]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dominance.c
Merge basic-improvements-branch to trunk
[thirdparty/gcc.git] / gcc / dominance.c
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
30
31 The algorithm computes this dominator tree implicitly by computing for
32 each block its immediate dominator. We use tree balancing and path
33 compression, so its the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "hard-reg-set.h"
42 #include "basic-block.h"
43 #include "errors.h"
44 #include "et-forest.h"
45
46 struct dominance_info
47 {
48 et_forest_t forest;
49 varray_type varray;
50 };
51
52 #define BB_NODE(info, bb) \
53 ((et_forest_node_t)VARRAY_GENERIC_PTR ((info)->varray, (bb)->index + 2))
54 #define SET_BB_NODE(info, bb, node) \
55 (VARRAY_GENERIC_PTR ((info)->varray, (bb)->index + 2) = (node))
56
57 /* We name our nodes with integers, beginning with 1. Zero is reserved for
58 'undefined' or 'end of list'. The name of each node is given by the dfs
59 number of the corresponding basic block. Please note, that we include the
60 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
61 support multiple entry points. As it has no real basic block index we use
62 'last_basic_block' for that. Its dfs number is of course 1. */
63
64 /* Type of Basic Block aka. TBB */
65 typedef unsigned int TBB;
66
67 /* We work in a poor-mans object oriented fashion, and carry an instance of
68 this structure through all our 'methods'. It holds various arrays
69 reflecting the (sub)structure of the flowgraph. Most of them are of type
70 TBB and are also indexed by TBB. */
71
72 struct dom_info
73 {
74 /* The parent of a node in the DFS tree. */
75 TBB *dfs_parent;
76 /* For a node x key[x] is roughly the node nearest to the root from which
77 exists a way to x only over nodes behind x. Such a node is also called
78 semidominator. */
79 TBB *key;
80 /* The value in path_min[x] is the node y on the path from x to the root of
81 the tree x is in with the smallest key[y]. */
82 TBB *path_min;
83 /* bucket[x] points to the first node of the set of nodes having x as key. */
84 TBB *bucket;
85 /* And next_bucket[x] points to the next node. */
86 TBB *next_bucket;
87 /* After the algorithm is done, dom[x] contains the immediate dominator
88 of x. */
89 TBB *dom;
90
91 /* The following few fields implement the structures needed for disjoint
92 sets. */
93 /* set_chain[x] is the next node on the path from x to the representant
94 of the set containing x. If set_chain[x]==0 then x is a root. */
95 TBB *set_chain;
96 /* set_size[x] is the number of elements in the set named by x. */
97 unsigned int *set_size;
98 /* set_child[x] is used for balancing the tree representing a set. It can
99 be understood as the next sibling of x. */
100 TBB *set_child;
101
102 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
103 number of that node in DFS order counted from 1. This is an index
104 into most of the other arrays in this structure. */
105 TBB *dfs_order;
106 /* If x is the DFS-index of a node which corresponds with a basic block,
107 dfs_to_bb[x] is that basic block. Note, that in our structure there are
108 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
109 is true for every basic block bb, but not the opposite. */
110 basic_block *dfs_to_bb;
111
112 /* This is the next free DFS number when creating the DFS tree or forest. */
113 unsigned int dfsnum;
114 /* The number of nodes in the DFS tree (==dfsnum-1). */
115 unsigned int nodes;
116 };
117
118 static void init_dom_info PARAMS ((struct dom_info *));
119 static void free_dom_info PARAMS ((struct dom_info *));
120 static void calc_dfs_tree_nonrec PARAMS ((struct dom_info *,
121 basic_block,
122 enum cdi_direction));
123 static void calc_dfs_tree PARAMS ((struct dom_info *,
124 enum cdi_direction));
125 static void compress PARAMS ((struct dom_info *, TBB));
126 static TBB eval PARAMS ((struct dom_info *, TBB));
127 static void link_roots PARAMS ((struct dom_info *, TBB, TBB));
128 static void calc_idoms PARAMS ((struct dom_info *,
129 enum cdi_direction));
130 void debug_dominance_info PARAMS ((dominance_info));
131
132 /* Helper macro for allocating and initializing an array,
133 for aesthetic reasons. */
134 #define init_ar(var, type, num, content) \
135 do \
136 { \
137 unsigned int i = 1; /* Catch content == i. */ \
138 if (! (content)) \
139 (var) = (type *) xcalloc ((num), sizeof (type)); \
140 else \
141 { \
142 (var) = (type *) xmalloc ((num) * sizeof (type)); \
143 for (i = 0; i < num; i++) \
144 (var)[i] = (content); \
145 } \
146 } \
147 while (0)
148
149 /* Allocate all needed memory in a pessimistic fashion (so we round up).
150 This initializes the contents of DI, which already must be allocated. */
151
152 static void
153 init_dom_info (di)
154 struct dom_info *di;
155 {
156 /* We need memory for n_basic_blocks nodes and the ENTRY_BLOCK or
157 EXIT_BLOCK. */
158 unsigned int num = n_basic_blocks + 1 + 1;
159 init_ar (di->dfs_parent, TBB, num, 0);
160 init_ar (di->path_min, TBB, num, i);
161 init_ar (di->key, TBB, num, i);
162 init_ar (di->dom, TBB, num, 0);
163
164 init_ar (di->bucket, TBB, num, 0);
165 init_ar (di->next_bucket, TBB, num, 0);
166
167 init_ar (di->set_chain, TBB, num, 0);
168 init_ar (di->set_size, unsigned int, num, 1);
169 init_ar (di->set_child, TBB, num, 0);
170
171 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
172 init_ar (di->dfs_to_bb, basic_block, num, 0);
173
174 di->dfsnum = 1;
175 di->nodes = 0;
176 }
177
178 #undef init_ar
179
180 /* Free all allocated memory in DI, but not DI itself. */
181
182 static void
183 free_dom_info (di)
184 struct dom_info *di;
185 {
186 free (di->dfs_parent);
187 free (di->path_min);
188 free (di->key);
189 free (di->dom);
190 free (di->bucket);
191 free (di->next_bucket);
192 free (di->set_chain);
193 free (di->set_size);
194 free (di->set_child);
195 free (di->dfs_order);
196 free (di->dfs_to_bb);
197 }
198
199 /* The nonrecursive variant of creating a DFS tree. DI is our working
200 structure, BB the starting basic block for this tree and REVERSE
201 is true, if predecessors should be visited instead of successors of a
202 node. After this is done all nodes reachable from BB were visited, have
203 assigned their dfs number and are linked together to form a tree. */
204
205 static void
206 calc_dfs_tree_nonrec (di, bb, reverse)
207 struct dom_info *di;
208 basic_block bb;
209 enum cdi_direction reverse;
210 {
211 /* We never call this with bb==EXIT_BLOCK_PTR (ENTRY_BLOCK_PTR if REVERSE). */
212 /* We call this _only_ if bb is not already visited. */
213 edge e;
214 TBB child_i, my_i = 0;
215 edge *stack;
216 int sp;
217 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
218 problem). */
219 basic_block en_block;
220 /* Ending block. */
221 basic_block ex_block;
222
223 stack = (edge *) xmalloc ((n_basic_blocks + 3) * sizeof (edge));
224 sp = 0;
225
226 /* Initialize our border blocks, and the first edge. */
227 if (reverse)
228 {
229 e = bb->pred;
230 en_block = EXIT_BLOCK_PTR;
231 ex_block = ENTRY_BLOCK_PTR;
232 }
233 else
234 {
235 e = bb->succ;
236 en_block = ENTRY_BLOCK_PTR;
237 ex_block = EXIT_BLOCK_PTR;
238 }
239
240 /* When the stack is empty we break out of this loop. */
241 while (1)
242 {
243 basic_block bn;
244
245 /* This loop traverses edges e in depth first manner, and fills the
246 stack. */
247 while (e)
248 {
249 edge e_next;
250
251 /* Deduce from E the current and the next block (BB and BN), and the
252 next edge. */
253 if (reverse)
254 {
255 bn = e->src;
256
257 /* If the next node BN is either already visited or a border
258 block the current edge is useless, and simply overwritten
259 with the next edge out of the current node. */
260 if (bn == ex_block || di->dfs_order[bn->index])
261 {
262 e = e->pred_next;
263 continue;
264 }
265 bb = e->dest;
266 e_next = bn->pred;
267 }
268 else
269 {
270 bn = e->dest;
271 if (bn == ex_block || di->dfs_order[bn->index])
272 {
273 e = e->succ_next;
274 continue;
275 }
276 bb = e->src;
277 e_next = bn->succ;
278 }
279
280 if (bn == en_block)
281 abort ();
282
283 /* Fill the DFS tree info calculatable _before_ recursing. */
284 if (bb != en_block)
285 my_i = di->dfs_order[bb->index];
286 else
287 my_i = di->dfs_order[last_basic_block];
288 child_i = di->dfs_order[bn->index] = di->dfsnum++;
289 di->dfs_to_bb[child_i] = bn;
290 di->dfs_parent[child_i] = my_i;
291
292 /* Save the current point in the CFG on the stack, and recurse. */
293 stack[sp++] = e;
294 e = e_next;
295 }
296
297 if (!sp)
298 break;
299 e = stack[--sp];
300
301 /* OK. The edge-list was exhausted, meaning normally we would
302 end the recursion. After returning from the recursive call,
303 there were (may be) other statements which were run after a
304 child node was completely considered by DFS. Here is the
305 point to do it in the non-recursive variant.
306 E.g. The block just completed is in e->dest for forward DFS,
307 the block not yet completed (the parent of the one above)
308 in e->src. This could be used e.g. for computing the number of
309 descendants or the tree depth. */
310 if (reverse)
311 e = e->pred_next;
312 else
313 e = e->succ_next;
314 }
315 free (stack);
316 }
317
318 /* The main entry for calculating the DFS tree or forest. DI is our working
319 structure and REVERSE is true, if we are interested in the reverse flow
320 graph. In that case the result is not necessarily a tree but a forest,
321 because there may be nodes from which the EXIT_BLOCK is unreachable. */
322
323 static void
324 calc_dfs_tree (di, reverse)
325 struct dom_info *di;
326 enum cdi_direction reverse;
327 {
328 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
329 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
330 di->dfs_order[last_basic_block] = di->dfsnum;
331 di->dfs_to_bb[di->dfsnum] = begin;
332 di->dfsnum++;
333
334 calc_dfs_tree_nonrec (di, begin, reverse);
335
336 if (reverse)
337 {
338 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
339 They are reverse-unreachable. In the dom-case we disallow such
340 nodes, but in post-dom we have to deal with them, so we simply
341 include them in the DFS tree which actually becomes a forest. */
342 basic_block b;
343 FOR_EACH_BB_REVERSE (b)
344 {
345 if (di->dfs_order[b->index])
346 continue;
347 di->dfs_order[b->index] = di->dfsnum;
348 di->dfs_to_bb[di->dfsnum] = b;
349 di->dfsnum++;
350 calc_dfs_tree_nonrec (di, b, reverse);
351 }
352 }
353
354 di->nodes = di->dfsnum - 1;
355
356 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
357 if (di->nodes != (unsigned int) n_basic_blocks + 1)
358 abort ();
359 }
360
361 /* Compress the path from V to the root of its set and update path_min at the
362 same time. After compress(di, V) set_chain[V] is the root of the set V is
363 in and path_min[V] is the node with the smallest key[] value on the path
364 from V to that root. */
365
366 static void
367 compress (di, v)
368 struct dom_info *di;
369 TBB v;
370 {
371 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
372 greater than 5 even for huge graphs (I've not seen call depth > 4).
373 Also performance wise compress() ranges _far_ behind eval(). */
374 TBB parent = di->set_chain[v];
375 if (di->set_chain[parent])
376 {
377 compress (di, parent);
378 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
379 di->path_min[v] = di->path_min[parent];
380 di->set_chain[v] = di->set_chain[parent];
381 }
382 }
383
384 /* Compress the path from V to the set root of V if needed (when the root has
385 changed since the last call). Returns the node with the smallest key[]
386 value on the path from V to the root. */
387
388 static inline TBB
389 eval (di, v)
390 struct dom_info *di;
391 TBB v;
392 {
393 /* The representant of the set V is in, also called root (as the set
394 representation is a tree). */
395 TBB rep = di->set_chain[v];
396
397 /* V itself is the root. */
398 if (!rep)
399 return di->path_min[v];
400
401 /* Compress only if necessary. */
402 if (di->set_chain[rep])
403 {
404 compress (di, v);
405 rep = di->set_chain[v];
406 }
407
408 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
409 return di->path_min[v];
410 else
411 return di->path_min[rep];
412 }
413
414 /* This essentially merges the two sets of V and W, giving a single set with
415 the new root V. The internal representation of these disjoint sets is a
416 balanced tree. Currently link(V,W) is only used with V being the parent
417 of W. */
418
419 static void
420 link_roots (di, v, w)
421 struct dom_info *di;
422 TBB v, w;
423 {
424 TBB s = w;
425
426 /* Rebalance the tree. */
427 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
428 {
429 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
430 >= 2 * di->set_size[di->set_child[s]])
431 {
432 di->set_chain[di->set_child[s]] = s;
433 di->set_child[s] = di->set_child[di->set_child[s]];
434 }
435 else
436 {
437 di->set_size[di->set_child[s]] = di->set_size[s];
438 s = di->set_chain[s] = di->set_child[s];
439 }
440 }
441
442 di->path_min[s] = di->path_min[w];
443 di->set_size[v] += di->set_size[w];
444 if (di->set_size[v] < 2 * di->set_size[w])
445 {
446 TBB tmp = s;
447 s = di->set_child[v];
448 di->set_child[v] = tmp;
449 }
450
451 /* Merge all subtrees. */
452 while (s)
453 {
454 di->set_chain[s] = v;
455 s = di->set_child[s];
456 }
457 }
458
459 /* This calculates the immediate dominators (or post-dominators if REVERSE is
460 true). DI is our working structure and should hold the DFS forest.
461 On return the immediate dominator to node V is in di->dom[V]. */
462
463 static void
464 calc_idoms (di, reverse)
465 struct dom_info *di;
466 enum cdi_direction reverse;
467 {
468 TBB v, w, k, par;
469 basic_block en_block;
470 if (reverse)
471 en_block = EXIT_BLOCK_PTR;
472 else
473 en_block = ENTRY_BLOCK_PTR;
474
475 /* Go backwards in DFS order, to first look at the leafs. */
476 v = di->nodes;
477 while (v > 1)
478 {
479 basic_block bb = di->dfs_to_bb[v];
480 edge e, e_next;
481
482 par = di->dfs_parent[v];
483 k = v;
484 if (reverse)
485 e = bb->succ;
486 else
487 e = bb->pred;
488
489 /* Search all direct predecessors for the smallest node with a path
490 to them. That way we have the smallest node with also a path to
491 us only over nodes behind us. In effect we search for our
492 semidominator. */
493 for (; e; e = e_next)
494 {
495 TBB k1;
496 basic_block b;
497
498 if (reverse)
499 {
500 b = e->dest;
501 e_next = e->succ_next;
502 }
503 else
504 {
505 b = e->src;
506 e_next = e->pred_next;
507 }
508 if (b == en_block)
509 k1 = di->dfs_order[last_basic_block];
510 else
511 k1 = di->dfs_order[b->index];
512
513 /* Call eval() only if really needed. If k1 is above V in DFS tree,
514 then we know, that eval(k1) == k1 and key[k1] == k1. */
515 if (k1 > v)
516 k1 = di->key[eval (di, k1)];
517 if (k1 < k)
518 k = k1;
519 }
520
521 di->key[v] = k;
522 link_roots (di, par, v);
523 di->next_bucket[v] = di->bucket[k];
524 di->bucket[k] = v;
525
526 /* Transform semidominators into dominators. */
527 for (w = di->bucket[par]; w; w = di->next_bucket[w])
528 {
529 k = eval (di, w);
530 if (di->key[k] < di->key[w])
531 di->dom[w] = k;
532 else
533 di->dom[w] = par;
534 }
535 /* We don't need to cleanup next_bucket[]. */
536 di->bucket[par] = 0;
537 v--;
538 }
539
540 /* Explicitly define the dominators. */
541 di->dom[1] = 0;
542 for (v = 2; v <= di->nodes; v++)
543 if (di->dom[v] != di->key[v])
544 di->dom[v] = di->dom[di->dom[v]];
545 }
546
547 /* The main entry point into this module. IDOM is an integer array with room
548 for last_basic_block integers, DOMS is a preallocated sbitmap array having
549 room for last_basic_block^2 bits, and POST is true if the caller wants to
550 know post-dominators.
551
552 On return IDOM[i] will be the BB->index of the immediate (post) dominator
553 of basic block i, and DOMS[i] will have set bit j if basic block j is a
554 (post)dominator for block i.
555
556 Either IDOM or DOMS may be NULL (meaning the caller is not interested in
557 immediate resp. all dominators). */
558
559 dominance_info
560 calculate_dominance_info (reverse)
561 enum cdi_direction reverse;
562 {
563 struct dom_info di;
564 dominance_info info;
565 basic_block b;
566
567 /* allocate structure for dominance information. */
568 info = xmalloc (sizeof (struct dominance_info));
569 info->forest = et_forest_create ();
570 VARRAY_GENERIC_PTR_INIT (info->varray, last_basic_block + 3, "dominance info");
571
572 /* Add the two well-known basic blocks. */
573 SET_BB_NODE (info, ENTRY_BLOCK_PTR, et_forest_add_node (info->forest,
574 ENTRY_BLOCK_PTR));
575 SET_BB_NODE (info, EXIT_BLOCK_PTR, et_forest_add_node (info->forest,
576 EXIT_BLOCK_PTR));
577 FOR_EACH_BB (b)
578 SET_BB_NODE (info, b, et_forest_add_node (info->forest, b));
579
580 init_dom_info (&di);
581 calc_dfs_tree (&di, reverse);
582 calc_idoms (&di, reverse);
583
584
585 FOR_EACH_BB (b)
586 {
587 TBB d = di.dom[di.dfs_order[b->index]];
588
589 if (di.dfs_to_bb[d])
590 et_forest_add_edge (info->forest, BB_NODE (info, di.dfs_to_bb[d]), BB_NODE (info, b));
591 }
592
593 free_dom_info (&di);
594 return info;
595 }
596
597 /* Free dominance information. */
598 void
599 free_dominance_info (info)
600 dominance_info info;
601 {
602 basic_block bb;
603
604 /* Allow users to create new basic block without setting up the dominance
605 information for them. */
606 FOR_EACH_BB (bb)
607 if (bb->index < (int)(info->varray->num_elements - 2)
608 && BB_NODE (info, bb))
609 delete_from_dominance_info (info, bb);
610 delete_from_dominance_info (info, ENTRY_BLOCK_PTR);
611 delete_from_dominance_info (info, EXIT_BLOCK_PTR);
612 et_forest_delete (info->forest);
613 VARRAY_GROW (info->varray, 0);
614 free (info);
615 }
616
617 /* Return the immediate dominator of basic block BB. */
618 basic_block
619 get_immediate_dominator (dom, bb)
620 dominance_info dom;
621 basic_block bb;
622 {
623 return et_forest_node_value (dom->forest,
624 et_forest_parent (dom->forest,
625 BB_NODE (dom, bb)));
626 }
627
628 /* Set the immediate dominator of the block possibly removing
629 existing edge. NULL can be used to remove any edge. */
630 inline void
631 set_immediate_dominator (dom, bb, dominated_by)
632 dominance_info dom;
633 basic_block bb, dominated_by;
634 {
635 void *aux_bb_node;
636 et_forest_node_t bb_node = BB_NODE (dom, bb);
637
638 aux_bb_node = et_forest_parent (dom->forest, bb_node);
639 if (aux_bb_node)
640 et_forest_remove_edge (dom->forest, aux_bb_node, bb_node);
641 if (dominated_by != NULL)
642 {
643 if (bb == dominated_by)
644 abort ();
645 if (!et_forest_add_edge (dom->forest, BB_NODE (dom, dominated_by), bb_node))
646 abort ();
647 }
648 }
649
650 /* Store all basic blocks dominated by BB into BBS and return their number. */
651 int
652 get_dominated_by (dom, bb, bbs)
653 dominance_info dom;
654 basic_block bb;
655 basic_block **bbs;
656 {
657 int n, i;
658
659 *bbs = xmalloc (n_basic_blocks * sizeof (basic_block));
660 n = et_forest_enumerate_sons (dom->forest, BB_NODE (dom, bb), (et_forest_node_t *)*bbs);
661 for (i = 0; i < n; i++)
662 (*bbs)[i] = et_forest_node_value (dom->forest, (et_forest_node_t)(*bbs)[i]);
663 return n;
664 }
665
666 /* Redirect all edges pointing to BB to TO. */
667 void
668 redirect_immediate_dominators (dom, bb, to)
669 dominance_info dom;
670 basic_block bb;
671 basic_block to;
672 {
673 et_forest_node_t *bbs = xmalloc (n_basic_blocks * sizeof (basic_block));
674 et_forest_node_t node = BB_NODE (dom, bb);
675 et_forest_node_t node2 = BB_NODE (dom, to);
676 int n = et_forest_enumerate_sons (dom->forest, node, bbs);
677 int i;
678
679 for (i = 0; i < n; i++)
680 {
681 et_forest_remove_edge (dom->forest, node, bbs[i]);
682 et_forest_add_edge (dom->forest, node2, bbs[i]);
683 }
684 free (bbs);
685 }
686
687 /* Find first basic block in the tree dominating both BB1 and BB2. */
688 basic_block
689 nearest_common_dominator (dom, bb1, bb2)
690 dominance_info dom;
691 basic_block bb1;
692 basic_block bb2;
693 {
694 if (!bb1)
695 return bb2;
696 if (!bb2)
697 return bb1;
698 return et_forest_node_value (dom->forest,
699 et_forest_common_ancestor (dom->forest,
700 BB_NODE (dom, bb1),
701 BB_NODE (dom,
702 bb2)));
703 }
704
705 /* Return TRUE in case BB1 is dominated by BB2. */
706 bool
707 dominated_by_p (dom, bb1, bb2)
708 dominance_info dom;
709 basic_block bb1;
710 basic_block bb2;
711 {
712 return nearest_common_dominator (dom, bb1, bb2) == bb2;
713 }
714
715 /* Verify invariants of dominator structure. */
716 void
717 verify_dominators (dom)
718 dominance_info dom;
719 {
720 int err = 0;
721 basic_block bb;
722
723 FOR_EACH_BB (bb)
724 {
725 basic_block dom_bb;
726
727 dom_bb = recount_dominator (dom, bb);
728 if (dom_bb != get_immediate_dominator (dom, bb))
729 {
730 error ("dominator of %d should be %d, not %d",
731 bb->index, dom_bb->index, get_immediate_dominator(dom, bb)->index);
732 err = 1;
733 }
734 }
735 if (err)
736 abort ();
737 }
738
739 /* Recount dominator of BB. */
740 basic_block
741 recount_dominator (dom, bb)
742 dominance_info dom;
743 basic_block bb;
744 {
745 basic_block dom_bb = NULL;
746 edge e;
747
748 for (e = bb->pred; e; e = e->pred_next)
749 {
750 if (!dominated_by_p (dom, e->src, bb))
751 dom_bb = nearest_common_dominator (dom, dom_bb, e->src);
752 }
753
754 return dom_bb;
755 }
756
757 /* Iteratively recount dominators of BBS. The change is supposed to be local
758 and not to grow further. */
759 void
760 iterate_fix_dominators (dom, bbs, n)
761 dominance_info dom;
762 basic_block *bbs;
763 int n;
764 {
765 int i, changed = 1;
766 basic_block old_dom, new_dom;
767
768 while (changed)
769 {
770 changed = 0;
771 for (i = 0; i < n; i++)
772 {
773 old_dom = get_immediate_dominator (dom, bbs[i]);
774 new_dom = recount_dominator (dom, bbs[i]);
775 if (old_dom != new_dom)
776 {
777 changed = 1;
778 set_immediate_dominator (dom, bbs[i], new_dom);
779 }
780 }
781 }
782 }
783
784 void
785 add_to_dominance_info (dom, bb)
786 dominance_info dom;
787 basic_block bb;
788 {
789 VARRAY_GROW (dom->varray, last_basic_block + 3);
790 #ifdef ENABLE_CHECKING
791 if (BB_NODE (dom, bb))
792 abort ();
793 #endif
794 SET_BB_NODE (dom, bb, et_forest_add_node (dom->forest, bb));
795 }
796
797 void
798 delete_from_dominance_info (dom, bb)
799 dominance_info dom;
800 basic_block bb;
801 {
802 et_forest_remove_node (dom->forest, BB_NODE (dom, bb));
803 SET_BB_NODE (dom, bb, NULL);
804 }
805
806 void
807 debug_dominance_info (dom)
808 dominance_info dom;
809 {
810 basic_block bb, bb2;
811 FOR_EACH_BB (bb)
812 if ((bb2 = get_immediate_dominator (dom, bb)))
813 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
814 }