]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dse.c
Remove gcc/params.* files.
[thirdparty/gcc.git] / gcc / dse.c
1 /* RTL dead store elimination.
2 Copyright (C) 2005-2019 Free Software Foundation, Inc.
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #undef BASELINE
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "target.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "predict.h"
34 #include "df.h"
35 #include "memmodel.h"
36 #include "tm_p.h"
37 #include "gimple-ssa.h"
38 #include "expmed.h"
39 #include "optabs.h"
40 #include "emit-rtl.h"
41 #include "recog.h"
42 #include "alias.h"
43 #include "stor-layout.h"
44 #include "cfgrtl.h"
45 #include "cselib.h"
46 #include "tree-pass.h"
47 #include "explow.h"
48 #include "expr.h"
49 #include "dbgcnt.h"
50 #include "rtl-iter.h"
51 #include "cfgcleanup.h"
52 #include "calls.h"
53
54 /* This file contains three techniques for performing Dead Store
55 Elimination (dse).
56
57 * The first technique performs dse locally on any base address. It
58 is based on the cselib which is a local value numbering technique.
59 This technique is local to a basic block but deals with a fairly
60 general addresses.
61
62 * The second technique performs dse globally but is restricted to
63 base addresses that are either constant or are relative to the
64 frame_pointer.
65
66 * The third technique, (which is only done after register allocation)
67 processes the spill slots. This differs from the second
68 technique because it takes advantage of the fact that spilling is
69 completely free from the effects of aliasing.
70
71 Logically, dse is a backwards dataflow problem. A store can be
72 deleted if it if cannot be reached in the backward direction by any
73 use of the value being stored. However, the local technique uses a
74 forwards scan of the basic block because cselib requires that the
75 block be processed in that order.
76
77 The pass is logically broken into 7 steps:
78
79 0) Initialization.
80
81 1) The local algorithm, as well as scanning the insns for the two
82 global algorithms.
83
84 2) Analysis to see if the global algs are necessary. In the case
85 of stores base on a constant address, there must be at least two
86 stores to that address, to make it possible to delete some of the
87 stores. In the case of stores off of the frame or spill related
88 stores, only one store to an address is necessary because those
89 stores die at the end of the function.
90
91 3) Set up the global dataflow equations based on processing the
92 info parsed in the first step.
93
94 4) Solve the dataflow equations.
95
96 5) Delete the insns that the global analysis has indicated are
97 unnecessary.
98
99 6) Delete insns that store the same value as preceding store
100 where the earlier store couldn't be eliminated.
101
102 7) Cleanup.
103
104 This step uses cselib and canon_rtx to build the largest expression
105 possible for each address. This pass is a forwards pass through
106 each basic block. From the point of view of the global technique,
107 the first pass could examine a block in either direction. The
108 forwards ordering is to accommodate cselib.
109
110 We make a simplifying assumption: addresses fall into four broad
111 categories:
112
113 1) base has rtx_varies_p == false, offset is constant.
114 2) base has rtx_varies_p == false, offset variable.
115 3) base has rtx_varies_p == true, offset constant.
116 4) base has rtx_varies_p == true, offset variable.
117
118 The local passes are able to process all 4 kinds of addresses. The
119 global pass only handles 1).
120
121 The global problem is formulated as follows:
122
123 A store, S1, to address A, where A is not relative to the stack
124 frame, can be eliminated if all paths from S1 to the end of the
125 function contain another store to A before a read to A.
126
127 If the address A is relative to the stack frame, a store S2 to A
128 can be eliminated if there are no paths from S2 that reach the
129 end of the function that read A before another store to A. In
130 this case S2 can be deleted if there are paths from S2 to the
131 end of the function that have no reads or writes to A. This
132 second case allows stores to the stack frame to be deleted that
133 would otherwise die when the function returns. This cannot be
134 done if stores_off_frame_dead_at_return is not true. See the doc
135 for that variable for when this variable is false.
136
137 The global problem is formulated as a backwards set union
138 dataflow problem where the stores are the gens and reads are the
139 kills. Set union problems are rare and require some special
140 handling given our representation of bitmaps. A straightforward
141 implementation requires a lot of bitmaps filled with 1s.
142 These are expensive and cumbersome in our bitmap formulation so
143 care has been taken to avoid large vectors filled with 1s. See
144 the comments in bb_info and in the dataflow confluence functions
145 for details.
146
147 There are two places for further enhancements to this algorithm:
148
149 1) The original dse which was embedded in a pass called flow also
150 did local address forwarding. For example in
151
152 A <- r100
153 ... <- A
154
155 flow would replace the right hand side of the second insn with a
156 reference to r100. Most of the information is available to add this
157 to this pass. It has not done it because it is a lot of work in
158 the case that either r100 is assigned to between the first and
159 second insn and/or the second insn is a load of part of the value
160 stored by the first insn.
161
162 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
163 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
164 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
165 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
166
167 2) The cleaning up of spill code is quite profitable. It currently
168 depends on reading tea leaves and chicken entrails left by reload.
169 This pass depends on reload creating a singleton alias set for each
170 spill slot and telling the next dse pass which of these alias sets
171 are the singletons. Rather than analyze the addresses of the
172 spills, dse's spill processing just does analysis of the loads and
173 stores that use those alias sets. There are three cases where this
174 falls short:
175
176 a) Reload sometimes creates the slot for one mode of access, and
177 then inserts loads and/or stores for a smaller mode. In this
178 case, the current code just punts on the slot. The proper thing
179 to do is to back out and use one bit vector position for each
180 byte of the entity associated with the slot. This depends on
181 KNOWING that reload always generates the accesses for each of the
182 bytes in some canonical (read that easy to understand several
183 passes after reload happens) way.
184
185 b) Reload sometimes decides that spill slot it allocated was not
186 large enough for the mode and goes back and allocates more slots
187 with the same mode and alias set. The backout in this case is a
188 little more graceful than (a). In this case the slot is unmarked
189 as being a spill slot and if final address comes out to be based
190 off the frame pointer, the global algorithm handles this slot.
191
192 c) For any pass that may prespill, there is currently no
193 mechanism to tell the dse pass that the slot being used has the
194 special properties that reload uses. It may be that all that is
195 required is to have those passes make the same calls that reload
196 does, assuming that the alias sets can be manipulated in the same
197 way. */
198
199 /* There are limits to the size of constant offsets we model for the
200 global problem. There are certainly test cases, that exceed this
201 limit, however, it is unlikely that there are important programs
202 that really have constant offsets this size. */
203 #define MAX_OFFSET (64 * 1024)
204
205 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
206 on the default obstack because these bitmaps can grow quite large
207 (~2GB for the small (!) test case of PR54146) and we'll hold on to
208 all that memory until the end of the compiler run.
209 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
210 releasing the whole obstack. */
211 static bitmap_obstack dse_bitmap_obstack;
212
213 /* Obstack for other data. As for above: Kinda nice to be able to
214 throw it all away at the end in one big sweep. */
215 static struct obstack dse_obstack;
216
217 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
218 static bitmap scratch = NULL;
219
220 struct insn_info_type;
221
222 /* This structure holds information about a candidate store. */
223 class store_info
224 {
225 public:
226
227 /* False means this is a clobber. */
228 bool is_set;
229
230 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
231 bool is_large;
232
233 /* The id of the mem group of the base address. If rtx_varies_p is
234 true, this is -1. Otherwise, it is the index into the group
235 table. */
236 int group_id;
237
238 /* This is the cselib value. */
239 cselib_val *cse_base;
240
241 /* This canonized mem. */
242 rtx mem;
243
244 /* Canonized MEM address for use by canon_true_dependence. */
245 rtx mem_addr;
246
247 /* The offset of the first byte associated with the operation. */
248 poly_int64 offset;
249
250 /* The number of bytes covered by the operation. This is always exact
251 and known (rather than -1). */
252 poly_int64 width;
253
254 union
255 {
256 /* A bitmask as wide as the number of bytes in the word that
257 contains a 1 if the byte may be needed. The store is unused if
258 all of the bits are 0. This is used if IS_LARGE is false. */
259 unsigned HOST_WIDE_INT small_bitmask;
260
261 struct
262 {
263 /* A bitmap with one bit per byte, or null if the number of
264 bytes isn't known at compile time. A cleared bit means
265 the position is needed. Used if IS_LARGE is true. */
266 bitmap bmap;
267
268 /* When BITMAP is nonnull, this counts the number of set bits
269 (i.e. unneeded bytes) in the bitmap. If it is equal to
270 WIDTH, the whole store is unused.
271
272 When BITMAP is null:
273 - the store is definitely not needed when COUNT == 1
274 - all the store is needed when COUNT == 0 and RHS is nonnull
275 - otherwise we don't know which parts of the store are needed. */
276 int count;
277 } large;
278 } positions_needed;
279
280 /* The next store info for this insn. */
281 class store_info *next;
282
283 /* The right hand side of the store. This is used if there is a
284 subsequent reload of the mems address somewhere later in the
285 basic block. */
286 rtx rhs;
287
288 /* If rhs is or holds a constant, this contains that constant,
289 otherwise NULL. */
290 rtx const_rhs;
291
292 /* Set if this store stores the same constant value as REDUNDANT_REASON
293 insn stored. These aren't eliminated early, because doing that
294 might prevent the earlier larger store to be eliminated. */
295 struct insn_info_type *redundant_reason;
296 };
297
298 /* Return a bitmask with the first N low bits set. */
299
300 static unsigned HOST_WIDE_INT
301 lowpart_bitmask (int n)
302 {
303 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U;
304 return mask >> (HOST_BITS_PER_WIDE_INT - n);
305 }
306
307 static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
308
309 static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
310
311 /* This structure holds information about a load. These are only
312 built for rtx bases. */
313 class read_info_type
314 {
315 public:
316 /* The id of the mem group of the base address. */
317 int group_id;
318
319 /* The offset of the first byte associated with the operation. */
320 poly_int64 offset;
321
322 /* The number of bytes covered by the operation, or -1 if not known. */
323 poly_int64 width;
324
325 /* The mem being read. */
326 rtx mem;
327
328 /* The next read_info for this insn. */
329 class read_info_type *next;
330 };
331 typedef class read_info_type *read_info_t;
332
333 static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
334
335 /* One of these records is created for each insn. */
336
337 struct insn_info_type
338 {
339 /* Set true if the insn contains a store but the insn itself cannot
340 be deleted. This is set if the insn is a parallel and there is
341 more than one non dead output or if the insn is in some way
342 volatile. */
343 bool cannot_delete;
344
345 /* This field is only used by the global algorithm. It is set true
346 if the insn contains any read of mem except for a (1). This is
347 also set if the insn is a call or has a clobber mem. If the insn
348 contains a wild read, the use_rec will be null. */
349 bool wild_read;
350
351 /* This is true only for CALL instructions which could potentially read
352 any non-frame memory location. This field is used by the global
353 algorithm. */
354 bool non_frame_wild_read;
355
356 /* This field is only used for the processing of const functions.
357 These functions cannot read memory, but they can read the stack
358 because that is where they may get their parms. We need to be
359 this conservative because, like the store motion pass, we don't
360 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
361 Moreover, we need to distinguish two cases:
362 1. Before reload (register elimination), the stores related to
363 outgoing arguments are stack pointer based and thus deemed
364 of non-constant base in this pass. This requires special
365 handling but also means that the frame pointer based stores
366 need not be killed upon encountering a const function call.
367 2. After reload, the stores related to outgoing arguments can be
368 either stack pointer or hard frame pointer based. This means
369 that we have no other choice than also killing all the frame
370 pointer based stores upon encountering a const function call.
371 This field is set after reload for const function calls and before
372 reload for const tail function calls on targets where arg pointer
373 is the frame pointer. Having this set is less severe than a wild
374 read, it just means that all the frame related stores are killed
375 rather than all the stores. */
376 bool frame_read;
377
378 /* This field is only used for the processing of const functions.
379 It is set if the insn may contain a stack pointer based store. */
380 bool stack_pointer_based;
381
382 /* This is true if any of the sets within the store contains a
383 cselib base. Such stores can only be deleted by the local
384 algorithm. */
385 bool contains_cselib_groups;
386
387 /* The insn. */
388 rtx_insn *insn;
389
390 /* The list of mem sets or mem clobbers that are contained in this
391 insn. If the insn is deletable, it contains only one mem set.
392 But it could also contain clobbers. Insns that contain more than
393 one mem set are not deletable, but each of those mems are here in
394 order to provide info to delete other insns. */
395 store_info *store_rec;
396
397 /* The linked list of mem uses in this insn. Only the reads from
398 rtx bases are listed here. The reads to cselib bases are
399 completely processed during the first scan and so are never
400 created. */
401 read_info_t read_rec;
402
403 /* The live fixed registers. We assume only fixed registers can
404 cause trouble by being clobbered from an expanded pattern;
405 storing only the live fixed registers (rather than all registers)
406 means less memory needs to be allocated / copied for the individual
407 stores. */
408 regset fixed_regs_live;
409
410 /* The prev insn in the basic block. */
411 struct insn_info_type * prev_insn;
412
413 /* The linked list of insns that are in consideration for removal in
414 the forwards pass through the basic block. This pointer may be
415 trash as it is not cleared when a wild read occurs. The only
416 time it is guaranteed to be correct is when the traversal starts
417 at active_local_stores. */
418 struct insn_info_type * next_local_store;
419 };
420 typedef struct insn_info_type *insn_info_t;
421
422 static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
423
424 /* The linked list of stores that are under consideration in this
425 basic block. */
426 static insn_info_t active_local_stores;
427 static int active_local_stores_len;
428
429 struct dse_bb_info_type
430 {
431 /* Pointer to the insn info for the last insn in the block. These
432 are linked so this is how all of the insns are reached. During
433 scanning this is the current insn being scanned. */
434 insn_info_t last_insn;
435
436 /* The info for the global dataflow problem. */
437
438
439 /* This is set if the transfer function should and in the wild_read
440 bitmap before applying the kill and gen sets. That vector knocks
441 out most of the bits in the bitmap and thus speeds up the
442 operations. */
443 bool apply_wild_read;
444
445 /* The following 4 bitvectors hold information about which positions
446 of which stores are live or dead. They are indexed by
447 get_bitmap_index. */
448
449 /* The set of store positions that exist in this block before a wild read. */
450 bitmap gen;
451
452 /* The set of load positions that exist in this block above the
453 same position of a store. */
454 bitmap kill;
455
456 /* The set of stores that reach the top of the block without being
457 killed by a read.
458
459 Do not represent the in if it is all ones. Note that this is
460 what the bitvector should logically be initialized to for a set
461 intersection problem. However, like the kill set, this is too
462 expensive. So initially, the in set will only be created for the
463 exit block and any block that contains a wild read. */
464 bitmap in;
465
466 /* The set of stores that reach the bottom of the block from it's
467 successors.
468
469 Do not represent the in if it is all ones. Note that this is
470 what the bitvector should logically be initialized to for a set
471 intersection problem. However, like the kill and in set, this is
472 too expensive. So what is done is that the confluence operator
473 just initializes the vector from one of the out sets of the
474 successors of the block. */
475 bitmap out;
476
477 /* The following bitvector is indexed by the reg number. It
478 contains the set of regs that are live at the current instruction
479 being processed. While it contains info for all of the
480 registers, only the hard registers are actually examined. It is used
481 to assure that shift and/or add sequences that are inserted do not
482 accidentally clobber live hard regs. */
483 bitmap regs_live;
484 };
485
486 typedef struct dse_bb_info_type *bb_info_t;
487
488 static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
489 ("bb_info_pool");
490
491 /* Table to hold all bb_infos. */
492 static bb_info_t *bb_table;
493
494 /* There is a group_info for each rtx base that is used to reference
495 memory. There are also not many of the rtx bases because they are
496 very limited in scope. */
497
498 struct group_info
499 {
500 /* The actual base of the address. */
501 rtx rtx_base;
502
503 /* The sequential id of the base. This allows us to have a
504 canonical ordering of these that is not based on addresses. */
505 int id;
506
507 /* True if there are any positions that are to be processed
508 globally. */
509 bool process_globally;
510
511 /* True if the base of this group is either the frame_pointer or
512 hard_frame_pointer. */
513 bool frame_related;
514
515 /* A mem wrapped around the base pointer for the group in order to do
516 read dependency. It must be given BLKmode in order to encompass all
517 the possible offsets from the base. */
518 rtx base_mem;
519
520 /* Canonized version of base_mem's address. */
521 rtx canon_base_addr;
522
523 /* These two sets of two bitmaps are used to keep track of how many
524 stores are actually referencing that position from this base. We
525 only do this for rtx bases as this will be used to assign
526 positions in the bitmaps for the global problem. Bit N is set in
527 store1 on the first store for offset N. Bit N is set in store2
528 for the second store to offset N. This is all we need since we
529 only care about offsets that have two or more stores for them.
530
531 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
532 for 0 and greater offsets.
533
534 There is one special case here, for stores into the stack frame,
535 we will or store1 into store2 before deciding which stores look
536 at globally. This is because stores to the stack frame that have
537 no other reads before the end of the function can also be
538 deleted. */
539 bitmap store1_n, store1_p, store2_n, store2_p;
540
541 /* These bitmaps keep track of offsets in this group escape this function.
542 An offset escapes if it corresponds to a named variable whose
543 addressable flag is set. */
544 bitmap escaped_n, escaped_p;
545
546 /* The positions in this bitmap have the same assignments as the in,
547 out, gen and kill bitmaps. This bitmap is all zeros except for
548 the positions that are occupied by stores for this group. */
549 bitmap group_kill;
550
551 /* The offset_map is used to map the offsets from this base into
552 positions in the global bitmaps. It is only created after all of
553 the all of stores have been scanned and we know which ones we
554 care about. */
555 int *offset_map_n, *offset_map_p;
556 int offset_map_size_n, offset_map_size_p;
557 };
558
559 static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
560
561 /* Index into the rtx_group_vec. */
562 static int rtx_group_next_id;
563
564
565 static vec<group_info *> rtx_group_vec;
566
567
568 /* This structure holds the set of changes that are being deferred
569 when removing read operation. See replace_read. */
570 struct deferred_change
571 {
572
573 /* The mem that is being replaced. */
574 rtx *loc;
575
576 /* The reg it is being replaced with. */
577 rtx reg;
578
579 struct deferred_change *next;
580 };
581
582 static object_allocator<deferred_change> deferred_change_pool
583 ("deferred_change_pool");
584
585 static deferred_change *deferred_change_list = NULL;
586
587 /* This is true except if cfun->stdarg -- i.e. we cannot do
588 this for vararg functions because they play games with the frame. */
589 static bool stores_off_frame_dead_at_return;
590
591 /* Counter for stats. */
592 static int globally_deleted;
593 static int locally_deleted;
594
595 static bitmap all_blocks;
596
597 /* Locations that are killed by calls in the global phase. */
598 static bitmap kill_on_calls;
599
600 /* The number of bits used in the global bitmaps. */
601 static unsigned int current_position;
602
603 /* Print offset range [OFFSET, OFFSET + WIDTH) to FILE. */
604
605 static void
606 print_range (FILE *file, poly_int64 offset, poly_int64 width)
607 {
608 fprintf (file, "[");
609 print_dec (offset, file, SIGNED);
610 fprintf (file, "..");
611 print_dec (offset + width, file, SIGNED);
612 fprintf (file, ")");
613 }
614 \f
615 /*----------------------------------------------------------------------------
616 Zeroth step.
617
618 Initialization.
619 ----------------------------------------------------------------------------*/
620
621
622 /* Hashtable callbacks for maintaining the "bases" field of
623 store_group_info, given that the addresses are function invariants. */
624
625 struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
626 {
627 static inline hashval_t hash (const group_info *);
628 static inline bool equal (const group_info *, const group_info *);
629 };
630
631 inline bool
632 invariant_group_base_hasher::equal (const group_info *gi1,
633 const group_info *gi2)
634 {
635 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
636 }
637
638 inline hashval_t
639 invariant_group_base_hasher::hash (const group_info *gi)
640 {
641 int do_not_record;
642 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
643 }
644
645 /* Tables of group_info structures, hashed by base value. */
646 static hash_table<invariant_group_base_hasher> *rtx_group_table;
647
648
649 /* Get the GROUP for BASE. Add a new group if it is not there. */
650
651 static group_info *
652 get_group_info (rtx base)
653 {
654 struct group_info tmp_gi;
655 group_info *gi;
656 group_info **slot;
657
658 gcc_assert (base != NULL_RTX);
659
660 /* Find the store_base_info structure for BASE, creating a new one
661 if necessary. */
662 tmp_gi.rtx_base = base;
663 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
664 gi = *slot;
665
666 if (gi == NULL)
667 {
668 *slot = gi = group_info_pool.allocate ();
669 gi->rtx_base = base;
670 gi->id = rtx_group_next_id++;
671 gi->base_mem = gen_rtx_MEM (BLKmode, base);
672 gi->canon_base_addr = canon_rtx (base);
673 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
674 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
675 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
676 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
677 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
678 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
679 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
680 gi->process_globally = false;
681 gi->frame_related =
682 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
683 gi->offset_map_size_n = 0;
684 gi->offset_map_size_p = 0;
685 gi->offset_map_n = NULL;
686 gi->offset_map_p = NULL;
687 rtx_group_vec.safe_push (gi);
688 }
689
690 return gi;
691 }
692
693
694 /* Initialization of data structures. */
695
696 static void
697 dse_step0 (void)
698 {
699 locally_deleted = 0;
700 globally_deleted = 0;
701
702 bitmap_obstack_initialize (&dse_bitmap_obstack);
703 gcc_obstack_init (&dse_obstack);
704
705 scratch = BITMAP_ALLOC (&reg_obstack);
706 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
707
708
709 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
710
711 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
712 rtx_group_next_id = 0;
713
714 stores_off_frame_dead_at_return = !cfun->stdarg;
715
716 init_alias_analysis ();
717 }
718
719
720 \f
721 /*----------------------------------------------------------------------------
722 First step.
723
724 Scan all of the insns. Any random ordering of the blocks is fine.
725 Each block is scanned in forward order to accommodate cselib which
726 is used to remove stores with non-constant bases.
727 ----------------------------------------------------------------------------*/
728
729 /* Delete all of the store_info recs from INSN_INFO. */
730
731 static void
732 free_store_info (insn_info_t insn_info)
733 {
734 store_info *cur = insn_info->store_rec;
735 while (cur)
736 {
737 store_info *next = cur->next;
738 if (cur->is_large)
739 BITMAP_FREE (cur->positions_needed.large.bmap);
740 if (cur->cse_base)
741 cse_store_info_pool.remove (cur);
742 else
743 rtx_store_info_pool.remove (cur);
744 cur = next;
745 }
746
747 insn_info->cannot_delete = true;
748 insn_info->contains_cselib_groups = false;
749 insn_info->store_rec = NULL;
750 }
751
752 struct note_add_store_info
753 {
754 rtx_insn *first, *current;
755 regset fixed_regs_live;
756 bool failure;
757 };
758
759 /* Callback for emit_inc_dec_insn_before via note_stores.
760 Check if a register is clobbered which is live afterwards. */
761
762 static void
763 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
764 {
765 rtx_insn *insn;
766 note_add_store_info *info = (note_add_store_info *) data;
767
768 if (!REG_P (loc))
769 return;
770
771 /* If this register is referenced by the current or an earlier insn,
772 that's OK. E.g. this applies to the register that is being incremented
773 with this addition. */
774 for (insn = info->first;
775 insn != NEXT_INSN (info->current);
776 insn = NEXT_INSN (insn))
777 if (reg_referenced_p (loc, PATTERN (insn)))
778 return;
779
780 /* If we come here, we have a clobber of a register that's only OK
781 if that register is not live. If we don't have liveness information
782 available, fail now. */
783 if (!info->fixed_regs_live)
784 {
785 info->failure = true;
786 return;
787 }
788 /* Now check if this is a live fixed register. */
789 unsigned int end_regno = END_REGNO (loc);
790 for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
791 if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
792 info->failure = true;
793 }
794
795 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
796 SRC + SRCOFF before insn ARG. */
797
798 static int
799 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
800 rtx op ATTRIBUTE_UNUSED,
801 rtx dest, rtx src, rtx srcoff, void *arg)
802 {
803 insn_info_t insn_info = (insn_info_t) arg;
804 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
805 note_add_store_info info;
806
807 /* We can reuse all operands without copying, because we are about
808 to delete the insn that contained it. */
809 if (srcoff)
810 {
811 start_sequence ();
812 emit_insn (gen_add3_insn (dest, src, srcoff));
813 new_insn = get_insns ();
814 end_sequence ();
815 }
816 else
817 new_insn = gen_move_insn (dest, src);
818 info.first = new_insn;
819 info.fixed_regs_live = insn_info->fixed_regs_live;
820 info.failure = false;
821 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
822 {
823 info.current = cur;
824 note_stores (cur, note_add_store, &info);
825 }
826
827 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
828 return it immediately, communicating the failure to its caller. */
829 if (info.failure)
830 return 1;
831
832 emit_insn_before (new_insn, insn);
833
834 return 0;
835 }
836
837 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
838 is there, is split into a separate insn.
839 Return true on success (or if there was nothing to do), false on failure. */
840
841 static bool
842 check_for_inc_dec_1 (insn_info_t insn_info)
843 {
844 rtx_insn *insn = insn_info->insn;
845 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
846 if (note)
847 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
848 insn_info) == 0;
849 return true;
850 }
851
852
853 /* Entry point for postreload. If you work on reload_cse, or you need this
854 anywhere else, consider if you can provide register liveness information
855 and add a parameter to this function so that it can be passed down in
856 insn_info.fixed_regs_live. */
857 bool
858 check_for_inc_dec (rtx_insn *insn)
859 {
860 insn_info_type insn_info;
861 rtx note;
862
863 insn_info.insn = insn;
864 insn_info.fixed_regs_live = NULL;
865 note = find_reg_note (insn, REG_INC, NULL_RTX);
866 if (note)
867 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
868 &insn_info) == 0;
869 return true;
870 }
871
872 /* Delete the insn and free all of the fields inside INSN_INFO. */
873
874 static void
875 delete_dead_store_insn (insn_info_t insn_info)
876 {
877 read_info_t read_info;
878
879 if (!dbg_cnt (dse))
880 return;
881
882 if (!check_for_inc_dec_1 (insn_info))
883 return;
884 if (dump_file && (dump_flags & TDF_DETAILS))
885 fprintf (dump_file, "Locally deleting insn %d\n",
886 INSN_UID (insn_info->insn));
887
888 free_store_info (insn_info);
889 read_info = insn_info->read_rec;
890
891 while (read_info)
892 {
893 read_info_t next = read_info->next;
894 read_info_type_pool.remove (read_info);
895 read_info = next;
896 }
897 insn_info->read_rec = NULL;
898
899 delete_insn (insn_info->insn);
900 locally_deleted++;
901 insn_info->insn = NULL;
902
903 insn_info->wild_read = false;
904 }
905
906 /* Return whether DECL, a local variable, can possibly escape the current
907 function scope. */
908
909 static bool
910 local_variable_can_escape (tree decl)
911 {
912 if (TREE_ADDRESSABLE (decl))
913 return true;
914
915 /* If this is a partitioned variable, we need to consider all the variables
916 in the partition. This is necessary because a store into one of them can
917 be replaced with a store into another and this may not change the outcome
918 of the escape analysis. */
919 if (cfun->gimple_df->decls_to_pointers != NULL)
920 {
921 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
922 if (namep)
923 return TREE_ADDRESSABLE (*namep);
924 }
925
926 return false;
927 }
928
929 /* Return whether EXPR can possibly escape the current function scope. */
930
931 static bool
932 can_escape (tree expr)
933 {
934 tree base;
935 if (!expr)
936 return true;
937 base = get_base_address (expr);
938 if (DECL_P (base)
939 && !may_be_aliased (base)
940 && !(VAR_P (base)
941 && !DECL_EXTERNAL (base)
942 && !TREE_STATIC (base)
943 && local_variable_can_escape (base)))
944 return false;
945 return true;
946 }
947
948 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
949 OFFSET and WIDTH. */
950
951 static void
952 set_usage_bits (group_info *group, poly_int64 offset, poly_int64 width,
953 tree expr)
954 {
955 /* Non-constant offsets and widths act as global kills, so there's no point
956 trying to use them to derive global DSE candidates. */
957 HOST_WIDE_INT i, const_offset, const_width;
958 bool expr_escapes = can_escape (expr);
959 if (offset.is_constant (&const_offset)
960 && width.is_constant (&const_width)
961 && const_offset > -MAX_OFFSET
962 && const_offset + const_width < MAX_OFFSET)
963 for (i = const_offset; i < const_offset + const_width; ++i)
964 {
965 bitmap store1;
966 bitmap store2;
967 bitmap escaped;
968 int ai;
969 if (i < 0)
970 {
971 store1 = group->store1_n;
972 store2 = group->store2_n;
973 escaped = group->escaped_n;
974 ai = -i;
975 }
976 else
977 {
978 store1 = group->store1_p;
979 store2 = group->store2_p;
980 escaped = group->escaped_p;
981 ai = i;
982 }
983
984 if (!bitmap_set_bit (store1, ai))
985 bitmap_set_bit (store2, ai);
986 else
987 {
988 if (i < 0)
989 {
990 if (group->offset_map_size_n < ai)
991 group->offset_map_size_n = ai;
992 }
993 else
994 {
995 if (group->offset_map_size_p < ai)
996 group->offset_map_size_p = ai;
997 }
998 }
999 if (expr_escapes)
1000 bitmap_set_bit (escaped, ai);
1001 }
1002 }
1003
1004 static void
1005 reset_active_stores (void)
1006 {
1007 active_local_stores = NULL;
1008 active_local_stores_len = 0;
1009 }
1010
1011 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1012
1013 static void
1014 free_read_records (bb_info_t bb_info)
1015 {
1016 insn_info_t insn_info = bb_info->last_insn;
1017 read_info_t *ptr = &insn_info->read_rec;
1018 while (*ptr)
1019 {
1020 read_info_t next = (*ptr)->next;
1021 read_info_type_pool.remove (*ptr);
1022 *ptr = next;
1023 }
1024 }
1025
1026 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1027
1028 static void
1029 add_wild_read (bb_info_t bb_info)
1030 {
1031 insn_info_t insn_info = bb_info->last_insn;
1032 insn_info->wild_read = true;
1033 free_read_records (bb_info);
1034 reset_active_stores ();
1035 }
1036
1037 /* Set the BB_INFO so that the last insn is marked as a wild read of
1038 non-frame locations. */
1039
1040 static void
1041 add_non_frame_wild_read (bb_info_t bb_info)
1042 {
1043 insn_info_t insn_info = bb_info->last_insn;
1044 insn_info->non_frame_wild_read = true;
1045 free_read_records (bb_info);
1046 reset_active_stores ();
1047 }
1048
1049 /* Return true if X is a constant or one of the registers that behave
1050 as a constant over the life of a function. This is equivalent to
1051 !rtx_varies_p for memory addresses. */
1052
1053 static bool
1054 const_or_frame_p (rtx x)
1055 {
1056 if (CONSTANT_P (x))
1057 return true;
1058
1059 if (GET_CODE (x) == REG)
1060 {
1061 /* Note that we have to test for the actual rtx used for the frame
1062 and arg pointers and not just the register number in case we have
1063 eliminated the frame and/or arg pointer and are using it
1064 for pseudos. */
1065 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1066 /* The arg pointer varies if it is not a fixed register. */
1067 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1068 || x == pic_offset_table_rtx)
1069 return true;
1070 return false;
1071 }
1072
1073 return false;
1074 }
1075
1076 /* Take all reasonable action to put the address of MEM into the form
1077 that we can do analysis on.
1078
1079 The gold standard is to get the address into the form: address +
1080 OFFSET where address is something that rtx_varies_p considers a
1081 constant. When we can get the address in this form, we can do
1082 global analysis on it. Note that for constant bases, address is
1083 not actually returned, only the group_id. The address can be
1084 obtained from that.
1085
1086 If that fails, we try cselib to get a value we can at least use
1087 locally. If that fails we return false.
1088
1089 The GROUP_ID is set to -1 for cselib bases and the index of the
1090 group for non_varying bases.
1091
1092 FOR_READ is true if this is a mem read and false if not. */
1093
1094 static bool
1095 canon_address (rtx mem,
1096 int *group_id,
1097 poly_int64 *offset,
1098 cselib_val **base)
1099 {
1100 machine_mode address_mode = get_address_mode (mem);
1101 rtx mem_address = XEXP (mem, 0);
1102 rtx expanded_address, address;
1103 int expanded;
1104
1105 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1106
1107 if (dump_file && (dump_flags & TDF_DETAILS))
1108 {
1109 fprintf (dump_file, " mem: ");
1110 print_inline_rtx (dump_file, mem_address, 0);
1111 fprintf (dump_file, "\n");
1112 }
1113
1114 /* First see if just canon_rtx (mem_address) is const or frame,
1115 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1116 address = NULL_RTX;
1117 for (expanded = 0; expanded < 2; expanded++)
1118 {
1119 if (expanded)
1120 {
1121 /* Use cselib to replace all of the reg references with the full
1122 expression. This will take care of the case where we have
1123
1124 r_x = base + offset;
1125 val = *r_x;
1126
1127 by making it into
1128
1129 val = *(base + offset); */
1130
1131 expanded_address = cselib_expand_value_rtx (mem_address,
1132 scratch, 5);
1133
1134 /* If this fails, just go with the address from first
1135 iteration. */
1136 if (!expanded_address)
1137 break;
1138 }
1139 else
1140 expanded_address = mem_address;
1141
1142 /* Split the address into canonical BASE + OFFSET terms. */
1143 address = canon_rtx (expanded_address);
1144
1145 *offset = 0;
1146
1147 if (dump_file && (dump_flags & TDF_DETAILS))
1148 {
1149 if (expanded)
1150 {
1151 fprintf (dump_file, "\n after cselib_expand address: ");
1152 print_inline_rtx (dump_file, expanded_address, 0);
1153 fprintf (dump_file, "\n");
1154 }
1155
1156 fprintf (dump_file, "\n after canon_rtx address: ");
1157 print_inline_rtx (dump_file, address, 0);
1158 fprintf (dump_file, "\n");
1159 }
1160
1161 if (GET_CODE (address) == CONST)
1162 address = XEXP (address, 0);
1163
1164 address = strip_offset_and_add (address, offset);
1165
1166 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1167 && const_or_frame_p (address))
1168 {
1169 group_info *group = get_group_info (address);
1170
1171 if (dump_file && (dump_flags & TDF_DETAILS))
1172 {
1173 fprintf (dump_file, " gid=%d offset=", group->id);
1174 print_dec (*offset, dump_file);
1175 fprintf (dump_file, "\n");
1176 }
1177 *base = NULL;
1178 *group_id = group->id;
1179 return true;
1180 }
1181 }
1182
1183 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1184 *group_id = -1;
1185
1186 if (*base == NULL)
1187 {
1188 if (dump_file && (dump_flags & TDF_DETAILS))
1189 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1190 return false;
1191 }
1192 if (dump_file && (dump_flags & TDF_DETAILS))
1193 {
1194 fprintf (dump_file, " varying cselib base=%u:%u offset = ",
1195 (*base)->uid, (*base)->hash);
1196 print_dec (*offset, dump_file);
1197 fprintf (dump_file, "\n");
1198 }
1199 return true;
1200 }
1201
1202
1203 /* Clear the rhs field from the active_local_stores array. */
1204
1205 static void
1206 clear_rhs_from_active_local_stores (void)
1207 {
1208 insn_info_t ptr = active_local_stores;
1209
1210 while (ptr)
1211 {
1212 store_info *store_info = ptr->store_rec;
1213 /* Skip the clobbers. */
1214 while (!store_info->is_set)
1215 store_info = store_info->next;
1216
1217 store_info->rhs = NULL;
1218 store_info->const_rhs = NULL;
1219
1220 ptr = ptr->next_local_store;
1221 }
1222 }
1223
1224
1225 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1226
1227 static inline void
1228 set_position_unneeded (store_info *s_info, int pos)
1229 {
1230 if (__builtin_expect (s_info->is_large, false))
1231 {
1232 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1233 s_info->positions_needed.large.count++;
1234 }
1235 else
1236 s_info->positions_needed.small_bitmask
1237 &= ~(HOST_WIDE_INT_1U << pos);
1238 }
1239
1240 /* Mark the whole store S_INFO as unneeded. */
1241
1242 static inline void
1243 set_all_positions_unneeded (store_info *s_info)
1244 {
1245 if (__builtin_expect (s_info->is_large, false))
1246 {
1247 HOST_WIDE_INT width;
1248 if (s_info->width.is_constant (&width))
1249 {
1250 bitmap_set_range (s_info->positions_needed.large.bmap, 0, width);
1251 s_info->positions_needed.large.count = width;
1252 }
1253 else
1254 {
1255 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1256 s_info->positions_needed.large.count = 1;
1257 }
1258 }
1259 else
1260 s_info->positions_needed.small_bitmask = HOST_WIDE_INT_0U;
1261 }
1262
1263 /* Return TRUE if any bytes from S_INFO store are needed. */
1264
1265 static inline bool
1266 any_positions_needed_p (store_info *s_info)
1267 {
1268 if (__builtin_expect (s_info->is_large, false))
1269 {
1270 HOST_WIDE_INT width;
1271 if (s_info->width.is_constant (&width))
1272 {
1273 gcc_checking_assert (s_info->positions_needed.large.bmap);
1274 return s_info->positions_needed.large.count < width;
1275 }
1276 else
1277 {
1278 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1279 return s_info->positions_needed.large.count == 0;
1280 }
1281 }
1282 else
1283 return (s_info->positions_needed.small_bitmask != HOST_WIDE_INT_0U);
1284 }
1285
1286 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1287 store are known to be needed. */
1288
1289 static inline bool
1290 all_positions_needed_p (store_info *s_info, poly_int64 start,
1291 poly_int64 width)
1292 {
1293 gcc_assert (s_info->rhs);
1294 if (!s_info->width.is_constant ())
1295 {
1296 gcc_assert (s_info->is_large
1297 && !s_info->positions_needed.large.bmap);
1298 return s_info->positions_needed.large.count == 0;
1299 }
1300
1301 /* Otherwise, if START and WIDTH are non-constant, we're asking about
1302 a non-constant region of a constant-sized store. We can't say for
1303 sure that all positions are needed. */
1304 HOST_WIDE_INT const_start, const_width;
1305 if (!start.is_constant (&const_start)
1306 || !width.is_constant (&const_width))
1307 return false;
1308
1309 if (__builtin_expect (s_info->is_large, false))
1310 {
1311 for (HOST_WIDE_INT i = const_start; i < const_start + const_width; ++i)
1312 if (bitmap_bit_p (s_info->positions_needed.large.bmap, i))
1313 return false;
1314 return true;
1315 }
1316 else
1317 {
1318 unsigned HOST_WIDE_INT mask
1319 = lowpart_bitmask (const_width) << const_start;
1320 return (s_info->positions_needed.small_bitmask & mask) == mask;
1321 }
1322 }
1323
1324
1325 static rtx get_stored_val (store_info *, machine_mode, poly_int64,
1326 poly_int64, basic_block, bool);
1327
1328
1329 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1330 there is a candidate store, after adding it to the appropriate
1331 local store group if so. */
1332
1333 static int
1334 record_store (rtx body, bb_info_t bb_info)
1335 {
1336 rtx mem, rhs, const_rhs, mem_addr;
1337 poly_int64 offset = 0;
1338 poly_int64 width = 0;
1339 insn_info_t insn_info = bb_info->last_insn;
1340 store_info *store_info = NULL;
1341 int group_id;
1342 cselib_val *base = NULL;
1343 insn_info_t ptr, last, redundant_reason;
1344 bool store_is_unused;
1345
1346 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1347 return 0;
1348
1349 mem = SET_DEST (body);
1350
1351 /* If this is not used, then this cannot be used to keep the insn
1352 from being deleted. On the other hand, it does provide something
1353 that can be used to prove that another store is dead. */
1354 store_is_unused
1355 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1356
1357 /* Check whether that value is a suitable memory location. */
1358 if (!MEM_P (mem))
1359 {
1360 /* If the set or clobber is unused, then it does not effect our
1361 ability to get rid of the entire insn. */
1362 if (!store_is_unused)
1363 insn_info->cannot_delete = true;
1364 return 0;
1365 }
1366
1367 /* At this point we know mem is a mem. */
1368 if (GET_MODE (mem) == BLKmode)
1369 {
1370 HOST_WIDE_INT const_size;
1371 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1372 {
1373 if (dump_file && (dump_flags & TDF_DETAILS))
1374 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1375 add_wild_read (bb_info);
1376 insn_info->cannot_delete = true;
1377 return 0;
1378 }
1379 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1380 as memset (addr, 0, 36); */
1381 else if (!MEM_SIZE_KNOWN_P (mem)
1382 || maybe_le (MEM_SIZE (mem), 0)
1383 /* This is a limit on the bitmap size, which is only relevant
1384 for constant-sized MEMs. */
1385 || (MEM_SIZE (mem).is_constant (&const_size)
1386 && const_size > MAX_OFFSET)
1387 || GET_CODE (body) != SET
1388 || !CONST_INT_P (SET_SRC (body)))
1389 {
1390 if (!store_is_unused)
1391 {
1392 /* If the set or clobber is unused, then it does not effect our
1393 ability to get rid of the entire insn. */
1394 insn_info->cannot_delete = true;
1395 clear_rhs_from_active_local_stores ();
1396 }
1397 return 0;
1398 }
1399 }
1400
1401 /* We can still process a volatile mem, we just cannot delete it. */
1402 if (MEM_VOLATILE_P (mem))
1403 insn_info->cannot_delete = true;
1404
1405 if (!canon_address (mem, &group_id, &offset, &base))
1406 {
1407 clear_rhs_from_active_local_stores ();
1408 return 0;
1409 }
1410
1411 if (GET_MODE (mem) == BLKmode)
1412 width = MEM_SIZE (mem);
1413 else
1414 width = GET_MODE_SIZE (GET_MODE (mem));
1415
1416 if (!endpoint_representable_p (offset, width))
1417 {
1418 clear_rhs_from_active_local_stores ();
1419 return 0;
1420 }
1421
1422 if (known_eq (width, 0))
1423 return 0;
1424
1425 if (group_id >= 0)
1426 {
1427 /* In the restrictive case where the base is a constant or the
1428 frame pointer we can do global analysis. */
1429
1430 group_info *group
1431 = rtx_group_vec[group_id];
1432 tree expr = MEM_EXPR (mem);
1433
1434 store_info = rtx_store_info_pool.allocate ();
1435 set_usage_bits (group, offset, width, expr);
1436
1437 if (dump_file && (dump_flags & TDF_DETAILS))
1438 {
1439 fprintf (dump_file, " processing const base store gid=%d",
1440 group_id);
1441 print_range (dump_file, offset, width);
1442 fprintf (dump_file, "\n");
1443 }
1444 }
1445 else
1446 {
1447 if (may_be_sp_based_p (XEXP (mem, 0)))
1448 insn_info->stack_pointer_based = true;
1449 insn_info->contains_cselib_groups = true;
1450
1451 store_info = cse_store_info_pool.allocate ();
1452 group_id = -1;
1453
1454 if (dump_file && (dump_flags & TDF_DETAILS))
1455 {
1456 fprintf (dump_file, " processing cselib store ");
1457 print_range (dump_file, offset, width);
1458 fprintf (dump_file, "\n");
1459 }
1460 }
1461
1462 const_rhs = rhs = NULL_RTX;
1463 if (GET_CODE (body) == SET
1464 /* No place to keep the value after ra. */
1465 && !reload_completed
1466 && (REG_P (SET_SRC (body))
1467 || GET_CODE (SET_SRC (body)) == SUBREG
1468 || CONSTANT_P (SET_SRC (body)))
1469 && !MEM_VOLATILE_P (mem)
1470 /* Sometimes the store and reload is used for truncation and
1471 rounding. */
1472 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1473 {
1474 rhs = SET_SRC (body);
1475 if (CONSTANT_P (rhs))
1476 const_rhs = rhs;
1477 else if (body == PATTERN (insn_info->insn))
1478 {
1479 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1480 if (tem && CONSTANT_P (XEXP (tem, 0)))
1481 const_rhs = XEXP (tem, 0);
1482 }
1483 if (const_rhs == NULL_RTX && REG_P (rhs))
1484 {
1485 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1486
1487 if (tem && CONSTANT_P (tem))
1488 const_rhs = tem;
1489 }
1490 }
1491
1492 /* Check to see if this stores causes some other stores to be
1493 dead. */
1494 ptr = active_local_stores;
1495 last = NULL;
1496 redundant_reason = NULL;
1497 mem = canon_rtx (mem);
1498
1499 if (group_id < 0)
1500 mem_addr = base->val_rtx;
1501 else
1502 {
1503 group_info *group = rtx_group_vec[group_id];
1504 mem_addr = group->canon_base_addr;
1505 }
1506 if (maybe_ne (offset, 0))
1507 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1508
1509 while (ptr)
1510 {
1511 insn_info_t next = ptr->next_local_store;
1512 class store_info *s_info = ptr->store_rec;
1513 bool del = true;
1514
1515 /* Skip the clobbers. We delete the active insn if this insn
1516 shadows the set. To have been put on the active list, it
1517 has exactly on set. */
1518 while (!s_info->is_set)
1519 s_info = s_info->next;
1520
1521 if (s_info->group_id == group_id && s_info->cse_base == base)
1522 {
1523 HOST_WIDE_INT i;
1524 if (dump_file && (dump_flags & TDF_DETAILS))
1525 {
1526 fprintf (dump_file, " trying store in insn=%d gid=%d",
1527 INSN_UID (ptr->insn), s_info->group_id);
1528 print_range (dump_file, s_info->offset, s_info->width);
1529 fprintf (dump_file, "\n");
1530 }
1531
1532 /* Even if PTR won't be eliminated as unneeded, if both
1533 PTR and this insn store the same constant value, we might
1534 eliminate this insn instead. */
1535 if (s_info->const_rhs
1536 && const_rhs
1537 && known_subrange_p (offset, width,
1538 s_info->offset, s_info->width)
1539 && all_positions_needed_p (s_info, offset - s_info->offset,
1540 width)
1541 /* We can only remove the later store if the earlier aliases
1542 at least all accesses the later one. */
1543 && (MEM_ALIAS_SET (mem) == MEM_ALIAS_SET (s_info->mem)
1544 || alias_set_subset_of (MEM_ALIAS_SET (mem),
1545 MEM_ALIAS_SET (s_info->mem))))
1546 {
1547 if (GET_MODE (mem) == BLKmode)
1548 {
1549 if (GET_MODE (s_info->mem) == BLKmode
1550 && s_info->const_rhs == const_rhs)
1551 redundant_reason = ptr;
1552 }
1553 else if (s_info->const_rhs == const0_rtx
1554 && const_rhs == const0_rtx)
1555 redundant_reason = ptr;
1556 else
1557 {
1558 rtx val;
1559 start_sequence ();
1560 val = get_stored_val (s_info, GET_MODE (mem), offset, width,
1561 BLOCK_FOR_INSN (insn_info->insn),
1562 true);
1563 if (get_insns () != NULL)
1564 val = NULL_RTX;
1565 end_sequence ();
1566 if (val && rtx_equal_p (val, const_rhs))
1567 redundant_reason = ptr;
1568 }
1569 }
1570
1571 HOST_WIDE_INT begin_unneeded, const_s_width, const_width;
1572 if (known_subrange_p (s_info->offset, s_info->width, offset, width))
1573 /* The new store touches every byte that S_INFO does. */
1574 set_all_positions_unneeded (s_info);
1575 else if ((offset - s_info->offset).is_constant (&begin_unneeded)
1576 && s_info->width.is_constant (&const_s_width)
1577 && width.is_constant (&const_width))
1578 {
1579 HOST_WIDE_INT end_unneeded = begin_unneeded + const_width;
1580 begin_unneeded = MAX (begin_unneeded, 0);
1581 end_unneeded = MIN (end_unneeded, const_s_width);
1582 for (i = begin_unneeded; i < end_unneeded; ++i)
1583 set_position_unneeded (s_info, i);
1584 }
1585 else
1586 {
1587 /* We don't know which parts of S_INFO are needed and
1588 which aren't, so invalidate the RHS. */
1589 s_info->rhs = NULL;
1590 s_info->const_rhs = NULL;
1591 }
1592 }
1593 else if (s_info->rhs)
1594 /* Need to see if it is possible for this store to overwrite
1595 the value of store_info. If it is, set the rhs to NULL to
1596 keep it from being used to remove a load. */
1597 {
1598 if (canon_output_dependence (s_info->mem, true,
1599 mem, GET_MODE (mem),
1600 mem_addr))
1601 {
1602 s_info->rhs = NULL;
1603 s_info->const_rhs = NULL;
1604 }
1605 }
1606
1607 /* An insn can be deleted if every position of every one of
1608 its s_infos is zero. */
1609 if (any_positions_needed_p (s_info))
1610 del = false;
1611
1612 if (del)
1613 {
1614 insn_info_t insn_to_delete = ptr;
1615
1616 active_local_stores_len--;
1617 if (last)
1618 last->next_local_store = ptr->next_local_store;
1619 else
1620 active_local_stores = ptr->next_local_store;
1621
1622 if (!insn_to_delete->cannot_delete)
1623 delete_dead_store_insn (insn_to_delete);
1624 }
1625 else
1626 last = ptr;
1627
1628 ptr = next;
1629 }
1630
1631 /* Finish filling in the store_info. */
1632 store_info->next = insn_info->store_rec;
1633 insn_info->store_rec = store_info;
1634 store_info->mem = mem;
1635 store_info->mem_addr = mem_addr;
1636 store_info->cse_base = base;
1637 HOST_WIDE_INT const_width;
1638 if (!width.is_constant (&const_width))
1639 {
1640 store_info->is_large = true;
1641 store_info->positions_needed.large.count = 0;
1642 store_info->positions_needed.large.bmap = NULL;
1643 }
1644 else if (const_width > HOST_BITS_PER_WIDE_INT)
1645 {
1646 store_info->is_large = true;
1647 store_info->positions_needed.large.count = 0;
1648 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1649 }
1650 else
1651 {
1652 store_info->is_large = false;
1653 store_info->positions_needed.small_bitmask
1654 = lowpart_bitmask (const_width);
1655 }
1656 store_info->group_id = group_id;
1657 store_info->offset = offset;
1658 store_info->width = width;
1659 store_info->is_set = GET_CODE (body) == SET;
1660 store_info->rhs = rhs;
1661 store_info->const_rhs = const_rhs;
1662 store_info->redundant_reason = redundant_reason;
1663
1664 /* If this is a clobber, we return 0. We will only be able to
1665 delete this insn if there is only one store USED store, but we
1666 can use the clobber to delete other stores earlier. */
1667 return store_info->is_set ? 1 : 0;
1668 }
1669
1670
1671 static void
1672 dump_insn_info (const char * start, insn_info_t insn_info)
1673 {
1674 fprintf (dump_file, "%s insn=%d %s\n", start,
1675 INSN_UID (insn_info->insn),
1676 insn_info->store_rec ? "has store" : "naked");
1677 }
1678
1679
1680 /* If the modes are different and the value's source and target do not
1681 line up, we need to extract the value from lower part of the rhs of
1682 the store, shift it, and then put it into a form that can be shoved
1683 into the read_insn. This function generates a right SHIFT of a
1684 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1685 shift sequence is returned or NULL if we failed to find a
1686 shift. */
1687
1688 static rtx
1689 find_shift_sequence (poly_int64 access_size,
1690 store_info *store_info,
1691 machine_mode read_mode,
1692 poly_int64 shift, bool speed, bool require_cst)
1693 {
1694 machine_mode store_mode = GET_MODE (store_info->mem);
1695 scalar_int_mode new_mode;
1696 rtx read_reg = NULL;
1697
1698 /* Some machines like the x86 have shift insns for each size of
1699 operand. Other machines like the ppc or the ia-64 may only have
1700 shift insns that shift values within 32 or 64 bit registers.
1701 This loop tries to find the smallest shift insn that will right
1702 justify the value we want to read but is available in one insn on
1703 the machine. */
1704
1705 opt_scalar_int_mode new_mode_iter;
1706 FOR_EACH_MODE_FROM (new_mode_iter,
1707 smallest_int_mode_for_size (access_size * BITS_PER_UNIT))
1708 {
1709 rtx target, new_reg, new_lhs;
1710 rtx_insn *shift_seq, *insn;
1711 int cost;
1712
1713 new_mode = new_mode_iter.require ();
1714 if (GET_MODE_BITSIZE (new_mode) > BITS_PER_WORD)
1715 break;
1716
1717 /* If a constant was stored into memory, try to simplify it here,
1718 otherwise the cost of the shift might preclude this optimization
1719 e.g. at -Os, even when no actual shift will be needed. */
1720 if (store_info->const_rhs)
1721 {
1722 poly_uint64 byte = subreg_lowpart_offset (new_mode, store_mode);
1723 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1724 store_mode, byte);
1725 if (ret && CONSTANT_P (ret))
1726 {
1727 rtx shift_rtx = gen_int_shift_amount (new_mode, shift);
1728 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1729 ret, shift_rtx);
1730 if (ret && CONSTANT_P (ret))
1731 {
1732 byte = subreg_lowpart_offset (read_mode, new_mode);
1733 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1734 if (ret && CONSTANT_P (ret)
1735 && (set_src_cost (ret, read_mode, speed)
1736 <= COSTS_N_INSNS (1)))
1737 return ret;
1738 }
1739 }
1740 }
1741
1742 if (require_cst)
1743 return NULL_RTX;
1744
1745 /* Try a wider mode if truncating the store mode to NEW_MODE
1746 requires a real instruction. */
1747 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode))
1748 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1749 continue;
1750
1751 /* Also try a wider mode if the necessary punning is either not
1752 desirable or not possible. */
1753 if (!CONSTANT_P (store_info->rhs)
1754 && !targetm.modes_tieable_p (new_mode, store_mode))
1755 continue;
1756
1757 new_reg = gen_reg_rtx (new_mode);
1758
1759 start_sequence ();
1760
1761 /* In theory we could also check for an ashr. Ian Taylor knows
1762 of one dsp where the cost of these two was not the same. But
1763 this really is a rare case anyway. */
1764 target = expand_binop (new_mode, lshr_optab, new_reg,
1765 gen_int_shift_amount (new_mode, shift),
1766 new_reg, 1, OPTAB_DIRECT);
1767
1768 shift_seq = get_insns ();
1769 end_sequence ();
1770
1771 if (target != new_reg || shift_seq == NULL)
1772 continue;
1773
1774 cost = 0;
1775 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1776 if (INSN_P (insn))
1777 cost += insn_cost (insn, speed);
1778
1779 /* The computation up to here is essentially independent
1780 of the arguments and could be precomputed. It may
1781 not be worth doing so. We could precompute if
1782 worthwhile or at least cache the results. The result
1783 technically depends on both SHIFT and ACCESS_SIZE,
1784 but in practice the answer will depend only on ACCESS_SIZE. */
1785
1786 if (cost > COSTS_N_INSNS (1))
1787 continue;
1788
1789 new_lhs = extract_low_bits (new_mode, store_mode,
1790 copy_rtx (store_info->rhs));
1791 if (new_lhs == NULL_RTX)
1792 continue;
1793
1794 /* We found an acceptable shift. Generate a move to
1795 take the value from the store and put it into the
1796 shift pseudo, then shift it, then generate another
1797 move to put in into the target of the read. */
1798 emit_move_insn (new_reg, new_lhs);
1799 emit_insn (shift_seq);
1800 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1801 break;
1802 }
1803
1804 return read_reg;
1805 }
1806
1807
1808 /* Call back for note_stores to find the hard regs set or clobbered by
1809 insn. Data is a bitmap of the hardregs set so far. */
1810
1811 static void
1812 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1813 {
1814 bitmap regs_set = (bitmap) data;
1815
1816 if (REG_P (x)
1817 && HARD_REGISTER_P (x))
1818 bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
1819 }
1820
1821 /* Helper function for replace_read and record_store.
1822 Attempt to return a value of mode READ_MODE stored in STORE_INFO,
1823 consisting of READ_WIDTH bytes starting from READ_OFFSET. Return NULL
1824 if not successful. If REQUIRE_CST is true, return always constant. */
1825
1826 static rtx
1827 get_stored_val (store_info *store_info, machine_mode read_mode,
1828 poly_int64 read_offset, poly_int64 read_width,
1829 basic_block bb, bool require_cst)
1830 {
1831 machine_mode store_mode = GET_MODE (store_info->mem);
1832 poly_int64 gap;
1833 rtx read_reg;
1834
1835 /* To get here the read is within the boundaries of the write so
1836 shift will never be negative. Start out with the shift being in
1837 bytes. */
1838 if (store_mode == BLKmode)
1839 gap = 0;
1840 else if (BYTES_BIG_ENDIAN)
1841 gap = ((store_info->offset + store_info->width)
1842 - (read_offset + read_width));
1843 else
1844 gap = read_offset - store_info->offset;
1845
1846 if (gap.is_constant () && maybe_ne (gap, 0))
1847 {
1848 poly_int64 shift = gap * BITS_PER_UNIT;
1849 poly_int64 access_size = GET_MODE_SIZE (read_mode) + gap;
1850 read_reg = find_shift_sequence (access_size, store_info, read_mode,
1851 shift, optimize_bb_for_speed_p (bb),
1852 require_cst);
1853 }
1854 else if (store_mode == BLKmode)
1855 {
1856 /* The store is a memset (addr, const_val, const_size). */
1857 gcc_assert (CONST_INT_P (store_info->rhs));
1858 scalar_int_mode int_store_mode;
1859 if (!int_mode_for_mode (read_mode).exists (&int_store_mode))
1860 read_reg = NULL_RTX;
1861 else if (store_info->rhs == const0_rtx)
1862 read_reg = extract_low_bits (read_mode, int_store_mode, const0_rtx);
1863 else if (GET_MODE_BITSIZE (int_store_mode) > HOST_BITS_PER_WIDE_INT
1864 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1865 read_reg = NULL_RTX;
1866 else
1867 {
1868 unsigned HOST_WIDE_INT c
1869 = INTVAL (store_info->rhs)
1870 & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1);
1871 int shift = BITS_PER_UNIT;
1872 while (shift < HOST_BITS_PER_WIDE_INT)
1873 {
1874 c |= (c << shift);
1875 shift <<= 1;
1876 }
1877 read_reg = gen_int_mode (c, int_store_mode);
1878 read_reg = extract_low_bits (read_mode, int_store_mode, read_reg);
1879 }
1880 }
1881 else if (store_info->const_rhs
1882 && (require_cst
1883 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1884 read_reg = extract_low_bits (read_mode, store_mode,
1885 copy_rtx (store_info->const_rhs));
1886 else
1887 read_reg = extract_low_bits (read_mode, store_mode,
1888 copy_rtx (store_info->rhs));
1889 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1890 read_reg = NULL_RTX;
1891 return read_reg;
1892 }
1893
1894 /* Take a sequence of:
1895 A <- r1
1896 ...
1897 ... <- A
1898
1899 and change it into
1900 r2 <- r1
1901 A <- r1
1902 ...
1903 ... <- r2
1904
1905 or
1906
1907 r3 <- extract (r1)
1908 r3 <- r3 >> shift
1909 r2 <- extract (r3)
1910 ... <- r2
1911
1912 or
1913
1914 r2 <- extract (r1)
1915 ... <- r2
1916
1917 Depending on the alignment and the mode of the store and
1918 subsequent load.
1919
1920
1921 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1922 and READ_INSN are for the read. Return true if the replacement
1923 went ok. */
1924
1925 static bool
1926 replace_read (store_info *store_info, insn_info_t store_insn,
1927 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1928 bitmap regs_live)
1929 {
1930 machine_mode store_mode = GET_MODE (store_info->mem);
1931 machine_mode read_mode = GET_MODE (read_info->mem);
1932 rtx_insn *insns, *this_insn;
1933 rtx read_reg;
1934 basic_block bb;
1935
1936 if (!dbg_cnt (dse))
1937 return false;
1938
1939 /* Create a sequence of instructions to set up the read register.
1940 This sequence goes immediately before the store and its result
1941 is read by the load.
1942
1943 We need to keep this in perspective. We are replacing a read
1944 with a sequence of insns, but the read will almost certainly be
1945 in cache, so it is not going to be an expensive one. Thus, we
1946 are not willing to do a multi insn shift or worse a subroutine
1947 call to get rid of the read. */
1948 if (dump_file && (dump_flags & TDF_DETAILS))
1949 fprintf (dump_file, "trying to replace %smode load in insn %d"
1950 " from %smode store in insn %d\n",
1951 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1952 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1953 start_sequence ();
1954 bb = BLOCK_FOR_INSN (read_insn->insn);
1955 read_reg = get_stored_val (store_info,
1956 read_mode, read_info->offset, read_info->width,
1957 bb, false);
1958 if (read_reg == NULL_RTX)
1959 {
1960 end_sequence ();
1961 if (dump_file && (dump_flags & TDF_DETAILS))
1962 fprintf (dump_file, " -- could not extract bits of stored value\n");
1963 return false;
1964 }
1965 /* Force the value into a new register so that it won't be clobbered
1966 between the store and the load. */
1967 read_reg = copy_to_mode_reg (read_mode, read_reg);
1968 insns = get_insns ();
1969 end_sequence ();
1970
1971 if (insns != NULL_RTX)
1972 {
1973 /* Now we have to scan the set of new instructions to see if the
1974 sequence contains and sets of hardregs that happened to be
1975 live at this point. For instance, this can happen if one of
1976 the insns sets the CC and the CC happened to be live at that
1977 point. This does occasionally happen, see PR 37922. */
1978 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
1979
1980 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
1981 note_stores (this_insn, look_for_hardregs, regs_set);
1982
1983 bitmap_and_into (regs_set, regs_live);
1984 if (!bitmap_empty_p (regs_set))
1985 {
1986 if (dump_file && (dump_flags & TDF_DETAILS))
1987 {
1988 fprintf (dump_file,
1989 "abandoning replacement because sequence clobbers live hardregs:");
1990 df_print_regset (dump_file, regs_set);
1991 }
1992
1993 BITMAP_FREE (regs_set);
1994 return false;
1995 }
1996 BITMAP_FREE (regs_set);
1997 }
1998
1999 if (validate_change (read_insn->insn, loc, read_reg, 0))
2000 {
2001 deferred_change *change = deferred_change_pool.allocate ();
2002
2003 /* Insert this right before the store insn where it will be safe
2004 from later insns that might change it before the read. */
2005 emit_insn_before (insns, store_insn->insn);
2006
2007 /* And now for the kludge part: cselib croaks if you just
2008 return at this point. There are two reasons for this:
2009
2010 1) Cselib has an idea of how many pseudos there are and
2011 that does not include the new ones we just added.
2012
2013 2) Cselib does not know about the move insn we added
2014 above the store_info, and there is no way to tell it
2015 about it, because it has "moved on".
2016
2017 Problem (1) is fixable with a certain amount of engineering.
2018 Problem (2) is requires starting the bb from scratch. This
2019 could be expensive.
2020
2021 So we are just going to have to lie. The move/extraction
2022 insns are not really an issue, cselib did not see them. But
2023 the use of the new pseudo read_insn is a real problem because
2024 cselib has not scanned this insn. The way that we solve this
2025 problem is that we are just going to put the mem back for now
2026 and when we are finished with the block, we undo this. We
2027 keep a table of mems to get rid of. At the end of the basic
2028 block we can put them back. */
2029
2030 *loc = read_info->mem;
2031 change->next = deferred_change_list;
2032 deferred_change_list = change;
2033 change->loc = loc;
2034 change->reg = read_reg;
2035
2036 /* Get rid of the read_info, from the point of view of the
2037 rest of dse, play like this read never happened. */
2038 read_insn->read_rec = read_info->next;
2039 read_info_type_pool.remove (read_info);
2040 if (dump_file && (dump_flags & TDF_DETAILS))
2041 {
2042 fprintf (dump_file, " -- replaced the loaded MEM with ");
2043 print_simple_rtl (dump_file, read_reg);
2044 fprintf (dump_file, "\n");
2045 }
2046 return true;
2047 }
2048 else
2049 {
2050 if (dump_file && (dump_flags & TDF_DETAILS))
2051 {
2052 fprintf (dump_file, " -- replacing the loaded MEM with ");
2053 print_simple_rtl (dump_file, read_reg);
2054 fprintf (dump_file, " led to an invalid instruction\n");
2055 }
2056 return false;
2057 }
2058 }
2059
2060 /* Check the address of MEM *LOC and kill any appropriate stores that may
2061 be active. */
2062
2063 static void
2064 check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
2065 {
2066 rtx mem = *loc, mem_addr;
2067 insn_info_t insn_info;
2068 poly_int64 offset = 0;
2069 poly_int64 width = 0;
2070 cselib_val *base = NULL;
2071 int group_id;
2072 read_info_t read_info;
2073
2074 insn_info = bb_info->last_insn;
2075
2076 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2077 || MEM_VOLATILE_P (mem))
2078 {
2079 if (crtl->stack_protect_guard
2080 && (MEM_EXPR (mem) == crtl->stack_protect_guard
2081 || (crtl->stack_protect_guard_decl
2082 && MEM_EXPR (mem) == crtl->stack_protect_guard_decl))
2083 && MEM_VOLATILE_P (mem))
2084 {
2085 /* This is either the stack protector canary on the stack,
2086 which ought to be written by a MEM_VOLATILE_P store and
2087 thus shouldn't be deleted and is read at the very end of
2088 function, but shouldn't conflict with any other store.
2089 Or it is __stack_chk_guard variable or TLS or whatever else
2090 MEM holding the canary value, which really shouldn't be
2091 ever modified in -fstack-protector* protected functions,
2092 otherwise the prologue store wouldn't match the epilogue
2093 check. */
2094 if (dump_file && (dump_flags & TDF_DETAILS))
2095 fprintf (dump_file, " stack protector canary read ignored.\n");
2096 insn_info->cannot_delete = true;
2097 return;
2098 }
2099
2100 if (dump_file && (dump_flags & TDF_DETAILS))
2101 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2102 add_wild_read (bb_info);
2103 insn_info->cannot_delete = true;
2104 return;
2105 }
2106
2107 /* If it is reading readonly mem, then there can be no conflict with
2108 another write. */
2109 if (MEM_READONLY_P (mem))
2110 return;
2111
2112 if (!canon_address (mem, &group_id, &offset, &base))
2113 {
2114 if (dump_file && (dump_flags & TDF_DETAILS))
2115 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2116 add_wild_read (bb_info);
2117 return;
2118 }
2119
2120 if (GET_MODE (mem) == BLKmode)
2121 width = -1;
2122 else
2123 width = GET_MODE_SIZE (GET_MODE (mem));
2124
2125 if (!endpoint_representable_p (offset, known_eq (width, -1) ? 1 : width))
2126 {
2127 if (dump_file && (dump_flags & TDF_DETAILS))
2128 fprintf (dump_file, " adding wild read, due to overflow.\n");
2129 add_wild_read (bb_info);
2130 return;
2131 }
2132
2133 read_info = read_info_type_pool.allocate ();
2134 read_info->group_id = group_id;
2135 read_info->mem = mem;
2136 read_info->offset = offset;
2137 read_info->width = width;
2138 read_info->next = insn_info->read_rec;
2139 insn_info->read_rec = read_info;
2140 if (group_id < 0)
2141 mem_addr = base->val_rtx;
2142 else
2143 {
2144 group_info *group = rtx_group_vec[group_id];
2145 mem_addr = group->canon_base_addr;
2146 }
2147 if (maybe_ne (offset, 0))
2148 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2149
2150 if (group_id >= 0)
2151 {
2152 /* This is the restricted case where the base is a constant or
2153 the frame pointer and offset is a constant. */
2154 insn_info_t i_ptr = active_local_stores;
2155 insn_info_t last = NULL;
2156
2157 if (dump_file && (dump_flags & TDF_DETAILS))
2158 {
2159 if (!known_size_p (width))
2160 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2161 group_id);
2162 else
2163 {
2164 fprintf (dump_file, " processing const load gid=%d", group_id);
2165 print_range (dump_file, offset, width);
2166 fprintf (dump_file, "\n");
2167 }
2168 }
2169
2170 while (i_ptr)
2171 {
2172 bool remove = false;
2173 store_info *store_info = i_ptr->store_rec;
2174
2175 /* Skip the clobbers. */
2176 while (!store_info->is_set)
2177 store_info = store_info->next;
2178
2179 /* There are three cases here. */
2180 if (store_info->group_id < 0)
2181 /* We have a cselib store followed by a read from a
2182 const base. */
2183 remove
2184 = canon_true_dependence (store_info->mem,
2185 GET_MODE (store_info->mem),
2186 store_info->mem_addr,
2187 mem, mem_addr);
2188
2189 else if (group_id == store_info->group_id)
2190 {
2191 /* This is a block mode load. We may get lucky and
2192 canon_true_dependence may save the day. */
2193 if (!known_size_p (width))
2194 remove
2195 = canon_true_dependence (store_info->mem,
2196 GET_MODE (store_info->mem),
2197 store_info->mem_addr,
2198 mem, mem_addr);
2199
2200 /* If this read is just reading back something that we just
2201 stored, rewrite the read. */
2202 else
2203 {
2204 if (store_info->rhs
2205 && known_subrange_p (offset, width, store_info->offset,
2206 store_info->width)
2207 && all_positions_needed_p (store_info,
2208 offset - store_info->offset,
2209 width)
2210 && replace_read (store_info, i_ptr, read_info,
2211 insn_info, loc, bb_info->regs_live))
2212 return;
2213
2214 /* The bases are the same, just see if the offsets
2215 could overlap. */
2216 if (ranges_maybe_overlap_p (offset, width,
2217 store_info->offset,
2218 store_info->width))
2219 remove = true;
2220 }
2221 }
2222
2223 /* else
2224 The else case that is missing here is that the
2225 bases are constant but different. There is nothing
2226 to do here because there is no overlap. */
2227
2228 if (remove)
2229 {
2230 if (dump_file && (dump_flags & TDF_DETAILS))
2231 dump_insn_info ("removing from active", i_ptr);
2232
2233 active_local_stores_len--;
2234 if (last)
2235 last->next_local_store = i_ptr->next_local_store;
2236 else
2237 active_local_stores = i_ptr->next_local_store;
2238 }
2239 else
2240 last = i_ptr;
2241 i_ptr = i_ptr->next_local_store;
2242 }
2243 }
2244 else
2245 {
2246 insn_info_t i_ptr = active_local_stores;
2247 insn_info_t last = NULL;
2248 if (dump_file && (dump_flags & TDF_DETAILS))
2249 {
2250 fprintf (dump_file, " processing cselib load mem:");
2251 print_inline_rtx (dump_file, mem, 0);
2252 fprintf (dump_file, "\n");
2253 }
2254
2255 while (i_ptr)
2256 {
2257 bool remove = false;
2258 store_info *store_info = i_ptr->store_rec;
2259
2260 if (dump_file && (dump_flags & TDF_DETAILS))
2261 fprintf (dump_file, " processing cselib load against insn %d\n",
2262 INSN_UID (i_ptr->insn));
2263
2264 /* Skip the clobbers. */
2265 while (!store_info->is_set)
2266 store_info = store_info->next;
2267
2268 /* If this read is just reading back something that we just
2269 stored, rewrite the read. */
2270 if (store_info->rhs
2271 && store_info->group_id == -1
2272 && store_info->cse_base == base
2273 && known_subrange_p (offset, width, store_info->offset,
2274 store_info->width)
2275 && all_positions_needed_p (store_info,
2276 offset - store_info->offset, width)
2277 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2278 bb_info->regs_live))
2279 return;
2280
2281 remove = canon_true_dependence (store_info->mem,
2282 GET_MODE (store_info->mem),
2283 store_info->mem_addr,
2284 mem, mem_addr);
2285
2286 if (remove)
2287 {
2288 if (dump_file && (dump_flags & TDF_DETAILS))
2289 dump_insn_info ("removing from active", i_ptr);
2290
2291 active_local_stores_len--;
2292 if (last)
2293 last->next_local_store = i_ptr->next_local_store;
2294 else
2295 active_local_stores = i_ptr->next_local_store;
2296 }
2297 else
2298 last = i_ptr;
2299 i_ptr = i_ptr->next_local_store;
2300 }
2301 }
2302 }
2303
2304 /* A note_uses callback in which DATA points the INSN_INFO for
2305 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2306 true for any part of *LOC. */
2307
2308 static void
2309 check_mem_read_use (rtx *loc, void *data)
2310 {
2311 subrtx_ptr_iterator::array_type array;
2312 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2313 {
2314 rtx *loc = *iter;
2315 if (MEM_P (*loc))
2316 check_mem_read_rtx (loc, (bb_info_t) data);
2317 }
2318 }
2319
2320
2321 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2322 So far it only handles arguments passed in registers. */
2323
2324 static bool
2325 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2326 {
2327 CUMULATIVE_ARGS args_so_far_v;
2328 cumulative_args_t args_so_far;
2329 tree arg;
2330 int idx;
2331
2332 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2333 args_so_far = pack_cumulative_args (&args_so_far_v);
2334
2335 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2336 for (idx = 0;
2337 arg != void_list_node && idx < nargs;
2338 arg = TREE_CHAIN (arg), idx++)
2339 {
2340 scalar_int_mode mode;
2341 rtx reg, link, tmp;
2342
2343 if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg)), &mode))
2344 return false;
2345
2346 function_arg_info arg (mode, /*named=*/true);
2347 reg = targetm.calls.function_arg (args_so_far, arg);
2348 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode)
2349 return false;
2350
2351 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2352 link;
2353 link = XEXP (link, 1))
2354 if (GET_CODE (XEXP (link, 0)) == USE)
2355 {
2356 scalar_int_mode arg_mode;
2357 args[idx] = XEXP (XEXP (link, 0), 0);
2358 if (REG_P (args[idx])
2359 && REGNO (args[idx]) == REGNO (reg)
2360 && (GET_MODE (args[idx]) == mode
2361 || (is_int_mode (GET_MODE (args[idx]), &arg_mode)
2362 && (GET_MODE_SIZE (arg_mode) <= UNITS_PER_WORD)
2363 && (GET_MODE_SIZE (arg_mode) > GET_MODE_SIZE (mode)))))
2364 break;
2365 }
2366 if (!link)
2367 return false;
2368
2369 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2370 if (GET_MODE (args[idx]) != mode)
2371 {
2372 if (!tmp || !CONST_INT_P (tmp))
2373 return false;
2374 tmp = gen_int_mode (INTVAL (tmp), mode);
2375 }
2376 if (tmp)
2377 args[idx] = tmp;
2378
2379 targetm.calls.function_arg_advance (args_so_far, arg);
2380 }
2381 if (arg != void_list_node || idx != nargs)
2382 return false;
2383 return true;
2384 }
2385
2386 /* Return a bitmap of the fixed registers contained in IN. */
2387
2388 static bitmap
2389 copy_fixed_regs (const_bitmap in)
2390 {
2391 bitmap ret;
2392
2393 ret = ALLOC_REG_SET (NULL);
2394 bitmap_and (ret, in, bitmap_view<HARD_REG_SET> (fixed_reg_set));
2395 return ret;
2396 }
2397
2398 /* Apply record_store to all candidate stores in INSN. Mark INSN
2399 if some part of it is not a candidate store and assigns to a
2400 non-register target. */
2401
2402 static void
2403 scan_insn (bb_info_t bb_info, rtx_insn *insn, int max_active_local_stores)
2404 {
2405 rtx body;
2406 insn_info_type *insn_info = insn_info_type_pool.allocate ();
2407 int mems_found = 0;
2408 memset (insn_info, 0, sizeof (struct insn_info_type));
2409
2410 if (dump_file && (dump_flags & TDF_DETAILS))
2411 fprintf (dump_file, "\n**scanning insn=%d\n",
2412 INSN_UID (insn));
2413
2414 insn_info->prev_insn = bb_info->last_insn;
2415 insn_info->insn = insn;
2416 bb_info->last_insn = insn_info;
2417
2418 if (DEBUG_INSN_P (insn))
2419 {
2420 insn_info->cannot_delete = true;
2421 return;
2422 }
2423
2424 /* Look at all of the uses in the insn. */
2425 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2426
2427 if (CALL_P (insn))
2428 {
2429 bool const_call;
2430 rtx call, sym;
2431 tree memset_call = NULL_TREE;
2432
2433 insn_info->cannot_delete = true;
2434
2435 /* Const functions cannot do anything bad i.e. read memory,
2436 however, they can read their parameters which may have
2437 been pushed onto the stack.
2438 memset and bzero don't read memory either. */
2439 const_call = RTL_CONST_CALL_P (insn);
2440 if (!const_call
2441 && (call = get_call_rtx_from (insn))
2442 && (sym = XEXP (XEXP (call, 0), 0))
2443 && GET_CODE (sym) == SYMBOL_REF
2444 && SYMBOL_REF_DECL (sym)
2445 && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
2446 && fndecl_built_in_p (SYMBOL_REF_DECL (sym), BUILT_IN_MEMSET))
2447 memset_call = SYMBOL_REF_DECL (sym);
2448
2449 if (const_call || memset_call)
2450 {
2451 insn_info_t i_ptr = active_local_stores;
2452 insn_info_t last = NULL;
2453
2454 if (dump_file && (dump_flags & TDF_DETAILS))
2455 fprintf (dump_file, "%s call %d\n",
2456 const_call ? "const" : "memset", INSN_UID (insn));
2457
2458 /* See the head comment of the frame_read field. */
2459 if (reload_completed
2460 /* Tail calls are storing their arguments using
2461 arg pointer. If it is a frame pointer on the target,
2462 even before reload we need to kill frame pointer based
2463 stores. */
2464 || (SIBLING_CALL_P (insn)
2465 && HARD_FRAME_POINTER_IS_ARG_POINTER))
2466 insn_info->frame_read = true;
2467
2468 /* Loop over the active stores and remove those which are
2469 killed by the const function call. */
2470 while (i_ptr)
2471 {
2472 bool remove_store = false;
2473
2474 /* The stack pointer based stores are always killed. */
2475 if (i_ptr->stack_pointer_based)
2476 remove_store = true;
2477
2478 /* If the frame is read, the frame related stores are killed. */
2479 else if (insn_info->frame_read)
2480 {
2481 store_info *store_info = i_ptr->store_rec;
2482
2483 /* Skip the clobbers. */
2484 while (!store_info->is_set)
2485 store_info = store_info->next;
2486
2487 if (store_info->group_id >= 0
2488 && rtx_group_vec[store_info->group_id]->frame_related)
2489 remove_store = true;
2490 }
2491
2492 if (remove_store)
2493 {
2494 if (dump_file && (dump_flags & TDF_DETAILS))
2495 dump_insn_info ("removing from active", i_ptr);
2496
2497 active_local_stores_len--;
2498 if (last)
2499 last->next_local_store = i_ptr->next_local_store;
2500 else
2501 active_local_stores = i_ptr->next_local_store;
2502 }
2503 else
2504 last = i_ptr;
2505
2506 i_ptr = i_ptr->next_local_store;
2507 }
2508
2509 if (memset_call)
2510 {
2511 rtx args[3];
2512 if (get_call_args (insn, memset_call, args, 3)
2513 && CONST_INT_P (args[1])
2514 && CONST_INT_P (args[2])
2515 && INTVAL (args[2]) > 0)
2516 {
2517 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2518 set_mem_size (mem, INTVAL (args[2]));
2519 body = gen_rtx_SET (mem, args[1]);
2520 mems_found += record_store (body, bb_info);
2521 if (dump_file && (dump_flags & TDF_DETAILS))
2522 fprintf (dump_file, "handling memset as BLKmode store\n");
2523 if (mems_found == 1)
2524 {
2525 if (active_local_stores_len++ >= max_active_local_stores)
2526 {
2527 active_local_stores_len = 1;
2528 active_local_stores = NULL;
2529 }
2530 insn_info->fixed_regs_live
2531 = copy_fixed_regs (bb_info->regs_live);
2532 insn_info->next_local_store = active_local_stores;
2533 active_local_stores = insn_info;
2534 }
2535 }
2536 else
2537 clear_rhs_from_active_local_stores ();
2538 }
2539 }
2540 else if (SIBLING_CALL_P (insn)
2541 && (reload_completed || HARD_FRAME_POINTER_IS_ARG_POINTER))
2542 /* Arguments for a sibling call that are pushed to memory are passed
2543 using the incoming argument pointer of the current function. After
2544 reload that might be (and likely is) frame pointer based. And, if
2545 it is a frame pointer on the target, even before reload we need to
2546 kill frame pointer based stores. */
2547 add_wild_read (bb_info);
2548 else
2549 /* Every other call, including pure functions, may read any memory
2550 that is not relative to the frame. */
2551 add_non_frame_wild_read (bb_info);
2552
2553 return;
2554 }
2555
2556 /* Assuming that there are sets in these insns, we cannot delete
2557 them. */
2558 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2559 || volatile_refs_p (PATTERN (insn))
2560 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2561 || (RTX_FRAME_RELATED_P (insn))
2562 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2563 insn_info->cannot_delete = true;
2564
2565 body = PATTERN (insn);
2566 if (GET_CODE (body) == PARALLEL)
2567 {
2568 int i;
2569 for (i = 0; i < XVECLEN (body, 0); i++)
2570 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2571 }
2572 else
2573 mems_found += record_store (body, bb_info);
2574
2575 if (dump_file && (dump_flags & TDF_DETAILS))
2576 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2577 mems_found, insn_info->cannot_delete ? "true" : "false");
2578
2579 /* If we found some sets of mems, add it into the active_local_stores so
2580 that it can be locally deleted if found dead or used for
2581 replace_read and redundant constant store elimination. Otherwise mark
2582 it as cannot delete. This simplifies the processing later. */
2583 if (mems_found == 1)
2584 {
2585 if (active_local_stores_len++ >= max_active_local_stores)
2586 {
2587 active_local_stores_len = 1;
2588 active_local_stores = NULL;
2589 }
2590 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2591 insn_info->next_local_store = active_local_stores;
2592 active_local_stores = insn_info;
2593 }
2594 else
2595 insn_info->cannot_delete = true;
2596 }
2597
2598
2599 /* Remove BASE from the set of active_local_stores. This is a
2600 callback from cselib that is used to get rid of the stores in
2601 active_local_stores. */
2602
2603 static void
2604 remove_useless_values (cselib_val *base)
2605 {
2606 insn_info_t insn_info = active_local_stores;
2607 insn_info_t last = NULL;
2608
2609 while (insn_info)
2610 {
2611 store_info *store_info = insn_info->store_rec;
2612 bool del = false;
2613
2614 /* If ANY of the store_infos match the cselib group that is
2615 being deleted, then the insn cannot be deleted. */
2616 while (store_info)
2617 {
2618 if ((store_info->group_id == -1)
2619 && (store_info->cse_base == base))
2620 {
2621 del = true;
2622 break;
2623 }
2624 store_info = store_info->next;
2625 }
2626
2627 if (del)
2628 {
2629 active_local_stores_len--;
2630 if (last)
2631 last->next_local_store = insn_info->next_local_store;
2632 else
2633 active_local_stores = insn_info->next_local_store;
2634 free_store_info (insn_info);
2635 }
2636 else
2637 last = insn_info;
2638
2639 insn_info = insn_info->next_local_store;
2640 }
2641 }
2642
2643
2644 /* Do all of step 1. */
2645
2646 static void
2647 dse_step1 (void)
2648 {
2649 basic_block bb;
2650 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
2651
2652 cselib_init (0);
2653 all_blocks = BITMAP_ALLOC (NULL);
2654 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2655 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2656
2657 /* For -O1 reduce the maximum number of active local stores for RTL DSE
2658 since this can consume huge amounts of memory (PR89115). */
2659 int max_active_local_stores = param_max_dse_active_local_stores;
2660 if (optimize < 2)
2661 max_active_local_stores /= 10;
2662
2663 FOR_ALL_BB_FN (bb, cfun)
2664 {
2665 insn_info_t ptr;
2666 bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
2667
2668 memset (bb_info, 0, sizeof (dse_bb_info_type));
2669 bitmap_set_bit (all_blocks, bb->index);
2670 bb_info->regs_live = regs_live;
2671
2672 bitmap_copy (regs_live, DF_LR_IN (bb));
2673 df_simulate_initialize_forwards (bb, regs_live);
2674
2675 bb_table[bb->index] = bb_info;
2676 cselib_discard_hook = remove_useless_values;
2677
2678 if (bb->index >= NUM_FIXED_BLOCKS)
2679 {
2680 rtx_insn *insn;
2681
2682 active_local_stores = NULL;
2683 active_local_stores_len = 0;
2684 cselib_clear_table ();
2685
2686 /* Scan the insns. */
2687 FOR_BB_INSNS (bb, insn)
2688 {
2689 if (INSN_P (insn))
2690 scan_insn (bb_info, insn, max_active_local_stores);
2691 cselib_process_insn (insn);
2692 if (INSN_P (insn))
2693 df_simulate_one_insn_forwards (bb, insn, regs_live);
2694 }
2695
2696 /* This is something of a hack, because the global algorithm
2697 is supposed to take care of the case where stores go dead
2698 at the end of the function. However, the global
2699 algorithm must take a more conservative view of block
2700 mode reads than the local alg does. So to get the case
2701 where you have a store to the frame followed by a non
2702 overlapping block more read, we look at the active local
2703 stores at the end of the function and delete all of the
2704 frame and spill based ones. */
2705 if (stores_off_frame_dead_at_return
2706 && (EDGE_COUNT (bb->succs) == 0
2707 || (single_succ_p (bb)
2708 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2709 && ! crtl->calls_eh_return)))
2710 {
2711 insn_info_t i_ptr = active_local_stores;
2712 while (i_ptr)
2713 {
2714 store_info *store_info = i_ptr->store_rec;
2715
2716 /* Skip the clobbers. */
2717 while (!store_info->is_set)
2718 store_info = store_info->next;
2719 if (store_info->group_id >= 0)
2720 {
2721 group_info *group = rtx_group_vec[store_info->group_id];
2722 if (group->frame_related && !i_ptr->cannot_delete)
2723 delete_dead_store_insn (i_ptr);
2724 }
2725
2726 i_ptr = i_ptr->next_local_store;
2727 }
2728 }
2729
2730 /* Get rid of the loads that were discovered in
2731 replace_read. Cselib is finished with this block. */
2732 while (deferred_change_list)
2733 {
2734 deferred_change *next = deferred_change_list->next;
2735
2736 /* There is no reason to validate this change. That was
2737 done earlier. */
2738 *deferred_change_list->loc = deferred_change_list->reg;
2739 deferred_change_pool.remove (deferred_change_list);
2740 deferred_change_list = next;
2741 }
2742
2743 /* Get rid of all of the cselib based store_infos in this
2744 block and mark the containing insns as not being
2745 deletable. */
2746 ptr = bb_info->last_insn;
2747 while (ptr)
2748 {
2749 if (ptr->contains_cselib_groups)
2750 {
2751 store_info *s_info = ptr->store_rec;
2752 while (s_info && !s_info->is_set)
2753 s_info = s_info->next;
2754 if (s_info
2755 && s_info->redundant_reason
2756 && s_info->redundant_reason->insn
2757 && !ptr->cannot_delete)
2758 {
2759 if (dump_file && (dump_flags & TDF_DETAILS))
2760 fprintf (dump_file, "Locally deleting insn %d "
2761 "because insn %d stores the "
2762 "same value and couldn't be "
2763 "eliminated\n",
2764 INSN_UID (ptr->insn),
2765 INSN_UID (s_info->redundant_reason->insn));
2766 delete_dead_store_insn (ptr);
2767 }
2768 free_store_info (ptr);
2769 }
2770 else
2771 {
2772 store_info *s_info;
2773
2774 /* Free at least positions_needed bitmaps. */
2775 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2776 if (s_info->is_large)
2777 {
2778 BITMAP_FREE (s_info->positions_needed.large.bmap);
2779 s_info->is_large = false;
2780 }
2781 }
2782 ptr = ptr->prev_insn;
2783 }
2784
2785 cse_store_info_pool.release ();
2786 }
2787 bb_info->regs_live = NULL;
2788 }
2789
2790 BITMAP_FREE (regs_live);
2791 cselib_finish ();
2792 rtx_group_table->empty ();
2793 }
2794
2795 \f
2796 /*----------------------------------------------------------------------------
2797 Second step.
2798
2799 Assign each byte position in the stores that we are going to
2800 analyze globally to a position in the bitmaps. Returns true if
2801 there are any bit positions assigned.
2802 ----------------------------------------------------------------------------*/
2803
2804 static void
2805 dse_step2_init (void)
2806 {
2807 unsigned int i;
2808 group_info *group;
2809
2810 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2811 {
2812 /* For all non stack related bases, we only consider a store to
2813 be deletable if there are two or more stores for that
2814 position. This is because it takes one store to make the
2815 other store redundant. However, for the stores that are
2816 stack related, we consider them if there is only one store
2817 for the position. We do this because the stack related
2818 stores can be deleted if their is no read between them and
2819 the end of the function.
2820
2821 To make this work in the current framework, we take the stack
2822 related bases add all of the bits from store1 into store2.
2823 This has the effect of making the eligible even if there is
2824 only one store. */
2825
2826 if (stores_off_frame_dead_at_return && group->frame_related)
2827 {
2828 bitmap_ior_into (group->store2_n, group->store1_n);
2829 bitmap_ior_into (group->store2_p, group->store1_p);
2830 if (dump_file && (dump_flags & TDF_DETAILS))
2831 fprintf (dump_file, "group %d is frame related ", i);
2832 }
2833
2834 group->offset_map_size_n++;
2835 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2836 group->offset_map_size_n);
2837 group->offset_map_size_p++;
2838 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2839 group->offset_map_size_p);
2840 group->process_globally = false;
2841 if (dump_file && (dump_flags & TDF_DETAILS))
2842 {
2843 fprintf (dump_file, "group %d(%d+%d): ", i,
2844 (int)bitmap_count_bits (group->store2_n),
2845 (int)bitmap_count_bits (group->store2_p));
2846 bitmap_print (dump_file, group->store2_n, "n ", " ");
2847 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2848 }
2849 }
2850 }
2851
2852
2853 /* Init the offset tables. */
2854
2855 static bool
2856 dse_step2 (void)
2857 {
2858 unsigned int i;
2859 group_info *group;
2860 /* Position 0 is unused because 0 is used in the maps to mean
2861 unused. */
2862 current_position = 1;
2863 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2864 {
2865 bitmap_iterator bi;
2866 unsigned int j;
2867
2868 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2869 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2870 bitmap_clear (group->group_kill);
2871
2872 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2873 {
2874 bitmap_set_bit (group->group_kill, current_position);
2875 if (bitmap_bit_p (group->escaped_n, j))
2876 bitmap_set_bit (kill_on_calls, current_position);
2877 group->offset_map_n[j] = current_position++;
2878 group->process_globally = true;
2879 }
2880 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2881 {
2882 bitmap_set_bit (group->group_kill, current_position);
2883 if (bitmap_bit_p (group->escaped_p, j))
2884 bitmap_set_bit (kill_on_calls, current_position);
2885 group->offset_map_p[j] = current_position++;
2886 group->process_globally = true;
2887 }
2888 }
2889 return current_position != 1;
2890 }
2891
2892
2893 \f
2894 /*----------------------------------------------------------------------------
2895 Third step.
2896
2897 Build the bit vectors for the transfer functions.
2898 ----------------------------------------------------------------------------*/
2899
2900
2901 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2902 there, return 0. */
2903
2904 static int
2905 get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
2906 {
2907 if (offset < 0)
2908 {
2909 HOST_WIDE_INT offset_p = -offset;
2910 if (offset_p >= group_info->offset_map_size_n)
2911 return 0;
2912 return group_info->offset_map_n[offset_p];
2913 }
2914 else
2915 {
2916 if (offset >= group_info->offset_map_size_p)
2917 return 0;
2918 return group_info->offset_map_p[offset];
2919 }
2920 }
2921
2922
2923 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2924 may be NULL. */
2925
2926 static void
2927 scan_stores (store_info *store_info, bitmap gen, bitmap kill)
2928 {
2929 while (store_info)
2930 {
2931 HOST_WIDE_INT i, offset, width;
2932 group_info *group_info
2933 = rtx_group_vec[store_info->group_id];
2934 /* We can (conservatively) ignore stores whose bounds aren't known;
2935 they simply don't generate new global dse opportunities. */
2936 if (group_info->process_globally
2937 && store_info->offset.is_constant (&offset)
2938 && store_info->width.is_constant (&width))
2939 {
2940 HOST_WIDE_INT end = offset + width;
2941 for (i = offset; i < end; i++)
2942 {
2943 int index = get_bitmap_index (group_info, i);
2944 if (index != 0)
2945 {
2946 bitmap_set_bit (gen, index);
2947 if (kill)
2948 bitmap_clear_bit (kill, index);
2949 }
2950 }
2951 }
2952 store_info = store_info->next;
2953 }
2954 }
2955
2956
2957 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
2958 may be NULL. */
2959
2960 static void
2961 scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
2962 {
2963 read_info_t read_info = insn_info->read_rec;
2964 int i;
2965 group_info *group;
2966
2967 /* If this insn reads the frame, kill all the frame related stores. */
2968 if (insn_info->frame_read)
2969 {
2970 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2971 if (group->process_globally && group->frame_related)
2972 {
2973 if (kill)
2974 bitmap_ior_into (kill, group->group_kill);
2975 bitmap_and_compl_into (gen, group->group_kill);
2976 }
2977 }
2978 if (insn_info->non_frame_wild_read)
2979 {
2980 /* Kill all non-frame related stores. Kill all stores of variables that
2981 escape. */
2982 if (kill)
2983 bitmap_ior_into (kill, kill_on_calls);
2984 bitmap_and_compl_into (gen, kill_on_calls);
2985 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2986 if (group->process_globally && !group->frame_related)
2987 {
2988 if (kill)
2989 bitmap_ior_into (kill, group->group_kill);
2990 bitmap_and_compl_into (gen, group->group_kill);
2991 }
2992 }
2993 while (read_info)
2994 {
2995 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2996 {
2997 if (group->process_globally)
2998 {
2999 if (i == read_info->group_id)
3000 {
3001 HOST_WIDE_INT offset, width;
3002 /* Reads with non-constant size kill all DSE opportunities
3003 in the group. */
3004 if (!read_info->offset.is_constant (&offset)
3005 || !read_info->width.is_constant (&width)
3006 || !known_size_p (width))
3007 {
3008 /* Handle block mode reads. */
3009 if (kill)
3010 bitmap_ior_into (kill, group->group_kill);
3011 bitmap_and_compl_into (gen, group->group_kill);
3012 }
3013 else
3014 {
3015 /* The groups are the same, just process the
3016 offsets. */
3017 HOST_WIDE_INT j;
3018 HOST_WIDE_INT end = offset + width;
3019 for (j = offset; j < end; j++)
3020 {
3021 int index = get_bitmap_index (group, j);
3022 if (index != 0)
3023 {
3024 if (kill)
3025 bitmap_set_bit (kill, index);
3026 bitmap_clear_bit (gen, index);
3027 }
3028 }
3029 }
3030 }
3031 else
3032 {
3033 /* The groups are different, if the alias sets
3034 conflict, clear the entire group. We only need
3035 to apply this test if the read_info is a cselib
3036 read. Anything with a constant base cannot alias
3037 something else with a different constant
3038 base. */
3039 if ((read_info->group_id < 0)
3040 && canon_true_dependence (group->base_mem,
3041 GET_MODE (group->base_mem),
3042 group->canon_base_addr,
3043 read_info->mem, NULL_RTX))
3044 {
3045 if (kill)
3046 bitmap_ior_into (kill, group->group_kill);
3047 bitmap_and_compl_into (gen, group->group_kill);
3048 }
3049 }
3050 }
3051 }
3052
3053 read_info = read_info->next;
3054 }
3055 }
3056
3057
3058 /* Return the insn in BB_INFO before the first wild read or if there
3059 are no wild reads in the block, return the last insn. */
3060
3061 static insn_info_t
3062 find_insn_before_first_wild_read (bb_info_t bb_info)
3063 {
3064 insn_info_t insn_info = bb_info->last_insn;
3065 insn_info_t last_wild_read = NULL;
3066
3067 while (insn_info)
3068 {
3069 if (insn_info->wild_read)
3070 {
3071 last_wild_read = insn_info->prev_insn;
3072 /* Block starts with wild read. */
3073 if (!last_wild_read)
3074 return NULL;
3075 }
3076
3077 insn_info = insn_info->prev_insn;
3078 }
3079
3080 if (last_wild_read)
3081 return last_wild_read;
3082 else
3083 return bb_info->last_insn;
3084 }
3085
3086
3087 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3088 the block in order to build the gen and kill sets for the block.
3089 We start at ptr which may be the last insn in the block or may be
3090 the first insn with a wild read. In the latter case we are able to
3091 skip the rest of the block because it just does not matter:
3092 anything that happens is hidden by the wild read. */
3093
3094 static void
3095 dse_step3_scan (basic_block bb)
3096 {
3097 bb_info_t bb_info = bb_table[bb->index];
3098 insn_info_t insn_info;
3099
3100 insn_info = find_insn_before_first_wild_read (bb_info);
3101
3102 /* In the spill case or in the no_spill case if there is no wild
3103 read in the block, we will need a kill set. */
3104 if (insn_info == bb_info->last_insn)
3105 {
3106 if (bb_info->kill)
3107 bitmap_clear (bb_info->kill);
3108 else
3109 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3110 }
3111 else
3112 if (bb_info->kill)
3113 BITMAP_FREE (bb_info->kill);
3114
3115 while (insn_info)
3116 {
3117 /* There may have been code deleted by the dce pass run before
3118 this phase. */
3119 if (insn_info->insn && INSN_P (insn_info->insn))
3120 {
3121 scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
3122 scan_reads (insn_info, bb_info->gen, bb_info->kill);
3123 }
3124
3125 insn_info = insn_info->prev_insn;
3126 }
3127 }
3128
3129
3130 /* Set the gen set of the exit block, and also any block with no
3131 successors that does not have a wild read. */
3132
3133 static void
3134 dse_step3_exit_block_scan (bb_info_t bb_info)
3135 {
3136 /* The gen set is all 0's for the exit block except for the
3137 frame_pointer_group. */
3138
3139 if (stores_off_frame_dead_at_return)
3140 {
3141 unsigned int i;
3142 group_info *group;
3143
3144 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3145 {
3146 if (group->process_globally && group->frame_related)
3147 bitmap_ior_into (bb_info->gen, group->group_kill);
3148 }
3149 }
3150 }
3151
3152
3153 /* Find all of the blocks that are not backwards reachable from the
3154 exit block or any block with no successors (BB). These are the
3155 infinite loops or infinite self loops. These blocks will still
3156 have their bits set in UNREACHABLE_BLOCKS. */
3157
3158 static void
3159 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3160 {
3161 edge e;
3162 edge_iterator ei;
3163
3164 if (bitmap_bit_p (unreachable_blocks, bb->index))
3165 {
3166 bitmap_clear_bit (unreachable_blocks, bb->index);
3167 FOR_EACH_EDGE (e, ei, bb->preds)
3168 {
3169 mark_reachable_blocks (unreachable_blocks, e->src);
3170 }
3171 }
3172 }
3173
3174 /* Build the transfer functions for the function. */
3175
3176 static void
3177 dse_step3 ()
3178 {
3179 basic_block bb;
3180 sbitmap_iterator sbi;
3181 bitmap all_ones = NULL;
3182 unsigned int i;
3183
3184 auto_sbitmap unreachable_blocks (last_basic_block_for_fn (cfun));
3185 bitmap_ones (unreachable_blocks);
3186
3187 FOR_ALL_BB_FN (bb, cfun)
3188 {
3189 bb_info_t bb_info = bb_table[bb->index];
3190 if (bb_info->gen)
3191 bitmap_clear (bb_info->gen);
3192 else
3193 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3194
3195 if (bb->index == ENTRY_BLOCK)
3196 ;
3197 else if (bb->index == EXIT_BLOCK)
3198 dse_step3_exit_block_scan (bb_info);
3199 else
3200 dse_step3_scan (bb);
3201 if (EDGE_COUNT (bb->succs) == 0)
3202 mark_reachable_blocks (unreachable_blocks, bb);
3203
3204 /* If this is the second time dataflow is run, delete the old
3205 sets. */
3206 if (bb_info->in)
3207 BITMAP_FREE (bb_info->in);
3208 if (bb_info->out)
3209 BITMAP_FREE (bb_info->out);
3210 }
3211
3212 /* For any block in an infinite loop, we must initialize the out set
3213 to all ones. This could be expensive, but almost never occurs in
3214 practice. However, it is common in regression tests. */
3215 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3216 {
3217 if (bitmap_bit_p (all_blocks, i))
3218 {
3219 bb_info_t bb_info = bb_table[i];
3220 if (!all_ones)
3221 {
3222 unsigned int j;
3223 group_info *group;
3224
3225 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3226 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3227 bitmap_ior_into (all_ones, group->group_kill);
3228 }
3229 if (!bb_info->out)
3230 {
3231 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3232 bitmap_copy (bb_info->out, all_ones);
3233 }
3234 }
3235 }
3236
3237 if (all_ones)
3238 BITMAP_FREE (all_ones);
3239 }
3240
3241
3242 \f
3243 /*----------------------------------------------------------------------------
3244 Fourth step.
3245
3246 Solve the bitvector equations.
3247 ----------------------------------------------------------------------------*/
3248
3249
3250 /* Confluence function for blocks with no successors. Create an out
3251 set from the gen set of the exit block. This block logically has
3252 the exit block as a successor. */
3253
3254
3255
3256 static void
3257 dse_confluence_0 (basic_block bb)
3258 {
3259 bb_info_t bb_info = bb_table[bb->index];
3260
3261 if (bb->index == EXIT_BLOCK)
3262 return;
3263
3264 if (!bb_info->out)
3265 {
3266 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3267 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3268 }
3269 }
3270
3271 /* Propagate the information from the in set of the dest of E to the
3272 out set of the src of E. If the various in or out sets are not
3273 there, that means they are all ones. */
3274
3275 static bool
3276 dse_confluence_n (edge e)
3277 {
3278 bb_info_t src_info = bb_table[e->src->index];
3279 bb_info_t dest_info = bb_table[e->dest->index];
3280
3281 if (dest_info->in)
3282 {
3283 if (src_info->out)
3284 bitmap_and_into (src_info->out, dest_info->in);
3285 else
3286 {
3287 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3288 bitmap_copy (src_info->out, dest_info->in);
3289 }
3290 }
3291 return true;
3292 }
3293
3294
3295 /* Propagate the info from the out to the in set of BB_INDEX's basic
3296 block. There are three cases:
3297
3298 1) The block has no kill set. In this case the kill set is all
3299 ones. It does not matter what the out set of the block is, none of
3300 the info can reach the top. The only thing that reaches the top is
3301 the gen set and we just copy the set.
3302
3303 2) There is a kill set but no out set and bb has successors. In
3304 this case we just return. Eventually an out set will be created and
3305 it is better to wait than to create a set of ones.
3306
3307 3) There is both a kill and out set. We apply the obvious transfer
3308 function.
3309 */
3310
3311 static bool
3312 dse_transfer_function (int bb_index)
3313 {
3314 bb_info_t bb_info = bb_table[bb_index];
3315
3316 if (bb_info->kill)
3317 {
3318 if (bb_info->out)
3319 {
3320 /* Case 3 above. */
3321 if (bb_info->in)
3322 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3323 bb_info->out, bb_info->kill);
3324 else
3325 {
3326 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3327 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3328 bb_info->out, bb_info->kill);
3329 return true;
3330 }
3331 }
3332 else
3333 /* Case 2 above. */
3334 return false;
3335 }
3336 else
3337 {
3338 /* Case 1 above. If there is already an in set, nothing
3339 happens. */
3340 if (bb_info->in)
3341 return false;
3342 else
3343 {
3344 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3345 bitmap_copy (bb_info->in, bb_info->gen);
3346 return true;
3347 }
3348 }
3349 }
3350
3351 /* Solve the dataflow equations. */
3352
3353 static void
3354 dse_step4 (void)
3355 {
3356 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3357 dse_confluence_n, dse_transfer_function,
3358 all_blocks, df_get_postorder (DF_BACKWARD),
3359 df_get_n_blocks (DF_BACKWARD));
3360 if (dump_file && (dump_flags & TDF_DETAILS))
3361 {
3362 basic_block bb;
3363
3364 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3365 FOR_ALL_BB_FN (bb, cfun)
3366 {
3367 bb_info_t bb_info = bb_table[bb->index];
3368
3369 df_print_bb_index (bb, dump_file);
3370 if (bb_info->in)
3371 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3372 else
3373 fprintf (dump_file, " in: *MISSING*\n");
3374 if (bb_info->gen)
3375 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3376 else
3377 fprintf (dump_file, " gen: *MISSING*\n");
3378 if (bb_info->kill)
3379 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3380 else
3381 fprintf (dump_file, " kill: *MISSING*\n");
3382 if (bb_info->out)
3383 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3384 else
3385 fprintf (dump_file, " out: *MISSING*\n\n");
3386 }
3387 }
3388 }
3389
3390
3391 \f
3392 /*----------------------------------------------------------------------------
3393 Fifth step.
3394
3395 Delete the stores that can only be deleted using the global information.
3396 ----------------------------------------------------------------------------*/
3397
3398
3399 static void
3400 dse_step5 (void)
3401 {
3402 basic_block bb;
3403 FOR_EACH_BB_FN (bb, cfun)
3404 {
3405 bb_info_t bb_info = bb_table[bb->index];
3406 insn_info_t insn_info = bb_info->last_insn;
3407 bitmap v = bb_info->out;
3408
3409 while (insn_info)
3410 {
3411 bool deleted = false;
3412 if (dump_file && insn_info->insn)
3413 {
3414 fprintf (dump_file, "starting to process insn %d\n",
3415 INSN_UID (insn_info->insn));
3416 bitmap_print (dump_file, v, " v: ", "\n");
3417 }
3418
3419 /* There may have been code deleted by the dce pass run before
3420 this phase. */
3421 if (insn_info->insn
3422 && INSN_P (insn_info->insn)
3423 && (!insn_info->cannot_delete)
3424 && (!bitmap_empty_p (v)))
3425 {
3426 store_info *store_info = insn_info->store_rec;
3427
3428 /* Try to delete the current insn. */
3429 deleted = true;
3430
3431 /* Skip the clobbers. */
3432 while (!store_info->is_set)
3433 store_info = store_info->next;
3434
3435 HOST_WIDE_INT i, offset, width;
3436 group_info *group_info = rtx_group_vec[store_info->group_id];
3437
3438 if (!store_info->offset.is_constant (&offset)
3439 || !store_info->width.is_constant (&width))
3440 deleted = false;
3441 else
3442 {
3443 HOST_WIDE_INT end = offset + width;
3444 for (i = offset; i < end; i++)
3445 {
3446 int index = get_bitmap_index (group_info, i);
3447
3448 if (dump_file && (dump_flags & TDF_DETAILS))
3449 fprintf (dump_file, "i = %d, index = %d\n",
3450 (int) i, index);
3451 if (index == 0 || !bitmap_bit_p (v, index))
3452 {
3453 if (dump_file && (dump_flags & TDF_DETAILS))
3454 fprintf (dump_file, "failing at i = %d\n",
3455 (int) i);
3456 deleted = false;
3457 break;
3458 }
3459 }
3460 }
3461 if (deleted)
3462 {
3463 if (dbg_cnt (dse)
3464 && check_for_inc_dec_1 (insn_info))
3465 {
3466 delete_insn (insn_info->insn);
3467 insn_info->insn = NULL;
3468 globally_deleted++;
3469 }
3470 }
3471 }
3472 /* We do want to process the local info if the insn was
3473 deleted. For instance, if the insn did a wild read, we
3474 no longer need to trash the info. */
3475 if (insn_info->insn
3476 && INSN_P (insn_info->insn)
3477 && (!deleted))
3478 {
3479 scan_stores (insn_info->store_rec, v, NULL);
3480 if (insn_info->wild_read)
3481 {
3482 if (dump_file && (dump_flags & TDF_DETAILS))
3483 fprintf (dump_file, "wild read\n");
3484 bitmap_clear (v);
3485 }
3486 else if (insn_info->read_rec
3487 || insn_info->non_frame_wild_read
3488 || insn_info->frame_read)
3489 {
3490 if (dump_file && (dump_flags & TDF_DETAILS))
3491 {
3492 if (!insn_info->non_frame_wild_read
3493 && !insn_info->frame_read)
3494 fprintf (dump_file, "regular read\n");
3495 if (insn_info->non_frame_wild_read)
3496 fprintf (dump_file, "non-frame wild read\n");
3497 if (insn_info->frame_read)
3498 fprintf (dump_file, "frame read\n");
3499 }
3500 scan_reads (insn_info, v, NULL);
3501 }
3502 }
3503
3504 insn_info = insn_info->prev_insn;
3505 }
3506 }
3507 }
3508
3509
3510 \f
3511 /*----------------------------------------------------------------------------
3512 Sixth step.
3513
3514 Delete stores made redundant by earlier stores (which store the same
3515 value) that couldn't be eliminated.
3516 ----------------------------------------------------------------------------*/
3517
3518 static void
3519 dse_step6 (void)
3520 {
3521 basic_block bb;
3522
3523 FOR_ALL_BB_FN (bb, cfun)
3524 {
3525 bb_info_t bb_info = bb_table[bb->index];
3526 insn_info_t insn_info = bb_info->last_insn;
3527
3528 while (insn_info)
3529 {
3530 /* There may have been code deleted by the dce pass run before
3531 this phase. */
3532 if (insn_info->insn
3533 && INSN_P (insn_info->insn)
3534 && !insn_info->cannot_delete)
3535 {
3536 store_info *s_info = insn_info->store_rec;
3537
3538 while (s_info && !s_info->is_set)
3539 s_info = s_info->next;
3540 if (s_info
3541 && s_info->redundant_reason
3542 && s_info->redundant_reason->insn
3543 && INSN_P (s_info->redundant_reason->insn))
3544 {
3545 rtx_insn *rinsn = s_info->redundant_reason->insn;
3546 if (dump_file && (dump_flags & TDF_DETAILS))
3547 fprintf (dump_file, "Locally deleting insn %d "
3548 "because insn %d stores the "
3549 "same value and couldn't be "
3550 "eliminated\n",
3551 INSN_UID (insn_info->insn),
3552 INSN_UID (rinsn));
3553 delete_dead_store_insn (insn_info);
3554 }
3555 }
3556 insn_info = insn_info->prev_insn;
3557 }
3558 }
3559 }
3560 \f
3561 /*----------------------------------------------------------------------------
3562 Seventh step.
3563
3564 Destroy everything left standing.
3565 ----------------------------------------------------------------------------*/
3566
3567 static void
3568 dse_step7 (void)
3569 {
3570 bitmap_obstack_release (&dse_bitmap_obstack);
3571 obstack_free (&dse_obstack, NULL);
3572
3573 end_alias_analysis ();
3574 free (bb_table);
3575 delete rtx_group_table;
3576 rtx_group_table = NULL;
3577 rtx_group_vec.release ();
3578 BITMAP_FREE (all_blocks);
3579 BITMAP_FREE (scratch);
3580
3581 rtx_store_info_pool.release ();
3582 read_info_type_pool.release ();
3583 insn_info_type_pool.release ();
3584 dse_bb_info_type_pool.release ();
3585 group_info_pool.release ();
3586 deferred_change_pool.release ();
3587 }
3588
3589
3590 /* -------------------------------------------------------------------------
3591 DSE
3592 ------------------------------------------------------------------------- */
3593
3594 /* Callback for running pass_rtl_dse. */
3595
3596 static unsigned int
3597 rest_of_handle_dse (void)
3598 {
3599 df_set_flags (DF_DEFER_INSN_RESCAN);
3600
3601 /* Need the notes since we must track live hardregs in the forwards
3602 direction. */
3603 df_note_add_problem ();
3604 df_analyze ();
3605
3606 dse_step0 ();
3607 dse_step1 ();
3608 dse_step2_init ();
3609 if (dse_step2 ())
3610 {
3611 df_set_flags (DF_LR_RUN_DCE);
3612 df_analyze ();
3613 if (dump_file && (dump_flags & TDF_DETAILS))
3614 fprintf (dump_file, "doing global processing\n");
3615 dse_step3 ();
3616 dse_step4 ();
3617 dse_step5 ();
3618 }
3619
3620 dse_step6 ();
3621 dse_step7 ();
3622
3623 if (dump_file)
3624 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
3625 locally_deleted, globally_deleted);
3626
3627 /* DSE can eliminate potentially-trapping MEMs.
3628 Remove any EH edges associated with them. */
3629 if ((locally_deleted || globally_deleted)
3630 && cfun->can_throw_non_call_exceptions
3631 && purge_all_dead_edges ())
3632 {
3633 free_dominance_info (CDI_DOMINATORS);
3634 cleanup_cfg (0);
3635 }
3636
3637 return 0;
3638 }
3639
3640 namespace {
3641
3642 const pass_data pass_data_rtl_dse1 =
3643 {
3644 RTL_PASS, /* type */
3645 "dse1", /* name */
3646 OPTGROUP_NONE, /* optinfo_flags */
3647 TV_DSE1, /* tv_id */
3648 0, /* properties_required */
3649 0, /* properties_provided */
3650 0, /* properties_destroyed */
3651 0, /* todo_flags_start */
3652 TODO_df_finish, /* todo_flags_finish */
3653 };
3654
3655 class pass_rtl_dse1 : public rtl_opt_pass
3656 {
3657 public:
3658 pass_rtl_dse1 (gcc::context *ctxt)
3659 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3660 {}
3661
3662 /* opt_pass methods: */
3663 virtual bool gate (function *)
3664 {
3665 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3666 }
3667
3668 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3669
3670 }; // class pass_rtl_dse1
3671
3672 } // anon namespace
3673
3674 rtl_opt_pass *
3675 make_pass_rtl_dse1 (gcc::context *ctxt)
3676 {
3677 return new pass_rtl_dse1 (ctxt);
3678 }
3679
3680 namespace {
3681
3682 const pass_data pass_data_rtl_dse2 =
3683 {
3684 RTL_PASS, /* type */
3685 "dse2", /* name */
3686 OPTGROUP_NONE, /* optinfo_flags */
3687 TV_DSE2, /* tv_id */
3688 0, /* properties_required */
3689 0, /* properties_provided */
3690 0, /* properties_destroyed */
3691 0, /* todo_flags_start */
3692 TODO_df_finish, /* todo_flags_finish */
3693 };
3694
3695 class pass_rtl_dse2 : public rtl_opt_pass
3696 {
3697 public:
3698 pass_rtl_dse2 (gcc::context *ctxt)
3699 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3700 {}
3701
3702 /* opt_pass methods: */
3703 virtual bool gate (function *)
3704 {
3705 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3706 }
3707
3708 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3709
3710 }; // class pass_rtl_dse2
3711
3712 } // anon namespace
3713
3714 rtl_opt_pass *
3715 make_pass_rtl_dse2 (gcc::context *ctxt)
3716 {
3717 return new pass_rtl_dse2 (ctxt);
3718 }