]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fold-const-call.c
Update copyright years.
[thirdparty/gcc.git] / gcc / fold-const-call.c
1 /* Constant folding for calls to built-in and internal functions.
2 Copyright (C) 1988-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "realmpfr.h"
24 #include "tree.h"
25 #include "stor-layout.h"
26 #include "options.h"
27 #include "fold-const.h"
28 #include "fold-const-call.h"
29 #include "case-cfn-macros.h"
30 #include "tm.h" /* For C[LT]Z_DEFINED_AT_ZERO. */
31 #include "builtins.h"
32 #include "gimple-expr.h"
33 #include "tree-vector-builder.h"
34
35 /* Functions that test for certain constant types, abstracting away the
36 decision about whether to check for overflow. */
37
38 static inline bool
39 integer_cst_p (tree t)
40 {
41 return TREE_CODE (t) == INTEGER_CST && !TREE_OVERFLOW (t);
42 }
43
44 static inline bool
45 real_cst_p (tree t)
46 {
47 return TREE_CODE (t) == REAL_CST && !TREE_OVERFLOW (t);
48 }
49
50 static inline bool
51 complex_cst_p (tree t)
52 {
53 return TREE_CODE (t) == COMPLEX_CST;
54 }
55
56 /* Return true if ARG is a constant in the range of the host size_t.
57 Store it in *SIZE_OUT if so. */
58
59 static inline bool
60 host_size_t_cst_p (tree t, size_t *size_out)
61 {
62 if (types_compatible_p (size_type_node, TREE_TYPE (t))
63 && integer_cst_p (t)
64 && (wi::min_precision (wi::to_wide (t), UNSIGNED)
65 <= sizeof (size_t) * CHAR_BIT))
66 {
67 *size_out = tree_to_uhwi (t);
68 return true;
69 }
70 return false;
71 }
72
73 /* RES is the result of a comparison in which < 0 means "less", 0 means
74 "equal" and > 0 means "more". Canonicalize it to -1, 0 or 1 and
75 return it in type TYPE. */
76
77 tree
78 build_cmp_result (tree type, int res)
79 {
80 return build_int_cst (type, res < 0 ? -1 : res > 0 ? 1 : 0);
81 }
82
83 /* M is the result of trying to constant-fold an expression (starting
84 with clear MPFR flags) and INEXACT says whether the result in M is
85 exact or inexact. Return true if M can be used as a constant-folded
86 result in format FORMAT, storing the value in *RESULT if so. */
87
88 static bool
89 do_mpfr_ckconv (real_value *result, mpfr_srcptr m, bool inexact,
90 const real_format *format)
91 {
92 /* Proceed iff we get a normal number, i.e. not NaN or Inf and no
93 overflow/underflow occurred. If -frounding-math, proceed iff the
94 result of calling FUNC was exact. */
95 if (!mpfr_number_p (m)
96 || mpfr_overflow_p ()
97 || mpfr_underflow_p ()
98 || (flag_rounding_math && inexact))
99 return false;
100
101 REAL_VALUE_TYPE tmp;
102 real_from_mpfr (&tmp, m, format, MPFR_RNDN);
103
104 /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values.
105 If the REAL_VALUE_TYPE is zero but the mpft_t is not, then we
106 underflowed in the conversion. */
107 if (!real_isfinite (&tmp)
108 || ((tmp.cl == rvc_zero) != (mpfr_zero_p (m) != 0)))
109 return false;
110
111 real_convert (result, format, &tmp);
112 return real_identical (result, &tmp);
113 }
114
115 /* Try to evaluate:
116
117 *RESULT = f (*ARG)
118
119 in format FORMAT, given that FUNC is the MPFR implementation of f.
120 Return true on success. */
121
122 static bool
123 do_mpfr_arg1 (real_value *result,
124 int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_rnd_t),
125 const real_value *arg, const real_format *format)
126 {
127 /* To proceed, MPFR must exactly represent the target floating point
128 format, which only happens when the target base equals two. */
129 if (format->b != 2 || !real_isfinite (arg))
130 return false;
131
132 int prec = format->p;
133 mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
134 mpfr_t m;
135
136 mpfr_init2 (m, prec);
137 mpfr_from_real (m, arg, MPFR_RNDN);
138 mpfr_clear_flags ();
139 bool inexact = func (m, m, rnd);
140 bool ok = do_mpfr_ckconv (result, m, inexact, format);
141 mpfr_clear (m);
142
143 return ok;
144 }
145
146 /* Try to evaluate:
147
148 *RESULT_SIN = sin (*ARG);
149 *RESULT_COS = cos (*ARG);
150
151 for format FORMAT. Return true on success. */
152
153 static bool
154 do_mpfr_sincos (real_value *result_sin, real_value *result_cos,
155 const real_value *arg, const real_format *format)
156 {
157 /* To proceed, MPFR must exactly represent the target floating point
158 format, which only happens when the target base equals two. */
159 if (format->b != 2 || !real_isfinite (arg))
160 return false;
161
162 int prec = format->p;
163 mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
164 mpfr_t m, ms, mc;
165
166 mpfr_inits2 (prec, m, ms, mc, NULL);
167 mpfr_from_real (m, arg, MPFR_RNDN);
168 mpfr_clear_flags ();
169 bool inexact = mpfr_sin_cos (ms, mc, m, rnd);
170 bool ok = (do_mpfr_ckconv (result_sin, ms, inexact, format)
171 && do_mpfr_ckconv (result_cos, mc, inexact, format));
172 mpfr_clears (m, ms, mc, NULL);
173
174 return ok;
175 }
176
177 /* Try to evaluate:
178
179 *RESULT = f (*ARG0, *ARG1)
180
181 in format FORMAT, given that FUNC is the MPFR implementation of f.
182 Return true on success. */
183
184 static bool
185 do_mpfr_arg2 (real_value *result,
186 int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_rnd_t),
187 const real_value *arg0, const real_value *arg1,
188 const real_format *format)
189 {
190 /* To proceed, MPFR must exactly represent the target floating point
191 format, which only happens when the target base equals two. */
192 if (format->b != 2 || !real_isfinite (arg0) || !real_isfinite (arg1))
193 return false;
194
195 int prec = format->p;
196 mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
197 mpfr_t m0, m1;
198
199 mpfr_inits2 (prec, m0, m1, NULL);
200 mpfr_from_real (m0, arg0, MPFR_RNDN);
201 mpfr_from_real (m1, arg1, MPFR_RNDN);
202 mpfr_clear_flags ();
203 bool inexact = func (m0, m0, m1, rnd);
204 bool ok = do_mpfr_ckconv (result, m0, inexact, format);
205 mpfr_clears (m0, m1, NULL);
206
207 return ok;
208 }
209
210 /* Try to evaluate:
211
212 *RESULT = f (ARG0, *ARG1)
213
214 in format FORMAT, given that FUNC is the MPFR implementation of f.
215 Return true on success. */
216
217 static bool
218 do_mpfr_arg2 (real_value *result,
219 int (*func) (mpfr_ptr, long, mpfr_srcptr, mpfr_rnd_t),
220 const wide_int_ref &arg0, const real_value *arg1,
221 const real_format *format)
222 {
223 if (format->b != 2 || !real_isfinite (arg1))
224 return false;
225
226 int prec = format->p;
227 mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
228 mpfr_t m;
229
230 mpfr_init2 (m, prec);
231 mpfr_from_real (m, arg1, MPFR_RNDN);
232 mpfr_clear_flags ();
233 bool inexact = func (m, arg0.to_shwi (), m, rnd);
234 bool ok = do_mpfr_ckconv (result, m, inexact, format);
235 mpfr_clear (m);
236
237 return ok;
238 }
239
240 /* Try to evaluate:
241
242 *RESULT = f (*ARG0, *ARG1, *ARG2)
243
244 in format FORMAT, given that FUNC is the MPFR implementation of f.
245 Return true on success. */
246
247 static bool
248 do_mpfr_arg3 (real_value *result,
249 int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr,
250 mpfr_srcptr, mpfr_rnd_t),
251 const real_value *arg0, const real_value *arg1,
252 const real_value *arg2, const real_format *format)
253 {
254 /* To proceed, MPFR must exactly represent the target floating point
255 format, which only happens when the target base equals two. */
256 if (format->b != 2
257 || !real_isfinite (arg0)
258 || !real_isfinite (arg1)
259 || !real_isfinite (arg2))
260 return false;
261
262 int prec = format->p;
263 mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
264 mpfr_t m0, m1, m2;
265
266 mpfr_inits2 (prec, m0, m1, m2, NULL);
267 mpfr_from_real (m0, arg0, MPFR_RNDN);
268 mpfr_from_real (m1, arg1, MPFR_RNDN);
269 mpfr_from_real (m2, arg2, MPFR_RNDN);
270 mpfr_clear_flags ();
271 bool inexact = func (m0, m0, m1, m2, rnd);
272 bool ok = do_mpfr_ckconv (result, m0, inexact, format);
273 mpfr_clears (m0, m1, m2, NULL);
274
275 return ok;
276 }
277
278 /* M is the result of trying to constant-fold an expression (starting
279 with clear MPFR flags) and INEXACT says whether the result in M is
280 exact or inexact. Return true if M can be used as a constant-folded
281 result in which the real and imaginary parts have format FORMAT.
282 Store those parts in *RESULT_REAL and *RESULT_IMAG if so. */
283
284 static bool
285 do_mpc_ckconv (real_value *result_real, real_value *result_imag,
286 mpc_srcptr m, bool inexact, const real_format *format)
287 {
288 /* Proceed iff we get a normal number, i.e. not NaN or Inf and no
289 overflow/underflow occurred. If -frounding-math, proceed iff the
290 result of calling FUNC was exact. */
291 if (!mpfr_number_p (mpc_realref (m))
292 || !mpfr_number_p (mpc_imagref (m))
293 || mpfr_overflow_p ()
294 || mpfr_underflow_p ()
295 || (flag_rounding_math && inexact))
296 return false;
297
298 REAL_VALUE_TYPE tmp_real, tmp_imag;
299 real_from_mpfr (&tmp_real, mpc_realref (m), format, MPFR_RNDN);
300 real_from_mpfr (&tmp_imag, mpc_imagref (m), format, MPFR_RNDN);
301
302 /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values.
303 If the REAL_VALUE_TYPE is zero but the mpft_t is not, then we
304 underflowed in the conversion. */
305 if (!real_isfinite (&tmp_real)
306 || !real_isfinite (&tmp_imag)
307 || (tmp_real.cl == rvc_zero) != (mpfr_zero_p (mpc_realref (m)) != 0)
308 || (tmp_imag.cl == rvc_zero) != (mpfr_zero_p (mpc_imagref (m)) != 0))
309 return false;
310
311 real_convert (result_real, format, &tmp_real);
312 real_convert (result_imag, format, &tmp_imag);
313
314 return (real_identical (result_real, &tmp_real)
315 && real_identical (result_imag, &tmp_imag));
316 }
317
318 /* Try to evaluate:
319
320 RESULT = f (ARG)
321
322 in format FORMAT, given that FUNC is the mpc implementation of f.
323 Return true on success. Both RESULT and ARG are represented as
324 real and imaginary pairs. */
325
326 static bool
327 do_mpc_arg1 (real_value *result_real, real_value *result_imag,
328 int (*func) (mpc_ptr, mpc_srcptr, mpc_rnd_t),
329 const real_value *arg_real, const real_value *arg_imag,
330 const real_format *format)
331 {
332 /* To proceed, MPFR must exactly represent the target floating point
333 format, which only happens when the target base equals two. */
334 if (format->b != 2
335 || !real_isfinite (arg_real)
336 || !real_isfinite (arg_imag))
337 return false;
338
339 int prec = format->p;
340 mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
341 mpc_t m;
342
343 mpc_init2 (m, prec);
344 mpfr_from_real (mpc_realref (m), arg_real, MPFR_RNDN);
345 mpfr_from_real (mpc_imagref (m), arg_imag, MPFR_RNDN);
346 mpfr_clear_flags ();
347 bool inexact = func (m, m, crnd);
348 bool ok = do_mpc_ckconv (result_real, result_imag, m, inexact, format);
349 mpc_clear (m);
350
351 return ok;
352 }
353
354 /* Try to evaluate:
355
356 RESULT = f (ARG0, ARG1)
357
358 in format FORMAT, given that FUNC is the mpc implementation of f.
359 Return true on success. RESULT, ARG0 and ARG1 are represented as
360 real and imaginary pairs. */
361
362 static bool
363 do_mpc_arg2 (real_value *result_real, real_value *result_imag,
364 int (*func)(mpc_ptr, mpc_srcptr, mpc_srcptr, mpc_rnd_t),
365 const real_value *arg0_real, const real_value *arg0_imag,
366 const real_value *arg1_real, const real_value *arg1_imag,
367 const real_format *format)
368 {
369 if (!real_isfinite (arg0_real)
370 || !real_isfinite (arg0_imag)
371 || !real_isfinite (arg1_real)
372 || !real_isfinite (arg1_imag))
373 return false;
374
375 int prec = format->p;
376 mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
377 mpc_t m0, m1;
378
379 mpc_init2 (m0, prec);
380 mpc_init2 (m1, prec);
381 mpfr_from_real (mpc_realref (m0), arg0_real, MPFR_RNDN);
382 mpfr_from_real (mpc_imagref (m0), arg0_imag, MPFR_RNDN);
383 mpfr_from_real (mpc_realref (m1), arg1_real, MPFR_RNDN);
384 mpfr_from_real (mpc_imagref (m1), arg1_imag, MPFR_RNDN);
385 mpfr_clear_flags ();
386 bool inexact = func (m0, m0, m1, crnd);
387 bool ok = do_mpc_ckconv (result_real, result_imag, m0, inexact, format);
388 mpc_clear (m0);
389 mpc_clear (m1);
390
391 return ok;
392 }
393
394 /* Try to evaluate:
395
396 *RESULT = logb (*ARG)
397
398 in format FORMAT. Return true on success. */
399
400 static bool
401 fold_const_logb (real_value *result, const real_value *arg,
402 const real_format *format)
403 {
404 switch (arg->cl)
405 {
406 case rvc_nan:
407 /* If arg is +-NaN, then return it. */
408 *result = *arg;
409 return true;
410
411 case rvc_inf:
412 /* If arg is +-Inf, then return +Inf. */
413 *result = *arg;
414 result->sign = 0;
415 return true;
416
417 case rvc_zero:
418 /* Zero may set errno and/or raise an exception. */
419 return false;
420
421 case rvc_normal:
422 /* For normal numbers, proceed iff radix == 2. In GCC,
423 normalized significands are in the range [0.5, 1.0). We
424 want the exponent as if they were [1.0, 2.0) so get the
425 exponent and subtract 1. */
426 if (format->b == 2)
427 {
428 real_from_integer (result, format, REAL_EXP (arg) - 1, SIGNED);
429 return true;
430 }
431 return false;
432 }
433 gcc_unreachable ();
434 }
435
436 /* Try to evaluate:
437
438 *RESULT = significand (*ARG)
439
440 in format FORMAT. Return true on success. */
441
442 static bool
443 fold_const_significand (real_value *result, const real_value *arg,
444 const real_format *format)
445 {
446 switch (arg->cl)
447 {
448 case rvc_zero:
449 case rvc_nan:
450 case rvc_inf:
451 /* If arg is +-0, +-Inf or +-NaN, then return it. */
452 *result = *arg;
453 return true;
454
455 case rvc_normal:
456 /* For normal numbers, proceed iff radix == 2. */
457 if (format->b == 2)
458 {
459 *result = *arg;
460 /* In GCC, normalized significands are in the range [0.5, 1.0).
461 We want them to be [1.0, 2.0) so set the exponent to 1. */
462 SET_REAL_EXP (result, 1);
463 return true;
464 }
465 return false;
466 }
467 gcc_unreachable ();
468 }
469
470 /* Try to evaluate:
471
472 *RESULT = f (*ARG)
473
474 where FORMAT is the format of *ARG and PRECISION is the number of
475 significant bits in the result. Return true on success. */
476
477 static bool
478 fold_const_conversion (wide_int *result,
479 void (*fn) (real_value *, format_helper,
480 const real_value *),
481 const real_value *arg, unsigned int precision,
482 const real_format *format)
483 {
484 if (!real_isfinite (arg))
485 return false;
486
487 real_value rounded;
488 fn (&rounded, format, arg);
489
490 bool fail = false;
491 *result = real_to_integer (&rounded, &fail, precision);
492 return !fail;
493 }
494
495 /* Try to evaluate:
496
497 *RESULT = pow (*ARG0, *ARG1)
498
499 in format FORMAT. Return true on success. */
500
501 static bool
502 fold_const_pow (real_value *result, const real_value *arg0,
503 const real_value *arg1, const real_format *format)
504 {
505 if (do_mpfr_arg2 (result, mpfr_pow, arg0, arg1, format))
506 return true;
507
508 /* Check for an integer exponent. */
509 REAL_VALUE_TYPE cint1;
510 HOST_WIDE_INT n1 = real_to_integer (arg1);
511 real_from_integer (&cint1, VOIDmode, n1, SIGNED);
512 /* Attempt to evaluate pow at compile-time, unless this should
513 raise an exception. */
514 if (real_identical (arg1, &cint1)
515 && (n1 > 0
516 || (!flag_trapping_math && !flag_errno_math)
517 || !real_equal (arg0, &dconst0)))
518 {
519 bool inexact = real_powi (result, format, arg0, n1);
520 /* Avoid the folding if flag_signaling_nans is on. */
521 if (flag_unsafe_math_optimizations
522 || (!inexact
523 && !(flag_signaling_nans
524 && REAL_VALUE_ISSIGNALING_NAN (*arg0))))
525 return true;
526 }
527
528 return false;
529 }
530
531 /* Try to evaluate:
532
533 *RESULT = nextafter (*ARG0, *ARG1)
534
535 or
536
537 *RESULT = nexttoward (*ARG0, *ARG1)
538
539 in format FORMAT. Return true on success. */
540
541 static bool
542 fold_const_nextafter (real_value *result, const real_value *arg0,
543 const real_value *arg1, const real_format *format)
544 {
545 if (REAL_VALUE_ISSIGNALING_NAN (*arg0)
546 || REAL_VALUE_ISSIGNALING_NAN (*arg1))
547 return false;
548
549 /* Don't handle composite modes, nor decimal, nor modes without
550 inf or denorm at least for now. */
551 if (format->pnan < format->p
552 || format->b == 10
553 || !format->has_inf
554 || !format->has_denorm)
555 return false;
556
557 if (real_nextafter (result, format, arg0, arg1)
558 /* If raising underflow or overflow and setting errno to ERANGE,
559 fail if we care about those side-effects. */
560 && (flag_trapping_math || flag_errno_math))
561 return false;
562 /* Similarly for nextafter (0, 1) raising underflow. */
563 else if (flag_trapping_math
564 && arg0->cl == rvc_zero
565 && result->cl != rvc_zero)
566 return false;
567
568 real_convert (result, format, result);
569
570 return true;
571 }
572
573 /* Try to evaluate:
574
575 *RESULT = ldexp (*ARG0, ARG1)
576
577 in format FORMAT. Return true on success. */
578
579 static bool
580 fold_const_builtin_load_exponent (real_value *result, const real_value *arg0,
581 const wide_int_ref &arg1,
582 const real_format *format)
583 {
584 /* Bound the maximum adjustment to twice the range of the
585 mode's valid exponents. Use abs to ensure the range is
586 positive as a sanity check. */
587 int max_exp_adj = 2 * labs (format->emax - format->emin);
588
589 /* The requested adjustment must be inside this range. This
590 is a preliminary cap to avoid things like overflow, we
591 may still fail to compute the result for other reasons. */
592 if (wi::les_p (arg1, -max_exp_adj) || wi::ges_p (arg1, max_exp_adj))
593 return false;
594
595 /* Don't perform operation if we honor signaling NaNs and
596 operand is a signaling NaN. */
597 if (!flag_unsafe_math_optimizations
598 && flag_signaling_nans
599 && REAL_VALUE_ISSIGNALING_NAN (*arg0))
600 return false;
601
602 REAL_VALUE_TYPE initial_result;
603 real_ldexp (&initial_result, arg0, arg1.to_shwi ());
604
605 /* Ensure we didn't overflow. */
606 if (real_isinf (&initial_result))
607 return false;
608
609 /* Only proceed if the target mode can hold the
610 resulting value. */
611 *result = real_value_truncate (format, initial_result);
612 return real_equal (&initial_result, result);
613 }
614
615 /* Fold a call to __builtin_nan or __builtin_nans with argument ARG and
616 return type TYPE. QUIET is true if a quiet rather than signalling
617 NaN is required. */
618
619 static tree
620 fold_const_builtin_nan (tree type, tree arg, bool quiet)
621 {
622 REAL_VALUE_TYPE real;
623 const char *str = c_getstr (arg);
624 if (str && real_nan (&real, str, quiet, TYPE_MODE (type)))
625 return build_real (type, real);
626 return NULL_TREE;
627 }
628
629 /* Fold a call to IFN_REDUC_<CODE> (ARG), returning a value of type TYPE. */
630
631 static tree
632 fold_const_reduction (tree type, tree arg, tree_code code)
633 {
634 unsigned HOST_WIDE_INT nelts;
635 if (TREE_CODE (arg) != VECTOR_CST
636 || !VECTOR_CST_NELTS (arg).is_constant (&nelts))
637 return NULL_TREE;
638
639 tree res = VECTOR_CST_ELT (arg, 0);
640 for (unsigned HOST_WIDE_INT i = 1; i < nelts; i++)
641 {
642 res = const_binop (code, type, res, VECTOR_CST_ELT (arg, i));
643 if (res == NULL_TREE || !CONSTANT_CLASS_P (res))
644 return NULL_TREE;
645 }
646 return res;
647 }
648
649 /* Fold a call to IFN_VEC_CONVERT (ARG) returning TYPE. */
650
651 static tree
652 fold_const_vec_convert (tree ret_type, tree arg)
653 {
654 enum tree_code code = NOP_EXPR;
655 tree arg_type = TREE_TYPE (arg);
656 if (TREE_CODE (arg) != VECTOR_CST)
657 return NULL_TREE;
658
659 gcc_checking_assert (VECTOR_TYPE_P (ret_type) && VECTOR_TYPE_P (arg_type));
660
661 if (INTEGRAL_TYPE_P (TREE_TYPE (ret_type))
662 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg_type)))
663 code = FIX_TRUNC_EXPR;
664 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg_type))
665 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (ret_type)))
666 code = FLOAT_EXPR;
667
668 /* We can't handle steps directly when extending, since the
669 values need to wrap at the original precision first. */
670 bool step_ok_p
671 = (INTEGRAL_TYPE_P (TREE_TYPE (ret_type))
672 && INTEGRAL_TYPE_P (TREE_TYPE (arg_type))
673 && (TYPE_PRECISION (TREE_TYPE (ret_type))
674 <= TYPE_PRECISION (TREE_TYPE (arg_type))));
675 tree_vector_builder elts;
676 if (!elts.new_unary_operation (ret_type, arg, step_ok_p))
677 return NULL_TREE;
678
679 unsigned int count = elts.encoded_nelts ();
680 for (unsigned int i = 0; i < count; ++i)
681 {
682 tree elt = fold_unary (code, TREE_TYPE (ret_type),
683 VECTOR_CST_ELT (arg, i));
684 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
685 return NULL_TREE;
686 elts.quick_push (elt);
687 }
688
689 return elts.build ();
690 }
691
692 /* Try to evaluate:
693
694 IFN_WHILE_ULT (ARG0, ARG1, (TYPE) { ... })
695
696 Return the value on success and null on failure. */
697
698 static tree
699 fold_while_ult (tree type, poly_uint64 arg0, poly_uint64 arg1)
700 {
701 if (known_ge (arg0, arg1))
702 return build_zero_cst (type);
703
704 if (maybe_ge (arg0, arg1))
705 return NULL_TREE;
706
707 poly_uint64 diff = arg1 - arg0;
708 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
709 if (known_ge (diff, nelts))
710 return build_all_ones_cst (type);
711
712 unsigned HOST_WIDE_INT const_diff;
713 if (known_le (diff, nelts) && diff.is_constant (&const_diff))
714 {
715 tree minus_one = build_minus_one_cst (TREE_TYPE (type));
716 tree zero = build_zero_cst (TREE_TYPE (type));
717 return build_vector_a_then_b (type, const_diff, minus_one, zero);
718 }
719 return NULL_TREE;
720 }
721
722 /* Try to evaluate:
723
724 *RESULT = FN (*ARG)
725
726 in format FORMAT. Return true on success. */
727
728 static bool
729 fold_const_call_ss (real_value *result, combined_fn fn,
730 const real_value *arg, const real_format *format)
731 {
732 switch (fn)
733 {
734 CASE_CFN_SQRT:
735 CASE_CFN_SQRT_FN:
736 return (real_compare (GE_EXPR, arg, &dconst0)
737 && do_mpfr_arg1 (result, mpfr_sqrt, arg, format));
738
739 CASE_CFN_CBRT:
740 return do_mpfr_arg1 (result, mpfr_cbrt, arg, format);
741
742 CASE_CFN_ASIN:
743 return (real_compare (GE_EXPR, arg, &dconstm1)
744 && real_compare (LE_EXPR, arg, &dconst1)
745 && do_mpfr_arg1 (result, mpfr_asin, arg, format));
746
747 CASE_CFN_ACOS:
748 return (real_compare (GE_EXPR, arg, &dconstm1)
749 && real_compare (LE_EXPR, arg, &dconst1)
750 && do_mpfr_arg1 (result, mpfr_acos, arg, format));
751
752 CASE_CFN_ATAN:
753 return do_mpfr_arg1 (result, mpfr_atan, arg, format);
754
755 CASE_CFN_ASINH:
756 return do_mpfr_arg1 (result, mpfr_asinh, arg, format);
757
758 CASE_CFN_ACOSH:
759 return (real_compare (GE_EXPR, arg, &dconst1)
760 && do_mpfr_arg1 (result, mpfr_acosh, arg, format));
761
762 CASE_CFN_ATANH:
763 return (real_compare (GE_EXPR, arg, &dconstm1)
764 && real_compare (LE_EXPR, arg, &dconst1)
765 && do_mpfr_arg1 (result, mpfr_atanh, arg, format));
766
767 CASE_CFN_SIN:
768 return do_mpfr_arg1 (result, mpfr_sin, arg, format);
769
770 CASE_CFN_COS:
771 return do_mpfr_arg1 (result, mpfr_cos, arg, format);
772
773 CASE_CFN_TAN:
774 return do_mpfr_arg1 (result, mpfr_tan, arg, format);
775
776 CASE_CFN_SINH:
777 return do_mpfr_arg1 (result, mpfr_sinh, arg, format);
778
779 CASE_CFN_COSH:
780 return do_mpfr_arg1 (result, mpfr_cosh, arg, format);
781
782 CASE_CFN_TANH:
783 return do_mpfr_arg1 (result, mpfr_tanh, arg, format);
784
785 CASE_CFN_ERF:
786 return do_mpfr_arg1 (result, mpfr_erf, arg, format);
787
788 CASE_CFN_ERFC:
789 return do_mpfr_arg1 (result, mpfr_erfc, arg, format);
790
791 CASE_CFN_TGAMMA:
792 return do_mpfr_arg1 (result, mpfr_gamma, arg, format);
793
794 CASE_CFN_EXP:
795 return do_mpfr_arg1 (result, mpfr_exp, arg, format);
796
797 CASE_CFN_EXP2:
798 return do_mpfr_arg1 (result, mpfr_exp2, arg, format);
799
800 CASE_CFN_EXP10:
801 CASE_CFN_POW10:
802 return do_mpfr_arg1 (result, mpfr_exp10, arg, format);
803
804 CASE_CFN_EXPM1:
805 return do_mpfr_arg1 (result, mpfr_expm1, arg, format);
806
807 CASE_CFN_LOG:
808 return (real_compare (GT_EXPR, arg, &dconst0)
809 && do_mpfr_arg1 (result, mpfr_log, arg, format));
810
811 CASE_CFN_LOG2:
812 return (real_compare (GT_EXPR, arg, &dconst0)
813 && do_mpfr_arg1 (result, mpfr_log2, arg, format));
814
815 CASE_CFN_LOG10:
816 return (real_compare (GT_EXPR, arg, &dconst0)
817 && do_mpfr_arg1 (result, mpfr_log10, arg, format));
818
819 CASE_CFN_LOG1P:
820 return (real_compare (GT_EXPR, arg, &dconstm1)
821 && do_mpfr_arg1 (result, mpfr_log1p, arg, format));
822
823 CASE_CFN_J0:
824 return do_mpfr_arg1 (result, mpfr_j0, arg, format);
825
826 CASE_CFN_J1:
827 return do_mpfr_arg1 (result, mpfr_j1, arg, format);
828
829 CASE_CFN_Y0:
830 return (real_compare (GT_EXPR, arg, &dconst0)
831 && do_mpfr_arg1 (result, mpfr_y0, arg, format));
832
833 CASE_CFN_Y1:
834 return (real_compare (GT_EXPR, arg, &dconst0)
835 && do_mpfr_arg1 (result, mpfr_y1, arg, format));
836
837 CASE_CFN_FLOOR:
838 CASE_CFN_FLOOR_FN:
839 if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
840 {
841 real_floor (result, format, arg);
842 return true;
843 }
844 return false;
845
846 CASE_CFN_CEIL:
847 CASE_CFN_CEIL_FN:
848 if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
849 {
850 real_ceil (result, format, arg);
851 return true;
852 }
853 return false;
854
855 CASE_CFN_TRUNC:
856 CASE_CFN_TRUNC_FN:
857 if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
858 {
859 real_trunc (result, format, arg);
860 return true;
861 }
862 return false;
863
864 CASE_CFN_ROUND:
865 CASE_CFN_ROUND_FN:
866 if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
867 {
868 real_round (result, format, arg);
869 return true;
870 }
871 return false;
872
873 CASE_CFN_ROUNDEVEN:
874 CASE_CFN_ROUNDEVEN_FN:
875 if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
876 {
877 real_roundeven (result, format, arg);
878 return true;
879 }
880 return false;
881
882 CASE_CFN_LOGB:
883 return fold_const_logb (result, arg, format);
884
885 CASE_CFN_SIGNIFICAND:
886 return fold_const_significand (result, arg, format);
887
888 default:
889 return false;
890 }
891 }
892
893 /* Try to evaluate:
894
895 *RESULT = FN (*ARG)
896
897 where FORMAT is the format of ARG and PRECISION is the number of
898 significant bits in the result. Return true on success. */
899
900 static bool
901 fold_const_call_ss (wide_int *result, combined_fn fn,
902 const real_value *arg, unsigned int precision,
903 const real_format *format)
904 {
905 switch (fn)
906 {
907 CASE_CFN_SIGNBIT:
908 if (real_isneg (arg))
909 *result = wi::one (precision);
910 else
911 *result = wi::zero (precision);
912 return true;
913
914 CASE_CFN_ILOGB:
915 /* For ilogb we don't know FP_ILOGB0, so only handle normal values.
916 Proceed iff radix == 2. In GCC, normalized significands are in
917 the range [0.5, 1.0). We want the exponent as if they were
918 [1.0, 2.0) so get the exponent and subtract 1. */
919 if (arg->cl == rvc_normal && format->b == 2)
920 {
921 *result = wi::shwi (REAL_EXP (arg) - 1, precision);
922 return true;
923 }
924 return false;
925
926 CASE_CFN_ICEIL:
927 CASE_CFN_LCEIL:
928 CASE_CFN_LLCEIL:
929 return fold_const_conversion (result, real_ceil, arg,
930 precision, format);
931
932 CASE_CFN_LFLOOR:
933 CASE_CFN_IFLOOR:
934 CASE_CFN_LLFLOOR:
935 return fold_const_conversion (result, real_floor, arg,
936 precision, format);
937
938 CASE_CFN_IROUND:
939 CASE_CFN_LROUND:
940 CASE_CFN_LLROUND:
941 return fold_const_conversion (result, real_round, arg,
942 precision, format);
943
944 CASE_CFN_IRINT:
945 CASE_CFN_LRINT:
946 CASE_CFN_LLRINT:
947 /* Not yet folded to a constant. */
948 return false;
949
950 CASE_CFN_FINITE:
951 case CFN_BUILT_IN_FINITED32:
952 case CFN_BUILT_IN_FINITED64:
953 case CFN_BUILT_IN_FINITED128:
954 case CFN_BUILT_IN_ISFINITE:
955 *result = wi::shwi (real_isfinite (arg) ? 1 : 0, precision);
956 return true;
957
958 CASE_CFN_ISINF:
959 case CFN_BUILT_IN_ISINFD32:
960 case CFN_BUILT_IN_ISINFD64:
961 case CFN_BUILT_IN_ISINFD128:
962 if (real_isinf (arg))
963 *result = wi::shwi (arg->sign ? -1 : 1, precision);
964 else
965 *result = wi::shwi (0, precision);
966 return true;
967
968 CASE_CFN_ISNAN:
969 case CFN_BUILT_IN_ISNAND32:
970 case CFN_BUILT_IN_ISNAND64:
971 case CFN_BUILT_IN_ISNAND128:
972 *result = wi::shwi (real_isnan (arg) ? 1 : 0, precision);
973 return true;
974
975 default:
976 return false;
977 }
978 }
979
980 /* Try to evaluate:
981
982 *RESULT = FN (ARG)
983
984 where ARG_TYPE is the type of ARG and PRECISION is the number of bits
985 in the result. Return true on success. */
986
987 static bool
988 fold_const_call_ss (wide_int *result, combined_fn fn, const wide_int_ref &arg,
989 unsigned int precision, tree arg_type)
990 {
991 switch (fn)
992 {
993 CASE_CFN_FFS:
994 *result = wi::shwi (wi::ffs (arg), precision);
995 return true;
996
997 CASE_CFN_CLZ:
998 {
999 int tmp;
1000 if (wi::ne_p (arg, 0))
1001 tmp = wi::clz (arg);
1002 else if (!CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (arg_type),
1003 tmp))
1004 tmp = TYPE_PRECISION (arg_type);
1005 *result = wi::shwi (tmp, precision);
1006 return true;
1007 }
1008
1009 CASE_CFN_CTZ:
1010 {
1011 int tmp;
1012 if (wi::ne_p (arg, 0))
1013 tmp = wi::ctz (arg);
1014 else if (!CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (arg_type),
1015 tmp))
1016 tmp = TYPE_PRECISION (arg_type);
1017 *result = wi::shwi (tmp, precision);
1018 return true;
1019 }
1020
1021 CASE_CFN_CLRSB:
1022 *result = wi::shwi (wi::clrsb (arg), precision);
1023 return true;
1024
1025 CASE_CFN_POPCOUNT:
1026 *result = wi::shwi (wi::popcount (arg), precision);
1027 return true;
1028
1029 CASE_CFN_PARITY:
1030 *result = wi::shwi (wi::parity (arg), precision);
1031 return true;
1032
1033 case CFN_BUILT_IN_BSWAP16:
1034 case CFN_BUILT_IN_BSWAP32:
1035 case CFN_BUILT_IN_BSWAP64:
1036 *result = wide_int::from (arg, precision, TYPE_SIGN (arg_type)).bswap ();
1037 return true;
1038
1039 default:
1040 return false;
1041 }
1042 }
1043
1044 /* Try to evaluate:
1045
1046 RESULT = FN (*ARG)
1047
1048 where FORMAT is the format of ARG and of the real and imaginary parts
1049 of RESULT, passed as RESULT_REAL and RESULT_IMAG respectively. Return
1050 true on success. */
1051
1052 static bool
1053 fold_const_call_cs (real_value *result_real, real_value *result_imag,
1054 combined_fn fn, const real_value *arg,
1055 const real_format *format)
1056 {
1057 switch (fn)
1058 {
1059 CASE_CFN_CEXPI:
1060 /* cexpi(x+yi) = cos(x)+sin(y)*i. */
1061 return do_mpfr_sincos (result_imag, result_real, arg, format);
1062
1063 default:
1064 return false;
1065 }
1066 }
1067
1068 /* Try to evaluate:
1069
1070 *RESULT = fn (ARG)
1071
1072 where FORMAT is the format of RESULT and of the real and imaginary parts
1073 of ARG, passed as ARG_REAL and ARG_IMAG respectively. Return true on
1074 success. */
1075
1076 static bool
1077 fold_const_call_sc (real_value *result, combined_fn fn,
1078 const real_value *arg_real, const real_value *arg_imag,
1079 const real_format *format)
1080 {
1081 switch (fn)
1082 {
1083 CASE_CFN_CABS:
1084 return do_mpfr_arg2 (result, mpfr_hypot, arg_real, arg_imag, format);
1085
1086 default:
1087 return false;
1088 }
1089 }
1090
1091 /* Try to evaluate:
1092
1093 RESULT = fn (ARG)
1094
1095 where FORMAT is the format of the real and imaginary parts of RESULT
1096 (RESULT_REAL and RESULT_IMAG) and of ARG (ARG_REAL and ARG_IMAG).
1097 Return true on success. */
1098
1099 static bool
1100 fold_const_call_cc (real_value *result_real, real_value *result_imag,
1101 combined_fn fn, const real_value *arg_real,
1102 const real_value *arg_imag, const real_format *format)
1103 {
1104 switch (fn)
1105 {
1106 CASE_CFN_CCOS:
1107 return do_mpc_arg1 (result_real, result_imag, mpc_cos,
1108 arg_real, arg_imag, format);
1109
1110 CASE_CFN_CCOSH:
1111 return do_mpc_arg1 (result_real, result_imag, mpc_cosh,
1112 arg_real, arg_imag, format);
1113
1114 CASE_CFN_CPROJ:
1115 if (real_isinf (arg_real) || real_isinf (arg_imag))
1116 {
1117 real_inf (result_real);
1118 *result_imag = dconst0;
1119 result_imag->sign = arg_imag->sign;
1120 }
1121 else
1122 {
1123 *result_real = *arg_real;
1124 *result_imag = *arg_imag;
1125 }
1126 return true;
1127
1128 CASE_CFN_CSIN:
1129 return do_mpc_arg1 (result_real, result_imag, mpc_sin,
1130 arg_real, arg_imag, format);
1131
1132 CASE_CFN_CSINH:
1133 return do_mpc_arg1 (result_real, result_imag, mpc_sinh,
1134 arg_real, arg_imag, format);
1135
1136 CASE_CFN_CTAN:
1137 return do_mpc_arg1 (result_real, result_imag, mpc_tan,
1138 arg_real, arg_imag, format);
1139
1140 CASE_CFN_CTANH:
1141 return do_mpc_arg1 (result_real, result_imag, mpc_tanh,
1142 arg_real, arg_imag, format);
1143
1144 CASE_CFN_CLOG:
1145 return do_mpc_arg1 (result_real, result_imag, mpc_log,
1146 arg_real, arg_imag, format);
1147
1148 CASE_CFN_CSQRT:
1149 return do_mpc_arg1 (result_real, result_imag, mpc_sqrt,
1150 arg_real, arg_imag, format);
1151
1152 CASE_CFN_CASIN:
1153 return do_mpc_arg1 (result_real, result_imag, mpc_asin,
1154 arg_real, arg_imag, format);
1155
1156 CASE_CFN_CACOS:
1157 return do_mpc_arg1 (result_real, result_imag, mpc_acos,
1158 arg_real, arg_imag, format);
1159
1160 CASE_CFN_CATAN:
1161 return do_mpc_arg1 (result_real, result_imag, mpc_atan,
1162 arg_real, arg_imag, format);
1163
1164 CASE_CFN_CASINH:
1165 return do_mpc_arg1 (result_real, result_imag, mpc_asinh,
1166 arg_real, arg_imag, format);
1167
1168 CASE_CFN_CACOSH:
1169 return do_mpc_arg1 (result_real, result_imag, mpc_acosh,
1170 arg_real, arg_imag, format);
1171
1172 CASE_CFN_CATANH:
1173 return do_mpc_arg1 (result_real, result_imag, mpc_atanh,
1174 arg_real, arg_imag, format);
1175
1176 CASE_CFN_CEXP:
1177 return do_mpc_arg1 (result_real, result_imag, mpc_exp,
1178 arg_real, arg_imag, format);
1179
1180 default:
1181 return false;
1182 }
1183 }
1184
1185 /* Subroutine of fold_const_call, with the same interface. Handle cases
1186 where the arguments and result are numerical. */
1187
1188 static tree
1189 fold_const_call_1 (combined_fn fn, tree type, tree arg)
1190 {
1191 machine_mode mode = TYPE_MODE (type);
1192 machine_mode arg_mode = TYPE_MODE (TREE_TYPE (arg));
1193
1194 if (integer_cst_p (arg))
1195 {
1196 if (SCALAR_INT_MODE_P (mode))
1197 {
1198 wide_int result;
1199 if (fold_const_call_ss (&result, fn, wi::to_wide (arg),
1200 TYPE_PRECISION (type), TREE_TYPE (arg)))
1201 return wide_int_to_tree (type, result);
1202 }
1203 return NULL_TREE;
1204 }
1205
1206 if (real_cst_p (arg))
1207 {
1208 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg_mode));
1209 if (mode == arg_mode)
1210 {
1211 /* real -> real. */
1212 REAL_VALUE_TYPE result;
1213 if (fold_const_call_ss (&result, fn, TREE_REAL_CST_PTR (arg),
1214 REAL_MODE_FORMAT (mode)))
1215 return build_real (type, result);
1216 }
1217 else if (COMPLEX_MODE_P (mode)
1218 && GET_MODE_INNER (mode) == arg_mode)
1219 {
1220 /* real -> complex real. */
1221 REAL_VALUE_TYPE result_real, result_imag;
1222 if (fold_const_call_cs (&result_real, &result_imag, fn,
1223 TREE_REAL_CST_PTR (arg),
1224 REAL_MODE_FORMAT (arg_mode)))
1225 return build_complex (type,
1226 build_real (TREE_TYPE (type), result_real),
1227 build_real (TREE_TYPE (type), result_imag));
1228 }
1229 else if (INTEGRAL_TYPE_P (type))
1230 {
1231 /* real -> int. */
1232 wide_int result;
1233 if (fold_const_call_ss (&result, fn,
1234 TREE_REAL_CST_PTR (arg),
1235 TYPE_PRECISION (type),
1236 REAL_MODE_FORMAT (arg_mode)))
1237 return wide_int_to_tree (type, result);
1238 }
1239 return NULL_TREE;
1240 }
1241
1242 if (complex_cst_p (arg))
1243 {
1244 gcc_checking_assert (COMPLEX_MODE_P (arg_mode));
1245 machine_mode inner_mode = GET_MODE_INNER (arg_mode);
1246 tree argr = TREE_REALPART (arg);
1247 tree argi = TREE_IMAGPART (arg);
1248 if (mode == arg_mode
1249 && real_cst_p (argr)
1250 && real_cst_p (argi))
1251 {
1252 /* complex real -> complex real. */
1253 REAL_VALUE_TYPE result_real, result_imag;
1254 if (fold_const_call_cc (&result_real, &result_imag, fn,
1255 TREE_REAL_CST_PTR (argr),
1256 TREE_REAL_CST_PTR (argi),
1257 REAL_MODE_FORMAT (inner_mode)))
1258 return build_complex (type,
1259 build_real (TREE_TYPE (type), result_real),
1260 build_real (TREE_TYPE (type), result_imag));
1261 }
1262 if (mode == inner_mode
1263 && real_cst_p (argr)
1264 && real_cst_p (argi))
1265 {
1266 /* complex real -> real. */
1267 REAL_VALUE_TYPE result;
1268 if (fold_const_call_sc (&result, fn,
1269 TREE_REAL_CST_PTR (argr),
1270 TREE_REAL_CST_PTR (argi),
1271 REAL_MODE_FORMAT (inner_mode)))
1272 return build_real (type, result);
1273 }
1274 return NULL_TREE;
1275 }
1276
1277 return NULL_TREE;
1278 }
1279
1280 /* Try to fold FN (ARG) to a constant. Return the constant on success,
1281 otherwise return null. TYPE is the type of the return value. */
1282
1283 tree
1284 fold_const_call (combined_fn fn, tree type, tree arg)
1285 {
1286 switch (fn)
1287 {
1288 case CFN_BUILT_IN_STRLEN:
1289 if (const char *str = c_getstr (arg))
1290 return build_int_cst (type, strlen (str));
1291 return NULL_TREE;
1292
1293 CASE_CFN_NAN:
1294 CASE_FLT_FN_FLOATN_NX (CFN_BUILT_IN_NAN):
1295 case CFN_BUILT_IN_NAND32:
1296 case CFN_BUILT_IN_NAND64:
1297 case CFN_BUILT_IN_NAND128:
1298 return fold_const_builtin_nan (type, arg, true);
1299
1300 CASE_CFN_NANS:
1301 CASE_FLT_FN_FLOATN_NX (CFN_BUILT_IN_NANS):
1302 return fold_const_builtin_nan (type, arg, false);
1303
1304 case CFN_REDUC_PLUS:
1305 return fold_const_reduction (type, arg, PLUS_EXPR);
1306
1307 case CFN_REDUC_MAX:
1308 return fold_const_reduction (type, arg, MAX_EXPR);
1309
1310 case CFN_REDUC_MIN:
1311 return fold_const_reduction (type, arg, MIN_EXPR);
1312
1313 case CFN_REDUC_AND:
1314 return fold_const_reduction (type, arg, BIT_AND_EXPR);
1315
1316 case CFN_REDUC_IOR:
1317 return fold_const_reduction (type, arg, BIT_IOR_EXPR);
1318
1319 case CFN_REDUC_XOR:
1320 return fold_const_reduction (type, arg, BIT_XOR_EXPR);
1321
1322 case CFN_VEC_CONVERT:
1323 return fold_const_vec_convert (type, arg);
1324
1325 default:
1326 return fold_const_call_1 (fn, type, arg);
1327 }
1328 }
1329
1330 /* Fold a call to IFN_FOLD_LEFT_<CODE> (ARG0, ARG1), returning a value
1331 of type TYPE. */
1332
1333 static tree
1334 fold_const_fold_left (tree type, tree arg0, tree arg1, tree_code code)
1335 {
1336 if (TREE_CODE (arg1) != VECTOR_CST)
1337 return NULL_TREE;
1338
1339 unsigned HOST_WIDE_INT nelts;
1340 if (!VECTOR_CST_NELTS (arg1).is_constant (&nelts))
1341 return NULL_TREE;
1342
1343 for (unsigned HOST_WIDE_INT i = 0; i < nelts; i++)
1344 {
1345 arg0 = const_binop (code, type, arg0, VECTOR_CST_ELT (arg1, i));
1346 if (arg0 == NULL_TREE || !CONSTANT_CLASS_P (arg0))
1347 return NULL_TREE;
1348 }
1349 return arg0;
1350 }
1351
1352 /* Try to evaluate:
1353
1354 *RESULT = FN (*ARG0, *ARG1)
1355
1356 in format FORMAT. Return true on success. */
1357
1358 static bool
1359 fold_const_call_sss (real_value *result, combined_fn fn,
1360 const real_value *arg0, const real_value *arg1,
1361 const real_format *format)
1362 {
1363 switch (fn)
1364 {
1365 CASE_CFN_DREM:
1366 CASE_CFN_REMAINDER:
1367 return do_mpfr_arg2 (result, mpfr_remainder, arg0, arg1, format);
1368
1369 CASE_CFN_ATAN2:
1370 return do_mpfr_arg2 (result, mpfr_atan2, arg0, arg1, format);
1371
1372 CASE_CFN_FDIM:
1373 return do_mpfr_arg2 (result, mpfr_dim, arg0, arg1, format);
1374
1375 CASE_CFN_HYPOT:
1376 return do_mpfr_arg2 (result, mpfr_hypot, arg0, arg1, format);
1377
1378 CASE_CFN_COPYSIGN:
1379 CASE_CFN_COPYSIGN_FN:
1380 *result = *arg0;
1381 real_copysign (result, arg1);
1382 return true;
1383
1384 CASE_CFN_FMIN:
1385 CASE_CFN_FMIN_FN:
1386 return do_mpfr_arg2 (result, mpfr_min, arg0, arg1, format);
1387
1388 CASE_CFN_FMAX:
1389 CASE_CFN_FMAX_FN:
1390 return do_mpfr_arg2 (result, mpfr_max, arg0, arg1, format);
1391
1392 CASE_CFN_POW:
1393 return fold_const_pow (result, arg0, arg1, format);
1394
1395 CASE_CFN_NEXTAFTER:
1396 CASE_CFN_NEXTTOWARD:
1397 return fold_const_nextafter (result, arg0, arg1, format);
1398
1399 default:
1400 return false;
1401 }
1402 }
1403
1404 /* Try to evaluate:
1405
1406 *RESULT = FN (*ARG0, ARG1)
1407
1408 where FORMAT is the format of *RESULT and *ARG0. Return true on
1409 success. */
1410
1411 static bool
1412 fold_const_call_sss (real_value *result, combined_fn fn,
1413 const real_value *arg0, const wide_int_ref &arg1,
1414 const real_format *format)
1415 {
1416 switch (fn)
1417 {
1418 CASE_CFN_LDEXP:
1419 return fold_const_builtin_load_exponent (result, arg0, arg1, format);
1420
1421 CASE_CFN_SCALBN:
1422 CASE_CFN_SCALBLN:
1423 return (format->b == 2
1424 && fold_const_builtin_load_exponent (result, arg0, arg1,
1425 format));
1426
1427 CASE_CFN_POWI:
1428 /* Avoid the folding if flag_signaling_nans is on and
1429 operand is a signaling NaN. */
1430 if (!flag_unsafe_math_optimizations
1431 && flag_signaling_nans
1432 && REAL_VALUE_ISSIGNALING_NAN (*arg0))
1433 return false;
1434
1435 real_powi (result, format, arg0, arg1.to_shwi ());
1436 return true;
1437
1438 default:
1439 return false;
1440 }
1441 }
1442
1443 /* Try to evaluate:
1444
1445 *RESULT = FN (ARG0, *ARG1)
1446
1447 where FORMAT is the format of *RESULT and *ARG1. Return true on
1448 success. */
1449
1450 static bool
1451 fold_const_call_sss (real_value *result, combined_fn fn,
1452 const wide_int_ref &arg0, const real_value *arg1,
1453 const real_format *format)
1454 {
1455 switch (fn)
1456 {
1457 CASE_CFN_JN:
1458 return do_mpfr_arg2 (result, mpfr_jn, arg0, arg1, format);
1459
1460 CASE_CFN_YN:
1461 return (real_compare (GT_EXPR, arg1, &dconst0)
1462 && do_mpfr_arg2 (result, mpfr_yn, arg0, arg1, format));
1463
1464 default:
1465 return false;
1466 }
1467 }
1468
1469 /* Try to evaluate:
1470
1471 RESULT = fn (ARG0, ARG1)
1472
1473 where FORMAT is the format of the real and imaginary parts of RESULT
1474 (RESULT_REAL and RESULT_IMAG), of ARG0 (ARG0_REAL and ARG0_IMAG)
1475 and of ARG1 (ARG1_REAL and ARG1_IMAG). Return true on success. */
1476
1477 static bool
1478 fold_const_call_ccc (real_value *result_real, real_value *result_imag,
1479 combined_fn fn, const real_value *arg0_real,
1480 const real_value *arg0_imag, const real_value *arg1_real,
1481 const real_value *arg1_imag, const real_format *format)
1482 {
1483 switch (fn)
1484 {
1485 CASE_CFN_CPOW:
1486 return do_mpc_arg2 (result_real, result_imag, mpc_pow,
1487 arg0_real, arg0_imag, arg1_real, arg1_imag, format);
1488
1489 default:
1490 return false;
1491 }
1492 }
1493
1494 /* Subroutine of fold_const_call, with the same interface. Handle cases
1495 where the arguments and result are numerical. */
1496
1497 static tree
1498 fold_const_call_1 (combined_fn fn, tree type, tree arg0, tree arg1)
1499 {
1500 machine_mode mode = TYPE_MODE (type);
1501 machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
1502 machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1));
1503
1504 if (mode == arg0_mode
1505 && real_cst_p (arg0)
1506 && real_cst_p (arg1))
1507 {
1508 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
1509 REAL_VALUE_TYPE result;
1510 if (arg0_mode == arg1_mode)
1511 {
1512 /* real, real -> real. */
1513 if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
1514 TREE_REAL_CST_PTR (arg1),
1515 REAL_MODE_FORMAT (mode)))
1516 return build_real (type, result);
1517 }
1518 else if (arg1_mode == TYPE_MODE (long_double_type_node))
1519 switch (fn)
1520 {
1521 CASE_CFN_NEXTTOWARD:
1522 /* real, long double -> real. */
1523 if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
1524 TREE_REAL_CST_PTR (arg1),
1525 REAL_MODE_FORMAT (mode)))
1526 return build_real (type, result);
1527 break;
1528 default:
1529 break;
1530 }
1531 return NULL_TREE;
1532 }
1533
1534 if (real_cst_p (arg0)
1535 && integer_cst_p (arg1))
1536 {
1537 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
1538 if (mode == arg0_mode)
1539 {
1540 /* real, int -> real. */
1541 REAL_VALUE_TYPE result;
1542 if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
1543 wi::to_wide (arg1),
1544 REAL_MODE_FORMAT (mode)))
1545 return build_real (type, result);
1546 }
1547 return NULL_TREE;
1548 }
1549
1550 if (integer_cst_p (arg0)
1551 && real_cst_p (arg1))
1552 {
1553 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg1_mode));
1554 if (mode == arg1_mode)
1555 {
1556 /* int, real -> real. */
1557 REAL_VALUE_TYPE result;
1558 if (fold_const_call_sss (&result, fn, wi::to_wide (arg0),
1559 TREE_REAL_CST_PTR (arg1),
1560 REAL_MODE_FORMAT (mode)))
1561 return build_real (type, result);
1562 }
1563 return NULL_TREE;
1564 }
1565
1566 if (arg0_mode == arg1_mode
1567 && complex_cst_p (arg0)
1568 && complex_cst_p (arg1))
1569 {
1570 gcc_checking_assert (COMPLEX_MODE_P (arg0_mode));
1571 machine_mode inner_mode = GET_MODE_INNER (arg0_mode);
1572 tree arg0r = TREE_REALPART (arg0);
1573 tree arg0i = TREE_IMAGPART (arg0);
1574 tree arg1r = TREE_REALPART (arg1);
1575 tree arg1i = TREE_IMAGPART (arg1);
1576 if (mode == arg0_mode
1577 && real_cst_p (arg0r)
1578 && real_cst_p (arg0i)
1579 && real_cst_p (arg1r)
1580 && real_cst_p (arg1i))
1581 {
1582 /* complex real, complex real -> complex real. */
1583 REAL_VALUE_TYPE result_real, result_imag;
1584 if (fold_const_call_ccc (&result_real, &result_imag, fn,
1585 TREE_REAL_CST_PTR (arg0r),
1586 TREE_REAL_CST_PTR (arg0i),
1587 TREE_REAL_CST_PTR (arg1r),
1588 TREE_REAL_CST_PTR (arg1i),
1589 REAL_MODE_FORMAT (inner_mode)))
1590 return build_complex (type,
1591 build_real (TREE_TYPE (type), result_real),
1592 build_real (TREE_TYPE (type), result_imag));
1593 }
1594 return NULL_TREE;
1595 }
1596
1597 return NULL_TREE;
1598 }
1599
1600 /* Try to fold FN (ARG0, ARG1) to a constant. Return the constant on success,
1601 otherwise return null. TYPE is the type of the return value. */
1602
1603 tree
1604 fold_const_call (combined_fn fn, tree type, tree arg0, tree arg1)
1605 {
1606 const char *p0, *p1;
1607 char c;
1608 switch (fn)
1609 {
1610 case CFN_BUILT_IN_STRSPN:
1611 if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1612 return build_int_cst (type, strspn (p0, p1));
1613 return NULL_TREE;
1614
1615 case CFN_BUILT_IN_STRCSPN:
1616 if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1617 return build_int_cst (type, strcspn (p0, p1));
1618 return NULL_TREE;
1619
1620 case CFN_BUILT_IN_STRCMP:
1621 if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1622 return build_cmp_result (type, strcmp (p0, p1));
1623 return NULL_TREE;
1624
1625 case CFN_BUILT_IN_STRCASECMP:
1626 if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1627 {
1628 int r = strcmp (p0, p1);
1629 if (r == 0)
1630 return build_cmp_result (type, r);
1631 }
1632 return NULL_TREE;
1633
1634 case CFN_BUILT_IN_INDEX:
1635 case CFN_BUILT_IN_STRCHR:
1636 if ((p0 = c_getstr (arg0)) && target_char_cst_p (arg1, &c))
1637 {
1638 const char *r = strchr (p0, c);
1639 if (r == NULL)
1640 return build_int_cst (type, 0);
1641 return fold_convert (type,
1642 fold_build_pointer_plus_hwi (arg0, r - p0));
1643 }
1644 return NULL_TREE;
1645
1646 case CFN_BUILT_IN_RINDEX:
1647 case CFN_BUILT_IN_STRRCHR:
1648 if ((p0 = c_getstr (arg0)) && target_char_cst_p (arg1, &c))
1649 {
1650 const char *r = strrchr (p0, c);
1651 if (r == NULL)
1652 return build_int_cst (type, 0);
1653 return fold_convert (type,
1654 fold_build_pointer_plus_hwi (arg0, r - p0));
1655 }
1656 return NULL_TREE;
1657
1658 case CFN_BUILT_IN_STRSTR:
1659 if ((p1 = c_getstr (arg1)))
1660 {
1661 if ((p0 = c_getstr (arg0)))
1662 {
1663 const char *r = strstr (p0, p1);
1664 if (r == NULL)
1665 return build_int_cst (type, 0);
1666 return fold_convert (type,
1667 fold_build_pointer_plus_hwi (arg0, r - p0));
1668 }
1669 if (*p1 == '\0')
1670 return fold_convert (type, arg0);
1671 }
1672 return NULL_TREE;
1673
1674 case CFN_FOLD_LEFT_PLUS:
1675 return fold_const_fold_left (type, arg0, arg1, PLUS_EXPR);
1676
1677 default:
1678 return fold_const_call_1 (fn, type, arg0, arg1);
1679 }
1680 }
1681
1682 /* Try to evaluate:
1683
1684 *RESULT = FN (*ARG0, *ARG1, *ARG2)
1685
1686 in format FORMAT. Return true on success. */
1687
1688 static bool
1689 fold_const_call_ssss (real_value *result, combined_fn fn,
1690 const real_value *arg0, const real_value *arg1,
1691 const real_value *arg2, const real_format *format)
1692 {
1693 switch (fn)
1694 {
1695 CASE_CFN_FMA:
1696 CASE_CFN_FMA_FN:
1697 return do_mpfr_arg3 (result, mpfr_fma, arg0, arg1, arg2, format);
1698
1699 case CFN_FMS:
1700 {
1701 real_value new_arg2 = real_value_negate (arg2);
1702 return do_mpfr_arg3 (result, mpfr_fma, arg0, arg1, &new_arg2, format);
1703 }
1704
1705 case CFN_FNMA:
1706 {
1707 real_value new_arg0 = real_value_negate (arg0);
1708 return do_mpfr_arg3 (result, mpfr_fma, &new_arg0, arg1, arg2, format);
1709 }
1710
1711 case CFN_FNMS:
1712 {
1713 real_value new_arg0 = real_value_negate (arg0);
1714 real_value new_arg2 = real_value_negate (arg2);
1715 return do_mpfr_arg3 (result, mpfr_fma, &new_arg0, arg1,
1716 &new_arg2, format);
1717 }
1718
1719 default:
1720 return false;
1721 }
1722 }
1723
1724 /* Subroutine of fold_const_call, with the same interface. Handle cases
1725 where the arguments and result are numerical. */
1726
1727 static tree
1728 fold_const_call_1 (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2)
1729 {
1730 machine_mode mode = TYPE_MODE (type);
1731 machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
1732 machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1));
1733 machine_mode arg2_mode = TYPE_MODE (TREE_TYPE (arg2));
1734
1735 if (arg0_mode == arg1_mode
1736 && arg0_mode == arg2_mode
1737 && real_cst_p (arg0)
1738 && real_cst_p (arg1)
1739 && real_cst_p (arg2))
1740 {
1741 gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
1742 if (mode == arg0_mode)
1743 {
1744 /* real, real, real -> real. */
1745 REAL_VALUE_TYPE result;
1746 if (fold_const_call_ssss (&result, fn, TREE_REAL_CST_PTR (arg0),
1747 TREE_REAL_CST_PTR (arg1),
1748 TREE_REAL_CST_PTR (arg2),
1749 REAL_MODE_FORMAT (mode)))
1750 return build_real (type, result);
1751 }
1752 return NULL_TREE;
1753 }
1754
1755 return NULL_TREE;
1756 }
1757
1758 /* Try to fold FN (ARG0, ARG1, ARG2) to a constant. Return the constant on
1759 success, otherwise return null. TYPE is the type of the return value. */
1760
1761 tree
1762 fold_const_call (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2)
1763 {
1764 const char *p0, *p1;
1765 char c;
1766 unsigned HOST_WIDE_INT s0, s1;
1767 size_t s2 = 0;
1768 switch (fn)
1769 {
1770 case CFN_BUILT_IN_STRNCMP:
1771 if (!host_size_t_cst_p (arg2, &s2))
1772 return NULL_TREE;
1773 if (s2 == 0
1774 && !TREE_SIDE_EFFECTS (arg0)
1775 && !TREE_SIDE_EFFECTS (arg1))
1776 return build_int_cst (type, 0);
1777 else if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
1778 return build_int_cst (type, strncmp (p0, p1, s2));
1779 return NULL_TREE;
1780
1781 case CFN_BUILT_IN_STRNCASECMP:
1782 if (!host_size_t_cst_p (arg2, &s2))
1783 return NULL_TREE;
1784 if (s2 == 0
1785 && !TREE_SIDE_EFFECTS (arg0)
1786 && !TREE_SIDE_EFFECTS (arg1))
1787 return build_int_cst (type, 0);
1788 else if ((p0 = c_getstr (arg0))
1789 && (p1 = c_getstr (arg1))
1790 && strncmp (p0, p1, s2) == 0)
1791 return build_int_cst (type, 0);
1792 return NULL_TREE;
1793
1794 case CFN_BUILT_IN_BCMP:
1795 case CFN_BUILT_IN_MEMCMP:
1796 if (!host_size_t_cst_p (arg2, &s2))
1797 return NULL_TREE;
1798 if (s2 == 0
1799 && !TREE_SIDE_EFFECTS (arg0)
1800 && !TREE_SIDE_EFFECTS (arg1))
1801 return build_int_cst (type, 0);
1802 if ((p0 = c_getstr (arg0, &s0))
1803 && (p1 = c_getstr (arg1, &s1))
1804 && s2 <= s0
1805 && s2 <= s1)
1806 return build_cmp_result (type, memcmp (p0, p1, s2));
1807 return NULL_TREE;
1808
1809 case CFN_BUILT_IN_MEMCHR:
1810 if (!host_size_t_cst_p (arg2, &s2))
1811 return NULL_TREE;
1812 if (s2 == 0
1813 && !TREE_SIDE_EFFECTS (arg0)
1814 && !TREE_SIDE_EFFECTS (arg1))
1815 return build_int_cst (type, 0);
1816 if ((p0 = c_getstr (arg0, &s0))
1817 && s2 <= s0
1818 && target_char_cst_p (arg1, &c))
1819 {
1820 const char *r = (const char *) memchr (p0, c, s2);
1821 if (r == NULL)
1822 return build_int_cst (type, 0);
1823 return fold_convert (type,
1824 fold_build_pointer_plus_hwi (arg0, r - p0));
1825 }
1826 return NULL_TREE;
1827
1828 case CFN_WHILE_ULT:
1829 {
1830 poly_uint64 parg0, parg1;
1831 if (poly_int_tree_p (arg0, &parg0) && poly_int_tree_p (arg1, &parg1))
1832 return fold_while_ult (type, parg0, parg1);
1833 return NULL_TREE;
1834 }
1835
1836 default:
1837 return fold_const_call_1 (fn, type, arg0, arg1, arg2);
1838 }
1839 }