]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dse.c
Update copyright years.
[thirdparty/gcc.git] / gcc / dse.c
1 /* RTL dead store elimination.
2 Copyright (C) 2005-2018 Free Software Foundation, Inc.
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #undef BASELINE
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "target.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "predict.h"
34 #include "df.h"
35 #include "memmodel.h"
36 #include "tm_p.h"
37 #include "gimple-ssa.h"
38 #include "expmed.h"
39 #include "optabs.h"
40 #include "emit-rtl.h"
41 #include "recog.h"
42 #include "alias.h"
43 #include "stor-layout.h"
44 #include "cfgrtl.h"
45 #include "cselib.h"
46 #include "tree-pass.h"
47 #include "explow.h"
48 #include "expr.h"
49 #include "dbgcnt.h"
50 #include "params.h"
51 #include "rtl-iter.h"
52 #include "cfgcleanup.h"
53
54 /* This file contains three techniques for performing Dead Store
55 Elimination (dse).
56
57 * The first technique performs dse locally on any base address. It
58 is based on the cselib which is a local value numbering technique.
59 This technique is local to a basic block but deals with a fairly
60 general addresses.
61
62 * The second technique performs dse globally but is restricted to
63 base addresses that are either constant or are relative to the
64 frame_pointer.
65
66 * The third technique, (which is only done after register allocation)
67 processes the spill slots. This differs from the second
68 technique because it takes advantage of the fact that spilling is
69 completely free from the effects of aliasing.
70
71 Logically, dse is a backwards dataflow problem. A store can be
72 deleted if it if cannot be reached in the backward direction by any
73 use of the value being stored. However, the local technique uses a
74 forwards scan of the basic block because cselib requires that the
75 block be processed in that order.
76
77 The pass is logically broken into 7 steps:
78
79 0) Initialization.
80
81 1) The local algorithm, as well as scanning the insns for the two
82 global algorithms.
83
84 2) Analysis to see if the global algs are necessary. In the case
85 of stores base on a constant address, there must be at least two
86 stores to that address, to make it possible to delete some of the
87 stores. In the case of stores off of the frame or spill related
88 stores, only one store to an address is necessary because those
89 stores die at the end of the function.
90
91 3) Set up the global dataflow equations based on processing the
92 info parsed in the first step.
93
94 4) Solve the dataflow equations.
95
96 5) Delete the insns that the global analysis has indicated are
97 unnecessary.
98
99 6) Delete insns that store the same value as preceding store
100 where the earlier store couldn't be eliminated.
101
102 7) Cleanup.
103
104 This step uses cselib and canon_rtx to build the largest expression
105 possible for each address. This pass is a forwards pass through
106 each basic block. From the point of view of the global technique,
107 the first pass could examine a block in either direction. The
108 forwards ordering is to accommodate cselib.
109
110 We make a simplifying assumption: addresses fall into four broad
111 categories:
112
113 1) base has rtx_varies_p == false, offset is constant.
114 2) base has rtx_varies_p == false, offset variable.
115 3) base has rtx_varies_p == true, offset constant.
116 4) base has rtx_varies_p == true, offset variable.
117
118 The local passes are able to process all 4 kinds of addresses. The
119 global pass only handles 1).
120
121 The global problem is formulated as follows:
122
123 A store, S1, to address A, where A is not relative to the stack
124 frame, can be eliminated if all paths from S1 to the end of the
125 function contain another store to A before a read to A.
126
127 If the address A is relative to the stack frame, a store S2 to A
128 can be eliminated if there are no paths from S2 that reach the
129 end of the function that read A before another store to A. In
130 this case S2 can be deleted if there are paths from S2 to the
131 end of the function that have no reads or writes to A. This
132 second case allows stores to the stack frame to be deleted that
133 would otherwise die when the function returns. This cannot be
134 done if stores_off_frame_dead_at_return is not true. See the doc
135 for that variable for when this variable is false.
136
137 The global problem is formulated as a backwards set union
138 dataflow problem where the stores are the gens and reads are the
139 kills. Set union problems are rare and require some special
140 handling given our representation of bitmaps. A straightforward
141 implementation requires a lot of bitmaps filled with 1s.
142 These are expensive and cumbersome in our bitmap formulation so
143 care has been taken to avoid large vectors filled with 1s. See
144 the comments in bb_info and in the dataflow confluence functions
145 for details.
146
147 There are two places for further enhancements to this algorithm:
148
149 1) The original dse which was embedded in a pass called flow also
150 did local address forwarding. For example in
151
152 A <- r100
153 ... <- A
154
155 flow would replace the right hand side of the second insn with a
156 reference to r100. Most of the information is available to add this
157 to this pass. It has not done it because it is a lot of work in
158 the case that either r100 is assigned to between the first and
159 second insn and/or the second insn is a load of part of the value
160 stored by the first insn.
161
162 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
163 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
164 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
165 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
166
167 2) The cleaning up of spill code is quite profitable. It currently
168 depends on reading tea leaves and chicken entrails left by reload.
169 This pass depends on reload creating a singleton alias set for each
170 spill slot and telling the next dse pass which of these alias sets
171 are the singletons. Rather than analyze the addresses of the
172 spills, dse's spill processing just does analysis of the loads and
173 stores that use those alias sets. There are three cases where this
174 falls short:
175
176 a) Reload sometimes creates the slot for one mode of access, and
177 then inserts loads and/or stores for a smaller mode. In this
178 case, the current code just punts on the slot. The proper thing
179 to do is to back out and use one bit vector position for each
180 byte of the entity associated with the slot. This depends on
181 KNOWING that reload always generates the accesses for each of the
182 bytes in some canonical (read that easy to understand several
183 passes after reload happens) way.
184
185 b) Reload sometimes decides that spill slot it allocated was not
186 large enough for the mode and goes back and allocates more slots
187 with the same mode and alias set. The backout in this case is a
188 little more graceful than (a). In this case the slot is unmarked
189 as being a spill slot and if final address comes out to be based
190 off the frame pointer, the global algorithm handles this slot.
191
192 c) For any pass that may prespill, there is currently no
193 mechanism to tell the dse pass that the slot being used has the
194 special properties that reload uses. It may be that all that is
195 required is to have those passes make the same calls that reload
196 does, assuming that the alias sets can be manipulated in the same
197 way. */
198
199 /* There are limits to the size of constant offsets we model for the
200 global problem. There are certainly test cases, that exceed this
201 limit, however, it is unlikely that there are important programs
202 that really have constant offsets this size. */
203 #define MAX_OFFSET (64 * 1024)
204
205 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
206 on the default obstack because these bitmaps can grow quite large
207 (~2GB for the small (!) test case of PR54146) and we'll hold on to
208 all that memory until the end of the compiler run.
209 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
210 releasing the whole obstack. */
211 static bitmap_obstack dse_bitmap_obstack;
212
213 /* Obstack for other data. As for above: Kinda nice to be able to
214 throw it all away at the end in one big sweep. */
215 static struct obstack dse_obstack;
216
217 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
218 static bitmap scratch = NULL;
219
220 struct insn_info_type;
221
222 /* This structure holds information about a candidate store. */
223 struct store_info
224 {
225
226 /* False means this is a clobber. */
227 bool is_set;
228
229 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
230 bool is_large;
231
232 /* The id of the mem group of the base address. If rtx_varies_p is
233 true, this is -1. Otherwise, it is the index into the group
234 table. */
235 int group_id;
236
237 /* This is the cselib value. */
238 cselib_val *cse_base;
239
240 /* This canonized mem. */
241 rtx mem;
242
243 /* Canonized MEM address for use by canon_true_dependence. */
244 rtx mem_addr;
245
246 /* The offset of the first byte associated with the operation. */
247 poly_int64 offset;
248
249 /* The number of bytes covered by the operation. This is always exact
250 and known (rather than -1). */
251 poly_int64 width;
252
253 union
254 {
255 /* A bitmask as wide as the number of bytes in the word that
256 contains a 1 if the byte may be needed. The store is unused if
257 all of the bits are 0. This is used if IS_LARGE is false. */
258 unsigned HOST_WIDE_INT small_bitmask;
259
260 struct
261 {
262 /* A bitmap with one bit per byte, or null if the number of
263 bytes isn't known at compile time. A cleared bit means
264 the position is needed. Used if IS_LARGE is true. */
265 bitmap bmap;
266
267 /* When BITMAP is nonnull, this counts the number of set bits
268 (i.e. unneeded bytes) in the bitmap. If it is equal to
269 WIDTH, the whole store is unused.
270
271 When BITMAP is null:
272 - the store is definitely not needed when COUNT == 1
273 - all the store is needed when COUNT == 0 and RHS is nonnull
274 - otherwise we don't know which parts of the store are needed. */
275 int count;
276 } large;
277 } positions_needed;
278
279 /* The next store info for this insn. */
280 struct store_info *next;
281
282 /* The right hand side of the store. This is used if there is a
283 subsequent reload of the mems address somewhere later in the
284 basic block. */
285 rtx rhs;
286
287 /* If rhs is or holds a constant, this contains that constant,
288 otherwise NULL. */
289 rtx const_rhs;
290
291 /* Set if this store stores the same constant value as REDUNDANT_REASON
292 insn stored. These aren't eliminated early, because doing that
293 might prevent the earlier larger store to be eliminated. */
294 struct insn_info_type *redundant_reason;
295 };
296
297 /* Return a bitmask with the first N low bits set. */
298
299 static unsigned HOST_WIDE_INT
300 lowpart_bitmask (int n)
301 {
302 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U;
303 return mask >> (HOST_BITS_PER_WIDE_INT - n);
304 }
305
306 static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
307
308 static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
309
310 /* This structure holds information about a load. These are only
311 built for rtx bases. */
312 struct read_info_type
313 {
314 /* The id of the mem group of the base address. */
315 int group_id;
316
317 /* The offset of the first byte associated with the operation. */
318 poly_int64 offset;
319
320 /* The number of bytes covered by the operation, or -1 if not known. */
321 poly_int64 width;
322
323 /* The mem being read. */
324 rtx mem;
325
326 /* The next read_info for this insn. */
327 struct read_info_type *next;
328 };
329 typedef struct read_info_type *read_info_t;
330
331 static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
332
333 /* One of these records is created for each insn. */
334
335 struct insn_info_type
336 {
337 /* Set true if the insn contains a store but the insn itself cannot
338 be deleted. This is set if the insn is a parallel and there is
339 more than one non dead output or if the insn is in some way
340 volatile. */
341 bool cannot_delete;
342
343 /* This field is only used by the global algorithm. It is set true
344 if the insn contains any read of mem except for a (1). This is
345 also set if the insn is a call or has a clobber mem. If the insn
346 contains a wild read, the use_rec will be null. */
347 bool wild_read;
348
349 /* This is true only for CALL instructions which could potentially read
350 any non-frame memory location. This field is used by the global
351 algorithm. */
352 bool non_frame_wild_read;
353
354 /* This field is only used for the processing of const functions.
355 These functions cannot read memory, but they can read the stack
356 because that is where they may get their parms. We need to be
357 this conservative because, like the store motion pass, we don't
358 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
359 Moreover, we need to distinguish two cases:
360 1. Before reload (register elimination), the stores related to
361 outgoing arguments are stack pointer based and thus deemed
362 of non-constant base in this pass. This requires special
363 handling but also means that the frame pointer based stores
364 need not be killed upon encountering a const function call.
365 2. After reload, the stores related to outgoing arguments can be
366 either stack pointer or hard frame pointer based. This means
367 that we have no other choice than also killing all the frame
368 pointer based stores upon encountering a const function call.
369 This field is set after reload for const function calls and before
370 reload for const tail function calls on targets where arg pointer
371 is the frame pointer. Having this set is less severe than a wild
372 read, it just means that all the frame related stores are killed
373 rather than all the stores. */
374 bool frame_read;
375
376 /* This field is only used for the processing of const functions.
377 It is set if the insn may contain a stack pointer based store. */
378 bool stack_pointer_based;
379
380 /* This is true if any of the sets within the store contains a
381 cselib base. Such stores can only be deleted by the local
382 algorithm. */
383 bool contains_cselib_groups;
384
385 /* The insn. */
386 rtx_insn *insn;
387
388 /* The list of mem sets or mem clobbers that are contained in this
389 insn. If the insn is deletable, it contains only one mem set.
390 But it could also contain clobbers. Insns that contain more than
391 one mem set are not deletable, but each of those mems are here in
392 order to provide info to delete other insns. */
393 store_info *store_rec;
394
395 /* The linked list of mem uses in this insn. Only the reads from
396 rtx bases are listed here. The reads to cselib bases are
397 completely processed during the first scan and so are never
398 created. */
399 read_info_t read_rec;
400
401 /* The live fixed registers. We assume only fixed registers can
402 cause trouble by being clobbered from an expanded pattern;
403 storing only the live fixed registers (rather than all registers)
404 means less memory needs to be allocated / copied for the individual
405 stores. */
406 regset fixed_regs_live;
407
408 /* The prev insn in the basic block. */
409 struct insn_info_type * prev_insn;
410
411 /* The linked list of insns that are in consideration for removal in
412 the forwards pass through the basic block. This pointer may be
413 trash as it is not cleared when a wild read occurs. The only
414 time it is guaranteed to be correct is when the traversal starts
415 at active_local_stores. */
416 struct insn_info_type * next_local_store;
417 };
418 typedef struct insn_info_type *insn_info_t;
419
420 static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
421
422 /* The linked list of stores that are under consideration in this
423 basic block. */
424 static insn_info_t active_local_stores;
425 static int active_local_stores_len;
426
427 struct dse_bb_info_type
428 {
429 /* Pointer to the insn info for the last insn in the block. These
430 are linked so this is how all of the insns are reached. During
431 scanning this is the current insn being scanned. */
432 insn_info_t last_insn;
433
434 /* The info for the global dataflow problem. */
435
436
437 /* This is set if the transfer function should and in the wild_read
438 bitmap before applying the kill and gen sets. That vector knocks
439 out most of the bits in the bitmap and thus speeds up the
440 operations. */
441 bool apply_wild_read;
442
443 /* The following 4 bitvectors hold information about which positions
444 of which stores are live or dead. They are indexed by
445 get_bitmap_index. */
446
447 /* The set of store positions that exist in this block before a wild read. */
448 bitmap gen;
449
450 /* The set of load positions that exist in this block above the
451 same position of a store. */
452 bitmap kill;
453
454 /* The set of stores that reach the top of the block without being
455 killed by a read.
456
457 Do not represent the in if it is all ones. Note that this is
458 what the bitvector should logically be initialized to for a set
459 intersection problem. However, like the kill set, this is too
460 expensive. So initially, the in set will only be created for the
461 exit block and any block that contains a wild read. */
462 bitmap in;
463
464 /* The set of stores that reach the bottom of the block from it's
465 successors.
466
467 Do not represent the in if it is all ones. Note that this is
468 what the bitvector should logically be initialized to for a set
469 intersection problem. However, like the kill and in set, this is
470 too expensive. So what is done is that the confluence operator
471 just initializes the vector from one of the out sets of the
472 successors of the block. */
473 bitmap out;
474
475 /* The following bitvector is indexed by the reg number. It
476 contains the set of regs that are live at the current instruction
477 being processed. While it contains info for all of the
478 registers, only the hard registers are actually examined. It is used
479 to assure that shift and/or add sequences that are inserted do not
480 accidentally clobber live hard regs. */
481 bitmap regs_live;
482 };
483
484 typedef struct dse_bb_info_type *bb_info_t;
485
486 static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
487 ("bb_info_pool");
488
489 /* Table to hold all bb_infos. */
490 static bb_info_t *bb_table;
491
492 /* There is a group_info for each rtx base that is used to reference
493 memory. There are also not many of the rtx bases because they are
494 very limited in scope. */
495
496 struct group_info
497 {
498 /* The actual base of the address. */
499 rtx rtx_base;
500
501 /* The sequential id of the base. This allows us to have a
502 canonical ordering of these that is not based on addresses. */
503 int id;
504
505 /* True if there are any positions that are to be processed
506 globally. */
507 bool process_globally;
508
509 /* True if the base of this group is either the frame_pointer or
510 hard_frame_pointer. */
511 bool frame_related;
512
513 /* A mem wrapped around the base pointer for the group in order to do
514 read dependency. It must be given BLKmode in order to encompass all
515 the possible offsets from the base. */
516 rtx base_mem;
517
518 /* Canonized version of base_mem's address. */
519 rtx canon_base_addr;
520
521 /* These two sets of two bitmaps are used to keep track of how many
522 stores are actually referencing that position from this base. We
523 only do this for rtx bases as this will be used to assign
524 positions in the bitmaps for the global problem. Bit N is set in
525 store1 on the first store for offset N. Bit N is set in store2
526 for the second store to offset N. This is all we need since we
527 only care about offsets that have two or more stores for them.
528
529 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
530 for 0 and greater offsets.
531
532 There is one special case here, for stores into the stack frame,
533 we will or store1 into store2 before deciding which stores look
534 at globally. This is because stores to the stack frame that have
535 no other reads before the end of the function can also be
536 deleted. */
537 bitmap store1_n, store1_p, store2_n, store2_p;
538
539 /* These bitmaps keep track of offsets in this group escape this function.
540 An offset escapes if it corresponds to a named variable whose
541 addressable flag is set. */
542 bitmap escaped_n, escaped_p;
543
544 /* The positions in this bitmap have the same assignments as the in,
545 out, gen and kill bitmaps. This bitmap is all zeros except for
546 the positions that are occupied by stores for this group. */
547 bitmap group_kill;
548
549 /* The offset_map is used to map the offsets from this base into
550 positions in the global bitmaps. It is only created after all of
551 the all of stores have been scanned and we know which ones we
552 care about. */
553 int *offset_map_n, *offset_map_p;
554 int offset_map_size_n, offset_map_size_p;
555 };
556
557 static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
558
559 /* Index into the rtx_group_vec. */
560 static int rtx_group_next_id;
561
562
563 static vec<group_info *> rtx_group_vec;
564
565
566 /* This structure holds the set of changes that are being deferred
567 when removing read operation. See replace_read. */
568 struct deferred_change
569 {
570
571 /* The mem that is being replaced. */
572 rtx *loc;
573
574 /* The reg it is being replaced with. */
575 rtx reg;
576
577 struct deferred_change *next;
578 };
579
580 static object_allocator<deferred_change> deferred_change_pool
581 ("deferred_change_pool");
582
583 static deferred_change *deferred_change_list = NULL;
584
585 /* This is true except if cfun->stdarg -- i.e. we cannot do
586 this for vararg functions because they play games with the frame. */
587 static bool stores_off_frame_dead_at_return;
588
589 /* Counter for stats. */
590 static int globally_deleted;
591 static int locally_deleted;
592
593 static bitmap all_blocks;
594
595 /* Locations that are killed by calls in the global phase. */
596 static bitmap kill_on_calls;
597
598 /* The number of bits used in the global bitmaps. */
599 static unsigned int current_position;
600
601 /* Print offset range [OFFSET, OFFSET + WIDTH) to FILE. */
602
603 static void
604 print_range (FILE *file, poly_int64 offset, poly_int64 width)
605 {
606 fprintf (file, "[");
607 print_dec (offset, file, SIGNED);
608 fprintf (file, "..");
609 print_dec (offset + width, file, SIGNED);
610 fprintf (file, ")");
611 }
612 \f
613 /*----------------------------------------------------------------------------
614 Zeroth step.
615
616 Initialization.
617 ----------------------------------------------------------------------------*/
618
619
620 /* Hashtable callbacks for maintaining the "bases" field of
621 store_group_info, given that the addresses are function invariants. */
622
623 struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
624 {
625 static inline hashval_t hash (const group_info *);
626 static inline bool equal (const group_info *, const group_info *);
627 };
628
629 inline bool
630 invariant_group_base_hasher::equal (const group_info *gi1,
631 const group_info *gi2)
632 {
633 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
634 }
635
636 inline hashval_t
637 invariant_group_base_hasher::hash (const group_info *gi)
638 {
639 int do_not_record;
640 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
641 }
642
643 /* Tables of group_info structures, hashed by base value. */
644 static hash_table<invariant_group_base_hasher> *rtx_group_table;
645
646
647 /* Get the GROUP for BASE. Add a new group if it is not there. */
648
649 static group_info *
650 get_group_info (rtx base)
651 {
652 struct group_info tmp_gi;
653 group_info *gi;
654 group_info **slot;
655
656 gcc_assert (base != NULL_RTX);
657
658 /* Find the store_base_info structure for BASE, creating a new one
659 if necessary. */
660 tmp_gi.rtx_base = base;
661 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
662 gi = *slot;
663
664 if (gi == NULL)
665 {
666 *slot = gi = group_info_pool.allocate ();
667 gi->rtx_base = base;
668 gi->id = rtx_group_next_id++;
669 gi->base_mem = gen_rtx_MEM (BLKmode, base);
670 gi->canon_base_addr = canon_rtx (base);
671 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
672 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
673 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
674 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
675 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
676 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
677 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
678 gi->process_globally = false;
679 gi->frame_related =
680 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
681 gi->offset_map_size_n = 0;
682 gi->offset_map_size_p = 0;
683 gi->offset_map_n = NULL;
684 gi->offset_map_p = NULL;
685 rtx_group_vec.safe_push (gi);
686 }
687
688 return gi;
689 }
690
691
692 /* Initialization of data structures. */
693
694 static void
695 dse_step0 (void)
696 {
697 locally_deleted = 0;
698 globally_deleted = 0;
699
700 bitmap_obstack_initialize (&dse_bitmap_obstack);
701 gcc_obstack_init (&dse_obstack);
702
703 scratch = BITMAP_ALLOC (&reg_obstack);
704 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
705
706
707 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
708
709 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
710 rtx_group_next_id = 0;
711
712 stores_off_frame_dead_at_return = !cfun->stdarg;
713
714 init_alias_analysis ();
715 }
716
717
718 \f
719 /*----------------------------------------------------------------------------
720 First step.
721
722 Scan all of the insns. Any random ordering of the blocks is fine.
723 Each block is scanned in forward order to accommodate cselib which
724 is used to remove stores with non-constant bases.
725 ----------------------------------------------------------------------------*/
726
727 /* Delete all of the store_info recs from INSN_INFO. */
728
729 static void
730 free_store_info (insn_info_t insn_info)
731 {
732 store_info *cur = insn_info->store_rec;
733 while (cur)
734 {
735 store_info *next = cur->next;
736 if (cur->is_large)
737 BITMAP_FREE (cur->positions_needed.large.bmap);
738 if (cur->cse_base)
739 cse_store_info_pool.remove (cur);
740 else
741 rtx_store_info_pool.remove (cur);
742 cur = next;
743 }
744
745 insn_info->cannot_delete = true;
746 insn_info->contains_cselib_groups = false;
747 insn_info->store_rec = NULL;
748 }
749
750 struct note_add_store_info
751 {
752 rtx_insn *first, *current;
753 regset fixed_regs_live;
754 bool failure;
755 };
756
757 /* Callback for emit_inc_dec_insn_before via note_stores.
758 Check if a register is clobbered which is live afterwards. */
759
760 static void
761 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
762 {
763 rtx_insn *insn;
764 note_add_store_info *info = (note_add_store_info *) data;
765
766 if (!REG_P (loc))
767 return;
768
769 /* If this register is referenced by the current or an earlier insn,
770 that's OK. E.g. this applies to the register that is being incremented
771 with this addition. */
772 for (insn = info->first;
773 insn != NEXT_INSN (info->current);
774 insn = NEXT_INSN (insn))
775 if (reg_referenced_p (loc, PATTERN (insn)))
776 return;
777
778 /* If we come here, we have a clobber of a register that's only OK
779 if that register is not live. If we don't have liveness information
780 available, fail now. */
781 if (!info->fixed_regs_live)
782 {
783 info->failure = true;
784 return;
785 }
786 /* Now check if this is a live fixed register. */
787 unsigned int end_regno = END_REGNO (loc);
788 for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
789 if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
790 info->failure = true;
791 }
792
793 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
794 SRC + SRCOFF before insn ARG. */
795
796 static int
797 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
798 rtx op ATTRIBUTE_UNUSED,
799 rtx dest, rtx src, rtx srcoff, void *arg)
800 {
801 insn_info_t insn_info = (insn_info_t) arg;
802 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
803 note_add_store_info info;
804
805 /* We can reuse all operands without copying, because we are about
806 to delete the insn that contained it. */
807 if (srcoff)
808 {
809 start_sequence ();
810 emit_insn (gen_add3_insn (dest, src, srcoff));
811 new_insn = get_insns ();
812 end_sequence ();
813 }
814 else
815 new_insn = gen_move_insn (dest, src);
816 info.first = new_insn;
817 info.fixed_regs_live = insn_info->fixed_regs_live;
818 info.failure = false;
819 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
820 {
821 info.current = cur;
822 note_stores (PATTERN (cur), note_add_store, &info);
823 }
824
825 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
826 return it immediately, communicating the failure to its caller. */
827 if (info.failure)
828 return 1;
829
830 emit_insn_before (new_insn, insn);
831
832 return 0;
833 }
834
835 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
836 is there, is split into a separate insn.
837 Return true on success (or if there was nothing to do), false on failure. */
838
839 static bool
840 check_for_inc_dec_1 (insn_info_t insn_info)
841 {
842 rtx_insn *insn = insn_info->insn;
843 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
844 if (note)
845 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
846 insn_info) == 0;
847 return true;
848 }
849
850
851 /* Entry point for postreload. If you work on reload_cse, or you need this
852 anywhere else, consider if you can provide register liveness information
853 and add a parameter to this function so that it can be passed down in
854 insn_info.fixed_regs_live. */
855 bool
856 check_for_inc_dec (rtx_insn *insn)
857 {
858 insn_info_type insn_info;
859 rtx note;
860
861 insn_info.insn = insn;
862 insn_info.fixed_regs_live = NULL;
863 note = find_reg_note (insn, REG_INC, NULL_RTX);
864 if (note)
865 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
866 &insn_info) == 0;
867 return true;
868 }
869
870 /* Delete the insn and free all of the fields inside INSN_INFO. */
871
872 static void
873 delete_dead_store_insn (insn_info_t insn_info)
874 {
875 read_info_t read_info;
876
877 if (!dbg_cnt (dse))
878 return;
879
880 if (!check_for_inc_dec_1 (insn_info))
881 return;
882 if (dump_file && (dump_flags & TDF_DETAILS))
883 fprintf (dump_file, "Locally deleting insn %d\n",
884 INSN_UID (insn_info->insn));
885
886 free_store_info (insn_info);
887 read_info = insn_info->read_rec;
888
889 while (read_info)
890 {
891 read_info_t next = read_info->next;
892 read_info_type_pool.remove (read_info);
893 read_info = next;
894 }
895 insn_info->read_rec = NULL;
896
897 delete_insn (insn_info->insn);
898 locally_deleted++;
899 insn_info->insn = NULL;
900
901 insn_info->wild_read = false;
902 }
903
904 /* Return whether DECL, a local variable, can possibly escape the current
905 function scope. */
906
907 static bool
908 local_variable_can_escape (tree decl)
909 {
910 if (TREE_ADDRESSABLE (decl))
911 return true;
912
913 /* If this is a partitioned variable, we need to consider all the variables
914 in the partition. This is necessary because a store into one of them can
915 be replaced with a store into another and this may not change the outcome
916 of the escape analysis. */
917 if (cfun->gimple_df->decls_to_pointers != NULL)
918 {
919 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
920 if (namep)
921 return TREE_ADDRESSABLE (*namep);
922 }
923
924 return false;
925 }
926
927 /* Return whether EXPR can possibly escape the current function scope. */
928
929 static bool
930 can_escape (tree expr)
931 {
932 tree base;
933 if (!expr)
934 return true;
935 base = get_base_address (expr);
936 if (DECL_P (base)
937 && !may_be_aliased (base)
938 && !(VAR_P (base)
939 && !DECL_EXTERNAL (base)
940 && !TREE_STATIC (base)
941 && local_variable_can_escape (base)))
942 return false;
943 return true;
944 }
945
946 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
947 OFFSET and WIDTH. */
948
949 static void
950 set_usage_bits (group_info *group, poly_int64 offset, poly_int64 width,
951 tree expr)
952 {
953 /* Non-constant offsets and widths act as global kills, so there's no point
954 trying to use them to derive global DSE candidates. */
955 HOST_WIDE_INT i, const_offset, const_width;
956 bool expr_escapes = can_escape (expr);
957 if (offset.is_constant (&const_offset)
958 && width.is_constant (&const_width)
959 && const_offset > -MAX_OFFSET
960 && const_offset + const_width < MAX_OFFSET)
961 for (i = const_offset; i < const_offset + const_width; ++i)
962 {
963 bitmap store1;
964 bitmap store2;
965 bitmap escaped;
966 int ai;
967 if (i < 0)
968 {
969 store1 = group->store1_n;
970 store2 = group->store2_n;
971 escaped = group->escaped_n;
972 ai = -i;
973 }
974 else
975 {
976 store1 = group->store1_p;
977 store2 = group->store2_p;
978 escaped = group->escaped_p;
979 ai = i;
980 }
981
982 if (!bitmap_set_bit (store1, ai))
983 bitmap_set_bit (store2, ai);
984 else
985 {
986 if (i < 0)
987 {
988 if (group->offset_map_size_n < ai)
989 group->offset_map_size_n = ai;
990 }
991 else
992 {
993 if (group->offset_map_size_p < ai)
994 group->offset_map_size_p = ai;
995 }
996 }
997 if (expr_escapes)
998 bitmap_set_bit (escaped, ai);
999 }
1000 }
1001
1002 static void
1003 reset_active_stores (void)
1004 {
1005 active_local_stores = NULL;
1006 active_local_stores_len = 0;
1007 }
1008
1009 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1010
1011 static void
1012 free_read_records (bb_info_t bb_info)
1013 {
1014 insn_info_t insn_info = bb_info->last_insn;
1015 read_info_t *ptr = &insn_info->read_rec;
1016 while (*ptr)
1017 {
1018 read_info_t next = (*ptr)->next;
1019 read_info_type_pool.remove (*ptr);
1020 *ptr = next;
1021 }
1022 }
1023
1024 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1025
1026 static void
1027 add_wild_read (bb_info_t bb_info)
1028 {
1029 insn_info_t insn_info = bb_info->last_insn;
1030 insn_info->wild_read = true;
1031 free_read_records (bb_info);
1032 reset_active_stores ();
1033 }
1034
1035 /* Set the BB_INFO so that the last insn is marked as a wild read of
1036 non-frame locations. */
1037
1038 static void
1039 add_non_frame_wild_read (bb_info_t bb_info)
1040 {
1041 insn_info_t insn_info = bb_info->last_insn;
1042 insn_info->non_frame_wild_read = true;
1043 free_read_records (bb_info);
1044 reset_active_stores ();
1045 }
1046
1047 /* Return true if X is a constant or one of the registers that behave
1048 as a constant over the life of a function. This is equivalent to
1049 !rtx_varies_p for memory addresses. */
1050
1051 static bool
1052 const_or_frame_p (rtx x)
1053 {
1054 if (CONSTANT_P (x))
1055 return true;
1056
1057 if (GET_CODE (x) == REG)
1058 {
1059 /* Note that we have to test for the actual rtx used for the frame
1060 and arg pointers and not just the register number in case we have
1061 eliminated the frame and/or arg pointer and are using it
1062 for pseudos. */
1063 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1064 /* The arg pointer varies if it is not a fixed register. */
1065 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1066 || x == pic_offset_table_rtx)
1067 return true;
1068 return false;
1069 }
1070
1071 return false;
1072 }
1073
1074 /* Take all reasonable action to put the address of MEM into the form
1075 that we can do analysis on.
1076
1077 The gold standard is to get the address into the form: address +
1078 OFFSET where address is something that rtx_varies_p considers a
1079 constant. When we can get the address in this form, we can do
1080 global analysis on it. Note that for constant bases, address is
1081 not actually returned, only the group_id. The address can be
1082 obtained from that.
1083
1084 If that fails, we try cselib to get a value we can at least use
1085 locally. If that fails we return false.
1086
1087 The GROUP_ID is set to -1 for cselib bases and the index of the
1088 group for non_varying bases.
1089
1090 FOR_READ is true if this is a mem read and false if not. */
1091
1092 static bool
1093 canon_address (rtx mem,
1094 int *group_id,
1095 poly_int64 *offset,
1096 cselib_val **base)
1097 {
1098 machine_mode address_mode = get_address_mode (mem);
1099 rtx mem_address = XEXP (mem, 0);
1100 rtx expanded_address, address;
1101 int expanded;
1102
1103 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1104
1105 if (dump_file && (dump_flags & TDF_DETAILS))
1106 {
1107 fprintf (dump_file, " mem: ");
1108 print_inline_rtx (dump_file, mem_address, 0);
1109 fprintf (dump_file, "\n");
1110 }
1111
1112 /* First see if just canon_rtx (mem_address) is const or frame,
1113 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1114 address = NULL_RTX;
1115 for (expanded = 0; expanded < 2; expanded++)
1116 {
1117 if (expanded)
1118 {
1119 /* Use cselib to replace all of the reg references with the full
1120 expression. This will take care of the case where we have
1121
1122 r_x = base + offset;
1123 val = *r_x;
1124
1125 by making it into
1126
1127 val = *(base + offset); */
1128
1129 expanded_address = cselib_expand_value_rtx (mem_address,
1130 scratch, 5);
1131
1132 /* If this fails, just go with the address from first
1133 iteration. */
1134 if (!expanded_address)
1135 break;
1136 }
1137 else
1138 expanded_address = mem_address;
1139
1140 /* Split the address into canonical BASE + OFFSET terms. */
1141 address = canon_rtx (expanded_address);
1142
1143 *offset = 0;
1144
1145 if (dump_file && (dump_flags & TDF_DETAILS))
1146 {
1147 if (expanded)
1148 {
1149 fprintf (dump_file, "\n after cselib_expand address: ");
1150 print_inline_rtx (dump_file, expanded_address, 0);
1151 fprintf (dump_file, "\n");
1152 }
1153
1154 fprintf (dump_file, "\n after canon_rtx address: ");
1155 print_inline_rtx (dump_file, address, 0);
1156 fprintf (dump_file, "\n");
1157 }
1158
1159 if (GET_CODE (address) == CONST)
1160 address = XEXP (address, 0);
1161
1162 address = strip_offset_and_add (address, offset);
1163
1164 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1165 && const_or_frame_p (address))
1166 {
1167 group_info *group = get_group_info (address);
1168
1169 if (dump_file && (dump_flags & TDF_DETAILS))
1170 {
1171 fprintf (dump_file, " gid=%d offset=", group->id);
1172 print_dec (*offset, dump_file);
1173 fprintf (dump_file, "\n");
1174 }
1175 *base = NULL;
1176 *group_id = group->id;
1177 return true;
1178 }
1179 }
1180
1181 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1182 *group_id = -1;
1183
1184 if (*base == NULL)
1185 {
1186 if (dump_file && (dump_flags & TDF_DETAILS))
1187 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1188 return false;
1189 }
1190 if (dump_file && (dump_flags & TDF_DETAILS))
1191 {
1192 fprintf (dump_file, " varying cselib base=%u:%u offset = ",
1193 (*base)->uid, (*base)->hash);
1194 print_dec (*offset, dump_file);
1195 fprintf (dump_file, "\n");
1196 }
1197 return true;
1198 }
1199
1200
1201 /* Clear the rhs field from the active_local_stores array. */
1202
1203 static void
1204 clear_rhs_from_active_local_stores (void)
1205 {
1206 insn_info_t ptr = active_local_stores;
1207
1208 while (ptr)
1209 {
1210 store_info *store_info = ptr->store_rec;
1211 /* Skip the clobbers. */
1212 while (!store_info->is_set)
1213 store_info = store_info->next;
1214
1215 store_info->rhs = NULL;
1216 store_info->const_rhs = NULL;
1217
1218 ptr = ptr->next_local_store;
1219 }
1220 }
1221
1222
1223 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1224
1225 static inline void
1226 set_position_unneeded (store_info *s_info, int pos)
1227 {
1228 if (__builtin_expect (s_info->is_large, false))
1229 {
1230 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1231 s_info->positions_needed.large.count++;
1232 }
1233 else
1234 s_info->positions_needed.small_bitmask
1235 &= ~(HOST_WIDE_INT_1U << pos);
1236 }
1237
1238 /* Mark the whole store S_INFO as unneeded. */
1239
1240 static inline void
1241 set_all_positions_unneeded (store_info *s_info)
1242 {
1243 if (__builtin_expect (s_info->is_large, false))
1244 {
1245 HOST_WIDE_INT width;
1246 if (s_info->width.is_constant (&width))
1247 {
1248 bitmap_set_range (s_info->positions_needed.large.bmap, 0, width);
1249 s_info->positions_needed.large.count = width;
1250 }
1251 else
1252 {
1253 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1254 s_info->positions_needed.large.count = 1;
1255 }
1256 }
1257 else
1258 s_info->positions_needed.small_bitmask = HOST_WIDE_INT_0U;
1259 }
1260
1261 /* Return TRUE if any bytes from S_INFO store are needed. */
1262
1263 static inline bool
1264 any_positions_needed_p (store_info *s_info)
1265 {
1266 if (__builtin_expect (s_info->is_large, false))
1267 {
1268 HOST_WIDE_INT width;
1269 if (s_info->width.is_constant (&width))
1270 {
1271 gcc_checking_assert (s_info->positions_needed.large.bmap);
1272 return s_info->positions_needed.large.count < width;
1273 }
1274 else
1275 {
1276 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1277 return s_info->positions_needed.large.count == 0;
1278 }
1279 }
1280 else
1281 return (s_info->positions_needed.small_bitmask != HOST_WIDE_INT_0U);
1282 }
1283
1284 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1285 store are known to be needed. */
1286
1287 static inline bool
1288 all_positions_needed_p (store_info *s_info, poly_int64 start,
1289 poly_int64 width)
1290 {
1291 gcc_assert (s_info->rhs);
1292 if (!s_info->width.is_constant ())
1293 {
1294 gcc_assert (s_info->is_large
1295 && !s_info->positions_needed.large.bmap);
1296 return s_info->positions_needed.large.count == 0;
1297 }
1298
1299 /* Otherwise, if START and WIDTH are non-constant, we're asking about
1300 a non-constant region of a constant-sized store. We can't say for
1301 sure that all positions are needed. */
1302 HOST_WIDE_INT const_start, const_width;
1303 if (!start.is_constant (&const_start)
1304 || !width.is_constant (&const_width))
1305 return false;
1306
1307 if (__builtin_expect (s_info->is_large, false))
1308 {
1309 for (HOST_WIDE_INT i = const_start; i < const_start + const_width; ++i)
1310 if (bitmap_bit_p (s_info->positions_needed.large.bmap, i))
1311 return false;
1312 return true;
1313 }
1314 else
1315 {
1316 unsigned HOST_WIDE_INT mask
1317 = lowpart_bitmask (const_width) << const_start;
1318 return (s_info->positions_needed.small_bitmask & mask) == mask;
1319 }
1320 }
1321
1322
1323 static rtx get_stored_val (store_info *, machine_mode, poly_int64,
1324 poly_int64, basic_block, bool);
1325
1326
1327 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1328 there is a candidate store, after adding it to the appropriate
1329 local store group if so. */
1330
1331 static int
1332 record_store (rtx body, bb_info_t bb_info)
1333 {
1334 rtx mem, rhs, const_rhs, mem_addr;
1335 poly_int64 offset = 0;
1336 poly_int64 width = 0;
1337 insn_info_t insn_info = bb_info->last_insn;
1338 store_info *store_info = NULL;
1339 int group_id;
1340 cselib_val *base = NULL;
1341 insn_info_t ptr, last, redundant_reason;
1342 bool store_is_unused;
1343
1344 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1345 return 0;
1346
1347 mem = SET_DEST (body);
1348
1349 /* If this is not used, then this cannot be used to keep the insn
1350 from being deleted. On the other hand, it does provide something
1351 that can be used to prove that another store is dead. */
1352 store_is_unused
1353 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1354
1355 /* Check whether that value is a suitable memory location. */
1356 if (!MEM_P (mem))
1357 {
1358 /* If the set or clobber is unused, then it does not effect our
1359 ability to get rid of the entire insn. */
1360 if (!store_is_unused)
1361 insn_info->cannot_delete = true;
1362 return 0;
1363 }
1364
1365 /* At this point we know mem is a mem. */
1366 if (GET_MODE (mem) == BLKmode)
1367 {
1368 HOST_WIDE_INT const_size;
1369 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1370 {
1371 if (dump_file && (dump_flags & TDF_DETAILS))
1372 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1373 add_wild_read (bb_info);
1374 insn_info->cannot_delete = true;
1375 return 0;
1376 }
1377 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1378 as memset (addr, 0, 36); */
1379 else if (!MEM_SIZE_KNOWN_P (mem)
1380 || maybe_le (MEM_SIZE (mem), 0)
1381 /* This is a limit on the bitmap size, which is only relevant
1382 for constant-sized MEMs. */
1383 || (MEM_SIZE (mem).is_constant (&const_size)
1384 && const_size > MAX_OFFSET)
1385 || GET_CODE (body) != SET
1386 || !CONST_INT_P (SET_SRC (body)))
1387 {
1388 if (!store_is_unused)
1389 {
1390 /* If the set or clobber is unused, then it does not effect our
1391 ability to get rid of the entire insn. */
1392 insn_info->cannot_delete = true;
1393 clear_rhs_from_active_local_stores ();
1394 }
1395 return 0;
1396 }
1397 }
1398
1399 /* We can still process a volatile mem, we just cannot delete it. */
1400 if (MEM_VOLATILE_P (mem))
1401 insn_info->cannot_delete = true;
1402
1403 if (!canon_address (mem, &group_id, &offset, &base))
1404 {
1405 clear_rhs_from_active_local_stores ();
1406 return 0;
1407 }
1408
1409 if (GET_MODE (mem) == BLKmode)
1410 width = MEM_SIZE (mem);
1411 else
1412 width = GET_MODE_SIZE (GET_MODE (mem));
1413
1414 if (!endpoint_representable_p (offset, width))
1415 {
1416 clear_rhs_from_active_local_stores ();
1417 return 0;
1418 }
1419
1420 if (group_id >= 0)
1421 {
1422 /* In the restrictive case where the base is a constant or the
1423 frame pointer we can do global analysis. */
1424
1425 group_info *group
1426 = rtx_group_vec[group_id];
1427 tree expr = MEM_EXPR (mem);
1428
1429 store_info = rtx_store_info_pool.allocate ();
1430 set_usage_bits (group, offset, width, expr);
1431
1432 if (dump_file && (dump_flags & TDF_DETAILS))
1433 {
1434 fprintf (dump_file, " processing const base store gid=%d",
1435 group_id);
1436 print_range (dump_file, offset, width);
1437 fprintf (dump_file, "\n");
1438 }
1439 }
1440 else
1441 {
1442 if (may_be_sp_based_p (XEXP (mem, 0)))
1443 insn_info->stack_pointer_based = true;
1444 insn_info->contains_cselib_groups = true;
1445
1446 store_info = cse_store_info_pool.allocate ();
1447 group_id = -1;
1448
1449 if (dump_file && (dump_flags & TDF_DETAILS))
1450 {
1451 fprintf (dump_file, " processing cselib store ");
1452 print_range (dump_file, offset, width);
1453 fprintf (dump_file, "\n");
1454 }
1455 }
1456
1457 const_rhs = rhs = NULL_RTX;
1458 if (GET_CODE (body) == SET
1459 /* No place to keep the value after ra. */
1460 && !reload_completed
1461 && (REG_P (SET_SRC (body))
1462 || GET_CODE (SET_SRC (body)) == SUBREG
1463 || CONSTANT_P (SET_SRC (body)))
1464 && !MEM_VOLATILE_P (mem)
1465 /* Sometimes the store and reload is used for truncation and
1466 rounding. */
1467 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1468 {
1469 rhs = SET_SRC (body);
1470 if (CONSTANT_P (rhs))
1471 const_rhs = rhs;
1472 else if (body == PATTERN (insn_info->insn))
1473 {
1474 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1475 if (tem && CONSTANT_P (XEXP (tem, 0)))
1476 const_rhs = XEXP (tem, 0);
1477 }
1478 if (const_rhs == NULL_RTX && REG_P (rhs))
1479 {
1480 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1481
1482 if (tem && CONSTANT_P (tem))
1483 const_rhs = tem;
1484 }
1485 }
1486
1487 /* Check to see if this stores causes some other stores to be
1488 dead. */
1489 ptr = active_local_stores;
1490 last = NULL;
1491 redundant_reason = NULL;
1492 mem = canon_rtx (mem);
1493
1494 if (group_id < 0)
1495 mem_addr = base->val_rtx;
1496 else
1497 {
1498 group_info *group = rtx_group_vec[group_id];
1499 mem_addr = group->canon_base_addr;
1500 }
1501 if (maybe_ne (offset, 0))
1502 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1503
1504 while (ptr)
1505 {
1506 insn_info_t next = ptr->next_local_store;
1507 struct store_info *s_info = ptr->store_rec;
1508 bool del = true;
1509
1510 /* Skip the clobbers. We delete the active insn if this insn
1511 shadows the set. To have been put on the active list, it
1512 has exactly on set. */
1513 while (!s_info->is_set)
1514 s_info = s_info->next;
1515
1516 if (s_info->group_id == group_id && s_info->cse_base == base)
1517 {
1518 HOST_WIDE_INT i;
1519 if (dump_file && (dump_flags & TDF_DETAILS))
1520 {
1521 fprintf (dump_file, " trying store in insn=%d gid=%d",
1522 INSN_UID (ptr->insn), s_info->group_id);
1523 print_range (dump_file, s_info->offset, s_info->width);
1524 fprintf (dump_file, "\n");
1525 }
1526
1527 /* Even if PTR won't be eliminated as unneeded, if both
1528 PTR and this insn store the same constant value, we might
1529 eliminate this insn instead. */
1530 if (s_info->const_rhs
1531 && const_rhs
1532 && known_subrange_p (offset, width,
1533 s_info->offset, s_info->width)
1534 && all_positions_needed_p (s_info, offset - s_info->offset,
1535 width))
1536 {
1537 if (GET_MODE (mem) == BLKmode)
1538 {
1539 if (GET_MODE (s_info->mem) == BLKmode
1540 && s_info->const_rhs == const_rhs)
1541 redundant_reason = ptr;
1542 }
1543 else if (s_info->const_rhs == const0_rtx
1544 && const_rhs == const0_rtx)
1545 redundant_reason = ptr;
1546 else
1547 {
1548 rtx val;
1549 start_sequence ();
1550 val = get_stored_val (s_info, GET_MODE (mem), offset, width,
1551 BLOCK_FOR_INSN (insn_info->insn),
1552 true);
1553 if (get_insns () != NULL)
1554 val = NULL_RTX;
1555 end_sequence ();
1556 if (val && rtx_equal_p (val, const_rhs))
1557 redundant_reason = ptr;
1558 }
1559 }
1560
1561 HOST_WIDE_INT begin_unneeded, const_s_width, const_width;
1562 if (known_subrange_p (s_info->offset, s_info->width, offset, width))
1563 /* The new store touches every byte that S_INFO does. */
1564 set_all_positions_unneeded (s_info);
1565 else if ((offset - s_info->offset).is_constant (&begin_unneeded)
1566 && s_info->width.is_constant (&const_s_width)
1567 && width.is_constant (&const_width))
1568 {
1569 HOST_WIDE_INT end_unneeded = begin_unneeded + const_width;
1570 begin_unneeded = MAX (begin_unneeded, 0);
1571 end_unneeded = MIN (end_unneeded, const_s_width);
1572 for (i = begin_unneeded; i < end_unneeded; ++i)
1573 set_position_unneeded (s_info, i);
1574 }
1575 else
1576 {
1577 /* We don't know which parts of S_INFO are needed and
1578 which aren't, so invalidate the RHS. */
1579 s_info->rhs = NULL;
1580 s_info->const_rhs = NULL;
1581 }
1582 }
1583 else if (s_info->rhs)
1584 /* Need to see if it is possible for this store to overwrite
1585 the value of store_info. If it is, set the rhs to NULL to
1586 keep it from being used to remove a load. */
1587 {
1588 if (canon_output_dependence (s_info->mem, true,
1589 mem, GET_MODE (mem),
1590 mem_addr))
1591 {
1592 s_info->rhs = NULL;
1593 s_info->const_rhs = NULL;
1594 }
1595 }
1596
1597 /* An insn can be deleted if every position of every one of
1598 its s_infos is zero. */
1599 if (any_positions_needed_p (s_info))
1600 del = false;
1601
1602 if (del)
1603 {
1604 insn_info_t insn_to_delete = ptr;
1605
1606 active_local_stores_len--;
1607 if (last)
1608 last->next_local_store = ptr->next_local_store;
1609 else
1610 active_local_stores = ptr->next_local_store;
1611
1612 if (!insn_to_delete->cannot_delete)
1613 delete_dead_store_insn (insn_to_delete);
1614 }
1615 else
1616 last = ptr;
1617
1618 ptr = next;
1619 }
1620
1621 /* Finish filling in the store_info. */
1622 store_info->next = insn_info->store_rec;
1623 insn_info->store_rec = store_info;
1624 store_info->mem = mem;
1625 store_info->mem_addr = mem_addr;
1626 store_info->cse_base = base;
1627 HOST_WIDE_INT const_width;
1628 if (!width.is_constant (&const_width))
1629 {
1630 store_info->is_large = true;
1631 store_info->positions_needed.large.count = 0;
1632 store_info->positions_needed.large.bmap = NULL;
1633 }
1634 else if (const_width > HOST_BITS_PER_WIDE_INT)
1635 {
1636 store_info->is_large = true;
1637 store_info->positions_needed.large.count = 0;
1638 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1639 }
1640 else
1641 {
1642 store_info->is_large = false;
1643 store_info->positions_needed.small_bitmask
1644 = lowpart_bitmask (const_width);
1645 }
1646 store_info->group_id = group_id;
1647 store_info->offset = offset;
1648 store_info->width = width;
1649 store_info->is_set = GET_CODE (body) == SET;
1650 store_info->rhs = rhs;
1651 store_info->const_rhs = const_rhs;
1652 store_info->redundant_reason = redundant_reason;
1653
1654 /* If this is a clobber, we return 0. We will only be able to
1655 delete this insn if there is only one store USED store, but we
1656 can use the clobber to delete other stores earlier. */
1657 return store_info->is_set ? 1 : 0;
1658 }
1659
1660
1661 static void
1662 dump_insn_info (const char * start, insn_info_t insn_info)
1663 {
1664 fprintf (dump_file, "%s insn=%d %s\n", start,
1665 INSN_UID (insn_info->insn),
1666 insn_info->store_rec ? "has store" : "naked");
1667 }
1668
1669
1670 /* If the modes are different and the value's source and target do not
1671 line up, we need to extract the value from lower part of the rhs of
1672 the store, shift it, and then put it into a form that can be shoved
1673 into the read_insn. This function generates a right SHIFT of a
1674 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1675 shift sequence is returned or NULL if we failed to find a
1676 shift. */
1677
1678 static rtx
1679 find_shift_sequence (poly_int64 access_size,
1680 store_info *store_info,
1681 machine_mode read_mode,
1682 poly_int64 shift, bool speed, bool require_cst)
1683 {
1684 machine_mode store_mode = GET_MODE (store_info->mem);
1685 scalar_int_mode new_mode;
1686 rtx read_reg = NULL;
1687
1688 /* Some machines like the x86 have shift insns for each size of
1689 operand. Other machines like the ppc or the ia-64 may only have
1690 shift insns that shift values within 32 or 64 bit registers.
1691 This loop tries to find the smallest shift insn that will right
1692 justify the value we want to read but is available in one insn on
1693 the machine. */
1694
1695 opt_scalar_int_mode new_mode_iter;
1696 FOR_EACH_MODE_FROM (new_mode_iter,
1697 smallest_int_mode_for_size (access_size * BITS_PER_UNIT))
1698 {
1699 rtx target, new_reg, new_lhs;
1700 rtx_insn *shift_seq, *insn;
1701 int cost;
1702
1703 new_mode = new_mode_iter.require ();
1704 if (GET_MODE_BITSIZE (new_mode) > BITS_PER_WORD)
1705 break;
1706
1707 /* If a constant was stored into memory, try to simplify it here,
1708 otherwise the cost of the shift might preclude this optimization
1709 e.g. at -Os, even when no actual shift will be needed. */
1710 if (store_info->const_rhs)
1711 {
1712 poly_uint64 byte = subreg_lowpart_offset (new_mode, store_mode);
1713 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1714 store_mode, byte);
1715 if (ret && CONSTANT_P (ret))
1716 {
1717 rtx shift_rtx = gen_int_shift_amount (new_mode, shift);
1718 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1719 ret, shift_rtx);
1720 if (ret && CONSTANT_P (ret))
1721 {
1722 byte = subreg_lowpart_offset (read_mode, new_mode);
1723 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1724 if (ret && CONSTANT_P (ret)
1725 && (set_src_cost (ret, read_mode, speed)
1726 <= COSTS_N_INSNS (1)))
1727 return ret;
1728 }
1729 }
1730 }
1731
1732 if (require_cst)
1733 return NULL_RTX;
1734
1735 /* Try a wider mode if truncating the store mode to NEW_MODE
1736 requires a real instruction. */
1737 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1738 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1739 continue;
1740
1741 /* Also try a wider mode if the necessary punning is either not
1742 desirable or not possible. */
1743 if (!CONSTANT_P (store_info->rhs)
1744 && !targetm.modes_tieable_p (new_mode, store_mode))
1745 continue;
1746
1747 new_reg = gen_reg_rtx (new_mode);
1748
1749 start_sequence ();
1750
1751 /* In theory we could also check for an ashr. Ian Taylor knows
1752 of one dsp where the cost of these two was not the same. But
1753 this really is a rare case anyway. */
1754 target = expand_binop (new_mode, lshr_optab, new_reg,
1755 gen_int_shift_amount (new_mode, shift),
1756 new_reg, 1, OPTAB_DIRECT);
1757
1758 shift_seq = get_insns ();
1759 end_sequence ();
1760
1761 if (target != new_reg || shift_seq == NULL)
1762 continue;
1763
1764 cost = 0;
1765 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1766 if (INSN_P (insn))
1767 cost += insn_cost (insn, speed);
1768
1769 /* The computation up to here is essentially independent
1770 of the arguments and could be precomputed. It may
1771 not be worth doing so. We could precompute if
1772 worthwhile or at least cache the results. The result
1773 technically depends on both SHIFT and ACCESS_SIZE,
1774 but in practice the answer will depend only on ACCESS_SIZE. */
1775
1776 if (cost > COSTS_N_INSNS (1))
1777 continue;
1778
1779 new_lhs = extract_low_bits (new_mode, store_mode,
1780 copy_rtx (store_info->rhs));
1781 if (new_lhs == NULL_RTX)
1782 continue;
1783
1784 /* We found an acceptable shift. Generate a move to
1785 take the value from the store and put it into the
1786 shift pseudo, then shift it, then generate another
1787 move to put in into the target of the read. */
1788 emit_move_insn (new_reg, new_lhs);
1789 emit_insn (shift_seq);
1790 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1791 break;
1792 }
1793
1794 return read_reg;
1795 }
1796
1797
1798 /* Call back for note_stores to find the hard regs set or clobbered by
1799 insn. Data is a bitmap of the hardregs set so far. */
1800
1801 static void
1802 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1803 {
1804 bitmap regs_set = (bitmap) data;
1805
1806 if (REG_P (x)
1807 && HARD_REGISTER_P (x))
1808 bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
1809 }
1810
1811 /* Helper function for replace_read and record_store.
1812 Attempt to return a value of mode READ_MODE stored in STORE_INFO,
1813 consisting of READ_WIDTH bytes starting from READ_OFFSET. Return NULL
1814 if not successful. If REQUIRE_CST is true, return always constant. */
1815
1816 static rtx
1817 get_stored_val (store_info *store_info, machine_mode read_mode,
1818 poly_int64 read_offset, poly_int64 read_width,
1819 basic_block bb, bool require_cst)
1820 {
1821 machine_mode store_mode = GET_MODE (store_info->mem);
1822 poly_int64 gap;
1823 rtx read_reg;
1824
1825 /* To get here the read is within the boundaries of the write so
1826 shift will never be negative. Start out with the shift being in
1827 bytes. */
1828 if (store_mode == BLKmode)
1829 gap = 0;
1830 else if (BYTES_BIG_ENDIAN)
1831 gap = ((store_info->offset + store_info->width)
1832 - (read_offset + read_width));
1833 else
1834 gap = read_offset - store_info->offset;
1835
1836 if (maybe_ne (gap, 0))
1837 {
1838 poly_int64 shift = gap * BITS_PER_UNIT;
1839 poly_int64 access_size = GET_MODE_SIZE (read_mode) + gap;
1840 read_reg = find_shift_sequence (access_size, store_info, read_mode,
1841 shift, optimize_bb_for_speed_p (bb),
1842 require_cst);
1843 }
1844 else if (store_mode == BLKmode)
1845 {
1846 /* The store is a memset (addr, const_val, const_size). */
1847 gcc_assert (CONST_INT_P (store_info->rhs));
1848 scalar_int_mode int_store_mode;
1849 if (!int_mode_for_mode (read_mode).exists (&int_store_mode))
1850 read_reg = NULL_RTX;
1851 else if (store_info->rhs == const0_rtx)
1852 read_reg = extract_low_bits (read_mode, int_store_mode, const0_rtx);
1853 else if (GET_MODE_BITSIZE (int_store_mode) > HOST_BITS_PER_WIDE_INT
1854 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1855 read_reg = NULL_RTX;
1856 else
1857 {
1858 unsigned HOST_WIDE_INT c
1859 = INTVAL (store_info->rhs)
1860 & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1);
1861 int shift = BITS_PER_UNIT;
1862 while (shift < HOST_BITS_PER_WIDE_INT)
1863 {
1864 c |= (c << shift);
1865 shift <<= 1;
1866 }
1867 read_reg = gen_int_mode (c, int_store_mode);
1868 read_reg = extract_low_bits (read_mode, int_store_mode, read_reg);
1869 }
1870 }
1871 else if (store_info->const_rhs
1872 && (require_cst
1873 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1874 read_reg = extract_low_bits (read_mode, store_mode,
1875 copy_rtx (store_info->const_rhs));
1876 else
1877 read_reg = extract_low_bits (read_mode, store_mode,
1878 copy_rtx (store_info->rhs));
1879 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1880 read_reg = NULL_RTX;
1881 return read_reg;
1882 }
1883
1884 /* Take a sequence of:
1885 A <- r1
1886 ...
1887 ... <- A
1888
1889 and change it into
1890 r2 <- r1
1891 A <- r1
1892 ...
1893 ... <- r2
1894
1895 or
1896
1897 r3 <- extract (r1)
1898 r3 <- r3 >> shift
1899 r2 <- extract (r3)
1900 ... <- r2
1901
1902 or
1903
1904 r2 <- extract (r1)
1905 ... <- r2
1906
1907 Depending on the alignment and the mode of the store and
1908 subsequent load.
1909
1910
1911 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1912 and READ_INSN are for the read. Return true if the replacement
1913 went ok. */
1914
1915 static bool
1916 replace_read (store_info *store_info, insn_info_t store_insn,
1917 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1918 bitmap regs_live)
1919 {
1920 machine_mode store_mode = GET_MODE (store_info->mem);
1921 machine_mode read_mode = GET_MODE (read_info->mem);
1922 rtx_insn *insns, *this_insn;
1923 rtx read_reg;
1924 basic_block bb;
1925
1926 if (!dbg_cnt (dse))
1927 return false;
1928
1929 /* Create a sequence of instructions to set up the read register.
1930 This sequence goes immediately before the store and its result
1931 is read by the load.
1932
1933 We need to keep this in perspective. We are replacing a read
1934 with a sequence of insns, but the read will almost certainly be
1935 in cache, so it is not going to be an expensive one. Thus, we
1936 are not willing to do a multi insn shift or worse a subroutine
1937 call to get rid of the read. */
1938 if (dump_file && (dump_flags & TDF_DETAILS))
1939 fprintf (dump_file, "trying to replace %smode load in insn %d"
1940 " from %smode store in insn %d\n",
1941 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1942 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1943 start_sequence ();
1944 bb = BLOCK_FOR_INSN (read_insn->insn);
1945 read_reg = get_stored_val (store_info,
1946 read_mode, read_info->offset, read_info->width,
1947 bb, false);
1948 if (read_reg == NULL_RTX)
1949 {
1950 end_sequence ();
1951 if (dump_file && (dump_flags & TDF_DETAILS))
1952 fprintf (dump_file, " -- could not extract bits of stored value\n");
1953 return false;
1954 }
1955 /* Force the value into a new register so that it won't be clobbered
1956 between the store and the load. */
1957 read_reg = copy_to_mode_reg (read_mode, read_reg);
1958 insns = get_insns ();
1959 end_sequence ();
1960
1961 if (insns != NULL_RTX)
1962 {
1963 /* Now we have to scan the set of new instructions to see if the
1964 sequence contains and sets of hardregs that happened to be
1965 live at this point. For instance, this can happen if one of
1966 the insns sets the CC and the CC happened to be live at that
1967 point. This does occasionally happen, see PR 37922. */
1968 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
1969
1970 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
1971 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
1972
1973 bitmap_and_into (regs_set, regs_live);
1974 if (!bitmap_empty_p (regs_set))
1975 {
1976 if (dump_file && (dump_flags & TDF_DETAILS))
1977 {
1978 fprintf (dump_file,
1979 "abandoning replacement because sequence clobbers live hardregs:");
1980 df_print_regset (dump_file, regs_set);
1981 }
1982
1983 BITMAP_FREE (regs_set);
1984 return false;
1985 }
1986 BITMAP_FREE (regs_set);
1987 }
1988
1989 if (validate_change (read_insn->insn, loc, read_reg, 0))
1990 {
1991 deferred_change *change = deferred_change_pool.allocate ();
1992
1993 /* Insert this right before the store insn where it will be safe
1994 from later insns that might change it before the read. */
1995 emit_insn_before (insns, store_insn->insn);
1996
1997 /* And now for the kludge part: cselib croaks if you just
1998 return at this point. There are two reasons for this:
1999
2000 1) Cselib has an idea of how many pseudos there are and
2001 that does not include the new ones we just added.
2002
2003 2) Cselib does not know about the move insn we added
2004 above the store_info, and there is no way to tell it
2005 about it, because it has "moved on".
2006
2007 Problem (1) is fixable with a certain amount of engineering.
2008 Problem (2) is requires starting the bb from scratch. This
2009 could be expensive.
2010
2011 So we are just going to have to lie. The move/extraction
2012 insns are not really an issue, cselib did not see them. But
2013 the use of the new pseudo read_insn is a real problem because
2014 cselib has not scanned this insn. The way that we solve this
2015 problem is that we are just going to put the mem back for now
2016 and when we are finished with the block, we undo this. We
2017 keep a table of mems to get rid of. At the end of the basic
2018 block we can put them back. */
2019
2020 *loc = read_info->mem;
2021 change->next = deferred_change_list;
2022 deferred_change_list = change;
2023 change->loc = loc;
2024 change->reg = read_reg;
2025
2026 /* Get rid of the read_info, from the point of view of the
2027 rest of dse, play like this read never happened. */
2028 read_insn->read_rec = read_info->next;
2029 read_info_type_pool.remove (read_info);
2030 if (dump_file && (dump_flags & TDF_DETAILS))
2031 {
2032 fprintf (dump_file, " -- replaced the loaded MEM with ");
2033 print_simple_rtl (dump_file, read_reg);
2034 fprintf (dump_file, "\n");
2035 }
2036 return true;
2037 }
2038 else
2039 {
2040 if (dump_file && (dump_flags & TDF_DETAILS))
2041 {
2042 fprintf (dump_file, " -- replacing the loaded MEM with ");
2043 print_simple_rtl (dump_file, read_reg);
2044 fprintf (dump_file, " led to an invalid instruction\n");
2045 }
2046 return false;
2047 }
2048 }
2049
2050 /* Check the address of MEM *LOC and kill any appropriate stores that may
2051 be active. */
2052
2053 static void
2054 check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
2055 {
2056 rtx mem = *loc, mem_addr;
2057 insn_info_t insn_info;
2058 poly_int64 offset = 0;
2059 poly_int64 width = 0;
2060 cselib_val *base = NULL;
2061 int group_id;
2062 read_info_t read_info;
2063
2064 insn_info = bb_info->last_insn;
2065
2066 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2067 || (MEM_VOLATILE_P (mem)))
2068 {
2069 if (dump_file && (dump_flags & TDF_DETAILS))
2070 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2071 add_wild_read (bb_info);
2072 insn_info->cannot_delete = true;
2073 return;
2074 }
2075
2076 /* If it is reading readonly mem, then there can be no conflict with
2077 another write. */
2078 if (MEM_READONLY_P (mem))
2079 return;
2080
2081 if (!canon_address (mem, &group_id, &offset, &base))
2082 {
2083 if (dump_file && (dump_flags & TDF_DETAILS))
2084 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2085 add_wild_read (bb_info);
2086 return;
2087 }
2088
2089 if (GET_MODE (mem) == BLKmode)
2090 width = -1;
2091 else
2092 width = GET_MODE_SIZE (GET_MODE (mem));
2093
2094 if (!endpoint_representable_p (offset, known_eq (width, -1) ? 1 : width))
2095 {
2096 if (dump_file && (dump_flags & TDF_DETAILS))
2097 fprintf (dump_file, " adding wild read, due to overflow.\n");
2098 add_wild_read (bb_info);
2099 return;
2100 }
2101
2102 read_info = read_info_type_pool.allocate ();
2103 read_info->group_id = group_id;
2104 read_info->mem = mem;
2105 read_info->offset = offset;
2106 read_info->width = width;
2107 read_info->next = insn_info->read_rec;
2108 insn_info->read_rec = read_info;
2109 if (group_id < 0)
2110 mem_addr = base->val_rtx;
2111 else
2112 {
2113 group_info *group = rtx_group_vec[group_id];
2114 mem_addr = group->canon_base_addr;
2115 }
2116 if (maybe_ne (offset, 0))
2117 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2118
2119 if (group_id >= 0)
2120 {
2121 /* This is the restricted case where the base is a constant or
2122 the frame pointer and offset is a constant. */
2123 insn_info_t i_ptr = active_local_stores;
2124 insn_info_t last = NULL;
2125
2126 if (dump_file && (dump_flags & TDF_DETAILS))
2127 {
2128 if (!known_size_p (width))
2129 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2130 group_id);
2131 else
2132 {
2133 fprintf (dump_file, " processing const load gid=%d", group_id);
2134 print_range (dump_file, offset, width);
2135 fprintf (dump_file, "\n");
2136 }
2137 }
2138
2139 while (i_ptr)
2140 {
2141 bool remove = false;
2142 store_info *store_info = i_ptr->store_rec;
2143
2144 /* Skip the clobbers. */
2145 while (!store_info->is_set)
2146 store_info = store_info->next;
2147
2148 /* There are three cases here. */
2149 if (store_info->group_id < 0)
2150 /* We have a cselib store followed by a read from a
2151 const base. */
2152 remove
2153 = canon_true_dependence (store_info->mem,
2154 GET_MODE (store_info->mem),
2155 store_info->mem_addr,
2156 mem, mem_addr);
2157
2158 else if (group_id == store_info->group_id)
2159 {
2160 /* This is a block mode load. We may get lucky and
2161 canon_true_dependence may save the day. */
2162 if (!known_size_p (width))
2163 remove
2164 = canon_true_dependence (store_info->mem,
2165 GET_MODE (store_info->mem),
2166 store_info->mem_addr,
2167 mem, mem_addr);
2168
2169 /* If this read is just reading back something that we just
2170 stored, rewrite the read. */
2171 else
2172 {
2173 if (store_info->rhs
2174 && known_subrange_p (offset, width, store_info->offset,
2175 store_info->width)
2176 && all_positions_needed_p (store_info,
2177 offset - store_info->offset,
2178 width)
2179 && replace_read (store_info, i_ptr, read_info,
2180 insn_info, loc, bb_info->regs_live))
2181 return;
2182
2183 /* The bases are the same, just see if the offsets
2184 could overlap. */
2185 if (ranges_maybe_overlap_p (offset, width,
2186 store_info->offset,
2187 store_info->width))
2188 remove = true;
2189 }
2190 }
2191
2192 /* else
2193 The else case that is missing here is that the
2194 bases are constant but different. There is nothing
2195 to do here because there is no overlap. */
2196
2197 if (remove)
2198 {
2199 if (dump_file && (dump_flags & TDF_DETAILS))
2200 dump_insn_info ("removing from active", i_ptr);
2201
2202 active_local_stores_len--;
2203 if (last)
2204 last->next_local_store = i_ptr->next_local_store;
2205 else
2206 active_local_stores = i_ptr->next_local_store;
2207 }
2208 else
2209 last = i_ptr;
2210 i_ptr = i_ptr->next_local_store;
2211 }
2212 }
2213 else
2214 {
2215 insn_info_t i_ptr = active_local_stores;
2216 insn_info_t last = NULL;
2217 if (dump_file && (dump_flags & TDF_DETAILS))
2218 {
2219 fprintf (dump_file, " processing cselib load mem:");
2220 print_inline_rtx (dump_file, mem, 0);
2221 fprintf (dump_file, "\n");
2222 }
2223
2224 while (i_ptr)
2225 {
2226 bool remove = false;
2227 store_info *store_info = i_ptr->store_rec;
2228
2229 if (dump_file && (dump_flags & TDF_DETAILS))
2230 fprintf (dump_file, " processing cselib load against insn %d\n",
2231 INSN_UID (i_ptr->insn));
2232
2233 /* Skip the clobbers. */
2234 while (!store_info->is_set)
2235 store_info = store_info->next;
2236
2237 /* If this read is just reading back something that we just
2238 stored, rewrite the read. */
2239 if (store_info->rhs
2240 && store_info->group_id == -1
2241 && store_info->cse_base == base
2242 && known_subrange_p (offset, width, store_info->offset,
2243 store_info->width)
2244 && all_positions_needed_p (store_info,
2245 offset - store_info->offset, width)
2246 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2247 bb_info->regs_live))
2248 return;
2249
2250 remove = canon_true_dependence (store_info->mem,
2251 GET_MODE (store_info->mem),
2252 store_info->mem_addr,
2253 mem, mem_addr);
2254
2255 if (remove)
2256 {
2257 if (dump_file && (dump_flags & TDF_DETAILS))
2258 dump_insn_info ("removing from active", i_ptr);
2259
2260 active_local_stores_len--;
2261 if (last)
2262 last->next_local_store = i_ptr->next_local_store;
2263 else
2264 active_local_stores = i_ptr->next_local_store;
2265 }
2266 else
2267 last = i_ptr;
2268 i_ptr = i_ptr->next_local_store;
2269 }
2270 }
2271 }
2272
2273 /* A note_uses callback in which DATA points the INSN_INFO for
2274 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2275 true for any part of *LOC. */
2276
2277 static void
2278 check_mem_read_use (rtx *loc, void *data)
2279 {
2280 subrtx_ptr_iterator::array_type array;
2281 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2282 {
2283 rtx *loc = *iter;
2284 if (MEM_P (*loc))
2285 check_mem_read_rtx (loc, (bb_info_t) data);
2286 }
2287 }
2288
2289
2290 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2291 So far it only handles arguments passed in registers. */
2292
2293 static bool
2294 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2295 {
2296 CUMULATIVE_ARGS args_so_far_v;
2297 cumulative_args_t args_so_far;
2298 tree arg;
2299 int idx;
2300
2301 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2302 args_so_far = pack_cumulative_args (&args_so_far_v);
2303
2304 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2305 for (idx = 0;
2306 arg != void_list_node && idx < nargs;
2307 arg = TREE_CHAIN (arg), idx++)
2308 {
2309 scalar_int_mode mode;
2310 rtx reg, link, tmp;
2311
2312 if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg)), &mode))
2313 return false;
2314
2315 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2316 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode)
2317 return false;
2318
2319 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2320 link;
2321 link = XEXP (link, 1))
2322 if (GET_CODE (XEXP (link, 0)) == USE)
2323 {
2324 scalar_int_mode arg_mode;
2325 args[idx] = XEXP (XEXP (link, 0), 0);
2326 if (REG_P (args[idx])
2327 && REGNO (args[idx]) == REGNO (reg)
2328 && (GET_MODE (args[idx]) == mode
2329 || (is_int_mode (GET_MODE (args[idx]), &arg_mode)
2330 && (GET_MODE_SIZE (arg_mode) <= UNITS_PER_WORD)
2331 && (GET_MODE_SIZE (arg_mode) > GET_MODE_SIZE (mode)))))
2332 break;
2333 }
2334 if (!link)
2335 return false;
2336
2337 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2338 if (GET_MODE (args[idx]) != mode)
2339 {
2340 if (!tmp || !CONST_INT_P (tmp))
2341 return false;
2342 tmp = gen_int_mode (INTVAL (tmp), mode);
2343 }
2344 if (tmp)
2345 args[idx] = tmp;
2346
2347 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2348 }
2349 if (arg != void_list_node || idx != nargs)
2350 return false;
2351 return true;
2352 }
2353
2354 /* Return a bitmap of the fixed registers contained in IN. */
2355
2356 static bitmap
2357 copy_fixed_regs (const_bitmap in)
2358 {
2359 bitmap ret;
2360
2361 ret = ALLOC_REG_SET (NULL);
2362 bitmap_and (ret, in, fixed_reg_set_regset);
2363 return ret;
2364 }
2365
2366 /* Apply record_store to all candidate stores in INSN. Mark INSN
2367 if some part of it is not a candidate store and assigns to a
2368 non-register target. */
2369
2370 static void
2371 scan_insn (bb_info_t bb_info, rtx_insn *insn)
2372 {
2373 rtx body;
2374 insn_info_type *insn_info = insn_info_type_pool.allocate ();
2375 int mems_found = 0;
2376 memset (insn_info, 0, sizeof (struct insn_info_type));
2377
2378 if (dump_file && (dump_flags & TDF_DETAILS))
2379 fprintf (dump_file, "\n**scanning insn=%d\n",
2380 INSN_UID (insn));
2381
2382 insn_info->prev_insn = bb_info->last_insn;
2383 insn_info->insn = insn;
2384 bb_info->last_insn = insn_info;
2385
2386 if (DEBUG_INSN_P (insn))
2387 {
2388 insn_info->cannot_delete = true;
2389 return;
2390 }
2391
2392 /* Look at all of the uses in the insn. */
2393 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2394
2395 if (CALL_P (insn))
2396 {
2397 bool const_call;
2398 rtx call, sym;
2399 tree memset_call = NULL_TREE;
2400
2401 insn_info->cannot_delete = true;
2402
2403 /* Const functions cannot do anything bad i.e. read memory,
2404 however, they can read their parameters which may have
2405 been pushed onto the stack.
2406 memset and bzero don't read memory either. */
2407 const_call = RTL_CONST_CALL_P (insn);
2408 if (!const_call
2409 && (call = get_call_rtx_from (insn))
2410 && (sym = XEXP (XEXP (call, 0), 0))
2411 && GET_CODE (sym) == SYMBOL_REF
2412 && SYMBOL_REF_DECL (sym)
2413 && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
2414 && DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (sym)) == BUILT_IN_NORMAL
2415 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (sym)) == BUILT_IN_MEMSET)
2416 memset_call = SYMBOL_REF_DECL (sym);
2417
2418 if (const_call || memset_call)
2419 {
2420 insn_info_t i_ptr = active_local_stores;
2421 insn_info_t last = NULL;
2422
2423 if (dump_file && (dump_flags & TDF_DETAILS))
2424 fprintf (dump_file, "%s call %d\n",
2425 const_call ? "const" : "memset", INSN_UID (insn));
2426
2427 /* See the head comment of the frame_read field. */
2428 if (reload_completed
2429 /* Tail calls are storing their arguments using
2430 arg pointer. If it is a frame pointer on the target,
2431 even before reload we need to kill frame pointer based
2432 stores. */
2433 || (SIBLING_CALL_P (insn)
2434 && HARD_FRAME_POINTER_IS_ARG_POINTER))
2435 insn_info->frame_read = true;
2436
2437 /* Loop over the active stores and remove those which are
2438 killed by the const function call. */
2439 while (i_ptr)
2440 {
2441 bool remove_store = false;
2442
2443 /* The stack pointer based stores are always killed. */
2444 if (i_ptr->stack_pointer_based)
2445 remove_store = true;
2446
2447 /* If the frame is read, the frame related stores are killed. */
2448 else if (insn_info->frame_read)
2449 {
2450 store_info *store_info = i_ptr->store_rec;
2451
2452 /* Skip the clobbers. */
2453 while (!store_info->is_set)
2454 store_info = store_info->next;
2455
2456 if (store_info->group_id >= 0
2457 && rtx_group_vec[store_info->group_id]->frame_related)
2458 remove_store = true;
2459 }
2460
2461 if (remove_store)
2462 {
2463 if (dump_file && (dump_flags & TDF_DETAILS))
2464 dump_insn_info ("removing from active", i_ptr);
2465
2466 active_local_stores_len--;
2467 if (last)
2468 last->next_local_store = i_ptr->next_local_store;
2469 else
2470 active_local_stores = i_ptr->next_local_store;
2471 }
2472 else
2473 last = i_ptr;
2474
2475 i_ptr = i_ptr->next_local_store;
2476 }
2477
2478 if (memset_call)
2479 {
2480 rtx args[3];
2481 if (get_call_args (insn, memset_call, args, 3)
2482 && CONST_INT_P (args[1])
2483 && CONST_INT_P (args[2])
2484 && INTVAL (args[2]) > 0)
2485 {
2486 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2487 set_mem_size (mem, INTVAL (args[2]));
2488 body = gen_rtx_SET (mem, args[1]);
2489 mems_found += record_store (body, bb_info);
2490 if (dump_file && (dump_flags & TDF_DETAILS))
2491 fprintf (dump_file, "handling memset as BLKmode store\n");
2492 if (mems_found == 1)
2493 {
2494 if (active_local_stores_len++
2495 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2496 {
2497 active_local_stores_len = 1;
2498 active_local_stores = NULL;
2499 }
2500 insn_info->fixed_regs_live
2501 = copy_fixed_regs (bb_info->regs_live);
2502 insn_info->next_local_store = active_local_stores;
2503 active_local_stores = insn_info;
2504 }
2505 }
2506 else
2507 clear_rhs_from_active_local_stores ();
2508 }
2509 }
2510 else if (SIBLING_CALL_P (insn) && reload_completed)
2511 /* Arguments for a sibling call that are pushed to memory are passed
2512 using the incoming argument pointer of the current function. After
2513 reload that might be (and likely is) frame pointer based. */
2514 add_wild_read (bb_info);
2515 else
2516 /* Every other call, including pure functions, may read any memory
2517 that is not relative to the frame. */
2518 add_non_frame_wild_read (bb_info);
2519
2520 return;
2521 }
2522
2523 /* Assuming that there are sets in these insns, we cannot delete
2524 them. */
2525 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2526 || volatile_refs_p (PATTERN (insn))
2527 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2528 || (RTX_FRAME_RELATED_P (insn))
2529 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2530 insn_info->cannot_delete = true;
2531
2532 body = PATTERN (insn);
2533 if (GET_CODE (body) == PARALLEL)
2534 {
2535 int i;
2536 for (i = 0; i < XVECLEN (body, 0); i++)
2537 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2538 }
2539 else
2540 mems_found += record_store (body, bb_info);
2541
2542 if (dump_file && (dump_flags & TDF_DETAILS))
2543 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2544 mems_found, insn_info->cannot_delete ? "true" : "false");
2545
2546 /* If we found some sets of mems, add it into the active_local_stores so
2547 that it can be locally deleted if found dead or used for
2548 replace_read and redundant constant store elimination. Otherwise mark
2549 it as cannot delete. This simplifies the processing later. */
2550 if (mems_found == 1)
2551 {
2552 if (active_local_stores_len++
2553 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2554 {
2555 active_local_stores_len = 1;
2556 active_local_stores = NULL;
2557 }
2558 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2559 insn_info->next_local_store = active_local_stores;
2560 active_local_stores = insn_info;
2561 }
2562 else
2563 insn_info->cannot_delete = true;
2564 }
2565
2566
2567 /* Remove BASE from the set of active_local_stores. This is a
2568 callback from cselib that is used to get rid of the stores in
2569 active_local_stores. */
2570
2571 static void
2572 remove_useless_values (cselib_val *base)
2573 {
2574 insn_info_t insn_info = active_local_stores;
2575 insn_info_t last = NULL;
2576
2577 while (insn_info)
2578 {
2579 store_info *store_info = insn_info->store_rec;
2580 bool del = false;
2581
2582 /* If ANY of the store_infos match the cselib group that is
2583 being deleted, then the insn can not be deleted. */
2584 while (store_info)
2585 {
2586 if ((store_info->group_id == -1)
2587 && (store_info->cse_base == base))
2588 {
2589 del = true;
2590 break;
2591 }
2592 store_info = store_info->next;
2593 }
2594
2595 if (del)
2596 {
2597 active_local_stores_len--;
2598 if (last)
2599 last->next_local_store = insn_info->next_local_store;
2600 else
2601 active_local_stores = insn_info->next_local_store;
2602 free_store_info (insn_info);
2603 }
2604 else
2605 last = insn_info;
2606
2607 insn_info = insn_info->next_local_store;
2608 }
2609 }
2610
2611
2612 /* Do all of step 1. */
2613
2614 static void
2615 dse_step1 (void)
2616 {
2617 basic_block bb;
2618 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
2619
2620 cselib_init (0);
2621 all_blocks = BITMAP_ALLOC (NULL);
2622 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2623 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2624
2625 FOR_ALL_BB_FN (bb, cfun)
2626 {
2627 insn_info_t ptr;
2628 bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
2629
2630 memset (bb_info, 0, sizeof (dse_bb_info_type));
2631 bitmap_set_bit (all_blocks, bb->index);
2632 bb_info->regs_live = regs_live;
2633
2634 bitmap_copy (regs_live, DF_LR_IN (bb));
2635 df_simulate_initialize_forwards (bb, regs_live);
2636
2637 bb_table[bb->index] = bb_info;
2638 cselib_discard_hook = remove_useless_values;
2639
2640 if (bb->index >= NUM_FIXED_BLOCKS)
2641 {
2642 rtx_insn *insn;
2643
2644 active_local_stores = NULL;
2645 active_local_stores_len = 0;
2646 cselib_clear_table ();
2647
2648 /* Scan the insns. */
2649 FOR_BB_INSNS (bb, insn)
2650 {
2651 if (INSN_P (insn))
2652 scan_insn (bb_info, insn);
2653 cselib_process_insn (insn);
2654 if (INSN_P (insn))
2655 df_simulate_one_insn_forwards (bb, insn, regs_live);
2656 }
2657
2658 /* This is something of a hack, because the global algorithm
2659 is supposed to take care of the case where stores go dead
2660 at the end of the function. However, the global
2661 algorithm must take a more conservative view of block
2662 mode reads than the local alg does. So to get the case
2663 where you have a store to the frame followed by a non
2664 overlapping block more read, we look at the active local
2665 stores at the end of the function and delete all of the
2666 frame and spill based ones. */
2667 if (stores_off_frame_dead_at_return
2668 && (EDGE_COUNT (bb->succs) == 0
2669 || (single_succ_p (bb)
2670 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2671 && ! crtl->calls_eh_return)))
2672 {
2673 insn_info_t i_ptr = active_local_stores;
2674 while (i_ptr)
2675 {
2676 store_info *store_info = i_ptr->store_rec;
2677
2678 /* Skip the clobbers. */
2679 while (!store_info->is_set)
2680 store_info = store_info->next;
2681 if (store_info->group_id >= 0)
2682 {
2683 group_info *group = rtx_group_vec[store_info->group_id];
2684 if (group->frame_related && !i_ptr->cannot_delete)
2685 delete_dead_store_insn (i_ptr);
2686 }
2687
2688 i_ptr = i_ptr->next_local_store;
2689 }
2690 }
2691
2692 /* Get rid of the loads that were discovered in
2693 replace_read. Cselib is finished with this block. */
2694 while (deferred_change_list)
2695 {
2696 deferred_change *next = deferred_change_list->next;
2697
2698 /* There is no reason to validate this change. That was
2699 done earlier. */
2700 *deferred_change_list->loc = deferred_change_list->reg;
2701 deferred_change_pool.remove (deferred_change_list);
2702 deferred_change_list = next;
2703 }
2704
2705 /* Get rid of all of the cselib based store_infos in this
2706 block and mark the containing insns as not being
2707 deletable. */
2708 ptr = bb_info->last_insn;
2709 while (ptr)
2710 {
2711 if (ptr->contains_cselib_groups)
2712 {
2713 store_info *s_info = ptr->store_rec;
2714 while (s_info && !s_info->is_set)
2715 s_info = s_info->next;
2716 if (s_info
2717 && s_info->redundant_reason
2718 && s_info->redundant_reason->insn
2719 && !ptr->cannot_delete)
2720 {
2721 if (dump_file && (dump_flags & TDF_DETAILS))
2722 fprintf (dump_file, "Locally deleting insn %d "
2723 "because insn %d stores the "
2724 "same value and couldn't be "
2725 "eliminated\n",
2726 INSN_UID (ptr->insn),
2727 INSN_UID (s_info->redundant_reason->insn));
2728 delete_dead_store_insn (ptr);
2729 }
2730 free_store_info (ptr);
2731 }
2732 else
2733 {
2734 store_info *s_info;
2735
2736 /* Free at least positions_needed bitmaps. */
2737 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2738 if (s_info->is_large)
2739 {
2740 BITMAP_FREE (s_info->positions_needed.large.bmap);
2741 s_info->is_large = false;
2742 }
2743 }
2744 ptr = ptr->prev_insn;
2745 }
2746
2747 cse_store_info_pool.release ();
2748 }
2749 bb_info->regs_live = NULL;
2750 }
2751
2752 BITMAP_FREE (regs_live);
2753 cselib_finish ();
2754 rtx_group_table->empty ();
2755 }
2756
2757 \f
2758 /*----------------------------------------------------------------------------
2759 Second step.
2760
2761 Assign each byte position in the stores that we are going to
2762 analyze globally to a position in the bitmaps. Returns true if
2763 there are any bit positions assigned.
2764 ----------------------------------------------------------------------------*/
2765
2766 static void
2767 dse_step2_init (void)
2768 {
2769 unsigned int i;
2770 group_info *group;
2771
2772 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2773 {
2774 /* For all non stack related bases, we only consider a store to
2775 be deletable if there are two or more stores for that
2776 position. This is because it takes one store to make the
2777 other store redundant. However, for the stores that are
2778 stack related, we consider them if there is only one store
2779 for the position. We do this because the stack related
2780 stores can be deleted if their is no read between them and
2781 the end of the function.
2782
2783 To make this work in the current framework, we take the stack
2784 related bases add all of the bits from store1 into store2.
2785 This has the effect of making the eligible even if there is
2786 only one store. */
2787
2788 if (stores_off_frame_dead_at_return && group->frame_related)
2789 {
2790 bitmap_ior_into (group->store2_n, group->store1_n);
2791 bitmap_ior_into (group->store2_p, group->store1_p);
2792 if (dump_file && (dump_flags & TDF_DETAILS))
2793 fprintf (dump_file, "group %d is frame related ", i);
2794 }
2795
2796 group->offset_map_size_n++;
2797 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2798 group->offset_map_size_n);
2799 group->offset_map_size_p++;
2800 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2801 group->offset_map_size_p);
2802 group->process_globally = false;
2803 if (dump_file && (dump_flags & TDF_DETAILS))
2804 {
2805 fprintf (dump_file, "group %d(%d+%d): ", i,
2806 (int)bitmap_count_bits (group->store2_n),
2807 (int)bitmap_count_bits (group->store2_p));
2808 bitmap_print (dump_file, group->store2_n, "n ", " ");
2809 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2810 }
2811 }
2812 }
2813
2814
2815 /* Init the offset tables. */
2816
2817 static bool
2818 dse_step2 (void)
2819 {
2820 unsigned int i;
2821 group_info *group;
2822 /* Position 0 is unused because 0 is used in the maps to mean
2823 unused. */
2824 current_position = 1;
2825 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2826 {
2827 bitmap_iterator bi;
2828 unsigned int j;
2829
2830 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2831 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2832 bitmap_clear (group->group_kill);
2833
2834 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2835 {
2836 bitmap_set_bit (group->group_kill, current_position);
2837 if (bitmap_bit_p (group->escaped_n, j))
2838 bitmap_set_bit (kill_on_calls, current_position);
2839 group->offset_map_n[j] = current_position++;
2840 group->process_globally = true;
2841 }
2842 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2843 {
2844 bitmap_set_bit (group->group_kill, current_position);
2845 if (bitmap_bit_p (group->escaped_p, j))
2846 bitmap_set_bit (kill_on_calls, current_position);
2847 group->offset_map_p[j] = current_position++;
2848 group->process_globally = true;
2849 }
2850 }
2851 return current_position != 1;
2852 }
2853
2854
2855 \f
2856 /*----------------------------------------------------------------------------
2857 Third step.
2858
2859 Build the bit vectors for the transfer functions.
2860 ----------------------------------------------------------------------------*/
2861
2862
2863 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2864 there, return 0. */
2865
2866 static int
2867 get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
2868 {
2869 if (offset < 0)
2870 {
2871 HOST_WIDE_INT offset_p = -offset;
2872 if (offset_p >= group_info->offset_map_size_n)
2873 return 0;
2874 return group_info->offset_map_n[offset_p];
2875 }
2876 else
2877 {
2878 if (offset >= group_info->offset_map_size_p)
2879 return 0;
2880 return group_info->offset_map_p[offset];
2881 }
2882 }
2883
2884
2885 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2886 may be NULL. */
2887
2888 static void
2889 scan_stores (store_info *store_info, bitmap gen, bitmap kill)
2890 {
2891 while (store_info)
2892 {
2893 HOST_WIDE_INT i, offset, width;
2894 group_info *group_info
2895 = rtx_group_vec[store_info->group_id];
2896 /* We can (conservatively) ignore stores whose bounds aren't known;
2897 they simply don't generate new global dse opportunities. */
2898 if (group_info->process_globally
2899 && store_info->offset.is_constant (&offset)
2900 && store_info->width.is_constant (&width))
2901 {
2902 HOST_WIDE_INT end = offset + width;
2903 for (i = offset; i < end; i++)
2904 {
2905 int index = get_bitmap_index (group_info, i);
2906 if (index != 0)
2907 {
2908 bitmap_set_bit (gen, index);
2909 if (kill)
2910 bitmap_clear_bit (kill, index);
2911 }
2912 }
2913 }
2914 store_info = store_info->next;
2915 }
2916 }
2917
2918
2919 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
2920 may be NULL. */
2921
2922 static void
2923 scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
2924 {
2925 read_info_t read_info = insn_info->read_rec;
2926 int i;
2927 group_info *group;
2928
2929 /* If this insn reads the frame, kill all the frame related stores. */
2930 if (insn_info->frame_read)
2931 {
2932 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2933 if (group->process_globally && group->frame_related)
2934 {
2935 if (kill)
2936 bitmap_ior_into (kill, group->group_kill);
2937 bitmap_and_compl_into (gen, group->group_kill);
2938 }
2939 }
2940 if (insn_info->non_frame_wild_read)
2941 {
2942 /* Kill all non-frame related stores. Kill all stores of variables that
2943 escape. */
2944 if (kill)
2945 bitmap_ior_into (kill, kill_on_calls);
2946 bitmap_and_compl_into (gen, kill_on_calls);
2947 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2948 if (group->process_globally && !group->frame_related)
2949 {
2950 if (kill)
2951 bitmap_ior_into (kill, group->group_kill);
2952 bitmap_and_compl_into (gen, group->group_kill);
2953 }
2954 }
2955 while (read_info)
2956 {
2957 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2958 {
2959 if (group->process_globally)
2960 {
2961 if (i == read_info->group_id)
2962 {
2963 HOST_WIDE_INT offset, width;
2964 /* Reads with non-constant size kill all DSE opportunities
2965 in the group. */
2966 if (!read_info->offset.is_constant (&offset)
2967 || !read_info->width.is_constant (&width)
2968 || !known_size_p (width))
2969 {
2970 /* Handle block mode reads. */
2971 if (kill)
2972 bitmap_ior_into (kill, group->group_kill);
2973 bitmap_and_compl_into (gen, group->group_kill);
2974 }
2975 else
2976 {
2977 /* The groups are the same, just process the
2978 offsets. */
2979 HOST_WIDE_INT j;
2980 HOST_WIDE_INT end = offset + width;
2981 for (j = offset; j < end; j++)
2982 {
2983 int index = get_bitmap_index (group, j);
2984 if (index != 0)
2985 {
2986 if (kill)
2987 bitmap_set_bit (kill, index);
2988 bitmap_clear_bit (gen, index);
2989 }
2990 }
2991 }
2992 }
2993 else
2994 {
2995 /* The groups are different, if the alias sets
2996 conflict, clear the entire group. We only need
2997 to apply this test if the read_info is a cselib
2998 read. Anything with a constant base cannot alias
2999 something else with a different constant
3000 base. */
3001 if ((read_info->group_id < 0)
3002 && canon_true_dependence (group->base_mem,
3003 GET_MODE (group->base_mem),
3004 group->canon_base_addr,
3005 read_info->mem, NULL_RTX))
3006 {
3007 if (kill)
3008 bitmap_ior_into (kill, group->group_kill);
3009 bitmap_and_compl_into (gen, group->group_kill);
3010 }
3011 }
3012 }
3013 }
3014
3015 read_info = read_info->next;
3016 }
3017 }
3018
3019
3020 /* Return the insn in BB_INFO before the first wild read or if there
3021 are no wild reads in the block, return the last insn. */
3022
3023 static insn_info_t
3024 find_insn_before_first_wild_read (bb_info_t bb_info)
3025 {
3026 insn_info_t insn_info = bb_info->last_insn;
3027 insn_info_t last_wild_read = NULL;
3028
3029 while (insn_info)
3030 {
3031 if (insn_info->wild_read)
3032 {
3033 last_wild_read = insn_info->prev_insn;
3034 /* Block starts with wild read. */
3035 if (!last_wild_read)
3036 return NULL;
3037 }
3038
3039 insn_info = insn_info->prev_insn;
3040 }
3041
3042 if (last_wild_read)
3043 return last_wild_read;
3044 else
3045 return bb_info->last_insn;
3046 }
3047
3048
3049 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3050 the block in order to build the gen and kill sets for the block.
3051 We start at ptr which may be the last insn in the block or may be
3052 the first insn with a wild read. In the latter case we are able to
3053 skip the rest of the block because it just does not matter:
3054 anything that happens is hidden by the wild read. */
3055
3056 static void
3057 dse_step3_scan (basic_block bb)
3058 {
3059 bb_info_t bb_info = bb_table[bb->index];
3060 insn_info_t insn_info;
3061
3062 insn_info = find_insn_before_first_wild_read (bb_info);
3063
3064 /* In the spill case or in the no_spill case if there is no wild
3065 read in the block, we will need a kill set. */
3066 if (insn_info == bb_info->last_insn)
3067 {
3068 if (bb_info->kill)
3069 bitmap_clear (bb_info->kill);
3070 else
3071 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3072 }
3073 else
3074 if (bb_info->kill)
3075 BITMAP_FREE (bb_info->kill);
3076
3077 while (insn_info)
3078 {
3079 /* There may have been code deleted by the dce pass run before
3080 this phase. */
3081 if (insn_info->insn && INSN_P (insn_info->insn))
3082 {
3083 scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
3084 scan_reads (insn_info, bb_info->gen, bb_info->kill);
3085 }
3086
3087 insn_info = insn_info->prev_insn;
3088 }
3089 }
3090
3091
3092 /* Set the gen set of the exit block, and also any block with no
3093 successors that does not have a wild read. */
3094
3095 static void
3096 dse_step3_exit_block_scan (bb_info_t bb_info)
3097 {
3098 /* The gen set is all 0's for the exit block except for the
3099 frame_pointer_group. */
3100
3101 if (stores_off_frame_dead_at_return)
3102 {
3103 unsigned int i;
3104 group_info *group;
3105
3106 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3107 {
3108 if (group->process_globally && group->frame_related)
3109 bitmap_ior_into (bb_info->gen, group->group_kill);
3110 }
3111 }
3112 }
3113
3114
3115 /* Find all of the blocks that are not backwards reachable from the
3116 exit block or any block with no successors (BB). These are the
3117 infinite loops or infinite self loops. These blocks will still
3118 have their bits set in UNREACHABLE_BLOCKS. */
3119
3120 static void
3121 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3122 {
3123 edge e;
3124 edge_iterator ei;
3125
3126 if (bitmap_bit_p (unreachable_blocks, bb->index))
3127 {
3128 bitmap_clear_bit (unreachable_blocks, bb->index);
3129 FOR_EACH_EDGE (e, ei, bb->preds)
3130 {
3131 mark_reachable_blocks (unreachable_blocks, e->src);
3132 }
3133 }
3134 }
3135
3136 /* Build the transfer functions for the function. */
3137
3138 static void
3139 dse_step3 ()
3140 {
3141 basic_block bb;
3142 sbitmap_iterator sbi;
3143 bitmap all_ones = NULL;
3144 unsigned int i;
3145
3146 auto_sbitmap unreachable_blocks (last_basic_block_for_fn (cfun));
3147 bitmap_ones (unreachable_blocks);
3148
3149 FOR_ALL_BB_FN (bb, cfun)
3150 {
3151 bb_info_t bb_info = bb_table[bb->index];
3152 if (bb_info->gen)
3153 bitmap_clear (bb_info->gen);
3154 else
3155 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3156
3157 if (bb->index == ENTRY_BLOCK)
3158 ;
3159 else if (bb->index == EXIT_BLOCK)
3160 dse_step3_exit_block_scan (bb_info);
3161 else
3162 dse_step3_scan (bb);
3163 if (EDGE_COUNT (bb->succs) == 0)
3164 mark_reachable_blocks (unreachable_blocks, bb);
3165
3166 /* If this is the second time dataflow is run, delete the old
3167 sets. */
3168 if (bb_info->in)
3169 BITMAP_FREE (bb_info->in);
3170 if (bb_info->out)
3171 BITMAP_FREE (bb_info->out);
3172 }
3173
3174 /* For any block in an infinite loop, we must initialize the out set
3175 to all ones. This could be expensive, but almost never occurs in
3176 practice. However, it is common in regression tests. */
3177 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3178 {
3179 if (bitmap_bit_p (all_blocks, i))
3180 {
3181 bb_info_t bb_info = bb_table[i];
3182 if (!all_ones)
3183 {
3184 unsigned int j;
3185 group_info *group;
3186
3187 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3188 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3189 bitmap_ior_into (all_ones, group->group_kill);
3190 }
3191 if (!bb_info->out)
3192 {
3193 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3194 bitmap_copy (bb_info->out, all_ones);
3195 }
3196 }
3197 }
3198
3199 if (all_ones)
3200 BITMAP_FREE (all_ones);
3201 }
3202
3203
3204 \f
3205 /*----------------------------------------------------------------------------
3206 Fourth step.
3207
3208 Solve the bitvector equations.
3209 ----------------------------------------------------------------------------*/
3210
3211
3212 /* Confluence function for blocks with no successors. Create an out
3213 set from the gen set of the exit block. This block logically has
3214 the exit block as a successor. */
3215
3216
3217
3218 static void
3219 dse_confluence_0 (basic_block bb)
3220 {
3221 bb_info_t bb_info = bb_table[bb->index];
3222
3223 if (bb->index == EXIT_BLOCK)
3224 return;
3225
3226 if (!bb_info->out)
3227 {
3228 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3229 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3230 }
3231 }
3232
3233 /* Propagate the information from the in set of the dest of E to the
3234 out set of the src of E. If the various in or out sets are not
3235 there, that means they are all ones. */
3236
3237 static bool
3238 dse_confluence_n (edge e)
3239 {
3240 bb_info_t src_info = bb_table[e->src->index];
3241 bb_info_t dest_info = bb_table[e->dest->index];
3242
3243 if (dest_info->in)
3244 {
3245 if (src_info->out)
3246 bitmap_and_into (src_info->out, dest_info->in);
3247 else
3248 {
3249 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3250 bitmap_copy (src_info->out, dest_info->in);
3251 }
3252 }
3253 return true;
3254 }
3255
3256
3257 /* Propagate the info from the out to the in set of BB_INDEX's basic
3258 block. There are three cases:
3259
3260 1) The block has no kill set. In this case the kill set is all
3261 ones. It does not matter what the out set of the block is, none of
3262 the info can reach the top. The only thing that reaches the top is
3263 the gen set and we just copy the set.
3264
3265 2) There is a kill set but no out set and bb has successors. In
3266 this case we just return. Eventually an out set will be created and
3267 it is better to wait than to create a set of ones.
3268
3269 3) There is both a kill and out set. We apply the obvious transfer
3270 function.
3271 */
3272
3273 static bool
3274 dse_transfer_function (int bb_index)
3275 {
3276 bb_info_t bb_info = bb_table[bb_index];
3277
3278 if (bb_info->kill)
3279 {
3280 if (bb_info->out)
3281 {
3282 /* Case 3 above. */
3283 if (bb_info->in)
3284 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3285 bb_info->out, bb_info->kill);
3286 else
3287 {
3288 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3289 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3290 bb_info->out, bb_info->kill);
3291 return true;
3292 }
3293 }
3294 else
3295 /* Case 2 above. */
3296 return false;
3297 }
3298 else
3299 {
3300 /* Case 1 above. If there is already an in set, nothing
3301 happens. */
3302 if (bb_info->in)
3303 return false;
3304 else
3305 {
3306 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3307 bitmap_copy (bb_info->in, bb_info->gen);
3308 return true;
3309 }
3310 }
3311 }
3312
3313 /* Solve the dataflow equations. */
3314
3315 static void
3316 dse_step4 (void)
3317 {
3318 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3319 dse_confluence_n, dse_transfer_function,
3320 all_blocks, df_get_postorder (DF_BACKWARD),
3321 df_get_n_blocks (DF_BACKWARD));
3322 if (dump_file && (dump_flags & TDF_DETAILS))
3323 {
3324 basic_block bb;
3325
3326 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3327 FOR_ALL_BB_FN (bb, cfun)
3328 {
3329 bb_info_t bb_info = bb_table[bb->index];
3330
3331 df_print_bb_index (bb, dump_file);
3332 if (bb_info->in)
3333 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3334 else
3335 fprintf (dump_file, " in: *MISSING*\n");
3336 if (bb_info->gen)
3337 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3338 else
3339 fprintf (dump_file, " gen: *MISSING*\n");
3340 if (bb_info->kill)
3341 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3342 else
3343 fprintf (dump_file, " kill: *MISSING*\n");
3344 if (bb_info->out)
3345 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3346 else
3347 fprintf (dump_file, " out: *MISSING*\n\n");
3348 }
3349 }
3350 }
3351
3352
3353 \f
3354 /*----------------------------------------------------------------------------
3355 Fifth step.
3356
3357 Delete the stores that can only be deleted using the global information.
3358 ----------------------------------------------------------------------------*/
3359
3360
3361 static void
3362 dse_step5 (void)
3363 {
3364 basic_block bb;
3365 FOR_EACH_BB_FN (bb, cfun)
3366 {
3367 bb_info_t bb_info = bb_table[bb->index];
3368 insn_info_t insn_info = bb_info->last_insn;
3369 bitmap v = bb_info->out;
3370
3371 while (insn_info)
3372 {
3373 bool deleted = false;
3374 if (dump_file && insn_info->insn)
3375 {
3376 fprintf (dump_file, "starting to process insn %d\n",
3377 INSN_UID (insn_info->insn));
3378 bitmap_print (dump_file, v, " v: ", "\n");
3379 }
3380
3381 /* There may have been code deleted by the dce pass run before
3382 this phase. */
3383 if (insn_info->insn
3384 && INSN_P (insn_info->insn)
3385 && (!insn_info->cannot_delete)
3386 && (!bitmap_empty_p (v)))
3387 {
3388 store_info *store_info = insn_info->store_rec;
3389
3390 /* Try to delete the current insn. */
3391 deleted = true;
3392
3393 /* Skip the clobbers. */
3394 while (!store_info->is_set)
3395 store_info = store_info->next;
3396
3397 HOST_WIDE_INT i, offset, width;
3398 group_info *group_info = rtx_group_vec[store_info->group_id];
3399
3400 if (!store_info->offset.is_constant (&offset)
3401 || !store_info->width.is_constant (&width))
3402 deleted = false;
3403 else
3404 {
3405 HOST_WIDE_INT end = offset + width;
3406 for (i = offset; i < end; i++)
3407 {
3408 int index = get_bitmap_index (group_info, i);
3409
3410 if (dump_file && (dump_flags & TDF_DETAILS))
3411 fprintf (dump_file, "i = %d, index = %d\n",
3412 (int) i, index);
3413 if (index == 0 || !bitmap_bit_p (v, index))
3414 {
3415 if (dump_file && (dump_flags & TDF_DETAILS))
3416 fprintf (dump_file, "failing at i = %d\n",
3417 (int) i);
3418 deleted = false;
3419 break;
3420 }
3421 }
3422 }
3423 if (deleted)
3424 {
3425 if (dbg_cnt (dse)
3426 && check_for_inc_dec_1 (insn_info))
3427 {
3428 delete_insn (insn_info->insn);
3429 insn_info->insn = NULL;
3430 globally_deleted++;
3431 }
3432 }
3433 }
3434 /* We do want to process the local info if the insn was
3435 deleted. For instance, if the insn did a wild read, we
3436 no longer need to trash the info. */
3437 if (insn_info->insn
3438 && INSN_P (insn_info->insn)
3439 && (!deleted))
3440 {
3441 scan_stores (insn_info->store_rec, v, NULL);
3442 if (insn_info->wild_read)
3443 {
3444 if (dump_file && (dump_flags & TDF_DETAILS))
3445 fprintf (dump_file, "wild read\n");
3446 bitmap_clear (v);
3447 }
3448 else if (insn_info->read_rec
3449 || insn_info->non_frame_wild_read
3450 || insn_info->frame_read)
3451 {
3452 if (dump_file && (dump_flags & TDF_DETAILS))
3453 {
3454 if (!insn_info->non_frame_wild_read
3455 && !insn_info->frame_read)
3456 fprintf (dump_file, "regular read\n");
3457 if (insn_info->non_frame_wild_read)
3458 fprintf (dump_file, "non-frame wild read\n");
3459 if (insn_info->frame_read)
3460 fprintf (dump_file, "frame read\n");
3461 }
3462 scan_reads (insn_info, v, NULL);
3463 }
3464 }
3465
3466 insn_info = insn_info->prev_insn;
3467 }
3468 }
3469 }
3470
3471
3472 \f
3473 /*----------------------------------------------------------------------------
3474 Sixth step.
3475
3476 Delete stores made redundant by earlier stores (which store the same
3477 value) that couldn't be eliminated.
3478 ----------------------------------------------------------------------------*/
3479
3480 static void
3481 dse_step6 (void)
3482 {
3483 basic_block bb;
3484
3485 FOR_ALL_BB_FN (bb, cfun)
3486 {
3487 bb_info_t bb_info = bb_table[bb->index];
3488 insn_info_t insn_info = bb_info->last_insn;
3489
3490 while (insn_info)
3491 {
3492 /* There may have been code deleted by the dce pass run before
3493 this phase. */
3494 if (insn_info->insn
3495 && INSN_P (insn_info->insn)
3496 && !insn_info->cannot_delete)
3497 {
3498 store_info *s_info = insn_info->store_rec;
3499
3500 while (s_info && !s_info->is_set)
3501 s_info = s_info->next;
3502 if (s_info
3503 && s_info->redundant_reason
3504 && s_info->redundant_reason->insn
3505 && INSN_P (s_info->redundant_reason->insn))
3506 {
3507 rtx_insn *rinsn = s_info->redundant_reason->insn;
3508 if (dump_file && (dump_flags & TDF_DETAILS))
3509 fprintf (dump_file, "Locally deleting insn %d "
3510 "because insn %d stores the "
3511 "same value and couldn't be "
3512 "eliminated\n",
3513 INSN_UID (insn_info->insn),
3514 INSN_UID (rinsn));
3515 delete_dead_store_insn (insn_info);
3516 }
3517 }
3518 insn_info = insn_info->prev_insn;
3519 }
3520 }
3521 }
3522 \f
3523 /*----------------------------------------------------------------------------
3524 Seventh step.
3525
3526 Destroy everything left standing.
3527 ----------------------------------------------------------------------------*/
3528
3529 static void
3530 dse_step7 (void)
3531 {
3532 bitmap_obstack_release (&dse_bitmap_obstack);
3533 obstack_free (&dse_obstack, NULL);
3534
3535 end_alias_analysis ();
3536 free (bb_table);
3537 delete rtx_group_table;
3538 rtx_group_table = NULL;
3539 rtx_group_vec.release ();
3540 BITMAP_FREE (all_blocks);
3541 BITMAP_FREE (scratch);
3542
3543 rtx_store_info_pool.release ();
3544 read_info_type_pool.release ();
3545 insn_info_type_pool.release ();
3546 dse_bb_info_type_pool.release ();
3547 group_info_pool.release ();
3548 deferred_change_pool.release ();
3549 }
3550
3551
3552 /* -------------------------------------------------------------------------
3553 DSE
3554 ------------------------------------------------------------------------- */
3555
3556 /* Callback for running pass_rtl_dse. */
3557
3558 static unsigned int
3559 rest_of_handle_dse (void)
3560 {
3561 df_set_flags (DF_DEFER_INSN_RESCAN);
3562
3563 /* Need the notes since we must track live hardregs in the forwards
3564 direction. */
3565 df_note_add_problem ();
3566 df_analyze ();
3567
3568 dse_step0 ();
3569 dse_step1 ();
3570 dse_step2_init ();
3571 if (dse_step2 ())
3572 {
3573 df_set_flags (DF_LR_RUN_DCE);
3574 df_analyze ();
3575 if (dump_file && (dump_flags & TDF_DETAILS))
3576 fprintf (dump_file, "doing global processing\n");
3577 dse_step3 ();
3578 dse_step4 ();
3579 dse_step5 ();
3580 }
3581
3582 dse_step6 ();
3583 dse_step7 ();
3584
3585 if (dump_file)
3586 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
3587 locally_deleted, globally_deleted);
3588
3589 /* DSE can eliminate potentially-trapping MEMs.
3590 Remove any EH edges associated with them. */
3591 if ((locally_deleted || globally_deleted)
3592 && cfun->can_throw_non_call_exceptions
3593 && purge_all_dead_edges ())
3594 cleanup_cfg (0);
3595
3596 return 0;
3597 }
3598
3599 namespace {
3600
3601 const pass_data pass_data_rtl_dse1 =
3602 {
3603 RTL_PASS, /* type */
3604 "dse1", /* name */
3605 OPTGROUP_NONE, /* optinfo_flags */
3606 TV_DSE1, /* tv_id */
3607 0, /* properties_required */
3608 0, /* properties_provided */
3609 0, /* properties_destroyed */
3610 0, /* todo_flags_start */
3611 TODO_df_finish, /* todo_flags_finish */
3612 };
3613
3614 class pass_rtl_dse1 : public rtl_opt_pass
3615 {
3616 public:
3617 pass_rtl_dse1 (gcc::context *ctxt)
3618 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3619 {}
3620
3621 /* opt_pass methods: */
3622 virtual bool gate (function *)
3623 {
3624 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3625 }
3626
3627 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3628
3629 }; // class pass_rtl_dse1
3630
3631 } // anon namespace
3632
3633 rtl_opt_pass *
3634 make_pass_rtl_dse1 (gcc::context *ctxt)
3635 {
3636 return new pass_rtl_dse1 (ctxt);
3637 }
3638
3639 namespace {
3640
3641 const pass_data pass_data_rtl_dse2 =
3642 {
3643 RTL_PASS, /* type */
3644 "dse2", /* name */
3645 OPTGROUP_NONE, /* optinfo_flags */
3646 TV_DSE2, /* tv_id */
3647 0, /* properties_required */
3648 0, /* properties_provided */
3649 0, /* properties_destroyed */
3650 0, /* todo_flags_start */
3651 TODO_df_finish, /* todo_flags_finish */
3652 };
3653
3654 class pass_rtl_dse2 : public rtl_opt_pass
3655 {
3656 public:
3657 pass_rtl_dse2 (gcc::context *ctxt)
3658 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3659 {}
3660
3661 /* opt_pass methods: */
3662 virtual bool gate (function *)
3663 {
3664 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3665 }
3666
3667 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3668
3669 }; // class pass_rtl_dse2
3670
3671 } // anon namespace
3672
3673 rtl_opt_pass *
3674 make_pass_rtl_dse2 (gcc::context *ctxt)
3675 {
3676 return new pass_rtl_dse2 (ctxt);
3677 }