]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dse.c
remove more useless typedefs
[thirdparty/gcc.git] / gcc / dse.c
1 /* RTL dead store elimination.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #undef BASELINE
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "predict.h"
30 #include "tree.h"
31 #include "gimple.h"
32 #include "rtl.h"
33 #include "df.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "tm_p.h"
38 #include "regs.h"
39 #include "regset.h"
40 #include "flags.h"
41 #include "cfgrtl.h"
42 #include "cselib.h"
43 #include "tree-pass.h"
44 #include "alloc-pool.h"
45 #include "insn-config.h"
46 #include "expmed.h"
47 #include "dojump.h"
48 #include "explow.h"
49 #include "calls.h"
50 #include "emit-rtl.h"
51 #include "varasm.h"
52 #include "stmt.h"
53 #include "expr.h"
54 #include "recog.h"
55 #include "insn-codes.h"
56 #include "optabs.h"
57 #include "dbgcnt.h"
58 #include "target.h"
59 #include "params.h"
60 #include "internal-fn.h"
61 #include "gimple-ssa.h"
62 #include "rtl-iter.h"
63 #include "cfgcleanup.h"
64
65 /* This file contains three techniques for performing Dead Store
66 Elimination (dse).
67
68 * The first technique performs dse locally on any base address. It
69 is based on the cselib which is a local value numbering technique.
70 This technique is local to a basic block but deals with a fairly
71 general addresses.
72
73 * The second technique performs dse globally but is restricted to
74 base addresses that are either constant or are relative to the
75 frame_pointer.
76
77 * The third technique, (which is only done after register allocation)
78 processes the spill slots. This differs from the second
79 technique because it takes advantage of the fact that spilling is
80 completely free from the effects of aliasing.
81
82 Logically, dse is a backwards dataflow problem. A store can be
83 deleted if it if cannot be reached in the backward direction by any
84 use of the value being stored. However, the local technique uses a
85 forwards scan of the basic block because cselib requires that the
86 block be processed in that order.
87
88 The pass is logically broken into 7 steps:
89
90 0) Initialization.
91
92 1) The local algorithm, as well as scanning the insns for the two
93 global algorithms.
94
95 2) Analysis to see if the global algs are necessary. In the case
96 of stores base on a constant address, there must be at least two
97 stores to that address, to make it possible to delete some of the
98 stores. In the case of stores off of the frame or spill related
99 stores, only one store to an address is necessary because those
100 stores die at the end of the function.
101
102 3) Set up the global dataflow equations based on processing the
103 info parsed in the first step.
104
105 4) Solve the dataflow equations.
106
107 5) Delete the insns that the global analysis has indicated are
108 unnecessary.
109
110 6) Delete insns that store the same value as preceding store
111 where the earlier store couldn't be eliminated.
112
113 7) Cleanup.
114
115 This step uses cselib and canon_rtx to build the largest expression
116 possible for each address. This pass is a forwards pass through
117 each basic block. From the point of view of the global technique,
118 the first pass could examine a block in either direction. The
119 forwards ordering is to accommodate cselib.
120
121 We make a simplifying assumption: addresses fall into four broad
122 categories:
123
124 1) base has rtx_varies_p == false, offset is constant.
125 2) base has rtx_varies_p == false, offset variable.
126 3) base has rtx_varies_p == true, offset constant.
127 4) base has rtx_varies_p == true, offset variable.
128
129 The local passes are able to process all 4 kinds of addresses. The
130 global pass only handles 1).
131
132 The global problem is formulated as follows:
133
134 A store, S1, to address A, where A is not relative to the stack
135 frame, can be eliminated if all paths from S1 to the end of the
136 function contain another store to A before a read to A.
137
138 If the address A is relative to the stack frame, a store S2 to A
139 can be eliminated if there are no paths from S2 that reach the
140 end of the function that read A before another store to A. In
141 this case S2 can be deleted if there are paths from S2 to the
142 end of the function that have no reads or writes to A. This
143 second case allows stores to the stack frame to be deleted that
144 would otherwise die when the function returns. This cannot be
145 done if stores_off_frame_dead_at_return is not true. See the doc
146 for that variable for when this variable is false.
147
148 The global problem is formulated as a backwards set union
149 dataflow problem where the stores are the gens and reads are the
150 kills. Set union problems are rare and require some special
151 handling given our representation of bitmaps. A straightforward
152 implementation requires a lot of bitmaps filled with 1s.
153 These are expensive and cumbersome in our bitmap formulation so
154 care has been taken to avoid large vectors filled with 1s. See
155 the comments in bb_info and in the dataflow confluence functions
156 for details.
157
158 There are two places for further enhancements to this algorithm:
159
160 1) The original dse which was embedded in a pass called flow also
161 did local address forwarding. For example in
162
163 A <- r100
164 ... <- A
165
166 flow would replace the right hand side of the second insn with a
167 reference to r100. Most of the information is available to add this
168 to this pass. It has not done it because it is a lot of work in
169 the case that either r100 is assigned to between the first and
170 second insn and/or the second insn is a load of part of the value
171 stored by the first insn.
172
173 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
174 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
175 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
176 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
177
178 2) The cleaning up of spill code is quite profitable. It currently
179 depends on reading tea leaves and chicken entrails left by reload.
180 This pass depends on reload creating a singleton alias set for each
181 spill slot and telling the next dse pass which of these alias sets
182 are the singletons. Rather than analyze the addresses of the
183 spills, dse's spill processing just does analysis of the loads and
184 stores that use those alias sets. There are three cases where this
185 falls short:
186
187 a) Reload sometimes creates the slot for one mode of access, and
188 then inserts loads and/or stores for a smaller mode. In this
189 case, the current code just punts on the slot. The proper thing
190 to do is to back out and use one bit vector position for each
191 byte of the entity associated with the slot. This depends on
192 KNOWING that reload always generates the accesses for each of the
193 bytes in some canonical (read that easy to understand several
194 passes after reload happens) way.
195
196 b) Reload sometimes decides that spill slot it allocated was not
197 large enough for the mode and goes back and allocates more slots
198 with the same mode and alias set. The backout in this case is a
199 little more graceful than (a). In this case the slot is unmarked
200 as being a spill slot and if final address comes out to be based
201 off the frame pointer, the global algorithm handles this slot.
202
203 c) For any pass that may prespill, there is currently no
204 mechanism to tell the dse pass that the slot being used has the
205 special properties that reload uses. It may be that all that is
206 required is to have those passes make the same calls that reload
207 does, assuming that the alias sets can be manipulated in the same
208 way. */
209
210 /* There are limits to the size of constant offsets we model for the
211 global problem. There are certainly test cases, that exceed this
212 limit, however, it is unlikely that there are important programs
213 that really have constant offsets this size. */
214 #define MAX_OFFSET (64 * 1024)
215
216 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
217 on the default obstack because these bitmaps can grow quite large
218 (~2GB for the small (!) test case of PR54146) and we'll hold on to
219 all that memory until the end of the compiler run.
220 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
221 releasing the whole obstack. */
222 static bitmap_obstack dse_bitmap_obstack;
223
224 /* Obstack for other data. As for above: Kinda nice to be able to
225 throw it all away at the end in one big sweep. */
226 static struct obstack dse_obstack;
227
228 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
229 static bitmap scratch = NULL;
230
231 struct insn_info_type;
232
233 /* This structure holds information about a candidate store. */
234 struct store_info
235 {
236
237 /* False means this is a clobber. */
238 bool is_set;
239
240 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
241 bool is_large;
242
243 /* The id of the mem group of the base address. If rtx_varies_p is
244 true, this is -1. Otherwise, it is the index into the group
245 table. */
246 int group_id;
247
248 /* This is the cselib value. */
249 cselib_val *cse_base;
250
251 /* This canonized mem. */
252 rtx mem;
253
254 /* Canonized MEM address for use by canon_true_dependence. */
255 rtx mem_addr;
256
257 /* If this is non-zero, it is the alias set of a spill location. */
258 alias_set_type alias_set;
259
260 /* The offset of the first and byte before the last byte associated
261 with the operation. */
262 HOST_WIDE_INT begin, end;
263
264 union
265 {
266 /* A bitmask as wide as the number of bytes in the word that
267 contains a 1 if the byte may be needed. The store is unused if
268 all of the bits are 0. This is used if IS_LARGE is false. */
269 unsigned HOST_WIDE_INT small_bitmask;
270
271 struct
272 {
273 /* A bitmap with one bit per byte. Cleared bit means the position
274 is needed. Used if IS_LARGE is false. */
275 bitmap bmap;
276
277 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
278 equal to END - BEGIN, the whole store is unused. */
279 int count;
280 } large;
281 } positions_needed;
282
283 /* The next store info for this insn. */
284 struct store_info *next;
285
286 /* The right hand side of the store. This is used if there is a
287 subsequent reload of the mems address somewhere later in the
288 basic block. */
289 rtx rhs;
290
291 /* If rhs is or holds a constant, this contains that constant,
292 otherwise NULL. */
293 rtx const_rhs;
294
295 /* Set if this store stores the same constant value as REDUNDANT_REASON
296 insn stored. These aren't eliminated early, because doing that
297 might prevent the earlier larger store to be eliminated. */
298 struct insn_info_type *redundant_reason;
299 };
300
301 /* Return a bitmask with the first N low bits set. */
302
303 static unsigned HOST_WIDE_INT
304 lowpart_bitmask (int n)
305 {
306 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
307 return mask >> (HOST_BITS_PER_WIDE_INT - n);
308 }
309
310 typedef struct store_info *store_info_t;
311 static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool",
312 100);
313
314 static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool",
315 100);
316
317 /* This structure holds information about a load. These are only
318 built for rtx bases. */
319 struct read_info_type
320 {
321 /* The id of the mem group of the base address. */
322 int group_id;
323
324 /* If this is non-zero, it is the alias set of a spill location. */
325 alias_set_type alias_set;
326
327 /* The offset of the first and byte after the last byte associated
328 with the operation. If begin == end == 0, the read did not have
329 a constant offset. */
330 int begin, end;
331
332 /* The mem being read. */
333 rtx mem;
334
335 /* The next read_info for this insn. */
336 struct read_info_type *next;
337 };
338 typedef struct read_info_type *read_info_t;
339
340 static object_allocator<read_info_type> read_info_type_pool
341 ("read_info_pool", 100);
342
343 /* One of these records is created for each insn. */
344
345 struct insn_info_type
346 {
347 /* Set true if the insn contains a store but the insn itself cannot
348 be deleted. This is set if the insn is a parallel and there is
349 more than one non dead output or if the insn is in some way
350 volatile. */
351 bool cannot_delete;
352
353 /* This field is only used by the global algorithm. It is set true
354 if the insn contains any read of mem except for a (1). This is
355 also set if the insn is a call or has a clobber mem. If the insn
356 contains a wild read, the use_rec will be null. */
357 bool wild_read;
358
359 /* This is true only for CALL instructions which could potentially read
360 any non-frame memory location. This field is used by the global
361 algorithm. */
362 bool non_frame_wild_read;
363
364 /* This field is only used for the processing of const functions.
365 These functions cannot read memory, but they can read the stack
366 because that is where they may get their parms. We need to be
367 this conservative because, like the store motion pass, we don't
368 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
369 Moreover, we need to distinguish two cases:
370 1. Before reload (register elimination), the stores related to
371 outgoing arguments are stack pointer based and thus deemed
372 of non-constant base in this pass. This requires special
373 handling but also means that the frame pointer based stores
374 need not be killed upon encountering a const function call.
375 2. After reload, the stores related to outgoing arguments can be
376 either stack pointer or hard frame pointer based. This means
377 that we have no other choice than also killing all the frame
378 pointer based stores upon encountering a const function call.
379 This field is set after reload for const function calls and before
380 reload for const tail function calls on targets where arg pointer
381 is the frame pointer. Having this set is less severe than a wild
382 read, it just means that all the frame related stores are killed
383 rather than all the stores. */
384 bool frame_read;
385
386 /* This field is only used for the processing of const functions.
387 It is set if the insn may contain a stack pointer based store. */
388 bool stack_pointer_based;
389
390 /* This is true if any of the sets within the store contains a
391 cselib base. Such stores can only be deleted by the local
392 algorithm. */
393 bool contains_cselib_groups;
394
395 /* The insn. */
396 rtx_insn *insn;
397
398 /* The list of mem sets or mem clobbers that are contained in this
399 insn. If the insn is deletable, it contains only one mem set.
400 But it could also contain clobbers. Insns that contain more than
401 one mem set are not deletable, but each of those mems are here in
402 order to provide info to delete other insns. */
403 store_info_t store_rec;
404
405 /* The linked list of mem uses in this insn. Only the reads from
406 rtx bases are listed here. The reads to cselib bases are
407 completely processed during the first scan and so are never
408 created. */
409 read_info_t read_rec;
410
411 /* The live fixed registers. We assume only fixed registers can
412 cause trouble by being clobbered from an expanded pattern;
413 storing only the live fixed registers (rather than all registers)
414 means less memory needs to be allocated / copied for the individual
415 stores. */
416 regset fixed_regs_live;
417
418 /* The prev insn in the basic block. */
419 struct insn_info_type * prev_insn;
420
421 /* The linked list of insns that are in consideration for removal in
422 the forwards pass through the basic block. This pointer may be
423 trash as it is not cleared when a wild read occurs. The only
424 time it is guaranteed to be correct is when the traversal starts
425 at active_local_stores. */
426 struct insn_info_type * next_local_store;
427 };
428 typedef struct insn_info_type *insn_info_t;
429
430 static object_allocator<insn_info_type> insn_info_type_pool
431 ("insn_info_pool", 100);
432
433 /* The linked list of stores that are under consideration in this
434 basic block. */
435 static insn_info_t active_local_stores;
436 static int active_local_stores_len;
437
438 struct dse_bb_info_type
439 {
440 /* Pointer to the insn info for the last insn in the block. These
441 are linked so this is how all of the insns are reached. During
442 scanning this is the current insn being scanned. */
443 insn_info_t last_insn;
444
445 /* The info for the global dataflow problem. */
446
447
448 /* This is set if the transfer function should and in the wild_read
449 bitmap before applying the kill and gen sets. That vector knocks
450 out most of the bits in the bitmap and thus speeds up the
451 operations. */
452 bool apply_wild_read;
453
454 /* The following 4 bitvectors hold information about which positions
455 of which stores are live or dead. They are indexed by
456 get_bitmap_index. */
457
458 /* The set of store positions that exist in this block before a wild read. */
459 bitmap gen;
460
461 /* The set of load positions that exist in this block above the
462 same position of a store. */
463 bitmap kill;
464
465 /* The set of stores that reach the top of the block without being
466 killed by a read.
467
468 Do not represent the in if it is all ones. Note that this is
469 what the bitvector should logically be initialized to for a set
470 intersection problem. However, like the kill set, this is too
471 expensive. So initially, the in set will only be created for the
472 exit block and any block that contains a wild read. */
473 bitmap in;
474
475 /* The set of stores that reach the bottom of the block from it's
476 successors.
477
478 Do not represent the in if it is all ones. Note that this is
479 what the bitvector should logically be initialized to for a set
480 intersection problem. However, like the kill and in set, this is
481 too expensive. So what is done is that the confluence operator
482 just initializes the vector from one of the out sets of the
483 successors of the block. */
484 bitmap out;
485
486 /* The following bitvector is indexed by the reg number. It
487 contains the set of regs that are live at the current instruction
488 being processed. While it contains info for all of the
489 registers, only the hard registers are actually examined. It is used
490 to assure that shift and/or add sequences that are inserted do not
491 accidentally clobber live hard regs. */
492 bitmap regs_live;
493 };
494
495 typedef struct dse_bb_info_type *bb_info_t;
496
497 static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
498 ("bb_info_pool", 100);
499
500 /* Table to hold all bb_infos. */
501 static bb_info_t *bb_table;
502
503 /* There is a group_info for each rtx base that is used to reference
504 memory. There are also not many of the rtx bases because they are
505 very limited in scope. */
506
507 struct group_info
508 {
509 /* The actual base of the address. */
510 rtx rtx_base;
511
512 /* The sequential id of the base. This allows us to have a
513 canonical ordering of these that is not based on addresses. */
514 int id;
515
516 /* True if there are any positions that are to be processed
517 globally. */
518 bool process_globally;
519
520 /* True if the base of this group is either the frame_pointer or
521 hard_frame_pointer. */
522 bool frame_related;
523
524 /* A mem wrapped around the base pointer for the group in order to do
525 read dependency. It must be given BLKmode in order to encompass all
526 the possible offsets from the base. */
527 rtx base_mem;
528
529 /* Canonized version of base_mem's address. */
530 rtx canon_base_addr;
531
532 /* These two sets of two bitmaps are used to keep track of how many
533 stores are actually referencing that position from this base. We
534 only do this for rtx bases as this will be used to assign
535 positions in the bitmaps for the global problem. Bit N is set in
536 store1 on the first store for offset N. Bit N is set in store2
537 for the second store to offset N. This is all we need since we
538 only care about offsets that have two or more stores for them.
539
540 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
541 for 0 and greater offsets.
542
543 There is one special case here, for stores into the stack frame,
544 we will or store1 into store2 before deciding which stores look
545 at globally. This is because stores to the stack frame that have
546 no other reads before the end of the function can also be
547 deleted. */
548 bitmap store1_n, store1_p, store2_n, store2_p;
549
550 /* These bitmaps keep track of offsets in this group escape this function.
551 An offset escapes if it corresponds to a named variable whose
552 addressable flag is set. */
553 bitmap escaped_n, escaped_p;
554
555 /* The positions in this bitmap have the same assignments as the in,
556 out, gen and kill bitmaps. This bitmap is all zeros except for
557 the positions that are occupied by stores for this group. */
558 bitmap group_kill;
559
560 /* The offset_map is used to map the offsets from this base into
561 positions in the global bitmaps. It is only created after all of
562 the all of stores have been scanned and we know which ones we
563 care about. */
564 int *offset_map_n, *offset_map_p;
565 int offset_map_size_n, offset_map_size_p;
566 };
567 typedef struct group_info *group_info_t;
568 typedef const struct group_info *const_group_info_t;
569
570 static object_allocator<group_info> group_info_pool
571 ("rtx_group_info_pool", 100);
572
573 /* Index into the rtx_group_vec. */
574 static int rtx_group_next_id;
575
576
577 static vec<group_info_t> rtx_group_vec;
578
579
580 /* This structure holds the set of changes that are being deferred
581 when removing read operation. See replace_read. */
582 struct deferred_change
583 {
584
585 /* The mem that is being replaced. */
586 rtx *loc;
587
588 /* The reg it is being replaced with. */
589 rtx reg;
590
591 struct deferred_change *next;
592 };
593
594 typedef struct deferred_change *deferred_change_t;
595
596 static object_allocator<deferred_change> deferred_change_pool
597 ("deferred_change_pool", 10);
598
599 static deferred_change_t deferred_change_list = NULL;
600
601 /* The group that holds all of the clear_alias_sets. */
602 static group_info_t clear_alias_group;
603
604 /* The modes of the clear_alias_sets. */
605 static htab_t clear_alias_mode_table;
606
607 /* Hash table element to look up the mode for an alias set. */
608 struct clear_alias_mode_holder
609 {
610 alias_set_type alias_set;
611 machine_mode mode;
612 };
613
614 /* This is true except if cfun->stdarg -- i.e. we cannot do
615 this for vararg functions because they play games with the frame. */
616 static bool stores_off_frame_dead_at_return;
617
618 /* Counter for stats. */
619 static int globally_deleted;
620 static int locally_deleted;
621 static int spill_deleted;
622
623 static bitmap all_blocks;
624
625 /* Locations that are killed by calls in the global phase. */
626 static bitmap kill_on_calls;
627
628 /* The number of bits used in the global bitmaps. */
629 static unsigned int current_position;
630 \f
631 /*----------------------------------------------------------------------------
632 Zeroth step.
633
634 Initialization.
635 ----------------------------------------------------------------------------*/
636
637
638 /* Find the entry associated with ALIAS_SET. */
639
640 static struct clear_alias_mode_holder *
641 clear_alias_set_lookup (alias_set_type alias_set)
642 {
643 struct clear_alias_mode_holder tmp_holder;
644 void **slot;
645
646 tmp_holder.alias_set = alias_set;
647 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
648 gcc_assert (*slot);
649
650 return (struct clear_alias_mode_holder *) *slot;
651 }
652
653
654 /* Hashtable callbacks for maintaining the "bases" field of
655 store_group_info, given that the addresses are function invariants. */
656
657 struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
658 {
659 static inline hashval_t hash (const group_info *);
660 static inline bool equal (const group_info *, const group_info *);
661 };
662
663 inline bool
664 invariant_group_base_hasher::equal (const group_info *gi1,
665 const group_info *gi2)
666 {
667 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
668 }
669
670 inline hashval_t
671 invariant_group_base_hasher::hash (const group_info *gi)
672 {
673 int do_not_record;
674 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
675 }
676
677 /* Tables of group_info structures, hashed by base value. */
678 static hash_table<invariant_group_base_hasher> *rtx_group_table;
679
680
681 /* Get the GROUP for BASE. Add a new group if it is not there. */
682
683 static group_info_t
684 get_group_info (rtx base)
685 {
686 struct group_info tmp_gi;
687 group_info_t gi;
688 group_info **slot;
689
690 if (base)
691 {
692 /* Find the store_base_info structure for BASE, creating a new one
693 if necessary. */
694 tmp_gi.rtx_base = base;
695 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
696 gi = (group_info_t) *slot;
697 }
698 else
699 {
700 if (!clear_alias_group)
701 {
702 clear_alias_group = gi = group_info_pool.allocate ();
703 memset (gi, 0, sizeof (struct group_info));
704 gi->id = rtx_group_next_id++;
705 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
706 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
707 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
708 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
709 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
710 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
711 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
712 gi->process_globally = false;
713 gi->offset_map_size_n = 0;
714 gi->offset_map_size_p = 0;
715 gi->offset_map_n = NULL;
716 gi->offset_map_p = NULL;
717 rtx_group_vec.safe_push (gi);
718 }
719 return clear_alias_group;
720 }
721
722 if (gi == NULL)
723 {
724 *slot = gi = group_info_pool.allocate ();
725 gi->rtx_base = base;
726 gi->id = rtx_group_next_id++;
727 gi->base_mem = gen_rtx_MEM (BLKmode, base);
728 gi->canon_base_addr = canon_rtx (base);
729 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
730 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
731 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
732 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
733 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
734 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
735 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
736 gi->process_globally = false;
737 gi->frame_related =
738 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
739 gi->offset_map_size_n = 0;
740 gi->offset_map_size_p = 0;
741 gi->offset_map_n = NULL;
742 gi->offset_map_p = NULL;
743 rtx_group_vec.safe_push (gi);
744 }
745
746 return gi;
747 }
748
749
750 /* Initialization of data structures. */
751
752 static void
753 dse_step0 (void)
754 {
755 locally_deleted = 0;
756 globally_deleted = 0;
757 spill_deleted = 0;
758
759 bitmap_obstack_initialize (&dse_bitmap_obstack);
760 gcc_obstack_init (&dse_obstack);
761
762 scratch = BITMAP_ALLOC (&reg_obstack);
763 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
764
765
766 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
767
768 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
769 rtx_group_next_id = 0;
770
771 stores_off_frame_dead_at_return = !cfun->stdarg;
772
773 init_alias_analysis ();
774
775 clear_alias_group = NULL;
776 }
777
778
779 \f
780 /*----------------------------------------------------------------------------
781 First step.
782
783 Scan all of the insns. Any random ordering of the blocks is fine.
784 Each block is scanned in forward order to accommodate cselib which
785 is used to remove stores with non-constant bases.
786 ----------------------------------------------------------------------------*/
787
788 /* Delete all of the store_info recs from INSN_INFO. */
789
790 static void
791 free_store_info (insn_info_t insn_info)
792 {
793 store_info_t store_info = insn_info->store_rec;
794 while (store_info)
795 {
796 store_info_t next = store_info->next;
797 if (store_info->is_large)
798 BITMAP_FREE (store_info->positions_needed.large.bmap);
799 if (store_info->cse_base)
800 cse_store_info_pool.remove (store_info);
801 else
802 rtx_store_info_pool.remove (store_info);
803 store_info = next;
804 }
805
806 insn_info->cannot_delete = true;
807 insn_info->contains_cselib_groups = false;
808 insn_info->store_rec = NULL;
809 }
810
811 struct note_add_store_info
812 {
813 rtx_insn *first, *current;
814 regset fixed_regs_live;
815 bool failure;
816 };
817
818 /* Callback for emit_inc_dec_insn_before via note_stores.
819 Check if a register is clobbered which is live afterwards. */
820
821 static void
822 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
823 {
824 rtx_insn *insn;
825 note_add_store_info *info = (note_add_store_info *) data;
826
827 if (!REG_P (loc))
828 return;
829
830 /* If this register is referenced by the current or an earlier insn,
831 that's OK. E.g. this applies to the register that is being incremented
832 with this addition. */
833 for (insn = info->first;
834 insn != NEXT_INSN (info->current);
835 insn = NEXT_INSN (insn))
836 if (reg_referenced_p (loc, PATTERN (insn)))
837 return;
838
839 /* If we come here, we have a clobber of a register that's only OK
840 if that register is not live. If we don't have liveness information
841 available, fail now. */
842 if (!info->fixed_regs_live)
843 {
844 info->failure = true;
845 return;
846 }
847 /* Now check if this is a live fixed register. */
848 unsigned int end_regno = END_REGNO (loc);
849 for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
850 if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
851 info->failure = true;
852 }
853
854 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
855 SRC + SRCOFF before insn ARG. */
856
857 static int
858 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
859 rtx op ATTRIBUTE_UNUSED,
860 rtx dest, rtx src, rtx srcoff, void *arg)
861 {
862 insn_info_t insn_info = (insn_info_t) arg;
863 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
864 note_add_store_info info;
865
866 /* We can reuse all operands without copying, because we are about
867 to delete the insn that contained it. */
868 if (srcoff)
869 {
870 start_sequence ();
871 emit_insn (gen_add3_insn (dest, src, srcoff));
872 new_insn = get_insns ();
873 end_sequence ();
874 }
875 else
876 new_insn = gen_move_insn (dest, src);
877 info.first = new_insn;
878 info.fixed_regs_live = insn_info->fixed_regs_live;
879 info.failure = false;
880 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
881 {
882 info.current = cur;
883 note_stores (PATTERN (cur), note_add_store, &info);
884 }
885
886 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
887 return it immediately, communicating the failure to its caller. */
888 if (info.failure)
889 return 1;
890
891 emit_insn_before (new_insn, insn);
892
893 return 0;
894 }
895
896 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
897 is there, is split into a separate insn.
898 Return true on success (or if there was nothing to do), false on failure. */
899
900 static bool
901 check_for_inc_dec_1 (insn_info_t insn_info)
902 {
903 rtx_insn *insn = insn_info->insn;
904 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
905 if (note)
906 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
907 insn_info) == 0;
908 return true;
909 }
910
911
912 /* Entry point for postreload. If you work on reload_cse, or you need this
913 anywhere else, consider if you can provide register liveness information
914 and add a parameter to this function so that it can be passed down in
915 insn_info.fixed_regs_live. */
916 bool
917 check_for_inc_dec (rtx_insn *insn)
918 {
919 insn_info_type insn_info;
920 rtx note;
921
922 insn_info.insn = insn;
923 insn_info.fixed_regs_live = NULL;
924 note = find_reg_note (insn, REG_INC, NULL_RTX);
925 if (note)
926 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
927 &insn_info) == 0;
928 return true;
929 }
930
931 /* Delete the insn and free all of the fields inside INSN_INFO. */
932
933 static void
934 delete_dead_store_insn (insn_info_t insn_info)
935 {
936 read_info_t read_info;
937
938 if (!dbg_cnt (dse))
939 return;
940
941 if (!check_for_inc_dec_1 (insn_info))
942 return;
943 if (dump_file && (dump_flags & TDF_DETAILS))
944 {
945 fprintf (dump_file, "Locally deleting insn %d ",
946 INSN_UID (insn_info->insn));
947 if (insn_info->store_rec->alias_set)
948 fprintf (dump_file, "alias set %d\n",
949 (int) insn_info->store_rec->alias_set);
950 else
951 fprintf (dump_file, "\n");
952 }
953
954 free_store_info (insn_info);
955 read_info = insn_info->read_rec;
956
957 while (read_info)
958 {
959 read_info_t next = read_info->next;
960 read_info_type_pool.remove (read_info);
961 read_info = next;
962 }
963 insn_info->read_rec = NULL;
964
965 delete_insn (insn_info->insn);
966 locally_deleted++;
967 insn_info->insn = NULL;
968
969 insn_info->wild_read = false;
970 }
971
972 /* Return whether DECL, a local variable, can possibly escape the current
973 function scope. */
974
975 static bool
976 local_variable_can_escape (tree decl)
977 {
978 if (TREE_ADDRESSABLE (decl))
979 return true;
980
981 /* If this is a partitioned variable, we need to consider all the variables
982 in the partition. This is necessary because a store into one of them can
983 be replaced with a store into another and this may not change the outcome
984 of the escape analysis. */
985 if (cfun->gimple_df->decls_to_pointers != NULL)
986 {
987 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
988 if (namep)
989 return TREE_ADDRESSABLE (*namep);
990 }
991
992 return false;
993 }
994
995 /* Return whether EXPR can possibly escape the current function scope. */
996
997 static bool
998 can_escape (tree expr)
999 {
1000 tree base;
1001 if (!expr)
1002 return true;
1003 base = get_base_address (expr);
1004 if (DECL_P (base)
1005 && !may_be_aliased (base)
1006 && !(TREE_CODE (base) == VAR_DECL
1007 && !DECL_EXTERNAL (base)
1008 && !TREE_STATIC (base)
1009 && local_variable_can_escape (base)))
1010 return false;
1011 return true;
1012 }
1013
1014 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
1015 OFFSET and WIDTH. */
1016
1017 static void
1018 set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width,
1019 tree expr)
1020 {
1021 HOST_WIDE_INT i;
1022 bool expr_escapes = can_escape (expr);
1023 if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
1024 for (i=offset; i<offset+width; i++)
1025 {
1026 bitmap store1;
1027 bitmap store2;
1028 bitmap escaped;
1029 int ai;
1030 if (i < 0)
1031 {
1032 store1 = group->store1_n;
1033 store2 = group->store2_n;
1034 escaped = group->escaped_n;
1035 ai = -i;
1036 }
1037 else
1038 {
1039 store1 = group->store1_p;
1040 store2 = group->store2_p;
1041 escaped = group->escaped_p;
1042 ai = i;
1043 }
1044
1045 if (!bitmap_set_bit (store1, ai))
1046 bitmap_set_bit (store2, ai);
1047 else
1048 {
1049 if (i < 0)
1050 {
1051 if (group->offset_map_size_n < ai)
1052 group->offset_map_size_n = ai;
1053 }
1054 else
1055 {
1056 if (group->offset_map_size_p < ai)
1057 group->offset_map_size_p = ai;
1058 }
1059 }
1060 if (expr_escapes)
1061 bitmap_set_bit (escaped, ai);
1062 }
1063 }
1064
1065 static void
1066 reset_active_stores (void)
1067 {
1068 active_local_stores = NULL;
1069 active_local_stores_len = 0;
1070 }
1071
1072 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1073
1074 static void
1075 free_read_records (bb_info_t bb_info)
1076 {
1077 insn_info_t insn_info = bb_info->last_insn;
1078 read_info_t *ptr = &insn_info->read_rec;
1079 while (*ptr)
1080 {
1081 read_info_t next = (*ptr)->next;
1082 if ((*ptr)->alias_set == 0)
1083 {
1084 read_info_type_pool.remove (*ptr);
1085 *ptr = next;
1086 }
1087 else
1088 ptr = &(*ptr)->next;
1089 }
1090 }
1091
1092 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1093
1094 static void
1095 add_wild_read (bb_info_t bb_info)
1096 {
1097 insn_info_t insn_info = bb_info->last_insn;
1098 insn_info->wild_read = true;
1099 free_read_records (bb_info);
1100 reset_active_stores ();
1101 }
1102
1103 /* Set the BB_INFO so that the last insn is marked as a wild read of
1104 non-frame locations. */
1105
1106 static void
1107 add_non_frame_wild_read (bb_info_t bb_info)
1108 {
1109 insn_info_t insn_info = bb_info->last_insn;
1110 insn_info->non_frame_wild_read = true;
1111 free_read_records (bb_info);
1112 reset_active_stores ();
1113 }
1114
1115 /* Return true if X is a constant or one of the registers that behave
1116 as a constant over the life of a function. This is equivalent to
1117 !rtx_varies_p for memory addresses. */
1118
1119 static bool
1120 const_or_frame_p (rtx x)
1121 {
1122 if (CONSTANT_P (x))
1123 return true;
1124
1125 if (GET_CODE (x) == REG)
1126 {
1127 /* Note that we have to test for the actual rtx used for the frame
1128 and arg pointers and not just the register number in case we have
1129 eliminated the frame and/or arg pointer and are using it
1130 for pseudos. */
1131 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1132 /* The arg pointer varies if it is not a fixed register. */
1133 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1134 || x == pic_offset_table_rtx)
1135 return true;
1136 return false;
1137 }
1138
1139 return false;
1140 }
1141
1142 /* Take all reasonable action to put the address of MEM into the form
1143 that we can do analysis on.
1144
1145 The gold standard is to get the address into the form: address +
1146 OFFSET where address is something that rtx_varies_p considers a
1147 constant. When we can get the address in this form, we can do
1148 global analysis on it. Note that for constant bases, address is
1149 not actually returned, only the group_id. The address can be
1150 obtained from that.
1151
1152 If that fails, we try cselib to get a value we can at least use
1153 locally. If that fails we return false.
1154
1155 The GROUP_ID is set to -1 for cselib bases and the index of the
1156 group for non_varying bases.
1157
1158 FOR_READ is true if this is a mem read and false if not. */
1159
1160 static bool
1161 canon_address (rtx mem,
1162 alias_set_type *alias_set_out,
1163 int *group_id,
1164 HOST_WIDE_INT *offset,
1165 cselib_val **base)
1166 {
1167 machine_mode address_mode = get_address_mode (mem);
1168 rtx mem_address = XEXP (mem, 0);
1169 rtx expanded_address, address;
1170 int expanded;
1171
1172 *alias_set_out = 0;
1173
1174 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1175
1176 if (dump_file && (dump_flags & TDF_DETAILS))
1177 {
1178 fprintf (dump_file, " mem: ");
1179 print_inline_rtx (dump_file, mem_address, 0);
1180 fprintf (dump_file, "\n");
1181 }
1182
1183 /* First see if just canon_rtx (mem_address) is const or frame,
1184 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1185 address = NULL_RTX;
1186 for (expanded = 0; expanded < 2; expanded++)
1187 {
1188 if (expanded)
1189 {
1190 /* Use cselib to replace all of the reg references with the full
1191 expression. This will take care of the case where we have
1192
1193 r_x = base + offset;
1194 val = *r_x;
1195
1196 by making it into
1197
1198 val = *(base + offset); */
1199
1200 expanded_address = cselib_expand_value_rtx (mem_address,
1201 scratch, 5);
1202
1203 /* If this fails, just go with the address from first
1204 iteration. */
1205 if (!expanded_address)
1206 break;
1207 }
1208 else
1209 expanded_address = mem_address;
1210
1211 /* Split the address into canonical BASE + OFFSET terms. */
1212 address = canon_rtx (expanded_address);
1213
1214 *offset = 0;
1215
1216 if (dump_file && (dump_flags & TDF_DETAILS))
1217 {
1218 if (expanded)
1219 {
1220 fprintf (dump_file, "\n after cselib_expand address: ");
1221 print_inline_rtx (dump_file, expanded_address, 0);
1222 fprintf (dump_file, "\n");
1223 }
1224
1225 fprintf (dump_file, "\n after canon_rtx address: ");
1226 print_inline_rtx (dump_file, address, 0);
1227 fprintf (dump_file, "\n");
1228 }
1229
1230 if (GET_CODE (address) == CONST)
1231 address = XEXP (address, 0);
1232
1233 if (GET_CODE (address) == PLUS
1234 && CONST_INT_P (XEXP (address, 1)))
1235 {
1236 *offset = INTVAL (XEXP (address, 1));
1237 address = XEXP (address, 0);
1238 }
1239
1240 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1241 && const_or_frame_p (address))
1242 {
1243 group_info_t group = get_group_info (address);
1244
1245 if (dump_file && (dump_flags & TDF_DETAILS))
1246 fprintf (dump_file, " gid=%d offset=%d \n",
1247 group->id, (int)*offset);
1248 *base = NULL;
1249 *group_id = group->id;
1250 return true;
1251 }
1252 }
1253
1254 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1255 *group_id = -1;
1256
1257 if (*base == NULL)
1258 {
1259 if (dump_file && (dump_flags & TDF_DETAILS))
1260 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1261 return false;
1262 }
1263 if (dump_file && (dump_flags & TDF_DETAILS))
1264 fprintf (dump_file, " varying cselib base=%u:%u offset = %d\n",
1265 (*base)->uid, (*base)->hash, (int)*offset);
1266 return true;
1267 }
1268
1269
1270 /* Clear the rhs field from the active_local_stores array. */
1271
1272 static void
1273 clear_rhs_from_active_local_stores (void)
1274 {
1275 insn_info_t ptr = active_local_stores;
1276
1277 while (ptr)
1278 {
1279 store_info_t store_info = ptr->store_rec;
1280 /* Skip the clobbers. */
1281 while (!store_info->is_set)
1282 store_info = store_info->next;
1283
1284 store_info->rhs = NULL;
1285 store_info->const_rhs = NULL;
1286
1287 ptr = ptr->next_local_store;
1288 }
1289 }
1290
1291
1292 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1293
1294 static inline void
1295 set_position_unneeded (store_info_t s_info, int pos)
1296 {
1297 if (__builtin_expect (s_info->is_large, false))
1298 {
1299 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1300 s_info->positions_needed.large.count++;
1301 }
1302 else
1303 s_info->positions_needed.small_bitmask
1304 &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
1305 }
1306
1307 /* Mark the whole store S_INFO as unneeded. */
1308
1309 static inline void
1310 set_all_positions_unneeded (store_info_t s_info)
1311 {
1312 if (__builtin_expect (s_info->is_large, false))
1313 {
1314 int pos, end = s_info->end - s_info->begin;
1315 for (pos = 0; pos < end; pos++)
1316 bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1317 s_info->positions_needed.large.count = end;
1318 }
1319 else
1320 s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
1321 }
1322
1323 /* Return TRUE if any bytes from S_INFO store are needed. */
1324
1325 static inline bool
1326 any_positions_needed_p (store_info_t s_info)
1327 {
1328 if (__builtin_expect (s_info->is_large, false))
1329 return (s_info->positions_needed.large.count
1330 < s_info->end - s_info->begin);
1331 else
1332 return (s_info->positions_needed.small_bitmask
1333 != (unsigned HOST_WIDE_INT) 0);
1334 }
1335
1336 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1337 store are needed. */
1338
1339 static inline bool
1340 all_positions_needed_p (store_info_t s_info, int start, int width)
1341 {
1342 if (__builtin_expect (s_info->is_large, false))
1343 {
1344 int end = start + width;
1345 while (start < end)
1346 if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1347 return false;
1348 return true;
1349 }
1350 else
1351 {
1352 unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
1353 return (s_info->positions_needed.small_bitmask & mask) == mask;
1354 }
1355 }
1356
1357
1358 static rtx get_stored_val (store_info_t, machine_mode, HOST_WIDE_INT,
1359 HOST_WIDE_INT, basic_block, bool);
1360
1361
1362 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1363 there is a candidate store, after adding it to the appropriate
1364 local store group if so. */
1365
1366 static int
1367 record_store (rtx body, bb_info_t bb_info)
1368 {
1369 rtx mem, rhs, const_rhs, mem_addr;
1370 HOST_WIDE_INT offset = 0;
1371 HOST_WIDE_INT width = 0;
1372 alias_set_type spill_alias_set;
1373 insn_info_t insn_info = bb_info->last_insn;
1374 store_info_t store_info = NULL;
1375 int group_id;
1376 cselib_val *base = NULL;
1377 insn_info_t ptr, last, redundant_reason;
1378 bool store_is_unused;
1379
1380 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1381 return 0;
1382
1383 mem = SET_DEST (body);
1384
1385 /* If this is not used, then this cannot be used to keep the insn
1386 from being deleted. On the other hand, it does provide something
1387 that can be used to prove that another store is dead. */
1388 store_is_unused
1389 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1390
1391 /* Check whether that value is a suitable memory location. */
1392 if (!MEM_P (mem))
1393 {
1394 /* If the set or clobber is unused, then it does not effect our
1395 ability to get rid of the entire insn. */
1396 if (!store_is_unused)
1397 insn_info->cannot_delete = true;
1398 return 0;
1399 }
1400
1401 /* At this point we know mem is a mem. */
1402 if (GET_MODE (mem) == BLKmode)
1403 {
1404 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1405 {
1406 if (dump_file && (dump_flags & TDF_DETAILS))
1407 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1408 add_wild_read (bb_info);
1409 insn_info->cannot_delete = true;
1410 return 0;
1411 }
1412 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1413 as memset (addr, 0, 36); */
1414 else if (!MEM_SIZE_KNOWN_P (mem)
1415 || MEM_SIZE (mem) <= 0
1416 || MEM_SIZE (mem) > MAX_OFFSET
1417 || GET_CODE (body) != SET
1418 || !CONST_INT_P (SET_SRC (body)))
1419 {
1420 if (!store_is_unused)
1421 {
1422 /* If the set or clobber is unused, then it does not effect our
1423 ability to get rid of the entire insn. */
1424 insn_info->cannot_delete = true;
1425 clear_rhs_from_active_local_stores ();
1426 }
1427 return 0;
1428 }
1429 }
1430
1431 /* We can still process a volatile mem, we just cannot delete it. */
1432 if (MEM_VOLATILE_P (mem))
1433 insn_info->cannot_delete = true;
1434
1435 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1436 {
1437 clear_rhs_from_active_local_stores ();
1438 return 0;
1439 }
1440
1441 if (GET_MODE (mem) == BLKmode)
1442 width = MEM_SIZE (mem);
1443 else
1444 width = GET_MODE_SIZE (GET_MODE (mem));
1445
1446 if (spill_alias_set)
1447 {
1448 bitmap store1 = clear_alias_group->store1_p;
1449 bitmap store2 = clear_alias_group->store2_p;
1450
1451 gcc_assert (GET_MODE (mem) != BLKmode);
1452
1453 if (!bitmap_set_bit (store1, spill_alias_set))
1454 bitmap_set_bit (store2, spill_alias_set);
1455
1456 if (clear_alias_group->offset_map_size_p < spill_alias_set)
1457 clear_alias_group->offset_map_size_p = spill_alias_set;
1458
1459 store_info = rtx_store_info_pool.allocate ();
1460
1461 if (dump_file && (dump_flags & TDF_DETAILS))
1462 fprintf (dump_file, " processing spill store %d(%s)\n",
1463 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1464 }
1465 else if (group_id >= 0)
1466 {
1467 /* In the restrictive case where the base is a constant or the
1468 frame pointer we can do global analysis. */
1469
1470 group_info_t group
1471 = rtx_group_vec[group_id];
1472 tree expr = MEM_EXPR (mem);
1473
1474 store_info = rtx_store_info_pool.allocate ();
1475 set_usage_bits (group, offset, width, expr);
1476
1477 if (dump_file && (dump_flags & TDF_DETAILS))
1478 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1479 group_id, (int)offset, (int)(offset+width));
1480 }
1481 else
1482 {
1483 if (may_be_sp_based_p (XEXP (mem, 0)))
1484 insn_info->stack_pointer_based = true;
1485 insn_info->contains_cselib_groups = true;
1486
1487 store_info = cse_store_info_pool.allocate ();
1488 group_id = -1;
1489
1490 if (dump_file && (dump_flags & TDF_DETAILS))
1491 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1492 (int)offset, (int)(offset+width));
1493 }
1494
1495 const_rhs = rhs = NULL_RTX;
1496 if (GET_CODE (body) == SET
1497 /* No place to keep the value after ra. */
1498 && !reload_completed
1499 && (REG_P (SET_SRC (body))
1500 || GET_CODE (SET_SRC (body)) == SUBREG
1501 || CONSTANT_P (SET_SRC (body)))
1502 && !MEM_VOLATILE_P (mem)
1503 /* Sometimes the store and reload is used for truncation and
1504 rounding. */
1505 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1506 {
1507 rhs = SET_SRC (body);
1508 if (CONSTANT_P (rhs))
1509 const_rhs = rhs;
1510 else if (body == PATTERN (insn_info->insn))
1511 {
1512 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1513 if (tem && CONSTANT_P (XEXP (tem, 0)))
1514 const_rhs = XEXP (tem, 0);
1515 }
1516 if (const_rhs == NULL_RTX && REG_P (rhs))
1517 {
1518 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1519
1520 if (tem && CONSTANT_P (tem))
1521 const_rhs = tem;
1522 }
1523 }
1524
1525 /* Check to see if this stores causes some other stores to be
1526 dead. */
1527 ptr = active_local_stores;
1528 last = NULL;
1529 redundant_reason = NULL;
1530 mem = canon_rtx (mem);
1531 /* For alias_set != 0 canon_true_dependence should be never called. */
1532 if (spill_alias_set)
1533 mem_addr = NULL_RTX;
1534 else
1535 {
1536 if (group_id < 0)
1537 mem_addr = base->val_rtx;
1538 else
1539 {
1540 group_info_t group
1541 = rtx_group_vec[group_id];
1542 mem_addr = group->canon_base_addr;
1543 }
1544 /* get_addr can only handle VALUE but cannot handle expr like:
1545 VALUE + OFFSET, so call get_addr to get original addr for
1546 mem_addr before plus_constant. */
1547 mem_addr = get_addr (mem_addr);
1548 if (offset)
1549 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1550 }
1551
1552 while (ptr)
1553 {
1554 insn_info_t next = ptr->next_local_store;
1555 store_info_t s_info = ptr->store_rec;
1556 bool del = true;
1557
1558 /* Skip the clobbers. We delete the active insn if this insn
1559 shadows the set. To have been put on the active list, it
1560 has exactly on set. */
1561 while (!s_info->is_set)
1562 s_info = s_info->next;
1563
1564 if (s_info->alias_set != spill_alias_set)
1565 del = false;
1566 else if (s_info->alias_set)
1567 {
1568 struct clear_alias_mode_holder *entry
1569 = clear_alias_set_lookup (s_info->alias_set);
1570 /* Generally, spills cannot be processed if and of the
1571 references to the slot have a different mode. But if
1572 we are in the same block and mode is exactly the same
1573 between this store and one before in the same block,
1574 we can still delete it. */
1575 if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1576 && (GET_MODE (mem) == entry->mode))
1577 {
1578 del = true;
1579 set_all_positions_unneeded (s_info);
1580 }
1581 if (dump_file && (dump_flags & TDF_DETAILS))
1582 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
1583 INSN_UID (ptr->insn), (int) s_info->alias_set);
1584 }
1585 else if ((s_info->group_id == group_id)
1586 && (s_info->cse_base == base))
1587 {
1588 HOST_WIDE_INT i;
1589 if (dump_file && (dump_flags & TDF_DETAILS))
1590 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
1591 INSN_UID (ptr->insn), s_info->group_id,
1592 (int)s_info->begin, (int)s_info->end);
1593
1594 /* Even if PTR won't be eliminated as unneeded, if both
1595 PTR and this insn store the same constant value, we might
1596 eliminate this insn instead. */
1597 if (s_info->const_rhs
1598 && const_rhs
1599 && offset >= s_info->begin
1600 && offset + width <= s_info->end
1601 && all_positions_needed_p (s_info, offset - s_info->begin,
1602 width))
1603 {
1604 if (GET_MODE (mem) == BLKmode)
1605 {
1606 if (GET_MODE (s_info->mem) == BLKmode
1607 && s_info->const_rhs == const_rhs)
1608 redundant_reason = ptr;
1609 }
1610 else if (s_info->const_rhs == const0_rtx
1611 && const_rhs == const0_rtx)
1612 redundant_reason = ptr;
1613 else
1614 {
1615 rtx val;
1616 start_sequence ();
1617 val = get_stored_val (s_info, GET_MODE (mem),
1618 offset, offset + width,
1619 BLOCK_FOR_INSN (insn_info->insn),
1620 true);
1621 if (get_insns () != NULL)
1622 val = NULL_RTX;
1623 end_sequence ();
1624 if (val && rtx_equal_p (val, const_rhs))
1625 redundant_reason = ptr;
1626 }
1627 }
1628
1629 for (i = MAX (offset, s_info->begin);
1630 i < offset + width && i < s_info->end;
1631 i++)
1632 set_position_unneeded (s_info, i - s_info->begin);
1633 }
1634 else if (s_info->rhs)
1635 /* Need to see if it is possible for this store to overwrite
1636 the value of store_info. If it is, set the rhs to NULL to
1637 keep it from being used to remove a load. */
1638 {
1639 if (canon_true_dependence (s_info->mem,
1640 GET_MODE (s_info->mem),
1641 s_info->mem_addr,
1642 mem, mem_addr))
1643 {
1644 s_info->rhs = NULL;
1645 s_info->const_rhs = NULL;
1646 }
1647 }
1648
1649 /* An insn can be deleted if every position of every one of
1650 its s_infos is zero. */
1651 if (any_positions_needed_p (s_info))
1652 del = false;
1653
1654 if (del)
1655 {
1656 insn_info_t insn_to_delete = ptr;
1657
1658 active_local_stores_len--;
1659 if (last)
1660 last->next_local_store = ptr->next_local_store;
1661 else
1662 active_local_stores = ptr->next_local_store;
1663
1664 if (!insn_to_delete->cannot_delete)
1665 delete_dead_store_insn (insn_to_delete);
1666 }
1667 else
1668 last = ptr;
1669
1670 ptr = next;
1671 }
1672
1673 /* Finish filling in the store_info. */
1674 store_info->next = insn_info->store_rec;
1675 insn_info->store_rec = store_info;
1676 store_info->mem = mem;
1677 store_info->alias_set = spill_alias_set;
1678 store_info->mem_addr = mem_addr;
1679 store_info->cse_base = base;
1680 if (width > HOST_BITS_PER_WIDE_INT)
1681 {
1682 store_info->is_large = true;
1683 store_info->positions_needed.large.count = 0;
1684 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1685 }
1686 else
1687 {
1688 store_info->is_large = false;
1689 store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
1690 }
1691 store_info->group_id = group_id;
1692 store_info->begin = offset;
1693 store_info->end = offset + width;
1694 store_info->is_set = GET_CODE (body) == SET;
1695 store_info->rhs = rhs;
1696 store_info->const_rhs = const_rhs;
1697 store_info->redundant_reason = redundant_reason;
1698
1699 /* If this is a clobber, we return 0. We will only be able to
1700 delete this insn if there is only one store USED store, but we
1701 can use the clobber to delete other stores earlier. */
1702 return store_info->is_set ? 1 : 0;
1703 }
1704
1705
1706 static void
1707 dump_insn_info (const char * start, insn_info_t insn_info)
1708 {
1709 fprintf (dump_file, "%s insn=%d %s\n", start,
1710 INSN_UID (insn_info->insn),
1711 insn_info->store_rec ? "has store" : "naked");
1712 }
1713
1714
1715 /* If the modes are different and the value's source and target do not
1716 line up, we need to extract the value from lower part of the rhs of
1717 the store, shift it, and then put it into a form that can be shoved
1718 into the read_insn. This function generates a right SHIFT of a
1719 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1720 shift sequence is returned or NULL if we failed to find a
1721 shift. */
1722
1723 static rtx
1724 find_shift_sequence (int access_size,
1725 store_info_t store_info,
1726 machine_mode read_mode,
1727 int shift, bool speed, bool require_cst)
1728 {
1729 machine_mode store_mode = GET_MODE (store_info->mem);
1730 machine_mode new_mode;
1731 rtx read_reg = NULL;
1732
1733 /* Some machines like the x86 have shift insns for each size of
1734 operand. Other machines like the ppc or the ia-64 may only have
1735 shift insns that shift values within 32 or 64 bit registers.
1736 This loop tries to find the smallest shift insn that will right
1737 justify the value we want to read but is available in one insn on
1738 the machine. */
1739
1740 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1741 MODE_INT);
1742 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1743 new_mode = GET_MODE_WIDER_MODE (new_mode))
1744 {
1745 rtx target, new_reg, new_lhs;
1746 rtx_insn *shift_seq, *insn;
1747 int cost;
1748
1749 /* If a constant was stored into memory, try to simplify it here,
1750 otherwise the cost of the shift might preclude this optimization
1751 e.g. at -Os, even when no actual shift will be needed. */
1752 if (store_info->const_rhs)
1753 {
1754 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1755 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1756 store_mode, byte);
1757 if (ret && CONSTANT_P (ret))
1758 {
1759 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1760 ret, GEN_INT (shift));
1761 if (ret && CONSTANT_P (ret))
1762 {
1763 byte = subreg_lowpart_offset (read_mode, new_mode);
1764 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1765 if (ret && CONSTANT_P (ret)
1766 && (set_src_cost (ret, read_mode, speed)
1767 <= COSTS_N_INSNS (1)))
1768 return ret;
1769 }
1770 }
1771 }
1772
1773 if (require_cst)
1774 return NULL_RTX;
1775
1776 /* Try a wider mode if truncating the store mode to NEW_MODE
1777 requires a real instruction. */
1778 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1779 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1780 continue;
1781
1782 /* Also try a wider mode if the necessary punning is either not
1783 desirable or not possible. */
1784 if (!CONSTANT_P (store_info->rhs)
1785 && !MODES_TIEABLE_P (new_mode, store_mode))
1786 continue;
1787
1788 new_reg = gen_reg_rtx (new_mode);
1789
1790 start_sequence ();
1791
1792 /* In theory we could also check for an ashr. Ian Taylor knows
1793 of one dsp where the cost of these two was not the same. But
1794 this really is a rare case anyway. */
1795 target = expand_binop (new_mode, lshr_optab, new_reg,
1796 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1797
1798 shift_seq = get_insns ();
1799 end_sequence ();
1800
1801 if (target != new_reg || shift_seq == NULL)
1802 continue;
1803
1804 cost = 0;
1805 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1806 if (INSN_P (insn))
1807 cost += insn_rtx_cost (PATTERN (insn), speed);
1808
1809 /* The computation up to here is essentially independent
1810 of the arguments and could be precomputed. It may
1811 not be worth doing so. We could precompute if
1812 worthwhile or at least cache the results. The result
1813 technically depends on both SHIFT and ACCESS_SIZE,
1814 but in practice the answer will depend only on ACCESS_SIZE. */
1815
1816 if (cost > COSTS_N_INSNS (1))
1817 continue;
1818
1819 new_lhs = extract_low_bits (new_mode, store_mode,
1820 copy_rtx (store_info->rhs));
1821 if (new_lhs == NULL_RTX)
1822 continue;
1823
1824 /* We found an acceptable shift. Generate a move to
1825 take the value from the store and put it into the
1826 shift pseudo, then shift it, then generate another
1827 move to put in into the target of the read. */
1828 emit_move_insn (new_reg, new_lhs);
1829 emit_insn (shift_seq);
1830 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1831 break;
1832 }
1833
1834 return read_reg;
1835 }
1836
1837
1838 /* Call back for note_stores to find the hard regs set or clobbered by
1839 insn. Data is a bitmap of the hardregs set so far. */
1840
1841 static void
1842 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1843 {
1844 bitmap regs_set = (bitmap) data;
1845
1846 if (REG_P (x)
1847 && HARD_REGISTER_P (x))
1848 bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
1849 }
1850
1851 /* Helper function for replace_read and record_store.
1852 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1853 to one before READ_END bytes read in READ_MODE. Return NULL
1854 if not successful. If REQUIRE_CST is true, return always constant. */
1855
1856 static rtx
1857 get_stored_val (store_info_t store_info, machine_mode read_mode,
1858 HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
1859 basic_block bb, bool require_cst)
1860 {
1861 machine_mode store_mode = GET_MODE (store_info->mem);
1862 int shift;
1863 int access_size; /* In bytes. */
1864 rtx read_reg;
1865
1866 /* To get here the read is within the boundaries of the write so
1867 shift will never be negative. Start out with the shift being in
1868 bytes. */
1869 if (store_mode == BLKmode)
1870 shift = 0;
1871 else if (BYTES_BIG_ENDIAN)
1872 shift = store_info->end - read_end;
1873 else
1874 shift = read_begin - store_info->begin;
1875
1876 access_size = shift + GET_MODE_SIZE (read_mode);
1877
1878 /* From now on it is bits. */
1879 shift *= BITS_PER_UNIT;
1880
1881 if (shift)
1882 read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
1883 optimize_bb_for_speed_p (bb),
1884 require_cst);
1885 else if (store_mode == BLKmode)
1886 {
1887 /* The store is a memset (addr, const_val, const_size). */
1888 gcc_assert (CONST_INT_P (store_info->rhs));
1889 store_mode = int_mode_for_mode (read_mode);
1890 if (store_mode == BLKmode)
1891 read_reg = NULL_RTX;
1892 else if (store_info->rhs == const0_rtx)
1893 read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
1894 else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
1895 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1896 read_reg = NULL_RTX;
1897 else
1898 {
1899 unsigned HOST_WIDE_INT c
1900 = INTVAL (store_info->rhs)
1901 & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
1902 int shift = BITS_PER_UNIT;
1903 while (shift < HOST_BITS_PER_WIDE_INT)
1904 {
1905 c |= (c << shift);
1906 shift <<= 1;
1907 }
1908 read_reg = gen_int_mode (c, store_mode);
1909 read_reg = extract_low_bits (read_mode, store_mode, read_reg);
1910 }
1911 }
1912 else if (store_info->const_rhs
1913 && (require_cst
1914 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1915 read_reg = extract_low_bits (read_mode, store_mode,
1916 copy_rtx (store_info->const_rhs));
1917 else
1918 read_reg = extract_low_bits (read_mode, store_mode,
1919 copy_rtx (store_info->rhs));
1920 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1921 read_reg = NULL_RTX;
1922 return read_reg;
1923 }
1924
1925 /* Take a sequence of:
1926 A <- r1
1927 ...
1928 ... <- A
1929
1930 and change it into
1931 r2 <- r1
1932 A <- r1
1933 ...
1934 ... <- r2
1935
1936 or
1937
1938 r3 <- extract (r1)
1939 r3 <- r3 >> shift
1940 r2 <- extract (r3)
1941 ... <- r2
1942
1943 or
1944
1945 r2 <- extract (r1)
1946 ... <- r2
1947
1948 Depending on the alignment and the mode of the store and
1949 subsequent load.
1950
1951
1952 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1953 and READ_INSN are for the read. Return true if the replacement
1954 went ok. */
1955
1956 static bool
1957 replace_read (store_info_t store_info, insn_info_t store_insn,
1958 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1959 bitmap regs_live)
1960 {
1961 machine_mode store_mode = GET_MODE (store_info->mem);
1962 machine_mode read_mode = GET_MODE (read_info->mem);
1963 rtx_insn *insns, *this_insn;
1964 rtx read_reg;
1965 basic_block bb;
1966
1967 if (!dbg_cnt (dse))
1968 return false;
1969
1970 /* Create a sequence of instructions to set up the read register.
1971 This sequence goes immediately before the store and its result
1972 is read by the load.
1973
1974 We need to keep this in perspective. We are replacing a read
1975 with a sequence of insns, but the read will almost certainly be
1976 in cache, so it is not going to be an expensive one. Thus, we
1977 are not willing to do a multi insn shift or worse a subroutine
1978 call to get rid of the read. */
1979 if (dump_file && (dump_flags & TDF_DETAILS))
1980 fprintf (dump_file, "trying to replace %smode load in insn %d"
1981 " from %smode store in insn %d\n",
1982 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1983 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1984 start_sequence ();
1985 bb = BLOCK_FOR_INSN (read_insn->insn);
1986 read_reg = get_stored_val (store_info,
1987 read_mode, read_info->begin, read_info->end,
1988 bb, false);
1989 if (read_reg == NULL_RTX)
1990 {
1991 end_sequence ();
1992 if (dump_file && (dump_flags & TDF_DETAILS))
1993 fprintf (dump_file, " -- could not extract bits of stored value\n");
1994 return false;
1995 }
1996 /* Force the value into a new register so that it won't be clobbered
1997 between the store and the load. */
1998 read_reg = copy_to_mode_reg (read_mode, read_reg);
1999 insns = get_insns ();
2000 end_sequence ();
2001
2002 if (insns != NULL_RTX)
2003 {
2004 /* Now we have to scan the set of new instructions to see if the
2005 sequence contains and sets of hardregs that happened to be
2006 live at this point. For instance, this can happen if one of
2007 the insns sets the CC and the CC happened to be live at that
2008 point. This does occasionally happen, see PR 37922. */
2009 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
2010
2011 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2012 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
2013
2014 bitmap_and_into (regs_set, regs_live);
2015 if (!bitmap_empty_p (regs_set))
2016 {
2017 if (dump_file && (dump_flags & TDF_DETAILS))
2018 {
2019 fprintf (dump_file,
2020 "abandoning replacement because sequence clobbers live hardregs:");
2021 df_print_regset (dump_file, regs_set);
2022 }
2023
2024 BITMAP_FREE (regs_set);
2025 return false;
2026 }
2027 BITMAP_FREE (regs_set);
2028 }
2029
2030 if (validate_change (read_insn->insn, loc, read_reg, 0))
2031 {
2032 deferred_change_t change = deferred_change_pool.allocate ();
2033
2034 /* Insert this right before the store insn where it will be safe
2035 from later insns that might change it before the read. */
2036 emit_insn_before (insns, store_insn->insn);
2037
2038 /* And now for the kludge part: cselib croaks if you just
2039 return at this point. There are two reasons for this:
2040
2041 1) Cselib has an idea of how many pseudos there are and
2042 that does not include the new ones we just added.
2043
2044 2) Cselib does not know about the move insn we added
2045 above the store_info, and there is no way to tell it
2046 about it, because it has "moved on".
2047
2048 Problem (1) is fixable with a certain amount of engineering.
2049 Problem (2) is requires starting the bb from scratch. This
2050 could be expensive.
2051
2052 So we are just going to have to lie. The move/extraction
2053 insns are not really an issue, cselib did not see them. But
2054 the use of the new pseudo read_insn is a real problem because
2055 cselib has not scanned this insn. The way that we solve this
2056 problem is that we are just going to put the mem back for now
2057 and when we are finished with the block, we undo this. We
2058 keep a table of mems to get rid of. At the end of the basic
2059 block we can put them back. */
2060
2061 *loc = read_info->mem;
2062 change->next = deferred_change_list;
2063 deferred_change_list = change;
2064 change->loc = loc;
2065 change->reg = read_reg;
2066
2067 /* Get rid of the read_info, from the point of view of the
2068 rest of dse, play like this read never happened. */
2069 read_insn->read_rec = read_info->next;
2070 read_info_type_pool.remove (read_info);
2071 if (dump_file && (dump_flags & TDF_DETAILS))
2072 {
2073 fprintf (dump_file, " -- replaced the loaded MEM with ");
2074 print_simple_rtl (dump_file, read_reg);
2075 fprintf (dump_file, "\n");
2076 }
2077 return true;
2078 }
2079 else
2080 {
2081 if (dump_file && (dump_flags & TDF_DETAILS))
2082 {
2083 fprintf (dump_file, " -- replacing the loaded MEM with ");
2084 print_simple_rtl (dump_file, read_reg);
2085 fprintf (dump_file, " led to an invalid instruction\n");
2086 }
2087 return false;
2088 }
2089 }
2090
2091 /* Check the address of MEM *LOC and kill any appropriate stores that may
2092 be active. */
2093
2094 static void
2095 check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
2096 {
2097 rtx mem = *loc, mem_addr;
2098 insn_info_t insn_info;
2099 HOST_WIDE_INT offset = 0;
2100 HOST_WIDE_INT width = 0;
2101 alias_set_type spill_alias_set = 0;
2102 cselib_val *base = NULL;
2103 int group_id;
2104 read_info_t read_info;
2105
2106 insn_info = bb_info->last_insn;
2107
2108 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2109 || (MEM_VOLATILE_P (mem)))
2110 {
2111 if (dump_file && (dump_flags & TDF_DETAILS))
2112 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2113 add_wild_read (bb_info);
2114 insn_info->cannot_delete = true;
2115 return;
2116 }
2117
2118 /* If it is reading readonly mem, then there can be no conflict with
2119 another write. */
2120 if (MEM_READONLY_P (mem))
2121 return;
2122
2123 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
2124 {
2125 if (dump_file && (dump_flags & TDF_DETAILS))
2126 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2127 add_wild_read (bb_info);
2128 return;
2129 }
2130
2131 if (GET_MODE (mem) == BLKmode)
2132 width = -1;
2133 else
2134 width = GET_MODE_SIZE (GET_MODE (mem));
2135
2136 read_info = read_info_type_pool.allocate ();
2137 read_info->group_id = group_id;
2138 read_info->mem = mem;
2139 read_info->alias_set = spill_alias_set;
2140 read_info->begin = offset;
2141 read_info->end = offset + width;
2142 read_info->next = insn_info->read_rec;
2143 insn_info->read_rec = read_info;
2144 /* For alias_set != 0 canon_true_dependence should be never called. */
2145 if (spill_alias_set)
2146 mem_addr = NULL_RTX;
2147 else
2148 {
2149 if (group_id < 0)
2150 mem_addr = base->val_rtx;
2151 else
2152 {
2153 group_info_t group
2154 = rtx_group_vec[group_id];
2155 mem_addr = group->canon_base_addr;
2156 }
2157 /* get_addr can only handle VALUE but cannot handle expr like:
2158 VALUE + OFFSET, so call get_addr to get original addr for
2159 mem_addr before plus_constant. */
2160 mem_addr = get_addr (mem_addr);
2161 if (offset)
2162 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2163 }
2164
2165 /* We ignore the clobbers in store_info. The is mildly aggressive,
2166 but there really should not be a clobber followed by a read. */
2167
2168 if (spill_alias_set)
2169 {
2170 insn_info_t i_ptr = active_local_stores;
2171 insn_info_t last = NULL;
2172
2173 if (dump_file && (dump_flags & TDF_DETAILS))
2174 fprintf (dump_file, " processing spill load %d\n",
2175 (int) spill_alias_set);
2176
2177 while (i_ptr)
2178 {
2179 store_info_t store_info = i_ptr->store_rec;
2180
2181 /* Skip the clobbers. */
2182 while (!store_info->is_set)
2183 store_info = store_info->next;
2184
2185 if (store_info->alias_set == spill_alias_set)
2186 {
2187 if (dump_file && (dump_flags & TDF_DETAILS))
2188 dump_insn_info ("removing from active", i_ptr);
2189
2190 active_local_stores_len--;
2191 if (last)
2192 last->next_local_store = i_ptr->next_local_store;
2193 else
2194 active_local_stores = i_ptr->next_local_store;
2195 }
2196 else
2197 last = i_ptr;
2198 i_ptr = i_ptr->next_local_store;
2199 }
2200 }
2201 else if (group_id >= 0)
2202 {
2203 /* This is the restricted case where the base is a constant or
2204 the frame pointer and offset is a constant. */
2205 insn_info_t i_ptr = active_local_stores;
2206 insn_info_t last = NULL;
2207
2208 if (dump_file && (dump_flags & TDF_DETAILS))
2209 {
2210 if (width == -1)
2211 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2212 group_id);
2213 else
2214 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
2215 group_id, (int)offset, (int)(offset+width));
2216 }
2217
2218 while (i_ptr)
2219 {
2220 bool remove = false;
2221 store_info_t store_info = i_ptr->store_rec;
2222
2223 /* Skip the clobbers. */
2224 while (!store_info->is_set)
2225 store_info = store_info->next;
2226
2227 /* There are three cases here. */
2228 if (store_info->group_id < 0)
2229 /* We have a cselib store followed by a read from a
2230 const base. */
2231 remove
2232 = canon_true_dependence (store_info->mem,
2233 GET_MODE (store_info->mem),
2234 store_info->mem_addr,
2235 mem, mem_addr);
2236
2237 else if (group_id == store_info->group_id)
2238 {
2239 /* This is a block mode load. We may get lucky and
2240 canon_true_dependence may save the day. */
2241 if (width == -1)
2242 remove
2243 = canon_true_dependence (store_info->mem,
2244 GET_MODE (store_info->mem),
2245 store_info->mem_addr,
2246 mem, mem_addr);
2247
2248 /* If this read is just reading back something that we just
2249 stored, rewrite the read. */
2250 else
2251 {
2252 if (store_info->rhs
2253 && offset >= store_info->begin
2254 && offset + width <= store_info->end
2255 && all_positions_needed_p (store_info,
2256 offset - store_info->begin,
2257 width)
2258 && replace_read (store_info, i_ptr, read_info,
2259 insn_info, loc, bb_info->regs_live))
2260 return;
2261
2262 /* The bases are the same, just see if the offsets
2263 overlap. */
2264 if ((offset < store_info->end)
2265 && (offset + width > store_info->begin))
2266 remove = true;
2267 }
2268 }
2269
2270 /* else
2271 The else case that is missing here is that the
2272 bases are constant but different. There is nothing
2273 to do here because there is no overlap. */
2274
2275 if (remove)
2276 {
2277 if (dump_file && (dump_flags & TDF_DETAILS))
2278 dump_insn_info ("removing from active", i_ptr);
2279
2280 active_local_stores_len--;
2281 if (last)
2282 last->next_local_store = i_ptr->next_local_store;
2283 else
2284 active_local_stores = i_ptr->next_local_store;
2285 }
2286 else
2287 last = i_ptr;
2288 i_ptr = i_ptr->next_local_store;
2289 }
2290 }
2291 else
2292 {
2293 insn_info_t i_ptr = active_local_stores;
2294 insn_info_t last = NULL;
2295 if (dump_file && (dump_flags & TDF_DETAILS))
2296 {
2297 fprintf (dump_file, " processing cselib load mem:");
2298 print_inline_rtx (dump_file, mem, 0);
2299 fprintf (dump_file, "\n");
2300 }
2301
2302 while (i_ptr)
2303 {
2304 bool remove = false;
2305 store_info_t store_info = i_ptr->store_rec;
2306
2307 if (dump_file && (dump_flags & TDF_DETAILS))
2308 fprintf (dump_file, " processing cselib load against insn %d\n",
2309 INSN_UID (i_ptr->insn));
2310
2311 /* Skip the clobbers. */
2312 while (!store_info->is_set)
2313 store_info = store_info->next;
2314
2315 /* If this read is just reading back something that we just
2316 stored, rewrite the read. */
2317 if (store_info->rhs
2318 && store_info->group_id == -1
2319 && store_info->cse_base == base
2320 && width != -1
2321 && offset >= store_info->begin
2322 && offset + width <= store_info->end
2323 && all_positions_needed_p (store_info,
2324 offset - store_info->begin, width)
2325 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2326 bb_info->regs_live))
2327 return;
2328
2329 if (!store_info->alias_set)
2330 remove = canon_true_dependence (store_info->mem,
2331 GET_MODE (store_info->mem),
2332 store_info->mem_addr,
2333 mem, mem_addr);
2334
2335 if (remove)
2336 {
2337 if (dump_file && (dump_flags & TDF_DETAILS))
2338 dump_insn_info ("removing from active", i_ptr);
2339
2340 active_local_stores_len--;
2341 if (last)
2342 last->next_local_store = i_ptr->next_local_store;
2343 else
2344 active_local_stores = i_ptr->next_local_store;
2345 }
2346 else
2347 last = i_ptr;
2348 i_ptr = i_ptr->next_local_store;
2349 }
2350 }
2351 }
2352
2353 /* A note_uses callback in which DATA points the INSN_INFO for
2354 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2355 true for any part of *LOC. */
2356
2357 static void
2358 check_mem_read_use (rtx *loc, void *data)
2359 {
2360 subrtx_ptr_iterator::array_type array;
2361 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2362 {
2363 rtx *loc = *iter;
2364 if (MEM_P (*loc))
2365 check_mem_read_rtx (loc, (bb_info_t) data);
2366 }
2367 }
2368
2369
2370 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2371 So far it only handles arguments passed in registers. */
2372
2373 static bool
2374 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2375 {
2376 CUMULATIVE_ARGS args_so_far_v;
2377 cumulative_args_t args_so_far;
2378 tree arg;
2379 int idx;
2380
2381 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2382 args_so_far = pack_cumulative_args (&args_so_far_v);
2383
2384 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2385 for (idx = 0;
2386 arg != void_list_node && idx < nargs;
2387 arg = TREE_CHAIN (arg), idx++)
2388 {
2389 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2390 rtx reg, link, tmp;
2391 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2392 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
2393 || GET_MODE_CLASS (mode) != MODE_INT)
2394 return false;
2395
2396 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2397 link;
2398 link = XEXP (link, 1))
2399 if (GET_CODE (XEXP (link, 0)) == USE)
2400 {
2401 args[idx] = XEXP (XEXP (link, 0), 0);
2402 if (REG_P (args[idx])
2403 && REGNO (args[idx]) == REGNO (reg)
2404 && (GET_MODE (args[idx]) == mode
2405 || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
2406 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2407 <= UNITS_PER_WORD)
2408 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2409 > GET_MODE_SIZE (mode)))))
2410 break;
2411 }
2412 if (!link)
2413 return false;
2414
2415 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2416 if (GET_MODE (args[idx]) != mode)
2417 {
2418 if (!tmp || !CONST_INT_P (tmp))
2419 return false;
2420 tmp = gen_int_mode (INTVAL (tmp), mode);
2421 }
2422 if (tmp)
2423 args[idx] = tmp;
2424
2425 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2426 }
2427 if (arg != void_list_node || idx != nargs)
2428 return false;
2429 return true;
2430 }
2431
2432 /* Return a bitmap of the fixed registers contained in IN. */
2433
2434 static bitmap
2435 copy_fixed_regs (const_bitmap in)
2436 {
2437 bitmap ret;
2438
2439 ret = ALLOC_REG_SET (NULL);
2440 bitmap_and (ret, in, fixed_reg_set_regset);
2441 return ret;
2442 }
2443
2444 /* Apply record_store to all candidate stores in INSN. Mark INSN
2445 if some part of it is not a candidate store and assigns to a
2446 non-register target. */
2447
2448 static void
2449 scan_insn (bb_info_t bb_info, rtx_insn *insn)
2450 {
2451 rtx body;
2452 insn_info_type *insn_info = insn_info_type_pool.allocate ();
2453 int mems_found = 0;
2454 memset (insn_info, 0, sizeof (struct insn_info_type));
2455
2456 if (dump_file && (dump_flags & TDF_DETAILS))
2457 fprintf (dump_file, "\n**scanning insn=%d\n",
2458 INSN_UID (insn));
2459
2460 insn_info->prev_insn = bb_info->last_insn;
2461 insn_info->insn = insn;
2462 bb_info->last_insn = insn_info;
2463
2464 if (DEBUG_INSN_P (insn))
2465 {
2466 insn_info->cannot_delete = true;
2467 return;
2468 }
2469
2470 /* Look at all of the uses in the insn. */
2471 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2472
2473 if (CALL_P (insn))
2474 {
2475 bool const_call;
2476 tree memset_call = NULL_TREE;
2477
2478 insn_info->cannot_delete = true;
2479
2480 /* Const functions cannot do anything bad i.e. read memory,
2481 however, they can read their parameters which may have
2482 been pushed onto the stack.
2483 memset and bzero don't read memory either. */
2484 const_call = RTL_CONST_CALL_P (insn);
2485 if (!const_call)
2486 {
2487 rtx call = get_call_rtx_from (insn);
2488 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2489 {
2490 rtx symbol = XEXP (XEXP (call, 0), 0);
2491 if (SYMBOL_REF_DECL (symbol)
2492 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
2493 {
2494 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
2495 == BUILT_IN_NORMAL
2496 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
2497 == BUILT_IN_MEMSET))
2498 || SYMBOL_REF_DECL (symbol) == block_clear_fn)
2499 memset_call = SYMBOL_REF_DECL (symbol);
2500 }
2501 }
2502 }
2503 if (const_call || memset_call)
2504 {
2505 insn_info_t i_ptr = active_local_stores;
2506 insn_info_t last = NULL;
2507
2508 if (dump_file && (dump_flags & TDF_DETAILS))
2509 fprintf (dump_file, "%s call %d\n",
2510 const_call ? "const" : "memset", INSN_UID (insn));
2511
2512 /* See the head comment of the frame_read field. */
2513 if (reload_completed
2514 /* Tail calls are storing their arguments using
2515 arg pointer. If it is a frame pointer on the target,
2516 even before reload we need to kill frame pointer based
2517 stores. */
2518 || (SIBLING_CALL_P (insn)
2519 && HARD_FRAME_POINTER_IS_ARG_POINTER))
2520 insn_info->frame_read = true;
2521
2522 /* Loop over the active stores and remove those which are
2523 killed by the const function call. */
2524 while (i_ptr)
2525 {
2526 bool remove_store = false;
2527
2528 /* The stack pointer based stores are always killed. */
2529 if (i_ptr->stack_pointer_based)
2530 remove_store = true;
2531
2532 /* If the frame is read, the frame related stores are killed. */
2533 else if (insn_info->frame_read)
2534 {
2535 store_info_t store_info = i_ptr->store_rec;
2536
2537 /* Skip the clobbers. */
2538 while (!store_info->is_set)
2539 store_info = store_info->next;
2540
2541 if (store_info->group_id >= 0
2542 && rtx_group_vec[store_info->group_id]->frame_related)
2543 remove_store = true;
2544 }
2545
2546 if (remove_store)
2547 {
2548 if (dump_file && (dump_flags & TDF_DETAILS))
2549 dump_insn_info ("removing from active", i_ptr);
2550
2551 active_local_stores_len--;
2552 if (last)
2553 last->next_local_store = i_ptr->next_local_store;
2554 else
2555 active_local_stores = i_ptr->next_local_store;
2556 }
2557 else
2558 last = i_ptr;
2559
2560 i_ptr = i_ptr->next_local_store;
2561 }
2562
2563 if (memset_call)
2564 {
2565 rtx args[3];
2566 if (get_call_args (insn, memset_call, args, 3)
2567 && CONST_INT_P (args[1])
2568 && CONST_INT_P (args[2])
2569 && INTVAL (args[2]) > 0)
2570 {
2571 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2572 set_mem_size (mem, INTVAL (args[2]));
2573 body = gen_rtx_SET (mem, args[1]);
2574 mems_found += record_store (body, bb_info);
2575 if (dump_file && (dump_flags & TDF_DETAILS))
2576 fprintf (dump_file, "handling memset as BLKmode store\n");
2577 if (mems_found == 1)
2578 {
2579 if (active_local_stores_len++
2580 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2581 {
2582 active_local_stores_len = 1;
2583 active_local_stores = NULL;
2584 }
2585 insn_info->fixed_regs_live
2586 = copy_fixed_regs (bb_info->regs_live);
2587 insn_info->next_local_store = active_local_stores;
2588 active_local_stores = insn_info;
2589 }
2590 }
2591 }
2592 }
2593 else if (SIBLING_CALL_P (insn) && reload_completed)
2594 /* Arguments for a sibling call that are pushed to memory are passed
2595 using the incoming argument pointer of the current function. After
2596 reload that might be (and likely is) frame pointer based. */
2597 add_wild_read (bb_info);
2598 else
2599 /* Every other call, including pure functions, may read any memory
2600 that is not relative to the frame. */
2601 add_non_frame_wild_read (bb_info);
2602
2603 return;
2604 }
2605
2606 /* Assuming that there are sets in these insns, we cannot delete
2607 them. */
2608 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2609 || volatile_refs_p (PATTERN (insn))
2610 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2611 || (RTX_FRAME_RELATED_P (insn))
2612 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2613 insn_info->cannot_delete = true;
2614
2615 body = PATTERN (insn);
2616 if (GET_CODE (body) == PARALLEL)
2617 {
2618 int i;
2619 for (i = 0; i < XVECLEN (body, 0); i++)
2620 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2621 }
2622 else
2623 mems_found += record_store (body, bb_info);
2624
2625 if (dump_file && (dump_flags & TDF_DETAILS))
2626 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2627 mems_found, insn_info->cannot_delete ? "true" : "false");
2628
2629 /* If we found some sets of mems, add it into the active_local_stores so
2630 that it can be locally deleted if found dead or used for
2631 replace_read and redundant constant store elimination. Otherwise mark
2632 it as cannot delete. This simplifies the processing later. */
2633 if (mems_found == 1)
2634 {
2635 if (active_local_stores_len++
2636 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2637 {
2638 active_local_stores_len = 1;
2639 active_local_stores = NULL;
2640 }
2641 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2642 insn_info->next_local_store = active_local_stores;
2643 active_local_stores = insn_info;
2644 }
2645 else
2646 insn_info->cannot_delete = true;
2647 }
2648
2649
2650 /* Remove BASE from the set of active_local_stores. This is a
2651 callback from cselib that is used to get rid of the stores in
2652 active_local_stores. */
2653
2654 static void
2655 remove_useless_values (cselib_val *base)
2656 {
2657 insn_info_t insn_info = active_local_stores;
2658 insn_info_t last = NULL;
2659
2660 while (insn_info)
2661 {
2662 store_info_t store_info = insn_info->store_rec;
2663 bool del = false;
2664
2665 /* If ANY of the store_infos match the cselib group that is
2666 being deleted, then the insn can not be deleted. */
2667 while (store_info)
2668 {
2669 if ((store_info->group_id == -1)
2670 && (store_info->cse_base == base))
2671 {
2672 del = true;
2673 break;
2674 }
2675 store_info = store_info->next;
2676 }
2677
2678 if (del)
2679 {
2680 active_local_stores_len--;
2681 if (last)
2682 last->next_local_store = insn_info->next_local_store;
2683 else
2684 active_local_stores = insn_info->next_local_store;
2685 free_store_info (insn_info);
2686 }
2687 else
2688 last = insn_info;
2689
2690 insn_info = insn_info->next_local_store;
2691 }
2692 }
2693
2694
2695 /* Do all of step 1. */
2696
2697 static void
2698 dse_step1 (void)
2699 {
2700 basic_block bb;
2701 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
2702
2703 cselib_init (0);
2704 all_blocks = BITMAP_ALLOC (NULL);
2705 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2706 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2707
2708 FOR_ALL_BB_FN (bb, cfun)
2709 {
2710 insn_info_t ptr;
2711 bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
2712
2713 memset (bb_info, 0, sizeof (dse_bb_info_type));
2714 bitmap_set_bit (all_blocks, bb->index);
2715 bb_info->regs_live = regs_live;
2716
2717 bitmap_copy (regs_live, DF_LR_IN (bb));
2718 df_simulate_initialize_forwards (bb, regs_live);
2719
2720 bb_table[bb->index] = bb_info;
2721 cselib_discard_hook = remove_useless_values;
2722
2723 if (bb->index >= NUM_FIXED_BLOCKS)
2724 {
2725 rtx_insn *insn;
2726
2727 active_local_stores = NULL;
2728 active_local_stores_len = 0;
2729 cselib_clear_table ();
2730
2731 /* Scan the insns. */
2732 FOR_BB_INSNS (bb, insn)
2733 {
2734 if (INSN_P (insn))
2735 scan_insn (bb_info, insn);
2736 cselib_process_insn (insn);
2737 if (INSN_P (insn))
2738 df_simulate_one_insn_forwards (bb, insn, regs_live);
2739 }
2740
2741 /* This is something of a hack, because the global algorithm
2742 is supposed to take care of the case where stores go dead
2743 at the end of the function. However, the global
2744 algorithm must take a more conservative view of block
2745 mode reads than the local alg does. So to get the case
2746 where you have a store to the frame followed by a non
2747 overlapping block more read, we look at the active local
2748 stores at the end of the function and delete all of the
2749 frame and spill based ones. */
2750 if (stores_off_frame_dead_at_return
2751 && (EDGE_COUNT (bb->succs) == 0
2752 || (single_succ_p (bb)
2753 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2754 && ! crtl->calls_eh_return)))
2755 {
2756 insn_info_t i_ptr = active_local_stores;
2757 while (i_ptr)
2758 {
2759 store_info_t store_info = i_ptr->store_rec;
2760
2761 /* Skip the clobbers. */
2762 while (!store_info->is_set)
2763 store_info = store_info->next;
2764 if (store_info->alias_set && !i_ptr->cannot_delete)
2765 delete_dead_store_insn (i_ptr);
2766 else
2767 if (store_info->group_id >= 0)
2768 {
2769 group_info_t group
2770 = rtx_group_vec[store_info->group_id];
2771 if (group->frame_related && !i_ptr->cannot_delete)
2772 delete_dead_store_insn (i_ptr);
2773 }
2774
2775 i_ptr = i_ptr->next_local_store;
2776 }
2777 }
2778
2779 /* Get rid of the loads that were discovered in
2780 replace_read. Cselib is finished with this block. */
2781 while (deferred_change_list)
2782 {
2783 deferred_change_t next = deferred_change_list->next;
2784
2785 /* There is no reason to validate this change. That was
2786 done earlier. */
2787 *deferred_change_list->loc = deferred_change_list->reg;
2788 deferred_change_pool.remove (deferred_change_list);
2789 deferred_change_list = next;
2790 }
2791
2792 /* Get rid of all of the cselib based store_infos in this
2793 block and mark the containing insns as not being
2794 deletable. */
2795 ptr = bb_info->last_insn;
2796 while (ptr)
2797 {
2798 if (ptr->contains_cselib_groups)
2799 {
2800 store_info_t s_info = ptr->store_rec;
2801 while (s_info && !s_info->is_set)
2802 s_info = s_info->next;
2803 if (s_info
2804 && s_info->redundant_reason
2805 && s_info->redundant_reason->insn
2806 && !ptr->cannot_delete)
2807 {
2808 if (dump_file && (dump_flags & TDF_DETAILS))
2809 fprintf (dump_file, "Locally deleting insn %d "
2810 "because insn %d stores the "
2811 "same value and couldn't be "
2812 "eliminated\n",
2813 INSN_UID (ptr->insn),
2814 INSN_UID (s_info->redundant_reason->insn));
2815 delete_dead_store_insn (ptr);
2816 }
2817 free_store_info (ptr);
2818 }
2819 else
2820 {
2821 store_info_t s_info;
2822
2823 /* Free at least positions_needed bitmaps. */
2824 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2825 if (s_info->is_large)
2826 {
2827 BITMAP_FREE (s_info->positions_needed.large.bmap);
2828 s_info->is_large = false;
2829 }
2830 }
2831 ptr = ptr->prev_insn;
2832 }
2833
2834 cse_store_info_pool.release ();
2835 }
2836 bb_info->regs_live = NULL;
2837 }
2838
2839 BITMAP_FREE (regs_live);
2840 cselib_finish ();
2841 rtx_group_table->empty ();
2842 }
2843
2844 \f
2845 /*----------------------------------------------------------------------------
2846 Second step.
2847
2848 Assign each byte position in the stores that we are going to
2849 analyze globally to a position in the bitmaps. Returns true if
2850 there are any bit positions assigned.
2851 ----------------------------------------------------------------------------*/
2852
2853 static void
2854 dse_step2_init (void)
2855 {
2856 unsigned int i;
2857 group_info_t group;
2858
2859 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2860 {
2861 /* For all non stack related bases, we only consider a store to
2862 be deletable if there are two or more stores for that
2863 position. This is because it takes one store to make the
2864 other store redundant. However, for the stores that are
2865 stack related, we consider them if there is only one store
2866 for the position. We do this because the stack related
2867 stores can be deleted if their is no read between them and
2868 the end of the function.
2869
2870 To make this work in the current framework, we take the stack
2871 related bases add all of the bits from store1 into store2.
2872 This has the effect of making the eligible even if there is
2873 only one store. */
2874
2875 if (stores_off_frame_dead_at_return && group->frame_related)
2876 {
2877 bitmap_ior_into (group->store2_n, group->store1_n);
2878 bitmap_ior_into (group->store2_p, group->store1_p);
2879 if (dump_file && (dump_flags & TDF_DETAILS))
2880 fprintf (dump_file, "group %d is frame related ", i);
2881 }
2882
2883 group->offset_map_size_n++;
2884 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2885 group->offset_map_size_n);
2886 group->offset_map_size_p++;
2887 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2888 group->offset_map_size_p);
2889 group->process_globally = false;
2890 if (dump_file && (dump_flags & TDF_DETAILS))
2891 {
2892 fprintf (dump_file, "group %d(%d+%d): ", i,
2893 (int)bitmap_count_bits (group->store2_n),
2894 (int)bitmap_count_bits (group->store2_p));
2895 bitmap_print (dump_file, group->store2_n, "n ", " ");
2896 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2897 }
2898 }
2899 }
2900
2901
2902 /* Init the offset tables for the normal case. */
2903
2904 static bool
2905 dse_step2_nospill (void)
2906 {
2907 unsigned int i;
2908 group_info_t group;
2909 /* Position 0 is unused because 0 is used in the maps to mean
2910 unused. */
2911 current_position = 1;
2912 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2913 {
2914 bitmap_iterator bi;
2915 unsigned int j;
2916
2917 if (group == clear_alias_group)
2918 continue;
2919
2920 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2921 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2922 bitmap_clear (group->group_kill);
2923
2924 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2925 {
2926 bitmap_set_bit (group->group_kill, current_position);
2927 if (bitmap_bit_p (group->escaped_n, j))
2928 bitmap_set_bit (kill_on_calls, current_position);
2929 group->offset_map_n[j] = current_position++;
2930 group->process_globally = true;
2931 }
2932 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2933 {
2934 bitmap_set_bit (group->group_kill, current_position);
2935 if (bitmap_bit_p (group->escaped_p, j))
2936 bitmap_set_bit (kill_on_calls, current_position);
2937 group->offset_map_p[j] = current_position++;
2938 group->process_globally = true;
2939 }
2940 }
2941 return current_position != 1;
2942 }
2943
2944
2945 \f
2946 /*----------------------------------------------------------------------------
2947 Third step.
2948
2949 Build the bit vectors for the transfer functions.
2950 ----------------------------------------------------------------------------*/
2951
2952
2953 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2954 there, return 0. */
2955
2956 static int
2957 get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
2958 {
2959 if (offset < 0)
2960 {
2961 HOST_WIDE_INT offset_p = -offset;
2962 if (offset_p >= group_info->offset_map_size_n)
2963 return 0;
2964 return group_info->offset_map_n[offset_p];
2965 }
2966 else
2967 {
2968 if (offset >= group_info->offset_map_size_p)
2969 return 0;
2970 return group_info->offset_map_p[offset];
2971 }
2972 }
2973
2974
2975 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2976 may be NULL. */
2977
2978 static void
2979 scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
2980 {
2981 while (store_info)
2982 {
2983 HOST_WIDE_INT i;
2984 group_info_t group_info
2985 = rtx_group_vec[store_info->group_id];
2986 if (group_info->process_globally)
2987 for (i = store_info->begin; i < store_info->end; i++)
2988 {
2989 int index = get_bitmap_index (group_info, i);
2990 if (index != 0)
2991 {
2992 bitmap_set_bit (gen, index);
2993 if (kill)
2994 bitmap_clear_bit (kill, index);
2995 }
2996 }
2997 store_info = store_info->next;
2998 }
2999 }
3000
3001
3002 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3003 may be NULL. */
3004
3005 static void
3006 scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
3007 {
3008 while (store_info)
3009 {
3010 if (store_info->alias_set)
3011 {
3012 int index = get_bitmap_index (clear_alias_group,
3013 store_info->alias_set);
3014 if (index != 0)
3015 {
3016 bitmap_set_bit (gen, index);
3017 if (kill)
3018 bitmap_clear_bit (kill, index);
3019 }
3020 }
3021 store_info = store_info->next;
3022 }
3023 }
3024
3025
3026 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3027 may be NULL. */
3028
3029 static void
3030 scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
3031 {
3032 read_info_t read_info = insn_info->read_rec;
3033 int i;
3034 group_info_t group;
3035
3036 /* If this insn reads the frame, kill all the frame related stores. */
3037 if (insn_info->frame_read)
3038 {
3039 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3040 if (group->process_globally && group->frame_related)
3041 {
3042 if (kill)
3043 bitmap_ior_into (kill, group->group_kill);
3044 bitmap_and_compl_into (gen, group->group_kill);
3045 }
3046 }
3047 if (insn_info->non_frame_wild_read)
3048 {
3049 /* Kill all non-frame related stores. Kill all stores of variables that
3050 escape. */
3051 if (kill)
3052 bitmap_ior_into (kill, kill_on_calls);
3053 bitmap_and_compl_into (gen, kill_on_calls);
3054 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3055 if (group->process_globally && !group->frame_related)
3056 {
3057 if (kill)
3058 bitmap_ior_into (kill, group->group_kill);
3059 bitmap_and_compl_into (gen, group->group_kill);
3060 }
3061 }
3062 while (read_info)
3063 {
3064 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3065 {
3066 if (group->process_globally)
3067 {
3068 if (i == read_info->group_id)
3069 {
3070 if (read_info->begin > read_info->end)
3071 {
3072 /* Begin > end for block mode reads. */
3073 if (kill)
3074 bitmap_ior_into (kill, group->group_kill);
3075 bitmap_and_compl_into (gen, group->group_kill);
3076 }
3077 else
3078 {
3079 /* The groups are the same, just process the
3080 offsets. */
3081 HOST_WIDE_INT j;
3082 for (j = read_info->begin; j < read_info->end; j++)
3083 {
3084 int index = get_bitmap_index (group, j);
3085 if (index != 0)
3086 {
3087 if (kill)
3088 bitmap_set_bit (kill, index);
3089 bitmap_clear_bit (gen, index);
3090 }
3091 }
3092 }
3093 }
3094 else
3095 {
3096 /* The groups are different, if the alias sets
3097 conflict, clear the entire group. We only need
3098 to apply this test if the read_info is a cselib
3099 read. Anything with a constant base cannot alias
3100 something else with a different constant
3101 base. */
3102 if ((read_info->group_id < 0)
3103 && canon_true_dependence (group->base_mem,
3104 GET_MODE (group->base_mem),
3105 group->canon_base_addr,
3106 read_info->mem, NULL_RTX))
3107 {
3108 if (kill)
3109 bitmap_ior_into (kill, group->group_kill);
3110 bitmap_and_compl_into (gen, group->group_kill);
3111 }
3112 }
3113 }
3114 }
3115
3116 read_info = read_info->next;
3117 }
3118 }
3119
3120 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3121 may be NULL. */
3122
3123 static void
3124 scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
3125 {
3126 while (read_info)
3127 {
3128 if (read_info->alias_set)
3129 {
3130 int index = get_bitmap_index (clear_alias_group,
3131 read_info->alias_set);
3132 if (index != 0)
3133 {
3134 if (kill)
3135 bitmap_set_bit (kill, index);
3136 bitmap_clear_bit (gen, index);
3137 }
3138 }
3139
3140 read_info = read_info->next;
3141 }
3142 }
3143
3144
3145 /* Return the insn in BB_INFO before the first wild read or if there
3146 are no wild reads in the block, return the last insn. */
3147
3148 static insn_info_t
3149 find_insn_before_first_wild_read (bb_info_t bb_info)
3150 {
3151 insn_info_t insn_info = bb_info->last_insn;
3152 insn_info_t last_wild_read = NULL;
3153
3154 while (insn_info)
3155 {
3156 if (insn_info->wild_read)
3157 {
3158 last_wild_read = insn_info->prev_insn;
3159 /* Block starts with wild read. */
3160 if (!last_wild_read)
3161 return NULL;
3162 }
3163
3164 insn_info = insn_info->prev_insn;
3165 }
3166
3167 if (last_wild_read)
3168 return last_wild_read;
3169 else
3170 return bb_info->last_insn;
3171 }
3172
3173
3174 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3175 the block in order to build the gen and kill sets for the block.
3176 We start at ptr which may be the last insn in the block or may be
3177 the first insn with a wild read. In the latter case we are able to
3178 skip the rest of the block because it just does not matter:
3179 anything that happens is hidden by the wild read. */
3180
3181 static void
3182 dse_step3_scan (bool for_spills, basic_block bb)
3183 {
3184 bb_info_t bb_info = bb_table[bb->index];
3185 insn_info_t insn_info;
3186
3187 if (for_spills)
3188 /* There are no wild reads in the spill case. */
3189 insn_info = bb_info->last_insn;
3190 else
3191 insn_info = find_insn_before_first_wild_read (bb_info);
3192
3193 /* In the spill case or in the no_spill case if there is no wild
3194 read in the block, we will need a kill set. */
3195 if (insn_info == bb_info->last_insn)
3196 {
3197 if (bb_info->kill)
3198 bitmap_clear (bb_info->kill);
3199 else
3200 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3201 }
3202 else
3203 if (bb_info->kill)
3204 BITMAP_FREE (bb_info->kill);
3205
3206 while (insn_info)
3207 {
3208 /* There may have been code deleted by the dce pass run before
3209 this phase. */
3210 if (insn_info->insn && INSN_P (insn_info->insn))
3211 {
3212 /* Process the read(s) last. */
3213 if (for_spills)
3214 {
3215 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3216 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
3217 }
3218 else
3219 {
3220 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3221 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
3222 }
3223 }
3224
3225 insn_info = insn_info->prev_insn;
3226 }
3227 }
3228
3229
3230 /* Set the gen set of the exit block, and also any block with no
3231 successors that does not have a wild read. */
3232
3233 static void
3234 dse_step3_exit_block_scan (bb_info_t bb_info)
3235 {
3236 /* The gen set is all 0's for the exit block except for the
3237 frame_pointer_group. */
3238
3239 if (stores_off_frame_dead_at_return)
3240 {
3241 unsigned int i;
3242 group_info_t group;
3243
3244 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3245 {
3246 if (group->process_globally && group->frame_related)
3247 bitmap_ior_into (bb_info->gen, group->group_kill);
3248 }
3249 }
3250 }
3251
3252
3253 /* Find all of the blocks that are not backwards reachable from the
3254 exit block or any block with no successors (BB). These are the
3255 infinite loops or infinite self loops. These blocks will still
3256 have their bits set in UNREACHABLE_BLOCKS. */
3257
3258 static void
3259 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3260 {
3261 edge e;
3262 edge_iterator ei;
3263
3264 if (bitmap_bit_p (unreachable_blocks, bb->index))
3265 {
3266 bitmap_clear_bit (unreachable_blocks, bb->index);
3267 FOR_EACH_EDGE (e, ei, bb->preds)
3268 {
3269 mark_reachable_blocks (unreachable_blocks, e->src);
3270 }
3271 }
3272 }
3273
3274 /* Build the transfer functions for the function. */
3275
3276 static void
3277 dse_step3 (bool for_spills)
3278 {
3279 basic_block bb;
3280 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
3281 sbitmap_iterator sbi;
3282 bitmap all_ones = NULL;
3283 unsigned int i;
3284
3285 bitmap_ones (unreachable_blocks);
3286
3287 FOR_ALL_BB_FN (bb, cfun)
3288 {
3289 bb_info_t bb_info = bb_table[bb->index];
3290 if (bb_info->gen)
3291 bitmap_clear (bb_info->gen);
3292 else
3293 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3294
3295 if (bb->index == ENTRY_BLOCK)
3296 ;
3297 else if (bb->index == EXIT_BLOCK)
3298 dse_step3_exit_block_scan (bb_info);
3299 else
3300 dse_step3_scan (for_spills, bb);
3301 if (EDGE_COUNT (bb->succs) == 0)
3302 mark_reachable_blocks (unreachable_blocks, bb);
3303
3304 /* If this is the second time dataflow is run, delete the old
3305 sets. */
3306 if (bb_info->in)
3307 BITMAP_FREE (bb_info->in);
3308 if (bb_info->out)
3309 BITMAP_FREE (bb_info->out);
3310 }
3311
3312 /* For any block in an infinite loop, we must initialize the out set
3313 to all ones. This could be expensive, but almost never occurs in
3314 practice. However, it is common in regression tests. */
3315 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3316 {
3317 if (bitmap_bit_p (all_blocks, i))
3318 {
3319 bb_info_t bb_info = bb_table[i];
3320 if (!all_ones)
3321 {
3322 unsigned int j;
3323 group_info_t group;
3324
3325 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3326 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3327 bitmap_ior_into (all_ones, group->group_kill);
3328 }
3329 if (!bb_info->out)
3330 {
3331 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3332 bitmap_copy (bb_info->out, all_ones);
3333 }
3334 }
3335 }
3336
3337 if (all_ones)
3338 BITMAP_FREE (all_ones);
3339 sbitmap_free (unreachable_blocks);
3340 }
3341
3342
3343 \f
3344 /*----------------------------------------------------------------------------
3345 Fourth step.
3346
3347 Solve the bitvector equations.
3348 ----------------------------------------------------------------------------*/
3349
3350
3351 /* Confluence function for blocks with no successors. Create an out
3352 set from the gen set of the exit block. This block logically has
3353 the exit block as a successor. */
3354
3355
3356
3357 static void
3358 dse_confluence_0 (basic_block bb)
3359 {
3360 bb_info_t bb_info = bb_table[bb->index];
3361
3362 if (bb->index == EXIT_BLOCK)
3363 return;
3364
3365 if (!bb_info->out)
3366 {
3367 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3368 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3369 }
3370 }
3371
3372 /* Propagate the information from the in set of the dest of E to the
3373 out set of the src of E. If the various in or out sets are not
3374 there, that means they are all ones. */
3375
3376 static bool
3377 dse_confluence_n (edge e)
3378 {
3379 bb_info_t src_info = bb_table[e->src->index];
3380 bb_info_t dest_info = bb_table[e->dest->index];
3381
3382 if (dest_info->in)
3383 {
3384 if (src_info->out)
3385 bitmap_and_into (src_info->out, dest_info->in);
3386 else
3387 {
3388 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3389 bitmap_copy (src_info->out, dest_info->in);
3390 }
3391 }
3392 return true;
3393 }
3394
3395
3396 /* Propagate the info from the out to the in set of BB_INDEX's basic
3397 block. There are three cases:
3398
3399 1) The block has no kill set. In this case the kill set is all
3400 ones. It does not matter what the out set of the block is, none of
3401 the info can reach the top. The only thing that reaches the top is
3402 the gen set and we just copy the set.
3403
3404 2) There is a kill set but no out set and bb has successors. In
3405 this case we just return. Eventually an out set will be created and
3406 it is better to wait than to create a set of ones.
3407
3408 3) There is both a kill and out set. We apply the obvious transfer
3409 function.
3410 */
3411
3412 static bool
3413 dse_transfer_function (int bb_index)
3414 {
3415 bb_info_t bb_info = bb_table[bb_index];
3416
3417 if (bb_info->kill)
3418 {
3419 if (bb_info->out)
3420 {
3421 /* Case 3 above. */
3422 if (bb_info->in)
3423 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3424 bb_info->out, bb_info->kill);
3425 else
3426 {
3427 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3428 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3429 bb_info->out, bb_info->kill);
3430 return true;
3431 }
3432 }
3433 else
3434 /* Case 2 above. */
3435 return false;
3436 }
3437 else
3438 {
3439 /* Case 1 above. If there is already an in set, nothing
3440 happens. */
3441 if (bb_info->in)
3442 return false;
3443 else
3444 {
3445 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3446 bitmap_copy (bb_info->in, bb_info->gen);
3447 return true;
3448 }
3449 }
3450 }
3451
3452 /* Solve the dataflow equations. */
3453
3454 static void
3455 dse_step4 (void)
3456 {
3457 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3458 dse_confluence_n, dse_transfer_function,
3459 all_blocks, df_get_postorder (DF_BACKWARD),
3460 df_get_n_blocks (DF_BACKWARD));
3461 if (dump_file && (dump_flags & TDF_DETAILS))
3462 {
3463 basic_block bb;
3464
3465 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3466 FOR_ALL_BB_FN (bb, cfun)
3467 {
3468 bb_info_t bb_info = bb_table[bb->index];
3469
3470 df_print_bb_index (bb, dump_file);
3471 if (bb_info->in)
3472 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3473 else
3474 fprintf (dump_file, " in: *MISSING*\n");
3475 if (bb_info->gen)
3476 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3477 else
3478 fprintf (dump_file, " gen: *MISSING*\n");
3479 if (bb_info->kill)
3480 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3481 else
3482 fprintf (dump_file, " kill: *MISSING*\n");
3483 if (bb_info->out)
3484 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3485 else
3486 fprintf (dump_file, " out: *MISSING*\n\n");
3487 }
3488 }
3489 }
3490
3491
3492 \f
3493 /*----------------------------------------------------------------------------
3494 Fifth step.
3495
3496 Delete the stores that can only be deleted using the global information.
3497 ----------------------------------------------------------------------------*/
3498
3499
3500 static void
3501 dse_step5_nospill (void)
3502 {
3503 basic_block bb;
3504 FOR_EACH_BB_FN (bb, cfun)
3505 {
3506 bb_info_t bb_info = bb_table[bb->index];
3507 insn_info_t insn_info = bb_info->last_insn;
3508 bitmap v = bb_info->out;
3509
3510 while (insn_info)
3511 {
3512 bool deleted = false;
3513 if (dump_file && insn_info->insn)
3514 {
3515 fprintf (dump_file, "starting to process insn %d\n",
3516 INSN_UID (insn_info->insn));
3517 bitmap_print (dump_file, v, " v: ", "\n");
3518 }
3519
3520 /* There may have been code deleted by the dce pass run before
3521 this phase. */
3522 if (insn_info->insn
3523 && INSN_P (insn_info->insn)
3524 && (!insn_info->cannot_delete)
3525 && (!bitmap_empty_p (v)))
3526 {
3527 store_info_t store_info = insn_info->store_rec;
3528
3529 /* Try to delete the current insn. */
3530 deleted = true;
3531
3532 /* Skip the clobbers. */
3533 while (!store_info->is_set)
3534 store_info = store_info->next;
3535
3536 if (store_info->alias_set)
3537 deleted = false;
3538 else
3539 {
3540 HOST_WIDE_INT i;
3541 group_info_t group_info
3542 = rtx_group_vec[store_info->group_id];
3543
3544 for (i = store_info->begin; i < store_info->end; i++)
3545 {
3546 int index = get_bitmap_index (group_info, i);
3547
3548 if (dump_file && (dump_flags & TDF_DETAILS))
3549 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3550 if (index == 0 || !bitmap_bit_p (v, index))
3551 {
3552 if (dump_file && (dump_flags & TDF_DETAILS))
3553 fprintf (dump_file, "failing at i = %d\n", (int)i);
3554 deleted = false;
3555 break;
3556 }
3557 }
3558 }
3559 if (deleted)
3560 {
3561 if (dbg_cnt (dse)
3562 && check_for_inc_dec_1 (insn_info))
3563 {
3564 delete_insn (insn_info->insn);
3565 insn_info->insn = NULL;
3566 globally_deleted++;
3567 }
3568 }
3569 }
3570 /* We do want to process the local info if the insn was
3571 deleted. For instance, if the insn did a wild read, we
3572 no longer need to trash the info. */
3573 if (insn_info->insn
3574 && INSN_P (insn_info->insn)
3575 && (!deleted))
3576 {
3577 scan_stores_nospill (insn_info->store_rec, v, NULL);
3578 if (insn_info->wild_read)
3579 {
3580 if (dump_file && (dump_flags & TDF_DETAILS))
3581 fprintf (dump_file, "wild read\n");
3582 bitmap_clear (v);
3583 }
3584 else if (insn_info->read_rec
3585 || insn_info->non_frame_wild_read)
3586 {
3587 if (dump_file && !insn_info->non_frame_wild_read)
3588 fprintf (dump_file, "regular read\n");
3589 else if (dump_file && (dump_flags & TDF_DETAILS))
3590 fprintf (dump_file, "non-frame wild read\n");
3591 scan_reads_nospill (insn_info, v, NULL);
3592 }
3593 }
3594
3595 insn_info = insn_info->prev_insn;
3596 }
3597 }
3598 }
3599
3600
3601 \f
3602 /*----------------------------------------------------------------------------
3603 Sixth step.
3604
3605 Delete stores made redundant by earlier stores (which store the same
3606 value) that couldn't be eliminated.
3607 ----------------------------------------------------------------------------*/
3608
3609 static void
3610 dse_step6 (void)
3611 {
3612 basic_block bb;
3613
3614 FOR_ALL_BB_FN (bb, cfun)
3615 {
3616 bb_info_t bb_info = bb_table[bb->index];
3617 insn_info_t insn_info = bb_info->last_insn;
3618
3619 while (insn_info)
3620 {
3621 /* There may have been code deleted by the dce pass run before
3622 this phase. */
3623 if (insn_info->insn
3624 && INSN_P (insn_info->insn)
3625 && !insn_info->cannot_delete)
3626 {
3627 store_info_t s_info = insn_info->store_rec;
3628
3629 while (s_info && !s_info->is_set)
3630 s_info = s_info->next;
3631 if (s_info
3632 && s_info->redundant_reason
3633 && s_info->redundant_reason->insn
3634 && INSN_P (s_info->redundant_reason->insn))
3635 {
3636 rtx_insn *rinsn = s_info->redundant_reason->insn;
3637 if (dump_file && (dump_flags & TDF_DETAILS))
3638 fprintf (dump_file, "Locally deleting insn %d "
3639 "because insn %d stores the "
3640 "same value and couldn't be "
3641 "eliminated\n",
3642 INSN_UID (insn_info->insn),
3643 INSN_UID (rinsn));
3644 delete_dead_store_insn (insn_info);
3645 }
3646 }
3647 insn_info = insn_info->prev_insn;
3648 }
3649 }
3650 }
3651 \f
3652 /*----------------------------------------------------------------------------
3653 Seventh step.
3654
3655 Destroy everything left standing.
3656 ----------------------------------------------------------------------------*/
3657
3658 static void
3659 dse_step7 (void)
3660 {
3661 bitmap_obstack_release (&dse_bitmap_obstack);
3662 obstack_free (&dse_obstack, NULL);
3663
3664 end_alias_analysis ();
3665 free (bb_table);
3666 delete rtx_group_table;
3667 rtx_group_table = NULL;
3668 rtx_group_vec.release ();
3669 BITMAP_FREE (all_blocks);
3670 BITMAP_FREE (scratch);
3671
3672 rtx_store_info_pool.release ();
3673 read_info_type_pool.release ();
3674 insn_info_type_pool.release ();
3675 dse_bb_info_type_pool.release ();
3676 group_info_pool.release ();
3677 deferred_change_pool.release ();
3678 }
3679
3680
3681 /* -------------------------------------------------------------------------
3682 DSE
3683 ------------------------------------------------------------------------- */
3684
3685 /* Callback for running pass_rtl_dse. */
3686
3687 static unsigned int
3688 rest_of_handle_dse (void)
3689 {
3690 df_set_flags (DF_DEFER_INSN_RESCAN);
3691
3692 /* Need the notes since we must track live hardregs in the forwards
3693 direction. */
3694 df_note_add_problem ();
3695 df_analyze ();
3696
3697 dse_step0 ();
3698 dse_step1 ();
3699 dse_step2_init ();
3700 if (dse_step2_nospill ())
3701 {
3702 df_set_flags (DF_LR_RUN_DCE);
3703 df_analyze ();
3704 if (dump_file && (dump_flags & TDF_DETAILS))
3705 fprintf (dump_file, "doing global processing\n");
3706 dse_step3 (false);
3707 dse_step4 ();
3708 dse_step5_nospill ();
3709 }
3710
3711 dse_step6 ();
3712 dse_step7 ();
3713
3714 if (dump_file)
3715 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3716 locally_deleted, globally_deleted, spill_deleted);
3717
3718 /* DSE can eliminate potentially-trapping MEMs.
3719 Remove any EH edges associated with them. */
3720 if ((locally_deleted || globally_deleted)
3721 && cfun->can_throw_non_call_exceptions
3722 && purge_all_dead_edges ())
3723 cleanup_cfg (0);
3724
3725 return 0;
3726 }
3727
3728 namespace {
3729
3730 const pass_data pass_data_rtl_dse1 =
3731 {
3732 RTL_PASS, /* type */
3733 "dse1", /* name */
3734 OPTGROUP_NONE, /* optinfo_flags */
3735 TV_DSE1, /* tv_id */
3736 0, /* properties_required */
3737 0, /* properties_provided */
3738 0, /* properties_destroyed */
3739 0, /* todo_flags_start */
3740 TODO_df_finish, /* todo_flags_finish */
3741 };
3742
3743 class pass_rtl_dse1 : public rtl_opt_pass
3744 {
3745 public:
3746 pass_rtl_dse1 (gcc::context *ctxt)
3747 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3748 {}
3749
3750 /* opt_pass methods: */
3751 virtual bool gate (function *)
3752 {
3753 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3754 }
3755
3756 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3757
3758 }; // class pass_rtl_dse1
3759
3760 } // anon namespace
3761
3762 rtl_opt_pass *
3763 make_pass_rtl_dse1 (gcc::context *ctxt)
3764 {
3765 return new pass_rtl_dse1 (ctxt);
3766 }
3767
3768 namespace {
3769
3770 const pass_data pass_data_rtl_dse2 =
3771 {
3772 RTL_PASS, /* type */
3773 "dse2", /* name */
3774 OPTGROUP_NONE, /* optinfo_flags */
3775 TV_DSE2, /* tv_id */
3776 0, /* properties_required */
3777 0, /* properties_provided */
3778 0, /* properties_destroyed */
3779 0, /* todo_flags_start */
3780 TODO_df_finish, /* todo_flags_finish */
3781 };
3782
3783 class pass_rtl_dse2 : public rtl_opt_pass
3784 {
3785 public:
3786 pass_rtl_dse2 (gcc::context *ctxt)
3787 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3788 {}
3789
3790 /* opt_pass methods: */
3791 virtual bool gate (function *)
3792 {
3793 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3794 }
3795
3796 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3797
3798 }; // class pass_rtl_dse2
3799
3800 } // anon namespace
3801
3802 rtl_opt_pass *
3803 make_pass_rtl_dse2 (gcc::context *ctxt)
3804 {
3805 return new pass_rtl_dse2 (ctxt);
3806 }