 ;; 4 byte floating point
8694 (define_insn "consttable_sf"
8695 [(unspec_volatile [(match_operand:SF 0 "general_operand" "=g")
8696 (match_operand 1 "" "")]
8697 UNSPECV_CONST4)]
8698 ""
8699 {
8700 if (operands[1] != const0_rtx)
8701 assemble_real (*CONST_DOUBLE_REAL_VALUE (operands[0]),
8702 SFmode, GET_MODE_ALIGNMENT (SFmode));
8703 return "";
8704 }
8705 [(set_attr "length" "4")
8706 (set_attr "in_delay_slot" "no")])
8707
8708 ;; 8 byte floating point
8709 (define_insn "consttable_df"
8710 [(unspec_volatile [(match_operand:DF 0 "general_operand" "=g")
8711 (match_operand 1 "" "")]
8712 UNSPECV_CONST8)]
8713 ""
8714 {
8715 if (operands[1] != const0_rtx)
8716 assemble_real (*CONST_DOUBLE_REAL_VALUE (operands[0]),
8717 DFmode, GET_MODE_ALIGNMENT (DFmode));
8718 return "";
8719 }
8720 [(set_attr "length" "8")
8721 (set_attr "in_delay_slot" "no")])
8722
8723 ;; Alignment is needed for some constant tables; it may also be added for
8724 ;; Instructions at the start of loops, or after unconditional branches.
8725 ;; ??? We would get more accurate lengths if we did instruction
8726 ;; alignment based on the value of INSN_CURRENT_ADDRESS; the approach used
8727 ;; here is too conservative.
8728
8729 ;; align to a two byte boundary
8730 (define_expand "align_2"
8731 [(unspec_volatile [(const_int 1)] UNSPECV_ALIGN)]
8732 ""
8733 "")
8734
8735 ;; Align to a four byte boundary.
8736 ;; align_4 and align_log are instructions for the starts of loops, or
8737 ;; after unconditional branches, which may take up extra room.
8738 (define_expand "align_4"
8739 [(unspec_volatile [(const_int 2)] UNSPECV_ALIGN)]
8740 ""
8741 "")
8742
8743 ;; Align to a cache line boundary.
8744 (define_insn "align_log"
8745 [(unspec_volatile [(match_operand 0 "const_int_operand" "")] UNSPECV_ALIGN)]
8746 ""
8747 ""
8748 [(set_attr "length" "0")
8749 (set_attr "in_delay_slot" "no")])
8750
8751 ;; Emitted at the end of the literal table, used to emit the
8752 ;; 32bit branch labels if needed.
8753 (define_insn "consttable_end"
8754 [(unspec_volatile [(const_int 0)] UNSPECV_CONST_END)]
8755 ""
8756 {
8757 return output_jump_label_table ();
8758 }
8759 [(set_attr "in_delay_slot" "no")])
8760
8761 ;; Emitted at the end of the window in the literal table.
8762 (define_insn "consttable_window_end"
8763 [(unspec_volatile [(match_operand 0 "" "")] UNSPECV_WINDOW_END)]
8764 ""
8765 ""
8766 [(set_attr "length" "0")
8767 (set_attr "in_delay_slot" "no")])
8768
8769 ;; -------------------------------------------------------------------------
8770 ;; Minimum / maximum operations.
8771 ;; -------------------------------------------------------------------------
8772
8773 ;; The SH2A clips.b and clips.w insns do a signed min-max function. If smin
8774 ;; and smax standard name patterns are defined, they will be used during
8775 ;; initial expansion and combine will then be able to form the actual min-max
8776 ;; pattern.
8777 ;; The clips.b and clips.w set the SR.CS bit if the value in the register is
8778 ;; clipped, but there is currently no way of making use of this information.
8779 ;; The only way to read or reset the SR.CS bit is by accessing the SR.
8780 (define_expand "<code>si3"
8781 [(parallel [(set (match_operand:SI 0 "arith_reg_dest")
8782 (SMIN_SMAX:SI (match_operand:SI 1 "arith_reg_operand")
8783 (match_operand 2 "const_int_operand")))
8784 (clobber (reg:SI T_REG))])]
8785 "TARGET_SH2A"
8786 {
8787 /* Force the comparison value into a register, because greater-than
8788 comparisons can work only on registers. Combine will be able to pick up
8789 the constant value from the REG_EQUAL note when trying to form a min-max
8790 pattern. */
8791 operands[2] = force_reg (SImode, operands[2]);
8792 })
8793
8794 ;; Convert
8795 ;; smax (smin (...))
8796 ;; to
8797 ;; smin (smax (...))
8798 (define_insn_and_split "*clips"
8799 [(set (match_operand:SI 0 "arith_reg_dest")
8800 (smax:SI (smin:SI (match_operand:SI 1 "arith_reg_operand")
8801 (match_operand 2 "clips_max_const_int"))
8802 (match_operand 3 "clips_min_const_int")))]
8803 "TARGET_SH2A"
8804 "#"
8805 "&& 1"
8806 [(set (match_dup 0)
8807 (smin:SI (smax:SI (match_dup 1) (match_dup 3)) (match_dup 2)))])
8808
8809 (define_insn "*clips"
8810 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
8811 (smin:SI (smax:SI (match_operand:SI 1 "arith_reg_operand" "0")
8812 (match_operand 2 "clips_min_const_int"))
8813 (match_operand 3 "clips_max_const_int")))]
8814 "TARGET_SH2A"
8815 {
8816 if (INTVAL (operands[3]) == 127)
8817 return "clips.b %0";
8818 else if (INTVAL (operands[3]) == 32767)
8819 return "clips.w %0";
8820 else
8821 gcc_unreachable ();
8822 }
8823 [(set_attr "type" "arith")])
8824
8825 ;; If the expanded smin or smax patterns were not combined, split them into
8826 ;; a compare and branch sequence, because there are no real smin or smax
8827 ;; insns.
8828 (define_insn_and_split "*<code>si3"
8829 [(set (match_operand:SI 0 "arith_reg_dest")
8830 (SMIN_SMAX:SI (match_operand:SI 1 "arith_reg_operand")
8831 (match_operand:SI 2 "arith_reg_or_0_or_1_operand")))
8832 (clobber (reg:SI T_REG))]
8833 "TARGET_SH2A && can_create_pseudo_p ()"
8834 "#"
8835 "&& 1"
8836 [(const_int 0)]
8837 {
8838 rtx_code_label *skip_label = gen_label_rtx ();
8839 emit_move_insn (operands[0], operands[1]);
8840
8841 rtx cmp_val = operands[2];
8842 if (satisfies_constraint_M (cmp_val))
8843 cmp_val = const0_rtx;
8844
8845 emit_insn (gen_cmpgtsi_t (operands[0], cmp_val));
8846 emit_jump_insn (<CODE> == SMIN
8847 ? gen_branch_false (skip_label)
8848 : gen_branch_true (skip_label));
8849
8850 emit_label_after (skip_label, emit_move_insn (operands[0], operands[2]));
8851 DONE;
8852 })
8853
8854 ;; The SH2A clipu.b and clipu.w insns can be used to implement a min function
8855 ;; with a register and a constant.
8856 ;; The clipu.b and clipu.w set the SR.CS bit if the value in the register is
8857 ;; clipped, but there is currently no way of making use of this information.
8858 ;; The only way to read or reset the SR.CS bit is by accessing the SR.
8859 (define_expand "uminsi3"
8860 [(set (match_operand:SI 0 "arith_reg_dest")
8861 (umin:SI (match_operand:SI 1 "arith_reg_operand")
8862 (match_operand 2 "const_int_operand")))]
8863 "TARGET_SH2A"
8864 {
8865 if (INTVAL (operands[2]) == 1)
8866 {
8867 emit_insn (gen_clipu_one (operands[0], operands[1]));
8868 DONE;
8869 }
8870 else if (! clipu_max_const_int (operands[2], VOIDmode))
8871 FAIL;
8872 })
8873
8874 (define_insn "*clipu"
8875 [(set (match_operand:SI 0 "arith_reg_dest" "=r")
8876 (umin:SI (match_operand:SI 1 "arith_reg_operand" "0")
8877 (match_operand 2 "clipu_max_const_int")))]
8878 "TARGET_SH2A"
8879 {
8880 if (INTVAL (operands[2]) == 255)
8881 return "clipu.b %0";
8882 else if (INTVAL (operands[2]) == 65535)
8883 return "clipu.w %0";
8884 else
8885 gcc_unreachable ();
8886 }
8887 [(set_attr "type" "arith")])
8888
8889 (define_insn_and_split "clipu_one"
8890 [(set (match_operand:SI 0 "arith_reg_dest")
8891 (umin:SI (match_operand:SI 1 "arith_reg_operand") (const_int 1)))
8892 (clobber (reg:SI T_REG))]
8893 "TARGET_SH2A"
8894 "#"
8895 "&& can_create_pseudo_p ()"
8896 [(const_int 0)]
8897 {
8898 emit_insn (gen_cmpeqsi_t (operands[1], const0_rtx));
8899 emit_insn (gen_movnegt (operands[0], get_t_reg_rtx ()));
8900 DONE;
8901 })
8902
8903 ;; -------------------------------------------------------------------------
8904 ;; Misc
8905 ;; -------------------------------------------------------------------------
8906
8907 ;; String/block move insn.
8908
8909 (define_expand "movmemsi"
8910 [(parallel [(set (mem:BLK (match_operand:BLK 0))
8911 (mem:BLK (match_operand:BLK 1)))
8912 (use (match_operand:SI 2 "nonmemory_operand"))
8913 (use (match_operand:SI 3 "immediate_operand"))
8914 (clobber (reg:SI PR_REG))
8915 (clobber (reg:SI R4_REG))
8916 (clobber (reg:SI R5_REG))
8917 (clobber (reg:SI R0_REG))])]
8918 "TARGET_SH1"
8919 {
8920 if (expand_block_move (operands))
8921 DONE;
8922 else
8923 FAIL;
8924 })
8925
8926 (define_insn "block_move_real"
8927 [(parallel [(set (mem:BLK (reg:SI R4_REG))
8928 (mem:BLK (reg:SI R5_REG)))
8929 (use (match_operand:SI 0 "arith_reg_operand" "r,r"))
8930 (use (match_operand 1 "" "Z,Ccl"))
8931 (clobber (reg:SI PR_REG))
8932 (clobber (reg:SI R0_REG))])]
8933 "TARGET_SH1 && ! TARGET_HARD_SH4"
8934 "@
8935 jsr @%0%#
8936 bsrf %0\n%O1:%#"
8937 [(set_attr "type" "sfunc")
8938 (set_attr "needs_delay_slot" "yes")])
8939
8940 (define_insn "block_lump_real"
8941 [(parallel [(set (mem:BLK (reg:SI R4_REG))
8942 (mem:BLK (reg:SI R5_REG)))
8943 (use (match_operand:SI 0 "arith_reg_operand" "r,r"))
8944 (use (match_operand 1 "" "Z,Ccl"))
8945 (use (reg:SI R6_REG))
8946 (clobber (reg:SI PR_REG))
8947 (clobber (reg:SI T_REG))
8948 (clobber (reg:SI R4_REG))
8949 (clobber (reg:SI R5_REG))
8950 (clobber (reg:SI R6_REG))
8951 (clobber (reg:SI R0_REG))])]
8952 "TARGET_SH1 && ! TARGET_HARD_SH4"
8953 "@
8954 jsr @%0%#
8955 bsrf %0\n%O1:%#"
8956 [(set_attr "type" "sfunc")
8957 (set_attr "needs_delay_slot" "yes")])
8958
8959 (define_insn "block_move_real_i4"
8960 [(parallel [(set (mem:BLK (reg:SI R4_REG))
8961 (mem:BLK (reg:SI R5_REG)))
8962 (use (match_operand:SI 0 "arith_reg_operand" "r,r"))
8963 (use (match_operand 1 "" "Z,Ccl"))
8964 (clobber (reg:SI PR_REG))
8965 (clobber (reg:SI R0_REG))
8966 (clobber (reg:SI R1_REG))
8967 (clobber (reg:SI R2_REG))])]
8968 "TARGET_HARD_SH4"
8969 "@
8970 jsr @%0%#
8971 bsrf %0\n%O1:%#"
8972 [(set_attr "type" "sfunc")
8973 (set_attr "needs_delay_slot" "yes")])
8974
8975 (define_insn "block_lump_real_i4"
8976 [(parallel [(set (mem:BLK (reg:SI R4_REG))
8977 (mem:BLK (reg:SI R5_REG)))
8978 (use (match_operand:SI 0 "arith_reg_operand" "r,r"))
8979 (use (match_operand 1 "" "Z,Ccl"))
8980 (use (reg:SI R6_REG))
8981 (clobber (reg:SI PR_REG))
8982 (clobber (reg:SI T_REG))
8983 (clobber (reg:SI R4_REG))
8984 (clobber (reg:SI R5_REG))
8985 (clobber (reg:SI R6_REG))
8986 (clobber (reg:SI R0_REG))
8987 (clobber (reg:SI R1_REG))
8988 (clobber (reg:SI R2_REG))
8989 (clobber (reg:SI R3_REG))])]
8990 "TARGET_HARD_SH4"
8991 "@
8992 jsr @%0%#
8993 bsrf %0\n%O1:%#"
8994 [(set_attr "type" "sfunc")
8995 (set_attr "needs_delay_slot" "yes")])
8996
8997 ;; byte compare pattern
8998 ;; temp = a ^ b;
8999 ;; !((temp & 0xF000) && (temp & 0x0F00) && (temp & 0x00F0) && (temp & 0x000F))
9000 (define_insn "cmpstr_t"
9001 [(set (reg:SI T_REG)
9002 (eq:SI (and:SI
9003 (and:SI
9004 (and:SI
9005 (zero_extract:SI
9006 (xor:SI (match_operand:SI 0 "arith_reg_operand" "r")
9007 (match_operand:SI 1 "arith_reg_operand" "r"))
9008 (const_int 8) (const_int 0))
9009 (zero_extract:SI (xor:SI (match_dup 0) (match_dup 1))
9010 (const_int 8) (const_int 8)))
9011 (zero_extract:SI (xor:SI (match_dup 0) (match_dup 1))
9012 (const_int 8) (const_int 16)))
9013 (zero_extract:SI (xor:SI (match_dup 0) (match_dup 1))
9014 (const_int 8) (const_int 24)))
9015 (const_int 0)))]
9016 "TARGET_SH1"
9017 "cmp/str %0,%1"
9018 [(set_attr "type" "mt_group")])
9019
9020 (define_expand "cmpstrsi"
9021 [(set (match_operand:SI 0 "register_operand")
9022 (compare:SI (match_operand:BLK 1 "memory_operand")
9023 (match_operand:BLK 2 "memory_operand")))
9024 (use (match_operand 3 "immediate_operand"))]
9025 "TARGET_SH1 && optimize"
9026 {
9027 if (! optimize_insn_for_size_p () && sh_expand_cmpstr (operands))
9028 DONE;
9029 else
9030 FAIL;
9031 })
9032
9033 (define_expand "cmpstrnsi"
9034 [(set (match_operand:SI 0 "register_operand")
9035 (compare:SI (match_operand:BLK 1 "memory_operand")
9036 (match_operand:BLK 2 "memory_operand")))
9037 (use (match_operand:SI 3 "nonmemory_operand"))
9038 (use (match_operand:SI 4 "immediate_operand"))]
9039 "TARGET_SH1 && optimize"
9040 {
9041 if (! optimize_insn_for_size_p () && sh_expand_cmpnstr (operands))
9042 DONE;
9043 else
9044 FAIL;
9045 })
9046
9047 (define_expand "strlensi"
9048 [(set (match_operand:SI 0 "register_operand")
9049 (unspec:SI [(match_operand:BLK 1 "memory_operand")
9050 (match_operand:SI 2 "immediate_operand")
9051 (match_operand:SI 3 "immediate_operand")]
9052 UNSPEC_BUILTIN_STRLEN))]
9053 "TARGET_SH1 && optimize"
9054 {
9055 if (! optimize_insn_for_size_p () && sh_expand_strlen (operands))
9056 DONE;
9057 else
9058 FAIL;
9059 })
9060
9061 (define_expand "setmemqi"
9062 [(parallel [(set (match_operand:BLK 0 "memory_operand")
9063 (match_operand 2 "const_int_operand"))
9064 (use (match_operand:QI 1 "const_int_operand"))
9065 (use (match_operand:QI 3 "const_int_operand"))])]
9066 "TARGET_SH1 && optimize"
9067 {
9068 if (optimize_insn_for_size_p ())
9069 FAIL;
9070
9071 sh_expand_setmem (operands);
9072 DONE;
9073 })
9074
9075 \f
9076 ;; -------------------------------------------------------------------------
9077 ;; Floating point instructions.
9078 ;; -------------------------------------------------------------------------
9079
9080 ;; FIXME: For now we disallow any memory operands for fpscr loads/stores,
9081 ;; except for post-inc loads and pre-dec stores for push/pop purposes.
9082 ;; This avoids problems with reload. As a consequence, user initiated fpscr
9083 ;; stores to memory will always be ferried through a general register.
9084 ;; User initiated fpscr loads always have to undergo bit masking to preserve
9085 ;; the current fpu mode settings for the compiler generated code. Thus such
9086 ;; fpscr loads will always have to go through general registers anyways.
9087 (define_insn "lds_fpscr"
9088 [(set (reg:SI FPSCR_REG)
9089 (match_operand:SI 0 "fpscr_movsrc_operand" "r,>"))
9090 (set (reg:SI FPSCR_STAT_REG)
9091 (unspec_volatile:SI [(const_int 0)] UNSPECV_FPSCR_STAT))
9092 (set (reg:SI FPSCR_MODES_REG)
9093 (unspec_volatile:SI [(const_int 0)] UNSPECV_FPSCR_MODES))]
9094 "TARGET_FPU_ANY"
9095 "@
9096 lds %0,fpscr
9097 lds.l %0,fpscr"
9098 [(set_attr "type" "gp_fpscr,mem_fpscr")])
9099
9100 ;; A move fpscr -> reg schedules like a move mac -> reg. Thus we use mac_gp
9101 ;; type for it.
9102 (define_insn "sts_fpscr"
9103 [(set (match_operand:SI 0 "fpscr_movdst_operand" "=r,<")
9104 (reg:SI FPSCR_REG))
9105 (use (reg:SI FPSCR_STAT_REG))
9106 (use (reg:SI FPSCR_MODES_REG))]
9107 "TARGET_FPU_ANY"
9108 "@
9109 sts fpscr,%0
9110 sts.l fpscr,%0"
9111 [(set_attr "type" "mac_gp,fstore")])
9112
9113 (define_expand "set_fpscr"
9114 [(parallel [(set (reg:SI FPSCR_REG)
9115 (match_operand:SI 0 "general_operand"))
9116 (set (reg:SI FPSCR_STAT_REG)
9117 (unspec_volatile:SI [(const_int 0)] UNSPECV_FPSCR_MODES))])]
9118 "TARGET_FPU_ANY"
9119 {
9120 /* We have to mask out the FR, SZ and PR bits. To do that, we need to
9121 get the current FPSCR value first.
9122 (a & ~mask) | (b & mask) = a ^ ((a ^ b) & mask) */
9123
9124 rtx mask = force_reg (SImode, GEN_INT (FPSCR_FR | FPSCR_SZ | FPSCR_PR));
9125
9126 rtx a = force_reg (SImode, operands[0]);
9127
9128 rtx b = gen_reg_rtx (SImode);
9129 emit_insn (gen_sts_fpscr (b));
9130
9131 rtx a_xor_b = gen_reg_rtx (SImode);
9132 emit_insn (gen_xorsi3 (a_xor_b, a, b));
9133
9134 rtx a_xor_b_and_mask = gen_reg_rtx (SImode);
9135 emit_insn (gen_andsi3 (a_xor_b_and_mask, a_xor_b, mask));
9136
9137 rtx r = gen_reg_rtx (SImode);
9138 emit_insn (gen_xorsi3 (r, a_xor_b_and_mask, a));
9139 emit_insn (gen_lds_fpscr (r));
9140
9141 DONE;
9142 })
9143
9144 ;; ??? This uses the fp unit, but has no type indicating that.
9145 ;; If we did that, this would either give a bogus latency or introduce
9146 ;; a bogus FIFO constraint.
9147 ;; Since this insn is currently only used for prologues/epilogues,
9148 ;; it is probably best to claim no function unit, which matches the
9149 ;; current setting.
9150 (define_insn "toggle_sz"
9151 [(set (reg:SI FPSCR_REG)
9152 (xor:SI (reg:SI FPSCR_REG) (const_int FPSCR_SZ)))
9153 (set (reg:SI FPSCR_MODES_REG)
9154 (unspec_volatile:SI [(const_int 0)] UNSPECV_FPSCR_MODES))]
9155 "TARGET_FPU_DOUBLE"
9156 "fschg"
9157 [(set_attr "type" "fpscr_toggle") (set_attr "fp_set" "unknown")])
9158
9159 ;; Toggle FPU precision PR mode.
9160
9161 (define_insn "toggle_pr"
9162 [(set (reg:SI FPSCR_REG)
9163 (xor:SI (reg:SI FPSCR_REG) (const_int FPSCR_PR)))
9164 (set (reg:SI FPSCR_MODES_REG)
9165 (unspec_volatile:SI [(const_int 0)] UNSPECV_FPSCR_MODES))]
9166 "TARGET_SH4A_FP"
9167 "fpchg"
9168 [(set_attr "type" "fpscr_toggle")])
9169
9170 (define_expand "addsf3"
9171 [(set (match_operand:SF 0 "fp_arith_reg_operand")
9172 (plus:SF (match_operand:SF 1 "fp_arith_reg_operand")
9173 (match_operand:SF 2 "fp_arith_reg_operand")))]
9174 "TARGET_SH2E"
9175 {
9176 emit_insn (gen_addsf3_i (operands[0], operands[1], operands[2]));
9177 DONE;
9178 })
9179
9180 (define_insn "addsf3_i"
9181 [(set (match_operand:SF 0 "fp_arith_reg_operand" "=f")
9182 (plus:SF (match_operand:SF 1 "fp_arith_reg_operand" "%0")
9183 (match_operand:SF 2 "fp_arith_reg_operand" "f")))
9184 (clobber (reg:SI FPSCR_STAT_REG))
9185 (use (reg:SI FPSCR_MODES_REG))]
9186 "TARGET_SH2E"
9187 "fadd %2,%0"
9188 [(set_attr "type" "fp")
9189 (set_attr "fp_mode" "single")])
9190
9191 (define_expand "subsf3"
9192 [(set (match_operand:SF 0 "fp_arith_reg_operand" "")
9193 (minus:SF (match_operand:SF 1 "fp_arith_reg_operand" "")
9194 (match_operand:SF 2 "fp_arith_reg_operand" "")))]
9195 "TARGET_SH2E"
9196 {
9197 emit_insn (gen_subsf3_i (operands[0], operands[1], operands[2]));
9198 DONE;
9199 })
9200
9201 (define_insn "subsf3_i"
9202 [(set (match_operand:SF 0 "fp_arith_reg_operand" "=f")
9203 (minus:SF (match_operand:SF 1 "fp_arith_reg_operand" "0")
9204 (match_operand:SF 2 "fp_arith_reg_operand" "f")))
9205 (clobber (reg:SI FPSCR_STAT_REG))
9206 (use (reg:SI FPSCR_MODES_REG))]
9207 "TARGET_SH2E"
9208 "fsub %2,%0"
9209 [(set_attr "type" "fp")
9210 (set_attr "fp_mode" "single")])
9211
9212 (define_expand "mulsf3"
9213 [(set (match_operand:SF 0 "fp_arith_reg_operand" "")
9214 (mult:SF (match_operand:SF 1 "fp_arith_reg_operand" "")
9215 (match_operand:SF 2 "fp_arith_reg_operand" "")))]
9216 "TARGET_SH2E"
9217 {
9218 emit_insn (gen_mulsf3_i (operands[0], operands[1], operands[2]));
9219 DONE;
9220 })
9221
9222 (define_insn "mulsf3_i"
9223 [(set (match_operand:SF 0 "fp_arith_reg_operand" "=f")
9224 (mult:SF (match_operand:SF 1 "fp_arith_reg_operand" "%0")
9225 (match_operand:SF 2 "fp_arith_reg_operand" "f")))
9226 (clobber (reg:SI FPSCR_STAT_REG))
9227 (use (reg:SI FPSCR_MODES_REG))]
9228 "TARGET_SH2E"
9229 "fmul %2,%0"
9230 [(set_attr "type" "fp")
9231 (set_attr "fp_mode" "single")])
9232
9233 ;; FMA (fused multiply-add) patterns
9234 (define_expand "fmasf4"
9235 [(set (match_operand:SF 0 "fp_arith_reg_operand")
9236 (fma:SF (match_operand:SF 1 "fp_arith_reg_operand")
9237 (match_operand:SF 2 "fp_arith_reg_operand")
9238 (match_operand:SF 3 "fp_arith_reg_operand")))]
9239 "TARGET_SH2E"
9240 {
9241 emit_insn (gen_fmasf4_i (operands[0], operands[1], operands[2], operands[3]));
9242 DONE;
9243 })
9244
9245 (define_insn "fmasf4_i"
9246 [(set (match_operand:SF 0 "fp_arith_reg_operand" "=f")
9247 (fma:SF (match_operand:SF 1 "fp_arith_reg_operand" "w")
9248 (match_operand:SF 2 "fp_arith_reg_operand" "f")
9249 (match_operand:SF 3 "fp_arith_reg_operand" "0")))
9250 (clobber (reg:SI FPSCR_STAT_REG))
9251 (use (reg:SI FPSCR_MODES_REG))]
9252 "TARGET_SH2E"
9253 "fmac %1,%2,%0"
9254 [(set_attr "type" "fp")
9255 (set_attr "fp_mode" "single")])
9256
9257 ;; For some cases such as 'a * b + a' the FMA pattern is not generated by
9258 ;; previous transformations. If FMA is generally allowed, let the combine
9259 ;; pass utilize it.
9260 (define_insn_and_split "*fmasf4"
9261 [(set (match_operand:SF 0 "fp_arith_reg_operand" "=f")
9262 (plus:SF (mult:SF (match_operand:SF 1 "fp_arith_reg_operand" "%w")
9263 (match_operand:SF 2 "fp_arith_reg_operand" "f"))
9264 (match_operand:SF 3 "arith_reg_operand" "0")))
9265 (clobber (reg:SI FPSCR_STAT_REG))
9266 (use (reg:SI FPSCR_MODES_REG))]
9267 "TARGET_SH2E && flag_fp_contract_mode != FP_CONTRACT_OFF"
9268 "fmac %1,%2,%0"
9269 "&& can_create_pseudo_p ()"
9270 [(parallel [(set (match_dup 0)
9271 (fma:SF (match_dup 1) (match_dup 2) (match_dup 3)))
9272 (clobber (reg:SI FPSCR_STAT_REG))
9273 (use (reg:SI FPSCR_MODES_REG))])]
9274 {
9275 /* Change 'b * a + a' into 'a * b + a'.
9276 This is better for register allocation. */
9277 if (REGNO (operands[2]) == REGNO (operands[3]))
9278 std::swap (operands[1], operands[2]);
9279 }
9280 [(set_attr "type" "fp")
9281 (set_attr "fp_mode" "single")])
9282
9283 (define_expand "divsf3"
9284 [(set (match_operand:SF 0 "fp_arith_reg_operand")
9285 (div:SF (match_operand:SF 1 "fp_arith_reg_operand")
9286 (match_operand:SF 2 "fp_arith_reg_operand")))]
9287 "TARGET_SH2E"
9288 {
9289 emit_insn (gen_divsf3_i (operands[0], operands[1], operands[2]));
9290 DONE;
9291 })
9292
9293 (define_insn "divsf3_i"
9294 [(set (match_operand:SF 0 "fp_arith_reg_operand" "=f")
9295 (div:SF (match_operand:SF 1 "fp_arith_reg_operand" "0")
9296 (match_operand:SF 2 "fp_arith_reg_operand" "f")))
9297 (clobber (reg:SI FPSCR_STAT_REG))
9298 (use (reg:SI FPSCR_MODES_REG))]
9299 "TARGET_SH2E"
9300 "fdiv %2,%0"
9301 [(set_attr "type" "fdiv")
9302 (set_attr "fp_mode" "single")])
9303
9304 (define_expand "floatsisf2"
9305 [(set (match_operand:SF 0 "fp_arith_reg_operand" "")
9306 (float:SF (match_operand:SI 1 "fpul_operand" "")))]
9307 "TARGET_SH2E"
9308 {
9309 emit_insn (gen_floatsisf2_i4 (operands[0], operands[1]));
9310 DONE;
9311 })
9312
9313 (define_insn "floatsisf2_i4"
9314 [(set (match_operand:SF 0 "fp_arith_reg_operand" "=f")
9315 (float:SF (match_operand:SI 1 "fpul_operand" "y")))
9316 (clobber (reg:SI FPSCR_STAT_REG))
9317 (use (reg:SI FPSCR_MODES_REG))]
9318 "TARGET_SH2E"
9319 "float %1,%0"
9320 [(set_attr "type" "fp")
9321 (set_attr "fp_mode" "single")])
9322
9323 (define_expand "fix_truncsfsi2"
9324 [(set (match_operand:SI 0 "fpul_operand")
9325 (fix:SI (match_operand:SF 1 "fp_arith_reg_operand")))]
9326 "TARGET_SH2E"
9327 {
9328 emit_insn (gen_fix_truncsfsi2_i4 (operands[0], operands[1]));
9329 DONE;
9330 })
9331
9332 (define_insn "fix_truncsfsi2_i4"
9333 [(set (match_operand:SI 0 "fpul_operand" "=y")
9334 (fix:SI (match_operand:SF 1 "fp_arith_reg_operand" "f")))
9335 (clobber (reg:SI FPSCR_STAT_REG))
9336 (use (reg:SI FPSCR_MODES_REG))]
9337 "TARGET_SH2E"
9338 "ftrc %1,%0"
9339 [(set_attr "type" "ftrc_s")
9340 (set_attr "fp_mode" "single")])
9341
9342 (define_insn "cmpgtsf_t"
9343 [(set (reg:SI T_REG)
9344 (gt:SI (match_operand:SF 0 "fp_arith_reg_operand" "f")
9345 (match_operand:SF 1 "fp_arith_reg_operand" "f")))
9346 (clobber (reg:SI FPSCR_STAT_REG))
9347 (use (reg:SI FPSCR_MODES_REG))]
9348 "TARGET_SH2E || TARGET_SH4 || TARGET_SH2A_SINGLE"
9349 "fcmp/gt %1,%0"
9350 [(set_attr "type" "fp_cmp")
9351 (set_attr "fp_mode" "single")])
9352
9353 (define_insn "cmpeqsf_t"
9354 [(set (reg:SI T_REG)
9355 (eq:SI (match_operand:SF 0 "fp_arith_reg_operand" "f")
9356 (match_operand:SF 1 "fp_arith_reg_operand" "f")))
9357 (clobber (reg:SI FPSCR_STAT_REG))
9358 (use (reg:SI FPSCR_MODES_REG))]
9359 "TARGET_SH2E || TARGET_SH4 || TARGET_SH2A_SINGLE"
9360 "fcmp/eq %1,%0"
9361 [(set_attr "type" "fp_cmp")
9362 (set_attr "fp_mode" "single")])
9363
9364 (define_insn "ieee_ccmpeqsf_t"
9365 [(set (reg:SI T_REG)
9366 (ior:SI (reg:SI T_REG)
9367 (eq:SI (match_operand:SF 0 "fp_arith_reg_operand" "f")
9368 (match_operand:SF 1 "fp_arith_reg_operand" "f"))))
9369 (clobber (reg:SI FPSCR_STAT_REG))
9370 (use (reg:SI FPSCR_MODES_REG))]
9371 "TARGET_IEEE && TARGET_SH2E"
9372 {
9373 return output_ieee_ccmpeq (insn, operands);
9374 }
9375 [(set_attr "length" "4")
9376 (set_attr "fp_mode" "single")])
9377
9378 (define_expand "cbranchsf4"
9379 [(set (pc)
9380 (if_then_else (match_operator 0 "ordered_comparison_operator"
9381 [(match_operand:SF 1 "arith_operand" "")
9382 (match_operand:SF 2 "arith_operand" "")])
9383 (match_operand 3 "" "")
9384 (pc)))]
9385 "TARGET_SH2E"
9386 {
9387 sh_emit_compare_and_branch (operands, SFmode);
9388 DONE;
9389 })
9390
9391 (define_expand "negsf2"
9392 [(set (match_operand:SF 0 "fp_arith_reg_operand")
9393 (neg:SF (match_operand:SF 1 "fp_arith_reg_operand")))]
9394 "TARGET_SH2E")
9395
9396 (define_insn "*negsf2_i"
9397 [(set (match_operand:SF 0 "fp_arith_reg_operand" "=f")
9398 (neg:SF (match_operand:SF 1 "fp_arith_reg_operand" "0")))]
9399 "TARGET_SH2E"
9400 "fneg %0"
9401 [(set_attr "type" "fmove")])
9402
9403 (define_expand "sqrtsf2"
9404 [(set (match_operand:SF 0 "fp_arith_reg_operand" "")
9405 (sqrt:SF (match_operand:SF 1 "fp_arith_reg_operand" "")))]
9406 "TARGET_SH3E"
9407 {
9408 emit_insn (gen_sqrtsf2_i (operands[0], operands[1]));
9409 DONE;
9410 })
9411
9412 (define_insn "sqrtsf2_i"
9413 [(set (match_operand:SF 0 "fp_arith_reg_operand" "=f")
9414 (sqrt:SF (match_operand:SF 1 "fp_arith_reg_operand" "0")))
9415 (clobber (reg:SI FPSCR_STAT_REG))
9416 (use (reg:SI FPSCR_MODES_REG))]
9417 "TARGET_SH3E"
9418 "fsqrt %0"
9419 [(set_attr "type" "fdiv")
9420 (set_attr "fp_mode" "single")])
9421
9422 (define_insn "rsqrtsf2"
9423 [(set (match_operand:SF 0 "fp_arith_reg_operand" "=f")
9424 (unspec:SF [(match_operand:SF 1 "fp_arith_reg_operand" "0")]
9425 UNSPEC_FSRRA))
9426 (clobber (reg:SI FPSCR_STAT_REG))
9427 (use (reg:SI FPSCR_MODES_REG))]
9428 "TARGET_FPU_ANY && TARGET_FSRRA"
9429 "fsrra %0"
9430 [(set_attr "type" "fsrra")
9431 (set_attr "fp_mode" "single")])
9432
9433 ;; When the sincos pattern is defined, the builtin functions sin and cos
9434 ;; will be expanded to the sincos pattern and one of the output values will
9435 ;; remain unused.
9436 (define_expand "sincossf3"
9437 [(set (match_operand:SF 0 "nonimmediate_operand")
9438 (unspec:SF [(match_operand:SF 2 "fp_arith_reg_operand")] UNSPEC_FCOSA))
9439 (set (match_operand:SF 1 "nonimmediate_operand")
9440 (unspec:SF [(match_dup 2)] UNSPEC_FSINA))]
9441 "TARGET_FPU_ANY && TARGET_FSCA"
9442 {
9443 rtx scaled = gen_reg_rtx (SFmode);
9444 rtx truncated = gen_reg_rtx (SImode);
9445 rtx fsca = gen_reg_rtx (V2SFmode);
9446 rtx scale_reg = force_reg (SFmode, sh_fsca_sf2int ());
9447
9448 emit_insn (gen_mulsf3 (scaled, operands[2], scale_reg));
9449 emit_insn (gen_fix_truncsfsi2 (truncated, scaled));
9450 emit_insn (gen_fsca (fsca, truncated, sh_fsca_int2sf ()));
9451
9452 emit_move_insn (operands[0], gen_rtx_SUBREG (SFmode, fsca, 4));
9453 emit_move_insn (operands[1], gen_rtx_SUBREG (SFmode, fsca, 0));
9454 DONE;
9455 })
9456
9457 (define_insn_and_split "fsca"
9458 [(set (match_operand:V2SF 0 "fp_arith_reg_operand" "=f")
9459 (vec_concat:V2SF
9460 (unspec:SF [(mult:SF
9461 (float:SF (match_operand:SI 1 "fpul_fsca_operand" "y"))
9462 (match_operand:SF 2 "fsca_scale_factor" "i"))
9463 ] UNSPEC_FSINA)
9464 (unspec:SF [(mult:SF (float:SF (match_dup 1)) (match_dup 2))
9465 ] UNSPEC_FCOSA)))
9466 (clobber (reg:SI FPSCR_STAT_REG))
9467 (use (reg:SI FPSCR_MODES_REG))]
9468 "TARGET_FPU_ANY && TARGET_FSCA"
9469 "fsca fpul,%d0"
9470 "&& !fpul_operand (operands[1], SImode)"
9471 [(const_int 0)]
9472 {
9473 /* If operands[1] is something like (fix:SF (float:SF (reg:SI))) reduce it
9474 to a simple reg, otherwise reload will have trouble reloading the
9475 pseudo into fpul. */
9476 rtx x = XEXP (operands[1], 0);
9477 while (x != NULL_RTX && !fpul_operand (x, SImode))
9478 {
9479 gcc_assert (GET_CODE (x) == FIX || GET_CODE (x) == FLOAT);
9480 x = XEXP (x, 0);
9481 }
9482 gcc_assert (x != NULL_RTX && fpul_operand (x, SImode));
9483 emit_insn (gen_fsca (operands[0], x, operands[2]));
9484 DONE;
9485 }
9486 [(set_attr "type" "fsca")
9487 (set_attr "fp_mode" "single")])
9488
9489 (define_expand "abssf2"
9490 [(set (match_operand:SF 0 "fp_arith_reg_operand")
9491 (abs:SF (match_operand:SF 1 "fp_arith_reg_operand")))]
9492 "TARGET_SH2E")
9493
9494 (define_insn "*abssf2_i"
9495 [(set (match_operand:SF 0 "fp_arith_reg_operand" "=f")
9496 (abs:SF (match_operand:SF 1 "fp_arith_reg_operand" "0")))]
9497 "TARGET_SH2E"
9498 "fabs %0"
9499 [(set_attr "type" "fmove")])
9500
9501 (define_expand "adddf3"
9502 [(set (match_operand:DF 0 "fp_arith_reg_operand" "")
9503 (plus:DF (match_operand:DF 1 "fp_arith_reg_operand" "")
9504 (match_operand:DF 2 "fp_arith_reg_operand" "")))]
9505 "TARGET_FPU_DOUBLE"
9506 {
9507 emit_insn (gen_adddf3_i (operands[0], operands[1], operands[2]));
9508 DONE;
9509 })
9510
9511 (define_insn "adddf3_i"
9512 [(set (match_operand:DF 0 "fp_arith_reg_operand" "=f")
9513 (plus:DF (match_operand:DF 1 "fp_arith_reg_operand" "%0")
9514 (match_operand:DF 2 "fp_arith_reg_operand" "f")))
9515 (clobber (reg:SI FPSCR_STAT_REG))
9516 (use (reg:SI FPSCR_MODES_REG))]
9517 "TARGET_FPU_DOUBLE"
9518 "fadd %2,%0"
9519 [(set_attr "type" "dfp_arith")
9520 (set_attr "fp_mode" "double")])
9521
9522 (define_expand "subdf3"
9523 [(set (match_operand:DF 0 "fp_arith_reg_operand" "")
9524 (minus:DF (match_operand:DF 1 "fp_arith_reg_operand" "")
9525 (match_operand:DF 2 "fp_arith_reg_operand" "")))]
9526 "TARGET_FPU_DOUBLE"
9527 {
9528 emit_insn (gen_subdf3_i (operands[0], operands[1], operands[2]));
9529 DONE;
9530 })
9531
9532 (define_insn "subdf3_i"
9533 [(set (match_operand:DF 0 "fp_arith_reg_operand" "=f")
9534 (minus:DF (match_operand:DF 1 "fp_arith_reg_operand" "0")
9535 (match_operand:DF 2 "fp_arith_reg_operand" "f")))
9536 (clobber (reg:SI FPSCR_STAT_REG))
9537 (use (reg:SI FPSCR_MODES_REG))]
9538 "TARGET_FPU_DOUBLE"
9539 "fsub %2,%0"
9540 [(set_attr "type" "dfp_arith")
9541 (set_attr "fp_mode" "double")])
9542
9543 (define_expand "muldf3"
9544 [(set (match_operand:DF 0 "fp_arith_reg_operand" "")
9545 (mult:DF (match_operand:DF 1 "fp_arith_reg_operand" "")
9546 (match_operand:DF 2 "fp_arith_reg_operand" "")))]
9547 "TARGET_FPU_DOUBLE"
9548 {
9549 emit_insn (gen_muldf3_i (operands[0], operands[1], operands[2]));
9550 DONE;
9551 })
9552
9553 (define_insn "muldf3_i"
9554 [(set (match_operand:DF 0 "fp_arith_reg_operand" "=f")
9555 (mult:DF (match_operand:DF 1 "fp_arith_reg_operand" "%0")
9556 (match_operand:DF 2 "fp_arith_reg_operand" "f")))
9557 (clobber (reg:SI FPSCR_STAT_REG))
9558 (use (reg:SI FPSCR_MODES_REG))]
9559 "TARGET_FPU_DOUBLE"
9560 "fmul %2,%0"
9561 [(set_attr "type" "dfp_mul")
9562 (set_attr "fp_mode" "double")])
9563
9564 (define_expand "divdf3"
9565 [(set (match_operand:DF 0 "fp_arith_reg_operand" "")
9566 (div:DF (match_operand:DF 1 "fp_arith_reg_operand" "")
9567 (match_operand:DF 2 "fp_arith_reg_operand" "")))]
9568 "TARGET_FPU_DOUBLE"
9569 {
9570 emit_insn (gen_divdf3_i (operands[0], operands[1], operands[2]));
9571 DONE;
9572 })
9573
9574 (define_insn "divdf3_i"
9575 [(set (match_operand:DF 0 "fp_arith_reg_operand" "=f")
9576 (div:DF (match_operand:DF 1 "fp_arith_reg_operand" "0")
9577 (match_operand:DF 2 "fp_arith_reg_operand" "f")))
9578 (clobber (reg:SI FPSCR_STAT_REG))
9579 (use (reg:SI FPSCR_MODES_REG))]
9580 "TARGET_FPU_DOUBLE"
9581 "fdiv %2,%0"
9582 [(set_attr "type" "dfdiv")
9583 (set_attr "fp_mode" "double")])
9584
9585 (define_expand "floatsidf2"
9586 [(set (match_operand:DF 0 "fp_arith_reg_operand" "")
9587 (float:DF (match_operand:SI 1 "fpul_operand" "")))]
9588 "TARGET_FPU_DOUBLE"
9589 {
9590 emit_insn (gen_floatsidf2_i (operands[0], operands[1]));
9591 DONE;
9592 })
9593
9594 (define_insn "floatsidf2_i"
9595 [(set (match_operand:DF 0 "fp_arith_reg_operand" "=f")
9596 (float:DF (match_operand:SI 1 "fpul_operand" "y")))
9597 (clobber (reg:SI FPSCR_STAT_REG))
9598 (use (reg:SI FPSCR_MODES_REG))]
9599 "TARGET_FPU_DOUBLE"
9600 "float %1,%0"
9601 [(set_attr "type" "dfp_conv")
9602 (set_attr "fp_mode" "double")])
9603
9604 (define_expand "fix_truncdfsi2"
9605 [(set (match_operand:SI 0 "fpul_operand" "")
9606 (fix:SI (match_operand:DF 1 "fp_arith_reg_operand" "")))]
9607 "TARGET_FPU_DOUBLE"
9608 {
9609 emit_insn (gen_fix_truncdfsi2_i (operands[0], operands[1]));
9610 DONE;
9611 })
9612
9613 (define_insn "fix_truncdfsi2_i"
9614 [(set (match_operand:SI 0 "fpul_operand" "=y")
9615 (fix:SI (match_operand:DF 1 "fp_arith_reg_operand" "f")))
9616 (clobber (reg:SI FPSCR_STAT_REG))
9617 (use (reg:SI FPSCR_MODES_REG))]
9618 "TARGET_FPU_DOUBLE"
9619 "ftrc %1,%0"
9620 [(set_attr "type" "dfp_conv")
9621 (set_attr "dfp_comp" "no")
9622 (set_attr "fp_mode" "double")])
9623
9624 (define_insn "cmpgtdf_t"
9625 [(set (reg:SI T_REG)
9626 (gt:SI (match_operand:DF 0 "fp_arith_reg_operand" "f")
9627 (match_operand:DF 1 "fp_arith_reg_operand" "f")))
9628 (clobber (reg:SI FPSCR_STAT_REG))
9629 (use (reg:SI FPSCR_MODES_REG))]
9630 "TARGET_FPU_DOUBLE"
9631 "fcmp/gt %1,%0"
9632 [(set_attr "type" "dfp_cmp")
9633 (set_attr "fp_mode" "double")])
9634
9635 (define_insn "cmpeqdf_t"
9636 [(set (reg:SI T_REG)
9637 (eq:SI (match_operand:DF 0 "fp_arith_reg_operand" "f")
9638 (match_operand:DF 1 "fp_arith_reg_operand" "f")))
9639 (clobber (reg:SI FPSCR_STAT_REG))
9640 (use (reg:SI FPSCR_MODES_REG))]
9641 "TARGET_FPU_DOUBLE"
9642 "fcmp/eq %1,%0"
9643 [(set_attr "type" "dfp_cmp")
9644 (set_attr "fp_mode" "double")])
9645
9646 (define_insn "*ieee_ccmpeqdf_t"
9647 [(set (reg:SI T_REG)
9648 (ior:SI (reg:SI T_REG)
9649 (eq:SI (match_operand:DF 0 "fp_arith_reg_operand" "f")
9650 (match_operand:DF 1 "fp_arith_reg_operand" "f"))))
9651 (clobber (reg:SI FPSCR_STAT_REG))
9652 (use (reg:SI FPSCR_MODES_REG))]
9653 "TARGET_IEEE && TARGET_FPU_DOUBLE"
9654 {
9655 return output_ieee_ccmpeq (insn, operands);
9656 }
9657 [(set_attr "length" "4")
9658 (set_attr "fp_mode" "double")])
9659
9660 (define_expand "cbranchdf4"
9661 [(set (pc)
9662 (if_then_else (match_operator 0 "ordered_comparison_operator"
9663 [(match_operand:DF 1 "arith_operand" "")
9664 (match_operand:DF 2 "arith_operand" "")])
9665 (match_operand 3 "" "")
9666 (pc)))]
9667 "TARGET_FPU_DOUBLE"
9668 {
9669 sh_emit_compare_and_branch (operands, DFmode);
9670 DONE;
9671 })
9672
9673 (define_expand "negdf2"
9674 [(set (match_operand:DF 0 "fp_arith_reg_operand")
9675 (neg:DF (match_operand:DF 1 "fp_arith_reg_operand")))]
9676 "TARGET_FPU_DOUBLE")
9677
9678 (define_insn "*negdf2_i"
9679 [(set (match_operand:DF 0 "fp_arith_reg_operand" "=f")
9680 (neg:DF (match_operand:DF 1 "fp_arith_reg_operand" "0")))]
9681 "TARGET_FPU_DOUBLE"
9682 "fneg %0"
9683 [(set_attr "type" "fmove")])
9684
9685 (define_expand "sqrtdf2"
9686 [(set (match_operand:DF 0 "fp_arith_reg_operand")
9687 (sqrt:DF (match_operand:DF 1 "fp_arith_reg_operand")))]
9688 "TARGET_FPU_DOUBLE"
9689 {
9690 emit_insn (gen_sqrtdf2_i (operands[0], operands[1]));
9691 DONE;
9692 })
9693
9694 (define_insn "sqrtdf2_i"
9695 [(set (match_operand:DF 0 "fp_arith_reg_operand" "=f")
9696 (sqrt:DF (match_operand:DF 1 "fp_arith_reg_operand" "0")))
9697 (clobber (reg:SI FPSCR_STAT_REG))
9698 (use (reg:SI FPSCR_MODES_REG))]
9699 "TARGET_FPU_DOUBLE"
9700 "fsqrt %0"
9701 [(set_attr "type" "dfdiv")
9702 (set_attr "fp_mode" "double")])
9703
9704 (define_expand "absdf2"
9705 [(set (match_operand:DF 0 "fp_arith_reg_operand")
9706 (abs:DF (match_operand:DF 1 "fp_arith_reg_operand")))]
9707 "TARGET_FPU_DOUBLE")
9708
9709 (define_insn "*absdf2_i"
9710 [(set (match_operand:DF 0 "fp_arith_reg_operand" "=f")
9711 (abs:DF (match_operand:DF 1 "fp_arith_reg_operand" "0")))]
9712 "TARGET_FPU_DOUBLE"
9713 "fabs %0"
9714 [(set_attr "type" "fmove")])
9715
9716 (define_expand "extendsfdf2"
9717 [(set (match_operand:DF 0 "fp_arith_reg_operand" "")
9718 (float_extend:DF (match_operand:SF 1 "fpul_operand" "")))]
9719 "TARGET_FPU_DOUBLE"
9720 {
9721 emit_insn (gen_extendsfdf2_i4 (operands[0], operands[1]));
9722 DONE;
9723 })
9724
9725 (define_insn "extendsfdf2_i4"
9726 [(set (match_operand:DF 0 "fp_arith_reg_operand" "=f")
9727 (float_extend:DF (match_operand:SF 1 "fpul_operand" "y")))
9728 (clobber (reg:SI FPSCR_STAT_REG))
9729 (use (reg:SI FPSCR_MODES_REG))]
9730 "TARGET_FPU_DOUBLE"
9731 "fcnvsd %1,%0"
9732 [(set_attr "type" "fp")
9733 (set_attr "fp_mode" "double")])
9734
9735 (define_expand "truncdfsf2"
9736 [(set (match_operand:SF 0 "fpul_operand" "")
9737 (float_truncate:SF (match_operand:DF 1 "fp_arith_reg_operand" "")))]
9738 "TARGET_FPU_DOUBLE"
9739 {
9740 emit_insn (gen_truncdfsf2_i4 (operands[0], operands[1]));
9741 DONE;
9742 })
9743
9744 (define_insn "truncdfsf2_i4"
9745 [(set (match_operand:SF 0 "fpul_operand" "=y")
9746 (float_truncate:SF (match_operand:DF 1 "fp_arith_reg_operand" "f")))
9747 (clobber (reg:SI FPSCR_STAT_REG))
9748 (use (reg:SI FPSCR_MODES_REG))]
9749 "TARGET_FPU_DOUBLE"
9750 "fcnvds %1,%0"
9751 [(set_attr "type" "fp")
9752 (set_attr "fp_mode" "double")])
9753 \f
9754 ;; -------------------------------------------------------------------------
9755 ;; Bit field extract patterns.
9756 ;; -------------------------------------------------------------------------
9757
9758 ;; These give better code for packed bitfields, because they allow
9759 ;; auto-increment addresses to be generated.
9760
9761 (define_expand "insv"
9762 [(set (zero_extract:SI (match_operand:QI 0 "memory_operand" "")
9763 (match_operand:SI 1 "immediate_operand" "")
9764 (match_operand:SI 2 "immediate_operand" ""))
9765 (match_operand:SI 3 "general_operand" ""))]
9766 "TARGET_SH1 && TARGET_BIG_ENDIAN"
9767 {
9768 rtx addr_target, orig_address, shift_reg, qi_val;
9769 HOST_WIDE_INT bitsize, size, v = 0;
9770 rtx x = operands[3];
9771
9772 if (TARGET_SH2A && TARGET_BITOPS
9773 && (satisfies_constraint_Sbw (operands[0])
9774 || satisfies_constraint_Sbv (operands[0]))
9775 && satisfies_constraint_M (operands[1])
9776 && satisfies_constraint_K03 (operands[2]))
9777 {
9778 if (satisfies_constraint_N (operands[3]))
9779 {
9780 emit_insn (gen_bclr_m2a (operands[0], operands[2]));
9781 DONE;
9782 }
9783 else if (satisfies_constraint_M (operands[3]))
9784 {
9785 emit_insn (gen_bset_m2a (operands[0], operands[2]));
9786 DONE;
9787 }
9788 else if ((REG_P (operands[3]) && REGNO (operands[3]) == T_REG)
9789 && satisfies_constraint_M (operands[1]))
9790 {
9791 emit_insn (gen_bst_m2a (operands[0], operands[2]));
9792 DONE;
9793 }
9794 else if (REG_P (operands[3])
9795 && satisfies_constraint_M (operands[1]))
9796 {
9797 emit_insn (gen_bldsi_reg (operands[3], const0_rtx));
9798 emit_insn (gen_bst_m2a (operands[0], operands[2]));
9799 DONE;
9800 }
9801 }
9802 /* ??? expmed doesn't care for non-register predicates. */
9803 if (! memory_operand (operands[0], VOIDmode)
9804 || ! immediate_operand (operands[1], VOIDmode)
9805 || ! immediate_operand (operands[2], VOIDmode)
9806 || ! general_operand (x, VOIDmode))
9807 FAIL;
9808 /* If this isn't a 16 / 24 / 32 bit field, or if
9809 it doesn't start on a byte boundary, then fail. */
9810 bitsize = INTVAL (operands[1]);
9811 if (bitsize < 16 || bitsize > 32 || bitsize % 8 != 0
9812 || (INTVAL (operands[2]) % 8) != 0)
9813 FAIL;
9814
9815 size = bitsize / 8;
9816 orig_address = XEXP (operands[0], 0);
9817 shift_reg = gen_reg_rtx (SImode);
9818 if (CONST_INT_P (x))
9819 {
9820 v = INTVAL (x);
9821 qi_val = force_reg (QImode, GEN_INT (trunc_int_for_mode (v, QImode)));
9822 }
9823 else
9824 {
9825 emit_insn (gen_movsi (shift_reg, operands[3]));
9826 qi_val = gen_rtx_SUBREG (QImode, shift_reg, 3);
9827 }
9828 addr_target = copy_addr_to_reg (plus_constant (Pmode,
9829 orig_address, size - 1));
9830
9831 operands[0] = replace_equiv_address (operands[0], addr_target);
9832 emit_insn (gen_movqi (operands[0], qi_val));
9833
9834 while (size -= 1)
9835 {
9836 if (CONST_INT_P (x))
9837 qi_val
9838 = force_reg (QImode, GEN_INT (trunc_int_for_mode (v >>= 8, QImode)));
9839 else
9840 {
9841 emit_insn (gen_lshrsi3_k (shift_reg, shift_reg, GEN_INT (8)));
9842 qi_val = gen_rtx_SUBREG (QImode, shift_reg, 3);
9843 }
9844 emit_insn (gen_addsi3 (addr_target, addr_target, constm1_rtx));
9845 emit_insn (gen_movqi (operands[0], qi_val));
9846 }
9847
9848 DONE;
9849 })
9850
9851 (define_insn "movua"
9852 [(set (match_operand:SI 0 "register_operand" "=z")
9853 (unspec:SI [(match_operand:BLK 1 "unaligned_load_operand" "Sua>")]
9854 UNSPEC_MOVUA))]
9855 "TARGET_SH4A"
9856 "movua.l %1,%0"
9857 [(set_attr "type" "movua")])
9858
9859 ;; We shouldn't need this, but cse replaces increments with references
9860 ;; to other regs before flow has a chance to create post_inc
9861 ;; addressing modes, and only postreload's cse_move2add brings the
9862 ;; increments back to a usable form.
9863 (define_peephole2
9864 [(set (match_operand:SI 0 "register_operand" "")
9865 (sign_extract:SI (mem:SI (match_operand:SI 1 "register_operand" ""))
9866 (const_int 32) (const_int 0)))
9867 (set (match_dup 1) (plus:SI (match_dup 1) (const_int 4)))]
9868 "TARGET_SH4A && REGNO (operands[0]) != REGNO (operands[1])"
9869 [(set (match_operand:SI 0 "register_operand" "")
9870 (sign_extract:SI (mem:SI (post_inc:SI
9871 (match_operand:SI 1 "register_operand" "")))
9872 (const_int 32) (const_int 0)))]
9873 "")
9874
9875 (define_expand "extv"
9876 [(set (match_operand:SI 0 "register_operand" "")
9877 (sign_extract:SI (match_operand:QI 1 "unaligned_load_operand" "")
9878 (match_operand 2 "const_int_operand" "")
9879 (match_operand 3 "const_int_operand" "")))]
9880 "TARGET_SH4A || TARGET_SH2A"
9881 {
9882 if (TARGET_SH2A && TARGET_BITOPS
9883 && (satisfies_constraint_Sbw (operands[1])
9884 || satisfies_constraint_Sbv (operands[1]))
9885 && satisfies_constraint_M (operands[2])
9886 && satisfies_constraint_K03 (operands[3]))
9887 {
9888 emit_insn (gen_bldsign_m2a (operands[1], operands[3]));
9889 if (REGNO (operands[0]) != T_REG)
9890 emit_insn (gen_movsi (operands[0], gen_rtx_REG (SImode, T_REG)));
9891 DONE;
9892 }
9893 if (TARGET_SH4A
9894 && INTVAL (operands[2]) == 32
9895 && INTVAL (operands[3]) == 0
9896 && MEM_P (operands[1]) && MEM_ALIGN (operands[1]) < 32)
9897 {
9898 rtx src = adjust_address (operands[1], BLKmode, 0);
9899 set_mem_size (src, 4);
9900 emit_insn (gen_movua (operands[0], src));
9901 DONE;
9902 }
9903
9904 FAIL;
9905 })
9906
9907 (define_expand "extzv"
9908 [(set (match_operand:SI 0 "register_operand" "")
9909 (zero_extract:SI (match_operand:QI 1 "unaligned_load_operand" "")
9910 (match_operand 2 "const_int_operand" "")
9911 (match_operand 3 "const_int_operand" "")))]
9912 "TARGET_SH4A || TARGET_SH2A"
9913 {
9914 if (TARGET_SH2A && TARGET_BITOPS
9915 && (satisfies_constraint_Sbw (operands[1])
9916 || satisfies_constraint_Sbv (operands[1]))
9917 && satisfies_constraint_M (operands[2])
9918 && satisfies_constraint_K03 (operands[3]))
9919 {
9920 emit_insn (gen_bld_m2a (operands[1], operands[3]));
9921 if (REGNO (operands[0]) != T_REG)
9922 emit_insn (gen_movsi (operands[0], gen_rtx_REG (SImode, T_REG)));
9923 DONE;
9924 }
9925 if (TARGET_SH4A
9926 && INTVAL (operands[2]) == 32
9927 && INTVAL (operands[3]) == 0
9928 && MEM_P (operands[1]) && MEM_ALIGN (operands[1]) < 32)
9929 {
9930 rtx src = adjust_address (operands[1], BLKmode, 0);
9931 set_mem_size (src, 4);
9932 emit_insn (gen_movua (operands[0], src));
9933 DONE;
9934 }
9935
9936 FAIL;
9937 })
9938
9939 ;; -------------------------------------------------------------------------
9940 ;; Extract negated single bit and zero extend it.
9941 ;; Generally we don't care about the exact xor const_int value, as long
9942 ;; as it contains the extracted bit. For simplicity, the pattern variations
9943 ;; that convert everything into the primary '*neg_zero_extract_0' pattern use
9944 ;; a xor const_int -1 value.
9945
9946 (define_insn_and_split "*neg_zero_extract_0"
9947 [(set (reg:SI T_REG)
9948 (zero_extract:SI (xor:QIHISI (match_operand:QIHISI 0 "arith_reg_operand")
9949 (match_operand 1 "const_int_operand"))
9950 (const_int 1)
9951 (match_operand 2 "const_int_operand")))]
9952 "TARGET_SH1 && can_create_pseudo_p ()
9953 && INTVAL (operands[1]) & (1LL << INTVAL (operands[2]))"
9954 "#"
9955 "&& 1"
9956 [(set (reg:SI T_REG) (eq:SI (and:SI (match_dup 0) (match_dup 2))
9957 (const_int 0)))]
9958 {
9959 if (INTVAL (operands[2]) == 31 && <MODE>mode == SImode)
9960 {
9961 /* Use cmp/pz to extract bit 31 into the T bit. */
9962 emit_insn (gen_cmpgesi_t (operands[0], const0_rtx));
9963 DONE;
9964 }
9965
9966 operands[2] = GEN_INT ((1 << INTVAL (operands[2])));
9967 if (GET_MODE (operands[0]) != SImode)
9968 operands[0] = simplify_gen_subreg (SImode, operands[0], <MODE>mode, 0);
9969 })
9970
9971 (define_insn_and_split "*neg_zero_extract_1"
9972 [(set (reg:SI T_REG)
9973 (and:SI (not:SI (match_operand:SI 0 "arith_reg_operand"))
9974 (const_int 1)))]
9975 "TARGET_SH1"
9976 "#"
9977 "&& 1"
9978 [(set (reg:SI T_REG) (zero_extract:SI (xor:SI (match_dup 0) (const_int -1))
9979 (const_int 1) (const_int 0)))])
9980
9981 ;; x & (1 << n) == 0: 0x00000000 + 1 = 1
9982 ;; x & (1 << n) != 0: 0xFFFFFFFF + 1 = 0
9983 (define_insn_and_split "*neg_zero_extract_2"
9984 [(set (reg:SI T_REG)
9985 (plus:SI (sign_extract:SI (match_operand:QIHISI 0 "arith_reg_operand")
9986 (const_int 1)
9987 (match_operand 1 "const_int_operand"))
9988 (const_int 1)))]
9989 "TARGET_SH1 && can_create_pseudo_p ()"
9990 "#"
9991 "&& 1"
9992 [(set (reg:SI T_REG) (zero_extract:SI (xor:SI (match_dup 0) (const_int -1))
9993 (const_int 1) (match_dup 1)))])
9994
9995 ;; (signed)x >> 31 + 1 = (x >= 0) ^ 1
9996 (define_insn_and_split "*neg_zero_extract_3"
9997 [(set (reg:SI T_REG)
9998 (plus:SI (ashiftrt:SI (match_operand:SI 0 "arith_reg_operand")
9999 (const_int 31))
10000 (const_int 1)))]
10001 "TARGET_SH1 && can_create_pseudo_p ()"
10002 "#"
10003 "&& 1"
10004 [(set (reg:SI T_REG) (zero_extract:SI (xor:SI (match_dup 0) (const_int -1))
10005 (const_int 1) (const_int 31)))])
10006
10007 ;; This is required for some bit patterns of DImode subregs.
10008 ;; It looks like combine gets confused by the DImode right shift and fails
10009 ;; to simplify things.
10010 (define_insn_and_split "*neg_zero_extract_4"
10011 [(set (reg:SI T_REG)
10012 (and:SI (and:SI
10013 (lshiftrt:SI (xor:SI (match_operand:SI 0 "arith_reg_operand")
10014 (match_operand 1 "const_int_operand"))
10015 (match_operand 2 "const_int_operand"))
10016 (not:SI (ashift:SI (match_operand:SI 3 "arith_reg_operand")
10017 (match_operand 4 "const_int_operand"))))
10018 (const_int 1)))]
10019 "TARGET_SH1 && can_create_pseudo_p ()
10020 && INTVAL (operands[4]) > 0
10021 && INTVAL (operands[1]) & (1LL << INTVAL (operands[2]))"
10022 "#"
10023 "&& 1"
10024 [(set (reg:SI T_REG) (zero_extract:SI (xor:SI (match_dup 0) (match_dup 1))
10025 (const_int 1) (match_dup 2)))])
10026
10027 (define_insn_and_split "*neg_zero_extract_5"
10028 [(set (reg:SI T_REG)
10029 (and:SI (not:SI (subreg:SI
10030 (lshiftrt:DI (match_operand:DI 0 "arith_reg_operand")
10031 (match_operand 1 "const_int_operand"))
10032 0))
10033 (const_int 1)))]
10034 "TARGET_SH1 && TARGET_LITTLE_ENDIAN && can_create_pseudo_p ()
10035 && INTVAL (operands[1]) < 32"
10036 "#"
10037 "&& 1"
10038 [(set (reg:SI T_REG) (zero_extract:SI (xor:SI (match_dup 0) (const_int -1))
10039 (const_int 1) (match_dup 1)))]
10040 {
10041 operands[0] = gen_lowpart (SImode, operands[0]);
10042 })
10043
10044 (define_insn_and_split "*neg_zero_extract_6"
10045 [(set (reg:SI T_REG)
10046 (and:SI (not:SI (subreg:SI
10047 (lshiftrt:DI (match_operand:DI 0 "arith_reg_operand")
10048 (match_operand 1 "const_int_operand"))
10049 4))
10050 (const_int 1)))]
10051 "TARGET_SH1 && TARGET_BIG_ENDIAN && can_create_pseudo_p ()
10052 && INTVAL (operands[1]) < 32"
10053 "#"
10054 "&& 1"
10055 [(set (reg:SI T_REG) (zero_extract:SI (xor:SI (match_dup 0) (const_int -1))
10056 (const_int 1) (match_dup 1)))]
10057 {
10058 operands[0] = gen_lowpart (SImode, operands[0]);
10059 })
10060
10061 ;; -------------------------------------------------------------------------
10062 ;; Extract single bit and zero extend it.
10063 ;; All patterns store the result bit in the T bit, although that is not
10064 ;; always possible to do with a single insn and a nott must be appended.
10065 ;; The trailing nott will be optimized away in most cases. E.g. if the
10066 ;; extracted bit is fed into a branch condition, the condition can be
10067 ;; inverted and the nott will be eliminated.
10068 ;; FIXME: In cases where the trailing nott can't be eliminated, try to
10069 ;; convert it into a (not, tst) sequence, which could be better on non-SH2A.
10070
10071 ;; On SH2A the 'bld<mode>_reg' insn will be used if the bit position fits.
10072 (define_insn_and_split "*zero_extract_0"
10073 [(set (reg:SI T_REG)
10074 (zero_extract:SI (match_operand:QIHISI 0 "arith_reg_operand")
10075 (const_int 1)
10076 (match_operand 1 "const_int_operand")))]
10077 "TARGET_SH1 && can_create_pseudo_p ()
10078 && !(TARGET_SH2A && satisfies_constraint_K03 (operands[1]))"
10079 "#"
10080 "&& 1"
10081 [(set (reg:SI T_REG) (eq:SI (and:SI (match_dup 0) (match_dup 1))
10082 (const_int 0)))
10083 (set (reg:SI T_REG) (xor:SI (reg:SI T_REG) (const_int 1)))]
10084 {
10085 if (INTVAL (operands[1]) == 31 && <MODE>mode == SImode)
10086 {
10087 emit_insn (gen_shll (gen_reg_rtx (SImode), operands[0]));
10088 DONE;
10089 }
10090
10091 operands[1] = GEN_INT (1 << INTVAL (operands[1]));
10092 if (GET_MODE (operands[0]) != SImode)
10093 operands[0] = simplify_gen_subreg (SImode, operands[0], <MODE>mode, 0);
10094 })
10095
10096 ;; This is required for some bit patterns of DImode subregs.
10097 ;; It looks like combine gets confused by the DImode right shift and fails
10098 ;; to simplify things.
10099 (define_insn_and_split "*zero_extract_1"
10100 [(set (reg:SI T_REG)
10101 (subreg:SI (zero_extract:DI (match_operand:SI 0 "arith_reg_operand")
10102 (const_int 1)
10103 (match_operand 1 "const_int_operand"))
10104 0))]
10105 "TARGET_SH1 && TARGET_LITTLE_ENDIAN && can_create_pseudo_p ()
10106 && INTVAL (operands[1]) < 32"
10107 "#"
10108 "&& 1"
10109 [(set (reg:SI T_REG)
10110 (zero_extract:SI (match_dup 0) (const_int 1) (match_dup 1)))])
10111
10112 (define_insn_and_split "*zero_extract_2"
10113 [(set (reg:SI T_REG)
10114 (subreg:SI (zero_extract:DI (match_operand:SI 0 "arith_reg_operand")
10115 (const_int 1)
10116 (match_operand 1 "const_int_operand"))
10117 4))]
10118 "TARGET_SH1 && TARGET_BIG_ENDIAN && can_create_pseudo_p ()
10119 && INTVAL (operands[1]) < 32"
10120 "#"
10121 "&& 1"
10122 [(set (reg:SI T_REG)
10123 (zero_extract:SI (match_dup 0) (const_int 1) (match_dup 1)))])
10124
10125 (define_insn_and_split "*zero_extract_3"
10126 [(set (match_operand:SI 0 "arith_reg_dest")
10127 (and:SI (lshiftrt:SI (match_operand:SI 1 "arith_reg_operand")
10128 (match_operand 2 "const_int_operand"))
10129 (match_operand 3 "const_int_operand")))
10130 (clobber (reg:SI T_REG))]
10131 "TARGET_SH1 && can_create_pseudo_p ()
10132 && exact_log2 (INTVAL (operands[3])) >= 0"
10133 "#"
10134 "&& 1"
10135 [(const_int 0)]
10136 {
10137 int rshift = INTVAL (operands[2]);
10138 int lshift = exact_log2 (INTVAL (operands[3]));
10139
10140 rtx tmp = gen_reg_rtx (SImode);
10141 emit_insn (gen_rtx_PARALLEL (VOIDmode,
10142 gen_rtvec (2,
10143 gen_rtx_SET (tmp,
10144 gen_rtx_ZERO_EXTRACT (SImode, operands[1], const1_rtx,
10145 GEN_INT (rshift + lshift))),
10146 gen_rtx_CLOBBER (VOIDmode, get_t_reg_rtx ()))));
10147 emit_insn (gen_ashlsi3 (operands[0], tmp, GEN_INT (lshift)));
10148 })
10149
10150 ;; -------------------------------------------------------------------------
10151 ;; SH2A instructions for bitwise operations.
10152 ;; FIXME: Convert multiple instruction insns to insn_and_split.
10153 ;; FIXME: Use iterators to fold at least and,xor,or insn variations.
10154
10155 ;; Clear a bit in a memory location.
10156 (define_insn "bclr_m2a"
10157 [(set (match_operand:QI 0 "bitwise_memory_operand" "+Sbw,Sbv")
10158 (and:QI
10159 (not:QI (ashift:QI (const_int 1)
10160 (match_operand:QI 1 "const_int_operand" "K03,K03")))
10161 (match_dup 0)))]
10162 "TARGET_SH2A && TARGET_BITOPS && satisfies_constraint_K03 (operands[1])"
10163 "@
10164 bclr.b %1,%0
10165 bclr.b %1,@(0,%t0)"
10166 [(set_attr "length" "4,4")])
10167
10168 (define_insn "bclrmem_m2a"
10169 [(set (match_operand:QI 0 "bitwise_memory_operand" "+Sbw,Sbv")
10170 (and:QI (match_dup 0)
10171 (match_operand:QI 1 "const_int_operand" "Psz,Psz")))]
10172 "TARGET_SH2A && satisfies_constraint_Psz (operands[1]) && TARGET_BITOPS"
10173 "@
10174 bclr.b %W1,%0
10175 bclr.b %W1,@(0,%t0)"
10176 [(set_attr "length" "4,4")])
10177
10178 ;; Set a bit in a memory location.
10179 (define_insn "bset_m2a"
10180 [(set (match_operand:QI 0 "bitwise_memory_operand" "+Sbw,Sbv")
10181 (ior:QI
10182 (ashift:QI (const_int 1)
10183 (match_operand:QI 1 "const_int_operand" "K03,K03"))
10184 (match_dup 0)))]
10185 "TARGET_SH2A && TARGET_BITOPS && satisfies_constraint_K03 (operands[1])"
10186 "@
10187 bset.b %1,%0
10188 bset.b %1,@(0,%t0)"
10189 [(set_attr "length" "4,4")])
10190
10191 (define_insn "bsetmem_m2a"
10192 [(set (match_operand:QI 0 "bitwise_memory_operand" "+Sbw,Sbv")
10193 (ior:QI (match_dup 0)
10194 (match_operand:QI 1 "const_int_operand" "Pso,Pso")))]
10195 "TARGET_SH2A && satisfies_constraint_Pso (operands[1]) && TARGET_BITOPS"
10196 "@
10197 bset.b %V1,%0
10198 bset.b %V1,@(0,%t0)"
10199 [(set_attr "length" "4,4")])
10200
10201 ;;; Transfer the contents of the T bit to a specified bit of memory.
10202 (define_insn "bst_m2a"
10203 [(set (match_operand:QI 0 "bitwise_memory_operand" "+Sbw,m")
10204 (if_then_else (eq (reg:SI T_REG) (const_int 0))
10205 (and:QI
10206 (not:QI (ashift:QI (const_int 1)
10207 (match_operand:QI 1 "const_int_operand" "K03,K03")))
10208 (match_dup 0))
10209 (ior:QI
10210 (ashift:QI (const_int 1) (match_dup 1))
10211 (match_dup 0))))]
10212 "TARGET_SH2A && TARGET_BITOPS && satisfies_constraint_K03 (operands[1])"
10213 "@
10214 bst.b %1,%0
10215 bst.b %1,@(0,%t0)"
10216 [(set_attr "length" "4")])
10217
10218 ;; Store a specified bit of memory in the T bit.
10219 (define_insn "bld_m2a"
10220 [(set (reg:SI T_REG)
10221 (zero_extract:SI
10222 (match_operand:QI 0 "bitwise_memory_operand" "Sbw,Sbv")
10223 (const_int 1)
10224 (match_operand 1 "const_int_operand" "K03,K03")))]
10225 "TARGET_SH2A && TARGET_BITOPS && satisfies_constraint_K03 (operands[1])"
10226 "@
10227 bld.b %1,%0
10228 bld.b %1,@(0,%t0)"
10229 [(set_attr "length" "4,4")])
10230
10231 ;; Store a specified bit of memory in the T bit.
10232 (define_insn "bldsign_m2a"
10233 [(set (reg:SI T_REG)
10234 (sign_extract:SI
10235 (match_operand:QI 0 "bitwise_memory_operand" "Sbw,m")
10236 (const_int 1)
10237 (match_operand 1 "const_int_operand" "K03,K03")))]
10238 "TARGET_SH2A && TARGET_BITOPS && satisfies_constraint_K03 (operands[1])"
10239 "@
10240 bld.b %1,%0
10241 bld.b %1,@(0,%t0)"
10242 [(set_attr "length" "4,4")])
10243
10244 ;; Store a specified bit of the LSB 8 bits of a register in the T bit.
10245 (define_insn "bld<mode>_reg"
10246 [(set (reg:SI T_REG)
10247 (zero_extract:SI (match_operand:QIHISI 0 "arith_reg_operand" "r")
10248 (const_int 1)
10249 (match_operand 1 "const_int_operand" "K03")))]
10250 "TARGET_SH2A && satisfies_constraint_K03 (operands[1])"
10251 "bld %1,%0")
10252
10253 ;; Take logical and of a specified bit of memory with the T bit and
10254 ;; store its result in the T bit.
10255 (define_insn "band_m2a"
10256 [(set (reg:SI T_REG)
10257 (and:SI (reg:SI T_REG)
10258 (zero_extract:SI
10259 (match_operand:QI 0 "bitwise_memory_operand" "Sbw,m")
10260 (const_int 1)
10261 (match_operand 1 "const_int_operand" "K03,K03"))))]
10262 "TARGET_SH2A && TARGET_BITOPS && satisfies_constraint_K03 (operands[1])"
10263 "@
10264 band.b %1,%0
10265 band.b %1,@(0,%t0)"
10266 [(set_attr "length" "4,4")])
10267
10268 (define_insn "bandreg_m2a"
10269 [(set (match_operand:SI 0 "register_operand" "=r,r")
10270 (and:SI (zero_extract:SI
10271 (match_operand:QI 1 "bitwise_memory_operand" "Sbw,Sbv")
10272 (const_int 1)
10273 (match_operand 2 "const_int_operand" "K03,K03"))
10274 (match_operand:SI 3 "register_operand" "r,r")))]
10275 "TARGET_SH2A && TARGET_BITOPS && satisfies_constraint_K03 (operands[2])"
10276 {
10277 static const char* alt[] =
10278 {
10279 "band.b %2,%1" "\n"
10280 " movt %0",
10281
10282 "band.b %2,@(0,%t1)" "\n"
10283 " movt %0"
10284 };
10285 return alt[which_alternative];
10286 }
10287 [(set_attr "length" "6,6")])
10288
10289 ;; Take logical or of a specified bit of memory with the T bit and
10290 ;; store its result in the T bit.
10291 (define_insn "bor_m2a"
10292 [(set (reg:SI T_REG)
10293 (ior:SI (reg:SI T_REG)
10294 (zero_extract:SI
10295 (match_operand:QI 0 "bitwise_memory_operand" "Sbw,m")
10296 (const_int 1)
10297 (match_operand 1 "const_int_operand" "K03,K03"))))]
10298 "TARGET_SH2A && TARGET_BITOPS && satisfies_constraint_K03 (operands[1])"
10299 "@
10300 bor.b %1,%0
10301 bor.b %1,@(0,%t0)"
10302 [(set_attr "length" "4,4")])
10303
10304 (define_insn "borreg_m2a"
10305 [(set (match_operand:SI 0 "register_operand" "=r,r")
10306 (ior:SI (zero_extract:SI
10307 (match_operand:QI 1 "bitwise_memory_operand" "Sbw,Sbv")
10308 (const_int 1)
10309 (match_operand 2 "const_int_operand" "K03,K03"))
10310 (match_operand:SI 3 "register_operand" "=r,r")))]
10311 "TARGET_SH2A && TARGET_BITOPS && satisfies_constraint_K03 (operands[2])"
10312 {
10313 static const char* alt[] =
10314 {
10315 "bor.b %2,%1" "\n"
10316 " movt %0",
10317
10318 "bor.b %2,@(0,%t1)" "\n"
10319 " movt %0"
10320 };
10321 return alt[which_alternative];
10322 }
10323 [(set_attr "length" "6,6")])
10324
10325 ;; Take exclusive or of a specified bit of memory with the T bit and
10326 ;; store its result in the T bit.
10327 (define_insn "bxor_m2a"
10328 [(set (reg:SI T_REG)
10329 (xor:SI (reg:SI T_REG)
10330 (zero_extract:SI
10331 (match_operand:QI 0 "bitwise_memory_operand" "Sbw,m")
10332 (const_int 1)
10333 (match_operand 1 "const_int_operand" "K03,K03"))))]
10334 "TARGET_SH2A && TARGET_BITOPS && satisfies_constraint_K03 (operands[1])"
10335 "@
10336 bxor.b %1,%0
10337 bxor.b %1,@(0,%t0)"
10338 [(set_attr "length" "4,4")])
10339
10340 (define_insn "bxorreg_m2a"
10341 [(set (match_operand:SI 0 "register_operand" "=r,r")
10342 (xor:SI (zero_extract:SI
10343 (match_operand:QI 1 "bitwise_memory_operand" "Sbw,Sbv")
10344 (const_int 1)
10345 (match_operand 2 "const_int_operand" "K03,K03"))
10346 (match_operand:SI 3 "register_operand" "=r,r")))]
10347 "TARGET_SH2A && TARGET_BITOPS && satisfies_constraint_K03 (operands[2])"
10348 {
10349 static const char* alt[] =
10350 {
10351 "bxor.b %2,%1" "\n"
10352 " movt %0",
10353
10354 "bxor.b %2,@(0,%t1)" "\n"
10355 " movt %0"
10356 };
10357 return alt[which_alternative];
10358 }
10359 [(set_attr "length" "6,6")])
10360 \f
10361 ;; -------------------------------------------------------------------------
10362 ;; Peepholes
10363 ;; -------------------------------------------------------------------------
10364 ;; This matches cases where the bit in a memory location is set.
10365 (define_peephole2
10366 [(set (match_operand:SI 0 "register_operand")
10367 (sign_extend:SI (match_operand:QI 1 "bitwise_memory_operand")))
10368 (set (match_dup 0)
10369 (ior:SI (match_dup 0)
10370 (match_operand:SI 2 "const_int_operand")))
10371 (set (match_dup 1)
10372 (match_operand 3 "arith_reg_operand"))]
10373 "TARGET_SH2A && TARGET_BITOPS
10374 && satisfies_constraint_Pso (operands[2])
10375 && REGNO (operands[0]) == REGNO (operands[3])"
10376 [(set (match_dup 1)
10377 (ior:QI (match_dup 1) (match_dup 2)))]
10378 "")
10379
10380 ;; This matches cases where the bit in a memory location is cleared.
10381 (define_peephole2
10382 [(set (match_operand:SI 0 "register_operand")
10383 (sign_extend:SI (match_operand:QI 1 "bitwise_memory_operand")))
10384 (set (match_dup 0)
10385 (and:SI (match_dup 0)
10386 (match_operand:SI 2 "const_int_operand")))
10387 (set (match_dup 1)
10388 (match_operand 3 "arith_reg_operand"))]
10389 "TARGET_SH2A && TARGET_BITOPS
10390 && satisfies_constraint_Psz (operands[2])
10391 && REGNO (operands[0]) == REGNO (operands[3])"
10392 [(set (match_dup 1)
10393 (and:QI (match_dup 1) (match_dup 2)))]
10394 "")
10395
10396 ;; This matches cases where a stack pointer increment at the start of the
10397 ;; epilogue combines with a stack slot read loading the return value.
10398 (define_peephole
10399 [(set (match_operand:SI 0 "arith_reg_operand" "")
10400 (mem:SI (match_operand:SI 1 "arith_reg_operand" "")))
10401 (set (match_dup 1) (plus:SI (match_dup 1) (const_int 4)))]
10402 "TARGET_SH1 && REGNO (operands[1]) != REGNO (operands[0])"
10403 "mov.l @%1+,%0")
10404
10405 ;; See the comment on the dt combiner pattern above.
10406 (define_peephole
10407 [(set (match_operand:SI 0 "arith_reg_operand" "=r")
10408 (plus:SI (match_dup 0)
10409 (const_int -1)))
10410 (set (reg:SI T_REG)
10411 (eq:SI (match_dup 0) (const_int 0)))]
10412 "TARGET_SH2"
10413 "dt %0")
10414
10415 ;; The following peepholes fold load sequences for which reload was not
10416 ;; able to generate a displacement addressing move insn.
10417 ;; This can happen when reload has to transform a move insn
10418 ;; without displacement into one with displacement. Or when reload can't
10419 ;; fit a displacement into the insn's constraints. In the latter case, the
10420 ;; load destination reg remains at r0, which reload compensates by inserting
10421 ;; another mov insn.
10422
10423 ;; Fold sequence:
10424 ;; mov #54,r0
10425 ;; mov.{b,w} @(r0,r15),r0
10426 ;; mov r0,r3
10427 ;; into:
10428 ;; mov.{b,w} @(54,r15),r3
10429 ;;
10430 (define_peephole2
10431 [(set (match_operand:SI 0 "arith_reg_dest" "")
10432 (match_operand:SI 1 "const_int_operand" ""))
10433 (set (match_operand:SI 2 "arith_reg_dest" "")
10434 (sign_extend:SI
10435 (mem:QI (plus:SI (match_dup 0)
10436 (match_operand:SI 3 "arith_reg_operand" "")))))
10437 (set (match_operand:QI 4 "arith_reg_dest" "")
10438 (match_operand:QI 5 "arith_reg_operand" ""))]
10439 "TARGET_SH2A
10440 && sh_legitimate_index_p (QImode, operands[1], true, true)
10441 && REGNO (operands[2]) == REGNO (operands[5])
10442 && peep2_reg_dead_p (3, operands[5])"
10443 [(set (match_dup 4) (mem:QI (plus:SI (match_dup 3) (match_dup 1))))]
10444 "")
10445
10446 (define_peephole2
10447 [(set (match_operand:SI 0 "arith_reg_dest" "")
10448 (match_operand:SI 1 "const_int_operand" ""))
10449 (set (match_operand:SI 2 "arith_reg_dest" "")
10450 (sign_extend:SI
10451 (mem:HI (plus:SI (match_dup 0)
10452 (match_operand:SI 3 "arith_reg_operand" "")))))
10453 (set (match_operand:HI 4 "arith_reg_dest" "")
10454 (match_operand:HI 5 "arith_reg_operand" ""))]
10455 "TARGET_SH2A
10456 && sh_legitimate_index_p (HImode, operands[1], true, true)
10457 && REGNO (operands[2]) == REGNO (operands[5])
10458 && peep2_reg_dead_p (3, operands[5])"
10459 [(set (match_dup 4) (mem:HI (plus:SI (match_dup 3) (match_dup 1))))]
10460 "")
10461
10462 ;; Fold sequence:
10463 ;; mov #54,r0
10464 ;; mov.{b,w} @(r0,r15),r1
10465 ;; into:
10466 ;; mov.{b,w} @(54,r15),r1
10467 ;;
10468 (define_peephole2
10469 [(set (match_operand:SI 0 "arith_reg_dest" "")
10470 (match_operand:SI 1 "const_int_operand" ""))
10471 (set (match_operand:SI 2 "arith_reg_dest" "")
10472 (sign_extend:SI
10473 (mem:QI (plus:SI (match_dup 0)
10474 (match_operand:SI 3 "arith_reg_operand" "")))))]
10475 "TARGET_SH2A
10476 && sh_legitimate_index_p (QImode, operands[1], true, true)
10477 && (peep2_reg_dead_p (2, operands[0])
10478 || REGNO (operands[0]) == REGNO (operands[2]))"
10479 [(set (match_dup 2)
10480 (sign_extend:SI (mem:QI (plus:SI (match_dup 3) (match_dup 1)))))]
10481 "")
10482
10483 (define_peephole2
10484 [(set (match_operand:SI 0 "arith_reg_dest" "")
10485 (match_operand:SI 1 "const_int_operand" ""))
10486 (set (match_operand:SI 2 "arith_reg_dest" "")
10487 (sign_extend:SI
10488 (mem:HI (plus:SI (match_dup 0)
10489 (match_operand:SI 3 "arith_reg_operand" "")))))]
10490 "TARGET_SH2A
10491 && sh_legitimate_index_p (HImode, operands[1], true, true)
10492 && (peep2_reg_dead_p (2, operands[0])
10493 || REGNO (operands[0]) == REGNO (operands[2]))"
10494 [(set (match_dup 2)
10495 (sign_extend:SI (mem:HI (plus:SI (match_dup 3) (match_dup 1)))))]
10496 "")
10497
10498 ;; Fold sequence:
10499 ;; mov.{b,w} @(r0,r15),r0
10500 ;; mov r0,r3
10501 ;; into:
10502 ;; mov.{b,w} @(r0,r15),r3
10503 ;;
10504 ;; This can happen when initially a displacement address is picked, where
10505 ;; the destination reg is fixed to r0, and then the address is transformed
10506 ;; into 'r0 + reg'.
10507 (define_peephole2
10508 [(set (match_operand:SI 0 "arith_reg_dest" "")
10509 (sign_extend:SI
10510 (mem:QI (plus:SI (match_operand:SI 1 "arith_reg_operand" "")
10511 (match_operand:SI 2 "arith_reg_operand" "")))))
10512 (set (match_operand:QI 3 "arith_reg_dest" "")
10513 (match_operand:QI 4 "arith_reg_operand" ""))]
10514 "TARGET_SH1
10515 && REGNO (operands[0]) == REGNO (operands[4])
10516 && peep2_reg_dead_p (2, operands[0])"
10517 [(set (match_dup 3)
10518 (mem:QI (plus:SI (match_dup 1) (match_dup 2))))]
10519 "")
10520
10521 (define_peephole2
10522 [(set (match_operand:SI 0 "arith_reg_dest" "")
10523 (sign_extend:SI
10524 (mem:HI (plus:SI (match_operand:SI 1 "arith_reg_operand" "")
10525 (match_operand:SI 2 "arith_reg_operand" "")))))
10526 (set (match_operand:HI 3 "arith_reg_dest" "")
10527 (match_operand:HI 4 "arith_reg_operand" ""))]
10528 "TARGET_SH1
10529 && REGNO (operands[0]) == REGNO (operands[4])
10530 && peep2_reg_dead_p (2, operands[0])"
10531 [(set (match_dup 3)
10532 (mem:HI (plus:SI (match_dup 1) (match_dup 2))))]
10533 "")
10534
10535 ;; extu.bw a,b
10536 ;; mov b,c -> extu.bw a,c
10537 (define_peephole2
10538 [(set (match_operand:SI 0 "arith_reg_dest")
10539 (zero_extend:SI (match_operand:QIHI 1 "arith_reg_operand")))
10540 (set (match_operand:SI 2 "arith_reg_dest")
10541 (match_dup 0))]
10542 "TARGET_SH1 && peep2_reg_dead_p (2, operands[0])"
10543 [(set (match_dup 2) (zero_extend:SI (match_dup 1)))])
10544
10545 ;; mov r0,r1
10546 ;; extu.bw r1,r1 -> extu.bw r0,r1
10547 (define_peephole2
10548 [(set (match_operand 0 "arith_reg_dest")
10549 (match_operand 1 "arith_reg_operand"))
10550 (set (match_operand:SI 2 "arith_reg_dest")
10551 (zero_extend:SI (match_operand:QIHI 3 "arith_reg_operand")))]
10552 "TARGET_SH1
10553 && REGNO (operands[0]) == REGNO (operands[3])
10554 && (REGNO (operands[0]) == REGNO (operands[2])
10555 || peep2_reg_dead_p (2, operands[0]))"
10556 [(set (match_dup 2) (zero_extend:SI (match_dup 1)))]
10557 {
10558 operands[1] = gen_rtx_REG (<MODE>mode, REGNO (operands[1]));
10559 })
10560
10561 ;; mov a,b
10562 ;; mov b,a -> < nop >
10563 (define_peephole2
10564 [(set (match_operand 0 "register_operand")
10565 (match_operand 1 "register_operand"))
10566 (set (match_operand 2 "register_operand")
10567 (match_operand 3 "register_operand"))]
10568 "TARGET_SH1
10569 && REGNO (operands[0]) == REGNO (operands[3])
10570 && REGNO (operands[1]) == REGNO (operands[2])
10571 && peep2_reg_dead_p (2, operands[3])"
10572 [(const_int 0)])
10573
10574 ;; mov #3,r4
10575 ;; and r4,r1 -> mov r1,r0
10576 ;; mov r1,r0 and #3,r0
10577 (define_code_iterator ANDIORXOR [and ior xor])
10578 (define_peephole2
10579 [(set (match_operand:SI 0 "register_operand")
10580 (match_operand:SI 1 "const_logical_operand"))
10581 (set (match_operand:SI 2) (ANDIORXOR:SI (match_dup 2) (match_dup 0)))
10582 (set (reg:SI R0_REG) (match_dup 2))]
10583 "TARGET_SH1
10584 && peep2_reg_dead_p (3, operands[0]) && peep2_reg_dead_p (3, operands[2])"
10585 [(set (reg:SI R0_REG) (match_dup 2))
10586 (set (reg:SI R0_REG) (ANDIORXOR:SI (reg:SI R0_REG) (match_dup 1)))])
10587
10588 ;; ... r2,r0 ... r2,r0
10589 ;; or r1,r0 -> or r0,r1
10590 ;; mov r0,r1
10591 ;; (r0 dead)
10592 (define_code_iterator ANDIORXORPLUS [and ior xor plus])
10593 (define_peephole2
10594 [(set (match_operand:SI 0 "arith_reg_dest")
10595 (ANDIORXORPLUS:SI (match_dup 0) (match_operand:SI 1 "arith_reg_dest")))
10596 (set (match_dup 1) (match_dup 0))]
10597 "TARGET_SH1 && peep2_reg_dead_p (2, operands[0])"
10598 [(set (match_dup 1) (ANDIORXORPLUS:SI (match_dup 1) (match_dup 0)))])
10599
10600 ;; mov r12,r0
10601 ;; add #-48,r0 -> add #-48,r12
10602 ;; mov.l r0,@(4,r10) mov.l r12,@(4,r10)
10603 ;; (r12 dead)
10604 (define_peephole2
10605 [(set (match_operand:SI 0 "arith_reg_dest")
10606 (match_operand:SI 1 "arith_reg_dest"))
10607 (set (match_dup 0) (plus:SI (match_dup 0)
10608 (match_operand:SI 2 "const_int_operand")))
10609 (set (match_operand:SI 3 "general_movdst_operand") (match_dup 0))]
10610 "TARGET_SH1
10611 && peep2_reg_dead_p (2, operands[1]) && peep2_reg_dead_p (3, operands[0])"
10612 [(const_int 0)]
10613 {
10614 emit_insn (gen_addsi3 (operands[1], operands[1], operands[2]));
10615 sh_peephole_emit_move_insn (operands[3], operands[1]);
10616 })
10617
10618 ;; mov.l @(r0,r9),r1
10619 ;; mov r1,r0 -> mov @(r0,r9),r0
10620 (define_peephole2
10621 [(set (match_operand:SI 0 "arith_reg_dest")
10622 (match_operand:SI 1 "general_movsrc_operand"))
10623 (set (match_operand:SI 2 "arith_reg_dest")
10624 (match_dup 0))]
10625 "TARGET_SH1 && peep2_reg_dead_p (2, operands[0])"
10626 [(const_int 0)]
10627 {
10628 sh_peephole_emit_move_insn (operands[2], operands[1]);
10629 })
10630
10631 (define_peephole2
10632 [(set (match_operand:QIHI 0 "register_operand")
10633 (match_operand:QIHI 1 "movsrc_no_disp_mem_operand"))
10634 (set (match_operand:QIHI 2 "register_operand")
10635 (match_dup 0))]
10636 "TARGET_SH1 && peep2_reg_dead_p (2, operands[0])"
10637 [(const_int 0)]
10638 {
10639 sh_peephole_emit_move_insn (operands[2], operands[1]);
10640 })
10641
10642 (define_peephole2
10643 [(set (match_operand:SI 0 "arith_reg_dest")
10644 (sign_extend:SI (match_operand:QIHI 1 "movsrc_no_disp_mem_operand")))
10645 (set (match_operand:SI 2 "arith_reg_dest")
10646 (match_dup 0))]
10647 "TARGET_SH1 && peep2_reg_dead_p (2, operands[0])"
10648 [(const_int 0)]
10649 {
10650 sh_check_add_incdec_notes (emit_insn (gen_extend<mode>si2 (operands[2],
10651 sh_remove_overlapping_post_inc (operands[2], operands[1]))));
10652 })
10653
10654 ;; mov.w @(18,r1),r0 (r0 = HImode)
10655 ;; mov r0,r1 (r0 = r1 = HImode) mov.w @(18,r1),r0
10656 ;; ... ..,r13 (r13 = SImode) -> ... ..,r13
10657 ;; tst r1,r13 tst r0,r13
10658 (define_peephole2
10659 [(set (match_operand 0 "arith_reg_dest")
10660 (match_operand 1 "arith_reg_dest"))
10661 (set (match_operand:SI 2 "arith_reg_dest")
10662 (match_operand:SI 3))
10663 (set (reg:SI T_REG)
10664 (eq:SI (and:SI (match_operand:SI 4 "arith_reg_operand")
10665 (match_operand:SI 5 "arith_reg_operand"))
10666 (const_int 0)))]
10667 "TARGET_SH1
10668 && peep2_reg_dead_p (3, operands[0])
10669 && !reg_overlap_mentioned_p (operands[0], operands[3])
10670 && (REGNO (operands[0]) == REGNO (operands[4])
10671 || REGNO (operands[0]) == REGNO (operands[5]))
10672 && (REGNO (operands[2]) == REGNO (operands[4])
10673 || REGNO (operands[2]) == REGNO (operands[5]))"
10674 [(const_int 0)]
10675 {
10676 if (REGNO (operands[1]) == REGNO (operands[2]))
10677 operands[2] = gen_rtx_REG (SImode, REGNO (operands[0]));
10678
10679 // We don't know what the new set insn will be in detail. Just make sure
10680 // that it still can be recognized and the constraints are satisfied.
10681 rtx_insn* i = emit_insn (gen_rtx_SET (operands[2],
10682 sh_remove_overlapping_post_inc (operands[2], operands[3])));
10683
10684 recog_data_d prev_recog_data = recog_data;
10685 bool i_invalid = insn_invalid_p (i, false);
10686 recog_data = prev_recog_data;
10687
10688 if (i_invalid)
10689 FAIL;
10690
10691 sh_check_add_incdec_notes (i);
10692
10693 emit_insn (gen_tstsi_t (operands[2],
10694 gen_rtx_REG (SImode, (REGNO (operands[1])))));
10695 })
10696
10697 ;; mov.w @(18,r1),r0 (r0 = HImode)
10698 ;; ... ..,r13 (r13 = SImode) mov.w @(18,r1),r0
10699 ;; mov r0,r1 (r0 = r1 = HImode) -> ... ..,r13
10700 ;; tst r1,r13 tst r0,r13
10701 (define_peephole2
10702 [(set (match_operand:SI 2 "arith_reg_dest")
10703 (match_operand:SI 3))
10704 (set (match_operand 0 "arith_reg_dest")
10705 (match_operand 1 "arith_reg_operand"))
10706 (set (reg:SI T_REG)
10707 (eq:SI (and:SI (match_operand:SI 4 "arith_reg_operand")
10708 (match_operand:SI 5 "arith_reg_operand"))
10709 (const_int 0)))]
10710 "TARGET_SH1
10711 && peep2_reg_dead_p (3, operands[0])
10712 && !reg_overlap_mentioned_p (operands[0], operands[3])
10713 && (REGNO (operands[0]) == REGNO (operands[4])
10714 || REGNO (operands[0]) == REGNO (operands[5]))
10715 && (REGNO (operands[2]) == REGNO (operands[4])
10716 || REGNO (operands[2]) == REGNO (operands[5]))"
10717 [(const_int 0)]
10718 {
10719 // We don't know what the new set insn will be in detail. Just make sure
10720 // that it still can be recognized and the constraints are satisfied.
10721 rtx_insn* i = emit_insn (gen_rtx_SET (operands[2],
10722 sh_remove_overlapping_post_inc (operands[2], operands[3])));
10723
10724 recog_data_d prev_recog_data = recog_data;
10725 bool i_invalid = insn_invalid_p (i, false);
10726 recog_data = prev_recog_data;
10727
10728 if (i_invalid)
10729 FAIL;
10730
10731 sh_check_add_incdec_notes (i);
10732
10733 emit_insn (gen_tstsi_t (operands[2],
10734 gen_rtx_REG (SImode, (REGNO (operands[1])))));
10735 })
10736
10737 ;; This is not a peephole, but it's here because it's actually supposed
10738 ;; to be one. It tries to convert a sequence such as
10739 ;; movt r2 -> movt r2
10740 ;; movt r13 mov r2,r13
10741 ;; This gives the schduler a bit more freedom to hoist a following
10742 ;; comparison insn. Moreover, it the reg-reg mov insn is MT group which has
10743 ;; better chances for parallel execution.
10744 ;; We can do this with a peephole2 pattern, but then the cprop_hardreg
10745 ;; pass will revert the change. See also PR 64331.
10746 ;; Thus do it manually in one of the split passes after register allocation.
10747 ;; Sometimes the cprop_hardreg pass might also eliminate the reg-reg copy.
10748 (define_split
10749 [(set (match_operand:SI 0 "arith_reg_dest")
10750 (match_operand:SI 1 "t_reg_operand"))]
10751 "TARGET_SH1 && reload_completed"
10752 [(set (match_dup 0) (match_dup 1))]
10753 {
10754 rtx t_reg = get_t_reg_rtx ();
10755
10756 for (rtx_insn* i = prev_nonnote_nondebug_insn_bb (curr_insn); i != NULL;
10757 i = prev_nonnote_nondebug_insn_bb (i))
10758 {
10759 if (!INSN_P (i) || DEBUG_INSN_P (i))
10760 continue;
10761
10762 if (modified_in_p (t_reg, i) || BARRIER_P (i))
10763 FAIL;
10764
10765 if (sh_is_movt_insn (i))
10766 {
10767 rtx r = sh_movt_set_dest (i);
10768 if (!modified_between_p (r, i, curr_insn))
10769 {
10770 operands[1] = r;
10771 break;
10772 }
10773 }
10774 }
10775 })
10776
10777 (define_peephole
10778 [(set (match_operand:SI 0 "register_operand" "=r")
10779 (plus:SI (match_dup 0) (match_operand:SI 1 "register_operand" "r")))
10780 (set (mem:SF (match_dup 0))
10781 (match_operand:SF 2 "general_movsrc_operand" ""))]
10782 "TARGET_SH1 && REGNO (operands[0]) == 0
10783 && ((REG_P (operands[2]) && REGNO (operands[2]) < 16)
10784 || (GET_CODE (operands[2]) == SUBREG
10785 && REGNO (SUBREG_REG (operands[2])) < 16))
10786 && reg_unused_after (operands[0], insn)"
10787 "mov.l %2,@(%0,%1)")
10788
10789 (define_peephole
10790 [(set (match_operand:SI 0 "register_operand" "=r")
10791 (plus:SI (match_dup 0) (match_operand:SI 1 "register_operand" "r")))
10792 (set (match_operand:SF 2 "general_movdst_operand" "")
10793
10794 (mem:SF (match_dup 0)))]
10795 "TARGET_SH1 && REGNO (operands[0]) == 0
10796 && ((REG_P (operands[2]) && REGNO (operands[2]) < 16)
10797 || (GET_CODE (operands[2]) == SUBREG
10798 && REGNO (SUBREG_REG (operands[2])) < 16))
10799 && reg_unused_after (operands[0], insn)"
10800 "mov.l @(%0,%1),%2")
10801
10802 (define_peephole
10803 [(set (match_operand:SI 0 "register_operand" "=r")
10804 (plus:SI (match_dup 0) (match_operand:SI 1 "register_operand" "r")))
10805 (set (mem:SF (match_dup 0))
10806 (match_operand:SF 2 "general_movsrc_operand" ""))]
10807 "TARGET_SH2E && REGNO (operands[0]) == 0
10808 && ((REG_P (operands[2])
10809 && FP_OR_XD_REGISTER_P (REGNO (operands[2])))
10810 || (GET_CODE (operands[2]) == SUBREG
10811 && FP_OR_XD_REGISTER_P (REGNO (SUBREG_REG (operands[2])))))
10812 && reg_unused_after (operands[0], insn)"
10813 "fmov{.s|} %2,@(%0,%1)")
10814
10815 (define_peephole
10816 [(set (match_operand:SI 0 "register_operand" "=r")
10817 (plus:SI (match_dup 0) (match_operand:SI 1 "register_operand" "r")))
10818 (set (match_operand:SF 2 "general_movdst_operand" "")
10819
10820 (mem:SF (match_dup 0)))]
10821 "TARGET_SH2E && REGNO (operands[0]) == 0
10822 && ((REG_P (operands[2])
10823 && FP_OR_XD_REGISTER_P (REGNO (operands[2])))
10824 || (GET_CODE (operands[2]) == SUBREG
10825 && FP_OR_XD_REGISTER_P (REGNO (SUBREG_REG (operands[2])))))
10826 && reg_unused_after (operands[0], insn)"
10827 "fmov{.s|} @(%0,%1),%2")
10828
10829 ;; Switch to a new stack with its address in sp_switch (a SYMBOL_REF).
10830 (define_insn "sp_switch_1"
10831 [(set (reg:SI SP_REG) (unspec_volatile [(match_operand:SI 0 "" "")]
10832 UNSPECV_SP_SWITCH_B))]
10833 "TARGET_SH1"
10834 {
10835 return "mov.l r0,@-r15" "\n"
10836 " mov.l %0,r0" "\n"
10837 " mov.l @r0,r0" "\n"
10838 " mov.l r15,@-r0" "\n"
10839 " mov r0,r15";
10840 }
10841 [(set_attr "length" "10")])
10842
10843 ;; Switch back to the original stack for interrupt functions with the
10844 ;; sp_switch attribute.
10845 (define_insn "sp_switch_2"
10846 [(unspec_volatile [(const_int 0)]
10847 UNSPECV_SP_SWITCH_E)]
10848 "TARGET_SH1"
10849 {
10850 return "mov.l @r15,r15" "\n"
10851 " mov.l @r15+,r0";
10852 }
10853 [(set_attr "length" "4")])
10854
10855
10856 ;; In user mode, the "pref" instruction will raise a RADDERR exception
10857 ;; for accesses to [0x80000000,0xffffffff]. This makes it an unsuitable
10858 ;; implementation of __builtin_prefetch for VxWorks RTPs.
10859 (define_expand "prefetch"
10860 [(prefetch (match_operand 0 "address_operand" "")
10861 (match_operand:SI 1 "const_int_operand" "")
10862 (match_operand:SI 2 "const_int_operand" ""))]
10863 "(TARGET_SH2A || TARGET_SH3) && !TARGET_VXWORKS_RTP")
10864
10865 (define_insn "*prefetch"
10866 [(prefetch (match_operand:SI 0 "register_operand" "r")
10867 (match_operand:SI 1 "const_int_operand" "n")
10868 (match_operand:SI 2 "const_int_operand" "n"))]
10869 "(TARGET_SH2A || TARGET_SH3) && ! TARGET_VXWORKS_RTP"
10870 "pref @%0"
10871 [(set_attr "type" "other")])
10872
10873 ;; -------------------------------------------------------------------------
10874 ;; Stack Protector Patterns
10875 ;; -------------------------------------------------------------------------
10876
10877 (define_expand "stack_protect_set"
10878 [(set (match_operand 0 "memory_operand" "")
10879 (match_operand 1 "memory_operand" ""))]
10880 ""
10881 {
10882 emit_insn (gen_stack_protect_set_si (operands[0], operands[1]));
10883 DONE;
10884 })
10885
10886 (define_insn "stack_protect_set_si"
10887 [(set (match_operand:SI 0 "memory_operand" "=m")
10888 (unspec:SI [(match_operand:SI 1 "memory_operand" "m")] UNSPEC_SP_SET))
10889 (set (match_scratch:SI 2 "=&r") (const_int 0))]
10890 ""
10891 {
10892 return "mov.l %1,%2" "\n"
10893 " mov.l %2,%0" "\n"
10894 " mov #0,%2";
10895 }
10896 [(set_attr "type" "other")
10897 (set_attr "length" "6")])
10898
10899 (define_expand "stack_protect_test"
10900 [(match_operand 0 "memory_operand" "")
10901 (match_operand 1 "memory_operand" "")
10902 (match_operand 2 "" "")]
10903 ""
10904 {
10905 emit_insn (gen_stack_protect_test_si (operands[0], operands[1]));
10906 emit_jump_insn (gen_branch_true (operands[2]));
10907 DONE;
10908 })
10909
10910 (define_insn "stack_protect_test_si"
10911 [(set (reg:SI T_REG)
10912 (unspec:SI [(match_operand:SI 0 "memory_operand" "m")
10913 (match_operand:SI 1 "memory_operand" "m")]
10914 UNSPEC_SP_TEST))
10915 (set (match_scratch:SI 2 "=&r") (const_int 0))
10916 (set (match_scratch:SI 3 "=&r") (const_int 0))]
10917 ""
10918 {
10919 return "mov.l %0,%2" "\n"
10920 " mov.l %1,%3" "\n"
10921 " cmp/eq %2,%3" "\n"
10922 " mov #0,%2" "\n"
10923 " mov #0,%3";
10924 }
10925 [(set_attr "type" "other")
10926 (set_attr "length" "10")])
10927
10928 ;; -------------------------------------------------------------------------
10929 ;; Atomic operations
10930 ;; -------------------------------------------------------------------------
10931
10932 (include "sync.md")