]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/sparc/sparc.h
Update copyright years.
[thirdparty/gcc.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987-2024 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5 at Cygnus Support.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config/vxworks-dummy.h"
24
25 /* Note that some other tm.h files include this one and then override
26 whatever definitions are necessary. */
27
28 #define TARGET_CPU_CPP_BUILTINS() sparc_target_macros ()
29
30 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
31 /* #define SPARC_BI_ARCH */
32
33 /* Macro used later in this file to determine default architecture. */
34 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
35
36 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
37 architectures to compile for. We allow targets to choose compile time or
38 runtime selection. */
39 #ifdef IN_LIBGCC2
40 #if defined(__sparcv9) || defined(__arch64__)
41 #define TARGET_ARCH32 0
42 #else
43 #define TARGET_ARCH32 1
44 #endif /* sparc64 */
45 #else
46 #ifdef SPARC_BI_ARCH
47 #define TARGET_ARCH32 (!TARGET_64BIT)
48 #else
49 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
50 #endif /* SPARC_BI_ARCH */
51 #endif /* IN_LIBGCC2 */
52 #define TARGET_ARCH64 (!TARGET_ARCH32)
53
54 /* Code model selection in 64-bit environment.
55
56 The machine mode used for addresses is 32-bit wide:
57
58 TARGET_CM_32: 32-bit address space.
59 It is the code model used when generating 32-bit code.
60
61 The machine mode used for addresses is 64-bit wide:
62
63 TARGET_CM_MEDLOW: 32-bit address space.
64 The executable must be in the low 32 bits of memory.
65 This avoids generating %uhi and %ulo terms. Programs
66 can be statically or dynamically linked.
67
68 TARGET_CM_MEDMID: 44-bit address space.
69 The executable must be in the low 44 bits of memory,
70 and the %[hml]44 terms are used. The text and data
71 segments have a maximum size of 2GB (31-bit span).
72 The maximum offset from any instruction to the label
73 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
74
75 TARGET_CM_MEDANY: 64-bit address space.
76 The text and data segments have a maximum size of 2GB
77 (31-bit span) and may be located anywhere in memory.
78 The maximum offset from any instruction to the label
79 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
80
81 TARGET_CM_EMBMEDANY: 64-bit address space.
82 The text and data segments have a maximum size of 2GB
83 (31-bit span) and may be located anywhere in memory.
84 The global register %g4 contains the start address of
85 the data segment. Programs are statically linked and
86 PIC is not supported.
87
88 Different code models are not supported in 32-bit environment. */
89
90 #define TARGET_CM_MEDLOW (sparc_code_model == CM_MEDLOW)
91 #define TARGET_CM_MEDMID (sparc_code_model == CM_MEDMID)
92 #define TARGET_CM_MEDANY (sparc_code_model == CM_MEDANY)
93 #define TARGET_CM_EMBMEDANY (sparc_code_model == CM_EMBMEDANY)
94
95 /* Default code model to be overridden in 64-bit environment. */
96 #define SPARC_DEFAULT_CMODEL CM_32
97
98 /* Do not use the .note.GNU-stack convention by default. */
99 #define NEED_INDICATE_EXEC_STACK 0
100
101 /* This is call-clobbered in the normal ABI, but is reserved in the
102 home grown (aka upward compatible) embedded ABI. */
103 #define EMBMEDANY_BASE_REG "%g4"
104 \f
105 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
106 and specified by the user via --with-cpu=foo.
107 This specifies the cpu implementation, not the architecture size. */
108 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
109 capable cpu's. */
110 #define TARGET_CPU_sparc 0
111 #define TARGET_CPU_v7 0 /* alias */
112 #define TARGET_CPU_cypress 0 /* alias */
113 #define TARGET_CPU_v8 1 /* generic v8 implementation */
114 #define TARGET_CPU_supersparc 2
115 #define TARGET_CPU_hypersparc 3
116 #define TARGET_CPU_leon 4
117 #define TARGET_CPU_leon3 5
118 #define TARGET_CPU_leon3v7 6
119 #define TARGET_CPU_leon5 7
120 #define TARGET_CPU_sparclite 8
121 #define TARGET_CPU_f930 8 /* alias */
122 #define TARGET_CPU_f934 8 /* alias */
123 #define TARGET_CPU_sparclite86x 9
124 #define TARGET_CPU_sparclet 10
125 #define TARGET_CPU_tsc701 10 /* alias */
126 #define TARGET_CPU_v9 11 /* generic v9 implementation */
127 #define TARGET_CPU_sparcv9 11 /* alias */
128 #define TARGET_CPU_sparc64 11 /* alias */
129 #define TARGET_CPU_ultrasparc 12
130 #define TARGET_CPU_ultrasparc3 13
131 #define TARGET_CPU_niagara 14
132 #define TARGET_CPU_niagara2 15
133 #define TARGET_CPU_niagara3 16
134 #define TARGET_CPU_niagara4 17
135 #define TARGET_CPU_niagara7 19
136 #define TARGET_CPU_m8 20
137
138 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
139 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
140 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
141 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
142 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2 \
143 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara3 \
144 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara4 \
145 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara7 \
146 || TARGET_CPU_DEFAULT == TARGET_CPU_m8
147
148 #define CPP_CPU32_DEFAULT_SPEC ""
149 #define ASM_CPU32_DEFAULT_SPEC ""
150
151 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
152 /* ??? What does Sun's CC pass? */
153 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
154 /* ??? It's not clear how other assemblers will handle this, so by default
155 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
156 is handled in sol2.h. */
157 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
158 #endif
159 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
160 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
161 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
162 #endif
163 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
164 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
165 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
166 #endif
167 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
168 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
169 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
170 #endif
171 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
172 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
173 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
174 #endif
175 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara3
176 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
177 #define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
178 #endif
179 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
180 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
181 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA4_FLAG
182 #endif
183 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara7
184 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
185 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA7_FLAG
186 #endif
187 #if TARGET_CPU_DEFAULT == TARGET_CPU_m8
188 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
189 #define ASM_CPU64_DEFAULT_SPEC AS_M8_FLAG
190 #endif
191
192 #else
193
194 #define CPP_CPU64_DEFAULT_SPEC ""
195 #define ASM_CPU64_DEFAULT_SPEC ""
196
197 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
198 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
199 #define CPP_CPU32_DEFAULT_SPEC ""
200 #define ASM_CPU32_DEFAULT_SPEC ""
201 #endif
202
203 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
204 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
205 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
206 #endif
207
208 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
209 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
210 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
211 #endif
212
213 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
214 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
215 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
216 #endif
217
218 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
219 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
220 #define ASM_CPU32_DEFAULT_SPEC ""
221 #endif
222
223 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
224 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
225 #define ASM_CPU32_DEFAULT_SPEC ""
226 #endif
227
228 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon \
229 || TARGET_CPU_DEFAULT == TARGET_CPU_leon3 \
230 || TARGET_CPU_DEFAULT == TARGET_CPU_leon5
231 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__ -D__sparc_v8__"
232 #define ASM_CPU32_DEFAULT_SPEC AS_LEON_FLAG
233 #endif
234
235 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon3v7
236 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__"
237 #define ASM_CPU32_DEFAULT_SPEC AS_LEONV7_FLAG
238 #endif
239
240 #endif
241
242 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
243 #error Unrecognized value in TARGET_CPU_DEFAULT.
244 #endif
245
246 #ifdef SPARC_BI_ARCH
247
248 #define CPP_CPU_DEFAULT_SPEC \
249 (DEFAULT_ARCH32_P ? "\
250 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
251 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
252 " : "\
253 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
254 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
255 ")
256 #define ASM_CPU_DEFAULT_SPEC \
257 (DEFAULT_ARCH32_P ? "\
258 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
259 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
260 " : "\
261 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
262 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
263 ")
264
265 #else /* !SPARC_BI_ARCH */
266
267 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
268 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
269
270 #endif /* !SPARC_BI_ARCH */
271
272 /* Define macros to distinguish architectures. */
273
274 /* Common CPP definitions used by CPP_SPEC amongst the various targets
275 for handling -mcpu=xxx switches. */
276 #define CPP_CPU_SPEC "\
277 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
278 %{mcpu=sparclite:-D__sparclite__} \
279 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
280 %{mcpu=sparclite86x:-D__sparclite86x__} \
281 %{mcpu=v8:-D__sparc_v8__} \
282 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
283 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
284 %{mcpu=leon:-D__leon__ -D__sparc_v8__} \
285 %{mcpu=leon3:-D__leon__ -D__sparc_v8__} \
286 %{mcpu=leon5:-D__leon__ -D__sparc_v8__} \
287 %{mcpu=leon3v7:-D__leon__} \
288 %{mcpu=v9:-D__sparc_v9__} \
289 %{mcpu=ultrasparc:-D__sparc_v9__} \
290 %{mcpu=ultrasparc3:-D__sparc_v9__} \
291 %{mcpu=niagara:-D__sparc_v9__} \
292 %{mcpu=niagara2:-D__sparc_v9__} \
293 %{mcpu=niagara3:-D__sparc_v9__} \
294 %{mcpu=niagara4:-D__sparc_v9__} \
295 %{mcpu=niagara7:-D__sparc_v9__} \
296 %{mcpu=m8:-D__sparc_v9__} \
297 %{!mcpu*:%(cpp_cpu_default)} \
298 "
299 #define CPP_ARCH32_SPEC ""
300 #define CPP_ARCH64_SPEC "-D__arch64__"
301
302 #define CPP_ARCH_DEFAULT_SPEC \
303 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
304
305 #define CPP_ARCH_SPEC "\
306 %{m32:%(cpp_arch32)} \
307 %{m64:%(cpp_arch64)} \
308 %{!m32:%{!m64:%(cpp_arch_default)}} \
309 "
310
311 /* Macros to distinguish the endianness, window model and FP support. */
312 #define CPP_OTHER_SPEC "\
313 %{mflat:-D_FLAT} \
314 %{msoft-float:-D_SOFT_FLOAT} \
315 "
316
317 /* Macros to distinguish the particular subtarget. */
318 #define CPP_SUBTARGET_SPEC ""
319
320 #define CPP_SPEC \
321 "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_other) %(cpp_subtarget)"
322
323 /* This used to translate -dalign to -malign, but that is no good
324 because it can't turn off the usual meaning of making debugging dumps. */
325
326 #define CC1_SPEC ""
327
328 /* Override in target specific files. */
329 #define ASM_CPU_SPEC "\
330 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
331 %{mcpu=sparclite:-Asparclite} \
332 %{mcpu=sparclite86x:-Asparclite} \
333 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
334 %{mcpu=v8:-Av8} \
335 %{mcpu=supersparc:-Av8} \
336 %{mcpu=hypersparc:-Av8} \
337 %{mcpu=leon:" AS_LEON_FLAG "} \
338 %{mcpu=leon3:" AS_LEON_FLAG "} \
339 %{mcpu=leon5:" AS_LEON_FLAG "} \
340 %{mcpu=leon3v7:" AS_LEONV7_FLAG "} \
341 %{mv8plus:-Av8plus} \
342 %{mcpu=v9:-Av9} \
343 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
344 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
345 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
346 %{mcpu=niagara2:%{!mv8plus:-Av9b}} \
347 %{mcpu=niagara3:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
348 %{mcpu=niagara4:%{!mv8plus:" AS_NIAGARA4_FLAG "}} \
349 %{mcpu=niagara7:%{!mv8plus:" AS_NIAGARA7_FLAG "}} \
350 %{mcpu=m8:%{!mv8plus:" AS_M8_FLAG "}} \
351 %{!mcpu*:%(asm_cpu_default)} \
352 "
353
354 /* Word size selection, among other things.
355 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
356
357 #define ASM_ARCH32_SPEC "-32"
358 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
359 #define ASM_ARCH_DEFAULT_SPEC \
360 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
361
362 #define ASM_ARCH_SPEC "\
363 %{m32:%(asm_arch32)} \
364 %{m64:%(asm_arch64)} \
365 %{!m32:%{!m64:%(asm_arch_default)}} \
366 "
367
368 #ifdef HAVE_AS_RELAX_OPTION
369 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
370 #else
371 #define ASM_RELAX_SPEC ""
372 #endif
373
374 /* Special flags to the Sun-4 assembler when using pipe for input. */
375
376 #define ASM_SPEC "\
377 %{!pg:%{!p:%{" FPIE_OR_FPIC_SPEC ":-k}}} %{keep-local-as-symbols:-L} \
378 %(asm_cpu) %(asm_relax)"
379
380 /* This macro defines names of additional specifications to put in the specs
381 that can be used in various specifications like CC1_SPEC. Its definition
382 is an initializer with a subgrouping for each command option.
383
384 Each subgrouping contains a string constant, that defines the
385 specification name, and a string constant that used by the GCC driver
386 program.
387
388 Do not define this macro if it does not need to do anything. */
389
390 #define EXTRA_SPECS \
391 { "cpp_cpu", CPP_CPU_SPEC }, \
392 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
393 { "cpp_arch32", CPP_ARCH32_SPEC }, \
394 { "cpp_arch64", CPP_ARCH64_SPEC }, \
395 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
396 { "cpp_arch", CPP_ARCH_SPEC }, \
397 { "cpp_other", CPP_OTHER_SPEC }, \
398 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
399 { "asm_cpu", ASM_CPU_SPEC }, \
400 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
401 { "asm_arch32", ASM_ARCH32_SPEC }, \
402 { "asm_arch64", ASM_ARCH64_SPEC }, \
403 { "asm_relax", ASM_RELAX_SPEC }, \
404 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
405 { "asm_arch", ASM_ARCH_SPEC }, \
406 SUBTARGET_EXTRA_SPECS
407
408 #define SUBTARGET_EXTRA_SPECS
409
410 /* Because libgcc can generate references back to libc (via .umul etc.) we have
411 to list libc again after the second libgcc. */
412 #define LINK_GCC_C_SEQUENCE_SPEC "%G %{!nolibc:%L} %G %{!nolibc:%L}"
413
414 \f
415 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
416 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
417
418 /* ??? This should be 32 bits for v9 but what can we do? */
419 #define WCHAR_TYPE "short unsigned int"
420 #define WCHAR_TYPE_SIZE 16
421 \f
422 /* Mask of all CPU selection flags. */
423 #define MASK_ISA \
424 (MASK_SPARCLITE + MASK_SPARCLET + MASK_LEON + MASK_LEON3 \
425 + MASK_V8 + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
426
427 /* Mask of all CPU feature flags. */
428 #define MASK_FEATURES \
429 (MASK_FPU + MASK_HARD_QUAD + MASK_VIS + MASK_VIS2 + MASK_VIS3 \
430 + MASK_VIS4 + MASK_CBCOND + MASK_FMAF + MASK_FSMULD \
431 + MASK_POPC + MASK_SUBXC)
432
433 /* TARGET_HARD_MUL: Use 32-bit hardware multiply instructions but not %y. */
434 #define TARGET_HARD_MUL \
435 (TARGET_SPARCLITE || TARGET_SPARCLET \
436 || TARGET_V8 || TARGET_DEPRECATED_V8_INSNS)
437
438 /* TARGET_HARD_MUL32: Use 32-bit hardware multiply instructions with %y
439 to get high 32 bits. False in 64-bit or V8+ because multiply stores
440 a 64-bit result in a register. */
441 #define TARGET_HARD_MUL32 \
442 (TARGET_HARD_MUL && TARGET_ARCH32 && !TARGET_V8PLUS)
443
444 /* MASK_APP_REGS must always be the default because that's what
445 FIXED_REGISTERS is set to and -ffixed- is processed before
446 TARGET_CONDITIONAL_REGISTER_USAGE is called (where we process
447 -mno-app-regs). */
448 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
449
450 /* Recast the cpu class to be the cpu attribute.
451 Every file includes us, but not every file includes insn-attr.h. */
452 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
453
454 /* Support for a compile-time default CPU, et cetera. The rules are:
455 --with-cpu is ignored if -mcpu is specified.
456 --with-tune is ignored if -mtune is specified.
457 --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
458 are specified. */
459 #define OPTION_DEFAULT_SPECS \
460 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
461 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
462 {"float", "%{!msoft-float:%{!mhard-float:%{!mfpu:%{!mno-fpu:-m%(VALUE)-float}}}}" }
463 \f
464 /* target machine storage layout */
465
466 /* Define this if most significant bit is lowest numbered
467 in instructions that operate on numbered bit-fields. */
468 #define BITS_BIG_ENDIAN 1
469
470 /* Define this if most significant byte of a word is the lowest numbered. */
471 #define BYTES_BIG_ENDIAN 1
472
473 /* Define this if most significant word of a multiword number is the lowest
474 numbered. */
475 #define WORDS_BIG_ENDIAN 1
476
477 #define MAX_BITS_PER_WORD 64
478
479 /* Width of a word, in units (bytes). */
480 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
481 #ifdef IN_LIBGCC2
482 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
483 #else
484 #define MIN_UNITS_PER_WORD 4
485 #endif
486
487 /* Now define the sizes of the C data types. */
488 #define SHORT_TYPE_SIZE 16
489 #define INT_TYPE_SIZE 32
490 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
491 #define LONG_LONG_TYPE_SIZE 64
492 #define FLOAT_TYPE_SIZE 32
493 #define DOUBLE_TYPE_SIZE 64
494
495 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
496 SPARC ABI says that it is 128-bit wide. */
497 /* #define LONG_DOUBLE_TYPE_SIZE 128 */
498
499 /* The widest floating-point format really supported by the hardware. */
500 #define WIDEST_HARDWARE_FP_SIZE 64
501
502 /* Width in bits of a pointer. This is the size of ptr_mode. */
503 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
504
505 /* This is the machine mode used for addresses. */
506 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
507
508 /* If we have to extend pointers (only when TARGET_ARCH64 and not
509 TARGET_PTR64), we want to do it unsigned. This macro does nothing
510 if ptr_mode and Pmode are the same. */
511 #define POINTERS_EXTEND_UNSIGNED 1
512
513 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
514 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
515
516 /* Boundary (in *bits*) on which stack pointer should be aligned. */
517 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
518 then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned. */
519 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
520
521 /* Temporary hack until the FIXME above is fixed. */
522 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
523
524 /* ALIGN FRAMES on double word boundaries */
525 #define SPARC_STACK_ALIGN(LOC) ROUND_UP ((LOC), UNITS_PER_WORD * 2)
526
527 /* Allocation boundary (in *bits*) for the code of a function. */
528 #define FUNCTION_BOUNDARY 32
529
530 /* Alignment of field after `int : 0' in a structure. */
531 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
532
533 /* Every structure's size must be a multiple of this. */
534 #define STRUCTURE_SIZE_BOUNDARY 8
535
536 /* A bit-field declared as `int' forces `int' alignment for the struct. */
537 #define PCC_BITFIELD_TYPE_MATTERS 1
538
539 /* No data type wants to be aligned rounder than this. */
540 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
541
542 /* The best alignment to use in cases where we have a choice. */
543 #define FASTEST_ALIGNMENT 64
544
545 /* Define this macro as an expression for the alignment of a structure
546 (given by STRUCT as a tree node) if the alignment computed in the
547 usual way is COMPUTED and the alignment explicitly specified was
548 SPECIFIED.
549
550 The default is to use SPECIFIED if it is larger; otherwise, use
551 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
552 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
553 (TARGET_FASTER_STRUCTS ? \
554 (RECORD_OR_UNION_TYPE_P (STRUCT) \
555 && TYPE_FIELDS (STRUCT) != 0 \
556 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
557 : MAX ((COMPUTED), (SPECIFIED))) \
558 : MAX ((COMPUTED), (SPECIFIED)))
559
560 /* An integer expression for the size in bits of the largest integer machine
561 mode that should actually be used. We allow pairs of registers. */
562 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_ARCH64 ? TImode : DImode)
563
564 /* We need 2 words, so we can save the stack pointer and the return register
565 of the function containing a non-local goto target. */
566 #define STACK_SAVEAREA_MODE(LEVEL) \
567 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_ARCH64 ? TImode : DImode) : Pmode)
568
569 /* Make arrays of chars word-aligned for the same reasons. */
570 #define DATA_ALIGNMENT(TYPE, ALIGN) \
571 (TREE_CODE (TYPE) == ARRAY_TYPE \
572 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
573 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
574
575 /* Make local arrays of chars word-aligned for the same reasons. */
576 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
577
578 /* Set this nonzero if move instructions will actually fail to work
579 when given unaligned data. */
580 #define STRICT_ALIGNMENT 1
581
582 /* Things that must be doubleword aligned cannot go in the text section,
583 because the linker fails to align the text section enough!
584 Put them in the data section. This macro is only used in this file. */
585 #define MAX_TEXT_ALIGN 32
586 \f
587 /* Standard register usage. */
588
589 /* Number of actual hardware registers.
590 The hardware registers are assigned numbers for the compiler
591 from 0 to just below FIRST_PSEUDO_REGISTER.
592 All registers that the compiler knows about must be given numbers,
593 even those that are not normally considered general registers.
594
595 SPARC has 32 integer registers and 32 floating point registers.
596 64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
597 accessible. We still account for them to simplify register computations
598 (e.g.: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
599 32+32+32+4 == 100.
600 Register 100 is used as the integer condition code register.
601 Register 101 is used as the soft frame pointer register.
602 Register 102 is used as the general status register by VIS instructions. */
603
604 #define FIRST_PSEUDO_REGISTER 103
605
606 #define SPARC_FIRST_INT_REG 0
607 #define SPARC_LAST_INT_REG 31
608 #define SPARC_FIRST_FP_REG 32
609 /* Additional V9 fp regs. */
610 #define SPARC_FIRST_V9_FP_REG 64
611 #define SPARC_LAST_V9_FP_REG 95
612 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
613 #define SPARC_FIRST_V9_FCC_REG 96
614 #define SPARC_LAST_V9_FCC_REG 99
615 /* V8 fcc reg. */
616 #define SPARC_FCC_REG 96
617 /* Integer CC reg. We don't distinguish %icc from %xcc. */
618 #define SPARC_ICC_REG 100
619 #define SPARC_GSR_REG 102
620
621 /* Nonzero if REGNO is an fp reg. */
622 #define SPARC_FP_REG_P(REGNO) \
623 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
624
625 /* Nonzero if REGNO is an int reg. */
626 #define SPARC_INT_REG_P(REGNO) \
627 (((unsigned) (REGNO)) <= SPARC_LAST_INT_REG)
628
629 /* Argument passing regs. */
630 #define SPARC_OUTGOING_INT_ARG_FIRST 8
631 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
632 #define SPARC_FP_ARG_FIRST 32
633
634 /* 1 for registers that have pervasive standard uses
635 and are not available for the register allocator.
636
637 On non-v9 systems:
638 g1 is free to use as temporary.
639 g2-g4 are reserved for applications. Gcc normally uses them as
640 temporaries, but this can be disabled via the -mno-app-regs option.
641 g5 through g7 are reserved for the operating system.
642
643 On v9 systems:
644 g1,g5 are free to use as temporaries, and are free to use between calls
645 if the call is to an external function via the PLT.
646 g4 is free to use as a temporary in the non-embedded case.
647 g4 is reserved in the embedded case.
648 g2-g3 are reserved for applications. Gcc normally uses them as
649 temporaries, but this can be disabled via the -mno-app-regs option.
650 g6-g7 are reserved for the operating system (or application in
651 embedded case).
652 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
653 currently be a fixed register until this pattern is rewritten.
654 Register 1 is also used when restoring call-preserved registers in large
655 stack frames.
656
657 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
658 TARGET_CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
659 */
660
661 #define FIXED_REGISTERS \
662 {1, 0, 2, 2, 2, 2, 1, 1, \
663 0, 0, 0, 0, 0, 0, 1, 0, \
664 0, 0, 0, 0, 0, 0, 0, 0, \
665 0, 0, 0, 0, 0, 0, 0, 1, \
666 \
667 0, 0, 0, 0, 0, 0, 0, 0, \
668 0, 0, 0, 0, 0, 0, 0, 0, \
669 0, 0, 0, 0, 0, 0, 0, 0, \
670 0, 0, 0, 0, 0, 0, 0, 0, \
671 \
672 0, 0, 0, 0, 0, 0, 0, 0, \
673 0, 0, 0, 0, 0, 0, 0, 0, \
674 0, 0, 0, 0, 0, 0, 0, 0, \
675 0, 0, 0, 0, 0, 0, 0, 0, \
676 \
677 0, 0, 0, 0, 1, 1, 1}
678
679 /* 1 for registers not available across function calls.
680 Unlike the above, this need not include the FIXED_REGISTERS, but any
681 registers that can be used without being saved.
682 The latter must include the registers where values are returned
683 and the register where structure-value addresses are passed.
684 Aside from that, you can include as many other registers as you like. */
685
686 #define CALL_REALLY_USED_REGISTERS \
687 {1, 1, 1, 1, 1, 1, 1, 1, \
688 1, 1, 1, 1, 1, 1, 1, 1, \
689 0, 0, 0, 0, 0, 0, 0, 0, \
690 0, 0, 0, 0, 0, 0, 0, 0, \
691 \
692 1, 1, 1, 1, 1, 1, 1, 1, \
693 1, 1, 1, 1, 1, 1, 1, 1, \
694 1, 1, 1, 1, 1, 1, 1, 1, \
695 1, 1, 1, 1, 1, 1, 1, 1, \
696 \
697 1, 1, 1, 1, 1, 1, 1, 1, \
698 1, 1, 1, 1, 1, 1, 1, 1, \
699 1, 1, 1, 1, 1, 1, 1, 1, \
700 1, 1, 1, 1, 1, 1, 1, 1, \
701 \
702 1, 1, 1, 1, 1, 1, 1}
703
704 /* Due to the ARCH64 discrepancy above we must override this next
705 macro too. */
706 #define REGMODE_NATURAL_SIZE(MODE) sparc_regmode_natural_size (MODE)
707
708 /* Value is 1 if it is OK to rename a hard register FROM to another hard
709 register TO. We cannot rename %g1 as it may be used before the save
710 register window instruction in the prologue. */
711 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
712
713 /* Select a register mode required for caller save of hard regno REGNO.
714 Contrary to what is documented, the default is not the smallest suitable
715 mode but the largest suitable mode for the given (REGNO, NREGS) pair and
716 it quickly creates paradoxical subregs that can be problematic. */
717 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
718 ((MODE) == VOIDmode ? choose_hard_reg_mode (REGNO, NREGS, NULL) : (MODE))
719
720 /* Specify the registers used for certain standard purposes.
721 The values of these macros are register numbers. */
722
723 /* Register to use for pushing function arguments. */
724 #define STACK_POINTER_REGNUM 14
725
726 /* The stack bias (amount by which the hardware register is offset by). */
727 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
728
729 /* Actual top-of-stack address is 92/176 greater than the contents of the
730 stack pointer register for !v9/v9. That is:
731 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
732 address, and 6*4 bytes for the 6 register parameters.
733 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
734 parameter regs. */
735 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
736
737 /* Base register for access to local variables of the function. */
738 #define HARD_FRAME_POINTER_REGNUM 30
739
740 /* The soft frame pointer does not have the stack bias applied. */
741 #define FRAME_POINTER_REGNUM 101
742
743 #define INIT_EXPANDERS \
744 do { \
745 if (crtl->emit.regno_pointer_align) \
746 { \
747 /* The biased stack pointer is only aligned on BITS_PER_UNIT. */\
748 if (SPARC_STACK_BIAS) \
749 { \
750 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) \
751 = BITS_PER_UNIT; \
752 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) \
753 = BITS_PER_UNIT; \
754 } \
755 \
756 /* In 32-bit mode, not everything is double-word aligned. */ \
757 if (TARGET_ARCH32) \
758 { \
759 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) \
760 = BITS_PER_WORD; \
761 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) \
762 = BITS_PER_WORD; \
763 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) \
764 = BITS_PER_WORD; \
765 } \
766 } \
767 } while (0)
768
769 /* Base register for access to arguments of the function. */
770 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
771
772 /* Register in which static-chain is passed to a function. This must
773 not be a register used by the prologue. */
774 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
775
776 /* Register which holds the global offset table, if any. */
777 #define GLOBAL_OFFSET_TABLE_REGNUM 23
778
779 /* Register which holds offset table for position-independent data references.
780 The original SPARC ABI imposes no requirement on the choice of the register
781 so we use a pseudo-register to make sure it is properly saved and restored
782 around calls to setjmp. Now the ABI of VxWorks RTP makes it live on entry
783 to PLT entries so we use the canonical GOT register in this case. */
784 #define PIC_OFFSET_TABLE_REGNUM \
785 (TARGET_VXWORKS_RTP && flag_pic ? GLOBAL_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
786
787 /* Pick a default value we can notice from override_options:
788 !v9: Default is on.
789 v9: Default is off.
790 Originally it was -1, but later on the container of options changed to
791 unsigned byte, so we decided to pick 127 as default value, which does
792 reflect an undefined default value in case of 0/1. */
793 #define DEFAULT_PCC_STRUCT_RETURN 127
794
795 /* Functions which return large structures get the address
796 to place the wanted value at offset 64 from the frame.
797 Must reserve 64 bytes for the in and local registers.
798 v9: Functions which return large structures get the address to place the
799 wanted value from an invisible first argument. */
800 #define STRUCT_VALUE_OFFSET 64
801 \f
802 /* Define the classes of registers for register constraints in the
803 machine description. Also define ranges of constants.
804
805 One of the classes must always be named ALL_REGS and include all hard regs.
806 If there is more than one class, another class must be named NO_REGS
807 and contain no registers.
808
809 The name GENERAL_REGS must be the name of a class (or an alias for
810 another name such as ALL_REGS). This is the class of registers
811 that is allowed by "g" or "r" in a register constraint.
812 Also, registers outside this class are allocated only when
813 instructions express preferences for them.
814
815 The classes must be numbered in nondecreasing order; that is,
816 a larger-numbered class must never be contained completely
817 in a smaller-numbered class.
818
819 For any two classes, it is very desirable that there be another
820 class that represents their union. */
821
822 /* The SPARC has various kinds of registers: general, floating point,
823 and condition codes [well, it has others as well, but none that we
824 care directly about].
825
826 For v9 we must distinguish between the upper and lower floating point
827 registers because the upper ones can't hold SFmode values.
828 TARGET_HARD_REGNO_MODE_OK won't help here because reload assumes that
829 register(s) satisfying a group need for a class will also satisfy a
830 single need for that class. EXTRA_FP_REGS is a bit of a misnomer as
831 it covers all 64 fp regs.
832
833 It is important that one class contains all the general and all the standard
834 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
835 because reg_class_record() will bias the selection in favor of fp regs,
836 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
837 because FP_REGS > GENERAL_REGS.
838
839 It is also important that one class contain all the general and all
840 the fp regs. Otherwise when spilling a DFmode reg, it may be from
841 EXTRA_FP_REGS but find_reloads() may use class
842 GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
843 because the compiler thinks it doesn't have a spill reg when in
844 fact it does.
845
846 v9 also has 4 floating point condition code registers. Since we don't
847 have a class that is the union of FPCC_REGS with either of the others,
848 it is important that it appear first. Otherwise the compiler will die
849 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
850 constraints. */
851
852 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
853 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
854 ALL_REGS, LIM_REG_CLASSES };
855
856 #define N_REG_CLASSES (int) LIM_REG_CLASSES
857
858 /* Give names of register classes as strings for dump file. */
859
860 #define REG_CLASS_NAMES \
861 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
862 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
863 "ALL_REGS" }
864
865 /* Define which registers fit in which classes.
866 This is an initializer for a vector of HARD_REG_SET
867 of length N_REG_CLASSES. */
868
869 #define REG_CLASS_CONTENTS \
870 {{0, 0, 0, 0}, /* NO_REGS */ \
871 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
872 {0xffff, 0, 0, 0}, /* I64_REGS */ \
873 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
874 {0, -1, 0, 0}, /* FP_REGS */ \
875 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
876 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
877 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
878 {-1, -1, -1, 0x7f}} /* ALL_REGS */
879
880 /* The same information, inverted:
881 Return the class number of the smallest class containing
882 reg number REGNO. This could be a conditional expression
883 or could index an array. */
884
885 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
886
887 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
888
889 /* This is the order in which to allocate registers normally.
890
891 We put %f0-%f7 last among the float registers, so as to make it more
892 likely that a pseudo-register which dies in the float return register
893 area will get allocated to the float return register, thus saving a move
894 instruction at the end of the function.
895
896 Similarly for integer return value registers.
897
898 We know in this case that we will not end up with a leaf function.
899
900 The register allocator is given the global and out registers first
901 because these registers are call clobbered and thus less useful to
902 global register allocation.
903
904 Next we list the local and in registers. They are not call clobbered
905 and thus very useful for global register allocation. We list the input
906 registers before the locals so that it is more likely the incoming
907 arguments received in those registers can just stay there and not be
908 reloaded. */
909
910 #define REG_ALLOC_ORDER \
911 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
912 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
913 15, /* %o7 */ \
914 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
915 29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\
916 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
917 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
918 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
919 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
920 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
921 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
922 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
923 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
924 96, 97, 98, 99, /* %fcc0-3 */ \
925 100, 0, 14, 30, 101, 102 } /* %icc, %g0, %o6, %i6, %sfp, %gsr */
926
927 /* This is the order in which to allocate registers for
928 leaf functions. If all registers can fit in the global and
929 output registers, then we have the possibility of having a leaf
930 function.
931
932 The macro actually mentioned the input registers first,
933 because they get renumbered into the output registers once
934 we know really do have a leaf function.
935
936 To be more precise, this register allocation order is used
937 when %o7 is found to not be clobbered right before register
938 allocation. Normally, the reason %o7 would be clobbered is
939 due to a call which could not be transformed into a sibling
940 call.
941
942 As a consequence, it is possible to use the leaf register
943 allocation order and not end up with a leaf function. We will
944 not get suboptimal register allocation in that case because by
945 definition of being potentially leaf, there were no function
946 calls. Therefore, allocation order within the local register
947 window is not critical like it is when we do have function calls. */
948
949 #define REG_LEAF_ALLOC_ORDER \
950 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
951 29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \
952 15, /* %o7 */ \
953 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
954 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
955 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
956 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
957 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
958 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
959 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
960 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
961 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
962 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
963 96, 97, 98, 99, /* %fcc0-3 */ \
964 100, 0, 14, 30, 31, 101, 102 } /* %icc, %g0, %o6, %i6, %i7, %sfp, %gsr */
965
966 #define ADJUST_REG_ALLOC_ORDER sparc_order_regs_for_local_alloc ()
967
968 extern char sparc_leaf_regs[];
969 #define LEAF_REGISTERS sparc_leaf_regs
970
971 #define LEAF_REG_REMAP(REGNO) sparc_leaf_reg_remap (REGNO)
972
973 /* The class value for index registers, and the one for base regs. */
974 #define INDEX_REG_CLASS GENERAL_REGS
975 #define BASE_REG_CLASS GENERAL_REGS
976
977 /* Local macro to handle the two v9 classes of FP regs. */
978 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
979
980 /* Predicate for 2-bit and 5-bit unsigned constants. */
981 #define SPARC_IMM2_P(X) (((unsigned HOST_WIDE_INT) (X) & ~0x3) == 0)
982 #define SPARC_IMM5_P(X) (((unsigned HOST_WIDE_INT) (X) & ~0x1F) == 0)
983
984 /* Predicates for 5-bit, 10-bit, 11-bit and 13-bit signed constants. */
985 #define SPARC_SIMM5_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x10 < 0x20)
986 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
987 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
988 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
989
990 /* 10- and 11-bit immediates are only used for a few specific insns.
991 SMALL_INT is used throughout the port so we continue to use it. */
992 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
993
994 /* Predicate for constants that can be loaded with a sethi instruction.
995 This is the general, 64-bit aware, bitwise version that ensures that
996 only constants whose representation fits in the mask
997
998 0x00000000fffffc00
999
1000 are accepted. It will reject, for example, negative SImode constants
1001 on 64-bit hosts, so correct handling is to mask the value beforehand
1002 according to the mode of the instruction. */
1003 #define SPARC_SETHI_P(X) \
1004 (((unsigned HOST_WIDE_INT) (X) \
1005 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1006
1007 /* Version of the above predicate for SImode constants and below. */
1008 #define SPARC_SETHI32_P(X) \
1009 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1010
1011 /* Return the maximum number of consecutive registers
1012 needed to represent mode MODE in a register of class CLASS. */
1013 /* On SPARC, this is the size of MODE in words. */
1014 #define CLASS_MAX_NREGS(CLASS, MODE) \
1015 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1016 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1017 \f
1018 /* Stack layout; function entry, exit and calling. */
1019
1020 /* Define this if pushing a word on the stack
1021 makes the stack pointer a smaller address. */
1022 #define STACK_GROWS_DOWNWARD 1
1023
1024 /* Define this to nonzero if the nominal address of the stack frame
1025 is at the high-address end of the local variables;
1026 that is, each additional local variable allocated
1027 goes at a more negative offset in the frame. */
1028 #define FRAME_GROWS_DOWNWARD 1
1029
1030 /* Offset of first parameter from the argument pointer register value.
1031 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1032 even if this function isn't going to use it.
1033 v9: This is 128 for the ins and locals. */
1034 #define FIRST_PARM_OFFSET(FNDECL) \
1035 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1036
1037 /* Offset from the argument pointer register value to the CFA.
1038 This is different from FIRST_PARM_OFFSET because the register window
1039 comes between the CFA and the arguments. */
1040 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1041
1042 /* When a parameter is passed in a register, stack space is still
1043 allocated for it.
1044 !v9: All 6 possible integer registers have backing store allocated.
1045 v9: Only space for the arguments passed is allocated. */
1046 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1047 meaning to the backend. Further, we need to be able to detect if a
1048 varargs/unprototyped function is called, as they may want to spill more
1049 registers than we've provided space. Ugly, ugly. So for now we retain
1050 all 6 slots even for v9. */
1051 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1052
1053 /* Definitions for register elimination. */
1054
1055 #define ELIMINABLE_REGS \
1056 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1057 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1058
1059 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1060 do \
1061 { \
1062 (OFFSET) = sparc_initial_elimination_offset ((TO)); \
1063 } \
1064 while (0)
1065
1066 /* Keep the stack pointer constant throughout the function.
1067 This is both an optimization and a necessity: longjmp
1068 doesn't behave itself when the stack pointer moves within
1069 the function! */
1070 #define ACCUMULATE_OUTGOING_ARGS 1
1071
1072 /* Define this macro if the target machine has "register windows". This
1073 C expression returns the register number as seen by the called function
1074 corresponding to register number OUT as seen by the calling function.
1075 Return OUT if register number OUT is not an outbound register. */
1076
1077 #define INCOMING_REGNO(OUT) \
1078 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1079
1080 /* Define this macro if the target machine has "register windows". This
1081 C expression returns the register number as seen by the calling function
1082 corresponding to register number IN as seen by the called function.
1083 Return IN if register number IN is not an inbound register. */
1084
1085 #define OUTGOING_REGNO(IN) \
1086 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1087
1088 /* Define this macro if the target machine has register windows. This
1089 C expression returns true if the register is call-saved but is in the
1090 register window. */
1091
1092 #define LOCAL_REGNO(REGNO) \
1093 (!TARGET_FLAT && (REGNO) >= 16 && (REGNO) <= 31)
1094
1095 /* Define the size of space to allocate for the return value of an
1096 untyped_call. */
1097
1098 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1099
1100 /* 1 if N is a possible register number for function argument passing.
1101 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1102
1103 #define FUNCTION_ARG_REGNO_P(N) \
1104 (((N) >= 8 && (N) <= 13) \
1105 || (TARGET_ARCH64 && TARGET_FPU && (N) >= 32 && (N) <= 63))
1106 \f
1107 /* Define a data type for recording info about an argument list
1108 during the scan of that argument list. This data type should
1109 hold all necessary information about the function itself
1110 and about the args processed so far, enough to enable macros
1111 such as FUNCTION_ARG to determine where the next arg should go.
1112
1113 On SPARC (!v9), this is a single integer, which is a number of words
1114 of arguments scanned so far (including the invisible argument,
1115 if any, which holds the structure-value-address).
1116 Thus 7 or more means all following args should go on the stack.
1117
1118 For v9, we also need to know whether a prototype is present. */
1119
1120 struct sparc_args {
1121 int words; /* number of words passed so far */
1122 int prototype_p; /* nonzero if a prototype is present */
1123 int libcall_p; /* nonzero if a library call */
1124 };
1125 #define CUMULATIVE_ARGS struct sparc_args
1126
1127 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1128 for a call to a function whose data type is FNTYPE.
1129 For a library call, FNTYPE is 0. */
1130
1131 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1132 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1133
1134 \f
1135 /* Generate the special assembly code needed to tell the assembler whatever
1136 it might need to know about the return value of a function.
1137
1138 For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1139 information to the assembler relating to peephole optimization (done in
1140 the assembler). */
1141
1142 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1143 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1144
1145 /* Output the special assembly code needed to tell the assembler some
1146 register is used as global register variable.
1147
1148 SPARC 64bit psABI declares registers %g2 and %g3 as application
1149 registers and %g6 and %g7 as OS registers. Any object using them
1150 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1151 and how they are used (scratch or some global variable).
1152 Linker will then refuse to link together objects which use those
1153 registers incompatibly.
1154
1155 Unless the registers are used for scratch, two different global
1156 registers cannot be declared to the same name, so in the unlikely
1157 case of a global register variable occupying more than one register
1158 we prefix the second and following registers with .gnu.part1. etc. */
1159
1160 extern GTY(()) char sparc_hard_reg_printed[8];
1161
1162 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1163 do { \
1164 if (TARGET_ARCH64) \
1165 { \
1166 int end = end_hard_regno (DECL_MODE (decl), REGNO); \
1167 int reg; \
1168 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1169 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1170 { \
1171 if (reg == (REGNO)) \
1172 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1173 else \
1174 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1175 reg, reg - (REGNO), (NAME)); \
1176 sparc_hard_reg_printed[reg] = 1; \
1177 } \
1178 } \
1179 } while (0)
1180 \f
1181 /* Emit rtl for profiling. */
1182 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
1183
1184 /* All the work done in PROFILE_HOOK, but still required. */
1185 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1186
1187 /* Set the name of the mcount function for the system. */
1188 #define MCOUNT_FUNCTION "*mcount"
1189 \f
1190 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1191 the stack pointer does not matter. The value is tested only in
1192 functions that have frame pointers. */
1193 #define EXIT_IGNORE_STACK 1
1194
1195 /* Length in units of the trampoline for entering a nested function. */
1196 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1197
1198 /* Alignment required for trampolines, in bits. */
1199 #define TRAMPOLINE_ALIGNMENT 128
1200 \f
1201 /* Generate RTL to flush the register windows so as to make arbitrary frames
1202 available. */
1203 #define SETUP_FRAME_ADDRESSES() \
1204 do { \
1205 if (!TARGET_FLAT) \
1206 emit_insn (gen_flush_register_windows ());\
1207 } while (0)
1208
1209 /* Given an rtx for the address of a frame,
1210 return an rtx for the address of the word in the frame
1211 that holds the dynamic chain--the previous frame's address. */
1212 #define DYNAMIC_CHAIN_ADDRESS(frame) \
1213 plus_constant (Pmode, frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1214
1215 /* Given an rtx for the frame pointer,
1216 return an rtx for the address of the frame. */
1217 #define FRAME_ADDR_RTX(frame) plus_constant (Pmode, frame, SPARC_STACK_BIAS)
1218
1219 /* The return address isn't on the stack, it is in a register, so we can't
1220 access it from the current frame pointer. We can access it from the
1221 previous frame pointer though by reading a value from the register window
1222 save area. */
1223 #define RETURN_ADDR_IN_PREVIOUS_FRAME 1
1224
1225 /* This is the offset of the return address to the true next instruction to be
1226 executed for the current function. */
1227 #define RETURN_ADDR_OFFSET \
1228 (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1229
1230 /* The current return address is in %i7. The return address of anything
1231 farther back is in the register window save area at [%fp+60]. */
1232 /* ??? This ignores the fact that the actual return address is +8 for normal
1233 returns, and +12 for structure returns. */
1234 #define RETURN_ADDR_REGNUM 31
1235 #define RETURN_ADDR_RTX(count, frame) \
1236 ((count == -1) \
1237 ? gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM) \
1238 : gen_rtx_MEM (Pmode, \
1239 memory_address (Pmode, plus_constant (Pmode, frame, \
1240 15 * UNITS_PER_WORD \
1241 + SPARC_STACK_BIAS))))
1242
1243 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1244 +12, but always using +8 is close enough for frame unwind purposes.
1245 Actually, just using %o7 is close enough for unwinding, but %o7+8
1246 is something you can return to. */
1247 #define INCOMING_RETURN_ADDR_REGNUM 15
1248 #define INCOMING_RETURN_ADDR_RTX \
1249 plus_constant (word_mode, \
1250 gen_rtx_REG (word_mode, INCOMING_RETURN_ADDR_REGNUM), 8)
1251 #define DWARF_FRAME_RETURN_COLUMN \
1252 DWARF_FRAME_REGNUM (INCOMING_RETURN_ADDR_REGNUM)
1253
1254 /* The offset from the incoming value of %sp to the top of the stack frame
1255 for the current function. On sparc64, we have to account for the stack
1256 bias if present. */
1257 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1258
1259 /* Describe how we implement __builtin_eh_return. */
1260 #define EH_RETURN_REGNUM 1
1261 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1262 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_REGNUM)
1263
1264 /* Define registers used by the epilogue and return instruction. */
1265 #define EPILOGUE_USES(REGNO) \
1266 ((REGNO) == RETURN_ADDR_REGNUM \
1267 || (TARGET_FLAT \
1268 && epilogue_completed \
1269 && (REGNO) == INCOMING_RETURN_ADDR_REGNUM) \
1270 || (crtl->calls_eh_return && (REGNO) == EH_RETURN_REGNUM))
1271
1272 /* Select a format to encode pointers in exception handling data. CODE
1273 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1274 true if the symbol may be affected by dynamic relocations.
1275
1276 If assembler and linker properly support .uaword %r_disp32(foo),
1277 then use PC relative 32-bit relocations instead of absolute relocs
1278 for shared libraries. On sparc64, use pc relative 32-bit relocs even
1279 for binaries, to save memory.
1280
1281 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1282 symbol %r_disp32() is against was not local, but .hidden. In that
1283 case, we have to use DW_EH_PE_absptr for pic personality. */
1284 #ifdef HAVE_AS_SPARC_UA_PCREL
1285 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1286 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1287 (flag_pic \
1288 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1289 : ((TARGET_ARCH64 && ! GLOBAL) \
1290 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1291 : DW_EH_PE_absptr))
1292 #else
1293 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1294 (flag_pic \
1295 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
1296 : ((TARGET_ARCH64 && ! GLOBAL) \
1297 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1298 : DW_EH_PE_absptr))
1299 #endif
1300
1301 /* Emit a PC-relative relocation. */
1302 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1303 do { \
1304 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1305 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
1306 assemble_name (FILE, LABEL); \
1307 fputc (')', FILE); \
1308 } while (0)
1309 #endif
1310 \f
1311 /* Addressing modes, and classification of registers for them. */
1312
1313 /* Macros to check register numbers against specific register classes. */
1314
1315 /* These assume that REGNO is a hard or pseudo reg number.
1316 They give nonzero only if REGNO is a hard reg of the suitable class
1317 or a pseudo reg currently allocated to a suitable hard reg.
1318 Since they use reg_renumber, they are safe only once reg_renumber
1319 has been allocated, which happens in reginfo.cc during register
1320 allocation. */
1321
1322 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1323 (SPARC_INT_REG_P (REGNO) || SPARC_INT_REG_P (reg_renumber[REGNO]) \
1324 || (REGNO) == FRAME_POINTER_REGNUM \
1325 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1326
1327 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
1328
1329 #define REGNO_OK_FOR_FP_P(REGNO) \
1330 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1331 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1332
1333 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1334 (TARGET_V9 \
1335 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1336 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1337 \f
1338 /* Maximum number of registers that can appear in a valid memory address. */
1339
1340 #define MAX_REGS_PER_ADDRESS 2
1341
1342 /* Recognize any constant value that is a valid address.
1343 When PIC, we do not accept an address that would require a scratch reg
1344 to load into a register. */
1345
1346 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1347
1348 /* Define this, so that when PIC, reload won't try to reload invalid
1349 addresses which require two reload registers. */
1350
1351 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1352 \f
1353 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
1354
1355 #ifdef HAVE_AS_OFFSETABLE_LO10
1356 #define USE_AS_OFFSETABLE_LO10 1
1357 #else
1358 #define USE_AS_OFFSETABLE_LO10 0
1359 #endif
1360 \f
1361 /* Try a machine-dependent way of reloading an illegitimate address
1362 operand. If we find one, push the reload and jump to WIN. This
1363 macro is used in only one place: `find_reloads_address' in reload.cc. */
1364 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1365 do { \
1366 int win; \
1367 (X) = sparc_legitimize_reload_address ((X), (MODE), (OPNUM), \
1368 (int)(TYPE), (IND_LEVELS), &win); \
1369 if (win) \
1370 goto WIN; \
1371 } while (0)
1372 \f
1373 /* Specify the machine mode that this machine uses
1374 for the index in the tablejump instruction. */
1375 /* If we ever implement any of the full models (such as CM_FULLANY),
1376 this has to be DImode in that case */
1377 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1378 #define CASE_VECTOR_MODE \
1379 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1380 #else
1381 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1382 we have to sign extend which slows things down. */
1383 #define CASE_VECTOR_MODE \
1384 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1385 #endif
1386
1387 /* Define this as 1 if `char' should by default be signed; else as 0. */
1388 #define DEFAULT_SIGNED_CHAR 1
1389
1390 /* Max number of bytes we can move from memory to memory
1391 in one reasonably fast instruction. */
1392 #define MOVE_MAX 8
1393
1394 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1395 move-instruction pairs, we will do a cpymem or libcall instead. */
1396
1397 #define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1398
1399 /* Define if operations between registers always perform the operation
1400 on the full register even if a narrower mode is specified. */
1401 #define WORD_REGISTER_OPERATIONS 1
1402
1403 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1404 will either zero-extend or sign-extend. The value of this macro should
1405 be the code that says which one of the two operations is implicitly
1406 done, UNKNOWN if none. */
1407 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1408
1409 /* Nonzero if access to memory by bytes is slow and undesirable.
1410 For RISC chips, it means that access to memory by bytes is no
1411 better than access by words when possible, so grab a whole word
1412 and maybe make use of that. */
1413 #define SLOW_BYTE_ACCESS 1
1414
1415 /* Define this to be nonzero if shift instructions ignore all but the low-order
1416 few bits. */
1417 #define SHIFT_COUNT_TRUNCATED 1
1418
1419 /* For SImode, we make sure the top 32-bits of the register are clear and
1420 then we subtract 32 from the lzd instruction result. */
1421 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1422 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1423
1424 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1425 return the mode to be used for the comparison. For floating-point,
1426 CCFP[E]mode is used. CCNZmode should be used when the first operand
1427 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
1428 processing is needed. */
1429 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
1430
1431 /* Return nonzero if MODE implies a floating point inequality can be
1432 reversed. For SPARC this is always true because we have a full
1433 compliment of ordered and unordered comparisons, but until generic
1434 code knows how to reverse it correctly we keep the old definition. */
1435 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1436
1437 /* A function address in a call instruction for indexing purposes. */
1438 #define FUNCTION_MODE Pmode
1439
1440 /* Define this if addresses of constant functions
1441 shouldn't be put through pseudo regs where they can be cse'd.
1442 Desirable on machines where ordinary constants are expensive
1443 but a CALL with constant address is cheap. */
1444 #define NO_FUNCTION_CSE 1
1445
1446 /* The _Q_* comparison libcalls return booleans. */
1447 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1448
1449 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1450 that the inputs are fully consumed before the output memory is clobbered. */
1451
1452 #define TARGET_BUGGY_QP_LIB 0
1453
1454 /* Assume by default that we do not have the Solaris-specific conversion
1455 routines nor 64-bit integer multiply and divide routines. */
1456
1457 #define SUN_CONVERSION_LIBFUNCS 0
1458 #define DITF_CONVERSION_LIBFUNCS 0
1459 #define SUN_INTEGER_MULTIPLY_64 0
1460
1461 /* A C expression for the cost of a branch instruction. A value of 1
1462 is the default; other values are interpreted relative to that. */
1463 #define BRANCH_COST(SPEED_P, PREDICTABLE_P) \
1464 (sparc_branch_cost (SPEED_P, PREDICTABLE_P))
1465 \f
1466 /* Control the assembler format that we output. */
1467
1468 /* A C string constant describing how to begin a comment in the target
1469 assembler language. The compiler assumes that the comment will end at
1470 the end of the line. */
1471
1472 #define ASM_COMMENT_START "!"
1473
1474 /* Output to assembler file text saying following lines
1475 may contain character constants, extra white space, comments, etc. */
1476
1477 #define ASM_APP_ON ""
1478
1479 /* Output to assembler file text saying following lines
1480 no longer contain unusual constructs. */
1481
1482 #define ASM_APP_OFF ""
1483
1484 /* How to refer to registers in assembler output.
1485 This sequence is indexed by compiler's hard-register-number (see above). */
1486
1487 #define REGISTER_NAMES \
1488 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1489 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1490 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1491 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1492 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1493 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1494 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1495 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
1496 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
1497 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
1498 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
1499 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
1500 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp", "%gsr" }
1501
1502 /* Define additional names for use in asm clobbers and asm declarations. */
1503
1504 #define ADDITIONAL_REGISTER_NAMES \
1505 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
1506
1507 /* This is how to output a command to make the user-level label named NAME
1508 defined for reference from other files. */
1509
1510 /* Globalizing directive for a label. */
1511 #define GLOBAL_ASM_OP "\t.global "
1512
1513 /* The prefix to add to user-visible assembler symbols. */
1514
1515 #define USER_LABEL_PREFIX "_"
1516
1517 /* This is how to store into the string LABEL
1518 the symbol_ref name of an internal numbered label where
1519 PREFIX is the class of label and NUM is the number within the class.
1520 This is suitable for output with `assemble_name'. */
1521
1522 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1523 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1524
1525 /* This is how we hook in and defer the case-vector until the end of
1526 the function. */
1527 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
1528 sparc_defer_case_vector ((LAB),(VEC), 0)
1529
1530 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
1531 sparc_defer_case_vector ((LAB),(VEC), 1)
1532
1533 /* This is how to output an element of a case-vector that is absolute. */
1534
1535 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1536 do { \
1537 char label[30]; \
1538 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1539 if (CASE_VECTOR_MODE == SImode) \
1540 fprintf (FILE, "\t.word\t"); \
1541 else \
1542 fprintf (FILE, "\t.xword\t"); \
1543 assemble_name (FILE, label); \
1544 fputc ('\n', FILE); \
1545 } while (0)
1546
1547 /* This is how to output an element of a case-vector that is relative.
1548 (SPARC uses such vectors only when generating PIC.) */
1549
1550 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1551 do { \
1552 char label[30]; \
1553 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
1554 if (CASE_VECTOR_MODE == SImode) \
1555 fprintf (FILE, "\t.word\t"); \
1556 else \
1557 fprintf (FILE, "\t.xword\t"); \
1558 assemble_name (FILE, label); \
1559 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
1560 fputc ('-', FILE); \
1561 assemble_name (FILE, label); \
1562 fputc ('\n', FILE); \
1563 } while (0)
1564
1565 /* This is what to output before and after case-vector (both
1566 relative and absolute). If .subsection -1 works, we put case-vectors
1567 at the beginning of the current section. */
1568
1569 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1570
1571 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
1572 fprintf(FILE, "\t.subsection\t-1\n")
1573
1574 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
1575 fprintf(FILE, "\t.previous\n")
1576
1577 #endif
1578
1579 /* This is how to output an assembler line
1580 that says to advance the location counter
1581 to a multiple of 2**LOG bytes. */
1582
1583 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1584 if ((LOG) != 0) \
1585 fprintf (FILE, "\t.align %d\n", (1 << (LOG)))
1586
1587 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1588 fprintf (FILE, "\t.skip " HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1589
1590 /* This says how to output an assembler line
1591 to define a global common symbol. */
1592
1593 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1594 ( fputs ("\t.common ", (FILE)), \
1595 assemble_name ((FILE), (NAME)), \
1596 fprintf ((FILE), "," HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1597
1598 /* This says how to output an assembler line to define a local common
1599 symbol. */
1600
1601 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
1602 ( fputs ("\t.reserve ", (FILE)), \
1603 assemble_name ((FILE), (NAME)), \
1604 fprintf ((FILE), "," HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n", \
1605 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1606
1607 /* A C statement (sans semicolon) to output to the stdio stream
1608 FILE the assembler definition of uninitialized global DECL named
1609 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1610 Try to use asm_output_aligned_bss to implement this macro. */
1611
1612 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1613 do { \
1614 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
1615 } while (0)
1616
1617 /* Output #ident as a .ident. */
1618
1619 #undef TARGET_ASM_OUTPUT_IDENT
1620 #define TARGET_ASM_OUTPUT_IDENT default_asm_output_ident_directive
1621
1622 /* Prettify the assembly. */
1623
1624 extern int sparc_indent_opcode;
1625
1626 #define ASM_OUTPUT_OPCODE(FILE, PTR) \
1627 do { \
1628 if (sparc_indent_opcode) \
1629 { \
1630 putc (' ', FILE); \
1631 sparc_indent_opcode = 0; \
1632 } \
1633 } while (0)
1634
1635 /* TLS support defaulting to original Sun flavor. GNU extensions
1636 must be activated in separate configuration files. */
1637 #ifdef HAVE_AS_TLS
1638 #define TARGET_TLS 1
1639 #else
1640 #define TARGET_TLS 0
1641 #endif
1642
1643 #define TARGET_SUN_TLS TARGET_TLS
1644 #define TARGET_GNU_TLS 0
1645
1646 #ifdef HAVE_AS_FMAF_HPC_VIS3
1647 #define AS_NIAGARA3_FLAG "d"
1648 #else
1649 #define AS_NIAGARA3_FLAG "b"
1650 #endif
1651
1652 #ifdef HAVE_AS_SPARC4
1653 #define AS_NIAGARA4_FLAG "-xarch=sparc4"
1654 #else
1655 #define AS_NIAGARA4_FLAG "-Av9" AS_NIAGARA3_FLAG
1656 #endif
1657
1658 #ifdef HAVE_AS_SPARC5_VIS4
1659 #define AS_NIAGARA7_FLAG "-xarch=sparc5"
1660 #else
1661 #define AS_NIAGARA7_FLAG AS_NIAGARA4_FLAG
1662 #endif
1663
1664 #ifdef HAVE_AS_SPARC6
1665 #define AS_M8_FLAG "-xarch=sparc6"
1666 #else
1667 #define AS_M8_FLAG AS_NIAGARA7_FLAG
1668 #endif
1669
1670 #ifdef HAVE_AS_LEON
1671 #define AS_LEON_FLAG "-Aleon"
1672 #define AS_LEONV7_FLAG "-Aleon"
1673 #else
1674 #define AS_LEON_FLAG "-Av8"
1675 #define AS_LEONV7_FLAG "-Av7"
1676 #endif
1677
1678 /* We use gcc _mcount for profiling. */
1679 #define NO_PROFILE_COUNTERS 0
1680
1681 /* Debug support */
1682 #define MASK_DEBUG_OPTIONS 0x01 /* debug option handling */
1683 #define MASK_DEBUG_ALL MASK_DEBUG_OPTIONS
1684
1685 #define TARGET_DEBUG_OPTIONS (sparc_debug & MASK_DEBUG_OPTIONS)
1686
1687 /* By default, use the weakest memory model for the cpu. */
1688 #ifndef SUBTARGET_DEFAULT_MEMORY_MODEL
1689 #define SUBTARGET_DEFAULT_MEMORY_MODEL SMM_DEFAULT
1690 #endif
1691
1692 /* Define this to 1 if the FE_EXCEPT values defined in fenv.h start at 1. */
1693 #define SPARC_LOW_FE_EXCEPT_VALUES 0
1694
1695 #define TARGET_SUPPORTS_WIDE_INT 1