]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/trans-array.c
Update copyright years.
[thirdparty/gcc.git] / gcc / fortran / trans-array.c
1 /* Array translation routines
2 Copyright (C) 2002-2020 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* trans-array.c-- Various array related code, including scalarization,
23 allocation, initialization and other support routines. */
24
25 /* How the scalarizer works.
26 In gfortran, array expressions use the same core routines as scalar
27 expressions.
28 First, a Scalarization State (SS) chain is built. This is done by walking
29 the expression tree, and building a linear list of the terms in the
30 expression. As the tree is walked, scalar subexpressions are translated.
31
32 The scalarization parameters are stored in a gfc_loopinfo structure.
33 First the start and stride of each term is calculated by
34 gfc_conv_ss_startstride. During this process the expressions for the array
35 descriptors and data pointers are also translated.
36
37 If the expression is an assignment, we must then resolve any dependencies.
38 In Fortran all the rhs values of an assignment must be evaluated before
39 any assignments take place. This can require a temporary array to store the
40 values. We also require a temporary when we are passing array expressions
41 or vector subscripts as procedure parameters.
42
43 Array sections are passed without copying to a temporary. These use the
44 scalarizer to determine the shape of the section. The flag
45 loop->array_parameter tells the scalarizer that the actual values and loop
46 variables will not be required.
47
48 The function gfc_conv_loop_setup generates the scalarization setup code.
49 It determines the range of the scalarizing loop variables. If a temporary
50 is required, this is created and initialized. Code for scalar expressions
51 taken outside the loop is also generated at this time. Next the offset and
52 scaling required to translate from loop variables to array indices for each
53 term is calculated.
54
55 A call to gfc_start_scalarized_body marks the start of the scalarized
56 expression. This creates a scope and declares the loop variables. Before
57 calling this gfc_make_ss_chain_used must be used to indicate which terms
58 will be used inside this loop.
59
60 The scalar gfc_conv_* functions are then used to build the main body of the
61 scalarization loop. Scalarization loop variables and precalculated scalar
62 values are automatically substituted. Note that gfc_advance_se_ss_chain
63 must be used, rather than changing the se->ss directly.
64
65 For assignment expressions requiring a temporary two sub loops are
66 generated. The first stores the result of the expression in the temporary,
67 the second copies it to the result. A call to
68 gfc_trans_scalarized_loop_boundary marks the end of the main loop code and
69 the start of the copying loop. The temporary may be less than full rank.
70
71 Finally gfc_trans_scalarizing_loops is called to generate the implicit do
72 loops. The loops are added to the pre chain of the loopinfo. The post
73 chain may still contain cleanup code.
74
75 After the loop code has been added into its parent scope gfc_cleanup_loop
76 is called to free all the SS allocated by the scalarizer. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "options.h"
82 #include "tree.h"
83 #include "gfortran.h"
84 #include "gimple-expr.h"
85 #include "trans.h"
86 #include "fold-const.h"
87 #include "constructor.h"
88 #include "trans-types.h"
89 #include "trans-array.h"
90 #include "trans-const.h"
91 #include "dependency.h"
92
93 static bool gfc_get_array_constructor_size (mpz_t *, gfc_constructor_base);
94
95 /* The contents of this structure aren't actually used, just the address. */
96 static gfc_ss gfc_ss_terminator_var;
97 gfc_ss * const gfc_ss_terminator = &gfc_ss_terminator_var;
98
99
100 static tree
101 gfc_array_dataptr_type (tree desc)
102 {
103 return (GFC_TYPE_ARRAY_DATAPTR_TYPE (TREE_TYPE (desc)));
104 }
105
106
107 /* Build expressions to access the members of an array descriptor.
108 It's surprisingly easy to mess up here, so never access
109 an array descriptor by "brute force", always use these
110 functions. This also avoids problems if we change the format
111 of an array descriptor.
112
113 To understand these magic numbers, look at the comments
114 before gfc_build_array_type() in trans-types.c.
115
116 The code within these defines should be the only code which knows the format
117 of an array descriptor.
118
119 Any code just needing to read obtain the bounds of an array should use
120 gfc_conv_array_* rather than the following functions as these will return
121 know constant values, and work with arrays which do not have descriptors.
122
123 Don't forget to #undef these! */
124
125 #define DATA_FIELD 0
126 #define OFFSET_FIELD 1
127 #define DTYPE_FIELD 2
128 #define SPAN_FIELD 3
129 #define DIMENSION_FIELD 4
130 #define CAF_TOKEN_FIELD 5
131
132 #define STRIDE_SUBFIELD 0
133 #define LBOUND_SUBFIELD 1
134 #define UBOUND_SUBFIELD 2
135
136 /* This provides READ-ONLY access to the data field. The field itself
137 doesn't have the proper type. */
138
139 tree
140 gfc_conv_descriptor_data_get (tree desc)
141 {
142 tree field, type, t;
143
144 type = TREE_TYPE (desc);
145 if (TREE_CODE (type) == REFERENCE_TYPE)
146 type = TREE_TYPE (type);
147
148 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
149
150 field = TYPE_FIELDS (type);
151 gcc_assert (DATA_FIELD == 0);
152
153 t = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc,
154 field, NULL_TREE);
155 t = fold_convert (GFC_TYPE_ARRAY_DATAPTR_TYPE (type), t);
156
157 return t;
158 }
159
160 /* This provides WRITE access to the data field.
161
162 TUPLES_P is true if we are generating tuples.
163
164 This function gets called through the following macros:
165 gfc_conv_descriptor_data_set
166 gfc_conv_descriptor_data_set. */
167
168 void
169 gfc_conv_descriptor_data_set (stmtblock_t *block, tree desc, tree value)
170 {
171 tree field, type, t;
172
173 type = TREE_TYPE (desc);
174 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
175
176 field = TYPE_FIELDS (type);
177 gcc_assert (DATA_FIELD == 0);
178
179 t = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc,
180 field, NULL_TREE);
181 gfc_add_modify (block, t, fold_convert (TREE_TYPE (field), value));
182 }
183
184
185 /* This provides address access to the data field. This should only be
186 used by array allocation, passing this on to the runtime. */
187
188 tree
189 gfc_conv_descriptor_data_addr (tree desc)
190 {
191 tree field, type, t;
192
193 type = TREE_TYPE (desc);
194 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
195
196 field = TYPE_FIELDS (type);
197 gcc_assert (DATA_FIELD == 0);
198
199 t = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc,
200 field, NULL_TREE);
201 return gfc_build_addr_expr (NULL_TREE, t);
202 }
203
204 static tree
205 gfc_conv_descriptor_offset (tree desc)
206 {
207 tree type;
208 tree field;
209
210 type = TREE_TYPE (desc);
211 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
212
213 field = gfc_advance_chain (TYPE_FIELDS (type), OFFSET_FIELD);
214 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
215
216 return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
217 desc, field, NULL_TREE);
218 }
219
220 tree
221 gfc_conv_descriptor_offset_get (tree desc)
222 {
223 return gfc_conv_descriptor_offset (desc);
224 }
225
226 void
227 gfc_conv_descriptor_offset_set (stmtblock_t *block, tree desc,
228 tree value)
229 {
230 tree t = gfc_conv_descriptor_offset (desc);
231 gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
232 }
233
234
235 tree
236 gfc_conv_descriptor_dtype (tree desc)
237 {
238 tree field;
239 tree type;
240
241 type = TREE_TYPE (desc);
242 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
243
244 field = gfc_advance_chain (TYPE_FIELDS (type), DTYPE_FIELD);
245 gcc_assert (field != NULL_TREE
246 && TREE_TYPE (field) == get_dtype_type_node ());
247
248 return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
249 desc, field, NULL_TREE);
250 }
251
252 static tree
253 gfc_conv_descriptor_span (tree desc)
254 {
255 tree type;
256 tree field;
257
258 type = TREE_TYPE (desc);
259 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
260
261 field = gfc_advance_chain (TYPE_FIELDS (type), SPAN_FIELD);
262 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
263
264 return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
265 desc, field, NULL_TREE);
266 }
267
268 tree
269 gfc_conv_descriptor_span_get (tree desc)
270 {
271 return gfc_conv_descriptor_span (desc);
272 }
273
274 void
275 gfc_conv_descriptor_span_set (stmtblock_t *block, tree desc,
276 tree value)
277 {
278 tree t = gfc_conv_descriptor_span (desc);
279 gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
280 }
281
282
283 tree
284 gfc_conv_descriptor_rank (tree desc)
285 {
286 tree tmp;
287 tree dtype;
288
289 dtype = gfc_conv_descriptor_dtype (desc);
290 tmp = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (dtype)), GFC_DTYPE_RANK);
291 gcc_assert (tmp != NULL_TREE
292 && TREE_TYPE (tmp) == signed_char_type_node);
293 return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (tmp),
294 dtype, tmp, NULL_TREE);
295 }
296
297
298 /* Return the element length from the descriptor dtype field. */
299
300 tree
301 gfc_conv_descriptor_elem_len (tree desc)
302 {
303 tree tmp;
304 tree dtype;
305
306 dtype = gfc_conv_descriptor_dtype (desc);
307 tmp = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (dtype)),
308 GFC_DTYPE_ELEM_LEN);
309 gcc_assert (tmp != NULL_TREE
310 && TREE_TYPE (tmp) == size_type_node);
311 return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (tmp),
312 dtype, tmp, NULL_TREE);
313 }
314
315
316 tree
317 gfc_conv_descriptor_attribute (tree desc)
318 {
319 tree tmp;
320 tree dtype;
321
322 dtype = gfc_conv_descriptor_dtype (desc);
323 tmp = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (dtype)),
324 GFC_DTYPE_ATTRIBUTE);
325 gcc_assert (tmp!= NULL_TREE
326 && TREE_TYPE (tmp) == short_integer_type_node);
327 return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (tmp),
328 dtype, tmp, NULL_TREE);
329 }
330
331
332 tree
333 gfc_get_descriptor_dimension (tree desc)
334 {
335 tree type, field;
336
337 type = TREE_TYPE (desc);
338 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
339
340 field = gfc_advance_chain (TYPE_FIELDS (type), DIMENSION_FIELD);
341 gcc_assert (field != NULL_TREE
342 && TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
343 && TREE_CODE (TREE_TYPE (TREE_TYPE (field))) == RECORD_TYPE);
344
345 return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
346 desc, field, NULL_TREE);
347 }
348
349
350 static tree
351 gfc_conv_descriptor_dimension (tree desc, tree dim)
352 {
353 tree tmp;
354
355 tmp = gfc_get_descriptor_dimension (desc);
356
357 return gfc_build_array_ref (tmp, dim, NULL);
358 }
359
360
361 tree
362 gfc_conv_descriptor_token (tree desc)
363 {
364 tree type;
365 tree field;
366
367 type = TREE_TYPE (desc);
368 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
369 gcc_assert (flag_coarray == GFC_FCOARRAY_LIB);
370 field = gfc_advance_chain (TYPE_FIELDS (type), CAF_TOKEN_FIELD);
371
372 /* Should be a restricted pointer - except in the finalization wrapper. */
373 gcc_assert (field != NULL_TREE
374 && (TREE_TYPE (field) == prvoid_type_node
375 || TREE_TYPE (field) == pvoid_type_node));
376
377 return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
378 desc, field, NULL_TREE);
379 }
380
381
382 static tree
383 gfc_conv_descriptor_stride (tree desc, tree dim)
384 {
385 tree tmp;
386 tree field;
387
388 tmp = gfc_conv_descriptor_dimension (desc, dim);
389 field = TYPE_FIELDS (TREE_TYPE (tmp));
390 field = gfc_advance_chain (field, STRIDE_SUBFIELD);
391 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
392
393 tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
394 tmp, field, NULL_TREE);
395 return tmp;
396 }
397
398 tree
399 gfc_conv_descriptor_stride_get (tree desc, tree dim)
400 {
401 tree type = TREE_TYPE (desc);
402 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
403 if (integer_zerop (dim)
404 && (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE
405 ||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT
406 ||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_RANK_CONT
407 ||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT))
408 return gfc_index_one_node;
409
410 return gfc_conv_descriptor_stride (desc, dim);
411 }
412
413 void
414 gfc_conv_descriptor_stride_set (stmtblock_t *block, tree desc,
415 tree dim, tree value)
416 {
417 tree t = gfc_conv_descriptor_stride (desc, dim);
418 gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
419 }
420
421 static tree
422 gfc_conv_descriptor_lbound (tree desc, tree dim)
423 {
424 tree tmp;
425 tree field;
426
427 tmp = gfc_conv_descriptor_dimension (desc, dim);
428 field = TYPE_FIELDS (TREE_TYPE (tmp));
429 field = gfc_advance_chain (field, LBOUND_SUBFIELD);
430 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
431
432 tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
433 tmp, field, NULL_TREE);
434 return tmp;
435 }
436
437 tree
438 gfc_conv_descriptor_lbound_get (tree desc, tree dim)
439 {
440 return gfc_conv_descriptor_lbound (desc, dim);
441 }
442
443 void
444 gfc_conv_descriptor_lbound_set (stmtblock_t *block, tree desc,
445 tree dim, tree value)
446 {
447 tree t = gfc_conv_descriptor_lbound (desc, dim);
448 gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
449 }
450
451 static tree
452 gfc_conv_descriptor_ubound (tree desc, tree dim)
453 {
454 tree tmp;
455 tree field;
456
457 tmp = gfc_conv_descriptor_dimension (desc, dim);
458 field = TYPE_FIELDS (TREE_TYPE (tmp));
459 field = gfc_advance_chain (field, UBOUND_SUBFIELD);
460 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
461
462 tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
463 tmp, field, NULL_TREE);
464 return tmp;
465 }
466
467 tree
468 gfc_conv_descriptor_ubound_get (tree desc, tree dim)
469 {
470 return gfc_conv_descriptor_ubound (desc, dim);
471 }
472
473 void
474 gfc_conv_descriptor_ubound_set (stmtblock_t *block, tree desc,
475 tree dim, tree value)
476 {
477 tree t = gfc_conv_descriptor_ubound (desc, dim);
478 gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
479 }
480
481 /* Build a null array descriptor constructor. */
482
483 tree
484 gfc_build_null_descriptor (tree type)
485 {
486 tree field;
487 tree tmp;
488
489 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
490 gcc_assert (DATA_FIELD == 0);
491 field = TYPE_FIELDS (type);
492
493 /* Set a NULL data pointer. */
494 tmp = build_constructor_single (type, field, null_pointer_node);
495 TREE_CONSTANT (tmp) = 1;
496 /* All other fields are ignored. */
497
498 return tmp;
499 }
500
501
502 /* Modify a descriptor such that the lbound of a given dimension is the value
503 specified. This also updates ubound and offset accordingly. */
504
505 void
506 gfc_conv_shift_descriptor_lbound (stmtblock_t* block, tree desc,
507 int dim, tree new_lbound)
508 {
509 tree offs, ubound, lbound, stride;
510 tree diff, offs_diff;
511
512 new_lbound = fold_convert (gfc_array_index_type, new_lbound);
513
514 offs = gfc_conv_descriptor_offset_get (desc);
515 lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[dim]);
516 ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[dim]);
517 stride = gfc_conv_descriptor_stride_get (desc, gfc_rank_cst[dim]);
518
519 /* Get difference (new - old) by which to shift stuff. */
520 diff = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
521 new_lbound, lbound);
522
523 /* Shift ubound and offset accordingly. This has to be done before
524 updating the lbound, as they depend on the lbound expression! */
525 ubound = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
526 ubound, diff);
527 gfc_conv_descriptor_ubound_set (block, desc, gfc_rank_cst[dim], ubound);
528 offs_diff = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
529 diff, stride);
530 offs = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
531 offs, offs_diff);
532 gfc_conv_descriptor_offset_set (block, desc, offs);
533
534 /* Finally set lbound to value we want. */
535 gfc_conv_descriptor_lbound_set (block, desc, gfc_rank_cst[dim], new_lbound);
536 }
537
538
539 /* Obtain offsets for trans-types.c(gfc_get_array_descr_info). */
540
541 void
542 gfc_get_descriptor_offsets_for_info (const_tree desc_type, tree *data_off,
543 tree *dtype_off, tree *span_off,
544 tree *dim_off, tree *dim_size,
545 tree *stride_suboff, tree *lower_suboff,
546 tree *upper_suboff)
547 {
548 tree field;
549 tree type;
550
551 type = TYPE_MAIN_VARIANT (desc_type);
552 field = gfc_advance_chain (TYPE_FIELDS (type), DATA_FIELD);
553 *data_off = byte_position (field);
554 field = gfc_advance_chain (TYPE_FIELDS (type), DTYPE_FIELD);
555 *dtype_off = byte_position (field);
556 field = gfc_advance_chain (TYPE_FIELDS (type), SPAN_FIELD);
557 *span_off = byte_position (field);
558 field = gfc_advance_chain (TYPE_FIELDS (type), DIMENSION_FIELD);
559 *dim_off = byte_position (field);
560 type = TREE_TYPE (TREE_TYPE (field));
561 *dim_size = TYPE_SIZE_UNIT (type);
562 field = gfc_advance_chain (TYPE_FIELDS (type), STRIDE_SUBFIELD);
563 *stride_suboff = byte_position (field);
564 field = gfc_advance_chain (TYPE_FIELDS (type), LBOUND_SUBFIELD);
565 *lower_suboff = byte_position (field);
566 field = gfc_advance_chain (TYPE_FIELDS (type), UBOUND_SUBFIELD);
567 *upper_suboff = byte_position (field);
568 }
569
570
571 /* Cleanup those #defines. */
572
573 #undef DATA_FIELD
574 #undef OFFSET_FIELD
575 #undef DTYPE_FIELD
576 #undef SPAN_FIELD
577 #undef DIMENSION_FIELD
578 #undef CAF_TOKEN_FIELD
579 #undef STRIDE_SUBFIELD
580 #undef LBOUND_SUBFIELD
581 #undef UBOUND_SUBFIELD
582
583
584 /* Mark a SS chain as used. Flags specifies in which loops the SS is used.
585 flags & 1 = Main loop body.
586 flags & 2 = temp copy loop. */
587
588 void
589 gfc_mark_ss_chain_used (gfc_ss * ss, unsigned flags)
590 {
591 for (; ss != gfc_ss_terminator; ss = ss->next)
592 ss->info->useflags = flags;
593 }
594
595
596 /* Free a gfc_ss chain. */
597
598 void
599 gfc_free_ss_chain (gfc_ss * ss)
600 {
601 gfc_ss *next;
602
603 while (ss != gfc_ss_terminator)
604 {
605 gcc_assert (ss != NULL);
606 next = ss->next;
607 gfc_free_ss (ss);
608 ss = next;
609 }
610 }
611
612
613 static void
614 free_ss_info (gfc_ss_info *ss_info)
615 {
616 int n;
617
618 ss_info->refcount--;
619 if (ss_info->refcount > 0)
620 return;
621
622 gcc_assert (ss_info->refcount == 0);
623
624 switch (ss_info->type)
625 {
626 case GFC_SS_SECTION:
627 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
628 if (ss_info->data.array.subscript[n])
629 gfc_free_ss_chain (ss_info->data.array.subscript[n]);
630 break;
631
632 default:
633 break;
634 }
635
636 free (ss_info);
637 }
638
639
640 /* Free a SS. */
641
642 void
643 gfc_free_ss (gfc_ss * ss)
644 {
645 free_ss_info (ss->info);
646 free (ss);
647 }
648
649
650 /* Creates and initializes an array type gfc_ss struct. */
651
652 gfc_ss *
653 gfc_get_array_ss (gfc_ss *next, gfc_expr *expr, int dimen, gfc_ss_type type)
654 {
655 gfc_ss *ss;
656 gfc_ss_info *ss_info;
657 int i;
658
659 ss_info = gfc_get_ss_info ();
660 ss_info->refcount++;
661 ss_info->type = type;
662 ss_info->expr = expr;
663
664 ss = gfc_get_ss ();
665 ss->info = ss_info;
666 ss->next = next;
667 ss->dimen = dimen;
668 for (i = 0; i < ss->dimen; i++)
669 ss->dim[i] = i;
670
671 return ss;
672 }
673
674
675 /* Creates and initializes a temporary type gfc_ss struct. */
676
677 gfc_ss *
678 gfc_get_temp_ss (tree type, tree string_length, int dimen)
679 {
680 gfc_ss *ss;
681 gfc_ss_info *ss_info;
682 int i;
683
684 ss_info = gfc_get_ss_info ();
685 ss_info->refcount++;
686 ss_info->type = GFC_SS_TEMP;
687 ss_info->string_length = string_length;
688 ss_info->data.temp.type = type;
689
690 ss = gfc_get_ss ();
691 ss->info = ss_info;
692 ss->next = gfc_ss_terminator;
693 ss->dimen = dimen;
694 for (i = 0; i < ss->dimen; i++)
695 ss->dim[i] = i;
696
697 return ss;
698 }
699
700
701 /* Creates and initializes a scalar type gfc_ss struct. */
702
703 gfc_ss *
704 gfc_get_scalar_ss (gfc_ss *next, gfc_expr *expr)
705 {
706 gfc_ss *ss;
707 gfc_ss_info *ss_info;
708
709 ss_info = gfc_get_ss_info ();
710 ss_info->refcount++;
711 ss_info->type = GFC_SS_SCALAR;
712 ss_info->expr = expr;
713
714 ss = gfc_get_ss ();
715 ss->info = ss_info;
716 ss->next = next;
717
718 return ss;
719 }
720
721
722 /* Free all the SS associated with a loop. */
723
724 void
725 gfc_cleanup_loop (gfc_loopinfo * loop)
726 {
727 gfc_loopinfo *loop_next, **ploop;
728 gfc_ss *ss;
729 gfc_ss *next;
730
731 ss = loop->ss;
732 while (ss != gfc_ss_terminator)
733 {
734 gcc_assert (ss != NULL);
735 next = ss->loop_chain;
736 gfc_free_ss (ss);
737 ss = next;
738 }
739
740 /* Remove reference to self in the parent loop. */
741 if (loop->parent)
742 for (ploop = &loop->parent->nested; *ploop; ploop = &(*ploop)->next)
743 if (*ploop == loop)
744 {
745 *ploop = loop->next;
746 break;
747 }
748
749 /* Free non-freed nested loops. */
750 for (loop = loop->nested; loop; loop = loop_next)
751 {
752 loop_next = loop->next;
753 gfc_cleanup_loop (loop);
754 free (loop);
755 }
756 }
757
758
759 static void
760 set_ss_loop (gfc_ss *ss, gfc_loopinfo *loop)
761 {
762 int n;
763
764 for (; ss != gfc_ss_terminator; ss = ss->next)
765 {
766 ss->loop = loop;
767
768 if (ss->info->type == GFC_SS_SCALAR
769 || ss->info->type == GFC_SS_REFERENCE
770 || ss->info->type == GFC_SS_TEMP)
771 continue;
772
773 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
774 if (ss->info->data.array.subscript[n] != NULL)
775 set_ss_loop (ss->info->data.array.subscript[n], loop);
776 }
777 }
778
779
780 /* Associate a SS chain with a loop. */
781
782 void
783 gfc_add_ss_to_loop (gfc_loopinfo * loop, gfc_ss * head)
784 {
785 gfc_ss *ss;
786 gfc_loopinfo *nested_loop;
787
788 if (head == gfc_ss_terminator)
789 return;
790
791 set_ss_loop (head, loop);
792
793 ss = head;
794 for (; ss && ss != gfc_ss_terminator; ss = ss->next)
795 {
796 if (ss->nested_ss)
797 {
798 nested_loop = ss->nested_ss->loop;
799
800 /* More than one ss can belong to the same loop. Hence, we add the
801 loop to the chain only if it is different from the previously
802 added one, to avoid duplicate nested loops. */
803 if (nested_loop != loop->nested)
804 {
805 gcc_assert (nested_loop->parent == NULL);
806 nested_loop->parent = loop;
807
808 gcc_assert (nested_loop->next == NULL);
809 nested_loop->next = loop->nested;
810 loop->nested = nested_loop;
811 }
812 else
813 gcc_assert (nested_loop->parent == loop);
814 }
815
816 if (ss->next == gfc_ss_terminator)
817 ss->loop_chain = loop->ss;
818 else
819 ss->loop_chain = ss->next;
820 }
821 gcc_assert (ss == gfc_ss_terminator);
822 loop->ss = head;
823 }
824
825
826 /* Returns true if the expression is an array pointer. */
827
828 static bool
829 is_pointer_array (tree expr)
830 {
831 if (expr == NULL_TREE
832 || !GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (expr))
833 || GFC_CLASS_TYPE_P (TREE_TYPE (expr)))
834 return false;
835
836 if (TREE_CODE (expr) == VAR_DECL
837 && GFC_DECL_PTR_ARRAY_P (expr))
838 return true;
839
840 if (TREE_CODE (expr) == PARM_DECL
841 && GFC_DECL_PTR_ARRAY_P (expr))
842 return true;
843
844 if (TREE_CODE (expr) == INDIRECT_REF
845 && GFC_DECL_PTR_ARRAY_P (TREE_OPERAND (expr, 0)))
846 return true;
847
848 /* The field declaration is marked as an pointer array. */
849 if (TREE_CODE (expr) == COMPONENT_REF
850 && GFC_DECL_PTR_ARRAY_P (TREE_OPERAND (expr, 1))
851 && !GFC_CLASS_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
852 return true;
853
854 return false;
855 }
856
857
858 /* If the symbol or expression reference a CFI descriptor, return the
859 pointer to the converted gfc descriptor. If an array reference is
860 present as the last argument, check that it is the one applied to
861 the CFI descriptor in the expression. Note that the CFI object is
862 always the symbol in the expression! */
863
864 static bool
865 get_CFI_desc (gfc_symbol *sym, gfc_expr *expr,
866 tree *desc, gfc_array_ref *ar)
867 {
868 tree tmp;
869
870 if (!is_CFI_desc (sym, expr))
871 return false;
872
873 if (expr && ar)
874 {
875 if (!(expr->ref && expr->ref->type == REF_ARRAY)
876 || (&expr->ref->u.ar != ar))
877 return false;
878 }
879
880 if (sym == NULL)
881 tmp = expr->symtree->n.sym->backend_decl;
882 else
883 tmp = sym->backend_decl;
884
885 if (tmp && DECL_LANG_SPECIFIC (tmp) && GFC_DECL_SAVED_DESCRIPTOR (tmp))
886 tmp = GFC_DECL_SAVED_DESCRIPTOR (tmp);
887
888 *desc = tmp;
889 return true;
890 }
891
892
893 /* Return the span of an array. */
894
895 tree
896 gfc_get_array_span (tree desc, gfc_expr *expr)
897 {
898 tree tmp;
899
900 if (is_pointer_array (desc) || get_CFI_desc (NULL, expr, &desc, NULL))
901 {
902 if (POINTER_TYPE_P (TREE_TYPE (desc)))
903 desc = build_fold_indirect_ref_loc (input_location, desc);
904
905 /* This will have the span field set. */
906 tmp = gfc_conv_descriptor_span_get (desc);
907 }
908 else if (TREE_CODE (desc) == COMPONENT_REF
909 && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))
910 && GFC_CLASS_TYPE_P (TREE_TYPE (TREE_OPERAND (desc, 0))))
911 {
912 /* The descriptor is a class _data field and so use the vtable
913 size for the receiving span field. */
914 tmp = gfc_get_vptr_from_expr (desc);
915 tmp = gfc_vptr_size_get (tmp);
916 }
917 else if (expr && expr->expr_type == EXPR_VARIABLE
918 && expr->symtree->n.sym->ts.type == BT_CLASS
919 && expr->ref->type == REF_COMPONENT
920 && expr->ref->next->type == REF_ARRAY
921 && expr->ref->next->next == NULL
922 && CLASS_DATA (expr->symtree->n.sym)->attr.dimension)
923 {
924 /* Dummys come in sometimes with the descriptor detached from
925 the class field or declaration. */
926 tmp = gfc_class_vptr_get (expr->symtree->n.sym->backend_decl);
927 tmp = gfc_vptr_size_get (tmp);
928 }
929 else
930 {
931 /* If none of the fancy stuff works, the span is the element
932 size of the array. Attempt to deal with unbounded character
933 types if possible. Otherwise, return NULL_TREE. */
934 tmp = gfc_get_element_type (TREE_TYPE (desc));
935 if (tmp && TREE_CODE (tmp) == ARRAY_TYPE
936 && (TYPE_MAX_VALUE (TYPE_DOMAIN (tmp)) == NULL_TREE
937 || integer_zerop (TYPE_MAX_VALUE (TYPE_DOMAIN (tmp)))))
938 {
939 if (expr->expr_type == EXPR_VARIABLE
940 && expr->ts.type == BT_CHARACTER)
941 tmp = fold_convert (gfc_array_index_type,
942 gfc_get_expr_charlen (expr));
943 else
944 tmp = NULL_TREE;
945 }
946 else
947 tmp = fold_convert (gfc_array_index_type,
948 size_in_bytes (tmp));
949 }
950 return tmp;
951 }
952
953
954 /* Generate an initializer for a static pointer or allocatable array. */
955
956 void
957 gfc_trans_static_array_pointer (gfc_symbol * sym)
958 {
959 tree type;
960
961 gcc_assert (TREE_STATIC (sym->backend_decl));
962 /* Just zero the data member. */
963 type = TREE_TYPE (sym->backend_decl);
964 DECL_INITIAL (sym->backend_decl) = gfc_build_null_descriptor (type);
965 }
966
967
968 /* If the bounds of SE's loop have not yet been set, see if they can be
969 determined from array spec AS, which is the array spec of a called
970 function. MAPPING maps the callee's dummy arguments to the values
971 that the caller is passing. Add any initialization and finalization
972 code to SE. */
973
974 void
975 gfc_set_loop_bounds_from_array_spec (gfc_interface_mapping * mapping,
976 gfc_se * se, gfc_array_spec * as)
977 {
978 int n, dim, total_dim;
979 gfc_se tmpse;
980 gfc_ss *ss;
981 tree lower;
982 tree upper;
983 tree tmp;
984
985 total_dim = 0;
986
987 if (!as || as->type != AS_EXPLICIT)
988 return;
989
990 for (ss = se->ss; ss; ss = ss->parent)
991 {
992 total_dim += ss->loop->dimen;
993 for (n = 0; n < ss->loop->dimen; n++)
994 {
995 /* The bound is known, nothing to do. */
996 if (ss->loop->to[n] != NULL_TREE)
997 continue;
998
999 dim = ss->dim[n];
1000 gcc_assert (dim < as->rank);
1001 gcc_assert (ss->loop->dimen <= as->rank);
1002
1003 /* Evaluate the lower bound. */
1004 gfc_init_se (&tmpse, NULL);
1005 gfc_apply_interface_mapping (mapping, &tmpse, as->lower[dim]);
1006 gfc_add_block_to_block (&se->pre, &tmpse.pre);
1007 gfc_add_block_to_block (&se->post, &tmpse.post);
1008 lower = fold_convert (gfc_array_index_type, tmpse.expr);
1009
1010 /* ...and the upper bound. */
1011 gfc_init_se (&tmpse, NULL);
1012 gfc_apply_interface_mapping (mapping, &tmpse, as->upper[dim]);
1013 gfc_add_block_to_block (&se->pre, &tmpse.pre);
1014 gfc_add_block_to_block (&se->post, &tmpse.post);
1015 upper = fold_convert (gfc_array_index_type, tmpse.expr);
1016
1017 /* Set the upper bound of the loop to UPPER - LOWER. */
1018 tmp = fold_build2_loc (input_location, MINUS_EXPR,
1019 gfc_array_index_type, upper, lower);
1020 tmp = gfc_evaluate_now (tmp, &se->pre);
1021 ss->loop->to[n] = tmp;
1022 }
1023 }
1024
1025 gcc_assert (total_dim == as->rank);
1026 }
1027
1028
1029 /* Generate code to allocate an array temporary, or create a variable to
1030 hold the data. If size is NULL, zero the descriptor so that the
1031 callee will allocate the array. If DEALLOC is true, also generate code to
1032 free the array afterwards.
1033
1034 If INITIAL is not NULL, it is packed using internal_pack and the result used
1035 as data instead of allocating a fresh, unitialized area of memory.
1036
1037 Initialization code is added to PRE and finalization code to POST.
1038 DYNAMIC is true if the caller may want to extend the array later
1039 using realloc. This prevents us from putting the array on the stack. */
1040
1041 static void
1042 gfc_trans_allocate_array_storage (stmtblock_t * pre, stmtblock_t * post,
1043 gfc_array_info * info, tree size, tree nelem,
1044 tree initial, bool dynamic, bool dealloc)
1045 {
1046 tree tmp;
1047 tree desc;
1048 bool onstack;
1049
1050 desc = info->descriptor;
1051 info->offset = gfc_index_zero_node;
1052 if (size == NULL_TREE || integer_zerop (size))
1053 {
1054 /* A callee allocated array. */
1055 gfc_conv_descriptor_data_set (pre, desc, null_pointer_node);
1056 onstack = FALSE;
1057 }
1058 else
1059 {
1060 /* Allocate the temporary. */
1061 onstack = !dynamic && initial == NULL_TREE
1062 && (flag_stack_arrays
1063 || gfc_can_put_var_on_stack (size));
1064
1065 if (onstack)
1066 {
1067 /* Make a temporary variable to hold the data. */
1068 tmp = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (nelem),
1069 nelem, gfc_index_one_node);
1070 tmp = gfc_evaluate_now (tmp, pre);
1071 tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1072 tmp);
1073 tmp = build_array_type (gfc_get_element_type (TREE_TYPE (desc)),
1074 tmp);
1075 tmp = gfc_create_var (tmp, "A");
1076 /* If we're here only because of -fstack-arrays we have to
1077 emit a DECL_EXPR to make the gimplifier emit alloca calls. */
1078 if (!gfc_can_put_var_on_stack (size))
1079 gfc_add_expr_to_block (pre,
1080 fold_build1_loc (input_location,
1081 DECL_EXPR, TREE_TYPE (tmp),
1082 tmp));
1083 tmp = gfc_build_addr_expr (NULL_TREE, tmp);
1084 gfc_conv_descriptor_data_set (pre, desc, tmp);
1085 }
1086 else
1087 {
1088 /* Allocate memory to hold the data or call internal_pack. */
1089 if (initial == NULL_TREE)
1090 {
1091 tmp = gfc_call_malloc (pre, NULL, size);
1092 tmp = gfc_evaluate_now (tmp, pre);
1093 }
1094 else
1095 {
1096 tree packed;
1097 tree source_data;
1098 tree was_packed;
1099 stmtblock_t do_copying;
1100
1101 tmp = TREE_TYPE (initial); /* Pointer to descriptor. */
1102 gcc_assert (TREE_CODE (tmp) == POINTER_TYPE);
1103 tmp = TREE_TYPE (tmp); /* The descriptor itself. */
1104 tmp = gfc_get_element_type (tmp);
1105 gcc_assert (tmp == gfc_get_element_type (TREE_TYPE (desc)));
1106 packed = gfc_create_var (build_pointer_type (tmp), "data");
1107
1108 tmp = build_call_expr_loc (input_location,
1109 gfor_fndecl_in_pack, 1, initial);
1110 tmp = fold_convert (TREE_TYPE (packed), tmp);
1111 gfc_add_modify (pre, packed, tmp);
1112
1113 tmp = build_fold_indirect_ref_loc (input_location,
1114 initial);
1115 source_data = gfc_conv_descriptor_data_get (tmp);
1116
1117 /* internal_pack may return source->data without any allocation
1118 or copying if it is already packed. If that's the case, we
1119 need to allocate and copy manually. */
1120
1121 gfc_start_block (&do_copying);
1122 tmp = gfc_call_malloc (&do_copying, NULL, size);
1123 tmp = fold_convert (TREE_TYPE (packed), tmp);
1124 gfc_add_modify (&do_copying, packed, tmp);
1125 tmp = gfc_build_memcpy_call (packed, source_data, size);
1126 gfc_add_expr_to_block (&do_copying, tmp);
1127
1128 was_packed = fold_build2_loc (input_location, EQ_EXPR,
1129 logical_type_node, packed,
1130 source_data);
1131 tmp = gfc_finish_block (&do_copying);
1132 tmp = build3_v (COND_EXPR, was_packed, tmp,
1133 build_empty_stmt (input_location));
1134 gfc_add_expr_to_block (pre, tmp);
1135
1136 tmp = fold_convert (pvoid_type_node, packed);
1137 }
1138
1139 gfc_conv_descriptor_data_set (pre, desc, tmp);
1140 }
1141 }
1142 info->data = gfc_conv_descriptor_data_get (desc);
1143
1144 /* The offset is zero because we create temporaries with a zero
1145 lower bound. */
1146 gfc_conv_descriptor_offset_set (pre, desc, gfc_index_zero_node);
1147
1148 if (dealloc && !onstack)
1149 {
1150 /* Free the temporary. */
1151 tmp = gfc_conv_descriptor_data_get (desc);
1152 tmp = gfc_call_free (tmp);
1153 gfc_add_expr_to_block (post, tmp);
1154 }
1155 }
1156
1157
1158 /* Get the scalarizer array dimension corresponding to actual array dimension
1159 given by ARRAY_DIM.
1160
1161 For example, if SS represents the array ref a(1,:,:,1), it is a
1162 bidimensional scalarizer array, and the result would be 0 for ARRAY_DIM=1,
1163 and 1 for ARRAY_DIM=2.
1164 If SS represents transpose(a(:,1,1,:)), it is again a bidimensional
1165 scalarizer array, and the result would be 1 for ARRAY_DIM=0 and 0 for
1166 ARRAY_DIM=3.
1167 If SS represents sum(a(:,:,:,1), dim=1), it is a 2+1-dimensional scalarizer
1168 array. If called on the inner ss, the result would be respectively 0,1,2 for
1169 ARRAY_DIM=0,1,2. If called on the outer ss, the result would be 0,1
1170 for ARRAY_DIM=1,2. */
1171
1172 static int
1173 get_scalarizer_dim_for_array_dim (gfc_ss *ss, int array_dim)
1174 {
1175 int array_ref_dim;
1176 int n;
1177
1178 array_ref_dim = 0;
1179
1180 for (; ss; ss = ss->parent)
1181 for (n = 0; n < ss->dimen; n++)
1182 if (ss->dim[n] < array_dim)
1183 array_ref_dim++;
1184
1185 return array_ref_dim;
1186 }
1187
1188
1189 static gfc_ss *
1190 innermost_ss (gfc_ss *ss)
1191 {
1192 while (ss->nested_ss != NULL)
1193 ss = ss->nested_ss;
1194
1195 return ss;
1196 }
1197
1198
1199
1200 /* Get the array reference dimension corresponding to the given loop dimension.
1201 It is different from the true array dimension given by the dim array in
1202 the case of a partial array reference (i.e. a(:,:,1,:) for example)
1203 It is different from the loop dimension in the case of a transposed array.
1204 */
1205
1206 static int
1207 get_array_ref_dim_for_loop_dim (gfc_ss *ss, int loop_dim)
1208 {
1209 return get_scalarizer_dim_for_array_dim (innermost_ss (ss),
1210 ss->dim[loop_dim]);
1211 }
1212
1213
1214 /* Generate code to create and initialize the descriptor for a temporary
1215 array. This is used for both temporaries needed by the scalarizer, and
1216 functions returning arrays. Adjusts the loop variables to be
1217 zero-based, and calculates the loop bounds for callee allocated arrays.
1218 Allocate the array unless it's callee allocated (we have a callee
1219 allocated array if 'callee_alloc' is true, or if loop->to[n] is
1220 NULL_TREE for any n). Also fills in the descriptor, data and offset
1221 fields of info if known. Returns the size of the array, or NULL for a
1222 callee allocated array.
1223
1224 'eltype' == NULL signals that the temporary should be a class object.
1225 The 'initial' expression is used to obtain the size of the dynamic
1226 type; otherwise the allocation and initialization proceeds as for any
1227 other expression
1228
1229 PRE, POST, INITIAL, DYNAMIC and DEALLOC are as for
1230 gfc_trans_allocate_array_storage. */
1231
1232 tree
1233 gfc_trans_create_temp_array (stmtblock_t * pre, stmtblock_t * post, gfc_ss * ss,
1234 tree eltype, tree initial, bool dynamic,
1235 bool dealloc, bool callee_alloc, locus * where)
1236 {
1237 gfc_loopinfo *loop;
1238 gfc_ss *s;
1239 gfc_array_info *info;
1240 tree from[GFC_MAX_DIMENSIONS], to[GFC_MAX_DIMENSIONS];
1241 tree type;
1242 tree desc;
1243 tree tmp;
1244 tree size;
1245 tree nelem;
1246 tree cond;
1247 tree or_expr;
1248 tree elemsize;
1249 tree class_expr = NULL_TREE;
1250 int n, dim, tmp_dim;
1251 int total_dim = 0;
1252
1253 /* This signals a class array for which we need the size of the
1254 dynamic type. Generate an eltype and then the class expression. */
1255 if (eltype == NULL_TREE && initial)
1256 {
1257 gcc_assert (POINTER_TYPE_P (TREE_TYPE (initial)));
1258 class_expr = build_fold_indirect_ref_loc (input_location, initial);
1259 eltype = TREE_TYPE (class_expr);
1260 eltype = gfc_get_element_type (eltype);
1261 /* Obtain the structure (class) expression. */
1262 class_expr = TREE_OPERAND (class_expr, 0);
1263 gcc_assert (class_expr);
1264 }
1265
1266 memset (from, 0, sizeof (from));
1267 memset (to, 0, sizeof (to));
1268
1269 info = &ss->info->data.array;
1270
1271 gcc_assert (ss->dimen > 0);
1272 gcc_assert (ss->loop->dimen == ss->dimen);
1273
1274 if (warn_array_temporaries && where)
1275 gfc_warning (OPT_Warray_temporaries,
1276 "Creating array temporary at %L", where);
1277
1278 /* Set the lower bound to zero. */
1279 for (s = ss; s; s = s->parent)
1280 {
1281 loop = s->loop;
1282
1283 total_dim += loop->dimen;
1284 for (n = 0; n < loop->dimen; n++)
1285 {
1286 dim = s->dim[n];
1287
1288 /* Callee allocated arrays may not have a known bound yet. */
1289 if (loop->to[n])
1290 loop->to[n] = gfc_evaluate_now (
1291 fold_build2_loc (input_location, MINUS_EXPR,
1292 gfc_array_index_type,
1293 loop->to[n], loop->from[n]),
1294 pre);
1295 loop->from[n] = gfc_index_zero_node;
1296
1297 /* We have just changed the loop bounds, we must clear the
1298 corresponding specloop, so that delta calculation is not skipped
1299 later in gfc_set_delta. */
1300 loop->specloop[n] = NULL;
1301
1302 /* We are constructing the temporary's descriptor based on the loop
1303 dimensions. As the dimensions may be accessed in arbitrary order
1304 (think of transpose) the size taken from the n'th loop may not map
1305 to the n'th dimension of the array. We need to reconstruct loop
1306 infos in the right order before using it to set the descriptor
1307 bounds. */
1308 tmp_dim = get_scalarizer_dim_for_array_dim (ss, dim);
1309 from[tmp_dim] = loop->from[n];
1310 to[tmp_dim] = loop->to[n];
1311
1312 info->delta[dim] = gfc_index_zero_node;
1313 info->start[dim] = gfc_index_zero_node;
1314 info->end[dim] = gfc_index_zero_node;
1315 info->stride[dim] = gfc_index_one_node;
1316 }
1317 }
1318
1319 /* Initialize the descriptor. */
1320 type =
1321 gfc_get_array_type_bounds (eltype, total_dim, 0, from, to, 1,
1322 GFC_ARRAY_UNKNOWN, true);
1323 desc = gfc_create_var (type, "atmp");
1324 GFC_DECL_PACKED_ARRAY (desc) = 1;
1325
1326 info->descriptor = desc;
1327 size = gfc_index_one_node;
1328
1329 /* Emit a DECL_EXPR for the variable sized array type in
1330 GFC_TYPE_ARRAY_DATAPTR_TYPE so the gimplification of its type
1331 sizes works correctly. */
1332 tree arraytype = TREE_TYPE (GFC_TYPE_ARRAY_DATAPTR_TYPE (type));
1333 if (! TYPE_NAME (arraytype))
1334 TYPE_NAME (arraytype) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
1335 NULL_TREE, arraytype);
1336 gfc_add_expr_to_block (pre, build1 (DECL_EXPR,
1337 arraytype, TYPE_NAME (arraytype)));
1338
1339 /* Fill in the array dtype. */
1340 tmp = gfc_conv_descriptor_dtype (desc);
1341 gfc_add_modify (pre, tmp, gfc_get_dtype (TREE_TYPE (desc)));
1342
1343 /*
1344 Fill in the bounds and stride. This is a packed array, so:
1345
1346 size = 1;
1347 for (n = 0; n < rank; n++)
1348 {
1349 stride[n] = size
1350 delta = ubound[n] + 1 - lbound[n];
1351 size = size * delta;
1352 }
1353 size = size * sizeof(element);
1354 */
1355
1356 or_expr = NULL_TREE;
1357
1358 /* If there is at least one null loop->to[n], it is a callee allocated
1359 array. */
1360 for (n = 0; n < total_dim; n++)
1361 if (to[n] == NULL_TREE)
1362 {
1363 size = NULL_TREE;
1364 break;
1365 }
1366
1367 if (size == NULL_TREE)
1368 for (s = ss; s; s = s->parent)
1369 for (n = 0; n < s->loop->dimen; n++)
1370 {
1371 dim = get_scalarizer_dim_for_array_dim (ss, s->dim[n]);
1372
1373 /* For a callee allocated array express the loop bounds in terms
1374 of the descriptor fields. */
1375 tmp = fold_build2_loc (input_location,
1376 MINUS_EXPR, gfc_array_index_type,
1377 gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[dim]),
1378 gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[dim]));
1379 s->loop->to[n] = tmp;
1380 }
1381 else
1382 {
1383 for (n = 0; n < total_dim; n++)
1384 {
1385 /* Store the stride and bound components in the descriptor. */
1386 gfc_conv_descriptor_stride_set (pre, desc, gfc_rank_cst[n], size);
1387
1388 gfc_conv_descriptor_lbound_set (pre, desc, gfc_rank_cst[n],
1389 gfc_index_zero_node);
1390
1391 gfc_conv_descriptor_ubound_set (pre, desc, gfc_rank_cst[n], to[n]);
1392
1393 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1394 gfc_array_index_type,
1395 to[n], gfc_index_one_node);
1396
1397 /* Check whether the size for this dimension is negative. */
1398 cond = fold_build2_loc (input_location, LE_EXPR, logical_type_node,
1399 tmp, gfc_index_zero_node);
1400 cond = gfc_evaluate_now (cond, pre);
1401
1402 if (n == 0)
1403 or_expr = cond;
1404 else
1405 or_expr = fold_build2_loc (input_location, TRUTH_OR_EXPR,
1406 logical_type_node, or_expr, cond);
1407
1408 size = fold_build2_loc (input_location, MULT_EXPR,
1409 gfc_array_index_type, size, tmp);
1410 size = gfc_evaluate_now (size, pre);
1411 }
1412 }
1413
1414 if (class_expr == NULL_TREE)
1415 elemsize = fold_convert (gfc_array_index_type,
1416 TYPE_SIZE_UNIT (gfc_get_element_type (type)));
1417 else
1418 elemsize = gfc_class_vtab_size_get (class_expr);
1419
1420 /* Get the size of the array. */
1421 if (size && !callee_alloc)
1422 {
1423 /* If or_expr is true, then the extent in at least one
1424 dimension is zero and the size is set to zero. */
1425 size = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type,
1426 or_expr, gfc_index_zero_node, size);
1427
1428 nelem = size;
1429 size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
1430 size, elemsize);
1431 }
1432 else
1433 {
1434 nelem = size;
1435 size = NULL_TREE;
1436 }
1437
1438 /* Set the span. */
1439 tmp = fold_convert (gfc_array_index_type, elemsize);
1440 gfc_conv_descriptor_span_set (pre, desc, tmp);
1441
1442 gfc_trans_allocate_array_storage (pre, post, info, size, nelem, initial,
1443 dynamic, dealloc);
1444
1445 while (ss->parent)
1446 ss = ss->parent;
1447
1448 if (ss->dimen > ss->loop->temp_dim)
1449 ss->loop->temp_dim = ss->dimen;
1450
1451 return size;
1452 }
1453
1454
1455 /* Return the number of iterations in a loop that starts at START,
1456 ends at END, and has step STEP. */
1457
1458 static tree
1459 gfc_get_iteration_count (tree start, tree end, tree step)
1460 {
1461 tree tmp;
1462 tree type;
1463
1464 type = TREE_TYPE (step);
1465 tmp = fold_build2_loc (input_location, MINUS_EXPR, type, end, start);
1466 tmp = fold_build2_loc (input_location, FLOOR_DIV_EXPR, type, tmp, step);
1467 tmp = fold_build2_loc (input_location, PLUS_EXPR, type, tmp,
1468 build_int_cst (type, 1));
1469 tmp = fold_build2_loc (input_location, MAX_EXPR, type, tmp,
1470 build_int_cst (type, 0));
1471 return fold_convert (gfc_array_index_type, tmp);
1472 }
1473
1474
1475 /* Extend the data in array DESC by EXTRA elements. */
1476
1477 static void
1478 gfc_grow_array (stmtblock_t * pblock, tree desc, tree extra)
1479 {
1480 tree arg0, arg1;
1481 tree tmp;
1482 tree size;
1483 tree ubound;
1484
1485 if (integer_zerop (extra))
1486 return;
1487
1488 ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[0]);
1489
1490 /* Add EXTRA to the upper bound. */
1491 tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1492 ubound, extra);
1493 gfc_conv_descriptor_ubound_set (pblock, desc, gfc_rank_cst[0], tmp);
1494
1495 /* Get the value of the current data pointer. */
1496 arg0 = gfc_conv_descriptor_data_get (desc);
1497
1498 /* Calculate the new array size. */
1499 size = TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (desc)));
1500 tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1501 ubound, gfc_index_one_node);
1502 arg1 = fold_build2_loc (input_location, MULT_EXPR, size_type_node,
1503 fold_convert (size_type_node, tmp),
1504 fold_convert (size_type_node, size));
1505
1506 /* Call the realloc() function. */
1507 tmp = gfc_call_realloc (pblock, arg0, arg1);
1508 gfc_conv_descriptor_data_set (pblock, desc, tmp);
1509 }
1510
1511
1512 /* Return true if the bounds of iterator I can only be determined
1513 at run time. */
1514
1515 static inline bool
1516 gfc_iterator_has_dynamic_bounds (gfc_iterator * i)
1517 {
1518 return (i->start->expr_type != EXPR_CONSTANT
1519 || i->end->expr_type != EXPR_CONSTANT
1520 || i->step->expr_type != EXPR_CONSTANT);
1521 }
1522
1523
1524 /* Split the size of constructor element EXPR into the sum of two terms,
1525 one of which can be determined at compile time and one of which must
1526 be calculated at run time. Set *SIZE to the former and return true
1527 if the latter might be nonzero. */
1528
1529 static bool
1530 gfc_get_array_constructor_element_size (mpz_t * size, gfc_expr * expr)
1531 {
1532 if (expr->expr_type == EXPR_ARRAY)
1533 return gfc_get_array_constructor_size (size, expr->value.constructor);
1534 else if (expr->rank > 0)
1535 {
1536 /* Calculate everything at run time. */
1537 mpz_set_ui (*size, 0);
1538 return true;
1539 }
1540 else
1541 {
1542 /* A single element. */
1543 mpz_set_ui (*size, 1);
1544 return false;
1545 }
1546 }
1547
1548
1549 /* Like gfc_get_array_constructor_element_size, but applied to the whole
1550 of array constructor C. */
1551
1552 static bool
1553 gfc_get_array_constructor_size (mpz_t * size, gfc_constructor_base base)
1554 {
1555 gfc_constructor *c;
1556 gfc_iterator *i;
1557 mpz_t val;
1558 mpz_t len;
1559 bool dynamic;
1560
1561 mpz_set_ui (*size, 0);
1562 mpz_init (len);
1563 mpz_init (val);
1564
1565 dynamic = false;
1566 for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
1567 {
1568 i = c->iterator;
1569 if (i && gfc_iterator_has_dynamic_bounds (i))
1570 dynamic = true;
1571 else
1572 {
1573 dynamic |= gfc_get_array_constructor_element_size (&len, c->expr);
1574 if (i)
1575 {
1576 /* Multiply the static part of the element size by the
1577 number of iterations. */
1578 mpz_sub (val, i->end->value.integer, i->start->value.integer);
1579 mpz_fdiv_q (val, val, i->step->value.integer);
1580 mpz_add_ui (val, val, 1);
1581 if (mpz_sgn (val) > 0)
1582 mpz_mul (len, len, val);
1583 else
1584 mpz_set_ui (len, 0);
1585 }
1586 mpz_add (*size, *size, len);
1587 }
1588 }
1589 mpz_clear (len);
1590 mpz_clear (val);
1591 return dynamic;
1592 }
1593
1594
1595 /* Make sure offset is a variable. */
1596
1597 static void
1598 gfc_put_offset_into_var (stmtblock_t * pblock, tree * poffset,
1599 tree * offsetvar)
1600 {
1601 /* We should have already created the offset variable. We cannot
1602 create it here because we may be in an inner scope. */
1603 gcc_assert (*offsetvar != NULL_TREE);
1604 gfc_add_modify (pblock, *offsetvar, *poffset);
1605 *poffset = *offsetvar;
1606 TREE_USED (*offsetvar) = 1;
1607 }
1608
1609
1610 /* Variables needed for bounds-checking. */
1611 static bool first_len;
1612 static tree first_len_val;
1613 static bool typespec_chararray_ctor;
1614
1615 static void
1616 gfc_trans_array_ctor_element (stmtblock_t * pblock, tree desc,
1617 tree offset, gfc_se * se, gfc_expr * expr)
1618 {
1619 tree tmp;
1620
1621 gfc_conv_expr (se, expr);
1622
1623 /* Store the value. */
1624 tmp = build_fold_indirect_ref_loc (input_location,
1625 gfc_conv_descriptor_data_get (desc));
1626 tmp = gfc_build_array_ref (tmp, offset, NULL);
1627
1628 if (expr->ts.type == BT_CHARACTER)
1629 {
1630 int i = gfc_validate_kind (BT_CHARACTER, expr->ts.kind, false);
1631 tree esize;
1632
1633 esize = size_in_bytes (gfc_get_element_type (TREE_TYPE (desc)));
1634 esize = fold_convert (gfc_charlen_type_node, esize);
1635 esize = fold_build2_loc (input_location, TRUNC_DIV_EXPR,
1636 TREE_TYPE (esize), esize,
1637 build_int_cst (TREE_TYPE (esize),
1638 gfc_character_kinds[i].bit_size / 8));
1639
1640 gfc_conv_string_parameter (se);
1641 if (POINTER_TYPE_P (TREE_TYPE (tmp)))
1642 {
1643 /* The temporary is an array of pointers. */
1644 se->expr = fold_convert (TREE_TYPE (tmp), se->expr);
1645 gfc_add_modify (&se->pre, tmp, se->expr);
1646 }
1647 else
1648 {
1649 /* The temporary is an array of string values. */
1650 tmp = gfc_build_addr_expr (gfc_get_pchar_type (expr->ts.kind), tmp);
1651 /* We know the temporary and the value will be the same length,
1652 so can use memcpy. */
1653 gfc_trans_string_copy (&se->pre, esize, tmp, expr->ts.kind,
1654 se->string_length, se->expr, expr->ts.kind);
1655 }
1656 if ((gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) && !typespec_chararray_ctor)
1657 {
1658 if (first_len)
1659 {
1660 gfc_add_modify (&se->pre, first_len_val,
1661 fold_convert (TREE_TYPE (first_len_val),
1662 se->string_length));
1663 first_len = false;
1664 }
1665 else
1666 {
1667 /* Verify that all constructor elements are of the same
1668 length. */
1669 tree rhs = fold_convert (TREE_TYPE (first_len_val),
1670 se->string_length);
1671 tree cond = fold_build2_loc (input_location, NE_EXPR,
1672 logical_type_node, first_len_val,
1673 rhs);
1674 gfc_trans_runtime_check
1675 (true, false, cond, &se->pre, &expr->where,
1676 "Different CHARACTER lengths (%ld/%ld) in array constructor",
1677 fold_convert (long_integer_type_node, first_len_val),
1678 fold_convert (long_integer_type_node, se->string_length));
1679 }
1680 }
1681 }
1682 else if (GFC_CLASS_TYPE_P (TREE_TYPE (se->expr))
1683 && !GFC_CLASS_TYPE_P (gfc_get_element_type (TREE_TYPE (desc))))
1684 {
1685 /* Assignment of a CLASS array constructor to a derived type array. */
1686 if (expr->expr_type == EXPR_FUNCTION)
1687 se->expr = gfc_evaluate_now (se->expr, pblock);
1688 se->expr = gfc_class_data_get (se->expr);
1689 se->expr = build_fold_indirect_ref_loc (input_location, se->expr);
1690 se->expr = fold_convert (TREE_TYPE (tmp), se->expr);
1691 gfc_add_modify (&se->pre, tmp, se->expr);
1692 }
1693 else
1694 {
1695 /* TODO: Should the frontend already have done this conversion? */
1696 se->expr = fold_convert (TREE_TYPE (tmp), se->expr);
1697 gfc_add_modify (&se->pre, tmp, se->expr);
1698 }
1699
1700 gfc_add_block_to_block (pblock, &se->pre);
1701 gfc_add_block_to_block (pblock, &se->post);
1702 }
1703
1704
1705 /* Add the contents of an array to the constructor. DYNAMIC is as for
1706 gfc_trans_array_constructor_value. */
1707
1708 static void
1709 gfc_trans_array_constructor_subarray (stmtblock_t * pblock,
1710 tree type ATTRIBUTE_UNUSED,
1711 tree desc, gfc_expr * expr,
1712 tree * poffset, tree * offsetvar,
1713 bool dynamic)
1714 {
1715 gfc_se se;
1716 gfc_ss *ss;
1717 gfc_loopinfo loop;
1718 stmtblock_t body;
1719 tree tmp;
1720 tree size;
1721 int n;
1722
1723 /* We need this to be a variable so we can increment it. */
1724 gfc_put_offset_into_var (pblock, poffset, offsetvar);
1725
1726 gfc_init_se (&se, NULL);
1727
1728 /* Walk the array expression. */
1729 ss = gfc_walk_expr (expr);
1730 gcc_assert (ss != gfc_ss_terminator);
1731
1732 /* Initialize the scalarizer. */
1733 gfc_init_loopinfo (&loop);
1734 gfc_add_ss_to_loop (&loop, ss);
1735
1736 /* Initialize the loop. */
1737 gfc_conv_ss_startstride (&loop);
1738 gfc_conv_loop_setup (&loop, &expr->where);
1739
1740 /* Make sure the constructed array has room for the new data. */
1741 if (dynamic)
1742 {
1743 /* Set SIZE to the total number of elements in the subarray. */
1744 size = gfc_index_one_node;
1745 for (n = 0; n < loop.dimen; n++)
1746 {
1747 tmp = gfc_get_iteration_count (loop.from[n], loop.to[n],
1748 gfc_index_one_node);
1749 size = fold_build2_loc (input_location, MULT_EXPR,
1750 gfc_array_index_type, size, tmp);
1751 }
1752
1753 /* Grow the constructed array by SIZE elements. */
1754 gfc_grow_array (&loop.pre, desc, size);
1755 }
1756
1757 /* Make the loop body. */
1758 gfc_mark_ss_chain_used (ss, 1);
1759 gfc_start_scalarized_body (&loop, &body);
1760 gfc_copy_loopinfo_to_se (&se, &loop);
1761 se.ss = ss;
1762
1763 gfc_trans_array_ctor_element (&body, desc, *poffset, &se, expr);
1764 gcc_assert (se.ss == gfc_ss_terminator);
1765
1766 /* Increment the offset. */
1767 tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1768 *poffset, gfc_index_one_node);
1769 gfc_add_modify (&body, *poffset, tmp);
1770
1771 /* Finish the loop. */
1772 gfc_trans_scalarizing_loops (&loop, &body);
1773 gfc_add_block_to_block (&loop.pre, &loop.post);
1774 tmp = gfc_finish_block (&loop.pre);
1775 gfc_add_expr_to_block (pblock, tmp);
1776
1777 gfc_cleanup_loop (&loop);
1778 }
1779
1780
1781 /* Assign the values to the elements of an array constructor. DYNAMIC
1782 is true if descriptor DESC only contains enough data for the static
1783 size calculated by gfc_get_array_constructor_size. When true, memory
1784 for the dynamic parts must be allocated using realloc. */
1785
1786 static void
1787 gfc_trans_array_constructor_value (stmtblock_t * pblock, tree type,
1788 tree desc, gfc_constructor_base base,
1789 tree * poffset, tree * offsetvar,
1790 bool dynamic)
1791 {
1792 tree tmp;
1793 tree start = NULL_TREE;
1794 tree end = NULL_TREE;
1795 tree step = NULL_TREE;
1796 stmtblock_t body;
1797 gfc_se se;
1798 mpz_t size;
1799 gfc_constructor *c;
1800
1801 tree shadow_loopvar = NULL_TREE;
1802 gfc_saved_var saved_loopvar;
1803
1804 mpz_init (size);
1805 for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
1806 {
1807 /* If this is an iterator or an array, the offset must be a variable. */
1808 if ((c->iterator || c->expr->rank > 0) && INTEGER_CST_P (*poffset))
1809 gfc_put_offset_into_var (pblock, poffset, offsetvar);
1810
1811 /* Shadowing the iterator avoids changing its value and saves us from
1812 keeping track of it. Further, it makes sure that there's always a
1813 backend-decl for the symbol, even if there wasn't one before,
1814 e.g. in the case of an iterator that appears in a specification
1815 expression in an interface mapping. */
1816 if (c->iterator)
1817 {
1818 gfc_symbol *sym;
1819 tree type;
1820
1821 /* Evaluate loop bounds before substituting the loop variable
1822 in case they depend on it. Such a case is invalid, but it is
1823 not more expensive to do the right thing here.
1824 See PR 44354. */
1825 gfc_init_se (&se, NULL);
1826 gfc_conv_expr_val (&se, c->iterator->start);
1827 gfc_add_block_to_block (pblock, &se.pre);
1828 start = gfc_evaluate_now (se.expr, pblock);
1829
1830 gfc_init_se (&se, NULL);
1831 gfc_conv_expr_val (&se, c->iterator->end);
1832 gfc_add_block_to_block (pblock, &se.pre);
1833 end = gfc_evaluate_now (se.expr, pblock);
1834
1835 gfc_init_se (&se, NULL);
1836 gfc_conv_expr_val (&se, c->iterator->step);
1837 gfc_add_block_to_block (pblock, &se.pre);
1838 step = gfc_evaluate_now (se.expr, pblock);
1839
1840 sym = c->iterator->var->symtree->n.sym;
1841 type = gfc_typenode_for_spec (&sym->ts);
1842
1843 shadow_loopvar = gfc_create_var (type, "shadow_loopvar");
1844 gfc_shadow_sym (sym, shadow_loopvar, &saved_loopvar);
1845 }
1846
1847 gfc_start_block (&body);
1848
1849 if (c->expr->expr_type == EXPR_ARRAY)
1850 {
1851 /* Array constructors can be nested. */
1852 gfc_trans_array_constructor_value (&body, type, desc,
1853 c->expr->value.constructor,
1854 poffset, offsetvar, dynamic);
1855 }
1856 else if (c->expr->rank > 0)
1857 {
1858 gfc_trans_array_constructor_subarray (&body, type, desc, c->expr,
1859 poffset, offsetvar, dynamic);
1860 }
1861 else
1862 {
1863 /* This code really upsets the gimplifier so don't bother for now. */
1864 gfc_constructor *p;
1865 HOST_WIDE_INT n;
1866 HOST_WIDE_INT size;
1867
1868 p = c;
1869 n = 0;
1870 while (p && !(p->iterator || p->expr->expr_type != EXPR_CONSTANT))
1871 {
1872 p = gfc_constructor_next (p);
1873 n++;
1874 }
1875 if (n < 4)
1876 {
1877 /* Scalar values. */
1878 gfc_init_se (&se, NULL);
1879 gfc_trans_array_ctor_element (&body, desc, *poffset,
1880 &se, c->expr);
1881
1882 *poffset = fold_build2_loc (input_location, PLUS_EXPR,
1883 gfc_array_index_type,
1884 *poffset, gfc_index_one_node);
1885 }
1886 else
1887 {
1888 /* Collect multiple scalar constants into a constructor. */
1889 vec<constructor_elt, va_gc> *v = NULL;
1890 tree init;
1891 tree bound;
1892 tree tmptype;
1893 HOST_WIDE_INT idx = 0;
1894
1895 p = c;
1896 /* Count the number of consecutive scalar constants. */
1897 while (p && !(p->iterator
1898 || p->expr->expr_type != EXPR_CONSTANT))
1899 {
1900 gfc_init_se (&se, NULL);
1901 gfc_conv_constant (&se, p->expr);
1902
1903 if (c->expr->ts.type != BT_CHARACTER)
1904 se.expr = fold_convert (type, se.expr);
1905 /* For constant character array constructors we build
1906 an array of pointers. */
1907 else if (POINTER_TYPE_P (type))
1908 se.expr = gfc_build_addr_expr
1909 (gfc_get_pchar_type (p->expr->ts.kind),
1910 se.expr);
1911
1912 CONSTRUCTOR_APPEND_ELT (v,
1913 build_int_cst (gfc_array_index_type,
1914 idx++),
1915 se.expr);
1916 c = p;
1917 p = gfc_constructor_next (p);
1918 }
1919
1920 bound = size_int (n - 1);
1921 /* Create an array type to hold them. */
1922 tmptype = build_range_type (gfc_array_index_type,
1923 gfc_index_zero_node, bound);
1924 tmptype = build_array_type (type, tmptype);
1925
1926 init = build_constructor (tmptype, v);
1927 TREE_CONSTANT (init) = 1;
1928 TREE_STATIC (init) = 1;
1929 /* Create a static variable to hold the data. */
1930 tmp = gfc_create_var (tmptype, "data");
1931 TREE_STATIC (tmp) = 1;
1932 TREE_CONSTANT (tmp) = 1;
1933 TREE_READONLY (tmp) = 1;
1934 DECL_INITIAL (tmp) = init;
1935 init = tmp;
1936
1937 /* Use BUILTIN_MEMCPY to assign the values. */
1938 tmp = gfc_conv_descriptor_data_get (desc);
1939 tmp = build_fold_indirect_ref_loc (input_location,
1940 tmp);
1941 tmp = gfc_build_array_ref (tmp, *poffset, NULL);
1942 tmp = gfc_build_addr_expr (NULL_TREE, tmp);
1943 init = gfc_build_addr_expr (NULL_TREE, init);
1944
1945 size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (type));
1946 bound = build_int_cst (size_type_node, n * size);
1947 tmp = build_call_expr_loc (input_location,
1948 builtin_decl_explicit (BUILT_IN_MEMCPY),
1949 3, tmp, init, bound);
1950 gfc_add_expr_to_block (&body, tmp);
1951
1952 *poffset = fold_build2_loc (input_location, PLUS_EXPR,
1953 gfc_array_index_type, *poffset,
1954 build_int_cst (gfc_array_index_type, n));
1955 }
1956 if (!INTEGER_CST_P (*poffset))
1957 {
1958 gfc_add_modify (&body, *offsetvar, *poffset);
1959 *poffset = *offsetvar;
1960 }
1961 }
1962
1963 /* The frontend should already have done any expansions
1964 at compile-time. */
1965 if (!c->iterator)
1966 {
1967 /* Pass the code as is. */
1968 tmp = gfc_finish_block (&body);
1969 gfc_add_expr_to_block (pblock, tmp);
1970 }
1971 else
1972 {
1973 /* Build the implied do-loop. */
1974 stmtblock_t implied_do_block;
1975 tree cond;
1976 tree exit_label;
1977 tree loopbody;
1978 tree tmp2;
1979
1980 loopbody = gfc_finish_block (&body);
1981
1982 /* Create a new block that holds the implied-do loop. A temporary
1983 loop-variable is used. */
1984 gfc_start_block(&implied_do_block);
1985
1986 /* Initialize the loop. */
1987 gfc_add_modify (&implied_do_block, shadow_loopvar, start);
1988
1989 /* If this array expands dynamically, and the number of iterations
1990 is not constant, we won't have allocated space for the static
1991 part of C->EXPR's size. Do that now. */
1992 if (dynamic && gfc_iterator_has_dynamic_bounds (c->iterator))
1993 {
1994 /* Get the number of iterations. */
1995 tmp = gfc_get_iteration_count (shadow_loopvar, end, step);
1996
1997 /* Get the static part of C->EXPR's size. */
1998 gfc_get_array_constructor_element_size (&size, c->expr);
1999 tmp2 = gfc_conv_mpz_to_tree (size, gfc_index_integer_kind);
2000
2001 /* Grow the array by TMP * TMP2 elements. */
2002 tmp = fold_build2_loc (input_location, MULT_EXPR,
2003 gfc_array_index_type, tmp, tmp2);
2004 gfc_grow_array (&implied_do_block, desc, tmp);
2005 }
2006
2007 /* Generate the loop body. */
2008 exit_label = gfc_build_label_decl (NULL_TREE);
2009 gfc_start_block (&body);
2010
2011 /* Generate the exit condition. Depending on the sign of
2012 the step variable we have to generate the correct
2013 comparison. */
2014 tmp = fold_build2_loc (input_location, GT_EXPR, logical_type_node,
2015 step, build_int_cst (TREE_TYPE (step), 0));
2016 cond = fold_build3_loc (input_location, COND_EXPR,
2017 logical_type_node, tmp,
2018 fold_build2_loc (input_location, GT_EXPR,
2019 logical_type_node, shadow_loopvar, end),
2020 fold_build2_loc (input_location, LT_EXPR,
2021 logical_type_node, shadow_loopvar, end));
2022 tmp = build1_v (GOTO_EXPR, exit_label);
2023 TREE_USED (exit_label) = 1;
2024 tmp = build3_v (COND_EXPR, cond, tmp,
2025 build_empty_stmt (input_location));
2026 gfc_add_expr_to_block (&body, tmp);
2027
2028 /* The main loop body. */
2029 gfc_add_expr_to_block (&body, loopbody);
2030
2031 /* Increase loop variable by step. */
2032 tmp = fold_build2_loc (input_location, PLUS_EXPR,
2033 TREE_TYPE (shadow_loopvar), shadow_loopvar,
2034 step);
2035 gfc_add_modify (&body, shadow_loopvar, tmp);
2036
2037 /* Finish the loop. */
2038 tmp = gfc_finish_block (&body);
2039 tmp = build1_v (LOOP_EXPR, tmp);
2040 gfc_add_expr_to_block (&implied_do_block, tmp);
2041
2042 /* Add the exit label. */
2043 tmp = build1_v (LABEL_EXPR, exit_label);
2044 gfc_add_expr_to_block (&implied_do_block, tmp);
2045
2046 /* Finish the implied-do loop. */
2047 tmp = gfc_finish_block(&implied_do_block);
2048 gfc_add_expr_to_block(pblock, tmp);
2049
2050 gfc_restore_sym (c->iterator->var->symtree->n.sym, &saved_loopvar);
2051 }
2052 }
2053 mpz_clear (size);
2054 }
2055
2056
2057 /* The array constructor code can create a string length with an operand
2058 in the form of a temporary variable. This variable will retain its
2059 context (current_function_decl). If we store this length tree in a
2060 gfc_charlen structure which is shared by a variable in another
2061 context, the resulting gfc_charlen structure with a variable in a
2062 different context, we could trip the assertion in expand_expr_real_1
2063 when it sees that a variable has been created in one context and
2064 referenced in another.
2065
2066 If this might be the case, we create a new gfc_charlen structure and
2067 link it into the current namespace. */
2068
2069 static void
2070 store_backend_decl (gfc_charlen **clp, tree len, bool force_new_cl)
2071 {
2072 if (force_new_cl)
2073 {
2074 gfc_charlen *new_cl = gfc_new_charlen (gfc_current_ns, *clp);
2075 *clp = new_cl;
2076 }
2077 (*clp)->backend_decl = len;
2078 }
2079
2080 /* A catch-all to obtain the string length for anything that is not
2081 a substring of non-constant length, a constant, array or variable. */
2082
2083 static void
2084 get_array_ctor_all_strlen (stmtblock_t *block, gfc_expr *e, tree *len)
2085 {
2086 gfc_se se;
2087
2088 /* Don't bother if we already know the length is a constant. */
2089 if (*len && INTEGER_CST_P (*len))
2090 return;
2091
2092 if (!e->ref && e->ts.u.cl && e->ts.u.cl->length
2093 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
2094 {
2095 /* This is easy. */
2096 gfc_conv_const_charlen (e->ts.u.cl);
2097 *len = e->ts.u.cl->backend_decl;
2098 }
2099 else
2100 {
2101 /* Otherwise, be brutal even if inefficient. */
2102 gfc_init_se (&se, NULL);
2103
2104 /* No function call, in case of side effects. */
2105 se.no_function_call = 1;
2106 if (e->rank == 0)
2107 gfc_conv_expr (&se, e);
2108 else
2109 gfc_conv_expr_descriptor (&se, e);
2110
2111 /* Fix the value. */
2112 *len = gfc_evaluate_now (se.string_length, &se.pre);
2113
2114 gfc_add_block_to_block (block, &se.pre);
2115 gfc_add_block_to_block (block, &se.post);
2116
2117 store_backend_decl (&e->ts.u.cl, *len, true);
2118 }
2119 }
2120
2121
2122 /* Figure out the string length of a variable reference expression.
2123 Used by get_array_ctor_strlen. */
2124
2125 static void
2126 get_array_ctor_var_strlen (stmtblock_t *block, gfc_expr * expr, tree * len)
2127 {
2128 gfc_ref *ref;
2129 gfc_typespec *ts;
2130 mpz_t char_len;
2131
2132 /* Don't bother if we already know the length is a constant. */
2133 if (*len && INTEGER_CST_P (*len))
2134 return;
2135
2136 ts = &expr->symtree->n.sym->ts;
2137 for (ref = expr->ref; ref; ref = ref->next)
2138 {
2139 switch (ref->type)
2140 {
2141 case REF_ARRAY:
2142 /* Array references don't change the string length. */
2143 if (ts->deferred)
2144 get_array_ctor_all_strlen (block, expr, len);
2145 break;
2146
2147 case REF_COMPONENT:
2148 /* Use the length of the component. */
2149 ts = &ref->u.c.component->ts;
2150 break;
2151
2152 case REF_SUBSTRING:
2153 if (ref->u.ss.end == NULL
2154 || ref->u.ss.start->expr_type != EXPR_CONSTANT
2155 || ref->u.ss.end->expr_type != EXPR_CONSTANT)
2156 {
2157 /* Note that this might evaluate expr. */
2158 get_array_ctor_all_strlen (block, expr, len);
2159 return;
2160 }
2161 mpz_init_set_ui (char_len, 1);
2162 mpz_add (char_len, char_len, ref->u.ss.end->value.integer);
2163 mpz_sub (char_len, char_len, ref->u.ss.start->value.integer);
2164 *len = gfc_conv_mpz_to_tree_type (char_len, gfc_charlen_type_node);
2165 mpz_clear (char_len);
2166 return;
2167
2168 case REF_INQUIRY:
2169 break;
2170
2171 default:
2172 gcc_unreachable ();
2173 }
2174 }
2175
2176 *len = ts->u.cl->backend_decl;
2177 }
2178
2179
2180 /* Figure out the string length of a character array constructor.
2181 If len is NULL, don't calculate the length; this happens for recursive calls
2182 when a sub-array-constructor is an element but not at the first position,
2183 so when we're not interested in the length.
2184 Returns TRUE if all elements are character constants. */
2185
2186 bool
2187 get_array_ctor_strlen (stmtblock_t *block, gfc_constructor_base base, tree * len)
2188 {
2189 gfc_constructor *c;
2190 bool is_const;
2191
2192 is_const = TRUE;
2193
2194 if (gfc_constructor_first (base) == NULL)
2195 {
2196 if (len)
2197 *len = build_int_cstu (gfc_charlen_type_node, 0);
2198 return is_const;
2199 }
2200
2201 /* Loop over all constructor elements to find out is_const, but in len we
2202 want to store the length of the first, not the last, element. We can
2203 of course exit the loop as soon as is_const is found to be false. */
2204 for (c = gfc_constructor_first (base);
2205 c && is_const; c = gfc_constructor_next (c))
2206 {
2207 switch (c->expr->expr_type)
2208 {
2209 case EXPR_CONSTANT:
2210 if (len && !(*len && INTEGER_CST_P (*len)))
2211 *len = build_int_cstu (gfc_charlen_type_node,
2212 c->expr->value.character.length);
2213 break;
2214
2215 case EXPR_ARRAY:
2216 if (!get_array_ctor_strlen (block, c->expr->value.constructor, len))
2217 is_const = false;
2218 break;
2219
2220 case EXPR_VARIABLE:
2221 is_const = false;
2222 if (len)
2223 get_array_ctor_var_strlen (block, c->expr, len);
2224 break;
2225
2226 default:
2227 is_const = false;
2228 if (len)
2229 get_array_ctor_all_strlen (block, c->expr, len);
2230 break;
2231 }
2232
2233 /* After the first iteration, we don't want the length modified. */
2234 len = NULL;
2235 }
2236
2237 return is_const;
2238 }
2239
2240 /* Check whether the array constructor C consists entirely of constant
2241 elements, and if so returns the number of those elements, otherwise
2242 return zero. Note, an empty or NULL array constructor returns zero. */
2243
2244 unsigned HOST_WIDE_INT
2245 gfc_constant_array_constructor_p (gfc_constructor_base base)
2246 {
2247 unsigned HOST_WIDE_INT nelem = 0;
2248
2249 gfc_constructor *c = gfc_constructor_first (base);
2250 while (c)
2251 {
2252 if (c->iterator
2253 || c->expr->rank > 0
2254 || c->expr->expr_type != EXPR_CONSTANT)
2255 return 0;
2256 c = gfc_constructor_next (c);
2257 nelem++;
2258 }
2259 return nelem;
2260 }
2261
2262
2263 /* Given EXPR, the constant array constructor specified by an EXPR_ARRAY,
2264 and the tree type of it's elements, TYPE, return a static constant
2265 variable that is compile-time initialized. */
2266
2267 tree
2268 gfc_build_constant_array_constructor (gfc_expr * expr, tree type)
2269 {
2270 tree tmptype, init, tmp;
2271 HOST_WIDE_INT nelem;
2272 gfc_constructor *c;
2273 gfc_array_spec as;
2274 gfc_se se;
2275 int i;
2276 vec<constructor_elt, va_gc> *v = NULL;
2277
2278 /* First traverse the constructor list, converting the constants
2279 to tree to build an initializer. */
2280 nelem = 0;
2281 c = gfc_constructor_first (expr->value.constructor);
2282 while (c)
2283 {
2284 gfc_init_se (&se, NULL);
2285 gfc_conv_constant (&se, c->expr);
2286 if (c->expr->ts.type != BT_CHARACTER)
2287 se.expr = fold_convert (type, se.expr);
2288 else if (POINTER_TYPE_P (type))
2289 se.expr = gfc_build_addr_expr (gfc_get_pchar_type (c->expr->ts.kind),
2290 se.expr);
2291 CONSTRUCTOR_APPEND_ELT (v, build_int_cst (gfc_array_index_type, nelem),
2292 se.expr);
2293 c = gfc_constructor_next (c);
2294 nelem++;
2295 }
2296
2297 /* Next determine the tree type for the array. We use the gfortran
2298 front-end's gfc_get_nodesc_array_type in order to create a suitable
2299 GFC_ARRAY_TYPE_P that may be used by the scalarizer. */
2300
2301 memset (&as, 0, sizeof (gfc_array_spec));
2302
2303 as.rank = expr->rank;
2304 as.type = AS_EXPLICIT;
2305 if (!expr->shape)
2306 {
2307 as.lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 0);
2308 as.upper[0] = gfc_get_int_expr (gfc_default_integer_kind,
2309 NULL, nelem - 1);
2310 }
2311 else
2312 for (i = 0; i < expr->rank; i++)
2313 {
2314 int tmp = (int) mpz_get_si (expr->shape[i]);
2315 as.lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 0);
2316 as.upper[i] = gfc_get_int_expr (gfc_default_integer_kind,
2317 NULL, tmp - 1);
2318 }
2319
2320 tmptype = gfc_get_nodesc_array_type (type, &as, PACKED_STATIC, true);
2321
2322 /* as is not needed anymore. */
2323 for (i = 0; i < as.rank + as.corank; i++)
2324 {
2325 gfc_free_expr (as.lower[i]);
2326 gfc_free_expr (as.upper[i]);
2327 }
2328
2329 init = build_constructor (tmptype, v);
2330
2331 TREE_CONSTANT (init) = 1;
2332 TREE_STATIC (init) = 1;
2333
2334 tmp = build_decl (input_location, VAR_DECL, create_tmp_var_name ("A"),
2335 tmptype);
2336 DECL_ARTIFICIAL (tmp) = 1;
2337 DECL_IGNORED_P (tmp) = 1;
2338 TREE_STATIC (tmp) = 1;
2339 TREE_CONSTANT (tmp) = 1;
2340 TREE_READONLY (tmp) = 1;
2341 DECL_INITIAL (tmp) = init;
2342 pushdecl (tmp);
2343
2344 return tmp;
2345 }
2346
2347
2348 /* Translate a constant EXPR_ARRAY array constructor for the scalarizer.
2349 This mostly initializes the scalarizer state info structure with the
2350 appropriate values to directly use the array created by the function
2351 gfc_build_constant_array_constructor. */
2352
2353 static void
2354 trans_constant_array_constructor (gfc_ss * ss, tree type)
2355 {
2356 gfc_array_info *info;
2357 tree tmp;
2358 int i;
2359
2360 tmp = gfc_build_constant_array_constructor (ss->info->expr, type);
2361
2362 info = &ss->info->data.array;
2363
2364 info->descriptor = tmp;
2365 info->data = gfc_build_addr_expr (NULL_TREE, tmp);
2366 info->offset = gfc_index_zero_node;
2367
2368 for (i = 0; i < ss->dimen; i++)
2369 {
2370 info->delta[i] = gfc_index_zero_node;
2371 info->start[i] = gfc_index_zero_node;
2372 info->end[i] = gfc_index_zero_node;
2373 info->stride[i] = gfc_index_one_node;
2374 }
2375 }
2376
2377
2378 static int
2379 get_rank (gfc_loopinfo *loop)
2380 {
2381 int rank;
2382
2383 rank = 0;
2384 for (; loop; loop = loop->parent)
2385 rank += loop->dimen;
2386
2387 return rank;
2388 }
2389
2390
2391 /* Helper routine of gfc_trans_array_constructor to determine if the
2392 bounds of the loop specified by LOOP are constant and simple enough
2393 to use with trans_constant_array_constructor. Returns the
2394 iteration count of the loop if suitable, and NULL_TREE otherwise. */
2395
2396 static tree
2397 constant_array_constructor_loop_size (gfc_loopinfo * l)
2398 {
2399 gfc_loopinfo *loop;
2400 tree size = gfc_index_one_node;
2401 tree tmp;
2402 int i, total_dim;
2403
2404 total_dim = get_rank (l);
2405
2406 for (loop = l; loop; loop = loop->parent)
2407 {
2408 for (i = 0; i < loop->dimen; i++)
2409 {
2410 /* If the bounds aren't constant, return NULL_TREE. */
2411 if (!INTEGER_CST_P (loop->from[i]) || !INTEGER_CST_P (loop->to[i]))
2412 return NULL_TREE;
2413 if (!integer_zerop (loop->from[i]))
2414 {
2415 /* Only allow nonzero "from" in one-dimensional arrays. */
2416 if (total_dim != 1)
2417 return NULL_TREE;
2418 tmp = fold_build2_loc (input_location, MINUS_EXPR,
2419 gfc_array_index_type,
2420 loop->to[i], loop->from[i]);
2421 }
2422 else
2423 tmp = loop->to[i];
2424 tmp = fold_build2_loc (input_location, PLUS_EXPR,
2425 gfc_array_index_type, tmp, gfc_index_one_node);
2426 size = fold_build2_loc (input_location, MULT_EXPR,
2427 gfc_array_index_type, size, tmp);
2428 }
2429 }
2430
2431 return size;
2432 }
2433
2434
2435 static tree *
2436 get_loop_upper_bound_for_array (gfc_ss *array, int array_dim)
2437 {
2438 gfc_ss *ss;
2439 int n;
2440
2441 gcc_assert (array->nested_ss == NULL);
2442
2443 for (ss = array; ss; ss = ss->parent)
2444 for (n = 0; n < ss->loop->dimen; n++)
2445 if (array_dim == get_array_ref_dim_for_loop_dim (ss, n))
2446 return &(ss->loop->to[n]);
2447
2448 gcc_unreachable ();
2449 }
2450
2451
2452 static gfc_loopinfo *
2453 outermost_loop (gfc_loopinfo * loop)
2454 {
2455 while (loop->parent != NULL)
2456 loop = loop->parent;
2457
2458 return loop;
2459 }
2460
2461
2462 /* Array constructors are handled by constructing a temporary, then using that
2463 within the scalarization loop. This is not optimal, but seems by far the
2464 simplest method. */
2465
2466 static void
2467 trans_array_constructor (gfc_ss * ss, locus * where)
2468 {
2469 gfc_constructor_base c;
2470 tree offset;
2471 tree offsetvar;
2472 tree desc;
2473 tree type;
2474 tree tmp;
2475 tree *loop_ubound0;
2476 bool dynamic;
2477 bool old_first_len, old_typespec_chararray_ctor;
2478 tree old_first_len_val;
2479 gfc_loopinfo *loop, *outer_loop;
2480 gfc_ss_info *ss_info;
2481 gfc_expr *expr;
2482 gfc_ss *s;
2483 tree neg_len;
2484 char *msg;
2485
2486 /* Save the old values for nested checking. */
2487 old_first_len = first_len;
2488 old_first_len_val = first_len_val;
2489 old_typespec_chararray_ctor = typespec_chararray_ctor;
2490
2491 loop = ss->loop;
2492 outer_loop = outermost_loop (loop);
2493 ss_info = ss->info;
2494 expr = ss_info->expr;
2495
2496 /* Do bounds-checking here and in gfc_trans_array_ctor_element only if no
2497 typespec was given for the array constructor. */
2498 typespec_chararray_ctor = (expr->ts.type == BT_CHARACTER
2499 && expr->ts.u.cl
2500 && expr->ts.u.cl->length_from_typespec);
2501
2502 if ((gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
2503 && expr->ts.type == BT_CHARACTER && !typespec_chararray_ctor)
2504 {
2505 first_len_val = gfc_create_var (gfc_charlen_type_node, "len");
2506 first_len = true;
2507 }
2508
2509 gcc_assert (ss->dimen == ss->loop->dimen);
2510
2511 c = expr->value.constructor;
2512 if (expr->ts.type == BT_CHARACTER)
2513 {
2514 bool const_string;
2515 bool force_new_cl = false;
2516
2517 /* get_array_ctor_strlen walks the elements of the constructor, if a
2518 typespec was given, we already know the string length and want the one
2519 specified there. */
2520 if (typespec_chararray_ctor && expr->ts.u.cl->length
2521 && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT)
2522 {
2523 gfc_se length_se;
2524
2525 const_string = false;
2526 gfc_init_se (&length_se, NULL);
2527 gfc_conv_expr_type (&length_se, expr->ts.u.cl->length,
2528 gfc_charlen_type_node);
2529 ss_info->string_length = length_se.expr;
2530
2531 /* Check if the character length is negative. If it is, then
2532 set LEN = 0. */
2533 neg_len = fold_build2_loc (input_location, LT_EXPR,
2534 logical_type_node, ss_info->string_length,
2535 build_zero_cst (TREE_TYPE
2536 (ss_info->string_length)));
2537 /* Print a warning if bounds checking is enabled. */
2538 if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
2539 {
2540 msg = xasprintf ("Negative character length treated as LEN = 0");
2541 gfc_trans_runtime_check (false, true, neg_len, &length_se.pre,
2542 where, msg);
2543 free (msg);
2544 }
2545
2546 ss_info->string_length
2547 = fold_build3_loc (input_location, COND_EXPR,
2548 gfc_charlen_type_node, neg_len,
2549 build_zero_cst
2550 (TREE_TYPE (ss_info->string_length)),
2551 ss_info->string_length);
2552 ss_info->string_length = gfc_evaluate_now (ss_info->string_length,
2553 &length_se.pre);
2554 gfc_add_block_to_block (&outer_loop->pre, &length_se.pre);
2555 gfc_add_block_to_block (&outer_loop->post, &length_se.post);
2556 }
2557 else
2558 {
2559 const_string = get_array_ctor_strlen (&outer_loop->pre, c,
2560 &ss_info->string_length);
2561 force_new_cl = true;
2562 }
2563
2564 /* Complex character array constructors should have been taken care of
2565 and not end up here. */
2566 gcc_assert (ss_info->string_length);
2567
2568 store_backend_decl (&expr->ts.u.cl, ss_info->string_length, force_new_cl);
2569
2570 type = gfc_get_character_type_len (expr->ts.kind, ss_info->string_length);
2571 if (const_string)
2572 type = build_pointer_type (type);
2573 }
2574 else
2575 type = gfc_typenode_for_spec (expr->ts.type == BT_CLASS
2576 ? &CLASS_DATA (expr)->ts : &expr->ts);
2577
2578 /* See if the constructor determines the loop bounds. */
2579 dynamic = false;
2580
2581 loop_ubound0 = get_loop_upper_bound_for_array (ss, 0);
2582
2583 if (expr->shape && get_rank (loop) > 1 && *loop_ubound0 == NULL_TREE)
2584 {
2585 /* We have a multidimensional parameter. */
2586 for (s = ss; s; s = s->parent)
2587 {
2588 int n;
2589 for (n = 0; n < s->loop->dimen; n++)
2590 {
2591 s->loop->from[n] = gfc_index_zero_node;
2592 s->loop->to[n] = gfc_conv_mpz_to_tree (expr->shape[s->dim[n]],
2593 gfc_index_integer_kind);
2594 s->loop->to[n] = fold_build2_loc (input_location, MINUS_EXPR,
2595 gfc_array_index_type,
2596 s->loop->to[n],
2597 gfc_index_one_node);
2598 }
2599 }
2600 }
2601
2602 if (*loop_ubound0 == NULL_TREE)
2603 {
2604 mpz_t size;
2605
2606 /* We should have a 1-dimensional, zero-based loop. */
2607 gcc_assert (loop->parent == NULL && loop->nested == NULL);
2608 gcc_assert (loop->dimen == 1);
2609 gcc_assert (integer_zerop (loop->from[0]));
2610
2611 /* Split the constructor size into a static part and a dynamic part.
2612 Allocate the static size up-front and record whether the dynamic
2613 size might be nonzero. */
2614 mpz_init (size);
2615 dynamic = gfc_get_array_constructor_size (&size, c);
2616 mpz_sub_ui (size, size, 1);
2617 loop->to[0] = gfc_conv_mpz_to_tree (size, gfc_index_integer_kind);
2618 mpz_clear (size);
2619 }
2620
2621 /* Special case constant array constructors. */
2622 if (!dynamic)
2623 {
2624 unsigned HOST_WIDE_INT nelem = gfc_constant_array_constructor_p (c);
2625 if (nelem > 0)
2626 {
2627 tree size = constant_array_constructor_loop_size (loop);
2628 if (size && compare_tree_int (size, nelem) == 0)
2629 {
2630 trans_constant_array_constructor (ss, type);
2631 goto finish;
2632 }
2633 }
2634 }
2635
2636 gfc_trans_create_temp_array (&outer_loop->pre, &outer_loop->post, ss, type,
2637 NULL_TREE, dynamic, true, false, where);
2638
2639 desc = ss_info->data.array.descriptor;
2640 offset = gfc_index_zero_node;
2641 offsetvar = gfc_create_var_np (gfc_array_index_type, "offset");
2642 TREE_NO_WARNING (offsetvar) = 1;
2643 TREE_USED (offsetvar) = 0;
2644 gfc_trans_array_constructor_value (&outer_loop->pre, type, desc, c,
2645 &offset, &offsetvar, dynamic);
2646
2647 /* If the array grows dynamically, the upper bound of the loop variable
2648 is determined by the array's final upper bound. */
2649 if (dynamic)
2650 {
2651 tmp = fold_build2_loc (input_location, MINUS_EXPR,
2652 gfc_array_index_type,
2653 offsetvar, gfc_index_one_node);
2654 tmp = gfc_evaluate_now (tmp, &outer_loop->pre);
2655 gfc_conv_descriptor_ubound_set (&loop->pre, desc, gfc_rank_cst[0], tmp);
2656 if (*loop_ubound0 && VAR_P (*loop_ubound0))
2657 gfc_add_modify (&outer_loop->pre, *loop_ubound0, tmp);
2658 else
2659 *loop_ubound0 = tmp;
2660 }
2661
2662 if (TREE_USED (offsetvar))
2663 pushdecl (offsetvar);
2664 else
2665 gcc_assert (INTEGER_CST_P (offset));
2666
2667 #if 0
2668 /* Disable bound checking for now because it's probably broken. */
2669 if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
2670 {
2671 gcc_unreachable ();
2672 }
2673 #endif
2674
2675 finish:
2676 /* Restore old values of globals. */
2677 first_len = old_first_len;
2678 first_len_val = old_first_len_val;
2679 typespec_chararray_ctor = old_typespec_chararray_ctor;
2680 }
2681
2682
2683 /* INFO describes a GFC_SS_SECTION in loop LOOP, and this function is
2684 called after evaluating all of INFO's vector dimensions. Go through
2685 each such vector dimension and see if we can now fill in any missing
2686 loop bounds. */
2687
2688 static void
2689 set_vector_loop_bounds (gfc_ss * ss)
2690 {
2691 gfc_loopinfo *loop, *outer_loop;
2692 gfc_array_info *info;
2693 gfc_se se;
2694 tree tmp;
2695 tree desc;
2696 tree zero;
2697 int n;
2698 int dim;
2699
2700 outer_loop = outermost_loop (ss->loop);
2701
2702 info = &ss->info->data.array;
2703
2704 for (; ss; ss = ss->parent)
2705 {
2706 loop = ss->loop;
2707
2708 for (n = 0; n < loop->dimen; n++)
2709 {
2710 dim = ss->dim[n];
2711 if (info->ref->u.ar.dimen_type[dim] != DIMEN_VECTOR
2712 || loop->to[n] != NULL)
2713 continue;
2714
2715 /* Loop variable N indexes vector dimension DIM, and we don't
2716 yet know the upper bound of loop variable N. Set it to the
2717 difference between the vector's upper and lower bounds. */
2718 gcc_assert (loop->from[n] == gfc_index_zero_node);
2719 gcc_assert (info->subscript[dim]
2720 && info->subscript[dim]->info->type == GFC_SS_VECTOR);
2721
2722 gfc_init_se (&se, NULL);
2723 desc = info->subscript[dim]->info->data.array.descriptor;
2724 zero = gfc_rank_cst[0];
2725 tmp = fold_build2_loc (input_location, MINUS_EXPR,
2726 gfc_array_index_type,
2727 gfc_conv_descriptor_ubound_get (desc, zero),
2728 gfc_conv_descriptor_lbound_get (desc, zero));
2729 tmp = gfc_evaluate_now (tmp, &outer_loop->pre);
2730 loop->to[n] = tmp;
2731 }
2732 }
2733 }
2734
2735
2736 /* Tells whether a scalar argument to an elemental procedure is saved out
2737 of a scalarization loop as a value or as a reference. */
2738
2739 bool
2740 gfc_scalar_elemental_arg_saved_as_reference (gfc_ss_info * ss_info)
2741 {
2742 if (ss_info->type != GFC_SS_REFERENCE)
2743 return false;
2744
2745 if (ss_info->data.scalar.needs_temporary)
2746 return false;
2747
2748 /* If the actual argument can be absent (in other words, it can
2749 be a NULL reference), don't try to evaluate it; pass instead
2750 the reference directly. */
2751 if (ss_info->can_be_null_ref)
2752 return true;
2753
2754 /* If the expression is of polymorphic type, it's actual size is not known,
2755 so we avoid copying it anywhere. */
2756 if (ss_info->data.scalar.dummy_arg
2757 && ss_info->data.scalar.dummy_arg->ts.type == BT_CLASS
2758 && ss_info->expr->ts.type == BT_CLASS)
2759 return true;
2760
2761 /* If the expression is a data reference of aggregate type,
2762 and the data reference is not used on the left hand side,
2763 avoid a copy by saving a reference to the content. */
2764 if (!ss_info->data.scalar.needs_temporary
2765 && (ss_info->expr->ts.type == BT_DERIVED
2766 || ss_info->expr->ts.type == BT_CLASS)
2767 && gfc_expr_is_variable (ss_info->expr))
2768 return true;
2769
2770 /* Otherwise the expression is evaluated to a temporary variable before the
2771 scalarization loop. */
2772 return false;
2773 }
2774
2775
2776 /* Add the pre and post chains for all the scalar expressions in a SS chain
2777 to loop. This is called after the loop parameters have been calculated,
2778 but before the actual scalarizing loops. */
2779
2780 static void
2781 gfc_add_loop_ss_code (gfc_loopinfo * loop, gfc_ss * ss, bool subscript,
2782 locus * where)
2783 {
2784 gfc_loopinfo *nested_loop, *outer_loop;
2785 gfc_se se;
2786 gfc_ss_info *ss_info;
2787 gfc_array_info *info;
2788 gfc_expr *expr;
2789 int n;
2790
2791 /* Don't evaluate the arguments for realloc_lhs_loop_for_fcn_call; otherwise,
2792 arguments could get evaluated multiple times. */
2793 if (ss->is_alloc_lhs)
2794 return;
2795
2796 outer_loop = outermost_loop (loop);
2797
2798 /* TODO: This can generate bad code if there are ordering dependencies,
2799 e.g., a callee allocated function and an unknown size constructor. */
2800 gcc_assert (ss != NULL);
2801
2802 for (; ss != gfc_ss_terminator; ss = ss->loop_chain)
2803 {
2804 gcc_assert (ss);
2805
2806 /* Cross loop arrays are handled from within the most nested loop. */
2807 if (ss->nested_ss != NULL)
2808 continue;
2809
2810 ss_info = ss->info;
2811 expr = ss_info->expr;
2812 info = &ss_info->data.array;
2813
2814 switch (ss_info->type)
2815 {
2816 case GFC_SS_SCALAR:
2817 /* Scalar expression. Evaluate this now. This includes elemental
2818 dimension indices, but not array section bounds. */
2819 gfc_init_se (&se, NULL);
2820 gfc_conv_expr (&se, expr);
2821 gfc_add_block_to_block (&outer_loop->pre, &se.pre);
2822
2823 if (expr->ts.type != BT_CHARACTER
2824 && !gfc_is_alloc_class_scalar_function (expr))
2825 {
2826 /* Move the evaluation of scalar expressions outside the
2827 scalarization loop, except for WHERE assignments. */
2828 if (subscript)
2829 se.expr = convert(gfc_array_index_type, se.expr);
2830 if (!ss_info->where)
2831 se.expr = gfc_evaluate_now (se.expr, &outer_loop->pre);
2832 gfc_add_block_to_block (&outer_loop->pre, &se.post);
2833 }
2834 else
2835 gfc_add_block_to_block (&outer_loop->post, &se.post);
2836
2837 ss_info->data.scalar.value = se.expr;
2838 ss_info->string_length = se.string_length;
2839 break;
2840
2841 case GFC_SS_REFERENCE:
2842 /* Scalar argument to elemental procedure. */
2843 gfc_init_se (&se, NULL);
2844 if (gfc_scalar_elemental_arg_saved_as_reference (ss_info))
2845 gfc_conv_expr_reference (&se, expr);
2846 else
2847 {
2848 /* Evaluate the argument outside the loop and pass
2849 a reference to the value. */
2850 gfc_conv_expr (&se, expr);
2851 }
2852
2853 /* Ensure that a pointer to the string is stored. */
2854 if (expr->ts.type == BT_CHARACTER)
2855 gfc_conv_string_parameter (&se);
2856
2857 gfc_add_block_to_block (&outer_loop->pre, &se.pre);
2858 gfc_add_block_to_block (&outer_loop->post, &se.post);
2859 if (gfc_is_class_scalar_expr (expr))
2860 /* This is necessary because the dynamic type will always be
2861 large than the declared type. In consequence, assigning
2862 the value to a temporary could segfault.
2863 OOP-TODO: see if this is generally correct or is the value
2864 has to be written to an allocated temporary, whose address
2865 is passed via ss_info. */
2866 ss_info->data.scalar.value = se.expr;
2867 else
2868 ss_info->data.scalar.value = gfc_evaluate_now (se.expr,
2869 &outer_loop->pre);
2870
2871 ss_info->string_length = se.string_length;
2872 break;
2873
2874 case GFC_SS_SECTION:
2875 /* Add the expressions for scalar and vector subscripts. */
2876 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
2877 if (info->subscript[n])
2878 gfc_add_loop_ss_code (loop, info->subscript[n], true, where);
2879
2880 set_vector_loop_bounds (ss);
2881 break;
2882
2883 case GFC_SS_VECTOR:
2884 /* Get the vector's descriptor and store it in SS. */
2885 gfc_init_se (&se, NULL);
2886 gfc_conv_expr_descriptor (&se, expr);
2887 gfc_add_block_to_block (&outer_loop->pre, &se.pre);
2888 gfc_add_block_to_block (&outer_loop->post, &se.post);
2889 info->descriptor = se.expr;
2890 break;
2891
2892 case GFC_SS_INTRINSIC:
2893 gfc_add_intrinsic_ss_code (loop, ss);
2894 break;
2895
2896 case GFC_SS_FUNCTION:
2897 /* Array function return value. We call the function and save its
2898 result in a temporary for use inside the loop. */
2899 gfc_init_se (&se, NULL);
2900 se.loop = loop;
2901 se.ss = ss;
2902 if (gfc_is_class_array_function (expr))
2903 expr->must_finalize = 1;
2904 gfc_conv_expr (&se, expr);
2905 gfc_add_block_to_block (&outer_loop->pre, &se.pre);
2906 gfc_add_block_to_block (&outer_loop->post, &se.post);
2907 ss_info->string_length = se.string_length;
2908 break;
2909
2910 case GFC_SS_CONSTRUCTOR:
2911 if (expr->ts.type == BT_CHARACTER
2912 && ss_info->string_length == NULL
2913 && expr->ts.u.cl
2914 && expr->ts.u.cl->length
2915 && expr->ts.u.cl->length->expr_type == EXPR_CONSTANT)
2916 {
2917 gfc_init_se (&se, NULL);
2918 gfc_conv_expr_type (&se, expr->ts.u.cl->length,
2919 gfc_charlen_type_node);
2920 ss_info->string_length = se.expr;
2921 gfc_add_block_to_block (&outer_loop->pre, &se.pre);
2922 gfc_add_block_to_block (&outer_loop->post, &se.post);
2923 }
2924 trans_array_constructor (ss, where);
2925 break;
2926
2927 case GFC_SS_TEMP:
2928 case GFC_SS_COMPONENT:
2929 /* Do nothing. These are handled elsewhere. */
2930 break;
2931
2932 default:
2933 gcc_unreachable ();
2934 }
2935 }
2936
2937 if (!subscript)
2938 for (nested_loop = loop->nested; nested_loop;
2939 nested_loop = nested_loop->next)
2940 gfc_add_loop_ss_code (nested_loop, nested_loop->ss, subscript, where);
2941 }
2942
2943
2944 /* Translate expressions for the descriptor and data pointer of a SS. */
2945 /*GCC ARRAYS*/
2946
2947 static void
2948 gfc_conv_ss_descriptor (stmtblock_t * block, gfc_ss * ss, int base)
2949 {
2950 gfc_se se;
2951 gfc_ss_info *ss_info;
2952 gfc_array_info *info;
2953 tree tmp;
2954
2955 ss_info = ss->info;
2956 info = &ss_info->data.array;
2957
2958 /* Get the descriptor for the array to be scalarized. */
2959 gcc_assert (ss_info->expr->expr_type == EXPR_VARIABLE);
2960 gfc_init_se (&se, NULL);
2961 se.descriptor_only = 1;
2962 gfc_conv_expr_lhs (&se, ss_info->expr);
2963 gfc_add_block_to_block (block, &se.pre);
2964 info->descriptor = se.expr;
2965 ss_info->string_length = se.string_length;
2966
2967 if (base)
2968 {
2969 if (ss_info->expr->ts.type == BT_CHARACTER && !ss_info->expr->ts.deferred
2970 && ss_info->expr->ts.u.cl->length == NULL)
2971 {
2972 /* Emit a DECL_EXPR for the variable sized array type in
2973 GFC_TYPE_ARRAY_DATAPTR_TYPE so the gimplification of its type
2974 sizes works correctly. */
2975 tree arraytype = TREE_TYPE (
2976 GFC_TYPE_ARRAY_DATAPTR_TYPE (TREE_TYPE (info->descriptor)));
2977 if (! TYPE_NAME (arraytype))
2978 TYPE_NAME (arraytype) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
2979 NULL_TREE, arraytype);
2980 gfc_add_expr_to_block (block, build1 (DECL_EXPR, arraytype,
2981 TYPE_NAME (arraytype)));
2982 }
2983 /* Also the data pointer. */
2984 tmp = gfc_conv_array_data (se.expr);
2985 /* If this is a variable or address of a variable we use it directly.
2986 Otherwise we must evaluate it now to avoid breaking dependency
2987 analysis by pulling the expressions for elemental array indices
2988 inside the loop. */
2989 if (!(DECL_P (tmp)
2990 || (TREE_CODE (tmp) == ADDR_EXPR
2991 && DECL_P (TREE_OPERAND (tmp, 0)))))
2992 tmp = gfc_evaluate_now (tmp, block);
2993 info->data = tmp;
2994
2995 tmp = gfc_conv_array_offset (se.expr);
2996 info->offset = gfc_evaluate_now (tmp, block);
2997
2998 /* Make absolutely sure that the saved_offset is indeed saved
2999 so that the variable is still accessible after the loops
3000 are translated. */
3001 info->saved_offset = info->offset;
3002 }
3003 }
3004
3005
3006 /* Initialize a gfc_loopinfo structure. */
3007
3008 void
3009 gfc_init_loopinfo (gfc_loopinfo * loop)
3010 {
3011 int n;
3012
3013 memset (loop, 0, sizeof (gfc_loopinfo));
3014 gfc_init_block (&loop->pre);
3015 gfc_init_block (&loop->post);
3016
3017 /* Initially scalarize in order and default to no loop reversal. */
3018 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
3019 {
3020 loop->order[n] = n;
3021 loop->reverse[n] = GFC_INHIBIT_REVERSE;
3022 }
3023
3024 loop->ss = gfc_ss_terminator;
3025 }
3026
3027
3028 /* Copies the loop variable info to a gfc_se structure. Does not copy the SS
3029 chain. */
3030
3031 void
3032 gfc_copy_loopinfo_to_se (gfc_se * se, gfc_loopinfo * loop)
3033 {
3034 se->loop = loop;
3035 }
3036
3037
3038 /* Return an expression for the data pointer of an array. */
3039
3040 tree
3041 gfc_conv_array_data (tree descriptor)
3042 {
3043 tree type;
3044
3045 type = TREE_TYPE (descriptor);
3046 if (GFC_ARRAY_TYPE_P (type))
3047 {
3048 if (TREE_CODE (type) == POINTER_TYPE)
3049 return descriptor;
3050 else
3051 {
3052 /* Descriptorless arrays. */
3053 return gfc_build_addr_expr (NULL_TREE, descriptor);
3054 }
3055 }
3056 else
3057 return gfc_conv_descriptor_data_get (descriptor);
3058 }
3059
3060
3061 /* Return an expression for the base offset of an array. */
3062
3063 tree
3064 gfc_conv_array_offset (tree descriptor)
3065 {
3066 tree type;
3067
3068 type = TREE_TYPE (descriptor);
3069 if (GFC_ARRAY_TYPE_P (type))
3070 return GFC_TYPE_ARRAY_OFFSET (type);
3071 else
3072 return gfc_conv_descriptor_offset_get (descriptor);
3073 }
3074
3075
3076 /* Get an expression for the array stride. */
3077
3078 tree
3079 gfc_conv_array_stride (tree descriptor, int dim)
3080 {
3081 tree tmp;
3082 tree type;
3083
3084 type = TREE_TYPE (descriptor);
3085
3086 /* For descriptorless arrays use the array size. */
3087 tmp = GFC_TYPE_ARRAY_STRIDE (type, dim);
3088 if (tmp != NULL_TREE)
3089 return tmp;
3090
3091 tmp = gfc_conv_descriptor_stride_get (descriptor, gfc_rank_cst[dim]);
3092 return tmp;
3093 }
3094
3095
3096 /* Like gfc_conv_array_stride, but for the lower bound. */
3097
3098 tree
3099 gfc_conv_array_lbound (tree descriptor, int dim)
3100 {
3101 tree tmp;
3102 tree type;
3103
3104 type = TREE_TYPE (descriptor);
3105
3106 tmp = GFC_TYPE_ARRAY_LBOUND (type, dim);
3107 if (tmp != NULL_TREE)
3108 return tmp;
3109
3110 tmp = gfc_conv_descriptor_lbound_get (descriptor, gfc_rank_cst[dim]);
3111 return tmp;
3112 }
3113
3114
3115 /* Like gfc_conv_array_stride, but for the upper bound. */
3116
3117 tree
3118 gfc_conv_array_ubound (tree descriptor, int dim)
3119 {
3120 tree tmp;
3121 tree type;
3122
3123 type = TREE_TYPE (descriptor);
3124
3125 tmp = GFC_TYPE_ARRAY_UBOUND (type, dim);
3126 if (tmp != NULL_TREE)
3127 return tmp;
3128
3129 /* This should only ever happen when passing an assumed shape array
3130 as an actual parameter. The value will never be used. */
3131 if (GFC_ARRAY_TYPE_P (TREE_TYPE (descriptor)))
3132 return gfc_index_zero_node;
3133
3134 tmp = gfc_conv_descriptor_ubound_get (descriptor, gfc_rank_cst[dim]);
3135 return tmp;
3136 }
3137
3138
3139 /* Generate code to perform an array index bound check. */
3140
3141 static tree
3142 trans_array_bound_check (gfc_se * se, gfc_ss *ss, tree index, int n,
3143 locus * where, bool check_upper)
3144 {
3145 tree fault;
3146 tree tmp_lo, tmp_up;
3147 tree descriptor;
3148 char *msg;
3149 const char * name = NULL;
3150
3151 if (!(gfc_option.rtcheck & GFC_RTCHECK_BOUNDS))
3152 return index;
3153
3154 descriptor = ss->info->data.array.descriptor;
3155
3156 index = gfc_evaluate_now (index, &se->pre);
3157
3158 /* We find a name for the error message. */
3159 name = ss->info->expr->symtree->n.sym->name;
3160 gcc_assert (name != NULL);
3161
3162 if (VAR_P (descriptor))
3163 name = IDENTIFIER_POINTER (DECL_NAME (descriptor));
3164
3165 /* If upper bound is present, include both bounds in the error message. */
3166 if (check_upper)
3167 {
3168 tmp_lo = gfc_conv_array_lbound (descriptor, n);
3169 tmp_up = gfc_conv_array_ubound (descriptor, n);
3170
3171 if (name)
3172 msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' "
3173 "outside of expected range (%%ld:%%ld)", n+1, name);
3174 else
3175 msg = xasprintf ("Index '%%ld' of dimension %d "
3176 "outside of expected range (%%ld:%%ld)", n+1);
3177
3178 fault = fold_build2_loc (input_location, LT_EXPR, logical_type_node,
3179 index, tmp_lo);
3180 gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg,
3181 fold_convert (long_integer_type_node, index),
3182 fold_convert (long_integer_type_node, tmp_lo),
3183 fold_convert (long_integer_type_node, tmp_up));
3184 fault = fold_build2_loc (input_location, GT_EXPR, logical_type_node,
3185 index, tmp_up);
3186 gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg,
3187 fold_convert (long_integer_type_node, index),
3188 fold_convert (long_integer_type_node, tmp_lo),
3189 fold_convert (long_integer_type_node, tmp_up));
3190 free (msg);
3191 }
3192 else
3193 {
3194 tmp_lo = gfc_conv_array_lbound (descriptor, n);
3195
3196 if (name)
3197 msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' "
3198 "below lower bound of %%ld", n+1, name);
3199 else
3200 msg = xasprintf ("Index '%%ld' of dimension %d "
3201 "below lower bound of %%ld", n+1);
3202
3203 fault = fold_build2_loc (input_location, LT_EXPR, logical_type_node,
3204 index, tmp_lo);
3205 gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg,
3206 fold_convert (long_integer_type_node, index),
3207 fold_convert (long_integer_type_node, tmp_lo));
3208 free (msg);
3209 }
3210
3211 return index;
3212 }
3213
3214
3215 /* Return the offset for an index. Performs bound checking for elemental
3216 dimensions. Single element references are processed separately.
3217 DIM is the array dimension, I is the loop dimension. */
3218
3219 static tree
3220 conv_array_index_offset (gfc_se * se, gfc_ss * ss, int dim, int i,
3221 gfc_array_ref * ar, tree stride)
3222 {
3223 gfc_array_info *info;
3224 tree index;
3225 tree desc;
3226 tree data;
3227
3228 info = &ss->info->data.array;
3229
3230 /* Get the index into the array for this dimension. */
3231 if (ar)
3232 {
3233 gcc_assert (ar->type != AR_ELEMENT);
3234 switch (ar->dimen_type[dim])
3235 {
3236 case DIMEN_THIS_IMAGE:
3237 gcc_unreachable ();
3238 break;
3239 case DIMEN_ELEMENT:
3240 /* Elemental dimension. */
3241 gcc_assert (info->subscript[dim]
3242 && info->subscript[dim]->info->type == GFC_SS_SCALAR);
3243 /* We've already translated this value outside the loop. */
3244 index = info->subscript[dim]->info->data.scalar.value;
3245
3246 index = trans_array_bound_check (se, ss, index, dim, &ar->where,
3247 ar->as->type != AS_ASSUMED_SIZE
3248 || dim < ar->dimen - 1);
3249 break;
3250
3251 case DIMEN_VECTOR:
3252 gcc_assert (info && se->loop);
3253 gcc_assert (info->subscript[dim]
3254 && info->subscript[dim]->info->type == GFC_SS_VECTOR);
3255 desc = info->subscript[dim]->info->data.array.descriptor;
3256
3257 /* Get a zero-based index into the vector. */
3258 index = fold_build2_loc (input_location, MINUS_EXPR,
3259 gfc_array_index_type,
3260 se->loop->loopvar[i], se->loop->from[i]);
3261
3262 /* Multiply the index by the stride. */
3263 index = fold_build2_loc (input_location, MULT_EXPR,
3264 gfc_array_index_type,
3265 index, gfc_conv_array_stride (desc, 0));
3266
3267 /* Read the vector to get an index into info->descriptor. */
3268 data = build_fold_indirect_ref_loc (input_location,
3269 gfc_conv_array_data (desc));
3270 index = gfc_build_array_ref (data, index, NULL);
3271 index = gfc_evaluate_now (index, &se->pre);
3272 index = fold_convert (gfc_array_index_type, index);
3273
3274 /* Do any bounds checking on the final info->descriptor index. */
3275 index = trans_array_bound_check (se, ss, index, dim, &ar->where,
3276 ar->as->type != AS_ASSUMED_SIZE
3277 || dim < ar->dimen - 1);
3278 break;
3279
3280 case DIMEN_RANGE:
3281 /* Scalarized dimension. */
3282 gcc_assert (info && se->loop);
3283
3284 /* Multiply the loop variable by the stride and delta. */
3285 index = se->loop->loopvar[i];
3286 if (!integer_onep (info->stride[dim]))
3287 index = fold_build2_loc (input_location, MULT_EXPR,
3288 gfc_array_index_type, index,
3289 info->stride[dim]);
3290 if (!integer_zerop (info->delta[dim]))
3291 index = fold_build2_loc (input_location, PLUS_EXPR,
3292 gfc_array_index_type, index,
3293 info->delta[dim]);
3294 break;
3295
3296 default:
3297 gcc_unreachable ();
3298 }
3299 }
3300 else
3301 {
3302 /* Temporary array or derived type component. */
3303 gcc_assert (se->loop);
3304 index = se->loop->loopvar[se->loop->order[i]];
3305
3306 /* Pointer functions can have stride[0] different from unity.
3307 Use the stride returned by the function call and stored in
3308 the descriptor for the temporary. */
3309 if (se->ss && se->ss->info->type == GFC_SS_FUNCTION
3310 && se->ss->info->expr
3311 && se->ss->info->expr->symtree
3312 && se->ss->info->expr->symtree->n.sym->result
3313 && se->ss->info->expr->symtree->n.sym->result->attr.pointer)
3314 stride = gfc_conv_descriptor_stride_get (info->descriptor,
3315 gfc_rank_cst[dim]);
3316
3317 if (info->delta[dim] && !integer_zerop (info->delta[dim]))
3318 index = fold_build2_loc (input_location, PLUS_EXPR,
3319 gfc_array_index_type, index, info->delta[dim]);
3320 }
3321
3322 /* Multiply by the stride. */
3323 if (stride != NULL && !integer_onep (stride))
3324 index = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
3325 index, stride);
3326
3327 return index;
3328 }
3329
3330
3331 /* Build a scalarized array reference using the vptr 'size'. */
3332
3333 static bool
3334 build_class_array_ref (gfc_se *se, tree base, tree index)
3335 {
3336 tree type;
3337 tree size;
3338 tree offset;
3339 tree decl = NULL_TREE;
3340 tree tmp;
3341 gfc_expr *expr = se->ss->info->expr;
3342 gfc_ref *ref;
3343 gfc_ref *class_ref = NULL;
3344 gfc_typespec *ts;
3345
3346 if (se->expr && DECL_P (se->expr) && DECL_LANG_SPECIFIC (se->expr)
3347 && GFC_DECL_SAVED_DESCRIPTOR (se->expr)
3348 && GFC_CLASS_TYPE_P (TREE_TYPE (GFC_DECL_SAVED_DESCRIPTOR (se->expr))))
3349 decl = se->expr;
3350 else
3351 {
3352 if (expr == NULL
3353 || (expr->ts.type != BT_CLASS
3354 && !gfc_is_class_array_function (expr)
3355 && !gfc_is_class_array_ref (expr, NULL)))
3356 return false;
3357
3358 if (expr->symtree && expr->symtree->n.sym->ts.type == BT_CLASS)
3359 ts = &expr->symtree->n.sym->ts;
3360 else
3361 ts = NULL;
3362
3363 for (ref = expr->ref; ref; ref = ref->next)
3364 {
3365 if (ref->type == REF_COMPONENT
3366 && ref->u.c.component->ts.type == BT_CLASS
3367 && ref->next && ref->next->type == REF_COMPONENT
3368 && strcmp (ref->next->u.c.component->name, "_data") == 0
3369 && ref->next->next
3370 && ref->next->next->type == REF_ARRAY
3371 && ref->next->next->u.ar.type != AR_ELEMENT)
3372 {
3373 ts = &ref->u.c.component->ts;
3374 class_ref = ref;
3375 break;
3376 }
3377 }
3378
3379 if (ts == NULL)
3380 return false;
3381 }
3382
3383 if (class_ref == NULL && expr && expr->symtree->n.sym->attr.function
3384 && expr->symtree->n.sym == expr->symtree->n.sym->result
3385 && expr->symtree->n.sym->backend_decl == current_function_decl)
3386 {
3387 decl = gfc_get_fake_result_decl (expr->symtree->n.sym, 0);
3388 }
3389 else if (expr && gfc_is_class_array_function (expr))
3390 {
3391 size = NULL_TREE;
3392 decl = NULL_TREE;
3393 for (tmp = base; tmp; tmp = TREE_OPERAND (tmp, 0))
3394 {
3395 tree type;
3396 type = TREE_TYPE (tmp);
3397 while (type)
3398 {
3399 if (GFC_CLASS_TYPE_P (type))
3400 decl = tmp;
3401 if (type != TYPE_CANONICAL (type))
3402 type = TYPE_CANONICAL (type);
3403 else
3404 type = NULL_TREE;
3405 }
3406 if (VAR_P (tmp))
3407 break;
3408 }
3409
3410 if (decl == NULL_TREE)
3411 return false;
3412
3413 se->class_vptr = gfc_evaluate_now (gfc_class_vptr_get (decl), &se->pre);
3414 }
3415 else if (class_ref == NULL)
3416 {
3417 if (decl == NULL_TREE)
3418 decl = expr->symtree->n.sym->backend_decl;
3419 /* For class arrays the tree containing the class is stored in
3420 GFC_DECL_SAVED_DESCRIPTOR of the sym's backend_decl.
3421 For all others it's sym's backend_decl directly. */
3422 if (DECL_LANG_SPECIFIC (decl) && GFC_DECL_SAVED_DESCRIPTOR (decl))
3423 decl = GFC_DECL_SAVED_DESCRIPTOR (decl);
3424 }
3425 else
3426 {
3427 /* Remove everything after the last class reference, convert the
3428 expression and then recover its tailend once more. */
3429 gfc_se tmpse;
3430 ref = class_ref->next;
3431 class_ref->next = NULL;
3432 gfc_init_se (&tmpse, NULL);
3433 gfc_conv_expr (&tmpse, expr);
3434 gfc_add_block_to_block (&se->pre, &tmpse.pre);
3435 decl = tmpse.expr;
3436 class_ref->next = ref;
3437 }
3438
3439 if (POINTER_TYPE_P (TREE_TYPE (decl)))
3440 decl = build_fold_indirect_ref_loc (input_location, decl);
3441
3442 if (!GFC_CLASS_TYPE_P (TREE_TYPE (decl)))
3443 return false;
3444
3445 size = gfc_class_vtab_size_get (decl);
3446
3447 /* For unlimited polymorphic entities then _len component needs to be
3448 multiplied with the size. If no _len component is present, then
3449 gfc_class_len_or_zero_get () return a zero_node. */
3450 tmp = gfc_class_len_or_zero_get (decl);
3451 if (!integer_zerop (tmp))
3452 size = fold_build2 (MULT_EXPR, TREE_TYPE (index),
3453 fold_convert (TREE_TYPE (index), size),
3454 fold_build2 (MAX_EXPR, TREE_TYPE (index),
3455 fold_convert (TREE_TYPE (index), tmp),
3456 fold_convert (TREE_TYPE (index),
3457 integer_one_node)));
3458 else
3459 size = fold_convert (TREE_TYPE (index), size);
3460
3461 /* Build the address of the element. */
3462 type = TREE_TYPE (TREE_TYPE (base));
3463 offset = fold_build2_loc (input_location, MULT_EXPR,
3464 gfc_array_index_type,
3465 index, size);
3466 tmp = gfc_build_addr_expr (pvoid_type_node, base);
3467 tmp = fold_build_pointer_plus_loc (input_location, tmp, offset);
3468 tmp = fold_convert (build_pointer_type (type), tmp);
3469
3470 /* Return the element in the se expression. */
3471 se->expr = build_fold_indirect_ref_loc (input_location, tmp);
3472 return true;
3473 }
3474
3475
3476 /* Build a scalarized reference to an array. */
3477
3478 static void
3479 gfc_conv_scalarized_array_ref (gfc_se * se, gfc_array_ref * ar)
3480 {
3481 gfc_array_info *info;
3482 tree decl = NULL_TREE;
3483 tree index;
3484 tree base;
3485 gfc_ss *ss;
3486 gfc_expr *expr;
3487 int n;
3488
3489 ss = se->ss;
3490 expr = ss->info->expr;
3491 info = &ss->info->data.array;
3492 if (ar)
3493 n = se->loop->order[0];
3494 else
3495 n = 0;
3496
3497 index = conv_array_index_offset (se, ss, ss->dim[n], n, ar, info->stride0);
3498 /* Add the offset for this dimension to the stored offset for all other
3499 dimensions. */
3500 if (info->offset && !integer_zerop (info->offset))
3501 index = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
3502 index, info->offset);
3503
3504 base = build_fold_indirect_ref_loc (input_location, info->data);
3505
3506 /* Use the vptr 'size' field to access the element of a class array. */
3507 if (build_class_array_ref (se, base, index))
3508 return;
3509
3510 if (get_CFI_desc (NULL, expr, &decl, ar))
3511 decl = build_fold_indirect_ref_loc (input_location, decl);
3512
3513 /* A pointer array component can be detected from its field decl. Fix
3514 the descriptor, mark the resulting variable decl and pass it to
3515 gfc_build_array_ref. */
3516 if (is_pointer_array (info->descriptor)
3517 || (expr && expr->ts.deferred && info->descriptor
3518 && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (info->descriptor))))
3519 {
3520 if (TREE_CODE (info->descriptor) == COMPONENT_REF)
3521 decl = info->descriptor;
3522 else if (TREE_CODE (info->descriptor) == INDIRECT_REF)
3523 decl = TREE_OPERAND (info->descriptor, 0);
3524
3525 if (decl == NULL_TREE)
3526 decl = info->descriptor;
3527 }
3528
3529 se->expr = gfc_build_array_ref (base, index, decl);
3530 }
3531
3532
3533 /* Translate access of temporary array. */
3534
3535 void
3536 gfc_conv_tmp_array_ref (gfc_se * se)
3537 {
3538 se->string_length = se->ss->info->string_length;
3539 gfc_conv_scalarized_array_ref (se, NULL);
3540 gfc_advance_se_ss_chain (se);
3541 }
3542
3543 /* Add T to the offset pair *OFFSET, *CST_OFFSET. */
3544
3545 static void
3546 add_to_offset (tree *cst_offset, tree *offset, tree t)
3547 {
3548 if (TREE_CODE (t) == INTEGER_CST)
3549 *cst_offset = int_const_binop (PLUS_EXPR, *cst_offset, t);
3550 else
3551 {
3552 if (!integer_zerop (*offset))
3553 *offset = fold_build2_loc (input_location, PLUS_EXPR,
3554 gfc_array_index_type, *offset, t);
3555 else
3556 *offset = t;
3557 }
3558 }
3559
3560
3561 static tree
3562 build_array_ref (tree desc, tree offset, tree decl, tree vptr)
3563 {
3564 tree tmp;
3565 tree type;
3566 tree cdesc;
3567
3568 /* For class arrays the class declaration is stored in the saved
3569 descriptor. */
3570 if (INDIRECT_REF_P (desc)
3571 && DECL_LANG_SPECIFIC (TREE_OPERAND (desc, 0))
3572 && GFC_DECL_SAVED_DESCRIPTOR (TREE_OPERAND (desc, 0)))
3573 cdesc = gfc_class_data_get (GFC_DECL_SAVED_DESCRIPTOR (
3574 TREE_OPERAND (desc, 0)));
3575 else
3576 cdesc = desc;
3577
3578 /* Class container types do not always have the GFC_CLASS_TYPE_P
3579 but the canonical type does. */
3580 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (cdesc))
3581 && TREE_CODE (cdesc) == COMPONENT_REF)
3582 {
3583 type = TREE_TYPE (TREE_OPERAND (cdesc, 0));
3584 if (TYPE_CANONICAL (type)
3585 && GFC_CLASS_TYPE_P (TYPE_CANONICAL (type)))
3586 vptr = gfc_class_vptr_get (TREE_OPERAND (cdesc, 0));
3587 }
3588
3589 tmp = gfc_conv_array_data (desc);
3590 tmp = build_fold_indirect_ref_loc (input_location, tmp);
3591 tmp = gfc_build_array_ref (tmp, offset, decl, vptr);
3592 return tmp;
3593 }
3594
3595
3596 /* Build an array reference. se->expr already holds the array descriptor.
3597 This should be either a variable, indirect variable reference or component
3598 reference. For arrays which do not have a descriptor, se->expr will be
3599 the data pointer.
3600 a(i, j, k) = base[offset + i * stride[0] + j * stride[1] + k * stride[2]]*/
3601
3602 void
3603 gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_expr *expr,
3604 locus * where)
3605 {
3606 int n;
3607 tree offset, cst_offset;
3608 tree tmp;
3609 tree stride;
3610 tree decl = NULL_TREE;
3611 gfc_se indexse;
3612 gfc_se tmpse;
3613 gfc_symbol * sym = expr->symtree->n.sym;
3614 char *var_name = NULL;
3615
3616 if (ar->dimen == 0)
3617 {
3618 gcc_assert (ar->codimen || sym->attr.select_rank_temporary
3619 || (ar->as && ar->as->corank));
3620
3621 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se->expr)))
3622 se->expr = build_fold_indirect_ref (gfc_conv_array_data (se->expr));
3623 else
3624 {
3625 if (GFC_ARRAY_TYPE_P (TREE_TYPE (se->expr))
3626 && TREE_CODE (TREE_TYPE (se->expr)) == POINTER_TYPE)
3627 se->expr = build_fold_indirect_ref_loc (input_location, se->expr);
3628
3629 /* Use the actual tree type and not the wrapped coarray. */
3630 if (!se->want_pointer)
3631 se->expr = fold_convert (TYPE_MAIN_VARIANT (TREE_TYPE (se->expr)),
3632 se->expr);
3633 }
3634
3635 return;
3636 }
3637
3638 /* Handle scalarized references separately. */
3639 if (ar->type != AR_ELEMENT)
3640 {
3641 gfc_conv_scalarized_array_ref (se, ar);
3642 gfc_advance_se_ss_chain (se);
3643 return;
3644 }
3645
3646 if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
3647 {
3648 size_t len;
3649 gfc_ref *ref;
3650
3651 len = strlen (sym->name) + 1;
3652 for (ref = expr->ref; ref; ref = ref->next)
3653 {
3654 if (ref->type == REF_ARRAY && &ref->u.ar == ar)
3655 break;
3656 if (ref->type == REF_COMPONENT)
3657 len += 2 + strlen (ref->u.c.component->name);
3658 }
3659
3660 var_name = XALLOCAVEC (char, len);
3661 strcpy (var_name, sym->name);
3662
3663 for (ref = expr->ref; ref; ref = ref->next)
3664 {
3665 if (ref->type == REF_ARRAY && &ref->u.ar == ar)
3666 break;
3667 if (ref->type == REF_COMPONENT)
3668 {
3669 strcat (var_name, "%%");
3670 strcat (var_name, ref->u.c.component->name);
3671 }
3672 }
3673 }
3674
3675 cst_offset = offset = gfc_index_zero_node;
3676 add_to_offset (&cst_offset, &offset, gfc_conv_array_offset (se->expr));
3677
3678 /* Calculate the offsets from all the dimensions. Make sure to associate
3679 the final offset so that we form a chain of loop invariant summands. */
3680 for (n = ar->dimen - 1; n >= 0; n--)
3681 {
3682 /* Calculate the index for this dimension. */
3683 gfc_init_se (&indexse, se);
3684 gfc_conv_expr_type (&indexse, ar->start[n], gfc_array_index_type);
3685 gfc_add_block_to_block (&se->pre, &indexse.pre);
3686
3687 if ((gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) && ! expr->no_bounds_check)
3688 {
3689 /* Check array bounds. */
3690 tree cond;
3691 char *msg;
3692
3693 /* Evaluate the indexse.expr only once. */
3694 indexse.expr = save_expr (indexse.expr);
3695
3696 /* Lower bound. */
3697 tmp = gfc_conv_array_lbound (se->expr, n);
3698 if (sym->attr.temporary)
3699 {
3700 gfc_init_se (&tmpse, se);
3701 gfc_conv_expr_type (&tmpse, ar->as->lower[n],
3702 gfc_array_index_type);
3703 gfc_add_block_to_block (&se->pre, &tmpse.pre);
3704 tmp = tmpse.expr;
3705 }
3706
3707 cond = fold_build2_loc (input_location, LT_EXPR, logical_type_node,
3708 indexse.expr, tmp);
3709 msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' "
3710 "below lower bound of %%ld", n+1, var_name);
3711 gfc_trans_runtime_check (true, false, cond, &se->pre, where, msg,
3712 fold_convert (long_integer_type_node,
3713 indexse.expr),
3714 fold_convert (long_integer_type_node, tmp));
3715 free (msg);
3716
3717 /* Upper bound, but not for the last dimension of assumed-size
3718 arrays. */
3719 if (n < ar->dimen - 1 || ar->as->type != AS_ASSUMED_SIZE)
3720 {
3721 tmp = gfc_conv_array_ubound (se->expr, n);
3722 if (sym->attr.temporary)
3723 {
3724 gfc_init_se (&tmpse, se);
3725 gfc_conv_expr_type (&tmpse, ar->as->upper[n],
3726 gfc_array_index_type);
3727 gfc_add_block_to_block (&se->pre, &tmpse.pre);
3728 tmp = tmpse.expr;
3729 }
3730
3731 cond = fold_build2_loc (input_location, GT_EXPR,
3732 logical_type_node, indexse.expr, tmp);
3733 msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' "
3734 "above upper bound of %%ld", n+1, var_name);
3735 gfc_trans_runtime_check (true, false, cond, &se->pre, where, msg,
3736 fold_convert (long_integer_type_node,
3737 indexse.expr),
3738 fold_convert (long_integer_type_node, tmp));
3739 free (msg);
3740 }
3741 }
3742
3743 /* Multiply the index by the stride. */
3744 stride = gfc_conv_array_stride (se->expr, n);
3745 tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
3746 indexse.expr, stride);
3747
3748 /* And add it to the total. */
3749 add_to_offset (&cst_offset, &offset, tmp);
3750 }
3751
3752 if (!integer_zerop (cst_offset))
3753 offset = fold_build2_loc (input_location, PLUS_EXPR,
3754 gfc_array_index_type, offset, cst_offset);
3755
3756 /* A pointer array component can be detected from its field decl. Fix
3757 the descriptor, mark the resulting variable decl and pass it to
3758 build_array_ref. */
3759 if (get_CFI_desc (sym, expr, &decl, ar))
3760 decl = build_fold_indirect_ref_loc (input_location, decl);
3761 if (!expr->ts.deferred && !sym->attr.codimension
3762 && is_pointer_array (se->expr))
3763 {
3764 if (TREE_CODE (se->expr) == COMPONENT_REF)
3765 decl = se->expr;
3766 else if (TREE_CODE (se->expr) == INDIRECT_REF)
3767 decl = TREE_OPERAND (se->expr, 0);
3768 else
3769 decl = se->expr;
3770 }
3771 else if (expr->ts.deferred
3772 || (sym->ts.type == BT_CHARACTER
3773 && sym->attr.select_type_temporary))
3774 {
3775 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se->expr)))
3776 {
3777 decl = se->expr;
3778 if (TREE_CODE (decl) == INDIRECT_REF)
3779 decl = TREE_OPERAND (decl, 0);
3780 }
3781 else
3782 decl = sym->backend_decl;
3783 }
3784 else if (sym->ts.type == BT_CLASS)
3785 decl = NULL_TREE;
3786
3787 se->expr = build_array_ref (se->expr, offset, decl, se->class_vptr);
3788 }
3789
3790
3791 /* Add the offset corresponding to array's ARRAY_DIM dimension and loop's
3792 LOOP_DIM dimension (if any) to array's offset. */
3793
3794 static void
3795 add_array_offset (stmtblock_t *pblock, gfc_loopinfo *loop, gfc_ss *ss,
3796 gfc_array_ref *ar, int array_dim, int loop_dim)
3797 {
3798 gfc_se se;
3799 gfc_array_info *info;
3800 tree stride, index;
3801
3802 info = &ss->info->data.array;
3803
3804 gfc_init_se (&se, NULL);
3805 se.loop = loop;
3806 se.expr = info->descriptor;
3807 stride = gfc_conv_array_stride (info->descriptor, array_dim);
3808 index = conv_array_index_offset (&se, ss, array_dim, loop_dim, ar, stride);
3809 gfc_add_block_to_block (pblock, &se.pre);
3810
3811 info->offset = fold_build2_loc (input_location, PLUS_EXPR,
3812 gfc_array_index_type,
3813 info->offset, index);
3814 info->offset = gfc_evaluate_now (info->offset, pblock);
3815 }
3816
3817
3818 /* Generate the code to be executed immediately before entering a
3819 scalarization loop. */
3820
3821 static void
3822 gfc_trans_preloop_setup (gfc_loopinfo * loop, int dim, int flag,
3823 stmtblock_t * pblock)
3824 {
3825 tree stride;
3826 gfc_ss_info *ss_info;
3827 gfc_array_info *info;
3828 gfc_ss_type ss_type;
3829 gfc_ss *ss, *pss;
3830 gfc_loopinfo *ploop;
3831 gfc_array_ref *ar;
3832 int i;
3833
3834 /* This code will be executed before entering the scalarization loop
3835 for this dimension. */
3836 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
3837 {
3838 ss_info = ss->info;
3839
3840 if ((ss_info->useflags & flag) == 0)
3841 continue;
3842
3843 ss_type = ss_info->type;
3844 if (ss_type != GFC_SS_SECTION
3845 && ss_type != GFC_SS_FUNCTION
3846 && ss_type != GFC_SS_CONSTRUCTOR
3847 && ss_type != GFC_SS_COMPONENT)
3848 continue;
3849
3850 info = &ss_info->data.array;
3851
3852 gcc_assert (dim < ss->dimen);
3853 gcc_assert (ss->dimen == loop->dimen);
3854
3855 if (info->ref)
3856 ar = &info->ref->u.ar;
3857 else
3858 ar = NULL;
3859
3860 if (dim == loop->dimen - 1 && loop->parent != NULL)
3861 {
3862 /* If we are in the outermost dimension of this loop, the previous
3863 dimension shall be in the parent loop. */
3864 gcc_assert (ss->parent != NULL);
3865
3866 pss = ss->parent;
3867 ploop = loop->parent;
3868
3869 /* ss and ss->parent are about the same array. */
3870 gcc_assert (ss_info == pss->info);
3871 }
3872 else
3873 {
3874 ploop = loop;
3875 pss = ss;
3876 }
3877
3878 if (dim == loop->dimen - 1)
3879 i = 0;
3880 else
3881 i = dim + 1;
3882
3883 /* For the time being, there is no loop reordering. */
3884 gcc_assert (i == ploop->order[i]);
3885 i = ploop->order[i];
3886
3887 if (dim == loop->dimen - 1 && loop->parent == NULL)
3888 {
3889 stride = gfc_conv_array_stride (info->descriptor,
3890 innermost_ss (ss)->dim[i]);
3891
3892 /* Calculate the stride of the innermost loop. Hopefully this will
3893 allow the backend optimizers to do their stuff more effectively.
3894 */
3895 info->stride0 = gfc_evaluate_now (stride, pblock);
3896
3897 /* For the outermost loop calculate the offset due to any
3898 elemental dimensions. It will have been initialized with the
3899 base offset of the array. */
3900 if (info->ref)
3901 {
3902 for (i = 0; i < ar->dimen; i++)
3903 {
3904 if (ar->dimen_type[i] != DIMEN_ELEMENT)
3905 continue;
3906
3907 add_array_offset (pblock, loop, ss, ar, i, /* unused */ -1);
3908 }
3909 }
3910 }
3911 else
3912 /* Add the offset for the previous loop dimension. */
3913 add_array_offset (pblock, ploop, ss, ar, pss->dim[i], i);
3914
3915 /* Remember this offset for the second loop. */
3916 if (dim == loop->temp_dim - 1 && loop->parent == NULL)
3917 info->saved_offset = info->offset;
3918 }
3919 }
3920
3921
3922 /* Start a scalarized expression. Creates a scope and declares loop
3923 variables. */
3924
3925 void
3926 gfc_start_scalarized_body (gfc_loopinfo * loop, stmtblock_t * pbody)
3927 {
3928 int dim;
3929 int n;
3930 int flags;
3931
3932 gcc_assert (!loop->array_parameter);
3933
3934 for (dim = loop->dimen - 1; dim >= 0; dim--)
3935 {
3936 n = loop->order[dim];
3937
3938 gfc_start_block (&loop->code[n]);
3939
3940 /* Create the loop variable. */
3941 loop->loopvar[n] = gfc_create_var (gfc_array_index_type, "S");
3942
3943 if (dim < loop->temp_dim)
3944 flags = 3;
3945 else
3946 flags = 1;
3947 /* Calculate values that will be constant within this loop. */
3948 gfc_trans_preloop_setup (loop, dim, flags, &loop->code[n]);
3949 }
3950 gfc_start_block (pbody);
3951 }
3952
3953
3954 /* Generates the actual loop code for a scalarization loop. */
3955
3956 void
3957 gfc_trans_scalarized_loop_end (gfc_loopinfo * loop, int n,
3958 stmtblock_t * pbody)
3959 {
3960 stmtblock_t block;
3961 tree cond;
3962 tree tmp;
3963 tree loopbody;
3964 tree exit_label;
3965 tree stmt;
3966 tree init;
3967 tree incr;
3968
3969 if ((ompws_flags & (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_WS
3970 | OMPWS_SCALARIZER_BODY))
3971 == (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_WS)
3972 && n == loop->dimen - 1)
3973 {
3974 /* We create an OMP_FOR construct for the outermost scalarized loop. */
3975 init = make_tree_vec (1);
3976 cond = make_tree_vec (1);
3977 incr = make_tree_vec (1);
3978
3979 /* Cycle statement is implemented with a goto. Exit statement must not
3980 be present for this loop. */
3981 exit_label = gfc_build_label_decl (NULL_TREE);
3982 TREE_USED (exit_label) = 1;
3983
3984 /* Label for cycle statements (if needed). */
3985 tmp = build1_v (LABEL_EXPR, exit_label);
3986 gfc_add_expr_to_block (pbody, tmp);
3987
3988 stmt = make_node (OMP_FOR);
3989
3990 TREE_TYPE (stmt) = void_type_node;
3991 OMP_FOR_BODY (stmt) = loopbody = gfc_finish_block (pbody);
3992
3993 OMP_FOR_CLAUSES (stmt) = build_omp_clause (input_location,
3994 OMP_CLAUSE_SCHEDULE);
3995 OMP_CLAUSE_SCHEDULE_KIND (OMP_FOR_CLAUSES (stmt))
3996 = OMP_CLAUSE_SCHEDULE_STATIC;
3997 if (ompws_flags & OMPWS_NOWAIT)
3998 OMP_CLAUSE_CHAIN (OMP_FOR_CLAUSES (stmt))
3999 = build_omp_clause (input_location, OMP_CLAUSE_NOWAIT);
4000
4001 /* Initialize the loopvar. */
4002 TREE_VEC_ELT (init, 0) = build2_v (MODIFY_EXPR, loop->loopvar[n],
4003 loop->from[n]);
4004 OMP_FOR_INIT (stmt) = init;
4005 /* The exit condition. */
4006 TREE_VEC_ELT (cond, 0) = build2_loc (input_location, LE_EXPR,
4007 logical_type_node,
4008 loop->loopvar[n], loop->to[n]);
4009 SET_EXPR_LOCATION (TREE_VEC_ELT (cond, 0), input_location);
4010 OMP_FOR_COND (stmt) = cond;
4011 /* Increment the loopvar. */
4012 tmp = build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
4013 loop->loopvar[n], gfc_index_one_node);
4014 TREE_VEC_ELT (incr, 0) = fold_build2_loc (input_location, MODIFY_EXPR,
4015 void_type_node, loop->loopvar[n], tmp);
4016 OMP_FOR_INCR (stmt) = incr;
4017
4018 ompws_flags &= ~OMPWS_CURR_SINGLEUNIT;
4019 gfc_add_expr_to_block (&loop->code[n], stmt);
4020 }
4021 else
4022 {
4023 bool reverse_loop = (loop->reverse[n] == GFC_REVERSE_SET)
4024 && (loop->temp_ss == NULL);
4025
4026 loopbody = gfc_finish_block (pbody);
4027
4028 if (reverse_loop)
4029 std::swap (loop->from[n], loop->to[n]);
4030
4031 /* Initialize the loopvar. */
4032 if (loop->loopvar[n] != loop->from[n])
4033 gfc_add_modify (&loop->code[n], loop->loopvar[n], loop->from[n]);
4034
4035 exit_label = gfc_build_label_decl (NULL_TREE);
4036
4037 /* Generate the loop body. */
4038 gfc_init_block (&block);
4039
4040 /* The exit condition. */
4041 cond = fold_build2_loc (input_location, reverse_loop ? LT_EXPR : GT_EXPR,
4042 logical_type_node, loop->loopvar[n], loop->to[n]);
4043 tmp = build1_v (GOTO_EXPR, exit_label);
4044 TREE_USED (exit_label) = 1;
4045 tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
4046 gfc_add_expr_to_block (&block, tmp);
4047
4048 /* The main body. */
4049 gfc_add_expr_to_block (&block, loopbody);
4050
4051 /* Increment the loopvar. */
4052 tmp = fold_build2_loc (input_location,
4053 reverse_loop ? MINUS_EXPR : PLUS_EXPR,
4054 gfc_array_index_type, loop->loopvar[n],
4055 gfc_index_one_node);
4056
4057 gfc_add_modify (&block, loop->loopvar[n], tmp);
4058
4059 /* Build the loop. */
4060 tmp = gfc_finish_block (&block);
4061 tmp = build1_v (LOOP_EXPR, tmp);
4062 gfc_add_expr_to_block (&loop->code[n], tmp);
4063
4064 /* Add the exit label. */
4065 tmp = build1_v (LABEL_EXPR, exit_label);
4066 gfc_add_expr_to_block (&loop->code[n], tmp);
4067 }
4068
4069 }
4070
4071
4072 /* Finishes and generates the loops for a scalarized expression. */
4073
4074 void
4075 gfc_trans_scalarizing_loops (gfc_loopinfo * loop, stmtblock_t * body)
4076 {
4077 int dim;
4078 int n;
4079 gfc_ss *ss;
4080 stmtblock_t *pblock;
4081 tree tmp;
4082
4083 pblock = body;
4084 /* Generate the loops. */
4085 for (dim = 0; dim < loop->dimen; dim++)
4086 {
4087 n = loop->order[dim];
4088 gfc_trans_scalarized_loop_end (loop, n, pblock);
4089 loop->loopvar[n] = NULL_TREE;
4090 pblock = &loop->code[n];
4091 }
4092
4093 tmp = gfc_finish_block (pblock);
4094 gfc_add_expr_to_block (&loop->pre, tmp);
4095
4096 /* Clear all the used flags. */
4097 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
4098 if (ss->parent == NULL)
4099 ss->info->useflags = 0;
4100 }
4101
4102
4103 /* Finish the main body of a scalarized expression, and start the secondary
4104 copying body. */
4105
4106 void
4107 gfc_trans_scalarized_loop_boundary (gfc_loopinfo * loop, stmtblock_t * body)
4108 {
4109 int dim;
4110 int n;
4111 stmtblock_t *pblock;
4112 gfc_ss *ss;
4113
4114 pblock = body;
4115 /* We finish as many loops as are used by the temporary. */
4116 for (dim = 0; dim < loop->temp_dim - 1; dim++)
4117 {
4118 n = loop->order[dim];
4119 gfc_trans_scalarized_loop_end (loop, n, pblock);
4120 loop->loopvar[n] = NULL_TREE;
4121 pblock = &loop->code[n];
4122 }
4123
4124 /* We don't want to finish the outermost loop entirely. */
4125 n = loop->order[loop->temp_dim - 1];
4126 gfc_trans_scalarized_loop_end (loop, n, pblock);
4127
4128 /* Restore the initial offsets. */
4129 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
4130 {
4131 gfc_ss_type ss_type;
4132 gfc_ss_info *ss_info;
4133
4134 ss_info = ss->info;
4135
4136 if ((ss_info->useflags & 2) == 0)
4137 continue;
4138
4139 ss_type = ss_info->type;
4140 if (ss_type != GFC_SS_SECTION
4141 && ss_type != GFC_SS_FUNCTION
4142 && ss_type != GFC_SS_CONSTRUCTOR
4143 && ss_type != GFC_SS_COMPONENT)
4144 continue;
4145
4146 ss_info->data.array.offset = ss_info->data.array.saved_offset;
4147 }
4148
4149 /* Restart all the inner loops we just finished. */
4150 for (dim = loop->temp_dim - 2; dim >= 0; dim--)
4151 {
4152 n = loop->order[dim];
4153
4154 gfc_start_block (&loop->code[n]);
4155
4156 loop->loopvar[n] = gfc_create_var (gfc_array_index_type, "Q");
4157
4158 gfc_trans_preloop_setup (loop, dim, 2, &loop->code[n]);
4159 }
4160
4161 /* Start a block for the secondary copying code. */
4162 gfc_start_block (body);
4163 }
4164
4165
4166 /* Precalculate (either lower or upper) bound of an array section.
4167 BLOCK: Block in which the (pre)calculation code will go.
4168 BOUNDS[DIM]: Where the bound value will be stored once evaluated.
4169 VALUES[DIM]: Specified bound (NULL <=> unspecified).
4170 DESC: Array descriptor from which the bound will be picked if unspecified
4171 (either lower or upper bound according to LBOUND). */
4172
4173 static void
4174 evaluate_bound (stmtblock_t *block, tree *bounds, gfc_expr ** values,
4175 tree desc, int dim, bool lbound, bool deferred)
4176 {
4177 gfc_se se;
4178 gfc_expr * input_val = values[dim];
4179 tree *output = &bounds[dim];
4180
4181
4182 if (input_val)
4183 {
4184 /* Specified section bound. */
4185 gfc_init_se (&se, NULL);
4186 gfc_conv_expr_type (&se, input_val, gfc_array_index_type);
4187 gfc_add_block_to_block (block, &se.pre);
4188 *output = se.expr;
4189 }
4190 else if (deferred && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc)))
4191 {
4192 /* The gfc_conv_array_lbound () routine returns a constant zero for
4193 deferred length arrays, which in the scalarizer wreaks havoc, when
4194 copying to a (newly allocated) one-based array.
4195 Keep returning the actual result in sync for both bounds. */
4196 *output = lbound ? gfc_conv_descriptor_lbound_get (desc,
4197 gfc_rank_cst[dim]):
4198 gfc_conv_descriptor_ubound_get (desc,
4199 gfc_rank_cst[dim]);
4200 }
4201 else
4202 {
4203 /* No specific bound specified so use the bound of the array. */
4204 *output = lbound ? gfc_conv_array_lbound (desc, dim) :
4205 gfc_conv_array_ubound (desc, dim);
4206 }
4207 *output = gfc_evaluate_now (*output, block);
4208 }
4209
4210
4211 /* Calculate the lower bound of an array section. */
4212
4213 static void
4214 gfc_conv_section_startstride (stmtblock_t * block, gfc_ss * ss, int dim)
4215 {
4216 gfc_expr *stride = NULL;
4217 tree desc;
4218 gfc_se se;
4219 gfc_array_info *info;
4220 gfc_array_ref *ar;
4221
4222 gcc_assert (ss->info->type == GFC_SS_SECTION);
4223
4224 info = &ss->info->data.array;
4225 ar = &info->ref->u.ar;
4226
4227 if (ar->dimen_type[dim] == DIMEN_VECTOR)
4228 {
4229 /* We use a zero-based index to access the vector. */
4230 info->start[dim] = gfc_index_zero_node;
4231 info->end[dim] = NULL;
4232 info->stride[dim] = gfc_index_one_node;
4233 return;
4234 }
4235
4236 gcc_assert (ar->dimen_type[dim] == DIMEN_RANGE
4237 || ar->dimen_type[dim] == DIMEN_THIS_IMAGE);
4238 desc = info->descriptor;
4239 stride = ar->stride[dim];
4240
4241
4242 /* Calculate the start of the range. For vector subscripts this will
4243 be the range of the vector. */
4244 evaluate_bound (block, info->start, ar->start, desc, dim, true,
4245 ar->as->type == AS_DEFERRED);
4246
4247 /* Similarly calculate the end. Although this is not used in the
4248 scalarizer, it is needed when checking bounds and where the end
4249 is an expression with side-effects. */
4250 evaluate_bound (block, info->end, ar->end, desc, dim, false,
4251 ar->as->type == AS_DEFERRED);
4252
4253
4254 /* Calculate the stride. */
4255 if (stride == NULL)
4256 info->stride[dim] = gfc_index_one_node;
4257 else
4258 {
4259 gfc_init_se (&se, NULL);
4260 gfc_conv_expr_type (&se, stride, gfc_array_index_type);
4261 gfc_add_block_to_block (block, &se.pre);
4262 info->stride[dim] = gfc_evaluate_now (se.expr, block);
4263 }
4264 }
4265
4266
4267 /* Calculates the range start and stride for a SS chain. Also gets the
4268 descriptor and data pointer. The range of vector subscripts is the size
4269 of the vector. Array bounds are also checked. */
4270
4271 void
4272 gfc_conv_ss_startstride (gfc_loopinfo * loop)
4273 {
4274 int n;
4275 tree tmp;
4276 gfc_ss *ss;
4277 tree desc;
4278
4279 gfc_loopinfo * const outer_loop = outermost_loop (loop);
4280
4281 loop->dimen = 0;
4282 /* Determine the rank of the loop. */
4283 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
4284 {
4285 switch (ss->info->type)
4286 {
4287 case GFC_SS_SECTION:
4288 case GFC_SS_CONSTRUCTOR:
4289 case GFC_SS_FUNCTION:
4290 case GFC_SS_COMPONENT:
4291 loop->dimen = ss->dimen;
4292 goto done;
4293
4294 /* As usual, lbound and ubound are exceptions!. */
4295 case GFC_SS_INTRINSIC:
4296 switch (ss->info->expr->value.function.isym->id)
4297 {
4298 case GFC_ISYM_LBOUND:
4299 case GFC_ISYM_UBOUND:
4300 case GFC_ISYM_LCOBOUND:
4301 case GFC_ISYM_UCOBOUND:
4302 case GFC_ISYM_THIS_IMAGE:
4303 loop->dimen = ss->dimen;
4304 goto done;
4305
4306 default:
4307 break;
4308 }
4309
4310 default:
4311 break;
4312 }
4313 }
4314
4315 /* We should have determined the rank of the expression by now. If
4316 not, that's bad news. */
4317 gcc_unreachable ();
4318
4319 done:
4320 /* Loop over all the SS in the chain. */
4321 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
4322 {
4323 gfc_ss_info *ss_info;
4324 gfc_array_info *info;
4325 gfc_expr *expr;
4326
4327 ss_info = ss->info;
4328 expr = ss_info->expr;
4329 info = &ss_info->data.array;
4330
4331 if (expr && expr->shape && !info->shape)
4332 info->shape = expr->shape;
4333
4334 switch (ss_info->type)
4335 {
4336 case GFC_SS_SECTION:
4337 /* Get the descriptor for the array. If it is a cross loops array,
4338 we got the descriptor already in the outermost loop. */
4339 if (ss->parent == NULL)
4340 gfc_conv_ss_descriptor (&outer_loop->pre, ss,
4341 !loop->array_parameter);
4342
4343 for (n = 0; n < ss->dimen; n++)
4344 gfc_conv_section_startstride (&outer_loop->pre, ss, ss->dim[n]);
4345 break;
4346
4347 case GFC_SS_INTRINSIC:
4348 switch (expr->value.function.isym->id)
4349 {
4350 /* Fall through to supply start and stride. */
4351 case GFC_ISYM_LBOUND:
4352 case GFC_ISYM_UBOUND:
4353 {
4354 gfc_expr *arg;
4355
4356 /* This is the variant without DIM=... */
4357 gcc_assert (expr->value.function.actual->next->expr == NULL);
4358
4359 arg = expr->value.function.actual->expr;
4360 if (arg->rank == -1)
4361 {
4362 gfc_se se;
4363 tree rank, tmp;
4364
4365 /* The rank (hence the return value's shape) is unknown,
4366 we have to retrieve it. */
4367 gfc_init_se (&se, NULL);
4368 se.descriptor_only = 1;
4369 gfc_conv_expr (&se, arg);
4370 /* This is a bare variable, so there is no preliminary
4371 or cleanup code. */
4372 gcc_assert (se.pre.head == NULL_TREE
4373 && se.post.head == NULL_TREE);
4374 rank = gfc_conv_descriptor_rank (se.expr);
4375 tmp = fold_build2_loc (input_location, MINUS_EXPR,
4376 gfc_array_index_type,
4377 fold_convert (gfc_array_index_type,
4378 rank),
4379 gfc_index_one_node);
4380 info->end[0] = gfc_evaluate_now (tmp, &outer_loop->pre);
4381 info->start[0] = gfc_index_zero_node;
4382 info->stride[0] = gfc_index_one_node;
4383 continue;
4384 }
4385 /* Otherwise fall through GFC_SS_FUNCTION. */
4386 gcc_fallthrough ();
4387 }
4388 case GFC_ISYM_LCOBOUND:
4389 case GFC_ISYM_UCOBOUND:
4390 case GFC_ISYM_THIS_IMAGE:
4391 break;
4392
4393 default:
4394 continue;
4395 }
4396
4397 /* FALLTHRU */
4398 case GFC_SS_CONSTRUCTOR:
4399 case GFC_SS_FUNCTION:
4400 for (n = 0; n < ss->dimen; n++)
4401 {
4402 int dim = ss->dim[n];
4403
4404 info->start[dim] = gfc_index_zero_node;
4405 info->end[dim] = gfc_index_zero_node;
4406 info->stride[dim] = gfc_index_one_node;
4407 }
4408 break;
4409
4410 default:
4411 break;
4412 }
4413 }
4414
4415 /* The rest is just runtime bounds checking. */
4416 if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
4417 {
4418 stmtblock_t block;
4419 tree lbound, ubound;
4420 tree end;
4421 tree size[GFC_MAX_DIMENSIONS];
4422 tree stride_pos, stride_neg, non_zerosized, tmp2, tmp3;
4423 gfc_array_info *info;
4424 char *msg;
4425 int dim;
4426
4427 gfc_start_block (&block);
4428
4429 for (n = 0; n < loop->dimen; n++)
4430 size[n] = NULL_TREE;
4431
4432 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
4433 {
4434 stmtblock_t inner;
4435 gfc_ss_info *ss_info;
4436 gfc_expr *expr;
4437 locus *expr_loc;
4438 const char *expr_name;
4439
4440 ss_info = ss->info;
4441 if (ss_info->type != GFC_SS_SECTION)
4442 continue;
4443
4444 /* Catch allocatable lhs in f2003. */
4445 if (flag_realloc_lhs && ss->no_bounds_check)
4446 continue;
4447
4448 expr = ss_info->expr;
4449 expr_loc = &expr->where;
4450 expr_name = expr->symtree->name;
4451
4452 gfc_start_block (&inner);
4453
4454 /* TODO: range checking for mapped dimensions. */
4455 info = &ss_info->data.array;
4456
4457 /* This code only checks ranges. Elemental and vector
4458 dimensions are checked later. */
4459 for (n = 0; n < loop->dimen; n++)
4460 {
4461 bool check_upper;
4462
4463 dim = ss->dim[n];
4464 if (info->ref->u.ar.dimen_type[dim] != DIMEN_RANGE)
4465 continue;
4466
4467 if (dim == info->ref->u.ar.dimen - 1
4468 && info->ref->u.ar.as->type == AS_ASSUMED_SIZE)
4469 check_upper = false;
4470 else
4471 check_upper = true;
4472
4473 /* Zero stride is not allowed. */
4474 tmp = fold_build2_loc (input_location, EQ_EXPR, logical_type_node,
4475 info->stride[dim], gfc_index_zero_node);
4476 msg = xasprintf ("Zero stride is not allowed, for dimension %d "
4477 "of array '%s'", dim + 1, expr_name);
4478 gfc_trans_runtime_check (true, false, tmp, &inner,
4479 expr_loc, msg);
4480 free (msg);
4481
4482 desc = info->descriptor;
4483
4484 /* This is the run-time equivalent of resolve.c's
4485 check_dimension(). The logical is more readable there
4486 than it is here, with all the trees. */
4487 lbound = gfc_conv_array_lbound (desc, dim);
4488 end = info->end[dim];
4489 if (check_upper)
4490 ubound = gfc_conv_array_ubound (desc, dim);
4491 else
4492 ubound = NULL;
4493
4494 /* non_zerosized is true when the selected range is not
4495 empty. */
4496 stride_pos = fold_build2_loc (input_location, GT_EXPR,
4497 logical_type_node, info->stride[dim],
4498 gfc_index_zero_node);
4499 tmp = fold_build2_loc (input_location, LE_EXPR, logical_type_node,
4500 info->start[dim], end);
4501 stride_pos = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4502 logical_type_node, stride_pos, tmp);
4503
4504 stride_neg = fold_build2_loc (input_location, LT_EXPR,
4505 logical_type_node,
4506 info->stride[dim], gfc_index_zero_node);
4507 tmp = fold_build2_loc (input_location, GE_EXPR, logical_type_node,
4508 info->start[dim], end);
4509 stride_neg = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4510 logical_type_node,
4511 stride_neg, tmp);
4512 non_zerosized = fold_build2_loc (input_location, TRUTH_OR_EXPR,
4513 logical_type_node,
4514 stride_pos, stride_neg);
4515
4516 /* Check the start of the range against the lower and upper
4517 bounds of the array, if the range is not empty.
4518 If upper bound is present, include both bounds in the
4519 error message. */
4520 if (check_upper)
4521 {
4522 tmp = fold_build2_loc (input_location, LT_EXPR,
4523 logical_type_node,
4524 info->start[dim], lbound);
4525 tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4526 logical_type_node,
4527 non_zerosized, tmp);
4528 tmp2 = fold_build2_loc (input_location, GT_EXPR,
4529 logical_type_node,
4530 info->start[dim], ubound);
4531 tmp2 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4532 logical_type_node,
4533 non_zerosized, tmp2);
4534 msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' "
4535 "outside of expected range (%%ld:%%ld)",
4536 dim + 1, expr_name);
4537 gfc_trans_runtime_check (true, false, tmp, &inner,
4538 expr_loc, msg,
4539 fold_convert (long_integer_type_node, info->start[dim]),
4540 fold_convert (long_integer_type_node, lbound),
4541 fold_convert (long_integer_type_node, ubound));
4542 gfc_trans_runtime_check (true, false, tmp2, &inner,
4543 expr_loc, msg,
4544 fold_convert (long_integer_type_node, info->start[dim]),
4545 fold_convert (long_integer_type_node, lbound),
4546 fold_convert (long_integer_type_node, ubound));
4547 free (msg);
4548 }
4549 else
4550 {
4551 tmp = fold_build2_loc (input_location, LT_EXPR,
4552 logical_type_node,
4553 info->start[dim], lbound);
4554 tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4555 logical_type_node, non_zerosized, tmp);
4556 msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' "
4557 "below lower bound of %%ld",
4558 dim + 1, expr_name);
4559 gfc_trans_runtime_check (true, false, tmp, &inner,
4560 expr_loc, msg,
4561 fold_convert (long_integer_type_node, info->start[dim]),
4562 fold_convert (long_integer_type_node, lbound));
4563 free (msg);
4564 }
4565
4566 /* Compute the last element of the range, which is not
4567 necessarily "end" (think 0:5:3, which doesn't contain 5)
4568 and check it against both lower and upper bounds. */
4569
4570 tmp = fold_build2_loc (input_location, MINUS_EXPR,
4571 gfc_array_index_type, end,
4572 info->start[dim]);
4573 tmp = fold_build2_loc (input_location, TRUNC_MOD_EXPR,
4574 gfc_array_index_type, tmp,
4575 info->stride[dim]);
4576 tmp = fold_build2_loc (input_location, MINUS_EXPR,
4577 gfc_array_index_type, end, tmp);
4578 tmp2 = fold_build2_loc (input_location, LT_EXPR,
4579 logical_type_node, tmp, lbound);
4580 tmp2 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4581 logical_type_node, non_zerosized, tmp2);
4582 if (check_upper)
4583 {
4584 tmp3 = fold_build2_loc (input_location, GT_EXPR,
4585 logical_type_node, tmp, ubound);
4586 tmp3 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4587 logical_type_node, non_zerosized, tmp3);
4588 msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' "
4589 "outside of expected range (%%ld:%%ld)",
4590 dim + 1, expr_name);
4591 gfc_trans_runtime_check (true, false, tmp2, &inner,
4592 expr_loc, msg,
4593 fold_convert (long_integer_type_node, tmp),
4594 fold_convert (long_integer_type_node, ubound),
4595 fold_convert (long_integer_type_node, lbound));
4596 gfc_trans_runtime_check (true, false, tmp3, &inner,
4597 expr_loc, msg,
4598 fold_convert (long_integer_type_node, tmp),
4599 fold_convert (long_integer_type_node, ubound),
4600 fold_convert (long_integer_type_node, lbound));
4601 free (msg);
4602 }
4603 else
4604 {
4605 msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' "
4606 "below lower bound of %%ld",
4607 dim + 1, expr_name);
4608 gfc_trans_runtime_check (true, false, tmp2, &inner,
4609 expr_loc, msg,
4610 fold_convert (long_integer_type_node, tmp),
4611 fold_convert (long_integer_type_node, lbound));
4612 free (msg);
4613 }
4614
4615 /* Check the section sizes match. */
4616 tmp = fold_build2_loc (input_location, MINUS_EXPR,
4617 gfc_array_index_type, end,
4618 info->start[dim]);
4619 tmp = fold_build2_loc (input_location, FLOOR_DIV_EXPR,
4620 gfc_array_index_type, tmp,
4621 info->stride[dim]);
4622 tmp = fold_build2_loc (input_location, PLUS_EXPR,
4623 gfc_array_index_type,
4624 gfc_index_one_node, tmp);
4625 tmp = fold_build2_loc (input_location, MAX_EXPR,
4626 gfc_array_index_type, tmp,
4627 build_int_cst (gfc_array_index_type, 0));
4628 /* We remember the size of the first section, and check all the
4629 others against this. */
4630 if (size[n])
4631 {
4632 tmp3 = fold_build2_loc (input_location, NE_EXPR,
4633 logical_type_node, tmp, size[n]);
4634 msg = xasprintf ("Array bound mismatch for dimension %d "
4635 "of array '%s' (%%ld/%%ld)",
4636 dim + 1, expr_name);
4637
4638 gfc_trans_runtime_check (true, false, tmp3, &inner,
4639 expr_loc, msg,
4640 fold_convert (long_integer_type_node, tmp),
4641 fold_convert (long_integer_type_node, size[n]));
4642
4643 free (msg);
4644 }
4645 else
4646 size[n] = gfc_evaluate_now (tmp, &inner);
4647 }
4648
4649 tmp = gfc_finish_block (&inner);
4650
4651 /* For optional arguments, only check bounds if the argument is
4652 present. */
4653 if (expr->symtree->n.sym->attr.optional
4654 || expr->symtree->n.sym->attr.not_always_present)
4655 tmp = build3_v (COND_EXPR,
4656 gfc_conv_expr_present (expr->symtree->n.sym),
4657 tmp, build_empty_stmt (input_location));
4658
4659 gfc_add_expr_to_block (&block, tmp);
4660
4661 }
4662
4663 tmp = gfc_finish_block (&block);
4664 gfc_add_expr_to_block (&outer_loop->pre, tmp);
4665 }
4666
4667 for (loop = loop->nested; loop; loop = loop->next)
4668 gfc_conv_ss_startstride (loop);
4669 }
4670
4671 /* Return true if both symbols could refer to the same data object. Does
4672 not take account of aliasing due to equivalence statements. */
4673
4674 static int
4675 symbols_could_alias (gfc_symbol *lsym, gfc_symbol *rsym, bool lsym_pointer,
4676 bool lsym_target, bool rsym_pointer, bool rsym_target)
4677 {
4678 /* Aliasing isn't possible if the symbols have different base types. */
4679 if (gfc_compare_types (&lsym->ts, &rsym->ts) == 0)
4680 return 0;
4681
4682 /* Pointers can point to other pointers and target objects. */
4683
4684 if ((lsym_pointer && (rsym_pointer || rsym_target))
4685 || (rsym_pointer && (lsym_pointer || lsym_target)))
4686 return 1;
4687
4688 /* Special case: Argument association, cf. F90 12.4.1.6, F2003 12.4.1.7
4689 and F2008 12.5.2.13 items 3b and 4b. The pointer case (a) is already
4690 checked above. */
4691 if (lsym_target && rsym_target
4692 && ((lsym->attr.dummy && !lsym->attr.contiguous
4693 && (!lsym->attr.dimension || lsym->as->type == AS_ASSUMED_SHAPE))
4694 || (rsym->attr.dummy && !rsym->attr.contiguous
4695 && (!rsym->attr.dimension
4696 || rsym->as->type == AS_ASSUMED_SHAPE))))
4697 return 1;
4698
4699 return 0;
4700 }
4701
4702
4703 /* Return true if the two SS could be aliased, i.e. both point to the same data
4704 object. */
4705 /* TODO: resolve aliases based on frontend expressions. */
4706
4707 static int
4708 gfc_could_be_alias (gfc_ss * lss, gfc_ss * rss)
4709 {
4710 gfc_ref *lref;
4711 gfc_ref *rref;
4712 gfc_expr *lexpr, *rexpr;
4713 gfc_symbol *lsym;
4714 gfc_symbol *rsym;
4715 bool lsym_pointer, lsym_target, rsym_pointer, rsym_target;
4716
4717 lexpr = lss->info->expr;
4718 rexpr = rss->info->expr;
4719
4720 lsym = lexpr->symtree->n.sym;
4721 rsym = rexpr->symtree->n.sym;
4722
4723 lsym_pointer = lsym->attr.pointer;
4724 lsym_target = lsym->attr.target;
4725 rsym_pointer = rsym->attr.pointer;
4726 rsym_target = rsym->attr.target;
4727
4728 if (symbols_could_alias (lsym, rsym, lsym_pointer, lsym_target,
4729 rsym_pointer, rsym_target))
4730 return 1;
4731
4732 if (rsym->ts.type != BT_DERIVED && rsym->ts.type != BT_CLASS
4733 && lsym->ts.type != BT_DERIVED && lsym->ts.type != BT_CLASS)
4734 return 0;
4735
4736 /* For derived types we must check all the component types. We can ignore
4737 array references as these will have the same base type as the previous
4738 component ref. */
4739 for (lref = lexpr->ref; lref != lss->info->data.array.ref; lref = lref->next)
4740 {
4741 if (lref->type != REF_COMPONENT)
4742 continue;
4743
4744 lsym_pointer = lsym_pointer || lref->u.c.sym->attr.pointer;
4745 lsym_target = lsym_target || lref->u.c.sym->attr.target;
4746
4747 if (symbols_could_alias (lref->u.c.sym, rsym, lsym_pointer, lsym_target,
4748 rsym_pointer, rsym_target))
4749 return 1;
4750
4751 if ((lsym_pointer && (rsym_pointer || rsym_target))
4752 || (rsym_pointer && (lsym_pointer || lsym_target)))
4753 {
4754 if (gfc_compare_types (&lref->u.c.component->ts,
4755 &rsym->ts))
4756 return 1;
4757 }
4758
4759 for (rref = rexpr->ref; rref != rss->info->data.array.ref;
4760 rref = rref->next)
4761 {
4762 if (rref->type != REF_COMPONENT)
4763 continue;
4764
4765 rsym_pointer = rsym_pointer || rref->u.c.sym->attr.pointer;
4766 rsym_target = lsym_target || rref->u.c.sym->attr.target;
4767
4768 if (symbols_could_alias (lref->u.c.sym, rref->u.c.sym,
4769 lsym_pointer, lsym_target,
4770 rsym_pointer, rsym_target))
4771 return 1;
4772
4773 if ((lsym_pointer && (rsym_pointer || rsym_target))
4774 || (rsym_pointer && (lsym_pointer || lsym_target)))
4775 {
4776 if (gfc_compare_types (&lref->u.c.component->ts,
4777 &rref->u.c.sym->ts))
4778 return 1;
4779 if (gfc_compare_types (&lref->u.c.sym->ts,
4780 &rref->u.c.component->ts))
4781 return 1;
4782 if (gfc_compare_types (&lref->u.c.component->ts,
4783 &rref->u.c.component->ts))
4784 return 1;
4785 }
4786 }
4787 }
4788
4789 lsym_pointer = lsym->attr.pointer;
4790 lsym_target = lsym->attr.target;
4791
4792 for (rref = rexpr->ref; rref != rss->info->data.array.ref; rref = rref->next)
4793 {
4794 if (rref->type != REF_COMPONENT)
4795 break;
4796
4797 rsym_pointer = rsym_pointer || rref->u.c.sym->attr.pointer;
4798 rsym_target = lsym_target || rref->u.c.sym->attr.target;
4799
4800 if (symbols_could_alias (rref->u.c.sym, lsym,
4801 lsym_pointer, lsym_target,
4802 rsym_pointer, rsym_target))
4803 return 1;
4804
4805 if ((lsym_pointer && (rsym_pointer || rsym_target))
4806 || (rsym_pointer && (lsym_pointer || lsym_target)))
4807 {
4808 if (gfc_compare_types (&lsym->ts, &rref->u.c.component->ts))
4809 return 1;
4810 }
4811 }
4812
4813 return 0;
4814 }
4815
4816
4817 /* Resolve array data dependencies. Creates a temporary if required. */
4818 /* TODO: Calc dependencies with gfc_expr rather than gfc_ss, and move to
4819 dependency.c. */
4820
4821 void
4822 gfc_conv_resolve_dependencies (gfc_loopinfo * loop, gfc_ss * dest,
4823 gfc_ss * rss)
4824 {
4825 gfc_ss *ss;
4826 gfc_ref *lref;
4827 gfc_ref *rref;
4828 gfc_ss_info *ss_info;
4829 gfc_expr *dest_expr;
4830 gfc_expr *ss_expr;
4831 int nDepend = 0;
4832 int i, j;
4833
4834 loop->temp_ss = NULL;
4835 dest_expr = dest->info->expr;
4836
4837 for (ss = rss; ss != gfc_ss_terminator; ss = ss->next)
4838 {
4839 ss_info = ss->info;
4840 ss_expr = ss_info->expr;
4841
4842 if (ss_info->array_outer_dependency)
4843 {
4844 nDepend = 1;
4845 break;
4846 }
4847
4848 if (ss_info->type != GFC_SS_SECTION)
4849 {
4850 if (flag_realloc_lhs
4851 && dest_expr != ss_expr
4852 && gfc_is_reallocatable_lhs (dest_expr)
4853 && ss_expr->rank)
4854 nDepend = gfc_check_dependency (dest_expr, ss_expr, true);
4855
4856 /* Check for cases like c(:)(1:2) = c(2)(2:3) */
4857 if (!nDepend && dest_expr->rank > 0
4858 && dest_expr->ts.type == BT_CHARACTER
4859 && ss_expr->expr_type == EXPR_VARIABLE)
4860
4861 nDepend = gfc_check_dependency (dest_expr, ss_expr, false);
4862
4863 if (ss_info->type == GFC_SS_REFERENCE
4864 && gfc_check_dependency (dest_expr, ss_expr, false))
4865 ss_info->data.scalar.needs_temporary = 1;
4866
4867 if (nDepend)
4868 break;
4869 else
4870 continue;
4871 }
4872
4873 if (dest_expr->symtree->n.sym != ss_expr->symtree->n.sym)
4874 {
4875 if (gfc_could_be_alias (dest, ss)
4876 || gfc_are_equivalenced_arrays (dest_expr, ss_expr))
4877 {
4878 nDepend = 1;
4879 break;
4880 }
4881 }
4882 else
4883 {
4884 lref = dest_expr->ref;
4885 rref = ss_expr->ref;
4886
4887 nDepend = gfc_dep_resolver (lref, rref, &loop->reverse[0]);
4888
4889 if (nDepend == 1)
4890 break;
4891
4892 for (i = 0; i < dest->dimen; i++)
4893 for (j = 0; j < ss->dimen; j++)
4894 if (i != j
4895 && dest->dim[i] == ss->dim[j])
4896 {
4897 /* If we don't access array elements in the same order,
4898 there is a dependency. */
4899 nDepend = 1;
4900 goto temporary;
4901 }
4902 #if 0
4903 /* TODO : loop shifting. */
4904 if (nDepend == 1)
4905 {
4906 /* Mark the dimensions for LOOP SHIFTING */
4907 for (n = 0; n < loop->dimen; n++)
4908 {
4909 int dim = dest->data.info.dim[n];
4910
4911 if (lref->u.ar.dimen_type[dim] == DIMEN_VECTOR)
4912 depends[n] = 2;
4913 else if (! gfc_is_same_range (&lref->u.ar,
4914 &rref->u.ar, dim, 0))
4915 depends[n] = 1;
4916 }
4917
4918 /* Put all the dimensions with dependencies in the
4919 innermost loops. */
4920 dim = 0;
4921 for (n = 0; n < loop->dimen; n++)
4922 {
4923 gcc_assert (loop->order[n] == n);
4924 if (depends[n])
4925 loop->order[dim++] = n;
4926 }
4927 for (n = 0; n < loop->dimen; n++)
4928 {
4929 if (! depends[n])
4930 loop->order[dim++] = n;
4931 }
4932
4933 gcc_assert (dim == loop->dimen);
4934 break;
4935 }
4936 #endif
4937 }
4938 }
4939
4940 temporary:
4941
4942 if (nDepend == 1)
4943 {
4944 tree base_type = gfc_typenode_for_spec (&dest_expr->ts);
4945 if (GFC_ARRAY_TYPE_P (base_type)
4946 || GFC_DESCRIPTOR_TYPE_P (base_type))
4947 base_type = gfc_get_element_type (base_type);
4948 loop->temp_ss = gfc_get_temp_ss (base_type, dest->info->string_length,
4949 loop->dimen);
4950 gfc_add_ss_to_loop (loop, loop->temp_ss);
4951 }
4952 else
4953 loop->temp_ss = NULL;
4954 }
4955
4956
4957 /* Browse through each array's information from the scalarizer and set the loop
4958 bounds according to the "best" one (per dimension), i.e. the one which
4959 provides the most information (constant bounds, shape, etc.). */
4960
4961 static void
4962 set_loop_bounds (gfc_loopinfo *loop)
4963 {
4964 int n, dim, spec_dim;
4965 gfc_array_info *info;
4966 gfc_array_info *specinfo;
4967 gfc_ss *ss;
4968 tree tmp;
4969 gfc_ss **loopspec;
4970 bool dynamic[GFC_MAX_DIMENSIONS];
4971 mpz_t *cshape;
4972 mpz_t i;
4973 bool nonoptional_arr;
4974
4975 gfc_loopinfo * const outer_loop = outermost_loop (loop);
4976
4977 loopspec = loop->specloop;
4978
4979 mpz_init (i);
4980 for (n = 0; n < loop->dimen; n++)
4981 {
4982 loopspec[n] = NULL;
4983 dynamic[n] = false;
4984
4985 /* If there are both optional and nonoptional array arguments, scalarize
4986 over the nonoptional; otherwise, it does not matter as then all
4987 (optional) arrays have to be present per F2008, 125.2.12p3(6). */
4988
4989 nonoptional_arr = false;
4990
4991 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
4992 if (ss->info->type != GFC_SS_SCALAR && ss->info->type != GFC_SS_TEMP
4993 && ss->info->type != GFC_SS_REFERENCE && !ss->info->can_be_null_ref)
4994 {
4995 nonoptional_arr = true;
4996 break;
4997 }
4998
4999 /* We use one SS term, and use that to determine the bounds of the
5000 loop for this dimension. We try to pick the simplest term. */
5001 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
5002 {
5003 gfc_ss_type ss_type;
5004
5005 ss_type = ss->info->type;
5006 if (ss_type == GFC_SS_SCALAR
5007 || ss_type == GFC_SS_TEMP
5008 || ss_type == GFC_SS_REFERENCE
5009 || (ss->info->can_be_null_ref && nonoptional_arr))
5010 continue;
5011
5012 info = &ss->info->data.array;
5013 dim = ss->dim[n];
5014
5015 if (loopspec[n] != NULL)
5016 {
5017 specinfo = &loopspec[n]->info->data.array;
5018 spec_dim = loopspec[n]->dim[n];
5019 }
5020 else
5021 {
5022 /* Silence uninitialized warnings. */
5023 specinfo = NULL;
5024 spec_dim = 0;
5025 }
5026
5027 if (info->shape)
5028 {
5029 gcc_assert (info->shape[dim]);
5030 /* The frontend has worked out the size for us. */
5031 if (!loopspec[n]
5032 || !specinfo->shape
5033 || !integer_zerop (specinfo->start[spec_dim]))
5034 /* Prefer zero-based descriptors if possible. */
5035 loopspec[n] = ss;
5036 continue;
5037 }
5038
5039 if (ss_type == GFC_SS_CONSTRUCTOR)
5040 {
5041 gfc_constructor_base base;
5042 /* An unknown size constructor will always be rank one.
5043 Higher rank constructors will either have known shape,
5044 or still be wrapped in a call to reshape. */
5045 gcc_assert (loop->dimen == 1);
5046
5047 /* Always prefer to use the constructor bounds if the size
5048 can be determined at compile time. Prefer not to otherwise,
5049 since the general case involves realloc, and it's better to
5050 avoid that overhead if possible. */
5051 base = ss->info->expr->value.constructor;
5052 dynamic[n] = gfc_get_array_constructor_size (&i, base);
5053 if (!dynamic[n] || !loopspec[n])
5054 loopspec[n] = ss;
5055 continue;
5056 }
5057
5058 /* Avoid using an allocatable lhs in an assignment, since
5059 there might be a reallocation coming. */
5060 if (loopspec[n] && ss->is_alloc_lhs)
5061 continue;
5062
5063 if (!loopspec[n])
5064 loopspec[n] = ss;
5065 /* Criteria for choosing a loop specifier (most important first):
5066 doesn't need realloc
5067 stride of one
5068 known stride
5069 known lower bound
5070 known upper bound
5071 */
5072 else if (loopspec[n]->info->type == GFC_SS_CONSTRUCTOR && dynamic[n])
5073 loopspec[n] = ss;
5074 else if (integer_onep (info->stride[dim])
5075 && !integer_onep (specinfo->stride[spec_dim]))
5076 loopspec[n] = ss;
5077 else if (INTEGER_CST_P (info->stride[dim])
5078 && !INTEGER_CST_P (specinfo->stride[spec_dim]))
5079 loopspec[n] = ss;
5080 else if (INTEGER_CST_P (info->start[dim])
5081 && !INTEGER_CST_P (specinfo->start[spec_dim])
5082 && integer_onep (info->stride[dim])
5083 == integer_onep (specinfo->stride[spec_dim])
5084 && INTEGER_CST_P (info->stride[dim])
5085 == INTEGER_CST_P (specinfo->stride[spec_dim]))
5086 loopspec[n] = ss;
5087 /* We don't work out the upper bound.
5088 else if (INTEGER_CST_P (info->finish[n])
5089 && ! INTEGER_CST_P (specinfo->finish[n]))
5090 loopspec[n] = ss; */
5091 }
5092
5093 /* We should have found the scalarization loop specifier. If not,
5094 that's bad news. */
5095 gcc_assert (loopspec[n]);
5096
5097 info = &loopspec[n]->info->data.array;
5098 dim = loopspec[n]->dim[n];
5099
5100 /* Set the extents of this range. */
5101 cshape = info->shape;
5102 if (cshape && INTEGER_CST_P (info->start[dim])
5103 && INTEGER_CST_P (info->stride[dim]))
5104 {
5105 loop->from[n] = info->start[dim];
5106 mpz_set (i, cshape[get_array_ref_dim_for_loop_dim (loopspec[n], n)]);
5107 mpz_sub_ui (i, i, 1);
5108 /* To = from + (size - 1) * stride. */
5109 tmp = gfc_conv_mpz_to_tree (i, gfc_index_integer_kind);
5110 if (!integer_onep (info->stride[dim]))
5111 tmp = fold_build2_loc (input_location, MULT_EXPR,
5112 gfc_array_index_type, tmp,
5113 info->stride[dim]);
5114 loop->to[n] = fold_build2_loc (input_location, PLUS_EXPR,
5115 gfc_array_index_type,
5116 loop->from[n], tmp);
5117 }
5118 else
5119 {
5120 loop->from[n] = info->start[dim];
5121 switch (loopspec[n]->info->type)
5122 {
5123 case GFC_SS_CONSTRUCTOR:
5124 /* The upper bound is calculated when we expand the
5125 constructor. */
5126 gcc_assert (loop->to[n] == NULL_TREE);
5127 break;
5128
5129 case GFC_SS_SECTION:
5130 /* Use the end expression if it exists and is not constant,
5131 so that it is only evaluated once. */
5132 loop->to[n] = info->end[dim];
5133 break;
5134
5135 case GFC_SS_FUNCTION:
5136 /* The loop bound will be set when we generate the call. */
5137 gcc_assert (loop->to[n] == NULL_TREE);
5138 break;
5139
5140 case GFC_SS_INTRINSIC:
5141 {
5142 gfc_expr *expr = loopspec[n]->info->expr;
5143
5144 /* The {l,u}bound of an assumed rank. */
5145 gcc_assert ((expr->value.function.isym->id == GFC_ISYM_LBOUND
5146 || expr->value.function.isym->id == GFC_ISYM_UBOUND)
5147 && expr->value.function.actual->next->expr == NULL
5148 && expr->value.function.actual->expr->rank == -1);
5149
5150 loop->to[n] = info->end[dim];
5151 break;
5152 }
5153
5154 case GFC_SS_COMPONENT:
5155 {
5156 if (info->end[dim] != NULL_TREE)
5157 {
5158 loop->to[n] = info->end[dim];
5159 break;
5160 }
5161 else
5162 gcc_unreachable ();
5163 }
5164
5165 default:
5166 gcc_unreachable ();
5167 }
5168 }
5169
5170 /* Transform everything so we have a simple incrementing variable. */
5171 if (integer_onep (info->stride[dim]))
5172 info->delta[dim] = gfc_index_zero_node;
5173 else
5174 {
5175 /* Set the delta for this section. */
5176 info->delta[dim] = gfc_evaluate_now (loop->from[n], &outer_loop->pre);
5177 /* Number of iterations is (end - start + step) / step.
5178 with start = 0, this simplifies to
5179 last = end / step;
5180 for (i = 0; i<=last; i++){...}; */
5181 tmp = fold_build2_loc (input_location, MINUS_EXPR,
5182 gfc_array_index_type, loop->to[n],
5183 loop->from[n]);
5184 tmp = fold_build2_loc (input_location, FLOOR_DIV_EXPR,
5185 gfc_array_index_type, tmp, info->stride[dim]);
5186 tmp = fold_build2_loc (input_location, MAX_EXPR, gfc_array_index_type,
5187 tmp, build_int_cst (gfc_array_index_type, -1));
5188 loop->to[n] = gfc_evaluate_now (tmp, &outer_loop->pre);
5189 /* Make the loop variable start at 0. */
5190 loop->from[n] = gfc_index_zero_node;
5191 }
5192 }
5193 mpz_clear (i);
5194
5195 for (loop = loop->nested; loop; loop = loop->next)
5196 set_loop_bounds (loop);
5197 }
5198
5199
5200 /* Initialize the scalarization loop. Creates the loop variables. Determines
5201 the range of the loop variables. Creates a temporary if required.
5202 Also generates code for scalar expressions which have been
5203 moved outside the loop. */
5204
5205 void
5206 gfc_conv_loop_setup (gfc_loopinfo * loop, locus * where)
5207 {
5208 gfc_ss *tmp_ss;
5209 tree tmp;
5210
5211 set_loop_bounds (loop);
5212
5213 /* Add all the scalar code that can be taken out of the loops.
5214 This may include calculating the loop bounds, so do it before
5215 allocating the temporary. */
5216 gfc_add_loop_ss_code (loop, loop->ss, false, where);
5217
5218 tmp_ss = loop->temp_ss;
5219 /* If we want a temporary then create it. */
5220 if (tmp_ss != NULL)
5221 {
5222 gfc_ss_info *tmp_ss_info;
5223
5224 tmp_ss_info = tmp_ss->info;
5225 gcc_assert (tmp_ss_info->type == GFC_SS_TEMP);
5226 gcc_assert (loop->parent == NULL);
5227
5228 /* Make absolutely sure that this is a complete type. */
5229 if (tmp_ss_info->string_length)
5230 tmp_ss_info->data.temp.type
5231 = gfc_get_character_type_len_for_eltype
5232 (TREE_TYPE (tmp_ss_info->data.temp.type),
5233 tmp_ss_info->string_length);
5234
5235 tmp = tmp_ss_info->data.temp.type;
5236 memset (&tmp_ss_info->data.array, 0, sizeof (gfc_array_info));
5237 tmp_ss_info->type = GFC_SS_SECTION;
5238
5239 gcc_assert (tmp_ss->dimen != 0);
5240
5241 gfc_trans_create_temp_array (&loop->pre, &loop->post, tmp_ss, tmp,
5242 NULL_TREE, false, true, false, where);
5243 }
5244
5245 /* For array parameters we don't have loop variables, so don't calculate the
5246 translations. */
5247 if (!loop->array_parameter)
5248 gfc_set_delta (loop);
5249 }
5250
5251
5252 /* Calculates how to transform from loop variables to array indices for each
5253 array: once loop bounds are chosen, sets the difference (DELTA field) between
5254 loop bounds and array reference bounds, for each array info. */
5255
5256 void
5257 gfc_set_delta (gfc_loopinfo *loop)
5258 {
5259 gfc_ss *ss, **loopspec;
5260 gfc_array_info *info;
5261 tree tmp;
5262 int n, dim;
5263
5264 gfc_loopinfo * const outer_loop = outermost_loop (loop);
5265
5266 loopspec = loop->specloop;
5267
5268 /* Calculate the translation from loop variables to array indices. */
5269 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
5270 {
5271 gfc_ss_type ss_type;
5272
5273 ss_type = ss->info->type;
5274 if (ss_type != GFC_SS_SECTION
5275 && ss_type != GFC_SS_COMPONENT
5276 && ss_type != GFC_SS_CONSTRUCTOR)
5277 continue;
5278
5279 info = &ss->info->data.array;
5280
5281 for (n = 0; n < ss->dimen; n++)
5282 {
5283 /* If we are specifying the range the delta is already set. */
5284 if (loopspec[n] != ss)
5285 {
5286 dim = ss->dim[n];
5287
5288 /* Calculate the offset relative to the loop variable.
5289 First multiply by the stride. */
5290 tmp = loop->from[n];
5291 if (!integer_onep (info->stride[dim]))
5292 tmp = fold_build2_loc (input_location, MULT_EXPR,
5293 gfc_array_index_type,
5294 tmp, info->stride[dim]);
5295
5296 /* Then subtract this from our starting value. */
5297 tmp = fold_build2_loc (input_location, MINUS_EXPR,
5298 gfc_array_index_type,
5299 info->start[dim], tmp);
5300
5301 info->delta[dim] = gfc_evaluate_now (tmp, &outer_loop->pre);
5302 }
5303 }
5304 }
5305
5306 for (loop = loop->nested; loop; loop = loop->next)
5307 gfc_set_delta (loop);
5308 }
5309
5310
5311 /* Calculate the size of a given array dimension from the bounds. This
5312 is simply (ubound - lbound + 1) if this expression is positive
5313 or 0 if it is negative (pick either one if it is zero). Optionally
5314 (if or_expr is present) OR the (expression != 0) condition to it. */
5315
5316 tree
5317 gfc_conv_array_extent_dim (tree lbound, tree ubound, tree* or_expr)
5318 {
5319 tree res;
5320 tree cond;
5321
5322 /* Calculate (ubound - lbound + 1). */
5323 res = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
5324 ubound, lbound);
5325 res = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, res,
5326 gfc_index_one_node);
5327
5328 /* Check whether the size for this dimension is negative. */
5329 cond = fold_build2_loc (input_location, LE_EXPR, logical_type_node, res,
5330 gfc_index_zero_node);
5331 res = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type, cond,
5332 gfc_index_zero_node, res);
5333
5334 /* Build OR expression. */
5335 if (or_expr)
5336 *or_expr = fold_build2_loc (input_location, TRUTH_OR_EXPR,
5337 logical_type_node, *or_expr, cond);
5338
5339 return res;
5340 }
5341
5342
5343 /* For an array descriptor, get the total number of elements. This is just
5344 the product of the extents along from_dim to to_dim. */
5345
5346 static tree
5347 gfc_conv_descriptor_size_1 (tree desc, int from_dim, int to_dim)
5348 {
5349 tree res;
5350 int dim;
5351
5352 res = gfc_index_one_node;
5353
5354 for (dim = from_dim; dim < to_dim; ++dim)
5355 {
5356 tree lbound;
5357 tree ubound;
5358 tree extent;
5359
5360 lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[dim]);
5361 ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[dim]);
5362
5363 extent = gfc_conv_array_extent_dim (lbound, ubound, NULL);
5364 res = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
5365 res, extent);
5366 }
5367
5368 return res;
5369 }
5370
5371
5372 /* Full size of an array. */
5373
5374 tree
5375 gfc_conv_descriptor_size (tree desc, int rank)
5376 {
5377 return gfc_conv_descriptor_size_1 (desc, 0, rank);
5378 }
5379
5380
5381 /* Size of a coarray for all dimensions but the last. */
5382
5383 tree
5384 gfc_conv_descriptor_cosize (tree desc, int rank, int corank)
5385 {
5386 return gfc_conv_descriptor_size_1 (desc, rank, rank + corank - 1);
5387 }
5388
5389
5390 /* Fills in an array descriptor, and returns the size of the array.
5391 The size will be a simple_val, ie a variable or a constant. Also
5392 calculates the offset of the base. The pointer argument overflow,
5393 which should be of integer type, will increase in value if overflow
5394 occurs during the size calculation. Returns the size of the array.
5395 {
5396 stride = 1;
5397 offset = 0;
5398 for (n = 0; n < rank; n++)
5399 {
5400 a.lbound[n] = specified_lower_bound;
5401 offset = offset + a.lbond[n] * stride;
5402 size = 1 - lbound;
5403 a.ubound[n] = specified_upper_bound;
5404 a.stride[n] = stride;
5405 size = size >= 0 ? ubound + size : 0; //size = ubound + 1 - lbound
5406 overflow += size == 0 ? 0: (MAX/size < stride ? 1: 0);
5407 stride = stride * size;
5408 }
5409 for (n = rank; n < rank+corank; n++)
5410 (Set lcobound/ucobound as above.)
5411 element_size = sizeof (array element);
5412 if (!rank)
5413 return element_size
5414 stride = (size_t) stride;
5415 overflow += element_size == 0 ? 0: (MAX/element_size < stride ? 1: 0);
5416 stride = stride * element_size;
5417 return (stride);
5418 } */
5419 /*GCC ARRAYS*/
5420
5421 static tree
5422 gfc_array_init_size (tree descriptor, int rank, int corank, tree * poffset,
5423 gfc_expr ** lower, gfc_expr ** upper, stmtblock_t * pblock,
5424 stmtblock_t * descriptor_block, tree * overflow,
5425 tree expr3_elem_size, tree *nelems, gfc_expr *expr3,
5426 tree expr3_desc, bool e3_has_nodescriptor, gfc_expr *expr,
5427 tree *element_size)
5428 {
5429 tree type;
5430 tree tmp;
5431 tree size;
5432 tree offset;
5433 tree stride;
5434 tree or_expr;
5435 tree thencase;
5436 tree elsecase;
5437 tree cond;
5438 tree var;
5439 stmtblock_t thenblock;
5440 stmtblock_t elseblock;
5441 gfc_expr *ubound;
5442 gfc_se se;
5443 int n;
5444
5445 type = TREE_TYPE (descriptor);
5446
5447 stride = gfc_index_one_node;
5448 offset = gfc_index_zero_node;
5449
5450 /* Set the dtype before the alloc, because registration of coarrays needs
5451 it initialized. */
5452 if (expr->ts.type == BT_CHARACTER
5453 && expr->ts.deferred
5454 && VAR_P (expr->ts.u.cl->backend_decl))
5455 {
5456 type = gfc_typenode_for_spec (&expr->ts);
5457 tmp = gfc_conv_descriptor_dtype (descriptor);
5458 gfc_add_modify (pblock, tmp, gfc_get_dtype_rank_type (rank, type));
5459 }
5460 else if (expr->ts.type == BT_CHARACTER
5461 && expr->ts.deferred
5462 && TREE_CODE (descriptor) == COMPONENT_REF)
5463 {
5464 /* Deferred character components have their string length tucked away
5465 in a hidden field of the derived type. Obtain that and use it to
5466 set the dtype. The charlen backend decl is zero because the field
5467 type is zero length. */
5468 gfc_ref *ref;
5469 tmp = NULL_TREE;
5470 for (ref = expr->ref; ref; ref = ref->next)
5471 if (ref->type == REF_COMPONENT
5472 && gfc_deferred_strlen (ref->u.c.component, &tmp))
5473 break;
5474 gcc_assert (tmp != NULL_TREE);
5475 tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (tmp),
5476 TREE_OPERAND (descriptor, 0), tmp, NULL_TREE);
5477 tmp = fold_convert (gfc_charlen_type_node, tmp);
5478 type = gfc_get_character_type_len (expr->ts.kind, tmp);
5479 tmp = gfc_conv_descriptor_dtype (descriptor);
5480 gfc_add_modify (pblock, tmp, gfc_get_dtype_rank_type (rank, type));
5481 }
5482 else
5483 {
5484 tmp = gfc_conv_descriptor_dtype (descriptor);
5485 gfc_add_modify (pblock, tmp, gfc_get_dtype (type));
5486 }
5487
5488 or_expr = logical_false_node;
5489
5490 for (n = 0; n < rank; n++)
5491 {
5492 tree conv_lbound;
5493 tree conv_ubound;
5494
5495 /* We have 3 possibilities for determining the size of the array:
5496 lower == NULL => lbound = 1, ubound = upper[n]
5497 upper[n] = NULL => lbound = 1, ubound = lower[n]
5498 upper[n] != NULL => lbound = lower[n], ubound = upper[n] */
5499 ubound = upper[n];
5500
5501 /* Set lower bound. */
5502 gfc_init_se (&se, NULL);
5503 if (expr3_desc != NULL_TREE)
5504 {
5505 if (e3_has_nodescriptor)
5506 /* The lbound of nondescriptor arrays like array constructors,
5507 nonallocatable/nonpointer function results/variables,
5508 start at zero, but when allocating it, the standard expects
5509 the array to start at one. */
5510 se.expr = gfc_index_one_node;
5511 else
5512 se.expr = gfc_conv_descriptor_lbound_get (expr3_desc,
5513 gfc_rank_cst[n]);
5514 }
5515 else if (lower == NULL)
5516 se.expr = gfc_index_one_node;
5517 else
5518 {
5519 gcc_assert (lower[n]);
5520 if (ubound)
5521 {
5522 gfc_conv_expr_type (&se, lower[n], gfc_array_index_type);
5523 gfc_add_block_to_block (pblock, &se.pre);
5524 }
5525 else
5526 {
5527 se.expr = gfc_index_one_node;
5528 ubound = lower[n];
5529 }
5530 }
5531 gfc_conv_descriptor_lbound_set (descriptor_block, descriptor,
5532 gfc_rank_cst[n], se.expr);
5533 conv_lbound = se.expr;
5534
5535 /* Work out the offset for this component. */
5536 tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
5537 se.expr, stride);
5538 offset = fold_build2_loc (input_location, MINUS_EXPR,
5539 gfc_array_index_type, offset, tmp);
5540
5541 /* Set upper bound. */
5542 gfc_init_se (&se, NULL);
5543 if (expr3_desc != NULL_TREE)
5544 {
5545 if (e3_has_nodescriptor)
5546 {
5547 /* The lbound of nondescriptor arrays like array constructors,
5548 nonallocatable/nonpointer function results/variables,
5549 start at zero, but when allocating it, the standard expects
5550 the array to start at one. Therefore fix the upper bound to be
5551 (desc.ubound - desc.lbound) + 1. */
5552 tmp = fold_build2_loc (input_location, MINUS_EXPR,
5553 gfc_array_index_type,
5554 gfc_conv_descriptor_ubound_get (
5555 expr3_desc, gfc_rank_cst[n]),
5556 gfc_conv_descriptor_lbound_get (
5557 expr3_desc, gfc_rank_cst[n]));
5558 tmp = fold_build2_loc (input_location, PLUS_EXPR,
5559 gfc_array_index_type, tmp,
5560 gfc_index_one_node);
5561 se.expr = gfc_evaluate_now (tmp, pblock);
5562 }
5563 else
5564 se.expr = gfc_conv_descriptor_ubound_get (expr3_desc,
5565 gfc_rank_cst[n]);
5566 }
5567 else
5568 {
5569 gcc_assert (ubound);
5570 gfc_conv_expr_type (&se, ubound, gfc_array_index_type);
5571 gfc_add_block_to_block (pblock, &se.pre);
5572 if (ubound->expr_type == EXPR_FUNCTION)
5573 se.expr = gfc_evaluate_now (se.expr, pblock);
5574 }
5575 gfc_conv_descriptor_ubound_set (descriptor_block, descriptor,
5576 gfc_rank_cst[n], se.expr);
5577 conv_ubound = se.expr;
5578
5579 /* Store the stride. */
5580 gfc_conv_descriptor_stride_set (descriptor_block, descriptor,
5581 gfc_rank_cst[n], stride);
5582
5583 /* Calculate size and check whether extent is negative. */
5584 size = gfc_conv_array_extent_dim (conv_lbound, conv_ubound, &or_expr);
5585 size = gfc_evaluate_now (size, pblock);
5586
5587 /* Check whether multiplying the stride by the number of
5588 elements in this dimension would overflow. We must also check
5589 whether the current dimension has zero size in order to avoid
5590 division by zero.
5591 */
5592 tmp = fold_build2_loc (input_location, TRUNC_DIV_EXPR,
5593 gfc_array_index_type,
5594 fold_convert (gfc_array_index_type,
5595 TYPE_MAX_VALUE (gfc_array_index_type)),
5596 size);
5597 cond = gfc_unlikely (fold_build2_loc (input_location, LT_EXPR,
5598 logical_type_node, tmp, stride),
5599 PRED_FORTRAN_OVERFLOW);
5600 tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond,
5601 integer_one_node, integer_zero_node);
5602 cond = gfc_unlikely (fold_build2_loc (input_location, EQ_EXPR,
5603 logical_type_node, size,
5604 gfc_index_zero_node),
5605 PRED_FORTRAN_SIZE_ZERO);
5606 tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond,
5607 integer_zero_node, tmp);
5608 tmp = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node,
5609 *overflow, tmp);
5610 *overflow = gfc_evaluate_now (tmp, pblock);
5611
5612 /* Multiply the stride by the number of elements in this dimension. */
5613 stride = fold_build2_loc (input_location, MULT_EXPR,
5614 gfc_array_index_type, stride, size);
5615 stride = gfc_evaluate_now (stride, pblock);
5616 }
5617
5618 for (n = rank; n < rank + corank; n++)
5619 {
5620 ubound = upper[n];
5621
5622 /* Set lower bound. */
5623 gfc_init_se (&se, NULL);
5624 if (lower == NULL || lower[n] == NULL)
5625 {
5626 gcc_assert (n == rank + corank - 1);
5627 se.expr = gfc_index_one_node;
5628 }
5629 else
5630 {
5631 if (ubound || n == rank + corank - 1)
5632 {
5633 gfc_conv_expr_type (&se, lower[n], gfc_array_index_type);
5634 gfc_add_block_to_block (pblock, &se.pre);
5635 }
5636 else
5637 {
5638 se.expr = gfc_index_one_node;
5639 ubound = lower[n];
5640 }
5641 }
5642 gfc_conv_descriptor_lbound_set (descriptor_block, descriptor,
5643 gfc_rank_cst[n], se.expr);
5644
5645 if (n < rank + corank - 1)
5646 {
5647 gfc_init_se (&se, NULL);
5648 gcc_assert (ubound);
5649 gfc_conv_expr_type (&se, ubound, gfc_array_index_type);
5650 gfc_add_block_to_block (pblock, &se.pre);
5651 gfc_conv_descriptor_ubound_set (descriptor_block, descriptor,
5652 gfc_rank_cst[n], se.expr);
5653 }
5654 }
5655
5656 /* The stride is the number of elements in the array, so multiply by the
5657 size of an element to get the total size. Obviously, if there is a
5658 SOURCE expression (expr3) we must use its element size. */
5659 if (expr3_elem_size != NULL_TREE)
5660 tmp = expr3_elem_size;
5661 else if (expr3 != NULL)
5662 {
5663 if (expr3->ts.type == BT_CLASS)
5664 {
5665 gfc_se se_sz;
5666 gfc_expr *sz = gfc_copy_expr (expr3);
5667 gfc_add_vptr_component (sz);
5668 gfc_add_size_component (sz);
5669 gfc_init_se (&se_sz, NULL);
5670 gfc_conv_expr (&se_sz, sz);
5671 gfc_free_expr (sz);
5672 tmp = se_sz.expr;
5673 }
5674 else
5675 {
5676 tmp = gfc_typenode_for_spec (&expr3->ts);
5677 tmp = TYPE_SIZE_UNIT (tmp);
5678 }
5679 }
5680 else
5681 tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type));
5682
5683 /* Convert to size_t. */
5684 *element_size = fold_convert (size_type_node, tmp);
5685
5686 if (rank == 0)
5687 return *element_size;
5688
5689 *nelems = gfc_evaluate_now (stride, pblock);
5690 stride = fold_convert (size_type_node, stride);
5691
5692 /* First check for overflow. Since an array of type character can
5693 have zero element_size, we must check for that before
5694 dividing. */
5695 tmp = fold_build2_loc (input_location, TRUNC_DIV_EXPR,
5696 size_type_node,
5697 TYPE_MAX_VALUE (size_type_node), *element_size);
5698 cond = gfc_unlikely (fold_build2_loc (input_location, LT_EXPR,
5699 logical_type_node, tmp, stride),
5700 PRED_FORTRAN_OVERFLOW);
5701 tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond,
5702 integer_one_node, integer_zero_node);
5703 cond = gfc_unlikely (fold_build2_loc (input_location, EQ_EXPR,
5704 logical_type_node, *element_size,
5705 build_int_cst (size_type_node, 0)),
5706 PRED_FORTRAN_SIZE_ZERO);
5707 tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond,
5708 integer_zero_node, tmp);
5709 tmp = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node,
5710 *overflow, tmp);
5711 *overflow = gfc_evaluate_now (tmp, pblock);
5712
5713 size = fold_build2_loc (input_location, MULT_EXPR, size_type_node,
5714 stride, *element_size);
5715
5716 if (poffset != NULL)
5717 {
5718 offset = gfc_evaluate_now (offset, pblock);
5719 *poffset = offset;
5720 }
5721
5722 if (integer_zerop (or_expr))
5723 return size;
5724 if (integer_onep (or_expr))
5725 return build_int_cst (size_type_node, 0);
5726
5727 var = gfc_create_var (TREE_TYPE (size), "size");
5728 gfc_start_block (&thenblock);
5729 gfc_add_modify (&thenblock, var, build_int_cst (size_type_node, 0));
5730 thencase = gfc_finish_block (&thenblock);
5731
5732 gfc_start_block (&elseblock);
5733 gfc_add_modify (&elseblock, var, size);
5734 elsecase = gfc_finish_block (&elseblock);
5735
5736 tmp = gfc_evaluate_now (or_expr, pblock);
5737 tmp = build3_v (COND_EXPR, tmp, thencase, elsecase);
5738 gfc_add_expr_to_block (pblock, tmp);
5739
5740 return var;
5741 }
5742
5743
5744 /* Retrieve the last ref from the chain. This routine is specific to
5745 gfc_array_allocate ()'s needs. */
5746
5747 bool
5748 retrieve_last_ref (gfc_ref **ref_in, gfc_ref **prev_ref_in)
5749 {
5750 gfc_ref *ref, *prev_ref;
5751
5752 ref = *ref_in;
5753 /* Prevent warnings for uninitialized variables. */
5754 prev_ref = *prev_ref_in;
5755 while (ref && ref->next != NULL)
5756 {
5757 gcc_assert (ref->type != REF_ARRAY || ref->u.ar.type == AR_ELEMENT
5758 || (ref->u.ar.dimen == 0 && ref->u.ar.codimen > 0));
5759 prev_ref = ref;
5760 ref = ref->next;
5761 }
5762
5763 if (ref == NULL || ref->type != REF_ARRAY)
5764 return false;
5765
5766 *ref_in = ref;
5767 *prev_ref_in = prev_ref;
5768 return true;
5769 }
5770
5771 /* Initializes the descriptor and generates a call to _gfor_allocate. Does
5772 the work for an ALLOCATE statement. */
5773 /*GCC ARRAYS*/
5774
5775 bool
5776 gfc_array_allocate (gfc_se * se, gfc_expr * expr, tree status, tree errmsg,
5777 tree errlen, tree label_finish, tree expr3_elem_size,
5778 tree *nelems, gfc_expr *expr3, tree e3_arr_desc,
5779 bool e3_has_nodescriptor)
5780 {
5781 tree tmp;
5782 tree pointer;
5783 tree offset = NULL_TREE;
5784 tree token = NULL_TREE;
5785 tree size;
5786 tree msg;
5787 tree error = NULL_TREE;
5788 tree overflow; /* Boolean storing whether size calculation overflows. */
5789 tree var_overflow = NULL_TREE;
5790 tree cond;
5791 tree set_descriptor;
5792 tree not_prev_allocated = NULL_TREE;
5793 tree element_size = NULL_TREE;
5794 stmtblock_t set_descriptor_block;
5795 stmtblock_t elseblock;
5796 gfc_expr **lower;
5797 gfc_expr **upper;
5798 gfc_ref *ref, *prev_ref = NULL, *coref;
5799 bool allocatable, coarray, dimension, alloc_w_e3_arr_spec = false,
5800 non_ulimate_coarray_ptr_comp;
5801
5802 ref = expr->ref;
5803
5804 /* Find the last reference in the chain. */
5805 if (!retrieve_last_ref (&ref, &prev_ref))
5806 return false;
5807
5808 /* Take the allocatable and coarray properties solely from the expr-ref's
5809 attributes and not from source=-expression. */
5810 if (!prev_ref)
5811 {
5812 allocatable = expr->symtree->n.sym->attr.allocatable;
5813 dimension = expr->symtree->n.sym->attr.dimension;
5814 non_ulimate_coarray_ptr_comp = false;
5815 }
5816 else
5817 {
5818 allocatable = prev_ref->u.c.component->attr.allocatable;
5819 /* Pointer components in coarrayed derived types must be treated
5820 specially in that they are registered without a check if the are
5821 already associated. This does not hold for ultimate coarray
5822 pointers. */
5823 non_ulimate_coarray_ptr_comp = (prev_ref->u.c.component->attr.pointer
5824 && !prev_ref->u.c.component->attr.codimension);
5825 dimension = prev_ref->u.c.component->attr.dimension;
5826 }
5827
5828 /* For allocatable/pointer arrays in derived types, one of the refs has to be
5829 a coarray. In this case it does not matter whether we are on this_image
5830 or not. */
5831 coarray = false;
5832 for (coref = expr->ref; coref; coref = coref->next)
5833 if (coref->type == REF_ARRAY && coref->u.ar.codimen > 0)
5834 {
5835 coarray = true;
5836 break;
5837 }
5838
5839 if (!dimension)
5840 gcc_assert (coarray);
5841
5842 if (ref->u.ar.type == AR_FULL && expr3 != NULL)
5843 {
5844 gfc_ref *old_ref = ref;
5845 /* F08:C633: Array shape from expr3. */
5846 ref = expr3->ref;
5847
5848 /* Find the last reference in the chain. */
5849 if (!retrieve_last_ref (&ref, &prev_ref))
5850 {
5851 if (expr3->expr_type == EXPR_FUNCTION
5852 && gfc_expr_attr (expr3).dimension)
5853 ref = old_ref;
5854 else
5855 return false;
5856 }
5857 alloc_w_e3_arr_spec = true;
5858 }
5859
5860 /* Figure out the size of the array. */
5861 switch (ref->u.ar.type)
5862 {
5863 case AR_ELEMENT:
5864 if (!coarray)
5865 {
5866 lower = NULL;
5867 upper = ref->u.ar.start;
5868 break;
5869 }
5870 /* Fall through. */
5871
5872 case AR_SECTION:
5873 lower = ref->u.ar.start;
5874 upper = ref->u.ar.end;
5875 break;
5876
5877 case AR_FULL:
5878 gcc_assert (ref->u.ar.as->type == AS_EXPLICIT
5879 || alloc_w_e3_arr_spec);
5880
5881 lower = ref->u.ar.as->lower;
5882 upper = ref->u.ar.as->upper;
5883 break;
5884
5885 default:
5886 gcc_unreachable ();
5887 break;
5888 }
5889
5890 overflow = integer_zero_node;
5891
5892 if (expr->ts.type == BT_CHARACTER
5893 && TREE_CODE (se->string_length) == COMPONENT_REF
5894 && expr->ts.u.cl->backend_decl != se->string_length
5895 && VAR_P (expr->ts.u.cl->backend_decl))
5896 gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl,
5897 fold_convert (TREE_TYPE (expr->ts.u.cl->backend_decl),
5898 se->string_length));
5899
5900 gfc_init_block (&set_descriptor_block);
5901 /* Take the corank only from the actual ref and not from the coref. The
5902 later will mislead the generation of the array dimensions for allocatable/
5903 pointer components in derived types. */
5904 size = gfc_array_init_size (se->expr, alloc_w_e3_arr_spec ? expr->rank
5905 : ref->u.ar.as->rank,
5906 coarray ? ref->u.ar.as->corank : 0,
5907 &offset, lower, upper,
5908 &se->pre, &set_descriptor_block, &overflow,
5909 expr3_elem_size, nelems, expr3, e3_arr_desc,
5910 e3_has_nodescriptor, expr, &element_size);
5911
5912 if (dimension)
5913 {
5914 var_overflow = gfc_create_var (integer_type_node, "overflow");
5915 gfc_add_modify (&se->pre, var_overflow, overflow);
5916
5917 if (status == NULL_TREE)
5918 {
5919 /* Generate the block of code handling overflow. */
5920 msg = gfc_build_addr_expr (pchar_type_node,
5921 gfc_build_localized_cstring_const
5922 ("Integer overflow when calculating the amount of "
5923 "memory to allocate"));
5924 error = build_call_expr_loc (input_location,
5925 gfor_fndecl_runtime_error, 1, msg);
5926 }
5927 else
5928 {
5929 tree status_type = TREE_TYPE (status);
5930 stmtblock_t set_status_block;
5931
5932 gfc_start_block (&set_status_block);
5933 gfc_add_modify (&set_status_block, status,
5934 build_int_cst (status_type, LIBERROR_ALLOCATION));
5935 error = gfc_finish_block (&set_status_block);
5936 }
5937 }
5938
5939 /* Allocate memory to store the data. */
5940 if (POINTER_TYPE_P (TREE_TYPE (se->expr)))
5941 se->expr = build_fold_indirect_ref_loc (input_location, se->expr);
5942
5943 if (coarray && flag_coarray == GFC_FCOARRAY_LIB)
5944 {
5945 pointer = non_ulimate_coarray_ptr_comp ? se->expr
5946 : gfc_conv_descriptor_data_get (se->expr);
5947 token = gfc_conv_descriptor_token (se->expr);
5948 token = gfc_build_addr_expr (NULL_TREE, token);
5949 }
5950 else
5951 pointer = gfc_conv_descriptor_data_get (se->expr);
5952 STRIP_NOPS (pointer);
5953
5954 if (allocatable)
5955 {
5956 not_prev_allocated = gfc_create_var (logical_type_node,
5957 "not_prev_allocated");
5958 tmp = fold_build2_loc (input_location, EQ_EXPR,
5959 logical_type_node, pointer,
5960 build_int_cst (TREE_TYPE (pointer), 0));
5961
5962 gfc_add_modify (&se->pre, not_prev_allocated, tmp);
5963 }
5964
5965 gfc_start_block (&elseblock);
5966
5967 /* The allocatable variant takes the old pointer as first argument. */
5968 if (allocatable)
5969 gfc_allocate_allocatable (&elseblock, pointer, size, token,
5970 status, errmsg, errlen, label_finish, expr,
5971 coref != NULL ? coref->u.ar.as->corank : 0);
5972 else if (non_ulimate_coarray_ptr_comp && token)
5973 /* The token is set only for GFC_FCOARRAY_LIB mode. */
5974 gfc_allocate_using_caf_lib (&elseblock, pointer, size, token, status,
5975 errmsg, errlen,
5976 GFC_CAF_COARRAY_ALLOC_ALLOCATE_ONLY);
5977 else
5978 gfc_allocate_using_malloc (&elseblock, pointer, size, status);
5979
5980 if (dimension)
5981 {
5982 cond = gfc_unlikely (fold_build2_loc (input_location, NE_EXPR,
5983 logical_type_node, var_overflow, integer_zero_node),
5984 PRED_FORTRAN_OVERFLOW);
5985 tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond,
5986 error, gfc_finish_block (&elseblock));
5987 }
5988 else
5989 tmp = gfc_finish_block (&elseblock);
5990
5991 gfc_add_expr_to_block (&se->pre, tmp);
5992
5993 /* Update the array descriptor with the offset and the span. */
5994 if (dimension)
5995 {
5996 gfc_conv_descriptor_offset_set (&set_descriptor_block, se->expr, offset);
5997 tmp = fold_convert (gfc_array_index_type, element_size);
5998 gfc_conv_descriptor_span_set (&set_descriptor_block, se->expr, tmp);
5999 }
6000
6001 set_descriptor = gfc_finish_block (&set_descriptor_block);
6002 if (status != NULL_TREE)
6003 {
6004 cond = fold_build2_loc (input_location, EQ_EXPR,
6005 logical_type_node, status,
6006 build_int_cst (TREE_TYPE (status), 0));
6007
6008 if (not_prev_allocated != NULL_TREE)
6009 cond = fold_build2_loc (input_location, TRUTH_OR_EXPR,
6010 logical_type_node, cond, not_prev_allocated);
6011
6012 gfc_add_expr_to_block (&se->pre,
6013 fold_build3_loc (input_location, COND_EXPR, void_type_node,
6014 cond,
6015 set_descriptor,
6016 build_empty_stmt (input_location)));
6017 }
6018 else
6019 gfc_add_expr_to_block (&se->pre, set_descriptor);
6020
6021 return true;
6022 }
6023
6024
6025 /* Create an array constructor from an initialization expression.
6026 We assume the frontend already did any expansions and conversions. */
6027
6028 tree
6029 gfc_conv_array_initializer (tree type, gfc_expr * expr)
6030 {
6031 gfc_constructor *c;
6032 tree tmp;
6033 gfc_se se;
6034 tree index, range;
6035 vec<constructor_elt, va_gc> *v = NULL;
6036
6037 if (expr->expr_type == EXPR_VARIABLE
6038 && expr->symtree->n.sym->attr.flavor == FL_PARAMETER
6039 && expr->symtree->n.sym->value)
6040 expr = expr->symtree->n.sym->value;
6041
6042 switch (expr->expr_type)
6043 {
6044 case EXPR_CONSTANT:
6045 case EXPR_STRUCTURE:
6046 /* A single scalar or derived type value. Create an array with all
6047 elements equal to that value. */
6048 gfc_init_se (&se, NULL);
6049
6050 if (expr->expr_type == EXPR_CONSTANT)
6051 gfc_conv_constant (&se, expr);
6052 else
6053 gfc_conv_structure (&se, expr, 1);
6054
6055 CONSTRUCTOR_APPEND_ELT (v, build2 (RANGE_EXPR, gfc_array_index_type,
6056 TYPE_MIN_VALUE (TYPE_DOMAIN (type)),
6057 TYPE_MAX_VALUE (TYPE_DOMAIN (type))),
6058 se.expr);
6059 break;
6060
6061 case EXPR_ARRAY:
6062 /* Create a vector of all the elements. */
6063 for (c = gfc_constructor_first (expr->value.constructor);
6064 c; c = gfc_constructor_next (c))
6065 {
6066 if (c->iterator)
6067 {
6068 /* Problems occur when we get something like
6069 integer :: a(lots) = (/(i, i=1, lots)/) */
6070 gfc_fatal_error ("The number of elements in the array "
6071 "constructor at %L requires an increase of "
6072 "the allowed %d upper limit. See "
6073 "%<-fmax-array-constructor%> option",
6074 &expr->where, flag_max_array_constructor);
6075 return NULL_TREE;
6076 }
6077 if (mpz_cmp_si (c->offset, 0) != 0)
6078 index = gfc_conv_mpz_to_tree (c->offset, gfc_index_integer_kind);
6079 else
6080 index = NULL_TREE;
6081
6082 if (mpz_cmp_si (c->repeat, 1) > 0)
6083 {
6084 tree tmp1, tmp2;
6085 mpz_t maxval;
6086
6087 mpz_init (maxval);
6088 mpz_add (maxval, c->offset, c->repeat);
6089 mpz_sub_ui (maxval, maxval, 1);
6090 tmp2 = gfc_conv_mpz_to_tree (maxval, gfc_index_integer_kind);
6091 if (mpz_cmp_si (c->offset, 0) != 0)
6092 {
6093 mpz_add_ui (maxval, c->offset, 1);
6094 tmp1 = gfc_conv_mpz_to_tree (maxval, gfc_index_integer_kind);
6095 }
6096 else
6097 tmp1 = gfc_conv_mpz_to_tree (c->offset, gfc_index_integer_kind);
6098
6099 range = fold_build2 (RANGE_EXPR, gfc_array_index_type, tmp1, tmp2);
6100 mpz_clear (maxval);
6101 }
6102 else
6103 range = NULL;
6104
6105 gfc_init_se (&se, NULL);
6106 switch (c->expr->expr_type)
6107 {
6108 case EXPR_CONSTANT:
6109 gfc_conv_constant (&se, c->expr);
6110
6111 /* See gfortran.dg/charlen_15.f90 for instance. */
6112 if (TREE_CODE (se.expr) == STRING_CST
6113 && TREE_CODE (type) == ARRAY_TYPE)
6114 {
6115 tree atype = type;
6116 while (TREE_CODE (TREE_TYPE (atype)) == ARRAY_TYPE)
6117 atype = TREE_TYPE (atype);
6118 gcc_checking_assert (TREE_CODE (TREE_TYPE (atype))
6119 == INTEGER_TYPE);
6120 gcc_checking_assert (TREE_TYPE (TREE_TYPE (se.expr))
6121 == TREE_TYPE (atype));
6122 if (tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (se.expr)))
6123 > tree_to_uhwi (TYPE_SIZE_UNIT (atype)))
6124 {
6125 unsigned HOST_WIDE_INT size
6126 = tree_to_uhwi (TYPE_SIZE_UNIT (atype));
6127 const char *p = TREE_STRING_POINTER (se.expr);
6128
6129 se.expr = build_string (size, p);
6130 }
6131 TREE_TYPE (se.expr) = atype;
6132 }
6133 break;
6134
6135 case EXPR_STRUCTURE:
6136 gfc_conv_structure (&se, c->expr, 1);
6137 break;
6138
6139 default:
6140 /* Catch those occasional beasts that do not simplify
6141 for one reason or another, assuming that if they are
6142 standard defying the frontend will catch them. */
6143 gfc_conv_expr (&se, c->expr);
6144 break;
6145 }
6146
6147 if (range == NULL_TREE)
6148 CONSTRUCTOR_APPEND_ELT (v, index, se.expr);
6149 else
6150 {
6151 if (index != NULL_TREE)
6152 CONSTRUCTOR_APPEND_ELT (v, index, se.expr);
6153 CONSTRUCTOR_APPEND_ELT (v, range, se.expr);
6154 }
6155 }
6156 break;
6157
6158 case EXPR_NULL:
6159 return gfc_build_null_descriptor (type);
6160
6161 default:
6162 gcc_unreachable ();
6163 }
6164
6165 /* Create a constructor from the list of elements. */
6166 tmp = build_constructor (type, v);
6167 TREE_CONSTANT (tmp) = 1;
6168 return tmp;
6169 }
6170
6171
6172 /* Generate code to evaluate non-constant coarray cobounds. */
6173
6174 void
6175 gfc_trans_array_cobounds (tree type, stmtblock_t * pblock,
6176 const gfc_symbol *sym)
6177 {
6178 int dim;
6179 tree ubound;
6180 tree lbound;
6181 gfc_se se;
6182 gfc_array_spec *as;
6183
6184 as = IS_CLASS_ARRAY (sym) ? CLASS_DATA (sym)->as : sym->as;
6185
6186 for (dim = as->rank; dim < as->rank + as->corank; dim++)
6187 {
6188 /* Evaluate non-constant array bound expressions. */
6189 lbound = GFC_TYPE_ARRAY_LBOUND (type, dim);
6190 if (as->lower[dim] && !INTEGER_CST_P (lbound))
6191 {
6192 gfc_init_se (&se, NULL);
6193 gfc_conv_expr_type (&se, as->lower[dim], gfc_array_index_type);
6194 gfc_add_block_to_block (pblock, &se.pre);
6195 gfc_add_modify (pblock, lbound, se.expr);
6196 }
6197 ubound = GFC_TYPE_ARRAY_UBOUND (type, dim);
6198 if (as->upper[dim] && !INTEGER_CST_P (ubound))
6199 {
6200 gfc_init_se (&se, NULL);
6201 gfc_conv_expr_type (&se, as->upper[dim], gfc_array_index_type);
6202 gfc_add_block_to_block (pblock, &se.pre);
6203 gfc_add_modify (pblock, ubound, se.expr);
6204 }
6205 }
6206 }
6207
6208
6209 /* Generate code to evaluate non-constant array bounds. Sets *poffset and
6210 returns the size (in elements) of the array. */
6211
6212 static tree
6213 gfc_trans_array_bounds (tree type, gfc_symbol * sym, tree * poffset,
6214 stmtblock_t * pblock)
6215 {
6216 gfc_array_spec *as;
6217 tree size;
6218 tree stride;
6219 tree offset;
6220 tree ubound;
6221 tree lbound;
6222 tree tmp;
6223 gfc_se se;
6224
6225 int dim;
6226
6227 as = IS_CLASS_ARRAY (sym) ? CLASS_DATA (sym)->as : sym->as;
6228
6229 size = gfc_index_one_node;
6230 offset = gfc_index_zero_node;
6231 for (dim = 0; dim < as->rank; dim++)
6232 {
6233 /* Evaluate non-constant array bound expressions. */
6234 lbound = GFC_TYPE_ARRAY_LBOUND (type, dim);
6235 if (as->lower[dim] && !INTEGER_CST_P (lbound))
6236 {
6237 gfc_init_se (&se, NULL);
6238 gfc_conv_expr_type (&se, as->lower[dim], gfc_array_index_type);
6239 gfc_add_block_to_block (pblock, &se.pre);
6240 gfc_add_modify (pblock, lbound, se.expr);
6241 }
6242 ubound = GFC_TYPE_ARRAY_UBOUND (type, dim);
6243 if (as->upper[dim] && !INTEGER_CST_P (ubound))
6244 {
6245 gfc_init_se (&se, NULL);
6246 gfc_conv_expr_type (&se, as->upper[dim], gfc_array_index_type);
6247 gfc_add_block_to_block (pblock, &se.pre);
6248 gfc_add_modify (pblock, ubound, se.expr);
6249 }
6250 /* The offset of this dimension. offset = offset - lbound * stride. */
6251 tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
6252 lbound, size);
6253 offset = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
6254 offset, tmp);
6255
6256 /* The size of this dimension, and the stride of the next. */
6257 if (dim + 1 < as->rank)
6258 stride = GFC_TYPE_ARRAY_STRIDE (type, dim + 1);
6259 else
6260 stride = GFC_TYPE_ARRAY_SIZE (type);
6261
6262 if (ubound != NULL_TREE && !(stride && INTEGER_CST_P (stride)))
6263 {
6264 /* Calculate stride = size * (ubound + 1 - lbound). */
6265 tmp = fold_build2_loc (input_location, MINUS_EXPR,
6266 gfc_array_index_type,
6267 gfc_index_one_node, lbound);
6268 tmp = fold_build2_loc (input_location, PLUS_EXPR,
6269 gfc_array_index_type, ubound, tmp);
6270 tmp = fold_build2_loc (input_location, MULT_EXPR,
6271 gfc_array_index_type, size, tmp);
6272 if (stride)
6273 gfc_add_modify (pblock, stride, tmp);
6274 else
6275 stride = gfc_evaluate_now (tmp, pblock);
6276
6277 /* Make sure that negative size arrays are translated
6278 to being zero size. */
6279 tmp = fold_build2_loc (input_location, GE_EXPR, logical_type_node,
6280 stride, gfc_index_zero_node);
6281 tmp = fold_build3_loc (input_location, COND_EXPR,
6282 gfc_array_index_type, tmp,
6283 stride, gfc_index_zero_node);
6284 gfc_add_modify (pblock, stride, tmp);
6285 }
6286
6287 size = stride;
6288 }
6289
6290 gfc_trans_array_cobounds (type, pblock, sym);
6291 gfc_trans_vla_type_sizes (sym, pblock);
6292
6293 *poffset = offset;
6294 return size;
6295 }
6296
6297
6298 /* Generate code to initialize/allocate an array variable. */
6299
6300 void
6301 gfc_trans_auto_array_allocation (tree decl, gfc_symbol * sym,
6302 gfc_wrapped_block * block)
6303 {
6304 stmtblock_t init;
6305 tree type;
6306 tree tmp = NULL_TREE;
6307 tree size;
6308 tree offset;
6309 tree space;
6310 tree inittree;
6311 bool onstack;
6312
6313 gcc_assert (!(sym->attr.pointer || sym->attr.allocatable));
6314
6315 /* Do nothing for USEd variables. */
6316 if (sym->attr.use_assoc)
6317 return;
6318
6319 type = TREE_TYPE (decl);
6320 gcc_assert (GFC_ARRAY_TYPE_P (type));
6321 onstack = TREE_CODE (type) != POINTER_TYPE;
6322
6323 gfc_init_block (&init);
6324
6325 /* Evaluate character string length. */
6326 if (sym->ts.type == BT_CHARACTER
6327 && onstack && !INTEGER_CST_P (sym->ts.u.cl->backend_decl))
6328 {
6329 gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
6330
6331 gfc_trans_vla_type_sizes (sym, &init);
6332
6333 /* Emit a DECL_EXPR for this variable, which will cause the
6334 gimplifier to allocate storage, and all that good stuff. */
6335 tmp = fold_build1_loc (input_location, DECL_EXPR, TREE_TYPE (decl), decl);
6336 gfc_add_expr_to_block (&init, tmp);
6337 }
6338
6339 if (onstack)
6340 {
6341 gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
6342 return;
6343 }
6344
6345 type = TREE_TYPE (type);
6346
6347 gcc_assert (!sym->attr.use_assoc);
6348 gcc_assert (!TREE_STATIC (decl));
6349 gcc_assert (!sym->module);
6350
6351 if (sym->ts.type == BT_CHARACTER
6352 && !INTEGER_CST_P (sym->ts.u.cl->backend_decl))
6353 gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
6354
6355 size = gfc_trans_array_bounds (type, sym, &offset, &init);
6356
6357 /* Don't actually allocate space for Cray Pointees. */
6358 if (sym->attr.cray_pointee)
6359 {
6360 if (VAR_P (GFC_TYPE_ARRAY_OFFSET (type)))
6361 gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset);
6362
6363 gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
6364 return;
6365 }
6366
6367 if (flag_stack_arrays)
6368 {
6369 gcc_assert (TREE_CODE (TREE_TYPE (decl)) == POINTER_TYPE);
6370 space = build_decl (gfc_get_location (&sym->declared_at),
6371 VAR_DECL, create_tmp_var_name ("A"),
6372 TREE_TYPE (TREE_TYPE (decl)));
6373 gfc_trans_vla_type_sizes (sym, &init);
6374 }
6375 else
6376 {
6377 /* The size is the number of elements in the array, so multiply by the
6378 size of an element to get the total size. */
6379 tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type));
6380 size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
6381 size, fold_convert (gfc_array_index_type, tmp));
6382
6383 /* Allocate memory to hold the data. */
6384 tmp = gfc_call_malloc (&init, TREE_TYPE (decl), size);
6385 gfc_add_modify (&init, decl, tmp);
6386
6387 /* Free the temporary. */
6388 tmp = gfc_call_free (decl);
6389 space = NULL_TREE;
6390 }
6391
6392 /* Set offset of the array. */
6393 if (VAR_P (GFC_TYPE_ARRAY_OFFSET (type)))
6394 gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset);
6395
6396 /* Automatic arrays should not have initializers. */
6397 gcc_assert (!sym->value);
6398
6399 inittree = gfc_finish_block (&init);
6400
6401 if (space)
6402 {
6403 tree addr;
6404 pushdecl (space);
6405
6406 /* Don't create new scope, emit the DECL_EXPR in exactly the scope
6407 where also space is located. */
6408 gfc_init_block (&init);
6409 tmp = fold_build1_loc (input_location, DECL_EXPR,
6410 TREE_TYPE (space), space);
6411 gfc_add_expr_to_block (&init, tmp);
6412 addr = fold_build1_loc (gfc_get_location (&sym->declared_at),
6413 ADDR_EXPR, TREE_TYPE (decl), space);
6414 gfc_add_modify (&init, decl, addr);
6415 gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
6416 tmp = NULL_TREE;
6417 }
6418 gfc_add_init_cleanup (block, inittree, tmp);
6419 }
6420
6421
6422 /* Generate entry and exit code for g77 calling convention arrays. */
6423
6424 void
6425 gfc_trans_g77_array (gfc_symbol * sym, gfc_wrapped_block * block)
6426 {
6427 tree parm;
6428 tree type;
6429 locus loc;
6430 tree offset;
6431 tree tmp;
6432 tree stmt;
6433 stmtblock_t init;
6434
6435 gfc_save_backend_locus (&loc);
6436 gfc_set_backend_locus (&sym->declared_at);
6437
6438 /* Descriptor type. */
6439 parm = sym->backend_decl;
6440 type = TREE_TYPE (parm);
6441 gcc_assert (GFC_ARRAY_TYPE_P (type));
6442
6443 gfc_start_block (&init);
6444
6445 if (sym->ts.type == BT_CHARACTER
6446 && VAR_P (sym->ts.u.cl->backend_decl))
6447 gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
6448
6449 /* Evaluate the bounds of the array. */
6450 gfc_trans_array_bounds (type, sym, &offset, &init);
6451
6452 /* Set the offset. */
6453 if (VAR_P (GFC_TYPE_ARRAY_OFFSET (type)))
6454 gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset);
6455
6456 /* Set the pointer itself if we aren't using the parameter directly. */
6457 if (TREE_CODE (parm) != PARM_DECL)
6458 {
6459 tmp = convert (TREE_TYPE (parm), GFC_DECL_SAVED_DESCRIPTOR (parm));
6460 gfc_add_modify (&init, parm, tmp);
6461 }
6462 stmt = gfc_finish_block (&init);
6463
6464 gfc_restore_backend_locus (&loc);
6465
6466 /* Add the initialization code to the start of the function. */
6467
6468 if (sym->attr.optional || sym->attr.not_always_present)
6469 {
6470 tmp = gfc_conv_expr_present (sym);
6471 stmt = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt (input_location));
6472 }
6473
6474 gfc_add_init_cleanup (block, stmt, NULL_TREE);
6475 }
6476
6477
6478 /* Modify the descriptor of an array parameter so that it has the
6479 correct lower bound. Also move the upper bound accordingly.
6480 If the array is not packed, it will be copied into a temporary.
6481 For each dimension we set the new lower and upper bounds. Then we copy the
6482 stride and calculate the offset for this dimension. We also work out
6483 what the stride of a packed array would be, and see it the two match.
6484 If the array need repacking, we set the stride to the values we just
6485 calculated, recalculate the offset and copy the array data.
6486 Code is also added to copy the data back at the end of the function.
6487 */
6488
6489 void
6490 gfc_trans_dummy_array_bias (gfc_symbol * sym, tree tmpdesc,
6491 gfc_wrapped_block * block)
6492 {
6493 tree size;
6494 tree type;
6495 tree offset;
6496 locus loc;
6497 stmtblock_t init;
6498 tree stmtInit, stmtCleanup;
6499 tree lbound;
6500 tree ubound;
6501 tree dubound;
6502 tree dlbound;
6503 tree dumdesc;
6504 tree tmp;
6505 tree stride, stride2;
6506 tree stmt_packed;
6507 tree stmt_unpacked;
6508 tree partial;
6509 gfc_se se;
6510 int n;
6511 int checkparm;
6512 int no_repack;
6513 bool optional_arg;
6514 gfc_array_spec *as;
6515 bool is_classarray = IS_CLASS_ARRAY (sym);
6516
6517 /* Do nothing for pointer and allocatable arrays. */
6518 if ((sym->ts.type != BT_CLASS && sym->attr.pointer)
6519 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->attr.class_pointer)
6520 || sym->attr.allocatable
6521 || (is_classarray && CLASS_DATA (sym)->attr.allocatable))
6522 return;
6523
6524 if (!is_classarray && sym->attr.dummy && gfc_is_nodesc_array (sym))
6525 {
6526 gfc_trans_g77_array (sym, block);
6527 return;
6528 }
6529
6530 loc.nextc = NULL;
6531 gfc_save_backend_locus (&loc);
6532 /* loc.nextc is not set by save_backend_locus but the location routines
6533 depend on it. */
6534 if (loc.nextc == NULL)
6535 loc.nextc = loc.lb->line;
6536 gfc_set_backend_locus (&sym->declared_at);
6537
6538 /* Descriptor type. */
6539 type = TREE_TYPE (tmpdesc);
6540 gcc_assert (GFC_ARRAY_TYPE_P (type));
6541 dumdesc = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc);
6542 if (is_classarray)
6543 /* For a class array the dummy array descriptor is in the _class
6544 component. */
6545 dumdesc = gfc_class_data_get (dumdesc);
6546 else
6547 dumdesc = build_fold_indirect_ref_loc (input_location, dumdesc);
6548 as = IS_CLASS_ARRAY (sym) ? CLASS_DATA (sym)->as : sym->as;
6549 gfc_start_block (&init);
6550
6551 if (sym->ts.type == BT_CHARACTER
6552 && VAR_P (sym->ts.u.cl->backend_decl))
6553 gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
6554
6555 checkparm = (as->type == AS_EXPLICIT
6556 && (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS));
6557
6558 no_repack = !(GFC_DECL_PACKED_ARRAY (tmpdesc)
6559 || GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc));
6560
6561 if (GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc))
6562 {
6563 /* For non-constant shape arrays we only check if the first dimension
6564 is contiguous. Repacking higher dimensions wouldn't gain us
6565 anything as we still don't know the array stride. */
6566 partial = gfc_create_var (logical_type_node, "partial");
6567 TREE_USED (partial) = 1;
6568 tmp = gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[0]);
6569 tmp = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, tmp,
6570 gfc_index_one_node);
6571 gfc_add_modify (&init, partial, tmp);
6572 }
6573 else
6574 partial = NULL_TREE;
6575
6576 /* The naming of stmt_unpacked and stmt_packed may be counter-intuitive
6577 here, however I think it does the right thing. */
6578 if (no_repack)
6579 {
6580 /* Set the first stride. */
6581 stride = gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[0]);
6582 stride = gfc_evaluate_now (stride, &init);
6583
6584 tmp = fold_build2_loc (input_location, EQ_EXPR, logical_type_node,
6585 stride, gfc_index_zero_node);
6586 tmp = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type,
6587 tmp, gfc_index_one_node, stride);
6588 stride = GFC_TYPE_ARRAY_STRIDE (type, 0);
6589 gfc_add_modify (&init, stride, tmp);
6590
6591 /* Allow the user to disable array repacking. */
6592 stmt_unpacked = NULL_TREE;
6593 }
6594 else
6595 {
6596 gcc_assert (integer_onep (GFC_TYPE_ARRAY_STRIDE (type, 0)));
6597 /* A library call to repack the array if necessary. */
6598 tmp = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc);
6599 stmt_unpacked = build_call_expr_loc (input_location,
6600 gfor_fndecl_in_pack, 1, tmp);
6601
6602 stride = gfc_index_one_node;
6603
6604 if (warn_array_temporaries)
6605 gfc_warning (OPT_Warray_temporaries,
6606 "Creating array temporary at %L", &loc);
6607 }
6608
6609 /* This is for the case where the array data is used directly without
6610 calling the repack function. */
6611 if (no_repack || partial != NULL_TREE)
6612 stmt_packed = gfc_conv_descriptor_data_get (dumdesc);
6613 else
6614 stmt_packed = NULL_TREE;
6615
6616 /* Assign the data pointer. */
6617 if (stmt_packed != NULL_TREE && stmt_unpacked != NULL_TREE)
6618 {
6619 /* Don't repack unknown shape arrays when the first stride is 1. */
6620 tmp = fold_build3_loc (input_location, COND_EXPR, TREE_TYPE (stmt_packed),
6621 partial, stmt_packed, stmt_unpacked);
6622 }
6623 else
6624 tmp = stmt_packed != NULL_TREE ? stmt_packed : stmt_unpacked;
6625 gfc_add_modify (&init, tmpdesc, fold_convert (type, tmp));
6626
6627 offset = gfc_index_zero_node;
6628 size = gfc_index_one_node;
6629
6630 /* Evaluate the bounds of the array. */
6631 for (n = 0; n < as->rank; n++)
6632 {
6633 if (checkparm || !as->upper[n])
6634 {
6635 /* Get the bounds of the actual parameter. */
6636 dubound = gfc_conv_descriptor_ubound_get (dumdesc, gfc_rank_cst[n]);
6637 dlbound = gfc_conv_descriptor_lbound_get (dumdesc, gfc_rank_cst[n]);
6638 }
6639 else
6640 {
6641 dubound = NULL_TREE;
6642 dlbound = NULL_TREE;
6643 }
6644
6645 lbound = GFC_TYPE_ARRAY_LBOUND (type, n);
6646 if (!INTEGER_CST_P (lbound))
6647 {
6648 gfc_init_se (&se, NULL);
6649 gfc_conv_expr_type (&se, as->lower[n],
6650 gfc_array_index_type);
6651 gfc_add_block_to_block (&init, &se.pre);
6652 gfc_add_modify (&init, lbound, se.expr);
6653 }
6654
6655 ubound = GFC_TYPE_ARRAY_UBOUND (type, n);
6656 /* Set the desired upper bound. */
6657 if (as->upper[n])
6658 {
6659 /* We know what we want the upper bound to be. */
6660 if (!INTEGER_CST_P (ubound))
6661 {
6662 gfc_init_se (&se, NULL);
6663 gfc_conv_expr_type (&se, as->upper[n],
6664 gfc_array_index_type);
6665 gfc_add_block_to_block (&init, &se.pre);
6666 gfc_add_modify (&init, ubound, se.expr);
6667 }
6668
6669 /* Check the sizes match. */
6670 if (checkparm)
6671 {
6672 /* Check (ubound(a) - lbound(a) == ubound(b) - lbound(b)). */
6673 char * msg;
6674 tree temp;
6675
6676 temp = fold_build2_loc (input_location, MINUS_EXPR,
6677 gfc_array_index_type, ubound, lbound);
6678 temp = fold_build2_loc (input_location, PLUS_EXPR,
6679 gfc_array_index_type,
6680 gfc_index_one_node, temp);
6681 stride2 = fold_build2_loc (input_location, MINUS_EXPR,
6682 gfc_array_index_type, dubound,
6683 dlbound);
6684 stride2 = fold_build2_loc (input_location, PLUS_EXPR,
6685 gfc_array_index_type,
6686 gfc_index_one_node, stride2);
6687 tmp = fold_build2_loc (input_location, NE_EXPR,
6688 gfc_array_index_type, temp, stride2);
6689 msg = xasprintf ("Dimension %d of array '%s' has extent "
6690 "%%ld instead of %%ld", n+1, sym->name);
6691
6692 gfc_trans_runtime_check (true, false, tmp, &init, &loc, msg,
6693 fold_convert (long_integer_type_node, temp),
6694 fold_convert (long_integer_type_node, stride2));
6695
6696 free (msg);
6697 }
6698 }
6699 else
6700 {
6701 /* For assumed shape arrays move the upper bound by the same amount
6702 as the lower bound. */
6703 tmp = fold_build2_loc (input_location, MINUS_EXPR,
6704 gfc_array_index_type, dubound, dlbound);
6705 tmp = fold_build2_loc (input_location, PLUS_EXPR,
6706 gfc_array_index_type, tmp, lbound);
6707 gfc_add_modify (&init, ubound, tmp);
6708 }
6709 /* The offset of this dimension. offset = offset - lbound * stride. */
6710 tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
6711 lbound, stride);
6712 offset = fold_build2_loc (input_location, MINUS_EXPR,
6713 gfc_array_index_type, offset, tmp);
6714
6715 /* The size of this dimension, and the stride of the next. */
6716 if (n + 1 < as->rank)
6717 {
6718 stride = GFC_TYPE_ARRAY_STRIDE (type, n + 1);
6719
6720 if (no_repack || partial != NULL_TREE)
6721 stmt_unpacked =
6722 gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[n+1]);
6723
6724 /* Figure out the stride if not a known constant. */
6725 if (!INTEGER_CST_P (stride))
6726 {
6727 if (no_repack)
6728 stmt_packed = NULL_TREE;
6729 else
6730 {
6731 /* Calculate stride = size * (ubound + 1 - lbound). */
6732 tmp = fold_build2_loc (input_location, MINUS_EXPR,
6733 gfc_array_index_type,
6734 gfc_index_one_node, lbound);
6735 tmp = fold_build2_loc (input_location, PLUS_EXPR,
6736 gfc_array_index_type, ubound, tmp);
6737 size = fold_build2_loc (input_location, MULT_EXPR,
6738 gfc_array_index_type, size, tmp);
6739 stmt_packed = size;
6740 }
6741
6742 /* Assign the stride. */
6743 if (stmt_packed != NULL_TREE && stmt_unpacked != NULL_TREE)
6744 tmp = fold_build3_loc (input_location, COND_EXPR,
6745 gfc_array_index_type, partial,
6746 stmt_unpacked, stmt_packed);
6747 else
6748 tmp = (stmt_packed != NULL_TREE) ? stmt_packed : stmt_unpacked;
6749 gfc_add_modify (&init, stride, tmp);
6750 }
6751 }
6752 else
6753 {
6754 stride = GFC_TYPE_ARRAY_SIZE (type);
6755
6756 if (stride && !INTEGER_CST_P (stride))
6757 {
6758 /* Calculate size = stride * (ubound + 1 - lbound). */
6759 tmp = fold_build2_loc (input_location, MINUS_EXPR,
6760 gfc_array_index_type,
6761 gfc_index_one_node, lbound);
6762 tmp = fold_build2_loc (input_location, PLUS_EXPR,
6763 gfc_array_index_type,
6764 ubound, tmp);
6765 tmp = fold_build2_loc (input_location, MULT_EXPR,
6766 gfc_array_index_type,
6767 GFC_TYPE_ARRAY_STRIDE (type, n), tmp);
6768 gfc_add_modify (&init, stride, tmp);
6769 }
6770 }
6771 }
6772
6773 gfc_trans_array_cobounds (type, &init, sym);
6774
6775 /* Set the offset. */
6776 if (VAR_P (GFC_TYPE_ARRAY_OFFSET (type)))
6777 gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset);
6778
6779 gfc_trans_vla_type_sizes (sym, &init);
6780
6781 stmtInit = gfc_finish_block (&init);
6782
6783 /* Only do the entry/initialization code if the arg is present. */
6784 dumdesc = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc);
6785 optional_arg = (sym->attr.optional
6786 || (sym->ns->proc_name->attr.entry_master
6787 && sym->attr.dummy));
6788 if (optional_arg)
6789 {
6790 tmp = gfc_conv_expr_present (sym);
6791 stmtInit = build3_v (COND_EXPR, tmp, stmtInit,
6792 build_empty_stmt (input_location));
6793 }
6794
6795 /* Cleanup code. */
6796 if (no_repack)
6797 stmtCleanup = NULL_TREE;
6798 else
6799 {
6800 stmtblock_t cleanup;
6801 gfc_start_block (&cleanup);
6802
6803 if (sym->attr.intent != INTENT_IN)
6804 {
6805 /* Copy the data back. */
6806 tmp = build_call_expr_loc (input_location,
6807 gfor_fndecl_in_unpack, 2, dumdesc, tmpdesc);
6808 gfc_add_expr_to_block (&cleanup, tmp);
6809 }
6810
6811 /* Free the temporary. */
6812 tmp = gfc_call_free (tmpdesc);
6813 gfc_add_expr_to_block (&cleanup, tmp);
6814
6815 stmtCleanup = gfc_finish_block (&cleanup);
6816
6817 /* Only do the cleanup if the array was repacked. */
6818 if (is_classarray)
6819 /* For a class array the dummy array descriptor is in the _class
6820 component. */
6821 tmp = gfc_class_data_get (dumdesc);
6822 else
6823 tmp = build_fold_indirect_ref_loc (input_location, dumdesc);
6824 tmp = gfc_conv_descriptor_data_get (tmp);
6825 tmp = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
6826 tmp, tmpdesc);
6827 stmtCleanup = build3_v (COND_EXPR, tmp, stmtCleanup,
6828 build_empty_stmt (input_location));
6829
6830 if (optional_arg)
6831 {
6832 tmp = gfc_conv_expr_present (sym);
6833 stmtCleanup = build3_v (COND_EXPR, tmp, stmtCleanup,
6834 build_empty_stmt (input_location));
6835 }
6836 }
6837
6838 /* We don't need to free any memory allocated by internal_pack as it will
6839 be freed at the end of the function by pop_context. */
6840 gfc_add_init_cleanup (block, stmtInit, stmtCleanup);
6841
6842 gfc_restore_backend_locus (&loc);
6843 }
6844
6845
6846 /* Calculate the overall offset, including subreferences. */
6847 void
6848 gfc_get_dataptr_offset (stmtblock_t *block, tree parm, tree desc, tree offset,
6849 bool subref, gfc_expr *expr)
6850 {
6851 tree tmp;
6852 tree field;
6853 tree stride;
6854 tree index;
6855 gfc_ref *ref;
6856 gfc_se start;
6857 int n;
6858
6859 /* If offset is NULL and this is not a subreferenced array, there is
6860 nothing to do. */
6861 if (offset == NULL_TREE)
6862 {
6863 if (subref)
6864 offset = gfc_index_zero_node;
6865 else
6866 return;
6867 }
6868
6869 tmp = build_array_ref (desc, offset, NULL, NULL);
6870
6871 /* Offset the data pointer for pointer assignments from arrays with
6872 subreferences; e.g. my_integer => my_type(:)%integer_component. */
6873 if (subref)
6874 {
6875 /* Go past the array reference. */
6876 for (ref = expr->ref; ref; ref = ref->next)
6877 if (ref->type == REF_ARRAY &&
6878 ref->u.ar.type != AR_ELEMENT)
6879 {
6880 ref = ref->next;
6881 break;
6882 }
6883
6884 /* Calculate the offset for each subsequent subreference. */
6885 for (; ref; ref = ref->next)
6886 {
6887 switch (ref->type)
6888 {
6889 case REF_COMPONENT:
6890 field = ref->u.c.component->backend_decl;
6891 gcc_assert (field && TREE_CODE (field) == FIELD_DECL);
6892 tmp = fold_build3_loc (input_location, COMPONENT_REF,
6893 TREE_TYPE (field),
6894 tmp, field, NULL_TREE);
6895 break;
6896
6897 case REF_SUBSTRING:
6898 gcc_assert (TREE_CODE (TREE_TYPE (tmp)) == ARRAY_TYPE);
6899 gfc_init_se (&start, NULL);
6900 gfc_conv_expr_type (&start, ref->u.ss.start, gfc_charlen_type_node);
6901 gfc_add_block_to_block (block, &start.pre);
6902 tmp = gfc_build_array_ref (tmp, start.expr, NULL);
6903 break;
6904
6905 case REF_ARRAY:
6906 gcc_assert (TREE_CODE (TREE_TYPE (tmp)) == ARRAY_TYPE
6907 && ref->u.ar.type == AR_ELEMENT);
6908
6909 /* TODO - Add bounds checking. */
6910 stride = gfc_index_one_node;
6911 index = gfc_index_zero_node;
6912 for (n = 0; n < ref->u.ar.dimen; n++)
6913 {
6914 tree itmp;
6915 tree jtmp;
6916
6917 /* Update the index. */
6918 gfc_init_se (&start, NULL);
6919 gfc_conv_expr_type (&start, ref->u.ar.start[n], gfc_array_index_type);
6920 itmp = gfc_evaluate_now (start.expr, block);
6921 gfc_init_se (&start, NULL);
6922 gfc_conv_expr_type (&start, ref->u.ar.as->lower[n], gfc_array_index_type);
6923 jtmp = gfc_evaluate_now (start.expr, block);
6924 itmp = fold_build2_loc (input_location, MINUS_EXPR,
6925 gfc_array_index_type, itmp, jtmp);
6926 itmp = fold_build2_loc (input_location, MULT_EXPR,
6927 gfc_array_index_type, itmp, stride);
6928 index = fold_build2_loc (input_location, PLUS_EXPR,
6929 gfc_array_index_type, itmp, index);
6930 index = gfc_evaluate_now (index, block);
6931
6932 /* Update the stride. */
6933 gfc_init_se (&start, NULL);
6934 gfc_conv_expr_type (&start, ref->u.ar.as->upper[n], gfc_array_index_type);
6935 itmp = fold_build2_loc (input_location, MINUS_EXPR,
6936 gfc_array_index_type, start.expr,
6937 jtmp);
6938 itmp = fold_build2_loc (input_location, PLUS_EXPR,
6939 gfc_array_index_type,
6940 gfc_index_one_node, itmp);
6941 stride = fold_build2_loc (input_location, MULT_EXPR,
6942 gfc_array_index_type, stride, itmp);
6943 stride = gfc_evaluate_now (stride, block);
6944 }
6945
6946 /* Apply the index to obtain the array element. */
6947 tmp = gfc_build_array_ref (tmp, index, NULL);
6948 break;
6949
6950 default:
6951 gcc_unreachable ();
6952 break;
6953 }
6954 }
6955 }
6956
6957 /* Set the target data pointer. */
6958 offset = gfc_build_addr_expr (gfc_array_dataptr_type (desc), tmp);
6959 gfc_conv_descriptor_data_set (block, parm, offset);
6960 }
6961
6962
6963 /* gfc_conv_expr_descriptor needs the string length an expression
6964 so that the size of the temporary can be obtained. This is done
6965 by adding up the string lengths of all the elements in the
6966 expression. Function with non-constant expressions have their
6967 string lengths mapped onto the actual arguments using the
6968 interface mapping machinery in trans-expr.c. */
6969 static void
6970 get_array_charlen (gfc_expr *expr, gfc_se *se)
6971 {
6972 gfc_interface_mapping mapping;
6973 gfc_formal_arglist *formal;
6974 gfc_actual_arglist *arg;
6975 gfc_se tse;
6976 gfc_expr *e;
6977
6978 if (expr->ts.u.cl->length
6979 && gfc_is_constant_expr (expr->ts.u.cl->length))
6980 {
6981 if (!expr->ts.u.cl->backend_decl)
6982 gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre);
6983 return;
6984 }
6985
6986 switch (expr->expr_type)
6987 {
6988 case EXPR_ARRAY:
6989
6990 /* This is somewhat brutal. The expression for the first
6991 element of the array is evaluated and assigned to a
6992 new string length for the original expression. */
6993 e = gfc_constructor_first (expr->value.constructor)->expr;
6994
6995 gfc_init_se (&tse, NULL);
6996 if (e->rank)
6997 gfc_conv_expr_descriptor (&tse, e);
6998 else
6999 gfc_conv_expr (&tse, e);
7000
7001 gfc_add_block_to_block (&se->pre, &tse.pre);
7002 gfc_add_block_to_block (&se->post, &tse.post);
7003
7004 if (!expr->ts.u.cl->backend_decl || !VAR_P (expr->ts.u.cl->backend_decl))
7005 {
7006 expr->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
7007 expr->ts.u.cl->backend_decl =
7008 gfc_create_var (gfc_charlen_type_node, "sln");
7009 }
7010
7011 gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl,
7012 tse.string_length);
7013
7014 return;
7015
7016 case EXPR_OP:
7017 get_array_charlen (expr->value.op.op1, se);
7018
7019 /* For parentheses the expression ts.u.cl is identical. */
7020 if (expr->value.op.op == INTRINSIC_PARENTHESES)
7021 return;
7022
7023 expr->ts.u.cl->backend_decl =
7024 gfc_create_var (gfc_charlen_type_node, "sln");
7025
7026 if (expr->value.op.op2)
7027 {
7028 get_array_charlen (expr->value.op.op2, se);
7029
7030 gcc_assert (expr->value.op.op == INTRINSIC_CONCAT);
7031
7032 /* Add the string lengths and assign them to the expression
7033 string length backend declaration. */
7034 gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl,
7035 fold_build2_loc (input_location, PLUS_EXPR,
7036 gfc_charlen_type_node,
7037 expr->value.op.op1->ts.u.cl->backend_decl,
7038 expr->value.op.op2->ts.u.cl->backend_decl));
7039 }
7040 else
7041 gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl,
7042 expr->value.op.op1->ts.u.cl->backend_decl);
7043 break;
7044
7045 case EXPR_FUNCTION:
7046 if (expr->value.function.esym == NULL
7047 || expr->ts.u.cl->length->expr_type == EXPR_CONSTANT)
7048 {
7049 gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre);
7050 break;
7051 }
7052
7053 /* Map expressions involving the dummy arguments onto the actual
7054 argument expressions. */
7055 gfc_init_interface_mapping (&mapping);
7056 formal = gfc_sym_get_dummy_args (expr->symtree->n.sym);
7057 arg = expr->value.function.actual;
7058
7059 /* Set se = NULL in the calls to the interface mapping, to suppress any
7060 backend stuff. */
7061 for (; arg != NULL; arg = arg->next, formal = formal ? formal->next : NULL)
7062 {
7063 if (!arg->expr)
7064 continue;
7065 if (formal->sym)
7066 gfc_add_interface_mapping (&mapping, formal->sym, NULL, arg->expr);
7067 }
7068
7069 gfc_init_se (&tse, NULL);
7070
7071 /* Build the expression for the character length and convert it. */
7072 gfc_apply_interface_mapping (&mapping, &tse, expr->ts.u.cl->length);
7073
7074 gfc_add_block_to_block (&se->pre, &tse.pre);
7075 gfc_add_block_to_block (&se->post, &tse.post);
7076 tse.expr = fold_convert (gfc_charlen_type_node, tse.expr);
7077 tse.expr = fold_build2_loc (input_location, MAX_EXPR,
7078 TREE_TYPE (tse.expr), tse.expr,
7079 build_zero_cst (TREE_TYPE (tse.expr)));
7080 expr->ts.u.cl->backend_decl = tse.expr;
7081 gfc_free_interface_mapping (&mapping);
7082 break;
7083
7084 default:
7085 gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre);
7086 break;
7087 }
7088 }
7089
7090
7091 /* Helper function to check dimensions. */
7092 static bool
7093 transposed_dims (gfc_ss *ss)
7094 {
7095 int n;
7096
7097 for (n = 0; n < ss->dimen; n++)
7098 if (ss->dim[n] != n)
7099 return true;
7100 return false;
7101 }
7102
7103
7104 /* Convert the last ref of a scalar coarray from an AR_ELEMENT to an
7105 AR_FULL, suitable for the scalarizer. */
7106
7107 static gfc_ss *
7108 walk_coarray (gfc_expr *e)
7109 {
7110 gfc_ss *ss;
7111
7112 gcc_assert (gfc_get_corank (e) > 0);
7113
7114 ss = gfc_walk_expr (e);
7115
7116 /* Fix scalar coarray. */
7117 if (ss == gfc_ss_terminator)
7118 {
7119 gfc_ref *ref;
7120
7121 ref = e->ref;
7122 while (ref)
7123 {
7124 if (ref->type == REF_ARRAY
7125 && ref->u.ar.codimen > 0)
7126 break;
7127
7128 ref = ref->next;
7129 }
7130
7131 gcc_assert (ref != NULL);
7132 if (ref->u.ar.type == AR_ELEMENT)
7133 ref->u.ar.type = AR_SECTION;
7134 ss = gfc_reverse_ss (gfc_walk_array_ref (ss, e, ref));
7135 }
7136
7137 return ss;
7138 }
7139
7140
7141 /* Convert an array for passing as an actual argument. Expressions and
7142 vector subscripts are evaluated and stored in a temporary, which is then
7143 passed. For whole arrays the descriptor is passed. For array sections
7144 a modified copy of the descriptor is passed, but using the original data.
7145
7146 This function is also used for array pointer assignments, and there
7147 are three cases:
7148
7149 - se->want_pointer && !se->direct_byref
7150 EXPR is an actual argument. On exit, se->expr contains a
7151 pointer to the array descriptor.
7152
7153 - !se->want_pointer && !se->direct_byref
7154 EXPR is an actual argument to an intrinsic function or the
7155 left-hand side of a pointer assignment. On exit, se->expr
7156 contains the descriptor for EXPR.
7157
7158 - !se->want_pointer && se->direct_byref
7159 EXPR is the right-hand side of a pointer assignment and
7160 se->expr is the descriptor for the previously-evaluated
7161 left-hand side. The function creates an assignment from
7162 EXPR to se->expr.
7163
7164
7165 The se->force_tmp flag disables the non-copying descriptor optimization
7166 that is used for transpose. It may be used in cases where there is an
7167 alias between the transpose argument and another argument in the same
7168 function call. */
7169
7170 void
7171 gfc_conv_expr_descriptor (gfc_se *se, gfc_expr *expr)
7172 {
7173 gfc_ss *ss;
7174 gfc_ss_type ss_type;
7175 gfc_ss_info *ss_info;
7176 gfc_loopinfo loop;
7177 gfc_array_info *info;
7178 int need_tmp;
7179 int n;
7180 tree tmp;
7181 tree desc;
7182 stmtblock_t block;
7183 tree start;
7184 tree offset;
7185 int full;
7186 bool subref_array_target = false;
7187 bool deferred_array_component = false;
7188 gfc_expr *arg, *ss_expr;
7189
7190 if (se->want_coarray)
7191 ss = walk_coarray (expr);
7192 else
7193 ss = gfc_walk_expr (expr);
7194
7195 gcc_assert (ss != NULL);
7196 gcc_assert (ss != gfc_ss_terminator);
7197
7198 ss_info = ss->info;
7199 ss_type = ss_info->type;
7200 ss_expr = ss_info->expr;
7201
7202 /* Special case: TRANSPOSE which needs no temporary. */
7203 while (expr->expr_type == EXPR_FUNCTION && expr->value.function.isym
7204 && (arg = gfc_get_noncopying_intrinsic_argument (expr)) != NULL)
7205 {
7206 /* This is a call to transpose which has already been handled by the
7207 scalarizer, so that we just need to get its argument's descriptor. */
7208 gcc_assert (expr->value.function.isym->id == GFC_ISYM_TRANSPOSE);
7209 expr = expr->value.function.actual->expr;
7210 }
7211
7212 /* Special case things we know we can pass easily. */
7213 switch (expr->expr_type)
7214 {
7215 case EXPR_VARIABLE:
7216 /* If we have a linear array section, we can pass it directly.
7217 Otherwise we need to copy it into a temporary. */
7218
7219 gcc_assert (ss_type == GFC_SS_SECTION);
7220 gcc_assert (ss_expr == expr);
7221 info = &ss_info->data.array;
7222
7223 /* Get the descriptor for the array. */
7224 gfc_conv_ss_descriptor (&se->pre, ss, 0);
7225 desc = info->descriptor;
7226
7227 /* The charlen backend decl for deferred character components cannot
7228 be used because it is fixed at zero. Instead, the hidden string
7229 length component is used. */
7230 if (expr->ts.type == BT_CHARACTER
7231 && expr->ts.deferred
7232 && TREE_CODE (desc) == COMPONENT_REF)
7233 deferred_array_component = true;
7234
7235 subref_array_target = se->direct_byref && is_subref_array (expr);
7236 need_tmp = gfc_ref_needs_temporary_p (expr->ref)
7237 && !subref_array_target;
7238
7239 if (se->force_tmp)
7240 need_tmp = 1;
7241 else if (se->force_no_tmp)
7242 need_tmp = 0;
7243
7244 if (need_tmp)
7245 full = 0;
7246 else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
7247 {
7248 /* Create a new descriptor if the array doesn't have one. */
7249 full = 0;
7250 }
7251 else if (info->ref->u.ar.type == AR_FULL || se->descriptor_only)
7252 full = 1;
7253 else if (se->direct_byref)
7254 full = 0;
7255 else
7256 full = gfc_full_array_ref_p (info->ref, NULL);
7257
7258 if (full && !transposed_dims (ss))
7259 {
7260 if (se->direct_byref && !se->byref_noassign)
7261 {
7262 /* Copy the descriptor for pointer assignments. */
7263 gfc_add_modify (&se->pre, se->expr, desc);
7264
7265 /* Add any offsets from subreferences. */
7266 gfc_get_dataptr_offset (&se->pre, se->expr, desc, NULL_TREE,
7267 subref_array_target, expr);
7268
7269 /* ....and set the span field. */
7270 tmp = gfc_get_array_span (desc, expr);
7271 if (tmp != NULL_TREE && !integer_zerop (tmp))
7272 gfc_conv_descriptor_span_set (&se->pre, se->expr, tmp);
7273 }
7274 else if (se->want_pointer)
7275 {
7276 /* We pass full arrays directly. This means that pointers and
7277 allocatable arrays should also work. */
7278 se->expr = gfc_build_addr_expr (NULL_TREE, desc);
7279 }
7280 else
7281 {
7282 se->expr = desc;
7283 }
7284
7285 if (expr->ts.type == BT_CHARACTER && !deferred_array_component)
7286 se->string_length = gfc_get_expr_charlen (expr);
7287 /* The ss_info string length is returned set to the value of the
7288 hidden string length component. */
7289 else if (deferred_array_component)
7290 se->string_length = ss_info->string_length;
7291
7292 gfc_free_ss_chain (ss);
7293 return;
7294 }
7295 break;
7296
7297 case EXPR_FUNCTION:
7298 /* A transformational function return value will be a temporary
7299 array descriptor. We still need to go through the scalarizer
7300 to create the descriptor. Elemental functions are handled as
7301 arbitrary expressions, i.e. copy to a temporary. */
7302
7303 if (se->direct_byref)
7304 {
7305 gcc_assert (ss_type == GFC_SS_FUNCTION && ss_expr == expr);
7306
7307 /* For pointer assignments pass the descriptor directly. */
7308 if (se->ss == NULL)
7309 se->ss = ss;
7310 else
7311 gcc_assert (se->ss == ss);
7312
7313 if (!is_pointer_array (se->expr))
7314 {
7315 tmp = gfc_get_element_type (TREE_TYPE (se->expr));
7316 tmp = fold_convert (gfc_array_index_type,
7317 size_in_bytes (tmp));
7318 gfc_conv_descriptor_span_set (&se->pre, se->expr, tmp);
7319 }
7320
7321 se->expr = gfc_build_addr_expr (NULL_TREE, se->expr);
7322 gfc_conv_expr (se, expr);
7323
7324 gfc_free_ss_chain (ss);
7325 return;
7326 }
7327
7328 if (ss_expr != expr || ss_type != GFC_SS_FUNCTION)
7329 {
7330 if (ss_expr != expr)
7331 /* Elemental function. */
7332 gcc_assert ((expr->value.function.esym != NULL
7333 && expr->value.function.esym->attr.elemental)
7334 || (expr->value.function.isym != NULL
7335 && expr->value.function.isym->elemental)
7336 || gfc_inline_intrinsic_function_p (expr));
7337 else
7338 gcc_assert (ss_type == GFC_SS_INTRINSIC);
7339
7340 need_tmp = 1;
7341 if (expr->ts.type == BT_CHARACTER
7342 && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT)
7343 get_array_charlen (expr, se);
7344
7345 info = NULL;
7346 }
7347 else
7348 {
7349 /* Transformational function. */
7350 info = &ss_info->data.array;
7351 need_tmp = 0;
7352 }
7353 break;
7354
7355 case EXPR_ARRAY:
7356 /* Constant array constructors don't need a temporary. */
7357 if (ss_type == GFC_SS_CONSTRUCTOR
7358 && expr->ts.type != BT_CHARACTER
7359 && gfc_constant_array_constructor_p (expr->value.constructor))
7360 {
7361 need_tmp = 0;
7362 info = &ss_info->data.array;
7363 }
7364 else
7365 {
7366 need_tmp = 1;
7367 info = NULL;
7368 }
7369 break;
7370
7371 default:
7372 /* Something complicated. Copy it into a temporary. */
7373 need_tmp = 1;
7374 info = NULL;
7375 break;
7376 }
7377
7378 /* If we are creating a temporary, we don't need to bother about aliases
7379 anymore. */
7380 if (need_tmp)
7381 se->force_tmp = 0;
7382
7383 gfc_init_loopinfo (&loop);
7384
7385 /* Associate the SS with the loop. */
7386 gfc_add_ss_to_loop (&loop, ss);
7387
7388 /* Tell the scalarizer not to bother creating loop variables, etc. */
7389 if (!need_tmp)
7390 loop.array_parameter = 1;
7391 else
7392 /* The right-hand side of a pointer assignment mustn't use a temporary. */
7393 gcc_assert (!se->direct_byref);
7394
7395 /* Do we need bounds checking or not? */
7396 ss->no_bounds_check = expr->no_bounds_check;
7397
7398 /* Setup the scalarizing loops and bounds. */
7399 gfc_conv_ss_startstride (&loop);
7400
7401 if (need_tmp)
7402 {
7403 if (expr->ts.type == BT_CHARACTER
7404 && (!expr->ts.u.cl->backend_decl || expr->expr_type == EXPR_ARRAY))
7405 get_array_charlen (expr, se);
7406
7407 /* Tell the scalarizer to make a temporary. */
7408 loop.temp_ss = gfc_get_temp_ss (gfc_typenode_for_spec (&expr->ts),
7409 ((expr->ts.type == BT_CHARACTER)
7410 ? expr->ts.u.cl->backend_decl
7411 : NULL),
7412 loop.dimen);
7413
7414 se->string_length = loop.temp_ss->info->string_length;
7415 gcc_assert (loop.temp_ss->dimen == loop.dimen);
7416 gfc_add_ss_to_loop (&loop, loop.temp_ss);
7417 }
7418
7419 gfc_conv_loop_setup (&loop, & expr->where);
7420
7421 if (need_tmp)
7422 {
7423 /* Copy into a temporary and pass that. We don't need to copy the data
7424 back because expressions and vector subscripts must be INTENT_IN. */
7425 /* TODO: Optimize passing function return values. */
7426 gfc_se lse;
7427 gfc_se rse;
7428 bool deep_copy;
7429
7430 /* Start the copying loops. */
7431 gfc_mark_ss_chain_used (loop.temp_ss, 1);
7432 gfc_mark_ss_chain_used (ss, 1);
7433 gfc_start_scalarized_body (&loop, &block);
7434
7435 /* Copy each data element. */
7436 gfc_init_se (&lse, NULL);
7437 gfc_copy_loopinfo_to_se (&lse, &loop);
7438 gfc_init_se (&rse, NULL);
7439 gfc_copy_loopinfo_to_se (&rse, &loop);
7440
7441 lse.ss = loop.temp_ss;
7442 rse.ss = ss;
7443
7444 gfc_conv_scalarized_array_ref (&lse, NULL);
7445 if (expr->ts.type == BT_CHARACTER)
7446 {
7447 gfc_conv_expr (&rse, expr);
7448 if (POINTER_TYPE_P (TREE_TYPE (rse.expr)))
7449 rse.expr = build_fold_indirect_ref_loc (input_location,
7450 rse.expr);
7451 }
7452 else
7453 gfc_conv_expr_val (&rse, expr);
7454
7455 gfc_add_block_to_block (&block, &rse.pre);
7456 gfc_add_block_to_block (&block, &lse.pre);
7457
7458 lse.string_length = rse.string_length;
7459
7460 deep_copy = !se->data_not_needed
7461 && (expr->expr_type == EXPR_VARIABLE
7462 || expr->expr_type == EXPR_ARRAY);
7463 tmp = gfc_trans_scalar_assign (&lse, &rse, expr->ts,
7464 deep_copy, false);
7465 gfc_add_expr_to_block (&block, tmp);
7466
7467 /* Finish the copying loops. */
7468 gfc_trans_scalarizing_loops (&loop, &block);
7469
7470 desc = loop.temp_ss->info->data.array.descriptor;
7471 }
7472 else if (expr->expr_type == EXPR_FUNCTION && !transposed_dims (ss))
7473 {
7474 desc = info->descriptor;
7475 se->string_length = ss_info->string_length;
7476 }
7477 else
7478 {
7479 /* We pass sections without copying to a temporary. Make a new
7480 descriptor and point it at the section we want. The loop variable
7481 limits will be the limits of the section.
7482 A function may decide to repack the array to speed up access, but
7483 we're not bothered about that here. */
7484 int dim, ndim, codim;
7485 tree parm;
7486 tree parmtype;
7487 tree stride;
7488 tree from;
7489 tree to;
7490 tree base;
7491 bool onebased = false, rank_remap;
7492
7493 ndim = info->ref ? info->ref->u.ar.dimen : ss->dimen;
7494 rank_remap = ss->dimen < ndim;
7495
7496 if (se->want_coarray)
7497 {
7498 gfc_array_ref *ar = &info->ref->u.ar;
7499
7500 codim = gfc_get_corank (expr);
7501 for (n = 0; n < codim - 1; n++)
7502 {
7503 /* Make sure we are not lost somehow. */
7504 gcc_assert (ar->dimen_type[n + ndim] == DIMEN_THIS_IMAGE);
7505
7506 /* Make sure the call to gfc_conv_section_startstride won't
7507 generate unnecessary code to calculate stride. */
7508 gcc_assert (ar->stride[n + ndim] == NULL);
7509
7510 gfc_conv_section_startstride (&loop.pre, ss, n + ndim);
7511 loop.from[n + loop.dimen] = info->start[n + ndim];
7512 loop.to[n + loop.dimen] = info->end[n + ndim];
7513 }
7514
7515 gcc_assert (n == codim - 1);
7516 evaluate_bound (&loop.pre, info->start, ar->start,
7517 info->descriptor, n + ndim, true,
7518 ar->as->type == AS_DEFERRED);
7519 loop.from[n + loop.dimen] = info->start[n + ndim];
7520 }
7521 else
7522 codim = 0;
7523
7524 /* Set the string_length for a character array. */
7525 if (expr->ts.type == BT_CHARACTER)
7526 {
7527 se->string_length = gfc_get_expr_charlen (expr);
7528 if (VAR_P (se->string_length)
7529 && expr->ts.u.cl->backend_decl == se->string_length)
7530 tmp = ss_info->string_length;
7531 else
7532 tmp = se->string_length;
7533
7534 if (expr->ts.deferred)
7535 gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl, tmp);
7536 }
7537
7538 /* If we have an array section or are assigning make sure that
7539 the lower bound is 1. References to the full
7540 array should otherwise keep the original bounds. */
7541 if ((!info->ref || info->ref->u.ar.type != AR_FULL) && !se->want_pointer)
7542 for (dim = 0; dim < loop.dimen; dim++)
7543 if (!integer_onep (loop.from[dim]))
7544 {
7545 tmp = fold_build2_loc (input_location, MINUS_EXPR,
7546 gfc_array_index_type, gfc_index_one_node,
7547 loop.from[dim]);
7548 loop.to[dim] = fold_build2_loc (input_location, PLUS_EXPR,
7549 gfc_array_index_type,
7550 loop.to[dim], tmp);
7551 loop.from[dim] = gfc_index_one_node;
7552 }
7553
7554 desc = info->descriptor;
7555 if (se->direct_byref && !se->byref_noassign)
7556 {
7557 /* For pointer assignments we fill in the destination. */
7558 parm = se->expr;
7559 parmtype = TREE_TYPE (parm);
7560 }
7561 else
7562 {
7563 /* Otherwise make a new one. */
7564 if (expr->ts.type == BT_CHARACTER && expr->ts.deferred)
7565 parmtype = gfc_typenode_for_spec (&expr->ts);
7566 else
7567 parmtype = gfc_get_element_type (TREE_TYPE (desc));
7568
7569 parmtype = gfc_get_array_type_bounds (parmtype, loop.dimen, codim,
7570 loop.from, loop.to, 0,
7571 GFC_ARRAY_UNKNOWN, false);
7572 parm = gfc_create_var (parmtype, "parm");
7573
7574 /* When expression is a class object, then add the class' handle to
7575 the parm_decl. */
7576 if (expr->ts.type == BT_CLASS && expr->expr_type == EXPR_VARIABLE)
7577 {
7578 gfc_expr *class_expr = gfc_find_and_cut_at_last_class_ref (expr);
7579 gfc_se classse;
7580
7581 /* class_expr can be NULL, when no _class ref is in expr.
7582 We must not fix this here with a gfc_fix_class_ref (). */
7583 if (class_expr)
7584 {
7585 gfc_init_se (&classse, NULL);
7586 gfc_conv_expr (&classse, class_expr);
7587 gfc_free_expr (class_expr);
7588
7589 gcc_assert (classse.pre.head == NULL_TREE
7590 && classse.post.head == NULL_TREE);
7591 gfc_allocate_lang_decl (parm);
7592 GFC_DECL_SAVED_DESCRIPTOR (parm) = classse.expr;
7593 }
7594 }
7595 }
7596
7597 /* Set the span field. */
7598 if (expr->ts.type == BT_CHARACTER && ss_info->string_length)
7599 tmp = ss_info->string_length;
7600 else
7601 tmp = gfc_get_array_span (desc, expr);
7602 if (tmp != NULL_TREE)
7603 gfc_conv_descriptor_span_set (&loop.pre, parm, tmp);
7604
7605 offset = gfc_index_zero_node;
7606
7607 /* The following can be somewhat confusing. We have two
7608 descriptors, a new one and the original array.
7609 {parm, parmtype, dim} refer to the new one.
7610 {desc, type, n, loop} refer to the original, which maybe
7611 a descriptorless array.
7612 The bounds of the scalarization are the bounds of the section.
7613 We don't have to worry about numeric overflows when calculating
7614 the offsets because all elements are within the array data. */
7615
7616 /* Set the dtype. */
7617 tmp = gfc_conv_descriptor_dtype (parm);
7618 gfc_add_modify (&loop.pre, tmp, gfc_get_dtype (parmtype));
7619
7620 /* Set offset for assignments to pointer only to zero if it is not
7621 the full array. */
7622 if ((se->direct_byref || se->use_offset)
7623 && ((info->ref && info->ref->u.ar.type != AR_FULL)
7624 || (expr->expr_type == EXPR_ARRAY && se->use_offset)))
7625 base = gfc_index_zero_node;
7626 else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
7627 base = gfc_evaluate_now (gfc_conv_array_offset (desc), &loop.pre);
7628 else
7629 base = NULL_TREE;
7630
7631 for (n = 0; n < ndim; n++)
7632 {
7633 stride = gfc_conv_array_stride (desc, n);
7634
7635 /* Work out the offset. */
7636 if (info->ref
7637 && info->ref->u.ar.dimen_type[n] == DIMEN_ELEMENT)
7638 {
7639 gcc_assert (info->subscript[n]
7640 && info->subscript[n]->info->type == GFC_SS_SCALAR);
7641 start = info->subscript[n]->info->data.scalar.value;
7642 }
7643 else
7644 {
7645 /* Evaluate and remember the start of the section. */
7646 start = info->start[n];
7647 stride = gfc_evaluate_now (stride, &loop.pre);
7648 }
7649
7650 tmp = gfc_conv_array_lbound (desc, n);
7651 tmp = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (tmp),
7652 start, tmp);
7653 tmp = fold_build2_loc (input_location, MULT_EXPR, TREE_TYPE (tmp),
7654 tmp, stride);
7655 offset = fold_build2_loc (input_location, PLUS_EXPR, TREE_TYPE (tmp),
7656 offset, tmp);
7657
7658 if (info->ref
7659 && info->ref->u.ar.dimen_type[n] == DIMEN_ELEMENT)
7660 {
7661 /* For elemental dimensions, we only need the offset. */
7662 continue;
7663 }
7664
7665 /* Vector subscripts need copying and are handled elsewhere. */
7666 if (info->ref)
7667 gcc_assert (info->ref->u.ar.dimen_type[n] == DIMEN_RANGE);
7668
7669 /* look for the corresponding scalarizer dimension: dim. */
7670 for (dim = 0; dim < ndim; dim++)
7671 if (ss->dim[dim] == n)
7672 break;
7673
7674 /* loop exited early: the DIM being looked for has been found. */
7675 gcc_assert (dim < ndim);
7676
7677 /* Set the new lower bound. */
7678 from = loop.from[dim];
7679 to = loop.to[dim];
7680
7681 onebased = integer_onep (from);
7682 gfc_conv_descriptor_lbound_set (&loop.pre, parm,
7683 gfc_rank_cst[dim], from);
7684
7685 /* Set the new upper bound. */
7686 gfc_conv_descriptor_ubound_set (&loop.pre, parm,
7687 gfc_rank_cst[dim], to);
7688
7689 /* Multiply the stride by the section stride to get the
7690 total stride. */
7691 stride = fold_build2_loc (input_location, MULT_EXPR,
7692 gfc_array_index_type,
7693 stride, info->stride[n]);
7694
7695 if ((se->direct_byref || se->use_offset)
7696 && ((info->ref && info->ref->u.ar.type != AR_FULL)
7697 || (expr->expr_type == EXPR_ARRAY && se->use_offset)))
7698 {
7699 base = fold_build2_loc (input_location, MINUS_EXPR,
7700 TREE_TYPE (base), base, stride);
7701 }
7702 else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)) || se->use_offset)
7703 {
7704 bool toonebased;
7705 tmp = gfc_conv_array_lbound (desc, n);
7706 toonebased = integer_onep (tmp);
7707 // lb(arr) - from (- start + 1)
7708 tmp = fold_build2_loc (input_location, MINUS_EXPR,
7709 TREE_TYPE (base), tmp, from);
7710 if (onebased && toonebased)
7711 {
7712 tmp = fold_build2_loc (input_location, MINUS_EXPR,
7713 TREE_TYPE (base), tmp, start);
7714 tmp = fold_build2_loc (input_location, PLUS_EXPR,
7715 TREE_TYPE (base), tmp,
7716 gfc_index_one_node);
7717 }
7718 tmp = fold_build2_loc (input_location, MULT_EXPR,
7719 TREE_TYPE (base), tmp,
7720 gfc_conv_array_stride (desc, n));
7721 base = fold_build2_loc (input_location, PLUS_EXPR,
7722 TREE_TYPE (base), tmp, base);
7723 }
7724
7725 /* Store the new stride. */
7726 gfc_conv_descriptor_stride_set (&loop.pre, parm,
7727 gfc_rank_cst[dim], stride);
7728 }
7729
7730 for (n = loop.dimen; n < loop.dimen + codim; n++)
7731 {
7732 from = loop.from[n];
7733 to = loop.to[n];
7734 gfc_conv_descriptor_lbound_set (&loop.pre, parm,
7735 gfc_rank_cst[n], from);
7736 if (n < loop.dimen + codim - 1)
7737 gfc_conv_descriptor_ubound_set (&loop.pre, parm,
7738 gfc_rank_cst[n], to);
7739 }
7740
7741 if (se->data_not_needed)
7742 gfc_conv_descriptor_data_set (&loop.pre, parm,
7743 gfc_index_zero_node);
7744 else
7745 /* Point the data pointer at the 1st element in the section. */
7746 gfc_get_dataptr_offset (&loop.pre, parm, desc, offset,
7747 subref_array_target, expr);
7748
7749 /* Force the offset to be -1, when the lower bound of the highest
7750 dimension is one and the symbol is present and is not a
7751 pointer/allocatable or associated. */
7752 if (((se->direct_byref || GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
7753 && !se->data_not_needed)
7754 || (se->use_offset && base != NULL_TREE))
7755 {
7756 /* Set the offset depending on base. */
7757 tmp = rank_remap && !se->direct_byref ?
7758 fold_build2_loc (input_location, PLUS_EXPR,
7759 gfc_array_index_type, base,
7760 offset)
7761 : base;
7762 gfc_conv_descriptor_offset_set (&loop.pre, parm, tmp);
7763 }
7764 else if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))
7765 && !se->data_not_needed
7766 && (!rank_remap || se->use_offset))
7767 {
7768 gfc_conv_descriptor_offset_set (&loop.pre, parm,
7769 gfc_conv_descriptor_offset_get (desc));
7770 }
7771 else if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))
7772 && !se->data_not_needed
7773 && gfc_expr_attr (expr).select_rank_temporary)
7774 {
7775 gfc_conv_descriptor_offset_set (&loop.pre, parm, gfc_index_zero_node);
7776 }
7777 else if (onebased && (!rank_remap || se->use_offset)
7778 && expr->symtree
7779 && !(expr->symtree->n.sym && expr->symtree->n.sym->ts.type == BT_CLASS
7780 && !CLASS_DATA (expr->symtree->n.sym)->attr.class_pointer)
7781 && !expr->symtree->n.sym->attr.allocatable
7782 && !expr->symtree->n.sym->attr.pointer
7783 && !expr->symtree->n.sym->attr.host_assoc
7784 && !expr->symtree->n.sym->attr.use_assoc)
7785 {
7786 /* Set the offset to -1. */
7787 mpz_t minus_one;
7788 mpz_init_set_si (minus_one, -1);
7789 tmp = gfc_conv_mpz_to_tree (minus_one, gfc_index_integer_kind);
7790 gfc_conv_descriptor_offset_set (&loop.pre, parm, tmp);
7791 }
7792 else
7793 {
7794 /* Only the callee knows what the correct offset it, so just set
7795 it to zero here. */
7796 gfc_conv_descriptor_offset_set (&loop.pre, parm, gfc_index_zero_node);
7797 }
7798 desc = parm;
7799 }
7800
7801 /* For class arrays add the class tree into the saved descriptor to
7802 enable getting of _vptr and the like. */
7803 if (expr->expr_type == EXPR_VARIABLE && VAR_P (desc)
7804 && IS_CLASS_ARRAY (expr->symtree->n.sym))
7805 {
7806 gfc_allocate_lang_decl (desc);
7807 GFC_DECL_SAVED_DESCRIPTOR (desc) =
7808 DECL_LANG_SPECIFIC (expr->symtree->n.sym->backend_decl) ?
7809 GFC_DECL_SAVED_DESCRIPTOR (expr->symtree->n.sym->backend_decl)
7810 : expr->symtree->n.sym->backend_decl;
7811 }
7812 else if (expr->expr_type == EXPR_ARRAY && VAR_P (desc)
7813 && IS_CLASS_ARRAY (expr))
7814 {
7815 tree vtype;
7816 gfc_allocate_lang_decl (desc);
7817 tmp = gfc_create_var (expr->ts.u.derived->backend_decl, "class");
7818 GFC_DECL_SAVED_DESCRIPTOR (desc) = tmp;
7819 vtype = gfc_class_vptr_get (tmp);
7820 gfc_add_modify (&se->pre, vtype,
7821 gfc_build_addr_expr (TREE_TYPE (vtype),
7822 gfc_find_vtab (&expr->ts)->backend_decl));
7823 }
7824 if (!se->direct_byref || se->byref_noassign)
7825 {
7826 /* Get a pointer to the new descriptor. */
7827 if (se->want_pointer)
7828 se->expr = gfc_build_addr_expr (NULL_TREE, desc);
7829 else
7830 se->expr = desc;
7831 }
7832
7833 gfc_add_block_to_block (&se->pre, &loop.pre);
7834 gfc_add_block_to_block (&se->post, &loop.post);
7835
7836 /* Cleanup the scalarizer. */
7837 gfc_cleanup_loop (&loop);
7838 }
7839
7840 /* Helper function for gfc_conv_array_parameter if array size needs to be
7841 computed. */
7842
7843 static void
7844 array_parameter_size (tree desc, gfc_expr *expr, tree *size)
7845 {
7846 tree elem;
7847 if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
7848 *size = GFC_TYPE_ARRAY_SIZE (TREE_TYPE (desc));
7849 else if (expr->rank > 1)
7850 *size = build_call_expr_loc (input_location,
7851 gfor_fndecl_size0, 1,
7852 gfc_build_addr_expr (NULL, desc));
7853 else
7854 {
7855 tree ubound = gfc_conv_descriptor_ubound_get (desc, gfc_index_zero_node);
7856 tree lbound = gfc_conv_descriptor_lbound_get (desc, gfc_index_zero_node);
7857
7858 *size = fold_build2_loc (input_location, MINUS_EXPR,
7859 gfc_array_index_type, ubound, lbound);
7860 *size = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
7861 *size, gfc_index_one_node);
7862 *size = fold_build2_loc (input_location, MAX_EXPR, gfc_array_index_type,
7863 *size, gfc_index_zero_node);
7864 }
7865 elem = TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (desc)));
7866 *size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
7867 *size, fold_convert (gfc_array_index_type, elem));
7868 }
7869
7870 /* Helper function - return true if the argument is a pointer. */
7871
7872 static bool
7873 is_pointer (gfc_expr *e)
7874 {
7875 gfc_symbol *sym;
7876
7877 if (e->expr_type != EXPR_VARIABLE || e->symtree == NULL)
7878 return false;
7879
7880 sym = e->symtree->n.sym;
7881 if (sym == NULL)
7882 return false;
7883
7884 return sym->attr.pointer || sym->attr.proc_pointer;
7885 }
7886
7887 /* Convert an array for passing as an actual parameter. */
7888
7889 void
7890 gfc_conv_array_parameter (gfc_se * se, gfc_expr * expr, bool g77,
7891 const gfc_symbol *fsym, const char *proc_name,
7892 tree *size)
7893 {
7894 tree ptr;
7895 tree desc;
7896 tree tmp = NULL_TREE;
7897 tree stmt;
7898 tree parent = DECL_CONTEXT (current_function_decl);
7899 bool full_array_var;
7900 bool this_array_result;
7901 bool contiguous;
7902 bool no_pack;
7903 bool array_constructor;
7904 bool good_allocatable;
7905 bool ultimate_ptr_comp;
7906 bool ultimate_alloc_comp;
7907 gfc_symbol *sym;
7908 stmtblock_t block;
7909 gfc_ref *ref;
7910
7911 ultimate_ptr_comp = false;
7912 ultimate_alloc_comp = false;
7913
7914 for (ref = expr->ref; ref; ref = ref->next)
7915 {
7916 if (ref->next == NULL)
7917 break;
7918
7919 if (ref->type == REF_COMPONENT)
7920 {
7921 ultimate_ptr_comp = ref->u.c.component->attr.pointer;
7922 ultimate_alloc_comp = ref->u.c.component->attr.allocatable;
7923 }
7924 }
7925
7926 full_array_var = false;
7927 contiguous = false;
7928
7929 if (expr->expr_type == EXPR_VARIABLE && ref && !ultimate_ptr_comp)
7930 full_array_var = gfc_full_array_ref_p (ref, &contiguous);
7931
7932 sym = full_array_var ? expr->symtree->n.sym : NULL;
7933
7934 /* The symbol should have an array specification. */
7935 gcc_assert (!sym || sym->as || ref->u.ar.as);
7936
7937 if (expr->expr_type == EXPR_ARRAY && expr->ts.type == BT_CHARACTER)
7938 {
7939 get_array_ctor_strlen (&se->pre, expr->value.constructor, &tmp);
7940 expr->ts.u.cl->backend_decl = tmp;
7941 se->string_length = tmp;
7942 }
7943
7944 /* Is this the result of the enclosing procedure? */
7945 this_array_result = (full_array_var && sym->attr.flavor == FL_PROCEDURE);
7946 if (this_array_result
7947 && (sym->backend_decl != current_function_decl)
7948 && (sym->backend_decl != parent))
7949 this_array_result = false;
7950
7951 /* Passing address of the array if it is not pointer or assumed-shape. */
7952 if (full_array_var && g77 && !this_array_result
7953 && sym->ts.type != BT_DERIVED && sym->ts.type != BT_CLASS)
7954 {
7955 tmp = gfc_get_symbol_decl (sym);
7956
7957 if (sym->ts.type == BT_CHARACTER)
7958 se->string_length = sym->ts.u.cl->backend_decl;
7959
7960 if (!sym->attr.pointer
7961 && sym->as
7962 && sym->as->type != AS_ASSUMED_SHAPE
7963 && sym->as->type != AS_DEFERRED
7964 && sym->as->type != AS_ASSUMED_RANK
7965 && !sym->attr.allocatable)
7966 {
7967 /* Some variables are declared directly, others are declared as
7968 pointers and allocated on the heap. */
7969 if (sym->attr.dummy || POINTER_TYPE_P (TREE_TYPE (tmp)))
7970 se->expr = tmp;
7971 else
7972 se->expr = gfc_build_addr_expr (NULL_TREE, tmp);
7973 if (size)
7974 array_parameter_size (tmp, expr, size);
7975 return;
7976 }
7977
7978 if (sym->attr.allocatable)
7979 {
7980 if (sym->attr.dummy || sym->attr.result)
7981 {
7982 gfc_conv_expr_descriptor (se, expr);
7983 tmp = se->expr;
7984 }
7985 if (size)
7986 array_parameter_size (tmp, expr, size);
7987 se->expr = gfc_conv_array_data (tmp);
7988 return;
7989 }
7990 }
7991
7992 /* A convenient reduction in scope. */
7993 contiguous = g77 && !this_array_result && contiguous;
7994
7995 /* There is no need to pack and unpack the array, if it is contiguous
7996 and not a deferred- or assumed-shape array, or if it is simply
7997 contiguous. */
7998 no_pack = ((sym && sym->as
7999 && !sym->attr.pointer
8000 && sym->as->type != AS_DEFERRED
8001 && sym->as->type != AS_ASSUMED_RANK
8002 && sym->as->type != AS_ASSUMED_SHAPE)
8003 ||
8004 (ref && ref->u.ar.as
8005 && ref->u.ar.as->type != AS_DEFERRED
8006 && ref->u.ar.as->type != AS_ASSUMED_RANK
8007 && ref->u.ar.as->type != AS_ASSUMED_SHAPE)
8008 ||
8009 gfc_is_simply_contiguous (expr, false, true));
8010
8011 no_pack = contiguous && no_pack;
8012
8013 /* If we have an EXPR_OP or a function returning an explicit-shaped
8014 or allocatable array, an array temporary will be generated which
8015 does not need to be packed / unpacked if passed to an
8016 explicit-shape dummy array. */
8017
8018 if (g77)
8019 {
8020 if (expr->expr_type == EXPR_OP)
8021 no_pack = 1;
8022 else if (expr->expr_type == EXPR_FUNCTION && expr->value.function.esym)
8023 {
8024 gfc_symbol *result = expr->value.function.esym->result;
8025 if (result->attr.dimension
8026 && (result->as->type == AS_EXPLICIT
8027 || result->attr.allocatable
8028 || result->attr.contiguous))
8029 no_pack = 1;
8030 }
8031 }
8032
8033 /* Array constructors are always contiguous and do not need packing. */
8034 array_constructor = g77 && !this_array_result && expr->expr_type == EXPR_ARRAY;
8035
8036 /* Same is true of contiguous sections from allocatable variables. */
8037 good_allocatable = contiguous
8038 && expr->symtree
8039 && expr->symtree->n.sym->attr.allocatable;
8040
8041 /* Or ultimate allocatable components. */
8042 ultimate_alloc_comp = contiguous && ultimate_alloc_comp;
8043
8044 if (no_pack || array_constructor || good_allocatable || ultimate_alloc_comp)
8045 {
8046 gfc_conv_expr_descriptor (se, expr);
8047 /* Deallocate the allocatable components of structures that are
8048 not variable. */
8049 if ((expr->ts.type == BT_DERIVED || expr->ts.type == BT_CLASS)
8050 && expr->ts.u.derived->attr.alloc_comp
8051 && expr->expr_type != EXPR_VARIABLE)
8052 {
8053 tmp = gfc_deallocate_alloc_comp (expr->ts.u.derived, se->expr, expr->rank);
8054
8055 /* The components shall be deallocated before their containing entity. */
8056 gfc_prepend_expr_to_block (&se->post, tmp);
8057 }
8058 if (expr->ts.type == BT_CHARACTER && expr->expr_type != EXPR_FUNCTION)
8059 se->string_length = expr->ts.u.cl->backend_decl;
8060 if (size)
8061 array_parameter_size (se->expr, expr, size);
8062 se->expr = gfc_conv_array_data (se->expr);
8063 return;
8064 }
8065
8066 if (this_array_result)
8067 {
8068 /* Result of the enclosing function. */
8069 gfc_conv_expr_descriptor (se, expr);
8070 if (size)
8071 array_parameter_size (se->expr, expr, size);
8072 se->expr = gfc_build_addr_expr (NULL_TREE, se->expr);
8073
8074 if (g77 && TREE_TYPE (TREE_TYPE (se->expr)) != NULL_TREE
8075 && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (TREE_TYPE (se->expr))))
8076 se->expr = gfc_conv_array_data (build_fold_indirect_ref_loc (input_location,
8077 se->expr));
8078
8079 return;
8080 }
8081 else
8082 {
8083 /* Every other type of array. */
8084 se->want_pointer = 1;
8085 gfc_conv_expr_descriptor (se, expr);
8086
8087 if (size)
8088 array_parameter_size (build_fold_indirect_ref_loc (input_location,
8089 se->expr),
8090 expr, size);
8091 }
8092
8093 /* Deallocate the allocatable components of structures that are
8094 not variable, for descriptorless arguments.
8095 Arguments with a descriptor are handled in gfc_conv_procedure_call. */
8096 if (g77 && (expr->ts.type == BT_DERIVED || expr->ts.type == BT_CLASS)
8097 && expr->ts.u.derived->attr.alloc_comp
8098 && expr->expr_type != EXPR_VARIABLE)
8099 {
8100 tmp = build_fold_indirect_ref_loc (input_location, se->expr);
8101 tmp = gfc_deallocate_alloc_comp (expr->ts.u.derived, tmp, expr->rank);
8102
8103 /* The components shall be deallocated before their containing entity. */
8104 gfc_prepend_expr_to_block (&se->post, tmp);
8105 }
8106
8107 if (g77 || (fsym && fsym->attr.contiguous
8108 && !gfc_is_simply_contiguous (expr, false, true)))
8109 {
8110 tree origptr = NULL_TREE;
8111
8112 desc = se->expr;
8113
8114 /* For contiguous arrays, save the original value of the descriptor. */
8115 if (!g77)
8116 {
8117 origptr = gfc_create_var (pvoid_type_node, "origptr");
8118 tmp = build_fold_indirect_ref_loc (input_location, desc);
8119 tmp = gfc_conv_array_data (tmp);
8120 tmp = fold_build2_loc (input_location, MODIFY_EXPR,
8121 TREE_TYPE (origptr), origptr,
8122 fold_convert (TREE_TYPE (origptr), tmp));
8123 gfc_add_expr_to_block (&se->pre, tmp);
8124 }
8125
8126 /* Repack the array. */
8127 if (warn_array_temporaries)
8128 {
8129 if (fsym)
8130 gfc_warning (OPT_Warray_temporaries,
8131 "Creating array temporary at %L for argument %qs",
8132 &expr->where, fsym->name);
8133 else
8134 gfc_warning (OPT_Warray_temporaries,
8135 "Creating array temporary at %L", &expr->where);
8136 }
8137
8138 /* When optmizing, we can use gfc_conv_subref_array_arg for
8139 making the packing and unpacking operation visible to the
8140 optimizers. */
8141
8142 if (g77 && flag_inline_arg_packing && expr->expr_type == EXPR_VARIABLE
8143 && !is_pointer (expr) && ! gfc_has_dimen_vector_ref (expr)
8144 && !(expr->symtree->n.sym->as
8145 && expr->symtree->n.sym->as->type == AS_ASSUMED_RANK)
8146 && (fsym == NULL || fsym->ts.type != BT_ASSUMED))
8147 {
8148 gfc_conv_subref_array_arg (se, expr, g77,
8149 fsym ? fsym->attr.intent : INTENT_INOUT,
8150 false, fsym, proc_name, sym, true);
8151 return;
8152 }
8153
8154 ptr = build_call_expr_loc (input_location,
8155 gfor_fndecl_in_pack, 1, desc);
8156
8157 if (fsym && fsym->attr.optional && sym && sym->attr.optional)
8158 {
8159 tmp = gfc_conv_expr_present (sym);
8160 ptr = build3_loc (input_location, COND_EXPR, TREE_TYPE (se->expr),
8161 tmp, fold_convert (TREE_TYPE (se->expr), ptr),
8162 fold_convert (TREE_TYPE (se->expr), null_pointer_node));
8163 }
8164
8165 ptr = gfc_evaluate_now (ptr, &se->pre);
8166
8167 /* Use the packed data for the actual argument, except for contiguous arrays,
8168 where the descriptor's data component is set. */
8169 if (g77)
8170 se->expr = ptr;
8171 else
8172 {
8173 tmp = build_fold_indirect_ref_loc (input_location, desc);
8174
8175 gfc_ss * ss = gfc_walk_expr (expr);
8176 if (!transposed_dims (ss))
8177 gfc_conv_descriptor_data_set (&se->pre, tmp, ptr);
8178 else
8179 {
8180 tree old_field, new_field;
8181
8182 /* The original descriptor has transposed dims so we can't reuse
8183 it directly; we have to create a new one. */
8184 tree old_desc = tmp;
8185 tree new_desc = gfc_create_var (TREE_TYPE (old_desc), "arg_desc");
8186
8187 old_field = gfc_conv_descriptor_dtype (old_desc);
8188 new_field = gfc_conv_descriptor_dtype (new_desc);
8189 gfc_add_modify (&se->pre, new_field, old_field);
8190
8191 old_field = gfc_conv_descriptor_offset (old_desc);
8192 new_field = gfc_conv_descriptor_offset (new_desc);
8193 gfc_add_modify (&se->pre, new_field, old_field);
8194
8195 for (int i = 0; i < expr->rank; i++)
8196 {
8197 old_field = gfc_conv_descriptor_dimension (old_desc,
8198 gfc_rank_cst[get_array_ref_dim_for_loop_dim (ss, i)]);
8199 new_field = gfc_conv_descriptor_dimension (new_desc,
8200 gfc_rank_cst[i]);
8201 gfc_add_modify (&se->pre, new_field, old_field);
8202 }
8203
8204 if (flag_coarray == GFC_FCOARRAY_LIB
8205 && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (old_desc))
8206 && GFC_TYPE_ARRAY_AKIND (TREE_TYPE (old_desc))
8207 == GFC_ARRAY_ALLOCATABLE)
8208 {
8209 old_field = gfc_conv_descriptor_token (old_desc);
8210 new_field = gfc_conv_descriptor_token (new_desc);
8211 gfc_add_modify (&se->pre, new_field, old_field);
8212 }
8213
8214 gfc_conv_descriptor_data_set (&se->pre, new_desc, ptr);
8215 se->expr = gfc_build_addr_expr (NULL_TREE, new_desc);
8216 }
8217 gfc_free_ss (ss);
8218 }
8219
8220 if (gfc_option.rtcheck & GFC_RTCHECK_ARRAY_TEMPS)
8221 {
8222 char * msg;
8223
8224 if (fsym && proc_name)
8225 msg = xasprintf ("An array temporary was created for argument "
8226 "'%s' of procedure '%s'", fsym->name, proc_name);
8227 else
8228 msg = xasprintf ("An array temporary was created");
8229
8230 tmp = build_fold_indirect_ref_loc (input_location,
8231 desc);
8232 tmp = gfc_conv_array_data (tmp);
8233 tmp = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
8234 fold_convert (TREE_TYPE (tmp), ptr), tmp);
8235
8236 if (fsym && fsym->attr.optional && sym && sym->attr.optional)
8237 tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR,
8238 logical_type_node,
8239 gfc_conv_expr_present (sym), tmp);
8240
8241 gfc_trans_runtime_check (false, true, tmp, &se->pre,
8242 &expr->where, msg);
8243 free (msg);
8244 }
8245
8246 gfc_start_block (&block);
8247
8248 /* Copy the data back. */
8249 if (fsym == NULL || fsym->attr.intent != INTENT_IN)
8250 {
8251 tmp = build_call_expr_loc (input_location,
8252 gfor_fndecl_in_unpack, 2, desc, ptr);
8253 gfc_add_expr_to_block (&block, tmp);
8254 }
8255
8256 /* Free the temporary. */
8257 tmp = gfc_call_free (ptr);
8258 gfc_add_expr_to_block (&block, tmp);
8259
8260 stmt = gfc_finish_block (&block);
8261
8262 gfc_init_block (&block);
8263 /* Only if it was repacked. This code needs to be executed before the
8264 loop cleanup code. */
8265 tmp = build_fold_indirect_ref_loc (input_location,
8266 desc);
8267 tmp = gfc_conv_array_data (tmp);
8268 tmp = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
8269 fold_convert (TREE_TYPE (tmp), ptr), tmp);
8270
8271 if (fsym && fsym->attr.optional && sym && sym->attr.optional)
8272 tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR,
8273 logical_type_node,
8274 gfc_conv_expr_present (sym), tmp);
8275
8276 tmp = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt (input_location));
8277
8278 gfc_add_expr_to_block (&block, tmp);
8279 gfc_add_block_to_block (&block, &se->post);
8280
8281 gfc_init_block (&se->post);
8282
8283 /* Reset the descriptor pointer. */
8284 if (!g77)
8285 {
8286 tmp = build_fold_indirect_ref_loc (input_location, desc);
8287 gfc_conv_descriptor_data_set (&se->post, tmp, origptr);
8288 }
8289
8290 gfc_add_block_to_block (&se->post, &block);
8291 }
8292 }
8293
8294
8295 /* This helper function calculates the size in words of a full array. */
8296
8297 tree
8298 gfc_full_array_size (stmtblock_t *block, tree decl, int rank)
8299 {
8300 tree idx;
8301 tree nelems;
8302 tree tmp;
8303 idx = gfc_rank_cst[rank - 1];
8304 nelems = gfc_conv_descriptor_ubound_get (decl, idx);
8305 tmp = gfc_conv_descriptor_lbound_get (decl, idx);
8306 tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
8307 nelems, tmp);
8308 tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
8309 tmp, gfc_index_one_node);
8310 tmp = gfc_evaluate_now (tmp, block);
8311
8312 nelems = gfc_conv_descriptor_stride_get (decl, idx);
8313 tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
8314 nelems, tmp);
8315 return gfc_evaluate_now (tmp, block);
8316 }
8317
8318
8319 /* Allocate dest to the same size as src, and copy src -> dest.
8320 If no_malloc is set, only the copy is done. */
8321
8322 static tree
8323 duplicate_allocatable (tree dest, tree src, tree type, int rank,
8324 bool no_malloc, bool no_memcpy, tree str_sz,
8325 tree add_when_allocated)
8326 {
8327 tree tmp;
8328 tree size;
8329 tree nelems;
8330 tree null_cond;
8331 tree null_data;
8332 stmtblock_t block;
8333
8334 /* If the source is null, set the destination to null. Then,
8335 allocate memory to the destination. */
8336 gfc_init_block (&block);
8337
8338 if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (dest)))
8339 {
8340 gfc_add_modify (&block, dest, fold_convert (type, null_pointer_node));
8341 null_data = gfc_finish_block (&block);
8342
8343 gfc_init_block (&block);
8344 if (str_sz != NULL_TREE)
8345 size = str_sz;
8346 else
8347 size = TYPE_SIZE_UNIT (TREE_TYPE (type));
8348
8349 if (!no_malloc)
8350 {
8351 tmp = gfc_call_malloc (&block, type, size);
8352 gfc_add_modify (&block, dest, fold_convert (type, tmp));
8353 }
8354
8355 if (!no_memcpy)
8356 {
8357 tmp = builtin_decl_explicit (BUILT_IN_MEMCPY);
8358 tmp = build_call_expr_loc (input_location, tmp, 3, dest, src,
8359 fold_convert (size_type_node, size));
8360 gfc_add_expr_to_block (&block, tmp);
8361 }
8362 }
8363 else
8364 {
8365 gfc_conv_descriptor_data_set (&block, dest, null_pointer_node);
8366 null_data = gfc_finish_block (&block);
8367
8368 gfc_init_block (&block);
8369 if (rank)
8370 nelems = gfc_full_array_size (&block, src, rank);
8371 else
8372 nelems = gfc_index_one_node;
8373
8374 if (str_sz != NULL_TREE)
8375 tmp = fold_convert (gfc_array_index_type, str_sz);
8376 else
8377 tmp = fold_convert (gfc_array_index_type,
8378 TYPE_SIZE_UNIT (gfc_get_element_type (type)));
8379 size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
8380 nelems, tmp);
8381 if (!no_malloc)
8382 {
8383 tmp = TREE_TYPE (gfc_conv_descriptor_data_get (src));
8384 tmp = gfc_call_malloc (&block, tmp, size);
8385 gfc_conv_descriptor_data_set (&block, dest, tmp);
8386 }
8387
8388 /* We know the temporary and the value will be the same length,
8389 so can use memcpy. */
8390 if (!no_memcpy)
8391 {
8392 tmp = builtin_decl_explicit (BUILT_IN_MEMCPY);
8393 tmp = build_call_expr_loc (input_location, tmp, 3,
8394 gfc_conv_descriptor_data_get (dest),
8395 gfc_conv_descriptor_data_get (src),
8396 fold_convert (size_type_node, size));
8397 gfc_add_expr_to_block (&block, tmp);
8398 }
8399 }
8400
8401 gfc_add_expr_to_block (&block, add_when_allocated);
8402 tmp = gfc_finish_block (&block);
8403
8404 /* Null the destination if the source is null; otherwise do
8405 the allocate and copy. */
8406 if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (src)))
8407 null_cond = src;
8408 else
8409 null_cond = gfc_conv_descriptor_data_get (src);
8410
8411 null_cond = convert (pvoid_type_node, null_cond);
8412 null_cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
8413 null_cond, null_pointer_node);
8414 return build3_v (COND_EXPR, null_cond, tmp, null_data);
8415 }
8416
8417
8418 /* Allocate dest to the same size as src, and copy data src -> dest. */
8419
8420 tree
8421 gfc_duplicate_allocatable (tree dest, tree src, tree type, int rank,
8422 tree add_when_allocated)
8423 {
8424 return duplicate_allocatable (dest, src, type, rank, false, false,
8425 NULL_TREE, add_when_allocated);
8426 }
8427
8428
8429 /* Copy data src -> dest. */
8430
8431 tree
8432 gfc_copy_allocatable_data (tree dest, tree src, tree type, int rank)
8433 {
8434 return duplicate_allocatable (dest, src, type, rank, true, false,
8435 NULL_TREE, NULL_TREE);
8436 }
8437
8438 /* Allocate dest to the same size as src, but don't copy anything. */
8439
8440 tree
8441 gfc_duplicate_allocatable_nocopy (tree dest, tree src, tree type, int rank)
8442 {
8443 return duplicate_allocatable (dest, src, type, rank, false, true,
8444 NULL_TREE, NULL_TREE);
8445 }
8446
8447
8448 static tree
8449 duplicate_allocatable_coarray (tree dest, tree dest_tok, tree src,
8450 tree type, int rank)
8451 {
8452 tree tmp;
8453 tree size;
8454 tree nelems;
8455 tree null_cond;
8456 tree null_data;
8457 stmtblock_t block, globalblock;
8458
8459 /* If the source is null, set the destination to null. Then,
8460 allocate memory to the destination. */
8461 gfc_init_block (&block);
8462 gfc_init_block (&globalblock);
8463
8464 if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (dest)))
8465 {
8466 gfc_se se;
8467 symbol_attribute attr;
8468 tree dummy_desc;
8469
8470 gfc_init_se (&se, NULL);
8471 gfc_clear_attr (&attr);
8472 attr.allocatable = 1;
8473 dummy_desc = gfc_conv_scalar_to_descriptor (&se, dest, attr);
8474 gfc_add_block_to_block (&globalblock, &se.pre);
8475 size = TYPE_SIZE_UNIT (TREE_TYPE (type));
8476
8477 gfc_add_modify (&block, dest, fold_convert (type, null_pointer_node));
8478 gfc_allocate_using_caf_lib (&block, dummy_desc, size,
8479 gfc_build_addr_expr (NULL_TREE, dest_tok),
8480 NULL_TREE, NULL_TREE, NULL_TREE,
8481 GFC_CAF_COARRAY_ALLOC_REGISTER_ONLY);
8482 null_data = gfc_finish_block (&block);
8483
8484 gfc_init_block (&block);
8485
8486 gfc_allocate_using_caf_lib (&block, dummy_desc,
8487 fold_convert (size_type_node, size),
8488 gfc_build_addr_expr (NULL_TREE, dest_tok),
8489 NULL_TREE, NULL_TREE, NULL_TREE,
8490 GFC_CAF_COARRAY_ALLOC);
8491
8492 tmp = builtin_decl_explicit (BUILT_IN_MEMCPY);
8493 tmp = build_call_expr_loc (input_location, tmp, 3, dest, src,
8494 fold_convert (size_type_node, size));
8495 gfc_add_expr_to_block (&block, tmp);
8496 }
8497 else
8498 {
8499 /* Set the rank or unitialized memory access may be reported. */
8500 tmp = gfc_conv_descriptor_rank (dest);
8501 gfc_add_modify (&globalblock, tmp, build_int_cst (TREE_TYPE (tmp), rank));
8502
8503 if (rank)
8504 nelems = gfc_full_array_size (&block, src, rank);
8505 else
8506 nelems = integer_one_node;
8507
8508 tmp = fold_convert (size_type_node,
8509 TYPE_SIZE_UNIT (gfc_get_element_type (type)));
8510 size = fold_build2_loc (input_location, MULT_EXPR, size_type_node,
8511 fold_convert (size_type_node, nelems), tmp);
8512
8513 gfc_conv_descriptor_data_set (&block, dest, null_pointer_node);
8514 gfc_allocate_using_caf_lib (&block, dest, fold_convert (size_type_node,
8515 size),
8516 gfc_build_addr_expr (NULL_TREE, dest_tok),
8517 NULL_TREE, NULL_TREE, NULL_TREE,
8518 GFC_CAF_COARRAY_ALLOC_REGISTER_ONLY);
8519 null_data = gfc_finish_block (&block);
8520
8521 gfc_init_block (&block);
8522 gfc_allocate_using_caf_lib (&block, dest,
8523 fold_convert (size_type_node, size),
8524 gfc_build_addr_expr (NULL_TREE, dest_tok),
8525 NULL_TREE, NULL_TREE, NULL_TREE,
8526 GFC_CAF_COARRAY_ALLOC);
8527
8528 tmp = builtin_decl_explicit (BUILT_IN_MEMCPY);
8529 tmp = build_call_expr_loc (input_location, tmp, 3,
8530 gfc_conv_descriptor_data_get (dest),
8531 gfc_conv_descriptor_data_get (src),
8532 fold_convert (size_type_node, size));
8533 gfc_add_expr_to_block (&block, tmp);
8534 }
8535
8536 tmp = gfc_finish_block (&block);
8537
8538 /* Null the destination if the source is null; otherwise do
8539 the register and copy. */
8540 if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (src)))
8541 null_cond = src;
8542 else
8543 null_cond = gfc_conv_descriptor_data_get (src);
8544
8545 null_cond = convert (pvoid_type_node, null_cond);
8546 null_cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
8547 null_cond, null_pointer_node);
8548 gfc_add_expr_to_block (&globalblock, build3_v (COND_EXPR, null_cond, tmp,
8549 null_data));
8550 return gfc_finish_block (&globalblock);
8551 }
8552
8553
8554 /* Helper function to abstract whether coarray processing is enabled. */
8555
8556 static bool
8557 caf_enabled (int caf_mode)
8558 {
8559 return (caf_mode & GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY)
8560 == GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY;
8561 }
8562
8563
8564 /* Helper function to abstract whether coarray processing is enabled
8565 and we are in a derived type coarray. */
8566
8567 static bool
8568 caf_in_coarray (int caf_mode)
8569 {
8570 static const int pat = GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY
8571 | GFC_STRUCTURE_CAF_MODE_IN_COARRAY;
8572 return (caf_mode & pat) == pat;
8573 }
8574
8575
8576 /* Helper function to abstract whether coarray is to deallocate only. */
8577
8578 bool
8579 gfc_caf_is_dealloc_only (int caf_mode)
8580 {
8581 return (caf_mode & GFC_STRUCTURE_CAF_MODE_DEALLOC_ONLY)
8582 == GFC_STRUCTURE_CAF_MODE_DEALLOC_ONLY;
8583 }
8584
8585
8586 /* Recursively traverse an object of derived type, generating code to
8587 deallocate, nullify or copy allocatable components. This is the work horse
8588 function for the functions named in this enum. */
8589
8590 enum {DEALLOCATE_ALLOC_COMP = 1, NULLIFY_ALLOC_COMP,
8591 COPY_ALLOC_COMP, COPY_ONLY_ALLOC_COMP, REASSIGN_CAF_COMP,
8592 ALLOCATE_PDT_COMP, DEALLOCATE_PDT_COMP, CHECK_PDT_DUMMY,
8593 BCAST_ALLOC_COMP};
8594
8595 static gfc_actual_arglist *pdt_param_list;
8596
8597 static tree
8598 structure_alloc_comps (gfc_symbol * der_type, tree decl,
8599 tree dest, int rank, int purpose, int caf_mode,
8600 gfc_co_subroutines_args *args)
8601 {
8602 gfc_component *c;
8603 gfc_loopinfo loop;
8604 stmtblock_t fnblock;
8605 stmtblock_t loopbody;
8606 stmtblock_t tmpblock;
8607 tree decl_type;
8608 tree tmp;
8609 tree comp;
8610 tree dcmp;
8611 tree nelems;
8612 tree index;
8613 tree var;
8614 tree cdecl;
8615 tree ctype;
8616 tree vref, dref;
8617 tree null_cond = NULL_TREE;
8618 tree add_when_allocated;
8619 tree dealloc_fndecl;
8620 tree caf_token;
8621 gfc_symbol *vtab;
8622 int caf_dereg_mode;
8623 symbol_attribute *attr;
8624 bool deallocate_called;
8625
8626 gfc_init_block (&fnblock);
8627
8628 decl_type = TREE_TYPE (decl);
8629
8630 if ((POINTER_TYPE_P (decl_type))
8631 || (TREE_CODE (decl_type) == REFERENCE_TYPE && rank == 0))
8632 {
8633 decl = build_fold_indirect_ref_loc (input_location, decl);
8634 /* Deref dest in sync with decl, but only when it is not NULL. */
8635 if (dest)
8636 dest = build_fold_indirect_ref_loc (input_location, dest);
8637
8638 /* Update the decl_type because it got dereferenced. */
8639 decl_type = TREE_TYPE (decl);
8640 }
8641
8642 /* If this is an array of derived types with allocatable components
8643 build a loop and recursively call this function. */
8644 if (TREE_CODE (decl_type) == ARRAY_TYPE
8645 || (GFC_DESCRIPTOR_TYPE_P (decl_type) && rank != 0))
8646 {
8647 tmp = gfc_conv_array_data (decl);
8648 var = build_fold_indirect_ref_loc (input_location, tmp);
8649
8650 /* Get the number of elements - 1 and set the counter. */
8651 if (GFC_DESCRIPTOR_TYPE_P (decl_type))
8652 {
8653 /* Use the descriptor for an allocatable array. Since this
8654 is a full array reference, we only need the descriptor
8655 information from dimension = rank. */
8656 tmp = gfc_full_array_size (&fnblock, decl, rank);
8657 tmp = fold_build2_loc (input_location, MINUS_EXPR,
8658 gfc_array_index_type, tmp,
8659 gfc_index_one_node);
8660
8661 null_cond = gfc_conv_descriptor_data_get (decl);
8662 null_cond = fold_build2_loc (input_location, NE_EXPR,
8663 logical_type_node, null_cond,
8664 build_int_cst (TREE_TYPE (null_cond), 0));
8665 }
8666 else
8667 {
8668 /* Otherwise use the TYPE_DOMAIN information. */
8669 tmp = array_type_nelts (decl_type);
8670 tmp = fold_convert (gfc_array_index_type, tmp);
8671 }
8672
8673 /* Remember that this is, in fact, the no. of elements - 1. */
8674 nelems = gfc_evaluate_now (tmp, &fnblock);
8675 index = gfc_create_var (gfc_array_index_type, "S");
8676
8677 /* Build the body of the loop. */
8678 gfc_init_block (&loopbody);
8679
8680 vref = gfc_build_array_ref (var, index, NULL);
8681
8682 if ((purpose == COPY_ALLOC_COMP || purpose == COPY_ONLY_ALLOC_COMP)
8683 && !caf_enabled (caf_mode))
8684 {
8685 tmp = build_fold_indirect_ref_loc (input_location,
8686 gfc_conv_array_data (dest));
8687 dref = gfc_build_array_ref (tmp, index, NULL);
8688 tmp = structure_alloc_comps (der_type, vref, dref, rank,
8689 COPY_ALLOC_COMP, 0, args);
8690 }
8691 else
8692 tmp = structure_alloc_comps (der_type, vref, NULL_TREE, rank, purpose,
8693 caf_mode, args);
8694
8695 gfc_add_expr_to_block (&loopbody, tmp);
8696
8697 /* Build the loop and return. */
8698 gfc_init_loopinfo (&loop);
8699 loop.dimen = 1;
8700 loop.from[0] = gfc_index_zero_node;
8701 loop.loopvar[0] = index;
8702 loop.to[0] = nelems;
8703 gfc_trans_scalarizing_loops (&loop, &loopbody);
8704 gfc_add_block_to_block (&fnblock, &loop.pre);
8705
8706 tmp = gfc_finish_block (&fnblock);
8707 /* When copying allocateable components, the above implements the
8708 deep copy. Nevertheless is a deep copy only allowed, when the current
8709 component is allocated, for which code will be generated in
8710 gfc_duplicate_allocatable (), where the deep copy code is just added
8711 into the if's body, by adding tmp (the deep copy code) as last
8712 argument to gfc_duplicate_allocatable (). */
8713 if (purpose == COPY_ALLOC_COMP
8714 && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (dest)))
8715 tmp = gfc_duplicate_allocatable (dest, decl, decl_type, rank,
8716 tmp);
8717 else if (null_cond != NULL_TREE)
8718 tmp = build3_v (COND_EXPR, null_cond, tmp,
8719 build_empty_stmt (input_location));
8720
8721 return tmp;
8722 }
8723
8724 if (purpose == DEALLOCATE_ALLOC_COMP && der_type->attr.pdt_type)
8725 {
8726 tmp = structure_alloc_comps (der_type, decl, NULL_TREE, rank,
8727 DEALLOCATE_PDT_COMP, 0, args);
8728 gfc_add_expr_to_block (&fnblock, tmp);
8729 }
8730 else if (purpose == ALLOCATE_PDT_COMP && der_type->attr.alloc_comp)
8731 {
8732 tmp = structure_alloc_comps (der_type, decl, NULL_TREE, rank,
8733 NULLIFY_ALLOC_COMP, 0, args);
8734 gfc_add_expr_to_block (&fnblock, tmp);
8735 }
8736
8737 /* Otherwise, act on the components or recursively call self to
8738 act on a chain of components. */
8739 for (c = der_type->components; c; c = c->next)
8740 {
8741 bool cmp_has_alloc_comps = (c->ts.type == BT_DERIVED
8742 || c->ts.type == BT_CLASS)
8743 && c->ts.u.derived->attr.alloc_comp;
8744 bool same_type = (c->ts.type == BT_DERIVED && der_type == c->ts.u.derived)
8745 || (c->ts.type == BT_CLASS && der_type == CLASS_DATA (c)->ts.u.derived);
8746
8747 bool is_pdt_type = c->ts.type == BT_DERIVED
8748 && c->ts.u.derived->attr.pdt_type;
8749
8750 cdecl = c->backend_decl;
8751 ctype = TREE_TYPE (cdecl);
8752
8753 switch (purpose)
8754 {
8755
8756 case BCAST_ALLOC_COMP:
8757
8758 tree ubound;
8759 tree cdesc;
8760 stmtblock_t derived_type_block;
8761
8762 gfc_init_block (&tmpblock);
8763
8764 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
8765 decl, cdecl, NULL_TREE);
8766
8767 /* Shortcut to get the attributes of the component. */
8768 if (c->ts.type == BT_CLASS)
8769 {
8770 attr = &CLASS_DATA (c)->attr;
8771 if (attr->class_pointer)
8772 continue;
8773 }
8774 else
8775 {
8776 attr = &c->attr;
8777 if (attr->pointer)
8778 continue;
8779 }
8780
8781 add_when_allocated = NULL_TREE;
8782 if (cmp_has_alloc_comps
8783 && !c->attr.pointer && !c->attr.proc_pointer)
8784 {
8785 if (c->ts.type == BT_CLASS)
8786 {
8787 rank = CLASS_DATA (c)->as ? CLASS_DATA (c)->as->rank : 0;
8788 add_when_allocated
8789 = structure_alloc_comps (CLASS_DATA (c)->ts.u.derived,
8790 comp, NULL_TREE, rank, purpose,
8791 caf_mode, args);
8792 }
8793 else
8794 {
8795 rank = c->as ? c->as->rank : 0;
8796 add_when_allocated = structure_alloc_comps (c->ts.u.derived,
8797 comp, NULL_TREE,
8798 rank, purpose,
8799 caf_mode, args);
8800 }
8801 }
8802
8803 gfc_init_block (&derived_type_block);
8804 if (add_when_allocated)
8805 gfc_add_expr_to_block (&derived_type_block, add_when_allocated);
8806 tmp = gfc_finish_block (&derived_type_block);
8807 gfc_add_expr_to_block (&tmpblock, tmp);
8808
8809 /* Convert the component into a rank 1 descriptor type. */
8810 if (attr->dimension)
8811 {
8812 tmp = gfc_get_element_type (TREE_TYPE (comp));
8813 ubound = gfc_full_array_size (&tmpblock, comp,
8814 c->ts.type == BT_CLASS
8815 ? CLASS_DATA (c)->as->rank
8816 : c->as->rank);
8817 }
8818 else
8819 {
8820 tmp = TREE_TYPE (comp);
8821 ubound = build_int_cst (gfc_array_index_type, 1);
8822 }
8823
8824 cdesc = gfc_get_array_type_bounds (tmp, 1, 0, &gfc_index_one_node,
8825 &ubound, 1,
8826 GFC_ARRAY_ALLOCATABLE, false);
8827
8828 cdesc = gfc_create_var (cdesc, "cdesc");
8829 DECL_ARTIFICIAL (cdesc) = 1;
8830
8831 gfc_add_modify (&tmpblock, gfc_conv_descriptor_dtype (cdesc),
8832 gfc_get_dtype_rank_type (1, tmp));
8833 gfc_conv_descriptor_lbound_set (&tmpblock, cdesc,
8834 gfc_index_zero_node,
8835 gfc_index_one_node);
8836 gfc_conv_descriptor_stride_set (&tmpblock, cdesc,
8837 gfc_index_zero_node,
8838 gfc_index_one_node);
8839 gfc_conv_descriptor_ubound_set (&tmpblock, cdesc,
8840 gfc_index_zero_node, ubound);
8841
8842 if (attr->dimension)
8843 comp = gfc_conv_descriptor_data_get (comp);
8844 else
8845 {
8846 gfc_se se;
8847
8848 gfc_init_se (&se, NULL);
8849
8850 comp = gfc_conv_scalar_to_descriptor (&se, comp,
8851 c->ts.type == BT_CLASS
8852 ? CLASS_DATA (c)->attr
8853 : c->attr);
8854 comp = gfc_build_addr_expr (NULL_TREE, comp);
8855 gfc_add_block_to_block (&tmpblock, &se.pre);
8856 }
8857
8858 gfc_conv_descriptor_data_set (&tmpblock, cdesc, comp);
8859
8860 tree fndecl;
8861
8862 fndecl = build_call_expr_loc (input_location,
8863 gfor_fndecl_co_broadcast, 5,
8864 gfc_build_addr_expr (pvoid_type_node,cdesc),
8865 args->image_index,
8866 null_pointer_node, null_pointer_node,
8867 null_pointer_node);
8868
8869 gfc_add_expr_to_block (&tmpblock, fndecl);
8870 gfc_add_block_to_block (&fnblock, &tmpblock);
8871
8872 break;
8873
8874 case DEALLOCATE_ALLOC_COMP:
8875
8876 gfc_init_block (&tmpblock);
8877
8878 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
8879 decl, cdecl, NULL_TREE);
8880
8881 /* Shortcut to get the attributes of the component. */
8882 if (c->ts.type == BT_CLASS)
8883 {
8884 attr = &CLASS_DATA (c)->attr;
8885 if (attr->class_pointer)
8886 continue;
8887 }
8888 else
8889 {
8890 attr = &c->attr;
8891 if (attr->pointer)
8892 continue;
8893 }
8894
8895 if ((c->ts.type == BT_DERIVED && !c->attr.pointer)
8896 || (c->ts.type == BT_CLASS && !CLASS_DATA (c)->attr.class_pointer))
8897 /* Call the finalizer, which will free the memory and nullify the
8898 pointer of an array. */
8899 deallocate_called = gfc_add_comp_finalizer_call (&tmpblock, comp, c,
8900 caf_enabled (caf_mode))
8901 && attr->dimension;
8902 else
8903 deallocate_called = false;
8904
8905 /* Add the _class ref for classes. */
8906 if (c->ts.type == BT_CLASS && attr->allocatable)
8907 comp = gfc_class_data_get (comp);
8908
8909 add_when_allocated = NULL_TREE;
8910 if (cmp_has_alloc_comps
8911 && !c->attr.pointer && !c->attr.proc_pointer
8912 && !same_type
8913 && !deallocate_called)
8914 {
8915 /* Add checked deallocation of the components. This code is
8916 obviously added because the finalizer is not trusted to free
8917 all memory. */
8918 if (c->ts.type == BT_CLASS)
8919 {
8920 rank = CLASS_DATA (c)->as ? CLASS_DATA (c)->as->rank : 0;
8921 add_when_allocated
8922 = structure_alloc_comps (CLASS_DATA (c)->ts.u.derived,
8923 comp, NULL_TREE, rank, purpose,
8924 caf_mode, args);
8925 }
8926 else
8927 {
8928 rank = c->as ? c->as->rank : 0;
8929 add_when_allocated = structure_alloc_comps (c->ts.u.derived,
8930 comp, NULL_TREE,
8931 rank, purpose,
8932 caf_mode, args);
8933 }
8934 }
8935
8936 if (attr->allocatable && !same_type
8937 && (!attr->codimension || caf_enabled (caf_mode)))
8938 {
8939 /* Handle all types of components besides components of the
8940 same_type as the current one, because those would create an
8941 endless loop. */
8942 caf_dereg_mode
8943 = (caf_in_coarray (caf_mode) || attr->codimension)
8944 ? (gfc_caf_is_dealloc_only (caf_mode)
8945 ? GFC_CAF_COARRAY_DEALLOCATE_ONLY
8946 : GFC_CAF_COARRAY_DEREGISTER)
8947 : GFC_CAF_COARRAY_NOCOARRAY;
8948
8949 caf_token = NULL_TREE;
8950 /* Coarray components are handled directly by
8951 deallocate_with_status. */
8952 if (!attr->codimension
8953 && caf_dereg_mode != GFC_CAF_COARRAY_NOCOARRAY)
8954 {
8955 if (c->caf_token)
8956 caf_token = fold_build3_loc (input_location, COMPONENT_REF,
8957 TREE_TYPE (c->caf_token),
8958 decl, c->caf_token, NULL_TREE);
8959 else if (attr->dimension && !attr->proc_pointer)
8960 caf_token = gfc_conv_descriptor_token (comp);
8961 }
8962 if (attr->dimension && !attr->codimension && !attr->proc_pointer)
8963 /* When this is an array but not in conjunction with a coarray
8964 then add the data-ref. For coarray'ed arrays the data-ref
8965 is added by deallocate_with_status. */
8966 comp = gfc_conv_descriptor_data_get (comp);
8967
8968 tmp = gfc_deallocate_with_status (comp, NULL_TREE, NULL_TREE,
8969 NULL_TREE, NULL_TREE, true,
8970 NULL, caf_dereg_mode,
8971 add_when_allocated, caf_token);
8972
8973 gfc_add_expr_to_block (&tmpblock, tmp);
8974 }
8975 else if (attr->allocatable && !attr->codimension
8976 && !deallocate_called)
8977 {
8978 /* Case of recursive allocatable derived types. */
8979 tree is_allocated;
8980 tree ubound;
8981 tree cdesc;
8982 stmtblock_t dealloc_block;
8983
8984 gfc_init_block (&dealloc_block);
8985 if (add_when_allocated)
8986 gfc_add_expr_to_block (&dealloc_block, add_when_allocated);
8987
8988 /* Convert the component into a rank 1 descriptor type. */
8989 if (attr->dimension)
8990 {
8991 tmp = gfc_get_element_type (TREE_TYPE (comp));
8992 ubound = gfc_full_array_size (&dealloc_block, comp,
8993 c->ts.type == BT_CLASS
8994 ? CLASS_DATA (c)->as->rank
8995 : c->as->rank);
8996 }
8997 else
8998 {
8999 tmp = TREE_TYPE (comp);
9000 ubound = build_int_cst (gfc_array_index_type, 1);
9001 }
9002
9003 cdesc = gfc_get_array_type_bounds (tmp, 1, 0, &gfc_index_one_node,
9004 &ubound, 1,
9005 GFC_ARRAY_ALLOCATABLE, false);
9006
9007 cdesc = gfc_create_var (cdesc, "cdesc");
9008 DECL_ARTIFICIAL (cdesc) = 1;
9009
9010 gfc_add_modify (&dealloc_block, gfc_conv_descriptor_dtype (cdesc),
9011 gfc_get_dtype_rank_type (1, tmp));
9012 gfc_conv_descriptor_lbound_set (&dealloc_block, cdesc,
9013 gfc_index_zero_node,
9014 gfc_index_one_node);
9015 gfc_conv_descriptor_stride_set (&dealloc_block, cdesc,
9016 gfc_index_zero_node,
9017 gfc_index_one_node);
9018 gfc_conv_descriptor_ubound_set (&dealloc_block, cdesc,
9019 gfc_index_zero_node, ubound);
9020
9021 if (attr->dimension)
9022 comp = gfc_conv_descriptor_data_get (comp);
9023
9024 gfc_conv_descriptor_data_set (&dealloc_block, cdesc, comp);
9025
9026 /* Now call the deallocator. */
9027 vtab = gfc_find_vtab (&c->ts);
9028 if (vtab->backend_decl == NULL)
9029 gfc_get_symbol_decl (vtab);
9030 tmp = gfc_build_addr_expr (NULL_TREE, vtab->backend_decl);
9031 dealloc_fndecl = gfc_vptr_deallocate_get (tmp);
9032 dealloc_fndecl = build_fold_indirect_ref_loc (input_location,
9033 dealloc_fndecl);
9034 tmp = build_int_cst (TREE_TYPE (comp), 0);
9035 is_allocated = fold_build2_loc (input_location, NE_EXPR,
9036 logical_type_node, tmp,
9037 comp);
9038 cdesc = gfc_build_addr_expr (NULL_TREE, cdesc);
9039
9040 tmp = build_call_expr_loc (input_location,
9041 dealloc_fndecl, 1,
9042 cdesc);
9043 gfc_add_expr_to_block (&dealloc_block, tmp);
9044
9045 tmp = gfc_finish_block (&dealloc_block);
9046
9047 tmp = fold_build3_loc (input_location, COND_EXPR,
9048 void_type_node, is_allocated, tmp,
9049 build_empty_stmt (input_location));
9050
9051 gfc_add_expr_to_block (&tmpblock, tmp);
9052 }
9053 else if (add_when_allocated)
9054 gfc_add_expr_to_block (&tmpblock, add_when_allocated);
9055
9056 if (c->ts.type == BT_CLASS && attr->allocatable
9057 && (!attr->codimension || !caf_enabled (caf_mode)))
9058 {
9059 /* Finally, reset the vptr to the declared type vtable and, if
9060 necessary reset the _len field.
9061
9062 First recover the reference to the component and obtain
9063 the vptr. */
9064 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
9065 decl, cdecl, NULL_TREE);
9066 tmp = gfc_class_vptr_get (comp);
9067
9068 if (UNLIMITED_POLY (c))
9069 {
9070 /* Both vptr and _len field should be nulled. */
9071 gfc_add_modify (&tmpblock, tmp,
9072 build_int_cst (TREE_TYPE (tmp), 0));
9073 tmp = gfc_class_len_get (comp);
9074 gfc_add_modify (&tmpblock, tmp,
9075 build_int_cst (TREE_TYPE (tmp), 0));
9076 }
9077 else
9078 {
9079 /* Build the vtable address and set the vptr with it. */
9080 tree vtab;
9081 gfc_symbol *vtable;
9082 vtable = gfc_find_derived_vtab (c->ts.u.derived);
9083 vtab = vtable->backend_decl;
9084 if (vtab == NULL_TREE)
9085 vtab = gfc_get_symbol_decl (vtable);
9086 vtab = gfc_build_addr_expr (NULL, vtab);
9087 vtab = fold_convert (TREE_TYPE (tmp), vtab);
9088 gfc_add_modify (&tmpblock, tmp, vtab);
9089 }
9090 }
9091
9092 /* Now add the deallocation of this component. */
9093 gfc_add_block_to_block (&fnblock, &tmpblock);
9094 break;
9095
9096 case NULLIFY_ALLOC_COMP:
9097 /* Nullify
9098 - allocatable components (regular or in class)
9099 - components that have allocatable components
9100 - pointer components when in a coarray.
9101 Skip everything else especially proc_pointers, which may come
9102 coupled with the regular pointer attribute. */
9103 if (c->attr.proc_pointer
9104 || !(c->attr.allocatable || (c->ts.type == BT_CLASS
9105 && CLASS_DATA (c)->attr.allocatable)
9106 || (cmp_has_alloc_comps
9107 && ((c->ts.type == BT_DERIVED && !c->attr.pointer)
9108 || (c->ts.type == BT_CLASS
9109 && !CLASS_DATA (c)->attr.class_pointer)))
9110 || (caf_in_coarray (caf_mode) && c->attr.pointer)))
9111 continue;
9112
9113 /* Process class components first, because they always have the
9114 pointer-attribute set which would be caught wrong else. */
9115 if (c->ts.type == BT_CLASS
9116 && (CLASS_DATA (c)->attr.allocatable
9117 || CLASS_DATA (c)->attr.class_pointer))
9118 {
9119 /* Allocatable CLASS components. */
9120 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
9121 decl, cdecl, NULL_TREE);
9122
9123 comp = gfc_class_data_get (comp);
9124 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (comp)))
9125 gfc_conv_descriptor_data_set (&fnblock, comp,
9126 null_pointer_node);
9127 else
9128 {
9129 tmp = fold_build2_loc (input_location, MODIFY_EXPR,
9130 void_type_node, comp,
9131 build_int_cst (TREE_TYPE (comp), 0));
9132 gfc_add_expr_to_block (&fnblock, tmp);
9133 }
9134 cmp_has_alloc_comps = false;
9135 }
9136 /* Coarrays need the component to be nulled before the api-call
9137 is made. */
9138 else if (c->attr.pointer || c->attr.allocatable)
9139 {
9140 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
9141 decl, cdecl, NULL_TREE);
9142 if (c->attr.dimension || c->attr.codimension)
9143 gfc_conv_descriptor_data_set (&fnblock, comp,
9144 null_pointer_node);
9145 else
9146 gfc_add_modify (&fnblock, comp,
9147 build_int_cst (TREE_TYPE (comp), 0));
9148 if (gfc_deferred_strlen (c, &comp))
9149 {
9150 comp = fold_build3_loc (input_location, COMPONENT_REF,
9151 TREE_TYPE (comp),
9152 decl, comp, NULL_TREE);
9153 tmp = fold_build2_loc (input_location, MODIFY_EXPR,
9154 TREE_TYPE (comp), comp,
9155 build_int_cst (TREE_TYPE (comp), 0));
9156 gfc_add_expr_to_block (&fnblock, tmp);
9157 }
9158 cmp_has_alloc_comps = false;
9159 }
9160
9161 if (flag_coarray == GFC_FCOARRAY_LIB && caf_in_coarray (caf_mode))
9162 {
9163 /* Register a component of a derived type coarray with the
9164 coarray library. Do not register ultimate component
9165 coarrays here. They are treated like regular coarrays and
9166 are either allocated on all images or on none. */
9167 tree token;
9168
9169 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
9170 decl, cdecl, NULL_TREE);
9171 if (c->attr.dimension)
9172 {
9173 /* Set the dtype, because caf_register needs it. */
9174 gfc_add_modify (&fnblock, gfc_conv_descriptor_dtype (comp),
9175 gfc_get_dtype (TREE_TYPE (comp)));
9176 tmp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
9177 decl, cdecl, NULL_TREE);
9178 token = gfc_conv_descriptor_token (tmp);
9179 }
9180 else
9181 {
9182 gfc_se se;
9183
9184 gfc_init_se (&se, NULL);
9185 token = fold_build3_loc (input_location, COMPONENT_REF,
9186 pvoid_type_node, decl, c->caf_token,
9187 NULL_TREE);
9188 comp = gfc_conv_scalar_to_descriptor (&se, comp,
9189 c->ts.type == BT_CLASS
9190 ? CLASS_DATA (c)->attr
9191 : c->attr);
9192 gfc_add_block_to_block (&fnblock, &se.pre);
9193 }
9194
9195 gfc_allocate_using_caf_lib (&fnblock, comp, size_zero_node,
9196 gfc_build_addr_expr (NULL_TREE,
9197 token),
9198 NULL_TREE, NULL_TREE, NULL_TREE,
9199 GFC_CAF_COARRAY_ALLOC_REGISTER_ONLY);
9200 }
9201
9202 if (cmp_has_alloc_comps)
9203 {
9204 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
9205 decl, cdecl, NULL_TREE);
9206 rank = c->as ? c->as->rank : 0;
9207 tmp = structure_alloc_comps (c->ts.u.derived, comp, NULL_TREE,
9208 rank, purpose, caf_mode, args);
9209 gfc_add_expr_to_block (&fnblock, tmp);
9210 }
9211 break;
9212
9213 case REASSIGN_CAF_COMP:
9214 if (caf_enabled (caf_mode)
9215 && (c->attr.codimension
9216 || (c->ts.type == BT_CLASS
9217 && (CLASS_DATA (c)->attr.coarray_comp
9218 || caf_in_coarray (caf_mode)))
9219 || (c->ts.type == BT_DERIVED
9220 && (c->ts.u.derived->attr.coarray_comp
9221 || caf_in_coarray (caf_mode))))
9222 && !same_type)
9223 {
9224 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
9225 decl, cdecl, NULL_TREE);
9226 dcmp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
9227 dest, cdecl, NULL_TREE);
9228
9229 if (c->attr.codimension)
9230 {
9231 if (c->ts.type == BT_CLASS)
9232 {
9233 comp = gfc_class_data_get (comp);
9234 dcmp = gfc_class_data_get (dcmp);
9235 }
9236 gfc_conv_descriptor_data_set (&fnblock, dcmp,
9237 gfc_conv_descriptor_data_get (comp));
9238 }
9239 else
9240 {
9241 tmp = structure_alloc_comps (c->ts.u.derived, comp, dcmp,
9242 rank, purpose, caf_mode
9243 | GFC_STRUCTURE_CAF_MODE_IN_COARRAY,
9244 args);
9245 gfc_add_expr_to_block (&fnblock, tmp);
9246 }
9247 }
9248 break;
9249
9250 case COPY_ALLOC_COMP:
9251 if (c->attr.pointer || c->attr.proc_pointer)
9252 continue;
9253
9254 /* We need source and destination components. */
9255 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, decl,
9256 cdecl, NULL_TREE);
9257 dcmp = fold_build3_loc (input_location, COMPONENT_REF, ctype, dest,
9258 cdecl, NULL_TREE);
9259 dcmp = fold_convert (TREE_TYPE (comp), dcmp);
9260
9261 if (c->ts.type == BT_CLASS && CLASS_DATA (c)->attr.allocatable)
9262 {
9263 tree ftn_tree;
9264 tree size;
9265 tree dst_data;
9266 tree src_data;
9267 tree null_data;
9268
9269 dst_data = gfc_class_data_get (dcmp);
9270 src_data = gfc_class_data_get (comp);
9271 size = fold_convert (size_type_node,
9272 gfc_class_vtab_size_get (comp));
9273
9274 if (CLASS_DATA (c)->attr.dimension)
9275 {
9276 nelems = gfc_conv_descriptor_size (src_data,
9277 CLASS_DATA (c)->as->rank);
9278 size = fold_build2_loc (input_location, MULT_EXPR,
9279 size_type_node, size,
9280 fold_convert (size_type_node,
9281 nelems));
9282 }
9283 else
9284 nelems = build_int_cst (size_type_node, 1);
9285
9286 if (CLASS_DATA (c)->attr.dimension
9287 || CLASS_DATA (c)->attr.codimension)
9288 {
9289 src_data = gfc_conv_descriptor_data_get (src_data);
9290 dst_data = gfc_conv_descriptor_data_get (dst_data);
9291 }
9292
9293 gfc_init_block (&tmpblock);
9294
9295 gfc_add_modify (&tmpblock, gfc_class_vptr_get (dcmp),
9296 gfc_class_vptr_get (comp));
9297
9298 /* Copy the unlimited '_len' field. If it is greater than zero
9299 (ie. a character(_len)), multiply it by size and use this
9300 for the malloc call. */
9301 if (UNLIMITED_POLY (c))
9302 {
9303 tree ctmp;
9304 gfc_add_modify (&tmpblock, gfc_class_len_get (dcmp),
9305 gfc_class_len_get (comp));
9306
9307 size = gfc_evaluate_now (size, &tmpblock);
9308 tmp = gfc_class_len_get (comp);
9309 ctmp = fold_build2_loc (input_location, MULT_EXPR,
9310 size_type_node, size,
9311 fold_convert (size_type_node, tmp));
9312 tmp = fold_build2_loc (input_location, GT_EXPR,
9313 logical_type_node, tmp,
9314 build_zero_cst (TREE_TYPE (tmp)));
9315 size = fold_build3_loc (input_location, COND_EXPR,
9316 size_type_node, tmp, ctmp, size);
9317 size = gfc_evaluate_now (size, &tmpblock);
9318 }
9319
9320 /* Coarray component have to have the same allocation status and
9321 shape/type-parameter/effective-type on the LHS and RHS of an
9322 intrinsic assignment. Hence, we did not deallocated them - and
9323 do not allocate them here. */
9324 if (!CLASS_DATA (c)->attr.codimension)
9325 {
9326 ftn_tree = builtin_decl_explicit (BUILT_IN_MALLOC);
9327 tmp = build_call_expr_loc (input_location, ftn_tree, 1, size);
9328 gfc_add_modify (&tmpblock, dst_data,
9329 fold_convert (TREE_TYPE (dst_data), tmp));
9330 }
9331
9332 tmp = gfc_copy_class_to_class (comp, dcmp, nelems,
9333 UNLIMITED_POLY (c));
9334 gfc_add_expr_to_block (&tmpblock, tmp);
9335 tmp = gfc_finish_block (&tmpblock);
9336
9337 gfc_init_block (&tmpblock);
9338 gfc_add_modify (&tmpblock, dst_data,
9339 fold_convert (TREE_TYPE (dst_data),
9340 null_pointer_node));
9341 null_data = gfc_finish_block (&tmpblock);
9342
9343 null_cond = fold_build2_loc (input_location, NE_EXPR,
9344 logical_type_node, src_data,
9345 null_pointer_node);
9346
9347 gfc_add_expr_to_block (&fnblock, build3_v (COND_EXPR, null_cond,
9348 tmp, null_data));
9349 continue;
9350 }
9351
9352 /* To implement guarded deep copy, i.e., deep copy only allocatable
9353 components that are really allocated, the deep copy code has to
9354 be generated first and then added to the if-block in
9355 gfc_duplicate_allocatable (). */
9356 if (cmp_has_alloc_comps && !c->attr.proc_pointer && !same_type)
9357 {
9358 rank = c->as ? c->as->rank : 0;
9359 tmp = fold_convert (TREE_TYPE (dcmp), comp);
9360 gfc_add_modify (&fnblock, dcmp, tmp);
9361 add_when_allocated = structure_alloc_comps (c->ts.u.derived,
9362 comp, dcmp,
9363 rank, purpose,
9364 caf_mode, args);
9365 }
9366 else
9367 add_when_allocated = NULL_TREE;
9368
9369 if (gfc_deferred_strlen (c, &tmp))
9370 {
9371 tree len, size;
9372 len = tmp;
9373 tmp = fold_build3_loc (input_location, COMPONENT_REF,
9374 TREE_TYPE (len),
9375 decl, len, NULL_TREE);
9376 len = fold_build3_loc (input_location, COMPONENT_REF,
9377 TREE_TYPE (len),
9378 dest, len, NULL_TREE);
9379 tmp = fold_build2_loc (input_location, MODIFY_EXPR,
9380 TREE_TYPE (len), len, tmp);
9381 gfc_add_expr_to_block (&fnblock, tmp);
9382 size = size_of_string_in_bytes (c->ts.kind, len);
9383 /* This component cannot have allocatable components,
9384 therefore add_when_allocated of duplicate_allocatable ()
9385 is always NULL. */
9386 tmp = duplicate_allocatable (dcmp, comp, ctype, rank,
9387 false, false, size, NULL_TREE);
9388 gfc_add_expr_to_block (&fnblock, tmp);
9389 }
9390 else if (c->attr.pdt_array)
9391 {
9392 tmp = duplicate_allocatable (dcmp, comp, ctype,
9393 c->as ? c->as->rank : 0,
9394 false, false, NULL_TREE, NULL_TREE);
9395 gfc_add_expr_to_block (&fnblock, tmp);
9396 }
9397 else if ((c->attr.allocatable)
9398 && !c->attr.proc_pointer && !same_type
9399 && (!(cmp_has_alloc_comps && c->as) || c->attr.codimension
9400 || caf_in_coarray (caf_mode)))
9401 {
9402 rank = c->as ? c->as->rank : 0;
9403 if (c->attr.codimension)
9404 tmp = gfc_copy_allocatable_data (dcmp, comp, ctype, rank);
9405 else if (flag_coarray == GFC_FCOARRAY_LIB
9406 && caf_in_coarray (caf_mode))
9407 {
9408 tree dst_tok = c->as ? gfc_conv_descriptor_token (dcmp)
9409 : fold_build3_loc (input_location,
9410 COMPONENT_REF,
9411 pvoid_type_node, dest,
9412 c->caf_token,
9413 NULL_TREE);
9414 tmp = duplicate_allocatable_coarray (dcmp, dst_tok, comp,
9415 ctype, rank);
9416 }
9417 else
9418 tmp = gfc_duplicate_allocatable (dcmp, comp, ctype, rank,
9419 add_when_allocated);
9420 gfc_add_expr_to_block (&fnblock, tmp);
9421 }
9422 else
9423 if (cmp_has_alloc_comps || is_pdt_type)
9424 gfc_add_expr_to_block (&fnblock, add_when_allocated);
9425
9426 break;
9427
9428 case ALLOCATE_PDT_COMP:
9429
9430 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
9431 decl, cdecl, NULL_TREE);
9432
9433 /* Set the PDT KIND and LEN fields. */
9434 if (c->attr.pdt_kind || c->attr.pdt_len)
9435 {
9436 gfc_se tse;
9437 gfc_expr *c_expr = NULL;
9438 gfc_actual_arglist *param = pdt_param_list;
9439 gfc_init_se (&tse, NULL);
9440 for (; param; param = param->next)
9441 if (param->name && !strcmp (c->name, param->name))
9442 c_expr = param->expr;
9443
9444 if (!c_expr)
9445 c_expr = c->initializer;
9446
9447 if (c_expr)
9448 {
9449 gfc_conv_expr_type (&tse, c_expr, TREE_TYPE (comp));
9450 gfc_add_modify (&fnblock, comp, tse.expr);
9451 }
9452 }
9453
9454 if (c->attr.pdt_string)
9455 {
9456 gfc_se tse;
9457 gfc_init_se (&tse, NULL);
9458 tree strlen = NULL_TREE;
9459 gfc_expr *e = gfc_copy_expr (c->ts.u.cl->length);
9460 /* Convert the parameterized string length to its value. The
9461 string length is stored in a hidden field in the same way as
9462 deferred string lengths. */
9463 gfc_insert_parameter_exprs (e, pdt_param_list);
9464 if (gfc_deferred_strlen (c, &strlen) && strlen != NULL_TREE)
9465 {
9466 gfc_conv_expr_type (&tse, e,
9467 TREE_TYPE (strlen));
9468 strlen = fold_build3_loc (input_location, COMPONENT_REF,
9469 TREE_TYPE (strlen),
9470 decl, strlen, NULL_TREE);
9471 gfc_add_modify (&fnblock, strlen, tse.expr);
9472 c->ts.u.cl->backend_decl = strlen;
9473 }
9474 gfc_free_expr (e);
9475
9476 /* Scalar parameterized strings can be allocated now. */
9477 if (!c->as)
9478 {
9479 tmp = fold_convert (gfc_array_index_type, strlen);
9480 tmp = size_of_string_in_bytes (c->ts.kind, tmp);
9481 tmp = gfc_evaluate_now (tmp, &fnblock);
9482 tmp = gfc_call_malloc (&fnblock, TREE_TYPE (comp), tmp);
9483 gfc_add_modify (&fnblock, comp, tmp);
9484 }
9485 }
9486
9487 /* Allocate parameterized arrays of parameterized derived types. */
9488 if (!(c->attr.pdt_array && c->as && c->as->type == AS_EXPLICIT)
9489 && !((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9490 && (c->ts.u.derived && c->ts.u.derived->attr.pdt_type)))
9491 continue;
9492
9493 if (c->ts.type == BT_CLASS)
9494 comp = gfc_class_data_get (comp);
9495
9496 if (c->attr.pdt_array)
9497 {
9498 gfc_se tse;
9499 int i;
9500 tree size = gfc_index_one_node;
9501 tree offset = gfc_index_zero_node;
9502 tree lower, upper;
9503 gfc_expr *e;
9504
9505 /* This chunk takes the expressions for 'lower' and 'upper'
9506 in the arrayspec and substitutes in the expressions for
9507 the parameters from 'pdt_param_list'. The descriptor
9508 fields can then be filled from the values so obtained. */
9509 gcc_assert (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (comp)));
9510 for (i = 0; i < c->as->rank; i++)
9511 {
9512 gfc_init_se (&tse, NULL);
9513 e = gfc_copy_expr (c->as->lower[i]);
9514 gfc_insert_parameter_exprs (e, pdt_param_list);
9515 gfc_conv_expr_type (&tse, e, gfc_array_index_type);
9516 gfc_free_expr (e);
9517 lower = tse.expr;
9518 gfc_conv_descriptor_lbound_set (&fnblock, comp,
9519 gfc_rank_cst[i],
9520 lower);
9521 e = gfc_copy_expr (c->as->upper[i]);
9522 gfc_insert_parameter_exprs (e, pdt_param_list);
9523 gfc_conv_expr_type (&tse, e, gfc_array_index_type);
9524 gfc_free_expr (e);
9525 upper = tse.expr;
9526 gfc_conv_descriptor_ubound_set (&fnblock, comp,
9527 gfc_rank_cst[i],
9528 upper);
9529 gfc_conv_descriptor_stride_set (&fnblock, comp,
9530 gfc_rank_cst[i],
9531 size);
9532 size = gfc_evaluate_now (size, &fnblock);
9533 offset = fold_build2_loc (input_location,
9534 MINUS_EXPR,
9535 gfc_array_index_type,
9536 offset, size);
9537 offset = gfc_evaluate_now (offset, &fnblock);
9538 tmp = fold_build2_loc (input_location, MINUS_EXPR,
9539 gfc_array_index_type,
9540 upper, lower);
9541 tmp = fold_build2_loc (input_location, PLUS_EXPR,
9542 gfc_array_index_type,
9543 tmp, gfc_index_one_node);
9544 size = fold_build2_loc (input_location, MULT_EXPR,
9545 gfc_array_index_type, size, tmp);
9546 }
9547 gfc_conv_descriptor_offset_set (&fnblock, comp, offset);
9548 if (c->ts.type == BT_CLASS)
9549 {
9550 tmp = gfc_get_vptr_from_expr (comp);
9551 if (POINTER_TYPE_P (TREE_TYPE (tmp)))
9552 tmp = build_fold_indirect_ref_loc (input_location, tmp);
9553 tmp = gfc_vptr_size_get (tmp);
9554 }
9555 else
9556 tmp = TYPE_SIZE_UNIT (gfc_get_element_type (ctype));
9557 tmp = fold_convert (gfc_array_index_type, tmp);
9558 size = fold_build2_loc (input_location, MULT_EXPR,
9559 gfc_array_index_type, size, tmp);
9560 size = gfc_evaluate_now (size, &fnblock);
9561 tmp = gfc_call_malloc (&fnblock, NULL, size);
9562 gfc_conv_descriptor_data_set (&fnblock, comp, tmp);
9563 tmp = gfc_conv_descriptor_dtype (comp);
9564 gfc_add_modify (&fnblock, tmp, gfc_get_dtype (ctype));
9565
9566 if (c->initializer && c->initializer->rank)
9567 {
9568 gfc_init_se (&tse, NULL);
9569 e = gfc_copy_expr (c->initializer);
9570 gfc_insert_parameter_exprs (e, pdt_param_list);
9571 gfc_conv_expr_descriptor (&tse, e);
9572 gfc_add_block_to_block (&fnblock, &tse.pre);
9573 gfc_free_expr (e);
9574 tmp = builtin_decl_explicit (BUILT_IN_MEMCPY);
9575 tmp = build_call_expr_loc (input_location, tmp, 3,
9576 gfc_conv_descriptor_data_get (comp),
9577 gfc_conv_descriptor_data_get (tse.expr),
9578 fold_convert (size_type_node, size));
9579 gfc_add_expr_to_block (&fnblock, tmp);
9580 gfc_add_block_to_block (&fnblock, &tse.post);
9581 }
9582 }
9583
9584 /* Recurse in to PDT components. */
9585 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9586 && c->ts.u.derived && c->ts.u.derived->attr.pdt_type
9587 && !(c->attr.pointer || c->attr.allocatable))
9588 {
9589 bool is_deferred = false;
9590 gfc_actual_arglist *tail = c->param_list;
9591
9592 for (; tail; tail = tail->next)
9593 if (!tail->expr)
9594 is_deferred = true;
9595
9596 tail = is_deferred ? pdt_param_list : c->param_list;
9597 tmp = gfc_allocate_pdt_comp (c->ts.u.derived, comp,
9598 c->as ? c->as->rank : 0,
9599 tail);
9600 gfc_add_expr_to_block (&fnblock, tmp);
9601 }
9602
9603 break;
9604
9605 case DEALLOCATE_PDT_COMP:
9606 /* Deallocate array or parameterized string length components
9607 of parameterized derived types. */
9608 if (!(c->attr.pdt_array && c->as && c->as->type == AS_EXPLICIT)
9609 && !c->attr.pdt_string
9610 && !((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9611 && (c->ts.u.derived && c->ts.u.derived->attr.pdt_type)))
9612 continue;
9613
9614 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
9615 decl, cdecl, NULL_TREE);
9616 if (c->ts.type == BT_CLASS)
9617 comp = gfc_class_data_get (comp);
9618
9619 /* Recurse in to PDT components. */
9620 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9621 && c->ts.u.derived && c->ts.u.derived->attr.pdt_type
9622 && (!c->attr.pointer && !c->attr.allocatable))
9623 {
9624 tmp = gfc_deallocate_pdt_comp (c->ts.u.derived, comp,
9625 c->as ? c->as->rank : 0);
9626 gfc_add_expr_to_block (&fnblock, tmp);
9627 }
9628
9629 if (c->attr.pdt_array)
9630 {
9631 tmp = gfc_conv_descriptor_data_get (comp);
9632 null_cond = fold_build2_loc (input_location, NE_EXPR,
9633 logical_type_node, tmp,
9634 build_int_cst (TREE_TYPE (tmp), 0));
9635 tmp = gfc_call_free (tmp);
9636 tmp = build3_v (COND_EXPR, null_cond, tmp,
9637 build_empty_stmt (input_location));
9638 gfc_add_expr_to_block (&fnblock, tmp);
9639 gfc_conv_descriptor_data_set (&fnblock, comp, null_pointer_node);
9640 }
9641 else if (c->attr.pdt_string)
9642 {
9643 null_cond = fold_build2_loc (input_location, NE_EXPR,
9644 logical_type_node, comp,
9645 build_int_cst (TREE_TYPE (comp), 0));
9646 tmp = gfc_call_free (comp);
9647 tmp = build3_v (COND_EXPR, null_cond, tmp,
9648 build_empty_stmt (input_location));
9649 gfc_add_expr_to_block (&fnblock, tmp);
9650 tmp = fold_convert (TREE_TYPE (comp), null_pointer_node);
9651 gfc_add_modify (&fnblock, comp, tmp);
9652 }
9653
9654 break;
9655
9656 case CHECK_PDT_DUMMY:
9657
9658 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
9659 decl, cdecl, NULL_TREE);
9660 if (c->ts.type == BT_CLASS)
9661 comp = gfc_class_data_get (comp);
9662
9663 /* Recurse in to PDT components. */
9664 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9665 && c->ts.u.derived && c->ts.u.derived->attr.pdt_type)
9666 {
9667 tmp = gfc_check_pdt_dummy (c->ts.u.derived, comp,
9668 c->as ? c->as->rank : 0,
9669 pdt_param_list);
9670 gfc_add_expr_to_block (&fnblock, tmp);
9671 }
9672
9673 if (!c->attr.pdt_len)
9674 continue;
9675 else
9676 {
9677 gfc_se tse;
9678 gfc_expr *c_expr = NULL;
9679 gfc_actual_arglist *param = pdt_param_list;
9680
9681 gfc_init_se (&tse, NULL);
9682 for (; param; param = param->next)
9683 if (!strcmp (c->name, param->name)
9684 && param->spec_type == SPEC_EXPLICIT)
9685 c_expr = param->expr;
9686
9687 if (c_expr)
9688 {
9689 tree error, cond, cname;
9690 gfc_conv_expr_type (&tse, c_expr, TREE_TYPE (comp));
9691 cond = fold_build2_loc (input_location, NE_EXPR,
9692 logical_type_node,
9693 comp, tse.expr);
9694 cname = gfc_build_cstring_const (c->name);
9695 cname = gfc_build_addr_expr (pchar_type_node, cname);
9696 error = gfc_trans_runtime_error (true, NULL,
9697 "The value of the PDT LEN "
9698 "parameter '%s' does not "
9699 "agree with that in the "
9700 "dummy declaration",
9701 cname);
9702 tmp = fold_build3_loc (input_location, COND_EXPR,
9703 void_type_node, cond, error,
9704 build_empty_stmt (input_location));
9705 gfc_add_expr_to_block (&fnblock, tmp);
9706 }
9707 }
9708 break;
9709
9710 default:
9711 gcc_unreachable ();
9712 break;
9713 }
9714 }
9715
9716 return gfc_finish_block (&fnblock);
9717 }
9718
9719 /* Recursively traverse an object of derived type, generating code to
9720 nullify allocatable components. */
9721
9722 tree
9723 gfc_nullify_alloc_comp (gfc_symbol * der_type, tree decl, int rank,
9724 int caf_mode)
9725 {
9726 return structure_alloc_comps (der_type, decl, NULL_TREE, rank,
9727 NULLIFY_ALLOC_COMP,
9728 GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY | caf_mode, NULL);
9729 }
9730
9731
9732 /* Recursively traverse an object of derived type, generating code to
9733 deallocate allocatable components. */
9734
9735 tree
9736 gfc_deallocate_alloc_comp (gfc_symbol * der_type, tree decl, int rank,
9737 int caf_mode)
9738 {
9739 return structure_alloc_comps (der_type, decl, NULL_TREE, rank,
9740 DEALLOCATE_ALLOC_COMP,
9741 GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY | caf_mode, NULL);
9742 }
9743
9744 tree
9745 gfc_bcast_alloc_comp (gfc_symbol *derived, gfc_expr *expr, int rank,
9746 tree image_index, tree stat, tree errmsg,
9747 tree errmsg_len)
9748 {
9749 tree tmp, array;
9750 gfc_se argse;
9751 stmtblock_t block, post_block;
9752 gfc_co_subroutines_args args;
9753
9754 args.image_index = image_index;
9755 args.stat = stat;
9756 args.errmsg = errmsg;
9757 args.errmsg = errmsg_len;
9758
9759 if (rank == 0)
9760 {
9761 gfc_start_block (&block);
9762 gfc_init_block (&post_block);
9763 gfc_init_se (&argse, NULL);
9764 gfc_conv_expr (&argse, expr);
9765 gfc_add_block_to_block (&block, &argse.pre);
9766 gfc_add_block_to_block (&post_block, &argse.post);
9767 array = argse.expr;
9768 }
9769 else
9770 {
9771 gfc_init_se (&argse, NULL);
9772 argse.want_pointer = 1;
9773 gfc_conv_expr_descriptor (&argse, expr);
9774 array = argse.expr;
9775 }
9776
9777 tmp = structure_alloc_comps (derived, array, NULL_TREE, rank,
9778 BCAST_ALLOC_COMP,
9779 GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY, &args);
9780 return tmp;
9781 }
9782
9783 /* Recursively traverse an object of derived type, generating code to
9784 deallocate allocatable components. But do not deallocate coarrays.
9785 To be used for intrinsic assignment, which may not change the allocation
9786 status of coarrays. */
9787
9788 tree
9789 gfc_deallocate_alloc_comp_no_caf (gfc_symbol * der_type, tree decl, int rank)
9790 {
9791 return structure_alloc_comps (der_type, decl, NULL_TREE, rank,
9792 DEALLOCATE_ALLOC_COMP, 0, NULL);
9793 }
9794
9795
9796 tree
9797 gfc_reassign_alloc_comp_caf (gfc_symbol *der_type, tree decl, tree dest)
9798 {
9799 return structure_alloc_comps (der_type, decl, dest, 0, REASSIGN_CAF_COMP,
9800 GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY, NULL);
9801 }
9802
9803
9804 /* Recursively traverse an object of derived type, generating code to
9805 copy it and its allocatable components. */
9806
9807 tree
9808 gfc_copy_alloc_comp (gfc_symbol * der_type, tree decl, tree dest, int rank,
9809 int caf_mode)
9810 {
9811 return structure_alloc_comps (der_type, decl, dest, rank, COPY_ALLOC_COMP,
9812 caf_mode, NULL);
9813 }
9814
9815
9816 /* Recursively traverse an object of derived type, generating code to
9817 copy only its allocatable components. */
9818
9819 tree
9820 gfc_copy_only_alloc_comp (gfc_symbol * der_type, tree decl, tree dest, int rank)
9821 {
9822 return structure_alloc_comps (der_type, decl, dest, rank,
9823 COPY_ONLY_ALLOC_COMP, 0, NULL);
9824 }
9825
9826
9827 /* Recursively traverse an object of paramterized derived type, generating
9828 code to allocate parameterized components. */
9829
9830 tree
9831 gfc_allocate_pdt_comp (gfc_symbol * der_type, tree decl, int rank,
9832 gfc_actual_arglist *param_list)
9833 {
9834 tree res;
9835 gfc_actual_arglist *old_param_list = pdt_param_list;
9836 pdt_param_list = param_list;
9837 res = structure_alloc_comps (der_type, decl, NULL_TREE, rank,
9838 ALLOCATE_PDT_COMP, 0, NULL);
9839 pdt_param_list = old_param_list;
9840 return res;
9841 }
9842
9843 /* Recursively traverse an object of paramterized derived type, generating
9844 code to deallocate parameterized components. */
9845
9846 tree
9847 gfc_deallocate_pdt_comp (gfc_symbol * der_type, tree decl, int rank)
9848 {
9849 return structure_alloc_comps (der_type, decl, NULL_TREE, rank,
9850 DEALLOCATE_PDT_COMP, 0, NULL);
9851 }
9852
9853
9854 /* Recursively traverse a dummy of paramterized derived type to check the
9855 values of LEN parameters. */
9856
9857 tree
9858 gfc_check_pdt_dummy (gfc_symbol * der_type, tree decl, int rank,
9859 gfc_actual_arglist *param_list)
9860 {
9861 tree res;
9862 gfc_actual_arglist *old_param_list = pdt_param_list;
9863 pdt_param_list = param_list;
9864 res = structure_alloc_comps (der_type, decl, NULL_TREE, rank,
9865 CHECK_PDT_DUMMY, 0, NULL);
9866 pdt_param_list = old_param_list;
9867 return res;
9868 }
9869
9870
9871 /* Returns the value of LBOUND for an expression. This could be broken out
9872 from gfc_conv_intrinsic_bound but this seemed to be simpler. This is
9873 called by gfc_alloc_allocatable_for_assignment. */
9874 static tree
9875 get_std_lbound (gfc_expr *expr, tree desc, int dim, bool assumed_size)
9876 {
9877 tree lbound;
9878 tree ubound;
9879 tree stride;
9880 tree cond, cond1, cond3, cond4;
9881 tree tmp;
9882 gfc_ref *ref;
9883
9884 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc)))
9885 {
9886 tmp = gfc_rank_cst[dim];
9887 lbound = gfc_conv_descriptor_lbound_get (desc, tmp);
9888 ubound = gfc_conv_descriptor_ubound_get (desc, tmp);
9889 stride = gfc_conv_descriptor_stride_get (desc, tmp);
9890 cond1 = fold_build2_loc (input_location, GE_EXPR, logical_type_node,
9891 ubound, lbound);
9892 cond3 = fold_build2_loc (input_location, GE_EXPR, logical_type_node,
9893 stride, gfc_index_zero_node);
9894 cond3 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
9895 logical_type_node, cond3, cond1);
9896 cond4 = fold_build2_loc (input_location, LT_EXPR, logical_type_node,
9897 stride, gfc_index_zero_node);
9898 if (assumed_size)
9899 cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node,
9900 tmp, build_int_cst (gfc_array_index_type,
9901 expr->rank - 1));
9902 else
9903 cond = logical_false_node;
9904
9905 cond1 = fold_build2_loc (input_location, TRUTH_OR_EXPR,
9906 logical_type_node, cond3, cond4);
9907 cond = fold_build2_loc (input_location, TRUTH_OR_EXPR,
9908 logical_type_node, cond, cond1);
9909
9910 return fold_build3_loc (input_location, COND_EXPR,
9911 gfc_array_index_type, cond,
9912 lbound, gfc_index_one_node);
9913 }
9914
9915 if (expr->expr_type == EXPR_FUNCTION)
9916 {
9917 /* A conversion function, so use the argument. */
9918 gcc_assert (expr->value.function.isym
9919 && expr->value.function.isym->conversion);
9920 expr = expr->value.function.actual->expr;
9921 }
9922
9923 if (expr->expr_type == EXPR_VARIABLE)
9924 {
9925 tmp = TREE_TYPE (expr->symtree->n.sym->backend_decl);
9926 for (ref = expr->ref; ref; ref = ref->next)
9927 {
9928 if (ref->type == REF_COMPONENT
9929 && ref->u.c.component->as
9930 && ref->next
9931 && ref->next->u.ar.type == AR_FULL)
9932 tmp = TREE_TYPE (ref->u.c.component->backend_decl);
9933 }
9934 return GFC_TYPE_ARRAY_LBOUND(tmp, dim);
9935 }
9936
9937 return gfc_index_one_node;
9938 }
9939
9940
9941 /* Returns true if an expression represents an lhs that can be reallocated
9942 on assignment. */
9943
9944 bool
9945 gfc_is_reallocatable_lhs (gfc_expr *expr)
9946 {
9947 gfc_ref * ref;
9948 gfc_symbol *sym;
9949
9950 if (!expr->ref)
9951 return false;
9952
9953 sym = expr->symtree->n.sym;
9954
9955 if (sym->attr.associate_var && !expr->ref)
9956 return false;
9957
9958 /* An allocatable class variable with no reference. */
9959 if (sym->ts.type == BT_CLASS
9960 && !sym->attr.associate_var
9961 && CLASS_DATA (sym)->attr.allocatable
9962 && expr->ref
9963 && ((expr->ref->type == REF_ARRAY && expr->ref->u.ar.type == AR_FULL
9964 && expr->ref->next == NULL)
9965 || (expr->ref->type == REF_COMPONENT
9966 && strcmp (expr->ref->u.c.component->name, "_data") == 0
9967 && (expr->ref->next == NULL
9968 || (expr->ref->next->type == REF_ARRAY
9969 && expr->ref->next->u.ar.type == AR_FULL
9970 && expr->ref->next->next == NULL)))))
9971 return true;
9972
9973 /* An allocatable variable. */
9974 if (sym->attr.allocatable
9975 && !sym->attr.associate_var
9976 && expr->ref
9977 && expr->ref->type == REF_ARRAY
9978 && expr->ref->u.ar.type == AR_FULL)
9979 return true;
9980
9981 /* All that can be left are allocatable components. */
9982 if ((sym->ts.type != BT_DERIVED
9983 && sym->ts.type != BT_CLASS)
9984 || !sym->ts.u.derived->attr.alloc_comp)
9985 return false;
9986
9987 /* Find a component ref followed by an array reference. */
9988 for (ref = expr->ref; ref; ref = ref->next)
9989 if (ref->next
9990 && ref->type == REF_COMPONENT
9991 && ref->next->type == REF_ARRAY
9992 && !ref->next->next)
9993 break;
9994
9995 if (!ref)
9996 return false;
9997
9998 /* Return true if valid reallocatable lhs. */
9999 if (ref->u.c.component->attr.allocatable
10000 && ref->next->u.ar.type == AR_FULL)
10001 return true;
10002
10003 return false;
10004 }
10005
10006
10007 static tree
10008 concat_str_length (gfc_expr* expr)
10009 {
10010 tree type;
10011 tree len1;
10012 tree len2;
10013 gfc_se se;
10014
10015 type = gfc_typenode_for_spec (&expr->value.op.op1->ts);
10016 len1 = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
10017 if (len1 == NULL_TREE)
10018 {
10019 if (expr->value.op.op1->expr_type == EXPR_OP)
10020 len1 = concat_str_length (expr->value.op.op1);
10021 else if (expr->value.op.op1->expr_type == EXPR_CONSTANT)
10022 len1 = build_int_cst (gfc_charlen_type_node,
10023 expr->value.op.op1->value.character.length);
10024 else if (expr->value.op.op1->ts.u.cl->length)
10025 {
10026 gfc_init_se (&se, NULL);
10027 gfc_conv_expr (&se, expr->value.op.op1->ts.u.cl->length);
10028 len1 = se.expr;
10029 }
10030 else
10031 {
10032 /* Last resort! */
10033 gfc_init_se (&se, NULL);
10034 se.want_pointer = 1;
10035 se.descriptor_only = 1;
10036 gfc_conv_expr (&se, expr->value.op.op1);
10037 len1 = se.string_length;
10038 }
10039 }
10040
10041 type = gfc_typenode_for_spec (&expr->value.op.op2->ts);
10042 len2 = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
10043 if (len2 == NULL_TREE)
10044 {
10045 if (expr->value.op.op2->expr_type == EXPR_OP)
10046 len2 = concat_str_length (expr->value.op.op2);
10047 else if (expr->value.op.op2->expr_type == EXPR_CONSTANT)
10048 len2 = build_int_cst (gfc_charlen_type_node,
10049 expr->value.op.op2->value.character.length);
10050 else if (expr->value.op.op2->ts.u.cl->length)
10051 {
10052 gfc_init_se (&se, NULL);
10053 gfc_conv_expr (&se, expr->value.op.op2->ts.u.cl->length);
10054 len2 = se.expr;
10055 }
10056 else
10057 {
10058 /* Last resort! */
10059 gfc_init_se (&se, NULL);
10060 se.want_pointer = 1;
10061 se.descriptor_only = 1;
10062 gfc_conv_expr (&se, expr->value.op.op2);
10063 len2 = se.string_length;
10064 }
10065 }
10066
10067 gcc_assert(len1 && len2);
10068 len1 = fold_convert (gfc_charlen_type_node, len1);
10069 len2 = fold_convert (gfc_charlen_type_node, len2);
10070
10071 return fold_build2_loc (input_location, PLUS_EXPR,
10072 gfc_charlen_type_node, len1, len2);
10073 }
10074
10075
10076 /* Allocate the lhs of an assignment to an allocatable array, otherwise
10077 reallocate it. */
10078
10079 tree
10080 gfc_alloc_allocatable_for_assignment (gfc_loopinfo *loop,
10081 gfc_expr *expr1,
10082 gfc_expr *expr2)
10083 {
10084 stmtblock_t realloc_block;
10085 stmtblock_t alloc_block;
10086 stmtblock_t fblock;
10087 gfc_ss *rss;
10088 gfc_ss *lss;
10089 gfc_array_info *linfo;
10090 tree realloc_expr;
10091 tree alloc_expr;
10092 tree size1;
10093 tree size2;
10094 tree array1;
10095 tree cond_null;
10096 tree cond;
10097 tree tmp;
10098 tree tmp2;
10099 tree lbound;
10100 tree ubound;
10101 tree desc;
10102 tree old_desc;
10103 tree desc2;
10104 tree offset;
10105 tree jump_label1;
10106 tree jump_label2;
10107 tree neq_size;
10108 tree lbd;
10109 int n;
10110 int dim;
10111 gfc_array_spec * as;
10112 bool coarray = (flag_coarray == GFC_FCOARRAY_LIB
10113 && gfc_caf_attr (expr1, true).codimension);
10114 tree token;
10115 gfc_se caf_se;
10116
10117 /* x = f(...) with x allocatable. In this case, expr1 is the rhs.
10118 Find the lhs expression in the loop chain and set expr1 and
10119 expr2 accordingly. */
10120 if (expr1->expr_type == EXPR_FUNCTION && expr2 == NULL)
10121 {
10122 expr2 = expr1;
10123 /* Find the ss for the lhs. */
10124 lss = loop->ss;
10125 for (; lss && lss != gfc_ss_terminator; lss = lss->loop_chain)
10126 if (lss->info->expr && lss->info->expr->expr_type == EXPR_VARIABLE)
10127 break;
10128 if (lss == gfc_ss_terminator)
10129 return NULL_TREE;
10130 expr1 = lss->info->expr;
10131 }
10132
10133 /* Bail out if this is not a valid allocate on assignment. */
10134 if (!gfc_is_reallocatable_lhs (expr1)
10135 || (expr2 && !expr2->rank))
10136 return NULL_TREE;
10137
10138 /* Find the ss for the lhs. */
10139 lss = loop->ss;
10140 for (; lss && lss != gfc_ss_terminator; lss = lss->loop_chain)
10141 if (lss->info->expr == expr1)
10142 break;
10143
10144 if (lss == gfc_ss_terminator)
10145 return NULL_TREE;
10146
10147 linfo = &lss->info->data.array;
10148
10149 /* Find an ss for the rhs. For operator expressions, we see the
10150 ss's for the operands. Any one of these will do. */
10151 rss = loop->ss;
10152 for (; rss && rss != gfc_ss_terminator; rss = rss->loop_chain)
10153 if (rss->info->expr != expr1 && rss != loop->temp_ss)
10154 break;
10155
10156 if (expr2 && rss == gfc_ss_terminator)
10157 return NULL_TREE;
10158
10159 /* Ensure that the string length from the current scope is used. */
10160 if (expr2->ts.type == BT_CHARACTER
10161 && expr2->expr_type == EXPR_FUNCTION
10162 && !expr2->value.function.isym)
10163 expr2->ts.u.cl->backend_decl = rss->info->string_length;
10164
10165 gfc_start_block (&fblock);
10166
10167 /* Since the lhs is allocatable, this must be a descriptor type.
10168 Get the data and array size. */
10169 desc = linfo->descriptor;
10170 gcc_assert (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc)));
10171 array1 = gfc_conv_descriptor_data_get (desc);
10172
10173 /* 7.4.1.3 "If variable is an allocated allocatable variable, it is
10174 deallocated if expr is an array of different shape or any of the
10175 corresponding length type parameter values of variable and expr
10176 differ." This assures F95 compatibility. */
10177 jump_label1 = gfc_build_label_decl (NULL_TREE);
10178 jump_label2 = gfc_build_label_decl (NULL_TREE);
10179
10180 /* Allocate if data is NULL. */
10181 cond_null = fold_build2_loc (input_location, EQ_EXPR, logical_type_node,
10182 array1, build_int_cst (TREE_TYPE (array1), 0));
10183
10184 if (expr1->ts.type == BT_CHARACTER && expr1->ts.deferred)
10185 {
10186 tmp = fold_build2_loc (input_location, NE_EXPR,
10187 logical_type_node,
10188 lss->info->string_length,
10189 rss->info->string_length);
10190 cond_null = fold_build2_loc (input_location, TRUTH_OR_EXPR,
10191 logical_type_node, tmp, cond_null);
10192 }
10193 else
10194 cond_null= gfc_evaluate_now (cond_null, &fblock);
10195
10196 tmp = build3_v (COND_EXPR, cond_null,
10197 build1_v (GOTO_EXPR, jump_label1),
10198 build_empty_stmt (input_location));
10199 gfc_add_expr_to_block (&fblock, tmp);
10200
10201 /* Get arrayspec if expr is a full array. */
10202 if (expr2 && expr2->expr_type == EXPR_FUNCTION
10203 && expr2->value.function.isym
10204 && expr2->value.function.isym->conversion)
10205 {
10206 /* For conversion functions, take the arg. */
10207 gfc_expr *arg = expr2->value.function.actual->expr;
10208 as = gfc_get_full_arrayspec_from_expr (arg);
10209 }
10210 else if (expr2)
10211 as = gfc_get_full_arrayspec_from_expr (expr2);
10212 else
10213 as = NULL;
10214
10215 /* If the lhs shape is not the same as the rhs jump to setting the
10216 bounds and doing the reallocation....... */
10217 for (n = 0; n < expr1->rank; n++)
10218 {
10219 /* Check the shape. */
10220 lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[n]);
10221 ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[n]);
10222 tmp = fold_build2_loc (input_location, MINUS_EXPR,
10223 gfc_array_index_type,
10224 loop->to[n], loop->from[n]);
10225 tmp = fold_build2_loc (input_location, PLUS_EXPR,
10226 gfc_array_index_type,
10227 tmp, lbound);
10228 tmp = fold_build2_loc (input_location, MINUS_EXPR,
10229 gfc_array_index_type,
10230 tmp, ubound);
10231 cond = fold_build2_loc (input_location, NE_EXPR,
10232 logical_type_node,
10233 tmp, gfc_index_zero_node);
10234 tmp = build3_v (COND_EXPR, cond,
10235 build1_v (GOTO_EXPR, jump_label1),
10236 build_empty_stmt (input_location));
10237 gfc_add_expr_to_block (&fblock, tmp);
10238 }
10239
10240 /* ....else jump past the (re)alloc code. */
10241 tmp = build1_v (GOTO_EXPR, jump_label2);
10242 gfc_add_expr_to_block (&fblock, tmp);
10243
10244 /* Add the label to start automatic (re)allocation. */
10245 tmp = build1_v (LABEL_EXPR, jump_label1);
10246 gfc_add_expr_to_block (&fblock, tmp);
10247
10248 /* If the lhs has not been allocated, its bounds will not have been
10249 initialized and so its size is set to zero. */
10250 size1 = gfc_create_var (gfc_array_index_type, NULL);
10251 gfc_init_block (&alloc_block);
10252 gfc_add_modify (&alloc_block, size1, gfc_index_zero_node);
10253 gfc_init_block (&realloc_block);
10254 gfc_add_modify (&realloc_block, size1,
10255 gfc_conv_descriptor_size (desc, expr1->rank));
10256 tmp = build3_v (COND_EXPR, cond_null,
10257 gfc_finish_block (&alloc_block),
10258 gfc_finish_block (&realloc_block));
10259 gfc_add_expr_to_block (&fblock, tmp);
10260
10261 /* Get the rhs size and fix it. */
10262 if (expr2)
10263 desc2 = rss->info->data.array.descriptor;
10264 else
10265 desc2 = NULL_TREE;
10266
10267 size2 = gfc_index_one_node;
10268 for (n = 0; n < expr2->rank; n++)
10269 {
10270 tmp = fold_build2_loc (input_location, MINUS_EXPR,
10271 gfc_array_index_type,
10272 loop->to[n], loop->from[n]);
10273 tmp = fold_build2_loc (input_location, PLUS_EXPR,
10274 gfc_array_index_type,
10275 tmp, gfc_index_one_node);
10276 size2 = fold_build2_loc (input_location, MULT_EXPR,
10277 gfc_array_index_type,
10278 tmp, size2);
10279 }
10280 size2 = gfc_evaluate_now (size2, &fblock);
10281
10282 cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
10283 size1, size2);
10284
10285 /* If the lhs is deferred length, assume that the element size
10286 changes and force a reallocation. */
10287 if (expr1->ts.deferred)
10288 neq_size = gfc_evaluate_now (logical_true_node, &fblock);
10289 else
10290 neq_size = gfc_evaluate_now (cond, &fblock);
10291
10292 /* Deallocation of allocatable components will have to occur on
10293 reallocation. Fix the old descriptor now. */
10294 if ((expr1->ts.type == BT_DERIVED)
10295 && expr1->ts.u.derived->attr.alloc_comp)
10296 old_desc = gfc_evaluate_now (desc, &fblock);
10297 else
10298 old_desc = NULL_TREE;
10299
10300 /* Now modify the lhs descriptor and the associated scalarizer
10301 variables. F2003 7.4.1.3: "If variable is or becomes an
10302 unallocated allocatable variable, then it is allocated with each
10303 deferred type parameter equal to the corresponding type parameters
10304 of expr , with the shape of expr , and with each lower bound equal
10305 to the corresponding element of LBOUND(expr)."
10306 Reuse size1 to keep a dimension-by-dimension track of the
10307 stride of the new array. */
10308 size1 = gfc_index_one_node;
10309 offset = gfc_index_zero_node;
10310
10311 for (n = 0; n < expr2->rank; n++)
10312 {
10313 tmp = fold_build2_loc (input_location, MINUS_EXPR,
10314 gfc_array_index_type,
10315 loop->to[n], loop->from[n]);
10316 tmp = fold_build2_loc (input_location, PLUS_EXPR,
10317 gfc_array_index_type,
10318 tmp, gfc_index_one_node);
10319
10320 lbound = gfc_index_one_node;
10321 ubound = tmp;
10322
10323 if (as)
10324 {
10325 lbd = get_std_lbound (expr2, desc2, n,
10326 as->type == AS_ASSUMED_SIZE);
10327 ubound = fold_build2_loc (input_location,
10328 MINUS_EXPR,
10329 gfc_array_index_type,
10330 ubound, lbound);
10331 ubound = fold_build2_loc (input_location,
10332 PLUS_EXPR,
10333 gfc_array_index_type,
10334 ubound, lbd);
10335 lbound = lbd;
10336 }
10337
10338 gfc_conv_descriptor_lbound_set (&fblock, desc,
10339 gfc_rank_cst[n],
10340 lbound);
10341 gfc_conv_descriptor_ubound_set (&fblock, desc,
10342 gfc_rank_cst[n],
10343 ubound);
10344 gfc_conv_descriptor_stride_set (&fblock, desc,
10345 gfc_rank_cst[n],
10346 size1);
10347 lbound = gfc_conv_descriptor_lbound_get (desc,
10348 gfc_rank_cst[n]);
10349 tmp2 = fold_build2_loc (input_location, MULT_EXPR,
10350 gfc_array_index_type,
10351 lbound, size1);
10352 offset = fold_build2_loc (input_location, MINUS_EXPR,
10353 gfc_array_index_type,
10354 offset, tmp2);
10355 size1 = fold_build2_loc (input_location, MULT_EXPR,
10356 gfc_array_index_type,
10357 tmp, size1);
10358 }
10359
10360 /* Set the lhs descriptor and scalarizer offsets. For rank > 1,
10361 the array offset is saved and the info.offset is used for a
10362 running offset. Use the saved_offset instead. */
10363 tmp = gfc_conv_descriptor_offset (desc);
10364 gfc_add_modify (&fblock, tmp, offset);
10365 if (linfo->saved_offset
10366 && VAR_P (linfo->saved_offset))
10367 gfc_add_modify (&fblock, linfo->saved_offset, tmp);
10368
10369 /* Now set the deltas for the lhs. */
10370 for (n = 0; n < expr1->rank; n++)
10371 {
10372 tmp = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[n]);
10373 dim = lss->dim[n];
10374 tmp = fold_build2_loc (input_location, MINUS_EXPR,
10375 gfc_array_index_type, tmp,
10376 loop->from[dim]);
10377 if (linfo->delta[dim] && VAR_P (linfo->delta[dim]))
10378 gfc_add_modify (&fblock, linfo->delta[dim], tmp);
10379 }
10380
10381 /* Get the new lhs size in bytes. */
10382 if (expr1->ts.type == BT_CHARACTER && expr1->ts.deferred)
10383 {
10384 if (expr2->ts.deferred)
10385 {
10386 if (expr2->ts.u.cl->backend_decl
10387 && VAR_P (expr2->ts.u.cl->backend_decl))
10388 tmp = expr2->ts.u.cl->backend_decl;
10389 else
10390 tmp = rss->info->string_length;
10391 }
10392 else
10393 {
10394 tmp = expr2->ts.u.cl->backend_decl;
10395 if (!tmp && expr2->expr_type == EXPR_OP
10396 && expr2->value.op.op == INTRINSIC_CONCAT)
10397 {
10398 tmp = concat_str_length (expr2);
10399 expr2->ts.u.cl->backend_decl = gfc_evaluate_now (tmp, &fblock);
10400 }
10401 else if (!tmp && expr2->ts.u.cl->length)
10402 {
10403 gfc_se tmpse;
10404 gfc_init_se (&tmpse, NULL);
10405 gfc_conv_expr_type (&tmpse, expr2->ts.u.cl->length,
10406 gfc_charlen_type_node);
10407 tmp = tmpse.expr;
10408 expr2->ts.u.cl->backend_decl = gfc_evaluate_now (tmp, &fblock);
10409 }
10410 tmp = fold_convert (TREE_TYPE (expr1->ts.u.cl->backend_decl), tmp);
10411 }
10412
10413 if (expr1->ts.u.cl->backend_decl
10414 && VAR_P (expr1->ts.u.cl->backend_decl))
10415 gfc_add_modify (&fblock, expr1->ts.u.cl->backend_decl, tmp);
10416 else
10417 gfc_add_modify (&fblock, lss->info->string_length, tmp);
10418
10419 if (expr1->ts.kind > 1)
10420 tmp = fold_build2_loc (input_location, MULT_EXPR,
10421 TREE_TYPE (tmp),
10422 tmp, build_int_cst (TREE_TYPE (tmp),
10423 expr1->ts.kind));
10424 }
10425 else if (expr1->ts.type == BT_CHARACTER && expr1->ts.u.cl->backend_decl)
10426 {
10427 tmp = TYPE_SIZE_UNIT (TREE_TYPE (gfc_typenode_for_spec (&expr1->ts)));
10428 tmp = fold_build2_loc (input_location, MULT_EXPR,
10429 gfc_array_index_type, tmp,
10430 expr1->ts.u.cl->backend_decl);
10431 }
10432 else if (UNLIMITED_POLY (expr1) && expr2->ts.type != BT_CLASS)
10433 tmp = TYPE_SIZE_UNIT (gfc_typenode_for_spec (&expr2->ts));
10434 else
10435 tmp = TYPE_SIZE_UNIT (gfc_typenode_for_spec (&expr1->ts));
10436 tmp = fold_convert (gfc_array_index_type, tmp);
10437
10438 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc)))
10439 gfc_conv_descriptor_span_set (&fblock, desc, tmp);
10440
10441 size2 = fold_build2_loc (input_location, MULT_EXPR,
10442 gfc_array_index_type,
10443 tmp, size2);
10444 size2 = fold_convert (size_type_node, size2);
10445 size2 = fold_build2_loc (input_location, MAX_EXPR, size_type_node,
10446 size2, size_one_node);
10447 size2 = gfc_evaluate_now (size2, &fblock);
10448
10449 /* For deferred character length, the 'size' field of the dtype might
10450 have changed so set the dtype. */
10451 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))
10452 && expr1->ts.type == BT_CHARACTER && expr1->ts.deferred)
10453 {
10454 tree type;
10455 tmp = gfc_conv_descriptor_dtype (desc);
10456 if (expr2->ts.u.cl->backend_decl)
10457 type = gfc_typenode_for_spec (&expr2->ts);
10458 else
10459 type = gfc_typenode_for_spec (&expr1->ts);
10460
10461 gfc_add_modify (&fblock, tmp,
10462 gfc_get_dtype_rank_type (expr1->rank,type));
10463 }
10464 else if (UNLIMITED_POLY (expr1) && expr2->ts.type != BT_CLASS)
10465 {
10466 tree type;
10467 tmp = gfc_conv_descriptor_dtype (desc);
10468 type = gfc_typenode_for_spec (&expr2->ts);
10469 gfc_add_modify (&fblock, tmp,
10470 gfc_get_dtype_rank_type (expr2->rank,type));
10471 /* Set the _len field as well... */
10472 tmp = gfc_class_len_get (TREE_OPERAND (desc, 0));
10473 if (expr2->ts.type == BT_CHARACTER)
10474 gfc_add_modify (&fblock, tmp,
10475 fold_convert (TREE_TYPE (tmp),
10476 TYPE_SIZE_UNIT (type)));
10477 else
10478 gfc_add_modify (&fblock, tmp,
10479 build_int_cst (TREE_TYPE (tmp), 0));
10480 /* ...and the vptr. */
10481 tmp = gfc_class_vptr_get (TREE_OPERAND (desc, 0));
10482 tmp2 = gfc_get_symbol_decl (gfc_find_vtab (&expr2->ts));
10483 tmp2 = gfc_build_addr_expr (TREE_TYPE (tmp), tmp2);
10484 gfc_add_modify (&fblock, tmp, tmp2);
10485 }
10486 else if (coarray && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc)))
10487 {
10488 gfc_add_modify (&fblock, gfc_conv_descriptor_dtype (desc),
10489 gfc_get_dtype (TREE_TYPE (desc)));
10490 }
10491
10492 /* Realloc expression. Note that the scalarizer uses desc.data
10493 in the array reference - (*desc.data)[<element>]. */
10494 gfc_init_block (&realloc_block);
10495 gfc_init_se (&caf_se, NULL);
10496
10497 if (coarray)
10498 {
10499 token = gfc_get_ultimate_alloc_ptr_comps_caf_token (&caf_se, expr1);
10500 if (token == NULL_TREE)
10501 {
10502 tmp = gfc_get_tree_for_caf_expr (expr1);
10503 if (POINTER_TYPE_P (TREE_TYPE (tmp)))
10504 tmp = build_fold_indirect_ref (tmp);
10505 gfc_get_caf_token_offset (&caf_se, &token, NULL, tmp, NULL_TREE,
10506 expr1);
10507 token = gfc_build_addr_expr (NULL_TREE, token);
10508 }
10509
10510 gfc_add_block_to_block (&realloc_block, &caf_se.pre);
10511 }
10512 if ((expr1->ts.type == BT_DERIVED)
10513 && expr1->ts.u.derived->attr.alloc_comp)
10514 {
10515 tmp = gfc_deallocate_alloc_comp_no_caf (expr1->ts.u.derived, old_desc,
10516 expr1->rank);
10517 gfc_add_expr_to_block (&realloc_block, tmp);
10518 }
10519
10520 if (!coarray)
10521 {
10522 tmp = build_call_expr_loc (input_location,
10523 builtin_decl_explicit (BUILT_IN_REALLOC), 2,
10524 fold_convert (pvoid_type_node, array1),
10525 size2);
10526 gfc_conv_descriptor_data_set (&realloc_block,
10527 desc, tmp);
10528 }
10529 else
10530 {
10531 tmp = build_call_expr_loc (input_location,
10532 gfor_fndecl_caf_deregister, 5, token,
10533 build_int_cst (integer_type_node,
10534 GFC_CAF_COARRAY_DEALLOCATE_ONLY),
10535 null_pointer_node, null_pointer_node,
10536 integer_zero_node);
10537 gfc_add_expr_to_block (&realloc_block, tmp);
10538 tmp = build_call_expr_loc (input_location,
10539 gfor_fndecl_caf_register,
10540 7, size2,
10541 build_int_cst (integer_type_node,
10542 GFC_CAF_COARRAY_ALLOC_ALLOCATE_ONLY),
10543 token, gfc_build_addr_expr (NULL_TREE, desc),
10544 null_pointer_node, null_pointer_node,
10545 integer_zero_node);
10546 gfc_add_expr_to_block (&realloc_block, tmp);
10547 }
10548
10549 if ((expr1->ts.type == BT_DERIVED)
10550 && expr1->ts.u.derived->attr.alloc_comp)
10551 {
10552 tmp = gfc_nullify_alloc_comp (expr1->ts.u.derived, desc,
10553 expr1->rank);
10554 gfc_add_expr_to_block (&realloc_block, tmp);
10555 }
10556
10557 gfc_add_block_to_block (&realloc_block, &caf_se.post);
10558 realloc_expr = gfc_finish_block (&realloc_block);
10559
10560 /* Only reallocate if sizes are different. */
10561 tmp = build3_v (COND_EXPR, neq_size, realloc_expr,
10562 build_empty_stmt (input_location));
10563 realloc_expr = tmp;
10564
10565
10566 /* Malloc expression. */
10567 gfc_init_block (&alloc_block);
10568 if (!coarray)
10569 {
10570 tmp = build_call_expr_loc (input_location,
10571 builtin_decl_explicit (BUILT_IN_MALLOC),
10572 1, size2);
10573 gfc_conv_descriptor_data_set (&alloc_block,
10574 desc, tmp);
10575 }
10576 else
10577 {
10578 tmp = build_call_expr_loc (input_location,
10579 gfor_fndecl_caf_register,
10580 7, size2,
10581 build_int_cst (integer_type_node,
10582 GFC_CAF_COARRAY_ALLOC),
10583 token, gfc_build_addr_expr (NULL_TREE, desc),
10584 null_pointer_node, null_pointer_node,
10585 integer_zero_node);
10586 gfc_add_expr_to_block (&alloc_block, tmp);
10587 }
10588
10589
10590 /* We already set the dtype in the case of deferred character
10591 length arrays and unlimited polymorphic arrays. */
10592 if (!(GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))
10593 && ((expr1->ts.type == BT_CHARACTER && expr1->ts.deferred)
10594 || coarray))
10595 && !UNLIMITED_POLY (expr1))
10596 {
10597 tmp = gfc_conv_descriptor_dtype (desc);
10598 gfc_add_modify (&alloc_block, tmp, gfc_get_dtype (TREE_TYPE (desc)));
10599 }
10600
10601 if ((expr1->ts.type == BT_DERIVED)
10602 && expr1->ts.u.derived->attr.alloc_comp)
10603 {
10604 tmp = gfc_nullify_alloc_comp (expr1->ts.u.derived, desc,
10605 expr1->rank);
10606 gfc_add_expr_to_block (&alloc_block, tmp);
10607 }
10608 alloc_expr = gfc_finish_block (&alloc_block);
10609
10610 /* Malloc if not allocated; realloc otherwise. */
10611 tmp = build_int_cst (TREE_TYPE (array1), 0);
10612 cond = fold_build2_loc (input_location, EQ_EXPR,
10613 logical_type_node,
10614 array1, tmp);
10615 tmp = build3_v (COND_EXPR, cond, alloc_expr, realloc_expr);
10616 gfc_add_expr_to_block (&fblock, tmp);
10617
10618 /* Make sure that the scalarizer data pointer is updated. */
10619 if (linfo->data && VAR_P (linfo->data))
10620 {
10621 tmp = gfc_conv_descriptor_data_get (desc);
10622 gfc_add_modify (&fblock, linfo->data, tmp);
10623 }
10624
10625 /* Add the exit label. */
10626 tmp = build1_v (LABEL_EXPR, jump_label2);
10627 gfc_add_expr_to_block (&fblock, tmp);
10628
10629 return gfc_finish_block (&fblock);
10630 }
10631
10632
10633 /* NULLIFY an allocatable/pointer array on function entry, free it on exit.
10634 Do likewise, recursively if necessary, with the allocatable components of
10635 derived types. */
10636
10637 void
10638 gfc_trans_deferred_array (gfc_symbol * sym, gfc_wrapped_block * block)
10639 {
10640 tree type;
10641 tree tmp;
10642 tree descriptor;
10643 stmtblock_t init;
10644 stmtblock_t cleanup;
10645 locus loc;
10646 int rank;
10647 bool sym_has_alloc_comp, has_finalizer;
10648
10649 sym_has_alloc_comp = (sym->ts.type == BT_DERIVED
10650 || sym->ts.type == BT_CLASS)
10651 && sym->ts.u.derived->attr.alloc_comp;
10652 has_finalizer = sym->ts.type == BT_CLASS || sym->ts.type == BT_DERIVED
10653 ? gfc_is_finalizable (sym->ts.u.derived, NULL) : false;
10654
10655 /* Make sure the frontend gets these right. */
10656 gcc_assert (sym->attr.pointer || sym->attr.allocatable || sym_has_alloc_comp
10657 || has_finalizer);
10658
10659 gfc_save_backend_locus (&loc);
10660 gfc_set_backend_locus (&sym->declared_at);
10661 gfc_init_block (&init);
10662
10663 gcc_assert (VAR_P (sym->backend_decl)
10664 || TREE_CODE (sym->backend_decl) == PARM_DECL);
10665
10666 if (sym->ts.type == BT_CHARACTER
10667 && !INTEGER_CST_P (sym->ts.u.cl->backend_decl))
10668 {
10669 gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
10670 gfc_trans_vla_type_sizes (sym, &init);
10671 }
10672
10673 /* Dummy, use associated and result variables don't need anything special. */
10674 if (sym->attr.dummy || sym->attr.use_assoc || sym->attr.result)
10675 {
10676 gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
10677 gfc_restore_backend_locus (&loc);
10678 return;
10679 }
10680
10681 descriptor = sym->backend_decl;
10682
10683 /* Although static, derived types with default initializers and
10684 allocatable components must not be nulled wholesale; instead they
10685 are treated component by component. */
10686 if (TREE_STATIC (descriptor) && !sym_has_alloc_comp && !has_finalizer)
10687 {
10688 /* SAVEd variables are not freed on exit. */
10689 gfc_trans_static_array_pointer (sym);
10690
10691 gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
10692 gfc_restore_backend_locus (&loc);
10693 return;
10694 }
10695
10696 /* Get the descriptor type. */
10697 type = TREE_TYPE (sym->backend_decl);
10698
10699 if ((sym_has_alloc_comp || (has_finalizer && sym->ts.type != BT_CLASS))
10700 && !(sym->attr.pointer || sym->attr.allocatable))
10701 {
10702 if (!sym->attr.save
10703 && !(TREE_STATIC (sym->backend_decl) && sym->attr.is_main_program))
10704 {
10705 if (sym->value == NULL
10706 || !gfc_has_default_initializer (sym->ts.u.derived))
10707 {
10708 rank = sym->as ? sym->as->rank : 0;
10709 tmp = gfc_nullify_alloc_comp (sym->ts.u.derived,
10710 descriptor, rank);
10711 gfc_add_expr_to_block (&init, tmp);
10712 }
10713 else
10714 gfc_init_default_dt (sym, &init, false);
10715 }
10716 }
10717 else if (!GFC_DESCRIPTOR_TYPE_P (type))
10718 {
10719 /* If the backend_decl is not a descriptor, we must have a pointer
10720 to one. */
10721 descriptor = build_fold_indirect_ref_loc (input_location,
10722 sym->backend_decl);
10723 type = TREE_TYPE (descriptor);
10724 }
10725
10726 /* NULLIFY the data pointer, for non-saved allocatables. */
10727 if (GFC_DESCRIPTOR_TYPE_P (type) && !sym->attr.save && sym->attr.allocatable)
10728 {
10729 gfc_conv_descriptor_data_set (&init, descriptor, null_pointer_node);
10730 if (flag_coarray == GFC_FCOARRAY_LIB && sym->attr.codimension)
10731 {
10732 /* Declare the variable static so its array descriptor stays present
10733 after leaving the scope. It may still be accessed through another
10734 image. This may happen, for example, with the caf_mpi
10735 implementation. */
10736 TREE_STATIC (descriptor) = 1;
10737 tmp = gfc_conv_descriptor_token (descriptor);
10738 gfc_add_modify (&init, tmp, fold_convert (TREE_TYPE (tmp),
10739 null_pointer_node));
10740 }
10741 }
10742
10743 gfc_restore_backend_locus (&loc);
10744 gfc_init_block (&cleanup);
10745
10746 /* Allocatable arrays need to be freed when they go out of scope.
10747 The allocatable components of pointers must not be touched. */
10748 if (!sym->attr.allocatable && has_finalizer && sym->ts.type != BT_CLASS
10749 && !sym->attr.pointer && !sym->attr.artificial && !sym->attr.save
10750 && !sym->ns->proc_name->attr.is_main_program)
10751 {
10752 gfc_expr *e;
10753 sym->attr.referenced = 1;
10754 e = gfc_lval_expr_from_sym (sym);
10755 gfc_add_finalizer_call (&cleanup, e);
10756 gfc_free_expr (e);
10757 }
10758 else if ((!sym->attr.allocatable || !has_finalizer)
10759 && sym_has_alloc_comp && !(sym->attr.function || sym->attr.result)
10760 && !sym->attr.pointer && !sym->attr.save
10761 && !sym->ns->proc_name->attr.is_main_program)
10762 {
10763 int rank;
10764 rank = sym->as ? sym->as->rank : 0;
10765 tmp = gfc_deallocate_alloc_comp (sym->ts.u.derived, descriptor, rank);
10766 gfc_add_expr_to_block (&cleanup, tmp);
10767 }
10768
10769 if (sym->attr.allocatable && (sym->attr.dimension || sym->attr.codimension)
10770 && !sym->attr.save && !sym->attr.result
10771 && !sym->ns->proc_name->attr.is_main_program)
10772 {
10773 gfc_expr *e;
10774 e = has_finalizer ? gfc_lval_expr_from_sym (sym) : NULL;
10775 tmp = gfc_deallocate_with_status (sym->backend_decl, NULL_TREE, NULL_TREE,
10776 NULL_TREE, NULL_TREE, true, e,
10777 sym->attr.codimension
10778 ? GFC_CAF_COARRAY_DEREGISTER
10779 : GFC_CAF_COARRAY_NOCOARRAY);
10780 if (e)
10781 gfc_free_expr (e);
10782 gfc_add_expr_to_block (&cleanup, tmp);
10783 }
10784
10785 gfc_add_init_cleanup (block, gfc_finish_block (&init),
10786 gfc_finish_block (&cleanup));
10787 }
10788
10789 /************ Expression Walking Functions ******************/
10790
10791 /* Walk a variable reference.
10792
10793 Possible extension - multiple component subscripts.
10794 x(:,:) = foo%a(:)%b(:)
10795 Transforms to
10796 forall (i=..., j=...)
10797 x(i,j) = foo%a(j)%b(i)
10798 end forall
10799 This adds a fair amount of complexity because you need to deal with more
10800 than one ref. Maybe handle in a similar manner to vector subscripts.
10801 Maybe not worth the effort. */
10802
10803
10804 static gfc_ss *
10805 gfc_walk_variable_expr (gfc_ss * ss, gfc_expr * expr)
10806 {
10807 gfc_ref *ref;
10808
10809 gfc_fix_class_refs (expr);
10810
10811 for (ref = expr->ref; ref; ref = ref->next)
10812 if (ref->type == REF_ARRAY && ref->u.ar.type != AR_ELEMENT)
10813 break;
10814
10815 return gfc_walk_array_ref (ss, expr, ref);
10816 }
10817
10818
10819 gfc_ss *
10820 gfc_walk_array_ref (gfc_ss * ss, gfc_expr * expr, gfc_ref * ref)
10821 {
10822 gfc_array_ref *ar;
10823 gfc_ss *newss;
10824 int n;
10825
10826 for (; ref; ref = ref->next)
10827 {
10828 if (ref->type == REF_SUBSTRING)
10829 {
10830 ss = gfc_get_scalar_ss (ss, ref->u.ss.start);
10831 ss = gfc_get_scalar_ss (ss, ref->u.ss.end);
10832 }
10833
10834 /* We're only interested in array sections from now on. */
10835 if (ref->type != REF_ARRAY)
10836 continue;
10837
10838 ar = &ref->u.ar;
10839
10840 switch (ar->type)
10841 {
10842 case AR_ELEMENT:
10843 for (n = ar->dimen - 1; n >= 0; n--)
10844 ss = gfc_get_scalar_ss (ss, ar->start[n]);
10845 break;
10846
10847 case AR_FULL:
10848 newss = gfc_get_array_ss (ss, expr, ar->as->rank, GFC_SS_SECTION);
10849 newss->info->data.array.ref = ref;
10850
10851 /* Make sure array is the same as array(:,:), this way
10852 we don't need to special case all the time. */
10853 ar->dimen = ar->as->rank;
10854 for (n = 0; n < ar->dimen; n++)
10855 {
10856 ar->dimen_type[n] = DIMEN_RANGE;
10857
10858 gcc_assert (ar->start[n] == NULL);
10859 gcc_assert (ar->end[n] == NULL);
10860 gcc_assert (ar->stride[n] == NULL);
10861 }
10862 ss = newss;
10863 break;
10864
10865 case AR_SECTION:
10866 newss = gfc_get_array_ss (ss, expr, 0, GFC_SS_SECTION);
10867 newss->info->data.array.ref = ref;
10868
10869 /* We add SS chains for all the subscripts in the section. */
10870 for (n = 0; n < ar->dimen; n++)
10871 {
10872 gfc_ss *indexss;
10873
10874 switch (ar->dimen_type[n])
10875 {
10876 case DIMEN_ELEMENT:
10877 /* Add SS for elemental (scalar) subscripts. */
10878 gcc_assert (ar->start[n]);
10879 indexss = gfc_get_scalar_ss (gfc_ss_terminator, ar->start[n]);
10880 indexss->loop_chain = gfc_ss_terminator;
10881 newss->info->data.array.subscript[n] = indexss;
10882 break;
10883
10884 case DIMEN_RANGE:
10885 /* We don't add anything for sections, just remember this
10886 dimension for later. */
10887 newss->dim[newss->dimen] = n;
10888 newss->dimen++;
10889 break;
10890
10891 case DIMEN_VECTOR:
10892 /* Create a GFC_SS_VECTOR index in which we can store
10893 the vector's descriptor. */
10894 indexss = gfc_get_array_ss (gfc_ss_terminator, ar->start[n],
10895 1, GFC_SS_VECTOR);
10896 indexss->loop_chain = gfc_ss_terminator;
10897 newss->info->data.array.subscript[n] = indexss;
10898 newss->dim[newss->dimen] = n;
10899 newss->dimen++;
10900 break;
10901
10902 default:
10903 /* We should know what sort of section it is by now. */
10904 gcc_unreachable ();
10905 }
10906 }
10907 /* We should have at least one non-elemental dimension,
10908 unless we are creating a descriptor for a (scalar) coarray. */
10909 gcc_assert (newss->dimen > 0
10910 || newss->info->data.array.ref->u.ar.as->corank > 0);
10911 ss = newss;
10912 break;
10913
10914 default:
10915 /* We should know what sort of section it is by now. */
10916 gcc_unreachable ();
10917 }
10918
10919 }
10920 return ss;
10921 }
10922
10923
10924 /* Walk an expression operator. If only one operand of a binary expression is
10925 scalar, we must also add the scalar term to the SS chain. */
10926
10927 static gfc_ss *
10928 gfc_walk_op_expr (gfc_ss * ss, gfc_expr * expr)
10929 {
10930 gfc_ss *head;
10931 gfc_ss *head2;
10932
10933 head = gfc_walk_subexpr (ss, expr->value.op.op1);
10934 if (expr->value.op.op2 == NULL)
10935 head2 = head;
10936 else
10937 head2 = gfc_walk_subexpr (head, expr->value.op.op2);
10938
10939 /* All operands are scalar. Pass back and let the caller deal with it. */
10940 if (head2 == ss)
10941 return head2;
10942
10943 /* All operands require scalarization. */
10944 if (head != ss && (expr->value.op.op2 == NULL || head2 != head))
10945 return head2;
10946
10947 /* One of the operands needs scalarization, the other is scalar.
10948 Create a gfc_ss for the scalar expression. */
10949 if (head == ss)
10950 {
10951 /* First operand is scalar. We build the chain in reverse order, so
10952 add the scalar SS after the second operand. */
10953 head = head2;
10954 while (head && head->next != ss)
10955 head = head->next;
10956 /* Check we haven't somehow broken the chain. */
10957 gcc_assert (head);
10958 head->next = gfc_get_scalar_ss (ss, expr->value.op.op1);
10959 }
10960 else /* head2 == head */
10961 {
10962 gcc_assert (head2 == head);
10963 /* Second operand is scalar. */
10964 head2 = gfc_get_scalar_ss (head2, expr->value.op.op2);
10965 }
10966
10967 return head2;
10968 }
10969
10970
10971 /* Reverse a SS chain. */
10972
10973 gfc_ss *
10974 gfc_reverse_ss (gfc_ss * ss)
10975 {
10976 gfc_ss *next;
10977 gfc_ss *head;
10978
10979 gcc_assert (ss != NULL);
10980
10981 head = gfc_ss_terminator;
10982 while (ss != gfc_ss_terminator)
10983 {
10984 next = ss->next;
10985 /* Check we didn't somehow break the chain. */
10986 gcc_assert (next != NULL);
10987 ss->next = head;
10988 head = ss;
10989 ss = next;
10990 }
10991
10992 return (head);
10993 }
10994
10995
10996 /* Given an expression referring to a procedure, return the symbol of its
10997 interface. We can't get the procedure symbol directly as we have to handle
10998 the case of (deferred) type-bound procedures. */
10999
11000 gfc_symbol *
11001 gfc_get_proc_ifc_for_expr (gfc_expr *procedure_ref)
11002 {
11003 gfc_symbol *sym;
11004 gfc_ref *ref;
11005
11006 if (procedure_ref == NULL)
11007 return NULL;
11008
11009 /* Normal procedure case. */
11010 if (procedure_ref->expr_type == EXPR_FUNCTION
11011 && procedure_ref->value.function.esym)
11012 sym = procedure_ref->value.function.esym;
11013 else
11014 sym = procedure_ref->symtree->n.sym;
11015
11016 /* Typebound procedure case. */
11017 for (ref = procedure_ref->ref; ref; ref = ref->next)
11018 {
11019 if (ref->type == REF_COMPONENT
11020 && ref->u.c.component->attr.proc_pointer)
11021 sym = ref->u.c.component->ts.interface;
11022 else
11023 sym = NULL;
11024 }
11025
11026 return sym;
11027 }
11028
11029
11030 /* Walk the arguments of an elemental function.
11031 PROC_EXPR is used to check whether an argument is permitted to be absent. If
11032 it is NULL, we don't do the check and the argument is assumed to be present.
11033 */
11034
11035 gfc_ss *
11036 gfc_walk_elemental_function_args (gfc_ss * ss, gfc_actual_arglist *arg,
11037 gfc_symbol *proc_ifc, gfc_ss_type type)
11038 {
11039 gfc_formal_arglist *dummy_arg;
11040 int scalar;
11041 gfc_ss *head;
11042 gfc_ss *tail;
11043 gfc_ss *newss;
11044
11045 head = gfc_ss_terminator;
11046 tail = NULL;
11047
11048 if (proc_ifc)
11049 dummy_arg = gfc_sym_get_dummy_args (proc_ifc);
11050 else
11051 dummy_arg = NULL;
11052
11053 scalar = 1;
11054 for (; arg; arg = arg->next)
11055 {
11056 if (!arg->expr || arg->expr->expr_type == EXPR_NULL)
11057 goto loop_continue;
11058
11059 newss = gfc_walk_subexpr (head, arg->expr);
11060 if (newss == head)
11061 {
11062 /* Scalar argument. */
11063 gcc_assert (type == GFC_SS_SCALAR || type == GFC_SS_REFERENCE);
11064 newss = gfc_get_scalar_ss (head, arg->expr);
11065 newss->info->type = type;
11066 if (dummy_arg)
11067 newss->info->data.scalar.dummy_arg = dummy_arg->sym;
11068 }
11069 else
11070 scalar = 0;
11071
11072 if (dummy_arg != NULL
11073 && dummy_arg->sym->attr.optional
11074 && arg->expr->expr_type == EXPR_VARIABLE
11075 && (gfc_expr_attr (arg->expr).optional
11076 || gfc_expr_attr (arg->expr).allocatable
11077 || gfc_expr_attr (arg->expr).pointer))
11078 newss->info->can_be_null_ref = true;
11079
11080 head = newss;
11081 if (!tail)
11082 {
11083 tail = head;
11084 while (tail->next != gfc_ss_terminator)
11085 tail = tail->next;
11086 }
11087
11088 loop_continue:
11089 if (dummy_arg != NULL)
11090 dummy_arg = dummy_arg->next;
11091 }
11092
11093 if (scalar)
11094 {
11095 /* If all the arguments are scalar we don't need the argument SS. */
11096 gfc_free_ss_chain (head);
11097 /* Pass it back. */
11098 return ss;
11099 }
11100
11101 /* Add it onto the existing chain. */
11102 tail->next = ss;
11103 return head;
11104 }
11105
11106
11107 /* Walk a function call. Scalar functions are passed back, and taken out of
11108 scalarization loops. For elemental functions we walk their arguments.
11109 The result of functions returning arrays is stored in a temporary outside
11110 the loop, so that the function is only called once. Hence we do not need
11111 to walk their arguments. */
11112
11113 static gfc_ss *
11114 gfc_walk_function_expr (gfc_ss * ss, gfc_expr * expr)
11115 {
11116 gfc_intrinsic_sym *isym;
11117 gfc_symbol *sym;
11118 gfc_component *comp = NULL;
11119
11120 isym = expr->value.function.isym;
11121
11122 /* Handle intrinsic functions separately. */
11123 if (isym)
11124 return gfc_walk_intrinsic_function (ss, expr, isym);
11125
11126 sym = expr->value.function.esym;
11127 if (!sym)
11128 sym = expr->symtree->n.sym;
11129
11130 if (gfc_is_class_array_function (expr))
11131 return gfc_get_array_ss (ss, expr,
11132 CLASS_DATA (expr->value.function.esym->result)->as->rank,
11133 GFC_SS_FUNCTION);
11134
11135 /* A function that returns arrays. */
11136 comp = gfc_get_proc_ptr_comp (expr);
11137 if ((!comp && gfc_return_by_reference (sym) && sym->result->attr.dimension)
11138 || (comp && comp->attr.dimension))
11139 return gfc_get_array_ss (ss, expr, expr->rank, GFC_SS_FUNCTION);
11140
11141 /* Walk the parameters of an elemental function. For now we always pass
11142 by reference. */
11143 if (sym->attr.elemental || (comp && comp->attr.elemental))
11144 {
11145 gfc_ss *old_ss = ss;
11146
11147 ss = gfc_walk_elemental_function_args (old_ss,
11148 expr->value.function.actual,
11149 gfc_get_proc_ifc_for_expr (expr),
11150 GFC_SS_REFERENCE);
11151 if (ss != old_ss
11152 && (comp
11153 || sym->attr.proc_pointer
11154 || sym->attr.if_source != IFSRC_DECL
11155 || sym->attr.array_outer_dependency))
11156 ss->info->array_outer_dependency = 1;
11157 }
11158
11159 /* Scalar functions are OK as these are evaluated outside the scalarization
11160 loop. Pass back and let the caller deal with it. */
11161 return ss;
11162 }
11163
11164
11165 /* An array temporary is constructed for array constructors. */
11166
11167 static gfc_ss *
11168 gfc_walk_array_constructor (gfc_ss * ss, gfc_expr * expr)
11169 {
11170 return gfc_get_array_ss (ss, expr, expr->rank, GFC_SS_CONSTRUCTOR);
11171 }
11172
11173
11174 /* Walk an expression. Add walked expressions to the head of the SS chain.
11175 A wholly scalar expression will not be added. */
11176
11177 gfc_ss *
11178 gfc_walk_subexpr (gfc_ss * ss, gfc_expr * expr)
11179 {
11180 gfc_ss *head;
11181
11182 switch (expr->expr_type)
11183 {
11184 case EXPR_VARIABLE:
11185 head = gfc_walk_variable_expr (ss, expr);
11186 return head;
11187
11188 case EXPR_OP:
11189 head = gfc_walk_op_expr (ss, expr);
11190 return head;
11191
11192 case EXPR_FUNCTION:
11193 head = gfc_walk_function_expr (ss, expr);
11194 return head;
11195
11196 case EXPR_CONSTANT:
11197 case EXPR_NULL:
11198 case EXPR_STRUCTURE:
11199 /* Pass back and let the caller deal with it. */
11200 break;
11201
11202 case EXPR_ARRAY:
11203 head = gfc_walk_array_constructor (ss, expr);
11204 return head;
11205
11206 case EXPR_SUBSTRING:
11207 /* Pass back and let the caller deal with it. */
11208 break;
11209
11210 default:
11211 gfc_internal_error ("bad expression type during walk (%d)",
11212 expr->expr_type);
11213 }
11214 return ss;
11215 }
11216
11217
11218 /* Entry point for expression walking.
11219 A return value equal to the passed chain means this is
11220 a scalar expression. It is up to the caller to take whatever action is
11221 necessary to translate these. */
11222
11223 gfc_ss *
11224 gfc_walk_expr (gfc_expr * expr)
11225 {
11226 gfc_ss *res;
11227
11228 res = gfc_walk_subexpr (gfc_ss_terminator, expr);
11229 return gfc_reverse_ss (res);
11230 }