]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dse.c
re PR rtl-optimization/84003 (FAIL: g++.dg/torture/pr77745.C with noinline foo)
[thirdparty/gcc.git] / gcc / dse.c
1 /* RTL dead store elimination.
2 Copyright (C) 2005-2018 Free Software Foundation, Inc.
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #undef BASELINE
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "target.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "predict.h"
34 #include "df.h"
35 #include "memmodel.h"
36 #include "tm_p.h"
37 #include "gimple-ssa.h"
38 #include "expmed.h"
39 #include "optabs.h"
40 #include "emit-rtl.h"
41 #include "recog.h"
42 #include "alias.h"
43 #include "stor-layout.h"
44 #include "cfgrtl.h"
45 #include "cselib.h"
46 #include "tree-pass.h"
47 #include "explow.h"
48 #include "expr.h"
49 #include "dbgcnt.h"
50 #include "params.h"
51 #include "rtl-iter.h"
52 #include "cfgcleanup.h"
53
54 /* This file contains three techniques for performing Dead Store
55 Elimination (dse).
56
57 * The first technique performs dse locally on any base address. It
58 is based on the cselib which is a local value numbering technique.
59 This technique is local to a basic block but deals with a fairly
60 general addresses.
61
62 * The second technique performs dse globally but is restricted to
63 base addresses that are either constant or are relative to the
64 frame_pointer.
65
66 * The third technique, (which is only done after register allocation)
67 processes the spill slots. This differs from the second
68 technique because it takes advantage of the fact that spilling is
69 completely free from the effects of aliasing.
70
71 Logically, dse is a backwards dataflow problem. A store can be
72 deleted if it if cannot be reached in the backward direction by any
73 use of the value being stored. However, the local technique uses a
74 forwards scan of the basic block because cselib requires that the
75 block be processed in that order.
76
77 The pass is logically broken into 7 steps:
78
79 0) Initialization.
80
81 1) The local algorithm, as well as scanning the insns for the two
82 global algorithms.
83
84 2) Analysis to see if the global algs are necessary. In the case
85 of stores base on a constant address, there must be at least two
86 stores to that address, to make it possible to delete some of the
87 stores. In the case of stores off of the frame or spill related
88 stores, only one store to an address is necessary because those
89 stores die at the end of the function.
90
91 3) Set up the global dataflow equations based on processing the
92 info parsed in the first step.
93
94 4) Solve the dataflow equations.
95
96 5) Delete the insns that the global analysis has indicated are
97 unnecessary.
98
99 6) Delete insns that store the same value as preceding store
100 where the earlier store couldn't be eliminated.
101
102 7) Cleanup.
103
104 This step uses cselib and canon_rtx to build the largest expression
105 possible for each address. This pass is a forwards pass through
106 each basic block. From the point of view of the global technique,
107 the first pass could examine a block in either direction. The
108 forwards ordering is to accommodate cselib.
109
110 We make a simplifying assumption: addresses fall into four broad
111 categories:
112
113 1) base has rtx_varies_p == false, offset is constant.
114 2) base has rtx_varies_p == false, offset variable.
115 3) base has rtx_varies_p == true, offset constant.
116 4) base has rtx_varies_p == true, offset variable.
117
118 The local passes are able to process all 4 kinds of addresses. The
119 global pass only handles 1).
120
121 The global problem is formulated as follows:
122
123 A store, S1, to address A, where A is not relative to the stack
124 frame, can be eliminated if all paths from S1 to the end of the
125 function contain another store to A before a read to A.
126
127 If the address A is relative to the stack frame, a store S2 to A
128 can be eliminated if there are no paths from S2 that reach the
129 end of the function that read A before another store to A. In
130 this case S2 can be deleted if there are paths from S2 to the
131 end of the function that have no reads or writes to A. This
132 second case allows stores to the stack frame to be deleted that
133 would otherwise die when the function returns. This cannot be
134 done if stores_off_frame_dead_at_return is not true. See the doc
135 for that variable for when this variable is false.
136
137 The global problem is formulated as a backwards set union
138 dataflow problem where the stores are the gens and reads are the
139 kills. Set union problems are rare and require some special
140 handling given our representation of bitmaps. A straightforward
141 implementation requires a lot of bitmaps filled with 1s.
142 These are expensive and cumbersome in our bitmap formulation so
143 care has been taken to avoid large vectors filled with 1s. See
144 the comments in bb_info and in the dataflow confluence functions
145 for details.
146
147 There are two places for further enhancements to this algorithm:
148
149 1) The original dse which was embedded in a pass called flow also
150 did local address forwarding. For example in
151
152 A <- r100
153 ... <- A
154
155 flow would replace the right hand side of the second insn with a
156 reference to r100. Most of the information is available to add this
157 to this pass. It has not done it because it is a lot of work in
158 the case that either r100 is assigned to between the first and
159 second insn and/or the second insn is a load of part of the value
160 stored by the first insn.
161
162 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
163 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
164 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
165 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
166
167 2) The cleaning up of spill code is quite profitable. It currently
168 depends on reading tea leaves and chicken entrails left by reload.
169 This pass depends on reload creating a singleton alias set for each
170 spill slot and telling the next dse pass which of these alias sets
171 are the singletons. Rather than analyze the addresses of the
172 spills, dse's spill processing just does analysis of the loads and
173 stores that use those alias sets. There are three cases where this
174 falls short:
175
176 a) Reload sometimes creates the slot for one mode of access, and
177 then inserts loads and/or stores for a smaller mode. In this
178 case, the current code just punts on the slot. The proper thing
179 to do is to back out and use one bit vector position for each
180 byte of the entity associated with the slot. This depends on
181 KNOWING that reload always generates the accesses for each of the
182 bytes in some canonical (read that easy to understand several
183 passes after reload happens) way.
184
185 b) Reload sometimes decides that spill slot it allocated was not
186 large enough for the mode and goes back and allocates more slots
187 with the same mode and alias set. The backout in this case is a
188 little more graceful than (a). In this case the slot is unmarked
189 as being a spill slot and if final address comes out to be based
190 off the frame pointer, the global algorithm handles this slot.
191
192 c) For any pass that may prespill, there is currently no
193 mechanism to tell the dse pass that the slot being used has the
194 special properties that reload uses. It may be that all that is
195 required is to have those passes make the same calls that reload
196 does, assuming that the alias sets can be manipulated in the same
197 way. */
198
199 /* There are limits to the size of constant offsets we model for the
200 global problem. There are certainly test cases, that exceed this
201 limit, however, it is unlikely that there are important programs
202 that really have constant offsets this size. */
203 #define MAX_OFFSET (64 * 1024)
204
205 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
206 on the default obstack because these bitmaps can grow quite large
207 (~2GB for the small (!) test case of PR54146) and we'll hold on to
208 all that memory until the end of the compiler run.
209 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
210 releasing the whole obstack. */
211 static bitmap_obstack dse_bitmap_obstack;
212
213 /* Obstack for other data. As for above: Kinda nice to be able to
214 throw it all away at the end in one big sweep. */
215 static struct obstack dse_obstack;
216
217 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
218 static bitmap scratch = NULL;
219
220 struct insn_info_type;
221
222 /* This structure holds information about a candidate store. */
223 struct store_info
224 {
225
226 /* False means this is a clobber. */
227 bool is_set;
228
229 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
230 bool is_large;
231
232 /* The id of the mem group of the base address. If rtx_varies_p is
233 true, this is -1. Otherwise, it is the index into the group
234 table. */
235 int group_id;
236
237 /* This is the cselib value. */
238 cselib_val *cse_base;
239
240 /* This canonized mem. */
241 rtx mem;
242
243 /* Canonized MEM address for use by canon_true_dependence. */
244 rtx mem_addr;
245
246 /* The offset of the first byte associated with the operation. */
247 poly_int64 offset;
248
249 /* The number of bytes covered by the operation. This is always exact
250 and known (rather than -1). */
251 poly_int64 width;
252
253 union
254 {
255 /* A bitmask as wide as the number of bytes in the word that
256 contains a 1 if the byte may be needed. The store is unused if
257 all of the bits are 0. This is used if IS_LARGE is false. */
258 unsigned HOST_WIDE_INT small_bitmask;
259
260 struct
261 {
262 /* A bitmap with one bit per byte, or null if the number of
263 bytes isn't known at compile time. A cleared bit means
264 the position is needed. Used if IS_LARGE is true. */
265 bitmap bmap;
266
267 /* When BITMAP is nonnull, this counts the number of set bits
268 (i.e. unneeded bytes) in the bitmap. If it is equal to
269 WIDTH, the whole store is unused.
270
271 When BITMAP is null:
272 - the store is definitely not needed when COUNT == 1
273 - all the store is needed when COUNT == 0 and RHS is nonnull
274 - otherwise we don't know which parts of the store are needed. */
275 int count;
276 } large;
277 } positions_needed;
278
279 /* The next store info for this insn. */
280 struct store_info *next;
281
282 /* The right hand side of the store. This is used if there is a
283 subsequent reload of the mems address somewhere later in the
284 basic block. */
285 rtx rhs;
286
287 /* If rhs is or holds a constant, this contains that constant,
288 otherwise NULL. */
289 rtx const_rhs;
290
291 /* Set if this store stores the same constant value as REDUNDANT_REASON
292 insn stored. These aren't eliminated early, because doing that
293 might prevent the earlier larger store to be eliminated. */
294 struct insn_info_type *redundant_reason;
295 };
296
297 /* Return a bitmask with the first N low bits set. */
298
299 static unsigned HOST_WIDE_INT
300 lowpart_bitmask (int n)
301 {
302 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U;
303 return mask >> (HOST_BITS_PER_WIDE_INT - n);
304 }
305
306 static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
307
308 static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
309
310 /* This structure holds information about a load. These are only
311 built for rtx bases. */
312 struct read_info_type
313 {
314 /* The id of the mem group of the base address. */
315 int group_id;
316
317 /* The offset of the first byte associated with the operation. */
318 poly_int64 offset;
319
320 /* The number of bytes covered by the operation, or -1 if not known. */
321 poly_int64 width;
322
323 /* The mem being read. */
324 rtx mem;
325
326 /* The next read_info for this insn. */
327 struct read_info_type *next;
328 };
329 typedef struct read_info_type *read_info_t;
330
331 static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
332
333 /* One of these records is created for each insn. */
334
335 struct insn_info_type
336 {
337 /* Set true if the insn contains a store but the insn itself cannot
338 be deleted. This is set if the insn is a parallel and there is
339 more than one non dead output or if the insn is in some way
340 volatile. */
341 bool cannot_delete;
342
343 /* This field is only used by the global algorithm. It is set true
344 if the insn contains any read of mem except for a (1). This is
345 also set if the insn is a call or has a clobber mem. If the insn
346 contains a wild read, the use_rec will be null. */
347 bool wild_read;
348
349 /* This is true only for CALL instructions which could potentially read
350 any non-frame memory location. This field is used by the global
351 algorithm. */
352 bool non_frame_wild_read;
353
354 /* This field is only used for the processing of const functions.
355 These functions cannot read memory, but they can read the stack
356 because that is where they may get their parms. We need to be
357 this conservative because, like the store motion pass, we don't
358 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
359 Moreover, we need to distinguish two cases:
360 1. Before reload (register elimination), the stores related to
361 outgoing arguments are stack pointer based and thus deemed
362 of non-constant base in this pass. This requires special
363 handling but also means that the frame pointer based stores
364 need not be killed upon encountering a const function call.
365 2. After reload, the stores related to outgoing arguments can be
366 either stack pointer or hard frame pointer based. This means
367 that we have no other choice than also killing all the frame
368 pointer based stores upon encountering a const function call.
369 This field is set after reload for const function calls and before
370 reload for const tail function calls on targets where arg pointer
371 is the frame pointer. Having this set is less severe than a wild
372 read, it just means that all the frame related stores are killed
373 rather than all the stores. */
374 bool frame_read;
375
376 /* This field is only used for the processing of const functions.
377 It is set if the insn may contain a stack pointer based store. */
378 bool stack_pointer_based;
379
380 /* This is true if any of the sets within the store contains a
381 cselib base. Such stores can only be deleted by the local
382 algorithm. */
383 bool contains_cselib_groups;
384
385 /* The insn. */
386 rtx_insn *insn;
387
388 /* The list of mem sets or mem clobbers that are contained in this
389 insn. If the insn is deletable, it contains only one mem set.
390 But it could also contain clobbers. Insns that contain more than
391 one mem set are not deletable, but each of those mems are here in
392 order to provide info to delete other insns. */
393 store_info *store_rec;
394
395 /* The linked list of mem uses in this insn. Only the reads from
396 rtx bases are listed here. The reads to cselib bases are
397 completely processed during the first scan and so are never
398 created. */
399 read_info_t read_rec;
400
401 /* The live fixed registers. We assume only fixed registers can
402 cause trouble by being clobbered from an expanded pattern;
403 storing only the live fixed registers (rather than all registers)
404 means less memory needs to be allocated / copied for the individual
405 stores. */
406 regset fixed_regs_live;
407
408 /* The prev insn in the basic block. */
409 struct insn_info_type * prev_insn;
410
411 /* The linked list of insns that are in consideration for removal in
412 the forwards pass through the basic block. This pointer may be
413 trash as it is not cleared when a wild read occurs. The only
414 time it is guaranteed to be correct is when the traversal starts
415 at active_local_stores. */
416 struct insn_info_type * next_local_store;
417 };
418 typedef struct insn_info_type *insn_info_t;
419
420 static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
421
422 /* The linked list of stores that are under consideration in this
423 basic block. */
424 static insn_info_t active_local_stores;
425 static int active_local_stores_len;
426
427 struct dse_bb_info_type
428 {
429 /* Pointer to the insn info for the last insn in the block. These
430 are linked so this is how all of the insns are reached. During
431 scanning this is the current insn being scanned. */
432 insn_info_t last_insn;
433
434 /* The info for the global dataflow problem. */
435
436
437 /* This is set if the transfer function should and in the wild_read
438 bitmap before applying the kill and gen sets. That vector knocks
439 out most of the bits in the bitmap and thus speeds up the
440 operations. */
441 bool apply_wild_read;
442
443 /* The following 4 bitvectors hold information about which positions
444 of which stores are live or dead. They are indexed by
445 get_bitmap_index. */
446
447 /* The set of store positions that exist in this block before a wild read. */
448 bitmap gen;
449
450 /* The set of load positions that exist in this block above the
451 same position of a store. */
452 bitmap kill;
453
454 /* The set of stores that reach the top of the block without being
455 killed by a read.
456
457 Do not represent the in if it is all ones. Note that this is
458 what the bitvector should logically be initialized to for a set
459 intersection problem. However, like the kill set, this is too
460 expensive. So initially, the in set will only be created for the
461 exit block and any block that contains a wild read. */
462 bitmap in;
463
464 /* The set of stores that reach the bottom of the block from it's
465 successors.
466
467 Do not represent the in if it is all ones. Note that this is
468 what the bitvector should logically be initialized to for a set
469 intersection problem. However, like the kill and in set, this is
470 too expensive. So what is done is that the confluence operator
471 just initializes the vector from one of the out sets of the
472 successors of the block. */
473 bitmap out;
474
475 /* The following bitvector is indexed by the reg number. It
476 contains the set of regs that are live at the current instruction
477 being processed. While it contains info for all of the
478 registers, only the hard registers are actually examined. It is used
479 to assure that shift and/or add sequences that are inserted do not
480 accidentally clobber live hard regs. */
481 bitmap regs_live;
482 };
483
484 typedef struct dse_bb_info_type *bb_info_t;
485
486 static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
487 ("bb_info_pool");
488
489 /* Table to hold all bb_infos. */
490 static bb_info_t *bb_table;
491
492 /* There is a group_info for each rtx base that is used to reference
493 memory. There are also not many of the rtx bases because they are
494 very limited in scope. */
495
496 struct group_info
497 {
498 /* The actual base of the address. */
499 rtx rtx_base;
500
501 /* The sequential id of the base. This allows us to have a
502 canonical ordering of these that is not based on addresses. */
503 int id;
504
505 /* True if there are any positions that are to be processed
506 globally. */
507 bool process_globally;
508
509 /* True if the base of this group is either the frame_pointer or
510 hard_frame_pointer. */
511 bool frame_related;
512
513 /* A mem wrapped around the base pointer for the group in order to do
514 read dependency. It must be given BLKmode in order to encompass all
515 the possible offsets from the base. */
516 rtx base_mem;
517
518 /* Canonized version of base_mem's address. */
519 rtx canon_base_addr;
520
521 /* These two sets of two bitmaps are used to keep track of how many
522 stores are actually referencing that position from this base. We
523 only do this for rtx bases as this will be used to assign
524 positions in the bitmaps for the global problem. Bit N is set in
525 store1 on the first store for offset N. Bit N is set in store2
526 for the second store to offset N. This is all we need since we
527 only care about offsets that have two or more stores for them.
528
529 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
530 for 0 and greater offsets.
531
532 There is one special case here, for stores into the stack frame,
533 we will or store1 into store2 before deciding which stores look
534 at globally. This is because stores to the stack frame that have
535 no other reads before the end of the function can also be
536 deleted. */
537 bitmap store1_n, store1_p, store2_n, store2_p;
538
539 /* These bitmaps keep track of offsets in this group escape this function.
540 An offset escapes if it corresponds to a named variable whose
541 addressable flag is set. */
542 bitmap escaped_n, escaped_p;
543
544 /* The positions in this bitmap have the same assignments as the in,
545 out, gen and kill bitmaps. This bitmap is all zeros except for
546 the positions that are occupied by stores for this group. */
547 bitmap group_kill;
548
549 /* The offset_map is used to map the offsets from this base into
550 positions in the global bitmaps. It is only created after all of
551 the all of stores have been scanned and we know which ones we
552 care about. */
553 int *offset_map_n, *offset_map_p;
554 int offset_map_size_n, offset_map_size_p;
555 };
556
557 static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
558
559 /* Index into the rtx_group_vec. */
560 static int rtx_group_next_id;
561
562
563 static vec<group_info *> rtx_group_vec;
564
565
566 /* This structure holds the set of changes that are being deferred
567 when removing read operation. See replace_read. */
568 struct deferred_change
569 {
570
571 /* The mem that is being replaced. */
572 rtx *loc;
573
574 /* The reg it is being replaced with. */
575 rtx reg;
576
577 struct deferred_change *next;
578 };
579
580 static object_allocator<deferred_change> deferred_change_pool
581 ("deferred_change_pool");
582
583 static deferred_change *deferred_change_list = NULL;
584
585 /* This is true except if cfun->stdarg -- i.e. we cannot do
586 this for vararg functions because they play games with the frame. */
587 static bool stores_off_frame_dead_at_return;
588
589 /* Counter for stats. */
590 static int globally_deleted;
591 static int locally_deleted;
592
593 static bitmap all_blocks;
594
595 /* Locations that are killed by calls in the global phase. */
596 static bitmap kill_on_calls;
597
598 /* The number of bits used in the global bitmaps. */
599 static unsigned int current_position;
600
601 /* Print offset range [OFFSET, OFFSET + WIDTH) to FILE. */
602
603 static void
604 print_range (FILE *file, poly_int64 offset, poly_int64 width)
605 {
606 fprintf (file, "[");
607 print_dec (offset, file, SIGNED);
608 fprintf (file, "..");
609 print_dec (offset + width, file, SIGNED);
610 fprintf (file, ")");
611 }
612 \f
613 /*----------------------------------------------------------------------------
614 Zeroth step.
615
616 Initialization.
617 ----------------------------------------------------------------------------*/
618
619
620 /* Hashtable callbacks for maintaining the "bases" field of
621 store_group_info, given that the addresses are function invariants. */
622
623 struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
624 {
625 static inline hashval_t hash (const group_info *);
626 static inline bool equal (const group_info *, const group_info *);
627 };
628
629 inline bool
630 invariant_group_base_hasher::equal (const group_info *gi1,
631 const group_info *gi2)
632 {
633 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
634 }
635
636 inline hashval_t
637 invariant_group_base_hasher::hash (const group_info *gi)
638 {
639 int do_not_record;
640 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
641 }
642
643 /* Tables of group_info structures, hashed by base value. */
644 static hash_table<invariant_group_base_hasher> *rtx_group_table;
645
646
647 /* Get the GROUP for BASE. Add a new group if it is not there. */
648
649 static group_info *
650 get_group_info (rtx base)
651 {
652 struct group_info tmp_gi;
653 group_info *gi;
654 group_info **slot;
655
656 gcc_assert (base != NULL_RTX);
657
658 /* Find the store_base_info structure for BASE, creating a new one
659 if necessary. */
660 tmp_gi.rtx_base = base;
661 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
662 gi = *slot;
663
664 if (gi == NULL)
665 {
666 *slot = gi = group_info_pool.allocate ();
667 gi->rtx_base = base;
668 gi->id = rtx_group_next_id++;
669 gi->base_mem = gen_rtx_MEM (BLKmode, base);
670 gi->canon_base_addr = canon_rtx (base);
671 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
672 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
673 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
674 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
675 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
676 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
677 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
678 gi->process_globally = false;
679 gi->frame_related =
680 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
681 gi->offset_map_size_n = 0;
682 gi->offset_map_size_p = 0;
683 gi->offset_map_n = NULL;
684 gi->offset_map_p = NULL;
685 rtx_group_vec.safe_push (gi);
686 }
687
688 return gi;
689 }
690
691
692 /* Initialization of data structures. */
693
694 static void
695 dse_step0 (void)
696 {
697 locally_deleted = 0;
698 globally_deleted = 0;
699
700 bitmap_obstack_initialize (&dse_bitmap_obstack);
701 gcc_obstack_init (&dse_obstack);
702
703 scratch = BITMAP_ALLOC (&reg_obstack);
704 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
705
706
707 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
708
709 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
710 rtx_group_next_id = 0;
711
712 stores_off_frame_dead_at_return = !cfun->stdarg;
713
714 init_alias_analysis ();
715 }
716
717
718 \f
719 /*----------------------------------------------------------------------------
720 First step.
721
722 Scan all of the insns. Any random ordering of the blocks is fine.
723 Each block is scanned in forward order to accommodate cselib which
724 is used to remove stores with non-constant bases.
725 ----------------------------------------------------------------------------*/
726
727 /* Delete all of the store_info recs from INSN_INFO. */
728
729 static void
730 free_store_info (insn_info_t insn_info)
731 {
732 store_info *cur = insn_info->store_rec;
733 while (cur)
734 {
735 store_info *next = cur->next;
736 if (cur->is_large)
737 BITMAP_FREE (cur->positions_needed.large.bmap);
738 if (cur->cse_base)
739 cse_store_info_pool.remove (cur);
740 else
741 rtx_store_info_pool.remove (cur);
742 cur = next;
743 }
744
745 insn_info->cannot_delete = true;
746 insn_info->contains_cselib_groups = false;
747 insn_info->store_rec = NULL;
748 }
749
750 struct note_add_store_info
751 {
752 rtx_insn *first, *current;
753 regset fixed_regs_live;
754 bool failure;
755 };
756
757 /* Callback for emit_inc_dec_insn_before via note_stores.
758 Check if a register is clobbered which is live afterwards. */
759
760 static void
761 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
762 {
763 rtx_insn *insn;
764 note_add_store_info *info = (note_add_store_info *) data;
765
766 if (!REG_P (loc))
767 return;
768
769 /* If this register is referenced by the current or an earlier insn,
770 that's OK. E.g. this applies to the register that is being incremented
771 with this addition. */
772 for (insn = info->first;
773 insn != NEXT_INSN (info->current);
774 insn = NEXT_INSN (insn))
775 if (reg_referenced_p (loc, PATTERN (insn)))
776 return;
777
778 /* If we come here, we have a clobber of a register that's only OK
779 if that register is not live. If we don't have liveness information
780 available, fail now. */
781 if (!info->fixed_regs_live)
782 {
783 info->failure = true;
784 return;
785 }
786 /* Now check if this is a live fixed register. */
787 unsigned int end_regno = END_REGNO (loc);
788 for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
789 if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
790 info->failure = true;
791 }
792
793 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
794 SRC + SRCOFF before insn ARG. */
795
796 static int
797 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
798 rtx op ATTRIBUTE_UNUSED,
799 rtx dest, rtx src, rtx srcoff, void *arg)
800 {
801 insn_info_t insn_info = (insn_info_t) arg;
802 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
803 note_add_store_info info;
804
805 /* We can reuse all operands without copying, because we are about
806 to delete the insn that contained it. */
807 if (srcoff)
808 {
809 start_sequence ();
810 emit_insn (gen_add3_insn (dest, src, srcoff));
811 new_insn = get_insns ();
812 end_sequence ();
813 }
814 else
815 new_insn = gen_move_insn (dest, src);
816 info.first = new_insn;
817 info.fixed_regs_live = insn_info->fixed_regs_live;
818 info.failure = false;
819 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
820 {
821 info.current = cur;
822 note_stores (PATTERN (cur), note_add_store, &info);
823 }
824
825 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
826 return it immediately, communicating the failure to its caller. */
827 if (info.failure)
828 return 1;
829
830 emit_insn_before (new_insn, insn);
831
832 return 0;
833 }
834
835 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
836 is there, is split into a separate insn.
837 Return true on success (or if there was nothing to do), false on failure. */
838
839 static bool
840 check_for_inc_dec_1 (insn_info_t insn_info)
841 {
842 rtx_insn *insn = insn_info->insn;
843 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
844 if (note)
845 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
846 insn_info) == 0;
847 return true;
848 }
849
850
851 /* Entry point for postreload. If you work on reload_cse, or you need this
852 anywhere else, consider if you can provide register liveness information
853 and add a parameter to this function so that it can be passed down in
854 insn_info.fixed_regs_live. */
855 bool
856 check_for_inc_dec (rtx_insn *insn)
857 {
858 insn_info_type insn_info;
859 rtx note;
860
861 insn_info.insn = insn;
862 insn_info.fixed_regs_live = NULL;
863 note = find_reg_note (insn, REG_INC, NULL_RTX);
864 if (note)
865 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
866 &insn_info) == 0;
867 return true;
868 }
869
870 /* Delete the insn and free all of the fields inside INSN_INFO. */
871
872 static void
873 delete_dead_store_insn (insn_info_t insn_info)
874 {
875 read_info_t read_info;
876
877 if (!dbg_cnt (dse))
878 return;
879
880 if (!check_for_inc_dec_1 (insn_info))
881 return;
882 if (dump_file && (dump_flags & TDF_DETAILS))
883 fprintf (dump_file, "Locally deleting insn %d\n",
884 INSN_UID (insn_info->insn));
885
886 free_store_info (insn_info);
887 read_info = insn_info->read_rec;
888
889 while (read_info)
890 {
891 read_info_t next = read_info->next;
892 read_info_type_pool.remove (read_info);
893 read_info = next;
894 }
895 insn_info->read_rec = NULL;
896
897 delete_insn (insn_info->insn);
898 locally_deleted++;
899 insn_info->insn = NULL;
900
901 insn_info->wild_read = false;
902 }
903
904 /* Return whether DECL, a local variable, can possibly escape the current
905 function scope. */
906
907 static bool
908 local_variable_can_escape (tree decl)
909 {
910 if (TREE_ADDRESSABLE (decl))
911 return true;
912
913 /* If this is a partitioned variable, we need to consider all the variables
914 in the partition. This is necessary because a store into one of them can
915 be replaced with a store into another and this may not change the outcome
916 of the escape analysis. */
917 if (cfun->gimple_df->decls_to_pointers != NULL)
918 {
919 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
920 if (namep)
921 return TREE_ADDRESSABLE (*namep);
922 }
923
924 return false;
925 }
926
927 /* Return whether EXPR can possibly escape the current function scope. */
928
929 static bool
930 can_escape (tree expr)
931 {
932 tree base;
933 if (!expr)
934 return true;
935 base = get_base_address (expr);
936 if (DECL_P (base)
937 && !may_be_aliased (base)
938 && !(VAR_P (base)
939 && !DECL_EXTERNAL (base)
940 && !TREE_STATIC (base)
941 && local_variable_can_escape (base)))
942 return false;
943 return true;
944 }
945
946 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
947 OFFSET and WIDTH. */
948
949 static void
950 set_usage_bits (group_info *group, poly_int64 offset, poly_int64 width,
951 tree expr)
952 {
953 /* Non-constant offsets and widths act as global kills, so there's no point
954 trying to use them to derive global DSE candidates. */
955 HOST_WIDE_INT i, const_offset, const_width;
956 bool expr_escapes = can_escape (expr);
957 if (offset.is_constant (&const_offset)
958 && width.is_constant (&const_width)
959 && const_offset > -MAX_OFFSET
960 && const_offset + const_width < MAX_OFFSET)
961 for (i = const_offset; i < const_offset + const_width; ++i)
962 {
963 bitmap store1;
964 bitmap store2;
965 bitmap escaped;
966 int ai;
967 if (i < 0)
968 {
969 store1 = group->store1_n;
970 store2 = group->store2_n;
971 escaped = group->escaped_n;
972 ai = -i;
973 }
974 else
975 {
976 store1 = group->store1_p;
977 store2 = group->store2_p;
978 escaped = group->escaped_p;
979 ai = i;
980 }
981
982 if (!bitmap_set_bit (store1, ai))
983 bitmap_set_bit (store2, ai);
984 else
985 {
986 if (i < 0)
987 {
988 if (group->offset_map_size_n < ai)
989 group->offset_map_size_n = ai;
990 }
991 else
992 {
993 if (group->offset_map_size_p < ai)
994 group->offset_map_size_p = ai;
995 }
996 }
997 if (expr_escapes)
998 bitmap_set_bit (escaped, ai);
999 }
1000 }
1001
1002 static void
1003 reset_active_stores (void)
1004 {
1005 active_local_stores = NULL;
1006 active_local_stores_len = 0;
1007 }
1008
1009 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1010
1011 static void
1012 free_read_records (bb_info_t bb_info)
1013 {
1014 insn_info_t insn_info = bb_info->last_insn;
1015 read_info_t *ptr = &insn_info->read_rec;
1016 while (*ptr)
1017 {
1018 read_info_t next = (*ptr)->next;
1019 read_info_type_pool.remove (*ptr);
1020 *ptr = next;
1021 }
1022 }
1023
1024 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1025
1026 static void
1027 add_wild_read (bb_info_t bb_info)
1028 {
1029 insn_info_t insn_info = bb_info->last_insn;
1030 insn_info->wild_read = true;
1031 free_read_records (bb_info);
1032 reset_active_stores ();
1033 }
1034
1035 /* Set the BB_INFO so that the last insn is marked as a wild read of
1036 non-frame locations. */
1037
1038 static void
1039 add_non_frame_wild_read (bb_info_t bb_info)
1040 {
1041 insn_info_t insn_info = bb_info->last_insn;
1042 insn_info->non_frame_wild_read = true;
1043 free_read_records (bb_info);
1044 reset_active_stores ();
1045 }
1046
1047 /* Return true if X is a constant or one of the registers that behave
1048 as a constant over the life of a function. This is equivalent to
1049 !rtx_varies_p for memory addresses. */
1050
1051 static bool
1052 const_or_frame_p (rtx x)
1053 {
1054 if (CONSTANT_P (x))
1055 return true;
1056
1057 if (GET_CODE (x) == REG)
1058 {
1059 /* Note that we have to test for the actual rtx used for the frame
1060 and arg pointers and not just the register number in case we have
1061 eliminated the frame and/or arg pointer and are using it
1062 for pseudos. */
1063 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1064 /* The arg pointer varies if it is not a fixed register. */
1065 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1066 || x == pic_offset_table_rtx)
1067 return true;
1068 return false;
1069 }
1070
1071 return false;
1072 }
1073
1074 /* Take all reasonable action to put the address of MEM into the form
1075 that we can do analysis on.
1076
1077 The gold standard is to get the address into the form: address +
1078 OFFSET where address is something that rtx_varies_p considers a
1079 constant. When we can get the address in this form, we can do
1080 global analysis on it. Note that for constant bases, address is
1081 not actually returned, only the group_id. The address can be
1082 obtained from that.
1083
1084 If that fails, we try cselib to get a value we can at least use
1085 locally. If that fails we return false.
1086
1087 The GROUP_ID is set to -1 for cselib bases and the index of the
1088 group for non_varying bases.
1089
1090 FOR_READ is true if this is a mem read and false if not. */
1091
1092 static bool
1093 canon_address (rtx mem,
1094 int *group_id,
1095 poly_int64 *offset,
1096 cselib_val **base)
1097 {
1098 machine_mode address_mode = get_address_mode (mem);
1099 rtx mem_address = XEXP (mem, 0);
1100 rtx expanded_address, address;
1101 int expanded;
1102
1103 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1104
1105 if (dump_file && (dump_flags & TDF_DETAILS))
1106 {
1107 fprintf (dump_file, " mem: ");
1108 print_inline_rtx (dump_file, mem_address, 0);
1109 fprintf (dump_file, "\n");
1110 }
1111
1112 /* First see if just canon_rtx (mem_address) is const or frame,
1113 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1114 address = NULL_RTX;
1115 for (expanded = 0; expanded < 2; expanded++)
1116 {
1117 if (expanded)
1118 {
1119 /* Use cselib to replace all of the reg references with the full
1120 expression. This will take care of the case where we have
1121
1122 r_x = base + offset;
1123 val = *r_x;
1124
1125 by making it into
1126
1127 val = *(base + offset); */
1128
1129 expanded_address = cselib_expand_value_rtx (mem_address,
1130 scratch, 5);
1131
1132 /* If this fails, just go with the address from first
1133 iteration. */
1134 if (!expanded_address)
1135 break;
1136 }
1137 else
1138 expanded_address = mem_address;
1139
1140 /* Split the address into canonical BASE + OFFSET terms. */
1141 address = canon_rtx (expanded_address);
1142
1143 *offset = 0;
1144
1145 if (dump_file && (dump_flags & TDF_DETAILS))
1146 {
1147 if (expanded)
1148 {
1149 fprintf (dump_file, "\n after cselib_expand address: ");
1150 print_inline_rtx (dump_file, expanded_address, 0);
1151 fprintf (dump_file, "\n");
1152 }
1153
1154 fprintf (dump_file, "\n after canon_rtx address: ");
1155 print_inline_rtx (dump_file, address, 0);
1156 fprintf (dump_file, "\n");
1157 }
1158
1159 if (GET_CODE (address) == CONST)
1160 address = XEXP (address, 0);
1161
1162 address = strip_offset_and_add (address, offset);
1163
1164 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1165 && const_or_frame_p (address))
1166 {
1167 group_info *group = get_group_info (address);
1168
1169 if (dump_file && (dump_flags & TDF_DETAILS))
1170 {
1171 fprintf (dump_file, " gid=%d offset=", group->id);
1172 print_dec (*offset, dump_file);
1173 fprintf (dump_file, "\n");
1174 }
1175 *base = NULL;
1176 *group_id = group->id;
1177 return true;
1178 }
1179 }
1180
1181 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1182 *group_id = -1;
1183
1184 if (*base == NULL)
1185 {
1186 if (dump_file && (dump_flags & TDF_DETAILS))
1187 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1188 return false;
1189 }
1190 if (dump_file && (dump_flags & TDF_DETAILS))
1191 {
1192 fprintf (dump_file, " varying cselib base=%u:%u offset = ",
1193 (*base)->uid, (*base)->hash);
1194 print_dec (*offset, dump_file);
1195 fprintf (dump_file, "\n");
1196 }
1197 return true;
1198 }
1199
1200
1201 /* Clear the rhs field from the active_local_stores array. */
1202
1203 static void
1204 clear_rhs_from_active_local_stores (void)
1205 {
1206 insn_info_t ptr = active_local_stores;
1207
1208 while (ptr)
1209 {
1210 store_info *store_info = ptr->store_rec;
1211 /* Skip the clobbers. */
1212 while (!store_info->is_set)
1213 store_info = store_info->next;
1214
1215 store_info->rhs = NULL;
1216 store_info->const_rhs = NULL;
1217
1218 ptr = ptr->next_local_store;
1219 }
1220 }
1221
1222
1223 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1224
1225 static inline void
1226 set_position_unneeded (store_info *s_info, int pos)
1227 {
1228 if (__builtin_expect (s_info->is_large, false))
1229 {
1230 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1231 s_info->positions_needed.large.count++;
1232 }
1233 else
1234 s_info->positions_needed.small_bitmask
1235 &= ~(HOST_WIDE_INT_1U << pos);
1236 }
1237
1238 /* Mark the whole store S_INFO as unneeded. */
1239
1240 static inline void
1241 set_all_positions_unneeded (store_info *s_info)
1242 {
1243 if (__builtin_expect (s_info->is_large, false))
1244 {
1245 HOST_WIDE_INT width;
1246 if (s_info->width.is_constant (&width))
1247 {
1248 bitmap_set_range (s_info->positions_needed.large.bmap, 0, width);
1249 s_info->positions_needed.large.count = width;
1250 }
1251 else
1252 {
1253 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1254 s_info->positions_needed.large.count = 1;
1255 }
1256 }
1257 else
1258 s_info->positions_needed.small_bitmask = HOST_WIDE_INT_0U;
1259 }
1260
1261 /* Return TRUE if any bytes from S_INFO store are needed. */
1262
1263 static inline bool
1264 any_positions_needed_p (store_info *s_info)
1265 {
1266 if (__builtin_expect (s_info->is_large, false))
1267 {
1268 HOST_WIDE_INT width;
1269 if (s_info->width.is_constant (&width))
1270 {
1271 gcc_checking_assert (s_info->positions_needed.large.bmap);
1272 return s_info->positions_needed.large.count < width;
1273 }
1274 else
1275 {
1276 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1277 return s_info->positions_needed.large.count == 0;
1278 }
1279 }
1280 else
1281 return (s_info->positions_needed.small_bitmask != HOST_WIDE_INT_0U);
1282 }
1283
1284 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1285 store are known to be needed. */
1286
1287 static inline bool
1288 all_positions_needed_p (store_info *s_info, poly_int64 start,
1289 poly_int64 width)
1290 {
1291 gcc_assert (s_info->rhs);
1292 if (!s_info->width.is_constant ())
1293 {
1294 gcc_assert (s_info->is_large
1295 && !s_info->positions_needed.large.bmap);
1296 return s_info->positions_needed.large.count == 0;
1297 }
1298
1299 /* Otherwise, if START and WIDTH are non-constant, we're asking about
1300 a non-constant region of a constant-sized store. We can't say for
1301 sure that all positions are needed. */
1302 HOST_WIDE_INT const_start, const_width;
1303 if (!start.is_constant (&const_start)
1304 || !width.is_constant (&const_width))
1305 return false;
1306
1307 if (__builtin_expect (s_info->is_large, false))
1308 {
1309 for (HOST_WIDE_INT i = const_start; i < const_start + const_width; ++i)
1310 if (bitmap_bit_p (s_info->positions_needed.large.bmap, i))
1311 return false;
1312 return true;
1313 }
1314 else
1315 {
1316 unsigned HOST_WIDE_INT mask
1317 = lowpart_bitmask (const_width) << const_start;
1318 return (s_info->positions_needed.small_bitmask & mask) == mask;
1319 }
1320 }
1321
1322
1323 static rtx get_stored_val (store_info *, machine_mode, poly_int64,
1324 poly_int64, basic_block, bool);
1325
1326
1327 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1328 there is a candidate store, after adding it to the appropriate
1329 local store group if so. */
1330
1331 static int
1332 record_store (rtx body, bb_info_t bb_info)
1333 {
1334 rtx mem, rhs, const_rhs, mem_addr;
1335 poly_int64 offset = 0;
1336 poly_int64 width = 0;
1337 insn_info_t insn_info = bb_info->last_insn;
1338 store_info *store_info = NULL;
1339 int group_id;
1340 cselib_val *base = NULL;
1341 insn_info_t ptr, last, redundant_reason;
1342 bool store_is_unused;
1343
1344 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1345 return 0;
1346
1347 mem = SET_DEST (body);
1348
1349 /* If this is not used, then this cannot be used to keep the insn
1350 from being deleted. On the other hand, it does provide something
1351 that can be used to prove that another store is dead. */
1352 store_is_unused
1353 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1354
1355 /* Check whether that value is a suitable memory location. */
1356 if (!MEM_P (mem))
1357 {
1358 /* If the set or clobber is unused, then it does not effect our
1359 ability to get rid of the entire insn. */
1360 if (!store_is_unused)
1361 insn_info->cannot_delete = true;
1362 return 0;
1363 }
1364
1365 /* At this point we know mem is a mem. */
1366 if (GET_MODE (mem) == BLKmode)
1367 {
1368 HOST_WIDE_INT const_size;
1369 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1370 {
1371 if (dump_file && (dump_flags & TDF_DETAILS))
1372 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1373 add_wild_read (bb_info);
1374 insn_info->cannot_delete = true;
1375 return 0;
1376 }
1377 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1378 as memset (addr, 0, 36); */
1379 else if (!MEM_SIZE_KNOWN_P (mem)
1380 || maybe_le (MEM_SIZE (mem), 0)
1381 /* This is a limit on the bitmap size, which is only relevant
1382 for constant-sized MEMs. */
1383 || (MEM_SIZE (mem).is_constant (&const_size)
1384 && const_size > MAX_OFFSET)
1385 || GET_CODE (body) != SET
1386 || !CONST_INT_P (SET_SRC (body)))
1387 {
1388 if (!store_is_unused)
1389 {
1390 /* If the set or clobber is unused, then it does not effect our
1391 ability to get rid of the entire insn. */
1392 insn_info->cannot_delete = true;
1393 clear_rhs_from_active_local_stores ();
1394 }
1395 return 0;
1396 }
1397 }
1398
1399 /* We can still process a volatile mem, we just cannot delete it. */
1400 if (MEM_VOLATILE_P (mem))
1401 insn_info->cannot_delete = true;
1402
1403 if (!canon_address (mem, &group_id, &offset, &base))
1404 {
1405 clear_rhs_from_active_local_stores ();
1406 return 0;
1407 }
1408
1409 if (GET_MODE (mem) == BLKmode)
1410 width = MEM_SIZE (mem);
1411 else
1412 width = GET_MODE_SIZE (GET_MODE (mem));
1413
1414 if (!endpoint_representable_p (offset, width))
1415 {
1416 clear_rhs_from_active_local_stores ();
1417 return 0;
1418 }
1419
1420 if (group_id >= 0)
1421 {
1422 /* In the restrictive case where the base is a constant or the
1423 frame pointer we can do global analysis. */
1424
1425 group_info *group
1426 = rtx_group_vec[group_id];
1427 tree expr = MEM_EXPR (mem);
1428
1429 store_info = rtx_store_info_pool.allocate ();
1430 set_usage_bits (group, offset, width, expr);
1431
1432 if (dump_file && (dump_flags & TDF_DETAILS))
1433 {
1434 fprintf (dump_file, " processing const base store gid=%d",
1435 group_id);
1436 print_range (dump_file, offset, width);
1437 fprintf (dump_file, "\n");
1438 }
1439 }
1440 else
1441 {
1442 if (may_be_sp_based_p (XEXP (mem, 0)))
1443 insn_info->stack_pointer_based = true;
1444 insn_info->contains_cselib_groups = true;
1445
1446 store_info = cse_store_info_pool.allocate ();
1447 group_id = -1;
1448
1449 if (dump_file && (dump_flags & TDF_DETAILS))
1450 {
1451 fprintf (dump_file, " processing cselib store ");
1452 print_range (dump_file, offset, width);
1453 fprintf (dump_file, "\n");
1454 }
1455 }
1456
1457 const_rhs = rhs = NULL_RTX;
1458 if (GET_CODE (body) == SET
1459 /* No place to keep the value after ra. */
1460 && !reload_completed
1461 && (REG_P (SET_SRC (body))
1462 || GET_CODE (SET_SRC (body)) == SUBREG
1463 || CONSTANT_P (SET_SRC (body)))
1464 && !MEM_VOLATILE_P (mem)
1465 /* Sometimes the store and reload is used for truncation and
1466 rounding. */
1467 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1468 {
1469 rhs = SET_SRC (body);
1470 if (CONSTANT_P (rhs))
1471 const_rhs = rhs;
1472 else if (body == PATTERN (insn_info->insn))
1473 {
1474 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1475 if (tem && CONSTANT_P (XEXP (tem, 0)))
1476 const_rhs = XEXP (tem, 0);
1477 }
1478 if (const_rhs == NULL_RTX && REG_P (rhs))
1479 {
1480 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1481
1482 if (tem && CONSTANT_P (tem))
1483 const_rhs = tem;
1484 }
1485 }
1486
1487 /* Check to see if this stores causes some other stores to be
1488 dead. */
1489 ptr = active_local_stores;
1490 last = NULL;
1491 redundant_reason = NULL;
1492 mem = canon_rtx (mem);
1493
1494 if (group_id < 0)
1495 mem_addr = base->val_rtx;
1496 else
1497 {
1498 group_info *group = rtx_group_vec[group_id];
1499 mem_addr = group->canon_base_addr;
1500 }
1501 if (maybe_ne (offset, 0))
1502 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1503
1504 while (ptr)
1505 {
1506 insn_info_t next = ptr->next_local_store;
1507 struct store_info *s_info = ptr->store_rec;
1508 bool del = true;
1509
1510 /* Skip the clobbers. We delete the active insn if this insn
1511 shadows the set. To have been put on the active list, it
1512 has exactly on set. */
1513 while (!s_info->is_set)
1514 s_info = s_info->next;
1515
1516 if (s_info->group_id == group_id && s_info->cse_base == base)
1517 {
1518 HOST_WIDE_INT i;
1519 if (dump_file && (dump_flags & TDF_DETAILS))
1520 {
1521 fprintf (dump_file, " trying store in insn=%d gid=%d",
1522 INSN_UID (ptr->insn), s_info->group_id);
1523 print_range (dump_file, s_info->offset, s_info->width);
1524 fprintf (dump_file, "\n");
1525 }
1526
1527 /* Even if PTR won't be eliminated as unneeded, if both
1528 PTR and this insn store the same constant value, we might
1529 eliminate this insn instead. */
1530 if (s_info->const_rhs
1531 && const_rhs
1532 && known_subrange_p (offset, width,
1533 s_info->offset, s_info->width)
1534 && all_positions_needed_p (s_info, offset - s_info->offset,
1535 width)
1536 /* We can only remove the later store if the earlier aliases
1537 at least all accesses the later one. */
1538 && (MEM_ALIAS_SET (mem) == MEM_ALIAS_SET (s_info->mem)
1539 || alias_set_subset_of (MEM_ALIAS_SET (mem),
1540 MEM_ALIAS_SET (s_info->mem))))
1541 {
1542 if (GET_MODE (mem) == BLKmode)
1543 {
1544 if (GET_MODE (s_info->mem) == BLKmode
1545 && s_info->const_rhs == const_rhs)
1546 redundant_reason = ptr;
1547 }
1548 else if (s_info->const_rhs == const0_rtx
1549 && const_rhs == const0_rtx)
1550 redundant_reason = ptr;
1551 else
1552 {
1553 rtx val;
1554 start_sequence ();
1555 val = get_stored_val (s_info, GET_MODE (mem), offset, width,
1556 BLOCK_FOR_INSN (insn_info->insn),
1557 true);
1558 if (get_insns () != NULL)
1559 val = NULL_RTX;
1560 end_sequence ();
1561 if (val && rtx_equal_p (val, const_rhs))
1562 redundant_reason = ptr;
1563 }
1564 }
1565
1566 HOST_WIDE_INT begin_unneeded, const_s_width, const_width;
1567 if (known_subrange_p (s_info->offset, s_info->width, offset, width))
1568 /* The new store touches every byte that S_INFO does. */
1569 set_all_positions_unneeded (s_info);
1570 else if ((offset - s_info->offset).is_constant (&begin_unneeded)
1571 && s_info->width.is_constant (&const_s_width)
1572 && width.is_constant (&const_width))
1573 {
1574 HOST_WIDE_INT end_unneeded = begin_unneeded + const_width;
1575 begin_unneeded = MAX (begin_unneeded, 0);
1576 end_unneeded = MIN (end_unneeded, const_s_width);
1577 for (i = begin_unneeded; i < end_unneeded; ++i)
1578 set_position_unneeded (s_info, i);
1579 }
1580 else
1581 {
1582 /* We don't know which parts of S_INFO are needed and
1583 which aren't, so invalidate the RHS. */
1584 s_info->rhs = NULL;
1585 s_info->const_rhs = NULL;
1586 }
1587 }
1588 else if (s_info->rhs)
1589 /* Need to see if it is possible for this store to overwrite
1590 the value of store_info. If it is, set the rhs to NULL to
1591 keep it from being used to remove a load. */
1592 {
1593 if (canon_output_dependence (s_info->mem, true,
1594 mem, GET_MODE (mem),
1595 mem_addr))
1596 {
1597 s_info->rhs = NULL;
1598 s_info->const_rhs = NULL;
1599 }
1600 }
1601
1602 /* An insn can be deleted if every position of every one of
1603 its s_infos is zero. */
1604 if (any_positions_needed_p (s_info))
1605 del = false;
1606
1607 if (del)
1608 {
1609 insn_info_t insn_to_delete = ptr;
1610
1611 active_local_stores_len--;
1612 if (last)
1613 last->next_local_store = ptr->next_local_store;
1614 else
1615 active_local_stores = ptr->next_local_store;
1616
1617 if (!insn_to_delete->cannot_delete)
1618 delete_dead_store_insn (insn_to_delete);
1619 }
1620 else
1621 last = ptr;
1622
1623 ptr = next;
1624 }
1625
1626 /* Finish filling in the store_info. */
1627 store_info->next = insn_info->store_rec;
1628 insn_info->store_rec = store_info;
1629 store_info->mem = mem;
1630 store_info->mem_addr = mem_addr;
1631 store_info->cse_base = base;
1632 HOST_WIDE_INT const_width;
1633 if (!width.is_constant (&const_width))
1634 {
1635 store_info->is_large = true;
1636 store_info->positions_needed.large.count = 0;
1637 store_info->positions_needed.large.bmap = NULL;
1638 }
1639 else if (const_width > HOST_BITS_PER_WIDE_INT)
1640 {
1641 store_info->is_large = true;
1642 store_info->positions_needed.large.count = 0;
1643 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1644 }
1645 else
1646 {
1647 store_info->is_large = false;
1648 store_info->positions_needed.small_bitmask
1649 = lowpart_bitmask (const_width);
1650 }
1651 store_info->group_id = group_id;
1652 store_info->offset = offset;
1653 store_info->width = width;
1654 store_info->is_set = GET_CODE (body) == SET;
1655 store_info->rhs = rhs;
1656 store_info->const_rhs = const_rhs;
1657 store_info->redundant_reason = redundant_reason;
1658
1659 /* If this is a clobber, we return 0. We will only be able to
1660 delete this insn if there is only one store USED store, but we
1661 can use the clobber to delete other stores earlier. */
1662 return store_info->is_set ? 1 : 0;
1663 }
1664
1665
1666 static void
1667 dump_insn_info (const char * start, insn_info_t insn_info)
1668 {
1669 fprintf (dump_file, "%s insn=%d %s\n", start,
1670 INSN_UID (insn_info->insn),
1671 insn_info->store_rec ? "has store" : "naked");
1672 }
1673
1674
1675 /* If the modes are different and the value's source and target do not
1676 line up, we need to extract the value from lower part of the rhs of
1677 the store, shift it, and then put it into a form that can be shoved
1678 into the read_insn. This function generates a right SHIFT of a
1679 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1680 shift sequence is returned or NULL if we failed to find a
1681 shift. */
1682
1683 static rtx
1684 find_shift_sequence (poly_int64 access_size,
1685 store_info *store_info,
1686 machine_mode read_mode,
1687 poly_int64 shift, bool speed, bool require_cst)
1688 {
1689 machine_mode store_mode = GET_MODE (store_info->mem);
1690 scalar_int_mode new_mode;
1691 rtx read_reg = NULL;
1692
1693 /* Some machines like the x86 have shift insns for each size of
1694 operand. Other machines like the ppc or the ia-64 may only have
1695 shift insns that shift values within 32 or 64 bit registers.
1696 This loop tries to find the smallest shift insn that will right
1697 justify the value we want to read but is available in one insn on
1698 the machine. */
1699
1700 opt_scalar_int_mode new_mode_iter;
1701 FOR_EACH_MODE_FROM (new_mode_iter,
1702 smallest_int_mode_for_size (access_size * BITS_PER_UNIT))
1703 {
1704 rtx target, new_reg, new_lhs;
1705 rtx_insn *shift_seq, *insn;
1706 int cost;
1707
1708 new_mode = new_mode_iter.require ();
1709 if (GET_MODE_BITSIZE (new_mode) > BITS_PER_WORD)
1710 break;
1711
1712 /* If a constant was stored into memory, try to simplify it here,
1713 otherwise the cost of the shift might preclude this optimization
1714 e.g. at -Os, even when no actual shift will be needed. */
1715 if (store_info->const_rhs)
1716 {
1717 poly_uint64 byte = subreg_lowpart_offset (new_mode, store_mode);
1718 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1719 store_mode, byte);
1720 if (ret && CONSTANT_P (ret))
1721 {
1722 rtx shift_rtx = gen_int_shift_amount (new_mode, shift);
1723 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1724 ret, shift_rtx);
1725 if (ret && CONSTANT_P (ret))
1726 {
1727 byte = subreg_lowpart_offset (read_mode, new_mode);
1728 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1729 if (ret && CONSTANT_P (ret)
1730 && (set_src_cost (ret, read_mode, speed)
1731 <= COSTS_N_INSNS (1)))
1732 return ret;
1733 }
1734 }
1735 }
1736
1737 if (require_cst)
1738 return NULL_RTX;
1739
1740 /* Try a wider mode if truncating the store mode to NEW_MODE
1741 requires a real instruction. */
1742 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode))
1743 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1744 continue;
1745
1746 /* Also try a wider mode if the necessary punning is either not
1747 desirable or not possible. */
1748 if (!CONSTANT_P (store_info->rhs)
1749 && !targetm.modes_tieable_p (new_mode, store_mode))
1750 continue;
1751
1752 new_reg = gen_reg_rtx (new_mode);
1753
1754 start_sequence ();
1755
1756 /* In theory we could also check for an ashr. Ian Taylor knows
1757 of one dsp where the cost of these two was not the same. But
1758 this really is a rare case anyway. */
1759 target = expand_binop (new_mode, lshr_optab, new_reg,
1760 gen_int_shift_amount (new_mode, shift),
1761 new_reg, 1, OPTAB_DIRECT);
1762
1763 shift_seq = get_insns ();
1764 end_sequence ();
1765
1766 if (target != new_reg || shift_seq == NULL)
1767 continue;
1768
1769 cost = 0;
1770 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1771 if (INSN_P (insn))
1772 cost += insn_cost (insn, speed);
1773
1774 /* The computation up to here is essentially independent
1775 of the arguments and could be precomputed. It may
1776 not be worth doing so. We could precompute if
1777 worthwhile or at least cache the results. The result
1778 technically depends on both SHIFT and ACCESS_SIZE,
1779 but in practice the answer will depend only on ACCESS_SIZE. */
1780
1781 if (cost > COSTS_N_INSNS (1))
1782 continue;
1783
1784 new_lhs = extract_low_bits (new_mode, store_mode,
1785 copy_rtx (store_info->rhs));
1786 if (new_lhs == NULL_RTX)
1787 continue;
1788
1789 /* We found an acceptable shift. Generate a move to
1790 take the value from the store and put it into the
1791 shift pseudo, then shift it, then generate another
1792 move to put in into the target of the read. */
1793 emit_move_insn (new_reg, new_lhs);
1794 emit_insn (shift_seq);
1795 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1796 break;
1797 }
1798
1799 return read_reg;
1800 }
1801
1802
1803 /* Call back for note_stores to find the hard regs set or clobbered by
1804 insn. Data is a bitmap of the hardregs set so far. */
1805
1806 static void
1807 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1808 {
1809 bitmap regs_set = (bitmap) data;
1810
1811 if (REG_P (x)
1812 && HARD_REGISTER_P (x))
1813 bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
1814 }
1815
1816 /* Helper function for replace_read and record_store.
1817 Attempt to return a value of mode READ_MODE stored in STORE_INFO,
1818 consisting of READ_WIDTH bytes starting from READ_OFFSET. Return NULL
1819 if not successful. If REQUIRE_CST is true, return always constant. */
1820
1821 static rtx
1822 get_stored_val (store_info *store_info, machine_mode read_mode,
1823 poly_int64 read_offset, poly_int64 read_width,
1824 basic_block bb, bool require_cst)
1825 {
1826 machine_mode store_mode = GET_MODE (store_info->mem);
1827 poly_int64 gap;
1828 rtx read_reg;
1829
1830 /* To get here the read is within the boundaries of the write so
1831 shift will never be negative. Start out with the shift being in
1832 bytes. */
1833 if (store_mode == BLKmode)
1834 gap = 0;
1835 else if (BYTES_BIG_ENDIAN)
1836 gap = ((store_info->offset + store_info->width)
1837 - (read_offset + read_width));
1838 else
1839 gap = read_offset - store_info->offset;
1840
1841 if (maybe_ne (gap, 0))
1842 {
1843 poly_int64 shift = gap * BITS_PER_UNIT;
1844 poly_int64 access_size = GET_MODE_SIZE (read_mode) + gap;
1845 read_reg = find_shift_sequence (access_size, store_info, read_mode,
1846 shift, optimize_bb_for_speed_p (bb),
1847 require_cst);
1848 }
1849 else if (store_mode == BLKmode)
1850 {
1851 /* The store is a memset (addr, const_val, const_size). */
1852 gcc_assert (CONST_INT_P (store_info->rhs));
1853 scalar_int_mode int_store_mode;
1854 if (!int_mode_for_mode (read_mode).exists (&int_store_mode))
1855 read_reg = NULL_RTX;
1856 else if (store_info->rhs == const0_rtx)
1857 read_reg = extract_low_bits (read_mode, int_store_mode, const0_rtx);
1858 else if (GET_MODE_BITSIZE (int_store_mode) > HOST_BITS_PER_WIDE_INT
1859 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1860 read_reg = NULL_RTX;
1861 else
1862 {
1863 unsigned HOST_WIDE_INT c
1864 = INTVAL (store_info->rhs)
1865 & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1);
1866 int shift = BITS_PER_UNIT;
1867 while (shift < HOST_BITS_PER_WIDE_INT)
1868 {
1869 c |= (c << shift);
1870 shift <<= 1;
1871 }
1872 read_reg = gen_int_mode (c, int_store_mode);
1873 read_reg = extract_low_bits (read_mode, int_store_mode, read_reg);
1874 }
1875 }
1876 else if (store_info->const_rhs
1877 && (require_cst
1878 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1879 read_reg = extract_low_bits (read_mode, store_mode,
1880 copy_rtx (store_info->const_rhs));
1881 else
1882 read_reg = extract_low_bits (read_mode, store_mode,
1883 copy_rtx (store_info->rhs));
1884 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1885 read_reg = NULL_RTX;
1886 return read_reg;
1887 }
1888
1889 /* Take a sequence of:
1890 A <- r1
1891 ...
1892 ... <- A
1893
1894 and change it into
1895 r2 <- r1
1896 A <- r1
1897 ...
1898 ... <- r2
1899
1900 or
1901
1902 r3 <- extract (r1)
1903 r3 <- r3 >> shift
1904 r2 <- extract (r3)
1905 ... <- r2
1906
1907 or
1908
1909 r2 <- extract (r1)
1910 ... <- r2
1911
1912 Depending on the alignment and the mode of the store and
1913 subsequent load.
1914
1915
1916 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1917 and READ_INSN are for the read. Return true if the replacement
1918 went ok. */
1919
1920 static bool
1921 replace_read (store_info *store_info, insn_info_t store_insn,
1922 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1923 bitmap regs_live)
1924 {
1925 machine_mode store_mode = GET_MODE (store_info->mem);
1926 machine_mode read_mode = GET_MODE (read_info->mem);
1927 rtx_insn *insns, *this_insn;
1928 rtx read_reg;
1929 basic_block bb;
1930
1931 if (!dbg_cnt (dse))
1932 return false;
1933
1934 /* Create a sequence of instructions to set up the read register.
1935 This sequence goes immediately before the store and its result
1936 is read by the load.
1937
1938 We need to keep this in perspective. We are replacing a read
1939 with a sequence of insns, but the read will almost certainly be
1940 in cache, so it is not going to be an expensive one. Thus, we
1941 are not willing to do a multi insn shift or worse a subroutine
1942 call to get rid of the read. */
1943 if (dump_file && (dump_flags & TDF_DETAILS))
1944 fprintf (dump_file, "trying to replace %smode load in insn %d"
1945 " from %smode store in insn %d\n",
1946 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1947 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1948 start_sequence ();
1949 bb = BLOCK_FOR_INSN (read_insn->insn);
1950 read_reg = get_stored_val (store_info,
1951 read_mode, read_info->offset, read_info->width,
1952 bb, false);
1953 if (read_reg == NULL_RTX)
1954 {
1955 end_sequence ();
1956 if (dump_file && (dump_flags & TDF_DETAILS))
1957 fprintf (dump_file, " -- could not extract bits of stored value\n");
1958 return false;
1959 }
1960 /* Force the value into a new register so that it won't be clobbered
1961 between the store and the load. */
1962 read_reg = copy_to_mode_reg (read_mode, read_reg);
1963 insns = get_insns ();
1964 end_sequence ();
1965
1966 if (insns != NULL_RTX)
1967 {
1968 /* Now we have to scan the set of new instructions to see if the
1969 sequence contains and sets of hardregs that happened to be
1970 live at this point. For instance, this can happen if one of
1971 the insns sets the CC and the CC happened to be live at that
1972 point. This does occasionally happen, see PR 37922. */
1973 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
1974
1975 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
1976 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
1977
1978 bitmap_and_into (regs_set, regs_live);
1979 if (!bitmap_empty_p (regs_set))
1980 {
1981 if (dump_file && (dump_flags & TDF_DETAILS))
1982 {
1983 fprintf (dump_file,
1984 "abandoning replacement because sequence clobbers live hardregs:");
1985 df_print_regset (dump_file, regs_set);
1986 }
1987
1988 BITMAP_FREE (regs_set);
1989 return false;
1990 }
1991 BITMAP_FREE (regs_set);
1992 }
1993
1994 if (validate_change (read_insn->insn, loc, read_reg, 0))
1995 {
1996 deferred_change *change = deferred_change_pool.allocate ();
1997
1998 /* Insert this right before the store insn where it will be safe
1999 from later insns that might change it before the read. */
2000 emit_insn_before (insns, store_insn->insn);
2001
2002 /* And now for the kludge part: cselib croaks if you just
2003 return at this point. There are two reasons for this:
2004
2005 1) Cselib has an idea of how many pseudos there are and
2006 that does not include the new ones we just added.
2007
2008 2) Cselib does not know about the move insn we added
2009 above the store_info, and there is no way to tell it
2010 about it, because it has "moved on".
2011
2012 Problem (1) is fixable with a certain amount of engineering.
2013 Problem (2) is requires starting the bb from scratch. This
2014 could be expensive.
2015
2016 So we are just going to have to lie. The move/extraction
2017 insns are not really an issue, cselib did not see them. But
2018 the use of the new pseudo read_insn is a real problem because
2019 cselib has not scanned this insn. The way that we solve this
2020 problem is that we are just going to put the mem back for now
2021 and when we are finished with the block, we undo this. We
2022 keep a table of mems to get rid of. At the end of the basic
2023 block we can put them back. */
2024
2025 *loc = read_info->mem;
2026 change->next = deferred_change_list;
2027 deferred_change_list = change;
2028 change->loc = loc;
2029 change->reg = read_reg;
2030
2031 /* Get rid of the read_info, from the point of view of the
2032 rest of dse, play like this read never happened. */
2033 read_insn->read_rec = read_info->next;
2034 read_info_type_pool.remove (read_info);
2035 if (dump_file && (dump_flags & TDF_DETAILS))
2036 {
2037 fprintf (dump_file, " -- replaced the loaded MEM with ");
2038 print_simple_rtl (dump_file, read_reg);
2039 fprintf (dump_file, "\n");
2040 }
2041 return true;
2042 }
2043 else
2044 {
2045 if (dump_file && (dump_flags & TDF_DETAILS))
2046 {
2047 fprintf (dump_file, " -- replacing the loaded MEM with ");
2048 print_simple_rtl (dump_file, read_reg);
2049 fprintf (dump_file, " led to an invalid instruction\n");
2050 }
2051 return false;
2052 }
2053 }
2054
2055 /* Check the address of MEM *LOC and kill any appropriate stores that may
2056 be active. */
2057
2058 static void
2059 check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
2060 {
2061 rtx mem = *loc, mem_addr;
2062 insn_info_t insn_info;
2063 poly_int64 offset = 0;
2064 poly_int64 width = 0;
2065 cselib_val *base = NULL;
2066 int group_id;
2067 read_info_t read_info;
2068
2069 insn_info = bb_info->last_insn;
2070
2071 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2072 || (MEM_VOLATILE_P (mem)))
2073 {
2074 if (dump_file && (dump_flags & TDF_DETAILS))
2075 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2076 add_wild_read (bb_info);
2077 insn_info->cannot_delete = true;
2078 return;
2079 }
2080
2081 /* If it is reading readonly mem, then there can be no conflict with
2082 another write. */
2083 if (MEM_READONLY_P (mem))
2084 return;
2085
2086 if (!canon_address (mem, &group_id, &offset, &base))
2087 {
2088 if (dump_file && (dump_flags & TDF_DETAILS))
2089 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2090 add_wild_read (bb_info);
2091 return;
2092 }
2093
2094 if (GET_MODE (mem) == BLKmode)
2095 width = -1;
2096 else
2097 width = GET_MODE_SIZE (GET_MODE (mem));
2098
2099 if (!endpoint_representable_p (offset, known_eq (width, -1) ? 1 : width))
2100 {
2101 if (dump_file && (dump_flags & TDF_DETAILS))
2102 fprintf (dump_file, " adding wild read, due to overflow.\n");
2103 add_wild_read (bb_info);
2104 return;
2105 }
2106
2107 read_info = read_info_type_pool.allocate ();
2108 read_info->group_id = group_id;
2109 read_info->mem = mem;
2110 read_info->offset = offset;
2111 read_info->width = width;
2112 read_info->next = insn_info->read_rec;
2113 insn_info->read_rec = read_info;
2114 if (group_id < 0)
2115 mem_addr = base->val_rtx;
2116 else
2117 {
2118 group_info *group = rtx_group_vec[group_id];
2119 mem_addr = group->canon_base_addr;
2120 }
2121 if (maybe_ne (offset, 0))
2122 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2123
2124 if (group_id >= 0)
2125 {
2126 /* This is the restricted case where the base is a constant or
2127 the frame pointer and offset is a constant. */
2128 insn_info_t i_ptr = active_local_stores;
2129 insn_info_t last = NULL;
2130
2131 if (dump_file && (dump_flags & TDF_DETAILS))
2132 {
2133 if (!known_size_p (width))
2134 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2135 group_id);
2136 else
2137 {
2138 fprintf (dump_file, " processing const load gid=%d", group_id);
2139 print_range (dump_file, offset, width);
2140 fprintf (dump_file, "\n");
2141 }
2142 }
2143
2144 while (i_ptr)
2145 {
2146 bool remove = false;
2147 store_info *store_info = i_ptr->store_rec;
2148
2149 /* Skip the clobbers. */
2150 while (!store_info->is_set)
2151 store_info = store_info->next;
2152
2153 /* There are three cases here. */
2154 if (store_info->group_id < 0)
2155 /* We have a cselib store followed by a read from a
2156 const base. */
2157 remove
2158 = canon_true_dependence (store_info->mem,
2159 GET_MODE (store_info->mem),
2160 store_info->mem_addr,
2161 mem, mem_addr);
2162
2163 else if (group_id == store_info->group_id)
2164 {
2165 /* This is a block mode load. We may get lucky and
2166 canon_true_dependence may save the day. */
2167 if (!known_size_p (width))
2168 remove
2169 = canon_true_dependence (store_info->mem,
2170 GET_MODE (store_info->mem),
2171 store_info->mem_addr,
2172 mem, mem_addr);
2173
2174 /* If this read is just reading back something that we just
2175 stored, rewrite the read. */
2176 else
2177 {
2178 if (store_info->rhs
2179 && known_subrange_p (offset, width, store_info->offset,
2180 store_info->width)
2181 && all_positions_needed_p (store_info,
2182 offset - store_info->offset,
2183 width)
2184 && replace_read (store_info, i_ptr, read_info,
2185 insn_info, loc, bb_info->regs_live))
2186 return;
2187
2188 /* The bases are the same, just see if the offsets
2189 could overlap. */
2190 if (ranges_maybe_overlap_p (offset, width,
2191 store_info->offset,
2192 store_info->width))
2193 remove = true;
2194 }
2195 }
2196
2197 /* else
2198 The else case that is missing here is that the
2199 bases are constant but different. There is nothing
2200 to do here because there is no overlap. */
2201
2202 if (remove)
2203 {
2204 if (dump_file && (dump_flags & TDF_DETAILS))
2205 dump_insn_info ("removing from active", i_ptr);
2206
2207 active_local_stores_len--;
2208 if (last)
2209 last->next_local_store = i_ptr->next_local_store;
2210 else
2211 active_local_stores = i_ptr->next_local_store;
2212 }
2213 else
2214 last = i_ptr;
2215 i_ptr = i_ptr->next_local_store;
2216 }
2217 }
2218 else
2219 {
2220 insn_info_t i_ptr = active_local_stores;
2221 insn_info_t last = NULL;
2222 if (dump_file && (dump_flags & TDF_DETAILS))
2223 {
2224 fprintf (dump_file, " processing cselib load mem:");
2225 print_inline_rtx (dump_file, mem, 0);
2226 fprintf (dump_file, "\n");
2227 }
2228
2229 while (i_ptr)
2230 {
2231 bool remove = false;
2232 store_info *store_info = i_ptr->store_rec;
2233
2234 if (dump_file && (dump_flags & TDF_DETAILS))
2235 fprintf (dump_file, " processing cselib load against insn %d\n",
2236 INSN_UID (i_ptr->insn));
2237
2238 /* Skip the clobbers. */
2239 while (!store_info->is_set)
2240 store_info = store_info->next;
2241
2242 /* If this read is just reading back something that we just
2243 stored, rewrite the read. */
2244 if (store_info->rhs
2245 && store_info->group_id == -1
2246 && store_info->cse_base == base
2247 && known_subrange_p (offset, width, store_info->offset,
2248 store_info->width)
2249 && all_positions_needed_p (store_info,
2250 offset - store_info->offset, width)
2251 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2252 bb_info->regs_live))
2253 return;
2254
2255 remove = canon_true_dependence (store_info->mem,
2256 GET_MODE (store_info->mem),
2257 store_info->mem_addr,
2258 mem, mem_addr);
2259
2260 if (remove)
2261 {
2262 if (dump_file && (dump_flags & TDF_DETAILS))
2263 dump_insn_info ("removing from active", i_ptr);
2264
2265 active_local_stores_len--;
2266 if (last)
2267 last->next_local_store = i_ptr->next_local_store;
2268 else
2269 active_local_stores = i_ptr->next_local_store;
2270 }
2271 else
2272 last = i_ptr;
2273 i_ptr = i_ptr->next_local_store;
2274 }
2275 }
2276 }
2277
2278 /* A note_uses callback in which DATA points the INSN_INFO for
2279 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2280 true for any part of *LOC. */
2281
2282 static void
2283 check_mem_read_use (rtx *loc, void *data)
2284 {
2285 subrtx_ptr_iterator::array_type array;
2286 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2287 {
2288 rtx *loc = *iter;
2289 if (MEM_P (*loc))
2290 check_mem_read_rtx (loc, (bb_info_t) data);
2291 }
2292 }
2293
2294
2295 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2296 So far it only handles arguments passed in registers. */
2297
2298 static bool
2299 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2300 {
2301 CUMULATIVE_ARGS args_so_far_v;
2302 cumulative_args_t args_so_far;
2303 tree arg;
2304 int idx;
2305
2306 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2307 args_so_far = pack_cumulative_args (&args_so_far_v);
2308
2309 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2310 for (idx = 0;
2311 arg != void_list_node && idx < nargs;
2312 arg = TREE_CHAIN (arg), idx++)
2313 {
2314 scalar_int_mode mode;
2315 rtx reg, link, tmp;
2316
2317 if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg)), &mode))
2318 return false;
2319
2320 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2321 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode)
2322 return false;
2323
2324 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2325 link;
2326 link = XEXP (link, 1))
2327 if (GET_CODE (XEXP (link, 0)) == USE)
2328 {
2329 scalar_int_mode arg_mode;
2330 args[idx] = XEXP (XEXP (link, 0), 0);
2331 if (REG_P (args[idx])
2332 && REGNO (args[idx]) == REGNO (reg)
2333 && (GET_MODE (args[idx]) == mode
2334 || (is_int_mode (GET_MODE (args[idx]), &arg_mode)
2335 && (GET_MODE_SIZE (arg_mode) <= UNITS_PER_WORD)
2336 && (GET_MODE_SIZE (arg_mode) > GET_MODE_SIZE (mode)))))
2337 break;
2338 }
2339 if (!link)
2340 return false;
2341
2342 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2343 if (GET_MODE (args[idx]) != mode)
2344 {
2345 if (!tmp || !CONST_INT_P (tmp))
2346 return false;
2347 tmp = gen_int_mode (INTVAL (tmp), mode);
2348 }
2349 if (tmp)
2350 args[idx] = tmp;
2351
2352 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2353 }
2354 if (arg != void_list_node || idx != nargs)
2355 return false;
2356 return true;
2357 }
2358
2359 /* Return a bitmap of the fixed registers contained in IN. */
2360
2361 static bitmap
2362 copy_fixed_regs (const_bitmap in)
2363 {
2364 bitmap ret;
2365
2366 ret = ALLOC_REG_SET (NULL);
2367 bitmap_and (ret, in, fixed_reg_set_regset);
2368 return ret;
2369 }
2370
2371 /* Apply record_store to all candidate stores in INSN. Mark INSN
2372 if some part of it is not a candidate store and assigns to a
2373 non-register target. */
2374
2375 static void
2376 scan_insn (bb_info_t bb_info, rtx_insn *insn)
2377 {
2378 rtx body;
2379 insn_info_type *insn_info = insn_info_type_pool.allocate ();
2380 int mems_found = 0;
2381 memset (insn_info, 0, sizeof (struct insn_info_type));
2382
2383 if (dump_file && (dump_flags & TDF_DETAILS))
2384 fprintf (dump_file, "\n**scanning insn=%d\n",
2385 INSN_UID (insn));
2386
2387 insn_info->prev_insn = bb_info->last_insn;
2388 insn_info->insn = insn;
2389 bb_info->last_insn = insn_info;
2390
2391 if (DEBUG_INSN_P (insn))
2392 {
2393 insn_info->cannot_delete = true;
2394 return;
2395 }
2396
2397 /* Look at all of the uses in the insn. */
2398 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2399
2400 if (CALL_P (insn))
2401 {
2402 bool const_call;
2403 rtx call, sym;
2404 tree memset_call = NULL_TREE;
2405
2406 insn_info->cannot_delete = true;
2407
2408 /* Const functions cannot do anything bad i.e. read memory,
2409 however, they can read their parameters which may have
2410 been pushed onto the stack.
2411 memset and bzero don't read memory either. */
2412 const_call = RTL_CONST_CALL_P (insn);
2413 if (!const_call
2414 && (call = get_call_rtx_from (insn))
2415 && (sym = XEXP (XEXP (call, 0), 0))
2416 && GET_CODE (sym) == SYMBOL_REF
2417 && SYMBOL_REF_DECL (sym)
2418 && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
2419 && DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (sym)) == BUILT_IN_NORMAL
2420 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (sym)) == BUILT_IN_MEMSET)
2421 memset_call = SYMBOL_REF_DECL (sym);
2422
2423 if (const_call || memset_call)
2424 {
2425 insn_info_t i_ptr = active_local_stores;
2426 insn_info_t last = NULL;
2427
2428 if (dump_file && (dump_flags & TDF_DETAILS))
2429 fprintf (dump_file, "%s call %d\n",
2430 const_call ? "const" : "memset", INSN_UID (insn));
2431
2432 /* See the head comment of the frame_read field. */
2433 if (reload_completed
2434 /* Tail calls are storing their arguments using
2435 arg pointer. If it is a frame pointer on the target,
2436 even before reload we need to kill frame pointer based
2437 stores. */
2438 || (SIBLING_CALL_P (insn)
2439 && HARD_FRAME_POINTER_IS_ARG_POINTER))
2440 insn_info->frame_read = true;
2441
2442 /* Loop over the active stores and remove those which are
2443 killed by the const function call. */
2444 while (i_ptr)
2445 {
2446 bool remove_store = false;
2447
2448 /* The stack pointer based stores are always killed. */
2449 if (i_ptr->stack_pointer_based)
2450 remove_store = true;
2451
2452 /* If the frame is read, the frame related stores are killed. */
2453 else if (insn_info->frame_read)
2454 {
2455 store_info *store_info = i_ptr->store_rec;
2456
2457 /* Skip the clobbers. */
2458 while (!store_info->is_set)
2459 store_info = store_info->next;
2460
2461 if (store_info->group_id >= 0
2462 && rtx_group_vec[store_info->group_id]->frame_related)
2463 remove_store = true;
2464 }
2465
2466 if (remove_store)
2467 {
2468 if (dump_file && (dump_flags & TDF_DETAILS))
2469 dump_insn_info ("removing from active", i_ptr);
2470
2471 active_local_stores_len--;
2472 if (last)
2473 last->next_local_store = i_ptr->next_local_store;
2474 else
2475 active_local_stores = i_ptr->next_local_store;
2476 }
2477 else
2478 last = i_ptr;
2479
2480 i_ptr = i_ptr->next_local_store;
2481 }
2482
2483 if (memset_call)
2484 {
2485 rtx args[3];
2486 if (get_call_args (insn, memset_call, args, 3)
2487 && CONST_INT_P (args[1])
2488 && CONST_INT_P (args[2])
2489 && INTVAL (args[2]) > 0)
2490 {
2491 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2492 set_mem_size (mem, INTVAL (args[2]));
2493 body = gen_rtx_SET (mem, args[1]);
2494 mems_found += record_store (body, bb_info);
2495 if (dump_file && (dump_flags & TDF_DETAILS))
2496 fprintf (dump_file, "handling memset as BLKmode store\n");
2497 if (mems_found == 1)
2498 {
2499 if (active_local_stores_len++
2500 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2501 {
2502 active_local_stores_len = 1;
2503 active_local_stores = NULL;
2504 }
2505 insn_info->fixed_regs_live
2506 = copy_fixed_regs (bb_info->regs_live);
2507 insn_info->next_local_store = active_local_stores;
2508 active_local_stores = insn_info;
2509 }
2510 }
2511 else
2512 clear_rhs_from_active_local_stores ();
2513 }
2514 }
2515 else if (SIBLING_CALL_P (insn) && reload_completed)
2516 /* Arguments for a sibling call that are pushed to memory are passed
2517 using the incoming argument pointer of the current function. After
2518 reload that might be (and likely is) frame pointer based. */
2519 add_wild_read (bb_info);
2520 else
2521 /* Every other call, including pure functions, may read any memory
2522 that is not relative to the frame. */
2523 add_non_frame_wild_read (bb_info);
2524
2525 return;
2526 }
2527
2528 /* Assuming that there are sets in these insns, we cannot delete
2529 them. */
2530 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2531 || volatile_refs_p (PATTERN (insn))
2532 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2533 || (RTX_FRAME_RELATED_P (insn))
2534 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2535 insn_info->cannot_delete = true;
2536
2537 body = PATTERN (insn);
2538 if (GET_CODE (body) == PARALLEL)
2539 {
2540 int i;
2541 for (i = 0; i < XVECLEN (body, 0); i++)
2542 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2543 }
2544 else
2545 mems_found += record_store (body, bb_info);
2546
2547 if (dump_file && (dump_flags & TDF_DETAILS))
2548 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2549 mems_found, insn_info->cannot_delete ? "true" : "false");
2550
2551 /* If we found some sets of mems, add it into the active_local_stores so
2552 that it can be locally deleted if found dead or used for
2553 replace_read and redundant constant store elimination. Otherwise mark
2554 it as cannot delete. This simplifies the processing later. */
2555 if (mems_found == 1)
2556 {
2557 if (active_local_stores_len++
2558 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2559 {
2560 active_local_stores_len = 1;
2561 active_local_stores = NULL;
2562 }
2563 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2564 insn_info->next_local_store = active_local_stores;
2565 active_local_stores = insn_info;
2566 }
2567 else
2568 insn_info->cannot_delete = true;
2569 }
2570
2571
2572 /* Remove BASE from the set of active_local_stores. This is a
2573 callback from cselib that is used to get rid of the stores in
2574 active_local_stores. */
2575
2576 static void
2577 remove_useless_values (cselib_val *base)
2578 {
2579 insn_info_t insn_info = active_local_stores;
2580 insn_info_t last = NULL;
2581
2582 while (insn_info)
2583 {
2584 store_info *store_info = insn_info->store_rec;
2585 bool del = false;
2586
2587 /* If ANY of the store_infos match the cselib group that is
2588 being deleted, then the insn can not be deleted. */
2589 while (store_info)
2590 {
2591 if ((store_info->group_id == -1)
2592 && (store_info->cse_base == base))
2593 {
2594 del = true;
2595 break;
2596 }
2597 store_info = store_info->next;
2598 }
2599
2600 if (del)
2601 {
2602 active_local_stores_len--;
2603 if (last)
2604 last->next_local_store = insn_info->next_local_store;
2605 else
2606 active_local_stores = insn_info->next_local_store;
2607 free_store_info (insn_info);
2608 }
2609 else
2610 last = insn_info;
2611
2612 insn_info = insn_info->next_local_store;
2613 }
2614 }
2615
2616
2617 /* Do all of step 1. */
2618
2619 static void
2620 dse_step1 (void)
2621 {
2622 basic_block bb;
2623 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
2624
2625 cselib_init (0);
2626 all_blocks = BITMAP_ALLOC (NULL);
2627 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2628 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2629
2630 FOR_ALL_BB_FN (bb, cfun)
2631 {
2632 insn_info_t ptr;
2633 bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
2634
2635 memset (bb_info, 0, sizeof (dse_bb_info_type));
2636 bitmap_set_bit (all_blocks, bb->index);
2637 bb_info->regs_live = regs_live;
2638
2639 bitmap_copy (regs_live, DF_LR_IN (bb));
2640 df_simulate_initialize_forwards (bb, regs_live);
2641
2642 bb_table[bb->index] = bb_info;
2643 cselib_discard_hook = remove_useless_values;
2644
2645 if (bb->index >= NUM_FIXED_BLOCKS)
2646 {
2647 rtx_insn *insn;
2648
2649 active_local_stores = NULL;
2650 active_local_stores_len = 0;
2651 cselib_clear_table ();
2652
2653 /* Scan the insns. */
2654 FOR_BB_INSNS (bb, insn)
2655 {
2656 if (INSN_P (insn))
2657 scan_insn (bb_info, insn);
2658 cselib_process_insn (insn);
2659 if (INSN_P (insn))
2660 df_simulate_one_insn_forwards (bb, insn, regs_live);
2661 }
2662
2663 /* This is something of a hack, because the global algorithm
2664 is supposed to take care of the case where stores go dead
2665 at the end of the function. However, the global
2666 algorithm must take a more conservative view of block
2667 mode reads than the local alg does. So to get the case
2668 where you have a store to the frame followed by a non
2669 overlapping block more read, we look at the active local
2670 stores at the end of the function and delete all of the
2671 frame and spill based ones. */
2672 if (stores_off_frame_dead_at_return
2673 && (EDGE_COUNT (bb->succs) == 0
2674 || (single_succ_p (bb)
2675 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2676 && ! crtl->calls_eh_return)))
2677 {
2678 insn_info_t i_ptr = active_local_stores;
2679 while (i_ptr)
2680 {
2681 store_info *store_info = i_ptr->store_rec;
2682
2683 /* Skip the clobbers. */
2684 while (!store_info->is_set)
2685 store_info = store_info->next;
2686 if (store_info->group_id >= 0)
2687 {
2688 group_info *group = rtx_group_vec[store_info->group_id];
2689 if (group->frame_related && !i_ptr->cannot_delete)
2690 delete_dead_store_insn (i_ptr);
2691 }
2692
2693 i_ptr = i_ptr->next_local_store;
2694 }
2695 }
2696
2697 /* Get rid of the loads that were discovered in
2698 replace_read. Cselib is finished with this block. */
2699 while (deferred_change_list)
2700 {
2701 deferred_change *next = deferred_change_list->next;
2702
2703 /* There is no reason to validate this change. That was
2704 done earlier. */
2705 *deferred_change_list->loc = deferred_change_list->reg;
2706 deferred_change_pool.remove (deferred_change_list);
2707 deferred_change_list = next;
2708 }
2709
2710 /* Get rid of all of the cselib based store_infos in this
2711 block and mark the containing insns as not being
2712 deletable. */
2713 ptr = bb_info->last_insn;
2714 while (ptr)
2715 {
2716 if (ptr->contains_cselib_groups)
2717 {
2718 store_info *s_info = ptr->store_rec;
2719 while (s_info && !s_info->is_set)
2720 s_info = s_info->next;
2721 if (s_info
2722 && s_info->redundant_reason
2723 && s_info->redundant_reason->insn
2724 && !ptr->cannot_delete)
2725 {
2726 if (dump_file && (dump_flags & TDF_DETAILS))
2727 fprintf (dump_file, "Locally deleting insn %d "
2728 "because insn %d stores the "
2729 "same value and couldn't be "
2730 "eliminated\n",
2731 INSN_UID (ptr->insn),
2732 INSN_UID (s_info->redundant_reason->insn));
2733 delete_dead_store_insn (ptr);
2734 }
2735 free_store_info (ptr);
2736 }
2737 else
2738 {
2739 store_info *s_info;
2740
2741 /* Free at least positions_needed bitmaps. */
2742 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2743 if (s_info->is_large)
2744 {
2745 BITMAP_FREE (s_info->positions_needed.large.bmap);
2746 s_info->is_large = false;
2747 }
2748 }
2749 ptr = ptr->prev_insn;
2750 }
2751
2752 cse_store_info_pool.release ();
2753 }
2754 bb_info->regs_live = NULL;
2755 }
2756
2757 BITMAP_FREE (regs_live);
2758 cselib_finish ();
2759 rtx_group_table->empty ();
2760 }
2761
2762 \f
2763 /*----------------------------------------------------------------------------
2764 Second step.
2765
2766 Assign each byte position in the stores that we are going to
2767 analyze globally to a position in the bitmaps. Returns true if
2768 there are any bit positions assigned.
2769 ----------------------------------------------------------------------------*/
2770
2771 static void
2772 dse_step2_init (void)
2773 {
2774 unsigned int i;
2775 group_info *group;
2776
2777 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2778 {
2779 /* For all non stack related bases, we only consider a store to
2780 be deletable if there are two or more stores for that
2781 position. This is because it takes one store to make the
2782 other store redundant. However, for the stores that are
2783 stack related, we consider them if there is only one store
2784 for the position. We do this because the stack related
2785 stores can be deleted if their is no read between them and
2786 the end of the function.
2787
2788 To make this work in the current framework, we take the stack
2789 related bases add all of the bits from store1 into store2.
2790 This has the effect of making the eligible even if there is
2791 only one store. */
2792
2793 if (stores_off_frame_dead_at_return && group->frame_related)
2794 {
2795 bitmap_ior_into (group->store2_n, group->store1_n);
2796 bitmap_ior_into (group->store2_p, group->store1_p);
2797 if (dump_file && (dump_flags & TDF_DETAILS))
2798 fprintf (dump_file, "group %d is frame related ", i);
2799 }
2800
2801 group->offset_map_size_n++;
2802 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2803 group->offset_map_size_n);
2804 group->offset_map_size_p++;
2805 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2806 group->offset_map_size_p);
2807 group->process_globally = false;
2808 if (dump_file && (dump_flags & TDF_DETAILS))
2809 {
2810 fprintf (dump_file, "group %d(%d+%d): ", i,
2811 (int)bitmap_count_bits (group->store2_n),
2812 (int)bitmap_count_bits (group->store2_p));
2813 bitmap_print (dump_file, group->store2_n, "n ", " ");
2814 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2815 }
2816 }
2817 }
2818
2819
2820 /* Init the offset tables. */
2821
2822 static bool
2823 dse_step2 (void)
2824 {
2825 unsigned int i;
2826 group_info *group;
2827 /* Position 0 is unused because 0 is used in the maps to mean
2828 unused. */
2829 current_position = 1;
2830 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2831 {
2832 bitmap_iterator bi;
2833 unsigned int j;
2834
2835 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2836 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2837 bitmap_clear (group->group_kill);
2838
2839 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2840 {
2841 bitmap_set_bit (group->group_kill, current_position);
2842 if (bitmap_bit_p (group->escaped_n, j))
2843 bitmap_set_bit (kill_on_calls, current_position);
2844 group->offset_map_n[j] = current_position++;
2845 group->process_globally = true;
2846 }
2847 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2848 {
2849 bitmap_set_bit (group->group_kill, current_position);
2850 if (bitmap_bit_p (group->escaped_p, j))
2851 bitmap_set_bit (kill_on_calls, current_position);
2852 group->offset_map_p[j] = current_position++;
2853 group->process_globally = true;
2854 }
2855 }
2856 return current_position != 1;
2857 }
2858
2859
2860 \f
2861 /*----------------------------------------------------------------------------
2862 Third step.
2863
2864 Build the bit vectors for the transfer functions.
2865 ----------------------------------------------------------------------------*/
2866
2867
2868 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2869 there, return 0. */
2870
2871 static int
2872 get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
2873 {
2874 if (offset < 0)
2875 {
2876 HOST_WIDE_INT offset_p = -offset;
2877 if (offset_p >= group_info->offset_map_size_n)
2878 return 0;
2879 return group_info->offset_map_n[offset_p];
2880 }
2881 else
2882 {
2883 if (offset >= group_info->offset_map_size_p)
2884 return 0;
2885 return group_info->offset_map_p[offset];
2886 }
2887 }
2888
2889
2890 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2891 may be NULL. */
2892
2893 static void
2894 scan_stores (store_info *store_info, bitmap gen, bitmap kill)
2895 {
2896 while (store_info)
2897 {
2898 HOST_WIDE_INT i, offset, width;
2899 group_info *group_info
2900 = rtx_group_vec[store_info->group_id];
2901 /* We can (conservatively) ignore stores whose bounds aren't known;
2902 they simply don't generate new global dse opportunities. */
2903 if (group_info->process_globally
2904 && store_info->offset.is_constant (&offset)
2905 && store_info->width.is_constant (&width))
2906 {
2907 HOST_WIDE_INT end = offset + width;
2908 for (i = offset; i < end; i++)
2909 {
2910 int index = get_bitmap_index (group_info, i);
2911 if (index != 0)
2912 {
2913 bitmap_set_bit (gen, index);
2914 if (kill)
2915 bitmap_clear_bit (kill, index);
2916 }
2917 }
2918 }
2919 store_info = store_info->next;
2920 }
2921 }
2922
2923
2924 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
2925 may be NULL. */
2926
2927 static void
2928 scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
2929 {
2930 read_info_t read_info = insn_info->read_rec;
2931 int i;
2932 group_info *group;
2933
2934 /* If this insn reads the frame, kill all the frame related stores. */
2935 if (insn_info->frame_read)
2936 {
2937 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2938 if (group->process_globally && group->frame_related)
2939 {
2940 if (kill)
2941 bitmap_ior_into (kill, group->group_kill);
2942 bitmap_and_compl_into (gen, group->group_kill);
2943 }
2944 }
2945 if (insn_info->non_frame_wild_read)
2946 {
2947 /* Kill all non-frame related stores. Kill all stores of variables that
2948 escape. */
2949 if (kill)
2950 bitmap_ior_into (kill, kill_on_calls);
2951 bitmap_and_compl_into (gen, kill_on_calls);
2952 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2953 if (group->process_globally && !group->frame_related)
2954 {
2955 if (kill)
2956 bitmap_ior_into (kill, group->group_kill);
2957 bitmap_and_compl_into (gen, group->group_kill);
2958 }
2959 }
2960 while (read_info)
2961 {
2962 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2963 {
2964 if (group->process_globally)
2965 {
2966 if (i == read_info->group_id)
2967 {
2968 HOST_WIDE_INT offset, width;
2969 /* Reads with non-constant size kill all DSE opportunities
2970 in the group. */
2971 if (!read_info->offset.is_constant (&offset)
2972 || !read_info->width.is_constant (&width)
2973 || !known_size_p (width))
2974 {
2975 /* Handle block mode reads. */
2976 if (kill)
2977 bitmap_ior_into (kill, group->group_kill);
2978 bitmap_and_compl_into (gen, group->group_kill);
2979 }
2980 else
2981 {
2982 /* The groups are the same, just process the
2983 offsets. */
2984 HOST_WIDE_INT j;
2985 HOST_WIDE_INT end = offset + width;
2986 for (j = offset; j < end; j++)
2987 {
2988 int index = get_bitmap_index (group, j);
2989 if (index != 0)
2990 {
2991 if (kill)
2992 bitmap_set_bit (kill, index);
2993 bitmap_clear_bit (gen, index);
2994 }
2995 }
2996 }
2997 }
2998 else
2999 {
3000 /* The groups are different, if the alias sets
3001 conflict, clear the entire group. We only need
3002 to apply this test if the read_info is a cselib
3003 read. Anything with a constant base cannot alias
3004 something else with a different constant
3005 base. */
3006 if ((read_info->group_id < 0)
3007 && canon_true_dependence (group->base_mem,
3008 GET_MODE (group->base_mem),
3009 group->canon_base_addr,
3010 read_info->mem, NULL_RTX))
3011 {
3012 if (kill)
3013 bitmap_ior_into (kill, group->group_kill);
3014 bitmap_and_compl_into (gen, group->group_kill);
3015 }
3016 }
3017 }
3018 }
3019
3020 read_info = read_info->next;
3021 }
3022 }
3023
3024
3025 /* Return the insn in BB_INFO before the first wild read or if there
3026 are no wild reads in the block, return the last insn. */
3027
3028 static insn_info_t
3029 find_insn_before_first_wild_read (bb_info_t bb_info)
3030 {
3031 insn_info_t insn_info = bb_info->last_insn;
3032 insn_info_t last_wild_read = NULL;
3033
3034 while (insn_info)
3035 {
3036 if (insn_info->wild_read)
3037 {
3038 last_wild_read = insn_info->prev_insn;
3039 /* Block starts with wild read. */
3040 if (!last_wild_read)
3041 return NULL;
3042 }
3043
3044 insn_info = insn_info->prev_insn;
3045 }
3046
3047 if (last_wild_read)
3048 return last_wild_read;
3049 else
3050 return bb_info->last_insn;
3051 }
3052
3053
3054 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3055 the block in order to build the gen and kill sets for the block.
3056 We start at ptr which may be the last insn in the block or may be
3057 the first insn with a wild read. In the latter case we are able to
3058 skip the rest of the block because it just does not matter:
3059 anything that happens is hidden by the wild read. */
3060
3061 static void
3062 dse_step3_scan (basic_block bb)
3063 {
3064 bb_info_t bb_info = bb_table[bb->index];
3065 insn_info_t insn_info;
3066
3067 insn_info = find_insn_before_first_wild_read (bb_info);
3068
3069 /* In the spill case or in the no_spill case if there is no wild
3070 read in the block, we will need a kill set. */
3071 if (insn_info == bb_info->last_insn)
3072 {
3073 if (bb_info->kill)
3074 bitmap_clear (bb_info->kill);
3075 else
3076 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3077 }
3078 else
3079 if (bb_info->kill)
3080 BITMAP_FREE (bb_info->kill);
3081
3082 while (insn_info)
3083 {
3084 /* There may have been code deleted by the dce pass run before
3085 this phase. */
3086 if (insn_info->insn && INSN_P (insn_info->insn))
3087 {
3088 scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
3089 scan_reads (insn_info, bb_info->gen, bb_info->kill);
3090 }
3091
3092 insn_info = insn_info->prev_insn;
3093 }
3094 }
3095
3096
3097 /* Set the gen set of the exit block, and also any block with no
3098 successors that does not have a wild read. */
3099
3100 static void
3101 dse_step3_exit_block_scan (bb_info_t bb_info)
3102 {
3103 /* The gen set is all 0's for the exit block except for the
3104 frame_pointer_group. */
3105
3106 if (stores_off_frame_dead_at_return)
3107 {
3108 unsigned int i;
3109 group_info *group;
3110
3111 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3112 {
3113 if (group->process_globally && group->frame_related)
3114 bitmap_ior_into (bb_info->gen, group->group_kill);
3115 }
3116 }
3117 }
3118
3119
3120 /* Find all of the blocks that are not backwards reachable from the
3121 exit block or any block with no successors (BB). These are the
3122 infinite loops or infinite self loops. These blocks will still
3123 have their bits set in UNREACHABLE_BLOCKS. */
3124
3125 static void
3126 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3127 {
3128 edge e;
3129 edge_iterator ei;
3130
3131 if (bitmap_bit_p (unreachable_blocks, bb->index))
3132 {
3133 bitmap_clear_bit (unreachable_blocks, bb->index);
3134 FOR_EACH_EDGE (e, ei, bb->preds)
3135 {
3136 mark_reachable_blocks (unreachable_blocks, e->src);
3137 }
3138 }
3139 }
3140
3141 /* Build the transfer functions for the function. */
3142
3143 static void
3144 dse_step3 ()
3145 {
3146 basic_block bb;
3147 sbitmap_iterator sbi;
3148 bitmap all_ones = NULL;
3149 unsigned int i;
3150
3151 auto_sbitmap unreachable_blocks (last_basic_block_for_fn (cfun));
3152 bitmap_ones (unreachable_blocks);
3153
3154 FOR_ALL_BB_FN (bb, cfun)
3155 {
3156 bb_info_t bb_info = bb_table[bb->index];
3157 if (bb_info->gen)
3158 bitmap_clear (bb_info->gen);
3159 else
3160 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3161
3162 if (bb->index == ENTRY_BLOCK)
3163 ;
3164 else if (bb->index == EXIT_BLOCK)
3165 dse_step3_exit_block_scan (bb_info);
3166 else
3167 dse_step3_scan (bb);
3168 if (EDGE_COUNT (bb->succs) == 0)
3169 mark_reachable_blocks (unreachable_blocks, bb);
3170
3171 /* If this is the second time dataflow is run, delete the old
3172 sets. */
3173 if (bb_info->in)
3174 BITMAP_FREE (bb_info->in);
3175 if (bb_info->out)
3176 BITMAP_FREE (bb_info->out);
3177 }
3178
3179 /* For any block in an infinite loop, we must initialize the out set
3180 to all ones. This could be expensive, but almost never occurs in
3181 practice. However, it is common in regression tests. */
3182 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3183 {
3184 if (bitmap_bit_p (all_blocks, i))
3185 {
3186 bb_info_t bb_info = bb_table[i];
3187 if (!all_ones)
3188 {
3189 unsigned int j;
3190 group_info *group;
3191
3192 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3193 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3194 bitmap_ior_into (all_ones, group->group_kill);
3195 }
3196 if (!bb_info->out)
3197 {
3198 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3199 bitmap_copy (bb_info->out, all_ones);
3200 }
3201 }
3202 }
3203
3204 if (all_ones)
3205 BITMAP_FREE (all_ones);
3206 }
3207
3208
3209 \f
3210 /*----------------------------------------------------------------------------
3211 Fourth step.
3212
3213 Solve the bitvector equations.
3214 ----------------------------------------------------------------------------*/
3215
3216
3217 /* Confluence function for blocks with no successors. Create an out
3218 set from the gen set of the exit block. This block logically has
3219 the exit block as a successor. */
3220
3221
3222
3223 static void
3224 dse_confluence_0 (basic_block bb)
3225 {
3226 bb_info_t bb_info = bb_table[bb->index];
3227
3228 if (bb->index == EXIT_BLOCK)
3229 return;
3230
3231 if (!bb_info->out)
3232 {
3233 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3234 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3235 }
3236 }
3237
3238 /* Propagate the information from the in set of the dest of E to the
3239 out set of the src of E. If the various in or out sets are not
3240 there, that means they are all ones. */
3241
3242 static bool
3243 dse_confluence_n (edge e)
3244 {
3245 bb_info_t src_info = bb_table[e->src->index];
3246 bb_info_t dest_info = bb_table[e->dest->index];
3247
3248 if (dest_info->in)
3249 {
3250 if (src_info->out)
3251 bitmap_and_into (src_info->out, dest_info->in);
3252 else
3253 {
3254 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3255 bitmap_copy (src_info->out, dest_info->in);
3256 }
3257 }
3258 return true;
3259 }
3260
3261
3262 /* Propagate the info from the out to the in set of BB_INDEX's basic
3263 block. There are three cases:
3264
3265 1) The block has no kill set. In this case the kill set is all
3266 ones. It does not matter what the out set of the block is, none of
3267 the info can reach the top. The only thing that reaches the top is
3268 the gen set and we just copy the set.
3269
3270 2) There is a kill set but no out set and bb has successors. In
3271 this case we just return. Eventually an out set will be created and
3272 it is better to wait than to create a set of ones.
3273
3274 3) There is both a kill and out set. We apply the obvious transfer
3275 function.
3276 */
3277
3278 static bool
3279 dse_transfer_function (int bb_index)
3280 {
3281 bb_info_t bb_info = bb_table[bb_index];
3282
3283 if (bb_info->kill)
3284 {
3285 if (bb_info->out)
3286 {
3287 /* Case 3 above. */
3288 if (bb_info->in)
3289 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3290 bb_info->out, bb_info->kill);
3291 else
3292 {
3293 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3294 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3295 bb_info->out, bb_info->kill);
3296 return true;
3297 }
3298 }
3299 else
3300 /* Case 2 above. */
3301 return false;
3302 }
3303 else
3304 {
3305 /* Case 1 above. If there is already an in set, nothing
3306 happens. */
3307 if (bb_info->in)
3308 return false;
3309 else
3310 {
3311 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3312 bitmap_copy (bb_info->in, bb_info->gen);
3313 return true;
3314 }
3315 }
3316 }
3317
3318 /* Solve the dataflow equations. */
3319
3320 static void
3321 dse_step4 (void)
3322 {
3323 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3324 dse_confluence_n, dse_transfer_function,
3325 all_blocks, df_get_postorder (DF_BACKWARD),
3326 df_get_n_blocks (DF_BACKWARD));
3327 if (dump_file && (dump_flags & TDF_DETAILS))
3328 {
3329 basic_block bb;
3330
3331 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3332 FOR_ALL_BB_FN (bb, cfun)
3333 {
3334 bb_info_t bb_info = bb_table[bb->index];
3335
3336 df_print_bb_index (bb, dump_file);
3337 if (bb_info->in)
3338 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3339 else
3340 fprintf (dump_file, " in: *MISSING*\n");
3341 if (bb_info->gen)
3342 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3343 else
3344 fprintf (dump_file, " gen: *MISSING*\n");
3345 if (bb_info->kill)
3346 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3347 else
3348 fprintf (dump_file, " kill: *MISSING*\n");
3349 if (bb_info->out)
3350 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3351 else
3352 fprintf (dump_file, " out: *MISSING*\n\n");
3353 }
3354 }
3355 }
3356
3357
3358 \f
3359 /*----------------------------------------------------------------------------
3360 Fifth step.
3361
3362 Delete the stores that can only be deleted using the global information.
3363 ----------------------------------------------------------------------------*/
3364
3365
3366 static void
3367 dse_step5 (void)
3368 {
3369 basic_block bb;
3370 FOR_EACH_BB_FN (bb, cfun)
3371 {
3372 bb_info_t bb_info = bb_table[bb->index];
3373 insn_info_t insn_info = bb_info->last_insn;
3374 bitmap v = bb_info->out;
3375
3376 while (insn_info)
3377 {
3378 bool deleted = false;
3379 if (dump_file && insn_info->insn)
3380 {
3381 fprintf (dump_file, "starting to process insn %d\n",
3382 INSN_UID (insn_info->insn));
3383 bitmap_print (dump_file, v, " v: ", "\n");
3384 }
3385
3386 /* There may have been code deleted by the dce pass run before
3387 this phase. */
3388 if (insn_info->insn
3389 && INSN_P (insn_info->insn)
3390 && (!insn_info->cannot_delete)
3391 && (!bitmap_empty_p (v)))
3392 {
3393 store_info *store_info = insn_info->store_rec;
3394
3395 /* Try to delete the current insn. */
3396 deleted = true;
3397
3398 /* Skip the clobbers. */
3399 while (!store_info->is_set)
3400 store_info = store_info->next;
3401
3402 HOST_WIDE_INT i, offset, width;
3403 group_info *group_info = rtx_group_vec[store_info->group_id];
3404
3405 if (!store_info->offset.is_constant (&offset)
3406 || !store_info->width.is_constant (&width))
3407 deleted = false;
3408 else
3409 {
3410 HOST_WIDE_INT end = offset + width;
3411 for (i = offset; i < end; i++)
3412 {
3413 int index = get_bitmap_index (group_info, i);
3414
3415 if (dump_file && (dump_flags & TDF_DETAILS))
3416 fprintf (dump_file, "i = %d, index = %d\n",
3417 (int) i, index);
3418 if (index == 0 || !bitmap_bit_p (v, index))
3419 {
3420 if (dump_file && (dump_flags & TDF_DETAILS))
3421 fprintf (dump_file, "failing at i = %d\n",
3422 (int) i);
3423 deleted = false;
3424 break;
3425 }
3426 }
3427 }
3428 if (deleted)
3429 {
3430 if (dbg_cnt (dse)
3431 && check_for_inc_dec_1 (insn_info))
3432 {
3433 delete_insn (insn_info->insn);
3434 insn_info->insn = NULL;
3435 globally_deleted++;
3436 }
3437 }
3438 }
3439 /* We do want to process the local info if the insn was
3440 deleted. For instance, if the insn did a wild read, we
3441 no longer need to trash the info. */
3442 if (insn_info->insn
3443 && INSN_P (insn_info->insn)
3444 && (!deleted))
3445 {
3446 scan_stores (insn_info->store_rec, v, NULL);
3447 if (insn_info->wild_read)
3448 {
3449 if (dump_file && (dump_flags & TDF_DETAILS))
3450 fprintf (dump_file, "wild read\n");
3451 bitmap_clear (v);
3452 }
3453 else if (insn_info->read_rec
3454 || insn_info->non_frame_wild_read
3455 || insn_info->frame_read)
3456 {
3457 if (dump_file && (dump_flags & TDF_DETAILS))
3458 {
3459 if (!insn_info->non_frame_wild_read
3460 && !insn_info->frame_read)
3461 fprintf (dump_file, "regular read\n");
3462 if (insn_info->non_frame_wild_read)
3463 fprintf (dump_file, "non-frame wild read\n");
3464 if (insn_info->frame_read)
3465 fprintf (dump_file, "frame read\n");
3466 }
3467 scan_reads (insn_info, v, NULL);
3468 }
3469 }
3470
3471 insn_info = insn_info->prev_insn;
3472 }
3473 }
3474 }
3475
3476
3477 \f
3478 /*----------------------------------------------------------------------------
3479 Sixth step.
3480
3481 Delete stores made redundant by earlier stores (which store the same
3482 value) that couldn't be eliminated.
3483 ----------------------------------------------------------------------------*/
3484
3485 static void
3486 dse_step6 (void)
3487 {
3488 basic_block bb;
3489
3490 FOR_ALL_BB_FN (bb, cfun)
3491 {
3492 bb_info_t bb_info = bb_table[bb->index];
3493 insn_info_t insn_info = bb_info->last_insn;
3494
3495 while (insn_info)
3496 {
3497 /* There may have been code deleted by the dce pass run before
3498 this phase. */
3499 if (insn_info->insn
3500 && INSN_P (insn_info->insn)
3501 && !insn_info->cannot_delete)
3502 {
3503 store_info *s_info = insn_info->store_rec;
3504
3505 while (s_info && !s_info->is_set)
3506 s_info = s_info->next;
3507 if (s_info
3508 && s_info->redundant_reason
3509 && s_info->redundant_reason->insn
3510 && INSN_P (s_info->redundant_reason->insn))
3511 {
3512 rtx_insn *rinsn = s_info->redundant_reason->insn;
3513 if (dump_file && (dump_flags & TDF_DETAILS))
3514 fprintf (dump_file, "Locally deleting insn %d "
3515 "because insn %d stores the "
3516 "same value and couldn't be "
3517 "eliminated\n",
3518 INSN_UID (insn_info->insn),
3519 INSN_UID (rinsn));
3520 delete_dead_store_insn (insn_info);
3521 }
3522 }
3523 insn_info = insn_info->prev_insn;
3524 }
3525 }
3526 }
3527 \f
3528 /*----------------------------------------------------------------------------
3529 Seventh step.
3530
3531 Destroy everything left standing.
3532 ----------------------------------------------------------------------------*/
3533
3534 static void
3535 dse_step7 (void)
3536 {
3537 bitmap_obstack_release (&dse_bitmap_obstack);
3538 obstack_free (&dse_obstack, NULL);
3539
3540 end_alias_analysis ();
3541 free (bb_table);
3542 delete rtx_group_table;
3543 rtx_group_table = NULL;
3544 rtx_group_vec.release ();
3545 BITMAP_FREE (all_blocks);
3546 BITMAP_FREE (scratch);
3547
3548 rtx_store_info_pool.release ();
3549 read_info_type_pool.release ();
3550 insn_info_type_pool.release ();
3551 dse_bb_info_type_pool.release ();
3552 group_info_pool.release ();
3553 deferred_change_pool.release ();
3554 }
3555
3556
3557 /* -------------------------------------------------------------------------
3558 DSE
3559 ------------------------------------------------------------------------- */
3560
3561 /* Callback for running pass_rtl_dse. */
3562
3563 static unsigned int
3564 rest_of_handle_dse (void)
3565 {
3566 df_set_flags (DF_DEFER_INSN_RESCAN);
3567
3568 /* Need the notes since we must track live hardregs in the forwards
3569 direction. */
3570 df_note_add_problem ();
3571 df_analyze ();
3572
3573 dse_step0 ();
3574 dse_step1 ();
3575 dse_step2_init ();
3576 if (dse_step2 ())
3577 {
3578 df_set_flags (DF_LR_RUN_DCE);
3579 df_analyze ();
3580 if (dump_file && (dump_flags & TDF_DETAILS))
3581 fprintf (dump_file, "doing global processing\n");
3582 dse_step3 ();
3583 dse_step4 ();
3584 dse_step5 ();
3585 }
3586
3587 dse_step6 ();
3588 dse_step7 ();
3589
3590 if (dump_file)
3591 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
3592 locally_deleted, globally_deleted);
3593
3594 /* DSE can eliminate potentially-trapping MEMs.
3595 Remove any EH edges associated with them. */
3596 if ((locally_deleted || globally_deleted)
3597 && cfun->can_throw_non_call_exceptions
3598 && purge_all_dead_edges ())
3599 cleanup_cfg (0);
3600
3601 return 0;
3602 }
3603
3604 namespace {
3605
3606 const pass_data pass_data_rtl_dse1 =
3607 {
3608 RTL_PASS, /* type */
3609 "dse1", /* name */
3610 OPTGROUP_NONE, /* optinfo_flags */
3611 TV_DSE1, /* tv_id */
3612 0, /* properties_required */
3613 0, /* properties_provided */
3614 0, /* properties_destroyed */
3615 0, /* todo_flags_start */
3616 TODO_df_finish, /* todo_flags_finish */
3617 };
3618
3619 class pass_rtl_dse1 : public rtl_opt_pass
3620 {
3621 public:
3622 pass_rtl_dse1 (gcc::context *ctxt)
3623 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3624 {}
3625
3626 /* opt_pass methods: */
3627 virtual bool gate (function *)
3628 {
3629 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3630 }
3631
3632 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3633
3634 }; // class pass_rtl_dse1
3635
3636 } // anon namespace
3637
3638 rtl_opt_pass *
3639 make_pass_rtl_dse1 (gcc::context *ctxt)
3640 {
3641 return new pass_rtl_dse1 (ctxt);
3642 }
3643
3644 namespace {
3645
3646 const pass_data pass_data_rtl_dse2 =
3647 {
3648 RTL_PASS, /* type */
3649 "dse2", /* name */
3650 OPTGROUP_NONE, /* optinfo_flags */
3651 TV_DSE2, /* tv_id */
3652 0, /* properties_required */
3653 0, /* properties_provided */
3654 0, /* properties_destroyed */
3655 0, /* todo_flags_start */
3656 TODO_df_finish, /* todo_flags_finish */
3657 };
3658
3659 class pass_rtl_dse2 : public rtl_opt_pass
3660 {
3661 public:
3662 pass_rtl_dse2 (gcc::context *ctxt)
3663 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3664 {}
3665
3666 /* opt_pass methods: */
3667 virtual bool gate (function *)
3668 {
3669 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3670 }
3671
3672 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3673
3674 }; // class pass_rtl_dse2
3675
3676 } // anon namespace
3677
3678 rtl_opt_pass *
3679 make_pass_rtl_dse2 (gcc::context *ctxt)
3680 {
3681 return new pass_rtl_dse2 (ctxt);
3682 }