]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dse.c
Update copyright years.
[thirdparty/gcc.git] / gcc / dse.c
1 /* RTL dead store elimination.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #undef BASELINE
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "hash-table.h"
29 #include "tm.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "stor-layout.h"
33 #include "tm_p.h"
34 #include "regs.h"
35 #include "hard-reg-set.h"
36 #include "regset.h"
37 #include "flags.h"
38 #include "dominance.h"
39 #include "cfg.h"
40 #include "cfgrtl.h"
41 #include "predict.h"
42 #include "basic-block.h"
43 #include "df.h"
44 #include "cselib.h"
45 #include "tree-pass.h"
46 #include "alloc-pool.h"
47 #include "alias.h"
48 #include "insn-config.h"
49 #include "expr.h"
50 #include "recog.h"
51 #include "insn-codes.h"
52 #include "optabs.h"
53 #include "dbgcnt.h"
54 #include "target.h"
55 #include "params.h"
56 #include "tree-ssa-alias.h"
57 #include "internal-fn.h"
58 #include "gimple-expr.h"
59 #include "is-a.h"
60 #include "gimple.h"
61 #include "gimple-ssa.h"
62 #include "rtl-iter.h"
63
64 /* This file contains three techniques for performing Dead Store
65 Elimination (dse).
66
67 * The first technique performs dse locally on any base address. It
68 is based on the cselib which is a local value numbering technique.
69 This technique is local to a basic block but deals with a fairly
70 general addresses.
71
72 * The second technique performs dse globally but is restricted to
73 base addresses that are either constant or are relative to the
74 frame_pointer.
75
76 * The third technique, (which is only done after register allocation)
77 processes the spill spill slots. This differs from the second
78 technique because it takes advantage of the fact that spilling is
79 completely free from the effects of aliasing.
80
81 Logically, dse is a backwards dataflow problem. A store can be
82 deleted if it if cannot be reached in the backward direction by any
83 use of the value being stored. However, the local technique uses a
84 forwards scan of the basic block because cselib requires that the
85 block be processed in that order.
86
87 The pass is logically broken into 7 steps:
88
89 0) Initialization.
90
91 1) The local algorithm, as well as scanning the insns for the two
92 global algorithms.
93
94 2) Analysis to see if the global algs are necessary. In the case
95 of stores base on a constant address, there must be at least two
96 stores to that address, to make it possible to delete some of the
97 stores. In the case of stores off of the frame or spill related
98 stores, only one store to an address is necessary because those
99 stores die at the end of the function.
100
101 3) Set up the global dataflow equations based on processing the
102 info parsed in the first step.
103
104 4) Solve the dataflow equations.
105
106 5) Delete the insns that the global analysis has indicated are
107 unnecessary.
108
109 6) Delete insns that store the same value as preceding store
110 where the earlier store couldn't be eliminated.
111
112 7) Cleanup.
113
114 This step uses cselib and canon_rtx to build the largest expression
115 possible for each address. This pass is a forwards pass through
116 each basic block. From the point of view of the global technique,
117 the first pass could examine a block in either direction. The
118 forwards ordering is to accommodate cselib.
119
120 We make a simplifying assumption: addresses fall into four broad
121 categories:
122
123 1) base has rtx_varies_p == false, offset is constant.
124 2) base has rtx_varies_p == false, offset variable.
125 3) base has rtx_varies_p == true, offset constant.
126 4) base has rtx_varies_p == true, offset variable.
127
128 The local passes are able to process all 4 kinds of addresses. The
129 global pass only handles 1).
130
131 The global problem is formulated as follows:
132
133 A store, S1, to address A, where A is not relative to the stack
134 frame, can be eliminated if all paths from S1 to the end of the
135 function contain another store to A before a read to A.
136
137 If the address A is relative to the stack frame, a store S2 to A
138 can be eliminated if there are no paths from S2 that reach the
139 end of the function that read A before another store to A. In
140 this case S2 can be deleted if there are paths from S2 to the
141 end of the function that have no reads or writes to A. This
142 second case allows stores to the stack frame to be deleted that
143 would otherwise die when the function returns. This cannot be
144 done if stores_off_frame_dead_at_return is not true. See the doc
145 for that variable for when this variable is false.
146
147 The global problem is formulated as a backwards set union
148 dataflow problem where the stores are the gens and reads are the
149 kills. Set union problems are rare and require some special
150 handling given our representation of bitmaps. A straightforward
151 implementation requires a lot of bitmaps filled with 1s.
152 These are expensive and cumbersome in our bitmap formulation so
153 care has been taken to avoid large vectors filled with 1s. See
154 the comments in bb_info and in the dataflow confluence functions
155 for details.
156
157 There are two places for further enhancements to this algorithm:
158
159 1) The original dse which was embedded in a pass called flow also
160 did local address forwarding. For example in
161
162 A <- r100
163 ... <- A
164
165 flow would replace the right hand side of the second insn with a
166 reference to r100. Most of the information is available to add this
167 to this pass. It has not done it because it is a lot of work in
168 the case that either r100 is assigned to between the first and
169 second insn and/or the second insn is a load of part of the value
170 stored by the first insn.
171
172 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
173 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
174 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
175 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
176
177 2) The cleaning up of spill code is quite profitable. It currently
178 depends on reading tea leaves and chicken entrails left by reload.
179 This pass depends on reload creating a singleton alias set for each
180 spill slot and telling the next dse pass which of these alias sets
181 are the singletons. Rather than analyze the addresses of the
182 spills, dse's spill processing just does analysis of the loads and
183 stores that use those alias sets. There are three cases where this
184 falls short:
185
186 a) Reload sometimes creates the slot for one mode of access, and
187 then inserts loads and/or stores for a smaller mode. In this
188 case, the current code just punts on the slot. The proper thing
189 to do is to back out and use one bit vector position for each
190 byte of the entity associated with the slot. This depends on
191 KNOWING that reload always generates the accesses for each of the
192 bytes in some canonical (read that easy to understand several
193 passes after reload happens) way.
194
195 b) Reload sometimes decides that spill slot it allocated was not
196 large enough for the mode and goes back and allocates more slots
197 with the same mode and alias set. The backout in this case is a
198 little more graceful than (a). In this case the slot is unmarked
199 as being a spill slot and if final address comes out to be based
200 off the frame pointer, the global algorithm handles this slot.
201
202 c) For any pass that may prespill, there is currently no
203 mechanism to tell the dse pass that the slot being used has the
204 special properties that reload uses. It may be that all that is
205 required is to have those passes make the same calls that reload
206 does, assuming that the alias sets can be manipulated in the same
207 way. */
208
209 /* There are limits to the size of constant offsets we model for the
210 global problem. There are certainly test cases, that exceed this
211 limit, however, it is unlikely that there are important programs
212 that really have constant offsets this size. */
213 #define MAX_OFFSET (64 * 1024)
214
215 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
216 on the default obstack because these bitmaps can grow quite large
217 (~2GB for the small (!) test case of PR54146) and we'll hold on to
218 all that memory until the end of the compiler run.
219 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
220 releasing the whole obstack. */
221 static bitmap_obstack dse_bitmap_obstack;
222
223 /* Obstack for other data. As for above: Kinda nice to be able to
224 throw it all away at the end in one big sweep. */
225 static struct obstack dse_obstack;
226
227 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
228 static bitmap scratch = NULL;
229
230 struct insn_info;
231
232 /* This structure holds information about a candidate store. */
233 struct store_info
234 {
235
236 /* False means this is a clobber. */
237 bool is_set;
238
239 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
240 bool is_large;
241
242 /* The id of the mem group of the base address. If rtx_varies_p is
243 true, this is -1. Otherwise, it is the index into the group
244 table. */
245 int group_id;
246
247 /* This is the cselib value. */
248 cselib_val *cse_base;
249
250 /* This canonized mem. */
251 rtx mem;
252
253 /* Canonized MEM address for use by canon_true_dependence. */
254 rtx mem_addr;
255
256 /* If this is non-zero, it is the alias set of a spill location. */
257 alias_set_type alias_set;
258
259 /* The offset of the first and byte before the last byte associated
260 with the operation. */
261 HOST_WIDE_INT begin, end;
262
263 union
264 {
265 /* A bitmask as wide as the number of bytes in the word that
266 contains a 1 if the byte may be needed. The store is unused if
267 all of the bits are 0. This is used if IS_LARGE is false. */
268 unsigned HOST_WIDE_INT small_bitmask;
269
270 struct
271 {
272 /* A bitmap with one bit per byte. Cleared bit means the position
273 is needed. Used if IS_LARGE is false. */
274 bitmap bmap;
275
276 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
277 equal to END - BEGIN, the whole store is unused. */
278 int count;
279 } large;
280 } positions_needed;
281
282 /* The next store info for this insn. */
283 struct store_info *next;
284
285 /* The right hand side of the store. This is used if there is a
286 subsequent reload of the mems address somewhere later in the
287 basic block. */
288 rtx rhs;
289
290 /* If rhs is or holds a constant, this contains that constant,
291 otherwise NULL. */
292 rtx const_rhs;
293
294 /* Set if this store stores the same constant value as REDUNDANT_REASON
295 insn stored. These aren't eliminated early, because doing that
296 might prevent the earlier larger store to be eliminated. */
297 struct insn_info *redundant_reason;
298 };
299
300 /* Return a bitmask with the first N low bits set. */
301
302 static unsigned HOST_WIDE_INT
303 lowpart_bitmask (int n)
304 {
305 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
306 return mask >> (HOST_BITS_PER_WIDE_INT - n);
307 }
308
309 typedef struct store_info *store_info_t;
310 static alloc_pool cse_store_info_pool;
311 static alloc_pool rtx_store_info_pool;
312
313 /* This structure holds information about a load. These are only
314 built for rtx bases. */
315 struct read_info
316 {
317 /* The id of the mem group of the base address. */
318 int group_id;
319
320 /* If this is non-zero, it is the alias set of a spill location. */
321 alias_set_type alias_set;
322
323 /* The offset of the first and byte after the last byte associated
324 with the operation. If begin == end == 0, the read did not have
325 a constant offset. */
326 int begin, end;
327
328 /* The mem being read. */
329 rtx mem;
330
331 /* The next read_info for this insn. */
332 struct read_info *next;
333 };
334 typedef struct read_info *read_info_t;
335 static alloc_pool read_info_pool;
336
337
338 /* One of these records is created for each insn. */
339
340 struct insn_info
341 {
342 /* Set true if the insn contains a store but the insn itself cannot
343 be deleted. This is set if the insn is a parallel and there is
344 more than one non dead output or if the insn is in some way
345 volatile. */
346 bool cannot_delete;
347
348 /* This field is only used by the global algorithm. It is set true
349 if the insn contains any read of mem except for a (1). This is
350 also set if the insn is a call or has a clobber mem. If the insn
351 contains a wild read, the use_rec will be null. */
352 bool wild_read;
353
354 /* This is true only for CALL instructions which could potentially read
355 any non-frame memory location. This field is used by the global
356 algorithm. */
357 bool non_frame_wild_read;
358
359 /* This field is only used for the processing of const functions.
360 These functions cannot read memory, but they can read the stack
361 because that is where they may get their parms. We need to be
362 this conservative because, like the store motion pass, we don't
363 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
364 Moreover, we need to distinguish two cases:
365 1. Before reload (register elimination), the stores related to
366 outgoing arguments are stack pointer based and thus deemed
367 of non-constant base in this pass. This requires special
368 handling but also means that the frame pointer based stores
369 need not be killed upon encountering a const function call.
370 2. After reload, the stores related to outgoing arguments can be
371 either stack pointer or hard frame pointer based. This means
372 that we have no other choice than also killing all the frame
373 pointer based stores upon encountering a const function call.
374 This field is set after reload for const function calls. Having
375 this set is less severe than a wild read, it just means that all
376 the frame related stores are killed rather than all the stores. */
377 bool frame_read;
378
379 /* This field is only used for the processing of const functions.
380 It is set if the insn may contain a stack pointer based store. */
381 bool stack_pointer_based;
382
383 /* This is true if any of the sets within the store contains a
384 cselib base. Such stores can only be deleted by the local
385 algorithm. */
386 bool contains_cselib_groups;
387
388 /* The insn. */
389 rtx_insn *insn;
390
391 /* The list of mem sets or mem clobbers that are contained in this
392 insn. If the insn is deletable, it contains only one mem set.
393 But it could also contain clobbers. Insns that contain more than
394 one mem set are not deletable, but each of those mems are here in
395 order to provide info to delete other insns. */
396 store_info_t store_rec;
397
398 /* The linked list of mem uses in this insn. Only the reads from
399 rtx bases are listed here. The reads to cselib bases are
400 completely processed during the first scan and so are never
401 created. */
402 read_info_t read_rec;
403
404 /* The live fixed registers. We assume only fixed registers can
405 cause trouble by being clobbered from an expanded pattern;
406 storing only the live fixed registers (rather than all registers)
407 means less memory needs to be allocated / copied for the individual
408 stores. */
409 regset fixed_regs_live;
410
411 /* The prev insn in the basic block. */
412 struct insn_info * prev_insn;
413
414 /* The linked list of insns that are in consideration for removal in
415 the forwards pass through the basic block. This pointer may be
416 trash as it is not cleared when a wild read occurs. The only
417 time it is guaranteed to be correct is when the traversal starts
418 at active_local_stores. */
419 struct insn_info * next_local_store;
420 };
421
422 typedef struct insn_info *insn_info_t;
423 static alloc_pool insn_info_pool;
424
425 /* The linked list of stores that are under consideration in this
426 basic block. */
427 static insn_info_t active_local_stores;
428 static int active_local_stores_len;
429
430 struct dse_bb_info
431 {
432
433 /* Pointer to the insn info for the last insn in the block. These
434 are linked so this is how all of the insns are reached. During
435 scanning this is the current insn being scanned. */
436 insn_info_t last_insn;
437
438 /* The info for the global dataflow problem. */
439
440
441 /* This is set if the transfer function should and in the wild_read
442 bitmap before applying the kill and gen sets. That vector knocks
443 out most of the bits in the bitmap and thus speeds up the
444 operations. */
445 bool apply_wild_read;
446
447 /* The following 4 bitvectors hold information about which positions
448 of which stores are live or dead. They are indexed by
449 get_bitmap_index. */
450
451 /* The set of store positions that exist in this block before a wild read. */
452 bitmap gen;
453
454 /* The set of load positions that exist in this block above the
455 same position of a store. */
456 bitmap kill;
457
458 /* The set of stores that reach the top of the block without being
459 killed by a read.
460
461 Do not represent the in if it is all ones. Note that this is
462 what the bitvector should logically be initialized to for a set
463 intersection problem. However, like the kill set, this is too
464 expensive. So initially, the in set will only be created for the
465 exit block and any block that contains a wild read. */
466 bitmap in;
467
468 /* The set of stores that reach the bottom of the block from it's
469 successors.
470
471 Do not represent the in if it is all ones. Note that this is
472 what the bitvector should logically be initialized to for a set
473 intersection problem. However, like the kill and in set, this is
474 too expensive. So what is done is that the confluence operator
475 just initializes the vector from one of the out sets of the
476 successors of the block. */
477 bitmap out;
478
479 /* The following bitvector is indexed by the reg number. It
480 contains the set of regs that are live at the current instruction
481 being processed. While it contains info for all of the
482 registers, only the hard registers are actually examined. It is used
483 to assure that shift and/or add sequences that are inserted do not
484 accidentally clobber live hard regs. */
485 bitmap regs_live;
486 };
487
488 typedef struct dse_bb_info *bb_info_t;
489 static alloc_pool bb_info_pool;
490
491 /* Table to hold all bb_infos. */
492 static bb_info_t *bb_table;
493
494 /* There is a group_info for each rtx base that is used to reference
495 memory. There are also not many of the rtx bases because they are
496 very limited in scope. */
497
498 struct group_info
499 {
500 /* The actual base of the address. */
501 rtx rtx_base;
502
503 /* The sequential id of the base. This allows us to have a
504 canonical ordering of these that is not based on addresses. */
505 int id;
506
507 /* True if there are any positions that are to be processed
508 globally. */
509 bool process_globally;
510
511 /* True if the base of this group is either the frame_pointer or
512 hard_frame_pointer. */
513 bool frame_related;
514
515 /* A mem wrapped around the base pointer for the group in order to do
516 read dependency. It must be given BLKmode in order to encompass all
517 the possible offsets from the base. */
518 rtx base_mem;
519
520 /* Canonized version of base_mem's address. */
521 rtx canon_base_addr;
522
523 /* These two sets of two bitmaps are used to keep track of how many
524 stores are actually referencing that position from this base. We
525 only do this for rtx bases as this will be used to assign
526 positions in the bitmaps for the global problem. Bit N is set in
527 store1 on the first store for offset N. Bit N is set in store2
528 for the second store to offset N. This is all we need since we
529 only care about offsets that have two or more stores for them.
530
531 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
532 for 0 and greater offsets.
533
534 There is one special case here, for stores into the stack frame,
535 we will or store1 into store2 before deciding which stores look
536 at globally. This is because stores to the stack frame that have
537 no other reads before the end of the function can also be
538 deleted. */
539 bitmap store1_n, store1_p, store2_n, store2_p;
540
541 /* These bitmaps keep track of offsets in this group escape this function.
542 An offset escapes if it corresponds to a named variable whose
543 addressable flag is set. */
544 bitmap escaped_n, escaped_p;
545
546 /* The positions in this bitmap have the same assignments as the in,
547 out, gen and kill bitmaps. This bitmap is all zeros except for
548 the positions that are occupied by stores for this group. */
549 bitmap group_kill;
550
551 /* The offset_map is used to map the offsets from this base into
552 positions in the global bitmaps. It is only created after all of
553 the all of stores have been scanned and we know which ones we
554 care about. */
555 int *offset_map_n, *offset_map_p;
556 int offset_map_size_n, offset_map_size_p;
557 };
558 typedef struct group_info *group_info_t;
559 typedef const struct group_info *const_group_info_t;
560 static alloc_pool rtx_group_info_pool;
561
562 /* Index into the rtx_group_vec. */
563 static int rtx_group_next_id;
564
565
566 static vec<group_info_t> rtx_group_vec;
567
568
569 /* This structure holds the set of changes that are being deferred
570 when removing read operation. See replace_read. */
571 struct deferred_change
572 {
573
574 /* The mem that is being replaced. */
575 rtx *loc;
576
577 /* The reg it is being replaced with. */
578 rtx reg;
579
580 struct deferred_change *next;
581 };
582
583 typedef struct deferred_change *deferred_change_t;
584 static alloc_pool deferred_change_pool;
585
586 static deferred_change_t deferred_change_list = NULL;
587
588 /* The group that holds all of the clear_alias_sets. */
589 static group_info_t clear_alias_group;
590
591 /* The modes of the clear_alias_sets. */
592 static htab_t clear_alias_mode_table;
593
594 /* Hash table element to look up the mode for an alias set. */
595 struct clear_alias_mode_holder
596 {
597 alias_set_type alias_set;
598 machine_mode mode;
599 };
600
601 /* This is true except if cfun->stdarg -- i.e. we cannot do
602 this for vararg functions because they play games with the frame. */
603 static bool stores_off_frame_dead_at_return;
604
605 /* Counter for stats. */
606 static int globally_deleted;
607 static int locally_deleted;
608 static int spill_deleted;
609
610 static bitmap all_blocks;
611
612 /* Locations that are killed by calls in the global phase. */
613 static bitmap kill_on_calls;
614
615 /* The number of bits used in the global bitmaps. */
616 static unsigned int current_position;
617 \f
618 /*----------------------------------------------------------------------------
619 Zeroth step.
620
621 Initialization.
622 ----------------------------------------------------------------------------*/
623
624
625 /* Find the entry associated with ALIAS_SET. */
626
627 static struct clear_alias_mode_holder *
628 clear_alias_set_lookup (alias_set_type alias_set)
629 {
630 struct clear_alias_mode_holder tmp_holder;
631 void **slot;
632
633 tmp_holder.alias_set = alias_set;
634 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
635 gcc_assert (*slot);
636
637 return (struct clear_alias_mode_holder *) *slot;
638 }
639
640
641 /* Hashtable callbacks for maintaining the "bases" field of
642 store_group_info, given that the addresses are function invariants. */
643
644 struct invariant_group_base_hasher : typed_noop_remove <group_info>
645 {
646 typedef group_info value_type;
647 typedef group_info compare_type;
648 static inline hashval_t hash (const value_type *);
649 static inline bool equal (const value_type *, const compare_type *);
650 };
651
652 inline bool
653 invariant_group_base_hasher::equal (const value_type *gi1,
654 const compare_type *gi2)
655 {
656 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
657 }
658
659 inline hashval_t
660 invariant_group_base_hasher::hash (const value_type *gi)
661 {
662 int do_not_record;
663 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
664 }
665
666 /* Tables of group_info structures, hashed by base value. */
667 static hash_table<invariant_group_base_hasher> *rtx_group_table;
668
669
670 /* Get the GROUP for BASE. Add a new group if it is not there. */
671
672 static group_info_t
673 get_group_info (rtx base)
674 {
675 struct group_info tmp_gi;
676 group_info_t gi;
677 group_info **slot;
678
679 if (base)
680 {
681 /* Find the store_base_info structure for BASE, creating a new one
682 if necessary. */
683 tmp_gi.rtx_base = base;
684 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
685 gi = (group_info_t) *slot;
686 }
687 else
688 {
689 if (!clear_alias_group)
690 {
691 clear_alias_group = gi =
692 (group_info_t) pool_alloc (rtx_group_info_pool);
693 memset (gi, 0, sizeof (struct group_info));
694 gi->id = rtx_group_next_id++;
695 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
696 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
697 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
698 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
699 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
700 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
701 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
702 gi->process_globally = false;
703 gi->offset_map_size_n = 0;
704 gi->offset_map_size_p = 0;
705 gi->offset_map_n = NULL;
706 gi->offset_map_p = NULL;
707 rtx_group_vec.safe_push (gi);
708 }
709 return clear_alias_group;
710 }
711
712 if (gi == NULL)
713 {
714 *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
715 gi->rtx_base = base;
716 gi->id = rtx_group_next_id++;
717 gi->base_mem = gen_rtx_MEM (BLKmode, base);
718 gi->canon_base_addr = canon_rtx (base);
719 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
720 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
721 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
722 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
723 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
724 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
725 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
726 gi->process_globally = false;
727 gi->frame_related =
728 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
729 gi->offset_map_size_n = 0;
730 gi->offset_map_size_p = 0;
731 gi->offset_map_n = NULL;
732 gi->offset_map_p = NULL;
733 rtx_group_vec.safe_push (gi);
734 }
735
736 return gi;
737 }
738
739
740 /* Initialization of data structures. */
741
742 static void
743 dse_step0 (void)
744 {
745 locally_deleted = 0;
746 globally_deleted = 0;
747 spill_deleted = 0;
748
749 bitmap_obstack_initialize (&dse_bitmap_obstack);
750 gcc_obstack_init (&dse_obstack);
751
752 scratch = BITMAP_ALLOC (&reg_obstack);
753 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
754
755 rtx_store_info_pool
756 = create_alloc_pool ("rtx_store_info_pool",
757 sizeof (struct store_info), 100);
758 read_info_pool
759 = create_alloc_pool ("read_info_pool",
760 sizeof (struct read_info), 100);
761 insn_info_pool
762 = create_alloc_pool ("insn_info_pool",
763 sizeof (struct insn_info), 100);
764 bb_info_pool
765 = create_alloc_pool ("bb_info_pool",
766 sizeof (struct dse_bb_info), 100);
767 rtx_group_info_pool
768 = create_alloc_pool ("rtx_group_info_pool",
769 sizeof (struct group_info), 100);
770 deferred_change_pool
771 = create_alloc_pool ("deferred_change_pool",
772 sizeof (struct deferred_change), 10);
773
774 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
775
776 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
777 rtx_group_next_id = 0;
778
779 stores_off_frame_dead_at_return = !cfun->stdarg;
780
781 init_alias_analysis ();
782
783 clear_alias_group = NULL;
784 }
785
786
787 \f
788 /*----------------------------------------------------------------------------
789 First step.
790
791 Scan all of the insns. Any random ordering of the blocks is fine.
792 Each block is scanned in forward order to accommodate cselib which
793 is used to remove stores with non-constant bases.
794 ----------------------------------------------------------------------------*/
795
796 /* Delete all of the store_info recs from INSN_INFO. */
797
798 static void
799 free_store_info (insn_info_t insn_info)
800 {
801 store_info_t store_info = insn_info->store_rec;
802 while (store_info)
803 {
804 store_info_t next = store_info->next;
805 if (store_info->is_large)
806 BITMAP_FREE (store_info->positions_needed.large.bmap);
807 if (store_info->cse_base)
808 pool_free (cse_store_info_pool, store_info);
809 else
810 pool_free (rtx_store_info_pool, store_info);
811 store_info = next;
812 }
813
814 insn_info->cannot_delete = true;
815 insn_info->contains_cselib_groups = false;
816 insn_info->store_rec = NULL;
817 }
818
819 typedef struct
820 {
821 rtx_insn *first, *current;
822 regset fixed_regs_live;
823 bool failure;
824 } note_add_store_info;
825
826 /* Callback for emit_inc_dec_insn_before via note_stores.
827 Check if a register is clobbered which is live afterwards. */
828
829 static void
830 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
831 {
832 rtx_insn *insn;
833 note_add_store_info *info = (note_add_store_info *) data;
834 int r, n;
835
836 if (!REG_P (loc))
837 return;
838
839 /* If this register is referenced by the current or an earlier insn,
840 that's OK. E.g. this applies to the register that is being incremented
841 with this addition. */
842 for (insn = info->first;
843 insn != NEXT_INSN (info->current);
844 insn = NEXT_INSN (insn))
845 if (reg_referenced_p (loc, PATTERN (insn)))
846 return;
847
848 /* If we come here, we have a clobber of a register that's only OK
849 if that register is not live. If we don't have liveness information
850 available, fail now. */
851 if (!info->fixed_regs_live)
852 {
853 info->failure = true;
854 return;
855 }
856 /* Now check if this is a live fixed register. */
857 r = REGNO (loc);
858 n = hard_regno_nregs[r][GET_MODE (loc)];
859 while (--n >= 0)
860 if (REGNO_REG_SET_P (info->fixed_regs_live, r+n))
861 info->failure = true;
862 }
863
864 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
865 SRC + SRCOFF before insn ARG. */
866
867 static int
868 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
869 rtx op ATTRIBUTE_UNUSED,
870 rtx dest, rtx src, rtx srcoff, void *arg)
871 {
872 insn_info_t insn_info = (insn_info_t) arg;
873 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
874 note_add_store_info info;
875
876 /* We can reuse all operands without copying, because we are about
877 to delete the insn that contained it. */
878 if (srcoff)
879 {
880 start_sequence ();
881 emit_insn (gen_add3_insn (dest, src, srcoff));
882 new_insn = get_insns ();
883 end_sequence ();
884 }
885 else
886 new_insn = as_a <rtx_insn *> (gen_move_insn (dest, src));
887 info.first = new_insn;
888 info.fixed_regs_live = insn_info->fixed_regs_live;
889 info.failure = false;
890 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
891 {
892 info.current = cur;
893 note_stores (PATTERN (cur), note_add_store, &info);
894 }
895
896 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
897 return it immediately, communicating the failure to its caller. */
898 if (info.failure)
899 return 1;
900
901 emit_insn_before (new_insn, insn);
902
903 return 0;
904 }
905
906 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
907 is there, is split into a separate insn.
908 Return true on success (or if there was nothing to do), false on failure. */
909
910 static bool
911 check_for_inc_dec_1 (insn_info_t insn_info)
912 {
913 rtx_insn *insn = insn_info->insn;
914 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
915 if (note)
916 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
917 insn_info) == 0;
918 return true;
919 }
920
921
922 /* Entry point for postreload. If you work on reload_cse, or you need this
923 anywhere else, consider if you can provide register liveness information
924 and add a parameter to this function so that it can be passed down in
925 insn_info.fixed_regs_live. */
926 bool
927 check_for_inc_dec (rtx_insn *insn)
928 {
929 struct insn_info insn_info;
930 rtx note;
931
932 insn_info.insn = insn;
933 insn_info.fixed_regs_live = NULL;
934 note = find_reg_note (insn, REG_INC, NULL_RTX);
935 if (note)
936 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
937 &insn_info) == 0;
938 return true;
939 }
940
941 /* Delete the insn and free all of the fields inside INSN_INFO. */
942
943 static void
944 delete_dead_store_insn (insn_info_t insn_info)
945 {
946 read_info_t read_info;
947
948 if (!dbg_cnt (dse))
949 return;
950
951 if (!check_for_inc_dec_1 (insn_info))
952 return;
953 if (dump_file && (dump_flags & TDF_DETAILS))
954 {
955 fprintf (dump_file, "Locally deleting insn %d ",
956 INSN_UID (insn_info->insn));
957 if (insn_info->store_rec->alias_set)
958 fprintf (dump_file, "alias set %d\n",
959 (int) insn_info->store_rec->alias_set);
960 else
961 fprintf (dump_file, "\n");
962 }
963
964 free_store_info (insn_info);
965 read_info = insn_info->read_rec;
966
967 while (read_info)
968 {
969 read_info_t next = read_info->next;
970 pool_free (read_info_pool, read_info);
971 read_info = next;
972 }
973 insn_info->read_rec = NULL;
974
975 delete_insn (insn_info->insn);
976 locally_deleted++;
977 insn_info->insn = NULL;
978
979 insn_info->wild_read = false;
980 }
981
982 /* Return whether DECL, a local variable, can possibly escape the current
983 function scope. */
984
985 static bool
986 local_variable_can_escape (tree decl)
987 {
988 if (TREE_ADDRESSABLE (decl))
989 return true;
990
991 /* If this is a partitioned variable, we need to consider all the variables
992 in the partition. This is necessary because a store into one of them can
993 be replaced with a store into another and this may not change the outcome
994 of the escape analysis. */
995 if (cfun->gimple_df->decls_to_pointers != NULL)
996 {
997 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
998 if (namep)
999 return TREE_ADDRESSABLE (*namep);
1000 }
1001
1002 return false;
1003 }
1004
1005 /* Return whether EXPR can possibly escape the current function scope. */
1006
1007 static bool
1008 can_escape (tree expr)
1009 {
1010 tree base;
1011 if (!expr)
1012 return true;
1013 base = get_base_address (expr);
1014 if (DECL_P (base)
1015 && !may_be_aliased (base)
1016 && !(TREE_CODE (base) == VAR_DECL
1017 && !DECL_EXTERNAL (base)
1018 && !TREE_STATIC (base)
1019 && local_variable_can_escape (base)))
1020 return false;
1021 return true;
1022 }
1023
1024 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
1025 OFFSET and WIDTH. */
1026
1027 static void
1028 set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width,
1029 tree expr)
1030 {
1031 HOST_WIDE_INT i;
1032 bool expr_escapes = can_escape (expr);
1033 if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
1034 for (i=offset; i<offset+width; i++)
1035 {
1036 bitmap store1;
1037 bitmap store2;
1038 bitmap escaped;
1039 int ai;
1040 if (i < 0)
1041 {
1042 store1 = group->store1_n;
1043 store2 = group->store2_n;
1044 escaped = group->escaped_n;
1045 ai = -i;
1046 }
1047 else
1048 {
1049 store1 = group->store1_p;
1050 store2 = group->store2_p;
1051 escaped = group->escaped_p;
1052 ai = i;
1053 }
1054
1055 if (!bitmap_set_bit (store1, ai))
1056 bitmap_set_bit (store2, ai);
1057 else
1058 {
1059 if (i < 0)
1060 {
1061 if (group->offset_map_size_n < ai)
1062 group->offset_map_size_n = ai;
1063 }
1064 else
1065 {
1066 if (group->offset_map_size_p < ai)
1067 group->offset_map_size_p = ai;
1068 }
1069 }
1070 if (expr_escapes)
1071 bitmap_set_bit (escaped, ai);
1072 }
1073 }
1074
1075 static void
1076 reset_active_stores (void)
1077 {
1078 active_local_stores = NULL;
1079 active_local_stores_len = 0;
1080 }
1081
1082 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1083
1084 static void
1085 free_read_records (bb_info_t bb_info)
1086 {
1087 insn_info_t insn_info = bb_info->last_insn;
1088 read_info_t *ptr = &insn_info->read_rec;
1089 while (*ptr)
1090 {
1091 read_info_t next = (*ptr)->next;
1092 if ((*ptr)->alias_set == 0)
1093 {
1094 pool_free (read_info_pool, *ptr);
1095 *ptr = next;
1096 }
1097 else
1098 ptr = &(*ptr)->next;
1099 }
1100 }
1101
1102 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1103
1104 static void
1105 add_wild_read (bb_info_t bb_info)
1106 {
1107 insn_info_t insn_info = bb_info->last_insn;
1108 insn_info->wild_read = true;
1109 free_read_records (bb_info);
1110 reset_active_stores ();
1111 }
1112
1113 /* Set the BB_INFO so that the last insn is marked as a wild read of
1114 non-frame locations. */
1115
1116 static void
1117 add_non_frame_wild_read (bb_info_t bb_info)
1118 {
1119 insn_info_t insn_info = bb_info->last_insn;
1120 insn_info->non_frame_wild_read = true;
1121 free_read_records (bb_info);
1122 reset_active_stores ();
1123 }
1124
1125 /* Return true if X is a constant or one of the registers that behave
1126 as a constant over the life of a function. This is equivalent to
1127 !rtx_varies_p for memory addresses. */
1128
1129 static bool
1130 const_or_frame_p (rtx x)
1131 {
1132 if (CONSTANT_P (x))
1133 return true;
1134
1135 if (GET_CODE (x) == REG)
1136 {
1137 /* Note that we have to test for the actual rtx used for the frame
1138 and arg pointers and not just the register number in case we have
1139 eliminated the frame and/or arg pointer and are using it
1140 for pseudos. */
1141 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1142 /* The arg pointer varies if it is not a fixed register. */
1143 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1144 || x == pic_offset_table_rtx)
1145 return true;
1146 return false;
1147 }
1148
1149 return false;
1150 }
1151
1152 /* Take all reasonable action to put the address of MEM into the form
1153 that we can do analysis on.
1154
1155 The gold standard is to get the address into the form: address +
1156 OFFSET where address is something that rtx_varies_p considers a
1157 constant. When we can get the address in this form, we can do
1158 global analysis on it. Note that for constant bases, address is
1159 not actually returned, only the group_id. The address can be
1160 obtained from that.
1161
1162 If that fails, we try cselib to get a value we can at least use
1163 locally. If that fails we return false.
1164
1165 The GROUP_ID is set to -1 for cselib bases and the index of the
1166 group for non_varying bases.
1167
1168 FOR_READ is true if this is a mem read and false if not. */
1169
1170 static bool
1171 canon_address (rtx mem,
1172 alias_set_type *alias_set_out,
1173 int *group_id,
1174 HOST_WIDE_INT *offset,
1175 cselib_val **base)
1176 {
1177 machine_mode address_mode = get_address_mode (mem);
1178 rtx mem_address = XEXP (mem, 0);
1179 rtx expanded_address, address;
1180 int expanded;
1181
1182 *alias_set_out = 0;
1183
1184 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1185
1186 if (dump_file && (dump_flags & TDF_DETAILS))
1187 {
1188 fprintf (dump_file, " mem: ");
1189 print_inline_rtx (dump_file, mem_address, 0);
1190 fprintf (dump_file, "\n");
1191 }
1192
1193 /* First see if just canon_rtx (mem_address) is const or frame,
1194 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1195 address = NULL_RTX;
1196 for (expanded = 0; expanded < 2; expanded++)
1197 {
1198 if (expanded)
1199 {
1200 /* Use cselib to replace all of the reg references with the full
1201 expression. This will take care of the case where we have
1202
1203 r_x = base + offset;
1204 val = *r_x;
1205
1206 by making it into
1207
1208 val = *(base + offset); */
1209
1210 expanded_address = cselib_expand_value_rtx (mem_address,
1211 scratch, 5);
1212
1213 /* If this fails, just go with the address from first
1214 iteration. */
1215 if (!expanded_address)
1216 break;
1217 }
1218 else
1219 expanded_address = mem_address;
1220
1221 /* Split the address into canonical BASE + OFFSET terms. */
1222 address = canon_rtx (expanded_address);
1223
1224 *offset = 0;
1225
1226 if (dump_file && (dump_flags & TDF_DETAILS))
1227 {
1228 if (expanded)
1229 {
1230 fprintf (dump_file, "\n after cselib_expand address: ");
1231 print_inline_rtx (dump_file, expanded_address, 0);
1232 fprintf (dump_file, "\n");
1233 }
1234
1235 fprintf (dump_file, "\n after canon_rtx address: ");
1236 print_inline_rtx (dump_file, address, 0);
1237 fprintf (dump_file, "\n");
1238 }
1239
1240 if (GET_CODE (address) == CONST)
1241 address = XEXP (address, 0);
1242
1243 if (GET_CODE (address) == PLUS
1244 && CONST_INT_P (XEXP (address, 1)))
1245 {
1246 *offset = INTVAL (XEXP (address, 1));
1247 address = XEXP (address, 0);
1248 }
1249
1250 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1251 && const_or_frame_p (address))
1252 {
1253 group_info_t group = get_group_info (address);
1254
1255 if (dump_file && (dump_flags & TDF_DETAILS))
1256 fprintf (dump_file, " gid=%d offset=%d \n",
1257 group->id, (int)*offset);
1258 *base = NULL;
1259 *group_id = group->id;
1260 return true;
1261 }
1262 }
1263
1264 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1265 *group_id = -1;
1266
1267 if (*base == NULL)
1268 {
1269 if (dump_file && (dump_flags & TDF_DETAILS))
1270 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1271 return false;
1272 }
1273 if (dump_file && (dump_flags & TDF_DETAILS))
1274 fprintf (dump_file, " varying cselib base=%u:%u offset = %d\n",
1275 (*base)->uid, (*base)->hash, (int)*offset);
1276 return true;
1277 }
1278
1279
1280 /* Clear the rhs field from the active_local_stores array. */
1281
1282 static void
1283 clear_rhs_from_active_local_stores (void)
1284 {
1285 insn_info_t ptr = active_local_stores;
1286
1287 while (ptr)
1288 {
1289 store_info_t store_info = ptr->store_rec;
1290 /* Skip the clobbers. */
1291 while (!store_info->is_set)
1292 store_info = store_info->next;
1293
1294 store_info->rhs = NULL;
1295 store_info->const_rhs = NULL;
1296
1297 ptr = ptr->next_local_store;
1298 }
1299 }
1300
1301
1302 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1303
1304 static inline void
1305 set_position_unneeded (store_info_t s_info, int pos)
1306 {
1307 if (__builtin_expect (s_info->is_large, false))
1308 {
1309 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1310 s_info->positions_needed.large.count++;
1311 }
1312 else
1313 s_info->positions_needed.small_bitmask
1314 &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
1315 }
1316
1317 /* Mark the whole store S_INFO as unneeded. */
1318
1319 static inline void
1320 set_all_positions_unneeded (store_info_t s_info)
1321 {
1322 if (__builtin_expect (s_info->is_large, false))
1323 {
1324 int pos, end = s_info->end - s_info->begin;
1325 for (pos = 0; pos < end; pos++)
1326 bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1327 s_info->positions_needed.large.count = end;
1328 }
1329 else
1330 s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
1331 }
1332
1333 /* Return TRUE if any bytes from S_INFO store are needed. */
1334
1335 static inline bool
1336 any_positions_needed_p (store_info_t s_info)
1337 {
1338 if (__builtin_expect (s_info->is_large, false))
1339 return (s_info->positions_needed.large.count
1340 < s_info->end - s_info->begin);
1341 else
1342 return (s_info->positions_needed.small_bitmask
1343 != (unsigned HOST_WIDE_INT) 0);
1344 }
1345
1346 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1347 store are needed. */
1348
1349 static inline bool
1350 all_positions_needed_p (store_info_t s_info, int start, int width)
1351 {
1352 if (__builtin_expect (s_info->is_large, false))
1353 {
1354 int end = start + width;
1355 while (start < end)
1356 if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1357 return false;
1358 return true;
1359 }
1360 else
1361 {
1362 unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
1363 return (s_info->positions_needed.small_bitmask & mask) == mask;
1364 }
1365 }
1366
1367
1368 static rtx get_stored_val (store_info_t, machine_mode, HOST_WIDE_INT,
1369 HOST_WIDE_INT, basic_block, bool);
1370
1371
1372 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1373 there is a candidate store, after adding it to the appropriate
1374 local store group if so. */
1375
1376 static int
1377 record_store (rtx body, bb_info_t bb_info)
1378 {
1379 rtx mem, rhs, const_rhs, mem_addr;
1380 HOST_WIDE_INT offset = 0;
1381 HOST_WIDE_INT width = 0;
1382 alias_set_type spill_alias_set;
1383 insn_info_t insn_info = bb_info->last_insn;
1384 store_info_t store_info = NULL;
1385 int group_id;
1386 cselib_val *base = NULL;
1387 insn_info_t ptr, last, redundant_reason;
1388 bool store_is_unused;
1389
1390 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1391 return 0;
1392
1393 mem = SET_DEST (body);
1394
1395 /* If this is not used, then this cannot be used to keep the insn
1396 from being deleted. On the other hand, it does provide something
1397 that can be used to prove that another store is dead. */
1398 store_is_unused
1399 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1400
1401 /* Check whether that value is a suitable memory location. */
1402 if (!MEM_P (mem))
1403 {
1404 /* If the set or clobber is unused, then it does not effect our
1405 ability to get rid of the entire insn. */
1406 if (!store_is_unused)
1407 insn_info->cannot_delete = true;
1408 return 0;
1409 }
1410
1411 /* At this point we know mem is a mem. */
1412 if (GET_MODE (mem) == BLKmode)
1413 {
1414 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1415 {
1416 if (dump_file && (dump_flags & TDF_DETAILS))
1417 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1418 add_wild_read (bb_info);
1419 insn_info->cannot_delete = true;
1420 return 0;
1421 }
1422 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1423 as memset (addr, 0, 36); */
1424 else if (!MEM_SIZE_KNOWN_P (mem)
1425 || MEM_SIZE (mem) <= 0
1426 || MEM_SIZE (mem) > MAX_OFFSET
1427 || GET_CODE (body) != SET
1428 || !CONST_INT_P (SET_SRC (body)))
1429 {
1430 if (!store_is_unused)
1431 {
1432 /* If the set or clobber is unused, then it does not effect our
1433 ability to get rid of the entire insn. */
1434 insn_info->cannot_delete = true;
1435 clear_rhs_from_active_local_stores ();
1436 }
1437 return 0;
1438 }
1439 }
1440
1441 /* We can still process a volatile mem, we just cannot delete it. */
1442 if (MEM_VOLATILE_P (mem))
1443 insn_info->cannot_delete = true;
1444
1445 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1446 {
1447 clear_rhs_from_active_local_stores ();
1448 return 0;
1449 }
1450
1451 if (GET_MODE (mem) == BLKmode)
1452 width = MEM_SIZE (mem);
1453 else
1454 width = GET_MODE_SIZE (GET_MODE (mem));
1455
1456 if (spill_alias_set)
1457 {
1458 bitmap store1 = clear_alias_group->store1_p;
1459 bitmap store2 = clear_alias_group->store2_p;
1460
1461 gcc_assert (GET_MODE (mem) != BLKmode);
1462
1463 if (!bitmap_set_bit (store1, spill_alias_set))
1464 bitmap_set_bit (store2, spill_alias_set);
1465
1466 if (clear_alias_group->offset_map_size_p < spill_alias_set)
1467 clear_alias_group->offset_map_size_p = spill_alias_set;
1468
1469 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1470
1471 if (dump_file && (dump_flags & TDF_DETAILS))
1472 fprintf (dump_file, " processing spill store %d(%s)\n",
1473 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1474 }
1475 else if (group_id >= 0)
1476 {
1477 /* In the restrictive case where the base is a constant or the
1478 frame pointer we can do global analysis. */
1479
1480 group_info_t group
1481 = rtx_group_vec[group_id];
1482 tree expr = MEM_EXPR (mem);
1483
1484 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1485 set_usage_bits (group, offset, width, expr);
1486
1487 if (dump_file && (dump_flags & TDF_DETAILS))
1488 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1489 group_id, (int)offset, (int)(offset+width));
1490 }
1491 else
1492 {
1493 if (may_be_sp_based_p (XEXP (mem, 0)))
1494 insn_info->stack_pointer_based = true;
1495 insn_info->contains_cselib_groups = true;
1496
1497 store_info = (store_info_t) pool_alloc (cse_store_info_pool);
1498 group_id = -1;
1499
1500 if (dump_file && (dump_flags & TDF_DETAILS))
1501 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1502 (int)offset, (int)(offset+width));
1503 }
1504
1505 const_rhs = rhs = NULL_RTX;
1506 if (GET_CODE (body) == SET
1507 /* No place to keep the value after ra. */
1508 && !reload_completed
1509 && (REG_P (SET_SRC (body))
1510 || GET_CODE (SET_SRC (body)) == SUBREG
1511 || CONSTANT_P (SET_SRC (body)))
1512 && !MEM_VOLATILE_P (mem)
1513 /* Sometimes the store and reload is used for truncation and
1514 rounding. */
1515 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1516 {
1517 rhs = SET_SRC (body);
1518 if (CONSTANT_P (rhs))
1519 const_rhs = rhs;
1520 else if (body == PATTERN (insn_info->insn))
1521 {
1522 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1523 if (tem && CONSTANT_P (XEXP (tem, 0)))
1524 const_rhs = XEXP (tem, 0);
1525 }
1526 if (const_rhs == NULL_RTX && REG_P (rhs))
1527 {
1528 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1529
1530 if (tem && CONSTANT_P (tem))
1531 const_rhs = tem;
1532 }
1533 }
1534
1535 /* Check to see if this stores causes some other stores to be
1536 dead. */
1537 ptr = active_local_stores;
1538 last = NULL;
1539 redundant_reason = NULL;
1540 mem = canon_rtx (mem);
1541 /* For alias_set != 0 canon_true_dependence should be never called. */
1542 if (spill_alias_set)
1543 mem_addr = NULL_RTX;
1544 else
1545 {
1546 if (group_id < 0)
1547 mem_addr = base->val_rtx;
1548 else
1549 {
1550 group_info_t group
1551 = rtx_group_vec[group_id];
1552 mem_addr = group->canon_base_addr;
1553 }
1554 if (offset)
1555 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1556 }
1557
1558 while (ptr)
1559 {
1560 insn_info_t next = ptr->next_local_store;
1561 store_info_t s_info = ptr->store_rec;
1562 bool del = true;
1563
1564 /* Skip the clobbers. We delete the active insn if this insn
1565 shadows the set. To have been put on the active list, it
1566 has exactly on set. */
1567 while (!s_info->is_set)
1568 s_info = s_info->next;
1569
1570 if (s_info->alias_set != spill_alias_set)
1571 del = false;
1572 else if (s_info->alias_set)
1573 {
1574 struct clear_alias_mode_holder *entry
1575 = clear_alias_set_lookup (s_info->alias_set);
1576 /* Generally, spills cannot be processed if and of the
1577 references to the slot have a different mode. But if
1578 we are in the same block and mode is exactly the same
1579 between this store and one before in the same block,
1580 we can still delete it. */
1581 if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1582 && (GET_MODE (mem) == entry->mode))
1583 {
1584 del = true;
1585 set_all_positions_unneeded (s_info);
1586 }
1587 if (dump_file && (dump_flags & TDF_DETAILS))
1588 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
1589 INSN_UID (ptr->insn), (int) s_info->alias_set);
1590 }
1591 else if ((s_info->group_id == group_id)
1592 && (s_info->cse_base == base))
1593 {
1594 HOST_WIDE_INT i;
1595 if (dump_file && (dump_flags & TDF_DETAILS))
1596 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
1597 INSN_UID (ptr->insn), s_info->group_id,
1598 (int)s_info->begin, (int)s_info->end);
1599
1600 /* Even if PTR won't be eliminated as unneeded, if both
1601 PTR and this insn store the same constant value, we might
1602 eliminate this insn instead. */
1603 if (s_info->const_rhs
1604 && const_rhs
1605 && offset >= s_info->begin
1606 && offset + width <= s_info->end
1607 && all_positions_needed_p (s_info, offset - s_info->begin,
1608 width))
1609 {
1610 if (GET_MODE (mem) == BLKmode)
1611 {
1612 if (GET_MODE (s_info->mem) == BLKmode
1613 && s_info->const_rhs == const_rhs)
1614 redundant_reason = ptr;
1615 }
1616 else if (s_info->const_rhs == const0_rtx
1617 && const_rhs == const0_rtx)
1618 redundant_reason = ptr;
1619 else
1620 {
1621 rtx val;
1622 start_sequence ();
1623 val = get_stored_val (s_info, GET_MODE (mem),
1624 offset, offset + width,
1625 BLOCK_FOR_INSN (insn_info->insn),
1626 true);
1627 if (get_insns () != NULL)
1628 val = NULL_RTX;
1629 end_sequence ();
1630 if (val && rtx_equal_p (val, const_rhs))
1631 redundant_reason = ptr;
1632 }
1633 }
1634
1635 for (i = MAX (offset, s_info->begin);
1636 i < offset + width && i < s_info->end;
1637 i++)
1638 set_position_unneeded (s_info, i - s_info->begin);
1639 }
1640 else if (s_info->rhs)
1641 /* Need to see if it is possible for this store to overwrite
1642 the value of store_info. If it is, set the rhs to NULL to
1643 keep it from being used to remove a load. */
1644 {
1645 if (canon_true_dependence (s_info->mem,
1646 GET_MODE (s_info->mem),
1647 s_info->mem_addr,
1648 mem, mem_addr))
1649 {
1650 s_info->rhs = NULL;
1651 s_info->const_rhs = NULL;
1652 }
1653 }
1654
1655 /* An insn can be deleted if every position of every one of
1656 its s_infos is zero. */
1657 if (any_positions_needed_p (s_info))
1658 del = false;
1659
1660 if (del)
1661 {
1662 insn_info_t insn_to_delete = ptr;
1663
1664 active_local_stores_len--;
1665 if (last)
1666 last->next_local_store = ptr->next_local_store;
1667 else
1668 active_local_stores = ptr->next_local_store;
1669
1670 if (!insn_to_delete->cannot_delete)
1671 delete_dead_store_insn (insn_to_delete);
1672 }
1673 else
1674 last = ptr;
1675
1676 ptr = next;
1677 }
1678
1679 /* Finish filling in the store_info. */
1680 store_info->next = insn_info->store_rec;
1681 insn_info->store_rec = store_info;
1682 store_info->mem = mem;
1683 store_info->alias_set = spill_alias_set;
1684 store_info->mem_addr = mem_addr;
1685 store_info->cse_base = base;
1686 if (width > HOST_BITS_PER_WIDE_INT)
1687 {
1688 store_info->is_large = true;
1689 store_info->positions_needed.large.count = 0;
1690 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1691 }
1692 else
1693 {
1694 store_info->is_large = false;
1695 store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
1696 }
1697 store_info->group_id = group_id;
1698 store_info->begin = offset;
1699 store_info->end = offset + width;
1700 store_info->is_set = GET_CODE (body) == SET;
1701 store_info->rhs = rhs;
1702 store_info->const_rhs = const_rhs;
1703 store_info->redundant_reason = redundant_reason;
1704
1705 /* If this is a clobber, we return 0. We will only be able to
1706 delete this insn if there is only one store USED store, but we
1707 can use the clobber to delete other stores earlier. */
1708 return store_info->is_set ? 1 : 0;
1709 }
1710
1711
1712 static void
1713 dump_insn_info (const char * start, insn_info_t insn_info)
1714 {
1715 fprintf (dump_file, "%s insn=%d %s\n", start,
1716 INSN_UID (insn_info->insn),
1717 insn_info->store_rec ? "has store" : "naked");
1718 }
1719
1720
1721 /* If the modes are different and the value's source and target do not
1722 line up, we need to extract the value from lower part of the rhs of
1723 the store, shift it, and then put it into a form that can be shoved
1724 into the read_insn. This function generates a right SHIFT of a
1725 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1726 shift sequence is returned or NULL if we failed to find a
1727 shift. */
1728
1729 static rtx
1730 find_shift_sequence (int access_size,
1731 store_info_t store_info,
1732 machine_mode read_mode,
1733 int shift, bool speed, bool require_cst)
1734 {
1735 machine_mode store_mode = GET_MODE (store_info->mem);
1736 machine_mode new_mode;
1737 rtx read_reg = NULL;
1738
1739 /* Some machines like the x86 have shift insns for each size of
1740 operand. Other machines like the ppc or the ia-64 may only have
1741 shift insns that shift values within 32 or 64 bit registers.
1742 This loop tries to find the smallest shift insn that will right
1743 justify the value we want to read but is available in one insn on
1744 the machine. */
1745
1746 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1747 MODE_INT);
1748 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1749 new_mode = GET_MODE_WIDER_MODE (new_mode))
1750 {
1751 rtx target, new_reg, new_lhs;
1752 rtx_insn *shift_seq, *insn;
1753 int cost;
1754
1755 /* If a constant was stored into memory, try to simplify it here,
1756 otherwise the cost of the shift might preclude this optimization
1757 e.g. at -Os, even when no actual shift will be needed. */
1758 if (store_info->const_rhs)
1759 {
1760 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1761 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1762 store_mode, byte);
1763 if (ret && CONSTANT_P (ret))
1764 {
1765 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1766 ret, GEN_INT (shift));
1767 if (ret && CONSTANT_P (ret))
1768 {
1769 byte = subreg_lowpart_offset (read_mode, new_mode);
1770 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1771 if (ret && CONSTANT_P (ret)
1772 && set_src_cost (ret, speed) <= COSTS_N_INSNS (1))
1773 return ret;
1774 }
1775 }
1776 }
1777
1778 if (require_cst)
1779 return NULL_RTX;
1780
1781 /* Try a wider mode if truncating the store mode to NEW_MODE
1782 requires a real instruction. */
1783 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1784 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1785 continue;
1786
1787 /* Also try a wider mode if the necessary punning is either not
1788 desirable or not possible. */
1789 if (!CONSTANT_P (store_info->rhs)
1790 && !MODES_TIEABLE_P (new_mode, store_mode))
1791 continue;
1792
1793 new_reg = gen_reg_rtx (new_mode);
1794
1795 start_sequence ();
1796
1797 /* In theory we could also check for an ashr. Ian Taylor knows
1798 of one dsp where the cost of these two was not the same. But
1799 this really is a rare case anyway. */
1800 target = expand_binop (new_mode, lshr_optab, new_reg,
1801 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1802
1803 shift_seq = get_insns ();
1804 end_sequence ();
1805
1806 if (target != new_reg || shift_seq == NULL)
1807 continue;
1808
1809 cost = 0;
1810 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1811 if (INSN_P (insn))
1812 cost += insn_rtx_cost (PATTERN (insn), speed);
1813
1814 /* The computation up to here is essentially independent
1815 of the arguments and could be precomputed. It may
1816 not be worth doing so. We could precompute if
1817 worthwhile or at least cache the results. The result
1818 technically depends on both SHIFT and ACCESS_SIZE,
1819 but in practice the answer will depend only on ACCESS_SIZE. */
1820
1821 if (cost > COSTS_N_INSNS (1))
1822 continue;
1823
1824 new_lhs = extract_low_bits (new_mode, store_mode,
1825 copy_rtx (store_info->rhs));
1826 if (new_lhs == NULL_RTX)
1827 continue;
1828
1829 /* We found an acceptable shift. Generate a move to
1830 take the value from the store and put it into the
1831 shift pseudo, then shift it, then generate another
1832 move to put in into the target of the read. */
1833 emit_move_insn (new_reg, new_lhs);
1834 emit_insn (shift_seq);
1835 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1836 break;
1837 }
1838
1839 return read_reg;
1840 }
1841
1842
1843 /* Call back for note_stores to find the hard regs set or clobbered by
1844 insn. Data is a bitmap of the hardregs set so far. */
1845
1846 static void
1847 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1848 {
1849 bitmap regs_set = (bitmap) data;
1850
1851 if (REG_P (x)
1852 && HARD_REGISTER_P (x))
1853 {
1854 unsigned int regno = REGNO (x);
1855 bitmap_set_range (regs_set, regno,
1856 hard_regno_nregs[regno][GET_MODE (x)]);
1857 }
1858 }
1859
1860 /* Helper function for replace_read and record_store.
1861 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1862 to one before READ_END bytes read in READ_MODE. Return NULL
1863 if not successful. If REQUIRE_CST is true, return always constant. */
1864
1865 static rtx
1866 get_stored_val (store_info_t store_info, machine_mode read_mode,
1867 HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
1868 basic_block bb, bool require_cst)
1869 {
1870 machine_mode store_mode = GET_MODE (store_info->mem);
1871 int shift;
1872 int access_size; /* In bytes. */
1873 rtx read_reg;
1874
1875 /* To get here the read is within the boundaries of the write so
1876 shift will never be negative. Start out with the shift being in
1877 bytes. */
1878 if (store_mode == BLKmode)
1879 shift = 0;
1880 else if (BYTES_BIG_ENDIAN)
1881 shift = store_info->end - read_end;
1882 else
1883 shift = read_begin - store_info->begin;
1884
1885 access_size = shift + GET_MODE_SIZE (read_mode);
1886
1887 /* From now on it is bits. */
1888 shift *= BITS_PER_UNIT;
1889
1890 if (shift)
1891 read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
1892 optimize_bb_for_speed_p (bb),
1893 require_cst);
1894 else if (store_mode == BLKmode)
1895 {
1896 /* The store is a memset (addr, const_val, const_size). */
1897 gcc_assert (CONST_INT_P (store_info->rhs));
1898 store_mode = int_mode_for_mode (read_mode);
1899 if (store_mode == BLKmode)
1900 read_reg = NULL_RTX;
1901 else if (store_info->rhs == const0_rtx)
1902 read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
1903 else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
1904 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1905 read_reg = NULL_RTX;
1906 else
1907 {
1908 unsigned HOST_WIDE_INT c
1909 = INTVAL (store_info->rhs)
1910 & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
1911 int shift = BITS_PER_UNIT;
1912 while (shift < HOST_BITS_PER_WIDE_INT)
1913 {
1914 c |= (c << shift);
1915 shift <<= 1;
1916 }
1917 read_reg = gen_int_mode (c, store_mode);
1918 read_reg = extract_low_bits (read_mode, store_mode, read_reg);
1919 }
1920 }
1921 else if (store_info->const_rhs
1922 && (require_cst
1923 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1924 read_reg = extract_low_bits (read_mode, store_mode,
1925 copy_rtx (store_info->const_rhs));
1926 else
1927 read_reg = extract_low_bits (read_mode, store_mode,
1928 copy_rtx (store_info->rhs));
1929 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1930 read_reg = NULL_RTX;
1931 return read_reg;
1932 }
1933
1934 /* Take a sequence of:
1935 A <- r1
1936 ...
1937 ... <- A
1938
1939 and change it into
1940 r2 <- r1
1941 A <- r1
1942 ...
1943 ... <- r2
1944
1945 or
1946
1947 r3 <- extract (r1)
1948 r3 <- r3 >> shift
1949 r2 <- extract (r3)
1950 ... <- r2
1951
1952 or
1953
1954 r2 <- extract (r1)
1955 ... <- r2
1956
1957 Depending on the alignment and the mode of the store and
1958 subsequent load.
1959
1960
1961 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1962 and READ_INSN are for the read. Return true if the replacement
1963 went ok. */
1964
1965 static bool
1966 replace_read (store_info_t store_info, insn_info_t store_insn,
1967 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1968 bitmap regs_live)
1969 {
1970 machine_mode store_mode = GET_MODE (store_info->mem);
1971 machine_mode read_mode = GET_MODE (read_info->mem);
1972 rtx_insn *insns, *this_insn;
1973 rtx read_reg;
1974 basic_block bb;
1975
1976 if (!dbg_cnt (dse))
1977 return false;
1978
1979 /* Create a sequence of instructions to set up the read register.
1980 This sequence goes immediately before the store and its result
1981 is read by the load.
1982
1983 We need to keep this in perspective. We are replacing a read
1984 with a sequence of insns, but the read will almost certainly be
1985 in cache, so it is not going to be an expensive one. Thus, we
1986 are not willing to do a multi insn shift or worse a subroutine
1987 call to get rid of the read. */
1988 if (dump_file && (dump_flags & TDF_DETAILS))
1989 fprintf (dump_file, "trying to replace %smode load in insn %d"
1990 " from %smode store in insn %d\n",
1991 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1992 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1993 start_sequence ();
1994 bb = BLOCK_FOR_INSN (read_insn->insn);
1995 read_reg = get_stored_val (store_info,
1996 read_mode, read_info->begin, read_info->end,
1997 bb, false);
1998 if (read_reg == NULL_RTX)
1999 {
2000 end_sequence ();
2001 if (dump_file && (dump_flags & TDF_DETAILS))
2002 fprintf (dump_file, " -- could not extract bits of stored value\n");
2003 return false;
2004 }
2005 /* Force the value into a new register so that it won't be clobbered
2006 between the store and the load. */
2007 read_reg = copy_to_mode_reg (read_mode, read_reg);
2008 insns = get_insns ();
2009 end_sequence ();
2010
2011 if (insns != NULL_RTX)
2012 {
2013 /* Now we have to scan the set of new instructions to see if the
2014 sequence contains and sets of hardregs that happened to be
2015 live at this point. For instance, this can happen if one of
2016 the insns sets the CC and the CC happened to be live at that
2017 point. This does occasionally happen, see PR 37922. */
2018 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
2019
2020 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2021 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
2022
2023 bitmap_and_into (regs_set, regs_live);
2024 if (!bitmap_empty_p (regs_set))
2025 {
2026 if (dump_file && (dump_flags & TDF_DETAILS))
2027 {
2028 fprintf (dump_file,
2029 "abandoning replacement because sequence clobbers live hardregs:");
2030 df_print_regset (dump_file, regs_set);
2031 }
2032
2033 BITMAP_FREE (regs_set);
2034 return false;
2035 }
2036 BITMAP_FREE (regs_set);
2037 }
2038
2039 if (validate_change (read_insn->insn, loc, read_reg, 0))
2040 {
2041 deferred_change_t deferred_change =
2042 (deferred_change_t) pool_alloc (deferred_change_pool);
2043
2044 /* Insert this right before the store insn where it will be safe
2045 from later insns that might change it before the read. */
2046 emit_insn_before (insns, store_insn->insn);
2047
2048 /* And now for the kludge part: cselib croaks if you just
2049 return at this point. There are two reasons for this:
2050
2051 1) Cselib has an idea of how many pseudos there are and
2052 that does not include the new ones we just added.
2053
2054 2) Cselib does not know about the move insn we added
2055 above the store_info, and there is no way to tell it
2056 about it, because it has "moved on".
2057
2058 Problem (1) is fixable with a certain amount of engineering.
2059 Problem (2) is requires starting the bb from scratch. This
2060 could be expensive.
2061
2062 So we are just going to have to lie. The move/extraction
2063 insns are not really an issue, cselib did not see them. But
2064 the use of the new pseudo read_insn is a real problem because
2065 cselib has not scanned this insn. The way that we solve this
2066 problem is that we are just going to put the mem back for now
2067 and when we are finished with the block, we undo this. We
2068 keep a table of mems to get rid of. At the end of the basic
2069 block we can put them back. */
2070
2071 *loc = read_info->mem;
2072 deferred_change->next = deferred_change_list;
2073 deferred_change_list = deferred_change;
2074 deferred_change->loc = loc;
2075 deferred_change->reg = read_reg;
2076
2077 /* Get rid of the read_info, from the point of view of the
2078 rest of dse, play like this read never happened. */
2079 read_insn->read_rec = read_info->next;
2080 pool_free (read_info_pool, read_info);
2081 if (dump_file && (dump_flags & TDF_DETAILS))
2082 {
2083 fprintf (dump_file, " -- replaced the loaded MEM with ");
2084 print_simple_rtl (dump_file, read_reg);
2085 fprintf (dump_file, "\n");
2086 }
2087 return true;
2088 }
2089 else
2090 {
2091 if (dump_file && (dump_flags & TDF_DETAILS))
2092 {
2093 fprintf (dump_file, " -- replacing the loaded MEM with ");
2094 print_simple_rtl (dump_file, read_reg);
2095 fprintf (dump_file, " led to an invalid instruction\n");
2096 }
2097 return false;
2098 }
2099 }
2100
2101 /* Check the address of MEM *LOC and kill any appropriate stores that may
2102 be active. */
2103
2104 static void
2105 check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
2106 {
2107 rtx mem = *loc, mem_addr;
2108 insn_info_t insn_info;
2109 HOST_WIDE_INT offset = 0;
2110 HOST_WIDE_INT width = 0;
2111 alias_set_type spill_alias_set = 0;
2112 cselib_val *base = NULL;
2113 int group_id;
2114 read_info_t read_info;
2115
2116 insn_info = bb_info->last_insn;
2117
2118 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2119 || (MEM_VOLATILE_P (mem)))
2120 {
2121 if (dump_file && (dump_flags & TDF_DETAILS))
2122 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2123 add_wild_read (bb_info);
2124 insn_info->cannot_delete = true;
2125 return;
2126 }
2127
2128 /* If it is reading readonly mem, then there can be no conflict with
2129 another write. */
2130 if (MEM_READONLY_P (mem))
2131 return;
2132
2133 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
2134 {
2135 if (dump_file && (dump_flags & TDF_DETAILS))
2136 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2137 add_wild_read (bb_info);
2138 return;
2139 }
2140
2141 if (GET_MODE (mem) == BLKmode)
2142 width = -1;
2143 else
2144 width = GET_MODE_SIZE (GET_MODE (mem));
2145
2146 read_info = (read_info_t) pool_alloc (read_info_pool);
2147 read_info->group_id = group_id;
2148 read_info->mem = mem;
2149 read_info->alias_set = spill_alias_set;
2150 read_info->begin = offset;
2151 read_info->end = offset + width;
2152 read_info->next = insn_info->read_rec;
2153 insn_info->read_rec = read_info;
2154 /* For alias_set != 0 canon_true_dependence should be never called. */
2155 if (spill_alias_set)
2156 mem_addr = NULL_RTX;
2157 else
2158 {
2159 if (group_id < 0)
2160 mem_addr = base->val_rtx;
2161 else
2162 {
2163 group_info_t group
2164 = rtx_group_vec[group_id];
2165 mem_addr = group->canon_base_addr;
2166 }
2167 if (offset)
2168 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2169 }
2170
2171 /* We ignore the clobbers in store_info. The is mildly aggressive,
2172 but there really should not be a clobber followed by a read. */
2173
2174 if (spill_alias_set)
2175 {
2176 insn_info_t i_ptr = active_local_stores;
2177 insn_info_t last = NULL;
2178
2179 if (dump_file && (dump_flags & TDF_DETAILS))
2180 fprintf (dump_file, " processing spill load %d\n",
2181 (int) spill_alias_set);
2182
2183 while (i_ptr)
2184 {
2185 store_info_t store_info = i_ptr->store_rec;
2186
2187 /* Skip the clobbers. */
2188 while (!store_info->is_set)
2189 store_info = store_info->next;
2190
2191 if (store_info->alias_set == spill_alias_set)
2192 {
2193 if (dump_file && (dump_flags & TDF_DETAILS))
2194 dump_insn_info ("removing from active", i_ptr);
2195
2196 active_local_stores_len--;
2197 if (last)
2198 last->next_local_store = i_ptr->next_local_store;
2199 else
2200 active_local_stores = i_ptr->next_local_store;
2201 }
2202 else
2203 last = i_ptr;
2204 i_ptr = i_ptr->next_local_store;
2205 }
2206 }
2207 else if (group_id >= 0)
2208 {
2209 /* This is the restricted case where the base is a constant or
2210 the frame pointer and offset is a constant. */
2211 insn_info_t i_ptr = active_local_stores;
2212 insn_info_t last = NULL;
2213
2214 if (dump_file && (dump_flags & TDF_DETAILS))
2215 {
2216 if (width == -1)
2217 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2218 group_id);
2219 else
2220 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
2221 group_id, (int)offset, (int)(offset+width));
2222 }
2223
2224 while (i_ptr)
2225 {
2226 bool remove = false;
2227 store_info_t store_info = i_ptr->store_rec;
2228
2229 /* Skip the clobbers. */
2230 while (!store_info->is_set)
2231 store_info = store_info->next;
2232
2233 /* There are three cases here. */
2234 if (store_info->group_id < 0)
2235 /* We have a cselib store followed by a read from a
2236 const base. */
2237 remove
2238 = canon_true_dependence (store_info->mem,
2239 GET_MODE (store_info->mem),
2240 store_info->mem_addr,
2241 mem, mem_addr);
2242
2243 else if (group_id == store_info->group_id)
2244 {
2245 /* This is a block mode load. We may get lucky and
2246 canon_true_dependence may save the day. */
2247 if (width == -1)
2248 remove
2249 = canon_true_dependence (store_info->mem,
2250 GET_MODE (store_info->mem),
2251 store_info->mem_addr,
2252 mem, mem_addr);
2253
2254 /* If this read is just reading back something that we just
2255 stored, rewrite the read. */
2256 else
2257 {
2258 if (store_info->rhs
2259 && offset >= store_info->begin
2260 && offset + width <= store_info->end
2261 && all_positions_needed_p (store_info,
2262 offset - store_info->begin,
2263 width)
2264 && replace_read (store_info, i_ptr, read_info,
2265 insn_info, loc, bb_info->regs_live))
2266 return;
2267
2268 /* The bases are the same, just see if the offsets
2269 overlap. */
2270 if ((offset < store_info->end)
2271 && (offset + width > store_info->begin))
2272 remove = true;
2273 }
2274 }
2275
2276 /* else
2277 The else case that is missing here is that the
2278 bases are constant but different. There is nothing
2279 to do here because there is no overlap. */
2280
2281 if (remove)
2282 {
2283 if (dump_file && (dump_flags & TDF_DETAILS))
2284 dump_insn_info ("removing from active", i_ptr);
2285
2286 active_local_stores_len--;
2287 if (last)
2288 last->next_local_store = i_ptr->next_local_store;
2289 else
2290 active_local_stores = i_ptr->next_local_store;
2291 }
2292 else
2293 last = i_ptr;
2294 i_ptr = i_ptr->next_local_store;
2295 }
2296 }
2297 else
2298 {
2299 insn_info_t i_ptr = active_local_stores;
2300 insn_info_t last = NULL;
2301 if (dump_file && (dump_flags & TDF_DETAILS))
2302 {
2303 fprintf (dump_file, " processing cselib load mem:");
2304 print_inline_rtx (dump_file, mem, 0);
2305 fprintf (dump_file, "\n");
2306 }
2307
2308 while (i_ptr)
2309 {
2310 bool remove = false;
2311 store_info_t store_info = i_ptr->store_rec;
2312
2313 if (dump_file && (dump_flags & TDF_DETAILS))
2314 fprintf (dump_file, " processing cselib load against insn %d\n",
2315 INSN_UID (i_ptr->insn));
2316
2317 /* Skip the clobbers. */
2318 while (!store_info->is_set)
2319 store_info = store_info->next;
2320
2321 /* If this read is just reading back something that we just
2322 stored, rewrite the read. */
2323 if (store_info->rhs
2324 && store_info->group_id == -1
2325 && store_info->cse_base == base
2326 && width != -1
2327 && offset >= store_info->begin
2328 && offset + width <= store_info->end
2329 && all_positions_needed_p (store_info,
2330 offset - store_info->begin, width)
2331 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2332 bb_info->regs_live))
2333 return;
2334
2335 if (!store_info->alias_set)
2336 remove = canon_true_dependence (store_info->mem,
2337 GET_MODE (store_info->mem),
2338 store_info->mem_addr,
2339 mem, mem_addr);
2340
2341 if (remove)
2342 {
2343 if (dump_file && (dump_flags & TDF_DETAILS))
2344 dump_insn_info ("removing from active", i_ptr);
2345
2346 active_local_stores_len--;
2347 if (last)
2348 last->next_local_store = i_ptr->next_local_store;
2349 else
2350 active_local_stores = i_ptr->next_local_store;
2351 }
2352 else
2353 last = i_ptr;
2354 i_ptr = i_ptr->next_local_store;
2355 }
2356 }
2357 }
2358
2359 /* A note_uses callback in which DATA points the INSN_INFO for
2360 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2361 true for any part of *LOC. */
2362
2363 static void
2364 check_mem_read_use (rtx *loc, void *data)
2365 {
2366 subrtx_ptr_iterator::array_type array;
2367 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2368 {
2369 rtx *loc = *iter;
2370 if (MEM_P (*loc))
2371 check_mem_read_rtx (loc, (bb_info_t) data);
2372 }
2373 }
2374
2375
2376 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2377 So far it only handles arguments passed in registers. */
2378
2379 static bool
2380 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2381 {
2382 CUMULATIVE_ARGS args_so_far_v;
2383 cumulative_args_t args_so_far;
2384 tree arg;
2385 int idx;
2386
2387 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2388 args_so_far = pack_cumulative_args (&args_so_far_v);
2389
2390 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2391 for (idx = 0;
2392 arg != void_list_node && idx < nargs;
2393 arg = TREE_CHAIN (arg), idx++)
2394 {
2395 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2396 rtx reg, link, tmp;
2397 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2398 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
2399 || GET_MODE_CLASS (mode) != MODE_INT)
2400 return false;
2401
2402 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2403 link;
2404 link = XEXP (link, 1))
2405 if (GET_CODE (XEXP (link, 0)) == USE)
2406 {
2407 args[idx] = XEXP (XEXP (link, 0), 0);
2408 if (REG_P (args[idx])
2409 && REGNO (args[idx]) == REGNO (reg)
2410 && (GET_MODE (args[idx]) == mode
2411 || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
2412 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2413 <= UNITS_PER_WORD)
2414 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2415 > GET_MODE_SIZE (mode)))))
2416 break;
2417 }
2418 if (!link)
2419 return false;
2420
2421 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2422 if (GET_MODE (args[idx]) != mode)
2423 {
2424 if (!tmp || !CONST_INT_P (tmp))
2425 return false;
2426 tmp = gen_int_mode (INTVAL (tmp), mode);
2427 }
2428 if (tmp)
2429 args[idx] = tmp;
2430
2431 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2432 }
2433 if (arg != void_list_node || idx != nargs)
2434 return false;
2435 return true;
2436 }
2437
2438 /* Return a bitmap of the fixed registers contained in IN. */
2439
2440 static bitmap
2441 copy_fixed_regs (const_bitmap in)
2442 {
2443 bitmap ret;
2444
2445 ret = ALLOC_REG_SET (NULL);
2446 bitmap_and (ret, in, fixed_reg_set_regset);
2447 return ret;
2448 }
2449
2450 /* Apply record_store to all candidate stores in INSN. Mark INSN
2451 if some part of it is not a candidate store and assigns to a
2452 non-register target. */
2453
2454 static void
2455 scan_insn (bb_info_t bb_info, rtx_insn *insn)
2456 {
2457 rtx body;
2458 insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
2459 int mems_found = 0;
2460 memset (insn_info, 0, sizeof (struct insn_info));
2461
2462 if (dump_file && (dump_flags & TDF_DETAILS))
2463 fprintf (dump_file, "\n**scanning insn=%d\n",
2464 INSN_UID (insn));
2465
2466 insn_info->prev_insn = bb_info->last_insn;
2467 insn_info->insn = insn;
2468 bb_info->last_insn = insn_info;
2469
2470 if (DEBUG_INSN_P (insn))
2471 {
2472 insn_info->cannot_delete = true;
2473 return;
2474 }
2475
2476 /* Look at all of the uses in the insn. */
2477 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2478
2479 if (CALL_P (insn))
2480 {
2481 bool const_call;
2482 tree memset_call = NULL_TREE;
2483
2484 insn_info->cannot_delete = true;
2485
2486 /* Arguments for a sibling call that are pushed to memory are passed
2487 using the incoming argument pointer of the current function. These
2488 may or may not be frame related depending on the target. Since
2489 argument pointer related stores are not currently tracked, we treat
2490 a sibling call as though it does a wild read. */
2491 if (SIBLING_CALL_P (insn))
2492 {
2493 add_wild_read (bb_info);
2494 return;
2495 }
2496
2497 /* Const functions cannot do anything bad i.e. read memory,
2498 however, they can read their parameters which may have
2499 been pushed onto the stack.
2500 memset and bzero don't read memory either. */
2501 const_call = RTL_CONST_CALL_P (insn);
2502 if (!const_call)
2503 {
2504 rtx call = get_call_rtx_from (insn);
2505 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2506 {
2507 rtx symbol = XEXP (XEXP (call, 0), 0);
2508 if (SYMBOL_REF_DECL (symbol)
2509 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
2510 {
2511 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
2512 == BUILT_IN_NORMAL
2513 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
2514 == BUILT_IN_MEMSET))
2515 || SYMBOL_REF_DECL (symbol) == block_clear_fn)
2516 memset_call = SYMBOL_REF_DECL (symbol);
2517 }
2518 }
2519 }
2520 if (const_call || memset_call)
2521 {
2522 insn_info_t i_ptr = active_local_stores;
2523 insn_info_t last = NULL;
2524
2525 if (dump_file && (dump_flags & TDF_DETAILS))
2526 fprintf (dump_file, "%s call %d\n",
2527 const_call ? "const" : "memset", INSN_UID (insn));
2528
2529 /* See the head comment of the frame_read field. */
2530 if (reload_completed)
2531 insn_info->frame_read = true;
2532
2533 /* Loop over the active stores and remove those which are
2534 killed by the const function call. */
2535 while (i_ptr)
2536 {
2537 bool remove_store = false;
2538
2539 /* The stack pointer based stores are always killed. */
2540 if (i_ptr->stack_pointer_based)
2541 remove_store = true;
2542
2543 /* If the frame is read, the frame related stores are killed. */
2544 else if (insn_info->frame_read)
2545 {
2546 store_info_t store_info = i_ptr->store_rec;
2547
2548 /* Skip the clobbers. */
2549 while (!store_info->is_set)
2550 store_info = store_info->next;
2551
2552 if (store_info->group_id >= 0
2553 && rtx_group_vec[store_info->group_id]->frame_related)
2554 remove_store = true;
2555 }
2556
2557 if (remove_store)
2558 {
2559 if (dump_file && (dump_flags & TDF_DETAILS))
2560 dump_insn_info ("removing from active", i_ptr);
2561
2562 active_local_stores_len--;
2563 if (last)
2564 last->next_local_store = i_ptr->next_local_store;
2565 else
2566 active_local_stores = i_ptr->next_local_store;
2567 }
2568 else
2569 last = i_ptr;
2570
2571 i_ptr = i_ptr->next_local_store;
2572 }
2573
2574 if (memset_call)
2575 {
2576 rtx args[3];
2577 if (get_call_args (insn, memset_call, args, 3)
2578 && CONST_INT_P (args[1])
2579 && CONST_INT_P (args[2])
2580 && INTVAL (args[2]) > 0)
2581 {
2582 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2583 set_mem_size (mem, INTVAL (args[2]));
2584 body = gen_rtx_SET (VOIDmode, mem, args[1]);
2585 mems_found += record_store (body, bb_info);
2586 if (dump_file && (dump_flags & TDF_DETAILS))
2587 fprintf (dump_file, "handling memset as BLKmode store\n");
2588 if (mems_found == 1)
2589 {
2590 if (active_local_stores_len++
2591 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2592 {
2593 active_local_stores_len = 1;
2594 active_local_stores = NULL;
2595 }
2596 insn_info->fixed_regs_live
2597 = copy_fixed_regs (bb_info->regs_live);
2598 insn_info->next_local_store = active_local_stores;
2599 active_local_stores = insn_info;
2600 }
2601 }
2602 }
2603 }
2604
2605 else
2606 /* Every other call, including pure functions, may read any memory
2607 that is not relative to the frame. */
2608 add_non_frame_wild_read (bb_info);
2609
2610 return;
2611 }
2612
2613 /* Assuming that there are sets in these insns, we cannot delete
2614 them. */
2615 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2616 || volatile_refs_p (PATTERN (insn))
2617 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2618 || (RTX_FRAME_RELATED_P (insn))
2619 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2620 insn_info->cannot_delete = true;
2621
2622 body = PATTERN (insn);
2623 if (GET_CODE (body) == PARALLEL)
2624 {
2625 int i;
2626 for (i = 0; i < XVECLEN (body, 0); i++)
2627 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2628 }
2629 else
2630 mems_found += record_store (body, bb_info);
2631
2632 if (dump_file && (dump_flags & TDF_DETAILS))
2633 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2634 mems_found, insn_info->cannot_delete ? "true" : "false");
2635
2636 /* If we found some sets of mems, add it into the active_local_stores so
2637 that it can be locally deleted if found dead or used for
2638 replace_read and redundant constant store elimination. Otherwise mark
2639 it as cannot delete. This simplifies the processing later. */
2640 if (mems_found == 1)
2641 {
2642 if (active_local_stores_len++
2643 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2644 {
2645 active_local_stores_len = 1;
2646 active_local_stores = NULL;
2647 }
2648 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2649 insn_info->next_local_store = active_local_stores;
2650 active_local_stores = insn_info;
2651 }
2652 else
2653 insn_info->cannot_delete = true;
2654 }
2655
2656
2657 /* Remove BASE from the set of active_local_stores. This is a
2658 callback from cselib that is used to get rid of the stores in
2659 active_local_stores. */
2660
2661 static void
2662 remove_useless_values (cselib_val *base)
2663 {
2664 insn_info_t insn_info = active_local_stores;
2665 insn_info_t last = NULL;
2666
2667 while (insn_info)
2668 {
2669 store_info_t store_info = insn_info->store_rec;
2670 bool del = false;
2671
2672 /* If ANY of the store_infos match the cselib group that is
2673 being deleted, then the insn can not be deleted. */
2674 while (store_info)
2675 {
2676 if ((store_info->group_id == -1)
2677 && (store_info->cse_base == base))
2678 {
2679 del = true;
2680 break;
2681 }
2682 store_info = store_info->next;
2683 }
2684
2685 if (del)
2686 {
2687 active_local_stores_len--;
2688 if (last)
2689 last->next_local_store = insn_info->next_local_store;
2690 else
2691 active_local_stores = insn_info->next_local_store;
2692 free_store_info (insn_info);
2693 }
2694 else
2695 last = insn_info;
2696
2697 insn_info = insn_info->next_local_store;
2698 }
2699 }
2700
2701
2702 /* Do all of step 1. */
2703
2704 static void
2705 dse_step1 (void)
2706 {
2707 basic_block bb;
2708 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
2709
2710 cselib_init (0);
2711 all_blocks = BITMAP_ALLOC (NULL);
2712 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2713 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2714
2715 FOR_ALL_BB_FN (bb, cfun)
2716 {
2717 insn_info_t ptr;
2718 bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
2719
2720 memset (bb_info, 0, sizeof (struct dse_bb_info));
2721 bitmap_set_bit (all_blocks, bb->index);
2722 bb_info->regs_live = regs_live;
2723
2724 bitmap_copy (regs_live, DF_LR_IN (bb));
2725 df_simulate_initialize_forwards (bb, regs_live);
2726
2727 bb_table[bb->index] = bb_info;
2728 cselib_discard_hook = remove_useless_values;
2729
2730 if (bb->index >= NUM_FIXED_BLOCKS)
2731 {
2732 rtx_insn *insn;
2733
2734 cse_store_info_pool
2735 = create_alloc_pool ("cse_store_info_pool",
2736 sizeof (struct store_info), 100);
2737 active_local_stores = NULL;
2738 active_local_stores_len = 0;
2739 cselib_clear_table ();
2740
2741 /* Scan the insns. */
2742 FOR_BB_INSNS (bb, insn)
2743 {
2744 if (INSN_P (insn))
2745 scan_insn (bb_info, insn);
2746 cselib_process_insn (insn);
2747 if (INSN_P (insn))
2748 df_simulate_one_insn_forwards (bb, insn, regs_live);
2749 }
2750
2751 /* This is something of a hack, because the global algorithm
2752 is supposed to take care of the case where stores go dead
2753 at the end of the function. However, the global
2754 algorithm must take a more conservative view of block
2755 mode reads than the local alg does. So to get the case
2756 where you have a store to the frame followed by a non
2757 overlapping block more read, we look at the active local
2758 stores at the end of the function and delete all of the
2759 frame and spill based ones. */
2760 if (stores_off_frame_dead_at_return
2761 && (EDGE_COUNT (bb->succs) == 0
2762 || (single_succ_p (bb)
2763 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2764 && ! crtl->calls_eh_return)))
2765 {
2766 insn_info_t i_ptr = active_local_stores;
2767 while (i_ptr)
2768 {
2769 store_info_t store_info = i_ptr->store_rec;
2770
2771 /* Skip the clobbers. */
2772 while (!store_info->is_set)
2773 store_info = store_info->next;
2774 if (store_info->alias_set && !i_ptr->cannot_delete)
2775 delete_dead_store_insn (i_ptr);
2776 else
2777 if (store_info->group_id >= 0)
2778 {
2779 group_info_t group
2780 = rtx_group_vec[store_info->group_id];
2781 if (group->frame_related && !i_ptr->cannot_delete)
2782 delete_dead_store_insn (i_ptr);
2783 }
2784
2785 i_ptr = i_ptr->next_local_store;
2786 }
2787 }
2788
2789 /* Get rid of the loads that were discovered in
2790 replace_read. Cselib is finished with this block. */
2791 while (deferred_change_list)
2792 {
2793 deferred_change_t next = deferred_change_list->next;
2794
2795 /* There is no reason to validate this change. That was
2796 done earlier. */
2797 *deferred_change_list->loc = deferred_change_list->reg;
2798 pool_free (deferred_change_pool, deferred_change_list);
2799 deferred_change_list = next;
2800 }
2801
2802 /* Get rid of all of the cselib based store_infos in this
2803 block and mark the containing insns as not being
2804 deletable. */
2805 ptr = bb_info->last_insn;
2806 while (ptr)
2807 {
2808 if (ptr->contains_cselib_groups)
2809 {
2810 store_info_t s_info = ptr->store_rec;
2811 while (s_info && !s_info->is_set)
2812 s_info = s_info->next;
2813 if (s_info
2814 && s_info->redundant_reason
2815 && s_info->redundant_reason->insn
2816 && !ptr->cannot_delete)
2817 {
2818 if (dump_file && (dump_flags & TDF_DETAILS))
2819 fprintf (dump_file, "Locally deleting insn %d "
2820 "because insn %d stores the "
2821 "same value and couldn't be "
2822 "eliminated\n",
2823 INSN_UID (ptr->insn),
2824 INSN_UID (s_info->redundant_reason->insn));
2825 delete_dead_store_insn (ptr);
2826 }
2827 free_store_info (ptr);
2828 }
2829 else
2830 {
2831 store_info_t s_info;
2832
2833 /* Free at least positions_needed bitmaps. */
2834 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2835 if (s_info->is_large)
2836 {
2837 BITMAP_FREE (s_info->positions_needed.large.bmap);
2838 s_info->is_large = false;
2839 }
2840 }
2841 ptr = ptr->prev_insn;
2842 }
2843
2844 free_alloc_pool (cse_store_info_pool);
2845 }
2846 bb_info->regs_live = NULL;
2847 }
2848
2849 BITMAP_FREE (regs_live);
2850 cselib_finish ();
2851 rtx_group_table->empty ();
2852 }
2853
2854 \f
2855 /*----------------------------------------------------------------------------
2856 Second step.
2857
2858 Assign each byte position in the stores that we are going to
2859 analyze globally to a position in the bitmaps. Returns true if
2860 there are any bit positions assigned.
2861 ----------------------------------------------------------------------------*/
2862
2863 static void
2864 dse_step2_init (void)
2865 {
2866 unsigned int i;
2867 group_info_t group;
2868
2869 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2870 {
2871 /* For all non stack related bases, we only consider a store to
2872 be deletable if there are two or more stores for that
2873 position. This is because it takes one store to make the
2874 other store redundant. However, for the stores that are
2875 stack related, we consider them if there is only one store
2876 for the position. We do this because the stack related
2877 stores can be deleted if their is no read between them and
2878 the end of the function.
2879
2880 To make this work in the current framework, we take the stack
2881 related bases add all of the bits from store1 into store2.
2882 This has the effect of making the eligible even if there is
2883 only one store. */
2884
2885 if (stores_off_frame_dead_at_return && group->frame_related)
2886 {
2887 bitmap_ior_into (group->store2_n, group->store1_n);
2888 bitmap_ior_into (group->store2_p, group->store1_p);
2889 if (dump_file && (dump_flags & TDF_DETAILS))
2890 fprintf (dump_file, "group %d is frame related ", i);
2891 }
2892
2893 group->offset_map_size_n++;
2894 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2895 group->offset_map_size_n);
2896 group->offset_map_size_p++;
2897 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2898 group->offset_map_size_p);
2899 group->process_globally = false;
2900 if (dump_file && (dump_flags & TDF_DETAILS))
2901 {
2902 fprintf (dump_file, "group %d(%d+%d): ", i,
2903 (int)bitmap_count_bits (group->store2_n),
2904 (int)bitmap_count_bits (group->store2_p));
2905 bitmap_print (dump_file, group->store2_n, "n ", " ");
2906 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2907 }
2908 }
2909 }
2910
2911
2912 /* Init the offset tables for the normal case. */
2913
2914 static bool
2915 dse_step2_nospill (void)
2916 {
2917 unsigned int i;
2918 group_info_t group;
2919 /* Position 0 is unused because 0 is used in the maps to mean
2920 unused. */
2921 current_position = 1;
2922 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2923 {
2924 bitmap_iterator bi;
2925 unsigned int j;
2926
2927 if (group == clear_alias_group)
2928 continue;
2929
2930 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2931 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2932 bitmap_clear (group->group_kill);
2933
2934 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2935 {
2936 bitmap_set_bit (group->group_kill, current_position);
2937 if (bitmap_bit_p (group->escaped_n, j))
2938 bitmap_set_bit (kill_on_calls, current_position);
2939 group->offset_map_n[j] = current_position++;
2940 group->process_globally = true;
2941 }
2942 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2943 {
2944 bitmap_set_bit (group->group_kill, current_position);
2945 if (bitmap_bit_p (group->escaped_p, j))
2946 bitmap_set_bit (kill_on_calls, current_position);
2947 group->offset_map_p[j] = current_position++;
2948 group->process_globally = true;
2949 }
2950 }
2951 return current_position != 1;
2952 }
2953
2954
2955 \f
2956 /*----------------------------------------------------------------------------
2957 Third step.
2958
2959 Build the bit vectors for the transfer functions.
2960 ----------------------------------------------------------------------------*/
2961
2962
2963 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2964 there, return 0. */
2965
2966 static int
2967 get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
2968 {
2969 if (offset < 0)
2970 {
2971 HOST_WIDE_INT offset_p = -offset;
2972 if (offset_p >= group_info->offset_map_size_n)
2973 return 0;
2974 return group_info->offset_map_n[offset_p];
2975 }
2976 else
2977 {
2978 if (offset >= group_info->offset_map_size_p)
2979 return 0;
2980 return group_info->offset_map_p[offset];
2981 }
2982 }
2983
2984
2985 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2986 may be NULL. */
2987
2988 static void
2989 scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
2990 {
2991 while (store_info)
2992 {
2993 HOST_WIDE_INT i;
2994 group_info_t group_info
2995 = rtx_group_vec[store_info->group_id];
2996 if (group_info->process_globally)
2997 for (i = store_info->begin; i < store_info->end; i++)
2998 {
2999 int index = get_bitmap_index (group_info, i);
3000 if (index != 0)
3001 {
3002 bitmap_set_bit (gen, index);
3003 if (kill)
3004 bitmap_clear_bit (kill, index);
3005 }
3006 }
3007 store_info = store_info->next;
3008 }
3009 }
3010
3011
3012 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3013 may be NULL. */
3014
3015 static void
3016 scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
3017 {
3018 while (store_info)
3019 {
3020 if (store_info->alias_set)
3021 {
3022 int index = get_bitmap_index (clear_alias_group,
3023 store_info->alias_set);
3024 if (index != 0)
3025 {
3026 bitmap_set_bit (gen, index);
3027 if (kill)
3028 bitmap_clear_bit (kill, index);
3029 }
3030 }
3031 store_info = store_info->next;
3032 }
3033 }
3034
3035
3036 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3037 may be NULL. */
3038
3039 static void
3040 scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
3041 {
3042 read_info_t read_info = insn_info->read_rec;
3043 int i;
3044 group_info_t group;
3045
3046 /* If this insn reads the frame, kill all the frame related stores. */
3047 if (insn_info->frame_read)
3048 {
3049 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3050 if (group->process_globally && group->frame_related)
3051 {
3052 if (kill)
3053 bitmap_ior_into (kill, group->group_kill);
3054 bitmap_and_compl_into (gen, group->group_kill);
3055 }
3056 }
3057 if (insn_info->non_frame_wild_read)
3058 {
3059 /* Kill all non-frame related stores. Kill all stores of variables that
3060 escape. */
3061 if (kill)
3062 bitmap_ior_into (kill, kill_on_calls);
3063 bitmap_and_compl_into (gen, kill_on_calls);
3064 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3065 if (group->process_globally && !group->frame_related)
3066 {
3067 if (kill)
3068 bitmap_ior_into (kill, group->group_kill);
3069 bitmap_and_compl_into (gen, group->group_kill);
3070 }
3071 }
3072 while (read_info)
3073 {
3074 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3075 {
3076 if (group->process_globally)
3077 {
3078 if (i == read_info->group_id)
3079 {
3080 if (read_info->begin > read_info->end)
3081 {
3082 /* Begin > end for block mode reads. */
3083 if (kill)
3084 bitmap_ior_into (kill, group->group_kill);
3085 bitmap_and_compl_into (gen, group->group_kill);
3086 }
3087 else
3088 {
3089 /* The groups are the same, just process the
3090 offsets. */
3091 HOST_WIDE_INT j;
3092 for (j = read_info->begin; j < read_info->end; j++)
3093 {
3094 int index = get_bitmap_index (group, j);
3095 if (index != 0)
3096 {
3097 if (kill)
3098 bitmap_set_bit (kill, index);
3099 bitmap_clear_bit (gen, index);
3100 }
3101 }
3102 }
3103 }
3104 else
3105 {
3106 /* The groups are different, if the alias sets
3107 conflict, clear the entire group. We only need
3108 to apply this test if the read_info is a cselib
3109 read. Anything with a constant base cannot alias
3110 something else with a different constant
3111 base. */
3112 if ((read_info->group_id < 0)
3113 && canon_true_dependence (group->base_mem,
3114 GET_MODE (group->base_mem),
3115 group->canon_base_addr,
3116 read_info->mem, NULL_RTX))
3117 {
3118 if (kill)
3119 bitmap_ior_into (kill, group->group_kill);
3120 bitmap_and_compl_into (gen, group->group_kill);
3121 }
3122 }
3123 }
3124 }
3125
3126 read_info = read_info->next;
3127 }
3128 }
3129
3130 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3131 may be NULL. */
3132
3133 static void
3134 scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
3135 {
3136 while (read_info)
3137 {
3138 if (read_info->alias_set)
3139 {
3140 int index = get_bitmap_index (clear_alias_group,
3141 read_info->alias_set);
3142 if (index != 0)
3143 {
3144 if (kill)
3145 bitmap_set_bit (kill, index);
3146 bitmap_clear_bit (gen, index);
3147 }
3148 }
3149
3150 read_info = read_info->next;
3151 }
3152 }
3153
3154
3155 /* Return the insn in BB_INFO before the first wild read or if there
3156 are no wild reads in the block, return the last insn. */
3157
3158 static insn_info_t
3159 find_insn_before_first_wild_read (bb_info_t bb_info)
3160 {
3161 insn_info_t insn_info = bb_info->last_insn;
3162 insn_info_t last_wild_read = NULL;
3163
3164 while (insn_info)
3165 {
3166 if (insn_info->wild_read)
3167 {
3168 last_wild_read = insn_info->prev_insn;
3169 /* Block starts with wild read. */
3170 if (!last_wild_read)
3171 return NULL;
3172 }
3173
3174 insn_info = insn_info->prev_insn;
3175 }
3176
3177 if (last_wild_read)
3178 return last_wild_read;
3179 else
3180 return bb_info->last_insn;
3181 }
3182
3183
3184 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3185 the block in order to build the gen and kill sets for the block.
3186 We start at ptr which may be the last insn in the block or may be
3187 the first insn with a wild read. In the latter case we are able to
3188 skip the rest of the block because it just does not matter:
3189 anything that happens is hidden by the wild read. */
3190
3191 static void
3192 dse_step3_scan (bool for_spills, basic_block bb)
3193 {
3194 bb_info_t bb_info = bb_table[bb->index];
3195 insn_info_t insn_info;
3196
3197 if (for_spills)
3198 /* There are no wild reads in the spill case. */
3199 insn_info = bb_info->last_insn;
3200 else
3201 insn_info = find_insn_before_first_wild_read (bb_info);
3202
3203 /* In the spill case or in the no_spill case if there is no wild
3204 read in the block, we will need a kill set. */
3205 if (insn_info == bb_info->last_insn)
3206 {
3207 if (bb_info->kill)
3208 bitmap_clear (bb_info->kill);
3209 else
3210 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3211 }
3212 else
3213 if (bb_info->kill)
3214 BITMAP_FREE (bb_info->kill);
3215
3216 while (insn_info)
3217 {
3218 /* There may have been code deleted by the dce pass run before
3219 this phase. */
3220 if (insn_info->insn && INSN_P (insn_info->insn))
3221 {
3222 /* Process the read(s) last. */
3223 if (for_spills)
3224 {
3225 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3226 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
3227 }
3228 else
3229 {
3230 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3231 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
3232 }
3233 }
3234
3235 insn_info = insn_info->prev_insn;
3236 }
3237 }
3238
3239
3240 /* Set the gen set of the exit block, and also any block with no
3241 successors that does not have a wild read. */
3242
3243 static void
3244 dse_step3_exit_block_scan (bb_info_t bb_info)
3245 {
3246 /* The gen set is all 0's for the exit block except for the
3247 frame_pointer_group. */
3248
3249 if (stores_off_frame_dead_at_return)
3250 {
3251 unsigned int i;
3252 group_info_t group;
3253
3254 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3255 {
3256 if (group->process_globally && group->frame_related)
3257 bitmap_ior_into (bb_info->gen, group->group_kill);
3258 }
3259 }
3260 }
3261
3262
3263 /* Find all of the blocks that are not backwards reachable from the
3264 exit block or any block with no successors (BB). These are the
3265 infinite loops or infinite self loops. These blocks will still
3266 have their bits set in UNREACHABLE_BLOCKS. */
3267
3268 static void
3269 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3270 {
3271 edge e;
3272 edge_iterator ei;
3273
3274 if (bitmap_bit_p (unreachable_blocks, bb->index))
3275 {
3276 bitmap_clear_bit (unreachable_blocks, bb->index);
3277 FOR_EACH_EDGE (e, ei, bb->preds)
3278 {
3279 mark_reachable_blocks (unreachable_blocks, e->src);
3280 }
3281 }
3282 }
3283
3284 /* Build the transfer functions for the function. */
3285
3286 static void
3287 dse_step3 (bool for_spills)
3288 {
3289 basic_block bb;
3290 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
3291 sbitmap_iterator sbi;
3292 bitmap all_ones = NULL;
3293 unsigned int i;
3294
3295 bitmap_ones (unreachable_blocks);
3296
3297 FOR_ALL_BB_FN (bb, cfun)
3298 {
3299 bb_info_t bb_info = bb_table[bb->index];
3300 if (bb_info->gen)
3301 bitmap_clear (bb_info->gen);
3302 else
3303 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3304
3305 if (bb->index == ENTRY_BLOCK)
3306 ;
3307 else if (bb->index == EXIT_BLOCK)
3308 dse_step3_exit_block_scan (bb_info);
3309 else
3310 dse_step3_scan (for_spills, bb);
3311 if (EDGE_COUNT (bb->succs) == 0)
3312 mark_reachable_blocks (unreachable_blocks, bb);
3313
3314 /* If this is the second time dataflow is run, delete the old
3315 sets. */
3316 if (bb_info->in)
3317 BITMAP_FREE (bb_info->in);
3318 if (bb_info->out)
3319 BITMAP_FREE (bb_info->out);
3320 }
3321
3322 /* For any block in an infinite loop, we must initialize the out set
3323 to all ones. This could be expensive, but almost never occurs in
3324 practice. However, it is common in regression tests. */
3325 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3326 {
3327 if (bitmap_bit_p (all_blocks, i))
3328 {
3329 bb_info_t bb_info = bb_table[i];
3330 if (!all_ones)
3331 {
3332 unsigned int j;
3333 group_info_t group;
3334
3335 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3336 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3337 bitmap_ior_into (all_ones, group->group_kill);
3338 }
3339 if (!bb_info->out)
3340 {
3341 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3342 bitmap_copy (bb_info->out, all_ones);
3343 }
3344 }
3345 }
3346
3347 if (all_ones)
3348 BITMAP_FREE (all_ones);
3349 sbitmap_free (unreachable_blocks);
3350 }
3351
3352
3353 \f
3354 /*----------------------------------------------------------------------------
3355 Fourth step.
3356
3357 Solve the bitvector equations.
3358 ----------------------------------------------------------------------------*/
3359
3360
3361 /* Confluence function for blocks with no successors. Create an out
3362 set from the gen set of the exit block. This block logically has
3363 the exit block as a successor. */
3364
3365
3366
3367 static void
3368 dse_confluence_0 (basic_block bb)
3369 {
3370 bb_info_t bb_info = bb_table[bb->index];
3371
3372 if (bb->index == EXIT_BLOCK)
3373 return;
3374
3375 if (!bb_info->out)
3376 {
3377 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3378 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3379 }
3380 }
3381
3382 /* Propagate the information from the in set of the dest of E to the
3383 out set of the src of E. If the various in or out sets are not
3384 there, that means they are all ones. */
3385
3386 static bool
3387 dse_confluence_n (edge e)
3388 {
3389 bb_info_t src_info = bb_table[e->src->index];
3390 bb_info_t dest_info = bb_table[e->dest->index];
3391
3392 if (dest_info->in)
3393 {
3394 if (src_info->out)
3395 bitmap_and_into (src_info->out, dest_info->in);
3396 else
3397 {
3398 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3399 bitmap_copy (src_info->out, dest_info->in);
3400 }
3401 }
3402 return true;
3403 }
3404
3405
3406 /* Propagate the info from the out to the in set of BB_INDEX's basic
3407 block. There are three cases:
3408
3409 1) The block has no kill set. In this case the kill set is all
3410 ones. It does not matter what the out set of the block is, none of
3411 the info can reach the top. The only thing that reaches the top is
3412 the gen set and we just copy the set.
3413
3414 2) There is a kill set but no out set and bb has successors. In
3415 this case we just return. Eventually an out set will be created and
3416 it is better to wait than to create a set of ones.
3417
3418 3) There is both a kill and out set. We apply the obvious transfer
3419 function.
3420 */
3421
3422 static bool
3423 dse_transfer_function (int bb_index)
3424 {
3425 bb_info_t bb_info = bb_table[bb_index];
3426
3427 if (bb_info->kill)
3428 {
3429 if (bb_info->out)
3430 {
3431 /* Case 3 above. */
3432 if (bb_info->in)
3433 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3434 bb_info->out, bb_info->kill);
3435 else
3436 {
3437 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3438 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3439 bb_info->out, bb_info->kill);
3440 return true;
3441 }
3442 }
3443 else
3444 /* Case 2 above. */
3445 return false;
3446 }
3447 else
3448 {
3449 /* Case 1 above. If there is already an in set, nothing
3450 happens. */
3451 if (bb_info->in)
3452 return false;
3453 else
3454 {
3455 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3456 bitmap_copy (bb_info->in, bb_info->gen);
3457 return true;
3458 }
3459 }
3460 }
3461
3462 /* Solve the dataflow equations. */
3463
3464 static void
3465 dse_step4 (void)
3466 {
3467 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3468 dse_confluence_n, dse_transfer_function,
3469 all_blocks, df_get_postorder (DF_BACKWARD),
3470 df_get_n_blocks (DF_BACKWARD));
3471 if (dump_file && (dump_flags & TDF_DETAILS))
3472 {
3473 basic_block bb;
3474
3475 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3476 FOR_ALL_BB_FN (bb, cfun)
3477 {
3478 bb_info_t bb_info = bb_table[bb->index];
3479
3480 df_print_bb_index (bb, dump_file);
3481 if (bb_info->in)
3482 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3483 else
3484 fprintf (dump_file, " in: *MISSING*\n");
3485 if (bb_info->gen)
3486 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3487 else
3488 fprintf (dump_file, " gen: *MISSING*\n");
3489 if (bb_info->kill)
3490 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3491 else
3492 fprintf (dump_file, " kill: *MISSING*\n");
3493 if (bb_info->out)
3494 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3495 else
3496 fprintf (dump_file, " out: *MISSING*\n\n");
3497 }
3498 }
3499 }
3500
3501
3502 \f
3503 /*----------------------------------------------------------------------------
3504 Fifth step.
3505
3506 Delete the stores that can only be deleted using the global information.
3507 ----------------------------------------------------------------------------*/
3508
3509
3510 static void
3511 dse_step5_nospill (void)
3512 {
3513 basic_block bb;
3514 FOR_EACH_BB_FN (bb, cfun)
3515 {
3516 bb_info_t bb_info = bb_table[bb->index];
3517 insn_info_t insn_info = bb_info->last_insn;
3518 bitmap v = bb_info->out;
3519
3520 while (insn_info)
3521 {
3522 bool deleted = false;
3523 if (dump_file && insn_info->insn)
3524 {
3525 fprintf (dump_file, "starting to process insn %d\n",
3526 INSN_UID (insn_info->insn));
3527 bitmap_print (dump_file, v, " v: ", "\n");
3528 }
3529
3530 /* There may have been code deleted by the dce pass run before
3531 this phase. */
3532 if (insn_info->insn
3533 && INSN_P (insn_info->insn)
3534 && (!insn_info->cannot_delete)
3535 && (!bitmap_empty_p (v)))
3536 {
3537 store_info_t store_info = insn_info->store_rec;
3538
3539 /* Try to delete the current insn. */
3540 deleted = true;
3541
3542 /* Skip the clobbers. */
3543 while (!store_info->is_set)
3544 store_info = store_info->next;
3545
3546 if (store_info->alias_set)
3547 deleted = false;
3548 else
3549 {
3550 HOST_WIDE_INT i;
3551 group_info_t group_info
3552 = rtx_group_vec[store_info->group_id];
3553
3554 for (i = store_info->begin; i < store_info->end; i++)
3555 {
3556 int index = get_bitmap_index (group_info, i);
3557
3558 if (dump_file && (dump_flags & TDF_DETAILS))
3559 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3560 if (index == 0 || !bitmap_bit_p (v, index))
3561 {
3562 if (dump_file && (dump_flags & TDF_DETAILS))
3563 fprintf (dump_file, "failing at i = %d\n", (int)i);
3564 deleted = false;
3565 break;
3566 }
3567 }
3568 }
3569 if (deleted)
3570 {
3571 if (dbg_cnt (dse)
3572 && check_for_inc_dec_1 (insn_info))
3573 {
3574 delete_insn (insn_info->insn);
3575 insn_info->insn = NULL;
3576 globally_deleted++;
3577 }
3578 }
3579 }
3580 /* We do want to process the local info if the insn was
3581 deleted. For instance, if the insn did a wild read, we
3582 no longer need to trash the info. */
3583 if (insn_info->insn
3584 && INSN_P (insn_info->insn)
3585 && (!deleted))
3586 {
3587 scan_stores_nospill (insn_info->store_rec, v, NULL);
3588 if (insn_info->wild_read)
3589 {
3590 if (dump_file && (dump_flags & TDF_DETAILS))
3591 fprintf (dump_file, "wild read\n");
3592 bitmap_clear (v);
3593 }
3594 else if (insn_info->read_rec
3595 || insn_info->non_frame_wild_read)
3596 {
3597 if (dump_file && !insn_info->non_frame_wild_read)
3598 fprintf (dump_file, "regular read\n");
3599 else if (dump_file && (dump_flags & TDF_DETAILS))
3600 fprintf (dump_file, "non-frame wild read\n");
3601 scan_reads_nospill (insn_info, v, NULL);
3602 }
3603 }
3604
3605 insn_info = insn_info->prev_insn;
3606 }
3607 }
3608 }
3609
3610
3611 \f
3612 /*----------------------------------------------------------------------------
3613 Sixth step.
3614
3615 Delete stores made redundant by earlier stores (which store the same
3616 value) that couldn't be eliminated.
3617 ----------------------------------------------------------------------------*/
3618
3619 static void
3620 dse_step6 (void)
3621 {
3622 basic_block bb;
3623
3624 FOR_ALL_BB_FN (bb, cfun)
3625 {
3626 bb_info_t bb_info = bb_table[bb->index];
3627 insn_info_t insn_info = bb_info->last_insn;
3628
3629 while (insn_info)
3630 {
3631 /* There may have been code deleted by the dce pass run before
3632 this phase. */
3633 if (insn_info->insn
3634 && INSN_P (insn_info->insn)
3635 && !insn_info->cannot_delete)
3636 {
3637 store_info_t s_info = insn_info->store_rec;
3638
3639 while (s_info && !s_info->is_set)
3640 s_info = s_info->next;
3641 if (s_info
3642 && s_info->redundant_reason
3643 && s_info->redundant_reason->insn
3644 && INSN_P (s_info->redundant_reason->insn))
3645 {
3646 rtx_insn *rinsn = s_info->redundant_reason->insn;
3647 if (dump_file && (dump_flags & TDF_DETAILS))
3648 fprintf (dump_file, "Locally deleting insn %d "
3649 "because insn %d stores the "
3650 "same value and couldn't be "
3651 "eliminated\n",
3652 INSN_UID (insn_info->insn),
3653 INSN_UID (rinsn));
3654 delete_dead_store_insn (insn_info);
3655 }
3656 }
3657 insn_info = insn_info->prev_insn;
3658 }
3659 }
3660 }
3661 \f
3662 /*----------------------------------------------------------------------------
3663 Seventh step.
3664
3665 Destroy everything left standing.
3666 ----------------------------------------------------------------------------*/
3667
3668 static void
3669 dse_step7 (void)
3670 {
3671 bitmap_obstack_release (&dse_bitmap_obstack);
3672 obstack_free (&dse_obstack, NULL);
3673
3674 end_alias_analysis ();
3675 free (bb_table);
3676 delete rtx_group_table;
3677 rtx_group_table = NULL;
3678 rtx_group_vec.release ();
3679 BITMAP_FREE (all_blocks);
3680 BITMAP_FREE (scratch);
3681
3682 free_alloc_pool (rtx_store_info_pool);
3683 free_alloc_pool (read_info_pool);
3684 free_alloc_pool (insn_info_pool);
3685 free_alloc_pool (bb_info_pool);
3686 free_alloc_pool (rtx_group_info_pool);
3687 free_alloc_pool (deferred_change_pool);
3688 }
3689
3690
3691 /* -------------------------------------------------------------------------
3692 DSE
3693 ------------------------------------------------------------------------- */
3694
3695 /* Callback for running pass_rtl_dse. */
3696
3697 static unsigned int
3698 rest_of_handle_dse (void)
3699 {
3700 df_set_flags (DF_DEFER_INSN_RESCAN);
3701
3702 /* Need the notes since we must track live hardregs in the forwards
3703 direction. */
3704 df_note_add_problem ();
3705 df_analyze ();
3706
3707 dse_step0 ();
3708 dse_step1 ();
3709 dse_step2_init ();
3710 if (dse_step2_nospill ())
3711 {
3712 df_set_flags (DF_LR_RUN_DCE);
3713 df_analyze ();
3714 if (dump_file && (dump_flags & TDF_DETAILS))
3715 fprintf (dump_file, "doing global processing\n");
3716 dse_step3 (false);
3717 dse_step4 ();
3718 dse_step5_nospill ();
3719 }
3720
3721 dse_step6 ();
3722 dse_step7 ();
3723
3724 if (dump_file)
3725 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3726 locally_deleted, globally_deleted, spill_deleted);
3727 return 0;
3728 }
3729
3730 namespace {
3731
3732 const pass_data pass_data_rtl_dse1 =
3733 {
3734 RTL_PASS, /* type */
3735 "dse1", /* name */
3736 OPTGROUP_NONE, /* optinfo_flags */
3737 TV_DSE1, /* tv_id */
3738 0, /* properties_required */
3739 0, /* properties_provided */
3740 0, /* properties_destroyed */
3741 0, /* todo_flags_start */
3742 TODO_df_finish, /* todo_flags_finish */
3743 };
3744
3745 class pass_rtl_dse1 : public rtl_opt_pass
3746 {
3747 public:
3748 pass_rtl_dse1 (gcc::context *ctxt)
3749 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3750 {}
3751
3752 /* opt_pass methods: */
3753 virtual bool gate (function *)
3754 {
3755 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3756 }
3757
3758 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3759
3760 }; // class pass_rtl_dse1
3761
3762 } // anon namespace
3763
3764 rtl_opt_pass *
3765 make_pass_rtl_dse1 (gcc::context *ctxt)
3766 {
3767 return new pass_rtl_dse1 (ctxt);
3768 }
3769
3770 namespace {
3771
3772 const pass_data pass_data_rtl_dse2 =
3773 {
3774 RTL_PASS, /* type */
3775 "dse2", /* name */
3776 OPTGROUP_NONE, /* optinfo_flags */
3777 TV_DSE2, /* tv_id */
3778 0, /* properties_required */
3779 0, /* properties_provided */
3780 0, /* properties_destroyed */
3781 0, /* todo_flags_start */
3782 TODO_df_finish, /* todo_flags_finish */
3783 };
3784
3785 class pass_rtl_dse2 : public rtl_opt_pass
3786 {
3787 public:
3788 pass_rtl_dse2 (gcc::context *ctxt)
3789 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3790 {}
3791
3792 /* opt_pass methods: */
3793 virtual bool gate (function *)
3794 {
3795 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3796 }
3797
3798 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3799
3800 }; // class pass_rtl_dse2
3801
3802 } // anon namespace
3803
3804 rtl_opt_pass *
3805 make_pass_rtl_dse2 (gcc::context *ctxt)
3806 {
3807 return new pass_rtl_dse2 (ctxt);
3808 }